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Search for low-energy neutrino radiation accompanying gamma-ray bursts on the
Baksan subterranean scintillation telescope

E. N. Alekseev, L. N. Alekseeva,* ) V. N. Zakidyshev, and V. Ya. Poddubny 

Institute of Nuclear Research, Russian Academy of Sciences, 117312 Moscow, Russia
~Submitted 27 May 1998!
Zh. Éksp. Teor. Fiz.114, 1921–1929~December 1998!

An analysis aimed at finding possible neutrino radiation accompanying gamma-ray bursts in a
24-h period about them is performed on the basis of the data in the 4B BATSE Gamma-
Ray Burst Catalog and data from the Baksan scintillation telescope according to a program for
finding neutrinos from collapsing stars. Values significantly exceeding the background
are not discovered. A lower bound for the distance to the source is established under the
assumption that the anticipated radiation has characteristics similar to the characteristics of collapse
neutrinos. It attests to the cosmological origin of gamma-ray bursts with a high degree of
probability. © 1998 American Institute of Physics.@S1063-7761~98!00112-7#
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1. INTRODUCTION

Enormous interest in the phenomenon of gamma-
bursts has arisen since April 1991, when the Comp
Gamma-Ray Observatory was launched. On board
spacecraft there were instruments for studying gamma ra
tion in various energy ranges:.150 keV ~the OSSE instru-
ment!, 20–300 keV~the BATSE instrument!, 0.75–30 MeV
~the COMPTEL instrument!, 0.6–170 MeV and 30 MeV–30
GeV ~the EGRET instrument! ~see Ref. 1 and the reference
cited therein!. Instead of the expected concentration
sources of gamma-ray bursts in the galactic plane,
BATSE data~the most informative and statistically signifi
cant data! showed that they are distributed isotropically ov
the sky, although the intensity distribution of the gamma-
bursts is spatially inhomogeneous.2

In the past seven years of operation, the BATSE ins
ment has recorded more than 2000 gamma-ray bursts; h
ever, the problem of determining their origin and the d
tances to them remains open.

As the experimental data were accumulated, the se
for various anisotropies, including repeated events from
single source, continued. Some investigators found ang
anisotropy for individual groups of bursts3 and even possible
matches between some gamma-ray bursts and x-ray sour4

but the analysis of the complete data led to a nega
result.5,6

The question of the interpretation of the bimodality o
served in the duration distribution of the bursts,7 according to
which there are ‘‘short’’ bursts with durations lying in th
range 0.03–2 s and ‘‘long’’ bursts with durations in th
range 2–1000 s, remains open.

The photon energies can reach very high values, as
demonstrated by recording the GRB 940217 event with
energy of 18 GeV on the EGRET instrument, which w
delayed relative to the BATSE signal8 and several othe
events.9

The situation became even more complicated wh
accompanying radiation in the x-ray and optical ranges w
1041063-7761/98/87(12)/5/$15.00
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detected for several gamma-ray bursts by the VerroSAX
ellite, which also monitors bursts, but with better angu
accuracy, and a red shift equal to 0.835 was success
determined for one of them, GRB 970508, from the obser
absorption and emission lines~see Refs. 1 and 12 and th
references cited therein!.

The interpretation of such a large body of experimen
data prompted the construction of many models, whose
thors clearly adhered either to the galactic or cosmolog
nature of this phenomenon, although the diversity of obs
vatory data can fully cover the differences in the nature
gamma-ray bursts.

The purely galactic models, which run into difficulties
accounting for the angular isotropy of gamma-ray bursts,
troduce an extended galactic corona with a radius of 20
300 kpc, which is filled with neutron stars that left the Milk
Way ~see, for example Ref. 13!. The mechanism for the for
mation of gamma-ray bursts should be similar to that
x-ray sources.

Conversely, the observed isotropy and inhomogeneity
the distributions of the bursts can easily be explained, if th
are at cosmological distances.14

It should be noted that both approaches have difficul
in accounting for the entire body of experimental data as
ciated with these phenomena. A detailed investigation of
BATSE signals alone likewise does not permit making
unequivocal choice between the models~see, for example,
Ref. 15!.

Most of the proposed cosmological models of the form
tion of gamma-ray bursts are associated with the grav
tional collapse of a massive object, during which so mu
energy is released that the necessary amount of rou
1051 erg per gamma-ray burst is fully provided. It can i
volve the merger of binary neutron stars or binary bla
holes etc.,16–18 the collapse of white dwarfs due t
accretion,19 stellar collapse with the appearance of Type
supernovas,20 the explosion of a very massive rapidly rota
ing star with the formation of a black hole following collaps
1 © 1998 American Institute of Physics
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of the core~a so-called ‘‘hypernova’’!,21 the collapse of a
‘‘naked’’ stellar core in a binary system~the ‘‘minisuper-
nova’’ model!,22 or the gravitational collapse of a superma
sive star having a mass more than 50 000 times greater
the mass of the Sun into a black hole.23,24

Each of these models has its own merits and shortc
ings for describing the complete quantitative characteris
of gamma-ray bursts, but they all share one feature, i.e.,
mandatory existence of a burst of neutrino radiation. T
properties of such neutrinos can be similar to the proper
of the neutrinos formed upon core collapse in a massive
with the appearance of a Type II supernova, i.e., the m

energy of the particlesne andñe is 10–15 MeV, and the tota
radiated energy is;331052 erg, but the duration of a neu
trino burst can be much shorter, less than 1 s, and the rela

fraction of electron antineutrinosñe is several times highe
than in the standard model.17 A few other characteristics o
neutrinos appear in the ‘‘supermassive’’ star model, viz.
mean energy of 4–8 MeV, a total energy of 1058 erg, and a
duration less than a several seconds.24 Nevertheless, the
question of the existence of such objects remains open.

Although the radiation associated with gamma-ray bu
can arrive from great distances and the probability of det
ing such accompanying radiation from a single event
modern detectors operating simultaneously with the BAT
instrument is very low, with consideration of the broad sp
trum of possibilities opened up by the experimentally d
tected properties of the appearance of gamma-ray bursts
enumerated, several searches for such radiation have
undertaken. In addition, in view of the complexity of th
phenomenon under discussion, any additional informatio
very desirable.

Searches have been undertaken both for neutrino ra
tion accompanying gamma-ray bursts on the undergro
IMB,25 LSD,26 and LVD27 detectors and for high-energ
photons with an energy above 1 GeV on large instrume
for studying extensive atmospheric showers,28,29but no posi-
tive effect was discovered. It should be noted that the stu
performed on the underground detectors did not pass st
tical testing very well, since data obtained for 53 gamma-
bursts observed before October 1990, i.e., before the lau
of the Compton Gamma-Ray Observatory~CGRO!, were
used in the IMB detector; the mass of the target in the L
instrument used in the analysis was relatively small~30 tons!
to reduce the background, and the first part of the LVD
strument began to collect data in the middle of 1993.

The Baksan subterranean scintillation telescope has b
performing continuous tracking of our Galaxy for neutrin
radiation since 1980. The sensitivity of the instrument
such that it ‘‘examines’’ 95% of the galactic stars in search
for single neutrino bursts from the gravitational collapse
the cores of massive stars. The effectiveness of the dete
was confirmed by recording the neutrino signal from sup
nova 1987A BMO along with the IMB and Kamiokand
instruments.30 The ‘‘live-time’’ collection efficiency is above
90%, permitting the use of essentially all the data on gam
ray bursts in the search for possible neutrino radiation
companying them. The methods for such an analysis o
-
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combined set of telescope data and BATSE data publishe
the 4B catalog31 are described in this paper, and a low
bound on the distance to the sources of the gamma-ray b
is obtained.

2. DETECTOR

The Baksan subterranean scintillation telescope is
cated in a tunnel in the Northern Caucasus Mountains
depth of 850 meters of water equivalent~mwe!.32 It consists
of eight planes~four vertical planes and four horizonta
planes, of which the three lowest are called ‘‘inner’’ plane!,
which form a closed figure that is continuously covered
standard counters filled with the organic scintillator C9H20

and special additives. Each of the counters is viewed by
photomultiplier with a photocathode diameter equal to
cm. The total target mass is 330 tons, and the mass of
‘‘inner’’ part is 130 tons. The detection energy threshold
the detectors on the horizontal layers
8 MeV, the threshold of the detectors on the vertical plan
is 10 MeV, the dead time of the instrument is 4 ms, and
accuracy of setting the absolute time is 1 ms.

Since the telescope is at a relatively small depth, to
duce the background from the main source, i.e., cosmic
muons which leave a trajectory of triggered counters wh
they traverse the telescope, only single triggerings of all
counters are recorded on the tape for subsequent treatme
the present program for finding collapse neutrinos. The d
supplied from any part of the telescope can be used, dep
ing on the purpose of the work. For example, the ‘‘inne
130 tons of the scintillator are employed as a trigger mas
a program for finding collapse neutrinos, i.e., after a signa
interest is found in this mass, the information from the ent
telescope is processed.

3. SELECTION OF EVENTS AND METHODS FOR
PROCESSING THEM

Although high-intensity neutrino fluxes associated w
gamma-ray bursts are predicted in some models, we stil
not know a priori the detailed parameters of this radiatio
and the time relationship between these two bursts.

Two types of low-energy neutrinos can be positively d
tected in the Baksan telescope according to the follow
reactions with the scintillator material:

ñe1p→n1e1, Eth51.8 MeV, ~1!

ñe112C→12B1e1, Eth516.827 MeV,

↓ ~2!
12C1e2, t1/250.020 s,

ne112C→12N1e2, Eth513.880 MeV,

↓ ~3!
12C1e1, t1/250.011 s.

In reaction~1! only the positron signal is recorded, i.e
single events accompanying gamma-ray bursts are expe
in the detectors. In reactions~2! and ~3! two signals, i.e.,
electron and positron signals, can be detected in time in
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vals equal to three beta decay periods of12B and12N, which
are equal to;100 ms and;50 ms, respectively. The searc
for double signals accompanying gamma-ray bursts sig
cantly improves the signal-to-background ratio, especia
with consideration of the upper energy edges of the de
spectra~13.37 MeV for12B and 16.4 MeV for12N).

The following constraints were introduced into the te
scope data for the subsequent treatment.

1! Periods of operation of the instrument when all t
systems functioned normally were selected. For this rea
only 1198 of the 1736 bursts in the 4B catalog, among wh
there is information on the duration for only 1234, we
used.

2! Only events from detectors on the ‘‘inner’’ plane
which are most strongly shielded from the background
cosmic-ray muons, were selected. It was decided that eac
these detectors would be triggered no more than three ti
in a 24-h period~the averaged counting rate of the ‘‘inner
detectors is one count per 24 h!. This condition eliminated
any detectors with increased inherent background from
analysis.

3! Events whose amplitude did not exceed half of t
energy released by a relativistic particle in a standard de
tor were selected. Thus, the range of allowed energies
8–25 MeV.

As a result, the data supplied from a telescope tar
mass equal to 126 tons with a mean counting rate of sin
pulses roughly equal to 0.012 events per second were us
the subsequent work.

The following information from the 4B catalog wa
used.

1! The treatment was performed using durations equa
both t50 andt90 @t50 (t90) is the time interval during which
50% ~90%! of the gamma-quantum flux is detected#.

2! The gamma-ray bursts were separated into f
groups according to duration: 0–1 s, 1–10 s, durati
.10 s, and all durations.

3! The bursts with a total energy.20 keV determined
by summation over all the channels were separated into t
groups according to intensity: ‘‘strong’’ with a flux
I .1026 erg/cm2, ‘‘weak’’ with a flux I ,1026 erg/cm2, and
a mixed group.

Then the events selected and separated in this ma
were processes by several methods.

Since only single pulses from positrons would be d
tected as a result of reaction~1! and since we know nothing
a priori amount the time relationship between gamma-
bursts and the postulated neutrino radiation, the combi
data were treated on the basis of the following assumptio

A. It was assumed that gamma-ray bursts are of the s
nature, regardless of their individual parameters; therefor
could be expected that if neutrino radiation exists, it is
cated at approximately the same time distance on the
axis from a burst. Then, we can look for statistically sign
cant upward deviations from the background for both
total set of bursts and various selected groups by summ
the corresponding telescope data in a 24-h period center
the position of the burst onset and analyzing these dat
different time windows with durations from 1 s to 10min.
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Such an analysis of the information was performed, but
values significantly exceeding the background were fou
As an example, Fig. 1 shows the typical form of the dist
bution of the number of single telescope events in a 3
window summed over all 1198 bursts~the vertical axis! in a
3600-s interval about a burst~the horizontal axis!. The figure
clearly demonstrates the absence of the expected signal

B. It was assumed that gamma-ray bursts consist of
nals of different origin. Then, if neutrino radiation exists,
can arrive at different times relative to a burst. In this ca
we can analyze the time intervals between pairs of telesc
events and look for statistically significant upward deviatio
from the background by summing the corresponding te
scope data for all the gamma-ray bursts or for various
lected groups. The telescope data for 24-h intervals abou
bursts were treated by such a method. Figure 2 shows
result of such a treatment of the data for the case of ‘
bursts.’’ The length of the interval between events is plot
along the horizontal axis, the zero point on the axis cor
sponding to the onset of the gamma-ray bursts. The
branches in the figure reflect the distributions found ‘‘b
fore’’ and ‘‘after’’ the gamma-ray bursts.

It can be seen that the distribution of the time interv
between telescope events obtained by this method does
have any special features and that everything is descr
well by the corresponding Poisson formula.

The results presented were obtained with single te
scope events, which are characterized by a relatively h
background level. The signal-to-background ratio for t

FIG. 1. Distribution of single telescope events in a 30-s windowN(30 s) in
a 61800-s interval about 1198 gamma-ray bursts juxtaposed accordin
the onset of the signals:DT is the time from the onset of the bursts.

FIG. 2. Distribution of the time intervals between single telescope eve
N(Dt) summed over 1198 gamma-ray bursts in a 24-h interval about th
The center of the horizontal axis corresponds to the position of the ons
the gamma-ray signals;Dt5t i 112t i . Straight lines — result of a calcula
tion using Poisson’s formula.
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1044 JETP 87 (6), December 1998 Alekseev et al.
products of reactions~2! and ~3! is considerably better. A
search for a possible neutrino signal was performed us
paired telescope events separated by a time inte
,100 ms according to the method described in paragrap
Figure 3 shows the result of such a treatment of the data
the case of ‘‘all bursts.’’ The time on both sides of the bur
is plotted along the horizontal axis, and the number of pai
events in a,100-ms window, which is summed over 600
intervals because of their small number, is plotted along
vertical axis. The paired events are distributed evenly ab
the bursts, and there are values exceeding the backgrou

Thus, all the proposed methods for processing the in
mation in a search for neutrino radiation in the Baksan te
scope that can be associated with gamma-ray bursts from
BATSE 4B catalog yielded negative results.

4. CONCLUSION

The data obtained permit finding a lower bound on
distance to the sources of gamma-ray bursts within the m
of accompanying neutrino radiation considered. Since
duration of the neutrino radiation and its position on the ti
axis relative to the gamma-ray bursts for each case are
known, to find the bound we must start out from very gene
assumptions regarding these parameters, i.e., we must
pare the total numbers of experimentally recorded and th
retically expected telescope events in different time interv
from the onset of the gamma-ray bursts.

Figure 4 shows the integral distribution of single bac
ground telescope events summed over all 1198 bursts~the
horizontal axis! as a function of the time interval ‘‘before’
~the left-hand curve! and ‘‘after’’ ~the right-hand curve! the
onset of the gamma-ray bursts, which is located at zero~the
vertical axis!. It can be seen in this figure that the telesco
background is absolutely symmetric~does not have any fea
tures! relative to the center of the axis. Positron signals fro
the interaction of electron antineutrinos in reaction~1!,
which is detected with high reliability in the telescop
would be expected specifically among these events. S
signals were not discovered; therefore, the data shown in
4 were used to estimate the distances to the sources, a
was assumed that the expected neutrino radiation has
same characteristics as neutrinos from collapsing core
massive stars, i.e., the total neutrino energy equ
331053 erg, the particles have thermal Fermi–Dirac spec

FIG. 3. Distribution of pairs of telescope events with a time interv
<100 ms between them in a 600-s windowN(<100 ms) summed over
1198 gamma-ray bursts during a 24-h period about them. The position o
onset of the gamma-ray bursts is atDT50.
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with a temperature of 3.5 MeV~the cases of 4 MeV and 4.5
MeV were also considered!, and all the types of neutrinos ar
produced in equal numbers. The latter assumption somew
worsens the estimate sought for the telescope in compar
to the large fraction of electron antineutrinos predicted
Ref. 17, but this is not very significant in our case of a mo
general treatment.

The lower bound on the distance to the sources
gamma and neutrino radiation obtained at the 90% co
dence level is shown in Fig. 5, where the distance is plot
on the vertical axis and time intervals ‘‘before’’~‘‘after’’ !
the onset of the gamma-ray bursts from 1 s to 12 h are
plotted along the horizontal axis. Curve1 represents the cas
where the ‘‘temperature’’ of the thermal neutrinos is equal
3.5 MeV, curve2 is for a neutrino ‘‘temperature’’ equal to 4
MeV, and curve3 is for the case of 4.5 MeV per burst.

As can be seen in this figure, the bound obtained for a
position of the neutrino signal relative to the gamma-r
burst attests to the extragalactic nature of the sources o
gamma-ray bursts, and the bound on the distance for n
trino and gamma radiation that are close in time essenti
reaches 1 Mpc.

l

he

FIG. 4. Integral distribution of single telescope events in a 24-h per
about 1198 gamma-ray burstsN(DT) as a function of the time interva
‘‘before’’ ~1! and ‘‘after’’ ~2! the onset of the gamma-ray signals. The ze
point corresponds to the position of the onset of the gamma-ray bursts

FIG. 5. Dependence of the lower bound on the distanceR to the sources of
gamma-ray bursts and neutrinos on the time intervalDT before the onset of
the gamma-ray signals. The different curves corresponds to different ‘‘t
peratures’’ of the expected neutrinos:1 — 3.5 MeV, 2 — 4 MeV, 3 — 4.5
MeV.
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1045JETP 87 (6), December 1998 Alekseev et al.
Thus, the analysis performed on data from the Bak
subterranean scintillation telescope that were recorded
cording to a program for searching for neutrino bursts fr
collapsing stars together with data in the 4B catalog
gamma-ray bursts recorded by the BATSE instrument on
CGRO did not yield a positive effect. The results of th
work show that if the formation of the gamma radiation
sources of gamma-ray bursts is, in fact, accompanied
high-intensity neutrino radiation or if such neutrino radiati
precedes the formation of gamma radiation, these sou
have an extragalactic nature and are located at dista
greater than 1 Mpc.
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sions regarding the subject of this research.
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Coherent states of potentials of soliton origin
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The spectral properties of the most general time-dependent potentials of the soliton type
described by a self-adjoint operator acting in Hilbert space are discussed. The spectral
decomposition for these potentials and the quasispectral decomposition for the Darboux
transformation operators are obtained. The coherent states of such systems are examined. Finally,
the measure realizing the decomposition of the identity operator in the projectors on the
coherent states is calculated. ©1998 American Institute of Physics.@S1063-7761~98!00212-1#
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1. INTRODUCTION

The first to introduce coherent states~for the case of the
harmonic oscillator! as nonspreading wave packets w
Schrödinger.1 Today such states have found wide applicat
in various areas of physics and mathematics.2–4 The different
aspects of coherent states have been discussed in num
reviews ~see, e.g. Refs. 5–7 and the monographs
Perelomov,2 Malkin and Man’ko,3 and Klauder and
Skagerstam4!.

However, it must be noted that at present there is
unified definition of a coherent state, and different auth
mean different things when speaking about such states
analysis of the existing definitions shows that there are s
eral characteristic properties of such states~described by vec-
torscz(x,t), which can be taken as their definitions! that can
be used to define them:8 ~1! the vectorscz(x,t) are elements
of the Hilbert spaceH of the states of the system;~2! the
parameterz takes continuous values from a domainD of an
n-dimensional complex space;~3! the vectorscz(x,t) are
stable in time; and~4! there is a measurem5m(z,z̄) ~the bar
over the symbol indicates complex conjugation! realizing the
decomposition of the identity operatorI acting inH,

E
D

dm ucz&^czu5I . ~1!

By temporal stability we mean that the states described
the vectorscz(x,t) remain coherent at all times, i.e., satis
the properties 1, 2, and 4. To satisfy this condition, we w
assume that the functionscz(x,t) are solutions of the Schro¨-
dinger equation

~ i ] t2h0!cz~x,t !50,

where h0 is the Hamiltonian ~not necessarily a time
independent one! acting inH.

If a quantum system has nontrivial symmetry properti
the study of coherent states for such a system simplifi
since group-theoretic methods prove to be highly effective2,6

Lately there has been an upsurge of interest in quantum
tems whose differential symmetry operators do not form
closed algebra. They can form quadratic,9,10 polynomial,11,12

andq-deformed13,14algebras. In the latter case the concept
1041063-7761/98/87(12)/7/$15.00
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q-coherent states is introduced.15,16 A characteristic feature
of many such systems is that they are generated by a c
~possibly infinite! of Darboux transformations17,18 from sim-
pler systems, such as free particles, the Coulomb potenti
harmonic oscillator, etc.19,20 The coherent states of such sy
tems have been studied very little. In this connection
work of Fernandezet al.21,22 deserves mention. These re
searchers studied the coherent states of isospectral Ham
nians with an equidistant spectrum. Spiridonov23 studied sys-
tems of the coherent states ofq-deformed potentials of the
harmonic oscillator and a class of self-similar potentials.
nally, Man’ko et al.24 studied a generalization of th
q-oscillator, which was called anf-oscillator, and obtained
the coherent states for such an oscillator (f -coherentstates!.

In those cases when the system considered may be
erated by using the technique of the Darboux transforma
operators, the coherent states for this system can be obta
by applying a transformation operator to the coherent sta
of the initial system~if they are known!.25,26 Here, to satisfy
condition 3, we must have a generalization of this transf
mation to the time-dependent Schro¨dinger equation. One
variant of such a generalization has been developed in s
ton theory.27 However, often this approach fails because
may lead to complex-valued potentials, which would viola
condition 1. The method developed in Ref. 28 and th
oughly described in Ref. 19 is free of this drawback. It h
been used to obtain and study coherent states of anharm
oscillator Hamiltonians with a quasiequidistant spectrum25

which were first obtained in Refs. 11 and 12, coherent sta
of anharmonic oscillator Hamiltonians with an equidista
spectrum,26 which were first obtained in Ref. 29, cohere
states of anharmonic potentials with a singularity at zero
the form gx22 ~Ref. 30!, and coherent states of the on
soliton time-independent31 and time-dependent32 potentials.
Note that in the cases of equidistant and quasiequidis
spectra such states are described by nonspreading~in time!
wave packets,11 which earlier were known to exist only in
systems with a Hamiltonian quadratic in the spatial coor
nate.

A characteristic feature of time-independent solit
potentials27 is their transparency. A particle scattered by su
a potential is never reflected by it. Another important pro
6 © 1998 American Institute of Physics
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erties of such potentials is that each level in the discr
spectrum always occupies a preassigned position, whic
controlled by the parameters of the potential. Because of
property, they can be used as model potentials is pseud
tential theories. For instance, they were used to describe
laxation processes in Fermi liquids.33 A generalizations of
such potentials is the time-dependent soliton potential in
duced in order to solve the Kadomtsev–Petviash
equation.34 Note, however, that such potentials of the gene
type27,34 are complex-valued and, therefore, no self-adjo
operator in Hilbert space can be associated with them.

In this paper we will use the time-dependent Darbo
transformation19 to derive fairly simple expressions for rea
valued time-dependent many-soliton potentials. We will
tablish the relationship that exists between the Darb
transformation operators and the spectral decompositio
the momentum operator and will for the first time obtain t
decompositions of these operators in the quasiprojector
the eigenvectors of the momentum operator. Two types
coherent states will be examined. The states of the first t
obtained via an integral transformation operator, allow
the decomposition~1! of the identity operator in which the
measure is a continuous function. In the second case,
coherent states are determined via a differential transfor
tion operator, and the measure in~1! is determined by a
generalized function.

2. TIME-DEPENDENT MANY-SOLITON POTENTIALS

One of the methods used in building time-depend
many-soliton potentials is described in Ref. 35, which a
contains a description of many physical applications. Gen
ally, such potentials are complex-valued, and no self-adj
operator in the Hilbert space can be associated with them
this section we will describe a method more suitable fr
the quantum mechanical viewpoint. The method is a dir
generalization of the well-known constructs used in
theory of the time-independent Schro¨dinger equation.36–38

The main idea can be illustrated by the example of a tw
soliton potential, while for the general case we give only
final expressions.

To obtain a two-soliton time-dependent potential, w
must perform two Darboux transformation in succession19

The operatorL of the Darboux transformation is determine
by a solutionu5u(x,t) of the initial Schro¨dinger equation
~in our case this is an equation with a zero potentia!,
L52ux /u1]x (ux[]u/]x and]x[]/]x). If assume that

u5u15exph1 coshu1 ,

h15 i ~m1
22l1

2!t2 il1x, u15m1x12l1m1t,

wherel1 andm1 are arbitrary real numbers, we arrive at t
well-known one-soliton potentialV(1)522m1

2 sech2u1. All
the solutions of the Schro¨dinger equation with the potentia
V(1) except the one that belongs to the kernel of the oper
L†52ūx /ū2]x can be obtained by applyingL to a solution
of the Schro¨dinger equation with a zero potential. In partic
lar, let us take the following solution of the equation with
te
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zero potential:u25exph2 sinhu2, where h2 and u2 differ
from h1 andu1 by l1 andl2 being replaced bym1 andm2.
Then the function

v25Lu25 i ~l12l2!u21W2 exph2 sechu1 ,

where

W25 1
2@~m21m1!cosh~u12u2!

1~m22m1!cosh~u11u2!#

is the Wronskian of the functionsũ15coshu1 and
ũ25sinhu2, is a solution of the Schro¨dinger equation~which
is not square-integrable! with the potentialV(1). If we take
v2 as the transformation function for the second Darbo
transformation, we arrive at the most general~complex-
valued! two-soliton potential.~This is simply another form of
the well-known two-soliton solution described in Ref. 34!
To obtain a real-valued potential, we must require that
transformation functionv2 obey the reality condition speci
fied in Ref. 19:@ ln(v2 /v̄2)#xxx50. This condition is met if we
put l15l25l. In this case the two-soliton potential be
comes real:

V~2!522~ ln W2!xx522~m2
22m1

2!W2
22

3~m2
2 cosh2 u11m1

2 sinh2 u2!.

If in addition we requirem2.m1.0, the WronskianW2 will
retain its sign for all real values ofx andt, and the potential
V(2) will be a regular function for allx and t. Note that at
l50 this potential becomes the well-known two-solito
time-independent potential.27

We will now take a chain ofN Darboux transformations
similar to the one considered for the case withN52. The
action of such a chain of Darboux transformations is equi
lent to the action of an order-N transformation operator:19

L5W21~u1 ,u2 , . . . ,uN!U u1 u2 ••• 1

u1x u2x ••• ]x

A A � A

u1x
~N! u2x

~N!
••• ]x

N

U , ~2!

whereukx
(N)5]Nuk /]xN, and the operator determinant is in

terpreted as a differential operator obtained by decompo
the determinant with respect to the last column with funct
coefficients in front of the differentiation operators. Th
functionsuk in our case are

u15exph1 coshu1 , u25exph2 sinhu2 ,

u35exph3 coshu3 , u45exph4 sinu4 . . . ,

hk5 i ~mk
22l2!t2 ilx, uk5mkx12lmkt,

l,mkPR, 0,mk21,mk . ~3!

The N-soliton potential is given by the expression

V~N!522@ ln W~u1 ,u2 , . . . ,uN!#xx .

Clearly,

@ ln W~u1 ,u2 , . . . ,uN!#xx5@ ln W~ ũ1 ,ũ2 , . . . ,ũN!#xx ,
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whereũ15coshu1, ũ25sinhu2, ũ35coshu3, . . . .
Note that the WronskianW(ũ1 ,ũ2 , . . . ,ũN) is ex-

pressed by the well-known formula38

W~ ũ1 ,ũ2 , . . . ,ũN!5212N (
k51

2N21

Bk coshgk . ~4!

All the coefficientsgk are of the form

gk5(
i 51

N

q i , q i5«u i , «561.

The various terms in the sum~4! break down into
groups. ForN even we haveN/211 groups and forN odd,
(N11)/2 groups. Each group except the last containsk

N)
terms, where k50,1, . . . ,N/221 for N even and k
50,1, . . . ,(N23)/2 for N odd. The last group contain
1
2(N/2

N ) terms forN even and ((N21)/2
N ) for N odd. One group

differs from another by the number of negative values of
parameter«. In the first group~it contains only one term! all
«51, in the second group (N terms! there is only one
«521 in each term, in the third group there are two«5
21 in each term, etc. For the coefficientsBk we have

Bk5)
i . j

N2

umi2mj u, mi5«m i .

Note that after we have calculated the absolute value of
differencesmi2mj in Bk for m i.m j , formula ~4! becomes
valid for arbitrary values ofm i . We also note that in the
particular casel50 we have theN-soliton time-independen
potential.27

In Sec. 4 we will show that such a potential can
associated with a self-adjoint operator in Hilbert space.

3. HILBERT SPACE OF THE STATES OF A FREE PARTICLE

In accordance with property 1 formulated in the Intr
duction, we must set up a Hilbert space of the states o
soliton potential. According to Ref. 19, to achieve this w
can use the Hilbert space of the states of the initial system~in
our case, a free particle! and apply the Darboux transforma
tion operator to its elements.~Here we will not discuss the
exact domains of the operators involved.!

Using the solutions of the Schro¨dinger equation for a
free particle to build a Hilbert space is a well-known proc
dure~see, e.g., the monograph by Miller39 and the reference
cited therein!. In this section we will only mention the prop
erties needed in our further discussion.

The symmetry algebra of the Schro¨dinger equation with
a zero potential is a six-dimensional Lie algebra, known
the Schro¨dinger algebra.39 In particular, the operators

a5~ i 2t !]x1 ix/2, a†5~ i 1t !]x2 ix/2

form a Heisenberg–Weyl subalgebra of this algebra. Squ
integrable solutions of the Schro¨dinger equation can be ob
tained by separation of variables39 if for the symmetry op-
erator separating the variables we takeK05aa†1a†a. Then
the orthonormalized wave functions have the form
e

e

a

-

s

e-

cn~x,t !5~2 i !n~n! 2nA2p!21/2~11 i t !21/2

3expF2 in arctant2
x2

4~11 i t !GHnS x

A212t2D ,

whereHn(z) are the Hermite polynomials. For these wa
functions the operatorsa† and a are the shift operators in
the variable n: acn5An cn21, a†cn5An11 cn11, and
ac050.

By L0 we denote the linear space comprised of vario
finite linear combinations of the functionscn(x,t) with
complex-valued coefficients. In view of their linearity, th
operatorsa and a† are defined in the entire spaceL0 and
map this space into itself. Note that the Hamiltoni
h05px

252]x
2 and the momentum operatorpx52 i ]x can be

expressed in terms ofa anda†, e.g.,px52(a1a†)/2. Hence
these operators are also defined inL0 and map this space
into itself.

We use the ordinary Lebesgue integral to define the s
lar product ^caucb& on L0. The Hilbert spaceH is the
completion ofL0 in the norm defined by this scalar produc
It is well known that the operatorspx andh0 are self-adjoint
in H, have common eigenfunctions~in the sense of general
ized functions!, and that their spectrum is purely continuou
We denote these common eigenfunctions bycp5cp(x,t),
i.e., pxcp5pcp and h0cp5p2cp ,pPR. The functionscp

have been thoroughly studied and we will not give their e
plicit form here. Note, however, that they are orthogonal
each other and normalized~in the sense of generalized func
tions!, ^cpucq&5d(p2q), and form a complete set inH.
Symbolically the completeness property can be expresse
terms of projectors onto these functions as on elements oH:

E dp ucp&^cpu51.

We do not indicate the limits of integration in integrals alo
the entire real axis. Note that all these constructs can
substantiated with sufficient mathematical rigor if one us
the concept of a nested Hilbert space.40,41

The coherent states of our system can be obtained
applying the operator of translation in the Heisenberg–W
group to the vacuum vectorc0 ~see Ref. 2!:

cz~x,t !5exp~za†2 z̄a! c0~x,t !, zPC.

These vectors are the eigenvectors of the operatora, i.e.
acz5zcz . To describe these vectors we need someth
more than the spaceL0, since they belong to a broade
domain densely fillingH. The decomposition of these vec
tors in the basis$cn% has the form3

cz5F(
n

anzncn , F5F~z,z̄!5expS 2
zz̄

2
D ,

an5
1

An!
, zPC. ~5!
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The vectors satisfy all the properties enumerated in the
troduction. In particular, the measuredm5dm(z,z̄) realizing
the decomposition~1! of the identity operator in theses stat
is well known:3 dm5dx dy/p, z5x1 iy .

4. THE SPECTRAL PROPERTIES OF SOLITON POTENTIALS

The structure of the spectrum of the Hamiltonians co
nected by the Darboux transformation has been studied
many researchers. Probably the most thorough investiga
of this problem is that of Veselov and Shabat,42 where the
reader can also find references to the most important on
subject. In the present section we will study the properties
the Darboux transformation operators for a free particle
soliton Hamiltonians as operators acting in the Hilbert sp
of the states of the system that have not been examined
fore.

As noted earlier, a many-soliton Hamiltonian can
constructed via a chain of Darboux transformations or
N-order Darboux transformation operator~2!. We denote the
operator corresponding to the first link in the chain byL1 and
the operator that is the formal conjugate ofL1 by L1

† . Note
that in the definition of the scalar product in terms of t
Lebesgue integral, the operator that is the conjugate o]x

with respect to the scalar product is2]x . Hence the operato
L1

† is the Hermitian conjugate ofL1. Here we will not clutter
up our discussion with mathematical detail and describe
domains of these operators. Suffice it to say that they
defined not in the entire spaceH and the range of their value
also differs fromH. Moreover, it can be shown that if th
initial domain, e.g.,L1, is the spaceL0, it always has a
closed extension intoH.

Simple calculations show that

L1
†L15~px1l!21m1

2[g01~m1!.

The operatorg005(px1l)2 is the symmetry operator of th
Schrödinger equation for a free particle, and the transform
tion function u1 (¹H) is an eigenfunction of this operato
with an eigenvalue equal to2m1

2. Being an operator in Hil-
bert spaceH, it is defined in a certain dense domain~which,
if necessary, can be determined more exactly!, is self-adjoint
in this space, and has a purely continuous spectrum.
eigenfunctions coincide withcp , i.e., g00cp5(p1l)2cp .
We also note thatg005h0 at l50.

Clearly, all the transformation functionsuk in ~3! are
eigenfunctions ofg00, i.e.,g00uk52mk

2uk . This is true only
if we select all the parametersl of the transformation func-
tions uk equal. Here theN-order operatorL†L is also a self-
adjoint operator inH. This property is ensured by the fa
that the operatorsL and L† have the following remarkable
factorization property:19 L†L5 f (g00), wheref (x) is a poly-
nomial, i.e.,f (x)5(x1m1

2)3(x1m2
2)•••(x1m2

N).
For the operatorg05L†L5g01(m1)g01(m2)•••g01(mN)

we can easily obtain its matrix representation in the ba
$cn%. Since the operatorg01(m1) can be expressed in term
of the ladder operatorsa anda†,

g01~m1!5Fl2
a1a†

2 G2

1m1
2 ,
-

-
by
on

he
f
d
e
e-

e

e
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-

ts
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the matrix

S0~m1!5iSnk
0 i , Snk

0 5^cnug00uck&

is a pentadiagonal symmetric real-valued matrix with the f
lowing finite elements:

Snn
0 5l21m1

21
n

2
1

1

4
, Sn n11

0 52lAn11 ,

Sn n12
0 5

1

4
A~n11!~n12! .

Then the matrix of the operatorg0, S5iSnki , has the form
S5S0(m1)S0(m2)•••S0(mN), and each row~and hence col-
umn! of S contains a finite number of nonzero elemen
Snk5Skn . This implies that the functiong0cn5(kSknck be-
longs toL0 and thatL0 is the invariant space forg0. Note
that the operatorg0 has a purely continuous spectrum and t
cp are its eigenfunctions,g0cp5Np

2cp , where Np
25 f ((p

1l)2).0.
In view of the relation g05L†L, the functions

wp5Np
21Lcp are eigenfunctions of the operatorg15LL†,

i.e., g1wp5Np
2wp and ^wpuwq&5d(p2q). The spectrum of

the operatorg1 in Hilbert spaceH is mixed. The discrete par
of this spectrum coincides with the numbers2mk

2 ,
k51, . . . ,N. We denote the eigenfunctions belonging to t
discrete spectrum byw2k . Obviously, the operatorg1 is self-
adjoint in H and is defined in a dense domain, which can
represented by the orthogonal sumH5H0% H1, whereH0 is
the N-dimensional Hilbert space with the basisw2k ,
k51, . . . ,N. We will not discuss the properties of this spa
here. The spaceH1 is the invariant space forg1, and the
restriction of g1 on H1 has a purely continuous spectru
with eigenfunctionswp . In what follows we assume thatg1

is only a operator acting inH1 and hence keep its curren
notation. Note that the functionsw2k cannot be obtained by
applying the operatorL to a function belonging toH.

The operatorL of the form ~2! can be applied to all
functions from H that are included in the domain of th
operatorg0, since

^LcauLcb&5^cauL†Lcb&5^caug0ucb&

is finite for all the functionsca,b from this domain.~More
precisely, this implies that for the domain of the operatoL
we can take the domain of the operatorAg0 , which is
broader than the domain ofg0.! Reasoning along the sam
lines, we can say thatL† can be applied to any function
belonging toH1 that is included in the domain ofg1.

The operatorsg00 and g0 can be expressed in terms o
the projectors on their eigenfunctions via the following spe
tral decompositions:

g00E dp ~p1l!2ucp&^cpu, g05E dp Np
2ucp&^cpu.

The operatorg1 can be expressed in terms of the projecto
on thewp :

g15E dp Np
2uwp&^wpu.
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Then g1 can be associated with an operatorg11 such that
g15 f (g11) by defining it inH1 via the spectral decompos
tion

g115E dp ~p1l!2uwp&^wpu.

Obviously,g11 is a self-adjoint operator with a purely con
tinuous spectrum from the interval@l2,`). At l50 the op-
erator g1 coincides with the Hamiltonian of the time
independentN-soliton potential, whose action is restricted
H1.

The wave functionscp and wp constitute orthonormal-
ized bases inH0 and H1, respectively. Let us examine a
operator that associating with each functioncp a function
wp :

U5E dp uwp&^cpu.

The inverse map is performed by the adjoint operator

U215U†5E dp ucp&^wpu.

Obviously, U conserves the value of a scalar product a
hence is an isometric operator. Consequently, for the op
tors L andL† we have

L5E dp Npuwp&^cpu, L†5E dp Npucp&^wpu.

This leads to a representation ofL andL† in terms ofU, g0,
andg1:

L5Ug0
1/25g1

1/2U, L†5g0
1/2U†5U†g1

1/2.

Such a representation of operators is known as a polar
composition~see, e.g., Ref. 43!.

We now turn to the operatorM5(L†)215Ug0
21/2

5g1
21/2U. Since

g0
61/25E dp Np

61ucp&^cpu,

we have

M5E dp Np
21uwp&^cpu, M†5E dp Np

21ucp&^wpu.

The operatorM coincides with the integral operator intro
duced in Ref. 25~see also Ref. 27!. The operatorsM andM†

factorize the operatorsg0
21 and g1

21, i.e., M†M5g0
21 and

MM†5g1
21.

In view of the isometric nature of the operatorU, the
functionszn5Ucn ,n50,1,2, . . . , form an orthonormalized
basis inH1. There is no way in which simple explicit expre
sions can be derived for these functions, sinceU is expressed
in terms of the nonlocal operatorg0

21/2. The functions
wn(x,t)5Lcn(x,t) are much simpler, since, according
~2!, applying the operatorL amounts to calculating deriva
tives and doing simple arithmetic. Obviously,wn5g1

1/2zn ,
and the operatorg1 has a zero kernel inH1 ~and so does
g1

1/2). This implies that the functionswp form a nonorthogo-
nal basis inH1, i.e., ^wnuwk&5Snk ~what is known as a basi
equivalent to an orthonormalized one, or a Riesz basis;
d
a-

e-

e,

e.g., Ref. 44!. The functionshn5g1
21/2zn5Mcn form a base

set that is biorthogonal withwn , i.e., ^wnuhk&5dnk and
^hnuhk&5Snk

21 , whereSnk
215Skn

21 are the of the matrixS21,
the reciprocal ofS. The matrix elementsSnk

21 can be calcu-
lated by using the spectral decomposition of the opera
g0

21:

g0
215E dp Np

22ucp&^cpu. ~6!

Then

Snk
215^cnuM†Mck&5^cnug0

21uck&

5E dp Np
22^cnucp&^cpuck&.

Concluding this section, we note that not every functi
w belonging toH1 can be represented in the formw5Lc,
wherec is a function belonging toH0. The reason is thatH1

is the closure of the linear span of the vectorswn5Lcn

relative to the scalar product inH, which product is restricted
to the space of these vectors. On the other hand, the set o
functionsw5Lc is a complete Hilbert space relative to th
scalar product̂ wauwb&15^LcauLcb&15^caug0ucb&, which
is embedded inH1.

5. COHERENT STATES OF SOLITON POTENTIALS

According to the ideas expressed in Refs. 25, 26, and
to obtain coherent states of Darboux-transformed systems
need only apply the transformation operator to the cohe
states of the initial system. In this case the properties 1
formulated in the Introduction are sure to be satisfied. Th
to be able to interpret the states obtained in this manne
coherent states, it is sufficient to have a measure that rea
the decomposition~1! of the identity operator in these state
Note that this decomposition was not discussed in Refs.
26, and 31. In the present section we will derive expli
expressions for the corresponding measures for two type
coherent states of a time-dependent many-soliton poten
states obtained via the operatorsL and M . The particular
case ofl50 corresponds to the ordinary time-independe
many-soliton potential.

Let us consider states described by the following wa
functions:

wz5Lcz5F(
n

anznwn , hz5Mcz5F(
n

anznhn .

We wish to show that the measuresmw5mw(z,z̄) and mh

5mh(z,z̄), which realize the decomposition the identity o
erator in these states do indeed exist.

We begin with the stateshz and the measuremh . Since
the functionshp5NpMcp ,^hpuhq&5d((p2q), pPR, are
basis states~in the sense of generalized functions! in H1, Eq.
~1! is equivalent to

E dmh ^hpuhz&^hzuhp&5d~p2q!.

This implies
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Np
21Nq

21E dmh^cpucz&^czucq&5d~p2q!.

Note that the integral on the left-hand side is tim
independent and hence can be calculated att50 . In what
follows we use this trick without further comments. Allow
ing for the expression for the function̂cpucz&,

^cpucz&5~2p!1/4Fcp~z!,

cp~z!5exp~2p212zp2 z2/2!, z5x1 iy ,

we look for a measuremh such thatdmh5vh(x) dx dy. Af-
ter integrating with respect toy, we arrive at an equation fo
vh(x):

E dx vh~x!Fp~x!5Np
2~2p!21/2exp~2p2!,

Fp~x!5exp~4px22x2!.

SinceNp
2 is a polynomial inp, the functionvh(x) is a poly-

nomial in x, whose coefficients are determined solely by t
coefficients of the polynomialNp

2. For example, forNp
25(p

2l)21m1
2 ~a one-soliton potential! we have

vh5@~x2l!21m1
22 1/4#/p.

We see that the stateshz satisfy all the properties of coheren
states. Using the factorization properties of the operatorM
and M† and the spectral decomposition~6! of the operator
g0

21, we calculate the normalization coefficient for the
states:

Nz
225^hzuhz&5^czug0

21ucz&5E dp Np
22u^czucp&u2.

SinceNp
2 is a polynomial int5(p1l)2, or

Np
25~t1m1

2!~t1m2
2!•••~t1mN

2 !,

we have

Np
225 (

k51

N
Ak

t1mk
2

, Ak5@~dNp
2/dt!t52m

k
2#21. ~7!

Hence we arrive at an expression for the normalization in
gral:

Nz
225 (

k51

N

AkFk , z5x1 iy ,

Fk5
A2p

l
exp@2~l22x2!#Re@exp@4il~x2mk!#

3erfc~lA21 iA2 ~x2mk!!#.

Now we turn to the stateswz and the measuremw . We
look for a measuremw such thatdmw5dy dww(x). Then for
vw(x) we have the equation

E dvw~x! Fp~x!5Np
22~2p!21/2exp~2p2!. ~8!

We wish to show that the solution of this equation is a g
eralized function specified on a certain linear space. First
-

e

-

-
e

note thatuFp(x1 iy)u<exp(2dx21by2) holds for 2<d<b.
This impliesFp(x)PS1/2

1/2, whereS1/2
1/2 is the space of entire

functions F such that uF(x1 iy)u<exp(2dx21by2), 0<d
<b ~Ref. 45!. We look for ww in the form of a functional
over S1/2

1/2. As is known, positive definite generalized fun
tions overS1/2

1/2 are specified by their Fourier transforms.
we denote the Fourier transform of the generalized funct
vw by ṽw , the left-hand side of Eq.~8! must be interpreted
in the sense of the equality

E dvw~x! Fp~x!5E dṽw~ t ! F̃p~ t !,

where F̃p(t)5Ap/2exp(2p21ipt2t2/8) is the Fourier trans-
form of the functionFp(x). As a result, Eq.~8! yields an
equation forṽw :

pE dṽw~ t !expS 2
t2

8
1 ipt D5Np

22 .

If we now look for a ṽw such thatdṽw(t)5rw(t) dt, then
with allowance for the expression~7! for Np

22 we obtain a
formula for rw(t):

rw~ t !5
1

2p (
k51

N
Ak

mk
expS ilt2mkutu1

t2

8 D . ~9!

Note that for functionsrw(t) of the form~9! the integral
*dṽw(t) F̃(t) does not converge for allF(x)PS1/2

1/2. Clearly,
the convergence condition for this integral imposes a rest
tion on the decrease of the functionF(x) as uxu→`. The
integral converges only ifuF(x)u>exp(22x22Ax), whereA
is a nonnegative constant, one for each functionF(x)
PS1/2

1/2. We denote the set of functions satisfying this con
tion ~the set is obviously a linear space! by S°1/2

1/2(PS1/2
1/2).

Thus, we have established that the decomposition~1! of
the identity operator holds for stateswz if the measuredmw

5dy dvw(x) is in terms of the Fourier transformṽw of the
measurevw , which specifies a functional over the spa
Ss

1/2
1/2. Here an integral with respect tomw must be calculated

by the formula

E dmw ^wauwz&^wzuwb&5E dt rw~ t !F̃ab~ t !,

whereF̃ab(t) is the Fourier transform of the function

Fab~x!5E dy ^wauwz&^wzuwb&, z5x1 iy .

The square of the norm of the functionwz coincides with
the expectation value of the operatorg0 in statecz and can
easily be calculated. For instance, for the one-soliton po
tial we have

^wzuwz&5^czug0ucz&51/41m1
21~x2l!2, z5x1 iy .

6. CONCLUSION

We have established the relationship that exists betw
real-valued soliton potentials of the most general form, i
real-valued time-dependent many-soliton potentials, and
spectral problem for a self-adjoint operator in Hilbert spa
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In the particular case where the potential is tim
independent, this operator is a polynomial in the Hamilton
of the soliton potential. We have derived a quasi-spec
decomposition for the Darboux transformation operato
Two systems of coherent states of soliton potentials obta
via a Darboux transformation operator and via an integ
operator have been discussed. In each case we have c
lated the measure that realizes the decomposition of the i
tity operator in coherent states.

The existence of the decomposition~1! of the identity
operator in coherent states makes it possible to obtain a
lomorphic representation of the state space and the oper
acting in this space. Using Berezin’s technique of covari
symbols,46 one can obtain a classical mechanical system c
responding to the given quantum system~see, e.g., Ref. 2!.
This line of reasoning was used in Ref. 30 to generat
classical mechanical analog of a quantum system obtai
via the Darboux transformation, from a system with a pot
tial of the type x21gx22, and to formulate the Darbou
transformation in classical mechanical terms. The result
the present paper provide the means for building a class
mechanical analog of a quantum system with a soliton
tential and for initiating a process in this system that is
inverse of quantization.

Partial support for this work was provided by the Ru
sian Fund for Fundamental Research~Grant No. 9702-
16279!.
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17G. Darboux,Leçons sur la the´orie générale des surfaces et les applicatio
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We examine nonradiative transitions in molecules with allowance for the effect of a classical
polar exterior medium on tunneling charge transport. The approach allows for the
vibrational frequencies of a molecule in the electron transition. In the case of slow fluctuations,
the theory predicts a low-temperature~non-Arrhenius! increase in the tunneling nonradiative
transition rate, and the results agree qualitatively with the experimental data. When the fluctuations
of the exterior medium are rapid, at certain values of the molecular parameters the tunneling
decay rate is found to decrease with increasing temperature because the conditions needed for
resonant tunneling are violated. ©1998 American Institute of Physics.@S1063-7761~98!00312-6#
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1. INTRODUCTION

Tunneling processes in molecules~tunneling charge
transport, tunneling chemical reactions, the quantum yield
luminescence, etc.! have been thoroughly studied in the pa
decades~see, e.g., Refs. 1 and 2!. However, there is one
problem that still requires clarification, the problem of t
temperature dependence of the rates of tunneling proce
The traditional view of tunneling as a temperatur
independent process is now being reconsidered and is
ally linked with the effect of the exterior medium on the
processes.3–7. Actually, the exterior medium affects the tun
neling nonradiative process and the shape of the pote
barrier of the reaction~note that Korst and Osherov8,9 were
the first to study the effect of the exterior medium on the r
of activation nonradiative processes!. On the other hand, a
well-known effect in optical transitions in molecules is th
dynamic narrowing of the absorption lineshape, when, e
under certain conditions allowing rapid fluctuations of t
exterior medium leads not to broadening but to effective n
rowing of the absorption line as the correlation timetc of the
medium decreases.10–12. As we will show in this paper, this
effect plays an important role in nonradiative transition
since it strongly affects the constant-energy and resona
conditions under which tunneling processes operate and
sures the characteristic temperature dependence of such
cesses. We limit ourselves to the approximation of two el
tronic terms with close energy values.

We assume that the corresponding energy differenceD21

is much larger thankT, so that the probabilities of activatio
processes are negligible. The presence of the electric field
a polar exterior medium may lead to fluctuations for whi
the effective energy gapD21 disappears because of Sta
shifts of the levels, and a tunneling nonradiative transit
occurs. If the characteristic time of variation of the fluctu
tions of the exterior medium is much longer than the tunn
ing time, the nonradiative transition rate increases with
intensity of the fluctuations. If, however, the time of vari
tion of the fluctuations of the exterior medium is very sh
~i.e., much shorter than the tunneling time!, the energy gap
1051063-7761/98/87(12)/5/$15.00
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D21 remains essentially the same because of the balanc
the electric fields generated by the dipoles of the polar e
rior medium at the point occupied by the impurity molecul
in time intervals proportional to the tunneling time. It is th
‘‘switching off’’ of the fluctuations of the exterior medium
that destroys the constant-energy conditions necessary
the tunneling process to proceed and ensures a decrea
the nonradiative transition rate, despite the increasing in
sity of the fluctuations.

These two cases are studied in the present article as
its of a general theory that is being developed. In contras
Ref. 6, which considers the basic model~i.e., the model of
displaced parabolas with equal frequencies in the electro
states! of the impurity molecule, here we use a more realis
model of the impurity molecule, a model that allows f
variations of the vibrational frequencies in the electron tra
sition. As noted in Refs. 13–15, this may change the non
diative transition rate substantially. We assume that the p
exterior medium is characterized by a Gaussian Markov
tocorrelation function,

w~ t1 ,t2!5B0
2 exp~2gut12t2u!, ~1!

whereB0
2 is the~temperature-dependent! noise intensity, and

g51/tc . In many respects the parameter of the theory,b/k
~see below!, which determines the temperature depende
of the nonradiative transition rate, is specified by the cho
of the model describing the exterior medium. For the lo
frequency classical exterior medium,B0

2;T. Below we es-
tablish that for slow fluctuations of the exterior medium, t
rate of the tunneling process is proportional to exp(cT),
wherec is a constant, and its increase as a function of te
perature is not governed by the Arrhenius law. For ra
fluctuations (k@1), the specially selected values of the p
rameters (D21*\v), and a wide barrier, the transition ra
decreases with increasing temperature as 1/AT.
3 © 1998 American Institute of Physics
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2. THE GENERAL EXPRESSION FOR THE RATE
OF A TUNNELING NONRADIATIVE TRANSITION
IN A MOLECULE WITH ALLOWANCE FOR THE EFFECT
OF THE EXTERIOR MEDIUM

Let us consider a two-term molecule whose adiaba
potentials take into account both the positions of the nu
and their vibrational frequencies in the electronic states 1
2. We are interested in the tunneling transition of the sys
from state 1 into state 2 along pathab ~Fig. 1!. Let us as-
sume that the vibrational frequencies in state 1 (v1) and in
state 2 (v2) obey the conditionv1@v2 (\v1@kT). This
condition leads to a situation in which the low-frequen
polar exterior medium interacts more strongly with the lo
frequency (v2) molecular vibrations in the final state 2, an
to simplify matters we ignore the effect of the vibrations
the exterior medium on the vibrational mode with frequen
v1 in the initial electronic state 1. The vibrational Hamilto
nians in the electronic states 1 and 2 are

H1,252
\2

2m

]2

]q2
1U1,2~q!,

U1~q!5
mv1

2

2
q2,

U2~q!5
mv2

2

2
q22v~ q̄!~q2q̄!2 f ~ t !q, ~2!

whereq̄ is the point at which the vibrational terms cross~see
Fig. 1!. The force f (t) is a Gaussian Markov process wi
the correlation function~1!. The rate of the tunneling nonra
diative process can be written in the following form~see the
Appendix!:

W215
V21

2

\2
2ReE

0

`

dt I 21~t!exp
iE0t

\
, ~3!

I 21~t!5E dqE dq8 f0~q!^K~qtuq8!&f0~q8!. ~4!

Here V12 is the matrix element of the 1→2 transition,«0

5(1/2)mv1
2q̄2, E05«01v(q̄)A«0A2/mv1

2 , f0(q) is the
wave function of the ground state of an oscillator with fr
quencyv1, and K(qt8uq8) is the Green’s function deter
mined by the HamiltonianH2. The angle brackets indicat

FIG. 1. Curves1 and 2 correspond to different electronic terms of th
molecule, the straight line3 corresponds to the repulsive term of the mo

ecule,q̄ is the point of intersection, andab is the tunneling path.
c
i
d

m

-

y

averaging over the realization of the random processf (t).
We write the Green’s functionK(qtuq8) as a path integral:

K~qtuq8!5E Dq~t!expH i

\
S~qtuq8!J , ~5!

where

S~qtuq8!5E
0

t

dt Fm

2
q̇22

mv2
2

2
q21~v1 f ~ t !!qG

is the classical action. The path integral~5! is calculated
along the pathsq(t) that satisfy the boundary condition
q(0)5q8 andq(t)5q. Calculating the average over the r
alizations of the random processf (t) yields

K expH i

\ E
0

t

dt f~ t !q~ t !J L
5expH 1

2S i

\ D 2E
0

t

dt1E
0

t

dt2 q~ t1!w~ t1 ,t2!q~ t2!J . ~6!

The averaged Green’s function^K(qtuq8)& can be written

^K~qtuq8!&5E Dq~t!expH i

\
Seff~qtuq8!J . ~7!

The effective actionSeff(qtuq8) is given by the formula

Seff5E
0

t

dt Fm

2
q̇22

m

2
v2

2q21vq1
iB0

2

2\

3E
0

t

dsexp~2gut2su! q~ t !q~s!G . ~8!

The extremal pathq(t), which minimizes the action
Seff(qtuq8), satisfies the equation

q̈1v2
2q5

iB0
2

\m E
0

t

dsexp~2gut2su! q~s!1
v
m

. ~9!

The extremal action on the extremal path~9! assumes the
form

Seff
~cl!~qtuq8!5

m

2
qq̇u0

t1
1

2
v E

0

t

dt q~ t !. ~10!

To exponential accuracy, the path integral~7! can be
written16

^K~qtuq8!&5S 2
1

2p\ i

]2Seff
~cl!

]q ]q8
D 1/2

expF i

\
Seff

~cl!~qtuq8!G .
~11!

Note that the pre-exponential factor is independent ofq and
q8, since the extremal pathq(t) is a linear form inq andq8.
Hence the expression~11! for the averaged Green’s functio
^K(qtuq8)& is exact. The integro-differential equation~9!
can be reduced to a fourth-order differential equation:

Q~4!1~v2
32g2!Q~2!2~2igD1g2v2

2!Q50, ~12!

Q5q2A, A5
F0g2

2igD1g2v2
2

, D5
B0

2

\m
, F05

v
m

.
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The two addition integration constants can be found fr
Eq. ~9! at the pointst50 andt5t. By plugging~11! into the
expression for the generating function~4! and calculating the
elementary Gaussian integrals with respect toq and q8 we
find I 21(t). Then we determine the rate of the nonradiat
process by formula~3!. The solution of the boundary valu
problem~9!, ~12! is extremely cumbersome. For this reas
we examine the limits of slow and rapid fluctuations of t
exterior medium.

„a… The case of slow fluctuations of the exterior medium

We replace the parabolic term for the coordinate of
reaction near the intersection pointq̄ by the linear term

v(q2q̄) ~see Fig. 1!. In the limit of slow fluctuations of the
random force f (t) ~the quasistatic case!, b/k@1 (b
2B0

2/\mv1
3 and k5g/v1), the solution for the extrema

path ~9! has the form

q~ t !5
q2q8

t
t1q81

1

2

F01~1/2!D~q1q8!t

11Dt3/12
~ t22tt!. ~13!

Combining this with~10! and~11!, we arrive at a formula for
the generating function:

I 21~x!5
1

A11 ix/2

A12 ibx

A11~bx2/2!~11 ix/6!

3expF2
V0

2

4
x2

11 ix/6

11~bx2/2!~11 ix/6!
G , ~14!

x5v1t, V0
25

v2

\mv1
3

.

Formula~14! was obtained in the limit of slow fluctuation
of the exterior medium,k→0.

„b… The case of rapid fluctuations of the exterior medium

In the limit of rapid fluctuations of the exterior medium
(k@1, b/k!1), the extremal path has the form

q~ t !5
1

sinVt
@q sinVt1q8sin~V~t2t !!#

1
v

mV2 F12
sin~V~t2t !!1sinVt

sinVt G , ~15!

with V[v2
2(12 id) andd[Dtc /v2

2. Combining~15! with
~10! and~11!, we arrive at a formula for the generating fun
tion in the case of rapid fluctuations of the exterior mediu

I 21~x!5Fcoslx1
i

2S v1

v2

1

l
1

v2

v1
l D sinlxG21/2

3expF iV0
2

2

x

l2
2

iV0
2

l3

3
sin~lx/2!

cos~lx/2!1 il~v2 /v1!sin~lx/2!G , ~16!
e

:

wherex[v2t andl[V/v2.

3. PARTICULAR CASES. DISCUSSION

The foregoing expressions for the rates of tunneling p
cesses in the cases of slow and rapid fluctuations can
calculated numerically by Eqs.~3! and ~4!. Here we limit
ourselves to a qualitative analysis of some of the corolla
of these formulas.

„a… The case of slow fluctuations

To exponential accuracy, the generating functionI 21(x)
given by Eq.~14! can be represented in the form

I 21~x!5
1

Ap 2B0
E

0

`

d f expS 2
f 2

2B0
2D I 21

~0!~x; f !, ~17!

where we have introduced the notation

I 21
~0!~x!5

1

A11 ix/2
expF2

~V01 f !2

4
x2S 11

ix

6 D G . ~18!

The expression~18! is the generating function for the proce
of a nonradiative transition to the repulsive term at a fix
value of the external field acting on the molecule. In acc
dance with~18! we have

W215
1

Ap 2B0
E

0

`

d fexpS 2
f 2

2B0
2D W21

~0!~ f !. ~19!

Thus, the nonradiative transition rateW21 is the result of
averaging the expressionW21

(0)( f ) for the transition rate in
Ref. 17 over the Gaussian distribution of the random forcef .
If we use the approximation of a wide potential barrier, t
tunneling transition rate~19! can be written

W21'W21
~ tun!expS 2B0

2

V0
2

j2D . ~20!

The rate of a tunneling nonradiative transition in the abse
of an exterior medium,W21

(tun) has the form17

W21
~ tun!'v̄

A2p

s0
exp~22s0!expH 2

4

3

«0
3/2

v J , s05
E0

\v1
,

~21!

where v is the frequency of the transition rate, which
equal in order of magnitude to the vibrational frequency
the ground electronic state, and the constantj in the approxi-
mation in whichV0

2!1 is given by the expression

j5
1

3

«0
3/2

V0~\v1!3/2
2

«0

\v1
~A221!. ~22!

One example of temperature-dependent tunneling is kno
from low-temperature experiments in oxidation of low
potential cytochrome.18. Without going into a discussion
about the numerous attempts to explain the low-tempera
dependence of this process by the common methods of
theory of multiphoton processes~see the review in Ref. 19!,
we note the existence of an alternative approach, whic
based on allowing for the effect of a polar exterior mediu
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~including a protein medium! on the rate of nonradiative
transition of cytochrome from reduced to oxidized form d
to the growth of classical fluctuations with temperature
accordance with Eq.~20!. Instead of the Arrhenius law
W21}exp$2E/kT% (E is the activation energy of the process!,
at low temperatures we have, according to~20!,
W21'exp(const3T), sinceB0

2;T. For values of the cyto-
chrome parameters\v1'0.05 eV,V0;0.5, «0 /\v1;3, v̄
;1014s21, andj2'4, we have

W21'33102 exp
T

43 K
. ~23!

This formula provides a good approximation to the data
the temperature interval in which the experiment was c
ducted. Note that actually the linear-term model adopted
our calculations is closer to the experimental situation th
the displaced-parabola model because of anharmonicity
fects inherent in the highly excited states of oxidized cy
chrome. Here we limit ourselves to the above example, s
almost all of its parameters are known. The theory develo
here can be applied to other processes of the same typ
direct numerical calculations by Eqs.~3! and ~14!.

„b… The case of rapid fluctuations

This case (k@1) was studied by Averbukhet al.6 using
the basic model (v15v25v). Below we give their results
~see Ref. 6! for the case of small constantsV0

2!1, which was
not analyzed in Ref. 6. If we remain within the static mod
that describes the behavior of the transition rate, then for
transition operator we can take the electron–vibrational
teraction ~with frequencyv), which mixes the electronic
states 1 and 2. Let us assume thatD21*\v. This leads to an
expression for the tunneling transition rate (\v@kT):

W215W21
~0!

\G1~b/k!\v

~D212\v!21~\G1~b/k!\v!2
, ~24!

where W21
(0) is a constant factor andG is the width of the

electron level in the absence of an exterior medium.
intense fluctuations Eq.~24! implies that (b/k)v@G. The
width may become larger than the detuning from resonan
D21/\2v and can determine the tunneling nonradiat
transition rate. The parameterb/k varies with temperature
(b}T), and the tunneling decay rate decreases with incre
ing temperature, i.e., the transition rate falls. In the m
general model developed in the present paper the resu
similar. For the case of large constantsV0

2@1, D21*\v, the
general expression~3! for the tunneling nonradiative trans
tion rate becomes

W215W21
~0!J,

J52ReE
0

`

dt
exp$ i ~D212\v!t/\2~G1Ab/k v1!t%

A11 iv1t/2
,

~25!

whereW21
(0) is a temperature-independent constant, and

integralJ reduces to
n
-

in
n
f-

-
e
d

via

l
e
-

r

e,

s-
e
is

e

J5Ab

k

1

D3/2 E2`

`

dx
exp~2x2D!

~x2/221!21~b/k!~1/D2!
. ~26!

The temperature dependence of the transition rate is de
mined by~26!. Figure 2 depicts the dependence of the tu
neling transition rate on the parameterb/k at a fixed value of
D212\v. We see that in the model withb}` the nonradi-
ative transition rate decreases with increasing temperatur
it does in the main model considered earlier.

Our analysis of the temperature dependence of the r
of a tunneling transition in an electron-vibrational system
\v@kT shows that a polar exterior medium with freque
cies n(\n*kT) strongly affects the nonradiative transitio
rates. In the case of slow fluctuations of the exterior medi
we arrive at a non-Arrhenius law governing the increase
the transition rate with temperature, while in the case
rapid fluctuations we have, for certain values of the para
eters of the system, a decrease in the transition rate
increasing temperature.

APPENDIX

We write the molecular wave function as follows:

uc~ t !&5S~ t,t0!uc~ t0!&. ~A1!

Next we write the molecular state at timet0→2` in the
form

uc~ t0!&5u1&u0&,

whereu1& is the wave function of the electronic state 1, a
u0& is the wave function of the vibrational state of the ele
tronic term 1. The scattering matrixS(t,t0) is determined by
the Hamiltonian

H5H01V,

H05S H1 0

0 H2
D , V5S 0 V12

V21 0 D , ~A2!

whereH1,2 are the vibrational Hamiltonians in the electron
states 1 and 2,V is the operator responsible for the transitio
~e.g.,V can be related to the promoting modes of the m
ecules causing the transition!. The final state is uc f&
5u2&uwp&, whereu2& is the wave function of the electroni
state 2, andwp is the vibrational wave function of the repu

FIG. 2. J vs. parameterg5Ab/k (1/D) for D;1.
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sive term 2. The amplitude of the 1→2 transition in the first
order in the perturbation operatorV can be written

A1252
i

\
V12E

t0

t

dtE dq f0~q!cp~q,t!, ~A3!

where

f0~q!5^qu0&, cp~q,t!5^quU2~t,t0!uwp&,

with U2(t,t) the evolution operator determined by the vibr
tional HamiltonianH2. The differential transition rate is ex
pressed by the formula

dw12~p!5
V12

2

\2
2 ReE

2`

t

dtE dq1 dq2 expS 2
iE0~t2t !

\ D
3f0~q1!cp* ~q1t !cp~q2t!f0~q2!. ~A4!

Integrating~A4! with respect tof, we arrive at an expressio
for the differential transition probability:

W215
V12

2

\2
2 ReE

0

`

dt I 21~t!exp
iE0t

\
,

I 21~t!5E dq1 dq2 f0~q1!K~q1tuq2t2t!f0~q2!. ~A5!

In deriving ~A5! we used the representation

E dp cp* ~q1t !cp~q2t!5K~q1tuq2t!

for the Green’s function and changed the variablet2t to t.
Averaging ~A5! over the realization of the random proce
f (t) and using the fact that the Gaussian Markov proces
time-independent, we arrive at formula~3!.
is
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Electron transmission in the two-, three-, and four-terminal nanostructures is considered under
the influence of a radiation field. The frequency of the radiation field is tuned to the
transition between the energy of a bound state and the Fermi energy of the incident electrons.
The radiation induced resonant peaks and dips of the electron transport are exhibited for
zero and low magnetic fields. It is shown that rotation of the radiation field polarization can
effectively control the electron transport into different electrodes attached to the structures
because of the symmetry of the structures. The resonant anomalies of the Hall resistance are found
in a weak magnetic field. ©1998 American Institute of Physics.@S1063-7761~98!00412-0#
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1. INTRODUCTION

For several decades the transport of electrons in st
tures of low dimensionality and complicated geometry h
been the focus of extensive theoretical and experime
study. Electrons can be confined to very narrow regions f
ricated on an interface of an AlGaAs/GaAs heterostructu
Since the electrons in such regions can have high mobil
in the two dimensions available to them, such systems
called two-dimensional electron gases~2DEGs!. The study
of electronic transport properties of 2DEGs is of great c
rent interest not only from the standpoint of the basic qu
tum effects involved but also for potential engineering app
cations. An idealized sample becomes an electron wa
guide, wherein the quantum transport properties are so
determined by the geometry of the structure and the wave
nature of the electrons. A remarkable manifestation of
successful achievement of quantum ballistic transp
through a semiconductor nanostructure is the appearanc
quantized steps on the conductance through a narrow s
ture as the number of one-dimensional channels is suc
sively varied,1,2 the quenching of the Hall effect, and the la
plateau and the negative bend resistance in the c
geometry.3–5

Ford et al.5 presented a systematic investigation of t
influence of cross geometry on the Hall effect. They fab
cated various differently shaped cross sections based
GaAs–AlxGa12xAs, which demonstrated that near ze
magnetic field the Hall resistance can be quenched, enha
over its classical value, or even negative. This effect
been considered in detail theoretically by Schultet al.6 and
Amemiya and Kawamura.7 Another interesting feature of th
cross geometries is a bound state found numerically
Schultet al.8 and by Peeters.9

The question of the existence of electromagnetic mo
trapped by special geometries has been a classic one in
1051063-7761/98/87(12)/10/$15.00
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theory of waveguides.10 It has been realized that the intro
duction of bends into waveguides generally leads to bo
states, or localized modes, which exist below the cut-off f
quency for the waveguide. Cariniet al.11,12 have demon-
strated theoretically and experimentally the presence
boundTE modes for rectangular bent waveguides and sho
that the number of boundTE modes is bend-dependent. F
the two-dimensional Schro¨dinger equation it was proved tha
any curved two-dimensional waveguide of constant wid
and infinite length posses bound states.13–18 Bound states
were found in the same year~1989! in a four-terminal junc-
tion of narrow wires by Schult6,8 and independently by
Peeters9 ~see also Refs. 19 and 20!.

For the stationary processes of the energy conserv
electron transmission only quasi-bound states with ener
within the conduction subbands are important.6,7 In particu-
lar, it was shown that the quasi-bound states in the H
junction result in resonant dips of the resistance in high m
netic fields when the magnetic length is comparable with
size of the junction. The Hall resistance sensitively depe
on the geometry of a junction and can become negative f
smoothed junction for small magnetic fields.

Although the bound states below the lowest subba
threshold do not participate in stationary transmission,
possibility of observing of them, at least in principle, w
shown by Berggren and Ji for the case of two intersect
electron waveguides with finite electrodes.20 In that case
bound states can be probed by resonant tunneling through
electrodes below the subband. However, it is possible to
the bound state with electron transmission through elec
waveguides with infinite electrodes directly by application
a radiation field, provided that the dipole matrix elemen
between the bound state and propagating ones are not e
to zero. Such a possibility was demonstrated for the fo
terminal’s Hall junction.21 Let E1 be the energy of the boun
8 © 1998 American Institute of Physics
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FIG. 1. The types of structures considere
L-structure ~a!, the T-structure ~b!, and
X-structure~c!.
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state below the subbands which for zero magnetic field
be specified as

En~k!5
\2

2m* d2 ~k21p2n2!,

whered is the width of the electrodes,n is the number of the
subband, andk is the wave number of the incident electro
Tuning a perturbation frequency near the resona
\v5En(k)2E0 , one can expect resonant anomalies in
electron transmission through the many-terminal junction21

The aim of the present article is to consider the elect
transmission effected by mixing of bound states with
propagating solutions in theX-, T-, andL-types of electron
waveguides which are shown in Fig. 1.

2. CONDUCTANCE ANOMALIES INDUCED BY THE
RADIATION FIELD

2.1. Numerical method

In this section we consider single electron transmiss
through the rectangular structures, the geometries of wh
are shown in Fig. 1 and specified below asL-, T-, and
X-structures. They share the property of having at least
bound state. The Schro¨dinger equation for an electron of
massm* subjected to a magnetic fieldB applied normal to
the junction and to a radiation fieldA1(t) directed in the
plane of the junction can be written

i\
]c~r ,t !

]t
5

\2

2m* S i¹1
e

\c
~A0~r !1A1 cosvt ! D 2

c~r ,t !.

~1!

Here we use the gaugeA0(r )5(2By,0,0). The radia-
tion field is considered in the long-wavelength approxim
tion, in which the wavelength of the radiation field is mu
greater than the size of the junction. We use the follow
dimensionless transformations:

t→
\t

2m* d2 , r→
r

d
, e5

2m* d2E

\2 ,

v→
2m* d2v

\
, a5

2pdA1

f0
, g5

2pd2B

f0
, ~2!

wheref05ch/e is the magnetic flux quantum. In terms o
the dimensionless variables~2! the Schro¨dinger equation~1!
takes the form

i
]c~r ,t !

]t
5~ i¹1~a0~r !1acosvt !!2c~r ,t !, ~3!
n

e
e

n
e

n
h

e

-

g

where a0(r )5(2gy, 0, 0). We map this equation onto
square lattice with elementary unitw. The lattice site is
specified as~m, l!. The total vector potentiala01acosvt is
accounted for by a Peierls phase factor.22 Then Eq.~3! trans-
forms as follows:

iw2
]c~m,l !

]t
54c~m,l !2exp~ i g̃ l !c~m11, l !

2exp~2 i g̃ l !c~m21, l !

2exp~2 i ã cosvt !c~m,l 11!

2exp~ i ã cosvt !c~m,l 21!, ~4!

whereg̃5gw2, ã5aw. In the four-terminal junction we use
also a different gaugea0(r )5(0,gx,0) for which the
Schrödinger equation~3! will map onto a square lattice a
follows:

iw2
]c̃~m,l !

]t
54c̃~m,l !2c̃~m11,l !2c̃~m21, l !

2exp~2 i ã cosvt2 i g̃m!c̃~m,l 11!

2exp~ i ã cosvt1 i g̃m!c̃~m,l 21!, ~5!

wherec(m,l )5exp(2ig̃ml)c̃ (m,l). Because of the processe
of absorption and emission of photons, we write the wa
function in the electrodes23,24

c~r ,t !5(
n

exp@2 i ~e1nv!t#cn~r !. ~6!

Substitution of~6! into ~4! gives

w2~e1nv!cn~m,l !54cn~m,l !2exp~ i g̃ l !cn~m11,l !

2exp~2 i g̃ l !cn~m21,l !

2(
s

Gnscs~m,l 21!

2(
s

Gns* cs~m,l 11!, ~7!

where

Gns5 i s2nJs2n~ ã!.

Here we used the standard expansion of an exponentia
Bessel functions25
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exp~ i ã cosvt !5(
m

i mJm~ ã!exp~ imvt !. ~8!

Let us introduce column vectors for each site of t
square lattice describing the amplitudes of the wave func
~6!

C~m,l !5col~ ...,c1~m,l !,c0~m,l !,c21 ,~m,l !,...!.

Then Eq.~7! takes more compact form

~w2e1V!C54C~m,l !2exp~ i g̃ l !C~m11, l !

2exp~2 i g̃ l !C~m21, l !

2GC~m,l 21!2G* C~m,l 11!, ~9!

where we have introduced two matricesV5diag(w2nv) and
G5$Gns%. Following Ando26 we take the electrodes1 and4
~Fig. 1c! to be infinitely long in thex direction and consisting
of M lattice sites in they direction. We introduce a genera
ized vector

Cm5col~C~m,M !,C~m,M21!,¯ ,C~m,1!!.

The dimension of this vector isM3L whereL is the dimen-
sion of the vectorC(m,l ). In computer simulations the di
mensionL, which is the number of amplitudes of the wav
function ~6!, was taken to be a finite number chosen by n
merical accuracy.27 We also introduce a diagonal matrix

Pll 85d l l 8 exp~2 i g̃ l !,

the unit matricesI 0 of dimensionM3M andI of dimension
L3L, and the up-diagonal matrix

D5S 0 1 0 0 ¯

0 0 1 0 ¯

0 0 0 1 ¯

]

D
of dimensionM3M .

Then Eq.~9! takes the form presented by Ando26

~w2e2H0!Cm1PiCm211Pi* Cm1150, ~10!

where

H054I 0^ I 2D ^ G* 2D1
^ G2I 0^ V, Pi5P^ I .

To obtain the linearly independent modes of Eq.~10! we
set26

Cm5lmC0 ,

which gives

lS C1

C0
D5S Pi~H02w2e! 2Pi

2

1 0
D S C1

C0
D . ~11!

In order to find similar modes in the perpendicular ele
trodes~2 and3 in Fig. 1c! we write the Schro¨dinger equation
~5! as follows:
n

-

-

~w2e1V!C̃~m,l !54C̃~m,l !2exp~2 i g̃m!G* C̃

3~m,l 11!2exp~ i g̃m!GC̃~m,l 21!

2C̃~m11, l !2C̃~m21, l !. ~12!

Introducing again the column vectorC̃l which describes the
amplitudes of thel th line along thex-direction, we obtain
from Eq. ~12!

~w2e2H̃0!C̃l1P'C̃l 211P'
* C̃l 1150, ~13!

where

H̃054I 0^ I 2D ^ I 2D1
^ I 2I 0^ V, P'5P* ^ G.

Using the relationC̃l5l l C̃0 we obtain from~13! the linearly
independent solutions in the electrodes2 and3:

lS C̃1

C̃0
D 5S P'~H̃02w2e! 2P'

2

1 0
D S C̃1

C̃0
D . ~14!

From the Schro¨dinger equations~4! and ~5! the following
continuity equation for the probability density follows:

2
w2

2

]r

]t
5 j m,l

~x! 2 j m21,l
~x! 1 j m,l

~y! 2 j m,l 21
~y! , ~15!

where jm,l5( j m,l
(x) , j m,l

(y) ) is the probability current density. In
particular, for the gaugea05(2gy,0,0) in the electrodes1
and4 we have

j m,l
~x! 5Im$exp~ i g̃ l !cm,l* cm11,l%,

j m,l
~y! 5Im$exp~2 i ã cosvt !cm,l* cm,l 11%. ~16!

For the gaugea05(0,gx,0) in the electrodes2 and 3 we
have

j m,l
~x! 5Im$c̃m,l* c̃m11,l%,

j m,l
~y! 5Im$exp~2 i ã cosvt2 i g̃m!c̃m,l* c̃m,l 11%. ~17!

From these expressions for the probability current d
sity it is easy to find the stationary current carryed by t
propagating mode withulu51 in thex direction through the
sectionm in the electrodes1 and4:

Jm
~x!5Im~l^C0uPi* uC0&!. ~18!

As with the mode propagating in they direction in the
electrodes2 and3 we have

Jl
~y!5Im~l^C̃0uP'

* uC̃0&!. ~19!

Now let us consider the scattering region~Fig. 2! con-
nected to four electrodes. Following Ando26 we define

U~6 !5~u1~6 !,u2~6 !,¯uLM~6 !!.

L~6 !5diag~l1~6 !,l2~6 !,¯lLM~6 !!.

Hereui(6) are the solutions of Eq.~11! which correspond to
the eigenvaluel i(6). The signs ‘‘6’’ refer to the propagat-
ing and evanescent modes in the positive~negative! x direc-
tion in the electrodes1 and4. Similar matricesŨ,L̃ can be
defined for the electrodes2 and3.
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For the modes which are superpositions only of
‘‘ 1’’ type ~or of the ‘‘2’’ type! we can write simple recur
rence formulas26

Cm11~6 !5F~6 !Cm~6 !

with

F~6 !5U~6 !L~6 !U21~6 !.

The same formulas take place for the electrodes2 and 3.
These relations will be explored to define boundary con
tions in the scattering region.

Next, we consider the solutions inside the scattering
gion which are shown in Fig. 2. At the boundary1 there is
the incident modeC1(1), and at the boundaries2, 3, and4
there are only outgoing modes. Introduce vertical vect
C1 ,C2 ,...,CM12 which describe the amplitudes of the wa
function on a square lattice in the scattering region along
y direction as shown in Fig. 2, and a pair of horizontal ve
tors Qu ,Qd which describe the amplitudes at the upper a
down boundaries of the scattering region. The aim is to w
closed equations for these vectors using the boundary co
tions. The boundary conditions are that the wave is incid
only through the left boundary1 and is given asC1(1), and
the other waves exit through all boundaries. Within the sc
tering region the equation for the amplitudes takes

~w2e2H0!Cm1PiCm211Pi* Cm1150, ~20!

wherem52,3,...,M11.
In addition we consider the analogous equations at ev

boundary. At the boundary1 we represent the vertical vecto
C1 at site 1 as a superposition of the incident and reflec
solutions:

C15C1~1 !1C1~2 !.

The vectorC0 belonging to the electrode1 can be expresse
as

C05F21~1 !C1~1 !1F21~2 !C1~2 !

5F21~2 !C11~F21~1 !2F21~2 !!C1~1 !.

Hence the solutions at the right edge of the electrode1 are
expressed in terms of the solutions at sites of the boundar
the scattering region and incident wave. As a result the eq
tion for the amplitudes at the first vertical sites of the sc
tering region has the form

~w2e2H1!C11Pi* C252Pi@F21~1 !2F21~2 !#C1~1 !,

FIG. 2. Configuration of the lattice model for the scattering region.
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H15H02PiF21~2 !.

At the boundary4 we can write similar equations

~w2e2H4!CM121PiCM1150,

H45H02Pi* F~1 !.

Since at the boundaries2 and3 we have different gauges, w
introduce two additional matrices which transform the p
mary gauge of the wave function:

Êu15diag~exp~ i g̃m~M11!/2!! ^ I ,

Êu25diag~exp~ i g̃m~M21!/2!! ^ I .

If we take into account these gauge transformations,
equation for the vectorQu at the boundary3 can be written

~w2e2H3!Eu1Qu1P'Eu2Quu50,

H35H̃02P'
* F̃~1 !.

At the boundary2

~w2e2H2!Eu1* Qd1P'
* Eu2* Qdd50,

H25H̃02P'F̃21~2 !.

HereQuu , Qdd denote the horizontal vectors adjacent to t
vectorsQu , Qd as shown in Fig. 2.

By means of these relations it is easy to write the Sch¨-
dinger equation for the amplitudes at the sites of the sca
ing region in closed form asK̂X5Y where X5col
3(C1 ,C2 ,...,CM12 ,Qu ,Qd) with the known matrixK and
vectorY. Numerical solution of this equation gives the sol
tion inside the scattering region, at its boundary, and ther
at each electrode. For the simplerL- andT-structures shown
in Fig. 1a and 1b the solutions are easily obtained if we
the solutions in the excluded electrodes equal to zero.

In conclusion we comment on the choice of the matrixG
defined in~7!. For an infinite matrixG we have the unitary
conditionGG151. If we were to truncate directly the matri
G in the numerical calculations the unitary condition wou
be violated. In turn this would give rise to breakdown of t
probability current conservation and what is more crucial,
appearance of undesirable exponentially growing and de
ing propagating solutions with small exponents. In order
avoid this difficulty we introduce a new Hermitian matrixW
which determines the matrixG as follows

G5exp~ i ãW/2!, ~21!

where

W5S 0 1 0 0 ¯

1 0 1 0 ¯

0 1 0 1 ¯

]

D .

Although in the computer simulations the matrixW is trun-
cated to a finite dimensionL, the relation~21! preserves the
unitarity of the matrixG.



ion
-

ld
the

he
o
se,
t
is
the

ips
a-

1062 JETP 87 (6), December 1998 E. N. Bulgakov and A. F. Sadreev
FIG. 3. The energy dependence of the transmiss
in the L-structure under the influence of the radia
tion field: a—stationary transmissiona50 for zero
magnetic field; b—the frequency of a radiation fie
is resonant with transitions between the edges of
first subband and the second onev529.6, a50.1,
g50. The solid line represents the case in which t
polarization of the radiation field is perpendicular t
the input electrode, the dashed line shows the ca
in which the polarization is parallel to the inpu
electrode. c—The frequency of the radiation field
tuned to transitions between the bound state and
first subbandv510.82, g50. The curve1 corre-
sponds toa50.2, the curve2 to a50.5. The dashed
line shows the steady case. d—Similar resonant d
with applied magnetic field produced by the radi
tion field: v510.82,a50.5. The curves1, 2, and3
correspond tog50,2,4 respectively.
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2.2. Numerical results

We begin by considering the simplestL-structure~Fig.
1a!. It has only one bound state with energye050.9291p2.14

A magnetic field slightly increases this value. Consider
first the case when the frequency of the radiation field
tuned to transitions between the edges of the second and
subbands,v'3p2. When the polarizationa of the radiation
field is perpendicular to the input electrode of the struct
the dipole matrix element mixing states of the second
first subbands equals

^1uyu2&5E dy f1~y!y f2~y!Þ0,

where f 1(y)5& sin(p(y21/2)), f 2(y)5& sin(2p(y
21/2)). If the polarization of the radiation field is parallel
the input electrode the dipole matrix element^kuxuk8& calcu-
lated in terms of the incident modes exp(ikx) is less than
^1uyu2& because of the oscillatory behavior of the functio
exp(ikx). Since the square of the dipole matrix element d
termines the radiation field effect, the electron transmiss
strongly depends on the polarization of the field as is in f
seen from Fig. 3b.

Second, consider the case when the frequency of
radiation field is resonant with transitions between the bo
state energy and the first subband. For zero magnetic
the radiation field induces the deep narrow resonant
shown in Fig. 3c. The width of the resonant dip depen
sensitively on the amplitude of the radiation field. Figure
shows the shift of the resonant dip versus the applied m
netic field.

The structure intermediate between theL- and
X-structure is theT-structure~Fig. 1b!. Like the L-structure,
it has only one bound state provided that the whole struc
has the same width, but there are two ways to direct
t
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-
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incident electron: through the electrode1 and through the
electrode2. For the former case the transmissionsT12 and
T13 coincide, provided thatg50. The polarization of a ra-
diation field is chosen perpendicular to the input electro
along they-axis ~Fig. 1b!. Consider the dipole matrix ele
ment between the bound state and the propagating
^x1uyuck,1&, wherex1(x,y) denotes the bound state with th
energye157.98 andck,1(x,y) is the propagating state fo
the steady case describing an electron incident on the
subband and the electrodeI. Since both states are even rel
tive to inversiony→2y around the symmetry liney50 ~for
g50), this dipole matrix element vanishes and the radiat
field produces no effect. In fact, our numerical calculatio
show that if the incident electron propagates in the first s
band at zero magnetic field there are no resonant phenom
resulting from the radiation field.

There are two ways to the dipole matrix element can
finite. The first one is to apply an external magnetic field, a
the second one is to consider electron transport in the sec
subband. These possibilities are shown in Fig. 4a and
The steady transmissions through theT-structure are shown
by thin lines. One can see that a magnetic field makes
transmissionsT12 andT13 nonequivalent. Application of the
radiation field gives rise to resonant dips which are ve
narrow, with widths proportional to the square of the amp
tude of the radiation field. In the vicinity of the resonance t
transmissionT13 exceeds the transmissionT12 which gives
rise to the anomalous Hall effect. This effect was first de
onstrated for the four-terminal structure.21

If an electron is incident on the second electrode,
dipole matrix element is not zero, and we expect reson
behavior for the transmissions to both electrodes1 and 3.
However, the radiation field produces a resonant dip only
the transmissionT23 ~Fig. 4c!. The reason for the absence
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FIG. 4. Transmissions through theT-structure.
a—Electron incidents on the electrode1 ~see Fig.
1b! and the first subband:v512, a50.2, g52.
b—Electron incidents on the second subband w
parametersv541.86, a50.5, g50. c—Electron
incidents on the electrode2, v512, a50.1, g50.
d—The same as in Fig. 4c with parametersv512,
a50.5, g54.
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a resonant dip for the transmission to the first electrode
related to the more complicated symmetry and will be giv
below. Application of an external magnetic field causes
resonant dips for all transmissions shown in Fig. 4d. A
because the bound state energy level is increased by a
ternal magnetic field, the location of the resonant dips
slightly shifted as is seen from Fig. 4c and 4d.

Consider the four-terminal junction~Fig. 1c! which is an
element of the Hall structures.6,7,9,19First, consider the radia
tion field effects for zero magnetic field, among which t
most interesting is the resonant control of the electron tra
missions by rotation of the radiation field polarization. A
was mentioned for theT-structure this effect has a pure
symmetric origin. However, the symmetry of theX-structure
is higher than that of theT-structure. Moreover, the
X-structure has two bound states. The one with the ene
e156.55 below the first subband is symmetrical relative
coordinate inversionsx→2x or y→2y, and the second
with the energye2536.72 below the second subband is a
tisymmetric.

As was observed for theT-structure, if the polarization
of the radiation field is perpendicular to the input electro
and the frequency of the field is tuned to the transition
tween the first subband and the energy of the first symm
cal bound state, there are no field-induced resonant effec
the transmissions. The reason is that the propagating sta
even, ck,1(x,y)5ck,1(x,2y), and so we havêx1uyuck,1&
50, which means that the transmissions exhibit no reson
effect. On the other hand, there is no symmetry of the pro
gating state relative tox→2x due to electrons incident o
the first electrode along thex-axis. Therefore, for the case o
the polarization parallel to the input electrode1 the dipole
matrix element satisfieŝx1uxuck,1&Þ0. In fact, one can see
from Fig. 5a a narrow resonant peak in the transmissionT14.
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However, as in the case of theT-structure, surprisingly, there
are no resonant effects for the transmissions to the electr
2 and3.

To understand this following21 we perform the gauge
transformation

c~r ,t !5exp~ iar cosvt !f~r ,t !,

and substitute it into Eq.~3!. As a result we obtain the fol-
lowing equation for the amplitudesfn(r ) of expansion~6!:

~e1nv!fn5~ i¹1a0~r !!2fn1
iv

2
~ar!~fn112fn21!.

~22!

Since we have assumed that the radiation field is reso
with transitions between the first bound state and the pro
gating one, for small perturbations we can restrict oursel
to two statesf0 andf21 in Eq. ~22! satisfying the following
equations:

¹2f01ef052
i

2
~ar!vf21 , ~23!

¹2f211~e2v!f215
i

2
~ar!vf0 , ~24!

where the functionsf0(r ) and f21(r ) correspond to the
propagating and the bound states, respectively. For the r
nant casee2v'e1 we can write the truncated Green’s fun
tion for the left side of Eq.~24!

G1~r ,r 8,e!'
x1~r !x1* ~r 8!

e2e12 id
~25!

whered accounts for the finite width of the level because
coupling of the structure with the electrodes and the mix
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FIG. 5. Transmissions through theX-structure for
zero magnetic field. In all pictures the electron
incident on the electrode1. a—The frequency of the
radiation field is tuned to transitions between th
energy of the first bound state and bottom of th
first subband,v54. The case of the polarization o
the radiation field along the input electrode is show
by thick lines, and the case of the polarization pe
pendicular to the input electrode is shown by th
lines. In both cases the amplitude of the radiati
field is a50.05. The electron is incident on the firs
subband (n51). b—v538.45,a50.5, the electron
is incident on the first subband. c—The frequency
tuned to transitions between the second bound s
and the first subband.v516.715,a50.2. d—As in
Fig. 5b, but the electron is incident on the seco
subband (n52).
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of propagating states with the bound state by the radia
field. Then a solution of Eq.~24! can be expressed via th
Green’s function~25! as follows:

f21~r !5
ivx1~r !

2~e2v2e12 id!

3E x1* ~r 8!~ar8!f0h~r 8!d2r 8. ~26!

Substituting Eq.~23! and carrying out a similar procedure o
expression in terms of the Green’s function, we finally obt

f0~r !5f0h~r !1
v2d10

4~e2e12v2 id!

3E G~r ,r 8,e!~ar8!x1~r 8!d2r 8. ~27!

Heref0h(r ) is the solution for a switched off radiation fiel
and

d105E x1* ~r !~ar!f0h~r !d2r

is the dipole matrix element between the bound state and
propagating one.

Similar to ~26! and ~27! we can write a solution of Eq
~24! for the case when the frequency of the radiation field
resonant with transitions between the second bound state
the Fermi energy of the incident electrone1v'e2

f0~r !5f0h~r !1
v2d20

4~e2e21v2 id!

3E G~r ,r 8,e!~ar8!x2~r 8!d2r 8,
n

n

he

s
nd

d205E x2* ~r !~ar!f0h~r !d2r ~28!

In order to analyze the transmission on the basis of
~27! we need the following symmetry properties of th
Green’s function in theX-structure:

G~x,y;x8,y8,e!5G~2x,y;2x8,y8,e!

5G~x,2y;x8,2y8,e!. ~29!

Now let us return to the transmissionT12 ~Fig. 1c! for the
case when the radiation field polarization is parallel to
input electrode~x-axis!. From Eqs.~27! and~29! we can see
that the last resonant term in~27! is odd relative tox→2x in
the electrodes2 and3, provided that the bound statex1(r ) is
even. Thus, the last term in~27! is not able to contribute to
the propagating mode in the electrodes2 and3 because for
the electron transport in the first subband it should be e
with respectx→2x. Next, since the last term in~27! is even
with respecty→2y, it contributes to the even transpo
modef0 in the electrodes1 and4. As we see from Fig. 5a
computer calculations completely confirm that conclusion
the incident electron belongs to the first subband withn51
~even state relative toy→2y), but the outgoing mode can
be represent as a superposition of states of the first and
ond subband (n51,2), these symmetry restrictions are r
moved for the polarization parallel to the input electrode.
a result the radiation field induces resonant anomalies in
transmissionsT12, T13 ~see Fig. 5b!. Briefly, this symmetry
rule can be formulated as follows. If the parity of the sta
excited by the dipole transition (ar)x1(r ) does not conflict
with the parity of the outgoing modes, then the transmiss
to the corresponding electrode can display resonant featu
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FIG. 6. Views of the amplitudes of the quasienergy wave functione520.02, a50.2, v516.715. a—uc0(r )u, b—uc1(r )u, c—uc21(r )u, d—uc0(r )
2c0h(r )u. Definitions of the amplitudes are given in~6!.
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and vice versa. Later we will demonstrate numerous
amples of the application of this symmetry rule.

First, we apply the symmetry rule to the case of radiat
field mixing of the second bound state, which is odd relat
to x→2x or y→2y. For the radiation field polarization
directed parallel to the input electrode the dipole matrix e
ment d20 vanishes, and consequently there are no radia
field induced effects. In the opposite case, when the po
ization is perpendicular to the input electrode, the dipole m
trix element is not equal to zero. However, the radiation fi
contribution to the electrodes2 and 3 described by the las
term in Eq. ~26! is odd, opposite to the symmetry of th
incident mode. So the transmissions to the electrodes2 and3
coincide with steady results, as shown in Fig. 5c. Fina
Fig. 5d shows the case when the incident electron belong
the second subband. In contrast to the case in Fig. 5b,
field-induced effects take place when the polarization is p
pendicular to the input electrode. Note that the same sym
try arguments explain the absence of radiation field effect
the electron transmission from electrode2 to electrode1
shown in Fig. 4c for theT-structure.

To confirm the approach using the quasi energy am
-
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tudes~26! and~27! and to illustrate symmetry rules, in Fig.
we present numerical solutions of the full Schro¨dinger equa-
tion ~4!. In Fig. 6a, 6b, and 6c the amplitudescn(r ) with
n50,1,21 respectively are shown for parameters cor
sponding to the case shown in Fig. 5c. One can see tha
fact, only two amplitudes,c0 , c1 , are important in the reso
nant case. Moreover, in agreement with Eq.~28! we see that
the amplitudec1(r ) exactly reproduces the second bou
wave functionx2 and that the next amplitudec21 is negli-
gible. Second, the difference between the radiation field p
turbed solutionc0 and the steady solutionc0h is shown in
Fig. 6d. One can see that symmetry of the outgoing par
this difference in the electrodes coincides with that predic
by the last term in Eq.~28!. The parity is even in the elec
trodes1 and4 and is odd in the electrodes2 and3. Also we
can see from Fig. 6d that the odd contributions are decay
in the electrodes1 and3.

As was mentioned above an external magnetic fi
breaks the symmetry of the structure, resulting in a m
complicated picture of radiation field effects. Results of the
calculations are presented in Fig. 7. Figure 7a correspond
Fig. 5a, with the difference that we haveg51, and presents
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FIG. 7. The energy dependences of the transm
sions in applied magnetic field in theX-structure.
a—v54, a50.05, g51.0, the polarization of the
radiation field is parallel to the input electrode: b—
v515.08,a50.5, g52, polarization of the radia-
tion field is perpendicular to the input electrode.
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a case in which the radiation field excites the first bound s
in the first subband. One can see all transmissions und
resonant peaks or dips, in contrast to Fig. 5a. Figure 7b
sents a case in which the frequency of the radiation field
tuned tov5(e22e1)/2. One can see that exciting of tw
bound states results in two resonant peaks in the trans
sions. The first bound state gives rise to sharp resonant p
and dips, while the second produces wide peaks and dip

From Fig. 7b we can see that in some narrow region
energies the transmissionT13 coincides withT12 and may
even slightly exceed it. Obviously, it would give rise to th
negative Hall resistance as was shown in Ref. 21. Moreo
we can see from Fig. 7b that the transmissionT12 undergoes
peaks, while the transmissionT13 does dips. As a result we
may observe resonant peaks in the Hall resistance as is
onstrated in Fig. 8.

From Fig. 7a and 7b~see also Ref. 21! in the narrow
region of resonance the transmissionT13 can slightly exceed
the transmissionT12 in an external magnetic field. Thi
means that the radiation field can even cause anomalie
the Hall resistance to be negative.21 Figure 8 illustrates vari-
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ous resonant anomalies of the Hall resistance induced by
radiation field: dips~Fig. 8a! and peaks~Fig. 8b, 8c, and 8d!.
The resonance between the first bound state and the F
energy of the incident electron produces a resonant dip~Fig.
8a!. In the case of the Fermi energye'(e21e1)/2 and
v'(e22e1)/2 the radiation field induces two wide peak
contributed by two bound states. Figure 8c shows that
radiation field transforms the dip in the Hall resistance6 into
a resonant peak. Finally, Fig. 8d shows a case like Fig.
but the radiation field excites the second bound state.

3. CONCLUSION

The resonant behavior in the electron transmission ar
because the radiation field resonantly substitutes the bo
states into the state of the incident electron propaga
through the scattering region of the structures to prod
various interference phenomena. These phenomena
clearly seen in the current density patterns shown in Fig
The resonant anomalies are very specific to the forms
structure and the type of bound state. The symmetry of
the
-
ce
FIG. 8. The Hall resistenceRH in the X-structure
versus an external magnetic field in response to
radiation field. The radiation field induced resis
tance is shown by solid lines, the steady resistan
is shown by dotted line. a—e510.95, v54.3, a
50.05; b—e522, v515.08, a50.5; c—e
536.75, v530.17, a50.1; d—e520.5, v
516.715,a50.5.
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FIG. 9. Current density flowing in theX-structure
when the radiation field is switched off~a! and
switched on ~b!; v54.3, a50.05, e510.95,
g51.21.
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with
structure and corresponding parity of the bound state p
an important role for the radiation field-induced effects b
cause of symmetry rules for the dipole matrix element a
for the resonant contribution, which is described by the ri
side of Eqs.~27! and ~28!. As a result the direction of the
radiation field’s polarization relative to the input electro
has strong effect on the resonant anomalies. This sugges
idea for controlling electron transmissions through the co
sponding electrodes by simple rotation of the polarization
the radiation field.

In conclusion we give dimensional estimates for the
diation field which is able to produce resonant effects in
2DEG. The Fermi energy in the semiconductor laye
AlGaAs structures depends on the density of the electron
and typically lies between 10 meV and 100 meV. The ch
acteristic sizesd of the structures are between 100 nm a
1 mm. Accordingly, the frequency of the radiation field tun
to transitions between the bound states and the first elec
subband will be roughly proportional to the Fermi energ
The amplitude of the radiation field is of orde
E'EFav/ed;103– 104 V/cm, wherea and v are dimen-
sionless.
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Enhancement of the quantum characteristics of light from an inversionless three-level
L-laser in cascade schemes
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We show that when a three-level laser is excited by Poisson light the lasing remains sub-
Poisson, as asserted by H. Ritsch, M. A. M. Marte, and P. Zoller@Europhys. Lett.19, 7 ~1992!#,
only if there is no reciprocal action on the exciting laser~weak coupling!. In cascade
schemes in which each three-levelL-laser excites each succeedingL-laser with its light, any
desired degree of shot-noise suppression can be achieved. ©1998 American Institute
of Physics.@S1063-7761~98!00512-5#
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1. INTRODUCTION

A property of a laser medium consisting of three-lev
atoms1 is that such a medium is capable of generating n
classical~sub-Poisson! light without any additional effort on
our part~e.g., regular pumping, as is the case with the tw
level sub-Poisson laser examined in Ref. 2!. This intrinsic
property of the system can be connected with the fact
three-level atoms have been found to automatically form
kind of negative feedback loop, which in the final analy
stabilizes the radiation. Later in this paper we will see tha
the variant of theL-scheme considered here~a weak pump
field exciting the atom from the ground state to the high
state and a laser field that is in resonance with upper ato
level and the level in the middle!, the pumping efficiency
depends on the lasing power and decreases as a functi
the power of the laser field.

Under these conditions the fluctuations of the pump fi
are to a certain extent balanced and do not give rise to
responding fluctuations of the laser field, unlike the ca
without negative feedback. For instance, a positive fluct
tion in the pump field first produces a positive fluctuation
the population of the upper laser level and then lasing. N
this gives rise to a negative fluctuation in the pump field a
hence to a negative fluctuation in the laser field. Thus, wit
a certain time interval the fluctuations in lasing become b
anced and do not depend on the fluctuations in the in
pump field. This mechanism explains why sub-Poisson
ing occurs even with Poisson pumping. This situation is v
desirable, since realizing it requires no more efforts th
building an ordinary laser. However, there are definite fau
in it. Negative feedback follows only the intracavity field an
cannot stabilize the light that has left the cavity, and sin
the process in which photons leave a cavity is stochas
light outside the cavity cannot have the same good prope
~in the sense of its quantum properties! as intracavity light.

Thus, a laser with three-level atoms as the active m
dium is probably the simplest system for demonstrating
possibility of generating sub-Poisson light in experiments.
1061063-7761/98/87(12)/12/$15.00
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the same time, in pure form this system has hardly any
tential as a source of nonclassical light that could be use
highly precise and supersensitive optical measureme
since reducing shot noise by several orders of magnit
may prove very important in experimental practice. It is cle
even on the qualitative level that here the limits are o
fundamental nature. If we examine this laser as an isola
entity, we will never be able to improve it without improvin
something related to it~e.g., by replacing Poisson pumpin
with sub-Poisson!. Nevertheless, we believe that one obvio
way of improving the quantum characteristics of the la
field should be analyzed. The possibility can be realized
cascade schemes, in which each preceding laser with mo
ate quantum characteristics excites the active medium of
succeeding laser, whose quantum characteristics of the
become more pronounced as a result of such excitation,

In constructing the quantum theory of a three-lev
L-laser we will not study the most general case, discusse
Ref. 1, and will limit ourselves to the physical conditions
which there is no population inversion in the laser transit
and yet there is gain. This choice of model is not very i
portant and is related only to the fact that to demonstrate
effect of enhancement of the quantum properties of light
cascade schemes it is sufficient to consider a particular c

The following problem arises in theoretical studies
cascade schemes. Formally, the process of excitation of
first laser in the cascade by coherent~Poisson! light can be
taken into account by introducing ac-number exciting field
into the interaction Hamiltonian. Here, as we have said e
lier, lasing develops in such a way that the laser field
comes sub-Poisson, so that the second, third, etc., lase
the cascade are excited by nonclassical light. Such pum
cannot be taken into account byc-numbers in the Hamil-
tonian. The theoretical approach must account for the
that not only is the laser field nonclassical, but so is the pu
field. In our investigation we use the method of a kine
equation for the density matrix that describes all coher
fields participating in the process.
8 © 1998 American Institute of Physics
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2. A CASCADE SCHEME WITH INTRACAVITY EXCITATION
OF THE ACTIVE MEDIA

Figure 1 depicts a schematic of a thought experim
that we wish to discuss here. The experimental setup con
of a cascade of lasers, with the first laser, 1, excited b
prescribed Poisson electromagnetic field. Due to the exc
tion the laser emits light, which excites laser 2. The proc
is continued with laser 3, laser 4, etc. Here we have cho
the variant of intracavity excitation of the active media~often
used in experiments! in which the media of the exciting an
excited lasers occupy the same cavity. We must bear in m
that the excitation of the active medium may have a stro
effect on the exciting laser. The most interesting case he
when the losses from the mode of the exciting laser are
termined chiefly not by the escape of light through the mir
of the optical cavity of that laser but by the excitation of t
active medium of the excited laser. Naturally, the conditio
for lasing in the absence of an excited laser differ dram
cally from those for lasing in the presence of such a las
We call this the case of strong laser coupling. The other li
~weak coupling!, where the presence or absence of the
cited laser remains essentially unnoticed by the exciting
ser, is also important and interesting from the physical vie
point.

For a cascade scheme to operate, resonant condi
must be met. We can assume, for instance, that there are
types of active laser media~Fig. 2!, which alternate from
laser to laser. Clearly, from the mathematical viewpoint
two media are equivalent~all formulas for the two media
coincide!. Indeed, in both media coherent fields act on

FIG. 1.

FIG. 2.
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u1&–u3& andu2&–u3& transitions and incoherent processes
on the u1&–u2& and u2&–u3& transitions, processes that ph
nomenologically are described in the same way irrespec
of their name~spontaneous decay or weak incoherent pum
ing!.

In order to be specific, we assume that, say, the ac
medium of laser 1~and all other lasers with odd number!
consists of atoms with an energy level structure depicted
Fig. 2a, while the active media of even-numbered lasers c
sist of atoms in Fig. 2b. We also assume that in the first la
excitation of atoms from the ground state to the upper la
state occurs on theu1&–u3& transition. The transition is ex
cited by an external Poisson electromagnetic field. Las
occurs on theu3&–2& transition. To simplify matters, we as
sume that all atomic transitions are allowed. However, in
calculations we will allow for spontaneous emission only
the u3&–2& laser transition with a rateg3 and on theu2&–1&
laser transition with a rateg2. In the active media of laser 2
without coherent fields, due to spontaneousu3&–2& emission
and weak incoherent pumping~e.g., in a gas discharge or b
a weak spectrally broad external electromagnetic field!, un-
der steady-state conditions all the atoms are in levelu1&. The
coherent action of the light from laser 1 on theu1&–3& tran-
sition populates the upper laser level and leads to lasing
the u2&–u3&transition.

The plan of the paper is as follows. In Sec. 3 we disc
the elements of semiclassical laser theory, important for
discussion. We derive auxiliary formulas for atomic popu
tions and coherences in conditions of inversionless las
and useful relationships for the lasing powers of the exci
and exciting lasers.

Section 4 discusses the quantum statistical theory of
ing involving three-level atoms with the active medium e
cited by the light of an auxiliary Poisson or sub-Poiss
laser. We develop the most important aspects of setting
the kinetic equation for the density matrix of the laser fie
and the pump field in the inversionless approximation and
the approximation of small photon fluctuations.

The photocurrent spectrum obtained in measurement
the light emitted by a single three-level laser excited by
light of a Poisson or sub-Poisson laser is discussed in Se

In Sec. 6 we generalize the theory developed in Sec
and 5 to the case of a cascade scheme consisting ofN three-
level lasers. The first laser in this scheme is excited by
light of a Poisson laser, its emission excites the next thr
level laser, and so on.

In the Appendix we discuss in detail the method used
deriving the kinetic equation for the laser fields in the ca
cade.

3. SEMICLASSICAL THEORY OF LASING

3.1. Steady-state behavior of an atom in external pump and
laser fields

In constructing a statistical theory we assume that
basic parameters of the problem fluctuate only weakly ab
the corresponding semiclassical values. This allows us to
earize the theory and hence simplify the mathematics.
explicit expressions for the semiclassical quantities, such
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the matrix elements of the atomic density matrix describ
the behavior of the atom as it interacts with two classi
fields, the laser field and the pump field, play an import
role in this theory.

In this section we discuss the semiclassical theory
lasing with the medium consisting of atoms whose ene
levels are depicted schematically in Fig. 2.

The behavior of the atoms is determined by a system
equations for the matrix elements of the atomic density m
trix ŝ, which with allowance for external fields and rela
ation processes assumes the form

ṡ1152g2s222g0~a0s131a0* s31!50,

ṡ33522g3s331g0~a0s131a0* s31!

1g1~a1s231a1* s32!50,

ṡ1352g3s132g0a0* ~s332s11!1g1a1* s1250, ~1!

ṡ1252g2s122g0a0* s322g1a1s1350,

ṡ2352~g21g3!s232g1a1* ~s332s22!1g0a0s2150.

This system of equations must be augmented by the nor
ization condition

s111s221s3351. ~2!

Herea0 anda1 are the complex amplitudes of the pump a
laser fields, which are normalized in such a way that
quantitiesn05ua0u2 andn15ua1u2 are the numbers of pho
tons in the pump mode and the lasing mode. Other oft
used quantities are the Rabi frequenciesV15g1ua1u and
V05g0ua0u, where g0 and g1 are the constants of dipol
interaction of the atom and the pump and laser fields, res
tively.

In writing the system of equations we chose the inter
tion Hamiltonian in the form

V̂85 ig0~a0u3&^1u2a0* u1&^3u!

1 ig1~a1u3&^2u2a1* u2&^3u!, ~3!

where u i &^ku ( i ,k51,2,3) are the projection operators d
fined on the atomic states.

Clearly, for both physical situations depicted in Fig.
the system of equations is the same.

Under steady-state conditions~all time-derivatives are
zero!, Eqs.~1! become a system of algebraic equations a
can be solved fairly easily. The explicit expressions for
steady-state matrix elements are

s1151, s225
i 0

11 i 1
, s335

ĩ 0

~11 i 1!~11 ĩ 1!
, ~4!

s135
g0a0*

g3

1

11 i 1
, s1252

g1a1g0a0*

g2g3

1

11 i 1
,

~5!

s2352
g1a1*

g3

ĩ 0

~11 i 1!~11 ĩ 1!
.
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The dimensionless powers of the pump and laser fields
be expressed in terms of the parameters of the problem:

i 05
V0

2

g3
2

, i 15
V1

2

g3
2

, ĩ 05 i 0

g2

g3
, ĩ 15 i 1

g2

g3
. ~6!

In writing the steady-state solutions we assumed that

V0 ,g2!g3 . ~7!

We see that under the adopted conditions only a small n
ber of the atoms are excited. Specifically,

s33,s22!s11, ~8!

with the population of stateu2& always higher than that o
stateu3&:

s33!s22. ~9!

In what follows we call the condition~7! the inversionless
approximation.

3.2. Truncated lasing equations

Let us examine a physical system consisting of an ex
ing single-mode laser and an excited single-mode laser
consider it a two-model laser with complex-valued lasi
amplitudesa0 ~the exciting mode! anda1 ~excited mode!. It
is well known that

ȧ152g1N1s322
k1

2
a1 , ~10!

whereN1 is the total number of atoms in the active mediu
andk1 is the cavity width of the excited mode. Substitutin
the explicit expression in~5! for the matrix elements32

5s23* in Eq. ~10!, we arrive at an equation of lasing in th
excited mode. Obviously, it depends on the lasing in
exciting mode.

A similar equation can be written fora0. Here we must
bear in mind that the exciting mode interacts with two res
nant media: the medium of the exciting laser, and the m
dium of the excited laser in the process of its excitation.

The sign ofs32 is an indication of whether we are dea
ing with gain or absorption in the laser transition. By sep
rating the components proportional to the two-photon po
lation differences112s22 we separate the terms~if they
exist! responsible for Raman scattering.

From~5! we see thats32 is negative, so that there is gai
in this laser transition. Moreover, the coherence of the la
transition depends on the population of the upper laser le
and not on the two-photon population difference, the op
site of the case of Raman scattering. Thus, bearing in m
the foregoing conjecture that there is no population invers
in the laser transition, we arrive at the unambiguous conc
sion that here we are dealing only with inversionless lasi
which is a characteristic feature of multilevel atom
systems.3

We now write Eq.~10! explicitly in the inversionless
approximation:

ȧ15S k

2

ĩ 1

11 ĩ 1

n0

n1
2

k1

2 D a150. ~11!
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Heren0 andn1 are the semiclassical solutions for the nu
bers of photons inside the first and second cavities, and
quantity

k5
k̄

11 i 1
, k̄5

2g0
2N1

g3
, ~12!

has the physical meaning of the rate of absorption of
exciting light in the excited medium~or the rate of excitation
of the active medium of the excited laser!. This rate depends
on the lasing power of the excited laser. In the case of s
ration (ĩ 1@1), Eq. ~11! yields a useful relationship:

n0

n1
5

k1

k
, ~13!

from which we can easily establish that

i 15
g1

g0
A k̄

k1
i 0 , k5

g0

g1
Ak1k̄

i 0
. ~14!

4. THEORY OF LASING OF A SINGLE LASER WITH POISSON
AND SUB-POISSON EXCITATION

4.1. The general form of the basic kinetic equation

We construct the quantum statistical theory of the las
of a cascade scheme of lasers on the basis of the theo
lasing of a single laser. Here and in the sections that fol
we assume that there is only one three-level laser wh
active medium is excited by the light from another auxilia
laser. We find it convenient not to say anything spec
about the auxiliary laser at this point, so that in the fin
stages of our discussion we can choose between Poisso
citation and sub-Poisson excitation. This problem was p
tially studied by Ritschet al.1 Here, however, we discuss no
only the intracavity situation but also the aspects of obse
ing such phenomena, and we will show that the res
strongly depend on how the laser is excited. Two phys
situation will be examined: when the exciting laser
‘‘oblivious’’ of the exciting laser~weak laser coupling!, and
when reciprocal action is very important~strong coupling!.

To describe the statistical properties of lasing we use
kinetic equation for the density matrixr of the laser field
generated by the laser under investigation and the laser
of the exciting laser, assuming that they are of equal statu
the theory. Usually the exciting field is assumed fixed. In o
approach, however, we take into account the nonclass
nature of the exciting field and the reciprocal effect of t
excited laser on the exciting laser, a characteristic effec
three-level schemes.

To specify the basic kinetic equation, we must assu
that the atomic variables vary much more rapidly than
field variables. This standard requirement of kinetic the
can be satisfied under lasing conditions by assuming tha
optical cavities of both lasers are high-Q cavities. If this
condition is met, we can write the desired kinetic equation
the form

ṙ5S r 0Ŝ02
k0

2
R̂0D r1S Ŝ12

k1

2
R̂1D r. ~15!
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Here the operatorsR̂0 andR̂1 are responsible for the decay o
the intracavity quantum field oscillators of the exciting a
excited lasers with ratesk0 andk1, respectively;Ŝ1 and Ŝ0

are responsible for the nonlinear interaction of the laser fie
and the active media; andr 0 is the average rate of excitatio
of the upper laser level of the active medium of the exciti
laser.

We will attempt to write Eq.~15! explicitly by using the
diagonal Glauber representation. Thus, we haver
5r(a0 ,a1 ,t), wherea0 anda1, as before, are the complex
valued amplitudes of the pump and laser fields, which
now the eigennumbers of the corresponding annihilation
erators:

aj ua j&5a j ua j&, @aj ,aj
†#51, j 50,1. ~16!

For the decay operators of the field oscillators in the Glau
approximation we have the well-known formulas

R̂j52
]

]a j
a j1c.c. ~17!

Below we will find it convenient to a certain extent not
specify the explicit representation ofŜ0, which naturally de-
pends on what laser is chosen as the exciting one. T
means, for instance, that in the variant of the theory based
the approximation of small photon fluctuations, which
used in this paper, the two coefficients referring to the ex
ing laser light, the decay rateG0 of photon fluctuations and
the statistical Mandel parameterj0, will not be written ex-
plicitly.

Here and in what follows we consider two kinds of e
citing lasers. The first uses the common laser, conside
e.g., in Ref. 4. As is known, the light of this laser in th
saturation regime is purely Poisson. The explicit express
for Ŝ0 in the diagonal representation can be found in Ref
We call this the case of Poisson excitation. The second
sion, sub-Poisson excitation, can easily be studied theo
cally if in the first version we replaceŜ0 by Ŝ02Ŝ0

2/2 ~see
Ref. 2!.

Although calculatingŜ1 is one of the main problems o
this theory, since it is a purely theoretical one and conta
cumbersome calculations, we place it in the Appendix. H
we use the formulas from the Appendix and identify only t
main steps that must be taken~see the Appendix!.

As the first step, we write the fairly obvious equation f
the density matrixF̂(t) of two-mode lasing~of the laser field
and the pump field! and a single atom, whose energy lev
structure with allowance for atomic relaxations is depicted
Fig. 2. Then in this equation we pass to the diagonal Glau
representation, i.e., the equation for the density ma
F̂(a0 ,a1 ,t). This matrix is still an operator in relation to
atomic variables. The convenience of using the diagonal r
resentation lies, in particular, in the fact that the equat
explicitly acquires terms responsible for the quantization
the electromagnetic field. The terms can be separated f
the ‘‘classical’’ part~i.e., classical in relation to the field! by
a very simple criterion: these are terms with derivatives w
respect to the complex-valued amplitudes of the field, and



t
l

e.
-
a

to

ix
he

e
p
ap
er
m
io
ac
en
ph

ng

is
ic

th

o
th
pl
ta
ra
on
th
ai
m

e
he

of
w

f

y

it

in
ton

tate
s-

ns
ity.

re-
tic

he

is

ab-
the
et

p-
ng

er,
to
type
ffi-
-
-

the

1072 JETP 87 (6), December 1998 Yu. M. Golubev and G. R. Ershov
discarding them we arrive at an equation that describes
behavior of a single atom~see Eqs.~1!! in external classica
fields with the amplitudesa0 anda1.

In the next step we factorize the density matrix, i.
write F̂5ŝr1p̂, whereŝ(t) is the density matrix describ
ing the behavior of a single atom in two external ‘‘classic
fields’’ with the amplitudesa0 and a1; r(a0 ,a1 ,t) is the
density matrix of the two-mode laser field; andp̂(a0 ,a1 ,t)
is the matrix describing the correlations between the a
and the laser fields.

If we combine the initial equation for the density matr
F̂(a0 ,a1 ,t) of a single atom and two laser fields and t
equation for the atomic density matrixŝ, we arrive at a
system of equations for the matricesr andp̂ ~which depend
on ŝ as a parameter!. Solving the equation forp̂, we find
this quantity as a function ofr. Inserting the result in the
equation forr, we arrive at a closed equation that describ
the behavior of only the field matrix density. A possible a
proach to this problem is to adopt the so-called kinetic
proximation. This approximation assumes that the matt
field correlation time is much shorter than the relaxation ti
of the field variables. Here the correlation time is the per
of revolution of the atom over the levels due to the inter
tion with the pump and laser fields and due to incoher
processes. On the other hand, the relaxation time is the
ton lifetime in the optical cavity~this is common practice in
laser problems!.

The kinetic approximation makes it possible, in solvi
the equations for the atomic density matrixŝ and the corre-
lation matrixp̂, to write only the steady-state solutions. Th
is quite obvious when we are dealing with purely atom
motion, as in the equation forŝ, since this motion is the
fastest and the atom need only a short time to reach
steady state. The situation with the equation forp̂ is some-
what more complicated, since it incorporates the atomic m
tion and the field motion. Here, however, we can use
adiabatic approximation, when in the first stage we sim
ignore the variation of field variables, seek the steady s
solution of the problem, and then allow for the tempo
variations of the field variables in this steady-state soluti

The transition to steady-state equations transforms
system of differential equations into a system of algebr
equation, which can be solved fairly easily. This sche
makes it possible to obtain the explicit dependencep̂

5p̂(r,ŝ), i.e., the explicit expression for the rate of th
variation of the density matrix of the laser field due to t
interaction with the single atom.

Finally, we must allow for the presence in the cavity
N1 statistically independent identical atoms. To do this
multiply the increment of the field density matrixr due to
the interaction with a single atom byN1. As a result, we
obtain ṙ as a function ofr, i.e., the desired development o
the field matrix due to the medium–field interaction.

4.2. The approximation of small photon fluctuations

The field characteristics usually discussed in laser ph
ics are the amplitudes~the photon numbers! and phases
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~phase differences!. Therefore, in a theoretical discussion
is convenient to shift from the complex-valued amplitudesa j

~j50,1! to the polar coordinatesuj andw j :

a j5Auj exp~ iw j !, j 50,1. ~18!

At this point we make an assumption that is common
problems of statistical laser physics. We assume that pho
numbers in the exciting and excited lasers in steady-s
lasing conditions fluctuate only slightly near their semicla
sical steady-state values:

uj5nj1« j , nj@« j . ~19!

Of course, this is possible only under physical conditio
such that there is a large buildup of photons in the cav
The semiclassical solutions fornj can be found in Eqs.~13!
and ~14!.

Bearing in mind the semiclassical solutions and the
sults obtained in the Appendix, we can write the kine
equation for the photon matrix density

r~«0 ,«1 ,t !5E E r~«0 ,w0 ,«1 ,w1 ,t ! dw0 dw1 , ~20!

in the form

]

]t
r~«0 ,«1 ,t !5G0

]

]«0
~«02d1«1!r

1G1

]

]«1
~«12d0«0!r1D0

]2r

]«0
2

1D1

]2r

]«1
2

1D01

]2r

]«0 ]«1
1$•••%. ~21!

We see that the fluctuations of the exciting field affect t
fluctuations of the laser field~due to linear coupling, given
by the coefficientd0), which was to be expected. But there
also a reciprocal effect~the coefficientd1), which stems
from the behavior of a three-level scheme, in which the
sorption coefficient in the excitation channel depends on
laser field~5!. Here by$•••% we have denoted the entire s
of higher-order derivatives with respect to«.

First we write the coefficients in the inversionless a
proximation, which do not depend on the type of exciti
laser:

G15k1

i 1

i 111

2 ĩ 111

ĩ 111
, G1d05k, G0d15k1

i 11g3 /g2

i 111
,

~22!

D152k1n1 , D015k1n1

i 11g3 /g2

i 111
, D05G0j0n0 .

These formulas can be used for any type of exciting las
which is important because in future they will permit us
use this simple basis to study the cascade scheme. The
of exciting laser is determined by the values of the coe
cientsG0 andj0, whereG0 is the decay rate of photon fluc
tuations in exciting lasing~in the presence of an excited la
ser!, andj0 is the Mandel parameter, which characterizes
intracavity photon fluctuations of the exciting laser~in the
absence of an excited laser!.
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Here we havej050 for excitation by the light of a Pois
son laser in the saturation regime andj0521/2 for excita-
tion by the light of a sub-Poisson laser in the saturation
gime. For both casesG05k01k.

5. PHOTODETECTION OF LASER LIGHT

5.1. Equations for the average quantities

When detecting the light emitted by a single-mode las
we can write the photocurrent spectrum as follows:

i v
~2!5 i shot

~2! S 11
2k1

n1
Re E

0

`

«1~0!«1~ t ! exp~ ivt ! dtD ,

~23!

wherei shot is shot noise. Thus, we must find an explicit re
resentation for the average quantity«1«1(t). The basic ki-
netic equation~21! makes it possible, using standard proc
dures, to write the following system of equations:

•

«1«1~ t !52G1 «1«1~ t !1G1d0 «1«0~ t ! ,
~24!

•

«1«0~ t !52G0 «1«0~ t !1G0d1 «1«1~ t ! .

The solutions of this system depend on the initial con
tions, i.e., on the expressions for«1«0 and«1

2 in steady-state
conditions. To find these steady-state expressions we in
duce an additional system of equations, which also follo
from the basic kinetic equation:

•

«1
2522G1 «1

212G1d0 «0«112D150,

•

«0«152~G01G1!«0«11G0d1«1
21G1d0 «0

21D0150,
~25!

•

«0
2522G0 «0

212G0d1 «0«112D050.

Note that Eqs.~24! and ~25! follow directly from ~21!, and
the terms$•••% incorporating higher-order derivatives mak
no actual contribution.

Next we use Eqs.~22! in the saturation regime, i.e., un
der the conditionĩ 1@1, but leave the coefficientsG0 andj0

unspecified:

22k1 «1
21kd0 «0«12k1n150,

2~G012k1!«0«11k1«1
21k«0

21k1n150, ~26!

2G0 «0
21k1«0«11G0j0n050.

The solution of this system of algebraic equations can
written in the form

«0«15
2k1G0n1~j011/2!

~2G02k!~G012k1!
, ~27!

j152
n1

2
1

kG0n1~j011/2!

~2G02k!~G012k1!
, ~28!

wherej15«1
2/n1 is the statistical Mandel parameter.
-

r,

-

-

o-
s

e

Clearly at j0521/2 there can be no one-time cros
correlation, andj1521/2.

Solving the system of equations~24! and~25!, we arrive
at an explicit expression for the photocurrent spectrum:

i v
~2!

i shot
~2!

5122k1
2

G0
21v22G0k~11j0!

@k1~2G02k!2v2#21v2~G012k1!2
.

~29!

It should be recalled that in the cases of Poisson and s
Poisson excitation in the saturation regime,G05k01k, and
j0 is equal to 0 and 1/2, respectively.

Below we analyze this expression in the two most int
esting limits: weak and strong coupling of the exciting a
excited lasers. Since the intracavity volumes of the two
sers intersect in our treatment, the medium of the exc
laser introduces additional resonator losses in the exci
laser. Thus, the total field losses in the cavity are determi
by k01k. If

k0@k, ~30!

this additional effect can be ignored, assuming that ther
no way in which the lasing of the exciting laser depends
that of the excited laser. We call the inequality~30! the con-
dition for weak laser coupling. At the same time it is cle
that the opposite case of strong coupling is also real. H
the main fraction of the light from the exciting laser is us
to excite the active medium of the excited laser.

5.2. Weak laser coupling

If the condition~30! holds, formula~29! becomes

i v
~2!

i shot
~2!

5122k1
2

G0
21v2

@2G0k12v2#21v2~G012k1!2
. ~31!

We see first that in the limit of weak coupling of the excitin
and excited lasers, the photocurrent spectrum does not
pend on the Mandel parameterj0 in the exciting laser. It is
entirely unimportant whether the excitation id Poisson, s
Poisson, or even super-Poisson. This, in particular, me
that we can apply a simplified version of the theory. We ne
not consider the laser light and the pump light as two s
systems equal in status and write the equation for the den
matrix of both laser fields. When the laser coupling is we
we can always introduce the pump field as ac-number into
the corresponding interaction Hamiltonian. For any type
exciting laser, the physical picture in the laser wave is
ways the same and coincides with that in Poisson excitat

Secondly, maximum suppression of shot noise is
tained, as usual, at zero frequency. The extent of this s
pression does not depend on the type of excitation, and
relative depth of the dip reaches 1/2.

5.3. Strong laser coupling

As we have just seen, in weak laser coupling the sta
tical properties of the light from the exciting laser have
effect on the statistical properties of the light from the e
cited laser. This is quite natural, since only a small fract
of the initial radiation participates in the excitation proce
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and this radiation does not retain the properties of all
light. Hence our interest in the opposite case of strong la
coupling,

k0!k, ~32!

in which the statistical properties of the exciting radiation a
assumed to affect lasing. Then instead of~29! we have the
following:

i v
~2!

i shot
~2!

511
2k1

2

x1
2 2x2

2 S j0
~0!k21x2

2

v21x2
2

2
j0

~0!k21x1
2

v21x1
2 D . ~33!

Herex6 stand for the roots of the biquadratic equation

~k1k1x2!22x2~k12k1!250. ~34!

The roots are the simplest in two limits:

x2
2 5k2, x1

2 5k1
2 , k@k1 , ~35!

x2
2 54k1

2 , x1
2 5k2/4, k!k1 . ~36!

Let us write separate formulas for excitation by light fro
Poisson and sub-Poisson lasers.

We have

i v
~2!

i shot
~2!

51, k@k1 , ~37!

i v
~2!

i shot
~2!

512
1

2

4k1
2

v214k1
2

1
1

2

k2/4

v21k2/4
, k!k1 ~38!

in the case of Poisson excitation, and

i v
~2!

i shot
~2!

512
k1

2

v21k1
2

, k@k1 , ~39!

i v
~2!

i shot
~2!

512
1

2

4k1
2

v214k1
2

2
1

2

k2/4

v21k2/4
, k!k1 ~40!

in the case of sub-Poisson excitation. These results ca
understood by reasoning in the following manner. In the m
dium of three-level atoms excited by external radiation th
are two mechanisms that control the photon flux in lasi
One is related to the properties of the medium and to
occurrence of negative feedback in the medium, and
other is related to the exciting radiation. Here the fi
mechanism has indeed a stabilizing effect, while the role
the second differs depends on the ratios of the paramete
the problem. For instance, if the coupling of the exciting a
excited lasers is weak, the statistical properties of the ex
ing radiation are unimportant. They become important
regularizing the photon flux in lasing only when the coupli
is strong. The above formulas show that this factor is p
dominant for very strong coupling, i.e., whenk is much
larger not only thank0 but also thank1. In this case the role
of the stabilizing factor of the medium proper becomes
important and the statistics of the laser simply coincides w
that of the exciting field.

We see that the result of Poisson excitation is Pois
lasing, and the result of sub-Poisson excitation with comp
suppression of noise at zero frequency is sub-Poisson la
e
er

e

be
-
e
.
e
e
t
f
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d
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n
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ng

with equally complete suppression of noise at zero f
quency. If the laser coupling is strong butk!k1, both fac-
tors act simultaneously, and Eqs.~38! and ~40! have two
corresponding frequency-dependent terms. The first term
the same in~38! and ~40!: it is related to the stabilizing
properties of the three-level medium and doubly suppres
shot noise at zero frequency. The second term~more pre-
cisely, its sign! depends on whether the exciting radiation
Poisson~i.e., destabilizing! or sub-Poisson~i.e., stabilizing!.
In the first case the stabilizing factor of the medium is b
anced to a great extent by the stochasticity of the excitat
so that at zero frequency there is no suppression of s
noise. In the second case both factors act in unison, and
noise at zero frequency is completely suppressed.

6. A CASCADE SCHEME CONSISTING OF N STRONGLY
COUPLED LASERS

6.1. The basic kinetic equation for coherent fields

In the preceding sections we established that the qu
tum properties of the exciting laser may be transferred to
excited laser in the event of strong coupling. Two mech
nisms play an important role in specifying the quantum pro
erties of three-level atom lasing: the regularizing role of t
laser medium proper, which even under Poisson excita
leads to sub-Poisson lasing, and the regularizing role of
excitation proper, if the excitation is done by sub-Poiss
light. In this connection we study a chain ofN three-level
lasers in which, obviously, both mechanisms act.

The mathematics of this problem is not simple. T
problem is that in view of the properties of three-lev
atomic structures, each laser in the cascade affects not
the next laser in the chain but also the preceding one. T
happen only under strong-coupling conditions, but it is p
cisely this case that we are interested in~as the foregoing
reasoning shows! if we want the statistical characteristics
improve. Hence we must, at least in principle, in a cert
sense formulate the theory anew and write a kinetic equa
for the density matrix ofN laser fields. Fortunately, there i
no need to go back to the first principles. The actual equa
in the approximation of small photon fluctuations in ea
laser can be written on the basis of very general principle
our understanding of the physics of the problem:

]

]t
r~$« i%,t !

5 (
i 51,2,3, . . . ,N

G i

]

]« i
~« i2d i i 11« i 112d i i 21« i 21!r

1 (
i 51,2,3, . . . ,N

FDi

]2r

]« i
2

1Di 21 i

]2r

]« i 21 ]« i
G . ~41!

Here the coefficientsd i i 21 allow for the effect of the pre-
ceding laser on the next laser~transformation of the photon
fluctuations in the lasing of the exciting laser into the lasi
of the excited laser in the process of exciting the active m
dium!, the coefficientsd i i 11 allow for the effect of the next
laser on the preceding laser~transformation of the photon
fluctuations in the lasing of the excited laser into the las
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TABLE I.

N

1 2 3 ••• N21 N

G1 2k1 2(k11k12) 2(k11k12) ••• 2(k11k12) 2(k11k12)
G2 – 2k2 2(k21k23) ••• 2(k21k23) 2(k21k23)
G3 – – 2k3 ••• 2(k31k34) 2(k31k34)
A A A A ••• A A
GN – – – ••• – 2kN

G1d12 – k2 k21k23 ••• k21k23 k21k23

G2d23 – – k3 ••• k31k34 k31k34

A A A A ••• A A
GN21dN21 N – – – ••• – kN

G2d21 – k12 k12 ••• k12 k12

A A A A ••• A A
GN21dN21 N22 – – – ••• kN22 N21 kN22 N21

GNdN N21 – – – ••• – kN21 N
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of the exciting laser via the nonlinear absorption coeffici
of the exciting light!. In the absence of other lasers, the c
efficientsG i have the physical meaning of the rate of dec
of photon fluctuations in thei th laser. Finally, the coeffi-
cientsDi andDi i 11 specify the sources of the correspondi
self-correlations and correlations between the neighbo
lasers in the cascade.

Recall that earlier we dealt with important parameters
our discussions: the ratek of absorption of the exciting ligh
in the medium of the excited laser, and the resonant wid
k0 andk1 of the exciting and excited lasers. Now we ha
many lasers, and the number of parameters increases ac
ingly. We introduce the following notation:k i 21 i ,
i 51,2, . . . ,N, is the rate of absorption of the light of th
( i 21)st laser in the active medium of thei th laser, andk i is
the resonant width of thei th laser.

Let us discuss the structure of the coefficients in Eq.~41!
on the basis of Eq.~21! written in the inversionless approx
mation. We can guess the general structure of the coeffici
if we first write them for the case whereN51, then forN
52, N53 and so on.

To understand the structure of the coefficientsG i ,d i 21 i ,
and d i i 21, we build a table. In Table I the second colum
consists of these coefficients for the caseN51, the third
column consists of the coefficients for the caseN52, etc.,
and, finally, the last column consists of the coefficients
the case of an arbitrary numberN of lasers. We assume tha
within each pair in the chain the lasers are strongly coup
k i i 11@k i . We can then write the general expressions

d i i 115
k i 11i 12

2k i i 11
, i 51,2,3, . . . ,N21,

~42!

dN21 N5
kN

2kN21 N
, dN N1150.

The coefficientsd ik and dki are linked by the following re-
lationships:

4d ikdki51, i ,k51,2,3, . . . ,N, ~43!

G i52k i i 11 , i 51,2,3, . . . ,N21, GN52kN . ~44!
t
-
y

g

n

s

rd-

ts

r

d,

Finally, the expressions for coefficients of the second deri
tives can easily be written using Eq.~21!:

Di52k i i 11ni , Di 21i5k i i 11ni ,

i 51,2,3, . . . ,N21, ~45!

DN52kNnN , DN21N5kNnN .

6.2. Suppression of quantum noise in the cascade scheme

Now that the theory at the kinetic-equation level h
been formulated, we can do specific calculations. First
use Eq.~41! to write an equation for the one-time averag
« i«k. The simplest way to do this is to begin by writing th
equations consecutively forN51, N52, N53, etc., and
then attempt to discern a pattern. Analyzing these equati
we arrive at the conclusion that forN arbitrary all mixed
averages vanish. This does not mean, however, that ther
no correlations between the photon fluctuations of differ
lasers. Any laser in the chain reacts to the photon fluctuati
in neighboring lasers only after a finite time has elapsed. T
solutions for the one-time averages are

« i«k50, iÞk, « i
252ni /2 . ~46!

Here we must take into account the semiclassical relat
ships that exist between laser parameters:

ni 21k i 21i5nik i , ~47!

these can also be derived on the basis of our previous
cussion.

Thus, the statistical Mandel parameter of each lase
the cascade is the same:j i521/2. In this sense the situatio
for each laser does not change when the number of la
changes and, in particular, in comparison to the case wh
N51, i.e., when the laser is not in a cascade but is single
is excited by external Poisson light.

We will not attempt to write the formula for the photo
current spectrum when the light of the entire cascade is be
detected. Mathematically the problem is complicated, and
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our analysis it is sufficient to know the size of the dip in t
shot noise at zero frequency. We now turn to the calcula
of this quantity.

On the basis of this reasoning we can immediately w
the final expressions forN51 andN52:

i v50
~2!

i shot
~2!

5
1

2
, N51;

i v50
~2!

i shot
~2!

5
1

3
, N52. ~48!

Now we analyze the case ofN53. Using the basic kinetic
equation~41!, we can write the following system of equa
tions:

•

«3«3~ t !52G3 «3«3~ t !1G3d32«3«2~ t !50, ~49!

•

«3«2~ t !52G2 «3«2~ t !1G2d23«3«3~ t !

1G2d21«3«1~ t !50, ~50!

•

«3«1~ t !52G1 «3«1~ t !1G1d12«3«2~ t !50. ~51!

We introduce Laplace transforms,

xik~v!5E
0

`

« i~0!«k~ t ! exp~ ivt ! dt, ~52!

and putv50 in the formulas:

2«3
252G3x331G3d32x32, ~53!

052x321d23x331d21x31, ~54!

052x311d12x32. ~55!

Clearly, x3352(3/8)n3 /k3. Thus, forN53 the noise level
at zero frequency is

i v50
~2!

i shot
~2!

5
1

4
, N53. ~56!

Longer cascades can be analyzed in a similar manner.
result we get

i v50
~2! ~N!

i shot
~2!

5
1

N11
. ~57!

Thus, the use of a cascade scheme makes it possib
achieve the necessary level of suppression of shot noise

The research was supported by the Russian Fund
Fundamental Research~Grant No. 98-02-18129!, INTAS–
RFBR~Grant No. 95-0656!, and the State Committee o
Higher Learning~Grant No. 95-0-5.4-66!.

APPENDIX DERIVATION OF THE BASIC KINETIC
EQUATION

1. Deriving the operator Ŝ1

1.1. The initial equation in the diagonal representatio
Let us write the equation for the matrix density of the tw
mode lasing field~the laser field and the pump field! and a
single three-level atom:
n

e

a

to

or

.

F̂
˙

52 i @V̂,F̂#2R̂atF̂. ~58!

The interaction Hamiltonian consists of two terms, whi
determine the interaction of the atom with the pump field a
with the laser field:

V̂5 ig0~a0u3&^1u2a0
†u1&^3u!1 ig1~a1u3&^2u2a1

†u2&^3u!.
~59!

The action of the relaxation operatorR̂at agrees with the
relaxation processes~or with incoherent excitation processe!
in Fig. 2.

A very common approach here is to fix the pump field
the form of anc-number field. Then instead of the photo
creation and annihilation operators,a0

† and a0, in ~59! we
again write thec-numbersa0* anda0, where

aua0&5a0ua0&. ~60!

We now write Eq.~58! in the diagonal Glauber represent
tion:

F̂˙ 52 i @V̂8,F̂#2R̂atF̂1g1D̂1F̂1g0D̂0F̂. ~61!

Here the HamiltonianV̂8 coincides with the HamiltonianV̂ if
in the latter we replace the photon creation and annihilat
operators with the corresponding complex-valued field a
plitudes. The action of the operators on derivatives with
spect to the complex-valued field amplitudes and in the fi
analysis form the statistical properties of lasing, is det
mined by the equations

D̂1F̂5
]

]a1
u2&^3uF̂1

]

]a1*
F̂u3&^2u, ~62!

D̂0F̂5
]

]a0
u1&^3uF̂1

]

]a0*
F̂u3&^1u. ~63!

1.2. Factorization of the density matrix.We now factor-
ize the density matrixF̂:

F̂5ŝ r1p̂. ~64!

Here ŝ(t) is the density matrix of a single atom in tw
classical external fields with amplitudesa0 and a1. The
equation for this density matrix is

ṡ̂52 i @V̂8,ŝ#2R̂atŝ. ~65!

The matrix

r~a0 ,a1 ,t !5TratF̂~a0 ,a1 ,t ! ~66!

is the density matrix of the laser field and the pump field
the diagonal representation. It is for this matrix that we ha
set out to construct an equation. The matrixp̂ allows for the
correlations between the atom and the lasing and pu
fields. Clearly, Tratp̂50.

Bearing all this in mind, instead of Eq.~61! we derive a
system of equations for the matricesp̂ andr with the den-
sity matrix ŝ entering as a parameter:
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ṙ5~g1D̄11g0D̄0!r1g1S ]

]a1
p321

]

]a1*
p23D

1g0S ]

]a0
p311

]

]a0*
p13D , ~67!

ṗ̂52 i @V̂8,p̂#2R̂atp̂1@g1~D̂12D̄1!

1g0~D̂02D̄0!#ŝr1g1@D̂1p̂2ŝTrat~D̂1p̂ !#

1g0@D̂0p̂2ŝTrat~D̂0p̂ !#. ~68!

Here

D̄15Tr~D̂1ŝ !5
]

]a1
s321

]

]a1*
s23,

D̄05Tr~D̂0ŝ !5
]

]a0
s311

]

]a0*
s13. ~69!

1.3. Steady-state solutions for the matrixŝ. Here we use
what is known as the kinetic approximation, according
which atomic variables vary much faster than the field va
ables, with the result that they reach a steady state for
instantaneous values of the field variables. For this to be t
we must use high-Q optical cavities for the exciting and
excited lasers. This guarantees that the field variables
vary fairly slowly.

Two things can be done in the kinetic approximation
are using here. First, for the matrix elementss ik in Eqs.~67!
and ~68! we can take the steady-state solutions of Eq.~65!.
Second, we can assume that the main temporal behavio
the correlation matrixp̂ is determined solely by the tempor
behavior of the matrixr, so that we are justified in seekin
the adiabatic solution of Eq.~68! by setting the time deriva
tive of p̂ to zero.

Under steady-state conditions, Eq.~65! can be written in
the form of an algebraic equation for the matrix elements
can be solved fairly easily. The explicit expressions for
matrix elements are

s115@12U12U21V21V1U22V2U1#D21,

s225
1

D
@2V11V1U22V2U1#D21,

s335
1

D
@2U11V1U22V2U1#D21,

s1252
gag0 a0*

g2~g21g3!

1

i 1i 0

3FV2~U12V1!1V2~12U21V2!
g21g3

g3
GD21,

~70!
-
ny
e,

ill

of

d
e

s1352
g0a0*

g21g3

1

i 0
FV2~12U12U21V11V2!

2
g3

g2
U1~12U21V2!GD21,

s2352
ga

g3

1

i 1
F2V2~12U12U21V11V2!

1
g3

g2
U2~2U11V1!GD21,

where we have introduced the notation

D5~12U122U2!~12V11V2!

1~U22U1!~11V112V2!, ~71!

U15 ĩ 0

i 12~11 i 0!~g21g3!/g3

11 i 01 i 1
,

~72!

U25 ĩ 1

i 02~11 i 1!g3 /~g21g3!

11 i 01 i 1
,

V152
i 0~11 i 0!~g21g3!/g3

11 i 01 i 1
, V252

i 0i 1

11 i 01 i 1
.

~73!

The dimensionless powers of the pump and laser fields
be written as follows:

i 05
V0

2

g3
2

, i 15
V1

2

g3~g3!
, ĩ 05 i 0

g2

g3
, ĩ 15 i 1

g2

g3
. ~74!

In the inversionless approximation~7!,

U15
i 121

i 111
ĩ 0 , U252

i i ĩ

11 i 1
,

V152
ĩ 0

11 i 1
, V25

i 0i 1

11 i 1
. ~75!

The steady-state solutions for the atomic density ma
in the inversionless approximation can be written in the fo
~4! and ~5!.

1.4. Adiabatic representation of the operatorp̂. Now,
when we have the explicit expressions for the steady-s
density matrix of the atom, the two equations forr and p̂,
~67! and~68!, are fully determined. As mentioned earlier, w
will use Eq. ~68! to derive from it the explicitp̂5p̂ (r)
dependence in the adiabatic approximation.

Assume that the terms on the right-hand side of Eq.~68!
with derivatives with respect to the complex-valued field a
plitudes are small. Now it is possible to set up iteration ser
in powers of these small quantities, i.e., we can write

p̂5p̂01p̂11p̂21•••, ~76!

wherep̂0 obeys the equation

ṗ̂052 i @V̂8,p̂0#2R̂atp̂0 . ~77!

We always have the opportunity to define the initial state
a system consisting of the atom and the field as being st
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tically independent, i.e., we can putp̂50 at t50. Then,
since Eq.~77! is homogeneous,p̂0 is zero at every subse
quent moment and for the first iterationp̂1 we have the
equation

ṗ̂152 i @V̂8,p̂1#2R̂atp̂11g1~D̂12D̄1!ŝr

1g0~D̂02D̄0!ŝr. ~78!

Every subsequent iteration has its own equation.
One must bear in mind the following. Since the iterati

series is set up as a series in powers of derivatives w
respect to the complex-valued field amplitudes, the trun
tion of the series reduces to the problem of establishing h
important the higher-order derivatives are in the formation
the statistical pattern of lasing. It is well known that if we a
dealing with fields that can be called classical, then we
be sure that it is enough to leave only the first iteratio
which corresponds to a basic kinetic equation that conta
derivatives with respect to the complex-valued field amp
tudes of order no higher than the second. On the other h
there is no reason why for nonclassical fields of the s
Poisson or squeezed types we must limit ourselves to
lowest-order derivatives. Actually, we must keep all the d
rivatives, i.e., allow for the compete iteration series~76!.

We write Eq.~78! in terms of the matrix elements an
set the derivatives equal to zero:

ṗ1352g3p132g0a0* ~p332p11!1g1a1* p121S1350,

ṗ1252g2p122g0a0* p322g1a1p131S1250,

ṗ2352~g21g3!p232g1a1* ~p332p22!

1g0a0p211S2350, ~79!

ṗ2252g2p222g0a0~p311p13!1S1150,

ṗ33522g3p331g0a0~p131p31!

1g1~a1p231a1* p32!1S3350.

This must be combined with the condition

p111p221p3350. ~80!

The inhomogeneous terms have the form

S125g1S 2D̄1s121
]

]a1*
s13D

1g0S 2D̄0s121
]

]a0
s32D ,

S1352g1D̄1s131g0S 2D̄0s131
]

]a0
s33D ,

~81!

S2352g1D̄1s231
]

]a1
s332g0D̄0s23,

S1152g1D̄1s111g0D̄0~12s11!,

S225g1D̄1~12s22!2g0D̄0s22,
th
a-
w
f

n
,
s

-
d,
-
e
-

S3352g1D̄1s332g0D̄0s33.

Solving the system of equations~79!, we obtain

p1152@U0~11V112V2!1V0~12U122U2!#D21,

p225@U0~2V11V2!1V0~122U12U2!#D21,

p335@U0~12V11V2!2V0~U22U1!#D21,
~82!

p135l131
g0a0

g21g3

1

i 0
F2U0V2~113V113V2!

1
g3

g2
U0U1~213V2!2V0V2~223U123U2!

1
g3

g2
V0U1~123U2!GD21,

p235l231
ga*

g3

1

i FU0V2~113V113V2!

1
g3

g2
U0U2~123V1!1V0V2~223U123U2!

2
g3

g2
V0U2~123U1!GD21.

HereU1, U2, V1, andV2 are the same coefficients as befor
i.e., they are given by Eqs.~72! and ~73!. The new coeffi-
cients l ik, U0, and V0 are related to the inhomogeneou
termsSik in the initial system of equations and can be e
pressed in terms of theSik as follows:

l125
1

g2

1

11 i 01 i 1

3S S122
g1a1

g3
S132

g0a0

g21g3
S32D ,

~83!

l135
g1a1*

g3
l121

1

g3
S13,

l235
g0a0

g21g3
l211

1

g21g3
S23,

and

U05
1

2g3g1
S331

g1

2g3
~a1l231a1* l32!

1
g0

2g3
~a0l131a0* l31!,

~84!

V052
1

2g2g1
S111

g0

2g2
~a0l131a0* l31!.

Comparing Eqs.~67! and ~15!, we can write the desired op
erator as follows:

Ŝ15
2g1N1

k1
S ]

]a1
p321

]

]a1*
p23D

1
2g0N1

k1
S ]

]a0
p311

]

]a0
p13D . ~85!
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In the inversionless approximation we have

Ŝ15k1

C

4n0

g3/g223ĩ 1

~11 i 1!2~11 ĩ 1!2S ]

]a1
a11

]

]a1*
a1* D 2

1k1C
g3/g212i 1

~11 i 1!2~11 ĩ 1!

]2

]a1]a1*
, ~86!

where

C5
2g1

2ĩ 0

g3k1
~87!

is what is known as the cooperative parameter~the ratio of
the linear gain of the medium to the linear coefficient
losses in the cavity!.

2. Explicit form of the operator Ŝ0

Here we follow the ideas of Refs. 2 and 5, according
which

Ŝ05
h2

2 F2a0
†

→
a0
←

2a0a0
†

→
2a0a0

†

←
2

h1

2
~a0a0

†

→
2a0a0

†

←
!2G

3F11
h1

2
~a0a0

†

→
1a0a0

†

←
!1

h1h2

4
~a0a0

†

→
2a0a0

†

←
!2G21

.

~88!

The arrows under the operators indicate the direction
which the operator acts on the expressions to their rig
including the density matrix. The explicit expressions for t
saturation parametersh1 and h2 (h15h11h2) are unim-
portant.
f

n
t,

After passing to the diagonal representation we obta

Ŝ052
h2

2 F S 11
h1

2 D S ]

]a0
a02

]

]a0*
a0* D 2

1
h1

2 S 11
3g1

2g2
D

3S ]

]a0
a01

]

]a0*
a0* D 2

1

11h1ua0u2G 1

11h1ua0u2

1$•••%. ~89!

The terms$•••% contain the higher-order derivatives wit
respect to the complex-valued amplitudes. In terms of
polar coordinatesu0 andw0 we have

Ŝ052
]

]u0

h2u0

11h1u0
1

]2

]u0
2

h2u0

~11h1u0!2

1
h2

4u0

11h1u0

11h1u0

]2

]w0
2

. ~90!
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Experiments on the indirect~x-ray! irradiation of high-aspect-ratio capsules~with a diameter-to-
thickness ratio'900) filled with DT gas are performed on the Iskra-5 laser facility. It is
shown that all the characteristics measured~neutron yield, ion temperature, shell implosion time,
etc.! are faithfully reproduced in calculations based on the one-dimensional SNDA~spectral
nonequilibrium diffusion of absorption! program for nonequilibrium radiation gas dynamics. The
calculations provide an explanation for the experimentally detected generation of a smaller
number of neutrons in an experiment with a higher measured value for the ion temperature of DT
gas. © 1998 American Institute of Physics.@S1063-7761~98!00612-X#
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1. INTRODUCTION

As the calculations and experiments described in Re
show, the system for the indirect irradiation of targets with
spherical hohlraum employed in experiments in the Iskr
facility permits the achievement of nearly spherically sy
metric compression of the DT fuel within glass microshe
It follows from the calculations that the characteristic val
of the irradiation nonuniformity with consideration of th
angular spread of the laser energy amounts to about
whenD/d.7, whereD andd are the diameter of the hoh
raum and the shell, respectively.

However, experiments with shells of relatively large d
ameter (D/d'223) would be of interest. Although suc
shells would be partially illuminated by laser radiation a
the degree of symmetrization of x radiation with a compa
tively small gap between the hohlraum and the shell wo
be appreciably smaller than in the case ofD/d'7, we can
attempt to achieve nearly spherically symmetric compress
of the DT fuel by employing a shell thickness that is app
ciably smaller than the thickness which is heated during
x-ray pulse. As the experiments in Ref. 2 showed, the hea
thickness of glass in a hohlraum of diameterD52 mm is
Ddefl.5 – 7mm.

Experiments with thin shells of millimeter diameter a
also interesting from the standpoint of developing new me
ods and improving the accuracy of tools for plasma diagn
tics. For example, an increase in the shell implosion ti
permits improvement of the relative accuracy of the deter
nation of the time of neutron generation, which is importa
for verifying several fine points in programs for calculatin
the operation of targets. Two shells of diameter 0.8–0.9 m
with a wall thickness of.1mm were prepared in the P. N
Lebedev Physics Institute of the Russian Academy of S
1081063-7761/98/87(12)/7/$15.00
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ences for performing experiments on the Iskra-5 facility.3

This paper presents the results of two experiments w
these shells, which were performed according to the indir
drive scheme on the Iskra-5 facility.3 In one of them the
diameter of the gold hohlraum wasD52 mm, and in the
other it wasD54 mm. The characteristic irradiation inten
sity of the inner surface of the hohlraum by laser rays diff
in these experiments by a factor roughly equal to 4. Acco
ing to the presently prevailing ideas, the inverse bremsst
lung absorption of laser radiation is the dominant mechan
in the 4-mm hohlraum. In the 2-mm hohlraum the intens
acting on the hohlraum surface isI .(527)31014 W/cm2.
Therefore, the parameterIl2, which characterizes the non
linearity of the interaction of the laser radiation with th
plasma, is fairly high (Il2.1015 W/cm2

•mm2). As a result,
an appreciable portion of the energy from the laser cor
is carried off by fast ions having a velocity of.5
3108 cm/s. As the experiments with a magnesium hohlra
coating showed,4 these ions can impart to the shell an ener
sufficient for the generation of about 109 neutrons during a
single pulse. Therefore, variation of the hohlraum diame
should make it possible to shed additional light on the role
the fast ions.

This paper also includes a theoretical analysis of the
perimental results and provides recommendations for de
oping this area of research.

2. EXPERIMENTAL SETUP, MEASUREMENT METHODS AND
PRINCIPAL RESULTS

2.1. Parameters of the laser radiation

The total energy of the facility at the accelerator exit w
ES'9700 J (̂ Echan&5810 J) in the first experiment an
0 © 1998 American Institute of Physics
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FIG. 1. Form of the laser radiation puls
and integral pulse: a — experiment No. 1,
t0.550.38 ns; b — experiment No. 2
t0.550.37 ns.
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ES'10 060 J (̂Echan&5840 J) in the second experimen
The recorded form of the individual pulses is nearly Gau
ian.

The divergence of the radiation in the channels is cl
to the nominal valueu0.8E,1024 rad. The contrast of the
radiation in all the channels was fairly high:kE>106, kP

>106. As the experience gained during many years of
search indicates, at such a contrast level there is no
excitation of the accelerators and plasma does not form
the inner surface of the target before the arrival of the m
pulse. The accuracy of the transverse aiming at the targ
equal to 630 mm, and the accuracy of the longitudin
matching of the foci of the alignment and high-power rad
tion is 6100 mm. The diameter of the narrow portions of th
laser beams is;100 mm.

The form of the total radiation pulse in all the channe
obtained by integrating the individual pulses with consid
ation of the channel energy and the asynchronous arriva
the pulses at the target is shown in Fig. 1. The figure a
shows an energy buildup curve obtained by integrating
total laser pulse.

2.2. Features of the target design

The target consisted of a thin-walled spherical cop
hohlraum, whose inner surface is coated by a layer of g
with a thickness of;1mm and whose outer surface is coat
by bismuth to a thickness of 0.1–0.3mm. The diameter of
the laser entrance holes was 0.6 mm in the hohlraum w
D52 mm and 0.7 mm in the hohlraum withD54 mm. At
the center there was a glass microsphere with a diamete
-

e
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th

of

0.8–0.9 mm and a wall thickness of about 1mm, which was
filled with a gaseous DT mixture to a pressurePDT

'3.5 atm. The microspheres were made at the P.
Lebedev Physics Institute of the Russian Academy of S
ences, and the hohlraums were made in the All-Russ
Scientific-Research Institute of Experimental Physics.

2.3. Diagnostics of the parameters of the action of laser
radiation on a target

The complex diagnostics instrumentation of the Iskra
facility was described in detail in Ref. 5. The main results
the experiments, which are supplemented by features of
measurement methods where necessary, are described b
The main results of the experiments are listed in Table I

The target images in ordinary x radiation were record
by a set of pinhole cameras: survey cameras for obser
the state of all six laser entrance holes and a pinhole cam
for observing the state of the central microtarget. Figure
presents the x-ray images of the compressed region of
central capsule observed through a laser entrance hole.
seen that in both experiments the x-ray luminescence of
compressed region has an annular form with an intensity
at the center. The diameter of the ring at the luminesce
intensity maximum is 250–260mm in experiment No. 1 and
225–235mm in experiment No. 2. In experiment No. 1 th
distribution of the intensity along the ring perimeter is mar
edly inhomogeneous. In experiment No. 2 the ring has
appreciably smaller width, and the distribution of the inte
sity along the perimeter is more homogeneous.
e
core
TABLE I. Main results of the experiments.

Experiment Dhohl /Dh , Dsh, DRsh, PDT , EL , tgg , tgn , N, TDT,
No. mm mm mm atm J ns ns 109 keV

1 2/0.6 811 0.9 3.5 7300 160.15 0.8360.05 5.5 1
2 4/0.7 907 1.1 3.5 7500 1.4560.05 1.1060.05 0.6 3.2

aNotation: Dhohl /Dh — diameters of the hohlraum and the laser entrance holes;Dsh,DRsh — diameter and
thickness of the glass microsphere;PDT — pressure of DT gas;EL — laser radiation energy introduced into th
interaction chamber;tgg — delay of the onset of the generation of x radiation from the compressed
relative to the onset of the generation of x radiation on the hohlraum wall;tgn — delay of the onset of the
generation of neutrons relative to the onset of the generation of x radiation on the hohlraum wall;N — integral
neutron yield;TDT — temperature of the DT fuel determined by the time-of-flight method.
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FIG. 2. X-ray images of the compressed region: a — experiment No. 1, filter consisting of 10mm of PPK15mm of Ti; b — experiment No. 2, filter consisting
of 10 mm of C6H8Cl4 .
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The implosion time of the shells was determined from
time scan of the x-ray image of the region where the cen
capsule is located in the photon energy rangehn;4 keV on
an x-ray chronograph.6 Figure 3 presents the results of th
procedure in the present experiments. The time scan of
capsule luminescence clearly displays two maxima. One
responds to the x-ray luminescence of the hohlraum, and
other maximum appears as a result of compressing and h
ing the fuel. The time interval between these pulses cha
terizes the compression timetgg , which is listed in Table I.
The values oftgg were obtained by linearly approximatin
the leading edges of the pulses to the point of intersec
with the time axis and calculating the corresponding de
from these points. The significantly discontinuous form
al

he
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he
at-
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f

the leading edge of the pulse accompanying compressio
the fuel in the first experiment leads to an appreciable
crease in the measurement error fortgg . In the second ex-
periment the value oftgg is somewhat larger, in agreeme
with the decrease in the energy supplied to the capsule
result of the increase in the hohlraum diameter.

The integral neutron yield was measured using the b
tery of methods described in Ref. 5. The measured value
the neutron yield in the experiments performed are also lis
in Table I.

Figure 4 presents the result of recording a neutron pu
~time-of-flight method! using a detector positioned at a di
tance of 16.7 m. The figure also presents calculated sig
for an assigned ion temperature. It is seen that the ion t
-
e

FIG. 3. Results of treatment of chrono
grams of the x-ray luminescence of th
central capsule: a — experiment No. 1;
b — experiment No. 2.
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FIG. 4. Numerical plots of oscillograms ob
tained using the time-of-flight method at a dis
tance of 16.7 m for experiments No.1~a! and
No. 2 ~b! ~solid curves! and theoretical signal
calculated with allowance for the transient func
tion of the detector~dashed curves! for the op-
timal ion temperature of DT gas.
o

ra
eu
to

n
ffi
os
th
th
pe
o
a
d
an
c

th

in
s
t

m

en
od
ion
th
nt
o

er
th
r

n
ng
te
he

the
ated
e

rbed
cha-

mp-
ing
the
tion

ith
ser
ap-
6a.
the
ions
face.
the
the

the
the

ce
rah-

e
m-
m

x
ter-

the
perature is higher in experiment No. 2 with a lower neutr
yield.

The delay between the onset of the generation of x
diation and the time of the production of thermonuclear n
tronstgn was determined using a neutron-radiation detec
based on an SPPD11-02p–i–n silicon semiconductor
diode.7 A polyethylene converter was mounted on the fro
surface of the diode to improve the neutron detection e
ciency. The detector was placed in lead shielding and p
tioned at a distance of about 15 cm from the target. If
detector is positioned closer to the target, the rise time of
transient characteristic of the SPPD11-02 diode does not
mit direct measurement of the form of the neutron pulse
its separation from the x-ray pulse. Therefore, the le
shielding of the detector was selected so that any har
radiation would be essentially completely suppressed,
the output signal of a vacuum-tube x-ray diode which dete
x radiation with a photon energy in the vicinity ofhn
;1.5 keV served as the time mark. The signals from
vacuum-tube x-ray diode and thep–i–n diode were recorded
in one ray of an SRG-7 oscillograph. The value oftgn was
determined by subtracting the time delay of the record
schemetschemeand the difference between the times of pa
sage of photons and neutrons over the distance from the
get to the detectortR from the time intervaltgn between the
x-ray and neutron pulses determined from the oscillogra

tgn5tgn2tscheme2tR .

Figure 5 shows the oscillogram recorded in experim
No. 1. As can be seen in Fig. 5, the semiconductor di
detects not only neutron radiation, but also hard x radiat
which partially passed through the detector shielding. In
second experiment the yield of x radiation was appare
reduced so much that it was below the detection thresh
and was not observed on the oscillogram. The amplitude
the neutron pulse was diminished by a factor of 10 in exp
ment No. 2. The recorded values of the delay time of
generation of neutron radiation relative to x radiation we
tgn50.8360.05 ns in experiment No. 1 andtgn51.10
60.05 ns in experiment No. 2.

3. DISCUSSION AND THEORETICAL ANALYSIS OF THE
EXPERIMENTAL RESULTS

3.1. X-irradiation uniformity

Let us begin the discussion with estimates of the nonu
formity of the x irradiation of the central capsule containi
DT gas. The absorption of the laser radiation was calcula
by the Monte Carlo method. The calculation allowed for t
n
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real three-dimensional geometry of the laser beams and
laser entrance holes, as well as the absorption and repe
reflection of laser radiation within the hohlraum cavity of th
target. It was assumed that the laser radiation is abso
according to an inverse bremsstrahlung absorption me
nism with an absorption coefficientkn5k0cos3g (g is the
angle of incidence of the radiation onto the surface! andk0

50.5. The calculations were performed under the assu
tion of constancy of the shape of the reflecting surface dur
the action of the laser pulse and for the idealized case of
absence of any imbalance of the energy of the laser radia
in different channels.

Because of the large relative~to the cavity diameter!
diameter in experiment No. 1, the surface of the capsule w
DT gas was partially in the propagation path of the la
radiation. The distribution of the laser absorption on the c
sule surface obtained in the calculation is shown in Fig.

As can be seen in the figure presented, the bulk of
laser absorption on the capsule surface occurs in reg
where the laser beams were tangent to the capsule sur
The percentage of absorption of the laser radiation by
capsule surface in this experiment was equal to 2.9% of
laser energy introduced into the target cavity~the compara-
tively low percentage of the radiated energy absorbed by
capsule is attributed to the large characteristic values of
angle of incidenceg of the radiation onto the capsule surfa
and, therefore, to the small values of the inverse bremsst
lung absorption coefficient in the calculations!.

Estimates of the nonuniformity of the x irradiation of th
central capsule with DT gas were performed for the geo
etry of the introduction of laser radiation into the hohlrau
corresponding to the experiment. The flux density of the
radiation onto the surface of the hohlraum cavity was de

FIG. 5. Oscillogram of the output of the device for recording the time of
generation of neutron radiation~experiment No. 1!: 1 — reference;2 —
pulse of hard x radiation,3 — neutron pulse.
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FIG. 6. Normalized distributions of laser absorption~a! and x-ray radiation field~b! on the surface of the central capsule.
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mined from the distribution of the absorbed laser energy
the inner surface of the hohlraum on the basis of the ene
balance relations and was written in the form

Sr~u,w!5A1QL~u,w!1A2Q̄L ,

whereQL(u,w) is the absorbed laser radiation intensity a
given point on the inner surface of the target cavity,Q̄L is the
mean absorbed laser radiation intensity, and the coeffici
A1 and A2 are expressed in terms of the albedoa of the x
radiation, the conversion coefficient of the laser radiat
into primary x radiationh, and the relative area of the las
entrance holesb and equal

A150.5~11a!h, A25ah~12b!F0.51
a~120.5b!

12a~12b!G .
The influence of the central capsule on the formation o
radiation on the hohlraum walls was neglected. The deg
of this influence can be estimated by the characteristic va
of the solid angle within which the central capsule can
seen from the hohlraum surface, i.e. by a quan
;(Dsh/Dhohl)

2. The results of the calculation of the nonun
formity of the field of x radiation on the surface of the cent
capsule are presented in Fig. 6b.

The values obtained for the maximum («max5uImax

2Iminu/2Ī ) and rms nonuniformity~as well as the losses o
laser radiation energy in the holes due to repeated inte
reflection! are listed in Table II. This table also presents t
n
gy

ts

n

x
e
e

e
y

l

al

amplitudesg̃ l5Aā lmã lm* of the harmonics with a given or
bital angular momentuml in the expansion of the normalize
distribution Ĩ x5I /uuI uu of the x radiation impinging on the
capsule surface.

3.2. Calculations of target operation

The theoretical analysis was performed using the o
dimensional SNDA~spectral nonequilibrium diffusion of ab
sorption! program for nonequilibrium radiation ga
dynamics.8 The parameters of the targets and the laser pu
assigned in the calculations corresponded to the experime
values.

The following physical processes were taken into a
count in the calculations: the inverse bremsstrahlung abs
tion of laser radiation on the inner surface of the hohlrau
the repeated reflection and escape of laser radiation thro
the entrance holes; the nonequilibrium, nonstationary kin
ics of the ionization of the high-Z plasma in the mean-ion
approximation;9 the generation, absorption, and transmiss
of x radiation ~with allowance for the escape of part of
through the laser entrance holes! in the spectral diffusion
approximation; electron and ion thermal conductivit
electron-ion relaxation; and neutron generation. All the c
culations were performed without allowance for the infl
ence of ‘‘fast’’ ions accelerated in the laser corona on
compression dynamics of the central target, i.e., it was
sorbed

eld
TABLE II. Nonuniformity of the x irradiation of the central capsule.

Experiment
No.

Eh ,
%

Esh,
%

«max,
%

« rms,
%

g̃1 g̃2 g̃3 g̃4 g̃5

1 41 2.9 10 5.0 1.531024 1.231022 3.731022 3.131022 3.431023

2 21 0.028 5.2 2.9 1.431023 1.731022 2.331022 3.631023 1.531023

aNotation: Eh ,Esh — fractions of the laser radiation energy escaping through the entrance holes and ab
by the shell~as percentages of the radiation introduced into the target!; «max — maximum nonuniformity;« rms

— rms nonuniformity;g̃ l — amplitudes of the expansion of the normalized distribution of the x radiation fi
on the surface of the central capsule in spherical harmonics.
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TABLE III. Results of the calculations of target operation.

Experiment Eabs, Tg , Eg , tN , N, TDT ,
No. kJ kabs eV kJ ns dN dmax 109 keV

1 4.62 0.63 195 1.79 0.89~0.85! 30 40 3.8~5.0! 1.5~1.0!

2 5.86 0.78 144 0.74 1.05~1.1! 14 26 0.58~0.50! 2.5~3.0!

aNotation: Eabs — laser radiation energy absorbed within the hohlraum,kabs — absorption coefficient,Tg —
maximum effective temperature of the radiation within the hohlraum,Eg — energy of the x radiation escapin
through the laser entrance holes,tN — time of the generation of the neutron pulse relative to the maximum
the laser pulse,dN — compression ratio of DT gas at the time of generation of the neutron pulse,dmax —
maximum compression ratio. The experimental values oftN ,N, and TDT are also presented in the table
parentheses.
ct
um
th

r
th
ev
n

io
g
th
th
e

e-
e

e
. I
a

er
g
th

It
e
n
I
e
g

ra-
le,
ated
tron

ata
y an
to

r-
of-
se
in
ed
o.
der-
and

the
is

f
or

f the
fi-
are

m
nce
cil-
r

he of
sumed that compression of the glass microtarget was effe
under the action of x radiation generated by the hohlra
walls and the gold plasma moving toward the center of
hohlraum.

The main results of the calculations are presented
Table III. Figure 7 showsR–t diagrams of the motion of the
boundary between the gas and glass, as well as the lase
neutron pulses obtained in the calculations. It is notewor
that neutron generation takes place long before the achi
ment of maximum compression of DT gas in experime
No. 2. Figure 8 shows the calculated distributions of the
temperature of the gas at moments in time correspondin
the generation of half of the neutron yield. It can be seen
the gas temperature is essentially uniform throughout
volume in the calculation of experiment No. 1, while th
distribution for experiment No. 2 is extremely inhomog
neous. An analysis of the results of the calculation show
that in the case of experiment No. 1 a similar temperature
distribution appears at a moment in time close to the mom
of focusing of the first shock wave at the capsule center
this case about 108 neutrons are generated. However, the g
then undergoes final compression, during which the temp
ture at the center decreases. Furthermore, since neutron
eration takes place essentially throughout the volume,
total number of neutrons increases by more than 10 fold.
significant that the gold plasma, which prevents dismemb
ment of the compressed capsule and increases the rete
time of hot DT gas, participates in the final compression.
the calculation for experiment No. 2 the gold plasma do
not manage to reach the capsule, the temperature of the

FIG. 7. CalculatedR–t diagram of the motion of the boundary between t
gas and glass for the laser~1! and neutron~2! pulses in experiments No. 1
~solid curves! and No. 2~dotted curves!.
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drops rapidly, and essentially no additional neutron gene
tion occurs at the time of final compression. As a who
satisfactory agreement is observed between the calcul
and experimental results with respect to the absolute neu
yield, its generation time, and the gas temperature.

It can be concluded on the basis of the calculated d
presented that, despite the decrease in the neutron yield b
order of magnitude in experiment No. 2 in comparison
experiment No. 1~see Table I!, the gas temperature dete
mined from the neutron spectrum recorded by the time-
flight method can be significantly higher. This is becau
neutron generation occurs in a small part of the DT fuel
the second experiment. Thus, the ‘‘contradiction’’ observ
in Table I, where the lower neutron yield in experiment N
2 corresponds to a higher ion temperature, can be un
stood. Such good agreement between the experimental
calculated data is natural for experiment No. 2, in which
mean intensity of the radiation impinging on the hohlraum
I 05EL /pD2t.431013 W/cm2 and, therefore, the role o
the nonlinear effects in the plasma is negligibly small. F
experiment No. 1 we haveI 0.1.631014 W/cm2, and the
intensity ‘‘acting’’ within the cavityI .531014 W/cm2. As
was noted above, under these conditions the influence o
‘‘fast’’ ions interacting with the central target can be signi
cant. Additional experimental and theoretical studies
needed to clarify the questions that have arisen here.

This work was performed with financial support fro
the State Committee of the Russian Federation for Scie
and Technologies in the Iskra-5 Laser Thermonuclear Fa
ity ~Registration No. 01-50!, as well as the Russian Fund fo

FIG. 8. Calculated profiles of the ion temperature in DT gas at the time
the generation of the maximum neutron flux for experiments No. 1~solid
curve! and No. 2~dotted curve!.
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Dusty plasma induced by solar radiation under microgravitational conditions: an
experiment on board the Mir orbiting space station

V. E. Fortov, A. P. Nefedov, O. S. Vaulina,* ) A. M. Lipaev, V. I. Molotkov,
A. A. Samaryan, V. P. Nikitski , A. I. Ivanov, S. F. Savin, A. V. Kalmykov,
A. Ya. Solov’ev, and P. V. Vinogradov
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The dynamics of the formation of ordered structures of macroparticles charged by photoemission
under the action of solar radiation under microgravitational conditions without the use of
electrostatic traps to confine the particles is studied experimentally and theoretically. The working
conditions needed for the formation of structures of charged macroparticles are chosen as a
result of a numerical solution of the problem posed, the particle charges and the interparticle
interaction parameter are determined, and the characteristic times specifying the dynamics
of the formation of an ordered system of macroparticles are calculated. The behavior of an
ensemble of macroparticles under the effect of solar radiation is observed experimentally
on board the Mir space station. An analysis and comparison of the results of the experimental
and theoretical investigations permit drawing a conclusion regarding the possibility of
the existences of extended ordered formations of macroparticles charged by photoemission under
microgravitational conditions. ©1998 American Institute of Physics.@S1063-7761~98!00712-4#
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1. INTRODUCTION

Space research has revealed the importance of dus
dust structures in the formation of stars, planetary syste
and planetary rings, in processes occurring in the upper
ers of the atmosphere~the magnetosphere and ionospher!,
etc.1–3 One of the mechanisms for charging dust partic
under the conditions of outer space in the presence of inte
fluxes of ultraviolet radiation is photoemission. As a result
this process, macroparticles measuring several microns
acquire a positive charge of the order of 1022105 electron
charges.4 On the other hand, under the conditions of a lo
pressure gas discharge, the strong interparticle correla
resulting from the large values of the macroparticle cha
~of the order of 1022105 electron charges! leads to the for-
mation of ordered structures in the arrangement of the m
roscopic particles, which are similar to the structures in
liquid or a solid.5–11 The principal mechanism for chargin
particles immersed in a radio-frequency~rf! or dc discharge
relies on electron and ion fluxes. Because of the higher t
perature and mobility of electrons, the particle charge
negative.

One common feature of this group of experiments is
fact that the ordered structures observed do not have a
boundary, since they are confined by the electric field o
striation or the electrodes in the earth’s gravitational fi
and by the potential well formed by the field of the rf di
charge or the floating potential of the walls of the ga
discharge vessel in the horizontal direction, respectively.
periments involving the observation of ordered structures
positively charged cerium oxide particles in a laminar jet
a weakly ionized thermal plasma are exceptions.11–14
1081063-7761/98/87(12)/11/$15.00
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A plasma with positively charged particles can also fo
as a result of photoemission when particles are irradiated
buffer gas by a flux of photons with an energy exceeding
work function of a photoelectron escaping from their surfa
Under certain conditions~particle size and concentration
wavelength and intensity of the UV radiation, and photoel
tron work function! crystalline structures can appear in su
a system.4,11 The characteristic value of the photoelectr
work function for most substances does not exceed 6
therefore, photons with an energy<12 eV can charge par
ticles without ionizing a buffer gas, such as He or Ar.

Three principal mechanisms can be singled out am
the mechanisms by which dust acquires a positive cha
They are the thermionic emission, photoemission, and s
ondary emission of electrons from the surfaces of dust p
ticles, which, along with charging by electrons, can play
significant role both in the formation of cosmic dust stru
tures and in processes occurring in the upper layers of
atmosphere. The existence of different mechanisms
charging dust in outer space can cause the agglomeration
growth of particles due to the electrostatic attraction of d
particles with opposite charges15,16 or lead to the formation
of plasma-dust structures with a predominant contribution
one of the mechanisms for charging macroparticles un
consideration. The investigation of such structures is pro
ising from the standpoint of both basic science and tech
logical applications. It is noteworthy that the possibility
studying plasma-dust crystals with free boundaries can
realized most fully only under the conditions of weightles
ness or microgravitation.17 The study of the formation of
ordered structures of charged macroparticles under mi
gravitational conditions yields new information, which ca
7 © 1998 American Institute of Physics
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not be obtained under laboratory conditions on earth.
The purpose of performing the space experiment wa

study the possibility of the existence of plasma-dust str
tures in the upper layers of the earth’s atmosphere when
particles are charged by solar radiation as a result of
photoemission of electrons from their surface. The work
conditions needed for the formation of structures of char
macroparticles in the experimental chamber~the type of
buffer gas and its pressure, as well as the concentration,
terial, and size of the particles! were selected as a result of
preliminary numerical analysis of the problem posed;
particle charges induced by solar radiation and the inter
ticle interaction parameter were determined, and the tim
specifying the dynamics of the formation of an ordered s
tem of macroparticles~the charging time, braking time, an
dispersion times of particles in the working chamber and
times for establishing ordered dust structures! under micro-
gravitational conditions without the use of electrostatic tra
to confine the particles were calculated. The calculati
were performed for particles of different materials and si
~1–100 mm! with variation of their concentration and th
pressure of the buffer gas.

Experimental investigations of the behavior of an e
semble of macroparticles charged by solar radiation w
performed under microgravitational conditions on board
Mir space station.

2. FORMATION OF ORDERED STRUCTURES OF
MACROPARTICLES UNDER THE ACTION OF SOLAR
RADIATION

2.1. Photoemission charging of particles

Let us consider macroparticles in a neutral gas be
irradiated by a source, whose emission has an intensity a
spectral composition corresponding to the characteristic
solar radiation with consideration of the spectral transm
sion coefficient of the illuminator, the air layer, and the wi
dow of the working chamber~Fig. 1! with the particles under
investigation.

FIG. 1. Geometric dimensions of the working chamber.
to
-

he
e

g
d

a-

e
r-
s
-

e

s
s
s

-
re
e

g
a

of
-

The conditions for the formation of ordered structures
macroparticles induced by the effects of solar radiation
investigated using particles of cerium oxide (CeO2), par-
ticles of lanthanum boride (LaB6), and spherical particles o
a bronze with a cesium coating. The choice of these part
materials is specified by the efficiency of their photoemiss
charging and low adhesion, so that the particles under inv
tigation would not adhere to one another and would not p
cipitate on the walls of the working chamber. The referen
data on the quantum efficiencyY of the particle materials in
the near-UV and visible regions of the spectrum, the wo
function W for photoemission, and the densitiesr of the
particle materials are listed in Table I, which also indica
the size~radius! r p and initial concentrationnp of the par-
ticles. The initial concentrationnp of the particles is deter-
mined by the condition of transparency of the disperse s
tem to the external photoinducing radiation, on the one ha
and the possibility of achieving the maximum values of t
interparticle interaction parameterG, on the other hand. Tak
ing into account the optical characteristics~the refractive in-
dex and sizes! of the particles investigated, we can estima
the optical densityt of the disperse layer as

t'2pr p
2npH, ~1!

where r p is the particle radius andH is the height of the
vessel with the particles. The interparticle interaction para
eterG can be written as a function of the particle concent
tion np in the form

G5~Ze!2~4pnp/3!1/3/Tg . ~2!

Here l 5(4pnp/3)21/3 is the mean distance between pa
ticles, Z is the particle charge, andTg is the temperature o
the particles, which is equal to the temperature of the bu
gas (.0.03 eV!. Thus, an optical densityt'1, which per-
mits achievement of the maximum values ofG with lowering
of the radiation intensity roughly by a factor ofe'2.78, was
selected as a criterion for selecting the value ofnp . The
initial particle concentration was determined from~1! as

np'1/2pr p
2H. ~3!

The mass of the particle load in the vessel was calcula
from the volume of the vessel~see Fig. 1!, the required con-
centrationnp , and the mass of an individual particle with th
mean radiusr p ~Table I!. The results of experimental inves
tigations of the behavior of CeO2, LaB6, and bronze particles
under low-pressure conditions~0.01–100 Torr! were also
taken into account. More specifically, because of the
glomeration of CeO2 and LaB6 particles and their precipita
tion on the vessel wall, the particle concentration in t
working volume decreases by roughly an order of mag
TABLE I. Values of the radiusr p and the initial concentrationnp of particles with a material of densityr, the quantum yieldY, the work functionW, the
limiting particle chargeZmax ~4!, the interparticle interaction parameterGmax ~2!, and the effective photon flux densityJ ~6! of solar radiation.

Particles r p , mm r, g/cm3 W, eV Y J, photons/cm2 np , 1/cm3 Zmax,e Gmax

CeO2 0.5–1.5 7.3 3 1022 1.3331016 7.03106 7.83102 4.23102

LaB6 1–5 2.6 2 1022 9.1631016 7.23106 4.53103 1.43104

Bronze 25–50 8.2 1.5 1024 1.7231017 5.63103 6.93104 6.53105
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tude. Values ofnp ten times smaller than the table valu
were used to estimate the mean distance between these
ticles (CeO2, LaB6) andGmax ~Table I!. The bronze particles
did not adhere to one another when the vessel was evacu
and the table value of the particle concentration correspo
to the basic theoretical parameternp .

The limiting ~maximum! chargesZmax of the particles
following the photoemission of electrons from their surfa
and the value of the interparticle interaction parameterGmax

can be estimated from the condition of equality between
surface potentialfs and the quantityhnmax2W as

Zmax5~hnmax2W!r p /e, ~4!

wherehnmax is the maximum photon energy, which corr
sponds in our case to a wavelengthlmin.0.3mm and is de-
termined by the transmission functionf tr of the experimental
vessel ~the transmission of the quartz illuminator, the a
layer, and the glass of the working window of the vess!.
The dependence of the approximating transmission func
f tr of the apparatus on the wavelengthl used in the further
calculations is shown in Fig. 2. The values ofZmax obtained
from Eq.~4! and the values ofGmax obtained from Eq.~2! are
listed in Table I. It can easily be seen that the value ofG and
the charge of the particles increase with their size. Howe
the selection of large particles withr p.100mm for perform-
ing the experiments is undesirable, since it requires lowe
the initial particle concentrationnp @see~3!# to values that
are unsuitable for observation.

Let us estimate the value of the charge of the partic
when they are irradiated by a source with a solar spectr
taking into account that the plasma-dust system under c
sideration consists of positively charged macroparticles
photoelectrons emitted by them. The positive potential of
particles is established as a result of the balance betwee
recombination of electrons on a particle surface and the p
toemission electron flux from the particle surface. In the c
of a dilute plasma~with a concentration of neutralsnn

<1014 cm23), in which the mean free pathl e of photoelec-
trons before collisions with neutrals greatly exceeds the p
ticle radiusr p ( l e@r p), the balance equation can be writte
in the following form:4

4neS Te

2pme
D 1/2S 11

efs

Te
D5YJexpS 2

efs

Tpe
D , ~5!

whereme is the electron mass,ne and Te are the electron
concentration in the bulk of the plasma and the electron t
perature,J is the photon flux density,Y is the quantum yield
of photoelectrons, andTpe is their mean energy. It is assume

FIG. 2. Spectral transmission functionf tr(l) of the device.
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here that the efficiency of the absorption of UV radiation
close to unity. The temperatureTpe of the electrons leaving a
particle surface upon photoemission depends on the par
material and lies in the range from 1 to 2 eV in mo
cases.18,19 Assuming that the rate of electron recombinati
on the particles exceeds the rate of thermal energy loss
to collisions with neutrals, we can setTpe.Te .

In order to determine the equilibrium chargeZ
5fsr p /e of the particles under investigation in the workin
chamber and to estimate the dust charging time, we m
calculate the integral numberJ of solar photons that are ca
pable of causing the photoemission of electrons from a p
ticle surface and estimate the concentrationne of electrons
returning to the particle surface. To calculate the photon fl
densityJ, solar radiation was simulated by a black body w
a temperature of 5800 K.19 The calculation was performe
using the formula

J5E
lmin

lmax f trc1l24dl

$exp~c2 /lTc!21%hc
, ~6!

where f tr is the transmission function of the experimen
chamber~Fig. 2!, lmin50.3mm, andlmax, i.e., the red edge
of the photoeffect, is determined by the work functionW for
the particle material. The results of the calculations ofJ for
the particles investigated are presented in Table I.

The concentrationne of electrons returning to the par
ticle surface can be obtained from the solution of the pr
lem of an infinite cylinder uniformly charged throughout i
volume. The distributions of the fieldE(r ) and the potential
f(r ) in such a cylinder are specified by the following rel
tions

E~r !52psr , ~7a!

f~r !5ps~Rcyl
2 2r 2!1fwall , ~7b!

where s5e(Znp2ne)5ene
wall is the space-charge densi

andfwall is the potential of the wall of a cylinder of radiu
Rcyl . The floating potential of the surface of the vessel w
fwall is then determined by the photoelectrons escaping fr
the particles, and the field appearing in the ampul does
allow all the electrons emitted to leave the particle syste
The concentrationne

wall of electrons reaching the ampul wa
can be estimated from the relationTpe.eDf, whereeDf
5efav2efwall is the mean energy lost by electrons in t
electric field of the vessel. According to the mean-val
theorem, from~7b! we have

fav5fwall2psRcyl
2 /3.

The concentrationne of electrons remaining in the volum
under investigation can be written as

ne5Znp2ne
wall.Znp23Tpe/pe2Rcyl

2 . ~8!

An estimate of the value ofne
wall for photoelectrons with a

temperatureTpe5122 eV givesne
wall.53106 cm23 in a

vessel with a radiusRcyl51.5 cm. The values ofZ and G
calculated on the basis of the values ofne

wall andJ obtained
are listed in the first row for each type of particle in Table
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which corresponds to a particle concentrationnp5n0 in the
vessel. It should be noted thatneÞ0 only if the initial par-
ticle concentrationn0 satisfies the condition

n0Zmax,ne
wall .

Otherwise, the space-charge density in formulas~7a! and
~7b! is defined ass5eZmaxn0.

The results of the calculations presented in this sec
allow us to postulate the possibility of the formation
crystal- or liquid-type ordered structures of macropartic
for assigned illumination conditions (hnmax andJ) and mac-
roparticle parameters (W, Y, r p , andn0). However, it should
be noted that the presence of electrons from the exte
plasma or photoelectrons returning to the particle surfa
can significantly lower the chargeZ of the macroparticles
and the value ofG. In the general case the condition fo
transparency of the macroparticle cloud to emitted or ‘‘e
ternal’’ electrons is close to the condition for transparency
the disperse system to the external radiation source cau
photoelectron emission from the particle surfaces.

2.2. Characteristic times specifying the dynamics of the
formation of dust structures

The possibility of observing ordered structures of ma
roparticles induced by solar radiation in an experimen
chamber with finite dimensions~Fig. 1! is determined by the
characteristic times specifying the dynamics of the format
of an ordered system of macroparticles. We shall estim
the charging time, the braking time, the times for establi
ing ordered macroparticle structures, and the dispersion
of particles in the working chamber with a buffer gas at tw
different pressures. Neon was selected as the buffer ga
performing the investigations because of its chemical in
ness toward the material and cesium coating of the partic
its spectral transparency, and its high ionization poten
The choice of the two different buffer gas pressures~0.01
and 40–70 Torr! was dictated by the possibility of observin
the dynamics of the formation of ordered structures for d
ferent particle charge values~see Sec. 2.1!.

The charging timetch of the macroparticles can be de
termined from the time needed for a particle to acquire
chargeZ5Zmax by solving the following differential equa
tion:

TABLE II. Values of the interparticle interaction parameterG and the par-
ticle chargeZp calculated from the balance equation~5! for various values
of the macroparticle concentrationn0.

Particles n0, cm23 Z,e G

106 3 1022

CeO2 105 28 3.031022

104 212 7.5

106 14 1.531021

LaB6 105 131 6.2
104 785 102

103 2672 5.53102

Bronze 103 5090 2.03103

102 50 070 9.03104
n

s

al
s

-
f
ing

-
l

n
te
-
e

for
t-
s,
l.

-

e

dZ

dt
5pr 2H 4neS Te

2pme
D 1/2S 11

efs

Te
D

2YJexpS 2
efs

Tpe
D J . ~9!

The solution of~9! for both ne
wall.53106 cm23 andne.0

when the particles are charged toZ5Zmax givestch,1025 s
under our conditions.

The braking timestbr of macroparticles in a vessel wit
two different values of the pressureP are listed in Table III.
The braking timestbr for all the particles, except the bronz
particles at the ‘‘high’’ pressure, were calculated in the fre
molecule approximation.20 The value oftbr for the bronze
particles atP540 Torr was determined within the Stoke
approximation~the viscosity regime!.21

The dispersion time of particles in a vessel can be
tained from a numerical molecular-dynamics analysis of
dynamics of the particle system. To investigate the variat
of the concentration of charged macroparticles as a func
of time, we solved the equation of motion with and witho
consideration of the thermal~Brownian! motion of the par-
ticles:

md

d2r k

dt2
5(

j
F~r !ur 5urk2r j u

r k2r j

ur k2r j u
2mdn

dr k

dt
1FB .

~10!

Heremd is the mass of a particle, andF(r ) is the interpar-
ticle interaction parameter. For a Coulomb interaction t
quantity can be represented in the form

F~r !5
~eZ!2

r 2
, ~11!

wherer is the distance between two interacting particles.
the our case Debye screening can be neglected, since
system under consideration is not electroneutral, and the
bye radius is greater than the mean distance between

TABLE III. Values of the natural frequencyv0 of charged macroparticles
for an initial concentrationn0, the braking timetbr , the drift times of the
particles to the vessel wall for lowering the initial particle concentrationn0

by factors of 10 (t td1) 100 and (t td2), and the time for establishing short
range ordertstr for various values of the pressureP.

Particles P, Torr n0, cm23 v0, s21 tbr , s t td1, s t td2, s tstr , s

0.01 106 67.7 1.25 0.023 0.061 0.015
CeO2 105 21.4 0.074 0.192 0.047

70 106 67.7 1.831024 3.64 40 0.12
105 27.4 36.4 400 1.21

0.01 106 124.8 1.32 0.013 0.033 0.008
LaB6 105 39.5 0.040 0.110 0.025

70 106 124.8 1.931024 1.01 11.14 0.034
105 39.5 10.1 111.4 0.337

0.01 103 0.778 52 2.00 5.28 1.28
Bronze 102 0.246 6.41 16.71 4.06

40 103 0.778 0.13 38.11 419.1 1.27
102 0.246 381.1 4191 12.7
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FIG. 3. Molecular-dynamics plots of the con
centrationn(t)/n0 ~solid line! as a function of
the time t at the pressuresP540 ~a! and 0.01
Torr ~b! for various values of the initial fre-
quencyv0: 1 — v050.32 s21, n05165 cm23,
Z569 000;2 — v050.53 s21, n05465 cm23,
Z569 000;3 — v050.53 s21, n05165 cm23,
Z5110 400. The smooth lines show approxim
tions based on formulas~14a! ~a! and~14b! ~b!.
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particles. The system of equations~10! and ~11! was solved
for a transverse section of a cylindrical vessel with cons
eration of the absorption of charged macroparticles on
walls under the condition that the particle velocity is equa
zero at the initial moment in time. An analysis of the soluti
of Eqs.~10! and ~11! for the cases of high@n5(tbr)

21@1#
and low (n<1) buffer-gas pressures allowed us to conclu
that the relative variation of the particle concentrati
n(t)/n0 as a function of the timet is determined by the
natural frequencyv0 at t50:

v05A~Ze!2n0

md
, ~12!

wheren05n(t50). The values ofv0 are given in Table III
for various initial concentrations of macroparticles of diffe
ent materials with the chargeZ5Zmax. In addition, it was
found that thermal motion of the particles does not hav
significant influence on their dynamic characteristics~disper-
sion times and correlation functions! at kinetic temperatures
K of the particles up toK510250 eV. Plots ofn/n0 as a
function of time are presented in Figs. 3a and 3b for vario
values ofv0 and bronze particles with the chargeZ5Zmax in
a gas with highP540 Torr,~Fig. 3a! and lowP50.01,~Fig.
3b! pressures.

In order to find an approximation ofn(t)/n0 for different
values of v0, we solved the equation of motion for tw
charged particles:

d2r

dt2
52n

dr

dt
1S Ze

r D 2 1

md
. ~13!

Heren5(tbr)
21 is the friction coefficient. Equation~13! was

solved for the case of high pressures (n@1) in the diffusion
approximation with the left-hand side of the equation eq
to zero. In the case of low pressures (n<1) the friction
coefficient in~13! was set equal to zero (n50). This allowed
us to obtain the following relations for approximatin
n(t)/n0:

n~ t !/n05~113v0
2t/n!21, n@1, ~14a!

n~ t !/n058~11A114v0
2t2!21, n<1. ~14b!

The approximations ofn(t)/n0 found are also presented i
Figs. 3a and 3b for the corresponding values ofv0. The
functions ~14a! and ~14b! permit the determination ofv0

from the results of an experiment in which the macroparti
charge can be obtained for a known concentrationn0 at a
certain moment in timet50. The minimum dispersion time
of particles of different materials with the chargeZ5Zmax
-
e

e

a

s

l

e

was estimated on the basis of the dependences obtained
drift times of the particles to the vessel wall determined fro
formulas~14a! and~14b! for lowering the initial particle con-
centrationn0 by factors of 10 (t td1) and 100 (t td2) are listed
in Table III for various initial conditions.

The time for establishing ordered macroparticle stru
tureststr in a vessel at low and high buffer-gas pressures
be specified on the basis the solution of~10! and~13! by the
following conditions:

tstr@v, n<1, ~15a!

tstr'n/v2, n@1, ~15b!

where v5A(Ze)2n/md is the natural frequency of the
charged particles in the structure. The molecular-dynam
calculations show that the times for establishing short-ra
order correspond totstr}v0 (n<1) and tstr}0.1n/v0

2 (n
@1). These values oftstr are listed in Table III for various
initial concentrations of particles with the chargeZ5Zmax

and buffer-gas pressuresP.
The results of the calculations show that the drift timet td

of the particles to the vessel wall is shorter in all the ca
considered than the timetch for photoemission charging o
the particles and the timetstr for establishing a liquid-type
macroparticle structure. Thus, it can be concluded that sh
range correlation orders of interparticle distances~liquid-type
dust structures! can be observed under microgravitation
condition without the use of electrostatic traps to confine
particles. To illustrate the dynamics of the formation of o
dered macroparticle structures under these conditions, F
4a and 4b present the results of a molecular-dynamics ca
lation of pair-correlation functions for bronze particles with
chargeZmax569 000 in a buffer gas~neon! at different pres-
sures. The dashed lines denote correlation functions co
sponding to the timetstr for the formation of short-range
order. The figure also shows fragments of the spatial c
figuration of the particles in the initial moment in time and
the time t(n0 /n510) for a decrease in the initial particl
concentrationn05165 cm23 by an order of magnitude.

3. EXPERIMENT

3.1. Experimental setup

The experiment was carried out on a setup consisting
the following principal units~Fig. 5!:

1. a working chamber;
2. interchangeable glass ampuls containing particles

lanthanum boride LaB6 ~two ampuls!, bronze with a cesium
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FIG. 4. Fragments of the spatial configuration of th
particles and the pair-correlation functionsg(x) ~where
x5r / l ) for bronze particles withZ569 000 in a buffer
gas with different values of the pressureP at various
moments in timet: a — t50 s; b — P540 Torr, t
5125 s; c —P50.01 Torr,t54.8 s. The dashed lines
show the correlation functions corresponding to t
time tstr for the formation of short-range order.
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FIG. 5. Schematic representation of the experimental setup.
monolayer~two ampuls!, and cerium oxide CeO2 ~two am-
puls! in a buffer gas~neon! at different pressures;

3. radiation source — a 30-mW semiconductor lase
with a working wavelength of 0.67mm;

4. a ‘‘Glisser’’ television system, including a power su
ply, an ordinary CCD camera with an objective lens, a ta
recorder module, and a remote-control panel;

5. supports.
The interchangeable glass ampuls had the form of g

cylinders, one of whose end surfaces was a flat uviol gl
window and was intended for illuminating the particles wi
solar radiation~Fig. 1!. Immediately before the performanc
of an experiment, the required ampul was placed in
clamp of the working-chamber holder with its flat end su
face toward the illuminator. For diagnostics of the ensem
of particles, the ampul was illuminated by a flat laser be
~a ‘‘laser knife;’’ the width of the ‘‘knife’’ was no greater
than 200mm!, and an image was obtained using the CC
camera, whose signal was recorded on magnetic tape.
field of vision of the video camera had the form of a re
angle measuring roughly 8310 mm ~Fig. 1!. The camera
was aimed at the center of the ampul~see Fig. 1!, and the
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FIG. 6. Successive states of the system of bronze particles in the ampul withP150.01 Torr following dynamic disturbance of the system.
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depth of focus for thef stop of 16 chosen was about 10 mm
The experiments were carried out with three values of
working pressure:P150.01 Torr ~for all the types of par-
ticles investigated!, P2540 Torr ~for the bronze particles!,
andP3570 Torr ~for the LaB6 and CeO2 particles!.

3.2. Behavior of a macroparticle substructure under
microgravitational conditions

The first stage of the experiment was confined to obse
ing the behavior of the ensemble of macroparticles place
the working chamber under the action of solar radiation.
the initial state the particles were on the walls of the amp
therefore, the experiment was carried out according to
following scheme: a dynamic disturbance~jolt! of the system
and relaxation to the initial state, i.e., drift to the wall. Th
experiments showed that the investigations can be perfor
only with bronze particles, since the cerium oxide and la
thanum boride particles are incompletely shaken from
walls, rapidly agglomerate, and adhere to the vessel w
darkening the working region. Therefore, the further analy
was performed only for the bronze particles.

Figures 6a–6d show the successive states of the sy
e

v-
in
n
l;
e

ed
-
e
ll,
is

em

of particles in the ampul withP150.01 Torr following dy-
namic disturbance of the system, and Figs. 7a–7d show
state of the system in the ampul withP2540 Torr. Observa-
tions of the motion of the particles showed that the veloc
vectors of the particles are randomly directed in the init
stage and that the particles drift to the walls without a pr
erential direction. Subsequently, a preferential direction u
ally appears, but motion along definite trajectories is d
played more strongly in the vessel with the higher press
~see Fig. 7!. Vibration of the particles on a background of th
overall translational motion was observed in several exp
ments, and the treatment of the particle trajectories reve
periodic variations of the magnitude of the particle veloc
in all the experiments. These variations of the particle vel
ity can be associated with fluctuations of the particle cha
or with the dynamic action of microscopic accelerati
forces arising on board the space station. Variation of
visibility of the particles was observed~one possible cause i
rotation!. One more interesting finding is the formation
agglomerates, in which the number of particles varies fr
three or four to several hundred~Figs. 8a and 8b!. These
agglomerates can depart from the vessel walls in respons
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FIG. 7. Successive states of the system of bronze particles in the ampul withP1540 Torr following dynamic disturbance of the system.
io
he
th

fo
a
th
o

th
im

in

as
pa

le

tio
T
zi

les
s

ret-
ted
he
st

d 9b
a weak dynamic disturbance. The results of the observat
of the behavior of the particles in the vessel with the hig
pressure show that the bulk of the agglomerates form in
volume of the vessel during a period of a few seconds
lowing the dynamic disturbance. The agglomeration of p
ticles in the volume of the vessel may occur because
particles acquire opposite charges in the initial moments
illumination: positive charges are acquired as a result of
emission of photoelectrons, and negative charges are
parted by the fluxes of electrons emitted from neighbor
particles. A similar effect was observed in Ref. 15.

It was concluded that particles are charged on the b
of observations of the changes in the trajectories of the
ticles when they come close to one another~collide! or ap-
proach the wall. It should also be noted that the partic
move very slowly in the vessel withP2540 Torr when the
solar radiation is blocked and that acceleration of the mo
occurs when radiation acts on the ensemble of particles.
charge of the macroparticles can be estimated by analy
their dynamic behavior.
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3.3. Determination of the particle charge

According to observations of the behavior of ensemb
of particles during illumination, the drift time of the particle
to the wall was about 5 s for P150.01 Torr and from 3 to 5
min in the vessel with the buffer-gas pressureP2540 Torr.
This suggests~according to the data in Table III! that the
bronze particles were charged to a level close to the theo
ical valueZmax569 000. The particle charge can be estima
both from the relative variation of the concentration of t
particles and from their trajectories of motion. In the fir
case approximations of the types~14a! and~14b!, which per-
mit the determination ofv0 from experimental plots of the
relative variation of the particle concentrationn(t)/n0, can
be used to determine the particle charge. Figures 9a an
present experimental plots ofn(t)/n0 and the approximating
functions ~14a! and ~14b! with v050.315 s21 which give
the best agreement with experiment both for the case ofP2

540 Torr and for the vessel with the lower pressureP1

50.01 Torr.
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FIG. 8. Formation of macroparticle agglomerates
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The plots ofn(t)/n0 were determined during illumina
tion by solar radiation following a period of holding in th
dark, during which the particles managed to lower the vel
ity acquired from the initial jolt~Figs. 9a and 9b!. In the case
of shaking the vessel while it is exposed to solar radiation
is very difficult to interpret the experimental data~see Fig.
9!, since it is virtually impossible to determine the initi
particle concentrationn0 to the required accuracy. The initia
concentrationn0 was determined in the absence of solar
diation from the number of particles falling in the plane
-

it

-

the laser knife and ranged from 150 to 250 cm23. On the
basis of the values foundn051502250 cm23 and v0

50.315 s21, the particle charge can be specified as

Z5~v0 /e!Amd /n05~6.3860.81!3104.

Thus, the charge obtained corresponds toZmax569 000 to
within 13%.

The second method for determining the particle charg
n
FIG. 9. Experimental plots of the concentratio
n(t)/n0 as a function of the timet in vessels with
pressures equal to 40~a! and 0.01 Torr~b! obtained
at timest@tbr following dynamic disturbance of the
vessel~filled circles! and immediately after agita-
tion of the vessel~unfilled circles!. The solid lines
show the approximations~14a! and ~14b! for the
natural frequencyv050.315 s21.
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based on solution of the equation of motion of a particle i
known electric fieldE(r ):

d2r

dt2
52n

dr

dt
1E

Ze

md
. ~16!

The electric field intensityE can be assigned by Eq.~7! with
consideration of averaging over the radius of the cylinder
E5peZnpRcyl . Here we take into account that the spac
charge density iss5eZnp for Znp,ne

wall ands5ene
wall for

Znp.ne
wall , since the motion of the particles was analyzed

low concentrations (np,102). After determining the veloc-
ity V and the accelerationa of the particles from their trajec
tories of motion, the particle charge can be found from E
~16!:

Z25amd /~e2pnpRcyl!, P150.01 Torr, ~17a!

Z25~V1a!md /~e2tbrpnpRcyl!, P2540 Torr. ~17b!

Table IV presents the characteristic values of the macro
ticle charges, which agree well with the value of the cha
obtained from the variation of the relative particle concent
tion n(t)/n0. It is noteworthy that the slight upward devia
tion of the charge in the low-pressure case can easily
explained, since lighter particles and, accordingly, sma
particles having a smaller charge leave the vessel volu
first under low-viscosity conditions. In the high-viscosi
case the drift time of the particles to the wall should n
depend strongly on their size.

Despite the high particle charges and the large value
the interaction parameterG.104 ~see Table IV!, no strong
correlation between the interparticle distances could be
served. The measured correlation functions exhibit app
ciable deviations for the calculated curves~Fig. 4!. The typi-
cal form of the correlation functions obtained as a result
the treatment of experimental images without illuminati
~the laser knife! and with solar irradiation is shown in Fig
10. The difference between the experimental and calcula

TABLE IV. Results of the determination of the chargeZ of particles from
their trajectories of motion.

No. P, Torr np , cm23 a, m/s2 V, m/s Z

1 101 631024 2.531023 53104

2 0.01 33101 1.231023 631023 105

3 53101 1.631023 1.231022 83104

4 40 33101 1.531024 731025 33104

FIG. 10. Experimental correlation functionsg(r ) obtained as a result of the
treatment of images without illumination~1! and with solar irradiation~2!.
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results can be due to several factors: polydispersity of
particle powder investigated and the formation of agglom
ates, in which the number of particles varies from three
four to several hundred. The latter factor makes a hig
significant contribution to breakdown of the correlation
the interparticle distances.

4. CONCLUSION

The results of observations of the behavior of an e
semble of macroparticles charged by photoemission un
the action of solar radiation under microgravitational con
tions have been presented. The particle charges have
estimated, and it has been established that the particles
charged to the maximum possible levels, i.e., several u
times 104, under the conditions of the experiment. The r
sults of a calculation of the particle charges due to pho
emission correspond to the results of the observations.
particle charges have been estimated by two methods, w
provide good agreement with the calculation: from the t
jectories of motion of the particles and with the use of t
approximations obtained for the variation of the relative p
ticle concentration. The values of the charges and the in
particle interaction parameter obtained demonstrate the
sibility of the formation of ordered crystal- and liquid-typ
macroparticle structures under the conditions studied. I
noteworthy that under the conditions of outer space
charging efficiency of particles with a low photoelectro
work function is higher due to the additional effect of the U
portion of the solar spectrum and that the interparticle int
action parameter consequently increases.

Although the dynamic behavior of the particles~the
variation of the particle concentration in the volume inves
gated! corresponds well to the behavior determined as a
sult of a numerical analysis, the form of the experimenta
observed correlation functions differs strongly from the th
oretical form and attests to the formation of only weak
correlated liquid-type structures. The principal cause of t
difference may be the agglomeration of oppositely charg
particles during charging. Nevertheless, an analysis and c
parison of the results of the experimental and theoretical
vestigations confirm the conclusion that the existence of
tended liquid-type ordered formations of macropartic
charged by solar radiation is possible under micrograv
tional conditions even if there is substantial agglomeration
the particles.

This work was partially supported by the Russian Fu
for for Fundamental Research~Grant No. 98-02-16828!.
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The Landau–de Gennes model for the free energy of a nematic liquid crystal near the phase
transition to the smecticA-phase is used to determine the frequency dependence of the fluctuation
corrections to the Frank elastic constants. It is shown that the interaction of the fluctuations
of the smectic order parameter and the director results in corrections to all the Frank elastic
constants. In the low-frequency limit (v→0), the corrections to the Frank elastic constants
K22 andK33 are the largest, and decrease to zero in the infinite-frequency limit. The correction to
K11 is negative, and vanishes in both limits. The absolute value of the correction toK11 is
the largest at frequencies in the megahertz range. It is shown that in oriented nematics the
interaction of the smectic fluctuations and the director limits deviations of the director
from the direction of preferred orientation, as a result of which relaxation of both inhomogeneous
and homogeneous distortions of the director field can be observed. It is also shown that this
gives rise to a frequency interval in the megahertz range in which shear waves begin to propagate
in the nematic. The propagation speed of these waves is roughly a hundred times smaller
than that of sound and strongly depends on the direction of propagation. ©1998 American
Institute of Physics.@S1063-7761~98!00812-9#
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1. INTRODUCTION

Nematic liquid crystals~NLC! in a state near the phas
transition to the smecticA-phase~the N–A-transition! have
been studied for a long time both experimentally a
theoretically.1–5. De Gennes6 was the first to phenomenolog
cally describe the properties of NLC near theN–A-transition.
In fact, using the expression for the free energy derived
Ref. 6, he explained the critical increase of the Frank ela
constantsK22 and K23 as the state of the liquid crystal ap
proaches theN–A-transition point by the interaction of th
inhomogeneous director field and fluctuations of the sme
order parameter. Later Jahnig and Brochard7 added the miss-
ing factor 1/A2 to the formulas forK22 andK33. These for-
mulas were further refined on the basis of the Landau
Gennes model8 and theNAC-model.9

All the papers just mentioned consider the simplest a
most important case, i.e., determining the static correcti
to the Frank elastic constants. It is well known, however, t
the interaction of hydrodynamic variables~in particular, the
director in a NLC is such a variables! and order paramete
fluctuations lead to frequency dispersion in the coefficie
in the system of equation of motion of the NLC. In the pr
transitional region, the viscosity coefficients change sign
cantly, which causes frequency dispersion in the velocity
an anomalous increase in sound absorption.4. Jahnig and
Brochard7 and McMillan,10 who examined the interaction o
the director field and the field of the order parameter fluct
tions, were the first to predict the anomalous enhancemen
some of the viscosity coefficients, an effect manifested in
anisotropy of the acoustic properties of NLC. Later it w
found that the interactions of the order parameter and
density11,12 and the order parameter and the nonuniform
1091063-7761/98/87(12)/7/$15.00
n
ic

ic

e
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s
t

s
-
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d

-
of
e

e
-

locity field13–15 result in much larger contributions to th
viscosity coefficients. This is reflected in the anomalous
crease in isotropic sound absorption4,16,17 and in the emer-
gence of substantial anisotropy in the velocity dispersion
absorption of sound.11,18. As yet, however, there is no satis
factory quantitative description of the experimental da
there are even discrepancies in the data from different
periments. This is especially true of the anisotropy of aco
tic properties. The frequency dispersion of the Frank ela
constants may be discerned in experiments in which the N
is subjected to a periodic external force. This is true
acoustooptic effects observed in a NLC placed in an exte
field of an acoustic wave, and of Freedericksz optical tran
tions resulting from periodic variations of the intensity of th
incident light.

The aim of the present paper is to use the Landau
Gennes model for the free energy of a NLC near theN–A-
transition point to study some of the aspects of the inter
tion of the director field and the order parameter fluctuatio
In Sec. 2, the frequency dispersion of all the Frank ela
constants is established. Section 3 shows that a relaxa
mechanism for the attenuation of the distortions of the eq
librium director field arises near t heN–A-transitionpoint,
which strongly affects the propagation of shear waves.
nally, in Sec. 4, the possibility of experimentally observin
the results obtained in this paper is discussed.

2. FREQUENCY DISPERSION OF THE FRANK ELASTIC
CONSTANTS

Assuming that the equilibrium orientation of the direct
vectorn0 is fixed by the conditions at the sample boundari
8 © 1998 American Institute of Physics
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which are assumed to be at an infinite distance from
sample volume of interest, we can write the free energy o
deformed NLC as follows:

F5F01FFr , ~1!

whereF0 is the free energy of the undeformed sample, a

FFr 5
1

2 E dr @K11~div n!21K22~n–curln!2

1K33~n3curln!2# ~2!

is the free energy of Frank deformation, with

n~r ,t !5n01dn~r ,t ! ~3!

the local director. Following Refs. 7 and 19, we introduce
molecular fieldhFr that tends to straighten the distorted d
rector fields. In a system of coordinates in which thez axis
coincides with the direction ofn0, the molecular field related
to the Frank energy is7

hx Fr~q,v!52~K11qx
21K22qy

21K33qz
2! dnx~q,v!

1~K222K11!qxqy dny~q,v!, ~4!

where we have used the Fourier expansion

n~r ,t !5
1

AV
(

q
E

2`

` dv

2p
n~q,v!exp~ iq–r2 ivt !. ~5!

In a NLC that is near theN–A-transition point, fluctua-
tions of the smectic order parameterC become
important,1–3,6,7in view of which to the free energy we mus
add a termFC related to the fluctuation-emerging smec
order. In the Landau–de Gennes model,1–3,6,7

F5F01FFr1FC , ~6!

where

FC5E dr FAuCu21
1

2MT
u~¹'2 iqsdn!Cu2

1
1

2MV
u¹ iCu2G , ~7!

¹'5 i
]

]x
1 j

]

]y
, ¹ i5

]

]z
.

The factorA vanishes at the transition temperatureTN2A and
is usually written in the formA5a0(T2TN2A)g, whereg
53/4 if we use the helium analogy org51 in the mean-field
approximation, andgs52p/d, with d the distance betwee
the smectic layers in the low-temperature phase.

Earlier de Gennes,6 Jahnig and Brochard,7 and Andereck
and Patton8 found that the presence in~7! of a term in which
dn is coupled withC gives rise to anomalous addition
terms in the Frank elastic constantsK22 andK33, which were
found in the static case (v50). When smectic order fluctua
tions are present, the molecular field consists of two term7

h5hFr1^hC&. ~8!

where
e
a

d

a

:

hC52
iqs

2MT
~C* ¹'C2C¹'C* !2

qs
2

MT
C* C dn, ~9!

and statistical averaging is over all realizations of the or
parameter fluctuations. In the Fourier representation we h

^hC&5^h~1!&1^h~2!&, ~10!

where

^h~1!~q,v!&5
qs

2MTV
(
q8

E
2`

` dv8

2p
~q'22q'8 !

3^C* ~q8,v8!C~q2q8,v2v8!&, ~11!

^h~2!~q,v!&52
qs

MTAV
(

q8,q9
E

2`

` dv8 dv9

~2p!2

3^C* ~q8,v8!C~q9,v9!

3dn~q2q82q9,v2v82v9!&. ~12!

To calculate the fluctuation contribution to the molecu
field we use Levanyuk’s method,20 which has been repeat
edly used in finding the fluctuation corrections to the visc
ity coefficients near phase transition points in liqu
crystals.15,21,22. In this method, the fluctuations of the smec
order parameterC, which develop in a deformed NLC, ar
described by the Langevin equation

]C

]t
52bFAC2

1

2MT
~¹'2 iqsdn!2C2

1

2MV
¹ i

2C G1 f ,

~13!

where f is a random force. The complex conjugate of E
~13! is the equation forC* . When we retain the interaction
in ~13! to lowest order, only the terms linear indn survive.
In the Fourier representation we have

C~q,v!5G0~q,v!F f ~q,v!1
bqs

2MT AV

3(
q8

E
2`

` dv8

2p
~~2q'2q'8 !–dn~q8v8!!

3C~q2q8,v2v8!G , ~14!

where

G0~q,v!5@2 iv1bx21~q!#21, ~15!

x21~q!5A1
q'

2

2MT
1

qZ
2

2MV
. ~16!

The equation forC* (q,v) can be obtained from Eq.~14! by
replacingC with C* , f with f * , and the plus in front of the
integral part on the right-hand side of Eq.~14! with a minus.
A formal solution of Eq.~14! can be obtained via iteration
in the form of a power series indn. After the second iteration
we have
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C~q,v!5G0~q,v! f ~q,v!1
bqs

2MTAV
(
q8

E
2`

` dv8

2p

3~~2q'2q'8 !–dn~q8,v8!!G0~q,v!

3G0~q2q8,v2v8! f ~q2q8,v2v8!. ~17!

We then substitute the solution~17! and a similar expression
for C* (q,v) into the expressions~11! and~12! for the con-
tributions to the molecular field. Statistical averaging of t
resulting expressions with allowance for the fact that the r
dom forcef is uncorrelated in both space and time yields

^ f ~q,v! f * ~q8,v8!&5
2bkBT~2p!4

V
d~q1q8! d~v1v8!.

~18!

Integration of the delta functions and integration over
frequencies yields

^h~1!~q,v!&5
bkBTqs

2

4~2p!3MT
2

3dq8
~q'22q'8 !~~q'22q'8 !–dn~q,v!!

2 iv1b~x21~q8!1x21~q2q8!!

3~x~q8!1x~q2q8!!, ~19!

^h~2!~q,v!&52
kBTqs

2

~2p!3MT
E dq8

x21~q8!
dn~q,v!. ~20!

In ~19! and ~20! we have replaced the summation over t
wave vectors by integration:

(
q8
→

V

~2p!3 E dq8.

To find the corrections to the Frank elastic constants,
need only retain terms proportional toq2 in the expression
for ^hC&. Omitting the details of the calculations~which can
be found in the Appendix!, we arrive at an expression, whic
in form coincides with~4!, for the fluctuation contribution to
the molecular field̂ hC(q,v)&. We may assume that the in
teraction of the director and the smectic order fluctuatio
gives rise to complex-valued corrections to the Frank ela
constants. Thus,

K11~v!5K11
0 1

kBTqs
2j'

2

24pj i
@F1~ṽ !1 iG1~ṽ !#, ~21!

K22~v!5K22
0 1

kBTqs
2j'

2

24pj i
@11F2~ṽ !1 iG2~ṽ !#, ~22!

K33~v!5K33
0 1

kBTqs
2j i

2

24p
@11F2~ṽ !1 iG2~ṽ !#, ~23!

where Kii
0 ( i 51,2,3) are the ‘‘bare’’ values of the Fran

elastic constants, which ignore the interaction of the direc
and the order parameter fluctuations. Here we used the o
nary notation for the correlation lengths:

j'5~2AMT!21/2, ~24!
-

e

e

s
ic

r
di-

j i5~2AMV!21/2. ~25!

The dependence of the Frank elastic constants on the red
frequencyṽ, where

ṽ5vtC5v
1

2bA
~26!

is determined by the functions

F1~ṽ !5
24

5ṽ3
F2

5

2
ṽ1ṽA2A11ṽ212

1S 1

2
2

3

16
ṽ2DA2A11ṽ222 G , ~27!

G1~ṽ !5
24

5ṽ3
F211

5

4
ṽ21S 1

2
2

3

16
ṽ2D

3A2A11ṽ2122ṽA2A11ṽ222 G , ~28!

F2~ṽ !5
8

5ṽ3
F2

5

2
ṽ1ṽA2A11ṽ212

1S 1

2
1

7

16
ṽ2DA2A11ṽ222 G21, ~29!

G2~ṽ !5
8

5ṽ3
F211S 1

2
1

7

16
ṽ2DA2A11ṽ212

2ṽA2A11ṽ222 G . ~30!

From ~27!–~30! it follows that in thev→0 limit we
have

F1~0!5G1~0!5F2~0!5G2~0!50, ~31!

so that in the static case we arrive at the well-known resul6–9

K11~v50!5K11
0 , ~32!

K22~v50!5K22
0 1

kBTqs
2j'

2

24pj i
, ~33!

K33~v50!5K33
0 1

kBTqs
2j i

24p
. ~34!

At infinite frequency (v→`) the fluctuation corrections dis
appear:

F11 iG1→0, 11F21 iG2→0.

Figures 1 and 2 depictF1, F2, G1, andG2 as functions of the
reduced frequencyṽ, which determine the frequency dispe
sion of the Frank elastic constants. These constants ch
significantly as the reduced frequencyṽ varies in the 1–100
range. For a NLC near theN–A-transition point, this corre-
sponds to frequency variations in the megahertz range
lower frequencies we can use the static corrections to
Frank elastic constants.
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The absence of a correction to the Frank elastic cons
K11 in the static case is a consequence of the invarianc
the free energy~7! with respect to equal rotations of th
director and the perpendicular smectic layers. The freque
dispersion inK11 arises because at frequencies on the or
of the reciprocal relaxation time of the smectic order para
eter, the smectic structure formed by fluctuations has no t
to reorient itself perpendicular to the rapidly changing lo
director, which results, in the dynamics, in a loss of ro
tional invariance of the free energy and to the emergenc
a fluctuation correction toK11.

3. PROPAGATION OF SHEAR WAVES IN ORIENTED
NEMATIC LIQUID CRYSTALS

It can be expected that when the the local director
fairly close to the average direction of preferred orientati
when the direction variation rate is on the order of or exce
the reciprocal relaxation time of the smectic order parame
fluctuation-emerging smectic layers are perpendicular to
average direction of the director, since they have no time
reorient themselves in accordance with the changes in
local director. Under such deformations of the director fie
the free energy~7! does not remain constant even if the d
rector variations are spatially homogeneous. This genera
restoring force, which opposes deviations~including spa-
tially homogeneous deviations! of the director field from the
directionn0. This relaxation mechanism may strongly affe
the natural modes of nematics, particularly the nature
propagation of shear waves at ultrasonic frequencies.

Before estimating the size of this restoring force, w
note that we are dealing with phenomena at temperature
which the fluctuations are relatively weak. More precise
the fluctuation correction to the specific heat,11

FIG. 1.

FIG. 2.
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DCfl5
kBT2MTAMV

4A2 pAA
S ]A

]TD 2

, ~35!

must be small compared to the size of the discontinuity in
specific heat at the transition point,23

DCN2A5
T

2BS ]A

]TD 2

, ~36!

whereB is the coefficient ofuCu4 in the expansion~7!. Thus,
in the mean-field approximation, the required temperat
range is determined by the condition

kB
2T2MT

2MVB2

8p2a0

!
T2TN2A

TN2A
!1. ~37!

As noted in Ref. 24, such a temperature interval does ind
exist, and it widens as the triple point is approached alo
the line ofN–A-transitions.

Let us estimate the restoring force acting on the direc
for rapid small spatially homogeneous deviations of the
rector fromn0. To this end we study the contribution^hC0&,
which does not vanish in theq50 limit, to the molecular
field averaged over fluctuations:

^hC0~q,v!&52
g

t0
dn~q,v!, ~38!

whereg is the rotational viscosity coefficient, andt0 has the
meaning of the relation time of the director with respect
the directionn0:

t0
215

kBTqs
2

~2p!3gMT
S E dq8

x21~q8!

2
2b

MT
E dq8 ~qx8!2

x21~q8!~2 iv12bx21~q8!!
D . ~39!

First we note thatt0
21 is weakly dependent on frequency an

is of the same order at zero and infinite frequencies. For
order-of-magnitude estimate oft0

21 we setv to zero~for the
sake of simplicity! and ignore the difference betweenj i and
j' . Moreover, we note thatt0

21 has no critical temperature
dependence. Equation~39! shows that the Ornstein–Zernik
approximation for the correlation function is insufficient fo
the convergence of the integrals in~39!. Hence, using the
fact that the system has a characteristic dimension, the
tance between the layers in the smectic-A phase, we can
integrate in ~39! to the upper limit qm , assuming that
qm;qs . Then we arrive at an estimate fort0

21:

t0
215

kBTqs
2qm

3p2g
S 12

1

11qm
2 j'

2 D . ~40!

We see that near theN–A-transitionpoint the relaxation time
of homogeneous distortions of the director field becomes
nite. Using the values of parameters typical of liqu
crystals,15,25–27
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j';231028FT2TN2A

TN2A
G20.5

cm,

tC;1029FT2TN2A

TN2A
G21

s, qm;qs;23107 cm,

we find thatt0;102(718) s. For the director variation rat
the following condition must hold:v>tC

21 .
Let us find the changes in the spectrum of the sh

modes of NLC. If byv t andnt we denote, respectively, th
velocity and director components that lie in thexy plane and
are normal to the wave vectorq, and byv l andnl the com-
ponents the lie in thexy plane and the plane containing th
vectorsn0 and q, then the equations forv t and nt separate
from the other equations in the system of the equation
motion for the NLC.28. We write these two equations in th
linear approximation with allowance for the term~38!:

Fv1 i S Ktq
2

g
1

1

t0
D Gnt1

l11

2
qzv t50, ~41!

S v1 i
h tq

2

r D v t1
~l11!g

2r S Ktq
2

g
1

1

t0
Dqznt50. ~42!

Here we have used the same notation for the material c
stants of the NLC as in Refs. 28 and 29, andKt andh t are
given by the following relationships:

Kt5K22

q'
2

q2
1K33

qz
2

q2
, ~43!

h t5h1

q'
2

q2
1

h3

2

qz
2

q2
. ~44!

We examine the case where the molecular field is ma
determined by the relaxation term, i.e.,

1

t0
@

Ktq
2

g
. ~45!

Using the values of parameters typical of nematic liqu
crystals, Kt;1026 dyn, g;~0.121! P, and t0;(1028

21027) s, we arrive at an estimate for the inhomogene
wavelength:l@231025 cm.

Equating to zero the determinant of the system of E
~41! and ~42!, we arrive at an equation for the natural fr
quencies:

v21 i S 1

t0
1

h tq
2

r Dv2
1

t0
S h tq

2

r
1

~l11!2gqz
2

4r D 50. ~46!

We see that if

1

t0
'

h tq
2

r
, ~47!

i.e., l;1024 cm, the solution of the dispersion equation~46!
takes the form

v1,256ctq2 i
1

t0
, ~48!

where
r

f

n-

ly

y

s.

ct5A g

rt0

l11

2
ucosuu, ~49!

with u the angle between the direction of propagation of
shear wave,q, and the vectorn0. Combining~48! and ~49!,
we arrive at an estimate for speed and attenuation consta
the first pair of shear waves:ct;33103 cm/s and 1/t0

;107 s21 For a wavelengthl;2pAh tt0 /r;1024 cm, a
shear wave can propagate in a NLC with moderate rotatio
viscosity (g;0.1 P), which corresponds to 1/t0;107 s21,
since the wave’s amplitude changes after one period b
factor of exp(2l/ctt0)'0.7.

From the equations for the componentsvz ,v l , andnl we
can easily obtain a dispersion equation for another pair
shear modes if the vibrations are transverse, orqzvz1q'v l

50. The equation is

v21 i S 1

t0
1

h lq
2

r Dv2
1

t0
S h lq

2

r
1

L l
2gq2

r D 50, ~50!

where

h l5~h11h222h41h5!
qz

2q'
2

q4
1

h3

2

~qz
22q'

2 !2

q4
, ~51!

L l5
l11

2

qz
2

q2
1

12l

2

q'
2

q2
. ~52!

This implies that if

1

t0
'

h lq
2

r
, ~53!

we can solve the dispersion equation corresponding t
propagating shear wave:

v3,456clq2 i
1

t0
, ~54!

where

cl5A g

rt0

l cos 2u11

2
. ~55!

The propagation speedsct and cl of the shear waves
strongly depend on the direction of propagation, and
l51, i.e., for nematic liquid crystals consisting of rod
shaped molecules, they are almost the same. The s
modes that become propagating modes near theN–A-
transition point are precursors, so to speak, of second so
existing in smecticsA.

4. CONCLUSION

In conclusion, let us discuss the possibility of expe
mentally observing the phenomena we have just discus
Usually the geometry of experiments conducted to detect
acoustooptic effect is such that optical transmission depe
on the Frank elastic constantK33 ~see Ref. 4!. Equation~23!
implies that near theN–A-transition point,K33 strongly de-
pends on the ultrasonic frequency, and by varying this f
quency one can detect the related variations in optical tra
mission and in the dimensions of the dark and bright ba
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or rings. As follows from Eq.~21!, the Frank elastic constan
K11 has the most interesting frequency dependence. At
and high frequencies,K11 does not depend on how close th
system is to the phase transition point, but at ultrasonic
quencies an appreciable decrease inK11 should be observed
Unfortunately, no experimental data sensitive to variation
K11 at ultrasonic frequencies are available.

As for the shear waves near theN–A-transition point,
their speed is almost ten times smaller than that of sec
sound in the smecticA-phase. Here transverse waves w
deflections perpendicular to the plane withn0 andq can also
propagate in the nematic phase. Note that according to~47!
and~53! these waves propagate only when their waveleng
lie within a fairly narrow range. In the smecticA-phase such
waves are purely damped waves. The frequencies of th
waves fall in the megahertz range, so that, because in
~39! we ignore all frequency dependence, formulas~49! and
~55! for the speeds of the shear waves can be used only
making estimates. Exact allowance for the frequency dep
dence in~39!, which results in the same qualitative concl
sions, gives rise to extremely complicated expressio
which are omitted from this paper.
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APPENDIX

In Eq. ~19! for ^h(1)(q,v)& we leave only the terms tha
contain factors;q2. If we denote their contribution to the
averaged molecular field bŷdhC&, then

^dhC&5
bkBTqs

2

MT
2~2p!3 E dq8

q'8 ~q'8 –dn~q,v!!

@2 iv12bx21~q8!#x21~q8!

3H 2S x~q8!

2
1b@2 iv12bx21~q8!#21D

3S q'
2

2MT
1

qz
2

2MV
D 12x2~q8!Fq'–q'8

2MT
1

qzqz8

2MV
G2J .

~A1!

Changing the integration variables,

q'8

A2MTA
5k' ,

qz8

A2MVA
5kz , ~A2!

we obtain

^dhC&5
kBTqs

2

~2p!3
A2MV

A H 2S q'
2

2MT
1

qz
2

2MV
D

3E dk
k'~ l'–dn~q,v!!

~k2112 i ṽ !~k211!

3S 1

k2112 i ṽ
1

1

k211
D

w

-

n

d

s

se
q.

or
n-

s,

.

1E dk
k'~k'–dn~q,v!!

~k2112 i ṽ !~k211!3

3F2~q'•k'!2

MT
1

2~qzkz!
2

MV
G J . ~A3!

This yields the following expression for thex-component of
the fluctuation contribution to the molecular field:

^dhCx~q,v!&52
kBTqs

2

p2
A2MV

A

3F S I 1~ṽ !1I 2~ṽ !

12MT
2

I 3~ṽ !

5MT
D ~qx

21qy
2!

1S I 1~ṽ !1I 2~ṽ !

12MT
2

I 3~ṽ !

15MV
D qz

2G dnx~q,v!

1
kBTqs

2

p2
A2MV

A

2I 3~ṽ !

15MT
qxqy dny~q,v!,

~A4!

where the following notation has been introduced:

I 1~ṽ !5E
0

` k4 dk

~k2112 i ṽ !~k211!2

5
p

2ṽ2
@11ṽH1~ṽ !2H2~ṽ !#

1 i
p

2ṽ2 FH1~ṽ !1ṽH2~ṽ !2
3

2
ṽ G , ~A5!

I 2~ṽ !5E
0

` k4 dk

~k2112 i ṽ !2~k211!

5
p

2ṽ2 F211
1

2
ṽH1~ṽ !1H2~ṽ !G

1 i
p

2ṽ2 F2H1~ṽ !1
1

2
ṽH2~ṽ !G , ~A6!

I 3~ṽ !5E
0

` k6 dk

~k2112 i ṽ !~k211!3

5
p

2ṽ3 F5

2
ṽ2~12ṽ2!H1~ṽ !22ṽH2~ṽ !G

1 i
p

2ṽ3 F12
15

8
ṽ212ṽH1~ṽ !

2~12ṽ2!H2~ṽ !G , ~A7!

H1~ṽ !5
1

A2
AA11ṽ221 , ~A8!
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H2~ṽ !5
1

A2
AA11ṽ211 , ~A9!

and the reduced frequency frequencyṽ is determined by Eq.
~26!. Comparing~A4! with ~4!, we find the contributions
~21!–~23!.
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The temperature dependence of the surface tensiong(T) is treated theoretically and
experimentally. The theoretical model based on the Gibbs thermodynamics of a one-component
fluid relates]g/]T to the surface excess entropy density2DS. All specific surface
effects, namely ordering, capillary waves, and double layer influence the surface entropy, which
in turn governs the sign and the magnitude of]g/]T. Experimental data collected at a
free Hg surface in the temperature range from 0 °C to 30 °C show that]g/]T is negative.
© 1998 American Institute of Physics.@S1063-7761~98!00912-3#
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1. INTRODUCTION

The temperature dependence of the surface tensio
liquids is very important in applications such as Marang
convection and crystal growth. However, little is know
about the specific surface forces influencing this depende
in liquid metals.

Our previous work1 was concerned with the surface te
sion of mercury as a function of temperature, which w
studied using quasielastic light scattering from capilla
waves.2 Although the experimental data show a decrease
surface tension withT, the theoretical explanation of this fac
seems to be non trivial. The recent discovery of surface
ering in liquid gallium and mercury indicates highly order
metal structure perpendicular to the surface which is abo
few atomic diameters thick.3,4 This ordering can drastically
influence the entropy density profile in the surface zone,
ducing the entropy density at the surface compared to
entropy density of the bulk. If this were the case then
surface excess entropyDS defined by

DS5E
2`

`

dz@S~z!2Sbu~z!# ~1!

would be negative.1 Hereu(z)50 for z.0 andu(z)51 for
z<0; z50 denotes the surface position, and the integrat
is performed from the liquid bulk (z52`) to a vapor phase
(z5`). Insofar as the surface tension derivative of a o
component liquid is related toDS by5,6

DS52]g/]T, ~2!

the temperature dependence is expected to be an incre
function ofT, as demonstrated at surfaces of normal alka
over a certainT range.7 However, the experimental data co
lected at a Hg-vapor interface contradict this expectation
order to reconcile experiment and theory, we suggested
a liquid metal surface is a two-component system compris
quasi-free surface electrons and positive ions. In this c
]g/]T is not given by Eq.~2! but depends on the chemic
potential of electrons as well.1 However, the ionic and elec
tronic profiles of any complicated shape should be appro
1101063-7761/98/87(12)/5/$15.00
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mated by the same right-angled profile in order to prese
the electrical neutrality of metal as a whole. Thus, the tw
component model is inapplicable to a free metal surfa
whose excess entropy should be evaluated in the framew
of a one-component model. It will be shown that the effect
surface ordering is not a single contribution on the surfa
entropy. Other specific surface effects opposing layering t
to increase the entropy of the interface.

2. THEORETICAL ANALYSIS

As noted in Ref. 6, the interface thickness of van-d
Waals liquids is determined by thermal fluctuations, whi
take the form of thermally excited capillary waves. Th
r.m.s. amplitude of these waves is usually slightly grea
than an atomic diameter.2 One would thus expect the inter
face thickness at zero temperature to vanish, and the de
profile to be a discontinuous step function dropping from
bulk densityrb to zero. In such a situation it is natural t
suppose that the location of the Gibbs surface coincides w
the step profile at 0 K. The real surface profile varies withT
in such a way that the surface excess density given by

Gs5E
2`

`

dz@r~z!2u~z!rb# ~3!

remains zero for allT.
Consider now a liquid metal comprising two comp

nents: free electrons and positive ions. Free electrons be
as a quantum medium: even at zero temperature their en
is nonzero and is usually written in terms of the Fermi e
ergy Ef : E5EfN, whereN is the number of electrons. It is
instructive to consider the profiles of both components, el
tronic and ionic, atT50. Due to nonzero wavelength th
electronic density profile has a nonzero width, which leads
some redistribution of electrons between bulk and the s
face. In other words, some electrons are ejected from
bulk and concentrate on the vapor side of the interface. T
charge separation leads to a surface double layer with
electric fieldE5Qs /e0 , whereQs is the surface charge den
sity ande0 is the dielectric constant. The existence of suc
5 © 1998 American Institute of Physics
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1106 JETP 87 (6), December 1998 V. Kolevzon
double layer, suggested by Frenkel,8 leads to significant
changes in the surface interactions. We consider first the
ditions that must be satisfied even in the presence of ch
separation. The first is electrical neutrality: the total elec
charge of a metal must be zero,

E
2`

`

dz@r i~z!2re~z!#50, ~4!

wherer i andre are the ionic and electronic densities.
The second quantity that must be taken into accoun

the surface excess density. In general, this quantity is a r
tive one; it depends on the choice of the Gibbs surface. If
surface coincides with the step ionic profile, the surface
cess mass density of electrons can be written via Eq.~3!:

Ge5E
2`

`

dz@re~z!2u~z!rb#.

From a comparison with Eq.~4! it is clear thatGe50 in our
choice of Gibbs surface.

We concentrate first on changes in the electronic den
with T dictated by the surface concentration of electrons
the double layer. This concentration is temperature dep
dent, although this dependence can be different from
temperature dependence of the bulk electron concentra
This means that the area under the tail on the vapor side~to
the left of the Gibbs surface! would vary withT ~see Fig. 1!.
If we anticipate that the positive ions do not follow the
changes, then the ionic profile will have a shorter tail bu
higher amplitude in order to satisfy Eq.~4!. However, an
ionic density profile of any complicated shape is appro
mated by a step function that drops fromrb to zero at some
z. If this step function deviates from the step function th
approximates the electronic distribution, electrical neutra
of the metal as a whole will be violated. Although the ele
tronic and ionic profiles do not necessarily coincide, they c
be approximated by the same right-angled profile as
Gibbs surface in Fig. 1. We have shown that the surf
excess density of a metal surface should be zero accordin
Eqs.~4! and ~3!.

FIG. 1. Schematic variations of the electron density~solid line! and positive
ionic jellium represented as a step function which coincides with the G
surface, denoted byG. Friedel oscillations of small amplitude are shown
the electron density profile. Surface double layer comprises a negative
trode formed by the area to the left to the step function~labeled withQ2)
and a positive electrode formed by the area to the right ofG labeled
with Q1 .
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Unfortunately, no theory describing the surface tens
of liquid metals is well established. Numerical simulations
the electronic and ionic density profiles9 do not provide clear
insight into the different forces acting in the surface zone.
the author’s knowledge, only one paper treats this prob
analytically.10 Due to its importance for the present conte
we repeat the main results of this paper.

The electronic densityre at a metal surface varies upo
an ionic jellium that approximates the real profile of the ion
density. Following the ideas of Kirkwood and Buff-Bakke
~see Ref. 6 for example!, the surface tension of any liquid
can be expressed via the tensor of anisotropic stressesP i

ÞP') and results from the density gradient in the surfa
zone:

g5E
2`

`

dz~P'2P i!, ~5!

where integration is taken from2` to ` in order to take into
account the effect of free electrons on the vapor side of
interface. The forces acting at the surface at 0 K are nothing
more than the quantum pressure of the electron gas and
trostatic force stemming from the potential drop in t
double layer. A detailed analysis done by Samojlovich e
sures that the long-range electrostatic force2re¹f leads to
Maxwellian elastic stressesPzz52Pxx5e0E2/2 that de-
form the ionic fluid. This deformation is impossible for th
rigid ionic continuum suggested by the jellium model. The
fore, some external pressureP5e0E2/2 must be introduced
in order to provide the equilibrium of the whole system. Th
isotropic pressure acting on the topmost layer makes the
there over-compressed compared to the ions in the b
These considerations confirm some increase of the ionic d
sity in the surface layer, which was demonstrated recently
the surface of liquid gallium and mercury. Unfortunate
this conclusion was not drawn by Samojlovich who used
simple monotonic profile to calculate the surface tensi
However, his analysis helps to understand surface layer
which is closely related to electrostatic pressure due t
surface double layer.

The temperature behavior of the surface tension o
liquid metal is a most intriguing question. While the tensi
changes only by a few percent over 100 K, the tempera
derivative]g/]T is extremely sensitive to the density profil
Here Eq. ~2! is considered to be a basic thermodynam
equation relating the temperature derivative]g/]T to the
surface excess entropy. It is plausible to suppose that
surface excess entropy comprises different parts:6 the first is
responsible for surface ordering, and the second is pertin
to all fluids, due to capillary waves. The third part is dete
mined by the electric field in the double layer.

We first concentrate on the orientational part. The rec
discovery of surface layering in liquid gallium and mercu
shows that surface atoms are more ordered than bulk at
~along the surface normal!.3,4 Hence the orientational part o
the entropy in the surface zone might be less than that pa
the bulk entropy if the surface atoms exhibit long-range
der in the surface plane. Only order along the surface nor
was reported at the Hg surface; in-plane surface order has
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1107JETP 87 (6), December 1998 V. Kolevzon
been confirmed experimentally.3,4 Therefore we cannot mak
any definitive predictions about the orientational part of
entropy in the surface zone.

As we already noted, the surface excess entropy sh
split into different parts; the orientational part describing t
effect of surface layering remains beyond our simplified
proach. The other surface effect that can be treated quan
tively is the effect of capillary waves. Following Frenkel
ideas, the surface free energy due to thermal motion in
form of capillary waves is given by8

Fs5Fs02nskBT ln
kBT

\ṽc
, ~6!

wherens is the number of atoms per unit area,Fs0 is the
surface free energy at 0 K, and\ is Planck’s constant;v̄ is
the mean frequency of capillary waves, defined as

ṽc5
1

ns
E

0

qmax
2pqdqv~q!.

Using the usual thermodynamic relationS52]F/]T, we
find the part of the surface entropy associated with capill
waves8

Scap5nskB ln
kBT

\ṽc
. ~7!

The surface excess entropy density is given by the differe
between the densities at the surfaceSs and in the bulk
Sb : DS.@S(z)2Sb#dz. The part of the bulk entropy asso
ciated with thermal motion is defined by the number
modes of sound waves~or phonons! propagating in the bulk
at anyTÞ0:

Sb5nbkB ln
kBT

\v̄p
,

wherev̄p is the mean frequency of bulk phonons.5 Combin-
ing the last two equations, we obtain for the surface exc
entropy

DS5nskB ln
v̄p

v̄c
. ~8!

We see thatDS is governed by the ratio of two mean fre
quencies surface and bulk.

This theory can be applied only to relatively long surfa
waves whose frequencies are much less than the invers
laxation timet0 typical of each liquid.8 If the frequency of
capillary waves is such thatv>1/t0 , then vibrations in the
liquid propagate as in a solid body. Hence, capillary wa
should be replaced by Rayleigh surface waves which pro
gate at the surface of a liquid or solid body with a veloc
us50.9AG/r, whereG is the shear modulus andr is the
density. The high-frequency part~with v>1/t) makes the
main contribution to the spectrum of surface waves.8 There-
fore, the question of the number of modes at the liquid s
face reduces to a calculation of these modes at a solid
face. The situation is complicated by the influence of surf
waves on the bulk modes.8 A thorough analysis by Frenke
shows that the surface excess entropy is
e
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DSs5
3

4 S 3p

2 D 1/3 kBns

~ul /ut!
2@~21AG/Y!2/3#2/3

, ~9!

whereY is Young’s modulus andul andut are the velocities
of longitudinal and transverse sound waves, respectiv
The surface tension derivative evaluated using this mode
negative and is in good agreement with the tabulated]g/]T
for mercury.

The second mechanism contributing to the surface
cess entropy is the electric field in the surface double lay
The impact of this field on the surface free energy is given
Fs}e0E2dz. However, this term appears in the free surfa
energy with a negative sign due to the specific distribution
electric stresses in the double layer. As we discussed ab
the effect of electric fields is expressed via the Maxw
stress tensorSi j with components2Szz5Sxx5e0E2/2. The
change in the surface free energy due to the electric field8

F5E
0

`

dz~Szz2Sxx!52E
0

`

dze0E2. ~10!

It is clear that the surface excess entropy should have a
stemming from electrostatic energy that is specific solely
the surface zone and is zero in the bulk metal. The stand
expressionS52]F/]T yields for the entropy

DSel5e0E2
]dz

]T
, ~11!

where the derivative is taken at constant surface chargeQs .
This electric part of the surface excess entropy is positive
the thickness of the surface zone increases withT. To the
author’s knowledge, no analytical predictions exist about
temperature dependence of the intrinsic length scale for
surface electrostatic interactions in liquid metals. Theref
the amplitude of capillary waves will be used as an appro
mate width of the interface. The r.m.s. value of the interfa
thickness can be found from the theory of capillary wave2

dz5A kBT

2pg
ln

qmin

qmax
. ~12!

The upper cutoff of capillary waves can be estimated
terms of a molecular sizea: qmax51/a. The minimum wave-
number is usually related to the capillary length:l c

5Ag/(rg). Bearing this in mind, the part of the surfac
excess entropy due to the double layer can be written

DS5
1

2
e0S f

dzD
2A kB

2pgT
ln

l c

1/a
. ~13!

Simple estimates based on the valuesdz;1 Å and f
;1 V, e0510211Q2/(Nm2), l c;1 mm yield

DS51024Aln~1023/10210!50.4 mN/~m•K!.

Note that Eq. ~13! describes a nonlinear dependence
DS(T) and consequently of]g/]T(T). It should be stressed
that near 0 K the interface thickness in Eq.~11! cannot be
given by the r.m.s. amplitude of capillary waves but is eq
to the wavelength of quasi-free surface electrons posses
the Fermi energy. Our Eq.~13! does not contain a term
}(kBT/Ef)

2 typical of theT-dependence of the energy of
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1108 JETP 87 (6), December 1998 V. Kolevzon
free electron fluid. This is possibly due to our phenome
logical approach to the electric field of the double layer.

These estimates are based on the assumption that c
lary waves survive up to the upper cutoff ofq, i.e., on an
atomic scale. From the discussion above we know tha
higher frequencies liquid surfaces are similar to solid on
so capillary waves must be replaced by Rayleigh wa
propagating along the surface without dispersion. The s
face elastic energy per unit area associated with this mod

Fs5E
0

`

dz
1

2
G~¹su!2, ~14!

whereG is the elastic~or shear modulus!, u is the displace-
ment, and¹s is the differential operator in the surface plan
Then the squared wave amplitude in theq-domain can be
written analogously to that of capillary waves,2

^xq&
25

kBT

AGsq
2 , ~15!

whereA is the surface area. In order to calculate the r.m
displacement of the surface using Eq.~12! one should re-
placeg with the shear modulusGs whose magnitude can b
estimated using data on the bulk modulus:

Gs'Gbdz51011310285103 dyn/cm.

The surface excess entropy density of the Hg surface, ca
lated using Eqs.~15! and ~11!, is 0.7 times lower thanDS
estimated from Eq.~12!.

3. EXPERIMENTAL METHODS

A liquid mercury surface was prepared by distillation
vacuum ~about 1024 Torr) from a batch of 10 ml Hg
~99.998%, Merck!. The quartz glass distillation apparatu
consisted of a compartment filled with Hg in the open air a
a condenser~water cooled! connected by a U-tube to a stain
less steel capillary mounted in the wall of the working cha
ber. The chamber had a vacuum flange and an optical w
dow for laser access. Mercury dropped through the capil
to the working chamber and formed a layer about 2 m
deep. The working trough was rectangular with dimensio
of 60360 mm2, and was machined from stainless steel. Pr
to the experiment, the working trough and capillary we
cleaned with chromic acid and carefully rinsed in doub
distilled water. Distillation was carried out at 200 °C, a
about 2 hours were necessary to complete the continu
layer. While no efforts were made to achieve wetting, the
surface was relatively flat, as confirmed by the minimal
vergence of a reflected beam. Heating or cooling was car
out from below through a copper plate. This plate was hea
with a resistive heater or cooled using liquid nitrogen. T
temperature was measured with a thermocouple glued to
thin bottom of the working chamber.

Our light scattering technique is described in det
elsewhere.2,11,12In brief, a beam from a 5 mW He–Nelaser
(TEM00, l5632 nm) fell on the liquid surface. Small-ang
scattered light was optically mixed~on a photodetector! with
a portion of the original beam, providing all the necess
conditions for optical heterodyning. The output of an av
-
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lanche photodiode was modulated at the propagation
quency of a capillary wave with the selected wavenumbeq.
The spectral representation of the signal was recorded in
frequency domain with a spectrum analyzer. The whole
paratus was placed on an optical table, vibration isolat
being provided by four pressurized air cylinders in the le

Capillary waves, present on all liquid surfaces up to t
critical point, scatter light mainly at small angles about t
reflected beam. The spectrum of the scattered light is
power spectrum of capillary waves, which is approximate
Lorentzian.2 The data were fitted with a theoretical functio
that incorporates the effects of instrumental broadening.13,14

The latter arises from illumination of the detector by lig
scattered by more than one wave-vectorq on the surface.
The spreaddq in the wave numbers gives a correspondi
broadeningDv in the spectrum. For the Gaussian beam
instrumental function is also a Gaussian.13,14 The convolu-
tion of an ideal Lorentzian and the Gaussian instrumen
function of widthb yields14

P~v!5E
2`

` ~G/b!exp@2~v2v8!2/b2#

G21~v82v0!2 dv8. ~16!

This integral can be evaluated in terms of the complemen
error function of the complex argument:13,15

S~v!5A ReH expF2S iG

b
1

v2v0

b D 2G
3erfcF2 i S iG

b
1

v2v0

b D G J 1B, ~17!

where A is the scaling amplitude andB the background.
Thus, five properties were extracted from the fit of expe
mental spectra: frequencyv0 , damping constantG, instru-
mental width b, amplitude A, and backgroundB. In the
present context we concentrate only on peak frequenciesv0 .

4. RESULTS

The temperature behavior of peak frequenciesv0 of cap-
illary waves at the free Hg surface is shown in Fig. 2. To fi
order, the roots of the dispersion relation describing
propagation of a capillary wave with a particular wavenu
ber q are2

v05Ag0q3/r, ~18!

FIG. 2. Temperature variations of peak frequencies of capillary wave
wave numberq5619 cm21 at the free surface of mercury. The errors inv0

are less than the size of the data points. The solid line is the best-fit solu
in the form of Eq.~20!.
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G52hq2/r. ~19!

whereg0 , h, andr are the surface tension, bulk viscosit
and density, respectively. Equation~18! serves as a good
basis for evaluation of the tension. The data in Fig. 2 are
by assuming a linear temperature dependence of the su
tension. g05C1(T2T0)1C2 , where T0 is the melting
point:

v0~T!5A@C1~T2T0!1C2#q3/r. ~20!

The best-fit estimate of the slopeC1 of the temperature de
pendence is:dg/dT5C1520.2760.07 mN/~m•K!. The
best estimate ofC2 corresponding to the tension at the me
ing point ~239 °C! is C2552667 mN/m, which is slightly
greater than the tension~497 mN/m! extrapolated to the
melting point using the tabulated slopedg/dT5
20.2 mN/~m•K!.16,17

The light scattering experiment does not directly yie
the surface tension; only the peak frequency is directly m
surable. In order to obtain additional information on the s
of ]g/]T, the following experiment was carried out. A tem
perature gradient was imposed along the bottom of our c
In this case a liquid metal flow~usually called thermocapil
lary convection! driven by the gradient of the surface tensi
is expected. The surface tension gradient is indirectly rela
to the liquid velocityvx via the boundary condition at th
free surface, which for the tangential stress is:18

]g

]T
¹T5h

]vx

]z
. ~21!

Thermocapillary convection usually couples to buoyan
driven convection. However, thermocapillary flow domina
buoyancy convection for a 2-mm deep Hg layer~see Ref. 1!.
The direction of flow on the liquid surface is expected to
from hot to cold if the temperature derivative of the tensi
is negative. In the opposite case, the surface flow should
directed toward the hot end. The flow was made visible
means of light scattered from the beam footprint on the s
face. We observed the surface flow always to be direc
from hot to cold in the middle of the trough, with a chara
teristic velocity of a few mm/s, which ensures a decreas
dependenceg(T).

5. CONCLUSIONS

Surface light scattering from a free mercury surface
hibits the temperature-dependent behaviorv(T) that corre-
t
ce

a-
n

ll.

d

-
s

e

be
y
r-
d

g

-

sponds to a decrease in surface tension upon heating.
phenomenon clearly indicates that the surface excess ent
is positive, as it should be in a one-component fluid. T
present theoretical treatment ensures that a liquid metal
face is a one-component substance, despite its compri
two components: positive ions and delocalized free el
trons. The surface excess entropyDS splits into three parts,
describing surface layering, capillary waves, and a surf
double layer. Since the capillary waves contribution is p
portional to kBT, it is expected that this effect is smalle
near the melting point. Since surface layering is most p
nounced there,DS might become negative in someT-range.
Unfortunately, it is not possible to estimate the contributi
of surface layering toDS in the framework of our simple
model. However, we hope that surface light scattering is s
sitive enough to detect a possible change in the tempera
dependence of the surface tension.
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Formation of singularities on the surface of a liquid metal in a strong electric field
N. M. Zubarev* )

Electrophysics Institute, Ural Branch of the Russian Academy of Sciences, 620049 Ekaterinburg, Russia
~Submitted 13 June 1998!
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The nonlinear dynamics of the free surface of an ideal conducting liquid in a strong external
electric field is studied. It is established that the equations of motion for such a liquid can be solved
in the approximation in which the surface deviates from a plane by small angles. This
makes it possible to show that on an initially smooth surface for almost any initial conditions
points with an infinite curvature corresponding to branch points of the root type can
form in a finite time. © 1998 American Institute of Physics.@S1063-7761~98!01012-9#
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1. INTRODUCTION

A flat surface of a conducting liquid placed in a stro
external electric field is known1–3 to become unstable if the
field strength E exceeds a critical valueEc

258pAgar ,
whereg is the acceleration of free fall,a is the surface ten-
sion, andr is the density of the medium. The interaction
the electric field and the charges induced by this field on
surface of the liquid causes surface perturbations to g
rapidly and regions of substantial curvature to form in a
nite time.4,5. The result may be an increase in the field ene
density at the surface, initialization of emission process
and, finally, vacuum breakdown.6. Moreover, there are indi
cations that the liquid phase plays an important role in
initial stages of explosive electron emission.7. All this means
that one must build a meaningful theoretical model of
nonlinear stages in the development of an instability
model that can be used to describe the formation of a sin
lar profile of the surface of the medium~a liquid metal in
applications!.

The present paper studies the nonlinear dynamics o
electrohydrodynamic instability in the limit of a strong ele
tric field, E@Ec , when both surface tension and gravity c
be ignored. The interest in this limit is due, in particular,
the recent discovery of systems with anomalously low cr
cal fields,Ec;1 kV cm21 ~Ref. 8!. The nonlinear stages in
the development of an instability are studied by perturbat
techniques that use series expansions in a small param
the angle of the slope of the surface. Of course, the introd
tion of such a small parameter makes it impossible to
scribe the formation~observed in experiments! of strong sin-
gularities, with corresponding slope angles of order un
Nevertheless, using the model adopted in this paper, we
show that for almost any initial conditions at the surface
the conducting liquid, it takes only a finite time for poin
with infinite curvature to form on the surface. Thus, even
the weakly nonlinear stages in the development of a non
earity there is the tendency for a singular profile of the liqu
surface to form.

The plan of the paper is as follows. In Sec. 2 we der
the main equations of motion, which describe the evolut
of the free surface of an ideal conducting liquid in a stro
1111063-7761/98/87(12)/6/$15.00
e
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external electric field. In Sec. 3 we use the approximation
small angles characterizing the slope of the surface to bui
nonlinear model of the development of an electrohydro
namic instability. Section 4 is devoted to a study of the d
namics of one-dimensional surface perturbations. Integra
of the model equations shows that it takes only a finite ti
for weak singularities of the root type to form in the syste
i.e., singular points at which the curvature of the surface
infinite.

Mathematically, the formation of singularities can be e
plained by the violation of the analyticity of the comple
velocity potential due to the movement of singularities,
branch points, to the boundary. On the whole, such beha
is similar to that of the velocity potential of an ideal liquid i
the absence of external forces.9–11. In Sec. 5 we use the
example of the evolution of single perturbations to show t
the formation of singularities occurs before the small-an
condition is violated because of the development of a lin
instability ~the branch point of the root type agrees with t
small-angle approximation!. In Sec. 6 we study the behavio
of the boundary of a liquid metal under the assumption t
self-similarity is retained in a small neighborhood of a s
gularity in the crossover from one-dimensional perturbatio
of the surface to arbitrary perturbations. Finally, in Sec. 7
discuss the role that branch points of the root type play in
evolution of the system.

2. INITIAL EQUATIONS

Consider the motion of a conducting liquid that occup
the region2`,z<h(x,y,t) and is subjected to a stron
external electric fieldE. We assume that this liquid is idea
and its motion is vortex-free. Then the potentialF of the
liquid velocity is determined by the time-dependent Be
noulli equation

F t1
~¹F!2

2
1

p

r
5F~ t !,

wherep is the pressure andF is a function of time. More-
over, for potential flow of an incompressible fluid we ha
DF50. The equations of motion must be augmented by
kinematic condition at the free surface,
0 © 1998 American Institute of Physics
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h t5@Fz2¹h–¹F#uz5h ,

by the condition at infinity,

¹Fuz→2`→0,

and the condition imposed on the pressure at the conduc
vacuum boundary,3

@8pp1~¹w!2#uz5h50,

wherew is the potential of the electric field.
The electric potential in the absence of space charge

described by the Laplace equationDw50 together with the
conditions that everywhere on the surface of the condu
the potential be the same,wuz5h50, and that the field be
uniform at infinity,wuz→`→2Ez.

Note that these equations of motion have a Hamilton
structure and the functionsh(x,y,t) and c(x,y,t)5Fuz5h

are canonically conjugate:12,13

]c

]t
52

dH

dh
,

]h

]t
5

dH

dc
,

where the Hamiltonian

H5E
z<h

~¹F!2

2
d3r 2E

z>h

~¹w!2

8pr
d3r

coincides, to within a constant, with the total energy of t
system.

3. THE SMALL-ANGLE APPROXIMATION

Using Green’s formulas, we can write the Hamiltoni
in the form of a surface integral:

H5E
s
Fc

2

]F

]n
1

E2h

8pr

]w̃

]n
G ds,

wherew̃5(w1Ez)/E is the perturbation of the scalar pote
tial, ds is the surface area element, and]/]n is the normal
derivative at the surfaces.

From now on we assumeu¹hu!1, which corresponds to
small surface-slope angles. This allows expanding the n
mal derivatives in powers series of the canonical variab
Then for the Hamiltonian we have

H5E c

2
~ T̂1k̂T̂1

21c2¹h–T̂1¹T̂1
21c! d2r

2E E2h

8pr
~ T̂2k̂T̂2

21h1¹h–T̂2¹T̂2
21h! d2r .

Herek̂ is the two-dimensional integral operator with a kern
whose Fourier transform is equal to the absolute value of
wave vector:

k̂ f 52
1

2p E
2`

` E
2`

` f ~x8,y8! dx8 dy8

@~x82x!21~y82y!2#3/2
.

The nonlinear operatorsT̂6 defined as

T̂65 (
n50

`
~6h!nk̂n

n!
r–

is

or

n

r-
s.

l
e

act as shift operators~i.e., f uz5h5T̂f uz50) for harmonic
functions that decay asz→7`.

If we limit ourselves to second- and third-order term
and introduce scaling

t→
t~4pr!1/2

E
, c→

cE

~4pr!1/2
, H→

HE2

4pr
,

we arrive at an expression for the Hamiltonian:

H5
1

2E @c k̂c2h k̂h1h~~¹c!2

2~ k̂c!21~¹h!22~ k̂h!2!# d2r . ~1!

The equations of motion corresponding to this Hamilton
are

gt1 k̂g5
1

2
@~ k̂ f !22~¹ f !21~ k̂g!22~¹g!2#

1 k̂@~ f 2g!k̂ f #1¹•@~ f 2g!¹ f #, ~2!

f t2 k̂ f 5
1

2
@~ k̂ f !22~¹ f !21~ k̂g!22~¹ k̂g!2#

1 k̂@~g2 f !k̂g#1¹•@~g2 f !¹g#, ~3!

where we have changed from the variablesh and c to the
normal variablesf andg:

f 5
c1h

2
, g5

c2h

2
.

In the linear approximation, Eq.~2! describes the relax
ation of g to zero with a characteristic times 1/uku. In this
case in the right-hand sides of Eqs.~2! and ~3! we can put
g50, which means we are examining the perturbatio
buildup branch with allowance for a quadratic nonlineari
This leads us to the following system of equations:

gt1 k̂g5 1
2~ k̂ f !22 1

2~¹ f !21 k̂~ f k̂ f !1¹•~ f ¹ f !, ~4!

f t2 k̂ f 5 1
2~ k̂ f !22 1

2~¹ f !2. ~5!

Thus, we have shown that studying the dynamics of p
turbations of the surface of a conducting medium in a stro
electric field in the small-angle approximation amounts
studying the system of equations~4! and~5!. What is impor-
tant about this system is that the nonlinear equation~5! does
not contain the functiong and that Eq.~4! is linear ing and
can easily be solved:

g5
1

2p E
0

tE
2`

` E
2`

` G~x8,y8,t8!~ t2t8! dx8 dy8 dt8

@~x82x!21~y82y!21~ t82t !2#3/2
,

~6!

G~x,y,t !5
1

2
~ k̂ f !22

1

2
~¹ f !21 k̂~ f k̂ f !1¹•~ f ¹ f !, ~7!

where we assumed thatgu t5050.
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4. FORMATION OF A BRANCH POINT OF THE ROOT TYPE

In the case of one-dimensional perturbations of the s
face ~we ignore the dependence of all the quantities ony),
the integral operatork̂ can be expressed in terms of the H
bert operatorĤ:

k̂52
]

]x
Ĥ, Ĥ f 5

1

p E
2`

`

/
f ~x8!

x82x
dx8.

Then the model equations~4! and ~5! can written

gt2Ĥgx5 1
2~Ĥ f x!

22 1
2~ f x!

21Ĥ~ f Ĥ f x!x1~ f f x!x , ~8!

f t1Ĥ f x5 1
2~Ĥ f x!

22 1
2~ f x!

2. ~9!

For further discussions it is convenient to introduce
function that is analytic in the upper half-plane of the co
plex variablex:

f5 P̂f , x5 P̂g,

whereP̂5(12 iĤ )/2. Since applying the Hilbert operator t
a function that is analytic in the upper half-plane amounts
multiplying that function by the unit imaginary number, Eq
~8! and ~9! take the form

Re~f t1 ifx1fx
2!50,

Re~x t2 ixx1fx
222P̂~ffx* !x!50.

Thus, the integro-differential equations~8! and ~9! can be
studied simply by analyzing the inhomogeneous linear eq
tion

x t2 ixx52fx
212P̂~ffx* !x ~10!

and ~separately! the nonlinear partial differential equation

f t1 ifx52fx
2 . ~11!

For the sake of convenience we introduce a new fu
tion, v5fx . In terms of this function, Eq.~11! becomes

v t1 ivx522vvx .

Note that this equation coincides with the one proposed
Zhdanov and Trubnikov,14,15who used it to describe the non
linear stages in the development of tangential discontinui
in hydrodynamics. More than that, if we replacex by x1 i t ,
we arrive at the equation derived in Refs. 9–11 as a resu
a discussion of the nonlinear dynamics of a free surface
ideal liquid in the absence of external forces, where it
scribes the temporal evolution of the complex-valued vel
ity. The solution of this first-order partial differential equ
tion can be found by using the method of characteristics

v5Q~x8!, ~12!

x5x81 i t 12Q~x8!t, ~13!

where the functionQ is determined by the initial condition
Q(x)5vu t50.

Let us show, by analogy with Refs. 9–11, that the
relations describe~if we require thatv be analytic! the for-
mation of a singularity in a finite time. The problem of find
r-

-

o

a-

-

y

s

of
of
-
-

e

ing the explicit solution reduces to analyzing the mapx
→x8 specified by Eq.~13!. Generally, this map ceases to b
one-to-one at points where

]x

]x8
5112Qx8t50. ~14!

This relationship~14! specifies a pathx85x8(t) in the com-
plex x8 plane. Then the motion of the branch point of th
function v is given by

x~ t !5x8~ t !1 i t 12Q~x8~ t !!t.

At the timet0 when the branch point reaches the real axis
analyticity of v is violated and the solutions of Eq.~9! be-
come singular.

Let us examine the behavior of the solutions near a s
gularity. Expanding~12! and~13! in a small neighborhood o
the pointt5t0, x5x05x(t0), x85x085x8(t0), in the leading
order we get

v5q02
dx8

2t0
, dx5 idt12q0dt1q9t0~dx8!2,

where q05Q(x08), q95Qx8x8(x08), dx5x2x0, dx85x8
2x08 , anddt5t2t0.

Excludingdx8 from these expressions, we obtain

v5q02F dx2 idt22q0dt

4q9t0
3 G 2

. ~15!

The derivative of this expression with respect tox is

fxx[vx52@16q9t0
32~dx2 idt22q0dt !#21/2, ~16!

which shows thatfxx behaves in a self-similar manner (dx
;dt) and becomes infinite asdt→0.

As for the complex-valued functionx, the equation that
determines its temporal dynamics~Eq. ~10!! can be inte-
grated by the method of characteristics~see Eqs.~6! and~7!!.
Taking the initial condition in the formxu t5050 yields

x5E
0

t

D~x1 i t 2 i t 8,t8! dt8, D~x,t !52fx
212P̂~ffx* !x .

Inserting~15! into this expression, we see than near the s
gularity the derivativexxx can be expressed in terms offxx :

xxx5
q0* 2q0

q01 i
fxx .

This means that the analyticity ofxxx is violated at timet
5t0.

How does the surface of the liquid metal behave at
time when the singularities develop in the solutions of E
~10! and ~11!? Allowing for the fact thath5 f 2g, we find
that the surface curvature

K5hxx~11hx
2!23/2

is specified, to within a quadratic nonlinearity, by the expr
sion

K'hxx52 Re~fxx2xxx!.
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Substituting the expressions forfxx and xxx found earlier,
we find that in a small neighborhood of the singular poin

K'2 ReF12
q0* 2q0

q01 i Gfxx . ~17!

Sincefxx is given by~16!, we have

Kux5x0
}udtu21/2, Ku t5t0

}udxu21/2,

i.e., it takes a finite time for a singularity of root type~branch
point! to form at the surface, and the curvature of the surf
of the liquid at this point is infinite.

To conclude this section we note that since we havec
5 f 1g, near the singularitya relationship holds for th
complex-valued potential of the liquid flow,C[2P̂c :

Cxx52~fxx1xxx!'2
q0* 1 i

q01 i
fxx ,

i.e., the first derivative of the complex-valued velocity al
exhibits singular behavior asdt→0. This means that, as i
Refs. 9–11, the formation of singularities can be interpre
as the result of violation of the analyticity of the comple
valued potential due to the movement of the singularities
the potential to the boundary.

5. EVOLUTION OF A SINGLE PERTURBATION

We use a simple example to show that at the time w
a singularity in the solutions of Eqs.~8! and~9! develops the
applicability conditions for our model are met.

We take the initial perturbation in the form

f u t5052«amk̂m21 ln~x21a2!, ~18!

wherem is a positive integer, and the parametersa and «
take positive valuesa.0 and «.0. This situation corre-
sponds to a one-dimensional single perturbation of the
face symmetric with respect to pointx50, at which the sur-
face curvature is negative. The characteristic slope angle
the surface are determined by the parameter«, which we
assume small.

Note that in the linear approximation Eq.~8! becomes

f t1Ĥ f x50.

Its solution with the initial condition~18! is

f ~x,t !52«amk̂m21 ln~x21~a2t !2!,

i.e., within the linear model the perturbation grows witho
limit and becomes infinite at the timet5a, which of course
violates the applicability conditions for this model.

Will introducing nonlinearity into model permit a singu
larity to develop in the solution before the conditionuhxu
'u f xu!1 breaks down?~The branch-point nature of this sin
gularity agrees with the condition that the angles be sma!
To answer this question, we will examine the evolution
the perturbation~18! according to the nonlinear equation~9!.

The symmetry of~18! implies that the singularity forms
at point x50. Then from~13! and ~14! it follows that the
time t0 at which the singularity develops can be found
solving the following equations simultaneously:
e

d

f

n

r-

of

t

.
f

x081 i t 012Q~x08!t050, 112Qx8~x08!t050,

where the functionQ corresponding to~18! has a pole of
orderm at the pointx852 ia:

Q~x8!5 i«~m21!! S ia

x81 ia
D m

.

Expanding in a power series in the small parameter«, we
obtain to leading order the following:

t0'aF12
m11

m
~2«m! !1/~m11!G ,

x08'2 ia@12~2«m! !1/~m11!#.

Since in the linear approximation the singularity is formed
time t5a, the above expression fort0 implies that the non-
linearity accelerates the formation of the singularity~but if
«,0 holds, the nonlinearity delays the onset of the insta
ity!.

Plugging the above expression forx08 into the expression
for Q and its second derivativeQx8x8 , we obtain

q9'2
i ~m11!

2a2
~2«m! !21/~m11!,

q0'
i

2m
~2«m! !1/~m11!.

Thus, for perturbations of the form~18! the parameterq9 is
finite. This means that the dynamics of surface perturbati
near a singular point is described fairly accurately by E
~15!–~17!. As for the parameterq0, the smallness of« im-
plies uq0u!1. This is an important result. The importa
point is that this parameter, as~12! and ~15! imply, deter-
mines the characteristic angles of slope of the surface by
moment of singularity formation. Then for the derivativehx

at the time of collapse the following estimate holds:

uhxu;«1/~m11!!1,

i.e., the characteristic angles remain small, even though
increased by a factor of«2m/(m11). In this case there is no
enough time for the small-angle condition to be violated a
result of the development of a linear instability, and the p
posed model~Eqs. ~8! and ~9! is closed in the sense that
the initial perturbation meets all the conditions needed
the model to be valid, this property is retained throughout
entire evolution until the time of collapse,t0.

We now discuss the behavior of a perturbation of t
electric field at the conducting surface,

dE~x,t ![2E2
]w

]n U
z5h

near the singularity. Clearly, in the linear approximation t
field perturbation is specified by the formula

dE'2EĤf x52E Im~v !.

Substitutingv of Eq. ~15! in this expression, we find that a
the singular point,

dEudx5dt50'2E Im~q0!.
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Since the parameterq0 is small, the perturbation of the elec
tric field at the time of singularity formation remain muc
weaker than the external field~both dEx anddEt are singu-
lar!.

6. SELF-SIMILAR SOLUTIONS IN THE GENERAL CASE

In Sec. 5 we found thatuq0u!1 holds in the small-angle
approximation. This allows us to ignore the dependence
this parameter in Eqs.~16! and ~17!. Then, if q9Þ0, the
dynamics of the surface curvature in the one-dimensio
case is given by the expression

K'2Re@4q9t0
3~dx2 idt !#21/2. ~19!

In particular, for a perturbation that is symmetric with abo
the pointx5x0 we have

K'2
1

A8t0
3uq9u

F2dt1Adx21dt2

dx21dt2 G 1/2

.

Here the initial conditions determine only the constant fac
Thus, the behavior of the system near a singular point is
universal nature.

Let us take the particular caseq950. Suppose, for in-
stance, that

]2Q

]x82U
x85x

08

5•••5
]n21Q

]x8n21U
x85x

08

50,

qn[
]nQ

]x8nU
x85x

08

Þ0,

wheren.2. Then, expanding~13! in a power series indx8
up to thenth power, in the leading order we get

K'2
1

nt0
ReS n!

2t0qn
D 1/n

~dx2 idt !1/n21. ~20!

The formulas~19! and ~20! show that for an arbitrary
one-dimensional perturbation of the surface satisfying
conditionuhxu!1 the curvature near near the singularity b
haves self-similarly:

K'
1

udtup
hS dx

udtu D , ~21!

whereh is an unknown function, and the exponent is giv
by the expression

p5 ~n21!/n , ~22!

with n a positive integer.
Note that ~19! and ~20! are the exact solutions of th

linear integro-differential equation

Kt1ĤKx50,

which describes the evolution of the surface curvature in
linear approximation, as follows from~9! with allowance for
the fact thatK5 f xx holds in the leading order. For an arb
trary exponentp, Eq. ~21! specifies the class of self-simila
solutions of this equation. This means that, on the one ha
n

al

t

r.
a

e
-

e

d,

the dynamics of the surface near a singularity is described
the self-similar solutions of the linearized equations of t
model and, on the other, that the presence of a nonlinea
leads to a situation in which of all the possible self-simi
solutions only those with rational values ofp specified by the
condition ~22! are realized~from general considerations
follows thatp51/2).

It is therefore natural to assume that in the tw
dimensional case, as in the one-dimensional, the solution
a small neighborhood of the singularity are self-similar:

K'
1

udtup
hS dx

udtu
,

dy

udtu D , ~23!

wherep satisfies the condition~22!. A characteristic feature
of the weak-nonlinearity approximation in our problem
that the specific form of the dependence of all quantities
the self-similar variables can be treated using the equati

Kt5 k̂K, ~24!

whose linearity makes it possible to effectively study t
formation of two-dimensional singularities at the surface o
conducting medium. Note that this statement is valid ifp
,1, which, as condition~22! shows, is met in our case in
natural manner. The point is that atp51 an expression of
the form ~23! corresponds to the symmetries of the initi
nonlinear equations of motion. This means that near a sin
larity the contribution of a nonlinearity is comparable to th
of the linear terms, and the analysis of the behavior of
surface lies outside the scope of this paper.

Substituting ~23! in ~24!, we arrive at the following
integro-differential equation for the unknown functionh:

jhj1zhz1ph5 k̂~j,z!h,

wherej5dx/udtu, and z5dy/udtu. Since the profile of the
surface begin to form at the periphery and only then is pro
gated to the pointdx5dy50, at the time of collapse the
curvature of the surface in a small neighborhood of the s
gular point is determined by the asymptotic solutions of t
equation asj21z2→`. As can easily be shown, these sol
tions are described by the partial differential equation

jhj1zhz1ph50,

whose general solution is

h5@j21z2#2p/2F~z/j!,

whereF an unknown function. Plugging this expression in
~23! and introducing polar coordinates,

dx5r cosb, dy5r sinb,

we arrive at the following formula for the curvature of th
surface near the singular point:

Ku t5t0
'

F~ tanb!

r p
.

We see that we are again dealing with a branch point of
root type.
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7. CONCLUSION

Our analysis of the evolution of the boundary of a co
ducting liquid in a strong electric field within the small-ang
approximation has shown that for almost any initial con
tions on an initially smooth surface the presence of a non
earity gives rise to points at which the curvature of the s
face becomes infinite. These points correspond to bra
points of the root type. However, the presence of such
gularities does not ensure a significant concentration of
electric field near the surface of the conductor and, hen
cannot by itself lead to vacuum breakdown. In this case
may assume that the main role of these branch points in
general evolution of the system is, in time, to generate str
ger singularities capable of substantially influencing
emission from liquid metals; in particular, capable of ens
ing the conditions needed for the initiation of explosive ele
tron emission. Among such singularities are, for instan
discontinuities in the first derivative of the surface profi
which were observed in experiments.5,7. Note that a theoret-
ical study of such singularities lies outside the scope of
small-angle approximation and requires allowing for surfa
tension. Indeed, the applicability of the model adopted in
present paper is limited to the scalesudxu@ l , where the pa-
rameterl is the characteristic length on which capillary e
fects become important. This parameter, on dimensio
grounds, is determined by the ratio of surface tension to
electric-field energy density:l}a/E2. The stabilizing effect
of the surface pressure means that at timet0 the curvature of
the surface is still finite (K;1/l ) and the profile of the sur
face is smooth, and the formation of a singular profile beg
in the later stages in the development of an instability.
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Mechanism of structural changes of Si „111… surfaces subjected to low-energy ion
pulses during molecular-beam epitaxy

A. V. Dvurechenski ,* ) , V. A. Zinov’ev, and V. A. Markov
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630090 Novosibirsk, Russia
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Reflected high-energy electron diffraction~RHEED! and detection of the intensity oscillations of
the specular reflection have been used to investigate morphological changes in Si~111!
associated with the two-dimensional layer-by-layer mechanism of silicon growth from a molecular
beam under conditions of pulsed (0.2521 s) bombardment with low-energy (802150 eV)
Kr ions in the interval of small total radiative fluxes (1011– 1012 cm22), for which the density of
radiation-generated defects is small in comparison with the surface density of the atoms.
After pulsed ion bombardment an increase in the intensity of the specular reflection is observed
if the degree of filling of the monolayer satisfies 0.5,u,1. No increase in the intensity
occurs during the initial stages of filling of the monolayer. The maximum amplitude increment
of the oscillations is reached atu'0.8. The magnitude of the amplitude increment of the
RHEED oscillations increases with temperature up to 400 °C and then falls. At temperatures above
500 °C amplification of the reflection intensity essentially vanishes. Experiments on multiple
ion bombardment of each growing layer showed that the magnitude of the amplitude increment of
the oscillations decreased as a function of the number of deposited layers~the order of the
RHEED oscillation!. A mechanism for the observed phenomena is proposed, based on the concept
of surface reconstruction by pulsed ion bombardment accompanied by formation of a~737!
superstructure, which corresponds to a decrease of the activation energy of surface diffusion of the
adatoms. Within the framework of the proposed mechanism the results of Monte Carlo
modeling agree with the main experimental data. ©1998 American Institute of Physics.
@S1063-7761~98!01112-3#
g
su

s
e
f
ri
r

io
m
ar
ye
e

a

o-
n.

t

on

um

lly
era-

°C.
(7

to

e of
by

lled
g
by

ted
the

ake
-
nt
ex-
1. INTRODUCTION

Low-energy (;100 eV) ion bombardment durin
molecular-beam epitaxy leads to drastic changes in the
face morphology and microstructure of growing films.1–3

The mechanisms of such changes have so far not been e
lished. A substantial advance in our understanding of th
processes became possible when the continuous beam o
celerated particles was replaced by a pulsed beam du
growth of the layers. Thus, the use of a pulsed beam of A1

ions with an energy of 600 eV during continuous deposit
of Ag on an Ag~111! surface altered the growth mechanis
growth of three-dimensional islands during Ag molecul
beam epitaxy gave way to two-dimensional layer-by-la
growth if the pulsed ion bombardment occurred with a p
riod corresponding to deposition of one monolayer.1 In an
earlier study of silicon molecular-beam homoepitaxy it w
established that pulsed bombardment with Kr1 ions with an
energy of 145 eV reduces the roughness of the surface
which growth takes place preferentially by the tw
dimensional layer-by-layer mechanism of layer formatio4

The present paper reports results of a study of the effec

pulsed low-energy ion bombardment during silic
molecular-beam homoepitaxy.
1111063-7761/98/87(12)/6/$15.00
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2. EXPERIMENTAL TECHNIQUE

The experiments were carried out in a superhigh-vacu
chamber with residual gas pressure,1028 Pa. The silicon
wafers had orientation~111! within 0.1° limits according to
the x-ray diffraction data. The samples were chemica
cleaned and heated in a high-vacuum chamber at a temp
ture of 900 °C. A silicon buffer layer of thickness;200 nm
was then grown on the wafers at a temperature of 610
The wafers were then heated to 770 °C until distinct
37) superstructure reflections appeared, which testified
the formation of an atomically clean Si~111! surface. An
electron-beam Si evaporation block served as the sourc
the silicon molecular flux. The flux density was controlled
varying the silicon melt region and amounted to 1014

21015 atoms/~cm2
•s). A flow regulator for SNA-2 gas was

built into the superhigh-vacuum chamber and was contro
by an applied external electric field. A system for ionizin
the admitted gas and accelerating the ionized particles
applying an accelerating voltage up to 200 V was loca
inside the chamber. The pulsed gas feed block allowed
ion current pulse to vary from 0.25 s~lower limit, determined
by the response time of the system for opening the int
slit! to 1 s ~upper limit, defining the conditions of maintain
ing a high vacuum in the system after pulsed bombardme!.
The angle of incidence of the ion beam was 54.5°. The
6 © 1998 American Institute of Physics
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periments were carried out at temperatures of 200–600 °C
cylinder containing spectrally pure argon was connected
the feed block. The purity of the gas was monitored with
help of a mass analyzer built into the growth chamb
The ion current density was varied within the ran
0.120.6mA/cm2. For the chosen conditions of pulsed bom
bardment the total flux varied within the limit
1011– 1012 cm22.

To record the surface statesin situ, we employed re-
flected high-energy electron diffraction~RHEED! and mea-
sured the intensity oscillations of the specular reflection
sociated with the two-dimensional layer-by-layer mechan
of silicon growth.5 The period of the intensity oscillation
under such conditions is equal to the deposition time o
single monolayer. For the case of a Si~111! surface, a com-
plete monolayer is biatomic in thickness~1 monolayer
51.5731015 atoms/cm2).6 Pulses of Kr ions weer applied a
different phases of the intensity oscillations of the prob
electron beam. The intensity was measured under Bragg
fraction conditions, which are very sensitive to changes
the surface morphology by virtue of electron scattering fr
the boundaries of steps, islands, and other surface def
Under these conditions, a one-to-one correspondence is
served between minimum surface roughness and the m
mum intensity of the reflected electron beam.7

3. EXPERIMENTAL RESULTS

Pulsed bombardment with Kr atoms of an initial
atomically-smooth surface at temperatures of 200–600 °C
duced the intensity of the specular reflection over a ti
corresponding to the duration of one pulse, with subsequ
recovery of the intensity to a level near its original valu
The difference between the initial value of the reflection
tensity and its final value after ion bombardment increase
a function of the beam ion energy and decreased as the
strate temperature was raised. This accords with the ide
the introduction of defects into a silicon surface by the i
beam and their subsequent annealing, where the efficienc
annealing, of course, increases with temperature. Exp
ments on pulsed bombardment of a silicon surface with
gas ionization system switched off showed that the inten
of the specular reflection is maintained at its initial level af
pulsed application of the gas flux both for a single pulse a
for multiple pulses.

During silicon molecular-beam epitaxy, oscillations
the RHEED specular intensity were observed in the temp
ture interval 200–550 °C, in line with the known data in t
literature.8 Under these conditions, after deposition of o
monolayer the initial (737) superstructure changed into
mixture of (535) and (737) superstructures. Variations i
the intensity of the specular reflection during pulsed
bombardment are shown in Fig. 1~a! at various phases of th
RHEED oscillations for a temperature of 400 °C and a de
sition rate of about 0.1 monolayer per second. The arro
indicate the switching-on times of the ion current pulse h
ing duration 0.5 s, current density 0.12mA/cm2, and ion en-
ergy 145 eV. An abrupt falloff of the intensity of the re
corded signal was observed during each ion bombardm
A
to
e
r.

s-

a
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pulse. After termination of ion bombardment the variation
the RHEED signal intensity depended strongly on the deg
of filling of the growing layer. When the degree of fillingu
was in the range 0.5,u,1 the RHEED signal intensified
and exceeded the level characteristic of ordinary conditi
of growth. In the initial stages of filling of the laye
(u,0.5) amplification of the intensity was not observed. T
largest growth of the intensity of the specular reflection d
to ion pulse occurred during bombardment before the ma
mum of the RHEED oscillations, whenu was near 0.8.

Experiments on pulsed ion bombardment of a Si~111!
surface were also carried out directly after termination of
molecular flux at various stages of filling of the surfa
monolayer. It was established that under these conditions
intensity of the specular reflection does not increase for
degree of filling of the monolayer. During ion bombardme
the intensity fell and then returned to its initial value durin
a time comparable to the duration of the pulse@Fig. 1b#. This
implies that the Bragg diffraction conditions remain u
changed after ion bombardment and the observed effec
not the result of a change in the conditions of observatio

A comparison of the diffraction pattern under conditio
of ordinary growth and growth with ion bombardment ma
it possible to determine the increase in the fraction of

FIG. 1. Variation of the intensity of the specular reflectionI under pulsed
ion bombardment of the Si~111! surface: a! during molecular-beam epitaxy
at T5400°C; b! after interruption of the silicon molecular beam at th
degree of filling of the monolayeru;0.8 andT5400°C. The arrows indi-
cate the onset times of the ion current pulse having current den
0.12mA/cm2 and duration 0.5 s with he energy of the Kr1 ions in the beam
equal to 145 eV. The dashed lines bound the region of interruption of
silicon flux.
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1118 JETP 87 (6), December 1998 Dvurechenski  et al.
(737) superstructure after pulsed ion bombardment. To
tablish the connection between this phenomenon and b
bardment by a beam of accelerated particles, we carried
analogous experiments with the ionization system switc
off and the accelerating voltage absent. No changes in
diffraction pattern were observed in this case.

Studies of the temperature dependence of the ampli
increment of the RHEED oscillationsDI due to ion bom-
bardment were performed for a fixed degree of filling of t
monolayer (u;0.8) and number of grown-on layers~before
the maximum of the third growth oscillation for each su
strate temperature!. The experiments showed that the val
of DI increases with temperature up to 400 °C, and th
decreases; at temperatures greater than 500 °C amplific
of the reflection intensity essentially vanishes~Fig. 2, solid
curve!.

Experiments on multiple ion bombardment of ea
growing layer for a fixed degree of filling of that layer
(;0.8) showed that the magnitude of the amplitude inc
ment of the oscillations depends on the amount of depos
material~Fig. 3!. The amplitude increment of the oscillation

FIG. 2. Temperature dependence of the amplitude increment of gro
oscillations of the intensity of the specular reflectionDI and of the calcu-
lated oscillations of the density of stepsDN ~see Fig. 4! due to pulsed ion
bombardment foru;0.8: experimental data (j); results of modeling for
E151.1 eV (d) and forE151.2 eV (m).

FIG. 3. Oscillations of the electron beam intensity for multiple pulsed
bombardment of each growing monolayer foru;0.8 atT5400°C.
s-
m-
ut
d

he

de
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ion
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d

decreased with increase of the number of deposited la
~the number of the RHEED oscillation!.

4. DESCRIPTION OF MODEL

To describe layer-by-layer growth of silicon from a m
lecular beam, we utilized a model developed by Vvedens�

and colleagues7,8 to numerically model epitaxy of group-IV
semiconductors. This model assumes that growth is c
pletely controlled by two kinetic processes: deposition
atoms from the molecular beam and surface diffusion of a
toms. Surface migration takes place as a result of diffus
hops of atoms to neighboring unoccupied sites. The
quency of such hops has an activation-like temperature
pendence:

n~E,T!5n0 exp~2E/kT!, ~1!

wheren0 is the frequency of vibrations of the surface atom
andE is the activation energy of surface diffusion, which
determined by the binding energy of an atom with its near
neighbors.

An important property of the initial stage of epitaxia
growth of Si~111! is modification of the superstructure of th
growing surface during deposition from the molecular bea
For T<550°C the thermodynamically stable (737) super-
structure is not able to form completely. As a result, alo
with the (737) superstructure a series of metastable surf
phases is formed: (333), (535), (939), and others,
which possess excess surface energy relative to (737)
~Refs. 6 and 9!. As a result, the mobility of the atoms on th
surface of the epitaxial layer is substantially lower than
mobility on the original surface. To take this aspect of t
growth process into account, the activation energy of surf
diffusion is modified as follows:

E5nE11mE21 lE3 . ~2!

HerenE1 is the binding energy of the atom with then first-
tier nearest neighbors (n<3), mE2 is the binding energy
with them second-tier nearest neighbors (m<6) in the plane
parallel to the surface,E3 is a correction to the binding en
ergy that takes account of the surface phase,l is the number
of atoms in the underlying layer (1< l<7) ~Ref. 10!. For the
initial, atomically clean Si~111! surface it is assumed tha
E350. As the first atomic layer is deposited,lE3 grows due
to the transition to the new surface phase, which is cha
terized by a higher activation energy of surface diffusion

In the Monte Carlo simulation the analog of the oscill
tions of the RHEED signal during growth is the variation
the surface density of stepsN. In a sense, this quantity cha
acterizes the number of atoms along the perimeter of
islands and vacancy clusters; therefore it is very sensitiv
changes in the morphology of the growing surface. It h
been shown that under Bragg diffraction conditions t
quantity 12N is directly proportional to the intensity of th
reflected electron beam.7,8 In the present paperN is defined
as follows:

N5
1

4M (
i 51

AM

(
j 51

AM

@ uhi , j2hi 11,j u1uhi , j2hi , j 11u#, ~3!

th
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FIG. 4. Calculated oscillations of the density of stepsN during
growth of silicon from a molecular beam for a single-pulse ion bo
bardment~a, b!: u50.8 ~a!, u;1 ~b!; for multiple pulsed bombard-
ment ~c! for fixed degree of filling of the monolayeru50.8. Depo-
sition rate 0.1 monolayer/s,T5400°C.
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whereM is the number of surface sites at which the atom c
be found andhi , j is the height of the atom above the initi
surface. This definition ofN allows one to treat differences i
the height of the surface steps and therefore difference
their scattering power during RHEED.

To describe the morphological changes on the Si~111!
surface resulting from the interaction with low-energy io
we have made use of modeling results based on the mol
lar dynamics method.10 According to these results, the inc
dence of one atom with energy;200 eV leads on average t
the sputtering of one target atom. At the ion impact site
surface vacancy cluster is formed with primarily mon
atomic depth~16 vacancies!. The target atoms go into ada
tom sites and are arranged about the vacancy cluster at s
distance from its edges~15 adatoms!. The molecular dynam-
ics modeling results were used in our model as initial con
tions in the Monte Carlo modeling of pulsed ion bomba
ment during epitaxial growth of a Si~111! surface.

Our model assumed that ion bombardment leads t
modification of the surface phase or to a restructuring of
superstructure of the growing surface. A transition tak
place from the metastable surface phase to the therm
namically more stable (737) phase. As a consequence
this, the diffusion coefficient of the adatoms on the Si~111!
surface grows after an ion pulse. In the model calculati
we made the simplifying assumption that the ion flux dens
in the experiment was sufficient for reconstruction of t
entire surface. Within the framework of the proposed mod
this corresponds to a lowering of the activation energy
surface diffusion since the addition to the binding energyE3

vanishes due to the change in the surface phase during
taxy. The calculations assumed that pulsed bombardmen
sults in an instantaneous modification of the surface m
phology as a result of a combination of the results of
interaction of each ion with the surface. For the total flux
we used, the probability of the incidence of two ions at o
n

in
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site is essentially zero. We assumed that the reconstructio
the (737) superstructure was transformed into another s
face phase after the accretion of one monolayer.

5. MODELING RESULTS

The epitaxial growth of Si on Si~111! was modeled us-
ing cyclical boundary conditions on a 1473147 two-
dimensional grid, whose nodes corresponded to regular s
of the atoms in the crystalline lattice. The numerical para
eters were as follows:E151.1 ~1.2! eV; E250.2 eV;
E350.02 eV. Upon incorporating our proposed mechani
of structural changes into the model of pulsed ion bomba
ment, we found the results of the numerical experiments
be in qualitative agreement with the experimental data. T
density of steps on the surface decreased noticeably s
time after pulsed ion bombardment. This effect was m
noticeable when the degree of filling of the monolayer w
chosen in the range 0.6–0.9. The minimal step density a
consequently, the maximum value of 12N were reached a
u50.8 @Fig. 4a#.

We found that the amplitude increment of the calcula
oscillationsDN ~see Fig. 4! during pulsed ion bombardmen
for u50.8 behaves as a function of temperature in a w
similar to the amplitude increment of the RHEED oscill
tionsDI in the experiment~Fig. 2!. The position of the maxi-
mum of the calculated dependence~Fig. 2, dashed line! is
determined by just one model parameter,E1 , which corre-
sponds to the activation energy of adatom diffusion on
initial, atomically clean surface. ForE151.2 eV the calcu-
lated results are in quite good agreement with experim
As E1 is decreased, the maximum of the calculated dep
dence is shifted toward lower temperatures without any s
stantial change in the functional dependence of the curv

For a fixed degree of filling of the monolayeru50.8 and
fixed substrate temperature, we calculated the changes in
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step density after the action of a single ion pulse on layer
different distances from the initial surface. Comparison
the calculated results implies that pulsed ion bombardme
most effective in smoothing the surface relief~minimizes the
step density! under conditions such that the first few mon
layers grow. As the number of grown-on layers is increas
the surface smoothing effect of the ion beam is decrease

Multiple pulsed ion bombardment was modeled for su
cessive switching-on of the ion beam in each succes
growing layer at times corresponding to the same degre
filling of the layers@Fig. 4c#. As in the case of a single pulse
the lowest density of steps after ion bombardment is reac
during growth of the first few monolayers.

6. DISCUSSION

The increase in the intensity of the diffracted electr
beam after pulsed ion bombardment during epitaxy o
Si~111! surface points to a decrease in the surface densit
scattering sites, these being the boundaries of islands
vacancy clusters. There are a number of phenomena
which the observed lowering of the surface roughness a
result of low-energy ion bombardment may be connect
1! sputtering of the material, which corresponds to an eff
tive lowering of the atom flux onto the surface during dep
sition from the molecular beam; 2! heating of the surface
with corresponding changes in the diffusion processes du
the transfer of energy to the atoms from the incident io
3! changes in the mechanism of adatom diffusion as a c
sequence of deposition of an impurity onto the growing s
face; 4! changes in the kinetics of growth of the monolaye
as a consequence of generation of adatoms and surfac
cancy clusters, and also disintegration of the islands form
during growth; 5! reconstruction of the surface, due to th
liberation of energy by the accelerated particles.

We analyzed the role of the first two factors in Ref.
where we concluded that they do not contribute substanti
to changes in the surface morphology for the total ion flu
used in the experiment.

According to the data in the literature,11 the deposition
of group-III ~In, Ga! and group-IV elements~Sn, Pb! during
Si epitaxy from molecular beams is capable of increasing
diffusion coefficient of silicon atoms on the surface. The
elements, by forming bonds with silicon atoms, in fact al
the mechanism of surface diffusion. For inert gases no ef
on the epitaxy process has been noted.

Modeling of epitaxial growth with allowance for th
generation of surface vacancies and adatoms by a pulse
beam without the introduction of superstructural transitio
has shown that no significant change in the surface densi
steps takes place for any of the temperatures, depos
rates, or ion current densities used in the experiment. Th
probably because the ion flux density is low compared to
atom flux from the molecular beam.

The model calculation gives good agreement with
periment only under the assumption that the surface mob
of the adatoms increases because in the surface phase
bombardment by low-energy ions. Subsequent deposi
at
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from a molecular beam leads to efficient filling of the v
cancy clusters and a lowering of the density of islands
comparison with epitaxy without pulsed ion bombardmen

The nonmonotonic character of the temperature dep
dence of the decrease in roughness of the growing sur
during pulsed ion bombardment appears to be associ
with two competing processes.

1. As the temperature is increased, the diffusion len
of the adatoms increases and the relative contribution of
face reconstruction to the change in the surface diffus
coefficient decreases;exp(lE3 /kT)21. This is the reason for
the noticeable weakening of the effect forT.500°C.

2. Lowering the temperature enhances the formation
islands of the following monolayer before formation of th
previous monolayer is complete, which in turn leads to
development of surface relief. Under these conditions,
diffusion length is determined mainly by capture of adato
at the boundaries of the islands and vacancy clusters, and
by surface reconstruction. As a result, forT,300°C, accord-
ing to the modeling data, the contribution of surface reco
struction during pulsed ion bombardment to the increase
the adatom diffusion length approaches zero.

The observed dependence of the surface smoothing
fect under ion bombardment on the number of grown-
monolayers is probably also connected with the developm
of relief on the growing surface. It is well known that grow
from a molecular beam is accompanied by the accumula
of deviations from the planar surface as the thickness of
epitaxial layer increases.5

7. CONCLUSION

The studies reported here of morphological changes
Si~111! surface during two-dimension layer-by-layer grow
of silicon from a molecular beam under conditions of puls
~0.25–1 s! bombardment by low-energy~80–150 eV! Kr1

ions have made it possible to identify the chief mechanis
of layer growth from ion–molecular beams in the region
small total radiative fluxes (1011– 1012 cm22), for which the
density of radiation-generated vacancies and adatoms is
nificantly lower than the surface density of atoms. The id
of the investigative method is to communicate additional
ergy to the surface atoms during a short time interval
means of an ion pulse, and then to track the dynamics of
subsequent structural changes.

Implementing the given method, we detected a surf
smoothing effect during epitaxy of Si~111! for simultaneous
pulsed bombardment with low-energy ions and identified
conditions for its manifestation. Comparison of the diffra
tion patterns obtained during ordinary growth and duri
growth with ion bombardment allowed us to determine t
increase in the fraction of the (737) superstructure afte
pulsed ion bombardment. We have proposed a mechan
and developed a model of structural changes taking plac
the surface due to ion bombardment during molecular-be
epitaxy. Monte Carlo modeling gave good agreement w
the experimental data~if we admit the assumption of a de
crease in the activation energy of adatom surface diffusion
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a result of ion bombardment!, which is linked with the struc-
tural transformations taking place in conjunction with t
increase in the fraction of the (737) superstructure.

On the basis of this model we have been been abl
explain the temperature and phase dependence of the
served effect, and also the results of experiments on gro
of silicon during multiple pulsed ion bombardment.

The investigated class of phenomena in fact further
dergirds the development of the method of molecular-be
epitaxy with synchronization of structural transformations
pulsed ion bombardment. This method allows one to ob
sharper boundaries during growth of modulated structu
and also to control the size of islands during heteroepita
e.g., Ge on Si, to create structures with quantum dots.12
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Ferrimagnetic phase transition in the system Li 0.5Fe2.52xGaxO4 in the vicinity of the
multicritical point of the x – T phase diagram

N. N. Efimova* ) and M. B. Ustimenkova
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~Submitted 14 February 1998!
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In connection with the problem of identifying magnetic states in the vicinity ofx0 ~the
multicritical point of thex–T diagrams of spin-glass systems! a study has been made of properties
that can be exploited to determine the presence of a thermodynamic phase transition at the
Curie point TC and the distinctive features of the transition, specifically, the temperature
dependence of the magnetic part of the specific heatCm(T), the temperature dependence
of the low-field magnetizationsH(T), and~with a view toward examining critical behavior in a
magnetic field! the magnetization isothermssT(H). The investigated object is the system
of dilute ferrimagnetic spinels Li0.5Fe2.52xGaxO4, in which every type of magnetic state has
spatially inhomogeneous cluster structures. The results obtained for a sample withx51.45
indicate that the classical criteria of a ferrimagnetic second-order phase transition at
TC5(9762) K occur forx;x0. The results of similar investigations for a sample withx51.6,
which exists in the cluster spin-glass state forT,Tf522 K and in an uncorrelated cluster
state of the superparamagnetic type forT.Tf , are also given for comparison with the preceding
case. ©1998 American Institute of Physics.@S1063-7761~98!01212-8#
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1. INTRODUCTION

Spin glasses have been the object of intensive rese
for several decades now, and yet the identification of m
netic states in the vicinity of the multicritical pointx0 of the
x2T phase diagrams remains as pressing a problem
ever.1,2 The crux of the problem is essentially the existen
of long-range order forx;x0: ferromagnetic or ferrimag-
netic (x,x0) and spin-glass (x>x0). The whole debate
around this issue has been prompted by the results
neutron-diffraction studies, which are highly conflicting fro
the standpoint of notions regarding the set of canonical
teria corresponding to, say, the onset of long-range ferrim
netic order.1 For example, states having an infinite corre
tion length r c ~i.e., r c

2150) and zero spontaneou
magnetizationss50 have been reported, but states w
sÞ0 and finiter c

21 have likewise been reported.3–6

The difficulties surrounding the interpretation of the e
perimental results, including neutron-diffraction and nucle
giant resonance~NGR! data, are largely attributable to th
spatial inhomogeneity of the magnetic states, which hav
cluster structure nearx0 ~Refs. 1 and 6–8!. Clustering effects
are especially pronounced for dilute systems exhibit
short-range exchange.1,6,8,9Setting details aside, the opinion
expressed in the scientific literature in regard to this issue
be divided into two groups. According to some authors,6,10

for spatially inhomogeneous structures of the cluster t
r c

21(T) has two contributions:

r c
21~T!5r cr

21~T!1r 0
21~Dx!.

The usual ‘‘thermal’’ contribution isr cr
21(T)50 for T<TC

(TC is the Curie temperature!, as in ordinary homogeneou
ferrimagnets, but the second contribution isr 0

21(Dx)Þ0 at
1121063-7761/98/87(12)/7/$15.00
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all temperaturesT.0 K. This term is induced by the spatia
inhomogeneity of the ferrimagnetic state, and its value
determined by how close the concentrationx is to the perco-
lation threshold. Based on these concepts, long-range f
magnetic order is established forT<TC , even though the
resultant reciprocal correlation lengthr c

21(T)Þ0 for
T<TC . Another point of view states, in effect, that macr
scopic spontaneous magnetization does not occur in clu
systems nearx0, wherer c

21(T)Þ0 holds, but ferrimagnetic
order is preserved within the boundaries of large clust
having dimensions on the order of hundreds of angstroms
that ferrimagnetic-like properties appear in the presence
field H ~Refs. 5 and 11!.

Obviously, the question as to whether magnetic or
exists in the vicinity ofx0 cannot be resolved unambiguous
exclusively by the application of experimental metho
highly sensitive to spatial inhomogeneity of the cluster typ
the need here is to investigate a broader category of pro
ties. In this paper we discuss the identification of clus
magnetic properties in the vicinity ofx0 from the perspective
of establishing the existence or nonexistence of a partic
set of classical criteria of thermodynamic phase transit
from the ferrimagnetic to the paramagnetic state. The pr
erties chosen for experimental investigation include the te
perature dependence of the magnetic contribution to the
cific heatCm(T) for H50, the temperature dependence
the low-field magnetizationsH(T), and, with a view toward
studying the critical behavior in a magnetic field, isotherm
of the magnetizationsT(H) for H<8 kOe. We believe that
such a set of experiments~including H50 andHÞ0) can
yield, first, independent information about the presence
2 © 1998 American Institute of Physics
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long-range ferrimagnetic correlations in the spatially inh
mogeneous systems and, in addition, some idea as to an
lies of the properties in a magnetic field.

The chosen object of investigation is a Heisenberg sp
glass system exhibiting short-range interaction, specific
dilute ferrimagnetic spinels Li0.5Fe2.52xGaxO4 with compet-
ing negative intersublattice and intrasublatti
interactions.12,13 The multicritical point corresponds t
x051.5. According to neutron-diffraction data, forx>1.35
the reciprocal correlation lengthr c

21(T) initially decreases as
the temperature is lowered, and then in the intervalTf<T
<T1 it essentially remains constant;Tf is the freezing point
of the mixed state, and sufficiently far fromx0 (x51.35) the
other limit T1 coincides withTC as determined from the
temperature dependence of the dynamic susceptibilityxac(T)
~Ref. 14!. The most interesting model object for investiga
ing the existence of long-range ferrimagnetic order in
cluster system is a sample withx51.45; for a stepDx
50.05 ('1.7 mol. %! in the reentrant-spin-glass region
the x2T diagram (x,x0) this model corresponds to th
maximum density of nonmagnetic Ga31 ions at which, in
principle, it is still possible for long-range ferrimagnetic o
der to exist.13 Moreover, judging from the nature of the prob
lems discussed in the literature~in particular, the influence o
a magnetic field!, we deemed it advisable from the stan
point of comparison to add another sample withx51.6,
where the density of nonmagnetic ions is close tox0 on the
spin-glass side, and transition from the paramagnetic sta
the cluster spin-glass state takes place atTf522 K ~Ref. 13!.

2. MEASUREMENT PROCEDURE AND SAMPLES

The polycrystalline dilute spinel samples used to inv
tigate the thermal and magnetic properties were prepare
standard ceramic technology from analytical-grade carb
ates and oxides of the corresponding metals~5-h reaction in
the solid phase in air atT51523 K!. The samples were cer
tified as single-phase spinels within the error limits of x-r
analysis; their density was 80–90% of the x-ray valu
Lithium ferrite Li0.5Fe2.5O4 and lithium gallate Li0.5Ga2.5O4

form a continuous series of solid solutions with a superlat
of the type 1:3 (Li1:Fe311Ga31) existing in an octahedra
sublattice. At Ga31 concentrations~dilutions! x;x0 the dis-
tribution of Ga31 and Fe31 metal ions among the sublattice
is nearly random. According to an estimation of the cat
distribution using the magnetization atT54.2 K andH→`,
the fractions of nonmagnetic Ga31 ions at x51.45 in the
tetrahedral and octahedral sublattices, averaged over
sample, are 0.6~60%! and 0.85~56%!, respectively. How-
ever, the spatial distribution of magnetic and nonmagn
ions in this concentration range is extremely nonunifo
~compositional disorder!, a condition that is manifested i
the development of specific anomalies of the magnetic pr
erties asx→x0 ~Refs. 13 and 14!.

A ballistic magnetometer13 having a sensitivity of
1023 G•cm3

•g21 was used to investigate the magnetizati
isothermssT(H) and polythermssH(T). The specific heat
was measured within 1.5% limits by means of a vacu
adiabatic calorimeter equipped with an adsorption pum15
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The magnetic contribution to the specific heat was isola
by a technique similar to one used earlier.15 In all the experi-
ments TSU-2 carbon thermometers were used to record
temperature.

3. EXPERIMENTAL RESULTS AND DISCUSSION

Specific Heat and Low-Field Magnetization, x 51.45

Figure 1 shows the temperature dependence of the l
field magnetizationsH(T) at H550 Oe and a fragment o
the temperature dependence of the magnetic contributio
the specific heatCm(T) ~inset to Fig. 1! for the main object
of investigation, i.e., the sample withx51.45. It is evident
that thesH(T) curves spread out considerably in the hig
temperature range, with the same kind of behavior obser
over a wide range of static fields, beginning atH52 Oe, as
well as in the dynamic regime forxac(T) and forh0,2 Oe
~Refs. 13 and 14!. For x>1.4 thesH(T) curves acquire a
specific bell shape because of the comparative proximity
the freezing point (Tf533 K for x51.45; Ref. 13! and to the
Curie pointTC , as should be the case forx51.45, judging
from the behavior ofCm(T). Consequently, the broad max
mum of thesH(T) curves does not mirror any possible tra
sition, either atTf or at TC . At the same time, it follows
from the data in Fig. 1 that in no way do thesH(T) curves
outwardly disclose a phase transition at the Curie point~in
low fields this event is equivalent to the temperature dep
dence of the initial susceptibilityx0(T)). In general, behav-
ior of this kind is typical of spatially inhomogeneou
systems.1,5 This result in conjunction with the finite values o
r c

21(T) is often viewed as reason to doubt the existence o

FIG. 1. Temperature dependence of the low-field magnetizationsZFC(T) for
a sample withx51.45, H550 Oe. The zero-field cooling~ZFC! regime
corresponds to precooling of the sample from 300 K to 4.2 K withou
magnetic field. Inset: Fragment of the temperature dependence of the
netic contribution to the specific heatCm(T) for the same sample.
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true thermodynamic transition to the ferrimagnetic state,
cause even though the second derivatives of the Gibbs
energy for a second-order transition diverge in spatially
homogeneous systems, they must have singularities.2,16,17

In our situation this effect is observed for the speci
heat: At T59762 K the Cm(T) curve has an anomal
whose form is typical of a second-order phase transition
TC . If long-range correlations did not exist in the syste
anywhere in the crystal as a whole, such an anomaly co
be observed only if most of the clusters had values ofTC

close to each other and at the same time close to the
perature of the maximum ofCm(T) ~Ref. 17!. This situation
could occur, for example, in an ensemble of isolated partic
of identical composition,18 but not in real dilute systems
where cluster formation is a statistical process caused
compositional disorder, and the cluster subsystem mus
characterized by a certain distribution functionf (TCk) and,
independently, the functionf (M ), whereTCk is the Curie
temperature, andM is the magnetic moment of th
cluster.10,19

According to existing experimental data, in dilute fer
magnetic oxides, including Li–Ga spinels withx.1.3, intra-
cluster ferrimagnetic ordering is preserved up to tempe
tures much higher than the Curie pointTC of the samples as
a whole.13,19 Judging from the results of the present stud
this result ~the existence off (TCk) and the condition
TCk.TC) is supported both by the spreading ofsH(T) over
a wide range of temperatures and by the high specific h
Cm for T.TC ~Fig. 1!. The latter consideration suggests th
a large number of magnetic degrees of freedom is prese
at T.TC . This conjecture is fully justified if a superpara
magnetic state exists atT.TC , because a system of nonin
teracting clusters can be a source of different types of m
netic perturbations.20 Thus, the anomaly of the specific he
at T5TC , in our opinion, is conclusive evidence that a co
related magnetic state, i.e., long-range ferrimagnetic or
exists belowTC for the crystal as a whole, and not mere
within the boundaries of large clusters.

Critical Behavior in a Magnetic Field, x 51.45

Another way to determine the presence of a transit
from the ferrimagnetic to the paramagnetic state atTC is
associated with the characteristic features of a second-o
transition, specifically the occurrence of critical behavior
the vicinity of TC for H.0 ~Refs. 2 and 21–23!. Assuming
TC59762 K, we analyze the behavior of the magnetizati
isothermssT(H) for the sample withx51.45 in the vicinity
of TC in terms of their consistency with the magnetic equ
tion of state in the critical region: (H/s)1/g5A(T2TC)/TC

1Bs1/b, whereg andb are the critical exponents, andA and
B are the critical amplitudes. Some of the experimen
sT(H) curves used for this analysis are shown in Fig. 2.
a visual aid, the initial segments of thesT(H) curves are
shown in the inset to Fig. 2. We begin with the mean-fie
approximation, which satisfactorily describes the critical b
havior of homogeneous systems or, in our case, undilu
ferrimagnets.21 We use the standard procedure for this p
pose, where the experimentalsT(H) curves are displayed in
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the form of Belov–Arrott graphs, i.e., inH/s, s2 coordi-
nates~Refs. 21–23!. This endeavor yields the following re
sults. The experimentalsT(H) curves are straight lines in th
magnetic field interval ranging from the fields at which tec
nical magnetization processes terminate to fie
H'2602460 Oe in Belov–Arrott coordinates~Fig. 3!. It is
evident that the corresponding field interval increases in
paramagnetic region. The isotherm passing through the
gin corresponds toTC595 K, which is in good agreemen
with previousCm(T) data. It follows from the results in the
inset to Fig. 3 that for the critical isotherm atT5TC we have
s;H1/3, i.e., the equations;H1/d also involves the mean
field value d53. Thus, the critical behavior predicted b
mean-field theory for homogeneous systems with critical
ponentsg51, b50.5, andd53 is observed for the sampl
with x51.45 in fields 150 Oe,H,450 Oe.

FIG. 2. Magnetization isothermssT(H) for a sample withx51.45 at vari-
ous temperatures:~1! 85 K; ~2! 90 K; ~3! 95 K; ~4! 105 K; ~5! 115 K. Inset:
initial segments of thesT(H) curves forH<460 Oe.

FIG. 3. Magnetization isotherms of Fig. 2 in Belov–Arrott coordinate
H<460 Oe, at various temperatures:~1! 85 K; ~3! 95 K; ~4! 105 K; ~5!
115 K. Inset: Graphs(H1/3) at T595 K, H<260 Oe.
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Outside this field interval, however, the isotherms of F
2 shown in Belov–Arrott coordinates deviate from linea
This behavior, i.e., the possible curvature of the Belo
Arrott graphs as a function ofH, has been predicted in
generalization of the mean-field model to spatially inhom
geneous systems.24–27 The authors of Refs. 25–27 describ
these deviations by introducing a functionF(H), as yet un-
defined, in the mean-field equation for homogeneous s
tems:H/s5A81B8s21F(H), A85a8(T2TC); it is asso-
ciated with fluctuations of the thermodynamic coefficien
A8 andB8. In another approach widely used in experimen
work, spatially inhomogeneous systems are assumed to
respond to a magnetic equation of state in which the crit
exponentsg andb differ from the mean-field values.23,28We
have chosen the second approach to analyze the magn
tion isotherms in fieldsH.460 Oe; following Kaul et al.,23,28

we display the experimentalsH(T) curves in the form of
Arrott–Noakes graphs: (H/s)0.752s2.5 ~Fig. 4!. It is evident
that in fields 1.5 kOe<H<8.0 kOe the experimental iso
therms in Arrott–Noakes coordinates obey a linear law, a
the isotherm passing through the origin again correspond
T595 K. In this case, therefore, we haveg51.33 and
b50.4. Converting the critical isotherm atT5TC595 K to
log–log scale, we findd54.41 ~see the inset to Fig. 4!.
These values of the critical exponents satisfy the sca
relation2 a52(12b)2g for the realistic valuea520.13.
We note that the same values of the critical exponents
also typical of another type of spatially inhomogeneous s
tems, amorphous magnets.23

By the same reasoning as in our discussion of the na
of theCm(T) anomaly we are fully justified in assuming th
the observed critical behavior reflects the behavior of
system as a whole rather than intracluster processes.
only special feature that we have observed on the par
second-order transition between spatially inhomogene
ferrimagnetic and paramagnetic states is a change in the

FIG. 4. Magnetization isotherms of Fig. 2 in Belov–Arrott coordinates
fields 1.5 kOe,H,8 kOe. The isotherms are numbered as in Fig. 2. Ins
isothermsT(H) at T595 K, plotted on log–log scale.
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cal behavior in the transition from the weak-field region
the moderate-field region, and we have not encountered
experimental evidence of such behavior. We shall return
this problem below. First, however, it is instructive to com
pare the behavior of the givenx51.45 sample with the spin
glass sample characterized byx51.6.

The Cm„T…, sH„H…, and sT„H… Curves, x 51.6

A state of the cluster spin-glass type occurs in Li–G
spinels with x.x051.5 ~Ref. 13!. Ferrimagnetic ordering
exists within the cluster boundaries, both forT,Tf and in
the paramagnetic region forT.Tf ~Refs. 13 and 29!. At
T.Tf the thermal energy exceeds the exchange energy
tween clusters, so that an uncorrelated cluster state of
superparamagnetic type occurs in spin-glass samples
x.1.5, and the cluster subsystem is described by cer
distribution functionsf (TCk) and f (M ). The sample with
x51.6 is used as a model of this type of state. The beha
of the spin-glass and ferrimagnetic samples is compared
ing the same set of properties forx51.6 as forx51.45.

Figure 5 shows the temperature dependences of the
field magnetizationsH(T) and the specific heatCm(T).
Clearly, the cluster inhomogeneity also influences the ch
acter of the spin-glass transition atTf : It emerges abruptly
for T,Tf (T→0 K! and spreads out considerably fo
T.Tf , the low-field magnetization remaining high up
150 K. The same pattern of behavior as in Fig. 5 is obser
in external fieldsH weaker than those represented in Fig.

The specific heatCm(T) ~see the inset to Fig. 5!, as in
classical spin glasses,1 is a linear function of the temperatur
at T→0 K and does not have an anomaly atTf . In the given
situation, however, a departure from linearity is already o
served forT,Tf . The values ofCm are high forT.Tf , as
is typical of spin glasses, where only a part (;0.4) of the
total magnetic entropy is tapped forT<Tf ~Ref. 1!.

t:FIG. 5. Temperature dependences of the low-field magnetizationsZFC(T) at
H550 Oe and~inset! the magnetic contribution to the specific heatCm(T)
for a spin-glass sample withx51.6.
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Despite the special behavior characteristics descri
above, the occurrence of transition from the paramagneti
the spin-glass state atTf for the sample withx51.6, as in the
case of other samples of the system Li0.5Fe2.52xGaxO4 (x
.1.5), is uniquely determined from the onset of long-te
logarithmic relaxation of the nonequilibrium~zero-field cool-
ing! magnetizationsZFC and from the existence of critica
behavior linesTf(H) in a magnetic field; finally, the transi
tion is described by the one-component Edwards–Ander
order parameterqEA ~Ref. 13!.

Moreover, the presence of ferrimagnetic clusters in
magnetic subsystem appears, at first glance, to leave
magnetization isothermssT(H) exactly the same as befor
~for x51.45), whether forT,Tf or for T.Tf ~see Fig. 6!.
The magnetization is fairly high up to temperatur
T5150 K, which is well in excess ofTf . From the stand-
point of the stated problem it would be interesting to reso
the issue of the proper equation of state for the isotherm
Fig. 6. As a first attempt we have used the same procedu
for x51.45. It follows from the data of Fig. 7 that the ma
netization isothermssT(H) of the sample withx51.6 in the
temperature range 4.2 K,T,150 K and in the magnetic
field range 3.5 kOe,H,20 kOe are straight lines in Arrott–

FIG. 6. Magnetization isothermssT(H) for a sample withx51.6 at: ~1!
T520 K; ~2! 4.2 K; ~3! 40 K; ~4! 60 K; ~5! 80 K; ~6! 100 K; ~7! 110 K; ~8!
130 K; ~9! 150 K.

FIG. 7. Magnetization isotherms of Fig. 6 in Arrott–Noakes coordina
The isotherms are numbered as in Fig. 6.
d
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Noakes coordinates, but none of them crosses thes2.5 axis in
the positive range. This condition implies the absence
spontaneous magnetization.21,23,28

The results obtained for the sample withx51.6 clearly
show that even in fairly strong magnetic fields long-ran
ferrimagnetic order is not ‘‘restored’’ in the crystal if it did
not exist in zero fieldH50. This conclusion applies equall
to the rangeT,Tf , where the exchange energy betwe
clusters exceeds the thermal energy, and to the ra
T.Tf . Consequently, the assertion that a cluster ferrimag
and a superparamagnet~uncorrelated cluster state! exhibit
similar behavior in a magnetic field can apply exclusively
the similar forms of the isothermsT(H) and, in part, the
polytherm sH(T) of the magnetization. However, even
simple analysis of these dependences indicates a funda
tal difference between the correlated ferrimagnetic and
correlated superparamagnetic cluster states, manifeste
whether or notss and, accordingly,TC exist.

Model of a Spatially Inhomogeneous Magnetic Structure
and Phase Transition at the Curie Point for x;x 0

In systems exhibiting short-range interaction due
compositional disorder~irregular distribution of magnetic
and nonmagnetic ions in the lattice! the exchange interaction
acquires spatial inhomogeneity, so that two exchan
coupled subsystems, clusters and a matrix, can be di
guished in the crystal.10,13,14 The clusters correspond to re
gions having a high content of magnetic ions with stro
exchange maintained between them, so that ferrimagnetic
dering occurs within the boundaries of each cluster. In
matrix, on the contrary, we find a large content of the no
magnetic component. This competition between excha
interactions not only weakens the exchange, but also inc
frustrated bonds. Judging from existing experimental dat13

including those in the present study, the type of magne
ordering of the crystal as a whole depends on the state o
matrix; in particular, the existence of the ferrimagnetic
spin-glass state is obviously dictated by the concentration
frustrated bonds.

Using this model of the cluster ferrimagnetic state, in t
example of the sample withx51.45 we analyze the patter
of phase transformation at the Curie point in connection w
the ferrimagnet–paramagnet transition in spatially inhom
geneous structures. The breakdown of long-range ferrim
netic order in the crystal is associated with the disappeara
of long-range correlations between spins of the matrix a
hence, between clusters. The value ofTC for the crystal as a
whole is determined by the average exchange between
matrix and the clusters and between spins of the mat
WhenT.TC holds, the latter are essentially completely d
ordered, and ferrimagnetism is preserved in clusters up
TCk.TC. For T.TC is obvious that only local second-orde
phase transitions occur atT5TCk , corresponding to the
breakdown of ferrimagnetic ordering of the spins in the clu
ters. This process takes place over a broad tempera
range, which is determined by the distribution functio
f (TCk), and so it cannot impart to the thermodynamic pro
erties the characteristic features of a macroscopic sec

.
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order phase transition. This conclusion follows directly fro
our experimental data, including those for the sample w
x51.6.

Regardless of whether the critical behavior of spatia
inhomogeneous systems is described in terms of cha
~from the homogeneous case! in the critical exponents23,28or
by introducing the functionF(H) ~Refs. 24–27!, in general
it is governed primarily by the presence and character
spatial fluctuations of the magnetization and the excha
and also, according to Refs. 24–27, by the magnitude of
external fieldH. In this light the anomalies observed by us
the critical behavior of the sample withx51.45 could well
be indicative of general functional relations that can oc
for the right combination of governing factors. In our ca
these factors are sharp spatial fluctuations of the excha
and magnetization, which result in the formation of t
cluster-type magnetic structure discussed above. As a co
quence, with regard for the specific features of the magn
zation processes in such systems the following pattern
variation of the critical behavior can be envisioned for t
sample withx51.45. It follows from general energy consid
erations~the relation between the thermal and magnetic
ergiesEH5M–H, whereM is the magnetic moment of th
cluster or the individual ion! and from the behavior of the
magnetization isothermssT(H) ~Fig. 2! that the contribu-
tions of the two subsystems~clusters and matrix! to the total
susceptibility depend on the fieldH. If the field range where
technical magnetization has essentially vanished is p
tioned arbitrarily into three intervals corresponding to we
moderate, and strong fields, the behavior ofsT(H) in weak
fields is governed by clusters having large magnetic m
ments, and in strong fields it is determined by the ma
spins, because the moments of the clusters are already
ented in the direction of the field. In the interval of modera
fields the behavior ofsT(H) is determined to a greater o
lesser degree by the exchange subsystems and, among
things, depends on the distribution functionf (M ). In this
sense~the experimentally recorded response to an exte
magnetic field! the inhomogeneous system plays the part o
homogeneous system in weak and strong fields.

The cooperative nature of the second-order phase tra
tion at the Curie pointTC , i.e., the participation of both
subsystems—clusters and matrix—in the process, can
be demonstrated within the scope of the same approach.
follows directly from the identical values ofTC obtained
whether the response of the cluster subsystem~weak fields!
or of the spatially inhomogeneous system as a wholeH
50, moderate fields! is recorded. We call attention to a
alternative point of view concerning this problem in Ref. 2
where it is stated that only a fraction of the total number
spins is involved in second-order phase transitions in am
phous magnets.

We conclude our discussion of the nature of the fe
magnetic phase transition nearx0 with a brief look at the
absence of any kind of anomalies of the temperature de
dence of the low-field magnetizationsH(T) and the initial
h
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susceptibility x0(T). According to preliminary data, the
cause can be found in specific phenomena associated
the cluster subsystem. As a matter of fact, some of the c
ters can exist in few-domain or single-domain states rat
than in the superparamagnetic state.18,29 The magnetization
process of such clusters does not prevent any changes
taking place in passage through the Curie point of
sample, but their contribution to the magnetization~suscep-
tibility ! in the technical magnetization region can be larg
As the field is increased, single-domain clusters can enter
superparamagnetic state.18,30 This event could also accoun
for the experimental fact that when the fieldH is increased
for T>TC (T>Tf), a sharper drop in the magnetization
observed than in low fields. The curve representing the
namic susceptibilityxac ~very low fields! in the vicinity of
TC or Tf can also spread out because of the presence
weak residual moment in the sample.

4. CONCLUSION

For the case of the dilute ferrimagnetic spin
Li0.5Fe2.52xGaxO4 (x51.45) with short-range interaction w
have shown that in the vicinity of the multicritical poin
(x051.5) a ferrimagnetic second-order phase transition ta
place at the Curie point, as characterized by standard t
modynamic criteria: An anomaly of theCm(T) curve, typical
of second-order phase transitions, is observed atT5TC

5(9762) K, and in the vicinity ofTC critical behavior is
observed in a magnetic field. On the whole, the experime
results argue against a magnetic state model that postu
the preservation of ferrimagnetic ordering strictly within th
cluster boundaries for concentrationsx;x0(x,x0). The ex-
istence of long-range order in spatially inhomogeneous st
tures of the cluster type~ferrimagnetic forx,x0 or spin-
glass forx.x0) is satisfactorily explained by a model o
ferrimagnetic and spin-glass states that takes into accoun
two exchange-coupled subsystems—clusters and matrix
the crystal. The crystal acquires long-range correlations
result of exchange interaction between the matrix and c
ters and between matrix spins. The average magnitude of
exchange determinesTC , and its variance determinesTf .

Further analysis of the model object, i.e., the spin-gl
sample withx51.6, where the uncorrelated cluster state o
curs atT.Tf , graphically demonstrates the fallacy of th
view that when long-range ferrimagnetic order does not e
in cluster systems atH50, it can be ‘‘restored’’ in a suffi-
ciently strong magnetic field.

Inasmuch as the present study has addressed the ext
situation of a system with short-range interaction, whe
compositional disorder is conducive to exchange having
extremely pronounced spatial inhomogeneity, the results
be extended to other spin-glass systems, including meta
of the nature ofthe Au–Fe systems discussed in Ref. 11
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25M. Fähnle and H. Kronmu¨ller, Phys. Status Solidi B98, 219 ~1980!.
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Multiply connected Fermi sphere and fermion condensation
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We examine the structure of the ground state of a homogeneous Fermi liquid beyond the
instability point of the Fermi-like quasiparticle momentum distribution in the effective-functional
method with a strong repulsive effective interaction. A numerical study of the initial stage
of rearrangement of the ground state, based on a simple effective functional, showed that there
exists a temperatureT0, above which the behavior of the system is the same as in the
theory of fermion condensation, and forT,T0 the scenario of rearrangement of the ground state
is different. At low temperatures an intermediate structure arises, with a multiply connected
quasiparticle momentum distribution. The transition of this structure with growth of the coupling
constant to a state with a fermion condensate is discussed. ©1998 American Institute of
Physics.@S1063-7761~98!01312-2#
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1. INTRODUCTION

The applicability of Landau’s Fermi liquid theory1 to a
description of the properties of strongly correlated Fer
systems has long been debated in the literature. For
dimensional systems this theory does not apply. For them
alternative quasiparticle picture is provided by the conce
based on the Luttinger model,2 of a Luttinger liquid3 in
which the single-particle Green’s function does not contai
quasiparticle pole. After the discovery of HTSC compoun
having quasi-two-dimensional structure and possessing p
erties contrary to Landau theory, the boundaries of the n
Fermi-liquid viewpoint have been extended to encomp
also two-dimensional, strongly correlated Fermi systems4,5

However, the recently measured electronic spectra of s
compounds6–8 appear to speak of the existence of a sing
particle pole in the electron Green’s function. At the sa
time, the authors of Refs. 9–12 have discovered new po
bilities in the quasiparticle approach. A new class of syste
predicted in Refs. 11 and 12 with a fermion condensate p
sess a rich spectrum of properties,12–15including those which
had hitherto been the prerogative of the non-Fermi-liq
picture. As has been shown in various models,12–14,16a state
with a fermion condensate stems from a rearrangement o
ground state of the system of quasiparticles. Such a r
rangement occurs when as a change in the external pa
eters violates the necessary condition for stability in a q
siparticle system with a Fermi momentum distribution. In t
present paper we consider a model of a homogeneous th
dimensional Fermi liquid in which a change in the para
eters also results in a rearrangement of the ground sta
the quasiparticle system, and we investigate the scenar
the initial stage of this rearrangement.

2. DOUBLY CONNECTED FERMI SPHERE AND FERMION
CONDENSATE; EFFECTIVE QUASIPARTICLE
FUNCTIONAL

To start with, let us recall the relation in Landau theo
between the quasiparticle distributionnp(T) and the quasi-
particle spectrum«p(T):
1121063-7761/98/87(12)/7/$15.00
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np~T!5H 11exp
«p~T!2m~T!

T J 21

~1!

@m(T) is the chemical potential#, which follows from the
variational equationdF/dnp50 (F is the free energy of the
system!, in which the entropy is given by the usual comb
natorial expression.17 Expression~1!, on the one hand, is
simply the Fermi quasiparticle energy distribution. On t
other hand, this relation is an equation for the quasipart
distribution in momentum space since the quasiparticle
ergy, being the variational derivative of the ground-state
ergy functionalE0 with respect to the quasiparticle distribu
tion «p(T)5dE0 /dnp(T), is itself a functional ofnp(T).

Landau theory postulates that in a homogeneous and
tropic Fermi liquid the quasiparticle distribution in mome
tum space atT50 has, as in a Fermi gas, the form of a fille
Fermi sphere:nF

(0)(p)5u(pF2p) ~the bounding momentum
pF is related to the density of the systemr by the formula
r5pF

3/3p2). The low-temperature behavior of the quasipa
ticle spectrum responsible for this quasiparticle moment
distribution has the form17

«p~T!2m~T!5j~p!1O~T2!. ~2!

The functionj(p) grows monotonically in the vicinity of the
Fermi momentum, changing sign atp5pF . Its slope at this
point—the group velocityvF5dj(p)/dpup5pF

of the quasi-
particles at the Fermi surface—is determined by a phen
enological parameter of Fermi liquid theory, the effecti
massM* 5pF /vF .

In a homogeneous strongly correlated Fermi system
momentum distribution of the quasiparticles, which min
mizes the energy functionalE0@n(p)# at T50, of course, is
not necessarily found at the inflection pointnF

(0)(p) of the
functional space@n#. For example, the authors of Refs. 9 an
10 constructed effective functionalsE0@n(p)#, which for
certain values of the parameters attain their minimum on
doubly connected Fermi sphere

nF
~1!~p!5u~p12p!2u~p22p!1u~p32p!. ~3!
9 © 1998 American Institute of Physics
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A completely different quasiparticle ground state cor
sponds to a system with a fermion condensate.11–14 In order
not to send the reader back to the original works, we w
briefly elucidate the main idea of the concept of a ferm
condensate. A homogeneous and isotropic system with a
mion condensate is described by the singular solution of
~1!, which corresponds to the segment of the spectrum th
linear in T,11,12

«p~T!2m~T!5Tn0~p!1o~T!, pi,p,pf . ~4!

In this low-temperature expansion, in contrast to the Fer
liquid expression~2! there is no term independent ofT. This
means that atT50 the quasiparticle spectrum in the interv
pi,p,pf has a plateau«p[m. For T.0 the slope of the
plateau is linear inT, and its position relative to the chemic
potentialm(T) is determined by the functionn0(p) associ-
ated with the quasiparticle momentum distribution in t
condensate atT50. Indeed, the singular solution of Eq.~1!,
which is easily obtained by substituting formula~4! into Eq.
~1!, has the formnp(T)5n0(p)1O(T), where

n0~p!5$11exp@n0~p!#%21 ~pi,p,pf ! ~5!

is the momentum distribution of the condensate quasipa
cles at T50. Beyond the limits of the condensate regi
n0(p)51 for p,pi and n0(p)50 for p.pf ~Refs. 11 and
12!. The specific form ofnp(T) and«p(T) can be found if
the functional dependenceE0@np(T)# is known. References
12–14 and 16 investigated a series of effective function
for which the ground state of the system with quasiparti
distribution nF

(0)(p) becomes unstable when the coupli
constants exceed some critical value, and the minimum
attained in the singular solutions corresponding to the s
with a fermion condensate. In the present paper we show
a scenario is possible in which the system transitions t
state with a fermion condensate through an intermed
structure, which corresponds to a multiply connected qu
particle distribution of the type~3!.

In this paper we examine the initial stage of rearran
ment, and in this stage, as will become clear in what follow
all changes in the quasiparticle momentum distribution t
place in a relatively narrow layer near the Fermi surfa
Therefore we neglect the third and higher orders in the va
tion dn in the formula of Landau theory for the variation o
the energy of the system. As is well known, this is the ba
for the concept, used in many branches of many-body the
~especially widely in nuclear theory!, of the effective func-
tional, the main ingredient of which is the phenomenologi
effective interaction. In accordance with this approach,
will consider the simple effective functional of the energy
the system of quasiparticles

E0~T!5E p2

2M
np~T! dt1

1

2

3E V~p2p8! np~T! np8~T! dtdt8 ~6!

with effective repulsive interaction in the form
-

ll

r-
q.
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V~p2p8!5
V0

~p2p8!21a2
. ~7!

In formula ~6! dt denotes integration with respect t
p/(2p)3 and calculation of the trace over the spin variab

The quasiparticle spectrum is found by calculating t
variational derivativedE0 /dnp(T):

«p~T!5
p2

2M
1E V~p2p8! np8~T! dt8. ~8!

The functional relation between«p(T) and np(T) given by
formula ~8! together with Eq.~1! and the normalization con
dition

E np~T!dt5r ~9!

represent a system for calculating the quasiparticle distr
tion np(T) and spectrum«p(T). The present work uses th
parameter valuea50.07pF and examines the behavior of
system as a function of the parameterV0 ~for convenience
everywhere below we use the dimensionless param
g5MV0 /(4p2pF)).

Let us comment on some aspects of the numer
scheme. Equation~6! together with formula~1! is a nonlinear
integral equation for the function«(p). This equation was
solved on a grid with grid stephp5531025pF . To con-
volve n(p) with the effective interactionV(p,p8) numeri-
cally, we used a five-point variant of the Newton–Cot
quadrature formula with a five-point output filter. The no
linear equation was solved using an iterative method w
relaxation. The accuracy of the solution was determined
substituting it into the original equation. The acceptable er
~maximum discrepancy between the left and right sides! was
taken to be equal to 1028«F . The importance of such an
accurate calculation of the spectrum will become clear fr
the discussion of the calculated results which follows. T
number of iterations necessary to achieve the chosen a
racy for the relaxation parameterw50.001~this value of the
parameter proved to be optimal for stability of the iterati
procedure!, was roughly 30,000. Note also that the resu
turned out not to depend on from which point of the fun
tional space the iterative procedure started~the trajectories
along which the iterations reach the solution and, of cou
the stability of the procedure depend on the starting poi!.
Thus, for example, the solution forg50.50 atT51027 was
obtained twice: once starting from the solution forg50.50 at
T51025, and a second time, starting from the solution f
g50.48 atT51027 ~here and everywhere below we assum
the temperatureT to be given in units of«F

05pF
2/2M ).

3. STABILITY OF SINGLY CONNECTED AND DOUBLY
CONNECTED FERMI SPHERES: DISCUSSION OF
NUMERICAL RESULTS

We begin our discussion of the calculated results
clarifying at what value ofgc

(0) the necessary condition fo
stability of the ground state with quasiparticle distributio
nF

(0)(p) at T50 is violated. This condition arises11,12 as a
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condition of nonnegativity of the variation of the energyE0

of the ground state for any admissible variations of the d
tribution functionn(p):

dE05E @«~p!2m# dn~p! dt. ~10!

For the distributionnF
(0)(p) the admissible variations hav

the same sign as the differencep2pF . Therefore, replacing
the chemical potentialm in formula ~10! by the energy
«(pF), we can reformulate the necessary condition for s
bility of nF

(0)(p) in the form of a requirement11,12 that

s~p!52M
«~p!2«~pF!

p22pF
2

~11!

be positive for all values of the momentump. If the function
s(p) first vanishes nearpF , then this is equivalent to the
appearance of an inflection in the curve«(p) in the vicinity
of the Fermi momentum. The derivatived«/dp for the dis-
tribution nF

(0)(p) is easily calculated. For the effective inte
action ~7!, in dimensionless form it is equal to

FIG. 1. The functionz (0)(p), calculated forg50.410, 0.415, and 0.420.
-

-

z~0!~p!5
M

pF

d«

dp
5

p

pF
1

gpF

p

2
g~p21pF

21a2!

4p2
ln

~p1pF!21a2

~p2pF!21a2
. ~12!

From Fig. 1, which plots the curvesz (0)(p) for three
values ofg, it can be seen that tangency to the straight l
z50 obtains forg5gc

(0).0.415 at the pointpc.0.97pF

@the nearness ofpc to pF justifies replacings(p) by the
function z (0)(p)#. For g.gc

(0) the ground state with quasi
particle distributionnF

(0)(p) becomes unstable, and it unde
goes rearrangement.

The question of how the ground state is structured
mediately beyond the transition point is answered by Fig
which plots the results of a calculation ofnp(T) for various
values ofT for g50.45. ForT;1023 the dependencenp(T)
has the form of the quasiparticle momentum distribution i
system with a fermion condensate~below we will dwell on
this point in more detail!. For T,1023 a dip appears in the
distributionnp(T), which deepens as the temperature is lo
ered, and atT51027 it is already almost indistinguishabl
from the doubly connected Fermi sphere~3!. The quasipar-
ticle spectrum«p(T) corresponding to this distribution, ca
culated forT51027, is plotted in Fig. 3. In contrast to the
spectrum of the fermion condensate, which has the form
plateau ‘‘lying on the chemical potentialm ’’ at T50 ~Refs.
11 and 12! and having a small slope forT.0, the quasipar-
ticle spectrum of the doubly connected Fermi sphere is fo
to be equal tom on the boundaryp1 of the inner sphere and
on the boundariesp2 and p3 of the spherical shell. On the
segmentp1,p,p3 the deviation of«p(T) from m at the
minimum of the spectrum reaches 231024«F , and at the
maximum, 231026«F . Although the latter number is very
small, recall that it is more than two orders of magnitu
greater than the precision with which the spectrum is cal
lated.

Figure 4 depicts the behavior of a doubly connec
Fermi sphere with increasing value of the coupling const
FIG. 2. Quasiparticle momentum distributionsn(p,T),
calculated for different temperatures forg50.45.
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g. The spherical shell appearing beyond the transition p
starts out with a finite thickness, but the gap between it
the inner filled sphere starts out vanishingly small. Asg
increases the outer shell thickens and separates from th
ner sphere. What happens to this solution ifg continues to
increase? In order to better understand this question, we
study the stability of such a layered Fermi sphere. Tow
this end, we elucidate the functionz (1)(p) for the momentum
distribution in the form~3! and observe where and when th
critical change of sign of this function takes place. An
ementary calculation gives

z~1!~p!5
M

pF

d«

dp
5

p

pF
1(

i 51

3

~21! i 21

3H gpi

p
2

g~p21pi
21a2!

4p2
ln

~p1pi !
21a2

~p2pi !
21a2J .

~13!

The functionz (1)(p), calculated for different values ofg, is
depicted in Fig. 4. In this calculation we choose as
boundary momentap1 ,p2 ,p3 those momenta at which th
absolute value of the derivativedn/dp takes its maximum
for T51027. It is easy to imagine that in the intervalgc

(0)

FIG. 3. Quasiparticle spectrum@«(p)2m#/«F
0 for g50.45 atT51027.
nt
d

in-

ill
d

-

e

,g,gc
(1).0.452 the two points at whichz (1)(p) changes

sign are located in such a way that the local minimum a
maximum of «(p) corresponding to them lie in region
wheren(p) is equal respectively to zero and unity, i.e., t
sign of the difference«(p)2m coincides with the sign of the
variationsdn(p) permitted by the Pauli principle and th
distribution satisfies the necessary condition for stability. B
for g.gc

(1) the situation is already different, as is clear fro
Fig. 4. For such behavior of the functionz (1)(p) there exist
regions where we have«(p)2m.0, but n(p)51. This
means that the necessary condition for stability is violated
the system, since variationsdn(p) exist which lower the
ground-state energy. This implies that forg5gc

(1) a new
rearrangement of the ground state of the system of quas
ticles takes place. Figure 5 shows how the quasiparticle
tribution is arranged beyond the second pointgc

(1) of the
rearrangement for the caseg50.46 for different values ofT.
The calculation shows that a new layering of the dou
connected Fermi sphere has already taken place for
value of the coupling constant, and forT51027 the quasi-
particle distributionn(p) is close to a triply connected Ferm
sphere:

nF
~2!~p!5u~p12p!2u~p22p!

1u~p32p!2u~p42p!1u~p52p!. ~14!

The scenario of increasing layering with increasing value
the parameterg does not stop at a triply connected Ferm
sphere. Thus, forg50.50 the distributionnp(T) depicted in
Fig. 6 consists of an small filled inner sphere with radi
;0.85pF at low temperaturesT, surrounded by four filled
spherical shells of thickness;(0.3–0.4)pF , which are sepa-
rated by empty spherical shells of thickness;(0.1–0.2)pF .
The quasiparticle spectrum corresponding to such distr
tions is depicted in Fig. 7. AtT51027 the spectrum inter-
sects the chemical potential nine times—on the boundar
the inner sphere and on the boundaries of the sphe
shells.
s
FIG. 4. Quasiparticle momentum distribution
n(p) and the functionz (1)(p), calculated for
different values of the parameterg.
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FIG. 5. The same as in Fig. 2, but forg50.46.

FIG. 6. The same as in Fig. 2, but forg50.50.
4. MULTIPLY CONNECTED FERMI SPHERE AS AN
INTERMEDIATE STRUCTURE ON THE PATH TO A FERMION
CONDENSATE

Thus, beyond the transition pointgc
(0) the scenario for

rearrangement of the ground state of the system of quas
ticles at low temperaturesT,1023 consists of a sequence o
rearrangements taking place with increase of the coup
constantg, as a result of each of which a new spherical sh
arises in momentum space. What distinguishes a system
a multiply connected quasiparticle momentum distributi
from a system with a fermion condensate, and what do t
have in common? Let us recall the main features of the s
with a fermion condensate and the rearrangement scen
corresponding to the emergence of such a state. First of
we note the plateau in the quasiparticle spectrum«p(T), ly-
ing on the chemical potentialm for T50 in accordance with
formula ~4! and acquiring a slope that increases with te
perature. The spectrum«p(T) for a multiply connected
Fermi sphere does not generally behave like this. At the lo
est calculated temperatureT51027 the spectrum is found to
be equal to the chemical potential only at the bound
points of the spherical shells of the multiply connected m
mentum distribution. Thus, the states with a multiply co
nected Fermi sphere have no macroscopic degeneracy
the case in a system with a fermion condensate. At the s
time, there are features in the density of states, associ
with the existence of maxima and minima of the functi
«(p). These peculiarities gradually disappear with growth
T up to the temperatureT0;1023, at which the last knee in
the spectrum is smoothed out. ForT.T0 the difference
«p(T)2m(T) becomes linear in temperature, as in syste
with a fermion condensate.

Another property of a system with a fermion condens
is the distributionnp(T), which for T50 is given by expres-
sion ~5!. The region occupied by the fermion condensa
obeys 0,np(T),1, which corresponds to a nonzero valu
of its entropy atT50. This violation of the Nernst theorem
disappears when correlations are included~e.g., superfluid
correlations!, which because of degeneracy slowly rearran
the ground state and make the entropy zero atT50. The
entropy of a state with a multiply connected Fermi sph
vanishes atT50, sincen(p) only takes values of 0 and 1
there. With growth ofT a multiply connected distribution
changes rapidly—the shell boundaries broaden and the s
coalesce, transitioning atT;T0 into a smoothly decreasing
dependence, similar to the momentum distribution of a s
tem with a fermion condensate. Along with a rapid change
np(T), the entropy of the system grows rapidly as the te
perature is raised. Calculations show that atT5T0 the en-
tropy of a system with a multiply connected Fermi sphe
reaches the valueS0;V0 /V, which is equal to the ratio of
the phase volume of the region of the multiply connec
momentum distributionV0 to the phase volume of the entir
systemV. Just such a value of the entropy would be ch
acteristic atT;T0 for a system with a fermion condensa
occupying a phase volumeV0. For T.T0 the entropy be-
comes linear in T, as in systems with a fermion
condensate.12,16
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FIG. 7. Quasiparticle spectra@«(p,T)2m#/«F
0 , calcu-

lated forg50.50 atT51024 ~curve1 !, T51025 ~2 !,
T51026 ~3 !, andT51027 ~4 !.
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All of these curious trends in the behavior of the m
mentum distribution, entropy, quasiparticle spectrum, a
density of states of a system with a quasiparticle momen
distribution in the form of a multiply connected Fermi sphe
are worthy of separate, detailed consideration.

The scenario in which rearrangement takes place wh
state with a fermion condensate forms is characterized
one critical value of the coupling constantgc , at which a
fermion condensate arises in the system. With further gro
of g the phase volume of the fermion condensate increa
but beyond that no further qualitative changes take plac
the system—increasing the coupling constant leads onl
an increase in the relative phase volume of the fermion c
densate, while the momentum distributions and quasipar
spectra remain fundamentally similar.11,12 The scenario of
rearrangement found in the present calculations is diffe
in different temperature intervals. ForT50 it is character-
ized by a sequence of valuesgc

( i ) , after each of which is
reached states arise having a higher connectedness of
momentum distribution. The number of such critical valu
decreases with increasingT, and for T.T0 only gc

(0) sur-
vives. This means that in the given model the scenario
rearrangement with formation of a multiply connected Fer
surface with increase of the temperature gives way gradu
to the scenario of fermion condensation.

Unfortunately, the computer time needed to calculate
spectra increases rapidly as a function of the phase vol
V0 occupied by all the spherical shells. For this reason
the present study we were able to calculate only for value
the coupling constantg,0.5 corresponding to the initia
stage of rearrangement. What happens with the system
larger values ofg? In order to better understand this que
tion, we will use a mechanical analogy, treating the mom
tum p like the spatial coordinater ~Refs. 11 and 12!. Thus,
the problem of minimizing the ground-state energy fun
tional atT50 can be interpreted in terms of the mechani
analogy as a search for the equilibrium spatial distribut
n(r ) of the particles moving in an external harmonic fie
U(r )5kr2/2 with stiffnessk51/M and interacting with each
d
m

a
y

th
s,

in
to
n-
le

nt

eir
s

f
i
lly

e
e

n
of

for
-
-

-
l
n

other via the forces~7!, where the number of particles i
fixed by the normalization condition~9!. As long as the so-
lution n(r ) of the mechanical problem exceeds 2/(2p)3 at
just one point, it cannot be taken as the solutionn(p), since
in that case it would contradict the Pauli principle. As t
repulsion between the particles increases, the mechan
system obviously expands and therefore becomes more
efied. And as soon as the distributionn(r ) becomes every-
where less than 2/(2p)3, it begins to correspond to the solu
tion n(p) of the initial problem. It is natural to expect that i
the mechanical problem the distributionn(r ) should be
smooth and monotonic; therefore the corresponding solu
n(p) is something different than the singular solution cor
sponding to fermion condensation. Thus, the structure
served in the present calculations having a multiply co
nected quasiparticle momentum distribution is proba
intermediate along the path to fermion condensation. T
transition from the phase with a multiply connected mome
tum distribution to the phase with a fermion condensate t
ing place as the coupling constant is increased requires s
rate study.

5. CONCLUSION

In conclusion, we repeat that we have examined
structure of the ground state of a homogeneous Fermi liq
using the method of the effective functional with a stro
repulsive interaction characterized by two parameters,
radius in momentum spacea and the coupling constantg. A
numerical study of this functional has shown that for a fix
value of the parametera there exists a critical value of th
coupling constant,gc

(0) , beyond which the ground state wit
a Fermi-like quasiparticle distribution becomes unstable
rearranges. The scenario of the initial stage of rearrangem
with increasingg is found to be different in different tem
perature ranges. ForT50 there exists a series of critica
constantsgc

( i ) corresponding to a sequence of transitions, a
result of each of which a new spherical shell of the quasip
ticle momentum distributionn(p) arises. The quasiparticle
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spectrum«(p) corresponding to such a multilayered dist
bution, in contrast to the spectrum of systems with a ferm
condensate, does not have a plateau in a finite regio
momentum space, but is equal to the chemical potentia
the spheres bounding the filled shells. The ground state
a multiply connected distribution does not possess a ma
scopic degeneracy, and the entropy of this state does
vanish at zero temperature. As the temperature increase
shell boundaries rapidly broaden, and forT;T0'231023

there no longer remain any vestiges of the critical consta
gc

( i ) with the exception of the single critical constantgc
(0) .

For T.T0 the rearrangement scenario is the scenario of
mion condensation. A qualitative analysis has shown that
found structure with a multiply connected quasiparticle m
mentum distribution is an intermediate structure and as
coupling constant is increased, it should give way to
fermion condensate.
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Phase transitions in biperiodic stripe domain structures of uniaxial magnetic films with
a positive anisotropy constant
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New phase transitions induced by a magnetic field and accompanied by a change in the
symmetry or the period of the distribution of the magnetization vector are observed in biperiodic
stripe domain structures of iron garnet films with a positive anisotropy constant. A symmetry
classification of the observed types of domain structures is derived, and the form of the state
diagram of the films is determined in theH'H i plane, whereH' andH i are the components
of the magnetic field vector perpendicular and parallel to the normal to the surface.
© 1998 American Institute of Physics.@S1063-7761~98!01412-7#
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1. INTRODUCTION

It is a well-known fact that when the thicknessL of a
uniaxial magnetic film with a positive anisotropy constantbu

and with the easy magnetization axis oriented along the
mal n to the surface~the normal also being the direction o
the z axis! is gradually increased, at a critical thicknessLcr*
the initial equilibrium stripe domain structure acquires qua
harmonic distortions of the domain wall profile, causing t
distribution of the magnetization vectorM to become bipe-
riodic. In thicker (L.Lcr

(1).Lcr* ) films this modification of
the distribution ofM at the surfaces of the magnet is a pr
cursor to the onset of chains of isolated cone-shaped sur
domains within each stripe domain, which penetrate into
bulk of the film to a maximum depthL/2 and for which the
componentMz has the opposite sign from the domains
which the given cone-shaped domains reside. With a fur
increase in the thickness (L.Lcr

(2).Lcr
(1)) smaller cone-

shaped domains with the opposite sign of the projectionMz

begin to form within each of the original cone-shaped d
mains, and so on until, as a result, complex structures of
‘‘Russian nested dolls’’ type are formed, consisting of a
of domains contained one inside another. Historically
term ‘‘branching’’ has been attached to the process, bu
something of a misnomer in that only localized layering
the distributionM (r ) into the depth of the film takes place
characterized by the alternating sign ofMz in consecutive
layers. True branching of the domain walls near the surfa
of the film, accompanied by the formation of fractal-lik
configurations, is observed for thicknesses in the inter
Lcr

(1).L.Lcr* 1dL, wheredL,(Lcr
(1)2Lcr* ), i.e., from the in-

ception of the first side branches on curved domain walls
the onset of the first cone-shaped domains~see, e.g., Refs
1–6!.

This behavior of the domain structure is inherent in ma
nets with any nonzero, positive value of the uniaxial anis
ropy constant, from magnetoplumbites and hexaferritesbu

@1) to low-coercive-force alloys (bu!1). The only differ-
ence is that in zero external magnetic field the ground s
1131063-7761/98/87(12)/12/$15.00
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of the films corresponds in the first case to labyrinth str
domain structures with chaotic orientation of the doma
walls and in the second case to ordered two-dimensio
stripe domain lattices exhibiting translational symmetry. T
ordering of the domain walls in films with small values ofbu

is caused by the large deviation of the vectorM from the
normal to the surface.

For two decades the behavior of biperiodic stripe dom
structures1! has been investigated experimentally on me
and alloy films1,2,5,9–18 and on ferrite films having
magnetoplumbite,2,3,9,10,18–21 spinel,22,23 garnet,24 and
hexagonal2,4 structures by means of Lorentz electro
microscopy,2 powder patterns,1–5 polarization optical
microscopy,9,24 and magnetooptical diffraction.24 In that
same time span a few attempts have been made to des
the properties of biperiodic stripe domain structures via
Ritz variational principle using various test functions a
working within the concept of geometrical~unstructured! do-
main walls.13,25–28Interest in biperiodic stripe domain struc
tures eventually died out and has resurfaced only recentl
connection with the magnetooptical diffraction of light b
such domain arrays.29,30

An analysis of the cited papers shows clearly that
behavior of biperiodic stripe domain structures in exter
magnetic fields has not been adequately studied. In part
lar, the possibility of the existence of various modificatio
of such nonuniform distributions of the magnetic mome
and the question of phase transitions between them h
been all but ignored. Our investigations fill this gap.

The paper is organized as follows. In Sec. 2 the exp
mental conditions are described, and brief information
given in regard to the procedure used to grow the experim
tal samples, their parameters, and the general propertie
biperiodic stripe domain structures. Section 3 contains a p
liminary analysis of the experimental results, which is ess
tial to the material that follows. A symmetry classification
the experimentally observed biperiodic stripe domain str
tures is given in Sec. 4, drawn from the apparatus of
theory of two-dimensional space groups. The kinetics
6 © 1998 American Institute of Physics
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FIG. 1. State diagrams of uniaxial magnet
garnet films for orientational~a! and spontane-
ous~b! phase transitions.~U! Uniformly mag-
netized state;~S! simple stripe domain struc-
tures; ~BS! biperiodic stripe domain
structures; the arrows on the curves indica
the directions of variation of the transition
inducing parameter.
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magnetic field-induced phase transitions in biperiodic str
domain structures is described in Sec. 5. A brief discuss
of the results and related problems is set forth in the Con
sion.

2. EXPERIMENTAL CONDITIONS AND GENERAL
PROPERTIES OF BIPERIODIC STRIPE DOMAIN
STRUCTURES

We have investigated the domain structures
uniaxial magnetic garnet films with composition
Lu2.1Bi0.9Fe52xMgxO12 (x50 – 0.17) and Lu2.1Bi0.9Fe5O12

~referred to from now on as type-I and type-II films! and
thicknessesL51 –40mm, grown by liquid-phase epitaxy
~using solvents Bi2O3 and PbO–Bi2O3, respectively! on
~111!-oriented Gd3Ga5O12 substrates. The growth condition
were similar to those used by Tamadaet al.31,32 The Néel
temperature of the films wasTN was 560 K, and the satura
tion magnetization 4pM was 1800 G. The magnetization o
the samples to saturation by fields along (H i5Hz) and per-
pendicular (H'5Hy) to the normaln to the surface in type-I
films required fieldsH i* 51500–1750 Oe! and (H'

* 525
2200 Oe, respectively, and in type II fields, 1600–1750
and 300–500 Oe, respectively, whereH i* andH'

* , as a rule,
increased as functions of the film thickness. An approxim
estimation2! of the uniaxial anisotropy constants, based
the relation

bu'12H'
* /4pM ,

givesbu'0.88–0.98 for type-I films andbu'0.72–0.83 for
type-II films. The films also exhibited weak cubic aniso
ropy, which in our case merely imparted a slight asymme
to the state diagram on theH'H i plane relative to the ordi-
nate axis without producing any qualitative changes in
response of the domain structure to an external magn
field ~see Ref. 33!.

High specific Faraday rotation in the visible range~more
than 1 deg/mm! permitted reliable visual determination of th
type of domain structure of the films by means of a polari
tion microscope and from diffraction patterns; the lig
source was an incandescent lamp in the first case an
helium-neon laser with a working wavelengthlL50.63mm
in the second case. The radiation intensity in the individ
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diffraction maxima were recorded by a moving photosen
tive probe with the application of spatial filtering, which wa
also used to enhance the contrast and sharpness of s
details of the domain images. The domain structures w
photographed~in TIFF format! by a Kodak DC 120 digital
camera which provided a resolution of 12803960 pixels and
were processed by means of standard computerized ph
retouch software. Two pairs of orthogonally positioned co
were used to generate the magnetic fieldsH i and H' with
maximum strengths of 10 kOe and 2 kOe, respectively.

In zero external field a simple~monoperiodic! stripe do-
main structure existed in films having a thickness sma
than 5mm, and a biperiodic stripe domain structure wi
harmonic surface modulation of the domain wall profile w
found in thicker films. The amplitude of the distortions of th
domain wall profile increased with the film thickness, b
conical near-surface domains did not form, even in the thi
est films (L540mm! attainable by liquid-phase epitaxy. Th
boundaries of the regions in which biperiodic domain stru
tures exist on theLT andH'H i planes could be determine
by observing the behavior of the domain structures as
films were heated~from room temperature! and as the
strength and orientation of the external magnetic field w
varied ~see Fig. 1!. There is clearly an upper temperatu
limit Tcr* (L) for modulation of the domain wall profile, i.e.,
simple stripe domain structure is encountered atT.Tcr* . The
modulation of the domain wall profile atT5Tcr* vanishes as
a second-order phase transition~see Ref. 34!. As the film
thickness is increased, the transition temperature incre
monotonically, asymptotically approaching the Ne´el tem-
peratureTN but always below it~see Fig. 1b!. Figure 1b
shows the results of a series of type-II films; the results
similar for type-I films.

A similar situation is encountered for oriented pha
transitions~for T5const) induced by the magnetic fieldH' ,
as illustrated by Fig. 1a, which shows a portion of the st
diagram3! for a type-I film having a thickness of approx
mately 10mm ~from now on designated film No. 1! at T
5293 K. The region of biperiodic stripe domain structur
on the state diagram in coordinates$H' , H i% always lies
inside the region of stability of simple stripe domain stru
tures, the transformation from one type of domain struct
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to the other taking place as a first-order phase transition.
exception is the pointC corresponding to the apex of th
biperiodic region. In Fig. 1a the pointC is located on the
ordinate, which is the symmetry axis of the state diagram
the film rotates about the normal under the influence of
weak cubic anisotropy, symmetry is lost in general, andC is
no longer on the ordinate. If the film thicknessL tends to
Lcr* 10.5 mm, the region of biperiodic stripe domain stru
tures shrinks to a point; as the film thickness is increas
this region broadens, and the BS→S curves on the diagram
of Fig. 1a approach the S↔U curves, but a gap always exis
between them.

The generation of stripe domain structures in uniax
films from the homogeneous state as the magnitude of
external magnetic fieldH' is lowered withH i50 is accom-
panied by symmetry breaking with respect to in-plane tra
lations and reflections and with respect to rotations about
normal to the surface, so that the magnet in the domain ph
must be described by three order parameters: translatio
orientational, and ‘‘modulational,’’ which are characteriz
by ~respectively! the degree of periodicity of the distributio
of the magnetization vector, the degree of parallelism of
domain walls, and the maximum angle of deviation of t
vectorM from the magnetic field vector.35 Only orientational
and modulational long-range orders exist forTÞ0, because
the translation group is not discrete. Long-range translatio
order is broken by the onset of bound or free magnetic
locations in the stripe domain structure. In the first case
state of the magnet corresponds to the so-called Berezins�–
Kosterlitz–Thouless~BKT! phase, in which the ‘‘transla
tional’’ correlation function decreases~in the far zone! ac-
cording to a power law, and the domain walls are complet
ordered; in the second case the state corresponds to
liquid-crystal phase, for which the translational correlati
function decreases exponentially, and the orientational co
lation function decreases by a power law.35–38

3. PRELIMINARY ANALYSIS OF THE EXPERIMENTAL
RESULTS

The experiments were performed atT5293 K for vari-
ous values ofH' andH i5const. For a given value ofH i the
saturation fieldH'.H'

* was determined, then the current
the corresponding pair of coils of the electromagnet w
gradually reduced to zero, the polarity of the current w
switched, and the film was again brought to the magnetic
saturated state by a fieldH' in the opposite direction to the
first. Next, all the observations were repeated for the asce
ing branch of the hysteresis loop. Throughout the entire
gion of existence of simple and biperiodic domain structu
the latter were well ordered, but contained defects in
form of free and bound magnetic dislocations, i.e., the s
of the magnet corresponded to the liquid-crystal phase or
BKT phase.35–38

In the phase transition, induced by the magnetic fi
H' , from the uniformly magnetized state to the phase wit
simple stripe domain structure of periodd the boundaries
between the domains were oriented parallel to the ve
H' , i.e., the domain array was characterized by the recip
ne

s
e

d,

l
e

-
e
se
al,

e

al
-
e

i

ly
the

e-

s
s
ly

d-
-
s
e
te
he

d
a

or
-

cal lattice vectorb15(2p/d)ex . Two other parameters be
sidesd must be used to describe the biperiodic domain str
tures:L1 and L2 ~in generalL1ÞL2), which are equal to
the periods of surface modulation of the domain wall profi
at the interfaces of the film with free space and with t
substrate, respectively. The space of reciprocal lattice vec
becomes two-dimensional in this case, whereb2

5(2p/L i)ey ,i 51, 2.
The distribution of the magnetization in domain stru

tures of any type was nonuniform both along the thickn
and in the developed planes of the films. However, a po
ization microscope with high optical resolution and stand
spatial and polarization filtering techniques could be used
obtain qualitative information about the variation of the pr
file of the thickness distribution of the magnetization and
distinguish the image elements needed to test the reliab
of the working hypotheses.

An analysis of the behavior of the domain arrays a
their corresponding diffraction patterns leads to the follo
ing conclusions.

1. In films of any thickness the harmonic instability o
the domain wall profile in the initial simple stripe doma
structure evolves independently into two developed surfa
~usually for different values ofH') as the fieldH' is de-
creased, because the parameters of the near-surface lay
epitaxial films differ at the boundaries with the substrate a
with free space~see, e.g., Refs. 39 and 40!. The periods of
the harmonic distortions on the two surfacesL1 ~at the film-
free space interface! andL2 ~at the film–substrate interface!
can differ substantially~more than twofold; see Fig. 2!. A
further decrease in the fieldH' causes the penetration dep
of the surface distortions of the domain wall profile to i
crease, and they begin to influence one another. For film
thicknessL&20mm this mutual influence leads to total sp

FIG. 2. Geometrical parameters of biperiodic stripe domain structure
type-II film No. 2 of thickness 16mm versus the magnetic fieldH' .
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tial ‘‘synchronization’’ of the harmonic distortions: They ac
quire a common period (L15L25L), as shown in Fig. 2
and phase opposition, i.e., the phase of the function mo
lating the domain wall profile near one surface of the fi
differs by p from the phase of the analogous function ne
the other surface. In thicker films the increase in the pene
tion depth of the surface harmonic distortions of the dom
wall profile does not induce their spatial synchronizati
(L1ÞL2), but the difference in the periodsDL5L12L2

decreases significantly from its value for noninteraction;
Fig. 3. We note that one of the possible types of biperio
domain structures—with antiphase modulation of the pro
of the distribution ofM in adjacent domain walls—is mos
likely stable only when there is no interaction between s
face structures at the interfaces of the film with the subst
and with free space.

The amplitudes of the harmonic distortions on the t
surfaces of the film differ, with more developed bends of
domain walls existing at the film–substrate interface. In
median plane of the film the domain walls remain vertic
and even~unmodulated!, as in a simple stripe domain struc
ture. As the fieldH' is increased, the bends of the doma
walls disappear first at the film–substrate interface and t
at the free surface. In a finite fieldH' the peaks~and
troughs! of the modulating functions in adjacent doma
walls shift in opposite directions from their position forH'

50. Moreover, the teeth of the ‘‘saw’’ in the same doma
wall but on opposite sides of the film deviate in oppos
directions under the influence ofH' . Reversing the sign o
H' causes the slopes of the sawtooth domain walls to
verse directions. Effects such as these occur because
curved domain walls create periodic stay fieldsHd with an
alternatingy-component above the film surfaces. When t
stay fields interact withH' , the latter lengthens the parts o
the domain walls for whichHdy↑↑H' and shortens the part
for which Hdy↑↓H' .

2. The generation and disappearance of surface dis
tions of the domain wall profile and the variation of th
periodsL1 and L2 take place in a stripe domain structu
whose periodd depends on the orientation and magnitude

FIG. 3. Geometrical parameters of biperiodic stripe domain structure
type-II film No. 3 of thickness 26mm versus the fieldH' .
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the external magnetic field. The smooth variation of the
erage periodd of the stripe domain structure as the fieldsH'

andH i are varied is attributable to the generation, motion,
annihilation of magnetic dislocations; this fact was fir
brought to light by Palatnik and Lukashenko.17 It is obvious
that the smooth variation of the average domain wall mo
lation period L ~or the modulation periodsL1 and L2)
should also be attributable exclusively to the presence
magnetic dislocations, which lift the prohibition imposed b
translation invariance on continuous variation of the recip
cal lattice vectors in ideal periodic structures.4! We note that
only the field componentH' has a strong influence ond, L1,
and L2; throughout the entire region of existence of stri
domain structures these parameters depend weakly on
field componentH i , increasing slightly asuH iu is increased.

3. Biperiodic domain structures in the region of stabili
can exist in several different modifications, which can
classified by symmetry. Such a classification, of course, c
not be made on the basis of the apparatus of thr
dimensional space groups, because the finite thickness o
films prohibits translations in the direction of the normal
the surface~along thez axis!, and the functionM (z) does
not have any kind of symmetry in general. For the purpose
classification, nonetheless, the apparatus of the theory
Shubnikov~black-and-white! two-dimensional space group
can be used to analyze the symmetry of the distribution
the vectorM on either surface of the film~or in any plane in
the interior of the film, parallel to these surfaces!. This ap-
proach is admissible not only for stepped~black-and-white!
distributions of the magnetic moment, when the dom
walls are infinitely narrow, andM56uM uez , but also for
‘‘gray’’ domain structures with a smooth functionM (r ), be-
cause the symmetry operations that produce abstract bl
and-white groups can act on objects of any nature.

4. Since the phase is any stable state of the system
differs in symmetry or degree of ordering from other po
sible stable states, the transitions induced by the exte
magnetic field between different modifications of biperiod
domain structures must be regarded as phase transitions.
means that the liquid-crystal phase of a magnet with bip
odic stripe domain structures is polymorphic and differs ra
cally from the analogous phase with simple stripe dom
structures.

5. The nuclei of new states in phase transitions betw
different modifications of biperiodic stripe domain structur
are magnetic dislocations, which therefore bring to the ini
domain array not only new spatial periodsd andL, but also
a new symmetry. In contrast, the magnetization reve
~change of sign of the projection of the vectorM to the
direction of the vectorH') of films having the investigated
composition, observed forH',5 Oe, involves dislocations
whose motion in the weak-field region is inhibited by th
coercive force and is fostered by processes of rotation~flop-
ping! of the magnetization vectors.

We close this section with the observation that dom
structures having monopolar domain walls occur in our
vestigated films withbu,1 in zero field; the walls are char
acterized by the fact that throughout the entire volume of
film the angles of deviation of the magnetization vectorsu

in
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5arccos(uM u21(M–e0)) from a certain designated directio
with unit vectore0'n does not exceed the angleumax,p/2,
which depends onbu . Formally we haveumax→0 in the
limit bu→0. In transition from one domain to the next th
vectorsM merely ‘‘rock’’ about the average position define
by the unit vectore0. In films having purely uniaxial mag
netic anisotropy and the easy magnetization axis paralle
n, all directions in a plane perpendicular to the normal
equivalent, so that the ‘‘selection’’ of the directione0 de-
pends on the history of the domain structure and how i
generated. If the domains are generated from the unifor
magnetized state as the result of a decrease in the fieldH'

(1)

~from the saturating value!, the unit vectore0 will be parallel
to the vectorH'

(1) . This is also the situation when the fie
H'

(1) is reduced to zero, and whenH'
(1)50 holds, the distri-

butionM (1)(r ) is characterized by restriction of the allowe
orientations of the vectorsM to within a solid angleV (1)

smaller than 2p sr, with the axis alongH'
(1) . The oppositely

directed~relative to the initial! field H'
(2) corresponds to the

analogous @representing the distributionM (2)(r )] solid
angleV (2),2p, but with the axis in the opposite direction
The solid anglesV (1) and V (2) are nonoverlapping, i.e.,
smooth transition between the statesM (1)(r ) andM (2)(r ) is
impossible. Consequently, the limiting hysteresis loop w
respect to the fieldH' must have a jump corresponding
the change of sign of the projection of the vectorM onto the
vectorH' .

4. SYMMETRY ANALYSIS OF BIPERIODIC STRIPE DOMAIN
STRUCTURES

The results of the symmetry classification of the expe
mentally observed biperiodic domain structures are given
Fig. 4, which shows schematically the motif-forming el
ments~in the form of black-and-white figures outlined by
thick solid line!, the domain walls~dashed lines!, and the
rectangular Bravais cells~thin solid lines!. Auxiliary dotted
lines are drawn in some figures to accentuate individual s
metry operations. The black-and-white representation of
motif-forming elements symbolically portrays the nonun
form distribution of the vectorM on either of the two sur-
faces of the film~or in any plane parallel to them!, black
representing regions with one sign of the projectionMz ~for
any value of the latter! and white representing regions wit
the opposite sign ofMz ; the dashed lines~domain walls!
correspond to the set of points at whichMz50. In this sym-
bolic representation the symmetry of the biperiodic dom
structures formed in the investigated films is described
one of six two-dimensional space groups of the rectang
system with a primitive~Pam2, Pa, Pmm2, Pm! or centered
~Cmm2, Cm! Bravais cell. Structures with symmetryPa, Pm
and Cm can exist in dual modifications~not shown in the
figure! corresponding to two antiparallel directions of th
vectorH' .

In the structure with symmetryPam2 shown in Fig. 4a
the distortions of the profile of the distribution of the ma
netization vectorM are in phase in all the domain walls o
the given surface of the film5! and are symmetric; we there
fore call this structure a symmetric in-phase biperiodic d
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main structure. This kind of profile of the magnetization d
tribution can occur only forH'50: Any arbitrarily small
field H' will transform such a structure by a second-ord
phase transition into one of two modifications of an asy
metric in-phase~more precisely, quasi-in-phase! biperiodic
domain structure with symmetryPa ~see Fig. 4b!.

Certain zones of the region of stability of biperiodic d
main structures on theH'H i plane, adjacent to the regions o
stability of simple stripe domain structures, can also cont
the structures shown in Figs. 4c and 4d, which we call~re-
spectively! symmetric and antisymmetric antiphase bipe
odic domain structures.

If the field H i has a nonzero magnitude greater than
critical value, translations in the direction of thex axis
(ex'H') experience period doubling in certain intervals
the fieldH' , and the structures shown in Fig. 4e or Fig.
are formed, which can be called~respectively! bisymmetric
double and mirror-symmetric double biperiodic doma
structures. Such domain arrays make up a sequence of a
nating zones of in-phase and antiphase biperiodic dom
structures~symmetric or asymmetric!.

Photographs of actual observed domain structures in
No. 2 are shown in Fig. 5. The photographs in Fig. 5 rep
sent biperiodic domain structures of the type: a! symmetric
in-phase (H50, d55.5mm, L52.1mm!; b! asymmetric in-
phase (H i50, H'520 Oe, d55.5mm, L52.1mm!; c!
symmetric antiphase (H i50, H'5300 Oe,d53.6mm, L
5L153.6mm!; d! mirror-symmetric double (H i5300 Oe,
H'5100 Oe,d513mm, L52.7mm.

FIG. 4. Symmetry classification of the experimentally observed biperio
domain structures:~a! symmetric in-phase;~b! asymmetric in-phase;~c!
symmetric antiphase;~d! asymmetric antiphase;~e! bisymmetric double;~e!
mirror-symmetric double.



in

1141JETP 87 (6), December 1998 Arzamastseva et al.
FIG. 5. Photographs of observed doma
structures in film No. 2.
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Experiments on the observation of magnetooptical li
diffraction by two-dimensional domain arrays play a decis
role in the identification and symmetry classification of d
ferent modifications of the observed biperiodic domain str
tures. For an abstract two-dimensional biperiodic lattice w
periodsd andL along thex andy axes of a Cartesian coor
dinate system with the scattering of light incident on the fi
along thez axis (ezin) diffraction maxima appear in the di
rectionsk(p,q)5k1pb11qb2, wherek is the wave vector of
the primary light beam,p andq are integers, andb1 andb2

are the reciprocal lattice basis vectors, which are defined
the expressionsb15(2p/d)ex and b25(2p/L)ey . In gen-
eral, the intensitiesJp,q of the various diffraction maxima
depend both on the type and symmetry of the lattice and
the type and shape of its elements.

If circular magnetic dichroism is disregarded, the d
main arrays represent pure phase diffraction gratings, wh
implement a periodic modulation of the angle of rotation
the polarization plane of the linearly polarized primary lig
beam as a result of the Faraday effect. The only compon
of the film-scattered light that contribute to the formation
the diffraction pattern are those in which the polarizati
plane is rotated from the primary beam through an an
6p/2 ~the sign changes in each transition from a dom
with Mz.0 to a domain withMz,0), whereas component
having the same polarization plane as the primary beam
not acquire a phase difference after passing through dom
with Mz.0 andMz,0 and so they do not interfere. It fol
lows, therefore, that when light is scattered by the dom
arrays, the diffracted radiation in all diffraction maxima
orderpÞ0 andqÞ0 is polarized orthogonally relative to th
t
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principal (p50 andq50) maximum~see, e.g., Refs. 41 an
42!. When light is scattered by a symmetric simple stri
domain structure, in which domains withMz.0 and Mz

,0 are of identical width (d15d25d/2), the intensity of
the even diffraction maxima becomes equal to zero.6! When
the symmetry of a simple stripe domain structure is brok
~e.g., by the application of a fieldH i), extinction of the even
diffraction maxima no longer occurs.

Taking into account the symmetry of the experimenta
observed structures and these properties of the magneto
cal diffraction of plane-polarized light by the domain array
we can determine the form of the diffraction patterns
various modifications of biperiodic stripe domain structur
on the basis of fairly straightforward considerations. A sy
metry approach similar to that used in x-ray structural ana
sis for the determination of Laue classes44 shows that the
possible types of optical diffraction patterns for the spa
groups Pam2, Pa, Pmm2, Cmm2, and Cm in the case of
normal incidence on the film belong to the same symme
point group mm2 ~see, e.g., Ref. 45!. For d̄15d̄25d/2,
where d̄1 and d̄2 are the average widths of domains wi
Mz.0 and Mz,0, respectively, the extinction of maxim
with p52n and anyq ~other than the principal diffraction
maximum! will be observed for in-phase symmetric biper
odic domain structures~Fig. 4a!, and the extinction of
maxima with p52n11 and anyq @except maxima with
(p, q)5(61, 0)# will be observed for antiphase biperiod
domain structures~Fig. 4c!. Indeed, if we hypothetically de
lineate bands containing modulated domain walls in e
domain, then secondary Huygens–Fresnel sources situat
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FIG. 6. Schematic representation of the observed diffr
tion maxima for biperiodic domain structures of variou
symmetries.
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adjacent bands will be in phase in the first case and
tiphased in the second case, resulting in the extinction of
corresponding maxima~see Figs. 6a and 6c!. If the condition
d̄15d̄25d/2 does not hold, any diffraction maxima can b
observed, as shown in Figs. 6b and 6d.

In light scattering by the structures shown in Figs.
and 4f the directions to the diffraction maxima are given
the relationsk(p,q)5k1pb181qb2, whereb18.b1/2, andb1

is the corresponding reciprocal lattice vector for in-phase
antiphase ‘‘nested dolls’’ structures generating the giv
double biperiodic domain structure. For bisymmetric dou
biperiodic domain structures we observe the extinction of
diffraction maxima with p52n and any qÞ0 ~Fig. 6e!,
where unu>1; such extinction does not occur for mirro
symmetric biperiodic structures~see Fig. 6f!.

The diffraction patterns in Fig. 6, which are plotte
solely on the basis of a symmetry analysis of the Brav
lattices and motif-forming elements, are qualitative in nat
and are not presumed to accurately represent the relativ
tensities of the various diffraction maxima.

Photographic negatives of diffraction patterns actua
observed in the experiments for film No. 2 are shown in F
7. The photographs correspond to biperiodic domain str
tures of the following types: in-phase a! symmetric (H50)
and b! asymmetric (H i50, H'520 Oe!; c! double bisym-
metric (H i5300, H'5100 Oe!; d! in-phase symmetric and
double symmetric (H i5250 Oe, H'560 Oe!; e! in-phase
asymmetric and antiphase symmetric (H i50, H'5200 Oe!.
In the latter case spatial filtering has been used to elimin
n-
e

r
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e
ll
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e
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y
.
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te

ambient light ~screening the central diffraction maximum
and the lower part of the diffraction pattern!. The pincushion
distortions in the photographs are the result of curvature
the image field.

It follows from a comparison of Figs. 6 and 7 that th
form of the actual observed diffraction patterns is consist
with the results of our qualitative symmetry analysis.

5. KINETICS OF PHASE TRANSITIONS IN BIPERIODIC
STRIPE DOMAIN STRUCTURES

We consider the specific characteristics of phase tra
tions involving biperiodic domain structures during cycl
variation of the fieldH' with H i5const in the case of film
No. 2, which has a thickness of 16mm and whose state dia
gram~for the range of fieldsuH iu<500 Oe is shown in Fig. 8
The solid curves represent the boundaries at which the v
ous magnetic states become unstable7! for the descending
branch of the limiting hysteresis loop~as the perpendicula
field varies from 1H'

(max) to 2H'
(max) , where uH'

(max)u
.400 Oe corresponds to magnetic saturation!, and the
dashed curves represent the same for the ascending br
for which the curve numbers are primed (18, 28, . . . ,68). The
symbols U↔S refer to the second-order phase transit
curves between the uniformly magnetized state and a sim
striped domain structure; the numbering of the other cur
will be explained below. Individual curves that have no be
ing on the ensuing discussion are not shown in the s
diagram.
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FIG. 7. Photographic negatives of experimenta
observed diffraction patterns for film No. 2.
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We first describe the evolution of the experimentally o
served domain structures for film No. 2 in the caseH i50,
H'5var, which is shown in Fig. 2. At the very beginning
nearly symmetric~judging from the form of the observe
diffraction patterns! antiphase biperiodic domain structure
formed ~with the maximum possible modulation period
the domain wall profile for the given surface,L15L1max) at
the interface between the film and free space from the reg
of a simple stripe domain structure when the fieldH' is
gradually reduced to some critical value. This instability
the diagram of Fig. 8 corresponds to curves1 and 1 8. In a
slightly weaker field~curves2 and 2 8 in Fig. 8! a similar
bending instability of the domain walls sets in at the film
substrate interface~with the minimum possible period for th
given surface,L25L2min,L1max). In a certain range of the
field H' the two surface structures exist independently a
essentially have no influence on each other; the modula
periods of the domain wall profiles in both structures,L1 and
L2 remain constant for all practical purposes. Then, owing
the increase in the penetration depth of modulation of
-

n

d
n

o
e

domain wall profiles, coupling arises between the surfa
biperiodic structures, transforming the antiphase symme
biperiodic domain structure into one of the dual modific
tions of an in-phase asymmetric biperiodic domain structu
specifically the modification corresponding to the initial d
rection of the fieldH' ~curves3 and 3 8 in Fig. 8!. This
process is accompanied by the onset of a very pronoun
field dependence of the modulation periodsL1 and L2, a
sudden change and merging of their values~see Fig. 2!, and
a sharp increase in the amplitude of the functions modula
the profiles of the domain structures. Total spatial synch
nization of the quasiharmonic distortions of the profile
then attained on both surfaces of the film (L15L25L,
whereL1min,L,L2max), and a single in-phase asymmetr
biperiodic domain structure is formed~the corresponding
curves are not shown in the diagram of Fig. 8!, remaining
stable down to zero value of the fieldH' .

After the polarity of the field is changed and its magn
tude is increased somewhat~to values no higher than 5 O
for film No. 2!, the magnetization of the film suddenly re
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FIG. 8. State diagram of film No. 2 in theH'H i plane.
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verses~i.e., the projectionMz changes sign in all domains t
the original direction of the magnetization vector of the fie
H') with an accompanying transition from an in-pha
asymmetric biperiodic domain structure to an in-phase s
metric structure.8! When the direction of the fieldH' is re-
versed~from the initial direction! and its magnitude is in-
creased, all of the transitions described above occur simil
but in the reverse sequence, exhibiting the typical hyster
of a first-order transition. Curves4 and5 ~4 8 and5 8) in Fig.
8 refer to~respectively! the generation and annihilation of a
antiphase symmetric biperiodic domain structure at the
surface, and curve6 ~or 6 8) refers to the disappearance
this structure at the film–substrate interface, i.e., transitio
a simple stripe domain structure. We note that only for tr
sitions between the symmetric and asymmetric modificati
of in-phase~symmetry groupsPam2 andPa! and antiphase
~symmetry groupsPmm2 andPm! biperiodic domain struc-
tures do second-order transitions take place, but during
cyclic variation ofH' they also occur in unequal interva
for different directions of the field, because the field dep
dence of the periodd of the ‘‘nested dolls’’ stripe domain
structure also exhibits hysteresis~see Fig. 2!.

A single ‘‘synchronized’’ biperiodic domain structure
never formed in sufficiently thick films (L.15mm!; two
uncoupled systems of domain walls having a modulated p
file and different modulation periodsL1 and L2 but stripe
domains of the same periodd are observed over the entir
range of existence of the structures. This effect is illustra
in Fig. 3a, which showsL1 andL2 as functions ofH' for
H i50 in the case of the type-II film No. 3 of thicknessL
526mm. One other detail distinctly emerges in this grap
the disappearance or onset of modulation at one of the
faces of the film induces a jump in the graph ofL i

5 f (H') for the other surface. This phenomenon is attrib
-

ly
is

e

to
-
s

he

-

o-

d

:
r-

-

able to the interrelationship of the parameters characteriz
the biperiodic domain structure~d, L1, andL2), so that even
in a fixed field the disappearance of domain wall modulat
at one of the surfaces induces an abrupt change in the pe
of the stripe domain structured, implying a change in the
domain wall modulation period at the other surface of t
film.

The symmetry of biperiodic domain structures genera
in films having this composition and any thickness at t
interface of the film with free space from a region with
simple stripe domain structure as the fieldH' is gradually
diminished puts them in the class of antiphase asymme
~with very little difference from symmetric—see Fig. 5c! bi-
periodic domain structures~with modulation of the domain
wall profile L1). The surface domain structures produced
a somewhat weaker field with the domain wall modulati
periodL2 at the film–substrate interface have the same sy
metry for any film thickness. We note that even for the th
nest films~with L.Lcr* ) in which the existence of biperiodic
domain structures is observed theH'-induced transition
from a simple to a biperiodic stripe structure does not ta
place throughout the entire bulk of the film all at once, but
localized near the interface of the film with free space. T
means that the penetration depth of the ‘‘frozen’’ surface s
mode responsible for the given phase transition at the p
of destabilization of the simple stripe domain structure
films of the investigated composition is less thanLcr* /2
.2.5mm.

The observed evolution of two-dimensional domain
raysH i50 essentially remains unchanged in the presenc
a finite field H i as long as the magnitude of the latter do
not exceed a critical valueH i

(cr1) , which is approximately
70 Oe for film No. 2. ForH i.H i

(cr1) the chain of phase tran
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FIG. 9. Intensity of diffracted radiation for the maxim
J3,0 ~a! andJ1,1 ~b! versus the fieldH' at H i50 for film
No. 2. The arrows on the curves indicate the directi
in which the field is varied.
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sitions accompanying cyclic magnetization reversal acqu
new links; specifically, asH' is decreased, the transform
tion of antiphase biperiodic domain structures into in-ph
biperiodic structures proceeds through ‘‘buffer’’ states c
responding to a mirror-symmetric double biperiodic dom
structure~with period doubling relative to the adjacent a
tiphase or in-phase biperiodic domain structures,d852d). In
the diagram of Fig. 8 this process is manifested by splitt
of each of the curves3 and3 8 in two: 3a, 3b and3a8, 3b8.
An analogous effect is observed whenuH'u is increased with
H i.H i

(cr2) ~the second critical value9! of the fieldH i for film
No. 2 is'400 Oe! and is manifested in the state diagram
splitting of the curves4 and 4 8 in two: 4a, 4b and 4a8,

4b8.
The hypothesis of polymorphism of the biperiodic d

main structures is also supported in experiments aime
studying the dependence of the intensities of the diffract
maximaJp,q on the fieldH' for H i50. TheJ3,0(H') curves
for film No. 2 ~Fig. 9a! exhibit sharp~particularly for a de-
creasing field! troughs in the regions corresponding to d
main walls between antiphase and in-phase biperiodic
main structures~cf. Fig. 2!, along with jumps in the vicinity
of zero-field points10! due to magnetization reversal of th
film. The J1,1(H') curves in Fig. 9b exhibit similar features
A diffraction maximum ofJ2,0 ~see Fig. 10! is observed in
the region of variation ofH' corresponding to the zone o
stability of antiphase biperiodic domain structures. A co
parison with Sec. 4 shows that the laws encountered in
behavior of the experimentalJp,q(H') curves are fully con-
sistent with the qualitative conclusions based on our sym
try analysis of the diffraction process.

6. CONCLUSION

An analysis of the results of the reported investigatio
shows conclusively that several types of regular biperio
stripe domain structures can exist in uniaxial magnetic fil
having a small positive anisotropy constant (0,bu,1) with
the easy magnetization axis directed along the normal to
surface in a certain interval of film thicknesses and in a c
tain region of variation of the direction and magnitude of t
external magnetic field; the structures differ from one a
other in their symmetry and~or! the period of one of the
uniaxial translations. The possible types of distributions
s
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e-
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f

the magnetization vector in any plane parallel to the surf
of the film for the generated biperiodic stripe domain stru
tures belong, in terms of symmetry, to one of six tw
dimensional space groups of the rectangular system wi
primitive ~Pam2, Pa, Pmm2, Pm! or centered~Cmm2, Cm!
Bravais lattice. The various types of domain structures
be identified either by simple visual observation using a
larization microscope or by analysis of the optical diffracti
patterns. As regards symmetry, the latter belong to the s
point groupmm2, but differ either in the intensity distribu
tion of the diffracted radiation among the diffraction maxim
Jp,q of even and odd ordersp and q or in the ratio of the
magnitudes of the reciprocal lattice vectorsb1 andb2.

When the magnitude or direction of the magnetic fie
vector is varied, first-order or second-order phase transiti
take place between the different types of biperiodic str
domain structures, bound or free magnetic dislocations p
ing the dominant role in the nucleation processes. The s
of the magnet as a whole corresponds to the Berezins�–
Kosterlitz–Thouless phase in the first case and to the liqu
crystal phase in the second case.

The region in which the various types of biperiod
stripe domain structures exist in films of thicknessLcr

(1).L

FIG. 10. Intensity of diffracted radiation for the maximaJ2,0 versus the field
H' at H i50 for film No. 2. The arrows on the curves indicate the directi
in which the field is varied.
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.Lcr* on theH'H i plane for orientational phase transition
and H iT for spontaneous phase transitions near the C
~Néel! point is always contained inside the region in whi
simple ~monoperiodic! stripe domain structures exist. Th
condition also enables us to draw conclusions as to the c
cal distributions of the magnetization vector in thicker film
(L.Lcr

(1)), in which chains of floating cone-shaped doma
emerge in the interior of each stripe domain of the biperio
domain structures far from the corresponding phase tra
tion lines for both surfaces of the magnet. In fact, since
have Lcr.Lcr* , the region of stability of the domain struc
tures containing conical domains on the state diagrams m
be contained within the region of biperiodic stripe doma
structures, i.e., direct transitions between the uniform s
and states with floating conical domains do not occur. T
assertion is true not only for magnets, but also for ferroel
trics, because the distribution of the electric polarization v
tor P in the latter obeys exactly the same laws as the dis
bution of the vectorM in magnets~see, e.g., Refs. 46 an
47!.

On the other hand, in the Russian and foreign scien
literature there is a rather prevalent opinion that structu
containing floating conical domains are universal for su
ciently thick films, i.e., such structures are also stable in
immediate vicinity of the lines of spontaneous and orien
tional second-order phase transitions. Theoretical calc
tions utilizing the Ritz method have been published and p
dict a monotonic decrease in the critical thicknessLcr

(1) as the
second-order phase transition lines are approached
hence, an increase in the probability of the existence of st
tures containing floating conical domains~see, e.g., Ref. 48!.
Such calculations are based on totally inadequate mo
employing the concepts of geometrical~unstructured! do-
main walls and uniformly magnetized domains. In real str
domain structures, however, the boundaries between the
mains are structured entities of finite extent with a vortexl
distribution of the transverse components of the magnet
tion vector M in them, even far from the phase transitio
lines.49 All the same, if the half-period of the domain stru
ture d/2 is much greater than the width of the domain wa
d ~as is true only far from second-order phase transit
lines!, the distribution of the magnetization in the domains
essentially uniform, and thez-component of the demagnetiz
ing field Hdz564pMz is dominant at the surfaces of th
film. Only under these conditions does the logic behind
reasoning of advocates of the universality of structures c
taining floating conical domains in thick films hold up with
out fault. As second-order phase transition lines are
proached, the vortices inside the domain walls grow
volume and absorb regions with a uniform distribution of t
vector M , so that the distribution of the transverse comp
nents of the magnetization vector in the film becomes hig
nonuniform throughout the entire volume of the film.49 In
this case the following relations hold in the immediate vic
ity of the second-order phase transition lines for thick film
(dc /L5e!1, wheredc is the critical period of the domain
structure!:35,46,47
ie
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Mz.A cos
~p2e!z

L
cos

2px

dc
, Hdz.2

pe2

114p/bu
Mz ,

Mx.
2pe

114p/bu
A sin

~p2e!z

L
sin

2px

dc
,

Hdx.Mxbu .

HereA is the order parameter, which vanishes at phase t
sition lines. It follows from these equations that the ratio
the amplitudes of the demagnetizing fieldsHdz and Hdx is
equal toe/(2bu), i.e., in the vicinity of second-order phas
transition lines at the surfaces of the film thex-component of
the demagnetizing field is dominant, and thez-component,
which is responsible for the onset of floating conical d
mains, becomes negligible.
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1!We have intentionally chosen the terms ‘‘biperiodicstripe domain struc-

tures’’ to emphasize the distinction from biperiodic two-dimensional
rays of bubble domains of various shapes and symmetries, which are
discussed in this paper. The simplest example of such arrays are hexa
lattices of circular bubble domains; more intricate configurations enco
tered in dynamic self-organization under the influence of a pulsating m
netic field are described, for example, in Refs. 7 and 8.

2!These estimates should be regarded with caution, because they are
only for films with bu!1.

3!Phase transition lines associated with a hexagonal lattice of bubble
mains are not shown in the diagram, as they do not have any direct be
on the problems discussed here; for the complete state diagram see Re

4!Indeed, for an infinite stripe domain or domain of finite length with pinn
ends, states with arbitrarily close but different values ofL are separated
from each other by an energy barrier, and a smooth transition from
state to another is impossible. But the length of a magnetic dislocation
vary continuously under the influence of a magnetic field, lifting the p
hibition against a smooth variation ofL. The dislocation-generated ‘‘de
formations’’ of the magnetostatic field are long-range effects and, in tu
modify the values ofL in a sufficiently large neighborhood of the dislo
cation core. Moreover, the onset, change of symmetry, and annihilatio
near-surface distortions of the domain wall profile produce insignific
variations of the period of the ‘‘nested dolls’’ stripe domain structure.

5!At the other surface of the film they are also in phase, but antiph
relative to the distortions of the domain wall profile on the first surface~if
the distortions at the two surfaces are tightly coupled; see Sec. 3!.

6!In sufficiently thick films, owing to multiple interference, even diffractio
maxima can also be observed ford15d25d/2, but their polarization
plane coincides with the polarization plane of the principal diffracti
maximum.43 Since the transmission plane of the analyzer in experime
on the observation of magnetooptical diffraction is always made ortho
nal to the transmission plane of the input polarizer, the presence of e
diffraction maxima associated with multiple interference can be dis
garded in all the discussion to follow.

7!For several reasons the magnetic dithering method, which is necessa
order to establish thermodynamic-equilibrium initial states for differe
types of domain structures, could not be used in the experiments, so
the diagram in Fig. 8 refers to metastable states for which the position
the boundaries of their destabilization depends on the prior history.

8!The observed abruptness of the magnetization reversal in weak fields
the investigated films does not imply abruptness of the transition betw
asymmetric and symmetric in-phase biperiodic structures. Once creat
symmetric in-phase periodic domain structure makes a smooth transitio
both dual modifications of an asymmetric in-phase structure under
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influence of a fieldH' in the corresponding direction, i.e., the phase tra
sition described here is second-order, corroborating the results of the
metry analysis~the groupPa is a subgroup of the groupPam2!.

9!For thermodynamic-equilibrium mirror-symmetric double biperiodic d
main structures, the bifurcation points of curves3 and4 8 ~also4 and3 8
must coincide and be situated on the abscissa axis. In quasistatic m
tization reversal of the films a thermodynamic equilibrium state does
occur, so that the fieldH i acquires critical values, which differ from eac
other depending on whether the fielduH'u is increasing or decreasing.

10!The fact that the magnetization reversal of films of the investigated c
position takes place in very weak fields (uH'u,5 Oe! has been further
corroborated by additional experiments performed by us on optical m
conversion in the waveguide propagation of light~with a wavelength of
1.15mm! in the films and by experiments on the attenuation of magne
static surface waves~at a frequency of 1 GHz!, which are known to be
nonreciprocal with respect to the direction of the magnetization vecto
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37V. L. Berezinski�, Zh. Éksp. Teor. Fiz.61, 1144~1971! @Sov. Phys. JETP

32, 610 ~1971!#.
38J. M. Kosterlitz and D. J. Thouless, J. Phys. C6, 1181~1973!.
39J. E. Davies, E. A. Giess, and J. D. Cupstis, Mater. Res. Bull.10, 65

~1975!.
40R. D. Henry and E. C. Whitcomb, Mater. Res. Bull.10, 681 ~1975!.
41B. Kuhlow, Optik 53, 115 ~1979!.
42B. Kuhlow, Optik 53, 149 ~1979!.
43B. Kuhlow and M. Lambeck, J. Magn. Magn. Mater.4, 337 ~1977!.
44H. Lipson and W. Cochran,The Determination of Crystal Structure, 3rd

ed., Bell, London~1966!.
45F. V. Lisovski�, E. G. Mansvetova, and Ch. M. Pak, Zh. E´ ksp. Teor. Fiz.

108, 1031~1995! @JETP81, 567 ~1995!#.
46V. V. Tarasenko, E. V. Chenski�, and I. E. Dikshte�n, Zh. Éksp. Teor. Fiz.
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Field dependence of Young’s modulus in a gadolinium single crystal
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The field dependence of Young’s modulus along the hexagonalc axis is measured in a
gadolinium single crystal over a wide range of temperatures and magnitudes of the magnetic
field aligned with thec axis. It is found that the isotherms of the field dependence of theDE effect
in gadolinium are well approximated by a linear dependence on the square of the
magnetization in both strong and weak strong magnetic fields, and also above and below the spin
reorientation temperature. It is shown that the experimental trends obtained near the
ferromagnetic transition can be interpreted within the approach based on the Landau theory of
second-order phase transitions. The parameters of such an approach are determined for
gadolinium on the basis of the experimental data. ©1998 American Institute of Physics.
@S1063-7761~98!01512-1#
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1. INTRODUCTION

Studies of magnetoelastic interactions in rare-earth~RE!
metals are of great significance for understanding the na
of magnetic phase transitions in these metals and also
practical applications.1 One effective method for investiga
ing magnetoelastic interactions in rare-earth metals is to
amine the peculiarities of the temperature and field dep
dence of the elastic moduli and internal friction in the regi
of magnetic phase transitions. Such studies make it poss
not only to determine important experimental parameters
rare-earth metals, but also to verify the applicability of th
oretical approaches to the description of magnetoelastic
nomena in these metals~see, e.g., Ref. 2!. Although a sub-
stantial amount of experimental material has be
accumulated on the elastic properties and internal friction
rare-earth metals~see, e.g., Refs. 3–8!, the field dependence
of anomalies of the elastic properties and internal friction
the region of the magnetic phase transitions has not b
examined in sufficient detail and has not received an
equate theoretical explanation.

In particular, in regard to gadolinium, detailed isotherm
of the field dependence of Young’s modulusC33(T,H) have
been measured over a wide temperature range, but only
geometry in which the magnetic fieldH is oriented in the
basis plane.7 In this case a complicated field dependence w
obtained for the modulusC33(T,H), which has still not been
interpreted theoretically. This is apparently because of
difficulty of calculating the field-dependent contribution
the domain structure to the modulusC33(T,H) in the indi-
cated geometry.

The influence of a magnetic field directed along the h
agonal axis of a gadolinium single crystal on the tempera
1141063-7761/98/87(12)/6/$15.00
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dependence of Young’s modulusC33(T,H) was investigated
in Ref. 3 in a comparatively narrow temperature range be
the spin reorientation temperature. References 9 and 10 w
dedicated to an interpretation of the observed trends. Th
studies, first of all, did not examine the field dependence
Young’s modulusC33(T,H) in the indicated geometry in the
temperature range above the spin reorientation tempera
and, second, they did not determine the experimental de
dence of the field isotherms of Young’s modulusC33(T,H)
on the square of the magnetization above or below the s
reorientation temperature. The latter is especially import
because it represents a convenient means of quantitat
comparing the experimental trends with the theoretical p
dictions and thereby opens up the possibility of determin
the parameters of the theory on the basis of such a comp
son.

Gadolinium is a convenient test case for a theoreti
study of the magnetic contribution to the elastic moduli
the case when the magnetic field is directed along the h
agonalc axis. This is because the spontaneous magnetiza
vector in a gadolinium single crystal is directed along th
axis in the temperature intervalTSR,T,TC , where TSR

.230 K is the spin reorientation temperature andTC5293 K
is the Curie temperature~see, e.g., Ref. 11!. The superposi-
tion of a comparatively weak magnetic fieldH.0.5 kOe
parallel to the hexagonal axis means that in this tempera
range the paraprocess alone determines the variation o
magnetization and of the magnetic contribution to the ela
moduli. This circumstance allows us to neglect the contrib
tion of the domain structure to the elastic moduli, whi
substantially simplifies the theoretical approach used to
scribe the temperature and field dependence of the ela
moduli of gadolinium near the Curie temperature. Below,
8 © 1998 American Institute of Physics
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base such an approach on the phenomenological Lan
theory of second-order phase transitions and the method
veloped in Ref. 12, which are free of model-dependent
tions about the nature of ferromagnetism and magnetoe
ticity.

The aim of the present paper is to measure the fi
dependence of Young’s modulusE(T,H)5C33(T,H) along
the hexagonalc axis in a gadolinium single crystal over
wide range of temperatures and magnetic field strengths
the magnetic field aligned with thec axis, to establish the
experimental dependence of the field isotherms of theDE
effect on the square of the magnetization, to interpret
observed trends near the ferromagnetic transition within
framework of an approach based on the Landau theory
second-order phase transitions, and to determine the pa
eters of such an approach for gadolinium on the basis of
experimental results.

2. EXPERIMENTAL TECHNIQUE AND RESULTS OF
MEASUREMENTS

To solve the problems formulated above, we perform
detailed measurements of Young’s modulusE(T,H) along
the hexagonalc axis in a gadolinium single crystal at th
acoustic frequencies 1–3 kHz over a wide range of temp
tures 80<T<350 K and magnetic field strengthsH<12.9
kOe with the magnetic field directed along thec axis. The
modulus was measured by the method described in Ref
which employs an electrostatic means of exciting natural
brations in the acoustic frequency range in a conso
mounted sample having the shape of a thin rod.

The experimentally measured values of the tempera
dependence of Young’s modulusE(T,H) are plotted in Fig.
1 for several values of the magnetic field. The straight l
E0(T) in this figure is an extrapolation of Young’s modulu
according to a linear temperature law from the paramagn
region into the temperature range belowTC neglecting mag-
netic phase transitions. The basis of this extrapolation is
experimentally established linear temperature dependenc
Young’s modulusE0(T) in the paramagnetic state above t
Curie temperature. The zig-zag curve~curve1! in the figure,
obtained in the absence of a magnetic field, agrees with
results of Refs. 3–6, according to which anomalies in
temperature dependence of the modulusE(T,0) taking place
in the vicinity of the temperaturesTC.293 K and TSR

.230 K correspond to transition from the paramagnetic s
to the ferromagnetic state and to the spin reorientation t
sition. In this case, near the Curie temperature a well-defi
negative DE effect takes place, i.e.,DE(T,0)5E(T,0)
2E0(T),0. Attention should also be directed at the sign
cant difference in the magnitudes of the anomaly of
modulus E(T,0) near the spin reorientation temperatu
which is apparent from a comparison of curve1 in Fig. 1 and
Fig. 1 of Ref. 7. This difference may be due to a difference
the purity of the samples used in the experiments. As w
noted in Ref. 7, in superpure gadolinium samples
anomaly of the modulusE(T,0) near the spin reorientatio
temperature is smaller.

In a finite magnetic field the data depicted in Fig. 1
au
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the temperature rangeT.TSR complement the low-
temperature results presented in Fig. 6 of Ref. 3 and
results plotted in Fig. 2 of Ref. 6, obtained for one value
the magnetic field,H525 kOe. According to Fig. 1, with
increase of the magnetic field the anomalies in the temp
ture dependence ofE(T,H) near TC and TSR smooth out
while the magnitude of the modulusE(T,H) grows substan-
tially. In this case, a magnetic fieldH.1.1 kOe liquidates
the negativeDE effect near the Curie temperature. In th
temperature rangeTSR,T,TC the indicated trends belon
to the paraprocess since, according to our measurements
contribution of the domain structure to Young’s modul
taking place in the indicated geometry in weak fieldsH
,0.5 kOe is less than 0.1 %.

To investigate the field dependence of Young’s modu
E(T,H) in gadolinium in more detail and establish qualit
tively new regularities. It is of interest to experimentally in
vestigate the dependence of the change in Young’s mod
in a magnetic fieldDE(T,H)5E(T,H)2E(T,0) as a func-
tion of the square of the magnetization,M 2(T,H), both
above and below the spin reorientation temperature. Figu
plots the results of such a study, i.e., the isotherms of
field dependence of theDE effect in gadolinium along the
hexagonalc axis as a function of the square of the magne
zation,M2(T,H), at several temperatures. To construct su
isotherms we used additional data on the magnetization
field of the same sample on which Young’s modulus w
measured. Analysis of Fig. 2 allows us to formulate tw
important results. First, as can be readily seen, the exp
mental data lie very neatly along straight lines both in t
region of comparatively weak magnetic fields~lines 3–14!,

FIG. 1. Temperature dependence of Young’s modulusE(T,H), measured
along the hexagonalc axis in a gadolinium single crystal for different value
of the magnetic fieldHic ~in kOe!: 1 — 0, 2 — 0.3,3 — 1.1,4 — 1.5,5 —
2.3, 6 — 2.9, 7 — 3.8, 8 — 4.5, 9 — 5.7, 10 — 6.9, 11 — 8.0, 12 — 9.0,
13 — 10.2, 14 — 12.9. The straight lineE0(T) is an extrapolation of the
value of Young’s modulus from the paramagnetic state.
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where the change in the square of the magnetiza
M2(T,H)2M2(T,0) induced by the field is small in com
parison with the square of the spontaneous magnetiza
M2(T,0), at a given temperature, and in the region of stro
magnetic fields, where the magnetization is determin
mainly by the field~lines 1 and 2 !. Second, and especiall
important, the isotherms of the field dependence of theDE
effect in gadolinium are well approximated by a linear d
pendence on the square of the magnetization both above
below the spin reorientation temperature. Thus, a defi
similarity is observed in the trends of the field dependence
theDE effect in gadolinium as a function of the square of t
magnetization in the temperature intervals correspondin
the two different phase transitions.

In the following sections we quantitatively analyze t
experimentally observed trends in the field dependence
theDE effect in gadolinium near the ferromagnetic transiti
within the framework of the approach based on the Lan
theory of second-order phase transitions, and determine
parameters of this approach for gadolinium from an analy
of the obtained experimental data.

3. TEMPERATURE AND FIELD DEPENDENCE OF THE
ELASTIC MODULI OF A FERROMAGNET NEAR THE CURIE
TEMPERATURE

In order to analyze the temperature and field depende
of the elastic moduli of a ferromagnet according to the La
dau theory of second-order phase transitions with the a
racy needed here, it is necessary to go beyond the app
mations of Refs. 12 and 14 and use an expansion for the
energy density in the form~see, e.g., Ref. 15!

FIG. 2. Isotherms of the field dependence of theDE effect along thec axis
in a gadolinium single crystal in a magnetic fieldHic as a function of the
square of the magnetizationM2(T,H) at different temperaturesT ~in K!: 1
— 300,2 — 289,3 — 278,4 — 271,5 — 261,6 — 251,7 — 239,8 —
223,9 — 218,10 — 192,11 — 173,12 — 150,13 — 120,14 — 81.
n
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FM~T,M ,û!5F0~T,û!1
1

2H a~ û!@T2TC~ û!#

1
1

2
a2~ û!@T2TC~ û!#2J M2

1
1

4
$b~ û!1a3~ û!@T2TC~ û!#%M4

1
1

6
a5~ û!M6, ~1!

whereT is the temperature,M is the magnetization, andû is
the strain tensor.

Expression~1! corresponds to the geometry of the e
periment described above near the Curie temperature, w
the magnetic fieldH and the magnetizationM are directed
along the hexagonalc axis of the gadolinium single crysta
Relation ~1! yields the following expression for the elast
tensor~tensor of elastic moduli! of a ferromagnet in a con
stant magnetic field:

Ci j
H~T,H !5Ci j

0 ~T!2
Ci j

~1!

11j~T,H !
1

1

11j~T,H !

3FCi j
~2!1

Ci j
~3!

11j~T,H !
G S 12

T

TC
D

1FCi j
~4!1

Ci j
~5!

11j~T,H !
1

Ci j
~6!

@11j~T,H !#2G
3

b

aTC
M2~T,H !. ~2!

Here Ci j
0 (T)5(]2F0 /]ui]uj )T is the elastic tensor of the

paramagnetic state in the absence of a magnetic field
Ci j

(n) are the magnetoelastic tensors~tensors of the magneto
elastic coefficients!, for which relation~1! yields

Ci j
~1!5

~aTC!2

2b

] ln TC

]ui

] ln TC

]uj
,

Ci j
~2!52

~aTC!2

2b F] ln TC

]ui

] ln a

]uj
1

] ln TC

]uj

] ln a

]ui

2
2a2TC

a

] ln TC

]ui

] ln TC

]uj
G ,

Ci j
~3!52S a2a3TC

3

2b2 D ] ln TC

]ui

] ln TC

]uj
,

Ci j
~4!52

~aTC!2

2b F] ln TC

]ui

] ln a

]uj
1

] ln TC

]uj

] ln a

]ui

1
1

TC

]2TC

]ui]uj
2

a2TC

a

] ln TC

]ui

] ln TC

]uj
G ,
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Ci j
~5!5

~aTC!2

2b F] ln TC

]ui

] ln b

]uj
1

] ln TC

]uj

] ln b

]ui

2
2a3TC

b

] ln TC

]ui

] ln TC

]uj
G ,

Ci j
~6!5a5S aTC

b D 3 ] ln TC

]ui

] ln TC

]uj
. ~3!

The dependence of the tensor~2! on the magnetic field is
described not only by the last term on the right-hand side
relation ~2!, which is proportional toM2(T,H), but also by
the dimensionless parameter16

j~T,H !5
H

2bM3~T,H !
. ~4!

To obtain formula~2! we used the equation of the magne
state of a ferromagnet corresponding to Eq.~1!:

H

M
5a~T2TC!1

1

2
a2~T2TC!2

1@b1a3~T2TC!#M21a5M4. ~5!

The second term on the right-hand side of Eq.~2! corre-
sponds to the result of Ref. 12 and in the limit of zero fie
H50 describes the ‘‘jump’’ of the elastic moduli at the C
rie point since, according to Eqs.~4! and~5!, j(T,0)5` for
T.TC and j(T,0)50 for T,TC . The following terms on
the right-hand side of Eq.~2! for H50 describe the variation
of the slope angle of the temperature dependence of the
tic moduli, which is proportional toM2(T,0), during the
transition to the ferromagnetic state, and correspond to
result of Ref. 14. An expression similar to~2! was studied in
Refs. 16 for a finite magnetic field in connection with th
Stoner model of a weakly ferromagnetic metal.

Formulas~2! and~5! allow one to examine the tempera
ture and field dependence of the elastic moduli of a fer
magnet near the Curie temperature. Let us first consider
range of temperatures below the Curie temperat
(T,TC). Then in the case of a weak magnetic field,

H2/3!
aTC

b1/3 S 12
T

TC
D , ~6!

Eqs.~2! and~5! yield the following dependence of the elast
tensor on the temperature and magnetic field:

Ci j
H~T,H !5Ci j

0 ~T!2Ci j
~1!1Ci j

~7!S 12
T

TC
D1FCi j

~1!1Ci j
~8!

3S 12
T

TC
D G S 12

T

TC
D 23/2 b1/2H

2~aTC!3/2
, ~7!

where
f

as-

e

-
he
e

Ci j
~7!5 (

n52

6

Ci j
~n!52

~aTC!2

2b F ] ln TC

]ui

] ln~a2/b!

]uj

1
] ln TC

]uj

] ln~a2/b!

]ui
1

1

TC

]2TC

]ui]uj

1S 3a3TC

b
2

3a2TC

a
2

2aa5TC

b2 D ] ln TC

]ui

] ln TC

]uj
G ,

Ci j
~8!52Ci j

~2!22Ci j
~3!12Ci j

~4!1Ci j
~5! .

Inside the brackets in the last term on the right-hand side
expression~7! we have kept the term proportional to th
small parameter 12T/TC!1 since, as will become clear be
low, the inequalityC33

(1)!C33
(8) holds in the case of gado

linium. This distinguishes expression~7! from the formula
that can be obtained in this limit on the basis of Refs.
and 14.

Let us turn now to the case of a strong magnetic fie
where the following inequalities are satisfied:

2aTC

3b1/3U12
T

TC
U!H2/3!

b5/3

a5
, ~8!

The right-hand inequality~8! here denotes the smallness
the terma5M4 in Eq. ~5! in comparison withbM2. Under
these conditions the dependence of the elastic moduli~2! on
the temperature and magnetic field is described by the
lowing expression:

Ci j
H~T,H !5Ci j

0 ~T!2
2

3
Ci j

~1!2
2

9
Ci j

~1!

3S 12
T

TC
D aTC

b1/3H2/3
1Ci j

~9!
b1/3H2/3

aTC
, ~9!

where

Ci j
~9!5Ci j

~4!1
2

3
Ci j

~5!1
4

9
Ci j

~6! .

If the additional condition on the magnitude of the magne
field

F2Ci j
~1!

9Ci j
~9!G 1/2

aTC

b1/3U12
T

TC
U1/2

!H2/3 ~10!

is fulfilled, relation~9! takes the form

Ci j
H~T,H !5Ci j

0 ~T!2
2

3
Ci j

~1!1Ci j
~9!

b1/3H2/3

aTC
. ~11!

We stress here that formula~11! is a departure from the
approximation of Ref. 12, according to which the elas
modulus is independent of the magnetic field forT.TC . It
follows from formula~11! that the magnetic field

HC5
~aTC!3/2

b1/2 F2Ci j
~1!

3Ci j
~9!G 3/2

~12!

compensates the ‘‘negative’’ jump of the elastic modulus
T5TC .
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Finally, let us consider the temperature range cor
sponding to the paramagnetic state (T.TC). Here in the case
of a weak magnetic field

H2/3!
aTC

b1/3 S T

TC
21D , ~13!

the dependence of the elastic tensor on the temperature
magnetic field, according to Eqs.~2! and~4!, takes the form
~compare with Refs. 4 and 17!

Ci j
H~T,H !5Ci j

0 ~T!2F2Ci j
~1!S T

TC
21D 21

12Ci j
~2!2Ci j

~4!G
3S T

TC
21D 22 bH2

~aTC!3
. ~14!

We will use the above relations in the following section
analyze the experimental data on the field dependenc
Young’s modulusE(T,H) in gadolinium near the Curie tem
perature.

4. DISCUSSION AND CONCLUSIONS

We turn now to an interpretation of the experimen
trends depicted in Figs. 1 and 2 for gadolinium. It is impo
tant to bear in mind that the measured values of Youn
modulusE(T,H) along the hexagonalc axis are determined
by the component of the elastic tensorC33

H (T,H). Here it can
be seen that the temperature behavior of Young’s mod
E(T,0) in the limit of zero fieldH50, described the segmen
of the zig-zag curve~curve1! in Fig. 1 near the Curie tem
perature (T<TC), can be approximated by formula~6!, ac-
cording to which we have

E~T,0!5E0~T!2C33
~1!1C33

~7!S 12
T

TC
D , ~15!

whereE0(T)5C33
0 (T). Comparison of formula~15! with the

data in Fig. 1 makes it possible to find the magnetoela
coefficientsC33

(1).1.2 GPa andC33
(7).30.8 GPa for gado-

linium, which determine respectively the jump of the mod
lus E(T,0) at T5TC and the variation of the slope of th
temperature dependenceE(T,0) belowTC . The influence of
the magnetic field on the temperature dependence of
modulusE(T,H) in the temperature rangeT.TSR visible in
Fig. 1 corresponds qualitatively to the regularities describ
by formulas ~7!, ~9!, and ~11!, where, with growth of the
magnetic field, the jump in the elastic modulusE(T,H) at
the Curie point washes out and the slope of the tempera
dependence ofE(T,H) grows with the field if C33

(8).0,
C33

(9).0. In order to discuss these trends quantitatively,
will consider in more detail the results displayed in Fig.
Toward this end, we rewrite formulas~7! and ~11! with the
help of Eq.~4! in a form that contains an explicit dependen
on M2(T,H). Then, in the case of a weak field~6!, with the
help of formula~7! we find the following formula for the
field dependence of theDE effect:
-

nd

of

l
-
’s

s

ic

-

he

d

re

e
.

DE~T,H !5C33
H ~T,H !2C33

H ~T,0!

5FC33
~1!1C33

~8!S 12
T

TC
D G

3
M2~T,H !2M2~T,0!

2M2~T,0!
, ~16!

and in the case of a strong field~8!, given condition~10!,
formula ~11! gives

DE~T,H !5C33
H ~T,H !2C33

H ~T,0!5C33
~9!

bM2~TC ,H !

aTC
. ~17!

Thus, in both limiting cases~weak and strong field!, if the
additional condition~10! is met, the field dependence of th
DE effect turns out to be proportional toM2(T,H) at differ-
ent temperatures. This conclusion corresponds in Fig. 2
traces1–7. In this case, traces1 and 2 correspond, obvi-
ously, to a strong field since for them the variation
M2(T,H) with increasing field is large in comparison wit
M2(T,0) for a fixed temperatureT.TC . The slope of these
curves, according to formula~17!, is equal to

tanwn5C33
~9!

b

aTC
, n51,2. ~18!

On the contrary, curves3–7 in Fig. 2 correspond to the
weak-field limit, where the variation ofM2(T,H) with in-
creasing field is small in comparison with the spontane
valueM2(T,0). The slope of these curves, according to fo
mula ~16!, is equal to

tanwn5FC33
~1!S 12

T

TC
D 21

1C33
~8!G b

2aTC
, n53 – 7. ~19!

Since it is clear that the slope of curves3–7 does not depend
on the temperature, this is possible according to formula~19!
if

C33
~1!S 12

T

TC
D 21

!C33
~8! . ~20!

Under these conditions, Eq.~19! yields

tanwn5C33
~8!

b

2aTC
, n53 – 7. ~21!

The experimental data begin to deviate from curves3–7 in
Fig. 2 when the increment ofM2(T,H) in a field becomes
noticeable in comparison withM2(T,0). In this case, the
trend described by formula~16! gives way to the trend de
scribed by formula~17!, corresponding to traces1, 2, which
fill the role of asymptotic limits for the experimental dat
This trend can also be made out in Fig. 2.

The experimental results depicted in Fig. 2 allow us
obtain quantitative estimates of the parameters and s
ments of the phenomenological approach fleshed out ab
for the case of gadolinium. First of all, from Fig. 2 we ca
find the ratio aTC /b.(1.121.3)3107 G2 using data on
M2(T,0) plotted along the abscissa for known temperatu
and the value of the mass density of gadoliniumr.7.87
g/cm3 from Ref. 11. This, in turn, allows one to estimate t
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parameterb.(0.5620.66)31024 G22 using the experi-
mental value of the Curie constantC5a2150.4 K from
Fig. 1 of Ref. 18. Next, formulas~18! and~21! together with
experimental data on the slopes tanwn.1.293105 of curves
1 and2 in Fig. 2 and tanwn.0.473106 of curves3–7 allow
one to calculate the magnetoelastic coefficientsC33

(9).(1.4
21.7)3102 GPa andC33

(8).(1.021.2)3103 GPa. Bearing
the above results in mind, it is possible to rewrite inequa
~20! for gadolinium in the form

~1.021.2!31023!12T/TC . ~22!

Obviously, inequality~22! is satisfied for temperatures co
responding to curves3–7. This justifies the use of formula
~21! to describe these curves.

The values obtained above and formula~12! allow one
to estimate the value of the magnetic fieldHC.0.8–1.1 kOe
at which the negativeDE effect disappears at the Cur
point. The value ofHC so obtained is in good agreeme
with the experimental data shown in Fig. 1.

Let us now discuss conditions~8! and ~10! defining a
strong magnetic field, applied to our experiment. The val
obtained above allow one to rewrite the left-hand inequa
of inequalities~8! in the form

~1.321.4!3103u12T/TCu3/2 kOe!H. ~23!

Thus, for T5300 K the designation ‘‘strong field’’ mean
H@5 kOe, and forT5289 K—H@2 kOe. These conditions
are realized in our experiment for traces1 and 2 in Fig. 2.
For gadolinium inequality~10! takes the form

~19224!u12T/TCu3/4 kOe!H. ~24!

Obviously, forT5300 K and 289 K inequality~23! is stron-
ger than inequality~24!. Therefore, relations~17! and ~18!
correspond to traces1 and2 in Fig. 2. In contrast, for traces
3–7 the opposite inequality~23! is satisfied, i.e., the fields
used in our experiment are weak at the temperatures co
sponding to these curves, and these curves are describe
formulas~16! and ~21!.

Thus, the new experimental trends in the field dep
dence of theDE effect along the hexagonalc axis in single-
crystal gadolinium discovered in this work can be und
y

s
y

re-
by

-

-

stood in the temperature range above the spin reorienta
temperature within the framework of an approach based
the Landau theory of second-order phase transitions. S
similar experimental trends were also detected below
spin reorientation temperature, we think that the phenome
logical approach developed in this work can be generali
to this temperature range with comparatively little effort~see
also Refs. 9, 10, and 19!.
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Particle transport in a disordered medium: numerical experiment
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Using the multicenter Schro¨dinger equation for calculating the transmittance of a flat layer of
randomly distributed point scattering centers through which a particle passes, we show
that when the scattering length for one center is comparable to the particle wavelengthl or is
larger, the Ioffe–Regel hypothesis holds.~According to this hypothesis, as the scatterer
number density increases, the transmittance of the layer becomes constant, while the value of the
particle’s effective mean free path remains of orderl.! When the scattering length is small
compared tol, the Ioffe–Regel hypothesis does not hold. As the scattering length decreases, the
accuracy of the approximation of the effective scattering potential gradually increases, and,
depending on the strength of the potential, particles may either tunnel or diffuse; the effective mean
free path can be much smaller thanl. © 1998 American Institute of Physics.
@S1063-7761~98!01612-6#
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1. INTRODUCTION

Apart from being fundamental, the problem of the qua
tum transport of particles in a disordered medium has la
attracted a lot of interest in applied science, which is d
mainly to the transition to nanometer technology in the fa
rication of computer chips and other devices. If the char
teristic dimensions of a device are smaller than the elec
wavelength, the commonly used physical and mathema
models describing the operation of such devices break do
New phenomena, such as weak localization and the unive
manner of conductance fluctuations, have also been dete
recently in studies of mesoscopic electron transport, wh
the inelastic scattering length is much larger than all ot
characteristic lengths. All this has drawn a lot of attention
the development of new approaches in the description
mesoscopic charge-carrier transport, approaches based o
numerical solution of the Schro¨dinger equation for a large
number of scattering centers.

The ideas about the origin of particles in highly diso
dered media are contradictory. According to the Ioffe–Re
hypothesis,1 the mean free pathl cannot be smaller than th
wavelengthl. This led Mott to the idea~see Ref. 2! of mini-
mum metallic conductivity, according to which the condu
tivity and diffusion coefficient reach their minimum value
as the concentration of the scattering centers increases.

A more modern approach is based on the scaling the
developed for the case where the sized of a region of the
disordered medium is much larger thanl. According to this
theory, as the disorder in the medium becomes more
nounced, Anderson localization sets in, and near a crit
value of the scattering center concentration the conducti
and diffusion coefficient decreases according to a po
law.3 The question of the validity of a one-parameter scal
theory is currently widely debated,4 and the detection o
anomalously large statistical fluctuations of conductance
1151063-7761/98/87(12)/5/$15.00
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disordered media points to the limits of this theory.5

Rigorous theoretical approaches are limited to the w
localization region (l !l). Hence, for the case where all th
characteristic lengths are close in order of magnitude (d; l
;l), numerical experiments prove to be the most effect
method of investigation. In particular, a numerical expe
ment that would verify the Ioffe–Regel hypothesis would
very interesting.

The existing approaches to modeling the transp
process6 focus on calculations of the critical exponent a
use the tight-binding Hamiltonian with diagonal disorde
Despite the efficiency~due to the sparsity of the matrix! of
the tight-binding approximation, we believe that such an
proach is biased. Physically it corresponds to the case
transport of particles in a bound state, where the Gree
function decreases exponentially over the average dista
between particles. It is difficult to relate the results obtain
through the use of the tight-binding Hamiltonian to the cla
sical concepts of transport theory~e.g., the mean free pat
and the diffusion coefficient!, so that it is advisable to hav
an alternative approach.

The current techniques used in describing the opera
of nanoelectronic devices~quantum wells, superlattices, etc!
ordinarily employ the effective-mass approximation. Th
leaves many problems, e.g., the problem of matching at
boundary between two media, unresolved. However, we
discard the effective-mass approximation and think of
medium as a set of zero-range potentials for which the s
tion of the Schro¨dinger equation is possible by the metho
described in this paper.

2. THE ALGORITHM

When studying the mesoscopic electron transport,
can ignore inelastic scattering. It then becomes possibl
solve the Schro¨dinger equation for the scattering problem,
4 © 1998 American Institute of Physics
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which a plane incident wave is specified and an outgo
spherical wave exists at infinity. Mesoscopic transport occ
in semiconductors and insulators at low temperatures, w
the electron wavelength is much larger than the character
range of the potential, which makes it possible to use
approximation of zero-range potentials.

Suppose that a plane wave with a wave vectork is inci-
dent on a layer consisting ofNc point scatterers described b
zero-range potentials~we set\5m51). Then the solution
of the time-independent Schro¨dinger equation is a linea
combination of the incident wave and the outgoing spher
waves from each scatterer:

c~r !5exp~ ik–r !1(
j

Nc

AjG~Rj !, Rj5ur2r j u, ~1!

where the coefficientsAj can be found from the effective
boundary conditions at the surface of each scatterer:7

] ln~Rjc!

]Rj
U

Rj→0

52a j , ~2!

where 1/a j is the scattering length at thej th center with
coordinatesr j , andG(R)5exp(ikR)/R is the Green’s func-
tion of the Schro¨dinger equation in empty space. In our ca
culations we were forced to limit ourselves to considerat
of the particles incident along thez axis perpendicular to a
sample with finite transverse dimensionsLx5Ly.~224!l.
The sample containedNc randomly distributed point poten
tials. We were forced also to use periodic spatial conditio
for the scattering medium. Then, the Green’s function is
sum of vacuum Green’s functions shifted by periodsLx,y :

G~r !5 (
m52`

`

(
n52`

`
exp~ ikur2rmnu!

ur2rmnu
, ~3!

rmn5mLxex1nLyey .

The series~3! converges very slowly, and in our calculation
we used its Fourier transform with respect to the transve
coordinates. Near a scattering center the asymptotic beha
of the Green’s function is given by the formula

G~Rj !uRj→05
exp~ ikRj !

Rj
1C, ~4!

where the constantC is the sum of the series~3! without the
terms withm,n50 atr50; it is determined by the geometr
cal dimensionsLx,y and the wavelength. We found it conve
nient to calculate this constant in the form of the differen
the Fourier transform of~3! and the Fourier transform o
exp(ikr)/r, which at r50 yields a converging difference o
an infinite integral and a divergent sum:

C5
i

2p E
2`

` E
2`

` dpx dpy

~k22p2!1/2

2
2p i

LxLy
(
Px

(
Py

1

~k22P2!1/2
,

g
rs
en
tic
e

l

n

s
e

e
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e

Px,y5
2pnx,y

Lx,y
, Pz ,pz50.

Substituting~1! and ~4! in ~2!, we arrive at system of
complex-valued linear equations for theNc coefficientsAj ,
which can be solved numerically by Gaussian eleminatio

~ ik1a j1C!Aj1(
lÞ j

Nc

G~r j2r l !Al52exp~ ikzj !.

The transmittanceT is given by the formula

T5
1

kLxLy
E

0

LxE
0

Ly
Jz dx dy, J5

i

2
~c¹c* 2c* ¹c!

or, in final form,

T511
2p

kLxLy
(

j

Nc

~AjF j2Aj* F j* !,

where

F j5 i exp~2 ikzj !1
2p

LxLy

3(
Px

(
Py

uPu,k

(
l

Nc

Al*
exp~ iP•~r j2r l !2q~zj2zl !!

q
,

q5uk22P2u1/2.
The zero-range potential approximation provides

method for solving the Schro¨dinger equation numerically fo
a fairly large number of scatterers~we choseNc as high as
1000!, which makes it possible to model particle transport
a disordered medium for a broad range of parameter val

3. RESULTS OF CALCULATIONS

The results depicted in Figs. 1–3 were obtained by

FIG. 1. Dependence of the classical~solid curves! and quantum~dots! layer
transmittances on the concentration of scatterers witha50 at a fixed layer
thickness for different values of the wavelengthl ~to make the diagram
more graphic, the curves are moved apart along the axis of ordinates by!.
Here and in the figures that follow the vertical notches indicate the statis
error.
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eraging the transmittance over various configurations of
scattering centers and simultaneously estimating the sta
cal error. In different trials involving the same~constant!
number of scattering centers, the coordinates of these ce
were produced by a random number generator. The com
number of trials was several hundred.

Three cases were considered for a fixed absolute v
of the scattering length 1/a: attractive scattering center
(a,0), repulsive scattering centers (a.0), and unlike scat-
tering centers~the sign of eacha j is chosen at random with
equal fractions of both values!. The single-center scatterin
cross section has the form7

sa,k5
4p

a21k2
. ~5!

The scatterer concentrationn is related to the mean fre
path l through the formula

FIG. 2. Dependence of the classical~solid curves! and quantum~dots! layer
transmittance on the concentration of unlike scatterers for different sca
ing lengths at fixed layer thickness and wavelength~to make the diagram
more graphic, the curves are moved apart along the axis of ordinates by!.
e
ti-

ers
on

ue

n5
a21k2

4p l
,

and it is convenient to select the following parameters~with
the dimensions of length! as the main parameters of th
problem:l, 1/a, l , and the thicknessd of the scatterer layer.
The transmittanceT of the layer is a function of only three
independent dimensionless parameters, e.g.,l/ l , d/ l , andal
~naturally, other combinations are also possible!.

We examined the dependence of the transmittanceT on
d/ l for different fixed values of the two other independe
parameters. Physically this corresponds to two situations
the first case the scatterer concentration varies butl, a, and
d are fixed, i.e., the parameterl varies~with the dimension-
less parametersd/l and al fixed!; in the second case the
thicknessd of the scatterer layer varies butl, a, and l are
fixed, i.e., the parametersl/ l andal are fixed.

In the classical limitl/ l→0, particle transport is de-
scribed by a transport equation with an isotropic scatter
indicatrix and a cross section~5!. Ford! l , the transmittance
of the layer linearly decreases with increasing thickness, a
for d@ l , the diffusive transport sets in andT is proportional
to l /d. To be able to compare our results with the quantu
mechanical results, we calculated the classical transmitta
Tclass(d/ l ) numerically, solving the transport equation by th
Monte Carlo method.

Figures 1 and 2 depict the results of calculating theT vs.
l dependence of a fixed layer thicknessl , which is convenient
for numerical verification of the Ioffe–Regel hypothesi
Whenl/ l !1, the classical and quantum transmittances c
incide with the statistical calculation error~the lower curve
in Fig. 1!. As l/ l increases, the quantum transmittance fi
becomes smaller than the classical, i.e., the interference
the scattered waves reduces the effective mean free p
which agrees with the Yakubov’s theoretical results8 ob-
tained by the diagrammatic technique. Whenl.~6-7!l
holds, the quantum transmittance of the layer ceases to
crease with increasing scatter concentration~the upper
curves in Fig. 1!, which corroborates the Ioffe–Rege
hypothesis.1 For small values ofualu, the transmittance

er-

.2
r

ve

nt
he
n

FIG. 3. Transmittance vs. layer thickness fo
two values of wavelength~a and b! at fixed scat-
tering lengths and mean free paths for repulsi
~curves 1!, unlike ~curves 2!, and attractive
~curves 3! centers. The solid curves represe
the dependence on the layer thickness of t
classical transmittance for an effective mea
free pathl eff50.77l .
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reaches a plateau as the scatterer concentration incre
This phenomenon exists for all types of center, and in
case of repulsive centers a minimum in transmittance is
served within a broad range of values ofal for a scatterer
concentration corresponding tol/ l'7.

The Ioffe–Regel hypothesis probably becomes invalid
the scattering length decreases~Fig. 2!. At least for ualu
@1 and unlike scatterers, the quantum transmittance mo
tonically decreases with increasingd/ l and is always smalle
than the calculated transmittance in the classical approxi
tion ~the lower curves in Fig. 2!. Calculations withualu
@1 show that for all types of scatterer the effective class
mean free path, which characterizes the transmittance o
layer, can be much smaller thanl.

The curves representing the dependence of the trans
tance on the layer thickness for a fixed scatterer concen
tion are depicted in Fig. 3 for repulsive~curves1!, unlike
~curves2!, and attractive~curves3! centers. As the value o
the parameterualu increases, the differences in the behav
of the curves1–3 become more pronounced. A good exp
nation for such behavior is provided by the effectiv
potential approximation,9 which can be used in thek!n1/3

!uau range. According to this approximation, the effect
scatterers is equivalent to the presence of an average p
tial U54pn/a ~or, which is the same, to a shift of the mo
bility edge inside the layer byU). In this case the transpor
mode is determined by the sign ofa.

For repulsive centers, asal and l/ l increase and the
conditionk2,U holds, the tunneling mode sets in, with th
transmittance of the layer exponentially decreasing as
layer thickness increases~curves1 in Fig. 3!.

For unlike centers we haveU50, and the mobility edge
in the layer is not shifted. The transport mode is close
diffusive and the transmittance of the layer is~approxi-
mately! inversely proportional to the layer thickness~curves
2 in Fig. 3!. The effective mean free pathl eff , at which the
classical transmittance corresponds to curve2, is somewhat
smaller thanl corresponding to the cross section~5! and is
much smaller thanl.

For attractive centers, asualu increases, the curves rep
resenting the dependence of transmittance on layer thick
first acquire an inflection point~curves3 in Fig. 3!, which is
followed by the formation of small local maxima whos
height increases withualu. The appearance of these maxim
can also be interpreted by the effective-potential approxim
tion. The attractive scatterers form a potential well with
transmittance

F S k

2k*
2

k*
2kD 2

sin2~k* d!11G21

,

which reaches its maximum value at resonant layer th
nesses

dm5
mp

k*
, k* 5Ak22U .

This expression fordm provides a good description for th
positions of the minima in the transmittance curves in
k!n1/3!uau range.
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4. CONCLUSION

We have proposed a method for calculating the transm
tance of a particle with positive energy through a layer o
disordered medium. The method is based on solving
three-dimensional Schro¨dinger equation for multicenter sca
tering. The medium is interpreted as a set of randomly d
tributed point scattering centers with a scattering length 1a.
With this approximation we have obtained an exact solut
of the Schro¨dinger equation for an arbitrary~but finite! num-
ber of centers.

As expected, in the classical limitl! l ( l 51/nsa,k),
which corresponds to low scatterer concentrations, the s
tions of the classical and quantum scattering problems
essentially the same.

In our calculations we also observed a transition to
other limit, l@ l @1/a, where the effective-potential ap
proximation is valid. Here the transport mode is determin
by the sign ofa, which corresponds to a shift in the partic
mobility edge by the value of the average scatterer poten
U54pn/a. For instance, for repulsive scatterers the tra
mittance of the layer is of tunnel origin. When the scatter
are unlike, the behavior of the transmittance is close to t
in the classical diffusive-transport mode, and the charac
istic mean free path can be much smaller thanl. Finally, for
attractive centers the transmittance decreases nonmono
cally with increasing thickness, with the positions of the l
cal maxima in transmittance coinciding with the resona
thicknesses of a potential well of depthU.

In calculations in the intermediate range (l; l , 0
<ualu&1), where the effective-potential approximatio
breaks down, we have verified the validity of the Ioffe
Regel hypothesis, according to which the particle’s me
free path must remain on the order of the wavelength
arbitrarily high scatterer concentrations.

Our calculations have demonstrated that for cent
whose absolute value of the scattering length is of order
larger than the particle wavelength, the Ioffe–Regel hypo
esis can be used for positive and negative scattering leng
As the concentration of scatterers~attractive, repulsive, or
unlike! increases, the transmittance of the layer indeed
creases to a certain constant value attained at scatte
lengthsl<~0.1520.2!l.

However, as the scattering length decreases, a platea
the transmittance is not observed. As the value of the par
eter ualu increases, the layer transmittance gradually
proaches the value described by the effective-potential
proximation.

This work was supported by the Russian Fund for Fu
damental Research~Grant No. 95-02-04704-A!.
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The singlet state in the Hubbard model with U5`

E. V. Kuz’min* )

Krasnoyarsk State University, 660062 Krasnoyarsk, Russia

I. O. Baklanov

L. V. Kirenski� Institute of Physics, Siberian Branch of the Russian Academy of Sciences, 660036
Krasnoyarsk, Russia
~Submitted 23 January 1997; resubmitted 9 June 1998!
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We discuss, in connection with the problem of the ground state in the Hubbard model withU
5`, the normal~nonmagnetic! N-state of a system over the entire range of electron
concentrationsn<1. It is found that in a one-particle approximation, e.g., in the generalized
Hartree–Fock approximation, the energye0(n) of theN-state is lower than the energyeFM(n) of a
saturated ferromagnetic state for all values ofn. Using the random phase approximation we
calculate the dynamical magnetic susceptibility and show that theN-state is stable for all values of
n. A formally exact representation is derived for the mass operator of the one-particle
electron Green’s function, and its expression in the self-consistent Born approximation is obtained.
We discuss the first Born approximation and show that when correlations are taken into
account, the attenuation vanishes on the Fermi surface and the electron distribution function atT
50 acquires a Migdal discontinuity, whose magnitude depends onn. The energy of theN-
state in this approximation is still lower thaneFM(n) for n,1. We show that the spin correlation
functions are isotropic, which is a characteristic feature of the singlet states of the system.
We calculate the spin correlation function for the nearest neighbors in the zeroth approximation
as a function ofn. Finally, we conclude that the singlet state of the system in the
thermodynamic limit is the ground state. ©1998 American Institute of Physics.
@S1063-7761~98!01712-0#
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1. INTRODUCTION. STATEMENT OF THE PROBLEM

In this paper we discuss the problem of the ground s
and the electron distribution function in the Hubbard mod1

when the single-site repulsive potential is infinite,U5`.
The system Hamiltonian

H`5(
f sD

t~D!Xf
s0Xf 1D

0s 2l (
f s

Xf
ss , ~1!

specified on ad-dimensional lattice withN sites with a co-
ordination numberz and periodic boundary conditions, de
scribesNe electrons that tunnel to the nearest vacant sitesf
stands for the lattice sites,D is the vector connecting th
nearest neighbors,t(D) is the tunneling integral, andl is the
chemical potential!. Since repulsion is assumed infinite, ea
site is either vacant or contains a single electron with s
projections ~pairs are forbidden!. This fact is reflected in the
use of Hubbard operators with well-known commutation
lations, which differ from those of fermions~see below!.

At this point it is convenient to normalize the Hami
tonian to the halfwidth of the ‘‘bare’’ electron bandzt:

h`5H`/zt , t~D!/zt52 1/z .

In the thermodynamic limit (N→`, Ne→`, Ne /N5n
5const), all the properties of our system depend solely
1151063-7761/98/87(12)/8/$15.00
te

n

-

n

the topology of the lattice~the numberd of the lattice dimen-
sions and the numberz of the nearest neighbors! and the
electron concentrationn(0<n<1).

Applying Fourier transformations to all the operators,

Xks5
1

AN
(

f
eik fXf

0s ,

Xss8~q!5
1

AN
(

f
eiq fXf

ss8 , ~2!

where the vectorsk andq belong to the first Brillouin zone,
we find that the Hamiltonian becomes

h`5(
ks

~vk2m!Xks
† Xks , ~3!

wherevk represents the dimensionless dispersion law in
nearest-neighbors approximation,

vk52
1

z (
D

eikD52gk , ~4!

andm5l/zt is the dimensionless chemical potential.
The simplicity of the Hamiltonian~3! is an illusion,

since the operatorsX obey the following commutation rela
tions and completeness condition:
9 © 1998 American Institute of Physics
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$Xks ,Xps8
† %5

1

N (
f

ei ~k2p! f~dss8Xf
001Xf

s8s!,

Xf
001Xf

ss1Xf
s̄s̄51. ~5!

Using the commutation relations~5!, we can write the
equations of motion (\51) as follows:

iẊks5@Xks ,h`#5jk
0Xks1Rks , jk

05vk2m, ~6!

Rks5
1

AN
(

q
vk2q@Xs̄s~q!Xk2q s̄2Xs̄s̄~q!Xk2qs#,

~7!

s̄52s.

The nonlinearity of Eq.~6! stems from the algebra of th
operatorsX or the presence of ‘‘kinematic’’ correlations be
tween electrons with opposite projections of spin.

What is important in the problem of strong electron co
relations is the ground state of the system and the elec
distribution function.

The energy of the system depends on the system’s
spin S. In the case of a saturated ferromagnetic stateS
5Ne/2), the solution of the problem is exact and trivial f
any admissible number of electrons. In this case the sys
is an ideal Fermi gas of electrons with the projection of
spins in one direction~the state in thek-space is either vacan
or occupied by a single electron!. At T50 the distribution
function is a Fermi step function.

An alternative of the ground state of the system is
singlet state (S50 for an even number of electrons!, which
we also call a normal (N) strongly correlated state~the num-
bers of electrons with spin ‘‘up’’ and ‘‘down’’ are equal an
there is no long-range magnetic order!. The energy advan
tage of theN-state is due to the possibility of double occ
pancy of states in thek-space (Xka

† Xkb
† uc0&Þ0), which low-

ers the chemical potential in comparison with that for t
ferromagnetic state. Here, of course, pairs are forbidde
the direct space andNe<N.

Correlations between electrons with opposite spin p
jections are strongest in theN-state. By ‘‘dispersing’’ the
electrons according to their momenta such correlations
the one hand, enhance the energy of the system and, o
other, may modify the Fermi step function atT50. Here it is
important to establish whether the Migdal discontinuity2 in
the distribution function is retained on the Fermi surface
whether it disappears, as it does in a marginal3 or Luttinger4

electron liquid.
The goal of this work is to calculate the distributio

function of electrons in a system in theN-state atT50 by
the method of two-time retarded Green’s functions.5. In con-
trast to the previous previous work of one of the auth
~E.V.K!,6,7 here we examine the approximation of the ma
operator corresponding to the self-consistent Born appr
mation.

2. GREEN’S FUNCTIONS: GENERAL PROPERTIES

We consider the two-time retarded anticommuta
Green’s function
-
on

tal

m
e

e

in

-

n
the

r

s
s
i-

r

Gks~t!52 iu~t!^$Xks~ t !,Xks
† ~ t8!%&, t5t2t8, ~8!

and its Fourier transform

^^XksuXks
† &&E[Gks~E!5E

2`

`

dt eiEtGks~t!, ~9!

whereE is the spectral variable. It is convenient to write th
Green’s function as follows:

Gks~E!5csFks~E!, ~10!

^$Xks ,Xks
† %&512ns̄[cs , ns̄5

1

N (
f

^Xf
s̄s̄&.

We introduce the spectral intensity

I ks~E!52
1

p
Im Fks~E1 i0!. ~11!

Using this quantity and the spectral theorem, we can find
averages~here and in what follows we assumeT50):

^Xks
† Xks&5nks5csE

2`

0

I ks~E! dE[cs f ks . ~12!

The spectral intensity obeys the sum rule

E
2`

`

I ks~E! dE51. ~13!

The chemical potential can be found by solving the equat

n5
1

N (
ks

nks5
1

N (
ks

csE
2`

0

I ks~E! dE, ~14!

wheren is the given electron concentration. The system
ergy ~per lattice site! is

e5
1

N (
ks

vknks5
1

N (
ks

vkcsE
2`

0

I ks~E! dE. ~15!

Since all calculations are done in the thermodynamic lim
we can replace the sums by integrals:

1

N (
k

A~vk!5E
21

1

A~v!r~v! dv, E
21

1

r~v! dv51,

where r(v) is the density of states corresponding to t
dispersion lawvk ~for alternant latticesr(v)5r(2v),
21<vk<1). After the chemical potential has been foun
we can use formula~12! to find the one-particle distribution
function.

A saturated ferromagnetic state in the Hubbard mo
can be described exactly. AtT50 the chemical potential and
the system energy can be found by the formulas

n5E
21

m

r~v! dv, eFM~n!5E
21

m

vr~v! dv, ~16!

which makes it possible to determine the explicit depende
of the energy of the ferromagnetic state on the electron c
centrationn.
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3. THE MASS OPERATOR OF THE GREEN’S FUNCTION
AND ITS APPROXIMATION IN THE SELF-CONSISTENT
BORN APPROXIMATION

In the exact equation~6! we can isolate the linear par
which corresponds to the generalized Hartree–Fock appr
mation. This is achieved by introducing the irreducib
operator5–7

R̃ks5Rks2
^$Rks ,Xks

† %&

^$Xks ,Xks
† %&

Xks[Rks2
aks

cs
Xks , ~17!

for which ^$R̃ks ,Xks
† %&50. Actually this means that the pro

cedure allows for all ‘‘internal’’ pairings, which lead to lin
earization. Equation~6! takes the form

iẊks5jksXks1R̃ks , ~18!

where

jks5jks
0 1

1

cs
^$Rks ,Xks

† %&5Ds1S cs1
ks

cs
Dvk2m,

~19!

Ds5ues̄u/cs ,ks5^Xf
s̄sXf 1D

ss̄ 1n f s̄n f 1Ds̄&, andes̄ is the en-
ergy ~per lattice site! of the subsystem of electrons with sp

projectionss̄, with n f s5Xf
s̄s̄2ns̄ .

The Green’s functionGks(E) ~or Fks(E)) satisfies the
Dyson equation. To set up the equation, we use the w
known method of first differentiating the Green’s functio
with respect to the ‘‘first’’ timet and then with respect to th
‘‘second’’ time t8. Using the equation of motion in the gen
eralized Hartree–Fock approximation, we arrive6,7 at

Fks~E!5
1

E2jks2Sks~E!1 i0
, ~20!

Sks~E!5
1

cs
^^R̃ksuR̃ks

† &&E
~c! .

The mass operatorSks(E) ~the self-energy part of the
Green’s function! is the connected~index (c)) part of the
higher-order Green’s function, which is not cut along the li
of the graphical representation of the zeroth-order Gree
function Fks

0 (E)5(E2jks)21. Assuming

Sks~E1 i0![Mks~E!2 iGks~E!, ~21!

we have

I ks~E!52
1

p
Im Fks~E!

5
1

p

Gks~E!

@E2jks2Mks~E!#21Gks
2 ~E!

, ~22!

with Gks(E)>0 ~Ref. 5!. Formally the representation~20! of
the mass operator is exact. However, to perform calculatio
we need the explicit form of the mass operator, which me
we must use an approximation scheme of some sort.

The spectral representation of the higher-order retar
anticommutator Green’s function is
xi-

ll-

’s

s,
s

d

^^R̃ksuR̃ks
† &&E5E

2`

` Jks~E8!

E2E81 i0
dE8. ~23!

If we now employ the spectral theorem, we can express
spectral density of this function in terms of time average

Jks~E!5E
2`

` dt

2p
eiEt ~^R̃ks

† ~0!R̃ks~t!&1^R̃ks~t!R̃ks
† ~0!&!

~24!

with Gks(E)5pJks(E)/cs .
Using the definition~7! of the operatorRks , we calcu-

late the averages in~24!, writing them as a product of quas
Bose and quasi-Fermi averages~i.e., carrying out ‘‘external’’
couplings!. Each of these averages can be found by the sp
tral theorem5 in terms of the corresponding commutator a
anticommutator Green’s functions. As a result we obtain

Jks~E!'
1

N (
q

vk2q
2 E

2`

`

dv N~v! f ~E2v!~11ebE!

3@Ss̄s~q,v!cs̄I k2q,s̄~E2v!

1Ss̄s̄~q,v!csI k2q,s~E2v!#, ~25!

where

Ss̄s~q,v!52
1

p
Im^^Xs̄s~q!uXss̄~2q!&&v , ~26!

Ss̄s̄~q,v!52
1

p
Im^^Xs̄s̄~q!uXs̄s̄~2q!&&v , ~27!

and

F~E!5~ebE11!21, N~v!5~ebv21!21.

A similar approximation was done by Plakidaet al.8 ~see
also Ref. 9! for the t–J model. It corresponds to the sel
consistent Born approximation.

In the N-state, all the main characteristics are indepe
dent of the spin projections (cs5c512n/2, I ps(E)
5I p(E), etc.!, and atT50 we have an expression for th
imaginary part of the mass operator:

Gk~E!5p
1

N (
q

vk2q
2 E

2`

`

dv @S~q,v!1S̃~q,v!#

3@u~E!u~v!u~E2v!2u~2E!u~2v!

3u~ uEu2uvu!#I k2q~E2v!, ~28!

with the obvious redefinitions forS(q,v) ~Eq. ~26!! and
S̃(q,v) ~Eq. ~27!!. Thus, the imaginary part of the mas
operator in the self-consistent Born approximation is rep
sented by a convolution of the spectral intensities of qua
Bose and quasi-Fermi excitations in the frequenciesv and
momentaq. The real part of the mass operator is a Hilbe
transform ofSks(E), i.e.,

Mk~E!5
1

p
P E

2`

` Gk~E8! dE8

E2E8
. ~29!

If the functions~26! and ~27!, which describe the trans
verse and longitudinal components of spin density fluct
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tions, have been calculated~at least approximately!, the mass
operator can be found self-consistently from~28! and ~29!,
the representations~20! and ~21!, and the equation for the
chemical potential

n5
1

N (
ks

^Xks
† Xks&5 ~22n!

1

N (
k
E

2`

0

I k~E! dE.

~30!

Note the difference between a true singlet state an
normal ~paramagnetic! state. In addition toŜi u0& vanishing
in the singlet state, this state has a nontrivial, isotropic s
correlation function

^Sf
xSf 1r

x &5^Sf
ySf 1r

y &5^Sf
zSf 1r

z &[C~r !, ~31!

^Sf
1Sf 1r

2 &52C~r !,

which is independent of the direction of vectorr . If there is
no such correlation (C(r )50), we have an ordinary para
magnetic state. Equations~31! are also true for the correla
tion functionŝ Si(q)Si(2q)& and the corresponding Green
functions.

4. THE ZEROTH APPROXIMATION AND THE RANDOM
PHASE APPROXIMATION

Let us start with the zeroth approximation, i.e., t
N-state andT50, where in describing the electron states
ignore the mass operator. In this case the spectral intens
a delta function and the distribution function, a Fermi st
function:

I p
0~E!5d~E2jp!, np

05c fp
05cu~2jp!,

jp'D1cvp2m. ~32!

Herec512n/2, D5ue0u/2c, e0(n) is the system energy~per
site!, and we have used an approximate expression for
one-particle spectrum~the correlation functionk is dropped
from ~19!!. At this point it proves convenient to introduce th
effective chemical potentialm5(m2D)/c. Thenm and the
system energy as functions of the electron concentration
are, respectively,

n

22n
5E

21

m

r~v! dv[g~m!, ~33a!

e0~n!

22n
5E

21

m

vr~v! dv[v~m!. ~33b!

By excluding the upper limitm we can obtain the explici
dependence ofe0 on n. Analysis shows6,7 that in the zeroth
approximatione0(n),eFM(n) for all concentrations, i.e., the
singlet ~nonmagnetic! state is the energy-advantageous o
Moreover, Eq. ~33a! allows correctly for the excluded
volume effect in the Hubbard model withU5`: the Fermi
surface is inflated compared to the case of free electronn
22g(m) for such electrons! and occupies the entire Bril
louin zone asn→1(m→1).

The spectral densities of the quasi-Bose states in
mass operator can be found in the random phase approx
tion. In the N-state, the commutator Green’s functions
transverse and longitudinal spin fluctuations are7
a

in

is
p

e

.

(

e
a-

f

^^S1~q!uS2~2q!&&v5^^S2~q!uS1~2q!&&v

5
D0~q,v!

11P~q,v!
[D~q,v!, ~34a!

^^Sz~q!uSz~2q!&&v5
1

2
D~q,v!, ~34b!

and

^^Xs̄s̄~q!uXs̄s̄~2q!&&5^^Xss~q!uXss~2q!&&v

5
D0~q,v!

12P2~q,v!
[D̃~q,v!, ~35!

where

D0~q,v!52x0
12~q,v!5

1

N (
p

np2np1q

v2cvpq
,

P~q,v!5
1

N (
p

np1qvp1q2npvp

v2cvpq
, ~36!

^Xps
† Xps&5^Xps̄

†
Xps̄&5np , vpq5vp1q2vp .

Equation ~34b! points to spin isotropy~see Eq.~31!!,
which is characteristic of a singlet state. In this state
correlator

^Xss̄~q!Xs̄s~2q!&1^Xs̄s̄~q!Xs̄s̄~2q!&

53^Sz~q!Sz~2q!&1 1
4^r~q!r~2q!&, ~37!

wherer(q) is the operator of electron number density flu
tuations. In the random phase approximation we have

^^r~q!ur~2q!&&v5
D0~q,v!

12P~q,v!
[D̄~q,v!, ~38!

so that in the singlet state the sum of the spectral intens
can be written as follows:

S~q,v!1S̃~q,v!5 3
2S~q,v!1 1

4S̄~q,v!, ~39!

whereS̄(q,v) is the imaginary part of the function~38!.
If we use the Fermi step functionf p

05u(2jp)5u(m
2vp) to calculate the transverse susceptibilityx12(q,v)
52D(q,v), of the Hubbard electrons in the static ca
~v50! for q→0 we obtain7

lim
q→0

x12~q,0!5
r~m!

12g~m!1mr~m!
[u~m!r~m!, ~40!

whereu(m) is the paramagnetic gain factor. Equation~40!
has no pole singularity, which is an indication that t
N-state is stable against the development of ferromagnet
this agrees with the results of Ref. 10.

Thus, the zeroth approximation and the random ph
approximation are in full agreement~the absence of ferro
magnetism in the Hubbard model withU5` in the thermo-
dynamic limit!.
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5. APPROXIMATIONS USED IN CALCULATING THE MASS
OPERATOR AND THE DISTRIBUTION FUNCTION

Let us discuss the role of kinematic correlations
N-state of the system. Such correlations are described by
mass operator(

k
(E) , and finding them self-consistentl

constitutes an extremely difficult problem, whose soluti
involves complicated numerical calculations. For this rea
we introduce a number of simplifying assumptions, whic
we believe, do not change the main conclusions and the
sence of the problem.

1. The denominators of the functionsD(q,v), D̃(q,v),
and D̄(q,v) do not vanish, which is an indication that th
model does not contain well-defined collective excitatio
~magnons or zero-point sound!. This makes it possible to
approximately replace the sum of spectral intensities~instead
of using the random phase approximation! by

S~q,v!1S̃~q,v!'2AS0~q,v!, ~41!

which is equivalent to considering the susceptibility of ind
pendent Hubbard electrons. In Eq.~41!, A is a correction
factor depending on the concentration~or on the chemical
potential!. With a distribution function of the general form
np5c fp5c f(vp) we have

2
1

p
Im D0~q,v!5S0~q,v!

5
c

N (
p

f ~vp!@12 f ~vp1q!#

3@d~v2cvpq!2d~v1cvpq!#

[S0
~1 !~q,v!2S0

~2 !~q,v!. ~42!

This function, known as the dynamic form factor,11 is de-
fined for both positive (v.0) and negative (v,0) frequen-
cies, sincevpq.0 ~obviously, S0

(2)(q,2v)5S0
(1)(q,v)),

and describes incoherent single-pair electron excitations
the spectrumvpq within the first Brillouin zone.

The correcting factorA can be found from the sum rul

1

N (
q

^Sq
1S2q

2 &5
1

N (
q

^Xq
ssX2q

ss &5
n

2
. ~43!

Using ~41! and the spectral theorem, atT50 we have

^Sq
1S2q

2 &5
Ac

N (
p

f p~12 f p1q!. ~44!

If we take the Fermi step functionf p
05u(m2vp) as the

zeroth distribution function with the effective chemical p
tentialm and replace summation by integration with the ele
tron state densityr(v), we find

n

2
5AcE

21

1

dv r~v!u~m2v!E
21

1

dv8 r~v8!u~v82m!

5Acg~m!@12g~m!#.

Since c512n/25@11g(m)#21 and n/25g(m)@1
1g(m)#21, we have

A~m!5@12g~m!#21. ~45!
he

n
,
s-

s

-

th

-

After this approximation, the imaginary part of the ma
operator can be written as follows (S0

1(q,v)[S0(q,v) for
v>0):

Gk~E!

'5
Gk

15
2Ap

N (
q

vk2q
2 E

0

E

dv S0~q,v!I k2q~E2v!,

E.0,

Gk
25

2Ap

N (
q

vk2q
2 E

0

uEu
dv S0~q,v!I k2q~2uEu1v!,

E,0.
~46!

We see that the attenuationGk(E) vanishes asE→0. Note
that the Fermi level corresponds toE50, so that there is no
attenuation on the Fermi surface proper.

2. Instead of the dynamic form factorAS0(q,v)
5S(q,v) we consider its value averaged over all the m
menta:

S~q,v!→
A

N (
q

S0~q,v![S~v,m!, ~47!

which is the number density of single-pair excitations w
an energyv and a chemical potentialm. Using the Fermi
step function, introducing a new variable,V5v/c, and em-
ploying Eqs.~42! and ~47!, we get

S~V,m!5A~m!E
m2V

m

r~x!r~x1V! dx, 0<V<2.

~48!

We see thatS(V,m)'A(m)r2(m)V asV→0. The shape of
the functionS(V,m) is depicted in Fig. 1 for an elliptica
density of electron states,r(x)5(2/p)A12x2. Analysis of
~48! shows that the behavior and numerical values
S(V,m) do not change significantly with other densities
states for two- and three-dimensional alternant lattices.

The essence of the approximation~47! is as follows. The
general expressions~25! and ~28! describe processes of th
following type: an electron with an ‘‘energy’’E and momen-
tum k passes to the stateE2v, k2q, exciting in the process
an electron–hole pair with momentumq and energyv
5vpq . When the approximation~47! is used, we ignore the
detailed description of states in the momenta and specify
transition of the electron from the constant-energy surfacE
to the constant-energy surfaceE2v; such transitions take
place with different momentaq, which is reflected in~47!.
Since the description of states is done on a constant-en



n

ov

ith
-
of

-
se

f
or

an

hat

the

le

1164 JETP 87 (6), December 1998 E. V. Kuz’min and I. O. Baklanov
surfaces, the dependence of the attenuation and the e
mass operator on the quasimomentumk is lost, i.e.,Sk(E)
→S(E)[M (E)2 iG(E). Now, settingE at c«, we obtain

G~«!

'5 2pE
0

«

dV S~V,m!
1

N (
p

vp
2I p~«2V!, «.0,

2pE
0

u«u
dV S~V,m!

1

N (
p

vp
2I p~2u«u1V!, «,0,

~49!

and

M ~«!5Re S~«!'
1

p
P E

2`

` G~E8! dE8

«2E8
. ~50!

3. Let us study the first Born approximation~the first
iteration step in the self-consistent solution!:

I p~«2V!→I p
0~«2V!5d~«2V2~vp2m!!.

The sum in~49! is

1

N (
p

vp
2 I p

0~«2V!'
1

zN (
p

I p
0~«2V!

5
1

z E
21

1

dx r~x!d@«2V1m2x#

5
1

z
r~«2V1m!,

where

1

z
5

1

N (
p

vp
25E

21

1

v2r~v! dv ~51!

is the average value of the square of the bare spectrum
the entire Brillouin zone. In this case the attenuation is

FIG. 1. The density of single-pair excitations for different values of
chemical potentialm(V is the excitation energy!. Here an elliptical density
of electron states is used.
tire

er

g~«,m!5G~1!~«!

'5
2p

z E
0

«

dV S~V,m!r~«2V1m!,

0<«<32m,

2p

z E
0

u«u
dV S~V,m!r~2u«u1V1m!,

2~31m!<«<0,

~52!

with 21<m<1.
As usual, on the Fermi surfaceg(«)→0 as«→0. Near

the Fermi surface («→0, so thatV→0) we have

S~V,m!'A~m!r2~m!V, r~«2V1m!'r~m!,

and

g~«,m!'
p

z
A~m!r3~m!«2. ~53!

It should be recalled that in our calculations we deal w
dimensionless units; actually, 1/z has the dimensions of en
ergy squared andg, of energy. The functional dependence
~53! on « agrees with Landau’s theory of a Fermi liquid12

(indeed, if we put«5«p2«F5(p22pF
2)/2m'vF(p2pF),

we find thatg}(p2pF)2) and with the results of quasipar
ticle lifetime calculations in the generalized random pha
approximation~see Ref. 11!. The results of calculations o
g(«,m) and of r («,m), the real part of the mass operat
~the Hilbert transform ofg(«,m)), are depicted in Fig. 2.

Within these approximations, the spectral intensity c
be written as follows:

I p~«!5I ~«,vp ,m!

5
1

p

g~«,m!

@«2~vp2m!2r ~«,m!#21g2~«,m!
. ~54!

It has been proved, both numerically and analytically, t
the spectral intensity obeys the sum rule

E
2`

`

d« I ~«,vp ,m!51

for arbitraryvp andm. The distribution function

FIG. 2. The real (r («,m)) and imaginary (g(«,m)) parts of the mass op-
erator in the first Born approximation as functions of the spectral variab«
at m520.4.
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nk5c fk5c f~vk ,m!, f ~vk ,m!5E
2`

0

I ~«,vk ,m! d«,

~55!

has a discontinuity atvk5m ~Fig. 3!. Equation~30! for the
chemical potential with the distribution function~55! reduces
to

n

n22
5E

21

1

r~v! f ~v,m! dv. ~56!

From ~56! we see that to a high degree of accuracy
chemical potential calculated in the first Born approximat
does not differ fromm. Figure 4 depicts the dependence
the discontinuityZ(n) on the electron concentrationn. The
energies of the saturated ferromagnetic state,eFM(n), and of
the N-state in the zeroth approximation,e0(n), and in the
first Born approximation,e1(n), are depicted in Fig. 5. We
see that although the kinematic correlations of the electr
in theN-state raise the energy of the system in compariso
the zeroth approximation, theN-state is still the most advan
tageous one energetically.

Let us discuss the spin structure of this state. Spin is
ropy, which is a characteristic feature of the singlet st
~34b!, is retained if we use the approximation~41!. The spin
correlation function for the nearest neighbors~in the first
coordination sphere! is

C15
1

2N (
q

gq^Sq
1S2q

2 . ~57!

In the approximation~41! we have

FIG. 3. Typical shape of the distribution function in the Hubbard mo
with U5` at T50.

FIG. 4. Dependence of the discontinuity on the Fermi surface on the e
tron concentrationn.
e

f

s
to

t-
e

C15
cA

2N (
q

gq

1

N (
p

f p
0~12 f p1q

0 !

5
cA

2N (
p

u~m2vp!
1

N (
k

gk2pu~vk2m!. ~58!

For the square and cubic lattices there is the well-kno
symmetry effect of ‘‘splitting’’ of gk2p , i.e.,

C15
cA

2N (
p

@u~m2vp!gp#
1

N (
k

gku~vk2m!

5
cA

2 S E
21

m

r~v!v dv D S E
m

1

r~v8!v8 dv8D
52

1

2

v2~m!

12g2~m!
. ~59!

Using ~33!, we finally get

C152
1

8

e0
2~n!

12n
. ~60!

If, e.g., we take the ‘‘rectangular’’ density of statesr(v)
51/2 we havee0(n)52n(12n)(12n/2)21, so that

C1~n!52
1

8

n2~12n!

~12n/2!2
.

In the present model the correlations are due solely to e
trons hopping to neighboring vacant sites and, natura
C1(n)→0 asn→1.

Thus, ourN-state is a singlet state with a nontrivial iso
tropic spin correlation function.

6. CONCLUSION

Our analytical and numerical analysis of the Hubba
model for the limit of infinite repulsion at a single site (U
5`) has shown that qualitatively the properties of the el
tron system are the same as those of a normal metal
electron–electron coupling. What is important here is t
the kinematic electron correlations do not disrupt the Fe
surface, but leave a ‘‘signature’’ in the form of a Migda
discontinuity in the distribution function. Although this re

l

c-

FIG. 5. The energies of the saturated ferromagnetic state,eFM(n), the nor-
mal state in the zeroth approximation,e0(n), and the normal state in the firs
Born approximation,e1(n).
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sult has been obtained in the first Born approximation,
believe that it is not altered by further iterations, since
attenuation~the imaginary part of the mass operator! always
vanishes on the Fermi surface, i.e., for a zero value of
spectral variablesE.

Our numerical calculations have shown that the norm
~nonmagnetic! singlet state is the ground state. The ma
reason for this is that the chemical potential is lower th
that of the saturated ferromagnetic state, which is indica
already by the zeroth approximation. Our study was don
the thermodynamic limit, with the result that the subtle qua
tum mechanical effect described by the Nagaoka theore13

which concerns the ground ferromagnetic state in the p
ence of one hole, does not appear in this limit. In this c
nection we would like to mention To’th’s paper,14 where it
was stated that in the presence of two holes the ferrom
netic state is not the ground state.

In the model withU5` we considered only theN-state
as the main contender for the ground state of the syst
Here the state with the electron concentrationn51 is the
‘‘punctured’’ point with zero energy and high degree of d
generacy. At finite but large values of Coulomb repulsi
(U@t), the degeneracy is lifted by the antiferromagnetic e
change interactionsJ't2/U, and long-range antiferromag
netic order emerges at low hole concentrations.9. However,
as the concentration grows, long-range antiferromagnetic
der disappears and the system passes into its normal~metal-
lic! state of the type described above.
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Electronic structure and local interactions on a Si „100…231 surface with submonolayer
Ba overlayers
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G. É. Frank-Kamenetskaya
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The electronic structure and ionization energy for the system Ba/Si~100!231 have been studied
as functions of the submonolayer coverage. It is found that there is an energy gap in the
surface states spectrum and that the Ba/Si~100!231 interface is semiconducting up to 1.5
monolayers of Ba. Two surface bands induced by Ba adsorption have been detected.
The evolution of the spectrum with increasing degree of Ba coverage points to the existence of
two nonequivalent ‘‘adsorption sites,’’ which differ in binding energy by 0.11 eV. The
development of the Ba-induced bands is found to terminate at a coverage corresponding to the
minimum ionization energy and close to one monolayer. The adsorption bond is shown
to have a primarily covalent character. ©1998 American Institute of Physics.
@S1063-7761~98!01812-5#
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1. INTRODUCTION

A study of the structural and electronic properties
adsorbed metal coatings on silicon surfaces is of applie
well as fundamental importance, thanks to the potential
the use of such systems in nanotechnological application
this regard, it is of especial interest to study at the atom
level the interaction of the active dangling bonds of reco
structed silicon surfaces with metal atoms.

Among phenomena on semiconductor surfaces, the m
studied have been changes in the spectrum of surface s
during adsorption, the correlation between the structural
electronic properties, and the nature of the adsorption bo
Adsorption of metals can alter the electronic properties of
surface, inducing the appearance of new surface state
metallic or semiconductor type. As a result, the nascent
terface either preserves the original conductivity type of
substrate or alters it. In this connection keen interest
arisen over the question of the relative importance of
effect of the adsorbate and the substrate on the electr
structure of ultrathin interfaces. Thus, studies in recent ye
have shown that adsorption of Cs onto a reconstruc
Si~111!737 surface leads to the formation of ultrathin inte
faces for which the surface conductivity has a meta
character.1–3 A qualitatively different situation is observe
for the adsorption of Ba on the same surface. It has b
found that an insignificant concentration of Ba adatoms, l
than 0.2 monolayers, on a Si~111!737 surface leads to the
destruction of the metallic conductivity of the substrate, a
the interface has a semiconducting character.1 These studies
show that in the case of adsorption of metals on a Si~111!7
37 surface the dominant role in the process of formation
the electronic properties of the metal–semiconductor in
face belongs to the adsorbate.
1161063-7761/98/87(12)/5/$15.00
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A dimer-reconstructed Si~100!231 surface has two ac
tive dangling bonds per dimer, and their concentrat
n56.7831014cm22 exceeds the concentration of danglin
bonds on a Si~111!737 surface by more than a factor o
two.4 Therefore substantial differences may be expected
the adsorption properties of these surfaces. At present, m
experimental and theoretical studies confirm the model
asymmetric dimers for a reconstructed Si~100!231 surface.
In this model atoms of neighboring atomic rows on an id
Si~100!131 surface form dimers during reconstructio
thereby lowering the number of dangling bonds by a fac
of two. Each dimer atom has one dangling bond. The dim
so formed are asymmetric and tilted, and in connection w
this there takes place a partial transfer of charge from
lower atom of the dimer to the upper. Such a relaxation
accompanied by a rehybridization of the surface bonds an
redistribution of surface charge. As a result, the electro
structure of a Si~100!231 surface has a semiconductin
character whereas in the case of symmetric dimers the ac
dangling bond of each atom is partially filled with one ele
tron, which should lead to an electronic structure of meta
type.4–6 An atomically clean Si~100!231 surface has three
surface states:S1, S2, andS3, situated respectively 0.8, 1.0
and 3.5 eV below the Fermi levelEF ~Refs. 5 and 6!. The
surface statesS1 andS3 are ascribed respectively to the da
gling bond and the valence bond of the upper atom of
dimer. The nature of theS2 state is still unclear.

The high reactivity and the behavior of the geometric
and electronic structure have heightened interest in studie
local interactions of the metal adatoms on a Si~100!231
surface. For adsorption of alkali metals, the dimer surfa
structure, as a rule, is preserved, and the adatoms can oc
different sites on the surface, the so-called adsorption s
7 © 1998 American Institute of Physics
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FIG. 1. Dependence on the Ba sputtering time of:!
the photoemission thresholdshns5f ~curve1 ! and
hnp ~curve 2 ! for excitation of samples of
Ba/Si~100!231 by s- and p-polarized light; b! the
total photoemission currentI s for the systems Ba/
W~110! ~curve 1 ! and Ba/Si~100!231 ~curve 2 !
for different degrees of Ba coverageu ~upper scale,
in units of monolayers!.
u
tio
ue
ti

tr
7

o

ec

u
h
1.
m
d
a

nd
at
es

b-
fo

b
ll-
m
da

e

e
th
co

ve
to
es
nd
th

ue

nsi-
lly
tros-
he
the
to-
-

dge
d

the

n
e
ges

s the
ence

f the
es

g to
cur-
r
-

ing

a
y

Despite the great variety of experimental studies on this s
ject, many questions touching on the number of adsorp
sites, the type of conductivity of the nascent interface, val
of the saturated coverage, and the nature of the adsorp
bond for adsorption of alkali metals on a Si~100!231 sur-
face remain open. Studies of the electronic structure of ul
thin Ba/Si~100!231 interfaces are still lacking. Reference
investigated adsorption of Ba on a Si~100!231 surface by
methods of electron loss spectroscopy and thermal des
tion, and also measured the work function.

We have carried out the first studies ever of the el
tronic structure of the Ba/Si~100!231 interface in the inter-
esting energy region near the bulk valence band maxim
and the Fermi level, together with a determination of t
ionization energy for submonolayer coverages of 0.2–
monolayers. We used the technique of threshold photoe
sion spectroscopy. Our results are adequately describe
the double-layer model, proposed for adsorption of alk
metals on a Si~100!231 surface. We have compared Ba a
Cs adsorption on a Si~100!231 surface and have shown th
the substrate plays a decisive role in the formation of th
interfaces.

2. SAMPLES AND EXPERIMENTAL TECHNIQUE

We investigated a sample (p-type, 7.5V•cm! of a
Si~100! single crystal doped with KDB-7 boron and su
jected it to etching in air using the standard technique be
carrying out the measurements.8 A clean Si~100!231 sur-
face was obtained after removing the thin oxide layer
annealing to 1230 K in a high vacuum followed by the we
known regime of stepped cooling. Atomically pure bariu
was deposited onto the surface of the sample from a stan
source~a BaNi evaporator, Ref. 9!. The intensity of the Ba
source was held constant during throughout the experim
All measurements were performedin situ in a superhard
vacuum P<1310210Torr, which enabled us to eliminat
the effect of residual oxygen as long as the duration of
experiment did not exceed 1800 s. Under these vacuum
ditions, experiments were carried out using the technique
threshold photoemission spectroscopy, based on selectis-
or p-polarized excitation of bulk photoemission and pho
emission from surface states, and also on the effect of thr
old amplification of photoemission from the surface ba
during quasiresonant excitation. A detailed description of
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technique is given in Refs. 1, 10, and 11. The techniq
possesses high optical resolution (DE;0.01 eV! and sub-
stantially exceeds other photoemission techniques in se
tivity. Advantages of the technique include its fundamenta
nondestructive character. Threshold photoemission spec
copy allows one to obtain detailed information about t
structure of the surface bands near the Fermi level and
maximum of the bulk valence band from the surface pho
emission spectraI p(hn)/I s(hn). Simultaneously, we deter
mined the ionization energyf, which is the photoemission
threshold fors-polarized emission (hns5f). In the case of
p-polarized excitation the photoemission thresholdhnp cor-
responds either to the position of the long-wavelength e
of the surface band~if it is located between the valence ban
maximum andEF) or to the position ofEF ~if the band has a
metallic character and intersects the Fermi level!.

3. RESULTS AND DISCUSSION

Ba adsorption on a Si~100!231 surface sharply lowers
the photoemission threshold. Figure 1a displays curves of
variation of the bulk photoemission thresholdhns , i.e., the
ionization energy (hns5f), and the surface photoemissio
thresholdhnp as functions of the barium sputtering time. W
found that over the entire investigated range of Ba covera
the photoemission thresholds are different,hns.hnp , which
proves the existence of surface states in the band gap. A
coverage is increased, a substantial increase in the differ
between the thresholds from;0.02 to;0.1 eV is observed.
It can be seen that the segment of abrupt decrease o
ionization energy, which is observed for sputtering tim
t,200 s, is followed by a segment of slow variation off
with a weakly expressed minimumfmin52.1560.01 eV. To
accurately determine the Ba sputtering time correspondin
fmin , we recorded the dependence of the photoemission
rent I s for s-polarized excitation by a cadmium lase
(hn52.81 eV! on the Ba sputtering time. We took into ac
count the fact that the maximum of the dependenceI s(t)
corresponds tofmin ~Ref. 11!. Figure 1b shows that the
maximum of I s is reached att5800 s ~barium sputtering
time!. The Ba coverage obtained for the given sputter
time corresponds to the so-called saturated coverageusat,
since by definitionusat is the coverage needed to achieve
minimum of the work function and of the ionization energ
of the system.
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To determine the Ba surface concentration for satura
coverageusatwe used the technique proposed in Ref. 11. T
calculation was based on the experimentally obtained r
tion @see Fig. 1b# of the Ba sputtering times required to rea
the photocurrent maxima for the investigated system
Si~100!231 (t5800 s! and a reference system Ba/W~110!
(t5300 s!. For the system Ba/W~110! the adatom surface
concentration corresponding to the photocurrent maximum
well known and is equal to 2.531014 atoms/cm22 ~Ref. 9!. It
should also be pointed out that within the limits of o
monolayer the Ba sticking coefficient is equal to unity f
both surfaces. Consequently, the experimentally obtai
value of the Ba adatom surface concentration on the Si~100!
231 substrate at saturation is equal tousat5(6.860.1)
31014 atoms/cm2. The concentration corresponds to o
monolayer. Note that a coverage equal to one monolaye
identical for any reconstruction of the Si~100! surface and is
defined as the density of silicon atoms on a Si~100!131
surface, which is 6.7831014 atoms/cm2 ~Ref. 4!. Thus, on
the basis of the above experimental data we can estimat
saturated Ba coverage on a Si~100!231 surface as one
monolayer.

The difference between thresholds for achieving mo
layer coverage is 0.11 eV and does not vary further, wh
indicates that the edge of the surface band remains fi
relative to the maximum of the bulk valence band. Analy
of the surface photoemissionhnp near the threshold show
that the density of surface states at the Fermi levelEF is
equal to zero over the entire investigated range of covera
i.e., the edge of the surface band lies between the maxim
of the bulk valence band andEF . Thus, we have establishe
the presence of band gap in the spectrum of surface stat
the system Ba/Si~100!231 and the absence of metallizatio
of the interface up to Ba coveragesu.1.5 monolayer.

Figure 2 displays surface photoemission spec
I p(hn)/I s(hn) of the system Ba/Si~100!231 for different

FIG. 2. Surface photoemission spectraI p/I s for the system Ba/Si~100!2
31 for different degrees of submonolayer Ba coverageu ~the degree of
coverage is indicated alongside the curves in units of monolayers!. HereA1

andA2 are the surface bands induced by Ba adsorption; the arrows ind
the position of the the valence band maximum.
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Ba coverages. The spectra reflect the density of surface s
located below the valence band maximum. As the Ba cov
age is increased, two surface bands,A1 andA2, are observed
to form. The bandA1 appears at low coveragesu.0.2
monolayer. A maximum athn52.53 eV is already distinctly
visible for u50.3 in Fig. 2. With growth of the Ba coverag
the density of states in bandA1 increases, with abrupt growth
being observed in the range of coverages from 0.3 to
monolayer. The bandA2 with a maximum athn52.38 eV,
possessing a smaller binding energy thanA1, is observed in
the spectrum for coverages close to 0.4 monolayer. A sim
increase of the density of states in the band with growth
the Ba coverage is observed, and when a coverage of
monolayer is reached, the bandA2 is completely formed.
The difference in binding energies for the two bands
0.1 eV. Thus, Ba adsorption on a Si~100!231 surface leads
to the appearance of two induced bands, whose maxima
located below the maximum of the bulk valence band.

During adsorption, adatoms can occupy different sites
the surface known as adsorption sites~Fig. 3!. Calculations
reveal the existence of four possible adsorption sites on
Si~100!231 surface~Refs. 12 and 13!. Two of them are
located between rows of dimers and two above the rows
dimers. Adsorption site1 —a cave—is located between row
of dimers above a silicon atom of the third layer, site2 —a
valley—is located between rows of dimers above a silic
atom of the second layer, site3—a pedestal—is located be
tween dimer atoms, and site4—a bridge— is located above
the dimer atoms. At present, the experimental and theore
results on adsorption of alkali metals is treated from
point of view of two alternative models. The model of on
dimensional metallic chains was proposed in Ref. 14 for
case of adsorption of Cs on Si~100!231. According to this
model, the Cs atoms occupy one adsorption site3—a pedes-
tal. The interface has a metallic character, and saturated
erage is 0.5 monolayer, i.e., it is reached when the adat
interact with only half of the active dangling bonds of th
substrate. Below we will extend this model to adsorption
K and Na on a Si~100!231 surface; however, it is assume
that the most probable adsorption site for the adatoms is
1—a cave.15,16

On the other hand, for Cs and K adsorption on Si~100!
231, the model of a double layer has been proposed on

te

FIG. 3. Schematic depiction of a dimer-reconstructed Si~100!231 surface
@large empty circles — upper layer~dimer atoms!, smaller empty circles —
second layer, small filled circles — third layer# and possible adsorption site
~crosses!: a — top view, b — side view.
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basis of various experimental data.17 In this model, adsorp-
tion takes place on two nonequivalent sites: a pedestal~3!
and a valley~2!; see Fig. 3. In this case, saturated coverag
one monolayer and corresponds to filling of all active da
gling bonds of the substrate. This model was later exten
to adsorption of other alkali metals and is supported b
large quantity of experimental18–20 and also theoretica
studies.21,22 These studies show that the alkali metal/Si~100!
231 interface has a semiconducting character for satur
coverage. The difference in the adsorption processes an
the properties of the local interactions posited in the mod
prove to be fundamental for the formation of a metallic
semiconducting type of electronic structure of the interfa

The experimental data we have obtained for the
Si~100!231 interface are adequately described in terms
the double-layer model. The existence of two induced ba
indicates that Ba adsorption takes place on two nonequ
lent adsorption sites. In the initial stage of formation of t
interface, the local interaction of Ba adatoms with the act
dangling bonds of the surface takes place primarily on
adsorption site and possesses a larger binding energy. W
a coverage.0.4 monolayer is reached, the Ba adatoms
gin to occupy a second adsorption site with lower bind
energy. As theoretical studies have shown,13,21 one of these
adsorption sites should be in one row with dimers~site 3 or
4, Fig. 3!, and the other, between rows of dimers~site1 or 2,
Fig. 3!. In the model of asymmetric dimers the most pro
able eventuality is adsorption at site3 ~a pedestal! and the
least probable is adsorption at site4 ~a bridge!, whereas ad-
sorption sites1 and 2 are equally likely. Therefore, in the
Ba/Si~100!231 system adsorption can take place either
sites 1 and 3 or at sites2 and 3. For saturated coverage
which is defined as a monolayer, both adsorption sites
occupied, as is confirmed by the complete developmen
the spectrum of induced surface bands. Ba adsorption le
to an insignificant increase in the density of surface state
the band gap, and the interface has a semiconducting c
acter up to 1.5 monolayers. The adsorption bond has a
marily covalent character with partial charge transfer to
dangling bonds of the substrate.

Figure 4 schematically depicts the position of the el
tronic surface bands relative to the valence band maxim
~II ! for ultrathin Ba/Si~100!231 interfaces. The upper figur
depicts a clean Si~100!231 surface, where only one surfac
stateS1 is depicted, having the lowest binding energy. Up
adsorption of alkali metals, the given surface eigenstat
shifted toward higher binding energies.18 We assume the
presence of a similar shift for Ba adsorption, which frees
an energy region;1 eV belowEF for the formation of the
barium-induced bandsA1 andA2. For monolayer coverage
the low-energy edge of the bandA2 is found betweenEF and
the valence band maximum, which corresponds to differ
photoemission thresholds for bulk and surface photoemis
@see Fig. 1~a!#.

Comparison of the results of studies of Ba and Cs
sorption shows that in both cases the interface has a s
conducting character up to 1.5 monolayers, saturated co
age is one monolayer, and the electronic structure has
induced bands corresponding to two nonequivalent ads
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tion sites for the Si~100!231 surface. All of the results of
the present study are in good agreement with the dou
layer model, which we proposed previously for the syst
Cs/Si~100!231 ~Ref. 23!. The observed effects are eviden
of the dominant influence of the properties of the Si~100!2
31 substrate on interface formation. Thus it can be asse
that the nature of the local interactions for two such differe
adsorbates as Cs and Ba is dictated by the Si~100!231 sur-
face, in contrast to the Si~111!737 surface, where the influ
ence of the adsorbates prevails.

This work was carried out with the support of Gra
No. 96-2-28 of the ‘‘Atomic Surface Structures’’ program o
the Russian Ministry of Science and Grant No. 98-02-182
of the Russian Fund for Fundamental Research.

* !E-mail: benem@optun.ioffe.rssi.ru

1G. V. Benemanskaya, D. V. Daineka, and G. E. Frank-Kamenetsk
Phys. Low-Dim. Struct.10/11, 233 ~1995!.

2K. O. Magnusson, S. Wiklund, R. Dudde,et al., Phys. Rev. B44, 5657
~1991!.

3G. V. Benemanskaya, G. E. Frank-Kamenetskaya, and M. N. Lapush
Surf. Sci.331–333, 552 ~1995!.

4W. Monch,Semiconductor Surfaces and Interfaces, Springer-Verlag, Ber-
lin ~1993!.

5J. Pollmann, P. Kruger, and A. Mazur, J. Vac. Sci. Technol. B5, 945
~1987!.

6L. S. O. Johansson, R. I. G. Uhrberg, P. Vartenssonet al., Phys. Rev. B
42, 1305~1990!.

7D. Vlachos, M. Kamaratos, and C. Papageorgopoulos, Solid State C
mun.90, 175 ~1994!.

8F. Ishizaka and Y. Shiraki, J. Electrochem. Soc.133, 666 ~1986!.
9A. G. Fedorus, A. G. Naumovets, and Yu. S. Vedula, Phys. Solid State13,
445 ~1972!.

10G. V. Benemanskaya, M. N. Lapushkin, and M. I. Urbakh, Zh. E´ ksp.
Teor. Fiz.102, 1664~1992! @Sov. Phys. JETP75, 899 ~1992!#.

11G. V. Benemanskaya, D. V. Da�neka, and G. E´ . Frank-Kamenetskaya
JETP Lett.65, 729 ~1997!.

12Ye Ling, A. J. Freeman, and B. Delley, Phys. Rev. B39, 10144~1989!.
13R. Ramirez, Phys. Rev. B40, 3962~1989!.
14J. D. Levine, Surf. Sci.34, 90 ~1973!.

FIG. 4. Schematic diagram of the electronic structure of the surface ba
for a clean Si~100!231 ~a! surface and for the system Ba/Si~100!231 for
different degrees of submonolayer Ba coverage: 0.3 monolayer~b! and 1
monolayer~c!. S1 — natural surface state of the Si~100!231 surface; I —
conduction band minimum; II — valence band maximum.



aya,

1171JETP 87 (6), December 1998 Benemanskaya et al.
15C. M. Wei, H. Huang, S. Y. Tonget al., Phys. Rev. B42, 11284~1990!.
16P. Soukiassian, L. Spiess, P. S. Mangatet al., J. Vac. Sci. Technol. B11,

1431 ~1993!.
17T. Abukawa and S. Kono, Phys. Rev. B37, 9097~1988!; Surf. Sci.214,

141 ~1989!.
18A. J. Smith, W. R. Graham, and E. W. Plummer, Surf. Sci.243, L37

~1991!.
19T. Abukawa, T. Kashiwakura, T. Okaneet al., Surf. Sci.303, 146~1994!.
20Y.-C. Chao, L. S. O. Johansson, C. J. Karlssonet al., Phys. Rev. B52,
2579 ~1995!.

21I. P. Batra, Phys. Rev. B39, 3919~1989!; 43, 12322~1991!.
22H. Ishida and K. Terakura, Phys. Rev. B40, 11519~1989!.
23G. V. Benemanskaya, D. V. Daineka, and G. E. Frank-Kamenetsk

Surf. Rev. Lett.5, No. 1–2~1998!.

Translated by Paul F. Schippnick



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS VOLUME 87, NUMBER 6 DECEMBER 1998
Static displacements of atoms near isotopic impurities and residual resistivity
A. P. Zhernov* )

Kurchatov Institute Russian Scientific Center, 123182 Moscow, Russia
~Submitted 17 April 1998!
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The question of the residual resistivity of chemically pure metals which are mixtures of atoms of
different isotopes is discussed. The question of the static displacements appearing near
isotopic impurities due to differences in the zero-point vibrations is analyzed in a microscopic
approach. It is shown that such static displacements have a significant influence on the
residual resistivityr r . Their contribution tor r is far greater than the contribution due to
differences in the dynamic elastic electron scattering amplitudes. ©1998 American Institute of
Physics.@S1063-7761~98!01912-X#
ith
m
s
gh
ti
W
er

o

te
it

b
ity
rd
sit
se
tt
h
on
he
he
x

r
in
e

-
ic

ty

t
c
in
an
e

nd
ice
lib-
l
by
on-

lue
nts

ria-

tal
si-
s.
des
nts

ase
es-
re-
ci-

ion
e-
ne-
ne

u-
e

ed

in

ac-
the
1. INTRODUCTION

Most crystals are mixtures of atoms of isotopes w
different atomic weights. However, the synthesis of che
cally pure and highly isotopically enriched crystals is po
sible. In such a case the parameters of the natural and hi
enriched compounds can be compared, and the contribu
associated with the isotopic impurities can be isolated.
note that investigations of the thermal conductivity of g
manium were recently performed with the use of samples
highly enriched70Ge.1 In this context, the problem of the
residual resistivity of metals, which has been investiga
experimentally to an inadequate extent, would be of defin
interest in our opinion.

Back in his time, Pomeranchuk2 pointed out that chemi-
cally pure metals, whose crystal-lattice sites are occupied
isotopes of different kinds, exhibit a finite residual resistiv
r r at zero temperature due to persistent dynamic diso
~which is caused by fluctuations of the atomic mass from
to site!. According to Ref. 2, this resistivity exists becau
the phonons appearing in virtual states upon electron sca
ing experience the influence of the isotopic disorder. T
corresponding resistivity is proportional to the electron-i
interaction parameter raised to the fourth power. In ot
words, r r appears in a higher order with respect to t
electron-ion interaction than in the case of the Born appro
mation.

It was subsequently shown3 that the finite resistivityr r

exists in an isotopically disordered lattice even in the Bo
approximation. Actually, the true elastic electron scatter
amplitude on ionn (an) is the product of the static amplitud
a0 ~which does not vary from site to site! and the dynamic
Debye–Waller factorWn , whose value exhibits a depen
dence on the mass of the vibrating atom, as a result of wh
the differencean2an8 is nonzero, and a residual resistivi
appears in the standard approximation.

In this paper we focus our attention on the fact tha
field of static displacements$zn% should exist around isotopi
impurities. It is interesting that, generally speaking, the
teratomic force parameters do not vary in the vicinity of
isotopic impurity. However, the zero-point vibrations of th
1171063-7761/98/87(12)/7/$15.00
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atoms make a definite contribution to the binding energy a
consequently influence the static configuration of the latt
ions, leading to displacements of the atoms from the equi
rium positions~which are characteristic of the ideal crysta!
near an impurity. In addition, the scattering of electrons
static near-impurity displacements also makes a definite c
tribution to the resistivity.

We note that in the case of classical statistics the va
of the mean square of the dynamic atomic displaceme
^u2& does not depend on the isotopic composition. The va
tion of ^u2& and, therefore, of the resistivityr r upon varia-
tion of the content of isotopes of different kinds in a crys
is a quantum effect.3 In the temperature range where clas
cal statistics hold, the factor^u2& ceases to depend on mas
As a result, the differences between the scattering amplitu
an are erased, and the field of specific static displaceme
$zn% vanishes.

Equations for the static displacements in the general c
are obtained in a microscopic approach in Sec. 2. Some
timates are made in a simple lattice model. The residual
sistivity r r is discussed in Sec. 3. The contributions asso
ated with differences in the dynamic electron-ion interact
amplitudes and with fields of near-impurity static displac
ments are analyzed simultaneously. For simplicity, we
glect the mutual influence of isotopic impurities and confi
ourselves to the one-impurity approximation.

2. DYNAMIC DISORDER AND STATIC NEAR-IMPURITY
DISPLACEMENTS

Let us consider a crystal lattice with an isotopic imp
rity. The total energyE depends on the coordinates of th
ionsRn . In a crystal with impurities the atoms are displac
from their original positions, so that

Rn5Rn
~0!1zn1un ,

whereRn
(0) is the equilibrium position of the respective ion

the ideal lattice,zn is the static displacement vector, andun

denotes the dynamic displacement vector. Taking into
count that the displacements are small in comparison to
2 © 1998 American Institute of Physics
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interatomic distances, we expand the structure-depen
part of the energy into a series inun andzn relative toRn

(0) .
The Hamiltonian of a harmonic crystal has the form

H5(
n

~pn
a!2

2Mn
1

1

2 (
n1 ,n2

F2,n1n2

ab un1

a un2

b . ~1!

The following notation has been adopted in~1!: pn is the
momentum of the atom of massMn in site n, andF2,n1n2

ab is

the second-order force parameter. It is assumed that

Mn5M01DMdn,0 , DM5M12M0 .

Here M0 is the mass of an atom of the regular matrix, a
M1 is the mass of the isotope. The origin of coordina
coincides with the equilibrium position of the impurity atom
In addition, here and in the following the doubly repeat
Cartesian indicesa andb imply summation.

We next define the relaxation energyEr associated with
the near-impurity static displacementszn of the atoms. We
note that in the expression forEr we have retained not only
the standard terms that are first- and second-order inzn , but
also terms of the form

1

2
F3,nn1n2

abg ^un1

a un2

b &zn3

g .

HereF3,nn1n2

abg is the third-order force parameter, and^ . . . &
denotes averaging over the equilibrium thermodynamic
tribution.

We note that the existence of the nonzero correlator

Kn1n2

ab 5^un1

a un2

b &, ~2!

which is associated with the zero-point vibrations, is a ch
acteristic feature of the quantum motion. It reflects the f
that the concept of the complete rest of a particle is me
ingless in quantum theory.

The energyEr can be represented symbolically in th
usual form as

Er5Fz1
1

2
F2z2. ~3!

In this expression the effective forceF which is exerted by
an isotopic impurity on matrix atoms and leads to displa
ments can be represented in the following form:

Fn
a5

1

2 (
n1n2

F3,nn1n2

abg DKn1n2

bg . ~4!

Here the quantityDK is defined as the difference betwee
the correlatorsK for the lattice with an isotopic impurity and
the regular lattice. More specifically,

DKn1n2

ab 5Kn1n2

ab ~DMÞ0!2Kn1n2

ab ~DM50!. ~5!

In ~4! and ~5! the force parameterF3, as well as the cor-
relator K, are assigned relative to the equilibrium positio
of the ions in the ideal lattice.

Using ~3!, from the condition of equality of the effectiv
force acting on an atom, i.e.,]Er /]zn , to zero we obtain the
following system of equations forz:

F1F2z50. ~6!
nt

s

-

r-
t

n-

-

On the basis of~6!, in the coordinate representation we fin
that

zn
a'2D̄nn8

ab Fn8
b , D̄5~F2!21. ~7!

In this case the relaxation energy equalsEr5Fz/2.
Let us obtain an explicit expression for the correlatorK,

which determines the effective forceF in the problem under
consideration. For this purpose we introduce the Gree
function constructed from dynamic atomic displacement
erators

Dnn8
ab

~ t !52 iu~ t !^@un
a~ t !,un8

b
~0!#&. ~8!

As is generally known, the correlatorK of interest to us can
be expressed in terms of the Green’s functionD using the
equality

E
2`

`

dt exp~2 ivt !Kn1n2

ab ~ t !5
2Im Dn1n2

ab ~v2 id!

12exp~2v/T!
. ~9!

In a situation where there are isolated isotopic impurit
at the sites of an harmonic lattice, the Green’s function~8!
satisfies the equation~see, for example, Ref. 3!

Dnn8
ab

~v!5D0,nn8
ab

~v!1v2

3(
n1

D0,nn1

ag ~v!~M02Mn1
!Dn1n8

gb
~v!. ~10!

In this case the ‘‘zeroth’’ Green’s functionD0 of the ideal
lattice can be represented as

D0,nn8
ab

~v!5
1

M0N (
q j

ea~q, j !eb~q, j !

3
exp$ iq~Rn

~0!2Rn8
~0!

!%

v22v2~q, j !
. ~11!

In ~11! v(q, j ) andea(q, j ) denote the frequency and pola
ization vector of a phonon mode with the quasimomentumq
and the polarizationj .

Using an iteration method, we can write an approxim
solution of Eq.~10! in the form

Dnn8
ab

~v!'D0,nn8
ab

~v!1v2

3(
n1

D0,nn1

ag ~v!~M02Mn1
!D0,n1n8

gb
~v!1v4

3 (
n1n2

D0,n1n2

ag ~v!~M02Mn1
!D0,n1n2

gg1 ~v!

3~M02Mn2
!D

0,n2n8

g1b
~v!1 . . . . ~12!

As a result, in the single-impurity case of interest to us,
can use~12! and ~9! to obtain



-
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DKn1n2

ab ~ t50!'2
DM

p E
2`

`

dv
v2

12exp~2v/T!

3Im@D0,n10
ag ~v!D0,0n2

gb ~v!#. ~13!

Knowledge ofDK, which directly characterizes the dy
namic disorder, enables us to determine the field of stati
o

ea
ch

t
re

th
displacements on the basis of the relations~7! and ~4!. We
obtain

za~q!52
1

2

DM

M0
(

j

ea~q, j !eb~q, j !

M0v2~q, j !

3 (
q1 ,q2 , j 1 , j 2

F3,qq1q2

bgd Zq1q2

gd . ~14!

In order to simplify the form of the expressions, we set
Zq1q2

gd 5 (
j 1 , j 2

eg~q1 , j 1!eg1~q1 , j 1!eg1~q2 , j 2!ed~q2 , j 2!
v~q1 , j 1!@2n~v~q1 , j 1!!11#2v~q2 , j 2!@2n~v~q2 , j 2!!11!]

M0@v2~q1 , j !2v2~q2 , j 2!#
,

~15!
mic

s
es-
iso-

-
the

m

-
ere
s in

a
of
tion

of
y a

-

of

es-
e

wheren(v)5@exp(v/T)21#21.
It follows directly from ~15!, first, that at absolute zer

temperature

Zq1q2

bg ~T50!5 (
j 1 , j 2

3
eb~q1 , j 1!eg1~q1 , j 1!eg1~q2 , j 2!eg~q2 , j 2!

M0@v~q1 , j !1v~q2 , j 2!#
.

~16!

Second, in the high-temperature limitZ50, and, therefore,
the specific field of static displacements vanishes.

Let us obtain some estimates in the model of a lin
chain with interactions between nearest neighbors. In su
case the spatial Fourier components for the second- (f 2) and
third-order (g3) force parameters, i.e.,F2,q andF3,qq1q2

, are
represented as~see, for example, Refs. 4 and 5!

F2,q5M0vq
2 , M0vq

254 f 2 sin2~ql/2!, ~17!

F3,qq1q2
52

ig3

~ f 2 /M0!3/2 ṽqṽq1
ṽq2

D~q1q11q2!,

ṽq52A f 2

M0
sin

ql

2
. ~18!

Here l is the lattice constant. The relation betweenf 2 andg3

for an integral Gru¨neisen factorgG'2 in the central-force
model is

2g3l / f 2'10. ~19!

Based on~14!–~16! with consideration of~17! and~18!,
we can show that the displacements of atoms located in
first coordination sphere relative to an isotopic impurity a
given by the relation

z520.3e
g3l 2

f 2
;2e l , ~20!

wheree is a characteristic parameter of the theory and in
present case
r
a

he

e

e5
DM

M0

^u2&

l 2
.

Here ^u2& denotes the mean square of the dynamic ato
displacements.

It follows from Eq.~20! that as a result of the difference
in the zero-point vibrations the lattice undergoes ‘‘compr
sion’’ near a heavy isotope and expansion near a light
tope.

In standard systemŝu2&/ l 2;1023, anduDM u/M0<0.1.
In this case it turns out thatueu<1024. Thus, the static near
impurity displacements are very small compared with
interatomic distances.

It would be interesting to perform estimates for quantu
crystals, such as in the case of a mixture of4He and3He. We
can utilize the data for the Debye temperatureQ526 K and
the lattice constantl 53.57 Å in Ref. 6. We then have
^u2&/ l 2'331022. Since uDM u/M050.25 these displace
ments are appreciable. In the first coordination sph
z50.025. These displacements are of the same scale a
the case of systems with standard~nonisotopic! impurities.

Let us turn our attention to the fact that distortion of
lattice around light isotopes with resultant renormalization
the force parameters was postulated in Ref. 7 in connec
with the problem of the thermal conductivity of solid4He
with 3He impurities. It was found that the displacements
the atoms in the first coordination sphere are described b
formula of the type

z̃52
1

3

DM

M0
S 3E0

3E018pmr 3D ,

whereE05(8Mr )21 is the energy of the zero-point vibra
tions in a spherical potential well of radiusr . The factor
8pmr 2 is related to the relaxation energy due to inclusion
the radiusr . More specifically,Ẽr58pmr 2z̃2, wherem is
the compression modulus. According to Ref. 7,z̃'0.02. To
a certain degree it is possible that the disparity with the
timate based on Eq.~20! is due to the use of values of th
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parameters corresponding to a density of 0.208 g/cm3 for the
estimates in Ref. 7. In Ref. 6 the density was equal
0.18 g/cm3.

An explicit expression forzn is derived in Appendix A in
the asymptotic limit whereuRn

(0)u is much greater than th
interatomic distancel .

3. INFLUENCE OF DYNAMIC LATTICE DISORDER
ON THE RESIDUAL RESISTIVITY

Let us consider nontransition metals. Bearing in mi
the qualitative aspect of the phenomenon, we assume tha
electron Fermi surface is nearly spherical. We write the n
equilibrium electron distribution functionwa(k) in the form
wa(k)}vk

a , wherevk is the electron group velocity. Then
the residual resistivity can be described by an expressio
the form ~see, for example, Refs. 8 and 3!

r r5
~2p!3

3m
*
2 V0J2 E

sF

E
sF

dsk

vk

dsk8

vk8

~vk2vk8!
2a0

2~q!S~q!,

~21!

where

q5kF2kF8 , J5
l

4p3 E
sF

dsk vk'
evFsF

12p3
.

Here we have adopted the following notation:a0 is the value
of the static electron-ion scattering amplitude;e andm* are
the electron charge and effective mass; andV0 is the equi-
librium unit-cell volume of the lattice. The integration is ca
ried out over the Fermi surface (sF), an element of which is
denoted bydsk . In addition,q is the scattering vector, an
kF is the value of the electron momentum on the Fermi s
face.

The factor characterizing scattering in a lattice with d
namic and static disorderS(q) is defined as

S~q!5
1

N (
nn8

exp$ iq~Rn2Rn8!%

3expS 2
Wn~q!1Wn8~q!

2 D ,

whereRn5Rn
(0)1zn and the Debye–Waller factor

Wn~q!5^~q•un~0!!2&.

The dynamic and static displacements are small comp
with the interatomic distances. Therefore, we expand the
ponential function in a series, retaining the first three ter
in Wn and the two terms inzn . The terms containing the
delta function in the momentum do not lead to resistivi
Thus, the elastic scattering of the conduction electron
described by the expression
o

the
-

of

r-

-

ed
x-
s

.
is

S~q!'
1

N (
nn8

exp$ iq~Rn
~0!2Rn8

~0!
!%

3H 1

2
Wn~q!Wn8~q!1~qzn!~qzn8!

1
i

2
@~qzn!Wn8~q!2~qzn8!Wn~q!#J . ~22!

We note that, by definition,Wn andzn are, respectively, even
and odd functions ofRn

(0) , and the value ofS(q) is conse-
quently real. The first term in~22! describes scattering due t
the differences between the dynamic amplitudes for ela
scattering by a matrix atom and an isotopic impurity~see the
details in Ref. 3!, the second term describes scattering
near-impurity static displacements, and the third term
scribes interference scattering.

The contribution to the resistivity due to the scatteri
mechanism proposed in Ref. 2 is not taken into account.
corresponding expression contains an additional small
rameter (v0(2kF)/eF)2, which does not appear in~22!. Here
v0(2kF) is the Fourier component of the atomic pseudop
tential in the region of large momentum transfers,eF is the
Fermi energy, andkF is the Fermi momentum. In the case
standard metals (v0(2kF)/eF)2!1 ~see, for example,
Ref. 9!.

In an ideal lattice the Debye–Waller factor does not d
pend on the site indexn. Therefore, the quantity

DWn5Wn~DMÞ0!2W0~DM50!

actually appears in~22!. Its spatial fourier component has th
following form ~see Ref. 3!:

DW~q!5
1

N (
n

exp~ iqRn
~0!!DWn

5
1

N (
n

exp~ iqRn
~0!!qaqbDKnn

ab

52
1

2
qaqb

DM

M0
(

q1 j 1 j 2

Zq1 j 1 ,q1q1 j 2

ab . ~23!

Therefore, we can ultimately representS(q) in the form

S~q!'
1

NH 1

2
DW~q!DW~q!1~qz~q!!~qz~q!!

1@~qz~q!!DW~q!2~qz* ~q!!DW~q!#J . ~24!

We recall thatz(q) is defined by~14!–~16!.
If impurities are regarded as isolated atoms, the quan

1/N can be replaced in~24! by the defect concentrationc
when the resistivity is determined. In the case of isotop
instead ofc we use the factor

dM25
^M2&2^M &2

^M &2
, ^M &5(

s
(

n
cn

~s!Mn
~s! , ~25!

wherecn
(s) is the probability of finding an isotope of types at

lattice pointn.
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Then, using~23! we can show that in the model of
linear chain

DW~q!'2
1

2
eq2l 2. ~26!

Simultaneously, according to~20!, we have

qz~q!'2
1

2
le

Af 2 /M0

vq
ql, l5

g3l

2 f 2
.1. ~27!

We plug ~26! and ~27! into ~24!. We plug the resultan
expression, in turn, into the expression~21! for r r . Let us
compare the values of the standard and nonstandard res
resistivities. For this purpose we consider the factor

Y5

E
0

2kF
q3a0

2~q!NS~q!

e2E
0

2kF
dq q3a0

2~q!

.

For the sake of fixing ideas and simplicity, for the amplitud
we assume that

a0~q/2kF!

a0~0!
5

0.2

~q/2kF!210.2
.

Then, with consideration of the relations~26! and ~27! and
under the assumption that the Debye wave vector is clos
2kF , we obtain

Y50.15Z0
2/3p2$Z0

2/3p212.66Z0
1/3lp12.15l2%, ~28!

whereZ0 is the number of valence electrons per atom.
It follows from the results of the numerical calculation

i.e., from ~28!, that in the model adopted the disorder due
the static displacements in~24! influences the magnitude o
the residual resistivity to a greater degree than do the dif
ences in the amplitudes due to the Debye–Waller fac
alone. Consideration of the scattering by static displacem
can alter the value ofY by several fold whenZ0>3 and by
an order of magnitude whenZ051.

Calculations were also performed for metallic lithium,
which there are two isotopes:6Li and 7Li. In this case our
treatment was based on the results of the Brovman–Ka
microscopic theory of nontransition metals~see the review in
Ref. 10!. The kinetic coefficients of regular metals were pr
viously analyzed within this theory in Ref. 11. The corr
sponding formulas needed to determine the quantities
pearing in the theory of the residual resistivity develop
here are presented in Appendix B. We note that the tw
wave approximation for the electronic wave function w
used in the calculations of the residual resistivity. It w
found with neglect of the lattice distortion thatY'21. When
the static displacements are taken into account,Y'123.
Thus, the estimates ofY obtained above are confirmed.

We note that the dominant contribution to the resid
resistivity in weak metal solutions with standard substi
tional impurities is made by the scattering of electrons
defects due to the differences in the static amplitudes.
contribution tor r caused by scattering on matrix atoms d
placed near a defect is comparatively small. Isoelectro
ual
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weak solutions, in whichr r can vary by several tens of pe
cent when the lattice distortion is taken into account,
exceptions~see, for example, Ref. 12!. As was shown above
the scattering mechanism associated with static displa
ments is dominant only in the case of metals with isoto
impurities.

Let us consider the question of the mean free paths.
we know, the mean free path of conduction electrons in n
transition metals at room temperature is determined by
scattering of electrons by phonons. In this case~see, for ex-
ample, Ref. 12!

Lph;50
Tm

T
l ,

whereTm is the melting point. The corresponding value
Lph is of the order of several hundred angstroms. Taking i
account the foregoing, we can show within the model use
Refs. 8 and 13~which permits allowance for umklapp pro
cesses on a qualitative level! that the effective mean free pat
L is associated with scattering due to differences in the
namic amplitudes and static displacements in a metal w
different isotopes at absolute zero temperature is equa
order of magnitude to

L is;
1

dM2

l 2

^u2&

1

YF v0~2kF!

v0~q50!G
2

Lph. ~29!

Here^u2&/ l 2;1023. In the case of natural isotopic mix
tures of such metals as Li, Zn, and Sn, the parameter defi
by formula ~25! dM2>1024. For molybdenumdM2'6
31024. Consequently, for such metalsL is<1 mm, while
with neglect of the lattice distortionL is>1 cm. If samples
containing, for example, isotopes of two kinds in equal p
centages are synthesized, the mean free pathsL is ~29! can
decrease by more than an order of magnitude due to
increase in the isotopic disorder factordM2. Nevertheless,
the dimensions of the samples used in the experiment ca
standard even for natural compositions.

We useL im to denote the mean free path due to t
elastic scattering of electrons by nonisotopic impurities w
a concentrationcim . Observation of effects caused by isot
pic disorder is possible, ifL im>L is . In this case the follow-
ing condition for the concentration of point defects must
satisfied:

cim<4hdM2YS ^u2&

l 2 D 2

, h5
^^~q/2kF!2a0

2&&

^^~aim2a0!2&&
, ~30!

whereaim is the scattering amplitude on impurities and

^^a2&&5E
sF

E
sF

dsk

vk

dsk8

vk8
q2a2~q!.

For mixed-valence mixturesh<1. If the condition ~19!
holds, then, according to~30!, we have

cim;1023dM2,

i.e., the samples must be very perfect.
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4. CONCLUSION

Chemically pure metals whose lattice sites are occup
by different isotopes have been considered. Equations
scribing the fields of static displacements appearing near
topes due to dynamic disorder have been obtained in a
croscopic approach in the first stage. The question of
residual resistivity has been analyzed within the Born
proximation. The contributions associated with differences
the dynamic elastic electron-ion interaction amplitudes a
with fields of near-impurity static displacements are tak
into account simultaneously. It has been shown that spe
static displacements have a significant influence on the
sidual resistivity r r . This contribution tor r can be far
greater than the contribution due to differences in the
namic electron scattering amplitudes.

As far as we know, the question of the residual resis
ity of metals containing different isotopes was investiga
experimentally by Sharvin in the case of natural tin.14 For a
concrete theoretical treatment it would be desirable to h
data for samples with different isotopic compositions.

We are indebted to S. M. Stishov for a valuable co
ment and A. V. Inyushkin for a useful communication. W
thank D. A. Zhernov for his assistance.

This work was performed with financial support fro
N. A. Chernoplekov.

APPENDIX A:

Let us consider the question of the asymptotic repres
tation of the field of static displacements$zn%. First, we must
determine the value ofz(q→0) under the condition
uRnu@ l .

We take into account the recurrence relation for fo
parameters of different orders:

(
n1

Rn1

a1Fp11,n1 . . . np11

a1 . . . ap11 5V0

]

]V0
Fp,n2 . . . np11

a2 . . . ap11 daa1
,

~A1!

wherep52,3. This relation was derived in Ref. 15 for no
transition metals on the basis of the microscopic theory
Ref. 10.

On the basis of~14! and ~A1! it can be shown that

za~q→0!'2 i
DM

M0
(

j
D̄qj

abqb

3 (
q1 j 1q2 j 2

(
m

H V0

]

]V0
F2,0mJ

3exp~ iq1Rm!Zq1 j 1q2 j 2

bg D~q11q2!, ~A2!

where to simplify the form of the expressions we set

D̄qj
a,b5

ea~q, j !eb~q, j !

M0v2~q, j !
.

Using the standard relation

(
a,b

ea~q, j !F2,q
a,beb~q, j !5M0v2~q, j !
d
e-
o-
i-
e
-
n
d
n
fic
e-

-

-
d

e

-

n-

e

n

and defining the partial Gru¨neisen factor in the form

gG~q, j !52
V0

v~q, j !

]

]V0
v~q, j !,

instead of~A2! we obtain

za~q→0!'2 i
DM

M0
gGEvib(

j
D̄qj

a,b qa

M0
. ~A3!

Here

gG5
(qjg~q, j !v~q, j !

(qjv~q, j !
, Evib5

1

2 (
qj

v~q, j !,

where gG is the integral Gru¨neisen factor andEvib is the
energy of the zero-point vibrations.

The factor

(
m

exp~ iq•Rm
~0!!D̄q

was determined in the asymptotic limit for cubic crysta
with bcc and fcc lattices in the general case in Ref. 16. Le
consider here the case of an isotopic elastic continuum. T

v~q!5Al1m

r
q, ea~q!5

q•v

q2 qa, ~A4!

wherel andm are the Lame´ constants andv is a unit vector.
In addition,

M0~l12m!/r5V0C11,

wherer is the density andC11 is the elastic modulus.
Substituting~A4! into ~A3!, after some simple transfor

mations, in the asymptotic limit we have

zn5
V0

~2p!3 E dq exp~ iq•Rn
~0!!z~q!'

b

4p

Rn
~0!V0

uRn
~0!u3

,

whereb is the magnitude of the defect:

b52
DM

M0

gGEvib

V0C11
.

APPENDIX B:

As has been noted, the calculations for lithium were p
formed within the Brovman–Kagan microscopic man
electron theory. In addition, the local pseudopotential o
‘‘naked’’ ion was chosen in the form

v0~q!52
4p

q2 FZ0e2 cos~qr0!1v0r 0

3S sin~qr0!

qr0
2cos~qr0! D Gexp~2xq2!,

wherex50.03(2kF)22. The effective interelectronic interac
tion was considered in the Geldart–Taylor approximation17

The parametersv0(q) for Li were previously found:v05
20.262 andr 050.825 Å.18

The frequencies and polarization vectors of the phon
modes of the harmonic lithium lattice were determined us
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a dynamic matrix in the standard form~see, for example
Ref. 9!:

Dab~q!5
4pZ0

2e2

M0V0
(
B

FC2,ab~q1B!2 (
BÞ0

C2,ab~B!G
1Z0

2e2(
nÞ0

@exp~qRn
~0!!21#

3FRn
~0!,aRn

~0!,b

Rn
~0!2 F1~Rn

~0!!2dabF2~Rn
~0!!G .

HereB is the reciprocal lattice vector. The factorC(q) char-
acterizes the contributions of the Coulomb and indirect~by
means of conduction electrons! ion-ion pair interactions. It
has the form

C2,ab~q!5qaqbC~q!,

C~q!5
4pZ0

2e2

V0q2 expS 2
q2

4h D2V0v0
2~q!

P~q!

e~q!
,

where e(q)5114pe2P(q)/q2 is the dielectric function
with the polarization operatorP andh is the Ewald param-
eter. The expressions forF1(R) and F2(R), which are re-
lated to the Coulomb interaction can be written in the f
lowing manner:

F1~R!5
3erf~AhR!

R3
12Ah

p
exp~2hR2!S 3

R2
12h D ,

F2~R!5
erf~AhR!

R3
12Ah

p

exp~2hR2!

R2
,

erf~x!512
2

Ap
E

0

x

dzexp~2z2!.

The expression for the Fourier component of the thi
order force parameter had the form

F3,k,q,k1q
abg 5(

q
@C3,abg~k1B!

1C3,abg~q1B!2C3,abg~k1q1B!#

1Z0
2e2(

nÞ0
$@RaRbRgF̄3~R!1~Radbg

1Rbdag1Rgdab!F̄2~R!#@sin~k•R1q•R!

2sin~k•R!2sin~q•k!#%R5R
n
~0!.
-

-

To simplify the form of the expression, here we set

C3,abg~q!5qaqbqgC~q!,

F̄n~R!5S 1

R

d

dRD n

F̄~R!,

F̄~R!5
2

R
Ah

p E
R

`

exp~2hz2! dz.

We note that explicit expressions for the force para
eters, which permit allowance for the many-particle ion-i
interaction, were obtained in Ref. 15.
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Random walks in disordered media with dipole-dipole transition rates are considered. The long-
time asymptotics of the process are investigated on the basis of a new numerical simulation
method, which includes periodic continuation of the system without periodic continuation of the
initial condition. It is shown that the long-time asymptotics have a diffusive character. The
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1. INTRODUCTION

Random walks in disordered media with dipole-dipo
transition rates describe diverse migration processes of lo
ized excitons, which can be investigated using fluoresce
depolarization measurements,1,2 time-resolved fluorescenc
line-narrowing spectroscopy,3,4 and the results of four-wave
mixing experiments,5 as well as the transport of spi
polarization.6

Various theoretical4,7–18 and numerical8,19,20 approaches
have been employed to calculate the principal processes
served in these and similar systems. In particular, a met
for investigating the autocorrelator at moderately large tim
was developed in Ref. 11. However, there has been no ag
ment in the literature in resolving the extremely importa
question of the form and parameters of the long-time asy
totics of the process. In particular, the values of the diffus
coefficient that have been proposed hitherto differ appre
bly. The diffusive character of the asymptotics, which is n
questioned by most investigators, has not yet been pro
analytically.

This paper considers dipolar transport in a thre
dimensional disordered system formed by impurity cent
randomly dispersed in a crystal. Our investigation is ba
on a new method for analyzing the asymptotics of rand
walks in disordered media with a translationally invaria
distribution of the randomness of the medium.21 The proce-
dure for substantiating the results includes comprehen
testing and repeated computer calculations for different
ues of the parameters, which provide convincing confirm
tion of the significant qualitative properties of the asympt
ics, unequivocally~to within ,3%) revealing at least the
two leading terms in the power-series expansion of the a
correlator with respect to time. In addition, the method
successfully corroborated when it is applied to an extens
class of models of random walks in disordered media w
exact asymptotic solutions.22–24

1.1. The dipole-dipole transport of excitations amo
centers of an disordered impurity can be described by
kinetic equation

ṗim52(
j

~n j i pim2n i j pjm!, pim~ t50!5d im , ~1!
1171063-7761/98/87(12)/9/$15.00
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wherei , j , andm run through the numbers of the sites occ
pied by the impurity in the regular latticeL, andpjm(t) is the
probability of finding a random walker at sitej at the timet
if it was initially at sitem.

In the standard model of dipole-dipole transport

n iÞ j5
n0r 0

6

uxi2xj u6
, n i i 50, ~2!

wherexj is the radius vector of sitej andn0 is the hopping
rate over the minimum distancer 0 between sites. The con
figuration of the impurity centers is uncorrelated, and t
probability of finding an impurity in an arbitrary lattice sit
is c<1. In the limit of low concentrationsc!1, where the
disorder of the medium is manifested most strongly,
characteristic time scale is assigned by the Fo¨rster constant
b5(16/9)p3(r 0

3/V)2c2n0, whereV is the unit-cell volume.
Parametricallyb coincides with the transport rate over th
mean distancer̄ 5(V/c)1/3 and is determined by averagin
the decay process over all impurity configurations:

^exp~2tD̃ i !&5exp@2Abt #, D̃ i5(
j

n j i ,

wherec→0 andbt is a finite quantity.
A general method for investigating the behavior of o

of the most important, experimentally observed characte
tics of random walks in an disordered system, viz., t
propagator

P xy~ t !5c21 (
i j

^pi j ~ t !dxxi
dyxj

&, ~3!

which is the probability, averaged over all the impurity co
figurations, of finding an excitation on lattice sitex at the
time t if it was initially on sitey, was developed in Ref. 11
It involves expanding the propagator in powers ofct1/2. The
cumulant version of this expansion with consideration of
first three members of the series provides a faithful desc
tion of the existing experimental data1,3,4,6 for bt,5.

The principal unsolved problem is the form and para
eters ofP xy(t→`).
9 © 1998 American Institute of Physics
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1.2. In order to describe some difficulties in the theor
ical analysis of the system~1! more explicitly and to more
clearly see the place of the problem under discussion am
other problems in modern physics, we present two exp
sions for the propagator in the form of a functional integra12

each of which is based on the most commonly used
proaches to such representations. For this purpose it is
venient to introduce an occupation-number representa
and to rewrite Eq.~1! as

Ṗxy52(
z

~nznzxnxPxy2nxnxznzPzy!,

Pxy~ t50!5
ny

c
dxy . ~4!

Here Pxy(t) is the probability of finding an excitation o
lattice sitex if it was initially on sitey, andnx is the donor
occupation number of sitex, which takes values of 0 and 1
In this case^nx&5c, and P xy5^Pxy&. The equivalence of
Eqs. ~1! and ~4! becomes clear if all the zero componen
corresponding to empty sites are eliminated in~4!. After al-
lowance for the fact thatnxPxy5Pxy , Eq. ~4! takes the form

Ṗxy52(
z

~nznzxPxy2nxnxzPzy!. ~5!

When the long-time asymptotics are analyzed, the ini
condition imposed on this equation can be taken in the fo
Pxy(t50)5dxy . In fact, the excitation is initially placed in
an arbitrary lattice site, and then it hops to the nearest do
and subsequently migrates among them. The long-time
ymptotics of such a process clearly coincide with the ex
asymptotics.12,14 Using Pxy

1 to denote the corresponding s
lution, we obtain

P15exp~2At!, A5(
z

nzA
z,

Axq
z 5dxqnzq2dzxnxq .

A ‘‘quantum-mechanical’’ representation is obtained
the basis of natural continuation of the kinetic equation fr
a lattice to a continuous medium and has the form

P xy
1 ~ t !5^Pxy

1 ~ t !&5E
q~0!5x

q~1!5y
Dp~t!Dq~t!

3expF i E
x

y
p dq1cE d3z

3S expH 2tE
0

1

dt Az~q~t!,p~t!!J 21D G , ~6!

wherec!1, the functional integral is construed as the lim
of the finite-multiple integrals corresponding to the subdi
sions of the time interval for unconstrained reduction of
length of these subdivisions, and the functionAz(q,p) is de-
termined from a relation of the type

E dp

~2p!3
Az~q,p!eip~x2q!5Axq

z 5nzq@d~x2q!2d~x2z!#.

~7!
-

ng
s-

p-
n-
n

l

rs
s-
t

-
e

One of the solutions of Eq.~7! is Az(q,p)5nzq@12exp
$2ip(z2q)%#. A discussion of the other solutions and a ge
eralization of~6! and ~7! can be found in Ref. 12.

The following representation of the Laplace transform
the propagator employs integration over two families of pa
of complex-conjugate variables, viz., the ‘‘ordinary’’ var
ablesaz

1 andaz and the Grassmann variablesaz
1 andaz :

Pxy
1 ~l!5S 1

l1AD
xy

5E
0

`

dt P xy
1 ~ t !e2lt

5E )
zPL

daz
1 daz daz daz

1

2p
axay

1

3expF2l~a1a1a1a!

1c(
zPL

~exp$2~a1Aza1a1Aza!%21!G . ~8!

Herec!1, the path integral is construed as the limit of t
finite-multiple integrals corresponding to the transition fro
a lattice to a finite discrete torus, and the expressions of
type a1Ba are construed as(xqax

1Bxqaq .
We note that a rigorous proof of the convergence of

integrals in ~6! and ~8! was not found, but after formally
expanding the integrands into power series in the concen
tion c and calculating the coefficients term-by-term, we o
tain expressions which are correct in the continuous-med
limit.

As can be seen from the representation~6!, our problem
is more complicated than the polaron problem,25 and the
nonlocality and singularity of the action are far more pr
nounced. The representation~8! transforms our problem into
the problem of a nonlinear nonlocal unrenormalized fie
theory with a strong interaction, since the actual nonlinea
parameter iscl21/2 ~Refs. 11 and 12! and large values oft
correspond tol}1/t→0.

An investigation of the propagator asymptotics usi
similar representations in other random-walk problems
disordered media can be fully successful,23 but such a tech-
nique has hitherto not yielded any appreciable results for
system~1! considered in this work. Therefore, it would b
natural to expect that finding the long-time asymptotics
the averaged propagator will stimulate the development o
general field theory and functional integration and that n
methods could be tested on the problem under considera
along with the Ising model and the polaron problem, whi
have traditionally been used for this purpose.

1.3.Numerical simulation of the asymptotic stage of t
process is difficult for two reasons. The previous attempt
such simulation8,19,20 were not based on a sufficiently de
tailed theoretical prediction of the outcome in the asympto
stage.10,4 First of all, the main features of the onset of th
diffusion stage in such systems were disregarded in the si
lation. In particular, it was not taken into account for a lo
time that diffusion is preceded by a slower process@see~23!
below#. The second reason is that the replacement of an
finite random medium by a periodic medium with a period
cally continued initial condition usually employed in such
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simulation8,19,20 leads to an exponential type of approach
the autocorrelatorP 00(t) to the stationary value correspon
ing to the uniformly filled state. When random walks in di
ordered media are simulated by such a method, to disc
the asymptotic power-lawP 00;1/(bt)3/2 ~which is charac-
teristic of diffusion! it is necessary to ‘‘strike a balance
between long and ‘‘excessively’’ long times after prelimina
ily finding the spectral expansion of the large linear syst
to a very high accuracy. The sensitivity of the method tow
errors is even higher for higher orders in the asymptotic
pansion.

2. METHOD FOR INVESTIGATING RANDOM WALKS

Our investigation is based on a new method,21 which
calls for the treatment of a spatially infinite system. In t
case of a simple cubic lattice the system is obtained fro
pseudorandom configuration of an impurity in a cube with
center at the origin of coordinates and the edgeRr0, which
has cR3 impurity sites, by periodically continuing it in al
space with a period equal to the edge. Similarly, in the c
of a face-centered cubic~fcc! lattice, a pseudorandom con
figuration is constructed in a parallelepiped with the ed
Ra1, Ra2, and Ra3, where a1, a2, and a3 are the Bravais
vectors of the fcc lattice.

We introduce the quantity

r j~k,t !5(
m

pjm~ t !exp$ i ~xm2xj !k%, ~9!

where the vectork runs through the Brillouin zone corre
sponding to the latticeL. The configurational averages

P ~k,t !5^r i~k,t !&5(
y

exp$2 ik~x2y!%P xy~ t !

give the Fourier transform of the propagator and are obs
able in four-wave mixing experiments.5 It follows from ~1!
that

ṙ i52(
j

@n j i r i2n i j exp$ i ~xj2xi !k%r j #,

r i~ t50!51. ~10!

When the impurity has a periodic distribution,r i5rm ,
if xi2xm5RM , whereMPL. In fact, according to~10!, r i

andrm satisfy identical equations with identical initial con
ditions and therefore coincide. Consequently, Eq.~10! can be
represented as

ṙ i52~A~k!r! i52(
j 51

N

@Wji ~0!r i2Wi j ~k!r j #,

r i~ t50!51. ~11!

Here i and j run through the numbers of the sites in t
periodicity volume, and

Wi j ~k!5 (
MPL

8 n0r 0
6uxj2xi2MRu26

3exp$ i ~xj2xi2MR!k%, ~12!
f

er

d
-

a
a

e

s

v-

where(8 denotes summation over allM for which uxj2xi

2MRuÞ0.
We note that the idea of treating a periodic random m

dium was proposed in Ref. 16 to solve a one-dimensio
model with transfer to the nearest neighbor and was use
Ref. 17 to study diffusion in the case of weak disorder in
space of arbitrary dimensionality. In those studies quanti
of the type

Qx~y!5(
M

Px1RM ,y , Sx~y!5(
M

~x1MR!Px1MR,y ,

rather thanr i , were analyzed. Closed equations, whi
could be used to determined the diffusion tensor, were
tained for them.

To replace the propagatorP (k,t) it is convenient to
choose

P~k,tuN!5(
i

r i~k,t !Y (
i

1. ~13!

The quantityP(k,tuN) can be regarded as 1! the Fourier
transform of the propagator averaged over all the configu
tions obtained from a given configuration by displacing t
initially excited site within the periodicity volume and 2! the
projection ofr i onto the leading eigenvector of the operat
A(0). In order to elaborate on the first claim, we note that
generator~1! is symmetric (pim5pmi) and the subscripti in
r i can therefore be regarded as the label of the site in wh
the excitation walking among the impurity centers was i
tially located. We note that in the case of asymmetric trans
that is translationally invariant on the average~where n i j

Þn j i ) we can investigate the equation which is conjugate
~1! and determiner̃ i using the sum over the left-hand inde
rather than over the right-hand index, as in~9!. In this case
the arithmetic mean of the componentsr̃ i will be the exact
mean over all configurations differing from one another w
respect to the initial site.

2.1. It is convenient to investigate the matrix elements
the operatorA(k) ~11! using the Poisson–Ewald method.23 It
gives a complete representation of the analytic propertie
the generator at small values ofuku and permits rapid calcu
lation of the elements to a high accuracy.

We bring ~12! into the form

(
MPL

8 ux2MRu26 exp$ i ~x2MR!k%

5
1

2 (
MPL

8 E
0

`

dt t2 exp$2t~x2MR!21 i ~x2MR!k%

5
1

2S E
0

t0
1E

t0

` D dt (
MPL

8 t2 exp$2t~x2MR!2

1 i ~x2MR!k%, ~14!

wheret0.0, and then we apply the Poisson transformat
under the integral sign. As a result, we obtain
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(
MPL

exp$ ik~x2MR!2t~x2MR!2%

5
1

Vper
S p

t D 3/2

(
gPG

expH 2
~g1k!2

4t
1 ig•xJ ,

whereG is the reciprocal lattice ofL, andVper is the volume
of the periodicity parallelepiped.

Since we shall henceforth be interested only in
ranges of valuesR.10 andkr0,2p/R, after settingt0r 0

2

;0.01 in ~14!, we can retain only the term withg50 in the
sum obtained as a result of the Poisson transformation
our matrix element. This gives

Wi j ~k!5n0r 0
6H (

MPL
8 exp$2t0~x2MR!21 i ~x2MR!k%

3F t0
2

2~x2MR!2
1

t0

@~x2MR!2#2
1

1

@~x2MR!2#3G
1

p3/2

2R3V
E

0

t0
dt t1/2expS 2

k2

4t D J , ~15!

where x5xi2xj . When the valuet0 is chosen, the uppe
bound for the modulus of the discarded sum

(
gÞ0

p3/2r 0
6

Vper
E

0

t0
t1/2expH 2

~g1k!2

4t
1 ig•xJ dt

can be estimated by the expression

p3/2r 0
3

1000Vper
(
gÞ0

expF225S gr 02
2p

R D 2G,10216,

and it thus does not influence the results of the calculatio
The nonanalytic contribution to the matrix element at sm
values ofuku is specified by the integral

p3/2

2 E
0

t0
dt t1/2 expS 2

k2

4t D5
p2

12
uku31f~k!, ~16!

where

f~k!5
p3/2uku3

8 Fa23/2exp~2a!

3
2

2a21/2exp~2a!

3

2
4

3E0

Aa
ds exp~2s2!G ,

a5
k2

4t0

is a function which is analytic with respect tok.
2.2. Let us perform a more detailed analysis of Eq.~11!

at small values ofuku using perturbation theory.
The generator of Eq.~11! has the following easily veri-

fied properties:

1) Ai j ~k!* 5Aji ~k!5Ai j ~2k!;

2) Aii ~0!.0, AiÞ j~0!,0, (
i

Ai j ~0!50;
e

or

s.
ll

3) (
i j

r̄ iAi j ~k!r j

5
1

2(i j (
MPL

8
ur iexp~ ik•xi !2r jexp$ ik~xj1RM !%u2

uxi2xj2RM u6
.

Hence it follows that the generatorAi j (k) is self-
conjugate, the operatorA(0) is a generator of a connecte
Markov chain, and its smallest eigenvalue~which is equal to
zero! is simple. Therefore, at smalluku the smallest eigen-
value ofA(k) is also simple. The eigenvector correspondi
to the smallest eigenvalue ofA(0) appears in the initial con-
ditions of Eq.~11!, and at smalluku it differs slightly from
the leading eigenvector ofA(k). Whenk5g/R, whereg is a
reciprocal lattice vector, the generator is nonnegative, an
is its simple eigenvalue. At all other~real! values ofk the
operator is positive.

For a more detailed analysis we represent~13! in the
form

P~k,tuN!5
1

N (
i 51

N

r i5^0̄uexp@2A~k!t#u0̄&, ~17!

where^ i u0̄&51/AN.
Using the spectral expansion of the Hermitian opera

A(k), we obtain

P~k,tuN!5 (
m50

N21

u^mu0̄&u2 exp@2am~k!t#,

A~k!um&5am~k!um&. ~18!

The lowest eigenvaluea0(k→0) is unique, and
u^0u0̄&u2511O(k2). Introducing the projection operatorsp
5u0̄&^0̄u and p̄512p, we obtain

a0~k!5^0̄uA~k!u0̄&

1^0̄uA~k!p̄
1

a0~k!2p̄A~k!p̄
p̄A~k!u0̄&. ~19!

The first nonanalytic term in the expansion ofA(k) is of
the order ofuku3 @see~16!#. Since the resolvent is finite a
small uku anda0(k) is an even function ofk, the term;uku3

in the expansion ofa0(k) is completely determined by th
first term in ~19!. Hence it follows that

a0~k!5Dabkakb2sk31O~k4!5ā0~k!1O~k4!, ~20!

wheres5(p2/12)c(r 0
6/V)n0.

It is convenient to represent the diffusion tensor in t
form

Dab5~kab/6! r̄ 2b. ~21!

As N→`, because of the isotropy of the systemDab

→Ddab , andkab→kdab .
We note that exact knowledge of the coefficients on the

right-hand side of~20! ensures exact correspondence b
tween the two leading terms of the asymptotic expansion
the autocorrelatorP 00(t).

Taking into account that
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Ai j S k1
g

RD5expS 2
ig•xi

R DAi j ~k!expS ig•xj

R D ,

whereg is an arbitrary reciprocal lattice vector, we can o
tain the following representation for the propagator:

Px05
1

VB
E

B
d3k exp~ ik•x!P~k,tuN!

5
1

VBN E
B
d3k exp~ ik•x!(

i j
~exp@2tA~k!# ! i j

5
1

VBN (
g
E

Bg

d3k exp~ ik•x!(
i j

~exp@2tA~k!# ! i j

5
1

VBN (
g
E

B0

d3k expH ixS k1
g

RD J
3(

i j
expH ig~xj2xi !

R J ~exp@2tA~k!# ! i j

5
R3

VBN E
B0

d3k exp~ ik•x!

3(
i j

~exp@2tA~k!# ! i j dx2xi1xj ,0 . ~22!

Here B denotes the Brillouin zone of volumeVB

5(2p)3/V corresponding to the original lattice,Bg is the
Brillouin zone with a center atg/R corresponding to a cel
equal to the periodicity parallelepiped,g/R runs throughR3

sites of the periodicity parallelepiped in the reciprocal latti
and thus the shiftsBg of zoneB0 by all the possible vectors
g/R regularly fill the large zoneB.

It can be seen from~22! that the formalism propose
here has a small integration region with respect tok in the
propagator representation, which is an important propert
the usual Fourier transformation of band theory~i.e., with
respect to the left-hand coordinate in a lattice with the sp
ing R).

When the leading terms of the asymptotic expansion
the autocorrelator in powers of 1/t are calculated, it is suffi-
cient to take into account only the main eigenvalue ofA(k)
at smallk. As a result,

P00~ t→1`!5
1

VBc E
B0

d3kTr~exp@2tA~k!# !

'
1

VBc E
B0

d3k exp@2ta0~k!#

5
V

c
@~4pDt !23/21s~2p2D3t2!211O~ t25/2!#.

~23!

The relationship between two higher terms of the lon
time expansion~see Refs. 10, 4, and 14!, which is character-
istic of the dipole-dipole interaction for very different distr
butions of the randomness of the medium, is there
confirmed. This directly points out that the diffusion stage
the process is immediately preceded by a stage of slo
-

,

of

c-

f

-

y
f
er

decay of the autocorrelation functions and that in the fi
stage the plot of the autocorrelator approaches
asymptotic curve from above.

3. TESTING THE METHOD ON EXACTLY SOLVABLE
MODELS

We tested all the stages of the application of the p
posed approach to the investigation~and simulation! of ran-
dom walks in disordered media on an extensive class of
ymptotically, exactly solvable models with spatial
unconstrained transport.22–24

To fix ideas we shall dwell on the isotropic random jum
model, in which the propagator is defined by an equation
the form23

Ṗxy52(
z

~nzxjxPxy2nxzjzPzy!, Pxy~ t50!5dxy ,

~24!

wherex, y, andz run through the entire simple cubic lattic
L, nxz5nzx5nz2x,0 ,n0050, (xnx0x

2,1`, and$jx% is a set
of independent, identically distributed positive random v
ues with a sufficient number of finite inverse moments.

Let us consider a periodic system, leaving thejx inde-
pendent, wherex runs through the sites of cubeV with a
center at zero and the edgeRr0, and settingjx2Ry5jx for
any vectoryPL.

In analogy to~9!, we introduce

rx~k,t !5(
y

Pxy~ t !exp$ ik~y2x!%. ~25!

In this caserx2Ry5rx , and the following finite system o
equations holds:

ṙx52~A~k!jr!x52 (
zPV

@Wzx~0!jxrx2Wxz~k!jzrz#,

rx~k,t50!51, ~26!

wherex andz now run through all the sites of the periodicit
cube and

Wxz~k!5 (
MPL

nz,x1MR exp$ ik~z2x2MR!%. ~27!

Instead ofP(k,tuN) @see~17!#, it is now convenient to
consider

P̂~k,t ![^0uexp@2Ajt#
k0

j
u0&

5^0uAk0

j
exp@2AjAAjt#Ak0

j
u0&, ~28!

where

^xu0&5
1

AN
,

1

k0
5

1

N (
xPV

1

jx
, N5R3.

The smallest eigenvalue of the operatorAjAAj is speci-
fied by an expression which coincides with~19! following
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the replacements ^ i u0̄&→^xu0̄&5Ak0 /(jN) and A
→AjAAj. We note that the second term in~19! is fourth-
order with respect tok here and does not make a contributi
to the diffusion coefficient. From the first term we find

D5k0D0 , D05
1

6 (
x

x2nx , ~29!

where D0 is the diffusion coefficient in a regular lattice
When N is large, this result is in excellent agreement w
the expression obtained in Ref. 23 for the diffusion coe
cient

D5kD0 , 1/k5^1/j0&,

where ^ . . . & denotes averaging over an ensemble. T
means that the limitsN→` andt→` are interchangeable in
the present model and that the relative accuracy of determ
ing D from formulas~29! is of the order of 1/AN. The inter-
changeability of these limits can be demonstrated in a sim
manner for all the models considered in Ref. 24. The num
cal algorithm for solving the system~26! was tested on the
isotropic random jump model withnxz;ux2zu26 and uni-
formly distributedj with ^1/j&'10/̂ j&. Just such a relation
between̂ D̃ i& and^1/D̃ i& is realized in the problem~1! when
c'3%. The numerical solution of Eqs.~26! leads to a value
of the diffusion coefficient coinciding with~29! to within
1025. This number characterizes the error in the calculati
for a fixed realization of$jx% and can serve as an estimate
the analogous error in the system~1! under investigation for
an assigned impurity configuration, since below we shall
the same algorithm for the numerical calculation. The sta
tical spread of the diffusion coefficient is specified in t
isotropic random jump model by the distribution of$jx% @see
Eq. ~28!# and in the real system~1! by the number of sitesN
in the periodicity volume and the concentrationc. It is con-
siderably greater than the error of the numerical algorith
and, therefore, the latter error will not be discussed furth

4. SIMULATION RESULTS

Transport cannot be investigated in our basic system~1!
by purely analytic means with the same completeness a
the isotropic random jump model.

We carried out numerical simulations of migration o
the basis of~11!. Figures 1 and 2 present the results of
calculation ofP(k,tuN) in simple and face-centered cub
lattices, where each line corresponds to one impurity c
figuration. It can be seen from the curves that at larget the
value of 2 ln P(k,tuN)/bt tends to a finite positive value
Precisely the same behavior of the Fourier transform of
propagator was observed for all the values ofN considered
from 200 to 2700 and at all concentrations regardless of
type of lattice. Thus, forbt@1

P~k,tuN!5a exp@2v~k!t1sk3t#, ~30!

where the coefficients is known exactly@see Eq.~20!#.
Figure 3 presents a plot ofv(k) for one impurity con-

figuration andbt'40. Similar behavior ofv(k) was ob-
served for different impurity configurations regardless of
concentration and lattice type. AsN→`, v depends onuku
-

s

in-

r
i-

s
f

e
-

,
.
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-

e

e

e

because of the isotropy of the system. The numerical ca
lations confirm the absence of a regular dependence ofv on
the direction of the vectork. Keeping the direction ofk
constant, we vary its length and approximate the values
v(k) obtained according to the least-squares method by
expression v(k)5Dk21ak45b@(k/6)(kr̄)21a1(kr̄)4#.
The terms of ordero(k4) are discarded, since smallk are
considered:kr̄;0.05. We obtaink50.3101(2) anda1

520.0102(2). Thus, whenbt;40, it is seen that the behav
ior of the system is approximated by the express
P(k,tuN)5a exp@(2Dk21sk31O(k4))t#, where the terms
;k4 can be discarded to within the accuracy of the calcu
tion of the diffusion coefficient. Then, up tobt;1000 the

FIG. 1. Time dependence of the Fourier transform of the propagator f
simple cubic lattice:1 — the number of sites in the periodicity volumeN
5240, the concentrationc50.03, andk5(p/200)(0,1,0);2 — N51350,
c50.05, andk5(p/200)(0,0,1);3 — N5640, c50.08, andk5(p/200)
3(1,0,0);4 — N51970,c50.1, andk5(p/200)(0,0,1).

FIG. 2. Time dependence of the Fourier transform of the propagator fo
fcc lattice:1 — the number of sites in the periodicity volumeN5240, the
concentrationc50.03, andk5(p/200)(0,1,0);2 — N5780,c50.05, and
k5(p/200)(0,0,1);3 — N5640, c50.08, andk5(p/200)(1,0,0);4 —
N51760,c50.1, andk5(p/200)(0,0,1).
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diffusion coefficientD decreases monotonically, remainin
within 3% of the value forbt540 and within 0.5% of the
value for bt580. The long-time asymptotics were inves
gated for various concentrations fromc51% toc590%. At
each value ofc we considered from three to five differen
pseudorandom configurations of the impurity sites and a
aged the values ofk obtained over them. The results a
presented in Fig. 4. A similar investigation of the concent
tion dependence ofk was performed for an fcc lattice~Fig.
5!. As can be seen from Figs. 4 and 5, at largec→1 the
value ofk tends to the known value ofk(c51): for a simple
cubic lattice k(c51)50.2999, and for an fcc latticek(c
51)50.2895.

We constructed the approximationk5k(c51)1(k1

1k2c1k3c2)(12c) by the least-squares method, and fo
simple cubic lattice we obtainedk1520.0050(6), k2

50.164(4), and k3520.11(4). The value k05k(c51)
1k150.2949(6) corresponds to the diffusion coefficient f
c→0.

For an fcc latticek150.0066(7), k250.132(4), and
k3520.09(4). In this casek05k(c51)1k150.2961(7),
which coincides to within the error with the value ofk0 in

FIG. 3. Dependence ofv on uku ~points! and its least-squares approximatio
~continuous line!; N51800,c50.1.

FIG. 4. Concentration dependence ofk and its approximation by a third-
order polynomial. The lattice is simple cubic.
r-

-

r

the simple lattice. The lack of a dependence ofk on the type
of lattice at low concentrations was verified by investigati
a random-walk process on a diamond lattice. The va
k(c51)50.3299 for this lattice differs significantly from
k0. It was found at small concentrations that within the c
culation errork has the same value as in the case of sim
cubic and fcc lattices. Such agreement should be obser
since at small concentrations the mean distance between
purities r̄ is much greater thanr 0, and the asymptotics of the
migration process should not depend at all on the type
lattice.11

4.1. To speed up the calculations we employed the
proximation

P~k,tuN!5exp@2ā0~k!~ t1b/b!#1~ r̄ k!2f exp~2a1t !,

a15~2p/R!2Dk8, ~31!

whereb, f , andk8 are constants, which have finite limits fo
c→0 and k→0. This shortened the calculation time b
roughly one third.

As a control, the diffusion coefficient was also dete
mined by a third method with even faster convergen
which is associated with the relation

Ā~k!5(
i j

r i* Ai j ~k!r j Y (
i

ur i u2→ā0~k! for t

→`. ~32!

In fact, using the spectral expansion, we have

Ā~k!5
^ruA~k!ur&

^rur&

5

(
m

^0̄um&u2am~k!exp@22am~k!t#

(
m

u^0̄um&u2exp@22am~k!t#

. ~33!

Thus, the high rate of convergence is due to the doub
exponents. More specifically, the value of the diffusion c

FIG. 5. Concentration dependence ofk and its approximation by a third-
order polynomial. The lattice is face-centered cubic.
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efficientD calculated on the basis of~32! stabilizes to within
an error less than 3% already atbt520 and less than 0.5% a
bt540.

4.2. Extrapolation procedures for solving systems of
dinary differential equations like the classical Adam
method26 were used in the numerical simulation. By sele
ing quadrature formulas with consideration of the cert
positiveness of the generator spectrumA(k), we were able to
markedly increase the integration step without the dange
computational instability, which would be virtually unavoid
able if there are eigenvalues that are not positive.

We considered formulas of the type

r~ t14h!'~a1phA!r~ t !1~b1qhA!r~ t1h!

1~c1rhA!r~ t12h!1~d1shA!r~ t13h!,

p523~b1d!/82c/3, q5~64219b232c227d!/24,

r 5~23215b28c227d!/24, s5~642b29d!/24,

where

a52 f 1f 2f 3 , b5 f 1f 2f 31 f 1f 21 f 2f 31 f 3f 1 ,

c52~ f 11 f 21 f 31 f 1f 21 f 2f 31 f 3f 1!,

d5 f 11 f 21 f 311

or

a52 f 1~ f 21 f 3
2!, b5~ f 111!~ f 212 f 31 f 3

2!,

c52@ f 11 f 21 f 3
212~11 f 1! f 3#, d5 f 11112 f 3 .

In the first case 0, f 1 , f 2 , f 3,1, in the second case th
real quantitiesf 1, f 2, andf 3 are chosen so that the condition
0, f 1 , f 3,1 and f 1

21 f 2
2,1 would hold.

As opposed to the standard four-point Adams proced
which more correctly allows for all the possible signs of t
eigenvalues of the generator of a linear~or linearized! sys-
tem, the integration step allows a fourfold increase in
case of the system~11!.

5. DISCUSSION OF RESULTS

The proposed method faithfully simulates the disorde
system~1! provided the diffusion radiusr D5A6Dt satisfies
the condition

«D5~2r D /R!254kbt/N2/3,1. ~34!

In the opposite limit («D.1) we have a model of trans
port in a crystal with a large complicated unit cell containi
N atoms. The value ofk calculated for smallkr0<0.1
•2p/R according to~30! stabilizes within 3% at allbt>40
andN>150 and varies monotonically ast increases. At the
largest number of sites used (N'2700) the criterion~34!
holds up tobtmax'160. Therefore, in our basic problem~1!
and~3!, as in the case of the exactly solvable models in R
23 and 24, the equality of limits

lim
t→`

lim
N→`

D~ t,N!5 lim
N→`

lim
t→`

D~ t,N! @5D#

is valid at least to an error of,3%, and the long-time as
ymptotics in the system under consideration are diffusive
-

-
n

of

e,

e

d

s.

We note that the asymptotic stage sets in at consider
shorter times forP (k,t) than for the autocorrelatorP 00(t).
This property is realized both in all known methods of th
oretical analysis14,18 and in numerical simulation, allowing
us to confine ourselves to comparatively small values oN
'500 and obtain results with sufficient accuracy.

A comparison of the value obtained abovek0

50.2954(5) with the literature values of the diffusion coe
ficient in the dipole-dipole disordered system~1! reveals that
the value closest to ours was offered in the GAF theor9

kGAF50.315. The modification of the GAF theory in Ref
13 and 14~which was developed, in particular, to generali
the theory to one-dimensional and two-dimensional syste!
yields k05kD50.186, although the heuristic, rather tha
mathematical, character of the proposed modification,
well as of the GAF theory itself, should be noted here. T
semiphenomenological theory10,14 uses the Scher–Lax7 for-
mula to calculateD and givesk05kSL50.373. Goldman and
Jacquinot15 obtainedk05kGJ50.49.

Two experimental studies whose results have bearing
the investigation of the long-time behavior of the propaga
have been performed. One of them4 proved the occurrence o
‘‘reoscillation,’’ which we discussed above as a conseque
of the relation~23!, but no measurements were performed
the time interval needed for determining the diffusion co
ficient D, and the valuek05kSL was used in the treatment o
the results. Thus, on the basis of Ref. 4 it can only be c
cluded that this value ofk0 does not contradict the results o
that work. Conversely, the work described in Ref. 5 w
directed at measuringD, and the result corresponds tok0

5kGKM50.147(23), which givesk̄GKM50.168(26) when
the termsk3 from ~20! is correctly taken into account.13,14A
correction for the dipolar anisotropy of the transition rat
increases this number tok̄GKM50.187(29).13,14 We stress,
however, that the dependence of the results on the w
vectork was investigated inadequately in the experiment
Ref. 5 ~as was noted by the authors themselves!; therefore,
the disparity between this value and the results of our ca
lations point out the need for new more exact and system
measurements.

6. CONCLUSION

Let us briefly characterize the main features of t
method which we used to investigate the asymptoticss
random-walk processes in disordered media.

At small values ofuku the finite systems~11! and ~26!
obtained for periodic configurations of random media p
vide the main information on the long-time asymptotic b
havior, as follows from the following arguments.

1. The system~11!, which is obtained from~1! by Fou-
rier transformation in a periodic impurity configuration, d
scribes the process in an infinite configuration with an ex
tation which is initially localized on one site. It eliminate
the need to stop the process before it reaches a~nonexisting!
boundary, which is encountered when the infinite configu
tion is replaced by a cube or when the correlatorpi j is con-
tinued periodically.19,20 The exponential asymptotics expa
sion of r i , i.e., the analog of the Fourier transform of th
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correlator, following from the finite character of the line
system~11! is no longer undesirable and corresponds to
essence of the problem in a reliable estimate of the contr
tion of the remainder of the spectrum. Disclosing t
asymptotic behavior of the process requires elucidation
the character of the dependence of the leading eigenvalu
the generatorA(k) on k at small values ofuku.

2. We are able to confine ourselves to small values ofuku
in obtaining the long-time asymptotics. Therefore, we c
speed up the calculations significantly, since the initial vec
of ~11! for k50 is the leading eigenvector ofA(k50). It is
significant thatA(k50), being a symmetric generator of a
irreducible Markov chain, has a single smallest eigenva
equal to zero, while the operatorA(k) for kÞ0 is Hermitian
and positive.

3. In all other respects unrestricted continuation of
calculations in time only refines the limiting form of th
vector, i.e., the eigenvector of the generator, and the lea
eigenvalue corresponding to it att→1` even when calcu-
lation and rounding errors accumulate in the normalizat
of the vectorr i .

4. The calculation time of the parameters of the lon
time asymptotics is shortened, ifP(k,tuN) is approximated
by a sum of two exponential functions@see~31!# or if the
tendency of the quantityr1Ar/r1r @see~32!# to approach
the leading eigenvalue of the generator of~11! is taken into
account, which is markedly more effective.

5. A highly important property, which should be verifie
in such calculations, is insensitivity toward the periodic
boundaries, i.e., establishment of the fact that the asymp
state is clearly seen at times when the excitation is still fa
far from the boundaries of the cube.

This research was performed with support from the R
sian Fund for Fundamental Research~Projects 96-15-96416
and 97-01-00714!.
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Thermal expansion and the equation of state of isotopically different samples of KCN were
measured in the temperature range 175–300 K and at pressures up to 2 GPa by the neutron powder
diffraction technique. No evidence of the influence of isotopic composition on the thermal
expansion or the compression isotherms was found. ©1998 American Institute of Physics.
@S1063-7761~98!02112-X#
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1. INTRODUCTION

The influence of isotopic composition on the thermod
namic properties of substances is usually considered to
manifestation of the quantum nature of matter. At high te
peratures in the classical limit any mass effect on thermo
namic quantities disappears and hence any quantum iso
effect vanishes. However, isotope effects of a nonquan
nature may exist under certain circumstances in conden
systems. For instance, variations of the isotopic composi
in molecular systems can change the moments of inerti
the molecules, which can then influence the thermodyna
properties of the system. This is quite obvious in an id
classical system of polyatomic molecules, where the ro
tional part of the free energy, entropy and thermal capa
directly depends on the molecular moments of inertia.1 As
we will see below, in the case of condensed systems
might also expect to find corresponding contributions to
compressibility and thermal expansion as well.

Below we report data on thermal expansion and equa
of states~175–300 K and 0–2.0 GPa! of KCN, substituted
with various isotopes of carbon and nitrogen so that the C2

ions have the same mass number but with different mom
of inertia. The corresponding experimental data were
tained by means of the neutron powder diffraction techniq

The phase diagram and various physical properties
normal KCN have been reported in a number of papers~see
for example, Refs. 2–7!. The general conclusion is that in th
temperature and pressure range under study, KCN has N
crystalline structure in which the orientations of the CN2

ions are disordered over a number of directions. Furth
more, the orientations of individual ions are not fixed b
change very rapidly. To simplify the description, one m
say that CN2 ions in the KCN-l phase experience almost fr
rotation at near ambient temperatures. In this case, using
classical approach the rotational contribution to the free
ergy can be written in the form1

F rot52NT ln T2NT ln~2Jeff /\
2!. ~1!
1181063-7761/98/87(12)/3/$15.00
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For CN as a diatomic gas molecule the value of the rotatio
quantum,\2/2J, whereJ is the moment of inertia, is about
K. This looks exactly like the expression for an ideal gas
diatomic molecules, except that the true moment of inertiJ
has been replaced with an effective valueJeff to take into
account, at least crudely, the interaction of a molecule w
its environment. The corresponding contribution to the pr
sure can be derived from~1!:

prot52S ]F

]VD
T

5S NT

Jeff
D S ]Jeff

]V D
T

. ~2!

It is natural to assume that the effective moment of ine
Jeff increases with density, and hence from~2! it follows that
molecular rotation gives a negative contribution to the to
pressure. As can be seen from~2!, the ‘‘rotational’’ pressure
depends on the isotopic composition~through Jeff), and
hence the compression isotherm and the thermal expan
curves of KCN may be split due to the difference in effecti
moments of inertia of isotopically substituted CN2 ions.

2. EXPERIMENTAL

Isotopically enriched samples of KCN were obtain
from the Cambridge Isotope Laboratories. They had com
sition KC15N ~C—natural abundance; 99%15N) and K13CN
~99% 13C: N—natural abundance!. These materials were
used without further purification. Both samples were su
jected to ion beam analysis at the Los Alamos Natio
Laboratory Ion Beam Materials Science Facility; both ma
rials were found to have 180 ppm of Na contamination.

Variable temperature neutron powder diffraction stud
were performed on the HIPD instrument at the Manuel L
jan, Jr., Neutron Scattering Center, Los Alamos Natio
Laboratory. Samples of the two KCN materials were plac
in 6.35338.1-mm vanadium cans with a small amount of H
gas and subsequently sealed. The thermal expansion
studied in the temperature range 175–300 K in 25 K ste
making use of a Displex~Air Products! system, which pro-
vides temperature control to within 0.1 K. The neutron d
8 © 1998 American Institute of Physics
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fraction patterns were obtained in 2–4 h each with the s
lation neutron source operating at a proton current of;70
mA: data taken in the backscattering detectors (2u5151°)
were used for subsequent data analysis. To obtain accu
values of the ambient lattice parameters for the KC
samples, neutron powder diffraction patterns were also
tained at 300 K from each KCN mixed with a small amou
of CaF2, which provided an internal lattice parameter sta
dard (a055.46384 Å at 300 K!. The lattice parameter of thi
sample of calcium fluoride was previously determined in o
laboratory by x-ray powder diffractometry with CuKa

radiation.
The compression isotherms of the two KCN samples

300 K up to 2 GPa were obtained with a toroidal high pr
sure cell.8,9 To provide hydrostatic conditions, the sampl
were mixed with Fluorinert-70~3M Co.! and placed in the
cell along with a piece of lead, which was used as a pres
sensor.10 Neutron diffraction patterns were obtained on t
HIPD over 8–12 h each with the spallation neutron sou
operating at a proton current of;70 mA; data taken at 2u
5690° was used for subsequent data analysis.

3. DATA ANALYSIS

One problem with neutron time-of-flight measureme
is that the measured lattice parameters are affected by
location of the sample scattering center in the diffractome
The placement of the sample, particularly in the hig
pressure cell, is not sufficiently reproducible to eliminate t
source of systematic bias in measured lattice parameters
mitigate this systematic effect, we have employed the d
analysis procedures that follow. Both variable-pressure
variable-temperature diffraction data were processed u
the General Structure Analysis System~GSAS! suite of com-
puter programs11 via Rietveld refinement to obtain the lattic
parameters of each KCN sample, the Pb pressure stan
and the CaF2 calibration material as appropriate. Refineme
of the 300 K diffraction data of the two KCN/CaF2 mixtures
gavea056.5278(2) Å for K13CN anda056.5280(2) Å for
KC 15N. The use of an internal standard (CaF2) eliminates
the sample position bias, so these KCN lattice parameters
at least self-consistent. These values were then used to
brate both the variable-temperature and variable-pres
measurements, which are listed in Tables I and II. The c
rections for Table I were determined from the intercept
300 K of a linear fit to the measured lattice parameters w

TABLE I. Thermal expansion data for isotopically substituted KCN* at
ambient pressure.

T, K a0 (K13CN), Å a0 (KC15N), Å

300 6.5278 6.5290
275 6.5196 6.5184
250 6.5119 6.5118
225 6.5040 6.5037
200 6.4960 6.4947
175 6.4876 6.4876

*Standard deviations for these measurements are (1 – 2)•1024 Å. Propaga-
tion of error from calibration data gives an estimated error
431024 Å.
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temperature. The corrections correspond to offsets ofDa/a
520.531024 and 0.831024 for K13CN and KC15N, re-
spectively. Sample position errors of less than 0.1 mm wit
the diffractometer would give these offsets, and they
smaller than the random errors in the individual lattice p
rameter values obtained from the Rietveld refinements.
variable-pressure data were corrected in a similar way
simple second-order polynomial was fit to the lattice para
eters for each KCN with pressure. The intercept at amb
conditions was then used to correct both the KCN and
lattice parameters. The pressure was then recalculated
the equation of state for lead to give the values in Table
These corrections are much larger than for the variable t
perature data and correspond toDa/a53.231023 and 0.8
31023 for K13CN and KC15N, respectively. These aris
from sample position errors of 2–3 mm in the location of t
pressure cell relative to the standard sample position
HIPD.

4. DISCUSSION

The data obtained~Tables I and II! are illustrated by
Figs. 1 and 2. The linear thermal expansions from the d
shown in Fig. 1 are 0.32031023 Å/K for K 13CN and 0.327
31023 Å/K for KC 15N. A fit of the combined compression
data for the two KCN materials in Fig. 2 to a Murnagha
equation12 gives the parametersV05279.0(5) Å3, B0

513.3(9) GPa andB085(]B/]P)P5055.6(10) ~to be com-
pared with valuesB0513.2 GPa andB0854.2 previously ob-
tained for ‘‘natural abundance’’ KCN5!. As seen from Fig. 1,
the thermal expansion experiments reveal that there is
clear difference in lattice parameters of isotopically sub

f

TABLE II. Compressibility data for isotopically substituted KCN a
300 K* .

P, GPa a0 (K13CN), Å P, GPa a0 (KC 15N), Å

0.290~35! 6.4809~10! 0.194~19! 6.5126~9!
0.822~16! 6.4066~10! 0.583~22! 6.4556~9!
0.894~46! 6.4146~10! 1.153~26! 6.3882~10!
1.049~19! 6.3782~10! 1.844~33! 6.3142~12!
1.406~21! 6.3448~10!
1.873~28! 6.2996~11!
1.925~27! 6.2922~26!

*Values in parentheses are estimated standard deviations obtaine
propagation of error from the Rietveld refinements.

FIG. 1. Lattice parameter thermal expansion of KCN. The data for K13CN
are plotted as squares and for KC15N as crosses. The lines are a guide to t
eye.
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tuted samples of KCN over a large range of temperatu
The high-pressure compression isotherms~Fig. 2! also reveal
no difference, although the scatter in the data is much gre
than in the temperature experiments.

Given that the reduced masses of the13C14N and12C15N
ions differ by;1%, their true moments of inertia will diffe
by the same amount.1! Our accuracy in the lattice paramet
determinations is,0.01% and,0.1% for the temperature
and pressure runs, respectively. So we must see an iso
effect unless the functionJeff(V) has a special form. First, i
could be equal to a constant,Jeff5const, in the density rang
studied; in this case there is no ‘‘rotational’’ contribution
the equation of state. However, this seems highly improba
because of the condensed nature of the substances u
study. Second, it could depend on density in a linear way
Jeff5J0(11a/V). In this case the ‘‘rotational’’ contribution to
the equation of state could be large, though it would dep
only slightly, if at all, on isotopic composition. Another po
sibility is that the ‘‘free rotation’’ approach can not be a
plied to the alkali cyanide family.2! In any case, further study
is needed to resolve this problem and precise thermal ca
ity measurements would play a decisive role in the attemp
observe the classical isotopic effect.

FIG. 2. Isothermal compression curve for KCN at 300 K. The data
K13CN are plotted as squares and for KC15N as crosses. The line is a guid
to the eye.
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1!The moment of inertia of a diatomic moleculeJ5mrl

2, where mr

5m1m2 /(m11m2) is a reduced mass andl is an interatomic distance. So
neglecting a possible slight difference in the length of the CN group du
the isotopic composition variations, we get for the moments of inertia
13C 14N and 12C 15N values of 8.92 Å2 and 8.82 Å2, respectively atl
51.15 Å.

2!Obviously, the centers of mass of ions13C 14N and12C15N do not coincide
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ence the lattice parameters.
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Feasibility of covalent quasicrystals
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An algorithm for constructing a quasicrystalline structure based on atoms with tetrahederal
coordination of covalent atomic bonds~the typical coordination for group IV atoms! is proposed.
The algorithm is used to construct a computer model of a cluster with icosahedral symmetry.
The model is used to estimate the energy parameters of the structure and the distributions of bonds
over interatomic bond lengths and interbond angles. The distributions obtained correlate
well with the analogous results for silicon glasses and do not impose any fundamental constraints
on the implementation of such structures in practice. ©1998 American Institute of
Physics.@S1063-7761~98!02212-4#
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1. INTRODUCTION

Quasicrystals, which were discovered in 1984,1 are an
interesting example of a previously unknown type of atom
structure of solids. As a rule, the same atomic compositi
can be obtained both in the amorphous state~metallic glass!
and in the ordinary crystalline form. With respect to the
atomic structure quasicrystals are, in a certain sense, in
mediate between metallic glasses and true crystals. The
ordering of the atoms~short-range order! in all these struc-
tures is very similar, the basic distinction being the existe
and type of long-range order. At the same time, there is
long-range order in the arrangement of atoms in meta
glasses, while crystals possess orientational and translat
long-range order and quasicrystals possess, besides ori
tional order, nontranslational long-range positional ord
which is manifested in the presence of sharp peaks in
Fourier transform of the structure. The similarity of th
atomic structures is also indicated by the possibility of tra
formations between the indicated phases during annealin2

All forms of quasicrystals with icosahedral group sym
metry which have been discovered thus far are metal al
where the atoms form close-packed structures. At the s
time, we know of no published reports of the observation
quasicrystalline structures for materials with a covalent in
atomic bond, though many such compounds are encount
in both limiting modifications~i.e., in the form of glasses an
crystals!. An example of a common compound of this kind
silicon dioxide.

On the one hand, the lack of information about coval
quasicrystals could be due to purely technical difficulties
producing them, since even metallic quasicrystals are
served only in exceptional alloys, optimally balanced w
respect to the composition and the size of the constitu
atoms. Moreover, even for optimal alloys the conditions
the solidification of the melt must be accurately match
since experiments1 and numerical simulations3 both show
that quasicrystals are formed over a narrow range of coo
rates, falling between the rates required to obtain glasses
crystals.
1191063-7761/98/87(12)/4/$15.00
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On the other hand, up to now it has been unclear whe
covalent quasicrystalline atomic structures are possible
principle, or whether such structures do not occur becaus
the nature of the covalent bond, which imposes quite st
gent geometrical constraints on the local atomic pack
~specifically, because the extent and relative arrangemen
the valence electronic orbitals forming interatomic bonds
covalent solids are quite strictly fixed!.

In the present paper we wish to demonstrate that ato
packings with purely covalent bonds, exhibiting all topolog
cal features of quasicrystals with icosahedral orientatio
order, and at the same time satisfying reasonable constr
on local short-range order, are possible in principle.

2. ALGORITHM FOR CONSTRUCTING THE STRUCTURAL
MODEL

We construct the model using as a guide the most co
mon glass-forming group IV elements~carbon, silicon, and
germanium!. In crystals and glasses, the atoms of these
ments often possess tetrahedral coordination of the elec
clouds and they occupy sites in a network of bonds. Th
sites can be bonded to one another both directly~in pure
materials! and through intermediate divalent atoms~for ex-
ample, oxygen atoms!. Thus, the algorithm for constructing
model of a covalent atomic structure with a prescribed glo
symmetry reduces to the purely topological problem of d
scribing an appropriate bond network where exactly fo
edges meet at each site, the angles between neighbo
bonds deviating very little from the ideal tetrahedral ang
w i5109.5° ~according to the experimental data and nume
cal simulation, a deviation of up to 10% is admissible f
covalent glasses4!.

To construct such a network of bonds we employ t
principle of duality between the structures of close-pack
metals and covalent networks that is observed for amorph
structures.5 According to this principle, the bond network i
a disordered covalent glass~Zachariasen network! is topo-
logically equivalent to the network formed by the edges
Vorono� polyhedra for atoms of close-packed metal
1 © 1998 American Institute of Physics
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glasses. Similarly, an arbitrary close-packing of atoms t
reproduces the model structure of a metallic quasicrystal
be taken as the basic packing, a Vorono� division can be
constructed for it, and silicon-type atoms can be placed at
sites of the resulting network. If the obviously degener
cases, which vanish with arbitrarily small deformations
the structure, are discarded, then four edges, which ca
identified as interatomic bonds, meet at the sites of
Vorono� network. The symmetry of a network of Vorono�

polyhedra is, by construction, identical to that of the origin
atomic packing. The only problem is the possibility of sat
fying the constraints on the admissible bond lengths and
the interbond angles. The resulting structure can be o
mized with respect to bond lengths and interbond angles
relaxing the structure using interatomic interaction pot
tials, taking account of the three-particle correlations in
positions of the particles. The distributions of bonds ov
bond lengths and interbond angles, along with the energ
the atomic bonds in an optimized structure, make it poss
to assess the feasibility of a practical implementation.

In the present paper we employ as the original pack
the atomic packing constructed in Ref. 6 and incorporat
all the global properties of quasicrystalline structures~icosa-
hedral orientational symmetry, lack of translational symm
try, self-similarity on different length scales! together with a
specific indication of the atomic positions satisfying the
quirements of local close-packing. It is well known that
close-packed structures, each atom can be characterized
number of topological characteristics, specifically, the nu
ber Z of nearest neighbors~or the coordination number! and
the type of polyhedron whose vertices coincide with the
sitions of these neighbors~so-called coordination polyhedra!.
The model employed contains three types of atoms with
coordination numbers 12, 14, and 16 and classical Fra
Kasper coordination polyhedra, which were first introduc
to describe complex interatomic alloys.7 Accordingly, for the
Vorono� division only three types of Vorono� polyhedra arise
in the model. We call themV12

(1) ~dodecahedron!, V14
(1) , and

V16
(1) cells. The corresponding atomic configurations are d

played in Fig. 1. For each atom three of four interatom
bonds connect the atom to its neighbors in the same
while the remaining bonds~shown as dangling bonds! serve
to connect the atom to atoms in neighboring cells.

The topological structure of the resulting bond netwo
is fixed by the original atomic structure, and can be descri
on the basis of an inflation procedure that is an obvio
reformulation of the procedure used in Ref. 6. Nonethele
we examine the first steps of this procedure in greater de
starting with a 20-atom dodecahedronV12

(1) . This atomic
cluster is closed in the sense that each surface atom ha
more than one dangling bond projecting out of the clus
The attachment of atoms from the next shells to the clu
can be illustrated as the attachment of 12 similar dodeca
dra to the faces of this dodecahedron and ‘‘gluing’’ the c
incident faces. The resulting 110-atom clusterV12

(2) is shown
in Fig. 2 and is also closed~for clarity, the external dangling
bonds are not shown!. The second step repeats the first s
but starts with the clusterV12

(2) . Cells of typeV16
(1) are ob-
t
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tained automatically in 20 ‘‘corners’’ with four polyhedr
V12

(2) meeting at each corner. The resulting structureV12
(3) now

consists of 1220 atoms and contains several closed clus
intermediate between it andV12

(2) . At the third step, 13V12
(3)

clusters are joined; here, theV16
(2) clusters obtained by inflat

ing a V16
(1) cell are positioned at corners where fo

V12
(3) clusters meet. At the same time,V14

(1)-type cells arise on
the glued edges of the clusters.

This procedure can be repeated an arbitrary numbe
times. This makes it possible formally to obtain a cluster
any size, consisting essentially of a covalent dodecahe
quasicrystal dual to the original icosahedral metallic quas
rystal.

It is interesting to examine the resulting structure fro
the standpoint of a dislocation model. As follows from th
form of the faces of theV12

(1) ,V14
(1) , andV16

(1) polyhedra, the

FIG. 1. Atomic configuration of the basic clustersV12
(1) ~a!, V14

(1) ~b!, andV16
(1)

~c!.
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interatomic bonds in them form either five- or six-ato
rings. Let us draw imaginary straight lines~disclinations!
through the centers of the six-atom rings up to the po
where the lines intersect at the centers of the polyhedra.
resulting linear multiple-bond structure can be characteri
as a hierarchical disclination structure of dodecahedral
works. It is easy to check that the resulting disclination str
ture is topologically equivalent to the one proposed in Re
6 and 8. At the same time, our representation of disclinati
differs from that proposed in the well-known Ref. 9, whe
the existence of disclinations~‘‘odd number of lines’’! was
associated with the presence of rings containing an odd n
ber of sides.

3. SIMULATION OF THE ATOMIC STRUCTURE
OF A DODECAHEDRAL QUASICRYSTAL

The proposed algorithm for constructing the atom
structure of dodecahedral quasicrystals is purely topolog
and contains no information about the lengths and rela

FIG. 2. Atomic configuration of the clusterV12
(2) .
t
he
d
t-
-
.
s

m-

al
e

orientation of the atomic bonds. Such information is fund
mental for assessing the feasibility of producing real co
lent quasicrystals. To obtain such information we nume
cally simulated a dodecahedral cluster obtained from a 4
atom cluster by the duality procedure of Ref. 6. Only cert
of the complete set of vertices of Vorono� polyhedra were
selected, so as to obtain the largest centrosymmetric clo
cluster. The resulting cluster contained 1140 atoms and 2
interatomic bonds, and it was relaxed by the method of c
jugate gradients using a three-particle Keating potentia10

which is often employed for simulating structures with tetr
hedral coordination. In the Keating approximation the ene
E of an N-atom cluster is given by

E5« (
n51

N H 1

2 (
i 51

4

@r i~n!•r i~n!21#2

1b (
i 51

3

(
j 5 i 11

4 F r i~n!•r j~n!1
1

3G2J ,

where the vectorr i(n) connects then-th atom with itsi-th
neighbor and is measured in units of the characteristic in
atomic distanced ~ordinarily, in the corresponding crysta
compound!, while « andb are parameters determined by th
specific material. In the present work we employed valu
typical of silicon:«512.47 eV,d50.234 nm, andb50.29.10

Figure 3a shows the relaxed structure of a model clus
while Fig. 3b shows the relative intensity of the Fourier co
ponents of this structure in a plane perpendicular to one
the five-fold axes. Although the relaxation method employ
did not constrain the symmetry to be icosahedral, the re
ation procedure had essentially no effect on the symmetr
a cluster, while the peaks in the Fourier transform indic
long-range positional order. The total energy of a cluster w
189.39 eV or approximately 0.09 eV per bond.

The distributions of the bonds over bond lengths a
interbond angles obtained for this structure are presente
Fig. 4. The lengths of the interatomic bonds deviate from
optimal value by65%, which falls within the admissible
variance for disordered covalent structures.4 The distribution
over the angles between neighboring bonds has two dis
maxima—the main peak near 108° and a comparatively
peak near 120°. These peaks correspond to the angles
of
u-
FIG. 3. An 1140-atom covalent cluster with
icosahedral symmetry~viewed along the
five-fold axis! and the relative intensity of
the Fourier components of the structure
such a relaxed cluster in a plane perpendic
lar to the five-fold axis.
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FIG. 4. Bond histograms over bond lengths~a!
and interbond angles~b! for a closed 1140-atom
cluster relaxed with a Keating potential.
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tween the bonds forming five- and six-atom wings. Mo
interbond angles fall within a reasonable deviation of610%
from the ideal tetrahedral angle. However, in contrast to
distribution over bond lengths, the distribution over bo
angles contains an ‘‘outlier’’ at angles;130°. Although the
relative fraction of such angles is extremely small, they c
impose definite constraints on the feasibility of quasicrys
consisting of pure group IV elements. However, in the m
complex compounds with bridging atoms on the bonds~of
the type SiO2), where the limits on the angles betwee
neighboring Si-type atoms are much weaker, the obser
variance in the angles can hardly be viewed as a ser
obstacle to the implementation of quasicrystalline structu

4. CONCLUSIONS

An algorithm for constructing a quasicrystalline stru
ture consisting of atoms with tetrahedral coordination of
valent atomic bonds was proposed. A computer mode
such a cluster with 1140 atoms was constructed. The di
butions of interatomic bonds over bond lengths and in
bond angles obtained for this structure correlate well with
analogous results for silicon glasses, and do not prec
t

e

n
ls
t

ed
us
.

-
f

ri-
r-
e
de

quasicrystalline structures in practice. This enables us pre
the existence of covalent quasicrystals, which to date h
not been observed.
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The asymptotic behavior of the spectra for large values of the scattering vector for the case of
elastic multiple small-angle neutron scattering~SANS! is investigated theoretically and
experimentally. An expansion of the spectrum in terms of the reciprocal of the magnitude of the
momentum transfer is obtained taking account of the influence of the instrumental line. It
is shown that, to within some factor, the leading term of the expansion is identical to the
differential single-scattering cross section averaged over a statistical ensemble of particles;
several subsequent terms in the expansion are calculated and the range of applicability of the
resulting expressions is determined. The asymptotic behavior of the multiple SANS
spectrum is measured, using a two-crystal neutron spectrometer, for samples of an HTSC
ceramic, the alloy Fe–Ni, and Al powder. The agreement between the experimental results and
the theoretical predictions is analyzed. ©1998 American Institute of Physics.
@S1063-7761~98!02312-9#
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1. INTRODUCTION

It is well known that the most detailed information ca
be obtained from elastic small-angle neutron scatter
~SANS! data1,2 if z!L, wherez is the sample thickness an
L is the mean free path in the sample. The intensity distri
tion ~spectrum! I (q) of the scattered radiation (q5uk2k0u is
the scattering wave number andk and k0 are, respectively,
the wave vectors of the scattered and incident radiation! is
measured over the widest possible range. This makes it
sible to determine not only the characteristic sizeR and den-
sity n but in some cases even the shape and details of
internal structure of an isolated scattering center.1,2

In studying scattering at very small angles, a two-crys
spectrometer gives the highest resolution because the in
mental line of such a spectrometer is narrow.1 However, the
wings of this line decrease as 1/q2 ~see, for example, Ref. 3!,
which is appreciably slower than the Debye–Beuche–Po
1/q4 asymptotic behavior typical of SANS (1/q3 in the
present experimental scheme; see below!. This makes it nec-
essary to use thick samples (z.L) and to take account o
multiple-scattering effects. On the other hand, it is often i
possible to prepare sufficiently thin samples, for examp
when the overall integrity of a sample must be preserved
this case the scattering is, as a rule, multiple scattering.

In the current practice4–9 of SANS spectrum analysi
with z@L, ordinarily the functionsv(z), where v is the
width at half-height of the SANS intensity distribution
I (q,z), measured for several samples with various thi
1191063-7761/98/87(12)/6/$15.00
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nessesz, are used to obtain the parameters characterizing
scattering system. As a rule, the large-q asymptotic behavior
of the distributionsI (q,z) is ignored, even though the impor
tance of such investigations was pointed out some time a9

and the general theory of random walks10 shows that the
asymptotic behavior is similar in the single- and multipl
scattering cases.

Thus, a thorough analysis of large-q asymptotic behav-
ior for multiple scattering has yet to be performed in SAN
investigations. The purpose of the present work is to fill t
lacuna. In the theoretical part we show on the basis of
results obtained in Refs. 9 and 10 that, to within some fac
the large-q behavior ofI (q,z) is identical to the behavior o
the differential scattering cross section^s(q)& for q@R21,
where the symbol̂ . . . & denotes averaging over all possib
orientations and deviations from the average shapes
sizes in a statistical ensemble of scatterers. The case in w
the wings of the scattering lines are proportional toq24 is
studied in greatest detail. As a result, the shapes of
boundaries of the inhomogeneities in samples of the fe
magnetic alloy Fe–Ni, the HTSC ceramic YBa2Cu3O72d ,
and Al powder were studied in the experimental part of t
work.

2. THEORY

Elastic small-angle neutron scattering is forward scat
ing, since it results only in a small change in the direction
neutron motion. If the neutron mean free path is mu
5 © 1998 American Institute of Physics
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greater than the wavelength and the sizes of the scatte
then each subsequent scattering of a neutron can be ass
to occur on a new random configuration of scattering cent
For this reason, neutron propagation is described by
equation

dP~k, z!

dz
52E d3k8@W~k8,k!P~k,z!2W~k,k8!P~k8,z!#,

P~k, 0!5d~k2k0!, ~1!

whereP(k,z) is the probability density for a neutron to po
sess momentumk at depthz from the surface of the sample
Equation ~1! contains the transition rates~per unit length!
W(k8,k…, averaged over the mean free path, from a state w
momentumk into a state with momentumk8. If the material
is homogeneous on the average, thenW(k8,k) depends only
on k25k82and the differenceDk5k82k. If neutrons are not
rescattered, the functionP(k,z) decays exponentially

dP~k,z!

dz
52kP~k,z!, P~k,z!5P~k,0!e2kz ~2!

at the rate

k5E d3k8W~k8,k!5ns t ,

wheren is the density of scattering centers ands t is the total
average scattering cross section of a single center. The
tron mean free path isL51/k.

For small-angle scattering,Dk/k0!1. Consequently, it
can be assumed thatDk'k0, i.e., the momentum varies onl
in a plane perpendicular to the direction of motion of t
neutron beam. Equation~1! can therefore be written in th
two-dimensional form

dP~a,z!

dz
52kS P~a,z!2E d2a8

s t
s~a2a8!P~a8,z! D .

~3!

Here

a5
k2k0

uk0u
'k0 , s t5E d2as~a!,

and s(a) is the average cross section for scattering by
anglea ~it is convenient to call the two-dimensional vect
a the scattering angle!.

Equation~3! is translationally invariant and can be d
agonalized by a Fourier transform. Transforming to t
Fourier representation, we obtain

dP~u,z!

dz
52kS P~u,z!2

s~u!

s t
P~u,z! D , P~u,0!51,

~4!

where

s~u!5E d2a exp~2 iu•a!s~a!

and s(u)505s t . Solving Eq. ~4!, we find the Fourier
transform of the propagator

P~u,z!5exp~2kz~s~0!2s~u!!/s t!. ~5!
rs,
ed

s.
e

th

u-

e

e

Finally, we obtain an expression for the intensity of mu
tiple SANS by the anglea for a sample of thicknessz:

P~a,z!5
1

~2p!2 E d2u exp~ iu•a!

3expS 2kz
s~0!2s~u!

s t
D . ~6!

Since the system of scatterers is isotropic, the aver
cross sections(a) depends only onuau, and therefore in Eq.
~6! the integration over the direction of the vectoru can be
performed. The result is the well-known integral represen
tion

P~a,z!5
1

2p E
0

`

uJ0~au!expF2kzS 12
s~u!

s t
D Gdu.

~7!

The two-crystal spectrometer has the feature that the
viations of the neutrons from the initial direction are detec
only in one plane~horizontal!. That is, in fact, in this method
neutrons with different vectorsk with equal projections on
the horizontal plane are indistinguishable, and an experim
can only give an average distribution~over the vertical di-
vergence of the beam!. Therefore the expression~6! for the
intensityP(ax ,ay) should be integrated overay . Since the
vertical extent of the detector window is much greater th
the characteristic beam width, the integration limits can
taken as infinite~a detailed discussion is given in the expe
mental part!. In addition, to obtain the experimentally ob
served quantity, the intensity must be convolved with t
experimental line. Thus, we find that the normalized expe
mentally observed intensity of neutrons scattered by an a
ax in the horizontal plane is

Pexp~ax ,z!5E
2`

`

db I 0~b!P̃~ax2b,z!, ~8!

where

P̃~ax ,z!5E
2`

`

dayP~~ax
21ay

2!1/2,z!

5
1

2p E
2`

`

dux exp~ iuxax!P~ux, 0,z!. ~9!

HereI 0(b) is the instrumental line, and the functionsP(a,z)
and P(ux ,uy ,z)5P(u,z) are determined by Eqs.~7! and
~5!, respectively.

If ax@max(as,ains), where the parametersas and a ins

characterize the widths of the functionsP̃(ax) and I 0(ax),
respectively, then to estimatePexp(ax ,z) it is sufficient to
take account of the fact that the expression in the integr
in Eq. ~8! has two sharp peaks—atb50 andb5ax—and
that the functionsI 0(ax) and P̃(ax ,z) are normalized to 1.
Therefore

Pexp~ax ,z!5I 0~ax!1 P̃~ax ,z!, ax@max~as ,a ins!.
~10!

For a more detailed analysis we combine Eqs.~5!, ~8!, and
~9! to yield
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Pexp~ax ,z!5E
2`

` dux

2p
exp~ iuxax!

3expS 2kzS 12
s~ uuxu!

s t
D Dg~a insuuxu!,

~11!

whereg(a insuuxu) is the Fourier transform of the instrumen
tal line. A general discussion of the instrumental line can
found in Ref. 3. In practice, it is sufficient to take account
the behaviorg(x)512x1o(x) in the limit x→0, which is
determined by the asymptotic behavior ofI 0(ax) at large
angles:

I 0~ax!5
a ins

pax
2

1oS 1

ax
2 D .

To calculate the asymptotic behavior of the intens
Pexp(ax ,z) at large angles it is sufficient to make the subs
tution ux→u/ax

Pexp~ax ,z!5
1

pax
E

0

`

du cosu

3expS 2kzS 12
s~u/ax!

s t
D DgS a ins

u

ax
D ,

~12!

expand the integrand in powers of the small parameteru/ax ,
and carry out the integration.

For scattering by particles with a sharp step bound
~i.e., for ak0l b!1, wherel b is the width of the boundary!
s(a)}1/uau4 for uau@ac , where ac is the characteristic
scattering angle.1,11,12The cross section for single scatterin
by a sphere is studied in Ref. 9. However, there is no kno
expression for the scattering cross section of bodies with
arbitrary shape. It is therefore desirable to study a function
fairly general form that can be used to approximate
single-scattering cross section as

s~a!5
s0a1

2a2
2

~a21a1
2!~a21a2

2!
1sG expS 2

a2

a2 D , ~13!

with five degrees of freedom:s0 ,a1 ,a2 ,sG , anda. In order
that the functions(a) determined by Eq.~13! corresponds
to the real scattering cross section, the cross sections ca
required to have the same value ata50, the same
asymptotic behavior asa→`, and the same integrals o
s(a), and two additional conditions can be imposed. Af
Fourier transforming we obtain

s~u!5
2ps0a1

2a2
2

a2
22a1

2 ~K0~a1u!2K0~a2u!!

1psGa2expS 2
a2u2

4 D , ~14!

whereu5uuu, andK0(x) is the modified Bessel function o
the second kind. It follows from Eq.~14! that for smallu/ax
e
f

-

y

n
n
f

e

be

r

s t2sS u

ax
D5

ps0a1
2a2

2

a2
22a1

2 F ~ua1!2

2ax
2

ln
ua1

2ax
2

~ua2!2

2ax
2

ln
ua2

2ax
G

1
pu2

2ax
2F ~12g!s0a1

2a2
21

sGa4

2 G
1

ps0a1
2a2

2

a2
22a1

2 F ~ua1!4

32ax
4

ln
ua1

2ax
2

~ua2!4

32ax
4

ln
ua2

2ax
G

1
pu4

32ax
4F S 3

2
2g Ds0a1

2a2
2~a1

21a2
2!2sGa6G ,

~15!

whereg50.577 . . . isEuler’s constant. Introducing the pa
rameterizationa0

25a1a2 andj5 ln(a1 /a2), which is conve-
nient for representing the answer, taking account in Eq.~12!
of the first three terms in the expansion of the exponen
and two terms in the expansion ofg(u), and integrating the
result, we obtain

Pexp~ax ,z!5
kza0

2

8ax
3

w~j!1I 0~ax!1
kza insa0

2

4pax
4

w~j!

3S 3 ln
2ax

a0
2

5

2
1

sGa4

2s0a0
4 D

2
3kza insa0

2

4pax
4

c~j!1
k2z2a0

4

16ax
5

w2~j!

3S 3 ln
2ax

a0
2

13

4
1

3sGa4

2s0a0
4 D

2
3k2z2a0

4

16ax
5

w~j!c~j!2
3kza0

4

32ax
5

w~j!c~j!,

~16!

where

w~j!5
4 sinhj

j
, c~j!52 coshj.

Here, the exact expression forg(u) was used to calcu-
late the second term, and terms of order higher than 1/ax

5 in
ax were dropped.

Let us consider the case in which the width of the inst
mental line is small, i.e.,a ins!a0. Then the first term in Eq.
~16! is the leading term for a,am , where am

5pkza0
2/2a ins@a0, i.e., in this regionPexp(ax ,z) decays

as 1/ax
3 . The leading term of the asymptotic expansion of t

multiple SANS is therefore determined by the behavior
the single-scattering cross section at large angles, which
noted in previous work.13 The preasymptotic terms in th
expansion ofPexp(ax ,z) ~the third through seventh terms i
Eq. ~16!! give an increase in the rate of decay ofPexp(ax ,z)
with increasing sample thickness.
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FIG. 1. Two-crystal method for performing
small-angle neutron scattering experiments:!
Arrangement of a two-crystal spectromete
based on perfect crystals (M—monochromator
crystal, A—analyzer crystal, D—detector,
S—sample,uB—Bragg angle,ax—angular de-
viation of the analyzer from a position paralle
to the monochromator!; b! instrumental curve of
a two-crystal spectrometer~dots!, measured
without a sample atl051.75 Å and its least-
squares fit by a Lorentzian function.
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We shall now examine separately the single-scatte
cross section of a sphere in the case of diffraction. In
Born approximation

sB~a!5s0

~sin~a/ac!2~a/ac!cos~a/ac!!2

~a/ac!
6

, ~17!

whereac51/k0r 0, k0 is the initial neutron momentum andr 0

is the interaction radius. To find the behavior of the Four
transformsB(u) for small u, we add to and subtract from
sB(a) the function sL(a)5s0ac

4/2(a21ac
2)2, whose

asymptotic behavior is the same as that ofsB(a) averaged
over one period of the oscillations. The asymptotic repres
tation of sL(u) for small u follows from Eq. ~15!, and
sB(a)2sL(a) decreases more rapidly than 1/a4. The first
two terms in the expansion can be found by integrating
terms ;u0 and ;u2 in the integrand. Hence we find th
behavior of the Fourier transform of the cross section in
Born approximation for small values ofu:

sB~u!5
ps0ac

2

2
1

ps0ac
4u2

4
ln

acu

4
. ~18!

As in Eq. ~16! we obtain

Pexp~ax ,z!5
kzac

2

2ax
3

1I 0~ax!

1
kza insac

2

2pax
4 S 6 ln

4ax

ac
16g211D

1
3k2z2ac

4

ax
5 S ln

4ax

ac
1g2

25

12D . ~19!

All remarks made for Eq.~16! also hold for this
asymptotic representation.

3. EXPERIMENTAL PROCEDURE

The experiments were performed on a universal neu
diffractometer with a doubly monochromated beam.14 Per-
fect ~111! Ge crystals arranged parallel to one another~see
Fig. 1a! were set up as a spectrometric pair. The measu
width of the instrumental curveI 0(ax) (ax—the rotation
angle of the analyzer;ax50 for the exact Bragg position o
the analyzer with respect to the incident beam! at the work-
g
e

r

n-

e

e

n

d

ing neutron wavelengthl051.75 Å wasv05(3.160.2)9
~see Fig. 1b!, which to within the measurement error wa
identical to the value calculated from the dynamical theo
of diffraction.3 Detection was performed with a3He detector
with a thermal neutron detection efficiency«'96%; neu-
trons in the highest reflection orders withln5l0 /n were
filtered using a 100-mm thick, single-crystal quartz filte
which reduced their contribution to the beam to less than
of the main component. The samplesS were set up in the
space between the monochromator crystalM and the ana-
lyzer crystalA ~see Fig. 1a!. The intensities of the neutron
reflected from the crystalA were measured within the angu
lar range outside of which the detectorD detected only back-
ground counts. The minimum possible rotation step of
analyzer was 0.129.

In the expression~9! the integration overay is per-
formed over infinite limits, i.e., it is assumed that the heig
H of the detector window is great enough that the en
scattered beam falls within the window. In real experime
the maximum angle is

ay
05tan21~H/2s!.H/2s, ~20!

where s is the sample–detector distance. In our diffrac
meter H540 mm ands51200 mm, so thatay

050.017 rad
5578, which is typical of devices of this type. For a
samples investigated, the widths of the multiple SANS sp
tra did not exceedvmax'28!ay

0 , i.e., we can setay
05`. It

should be noted that such a situation almost always oc
when perfect crystals are used in a two-crystal spectrome
while for crystals with a mosaic structure the angular ran
of the small-angle spectra can exceeday

0 , which introduces
additional corrections in the asymptotic representations
the SANS intensity.

4. EXPERIMENTAL RESULTS AND DISCUSSION

The instrumental curve of the two-crystal spectrome
with perfect crystals is displayed in Fig. 1b. Approximatio
of this curve by a Lorentzian function shows that
asymptotic behavior is described by 1/ax

2 , as assumed in the
theoretical part of this work. Figure 3 displays the angu
dependence of the intensity in the wings of the instrumen
curve. Clearly, in this range of anglesI 0(ax) is much smaller
thanPexp(ax) ~by approximately an order of magnitude!.
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If scattering occurs by solid compact particles with u
form density and a sharp boundary, the following relatio
obtained by Debye and Bueche11 and Porod12 ~see also Ref.
1!, holds for the single-scattering intensity:

I ~1!~q!5
2p

q4
r2S, ~21!

or s(q)}q24, which holds for inhomogeneities of arbitrar
shape for large values ofq. Here r is the neutron-optica
density, determined by the composition of the scatterers
their host medium, andS is the surface area of a particle. Th
asymptotic representationI (1)(q)}q24 also materializes in
some magnets near phase transitions.15 If a sharp boundary
does not exist between the medium and an inhomogen
the intensity decays more rapidly thanq24. A slower depen-
dence than Eq.~21! is possible near phase transitions9 as well
as for scatterers with a fractal surface.16,17On the basis of the
theoretical analysis made above, investigations of
asymptotic behavior of the multiple SANS intensities sho
give similar information.

Figure 2 displays on a logarithmic scale the results of
measurements performed on a sample of the HTSC cera
YBa2Cu3O72d , which is characterized by the presence
pores about 3mm in size,8 as well as the experimental sca
tering data for a sample of Al powder with thickne
z55.5 mm and average granule size 2R'9.5mm, deter-
mined in Ref. 7. The solid line in the figure shows the res
of a simultaneous~least-squares! fit of the experimental data
by the functionc1 /ax

21c2 /ax
d and of the instrumental curv

by the functionc1 /ax
2 . The asymptotic behavior of the se

ond term, corresponding to the sample, is clearly w
described by the lawax

23 , which agrees with Eqs.~16! and
~19!. The small-angle neutron scattering by the same HT

FIG. 2. Asymptotic behavior of the intensityI of scattered neutrons as
function of rotation angleax of the analyzer crystal (d is the exponent!: 1!
Al powder sample with average granule size 2R59.5mm and thickness
z55.5 mm,d53.02~0.03!; 2! HTSC ceramic sample,z51.69 mm, average
pore size 3mm, d53.04 ~0.03!. The solid line is a least-squares fit.
,

nd
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e
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ceramic samples was investigated in Ref. 17, ands(q)
}q2n, wheren53.8560.1, was obtained for the cross se
tion. Our data, obtained with a larger statistical sample, s
gest more convincingly that the scattering takes place
compact inhomogeneities with a sharp boundary.

Figure 3 shows~on a logarithmic scale, as in Fig. 2! the
results of experiments performed on samples of the a
Fe–Ni—a ferromagnet characterized by the presence o
disordered domain structure—covering a range of thickne
Using the procedure described in Ref. 6, the domains w
determined to be about 8mm in size. A simultaneous least
squares fit of the experimental data and the instrumental
using Eq.~16! ~with j51 and neglecting the Gaussian term!
gives a large rms deviation (x2/(n2m21)'390/64, with a
total of n571 experimental points andm56 adjustable pa-
rameters!. Here the errors for the experimental points we
calculated taking account of the fact that, according to R
18, the statistics of the readings in our apparatus devi
somewhat from Poisson statistics, and the variance iss2

51.4Ī , where Ī is the average intensity~for fixed ax). The
known thickness ratios were included in the fit as two ad
tional points with their own errors. A simultaneous fit of th
data by functions of the formc1 /ax

21c2 /ax
d , where the

same value ofd is used for different samples and the ratio
the coefficientsc2 for different samples equals the thickne
ratio, givesd52.91(0.04) withx2/(n2m21)'145/65. A
satisfactory resultx2/(n2m21)'76/63 is obtained only
with a function c1 /ax

21c2 /ax
d of a more general form,

whered has different values for three samples, and for
samplesd,3. The exponentd increases with sample thick
ness. This agrees with Eqs.~16! and~19! and corresponds to
the contribution of the preasymptotic terms in the large-an

FIG. 3. Asymptotic behavior of the intensityI of scattered neutrons as
function of rotation angleax of the analyzer crystal for samples of the allo
Fe–Ni on a logarithmic scale (d is the exponent!: 1! Sample thickness
z57.0(0.1) mm, d52.93(0.03); 2! sample thicknessz52.0(0.1) mm,
d52.89(0.03);3! sample thicknessz51.0(0.1) mm,d52.85~0.03!; 4! in-
strumental line. The solid line is a least-squares fit.
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expansion. However, exponentsd,3 are not obtained for
independent scattering of neutrons by compact inhomog
ities with a sharp boundary. The observed difference li
wise cannot be explained by the finite thickness of the
main walls, which causesd to increase.

5. CONCLUSIONS

A method for analyzing inhomogeneities in a medium
measuring the large-q asymptotic behavior of the multiple
SANS intensityI (q,z) was studied. A two-crystal neutro
spectrometer was used to investigate samples of a H
ceramic with the composition YBa2Cu3O72d , the ferromag-
netic alloy Fe–Ni, and Al powder. The experimental data
the HTSC ceramic and Al are described well by t
asymptotic approximationax

23 , which corresponds to the
Debye–Beuche–Porod law (I}q24). Hence it follows that
the inhomogeneities in these substances have nonfracta
boundaries. A similar investigation for samples of the fer
magnet Fe–Ni showed a slower thanax

23 decrease of the
SANS intensity.

In summary, the theoretical analysis performed abo
describes satisfactorily the experimentally observed beha
of the intensity of multiple scattering for the Al and HTS
ceramic samples, but it does not explain the slower thanax

23

decrease of the intensity for the Fe–Ni samples. This is pr
ably due to the fact that, as follows from the experimen
data, the ratio of the neutron mean free path to the scat
~domain! size is much smaller for Fe–Ni samples than
the Al and HTSC ceramic samples. A description of scat
ing by Fe–Ni samples should therefore be based on e
tions that take account of the correlation between succes
neutron scattering events.
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16É. Z. Valiev, S. G. Bogdanov, Yu. A. Dorofeevet al., Zh. Éksp. Teor. Fiz.
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Long-lived excited state of Te donors in GaP
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The kinetics of the photoresponses in constant and microwave electric fields and the variation of
the absorption of background radiation in GaP doped with Te (231017 cm23) upon
impurity excitation at 5–50 K are investigated. The lifetime of the excited state of the Te donors
is determined (;1022 s). It is shown that the results presented are consistent with the
model of carrier accumulation in long-lived impurity excited states in semiconductors. These
results are compared with the results previously obtained for diamond-structure
semiconductors. ©1998 American Institute of Physics.@S1063-7761~98!02412-3#
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1. INTRODUCTION

It has been established in a series of studies~see Ref. 1
and the references therein! that some donors and accepto
from groups V and III, respectively, in diamond, silicon, a
germanium have excited states, in which the charge-ca
lifetime t* is many orders of magnitude greater than t
free-carrier lifetimet. These long lifetimes are due to th
complex band structure of diamond-structure semicond
tors, which causes valley-orbit or spin-orbit splitting of th
ground states of the donors and acceptors. Because o
identical parity of these split-off lowest excited and grou
states of the impurities, electric-dipole optical transitions
tween them are forbidden, and the probability of m
tiphonon transitions is low. The accumulation of carriers
long-lived excited states leads to several characteristic p
nomena, particularly to the dominance of percolation h
ping photoconduction at a constant bias voltage~diamond! or
polarization hopping photoconduction in a microwave el
tric field ~silicon and germanium!. It should be expected tha
long-lived excited states also exist in other semiconduc
with a complex band structure. In particular, in the indire
gap III–V semiconductor gallium phosphide the ground st
of Te donors is split by the valley-orbit interaction~see the
inset in Fig. 1!, and, therefore, as in silicon, the lowest e
cited state of Te should be long-lived.

In fact, the results obtained in Ref. 2 were recently e
plained by the existence of a long-lived excited state for
donors in GaP. Pulsed impurity breakdown in the elec
field of high-power electromagnetic waves of lon
wavelength coherent radiation was used to excite
samples in Ref. 2. After a certain delay (;0.5ms) following
the cessation of breakdown, a constant-voltage phot
sponse appeared, and its relaxation time constant incre
from 1025 to 331023 s as the temperature was lower
from 150 to 35 K. The phenomena observed were attribu
to the accumulation of electrons in the long-lived (t*
57 ms) 1S(G3) excited state of Te. The temperature depe
dence of the slow relaxation of the photoresponse was at
uted by Ganichevet al. to thermal electron exchange b
tween the long-lived state and the higher-lying 2S(G1) state,
1201063-7761/98/87(12)/4/$15.00
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through which both transitions to the ground state and
thermal ejection of electrons into the conduction band ta
place. The kinetic equations proposed in Ref. 2 describe
experimental results quite well when a small number of
justment parameters are used. However, an investigatio
the constant-voltage photoresponse was possible only at
tively high temperatures, since the response appeared
result of the thermal ionization of a long-lived state, an
therefore, the lifetimet* was determined in Ref. 2 as a
adjustment parameter.

In the present work relaxation of the excitation of T
donors in GaP was investigated by measuring the photoc
ductivity in a microwave electric field, as well as the induc
absorption of background radiation. We previously us
these methods to prove the existence of long-lived exc
states of donors and acceptors in diamond-structure semi
ductors. This allowed us to extend the temperature ra
down to 5 K without resorting to extrapolation, to determin
the lifetimet* of the excited state, and to study its properti
in greater detail.

2. EXPERIMENTAL RESULTS

Samples of Te-doped GaP cut from wafers with a thic
ness of 0.25–0.35 mm were investigated. The contacts
the constant-voltage investigations were fabricated by
vacuum evaporation of indium followed by dissolution of th
surface layer of GaP in the liquid metal,3 and they were
satisfactory over the entire temperature range. Figure 1
sents the temperature dependence of the resistanceR of one
of the samples. At 300 K,R518V, which, with consider-
ation of the sample geometry and a mobility of 120 cm2/V
•s ~Ref. 4!, corresponds to a Te concentrationNd52
31017 cm23. When the temperature was lowered, the va
of R increased exponentially with an activation energy of
meV. This value agrees quite well with the energy det
mined in Ref. 4 from the temperature dependence of the H
constant for a sample with a similar concentration, bu
small ionization energyEi590 meV, which was determined
from optical experiments5 ~see the inset in Fig. 1!. The con-
centration of the compensating impurity in the samples
1 © 1998 American Institute of Physics
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vestigated (Na;1016 cm23) was determined from the high
temperature portion of the plot ofR and a comparison of the
latter with the dependence for a similar sample in Ref. 4
segment exhibiting an exponential increase in the resista
with an activation energy of 7.5 meV, which does not d
pend on the intensity of the room-temperature backgro
illumination, was observed atT,35 K. The resistance is
determined along this segment by the hopping conductiv
and the value of the activation energy6 corresponds toNd

5231017 cm23 whenNa /Nd!1.
The photoconductivity of the GaP samples was inve

gated at constant~dc! and microwave~mcw! bias voltages. In
the latter case samples measuring 130.3530.03 cm3 filled
the width of an 8-mm waveguide at an antinode of the el
tric field of the wave near its end face, which was closed
by a grid. The samples were excited through the grid by
output of a laser with a wavelength equal to 3.39mm and a
power of about 5 mW, which was modulated at the f
quency f . The microwave radiation from a Gunn diod
which passed through the sample and was reflected from
closed end was fed through a circulator into a detec
which isolated the component modulated at the frequencf .
This signal is proportional to the photoresponse of
sample and was recorded by a phase-sensitive nanovo
ter.

Figure 2 shows the dependence of photoresponseUmcw

on the modulation frequencyf for one of the GaP samples a
5 K. It is seen that the response decreases by almost t
orders of magnitude asf is raised from 8 Hz to 10 kHz
Unfortunately, because of the weak absorption in t
samples, the photoconductivity kinetics could not be inve
gated at large values off . Therefore, we were unable t
achieve conditions under which the response would
longer depend onf and would be determined by free phot
electrons, as in silicon.1 The frequency dependence~Fig. 2!
corresponds to relaxation of the photoresponse with a t
constant t* 58 ms, which essentially coincides with th
value obtained in Ref. 2 as an adjustment parameter.
constant-bias photoconductivity under the same conditi
did not depend onf at least up to 10 kHz.

FIG. 1. Temperature dependence of the resistanceR of a sample of Te-
doped GaP. Inset — energies of the ground and several excited states
donors in GaP.
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Plots of the temperature dependence of the quasista
ary photoresponsesUmcw and Udc for the same sample ar
presented in Fig. 3. It is seen that at low temperaturesUmcw

exceedsUdc by almost three orders of magnitude. As th
temperature is raised to 16 K,Umcw slowly decreases and
then drops sharply, and atT535 K it is comparable toUdc.
The temperature dependences ofUmcw andUdc for Te in GaP
are similar to the dependences obtained for doped silicon
germanium.1 These dependences are attributed to the
that Udc is determined by free charge carriers with a sh
lifetime, while Umcw is determined by the polarization hop
ping photoconductivity resulting from the accumulation
carriers in the long-lived excited states of the impurities.1

The accumulation of charge carriers in long-lived e
cited states in silicon leads to the appearance of absorp
bands at photon energies which are smaller than the ion
tion energies of the impurity ground state and correspond
the photoionization of long-lived excited states.1 However, in
the case of GaP the measurements in the spectral regio
photon energies smaller than 90 meV are made difficult

Te

FIG. 2. Dependence of the response of a sample of Te-doped GaP o
modulation frequency of the exciting radiationf at 5 K: 1 — Umcw; 2 —
Uabs with detection by SîB&; 3 — Uabs with detection by GêHg&.

FIG. 3. Temperature dependences atf 512 Hz: 1 — Umcw; 2 — Uabswith
detection by SîB&; 3 — Udc ; 4 — lifetime t of holes in silicon doped with
B (Na53.531016 cm23) and P (Nd5231013 cm23).
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the absence of a series of strong bands of lattice absorpt7

Therefore, we confined ourselves to an investigation of
kinetics of the absorption of the room-temperature ba
ground radiation induced by the modulated impurity pho
excitation of GaP samples. As in Ref. 8, the sample w
placed in a cryostat. The radiation passed through its c
silicon window and then through the sample and imping
on an impurity photoresistor located beyond the sample.
sample and the photoresistor were separated by a p
ethylene film, which virtually completely absorbed th
modulated laser radiation with a wavelength of 3.39mm
used to excite the sample. The photoresistor detected
component of the background radiation modulated as a re
of the change in absorption caused by redistribution of
charge carriers between the Te ground and excited s
upon photoexcitation. The absorption associated with ion
tion of the Te excited state (;50 meV) was detected by
boron-doped silicon Si^B& photoresistor, which is sensitiv
in the region 45–100 meV. The absorption due to ionizat
of the ground state~90 meV! was detected by a mercury
doped germanium Ge^Hg& photoresistor with a long-
wavelength cutoff at 90 meV.

Figure 2 presents plots of the dependence of the
sponseUabs of the photoresistors on the modulation fr
quency of the exciting radiationf . It is seen that the re
sponses caused by the induced absorption of backgro
radiation decrease with increasingf , i.e., are also determine
by long-term processes. The response of the Ge^Hg& photo-
resistor was in phase, while the response of the Si^B& pho-
toresistor was in antiphase to the exciting radiation. Henc
follows that photoexcitation leads to an increase in the po
lation of the excited state and a decrease in the populatio
the ground state. Unfortunately, despite the very high se
tivity of the Gê Hg& photoresistor, we were unable to re
ably detect the photoresponse both at high values off be-
cause of the small amplitude of the signal and at low val
of f because of the appearance of 1/f noise. Therefore, we
shall refrain from estimating the relaxation time of this r
sponse. Owing to the high intensity of the background in
long-wavelength portion of the spectrum, the response to
Sî B& photoresistor was recorded with sufficient confiden
The relaxation time estimated from Fig. 2~5 ms! is close to
the relaxation time ofUmcw.

Figure 3 presents the temperature dependence of the
plitude Uabs of the induced absorption atf 512 Hz normal-
ized to the sensitivity of the Si^B& photoresistor. It is seen
that the amplitude of this absorption scarcely depends
temperature up to 16 K. This is the temperature at which
rapid drop inUmcw begins.

3. DISCUSSION OF RESULTS

Our interpretation is based on several results obtaine
investigations of diamond-structure semiconductors,1 as well
as on the model of polarization hopping photoconduction
a microwave electric field.9

In doped and compensated semiconductors polariza
conductivity appears in a microwave electric field as a c
sequence of the change in the dipole moment of pairs
n.
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ionized atoms of the principal and compensating impurit
induced by the field. It can be many orders of magnitu
greater than the dc conductivity.10 In the case of impurity
excitation, polarization photoconductivity appears as a re
of the hopping of nonequilibrium charge carriers betwe
excited atoms with large orbitals and ionized atoms of
principal impurity. The polarization photoconductivity relax
ation time is determined by the lifetime of the impurity e
cited statest* ~Ref. 9!. It follows from Fig. 2 that the value
of t* for Te in GaP at 5 K is 8 ms.

In our experiments the frequency of the microwave fie
~40 GHz! was so high that only complexes of ionized a
excited atoms separated by minimal distances can contri
to the photoconductivity. It was shown in Ref. 9 that su
active complexes, which consist of ions of the principal a
compensating impurities and an excited impurity atom, fo
as a result of the trapping of free carriers on dipoles cons
ing of ions of the principal and compensating impurities a
the hopping drift of ionized ions of the principal impurit
toward the dipoles. Thermal dissociation of the dipoles le
to a decrease in the values ofUmcw in relatively weakly
compensated semiconductors as the temperature is rais

The temperature dependences ofUmcw andUdc upon the
steady-state photoexcitation of GaP in Fig. 3 are similar
those obtained for silicon and germanium.1 The decrease in
the response in a microwave field as the temperature is ra
is naturally associated with thermal dissociation of the
poles. At higher temperatures there is a rapid drop inUmcw

due to thermal emptying of the long-lived excited states.
The temperature dependence ofUdc is determined by the

lifetime of the free electronst. At T,10 K, Udc scarcely
depends on temperature, sincet is determined in this range
by the electron energy relaxation time. AtT.45 K there is a
rapid drop inUdc due to thermal ionization of the Te groun
state. In the intermediate temperature range there is a re
with an increase inUdc}t asT is lowered. Populating of the
long-lived Te state, whose thermal ionization leads to
increase in the lifetimet of free electrons, occurs due t
photoexcitation in just this temperature range. This conc
sion is confirmed by the results which we previously o
tained in a direct investigation of the temperature dep
dence oft in silicon doped with B and compensated by
The value oft was determined from the phase shift betwe
Umcw and the exciting radiation.11 The temperature depen
dence oft for one of the silicon samples is presented in F
3. It is seen thatt increases in the temperature range 22–
K, in which populating of the long-lived excited state o
boron impurities in silicon occurs.1

The kinetics and temperature dependence of the abs
tion of background radiation induced by modulated photo
citation are consistent with the conclusion that nonequi
rium electrons accumulate in a long-lived excited state of
in GaP. AtT,16 K the absorption~Fig. 3! scarcely depends
on temperature, since the transition rate of electrons from
excited state to the ground state exceeds the rate of the
emptying of the excited state and the concentration of
cited impurity atoms does not depend onT. A sharp drop in
Uabs occurs in the same temperature range as the dro
Umcw because of thermal emptying of the excited state.
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note that the amplitude of the induced absorption depend
the total concentration of excited impurity atoms regardl
of whether these atoms are isolated or localized near
compensating ions.

It was established in the Ref. 1 in the case of silicon t
the relaxation time ofUmcw is determined by the lifetime o
the excited state and depends on the chemical nature not
of the principal impurity, but also of the compensating im
purity, whose ions appear in the active complexes, and th
fore can differ from the lifetime of isolated excited atom
Therefore, the relaxation kinetics ofUmcw andUabs can dif-
fer. In fact,Uabshas a somewhat shorter relaxation time th
Umcw ~Fig. 2!. This difference can be attributed to the fa
that the influence of the proximity of compensating impur
atoms on the lifetime of excited impurity atoms is display
in GaP, as well as in silicon.

As we have already noted, the signalUabs, which we
associated with emptying of the Te ground state, was
served in the short-wavelength region for the absorption
background radiation~Fig. 2!. The slow relaxation of this
signal (t>2 ms) cannot be associated with the luminesce
reported in Ref. 2. The time dependences of the intensit
the luminescence signal and the exciting pulse in Ref. 2 w
identical. Therefore, it is possible that the signal is cau
not by luminescence, but by emptying of the Te ground s
during the ionization of Te by the high-power shor
(;0.25ms) pulse and the resultant increase in the transm
sion of background radiation, which was detected by
photoresistor.

4. CONCLUSION

In conclusion, we note that the investigation of t
highly long-lived excited state of Te in GaP confirms t
on
s
e

t

nly

e-
.
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b-
f
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of
re
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te
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e

conclusion drawn in Ref. 1 that such states exist in a br
class of semiconductors with a complex band structu
Manifestations of long-lived impurity states are possible
different semiconductors in various ranges of temperatu
and concentrations of principal and compensating impuri
and for different types of equilibrium conduction.
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Features of the optical absorption of crystals of the fullerene C 60 in the region
of the orientational phase transition

A. N. Izotov, V. V. Kveder,* ) Yu. A. Osip’yan, É. A. Steinman,†) R. K. Nikolaev,
and N. S. Sidorov
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Russia
~Submitted 6 July 1998!
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The absorption coefficient of perfect single crystals of the fullerene C60 is measured in the
energy range 1.6–2.1 eV at temperatures from 4.2 to 300 K. An absorption fine structure is
discovered in the and is assigned to electronic and vibronic transitions with the production
of free excitons and excitons localized on structural defects. It is shown that in the region of the
structural phase transition from a face-centered cubic structure to a simple cubic structure
the absorption coefficient undergoes a jump, which is associated with an energy shift of the free
exciton line toward lower energies. It is discovered that spatial inhomogeneity, which is
associated with the growth of the new phase from a finite number of nuclei, appears in the crystal
at the time of this transition. ©1998 American Institute of Physics.@S1063-7761~98!02512-8#
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1. INTRODUCTION

Molecules of C60 are bound to one another in a cryst
mainly by van der Waals interactions, and in this sense c
tals of C60 can be classified as typical molecular crystals.
the same time, the electronic properties of C60 crystals place
them in the borderline region between ‘‘classical’’ molecu
crystals~such as naphthalene! and ‘‘classical’’ semiconduc-
tors and have thus aroused great interest in them.

The high symmetry and nearly spherical shape of the60

molecule, as well as the weak intermolecular interacti
lead to the interesting features of these crystals assoc
with orientational ordering of the molecules. According
numerous x-ray diffraction and neutron scattering data~see,
for example, Ref. 1 and the references therein!, at tempera-
tures above 260 K the centers of the molecules form a fa
centered cubic~fcc! lattice of Fm3m symmetry. Since the
symmetry of the C60 molecule is incompatible with the
Fm3m symmetry corresponding to the fcc structure of t
crystal, this finding indicates the presence of static or
namic disorder in the orientation of the molecules~but not in
the positions of their centers!, which provides for an aver
aged fcc symmetry. According to the presently availa
data, at temperatures above 260 K, C60 molecules undergo
rapid @with a frequency of the order of 109 Hz ~Ref. 2!#
rotation about all of their axes, which also provides for f
symmetry. X-ray measurements have shown that when
temperature is lowered to 250–260 K, the free rotation of
molecules ceases and definite correlations between the o
tations of neighboring molecules are established.

This event takes place in the form of a phase transit
with an enthalpy changeDH of the order of 8–9.5 J/g~i.e.,
about 0.11 eV per molecule!.3–5 Although the latent heat o
the transition is low, it indicates that it is a first-order tran
tion. The positions of the centers of the molecules cha
only slightly in the process~the lattice constant decreases
1201063-7761/98/87(12)/9/$15.00
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0.3% froma51.4154 nm toa51.4111 nm),6,7 but the par-
tial orientational ordering of the molecules leads to stro
lowering of the symmetry of the crystal toPa3, and the
lattice becomes a simple cubic one with a basis consistin
four differently oriented molecules.1,7,8

The reason for this phase transition is the existence
the off-center part of the intermolecular interaction. The e
ergy minimum corresponds to an orientation in which a
gion of increased electron density~a double bond joining
pentagons! of one molecule is positioned opposite a regi
of reduced electron density@a pentagon center (PF) or a
hexagon center (HF)] of a neighboring molecule.

At temperatures below the orientational phase transit
(Tc'259 K) neighboring molecules are oriented in one
these two configurations, i.e.,PF or HF. ThePF configura-
tion is more advantageous, but the energy correspondin
the HF configuration is greater than that of thePF configu-
ration by only DG510 meV.8,9 Therefore, some orienta
tional disorder remains in the crystal at temperatures be
Tc : some of the molecules haveHF configurations, and
some of the molecules havePF configurations. The transi
tion from one configuration to another requires overcom
an energy barrier of the order ofDEPH50.2520.3 eV. In
the rangeTc.T.0 the molecules undergo thermally ac
vated transitions from one configuration to the other. As
result, the population of thePF configurationp increases
with decreasing temperature as

p51/~11exp~2DG/kT!!, ~1!

whereDG is of the order of 10 meV~see Refs. 8 and 9!.
However, since the barrier heightDEPH is fairly high, the
frequency ofHF2PF transitions decreases rapidly with th
temperature and becomes negligibly small at temperat
below 85–90 K. Therefore, at temperatures below 85–90
the population of thePF configuration ceases to follow for
5 © 1998 American Institute of Physics
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mula ~1! for kinetic reasons and is ‘‘frozen’’ at a level of th
order of 85%. This phase has been termed an ‘‘orientatio
glass.’’

Despite the large number of x-ray, neutron diffractio
and calorimetric investigations, some details of the orien
tional ordering in C60 crystals have not yet been elucidate
In particular, the nature of some anomalies in the tempe
ture dependences of the intensities of x-ray reflections8 is
unclear, the correlation radius in the ‘‘orientational glas
phase~i.e., whether it is, in fact, a glass! is unclear, and the
reasons why the temperature of the orientational phase
sitions varies fairly strongly~by several degrees! from
sample to sample and the transition width sometimes rea
3–5 degrees are not understood~see, for example Refs. 4 an
10–12!. Many investigators attribute the broadening a
shift of the transition to the presence of impurities.
course, in some cases this is actually true. However, acc
ing to our data, appreciable displacement and ‘‘broadenin
of the transition with the temperature can be observed e
in single crystals grown in a vacuum from a high-purity ra
material.

Since the orientational phase transition can be accom
nied by appreciable changes in the overlap of the electro
wave functions of neighboring molecules, it should have
strong effect on the electronic properties of C60 molecules,
especially on those which are associated with the presenc
electron bands and the transport of electrons and exciton
fact, according to the data in Ref. 13, the photoconductiv
edge of C60 crystals corresponds to an energy of 1.7 eV
150,T,250 K, while atT.260 K ~the temperature of the
orientational phase transition! the photoconductivity peak
begins to rise at 1.65 eV. However, this occurs smoot
without a threshold; therefore, it is unclear whether it is
sociated with a phase transition or is a chance coincide
In Ref. 11 an anomalously sharp~10%! decrease in absorp
tion was observed in crystalline C60 films in the energy range
2.4–2.8 eV as the temperature was increased in the ra
230–260 K. The authors attribute this effect to the fact t
the optical transitions in this temperature range are forbid
in an isolated molecule and become partially allowed a
result of the distortion of the symmetry of the molecule
which increases sharply below the phase-transition po
However, these measurements were performed on fi
whose structure is generally imperfect. In addition, only o
tical transitions at high energies were investigated. The
fore, it would be interesting to investigate the behavior
lower excited states on perfect single crystal samples.

The purpose of the present work is to investigate
behavior of the optical absorption edge in perfect single cr
tals of C60 in the region of the orientational phase transitio

2. SAMPLES AND EXPERIMENTAL METHOD

Single crystals of C60 were grown in the Institute o
Solid-State Physics of the Russian Academy of Science
physical vapor transport~sublimation! in an evacuated ampu
at temperatures from 600 to 640 °C. After chromatograp
purification and removal of any traces of the solvent by
peated vacuum sublimation, the starting material C60 had a
al
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purity no poorer than 99.98%. Single crystals in the form
thin plane-parallel plates with the natural habit were selec
for the measurements. The facet planes correspond to~111!.
The thickness of the samples ranged from 0.01 to 0.3 m
and the other two dimensions were usually of the order
1–2 mm.

Since the diffusion coefficient of oxygen in a C60 crystal
at room temperature is of the order of 10213 cm2

•s21,14

holding a sample in air for 24 h can lead to saturation o
surface layer of the order of 1023 mm with oxygen and can
~in principle! influence the correctness of the measureme
Therefore, after the growth ampul was opened, the sam
were placed fairly quickly in an optical cryostat for measu
ments and were subsequently kept in a vacuum for the b
of the time.

The optical cryostat specially fabricated for these expe
ments has the form of a flat cylindrical vacuum chamb
with quartz windows~on the top and the bottom!, in which
there was a copper heat exchanger cooled by a stream of
helium ~or nitrogen! passing through it. The sample inves
gated is placed on a horizontally oriented plane-parallel s
phire plate, which is in good thermal contact with the he
exchanger. The temperature of the sapphire substrate is
sured by a thermocouple. To improve the thermal cont
between the thermocouple and the substrate, and junct
are pressed down by a piece of aluminum foil glued to
substrate. The temperature scan rate during the meas
ments was usually 0.7–1.5 K/min. Since the thickness of
samples was small~of the order of 0.2 mm! and they were in
close proximity to the substrate, according to our estima
the difference between the sample and substrate tempera
did not exceed 0.5 K even without gluing the sample to
sapphire substrate. Nevertheless, in some measuremen
sample was placed on a drop of GKZh silicone oil to im
prove the thermal contact between the sample and the
strate. Since this oil remains liquid at the measurement t
perature, it does not create additional elastic stresses in
sample.

For the measurements of the local transmission spe
of a sample, light from a halogen lamp passed through
MDR-12 monochromator and was directed through
sample by means of a rotating mirror. The image of t
sample in the transmitted monochromatic light was focu
using an MBS-4 microscope onto a silicon CCD came
~Samsung CM120P or PIN756 LILIN!, which has a fairly
high sensitivity in the energy range 1.2–2.7 eV. The vid
signal from the CCD camera was fed through a suitable
terface card into a computer, in which it was recorded a
processed using specially written programs. The data fr
the thermocouple were also recorded by a computer. Su
system enabled us not only to obtain a series of photogra
of the sample in transmitted monochromatic light, but also
calculate the dependence of the local absorption coeffic
of the sample on photon energy and temperature by proc
ing the images. Since the CCD camera had automatic se
tivity control, the absorption coefficientK was calculated by
comparing the amplitude of the video signalV from a given
region of the sample with the signal amplitudeV0 from a
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1207JETP 87 (6), December 1998 Izotov et al.
region outside the sample on the same video card accor
to the simple formula

K52 log~V/V0R!/d. ~2!

Here d is the sample thickness, andV0R5V0 /(12R)2,
whereR is the reflection coefficient of the sample, which w
estimated using the standard formulaR5(n21)2/(n11)2

with a value ofn of the order of 2.1~Ref. 14! (n is the
refractive index of the sample!. This formula does not allow
for the repeated reflection of light from the sample faces
the energy dependence of the reflection coefficient. Since
were working in the region of fairly high absorption~low
transmission of the sample!, the corrections associated wit
the reflection of light could not have a significant effect
the measured value ofK, and there was no need to mo
carefully take into account the effects associated with refl
tion. Moreover, we were interested mainly in the variation
the absorption coefficient, rather than its absolute value.
measurements of the absorption spectra in the region of
absorption coefficients, a cooled FE´ U-62 photomultiplier
was used instead of the CCD camera to detect the ligh
this case to protect the sample from scattered light, a la
opaque mask with a small opening, significantly smaller th
the dimensions of the sample in the plane of the mask,
clamped tightly against it. Samples of different thickne
grown in a single batch were used to more accurately m
sure the absorption in the entire range investigated.

3. EXPERIMENTAL RESULTS AND DISCUSSION

We investigated nine samples from different batch
grown at somewhat different temperatures. The results
tained on different samples qualitatively coincide. Befo
proceeding to a discussion of the influence of the temp
ture and the phase transition on the absorption spectra o60

crystals, let us discuss the features of the absorption spe
of these crystals measured at low temperatures.

Figure 1 shows a typical absorption spectrum@K(E)
curve# of a C60 crystal obtained atT.100 K. Since the ab-
sorption coefficient varies by several orders of magnitude
the energy range 1.7–2.1 eV, the logarithm of the absorp
coefficient is plotted in the figure. The spectrum shown
Fig. 1 is the result of several measurements on single-cry
plates of various thickness grown in a single ampul. T

FIG. 1. Dependence of logK on the photon energyE, whereK is the ab-
sorption coefficient of the C60 crystal obtained atT510 K.
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absorption spectrum of the single crystal has a complica
structure consisting of a large number of overlapping lin
Table I lists the parameters of the lines obtained by deco
posing the low-temperature spectra into Gaussian lines
well as the position and width of the envelope contours u
to investigate the temperature dependence of unreso
groups of lines atT.100 K.

The absorption spectrum shown in Fig. 1 can be divid
into two regions, which are labeled byD and FE in the
figure.

In the region 1.65–1.8 eV (D) there is fairly weak ab-
sorption (K,100 cm21). We assume that this absorption
caused by intrinsic defects in the crystal corresponding
deep electron~and exciton! traps. TheD absorption has a
clearly expressed structure and consists of several ove
ping lines, whose positions are reproduced very well in d
ferent samples. However, the intensities of these lines di
strongly in different samples, varying from 10 to 100 cm21.
The nature of the defects discussed is still not clear. It
not been ruled out that these defects contain pairs of m
ecules joined by weak covalent bonds.

The FE absorption in the energy range from 1.82 to 2
eV is reproduced well from sample to sample both with
spect to the absorption intensity and with respect to its str
ture. We assume that this absorption corresponds to the
citation of free singlet excitons.

The sharp increase in absorption11 beginning at 2.2–2.25
eV ~it is not shown in the figure! has a somewhat differen
nature and is associated, in our opinion, with the excitat

TABLE I. Positions of the absorption lines (E), their FWHM (DE), and
their amplitude (A) obtained from the absorption spectra as a result
decomposition into Gaussian lines. The substructure lines were obta
from a spectrum measured at 10 K, and the envelopes were obtained
spectra measured atT.100 K.

Envelope Susbstructure
N E, eV DE, meV A, cm21 E, eV A, cm21 DE, meV

1.671 7 6
D1 1.71 30 30 1.693 9 21

1.716 10 32
1.746 12 20

D2 1.78 30 25 1.778 14 17
1.802 14 20

1.825 428 7.5
F1 1.84 15 1005 1.836 799 7.3

1.85 929 7.6

1.872 1161 8.3
F2 1.88 16 1091 1.887 1198 8

1.902 1269 8

1.919 2923 9.5
F3 1.93 25 3870 1.931 2889 8

1.943 3611 8

1.956 2889 8.5
F4 1.97 19 2268 1.969 3119 8.5

1.983 3340 8.5

2.002 9028 10
F5 2.01 20 6494 2 2 2

2 2 2

F6 2.05 22 5253 2 2 2
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of electronic transitions from the valence band to the c
duction band of the crystal~i.e., with charge-transfer elec
tronic transitions!.

This interpretation correlates well with the diverse da
from other investigators, particularly with the results of me
surements of luminescence photoexcitation spectra. It
shown in Refs. 15 and 16 that the numerous lines in
photoluminescence spectra can be separated into at leas
classes: a family of lines with a photoexcitation edge at 1
eV and a family of lines with an excitation edge at 1.815 e
The excitation spectra of photoluminescence lines from
first group contain several overlapping lines, whose posit
coincides with the position of theD absorption lines at 1.65–
1.8 eV. Thus, the first group of photoluminescence lines c
responds to the excitons in deep defects producing thD
absorption.

The edge of the excitation spectrum of the second gr
of photoluminescence lines coincides with the edge
‘‘strong’’ absorption of the crystal beginning at 1.815 e
~the FE region!. This group of photoluminescence lines i
cludes a fairly weak line at 1.815 eV and a series of lin
with smaller energies, among which the most intense are
lines at 1.724 eV and 1.636 eV. The fact that the position
the photoluminescence lines with an energy of 1.815 eV
sentially coincides with the edge of the ‘‘strong’’ absorptio
allows us to assume that this line corresponds to pure
electronic transitions accompanying the recombination
free excitons~or excitons in very shallow traps!. The next
lines in this series are vibronic repeats of the first line, i
electronic transitions accompanied by the excitation of
tramolecular vibrational modes. Under this assumption
most intense photoluminescence lines, with energies of 1
and 1.636 eV, correspond to the excitation of the well kno
hu ~90 meV! and t1u ~178 meV! molecular vibrational
modes, in complete agreement with the calculations
Ref. 17.

It can be assumed on this basis that the absorption b
with an edge specified by an energy of 1.815 eV~and a
maximum with an energy 1.84 eV! also corresponds to pur
0–0 electronic transitions with the excitation of free sing
excitons. Then the two most intenseFE absorption bands
with maxima corresponding to energies of 1.93 and 2 eV
be interpreted as vibronic repeats of the 0–0 band, i.e., as
same electronic transitions accompanied by the excitatio
the hu ~90 meV! and t1u ~178 meV! molecular modes.

It can clearly be seen on the low-temperature absorp
spectrum that the band with a maximum corresponding to
energy of 1.84 eV has a weakly resolved structure, whic
faithfully reproduced in different crystals. The decompo
tion of this band into Gaussian lines showed that it can
represented as the result of the superposition of three li
whose positions and intensities are listed in Table I. It
noteworthy that the bands of the vibronic repeats are a
described well by the superposition of three lines with
same intervals between them, which, however, are shifte
energy by the value of the corresponding molecular vib
tion. The following arguments can be advanced in regard
the possible interpretation of these lines. The first line w
an energy of 1.825 eV can be assigned to the 0–0 transi
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and the other two lines, which are displaced relative to
first line by 10 and 25 meV, respectively, are phonon repe
of the first line with the participation of crystal phonon
However, this interpretation is unlikely, since the energies
the corresponding crystal vibrations determined by inela
neutron scattering measurements are significa
smaller.18–20 Another possible explanation can be associa
with a feature of the behavior of the density of states in
exciton band of molecular crystals.21,22 In this case the struc
ture of the bands with an energy of 1.84 eV can reflect
structure of the density of states in the exciton band.

Figure 1 shows that apart from the threeFE absorption
bands cited there is another series of three bands of lo
intensity with energies equal to 1.88, 1.97, and 2.05 e
which are displaced relative to the first series of bands
roughly 40–45 meV. The interpretation of this series is le
obvious. Generally speaking, suitable vibrational mod
which can explain the presence of the absorption lines un
discussion, can be found among the rich set of vibratio
modes of the model. In particular, according to Ref. 17,
hu vibration (430 cm21) can produce a vibronic band. How
ever, the following alternative explanation is also possibl

The exciton band of the crystal is formed from the low
est unoccupied molecular orbitals~LUMO’s! of C60. Ac-
cording to theoretical calculations~see, for example, Refs
17,19, and 23–25!, the C60 molecule has three LUMO level
of singlet electronic excitations, whose symmetry correspo
to theT1g ,T2g , andGg irreducible representations of theI h

symmetry point group. They all lie roughly 2 eV above th
Ag ground state~the HOMO!. The calculated energetic pos
tions of these levels are very close, and they can produ
series of absorption lines shifted relative to one another.
results of calculations employing the ARGUS program~see
Ref. 24! for theT1g andT2g levels correspond to energies o
1.86 and 1.90 eV, while the values according to Ref. 25
2.10 and 2.17 eV. Although the accuracy of the calculatio
is not very high, the order of magnitude of the gap betwe
the levels~40–70 meV! correlates well with the observe
difference of 48 meV between the series of absorption lin
Assuming that the first group of lines corresponds to tran
tions toT1g , we can, in principle, assign the second series
lines to the corresponding transitions toT2g .

The hypothesis that the sharp increase in absorptio
2.2–2.3 eV corresponds to electronic charge-transfer ba
~i.e., the excitation of electrons from the valence band i
the conduction band! is confirmed by the data in Refs. 1
and 26 from photoconductivity measurements at low te
peratures (T,100 K) and measurements of the influence
an electric field on the photoluminescence excitation e
ciency. It was shown that at low temperatures a sharp
crease in photoconductivity begins at an energy of 2.3
and that at just that energy of the exciting light an elect
field begins to lead to a decrease in the photoluminesce
intensity. This can be attributed to separation of the pho
excited electrons and holes. Thus, the bottom of the zon
singlet excitons is roughly 0.4 eV below the bottom of t
conduction band.

Let us now move on to the temperature features of
absorption spectra. Below we shall discuss, for the most p
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FIG. 2. Absorption spectra of a C60 single crystal obtained at
various temperatures:1 — 19, 2 — 108, 3 — 192, 4 — 245,
5 — 256,6 — 260 K. The inset shows the low-energy part
the absorption spectra.
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the behavior of the absorption band with a maximum n
1.84 eV, which can presumably be assigned to pure e
tronic transitions at the bottom of the band of singlet ex
tons. Figure 2 shows some absorption spectra of one of
single crystals measured as the sample temperature
raised from 19 to 300 K.

In order to analyze the temperature dependence obta
in greater detail, we used a computer expansion of the
sorption spectra shown in Fig. 2 into three Gaussian li
~with energies of the order of 1.84, 1.88, and 1.93 eV!. In
fact, as was discussed above, it can be seen on curve1 that
each of these lines has a poorly resolved internal struct
which becomes less pronounced as the temperature is ra
In the range of interest to us,T.70 K, this structure be-
comes so diffuse that the spectra are described well by t
Gaussian lines, and a more detailed analysis would be in
propriate.

The behavior of the full-width at half maximum
~FWHM! and the energetic positions of the line correspo
ing to an energy of 1.84 eV, which specifies the excit
absorption edge, is shown in Fig. 3. It is seen that, for
most part, raising the temperature from 50 to 255 K lead
broadening of the absorption line without significant d
placement, while the orientational phase transition lead
appreciable displacement of the line. The nature of the
creased spread of the data in the region of the phase tr
tions is associated with the spatial inhomogeneity of
sample, which will be discussed below.

The width and temperature of the phase transition
conveniently analyzed by measuring the temperature de
dence of the absorption of the sample at a fixed wavelen
Figure 4 shows the temperature dependence of the abs
tion of light with an energy of 1.81 eV obtained as th
sample temperature is raised. The curve presented c
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sponds to the averaged absorption over an area of the sa
of the order of 1 mm2.

As the temperature is raised, a sharp increase in abs
tion is observed at 260 K, which corresponds to the tempe
ture at which the orientational phase transition occurs
cording to the x-ray data. The observed width of t
transition is of the order of 2 K.

Below 260 K theK(T) curve has a smooth character, b
it clearly exhibits a change in slope at 95 K and a hump
150–180 K. The former feature is probably associated w
the transition to an ‘‘orientational glass’’ caused by ‘‘free
ing’’ of the orientational jumps of the molecules between t
PF and HF orientations. The nature of the feature at 15
180 K is still unclear. We note that the x-ray data7 also point
to the existence of some peculiar anomalies in this region
particular, the intensity of the~7 10 0! reflection, which
should appear immediately after the orientational phase t

FIG. 3. Temperature dependence of the FWHM~curve1! and the position
~curve3! of the line with an energy of 1.84 eV, which specifies the abso
tion band edge. Curve2 — FWHM of the band specified by an energy o
1.88 eV.



co-

s the
rgy

15
w-

1210 JETP 87 (6), December 1998 Izotov et al.
FIG. 4. Temperature dependence of the integrated absorption
efficient for light with an energy of 1.81 eV in a C60 single crystal
recorded as the sample temperature is raised. The inset show
temperature dependence of the absorption of light with an ene
of 1.71 eV in a local region of the sample measuring 0.
30.15 mm2. Curve 1 was obtained as the temperature was lo
ered, and curve2 was obtained as it was raised.
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sition, is anomalously weak atT.180 K for some reason
and it appears only at 180–170 K.

The inset in Fig. 4 shows the temperature dependenc
the absorption of light with an energy of 1.71 eV in a loc
region of the sample measuring 0.1530.15 mm2. Curve 1
was observed as the temperature was lowered, and cur2
was obtained as it was raised. It can be seen, first, that t
is significant hysteresis and, second, that the absorption
ies nonmonotonically and there is a series of features.
presence of hysteresis can be regarded as evidence tha
orientational transition is a first-order phase transition. T
nonmonotonic character of the variation of the absorpt
during the transition is due to the fact that the sample
comes inhomogeneous at the time of the transition.

These inhomogeneities are clearly visible in Figs. 5 a
6, which present photographs of C60 single crystals obtained
in monochromatic transmitted light with an energy of 1.
60.01 eV as the sample temperature is lowered. Both
ures correspond to the first cooling cycle of the samples a
they were grown. An investigation of the samples in pol
ized light with crossed polarizers showed that there are
elastic stresses in the original samples and that they ca
be the cause of the observed inhomogeneity of the ph
transition. We attribute the inhomogeneities observed du
the phase transition to the fact that the new orientation
ordered phase probably grows from nuclei which are spa
in the original, fairly perfect crystal.

The observations in polarized light showed that t
phase transition is accompanied by the appearance of el
stresses in the sample, which subsequently remain even
the sample is warmed to room temperature. This, howe
does not lead to an increase in the inhomogeneity of
phase transition. Conversely, the phase transition occur
during repeated cooling of the sample is more homogene
Already after two or three cooling-heating~290–150–290 K!
cycles, the spatial dimensions of the inhomogeneities
served during the phase transition become less than
thickness of the crystal, and essentially uniform variation
of
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the optical absorption is observed upon subsequent pass
through the temperature of the orientational transition. A
nealing one of these thermally cycled samples in a vacuum
200 °C for 2 h greatly reduced the elastic stresses, but
variation of the optical absorption during the phase transit
became even more uniform.

These results can be attributed to the fact that the ela
stresses appearing during an inhomogeneous phase tran
lead to plastic deformation of the sample and the appeara
of dislocations. On the one hand, these phenomena lea
the appearance of elastic stresses in the sample that p
when it is warmed to room temperature. On the other ha
dislocations apparently facilitate the formation of nuclei du
ing the phase transition. As is shown in Fig. 6, when t
cooling rate is sufficiently high, the elastic stresses appea
during the phase transition probably do not manage to re
by means of plastic deformation, and microcracks appea
the sample.

In conclusion, it should be noted that the value which
obtained for the absorption coefficient in the energy ran
1.9–2 eV differs from the value presented in the literatur1

This difference arises, in part, because the literature d
generally refer to room temperature, at which the absorp
is several times greater than the absorption at low temp
tures due to the influence of the absorption tails from
lowed transitions~see, for example, Fig. 2!. However, this
phenomenon does not fully account for the difference in
cated. In our opinion, the main difference between our d
and the literature data is due to the fact that our meas
ments were performed on highly perfect single crysta
while large absorption coefficients were obtained in m
surements on thin films having a large density of gra
boundaries. Local perturbations at these boundaries can
to partial removal of the prohibition against HOMO-LUMO
dipole-dipole transitions due to distortion of the symmet
In fact, the value of 53104 cm21 ~Ref. 27! for the absorp-
tion coefficient at 1.9 eV can correspond to allowed tran
tions, rather than forbidden transitions. Thus, we assume
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FIG. 5. Photographs of a freshly grown C60 single crystal in transmitted light with an energy of 1.71 eV taken as the temperature was lowered at the
0.02 K/s. The sample thickness is approximately 0.2 mm. Six frames taken at various temperatures are shown.
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the values which we obtained correspond to absorption
perfect C60 crystal.

4. CONCLUSION

The behavior of the absorption band edge in the reg
for the excitation of singlet excitons in pure perfect sing
crystals of C60 has been in investigated in the present wo
An absorption fine structure associated with the produc
of both free Frenkel excitons and excitons localized on str
tural defects has been discovered. It has been shown tha
orientational phase transition in C60 crystals is accompanie
by displacement of the exciton absorption edge, which c
responds to a change in the position of the bottom of
exciton band by roughly 15 meV. In all likelihood, this
due to alteration of the overlap of the electronic wave fu
tions of neighboring molecules during the phase transiti
which leads to reorganization of the band structure of
crystal.

It has been shown that the orientational phase transi
in sufficiently perfect C60 single crystals is strongly inhomo
geneous and is observed in the form of ‘‘spreading’’ of t
new phase from a small number of nuclei. During this p
cess, internal stresses appear in the sample, which lead t
a

n
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the
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appearance of defects in the crystal~most probably, disloca-
tions!. When the concentration of defects in the crystal
creases, the phase transition in it becomes quasihom
neous, probably due to the formation of nuclei on t
defects.

At 85–95 K there is an abrupt change in the slope of
temperature dependence of the optical absorption coeffic
in the region of the excitonic absorption edge of the crys
This feature clearly corresponds to a transition of the sam
to an ‘‘orientational glass.’’ It has been discovered that th
is also a feature on the temperature dependence of the
sorption coefficient in the temperature range 150–180
which is probably associated with a change in the relat
orientation of the molecules, whose nature is still unclea

It follows from the results obtained that even if th
sample is a highly perfect single crystal in the sense of
positions of the centers of the molecules atT.Tc , it can
become polycrystalline in the sense of orientational orde
temperatures below the orientational transition. Moreove
is known that orientational disorder occurs because of a t
modynamic nonequilibrium concentration ofHF orienta-
tions below 80–90 K. All this has a strong influence on t
electronic properties of the crystals investigated and mus
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FIG. 6. Photographs of another freshly grown C60 single crystal in transmitted light with an energy of 1.71 eV taken as the temperature was lowered
rate of 0.035 K/s. The thickness of the sample is of the order of 0.3 mm. Six frames taken at various temperatures are shown.
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Underdoped manganites: canted antiferromagnetic ordering or two-phase ferro-
antiferromagnetic state?
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We calculate the energy of charge-carrier-induced canted ordering in conducting layered
antiferromagnetic systems with double exchange. The quantum approach to thed-spins is used.
In the jellium model the energy of the canted state is lower than the energies of both
collinear ferro- and antiferromagnetic states over a certain range of charge carrier densities,
beginning with arbitrarily small densities. Nevertheless, the canted state cannot be realized,
because it is unstable against charge-carrier density fluctuations. The two-phase ferro-
antiferromagnetic state can play the role of an alternative to canting. The case of an intermediate
electronic-impurity phase separation is investigated. ©1998 American Institute of
Physics.@S1063-7761~98!02612-2#
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1. INTRODUCTION

As is well known, charge carriers in magnetic semico
ductors tend to establish ferromagnetic ordering at wh
their energy is minimal. If the ordering in the undoped sem
conductor is antiferromagnetic, then with increasing cha
carrier density first a magnetic state intermediate between
ferromagnetic and antiferromagnetic states should appea
still higher densities, the ordering in the crystal becom
completely ferromagnetic. There are different points of vi
about the nature of the intermediate state at moderate do
~underdoped samples!.

De Gennes1 assumed canted antiferromagnetic order
to be an intermediate state of degenerate antiferromagn
semiconductors. He found, treating thed-spins as classica
vectors, that the canting angle should be proportional to
charge carrier density. As an alternative to canting, in Re
the electronic phase separation model was proposed, ac
ing to which a degenerate antiferromagnetic semicondu
with frozen impurities in its ground state is separated into
insulating antiferromagnetic phase and high-conductivity f
romagnetic phases. Later the case of ferro-antiferromagn
phase separation was considered in systems with mobile
purities and a high magnetic ordering temperature~e.g., oxy-
gen in perovskites3!. Then not only the charge carriers b
also the ionized donors of acceptors are concentrated in
ferromagnetic portion of the crystal~impurity phase separa
tion!.

As for experimental verification of these theories, t
electronic phase separation theory was confirmed by elec
magnetic and magnetooptic data on EuSe, EuTe, and s
~see Ref. 4!. On the other hand, De Gennes1 interpreted data
of neutron studies of the doped lanthanum mangan
La12xCaxMnO3 ~Ref. 5! as confirmation of canted antiferro
magnetic ordering in them. This idea was accepted by m
investigators, even those who are engaged in neutron stu
and now it is customary to refer to the results of Ref. 5
providing verification of canted ordering.
1211063-7761/98/87(12)/7/$15.00
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In reality, this involves a misunderstanding: Wollan a
Koehler5 arrived just to the opposite conclusion. The
pointed out that in principle the superposition of ferro- a
antiferromagnetic peaks they observed atx50.18 can be re-
lated to both the canted antiferromagnetic ordering and m
ture of the ferro- and antiferromagnetic regions. To choo
between these two possibilities, they investigated the beh
ior of the peaks in the magnetic field. They found that a fie
of about 4 kOe halves the height of the ferromagnetic pe
but does not influence the height of the antiferromagne
peaks.

But in the case of canted ordering, the ferromagneti
vector is rigidly related to the antiferromagnetism vector, a
the field should rotate these vectors simultaneously. He
both the ferro- and antiferromagnetic peaks should vary
intensity simultaneously. In contrast, in case of the pha
separated state, the ferromagnetism and antiferromagne
vectors are independent. This led Wollan and Koehler5 to
conclude~and this conclusion they expressed in plain word!
that the phase separation, rather than canting, takes pla
their samples. But the nature of the phase separation rem
as yet unknown.

Strictly speaking, a very small canting of the relativist
origin was discovered later6 in the undoped LaMnO3 but it
has nothing in common with the charge-carrier-induced ca
ing proposed in Ref. 1. Its existence was confirmed in Re
7 and 8 by neutron investigations of La12xSrxMnO3 and
La12xCaxMnO3, respectively. For example, in the former
x50.04, the ferromagnetic and antiferromagnetic pe
appear simultaneously at the same temperature~136 K!,
which unequivocally confirms the canted structure. But
x50.125 the ferromagnetic peaks appear at 230 K and
antiferromagnetic peaks only at 150 K.7

The most natural explanation of this difference is th
the ferromagnetism is not related to the antiferromagnet
as the corresponding regions are spatially separated. In o
words, this result can be considered to be consistent w
4 © 1998 American Institute of Physics
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conclusions of Ref. 5. But in Ref. 7 the hypothesis was
vanced that as the temperature decreases first the ferro
netic ordering is established, and then it is replaced by ca
antiferromagnetic ordering. Investigations in a magnetic fi
similar to those carried out in Ref. 5 might address the qu
tion of whether the hypothesis of Ref. 7 is adequate.

In Ref. 8, short-range ferromagnetic correlations with
length of several lattice constants were discovered, wh
were attributed to moving magnetic polarons~ferrons!. This
result is very important as it directly confirms phase sepa
tion: the appearance of ferromagnetic regions inside ant
romagnetic crystals. In our opinion, these correlations sho
be attributed not to the moving magnetic polarons~ferrons!
predicted in Ref. 2: their number is exponentially small, a
they are unlikely to be observed in neutron studies. But
romagnetic correlations can be attributed to ferrons boun
ionized acceptors.2 Their number is several orders of magn
tude larger than the number of free ferrons.

Not only neutron data, but also electric data on man
nites conflict with the De Gennes scenario of the appeara
of canted antiferromagnetic ordering due to mobile holes
fact, contrary to the De Gennes assumption, incomple
magnetized materials are not highly conductive but insu
ing. In addition to Ref. 8, one should also mention oth
investigations with larger acceptor contents~see Ref. 9!. But
this is not inconsistent with the properties of the pha
separated semiconductors: at modest charge carrier de
they behave like the insulators.2–4

In the present paper we describe a detailed investiga
of the assumed canted layered antiferromagnetic orde
under the double exchange conditions typical of lanthan
manganites. Unlike that of Ref. 1, our treatment of the m
netic system will not be classical but quantum-mechanica
will be shown that although in a certain charge-carrier d
sity range the canted antiferromagnetic structure is more
ergetically favored than the collinear antiferromagnetic a
ferromagnetic structures, it is nevertheless not stable aga
transformation to a nonuniform state. The instability of t
uniform state is seen from the fact that thes-electron screen-
ing length diminishes with increasing charge carrier dens
and formally becomes imaginary at moderate densities.

A new type of ferro-antiferromagnetic phase separat
will be considered as a possible alternative to canting.
particular, manganites usually contain not only immobile
ceptors~Ca, Sr, and so on! but also mobile acceptors in th
form of excess oxygen. The situation intermediate betw
electronic and impurity phase separation will be consider
in the ferromagnetic portion of the crystal, holes of bo
immobile and mobile acceptors congregate with the mo
acceptors themselves.

2. DOUBLE-EXCHANGE-INDUCED CANTED
ANTIFERROMAGNETIC ORDERING

Canted antiferromagnetic ordering in a layered antifer
magnetic structure will be considered, as this is just
structure realized in lanthanum manganites. The crystal
structure is assumed to be simple cubic.

The charge-carrier energy spectrum for double excha
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will be found. It is commonly believed that this limiting cas
of extremely strongs-d coupling is realized in lanthanum
manganites, though some experimental data point to in
equacy of the double exchange~see Ref. 9!. Nevertheless,
there are other data that support double-exchange scena
these materials. For example, neutron studies suggest tha
magnon spectrum of doped lanthanum manganites co
sponds to nearest neighbors, which is inconsistent with s
dard RKKY indirect exchange.10 On the other hand,4,11 this
is just the case for indirect exchange in double-excha
systems. We also take note of Ref. 12, in which it was fou
by optical studies that the Mneg

1 band is the highest of the
filled bands so that holes only appear in this band.

The treatment is based on the standards-d model with
the Hamiltonian

H52t( ags* ag1Ds2A( ~sSg!ss8ags* ags8

2
1

2 ( I ~ f!SgSg1f , ~1!

whereags* , ags are thes-electron operators corresponding
conduction electrons or holes located at atomg with the spin
projections, s is its spin operator,Sg is that of thed-spin of
atom g, and D is the vector connecting nearest neighbo
Thed-d exchange interaction in Eq.~1! is taken in the form
ensuring the existence of the ferromagnetically ordered~001!
planes with alternating moments. In particular, in the Jah
Teller systems to which the lanthanum manganites belo
the in-planed–d exchange can be ferromagnetic, where
the out-of-planed–d exchange can be antiferromagnetic13

In this case the nearest-neighbor approximation is suffici
The double-exchange condition can be formulated ma

ematically as a requirement that thes-electron band width
W52zt be small compared toAS, where S is the d spin
magnitude andz is the coordination number. Thes–d ex-
change integralA is assumed to be positive. The inequali
W@uI uzS2 should also be met, as these quantities are of
first and second order in the smalld-orbital overlap, respec-
tively.

Unlike Ref. 1, where thed spins were considered a
classical, here thed spins will be considered as quantum
mechanical, and the inequality 2S@1 is not assumed. The
quantum approach is necessary to investigate the stabilit
the canted antiferromagnetic ordering induced by double
change. The wave function of ans electron in the completely
antiferromagnetically ordered crystal is expanded in
eigenfunctions of thes-d exchange Hamiltonian@the second
term in Eq.~1!#. Such a quantum-mechanical treatment w
first carried out in Ref. 14 for a system of two atoms, and
the present author for a system consisting of an arbitra
large number of atoms.15 It is assumed that the moments
the two sublattices (i 51 or 2! make angles6u with the total
moment of the crystal.

For any atom, thez axis is aligned with the moment o
the sublattice to which the atom belongs. The followi
eigenfunctions of thes–d exchange Hamiltonian will be
used as the basis for the wave function expansion:
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F0~g!5ag↑* u0&)
f

d~Sf
z ,S!,

F1~g!5
1

A2S11
@ag↓* 1ag↑* Sg

2#u0&)
f

d~Sf
z ,S!, ~2!

whereS25Sx2 iSy, d(n,m)51 for n5m and 0 otherwise,
and u0& is thes electron vacuum function.

To find the energy to first order int, the wave function is
represented by the linear combination

C5(
i 51

2

(
gi

@X~gi !F0~gi !1Y~gi !F1~gi !#. ~3!

In fact, this is the Ritz variational procedure: In Eq.~3!,
terms are omitted that correspond to thed spins deviated
from the moment of their sublattice in the absence ofs elec-
trons at them. These terms correspond to string-like mo
of the charge carrier,16 which is of vital importance at
A,0 andS51/2, but is not significant atA.0.4

To proceed further, transformation rules for the electr
operators from one reference frame to the other are ne
sary:

a~g1D,↓g1D!5cosua~g1D,↓g!1 i exp~ iQg!

3sinua~g1D,↑g!,

a~g1D,↑g1D!5cosua~g1D,↑g!1 i exp~ iQg!

3sinua~g1D,↓g!, ~4!

whereQ is the antiferromagnetic wave vector, and the ind
of the spin projection points to the atom in whose refere
frame this projection is measured. We putg5(r ,z) and de-
note vectors connecting nearest neighbors in the plane
between the planes byD andn, respectively. Then with al-
lowance for the relationshipst@uI u and Q5p(0,0,1), one
obtains from Eqs.~1!–~4! for the s electron energyEs

S Es1
AS

2 DXg52t cosu(
n

Xg1n2t(
D

Xg1D

2
i t sinueiQg

A2S11
(

n
Yg1n ,

S Es1
AS

2 DYg52
t cosu

2S11 (
n

Yg1n2
t

2S11

3(
D

Yg1D2
i t sinueiQg

A2S11
(

n
Xg1n . ~5!

PuttingXg5XeiqgYg5Yei (q1Q)g, and omitting the con-
stantAS/2 in Eq. ~5!, one can rewrite Eq.~5! in the form

~Es1Pk!X52Rp cosuX2
Rp sinu

A2S11
Y,

S Es1
Pk

2S11DY52
Rp cosu

2S11
Y1

Rp sinu

A2S11
X ~6!
n

n
s-

x
e

nd

with q5(kx ,ky ,p), Pk52t@cos(kxa)1cos(kya)#, and Rp

52t cos (pa).
One obtains from Eqs.~6! the following expression for

the electron energy:

Es~kp!52
~S11!Pk

2S11

MRp

2S11
6

1

2S11
@S2Pk

2

1~M212S11!Rp
212M ~S11!PkRp#1/2, ~7!

whereM5Scosu is the magnetization per atom, anda is the
lattice constant.

As can be seen from Eq.~7!, the charge-carrier spectrum
consists of two subbands. In complete ferromagnetic ord
ing, the lower and upper subbands correspond to the t
spin projection of ans-electron-loaded atom, equal t
S11/2 or S21/2, respectively. At arbitrary magnetization
one of the subbands remains well below the other. As
number of charge carriers is small compared to the num
of magnetic atoms, only the low-energy electronic subba
matters. If 2S@1 andM2@2S, one obtains from Eq.~7! the
expression for thes electron energy, which coincides wit
the result obtained in Ref. 1:

Es~kp!52Pk2
RpM

S
. ~8!

For arbitraryM and S in the quadratic approximation
this energy can be written in the form (\51)

E~kp!5B1
k2

2mxy
1

p2

2mz
,

B52t
4~S11!12M1AZ

2S11
,

1

2mxy
5

ta2

2S11 FS111
4S212M ~S11!

AZ
G ,

1

2mz
5

ta2

2S11 FM1
2~M212S11!14M ~S11!

AZ
G ,

Z516S214~M212S211!116M ~S11!. ~9!

This result makes it possible to find the magnetizat
that minimizes the energy of the canted antiferromagn
ordering. At this stage, keeping in mind that the numbern of
s electrons per atom is small, one can put the total energy
atom equal toEt5nB2IS2 cos 2u, whereB is given by Eq.
~9!, and I is the interplaned-d exchange integral in the
nearest-neighbor approximation. MinimizingEt with respect
to M, one obtains the equation for the equilibrium magne
zation, which in the limit 2S→` goes over into the De
Gennes result1:

M5
2nt

~2S11!uI u F11
4~S11!12M

AZ
G . ~10!

In case considered,M is nonzero for alln. In particular, for
largeS the magnetization is proportional ton. From Eq.~10!,
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one obtains the following expression for the relative elect
densitynF at which complete ferromagnetic ordering is e
tablished:

nF5
uI uS~2S11!

4t F11
1

2~3S11!G
21

. ~11!

Obviously, the inequalityuI uS2!t should hold as the quan
tities I and t are of the second and first order in the sm
overlap ofd orbitals of neighboring atoms, respectively. F
this reason, the inequalitynF!1 should also hold.

It is interesting to compare results for the layered str
ture just obtained with the results obtained earlier for a st
gered structure.17 In the latter case, the effective hoppin
integral for the collinear antiferromagnetic structure is eq
to t/A2S11. Hence, it can be rather large even at 2S@1,
keeping in mind that 2S<5 for d shells. But for the layered
structure, according to Eq.~9!, it is equal to t/4S for 2S
@1, i.e., it is really small. This justifies the De Genn
approach.1

Another drastic difference between these two structu
is the fact that for the staggered structure, canting is e
getically favored starting not at some arbitrarily low charg
carrier density, but at some finite value. At lower densiti
staggered antiferromagnetic collinear ordering is at le
relatively stable, whereas layered collinear ordering is
stable at all densities.

3. INSTABILITY OF THE CANTED ANTIFERROMAGNETIC
ORDERING

So far we have shown that a range of charge-car
densities exists in which canted antiferromagnetic orderin
more energetically favored than the collinear antiferrom
netic or ferromagnetic ordering. But this does not necessa
ensure the stability of a canted structure in magnetic syst
with an isotropic exchange interaction. In what follows,
will be proved that in reality, the canted state is absolut
unstable against arbitrarily small fluctuations of elect
fields, if the charge carrier density is not too low. Hence,
results of the preceding section, which attest to the instab
of the collinear antiferromagnetic and ferromagnetic state
a certainn range, do not ensure stability of the canted state
this range.

The fact of its being energetically favored as compa
with the collinear ferromagnetic and antiferromagnetic sta
simply implies the absolute instability of the collinear stat
but does not prove the stability of the canted state.

The instability of the canted state may be due to the f
that the band bottom positionB depends on the magnetiza
tion M and decreases with decreasingM ~9!. On the other
hand, the local magnetization increases with local char
carrier density~10!. Hence, if a local density fluctuation low
ers the local band bottom, a local potential well for carrie
arises at that location. The carriers tend to increase the l
density still more. But there are two factors hindering
increase in the fluctuations: a rise in the kinetic energy of
charge carriers, and the Coulomb interaction between th
in the region of their enhanced density. Competition amo
all these factors determines whether the initial fluctuat
n
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will continue to increase or it will begin to decrease. In t
former case, the uniform canted state will be destroyed.

Here, as is customary for degenerate semiconductors
jellium model is used, which is applicable atm@e2n1/3/«0 ,
wherem is the Fermi energy,n5na3 is the charge-carrier
density, and«0 is the dielectric constant. In the jellium
model, instability of the canted state against fluctuatio
should be manifested mathematically by the screening len
becoming imaginary. It means that any arbitrarily small ele
tric field makes the uniform state unstable. This field can
caused by a fluctuation of the charge-carrier density, i.e.,
may speak of instability against the density fluctuations. T
points to the tendency for the system to go over into a n
uniform state, i.e., to a phase separation. Certainly, an im
nary screening length is a sufficient but not a necessary c
dition for instability of the uniform state.

The screening length for the canted state will be cal
lated in the Born–Oppenheimer approximation. This me
that the magnetizationM (r ) and the band bottom positio
B(r ) are smoothly varying functions of the coordinates. Th
is justified by the fact that the typical length over which th
change is the screening length 1/¸, which greatly exceeds the
lattice constanta in degenerate semiconductors. As bo
these quantities depend onr via n(r ), one may put

B~r !5B1
dB

dM

dM

dn
dn~r !,

n~r !5n1dn~r !, dn~r !5( n~q!eiqr, ~12!

whereB and n are the average values of the correspond
quantities.

The requirement of constant electrochemical potentia
the presence of an external electrostatic field with poten
F~q!,

m~r !1B~r !1ef~r !5const, ~13!

after linearization with respect todn(r ) takes the form

dm

dn
1ef~q!1B~q!50, f~q!5

F~q!

«~q!
, ~14!

where the Fermi energym is measured from the bottom o
the band.

Using Eq.~12!, one obtains the relationship between t
internal fieldf~q! and the corresponding fluctuation of th
electron density:

n~q!52
dn

dm

ef~q!

12G
, ~15!

where the magnetoelectric constantG is introduced:

G52
dB

dM

dM

dn

dn

dm
. ~16!

In what follows, the standard pattern for calculating t
screened potential is used. One introduces the fielddf~q!
created by thes electrons polarized by the external field:
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df~q!5f~q!2
F~q!

«0
5F12

«~q!

«0
Gf~q!. ~17!

With allowance for Eq.~15!, the Poisson equation takes th
form

q2df~q!52k2f~q!, ~18!

where

k25
4pe2

«0~12G!

dn

dm
.

As can be seen from Eqs.~17! and ~18!, the quantity 1/k is
just the screening length. Obviously, with increasingG, the
screening length decreases and becomes imaginary whe
magnetoelectric constantG exceeds unity. For the jellium
model used when the compensating charge of ionized im
rity is assumed to be distributed uniformly, the conditi
G51 can be considered necessary for the stability of
canted structure. Hence, the problem consists in obtainin
explicit expression for this quantity in the canted structur

First, the quantitydn/dm will be found. We introduce
the effective mass of the density of states,mdos, according to
the standard procedure for semiconductors with an an
tropic effective mass, as in Eq.~9!. To obtain an expression
for mdos, the following equation for the density of states
used:

g~E!5
Na3

~2p!3 E
2p/a

p/a

dkxdkydpdS kx
21ky

2

2mxy
1

p2

2mz
2ED .

~19!

This expression can be obtained from the expression for
density of states whenp2/2mza

2@m. If the inequality does
not hold, one should consider thes electron motion to be
two-dimensional. But this ‘‘ultraclassical’’ case emerg
only when 2S→`, and for this reason it is purely of aca
demic interest as 2S<5 for d-shells, and hence at fairy low
densities the condition just mentioned is satisfied.

As follows from Eq.~19!, the Fermi energy is given by

m5
~6p2n!2/3

2mdos
, mdos5~mxy

2 mz!
1/3, ~20!

where according to Eq.~9!, the quantitymdos is a function of
M, and thus ofn.

To make subsequent calculations more transparent
first consider the case in which Eq.~8! is valid (M2@2S
11@1). Then

mdos5mS S

M D 1/3

,
1

2m
5ta2,

B524t2
2tM

S
, M5

4nt

~2S11!uI u
5

Sn

nF
, ~21!

and one obtains from Eqs.~16! and ~21!

G5
2

~6p2!2/3nF
2/3. ~22!

As can be seen from Eq.~22!, the magnetoelectric constantG
exceeds unity atnF,0.05. Hence, the canted antiferroma
the

u-

e
an

o-

e

e

netic ordering atM2@2S11 is absolutely unstable for suc
nF . But this is not the case for 0.05,nF!1.

In the opposite limiting case, 2S@1 and M!2S, one
finds by a similar calculation

G5
3n1/3

~6p2!2/3nF
. ~23!

We see from Eq.~23! that whenn→0, canted ordering re-
mains at least relatively stable.

Similar qualitative conclusions were drawn in Ref.
about stability of the canted structure in a staggered anti
romagnet, although the case of very lown is meaningless for
them: at such densities collinear antiferromagnetic order
is energetically more favorable than canted ordering. Bu
case of staggered ordering, a more realistic model with r
domly distributed point impurities can be used instead of
jellium model to investigate the stability of the cante
structure.9

In this model one takes into account that a charge car
is attracted to the ionized impurity not only by the Coulom
force but also by the force related to the magnetizati
dependent location of the bottom of the band~the expression
for which is similar to Eq.~9! for B!. This force arises be-
cause in the vicinity of an impurity the charge-carrier dens
is higher than its average value. Hence, according to an
pression forM similar to Eq.~10!, the same is true for the
magnetization. As the total force attracting the charge car
to the impurity exceeds the Coulomb force, the condition
Mott delocalization of the donor electrons is more stringe
in the case of canted ordering, than in case of collinear
dering.

For this reason, canting can be unstable against loca
tion of the charge carriers. But canted antiferromagnetic
dering was obtained under the assumption of delocali
charge carriers, which means that this assumption is inva
Hence, the uniform canted ordering is unstable. Mathem
cally, the condition of Mott delocalization leads to the st
bility condition G,1, instead ofG51 as in the jellium
model.

Unfortunately, a theory of Mott delocalization in aniso
tropic systems is lacking at present, so it is impossible to
this approach for a layered structure. One must merely
aware thatG51 is a sufficient~and not a necessary! condi-
tion for instability of the canted structure. Nevertheless,
seen from Eq.~22!, in typical cases the margin of stability i
very large.

4. MIXED ELECTRONIC-IMPURITY PHASE SEPARATION

We now study phase separation as an alternative to c
ing. As electronic and impurity phase separation were
ready investigated in Refs. 2 and 3, here we study a spe
situation that is likely to be typical of manganites. It will b
assumed that two types of acceptors~donors! are present in
the crystal: immobile~Ca, Sr, etc.! and mobile ~oxygen!.
Mixed impurity-electronic ferro-antiferromagnetic pha
separation should then occur. It is characterized by the
that the ferromagnetic phase becomes the places where
of the immobile acceptors and holes of the mobile accep
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congregate with these ionized mobile acceptors. The h
and mobile acceptors are absent from the antiferromagn
portion of the crystal.

This type of phase separation is of special interest for
following reason. The main difference between electro
and impurity phase separation lies in the fact that the lo
electric charge is nonzero in the former case and zero in
latter. Indeed, in electronic phase separation the position
the impurity atoms are frozen. For this reason, the conc
tration of charge carriers in a certain phase leads to its
coming charged, and to the opposite charge of the o
phase, due to the remaining ionized impurity atoms. C
lomb forces tend to mix both phases, but surface forces l
the mixing. If the crystal is isotropic, the phase of the sma
volume ~‘‘minor phase’’! consists of small droplets sever
nanometers in size embedded in the host~‘‘major phase’’!.2,4

As for impurity phase separation, here there are no C
lomb forces, since the local charges of the nonuniformly d
tributed electrons~holes! are balanced everywhere by th
charge of ionized donors~acceptors!. Nevertheless, the ten
dency to phase mixing exists here too: it reduces ela
forces resulting from the difference in the elastic moduli
the two phases. As a result, the minimum energy correspo
to a plane-parallel geometry~alternating layers of the two
phases!, but under typical conditions their size is several o
ders of magnitude larger than the radius of the droplets in
electronic phase separation.9 As the Coulomb forces are
much stronger than the elastic forces, in mixed phase s
ration the former should determine the geometry of the s
tem as well.

To calculate the energy of the phase-separated sta
variational procedure will be used. It generalizes the pro
dure developed in Ref. 2. It is assumed that the minor ph
consists of spheres of radiusR arranged periodically inside
the major phase. The second variational parameter is th
tio of volumes of the antiferromagnetic and ferromagne
phases:w5VA /VF . If the minor phase is highly conductive
the electronic part of the wave function atT50 is taken in
the form of the antisymmetrized product of the sing
electron wave functionsc~r ! corresponding to the free mo
tion of an electron inside a spherical region of radiusR,

C5
1

ANee!
Det@ck~Ri2rni!#, ~24!

whereRi is the location of the center of thei th sphere,rni is
the location of thenth electron inside thei th sphere, andNe

is the total number of electrons. In the ground state the in
cesk of the single-electron states correspond to the sin
electron energiesEk below the Fermi energym.

Dirichlet boundary conditions are used for each sphe
This is justified even for fairly shallow potential wells
A2m(U2Ek)R@1, whereU is the potential-well depth and
m is the electron effective mass. The wave function~24! is
accurate at radii less than the screening length in ferrom
netic ordering. At largerR, it gives the upper bound on th
energy of the phase-separated state.

If A2mmR@1, the Born-Oppenheimer approximatio
can be used to calculate the electron kinetic energyEK . In
es
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this approximation, a memory of the spatial quantization
the electron motion remains in the form of the surface el
tron energyES , which be added to the bulk energyEB ,

EK5EV1ES , ~25!

EV5
3

5
m~n!n~11w!2/3V, m~n!5

~6p2n!2/3

2m
, ~26!

ES5bS p

6 D 1/3 5EV

16n1/3~11w!1/3R
, ~27!

wheren5nA1n0 is the mean hole~or electron! density. It is
composed of the densitiesnA andn0 associated with immo-
bile acceptor ions, and excess oxygen, respectively. Furt
n(11w) is the charge-carrier density inside the ferroma
netic phase,V is the total volume of the sample,b53 if the
ferromagnetic phase is the minor one, with volumeV/(1
1w).

The Coulomb energy is calculated using element
electrostatics. For ferromagnetic spheres one obtains

EC5
2pnA

2

5«0
e2R2f ~w!V,

f ~w!52w1323~11w!2/3. ~28!

In this case, in which the major phase is ferromagnetic a
antiferromagnetic droplets are embedded in the host, the
face energy is given by Eq.~27! with b53w and the Cou-
lomb energy is given by Eq.~28!, in which the functionf (w)
must be replaced by the function

g~w!5w@213w23w1/3~11w!2/3#. ~29!

In the same nearest-neighbor approximation as bef
the d–d exchange energy is

Edd5F D2HS

~11w!v
2

H2S2w

4Dv~11w!G , D52uI uS2, ~30!

wherev5a3 is the unit cell volume andH is the external
magnetic field. The first term in Eq.~30! represents an in-
crease ind–d exchange energy due to replacement of an
ferromagnetic ordering by ferromagnetic; the second term
the energy of the antiferromagnetic phase in the field.

Finally, we present thes electron energy differenceEU

between the ferromagnetic and antiferromagnetic st
which one easily obtains from Eq.~7!:

EU522~ t2tA!nV, tA5t
2S

2S11 SA1
2S11

4S2 21D .

~31!

We now minimize the total energy

Et5EV1ES1EC1Edd1EU .

As seen from Eqs.~25!–~31!, only the surface energyES and
Coulomb energyEC depend onR. This makes it possible to
minimize the total energy with respect toR in explicit form.
In ferromagnetic droplets, the optimized energy and rad
are
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ER[~ES1EC!opt5~222/3121/3!S 9m2

160p D 1/3

3
e2/3n2/3m4/3~n! f 1/3~w!~11w!2/9

z0
1/3 , ~32!

Ropt
3 5

135p2z0~11w!1/3

32m2e2m~n! f ~w!
, ~33!

where the effective dielectric constant corresponding to
mixed phase separation is

z05«0S 11
n0

nA
D 2

. ~34!

Energy minimization with respect tow must be carried
out numerically. But if the energyER is low, it only weakly
influences the optimum value ofw, which is determined
mainly by EV and Edd in this case. One then obtains fo
H!D

VF

V
5

1

11w
5F 3m~1/v !

5~D2HS!G
3/5

nv. ~35!

As seen from Eqs.~33!–~35!, at fixed total charge-carrie
densityn, the volume of ferromagnetic droplet increases q
dratically with the relative weight of the impurity phas
separationn0 /nA @Eq. ~34!#. Hence, here the size of ferro
magnetic droplets can be considerably larger than in p
electronic phase separation. Thus, these droplets can
manifested not by small-angle neutron scattering but
well-formed ferromagnetic peaks. As such peaks were
served in Ref. 5, one of the possible reasons for their app
ance might be mixed phase separation.

According to Eq.~33!, the droplet size decreases wi
increasingw. Hence, according to Eq.~35!, the volume of
the ferromagnetic part of the crystal also increases with
field. For this reason, beginning with a certain field streng
droplets should begin to make contact with one another,
the charge carriers acquire the ability to move freely fro
one droplet to another. This means that the magnetic-fi
induced transition from the insulating state to the hig
conductivity state occurs in the sample as a whole, and
be considered as a manifestation of the giant magnetor
tance.

We note here some other recent publications on ph
separation in manganites. First, Ref. 18 is a continuation
Ref. 19. In these papers a simplified treatment is carried
as compared with Ref. 2 and the present paper: the Coul
interaction and interphase surface energy are not taken
account~the authors of Refs. 18 and 19 are likely not to
acquainted with Ref. 2 and subsequent publications of
present author!. Calculations in Ref. 18 are carried out on
for the ground state, assuming double exchange. Diffe
dimensionalities are treated, beginning with an on
dimensional system and proceeding to an infini
dimensional system.
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One can also consider the appearance of charge-ord
stripes in La12xCaxMnO3 with x.0.5 as a special sort o
phase separation. This pattern of phase separation take
form of extremely stable pairs of Mn31O6 stripes separated
periodically by stripes of undistorted Mn41O6 octahedra.20

Some comments on this subject are given in Ref. 21, but t
do not pretend to be a theory of this interesting and com
cated phenomenon.
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Kinetics of a phase transition into an inhomogeneous state in a ferroelectric plate
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The kinetics of the emergence of a polarization vector field after a ferroelectric sample is
rapidly cooled is investigated in two cases, in which the rate of growth of the polarization vector
is determined by viscous forces of phonon origin or by the diffusion of charged particles.
Analytic expressions are obtained for the rate of growth of the polarization vector and the period
of the inhomogeneous phase as a function of the degree of supercooling of the sample. The
existence of a slow relaxation process in the domain structure is established and the time
dependence of this process is found. ©1998 American Institute of Physics.
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1. INTRODUCTION

In Refs. 1–5 it is shown that when a homogeneous fe
electric plate is cooled, a ferroelectric phase transition occ
from the paraphase into an inhomogeneous state, in w
the spontaneous polarization vector is a periodic function
the plane-wave type, and which during subsequent coolin
the sample transforms into a plane-parallel domain struct
A similar phenomenon also occurs in sufficiently thin ferr
electric plates.6 This phenomenon has been investigated
the case of slow~quasistatic! cooling of the sampling, for
which the phase transition temperature and geometry of
resulting phase do not depend on the cooling rate.

In the present work the kinetics of a phase transit
after a ferroelectric crystal sample is rapidly cooled is st
ied. The kinetics of the phase transition is investigated b
for a ferroelectric crystal with no free charges and tak
account of the screening of the depolarizing electric field
mobile charged particles.

Note that the processes leading to the formation of
inhomogeneous state of matter in bulk samples un
strongly nonequilibrium conditions by the mechanism
spinodal decomposition of a homogeneous solid solu
have been studied in previous work.7–10 The dimensions of
inhomogeneities of the emerging phase are determined
the bulk characteristics of the material, and do not depend
the macroscopic dimensions of the sample. For the syst
studied in the present work the parameters of the inhomo
neity of the low-temperature phase typically also depend
the sample size and shape.
1221063-7761/98/87(12)/5/$15.00
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2. KINETICS OF THE FORMATION OF AN INHOMOGENEOUS
STATE IN A FERROELECTRIC PLATE WITH NO FREE
CHARGES

Consider a uniaxial ferroelectric crystal sample in t
form of a thin plate of thicknessl . The plane of the plate is
perpendicular to the spontaneous polarization vector.
laboratory coordinate systemx1x2x3 in this uniaxial ferro-
electric crystal plate is oriented so that thex3 axis is perpen-
dicular to the plane of the plate, while the axesx1 andx2 lie
in the plane of the plate.

Initially, the sample is in the paraphase. After the sam
is rapidly cooled, a periodic spontaneous polarization vec
field Ps with two nonzero components—P3, the projection
of the spontaneous polarization vector on thex3 axis, andP1,
the projection on thex1 axis, which is oriented in the direc
tion of the projection of the wave vectorq determining the
periodic structure of the polarization vector field—arises a
grows in amplitude.

The nonequilibrium thermodynamic potentialF of the
ferroelectric plate can be represented in the form4,5

F5E Fa1

2
P1

22
a3

2
P3

21
k

2
~¹1P3!21

~¹w!2

8p GdV. ~1!

In Eq. ~1! a1 ,a3, andk are coefficients in the series expa
sion of the thermodynamic potential in powers of the co
ponents of the polarization vector, all coefficients being po
tive. The temperature-dependent coefficient isa3, where
a35a0(Tc2T), T is the sample temperature,Tc is the Curie
temperature, a05(2C)21, and C is the Curie–Weiss
constant.11 The third term in Eq.~1! is the crystal energy
1 © 1998 American Institute of Physics



to
to

n

an
h

nd
s

h-

. T
o

io

th

e
h

-

t
d

as
the
m.

d

-
the
the
of
o-
o-
allel
ore

to

c
a

-

-

ro-

1222 JETP 87 (6), December 1998 Darinski  et al.
associated with the inhomogeneity of the polarization vec
field and reflecting the correlation of the values of the vec
P3 at neighboring points with different coordinatesx1. In
order of magnitudek;a2, wherea is the lattice constant.12

In the integral~1! the correlations between the polarizatio
vectors at points with different coordinatesx3 are dropped;
this is justified if the width of the domains is much less th
the thickness of the plate. This is a typical situation for t
present case of a uniaxial ferroelectric plate.1–5 The last term
in Eq. ~1! is the energy of the depolarizing electric field a
w is the potential of this field. The low-temperature pha
grows by the mechanism of instability of the hig
temperature state of the material after the coefficienta3

changes rapidly as a result of rapid cooling of the sample
study the initial emergence of the new phase, it is theref
sufficient to include in the thermodynamic potential~1! only
terms quadratic in the components of the polarizat
vector.2–5

In the bulk of the crystal the componentsPi of the po-
larization vector and the potentialw of the depolarizing elec-
tric field are related by the electrostatic equation

Dw54p¹ i Pi . ~2!

Combining Eqs.~1! and ~2! by introducing a Lagrange
multiplier m(r ) that depends on the radius vectorr of the

point of interest gives a new functionalF̃ in which P1 ,P3 ,
andw are independent variables:

F̃5F1
m~r !

4p
~Dw24p¹ i Pi !. ~3!

Varying F̃ ~3! with respect to the variablesP1 and P3

gives the following expressions for the componentsE1 and
E3 of the thermodynamic force on the components of
polarization vector:

E152
dF̃

dP1
52a1P12¹1m, ~4!

E352
dF̃

dP3
5a3P31k¹1

2P32¹3m. ~5!

Varying Eq.~3! with respect tow gives

dF̃

dw
52

Dw

4p
1

Dm

4p
50, ~6!

whencew5m.
If the rate of change of the spontaneous polarization v

tor is determined by viscous forces of phonon origin, t
following system of kinetic equations is obtained:13

g1Ṗ152a1P12¹1w, ~7!

g3Ṗ35a3P31k¹1
2P32¹3w, ~8!

whereg1 andg3 are the coefficients of viscosity at the tem
perature of supercooling.

Equations~2!, ~7!, and~8! constitute a complete set tha
makes it possible to determine the coordinate and time
r
r

e

e

o
re

n

e

c-
e

e-

pendences of the electric potentialw and the polarization
vectorP. These dependences can be represented as

Pj ,w}exp~ i ~q1x11q3x3!1nt !. ~9!

In Eq. ~9! the wave vectorq1 determines the periodicity
of the polarization vector field in the plane of the plate,
indicated above, and can be determined by requiring that
rate of growth of the low-temperature phase be maximu
The other wave number is determined by the conditionq3l
5p.1,5 The rate of growth of the polarization field is foun
by equating the determinant of the system~7! and~8! to zero,
taking account of Eq.~2!:

Ua11ng114pq1
2/q2 4pq1q3 /q2

4pq1q3 /q2 2a31kq1
21ng314pq3

2/q2U50,

~10!

which is constructed from the coefficients ofP1 andP3.
The condition~10! gives the functionn5n(q1 ,q3) in

the form of the equation

g1g3n21@g1~2a31kq1
214pq3

2/q2!

1g3~a114pq1
2/q2!#n14pa1q3

2/q2

1~a114pq1
2/q2!~2a31kq1

2!50. ~11!

For fixed supercoolinga3, the rate of growth of the am
plitude of the periodic phase depends on the length of
period. The phase at which the period of the variation of
polarization vector corresponds to the maximum rate
growth will reach the region where the thermodynamic p
tential is a nonlinear function of the components of the p
larization vector sooner than other phases. The plane-par
domain structure formed in the ferroelectric plate theref
acquires just this period. However, the equation]n/]q150
turns out to be too unwieldy for analysis. It is simpler
analyze the functiona35a3(n,q1) given by

a35kq1
21

4p~a11g1n!q3
2

~a11ng114pq1
2/q2!q2

1g3n, ~12!

which is likewise obtained from Eq.~11!.
The supercoolinga3 and the wavelength of the periodi

phase with fixedn can be found from the condition for
minimum ]a3 /]q150, wherea35a3(q1 ,n). A single ex-
tremal valueq150, corresponding to a transition into a ho
mogeneous state, always exists for Eq.~12!. The condition
under whichq150 corresponds to a minimum of the func
tion a3(q1) can be determined by expandinga3 near the
point q150:

a35~]a3 /]q1
2!q1

214p1g3n, ~13!

where

]a3

]q1
2

5k2
4p~a11g1n14p!

~a11g1n!q3
2

. ~14!

As indicated above,k;a2 and q35p/ l , as a result of
which ]a3 /]q1

2,0 in the casel .a for all values of the rate
of growth of the low-temperature phase. Thus, for mac
scopic plates the pointq150 corresponds to the maximum
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of the functiona3(q1). Regardless of the degree of supe
cooling of the sample, the phase transition in a ferroelec
plate of macroscopic thickness therefore proceeds into
inhomogeneous state.

The wave numberq1 of the inhomogeneous ferroelectr
phase, which precipitates with rateu after the sample is rap
idly cooled, can be found by minimizing the functio
a3(q1). The condition ]a3 /]q150 from Eq. ~12! with
l @a andq.q1 givesq1 in the form

q15~4p3/«1* k l 2!1/4, ~15!

where

«1* 5114p/~a11g1n!. ~16!

Substituting the expression~15! into Eq. ~12! gives an ex-
pression fora3:

a352~4p3k/«1* l 2!1/21g3n. ~17!

For n50, which corresponds to quasistatic cooling, t
expressions~15! and ~17! correspond to the well-known ex
pressions for the period of the resulting ferroelectric ph
and the displacement of the transition temperature fr
Tc .1,5

We note that different periods of variation of the pola
ization field of the ferroelectric phase arising can be obtai
by varying the degree of supercooling of the sample. It f
lows from Eq.~16! that asn increases, which corresponds
increasing a3 ~17! and increasing supercooling of th
sample, the quantity«1* decreases from«15114p/a1 to 1.
According to Eq.~15!, as«1* decreases, the wavelengthl of
the polarization vector decreases, sincel52p/q1. The pe-
riod of the domain structure formed in the ferroelectric pla
at a phase transition thereby depends on the degree of s
cooling of the sample, making it possible to control the d
main structure of the ferroelectric plate by choosing the
propriate thermal regime of the sample.

Qualitative agreement between the decrease in dom
sizes found on the basis of our theoretical model and
increasing degree of supercooling was obtain
experimentally.14,15 The patterns found can be furthe
checked experimentally on ferroelectrics for which t
paraphase state can be preserved after sufficiently rapid c
ing of the sample. Examples of such ferroelectrics are th
of the ordering type, in which a polar phase forms by me
of thermal activation of atomic groups, so that the charac
istic formation time of the low-temperature phase can be
than the cooling time of the plate.

In conclusion, we note that in the initial stage of grow
of the low-temperature periodic phase, after rapid cooling
the sample, the absolute value of the rate of growth of
polarization vector is proportional to its initial values. The
values are determined by fluctuations associated for the m
part with the random character of the distribution of vario
defects of crystal structure in the bulk and at the surface
the sample. Since the fluctuations are characterized by a
of different spectral lines with differing values of the wav
vector q1, waves not only with wave numbersq1 from Eq.
~15! but also with close values of the wave number part
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pate in the formation of the new phase. The widthDq1 of the
wave packet is determined from the conditionDn;n,
whence

Dq5
2n

]2n/]q1
2

.

From Eq. ~11! the curvature of the functionn(q1) is
]2n/]q1

2;k/g. Then Dq;(ng/k)1/2, so that as the rate o
precipitation of the phase increases, the width of the pac
of waves comprising the domain structure increases. S
the domain structure is not periodic, a relaxation proc
associated with the displacementj i of the domain walls
commences after the structure is formed. This process is
scribed by the equation

j i5
h

2
~j i 111j i 2122j i !, ~18!

where the coefficienth takes account of the interaction forc
between neighboring walls and viscous forces arising as
walls move. This relaxation process is characterized b
spectrum of relaxation times. This is due to the existence
a size spectrum of the regions relaxing to a periodic dom
structure. The asymptotic time dependence of the relaxa
process that is characteristic of diffusion processes
j}t21/2, so that the relaxation process is slow and is n
completed under real conditions.

3. INFLUENCE OF THE DIFFUSION OF CHARGED
PARTICLES ON THE KINETICS OF THE FORMATION
OF A FERROELECTRIC PHASE IN A FERROELECTRIC
PLATE

When charged particles, such as electrons in the cond
tion band and holes in the valence band, are present in
ferroelectric sample, the equations of electrostatics and ki
ics of the charge have the form

Dw54p¹ i Pi24pr, ~19!

ṙ5DDr1~ne2/kT!DDw. ~20!

Heree is the elementary charge of a particle,m is the aver-
age density of charged particles participating in the screen
of the depolarizing electric field,r is the local volume den-
sity of electric charge,DD5D1D1

21D3D3
2, D1 and D3 are

the principal values of the diffusion coefficient of th
charged particles, andk is Boltzmann’s constant. To solv
this problem, the previously derived Eqs.~4! and~5! must be
added to Eqs.~19! and ~20!, but written in the form

a1P11¹1w50, ~21!

a3P32kq1
2P32¹3w50. ~22!

The solution of the system of equations~19!–~22! has
the form ~9!. The rate of growth of the low-temperatur
phase after rapid cooling of the sample is determined by
equation
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n5~D1q1
21D3q3

2!

3
~«1 /R21«1q1

21q3
2!~a32kq1

2!24pq3
2

4pq3
22~«1q1

21q3
2!~a32kq1

2!
, ~23!

where

R5~4pe2n/«1kT!21/2

is the screening radius of the electric charge.
The functiona3(q1) can be obtained from Eq.~23! in

the form

a35kq1
21

4pq3
2

«1q1
21q3

21~11n/D̂ !21«1R22
, ~24!

whereD̂5D1q1
21D3q3

2.
The valuen50 corresponds to quasistatic cooling of t

sample, whereupon Eq.~23! yields an expression fora3 in
the form

a35kq1
21

4pq3
2

«1~q1
21R22!

, ~25!

which is identical to the analogous expression fora3 in Refs.
3 and 16. The expression~25! is written for the casel @R.

The minimization condition]a3 /]q150 yields

q1*
252p~p/«1k!1/2l 212R225q1

22R22, ~26!

whereq1 corresponds to Eq.~15!. It follows from Eq. ~26!
that an inhomogeneous phaseq1* .0 arises for plate thick-
nessesl satisfying

l 2,4p3R4/«1k5 l
*
2 . ~27!

It follows from ~26! and ~27! that thin enough plates, in th
sense~27!, always transform into an inhomogeneous state
the phase-transition mechanism considered above, w
thick plates can undergo a transition into a homogene
state.

The quasistatic supercooling of a sample for which
polarized state arises is determined by the following exp
sions obtained by substituting Eq.~26! into Eq. ~25!:

a35a* 2
k

R2
, a* 5

4p

l S pk

«1
D 1/2

, l , l * , ~28!

a354p3R2/«1l 2, l . l * , q1* 50. ~29!

For significant supercooling, an inhomogeneous fer
electric phase arises rapidly and the process is not accom
nied by a redistribution of the electric charges. The expr
sions forq1 andq3 are determined in this case by Eq.~24!
with n5` or by Eqs.~26! and~28! with the equivalent con-
dition R5`. For samples which are thin in the sense~27!
and for supercooling in the range (a* 2k/R2,a* ), the wave
vectorq1 varies over the range ((q1

22R22)1/2,q1).
In thick films, an increase in supercooling from the val

~28! at first preserves the transition into the homogene
state. However, the temperature range for transitions into
homogeneous phase is narrow. The value ofa3 for which a
y
ile
s

a
s-

-
a-

s-

s
e

transition into the inhomogeneous phase starts is determ
by a relation obtained by setting the derivative]n/]q1 from
Eq. ~24! to zero. This yields

a354p3R2/«1l 21p2kD3 /D1l 2. ~30!

The expression~30! shows that the supercooling fo
which an inhomogeneous stage arises in thick films diff
from Eq. ~29! by a small quantity;a/ l .

As the supercooling of the sample increases further,
resulting low-temperature phase is inhomogeneous.

For a high rate of formation of the phasesn@D1q1
2

1D3q3
2, it follows from Eq. ~24! that

a35kq1
21

4pq3
2

«1q1
2~11D1 /nR2!

. ~31!

The minimization condition]a3 /]q150 from Eq. ~31!
yields expressions forq1 anda3:

q1
25

2p

l S p

«1k~11D1 /nR2!
D 1/2

, ~32!

a35
4p

l S pk

«1~11D1 /nR2!
D 1/2

. ~33!

A comparison of~32! and ~33! yiedls a simple relation
betweena3 andq1 in the range of supercooling studied,

q15~a3 /k!1/2. ~34!

4. CONCLUSIONS

The following conclusions can be drawn from the abo
investigation of the kinetics of the phase transition in a fer
electric plate.

In the case of rapid cooling of a macroscopic ferroele
tric plate in which there are no screening charges, the m
rial transforms into an inhomogeneous phase for all degr
of supercooling. The period of the inhomogeneity depen
on the ratio of the viscosity coefficients as the longitudin
and transverse components of the polarization vector v
and it decreases with increasing supercooling of the sam
The period of the resulting phase can be varied several
by varying the supercooling of the sample.

Ferroelectric plates containing mobile charge carri
can be divided into thick and thin plates according to t
criterion ~27!. Upon cooling, thin plates always pass into
inhomogeneous ferroelectric state. Thick plates subjecte
suffiiciently small supercooling pass, via the phase-transit
mechanism studied, into a uniformly polarized state. As
degree of supercooling increases, the emergent phase
comes inhomogeneous, and its period decreases, as foll
for example, from Eq.~34!.

As a result of the existence of fluctuations with differin
wave vectors, an aperiodic domain structure will emerge i
sample after supercooling. This initiates a slow ongoing p
cess whereby the domain structure relaxes to a perio
structure.
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Self-action and generation of the harmonics of intense electromagnetic radiation interacting with
quantum lateral semiconductor superlattices are investigated theoretically using a self-
consistent approach. The calculations are based on a semiclassical description of electron transport
in a conduction miniband in an electrodynamic model of an equivalent current screen.
Multistep, multistable, self-induced transparency is obtained. The effect is associated with the
dynamic localization of electrons in the self-consistent electromagnetic field and it
appears only if the density of free current carriers in the superlattice is higher than a certain
critical value. It is shown that the bleaching of the structure is accompanied by efficient generation
of odd-numbered radiation harmonics, whose intensity peaks lie near the transparency
threshold. ©1998 American Institute of Physics.@S1063-7761~98!02812-1#
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1. INTRODUCTION

The nonlinear interaction of quantum periodic semico
ductor structures — quantum superlattices — with elec
magnetic radiation is an important direction of research
modern quantum electronics. Above all, this is due to
latest technological advances in the preparation of extrem
high-quality periodic structures demonstrating the ve
strongest nonlinear properties in millimeter, submillimet
infrared, and optical electromagnetic fields.1–4 The additional
potential produced in quantum superlattices by the perio
variation of the chemical composition of the sample giv
rise to restructuring of the energy spectrum of the curr
carriers. The energy spectrum breaks up into a set of nar
allowed and forbidden minibands.5,6 The nonlinearity of the
superlattice is due to the fact that the electron energy
miniband is bounded, which gives rise to, on the one ha
an oscillatory motion of electrons in a constant magne
field ~Bloch oscillations! and, on the other, a strongly non
quadratic dispersion law, a consequence of which is
N-shaped current–voltage characteristic.7

These two circumstances in fact determine the mec
nism of the nonlinearity of quantum superlattices. In a ra
idly varying electric field the dynamics of the electrons in
miniband becomes very complicated and can be descr
analytically only in special cases, for example, in the limit
very infrequent collisions. Thus, if the frequency of the fie
is much higher than the frequency of elastic and inela
electron scattering, there occurs a dynamic localization
electrons8,9 under the conditions of which the superlatti
behaves as a linear dielectric. A macroscopic manifesta
of dynamic localization is so-called self-induced transp
ency. When ac and dc electric fields are present simu
neously, regions of absolute negative conductivity can
pear in the static current–voltage characteristic,9 showing
that superlattices have active properties in these regi
Therefore the nonlinear and active properties of quantum
1221063-7761/98/87(12)/9/$15.00
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perlattices can in principle be used to transform the f
quency and the spatial spectra of the radiation incident
them, to amplify the radiation, and to generate second
waves in the regions of absolute negative conductivity.

In the present paper we study the self-action and h
monic generation associated with the dynamic localization
electrons accompanying the reflection and transmission o
electromagnetic plane wave through a lateral superlatt
Lateral~planar! superlattices, where an additional potential
produced for two-dimensional electrons localized near a s
face of the semiconductor, are now attracting considera
attention. In the present situation the electron motion is
calized in a direction perpendicular to the surface, and at
same time the additional potential leads to the formation o
miniband spectrum for electron motion in the localizati
plane. Superlattices consisting of one-dimensional chain
identical and identically coupled GaAs/AlGaAs quantu
dots ~Fig. 1a!—a form of quantum wires and in the prese
geometry sometimes called quantum boxes10—occupy a spe-
cial place among various lateral structures. In such a o
dimensional system electrons move along wires whose p
odic potential forms a miniband energy spectrum. It is sho
in Ref. 10 that such structures have unique properties a
ciated with the possibility of the suppression of both intr
and interminiband scattering by optical phonons at ro
temperature, as a result of which the corresponding re
ation rates of the electron velocity can reach anomalou
low values.331011 s21. Elastic electron scattering is als
found to be considerably suppressed. As will be shown
low, lateral quantum superlattices of this type in the field
an incident wave demonstrate complicated dynamical beh
ior leading to multistep and multistable self-induced tran
parency accompanied by efficient generation of od
numbered harmonics. In contrast to the articles cited abov8,9

and Ref. 11, where the fixed monochromatic field appro
mation was used on the basis of quasielectrostatics, in
6 © 1998 American Institute of Physics
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present paper a self-consistent wave approach taking acc
of the influence of the nonlinear screening current flow
along the axis of a lateral superlattice is developed.

2. HYDRODYNAMICS OF ELECTRONS IN A CONDUCTION
MINIBAND. MATERIAL EQUATIONS

The equations of electron motion in an energy miniba
of a superlattice can be derived using a semiclassical des
tion of electron transport on the basis of the Boltzma
equation9

] f

]t
1eE

] f

]p
5St~ f !, ~1!

where f (p,t) is the distribution function,p is the electron
quasimomentum,E is the electric field applied along the ax
~perpendicular to the layers! of the superlattice, St~f! is the
collision integral, and the electron dispersion relation in
tight-binding approximation is

e~p!5
D

2 S 12cos
pd

\ D , ~2!

whereD is the energy width of the miniband andd is the
superlattice period. In writing down the expression~2! we
assumed that all electrons are concentrated in the bo
miniband~the criterion for this to occur is given in Ref. 5!.
Semiclassical equations can be used if

\v,Dg , eEd,Dg , and eEd,D,

whereDg is the width of the forbidden miniband. The firs
two conditions make it possible to neglect interminiba
transitions and interminiband tunneling under the action
an intense field. The third condition makes it possible to tr
the electron motion within a miniband semiclassical
though as shown recently12 this condition is not necessary i
some cases~sequential tunneling!.

To take account of elastic and inelastic scattering,
introduce a collision integral in the model form

St~ f !52ne$ f ~p,t !2 f 0~p!%2
nel

2
$ f ~p,t !2 f ~2p,t !%,

~3!

where

f 0~p!5
d

2H p\I 0S D

2kTD J 21

expH D cos~pd/\!

2kT J
is the equilibrium distribution function,T is the lattice tem-
perature,ne is the effective energy relaxation rate,nel is the

FIG. 1. a! Example of a lateral GaAs/AlGaAs semiconductor structure~one-
dimensional systems of coupled quantum dots!; b! geometry of the model
formulation of the problem.
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effective elastic collision frequency,I 0(x) is a modified
Bessel function, andk is Boltzmann’s constant. The sem
classical instantaneous electron velocityv(p) along the axis
of the superlattice is a periodic function of the quasimom
tum:

v~p!5
]e

]p
5

dD

2\
sinS pd

\ D . ~4!

To construct a theory of the interaction of radiation wi
a superlattice, it is necessary to obtain from the Boltzma
equation~1! the material equations for the electromagne
field or, in other words, a relation between the current flo
ing through the superlattice and the electric field. The s
plest way to do this is to transform to the hydrodynam
equations. The average~hydrodynamic! velocity V and en-
ergy W of the electrons are found by calculating the cor
sponding moments of the distribution function

V~ t !5E v~p! f ~p,t ! dp, ~5!

W~ t !5E e~p! f ~p,t ! dp, ~6!

where the integrals extend over the Brillouin zone2p\/d
<p<p\/d, and the perturbed and unperturbed distributi
functions satisfy the normalization conditions* f dp51 and
* f 0dp51. The equations forV(t) andW(t) are obtained by
directly integrating Eq.~1!, using Eq.~4! and the relation

]v~p!

]p
5

Dd2

2\2F12
2e~p!

D G , ~7!

which follows directly from Eq.~4!. After simple calcula-
tions we obtain

dV

dt
5

eE

m~W!
2nVV,

dW

dt
5eEV2ne~W2WT!, ~8!

whereWT5D(12m0)/2 is the average thermal energy of a
electron in the absence of an electric field,m0

5I 1(D/2kT)/I 0(D/2kT),nV5ne1nel is the collisional re-
laxation rate of the average velocity,m(W)5m0 /
(122W/D) is the energy dependence of the electron eff
tive mass, andm052\2/d2D is the effective mass at th
miniband bottom. The energy dependence of the elec
effective mass is determined by the dispersion relation~2!;
physically, it is related to Bragg reflection. In what follow
we assume that the density of miniband conduction electr
is not too low, and that the polarizability of the superlattice
determined completely by the corresponding electric curre
whose density is proportional to the hydrodynamic veloc
V:

j 5eneV, ~9!

wheree is the electron charge andne is the electron density
converted to the entire surface of the structure. Thus,
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equations~8! can be treated as the material equations for
electromagnetic field polarized in the direction of the sup
lattice axis.

3. FORMULATION OF THE PROBLEM. INITIAL EQUATIONS

Consider a lateral superlattice of thicknessh on a dielec-
tric substrate with permittivity«s ~in what follows we ne-
glect the dispersion in the substrate, setting«s5 const!. Let
an electromagnetic plane wave with electric field vector o
ented in the direction of the superlattice axis be incid
normally in the direction from the vacuum onto the superl
tice ~the geometry of the problem is shown schematically
Fig. 1b!. We assume that the superlattice thicknessh is much
less than the characteristic scale of the electromagnetic
in the medium. Very simple estimates show that this con
tion is satisfied conservatively for essentially any real str
ture in the millimeter, submillimeter, and far-infrared wav
length ranges. For definiteness we orient thez axis of a
Cartesian coordinate system along the incident wave ve
k, and thex axis in the direction of the superlattice axis. W
position the originz50 on the ‘‘illuminated’’ surface of the
superlattice. We describe the electromagnetic field us
Maxwell’s equations

¹3E52
1

c

]B

]t
, ¹3B5

1

c

]E

]t
1

4p

c
j , ~10!

where j is the electric current density in the correspondi
medium. Herej50 for z,0 ~vacuum!. According to Eq.~9!,
j5eneV for 0<z<h, and

j5
1

c

]P

]t
5

«s21

4p

]E

]t
for z.h

is the polarization current in the substrate. The media
assumed to be nonmagnetic (B5H).

Before deriving the equations describing electron d
namics in the superlattice in the self-magnetic field and
equations for the reflection and transmission coefficients
the electromagnetic field, for convenience we transform
Eqs.~8! and ~10! to the dimensionless variables

t5vt, h5
vz

c
, U5

E

EC
, w5

V

V0
,

EC5
\v

ed
, V05

dD

2\
, z5

2~W2WT!

D
,

where v is the frequency of the incident field. Since th
problem is one-dimensional, we write in the new variab
the wave equation describing the high-frequency elec
field over all space

«~h!
]2U

]t2
2

]2U

]h2
52u

]w

]t
, ~11!

where u5vpe
2 /v2,vpe

2 54pe2ne /m0 is the square of the
electron plasma frequency in the miniband;«(h,vh/c)
51, «(h.vh/c)5«s , and u(h,0,h.vh/c)50. To ob-
tain a relation between the fields of the incident, reflect
and transmitted waves, taking into consideration the sm
thickness of the superlattice and neglecting diffraction
n
r-

-
t
-

ld
i-
-

or

g

re

-
e
r

n

s
ic

,
ll

f-

fects due to the discreteness of the structure in they direc-
tion, we treat the structure as an equivalent current scree
infinitesimal thickness, transforming from volume electr
currents flowing through the superlattice to equivalent s
face currents. We set the right-hand side of Eq.~11! to

u
]w

]t
5u0

]w

]t
d~h!, ~12!

whereu05uvh/c andd(h) is the Dirac delta function.
The dimensionless parameteru0 is the key parameter o

the theory. It determines the role played by nonlinear scre
ing currents in the superlattice and, as will be shown belo
greatly influences the self-action and harmonics genera
processes. A numerical estimate of the parameteru0, which
is proportional to the surface electron density (Ns5neh), for
ne51017 cm23, h51025 cm, D5100 meV, d51026 cm,
v51013 s21 gives u0;1. The boundary conditions for th
electric field at the current screen can be obtained from E
~11! and ~12!:

@U#h5050, F]U

]h G
h50

5u0

]w

]t
, ~13!

corresponding to continuity of the electric field and jumps
the magnetic field at the surface current~the brackets denote
jumps in the enclosed quantity!. To substitute the inciden
(Ui), reflected (Ur), and transmitted (Ut) electromagnetic
fields into the boundary conditions~13!, we describe the
fields separately using first-order wave equations

]Ui

]t
1

]Ui

]h
50,

]Ur

]t
2

]Ur

]h
50, ~14!

]Ut

]t
1

1

A«s

]Ut

]h
50,

where the fieldsUi ,Ur , andUt are related ath50 by the
condition ~13!.

For homogeneous linear media the transition from
initial equation~11! to Eqs.~14! is completely correct. Sub
stituting the corresponding quantitiesUi ,r ,t into Eq.~13! and
expressing the space derivatives in terms of the time der
tives from Eqs.~14!, we obtain the explicit form of the
boundary conditions ath50:

Ui1Ur5Ut , ~15!

2A«s

]Ut

]t
2

]Ur

]t
1

]Ui

]t
5u0

]w

]t
. ~16!

The equation~16! can be integrated over time. We obtain

2A«s Ut2Ur1Ui5u0w1C. ~17!

The arbitrary integration constant is determined by the ini
conditions. In what follows, we setC50, which corresponds
to vanishing initial conditions. We note that the electric fie
in Eqs.~8! has the same magnitude as the field of the tra
mitted wave, which in the renormalized variables cor
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sponds toUt ~in what follows the indext will be dropped:
Ut[U). ExpressingUr from Eq. ~15! and substituting into
Eq. ~17!, we have finally

2Ui~t!

11A«s

5U1
u0

11A«s

w, ~18!

which, together with Eqs.~8!—which in dimensionless vari
ables are

]w

]t
5U~m02z!2n1w,

]z

]t
5Uw2n2z, ~19!

(n1,25nV,e /v)—completely describe the self-consistent i
teraction of a normally incident electromagnetic plane wa
with a thin lateral superlattice.

The incident fieldUi(t) is assumed to be a given func
tion of time. After making the substitutions

2Ui~t!

11A«s

[Ū i~t!,
u0m0

11A«s

[ū0 ,

z5m0z, w5m0w̄

~in what follows the overbars are omitted!, Eqs. ~18! and
~19! can be rewritten in the simpler form

ẇ5U~12z!2n1w,

ż5Uw2n2z, ~20!

Ui~t!5U1u0w.

Our main objective in this paper is to investigate t
solutions of Eqs.~20!. As one can see from this system, t
fixed-field approximation employed in Refs. 9 and 11 cor
sponds tou050, for which there is no effect due to th
nonlinear screening current;u0w.

4. INTERACTION OF ELECTROMAGNETIC PLANE WAVES
WITH A LATERAL QUANTUM SUPERLATTICE

Linear interaction

Let a monochromatic plane wave

Ui~t!5U0ei t1c.c.,

be incident from the vacuum onto the structure of intere
The amplitudeU0 of this wave is small enough that Eqs.~20!
can be linearized~the corresponding criterion for the ampl
tude will be obtained below!. After some obvious transfor
mations, we obtain the following expression for the ene
reflection and transmission coefficients~in terms of the en-
ergy flux density!:

R5

F12A«s2n1

u0~11A«s !

11n1
2 G 2

1
u0

2~11A«s !2

11n1
2

F11A«s1n1

u0~11A«s !

11n1
2 G 2

1
u0

2~11A«s !2

11n1
2

, ~21!
e

-

t.

y

T5
4A«s

~11A«s !2

11n1
2

~n11u0!211
. ~22!

Equation~21! and ~22! show that in the linear approxi
mation the superlattice behaves like an ordinary plasma
~whose plasma frequency is determined by the density
effective mass of the conduction electrons! on the surface of
a dielectric with permittivity«s . The film makes the main
contribution to reflection if the parameteru0 is sufficiently
large,

u0
2 . ~11n1

2!S 12A«s

11A«s
D 2

5u0*
2 ,

and for u0@u0* the film provides essentially perfect radia
tion shielding.

Transient processes in strong fields

Let us consider the excitation of the superlattice fro
vanishing initial conditions by an incident harmonic fiel
ExpressingU from the last relation of the system~20! and
substituting into the two other equations, we obtain

ẇ5Ui~12z!1u0zw2~n11u0!w,

ż5Uiw2u0w22n2z. ~23!

For definiteness we consider the situation of greatest inte
u0@1,n1. Initially, when u0^z&!u0 (^z& is the electron en-
ergy averaged over one period!, the electrons are not heate
and the time derivatives in the first of Eqs.~23! can be ne-
glected ~the velocity is established in a timetw;1/u0!1
determined by radiation losses!. As a result, we have

w'
Ui~12z!

n11u0~12z!
. ~24!

Let us substitute the expression~24! into the second of Eqs
~23!, which gives

ż5
n1U0

2~12z!

$n11u0~12z!%2
2n2z. ~25!

Sincez!1 by assumption, the expression~25! simplifies to

ż'
n1Ui

2~t!

u0
2

2n2z, ~26!

where we chooseUi in the formUi(t)5Umsint. An expres-
sion for the period-averaged electron energy follows fro
Eq. ~26!:

^z&5
n1Um

2

2n2u0
2 @12exp~2n2t!#. ~27!

Therefore the characteristic electron heating time
tz;1/n2@tw .

The threshold amplitude of the incident field at whic
nonlinear effects first appear can be estimated. The m
mum average electron energy following from Eq.~27!
should be close to 1:
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^z&max5
n1Um

2

2n2u0
2
;1. ~28!

The expression~28! gives us a corresponding estimate of t
amplitude of the incident field:

Um5Um
~C!5A2n2

n1
u0 . ~29!

As the electrons in the miniband are heated, their ene
undergoes small oscillations about the mean at twice the
quency of the pump field. The amplitude of these oscillatio
can be easily obtained from Eq.~26!:

z;5
n1Um

2

4u0
2

. ~30!

The electron heating-induced change in the transmis
coefficient for radiation passing through the structure can
taken into account on the basis of the approximations
ployed. For this, the substitution

u0→u0S 12
Um

2

~Um
~C!!2D ~31!

must be made in Eq.~22!. Then it follows that asUm

→Um
(C) the screening action of the superlattice becomes n

ligible, and self-induced transparency due to dynamic e
tron localization occurs.8 Strictly speaking, these estimate
do not hold for incident radiation amplitudes close toUm

(C) ,
but they correctly describe the tendency for the transmiss
coefficient to increase withUm and the characteristic time
over which the corresponding interaction regimes are es
lished. We shall study these interaction regimes in gre
detail.

Steady-state periodic nonlinear interaction regimes

We now return to Eqs.~20!, where the amplitude of the
incident field can be large enough that the dynamical sys
under study can demonstrate strongly nonlinear behav
We also assume that the system ‘‘forgets’’ the initial con
tions ~a situation brought about by collisions, which destr
the coherence of the electron motion! and undergoes periodi
motion in the harmonic field of the incident wave. We stu
the approximate situation in which the relaxation times of
velocity and energy are equal (n15n2[n). ~This will enable
us to obtain certain analytic relations without qualitative
destroying the dynamics of the system. In addition, in real
the frequenciesn1 andn2 are, as a rule, close to one anoth
un12n2u!n1,2.) Then an exact expression for the velocityw
can be obtained from the first two equations~20! with an
arbitrary functionU(t):

w~t!5nE
2`

t

exp@n~t82t!#sinS E
t8

t

U~t9! dt9D dt8.

~32!

Substituting the expression~32! into the last of Eqs.~20! and
making an obvious substitution of variables in the integra
we obtain
y
e-
s

n
e
-

g-
c-

n

b-
er

m
r.

-

e

,
,

,

Ui~t!5U~t!1nu0E
0

`

e2nj sinS E
t2j

t

U~j8! dj8D dj.

~33!

As a result, we have reduced the original problem to
integral equation~33! for the fieldU(t) in the superlattice.
In the general case, Eq.~33! cannot be solved analytically
However, if the functionU(t) is assumed to be periodic i
the field of the incident waveUi(t) and the amplitudes o
the high harmonic components ofU(t) are sufficiently small
compared with the amplitude of the fundamental harmon
Eq. ~33! can be solved by substituting into the integrand t
first harmonic ofU(t), which for definiteness we choose i
the form

U1~t!5U1 cost. ~34!

We now represent the complete expression forU(t) in the
form of a harmonic Fourier series

U~t!5U1~t!1 (
k51

`

a2k11 sin~2k11!t

1 (
k51

`

b2k11 cos~2k11!t. ~35!

Likewise, we write the integral on the right-hand side of E
~33! as the Fourier series

nu0E
0

`

e2nj sinH E
t2j

t

U1~j8! dj8J dj

5 (
p51

`

Ap sinpt1 (
p51

`

Bp cospt. ~36!

Straightforward but unwieldy transformations yield expre
sions for the expansion coefficientsAp andBp :

Ap52pnu0E
0

`

e2nj sinS pj

2 D JpS 2U1 sin
j

2Ddj,

Bp52pnu0E
0

`

e2nj cosS pj

2 D JpS 2U1 sin
j

2Ddj, ~37!

where p52k11, k50,1,2,3,. . . , and Jp(x) are Bessel
functions. Since the integrands in the expressions for
coefficientsAp andBp in Eq. ~37! contain the product of an
exponential and a periodic function, the corresponding in
nite integrals can be written as integrals over a period:

Ap5
2pnu0

12exp~24pn!
E

0

4p

e2nj sinS pj

2 D JpS 2U1 sin
j

2Ddj,

Bp5
2pnu0

12exp~24pn!
E

0

4p

e2njcosS pj

2 D JpS 2U1 sin
j

2Ddj.

~38!

In what follows, we consider two limiting cases: wea
(4pn!1) and strong (4pn@1) collisions.

Infrequent collisions.Neglecting the small change in th
exponential factor in the interval~0, 4p) in the integrals
~38!, we obtain forA2k11 andB2k11

A2k1152u0J0~U1!J2k11~U1!,
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FIG. 2. a! Field amplitudeU1 in the superlattice at
the first harmonic versus the amplitudeUm of the
monochromatic wave incident on the structure. T
curve was calculated using Eq.~41! for parameter
values u0510, 20, 40. b! Transmission coefficient
T(1) for radiation at the fundamental frequency ve
sus the amplitudeUm of the incident wave. The
curve was obtained from Eq.~41! and ~46! for the
same values ofu0.
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B2k1150. ~39!

Substituting expressions~35!, ~36!, and ~39! into Eq. ~33!
gives

Ui~t!5U1 cost1 (
k51

`

a2k11 sin~2k11!t

1 (
k51

`

b2k11 cos~2k11!t

12u0J0~U1!(
k50

`

J2k11~U1!sin~2k11!t. ~40!

We call attention to the factor;J0(U1) in the nonlinear
current. The amplitudesU1

(s) corresponding to the zeros o
the Bessel functionJ0(U1

(s))50 correspond to the so-calle
dynamical localization of electrons, which can be interpre
as the collapse of the energy band in a high-frequency fi
It can also be interpreted as a specific effect in which
phases of individual electrons are mixed, as a result of wh
the macroscopic current vanishes. Of course, strict local
tion disappears if higher harmonics are taken into accoun
the integrand in Eq.~33! in addition to the fundamental
Higher harmonics play an ever greater role as the param
u0 increases. Unfortunately, no precise criterion for the
plicability of the present representation can be given, but
d
d.
e
h
a-
in

ter
-
e

typical value ofu0 for which the corresponding approxima
tion first breaks down can be obtained from the rigoro
numerical calculations presented below.

The expression~40! makes it possible to write out th
relation between the amplitude of the incident wave and
amplitudes of the harmonics in the superlattice:

Um5AU1
214u0

2J0
2~U1!J1

2~U1!, ~41!

w i5cos21
U1

AU1
214u0

2J0
2~U1!J1

2~U1!
, ~42!

a2k11522u0J0~U1!J2k11~U1!, ~43!

b2k1150, ~44!

wherew i is the phase shift between the incident field and
field at the fundamental frequency inside the superlatt
Equation~41! yields the amplitude of the field at the funda
mental frequency in a superlattice as an inverse function
the amplitude of the incident wave, while Eq.~43! ~together
with Eq. ~41!! yields the corresponding parametric depe
dence for the amplitudes of the harmonics.

The curves constructed using Eq.~41! for various values
of the parameteru0 are displayed in Fig. 2a. As one can se
there exists a critical valueu0

(C);10 beyond which the func-
tion U1(Um) is no longer single-valued. This corresponds
the emergence of bi- or multistability in the system. T
FIG. 3. Transformation coefficientsS2k11 ~47! versus
the amplitudeUm of the incident wave: a! into the third
harmonic, b! into the fifth harmonic, foru0510 and
u0520.
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FIG. 4. Oscillograms of the electron velocity fo
various values of the amplitude of the incident wav
for u0580,n150.2,n250.1: a! Um,Um* .15 ~qua-
silinear regime!; b! Um>Um* .15 ~transition to the
bleaching regime near threshold!; c! Um>18 ~tran-
sition to the bleaching regime!; d! Um>20 ~two-
step transition to the self-induced transparency
gime through an intermediate metastable state!.
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points at which a transition occurs from one quasistation
periodic regime to another~the regimes are marked in Fig. 2
by arrows! and the number of such points can be found
solving the transcendental equation

11
2u0

2

U1

]

]U1
$J0

2~U1!J1
2~U1!%50, ~45!

where the relation betweenU1 andUm is given by Eq.~41!.
Equations~41!–~44! make it possible to write out ex

pressions for the transmission coefficient~T! for radiation at
the fundamental frequency and the transformation coe
cients (S2k11) into higher harmonics:

T5
4A«s

~11A«s !2

U1
2

U1
214u0

2J0
2~U1!J1

2~U1!
, ~46!

S2k115
16u0

2J0
2~U1!J2k11

2 ~U1!

U1
214u0

2J0
2~U1!J1

2~U1!
, ~47!

where the amplitude of the field at the fundamental f
quency in the superlattice is related to the amplitude of th
the incident field by~41!. The function~46! is displayed in
Fig. 2b and the function~47! is displayed in Fig. 3 for the
third and fifth harmonics at various values ofu0. The exis-
tence of hysteresis in the functionU1(Um) for u0.u0

(C) re-
sults in bothT(Um) andS2k11(Um) begin multivalued.

Thus, in the case of sufficiently infrequent collision
which do not destroy the coherent motion of current carri
over the course of many periods of the high-frequency fie
the system demonstrates complicated behavior that dep
y

y

-

-
in

s
,
ds

strongly on the electron density. The interaction of inten
electromagnetic radiation with a lateral superlattice is
companied by self-action effects, which lead to multista
self-induced transparency and to generation of o
numbered harmonics, whose intensity is a nonmonoto
function of the amplitude of the incident wave.

Frequent collisions.In the other limiting case, 4pn@1,
the integrals~38!, which give the Fourier coefficients in th
expansion of the current in the superlattice, can likewise
approximated by expanding the trigonometric functions a
Bessel functions in the integrands in power series and ret
ing the leading terms. The result is

A2k115pu0

~k11!~2k11!U1
2k11

22kn2~k11!
, ~48!

B2k115pu0

U1
2k11

22kn2k11
. ~49!

The harmonics of the nonlinear current described
Eqs.~48! and~49! are monotonic functions ofU1, suggesting
a lack of hysteresis. In principle, a more rigorous equat
describing the dynamics of the superlattice can be obtai
in the limit of very frequent collisions (n@1). For this, a
quasistationary current–voltage characteristic, which is
tained by neglecting the time derivatives in Eqs.~20!, must
be subsituted for the integral operator on the right-hand s
of the relation~33!. This yields a time-local algebraic rela
tion between the incident field and the field inside the sup
lattice:
s-
tal
e

FIG. 5. Numerically computed curves of the tran
mission coefficients for a wave at the fundamen
frequency as a function of incident field amplitud
for a! u0520 ~1—n15n250.01; 2—n15n250.1;
3—n15n250.3; 4—n15n250.5) and b! u0580
~5—n150.2, n250.1; 6—n15n250.3; 7—n15n2

51).
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Ui~t!5U~t!1
nu0U~t!

n21U2~t!
. ~50!

This equation also describes self-induced transparency du
the presence of a descending section in the static curr
voltage characteristic.

5. NUMERICAL RESULTS

Since the analytic results presented above were obta
for individual limiting cases, they cannot cover the ent
picture of the interaction of the incident radiation with
lateral quantum superlattice. It is probably impossible to c
coct a more complete picture of the nature of this interact
without recourse to numerical simulation, which can also
used to check the accuracy of the analytic model. The
merical calculations presented below are based on the s
tion of ~20! with vanishing initial conditions.

Figure 4 displays oscillograms of the electron veloci
illustrating the transient processes in the system under s
for various values of the parameteru0 and amplitudesUm of
the incident high-frequency field. The calculation was p
formed for a regime in which the external field is turned
gradually and the velocityw at the linear stage ‘‘tracks’’ the
variation of the field in time with essentially no delay. Figu
4a demonstrates the subthreshold and, as we can see, a
linear regime of electromagnetic field interaction with t
superlattice. Above the thresholdUm* for self-induced trans-
parency~Fig. 4b–4d! the dynamics of the system and th
nature of the transient processes depend strongly on the
plitude of the incident field. For a field that exceeds t
threshold value by a comparatively small amount, the am
tude of the electron velocity~and therefore the screenin
current! decreases comparatively rapidly~over several peri-
ods! to a certain stationary value and the motion of the c
rent carriers becomes anharmonic~Fig. 4b!. As the ampli-
tude of the incident field increases, the duration of
corresponding transient process decreases and the anh

nicity of the motion in the established regime becomes stron and
to
t–

ed

-
n
e
u-
lu-

,
dy

-

ost

m-

i-

-

e
mo-
-

ger~Fig. 4c!. When multistability is present, repeated switc
ing in a strong incident field is possible in the system~this
corresponds to a largeu0). Figure 4d shows a two-step tran
sient process in which the stationary state is reached thro
an intermediate quasistationary state.

Figure 5 shows the transmission coefficients for a wa
at the fundamental frequency as a function of the amplitu
of the incident electric field. The corresponding curves
shown for superlattices with various free-carrier densit
and relaxation frequencies. We call attention to Fig.
where the parameters~for curve1! correspond to the analytic
calculations~Fig. 2b!. As one can see, Eq.~46! predicts well
the behavior of the system right up tou0;20. These calcu-
lations show that a characteristic feature of the self-redu
transparency effect is the multistep~in the amplitude of the
incident wave! character of the bleaching. This is due to t
multistability that emerges in the system at sufficiently hi
free-electron densities and low relaxation rates. In v
strong fields~much greater than the bleaching threshold!, the
screening action of the superlattice becomes negligible

FIG. 6. Numerically computed transformation coefficients into the third a
fifth harmonics versus the incident field amplitude foru0520, n15n2

50.1.
-

i-
FIG. 7. Numerically computed transfor
mation coefficients into the third, fifth,
and seventh harmonics versus the inc
dent field amplitude foru0580, n15n2

50.1.
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FIG. 8. Bleaching thresholdU* versus a! relaxation
rates @u0580: n250.25 (1); n250.15 (m); n2

50.01 (j), and u0520: n250.1 (s); n2

50.01 (h)#; b! free-carrier density @n15n2

50.1(1); n150.2, n250.1(2); n150.1,n2

50.01(3)].
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the transmission coefficient asymptotically approache
value corresponding to the transmission coefficient for rad
tion propagating into the substrate with no film on its s
face. We note that the reflection coefficient as a function
the amplitude of the incident radiation, which can be fou
using Eqs.~15! and ~41!, has all of the same features~mul-
tistep nature, hysteresis behavior! as the corresponding trans
mission coefficients.

Efficient generation of high~odd-numbered! harmonics
is observed between the bleaching thresholds of the supe
tice. We calculated the transformation coefficients into
(2k11)-st harmonic as a function of the amplitude on t
incident wave. Figures 6 and 7 show the results forS2k11 for
2k1153, 5, and 7 foru0 andn1,2 corresponding to Fig. 5
We note a characteristic feature of the generation of h
harmonics in the hysteresis regionUm,Um* (Um* is the
bleaching threshold!, where as the amplitude of the extern
field decreases, the intensity of the harmonics is redistribu
so that the third harmonic becomes strongest and the m
mum intensity forUm,Um* is greater than in the regio
Um.Um* . For example, foru0580,n150.2, andn250.1 the
intensities of the fifth and seventh harmonics decrease, w
the intensity of the third harmonic forUm'10,Um* more
than doubles compared with the above-threshold value~the
dashed curve in Fig. 7!.

In conclusion, we present in Fig. 8 the bleaching thre
old as a function of the collision frequency~a! and density
~b!. Note that while the bleaching threshold tends to decre
as the frequency of elastic collisions increases and/or
density of free current carriers decreases, the relative cha
in the transmission coefficient of the structure decreases~see
curves3 and4 in Figs. 5a and curve7 in Fig. 5b!.
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6. CONCLUSIONS

This paper contains results of an investigation of se
action and harmonic generation accompanying the inte
tion of electromagnetic waves with lateral quantum semic
ductor superlattices. The calculations were performed i
self-consistent formulation based on material equations
tained in the semiclassical approximation. Multistable se
induced transparency accompanied by efficient generatio
odd-numbered harmonics was found. This effect is due to
influence of the nonlinear screening current flowing throu
the superlattice. We found the threshold relations determ
ing the range of incident field amplitude and free-carrier d
sity where the corresponding effects materialize.

This work was supported by the Russian Fund for Fu
damental Research~Grant No. 97-02-17572!.
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