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An analysis aimed at finding possible neutrino radiation accompanying gamma-ray bursts in a
24-h period about them is performed on the basis of the data in the 4B BATSE Gamma-

Ray Burst Catalog and data from the Baksan scintillation telescope according to a program for
finding neutrinos from collapsing stars. Values significantly exceeding the background

are not discovered. A lower bound for the distance to the source is established under the
assumption that the anticipated radiation has characteristics similar to the characteristics of collapse
neutrinos. It attests to the cosmological origin of gamma-ray bursts with a high degree of
probability. © 1998 American Institute of Physids$$1063-776(98)00112-7

1. INTRODUCTION detected for several gamma-ray bursts by the VerroSAX sat-
ellite, which also monitors bursts, but with better angular
Enormous interest in the phenomenon of gamma-rayccuracy, and a red shift equal to 0.835 was successfully
bursts has arisen since April 1991, when the Comptorjetermined for one of them, GRB 970508, from the observed
Gamma-Ray Observatory was launched. On board thighsorption and emission lindsee Refs. 1 and 12 and the
spacecraft there were instruments for studying gamma radigeferences cited therein
tion in various energy ranges: 150 keV (the OSSE instru- The interpretation of such a large body of experimental
meny, 20—-300 keV(the BATSE instrument 0.75-30 MeV  qata prompted the construction of many models, whose au-
(the COMPTEL instrumenf 0.6—170 MeV and 30 MeV-30 hors clearly adhered either to the galactic or cosmological
GeV (the EGRET instrumeni(see Ref. 1 and the references p¢re of this phenomenon, although the diversity of obser-

cited thereip. Instead of the expected concentration of a1y gata can fully cover the differences in the nature of
sources of gamma-ray bursts in the galactic plane, thﬁamma-ray bursts

BATSE data(the most informative and statistically signifi- The purely galactic models, which run into difficulties in

cant data showed that they are distributed isotropically overaccounting for the angular isotropy of gamma-ray bursts, in-

the sky, althoygh t_he intensity distribution of the gamma-fa¥% oduce an extended galactic corona with a radius of 200—
bursts is spatially inhomogeneots.

In the past seven years of operation, the BATSE instru-300 kpc, which is filled with neutron stars that left the Milky

ment has recorded more than 2000 gamma-ray bursts; hov\\;yay (see, for example Ref. 1.3The mechanism for the for-

ever, the problem of determining their origin and the dis—matlon of gamma-ray bursts should be similar to that for
. X-ray sources.

tances to them remains open. c W the ob d isot dinh ity of

As the experimental data were accumulated, the searcfﬁ d'otnyt? rts_e Ys fetho ts)ervct-:- IS0 ropyl art1) n olm_oggnilt% °

for various anisotropies, including repeated events from dhe distributions of the bursts can easlly be explained, If they

single source, continued. Some investigators found angulaﬁ’re at cosmological distancks. o
anisotropy for individual groups of burétand even possible It should be noted that both approaches have difficulties

matches between some gamma-ray bursts and x-ray sé‘urce@, accou.nting for the entire body of exper.imentgl dfita asso-
but the analysis of the complete data led to a negativ@'ated with these phenomena. A detailed investigation of the
result®® BATSE signals alone likewise does not permit making an
The question of the interpretation of the bimodality ob- Unéquivocal choice between the modéee, for example,
served in the duration distribution of the burdescordingto ~ Ref. 19.
which there are “short” bursts with durations lying in the ~ Most of the proposed cosmological models of the forma-
range 0.03—2 s and “long” bursts with durations in the tion of gamma-ray bursts are associated with the gravita-
range 2—1000 s, remains open. tional collapse of a massive object, during which so much
The photon energies can reach very high values, as wanergy is released that the necessary amount of roughly
demonstrated by recording the GRB 940217 event with ad.0°" erg per gamma-ray burst is fully provided. It can in-
energy of 18 GeV on the EGRET instrument, which wasvolve the merger of binary neutron stars or binary black
delayed relative to the BATSE sigfiahnd several other holes etc’®® the collapse of white dwarfs due to
events’ accretion® stellar collapse with the appearance of Type Ib
The situation became even more complicated whersupernovad? the explosion of a very massive rapidly rotat-
accompanying radiation in the x-ray and optical ranges wa@g star with the formation of a black hole following collapse
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of the core(a so-called “hypernova);?! the collapse of a combined set of telescope data and BATSE data published in
“naked” stellar core in a binary systertthe “minisuper- the 4B catalog are described in this paper, and a lower
nova” mode),? or the gravitational collapse of a supermas-bound on the distance to the sources of the gamma-ray bursts
sive star having a mass more than 50 000 times greater thas obtained.
the mass of the Sun into a black héfe

Each of these models has its own merits and shortcom,; petector
ings for describing the complete quantitative characteristics
of gamma-ray bursts, but they all share one feature, i.e., the The Baksan subterranean scintillation telescope is lo-
mandatory existence of a burst of neutrino radiation. Theated in a tunnel in the Northern Caucasus Mountains at a
properties of such neutrinos can be similar to the propertiedePth of 850 meters of water equivalgmwe).” It consists
of the neutrinos formed upon core collapse in a massive st €ight planes(four vertical planes and four horizontal

with the appearance of a Type Il supermova, i.e., the meaR'@nes, of which the three lowest are called “inner” planes
energy of the particles, and, is 10-15 MeV, and the total which form a closed figure that is continuously covered by

radiated energy is-3x 10°2 erg, but the duration of a neu- standard counters filled with the organic scintillatogH,

. . and special additives. Each of the counters is viewed by one
trino burst can be much shorter, less than 1 s, and the reIauvq1 - . :
photomultiplier with a photocathode diameter equal to 15

fraction of electron antineutrinos, is several times higher cm. The total target mass is 330 tons, and the mass of the
than in the standard mod¥lA few other characteristics of “inner” part is 130 tons. The detection energy threshold of

neutrinos appear in the “supermassive” star model, viz., ahe  detectors on the horizontal  layers s

mean energy of 4-8 MeV, a total energy of1érg, and a g ey, the threshold of the detectors on the vertical planes
duration less than a several secoffi$Vevertheless, the s 10 MeV, the dead time of the instrument is 4 ms, and the
question of the existence of such objects remains open.  accuracy of setting the absolute time is 1 ms.

Although the radiation associated with gamma-ray bursts  since the telescope is at a relatively small depth, to re-
can arrive from great distances and the probability of detectdyce the background from the main source, i.e., cosmic-ray
ing such accompanying radiation from a single event ofmuons which leave a trajectory of triggered counters when
modern detectors operating simultaneously with the BATSEhey traverse the telescope, only single triggerings of all the
instrument is very low, with consideration of the broad spec-counters are recorded on the tape for subsequent treatment in
trum of possibilities opened up by the experimentally de-the present program for finding collapse neutrinos. The data
tected properties of the appearance of gamma-ray bursts justipplied from any part of the telescope can be used, depend-
enumerated, several searches for such radiation have begry on the purpose of the work. For example, the “inner”
undertaken. In addition, in view of the complexity of the 130 tons of the scintillator are employed as a trigger mass in
phenomenon under discussion, any additional information i& program for finding collapse neutrinos, i.e., after a signal of
very desirable. interest is found in this mass, the information from the entire

Searches have been undertaken both for neutrino radigelescope is processed.
tion accompanying gamma-ray bursts on the underground
IMB, % LSI_D,26 and LVD?’ detectors and for high-energy 5 sg| EcTION OF EVENTS AND METHODS FOR
photons with an energy above 1 GeV on large instrumentproceSSING THEM
for studying extensive atmospheric show&¥é’but no posi- o _ _ _ _
tive effect was discovered. It should be noted that the studies Although high-intensity neutrino fluxes associated with
performed on the underground detectors did not pass stati§@mma-ray bursts are predicted in some models, we still do
tical testing very well, since data obtained for 53 gamma-ray'©t knowa priori the detailed parameters of this radiation
bursts observed before October 1990, i.e., before the laundd the time relationship between these two bursts.
of the Compton Gamma-Ray Observatai@GRO), were TWQ types of low-energy neutrinos can be positively Qe—
used in the IMB detector; the mass of the target in the Lsg€cted in the Baksan telescope according to the following
instrument used in the analysis was relatively sr(&0l tong reactions with the scintillator material:
to reduce the background, and the first part of the LVD in- ;e+ p—n+et, Eyn=1.8 MeV, (1)
strument began to collect data in the middle of 1993. ~

The Baksan subterranean scintillation telescope has been ve+C—'B+e*, E=16.827 MeV,
performing continuous tracking of our Galaxy for neutrino | (2)
radiation since 1980. The sensitivity of the instrument is 1204 o _
such that it “examines” 95% of the galactic stars in searches e, 1,=0.020 s,
for single neutrino bursts from the gravitational collapse of ~ ve+C—!N+e”, E;=13.880 MeV,
the cores of massive stars. The effectiveness of the detector l (3)
was confirmed by recording the neutrino signal from super- 2016t t..—0011
nova 1987A BMO along with the IMB and Kamiokande e h=b S-
instruments? The “live-time” collection efficiency is above In reaction(1) only the positron signal is recorded, i.e.,
90%, permitting the use of essentially all the data on gammasingle events accompanying gamma-ray bursts are expected
ray bursts in the search for possible neutrino radiation acin the detectors. In reaction®) and (3) two signals, i.e.,
companying them. The methods for such an analysis of alectron and positron signals, can be detected in time inter-
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vals equal to three beta decay period$4 and'°N, which g\(l)((;ws)
are equal to~100 ms and~50 ms, respectively. The search
for double signals accompanying gamma-ray bursts signifi- 500

cantly improves the signal-to-background ratio, especially W
with consideration of the upper energy edges of the decay 400
spectra(13.37 MeV for'?B and 16.4 MeV forlN).
The following constraints were introduced into the tele- . , .
scope data for the subsequent treatment. -1800 -1200 600 0 600 '20°AT
1) Periods of operation of the instrument when all the S
systems functioned normally were selected. For this reasonG. 1. Distribution of single telescope events in a 30-s windé(80 s) in
only 1198 of the 1736 bursts in the 4B catalog, among whichg +1800-s interval about 1198 gamma-ray bursts juxtaposed according to
there is information on the duration for only 1234, were the onset of the signal&T is the time from the onset of the bursts.
used.

2) Only events from detectors on the “inner” planes, gych an analysis of the information was performed, but no

which are most strongly shielded from the background of 5 es significantly exceeding the background were found.
cosmic-ray muons, were selected. It was decided that each @fs 5 example, Fig. 1 shows the typical form of the distri-

these detectors would be triggered no more than three timgsi,iion of the number of single telescope events in a 30-s
in a 24-h periodthe averaged counting rate of the “inner” \yindow summed over all 1198 bursihe vertical axisin a
detectors is one count per 24. This condition eliminated 3600-s interval about a buréhe horizontal axis The figure
any de_tectors with increased inherent background from th@learly demonstrates the absence of the expected signal.
analysis. . . B. It was assumed that gamma-ray bursts consist of sig-
3) Events whose amplitude did not exceed half of thepgis of diferent origin. Then, if neutrino radiation exists, it
energy released by a relativistic particle in a standard detegsan arrive at different times relative to a burst. In this case
tor were selected. Thus, the range of allowed energies Wage can analyze the time intervals between pairs of telescope
8—25 MeV. . events and look for statistically significant upward deviations
As a result, the data supplied from a telescope targéfom the background by summing the corresponding tele-
mass equal to 126 tons with a mean counting rate of singlgCope data for all the gamma-ray bursts or for various se-
pulses roughly equal to 0.012 events per second were used jicted groups. The telescope data for 24-h intervals about the

the subsequent work. _ bursts were treated by such a method. Figure 2 shows the
The following information from the 4B catalog was resylt of such a treatment of the data for the case of “all
used. bursts.” The length of the interval between events is plotted

1) The treatment was performed using durations equal tQong the horizontal axis, the zero point on the axis corre-

both 750 and 7eo [ 750 (7e0) IS the time interval during which  gponding to the onset of the gamma-ray bursts. The two
50% (90%) of the gamma-quantum flux is detected branches in the figure reflect the distributions found “be-
2) The gamma-ray bursts were separated into foutgre” and “after” the gamma-ray bursts.

groups according to duration: 0-1 s, 1-10 s, durations |t can be seen that the distribution of the time intervals

>10's, and all durations. between telescope events obtained by this method does not

3) The bursts with a total energy 20 keV determined  haye any special features and that everything is described
by summation over all the channels were separated into thrggg by the corresponding Poisson formula.

groups according to intensity: “strong’’ with a flux The results presented were obtained with single tele-
1>10"° erg/cnf, “weak” with a flux 1<10"° erg/enf, and  gcope events, which are characterized by a relatively high
a mixed group. background level. The signal-to-background ratio for the

Then the events selected and separated in this manner
were processes by several methods.

Since only single pulses from positrons would be de- logN
tected as a result of reactigf) and since we know nothing 3.3;
a priori amount the time relationship between gamma-ray
bursts and the postulated neutrino radiation, the combined
data were treated on the basis of the following assumptions.

A. It was assumed that gamma-ray bursts are of the same .
nature, regardless of their individual parameters; therefore, it 3.4
could be expected that if neutrino radiation exists, it is lo-
cated at approximately the same time distance on the time
axis from a burst. Then, we can look for statistically signifi-
cant upward deviations from the background for both the
total set of bursts and various selected groups by summin@!G. 2. Distribution of the time intervals bet\/\_/een singl_e telescope events
the corresponding telescope data in a 24-h period centered gim) summed over 1198 gamma-ray bursts in a 24-h interval about them.

. ! _The center of the horizontal axis corresponds to the position of the onset of
the position of the burst onset and analyzing these data ifhe gamma-ray signalsit=t,, ,—t, . Straight lines — result of a calcula-
different time windows with durations fro 1 s to 10min. tion using Poisson’s formula.

n " i ' i A i "
50 40 30 20 10 O 10 20 30 40 50
At s
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FIG. 3. Distribution of pairs of telescope events with a time interval R —
<100 ms between them in a 600-s winddw{<100 ms) summed over 10 -0t o 10¢ 10
1198 gamma-ray bursts during a 24-h period about them. The position of the AT,s

onset of the gamma-ray bursts is&tf=0.
FIG. 4. Integral distribution of single telescope events in a 24-h period

about 1198 gamma-ray bursk(AT) as a function of the time interval

. . . “before” (1) and “after” (2) the onset of the gamma-ray signals. The zero
products of reaction$2) and (3) is considerably better. A point corresponds to the position of the onset of the gamma-ray bursts.

search for a possible neutrino signal was performed using

paired telescope events separated by a time interval

<100 ms according to the method described in paragraph Avith a temperature of 3.5 Me\the cases of 4 MeV and 4.5

Figure 3 shows the result of such a treatment of the data fo¥leV were also considerggdand all the types of neutrinos are

the case of “all bursts.” The time on both sides of the burstsProduced in equal numbers. The latter assumption somewhat

is plotted along the horizontal axis, and the number of pairedvorsens the estimate sought for the telescope in comparison

events in a<100-ms window, which is summed over 600-s to the large fraction of electron antineutrinos predicted in

intervals because of their small number, is plotted along th&ef. 17, but this is not very significant in our case of a more

vertical axis. The paired events are distributed evenly abougeneral treatment.

the bursts, and there are values exceeding the background. The lower bound on the distance to the sources of
Thus, all the proposed methods for processing the infordamma and neutrino radiation obtained at the 90% confi-

mation in a search for neutrino radiation in the Baksan teledence level is shown in Fig. 5, where the distance is plotted

scope that can be associated with gamma-ray bursts from ti the vertical axis and time intervals “before(*after” )

BATSE 4B catalog yielded negative results. the onset of the gamma-ray burstsrfral s to 12 h are
plotted along the horizontal axis. Curtaepresents the case

where the “temperature” of the thermal neutrinos is equal to
3.5 MeV, curve? is for a neutrino “temperature” equal to 4
The data obtained permit finding a lower bound on theMeV, and curve3 is for the case of 4.5 MeV per burst.
distance to the sources of gamma-ray bursts within the model As can be seen in this figure, the bound obtained for any
of accompanying neutrino radiation considered. Since th@osition of the neutrino signal relative to the gamma-ray
duration of the neutrino radiation and its position on the timeburst attests to the extragalactic nature of the sources of the
axis relative to the gamma-ray bursts for each case are ugamma-ray bursts, and the bound on the distance for neu-
known, to find the bound we must start out from very generatrino and gamma radiation that are close in time essentially
assumptions regarding these parameters, i.e., we must comeaches 1 Mpc.
pare the total numbers of experimentally recorded and theo-
retically expected telescope events in different time intervals Rk
from the onset of the gamma-ray bursts. ‘10%%_
Figure 4 shows the integral distribution of single back-

4. CONCLUSION

ground telescope events summed over all 1198 buftlses zx
horizontal axi$ as a function of the time interval “before”

(the left-hand curveand “after” (the right-hand curvethe 7007
onset of the gamma-ray bursts, which is located at zd® 600
vertical axig. It can be seen in this figure that the telescope 3001
background is absolutely symmetifidoes not have any fea- 400
tureg relative to the center of the axis. Positron signals from 300

the interaction of electron antineutrinos in reactioh), 200
which is detected with high reliability in the telescope, 100
would be expected specifically among these events. Such IRV TSI PV

. . S o 10t 10 10° 10* [10

signals were not discovered; therefore, the data shown in Fig. ATs 12h

4 were used to estimate the distances to the sources, and it

was assumed that the expected neutrino radiation has tf#G. 5. Dependence of the lower bound on the disteRée the sources of

same characteristics as neutrinos from Collapsing cores mma-ray bursts and neutrinos on the time intef\Rlbefore the onset of
he gamma-ray signals. The different curves corresponds to different “tem-

massive stars, i.e, the total neutrino energy equalgeratures” of the expected neutrinds— 3.5 MeV,2 — 4 MeV, 3 — 4.5
3% 103 erg, the particles have thermal Fermi—Dirac spectravev.




JETP 87 (6), December 1998 Alekseev et al. 1045

Thus, the analysis performed on data from the Baksaf?D. E. Reichart, E-print archive, astroph/9801139, submitted to Astrophys.
subterranean scintillation telescope that were recorded aclzg-J- LQett- o Publ S 20 2(1995

: ; ; D. Q. Lamb, Publ. Astron. Soc. Pat07, 1152(1 .
cordmg_ to a program for searchmg fo.r neutrino bursts fromuB. Paczynski, Publ. Astron. Soc. Pag7, 1167 (1995,
coIIapsmg stars terther with data in the_ 4B CataIOQ ONs| G. Mitrofanov, M. L. Litvak, and D. A. Ushakov, E-print archive,
gamma-ray bursts recorded by the BATSE instrument on the astroph/97071281997), Astrophys. JXin press.
CGRO did not yield a positive effect. The results of this '°S. I. Blinnikov, I. D. Novikov, T. V. Perevodchikova, A. G. Polnarev,
work show that if the formation of th mma radiation in Pis’'ma Astron. Zh10, 422 (1984 [Sov. Astron. Lett10, 177 (1984].

ork'sho ft at it the Ob atio .0 t ef 9a a rad at(.) d b”M. Ruffert, H.-Th. Janka, K. Takahashi, and G. Schafer, Astron. Astro-

sources of gamma-ray grs_ts is, in act, accompanied by p,s 319 122 (1997,
high-intensity neutrino radiation or if such neutrino radiation8). R. wilson, J. D. Salmonson, and G. J. MatthewsRiiaceedings of the
precedes the formation of gamma radiation, these sourcegith Huntsvile Gamma-Ray Burst Symposiukfyntsville, September

have an extragalactic nature and are located at distanceg!®%?:
V. V. Usov, Nature(London 357, 472(1992.
greater than 1 Mpc.

. . 203, E. Woosley, Astrophys. 405 273 (1993.
We thank Prof. I. G. Mitrofanov for some useful discus- 215, paczynski, inProceedings of the 4th Huntsville Gamma-Ray Burst

sions regarding the subject of this research. Symposium,Huntsville, September(1997); E-print archive astroph/
This work was supported by the Russian Fund for Fun-, 9712123(1997.

damental ReseardiProject 95-02-04660ja
*)E-mail; alexeyev@msl.inr.ac.ru, alexeev@niutr.novoch.ru

1J. Greiner, M. Sommer, N. Badet al, Astron. Astrophys.302 121
(1995.

2G. J. Fishman, Publ. Astron. Soc. P467, 1145(1995.

3B. Link and R. Epstein, E-print archive, astroph/970424297).

4K. Hurley, P. Li, A. Smetteet al, Astrophys. J464, 342 (1996.

5M. Briggs, W. S. Paciesas, and G. N. Pendleton, Astrophy459. 40
(1996.

SR. M. Kippen, J. M. Ryan, A. Connorst al, Astrophys. J.492(1),
(1998.

“C. Kouveliotou, C. A. Meegan, G. J. Fishmahal, Astrophys. J. Lett.
41, L101(1993.

8K. Hurley, Nature(London 372 652 (1994.

9B. L. Dingus, J. R. Catelli, and E. J. Schneid,Aroceedings of the 25th
ICRC, Durban, South Africa (1997Yol. 3, p. 29.

OF. Frontera, E. Costa, D. Dal Fiure al, in Proceedings of the 25th
ICRC, Durban, South Africa (1997Yol. 3, p. 25.

223, |. Blinnikov and K. A. Postnov, Mon. Not. R. Astron. S®93 L29
(1998.

2G. M. Fuller and X. Shi, E-print archive, astroph/9711G2097), submit-
ted to Astrophys. J.

24x. Shiand G. M. Fuller, E-print archive, astroph/980110698, submit-
ted to Astrophys. J.

5R. Becker-Szendy, C. B. Bratton, J. Breaeital, in Proceedings of the
23th ICRC,Calgary, USA(1993, Vol. 4, p. 476.

2\, Aglietta, P. Antonioli, G. Badincet al, Astrophys. Space Sc231,
355(1995; in Proceedings of the 24th ICR®ome, Italy(1995, Vol. 2,
p. 73.

2TM. Aglietta, B. Alpat, E. D. Alyezet al., in Proceedings of the 24th ICRC,
Rome, Italy(1995, Vol. 1, p. 662.

2|, padella, B. Funk, H. Krawczynskit al, in Proceedings of the 25th
ICRC, Durban, South Africg1997), Vol. 3, p. 57.

293, D. Bathelmy, P. Butterworth, R. Cabreztal, in Proceedings of the
25th ICRC,Durban, South Africg1997, Vol. 3, p. 73.

30, N. Alexeyeva, Highlights Astron8, 229 (1989.

SlCatalog 4B, http://www.batse.msfc.nasa.gov/data/grb/4bcatalog.

32E. N. Alekseev, L. N. Alekseeva, V. |. Volchenlat al, Zh. Eksp. Teor.
Fiz. 104, 2897(1993 [JETP77, 339 (1993].

M. G. Baring, inProceedings of the 5th Workshop on TeV Gamma-Ray

AstrophysicsKruger National Park, South Africél997).

Translated and edited by P. Shelnitz



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS VOLUME 87, NUMBER 6 DECEMBER 1998

Coherent states of potentials of soliton origin
B. F. Samsonov*)

Tomsk State University, 634050 Tomsk, Russia
(Submitted 10 June 1998
Zh. Eksp. Teor. Fiz114, 1930-1943December 1998

The spectral properties of the most general time-dependent potentials of the soliton type
described by a self-adjoint operator acting in Hilbert space are discussed. The spectral
decomposition for these potentials and the quasispectral decomposition for the Darboux
transformation operators are obtained. The coherent states of such systems are examined. Finally,
the measure realizing the decomposition of the identity operator in the projectors on the

coherent states is calculated. 98 American Institute of Physids$$1063-776(98)00212-1]

1. INTRODUCTION g-coherent states is introduc&tf® A characteristic feature

of many such systems is that they are generated by a chain
(possibly infinite of Darboux transformatiot$8from sim-

pler systems, such as free particles, the Coulomb potential, a

The first to introduce coherent statdsr the case of the
harmonic oscillator as nonspreading wave packets was

. . 1 . . .
Schralinger: Today such states have found wide appl'cat'onharmonic oscillator, etl>2°The coherent states of such sys-

in various areas of physics and mathemati¢sThe different o e have been studied very little. In this connection the
aspects of coherent states have been discussed in numerQUs, ¢ Fernandezt al??? deserves mention. These re-

reviews (see, e.g. Refs. 5-7 and the monographs b

R A3
gﬁrelomoﬁj Malkin and Man’ko, and Klauder and nians with an equidistant spectrum. Spiridofitstudied sys-
agerstar. . tems of the coherent states gfdeformed potentials of the

. .Howev.er.,.|t must be noted that at presgnt there is "% armonic oscillator and a class of self-similar potentials. Fi-
unified definition of a coherent state, and different authorﬁ,IaIIy Man'ko etal? studied a generalization of the

mean _d|fferent thl_ng_s When '_speakmg about such states. A&‘—oscillator, which was called aftoscillator, and obtained
analysis of the existing definitions shows that there are se

-~ ) ) Vthe coherent states for such an oscillatbicbherentstates

eral charactenspc properties of such st.a(tEs.cr-u.Jed by vec- In those cases when the system considered may be gen-
tbors ¢Z(é(’tt) ’dWP'Chtﬁa%q?le Eﬁken af their d?fmltu)rllhat Ca? erated by using the technique of the Darboux transformation

?tﬁseH'lg ? ine d?l 'f)th € vte;: Ors/]ﬁziﬁ’ ) ar? € metehn S operators, the coherent states for this system can be obtained
ot the Hiibert spacer of the states ot the sys er.(12) € by applying a transformation operator to the coherent states
parameter takes continuous values from a domainof an of the initial system(if they are known.?52® Here, to satisfy
n-dlme_nS|_onaI complex spacéE) the vectors:,//i(x,t) are  condition 3, we must have a generalization of this transfor-
stable in time; and4) there is a measure=u(z,2) (the bar  mation to the time-dependent Sctimger equation. One

over the symbol indicates complex conjugajioealizing the v ariant of such a generalization has been developed in soli-

%earchers studied the coherent states of isospectral Hamilto-

decomposition of the identity operatof acting inH, ton theory?” However, often this approach fails because it
may lead to complex-valued potentials, which would violate
f{/dﬂ|¢z><</fz|:-7- (1 condition 1. The method developed in Ref. 28 and thor-

oughly described in Ref. 19 is free of this drawback. It has
By temporal stability we mean that the states described byeen used to obtain and study coherent states of anharmonic
the vectorsy,(x,t) remain coherent at all times, i.e., satisfy oscillator Hamiltonians with a quasiequidistant spectfdm,
the properties 1, 2, and 4. To satisfy this condition, we willwhich were first obtained in Refs. 11 and 12, coherent states
assume that the functiong,(x,t) are solutions of the Schvro of anharmonic oscillator Hamiltonians with an equidistant
dinger equation spectrunt® which were first obtained in Ref. 29, coherent
(i d— o) gry(X,1) =0 states of anharmonic potentials with a singularity at zero of
t0MEA ' the form yx 2 (Ref. 30, and coherent states of the one-
where hy is the Hamiltonian (not necessarily a time- soliton time-independefit and time-dependefft potentials.
independent oneacting inH. Note that in the cases of equidistant and quasiequidistant
If a quantum system has nontrivial symmetry propertiesspectra such states are described by nonspredfirigne)
the study of coherent states for such a system simplifiesyave packet$! which earlier were known to exist only in
since group-theoretic methods prove to be highly effectf/e. systems with a Hamiltonian quadratic in the spatial coordi-
Lately there has been an upsurge of interest in quantum sysate.
tems whose differential symmetry operators do not form a A characteristic feature of time-independent soliton
closed algebra. They can form quadrati€ polynomialll'?  potentialé’is their transparency. A particle scattered by such
andg-deformed®#algebras. In the latter case the concept ofa potential is never reflected by it. Another important prop-
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erties of such potentials is that each level in the discreteero potential:u,=expsy,sinhé,, where 7, and 6, differ

spectrum always occupies a preassigned position, which igom #», and 6; by \; and\, being replaced by, and u,.
controlled by the parameters of the potential. Because of thishen the function

property, they can be used as model potentials is pseudopo-
tential theories. For instance, they were used to describe re-
laxation processes in Fermi liquid$ A generalizations of where
such potentials is the time-dependent soliton potential intro-

vo=LUy,=i(A{—N\y)Uu,+W, expn, sechd,

— 1 —
duced in order to solve the Kadomtsev—Petviashvili ~ W2=2l(k2+ p1)coSH6,—65)
equa7t|g4r13. Note, however, that such potentials of the geqe_ral +(po— pu1)COSH 01+ 65)]
typ€?’3* are complex-valued and, therefore, no self-adjoint ~
operator in Hilbert space can be associated with them. is the Wronskian of the functionsu;=coshd; and

In this paper we will use the time-dependent Darbouxu,=sinhé,, is a solution of the Schrbnger equatiorfwhich
transformatiof’ to derive fairly simple expressions for real- is not square-integrablavith the potentialV(}). If we take
valued time-dependent many-soliton potentials. We will esv, as the transformation function for the second Darboux
tablish the relationship that exists between the Darbouxransformation, we arrive at the most genetabmplex-
transformation operators and the spectral decomposition afalued two-soliton potential(This is simply another form of
the momentum operator and will for the first time obtain thethe well-known two-soliton solution described in Ref. }34.
decompositions of these operators in the quasiprojectors ono obtain a real-valued potential, we must require that the
the eigenvectors of the momentum operator. Two types ofransformation function, obey the reality condition speci-
coherent states will be examined. The states of the first typgied in Ref. 193['”(02/0_2)]xxx=0- This condition is met if we
obtained via an integral transformation operator, allow forput A1=\,=\. In this case the two-soliton potential be-
the decompositiorfl) of the identity operator in which the omes real:
measure is a continuous function. In the second case, the
coherent states are determined via a differential transforma- V2= —2(INW,) = — 2(u5— u$)W, 2
tion op(_arator, an_d the measure (b) is determined by a X(Mg cosi? 91*‘#«% sint? 6,).
generalized function.

If in addition we requireu,> w1>0, the WronskiarwW, will
retain its sign for all real values ofandt, and the potential
V@ will be a regular function for alk andt. Note that at
A=0 this potential becomes the well-known two-soliton

One of the methods used in building time-dependentime-independent potentia.
many-soliton potentials is described in Ref. 35, which also  We will now take a chain oN Darboux transformations
contains a description of many physical applications. Genersimilar to the one considered for the case witk=2. The
ally, such potentials are complex-valued, and no self-adjoin@ction of such a chain of Darboux transformations is equiva-
operator in the Hilbert space can be associated with them. Ilgnt to the action of an ordex-transformation operatd:

2. TIME-DEPENDENT MANY-SOLITON POTENTIALS

this section we will describe a method more suitable from u u 1
. . . . . 1 2

the quantum mechanical viewpoint. The method is a direct
generalization of the well-known constructs used in the L=W~X(u,.u uy) Uix Ux --- dx @
theory of the time-independent Schinger equatiori®—38 B 1sH2e - HNJL S I
The main idea can be illustrated by the example of a two- (N) (N) N

. . : . Uy’ Uy’ - dy
soliton potential, while for the general case we give only the
final expressions. whereu(Y)=g"u, /oxN, and the operator determinant is in-

To obtain a two-soliton time-dependent potential, weterpreted as a differential operator obtained by decomposing
must perform two Darboux transformation in succession. the determinant with respect to the last column with function
The operatot of the Darboux transformation is determined coefficients in front of the differentiation operators. The
by a solutionu=u(x,t) of the initial Schrainger equation functionsu, in our case are
(in our case this is an equation with a zero potejtial
L=—u,/u+dy (uy=9ul/dx andd,=dldx). If assume that

u=u,=expy, coshd, Us=expnzcoshfs, Us=expmasing, ...,

u;=expn,coshd;, u,=expn,sinhé,,

i 2 N2\t _
=i (2= ADt—INgX,  0y= X+ 2\ 1t M= (U MITZINX, O= X+ 2N,

where); and u, are arbitrary real numbers, we arrive atthe M #ke R, O<p1<py. €)
. - _ 2 . .

well-known one-sohton.p'otenuav(l)—. —2p1 sectt;. All " The N-soliton potential is given by the expression

the solutions of the Schdinger equation with the potential N

VD except the one that belongs to the kernel of the operator V™= —=2[INW(uy,U,, . .. Un) Jux-

L= —u,/u—d, can be obtained by applyirigto a solution  Clearly,
of the Schrdinger equation with a zero potential. In particu- o _
lar, let us take the following solution of the equation with a ~ [INW(uy,uy, ... ,uy) L= [INW(Ug, Uy, ... Un) Jxxs
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whereu, = coshé;, U,=sinh6,, Uz=coshés, . ...

Note that the WronskianW(uy,U,, ... Uy) iS ex-
pressed by the well-known formdfa

oN-1

W(le,rjz, . IJN):ZJ'?N kzl Bk COSh’yk. (4)

All the coefficientsy, are of the form
N
W= 9, i=e6, es==*1.
=1
The various terms in the sun¥d) break down into
groups. FomN even we haveN/2+1 groups and foN odd,

(N+1)/2 groups. Each group except the last contaﬁ‘l)s (
terms, where k=0,1,...N/2—1 for N even andk

B. F. Samsonov
(1) =(—1)"(n! 2"y27) "Y1 +it) 12
X2

4(1+it)

X

V2+2t?

whereH,(z) are the Hermite polynomials. For these wave
functions the operatora’ and a are the shift operators in
the variablen: ay,=\ny,_1, a'y,=yn+14¢,.,, and
alﬂO:O.

By %, we denote the linear space comprised of various
finite linear combinations of the functiong,(x,t) with
complex-valued coefficients. In view of their linearity, the
operatorsa and a' are defined in the entire spacg, and
map this space into itself. Note that the Hamiltonian
ho=p2=— 92 and the momentum operatpg= —id, can be

n )

X exp{ —in arctant —

=0,1,...,0N—3)/2 for N odd. The last group contains expressed in terms afanda’, e.g.,p,=—(a+a')/2. Hence

N

%(N',“z) terms forN even and (y=4,,) for N odd. One group

these operators are also defined and map this space

differs from another by the number of negative values of thento itself.

parametek. In the first group(it contains only one terjmall
e=1, in the second groupN termg there is only one
e=—1 in each term, in the third group there are twe
—1 in each term, etc. For the coefficiei@g we have

N2
Bi=11 [m;—myl,

1>]

mi=eu;.

Note that after we have calculated the absolute value of th

differencesm;—m; in By for u;>u;, formula(4) becomes
valid for arbitrary values ofu;. We also note that in the
particular casé =0 we have théN-soliton time-independent
potential®’

In Sec. 4 we will show that such a potential can be

associated with a self-adjoint operator in Hilbert space.

3. HILBERT SPACE OF THE STATES OF A FREE PARTICLE

In accordance with property 1 formulated in the Intro-
duction, we must set up a Hilbert space of the states of
soliton potential. According to Ref. 19, to achieve this we

can use the Hilbert space of the states of the initial system

our case, a free partiglend apply the Darboux transforma-

tion operator to its elementgHere we will not discuss the
exact domains of the operators involved.
Using the solutions of the Schitimger equation for a

free particle to build a Hilbert space is a well-known proce-

dure(see, e.g., the monograph by Mifféand the references
cited therein. In this section we will only mention the prop-
erties needed in our further discussion.

The symmetry algebra of the Schiinger equation with

a zero potential is a six-dimensional Lie algebra, known ad

the Schrdinger algebrd® In particular, the operators

a=(i—t)o,+ix/2, a'=(i+t)d—ix/2

form a Heisenberg—Weyl subalgebra of this algebra. Square-

integrable solutions of the Schiimger equation can be ob-
tained by separation of variabfésf for the symmetry op-
erator separating the variables we tég=aa'+a'a. Then
the orthonormalized wave functions have the form

We use the ordinary Lebesgue integral to define the sca-
lar product (| ¢,) on %,. The Hilbert spaceH is the
completion of %, in the norm defined by this scalar product.

It is well known that the operatons, andh, are self-adjoint

in H, have common eigenfunctiorig; the sense of general-
ized function$, and that their spectrum is purely continuous.
We denote these common eigenfunctions igy= ,(x,t),
i.e., Pxiyp=Pp¥p and hoiy,= pzwp,p e R. The functionsi,
fiave been thoroughly studied and we will not give their ex-
plicit form here. Note, however, that they are orthogonal to
each other and normalizéah the sense of generalized func-
tions), (Yp|¢g)=6(p—q), and form a complete set iH.
Symbolically the completeness property can be expressed in
terms of projectors onto these functions as on elemeritk of

f dp|¢p><¢p|:1-

We do not indicate the limits of integration in integrals along
the entire real axis. Note that all these constructs can by

Qubstantiated with sufficient mathematical rigor if one uses

the concept of a nested Hilbert sp42é4!

The coherent states of our system can be obtained by
applying the operator of translation in the Heisenberg—Weyl
group to the vacuum vectaf, (see Ref. 2

b (x,t)=expza'—za) yo(x,t), zeC.

These vectors are the eigenvectors of the operatore.
aiy,=zy,. To describe these vectors we need something
more than the spacé’,, since they belong to a broader
omain densely fillingH. The decomposition of these vec-
tors in the basigy,} has the form

z

(/fzzq)z anzn‘//nv @:@(zy?):ex;{—;),

zeC. 6)

an=

1
V!’
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The vectors satisfy all the properties enumerated in the Inthe matrix

troduction. In particular, the measudgaczd,u(z,?) realizing _ _

the decompositiofil) of the identity operator in theses states So(12) =l Snie= (Wl ool v}

is well known? du=dx dy/m, z=x-+iy. is a pentadiagonal symmetric real-valued matrix with the fol-
lowing finite elements:

4. THE SPECTRAL PROPERTIES OF SOLITON POTENTIALS 1

0 _y2, 2, " 0 _ 11
The structure of the spectrum of the Hamiltonians con- ST 2 " 4’ Snned ML
nected by the Darboux transformation has been studied by 1
many researchers. Probably the most thorough investigation 0 . ="./(n+1)(n+2).
of this problem is that of Veselov and ShaBatyhere the 4
reader can also find references to the most important on the,on the matrix of the operata,, S=| S, has the form

subject. In the present section we will study the properties of_ o and each rowand hence col-
the Darboux transformation operators for a free particle anqjm;’O (o'llfl)ssgg'l;i;ins i?(;rrl;ll?[e number of Vflonzero elements

soliton Hamiltonians as operators acting in the HiIbert_ spacg  —s, . This implies that the functiogotn =S be-
of the states of the system that have not been examined bﬁ)'ngs to.%, and that%, is the invariant space fay,. Note
fore. that the operatog, has a purely continuous spectrum and the

As noted_earlier, a many-soliton Hamiltonign can belpp are its eigenfunctionsgowp=Nf,zpp, where N,2)=f((p
constructed via a chain of Darboux transformations or the+)\)2)>o

N-order Darboux transformation operat@®. We denote the

operator correspo.nding to the first Iinkin the chai[r]uayand gop=N_1L¢p are eigenfunctions of the operatgg="LL",
the qperator th'at. is the formal conjugatelaf py L;. Note ie. gllzpp=N2zpp and(g,|¢q)=8(p—q). The spectrum of
that in the_deflnltlon of the scalar prqduct in te_rms of thethe operatogz in Hilbert spaceH is mixed. The discrete part
Lgbesgue integral, the operator Fhat is the conjugate,of of this spectrum coincides with the numbers Mi
with respect to the scalar product-isi, . Hence the operator =1,... N. We denote the eigenfunctions belonging to the

LI is the Hermitian conjugate df;. Here we will not clutter discrete spectrum by _,. Obviously, the operatag, is self-
up our discussion with mathematical detail and describe thﬁdjoint inH and is defined in a dense domain. which can be

domains of these operators. Suffice it to say that they ar?epresented by the orthogonal st Ho@ H,, whereH, is
defined not in the entire spaékand the range of their values the N-dimensional Hilbert space W?th tlr;e basirsfk

also differs fromH. Moreover, it can be shown that if the k=1, ... N. We will not discuss the properties of this space

initial domain,_ e.g.,Ll, is the space”y, it always has a pore The spacel, is the invariant space fog,, and the

closed extension intbi. restriction ofg, on H, has a purely continuous spectrum
Simple calculations show that with eigenfunctionsp, . In what follows we assume thag
LIL1=(P><+ )\)2+M§Egm(lul)_ is only a operator acting itd; and hence keep its current

) notation. Note that the functions_, cannot be obtained by
The operatoggg= (px+ M)~ is the symmetry operator of the applying the operatok to a function belonging te1.

Schralinger equation for a free particle, and the transforma- The operatorL of the form (2) can be applied to all

tion functionu, (¢H) is an eigenfunction of this operator g,tions fromH that are included in the domain of the
with an eigenvalue equal te ,ui Being an operator in Hil- operatorg,, since

bert spaceH, it is defined in a certain dense domamhich,
if necessary, can be determined more exagcityself-adjoint (Lo Loy = {al LTL th,) = (2 9o )
in this space, and has a purely continuous spectrum. Its _ . . : .
eigenfunctions coincide withy, , i.e., gooy=(p+\)2, - Is finite for all the functionsy, ;, from this domain.(More
We also note thagio= ho atn—0. P P precisely, this implies that for the domain of the operator
Clearly, all the transformation functions, in (3) are W€ can take the domain of the ope'ratdg_, which is
eigenfunctions ofjgy, i.€., Goglx = —MEUK- This is true only t_)roader than the domalTn ab.) Reason_lng along the same
if we select all the parameteks of the transformation func- lines, We can say thdt can b_e applied tq any function
tions uy equal. Here thé-order operatot. 'L is also a self- belonging toH, that is included in the domain ‘9‘1-
adjoint operator inH. This property is ensured by the fact Thg operatorsgoo_anq Yo Can _be expressed in terms of
that the operatort and L' have the following remarkable the projectors on their eigenfunctions via the following spec-
factorization property?® LTL =f(gq), wheref(x) is a poly- (ral decompositions:
nomial, i.e.,f(X)=(x+ u2) X (x+ u3) - - - (x+ wd). ,
For the operatogo=L"L=go1(11)9os(2) - - - Gor(n) goof dp (p+M) %)y, 90:] dp Nolp)(pl-
we can easily obtain its matrix representation in the basis
{i,}. Since the operatagy,(1,) can be expressed in terms The operatog; can be expressed in terms of the projectors
of the ladder operatora anda’, on theg,:

2

In view of the relation go=L'L, the functions

+af

N3

Jor(m1) =

i, 01= [ dp NElep)(ey)
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Then g, can be associated with an operatpr such that e.g., Ref. 44 The functionsnnzgl’l’zg“nz M ¢, form a base
g,=f(g1p) by defining it inH, via the spectral decomposi- set that is biorthogonal withp,,, i.e., (¢, 7= Sn and
tion (el M) =S, whereS, =S, ! are the of the matris?,
the reciprocal ofS. The matrix elementS,,! can be calcu-
gllzf dp(p+>\)2|<Pp><<Pp|- lated by using the spectral decomposition of the operator
-1
9o
Obviously, g1 is a self-adjoint operator with a purely con-
. . 2 _ _ _
tinuous specFrurn from _the intervipk ,_oo). At A=0 the op- 9% 1:J dp N, 2|¢p><¢,p|_ (6)
erator g; coincides with the Hamiltonian of the time-
independeniN-soliton potential, whose action is restricted to Then

Hl- -1 -1
The wave functions), and ¢, constitute orthonormal- Sa = (¥nlM My = (ol 9o |90
ized bases irH; and H4, respectively. Let us examine an .
operator that associating with each functigp a function :f dp Ny (el )@l 0
e Concluding this section, we note that not every function
U:J' dp @), ¢ belonging toH, can be represented in the forg=L ¢,
PAATP wherey is a function belonging tél,. The reason is thai ,
The inverse map is performed by the adjoint operator is the closure of the linear span of the vectars=Lyy,
relative to the scalar product k, which product is restricted
U-l=yf= f dp| o) @y. to the space of these vectors. On the other hand, the set of the
pIATR functionsp=L ¢ is a complete Hilbert space relative to the

Obviously, U conserves the value of a scalar product andS¢@lar produck @a|n)s = (L tha|L hp)1=(algol 1), Which
hence is an isometric operator. Consequently, for the operas €mbedded ifH,.
torsL andL" we have

L:f dp Nolep)(pl, LEJ dp No|¢7p)(@pl. 5. COHERENT STATES OF SOLITON POTENTIALS
This leads to a representationlofandL " in terms ofU, g, According to the ideas expressed in Refs. 25, 26, and 31,
andg;: to obtain coherent states of Darb_oux-transformed systems we
v T S need only apply the transformation operator to the coherent
L=Ugp=9g:U, L'=goU'=U'g;". states of the initial system. In this case the properties 1-3
Such a representation of operators is known as a polar déormulated in the Introduction are sure to be satisfied. Thus,
composition(see, e.g., Ref. 43 to be able to inte_zrpret the_ states obtained in this manner as
We now turn to the operatoM = (L") 1=Ugy*? coherent states, it is suff|C|e_znt to have a measure that realizes
=g; Y. Since the decompositionil) of the identity operator in these states.
Note that this decomposition was not discussed in Refs. 25,
9:1/2:J dp Ntlw Wb 26, and. 31. In the present se_ction we will derive explicit
0 P TP expressions for the corresponding measures for two types of
we have coherent states of a time-dependent many-soliton potential,
states obtained via the operatdrsand M. The particular
_ -1 t_ -1 case ofA=0 corresponds to the ordinary time-independent
M_f dp N, lep)il, M _f dp N, 1) {epl- many-soliton potent?al. ’ P
The operatomM coincides with the integral operator intro- Let us consider states described by the following wave

duced in Ref. 25see also Ref. 27 The operatoré! andm’  functions:
factorize the operatorg,* andg; *, i.e., MTM=g,* and

MMngIl. (Pz:L‘/’z:q); anZnQDna nz:sz:q); anznnn-
In view of the isometric nature of the operator, the .
functions{,=U¢,,n=0,1,2 ..., form an orthonormalized We wish to show that the measurgs,= u,(z,z) and u,,

basis inH 1. There is no way in which simple explicit expres- =,u,](z,?), which realize the decomposition the identity op-
sions can be derived for these functions, siblds expressed erator in these states do indeed exist.

in terms of the nonlocal operatag, 2. The functions We begin with the stateg, and the measurg . Since
en(X,t) =L¢y(x,t) are much simpler, since, according to the functionsz,=N,M ¢p,<ﬂp| ng)=90((pP—q), peR, are

(2), applying the operatoL amounts to calculating deriva- basis stateén the sense of generalized functioms H,, Eq.
1/2

tives and doing simple arithmetic. Obviously,=g7"¢,, (1) is equivalent to
and the operatog, has a zero kernel i, (and so does
g%/Z). This implies that the functiong,, form a nonorthogo- j d'“rz<7/p| 7,){ 1] 7p)=8(p—0q).

nal basis inH, i.e.,{¢n| k) = Shk (What is known as a basis
equivalent to an orthonormalized one, or a Riesz basis; se&his implies
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T B note that|Fp(x+|y)|<exp(—dx2+by2) holds for 2<d<b.
Np “Ng J A Yrpl ) (Wl thg) = S(p— ). This impliesF () € S}/5, whereSp3 is the space of entire
functions F such that|F(x+iy)|<exp(—dx*+by?), 0=<d
<b (Ref. 45. We look for ¢, in the form of a functional
over Sl/a. As is known, positive definite generalized func-
tions oversﬂg are specified by their Fourier transforms. If
we denote the Fourier transform of the generalized function
(pl ) =(2m) V4D y(2), w, by w,, the left-hand side of Eq8) must be interpreted
in the sense of the equality

Note that the integral on the left-hand side is time-
independent and hence can be calculatet=2 . In what
follows we use this trick without further comments. Allow-
ing for the expression for the functigi,|,),

Yp(z) =exp(—p?+2zp— 2%/2), z=x+iy,

we look for a measurg.,, such thatsu ,= w,(x) dx dy. Af- f dw,(x) Fp(X)=f do,(t) Fp(t),
ter integrating with respect tp, we arrive at an equation for ~
w,(X): whereF ,(t) = \/m/2exp(P*+ipt—t?/8) is the Fourier trans-
form of the functionF,(x). As a result, Eq(8) yields an
f dx w,(X)F () =N5(2m) " *2exp(2p?), equation forw, :
~ t2
Fo(X)=exp(4px—2x?). wf dw‘P(t)ex;{—ngipt):sz.

SinceN2 is a polynomial inp, the functionw,(x) is a poly-
nomial |nx whose coefficients are determined solely by the
coeff|C|ents of the polynomlf;ﬂ\I2 For example, f0|N =(p
—\)%+ ,u,l (a one-soliton potentmwve have

If we now look for aw such thatdw¢(t) pq,(t) dt, then
with allowance for the expressm(r?) for N, 2 we obtain a
formula for p ,(t):

13 A t2
=[(Xx—\)%+ 2_1/4]/ . = Zk INt— _
[ M1 ] po(t)= 77 2 & iNt— p|t]+ 5 9
We see that the stateg satisfy all the properties of coherent . ]
states. Using the factorization properties of the operatbrs Note that for functiong(t) of the form(9) the integral

and M' and the spectral decompositidf) of the operator Jdw,(t) F(t) does not converge for ai(x) € Syj5. Clearly,

do ', we calculate the normalization coefficient for thesethe convergence condition for this integral imposes a restric-
states: tion on the decrease of the functidi(x) as|x|—=. The
integral converges only iffF (x)|=exp(—2x?—AX), whereA

<7]Z| 7=l do 1|1//Z> fde 2|<l/fz|l/fp>| is a nonnegative constant, one for each functi®x)

e SI/2. We denote the set of functions satisfying this condi-

Sinceer, is a polynomial in7= (p+\)2, or tion (the set is obviously a linear spadey S°1/3 e S}/

Thus, we have established that the decompositlprof
=(r+ud) T+ pu3)- - (r+ud), the identity operator holds for states if the measuredpu,,

=dy dw,(X) is in terms of the Fourier transfor¢ of the

measureo,, which specifies a functional over the space

N Ay SP3/z. Here an integral with respect o, must be calculated

. A=[(ANyd7) 2] n 7
= k=L 7) = M] (7) by the formula

we have

-2_
Np

Hence we arrive at an expression for the normalization inte- f d,U«(p<(Pa|<Pz><‘PZ|(Pb>:f dtp,()F ap(t),
gral:
whereF 4,(t) is the Fourier transform of the function

Il
M =z

AFy, z=x+iy, _
& Fa00= | dy(ealed(edon, z=x+iy.
Fr= V2w xq2()\2—x2)]Ra[exp:4|)\(x 2] The squgre of the norm of the fungtim coincides with
A the expectation value of the operatgy in statey, and can

_ easily be calculated. For instance, for the one-soliton poten-
XerfoMV2+iV2 (x— ). tial we have
Now we turn to the stateg, and the measurg,,. We
look for a measurg,, such thaidu ,=dy de,(x). Then for
w,(X) we have the equation

<§Dz|@z>:<¢z|go|¢z>:1/4+ﬂi+(x_)\)2a zZ=X+iy.

6. CONCLUSION

f dw,(X) Fo(x) =Ny ?(2) " *2exp(2p?). (8) We have established the relationship that exists between
real-valued soliton potentials of the most general form, i.e.,

We wish to show that the solution of this equation is a gen+eal-valued time-dependent many-soliton potentials, and the
eralized function specified on a certain linear space. First wepectral problem for a self-adjoint operator in Hilbert space.
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In the particular case where the potential is time-

independent, this operator is a polynomial in the Hamiltonian
of the soliton potential. We have derived a quasi-spectral,
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We examine nonradiative transitions in molecules with allowance for the effect of a classical

polar exterior medium on tunneling charge transport. The approach allows for the

vibrational frequencies of a molecule in the electron transition. In the case of slow fluctuations,

the theory predicts a low-temperatyreon-Arrheniu$ increase in the tunneling nonradiative

transition rate, and the results agree qualitatively with the experimental data. When the fluctuations
of the exterior medium are rapid, at certain values of the molecular parameters the tunneling
decay rate is found to decrease with increasing temperature because the conditions needed for
resonant tunneling are violated. €998 American Institute of Physid§1063-776(98)00312-4

1. INTRODUCTION A5, remains essentially the same because of the balance of
the electric fields generated by the dipoles of the polar exte-
Tunneling processes in moleculggunneling charge rior medium at the point occupied by the impurity molecules
transport, tunneling chemical reactions, the quantum yield ofn time intervals proportional to the tunneling time. It is this
luminescence, etchave been thoroughly studied in the past«switching off” of the fluctuations of the exterior medium
decades(see, e.g., Refs. 1 and.2However, there is one hat destroys the constant-energy conditions necessary for
problem that still requires clarification, the problem of the e tunneling process to proceed and ensures a decrease in

temperature dependence of the rates of tunneling processgge nonradiative transition rate, despite the increasing inten-
The traditional view of tunneling as a temperature-sity of the fluctuations.

independent process is now being reconsidered and is USU-" thege 1o cases are studied in the present article as lim-

ally Iinke%_\;viil the”effehct of th? exter(ij(_)r me(f'jfium OQ these its of a general theory that is being developed. In contrast to
processes.". Actually, the exterior medium affects the tun- agef. 6, which considers the basic modeé., the model of

g nonvadatve process nd the shape of (e POENgico prabois wih cqul equencics n e iecori
state$ of the impurity molecule, here we use a more realistic

the first to study the effect of the exterior medium on the rate

o o model of the impurity molecule, a model that allows for
of activation nonradiative proces$e®n the other hand, a o . . L
: . - . . variations of the vibrational frequencies in the electron tran-
well-known effect in optical transitions in molecules is the

dynamic narrowing of the absorption lineshape, when, e.g.?mon' As noted in Refs. 13-15, this may change the nonra-

under certain conditions allowing rapid fluctuations of thedlatlve transition rate substantially. We assume that the polar

exterior medium leads not to broadening but to effective narSXterior medium is characterized by a Gaussian Markov au-

rowing of the absorption line as the correlation timeof the  toCorrelation function,

medium decreasé8-*2 As we will show in this paper, this

effect plays an important role in nonradiative transitions,

sincg .it strongly affepts the cpnstant—energy and resonance @(t1,t2)=B§ exp(— v|t;—ty]), )
conditions under which tunneling processes operate and en-

sures the characteristic temperature dependence of such pro-

cesses. We limit ourselves to the approximation of two elec- 5. o i
tronic terms with close energy values. whereBj is the (temperature-depend@mtoise intensity, and

We assume that the corresponding energy differénge ¥~ 1/7c. In many respects the parameter of the thebry;
is much larger thakT, so that the probabilities of activation (S€€ below which determines the temperature dependence
processes are negligible. The presence of the electric fields 8f the nonradiative transition rate, is specified by the choice
a polar exterior medium may lead to fluctuations for whichOf the model describing the exterior medium. For the low-
the effective energy gap,; disappears because of Stark frequency classical exterior mediu3~T. Below we es-
shifts of the levels, and a tunneling nonradiative transitiortablish that for slow fluctuations of the exterior medium, the
occurs. If the characteristic time of variation of the fluctua-rate of the tunneling process is proportional to eXp(
tions of the exterior medium is much longer than the tunnelwherec is a constant, and its increase as a function of tem-
ing time, the nonradiative transition rate increases with theperature is not governed by the Arrhenius law. For rapid
intensity of the fluctuations. If, however, the time of varia- fluctuations > 1), the specially selected values of the pa-
tion of the fluctuations of the exterior medium is very shortrameters f,;=fw), and a wide barrier, the transition rate
(i.e., much shorter than the tunneling timéhe energy gap decreases with increasing temperature a& 1/

1063-7761/98/87(12)/5/$15.00 1053 © 1998 American Institute of Physics
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b averaging over the realization of the random procH$3.
1 We write the Green’s functioK(q7|q’) as a path integral:

U
K(qrlq")= Dq(r)exp[i—S(quq’)], (5)
= Joacedt

where

, r [m., med
S(arlq )Ifodt 29~ >4 +(+f(1)q

FIG. 1. Curvesl and 2 correspond to different electronic terms of the is the classical action. The path integrd®) is calculated

molecule, the straight lin8 corresponds to the repulsive term of the mol- glong the pathgy(t) that satisfy the boundary conditions

ecule,q is the point of intersection, anab is the tunneling path. q(o):q/ and q(T) =q. Calculating the average over the re-
alizations of the random proce$§) yields

i [
2. THE GENERAL EXPRESSION FOR THE RATE <exp‘ﬁ f dt f(t)q(t)} >
OF A TUNNELING NONRADIATIVE TRANSITION 0
IN A MOLECULE WITH ALLOWANCE FOR THE EFFECT

1/i 2~ T
OF THE EXTERIOR MEDIUM =exp‘§(%) fdtlf dtzq(tl)so(tl,tz)q(tz)]- (6)
0 0

Let us consider a two-term molecule whose adiabatic
potentials take into account both the positions of the nucleil
and their vibrational frequencies in the electronic states 1 and i
2. We are interested in the tunneling transition of the system (K(quq’)>=j DQ(T)GXD{gSeﬁ(qTM')]- (7)
from state 1 into state 2 along pa#tb (Fig. 1). Let us as-
sume that the vibrational frequencies in statew})(and in  The effective actiorS(q7|q’) is given by the formula
state 2 @,) obey the conditionw;> w, (Aw,>KkT). This

he averaged Green'’s functigi(q7|q’)) can be written

o . . . . T . iB2
condition leads to a situation in which the low-frequency Seﬁ:J dt TqZ_Tw§q2+vq+'_°
polar exterior medium interacts more strongly with the low- 0 2 2 2h

frequency (,) molecular vibrations in the final state 2, and .

to simplify matters we ignore the effect of the vibrations of Xf dsexp(— y|t—s|) q(t)q(s)}. 8)
the exterior medium on the vibrational mode with frequency 0

wy in the initial electronic state 1. The vibrational Hamilto- tho  extremal pathq(t), which minimizes the action
nians in the electronic states 1 and 2 are S.(q7]q’), satisfies the equation

ﬁz 82 IBZ
Hy:———-f—U’z(q), - 2 :_()J'T 3 3 1
M 2mggr Atwq=p | dsexp(—alt=shae)+ . (9
mwf 2 The extremal action on the extremal pa#®) assumes the
Ua(a)=—5~a% form
Mw?> - oom .1 T
Ua(a)= 5~ 6?—v(@)(a-a)~ (1), ) Si'(arla’) =5 adlg+ 5 v fodtq(t)- (10

whereq is the point at which the vibrational terms crdsge 10 ex%onential accuracy, the path integrd) can be
Fig. ). The forcef(t) is a Gaussian Markov process with written®

the correlation functiorfl). The rate of the tunneling nonra- 2ach) | 12
diative process can be written in the following foksee the (K(qr|q’))=( _ 9" Seft ) exp{l— S(?fl)(qﬂq/) .
Appendix): 2mhi gq aq’ hTE
V3 iE Y
oo i
WZl:h_zleReJ' dr oy T)expToT, (3)  Note that the pre-exponential factor is independeny ahd
0

g’, since the extremal patij(t) is a linear form inq andq’.
Hence the expressidil) for the averaged Green’s function
|21(T):f qu dq’ ¢o(q)(K(a7|q’))po(q’). (4 (K(grlq')) is exact. The integro-differential equatid®)

can be reduced to a fourth-order differential equation:
Here V,, is the matrix element of the 22 transition, e

— — 4 3_ 20 _(2j 2,2\ =
— (112)mw?e?, Eg=co+v(q)Veo2ima?, ¢o(q) is the QU (w2my)QT = (21D v w2)Q=0, (12
wave function of the ground state of an oscillator with fre- Foy? B2 v
quency w;, and K(q7'|q’) is the Green’s function deter- Q=q—-A, A= 7 D:ﬁ' Foza,

mined by the HamiltoniarH,. The angle brackets indicate 2i yD + Y2}
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The two addition integration constants can be found fromwherex=w,r andA=Q/w,.

Eq. (9) at the points=0 andt= 7. By plugging(11) into the

expression for the generating functiéf) and calculating the

elementary Gaussian integrals with respectjtandq’ we 3. PARTICULAR CASES. DISCUSSION
find I54(7). Then we determine the rate of the nonradiative
process by formul&3). The solution of the boundary value
problem(9), (12) is extremely cumbersome. For this reason
we examine the limits of slow and rapid fluctuations of the
exterior medium.

The foregoing expressions for the rates of tunneling pro-
cesses in the cases of slow and rapid fluctuations can be
calculated numerically by Eg$3) and (4). Here we limit
ourselves to a qualitative analysis of some of the corollaries
of these formulas.

] ] ] (a) The case of slow fluctuations
(a) The case of slow fluctuations of the exterior medium

, i To exponential accuracy, the generating functigfx)
We replace the parabolic term for the coordinate of thegiven by Eq.(14) can be represented in the form

reaction near the intersection poiEc by the linear term )
v(q—q) (see Fig. 1 In the limit of slow fluctuations of the )= fwdf exd — f_ 1Oy 1
random force f(t) (the quasistatic cage b/xk>1 (b 21(%) Jm 2B, Jo 2B3 2060, (17
—BZ/imw; and k=17/w,), the solution for the extremal

path(9) has the form

where we have introduced the notation
1 F{ (Vot+ )%

———exg ———X

V1+ix/2 4

The expressiofl8) is the generating function for the process

of a nonradiative transition to the repulsive term at a fixed

value of the external field acting on the molecule. In accor-
1 J1—ibx dance with(18) we have

a-q’ 1Fo+(1/2D(a+q")r ,
t+q'+ t?—tr). (13
T T iprne (C-tn). 19

157(x)=

q(t)= 6

iX
1+—”. (18

Combining this with(10) and(11), we arrive at a formula for
the generating function:

151(X)=
21(x) J1+ix/2 1+ (bx2)(1+ix/6) 1 (= (2
0)
W =——— [ dfexp — — | Wy(f). (19)
o] VB, 1tixe i Jm2BoJo 2B;
exg — —X , . " .
4 1+ (bx?/2)(1+ix/6) Thus, the nonradiative transition raW,, is the result of
) averaging the expressidn/(z?(f) for the transition rate in
Y Ref. 17 over the Gaussian distribution of the random fdrce
X= w17, VO=—3. . . ) . .
Aime’ If we use the approximation of a wide potential barrier, the

) . o ) tunneling transition rat¢19) can be written
Formula(14) was obtained in the limit of slow fluctuations

of the exterior mediumk—0. z

2B
W, ~ Wg‘fmexp( V—ZO gz> . (20)
0

(b) The case of rapid fluctuations of the exterior medium The rate of a tunneling nonradiative transition in the absence

In the limit of rapid fluctuations of the exterior medium of an exterior mediumW™ has the formy
(k>1, b/k<1), the extremal path has the form 4 83/2} E
0 0

27
(tun)m —_— — I
W1~ w % exp( Zso)exp{ 30

q(t)= [qsinQt+q'sin(Q(7—1))]

(21
v where w is the frequency of the transition rate, which is
, (15) equal in order of magnitude to the vibrational frequency in

mQ? the ground electronic state, and the constaintthe approxi-

with szg(l—id) and dEDTC/wg. Combining(15) with mation in whichV§<1 is given by the expression
(10) and(11), we arrive at a formula for the generating func- 1 3/2

tion in the case of rapid fluctuations of the exterior medium:  ¢=— °o _ o (V2-1). (22
—1/2 3 VO(ﬁwl)3/2 ﬁwl

sinQ) 7

1- sin(Q(7—1))+sinQt

+ -
sinQ 7

w1l o
2o —Zx)sin)\x

[
COSAX+ =
wo A (OF}

I21(X)= 2

One example of temperature-dependent tunneling is known
from low-temperature experiments in oxidation of low-

F{ivz % V2 potential cytochromé®. Without going into a discussion
X ex

- = = about the numerous attempts to explain the low-temperature
dependence of this process by the common methods of the
theory of multiphoton processésee the review in Ref. 19

, (16)  we note the existence of an alternative approach, which is
based on allowing for the effect of a polar exterior medium

Sin(Ax/2)
X C0INXI2) TN @y wg) SINAXI2)
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(including a protein mediumon the rate of nonradiative
transition of cytochrome from reduced to oxidized form due
to the growth of classical fluctuations with temperature in
accordance with Eq(20). Instead of the Arrhenius law
W, cexp{ —E/kT} (E is the activation energy of the procgss
at low temperatures we have, according t@20),
W,~exp(consk T), since B§~T. For values of the cyto-
chrome parametetdw;~0.05eV,Vy~0.5,e¢/fiw,~3, o
~10%s™!, and£?~4, we have

T
Wa1~3X 107 exp = (23 0.2 0.6 1.0 14

This formula provides a good approximation to the data inFIG. 2. J vs. parameteg= b/« (1/A) for A~1.
the temperature interval in which the experiment was con-
ducted. Note that actually the linear-term model adopted in
our calculations is closer to the experimental situation than b 1 (= exp(—Xx2A)
the displaced-parabola model because of anharmonicity ef- J= \ﬁ f dx— > PN
fects inherent in the highly excited states of oxidized cyto- —= (X92=1)%+ (bl x) (1A%
chrome. Here we limit ourselves to the above example, sinc&he temperature dependence of the transition rate is deter-
almost all of its parameters are known. The theory develope¢hined by (26). Figure 2 depicts the dependence of the tun-
here can be applied to other processes of the same type wigling transition rate on the parameléi at a fixed value of
direct numerical calculations by Eg®8) and (14). A,1—hw. We see that in the model wittico the nonradi-
ative transition rate decreases with increasing temperature, as
it does in the main model considered earlier.

Our analysis of the temperature dependence of the rates
of a tunneling transition in an electron-vibrational system for

This case f>1) was studied by Averbukbt al® using  7.w>kT shows that a polar exterior medium with frequen-
the basic model ¢, = w,= w). Below we give their results cies v(%v=kT) strongly affects the nonradiative transition
(see Ref. Bfor the case of small constani§<1, which was  rates. In the case of slow fluctuations of the exterior medium
not analyzed in Ref. 6. If we remain within the static modelwe arrive at a non-Arrhenius law governing the increase in
that describes the behavior of the transition rate, then for théhe transition rate with temperature, while in the case of
transition operator we can take the electron—vibrational inrapid fluctuations we have, for certain values of the param-
teraction (with frequency w), which mixes the electronic eters of the system, a decrease in the transition rate with
states 1 and 2. Let us assume that=7 . This leads to an increasing temperature.
expression for the tunneling transition ratea(>kT):

(26)

K A3

(b) The case of rapid fluctuations

0 Al'+(b/lk)hw APPENDIX
(Ayi—hw) + (AT + (bl k)hw) We write the molecular wave function as follows:
where WY is a constant factor anfl is the width of the |y(1)) = S(t,to)| ¥(to)). (A1)

electron level in the absence of an exterior medium. For, : . :
. . . Next we write the molecular state at tintg— — in the
intense fluctuations Eq24) implies that b/x)w>1I". The g~

width may become larger than the detuning from resonance,

A, /h—w and can determine the tunneling nonradiative  |#(to))=|1)|0),

tr;msmon ;atﬁ' The plglran;etbix varlzs with temp_ehra_lture where|1) is the wave function of the electronic state 1, and
(b=T), and the tunneling decay rate decreases with increasn, ig the wave function of the vibrational state of the elec-

ing temperature, i.e., the transition rate falls. In the MOr&dnic term 1. The scattering matr(t,t,) is determined by
general model developed in the present paper the result jfﬁe Hamiltonian

similar. For the case of large constabs>1, A, =%, the

general expressio(8) for the tunneling nonradiative transi- H=Ho+V,
tion rate becomes (Hl 0 0 Vg ,
Ho= = A
War=W51'J, 1o Hy Var 0 ) (A2
= expli(Ay—fiw)t/h— (I + bl k wy)t} whereH , are the vibrational Hamiltonians in the electronic
J=2Re| dt = , states 1 and 2/ is the operator responsible for the transition
0 V1+i wlt/2

(e.g.,V can be related to the promoting modes of the mol-
(25 ecules causing the transitibnThe final state is|y;)

where WY is a temperature-independent constant, and the=|2)|¢p), where|2) is the wave function of the electronic

integralJ reduces to state 2, andp,, is the vibrational wave function of the repul-
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sive term 2. The amplitude of the-12 transition in the first
order in the perturbation operaturcan be written

A 3 Vio [ dr [ dagg@ugia,n (A3)
127~ 7 V12 , 7| dqg éo(q)¢p(a,7),
where

o(@)=(al0), ¥p(a,7)=(a|Us(7.t0)|ep),

with U,(7,t) the evolution operator determined by the vibra-

tional HamiltonianH,. The differential transition rate is ex-
pressed by the formula

V2 t iEq(7—t
dwlz(p)zﬁ—l;Z Rej de dqldqzex%—dTT))

X o(d) ¥ (A1t) p(d27) do(A2)- (A4)
Integrating(A4) with respect tap, we arrive at an expression
for the differential transition probability:

V2
W21——2 Rej drl21(7-)exp

oT

|21(T):jdQ1dQ2¢o(Q1)K(Q1t|Q2t—T)¢O(Q2)- (A5)

In deriving (A5) we used the representation

J dp ¢ (911) ¥p(Gp7) =K(Q1t|q,7)

for the Green'’s function and changed the variabter to 7.
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Electron transmission in the two-, three-, and four-terminal nanostructures is considered under

the influence of a radiation field. The frequency of the radiation field is tuned to the

transition between the energy of a bound state and the Fermi energy of the incident electrons.
The radiation induced resonant peaks and dips of the electron transport are exhibited for

zero and low magnetic fields. It is shown that rotation of the radiation field polarization can
effectively control the electron transport into different electrodes attached to the structures

because of the symmetry of the structures. The resonant anomalies of the Hall resistance are found
in a weak magnetic field. €998 American Institute of Physid$$1063-776(98)00412-Q

1. INTRODUCTION theory of waveguide¥ It has been realized that the intro-
For several decades the transport of electrons in strur:qu(:tion of bends into waveguides generally leads to bound

tures of low dimensionality and complicated geometry hasstates, or localized modes, which exist below the cut-off fre-

; st A111,12 _
been the focus of extensive theoretical and experimentdUeNCy for the waveguide. Carirgt al.” > have demon
study. Electrons can be confined to very narrow regions fapStrated theoretically and experimentally the presence of

ficated on an interface of an AlGaAs/GaAs heterostructureP@UndTE modes for rectangular bent waveguides and shown

Since the electrons in such regions can have high mobilitiefat the number of boun@iE modes is bend-dependent. For
in the two dimensions available to them, such systems ari€ two-dimensional Schdinger equation it was proved that

called two-dimensional electron gas€2DEGS. The study any gurvgd two-dimensional waveguide of constant width
of electronic transport properties of 2DEGs is of great cur-2nd infinite length posses bound stal&s® Bound states
rent interest not only from the standpoint of the basic quanWere found in the same ye&t989 in a four-terminal junc-
tum effects involved but also for potential engineering appli-fion of narrow wires by Schifi and independently by
cations. An idealized sample becomes an electron wave?€eter (see also Refs. 19 and 20
guide, wherein the quantum transport properties are solely ~For the stationary processes of the energy conservated
determined by the geometry of the structure and the wavelikglectron transmission only quasi-bound states with energies
nature of the electrons. A remarkable manifestation of thavithin the conduction subbands are importahtn particu-
successful achievement of quantum ballistic transportar, it was shown that the quasi-bound states in the Hall
through a semiconductor nanostructure is the appearance jfction result in resonant dips of the resistance in high mag-
quantized steps on the conductance through a narrow strupetic fields when the magnetic length is comparable with the
ture as the number of one-dimensional channels is succesize of the junction. The Hall resistance sensitively depends
sively varied"? the quenching of the Hall effect, and the last on the geometry of a junction and can become negative for a
plateau and the negative bend resistance in the crosgnoothed junction for small magnetic fields.
geometry’™® Although the bound states below the lowest subband
Ford et al® presented a systematic investigation of thethreshold do not participate in stationary transmission, the
influence of cross geometry on the Hall effect. They fabri-possibility of observing of them, at least in principle, was
cated various differently shaped cross sections based ahown by Berggren and Ji for the case of two intersecting
GaAs-AlGa _,As, which demonstrated that near zero electron waveguides with finite electrod@sin that case
magnetic field the Hall resistance can be quenched, enhancbgdund states can be probed by resonant tunneling through the
over its classical value, or even negative. This effect haglectrodes below the subband. However, it is possible to mix
been considered in detail theoretically by Sctetlal® and  the bound state with electron transmission through electron
Amemiya and KawamuraAnother interesting feature of the waveguides with infinite electrodes directly by application of
cross geometries is a bound state found numerically by radiation field, provided that the dipole matrix elements
Schultet al® and by Peeters. between the bound state and propagating ones are not equal
The question of the existence of electromagnetic modeto zero. Such a possibility was demonstrated for the four-
trapped by special geometries has been a classic one in therminal’s Hall junctior? Let E; be the energy of the bound

1063-7761/98/87(12)/10/$15.00 1058 © 1998 American Institute of Physics



JETP 87 (6), December 1998 E. N. Bulgakov and A. F. Sadreev 1059

L FIG. 1. The types of structures considered:

1 :’ X l 4 L-structure (a), the T-structure (b), and
Y L X-structure(c).

I L

[
=1

state below the subbands which for zero magnetic field cawhere ag(r)=(—yy,0,0). We map this equation onto a
be specified as square lattice with elementary unit. The lattice site is
52 specified agm, ). The total vector potentiad,+ acoswt is
En(K)= 5——5 (K>+ 7?n?), accounted for by a Peierls phase facorhen Eq.(3) trans-
2m*d forms as follows:
whered is the width of the electrodes,is the number of the
subband, and is the wave number of the incident electron. iWZM=4¢(m,I)—exp(i7l)¢(m+ 1,1)
Tuning a perturbation frequency near the resonance ot
hw=E,(k) —Eg, one can expect resonant anomalies in the _ i _
electron transmission through the many-terminal junctfons. exp iy e(m=1.1)
The aim of the present article is to consider the electron —exp(—id coswt) y(m,l +1)
transmission effected by mixing of bound states with the
propagating solutions in th¥-, T-, and L-types of electron
waveguides which are shown in Fig. 1.

—exp(id coswt) y(m,1 —1), 4

wherey= yw?, @=aw. In the four-terminal junction we use
also a different gaugeay(r)=(0,yx,0) for which the

2. CONDUCTANCE ANOMALIES INDUCED BY THE Schralinger equation3) will map onto a square lattice as
RADIATION FIELD follows:
2.1. Numerical method - &FJJ(m,I) B B B

In this section we consider single electron transmission W™ ———— =4¥(m,)—¢(m+11)—y(m-1,)
through the rectangular structures, the geometries of which
are shown in Fig. 1 and specified below bs T-, and —exp(—id coswt—iym)y(m,l +1)
X-structures. They share the property of having at least one -
bound state. The Schidinger equation for an electron of a —expiid coswt+iym)g(m,1 =1), (5)

massm* subjected to a magnetic fiell applied normal to B o~
the junction and to a radiation field,(t) directed in the Whereg(m.l)=exp(=iyml)y(m,|). Because of the processes
plane of the junction can be written of absorption and emission of photons, we write the wave

function in the electrodé$?*

ap(rt)  h? v e A A 2
pr _W' +%( o(r)+Aqcoswt) | ¥(r,t).
(1)

Here we use the gaugky(r)=(—By,0,0). The radia-
tion field is considered in the long-wavelength approxima-
tion, in which the wavelength of the radiation field is much W2(e+nw)g,(m,)=4¢,(m,1)—expliy) g, (m+1])
greater than the size of the junction. We use the following

if

lp(r,t):; exf —i(e+nw)t]gy(r). (6)

Substitution of(6) into (4) gives

dimensionless transformations: —exp(—iyl) (m—1])
At r 2m* d?E
Comd o gz =2 Tashml =1
2m* d? 2mdA 27d°B
e e 2 ~ S Thg(mi+1), @
h bo bo s

where ¢o=ch/e is the magnetic flux quantum. In terms of \yhere
the dimensionless variabl¢®) the Schrdinger equatior(1)
takes the form [he=i%"")s 1(3).

a(r,t)
at

Here we used the standard expansion of an exponential in

=iV + (ag(r) +acoswt)) *y(r.b), ©) Bessel functiorf®
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exp(id cosot) = S iMJ, (F)expimot). @ (WetQ)T(mD)=4¥(m,)—exp(—iymI*¥

X (m,l+1)—exp(iym) LV (m,| —1)
Let us introduce column vectors for each site of the _ _
square lattice describing the amplitudes of the wave function —¥(m+1,1)—¥(m-1,1). (12

(6)

Introducing again the column vect@; which describes the
w(m,l)=col(...,1(m,1),po(m,1),¢_1,(m,1),...). amplitudes of thdth line along thex-direction, we obtain
from Eq.(12)
Then Eq.(7) takes more compact form o ~ ~
(W2e—Hg)C,+P,C,_1+P¥C,,=0, (13
(W2e+ Q)W =4¥(m,|)—exp(iy)¥(m+1,l)

—exp—iFHT(m—1,1)
—T¥(m,-1)—-T*¥(mI+1), (9

where
Ho=41,®1-D®I-D®l—1,0Q, P, =P*®T.

Using the relatiorC,=\'C, we obtain from(13) the linearly
where we have introduced two matric@s=diagfv’nw) and  independent solutions in the electrodzand 3:
I'={T',s. Following Andc® we take the electrodelsand4 - - -
i ! irecti isti G\ (P.(Ao—w2) -P\(C
(Fig. 19 to be infinitely long in thex direction and consisting NI RER € L[> (14)
of M lattice sites in they direction. We introduce a general- 1 0 Co/

Co

ized t . . ,
1zed vector From the Schrdinger equationg4) and (5) the following
Cr=col(W(mM),¥(mM-1),- ,¥(m,1)). continuity equation for the probability density follows:
2
The dimension of this vector il XL wherelL is the dimen- _W7op _ e LR LS I [ (15)
sion of the vector’(m,l). In computer simulations the di- 2 at m m

mensionL, which is the number of amplitudes of the wave
function (6), was taken to be a finite number chosen by nu
merical accuracy’ We also introduce a diagonal matrix

wherej, = (i,i%) is the probability current density. In
“particular, for the gaugeg=(— vy,0,0) in the electrode&
and4 we have

Py =i exp(—i71), P = Im{exp(i 7)Y, e 1.}

the unit matriced of dimensionM XM and| of dimension ](y> Im{exp(—i& coswt) ¥, | ¥mi+1}- (16)

L XL, and the up-diagonal matrix
For the gaugeay=(0,yx,0) in the electrode® and 3 we

0 have

1 00
. 0 01 0 - jﬁ%(,)|=|m{'~//:1,|:0m+1,l}:
0O 0 0 1 - . i i NTE T
lﬁnyy)lz|m{exp(—laCOSwt—l)’m)lﬂﬁmwm,Hl}- 17)

From these expressions for the probability current den-

of dimensionM X M. sity it is easy to find the stationary current carryed by the

Then Eq.(9) takes the form presented by Arffo propagating mode with\|= 1 in thex direction through the
(W2e—Ho)Crn+ P,Crn_1+ P¥ Crms1=0, (10) sectionmin the electroded and4:
I =Im(\(ColPf|Co)). (18
where
As with the mode propagating in thedirection in the
Ho=4l,®@1-Del*-D"el'-1,00, P=Pal. electrode?2 and3 we have
To obtain the linearly independent modes of Ef0) we IV =Im(A(Co|P*|Cy)). (19
6
sef Now let us consider the scattering regidfig. 2) con-
Cn=A"Cy, nected to four electrodes. Following Arfdave define
which gives U(E)=(ug(£),ua(£),-um(£)).
A(x)=diagA{(x),Ao(E), -\ *)).
C]_ P”(HO_sz) _Pﬁ Cl ( ) g 1( ) 2( ) LM( ))
A Co = 1 0 Co)- (13) Hereu;(*) are the solutions of Eq11) which correspond to

the eigenvalué;(£). The signs " refer to the propagat-
In order to find similar modes in the perpendicular elec-ing and evanescent modes in the positinegative x direc-
trodes(2 and3 in Fig. 19 we write the Schrdinger equation tion in the electrode4 and4. Similar matricedJ, A can be
(5) as follows: defined for the electrodesand 3.
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Hi=Ho—P,F~1(—).

.
-

At the boundaryt we can write similar equations

FrEE P E e
Quiiiiiiiiie 2¢—H,)Cyisot P.Cryss=0
PR SR A S (We 4) M+2 M+17 s
1 53533 \
IS SSSSSPIR Ha=Ho= Py F(+).
Qdd******""’**
Q, ’223’ T *5Hl 1 Since at the boundari€sand3 we have different gauges, we
+ . g . . .
introduce two additional matrices which transform the pri-
2 mary gauge of the wave function:
FIG. 2. Configuration of the lattice model for the scattering region. Eul: diaQexp(iE/m(M +1)/2))®]1,

E,=diagexpiym(M—1)/2))®1.
For the modes which are superpositions only of the vz gexprym( )12))

“ +” type (or of the “—” type) we can write simple recur- If we take into account these gauge transformations, the

rence formula® equation for the vecto®,, at the boundarB can be written
Cinr1(£)=F(£)Ciy(£) (W?e—H3)Ey1Qu+ P, EpQuu=0,

with

F(=)=U(=)A(x)U L(=*).

The same formulas take place for the electrofesnd 3.
These relations will be explored to define boundary condi-  (W2e—H,)E}; Qg+ PYE},Qqq=0,
tions in the scattering region. _ _

Next, we consider the solutions inside the scattering re- Hy=Ho—P,F~(—).

gion which are shown in Fig. 2. At the boundatythere is : .
the incident mode,(+), and at the boundarie 3 and4 HereQ,.,, Qq4q denote the_hor!zontal vectors adjacent to the
vectorsQ,, Q4 as shown in Fig. 2.

here are onl ing m . Intr vertical v r . o . .
there are only outgoing modes. Introduce vertical vectors By means of these relations it is easy to write the Schro

C1,Cz,....Cu2 which describe the amplitudes of the wave dinger equation for the amplitudes at the sites of the scatter-
function on a square lattice in the scattering region along the . } )
region in closed form asKX=Y where X=col

y direction as shown in Fig. 2, and a pair of horizontal vec-'""9 _ _
tors Q, ,Qq which describe the amplitudes at the upper and* (€1:C2:---.Cu+2,Qu.Qq) with the known matrix< and

down boundaries of the scattering region. The aim is to write/€ctor Y. Numerical solution of this equation gives the solu-
closed equations for these vectors using the boundary condiOn inside the scattering region, at its boundary, and thereby
tions. The boundary conditions are that the wave is incidenft €ach electrode. For the simplerand T-structures shown
only through the left boundary and is given a€,(+), and " Fig. 1a and 1b the solutions are easily obtained if we set

the other waves exit through all boundaries. Within the scatth® solutions in the excluded electrodes equal to zero. -
tering region the equation for the amplitudes takes In conclusion we comment on the choice of the maktix

defined in(7). For an infinite matrixl" we have the unitary
(W?e—Hg)Cr+ P /Cn_1+ P Cpny1=0, (200 conditionT'T'* =1. If we were to truncate directly the matrix
wherem=23.. . M+1. I" in the numerical calculations the unitary condition would

In addition we consider the analogous equations at ever99 violated. In turn this would give rise to breakdown of the

boundary. At the boundary we represent the vertical vector probability current conservation and what is more crucial, to
C, at site 1 as a superposition of the incident and reflecte@PPearance of undesirable exponentially growing and decay-
ing propagating solutions with small exponents. In order to

At the boundary2

solutions: L, . "
avoid this difficulty we introduce a new Hermitian mathix
C1=Cy(+)+Ca(—). which determines the matrik as follows
The vectorC, belonging to the electrode can be expressed I =expliaWi2) (21)
as

Co=F ~1(+)Cy(+)+F X(—)Cy(—) where

=F H(—)Cy+(FH+)=F (=))Cy(+).

Hence the solutions at the right edge of the electrbdee W=
expressed in terms of the solutions at sites of the boundary of
the scattering region and incident wave. As a result the equa-

tion for the amplitudes at the first vertical sites of the scat- ) ) ) )
tering region has the form Although in the computer simulations the matkixis trun-

) . . . cated to a finite dimensioh, the relation(21) preserves the
(Woe—H1)Cy+ P Co=—Py[FH(+)=F~H(—)]Cy(+), unitarity of the matrixT".

0 1 0O
1 010
0 1 0 1
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FIG. 3. The energy dependence of the transmission
in the L-structure under the influence of the radia-
tion field: a—stationary transmissia=0 for zero
magnetic field; b—the frequency of a radiation field
is resonant with transitions between the edges of the
first subband and the second omne-29.6,a=0.1,
y=0. The solid line represents the case in which the
polarization of the radiation field is perpendicular to
the input electrode, the dashed line shows the case,
in which the polarization is parallel to the input
electrode. c—The frequency of the radiation field is
tuned to transitions between the bound state and the
first subbandw=10.82, y=0. The curvel corre-
sponds ta=0.2, the curve? to a=0.5. The dashed
line shows the steady case. d—Similar resonant dips
with applied magnetic field produced by the radia-
tion field: w=10.82,a=0.5. The curved, 2 and3
correspond toy=0,2,4 respectively.

19.9 19.95 20.0 20.05 6 20.1 20.0 202 204 20.6

2.2. Numerical results incident electron: through the electrodeand through the
electrode2. For the former case the transmissionhs and

14). It has only one bound state with energy=0.929172. 14 T_13 _coinc_:ide,_ provided thaty= 0._The polariza_tion of a ra-

A magnetic field slightly increases this value. Consider afiiation field is chosen perpendicular to the input electrode
first the case when the frequency of the radiation field i2/0nd they-axis (Fig. 1b. Consider the dipole matrix ele-
tuned to transitions between the edges of the second and firdent between the bound state and the propagating one,
subbandsw~372. When the polarizatioa of the radiation (xalyl$n ), wherex,(x,y) denotes the bound state with the
field is perpendicular to the input electrode of the structureENerdy €1=7.98 andy 1(xy) is the propagating state for
the dipole matrix element mixing states of the second andhe steady case describing an electron incident on the first

We begin by considering the simpldststructure(Fig.

first subbands equals subband and the electrotleSince both states are even rela-
tive to inversiony— —y around the symmetry ling=0 (for
(1]y|2)= j dy f,(y)y fo(y) £0, v=0), this dipole matrix element vanishes and the radiation
field produces no effect. In fact, our numerical calculations

where  f,(y)=vZsin(@(y—1/2)), f,(y)=v2sin(2=(y  show that if the incident electron propagates in the first sub-
—1/2)). If the polarization of the radiation field is parallel to band at zero magnetic field there are no resonant phenomena
the input electrode the dipole matrix elemékix|k’) calcu-  resulting from the radiation field.
lated in terms of the incident modes eikpj is less than There are two ways to the dipole matrix element can be
(1]y|2) because of the oscillatory behavior of the functionsfinite. The first one is to apply an external magnetic field, and
exp(kx). Since the square of the dipole matrix element dethe second one is to consider electron transport in the second
termines the radiation field effect, the electron transmissiorsubband. These possibilities are shown in Fig. 4a and 4b.
strongly depends on the polarization of the field as is in faciThe steady transmissions through fhstructure are shown
seen from Fig. 3b. by thin lines. One can see that a magnetic field makes the
Second, consider the case when the frequency of th#sansmissiond';, andT,3; nonequivalent. Application of the
radiation field is resonant with transitions between the boundadiation field gives rise to resonant dips which are very
state energy and the first subband. For zero magnetic fieldarrow, with widths proportional to the square of the ampli-
the radiation field induces the deep narrow resonant dipude of the radiation field. In the vicinity of the resonance the
shown in Fig. 3c. The width of the resonant dip dependgransmissionT; exceeds the transmissidn, which gives
sensitively on the amplitude of the radiation field. Figure 3drise to the anomalous Hall effect. This effect was first dem-
shows the shift of the resonant dip versus the applied magnstrated for the four-terminal structifre.
netic field. If an electron is incident on the second electrode, the
The structure intermediate between the- and  dipole matrix element is not zero, and we expect resonant
X-structure is thel-structure(Fig. 1b). Like the L-structure, behavior for the transmissions to both electrodeand 3.
it has only one bound state provided that the whole structurélowever, the radiation field produces a resonant dip only for
has the same width, but there are two ways to direct amhe transmissiofl ,; (Fig. 40. The reason for the absence of
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0.6k 0.6+
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0.47 04r Ty V
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0.2 13 0.2 FIG. 4. Transmissions through th&-structure.
N

a—Electron incidents on the electrode(see Fig.

- ’ ) g 1b) and the first subbandw=12, a=0.2, y=2.
. X 20.18 49.8 499 50 50.1
2012 20.14 20.16 € € b—Electron incidents on the second subband with
T T parametersw=41.86, a=0.5, y=0. c—Electron
1.0 10 incidents on the electrod® w=12,a=0.1, y=0.
T d—The same as in Fig. 4c with parameters 12,
0.8 0.8t a=0.5,y=4.
rc
0.6}
0.6 T23
0.4 T 04r1
L T,
0.2 2 o2t
19.9 26.0 6 20.1 20.55 206 20.65 20.7 e‘ 20.75

a resonant dip for the transmission to the first electrode i$lowever, as in the case of tfiestructure, surprisingly, there

related to the more complicated symmetry and will be givenare no resonant effects for the transmissions to the electrodes

below. Application of an external magnetic field causes the? and 3.

resonant dips for all transmissions shown in Fig. 4d. Also  To understand this followirfg we perform the gauge

because the bound state energy level is increased by an exansformation

ternal magnetic field, the location of the resonant dips is .

slightly shifted as is seen from Fig. 4c and 4d. Y(r.t) =expliar coswt) 4(r,1),
Consider the four-terminal junctiaffrig. 19 which is an  and substitute it into Eq3). As a result we obtain the fol-

element of the Hall structurés.®*°First, consider the radia- |owing equation for the amplitudes, (r) of expansion(6):

tion field effects for zero magnetic field, among which the .

most interesting is the resonant control of the electron trans- i 2 lw _

missions by rotation of the radiation field polarization. As (e+Nw)dn=(IV+ao(N)"¢nt 5 (AN(Pnr1™ Pn-a)-

was mentioned for th@-structure this effect has a purely (22

symmetric origin. However, the symmetry of thestructure  gjnce we have assumed that the radiation field is resonant

is higher than that of theT-structure. Moreover, the it transitions between the first bound state and the propa-

X-structure has two bound states. The one with the energyaiing one, for small perturbations we can restrict ourselves

€,=6.55 below the first subband is symmetrical relative to; o statesp, andé_; in Eq. (22) satisfying the following
coordinate inversionx— —x or y——y, and the second equations:

with the energye,=36.72 below the second subband is an-
tisymmetric. 2 ]

As was observed for th&-structure, if the polarization Vidotebo=— E(ar)“’d’*l’ (23
of the radiation field is perpendicular to the input electrode
and the frequency of the field is tuned to the transition be-
tween the first subband and the energy of the first symmetri-
cal bound state, there are no field-induced resonant effects in .
the transmissions. The reason is that the propagating SIate\pﬁ\g:)%raeg;rtliiJinncél?::ﬁgéz)nsgfaig 1(rre)sgggs/se?;ngoﬁhtgerzeso
even, Y 1(X,Y) = ia(x,—Y), and so we havéx,|y|y1) ’ ' ]

=0, which means that the transmissions exhibit no resonarﬂant case= w=e; We can write the truncated Green'’s func-
effect. On the other hand, there is no symmetry of the propat-Ion for the left side of Eq(24)
gating state relative ta— —Xx due to electrons incident on xa(Dx¥(r")
the first electrode along theaxis. Therefore, for the case of Gy(r,r' e)=

the polarization parallel to the input electrodehe dipole
matrix element satisfieby|x| ¥ 1)# 0. In fact, one can see where s accounts for the finite width of the level because of

from Fig. 5a a narrow resonant peak in the transmis$ign  coupling of the structure with the electrodes and the mixing

V241t (= w)d_y=5(anwdy, (29

€e—€,—id (25
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T T
1.0 1.0
a
0.8r 08}
T
0.6} 0.6} " -
FIG. 5. Transmissions through théstructure for
zero magnetic field. In all pictures the electron is
041 T4 0.4y incident on the electrode a—The frequency of the
/ T, radiation field is tuned to transitions between the
0.2f 0.2 energy of the first bound state and bottom of the
T]g \/ first subbandw=4. The case of the polarization of
e . . the radiation field along the input electrode is shown
10 10.5 445 45 45.5 46 by thick lines, and the case of the polarization per-
€ € pendicular to the input electrode is shown by thin
T T lines. In both cases the amplitude of the radiation
1.0 c 0.4 field isa=0.05. The electron is incident on the first
08t Ty, subbandf=1). b—w=38.45,a=0.5, the electron
' T4 0.3 is incident on the first subband. c—The frequency is
tuned to transitions between the second bound state
061 and the first subband=16.715,a=0.2. d—As in
0.2t Fig. 5b, but the electron is incident on the second
0.4} T subband (=2).
14
0.2f n, |0 k///”’—‘—_—_
V
19.9 20.0 20.1 e 445 45 45.5 c 46

of propagating states with the bound state by the radiation
field. Then a solution of Eq(24) can be expressed via the

Green’s function(25) as follows:

fwx4(r)
1= e 19)

< [ @ gorar

Substituting Eq(23) and carrying out a similar procedure of
expression in terms of the Green'’s function, we finally obtain

?dyo

bolr) = bon(r) + zr—

xf G(r,r',e)(ar")x,(r")d?r’.

Here ¢gn(r) is the solution for a switched off radiation fiel

and

dlozf X5 (r)(ar) gon(r)dr

is the dipole matrix element between the bound state and ti}

propagating one.

Similar to (26) and (27) we can write a solution of Eq.
(24) for the case when the frequency of the radiation field is
resonant with transitions between the second bound state arﬁq

El_w_iﬁ)

the Fermi energy of the incident electrerr w~ e,

2dao

bo(r)= on(r)+ A(e— eyt w—10)

Xf G(r,r',e)(ar’) xo(r")d?r’,

(27)

dzo:f X3 (r)(ar) gon(r)dr (29)

In order to analyze the transmission on the basis of Eq.
(27) we need the following symmetry properties of the
Green’s function in theX-structure:

(26) G(Xay;X’:yryf):G(_X:y;_X,ay’vf)

=G(X,—~y;x",—y',e). (29

Now let us return to the transmissidn, (Fig. 19 for the
case when the radiation field polarization is parallel to the
input electrodgx-axis). From Eqs.(27) and(29) we can see
that the last resonant term (&7) is odd relative tok— — x in
the electrode® and3, provided that the bound statg(r) is
even. Thus, the last term i27) is not able to contribute to
d the propagating mode in the electrodzand 3 because for

the electron transport in the first subband it should be even

with respecix— — x. Next, since the last term i27) is even

with respecty— —vy, it contributes to the even transport

mode ¢, in the electroded and4. As we see from Fig. 5a

computer calculations completely confirm that conclusion. If
fe incident electron belongs to the first subband withl
(even state relative tg§— —y), but the outgoing mode can
be represent as a superposition of states of the first and sec-
ond subbandr{=1,2), these symmetry restrictions are re-
oved for the polarization parallel to the input electrode. As
a result the radiation field induces resonant anomalies in the
transmissiond ;,, T13 (see Fig. 5h Briefly, this symmetry
rule can be formulated as follows. If the parity of the state
excited by the dipole transitioraf) y;(r) does not conflict
with the parity of the outgoing modes, then the transmission
to the corresponding electrode can display resonant features,
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FIG. 6. Views of the amplitudes of the quasienergy wave func#en20.02, a=0.2, @=16.715. a—Ro(r)|, b— ¢ (r)|, c—_1(r)|, d—go(r)
— ¢on(r)|. Definitions of the amplitudes are given (6).

and vice versa. Later we will demonstrate numerous extudes(26) and(27) and to illustrate symmetry rules, in Fig. 6
amples of the application of this symmetry rule. we present numerical solutions of the full Sollirmger equa-
First, we apply the symmetry rule to the case of radiatiortion (4). In Fig. 6a, 6b, and 6¢c the amplitudes,(r) with
field mixing of the second bound state, which is odd relativen=0,1,—1 respectively are shown for parameters corre-
to x——x or y——y. For the radiation field polarization sponding to the case shown in Fig. 5¢c. One can see that, in
directed parallel to the input electrode the dipole matrix elefact, only two amplitudesy,, ¢, are important in the reso-
mentd,y vanishes, and consequently there are no radiationant case. Moreover, in agreement with E2) we see that
field induced effects. In the opposite case, when the polarthe amplitudey,(r) exactly reproduces the second bound
ization is perpendicular to the input electrode, the dipole mawave functiony, and that the next amplitudé_, is negli-
trix element is not equal to zero. However, the radiation fieldgible. Second, the difference between the radiation field per-
contribution to the electrode? and 3 described by the last turbed solutiony, and the steady solutiotfy, is shown in
term in Eq.(26) is odd, opposite to the symmetry of the Fig. 6d. One can see that symmetry of the outgoing part of
incident mode. So the transmissions to the electr@dwsd3  this difference in the electrodes coincides with that predicted
coincide with steady results, as shown in Fig. 5c. Finally,by the last term in Eq(28). The parity is even in the elec-
Fig. 5d shows the case when the incident electron belongs tmodesl and4 and is odd in the electrodé&and3. Also we
the second subband. In contrast to the case in Fig. 5b, thean see from Fig. 6d that the odd contributions are decaying
field-induced effects take place when the polarization is perin the electroded and3.
pendicular to the input electrode. Note that the same symme- As was mentioned above an external magnetic field
try arguments explain the absence of radiation field effects ilbreaks the symmetry of the structure, resulting in a more
the electron transmission from electro@eto electrodel  complicated picture of radiation field effects. Results of these
shown in Fig. 4c for theél-structure. calculations are presented in Fig. 7. Figure 7a corresponds to
To confirm the approach using the quasi energy amplifig. 5a, with the difference that we haye=1, and presents
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FIG. 7. The energy dependences of the transmis-
sions in applied magnetic field in thé-structure.
a—w=4, a=0.05, y=1.0, the polarization of the
radiation field is parallel to the input electrode: b—
w=15.08,a=0.5, y=2, polarization of the radia-
tion field is perpendicular to the input electrode.

10.5 10.6 10.7 108 21 22 23 24 25

a case in which the radiation field excites the first bound stateus resonant anomalies of the Hall resistance induced by the
in the first subband. One can see all transmissions undergadiation field: dipgFig. 83 and peakgFig. 8b, 8c, and 8d
resonant peaks or dips, in contrast to Fig. 5a. Figure 7b preFhe resonance between the first bound state and the Fermi
sents a case in which the frequency of the radiation field ignergy of the incident electron produces a resonantFlmp
tuned tow=(e,— €1)/2. One can see that exciting of two 8a). In the case of the Fermi energy~(e,+€;)/2 and
bound states results in two resonant peaks in the transmisg~(e,— €;)/2 the radiation field induces two wide peaks
sions. The first bound state gives rise to sharp resonant peakentributed by two bound states. Figure 8c shows that the
and dips, while the second produces wide peaks and dips.radiation field transforms the dip in the Hall resistghiteo
From Fig. 7b we can see that in some narrow region ofa resonant peak. Finally, Fig. 8d shows a case like Fig. 8a,
energies the transmissioh; coincides withT,, and may but the radiation field excites the second bound state.
even slightly exceed it. Obviously, it would give rise to the
negative Hall re5|st_ance as was shown in Ref. 21. Moreoveg_ CONCLUSION
we can see from Fig. 7b that the transmissiga undergoes
peaks, while the transmissidn ; does dips. As a result we The resonant behavior in the electron transmission arises
may observe resonant peaks in the Hall resistance as is defnecause the radiation field resonantly substitutes the bound
onstrated in Fig. 8. states into the state of the incident electron propagating
From Fig. 7a and 7lsee also Ref. 21in the narrow through the scattering region of the structures to produce
region of resonance the transmissibypy can slightly exceed various interference phenomena. These phenomena are
the transmissionT, in an external magnetic field. This clearly seen in the current density patterns shown in Fig. 9.
means that the radiation field can even cause anomalies @he resonant anomalies are very specific to the forms the
the Hall resistance to be negatit’eFigure 8 illustrates vari-  structure and the type of bound state. The symmetry of the

Ry Ry
0.8
a 0.6r b
0.6 r// o5l
""" 041
041
031
02t 0.2¢
’ ot/ ./ X FIG. 8. The Hall resistenc®,; in the X-structure
R At * versus an external magnetic field in response to the
+ + a—— : radiation field. The radiation field induced resis-
0 0.5 1.0 1.5 y 2.0 0 1 2 y 3 tance is shown by solid lines, the steady resistance
Ry Ry is shown by dotted line. a€=10.95, v=4.3, a
0.15 =0.05; b—e=22, ©=15.08, a=0.5; c—e
0.10 =36.75, »=30.17, a=0.1; d—=205 o
’ =16.715,a=0.5.
0.05
0
-0.05
-0.10
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We show that when a three-level laser is excited by Poisson light the lasing remains sub-
Poisson, as asserted by H. Ritsch, M. A. M. Marte, and P. ZplHlarophys. Lett19, 7 (1992],
only if there is no reciprocal action on the exciting lageeak coupling. In cascade

schemes in which each three-levellaser excites each succeedinglaser with its light, any
desired degree of shot-noise suppression can be achieved99® American Institute

of Physics[S1063-776098)00512-5

1. INTRODUCTION the same time, in pure form this system has hardly any po-
tential as a source of nonclassical light that could be used in
A property of a laser medium consisting of three-levelpighly precise and supersensitive optical measurements,
atoms is that such a medium is capable of generating nonsince reducing shot noise by several orders of magnitude
classical(sub-Poissonlight without any additional effort on may prove very important in experimental practice. It is clear
our part(e.g., regular pumping, as is the case with the twWo-gyen on the qualitative level that here the limits are of a
level sub-Poisson laser examined in Ref. Phis intrinsic  ,ndamental nature. If we examine this laser as an isolated
property of the system can be connected with the fact thal,i, we will never be able to improve it without improving
three-level atoms have been found to automatically form Romething related to ite.g., by replacing Poisson pumping
kind of negative feedback loop, which in the final analysis, i, suh-Poisson Nevertheless, we believe that one obvious

stabiliz:_ss the radiation. Later in this paper we will see that ir\/vay of improving the quantum characteristics of the laser
the variant of theA-scheme considered hefa weak pump field should be analyzed. The possibility can be realized in

field exciting the atom from the ground state to the highes,tcascade schemes, in which each preceding laser with moder-

state and a laser f|el_d thatis n resonance v_\nth upper atomgte guantum characteristics excites the active medium of the
level and the level in the middiethe pumping efficiency

. y SLfcceedmg laser, whose guantum characteristics of the light
depends on the lasing power and decreases as a function 0 -
i become more pronounced as a result of such excitation, etc.
the power of the laser field.

Under these conditions the fluctuations of the pump field In constryctmg the guantum theory of a three—level.
) L A-laser we will not study the most general case, discussed in
are to a certain extent balanced and do not give rise to cof-

responding fluctuations of the laser field, unlike the caseRef' 1, and will limit ourselves to the physical conditions in

without negative feedback. For instance, a positive fluctua\-NhiCh there is _no p(_)pulat?on in\{ersion in the .Iaser transi'Fion
tion in the pump field first produces a positive fluctuation inand yet ther.e is gain. This choice of model is not very im-
the population of the upper laser level and then lasing. Nexportant and is related only to the fact that to de.monstr.ate the
this gives rise to a negative fluctuation in the pump field andtTTeCt Of enhancement of the quantum properties of light in
hence to a negative fluctuation in the laser field. Thus, withiffascade schemes it is sufficient to consider a particular case.
a certain time interval the fluctuations in lasing become bal- ~ The following problem arises in theoretical studies of
anced and do not depend on the fluctuations in the initiafa@scade schemes. Formally, the process of excitation of the
pump field. This mechanism explains why sub-Poisson lasfirst laser in the cascade by cohergRbisson light can be
ing occurs even with Poisson pumping. This situation is veryfaken into account by introducing@number exciting field
desirable, since realizing it requires no more efforts tharinto the interaction Hamiltonian. Here, as we have said ear-
building an ordinary laser. However, there are definite faultdier, 1asing develops in such a way that the laser field be-
in it. Negative feedback follows only the intracavity field and comes sub-Poisson, so that the second, third, etc., lasers in
cannot stabilize the light that has left the cavity, and sincdhe cascade are excited by nonclassical light. Such pumping
the process in which photons leave a cavity is stochasticgannot be taken into account liynumbers in the Hamil-
light outside the cavity cannot have the same good propertig@nian. The theoretical approach must account for the fact
(in the sense of its quantum propenjies intracavity light.  that not only is the laser field nonclassical, but so is the pump
Thus, a laser with three-level atoms as the active mefield. In our investigation we use the method of a kinetic
dium is probably the simplest system for demonstrating theequation for the density matrix that describes all coherent
possibility of generating sub-Poisson light in experiments. Affields participating in the process.

1063-7761/98/87(12)/12/$15.00 1068 © 1998 American Institute of Physics
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Poisson |1)—|3) and|2)—|3) transitions and incoherent processes act
pumping 2 on the|1)—|2) and|2)—|3) transitions, processes that phe-
nomenologically are described in the same way irrespective

r&&
1 ; — /H_E 0 of their name(spontaneous decay or weak incoherent pump-
\ .
ing).

4
aasgeus In order to be specific, we assume that, say, the active
4 e /\‘E medi_um of laser J(a_nd all other lasers with odd num_b)ers_
33 = == consists of atoms with an energy level structure depicted in
Fig. 2a, while the active media of even-numbered lasers con-
= sist of atoms in Fig. 2b. We also assume that in the first laser,
Ni'/cé,* 2 E N - D LOR excitation of atoms from the ground state to the upper laser
A ¢ PM state occurs on thgl)—|3) transition. The transition is ex-
s cited by an external Poisson electromagnetic field. Lasing
4 occurs on thé3)—2) transition. To simplify matters, we as-

sume that all atomic transitions are allowed. However, in our
calculations we will allow for spontaneous emission only on
the |3)—2) laser transition with a ratg; and on thg2)—1)
laser transition with a rate,. In the active media of laser 2
without coherent fields, due to spontane¢Bis-2) emission
and weak incoherent pumpirig.g., in a gas discharge or by
Figure 1 depicts a schematic of a thought experimeni weak spectrally broad external electromagnetic Yjald-
that we wish to discuss here. The experimental setup consisger steady-state conditions all the atoms are in I&ljel The
of a cascade of lasers, with the first laser, 1, excited by @oherent action of the light from laser 1 on g —3) tran-
prescribed Poisson electromagnetic field. Due to the excitasition populates the upper laser level and leads to lasing on
tion the laser emits light, which excites laser 2. The procesghe |2)—|3)transition.
is continued with laser 3, laser 4, etc. Here we have chosen The plan of the paper is as follows. In Sec. 3 we discuss
the variant of intracavity excitation of the active metéten  the elements of semiclassical laser theory, important for our
used in experimentsn which the media of the exciting and discussion. We derive auxiliary formulas for atomic popula-
excited lasers occupy the same cavity. We must bear in minflons and coherences in conditions of inversionless lasing
that the excitation of the active medium may have a strongind useful relationships for the lasing powers of the excited
effect on the exciting laser. The most interesting case here ignd exciting lasers.
when the losses from the mode of the exciting laser are de-  Section 4 discusses the quantum statistical theory of las-
termined chiefly not by the escape of light through the mirroring involving three-level atoms with the active medium ex-
of the optical cavity of that laser but by the excitation of thecited by the light of an auxiliary Poisson or sub-Poisson
active medium of the excited laser. Naturally, the conditiongaser. We develop the most important aspects of setting up
for lasing in the absence of an excited laser differ dramatithe kinetic equation for the density matrix of the laser field
cally from those for lasing in the presence of such a laserand the pump field in the inversionless approximation and in
We call this the case of strong laser coupling. The other limithe approximation of small photon fluctuations.
(weak coupling, where the presence or absence of the ex-  The photocurrent spectrum obtained in measurements of
cited laser remains essentially unnoticed by the exciting lathe light emitted by a single three-level laser excited by the
ser, is also important and interesting from the physical viewiight of a Poisson or sub-Poisson laser is discussed in Sec. 5.
point. In Sec. 6 we generalize the theory developed in Secs. 4
For a cascade scheme to operate, resonant conditioggd 5 to the case of a cascade scheme consistihgtiofee-
must be met. We can assume, for instance, that there are twevel lasers. The first laser in this scheme is excited by the
types of active laser medigFig. 2), which alternate from light of a Poisson laser, its emission excites the next three-
laser to laser. Clearly, from the mathematical viewpoint theevel laser, and so on.

FIG. 1.

2. ACASCADE SCHEME WITH INTRACAVITY EXCITATION
OF THE ACTIVE MEDIA

two media are equivalertall formulas for the two media In the Appendix we discuss in detail the method used in
coincidg. Indeed, in both media coherent fields act on thederiving the kinetic equation for the laser fields in the cas-
cade.
A 1 13 3. SEMICLASSICAL THEORY OF LASING
5 5 3.1. Steady-state behavior of an atom in external pump and

[2) [1) laser fields
yzé A In constructing a statistical theory we assume that the
1) 12) basic parameters of the problem fluctuate only weakly about
b the corresponding semiclassical values. This allows us to lin-

a

earize the theory and hence simplify the mathematics. The
FIG. 2. explicit expressions for the semiclassical quantities, such as
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the matrix elements of the atomic density matrix describingThe dimensionless powers of the pump and laser fields can
the behavior of the atom as it interacts with two classicalbe expressed in terms of the parameters of the problem:
fields, the laser field and the pump field, play an important

. . QZ QZ
role in this theory. 0 .1 og 2 o5 P2 6)
In this section we discuss the semiclassical theory of ~° y3' ' v O 0yt Tt Ty

lasing with the medium consisting of atoms whose energ¥
levels are depicted schematically in Fig. 2.
The behavior of the atoms is determined by a system of  Q,y,<7s;. (7

equations for the matrix elements of the atomic density ma- -,
9 A ) ) } Y We see that under the adopted conditions only a small num-
trix o, which with allowance for external fields and relax-

’ ber of the atoms are excited. Specifically,
ation processes assumes the form

n writing the steady-state solutions we assumed that

033,007, 8

- ~ .
7117272022~ ol @015+ g 031) =0, with the population of stat¢2) always higher than that of

: state|3):
033= — 2730331 Go( o013+ ag 0731 13)
0'33< 0922. (9)
+01(a10p3+ af 03) =0, . . .
In what follows we call the conditiori7) the inversionless

013= — Y3013~ Qoa§ (33— 017+ graf 015=0, (1)  approximation.

- " _ . .
T 1= — Y2015~ Qoa§ 3o~ J11015=0, 3.2. Truncated lasing equations

. . Let us examine a physical system consisting of an excit-
023= — (Y21 ¥3) 023~ 911 (033~ 020) + Qo021 =0. ing single-mode laser and an excited single-mode laser and
This system of equations must be augmented by the normafOnsider it a two-model laser with complex-valued lasing
ization condition amplitudesa (the exciting modeand 4, (excited modg It
is well known that

0'11"’ 0'22+ 033= 1. (2) K1

Herea, anda; are the complex amplitudes of the pumpand @1~ ~91N1032— S a1, (10

laser fields, which are normalized in such a way that the hereN. is th | ber of in th . di
quantitiesny=|a,|2 andn; =|a4|? are the numbers of pho- whereN; is the total number of atoms in the active medium,

tons in the pump mode and the lasing mode. Other often@Nd «1 is the cavity width of the excited mode. Substituting

used quantities are the Rabi frequencleg=g;|a,| and the explicit expression in5) for the matrix elementog,
e . . L

Qo=0o|ag|, whereg, and g; are the constants of dipole — 723 in Eq. (10), we arrive at an equation of Iasmg n the

interaction of the atom and the pump and laser fields, respe@-xc!t_ed mode. Obviously, it depends on the lasing in the

tively. exciting mode.

In writing the system of equations we chose the interac- A_ 5|m!lar equation Caf‘_be written fazo. Here_ we must

tion Hamiltonian in the form bear in mind that the exciting mode interacts with two reso-

nant media: the medium of the exciting laser, and the me-

V' =igo(ao|3)(1|— af|1)(3]) dium of the excited laser in the process of its excitation.
_ The sign ofo;, is an indication of whether we are deal-
+igi(e[3)(2|— a1 [2)(3]), (3 ing with gain or absorption in the laser transition. By sepa-

rating the components proportional to the two-photon popu-
lation differenceo,— o,, we separate the term@f they
exist responsible for Raman scattering.

From (5) we see thatr;, is negative, so that there is gain
in this laser transition. Moreover, the coherence of the laser

Under steady-state conditior{all time-derivatives are o .
zer9, Egs. (1) become a system of algebraic equations anc}ransmon depends on the populatlo_n of t_he upper laser level
' | and not on the two-photon population difference, the oppo-

can be solved fa|rly easily. The explicit expressions for thesite of the case of Raman scattering. Thus, bearing in mind
steady-state matrix elements are

the foregoing conjecture that there is no population inversion
in the laser transition, we arrive at the unambiguous conclu-

where |i)(k| (i,k=1,2,3) are the projection operators de-
fined on the atomic states.

Clearly, for both physical situations depicted in Fig. 2
the system of equations is the same.

io o

o11=1, 0=+, Oz3=F— =, (4) sion that here we are dealing only with inversionless lasing,
1+i 1+i)(1+1,) ich i iti i i
1 (I+ig)(1+10, which is a characteristic feature of multilevel atomic
- a1 systems’
o _%o% 1 o _ _ 91%190% We now write Eq.(10) explicitly in the inversionless
13 1+iy O 1+iy’ imation:
V3 1 Y273 1 approximation:
~ 5 ~
gia7 i . K iy nNg «
oy — 19 o a=|=—— 2t q,=0. (12)
Y3 (1+i)(1+74) 21+i,m 2
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Heren, andn, are the semiclassical solutions for the num-Here the operatorR, andR; are responsible for the decay of
bers of photons inside the first and second cavities, and thge intracavity quantum field oscillators of the exciting and

quantity excited lasers with rates, and «;, respectively;S; and S,
- 2 are responsible for the nonlinear interaction of the laser fields
K — 29gNy . . . L
K= T = , (12 and the active media; ang is the average rate of excitation
1 V3

of the upper laser level of the active medium of the exciting
has the physical meaning of the rate of absorption of thdaser.

exciting light in the excited mediurfor the rate of excitation We will attempt to write Eq(15) explicitly by using the

of the active medium of the excited lageFhis rate depends diagonal Glauber representation. Thus, we haye

on the lasing power of the excited laser. In the case of satu=p(aq,a;,t), Wwhereay anda, as before, are the complex-
ration (i;>1), Eq.(11) yields a useful relationship: valued amplitudes of the pump and laser fields, which are
now the eigennumbers of the corresponding annihilation op-

Mo_ X1 (13  erators:
nl K ’
t .
a A . e a;: ,a. :1, :0,1, 16
from which we can easily establish that ilag)=ajlag), [3.a]] ) (18
= = For the decay operators of the field oscillators in the Glauber
i1=%‘ /iio = %, /ﬂ. (14) approximation we have the well-known formulas
9o Y k1 91 lo P
Rj=—£aj+c.c. (17)

J
4. THEORY OF LASING OF A SINGLE LASER WITH POISSON

AND SUB-POISSON EXCITATION Below we will find it convenient to a certain extent not to

specify the explicit representation ‘sg which naturally de-
pends on what laser is chosen as the exciting one. This
We construct the quantum statistical theory of the lasingneans, for instance, that in the variant of the theory based on
of a cascade scheme of lasers on the basis of the theory tife approximation of small photon fluctuations, which is
lasing of a single laser. Here and in the sections that followused in this paper, the two coefficients referring to the excit-
we assume that there is only one three-level laser whos@g laser light, the decay rafe, of photon fluctuations and
active medium is excited by the light from another auxiliary the statistical Mandel parametég, will not be written ex-
laser. We find it convenient not to say anything specificplicitly.
about the auxiliary laser at this point, so that in the final ~ Here and in what follows we consider two kinds of ex-
stages of our discussion we can choose between Poisson estting lasers. The first uses the common laser, considered,
citation and sub-Poisson excitation. This problem was pare.g., in Ref. 4. As is known, the light of this laser in the
tially studied by Ritsctet al! Here, however, we discuss not saturation regime is purely Poisson. The explicit expression
only the intracavity situation but also the aspects of observfor éo in the diagonal representation can be found in Ref. 5.
ing such phenomena, and we will show that the result&We call this the case of Poisson excitation. The second ver-
strongly depend on how the laser is excited. Two physicakion, sub-Poisson excitation, can easily be studied theoreti-

situation will be examined: when the exciting laser iscally if in the first version we replacg, by S,—S2/2 (see
“oblivious” of the exciting laser(weak laser couplingand  Ref, 2.

when reciprocal action is very importafsitrong coupling Although calculatingS, is one of the main problems of

K T_O descrl_be t?e SLat'SJ'CaI _propertl_es (;f E“S'?g Wef_uslg th"E’nis theory, since it is a purely theoretical one and contains
Inetic equation for the density matrix of the laser fie cumbersome calculations, we place it in the Appendix. Here

generated by the laser under investigation and the laser ﬁeWe use the formulas from the Appendix and identify only the
of the exciting laser, assuming that they are of equal status iFhain steps that must be takésee the Appendjx

the theory. Usually the exciting field is assumed fixed. In our As the first step, we write the fairly obvious equation for

approach, however, we take into account the nonclassic . A . i
nature of the exciting field and the reciprocal effect of the{#]e density matr.|>F(t) of twq-mode lasingof the laser field
nd the pump fieldand a single atom, whose energy level

excited laser on the exciting laser, a characteristic effect i X . : ) . i
structure with allowance for atomic relaxations is depicted in
three-level schemes.

To specify the basic kinetic equation, we must assumeFig. 2. Then in this equation we pass to the diagonal Glauber
pectly . q ' : representation, i.e., the equation for the density matrix
that the atomic variables vary much more rapidly than the. , L : )
field variables. This standard requirement of kinetic theory™ (@o,@1,t). This matrix is still an operator in relation to
can be satisfied under lasing conditions by assuming that tH&omic variables. The convenience of using the diagonal rep-
optical cavities of both lasers are high-cavities. If this resentation lies, in particular, in the fact that the equation

condition is met, we can write the desired kinetic equation irfXPliCitly acquires terms responsible for the quantization of
the form the electromagnetic field. The terms can be separated from

the “classical” part(i.e., classical in relation to the fieldy
a very simple criterion: these are terms with derivatives with
respect to the complex-valued amplitudes of the field, and by

4.1. The general form of the basic kinetic equation
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discarding them we arrive at an equation that describes th@hase differencesTherefore, in a theoretical discussion it
behavior of a single atortsee Egs(1)) in external classical is convenient to shift from the complex-valued amplitudes
fields with the amplitudes and a;. (j=0,1) to the polar coordinates; and ¢;:

In the next step we factorize the density matrix, i.e., . .
write F=op+ 7, whereo(t) is the density matrix describ- o =u explie)), =01 (18
ing the behavior of a single atom in two external “classical At this point we make an assumption that is common in
fields” with the amplitudesa and a;; p(ag,aq,t) is the  problems of statistical laser physics. We assume that photon
density matrix of the two-mode laser field; anda,,a,,t) ~ Numbers in the exciting and excited lasers in steady-state
is the matrix describing the correlations between the atont2Sing conditions fluctuate only slightly near their semiclas-
and the laser fields. sical steady-state values:

If we combine the initial equation for the density matrix u=n,+s;, n>g. (19)

ﬁ(ao,al,t) of a single atom and two laser fields and the o . . -,

: . . ~ . Of course, this is possible only under physical conditions
equation for the_ atomic densr[y' matrkx,A we ?mve al & gych that there is a large buildup of photons in the cavity.
system of equations for the matricesand = (which depend  The semiclassical solutions for can be found in Eqg13)
on o as a parametgrSolving the equation forr, we find  and(14).
this quantity as a function gb. Inserting the result in the Bearing in mind the semiclassical solutions and the re-
equation forp, we arrive at a closed equation that describessults obtained in the Appendix, we can write the kinetic
the behavior of only the field matrix density. A possible ap-equation for the photon matrix density
proach to this problem is to adopt the so-called kinetic ap-
proximation. This approximation assumes that the matter— P(SOuslat):f fp(so,qoo,sl,@l,t) deodes, (20
field correlation time is much shorter than the relaxation time
of the field variables. Here the correlation time is the periodin the form
of revolution of the atom over the levels due to the interac-
tion with the pump and laser fields and due to incoherent
processes. On the other hand, the relaxation time is the pho-
ton lifetime in the optical cavitythis is common practice in 5 7
lase.ll’_r?roplemb L . : . . +1'y ——(&1—8oeg)p+ Do _P2

e kinetic approximation makes it possible, in solving deq

J d
&—tp(so,sl,t)=F0 E(So_ 0181)p

€o
the equations for the atomic density mateixand the corre- ) ,
lation matrix 7, to write only the steady-state solutions. This +D, a_p o1 il +{--}. (21
is quite obvious when we are dealing with purely atomic asi deg dey

motion, as in the equation far, since this motion is the v gee that the fluctuations of the exciting field affect the
fastest and the atom need only a short time to reach thg, v ations of the laser fieltdue to linear coupling, given
steady state. The situation with the equation 4ofs some- by the coefficien®,), which was to be expected. But there is
what more complicated, since it incorporates the atomic mog|so a reciprocal effectthe coefficients;), which stems
tion and the field motion. Here, however, we can use thgrom the behavior of a three-level scheme, in which the ab-
adiabatic approximation, when in the first stage we simplysorption coefficient in the excitation channel depends on the
ignore the variation of field variables, seek the steady statgyser field(5). Here by{- - -} we have denoted the entire set
solution of the problem, and then allow for the temporalof higher-order derivatives with respect 4o
variations of the field variables in this steady-state solution.  Fjrst we write the coefficients in the inversionless ap-
The transition to Steady-state equations transforms thsroximation, which do not depend on the type of exciting
system of differential equations into a system of algebraiqgger:
equation, which can be solved fairly easily. This scheme _
makes it possible to obtain the explicit dependenee . _ 1 2htl o o 11t ralvs
~ ~ . . . 1 1; -~ ’ 1¢0 ’ 0¢1 1 : ’
=m(p,0), i.e., the explicit expression for the rate of the i+l 7 +1 I+1
variation of the density matrix of the laser field due to the S (22)
interaction with the single atom. _ _ Dy=— ki, Doj=Kqni— Y3y Do=TogNo.
Finally, we must allow for the presence in the cavity of Ip+1
Ny s_tatisticallly independent id(_antical atc_)ms. Tq do this WeThese formulas can be used for any type of exciting laser,
mult'lply the_ mcre_ment qf the field density matrixdue to  \ynich is important because in future they will permit us to
the interaction with a single atom by;. As a result, we ;56 this simple basis to study the cascade scheme. The type
obtainp as a function op, i.e., the desired development of of exciting laser is determined by the values of the coeffi-
the field matrix due to the medium—field interaction. cientsI'y and &, whereTl', is the decay rate of photon fluc-
tuations in exciting lasingin the presence of an excited la-
sel, and§, is the Mandel parameter, which characterizes the
The field characteristics usually discussed in laser physintracavity photon fluctuations of the exciting lagén the
ics are the amplitudesthe photon numbefsand phases absence of an excited lager

4.2. The approximation of small photon fluctuations



JETP 87 (6), December 1998 Yu. M. Golubev and G. R. Ershov 1073

Here we have,=0 for excitation by the light of a Pois- Clearly at é,=—1/2 there can be no one-time cross-
son laser in the saturation regime afyF= —1/2 for excita-  correlation, and, 1/2.
tion by the light of a sub-Poisson laser in the saturation re-  Solving the system of equatioii24) and(25), we arrive
gime. For both caseBy= ky+ . at an explicit expression for the photocurrent spectrum:

i(2
w

14
shot

) I3+ 0?—Tok(1+ &)

M (2T o= 1) — 022+ AT+ 2K1)%
(29

5. PHOTODETECTION OF LASER LIGHT

5.1. Equations for the average quantities

(2)

Iiu =lsho

It should be recalled that in the cases of Poisson and sub-
When detecting the light emitted by a single-mode laserpoisson excitation in the saturation regirig= o+ , and
we can write the photocurrent spectrum as follows: &, is equal to 0 and 1/2, respectively.
2k, o Below we analyze this expression in the two most inter-
<1+ — Ref £1(0)e4(t) expliwt) dt], esting limits: weak and strong coupling of the exciting and
N1 0 excited lasers. Since the intracavity volumes of the two la-
(23 sers intersect in our treatment, the medium of the excited
whereigpotis shot noise. Thus, we must find an explicit rep- laser introduces additional resonator losses in the exciting
resentation for the average quantitys(t). The basic ki- laser. Thus, the total field losses in the cavity are determined
netic equation21) makes it possible, using standard proce-by «q+ «. If
dures, to write the following system of equations:

(30

this additional effect can be ignored, assuming that there is
no way in which the lasing of the exciting laser depends on
that of the excited laser. We call the inequali8) the con-
dition for weak laser coupling. At the same time it is clear

Th luti ¢ thi d q he initial di that the opposite case of strong coupling is also real. Here
_ e solutions of this system depen _(2)n the initial condi~p e main fraction of the light from the exciting laser is used
tions, i.e., on the expressions fefey andej in steady-state

] - - < to excite the active medium of the excited laser.
conditions. To find these steady-state expressions we intro-

duce an additional system of equations, which also follow:
from the basic kinetic equation:

Ko> K,

g181(1)=—T'1 £181(1) +T'1 6 £180(1),

(24)

g180(t)=—Tg e18¢(1) + 07 &184(1) .

%.2. Weak laser coupling
If the condition(30) holds, formula(29) becomes

i(2
w

e2=— 2T, £24 2T,y g1+ 2D, =0,

2 2
fo _ 2 IN't+ow
(2) 1 .
it [2T gk1— 0212+ (T + 2k1)?

We see first that in the limit of weak coupling of the exciting
. and excited lasers, the photocurrent spectrum does not de-
S_g: _2F08_3+ 2148, £9e1+2Dy=0. pend on the Mandel parametgy in the exciting laser. It is
entirely unimportant whether the excitation id Poisson, sub-
Note that Eqs(_24) and (2&_3) foII'ow directly from (21), and  pojsson, or even super-Poisson. This, in particular, means
the terms{. - - } incorporating higher-order derivatives make {hat we can apply a simplified version of the theory. We need
no actual contribution. _ o not consider the laser light and the pump light as two sub-
Next we use Eqs(22) in the saturation regime, i.e., Un- gystems equal in status and write the equation for the density
der the condition ;> 1, but leave the coefficients, andé,  matrix of both laser fields. When the laser coupling is weak,
unspecified: we can always introduce the pump field as-aumber into
the corresponding interaction Hamiltonian. For any type of
exciting laser, the physical picture in the laser wave is al-
ways the same and coincides with that in Poisson excitation.
Secondly, maximum suppression of shot noise is at-
tained, as usual, at zero frequency. The extent of this sup-

(31)

goe1=—(Fo+T1)epe+ 1ﬂ0518_§+r150t‘3_(2)+|301: 0,
(25

—2kKq 8§+ KOgEpge1— k1N1=0,
—(Fg+2kq)eger+ K18i+ ng+ kN1=0, (26)

_FO 8(2)"1' K18081+ Fo§0n0=0.

The solution of this system of algebraic equations can b
written in the form

_ 2K1F0n1(§0+ 1/2)
fof1™ (ZFO_K)(F0+2K1)’ (27)
n Fony(&p+1/2
- xI'on1 (&g ) (28)

2 (2T = k) (Tg+2ky) "

Wheregl:s_flnl is the statistical Mandel parameter.

ression does not depend on the type of excitation, and the
elative depth of the dip reaches 1/2.

5.3. Strong laser coupling

As we have just seen, in weak laser coupling the statis-

tical properties of the light from the exciting laser have no
effect on the statistical properties of the light from the ex-
cited laser. This is quite natural, since only a small fraction
of the initial radiation participates in the excitation process,
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and this radiation does not retain the properties of all thewith equally complete suppression of noise at zero fre-
light. Hence our interest in the opposite case of strong lasejquency. If the laser coupling is strong bwit€ k4, both fac-

coupling,
(32)

Ko<K,

tors act simultaneously, and Eq&8) and (40) have two
corresponding frequency-dependent terms. The first term is
the same in(38) and (40): it is related to the stabilizing

in which the statistical properties of the exciting radiation areproperties of the three-level medium and doubly suppresses

assumed to affect lasing. Then instead(2®) we have the
following:

2

i@ 2

" 2K§ / §§)0)K2+X2, §BO)K2+X
- 2
n

= (33
2 2 —x2 | Wl w?+X

Herex.. stand for the roots of the biquadratic equation

shot noise at zero frequency. The second témmore pre-
cisely, its sign depends on whether the exciting radiation of
Poisson(i.e., destabilizingor sub-Poissorti.e., stabilizing.

In the first case the stabilizing factor of the medium is bal-
anced to a great extent by the stochasticity of the excitation,
so that at zero frequency there is no suppression of shot
noise. In the second case both factors act in unison, and shot

(k1 +X2)2—=x%(k+2K,)%=0. (34) noise at zero frequency is completely suppressed.
The roots are the simplest in two limits:
6. A CASCADE SCHEME CONSISTING OF N STRONGLY
X2 =K% Xi=KkZ, K>k, (35)  COUPLED LASERS
x2 :4K§, X2+ — K2/4, K<K. (36) 6.1. The basic kinetic equation for coherent fields

In the preceding sections we established that the quan-
tum properties of the exciting laser may be transferred to the
excited laser in the event of strong coupling. Two mecha-

Let us write separate formulas for excitation by light from
Poisson and sub-Poisson lasers.

We have X ) . e
nisms play an important role in specifying the quantum prop-
|502) erties of three-level atom lasing: the regularizing role of the
i(T)Zl’ K> Ky, (37) laser medium proper, which even under Poisson excitation
shot leads to sub-Poisson lasing, and the regularizing role of the
i(2) 1 4 1 k¥4 excitation proper, if the excitation is done by sub-Poisson
=175 3T o, KK (38) light. In th|s'connec't|on we study a cham bf three-level
I shot w t4ky £ 0"+ k4 lasers in which, obviously, both mechanisms act.
in the case of Poisson excitation, and The mathematics of this problem is not simple. The
problem is that in view of the properties of three-level
i2 K3 atomic structures, each laser in the cascade affects not only
i<T>_ - w2t 2 K> Ky, (39 the next laser in the chain but also the preceding one. This
shot ! happen only under strong-coupling conditions, but it is pre-
,(wz) 1 4K% 1 K24 cisely t_his case _that we are intere§t§d(éz$ the fore_gqing
153 275 2 o, K<K (40 reasoning showsf we want the statlstlca! charac.terlstlcs tq
I'shot w+4k] o+ k4 improve. Hence we must, at least in principle, in a certain

in the case of sub-Poisson excitation. These results can [f€nse formulate the theory anew and write a kinetic equation
understood by reasoning in the following manner. In the mefor the density matrix oN laser fields. Fortunately, there is
dium of three-level atoms excited by external radiation therd'© need to go back to the first principles. The actual equation
are two mechanisms that control the photon flux in Iasing.i” the approximation of small photon fluctuations in each
One is related to the properties of the medium and to thdaser can be written on the bas_is of very general principles of
occurrence of negative feedback in the medium, and th€ur understanding of the physics of the problem:

other is related to the exciting radiation. Here the first

mechanism has indeed a stabilizing effect, while the role OB_P({Si}at)

the second differs depends on the ratios of the parameters o%

the problem. For instance, if the coupling of the exciting and

excited lasers is weak, the statistical properties of the excit- =155 . N I 5_&(87 Sii+1€i+17 Gii-18i-1)p

ing radiation are unimportant. They become important for

regularizing the photon flux in lasing only when the coupling p p

is strong. The above formulas show that this factor is pre- +i—1223 | P Q""Di—li Go L0 (41)

dominant for very strong coupling, i.e., whea is much !

larger not only thane, but also thang,. In this case the role Here the coefficients;; _, allow for the effect of the pre-

of the stabilizing factor of the medium proper becomes un-<ceding laser on the next laséransformation of the photon

important and the statistics of the laser simply coincides witHluctuations in the lasing of the exciting laser into the lasing

that of the exciting field. of the excited laser in the process of exciting the active me-
We see that the result of Poisson excitation is Poissodium), the coefficientss; ;. ; allow for the effect of the next

lasing, and the result of sub-Poisson excitation with completéaser on the preceding laséransformation of the photon

suppression of noise at zero frequency is sub-Poisson lasirflyictuations in the lasing of the excited laser into the lasing
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TABLE I.
N

1 2 3 N—-1 N
r, 2K, 2(k1+ K19) 2(k1+ K12) . 2(k1+ K19) 2(k1+ K19)
r, - 2k, 2(ko+ Ko3) cee 2(kot K23 2(kot K23
I's - - 2k e 2(Kg+ K3) 2(Kg+ K3s)
'y - - - - 2k
161, - K2 Kot Koz K2t Ka3 Kot Ko
I8 - - K3 K3t K3 K3t K3
Fn-—10n-1n - - - - KN
I8 - K12 K12 K12 K12
In-16n-1n-2 - - - KN-2N-1 KN-2 N-1
I\énn-1 - - - - KN-1N

of the exciting laser via the nonlinear absorption coefficient~inally, the expressions for coefficients of the second deriva-
of the exciting ligh}. In the absence of other lasers, the co-tives can easily be written using E@1):
efficientsI’; have the physical meaning of the rate of decay

of photon fluctuations in théth laser. Finally, the coeffi- Di==kii+ai,  Di-gi=Kiieahi,

cientsD; andD; , ; specify the sources of the corresponding i=1,2,3... N—1, (45)
self-correlations and correlations between the neighboring

lasers in the cascade. Dn=—&nNn,  Dn-ain=&nNN-

Recall that earlier we dealt with important parameters in
our discussions: the rate of absorption of the exciting light
in the medium of the excited laser, and the resonant widthg , Suppression of quantum noise in the cascade scheme
Ko and x4 of the exciting and excited lasers. Now we have

many lasers, and the number of parameters increases accord- NOw that the theory at the kinetic-equation level has
ingly. We introduce the following notation:x;_,;, Peen formulated, we can do specific calculations. First we

i=1,2,...N, is the rate of absorption of the light of the Use Ed.(41) to write an equation for the one-time averages
(i—1)st laser in the active medium of thth laser, andc; is ~ €i€k- The simplest way to do this is to begin by writing the
the resonant width of thih laser. equations consecutively faok=1, N=2, N=3, etc., and

Let us discuss the structure of the coefficients in@4)  then attempt to discern a pattern. Analyzing these equations,
on the basis of Eq21) written in the inversionless approxi- We arrive at the conclusion that fdd arbitrary all mixed

mation. We can guess the general structure of the coefficienfy/erages vanish. This does not mean, however, that there are
if we first write them for the case whei¢=1, then forN no correlations between the photon fluctuations of different

=2,N=3 and so on. lasers. Any laser in the chain reacts to the photon fluctuations
To understand the structure of the coefficieitss, _; ;, in ne_ighboring lasers qnly after a finite time has elapsed. The
and &,;_,, we build a table. In Table | the second column solutions for the one-time averages are

consists of these coefficients for the cdse 1, the third e=0. i+k &2
column consists of the coefficients for the ca¢e 2, etc., Figk= Y 8
and, finally, the last column consists of the coefficients forHere we must take into account the semiclassical relation-
the case of an arbitrary numbhrof lasers. We assume that ships that exist between laser parameters:

within each pair in the chain the lasers are strongly coupled,

——n/2. (46)

Kii+1> k. We can then write the general expressions Mi-1Ki—1i = Niki, “47)
o these can also be derived on the basis of our previous dis-
Siv1= 2'“'*2, i=1,23... N—1, cussion.
Kii+1 Thus, the statistical Mandel parameter of each laser in
KN (42 the cascade is the samg= —1/2. In this sense the situation
5N,1N=m, Onn+e1=0. for each laser does not change when the number of lasers

changes and, in particular, in comparison to the case where
The coefficientss;, and dy; are linked by the following re- N=1, i.e., when the laser is not in a cascade but is single and
lationships: is excited by external Poisson light.
48,8q=1, 1 .k=1,23...N, 43) We will not attempt to V\_/rite the formL_JIa for the p_hoto-_
current spectrum when the light of the entire cascade is being
I'i=2kij+1, 1=1,23... N-1, I'y=2«y. (44 detected. Mathematically the problem is complicated, and for
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our analysis it is sufficient to know the size of the dip in the

shot noise at zero frequency. We now turn to the calculation

of this quantity.

Yu. M. Golubev and G. R. Ershov

F=—i[V,F]-R.f. (58)

The interaction Hamiltonian consists of two terms, which

On the basis of this reasoning we can immediately writejetermine the interaction of the atom with the pump field and

the final expressions fak=1 andN=2:
(48)

Now we analyze the case &f=3. Using the basic kinetic
equation(41), we can write the following system of equa-
tions:

e3e3(t)=—T'3e385(t) +'3032838,(1) =0,

(49)
g3ex(t)= Tz ezex(t) + T 0538385(t)
+F25218381(t):0, (50)
eze1(t)=—T1eze (t) +T1010838,(1)=0. (51
We introduce Laplace transforms,
Xik(@) = J &i(0)ex(t) expliwt) dt, (52)
0
and putw=0 in the formulas:
— 5= —T'3Xa3t+ 383X, (53
0= — X3 S23Xa3t+ 921Xa1, (54
0= _X31+ 512X32. (55)

Clearly, X33= — (3/8)n3/ k3. Thus, forN=3 the noise level
at zero frequency is

iy 1
w=0
i(T) =1 N=3. (56)
shot
Longer cascades can be analyzed in a similar manner. As
result we get
i(2)
i 2o(N) 1
e R (57)
(2 N+1
shot

Thus, the use of a cascade scheme makes it possible
achieve the necessary level of suppression of shot noise.

The research was supported by the Russian Fund for

Fundamental ReseardiGrant No. 98-02-18129 INTAS—
RFBR(Grant No. 95-065% and the State Committee of
Higher Learning(Grant No. 95-0-5.4-66

APPENDIX DERIVATION OF THE BASIC KINETIC
EQUATION

with the laser field:

\‘/=igo<ao|3><1|—a$|1><3|>+igl<a1|3><2|—aI|2><3|>&59)

The action of the relaxation operaté, agrees with the
relaxation processésr with incoherent excitation processes
in Fig. 2.

A very common approach here is to fix the pump field in
the form of anc-number field. Then instead of the photon
creation and annihilation operatora% and ag, in (59 we
again write thec-numbersa§ and ag, where

alag) = ag| o). (60)

We now write Eq.(58) in the diagonal Glauber representa-
tion:

F=—i[V' F]-RyF +9:D:F +goDoF. (61)
Here the HamiltoniaV’ coincides with the Hamiltonia if
in the latter we replace the photon creation and annihilation
operators with the corresponding complex-valued field am-
plitudes. The action of the operators on derivatives with re-
spect to the complex-valued field amplitudes and in the final
analysis form the statistical properties of lasing, is deter-
mined by the equations

A d N J .

D,F= —2)(3|F+ —F|3)(2|, 62
1 aa1| )3 St 13)(2] (62
DF= 4 |1)(3|F + 4 FI3)(1] (63)
o dag dag '

1.2. Factorization of the density matri¥ve now factor-

%e the density matrif:

ize
F=op+m. (64)

Here o(t) is the density matrix of a single atom in two
lassical external fields with amplitudeg, and «;. The
%uation for this density matrix is

o=—i[V",o]-Ryo (65)
The matrix
plag,a1,t)=TraF (ag,ay,t) (66)

is the density matrix of the laser field and the pump field in
the diagonal representation. It is for this matrix that we have

set out to construct an equation. The matriallows for the

1. Deriving the operator correlations between the atom and the lasing and pump

1.1. The initial equation in the diagonal representation. fields. Clearly, Tgr=0. .
Let us write the equation for the matrix density of the two- ~ Bearing all this in mind, instead of E¢61) we derive a
mode lasing fieldthe laser field and the pump figldnd a  System of equations for the matricesand p with the den-
single three-level atom: sity matrix o entering as a parameter:
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L= = i LS Y U UevitVy)
p=(91D1+9goDo)p+ 091 &T“lﬂéz"' dat o3 T T iy 2( 1~ Uzt VitV
7 7 —Eul(l—uzwvz)}l)—l,
0| 5 Tat T3l (67) Y2
ga 1
A . al A a . — (723:__i__Vz(l_Ul_U2+V1+V2)
m=—i[V', 7]~ Ry +[g1(D1—Dy) s
A = e P Y3 _
+9o(Do—=Do)]op+gi[Dym—0Tr(Dym)] +zU2(_U1+V1)}D L
+9o[Dom— 0 Tra(Dom)]. (68 where we have introduced the notation
Here D:(l_Ul_ZUZ)(l_V1+V2)
+(Uy,—U)(1+V+2V,), (71
_ A J J
D,;=Tr(Dy0)=— 03+ 023, ~ 1= (1+ig)(y2+va)lvs
Jda * 7
! dey Ui=lo T+igtis ’
. . 72
— Ao~ D d U.=T lo— (1+i1)y3/(y2t v3) (72
DOZTr(DoU):r“OO'&L‘*’ aag 013 (69) 2 1 1+i0+il )
. _do(I+ig)(yat va)y3 B iolq
1.3. Steady-state solutions for the mawixHere we use 1= T+ig+is o Vo= T+ig+iy
what is known as the kinetic approximation, according to (73

which atomic variables vary much faster than the field vari-

ables, with the result that they reach a steady state for arighe dimensionless powers of the pump and laser fields can

instantaneous values of the field variables. For this to be tru ’e written as follows:

we must use higly optical cavities for the exciting and 02 02

. ) . . . . 0 . 1 ~ . Y2 o~ Y2
excited lasers. This guarantees that the field variables will 1o=—, l:ﬁ’ ig=ig—, I1=i1—. (74
vary fairly slowly. 73 LS & &

Two things can be done in the kinetic approximation we|n the inversionless approximatidi),
are using here. First, for the matrix elemeanig in Egs.(67) ' -
and (68) we can take the steady-state solutions of &). =1 il

Second, we can assume that the main temporal behavior of 1:i1+1 o, Up=- 1+iy’

the correlation matrixr is determined solely by the temporal ~ o

behavior of the matrixp, so that we are justified in seeking V,= - 'o ,= ol - (75)

the adiabatic solution of Eq68) by setting the time deriva- 1+iy’ 1+1y

tive of 7 to zero. The steady-state solutions for the atomic density matrix

Under steady-state conditions, E5) can be written in  jn the inversionless approximation can be written in the form
the form of an algebraic equation for the matrix elements ang) and (5).

can be solved fairly easily. The explicit expressions for the

: 1.4. Adiabatic representation of the operatet Now,
matrix elements are

when we have the explicit expressions for the steady-state
density matrix of the atom, the two equations foland T,
(67) and(68), are fully determined. As mentioned earlier, we

1 will use Eq. (68 to derive from it the explicitm=7 (p)
02225[—V1+V1U2—V2U1]D*1, dependence in the adiabatic appro.X|mat|on. '
Assume that the terms on the right-hand side of ()
with derivatives with respect to the complex-valued field am-
plitudes are small. Now it is possible to set up iteration series
in powers of these small quantities, i.e., we can write

o11=[1-U;—U,+V,+V;U,—V,U;]D 1,

1
033:5[—U1+V1U2—V2U1]D_1:

T12= ya(yo+ v3) i1ig where 7, obeys the equation
Y2t ¥3 mo=—i[V', ]~ Rayo. 77

X|Vy(Uy—=Vy)+Vy(1—Uy+V,) D1,

We always have the opportunity to define the initial state of
(70 a system consisting of the atom and the field as being statis-
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tically independent, i.e., we can pat=0 att=0. Then,
since Eq.(77) is homogeneouss, is zero at every subse-

guent moment and for the first iteratioQﬂl we have the
equation

m=—i[V',m]— IA?at;"l‘F91(61_51)[7'/3
+go(Do—Do)ap.

Every subsequent iteration has its own equation.
One must bear in mind the following. Since the iteration
series is set up as a series in powers of derivatives with

(78)

S33=

Solving the system of equatiorig9), we obtain

Yu. M. Golubev and G. R. Ershov
—01D1033-9oDoo33.

m11=—[Ug(1+V+2V,) +Vo(1-U;—2U,) DY,
U,) D4,
uplp-t,

m2=[Uo(2V1+Vy) + V(12U —

m33=[Ug(1—V1+V3)—Vo(Uy—

Qoo 1 ®2

Y2t 73 o

7T13:)\13 { U0V2(1+3V1+ 3V2)

Y3
respect to the complex-valued field amplitudes, the trunca- +y— UoU1(2+3V3) = VoV2(2-3U;—3U5)
tion of the series reduces to the problem of establishing how 2
important the higher-order derivatives are in the formation of 0% B
o ) : . +-2VoUq.(1-3U,) D7t
the statistical pattern of lasing. It is well known that if we are y, 071 2
dealing with fields that can be called classical, then we can .
be sure that it is enough to leave only the first iteration, _ ga” 1
which corresponds to a basic kinetic equation that contains T3~ Noat va i UoVa(1+3V1+3V7)
derivatives with respect to the complex-valued field ampli-
tudes of order no higher than the second. On the other hand, L UoU,(1—3Vy) +VoVa(2—3U;—3U,)
there is no reason why for nonclassical fields of the sub- Y2

Poisson or squeezed types we must limit ourselves to the
lowest-order derivatives. Actually, we must keep all the de-
rivatives, i.e., allow for the compete iteration seri@§).

We write Eq.(78) in terms of the matrix elements and HereU,, U,, V;, andV, are the same coefficients as before,
set the derivatives equal to zero: i.e., they are given by Eq$72) and (73). The new coeffi-
cients N\, Uy, and V, are related to the inhomogeneous
terms S, in the initial system of equations and can be ex-
pressed in terms of thg, as follows:

~ Y yu,(1-3Uy) D!
Y2

M13= — Y313~ Qo (33— m11) + Q107 mio+ S13=0,

T12= —

Y212~ Joag T3~ 911713+ S1,=0,
1 1
Tog=— (Y2t v3) Moz~ Q1] (33— ) )\12:7/_2 1+ig+is
+ oot Sp=0, (79 «|'s g1 S Joo
12— 13 ,
: +
Moo= 22T~ Qoo( 31+ 713) +S1:=0, vs Y2 Y3 83
: 0107 1
T33= — 27333+ Goao( T3t m31) N13= 5 Niot— Sy3,
+01(ay gt af ma) + S33=0
_ _ _ N _ 902 1 s,
This must be combined with the condition 237 yy AT gy T2
T+ Moot m33=0. (80)  and
The inhomogeneous terms have the form
U a Nzt ai \
5 02,ygs332(123 T\32)
S12=01| ~D1010+—5 013
oen + 2 ohat atha))
—( a ,
B 5 ) 2, @013t a0k
+ —Dgo1ot+—035], 84,
Jdo 00127 5 32 y +go()\+*)\) (84)
=" —a o .
B ) 0= " 5,g, o1t g, (@ohist aohs
~01D1013+ 90( D0013+(9T[O‘T33)’ Comparing Eqgs(67) and(15), we can write the desired op-
(81)  erator as follows:
Jd
Sy3= 91D10'23+& 10'33 90D 0023, :291N1 S L d
1 Ky \day 732 _ﬁaalc 723
S11=—091D1011+9goDo(1—014), 29Ny[ @ J
+ _’7731+_ ’7713 . (85)
S2=01D1(1— 052 — goD o022, k1 \dag dag
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In the inversionless approximation we have After passing to the diagonal representation we obtain
2
. C  yilya— d J 2 - i\ 9 d 71 31
Si=kig— 5 Tt o) =-— 1+ || —ap———af | + |1+ -—
UM ng (1+i,)2(1+1,)%\ dag "t gat P So 2\ 9a ™0 gap 217" 2y,
val Yo+ 2i 92 2
“ (1+3i )22(1+li ) dagiat’ (86) | < gt~ ! 1
1 1) 7F19% dag dag 14 7. aol?| 1+ 74 |l
where
. +{-} (89)
:291I0 (87) The terms{- - -} contain the higher-order derivatives with
Y3K1 respect to the complex-valued amplitudes. In terms of the
is what is known as the cooperative paramétke ratio of ~ Polar coordinatesi, and ¢ we have
the linear gain of the medium to the linear coefficient of 2
- - - Jd MU d 772U
losses in the cavily Sp=— —
dUo 1+ 7 Uo  Jud(1+ 7, up)?
2. Explicit form of the operator S
. ° . 72 1+ 7o f9
Here we follow the ideas of Refs. 2 and 5, according to T (90)
. 4U0 1+7m.ug &go
which 0
N i . I
Sy= 230 ay—apay— aoaS— 71(3038— apal)? JE-mail: yuri_golubev@pop.convey.ru
" -1 IH. Ritsch, M. A. M. Marte, and P. Zoller, Europhys. Lel9, 7 (1992.
x| 1+ (a0a0+ a0a0)+ 172 = (apay—agay)? 2Yu. M. Golubev and I. V. Sokolov, Zh. l&p. Teor. Fiz87, 408 (1984
4 - o [Sov. Phys. JETMO, 234 (1984].
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Experiments on the indire¢k-ray) irradiation of high-aspect-ratio capsul@gith a diameter-to-
thickness ratio~=900) filled with DT gas are performed on the Iskra-5 laser facility. It is

shown that all the characteristics measufeelutron yield, ion temperature, shell implosion time,

etc) are faithfully reproduced in calculations based on the one-dimensional Sijpektral
nonequilibrium diffusion of absorptigrprogram for nonequilibrium radiation gas dynamics. The
calculations provide an explanation for the experimentally detected generation of a smaller
number of neutrons in an experiment with a higher measured value for the ion temperature of DT
gas. © 1998 American Institute of Physids$1063-776(98)00612-X]

1. INTRODUCTION ences for performing experiments on the Iskra-5 facflity.
This paper presents the results of two experiments with

As the calculations a’?d _expe_rlmer_1ts_ described in Ref. these shells, which were performed according to the indirect
show, the system for the indirect irradiation of targets with a rive scheme on the Iskra-5 facilfyln one of them the

sph(_ancal ho_hlraum em_ployed In experiments m_the Iskra- diameter of the gold hohlraum wd3=2 mm, and in the
facility permits the achievement of nearly spherically sym- : = L .

. . I ; other it wasD=4 mm. The characteristic irradiation inten-
metric compression of the DT fuel within glass mlcroshells.sit of the inner surface of the hohlraum by laser ravs differs
It follows from the calculations that the characteristic valuein )tlhese experiments by a factor rouahl ey ual to 4yAccord-
of the irradiation nonuniformity with consideration of the . P y gnhly €q )
angular spread of the laser energy amounts to about 3"@
whenD/d=7, whereD andd are the diameter of the hohl-
raum and the shell, respectively.

However, experiments with shells of relatively large di-

ng absorption of laser radiation is the dominant mechanism
in the 4-mm hohlraum. In the 2-mm hohlraum the intensity
acting on the hohlraum surface lis=(5—7)x 10" W/cn?.

o : Therefore, the parameték?, which characterizes the non-
ameter P/d=2-3) would be of interest. Although such linearity of the interaction of the laser radiation with the

shells would be partially illuminated by laser radiation andplasma, is fairly high (n2~ 10 Wi/cn?- wm?). As a result,

the degree of symmetrization of x radiation with a compara- . X
. n appreciable portion of the energy from the laser corona
tively small gap between the hohlraum and the shell woul . . . .
. : Is carried off by fast ions having a velocity of5
be appreciably smaller than in the caseDdfd~7, we can

4 . . . X 10 cm/s. As the experiments with a magnesium hohlraum
attempt to achieve nearly spherically symmetric compression

of the DT fuel by employing a shell thickness that is appre_coatlng showed these ions can impart to the shell an energy

ciably smaller than the thickness which is heated during ans_ufflment for the generatlon_of_ about °L@eutrons durl_ng a
ngle pulse. Therefore, variation of the hohlraum diameter

x-ay pulse. As the experiments in Ref. 2 showed, the heategl> B 2o possible to shed additional light on the role of
thickness of glass in a hohlraum of diamef@r=2 mm is the fast ions

Adef=5—7pm. . - . This paper also includes a theoretical analysis of the ex-
Experiments with thin shells of millimeter diameter are . : ’
. ) : . perimental results and provides recommendations for devel-
also interesting from the standpoint of developing new meth® ~. .
: : . oping this area of research.
ods and improving the accuracy of tools for plasma diagnos-
tics. For example, an increase in the shell implosion time
permits improvement of the relative accuracy of the determi» expERIMENTAL SETUP, MEASUREMENT METHODS AND
nation of the time of neutron generation, which is importantpRINCIPAL RESULTS
for verifying several fine points in programs for calculating L p .  the | diat
the operation of targets. Two shells of diameter 0.8—0.9 mn§-1- Parameters of the laser radiation
with a wall thickness of=1um were prepared in the P. N. The total energy of the facility at the accelerator exit was

Lebedev Physics Institute of the Russian Academy of SciEs~9700 J (Enay =810 J) in the first experiment and

1063-7761/98/87(12)/7/$15.00 1080 © 1998 American Institute of Physics
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1, rel. units 1, rel. units

1.0 1.0

0.8¢ rel. units a 08¢ b

0.6f 0.6r FIG. 1. Form of the laser radiation pulse

L r and integral pulsea — experiment No. 1,

F 705=0.38 ns; b — experiment No. 2,

o 04 T05=0.37 ns.

0.21 0.2}

0 05 10 L5 20 25 30 0 05 10 15 20 25 30
L ns I, NS

Ex~10060 J (Ecay=840J) in the second experiment. 0.8—0.9 mm and a wall thickness of aboutfh, which was
The recorded form of the individual pulses is nearly Gaussfilled with a gaseous DT mixture to a pressuRyr
ian. ~3.5 atm. The microspheres were made at the P. N.

The divergence of the radiation in the channels is closd-€bedev Physics Institute of the Russian Academy of Sci-
to the nominal valuedy, g=<<10 % rad. The contrast of the €nces, and the hohlraums were made in the All-Russian
radiation in all the channels was fairly higkg=10°, kp Scientific-Research Institute of Experimental Physics.
=10°. As the experience gained during many years of re-
search indicates, at such a contrast level there is no self-
excitation of the accelerators and plasma does not form 08 3 piagnostics of the parameters of the action of laser
the inner surface of the target before the arrival of the mainagiation on a target
pulse. The accuracy of the transverse aiming at the target is
equal to =30 um, and the accuracy of the longitudinal
matching of the foci of the alignment and high-power radia-
tion is =100 um. The diameter of the narrow portions of the
laser beams is-100 gm.

The form of the total radiation pulse in all the channels
obtained by integrating the individual pulses with consider-
ation of the channel energy and the asynchronous arrival
the pulses at the target is shown in Fig. 1. The figure als
shows an energy buildup curve obtained by integrating th
total laser pulse.

The complex diagnostics instrumentation of the Iskra-5
facility was described in detail in Ref. 5. The main results of
the experiments, which are supplemented by features of the
measurement methods where necessary, are described below.
The main results of the experiments are listed in Table I.

The target images in ordinary x radiation were recorded

y a set of pinhole cameras: survey cameras for observing

e state of all six laser entrance holes and a pinhole camera
ior observing the state of the central microtarget. Figure 2
presents the x-ray images of the compressed region of the
central capsule observed through a laser entrance hole. It is
seen that in both experiments the x-ray luminescence of the
compressed region has an annular form with an intensity dip

The target consisted of a thin-walled spherical coppeiat the center. The diameter of the ring at the luminescence
hohlraum, whose inner surface is coated by a layer of goldntensity maximum is 250—26am in experiment No. 1 and
with a thickness of-1um and whose outer surface is coated 225—235um in experiment No. 2. In experiment No. 1 the
by bismuth to a thickness of 0.1-08n. The diameter of distribution of the intensity along the ring perimeter is mark-
the laser entrance holes was 0.6 mm in the hohlraum witkedly inhomogeneous. In experiment No. 2 the ring has an
D=2mm and 0.7 mm in the hohlraum with=4 mm. At  appreciably smaller width, and the distribution of the inten-
the center there was a glass microsphere with a diameter sity along the perimeter is more homogeneous.

2.2. Features of the target design

TABLE I. Main results of the experiments.

Experiment Dpon/Dn, D, ARg,  Por, E., Tyys Tyns N, Tor
No. mm am um atm J ns ns 10 kev
1 2/0.6 811 0.9 35 7300 #0.15 0.83:0.05 55 1

2 4/0.7 907 1.1 3.5 7500 1.45.05 1.16:0.05 0.6 3.2

@Notation: Dy, /Dy, — diameters of the hohlraum and the laser entrance hélgsARg, — diameter and
thickness of the glass microspheRy — pressure of DT ga$s, — laser radiation energy introduced into the
interaction chambery,, — delay of the onset of the generation of x radiation from the compressed core
relative to the onset of the generation of x radiation on the hohlraum wgalli— delay of the onset of the
generation of neutrons relative to the onset of the generation of x radiation on the hohlrauid waillitegral
neutron yield; Tyt — temperature of the DT fuel determined by the time-of-flight method.
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FIG. 2. X-ray images of the compressed regiar— experiment No. 1, filter consisting of 10n of PPK+5.m of Ti; b — experiment No. 2, filter consisting
of 10 um of CGgHgCl,.

The implosion time of the shells was determined from athe leading edge of the pulse accompanying compression of
time scan of the x-ray image of the region where the centrathe fuel in the first experiment leads to an appreciable in-
capsule is located in the photon energy rahge-4 keV on  crease in the measurement error fgt,. In the second ex-
an x-ray chronograph Figure 3 presents the results of this periment the value of,, is somewhat larger, in agreement
procedure in the present experiments. The time scan of theith the decrease in the energy supplied to the capsule as a
capsule luminescence clearly displays two maxima. One coresult of the increase in the hohlraum diameter.
responds to the x-ray luminescence of the hohlraum, and the The integral neutron yield was measured using the bat-
other maximum appears as a result of compressing and hedéry of methods described in Ref. 5. The measured values of
ing the fuel. The time interval between these pulses charadhe neutron yield in the experiments performed are also listed
terizes the compression timg,,,, which is listed in Table I. in Table I.

The values ofr,, were obtained by linearly approximating Figure 4 presents the result of recording a neutron pulse
the leading edges of the pulses to the point of intersectioitime-of-flight methodl using a detector positioned at a dis-

with the time axis and calculating the corresponding delaytance of 16.7 m. The figure also presents calculated signals
from these points. The significantly discontinuous form offor an assigned ion temperature. It is seen that the ion tem-

a b
z, rel. units

FIG. 3. Results of treatment of chrono-

1.5 1 grams of the x-ray luminescence of the
central capsutea — experiment No. 1;
b — experiment No. 2.

104

05

| ]
a 1 2 ¢ns
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1.0r 1.0} b
osk 0.8F FIG. 4. Numerical plots of oscillograms ob-
A\ T..=32keV tained using the time-of-flight method at a dis-
0.6r 4 Tyr=1keV | 06} / ° tance of 16.7 m for experiments No(&) and
0.4 0.4 ) No. 2 (b) (solid curve$ and theoretical signal
021 0.2k /J calculated with allowance for the transient func-
‘O . tion of the detectokdashed curvesfor the op-

322 324 326 328 330 332 322 324 326 328 330 332 timal fon temperature of DT gas.

5L ns L ns

perature is higher in experiment No. 2 with a lower neutronreal three-dimensional geometry of the laser beams and the
yield. laser entrance holes, as well as the absorption and repeated

The delay between the onset of the generation of x rareflection of laser radiation within the hohlraum cavity of the
diation and the time of the production of thermonuclear neutarget. It was assumed that the laser radiation is absorbed
trons 7, was determined using a neutron-radiation detectoaccording to an inverse bremsstrahlung absorption mecha-
based on an SPPD11-0p-i—n silicon semiconductor nism with an absorption coefficiedd,=k,cosy (y is the
diode’ A polyethylene converter was mounted on the frontangle of incidence of the radiation onto the surfaaed k,
surface of the diode to improve the neutron detection effi=0.5. The calculations were performed under the assump-
ciency. The detector was placed in lead shielding and posiion of constancy of the shape of the reflecting surface during
tioned at a distance of about 15 cm from the target. If thehe action of the laser pulse and for the idealized case of the
detector is positioned closer to the target, the rise time of thabsence of any imbalance of the energy of the laser radiation
transient characteristic of the SPPD11-02 diode does not pein different channels.
mit direct measurement of the form of the neutron pulse or Because of the large relativgo the cavity diameter
its separation from the x-ray pulse. Therefore, the leadliameter in experiment No. 1, the surface of the capsule with
shielding of the detector was selected so that any hard BT gas was partially in the propagation path of the laser
radiation would be essentially completely suppressed, anchdiation. The distribution of the laser absorption on the cap-
the output signal of a vacuum-tube x-ray diode which detectsule surface obtained in the calculation is shown in Fig. 6a.
x radiation with a photon energy in the vicinity dfv As can be seen in the figure presented, the bulk of the
~1.5 keV served as the time mark. The signals from thdaser absorption on the capsule surface occurs in regions
vacuum-tube x-ray diode and tie-i—n diode were recorded where the laser beams were tangent to the capsule surface.
in one ray of an SRG-7 oscillograph. The valuergf was  The percentage of absorption of the laser radiation by the
determined by subtracting the time delay of the recordingcapsule surface in this experiment was equal to 2.9% of the
schemet emeand the difference between the times of pas-laser energy introduced into the target cavifye compara-
sage of photons and neutrons over the distance from the tatively low percentage of the radiated energy absorbed by the
get to the detectat from the time intervat ,,, between the capsule is attributed to the large characteristic values of the
x-ray and neutron pulses determined from the oscillogram: angle of incidencey of the radiation onto the capsule surface

;o—t_t ¢ and, therefor_e, to the_s_mall_values of the !nverse bremsstrah-

= tyn - Sscheme TR lung absorption coefficient in the calculations

Figure 5 shows the oscillogram recorded in experiment  Estimates of the nonuniformity of the x irradiation of the
No. 1. As can be seen in Fig. 5, the semiconductor diodeentral capsule with DT gas were performed for the geom-
detects not only neutron radiation, but also hard x radiationetry of the introduction of laser radiation into the hohlraum
which partially passed through the detector shielding. In thecorresponding to the experiment. The flux density of the x
second experiment the yield of x radiation was apparentlyadiation onto the surface of the hohlraum cavity was deter-
reduced so much that it was below the detection threshold
and was not observed on the oscillogram. The amplitude of
the neutron pulse was diminished by a factor of 10 in experi-
ment No. 2. The recorded values of the delay time of the 1, rel. units

generation of neutron radiation relative to x radiation were
7,n=0.83-0.05 ns in experiment No. 1 and,,=1.10 3
+0.05 ns in experiment No. 2. [
2_
3. DISCUSSION AND THEORETICAL ANALYSIS OF THE i
EXPERIMENTAL RESULTS 1
3.1. X-irradiation uniformity
0
Let us begin the discussion with estimates of the nonuni- 4ns

formity of the x Irradl.atlon of the Central.ca_pSUIe containing FIG. 5. Oscillogram of the output of the device for recording the time of the
DT gas. The absorption of the laser rad|qt|0n was calculategeneration of neutron radiatiofexperiment No. & 1 — reference;2 —
by the Monte Carlo method. The calculation allowed for thepulse of hard x radiatior8 — neutron pulse.
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FIG. 6. Normalized distributions of laser absorpti@) and x-ray radiation fieldb) on the surface of the central capsule.

mined from the distribution of the absorbed laser energy ommplitudesy, = ‘/Elmal*m of the harmonics with a given or-
the inner surface of the hohlraum on the basis of the energpyital angular momenturhin the expansion of the normalized

balance relations and was written in the form distribution T,=1/||1|| of the x radiation impinging on the
S(6,0)=A1Q.(8,¢0)+AQ,, capsule surface.

whereQ, (6, ¢) is the absorbed laser radiation intensity at a
given point on the inner surface of the target cav@y,is the ~ 3.2. Calculations of target operation
mean absorbed laser radiation intensity, and the coefficients The theoretical analysis was performed using the one-

A; andA; are expressed in terms of the albedof the X gimensional SNDAspectral nonequilibrium diffusion of ab-
radiation, the conversion coefficient of the laser rad'at'onsorptior) program for nonequilibrium radiation gas
into primary x radiationn, and the relative area of the laser dynamicsf? The parameters of the targets and the laser pulse
entrance holeg and equal assigned in the calculations corresponded to the experimental
a(1-0.58) values.

m . The following physical processes were taken into ac-

count in the calculations: the inverse bremsstrahlung absorp-
The influence of the central capsule on the formation of Xjon of laser radiation on the inner surface of the hohlraum;
radiation on the hohlraum walls was neglected. The degrege repeated reflection and escape of laser radiation through
of this influence can be estimated by the characteristic valughe entrance holes; the nonequilibrium, nonstationary kinet-
of the solid angle within which the central capsule can becs of the ionization of the higl- plasma in the mean-ion

seen from 2the hohlraum  surface, i.e. by a quantityapproximatior?, the generation, absorption, and transmission
~(Dsh/Dhon)“- The results of the calculation of the nonuni- of x radiation (with allowance for the escape of part of it

formity of the field of x radiation on the surface of the central through the laser entrance holds the spectral diffusion

capsule are presented in Fig. 6b. approximation; electron and ion thermal conductivity;
The values obtained for the maximumeq(,=|lmax  electron-ion relaxation; and neutron generation. All the cal-
—lminl/21) and rms nonuniformityas well as the losses of culations were performed without allowance for the influ-
laser radiation energy in the holes due to repeated internance of “fast” ions accelerated in the laser corona on the
reflection are listed in Table Il. This table also presents thecompression dynamics of the central target, i.e., it was as-

A;=051+a)ny, A,=an(l-pB) 0.5+

TABLE II. Nonuniformity of the x irradiation of the central capsule.

Experiment E;, Eg, 5 Py Py Py 3

€max:  E€ms» Y1 Y2 Y3 Ya Vs
No. % % % %
1 41 2.9 10 50 15104 1.2x102 3.7x10°2 3.1x102% 3.4x10°°
2 21 0.028 5.2 2.9 1¥10° 1.7x10°2 23x102 3.6x10°° 1.5x10°°

#Notation: E, ,Eg, — fractions of the laser radiation energy escaping through the entrance holes and absorbed
by the shell(as percentages of the radiation introduced into the targgf, — maximum nonuniformityg ;s

— rms nonuniformity:y, — amplitudes of the expansion of the normalized distribution of the x radiation field
on the surface of the central capsule in spherical harmonics.
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TABLE Ill. Results of the calculations of target operation.

Experiment  Egp, T, E,, tn s N, Tor,
No. kJ Kabs eV kJ ns SN Simax 10° keV

462 063 195 179 0.8989 30 40 3.85.0 1.51.0)
2 586 078 144 074 1051 14 26 058050 2.53.0

®Notation: Ey,s— laser radiation energy absorbed within the hohlralg, — absorption coefficient], —
maximum effective temperature of the radiation within the hohlraipy— energy of the x radiation escaping
through the laser entrance holég,— time of the generation of the neutron pulse relative to the maximum of
the laser pulsedy — compression ratio of DT gas at the time of generation of the neutron pllge—
maximum compression ratio. The experimental values,oN, and Tp; are also presented in the table in
parentheses.

sumed that compression of the glass microtarget was effectattops rapidly, and essentially no additional neutron genera-
under the action of x radiation generated by the hohlrauntion occurs at the time of final compression. As a whole,
walls and the gold plasma moving toward the center of thesatisfactory agreement is observed between the calculated
hohlraum. and experimental results with respect to the absolute neutron
The main results of the calculations are presented ityield, its generation time, and the gas temperature.
Table Ill. Figure 7 show&-t diagrams of the motion of the It can be concluded on the basis of the calculated data
boundary between the gas and glass, as well as the laser apaesented that, despite the decrease in the neutron yield by an
neutron pulses obtained in the calculations. It is noteworthyrder of magnitude in experiment No. 2 in comparison to
that neutron generation takes place long before the achievexperiment No. 1(see Table), the gas temperature deter-
ment of maximum compression of DT gas in experimentmined from the neutron spectrum recorded by the time-of-
No. 2. Figure 8 shows the calculated distributions of the iorflight method can be significantly higher. This is because
temperature of the gas at moments in time corresponding toeutron generation occurs in a small part of the DT fuel in
the generation of half of the neutron yield. It can be seen thathe second experiment. Thus, the “contradiction” observed
the gas temperature is essentially uniform throughout thén Table I, where the lower neutron yield in experiment No.
volume in the calculation of experiment No. 1, while the 2 corresponds to a higher ion temperature, can be under-
distribution for experiment No. 2 is extremely inhomoge- stood. Such good agreement between the experimental and
neous. An analysis of the results of the calculation showedalculated data is natural for experiment No. 2, in which the
that in the case of experiment N& a similar temperature mean intensity of the radiation impinging on the hohlraum is
distribution appears at a moment in time close to the momerity=E, /7D?7=4x 10'® W/cn? and, therefore, the role of
of focusing of the first shock wave at the capsule center. Irthe nonlinear effects in the plasma is negligibly small. For
this case about feutrons are generated. However, the gaexperiment No. 1 we have,=1.6x 10** W/cn?, and the
then undergoes final compression, during which the temperantensity “acting” within the cavityl =5x 10 W/cn?. As
ture at the center decreases. Furthermore, since neutron gemas noted above, under these conditions the influence of the
eration takes place essentially throughout the volume, th&fast” ions interacting with the central target can be signifi-
total number of neutrons increases by more than 10 fold. It i€ant. Additional experimental and theoretical studies are
significant that the gold plasma, which prevents dismembemeeded to clarify the questions that have arisen here.
ment of the compressed capsule and increases the retention This work was performed with financial support from
time of hot DT gas, patrticipates in the final compression. Inthe State Committee of the Russian Federation for Science
the calculation for experiment No. 2 the gold plasma doesnd Technologies in the Iskra-5 Laser Thermonuclear Facil-
not manage to reach the capsule, the temperature of the gag (Registration No. 01-50 as well as the Russian Fund for

T

b1 keV

0 04 08 12 16 30
' ns R, 1072cm

FIG. 7. Calculated?r—t diagram of the motion of the boundary between the FIG. 8. Calculated profiles of the ion temperature in DT gas at the time of
gas and glass for the las€r) and neutron2) pulses in experiments No. 1 the generation of the maximum neutron flux for experiments N¢saolid
(solid curveg and No. 2(dotted curves curve and No. 2(dotted curve
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The dynamics of the formation of ordered structures of macroparticles charged by photoemission
under the action of solar radiation under microgravitational conditions without the use of
electrostatic traps to confine the particles is studied experimentally and theoretically. The working
conditions needed for the formation of structures of charged macroparticles are chosen as a
result of a numerical solution of the problem posed, the particle charges and the interparticle
interaction parameter are determined, and the characteristic times specifying the dynamics

of the formation of an ordered system of macroparticles are calculated. The behavior of an
ensemble of macroparticles under the effect of solar radiation is observed experimentally

on board the Mir space station. An analysis and comparison of the results of the experimental
and theoretical investigations permit drawing a conclusion regarding the possibility of

the existences of extended ordered formations of macroparticles charged by photoemission under
microgravitational conditions. €998 American Institute of Physid$§1063-776(98)00712-4

1. INTRODUCTION A plasma with positively charged particles can also form
as a result of photoemission when particles are irradiated in a
Space research has revealed the importance of dust abdffer gas by a flux of photons with an energy exceeding the
dust structures in the formation of stars, planetary systemsyork function of a photoelectron escaping from their surface.
and planetary rings, in processes occurring in the upper laydnder certain conditiongparticle size and concentration,
ers of the atmospherghe magnetosphere and ionosphere wavelength and intensity of the UV radiation, and photoelec-
etc}=3 One of the mechanisms for charging dust particlesron work function crystalline structures can appear in such
under the conditions of outer space in the presence of intense systenf:'! The characteristic value of the photoelectron
fluxes of ultraviolet radiation is photoemission. As a result ofwork function for most substances does not exceed 6 eV;
this process, macroparticles measuring several microns caherefore, photons with an energyl12 eV can charge par-
acquire a positive charge of the order o?$0l0° electron ticles without ionizing a buffer gas, such as He or Ar.
chargeg. On the other hand, under the conditions of a low-  Three principal mechanisms can be singled out among
pressure gas discharge, the strong interparticle correlatiotme mechanisms by which dust acquires a positive charge.
resulting from the large values of the macroparticle charg&hey are the thermionic emission, photoemission, and sec-
(of the order of 16— 10° electron chargedeads to the for- ondary emission of electrons from the surfaces of dust par-
mation of ordered structures in the arrangement of the madicles, which, along with charging by electrons, can play a
roscopic particles, which are similar to the structures in ssignificant role both in the formation of cosmic dust struc-
liquid or a solid®>~! The principal mechanism for charging tures and in processes occurring in the upper layers of the
particles immersed in a radio-frequengy) or dc discharge atmosphere. The existence of different mechanisms for
relies on electron and ion fluxes. Because of the higher temeharging dust in outer space can cause the agglomeration and
perature and mobility of electrons, the particle charge iggrowth of particles due to the electrostatic attraction of dust
negative. particles with opposite charg€s® or lead to the formation
One common feature of this group of experiments is theof plasma-dust structures with a predominant contribution of
fact that the ordered structures observed do not have a freme of the mechanisms for charging macroparticles under
boundary, since they are confined by the electric field of aconsideration. The investigation of such structures is prom-
striation or the electrodes in the earth’s gravitational fieldising from the standpoint of both basic science and techno-
and by the potential well formed by the field of the rf dis- logical applications. It is noteworthy that the possibility of
charge or the floating potential of the walls of the gas-studying plasma-dust crystals with free boundaries can be
discharge vessel in the horizontal direction, respectively. Exrealized most fully only under the conditions of weightless-
periments involving the observation of ordered structures ofiess or microgravitatioh. The study of the formation of
positively charged cerium oxide particles in a laminar jet ofordered structures of charged macroparticles under micro-
a weakly ionized thermal plasma are exceptibng? gravitational conditions yields new information, which can-

1063-7761/98/87(12)/11/$15.00 1087 © 1998 American Institute of Physics
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It The conditions for the formation of ordered structures of
\ffl:glgoogiggf macroparticles induced by the effects of solar radiation are
investigated using particles of cerium oxide (GgOpar-
£ ticles of lanthanum boride (Lafp, and spherical particles of
2 7 a bronze with a cesium coating. The choice of these particle
A m materials is specified by the efficiency of their photoemission
charging and low adhesion, so that the particles under inves-
L“*O tigation would not adhere to one another and would not pre-

cipitate on the walls of the working chamber. The reference
data on the quantum efficiend§of the particle materials in
the near-UV and visible regions of the spectrum, the work

not be obtained under laboratory conditions on earth. function W for photoemission, and the densitipsof the
The purpose of performing the space experiment was tgarticle materials are listed in Table I, which also indicates
study the possibility of the existence of plasma-dust structhe size(radiug r, and initial concentratiom, of the par-
tures in the upper layers of the earth’s atmosphere when tHécles. The initial concentration, of the particles is deter-
particles are charged by solar radiation as a result of thg1ined by the condition of transparency of the disperse sys-
photoemission of electrons from their surface. The working®m t0 the external photoinducing radiation, on the one hand,
conditions needed for the formation of structures of charge@nd the possibility of achieving the maximum values of the
macroparticles in the experimental chamlére type of interparticle interaction parametEr on the other hand. Tak-
buffer gas and its pressure, as well as the concentration, mH1g into account the optical characteristitse refractive in-
terial, and size of the particlewvere selected as a result of a dex and sizesof the particles investigated, we can estimate
preliminary numerical analysis of the problem posed; thethe optical densityr of the disperse layer as
partigle charges induced by solar radiatipn and the interpar- r~27-rr,2)an, 1)
ticle interaction parameter were determined, and the times _ _ _ _ _
specifying the dynamics of the formation of an ordered sysWherer, is the particle radius an# is the height of the
tem of macroparticlesthe charging time, braking time, and vessel with the particles. The interparticle interaction param-
dispersion times of particles in the working chamber and théterI’ can be written as a function of the particle concentra-
times for establishing ordered dust structyiresder micro-  tion n, in the form
grawtat.lonal condmgns without the use of electrostatic traps F=(Ze)2(47-rnp/3)1’3/Tg. @)
to confine the particles were calculated. The calculations s _
were performed for particles of different materials and sizedlere | =(47ny/3)" =" is the mean distance between par-
(1-100 xm) with variation of their concentration and the ticles, Z is the particle charge, anfj is the temperature of
pressure of the buffer gas. the particles, which is equal to the temperature of the buffer
Experimental investigations of the behavior of an en-gas &0.03 eV. Thus, an optical density~1, which per-
semble of macroparticles charged by solar radiation werdnits achievement of the maximum valueslofvith lowering

performed under microgravitational conditions on board theof the radiation intensity roughly by a factor ef2.78, was
Mir space station. selected as a criterion for selecting the valuengf The

initial particle concentration was determined fr@i) as

FIG. 1. Geometric dimensions of the working chamber.

2. FORMATION OF ORDERED STRUCTURES OF np~ 1/27r2H. 3)
MACROPARTICLES UNDER THE ACTION OF SOLAR P . .
RADIATION The mass of the particle load in the vessel was calculated

from the volume of the vessétee Fig. 1, the required con-
centrationn,, and the mass of an individual particle with the
Let us consider macroparticles in a neutral gas beingnean radius , (Table ). The results of experimental inves-
irradiated by a source, whose emission has an intensity andtaations of the behavior of CeQLaBg, and bronze particles
spectral composition corresponding to the characteristics ainder low-pressure condition®.01-100 Tory were also
solar radiation with consideration of the spectral transmis{aken into account. More specifically, because of the ag-
sion coefficient of the illuminator, the air layer, and the win- glomeration of Ce@and LaB particles and their precipita-
dow of the working chambeéiFig. 1) with the particles under tion on the vessel wall, the particle concentration in the
investigation. working volume decreases by roughly an order of magni-

2.1. Photoemission charging of particles

TABLE I. Values of the radius, and the initial concentration, of particles with a material of densify, the quantum yieldr, the work functionW, the
limiting particle chargeZ,,.« (4), the interparticle interaction parametér,,, (2), and the effective photon flux densify(6) of solar radiation.

Particles Mo, M p, glen? W, eV Y J, photons/crh n,, licn? Zmax @ T max
CeQ 0.5-15 7.3 3 102 1.33x10% 7.0x10° 7.8x 107 4.2x 107
LaBy 1-5 2.6 2 102 9.16x 10% 7.2x10° 4.5x10° 1.4x10

Bronze 25-50 8.2 1.5 1d 1.72< 10 5.6x 10° 6.9x 10* 6.5x 10°
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£, here that the efficiency of the absorption of UV radiation is

close to unity. The temperatuiig, of the electrons leaving a

particle surface upon photoemission depends on the particle

0.4 material and lies in the range from 1 to 2 eV in most

' cases®1® Assuming that the rate of electron recombination

on the particles exceeds the rate of thermal energy loss due

to collisions with neutrals, we can s€pe=T,.

In order to determine the equilibrium chargg

FIG. 2. Spectral transmission functidg()) of the device. = ¢4 p/€ of the particles under investigation in the working
chamber and to estimate the dust charging time, we must
calculate the integral numbdrof solar photons that are ca-

tude. Values ofn, ten times smaller than the table values pable of causing the photoemission of electrons from a par-

were used to estimate the mean distance between these pti¢le surface and estimate the concentratignof electrons

ticles (CeQ, LaBg) andl" .« (Table ). The bronze particles returning to the particle surface. To calculate the photon flux

did not adhere to one another when the vessel was evacuatetgnsityJ, solar radiation was simulated by a black body with

and the table value of the particle concentration corresponda temperature of 5800 K. The calculation was performed

to the basic theoretical parametey. using the formula

The limiting (maximum chargesZ,,,, of the particles
following the photoemission of electrons from their surface
and the value of the interparticle interaction paramétex,

can be estimated from the condition of equality between the . o . )
surface potentialp and the quantithv,,.,—W as where f, is the transmission function of the experimental
S max

chamber(Fig. 2), A in=0.3um, and\ ., i.€., the red edge
Zinax= (hvmax—W)r /e, (49 of the photoeffect, is determined by the work functiarfor
where hv,,, is the maximum photon energy, which corre- the part!cle rr)ateria}l. The results of the c_alculations] ddr
sponds in our case to a wavelength,,=0.3xm and is de- the particles mvestl.gated are presented in Table l.
termined by the transmission functiép of the experimental ~_ 1he concentratiom, of electrons returning to the par-
vessel (the transmission of the quartz illuminator, the air ficle surface can be obtained from the solution of the prob-
layer, and the glass of the working window of the vegsel lem of an mfm!te 'cylmder unlform_ly charged throughoqt its
The dependence of the approximating transmission functiofoluUme. The distributions of the fiele(r) and the potential
f,, of the apparatus on the wavelengthused in the further <_{>(r) in such a cylinder are specified by the following rela-
calculations is shown in Fig. 2. The valueszyf,, obtained  tons
from E_q.(4) and the values.dfmax obtained from Eq(2) are E(r)=2mor, (72
listed in Table I. It can easily be seen that the valu& @nd
the charge of the particles increase with their size. However, $(1) =7 (R2=12)+ By, (7b)
the selection of large particles witly>100um for perform-
ing the experiments is undesirable, since it requires loweringvhere o=e(Zn,—ng) = en‘g’a” is the space-charge density
the initial particle concentration,, [see(3)] to values that and ¢, is the potential of the wall of a cylinder of radius
are unsuitable for observation. Reyi- The floating potential of the surface of the vessel wall
Let us estimate the value of the charge of the particlesp,,, is then determined by the photoelectrons escaping from
when they are irradiated by a source with a solar spectrunthe particles, and the field appearing in the ampul does not
taking into account that the plasma-dust system under corallow all the electrons emitted to leave the particle system.
sideration consists of positively charged macroparticles andhe concentrationn‘ga" of electrons reaching the ampul wall
photoelectrons emitted by them. The positive potential of thean be estimated from the relatidie=eA ¢, whereeA ¢
particles is established as a result of the balance between thee¢, —ed, iS the mean energy lost by electrons in the
recombination of electrons on a particle surface and the phaelectric field of the vessel. According to the mean-value
toemission electron flux from the particle surface. In the caseheorem, from(7b) we have
of a dilute plasma(with a concentration of neutralg,
<10* cm™3), in which the mean free path of photoelec- bav= Pwai— TIRG/3.
trons before collisions with neutrals greatly exceeds the par-

ticle radiusr, (I¢>r,), the balance equation can be written The cqncent'ratlgme of electro_ns remaining in the volume
in the following form® under investigation can be written as

Te M. eds|_ vexd eds Ne=2ZN,— g =Zn,— 3T,/ me?R3,,. )
2mmg '

(5
Te Te An estimate of the value ai®®" for photoelectrons with a
wherem, is the electron mass), and T, are the electron temperatureT,.=1—2 eV gives n“=5x10° cm 3 in a
concentration in the bulk of the plasma and the electron temvessel with a radiuR.,=1.5 cm. The values oZ and I
perature ] is the photon flux densityy is the quantum yield calculated on the basis of the valuesrrﬁP" andJ obtained
of photoelectrons, andl, is their mean energy. It is assumed are listed in the first row for each type of particle in Table II,

08

0 . . . . .
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TABLE Il. Values of the interparticle interaction paramefemand the par-  TABLE IIl. Values of the natural frequency, of charged macroparticles
ticle chargeZ, calculated from the balance equati(@) for various values  for an initial concentratiom, the braking timer,,, the drift times of the

of the macroparticle concentration,. particles to the vessel wall for lowering the initial particle concentratign
by factors of 10 {;4;) 100 and {,4,), and the time for establishing short-
Particles ng, cm 3 Z.e r range ordetg, for various values of the pressure
10° 3 10°2 Particles P, Torr ng, cm 3 wg, st Tors S tigny St S tey, S
CeQ, 10° 28 3.0<10°2 ' o 0 br s e S bz S tsy,
10t 212 7.5 0.01 16 67.7 1.25  0.023 0.061 0.015
CeQ, 10° 21.4 0.074 0.192 0.047
106 14 15101
LaBsg 10° 131 6.2 70 1¢ 67.7 1.8K10* 364 40 0.12
10t 785 16 10° 27.4 36.4 400 121
10 2672 5510 0.01 16 124.8 1.32  0.013 0.033 0.008
Bronze 18 5090 2.0¢<10° LaBg 10° 39.5 0.040 0.110 0.025
1o 50070 9.010" 70 16 1248 1.%104 1.01 11.14 0.034
10° 39.5 10.1 111.4 0.337
_ ) ) ) 0.01 16 0.778 52 2.00 528 1.28
which corresponds to a particle concentratigy¥ng in the  Bronze 16 0.246 6.41 16.71 4.06
\{elssel. It shoulq be not.e(];'i_ thaﬁaﬁo or:jl_y. if the initial par- 20 G 0778 013 3811 4191 127
ticle concentratiom satisfies the condition 107 0.246 3811 4191 12.7
NoZmax<nial.
Otherwise, the space-charge density in formulaa and
(7b) is defined asr=eZNg. dz T. \12 ed
. . . . 2 e S
The results of the calculations presented in this section ——=mr)4n, 1
dt 2mmg Te

allow us to postulate the possibility of the formation of
crystal- or liquid-type ordered structures of macroparticles eds
for assigned illumination condition$1¢,,,,x @ndJ) and mac- —YJex;{ T )]
roparticle parameters\, Y, r,, andng). However, it should ) wall 4
be noted that the presence of electrons from the externdine solution of(9) for both ng®'=5x10° cm™* andne=0
plasma or photoelectrons returning to the particle surface&hen the particles are chargedZe- Z sy gives 7, <10"° s
can significantly lower the chargg of the macroparticles Under our conditions. _ . .
and the value off". In the general case the condition for ~ The braking times, of macroparticles in a vessel with
transparency of the macroparticle cloud to emitted or “ex-tWo dn‘fer.ent yalues of the pressuF{aare listed in Table Il1.
ternal” electrons is close to the condition for transparency of! he braking timesr, for all the particles, except the bronze
the disperse system to the external radiation source causiifticles at the “high” pressure, were calculated in the free-

(€)

pe

photoelectron emission from the particle surfaces. molecule approximatioff! The value ofr, for the bronze
particles atP=40 Torr was determined within the Stokes
N ; : 21
2.2. Characteristic times specifying the dynamics of the approximation(the viscosity regime™
formation of dust structures The dispersion time of particles in a vessel can be ob-

o ) tained from a numerical molecular-dynamics analysis of the
The possibility of observing ordered structures of mac-yynamics of the particle system. To investigate the variation

roparticles induced by solar radiation in an experimentalyt ihe concentration of charged macroparticles as a function
chamber with finite dimensiori¥ig. 1) is determined by the ot time we solved the equation of motion with and without

characteristic times specifying the dynamics of the formation.,sideration of the thermdBrownian motion of the par-
of an ordered system of macroparticles. We shall estimatgqg:

the charging time, the braking time, the times for establish-
ing ordered macroparticle structures, and the dispersion time d?ry re—r; dry
of particles in the working chamber with a buffer gas at two mdF: 2 q)(r)|r=\rk*fj\m o md”ﬁ‘“ Fg.
different pressures. Neon was selected as the buffer gas for l (10)
performing the investigations because of its chemical inert- ] ] ) )
ness toward the material and cesium coating of the particle$1€r€¢ Ma is the mass of a particle, anbl(r) is the interpar-
its spectral transparency, and its high ionization potential'.“C'e |_nteract|on parameter. Eor a Coulomb interaction this
The choice of the two different buffer gas pressufe®1 duantity can be represented in the form
and 40-70 Toprwas dictated by the possibility of observing (e2)
the dynamics of the formation of ordered structures for dif-  P(r)=
ferent particle charge valuésee Sec. 2)1

The charging timery, of the macroparticles can be de- wherer is the distance between two interacting particles. In
termined from the time needed for a particle to acquire thehe our case Debye screening can be neglected, since the
chargeZ=Z,,, by solving the following differential equa- system under consideration is not electroneutral, and the De-
tion: bye radius is greater than the mean distance between the

= (11
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n/n
0 ning FIG. 3. Molecular-dynamics plots of the con-

centrationn(t)/ng (solid line) as a function of
0.811 the timet at the pressureB=40 (a) and 0.01
Torr (b) for various values of the initial fre-
0.4 quencywg: 1 — wy=0.32 s, ng=165 cm 3,
Z=69 000;2 — wu=0.53 s'1, ny=465 cn 3,
Z=69000;3 — wg=0.53 s'1, np=165 cn 3,

y y y T T T T ' T y Z=110400. The smooth lines show approxima-
0 20 40 60 80 100 120 0 2 4 6 8 10 tions based on formulad4g (a) and(14b) (b).

particles. The system of equatiofi) and(11) was solved was estimated on the basis of the dependences obtained. The
for a transverse section of a cylindrical vessel with consid-drift times of the particles to the vessel wall determined from
eration of the absorption of charged macroparticles on théormulas(14a and(14b) for lowering the initial particle con-
walls under the condition that the particle velocity is equal tocentrationng by factors of 10 {4;) and 100 {;4,) are listed

zero at the initial moment in time. An analysis of the solutionin Table Il for various initial conditions.

of Egs.(10) and(11) for the cases of highv=(r,) >1] The time for establishing ordered macroparticle struc-
and low (v=<1) buffer-gas pressures allowed us to concludeturestg, in a vessel at low and high buffer-gas pressures can
that the relative variation of the particle concentrationbe specified on the basis the solution(d) and(13) by the
n(t)/ng as a function of the time is determined by the following conditions:

natural frequencyv, att=0: t >, v<i, (159

2
g | Z T (12 ty~vlo?, 1, (15b)
My

where w=/[(Z€)’n/my is the natural frequency of the
i e ) ) ) charged patrticles in the structure. The molecular-dynamics
for various initial concentrations of macroparticles of differ- - lations show that the times for establishing short-range
ent materials with the chargé=Z,,. In addition, it was 5 4er correspond tdg*wo (v<1) and ty=0.1v/w? (v
found that thermal motion of the particles does not have 2.1). These values df,, are listed in Table Il for various
significant influence on their dynamic characteristdisper-  initial concentrations of particles with the charge=Z, .,
sion times and correlation functionat kinetic temperatures and buffer-gas pressurés
K of the particles up t&=10—-50 eV. Plots ofn/n, as a The results of the calculations show that the drift tige
function of time are presented in Figs. 3a and 3b for variougs the particles to the vessel wall is shorter in all the cases
values ofwo and bronze particles with the charie Zaxin - considered than the timi;, for photoemission charging of
a gas with highP =40 Torr, (Fig. 33 and lowP=0.01,(Fig.  {he particles and the timg, for establishing a liquid-type
3b) pressures. o _ macroparticle structure. Thus, it can be concluded that short-
In order to find an approximation ai(t)/n for different 546 correlation orders of interparticle distan@igid-type
values of w,, we solved the equation of motion for tWo qst structurescan be observed under microgravitational
charged particles: condition without the use of electrostatic traps to confine the
d2r dr [ze\2 1 particles. To illustrate the dynamics of the formation of or-
—= ( ) (13 dered macroparticle structures under these conditions, Figs.
dt 4a and 4b present the results of a molecular-dynamics calcu-
Herev=(r,) ! is the friction coefficient. Equatiofl3) was lation of pair-correlation functions for bronze particles with a
solved for the case of high pressures>(1) in the diffusion ~ chargeZy,=69 000 in a buffer gagneon at different pres-
approximation with the left-hand side of the equation equaBures. The dashed lines denote correlation functions corre-
to zero. In the case of low pressures<(1) the friction sponding to the times, for the formation of short-range
coefficient in(13) was set equal to zera/&0). This allowed ~ order. The figure also shows fragments of the spatial con-

us to obtain the f0||owing relations for approximating figuration of the partiCles in the initial moment in time and at
n(t)/ng: the timet(ny/n=10) for a decrease in the initial particle
concentratiomy= 165 cm 3 by an order of magnitude.

whereny=n(t=0). The values ofv, are given in Table Il

—_ _+ —_
Yt

rj/ myg

n(t)/ng=(1+3wit/v)~%, v>1, (143
n(t)/ng=8(1+ y1+4wit?) ™%, wv<1. (14b

3. EXPERIMENT
The approximations oh(t)/ny found are also presented in

Figs. 3a and 3b for the corresponding valuesegf The 3.1. Experimental setup

functions (148 and (14b) permit the determination of The experiment was carried out on a setup consisting of
from the results of an experiment in which the macroparticlethe following principal unitgFig. 5):

charge can be obtained for a known concentratigrat a 1. a working chamber;

certain moment in timé¢=0. The minimum dispersion time 2. interchangeable glass ampuls containing particles of

of particles of different materials with the charge=7,,, lanthanum boride LaB(two ampul3, bronze with a cesium
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.

x=r/l

FIG. 4. Fragments of the spatial configuration of the
particles and the pair-correlation functiogéx) (where
x=r/l) for bronze particles wittlZ=69 000 in a buffer
gas with different values of the pressuPeat various
moments in timet: a —t=0 s; b —P=40 Torr, t
=125s; ¢ —P=0.01 Torr,t=4.8 s. The dashed lines
show the correlation functions corresponding to the
time tg, for the formation of short-range order.

®
(=

t=48s

A ampul

laser knife
}—

cylindrical
lens

video camera

P

particles

laser

solar radiation

FIG. 5. Schematic representation of the experimental setup.

05 1.015 2025 30 3540

x=r/

monolayer(two ampul$, and cerium oxide CeQ(two am-
puls) in a buffer gagneor at different pressures;

3. radiation soure — a 30-mW semiconductor laser
with a working wavelength of 0.6zZm;

4. a “Glisser” television system, including a power sup-
ply, an ordinary CCD camera with an objective lens, a tape-
recorder module, and a remote-control panel;

5. supports.

The interchangeable glass ampuls had the form of glass
cylinders, one of whose end surfaces was a flat uviol glass
window and was intended for illuminating the particles with
solar radiation(Fig. 1). Immediately before the performance
of an experiment, the required ampul was placed in the
clamp of the working-chamber holder with its flat end sur-
face toward the illuminator. For diagnostics of the ensemble
of particles, the ampul was illuminated by a flat laser beam
(a “laser knife;” the width of the “knife” was no greater
than 200um), and an image was obtained using the CCD
camera, whose signal was recorded on magnetic tape. The
field of vision of the video camera had the form of a rect-
angle measuring roughly >810 mm (Fig. 1). The camera
was aimed at the center of the ampgsée Fig. 1, and the
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FIG. 6. Successive states of the system of bronze particles in the ampuPyith.01 Torr following dynamic disturbance of the system.

depth of focus for thé stop of 16 chosen was about 10 mm. of particles in the ampul withiP;=0.01 Torr following dy-

The experiments were carried out with three values of thenamic disturbance of the system, and Figs. 7a—7d show the
working pressureP;=0.01 Torr (for all the types of par- state of the system in the ampul wify =40 Torr. Observa-
ticles investigated P,=40 Torr (for the bronze particlgs  tions of the motion of the particles showed that the velocity

andP3=70 Torr (for the LaB and CeQ particles. vectors of the particles are randomly directed in the initial

stage and that the particles drift to the walls without a pref-
3.2. Behavior of a macroparticle substructure under erential direction. Subsequently, a preferential direction usu-
microgravitational conditions ally appears, but motion along definite trajectories is dis-

The first stage of the experiment was confined to observplayed more strongly in the vessel with the higher pressure

ing the behavior of the ensemble of macroparticles placed ir(1See Fig. . Vibration of the particles on a background of the

the working chamber under the action of solar radiation. Inoverall translational motion was observed in several experi-

the initial state the particles were on the walls of the ampulMeNts, and the treatment of the particle trajectories revealed
therefore, the experiment was carried out according to th@eriodic variations of the magnitude of the particle velocity
following scheme: a dynamic disturbangelt) of the system In all the experiments. These variations of the particle veloc-
and relaxation to the initial state, i.e., drift to the wall. The ity can be associated with fluctuations of the particle charge
experiments showed that the investigations can be performe® With the dynamic action of microscopic accelerating
only with bronze particles, since the cerium oxide and lanforces arising on board the space station. Variation of the
thanum boride particles are incompletely shaken from thevisibility of the particles was observedne possible cause is
walls, rapidly agglomerate, and adhere to the vessel walkotation). One more interesting finding is the formation of
darkening the working region. Therefore, the further analysisigglomerates, in which the number of particles varies from
was performed only for the bronze particles. three or four to several hundredigs. 8a and 8b These
Figures 6a—6d show the successive states of the systeagglomerates can depart from the vessel walls in response to
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FIG. 7. Successive states of the system of bronze particles in the ampuPywith0 Torr following dynamic disturbance of the system.

a weak dynamic disturbance. The results of the observatior3. Determination of the particle charge
of the behavior of the particles in the vessel with the h|_gher According to observations of the behavior of ensembles
pressure show that the bulk of the agglomerates form in the . S L o .

of particles during illumination, the drift time of the particles

volume of the vessel during a period of a few seconds fol-,[0 the wall was abaib s for P, =0.01 Torr and from 3 to 5

lowing the dynamic disturbance. The agglomeration of par- ~. . .
ticles in the volume of the vessel may occur because th%,”In in the vessel with the buffer-gas presség=40 Torr.

particles acquire opposite charges in the initial moments o his sugge_stle{accordln% to ﬂ:je dat? n lTTble )Ithst t?]e
illumination: positive charges are acquired as a result of thé)ronze particles were charge t'o a Ievel ciose 0 the t Soret
emission of photoelectrons, and negative charges are inica ValueZma=69 000. The particle charge can be estimated

parted by the fluxes of electrons emitted from neighboringbc’th from the relative variation of the concentration of the
particles. A similar effect was observed in Ref. 15. particles and from their trajectories of motion. In the first
It was concluded that particles are charged on the basigaS€ approximations of the typgista and(14b), which per-
of observations of the changes in the trajectories of the pamit the determination ofu, from experimental plots of the
ticles when they come close to one anottasllide) or ap- relative variation of the particle concentratioift)/ng, can
proach the wall. It should also be noted that the particled€ used to determine the particle charge. Figures 9a and 9b
move very slowly in the vessel witR,=40 Torr when the present experimental plots aoft)/n, and the approximating
solar radiation is blocked and that acceleration of the motiorfunctions (148 and (14b with wy=0.315 s which give
occurs when radiation acts on the ensemble of particles. Thidae best agreement with experiment both for the case,of
charge of the macroparticles can be estimated by analyzing40 Torr and for the vessel with the lower pressite
their dynamic behavior. =0.01 Torr.
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FIG. 8. Formation of macroparticle agglomerates.

The plots ofn(t)/ny, were determined during illumina- the laser knife and ranged from 150 to 250 ¢mOn the

tion by solar radiation following a period of holding in the pasis of the values founay=150-250 cm 3 and w,
dark, during which the particles managed to lower the veloc=0.315 s, the particle charge can be specified as

ity acquired from the initial jol{Figs. 9a and 9b In the case

of shaking the vessel while it is exposed to solar radiation, it
is very difficult to interpret the experimental datsee Fig.

9), since it is virtually impossible to determine the initial
particle concentration, to the required accuracy. The initial Thus, the charge obtained correspondsZfg,,=69 000 to
concentratiom, was determined in the absence of solar ra-within 13%.

diation from the number of particles falling in the plane of The second method for determining the particle charge is

Z=(wgl/e)ymy/ny=(6.38+0.81) X 10%.

FIG. 9. Experimental plots of the concentration
n(t)/ny as a function of the time in vessels with
pressures equal to 4@) and 0.01 Torrb) obtained
at timest> ,, following dynamic disturbance of the
vessel(filled circles and immediately after agita-
tion of the vesselunfilled circles. The solid lines
show the approximation§l4g and (14b) for the
natural frequencyn,=0.315 s*.
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TABLE IV. R_esults of t_he determination of the chargeof particles from  results can be due to several factors: polydispersity of the
their trajectories of motion. particle powder investigated and the formation of agglomer-
No. P, Torr n,, cm® a m2 V. mis 7 ates, in which the number of particles varies from three or
— — four to several hundred. The latter factor makes a highly
10 6x10%  25¢10 % 5x10'  gignificant contribution to breakdown of the correlation of
0.01 3x 10 1.2x10 6x 10 10° . . :
5x 10t 16x10°°  12x102  8x10t the interparticle distances.

S W N

—4 5
40 3x 10 1.5x 10 7% 10 3x 10 4. CONCLUSION

The results of observations of the behavior of an en-

_ ) _ ~ semble of macroparticles charged by photoemission under
based on solution of the equation of motion of a particle in &he action of solar radiation under microgravitational condi-
known electric fieldE(r): tions have been presented. The particle charges have been

o2r dr Ze estimated, and it has been established that the particles are
— (16)  charged to the maximum possible levels, i.e., several units
times 10, under the conditions of the experiment. The re-
The electric field intensitf can be assigned by E(7) with ~ Sults of a calculation of the particle charges due to photo-
consideration of averaging over the radius of the cylinder a§mission correspond to the results of the observations. The
E=meZnR.,. Here we take into account that the space-Particle charges have been estimated by two methods, which
charge density is'=eZzn, for Zn,< n" and o=en® for provide good agreement with the calculation: from the tra-
zn,> n" since the motion of the particles was analyzed af€ctories of motion of the particles and with the use of the
low concentrations{,<10?). After determining the veloc- approximations obtained for the variation of the relative par-
ity VV and the acceleratioa of the particles from their trajec- ticle concentration. The values of the charges and the inter-

tories of motion, the particle charge can be found from Eq particle interaction parameter obtained demonstrate the pos-
(16): sibility of the formation of ordered crystal- and liquid-type

5 5 macroparticle structures under the conditions studied. It is

Z*=amy/(e“mnyRy), P1=0.01 Torr, (178 npoteworthy that under the conditions of outer space the

ZZ=(V+a)md/(ezrbrwnpRCy|), P,=40 Torr. (17b charging e_:ffic_ien(_:y of particles with_ a low photoelectron
work function is higher due to the additional effect of the UV

Table IV presents the characteristic values of the macropakortion of the solar spectrum and that the interparticle inter-
t|C|e Charges, Wh|Ch agl‘ee We” W|th the Va.lue of the Charg%ction parameter Consequent|y increases.

obtained from the variation of the relative particle concentra- Although the dynamic behavior of the particléthe
tion n(t)/no. It is noteworthy that the slight upward devia- yariation of the particle concentration in the volume investi-
tion of the charge in the low-pressure case can easily bgated corresponds well to the behavior determined as a re-
explained, since lighter particles and, accordingly, smallegyit of a numerical analysis, the form of the experimentally
particles having a smaller charge leave the vessel volumgpserved correlation functions differs strongly from the the-
first under low-viscosity conditions. In the high-viscosity gretical form and attests to the formation of only weakly
case the drift time of the particles to the wall should notcorrelated liquid-type structures. The principal cause of this
depend strongly on their size. difference may be the agglomeration of oppositely charged
Despite the high particle charges and the large value obarticles during charging. Nevertheless, an analysis and com-
the interaction parametdf=10" (see Table IV, no strong  parison of the results of the experimental and theoretical in-
correlation between the interparticle distances could be obyestigations confirm the conclusion that the existence of ex-
served. The measured correlation functions exhibit apprerended liquid-type ordered formations of macroparticles
ciable deviations for the calculated curv&sg. 4). The typi-  charged by solar radiation is possible under microgravita-
cal form of the correlation functions obtained as a result ofjonal conditions even if there is substantial agglomeration of
the treatment of experimental images without illuminationpe particles.
(the laser knif¢ and with solar irradiation is shown in Fig. This work was partially supported by the Russian Fund
10. The difference between the experimental and calculateghy for Fundamental Resear¢brant No. 98-02-16828

—=—v—+ .
dt2 th My
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The Landau—de Gennes model for the free energy of a nematic liquid crystal near the phase
transition to the smectié-phase is used to determine the frequency dependence of the fluctuation
corrections to the Frank elastic constants. It is shown that the interaction of the fluctuations

of the smectic order parameter and the director results in corrections to all the Frank elastic
constants. In the low-frequency limits(—0), the corrections to the Frank elastic constants

K,, andK ;3 are the largest, and decrease to zero in the infinite-frequency limit. The correction to
K1 is negative, and vanishes in both limits. The absolute value of the correctidpy, s

the largest at frequencies in the megahertz range. It is shown that in oriented nematics the
interaction of the smectic fluctuations and the director limits deviations of the director

from the direction of preferred orientation, as a result of which relaxation of both inhomogeneous
and homogeneous distortions of the director field can be observed. It is also shown that this
gives rise to a frequency interval in the megahertz range in which shear waves begin to propagate
in the nematic. The propagation speed of these waves is roughly a hundred times smaller

than that of sound and strongly depends on the direction of propagatiori998 American

Institute of Physicg.S1063-776(98)00812-9

1. INTRODUCTION locity field®®>~*® result in much larger contributions to the

viscosity coefficients. This is reflected in the anomalous in-

Nematic liquid crystal§NLC) in a state near the phase crease in isotropic sound absorpfidf!’ and in the emer-

transition to the smectié-phase(the N-A-transition have  gence of substantial anisotropy in the velocity dispersion and
been studied for a long time both experimentally andabsorption of soundf!® As yet, however, there is no satis-
theoretically' . De Gennewas the first to phenomenologi- factory quantitative description of the experimental data;
cally describe the properties of NLC near teA-transition.  there are even discrepancies in the data from different ex-
In fact, using the expression for the free energy derived irperiments. This is especially true of the anisotropy of acous-
Ref. 6, he explained the critical increase of the Frank elastitic properties. The frequency dispersion of the Frank elastic
constantK,, and K,z as the state of the liquid crystal ap- constants may be discerned in experiments in which the NLC
proaches théN—A-transition point by the interaction of the is subjected to a periodic external force. This is true of
inhomogeneous director field and fluctuations of the smectiacoustooptic effects observed in a NLC placed in an external
order parameter. Later Jahnig and BrocHamided the miss- field of an acoustic wave, and of Freedericksz optical transi-
ing factor 14/2 to the formulas foK,, andKss. These for-  tions resulting from periodic variations of the intensity of the
mulas were further refined on the basis of the Landau—d@cident light.

Gennes mod&land theNAGmodel® The aim of the present paper is to use the Landau—de
All the papers just mentioned consider the simplest andsennes model for the free energy of a NLC near Meh-
most important case, i.e., determining the static correctiontransition point to study some of the aspects of the interac-
to the Frank elastic constants. It is well known, however, thation of the director field and the order parameter fluctuations.
the interaction of hydrodynamic variablés particular, the In Sec. 2, the frequency dispersion of all the Frank elastic
director in a NLC is such a variableand order parameter constants is established. Section 3 shows that a relaxation
fluctuations lead to frequency dispersion in the coefficientsnechanism for the attenuation of the distortions of the equi-

in the system of equation of motion of the NLC. In the pre-librium director field arises near t h—A-transitionpoint,
transitional region, the viscosity coefficients change signifiwhich strongly affects the propagation of shear waves. Fi-
cantly, which causes frequency dispersion in the velocity andally, in Sec. 4, the possibility of experimentally observing
an anomalous increase in sound absorptiofiahnig and the results obtained in this paper is discussed.

Brochard and McMillan® who examined the interaction of

the director field and the field of the order parameter fluctua-

tions, were the first. to pred_ic.t the anomalous enhancement gf_ FREQUENCY DISPERSION OF THE FRANK ELASTIC

some of the viscosity coefficients, an effect manifested in thg.gnsTANTS

anisotropy of the acoustic properties of NLC. Later it was

found that the interactions of the order parameter and the Assuming that the equilibrium orientation of the director
density*?and the order parameter and the nonuniform vevectorn is fixed by the conditions at the sample boundaries,

1063-7761/98/87(12)/7/$15.00 1098 © 1998 American Institute of Physics
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which are assumed to be at an infinite distance from the Qs q2
sample volume of interest, we can write the free energy ofa  hy= (V*V, ¥—-9V, ¥*)— M—‘I’*‘I’ on, (9)
T

2™
deformed NLC as follows: T
_ and statistical averaging is over all realizations of the order
F=Fo+Fg, &Y : : i
parameter fluctuations. In the Fourier representation we have
whereF is the free energy of the undeformed sample, and
(hy)=(hM)+(h?), (10)
1 :
FFr=§j dr [K4(divn)?+K,y(n-curln)? where
+Kag(nXcurln)?] 2) q = do' ,
. _ _ (h(g0)=——2 f > (dr—29)
is the free energy of Frank deformation, with 2M1V g S
n(r,t)=ny+ on(r,t) (3) X(P*(q",0")¥(9—q",0—w')), (11
the local director. Following Refs. 7 and 19, we introduce a q » do’ do”
molecular fieldhg, that tends to straighten the distorted di- (h®(q,w))=— —— J —
rector fields. In a system of coordinates in which thaxis MV g q /== (27)
coincides with the direction afy, the molecular field related X(U*(q', 0 )W (", 0")
to the Frank energy is
Xon(g—q' —q",0— ' —o")). 12
her(9,0) = — (K105 + K22q)2,+ K3392) ony(d, o)
To calculate the fluctuation contribution to the molecular
+(K22— K100y ny(q, @), (4 field we use Levanyuk’s methdd,which has been repeat-
where we have used the Fourier expansion edly used in finding the fluctuation corrections to the viscos-
ity coefficients near phase transition points in liquid

1 » dw . _ crystalst®?122 |n this method, the fluctuations of the smectic
n(r,t)= Y zq: fﬁm >, N(a,w)expig-r—iot). (®)  order parametew, which develop in a deformed NLC, are
described by the Langevin equation
In a NLC that is near th&l—A-transition point, fluctua- - L L
tions of the smectic order paramete become _ ot g 2y~ w2
important:=3®7in view of which to the free energy we must ot b[A\P 2MT(VL lqsom=¥ 2My Viv |t
add a termFy, related to the fluctuation-emerging smectic (13

_ 6,7
order. In the Landau—de Gennes motfel; wheref is a random force. The complex conjugate of Eq.

F=Fy+Fg+Fy, (6) (13 is the equation fol*. When we retain the interaction
in (13) to lowest order, only the terms linear #n survive.

where In the Fourier representation we have

— 2 1 H 2
Fy f dr [A|\If| + 2MT|(VL iqson) | V(q.0)=CYq.0)| f(q0)+ 2Mbqs\/v
o |V @ T
DIV ' * do’
2Mv x> | S-((2a.—a0)-on(g'w’)
’ —o0 LT
99 d a
VL:I(S’_X—HW’ VHZE' ‘|
XP(g-q,w—o')|, (14)
The factorA vanishes at the transition temperatiirg 5 and
is usually written in the formA=ay(T—Ty_a)?, Wherey
=3/4 if we use the helium analogy =1 in the mean-field where
approximation, andy;=2/d, with d the distance between Gq,)=[—iw+by L(q)] 4 (15)
the smectic layers in the low-temperature phase.
Earlier de Genne%,Jahnig and Brocharfland Andereck qf q§
and Pattofifound that the presence {i@) of a term in which x N =A+ My + My (16)

on is coupled withW gives rise to anomalous additional
terms in the Frank elastic constatts, andK 33, which were  The equation fol* (g, w) can be obtained from Eql14) by
found in the static case(=0). When smectic order fluctua- replacing® with ¥*, f with f*, and the plus in front of the
tions are present, the molecular field consists of two te?rms:imegra| part on the right-hand side of E44) with a minus.
h=het (hy). ) A formal solution of Eq.(14) can be obtained via iterations
Fr v in the form of a power series ifn. After the second iteration
where we have
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0 bas » do’ §=(2AMy) 2. (25
Vo =GAaefge+ 2t S [T 2 |
2M Wy S 27 The dependence of the Frank elastic constants on the reduced
) . frequencyw, where
X((29, ~a})-n(a’,0')G%(dw) ey
~ 1
Orq—n’ N _a’ N — —

XG(g—q ,o—w)f(qg—q ,0—w’). 17 w=0Ty =05 (26)

We then substitute the solutid@?7) and a similar expression

for ¥*(q,w) into the expression€ll) and(12) for the con- is determined by the functions

tributions to the molecular field. Statistical averaging of the _ 24 5. —
resulting expressions with allowance for the fact that the ran- Fi(w)=—| —-w+twV2V1+ w’+2

i i i i 50° 2
dom forcef is uncorrelated in both space and time yields

2bkgT(2m)* 1 3. =
(f(q,w)f*(q’,w’)>=—BV( L sta+q) s(w+a). 5@’ Vavitet-2, (27)
(18)
. . . : ~ 24 5. 1 3_
Integration of the delta functions and integration overthe G (w)= —| -1+ —w?+| = — —w?

frequencies yields 503 4 2 16

2
(hD(q,))= bke T X \/2\/1+Z,2+2—Z)\/2\/1+52—2}, (28)

4(2m)3M2
-2q' —2q/)-on(q, - 8 5. _ -
% d /(q-L qj_)(_(fh Ch)_l (9,0)) Fy()= — o211+ 9242
—lo+b(x 7(d")+x"(q—-q")) 50l 2
X(x(q")+x(@=q")), (19 1 7. =
+ §+§5w2 2V1+w?-2|-1, (29
keTq2 dg’
(hP(q,w)y=~——° f — - on(qw). (20
(2m)°M1 J x7H(d") ~ 8 1 7. =
Gyw)=—| —1+| =+ —w?| V2V1+w?+2
In (19) and (20) we have replaced the summation over the 50° 2 16

wave vectors by integration:

Vv —o\V2V1+w?-2

) (30
E — 3 J dq,
o  (2m) From (27)—(30) it follows that in the w—0 limit we
To find the corrections to the Frank elastic constants, wéave
need only retain terms proportional ¢3 in the expression F,(0)=G1(0)=F,(0)=G,(0)=0, (31)

for (hy). Omitting the details of the calculatiorihich can . _ .

in form coincide_s with(4), for the fluctuation contribution t_o Ky(0=0)= K(1)11 (32)
the molecular fieldhy(q,®)). We may assume that the in-
teraction of the director and the smectic order fluctuations 0 kgTo2&2
gives rise to complex-valued corrections to the Frank elastic ~Kzal@=0) =Kzt —7—— amg, (33)
constants. Thus, ,
keTdsé
keTQ2&? - Kag(w=0)=K3+ = 34
Kis(@) =Kot 5 (F@) 4G, (@D om0 =T B %
, Hz At infinite frequency w— o) the fluctuation corrections dis-
o keTQ2& . appear:
Koo @) =Kyt —,—=[1+F5(0) +iGy(w)], (22 , ,
7| F,+iG;—0, 1+F,+iG,—0.

ke T 0z£F
244

Figures 1 and 2 depi¢t,, F,, G;, andG, as functions of the

reduced frequency, which determine the frequency disper-
sion of the Frank elastic constants. These constants change

where Kﬂ (i=1,2,3) are the “bare” values of the Frank . sicantl the reduced f ~ ies in the 1-100
elastic constants, which ignore the interaction of the directop dNMcantly as In€ reduceairequenayvaries in tne L -
-ange. For a NLC near the—A-transition point, this corre-

and the order parameter fluctuations. Here we used the ordi ds to f iati i th hert At
nary notation for the correlation lengths: Sponds 1o frequency variations in thé meganertz range.

lower frequencies we can use the static corrections to the
£ =(2AMy) 12 (24)  Frank elastic constants.

Kag(w) =K+ [1+F,(0)+iGy(@)], (23
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1ok kg T?M1My[ 9A|?
AChy=———rm=—7\ 7| > (35
0.8 av2myA T
0.6¢ must be small compared to the size of the discontinuity in the
0.4t specific heat at the transition pofit,
0.2 th T(aA)Z a9
. X , . ] ACN—A:_ - 36
0 200 40 60 80 100 @ 2B\ a1
0.2 A whereB is the coefficient of ¥'|* in the expansiori7). Thus,
-0.4+ in the mean-field approximation, the required temperature
FIG. 1. range is determined by the condition
k3T2M2M,,B? - T—TN,A<1 -
The absence of a correction to the Frank elastic constant 8m?a, Tn-a '

K14 In the static case is a consequence of the invariance of

the free energy(7) with respect to equal rotations of the As noted in Ref. 24, such a temperature interval does indeed
director and the perpendicular smectic layers. The frequenc§Xist. and it widens as the triple point is approached along
dispersion inK, arises because at frequencies on the ordefhe line ofN-A-transitions.

of the reciprocal relaxation time of the smectic order param- L€t us estimate the restoring force acting on the director
eter, the smectic structure formed by fluctuations has no timr rapid small spatially homogeneous deviations of the di-
to reorient itself perpendicular to the rapidly changing localfector fromng. To this end we study the contributighy),
director, which results, in the dynamics, in a loss of rota-Which does not vanish in thg=0 limit, to the molecular
tional invariance of the free energy and to the emergence dfeld averaged over fluctuations:

a fluctuation correction té .

<hwo(q7w)>:_%5n(q,w), (38)

3. PROPAGATION OF SHEAR WAVES IN ORIENTED h is th . Vi . ffici h h
NEMATIC LIQUID CRYSTALS wherey is the rotational viscosity coefficient, ang has the

meaning of the relation time of the director with respect to
It can be expected that when the the local director isthe directionny:
fairly close to the average direction of preferred orientation,
when the direction variation rate is on the order of or exceeds | kgTq2 ( dg’
the reciprocal relaxation time of the smectic order parameter, 7o :(277)3 M \f “1(q)
fluctuation-emerging smectic layers are perpendicular to the yMriZx
average direction of the director, since they have no time to 2p dg’ (q)?
reorient themselves in accordance with the changes in the - M—f — - — |
local director. Under such deformations of the director field, T/ x (@) (—iw+2bx"(q"))
the free e_ne_rg;(?) does not remain constant even if the di- First we note that, * is weakly dependent on frequency and
rector variations are spatially homogeneous. This generates. a e .
. . e . is of the same order at zero and infinite frequencies. For an
restoring force, which opposes deviatiofincluding spa- . . 1
. L . ! order-of-magnitude estimate ef -~ we setw to zero(for the
tially homogeneous deviationsf the director field from the L9 . .
- ; . . sake of simplicity and ignore the difference betweépand
directionng. This relaxation mechanism may strongly affect

. . | . Moreover, we note that, * has no critical temperature
the natural modes of nematics, particularly the nature o . . .
. . . dependence. EquatiagB89) shows that the Ornstein—Zernike
propagation of shear waves at ultrasonic frequencies.

T . . . approximation for the correlation function is insufficient for
Before estimating the size of this restoring force, we : .
trr1e convergence of the integrals (89). Hence, using the
?act that the system has a characteristic dimension, the dis-
'tance between the layers in the smed&iphase, we can
integrate in (39 to the upper limitq,,, assuming that
dm~0Qs. Then we arrive at an estimate fmglz

(39

which the fluctuations are relatively weak. More precisely
the fluctuation correction to the specific héht,

L _keTGOn( 1

0.4 T - (40)
0 2 22"
0.2 G, 3wy \ 1+05,é7
o) 40 €0 80 100 & We see that near tHé—A-transitionpoint the relaxation time
—ozl G of homogeneous distortions of the director field becomes fi-
. 1

nite. Using the values of parameters typical of liquid

FIG. 2. crystalst®25-27
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T—Ty-a]%° N+1
£ ~2x10°8 — A1 o, = /= "~ ~|cosd], (49)
Tn-a pTg 2
T—Tnoal? with 6 the angle between the direction of propagation of the
_9 N—-A 7 ..
7y ~10 Ton S, QOm~0s~2X10°cm, shear waveg, and the vecton,. Combining(48) and (49),

we arrive at an estimate for speed and attenuation constant of
we find thatmy~10"*®s. For the director variation rate the first pair of shear waves,~3x10°cm/s and 14,
the following condition must holdw= 74" . ~10’s™! For a wavelengthl ~2m/7,79/p~10"%cm, a

Let us find the changes in the spectrum of the sheaghear wave can propagate in a NLC with moderate rotational
modes of NLC. If byv, andn, we denote, respectively, the viscosity (y~0.1P), which corresponds to 74~10"s™ %,
velocity and director components that lie in tg plane and  since the wave’s amplitude changes after one period by a
are normal to the wave vector and byv, andn, the com-  factor of exp(1/c7)~0.7.
ponents the lie in they plane and the plane containing the From the equations for the componentsv,, andn, we
vectorsn, andq, then the equations far, andn; separate  can easily obtain a dispersion equation for another pair of
from the other equations in the system of the equation okhear modes if the vibrations are transverseg,or+q, v,
motion for the NLC?%. We write these two equations in the =0. The equation is
linear approximation with allowance for the ter38):

1 2 1 2 AZyg?
Kg® 1 A+1 w2+i(—+ﬂ>w——(ﬂ+ A =0, (50
w+i( +— | net ——00.=0, (41) o P Tol P p
0 where
2 2
. 7q (A+1)y[Kg® 1
w+i— )vt+ / 2= g,n;=0. (42 ngﬁ 73 (Oﬁ—qf)z
P 20 |y m=(m1+ 72— 2947+ 75) 7 to 4 (59
Here we have used the same notation for the material con-
stants of the NLC as in Refs. 28 and 29, atdand 7, are A+192 1-)¢@°
iven by the following relationships: A=+t —5—. (52
given by the following relationships 2 2
2 2
q q This implies that if
Ke=Kor—y +Kag =, (43 P
q q 1 77|q2
2 2 T p ®3
A4 ma 24 o P
”t_”l?"'??' (44 we can solve the dispersion equation corresponding to a
propagating shear wave:
We examine the case where the molecular field is mainly 1
determined by the relaxation term, i.e., w34= T Cq—i o (54)
1 Kg?
s . (45) where
7o Y
Using the values of parameters typical of nematic liquid C/= /l "CLZ‘H_ (55)
crystals, K,~10 %dyn, y~(0.1-1)P, and 7,~(10°8 PTo 2

—10 ") s, we arrive at an estimate for the inhomogeneity  The propagation speeds and ¢, of the shear waves
wavelength:>2Xx10"° cm. strongly depend on the direction of propagation, and for
Equating to zero the determinant of the system of Eqsy=1, j.e., for nematic liquid crystals consisting of rod-
(41) and (42), we arrive at an equation for the natural fre- shaped molecules, they are almost the same. The shear
guencies: modes that become propagating modes near Nhe\-

transition point are precursors, so to speak, of second sound
1 2 1 90® (A+1)2yq2 o .
w2+il —+ 74 )w_ _< 7 +( )79 =0. (46)  existing in smecticA\.
70 To\ P 4p
We see that if 4. CONCLUSION
1 702 In conclusion, let us discuss the possibility of experi-
o p (47) mentally observing the phenomena we have just discussed.

. , ) ) ) ) Usually the geometry of experiments conducted to detect the
i.e.,1~10""cm, the solution of the dispersion equati@i®)  ,coustooptic effect is such that optical transmission depends

takes the form on the Frank elastic constaidg; (see Ref. 4 Equation(23)
1 implies that near th&l-A-transition point,K 33 strongly de-
w15= FCq—i g (48)  pends on the ultrasonic frequency, and by varying this fre-
0

quency one can detect the related variations in optical trans-
where mission and in the dimensions of the dark and bright bands
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or rings. As follows from Eq(21), the Frank elastic constant
K4, has the most interesting frequency dependence. At low
and high frequencie ,, does not depend on how close the
system is to the phase transition point, but at ultrasonic fre-
guencies an appreciable decreas& jp should be observed.
Unfortunately, no experimental data sensitive to variations in
K1 at ultrasonic frequencies are available.

As for the shear waves near tiN-A-transition point,
their speed is almost ten times smaller than that of secon
sound in the smecti&-phase. Here transverse waves with
deflections perpendicular to the plane withandqg can also
propagate in the nematic phase. Note that accordingp

S. V. Ul'yanov 1103

k, (k,-6n(q,w))
k —
+j d (K+1-iw)(k®+1)3

y 2(q, -k, )?  2(gk,)?
Mo My

(A3)

This yields the following expression for thecomponent of
'Qe fluctuation contribution to the molecular field:

keTaZ [2M
Shy (0, )=~ vV
< ‘I’X(q (1))> 77'2 A

and(53) these waves propagate only when their wavelengths LoV 1ol o
lie within a fairly narrow range. In the smectfephase such % [( 1(@)+15(w) _ 3(@) (42+92)
waves are purely damped waves. The frequencies of these 12M+ SMt Y
waves fall in the megahertz range, so that, because in Eq. LoV oo 1o
(39) we ignore all frequency dependence, formul4® and ( W) +1x(w) _ 3(w))q§ 8N, (q, )
(55) for the speeds of the shear waves can be used only for 12M+ 15My
making estimates. Exact allowance for the frequency depen- KT [N 21 (@)
dence in(39), which results in the same qualitative conclu- L Bl8s  [eMy Sl 9,y Ny (g, @),
sions, gives rise to extremely complicated expressions, w? A 1My VY
which are omitted from this paper. (Ad)
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aa ~ ~ ~
APPENDIX = ﬁ[“ wH;(0)—Hy(w)]
In Eq. (19 for (h)(g,w)) we leave only the terms that
contain factors~q?. If we denote their contribution to the +i ;[Hl(Z)HZ)HZ(Z))— EZ) (A5)
averaged molecular field bshy,), then 202 2
kaqu , q:(q] -én(g,)) _ o k4 dk
<5h\y>: 2 3 a H -1/~ -1/~ |2(w):f ~
M%(2m) [io+2bx "(a")]x (q") 0 (K¥+1—iw)?(k?+1)
x(q") . -1 1. _ ~
X{—(T+b[—'w+2bx (@")] = =3 | 1 5 oH(O) +Hy(®)
2 2 ’ 112
a. d; a.-q, a:49;
X + +2x%(q’ : ~ 1l o
oMy T 2my) T2 ony T am, } +iZT7T2[—H1(w)+§wH2(w) , (A6)
(A1) ©
Changing the integration variables, () f@ k8 dk
w)= ~
a q 3 0 (K2+1—iw)(k?+1)3
=k, , =k,, A2
R T - e R
we obtain ==z Ew—(l—w JHi(w) —20H,(w)
ksTaZ f2Mmy[ [ aF o m [ 15 .
= - |1 72
(Shy) (2m)? A l 2MT+ My +i =3 1 g +2wH(w)
x [ aie—elleon@e)) ~(1-eDH@) |, (A7)
(KP+1—iw)(k®+1)
1 1 ~ 1 7T /—=
><(k2+1 '~+k2+1) Huler= iVt "o
—lw 2
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~ 1 T/

Ha(w)= % Vi+o?+1,
2

and the reduced frequency frequeneys determined by Eq.

(26). Comparing(A4) with (4), we find the contributions
(21)—(23).

(A9)
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The temperature dependence of the surface tengidi is treated theoretically and

experimentally. The theoretical model based on the Gibbs thermodynamics of a one-component
fluid relatesdy/dT to the surface excess entropy densitAS. All specific surface

effects, namely ordering, capillary waves, and double layer influence the surface entropy, which
in turn governs the sign and the magnitudedof 9T. Experimental data collected at a

free Hg surface in the temperature range from 0 °C to 30 °C showsthaT is negative.

© 1998 American Institute of PhysidsS1063-776098)00912-3

1. INTRODUCTION mated by the same right-angled profile in order to preserve
. the electrical neutrality of metal as a whole. Thus, the two-

_ The temperature dependence of the surface tension @fmnonent model is inapplicable to a free metal surface,

liquids is very important in applications such as Marangoniyhose excess entropy should be evaluated in the framework

convection and crystal growth. However, little is known 4t 5 gne.component model. It will be shown that the effect of

about the specific surface forces influencing this dependencg, t5ce ordering is not a single contribution on the surface

in liquid metals. _ entropy. Other specific surface effects opposing layering tend
Our previous workwas concerned with the surface ten- to increase the entropy of the interface.

sion of mercury as a function of temperature, which was
studied using quasielastic light scattering from capillary

. " 2. THEORETICAL ANALYSIS
waves? Although the experimental data show a decrease i
surface tension witff, the theoretical explanation of this fact As noted in Ref. 6, the interface thickness of van-der-
seems to be non trivial. The recent discovery of surface layWaals liquids is determined by thermal fluctuations, which
ering in liquid gallium and mercury indicates highly orderedtake the form of thermally excited capillary waves. The
metal structure perpendicular to the surface which is about am.s. amplitude of these waves is usually slightly greater
few atomic diameters thick? This ordering can drastically than an atomic diametérOne would thus expect the inter-
influence the entropy density profile in the surface zone, reface thickness at zero temperature to vanish, and the density
ducing the entropy density at the surface compared to thprofile to be a discontinuous step function dropping from the
entropy density of the bulk. If this were the case then thebulk densityp, to zero. In such a situation it is natural to

surface excess entroyS defined by suppose that the location of the Gibbs surface coincides with
- the step profile at 0 K. The real surface profile varies With
As:f dZS(z)—S,6(2)] (1)  in such a way that the surface excess density given by
would be negativé.Here 6(z) =0 for z>0 andé(z)=1 for I's= J_ dZ p(z) - 6(2) p] (©)]

z=<0; z=0 denotes the surface position, and the integration
is performed from the liquid bulkz= —«) to a vapor phase remains zero for all.
(z=). Insofar as the surface tension derivative of a one- Consider now a liquid metal comprising two compo-
component liquid is related taS by>® nents: free electrons and positive ions. Free electrons behave
as a quantum medium: even at zero temperature their energy
AS=—9vIdT, 2 . . . . :
is nonzero and is usually written in terms of the Fermi en-
the temperature dependence is expected to be an increasieggy E;: E=E;N, whereN is the number of electrons. It is
function of T, as demonstrated at surfaces of normal alkanefstructive to consider the profiles of both components, elec-
over a certairT range’ However, the experimental data col- tronic and ionic, afT=0. Due to nonzero wavelength the
lected at a Hg-vapor interface contradict this expectation. Irelectronic density profile has a nonzero width, which leads to
order to reconcile experiment and theory, we suggested thabme redistribution of electrons between bulk and the sur-
a liquid metal surface is a two-component system comprisingace. In other words, some electrons are ejected from the
quasi-free surface electrons and positive ions. In this caseulk and concentrate on the vapor side of the interface. This
dyldT is not given by Eq(2) but depends on the chemical charge separation leads to a surface double layer with an
potential of electrons as wéllHowever, the ionic and elec- electric fieldE=Q./ey, WhereQ is the surface charge den-
tronic profiles of any complicated shape should be approxisity ande, is the dielectric constant. The existence of such a

1063-7761/98/87(12)/5/$15.00 1105 © 1998 American Institute of Physics
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Unfortunately, no theory describing the surface tension
of liquid metals is well established. Numerical simulations of
the electronic and ionic density profifedo not provide clear
insight into the different forces acting in the surface zone. To
the author’s knowledge, only one paper treats this problem
analytically’® Due to its importance for the present context
we repeat the main results of this paper.

The electronic density, at a metal surface varies upon
an ionic jellium that approximates the real profile of the ionic

density. Following the ideas of Kirkwood and Buff-Bakker
G (see Ref. 6 for examplethe surface tension of any liquid
z can be expressed via the tensor of anisotropic streddes (

FIG. 1. Schematic variations of the electron denéstylid line) and positive iHL) and results from the densny gradlent in the surface

ionic jellium represented as a step function which coincides with the GibbZONe:

surface, denoted b@. Friedel oscillations of small amplitude are shown in

the electron density profile. Surface double layer comprises a negative elec- o

trode formed by the area to the left to the step funcfiabeled withQ_) v= f dZ(HL —]‘[”), (5)
and a positive electrode formed by the area to the righiGofabeled —o

with Q, .

o Q+ ,q,

where integration is taken from« to o in order to take into
account the effect of free electrons on the vapor side of the
interface. The forces acting at the surfat® & are nothing

" I . "Wore than the quantum pressure of the electron gas and elec-
ditions that must be satisfied even in the presence of Charg{?ostatic force stemming from the potential drop in the
separation. The first is electrical neutrality: the total electricdouble layer. A detailed analysis done by Samojlovich en-
charge of a metal must be zero, sures that the long-range electrostatic foreg.V ¢ leads to

double layer, suggested by FrenReleads to significant

o Maxwellian elastic stresseH,,= —II,,=e,E%/2 that de-
f_de[Pi(Z)_Pe(Z)]ZO' ) form the ionic fluid. This deformation is impossible for the
rigid ionic continuum suggested by the jellium model. There-

wherep; andp. are the ionic and electronic densities. fore, some external pressule= e,E%/2 must be introduced

The second quantity that must be taken into account ign order to provide the equilibrium of the whole system. This
the surface excess density. In general, this quantity is a relgsotropic pressure acting on the topmost layer makes the ions
tive one; it depends on the choice of the Gibbs surface. If thighere over-compressed compared to the ions in the bulk.
surface coincides with the step ionic profile, the surface exThese considerations confirm some increase of the ionic den-

cess mass density of electrons can be written via(8q. sity in the surface layer, which was demonstrated recently on
w the surface of liquid gallium and mercury. Unfortunately,
I'e= f_ d7{pe(2) — 6(2) pp]- this conclusion was not drawn by Samojlovich who used a

simple monotonic profile to calculate the surface tension.
From a comparison with Ed4) it is clear thatl'.=0 in our  However, his analysis helps to understand surface layering,
choice of Gibbs surface. which is closely related to electrostatic pressure due to a

We concentrate first on changes in the electronic densitgurface double layer.

with T dictated by the surface concentration of electrons in  The temperature behavior of the surface tension of a
the double layer. This concentration is temperature deperiquid metal is a most intriguing question. While the tension
dent, although this dependence can be different from thehanges only by a few percent over 100 K, the temperature
temperature dependence of the bulk electron concentratioderivativedy/dT is extremely sensitive to the density profile.
This means that the area under the tail on the vapor(side Here Eq.(2) is considered to be a basic thermodynamic
the left of the Gibbs surfagevould vary withT (see Fig. 1.~ equation relating the temperature derivati#e/oT to the
If we anticipate that the positive ions do not follow thesesurface excess entropy. It is plausible to suppose that the
changes, then the ionic profile will have a shorter tail but asurface excess entropy comprises different gatig first is
higher amplitude in order to satisfy E¢4). However, an responsible for surface ordering, and the second is pertinent
ionic density profile of any complicated shape is approxi-to all fluids, due to capillary waves. The third part is deter-
mated by a step function that drops frgip to zero at some mined by the electric field in the double layer.
z. If this step function deviates from the step function that  We first concentrate on the orientational part. The recent
approximates the electronic distribution, electrical neutralitydiscovery of surface layering in liquid gallium and mercury
of the metal as a whole will be violated. Although the elec-shows that surface atoms are more ordered than bulk atoms
tronic and ionic profiles do not necessarily coincide, they car(along the surface normet* Hence the orientational part of
be approximated by the same right-angled profile as thé¢he entropy in the surface zone might be less than that part of
Gibbs surface in Fig. 1. We have shown that the surfacéhe bulk entropy if the surface atoms exhibit long-range or-
excess density of a metal surface should be zero according tier in the surface plane. Only order along the surface normal
Egs.(4) and(3). was reported at the Hg surface; in-plane surface order has not
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been confirmed experimentafly. Therefore we cannot make 3/ 3\ 13 Kene
any definitive predictions about the orientational part of the ASS:—<—) T 9
entropy in the surface zone. 4V 2] (ulu)?[(2+GIY)H#R

As we already noted, the surface excess entropy shoulghhereY is Young's modulus and, andu, are the velocities
Sp'lt into different parts; the orientational part describing theof |ongitudina| and transverse sound waves, respecti\/e|y_
effect of surface layering remains beyond our simplified ap-The surface tension derivative evaluated using this model is
proach. The other surface effect that can be treated quantitaegative and is in good agreement with the tabulatet T
tively is the effect of capillary waves. Following Frenkel's for mercury.

ideas, the surface free energy due to thermal motion in the  The second mechanism contributing to the surface ex-

form of capillary waves is given By cess entropy is the electric field in the surface double layer.
KT The impact of this field on the surface free energy is given by
Fe=Fg—nkgT In%, (6) Fsx€eE28z. However, this term appears in the free surface

W¢

energy with a negative sign due to the specific distribution of
whereng is the number of atoms per unit aredy, is the  €lectric stresses in the double layer. As we discussed above,

surface free energy at 0 K, artdis Planck’s constanp is ~ the effect of electric fields is expressed via the Maxwell

the mean frequency of capillary waves, defined as stress tenso§; with components-S,,= S, = €,E?/2. The
change in the surface free energy due to the electric fiéld is

1 Umax
Be=— | ™2mqdqe(q). o .
©c=e fo madde(a) F=f0 dz(szz—sxx)z—fo dze E2. (10)

Using the usual thermodynamic relati@ — JF/dT, we :

. . . . Itis clear that the surface excess entropy should have a term

find the part of the surface entropy associated with capillary : ) . o
stemming from electrostatic energy that is specific solely to

waves the surface zone and is zero in the bulk metal. The standard
- InkBTT. @ expressiorS= — gF/JT yields for the entropy
fiwg _ ) 06z
AS,=€eoE T 1y

The surface excess entropy density is given by the difference

between the densities at the surfaBg and in the bulk \yhere the derivative is taken at constant surface ch@xge
Sp: AS=[S(2) — $,]6z. The part of the bulk entropy asso- Thjs electric part of the surface excess entropy is positive as
ciated with thermal motion is defined by the number ofihe thickness of the surface zone increases Wito the
modes of sound wave®r phonons propagating in the bulk  5ythor's knowledge, no analytical predictions exist about the

atanyT+0: temperature dependence of the intrinsic length scale for the
ke T surface electrostatic interactions in liquid metals. Therefore
Sp=npKg Inﬁ, the amplitude of capillary waves will be used as an approxi-
P mate width of the interface. The r.m.s. value of the interface
wherew, is the mean frequency of bulk phonch€ombin-  thickness can be found from the theory of capillary wates:
ing the last two equations, we obtain for the surface excess KeT Qo
entropy 8z= \/ 5o In—"", (12)
o 27y Omax
AS= nskBIng. (8)  The upper cutoff of capillary waves can be estimated in
We terms of a molecular siz& q,,,,=21/a. The minimum wave-
We see that\S is governed by the ratio of two mean fre- humber is usually related to the capillary length;
quencies surface and bulk. =+v/(pg). Bearing this in mind, the part of the surface

This theory can be applied only to relatively long surface®Xcess entropy due to the double layer can be written
waves whose frequencies are much less than the inverse re- b\2 Ke I
laxation timer, typical of each liquicf If the frequency of AS= 560(5—) ﬁln Ta
capillary waves is such thai=1/7,, then vibrations in the z Ty a
liquid propagate as in a solid body. Hence, capillary wavesSimple estimates based on the valuéz~1A and ¢
should be replaced by Rayleigh surface waves which propa=~1V, ;=10 Q% (Nm?, I.~1 mm yield
gate at the surface of a liquid or solid body with a velocity —10-4In(10~ 310" 19 =
us=0.9J/G/p, whereG is the shear modulus ang is the AS=10"*/In(10"*/10" ) =0.4 mN{M-K).
density. The high-frequency pafvith «=1/7) makes the Note that Eq.(13) describes a nonlinear dependence of
main contribution to the spectrum of surface wa¥a@here- AS(T) and consequently afy/dT(T). It should be stressed
fore, the question of the number of modes at the liquid surthat nea O K the interface thickness in Eq11) cannot be
face reduces to a calculation of these modes at a solid sugiven by the r.m.s. amplitude of capillary waves but is equal
face. The situation is complicated by the influence of surfacdo the wavelength of quasi-free surface electrons possessing
waves on the bulk modésA thorough analysis by Frenkel the Fermi energy. Our Eq13) does not contain a term
shows that the surface excess entropy is = (kg T/E)? typical of theT-dependence of the energy of a

(13
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free electron fluid. This is possibly due to our phenomeno- ay, Hz
logical approach to the electric field of the double layer. 14800

These estimates are based on the assumption that capil-
lary waves survive up to the upper cutoff gf i.e., on an + .
atomic scale. From the discussion above we know that at 14700

higher frequencies liquid surfaces are similar to solid ones,
so capillary waves must be replaced by Rayleigh waves

propagating along the surface without dispersion. The sur- 146005 0 s 20 2; 30
face elastic energy per unit area associated with this mode is T,C

» 1 5 FIG. 2. Temperature variations of peak frequencies of capillary waves of
Fs= dZE G(Vsu) ) (14 wave numbeg=619 cm ! at the free surface of mercury. The errorsuip
0 are less than the size of the data points. The solid line is the best-fit solution

whereG is the elastiqor shear modulysu is the displace- ™ the form of Eq.(20.

ment, andV is the differential operator in the surface plane.
Then the squared wave amplitude in thelomain can be

) X lanche photodiode was modulated at the propagation fre-
written analogously to that of capillary wavés,

quency of a capillary wave with the selected wavenuntper

) kgT The spectral representation of the signal was recorded in the
(Xa) :Aquz- (15 frequency domain with a spectrum analyzer. The whole ap-

. paratus was placed on an optical table, vibration isolation

displacement of the surface using HG2) one should re- Capillary waves, present on all liquid surfaces up to the

placey with the shear modulu&s whose magnitude can be critical point, scatter light mainly at small angles about the

estimated using data on the bulk modulus: reflected beam. The spectrum of the scattered light is the
Ge~Gydz=10"1x 10 8= 10° dyn/cm. power spectrum of capillary waves, which is approximately

Lorentziar? The data were fitted with a theoretical function

The surface excess entropy density of the Hg surface, calCyna incorporates the effects of instrumental broadeffirg.
lated using Eqs(15) and (1), is 0.7 times lower thal\S  The |atter arises from illumination of the detector by light

estimated from Eq(12). scattered by more than one wave-veotoon the surface.
The spreadsq in the wave numbers gives a corresponding
3. EXPERIMENTAL METHODS broadeningAw in the spectrum. For the Gaussian beam the

instrumental function is also a Gaussfdrt* The convolu-
tion of an ideal Lorentzian and the Gaussian instrumental
function of width 8 yields'

A liquid mercury surface was prepared by distillation in
vacuum (about 10*Torr) from a batch of 10 ml Hg
(99.998%, Merck The quartz glass distillation apparatus
consisted of a compartment filled with Hg in the open air and (" (TIB)exd — (w—w')? B?]
a condensefwater cooleglconnected by a U-tube to a stain- P(w)= o [+ (0 — w)?
less steel capillary mounted in the wall of the working cham-_ ]
ber. The chamber had a vacuum flange and an optical winLhis integral can be evaluated in terms cl)g the complementary
dow for laser access. Mercury dropped through the capillang'ror function of the complex argumetit’
to the working chamber and formed a layer about 2 mm iT  o—w)?

S(w)—ARe{ex;{—( )

do'. (16)

deep. The working trough was rectangular with dimensions E 8
of 60X 60 mn?, and was machined from stainless steel. Prior

to the experiment, the working trough and capillary were (il w—wq
cleaned with chromic acid and carefully rinsed in double- Xerf({—l(— )

B B
distilled water. Distillation was carried out at 200 °C, and

about 2 hours were necessary to complete the continuod¥here A is the scaling amplitude an8 the background.

layer. While no efforts were made to achieve wetting, the HgThus, five properties were extracted from the fit of experi-

surface was relatively flat, as confirmed by the minimal di-Mental spectra: frequenay,, damping constant, instru-
vergence of a reflected beam. Heating or cooling was carrief€ntal width 3, amplitude A, and backgrounds. In the
out from below through a copper plate. This plate was heateB'€S€nt context we concentrate only on peak frequengies
with a resistive heater or cooled using liquid nitrogen. The
temperature was measured with a thermocouple glued to the RESULTS
thin bottom of the working chamber.

Our light scattering technique is described in detail

+B, (17)

The temperature behavior of peak frequeneigof cap-
11.12 . illary waves at the free Hg surface is shown in Fig. 2. To first
elsewhere: In brief, a beam fron a 5 mW He—Neaser order, the roots of the dispersion relation describing the

(TEMgo, A=632nm) fell on the liquid surface. Small-angle . . . .
. . ) . propagation of a capillary wave with a particular wavenum-
scattered light was optically mixddn a photodetectpmith berq aré

a portion of the original beam, providing all the necessary
conditions for optical heterodyning. The output of an ava-  wy=7y09%/p, (18
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I'=2759%p. (19 sponds to a decrease in surface tension upon heating. This
phenomenon clearly indicates that the surface excess entropy
is positive, as it should be in a one-component fluid. The
resent theoretical treatment ensures that a liquid metal sur-
ace is a one-component substance, despite its comprising
fifo components: positive ions and delocalized free elec-
trons. The surface excess entrap$ splits into three parts,
describing surface layering, capillary waves, and a surface
wo(T)= \/[Cl(T—To)+C2]q3/P- (20 double layer. Since the capillary waves contribution is pro-
portional tokgT, it is expected that this effect is smallest
near the melting point. Since surface layering is most pro-
nounced thereA S might become negative in sonferange.
Unfortunately, it is not possible to estimate the contribution
of surface layering taAS in the framework of our simple
model. However, we hope that surface light scattering is sen-
sitive enough to detect a possible change in the temperature
dependence of the surface tension.

where y,, 5, andp are the surface tension, bulk viscosity,
and density, respectively. Equatid8) serves as a good
basis for evaluation of the tension. The data in Fig. 2 are fi
by assuming a linear temperature dependence of the surfa
tension. yo=C(T—Ty)+C,, where Ty is the melting
point:

The best-fit estimate of the slofig, of the temperature de-
pendence is:dy/dT=C;=—0.27-0.07 mN{(m-K). The
best estimate of, corresponding to the tension at the melt-
ing point (—39°C) is C,=526=7 mN/m, which is slightly
greater than the tensiod97 mN/m extrapolated to the
melting point using the tabulated slopealy/dT=
—0.2mN{m-K).18:17
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In this case a liquid metal floyusually called thermocapil- ~ ?D. Langevin(Ed), Light Scattering by Liquid Surfaces and Complemen-
lary convection driven by the gradient of the surface tension ! TechniquesMarcel Dekker, New York1992). .
. . . L . J. Regan, E. H. Kawamoto, S. Lee, P. S. Pershan, N. Maskil,
is expected. The surface tension gradient is indirectly related,

vt : ) o Deutsch, O. M. Magnussen, B. M. Ocko, and L. E. Berman, Phys. Rev.
to the liquid velocityv, via the boundary condition at the Lett. 75, 2498(1995.

free surface, which for the tangential stres$®is: *0. M. Magnussen, B. M. Ocko, M. J. Regan, K. Penanen, P. S. Pershan,
and M. Deutsch, Phys. Rev. Left4, 4444(1995.
ay vy 5L. D. Landau and E. M. LifshitzStatistical PhysicsPt. J, Pergamon
ﬁVT: 1 (21 Press, Oxford1980.
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The nonlinear dynamics of the free surface of an ideal conducting liquid in a strong external
electric field is studied. It is established that the equations of motion for such a liquid can be solved
in the approximation in which the surface deviates from a plane by small angles. This

makes it possible to show that on an initially smooth surface for almost any initial conditions
points with an infinite curvature corresponding to branch points of the root type can

form in a finite time. © 1998 American Institute of Physid$§1063-776(98)01012-9

1. INTRODUCTION external electric field. In Sec. 3 we use the approximation of
small angles characterizing the slope of the surface to build a
A flat surface of a conducting liquid placed in a strong nonlinear model of the development of an electrohydrody-
external electric field is known® to become unstable if the namic instability. Section 4 is devoted to a study of the dy-
field strengthE exceeds a critical vaIueEﬁsz/gT, namics of one-dimensional surface perturbations. Integration
whereg is the acceleration of free fall is the surface ten- of the model equations shows that it takes only a finite time
sion, andp is the density of the medium. The interaction of for weak singularities of the root type to form in the system,
the electric field and the charges induced by this field on thé&e., singular points at which the curvature of the surface is
surface of the liquid causes surface perturbations to grovnfinite.
rapidly and regions of substantial curvature to form in a fi-  Mathematically, the formation of singularities can be ex-
nite time?°. The result may be an increase in the field energyplained by the violation of the analyticity of the complex
density at the surface, initialization of emission processesyelocity potential due to the movement of singularities, or
and, finally, vacuum breakdowhMoreover, there are indi- branch points, to the boundary. On the whole, such behavior
cations that the liquid phase plays an important role in thes similar to that of the velocity potential of an ideal liquid in
initial stages of explosive electron emissiorll this means the absence of external forcesl In Sec. 5 we use the
that one must build a meaningful theoretical model of theexample of the evolution of single perturbations to show that
nonlinear stages in the development of an instability, ehe formation of singularities occurs before the small-angle
model that can be used to describe the formation of a singusondition is violated because of the development of a linear
lar profile of the surface of the mediufa liquid metal in  instability (the branch point of the root type agrees with the
applications. small-angle approximatignin Sec. 6 we study the behavior
The present paper studies the nonlinear dynamics of aef the boundary of a liquid metal under the assumption that
electrohydrodynamic instability in the limit of a strong elec- self-similarity is retained in a small neighborhood of a sin-
tric field, E>E,, when both surface tension and gravity cangularity in the crossover from one-dimensional perturbations
be ignored. The interest in this limit is due, in particular, to of the surface to arbitrary perturbations. Finally, in Sec. 7 we
the recent discovery of systems with anomalously low criti-discuss the role that branch points of the root type play in the
cal fields,E.~1 kVcm ! (Ref. 8. The nonlinear stages in evolution of the system.
the development of an instability are studied by perturbation
techniques that use series expansions in a small p_arametsg_r,INITIAL EQUATIONS
the angle of the slope of the surface. Of course, the introduc-
tion of such a small parameter makes it impossible to de- Consider the motion of a conducting liquid that occupies
scribe the formatioriobserved in experimentsf strong sin-  the region—~<z< 5(x,y,t) and is subjected to a strong
gularities, with corresponding slope angles of order unity.external electric field. We assume that this liquid is ideal
Nevertheless, using the model adopted in this paper, we cad its motion is vortex-free. Then the potentill of the
show that for almost any initial conditions at the surface ofliquid velocity is determined by the time-dependent Ber-
the conducting liquid, it takes only a finite time for points noulli equation
with infinite curvature to form on the surface. Thus, even in (VD)2
the weakly nonlinear stages in the development of a nonlin- &+
earity there is the tendency for a singular profile of the liquid
surface to form. wherep is the pressure anf is a function of time. More-
The plan of the paper is as follows. In Sec. 2 we deriveover, for potential flow of an incompressible fluid we have
the main equations of motion, which describe the evolutiorA® =0. The equations of motion must be augmented by the
of the free surface of an ideal conducting liquid in a strongkinematic condition at the free surface,

+2oF,
p
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n=[®,~V7y-V&]|,_,, act as shift operatorgi.e., f|Z:,,='T'f|Z:0) for harmonic
functions that decay as— .

by the condition at infinity, . .
y y If we limit ourselves to second- and third-order terms

V|, , .—0, and introduce scaling
and the condition imposed on the pressure at the conductor— 12 2
vacuum boundary, s W(4mp)™" v _YE Ho HE”
2 B (4mp) % amp’
[8mp+(Ve)?]|,=,=0,
whereg is the potential of the electric field. we arrive at an expression for the Hamiltonian:
The electric potential in the absence of space charges is 1
described by the Laplace equatidro=0 together with the H= _J' [ ykip— pkn+ n((V )2
conditions that everywhere on the surface of the conductor 2
the potential be the same,|,—,=0, and that the field be ° C
P @l — (k)2 + (V)%= (Rm)?) ] 2. M

uniform at infinity, ¢|,_...,— —Ez
Note that these equations of motion have a Hamiltonianrhe equations of motion corresponding to this Hamiltonian

structure and the functiong(x,y,t) and zp(x,y,t):d)lzz,, are

are canonically conjugaté:*®

N 1 . A

W__oH dm_oH gi+kg= S [(kF)*=(VF)?+ (kg)*~ (Vg)?]

ot sn’ dt oY’
where the Hamiltonian +K[(f=g)kf]+V-[(f-g)Vf], 2

(V)? (Ve)? 1
H= d3r—f d3r R T (kf)2— 2 (R (Uhke)2
Ls,, 2 = BTp fi—kf = [(kf)*=(V)"+(kg)"~(Vkg)“]

coincides, to within a constant, with the total energy of the +K[(g—Fkg]+V-[(g—F)Vg] 3)
system. '

where we have changed from the variablggnd ¢ to the
normal variableg andg:

Using Green's formulas, we can write the Hamiltonian Yt _ Y=

in the form of a surface integral: 2’ 2
H= L S, ation of g to zero with a characteristic times|&/). In this
_ case in the right-hand sides of Eq®) and (3) we can put
whereep=(¢+E2)/E is the perturbation of the scalar poten- g=0, which means we are examining the perturbation-
tial, ds is the surface area element, afidn is the normal  puildup branch with allowance for a quadratic nonlinearity.

3. THE SMALL-ANGLE APPROXIMATION

W od  E2p do
2 on  8wp dn

In the linear approximation, Eq2) describes the relax-

derivative at the surface. This leads us to the following system of equations:
From now on we assum& 7| <1, which corresponds to
small surface-slope angles. This allows expanding the nor- g, +kg= 4(kf)2— 4(Vf)2+k(fkf)+ V- (fVf), (4)
mal derivatives in powers series of the canonical variables.
Then for the Hamiltonian we have f,—kf=1(kf)2—3(Vf)2 (5
H= J' f(tﬁllw—Vﬂ':ﬁVflllIO d2r Thus, we have shown that studyiqg the dynamics of per-
2 turbations of the surface of a conducting medium in a strong
E2; electric field in the small-angle approximation amounts to
_ j ———(T_kT - p+Vy-T_VT 1y d?. studying the system of equatiof® and(5). What is impor-
8mp tant about this system is that the nonlinear equat®rdoes

Herek is the two-dimensional integral operator with a kerne| "0t contain the functiog and that Eq(4) is linear ing and
whose Fourier transform is equal to the absolute value of th€&n easily be solved:
wave vector:
1 JtJ’w ©  G(x'y',t")(t—t")dx dy’ dt’
g_ E 0 —

Rf:_ifx f F(x'y') dx’ dy’ Ty Sy 07T
2m Jow Jon (X =02 (y' =) 22 (6)

The nonlinear operator%i defined as 1. 1 N
G(x,y,t)= E(kf)z— E(Vf)2+ k(fkf)+V-(fVf), (7)

2 where we assumed thgt,—,=0.
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4. FORMATION OF A BRANCH POINT OF THE ROOT TYPE ing the explicit solution reduces to analyzing the nap
—x' specified by Eq(13). Generally, this map ceases to be

In the case of one-dimensional perturbations of the SUryne-to-one at points where

face (we ignore the dependence of all the quantitiesydn

the integral operatok can be expressed in terms of the Hil- X
- —=1+2Q,/t=0. (14)
bert operatoH: ax’
c 9 4 R T f(x") | This relationship(14) specifies a patl’ =x'(t) in the com-
k=- X H, Hf= P X,_de : plex x’ plane. Then the motion of the branch point of the

functionv is given by

Then the model equationd) and (5) can written )
X(t)=x"(t)+it+2Q(x'(t))t.

—Hg=3Af 02— HF )2+ AFAT )+ (ff),, (8
9iHO=2(HE)" = oL+ HITHT)+ (T, (8) At the timet, when the branch point reaches the real axis the

fo+HAf=LAf)2—L(f )2 (99  analyticity ofv is violated and the solutions of E(9) be-
. . - , . come singular.
For further discussions it is convenient to introduce & | et ys examine the behavior of the solutions near a sin-
func'uon.that is analytic in the upper half-plane of the €OM-gylarity. Expanding12) and(13) in a small neighborhood of
plex variablex: the pointt=to, Xx=Xo=X(tg), X' =x4=x'(to), in the leading

$=Pf, x=Pg, order we get
whereP=(1-iH)/2. Since applying the Hilbert operator to  ,, =q,— _, SX=1 8t+ 20t + q"to( X' )2,
a function that is analytic in the upper half-plane amounts to 2t
g;;lggg/éggtt;lg itrj]r;cftéornmby the unit imaginary number, Egs. V_VT(eér,eagg;tQ:(txé)t’o_ q"=Que (X)), X=X—Xg OX'=X'
Re( ¢ +idy+ ¢2) =0, Excluding 6x’ from these expressions, we obtain
Ret i~ Xt 67~ 2P(6)) =0 . :qo_[% 2 s
Q1

Thus, the integro-differential equatiori8) and (9) can be
studied simply by analyzing the inhomogeneous linear equarhe derivative of this expression with respecixts
tion

b= =—[169"t52(Sx—idt—20000)] % (16)

: 2 B *

X~ 1=~ O (6Fx (10 which shows thatp,, behaves in a self-similar mannesx
and (separately the nonlinear partial differential equation  ~ st) and becomes infinite ast—0.

ot i = — 2 (11) As for the complex-valued functiog, the equation that

t X X determines its temporal dynami¢gq. (10)) can be inte-

For the sake of convenience we introduce a new funcgrated by the method of characteristisee Eqs(6) and(7)).
tion, v=¢,. In terms of this function, Eq(11) becomes Taking the initial condition in the formy|;—o=0 yields

vitivy=—2vvy. t o 5 an .

x= | D(x+it—it’,t")dt’, D(X,t)=—¢x+2P(ded )x.
0

Note that this equation coincides with the one proposed by
Z_hdanov and _Trubnlko%‘,"lSwho used itto de;;crlb_e ‘he_”Of_‘t Inserting(15) into this expression, we see than near the sin-
!lnear stages in the development of_ tangential d|scont_|nU|t|eaularity the derivativey,, can be expressed in terms ¢f, :

in hydrodynamics. More than that, if we replacéy x+it,

we arrive at the equation derived in Refs. 9—-11 as a result of a5 —do

a discussion of the nonlinear dynamics of a free surface of Xxxzm by
ideal liquid in the absence of external forces, where it de-

scribes the temporal evolution of the complex-valued velocThis means that the analyticity of,, is violated at timet
ity. The solution of this first-order partial differential equa- =to-

tion can be found by using the method of characteristics: How does the surface of the liquid metal behave at the
, time when the singularities develop in the solutions of Egs.
v=Q(x"), (12 (10) and (11)? Allowing for the fact thaty=f—g, we find
x=x'+it+20Q(x")t (13) that the surface curvature
where the functiorQ is determined by the initial conditions K= (14 75) 32
Q) =vli—o. is specified, to within a quadratic nonlinearity, by the expres-
Let us show, by analogy with Refs. 9-11, that thesesior? ’ d . by P

relations describéif we require thatv be analytig the for-
mation of a singularity in a finite time. The problem of find- K=~ 74x=2 RE ¢yy— Xxx) -
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Substituting the expressions faf,, and y., found earlier, Xot+ito+2Q(xg)tg=0, 1+2Q,/(Xy)te=0,

we find that in a small neighborhood of the singular point . i
where the functionQ corresponding td18) has a pole of

* H I— _in-
K~ Re{l— Uo 90 b (17 orderm at the pointx ia:
Qo+l ia \™
Since ¢, is given by(16), we have Q(x")=ie(m—1)! (x’+ia

Klo_. o &71/2, Kl,_. o &(71/2, . . . .
|X—Xo | ot |t—to 4 Expanding in a power series in the small parametewe

i.e., it takes a finite time for a singularity of root tyflaranch ~ obtain to leading order the following:

point) to form at the surface, and the curvature of the surface

of the liquid at this point is infinite. to~a
To conclude this section we note that since we hgve

=f+g, near the singularitya relationship holds for the xp~—ia[1—(2em! yUmTL],

complex-valued potential of the liquid flow=2Py:

1—m—ﬂ(2sm!)1’<m+l>
m

Since in the linear approximation the singularity is formed at

gy +i time t=a, the above expression faog implies that the non-
Wx= 2(¢xx+)(xx)~2—qo+i bxxs linearity accelerates the formation of the singulafibyt if
. ) o ) £<0 holds, the nonlinearity delays the onset of the instabil-
i.e., the first derivative of the complex-valued velocity alsojty).
exhibits singular behavior a&t— 0. This means that, as in Plugging the above expression fqjinto the expression

Refs. 9-11, the formation of singularities can be interpreteg, Q and its second derivativ@,, , we obtain
as the result of violation of the analyticity of the complex-
valued potential due to the movement of the singularities of Y i(m+1)

—1(m+1)
the potential to the boundary. o (2emt) ,

i
5. EVOLUTION OF A SINGLE PERTURBATION Go~ 5 (2em! yUm+1),

We use a simple example to show that at the time whe
a singularity in the solutions of Eqé8) and(9) develops the
applicability conditions for our model are met.

We take the initial perturbation in the form

r'1'hus, for perturbations of the forif18) the parameteq” is
finite. This means that the dynamics of surface perturbations
near a singular point is described fairly accurately by Egs.
(15—(17). As for the parameteqg, the smallness of im-
fli_o=—ea™k™ LIn(x2+a?), (18  plies |go/<1. This is an important result. The important
point is that this parameter, 482) and (15) imply, deter-
mines the characteristic angles of slope of the surface by the
moment of singularity formation. Then for the derivatiye
at the time of collapse the following estimate holds:

wherem is a positive integer, and the parametarand ¢
take positive valuesa>0 and ¢>0. This situation corre-
sponds to a one-dimensional single perturbation of the su
face symmetric with respect to poirt=0, at which the sur-
face curvature is negative. The characteristic slope angles of |7l ~e

the surface are determined by the parametewhich we ;¢ the characteristic angles remain small, even though they

1/(m+1)< 1

assume small. _ o increased by a factor of "™ (M*1)_|n this case there is not
Note that in the linear approximation E@) becomes  gnough time for the small-angle condition to be violated as a
f+Af,=0. result of the development of a linear instability, and the pro-
posed mode(Egs. (8) and (9) is closed in the sense that if
Its solution with the initial conditior(18) is the initial perturbation meets all the conditions needed for

_ mim—1 P 5 the model to be valid, this property is retained throughout the
FOct)=—ea k™ In(x*+(a=1)%), entire evolution until the time of collaps,.
i.e., within the linear model the perturbation grows without We now discuss the behavior of a perturbation of the
limit and becomes infinite at the tinte=a, which of course electric field at the conducting surface,
violates the applicability conditions for this model.
oy . . . . . . (9(p

Will introducing nonlinearity into model permit a singu- SE(x,t)=—E— —
larity to develop in the solution before the conditibn,| ani,_,
~|f,|<1 breaks down?The branch-point nature of this sin-
gularity agrees with the condition that the angles be sinall.
To answer this question, we will examine the evolution of
the perturbatior{18) according to the nonlinear equati(®). SE~—EHf,=2E Im(v).

The symmetry of18) implies that the singularity forms
at pointx=0. Then from(13) and (14) it follows that the
time ty at which the singularity develops can be found b
solving the following equations simultaneously: SE| sx= si=0=~2E Im(qo).

near the singularity. Clearly, in the linear approximation the
field perturbation is specified by the formula

Substitutingv of Eq. (15) in this expression, we find that at
ythe singular point,
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Since the parametey, is small, the perturbation of the elec- the dynamics of the surface near a singularity is described by
tric field at the time of singularity formation remain much the self-similar solutions of the linearized equations of the
weaker than the external fieloth SE, and SE; are singu- model and, on the other, that the presence of a nonlinearity
lar). leads to a situation in which of all the possible self-similar
solutions only those with rational valuesépecified by the

condition (22) are realized(from general considerations it
6. SELF-SIMILAR SOLUTIONS IN THE GENERAL CASE follows thatp=1/2).

In Sec. 5 we found thdtye|<1 holds in the small-angle It iS therefore natural to assume that in the two-
approximation. This allows us to ignore the dependence offimensional case, as in the one-dimensional, the solutions in
this parameter in Eq¥(16) and (17). Then, if q"#0, the a small neighborhood of the singularity are self-similar:
dynamics of the surface curvature in the one-dimensional 1 5x oy
case is given by the expression K~ —— <__)

|st[p [ ot] [ ot]

K~—Rg4q"t3(ox—iot)] Y2 (19

(23

wherep satisfies the conditiof22). A characteristic feature
of the weak-nonlinearity approximation in our problem is
that the specific form of the dependence of all quantities on

In particular, for a perturbation that is symmetric with about
the pointx=x, we have

1 {_ St+ Vox2+ ot2 | V2 the self-similar variables can be treated using the equation
Vel oxP+ ot ' K,=KK, (24)

Here the initial conditions determine only the constant factor,, e linearity makes it possible to effectively study the

Thus, the behavior of the system near a singular point is of §,:mation of two-dimensional singularities at the surface of a

universal nature. _ ~ _ conducting medium. Note that this statement is valig if
Let us take the particular casg'=0. Suppose, for in- 1 "\hich as conditiori22) shows, is met in our case in a

stance, that natural manner. The point is that pt=1 an expression of

52Q FLEYe) the form (23) corresponds to the symmetries of the initial
— == =0, nonlinear equations of motion. This means that near a singu-
IX X' =x{ X X' =x} larity the contribution of a nonlinearity is comparable to that
of the linear terms, and the analysis of the behavior of the
_d"Q surface lies outside the scope of this paper.
n= ax'" ,7&0' Substituting (23) in (24), we arrive at the following

X' =Xg integro-differential equation for the unknown functibn
wheren>2. Then, expandingl3) in a power series idx’ &
up to thenth power, in the leading order we get ghe+h+ph=k(& Oh,
1 nl |\ 1n where £¢= 8x/|6t|, and £= 8y/|ét|. Since the profile of the
K~— FRE( ot (Sx—ist)h-1, (20 surface begin to form at the periphery and only then is propa-
0 oGn gated to the poinbx=8y=0, at the time of collapse the
The formulas(19) and (20) show that for an arbitrary curvature of the surface in a small neighborhood of the sin-
one-dimensional perturbation of the surface satisfying theyular point is determined by the asymptotic solutions of this
condition| 7,/ <1 the curvature near near the singularity be-equation ag?+ /2—o. As can easily be shown, these solu-

haves self-similarly: tions are described by the partial differential equation
1 X éhg+Zh,+ph=0,
K~ —— h( —) , (21
|otp ] ot

whose general solution is

whereh is an unknown function, and the exponent is given h=[ &%+ £2] P2F (¢1€)
by the expression '

p=(n—=1)/n, (22)

with n a positive integer. .
Note that(19) and (20) are the exact solutions of the ox=rcosB, dy=rsing,

whereF an unknown function. Plugging this expression into
(23) and introducing polar coordinates,

linear integro-differential equation we arrive at the following formula for the curvature of the
Kt+I:|KX=0, surface near the singular point:

which describes the evolution of the surface curvature in the F(tang)

linear approximation, as follows froif®) with allowance for K|t=to~ o

the fact thatK =f,, holds in the leading order. For an arbi-
trary exponenp, Eg. (21) specifies the class of self-similar We see that we are again dealing with a branch point of the
solutions of this equation. This means that, on the one handpot type.
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Reflected high-energy electron diffracti0RHEED) and detection of the intensity oscillations of

the specular reflection have been used to investigate morphological chang€kli) Si

associated with the two-dimensional layer-by-layer mechanism of silicon growth from a molecular
beam under conditions of pulsed (025 s) bombardment with low-energy (850 eV)

Kr ions in the interval of small total radiative fluxes (6102 cm™?2), for which the density of
radiation-generated defects is small in comparison with the surface density of the atoms.

After pulsed ion bombardment an increase in the intensity of the specular reflection is observed

if the degree of filling of the monolayer satisfies €.8<1. No increase in the intensity

occurs during the initial stages of filling of the monolayer. The maximum amplitude increment

of the oscillations is reached 8t=0.8. The magnitude of the amplitude increment of the

RHEED oscillations increases with temperature up to 400 °C and then falls. At temperatures above
500 °C amplification of the reflection intensity essentially vanishes. Experiments on multiple

ion bombardment of each growing layer showed that the magnitude of the amplitude increment of
the oscillations decreased as a function of the number of deposited [#yersrder of the

RHEED oscillation. A mechanism for the observed phenomena is proposed, based on the concept
of surface reconstruction by pulsed ion bombardment accompanied by formatiofY sf7a
superstructure, which corresponds to a decrease of the activation energy of surface diffusion of the
adatoms. Within the framework of the proposed mechanism the results of Monte Carlo

modeling agree with the main experimental data. 1898 American Institute of Physics.
[S1063-776(98)01112-3

1. INTRODUCTION 2. EXPERIMENTAL TECHNIQUE

Low-energy (-100eV) ion bombardment during The experiments were carried out in a superhigh-vacuum
molecular-beam epitaxy leads to drastic changes in the sughamber with residual gas pressurdl0° Pa. The silicon
face morphology and microstructure of growing fils. wafers had orientatiofil11) within 0.1° limits according to
The mechanisms of such changes have so far not been estdB€ xray diffraction data. The samples were chemically

lished. A substantial advance in our understanding of thes‘éleaned and heated in a high-vacuum chamber at a tempera-

. . ture of 900 °C. A silicon buffer layer of thickness200 nm
processes became possible when the continuous beam of ac- o
was then grown on the wafers at a temperature of 610 °C.

celerated particles was replaced by a pulsed beam duringhe wafers were then heated to 770°C until distinct (7

growth of the layers. Thus, the use of a pulsed beam of Ar X 7) superstructure reflections appeared, which testified to
ions with an energy of 600 eV during continuous depositionthe formation of an atomically clean (§L1) surface. An
of Ag on an Ad111) surface altered the growth mechanism: electron-beam Si evaporation block served as the source of
growth of three-dimensional islands during Ag molecular-the silicon molecular flux. The flux density was controlled by
beam epitaxy gave way to two-dimensional layer-by-layevarying the silicon melt region and amounted to'40
growth if the pulsed ion bombardment occurred with a pe-— 10" atoms{cn?-s). A flow regulator for SNA-2 gas was
riod corresponding to deposition of one monolayén. an  built into the superhigh-vacuum chamber and was controlled
earlier study of silicon molecular-beam homoepitaxy it wasPy an applied external electric field. A system for ionizing
established that pulsed bombardment with Kons with an the admitted gas and. accelerating the ionized particles by
energy of 145eV reduces the roughness of the surface O?.pplymg an accelerating voltage up to 200 V was located
. . inside the chamber. The pulsed gas feed block allowed the
which growth takes place preferentially by the two-

di . [ by-I hani £ ; 4 ion current pulse to vary from 0.25®wer limit, determined
'mensional fayer-by-iayer mechanism ot fayer formation. by the response time of the system for opening the intake

The present paper reports results of a study of the effect ofjit) 1o 1 s (upper limit, defining the conditions of maintain-
pulsed low-energy ion bombardment during siliconing a high vacuum in the system after pulsed bombardment
molecular-beam homoepitaxy. The angle of incidence of the ion beam was 54.5°. The ex-

1063-7761/98/87(12)/6/$15.00 1116 © 1998 American Institute of Physics
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periments were carried out at temperatures of 200—600 °C. A
cylinder containing spectrally pure argon was connected to ~—~
the feed block. The purity of the gas was monitored with the
help of a mass analyzer built into the growth chamber.
The ion current density was varied within the range

0.1- 0.6 uAlcm?. For the chosen conditions of pulsed bom- 1 l 1
bardment the total flux varied within the limits
10'-10" cm™ 2.

To record the surface statés situ, we employed re-
flected high-energy electron diffracticRHEED) and mea-
sured the intensity oscillations of the specular reflection as-
sociated with the two-dimensional layer-by-layer mechanism
of silicon growth® The period of the intensity oscillations 1
under such conditions is equal to the deposition time of a b
single monolayer. For the case of 141 surface, a com-
plete monolayer is biatomic in thicknesd monolayer
=1.57x 10'° atoms/cm).® Pulses of Kr ions weer applied at
different phases of the intensity oscillations of the probing
electron beam. The intensity was measured under Bragg dif-
fraction conditions, which are very sensitive to changes in
the surface morphology by virtue of electron scattering from
the boundaries of steps, islands, and other surface defects.
Under these conditions, a one-to-one correspondence is ob-
served between minimum surface roughness and the maxi- F— ' . L . L 1

mum intensity of the reflected electron be&m. 20 40Time 360 80 100

FIG. 1. Variation of the intensity of the specular reflectionnder pulsed
ion bombardment of the &@i11) surface: & during molecular-beam epitaxy

Pulsed b bard t ith K t f initiall at T=400°C; b after interruption of the silicon molecular beam at the
ulse ombarament wi r atoms or an Inially degree of filling of the monolayef#~0.8 andT=400°C. The arrows indi-

atomically-smooth surface at temperatures of 200—600 °C remte the onset times of the ion current pulse having current density
duced the intensity of the specular reflection over a timed.12uA/cm? and duration 0.5 s with he energy of the'Kions in the beam
corresponding to the duration of one pulse, with Subsequemq_ual to 145 eV. The dashed lines bound the region of interruption of the
recovery of the intensity to a level near its original value, $"c°" 1
The difference between the initial value of the reflection in-
tensity and its final value after ion bombardment increased as
a function of the beam ion energy and decreased as the supulse. After termination of ion bombardment the variation of
strate temperature was raised. This accords with the idea dfie RHEED signal intensity depended strongly on the degree
the introduction of defects into a silicon surface by the ionof filling of the growing layer. When the degree of filling
beam and their subsequent annealing, where the efficiency afas in the range 056<1 the RHEED signal intensified
annealing, of course, increases with temperature. Experand exceeded the level characteristic of ordinary conditions
ments on pulsed bombardment of a silicon surface with thef growth. In the initial stages of filing of the layer
gas ionization system switched off showed that the intensity 6<0.5) amplification of the intensity was not observed. The
of the specular reflection is maintained at its initial level afterlargest growth of the intensity of the specular reflection due
pulsed application of the gas flux both for a single pulse ando ion pulse occurred during bombardment before the maxi-
for multiple pulses. mum of the RHEED oscillations, whe#hwas near 0.8.

During silicon molecular-beam epitaxy, oscillations of Experiments on pulsed ion bombardment of &151)
the RHEED specular intensity were observed in the temperasurface were also carried out directly after termination of the
ture interval 200—550 °C, in line with the known data in the molecular flux at various stages of filling of the surface
literature® Under these conditions, after deposition of onemonolayer. It was established that under these conditions the
monolayer the initial (% 7) superstructure changed into a intensity of the specular reflection does not increase for any
mixture of (5X5) and (7X7) superstructures. Variations in degree of filling of the monolayer. During ion bombardment
the intensity of the specular reflection during pulsed ionthe intensity fell and then returned to its initial value during
bombardment are shown in Fig(al at various phases of the a time comparable to the duration of the pJlee. 1b|. This
RHEED oscillations for a temperature of 400 °C and a depoimplies that the Bragg diffraction conditions remain un-
sition rate of about 0.1 monolayer per second. The arrowshanged after ion bombardment and the observed effect is
indicate the switching-on times of the ion current pulse havnot the result of a change in the conditions of observation.
ing duration 0.5s, current density 0.42/cm?, and ion en- A comparison of the diffraction pattern under conditions
ergy 145eV. An abrupt falloff of the intensity of the re- of ordinary growth and growth with ion bombardment made
corded signal was observed during each ion bombardmeiitt possible to determine the increase in the fraction of the

3. EXPERIMENTAL RESULTS



1118 JETP 87 (6), December 1998 Dvurechenskil et al.

AN decreased with increase of the number of deposited layers
0.08 (the number of the RHEED oscillatipn
0.06F
4. DESCRIPTION OF MODEL
0.04} ‘§ To describe layer-by-layer growth of silicon from a mo-
g lecular beam, we utilized a model developed by Vveddnski
002l >3 and colleagu€<€ to numerically model epitaxy of group-IV
semiconductors. This model assumes that growth is com-
pletely controlled by two kinetic processes: deposition of
0.00p & - . . s o atoms from the molecular beam and surface diffusion of ada-
250 300 350 400 450 500 toms. Surface migration takes place as a result of diffusion
Temperature, "C hops of atoms to neighboring unoccupied sites. The fre-

FIG. 2. Temperature dependence of the amplitude increment of growtrguency of such hOpS has an activation-like temperature de-

oscillations of the intensity of the specular reflectibh and of the calcu- ~ P€NdeNce:

lated oscillations of the density of stepN (see Fig. 4 due to pulsed ion . _

bombardment ford~0.8: experimental datal{); results of modeling for V(E,T)=voexp E/kT), @

Ei=11eV (@) and forE;=1.2¢eV (A). wherewy, is the frequency of vibrations of the surface atoms
andE is the activation energy of surface diffusion, which is

determined by the binding energy of an atom with its nearest
(7X7) superstructure after pulsed ion bombardment. To esﬁeighbors y d o

tablish the connection between this phenomenon and bom-

bardment by a beam of accelerated particles, we carried oyt 1 of 5{111) is modification of the superstructure of the
analogous experiments with the ionization system swﬁche rowing surface during deposition from the molecular beam.
off and_ the accelerating voltage e_lbse_nt. No changes in th or T<550°C the thermodynamically stable X7) super-
diffraction pattern were observed in this case. structure is not able to form completely. As a result, along

. Studies fOf rt]he temperaturgude_pendegce of the %mp“tu%ith the (7x 7) superstructure a series of metastable surface
increment of the RHEED oscillationAl due to ion bom- phases is formed: (83), (5x5), (9x9), and others,

bardment were performed for a fixed degree of filling of the
monolayer ¢~ 0.8) and number of grown-on layefisefore

the maximum of the third growth oscillation for each sub-
strate temperatufeThe experiments showed that the value
of Al increases with temperature up to 400 °C, and the
decreases; at temperatures greater than 500 °C amplificati

of the reflection intensity essentially vanishé&sg. 2, solid

Experiments on multiple ion bombardment of eachpereng, is the binding energy of the atom with timefirst-
growing layer for a fixed degree of filling of that Iayer tier nearest neighborsn&3), mE, is the binding energy
(~0.8) showed that the magnitude of the amplitude increyit, the m second-tier nearest neighbora<6) in the plane
ment of the oscillations depends on the amount of deposﬂeﬂara”d to the surfaceE, is a correction to the binding en-
material(Fig. 3. The amplitude increment of the oscillations ergy that takes account of the surface phasethe number
of atoms in the underlying layer &1<7) (Ref. 10. For the
initial, atomically clean Sil11) surface it is assumed that
E;=0. As the first atomic layer is depositdé ; grows due
! to the transition to the new surface phase, which is charac-
terized by a higher activation energy of surface diffusion.

In the Monte Carlo simulation the analog of the oscilla-
l l 1 l l 1 ‘ tions of the RHEED signal during growth is the variation of

the surface density of stepps In a sense, this quantity char-
acterizes the number of atoms along the perimeter of the
islands and vacancy clusters; therefore it is very sensitive to
changes in the morphology of the growing surface. It has
been shown that under Bragg diffraction conditions the
quantity 1— N is directly proportional to the intensity of the
X \ \ . X , reflected electron beaff. In the present papeM is defined
0 25 50 75 100 125 150 as follows:

An important property of the initial stage of epitaxial

which possess excess surface energy relative t& 7)7

(Refs. 6 and R As a result, the mobility of the atoms on the

surface of the epitaxial layer is substantially lower than the

mobility on the original surface. To take this aspect of the
rowth process into account, the activation energy of surface
iffusion is modified as follows:

Time, s N
1 M VM
FIG. 3. Oscillations of the electron beam intensity for multiple pulsed ion N= — E 2 [|hi — hi+1'| +|hi i—h; .+1|], 3)
bombardment of each growing monolayer #+ 0.8 atT=400°C. aM 31 3 ) ! . !
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_'_ ] 2 4 2 4 growth of silicon from a molecular beam for a single-pulse ion bom-
1.00 bardment(a, b): §=0.8(a), 6~1 (b); for multiple pulsed bombard-

C ment(c) for fixed degree of filling of the monolayet=0.8. Depo-

0.95 sition rate 0.1 monolayer/§,=400°C.
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whereM is the number of surface sites at which the atom carsite is essentially zero. We assumed that the reconstruction of
be found andh, ; is the height of the atom above the initial the (7X7) superstructure was transformed into another sur-
surface. This definition di allows one to treat differences in face phase after the accretion of one monolayer.
the height of the surface steps and therefore differences in
their scattering power during RHEED.
To describe the morphological changes on thel El)
surface resulting from the interaction with low-energy ions  The epitaxial growth of Si on §111) was modeled us-
we have made use of modeling results based on the molecirg cyclical boundary conditions on a 14447 two-
lar dynamics methodf According to these results, the inci- dimensional grid, whose nodes corresponded to regular sites
dence of one atom with energy200 eV leads on average to of the atoms in the crystalline lattice. The numerical param-
the sputtering of one target atom. At the ion impact site aeters were as follows:E;=1.1 (1.2 eV; E,=0.2eV;
surface vacancy cluster is formed with primarily mono-E3;=0.02eV. Upon incorporating our proposed mechanism
atomic depth(16 vacancies The target atoms go into ada- of structural changes into the model of pulsed ion bombard-
tom sites and are arranged about the vacancy cluster at soment, we found the results of the numerical experiments to
distance from its edgdd5 adatomps The molecular dynam- be in qualitative agreement with the experimental data. The
ics modeling results were used in our model as initial condi-density of steps on the surface decreased noticeably some
tions in the Monte Carlo modeling of pulsed ion bombard-time after pulsed ion bombardment. This effect was most
ment during epitaxial growth of a @il1) surface. noticeable when the degree of filling of the monolayer was
Our model assumed that ion bombardment leads to ahosen in the range 0.6—0.9. The minimal step density and,
modification of the surface phase or to a restructuring of theonsequently, the maximum value of-N were reached at
superstructure of the growing surface. A transition takes®f=0.8[Fig. 44
place from the metastable surface phase to the thermody- We found that the amplitude increment of the calculated
namically more stable (X7) phase. As a consequence of oscillationsAN (see Fig. 4 during pulsed ion bombardment
this, the diffusion coefficient of the adatoms on th€¢l$l) for §=0.8 behaves as a function of temperature in a way
surface grows after an ion pulse. In the model calculationsimilar to the amplitude increment of the RHEED oscilla-
we made the simplifying assumption that the ion flux densitytions Al in the experimen(Fig. 2). The position of the maxi-
in the experiment was sufficient for reconstruction of themum of the calculated dependendég. 2, dashed lineis
entire surface. Within the framework of the proposed modeldetermined by just one model parametes, which corre-
this corresponds to a lowering of the activation energy ofsponds to the activation energy of adatom diffusion on the
surface diffusion since the addition to the binding endegy initial, atomically clean surface. FdE;=1.2 eV the calcu-
vanishes due to the change in the surface phase during epated results are in quite good agreement with experiment.
taxy. The calculations assumed that pulsed bombardment rés E, is decreased, the maximum of the calculated depen-
sults in an instantaneous modification of the surface mordence is shifted toward lower temperatures without any sub-
phology as a result of a combination of the results of thestantial change in the functional dependence of the curve.
interaction of each ion with the surface. For the total fluxes  For a fixed degree of filling of the monolayér 0.8 and
we used, the probability of the incidence of two ions at onefixed substrate temperature, we calculated the changes in the

5. MODELING RESULTS
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step density after the action of a single ion pulse on layers &rom a molecular beam leads to efficient filling of the va-
different distances from the initial surface. Comparison ofcancy clusters and a lowering of the density of islands in
the calculated results implies that pulsed ion bombardment isomparison with epitaxy without pulsed ion bombardment.
most effective in smoothing the surface religfinimizes the The nonmonotonic character of the temperature depen-
step densityunder conditions such that the first few mono- dence of the decrease in roughness of the growing surface
layers grow. As the number of grown-on layers is increasedduring pulsed ion bombardment appears to be associated
the surface smoothing effect of the ion beam is decreased.with two competing processes.

Multiple pulsed ion bombardment was modeled for suc- 1. As the temperature is increased, the diffusion length
cessive switching-on of the ion beam in each successivef the adatoms increases and the relative contribution of sur-
growing layer at times corresponding to the same degree dace reconstruction to the change in the surface diffusion
filling of the layers[Fig. 4c]. As in the case of a single pulse, coefficient decreasesexp(E;/kT)—1. This is the reason for
the lowest density of steps after ion bombardment is reachetihe noticeable weakening of the effect fbr-500°C.
during growth of the first few monolayers. 2. Lowering the temperature enhances the formation of
islands of the following monolayer before formation of the
previous monolayer is complete, which in turn leads to the
development of surface relief. Under these conditions, the
diffusion length is determined mainly by capture of adatoms
The increase in the intensity of the diffracted electronat the boundaries of the islands and vacancy clusters, and not

beam after pu|5ed ion bombardment during epitaxy of d)y surface reconstruction. As a result, Toxx 300°C, accord-
Si(111) surface points to a decrease in the surface density dig to the modeling data, the contribution of surface recon-
scattering sites, these being the boundaries of islands arfdruction during pulsed ion bombardment to the increase in
vacancy clusters. There are a number of phenomena witthe adatom diffusion length approaches zero.
which the observed lowering of the surface roughness as a The observed dependence of the surface smoothing ef-
result of low-energy ion bombardment may be connectedfect under ion bombardment on the number of grown-on
1) sputtering of the material, which corresponds to an effecimonolayers is probably also connected with the development
tive lowering of the atom flux onto the surface during depo-Of relief on the growing surface. It is well known that growth
sition from the molecular beam;) heating of the surface from a molecular beam is accompanied by the accumulation
with corresponding changes in the diffusion processes due tof deviations from the planar surface as the thickness of the
the transfer of energy to the atoms from the incident jons€pitaxial layer increases.
3) changes in the mechanism of adatom diffusion as a con-
sequence of deposition of an impurity onto the growing sur-
face; 4 changes in the kinetics of growth of the monolayers; ~oncLusion
as a consequence of generation of adatoms and surface va-
cancy clusters, and also disintegration of the islands forming  The studies reported here of morphological changes in a
during growth; 5 reconstruction of the surface, due to the Si(111) surface during two-dimension layer-by-layer growth
liberation of energy by the accelerated particles. of silicon from a molecular beam under conditions of pulsed
We analyzed the role of the first two factors in Ref. 4,(0.25—-1$ bombardment by low-energy80-150eV Kr™*
where we concluded that they do not contribute substantialljons have made it possible to identify the chief mechanisms
to changes in the surface morphology for the total ion fluxef layer growth from ion—molecular beams in the region of
used in the experiment. small total radiative fluxes (£b-102 cm™?2), for which the
According to the data in the literatutéthe deposition density of radiation-generated vacancies and adatoms is sig-
of group-1ll (In, Ga and group-1V elementéSn, PH during  nificantly lower than the surface density of atoms. The idea
Si epitaxy from molecular beams is capable of increasing thef the investigative method is to communicate additional en-
diffusion coefficient of silicon atoms on the surface. Theseergy to the surface atoms during a short time interval by
elements, by forming bonds with silicon atoms, in fact altermeans of an ion pulse, and then to track the dynamics of the
the mechanism of surface diffusion. For inert gases no effecdubsequent structural changes.
on the epitaxy process has been noted. Implementing the given method, we detected a surface
Modeling of epitaxial growth with allowance for the smoothing effect during epitaxy of @ill) for simultaneous
generation of surface vacancies and adatoms by a pulsed igulsed bombardment with low-energy ions and identified the
beam without the introduction of superstructural transitionsconditions for its manifestation. Comparison of the diffrac-
has shown that no significant change in the surface density dfon patterns obtained during ordinary growth and during
steps takes place for any of the temperatures, depositiogrowth with ion bombardment allowed us to determine the
rates, or ion current densities used in the experiment. This imcrease in the fraction of the ¢7) superstructure after
probably because the ion flux density is low compared to theulsed ion bombardment. We have proposed a mechanism
atom flux from the molecular beam. and developed a model of structural changes taking place on
The model calculation gives good agreement with ex-the surface due to ion bombardment during molecular-beam
periment only under the assumption that the surface mobilitgpitaxy. Monte Carlo modeling gave good agreement with
of the adatoms increases because in the surface phase unttes experimental datéf we admit the assumption of a de-
bombardment by low-energy ions. Subsequent depositionrease in the activation energy of adatom surface diffusion as

6. DISCUSSION
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a result of ion bombardmentwhich is linked with the struc-  *’E-mail: dvurech@isp.nsc.ru
tural transformations taking place in conjunction with the
increase in the fraction of the §7) superstructure. . _
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In connection with the problem of identifying magnetic states in the vicinitypofthe

multicritical point of thex—T diagrams of spin-glass systenasstudy has been made of properties
that can be exploited to determine the presence of a thermodynamic phase transition at the
Curie point T and the distinctive features of the transition, specifically, the temperature
dependence of the magnetic part of the specific kgdfT), the temperature dependence

of the low-field magnetizatiowr(T), and(with a view toward examining critical behavior in a
magnetic fieldl the magnetization isotherms;(H). The investigated object is the system

of dilute ferrimagnetic spinels LiFe, 5 ,GaO,, in which every type of magnetic state has
spatially inhomogeneous cluster structures. The results obtained for a sample=Witb

indicate that the classical criteria of a ferrimagnetic second-order phase transition at
Tc=(97£2) K occur forx~x,. The results of similar investigations for a sample with 1.6,
which exists in the cluster spin-glass state Ter T;=22K and in an uncorrelated cluster

state of the superparamagnetic type Tor T;, are also given for comparison with the preceding
case. ©1998 American Institute of Physid$S1063-776098)01212-§

1. INTRODUCTION all temperature§ >0 K. This term is induced by the spatial

. . . . inhomogeneity of the ferrimagnetic state, and its value is
Spin glasses have been the object of intensive resear(‘fﬁ ¢ y g

. e etermined by how close the concentratiois to the perco-
for several decades now, and yet the identification of mag- . .
: . . - . lation threshold. Based on these concepts, long-range ferri-
netic states in the vicinity of the multicritical point, of the

x—T phase diagrams remains as pressing a problem agnetic order is established for<T., even though the

. . _1
ever’? The crux of the problem is essentially the existence€Sultant reciprocal correlation length; “(T)#0 for

of long-range order fox~x,: ferromagnetic or ferrimag- T<T¢. Another point of view states, in effect, that macro-
netic (x<x,) and spin-glass X=x,). The whole debate SCOPiC spontaneous magnetization does not occur in cluster
around this issue has been prompted by the results ¢fystems neaxo, wherer;*(T)#0 holds, but ferrimagnetic
neutron-diffraction studies, which are highly conflicting from order is preserved within the boundaries of large clusters
the standpoint of notions regarding the set of canonical crihaving dimensions on the order of hundreds of angstroms, so
teria corresponding to, say, the onset of long-range ferrimaghat ferrimagnetic-like properties appear in the presence of a
netic ordert For example, states having an infinite correla-field H (Refs. 5 and 11
tion length ro (e, r;'=0) and zero spontaneous Obviously, the question as to whether magnetic order
magnetizationos=0 have been reported, but states with exists in the vicinity ofx, cannot be resolved unambiguously
o+#0 and finiter . * have likewise been reportéd® exclusively by the application of experimental methods
The difficulties surrounding the interpretation of the eX- highly sensitive to spatial inhomogeneity of the cluster type;

pgrimental results, including neutron—diffrac?ion and nucleatye need here is to investigate a broader category of proper-
giant resonancéNGR) data, are largely attributable to the ties. In this paper we discuss the identification of cluster

spatial inhomogeneity of the magnetic states, which have F‘nagnetic properties in the vicinity of, from the perspective

cluster structure neag, (Refs. 1 and 68 Clustering effects L . . .
: . - . of establishing the existence or nonexistence of a particular
are especially pronounced for dilute systems exhibiting

short-range exchandé:89Setting details aside, the opinions set of classical criteria of thermodynamic phase transition

expressed in the scientific literature in regard to this issue cafio™ the ferrimagnetic to the paramagnetic state. The prop-
be divided into two groups. According to some autHbly erties chosen for experimental investigation include the tem-

for spatially inhomogeneous structures of the cluster typderature dependence of the magnetic contribution to the spe-
r-(T) has two contributions: cific heatC,(T) for H=0, the temperature dependence of

_ _ _ the low-field magnetization(T), and, with a view toward

ro XM =r N T)+rst(Ax) : » i e

c cr 0 ' studying the critical behavior in a magnetic field, isotherms
The usual “thermal” contribution is ,,*(T)=0 for T<T.  of the magnetizationr(H) for H=<8 kOe. We believe that
(T¢ is the Curie temperatuygas in ordinary homogeneous such a set of experimenticludingH=0 andH=#0) can
ferrimagnets, but the second contributionrgsl(Ax);éO at vyield, first, independent information about the presence of

1063-7761/98/87(12)/7/$15.00 1122 © 1998 American Institute of Physics
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long-range ferrimagnetic correlations in the spatially inho- g, G-cm3. g
mogeneous systems and, in addition, some idea as to anoma- 10 C, 102, J-Kg"
lies of the properties in a magnetic field.

The chosen object of investigation is a Heisenberg spin- )

glass system exhibiting short-range interaction, specifically L 3
dilute ferrimagnetic spinels piFe s ,Ga O, with compet-
ing  negative  intersublattice and intrasublattice -
interactions->*® The multicritical point corresponds to 1 — |
Xo=1.5. According to neutron-diffraction data, fae1.35 - 00
the reciprocal correlation length 1(T) initially decreases as T
the temperature is lowered, and then in the intefvgk T 5T ¢
<T, it essentially remains constarii; is the freezing point
of the mixed state, and sufficiently far froxg (x=1.35) the "

other limit T, coincides withT. as determined from the

temperature dependence of the dynamic susceptilyiliT)
(Ref. 14. The most interesting model object for investigat-
ing the existence of long-range ferrimagnetic order in the
cluster system is a sample with=1.45; for a stepAx
=0.05 (=1.7mol.%9 in the reentrant-spin-glass region of
the x—T diagram &<Xg) this model corresponds to the 1] I S
maximum density of nonmagnetic &aions at which, in >0 100 K 150
principle, it is still possible for long-range ferrimagnetic or- '

der to exist:> Moreover, judging from the nature of the prob- FIG. 1. Temperature dependence of the low-field magnetizatjpa(T) for

lems discussed in the literatuii@ particular, the influence of @ sample withx=1.45, H=50 Oe. The zero-field coolingZFC) regime

a magnetic fied we deemed it advisable from the stand- <SP0 0 precoolng of he samole fom SU0K Io 82K wihaut
point of comparison to add another sample Witk 1.6,  netic contribution to the specific he@,(T) for the same sample.

where the density of nonmagnetic ions is closegmn the

spin-glass side, and transition from the paramagnetic state to

the cluster spin-glass state takes plac&;at22 K (Ref. 13.  The magnetic contribution to the specific heat was isolated
by a technique similar to one used earfi2i all the experi-
ments TSU-2 carbon thermometers were used to record the
temperature.

The polycrystalline dilute spinel samples used to inves-
tigate the thermal and magnetic properties were prepared by EXPERIMENTAL RESULTS AND DISCUSSION
standard ceramic technology from analytical-grade carbon- _ o
ates and oxides of the corresponding met&ih reaction in Specific Heat and Low-Field Magnetization,  x=1.45
the solid phase in air & =1523 K). The samples were cer- Figure 1 shows the temperature dependence of the low-
tified as single-phase spinels within the error limits of x-rayfield magnetizationo;(T) at H=50 Oe and a fragment of
analysis; their density was 80-90% of the x-ray value.the temperature dependence of the magnetic contribution to
Lithium ferrite LigsFe, 0, and lithium gallate LisGa O,  the specific hea€,(T) (inset to Fig. 1 for the main object
form a continuous series of solid solutions with a superlatticeof investigation, i.e., the sample with=1.45. It is evident
of the type 1:3 (Li:F€* + G&") existing in an octahedral that theo(T) curves spread out considerably in the high-
sublattice. At G&™ concentrationgdilutions) x~x, the dis-  temperature range, with the same kind of behavior observed
tribution of G&* and Fé" metal ions among the sublattices over a wide range of static fields, beginningHat2 Oe, as
is nearly random. According to an estimation of the cationwell as in the dynamic regime foy,{ T) and forhy<2 Oe
distribution using the magnetization dt=4.2 K andH — oo, (Refs. 13 and 14 For x=1.4 theoy(T) curves acquire a
the fractions of nonmagnetic &a ions atx=1.45 in the  specific bell shape because of the comparative proximity to
tetrahedral and octahedral sublattices, averaged over tlike freezing point ;=33 K for x=1.45; Ref. 13 and to the
sample, are 0.660%) and 0.85(56%), respectively. How- Curie pointT:, as should be the case far=1.45, judging
ever, the spatial distribution of magnetic and nonmagnetiérom the behavior ofZ,,(T). Consequently, the broad maxi-
ions in this concentration range is extremely nonuniformmum of theoy(T) curves does not mirror any possible tran-
(compositional disordeyr a condition that is manifested in sition, either atT; or at Tc. At the same time, it follows
the development of specific anomalies of the magnetic propfrom the data in Fig. 1 that in no way do tlag,(T) curves
erties ax— X, (Refs. 13 and 14 outwardly disclose a phase transition at the Curie pGmt

A ballistic magnetometé? having a sensitivity of low fields this event is equivalent to the temperature depen-
10 3G-cm?. g~ was used to investigate the magnetizationdence of the initial susceptibilityo(T)). In general, behav-
isothermso+(H) and polythermsos4(T). The specific heat ior of this kind is typical of spatially inhomogeneous
was measured within 1.5% limits by means of a vacuumsystems:® This result in conjunction with the finite values of
adiabatic calorimeter equipped with an adsorption pdmp. rgl(T) is often viewed as reason to doubt the existence of a

S |

2. MEASUREMENT PROCEDURE AND SAMPLES
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true thermodynamic transition to the ferrimagnetic state, be- 3¢
cause even though the second derivatives of the Gibbs fre
energy for a second-order transition diverge in spatially in-
homogeneous systems, they must have singulafitiey’

In our situation this effect is observed for the specific
heat: At T=97+2K the C,(T) curve has an anomaly - 20
whose form is typical of a second-order phase transition a;
Tc. If long-range correlations did not exist in the system §
anywhere in the crystal as a whole, such an anomaly coult;
be observed only if most of the clusters had valuesT gf
close to each other and at the same time close to the terr
perature of the maximum o,(T) (Ref. 17. This situation
could occur, for example, in an ensemble of isolated particles
of identical composit!oﬁ?_but not .in. real dilute systems, 00 2(')0 4(')0 H.Oe
where cluster formation is a statistical process caused b* ¢ ; - . L
compositional disorder, and the cluster subsystem must b 0 2 4 6 ’ H, kOe10
characterized by a certain distribution functiéT¢,) and,
independently, the functiof(M), where Ty is the Curie E'G-tgh'\";g?e:;"gosﬂg)ii‘_’t(g‘)?rgc‘)s&(_'?;)fgg i-sar;]ﬂ?svr\g-ﬂ(é): figSKateraéitj
temperature, andM is the magnetic moment of the ..o seZmenLis of ther(H) Curves forH <460 0. - nset
clusteri®®®

According to existing experimental data, in dilute ferri-
magnetic oxides, including Li—Ga spinels with>1.3, intra-  the form of Belov—Arrott graphs, i.e., if/o, o? coordi-
cluster ferrimagnetic ordering is preserved up to temperanates(Refs. 21-28 This endeavor yields the following re-
tures much higher than the Curie poifg of the samples as sults. The experimentat;(H) curves are straight lines in the
a whole!®*® Judging from the results of the present study,magnetic field interval ranging from the fields at which tech-
this result (the existence off(Tc,) and the condition nical magnetization processes terminate to fields
Tei>Te) is supported both by the spreadingaf(T) over H=~260—-460 Oe in Belov—Arrott coordinate&ig. 3). It is
a wide range of temperatures and by the high specific heatvident that the corresponding field interval increases in the
C,, for T>T¢ (Fig. 1). The latter consideration suggests thatparamagnetic region. The isotherm passing through the ori-
a large number of magnetic degrees of freedom is preservegin corresponds td@¢=95K, which is in good agreement
at T>T.. This conjecture is fully justified if a superpara- with previousC,,(T) data. It follows from the results in the
magnetic state exists at>T., because a system of nonin- inset to Fig. 3 that for the critical isotherm&t= T we have
teracting clusters can be a source of different types of mage~HY3, i.e., the equationr~H? also involves the mean-
netic perturbation® Thus, the anomaly of the specific heat field value 5=3. Thus, the critical behavior predicted by
at T=T¢, in our opinion, is conclusive evidence that a cor- mean-field theory for homogeneous systems with critical ex-
related magnetic state, i.e., long-range ferrimagnetic ordegonentsy=1, 8=0.5, andé=3 is observed for the sample
exists belowT for the crystal as a whole, and not merely with x=1.45 in fields 150 O H <450 Oe.
within the boundaries of large clusters.
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Another way to determine the presence of a transition 04 ./

from the ferrimagnetic to the paramagnetic stateTatis o3
associated with the characteristic features of a second-orde S
transition, specifically the occurrence of critical behavior in 0.37 & o
the vicinity of T¢ for H>0 (Refs. 2 and 21-23 Assuming g° §
Tc=97*+2 K, we analyze the behavior of the magnetization Y S w1
o
5
©
)

isothermso(H) for the sample withx=1.45 in the vicinity 0.2
of T¢ in terms of their consistency with the magnetic equa-
tion of state in the critical region:H/o)Y"=A(T—T¢)/T¢
+Bo*”, wherey andp are the critical exponents, addand

B are the critical amplitudes. Some of the experimental
or(H) curves used for this analysis are shown in Fig. 2. As 0
a visual aid, the initial segments of ther(H) curves are 0 , . , ]
shown in the inset to Fig. 2. We begin with the mean-field 0 100 200 300 400
approximation, which satisfactorily describes the critical be- (0, G- cm® g1)?

hav_lor of horlnogeneous systems or, In our case, undIIUtegIG. 3. Magnetization isotherms of Fig. 2 in Belov—Arrott coordinates,
ferrimagnets We use the standard procedure for this pur-y =460 oe, at various temperature®) 85K; (3) 95K; (4) 105K; (5)
pose, where the experimenta}(H) curves are displayed in 115K. Inset: Graphr(HY%) at T=95 K, H=<260 Oe.

T

0.11

2 6 (HOeR
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(Hlo, g-cm3P7- 10 2
5

0 . . o
20 40
0 L . . 3 T.K
0 1 2 3 4 0 _ .
(0, G-cm?3 g3 107 50 100 150
T,K

FIG. 4. Magnetization isotherms of Fig. 2 in Belov—Arrott coordinates in

fields 1.5 kOe<H<8 kOe. The isotherms are numbered as in Fig. 2. Inset:FIG. 5. Temperature dependences of the low-field magnetizatipg(T) at

isotherma(H) at T=95 K, plotted on log—log scale. H=50 Oe andinse) the magnetic contribution to the specific h&a(T)
for a spin-glass sample witk=1.6.

Outside this field interval, however, the isotherms of Fig.cal behavior in the transition from the weak-field region to
2 shown in Belov—Arrott coordinates deviate from Iinear.the moderate-field region, and we have not encountered any
This behavior, i.e., the possible curvature of the Belov—experimental evidence of such behavior. We shall return to
Arrott graphs as a function dfi, has been predicted in a this problem below. First, however, it is instructive to com-

generalization of the mean-field model to Spatlally inhomO'pare the behavior of the g|V9n: 1.45 Samp|e with the Spin-
geneous systenf§~?’ The authors of Refs. 25-27 describe glass sample characterized by 1.6.

these deviations by introducing a functiéifH), as yet un-
defined, in the mean-field equation for homogeneous sys-
tems:H/o=A’+B' 02+ F(H), A'=a’(T—Tg); it is asso- "¢ Em(T): o1(H), and e7(H) Curves, x=1.6
ciated with fluctuations of the thermodynamic coefficients A state of the cluster spin-glass type occurs in Li-Ga
A’ andB’. In another approach widely used in experimentalspinels withx>x,=1.5 (Ref. 13. Ferrimagnetic ordering
work, spatially inhomogeneous systems are assumed to coexists within the cluster boundaries, both fb<T; and in
respond to a magnetic equation of state in which the criticathe paramagnetic region fofr>T; (Refs. 13 and 20 At
exponentsy andg differ from the mean-field valués:®®we  T>T; the thermal energy exceeds the exchange energy be-
have chosen the second approach to analyze the magnetizareen clusters, so that an uncorrelated cluster state of the
tion isotherms in field$i > 460 Oe; following Kaul et a?>?®  superparamagnetic type occurs in spin-glass samples with
we display the experimentat,(T) curves in the form of x>1.5, and the cluster subsystem is described by certain
Arrott—Noakes graphsH/ )% °— o%° (Fig. 4). It is evident  distribution functionsf(T¢) and f(M). The sample with
that in fields 1.5kOeH=<8.0kOe the experimental iso- x=1.6 is used as a model of this type of state. The behavior
therms in Arrott—Noakes coordinates obey a linear law, anaf the spin-glass and ferrimagnetic samples is compared us-
the isotherm passing through the origin again corresponds tng the same set of properties for=1.6 as forx=1.45.
T=95K. In this case, therefore, we have=1.33 and Figure 5 shows the temperature dependences of the low-
B=0.4. Converting the critical isotherm &at=T-=95K to field magnetizationo4(T) and the specific heaC,(T).
log—log scale, we find5=4.41 (see the inset to Fig.)4 Clearly, the cluster inhomogeneity also influences the char-
These values of the critical exponents satisfy the scalingcter of the spin-glass transition &t: It emerges abruptly
relatiorf a=2(1—B)— v for the realistic valuex=—0.13. for T<T; (T—0K) and spreads out considerably for
We note that the same values of the critical exponents aré>T;, the low-field magnetization remaining high up to
also typical of another type of spatially inhomogeneous sysi50 K. The same pattern of behavior as in Fig. 5 is observed
tems, amorphous magnéts. in external fieldsH weaker than those represented in Fig. 5.
By the same reasoning as in our discussion of the nature The specific hea€,,(T) (see the inset to Fig.)5as in
of the C,,(T) anomaly we are fully justified in assuming that classical spin glasséss a linear function of the temperature
the observed critical behavior reflects the behavior of theat T—0 K and does not have an anomalyTat In the given
system as a whole rather than intracluster processes. Tlsituation, however, a departure from linearity is already ob-
only special feature that we have observed on the part aserved forT<T;. The values ofC,, are high forT>T;, as
second-order transition between spatially inhomogeneouis typical of spin glasses, where only a patt@.4) of the
ferrimagnetic and paramagnetic states is a change in the critiotal magnetic entropy is tapped fo<T; (Ref. 1).
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25 Noakes coordinates, but none of them crosses-tieaxis in
2 the positive range. This condition implies the absence of
spontaneous magnetizatiéh?>28
The results obtained for the sample witk 1.6 clearly
show that even in fairly strong magnetic fields long-range
ferrimagnetic order is not “restored” in the crystal if it did
not exist in zero fieldd=0. This conclusion applies equally
to the rangeT<T;, where the exchange energy between
° clusters exceeds the thermal energy, and to the range
o T>T;. Consequently, the assertion that a cluster ferrimagnet
and a superparamagnaincorrelated cluster statexhibit
L g similar behavior in a magnetic field can apply exclusively to
0 , . ) , the similar forms of the isotherra(H) and, in part, the
0 5 10 15 20 polytherm o(T) of the magnetization. However, even a
H, kOe simple analysis of these dependences indicates a fundamen-
FIG. 6. Magnetization isotherms(H) for a sample witx=1.6 at:(1)  tal difference between the correlated ferrimagnetic and un-
T=20K; (2) 4.2K; (3) 40K; (4) 60K; (5) 80K; (6) 100K; (7) 110K; (8) correlated superparamagnetic cluster states, manifested in
130K; (9) 150 K. whether or noio and, accordinglyT ¢ exist.
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Despite the special behavior characteristics describefhodel of a Spatially Inhomogeneous Magnetic Structure
above, the occurrence of transition from the paramagnetic tand Phase Transition at the Curie Point for ~ x~ X,
the spin-glass state &t for the sample wittx= 1.6, as in the
case of other samples of the system fe, 5_,Ga O, (X
>1.5), is uniquely determined from the onset of long-term
logarithmic relaxation of the nonequilibriutzero-field cool-
ing) magnetizationo,rc and from the existence of critical
behavior linesT;(H) in a magnetic field; finally, the transi-

In systems exhibiting short-range interaction due to
compositional disordefirregular distribution of magnetic
and nonmagnetic ions in the lattiche exchange interaction
acquires spatial inhomogeneity, so that two exchange-
coupled subsystems, (ilulaters and a matrix, can be distin-
tion is described by the one-component Edwards—AndersofitiSned in the crystéﬂ' ***The clusters correspond to re-

gions having a high content of magnetic ions with strong

order parameteqg, (Ref. 13. o . )
Moreover, the presence of ferrimagnetic clusters in theexchange maintained between them, so that ferrimagnetic or-

magnetic subsystem appears, at first glance, to leave thqeermg occurs within the boundaries of each cluster. In the

magnetization isotherms(H) exactly the same as before mgmnxét%n;g; Cgﬂg,?try%vg f|Cn0dma é?i:?oencgg,:@gtegf g)f:hr;n_e
(for x=1.45), whether folf <T; or for T>T; (see Fig. 8. 9 P ' P 9

The magnetization is fairly high up to temperatures'meracuons not only weakens the exchange, but also incurs

T=150K, which is well in excess of;. From the stand- frustrated bonds. Judging from existing experimental dhta,

point of the stated problem it would be interesting to resolveInCIUdIng those in the present study, the type of magnetic

the issue of the proper equation of state for the isotherms iﬁrdermg of the crystal as a whole depends on the state of the

Fig. 6. As a first attempt we have used the same procedure g%atrlx; in particular, the existence of the ferrimagnetic or

for x=1.45. It follows from the data of Fig. 7 that the mag- ?rplgt_gtaesdsbs(;?]fsls obviously dictated by the concentration of
netization isothermerr(H) of the sample wittx=1.6 in the ) Using this mc.)del of the cluster ferrimagnetic state, in the
temperature range 4.2KT<150K and in the magnetic 9 9 '

field range 3.5 kOg€ H <20 kOe are straight lines in Arrott— example of the sample witk= 1'45. we gnglyze the p.""“e”.‘
of phase transformation at the Curie point in connection with

the ferrimagnet—paramagnet transition in spatially inhomo-

3075 13 geneous structures. The breakdown of long-range ferrimag-
(Hla, g -cm3P7. 10 _ : : ) . .
netic order in the crystal is associated with the disappearance
of long-range correlations between spins of the matrix and,
hence, between clusters. The valuelgffor the crystal as a
whole is determined by the average exchange between the
matrix and the clusters and between spins of the matrix.
WhenT>T. holds, the latter are essentially completely dis-
ordered, and ferrimagnetism is preserved in clusters up to
Te>Te. ForT>T( is obvious that only local second-order
phase transitions occur &t=T¢,, corresponding to the
breakdown of ferrimagnetic ordering of the spins in the clus-
ters. This process takes place over a broad temperature
range, which is determined by the distribution function
FIG. 7. Magnetization isotherms of Fig. 6 in Arrott—Noakes coordinates.f (Tci), @nd so it cannot impart to the thermodynamic prop-
The isotherms are numbered as in Fig. 6. erties the characteristic features of a macroscopic second-

o°9

300 300 1300 1800
(o, G-cm?® g'1)25
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order phase transition. This conclusion follows directly fromsusceptibility xo(T). According to preliminary data, the
our experimental data, including those for the sample wittcause can be found in specific phenomena associated with
x=1.6. the cluster subsystem. As a matter of fact, some of the clus-
Regardless of whether the critical behavior of spatiallyters can exist in few-domain or single-domain states rather
inhomogeneous systems is described in terms of changeésan in the superparamagnetic st&té® The magnetization
(from the homogeneous casea the critical exponents:?®or process of such clusters does not prevent any changes from
by introducing the functior(H) (Refs. 2427, in general taking place in passage through the Curie point of the
it is governed primarily by the presence and character ogample, but their contribution to the magnetizatisnscep-
spatial fluctuations of the magnetization and the exchangghility) in the technical magnetization region can be large.
and also, according to Refs. 24—27, by the magnitude of th@s the field is increased, single-domain clusters can enter the
external fieldH. In this light the anomalies observed by us in superparamagnetic stadf&>° This event could also account
the critical behavior of the sample with=1.45 could well  for the experimental fact that when the figitlis increased
be indicative of general functional relations that can occufor T=T. (T=T;), a sharper drop in the magnetization is
for the right combination of governing factors. In our caseobserved than in low fields. The curve representing the dy-
these factors are sharp spatial fluctuations of the exchangeamic susceptibilityy,. (very low fields in the vicinity of
and magnetization, which result in the formation of theT. or T; can also spread out because of the presence of a
cluster-type magnetic structure discussed above. As a consgreak residual moment in the sample.
quence, with regard for the specific features of the magneti-
zation processes in such systems the following pattern of
variation of the critical behavior can be envisioned for the
sample withx=1.45. It follows from general energy consid-
erations(the relation between the thermal and magnetic en4. CONCLUSION
ergiesEy=M-H, whereM is the magnetic moment of the
cluster or the individual ionand from the behavior of the For the case of the dilute ferrimagnetic spinel
magnetization isotherme(H) (Fig. 2 that the contribu- LiosF€ 5 xG&O, (x=1.45) with short-range interaction we
tions of the two subsystentslusters and matrixto the total have shown that in the vicinity of the multicritical point
susceptibility depend on the field. If the field range where (Xo=1.5) a ferrimagnetic second-order phase transition takes
technical magnetization has essentially vanished is partiPlace at the Curie point, as characterized by standard ther-
tioned arbitrarily into three intervals corresponding to weak,modynamic criteria: An anomaly of the,(T) curve, typical
moderate, and strong fields, the behaviowg{H) in weak  Of second-order phase transitions, is observedr atT¢
fields is governed by clusters having large magnetic mo=(97%2) K, and in the vicinity ofT¢ critical behavior is
ments, and in strong fields it is determined by the matrixobserved in a magnetic field. On the whole, the experimental
spins, because the moments of the clusters are already offsults argue against a magnetic state model that postulates
ented in the direction of the field. In the interval of moderatethe preservation of ferrimagnetic ordering strictly within the
fields the behavior ofrr(H) is determined to a greater or cluster boundaries for concentrations Xo(X<xo). The ex-
lesser degree by the exchange subsystems and, among otiggnce of long-range order in spatially inhomogeneous struc-
things, depends on the distribution functiéM). In this  tures of the cluster typéferrimagnetic forx<x, or spin-
sense(the experimentally recorded response to an externaglass forx>x,) is satisfactorily explained by a model of
magnetic fieldl the inhomogeneous system plays the part of derrimagnetic and spin-glass states that takes into account the
homogeneous system in weak and strong fields. two exchange-coupled subsystems—clusters and matrix—in
The cooperative nature of the second-order phase trandihe crystal. The crystal acquires long-range correlations as a
tion at the Curie poinfT¢, i.e., the participation of both result of exchange interaction between the matrix and clus-
subsystems—clusters and matrix—in the process, can alders and between matrix spins. The average magnitude of this
be demonstrated within the scope of the same approach. Thisxchange determin€k:, and its variance determinds .
follows directly from the identical values of - obtained Further analysis of the model object, i.e., the spin-glass
whether the response of the cluster subsystemak field3  sample withx=1.6, where the uncorrelated cluster state oc-
or of the spatially inhomogeneous system as a wheéle ( curs atT>T;, graphically demonstrates the fallacy of the
=0, moderate fieldsis recorded. We call attention to an view that when long-range ferrimagnetic order does not exist
alternative point of view concerning this problem in Ref. 23,in cluster systems &t =0, it can be “restored” in a suffi-
where it is stated that only a fraction of the total number ofciently strong magnetic field.
spins is involved in second-order phase transitions in amor-  Inasmuch as the present study has addressed the extreme
phous magnets. situation of a system with short-range interaction, where
We conclude our discussion of the nature of the ferri-compositional disorder is conducive to exchange having an
magnetic phase transition negg with a brief look at the extremely pronounced spatial inhomogeneity, the results can
absence of any kind of anomalies of the temperature depetre extended to other spin-glass systems, including metallic,
dence of the low-field magnetization,(T) and the initial  of the nature ofthe Au—Fe systems discussed in Ref. 11.
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We examine the structure of the ground state of a homogeneous Fermi liquid beyond the
instability point of the Fermi-like quasiparticle momentum distribution in the effective-functional
method with a strong repulsive effective interaction. A numerical study of the initial stage

of rearrangement of the ground state, based on a simple effective functional, showed that there
exists a temperaturg€,, above which the behavior of the system is the same as in the

theory of fermion condensation, and foK< T, the scenario of rearrangement of the ground state
is different. At low temperatures an intermediate structure arises, with a multiply connected
quasiparticle momentum distribution. The transition of this structure with growth of the coupling
constant to a state with a fermion condensate is discussedl998 American Institute of
Physics[S1063-776098)01312-3

1. INTRODUCTION ep(T)—m(T)| 7 *

The applicability of Landau’s Fermi liquid thedryo a Np(T)=) 1+exp T @

description of the properties of strongly correlated Fermi i i ) )

systems has long been debated in the literature. For om[:‘“(_T)_ is the ch§m|cal pot_enh]al Wh'Ch follows from the
dimensional systems this theory does not apply. For them a}z'arlatlon_al eql_JatlorﬁF/5np—0 _(F IS the free energy of the_
alternative quasiparticle picture is provided by the conceptSYStem. in which the entropy is given by the usual combi-
based on the Luttinger mod®lof a Luttinger liquid in ~ natorial expressph. Expression(1), on the one hand, is
which the single-particle Green’s function does not contain f,lmply the Ferml qqupgrucle energy distribution. Qn the
guasiparticle pole. After the discovery of HTSC compoundso_the,r ha.md,.thls relation is an equfa\tlon for the q_ua5|_part|cle
having quasi-two-dimensional structure and possessing proﬁi_lstrlbutlon in momentum space since the quasiparticle en-

erties contrary to Landau theory, the boundaries of the non€'9Y: being the variational derivative of the ground-state en-

Fermi-liquid viewpoint have been extended to encompasgrgy functionalEg with res_:p(_act o the qu_asiparticle distribu-
also two-dimensional, strongly correlated Fermi systéms. tion sp('l(;)=5hE0/5np(T),lls ltserl]f a_funcrflonal ofn(T). di
However, the recently measured electronic spectra of such Landau theory postulates that in a homogeneous and iso-

compound&® appear to speak of the existence of a Single_troplc Fermi liquid the quasiparticle distribution in momen-

particle pole in the electron Green’s function. At the sameUM space aTz(é)) has, as in a Fermi gas, the form of a filled
time, the authors of Refs. 9—12 have discovered new possf-6Mi sphereng"(p) = 6(pg—p) (the bounding momentum
bilities in the quasiparticle approach. A new class of system&F |53rela;[ed to the density of the systgmby the formula
predicted in Refs. 11 and 12 with a fermion condensate pog2= PF/37). The low-temperature behavior of the quasipar-
sess a rich spectrum of propertiés ®including those which t|f:le.sp§ctrum responsible for this quasiparticle momentum
had hitherto been the prerogative of the non-Fermi-liquigdistribution has the fordf

picture. As has been shown in various modés;"'°a state eo(T)— u(T)=£(p) + O(T?). @

with a fermion condensate stems from a rearrangement of the

ground state of the system of quasiparticles. Such a reafthe functioné(p) grows monotonically in the vicinity of the
rangement occurs when as a change in the external parafiemi momentum, changing sign p& pe. Its slope at this
eters violates the necessary condition for stability in a quaPOint—the group velocitys=dé(p)/dp|,-p, of the quasi-
siparticle system with a Fermi momentum distribution. In theparticles at the Fermi surface—is determined by a phenom-
present paper we consider a model of a homogeneous threenological parameter of Fermi liquid theory, the effective
dimensional Fermi liquid in which a change in the param-massM* =pg/vg.

eters also results in a rearrangement of the ground state of In a homogeneous strongly correlated Fermi system the
the quasiparticle system, and we investigate the scenario shfomentum distribution of the quasiparticles, which mini-
the initial stage of this rearrangement. mizes the energy function&g[ n(p)] at T=0, of course, is
not necessarily found at the inflection poimf)(p) of the
functional spacén]. For example, the authors of Refs. 9 and
10 constructed effective functionalsy[n(p)], which for

certain values of the parameters attain their minimum on the
To start with, let us recall the relation in Landau theory doubly connected Fermi sphere

between the quasiparticle distributiog(T) and the quasi- )
particle spectrunz ,(T): Ng(p)=6(p1—p)— 6(p2—p)+ 6(pP3—p). (©)]

2. DOUBLY CONNECTED FERMI SPHERE AND FERMION
CONDENSATE; EFFECTIVE QUASIPARTICLE
FUNCTIONAL

1063-7761/98/87(12)/7/$15.00 1129 © 1998 American Institute of Physics
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A completely different quasiparticle ground state corre- Vo
sponds to a system with a fermion condenst&? In order V(p—p')= ——. (7)
not to send the reader back to the original works, we will (p—p) "+

briefly elucidate the main idea of the concept of a fermion|n formula (6) dr denotes integration with respect to
condensate. A homogeneous and isotropic system with a fefy(27)® and calculation of the trace over the spin variable.

mion condensate is described by the singular solution of Eq.  The quasiparticle spectrum is found by calculating the
(1), which corresponds to the segment of the spectrum that igariational derivativeSEq/ ony(T):

linear in T,1412 5

|
T)=-—+ | V(p—p') ny(T)d7". 8
epM—w(M=Tug(p)+o(T), p<p<p. @ D7 aq ") VE=PInp(Ddr ®
The functional relation betwees,(T) andn,(T) given by

In this low-temperature expansion, in contrast to the Fermi ) 2
P b formula (8) together with Eq(1) and the normalization con-

liguid expressior(2) there is no term independent ®f This

means that af =0 the quasiparticle spectrum in the interval dition
pi<p<p¢ has a plateas,=u. For T>0 the slope of the
plateau is linear i, and its position relative to the chemical f np(T)d7=p )

potential «(T) is determined by the functiony(p) associ-
ated with the quasiparticle momentum distribution in the
condensate af=0. Indeed, the singular solution of E(.),
which is easily obtained by substituting formylg into Eq.
(1), has the forrmy(T)=ngy(p)+O(T), where

represent a system for calculating the quasiparticle distribu-
tion ny(T) and spectrune,(T). The present work uses the
parameter valuee=0.07pg and examines the behavior of a
system as a function of the parametgy (for convenience
everywhere below we use the dimensionless parameter
— 2
no(p)={1+ext vo(p)]}~*  (Pi<p<py) (5  Y=MVo/(47pe)). .
Let us comment on some aspects of the numerical

is the momentum distribution of the condensate quasipartischeme. Equatiof6) together with formuldl) is a nonlinear
cles atT=0. Beyond the limits of the condensate regionintegral equation for the function(p). This equation was
no(p)=1 for p<p; andny(p)=0 for p>p; (Refs. 11 and solved on a grid with grid step,=5X 10 %pe. To con-
12). The specific form of,(T) ande,(T) can be found if ~volve n(p) with the effective interaction/(p,p’) numeri-
the functional dependenﬁ)[np(T)] is known. References cally, we used a five-point variant of the Newton—Cotes
12—14 and 16 investigated a series of effective functional§luadrature formula with a five-point output filter. The non-
for which the ground state of the system with quasiparticldinear equation was solved using an iterative method with
distribution n(FO)(p) becomes unstable when the coupling relaxation. The accuracy of the solution was determined by
constants exceed some critical value, and the minimum i§ubstituting it into the original equation. The acceptable error
attained in the singular solutions corresponding to the statémaximum discrepancy between the left and right sidees
with a fermion condensate. In the present paper we show thi&ken to be equal to 18sr. The importance of such an
a scenario is possible in which the system transitions to &ccurate calculation of the spectrum will become clear from
state with a fermion condensate through an intermediatg]e discussion of the calculated results which follows. The
structure, which corresponds to a multiply connected quasinumber of iterations necessary to achieve the chosen accu-
particle distribution of the typ€3). racy for the relaxation parameter=0.001(this value of the

In this paper we examine the initial stage of rearrangeparameter proved to be Optlmal for Stablllty of the iterative
ment, and in this stage, as will become clear in what followsprocedurg was roughly 30,000. Note also that the results
all changes in the quasiparticle momentum distribution takdurned out not to depend on from which point of the func-
place in a relatively narrow layer near the Fermi surfacetional space the iterative procedure startéte trajectories
Therefore we neglect the third and higher orders in the varialong which the iterations reach the solution and, of course,
tion on in the formula of Landau theory for the variation of the stability of the procedure depend on the starting point
the energy of the system. As is well known, this is the basishus, for example, the solution for=0.50 atT=10"" was
for the concept, used in many branches of many_body theor9btained twice: once Starting from the solution ﬁOF 0.50 at
(especially widely in nuclear theoryof the effective func- T =10"°, and a second time, starting from the solution for
tional, the main ingredient of which is the phenomenologicaly=0-48 atT=10"" (here and everywhere below we assume
effective interaction. In accordance with this approach, wehe temperaturd to be given in units okP=pZ/2M).
will consider the simple effective functional of the energy of
the system of quasiparticles

3. STABILITY OF SINGLY CONNECTED AND DOUBLY
p? CONNECTED FERMI SPHERES: DISCUSSION OF
Eo(T)ZJ op (M dr+ 5 NUMERICAL RESULTS

We begin our discussion of the calculated results by
X f V(p=p’) np(T) np/(T) d7d7’ () clarifying at what value ofy{) the necessary condition for
stability of the ground state with quasiparticle distribution
with effective repulsive interaction in the form n(FO)(p) at T=0 is violated. This condition arists'? as a
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&) {O(p)= Md_s_ P 7Pe

pedp pe P

0.1
Y(PP+pE+a’) (p+pp)+a?
- 5 In L
4p (P—Pp)+a
From Fig. 1, which plots the curve£®(p) for three
values ofy, it can be seen that tangency to the straight line

AP £=0 obtains fory={"=0.415 at the pointp.=0.97p¢

[the nearness op. to pg justifies replacings(p) by the

. . . function {(9(p)]. For y> ) the ground state with quasi-

0.95 1.00 plp; particle distributionn®(p) becomes unstable, and it under-
goes rearrangement.

FIG. 1. The functionz®(p), calculated fory=0.410, 0.415, and 0.420. The question of how the ground state is structured im-
mediately beyond the transition point is answered by Fig. 2,
which plots the results of a calculation nf(T) for various

— —3
condition of nonnegativity of the variation of the energy ~ values ofT for y=0.45. ForT~10"* the dependence;(T)

of the ground state for any admissible variations of the disas the form of the quasiparticle momentum distribution in a
tribution functionn(p): system with a fermion condensdteelow we will dwell on

this point in more detalil For T<10 2 a dip appears in the
distributionn,(T), which deepens as the temperature is low-
5Eo:f [e(p)—p]on(p)dr. (100 ered, and alf=10"" it is already almost indistinguishable
from the doubly connected Fermi sphdB3. The quasipar-
ticle spectrume,(T) corresponding to this distribution, cal-
culated forT=10"7, is plotted in Fig. 3. In contrast to the
the chemical potentia in formula (10) by the energy spectrum of the fermion condensate, which has the form of a

e(pg), we can reformulate the necessary condition for staPlateau “lying on the chemical potentiad” at T=0 (Refs.
bility of n®(p) in the form of a requiremeht*2that 11 and 12 and having a small slope far>0, the quasipar-
F ticle spectrum of the doubly connected Fermi sphere is found

to be equal tqu on the boundary, of the inner sphere and
s(p)=2M M (12) on the boundariep, and p; of the spherical shell. On the
pz—pﬁ segmentp; <p<ps the deviation ofe(T) from u at the
minimum of the spectrum reachesx40 %cg, and at the
be positive for all values of the momentymIf the function ~ maximum, 2<10 ®s¢. Although the latter number is very
s(p) first vanishes neapg, then this is equivalent to the small, recall that it is more than two orders of magnitude
appearance of an inflection in the curwép) in the vicinity = greater than the precision with which the spectrum is calcu-
of the Fermi momentum. The derivativiz/dp for the dis- lated.

(12

For the distributionn(FO)(p) the admissible variations have
the same sign as the differenpe- pr . Therefore, replacing

tribution n(FO)(p) is easily calculated. For the effective inter- Figure 4 depicts the behavior of a doubly connected
action (7), in dimensionless form it is equal to Fermi sphere with increasing value of the coupling constant
n(p)

1

T=2-10"°
0
09 1.0 p/pF p/pF FIG. 2. Quasiparticle momentum distributiongp,T),
calculated for different temperatures fer=0.45.

S
/4///

ey s
0

0.9 10 pip,
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[e(p) - ul/el - 10* <y<y1=0.452 the two points at whiclf*)(p) changes
sign are located in such a way that the local minimum and
/ maximum of ¢(p) corresponding to them lie in regions
0 wheren(p) is equal respectively to zero and unity, i.e., the

sign of the difference (p) — u coincides with the sign of the
variations én(p) permitted by the Pauli principle and the
-1F distribution satisfies the necessary condition for stability. But
for y> yél) the situation is already different, as is clear from
Fig. 4. For such behavior of the functigi®(p) there exist

oy regions where we have(p)— x>0, but n(p)=1. This
—— means that the necessary condition for stability is violated in
0.9 0.95 100 pip, the system, since variationdn(p) exist which lower the

ground-state energy. This implies that for= (") a new
rearrangement of the ground state of the system of quasipar-
ticles takes place. Figure 5 shows how the quasiparticle dis-
y. The spherical shell appearing beyond the transition poinkibution is arranged beyond the second pojit) of the
starts out with a finite thickness, but the gap between it andearrangement for the case=0.46 for different values of .

the inner filled sphere starts out vanishingly small. A4s The calculation shows that a new layering of the doubly
increases the outer shell thickens and separates from the igonnected Fermi sphere has already taken place for this
ner sphere. What happens to this solutioryitontinues to  value of the coupling constant, and &= 10" the quasi-
increase? In order to better understand this question, we wiarticle distributiom(p) is close to a triply connected Fermi
study the stability of such a layered Fermi sphere. Towardphere:

this end, we elucidate the functid@f)(p) for the momentum

distribution in the form(3) and observe where and when the  n(®)(p)= 6(p;—p) — 6(p,—p)

critical change of sign of this function takes place. An el-

FIG. 3. Quasiparticle spectrufm(p)f,u]/s‘é for y=0.45 atT=10"".

ementary calculation gives +6(p3—p) = 6(ps—p)+ O(ps—p). (14
3
(D(p)= M d_s: £+ S (—1)it The scenario of increasing layering with increasing value of
prdp P =1 the parametery does not stop at a triply connected Fermi
s 2. . sphere. Thus, foly=0.50 the distributiom,(T) depicted in
% YPi yY(ptpita )In(p+ Pt a Fig. 6 consists of an small filled inner sphere with radius
p 4p? (p—pi)2+ a? ' ~0.85p¢ at low temperatured, surrounded by four filled

spherical shells of thickness(0.3—0.4)pg , which are sepa-
13 rated by empty spherical shells of thicknes§0.1-0.2)pg .

The functionZ(Y)(p), calculated for different values of, is  The quasiparticle spectrum corresponding to such distribu-

depicted in Fig. 4. In this calculation we choose as thetions is depicted in Fig. 7. AT=10 ' the spectrum inter-

boundary moment#,,p,,ps; those momenta at which the sects the chemical potential nine times—on the boundary of

absolute value of the derivativén/dp takes its maximum the inner sphere and on the boundaries of the spherical

for T=10"". It is easy to imagine that in the intervaﬁo) shells.

n(p) (1)
®)

10.01

FIG. 4. Quasiparticle momentum distributions
n(p) and the functionz®)(p), calculated for
different values of the parameter
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FIG. 5. The same as in Fig. 2, but for=0.46.

n(p)
1=

FIG. 6. The same as in Fig. 2, but fer=0.50.
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4. MULTIPLY CONNECTED FERMI SPHERE AS AN
INTERMEDIATE STRUCTURE ON THE PATH TO A FERMION
CONDENSATE

Thus, beyond the transition point® the scenario for
rearrangement of the ground state of the system of quasipar-
ticles at low temperaturéb<10° consists of a sequence of
rearrangements taking place with increase of the coupling
constanty, as a result of each of which a new spherical shell
arises in momentum space. What distinguishes a system with
a multiply connected quasiparticle momentum distribution
from a system with a fermion condensate, and what do they
have in common? Let us recall the main features of the state
with a fermion condensate and the rearrangement scenario
corresponding to the emergence of such a state. First of all,
we note the plateau in the quasiparticle specteyfir), ly-
ing on the chemical potential for T=0 in accordance with
formula (4) and acquiring a slope that increases with tem-
perature. The spectruna,(T) for a multiply connected
Fermi sphere does not generally behave like this. At the low-
est calculated temperatufe= 10"/ the spectrum is found to
be equal to the chemical potential only at the boundary
points of the spherical shells of the multiply connected mo-
mentum distribution. Thus, the states with a multiply con-
nected Fermi sphere have no macroscopic degeneracy as is
the case in a system with a fermion condensate. At the same
time, there are features in the density of states, associated
with the existence of maxima and minima of the function
e(p). These peculiarities gradually disappear with growth of
T up to the temperatur€,~ 102, at which the last knee in
the spectrum is smoothed out. For>T, the difference
£p(T) — u(T) becomes linear in temperature, as in systems
with a fermion condensate.

Another property of a system with a fermion condensate
is the distributiomn,(T), which for T=0 is given by expres-
sion (5). The region occupied by the fermion condensate
obeys O<n,(T)<1, which corresponds to a nonzero value
of its entropy atfT=0. This violation of the Nernst theorem
disappears when correlations are includedy., superfluid
correlation$, which because of degeneracy slowly rearrange
the ground state and make the entropy zerd at0. The
entropy of a state with a multiply connected Fermi sphere
vanishes aff =0, sincen(p) only takes values of 0 and 1
there. With growth ofT a multiply connected distribution
changes rapidly—the shell boundaries broaden and the shells
coalesce, transitioning &t~ T, into a smoothly decreasing
dependence, similar to the momentum distribution of a sys-
tem with a fermion condensate. Along with a rapid change in
ny(T), the entropy of the system grows rapidly as the tem-
perature is raised. Calculations show thafTatT, the en-
tropy of a system with a multiply connected Fermi sphere
reaches the valugy,~Q4/Q, which is equal to the ratio of
the phase volume of the region of the multiply connected
momentum distributioif), to the phase volume of the entire
system(). Just such a value of the entropy would be char-
acteristic atT~T, for a system with a fermion condensate
occupying a phase volum@,. For T>T, the entropy be-
comes linear inT, as in systems with a fermion
condensaté?1°
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(&(p) - m)/eg - 10

A FIG. 7. Quasiparticle spectl[a(p,T)f;L]/a‘,l, calcu-
O lated for y=0.50 atT=10"* (curvel), T=10"° (2),
T=105(3), andT=10"7 (4).

-0.04

1.00 p/pl__

All of these curious trends in the behavior of the mo-other via the force€7), where the number of particles is
mentum distribution, entropy, quasiparticle spectrum, andixed by the normalization conditio(®). As long as the so-
density of states of a system with a quasiparticle momenturtution »(r) of the mechanical problem exceeds 2#)3 at
distribution in the form of a multiply connected Fermi spherejust one point, it cannot be taken as the solutigp), since
are worthy of separate, detailed consideration. in that case it would contradict the Pauli principle. As the

The scenario in which rearrangement takes place when @epulsion between the particles increases, the mechanical
state with a fermion condensate forms is characterized bgystem obviously expands and therefore becomes more rar-
one critical value of the coupling constamt, at which a efied. And as soon as the distributiefr) becomes every-
fermion condensate arises in the system. With further growtlwhere less than 2/(2)3, it begins to correspond to the solu-
of v the phase volume of the fermion condensate increaseipn n(p) of the initial problem. It is natural to expect that in
but beyond that no further qualitative changes take place ithe mechanical problem the distribution(r) should be
the system—increasing the coupling constant leads only temooth and monotonic; therefore the corresponding solution
an increase in the relative phase volume of the fermion cona(p) is something different than the singular solution corre-
densate, while the momentum distributions and quasiparticlsponding to fermion condensation. Thus, the structure ob-
spectra remain fundamentally simifdrt?2 The scenario of served in the present calculations having a multiply con-
rearrangement found in the present calculations is differemiected quasiparticle momentum distribution is probably
in different temperature intervals. F@r=0 it is character- intermediate along the path to fermion condensation. The
ized by a sequence of valuqé‘), after each of which is transition from the phase with a multiply connected momen-

reached states arise having a higher connectedness of th&im distribution to the phase with a fermion condensate tak-
momentum distribution. The number of such critical valuesing place as the coupling constant is increased requires sepa-

decreases with increasing, and for T>T, only y?) sur-  rate study.
vives. This means that in the given model the scenario of
rearrangement with formation of a multiply connected Fermic ~5ncLusioN

surface with increase of the temperature gives way gradually
to the scenario of fermion condensation. In conclusion, we repeat that we have examined the

Unfortunately, the computer time needed to calculate thetructure of the ground state of a homogeneous Fermi liquid
spectra increases rapidly as a function of the phase volumésing the method of the effective functional with a strong
Q, occupied by all the spherical shells. For this reason, irrepulsive interaction characterized by two parameters, the
the present study we were able to calculate only for values ofadius in momentum space and the coupling constant A
the coupling constanty<0.5 corresponding to the initial numerical study of this functional has shown that for a fixed
stage of rearrangement. What happens with the system faalue of the parametex there exists a critical value of the
larger values ofy? In order to better understand this ques-coupling constantyéo’, beyond which the ground state with
tion, we will use a mechanical analogy, treating the momena Fermi-like quasiparticle distribution becomes unstable and
tum p like the spatial coordinate (Refs. 11 and 12 Thus, rearranges. The scenario of the initial stage of rearrangement
the problem of minimizing the ground-state energy func-with increasingy is found to be different in different tem-
tional atT=0 can be interpreted in terms of the mechanicalperature ranges. FoF=0 there exists a series of critical
analogy as a search for the equilibrium spatial distributiomonstants;/(c') corresponding to a sequence of transitions, as a
v(r) of the particles moving in an external harmonic field result of each of which a new spherical shell of the quasipar-
U(r)=Kkr?/2 with stiffnessk=1/M and interacting with each ticle momentum distributiom(p) arises. The quasiparticle
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New phase transitions induced by a magnetic field and accompanied by a change in the
symmetry or the period of the distribution of the magnetization vector are observed in biperiodic
stripe domain structures of iron garnet films with a positive anisotropy constant. A symmetry
classification of the observed types of domain structures is derived, and the form of the state
diagram of the films is determined in th& H| plane, wheréd, andH are the components

of the magnetic field vector perpendicular and parallel to the normal to the surface.
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1. INTRODUCTION of the films corresponds in the first case to labyrinth stripe
domain structures with chaotic orientation of the domain
It is a well-known fact that when the thickneksof a  walls and in the second case to ordered two-dimensional
uniaxial magnetic film with a positive anisotropy constggt  stripe domain lattices exhibiting translational symmetry. The
and with the easy magnetization axis oriented along the norerdering of the domain walls in films with small values@f
mal n to the surfacdthe normal also being the direction of is caused by the large deviation of the veckérfrom the
the z axi9) is gradually increased, at a critical thicknds  normal to the surface.
the initial equilibrium stripe domain structure acquires quasi-  For two decades the behavior of biperiodic stripe domain
harmonic distortions of the domain wall profile, causing thestructured has been investigated experimentally on metal
distribution of the magnetization vectd to become bipe- and alloy film$?%°® and on ferrite films having
riodic. In thicker L>L{>L%) films this modification of magnetoplumbitd391018-21  gnine2223  game* and
the distribution ofV at the surfaces of the magnet is a pre-hexagonat* structures by means of Lorentz electron
cursor to the onset of chains of isolated cone-shaped surfacgicroscopy? powder patternd;® polarization optical
domains within each stripe domain, which penetrate into thenicroscopy’?* and magnetooptical diffractici. In that
bulk of the film to a maximum depth/2 and for which the same time span a few attempts have been made to describe
componentM, has the opposite sign from the domains inthe properties of biperiodic stripe domain structures via the
which the given cone-shaped domains reside. With a furtheRitz variational principle using various test functions and
increase in the thicknessL(>L(Cf)> Lé})) smaller cone- working within the concept of geometric@instructuregido-
shaped domains with the opposite sign of the projeciipn  main walls**?°~?|nterest in biperiodic stripe domain struc-
begin to form within each of the original cone-shaped do-tures eventually died out and has resurfaced only recently in
mains, and so on until, as a result, complex structures of theonnection with the magnetooptical diffraction of light by
“Russian nested dolls” type are formed, consisting of a setsuch domain arrayd:>°
of domains contained one inside another. Historically the  An analysis of the cited papers shows clearly that the
term “branching” has been attached to the process, but ibehavior of biperiodic stripe domain structures in external
something of a misnomer in that only localized layering of magnetic fields has not been adequately studied. In particu-
the distributionM(r) into the depth of the film takes place, lar, the possibility of the existence of various modifications
characterized by the alternating sign Mf, in consecutive of such nonuniform distributions of the magnetic moment
layers. True branching of the domain walls near the surfaceand the question of phase transitions between them have
of the film, accompanied by the formation of fractal-like been all but ignored. Our investigations fill this gap.
configurations, is observed for thicknesses in the interval The paper is organized as follows. In Sec. 2 the experi-
LI>L>L*+ 6L, wheresL<(L{’—L%), i.e., from the in- mental conditions are described, and brief information is
ception of the first side branches on curved domain walls t@iven in regard to the procedure used to grow the experimen-
the onset of the first cone-shaped domaisese, e.g., Refs. tal samples, their parameters, and the general properties of
1-6). biperiodic stripe domain structures. Section 3 contains a pre-
This behavior of the domain structure is inherent in magdiminary analysis of the experimental results, which is essen-
nets with any nonzero, positive value of the uniaxial anisottial to the material that follows. A symmetry classification of
ropy constant, from magnetoplumbites and hexaferrifgs ( the experimentally observed biperiodic stripe domain struc-
>1) to low-coercive-force alloysg,<1). The only differ- tures is given in Sec. 4, drawn from the apparatus of the
ence is that in zero external magnetic field the ground stattheory of two-dimensional space groups. The kinetics of

1063-7761/98/87(12)/12/$15.00 1136 © 1998 American Institute of Physics
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magnetic field-induced phase transitions in biperiodic stripaiffraction maxima were recorded by a moving photosensi-
domain structures is described in Sec. 5. A brief discussiotive probe with the application of spatial filtering, which was
of the results and related problems is set forth in the Conclualso used to enhance the contrast and sharpness of subtle

sion. details of the domain images. The domain structures were
photographedin TIFF formad by a Kodak DC 120 digital

2. EXPERIMENTAL CONDITIONS AND GENERAL camera which provided a resolution of 128960 pixels and

PROPERTIES OF BIPERIODIC STRIPE DOMAIN were processed by means of standard computerized photo-

STRUCTURES retouch software. Two pairs of orthogonally positioned coils

We have investigated the domain structures of Ve used to generate the magnetic fieitjsand HL. with
. . . . o maximum strengths of 10 kOe and 2 kOe, respectively.
uniaxial magnetic garnet films with compositions

. : In zero external field a simpl@gmonoperiodi¢ stripe do-
LU2.1B|0.9F95—><M9><012 (XZO—O].?) and L§.15|0.9F95012 . . . " . .
(referred to from now on as type-l and type-II filinand tmham Sstructure dems;_ed n df_llmst _hawgg a _thch:nests Smﬂlﬁ '
thicknessesL =1-40um, grown by liquid-phase epitaxy h an sum, afn a 'F;e:'o. ' anﬁe domam er:Jc u:fI w
(using solvents BO, and PbO—BiO,, respectively on armonic surface modulation of the domain wall profile was

(111)-oriented GgGa;0y, substrates. The growth conditions found in thicker films. The amplitude of the distortions of the
were similar to those tzsed by Tarﬁadaal.31'32 The Neel domain wall profile increased with the film thickness, but

temperature of the films waky, was 560K, and the satura- conical near-surface domains did not form, even in the thick-
tion magnetization 4M was 1800 G. The magnetization of €St films & =40.m) attainable by liquid-phase epitaxy. The
the samples to saturation by fields alorgy € H,) and per- boundaries of the regions in which biperiodic domain struc-
pendicular H, =H,) to the normah to the surface in type-| fUres exist on the T andH, H) planes could be determined
films required fieldsH =1500-1750 Op and (H* =25 by observing the behavior of the domain structures as the
— 200 Oe, respectively, and in type Il fields, 1600-1750 Odilms were heated(from room temperatujeand as the
and 300-500 Oe, respectively, WheHﬁ andH* , as a rule, strength and orientation of the external magnetic field were
increased as functions of the film thickness. An approximaté_""“_'e‘j,fSee Fig. 1 There is clearly an upper temperature
estimatiod of the uniaxial anisotropy constants, based onlimit T¢(L) for modulation of the domain wall profile, i.e., a

the relation simple stripe domain structure is encountere@afTy, . The
N modulation of the domain wall profile =T, vanishes as
Bu~1—HT/AmM, a second-order phase transitiGee Ref. 3% As the film

gives 3,~0.88—0.98 for type-I films an@,~0.72—0.83 for  thickness is increased, the transition temperature increases
type-Il films. The films also exhibited weak cubic anisot- monotonically, asymptotically approaching the eéNeem-
ropy, which in our case merely imparted a slight asymmetryoeratureTy but always below it(see Fig. 1b Figure 1b
to the state diagram on the, H; plane relative to the ordi- shows the results of a series of type-Il films; the results are
nate axis without producing any qualitative changes in thesimilar for type-I films.
response of the domain structure to an external magnetic A similar situation is encountered for oriented phase
field (see Ref. 38 transitions(for T=const) induced by the magnetic fiett ,
High specific Faraday rotation in the visible ranigeore  as illustrated by Fig. 1a, which shows a portion of the state
than 1 degkm) permitted reliable visual determination of the diagran? for a type-l film having a thickness of approxi-
type of domain structure of the films by means of a polarizamately 10um (from now on designated film No.)lat T
tion microscope and from diffraction patterns; the light =293 K. The region of biperiodic stripe domain structures
source was an incandescent lamp in the first case and an the state diagram in coordinatéd, , H|} always lies
helium-neon laser with a working wavelength=0.63um  inside the region of stability of simple stripe domain struc-
in the second case. The radiation intensity in the individuatures, the transformation from one type of domain structure
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to the other taking place as a first-order phase transition. One d, A, ym
exception is the poinC corresponding to the apex of the
biperiodic region. In Fig. 1a the poir€ is located on the
ordinate, which is the symmetry axis of the state diagram; as
the film rotates about the normal under the influence of the st
weak cubic anisotropy, symmetry is lost in general, éng
no longer on the ordinate. If the film thicknekstends to
L5 +0=5 um, the region of biperiodic stripe domain struc-
tures shrinks to a point; as the film thickness is increased, 4|
this region broadens, and the BSS curves on the diagram
of Fig. 1a approach the<SU curves, but a gap always exists
between them. 3l
The generation of stripe domain structures in uniaxial
films from the homogeneous state as the magnitude of the
external magnetic fielti, is lowered withH;=0 is accom-
panied by symmetry breaking with respect to in-plane trans- 2
lations and reflections and with respect to rotations about the
normal to the surface, so that the magnet in the domain phase
must be described by three order parameters: translational, 1L , : ) . . . ‘
orientational, and “modulational,” which are characterized -400 -300 -200 -100 0 100 200 30‘}1 400
by (respectively the degree of periodicity of the distribution - Oe
of the magnetization vector, the degree of parallelism of the:g 2 Geometrical parameters of biperiodic stripe domain structures in
domain walls, and the maximum angle of deviation of thetype-Il film No. 2 of thickness 1¢:m versus the magnetic field, .
vectorM from the magnetic field vectdr.Only orientational
and modulational long-range orders exist To£ 0, because
the translation group is not discrete. Long-range translationala| |attice vectotb, = (2/d)e,. Two other parameters be-
order is broken by the onset of bound or free magnetic dissidesd must be used to describe the biperiodic domain struc-
locations in the stripe domain structure. In the first case theures: A; and A, (in generalA;# A,), which are equal to
state of the magnet corresponds to the so-called Berekinski the periods of surface modulation of the domain wall profile
Kosterlitz—Thouless(BKT) phase, in which the “transla- at the interfaces of the film with free space and with the
tional” correlation function decreasd the far zong ac-  substrate, respectively. The space of reciprocal lattice vectors
cording to a power law, and the domain walls are completelfhecomes two-dimensional in this case, whel®,
ordered; in the second case the state corresponds to th£(27-r/Ai)ey,i=1,2.
liquid-crystal phase, for which the translational correlation  The distribution of the magnetization in domain struc-
function decreases exponentially, and the orientational corrgures of any type was nonuniform both along the thickness
lation function decreases by a power I and in the developed planes of the films. However, a polar-
ization microscope with high optical resolution and standard
spatial and polarization filtering techniques could be used to
obtain qualitative information about the variation of the pro-
file of the thickness distribution of the magnetization and to
The experiments were performed Bt 293K for vari-  distinguish the image elements needed to test the reliability
ous values oH, andH =const. For a given value &1 the  of the working hypotheses.
saturation fieldH, >H7 was determined, then the current in An analysis of the behavior of the domain arrays and
the corresponding pair of coils of the electromagnet washeir corresponding diffraction patterns leads to the follow-
gradually reduced to zero, the polarity of the current wasng conclusions.
switched, and the film was again brought to the magnetically 1. In films of any thickness the harmonic instability of
saturated state by a field, in the opposite direction to the the domain wall profile in the initial simple stripe domain
first. Next, all the observations were repeated for the ascendstructure evolves independently into two developed surfaces
ing branch of the hysteresis loop. Throughout the entire retusually for different values oH,) as the fieldH, is de-
gion of existence of simple and biperiodic domain structurecreased, because the parameters of the near-surface layers of
the latter were well ordered, but contained defects in theepitaxial films differ at the boundaries with the substrate and
form of free and bound magnetic dislocations, i.e., the statevith free spacesee, e.g., Refs. 39 and }40'he periods of
of the magnet corresponded to the liquid-crystal phase or théhe harmonic distortions on the two surfaces (at the film-
BKT phase®~38 free space interfagand A, (at the film—substrate interface
In the phase transition, induced by the magnetic fieldcan differ substantiall{more than twofold; see Fig.)2A
H, , from the uniformly magnetized state to the phase with aurther decrease in the field, causes the penetration depth
simple stripe domain structure of periadthe boundaries of the surface distortions of the domain wall profile to in-
between the domains were oriented parallel to the vectocrease, and they begin to influence one another. For films of
H,, i.e., the domain array was characterized by the reciprothicknessL <20 uxm this mutual influence leads to total spa-

i

3. PRELIMINARY ANALYSIS OF THE EXPERIMENTAL
RESULTS
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A, pm the external magnetic field. The smooth variation of the av-
5 erage periodl of the stripe domain structure as the fields

andH are varied is attributable to the generation, motion, or
annihilation of magnetic dislocations; this fact was first

M brought to light by Palatnik and LukashenKolt is obvious
that the smooth variation of the average domain wall modu-

3k lation period A (or the modulation periods\; and A»,)
should also be attributable exclusively to the presence of
magnetic dislocations, which lift the prohibition imposed by

2t translation invariance on continuous variation of the recipro-

cal lattice vectors in ideal periodic structufésVe note that
only the field componertt; has a strong influence ah A 4,
] and A ,; throughout the entire region of existence of stripe
—400  -200 0 4o 200 domain structures these parameters depend weakly on the
re field component, increasing slightly agH H| is increased.
FIG. 3. Geometrical parameters of biperiodic stripe domain structures in 3 Biperiodic domain structures in the region of stability
type-Il film No. 3 of thickness 2g:m versus the fieldH, . can exist in several different modifications, which can be
classified by symmetry. Such a classification, of course, can-
not be made on the basis of the apparatus of three-
tial “synchronization” of the harmonic distortions: They ac- dimensional space groups, because the finite thickness of the
quire a common periodA;=A,=A), as shown in Fig. 2 films prohibits translations in the direction of the normal to
and phase opposition, i.e., the phase of the function modithe surfacealong thez axis), and the functiorM(z) does
lating the domain wall profile near one surface of the filmnot have any kind of symmetry in general. For the purpose of
differs by = from the phase of the analogous function nearclassification, nonetheless, the apparatus of the theory of
the other surface. In thicker films the increase in the penetraShubnikov(black-and-whitg¢ two-dimensional space groups
tion depth of the surface harmonic distortions of the domaircan be used to analyze the symmetry of the distribution of
wall profile does not induce their spatial synchronizationthe vectorM on either surface of the filrfor in any plane in
(A1#A5), but the difference in the periodsA=A;—A, the interior of the film, parallel to these surfage$his ap-
decreases significantly from its value for noninteraction; se@roach is admissible not only for steppéaack-and-whitg
Fig. 3. We note that one of the possible types of biperiodidistributions of the magnetic moment, when the domain
domain structures—with antiphase modulation of the profilewalls are infinitely narrow, andl==+|M|e,, but also for
of the distribution ofM in adjacent domain walls—is most “gray” domain structures with a smooth functidvi(r), be-
likely stable only when there is no interaction between surcause the symmetry operations that produce abstract black-
face structures at the interfaces of the film with the substratand-white groups can act on objects of any nature.
and with free space. 4. Since the phase is any stable state of the system that
The amplitudes of the harmonic distortions on the twodiffers in symmetry or degree of ordering from other pos-
surfaces of the film differ, with more developed bends of thesible stable states, the transitions induced by the external
domain walls existing at the film—substrate interface. In themagnetic field between different modifications of biperiodic
median plane of the film the domain walls remain verticaldomain structures must be regarded as phase transitions. This
and evenunmodulatey] as in a simple stripe domain struc- means that the liquid-crystal phase of a magnet with biperi-
ture. As the fieldH, is increased, the bends of the domain odic stripe domain structures is polymorphic and differs radi-
walls disappear first at the film—substrate interface and thenally from the analogous phase with simple stripe domain
at the free surface. In a finite fielth, the peaks(and  structures.
troughg of the modulating functions in adjacent domain 5. The nuclei of new states in phase transitions between
walls shift in opposite directions from their position fiir, different modifications of biperiodic stripe domain structures
=0. Moreover, the teeth of the “saw” in the same domain are magnetic dislocations, which therefore bring to the initial
wall but on opposite sides of the film deviate in oppositedomain array not only new spatial periodand A, but also
directions under the influence &f, . Reversing the sign of a new symmetry. In contrast, the magnetization reversal
H, causes the slopes of the sawtooth domain walls to reichange of sign of the projection of the vectbr to the
verse directions. Effects such as these occur because th&ection of the vectoH ) of films having the investigated
curved domain walls create periodic stay fieldg with an ~ composition, observed fad, <5 Oe, involves dislocations
alternatingy-component above the film surfaces. When thewhose motion in the weak-field region is inhibited by the
stay fields interact withH, , the latter lengthens the parts of coercive force and is fostered by processes of rotgfiop-
the domain walls for whicliy, T TH, and shortens the parts ping) of the magnetization vectors.
for whichHg,T|H, . We close this section with the observation that domain
2. The generation and disappearance of surface distostructures having monopolar domain walls occur in our in-
tions of the domain wall profile and the variation of the vestigated films with3,<1 in zero field; the walls are char-
periodsA,; and A, take place in a stripe domain structure acterized by the fact that throughout the entire volume of the
whose periodd depends on the orientation and magnitude offilm the angles of deviation of the magnetization vectérs

n L

-
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=arccos(M| 1(M-g,)) from a certain designated direction
with unit vectoreyl n does not exceed the angle, < 7/2,
which depends org,. Formally we havef,,,,—0 in the
limit B,—0. In transition from one domain to the next the
vectorsM merely “rock” about the average position defined
by the unit vectorey. In films having purely uniaxial mag-
netic anisotropy and the easy magnetization axis parallel tc
n, all directions in a plane perpendicular to the normal are Pam?
equivalent, so that the “selection” of the directiag de- - c
pends on the history of the domain structure and how it is /
generated. If the domains are generated from the uniformly {
magnetized state as the result of a decrease in theHigld \
(from the saturating valyethe unit vectorg, will be parallel

to the vectorH{"). This is also the situation when the field
H{*) is reduced to zero, and whetf ) =0 holds, the distri-
butionM(*)(r) is characterized by restriction of the allowed
orientations of the vector! to within a solid angleQ(*) Prmm2
smaller than  sr, with the axis alongd!{*) . The oppositely
directed(relative to the initial field H{~) corresponds to the
analogous [representing the distributioM(~)(r)] solid
angleQ (™) <27, but with the axis in the opposite direction.
The solid angle2(™) and Q(~) are nonoverlapping, i.e., a
smooth transition between the stakd5”)(r) andM(7)(r) is
impossible. Consequently, the limiting hysteresis loop with
respect to the field, must have a jump corresponding to

the Change of sign of the projection of the vedtbronto the FIG. 4. Symmetry classification of the experimentally observed biperiodic
domain structures(@) symmetric in-phase(b) asymmetric in-phase(c)

vectorH, . symmetric antiphaséd) asymmetric antiphasée) bisymmetric doublefe)
mirror-symmetric double.

4. SYMMETRY ANALYSIS OF BIPERIODIC STRIPE DOMAIN

STRUCTURES . L , — .
main structure. This kind of profile of the magnetization dis-

The results of the symmetry classification of the experi-tribution can occur only foH, =0: Any arbitrarily small
mentally observed biperiodic domain structures are given ifield H, will transform such a structure by a second-order
Fig. 4, which shows schematically the motif-forming ele- phase transition into one of two modifications of an asym-
ments(in the form of black-and-white figures outlined by a metric in-phase(more precisely, quasi-in-phgsbiperiodic
thick solid line, the domain wallsdashed lines and the domain structure with symmetiya (see Fig. 4k
rectangular Bravais cellghin solid lineg. Auxiliary dotted Certain zones of the region of stability of biperiodic do-
lines are drawn in some figures to accentuate individual symmain structures on thid, H; plane, adjacent to the regions of
metry operations. The black-and-white representation of thetability of simple stripe domain structures, can also contain
motif-forming elements symbolically portrays the nonuni-the structures shown in Figs. 4c and 4d, which we @aH
form distribution of the vectoM on either of the two sur- spectively symmetric and antisymmetric antiphase biperi-
faces of the film(or in any plane parallel to themblack  odic domain structures.
representing regions with one sign of the projectidn (for If the field H; has a nonzero magnitude greater than a
any value of the lattgrand white representing regions with critical value, translations in the direction of theaxis
the opposite sign oM, ; the dashed linesdomain wall3 (e L H,) experience period doubling in certain intervals of
correspond to the set of points at whikh,=0. In this sym-  the fieldH, , and the structures shown in Fig. 4e or Fig. 4f
bolic representation the symmetry of the biperiodic domainare formed, which can be calld¢despectively bisymmetric
structures formed in the investigated films is described bydouble and mirror-symmetric double biperiodic domain
one of six two-dimensional space groups of the rectangulastructures. Such domain arrays make up a sequence of alter-
system with a primitivgPan®2, Pa, Pmn®2, Pm) or centered nating zones of in-phase and antiphase biperiodic domain
(Cmn2, Cm) Bravais cell. Structures with symmetBa, Pm  structuressymmetric or asymmetric

and Cm can exist in dual modificationgnot shown in the Photographs of actual observed domain structures in film
figure) corresponding to two antiparallel directions of the No. 2 are shown in Fig. 5. The photographs in Fig. 5 repre-
vectorH, . sent biperiodic domain structures of the typg:sgmmetric

In the structure with symmetrifan? shown in Fig. 4a in-phase H=0,d=5.5um, A=2.1um); b) asymmetric in-
the distortions of the profile of the distribution of the mag- phase H;=0, H, =200e, d=5.5um, A=2.1um); c)
netization vectoM are in phase in all the domain walls on symmetric antiphaseH;=0, H, =3000e,d=3.6um, A
the given surface of the filthand are symmetric; we there- =A;=3.6um); d) mirror-symmetric double K= 300 Oe,
fore call this structure a symmetric in-phase biperiodic do-H, =1000e,d=13um, A=2.7um.
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Experiments on the observation of magnetooptical lightprincipal (p=0 andg=0) maximum(see, e.g., Refs. 41 and
diffraction by two-dimensional domain arrays play a decisive42). When light is scattered by a symmetric simple stripe
role in the identification and symmetry classification of dif- domain structure, in which domains witkl ,>0 and M,
ferent modifications of the observed biperiodic domain struc<0 are of identical width 4, =d_=d/2), the intensity of
tures. For an abstract two-dimensional biperiodic lattice withthe even diffraction maxima becomes equal to Zeihen
periodsd and A along thex andy axes of a Cartesian coor- the symmetry of a simple stripe domain structure is broken
dinate system with the scattering of light incident on the film(e_g_, by the application of a field|), extinction of the even
along thez axis (g,|n) diffraction maxima appear in the di- gjffraction maxima no longer occurs.
rectionsk , q) = k+pby + gb,, wherek is the wave vector of Taking into account the symmetry of the experimentally
the primary light beamp andgq are integers, antl, andb,  ghserved structures and these properties of the magnetoopti-
are the reuprocal lattice basis vectors, which are defined by, itfraction of plane-polarized light by the domain arrays,
the expressiond, =(27/d)e, andb,=(2m/A)e;. In gen- o can determine the form of the diffraction patterns for
eral, the intensities),  of the various diffraction maxima 0 modifications of biperiodic stripe domain structures
dhepend bOtg 02 the t);pe arlld symmetry of the lattice and %8 the basis of fairly straightforward considerations. A sym-
the typg and shape ot Its .eem.ents.. . metry approach similar to that used in x-ray structural analy-

If circular magnetic dichroism is disregarded, the do- is for the determination of Laue clas$eshows that the
main arrays represent pure phase diffraction gratingsf Whicﬁossible types of optical diffraction patterns for the space
implement a periodic modulation of the angle of rotation Ofgroups Pan®, Pa, Pmn2, Cmn2, and Cm in the case of

the polarization plane of the linearly polarized primary light | incid the film bel 0 th i
beam as a result of the Faraday effect. The only componen&orrna Incidence on the film belong to the same Symmetry

of the film-scattered light that contribute to the formation of POINt groupmn® (see, e.g., Ref. 45For d,=d_=d/2,

the diffraction pattern are those in which the polarizationwhered.. andd_ are the average widths of domains with
plane is rotated from the primary beam through an anglé¥;>0 andM,<0, respectively, the extinction of maxima
+ /2 (the sign changes in each transition from a domairWith p=2n and anyq (other than the principal diffraction
with M,>0 to a domain withM,<0), whereas components maximum will be observed for in-phase symmetric biperi-
having the same polarization plane as the primary beam dedic domain structuregFig. 439, and the extinction of
not acquire a phase difference after passing through domaimgaxima with p=2n+1 and anyq [except maxima with
with M,>0 andM,<0 and so they do not interfere. It fol- (p, q)=(*1,0)] will be observed for antiphase biperiodic
lows, therefore, that when light is scattered by the domairdomain structureéFig. 49. Indeed, if we hypothetically de-
arrays, the diffracted radiation in all diffraction maxima of lineate bands containing modulated domain walls in each
orderp+ 0 andq#+ 0 is polarized orthogonally relative to the domain, then secondary Huygens—Fresnel sources situated in

FIG. 5. Photographs of observed domain
structures in film No. 2.



1142 JETP 87 (6), December 1998 Arzamastseva et al.

r————~ . a ‘ b
o P : b, ‘ Sl .
@@ e
Lo : : b, : Lol f §
o @@ o * e @e@res
o————‘—‘—‘m‘—‘g——Q—a $‘~—.—0—.—0—‘—v—.— ‘ r—‘
T e s
T T ¢ DR AN AR AN A { d
! P N ; P ; [
! - ' : b I [
*‘Q—.—r"—'—‘*—ﬁ} X ; Q¢ ) . )
o Pt Do R ! FIG. 6. Schematic representation of the observed diffrac-
.74;“"'"_“ >+ @ "‘*“ tion maxima for biperiodic domain structures of various
o i Co v . symmetries.
: [ R | S
e g SRR
oo b by i P
- ‘ Lo “ . | o é‘ I 4‘ é
*-o T e G ey
SRR R L® i o f
R e s 0.0 0-ere

®
®
[ ]
[ ]

[ 4
[ J

adjacent bands will be in phase in the first case and anambient light (screening the central diffraction maximum
tiphased in the second case, resulting in the extinction of thand the lower part of the diffraction patterihe pincushion
corresponding maximesee Figs. 6a and &df the condition  distortions in the photographs are the result of curvature of
d,=d_=d/2 does not hold, any diffraction maxima can be the image field.
observed, as shown in Figs. 6b and 6d. It follows from a comparison of Figs. 6 and 7 that the
In light scattering by the structures shown in Figs. 4eform of the actual observed diffraction patterns is consistent
and 4f the directions to the diffraction maxima are given bywith the results of our qualitative symmetry analysis.
the relationsk, )=k + pbj +qb,, whereb;=b,/2, andb,
iphese ~nested dolls: Suuciures. generating the givorg, NETICS OF PHASE TRANSITIONS N BIPERIODIC
S . ) . TRIPE DOMAIN STRUCTURES
double biperiodic domain structure. For bisymmetric double
biperiodic domain structures we observe the extinction of all We consider the specific characteristics of phase transi-
diffraction maxima withp=2n and anyg#0 (Fig. 68, tions involving biperiodic domain structures during cyclic
where [n|=1; such extinction does not occur for mirror- variation of the fieldH, with H;=const in the case of film
symmetric biperiodic structurgsee Fig. 6f. No. 2, which has a thickness of 16n and whose state dia-
The diffraction patterns in Fig. 6, which are plotted gram(for the range of field§H;| <500 Oe is shown in Fig. 8.
solely on the basis of a symmetry analysis of the BravaisThe solid curves represent the boundaries at which the vari-
lattices and motif-forming elements, are qualitative in natureous magnetic states become unstdbler the descending
and are not presumed to accurately represent the relative itwanch of the limiting hysteresis loofas the perpendicular
tensities of the various diffraction maxima. field varies from +H{™ to —H{M) where |H{™)
Photographic negatives of diffraction patterns actually>400 Oe corresponds to magnetic saturgtioand the
observed in the experiments for film No. 2 are shown in Fig.dashed curves represent the same for the ascending branch,
7. The photographs correspond to biperiodic domain strucfor which the curve numbers are primet! (2',...,6’). The
tures of the following types: in-phasg¢ aymmetric H=0) symbols U-S refer to the second-order phase transition
and b asymmetric =0, H, =20 09; c) double bisym- curves between the uniformly magnetized state and a simple
metric (H;=300,H, =100 0g; d) in-phase symmetric and striped domain structure; the numbering of the other curves
double symmetric i;=2500e,H, =6008; ) in-phase will be explained below. Individual curves that have no bear-
asymmetric and antiphase symmetri¢; &0, H, =200 Os. ing on the ensuing discussion are not shown in the state
In the latter case spatial filtering has been used to eliminatdiagram.
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FIG. 7. Photographic negatives of experimentally
observed diffraction patterns for film No. 2.
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We first describe the evolution of the experimentally ob-domain wall profiles, coupling arises between the surface
served domain structures for film No. 2 in the ca$e=0,  biperiodic structures, transforming the antiphase symmetric
H, =var, which is shown in Fig. 2. At the very beginning a biperiodic domain structure into one of the dual modifica-
nearly symmetric(judging from the form of the observed tions of an in-phase asymmetric biperiodic domain structure,
diffraction patternsantiphase biperiodic domain structure is specifically the modification corresponding to the initial di-
formed (with the maximum possible modulation period of rection of the fieldH, (curves3 and3’ in Fig. 8). This
the domain wall profile for the given surfack; =A 50 at  process is accompanied by the onset of a very pronounced
the interface between the film and free space from the regiofield dependence of the modulation periodls and A,, a
of a simple stripe domain structure when the fiéld is  sudden change and merging of their val(e=e Fig. 2, and
gradually reduced to some critical value. This instability ona sharp increase in the amplitude of the functions modulating
the diagram of Fig. 8 corresponds to curdeandl1’. In a  the profiles of the domain structures. Total spatial synchro-
slightly weaker field(curves2 and2’ in Fig. 8) a similar  nization of the quasiharmonic distortions of the profile is
bending instability of the domain walls sets in at the film—then attained on both surfaces of the film;EA,=A,
substrate interfacevith the minimum possible period for the whereA ;,in< A <A,may, and a single in-phase asymmetric
given surfaceA,= Asmin<A 1may- IN @ certain range of the biperiodic domain structure is forme@he corresponding
field H, the two surface structures exist independently andurves are not shown in the diagram of Fig, Bemaining
essentially have no influence on each other; the modulatiostable down to zero value of the fieldl, .
periods of the domain wall profiles in both structurds,and After the polarity of the field is changed and its magni-
A, remain constant for all practical purposes. Then, owing tdude is increased somewhdb values no higher than 5Oe
the increase in the penetration depth of modulation of thdor film No. 2), the magnetization of the film suddenly re-
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verseg(i.e., the projectiorM, changes sign in all domains to able to the interrelationship of the parameters characterizing
the original direction of the magnetization vector of the fieldthe biperiodic domain structuké, A ;, andA,), so that even
H,) with an accompanying transition from an in-phasein a fixed field the disappearance of domain wall modulation
asymmetric biperiodic domain structure to an in-phase symat one of the surfaces induces an abrupt change in the period
metric structuré When the direction of the fielth, is re-  of the stripe domain structurd, implying a change in the
versed(from the initial direction and its magnitude is in- domain wall modulation period at the other surface of the
creased, all of the transitions described above occur similarlyjm.
but in the reverse sequence, exhibiting the typical hysteresis The symmetry of biperiodic domain structures generated
of a first-order transition. Curvesand5 (4" andS’) in Fig.  in films having this composition and any thickness at the
8 refer to(respectively the generation and annihilation of an jhterface of the film with free space from a region with a
antiphase symmetric biperiodic domain structure at the fre%imple stripe domain structure as the figld is gradually
sqrface, and curvé (pr 6') refers t,o the dlsa}ppearang(_a of diminished puts them in the class of antiphase asymmetric
this structure at the film—substrate interface, i.e., transition t?with very little difference from symmetric—see Fig.)Sui-
a §imple stripe domain Struc'gure. We note tha.lt only fgr tr.an'geriodic domain structurevith modulation of the domain
s;tl_onshbetween the symmetr:j: anng as(;j/rFr)lmetrlccj: mo(.j”:]C""t'onwall profile A;). The surface domain structures produced in
?S;;'ge?;eggggg:;ﬁrgxgp% bip?enrio dailzz iir(])mzmlztrisc? a s_omewhat wegker field with _the domain wall modulation
_ . . %erlodAz at the film—substrate interface have the same sym-
tures do second-order transitions take place, but during thmetry for any film thickness. We note that even for the thin-
cyclic variation ofH, they also occur in unequal intervals il thL=L*) i h hth . f bieriodi
for different directions of the field, because the field depen-nest |_ms(W|t L_L?f) In which the eX|§tence ot biperiodic
dence of the periodl of the “nested dolls” stripe domain domain _structures is ol_ase_rved_thq-mduced transition
structure also exhibits hysteresiee Fig. 2 from a simple to a blper_lod|c stripe strgcture does not tal_<e
A single “synchronized™ biperiodic domain structure is placg throughout the entire bulk of t.he fllm all at once, but Is
localized near the interface of the film with free space. This

never formed in sufficiently thick filmsL(>15um); two ¢ iy g
uncoupled systems of domain walls having a modulated proM€ans that the penetration depth of the “frozen” surface soft

file and different modulation periods; and A, but stripe mode responsible for the given phase transition at the point
domains of the same periatiare observed over the entire of destabilization of the simple stripe domain structure for

range of existence of the structures. This effect is illustratedilms of the investigated composition is less thag/2

in Fig. 3a, which shows\; and A, as functions oH, for =2.5um.
H;=0 in the case of the type-Il film No. 3 of thickneks The observed evolution of two-dimensional domain ar-

=26um. One other detail distinctly emerges in this graph:raysH;=0 essentially remains unchanged in the presence of
the disappearance or onset of modulation at one of the su finite fieldH| as long as the magnitude of the latter does
faces of the film induces a jump in the graph df not exceed a critical valueiﬁm), which is approximately
=f(H,) for the other surface. This phenomenon is attribut-70 Oe for film No. 2. ForH”>Hﬁcrl) the chain of phase tran-
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J3 4. arb. units

1.0}
FIG. 9. Intensity of diffracted radiation for the maxima
J30(a) andJy 4 (b) versus the field, atH =0 for film

0.5k No. 2. The arrows on the curves indicate the direction
in which the field is varied.

0
-400

sitions accompanying cyclic magnetization reversal acquirethe magnetization vector in any plane parallel to the surface
new links; specifically, a#l, is decreased, the transforma- of the film for the generated biperiodic stripe domain struc-
tion of antiphase biperiodic domain structures into in-phaseures belong, in terms of symmetry, to one of six two-
biperiodic structures proceeds through “buffer” states cor-dimensional space groups of the rectangular system with a
responding to a mirror-symmetric double biperiodic domainprimitive (Pan®, Pa, Pmn2, Pm) or centered Cmn2, Cm)
structure(with period doubling relative to the adjacent an- Bravais lattice. The various types of domain structures can
tiphase or in-phase biperiodic domain structutgss 2d). In be identified either by simple visual observation using a po-
the diagram of Fig. 8 this process is manifested by splittingarization microscope or by analysis of the optical diffraction
of each of the curve8 and3’ in two: 3a, 3band3a’, 3b’. patterns. As regards symmetry, the latter belong to the same
An analogous effect is observed whigh, | is increased with  point groupmn®, but differ either in the intensity distribu-
H>H{°? (the second critical valeof the fieldH for film tion of the diffracted radiation among the diffraction maxima
No. 2 is~=400 Og and is manifested in the state diagram byJ, 4 of even and odd ordens and g or in the ratio of the
splitting of the curvesA and 4’ in two: 4a, 4b and 4a’, magnitudes of the reciprocal lattice vectérsandb,.
4b’. When the magnitude or direction of the magnetic field
The hypothesis of polymorphism of the biperiodic do- vector is varied, first-order or second-order phase transitions
main structures is also supported in experiments aimed déke place between the different types of biperiodic stripe
studying the dependence of the intensities of the diffractiordomain structures, bound or free magnetic dislocations play-
maximad, o on the fieldH, for Hj=0. TheJ;(H,) curves ing the dominant role in the nucleation processes. The state
for film No. 2 (Fig. 99 exhibit sharp(particularly for a de- of the magnet as a whole corresponds to the BereZinski
creasing fieldl troughs in the regions corresponding to do- Kosterlitz—Thouless phase in the first case and to the liquid-
main walls between antiphase and in-phase biperiodic dasrystal phase in the second case.
main structurescf. Fig. 2), along with jumps in the vicinity The region in which the various types of biperiodic
of zero-field points” due to magnetization reversal of the stripe domain structures exist in fims of thicknds{é)>L
film. The J; 4(H, ) curves in Fig. 9b exhibit similar features.
A diffraction maximum ofJ, 4 (see Fig. 1D is observed in
the region of variation oH, corresponding to the zone of 7
stability of antiphase biperiodic domain structures. A com- 20
parison with Sec. 4 shows that the laws encountered in the
behavior of the experimentdl, ,(H,) curves are fully con- 1.0
sistent with the qualitative conclusions based on our symme-
try analysis of the diffraction process.

arb. units

6. CONCLUSION

. . _— 0.5}
An analysis of the results of the reported investigations

shows conclusively that several types of regular biperiodic

stripe domain structures can exist in uniaxial magnetic films

having a small positive anisotropy constant(8,<1) with

the easy magnetization axis directed along the normal to the 0 ) ) , , )
surface in a certain interval of film thicknesses and in a cer- 100 150 200 250 300 350 400
tain region of variation of the direction and magnitude of the H,, Ce

external magnetic field; the structures differ from one an'FIG. 10. Intensity of diffracted radiation for the maxirdg, versus the field

Other_in their S){mmetry an‘ﬂor)_ the period of one Of_ the atHy=0 for film No. 2. The arrows on the curves indicate the direction
uniaxial translations. The possible types of distributions ofin which the field is varied.
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>L% on the H, H| plane for orientational phase transitions (m—€)z 21X Te?

ang H,T for spontaneous phase transitions near the Curidt;=Acos L c0S d. Haz~=— mMz-
(Neel) point is always contained inside the region in which

simple (monoperiodi¢ stripe domain structures exist. This _ 2me Asin(w_ G)ZSmZWX

condition also enables us to draw conclusions as to the criti- X 1+47iB, L de ’

cal distributions of the magnetization vector in thicker films HoM

(L>LY), in which chains of floating cone-shaped domains ax=MxBu.
emerge in the interior of each stripe domain of the biperiodidiereA is the order parameter, which vanishes at phase tran-
domain structures far from the corresponding phase transgition lines. It follows from these equations that the ratio of
tion lines for both surfaces of the magnet. In fact, since wehe amplitudes of the demagnetizing fieldg, and Hgy is
haveL.>L?* , the region of stability of the domain struc- equal toe/(28,), i.e., in the vicinity of second-order phase

cr? .y . .
tures containing conical domains on the state diagrams mu&@nsition lines at the surfaces of the film theomponent of
the demagnetizing field is dominant, and theomponent,

be contained within the region of biperiodic stripe domain hich i ‘ble for th f float ical
structures, i.e., direct transitions between the uniform stat@/Nien 1S responsible for the onset of floating conical do-

and states with floating conical domains do not occur. Thid"ans: becomes negligible.

L The authors are grateful to L. I. Antonov and I. E.
assertion is true not only for magnets, but also for ferroelec-.. . ;

. S . o Dikshtein for a discussion of the paper and for helpful con-

trics, because the distribution of the electric polarization VECL itations

tor P in the latter obeys exactly the same laws as the distri- This work has received financial support from the Rus-

bution of the vectoM in magnets(see, e.g., Refs. 46 and g Fyng for Fundamental Resear@hoject Code 96-02-

47). _ _ 160824
On the other hand, in the Russian and foreign scientific

literature there is a rather prevalent opinion that structures
containing floating conical domains are universal for suffi-*’E-mail: lisi@dataforce.net

. . . . ) 1) . . s s . _
ciently thick films, i.e., such structures are also stable in the e have intentionally chosen the terms “biperioditipe domain struc
tures” to emphasize the distinction from biperiodic two-dimensional ar-

immediate vicinity of the lines of _s_pontaneous a_-nd orienta- rays of bubble domains of various shapes and symmetries, which are not
tional second-order phase transitions. Theoretical calcula-discussed in this paper. The simplest example of such arrays are hexagonal

tions utilizing the Ritz method have been published and pre- lattices of circular bubble domains; more intricate configurations encoun-

. . . . . tered in dynamic self-organization under the influence of a pulsating mag-
dict a monotonic decrease in the critical thickneS8 as the  atic field are described, for example, in Refs. 7 and 8.

second-order phase transition lines are approached antffhese estimates should be regarded with caution, because they are valid
hence, an increase in the probability of the existence of strug-°nly for films with g,<1.

. . . . )Phase transition lines associated with a hexagonal lattice of bubble do-
tures containing floating conical domaifsee, e.g., Ref. 48 mains are not shown in the diagram, as they do not have any direct bearing

Such calculations are based on totally inadequate models the problems discussed here; for the complete state diagram see Ref. 33.
employing the concepts of geometric@instructureyl do-  “Indeed, for an infinite stripe domain or domain of finite length with pinned

main walls and uniformly magnetized domains. In real stripe ends, states with arbitrarily close but different values\ofire separated
d in struct h the b dari bet the d from each other by an energy barrier, and a smooth transition from one
omain structures, however, the boundaries between the d0g,ie (o another is impossible. But the length of a magnetic dislocation can

mains are structured entities of finite extent with a vortexlike vary continuously under the influence of a magnetic field, lifting the pro-
distribution of the transverse components of the magnetiza-hibition against a smooth variation ¢f. The dislocation-generated *“de-
tion vectorM in them, even far from the phase transition formations” of the magnetostatic field are long-range effects and, in turn,

. 49 . . . modify the values ofA in a sufficiently large neighborhood of the dislo-
lines.™ All the same, if the half-period of the domain struc- cation core. Moreover, the onset, change of symmetry, and annihilation of

tured/2 is much greater than the width of the domain walls near-surface distortions of the domain wall profile produce insignificant
S (as is true only far from second-order phase transition variations of the period of the “nested dolls” stripe domain structure.
5

. _— . . - . . ._9At the other surface of the film they are also in phase, but antiphase
lines), the distribution of the magnetization in the domains is | o\ive to the distortions of the domain wall profile on the first surfiice

essentially uniform, and thecomponent of the demagnetiz-  the distortions at the two surfaces are tightly coupled; see Sec. 3
ing field Hy,= £47M, is dominant at the surfaces of the 91In sufficiently thick films, owing to multiple interference, even diffraction
film. Only under these conditions does the logic behind the MaXima can also be observed fdi =d_=d/2, but their polarization

. . . plane coincides with the polarization plane of the principal diffraction
reasoning of advocates of the un'versahty of structures CON-maximum® Since the transmission plane of the analyzer in experiments
taining floating conical domains in thick films hold up with- on the observation of magnetooptical diffraction is always made orthogo-
out fault. As second-order phase transition lines are ap-nalto the transmission plane of the input polarizer, the presence of even

. R . . diffraction maxima associated with multiple interference can be disre-
proached, the vortices inside the domain walls grow in garded in all the discussion to follow.

volume and absorb regions with a uniform distribution of the?ror several reasons the magnetic dithering method, which is necessary in
vector M, so that the distribution of the transverse compo- order to establish thermodynamic-equilibrium initial states for different

ot : : : types of domain structures, could not be used in the experiments, so that
hents of the magnetization vector in the film becomes highly the diagram in Fig. 8 refers to metastable states for which the positions of

nonuniform throughout the entire volume of the fiffhin the boundaries of their destabilization depends on the prior history.
this case the following relations hold in the immediate vicin-®The observed abruptness of the magnetization reversal in weak fields in all

ity of the second-order phase transition lines for thick films the investigated films does not imply abruptness of the transition between
asymmetric and symmetric in-phase biperiodic structures. Once created, a

(dC/L: EfS:IA-I;S A\gheredc is the critical pem)d of the domain symmetric in-phase periodic domain structure makes a smooth transition to
structureg:>>* both dual modifications of an asymmetric in-phase structure under the
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The field dependence of Young's modulus along the hexagoaals is measured in a

gadolinium single crystal over a wide range of temperatures and magnitudes of the magnetic

field aligned with thec axis. It is found that the isotherms of the field dependence oAthe=ffect

in gadolinium are well approximated by a linear dependence on the square of the

magnetization in both strong and weak strong magnetic fields, and also above and below the spin
reorientation temperature. It is shown that the experimental trends obtained near the
ferromagnetic transition can be interpreted within the approach based on the Landau theory of
second-order phase transitions. The parameters of such an approach are determined for
gadolinium on the basis of the experimental data. 1898 American Institute of Physics.
[S1063-776(198)01512-1

1. INTRODUCTION dependence of Young’'s modul@s4(T,H) was investigated
in Ref. 3 in a comparatively narrow temperature range below

Studies of magnetoelastic interactions in rare-e€®)  the spin reorientation temperature. References 9 and 10 were
metals are of great significance for understanding the naturgedicated to an interpretation of the observed trends. These
of magnetic phase transitions in these metals and also fastudies, first of all, did not examine the field dependence of
practical application$.One effective method for investigat- Young's modulusCs4(T,H) in the indicated geometry in the
ing magnetoelastic interactions in rare-earth metals is to exemperature range above the spin reorientation temperature
amine the peculiarities of the temperature and field depenand, second, they did not determine the experimental depen-
dence of the elastic moduli and internal friction in the regiondence of the field isotherms of Young’s modullgy(T,H)
of magnetic phase transitions. Such studies make it possiblen the square of the magnetization above or below the spin
not only to determine important experimental parameters ofeorientation temperature. The latter is especially important
rare-earth metals, but also to verify the applicability of the-because it represents a convenient means of quantitatively
oretical approaches to the description of magnetoelastic pheomparing the experimental trends with the theoretical pre-
nomena in these metalsee, e.g., Ref.)2 Although a sub- dictions and thereby opens up the possibility of determining
stantial amount of experimental material has beerthe parameters of the theory on the basis of such a compari-
accumulated on the elastic properties and internal friction oon.
rare-earth metalésee, e.g., Refs. 33.8the field dependence Gadolinium is a convenient test case for a theoretical
of anomalies of the elastic properties and internal friction instudy of the magnetic contribution to the elastic moduli in
the region of the magnetic phase transitions has not beethe case when the magnetic field is directed along the hex-
examined in sufficient detail and has not received an adagonalc axis. This is because the spontaneous magnetization
equate theoretical explanation. vector in a gadolinium single crystal is directed along this

In particular, in regard to gadolinium, detailed isothermsaxis in the temperature intervalgg<T<T., where Tgg
of the field dependence of Young's moduldgy(T,H) have =230 K is the spin reorientation temperature die= 293 K
been measured over a wide temperature range, but only inia the Curie temperaturesee, e.g., Ref. 21 The superposi-
geometry in which the magnetic fiel is oriented in the tion of a comparatively weak magnetic field>0.5 kOe
basis plané.In this case a complicated field dependence waparallel to the hexagonal axis means that in this temperature
obtained for the modulu€;5(T,H), which has still not been range the paraprocess alone determines the variation of the
interpreted theoretically. This is apparently because of thenagnetization and of the magnetic contribution to the elastic
difficulty of calculating the field-dependent contribution of moduli. This circumstance allows us to neglect the contribu-
the domain structure to the modul@z,(T,H) in the indi-  tion of the domain structure to the elastic moduli, which
cated geometry. substantially simplifies the theoretical approach used to de-

The influence of a magnetic field directed along the hexscribe the temperature and field dependence of the elastic
agonal axis of a gadolinium single crystal on the temperaturenoduli of gadolinium near the Curie temperature. Below, we

1063-7761/98/87(12)/6/$15.00 1148 © 1998 American Institute of Physics
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base such an approach on the phenomenological Landatk, GPa

theory of second-order phase transitions and the method de- |~
veloped in Ref. 12, which are free of model-dependent no- | /4
tions about the nature of ferromagnetism and magnetoelas- 13\
ticity. 1or 72
The aim of the present paper is to measure the field | 7/™
dependence of Young's modul&T,H)=C35(T,H) along 1o \
the hexagonat axis in a gadolinium single crystal over a 1001 z .
wide range of temperatures and magnetic field strengths with -,
the magnetic field aligned with the axis, to establish the o, 6’\"\
experimental dependence of the field isotherms of Alie 5\
effect on the square of the magnetization, to interpret the | 4
observed trends near the ferromagnetic transition within the gl 3=~
framework of an approach based on the Landau theory of 2 e LY
second-order phase transitions, and to determine the param [ /™ \"‘.&.:":_‘s. N
eters of such an approach for gadolinium on the basis of the 70} _—‘\\ SO
experimental results. L E, ¥
601
2. EXPERIMENTAL TECHNIQUE AND RESULTS OF
MEASUREMENTS 100 ‘ 500 ' 300 Tk

To solve the problems formulated above, we performedg 1. Temperature dependence of Young's modii(E, H), measured
detailed measurements of Young’'s modulT,H) along  along the hexagonalaxis in a gadolinium single crystal for different values
the hexagonat axis in a gadolinium single crystal at the Ofsfhg mazgge;ic fiesldgl\g(in 526)51—507. 210— 0.2.51—11-1?0—1;-5,593
acoustic frequencies 1-3kHz oyer a wide range of tempereﬁ—é'_ 10.2., i4— 129 The 'st}aight Iinéo(T) is. a’n extrar;oiation of.try1e
tures 86<T<350 K and magnetic field strength$<12.9 value of Young’s modulus from the paramagnetic state.
kOe with the magnetic field directed along theaxis. The
modulus was measured by the method described in Ref. 13,
which employs an electrostatic means of exciting natural vithe temperature rangel>Tgsg complement the low-
brations in the acoustic frequency range in a consoletemperature results presented in Fig. 6 of Ref. 3 and the
mounted sample having the shape of a thin rod. results plotted in Fig. 2 of Ref. 6, obtained for one value of

The experimentally measured values of the temperaturthe magnetic fieldH=25 kOe. According to Fig. 1, with
dependence of Young's modul&T,H) are plotted in Fig. increase of the magnetic field the anomalies in the tempera-
1 for several values of the magnetic field. The straight lineture dependence d&(T,H) near T and Tgg smooth out
Eq(T) in this figure is an extrapolation of Young’s modulus while the magnitude of the moduld& T,H) grows substan-
according to a linear temperature law from the paramagnetitially. In this case, a magnetic field=1.1 kOe liquidates
region into the temperature range beldw neglecting mag- the negativeAE effect near the Curie temperature. In the
netic phase transitions. The basis of this extrapolation is theemperature rang@sg<T<T. the indicated trends belong
experimentally established linear temperature dependence tf the paraprocess since, according to our measurements, the
Young’'s modulusEy(T) in the paramagnetic state above the contribution of the domain structure to Young’s modulus
Curie temperature. The zig-zag curiarvel) in the figure, taking place in the indicated geometry in weak fields
obtained in the absence of a magnetic field, agrees with the 0.5 kOe is less than 0.1 %.
results of Refs. 3—6, according to which anomalies in the  To investigate the field dependence of Young’'s modulus
temperature dependence of the mod(¥,0) taking place E(T,H) in gadolinium in more detail and establish qualita-
in the vicinity of the temperature§ =293 K and Tgg tively new regularities. It is of interest to experimentally in-
=230 K correspond to transition from the paramagnetic statgestigate the dependence of the change in Young’s modulus
to the ferromagnetic state and to the spin reorientation tranin a magnetic fieldAE(T,H)=E(T,H)—E(T,0) as a func-
sition. In this case, near the Curie temperature a well-definetion of the square of the magnetizatioM?(T,H), both
negative AE effect takes place, i.e.AE(T,0)=E(T,0) above and below the spin reorientation temperature. Figure 2
—Ey(T)<0. Attention should also be directed at the signifi- plots the results of such a study, i.e., the isotherms of the
cant difference in the magnitudes of the anomaly of thefield dependence of thAE effect in gadolinium along the
modulus E(T,0) near the spin reorientation temperaturehexagonakt axis as a function of the square of the magneti-
which is apparent from a comparison of cutvin Fig. 1 and  zation,M?(T,H), at several temperatures. To construct such
Fig. 1 of Ref. 7. This difference may be due to a difference inisotherms we used additional data on the magnetization in a
the purity of the samples used in the experiments. As wafield of the same sample on which Young’s modulus was
noted in Ref. 7, in superpure gadolinium samples themeasured. Analysis of Fig. 2 allows us to formulate two
anomaly of the modulu&(T,0) near the spin reorientation important results. First, as can be readily seen, the experi-
temperature is smaller. mental data lie very neatly along straight lines both in the

In a finite magnetic field the data depicted in Fig. 1 inregion of comparatively weak magnetic fieldmes 3—14),
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AE, GPa ) o1 . )
Fu(TMu)=Fo(T,u)+ 5 a(w)[T—Tc(u)]
- 4
13 1 " "\12 2
12 + Eaz(u)[T_Tc(U)] M
40+ 11 L
oh Yel¥ + 7{b(W) + as(W[T-Tc(WIM*
I 7
1 .
y + Zag(I)M°, (1)
5 6
201
4
3 whereT is the temperature is the magnetization, anal is
- 2 the strain tensor.
Expression(1) corresponds to the geometry of the ex-
! ¢ periment described above near the Curie temperature, when
0 ' 3 ' 7 ' FE— the magnetic fieldH and the magnetizatioM are directed
M? (10 Gem’igf along the hexagonal axis of the gadolinium single crystal.

Relation (1) yields the following expression for the elastic
FIG. 2. Isotherms of the field dependence of &i€ effect along thec axis tensor(tensor of elastic modyliof a ferromagnet in a con-
in a gadolinium single crystal in a magnetic figitc as a function of the i Eald-
- . _ stant magnetic field:
square of the magnetizatio?(T,H) at different temperatures (in K): 1 9
— 300,2 — 289,3 — 278,4 — 271,5— 261,6 — 251,7 — 239,8 —
223,9 — 218,10 — 192,11 — 173,12 — 150,13 — 120,14 — 81. C(l) 1

(T H)= C (T) 1+ &(T, H) 1+ &(T,H)
cy T
where the change in the square of the magnetization X Cff”*( _)
M2(T,H)—M?2(T,0) induced by the field is small in com- 1+&(TH) Tc
parison with the square of the spontaneous magnetization, c® c(®
ij

ciH+ !

M2(T,0), at a given temperature, and in the region of strong + +
UOOIHETH) (14 &(T,H) P

magnetic fields, where the magnetization is determined
mainly by the field(lines 1 and2). Second, and especially b
important, the isotherms of the field dependence ofAlke X ——M?(T,H). 2)
effect in gadolinium are well approximated by a linear de- alc
pendence on the square of the magnetization both above and
below the spin reorientation temperature. Thus, a definitélere C_ 1(T)=(#°Fo/duiou)); is the elastic tensor of the
similarity is observed in the trends of the field dependence oparamagnetlc state in the absence of a magnetic field and
the AE effect in gadolinium as a function of the square of theC(") are the magnetoelastic tensdtsnsors of the magneto-
magnetization in the temperature intervals corresponding telastlc coefficients for which relation(1) yields
the two different phase transitions.

In the following sections we quantitatively analyze the " (aTe)?dInTe dlnTe
experimentally observed trends in the field dependence of Cjj’= 2b au T
the AE effect in gadolinium near the ferromagnetic transition ! !
within the framework of the approach based on the Landau 5
theory of second-order phase transitions, and determine the ~_ _ (@Tc)’[dInTc dIna L7 InTc dIna
parameters of this approach for gadolinium from an analysis g 2b [ v dy; auj  du;
of the obtained experimental data. 2a,Te dInTe aInTe

o Ju; (9UJ

3

3. TEMPERATURE AND FIELD DEPENDENCE OF THE

a?asTe\dinTcainT
ELASTIC MODULI OF A FERROMAGNET NEAR THE CURIE cd_ 3lc c c
TEMPERATURE 1 2p2 au; au;

In order to analyze the temperature and field dependence
of the elastic moduli of a ferromagnet according to the Lan- s _ (aTo)?[dInTc dIna K INTc dIna
dau theory of second-order phase transitions with the accu- i 2b | ou oy u; o,
racy needed here, it is necessary to go beyond the approxi- 5
mations of Refs. 12 and 14 and use an expansion for the free + 1 9Te  axlcd INTc oInTe
energy density in the forrtsee, e.g., Ref. 15 Tcdujou;  a  dup
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2 6 2 2
Ci(js):(aTC) [9InTc alnb L, 2InTc alnb O S (aTe) [amTc aIn(a?/b)
2b | ou  du Ju;  du; i il 2b | oy, au;
_203Tc dInTc dInTc L InTcain(a?b) 1 T
b &ui F7U] é’UJ (9Ui T_C &Uiaul'
©_ . [2Tc 39InTc aInTe N 3agTc  3ayTc 2aasTc|dInTc dinTe
Cii’=2s| Jui  duj ©) b a b2 aui  au; |

The dependence of the tens@ on the magnetic field is Ci(jg):_Ci(Jz)_ZCi(Jg)“L2Ci(j4)+ci(1'5)'
described not only by the last term on the right-hand side ofpsjde the brackets in the last term on the right-hand side of
relation (2), which is proportional tdVi*(T,H), but also by  expression(7) we have kept the term proportional to the
the dimensionless paramefer small parameter 4 T/Tc<1 since, as will become clear be-
low, the inequalityC$)<C$) holds in the case of gado-
linium. This distinguishes expressidid) from the formula
(4) that can be obtained in this limit on the basis of Refs. 12
and 14.
Let us turn now to the case of a strong magnetic field,
where the following inequalities are satisfied:

SRR

To obtain formula(2) we used the equation of the magnetic
state of a ferromagnet corresponding to EQ:

2aT¢| T I
H 1 T e N <HP< —, (8)
= a(T=To)+ S an(T-Tc)? 3™ Te %
The right-hand inequality8) here denotes the smallness of
+[b+ay(T-Te)IM?+asM*. (5)  the termagM* in Eq. (5) in comparison withbM?. Under

these conditions the dependence of the elastic m@gubn
The second term on the right-hand side of E®). corre- the temperature and magnetic field is described by the fol-
sponds to the result of Ref. 12 and in the limit of zero fieldlowing expression:
H=0 describes the “jump” of the elastic moduli at the Cu- 5 5
rie point since, according to Eq&) and(5), £(T,0)= for CH(T,H)=C%(T)—=cV—Zc
T>Tc and &(T,0)=0 for T<T.. The following terms on N N 3~ 97
the right-hand side of Eq2) for H=0 describe the variation

134213
of the slope angle of the temperature dependence of the elas- x| 1— _) aTc +C9 b™™H 9
tic moduli, which is proportional tavi?(T,0), during the Tc/ptRyze Y aTce '
transition to the ferromagnetic state, and correspond to thﬁ/here

result of Ref. 14. An expression similar () was studied in

Refs. 16 for a finite magnetic field in connection with the (9)_ ~(4) 2 ) 4 )

Stoner model of a weakly ferromagnetic metal. Cii=Ci" 3G T 5Ci -

Formulas(2) and(5) allow one to examine the tempera- - . _ _
ture and field dependence of the elastic moduli of a ferrojf the additional condition on the magnitude of the magnetic
magnet near the Curie temperature. Let us first consider thigeld

range of temperatures below the Curie temperature 12

12

(1)
(T<T¢). Then in the case of a weak magnetic field, 2Ci a_TC — | «<pH2B (10)
9CI(J9) b1/3 TC
423 aTe 1- T 6 is fulfilled, relation(9) takes the form
R T/ © 1/342/3
H 0 2 (1) (9) b™™H
Cij(T.H)=Cij(T)— 3 Cij"+Cjj aTe (13)

Egs.(2) and(5) yield the following dependence of the elastic
tensor on the temperature and magnetic field: We stress here that formuldl) is a departure from the
approximation of Ref. 12, according to which the elastic

T modulus is independent of the magnetic field Toe T. It
CH(T,H):CS(T)—Ci(jl)+Ci(,-7)( et ci+cy follows from formula(11) that the magnetic field
C
3/2
(1 T ( T )—3/2 bl/ZH (7) C:(aTC)Slz ZCE]: (12)
- — - — _ 1/2
Tc Tc 2(aTC)3/27 b 3C;;

compensates the “negative” jump of the elastic modulus at
where T=T¢.
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Finally, let us consider the temperature range corre- AE(T,H)=C§'3(T,H)—C§'3(T,O)
sponding to the paramagnetic statex{T.). Here in the case

of a weak magnetic field T
g “|esesi-o
213 CYTc< T )
<" S 1], 13 M2(T,H)—M?(T,0
15| T (13 " (T,H) ( ), 16
2M?(T,0)

the dependence of the elastic tensor on the temperature andd in th ¢ " fiel®). ai dition(10
magnetic field, according to Eq€2) and (4), takes the form ?n 'rl' 191 case of a strong fie{8), given condition(10),
(compare with Refs. 4 and 17 ormula(11) gives

bM2(T¢,H)

AE(T.H)=CayT,H)~C{(T.0)= Cof — -

Cil(T,H)=C}(T) - a7

(T ’ (2)_ 4
Thus, in both limiting case$weak and strong field if the
~2 pH? additional condition(10) is met, the field dependence of the
(aTo)? (14 AE effect turns out to be proportional ¥2(T,H) at differ-
ent temperatures. This conclusion corresponds in Fig. 2 to
We will use the above relations in the following section totraces1-7. In this case, trace4 and 2 correspond, obvi-
analyze the experimental data on the field dependence @usly, to a strong field since for them the variation of
Young’s modulus€E(T,H) in gadolinium near the Curie tem- M?(T,H) with increasing field is large in comparison with

T

X
Te

perature. M2(T,0) for a fixed temperatur&=T.. The slope of these
curves, according to formuld?), is equal to
t —c<9>i =172 (18
4. DISCUSSION AND CONCLUSIONS anen==L33 aTe’ n=di.z.

We turn now to an interpretation of the experimentalOn the contrary, curve8-7 in Fig. 2 correspond to the
trends depicted in Figs. 1 and 2 for gadolinium. It is impor-weak-field limit, where the variation df12(T,H) with in-
tant to bear in mind that the measured values of Young'sreasing field is small in comparison with the spontaneous
modulusE(T,H) along the hexagonal axis are determined valueM?(T,0). The slope of these curves, according to for-
by the component of the elastic tenﬁij‘s(T,H). Hereitcan mula(16), is equal to
be seen that the temperature behavior of Young’'s modulus
E(T,0) in the limit of zero fieldd =0, described the segment 5, — [Cgla)
of the zig-zag curvédcurvel) in Fig. 1 near the Curie tem-
perature T<T.), can be approximated by formu(8), ac-
cording to which we have

n=3-7. (19

T -1
1—T_C) o

ZaTC ’

Since it is clear that the slope of curv@s7 does not depend
on the temperature, this is possible according to fornil@
T if
E(T,O):EO(T)—cgguch(1— T—), (15) T2
c c<313>( 1- T—) <C{. (20)
whereEq(T) = ch(T). Comparison of formuld15) with the ¢
data in Fig. 1 makes it possible to find the magnetoelasti&/nder these conditions, E¢L9) yields
coefficientsC{y)=1.2 GPa andC{)=30.8 GPa for gado- b
linium, which determine respectively the jump of the modu- tan(pnzcg?ﬁ,
lus E(T,0) at T=T and the variation of the slope of the @lc
temperature dependenE¢T,0) belowTc. The influence of The experimental data begin to deviate from cur8eg in
the magnetic field on the temperature dependence of theig. 2 when the increment d1?(T,H) in a field becomes
modulusE(T,H) in the temperature range>TsrVisible in  noticeable in comparison wittM?(T,0). In this case, the
Fig. 1 corresponds qualitatively to the regularities describedrend described by formulél6) gives way to the trend de-
by formulas(7), (9), and (11, where, with growth of the scribed by formulg17), corresponding to tracels 2, which
magnetic field, the jump in the elastic modulE¢T,H) at  fill the role of asymptotic limits for the experimental data.
the Curie point washes out and the slope of the temperaturehis trend can also be made out in Fig. 2.
dependence of(T,H) grows with the field if C{>0, The experimental results depicted in Fig. 2 allow us to
Cg%)>0. In order to discuss these trends quantitatively, weobtain quantitative estimates of the parameters and state-
will consider in more detail the results displayed in Fig. 2. ments of the phenomenological approach fleshed out above
Toward this end, we rewrite formuld¥) and (11) with the  for the case of gadolinium. First of all, from Fig. 2 we can
help of Eq.(4) in a form that contains an explicit dependencefind the ratio aTo/b=(1.1-1.3)x10" G? using data on
on M?(T,H). Then, in the case of a weak fie(fl), with the ~ M?(T,0) plotted along the abscissa for known temperatures,
help of formula(7) we find the following formula for the and the value of the mass density of gadoliniwnay7.87
field dependence of th&E effect: g/cnt from Ref. 11. This, in turn, allows one to estimate the

n=3-7. (21
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parameterb=(0.56—0.66)x 10 * G2 using the experi- Stood in the temperature range above the spin reorientation
mental value of the Curie constaft=a 1=0.4K from temperature within the framework of an approach based on
Fig. 1 of Ref. 18. Next, formula&l8) and(21) together with tr_]e.Landau theory of second-order phase transitions. Since
experimental data on the slopes ¢aa-1.29x 10 of curves S|m|lar expenr_nental trends were al_so detected below the
1 and2 in Fig. 2 and tap,~0.47x 10° of curves3—7 allow ~ SPin reorientation temperature, we think that the phenomgno-
one to calculate the magnetoelastic Coefﬁci@g%):(l_zl_ Ioglc'al approach developeq in this WOI’k' can be generalized
~1.7)X1® GPa andcg%):(l.o— 1.2)X10° GPa. Bearing to this temperature range with comparatively little eff@ee

the above results in mind, it is possible to rewrite inequality®S© Refs. 9, 10, and 19
(20) for gadolinium in the form This work was supported by the Russian Fund for Fun-
_ damental ReseardProject No. 96-02-17318yand the Fed-
1.0-1.2x10 3<1-T/T¢. 22 . I
( ) ¢ (22 eral Program for State Support of Leading Scientific Schools
Obviously, inequality(22) is satisfied for temperatures cor- of Russia(Project No. 96-15-96429
responding to curve8—7. This justifies the use of formulas
(21) to describe these curves. S o
The values obtained above and form@#) allow one  Email: zverev@sci.Ipi.ac.ru
to estimate the value of the magnetic fitlg=0.8—1.1 kOe
at 'Wh|Ch the negativeAE effec_t dlsgppears at the Curie 1k p, Belov, Rare-Earth Magnets and Their Applicatiofi; Russia)
point. The value ofH. so obtained is in good agreement (Nauka, Moscow, 1980
with the experimenta| data Shown in F|g 1. 2A. K. Zvezdin, V. M. Matveev, A. A. Mukhin, and A. I. Popo\Rare-
Let us now discuss condition®) and (10) defining a Earth lons in Magnetically Ordered Crystalin Russiad (Nauka,
. . . Moscow, 1985.
strong magnetic field, applied to our experiment. The values:\; Long, A. R. Wazzan, and R. Stern, Phys. R&V8 775(1969.
obtained above allow one to rewrite the left-hand inequality *T. J. Moran and B. Lthi, J. Phys. Chem. Solid31, 1735(1970.
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: . . - . L. M. Levinson and S. Shtrikman, J. Phys. Chem. Sc88s981(1971).
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Using the multicenter Schdinger equation for calculating the transmittance of a flat layer of
randomly distributed point scattering centers through which a particle passes, we show

that when the scattering length for one center is comparable to the particle waveleagib

larger, the loffe—Regel hypothesis hold8ccording to this hypothesis, as the scatterer

number density increases, the transmittance of the layer becomes constant, while the value of the
particle’s effective mean free path remains of ordgrWhen the scattering length is small

compared ta\, the loffe—Regel hypothesis does not hold. As the scattering length decreases, the
accuracy of the approximation of the effective scattering potential gradually increases, and,
depending on the strength of the potential, particles may either tunnel or diffuse; the effective mean
free path can be much smaller than © 1998 American Institute of Physics.
[S1063-776(98)01612-9

1. INTRODUCTION disordered media points to the limits of this thedry.
Rigorous theoretical approaches are limited to the weak
Apart from being fundamental, the problem of the quan-localization region (<\). Hence, for the case where all the
tum transport of particles in a disordered medium has latelgharacteristic lengths are close in order of magnitutdte I(
attracted a lot of interest in applied science, which is due~\), numerical experiments prove to be the most effective
mainly to the transition to nanometer technology in the fab-method of investigation. In particular, a numerical experi-
rication of computer chips and other devices. If the characment that would verify the loffe—Regel hypothesis would be
teristic dimensions of a device are smaller than the electromery interesting.
wavelength, the commonly used physical and mathematical The existing approaches to modeling the transport
models describing the operation of such devices break downproces8 focus on calculations of the critical exponent and
New phenomena, such as weak localization and the universabe the tight-binding Hamiltonian with diagonal disorder.
manner of conductance fluctuations, have also been detect&gspite the efficiencydue to the sparsity of the matjixf
recently in studies of mesoscopic electron transport, wherthe tight-binding approximation, we believe that such an ap-
the inelastic scattering length is much larger than all otheproach is biased. Physically it corresponds to the case of
characteristic lengths. All this has drawn a lot of attention totransport of particles in a bound state, where the Green’s
the development of new approaches in the description ofunction decreases exponentially over the average distance
mesoscopic charge-carrier transport, approaches based on #gfween particles. It is difficult to relate the results obtained
numerical solution of the Schadinger equation for a large through the use of the tight-binding Hamiltonian to the clas-
number of scattering centers. sical concepts of transport theog.g., the mean free path
The ideas about the origin of particles in highly disor- and the diffusion coefficient so that it is advisable to have
dered media are contradictory. According to the loffe—Regefn alternative approach.
hypothesis, the mean free pathcannot be smaller than the The current techniques used in describing the operation
wavelength\. This led Mott to the ide&see Ref. 2of mini- of nanoelectronic devicggiluantum wells, superlattices, étc.
mum metallic conductivity, according to which the conduc-ordinarily employ the effective-mass approximation. This
tivity and diffusion coefficient reach their minimum values leaves many problems, e.g., the problem of matching at the
as the concentration of the scattering centers increases. boundary between two media, unresolved. However, we can
A more modern approach is based on the scaling theorQiSCard the effective-mass approximation and think of the
developed for the case where the sizef a region of the medium as a sgt of zero-range potentials for which the solu-
disordered medium is much larger thenAccording to this ~ tion of the Schrdinger equation is possible by the method
theory, as the disorder in the medium becomes more prgiescribed in this paper.
nounced, Anderson localization sets in, and near a critical
value pf th_e scatter!ng center concentration Fhe conductlvn)é THE ALGORITHM
and diffusion coefficient decreases according to a power
law2 The question of the validity of a one-parameter scaling  When studying the mesoscopic electron transport, we
theory is currently widely debatédand the detection of can ignore inelastic scattering. It then becomes possible to
anomalously large statistical fluctuations of conductance irsolve the Schrdinger equation for the scattering problem, in

1063-7761/98/87(12)/5/$15.00 1154 © 1998 American Institute of Physics
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which a plane incident wave is specified and an outgoing
spherical wave exists at infinity. Mesoscopic transport occurs
in semiconductors and insulators at low temperatures, when
the electron wavelength is much larger than the characteristic
range of the potential, which makes it possible to use the
approximation of zero-range potentials.

Suppose that a plane wave with a wave ve&tds inci-
dent on a layer consisting &f; point scatterers described by
zero-range potentialéve setz=m=1). Then the solution
of the time-independent Schiimger equation is a linear
combination of the incident wave and the outgoing spherical
waves from each scatterer:

N¢
zp(r):exp(ik-r)+; AG(R), Ry=|r—rj, (1)

0 2 4 6 8 10 12 14 16
where the coefficient#,; can be found from the effective an

boundary conditions at the surface of each scatterer: o
FIG. 1. Dependence of the classi¢ablid curveg and quantuntdots layer

9 |n( R. ¢) transmittances on the concentration of scatterers wittD at a fixed layer
=—aq;, (2) thickness for different values of the wavelength(to make the diagram
&Rj R0 y more graphic, the curves are moved apart along the axis of ordinates)by 0.2

] Here and in the figures that follow the vertical notches indicate the statistical
where 1k; is the scattering length at thigh center with error.
coordinates;, and G(R)=exp(kR)/R is the Green’s func-
tion of the Schrdinger equation in empty space. In our cal-

2mn
culations we were forced to limit ourselves to consideration  Pyy=— Y P,,p,=0
of the particles incident along theaxis perpendicular to a Xy
sample with finite transverse dimensiobg=L,=(2—4)\. Substituting(1) and (4) in (2), we arrive at system of

The sample contained. randomly distributed point poten- complex-valued linear equations for the coefficientsA,,
tials. We were forced also to use periodic spatial conditionsvhich can be solved numerically by Gaussian elemination:

for the scattering medium. Then, the Green’s function is the N,
sum of vacuum Green’s functions shifted by peritgs; : (ik+a;+C)A+ > G(r;—r)A = —expikz)).
]
G(r)= 2 D w, (3)  The transmittancd is given by the formula
m=—ow n=—w r_rmn )
Lx I-y |
— - * _ 1k
mn=MLg+nLyey . T KL,L, 0 J.dxdy, J Z(Iﬂvw YV )

The serie3) converges very slowly, and in our calculations OF, in final form,

we used its Fourier transform with respect to the transverse N¢

coordinates. Near a scattering center the asymptotic behavior T=1+ E (AF; _Aj* |:J*),
j

of the Green’s function is given by the formula KLyLy
h
exp(ikR)) where
G(R))|r 0= g +C, (@ 2
] Fi=iexp(—ikz)+ L
where the constar@ is the sum of the serig®) without the IPl<k N, -

terms withm,n=0 atr=0; it is determined by the geometri- 2 2 E eXp(I P-(rj—r)—a(z—2z))
cal dimensiond., , and the wavelength. We found it conve- X ol q
nient to calculate this constant in the form of the difference

the Fourier transform of3) and the Fourier transform of q=|k2—P2|1’2.
exp(kr)/r, which atr=0 yields a converging difference of The zero-range potential approximation provides a
an infinite integral and a divergent sum: method for solving the Schdinger equation numerically for
a fairly large number of scatteref@e choseN, as high as
dp.dpy, 1000, which makes it possible to model particle transport in
f f_w (K2—p?)12 a disordered medium for a broad range of parameter values.
27i 1 3. RESULTS OF CALCULATIONS

Lly % 7, (K2—P?)¥2’ The results depicted in Figs. 1-3 were obtained by av-
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T a’+k?
1.6 n= )
47l

and it is convenient to select the following parametgvih
the dimensions of lengihas the main parameters of the
problem:\, 1/a, |, and the thicknesd of the scatterer layer.
The transmittancd of the layer is a function of only three
independent dimensionless parameters, B/f), d/I, andah
(naturally, other combinations are also possible

We examined the dependence of the transmittanoa
d/I for different fixed values of the two other independent
parameters. Physically this corresponds to two situations: in
the first case the scatterer concentration varies\but, and
d are fixed, i.e., the parametkwraries(with the dimension-

i
Ty
'"‘"'-nu."“‘.

L Tttt less parameterd/\ and a\ fixed); in the second case the
0 2 4 6 8 10 12 l4d”16 thicknessd of the scatterer layer varies bt «, and| are
fixed, i.e., the parametedd| and e\ are fixed.
FIG. 2. Dependence of the classi¢ablid curve and quantunidots layer In the classical limit\/I —0, particle transport is de-

transmittance on the concentration of unlike scatterers for different scatter- ribed b tran rt tion with an isotropi tterin
ing lengths at fixed layer thickness and wavelengthmake the diagram scribe y a lransport equatio an Isotropic scatiering

more graphic, the curves are moved apart along the axis of ordinates)by 0.Andicatrix and a cross sectiah). Ford<l, the transmittance
of the layer linearly decreases with increasing thickness, and
for d>1, the diffusive transport sets in ardis proportional

to I/d. To be able to compare our results with the quantum

eraging the transmittance over various configurations of the . . ;
> ) . . ._mechanical results, we calculated the classical transmittance
scattering centers and simultaneously estimating the statis

cal error. In different trials involving the samgonstant UI:C'aSﬁ(d”) numerically, solving the transport equation by the

number of scattering centers, the coordinates of these cente'\r/lsont(.a Carlo method. . .
’ Figures 1 and 2 depict the results of calculating Thes.

were produc_ed by a random number generator. The COmmqndependence of a fixed layer thicknésg/hich is convenient
number of trials was several hundred. . e :
for numerical verification of the loffe—Regel hypothesis.
Yhen i <1, the classical and quantum transmittances co-
incide with the statistical calculation err¢the lower curve
in Fig. 1). As A/l increases, the quantum transmittance first
becomes smaller than the classical, i.e., the interference of
the scattered waves reduces the effective mean free path,
which agrees with the Yakubov's theoretical resulob-
At tained by the diagrammatic technique. Whan>(6-7)l
Ua,kZm- 5 holds, the quantum transmittance of the layer ceases to de-
crease with increasing scatter concentratitthe upper
The scatterer concentrationis related to the mean free curves in Fig. 1, which corroborates the loffe—Regel

of the scattering length & attractive scattering centers
(a<0), repulsive scattering centerg¥0), and unlike scat-

tering centergthe sign of eachy; is chosen at random with
equal fractions of both valugsThe single-center scattering
cross section has the fofm

pathl through the formula hypothesis. For small values of|a\|, the transmittance
T
1.0
a
0.8f
X FIG. 3. Transmittance vs. layer thickness for
0.6+ il = 3 two values of wavelengtta and b at fixed scat-
ant = tering lengths and mean free paths for repulsive
Al =276 (curves 1), unlike (curves 2), and attractive
(curves 3) centers. The solid curves represent
0.4 the dependence on the layer thickness of the
classical transmittance for an effective mean
NG free pathl 4=0.71.
0.2t N 3.
T 2
1T
1 " A i
0 3 6 9 12
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reaches a plateau as the scatterer concentration increasésCONCLUSION

This phenomenon exists for all types of center, and in the . .
: o ) . . We have proposed a method for calculating the transmit-
case of repulsive centers a minimum in transmittance is ob-

served within a broad range of values®X for a scatterer ;?ngngeZ pr?]glgiljn\]/v't?_hzosr::gti:;ﬁ;gﬁ;zg) dugohnasgil/(iar:gmt:e
Com':l'irgrlit‘lf%n—;Zr;lsﬁ;;glﬂgstglprgbably becomes invalid athrge-dimensiongl Sqfnj@ger equation for multicenter scat-.
the scattering length decreasgdg. 2). At least for |a\| %epng. The. medium S mterpreted'as a set Of. randomly dis-
>1 and unlike scatterers, the quantum transmittance mon t[lputed_ point scgtten_ng centers with a scattering length 1_/

. ! : . With this approximation we have obtained an exact solution
tonically decreases with increasidgl and is always smaller

than the calculated transmittance in the classical approxim%fe:h; igmgrlgger equation for an arbitragput finite) num-

tion (the lower curves in Fig. 2 Calculations with|a\| As expect.ed in the classical limi<l (I=1ho, )

>1 show that for all types of scatterer the effective CIaSSica!/vhich correspom'js to low scatterer concentrations atﬁe’ solu-
mean free path, which characterizes the transmittance of ﬂheons of the classical and quantum scattering proiz)lems are
layer, can be much smaller than

The curves representing the dependence of the transmi‘?—Ssentlally the same. .
In our calculations we also observed a transition to an-

tgnce on the_ Iayer_ th|gkness for a f'X?d scatterer concentr%-ther limit, A>1>1/a, where the effective-potential ap-
tion are depicted in Fig. 3 for repulsivgurvesl), unlike T . : )
(curves?), and attractiveicurves3) centers. As the value of proximation is valid. Here the transport mode is determined

. ; : . by the sign ofa, which corresponds to a shift in the particle
the parametefa) | increases, the differences in the behavior o .
mobility edge by the value of the average scatterer potential
of the curvesl—-3 become more pronounced. A good expla-

nation for such behavior is provided by the effective—U=4Tm/a' For instance, for repulsive scatterers the trans-

potential approximatiof,which can be used in thie<n? mittance of the layer is of tunnel origin. When the scatterers

. . T are unlike, the behavior of the transmittance is close to that
<|a| range. According to this approximation, the effect of . . e .

; . in the classical diffusive-transport mode, and the character-
scatterers is equivalent to the presence of an average poten:

. B S . istic mean free path can be much smaller thafrinally, for
tial U=4mn/a (or, which is the same, to a shift of the mo- . . .
- - : attractive centers the transmittance decreases nonmonotoni-
bility edge inside the layer by). In this case the transport . . . . i
. . . cally with increasing thickness, with the positions of the lo-
mode is determined by the sign af . . . L .
: . cal maxima in transmittance coinciding with the resonant
For repulsive centers, ag\ and A/l increase and the

conditionk?<U holds, the tunneling mode sets in, with the thicknesses of a potential well of depth

transmittance of the layer exponentially decreasing as the In <ca|culat|ons in_the |nt§rmed|ate_ rangewfl_, 0.
layer thickness increasésurvesl in Fig. 3. <|a\|=1), where the effective-potential approximation

For unlike centers we havwd =0, and the mobility edge breaks down, we have V.e”f'ed thg validity of _the, loffe—
Regel hypothesis, according to which the particle’s mean

%ree path must remain on the order of the wavelength for
arbitrarily high scatterer concentrations.

Our calculations have demonstrated that for centers
whose absolute value of the scattering length is of order, or
larger than the particle wavelength, the loffe—Regel hypoth-
esis can be used for positive and negative scattering lengths.
much smaller than. . ) .

As the concentration of scatterefattractive, repulsive, or

For attractive centers, d&\| increases, the curves rep- = .= = . ; )
. . . unlike) increases, the transmittance of the layer indeed de-
resenting the dependence of transmittance on layer thickness

first acquire an inflection pOiI’(CUI’VES3 in Fig. 3), which is Creases to a certain constant value attained at scattering

followed by the formation of small local maxima whose lengths! <(0.15-0.2.

o . . However th ttering length r lat in
height increases withe\ |. The appearance of these maxima owever, as the scattering length decreases, a plateau

can also be interpreted by the effective-potential approximat-he transmittance is not observed. As the value of the param-

. : . : eter |a\| increases, the layer transmittance gradually ap-
tion. The attractive scatterers form a potential well with a . : ;
transmittance proaches the value described by the effective-potential ap-

proximation.
-1 This work was supported by the Russian Fund for Fun-
, damental ReseardiGrant No. 95-02-04704-A

diffusive and the transmittance of the layer (@pproxi-
mately inversely proportional to the layer thickne@irves
2 in Fig. 3). The effective mean free pathy, at which the
classical transmittance corresponds to cl2yés somewhat
smaller thanl corresponding to the cross secti®) and is

k k*z'nzkd 1
2k*_ﬂ SI(*)+

which reaches its maximum value at resonant layer thicks,. . o
nesses E-mail: schweig@site.itam.nsc.ru
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We discuss, in connection with the problem of the ground state in the Hubbard modeJ with

=, the normal(nonmagnetit N-state of a system over the entire range of electron
concentrationsi<1. It is found that in a one-particle approximation, e.g., in the generalized
Hartree—Fock approximation, the energyfn) of the N-state is lower than the energyy(n) of a
saturated ferromagnetic state for all valueshofJsing the random phase approximation we
calculate the dynamical magnetic susceptibility and show thaklitbete is stable for all values of

n. A formally exact representation is derived for the mass operator of the one-particle

electron Green'’s function, and its expression in the self-consistent Born approximation is obtained.
We discuss the first Born approximation and show that when correlations are taken into
account, the attenuation vanishes on the Fermi surface and the electron distribution fun€tion at
=0 acquires a Migdal discontinuity, whose magnitude depends. drhe energy of theN-

state in this approximation is still lower thas,(n) for n<1. We show that the spin correlation
functions are isotropic, which is a characteristic feature of the singlet states of the system.

We calculate the spin correlation function for the nearest neighbors in the zeroth approximation
as a function ofn. Finally, we conclude that the singlet state of the system in the
thermodynamic limit is the ground state. €998 American Institute of Physics.
[S1063-776(98)01712-0

1. INTRODUCTION. STATEMENT OF THE PROBLEM the topology of the latticéhe numbed of the lattice dimen-

) ) sions and the numbez of the nearest neighbgrand the
In this paper we discuss the problem of the ground statgoctron concentration(0<n<1).

and the ele_ctron d_istributior_1 function _in t_he_ H_ul_abard model Applying Fourier transformations to all the operators,

when the single-site repulsive potential is infinités= .

The system Hamiltonian 1 _

)(ko_:\/_N 2 elkfx(f)o"
f

Ha= 20 HA)XTOXPT =N 2 X7, (1)

) 1 , '

X7 (q)=—= > €9X77, )
specified on al-dimensional lattice withN sites with a co- IN T
ordination number and periodic boundary conditions, de-
scribesN, electrons that tunnel to the nearest vacant sites (
stands for the lattice sites) is the vector connecting the
nearest neighbor$(A) is the tunneling integral, and is the
chemical potential Since repulsion is assumed infinite, each .=, (@ — ) X§ Xio ()
site is either vacant or contains a single electron with spin 7
projectiona (pairs are forbidden This factis reflected in the  yhere w, represents the dimensionless dispersion law in the
use of Hubbard operators with well-known commutation re-nearest-neighbors approximation,
lations, which differ from those of fermionsee below.

where the vectork and g belong to the first Brillouin zone,
we find that the Hamiltonian becomes

At this point it is convenient to normalize the Hamil- 1 KA
tonian to the halfwidth of the “bare” electron barmt: WkT T EA: (Y S
h,=H./zt, t(A)/zt=—1/z. and u= \/zt is the dimensionless chemical potential.

The simplicity of the Hamiltonian(3) is an illusion,
In the thermodynamic limit l—o, Ng—o, N./N=n since the operatorX obey the following commutation rela-
=const), all the properties of our system depend solely otions and completeness condition:

1063-7761/98/87(12)/8/$15.00 1159 © 1998 American Institute of Physics
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Grol 7) = =1 0(D{({Xa(1), X[, (1)),  7=t—t', (8)

1 ) /
{Xko'xga’}: N zf el(k_p)f(aga/x?0+x?' 0)1
and its Fourier transform

N

X4 X774 XIT=1, 5)

. _ , , Xiol XE V=G E=fwde‘E’G : 9
Using the commutation relation®), we can write the {Xicol Xis))e=Cro () T ko(7) ©

equations of motion#=1) as follows: ) ) ) ) )
whereE is the spectral variable. It is convenient to write the

iXko=[Xko N 1= Xy + Riyrr  E0=w0— 1, (6)  Green’s function as follows:
1 o o Gko’(E): CO'FkO'(E)l (10)
R~ ; o X77(Q) Xk g 7= X77(A) Xk— g0,
1 -
Y (o X =1=n=Co, =g 2 (X{7).

= — 0.
We introduce the spectral intensity
The nonlinearity of Eq.(6) stems from the algebra of the

operatorsX or the presence of “kinematic” correlations be-
tween electrons with opposite projections of spin.

What is important in the problem of strong electron cor- ) ) ]
relations is the ground state of the system and the electroHSing this quantity and the spectral theorem, we can find the

IkU(E)=—%Im Fio(E+i0). (11)

distribution function. averageghere and in what follows we assunie=0):
The energy of the system depends on the system’s total 0
spin S. In the case of a saturated ferromagnetic st&8e ( (Xlaxk():nk(,:cgf l,(E) dE=c,f\, . 12

=Ng/2), the solution of the problem is exact and trivial for
any admissible number of electrons. In this case the syster,q spectral intensity obeys the sum rule
is an ideal Fermi gas of electrons with the projection of the
spins in one directiofthe state in thé-space is either vacant o
or occupied by a single electrbrAt T=0 the distribution fﬁxlkﬂ(E) dE=1. (13)
function is a Fermi step function.

An alternative of the ground state of the system is thelhe chemical potential can be found by solving the equation
singlet state $=0 for an even number of electrognsvhich 1 1 o
we also call a normalN) strongly correlated staighe num- n=— > N=v 2 Co’f l o (E) dE, (14)
bers of electrons with spin “up” and “down” are equal and N %z N %z —o
there is no long-range magnetic orfdefhe energy advan-
tage of theN-state is due to the possibility of double occu-
pancy of states in thespace K{,X{ 5 o) #0), which low-
ers the chemical potential in comparison with that for the 1 1 0
ferromagnetic state. Here, of course, pairs are forbidden in €= kE oMk =1y kE wkCUJ l-(E) dE. (19
the direct space and <N. 7 7 o

Correlations between electrons with opposite spin prosince all calculations are done in the thermodynamic limit,

jections are strongest in the-state. By “dispersing” the e can replace the sums by integrals:
electrons according to their momenta such correlations, on

the one hand, enhance the energy of the system and, on the 1 E ([t 1 _

other, may modify the Fermi step function®t0. Here it is N 4 Al = LlA("’)p(“’) do, fﬁlp(“’) do=1,

important to establish whether the Migdal discontintiiity

the distribution function is retained on the Fermi surface omwhere p(w) is the density of states corresponding to the

whether it disappears, as it does in a mardimalLuttingef  dispersion laww, (for alternant latticesp(w)=p(—w),

electron liquid. —1=sw,=<1). After the chemical potential has been found,
The goal of this work is to calculate the distribution we can use formul&l?) to find the one-particle distribution

function of electrons in a system in tiéstate aitT=0 by  function.

the method of two-time retarded Green’s functiéng con- A saturated ferromagnetic state in the Hubbard model

trast to the previous previous work of one of the authorscan be described exactly. At=0 the chemical potential and

(E.V.K),>" here we examine the approximation of the masghe system energy can be found by the formulas

operator corresponding to the self-consistent Born approxi-

. M n
mation. n=f_1p(w) do, EFM(H)ZJ_lwp(a))dw, (16

2. GREEN'S FUNCTIONS: GENERAL PROPERTIES

wheren is the given electron concentration. The system en-
ergy (per lattice sit¢ is

which makes it possible to determine the explicit dependence
We consider the two-time retarded anticommutatorof the energy of the ferromagnetic state on the electron con-
Green'’s function centrationn.
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3. THE MASS OPERATOR OF THE GREEN'S FUNCTION v 3 (ED)
AND ITS APPROXIMATION IN THE SELF-CONSISTENT ((Reo R V)= f k= dE (23)
BORN APPROXIMATION —= E—E'+i0

In the exact equatiofB) we can isolate the linear part, If we now employ the spectral theorem, we can express the
which corresponds to the generalized Hartree—Fock approx?‘pectral density of this function in terms of time averages:

mation. This is achieved by introducing the irreducible P

operatct-" o) | 5 €= (RO R (1) + (R (DRL(O))
'~F'2 -R <{Rko"xk4r}> ak(rx 1 (24)
ko™ Rke™ m ka_c_g ko s A7 with I'o(E)= 73, (E)/c, .

Using the definition(7) of the operatoRR,,, we calcu-
for which ({Ry, ,X}l,})=0. Actually this means that the pro- late the averages i24), writing them as a product of quasi-
cedure allows for all “internal” pairings, which lead to lin- Bose and quasi-Fermi averagés., carrying out “external”

earization. Equatioii6) takes the form couplings. Each of these averages can be found by the spec-
_ 5 tral theorem in terms of the corresponding commutator and
I Xko= &koXkoT Rio s (18 anticommutator Green'’s functions. As a result we obtain
where

Jio(E)=~ 2 w?_ qf do N(w)f(E— 0)(1+ePE)

KO'
c,+ C_U Wi— M,
(19

1
=&+ —{Reo X{ ) =A,+
gko’ gko— Co'<{ ko s ka'}> o X[S‘”’(q,w)cglk_q;(E—w)

+577(q,0)Chl kg, (E—w)], (25
A,=|ellc, ko= (X””ijjA%—vfgvHM) ande, is the en-

ergy (per lattice sitg of the subsystem of electrons with spin
projectionso, with v¢,=X{"—nj. ol 1 ol o

The Green’s functiorG,,(E) (or F\,(E)) satisfies the $77(g, @) = = —Im((X”7 (X7 (=)o (26)
Dyson equation. To set up the equation, we use the well-
known method of first differentiating the Green’s functions
with respect to the “first” timet and then with respect to the
“second” timet’. Using the equation of motion in the gen-
eralized Hartree—Fock approximation, we arfiVat

where

N 1 JE— N
$79(q, @)=~ —Im((X7(Q)[X77(=D))). (27)

and
F(E)=(e’F+1)"!, N(w)=(ef*—1)"1.

(200 A similar approximation was done by Plakida al® (see
also Ref. 9 for the t—J model. It corresponds to the self-
1 . consistent Born approximation.
Sko(E)= c_<<Rk"| Rl,,))(E"). In the N-state, all the main characteristics are indepen-
v dent of the spin projections c(=c=1-n/2, |,,(E)
The mass operatd,,,(E) (the self-energy part of the =I,(E), etc), and atT=0 we have an expression for the
Green’s functioh is the connectedindex (c)) part of the imaginary part of the mass operator:
higher-order Green'’s function, which is not cut along the line 1 w ~
of thg graophlcal represen'Eatlon of the zeroth-order Green'$\(E)== N > wi*qf, dw[S(g,w)+S(q,w)]
function F) (E)=(E— &) 1. Assuming q *

1

Pl B = B TS (B +10°

3o (E+10)=Mi(o(E) =T (E), (21) X[6(E)8(w)O(E~ )~ 6(~E)8(~ v)
we have X O(|E|— o) Nk—q(E— ), (28
with the obvious redefinitions foB(q,») (Eq. (26)) and
|k0_(E):_£|m Fyo(E) $(q,w) (Eq. (27)). Thus, the imaginary part of the mass
m operator in the self-consistent Born approximation is repre-
1 Iy (E) sented by a convolution of the spectral intensities of quasi-
—— g (22) Bose and quasi-Fermi excitations in the frequeneeand
T [E~ &~ Mo (E) 2+ T, (E) momentag. The real part of the mass operator is a Hilbert
with I',.(E)=0 (Ref. 5. Formally the representatid20) of transform of2.,(E), i.e.,
the mass operator is exact. However, to perform calculations, k(E ) dE’
we need the explicit form of the mass operator, which means  M«(E)= —f J’ E_E (29)

we must use an approximation scheme of some sort.
The spectral representation of the higher-order retarded If the functions(26) and (27), which describe the trans-
anticommutator Green'’s function is verse and longitudinal components of spin density fluctua-
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tions, have been calculatéat least approximatelythe mass (SIS (=D =S (@|ST(—a)))w
operator can be found self-consistently frg28) and (29),
the representation0) and (21), and the equation for the _ Do(q,w) —D(q, o) (343
chemical potential 1+P(q,w) Y
1 1 0
- T (9 1
n=§ 2 KX omg 3 [T e ae (S (@S (~D)),=5D(a,0), (34b
(30)
Note the difference between a true singlet state and gnd
normal (paramagneticstate. In addition tcfS‘lO) vanishing X7 )| X7 — = ((X77(q)|XT7(—
in the singlet state, this state has a nontrivial, isotropic spin (X @IXT (=)= (X" (@IX (=),
correlation function Do(q, ) _
=————=D(q,0), (39
(SESt1 ) = (SIS{4) =(SiS7+ ) =C(r), (3D 1-P?(q,0)
(S{Sr.,)=2C(r), where
which is independent of the direction of vectorlf there is 1 n,—ng.
no such correlation@(r)=0), we have an ordinary para- Do(g,w)= —Xg‘(q,w)z N E ﬁ
Pq

magnetic state. Equatior{81) are also true for the correla-
tion functions(S'(q) S (—q)) and the corresponding Green'’s

. 1 Np4qw —Nyw
functions. P(q, )= ~ 2 p+qwi+cl) :had: (36)
P pq

4. THE ZEROTH APPROXIMATION AND THE RANDOM ) ;
PHASE APPROXIMATION (XpaXpo) =(X,oXpe) =Np,  Wpq=@piq— wp.

Let us start with the zeroth approximation, i.e., the Equation(34b) points to Spin isotrop}(see Eq(3]_)),
N-state andl =0, where in describing the electron states wewhich is characteristic of a singlet state. In this state the
ignore the mass operator. In this case the spectral intensity igrrelator
a delta function and the distribution function, a Fermi step

function: (X77(@)X77(= )+ (X7 (@) X7 (1)
I0(E)=8(E—&p), np=cfo=co(—&p), =3(S(q)S(—a) +xp(q)p(—a)), 37
fp~A+cop—pu. (320 wherep(q) is the operator of electron number density fluc-

Herec=1-n/2, A=|e|/2c, eo(n) is the system energyper  tuations. In the random phase approximation we have
site), and we have used an approximate expression for the Dy(q, @)
one-particle spectrurtthe correlation functiork is dropped ((P(Q)|P(—Q)>>w=&5
from (19)). At this point it proves convenient to introduce the 1-P(q,w)
effective chemical potentiah=(u—A)/c. Thenm and the
system energy as functions of the electron concentration
are, respectively,

D(q,w), (39)

so that in the singlet state the sum of the spectral intensities
can be written as follows:

n _(m S(0,0) +5(0,0) = $S(0, ) + S0, @), (39
T p(w) dw=g(m), (333 -
-t whereS(q,w) is the imaginary part of the functio{88).
€o(N) If we use the Fermi step functiohgza(—gp)ze(m

m

> n :f_l wp(w) do=v(mM). (839  —w,) to calculate the transverse susceptibiligy (g, o)
=-D(q,w), of the Hubbard electrons in the static case

By excluding the upper limim we can obtain the explicit (w=0) for g—0 we obtairf

dependence of, on n. Analysis shows’ that in the zeroth

approximationey(n) < epy(n) for all concentrations, i.e., the lim " (q,0)= p(m)

singlet (nonmagnetit state is the energy-advantageous one. 40 X ' 1—g(m)+mp(m)

Moreover, Eq. (339 allows correctly for the excluded-

volume effect in the Hubbard model with=c: the Fermi  whereu(m) is the paramagnetic gain factor. Equati@t)

surface is inflated compared to the case of free electrons (has no pole singularity, which is an indication that the

—2g(m) for such electronsand occupies the entire Bril- N-state is stable against the development of ferromagnetism;

louin zone amn—1(m—1). this agrees with the results of Ref. 10.

The spectral densities of the quasi-Bose states in the Thus, the zeroth approximation and the random phase
mass operator can be found in the random phase approximapproximation are in full agreemefithe absence of ferro-
tion. In the N-state, the commutator Green’s functions of magnetism in the Hubbard model with=« in the thermo-
transverse and longitudinal spin fluctuations’are dynamic limip.

=u(m)p(m), (40
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5. APPROXIMATIONS USED IN CALCULATING THE MASS After this approximation, the imaginary part of the mass
OPERATOR AND THE DISTRIBUTION FUNCTION operator can be written as fO||OW§X(q,w)ESO(q,w) for
: ; - ; - 0=0):
Let us discuss the role of kinematic correlations in

N-state of the system. Such correlations are described by the
mass operato@k(E), and finding them self-consistently I'\(E)
k

constitutes an extremely difficult problem, whose solution
involves complicated numerical calculations. For this reason
we introduce a number of simplifying assumptions, which,

we believe, do not change the main conclusions and the es- F+_2A7T

E
> wﬁ_qfo do So(0,0) 1 o(E~w),

sence of the problem. K™ N
1. The denominators of the functioi¥(q, ), D(q,®), E>0,
and D(qg,») do not vanish, which is an indication that the =~ AT IE|

model does not contain well-defined collective excitations F[:T > wﬁ,q do Sy(q, w)lk—o( —|E[+ w),
(magnons or zero-point soundThis makes it possible to a 0

approximately replace the sum of spectral intensifiestead | E<O.
of using the random phase approximajidmy (46)
S(0, @) +3(q,0) = 2A%(q, ), (4D

which is equivalent to considering the susceptibility of inde-We See that the attenuatidh(E) vanishes a&—0. Note
pendent Hubbard electrons. In E@il), A is a correction that the Fermi level corresponds Eo=0, so that there is no
factor depending on the concentratiéor on the chemical atténuation on the Fermi surface proper.

potentia). With a distribution function of the general form 2. Instead of_dthe_ dyn?mic form ;actoASOIthw)
n,=cf,=cf(w;) we have r;Sr(]gjlw) we consider its value averaged over all the mo-

- ImDo(a,.0)=Sy(q,0)

c S(q,0) AE )=S(w,m) (47)
,W)— — ,W)=S(w,M),
5 2 HoplLfopeq)] ARCTE

X[8(w—Cwpg) = S(w+Cwpg)]
. - which is the number density of single-pair excitations with
=$"(0,0)—-S '(q,0). (42)  an energyw and a chemical potentiah. Using the Fermi
This function, known as the dynamic form factdris de-  Step function, introducing a new variab®@ = w/c, and em-
fined for both positive >0) and negative<0) frequen-  P10Ying EQs.(42) and (47), we get
cies, sincew,a>0 (obviously, S{(q, - w)=S§"(q,w)),
and describes incoherent single-pair electron excitations with
the spectrumupq within the first Brillouin zone. S(Q,m)=A(m)f
The correcting factoA can be found from the sum rule

m

p(X)p(x+Q)dx, 0=sO=2.
Q
(48)

1 1 n
N ; (SiS79=y % (XgTXTG= 5. (43)
We see thaB(Q,m)~A(m)p?(m) asQ—0. The shape of

the functionS(€),m) is depicted in Fig. 1 for an elliptical
density of electron stateg(x) = (2/7)y1—x2. Analysis of

(48) shows that the behavior and numerical values of
S(Q2,m) do not change significantly with other densities of
states for two- and three-dimensional alternant lattices.

The essence of the approximati@ty) is as follows. The
general expression®5) and (28) describe processes of the
following type: an electron with an “energyE and momen-

n 1 1 tum k passes to the stake— w, k—q, exciting in the process
§=ACJ do P(w)ﬁ(m—w)f do’ p(e')8(0’=m)  an electron—hole pair with momentum and energyw
-1 -1 . . . .
=wpq. When the approximatiof47) is used, we ignore the
=Acg(m)[1—g(m)]. detailed description of states in the momenta and specify the
Since c=1-n2=[1+g(m]* and n/2=g(m)[1 transition of the electron from the c.onstant-ene_rgy surtace
+g(m)] L, we have to the c_onstf'int-energy surfaée- ; SL_Jch transmo_ns take
place with different momentgq, which is reflected in(47).
A(m=[1—g(m)] L. (45 Since the description of states is done on a constant-energy

Using (41) and the spectral theorem, &t=0 we have

A
<sgs:q>=WC% fo(1=fpiq). (44)

If we take the Fermi step functiomgz 6(m—wp) as the
zeroth distribution function with the effective chemical po-
tentialmand replace summation by integration with the elec-
tron state density(w), we find
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FIG. 1. The density of single-pair excitations for different values of the FIG. 2. The real ((s,m)) and imaginary §(s,m)) parts of the mass op-

chemical potentiam(() is the excitation energyHere an elliptical density

of electron states is used.

surfaces, the dependence of the attenuation and the entir

mass operator on the quasimomentkns lost, i.e.,%(E)
—3(E)=M(E)—iT(E). Now, settingE at ce, we obtain

[(e)
e 1
wa dQ S(Q,m) < > wil(e—Q), £>0,
0 N “5
= o 1
2m| dQSQ.m) < X Wil (—|e[+Q), &<0,
0 N 5
(49)
and
M(g)=Re3(¢) ! ﬁfw I'E) de (50
=Re ~— —_—.
£ & p . S—E’

3. Let us study the first Born approximatigithe first
iteration step in the self-consistent solution

Io(e—Q)—=13(e—Q)=8(z—Q—(wp—m)).

The sum in(49) is

1 1
- 210/ _ 0~ (-
N%wp|p(s ) ZN%lp(s 0)

E fl dxp(x)d[e—Q+m—x]
-1

z
1
=Zp(e—Q+m),
z
where
1 1 1
E:NZ,) w|2)= f_ w?’p(w) dw (51

erator in the first Born approximation as functions of the spectral variable
atm=—0.4.

Me,m)=TM(s)
f2 e
7” JO dQ S(Q,m)p(s—Q+m),

O<es3—m,
=) 27 (el (52)

-~ dQ S(Q,m)p(—|e|+Q+m),
0

| —(3+m)<e<0,

with —1sm<1.
As usual, on the Fermi surfacge)—0 ase—0. Near
the Fermi surfaceg— 0, so thatt)—0) we have

S(Q,m)=A(m)p*(m)Q,

and

p(e—Q+m)~p(m),

n
y(e,m)~ ;A(m)p3(m)sz. (53

It should be recalled that in our calculations we deal with
dimensionless units; actually,Zlhas the dimensions of en-
ergy squared ang, of energy. The functional dependence of
(53) on ¢ agrees with Landau’s theory of a Fermi liqtfd
(indeed, if we putszsf—spz(pz—pé)/2m~vp(p—pp),
we find thatyo(p—pg)) and with the results of quasipar-
ticle lifetime calculations in the generalized random phase
approximation(see Ref. 11 The results of calculations of
v(e,m) and ofr(e,m), the real part of the mass operator
(the Hilbert transform ofy(e,m)), are depicted in Fig. 2.
Within these approximations, the spectral intensity can
be written as follows:

lo(e)=1(g,0p,m)
1 y(g,m)

B [e = (wp—m)=r(s,m)]*+y*(s,m)’ 59

It has been proved, both numerically and analytically, that
the spectral intensity obeys the sum rule

©

de l(g,0p,m)=1

is the average value of the square of the bare spectrum over

the entire Brillouin zone. In this case the attenuation is

for arbitrary w, andm. The distribution function
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FIG. 3. Typical shape of the distribution function in the Hubbard model n
with U= at T=0.
FIG. 5. The energies of the saturated ferromagnetic séaign), the nor-
mal state in the zeroth approximatian(n), and the normal state in the first
Born approximationg,(n).

ng=cf,=cf(wg,m), f(wk,m)=fo [(e,wy,m) de,
(55

has a discontinuity ab,=m (Fig. 3). Equation(30) for the
chemical potential with the distribution functidf5) reduces cA 1

to - _ — _
- oN 2 OM-wpg 2 Yiepblo=m). (59

n—2_ f_l p(w)f(w,m) do. (56 For the square and cubic lattices there is the well-known
symmetry effect of “splitting” of y,_,, i.e.,

From (56) we see that to a high degree of accuracy the cA n

chemical potential calculated in the first Born approximation =" (M- o - 0(wr—m

does not differ fromm. Figure 4 depicts the dependence of 12N E Lo )%l N ; dw=m)

the discontinuityZ(n) on the electron concentration The

CA 1
— 0 0
Crman 2 Yy 2 1 fhe)

energies of the saturated ferromagnetic statg(n), and of = C_A( fm p(w)o dw) ( flp(w/)w, dw’)
the N-state in the zeroth approximatiosg(n), and in the 21\ /)4 m
first Born approximatione,(n), are depicted in Fig. 5. We )
see that although the kinematic correlations of the electrons - E vi(m) (59
in the N-state raise the energy of the system in comparison to 21-g¥(m)’
the zeroth approximation, tHé-state is still the most advan- : ,
) Using (33), we finally get

tageous one energetically.

Let us discuss the spin structure of this state. Spin isot- 1 eg(n)
ropy, which is a characteristic feature of the singlet state ~C1=~ 81-n" (60)

(34b), is retained if we use the approximatiofil). The spin . . ]
correlation function for the nearest neighbds the first  !f: €.9., we take the “rectangular” density of statptw)

coordination sphejeis =1/2 we haveey(n)=—n(1—n)(1—n/2)"1, so that
1 1 n%(1—n)
- + g Cin)y=—g ———.
Ci=55 % ¥4(Sq S (57) (n=-g (122
In the approximatior{41) we have In the present model the correlations are due solely to elec-

trons hopping to neighboring vacant sites and, naturally,
Ci(n)—0 asn—1.
Z Thus, ourN-state is a singlet state with a nontrivial iso-

“’» tropic spin correlation function.
0.9}
- 6. CONCLUSION
0’8: Our analytical and numerical analysis of the Hubbard
07l model for the limit of infinite repulsion at a single sitéJ (
1 =) has shown that qualitatively the properties of the elec-
06 tron system are the same as those of a normal metal with
0 02 0.4 0.6 08 1.0 electron—electron coupling. What is important here is that

n the kinematic electron correlations do not disrupt the Fermi

FIG. 4. Dependence of the discontinuity on the Fermi surface on the eleosgrface_: b_Ut |_eave a_“Si_gna_ture” in _the form of a Migdal
tron concentratiom. discontinuity in the distribution function. Although this re-
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The electronic structure and ionization energy for the system B@R X 1 have been studied

as functions of the submonolayer coverage. It is found that there is an energy gap in the
surface states spectrum and that the Ba(®)2X 1 interface is semiconducting up to 1.5
monolayers of Ba. Two surface bands induced by Ba adsorption have been detected.

The evolution of the spectrum with increasing degree of Ba coverage points to the existence of
two nonequivalent “adsorption sites,” which differ in binding energy by 0.11eV. The
development of the Ba-induced bands is found to terminate at a coverage corresponding to the
minimum ionization energy and close to one monolayer. The adsorption bond is shown

to have a primarily covalent character. 98 American Institute of Physics.
[S1063-776(198)01812-5

1. INTRODUCTION A dimer-reconstructed 8i002X% 1 surface has two ac-
_ ) tive dangling bonds per dimer, and their concentration

A study of the structural and electronic properties of,— g 78x 10" cm 2 exceeds the concentration of dangling
adsorbed metal coatings on silicon surfaces is of applied asonds on a $111)7x 7 surface by more than a factor of
well as fundamental importance, thanks to the potential fofy 4 Therefore substantial differences may be expected in
the use of such systems in nanotechnological applications. Ifhe adsorption properties of these surfaces. At present, most
this regard, it is of especial interest to study at the atomiGnerimental and theoretical studies confirm the model of
level the interaction of the active dangling bonds of recon'asymmetric dimers for a reconstructed1802x 1 surface

struzted S'“C?]n surfaces with mgtal j\toins. ; h In this model atoms of neighboring atomic rows on an ideal
~mong phenomena on semiconauctor surtaces, the mo i(10001x1 surface form dimers during reconstruction,
studied have been changes in the spectrum of surface sta&

during adsorption, the correlation between the structural angfereby Iowermg the number of dangllr}g bonds by a fgctor
: : : two. Each dimer atom has one dangling bond. The dimers
electronic properties, and the nature of the adsorption boné).

Adsorption of metals can alter the electronic properties of th 20 formed are asymmetric and tilted, and in connection with

. . ? is there takes place a partial transfer of charge from the
surface, inducing the appearance of new surface states fgwer atom of ths dimer tpo the upper. Such a rglaxation is

metallic or semiconductor type. As a result, the nascent in- ied b hvbridizati fth ‘ bond q
terface either preserves the original conductivity type of thefccompanied by a renybridization of the surtace bonds and a

substrate or alters it. In this connection keen interest hagedistribution of surface charge. As a result, the electronic

arisen over the question of the relative importance of theotucture of a $1002x1 surface has a semiconducting
effect of the adsorbate and the substrate on the electronfharacter whereas in the case of symmetric dimers the active
structure of ultrathin interfaces. Thus, studies in recent yeardangling bond of each atom is partially filled with one elec-
have shown that adsorption of Cs onto a reconstructeHO”'4V‘gh'Ch shou!d lead to an glectromc structure of metallic
Si(111)7 X 7 surface leads to the formation of ultrathin inter- tyPe-—" An atomically clean §1002x 1 surface has three
faces for which the surface conductivity has a metallicSurface statesS,, S, andS;, situated respectively 0.8, 1.0,
charactet™3 A qualitatively different situation is observed and 3.5 eV below the Fermi levélr (Refs. 5 and § The

for the adsorption of Ba on the same surface. It has beefurface stateS; andS; are ascribed respectively to the dan-
found that an insignificant concentration of Ba adatoms, les8ling bond and the valence bond of the upper atom of the
than 0.2 monolayers, on a($11)7x 7 surface leads to the dimer. The nature of th&, state is still unclear.

destruction of the metallic conductivity of the substrate, and ~ The high reactivity and the behavior of the geometrical
the interface has a semiconducting charatfEnese studies and electronic structure have heightened interest in studies of
show that in the case of adsorption of metals on(@®)7  local interactions of the metal adatoms on &1802x 1

X 7 surface the dominant role in the process of formation ofsurface. For adsorption of alkali metals, the dimer surface
the electronic properties of the metal-semiconductor interstructure, as a rule, is preserved, and the adatoms can occupy
face belongs to the adsorbate. different sites on the surface, the so-called adsorption sites.

1063-7761/98/87(12)/5/$15.00 1167 © 1998 American Institute of Physics
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Despite the great variety of experimental studies on this sultechnique is given in Refs. 1, 10, and 11. The technique
ject, many questions touching on the number of adsorptiopossesses high optical resolutioAE~0.01e\} and sub-
sites, the type of conductivity of the nascent interface, valuestantially exceeds other photoemission techniques in sensi-
of the saturated coverage, and the nature of the adsorptidivity. Advantages of the technique include its fundamentally
bond for adsorption of alkali metals on a(B)02Xx1 sur- nondestructive character. Threshold photoemission spectros-
face remain open. Studies of the electronic structure of ultracopy allows one to obtain detailed information about the
thin Ba/S{1002X 1 interfaces are still lacking. Reference 7 structure of the surface bands near the Fermi level and the
investigated adsorption of Ba on a(B)0)2X 1 surface by maximum of the bulk valence band from the surface photo-
methods of electron loss spectroscopy and thermal desorgmission spectra,(hv)/1(hv). Simultaneously, we deter-
tion, and also measured the work function. mined the ionization energy, which is the photoemission
We have carried out the first studies ever of the electhreshold fors-polarized emissionHvs= ¢). In the case of
tronic structure of the Ba/§i002x 1 interface in the inter- p-polarized excitation the photoemission threshilg, cor-
esting energy region near the bulk valence band maximumesponds either to the position of the long-wavelength edge
and the Fermi level, together with a determination of theof the surface bandf it is located between the valence band
ionization energy for submonolayer coverages of 0.2—1.5naximum ancEg) or to the position oEg (if the band has a
monolayers. We used the technique of threshold photoemisnetallic character and intersects the Fermi lgvel
sion spectroscopy. Our results are adequately described by
the double-layer model, proposed for adsorption of alkali
metals on a $1002 X% 1 surface. We have compared Ba and
Cs adsorption on a Q002X 1 surface and have shown that Ba adsorption on a §i002Xx 1 surface sharply lowers
the substrate plays a decisive role in the formation of thesghe photoemission threshold. Figure 1a displays curves of the
interfaces. variation of the bulk photoemission threshdida,, i.e., the
ionization energy fvs= ¢), and the surface photoemission
thresholdhv, as functions of the barium sputtering time. We
found that over the entire investigated range of Ba coverages
We investigated a samplep{ype, 7.X2-cm) of a  the photoemission thresholds are differént,>hv,, which
Si(100 single crystal doped with KDB-7 boron and sub- proves the existence of surface states in the band gap. As the
jected it to etching in air using the standard technique beforeoverage is increased, a substantial increase in the difference
carrying out the measuremefité clean S{1002x 1 sur-  between the thresholds from0.02 to~0.1 eV is observed.
face was obtained after removing the thin oxide layer byit can be seen that the segment of abrupt decrease of the
annealing to 1230K in a high vacuum followed by the well- ionization energy, which is observed for sputtering times
known regime of stepped cooling. Atomically pure bariumt<200s, is followed by a segment of slow variation &f
was deposited onto the surface of the sample from a standavdth a weakly expressed minimug,,=2.15-0.01eV. To
source(a BaNi evaporator, Ref.)9The intensity of the Ba accurately determine the Ba sputtering time corresponding to
source was held constant during throughout the experimenth,,, we recorded the dependence of the photoemission cur-
All measurements were performed situ in a superhard rent I for s-polarized excitation by a cadmium laser
vacuum P<1x10 °Torr, which enabled us to eliminate (hr=2.81e\} on the Ba sputtering time. We took into ac-
the effect of residual oxygen as long as the duration of theount the fact that the maximum of the dependehge)
experiment did not exceed 1800 s. Under these vacuum comorresponds top,,, (Ref. 11). Figure 1b shows that the
ditions, experiments were carried out using the technique ofmaximum of |4 is reached at=800s (barium sputtering
threshold photoemission spectroscopy, based on seleetive time). The Ba coverage obtained for the given sputtering
or p-polarized excitation of bulk photoemission and photo-time corresponds to the so-called saturated coverage
emission from surface states, and also on the effect of thresisince by definitionds, is the coverage needed to achieve a
old amplification of photoemission from the surface bandminimum of the work function and of the ionization energy
during quasiresonant excitation. A detailed description of thef the system.

3. RESULTS AND DISCUSSION

2. SAMPLES AND EXPERIMENTAL TECHNIQUE
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FIG. 2. Surface photoemission spectigls for the system Ba/$1002
X1 for different degrees of submonolayer Ba cover@géhe degree of
coverage is indicated alongside the curves in units of monolpydeseA;
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FIG. 3. Schematic depiction of a dimer-reconstructed®)2x 1 surface
[large empty circles — upper layédimer atomy smaller empty circles —
second layer, small filled circles — third lajemd possible adsorption sites
(crosses a — top view b — side view.

Ba coverages. The spectra reflect the density of surface states
located below the valence band maximum. As the Ba cover-
age is increased, two surface banfig,andA,, are observed

andA,; are the surface bands induced by Ba adsorption; the arrows indicatgy form. The bandAl appears at low coverages=0.2

the position of the the valence band maximum.

monolayer. A maximum abhv=2.53 eV is already distinctly
visible for 6=0.3 in Fig. 2. With growth of the Ba coverage
the density of states in baki increases, with abrupt growth

To determine the Ba surface concentration for saturatebleing observed in the range of coverages from 0.3 to 0.5
coveragef,,we used the technique proposed in Ref. 11. Thenonolayer. The bané, with a maximum athv=2.38 eV,
calculation was based on the experimentally obtained relgpossessing a smaller binding energy tian is observed in
tion [see Fig. 1bof the Ba sputtering times required to reach the spectrum for coverages close to 0.4 monolayer. A similar
the photocurrent maxima for the investigated system Baincrease of the density of states in the band with growth of

Si(1002%x 1 (t=8009 and a reference system BafW10)

the Ba coverage is observed, and when a coverage of one

(t=3009. For the system Ba/\110 the adatom surface monolayer is reached, the baid is completely formed.
concentration corresponding to the photocurrent maximum i§he difference in binding energies for the two bands is

well known and is equal to 2510 atoms/cm ? (Ref. 9. It

0.1eV. Thus, Ba adsorption on a(B002x 1 surface leads

should also be pointed out that within the limits of oneto the appearance of two induced bands, whose maxima are
monolayer the Ba sticking coefficient is equal to unity for located below the maximum of the bulk valence band.
both surfaces. Consequently, the experimentally obtained During adsorption, adatoms can occupy different sites on

value of the Ba adatom surface concentration on tli&08)
2X1 substrate at saturation is equal #Q,~(6.8+0.1)

the surface known as adsorption sit€sy. 3). Calculations
reveal the existence of four possible adsorption sites on the

X 10 atoms/cmi. The concentration corresponds to oneSi(1002x 1 surface(Refs. 12 and 18 Two of them are
monolayer. Note that a coverage equal to one monolayer iwcated between rows of dimers and two above the rows of
identical for any reconstruction of the($00 surface and is dimers. Adsorption sité —a cave—is located between rows

defined as the density of silicon atoms on &180)1x1
surface, which is 6.7810'* atoms/cmd (Ref. 4. Thus, on

of dimers above a silicon atom of the third layer, stte—a
valley—is located between rows of dimers above a silicon

the basis of the above experimental data we can estimate tlatom of the second layer, siB=—a pedestal—is located be-
saturated Ba coverage on a(X02x1 surface as one tween dimer atoms, and site—a bridge— is located above

monolayer.

the dimer atoms. At present, the experimental and theoretical

The difference between thresholds for achieving mono+esults on adsorption of alkali metals is treated from the
layer coverage is 0.11 eV and does not vary further, whictpoint of view of two alternative models. The model of one-
indicates that the edge of the surface band remains fixedimensional metallic chains was proposed in Ref. 14 for the
relative to the maximum of the bulk valence band. Analysiscase of adsorption of Cs on($002x 1. According to this
of the surface photoemissidnv, near the threshold shows model, the Cs atoms occupy one adsorption 3itea pedes-

that the density of surface states at the Fermi ldyelis

tal. The interface has a metallic character, and saturated cov-

equal to zero over the entire investigated range of coveragesrage is 0.5 monolayer, i.e., it is reached when the adatoms
i.e., the edge of the surface band lies between the maximutinteract with only half of the active dangling bonds of the
of the bulk valence band aril . Thus, we have established substrate. Below we will extend this model to adsorption of
the presence of band gap in the spectrum of surface states fand Na on a SL002X 1 surface; however, it is assumed
the system Ba/$100)2X 1 and the absence of metallization that the most probable adsorption site for the adatoms is site

of the interface up to Ba coveragés=1.5 monolayer.

Figure 2 displays surface photoemission spectra

I,(hv)/l1s(hv) of the system Ba/§1002Xx1 for different

1—a cavet>!®
On the other hand, for Cs and K adsorption ofiL80)
2% 1, the model of a double layer has been proposed on the
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basis of various experimental dafaln this model, adsorp- S,
tion takes place on two nonequivalent sites: a ped€8al I 11
and a valley(2); see Fig. 3. In this case, saturated coverage is 1&
one monolayer and corresponds to filling of all active dan-
gling bonds of the substrate. This model was later extended
to adsorption of other alkali metals and is supported by a A
large quantity of experimentdr?° and also theoretical 4&
studies?>?? These studies show that the alkali metgl18D)
2% 1 interface has a semiconducting character for saturated \
coverage. The difference in the adsorption processes and in A
the properties of the local interactions posited in the models A s,
prove to be fundamental for the formation of a metallic or
semiconducting type of electronic structure of the interface. ‘&

The experimental data we have obtained for the Ba/ \\
Si(1002x 1 interface are adequately described in terms of
the dOUble'Iayer model. The existence of two induced bandﬁIG. 4. Schematic diagram of the electronic structure of the surface bands
indicates that Ba adsorption takes place on two nonequivdor a clean Si1002x 1 (a) surface and for the system BafB0)2x 1 for
lent adsorption sites. In the initial stage of formation of thedifferent degrees of submonolayer Ba coverage: 0.3 monokiyeand 1
interface, the local interaction of Ba adatoms with the active"o"0layer(©). S, — natural surface state of the(8002x 1 surface; | —

. . . conduction band minimum; Il — valence band maximum.

dangling bonds of the surface takes place primarily on one
adsorption site and possesses a larger binding energy. When
a coverage=0.4 monolayer Is regcheq, the_ Ba adatoms _be’tion sites for the S1L002X 1 surface. All of the results of
gin to occupy a second adsorption site with lower binding

. . the present study are in good agreement with the double-
energy. As theoretical studies have shdwft one of these layer model, which we proposed previously for the system

adsprption site; shohuld be in one row V\?th. dimm3 or Cs/Si{1002% 1 (Ref. 23. The observed effects are evidence
é’. F'%‘ 3)|’ ar;]dt € gt Ier]: between rpwg_o dlmﬁssel or2, b of the dominant influence of the properties of thé18D?2
ig. 3). In the model of asymmetric dimers the most pro "X 1 substrate on interface formation. Thus it can be asserted

lable evelr;tuballlity is dadsorption e;tns@(ba_dpedestgl and thg that the nature of the local interactions for two such different
east probable is adsorption at s#da bridge, whereas ad- adsorbates as Cs and Ba is dictated by thi&08)2x 1 sur-

sorpt_lon sitesl and 2 are equal_ly likely. Therefore, In the face, in contrast to the @i11)7 X 7 surface, where the influ-
B_a/S(100)2><1 syste_m adsorption can take place either alyce of the adsorbates prevails.
sites1 and 3 or at sites2 and 3. For saturated coverage, i i ]
which is defined as a monolayer, both adsorption sites are 1his work was carried out with the support of Grant
occupied, as is confirmed by the complete development oNO- 96-2-28 of the “Atomic Surface Structures” program of
the spectrum of induced surface bands. Ba adsorption leadd® Russian Ministry of Science and Grant No. 98-02-18265
to an insignificant increase in the density of surface states iff the Russian Fund for Fundamental Research.
the band gap, and the interface has a semiconducting char-
acter up to 1.5 monolayers. The adsorption bond has a prisg_ i benem@optun.ioffe.rssi.ru
marily covalent character with partial charge transfer to the
dangling bonds of the substrate.
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The question of the residual resistivity of chemically pure metals which are mixtures of atoms of
different isotopes is discussed. The question of the static displacements appearing near
isotopic impurities due to differences in the zero-point vibrations is analyzed in a microscopic
approach. It is shown that such static displacements have a significant influence on the

residual resistivityp, . Their contribution top, is far greater than the contribution due to
differences in the dynamic elastic electron scattering amplitudes19@8 American Institute of
Physics[S1063-776098)01912-X

1. INTRODUCTION atoms make a definite contribution to the binding energy and
consequently influence the static configuration of the lattice
Most crystals are mixtures of atoms of isotopes withions, leading to displacements of the atoms from the equilib-
different atomic weights. However, the synthesis of chemi+ium positions(which are characteristic of the ideal crystal
cally pure and highly isotopically enriched crystals is pos-near an impurity. In addition, the scattering of electrons by
sible. In such a case the parameters of the natural and highftatic near-impurity displacements also makes a definite con-
enriched compounds can be compared, and the contributianibution to the resistivity.
associated with the isotopic impurities can be isolated. We We note that in the case of classical statistics the value
note that investigations of the thermal conductivity of ger-of the mean square of the dynamic atomic displacements
manium were recently performed with the use of samples ofu?) does not depend on the isotopic composition. The varia-
highly enriched’°Ge! In this context, the problem of the tion of (u?) and, therefore, of the resistiviy, upon varia-
residual resistivity of metals, which has been investigatedion of the content of isotopes of different kinds in a crystal
experimentally to an inadequate extent, would be of definités a quantum effect.In the temperature range where classi-
interest in our opinion. cal statistics hold, the factdu?) ceases to depend on mass.
Back in his time, Pomeranchfipointed out that chemi- As a result, the differences between the scattering amplitudes
cally pure metals, whose crystal-lattice sites are occupied bg, are erased, and the field of specific static displacements
isotopes of different kinds, exhibit a finite residual resistivity {,} vanishes.
p, at zero temperature due to persistent dynamic disorder Equations for the static displacements in the general case
(which is caused by fluctuations of the atomic mass from sitéire obtained in a microscopic approach in Sec. 2. Some es-
to site). According to Ref. 2, this resistivity exists becausetimates are made in a simple lattice model. The residual re-
the phonons appearing in virtual states upon electron scattesistivity p, is discussed in Sec. 3. The contributions associ-
ing experience the influence of the isotopic disorder. Theated with differences in the dynamic electron-ion interaction
corresponding resistivity is proportional to the electron-ionamplitudes and with fields of near-impurity static displace-
interaction parameter raised to the fourth power. In othements are analyzed simultaneously. For simplicity, we ne-
words, p, appears in a higher order with respect to theglect the mutual influence of isotopic impurities and confine
electron-ion interaction than in the case of the Born approxiourselves to the one-impurity approximation.
mation.
It was subsequently shownthat the finite resistivityp,
exists i.n an isotopically disordered Iatt.ice even in the B(_)rnz_ DYNAMIC DISORDER AND STATIC NEAR-IMPURITY
approximation. Actually, the true elastic electron scatteringyspi ACEMENTS
amplitude on iom (a,,) is the product of the static amplitude
ay (which does not vary from site to sjtand the dynamic Let us consider a crystal lattice with an isotopic impu-
Debye—Waller factoW,, whose value exhibits a depen- rity. The total energyE depends on the coordinates of the
dence on the mass of the vibrating atom, as a result of whictons R, . In a crystal with impurities the atoms are displaced
the differencea,—a,  is nonzero, and a residual resistivity from their original positions, so that
appears in the standard approximation. R.=RO 4 ¢ +u
In this paper we focus our attention on the fact that a noomn ne o
field of static displacements,,} should exist around isotopic whereRﬁO) is the equilibrium position of the respective ion in
impurities. It is interesting that, generally speaking, the in-the ideal lattice, is the static displacement vector, angl
teratomic force parameters do not vary in the vicinity of andenotes the dynamic displacement vector. Taking into ac-
isotopic impurity. However, the zero-point vibrations of the count that the displacements are small in comparison to the

1063-7761/98/87(12)/7/$15.00 1172 © 1998 American Institute of Physics
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interatomic distances, we expand the structure-dependefin the basis 0f6), in the coordinate representation we find
part of the energy into a series i and¢, relative toR(”).  that
The Hamiltonian of a harmonic crystal has the form

{y~—DphFh, D=(®y) L (7)
H= 2 (pn 2 q)2nln2 nl n2 (1)
" 2 rin In this case the relaxation energy equjs=F¢/2.
The foIIowing notation has been adopted (h): p, is the Let us obtain an explicit expression for the correldfor
momentum of the atom of mag4,, in siten, and<I>2n .n, 18 which determines the effective foréein the problem under
the second-order force parameter It is assumed that consideration. For this purpose we introduce the Green’s
function constructed from dynamic atomic displacement op-
Mp=Mo+AM&S,o5, AM=M;—Mj. erators

Here M is the mass of an atom of the regular matrix, and

M, is the mass of the isotope. The origin of coordinates nn,(t)——l&(t)([u (1), u A(0)]). 8
coincides with the equilibrium position of the impurity atom.

In addition, here and in the following the doubly repeatedAs is generally known, the correlaté of interest to us can

Cartesian indicesr and 8 imply summation. be expressed in terms of the Green’s functrusing the
We next define the relaxation enerBy associated with  equality

the near-impurity static displacements of the atoms. We

note that in the expression f&, we have retained not only 2Im Daﬁn (0—i8)

the standard terms that are first- and second-ordéy, jrbut fw dt exp(—mt)K“ﬁ (t)= 9
also terms of the form o M2 1-exp(—/T)
}q)a/sy a BN sy In a situation where there are isolated isotopic impurities
3,nn1n2<un1 >§n3 .

at the sites of an harmonic lattice, the Green’s functi@n

Here @gﬁglnz is the third-order force parameter, afd. .) satisfies the equatiofsee, for example, Ref)3

denotes averaging over the equilibrium thermodynamic dis- >
tI’IbUtIOI’] nn/(w) Donn/(w)+w
We note that the existence of the nonzero correlator

Knh, = (un ut), 2)

which is associated with the zero-point vibrations, is a chary, ihis case the “zeroth” Green’s functioB, of the ideal
acteristic feature of the quantum motion. It reflects the faci tiice can be represented as
that the concept of the complete rest of a particle is mean-
ingless in quantum theory. 1
The energyE, can be represented symbolically in the Onn,(w) MoN N 4 e*(a,j)ef(a,j)
usual form as

xE D§n, (@) (Mo—M)D}Y (). (10)

1 R(O) R(O)
E,=F{+ 0,02 3 xexp["“ i (11)
2 w?—0%(q,])

In this expression the effective foréewhich is exerted by . _
an isotopic impurity on matrix atoms and leads to displacedn (11) «(q,j) ande®(q,j) denote the frequency and polar-

ments can be represented in the following form: ization vector of a phonon mode with the quasimomenU,Jm
and the polarizatior.
Fo— 1 2 HaBY By (4) Using an iteration method, we can write an approximate
N2 g, 3T N solution of Eq.(10) in the form
Here the quantityAK is defined as the difference between )
the correlatorK for the lattice with an isotopic impurity and nn’(w) I30 nn’(w) To
the regular lattice. More specifically,
@ a @ X2, D§Y (0)(Mg—M, )D w)+ o?
AKA =Kph (AM#0)—Kih (AM=0). (5 E 0n,(©)(Mo=Mp) Onn( )
In (4) and (5) the force paramete s, as well as the cor- -
relator K, are assigned relative to the equilibrium positions X Z Don 1Nz (@)(Mo—M )DOH N, (@)
of the ions in the ideal lattice.
Using (3), from the condition of equality of the effective X (Mg— an)Dgiﬁn,( )+ (12

force acting on an atom, i.eiE, /3¢, , to zero we obtain the

following system of equations faf: As a result, in the single-impurity case of interest to us, we

F+®,/=0. (6) can use(12) and(9) to obtain
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, ? displacements on the basis of the relatigAsand (4). We
AKq(t= 0)~— — J doT————= obtain
2 1-exp(—wl/T) 1AM o e%(a,j)ef(q.j)

D=="5 V-2 NVaZa
XIM[DEZ, o) DY ()] (13 C@="2 My ¢ Mowa,))
S S
X > cpggqlqzzglqz. (14)
q1.92.J1.J2

Knowledge ofAK, which directly characterizes the dy-
namic disorder, enables us to determine the field of static In order to simplify the form of the expressions, we set

. . . - 0(01,j)[2n(w(dy,j1) T 1] - 0(02,j2)[2n(w(dz,j2)) + 1)]
275 = ‘y 1 y H y 1 5 1 w 1
040, J%z €(01,J1)€(01,]1)€2(02,]2)€e°(dz,]2) Mol 0?(0e.])— @(tia)]

(15)
|
wheren(w)=[exp@/T)—1] "~ AM (u2>
It follows directly from (15), first, that at absolute zero €=M |2 .
temperature 0
787 (T=0)= > H.ere<u2) denotes the mean square of the dynamic atomic
9192 i, displacements.
5 -, . N . It follows from Eq.(20) that as a result of the differences
e”(di,j1)e (Q1vJ.1)e (Q2’J?)e (qulz). in the zero-point vibrations the lattice undergoes “compres-
Mol @(d1,j) + @(dz,j2)] sion” near a heavy isotope and expansion near a light iso-
(16) tope.

_ . _ In standard systerr(312>/lz~10* and|AM|/My=<0.1.
Second, in the high-temperature lindit=0, and, therefore, |n this case it turns out that|<10~*. Thus, the static near-

the specific field of static displacements vanishes. impurity displacements are very small compared with the
Let us obtain some estimates in the model of a lineajnteratomic distances.

chain with interactions between nearest neighbors. In such a |t would be interesting to perform estimates for quantum
case the spatial Fourier components for the secofid-and  crystals, such as in the case of a mixturéigé and®He. We
third-order @) force parameters, i.eR,q and®34q 4, @€ can utilize the data for the Debye temperat@re 26 K and

represented aee, for example, Refs. 4 and 5 the lattice constant=3.57 A in Ref. 6. We then have
5 5 , (u?)/1?2~3x 102, Since |AM|/M=0.25 these displace-
D2q=Mowg, Mowq=4f23|n2(qll2), (17) ments are appreciable. In the first coordination sphere
ig {=0.025. These displacements are of the same scale as in
3 P the case of systems with standdrmnisotopi¢ impurities.

@3, — g WqWq, g A(G+ ;)
a0z~ (f2/My) 4797 % Let us turn our attention to the fact that distortion of a

: | lattice around light isotopes with resultant renormalization of
=2 —2> sinq— (18) the force parameters was postulated in Ref. 7 in connection
q M 2" i e
0 with the problem of the thermal conductivity of solftHe
with 3He impurities. It was found that the displacements of
the atoms in the first coordination sphere are described by a
formula of the type

Herel is the lattice constant. The relation betwedgrandgs
for an integral Gruoeisen factoryg~2 in the central-force

model is
—gsl/f,~10. (19 ~ 1AM[  3E,
Based on(14)—(16) with consideration of17) and(18), =73 Mo | 3Eo+8mur®

we can show that the displacements of atoms located in the
first coordination sphere relative to an isotopic impurity arewhere E,=(8Mr) ! is the energy of the zero-point vibra-

given by the relation tions in a spherical potential well of radius The factor
gsl? 8mur? is related to the relaxation energy due to inclusion of
[=-0. 3ef3—~—el (200 the radiusr. More specifically,E, =8mur?Z?, where u is
2

the compression modulus. According to RefZ%0.02. To
wheree is a characteristic parameter of the theory and in thea certain degree it is possible that the disparity with the es-
present case timate based on Ed20) is due to the use of values of the
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parameters corresponding to a density of 0.208 gfcmthe

estimates in Ref. 7. In Ref. 6 the density was equal to

0.18 g/cni.

An explicit expression fof, is derived in Appendix A in
the asymptotic limit wherdR(”)| is much greater than the
interatomic distancé.

3. INFLUENCE OF DYNAMIC LATTICE DISORDER
ON THE RESIDUAL RESISTIVITY

Let us consider nontransition metals. Bearing in min

the qualitative aspect of the phenomenon, we assume that tfg
electron Fermi surface is nearly spherical. We write the non

equilibrium electron distribution functiop (k) in the form
e.(K)xvy, wherevy is the electron group velocity. Then,
the residual resistivity can be described by an expression
the form(see, for example, Refs. 8 and 3

L.

_ @n®
P 3mZ 02

dO’k dO’k/

(Vk— Vi) 2ad(a)S(a),
(21)

Uk Uy

where

ek, = fd s
g=Kr=Kg, =43 o oy V™ 1273

ar

Here we have adopted the following notatiag:is the value
of the static electron-ion scattering amplitugeandm,, are
the electron charge and effective mass; &glis the equi-
librium unit-cell volume of the lattice. The integration is car-
ried out over the Fermi surfacerf), an element of which is
denoted bydo . In addition,q is the scattering vector, and

ke is the value of the electron momentum on the Fermi sur-

face.

The factor characterizing scattering in a lattice with dy-

namic and static disorde3(q) is defined as

1
()= 2 expia(Ry— Ry}

nn’

p( Wh(q)+ W, (q)
X ex _f’

whereR,=R(+ ¢, and the Debye—Waller factor

Wn(q):<(q Un(O))2>.
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1 B0 p(0)
S(a)~ 5 2 exeia(Ry—R)}
1
X EWn(Q)Wn’(Q)—"(qgn)(qgn’)
+ 21006 War (@)~ (A Wo(@]H . (22)

We note that, by definitionV,, and¢, are, respectively, even
and odd functions ORSIO), and the value of5(q) is conse-

dquently real. The first term i(22) describes scattering due to

the differences between the dynamic amplitudes for elastic
%attering by a matrix atom and an isotopic impufgge the
details in Ref. 3, the second term describes scattering by
near-impurity static displacements, and the third term de-
%cribes interference scattering.
%" The contribution to the resistivity due to the scattering
mechanism proposed in Ref. 2 is not taken into account. The
corresponding expression contains an additional small pa-
rameter (o(2kg)/ )2, which does not appear i22). Here
vo(2kg) is the Fourier component of the atomic pseudopo-
tential in the region of large momentum transfess,is the
Fermi energy, anlig is the Fermi momentum. In the case of
standard metals vp(2ke)/eg)?<1 (see, for example,
Ref. 9.

In an ideal lattice the Debye—Waller factor does not de-
pend on the site index. Therefore, the quantity

AW, =W, (AM #0) —Wy(AM =0)

actually appears if22). Its spatial fourier component has the
following form (see Ref. R

> expligR(”)AW,

n

1
AW(CI)ZN

1 .
N Enl exp(iqR(Y)q*qPAK .

af
5 qujlvq+qliz :

(23)
Therefore, we can ultimately represes{iy) in the form

11
S(Q)~ 17| 3 AW(@)AW(Q) +(q¢(a))(ag(@))

+[(ad(@)AW(g) —(qZ* () AW(Q)][. (24
We recall thatZ(q) is defined by(14)—(16).

If impurities are regarded as isolated atoms, the quantity
1/N can be replaced if24) by the defect concentration
when the resistivity is determined. In the case of isotopes,

The dynamic and static displacements are small comparggstead ofc we use the factor
with the interatomic distances. Therefore, we expand the ex-

ponential function in a series, retaining the first three terms , (M%) —(M)? 3 Sen(S
in W, and the two terms irf,,. The terms containing the = (M—)2 , <M>—§S: ; cy' My, (29

delta function in the momentum do not lead to resistivity.
Thus, the elastic scattering of the conduction electrons isvherecff) is the probability of finding an isotope of tyeaat
described by the expression lattice pointn.
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Then, using(23) we can show that in the model of a weak solutions, in whiclp, can vary by several tens of per-

linear chain cent when the lattice distortion is taken into account, are
1 exceptiongsee, for example, Ref. 12As was shown above,
AW(q)~ — = eq?2. (26)  the scattering mechanism associated with static displace-
2 ments is dominant only in the case of metals with isotopic
Simultaneously, according @0), we have impurities.
Let us consider the question of the mean free paths. As
1 Vfa/Mg gl we know, the mean free path of conduction electrons in non-
ad(a)~- E}\E wq al, A= 2_1‘2> L @7 transition metals at room temperature is determined by the

scattering of electrons by phonons. In this césee, for ex-

We plug (26) and (27) into (24). We plug the resultant ample, Ref. 12

expression, in turn, into the expressi@®i) for p,. Let us
compare the values of the standard and nonstandard residual m
resistivities. For this purpose we consider the factor Apn~50=1,

f q3a0(q YNS(q) whereT,, is the melting point. The corresponding value of
A is of the order of several hundred angstroms. Taking into
) account the foregoing, we can show within the model used in

€ JO dq q3ao(q Refs. 8 and 13which permits allowance for umklapp pro-

cesses on a qualitative leyéhat the effective mean free path
For the sake of fixing ideas and simplicity, for the amplitudesAiS associated with scattering due to differences in the dy-
we assume that namic amplitudes and static displacements in a metal with
ag(q/2ke) 0.2 different isotopes at absolute zero temperature is equal in

= . order of magnitude to
ao(0) (q/2kg)?+0.2

1 12 1] vo(2kg) |2

Then, with consideration of the relatioi86) and (27) and il
Y|vo(q=0)

. . Ais~ 2 /,.2
under the assumption that the Debye wave vector is close to oM< (u®)
2kg, we obtain

(29

Here(u?)/12~10"3. In the case of natural isotopic mix-
Y =017z 7%+ 2.6&2\ 7+ 2.15%},  (28)  tures of such metals as Li, Zn, and Sn, the parameter defined
by formula (25) M?=10"*. For molybdenuméM?~6

X104, Consequently, for such metals<1 mm, while
Wlth neglect of the lattice distortiolh ;=1 cm. If samples
contalnlng for example, isotopes of two kinds in equal per-
centages are synthesized, the mean free path$29) can
'decrease by more than an order of magnitude due to the
fhcrease in the isotopic disorder factéM?. Nevertheless,

e dimensions of the samples used in the experiment can be
standard even for natural compositions.

We useA;, to denote the mean free path due to the
elastic scattering of electrons by nonisotopic impurities with
a concentratiort;,,. Observation of effects caused by isoto-
pic disorder is possible, if;,=A;s. In this case the follow-
ing condition for the concentration of point defects must be
satisfied:

whereZ, is the number of valence electrons per atom.

It follows from the results of the numerical calculations,
i.e., from(28), that in the model adopted the disorder due to
the static displacements i24) influences the magnitude of
the residual resistivity to a greater degree than do the differ
ences in the amplitudes due to the Debye—Waller factors
alone. Consideration of the scattering by static displacemen
can alter the value of by several fold wherizy=3 and by
an order of magnitude wheny,=1.

Calculations were also performed for metallic lithium, in
which there are two isotopeSti and ’Li. In this case our
treatment was based on the results of the Brovman—Kagan
microscopic theory of nontransition metétee the review in
Ref. 10. The kinetic coefficients of regular metals were pre-
viously analyzed within this theory in Ref. 11. The corre-
sponding formulas needed to determine the quantities ap-
pearing in the theory of the residual resistivity developed c,,<476M?Y
here are presented in Appendix B. We note that the two-
wave approximation for the electronic wave function was
used in the calculations of the residual resistivity. It was
found with neglect of the lattice distortion th¥t=21. When do do
the static displacements are taken into accodfwy 123. ((a?))= f f —X k ga?(q).

Thus, the estimates &f obtained above are confirmed.

We note that the dominant contribution to the residuaIF ixed-val . <1 If th dition (19
resistivity in weak metal solutions with standard substitu- or mixed-valence mixtures; the condition (19)
tional impurities is made by the scattering of electrons by}ﬂ' olds, then, according t80), we have
defects due to the differences in the static amplitudes. The . __10-35Mm2
contribution top, caused by scattering on matrix atoms dis- Cim ’
placed near a defect is comparatively small. Isoelectronic.e., the samples must be very perfect.

(30

<u2>) _ {((a/2ke)%a3))
2] T (@n—a0)?)

wherea,, is the scattering amplitude on impurities and
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4. CONCLUSION and defining the partial Gneisen factor in the form

Chemically pure metals whose lattice sites are occupied . Qo .
by different isotopes have been considered. Equations de- Ye()) =~ w(a,]) a_QO“’(q’J)’
scribing the fields of static displacements appearing near iso- .
topes due to dynamic disorder have been obtained in a m|pstead of(A2) we obtain
croscopic approach in the first stage. The question of the CAM — . q“
residual resistivity has been analyzed within the Born ap- fa(qﬁo)m_'M_OVGEvibz. DgfﬁM—O' (A3)
proximation. The contributions associated with differences in :
the dynamic elastic electron-ion interaction amplitudes andiere
yvith fields of _near-impurity static displacements are takgr_w Sgvai)e(a.) 1 .
into account simultaneously. It has been shown that specific YG_T(qj)' Evib—§ E w(q,]),
static displacements have a significant influence on the re- al ' @
sidual resistivity p, . This contribution top, can be far where yg is the integral Groeisen factor and,;, is the
greater than the contribution due to differences in the dyenergy of the zero-point vibrations.
namic electron scattering amplitudes. The factor

As far as we know, the question of the residual resistiv-
ity of metals containing different isotopes was investigated 2 exp(iq- Rﬁ?))ﬁq

experimentally by Sharvin in the case of natural*fifror a m
concrete theoretical treatment it would be desirable to havgas determined in the asymptotic limit for cubic crystals
data for samples with different isotopic compositions. with bee and fee lattices in the general case in Ref. 16. Let us

We are indebted to S. M. Stishov for a valuable com-consider here the case of an isotopic elastic continuum. Then
ment and A. V. Inyushkin for a useful communication. We

thank D. A. Zhernov for his assistance. w(q)= /"’L"’“ e%(q)= av . (Ad)
This work was performed with financial support from q p 9 q q? a

N. A. Chernoplekov. where\ andu are the Lameonstants and is a unit vector.
In addition,

APPENDIX A: Mo(N+2u) p=0Q,Cyy,

Let us consider the question of the asymptotic represenherep is the density an€y, is the elastic modulus.
tation of the field of static displacemer{i&,!. First, we must Substituting(A4) into (A3), after some simple transfor-
determine the value ofZ(q—0) under the condition Mations, in the asymptotic limit we have
|Rn|>|- ) b RO
We take into account the recurrence relation for force ¢ =0 |4 expliq- RO ¢(q)~ — n
parameters of different orders: 77 7 Ry

o M whereb is the magnitude of the defect:
an .. .ap

_ S s

Qg = P2 Npyg ¥ 5 AM vygEip
(Al) B Iv'O QOCll.

wherep=2,3. This relation was derived in Ref. 15 for non-

transition metals on the basis of the microscopic theory in

Ret. 10. _ _ APPENDIX B:
On the basis 0f14) and(Al) it can be shown that

ng - p+1lng...npyq

E R”‘lq)al"'aerl :Qo
n

AMo—. As has been noted, the calculations for lithium were per-
g“(qﬁo)m_iM_z ngﬁqﬂ formed within the quyman—Kagan microscopic many-
0] electron theory. In addition, the local pseudopotential of a

“naked” ion was chosen in the form

J
X X E(Qoa_ﬂoq)z,om

et 4
dujaflz UO(Q):_? Zqe? cogqro) + vl o
X explitRm) 25 q,1,A (01 F G2), (A2)
sin(qro) )
where to simplify the form of the expressions we set X qr —cogqro) | |exp(—xq°),
0

o . ﬁ .

Ba,ﬁzw_ wherey =0.03(g) ~2. The effective interelectronic interac-
9 Mow“(q,]) tion was considered in the Geldart—Taylor approximation.
Using the standard relation The parametersy(q) for Li were previously foundwv,=
—0.262 andr,=0.825 A8

E ea(q,j)q)ghﬁeﬁ(q,j):MOwZ(q,j) The frequencies and polarization vectors of the phonon

a.p ’ modes of the harmonic lithium lattice were determined using
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a dynamic matrix in the standard forfsee, for example, To simplify the form of the expression, here we set
Ref. 9:
2.2 W348,(0)=0a059,¥(q),
D AmZge > v B)— > W, B
= — + —
e)) MoQy <% 250+ B) & 2,8(B)

_ 1 d\n_
F”(R):(ﬁd_R) F(R),

+25e* 2 [exp(aRy) 1] — 2 [gq>
n#0 F(R) == —f exp(— 7Z%) dz
R m JR
R(0).@R(0).5
X nR(—O)gFl(RLO))— éaﬁFz(Rﬁ,‘”)} We note that explicit expressions for the force param-
n

eters, which permit allowance for the many-particle ion-ion
HereB is the reciprocal lattice vector. The fact#(q) char-  interaction, were obtained in Ref. 15.

acterizes the contributions of the Coulomb and indirdgt
means of conduction electron®n-ion pair interactions. It

*)E-mail: zhernov@kurm.polyn.kiae.su
has the form

Vs .5(0)=0d,05Y(0), M. A. Asen-Palmer, N. Bartcovsky, E. Gmelin, M. Cardona, A. P. Zher-
2 2 2 nov, A. V. Inushkin, A. N. Toldenkov, V. I. Ozhogin, K. M. ltoh, and
AmZye q 5, TI(q) E. E. Haller, Phys. Rev. B6, 9431(1997).
V(q)= 0o exp — 2, o o(a) «q) 2| Ya. Pomeranchuk, Zh.ksp. Teor. Fiz35, 992(1958 [Sov. Phys. JETP

8, 693(1959]. 3
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. R . ) [Sov. Phys. JETR6, 999 (1968)].
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Random walks in disordered media with dipole-dipole transition rates are considered. The long-
time asymptotics of the process are investigated on the basis of a new numerical simulation
method, which includes periodic continuation of the system without periodic continuation of the
initial condition. It is shown that the long-time asymptotics have a diffusive character. The
concentration dependence of the diffusion coefficient for simple cubic and face-centered cubic
lattices is studied. ©1998 American Institute of Physids$1063-776(98)02012-3

1. INTRODUCTION wherei, j, andm run through the numbers of the sites occu-
Random walks in disordered media with dipole-dipole Pied Py the impurity in the regular lattide, andp;n(t) is the

transition rates describe diverse migration processes of locarobability of finding a random walker at sijeat the timet
ized excitons, which can be investigated using fluorescenct it was initially at sitem. _ _

depolarization measuremerité time-resolved fluorescence In the standard model of dipole-dipole transport
line-narrowing spectroscopy: and the results of four-wave

mixing experiments, as well as the transport of spin -
polarization® '#

Various theoretic&l’*8and numeric&*®*° approaches
have been employed to calculate the principal processes olherex; is the radius vector of siteand v is the hopping
served in these and similar systems. In particular, a methotfte over the minimum distanag between sites. The con-
for investigating the autocorrelator at moderately large timediguration of the impurity centers is uncorrelated, and the
was developed in Ref. 11. However, there has been no agreprobability of finding an impurity in an arbitrary lattice site
ment in the literature in resolving the extremely importantis c<1. In the limit of low concentrations<1, where the
question of the form and parameters of the long-time asympdisorder of the medium is manifested most strongly, the
totics of the process. In particular, the values of the diffusiorcharacteristic time scale is assigned by thesk constant
coefficient that have been proposed hitherto differ apprecia8= (16/9)m3(r3/©)?c?v,, where( is the unit-cell volume.
bly. The diffusive character of the asymptotics, which is notParametrically8 coincides with the transport rate over the
questioned by most investigators, has not yet been proveshean distance =(Q/c)*® and is determined by averaging
analytically. the decay process over all impurity configurations:

This paper considers dipolar transport in a three-
dimensional disordered system formed by impurity centers
randomly dispersed in a crystal. Our investigation is based
on a new method for analyzing the asymptotics of random
walks in disordered media with a translationally invariantwherec—0 andpt is a finite quantity.
distribution of the randomness of the mediéhiThe proce- A general method for investigating the behavior of one
dure for substantiating the results includes comprehensivef the most important, experimentally observed characteris-
testing and repeated computer calculations for different valtics of random walks in an disordered system, viz., the
ues of the parameters, which provide convincing confirmapropagator
tion of the significant qualitative properties of the asymptot-
ics, unequocally(_to within <3%). revealing .at least the ;,/)Xy(t)zc—l Z (Pif (1) By Syxc ) 3)
two leading terms in the power-series expansion of the auto- i b
correlator with respect to time. In addition, the method is - ] ]
successfully corroborated when it is applied to an extensivé/hich is the probability, averaged over all the impurity con-
class of models of random walks in disordered media witHfigurations, of finding an excitation on lattice sieat the
exact asymptotic solutiorf& 24 time t if it was initially on sitey, was developed in Ref. 11.

1.1. The dipole-dipole transport of excitations among !t involves expanding the propagator in powerscof?. The

centers of an disordered impurity can be described by th&umulant version of this expansion with consideration of the
kinetic equation first three members of the series provides a faithful descrip-

tion of the existing experimental dath*®for gt<5.
The principal unsolved problem is the form and param-
eters of 7y (t— ).

6
Volg
—61 Vii:O, (2)

|%i— x|

|7—18 19,20

(exp(—tD)))=exd — VBt 1, 5i=$ Vi »

pim:_; (Vi Pim— ¥ijPjm)s  Pim(t=0)=38irn, (1)

1063-7761/98/87(12)/9/$15.00 1179 © 1998 American Institute of Physics
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1.2.1n order to describe some difficulties in the theoret-One of the solutions of Eq(7) is A(q,p) = v, 1—exp
ical analysis of the systertl) more explicitly and to more {—ip(z—q)}]. A discussion of the other solutions and a gen-
clearly see the place of the problem under discussion amongralization of(6) and(7) can be found in Ref. 12.
other problems in modern physics, we present two expres- The following representation of the Laplace transform of
sions for the propagator in the form of a functional intedfal, the propagator employs integration over two families of pairs
each of which is based on the most commonly used apef complex-conjugate variables, viz., the “ordinary” vari-
proaches to such representations. For this purpose it is coablesa; anda, and the Grassmann variableg and«a,:
venient to introduce an occupation-number representation 1 .
=f dt 7 (e ™
Xy 0

and to rewrite Eq(1) as p)l(y()\): A
+

ny=—§ (N, NPy =Ny NP,y ), (1 da; da,da,da;

zel 2w

a,ay
Ny
Pyy(t=0)="-"8. (4)
Xexp{ —NMaTa+ata)
Here P, (t) is the probability of finding an excitation on
lattice sitex if it was initially on sitey, andn, is the donor
occupation number of site, which takes values of 0 and 1. +c, (exp—(atA%a+aAla)l—1)|. (8
In this case(n,)=c, and 7}, =(Py,). The equivalence of zet
Egs. (1) and (4) becomes clear if all the zero componentsHerec<1, the path integral is construed as the limit of the
corresponding to empty sites are eliminated4n After al-  finite-multiple integrals corresponding to the transition from
lowance for the fact that,P,, =P, , Eq.(4) takes the form  a lattice to a finite discrete torus, and the expressions of the
_ type a*Ba are construed a§xqax+ Byq@q -
Pyy=— > (N5 Pyy— Ny P ). (5) We note that a rigorous proof of the convergence of the
z integrals in(6) and (8) was not found, but after formally
When the long-time asymptotics are analyzed, the initiaexpanding the integrands into power series in the concentra-
condition imposed on this equation can be taken in the forniion ¢ and calculating the coefficients term-by-term, we ob-
Py(t=0)=6,,. In fact, the excitation is initially placed in tain expressions which are correct in the continuous-medium
an arbitrary lattice site, and then it hops to the nearest donofénit.
and subsequently migrates among them. The long-time as- As can be seen from the representati6p our problem
ymptotics of such a process clearly coincide with the exacts more complicated than the polaron probl&hand the
asymptotics?* Using p)l(y to denote the corresponding so- nonlocality and singularity of the action are far more pro-

lution, we obtain nounced. The representati(®) transforms our problem into
the problem of a nonlinear nonlocal unrenormalized field
Pl=exp —At), A= 2 n,AZ theory With_a strong interaction, since the actual nonlinearity
Z parameter ix\ 2 (Refs. 11 and 1Rand large values df

correspond to\«14t—0.
An investigation of the propagator asymptotics using
A “quantum-mechanical” representation is obtained onsimilar representations in other random-walk problems in
the basis of natural continuation of the kinetic equation fromdisordered media can be fully succes$fubut such a tech-

z _
AXq= SxqV2q~ OzxVxq -

a lattice to a continuous medium and has the form nigue has hitherto not yielded any appreciable results for the
4Dy system(1) considered in this work. Ther.efore, it Woulq be
47&y(t):<P>1<y(t)>:f Dp(7)Dq(7) natural to expect that finding the long-time asymptotics of
q(0)=x the averaged propagator will stimulate the development of a
y general field theory and functional integration and that new
xexp{if pdq+cf d3z methods could be tested on the problem under consideration
X

along with the Ising model and the polaron problem, which
1 have traditionally been used for this purpose.
exp[ —tf dr A%(q(7),p( 7))} - 1) , (6 1.3. Numerical simulation of the asymptotic stage of the
0 process is difficult for two reasons. The previous attempts at
wherec<1, the functional integral is construed as the limit such simulatiofi!®2° were not based on a sufficiently de-
of the finite-multiple integrals corresponding to the subdivi-tailed theoretical prediction of the outcome in the asymptotic
sions of the time interval for unconstrained reduction of thestage'®* First of all, the main features of the onset of the
length of these subdivisions, and the functidf{q,p) is de-  diffusion stage in such systems were disregarded in the simu-

X

termined from a relation of the type lation. In particular, it was not taken into account for a long
time that diffusion is preceded by a slower procese(23)
j dp AZ(q,p)eip(x—q):A)Z(q: Vol 8(x—0) — 8(x=2)]. pe_low]. The secon_d reason is t_hat. the replacement of an .in—
(2m)3 finite random medium by a periodic medium with a periodi-

(7) cally continued initial condition usually employed in such a
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simulatior?***’leads to an exponential type of approach ofwhereX’ denotes summation over &l for which |x; —x;

the autocorrelatapy(t) to the stationary value correspond- —MR|#0.

ing to the uniformly filled state. When random walks in dis- We note that the idea of treating a periodic random me-

ordered media are simulated by such a method, to discovelium was proposed in Ref. 16 to solve a one-dimensional
the asymptotic power-law’y~ 1/(8t)*? (which is charac- model with transfer to the nearest neighbor and was used in
teristic of diffusion it is necessary to “strike a balance” Ref. 17 to study diffusion in the case of weak disorder in a

between long and “excessively” long times after preliminar- space of arbitrary dimensionality. In those studies quantities
ily finding the spectral expansion of the large linear systenof the type

to a very high accuracy. The sensitivity of the method toward

errors is even higher for higher orders in the asymptotic ex-
pansion. Quy)= % Pyirmy, SdY)= % (X+MR)Py vry»

rather thanp;, were analyzed. Closed equations, which
could be used to determined the diffusion tensor, were ob-

Our investigation is based on a new metRbdyhich  tained for them.
calls for the treatment of a spatially infinite system. In the  To replace the propagator{(k,t) it is convenient to
case of a simple cubic lattice the system is obtained from §hoose
pseudorandom configuration of an impurity in a cube with a
center at the origin of coordinates and the e&®jg, which
hascR® impuritygsites, by periodically continﬂ?r?g it in all P(k’t“\‘):Ei Pi(k-t)/ Z 1.
space with a period equal to the edge. Similarly, in the case
of a face-centered cubidcc) lattice, a pseudorandom con- The quantityP(k,t|N) can be regarded as the Fourier
figuration is constructed in a parallelepiped with the edgegransform of the propagator averaged over all the configura-
Ra,, Ray, and Rag, whereay, a;, anda; are the Bravais  tions obtained from a given configuration by displacing the

2. METHOD FOR INVESTIGATING RANDOM WALKS

(13

vectors of the fcc lattice. initially excited site within the periodicity volume and the
We introduce the quantity projection ofp; onto the leading eigenvector of the operator
A(0). In order to elaborate on the first claim, we note that the

Pj(k,t)=§m: Pim(t)expli (Xm—X;j)K}, (9 generator1) is symmetric ;= Ppmi) and the subscrigitin

p; can therefore be regarded as the label of the site in which
where the vectok runs through the Brillouin zone corre- the excitation walking among the impurity centers was ini-

sponding to the lattick. The configurational averages tially located. We note that in the case of asymmetric transfer
that is translationally invariant on the averagehere v;
Ak, =(pi(k,t))=, exp{ —TK(X—y)}.7%(1) # vji) we can investigate the equation which is conjugate to
y

(1) and determing; using the sum over the left-hand index,
give the Fourier transform of the propagator and are obserwather than over the right-hand index, as(®). In this case

able in four-wave mixing experimentsit follows from (1) the arithmetic mean of the componeftswill be the exact

that mean over all configurations differing from one another with
) respect to the initial site.
pi=— > [vjipi— vij expli (x;—x)k}p;], 2.1.1tis convenient to investigate the matrix elements of
! the operatoA(k) (11) using the Poisson—Ewald meth&tt
pi(t=0)=1. (100  gives a complete representation of the analytic properties of

the generator at small values [&f and permits rapid calcu-
lation of the elements to a high accuracy.
We bring(12) into the form

When the impurity has a periodic distributiog,= py,,
if X;—X,=RM, whereM L. In fact, according tq10), p;
and p,,, satisfy identical equations with identical initial con-
ditions and therefore coincide. Consequently, @) can be

represented as > |x—MR| € expli(x—MR)k}
N MelL
pi=—(A(K)p)i=— 2, [W;i(0)p;—W;j(K)p;], L (% -
i=1 _EMEEL fo dr 7 exp{— 7(x—MR)“+i(x—MR)k}
pi(t=0)=1. (11) .
Herei andj run through the numbers of the sites in the =§(f O+f dr >, exp— 7(x—MR)?
periodicity volume, and 0 Jrn/ Mel

— +i(x—MR)k}, (14)
Wij(k):MzL V0r0|Xj_Xi_MR|_6
© wherer,>0, and then we apply the Poisson transformation

X expli(xj—x—MR)k}, (12 under the integral sign. As a result, we obtain
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MEL explik(x—MR)— 7(x— MR)%} 3) ; piA;(K)p;
1 82 +k)? . ik-X)—p: iK(x: 2
:_(Z) 3 exq’— (g+k) +ig~x], :EE S |piexp(ik-x;) — pjexp{ik(x;+ RM)}| .
Voel 7/ geG At 297 mMeL |xi—xj—RM|6
whereG is' thg reciprocal Iat'tice of, andV . is the volume Hence it follows that the generatoh;(k) is self-
of the periodicity parallelepiped. conjugate, the operatak(0) is a generator of a connected

Since we shall henceforth be interested only ir; thepmarkov chain, and its smallest eigenvalivenich is equal to
ranges of valueR>10 andkro<27/R, after settingroro  zerg is simple. Therefore, at smalk| the smallest eigen-
~0.01in(14), we can retain only the term with=0 in the  yajue of A(k) is also simple. The eigenvector corresponding
sum obtained as a result of the Poisson transformation fog the smallest eigenvalue 80) appears in the initial con-

our matrix element. This gives ditions of Eq.(11), and at smallk| it differs slightly from
the leading eigenvector &(k). Whenk=g/R, wheregis a

Wi (k)= vorSt > exp{— 7o(x—MR)2+i(x—MR)k} _reqipro_cal Iatti(_:e vector, the generator is nonnegative, and 0
MelL is its simple eigenvalue. At all othdreal) values ofk the

) operator is positive.

% 70 4 70 " 1 For a more detailed analysis we repres€if) in the
2(x—MR)? [(x—MR)?]*> [(x—MR)?]® form
N
3/2 I k2 1 . _
e °d”uzexp(__) | a5  PKUN= 3 pi=(Olex—A(K)t[0), 17
2R30 Jo At =1
wherex=x;—x;. When the valuer, is chosen, the upper where(i|0)=1/\N.
bound for the modulus of the discarded sum Using the spectral expansion of the Hermitian operator
.6 ) A(k), we obtain
T T +k
2 v Of Ormexp{—(g47) +ig-X] dr N-1 —
g70 Vper Jo P(k,t|N)=#2=0 [(]0)|? exd —a,(k)t],

can be estimated by the expression

3/2,.3 2
Ty 277)
— exg —25 gro— —
1000/ 5oy gz#o F{ (g TR

A(K) ) =a,(k)|w). (18)

<1071, The lowest eigenvalueayg(k—0) is unique, and
|(0]0)|2=1+0O(k?). Introducing the projection operators

and it thus does not influence the results of the calculations_ |6)<6| and=1— 7. we obtain

The nonanalytic contribution to the matrix element at small

values of|k| is specified by the integral ag(k)=(0]A(k)|0)
77.3/2 0 k2 77,2
— | drrt? exn(——) = 5 klP+ k), (16) +(OJA(k)T —————— 7A(K)[0). (19
2 Jo 47)” 12 (0]A(k) PRy (k)[0)
where The first nonanalytic term in the expansionAyk) is of
773’2|k|3[a‘3’2exp(—a) 20~ YVexp( — a) the order of|k|® [see(16)]. Since the resolvent is finite at
d(k)= 5 | 3 - 3 small|k| andag(k) is an even function ok, the term~|k|*
in the expansion ofy(k) is completely determined by the
4 (v first term in(19). Hence it follows that

——J‘\adaexq—az)}, _
3Jo a0(K) =D o gk ks— ok3+O (k) =ag(k) + O(k%), (20)

LS where o= (72/12)c(r5/Q) vp.

a= 47, It is convenient to represent the diffusion tensor in the

form
is a function which is analytic with respect ko

2.2.Let us perform a more detailed analysis of Effl) Daﬁz(xaﬁl6)r2,8. (21
at small values ofk| using perturbation theory.

The generator of Eq11) has the following easily veri-
fied properties:

As N—co, because of the isotropy of the systédd,
_>D5aﬁ7 andKaBHKéaﬁ.
We note that exact knowledge of the coefficiendn the

1) Ajj(k)*=A;i(k)=A;(—k); right-hand side of(20) ensures exact correspondence be-
tween the two leading terms of the asymptotic expansion of
2) Ai(0)>0, A.;(0)<0, Z A;j(0)=0; the autocorrelato/y(t).

Taking into account that
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R

:exp( '9- )A,J(k)ex;{ig;‘),

whereg is an arbitrary reciprocal lattice vector, we can ob-
tain the following representation for the propagator:

Pyo= Vo fd3kexp(|k X)P(K,t|N)
I 3 ik. — .
N de k exp(ik x)% (exd —tA(K)]);;

—NZ f P explik-x) S (exd —tAK)]);,
g JBg ]

Dzheparov et al. 1183

decay of the autocorrelation functions and that in the final
stage the plot of the autocorrelator approaches the
asymptotic curve from above.

3. TESTING THE METHOD ON EXACTLY SOLVABLE
MODELS

We tested all the stages of the application of the pro-
posed approach to the investigati@nd simulation of ran-
dom walks in disordered media on an extensive class of as-
ymptotically, exactly solvable models with spatially
unconstrained transpdt-24

To fix ideas we shall dwell on the isotropic random jump
model, in which the propagator is defined by an equation of

Z d3k exp[lx k+ = g } the forn?3
VB B
i 9(X; — X; P == - =V)=
XZ ex o :Q ')](exr[—tA(k)])ij ny Zz (szgxpxy szgzpzy)r ny(t 0) 5xy:
) (24)
B RS Kk expfik-x) wherex, y, andz run through the entire simple cubic lattice
~VeN Jg, L, V= V= V5.0, Voo=0, Sy UyX?< +o0, and{&,} is a set

of independent, identically distributed positive random val-
ues with a sufficient number of finite inverse moments.

Let us consider a periodic system, leaving theinde-
pendent, wherex runs through the sites of cubé with a
center at zero and the ed§¥r,, and settingé, r,= & for
any vectorye L.

In analogy to(9), we introduce

X2 (XL AR S, 0 (22

Here B denotes the Brillouin zone of volumé/g
=(2m)3/Q corresponding to the original lattic8, is the
Brillouin zone with a center af)/R corresponding to a cell
equal to the periodicity parallelepiped/R runs throughR®
sites of the periodicity parallelepiped in the reciprocal lattice,
and thus the shift8 of zoneB, by all the possible vectors
o/R regularly fill the large zoné. ) . o
It can be seen froni22) that the formalism proposed M thiS casep,_gy=py, and the following finite system of
here has a small integration region with respeck tm the ~ €duations holds:
propagator representation, which is an important property of
the usual Fourier transformation of band thedig., with
respect to the left-hand coordinate in a lattice with the spac-
ing R). px(k,t=0)=1, (26)
When the leading terms of the asymptotic expansion of
the autocorrelator in powers oftldre calculated, it is suffi-
cient to take into account only the main eigenvalueAgk)
at smallk. As a result,

px<k,t)=§ P,y (D) explik(y—x)}. (25)

px=—(A(K)Ep) = Z[WZX 0) £xpx— Wi K) €204,

wherex andz now run through all the sites of the periodicity
cube and

Wir(K)= X s mreXP{ik(z—X—MR)}. (27)
1 MelL
—_— 0)= —— 3 —
Podt=+2) VgC fsod KTr(exd —tA()]) Instead ofP(k,t|N) [see(17)], it is now convenient to
1 consider
~— | d3kexd —tag(k)] . Ko
VeC Jgg P(k,)=(Olexd ~A¢t][0)

=(0| \/%exq— Veale) \/%lox (28

Q
= S [(47D) 2+ o(27°D%?) 1+ Ot 7).

(23)
: . : where
The relationship between two higher terms of the long-
time expansiorisee Refs. 10, 4, and L 4vhich is character- 1 1 1 1
istic of the dipole-dipole interaction for very different distri- (x|0)= N’ K_o N gv §_x N=R".

butions of the randomness of the medium, is thereby
confirmed. This directly points out that the diffusion stage of ~ The smallest eigenvalue of the operatGiA /¢ is speci-
the process is immediately preceded by a stage of slowdied by an expression which coincides with9) following
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the replacements (i|0)—(x|0)=Vko/(éN) and A ~In[P(k,1IN)] - 10°
— JEAVE. We note that the second term (h9) is fourth-
order with respect t& here and does not make a contribution
to the diffusion coefficient. From the first term we find

1
D=#xoDo, Do=¢ 2 X2vy, (29

where Dy is the diffusion coefficient in a regular lattice. 12
When N is large, this result is in excellent agreement with
the expression obtained in Ref. 23 for the diffusion coeffi- 8
cient

D=«Dg, 1lk=(1/&y), 4t

where ( ...) denotes averaging over an ensemble. This . s . ;

means that the limitsl— andt— are interchangeable in 0 20 A

the present model and that the relative accuracy of determin-

ing D from formulas(29) is of the order of l{/ﬁ. The inter- FIG. 1. Time dependence of the Fourier transform of the propagator for a
o o ; s simple cubic latticel — the number of sites in the periodicity volunihe

changeability of these limits can be de_monstrated ina S|m|Ia_1?; 240, the concentration—0.03, andk— (/200)(0.1.0):2 — N~ 1350,

manner f_or all the mO(_jeIs considered in Ref. 24. The NUMETiz_ o 05, andk=(7/200)(0,0,1):3 — N=640, c=0.08, andk=(/200)

cal algorithm for solving the systerf26) was tested on the x(1,0,0);:4 — N=1970,c=0.1, andk=(#/200)(0,0,1).

isotropic random jump model withr,,~|x—2|~® and uni-

formly distributed¢ with (1/£)~ 10K £). Just such a relation

betweenD;) and(1/D;) is realized in the problerfl) when

c~3%. The numerical solution of Eq&6) leads to a value

of the diffusion coefficient coinciding with{29) to within

10~°. This number characterizes the error in the calculation tant s | th and imate th | f
for a fixed realization of £,} and can serve as an estimate of constant, we vary 1ts length and approximate the values o

the analogous error in the systdi) under investigation for o (k) obtained according to the least-squares method by the

an assigned impurity configuration, since below we shall us@XPression  w(k) =Dk?+ ak®= B[ («/6) (kr)?+ a1 (kr)*].

the same algorithm for the numerical calculation. The statis]n€ terms of ordeo(k?) are discarded, since smalare
tical spread of the diffusion coefficient is specified in theconsidered:kr~0.05. We obtainx=0.3101(2) anda;
isotropic random jump model by the distribution{@} [see =~ =—0.01042). Thus, whenBt~40, itis seen that the behav-
Eq.(28)] and in the real systerfi) by the number of sitesl ~ ior of the system is approximated by the expression
in the periodicity volume and the concentrationlt is con-  P(K,t|N)=a exd(—Dk*+ak3+O(K))t], where the terms
siderably greater than the error of the numerical algorithm;~k* can be discarded to within the accuracy of the calcula-
and, therefore, the latter error will not be discussed further.tion of the diffusion coefficient. Then, up t6t~1000 the

m

W

because of the isotropy of the system. The numerical calcu-
lations confirm the absence of a regular dependence af
éhe direction of the vectok. Keeping the direction ok

4. SIMULATION RESULTS

Transport cannot be investigated in our basic systBm ~In[P(k fIN)] - 10°
by purely analytic means with the same completeness as in pr
the isotropic random jump model. f

We carried out numerical simulations of migration on 20
the basis of(11). Figures 1 and 2 present the results of a
calculation of P(k,t|N) in simple and face-centered cubic I6L
lattices, where each line corresponds to one impurity con- 1 !
figuration. It can be seen from the curves that at lartjee 12
value of —InP(k,t|N)/8t tends to a finite positive value. L 2
Precisely the same behavior of the Fourier transform of the 8 L 3
propagator was observed for all the values\o€onsidered K—~ 4
from 200 to 2700 and at all concentrations regardless of the ab
type of lattice. Thus, fopt>1

P(k,t|N)=aexd — w(k)t+ ok3t], (30) 0 20740 TR TR 00

J.13
where the coefficient- is known exactly{see Eq.(20)].
Figure 3 presents a plOt G&B(k) for one impurity con- FIG. 2. Time dependence of the Fourier transform of the propagator for an
. . N . . fcc lattice: 1 — the number of sites in the periodicity voluni\e= 240, the
figuration andft~40. Similar behavior ofw(k) was ob- . oriatiore=0.08, andk=(/200)(0,1,0)2 — N=780,c=0.05, and
served for .dlfferent |mpur|ty configurations regardless of thex = (/200)(0,0,1);3 — N=640, c=0.08, andk=(7/200)(1,0,0):4 —
concentration and lattice type. A¢— o, » depends onk| N=1760,c=0.1, andk=(/200)(0,0,1).
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0.29f
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FIG. 5. Concentration dependence sofand its approximation by a third-

FIG. 3. Dependence @b on |k| (pointg and its least-squares approximation . o ;
P [k (points q i order polynomial. The lattice is face-centered cubic.

(continuous ling N=1800,c=0.1.

diffusion coefficientD decreases monotonically, remaining the simple lattice. The lack of a dependencecain the type

within 3% of the value fors t= 40 and W'thm 0.5% (_)f the. of lattice at low concentrations was verified by investigating
value forﬂt=_80. The Iong—t_|me asymptotics were Investl- 5 o0 4om-walk process on a diamond lattice. The value
gated for various conceqtratlons frop- 1% tocf90%. At k(c=1)=0.3299 for this lattice differs significantly from
each value ol we gon3|d.ered from Fhree 'to f|ye different Ko. It was found at small concentrations that within the cal-
pseudorandom conﬁgurat!ons of the impurity sites and aVvelzylation errorx has the same value as in the case of simple
aged the \_/alu_es Ok ob_tal_ned_ over the_m. The results are cubic and fcc lattices. Such agreement should be observed,
presented in Fig. 4. A similar investigation of the concentra

fion dependence of was performed for an fcc lattiof “since at small concentrations the mean distance between im-
5). As Ean be seen frompFigs 4 and 5, at lamge 1 tr?é puritiesr is much greater than,, and the asymptotics of the

value of x tends to the known value af(c=1): for a simple migration process should not depend at all on the type of

: . , lattice 1
bic latt =1)=0.2999, and f fce latt .
c;ul)lc:: ;22:35'((0 ) and for an fec lattica(c 4.1. To speed up the calculations we employed the ap-
' ; proximation

We constructed the approximation=x(c=1)+(«;

+ k,C+ k3€%) (1—c) by the least-squares method, and for a P(k,tlN)=exp[—§0(k)(t+b/,8)]+(ﬁ<)2f exp —ayt),
simple cubic lattice we obtained¢;=—0.005d6), «»

=0.1644), and k3=—0.11(4). The value kg=«(c=1) a;=(2m/R)?D«’, (3D
+x1=0.2949(6) corresponds to the diffusion coefficient for _ o
0 whereb, f, and«’ are constants, which have finite limits for

For an fcc latticex,=0.00647), x,=0.1344), and c—0 and k—0. This shortened the calculation time by

— ; _ Z _ roughly one third.
k3=—0.094). In this caseky=k(c=1)+ k;=0.296X7), e -
which coincides to within the error with the value gf in . As a contrql, the d'ff“S'OT‘ coefficient was also deter-
mined by a third method with even faster convergence,

which is associated with the relation

033

Y

All=2) pi*Ai,-<k)pj/Zi [pil>—ag(k)  for t

0.32 . (32)
031 In fact, using the spectral expansion, we have
— A(k
Alk)= (plAK)|p)
020 olo)
3 (2
029} 2 (Ow)Pa,(oexd ~2a,()t]
= . (33
028 3 i i 1 i 1 1 A
0 02 04 06 08 10 > [(0]p)[Pexil — 2, (k)t]
c M
FIG. 4. Concentration dependence fand its approximation by a third- Thus, the high rate of convergence is due to the doubled

order polynomial. The lattice is simple cubic. exponents. More specifically, the value of the diffusion co-
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efficientD calculated on the basis (82) stabilizes to within We note that the asymptotic stage sets in at considerably
an error less than 3% alreadygit= 20 and less than 0.5% at shorter times for/Ak,t) than for the autocorrelatary(t).
Bt=40. This property is realized both in all known methods of the-

4.2. Extrapolation procedures for solving systems of or-oretical analysi¥"'® and in numerical simulation, allowing
dinary differential equations like the classical Adamsus to confine ourselves to comparatively small valued of
method® were used in the numerical simulation. By select-~500 and obtain results with sufficient accuracy.
ing quadrature formulas with consideration of the certain A comparison of the value obtained aboveg
positiveness of the generator spectréifk), we were ableto  =0.2954(5) with the literature values of the diffusion coef-
markedly increase the integration step without the danger dicient in the dipole-dipole disordered systéi reveals that
computational instability, which would be virtually unavoid- the value closest to ours was offered in the GAF théory:
able if there are eigenvalues that are not positive. kgar=0.315. The modification of the GAF theory in Refs.

We considered formulas of the type 13 and 14(which was developed, in particular, to generalize

_ the theory to one-dimensional and two-dimensional systems
p(t+4h)=(a+phAp(t)+(b+ghAp(t+h) yields ko= kp=0.186, although the heuristic, rather than
+(c+rhA)p(t+2h)+(d+shA)p(t+3h), mathematical, character of the proposed modification, as
well as of the GAF theory itself, should be noted here. The
p=—3(b+d)/8=cl3, q=(64-1%—32—27d)/24,  semiphenomenological thedf uses the Scher—LA&sxor-

r=(—32+5b—8c—27d)/24, s=(64—b—9d)/24, mula to calculatd® and gives«g= ks =0.373. Goldman and
Jacquinat® obtainedko= xg;=0.49.
where Two experimental studies whose results have bearing on
a=—fif,fs, b=f ffa+fifo+ffatfafy, the investigation of the long-time behavior of the propagator
have been performed. One of thproved the occurrence of
c=—(f+fo+fat+fifo+fofs+1fsfy), “reoscillation,” which we discussed above as a consequence
d=f,+f,+fs+1 of the relation(23), but no measurements were performed in
the time interval needed for determining the diffusion coef-
or ficientD, and the valuey= kg was used in the treatment of
a= _fl(f2+f§), b=(f,+1)(f,+ 2f3+f§)' the results. Thus, on the basis of Ref. 4 it can only be con-
cluded that this value oty does not contradict the results of
c=—[fl+f2+f§+ 2(1+ff3], d=f+1+2f;. that work. Conversely, the work described in Ref. 5 was

In the first case €f,,f,,f;<1, in the second case the directed at measurin®, and the result corresponds ig,

real quantitied ;, f,, andf are chosen so that the conditions = KGkm™= 0-3147(23)= which' giveskgyy = 0.168(26) vi/Pen
0<f,,f3<1 andf2+f2<1 would hold. the termok® from (20) is correctly taken into accoufﬁ: A

As opposed to the standard four-point Adams proceduré?o”ecuon for the dlpoIaLanlsotropy of the transition rates
which more correctly allows for all the possible signs of theincreases this number tegyy=0.187(29)'>'* We stress,
eigenvalues of the generator of a lindar linearized sys- however, that the dependence of the results on the wave
tem, the integration step allows a fourfold increase in thevectork was investigated inadequately in the experiment in
case of the systerfl1). Ref. 5 (as was noted by the authors themselyéserefore,
the disparity between this value and the results of our calcu-
lations point out the need for new more exact and systematic
measurements.

The proposed method faithfully simulates the disordered

system(1) provided the diffusion radiusp= /6Dt satisfies 6. CONCLUSION
the condition

5. DISCUSSION OF RESULTS

) o3 Let us briefly characterize the main features of the
ep=(2rp/R)* =4k BINT"<1. (349 method which we used to investigate the asymptoticss of

In the opposite limit £,>1) we have a model of trans- fandom-walk processes in disordered media.

port in a crystal with a large complicated unit cell containing At sSmall values ofik| the finite systemg11) and (26)

N atoms. The value ofc calculated for smallkry<0.1 obtained for periodic configurations of random media pro-
-2m/R according to(30) stabilizes within 3% at algt=40 vide_ the main information on the_ long-time asymptotic be-
andN=150 and varies monotonically asncreases. At the havior, as follows from the following arguments.

largest number of sites used£2700) the criterion(34) 1. The systenill), which is obtained fronil) by Fou-
holds up toBt .~ 160. Therefore, in our basic probleft) rier transformation in a periodic impurity configuration, de-
and(3), as in the case of the exactly solvable models in RefsScribes the process in an infinite configuration with an exci-

23 and 24, the equality of limits tation which is initially localized on one site. It eliiminates
o S the need to stop the process before it reach@®aexisting
lim lim D(t,N)= lim limD(t,N) [=D] boundary, which is encountered when the infinite configura-

t—oo N—ow N—o t—oo

tion is replaced by a cube or when the correlgigris con-
is valid at least to an error 0£3%, and the long-time as- tinued periodically:>?° The exponential asymptotics expan-
ymptotics in the system under consideration are diffusive. sion of p;, i.e., the analog of the Fourier transform of the
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Thermal expansion and the equation of state of isotopically different samples of KCN were
measured in the temperature range 175-300 K and at pressures up to 2 GPa by the neutron powder
diffraction technique. No evidence of the influence of isotopic composition on the thermal
expansion or the compression isotherms was found.1998 American Institute of Physics.
[S1063-776(98)02112-X

1. INTRODUCTION For CN as a diatomic gas molecule the value of the rotational
quantum/?2/2J, wherelJ is the moment of inertia, is about 3
The influence of isotopic composition on the thermody-K. This looks exactly like the expression for an ideal gas of
namic properties of substances is usually considered to bediatomic molecules, except that the true moment of ingrtia
manifestation of the quantum nature of matter. At high tem-as been replaced with an effective vallig to take into
peratures in the classical limit any mass effect on thermodyaccount, at least crudely, the interaction of a molecule with
namic quantities disappears and hence any quantum isotopits environment. The corresponding contribution to the pres-
effect vanishes. However, isotope effects of a nonquanturgure can be derived frorfi):
nature may exist under certain circumstances in condensed
. L . . - JIF NT\ [ dJes
systems. For instance, variations of the isotopic composition =— <_ - (_>(
in molecular systems can change the moments of inertia of N/ \Jert)\ IV
is natural to assume that the effective moment of inertia
Jeir iIncreases with density, and hence fr@it follows that

the molecules, which can then influence the thermodynamirt
properties of the system. This is quite obvious in an idea

glassmal system of polyatomic molecules, where the rOt,aFnoIecuIar rotation gives a negative contribution to the total
tlpnal part of the free energy, entropy and thermal Capac'%ressure. As can be seen frg), the “rotational” pressure
dlrect!y depends on'the molecular moments of inértis depends on the isotopic compositidthrough Jog), and
we will see below, in the case of condensed systems ong

; , . oY ence the compression isotherm and the thermal expansion
might also expect to find corresponding contributions to thecurves of KCN may be split due to the difference in effective
compressibility and thermal expansion as well.

. ._moments of inertia of isotopically substituted Chbns.
Below we report data on thermal expansion and equation

of states(175—-300 K and 0-2.0 GPaf KCN, substituted
with various isotopes of carbon and nitrogen so that the CN 2. EXPERIMENTAL
ions have the same mass number but with different moments Isotopically enriched samples of KCN were obtained

of inertia. The corresponding experimental data were obzg, the Cambridge Isotope Laboratories. They had compo-
tained by means of the neutron powder diffraction techniques;ion KC15N (C—natural abundance; 99%N) and K3CN

The phase diagram and various physical properties 0fggoy, 13c: N—natural abundange These materials were
normal KCN have been reported in a number of pageee ;seq without further purification. Both samples were sub-
for example, Refs. 257 The general conclusion is that in the ioted to ion beam analysis at the Los Alamos National
temperature and pressure range under study, KCN has Naghporatory lon Beam Materials Science Facility; both mate-
crystalline structure in which the orientations of the TN |i5is were found to have 180 ppm of Na contamination.
lons are disordered over a number of directions. Further- y/5yiaple temperature neutron powder diffraction studies
more, the orientations of individual ions are not fixed but,qro performed on the HIPD instrument at the Manuel Lu-
change very rapidly. To simplify the description, oné mayja, g, Neutron Scattering Center, Los Alamos National
say that CN ions in the KCN-l phase experience almost fre€| apqratory. Samples of the two KCN materials were placed
rotation at near ambient temperatures. In this case, using thg g 35438 1-mm vanadium cans with a small amount of He
classical approach the rotational contribution to the free €Ngas and subsequently sealed. The thermal expansion was

@

T

ergy can be written in the form studied in the temperature range 175-300 K in 25 K steps,
making use of a DisplexAir Productg system, which pro-
Fro=—NTINT=NTIN(2J/%2). (1)  vides temperature control to within 0.1 K. The neutron dif-

1063-7761/98/87(12)/3/$15.00 1188 © 1998 American Institute of Physics
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TABLE I. Thermal expansion data for isotopically substituted KCHht TABLE Il. Compressibility data for isotopically substituted KCN at

ambient pressure. 300 K*.
T, K a, (KCN), A ag (KC™N), A P, GPa a, (K¥CN), A P, GPa a, (KCN), A
300 6.5278 6.5290 0.29035) 6.480910) 0.19419 6.51269)
275 6.5196 6.5184 0.82716) 6.406610) 0.58322 6.45569)
250 6.5119 6.5118 0.89446) 6.414610) 1.15326) 6.388210)
225 6.5040 6.5037 1.04919) 6.378210) 1.84433) 6.314212)
200 6.4960 6.4947 1.40621) 6.344810)
175 6.4876 6.4876 1.87329 6.299611)

1.92527) 6.292226)

*Standard deviations for these measurements are (1102% A. Propaga-
tion of error from calibration data gives an estimated error of *Values in parentheses are estimated standard deviations obtained via
4x1074A. propagation of error from the Rietveld refinements.

fraction patterns were obtained in 2—4 h each with the spaktemperature. The corrections correspond to offsetd afa
lation neutron source operating at a proton current-@0  =—0.5x10 % and 0.8 10 * for K*3CN and KC™N, re-
nA: data taken in the backscattering detector®€251°)  spectively. Sample position errors of less than 0.1 mm within
were used for subsequent data analysis. To obtain accuratiee diffractometer would give these offsets, and they are
values of the ambient lattice parameters for the KCNsmaller than the random errors in the individual lattice pa-
samples, neutron powder diffraction patterns were also obrameter values obtained from the Rietveld refinements. The
tained at 300 K from each KCN mixed with a small amountvariable-pressure data were corrected in a similar way. A
of Cak,, which provided an internal lattice parameter stan-simple second-order polynomial was fit to the lattice param-
dard (a,=5.46384 A at 300 K The lattice parameter of this eters for each KCN with pressure. The intercept at ambient
sample of calcium fluoride was previously determined in ourconditions was then used to correct both the KCN and Pb
laboratory by x-ray powder diffractometry with ®y, lattice parameters. The pressure was then recalculated from
radiation. the equation of state for lead to give the values in Table II.
The compression isotherms of the two KCN samples aThese corrections are much larger than for the variable tem-
300 K up to 2 GPa were obtained with a toroidal high pres-perature data and correspondAa/a=3.2x10 2 and 0.8
sure celf® To provide hydrostatic conditions, the samples x 1072 for K3CN and KC®N, respectively. These arise
were mixed with Fluorinert-7@3M Co,) and placed in the from sample position errors of 2—3 mm in the location of the
cell along with a piece of lead, which was used as a pressungressure cell relative to the standard sample position in
sensor® Neutron diffraction patterns were obtained on theHIPD.
HIPD over 8-12 h each with the spallation neutron source
operating at a proton current ef70 uA; data taken at 2 4. DISCUSSION

=+090° df b t data analysis. . .
was Lised for subsequen 4 The data obtainedTables | and Il are illustrated by

Figs. 1 and 2. The linear thermal expansions from the data
3. DATA ANALYSIS A

shown in Fig. 1 are 0.32010 3 A/K for K°CN and 0.327

One problem with neutron time-of-flight measurementsx 102 A/K for KC **N. A fit of the combined compression

is that the measured lattice parameters are affected by thgata for the two KCN materials in Fig. 2 to a Murnaghan
location of the sample scattering center in the diffractometerequatioﬁ2 gives the parameters/,=279.0(5) A, B,
The placement of the sample, particularly in the high-=13.3(9) GPa and = (9B/JP)p_,="5.6(10) (to be com-
pressure cell, is not sufficiently reproducible to eliminate thispared with value®,=13.2 GPa and,=4.2 previously ob-
source of systematic bias in measured lattice parameters. kgined for “natural abundance” KCN. As seen from Fig. 1,
mitigate this systematic effect, we have employed the datghe thermal expansion experiments reveal that there is no

analysis procedures that follow. Both variable-pressure anglear difference in lattice parameters of isotopically substi-
variable-temperature diffraction data were processed using

the General Structure Analysis SystéBSAS suite of com-

puter programs via Rietveld refinement to obtain the lattice Lattice parameter, A
parameters of each KCN sample, the Pb pressure standard, ]
and the Cajcalibration material as appropriate. Refinement 6.52
of the 300 K diffraction data of the two KCN/Calmixtures 3
gavea,=6.5278(2) A for K3CN anda,=6.5280(2) A for 6.50k
KC™™N. The use of an internal standard (GpRliminates '
the sample position bias, so these KCN lattice parameters are

at least self-consistent. These values were then used to cali- 6'451560“l 300240 330320
brate both the variable-temperature and variable-pressure T.K
mea_suremems’ which are listed I!1 Tables | and_“' The CorI_:IG. 1. Lattice parameter thermal expansion of KCN. The data f6EN
rections for Table | were determined from the intercept alye piotted as squares and for K8l as crosses. The lines are a guide to the
300 K of a linear fit to the measured lattice parameters witheye.

1
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FIG. 2. Isothermal compression curve for KCN at 300 K. The data forl)The moment  of |‘nert|a of a dlatomlc‘molelculb= m,l-z, \(vhere m,

KICN are plotted as squares and for ¥ as crosses. The line is a guide = MiMz2/(My+m,) is a reduced mass amds an interatomic distance. So,

to the eye. neglecting a possible slight difference in the length of the CN group due to
the isotopic composition variations, we get for the moments of inertia of
BC N and >C'™N values of 8.92 A and 8.82 &, respectively af

=1.15A.
tuted samples of KCN over a large range of temperatures’Obviously, the centers of mass of iol€ **N and*?C**N do not coincide

The high-pressure compression isqthe(ﬁig. 2 jalso reveal  \ith their symmetry centers. That means that at “free” rotation the effec-
no difference, although the scatter in the data is much greatetive diameters of these ions would differ by0.04 A, and it would influ-
than in the temperature experiments. ence the lattice parameters.

Given that the reduced masses of tF@1“N and?C 1N
ions differ by ~1%, their true momer\ts of inertia will differ 1| p. Landau and E. M. Lifshits, Statistical Physics, 3rd Edition, P. 1,
by the same amount.Our accuracy in the lattice parameter 2Pergamon Press.
determinations is<0.01% and<0.1% for the temperature D-1- Price, J. M. Rowe, J. J R‘g‘s‘-’ ” Chg”T‘- T;hyvf/ﬁ |?697|(31hg72)h
. . CD. L. r A riein . n CH riton . .
and pressure runs, respectively. So we must see an isotopiq 3582((:187’4) eyerien, oult, & ortton, Fhys. Rev
effect unless the functiod (V) has a special form. First, it 43 . Rowe and S. Susman, Phys. Rev2® 4727 (1984).
could be equal to a constadt,s=const, in the density range °K. Strassner, H. D. Hochheimer, W. hte, and A. Werner, J. Chem.
studied; in this case there is no “rotational” contribution to P"ys-83 2435(1985.

. . . . H. T. Stokes, D. L. Decker, H. M. Nelson, and J. D. Jorgensen, Phys. Rev.

the equation of state. However, this seems highly improbable 5, 11082(1993.
because of the condensed nature of the substances und&f. Bourson and D. Durand, J. Phys.: Condens. M&tdi723(1993.
study. Second, it could depend on density in a linear way like®L. G. Khvostantsev, L. F. Vereshchagin, and A. P. Novikov, High Temp.-

_ : « . " ; ; High Press9, 637 (1977.

=Jy(1+a/V).
Jﬁﬁ Jo(1 .a/\/)fln this Casl,g‘ E)hel rOtatI%nal r::c.mmblljgodn to ng. M. Besson, G. Hamel, R. J. Nelmes, J. S. Loveday, S. Hull, and D.
the equation of state could be large, though it would depend pjaysermann, High Press. Rés 625 (1992.
only slightly, if at all, on isotopic composition. Another pos- °R. A. Miller and D. E. Schuele, J. Phys. Chem. Sol&fis 589 (1969.
sibility is that the “free rotation” approach can not be ap- 1A, C. Larson and R. B. Von Dreele, Los Alamos National Laboratory

li : : ; Report LAUR 86-7481994).

plied to the alkali cyanide famil§.In any case, further study

; ; ) 120, L. Anderson, J. Phys. Chem. Salz, 547 (1965.
is needed to resolve this problem and precise thermal capac- Y

ity measurements would play a decisive role in the attempt t@ypiished in English in the original Russian journal. Reproduced here with
observe the classical isotopic effect. stylistic changes by the Translation Editor.
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An algorithm for constructing a quasicrystalline structure based on atoms with tetrahederal
coordination of covalent atomic bondhe typical coordination for group IV atoms proposed.

The algorithm is used to construct a computer model of a cluster with icosahedral symmetry.

The model is used to estimate the energy parameters of the structure and the distributions of bonds
over interatomic bond lengths and interbond angles. The distributions obtained correlate

well with the analogous results for silicon glasses and do not impose any fundamental constraints
on the implementation of such structures in practice. 1898 American Institute of
Physics[S1063-776198)02212-4

1. INTRODUCTION On the other hand, up to now it has been unclear whether
covalent quasicrystalline atomic structures are possible in
Quasicrystals, which were discovered in 198de an  principle, or whether such structures do not occur because of
interesting example of a previously unknown type of atomicthe nature of the covalent bond, which imposes quite strin-
structure of solids. As a rule, the same atomic compositiongent geometrical constraints on the local atomic packing
can be obtained both in the amorphous statetallic glasg  (specifically, because the extent and relative arrangement of
and in the ordinary crystalline form. With respect to their the valence electronic orbitals forming interatomic bonds in
atomic structure quasicrystals are, in a certain sense, intecovalent solids are quite strictly fixgd
mediate between metallic glasses and true crystals. The local In the present paper we wish to demonstrate that atomic
ordering of the atomsgshort-range orderin all these struc- packings with purely covalent bonds, exhibiting all topologi-
tures is very similar, the basic distinction being the existenceal features of quasicrystals with icosahedral orientational
and type of long-range order. At the same time, there is narder, and at the same time satisfying reasonable constraints
long-range order in the arrangement of atoms in metallion local short-range order, are possible in principle.
glasses, while crystals possess orientational and translational
long-range order and quasicrystals possess, besides orienta-
tional order, nontranslational long-range positional order?: ALGORITHM FOR CONSTRUCTING THE STRUCTURAL
o . ) . MODEL
which is manifested in the presence of sharp peaks in the
Fourier transform of the structure. The similarity of the We construct the model using as a guide the most com-
atomic structures is also indicated by the possibility of transmon glass-forming group IV elementsarbon, silicon, and
formations between the indicated phases during annealing.germaniun). In crystals and glasses, the atoms of these ele-
All forms of quasicrystals with icosahedral group sym- ments often possess tetrahedral coordination of the electron
metry which have been discovered thus far are metal alloyslouds and they occupy sites in a network of bonds. These
where the atoms form close-packed structures. At the sanstes can be bonded to one another both dire€tlypure
time, we know of no published reports of the observation ofmaterial$ and through intermediate divalent atoifisr ex-
quasicrystalline structures for materials with a covalent interample, oxygen atomsThus, the algorithm for constructing a
atomic bond, though many such compounds are encounteredodel of a covalent atomic structure with a prescribed global
in both limiting modificationgi.e., in the form of glasses and symmetry reduces to the purely topological problem of de-
crystalg. An example of a common compound of this kind is scribing an appropriate bond network where exactly four
silicon dioxide. edges meet at each site, the angles between neighboring
On the one hand, the lack of information about covalentoonds deviating very little from the ideal tetrahedral angle
quasicrystals could be due to purely technical difficulties ing;=109.5° (according to the experimental data and numeri-
producing them, since even metallic quasicrystals are obeal simulation, a deviation of up to 10% is admissible for
served only in exceptional alloys, optimally balanced withcovalent glassés
respect to the composition and the size of the constituent To construct such a network of bonds we employ the
atoms. Moreover, even for optimal alloys the conditions forprinciple of duality between the structures of close-packed
the solidification of the melt must be accurately matchedmetals and covalent networks that is observed for amorphous
since experimentsand numerical simulatiofisboth show  structures. According to this principle, the bond network in
that quasicrystals are formed over a narrow range of cooling disordered covalent glaggachariasen netwoykis topo-
rates, falling between the rates required to obtain glasses amagically equivalent to the network formed by the edges of
crystals. Vorond polyhedra for atoms of close-packed metallic

1063-7761/98/87(12)/4/$15.00 1191 © 1998 American Institute of Physics



1192 JETP 87 (6), December 1998 V. A. Borodin and V. M. Manichev

glasses. Similarly, an arbitrary close-packing of atoms that
reproduces the model structure of a metallic quasicrystal can
be taken as the basic packing, a Vorbmlivision can be
constructed for it, and silicon-type atoms can be placed at the
sites of the resulting network. If the obviously degenerate
cases, which vanish with arbitrarily small deformations of
the structure, are discarded, then four edges, which can be
identified as interatomic bonds, meet at the sites of the
Vorond network. The symmetry of a network of Voroho
polyhedra is, by construction, identical to that of the original
atomic packing. The only problem is the possibility of satis-
fying the constraints on the admissible bond lengths and on
the interbond angles. The resulting structure can be opti-
mized with respect to bond lengths and interbond angles by
relaxing the structure using interatomic interaction poten-
tials, taking account of the three-particle correlations in the
positions of the particles. The distributions of bonds over
bond lengths and interbond angles, along with the energy of
the atomic bonds in an optimized structure, make it possible
to assess the feasibility of a practical implementation.

In the present paper we employ as the original packing
the atomic packing constructed in Ref. 6 and incorporating
all the global properties of quasicrystalline structufiessa-
hedral orientational symmetry, lack of translational symme-
try, self-similarity on different length scaletgether with a
specific indication of the atomic positions satisfying the re-
quirements of local close-packing. It is well known that in
close-packed structures, each atom can be characterized by a
number of topological characteristics, specifically, the num-
ber Z of nearest neighbor®r the coordination numbgand
the type of polyhedron whose vertices coincide with the po-
sitions of these neighbofso-called coordination polyhedra
The model employed contains three types of atoms with the
coordination numbers 12, 14, and 16 and classical Frank—
Kasper coordination polyhedra, which were first introduced
to describe complex interatomic alloy#ccordingly, for the
Vorond division only three types of Vororigolyhedra arise
in the model. We call thenv{} (dodecahedronV{}, and c
V(lé) cells. The corresponding atomic configurations are dis- ) ] ] ) ) o W
played in Fig. 1. For each atom three of four interatomicFC')G' 1. Atomic configuration of the basic clustar§;) (a), V(Y (b), andv{y
bonds connect the atom to its neighbors in the same celi, '
while the remaining bond&hown as dangling bongserve
to connect the atom to atoms in neighboring cells. tained automatically in 20 “corners” with four polyhedra

The topological structure of the resulting bond networkyv{2) meeting at each corner. The resulting struci# now
is fixed by the original atomic structure, and can be describedonsists of 1220 atoms and contains several closed clusters,
on the basis of an inflation procedure that is an obviousntermediate between it and(2) . At the third step, 13/
reformulation of the procedure used in Ref. 6. Nonethdes%msters are joined; here, thé%) clusters obtained by inflat-
we examine the first steps of this procedure in greater detailng a V(Y cell are positioned at corners where four
starting with a 20-atom dodecahedrafy). This atomic v clusters meet. At the same timé{Y-type cells arise on
cluster is closed in the sense that each surface atom has g glued edges of the clusters.
more than one dangling bond projecting out of the cluster.  This procedure can be repeated an arbitrary number of
The attachment of atoms from the next shells to the clustefimes. This makes it possible formally to obtain a cluster of
can be illustrated as the attachment of 12 similar dodecahemy size, consisting essentially of a covalent dodecahedral
dra to the faces of this dodecahedron and “gluing” the co-quasicrystal dual to the original icosahedral metallic quasic-
incident faces. The resulting 110-atom clusté® is shown  rystal.
in Fig. 2 and is also closedor clarity, the external dangling It is interesting to examine the resulting structure from
bonds are not shownThe second step repeats the first stepthe standpoint of a dislocation model. As follows from the
but starts with the clustev!{?. Cells of typeV{Y are ob- form of the faces of th&/{} ,V{}), andV{} polyhedra, the
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orientation of the atomic bonds. Such information is funda-
mental for assessing the feasibility of producing real cova-
lent quasicrystals. To obtain such information we numeri-
cally simulated a dodecahedral cluster obtained from a 439-
atom cluster by the duality procedure of Ref. 6. Only certain
of the complete set of vertices of Voranpolyhedra were
selected, so as to obtain the largest centrosymmetric closed
cluster. The resulting cluster contained 1140 atoms and 2120
interatomic bonds, and it was relaxed by the method of con-
jugate gradients using a three-particle Keating potetflial,
which is often employed for simulating structures with tetra-
hedral coordination. In the Keating approximation the energy
E of an N-atom cluster is given by

4

N
1
E=e2 [52 [ri(n)-ri(m)—1]?

i=1
1 2}

3 4
+B2 2 |ri(n)-ry(m+ 3
i=1j=i+1

. . _ , where the vector;(n) connects the-th atom with itsi-th
FIG. 2. Atomic configuration of the clusta(3. neighbor and is measured in units of the characteristic inter-
atomic distanced (ordinarily, in the corresponding crystal
interatomic bonds in them form either five- or six-atom ggrenc?fci)gﬂé\tg?ilgel 8”?2% Srrees%irtavrcgflf r\?vse;%rgg;ee?j byaﬂ]:s
rings. Let us draw imaginary stra|ght.I|nQd|scI|nat|on$  typical of silicon:e = 12.47 eV.d=0.234 nm, ang8—0.29%°
through the centers of the six-atom rings up to the point .

X . Figure 3a shows the relaxed structure of a model cluster,
where the lines intersect at the centers of the polyhedra. The, .~ 2. T . .

hile Fig. 3b shows the relative intensity of the Fourier com-

resulting linear multiple-bond structure can be characterize . i )
onents of this structure in a plane perpendicular to one of

as a hierarchical disclination structure of dodecahedral nets " "~ ;
. , T he five-fold axes. Although the relaxation method employed
works. It is easy to check that the resulting disclination struc-

ture is topologically equivalent to the one proposed in Refsqld not constrain the symmetry to be icosahedral, the relax-

6 and 8. At the same time, our representation of disclinationgltIon procedure had essentially no effect on the symmetry of

differs from that proposed in the well-known Ref. 9, whereﬁ)ﬁllf;ir’eWh(;ISeititgﬁaFg%kesr 'r};:iofgluéfértrag?fgréru'sqgfv?;z
the existence of disclinationsodd number of lines”) was 9 gep ' 9y

associated with the presence of rings containing an odd num1-89'39 eV_or_approximater 0.09.eV per bond.
ber of sid The distributions of the bonds over bond lengths and
er of sides. . ) ; .
interbond angles obtained for this structure are presented in
Fig. 4. The lengths of the interatomic bonds deviate from the
optimal value by+5%, which falls within the admissible
variance for disordered covalent structut&he distribution
The proposed algorithm for constructing the atomicover the angles between neighboring bonds has two distinct
structure of dodecahedral quasicrystals is purely topologicahaxima—the main peak near 108° and a comparatively low
and contains no information about the lengths and relativpeak near 120°. These peaks correspond to the angles be-

3. SIMULATION OF THE ATOMIC STRUCTURE
OF A DODECAHEDRAL QUASICRYSTAL

FIG. 3. An 1140-atom covalent cluster with
icosahedral symmetryviewed along the
five-fold axig and the relative intensity of
the Fourier components of the structure of
such a relaxed cluster in a plane perpendicu-
lar to the five-fold axis.
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tween the bonds forming five- and six-atom wings. Mostquasicrystalline structures in practice. This enables us predict
interbond angles fall within a reasonable deviationtdf0%  the existence of covalent quasicrystals, which to date have
from the ideal tetrahedral angle. However, in contrast to thaot been observed.
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The asymptotic behavior of the spectra for large values of the scattering vector for the case of
elastic multiple small-angle neutron scatterif®ANS) is investigated theoretically and
experimentally. An expansion of the spectrum in terms of the reciprocal of the magnitude of the
momentum transfer is obtained taking account of the influence of the instrumental line. It

is shown that, to within some factor, the leading term of the expansion is identical to the
differential single-scattering cross section averaged over a statistical ensemble of particles;
several subsequent terms in the expansion are calculated and the range of applicability of the
resulting expressions is determined. The asymptotic behavior of the multiple SANS

spectrum is measured, using a two-crystal neutron spectrometer, for samples of an HTSC
ceramic, the alloy Fe—Ni, and Al powder. The agreement between the experimental results and
the theoretical predictions is analyzed. 1®98 American Institute of Physics.
[S1063-776(98)02312-9

1. INTRODUCTION nesseg, are used to obtain the parameters characterizing the
scattering system. As a rule, the larg@symptotic behavior

It is well known that the most detailed information can of the distributiond (q,z) is ignored, even though the impor-
be obtained from elastic small-angle neutron scatteringance of such investigations was pointed out some timé ago
(SANS) datd? if z<L, wherez is the sample thickness and and the general theory of random wdfkshows that the
L is the mean free path in the sample. The intensity distribuasymptotic behavior is similar in the single- and multiple-
tion (spectrum 1 (g) of the scattered radiatiom& |[k—ko| is ~ scattering cases.
the scattering wave number akdand k, are, respectively, Thus, a thorough analysis of largeasymptotic behav-
the wave vectors of the scattered and incident radipiion ior for multiple scattering has yet to be performed in SANS
measured over the widest possible range. This makes it po#vestigations. The purpose of the present work is to fill this
sible to determine not only the characteristic dkand den- lacuna. In the theoretical part we show on the basis of the
sity n but in some cases even the shape and details of thesults obtained in Refs. 9 and 10 that, to within some factor,
internal structure of an isolated scattering cefter. the largeg behavior ofl (g,z) is identical to the behavior of

In studying scattering at very small angles, a two-crystathe differential scattering cross secti¢a(q)) for g=>R™ 1,
spectrometer gives the highest resolution because the instrwhere the symbd{. . .) denotes averaging over all possible
mental line of such a spectrometer is narfoowever, the orientations and deviations from the average shapes and
wings of this line decrease asyt/(see, for example, Ref)3  sizes in a statistical ensemble of scatterers. The case in which
which is appreciably slower than the Debye—Beuche—Porothe wings of the scattering lines are proportionakfo® is
1/q* asymptotic behavior typical of SANS @ in the studied in greatest detail. As a result, the shapes of the
present experimental scheme; see bgldthis makes it nec- boundaries of the inhomogeneities in samples of the ferro-
essary to use thick samples>L) and to take account of Mmagnetic alloy Fe—Ni, the HTSC ceramic Y&a,0;_;,
multiple-scattering effects. On the other hand, it is often im-and Al powder were studied in the experimental part of this
possible to prepare sufficiently thin samples, for exampleWork.
when the overall integrity of a sample must be preserved. In
this case the scattering is, as a rule, multiple scattering.

In the current practiée® of SANS spectrum analysis
with z>L, ordinarily the functionsw(z), where o is the Elastic small-angle neutron scattering is forward scatter-
width at half-height of the SANS intensity distributions ing, since it results only in a small change in the direction of
I(g,2z), measured for several samples with various thick-neutron motion. If the neutron mean free path is much

2. THEORY

1063-7761/98/87(12)/6/$15.00 1195 © 1998 American Institute of Physics
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greater than the wavelength and the sizes of the scatterers, Finally, we obtain an expression for the intensity of mul-
then each subsequent scattering of a neutron can be assuntgde SANS by the anglex for a sample of thickness.
to occur on a new random configuration of scattering centers.

For this reason, neutron propagation is described by the P(a,z)= 1 szu exp(iu- @)
equation o (2m)?
dP(k, 2) 0)—o(u
T=—f Aok [W(K' k) P(k,2)~ W(k,k')P(K' 2)], xexp(—uwy ®)
t
P(k,0)=d(k—ko), (1) Since the system of scatterers is isotropic, the average

cross sectiow(a) depends only oha|, and therefore in Eq.

whereP(k,2) is the probability density for a neutron to pos- (6) the integration over the direction of the vectorcan be

sess momenturk at depthz from the surface of the sample. . .

. . - . performed. The result is the well-known integral representa-
Equation (1) contains the transition ratdger unit length fion
W(k' k), averaged over the mean free path, from a state with

momentunk into a state with momenturk’. If the material 1 (=~ o(u)
is homogeneous on the average, thé¢k’,k) depends only Pla.2)=5— 0 uJp(au)expg —«z|{ 1— o du.
onk?=k %and the differencak=k' — k. If neutrons are not 7)

rescattered, the functioR(k,z) decays exponentially The two-crystal spectrometer has the feature that the de-

dP(k,z) e viations of the neutrons from the initial direction are detected
4, «Pk2, Pk2z=Pk0e " (20 only in one plandhorizonta). That is, in fact, in this method
neutrons with different vectork with equal projections on
at the rate the horizontal plane are indistinguishable, and an experiment
can only give an average distributigaver the vertical di-
K:j d*k'W(k’,k)=na, vergence of the beamTherefore the expresside) for the

_ _ _ intensity P(a,,ay) should be integrated over, . Since the
wheren is the density of scattering centers ands the total  vertical extent of the detector window is much greater than
average scattering cross section of a single center. The nethe characteristic beam width, the integration limits can be
tron mean free path is=1/x. taken as infinitéa detailed discussion is given in the experi-

For small-angle scattering\k/ko<1. Consequently, it mental pait In addition, to obtain the experimentally ob-
can be assumed thak L ko, i.e., the momentum varies only served quantity, the intensity must be convolved with the
in a plane perpendicular to the direction of motion of theexperimental line. Thus, we find that the normalized experi-
neutron beam. Equatiofl) can therefore be written in the mentally observed intensity of neutrons scattered by an angle

two-dimensional form a, in the horizontal plane is
dP(a,2) d?a’ . ) © _
4~ K P(a,z)—f o ola—a')P(a',2)|. Pexp(ax,z)zf_wdﬂ lo(B)P(ay—B,2), (8
3
where
Here
k—k P ,z=de P((af+al)*?z
a=—OJ_k0, (Tt=jd2aa(a), (ax ) i ay ((ax ay) )
Kol
. . . 1 e
and o(a) is the average cross section for scattering by the =5 J' du, expliuga,) P(uy, 0,2). (9)
angle « (it is convenient to call the two-dimensional vector T J -

a the scattering angle Herel o(B) is the instrumental line, and the functioRé«, 2)

Equation(3) is translationally invariant and can be di- and P(u,,u,,72)=P(u,z) are determined by Eqs7) and
agonalized by a Fourier transform. Transforming to the g respgct{v,ely. ’

Fourier representation, we obtain

If a,>max(as,ains), Where the parameterss and «;,¢
dP(u,z) o(u) characterize the widths of the functiofc,) andlq(ay),
4, x| Puz)- TIP(u,z) , Pu0=1, respectively, then to estimafe,f ay,2) it is sufficient to
(4)  take account of the fact that the expression in the integrand
where in Eq. (8) has two sharp peaks—#=0 and 8= a,—and

that the functiond o(a,) andP(ay,z) are normalized to 1.
Therefore

a(u)=f d?aexp—iu- @)o(a)
P ay,2)=lo(a )+~|5(a 2),  ay>max ag,ing).
and o(u)=0=o0,. Solving Eq. (4), we find the Fourier exl o * § ° milo)

transform of the propagator For a more detailed analysis we combine E@8, (8), and

P(u,z)=exp(— «z(a(0)—o(u))/ay). (5) (9) to yield
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= du . u\ wogatad| (uaqy)? u Uay)? U
Pexl @,2) = f 5 explit,ay) a't—a'(—): o 124( ) den (Ueg, uep
- Qy as—aj { 205 20y 2a; 2ary
0(|Ux|))> 2 4
Xexp —«kz| 1— AinglUy|), mu oca
[{ ( oy g( |ns| x|) + az (1_7)006(%&%4_ >

X

(11)

2 2[ 4 4
. . . MO X Ua Ua Ua Ua
whereg(ajn¢ Uy|) is the Fourier transform of the instrumen- 013 (Uay) 1 (Uep) In—2

n
tal line. A general discussion of the instrumental line can be 02—l | 32  2ax  32° 20
found in Ref. 3. In practice, it is sufficient to take account of

4
the behaviog(x) =1—x+0(x) in the limit x—0, which is " mu (3 ) 2,20 02+ o2 6
. i . P —oga’|,
determined by the asymptotic behavior lg{ a,) at large 32422 Y| ooataiaitay) = oe
angles:
(15
i 1
lo(ay) = a'—”;+o(—2), wherey=0.577 ... isEuler’s constant. Introducing the pa-
™y Qx rameterizatiom?):alaz and é=In(ay/a,), which is conve-

nient for representing the answer, taking account in(Eg).

of the first three terms in the expansion of the exponential
and two terms in the expansion gfu), and integrating the
result, we obtain

To calculate the asymptotic behavior of the intensity
Pexd @x,2) at large angles it is sufficient to make the substi-
tution u,— u/ ey

1 o0
Pexplax,2)= f ducosu 2 2
x 0 Pexd @x,2)= ——3 @(&) +lo(@) + ——— (&)
8a 4
o(ul ay) u x x
Xexp —«kz 1_T g ins_~ ] 4
t X 3 InZax 3 E oga
(12) a2 204ap
expand the integrand in powers of the small paramefter,, 3Kzl 22204
and carry out the integration. — —mzow(g) + 50 ©2(&)
For scattering by particles with a sharp step boundary Ama, 16a;
(i.e., for akgl,<<1, wherely is the width of the boundajy 5 13 3gngd
o(a)x1lal* for |a|>a., where a, is the characteristic «| 3t 22, 29e8 )
scattering anglé!12The cross section for single scattering a4 204ap

by a sphere is studied in Ref. 9. However, there is no known

expression for the scattering cross section of bodies with an B Kzzzaé (&) w(&)— Zag (O W)
arbitrary shape. It is therefore desirable to study a function of 160()5( ¢ 320&) ¢ '
fairly general form that can be used to approximate the
single-scattering cross section as (16)
ooala’ o2 where
ola)= 2 o 2. TOceXy — |, (13
(a“+aj)(a’+a3) a 4 sinhé¢

e()= F (&) =2 coshé.

with five degrees of freedonety, a1 ,a,,0g, anda. In order
that the functiono (@) determined by Eq(13) corresponds
to the real scattering cross section, the cross sections can be Here, the exact expression fg(u) was used to calcu-
required to have the same value at=0, the same late the second term, and terms of order higher thaq;? 7]
asymptotic behavior as—, and the same integrals of ay were dropped.

o(a), and two additional conditions can be imposed. After Let us consider the case in which the width of the instru-

Fourier transforming we obtain mental line is small, i.e.q;,s< ay. Then the first term in Eq.
(16) is the leading term for a<ea,,, where «
2mogaial = TKkZagl2ains> ay, i.€., in this regionPe, ay,z) decays
o(u)= W(KO(‘”U) ~Ko(azu)) as 1k3 . The leading term of the asymptotic expansion of the
2T ag

multiple SANS is therefore determined by the behavior of
the single-scattering cross section at large angles, which was
) 14 noted in previous work® The preasymptotic terms in the
expansion ofP,{ a,,z) (the third through seventh terms in
whereu=|ul, andK,(x) is the modified Bessel function of Eq.(16)) give an increase in the rate of decayRy{ a,2)
the second kind. It follows from Eq14) that for smallu/a,  with increasing sample thickness.

) a’u?
+mogatexp — 2
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I, counts/min

FIG. 1. Two-crystal method for performing
b small-angle neutron scattering experiments: a
Arrangement of a two-crystal spectrometer
based on perfect crystaldM—monochromator
crystal, A—analyzer crystal, D—detector,
S—sample,fg—Bragg angle,a,—angular de-
viation of the analyzer from a position parallel
to the monochromatgrb) instrumental curve of
a two-crystal spectrometefdoty, measured
without a sample ahy,=1.75 A and its least-
squares fit by a Lorentzian function.

1000¢

100

-200 -100 0 100 200 300
a,, ang. sec.

We shall now examine separately the single-scatteringng neutron wavelength,=1.75 A was wo=(3.1+0.2)"
cross section of a sphere in the case of diffraction. In thésee Fig. 1 which to within the measurement error was
Born approximation identical to tge value calculated from the d)édrll_lamical theory

. 2 of diffraction” Detection was performed with“dle detector
(sin(@/ ac) ~ (alac)cod al ay)) , (170 with a thermal neutron detegtion efficieney~96%; neu-
(ol ag)® trons in the highest reflection orders wity=X\,/n were
wherea, = 1/kor o, Ko is the initial neutron momentum amg filtgred using a 1(_)0-mm_thi(_:k, single-crystal quartz filter,
is the interaction radius. To find the behavior of the FouriefVhich reduced their contribution to the beam to less than 1%
m ©f the main component. The sampl8swere set up in the
os(@) the function UL(a):anélz(aerag)z' whose SPace between the monochromator crystabnd the ana-

asymptotic behavior is the same as thatrg{a) averaged lyzer crystalA (see Fig. 1a The intensities of the neutrons

over one period of the oscillations. The asymptotic represer€flected from the crystak were measured within the angu-
tation of o (u) for small u follows from Eq. (15), and lar range outside of which the detec@rdetected only back-

og(a)— o (@) decreases more rapidly thaned! The first ground counts. The minimum possible rotation step of the
two terms in the expansion can be found by integrating thé@nalyzer was 0.12 _ _ _
terms ~u® and ~u? in the integrand. Hence we find the !N the expressior(9) the integration overay is per-

behavior of the Fourier transform of the cross section in thdormed over infinite limits, i.e., it is assumed that the height
Born approximation for small values of H of the detector window is great enough that the entire

scattered beam falls within the window. In real experiments

ogla)=o0y

transformog(u) for small u, we add to and subtract fro

2 4, 2 . .
a(l)= 7'”720% N WUchU n a;u' (18 the maximum angle is
ad=tan *(H/2s)=H/2s, (20)
As in Eq. (16) we obtain where s is the sample—detector distance. In our diffracto-
Kza? meter H=40 mm ands=1200 mm, so thaTaSZ 0.017rad
Pexplax,2)= —7 +lo(ay) =57, which is typical of devices of this type. For all
205, samples investigated, the widths of the multiple SANS spec-
kzay o da tra did not exceedm,~2'<ad, i.e., we can sek)=co. It
—C( | X +6y— 11) should be noted that such a situation almost always occurs
27Taﬁ c when perfect crystals are used in a two-crystal spectrometer,

2,2 4 while for crystals with a mosaic structure the angular range
3Kz ac( n4ax 25) (19 of the small-angle spectra can excecegb, which introduces
5 additional corrections in the asymptotic representations of

X
the SANS intensity.
All remarks made for Eq.(16) also hold for this © intensity

asymptotic representation.

o

4. EXPERIMENTAL RESULTS AND DISCUSSION

3. EXPERIMENTAL PROCEDURE .
The instrumental curve of the two-crystal spectrometer

The experiments were performed on a universal neutrowith perfect crystals is displayed in Fig. 1b. Approximation
diffractometer with a doubly monochromated be¥nPer-  of this curve by a Lorentzian function shows that its
fect (111) Ge crystals arranged parallel to one anotfsge asymptotic behavior is described bwi/, as assumed in the
Fig. 13 were set up as a spectrometric pair. The measuretheoretical part of this work. Figure 3 displays the angular
width of the instrumental curvéy(«,) (ay—the rotation dependence of the intensity in the wings of the instrumental
angle of the analyzew,=0 for the exact Bragg position of curve. Clearly, in this range of anglég{ «,) is much smaller
the analyzer with respect to the incident bganthe work-  thanP.,{ a,) (by approximately an order of magnitude
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FIG. 2. Asymptotic behavior of the intensityof scattered neutrons as a FIG. 3. Asymptotic behavior of the intensityof scattered neutrons as a

function of rotation anglex, of the analyzer crystal{ is the exponent 1) function of rotation angler, of the analyzer crystal for samples of the alloy

Al powder sample with average granule sizR=29.5um and thickness Fe—Ni on a logarithmic scaled(is the exponent 1) Sample thickness

z=5.5mm,5=3.02(0.03); 2) HTSC ceramic sample=1.69 mm, average z=7.0(0.1) mm, §=2.93(0.03); 2) sample thicknessz=2.0(0.1) mm,

pore size 3um, §=3.04(0.03. The solid line is a least-squares fit. 5=2.89(0.03);3) sample thicknesg=1.0(0.1) mm,5=2.850.03; 4) in-
strumental line. The solid line is a least-squares fit.

If scattering occurs by solid compact particles with uni-
form density and a sharp boundary, the following relation
obtained by Debye and Buecfiend Porodf (see also Ref.
1), holds for the single-scattering intensity:

'ceramic samples was investigated in Ref. 17, ar(d))
«q ", wheren=3.85+0.1, was obtained for the cross sec-
tion. Our data, obtained with a larger statistical sample, sug-
2 gest more convincingly that the scattering takes place at
1D(a)=—p%S, (21)  compact inhomogeneities with a sharp boundary.
a Figure 3 showgon a logarithmic scale, as in Fig) the
or o(q)cq~*, which holds for inhomogeneities of arbitrary results of experiments performed on samples of the alloy
shape for large values af. Here p is the neutron-optical Fe—Ni—a ferromagnet characterized by the presence of a
density, determined by the composition of the scatterers andisordered domain structure—covering a range of thickness.
their host medium, an8is the surface area of a particle. The Using the procedure described in Ref. 6, the domains were
asymptotic representatioii)(q)«q~* also materializes in determined to be about8m in size. A simultaneous least-
some magnets near phase transitibn.a sharp boundary squares fit of the experimental data and the instrumental line
does not exist between the medium and an inhomogeneitysing Eq.(16) (with §=1 and neglecting the Gaussian tgrm
the intensity decays more rapidly thgi®. A slower depen-  gives a large rms deviationy¢/(n—m—1)~390/64, with a
dence than Eq21) is possible near phase transitidas well ~ total of n=71 experimental points anti=6 adjustable pa-
as for scatterers with a fractal surfd€e” On the basis of the rameters Here the errors for the experimental points were
theoretical analysis made above, investigations of thé&alculated taking account of the fact that, according to Ref.
asymptotic behavior of the multiple SANS intensities should18, the statistics of the readings in our apparatus deviates
give similar information. somewhat from Poisson statistics, and the variance-?is
Figure 2 displays on a logarithmic scale the results of the=1.41, wherel is the average intensitffor fixed «,). The
measurements performed on a sample of the HTSC ceramicmown thickness ratios were included in the fit as two addi-
YBa,Cu;0,_ 5, which is characterized by the presence oftional points with their own errors. A simultaneous fit of the
pores about 3um in size® as well as the experimental scat- data by functions of the form:lla)2<+c2/af, where the
tering data for a sample of Al powder with thickness same value ob is used for different samples and the ratio of
z=5.5mm and average granule siz&=29.5um, deter- the coefficients, for different samples equals the thickness
mined in Ref. 7. The solid line in the figure shows the resultratio, gives §=2.91(0.04) withy?/(n—m—1)~145/65. A
of a simultaneousleast-squaredit of the experimental data satisfactory resulty?/(n—m—1)~76/63 is obtained only
by the functionc, /a2+c,/a? and of the instrumental curve with a function ¢c,/a2+c,/a’ of a more general form,
by the functioncllaﬁ. The asymptotic behavior of the sec- where § has different values for three samples, and for all
ond term, corresponding to the sample, is clearly well-sampless<3. The exponen® increases with sample thick-
described by the Iavw;3, which agrees with Eq416) and  ness. This agrees with Eq4.6) and(19) and corresponds to
(19). The small-angle neutron scattering by the same HTSGhe contribution of the preasymptotic terms in the large-angle
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expansion. However, exponen#s<3 are not obtained for damental ResearctiGrant No. 96-02-17771jaand the
independent scattering of neutrons by compact inhomogenémerican Foundation “Fundamental Nuclear Physics”
ities with a sharp boundary. The observed difference like{Grant No. 1.3.5.-01

wise cannot be explained by the finite thickness of the do-

main walls, which cause8 to increase. *)E-mail: stepanov@viteps.itep.ru
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Long-lived excited state of Te donors in GaP
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The kinetics of the photoresponses in constant and microwave electric fields and the variation of
the absorption of background radiation in GaP doped with Te 1@’ cm™3) upon

impurity excitation at 5-50 K are investigated. The lifetime of the excited state of the Te donors
is determined £ 1072 s). It is shown that the results presented are consistent with the

model of carrier accumulation in long-lived impurity excited states in semiconductors. These
results are compared with the results previously obtained for diamond-structure
semiconductors. ©1998 American Institute of Physids$51063-776(98)02412-3

1. INTRODUCTION through which both transitions to the ground state and the
thermal ejection of electrons into the conduction band take
It has been established in a series of studse® Ref. 1  place. The kinetic equations proposed in Ref. 2 describe the
and the references thergithat some donors and acceptors experimental results quite well when a small number of ad-
from groups V and Ill, respectively, in diamond, silicon, and justment parameters are used. However, an investigation of
germanium have excited states, in which the charge-carrig¢he constant-voltage photoresponse was possible only at rela-
lifetime 7* is many orders of magnitude greater than thetively high temperatures, since the response appeared as a
free-carrier lifetimer. These long lifetimes are due to the result of the thermal ionization of a long-lived state, and,
complex band structure of diamond-structure semiconductherefore, the lifetimer* was determined in Ref. 2 as an
tors, which causes valley-orbit or spin-orbit splitting of the adjustment parameter.
ground states of the donors and acceptors. Because of the In the present work relaxation of the excitation of Te
identical parity of these split-off lowest excited and grounddonors in GaP was investigated by measuring the photocon-
states of the impurities, electric-dipole optical transitions be-ductivity in a microwave electric field, as well as the induced
tween them are forbidden, and the probability of mul-absorption of background radiation. We previously used
tiphonon transitions is low. The accumulation of carriers inthese methods to prove the existence of long-lived excited
long-lived excited states leads to several characteristic phestates of donors and acceptors in diamond-structure semicon-
nomena, particularly to the dominance of percolation hop-ductors. This allowed us to extend the temperature range
ping photoconduction at a constant bias voltédjamond or  down © 5 K without resorting to extrapolation, to determine
polarization hopping photoconduction in a microwave electhe lifetimer* of the excited state, and to study its properties
tric field (silicon and germaniuin It should be expected that in greater detail.
long-lived excited states also exist in other semiconductors
with a comple>.< band structur_e. In partlcglar, in the |nd|rect—2' EXPERIMENTAL RESULTS
gap llI-V semiconductor gallium phosphide the ground state

of Te donors is split by the valley-orbit interactigsee the Samples of Te-doped GaP cut from wafers with a thick-
inset in Fig. 3, and, therefore, as in silicon, the lowest ex- ness of 0.25—-0.35 mm were investigated. The contacts for
cited state of Te should be long-lived. the constant-voltage investigations were fabricated by the

In fact, the results obtained in Ref. 2 were recently ex-vacuum evaporation of indium followed by dissolution of the
plained by the existence of a long-lived excited state for Tesurface layer of GaP in the liquid metaknd they were
donors in GaP. Pulsed impurity breakdown in the electricsatisfactory over the entire temperature range. Figure 1 pre-
field of high-power electromagnetic waves of long- sents the temperature dependence of the resisRud®ne
wavelength coherent radiation was used to excite thef the samples. At 300 KR=18(), which, with consider-
samples in Ref. 2. After a certain delay 0.5us) following  ation of the sample geometry and a mobility of 12076vh
the cessation of breakdown, a constant-voltage photore-s (Ref. 4), corresponds to a Te concentratidyy=2
sponse appeared, and its relaxation time constant increasedl0'” cm™3. When the temperature was lowered, the value
from 10 ° to 3x10 % s as the temperature was lowered of R increased exponentially with an activation energy of 80
from 150 to 35 K. The phenomena observed were attributedheV. This value agrees quite well with the energy deter-
to the accumulation of electrons in the long-lived*( mined in Ref. 4 from the temperature dependence of the Hall
=7 ms) 15(T"3) excited state of Te. The temperature depen-constant for a sample with a similar concentration, but a
dence of the slow relaxation of the photoresponse was attritsmall ionization energ¥; =90 meV, which was determined
uted by Ganichewt al. to thermal electron exchange be- from optical experiments(see the inset in Fig.)1The con-
tween the long-lived state and the higher-lyin§(E ;) state, centration of the compensating impurity in the samples in-
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FIG. 1. Temperature dependence of the resistdha# a sample of Te-

gggﬁﬁis?nalgalgset — energies of the ground and several excited states of Te Plots of the temperature dependence of the quasistation-
' ary photoresponsed ., and U4 for the same sample are
presented in Fig. 3. It is seen that at low temperatllgs,

. 116 a3 : . exceedsUgy; by almost three orders of magnitude. As the
vestigated K, ~10' cm ) was determined from the high temperature is raised to 16 KJ ., slowly decreases and

temperature portion of the plot & and a comparison of the then drops sharply, and @t=35 K it is comparable tdJ .

latter with the_ Q(?pendence for a.S|r_n|Iar sample n Ref.. 4 AThe temperature dependencedgf., andU 4. for Te in GaP
segment exhibiting an exponential increase in the resistance

with an activation enerav of 7.5 meV. which does not de-3¢ similar to the dependences obtained for doped silicon and
9y ) ’ ermanium: These dependences are attributed to the fact

pend on the intensity of the room-temperature backgroun(&at Uq. is determined by free charge carriers with a short

illumination, was observed af<35 K. The resistance is |, .. . . : o
determined along this segment by the hopping conductivity“fet'me' while Upg, is determined by the polarization hop-
ping photoconductivity resulting from the accumulation of

and the value of the activation enefggorresponds to\q carriers in the long-lived excited states of the impurities.

=2x10" cm™> whenN, /Ng<<1. The accumulation of charge carriers in long-lived ex-
The photoconductivity of the GaP samples was investi- 9 9

gated at constarftic) and microwavemew) bias voltages. In cited states in silicon leads to the appearance of absorption

the latter case samples measuring A.35x 0.03 cn filled bands at photon energies which are smaller than the ioniza-

the width of an 8-mm waveguide at an antinode of the eIeC:uon energies of the impurity ground state and correspond to

tric field of the wave near its end face, which was closed offIhe photoionization of long-lived excited stafeowever, in

by a grid. The samples were excited through the grid by thethe case of GaP the measurements in the spectral region of

output of a laser with a wavelength equal to 3.9 and a photon energies smaller than 90 meV are made difficult by
power of about 5 mW, which was modulated at the fre-

guency f. The microwave radiation from a Gunn diode Unnow. Usts, Uso. Tel. units

which passed through the sample and was reflected from tI'104 e
closed end was fed through a circulator into a detector
which isolated the component modulated at the frequdncy ..o‘
This signal is proportional to the photoresponse of the o*’
sample and was recorded by a phase-sensitive nanovoltm10*t (pfbgooooo 000600 C0OAV0 0 O 2
ter.

Figure 2 shows the dependence of photorespthgs,
on the modulation frequendyfor one of the GaP samples at
5 K. It is seen that the response decreases by almost thrd0*f
orders of magnitude abis raised from 8 Hz to 10 kHz. o Abagy,,
Unfortunately, because of the weak absorption in thin Y VYVVYTIG VWYYV Tin.

samples, the photoconductivity kinetics could not be investi- ‘ MA%MA
AAA
A

oo o
..
o *®

g

©
.O
% 3 T, s

gated at large values df. Therefore, we were unable to 07 e
achieve conditions under which the response would nc a
longer depend o and would be determined by free photo-
electrons, as in silicoh.The frequency dependencEig. 2) 10° ) ) X
corresponds to relaxation of the photoresponse with a tim: 0 50 100 150 200 750
constant 7* =8 ms, which essentially coincides with the 1000/7, K™

value obtajned in Ref. 2 as an adjustment parameter. .ThﬁG. 3. Temperature dependenced atl2 Hz: 1 — U, o,: 2 — U o with
constant-bias photoconductivity under the same conditiongetection by SiB); 3 — Uy,; 4 — lifetime 7 of holes in silicon doped with
did not depend offi at least up to 10 kHz. B (N,=3.5X10° cm™3) and P Ng=2X 10" cm™3).

M, 4 ,
fa 1107
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the absence of a series of strong bands of lattice absorptiorionized atoms of the principal and compensating impurities
Therefore, we confined ourselves to an investigation of thénduced by the field. It can be many orders of magnitude
kinetics of the absorption of the room-temperature backgreater than the dc conductivit).In the case of impurity
ground radiation induced by the modulated impurity photo-excitation, polarization photoconductivity appears as a result
excitation of GaP samples. As in Ref. 8, the sample wa®f the hopping of nonequilibrium charge carriers between
placed in a cryostat. The radiation passed through its coléxcited atoms with large orbitals and ionized atoms of the
silicon window and then through the sample and impingedrincipal impurity. The polarization photoconductivity relax-
on an impurity photoresistor located beyond the sample. Thation time is determined by the lifetime of the impurity ex-
sample and the photoresistor were separated by a polyited states™ (Ref. 9. It follows from Fig. 2 that the value
ethylene film, which virtually completely absorbed the of +* for Te in GaP at 5 K is 8 ms.
modulated laser radiation with a wavelength of 3,3 In our experiments the frequency of the microwave field
used to excite the sample. The photoresistor detected th@0 GH2 was so high that only complexes of ionized and
component of the background radiation modulated as a resudixcited atoms separated by minimal distances can contribute
of the change in absorption caused by redistribution of theo the photoconductivity. It was shown in Ref. 9 that such
charge carriers between the Te ground and excited stategtive complexes, which consist of ions of the principal and
upon photoexcitation. The absorption associated with ionizacompensating impurities and an excited impurity atom, form
tion of the Te excited state50 meV) was detected by a as a result of the trapping of free carriers on dipoles consist-
boron-doped silicon $B) photoresistor, which is sensitive ing of ions of the principal and compensating impurities and
in the region 45-100 meV. The absorption due to ionizatiorthe hopping drift of ionized ions of the principal impurity
of the ground staté90 me\) was detected by a mercury- toward the dipoles. Thermal dissociation of the dipoles leads
doped germanium Qelg) photoresistor with a long- to a decrease in the values b, in relatively weakly
wavelength cutoff at 90 meV. compensated semiconductors as the temperature is raised.
Figure 2 presents plots of the dependence of the re-  The temperature dependencedgf,, andU 4. upon the
sponseU 4,5 Of the photoresistors on the modulation fre- steady-state photoexcitation of GaP in Fig. 3 are similar to
quency of the exciting radiatiof. It is seen that the re- those obtained for silicon and germanitiihe decrease in
sponses caused by the induced absorption of backgrounfle response in a microwave field as the temperature is raised
radiation decrease with increasihgi.e., are also determined s naturally associated with thermal dissociation of the di-
by long-term processes. The response of théHge photo-  poles. At higher temperatures there is a rapid dropjg.,
resistor was in phase, while the response of tH8Spho-  due to thermal emptying of the long-lived excited states.
toresistor was in antiphase to the exciting radiation. Hence it The temperature dependencelhf. is determined by the
follows that photoexcitation leads to an increase in the populifetime of the free electrons. At T<10 K, U scarcely
lation of the excited state and a decrease in the population @fepends on temperature, sineés determined in this range
the ground state. Unfortunately, despite the very high sensby the electron energy relaxation time. At-45 K there is a
tivity of the GgHg) photoresistor, we were unable to reli- rapid drop inU 4 due to thermal ionization of the Te ground
ably detect the photoresponse both at high valueb lié-  state. In the intermediate temperature range there is a region
cause of the small amplitude of the signal and at low valuesyith an increase itJ 4. 7 asT is lowered. Populating of the
of f because of the appearance of hboise. Therefore, we |ong-lived Te state, whose thermal ionization leads to an
shall refrain from estimating the relaxation time of this I'e-increase in the lifetimer of free electrons, occurs due to
sponse. Owing to the high intensity of the background in theyhotoexcitation in just this temperature range. This conclu-
long-wavelength portion of the spectrum, the response to thgion is confirmed by the results which we previously ob-
Si(B) photoresistor was recorded with sufficient confidencetained in a direct investigation of the temperature depen-
The relaxation time estimated from Fig.(2 ms is close to  dence ofr in silicon doped with B and compensated by P.
the relaxation time ofJ . The value ofr was determined from the phase shift between
Figure 3 presents the temperature dependence of the any, .. and the exciting radiatioh The temperature depen-
plitude U o5 Of the induced absorption dt=12 Hz normal-  dence ofr for one of the silicon samples is presented in Fig.
ized to the sensitivity of the @) photoresistor. It is seen 3. |t is seen that increases in the temperature range 22—14
that the amplitude of this absorption scarcely depends OR, in which populating of the long-lived excited state of
temperature up to 16 K. This is the temperature at which thgoron impurities in silicon occurs.
rapid drop inU ., begins. The kinetics and temperature dependence of the absorp-
tion of background radiation induced by modulated photoex-
citation are consistent with the conclusion that nonequilib-
rium electrons accumulate in a long-lived excited state of Te
Our interpretation is based on several results obtained im GaP. AtT<16 K the absorptioriFig. 3) scarcely depends
investigations of diamond-structure semiconductas,well  on temperature, since the transition rate of electrons from the
as on the model of polarization hopping photoconduction inexcited state to the ground state exceeds the rate of thermal
a microwave electric field. emptying of the excited state and the concentration of ex-
In doped and compensated semiconductors polarizatiooited impurity atoms does not depend BnA sharp drop in
conductivity appears in a microwave electric field as a conU 4,5 occurs in the same temperature range as the drop in
sequence of the change in the dipole moment of pairs o)., because of thermal emptying of the excited state. We

3. DISCUSSION OF RESULTS
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note that the amplitude of the induced absorption depends aronclusion drawn in Ref. 1 that such states exist in a broad
the total concentration of excited impurity atoms regardlesglass of semiconductors with a complex band structure.
of whether these atoms are isolated or localized near thBlanifestations of long-lived impurity states are possible for
compensating ions. different semiconductors in various ranges of temperatures

It was established in the Ref. 1 in the case of silicon thatand concentrations of principal and compensating impurities
the relaxation time ofJ ., is determined by the lifetime of and for different types of equilibrium conduction.
the excited state and depends on the chemical nature not only We thank S. D. Ganichev for supplying the GaP
of the principal impurity, but also of the compensating im- samples. This work was carried out with financial support
purity, whose ions appear in the active complexes, and therdrom the Russian Foundation for Basic Resed@hant No.
fore can differ from the lifetime of isolated excited atoms. 96-02-16243 and the Program for Supporting Leading Sci-
Therefore, the relaxation kinetics bf,,, andU gscan dif-  entific Schools in RussiéGrant No. 96-15-96701
fer. In fact,U shas a somewhat shorter relaxation time than
Unew (Fig. 2. This difference can be attributed to the fact
that the influence of the proximity of compensating impurity _ o
atoms on the lifetime of excited impurity atoms is displayed” E-mail: yaep@mail.cplire.ru
in GaP, as well as in silicon.
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In conclusion, we note that the investigation of the
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The absorption coefficient of perfect single crystals of the fullereggisOmeasured in the

energy range 1.6-2.1 eV at temperatures from 4.2 to 300 K. An absorption fine structure is
discovered in the and is assigned to electronic and vibronic transitions with the production

of free excitons and excitons localized on structural defects. It is shown that in the region of the
structural phase transition from a face-centered cubic structure to a simple cubic structure

the absorption coefficient undergoes a jump, which is associated with an energy shift of the free
exciton line toward lower energies. It is discovered that spatial inhomogeneity, which is
associated with the growth of the new phase from a finite number of nuclei, appears in the crystal
at the time of this transition. €998 American Institute of Physid§1063-776(98)02512-§

1. INTRODUCTION 0.3% froma=1.4154 nm toa=1.4111 nm)®’ but the par-
tial orientational ordering of the molecules leads to strong

Molecules of (g, are bound to one another in a crystal |owering of the symmetry of the crystal tBa3, and the
mainly by van der Waals interactions, and in this sense crysattice becomes a simple cubic one with a basis consisting of
tals of Gsg can be classified as typical molecular crystals. Atfoyr differently oriented moleculées’®
the same time, the electronic properties gf Crystals place The reason for this phase transition is the existence of
them in the borderline region between “classical” molecularthe off-center part of the intermolecular interaction. The en-
crystals(such as naphthalenand “classical” semiconduc- ergy minimum corresponds to an orientation in which a re-
tors and have thus aroused great interest in them. gion of increased electron densitg double bond joining

The high symmetry and nearly spherical shape of the C pentagonsof one molecule is positioned opposite a region
molecule, as well as the weak intermolecular interactionof reduced electron densifya pentagon centerPf) or a
lead to the interesting features of these crystals associateféxagon centerHF)] of a neighboring molecule.
with orientational ordering of the molecules. According to At temperatures below the orientational phase transition
numerous x-ray diffraction and neutron scattering date, (T.~259 K) neighboring molecules are oriented in one of
for example, Ref. 1 and the references thereat tempera-  these two configurations, i.e?F or HF. The PF configura-
tures above 260 K the centers of the molecules form a faceion is more advantageous, but the energy corresponding to
centered cubidfcc) lattice of Fm3m symmetry. Since the the HF configuration is greater than that of tR€& configu-
symmetry of the G molecule is incompatible with the ration by only AG=10 meV8® Therefore, some orienta-
Fm3m symmetry corresponding to the fcc structure of thetional disorder remains in the crystal at temperatures below
crystal, this finding indicates the presence of static or dy-T.: some of the molecules havdF configurations, and
namic disorder in the orientation of the moleculbst notin ~ some of the molecules hawRF configurations. The transi-
the positions of their centeyswhich provides for an aver- tion from one configuration to another requires overcoming
aged fcc symmetry. According to the presently availablean energy barrier of the order &fEp,=0.25-0.3 eV. In
data, at temperatures above 260 Ky, @olecules undergo the rangeT.>T>0 the molecules undergo thermally acti-
rapid [with a frequency of the order of 2(Hz (Ref. 2]  vated transitions from one configuration to the other. As a
rotation about all of their axes, which also provides for fccresult, the population of th®F configurationp increases
symmetry. X-ray measurements have shown that when th@ith decreasing temperature as
temperature is lowered to 250—-260 K, the free rotation of the
molecules ceases and definite correlations between the orien- p=1/(1+exp(—AG/KT)), @
tations of neighboring molecules are established.

This event takes place in the form of a phase transitiorwhere AG is of the order of 10 me\(see Refs. 8 and)9
with an enthalpy changAH of the order of 8-9.5 J/¢.e., However, since the barrier heightEpy is fairly high, the
about 0.11 eV per moleculé~° Although the latent heat of frequency ofHF — PF transitions decreases rapidly with the
the transition is low, it indicates that it is a first-order transi-temperature and becomes negligibly small at temperatures
tion. The positions of the centers of the molecules changbelow 85-90 K. Therefore, at temperatures below 85-90 K
only slightly in the procesghe lattice constant decreases by the population of thé®F configuration ceases to follow for-
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mula (1) for kinetic reasons and is “frozen” at a level of the purity no poorer than 99.98%. Single crystals in the form of
order of 85%. This phase has been termed an “orientationghin plane-parallel plates with the natural habit were selected
glass.” for the measurements. The facet planes correspoftilth).
Despite the large number of x-ray, neutron diffraction, The thickness of the samples ranged from 0.01 to 0.3 mm,
and calorimetric investigations, some details of the orientaand the other two dimensions were usually of the order of
tional ordering in G crystals have not yet been elucidated. 1—2 mm.
In particular, the nature of some anomalies in the tempera-  Since the diffusion coefficient of oxygen in ad&rystal
ture dependences of the intensities of x-ray reflecfidss at room temperature is of the order of 16 cn?-s 1,14
unclear, the correlation radius in the “orientational glass” holding a sample in air for 24 h can lead to saturation of a
phase(i.e., whether it is, in fact, a glapss unclear, and the  gyrface layer of the order of 16 mm with oxygen and can
reasons why the temperature of the orientational phase trafn principle) influence the correctness of the measurements.
sitions varies fairly strongly(by several degregsfrom  Therefore, after the growth ampul was opened, the samples

sample to sample and the transition width sometimes reachgg. e placed fairly quickly in an optical cryostat for measure-
3-5 degrees are not understdsee, for example Refs. 4 and jents and were subsequently kept in a vacuum for the bulk
10-12. Many investigators attribute the broadening andg ihe time.

shift of the transition to the presence of impurities. Of = g ontical cryostat specially fabricated for these experi-
course, in some cases_thls IS _actually true. However, aC_Corqﬁents has the form of a flat cylindrical vacuum chamber
ing to our data, appreciable displacement and “broadenlng’;Ni,[h quartz windows(on the top and the bottomin which
of the transition with the temperature can be observed eve ere was a copper heat exchanger cooled byéstream of cold
'r?];':ﬁlj crystals grown in a vacuum from a high-purity raw helium (or nitrogen passing through it. The sample investi-
o . . . é;ated is placed on a horizontally oriented plane-parallel sap-
Since the orientational phase transition can be accomp g_hire plate, which is in good thermal contact with the heat

nied by appreciable changes in the overlap of the electroni . .
wave fyungtpi)ons of neighb?)ring molecules pit should have aexchanger. The temperature of the sapphire substrate is mea-

strong effect on the electronic properties af, @olecules, sured by a thermocouple. To improve the thermal contact

especially on those which are associated with the presence Bfetween the thermocoupl.e and the sgbstratg, and junctions
electron bands and the transport of electrons and excitons. 1he pressed down by a piece of aluminum .f0|l glued to the
fact, according to the data in Ref. 13, the photoconductivitySuPstrate. The temperature scan rate during the measure-
edge of G, crystals corresponds to an energy of 1.7 eV afments was usually 0.7—1.5 K/min. Since the thickness (_)f the
150<T<250 K, while atT>260 K (the temperature of the Sa@mples was smalof the order of 0.2 mmand they were in
orientational phase transitiprthe photoconductivity peak closg proximity to the substrate, according to our estimates,
begins to rise at 1.65 eV. However, this occurs smoothl)}he difference between the sa_mple and_substrate temperatures
without a threshold; therefore, it is unclear whether it is as-did not exceed 0.5 K even without gluing the sample to the
sociated with a phase transition or is a chance coincidenc&apphire substrate. Nevertheless, in some measurements the
In Ref. 11 an anomalously sha(p0%) decrease in absorp- Sample was placed on a drop of GKZh silicone oil to im-
tion was observed in crystalling;gfilms in the energy range Prove the thermal contact between the sample and the sub-
2.4-2.8 eV as the temperature was increased in the rangérate. Since this oil remains liquid at the measurement tem-
230—260 K. The authors attribute this effect to the fact thaferature, it does not create additional elastic stresses in the
the optical transitions in this temperature range are forbiddefample.
in an isolated molecule and become partially allowed as a For the measurements of the local transmission spectra
result of the distortion of the symmetry of the molecules,of a sample, light from a halogen lamp passed through an
which increases sharply below the phase-transition pointMDR-12 monochromator and was directed through the
However, these measurements were performed on filmsample by means of a rotating mirror. The image of the
whose structure is generally imperfect. In addition, only op-sample in the transmitted monochromatic light was focused
tical transitions at high energies were investigated. Thereusing an MBS-4 microscope onto a silicon CCD camera
fore, it would be interesting to investigate the behavior of(Samsung CM120P or PIN756 LILINwhich has a fairly
lower excited states on perfect single crystal samples. high sensitivity in the energy range 1.2-2.7 eV. The video
The purpose of the present work is to investigate thesignal from the CCD camera was fed through a suitable in-
behavior of the optical absorption edge in perfect single crysterface card into a computer, in which it was recorded and
tals of G in the region of the orientational phase transition. processed using specially written programs. The data from
the thermocouple were also recorded by a computer. Such a
system enabled us not only to obtain a series of photographs
of the sample in transmitted monochromatic light, but also to
Single crystals of g, were grown in the Institute of calculate the dependence of the local absorption coefficient
Solid-State Physics of the Russian Academy of Sciences bgf the sample on photon energy and temperature by process-
physical vapor transpo(sublimation in an evacuated ampul ing the images. Since the CCD camera had automatic sensi-
at temperatures from 600 to 640 °C. After chromatographidivity control, the absorption coefficiett was calculated by
purification and removal of any traces of the solvent by re<comparing the amplitude of the video signafrom a given
peated vacuum sublimation, the starting materigf l&ad a  region of the sample with the signal amplitutlg from a

2. SAMPLES AND EXPERIMENTAL METHOD
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logk, cm-! TABLE |. Positions of the absorption line€j, their FWHM (AE), and
R their amplitude A) obtained from the absorption spectra as a result of
107 s decomposition into Gaussian lines. The substructure lines were obtained
r from a spectrum measured at 10 K, and the envelopes were obtained from
10} FE spectra measured @t>100 K.
E Envelope Susbstructure
102k N E, eV AE, meV A, cm?' E, eV A cm?® AE, mev
D
; 1.671 7 6
WL D1 1.71 30 30 1.693 9 21
10°¢ 1.716 10 32
. . L . 1.746 12 20
e 17 18 19 2-0E vz’] D2 178 30 25 1.778 14 17
'@ 1.802 14 20
FIG. 1. Dependence of I&gon the photon energf, whereK is the ab- 1.825 428 7.5
sorption coefficient of the £ crystal obtained af =10 K. F1 1.84 15 1005 1.836 799 7.3
1.85 929 7.6
. . . . 1.872 1161 8.3
region outside the sample on the same video card accordirng, 1.88 16 1091 1.887 1198 8
to the simple formula 1.902 1269 8
K= —log(V/Vyr)/d. 2 1.919 2923 9.5
F3 1.93 25 3870 1.931 2889 8
Here d is the sample thickness, andyz=V,/(1—R)2, 1.943 3611 8
whereR s the reflection coefficient of the sample, which was 1.956 2889 85
estimated using the standard formia=(n—1)%/(n+1)> F4 197 19 2268 1969 3119 8.5
with a value ofn of the order of 2.1(Ref. 14 (n is the 1.983 3340 8.5
refractive index of the sampleThis formula does not allow 2.002 9028 10
for the repeated reflection of light from the sample faces ofF5 2.01 20 6494 - - -
the energy dependence of the reflection coefficient. Since we B B B
were working in the region of fairly high absorptiqgfow  F6 2.05 22 5253 - - -

transmission of the samplethe corrections associated with
the reflection of light could not have a significant effect on
the measured value df, and there was no need to more absorption spectrum of the single crystal has a complicated

c_arefully take into aCCO“F“ the effects z_isso_mated W'Fh .reﬂecétructure consisting of a large number of overlapping lines.
tion. Moreover, we were interested mainly in the variation of

the absorption coefficient, rather than its absolute value FoTable | lists the parameters of the lines obtained by decom-
P ' ' osing the low-temperature spectra into Gaussian lines, as

measurements of the absorption spectra in the region of hque” as the position and width of the envelope contours used

absorption coefficients, a cooled BE62 photomultiplier . .
. ’ . to investigate the temperatur nden f unresolv
was used instead of the CCD camera to detect the light. In0 estigate the temperature dependence of unresolved

: . groups of lines af >100 K.
this case to protect the sample from scattered light, a larg The absorption spectrum shown in Fig. 1 can be divided
opaque mask with a small opening, significantly smallerthar?mo two regions, which are labeled by eind FE in the
the dimensions of the sample in the plane of the mask, w qure '
clamped tightly against it. Samples of different thickness '

rown in a single batch were used to more accurately mea: In the region 1.65-1.8 eVL) there is fairly weak ab-
9 gle ba . . ) y asorption (K <100 cm'1). We assume that this absorption is
sure the absorption in the entire range investigated.

caused by intrinsic defects in the crystal corresponding to
deep electronand exciton traps. TheD absorption has a
clearly expressed structure and consists of several overlap-
We investigated nine samples from different batcheging lines, whose positions are reproduced very well in dif-
grown at somewhat different temperatures. The results olferent samples. However, the intensities of these lines differ
tained on different samples qualitatively coincide. Beforestrongly in different samples, varying from 10 to 100 ¢
proceeding to a discussion of the influence of the temperafhe nature of the defects discussed is still not clear. It has
ture and the phase transition on the absorption spectrgof Cnot been ruled out that these defects contain pairs of mol-
crystals, let us discuss the features of the absorption spectezules joined by weak covalent bonds.
of these crystals measured at low temperatures. The FE absorption in the energy range from 1.82 to 2.1
Figure 1 shows a typical absorption spectrjifi(E) eV is reproduced well from sample to sample both with re-
curve| of a Gy crystal obtained aT>100 K. Since the ab- spect to the absorption intensity and with respect to its struc-
sorption coefficient varies by several orders of magnitude irture. We assume that this absorption corresponds to the ex-
the energy range 1.7-2.1 eV, the logarithm of the absorptioritation of free singlet excitons.
coefficient is plotted in the figure. The spectrum shown in  The sharp increase in absorpttbbeginning at 2.2—2.25
Fig. 1 is the result of several measurements on single-crysta&V (it is not shown in the figunehas a somewhat different
plates of various thickness grown in a single ampul. Thenature and is associated, in our opinion, with the excitation

3. EXPERIMENTAL RESULTS AND DISCUSSION
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of electronic transitions from the valence band to the conand the other two lines, which are displaced relative to the
duction band of the crystdl.e., with charge-transfer elec- first line by 10 and 25 meV, respectively, are phonon repeats
tronic transitiong of the first line with the participation of crystal phonons.
This interpretation correlates well with the diverse dataHowever, this interpretation is unlikely, since the energies of
from other investigators, particularly with the results of mea-the corresponding crystal vibrations determined by inelastic
surements of luminescence photoexcitation spectra. It waseutron  scattering measurements are  significantly
shown in Refs. 15 and 16 that the numerous lines in themaller'®=2° Another possible explanation can be associated
photoluminescence spectra can be separated into at least tuxith a feature of the behavior of the density of states in the
classes: a family of lines with a photoexcitation edge at 1.6%xciton band of molecular crystal22In this case the struc-
eV and a family of lines with an excitation edge at 1.815 eV.ture of the bands with an energy of 1.84 eV can reflect the
The excitation spectra of photoluminescence lines from thetructure of the density of states in the exciton band.
first group contain several overlapping lines, whose position  Figure 1 shows that apart from the thrieE absorption
coincides with the position of the absorption lines at 1.65— bands cited there is another series of three bands of lower
1.8 eV. Thus, the first group of photoluminescence lines corintensity with energies equal to 1.88, 1.97, and 2.05 eV,
responds to the excitons in deep defects producinglthe which are displaced relative to the first series of bands by
absorption. roughly 40—45 meV. The interpretation of this series is less
The edge of the excitation spectrum of the second groupbvious. Generally speaking, suitable vibrational modes,
of photoluminescence lines coincides with the edge ofwhich can explain the presence of the absorption lines under
“strong” absorption of the crystal beginning at 1.815 eV discussion, can be found among the rich set of vibrational
(the FE region. This group of photoluminescence lines in- modes of the model. In particular, according to Ref. 17, the
cludes a fairly weak line at 1.815 eV and a series of linesh, vibration (430 cm?) can produce a vibronic band. How-
with smaller energies, among which the most intense are thever, the following alternative explanation is also possible.
lines at 1.724 eV and 1.636 eV. The fact that the position of  The exciton band of the crystal is formed from the low-
the photoluminescence lines with an energy of 1.815 eV esest unoccupied molecular orbitaltUMQO’s) of Cgq. Ac-
sentially coincides with the edge of the “strong” absorption cording to theoretical calculationsee, for example, Refs.
allows us to assume that this line corresponds to pure 0-07,19, and 23-25the G, molecule has three LUMO levels
electronic transitions accompanying the recombination obf singlet electronic excitations, whose symmetry correspond
free excitons(or excitons in very shallow trapsThe next to theT,y,T,q, andGy irreducible representations of tig
lines in this series are vibronic repeats of the first line, i.e.symmetry point group. They all lie roughly 2 eV above the
electronic transitions accompanied by the excitation of in-Ay ground statéthe HOMO. The calculated energetic posi-
tramolecular vibrational modes. Under this assumption theions of these levels are very close, and they can produce a
most intense photoluminescence lines, with energies of 1.72deries of absorption lines shifted relative to one another. The
and 1.636 eV, correspond to the excitation of the well knowrresults of calculations employing the ARGUS progrésee
h, (90 me\) and t;, (178 meVj molecular vibrational Ref. 24 for the T,4 andT,4 levels correspond to energies of
modes, in complete agreement with the calculations irl.86 and 1.90 eV, while the values according to Ref. 25 are
Ref. 17. 2.10 and 2.17 eV. Although the accuracy of the calculations
It can be assumed on this basis that the absorption barid not very high, the order of magnitude of the gap between
with an edge specified by an energy of 1.815 @énd a the levels(40-70 meV correlates well with the observed
maximum with an energy 1.84 @\also corresponds to pure difference of 48 meV between the series of absorption lines.
0-0 electronic transitions with the excitation of free singletAssuming that the first group of lines corresponds to transi-
excitons. Then the two most inten$& absorption bands tions toT,4, we can, in principle, assign the second series of
with maxima corresponding to energies of 1.93 and 2 eV catines to the corresponding transitionsTg, .
be interpreted as vibronic repeats of the 0—0 band, i.e., as the The hypothesis that the sharp increase in absorption at
same electronic transitions accompanied by the excitation &.2—-2.3 eV corresponds to electronic charge-transfer bands
the h, (90 me\) andt,, (178 me\j molecular modes. (i.e., the excitation of electrons from the valence band into
It can clearly be seen on the low-temperature absorptiothe conduction bandis confirmed by the data in Refs. 13
spectrum that the band with a maximum corresponding to aand 26 from photoconductivity measurements at low tem-
energy of 1.84 eV has a weakly resolved structure, which iperatures T<100 K) and measurements of the influence of
faithfully reproduced in different crystals. The decomposi-an electric field on the photoluminescence excitation effi-
tion of this band into Gaussian lines showed that it can beiency. It was shown that at low temperatures a sharp in-
represented as the result of the superposition of three linesrease in photoconductivity begins at an energy of 2.3 eV
whose positions and intensities are listed in Table I. It isand that at just that energy of the exciting light an electric
noteworthy that the bands of the vibronic repeats are alséield begins to lead to a decrease in the photoluminescence
described well by the superposition of three lines with theintensity. This can be attributed to separation of the photo-
same intervals between them, which, however, are shifted iexcited electrons and holes. Thus, the bottom of the zone of
energy by the value of the corresponding molecular vibrasinglet excitons is roughly 0.4 eV below the bottom of the
tion. The following arguments can be advanced in regard t@onduction band.
the possible interpretation of these lines. The first line with  Let us now move on to the temperature features of the
an energy of 1.825 eV can be assigned to the 0—0 transitiombsorption spectra. Below we shall discuss, for the most part,
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FIG. 2. Absorption spectra of aggsingle crystal obtained at
various temperatured: — 19,2 — 108,3 — 192,4 — 245,
5 — 256,6 — 260 K. The inset shows the low-energy part of

1200 the absorption spectra.
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the behavior of the absorption band with a maximum neasponds to the averaged absorption over an area of the sample
1.84 eV, which can presumably be assigned to pure elewf the order of 1 mr
tronic transitions at the bottom of the band of singlet exci-  As the temperature is raised, a sharp increase in absorp-
tons. Figure 2 shows some absorption spectra of one of thgon is observed at 260 K, which corresponds to the tempera-
single crystals measured as the sample temperature wage at which the orientational phase transition occurs ac-
raised from 19 to 300 K. cording to the x-ray data. The observed width of the
In order to analyze the temperature dependence obtaindtansition is of the order of 2 K.
in greater detail, we used a computer expansion of the ab- Below 260 K theK(T) curve has a smooth character, but
sorption spectra shown in Fig. 2 into three Gaussian line# clearly exhibits a change in slope at 95 K and a hump at
(with energies of the order of 1.84, 1.88, and 1.93.eld  150-180 K. The former feature is probably associated with
fact, as was discussed above, it can be seen on dutrat  the transition to an “orientational glass” caused by “freez-
each of these lines has a poorly resolved internal structuréng” of the orientational jumps of the molecules between the
which becomes less pronounced as the temperature is raiséek- and HF orientations. The nature of the feature at 150—
In the range of interest to ug,>70 K, this structure be- 180 K is still unclear. We note that the x-ray dasdso point
comes so diffuse that the spectra are described well by three the existence of some peculiar anomalies in this region. In
Gaussian lines, and a more detailed analysis would be inagparticular, the intensity of thé7 10 0 reflection, which
propriate. should appear immediately after the orientational phase tran-
The behavior of the full-width at half maximum
(FWHM) and the energetic positions of the line correspond-
ing to an energy of 1.84 eV, which specifies the exciton
absorption edge, is shown in Fig. 3. It is seen that, for the
most part, raising the temperature from 50 to 255 K leads to sob 3
broadening of the absorption line without significant dis- 3 — 11.840
placement, while the orientational phase transition leads to 40%—6\\\ 11.835

appreciable displacement of the line. The nature of the in-

AE, meV E, meV
E 1.845

creased spread of the data in the region of the phase transi- 30f 11.830
tions is associated with the spatial inhomogeneity of the 1 11825
sample, which will be discussed below. 20¢ '
! " - , : . 11.820
The width and temperature of the phase transition are 00 T 00 0 300

conveniently analyzed by measuring the temperature depen- T, K
dence of the absorption of the sample at a fixed wavelength. § g i e ) and th

; |G. 3. Temperature dependence of the FWK{Mrve 1) and the position
Figure 4 shows the temperature dependence of the absor curve 3) of the line with an energy of 1.84 eV, which specifies the absorp-

tion of light with an energy of 1.81 eV obtained as the jon hand edge. Curve — FWHM of the band specified by an energy of
sample temperature is raised. The curve presented corre=ss ev.
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sition, is anomalously weak &t>180 K for some reason, the optical absorption is observed upon subsequent passages
and it appears only at 180-170 K. through the temperature of the orientational transition. An-
The inset in Fig. 4 shows the temperature dependence #fealing one of these thermally cycled samples in a vacuum at
the absorption of light with an energy of 1.71 eV in a local 200 °C for 2 h greatly reduced the elastic stresses, but the
region of the sample measuring 0:46.15 mn?. Curve1l  Vvariation of the optical absorption during the phase transition
was observed as the temperature was lowered, and @rvebecame even more uniform.
was obtained as it was raised. It can be seen, first, that there These results can be attributed to the fact that the elastic
is significant hysteresis and, second, that the absorption vagtresses appearing during an inhomogeneous phase transition
ies nonmonotonically and there is a series of features. Thiead to plastic deformation of the sample and the appearance
presence of hysteresis can be regarded as evidence that tfedislocations. On the one hand, these phenomena lead to
orientational transition is a first-order phase transition. Théhe appearance of elastic stresses in the sample that persist
nonmonotonic character of the variation of the absorptiorwhen it is warmed to room temperature. On the other hand,
during the transition is due to the fact that the sample bedislocations apparently facilitate the formation of nuclei dur-
comes inhomogeneous at the time of the transition. ing the phase transition. As is shown in Fig. 6, when the
These inhomogeneities are clearly visible in Figs. 5 andcooling rate is sufficiently high, the elastic stresses appearing
6, which present photographs of&ingle crystals obtained during the phase transition probably do not manage to relax
in monochromatic transmitted light with an energy of 1.71by means of plastic deformation, and microcracks appear in
+0.01 eV as the sample temperature is lowered. Both figthe sample.
ures correspond to the first cooling cycle of the samples after In conclusion, it should be noted that the value which we
they were grown. An investigation of the samples in polar-obtained for the absorption coefficient in the energy range
ized light with crossed polarizers showed that there are nd.9-2 eV differs from the value presented in the literafure.
elastic stresses in the original samples and that they canndhis difference arises, in part, because the literature data
be the cause of the observed inhomogeneity of the phasgenerally refer to room temperature, at which the absorption
transition. We attribute the inhomogeneities observed durings several times greater than the absorption at low tempera-
the phase transition to the fact that the new orientationallyures due to the influence of the absorption tails from al-
ordered phase probably grows from nuclei which are sparslowed transitions(see, for example, Fig.)2However, this
in the original, fairly perfect crystal. phenomenon does not fully account for the difference indi-
The observations in polarized light showed that thecated. In our opinion, the main difference between our data
phase transition is accompanied by the appearance of elastind the literature data is due to the fact that our measure-
stresses in the sample, which subsequently remain even afterents were performed on highly perfect single crystals,
the sample is warmed to room temperature. This, howeveryhile large absorption coefficients were obtained in mea-
does not lead to an increase in the inhomogeneity of thaurements on thin films having a large density of grain
phase transition. Conversely, the phase transition occurringoundaries. Local perturbations at these boundaries can lead
during repeated cooling of the sample is more homogeneouso partial removal of the prohibition against HOMO-LUMO
Already after two or three cooling-heatiig90-150—-290 K  dipole-dipole transitions due to distortion of the symmetry.
cycles, the spatial dimensions of the inhomogeneities obin fact, the value of X 10* cm ! (Ref. 27 for the absorp-
served during the phase transition become less than th@n coefficient at 1.9 eV can correspond to allowed transi-
thickness of the crystal, and essentially uniform variation oftions, rather than forbidden transitions. Thus, we assume that
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252.8K

FIG. 5. Photographs of a freshly growng3ingle crystal in transmitted light with an energy of 1.71 eV taken as the temperature was lowered at the rate of
0.02 K/s. The sample thickness is approximately 0.2 mm. Six frames taken at various temperatures are shown.

the values which we obtained correspond to absorption in appearance of defects in the crygtalost probably, disloca-

perfect G crystal. tions). When the concentration of defects in the crystal in-
creases, the phase transition in it becomes quasihomoge-

4. CONCLUSION neous, probably due to the formation of nuclei on the
defects.

The behavior of the absorption band edge in the region

for th? exfcnaur:)n %f singlet excitons :jn_pu;]e perfect S'ngllftemperature dependence of the optical absorption coefficient
crystals of (g has been in investigated in the present wor ‘in the region of the excitonic absorption edge of the crystal.

An absorption fine struc_:ture assoua_ted with the prOdUCtloni’his feature clearly corresponds to a transition of the sample
of both free Frenkel excitons and excitons localized on struc:

tural defects has been discovered. It has been shown that tH)ean orientational glass.” It has been discovered that there
orientational phase transition inggcrystals is accompanied IS aIsp a featgrg on-the temperature dependence of the ab-
by displacement of the exciton absorption edge, which corSCTPtion coefficient in the temperature range 150-180 K,
responds to a change in the position of the bottom of th&/hich is probably associated with a change in the relative
exciton band by roughly 15 meV. In all likelihood, this is orientation of the molecules, whose pature is still unc_Iear.
due to alteration of the overlap of the electronic wave func- It follows from the results obtained that even if the
tions of neighboring molecules during the phase transitionS@mple is a highly perfect single crystal in the sense of the
which leads to reorganization of the band structure of the?ositions of the centers of the moleculesTat T, it can
crystal. become polycrystalline in the sense of orientational order at
It has been shown that the orientational phase transitiofemperatures below the orientational transition. Moreover, it
in sufficiently perfect G, single crystals is strongly inhomo- is known that orientational disorder occurs because of a ther-
geneous and is observed in the form of “spreading” of themodynamic nonequilibrium concentration ¢fF orienta-
new phase from a small number of nuclei. During this pro-tions below 80-90 K. All this has a strong influence on the
cess, internal stresses appear in the sample, which lead to tekectronic properties of the crystals investigated and must be

At 85-95 K there is an abrupt change in the slope of the
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256.8K

FIG. 6. Photographs of another freshly growg, €ingle crystal in transmitted light with an energy of 1.71 eV taken as the temperature was lowered at the
rate of 0.035 K/s. The thickness of the sample is of the order of 0.3 mm. Six frames taken at various temperatures are shown.

taken into account in interpreting experimental data.
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Underdoped manganites: canted antiferromagnetic ordering or two-phase ferro-
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We calculate the energy of charge-carrier-induced canted ordering in conducting layered
antiferromagnetic systems with double exchange. The quantum approachdaytires is used.

In the jellium model the energy of the canted state is lower than the energies of both

collinear ferro- and antiferromagnetic states over a certain range of charge carrier densities,
beginning with arbitrarily small densities. Nevertheless, the canted state cannot be realized,
because it is unstable against charge-carrier density fluctuations. The two-phase ferro-
antiferromagnetic state can play the role of an alternative to canting. The case of an intermediate
electronic-impurity phase separation is investigated. 1998 American Institute of
Physics[S1063-776098)02612-3

1. INTRODUCTION In reality, this involves a misunderstanding: Wollan and
KoehleP arrived just to the opposite conclusion. They
As is well known, charge carriers in magnetic semicon-pointed out that in principle the superposition of ferro- and
ductors tend to establish ferromagnetic Ordering at Whicrantiferromagnetic peaks they observedckat0.18 can be re-
their energy is minimal. If the ordering in the undoped semi-jated to both the canted antiferromagnetic ordering and mix-
conductor is antiferromagnetic, then with increasing chargure of the ferro- and antiferromagnetic regions. To choose
carrier density first a magnetic state intermediate between thgatween these two possibilities, they investigated the behav-
ferromagnetic and antiferromagnetic states should appear. A4, of the peaks in the magnetic field. They found that a field
still higher densities, the ordering in the crystal becomesyf ghout 4 kOe halves the height of the ferromagnetic peaks

completely ferromagnetic. There are different points of Viewp ;: does not influence the height of the antiferromagnetic
about the nature of the intermediate state at moderate dOpi%aks.
(underdoped samples

De Gennesassumed canted antiferromagnetic orderingVec
to b_e an intermediate state of dt_egeneratg antlferrom_agnet{ﬁe field should rotate these vectors simultaneously. Hence,
semiconductors. He found, treating tHespins as classical b

. ; oth the ferro- and antiferromagnetic peaks should vary in
vectors, that the canting angle should be proportional to the 9 P y

. . : L éntensity simultaneously. In contrast, in case of the phase-
charge carrier density. As an alternative to canting, in Ref. . . .
%@parated state, the ferromagnetism and antiferromagnetism

Fhe electrpmc phase separatlon_ model was .propos.ed, accorvectors are independent. This led Wollan and Koéhter
ing to which a degenerate antiferromagnetic semiconductor nclude(and this conclusion th xpressed in plain words
with frozen impurities in its ground state is separated into ar]fr? tcth h 0 i slo they teh pres Gf[. tp K I .
insulating antiferromagnetic phase and high-conductivity fer- at the phase separation, rainer than canting, takes place in

romagnetic phases. Later the case of ferro-antiferromagnetfQ€i" Samples. But the nature of the phase separation remains
phase separation was considered in systems with mobile in@S Y&t unknown. - _ o
purities and a high magnetic ordering temperaterg., oxy- _ _Strlctly speakmg, a very small canting of the reIat|y|st|c
gen in perovskites. Then not only the charge carriers but ©1gin was discovered Iat%nn the undoped LaMn@but it
also the ionized donors of acceptors are concentrated in tH&S nothing in common with the charge-carrier-induced cant-
ferromagnetic portion of the crystéimpurity phase separa- N9 proposed in Ref. 1. Its existence was confirmed in Refs.
tion). 7 and 8 by neutron investigations of 18Sr,MnO; and

As for experimental verification of these theories, thel@1-xCaMnQ;, respectively. For example, in the former at
electronic phase separation theory was confirmed by electri®=0.04, the ferromagnetic and antiferromagnetic peaks
magnetic and magnetooptic data on EuSe, EuTe, and so @ppear simultaneously at the same temperatd@s K),
(see Ref. & On the other hand, De Genfésterpreted data Which unequivocally confirms the canted structure. But at
of neutron studies of the doped lanthanum manganite¥=0.125 the ferromagnetic peaks appear at 230 K and the
La; _,CaMnO; (Ref. 5 as confirmation of canted antiferro- antiferromagnetic peaks only at 150°K.
magnetic ordering in them. This idea was accepted by many The most natural explanation of this difference is that
investigators, even those who are engaged in neutron studigie ferromagnetism is not related to the antiferromagnetism
and now it is customary to refer to the results of Ref. 5 asas the corresponding regions are spatially separated. In other
providing verification of canted ordering. words, this result can be considered to be consistent with

But in the case of canted ordering, the ferromagnetism
tor is rigidly related to the antiferromagnetism vector, and

1063-7761/98/87(12)/7/$15.00 1214 © 1998 American Institute of Physics
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conclusions of Ref. 5. But in Ref. 7 the hypothesis was adwill be found. It is commonly believed that this limiting case
vanced that as the temperature decreases first the ferromag- extremely strongs-d coupling is realized in lanthanum
netic ordering is established, and then it is replaced by canteshanganites, though some experimental data point to inad-
antiferromagnetic ordering. Investigations in a magnetic fieldequacy of the double exchangeee Ref. § Nevertheless,
similar to those carried out in Ref. 5 might address the questhere are other data that support double-exchange scenario in
tion of whether the hypothesis of Ref. 7 is adequate. these materials. For example, neutron studies suggest that the

In Ref. 8, short-range ferromagnetic correlations with amagnon spectrum of doped lanthanum manganites corre-
length of several lattice constants were discovered, whiclsponds to nearest neighbors, which is inconsistent with stan-
were attributed to moving magnetic polaraffisrrong. This  dard RKKY indirect exchang® On the other hané!! this
result is very important as it directly confirms phase separais just the case for indirect exchange in double-exchange
tion: the appearance of ferromagnetic regions inside antifersystems. We also take note of Ref. 12, in which it was found
romagnetic crystals. In our opinion, these correlations shoultby optical studies that the Meé band is the highest of the
be attributed not to the moving magnetic polardfesrong  filled bands so that holes only appear in this band.
predicted in Ref. 2: their number is exponentially small, and  The treatment is based on the standstd model with
they are unlikely to be observed in neutron studies. But ferthe Hamiltonian
romagnetic correlations can be attributed to ferrons bound to
ionized acceptorsTheir number is several orders of magni-
tude larger than the number of free ferrons. H=—t> aa(rag+A<r—AZ (S§) yo' 8go8ge

Not only neutron data, but also electric data on manga-
nites conflict with the De Gennes scenario of the appearance
of canted antiferromagnetic ordering due to mobile holes. In
fact, contrary to the De Gennes assumption, incompletely
magnetized materials are not hlghly conductive but inSUlatwherea;(ﬂ a4, are thes-electron operators Corresponding to
ing. In addition to Ref. 8, one should also mention otherconduction electrons or holes located at agwmith the spin
investigations with larger acceptor contefdse Ref. § But  projectiono, sis its spin operatorS; is that of thed-spin of
this is not inconsistent with the properties of the phaseatomg, and A is the vector connecting nearest neighbors.
separated semiconductors: at modest charge carrier densityie d-d exchange interaction in Eql) is taken in the form
they behave like the insulatofs? ensuring the existence of the ferromagnetically ordé@ed)

In the present paper we describe a detailed investigatioplanes with alternating moments. In particular, in the Jahn—
of the assumed canted layered antiferromagnetic orderingeller systems to which the lanthanum manganites belong,
under the double exchange conditions typical of lanthanunthe in-planed—d exchange can be ferromagnetic, whereas
manganites. Unlike that of Ref. 1, our treatment of the magdthe 0ut-of-p|ana‘j_d exchange can be antiferromagnéﬂc_
netic system will not be classical but quantum-mechanical. l{n this case the nearest-neighbor approximation is sufficient.
will be shown that although in a certain charge-carrier den-  The double-exchange condition can be formulated math-
sity range the canted antiferromagnetic structure is more erematically as a requirement that tkeslectron band width
ergetically favored than the collinear antiferromagnetic andy=2zt be small compared t&\S where S is the d spin
ferromagnetic structures, it is nevertheless not stable againiagnitude and is the coordination number. The-d ex-
transformation to a nonuniform state. The instability of thechange integrah is assumed to be positive. The inequality
uniform state is seen from the fact that thelectron screen- \Ws|1|zS should also be met, as these quantities are of the
ing length diminishes with increasing charge carrier densityfirst and second order in the smatorbital overlap, respec-
and formally becomes imaginary at moderate densities. tively.

A new type of ferro-antiferromagnetic phase separation  Unlike Ref. 1, where thel spins were considered as
will be considered as a possible alternative to canting. Irtiassical, here the spins will be considered as quantum-
particular, manganites usually contain not only immobile acmechanical, and the inequalityS2-1 is not assumed. The
ceptors(Ca, Sr, and so grbut also mobile acceptors in the quantum approach is necessary to investigate the stability of
form of excess oxygen. The situation intermediate betweeghe canted antiferromagnetic ordering induced by double ex-
electronic and impurity phase separation will be consideredghange. The wave function of arelectron in the completely
in the ferromagnetic portion of the crystal, holes of bothantiferromagnetically ordered crystal is expanded in the
immobile and mobile acceptors congregate with the mobilejgenfunctions of the-d exchange Hamiltoniafthe second
acceptors themselves. term in Eg.(1)]. Such a quantum-mechanical treatment was
first carried out in Ref. 14 for a system of two atoms, and by
the present author for a system consisting of an arbitrarily
large number of atom. It is assumed that the moments of
the two sublatticesi& 1 or 2) make anglest 6 with the total

Canted antiferromagnetic ordering in a layered antiferro-mnoment of the crystal.
magnetic structure will be considered, as this is just the For any atom, the axis is aligned with the moment of
structure realized in lanthanum manganites. The crystallinéhe sublattice to which the atom belongs. The following
structure is assumed to be simple cubic. eigenfunctions of thes—d exchange Hamiltonian will be

The charge-carrier energy spectrum for double exchangased as the basis for the wave function expansion:

1
—52 1SSy, (1)

2. DOUBLE-EXCHANGE-INDUCED CANTED
ANTIFERROMAGNETIC ORDERING
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‘bo(g):agﬂ())l_f[ 8(S%,9),

1 — vA
<I>1<g>=ﬁ[aa+aasg]|0>ff[ 8,9, (2

whereS™=S*—iSY, §(n,m)=1 for n=m and 0 otherwise,
and|0) is thes electron vacuum function.
To find the energy to first order i the wave function is
represented by the linear combination
2
V= 21

; [X(g)Po(g)+Y(g)P1(g)]- 3)

In fact, this is the Ritz variational procedure: In E8§),
terms are omitted that correspond to ttiespins deviated
from the moment of their sublattice in the absences efec-

E. L. Nagaev

with g=(ky,ky,p), Py =2t[coska)+coska)], and R,
=2t cos (pa).

One obtains from Eqg6) the following expression for
the electron energy:

(ST1Py MR,
2S+1 2S+1 2S5+1

Es(kp)=— [S?P}

+(M2+2S+1)R2+2M(S+1)PyR,1M2, (7)

whereM = Scosé is the magnetization per atom, aads the
lattice constant.

As can be seen from E(7), the charge-carrier spectrum
consists of two subbands. In complete ferromagnetic order-
ing, the lower and upper subbands correspond to the total
spin projection of ans-electron-loaded atom, equal to
S+1/2 or S—1/2, respectively. At arbitrary magnetization,
one of the subbands remains well below the other. As the

trons at them. These terms correspond to string-like motiomumber of charge carriers is small compared to the number
of the charge carrief, which is of vital importance at of magnetic atoms, only the low-energy electronic subband

A<0 andS=1/2, but is not significant a&>0.

matters. If 5>1 andM?>2S, one obtains from Eq7) the

To proceed further, transformation rules for the electronexpression for thes electron energy, which coincides with
operators from one reference frame to the other are necethe result obtained in Ref. 1:

sary:
a(g+A,lgra)=cosba(g+A,ly)+iexpiQg)
Xsinfa(g+A,Ty),

a(g+A,Tgra)=cosba(g+A, Ty +iexpiQg)
Xsinfa(g+A,lg), (4)

whereQ is the antiferromagnetic wave vector, and the index
of the spin projection points to the atom in whose reference

frame this projection is measured. We it (r,z) and de-

R,M
Ey(kp)=—P——g— ®
For arbitraryM and S in the quadratic approximation,
this energy can be written in the formh € 1)

k2 2

note vectors connecting nearest neighbors in the plane and

between the planes & andn, respectively. Then with al-

lowance for the relationships>|I| and Q=(0,0,1), one
obtains from Eqgs(1)—(4) for the s electron energ¥,

AS
Ect & Xg=—tcos¢9; xgm—t; Xgsa
it sin 9e'Q9
————> Yguin,
\V2S5+1 'n
E+AS _ tcos&EY t
sT 279 28+14 9N 2541
it sin ge' Q9
X Y e X . (b
EA: g+A \m ; g+n ( )

Putting X,= X€'9Y,=Y (@9, and omitting the con-
stantAS2 in Eq.(5), one can rewrite Eq5) in the form

(E<+ P )X=—R, cosoX R"smev
=— Ccos - s
STk P 25+1
E 4 Py v RpcoseY+ Rpsinex 5
sT2S+1)  2S+1 J25+1 ©

P

E(kp)=B+ mey+ 2m,’

_ ASHL)+2M+Z

a 25+1 ’

1 ta? ci1t 45°+2M(S+1)
2m,, 2S+1 N ’

1 ta? 2(M2+2S+1)+4M(S+1)
2m, 2S+1 N2 '

Z2=16S"+4(M?+2S°+1)+16M(S+1). 9

This result makes it possible to find the magnetization
that minimizes the energy of the canted antiferromagnetic
ordering. At this stage, keeping in mind that the numbef
selectrons per atom is small, one can put the total energy per
atom equal tcE,= vB—1S? cos %, whereB is given by Eq.

(9), and | is the interplaned-d exchange integral in the
nearest-neighbor approximation. Minimizigy with respect

to M, one obtains the equation for the equilibrium magneti-
zation, which in the limit 33— goes over into the De
Gennes resuit

_ 2vt
~(2S+ D)1

4(S+1)+2M
Jz

In case consideredy is nonzero for allv. In particular, for
large Sthe magnetization is proportional to From Eq.(10),

M

(10
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one obtains the following expression for the relative electrorwill continue to increase or it will begin to decrease. In the
density v at which complete ferromagnetic ordering is es-former case, the uniform canted state will be destroyed.
tablished: Here, as is customary for degenerate semiconductors, the
1 jellium model is used, which is applicable at>e?n¥¢g,,
[1]S(25+1) 1 \ : > SR !
= (1)  Wwhere u is the Fermi energyn=wva” is the charge-carrier
4t 2(38+1) density, andeg is the dielectric constant. In the jellium

Obviously, the inequalityl|S?<t should hold as the quan- model, instability of the canted state against fluctuations
tities | andt are of the second and first order in the smallshould be manifested mathematically by the screening length
overlap ofd orbitals of neighboring atoms, respectively. For becoming imaginary. It means that any arbitrarily small elec-
this reason, the inequality=<1 should also hold. tric field makes the uniform state unstable. This field can be

It is interesting to compare results for the layered struccaused by a fluctuation of the charge-carrier density, i.e., one
ture just obtained with the results obtained earlier for a stagmay speak of instability against the density fluctuations. This
gered structuré’ In the latter case, the effective hopping Points to the tendency for the system to go over into a non-
integral for the collinear antiferromagnetic structure is equadniform state, i.e., to a phase separation. Certainly, an imagi-
to t/\/25+1. Hence, it can be rather large even &1,  hary screening length is a sufficient but not a necessary con-
keeping in mind that 3<5 for d shells. But for the layered dition for instability of the uniform state.

Vg

structure, according to Eq9), it is equal tot/4S for 2S The screening length for the canted state will be calcu-
>1, i.e., it is really small. This justifies the De Genneslated in the Born—Oppenheimer approximation. This means
approach. that the magnetizatioM (r) and the band bottom position

Another drastic difference between these two structure8(r) are smoothly varying functions of the coordinates. This
is the fact that for the staggered structure, canting is eneis justified by the fact that the typical length over which they
getically favored starting not at some arbitrarily low charge-change is the screening lengthelwhich greatly exceeds the
carrier density, but at some finite value. At lower densities/attice constanta in degenerate semiconductors. As both
staggered antiferromagnetic collinear ordering is at leasthese quantities depend orvia n(r), one may put
relatively stable, whereas layered collinear ordering is un-

L dB dM
stable at all densities. — _—
B(r) B+dM an on(r),

3. INSTABILITY OF THE CANTED ANTIFERROMAGNETIC ,
ORDERING n(r)=n+on(r), én(r)=>, n(q)e, (12

So far we have shown that a range of charge-carrier .
" oL . . . . ~WwhereB andn are the average values of the corresponding
densities exists in which canted antiferromagnetic ordering 'Squantities

more energetically favored than the collinear antiferromag- The requirement of constant electrochemical potential in

netic or ferromagneﬂc ordering. But this dpes not ngcessarll¥he presence of an external electrostatic field with potential
ensure the stability of a canted structure in magnetic system

with an isotropic exchange interaction. In what follows, it <3(q),

will be proved_ that in _real_ity, the canted state is absolute_ly w(r)+B(r)+ed(r)=const, (13
unstable against arbitrarily small fluctuations of electric

fields, if the charge carrier density is not too low. Hence, theafter linearization with respect ton(r) takes the form
results of the preceding section, which attest to the instability

i i i i in du ®(q)
of the c;ollmear antiferromagnetic an_q ferromagnetic states in B ed(q)+B(q)=0, ¢(q)= ’ (14)
a certainv range, do not ensure stability of the canted state in ~ dn e(q)

this range.

The fact of its being energetically favored as compared’"here the Fermi energy is measured from the bottom of

with the collinear ferromagnetic and antiferromagnetic state:rshe band. . . .
simply implies the absolute instability of the collinear states Using Eq.(12), one obtains the relationship between the

but does not prove the stability of the canted state. 'internal field q?(q) and the corresponding fluctuation of the
The instability of the canted state may be due to the facE'€ctron density:

that the band bottom positioB depends on the magnetiza- dn ed(q)

tion M and decreases with decreasikig(9). On the other nQ)=-———-—=, (15
hand, the local magnetization increases with local charge- dp 1-T

carrier density(10). Hence, if a local density fluctuation low- \yhere the magnetoelectric constdhts introduced:

ers the local band bottom, a local potential well for carriers

arises at that location. The carriers tend to increase the local dB dM dn

density still more. But there are two factors hindering an I=- dM dn du (16)

increase in the fluctuations: a rise in the kinetic energy of the

charge carriers, and the Coulomb interaction between therdm what follows, the standard pattern for calculating the
in the region of their enhanced density. Competition amongcreened potential is used. One introduces the fith)

all these factors determines whether the initial fluctuationcreated by thes electrons polarized by the external field:
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netic ordering aM?>2S+1 is absolutely unstable for such
#(a). (17 pc. But this is not the case for 0.85v<1.

In the opposite limiting case,2>1 and M <2S, one
With allowance for Eq(15), the Poisson equation takes the finds by a similar calculation

form

o
59() = b(a) - 8(3):{1—8@

€0

3V1/3
a?5¢(a) =~ K¢(a), (18 I'= &7, (23
where We see from Eq(23) that whenv—0, canted ordering re-
4me2  dn mains at least relatively stable.

K2=ﬁ R Similar qualitative conclusions were drawn in Ref. 9
£o K about stability of the canted structure in a staggered antifer-
As can be seen from Eql7) and (18), the quantity & is  romagnet, although the case of very lavis meaningless for
just the screening length. Obviously, with increasingthe  them: at such densities collinear antiferromagnetic ordering
screening length decreases and becomes imaginary when tiseenergetically more favorable than canted ordering. But in
magnetoelectric constardt exceeds unity. For the jellium case of staggered ordering, a more realistic model with ran-
model used when the compensating charge of ionized impudomly distributed point impurities can be used instead of the
rity is assumed to be distributed uniformly, the conditionjellium model to investigate the stability of the canted
I'=1 can be considered necessary for the stability of thestructure’
canted structure. Hence, the problem consists in obtaining an In this model one takes into account that a charge carrier
explicit expression for this quantity in the canted structure. is attracted to the ionized impurity not only by the Coulomb
First, the quantitydn/du will be found. We introduce force but also by the force related to the magnetization-
the effective mass of the density of stater,s, according to  dependent location of the bottom of the batfte expression
the standard procedure for semiconductors with an anisder which is similar to Eq.(9) for B). This force arises be-
tropic effective mass, as in E¢9). To obtain an expression cause in the vicinity of an impurity the charge-carrier density
for myes, the following equation for the density of states is is higher than its average value. Hence, according to an ex-

used: pression forM similar to Eq.(10), the same is true for the
3 , K24 K2 5 magnetization. As the total force attracting the charge carrier
E)= Na e dk.dk.dps| =— + P —E to the impurity exceeds the Coulomb force, the condition for
(2m)° J-ma Myy m; Mott delocalization of the donor electrons is more stringent

(190 in the case of canted ordering, than in case of collinear or-

This expression can be obtained from the expression for th@€fng. _ _ _

density of states whem?/2m,a?> u. If the inequality does For this reason, canting can be unstable against localiza-
not hold. one should consider theelectron motion to be tion of the charge carriers. But canted antiferromagnetic or-
two-dimensional. But this “ultraclassical” case emergesdering was obtained under the assumption of delocalized
only when %, and for this reason it is purely of aca- charge carriers, which means that this assumption is invalid.

demic interest as @<5 for d-shells, and hence at fairy low Hence, the uniform canted ordering is unstable. Mathemati-

densities the condition just mentioned is satisfied. cally, the condition of Mott delocalization leads to the sta-
As follows from Eq.(19), the Fermi energy is given by bility condition I'<1, instead of=1 as in the jellium
model.
e (67%n)%3 e (2 (20 Unfortunately, a theory of Mott delocalization in aniso-
T oM. dos™ \Mixy!tiz)

tropic systems is lacking at present, so it is impossible to use

. . . . this approach for a layered structure. One must merely be
where according to Eq9), the quantitymycsis a function of aware that"=1 is a sufficient(and not a necessargondi-

M, a}P(;j r::]:lfeorﬁbsequent calculations more transparent V\}éon for instability of the canted structure. Nevertheless, as
) : . . . . ' "Seen from Eq(22), in typical cases the margin of stability is
first consider the case in which E¢) is valid (M?>2S a(22) in typi g iy

2mdos

+15>1). Then very large.
S 1/3 1
Mar=ml — . :taZ 4. MIXED ELECTRONIC-IMPURITY PHASE SEPARATION
dos™A M/ " 2m ’

We now study phase separation as an alternative to cant-
2tM 4t Sv ing. As electronic and impurity phase separation were al-

B=—4t- s’ M= (2S+ 1)1 T (1) ready investigated in Refs. 2 and 3, here we study a special
i situation that is likely to be typical of manganites. It will be
and one obtains from Eq§16) and (21) assumed that two types of acceptéisnors are present in
2 the crystal: immobile(Ca, Sr, etd. and mobile (oxygen.
I'= (6727523 (22 Mixed impurity-electronic ferro-antiferromagnetic phase

separation should then occur. It is characterized by the fact
As can be seen from ER2), the magnetoelectric constdnt that the ferromagnetic phase becomes the places where holes
exceeds unity avg<0.05. Hence, the canted antiferromag- of the immobile acceptors and holes of the mobile acceptors
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congregate with these ionized mobile acceptors. The holethis approximation, a memory of the spatial quantization of
and mobile acceptors are absent from the antiferromagnetitie electron motion remains in the form of the surface elec-
portion of the crystal. tron energyEs, which be added to the bulk ener@g,

This type of phase separation is of special interest for the

following reason. The main difference between electronic Ex=Ev+Es, (29
and impurity phase separation lies in the fact that the local (672n)23
electric charge is nonzero in the former case and zero in the Evzgﬂ(”)n(1+w)2/3\/: w(n)= —om (26)

latter. Indeed, in electronic phase separation the positions of
the impurity atoms are frozen. For this reason, the concen- -\ 13 5E,
tration of charge carriers in a certain phase leads to its be- ES:B<— — T (27)
coming charged, and to the opposite charge of the other 6/ 1n7(1+w)™R
phase, due to the remaining ionized impurity atoms. CoUyheren=n,+ n, is the mean holéor electron density. It is
lomb forces tend to mix both phases, but surface forces limitomposed of the densities, andn, associated with immo-
the mixing. If the crystal is isotropic, the phase of the smalletyjje acceptor ions, and excess oxygen, respectively. Further,
volume (“minor phase”) consists of small droplets several (1) is the charge-carrier density inside the ferromag-
nanometers in size embedded in the fitstajor phase’).**  pegic phasey is the total volume of the samplg=3 if the

As for impurity phase separation, here there are no Coufgrromagnetic phase is the minor one, with voluivig1
lomb forces, since the local charges of the nonuniformly dis-; ),
tributed electrongholes are balanced everywhere by the The Coulomb energy is calculated using elementary

charge of ionized donor&acceptors Nevertheless, the ten- glectrostatics. For ferromagnetic spheres one obtains
dency to phase mixing exists here too: it reduces elastic

forces resulting from the difference in the elastic moduli of 274
the two phases. As a result, the minimum energy corresponds Ec= 5&
to a plane-parallel geometralternating layers of the two

phasey but under typical conditions their size is several or- f(w)=2w+3—3(1+w)?3 (28

ders of magnitude larger than the radius of the droplets in the , . . , ,

electronic phase separatidms the Coulomb forces are In t,h's case, in Wh'Ch the major phase is ferromagnehc and

much stronger than the elastic forces, in mixed phase sep ntiferromagnetic droplets are embedded in the host, the sur-
ace energy is given by Eq27) with 8=3w and the Cou-

ration the former should determine the geometry of the sys-
! . I g 4 4 lomb energy is given by Eq28), in which the functiorf (w)

e’R2f(w)V,

tem as well. b laced by the f i
To calculate the energy of the phase-separated state,BUSt D€ replaced by the function
variational proce_dure will bg used. It generalizes t_he proce-  g(w)=w[2+3w—3w3(1+w)23. (29)
dure developed in Ref. 2. It is assumed that the minor phase
consists of spheres of radii&arranged periodically inside In the same nearest-neighbor approximation as before,

the major phase. The second variational parameter is the réhe d—d exchange energy is
tio of volumes of the antiferromagnetic and ferromagnetic D—HS 422
phasesw=V,/Vg. If the minor phase is highly conductive, dd= ’
the electronic part of the wave function B0 is taken in (1+w)v  4Dv(1+w)
the form of the antisymmetrized product of the single-
electron wave functiong(r) corresponding to the free mo-
tion of an electron inside a spherical region of radRjs

D=2]I|S? (30)

wherev=a3 is the unit cell volume andH is the external
magnetic field. The first term in Eq30) represents an in-
crease ind—d exchange energy due to replacement of anti-
ferromagnetic ordering by ferromagnetic; the second term is

1 . . . .
P = Def ¢ (Ri— 1) ], (24) the energy of the antiferromagnetic phase in the field.
VNe.! Finally, we present the electron energy differenci

) ] ) ] between the ferromagnetic and antiferromagnetic state,
whereR; is the location of the center of théh spherer,iis  \yhich one easily obtains from EG7):

the location of thenth electron inside théth sphere, andl,

is the total number of electrons. In the ground state the indi- 2S 2S+1

cesk of the single-electron states correspond to the single-  Eu= —20t-t)nV, =t | V1 1)

electron energieE, below the Fermi energy. (31)
Dirichlet boundary conditions are used for each sphere. o

This is justified even for fairly shallow potential wells if We now minimize the total energy

\/2_m(U —-E)R>1, WhereU is the potential-well depth _and E,=Ey+Eq+Ec+Eggt+Ey.
m is the electron effective mass. The wave functi@d) is
accurate at radii less than the screening length in ferromagAs seen from Eq925)—(31), only the surface enerdys and
netic ordering. At largeR, it gives the upper bound on the Coulomb energye: depend orR. This makes it possible to
energy of the phase-separated state. minimize the total energy with respect Bin explicit form.

If Vv2muR>1, the Born-Oppenheimer approximation In ferromagnetic droplets, the optimized energy and radius
can be used to calculate the electron kinetic en&tgy In  are
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Er=(Est+Ec)op=(27+21)| - stripes in La_,CaMnO; with x>0.5 as a special sort of

160m
o2 a3 " 2o phase separation. This pattern of phase separation takes the
&N (n) F3(w)(1+w) form of extremely stable pairs of MhOg stripes separated

om? )1/3 One can also consider the appearance of charge-ordered

i ; (32 periodically by stripes of undistorted MhOg octahedr&®
Some comments on this subject are given in Ref. 21, but they
, 135m2¢o(1+w) M3 do not pretend to be a theory of this interesting and compli-
opt— 3o () f(w) * (33 cated phenomenon.
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No\?
{o=eo| 1+ — (34)
Na

Energy minimization with respect to must be carried
out numerically. But if the energkg is low, it only weakly
influences the optimum value of, which is determined
mainly by Ey and Eg4q in this case. One then obtains for *'E-mail: tsir@elch.chem.msu.ru
H<D

35
no. (35

Ve 1 [ 3u(lb)
V  1+w |5(D-HS)
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The kinetics of the emergence of a polarization vector field after a ferroelectric sample is

rapidly cooled is investigated in two cases, in which the rate of growth of the polarization vector
is determined by viscous forces of phonon origin or by the diffusion of charged particles.
Analytic expressions are obtained for the rate of growth of the polarization vector and the period
of the inhomogeneous phase as a function of the degree of supercooling of the sample. The
existence of a slow relaxation process in the domain structure is established and the time
dependence of this process is found. 1©98 American Institute of Physics.
[S1063-776(98)02712-1

1. INTRODUCTION 2. KINETICS OF THE FORMATION OF AN INHOMOGENEOUS
STATE IN A FERROELECTRIC PLATE WITH NO FREE

In Refs. 1-5 it is shown that when a homogeneous ferroCHARGES
electric plate is cooled, a ferroelectric phase transition occurs Consider a uniaxial ferroelectric crystal sample in the

from the paraphase |n_to gn mhomogeneou; sFate, 'n_Wh'%rm of a thin plate of thicknesk The plane of the plate is
the spontaneous polarization vector is a periodic function Of)erpendicular to the spontaneous polarization vector. The
the plane-wave type, and which during subsequent cooling qhporatory coordinate systemx,x; in this uniaxial ferro-

the sample transforms into a plane-parallel domain structurelectric crystal plate is oriented so that theaxis is perpen-

A similar phenomenon also occurs in sufficiently thin ferro- dicular to the plane of the plate, while the axgsandx, lie
electric plateS. This phenomenon has been investigated forin the plane of the plate.

the case of slow(quasistati¢ cooling of the sampling, for Initially, the sample is in the paraphase. After the sample
which the phase transition temperature and geometry of this rapidly cooled, a periodic spontaneous polarization vector
resulting phase do not depend on the cooling rate. field Ps with two nonzero componentsPs, the projection

In the present work the kinetics of a phase transitionOf the spontaneous polarization vector onxgexis, andP,
after a ferroelectric crystal sample is rapidly cooled is stud{h€ projection on the, axis, which is oriented in the direc-

ied. The kinetics of the phase transition is investigated botﬁion, Of_ the projection of the wave vecttnfdet.ermining the
for a ferroelectric crystal with no free charges and takingper|od|c structure of the polarization vector field—arises and

. . o rows in amplitude.
accqunt of the screening of the depolarizing electric field byg The nonequilibrium thermodynamic potenti®l of the
mobile charged particles.

) ) ferroelectric plate can be represented in the fotm
Note that the processes leading to the formation of an

inhomogeneous state of matter in bulk samples under f (V)2

8

ay
2P

ag
2

strongly nonequilibrium conditions by the mechanism of &= dav. @
spinodal decomposition of a homogeneous solid solution

. . . 0 . .
have been studied in previous wdrk® The dimensions of |, Eq. (1) @y, s, and« are coefficients in the series expan-

inhomogeneities of the emerging phase are determined hyion of the thermodynamic potential in powers of the com-
the bulk characteristics of the material, and do not depend Ofpnents of the polarization vector, all coefficients being posi-
the macroscopic dimensions of the sample. For the systemfe. The temperature-dependent coefficientaig where
studied in the present work the parameters of the inhomogez;= a(T.—T), T is the sample temperaturg, is the Curie
neity of the low-temperature phase typically also depend omemperature, ay=(2C) !, and C is the Curie—Weiss
the sample size and shape. constant! The third term in Eq.(1) is the crystal energy

K
P§+§(V1P3)2+

1063-7761/98/87(12)/5/$15.00 1221 © 1998 American Institute of Physics
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associated with the inhomogeneity of the polarization vectopendences of the electric potential and the polarization
field and reflecting the correlation of the values of the vectowvector P. These dependences can be represented as

P at neighboring points with different coordinatgs. In .

order of magnitudec~a?, wherea is the lattice constartt Py, @ expli(AXa 0aXs) +21). ©)

In the integral(1) the correlations between the polarization In Eq. (9) the wave vector; determines the periodicity
vectors at points with different coordinatgg are dropped; of the polarization vector field in the plane of the plate, as
this is justified if the width of the domains is much less thanindicated above, and can be determined by requiring that the
the thickness of the plate. This is a typical situation for therate of growth of the low-temperature phase be maximum.
present case of a uniaxial ferroelectric plsteThe last term  The other wave number is determined by the conditigh

in Eq. (1) is the energy of the depolarizing electric field and = 7.2® The rate of growth of the polarization field is found

¢ Is the potential of this field. The low-temperature phaseby equating the determinant of the systéfnand(8) to zero,
grows by the mechanism of instability of the high- taking account of Eq(2):

temperature state of the material after the coefficiegt 2, 2 2

changes rapidly as a result of rapid cooling of the sample. To%1 ™ vy t4mqi/q 4m0105/9 _
study the initial emergence of the new phase, it is therefor 47r0,03/9° —ag+ Kq"{+ vy3+477q§/q2 ’
sufficient to include in the thermodynamic potentid) only (10
;t/eerg?srzgsuadratlc in the components of the polarization,hich is constructed from the coefficients Bf and Ps.

The condition(10) gives the functionv=1v(q4,q3) Iin

In the bulk of the crystal the componerf% of the po- 14 form of the equation

larization vector and the potential of the depolarizing elec-

tric field are related by the electrostatic equation Y173V°+ [ y1(— az+ kqi+4mq3/0?)
Ap=47VP,. ?) +y3(ay +4mq50?) Jv+4ma,03/9°
Combining Egs(1) and (2) by introducing a Lagrange +(ay+4mq3 9% (— az+ kq3)=0. (11)

multiplier w(r) that depends on the radius vectoof the For fixed supercoolinges, the rate of growth of the am-

point of interest gives a new fum.:tion@| in which P1,P3,  pjlitude of the periodic phase depends on the length of the
and ¢ are independent variables: period. The phase at which the period of the variation of the
5 u(r) polarization vector corresponds to the maximum rate of
O=P+ H(A(p—eriPi). (3) growth will reach the region where the thermodynamic po-

tential is a nonlinear function of the components of the po-
larization vector sooner than other phases. The plane-parallel
domain structure formed in the ferroelectric plate therefore
eacquires just this period. However, the equatioridq,=0
turns out to be too unwieldy for analysis. It is simpler to
analyze the functiorez= a3(v,q;) given by

Varying ® (3) with respect to the variableB; and P4
gives the following expressions for the componeiisand
E; of the thermodynamic force on the components of th
polarization vector:

5D )
= = — A(a+ y1v)
El 5P1 Clllpl V]_,U,, (4) a{3=in+ 1T 71 2q32 2+’)/3V, (12)
(a1 +vy,+4mq7/9°)q
5 o .
__ 9" _ 25 which is likewise obtained from Eq11).
Es= 6P 3Pyt (V1P Vap. ® The supercoolingr; and the wavelength of the periodic

phase with fixedv can be found from the condition for a
minimum da3/dq,=0, whereasz= a3(q;,v). A single ex-
tremal valueq;=0, corresponding to a transition into a ho-

Varying Eq.(3) with respect top gives

5D Ap A,u_

— =4 ", (6) mMogeneous state, always exists for Etp). The condition
o¢ 4m 4w under whichg;=0 corresponds to a minimum of the func-
whencee= u. tion a3(qq) can be determined by expandinrg near the
If the rate of change of the spontaneous polarization vecP0iNtd1=0:
tor is_determined by_vis_cous for_ces _of pho_non origin, the az=(daglIQ?) Q3+ A+ yav, (13)
following system of kinetic equations is obtain&d:
_ where
Pi=—aP1— V0, 7
[ amim e @) dag Am(a+ yv+4m) 14
. — =K~ .
¥3P3= azP3+ kViP3— V3o, (8 o (a1 +y1v)05
wherey; andy; are the coefficients of viscosity at the tem- As indicated abovex~a? andqg;= /I, as a result of
perature of supercooling. which aa3/aqf<0 in the casé>a for all values of the rate

Equations(2), (7), and(8) constitute a complete set that of growth of the low-temperature phase. Thus, for macro-
makes it possible to determine the coordinate and time descopic plates the poir; =0 corresponds to the maximum
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of the functiona;(q,;). Regardless of the degree of super- pate in the formation of the new phase. The widity of the
cooling of the sample, the phase transition in a ferroelectrisvave packet is determined from the conditidxw~ v,
plate of macroscopic thickness therefore proceeds into awhence

inhomogeneous state.

The wave numbeq, of the inhomogeneous ferroelectric _2v
phase, which precipitates with ratieafter the sample is rap- a= azv/aqf'
idly cooled, can be found by minimizing the function
a3(qq). The condition daz/dq,=0 from Eq. (12) with From Eq.(11) the curvature of the function(q,) is
|>a andq=q, givesq; in the form 9°vl 992~ kly. ThenAg~ (vy/k)*? so that as the rate of
3 3, % 12u1/a precipitation of the phase increases, the width of the packet
Q= (47" ey kl%)™, (19 of waves comprising the domain structure increases. Since
where the domain structure is not periodic, a relaxation process

associated with the displacemeét of the domain walls
ey =1+4ml(a+ yiv). (16) commences after the structure is formed. This process is de-

_— ) ] ] scribed by the equation
Substituting the expressiofl5) into Eq. (12) gives an ex-

ression foras:
P 3 E=a(beat b1 26), a9
az=2(4m3kleF1%) Y2+ y,p. 17
where the coefficienty takes account of the interaction force
between neighboring walls and viscous forces arising as the
walls move. This relaxation process is characterized by a
%pectrum of relaxation times. This is due to the existence of
M size spectrum of the regions relaxing to a periodic domain

TP ic ti '
. . . structure. The asymptotic time dependence of the relaxation
We note that different periods of variation of the polar- rocess that is characteristic of diffusion processes is

L,Z;t\l,z?y?ﬁédtﬁfetgié?geoilfeggécefg]oajiengrgTﬁeczgnk:;@bﬁ“% ?_ «t~12 so that the relaxa.tl'on process is slow and is not
) ) ) completed under real conditions.

lows from Eq.(16) that asv increases, which corresponds to

increasing a3 (17) and increasing supercooling of the

sample, the quantity} decreases from,;=1+4m/aq to 1.

According to Eq(15), ase} decreases, the wavelengthof 3. INFLUENCE OF THE DIFFUSION OF CHARGED

the polarization vector decreases, since2w/q,. The pe- PARTICLES ON THE KINETICS OF THE FORMATION

riod of the domain structure formed in the ferroelectric plate®F A FERROELECTRIC PHASE IN A FERROELECTRIC

at a phase transition thereby depends on the degree of supgﬂ‘—ATE

cooling of the sample, making it possible to control the do-  \yhen charged particles, such as electrons in the conduc-
main structure of the ferroelectric plate by choosing the apsion pand and holes in the valence band, are present in the

propriate thermal regime of the sample. ferroelectric sample, the equations of electrostatics and kinet-

Qualitative agreement between the decrease in domaig of the charge have the form

sizes found on the basis of our theoretical model and an

For v=0, which corresponds to quasistatic cooling, the
expressiong15) and(17) correspond to the well-known ex-
pressions for the period of the resulting ferroelectric phas
and the displacement of the transition temperature fro

increasing degree of supercooling was obtained Ae=47V,;P,—4mp, (19
experimentally:*'® The patterns found can be further _
checked experimentally on ferroelectrics for which the  p=DAp+(ne’/kT)DA¢. (20

paraphase state can be preserved after sufficiently rapid cool- ) o

ing of the sample. Examples of such ferroelectrics are thosE'€r€€ is the elementary charge of a particfe,is the aver- -
of the ordering type, in which a polar phase forms by mean&9€ density of.c.harged pgrtlgles participating in the screening
of thermal activation of atomic groups, so that the character®f the depolarizing electric field is the local volume den-

: — 2 2
istic formation time of the low-temperature phase can be les§ity Of electric chargeDA=D;A;+D3A3, D, andDs are
than the cooling time of the plate. the principal values of the diffusion coefficient of the

In conclusion, we note that in the initial stage of growth charged particles, ankl is Boltzmann's constant. To solve

of the low-temperature periodic phase, after rapid cooling ofNiS problem, the previously derived Edd) and(5) must be
the sample, the absolute value of the rate of growth of thé@dded to Egsi19) and(20), but written in the form

polarization vector is proportional to its initial values. These _

. . . a1P1+V1(P—O, (21)
values are determined by fluctuations associated for the most
part with the random character of the distribution of various  , p_ kQ3P3—V30=0. (22)

defects of crystal structure in the bulk and at the surface of

the sample. Since the fluctuations are characterized by a set The solution of the system of equatiof9)—(22) has

of different spectral lines with differing values of the wave the form (9). The rate of growth of the low-temperature
vectorg;, waves not only with wave numberg from Eq.  phase after rapid cooling of the sample is determined by the
(15) but also with close values of the wave number partici-equation
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v=(D,0%+D303)

X(81/R2+81QE+QE)(a3—in)—4wcé

47q3— (e107+03)(a3— kq?)

; (23

where
R=(4me’n/e,kT) 12

is the screening radius of the electric charge.
The functionas(qg;) can be obtained from Ed23) in
the form
47701%
105+ 03+ (1+ /D) 1R

a3=KQ>+ (24)

whereD=D,q%+ D3q2.

Darinskil et al.

transition into the inhomogeneous phase starts is determined
by a relation obtained by setting the derivati¥e/ 9q,; from
Eq. (24) to zero. This yields

a3=47°R%/&,1%+ w?kD3 /D412 (30

The expression30) shows that the supercooling for
which an inhomogeneous stage arises in thick films differs
from Eq. (29) by a small quantity~a/l.

As the supercooling of the sample increases further, the
resulting low-temperature phase is inhomogeneous.

For a high rate of formation of the phases>D,q?

+ D303, it follows from Eq.(24) that

47Tq§
81qi(1+ Dl/VRz) .

az=Kqi+ (31)

The valuer=0 corresponds to quasistatic cooling of the The minimization conditionda3/dq;=0 from Eq. (31)

sample, whereupon E@23) yields an expression fods in
the form

47Tq§

—_— 2
e1(qi+R7?)’ 29

az= in-i—
which is identical to the analogous expressiondgrin Refs.
3 and 16. The expressid@5) is written for the casé>R.

The minimization conditioas/dq,=0 yields

q¥?=2m(mle k)Y =R 2=q5—R?, (26)

whereq; corresponds to Eq15). It follows from Eq. (26)
that an inhomogeneous phagé>0 arises for plate thick-
nesses satisfying

12<4m°RY e k=12

(27

It follows from (26) and (27) that thin enough plates, in the .
sensg27), always transform into an inhomogeneous state b)}
the phase-transition mechanism considered above, whil®
thick plates can undergo a transition into a homogeneous.

state.

The quasistatic supercooling of a sample for which d
polarized state arises is determined by the following expre

sions obtained by substituting E@6) into Eq. (25):

K 4| i \ 12
a3=a*—¥, 0(*=|— 8_1 , |<|*, (28)
az=4m°R%eql%, 1>, qf=0. (29

S_

yields expressions fay; and a3:

1/2
227 T (32
= e1k(1+D,/vR2) |
477( TK 2 33
Ay=—— | ————————————————— .
¥ 1 g (14D, /vR?)

A comparison of(32) and (33) yiedls a simple relation
betweena; andq, in the range of supercooling studied,

0= (az/x)*2 (34

4. CONCLUSIONS

The following conclusions can be drawn from the above
nvestigation of the kinetics of the phase transition in a ferro-
lectric plate.

In the case of rapid cooling of a macroscopic ferroelec-
tric plate in which there are no screening charges, the mate-
ial transforms into an inhomogeneous phase for all degrees
of supercooling. The period of the inhomogeneity depends
on the ratio of the viscosity coefficients as the longitudinal
and transverse components of the polarization vector vary,
and it decreases with increasing supercooling of the sample.
The period of the resulting phase can be varied severalfold
by varying the supercooling of the sample.

Ferroelectric plates containing mobile charge carriers
can be divided into thick and thin plates according to the

For significant supercooling, an inhomogeneous ferrocriterion (27). Upon cooling, thin plates always pass into an
electric phase arises rapidly and the process is not accompethomogeneous ferroelectric state. Thick plates subjected to
nied by a redistribution of the electric charges. The expressuffiiciently small supercooling pass, via the phase-transition
sions forg,; andq; are determined in this case by H@4)  mechanism studied, into a uniformly polarized state. As the
with v=c0 or by Egs.(26) and(28) with the equivalent con- degree of supercooling increases, the emergent phase be-
dition R=. For samples which are thin in the sen2g) comes inhomogeneous, and its period decreases, as follows,
and for supercooling in the range.{ — k/R?,a, ), the wave  for example, from Eq(34).
vectorq, varies over the range q&— R™?)¥%2q,). As a result of the existence of fluctuations with differing

In thick films, an increase in supercooling from the valuewave vectors, an aperiodic domain structure will emerge in a
(28) at first preserves the transition into the homogeneousample after supercooling. This initiates a slow ongoing pro-
state. However, the temperature range for transitions into theess whereby the domain structure relaxes to a periodic
homogeneous phase is narrow. The valuexpfor which a  structure.
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Self-action and generation of the harmonics of intense electromagnetic radiation interacting with
quantum lateral semiconductor superlattices are investigated theoretically using a self-

consistent approach. The calculations are based on a semiclassical description of electron transport
in a conduction miniband in an electrodynamic model of an equivalent current screen.

Multistep, multistable, self-induced transparency is obtained. The effect is associated with the
dynamic localization of electrons in the self-consistent electromagnetic field and it

appears only if the density of free current carriers in the superlattice is higher than a certain

critical value. It is shown that the bleaching of the structure is accompanied by efficient generation
of odd-numbered radiation harmonics, whose intensity peaks lie near the transparency

threshold. ©1998 American Institute of Physids$1063-776098)02812-1

1. INTRODUCTION perlattices can in principle be used to transform the fre-
quency and the spatial spectra of the radiation incident on
The nonlinear interaction of quantum periodic semicon-them, to amplify the radiation, and to generate secondary
ductor structures — quantum superlattices — with electrowaves in the regions of absolute negative conductivity.
magnetic radiation is an important direction of research in | the present paper we study the self-action and har-
modern quantum electronics. Above all, this is due to thenonic generation associated with the dynamic localization of
latest technological advances in the preparation of extremelyjectrons accompanying the reflection and transmission of an
high-quality periodic structures demonstrating the verygjeciromagnetic plane wave through a lateral superlattice.

strongest nonlinear properties in mlll'lm[lgéer, submillimeter,| atera)(planay superlattices, where an additional potential is
infrared, and optical electromagnetic fietds.The additional - o4,ced for two-dimensional electrons localized near a sur-

pot.en.tial produced in .quantum sup_erlattices by the per?Odi?ace of the semiconductor, are now attracting considerable
variation of the chemical composition of the sample 9V€S5itention. In the present situation the electron motion is lo-

rise to restructuring of the energy spectrum of the CurrenI:alized in a direction perpendicular to the surface, and at the

carriers. The energy spegtr_um breaks up m_to a get of Narro¥s me time the additional potential leads to the formation of a
allowed and forbidden miniband$. The nonlinearity of the o o o
miniband spectrum for electron motion in the localization

superlattice is due to the fact that the electron energy in a

miniband is bounded, which gives rise to, on the one hand?lane' Superlattices consisting of one-dimensional chains of

. . . [dentical and identically coupled GaAs/AlGaAs quantum
an oscillatory motion of electrons in a constant magnetic

field (Bloch oscillation$ and, on the other, a strongly non- dOtS(F'tg' 13—5}['form of"qaantun][ wwiségand in the present
guadratic dispersion law, a consequence of which is af€ometry sometimes cafled guantum ccupy a spe-
N-shaped current—voltage characteriétic. cial place among various lateral structures. In such a one-

These two circumstances in fact determine the mechac_ilmensmnal system electrons move along wires whose peri-

nism of the nonlinearity of quantum superlattices. In a rap2dic potential forms a miniband energy spectrum. It is shown

idly varying electric field the dynamics of the electrons in al Ref. 10 that such structures have unique properties asso-
miniband becomes very complicated and can be describegfated with the possibility of the suppression of both intra-
analytically only in special cases, for example, in the limit of@nd interminiband scattering by optical phonons at room
very infrequent collisions. Thus, if the frequency of the field temperature, as a result of which the corresponding relax-
is much higher than the frequency of elastic and inelasti@tion rates of the electron velocity can reach anomalously
electron scattering, there occurs a dynamic localization ofow values=3x 10 s™*. Elastic electron scattering is also
electron&® under the conditions of which the superlattice found to be considerably suppressed. As will be shown be-
behaves as a linear dielectric. A macroscopic manifestatiofpw, lateral quantum superlattices of this type in the field of
of dynamic localization is so-called self-induced transpar-an incident wave demonstrate complicated dynamical behav-
ency. When ac and dc electric fields are present simultaior leading to multistep and multistable self-induced trans-
neously, regions of absolute negative conductivity can apparency accompanied by efficient generation of odd-
pear in the static current—voltage characteridtahowing numbered harmonics. In contrast to the articles cited dbbve
that superlattices have active properties in these regionand Ref. 11, where the fixed monochromatic field approxi-
Therefore the nonlinear and active properties of quantum sunation was used on the basis of quasielectrostatics, in the

1063-7761/98/87(12)/9/$15.00 1226 © 1998 American Institute of Physics
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a b effective elastic collision frequencyl,y(x) is a modified
E BI——E Bessel function, and is Boltzmann’s constant. The semi-
X vacuum k i classical instantaneous electron velodiip) along the axis
mm superlattice of the superlattice is a periodic function of the quasimomen-
T EEa substrate tum:
— z de dA [pd
FIG. 1. g Example of a lateral GaAs/AlGaAs semiconductor structaore- v(p) - % - ﬁsm( 7 ) (4)

dimensional systems of coupled quantum got$ geometry of the model ) ] o ]
formulation of the problem. To construct a theory of the interaction of radiation with

a superlattice, it is necessary to obtain from the Boltzmann
equation(1) the material equations for the electromagnetic
present paper a self-consistent wave approach taking accoufd|q or, in other words, a relation between the current flow-
of the influence of the nonlinear screening current flowinging through the superlattice and the electric field. The sim-

along the axis of a lateral superlattice is developed. plest way to do this is to transform to the hydrodynamic
equations. The averag@ydrodynami¢ velocity V and en-
2. HYDRODYNAMICS OF ELECTRONS IN A CONDUCTION ergy W of the electrons are found by calculating the corre-
MINIBAND. MATERIAL EQUATIONS sponding moments of the distribution function
The equations of electron motion in an energy miniband
of a superlattice can be derived using a semiclassical descrip- V(t)= f v(p)f(p,t)dp, )
tion of electron transport on the basis of the Boltzmann
equatiofd
W(t)=f e(p)f(p,t) dp, (6)
of Ec?f _sth i
at e ap ). where the integrals extend over the Brillouin zoner#/d

<p=<wh/d, and the perturbed and unperturbed distribution

where f(p,t) is the distribution functionp is the electron ) . N " =
quasimomentunE is the electric field applied along the axis functions satisfy the normalization conditiofiédp=1 and
Jfodp=1. The equations fov(t) andW(t) are obtained by

(perpendicular to the layersf the superlattice, Sf) is the ; , ; ) ,
collision integral, and the electron dispersion relation in thediréctly integrating Eq(1), using Eq.(4) and the relation

tight-binding approximation is

pd

u(p) _AdY  2e(p)
A — _
e(p)= 5( 1- c057

, @ ap 242 AT @

which follows directly from Eq.(4). After simple calcula-

whereA is the energy width of the miniband antlis the  4ions we obtain

superlattice period. In writing down the expressi@ we
assumed that all electrons are concentrated in the bottom dV eE

miniband(the criterion for this to occur is given in Ref).5 at m(W) wv,
Semiclassical equations can be used if
hw<Ag, eEd<A,, and eEd<A, W Ev- W), ®

dt
WhereAg is the width of the forbidden miniband. The first

two conditions make it possible to neglect interminibandwhereWr=A(1- u.)/2 is the average thermal energy of an
transitions and interminiband tunneling under the action oflectron in the absence of an electric fieldsg
an intense field. The third condition makes it possible to treat= | 1(A/2kT)/15(A/2KT), vy=v + v is the collisional re-
the electron motion within a miniband semiclassically,laxation rate of the average velocitym(W)=my/
though as shown recentRthis condition is not necessary in (1—2W/A) is the energy dependence of the electron effec-

some casesequential tunneling tive mass, andny=2%2/d?A is the effective mass at the
To take account of elastic and inelastic scattering, weniniband bottom. The energy dependence of the electron
introduce a collision integral in the model form effective mass is determined by the dispersion relat@n
physically, it is related to Bragg reflection. In what follows,
V | - . . B
St(f)=— v {f(p,t)—fo(p)t— ?e{f(p,t)— f(—p,t)}, we assume that the density of miniband conduction electrons

is not too low, and that the polarizability of the superlattice is
) determined completely by the corresponding electric currents
where whose density is proportional to the hydrodynamic velocity
V:

d A\ [Acogpdt)
fo(p)zzﬂﬁ'O(m) P kT j=enyV, ©

is the equilibrium distribution functionT is the lattice tem- wheree is the electron charge ang, is the electron density
peraturep. is the effective energy relaxation rate, is the  converted to the entire surface of the structure. Thus, the
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equationg8) can be treated as the material equations for arfects due to the discreteness of the structure inyti@ec-
electromagnetic field polarized in the direction of the supertion, we treat the structure as an equivalent current screen of

lattice axis. infinitesimal thickness, transforming from volume electric
currents flowing through the superlattice to equivalent sur-
3. FORMULATION OF THE PROBLEM. INITIAL EQUATIONS face currents. We set the right-hand side of Bd) to
Consider a lateral superlattice of thicknéssn a dielec- oW oW
tric substrate with permittivitye (in what follows we ne- 0—— =060 5(n), (12

glect the dispersion in the substrate, setting cons}. Let

an electromagnetic plane wave with electric field vector ori-where 6= 6wh/c and 6(7) is the Dirac delta function.

ented in the direction of the superlattice axis be incident ~The dimensionless parametgy is the key parameter of
normally in the direction from the vacuum onto the superlat-the theory. It determines the role played by nonlinear screen-
tice (the geometry of the problem is shown schematically ining currents in the superlattice and, as will be shown below,
Fig. 1b. We assume that the superlattice thicknegsmuch  greatly influences the self-action and harmonics generation
less than the characteristic scale of the electromagnetic fielrocesses. A numerical estimate of the parameégemwhich

in the medium. Very simple estimates show that this condiis proportional to the surface electron densii € nch), for

tion is satisfied conservatively for essentially any real struche=10"" cm™3, h=10"°cm, A=100meV, d=10°cm,

ture in the millimeter, submillimeter, and far-infrared wave- @=10'° s™* gives 5~ 1. The boundary conditions for the
length ranges. For definiteness we orient thexis of a  €lectric field at the current screen can be obtained from Egs.

Cartesian coordinate system along the incident wave vectddl and(12):

k, and thex axis in the direction of the superlattice axis. We oU oW
position the originz=0 on the “illuminated” surface of the [U],-0=0, (9_} =60~ (13
superlattice. We describe the electromagnetic field using M=o T

Maxwell's equations corresponding to continuity of the electric field and jumps in

J 19E 4m the magnetic field at the surface curréthte brackets denote
VXB=—c - VXB=Co—+ (100 jumps in the enclosed quantityTo substitute the incident
(U;), reflected U,), and transmitted ;) electromagnetic

wherej is the electric current density in the correspondingdfields into the boundary conditiondl3), we describe the

medium. Herg =0 for z<0 (vacuum. According to Eq(9), fields separately using first-order wave equations
j=en.V for 0=<z=<h, and

oU; U,
. 1P es—10E ¢ Sh E—FW: '
=cot™ 4m a0 " *
. o . . aJ, U,
is the polarization current in the substrate. The media are — =0, (14)
assumed to be nonmagnet8€H). Jr Iy
Before deriving the equations describing electron dy-
Uy 1 Uy

namics in the superlattice in the self-magnetic field and the — 4+ — ——q,
equations for the reflection and transmission coefficients for ar \/8—5, an

the electromagnetic field, for convenience we transform in ..o he fielddJ. U. andU. are related aty=0 by the
Egs.(8) and(10) to the dimensionless variables e t

condition (13).
Wz E \% For homogeneous linear media the transition from the
T=ot, 7= o U= E_c W= V_o' in?tiali equation(11) to Eqs.(14) is .c.omple_tely correct. Sub-
stituting the corresponding quantities , ; into Eq.(13) and
E _tho _da - 2(W-Wy) expressing the space derivatives in terms of the time deriva-
C™ed’ 07 27 B A ' tives from Egs.(14), we obtain the explicit form of the

where w is the frequency of the incident field. Since the boundary conditions ah=0:

problem is one-dimensional, we write in the new variables U;+U,=U,, (15
the wave equation describing the high-frequency electric

field over all space Uy dUp  dU; aw

&7 ar ar :605'

(16)

U U oW
e(n)—5——5=—10

-, (11 The equation(16) can be integrated over time. We obtain
ar? r7772 T

where 0= w}J w?, wi.=4me’n./my is the square of the Ve U= Uy Ui = fow+ C. (a7
electron plasma frequency in the minibang(,7<wh/c) The arbitrary integration constant is determined by the initial
=1, e(p>wh/lc)=¢g, and 8(»<0,7>wh/c)=0. To ob-  conditions. In what follows, we s& =0, which corresponds
tain a relation between the fields of the incident, reflectedto vanishing initial conditions. We note that the electric field
and transmitted waves, taking into consideration the smalin Egs.(8) has the same magnitude as the field of the trans-
thickness of the superlattice and neglecting diffraction ef-mitted wave, which in the renormalized variables corre-
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sponds toU, (in what follows the index will be dropped: YN 1+ 2
= i ituti i T= .
U.=U). ExpressingJ, from Eq. (15) and substituting into 1+ \/6—5)2 (01t Bg)2+ 1

Eq. (17), we have finally
Equation(21) and (22) show that in the linear approxi-

(22

2Ui(7) —U+ % w (18) mation the superlattice behaves like an ordinary plasma film
1+ \/s_s 1+ \/8—5 ’ (whose plasma frequency is determined by the density and

effective mass of the conduction electrpos the surface of
a dielectric with permittivityes. The film makes the main
contribution to reflection if the paramet®y is sufficiently

which, together with Eq98)—which in dimensionless vari-
ables are

oW large,
57 ~Ylso= H—mw, )
2 2 [ 17 Ves 2
03> (1+3)| —= | =652,
29 ++e
E_ = UW_ V2§: (19) S

and for 6,> 6§ the film provides essentially perfect radia-
(v1,2=vv, ./ w)—completely describe the self-consistent in-tion shielding.
teraction of a normally incident electromagnetic plane wave
with a thin lateral superlattice.
The incident fieldU;(7) is assumed to be a given func- 1 4nsient processes in strong fields

tion of time. After making the substitutions ) o )
Let us consider the excitation of the superlattice from

2Ui(7) iy Ootto _ vanishing initial conditions by an incident harmonic field.
1+yee 0 14ye, ExpressingU from the last relation of the systef20) and
B . substituting into the two other equations, we obtain
{=mol, W=puoW
(in what follows the overbars are omitedEgs. (18) and

W=U;(1— )+ olw— (v1+ o)W,

(19) can be rewritten in the simpler form {=Uw— oW — 1. (23
w=U(1=¢)— oW, For definiteness we consider the situation of greatest interest,
60>1, v,. Initially, when 6y({)< 6, ({{) is the electron en-
{=Uw— vol, (20) ergy averaged over one perjpthe electrons are not heated
and the time derivatives in the first of Eq23) can be ne-
Ui(7)=U+ fow. glected (the velocity is established in a timg,~1/6,<1
Our main objective in this paper is to investigate thedetermined by radiation losse#\s a result, we have
solutions of Eqs(20). As one can see from this system, the Ui(1-2¢)
fixed-field approximation employed in Refs. 9 and 11 corre- w~————. (24)
sponds tofy,=0, for which there is no effect due to the vit fo(1=0)
nonlinear screening current Opw. Let us substitute the expressi@¥) into the second of Egs.
(23), which gives
4. INTERACTION OF ELECTROMAGNETIC PLANE WAVES - nUs(1-0) 25
WITH A LATERAL QUANTUM SUPERLATTICE - (vy+ 04(1— )12 val. (25)

Linear interaction Since{<1 by assumption, the expressi@b) simplifies to

Let a monochromatic plane wave

) . V1Ui2(7')
Ui(7)=Uxe'"+c.c., ~

0
be incident from the vacuum onto the structure of interest.

The amplitudeU , of this wave is small enough that EG80) V‘(he“]? WehChOOS."J:j'” the forg‘U;(T) _ Unsinz An expres:
can be linearizedthe corresponding criterion for the ampli- sion for the period-averaged electron energy follows from

—vad, (26)

tude will be obtained beloy After some obvious transfor- Eq. (26):
mations, we obtain the following expression for the energy leﬁq
reflection and transmission coefficier{ta terms of the en- (O)= S[1—exp(—v,7)]. (27
ergy flux density: 2v50,
2 Therefore the characteristic electron heating time is
Bo(1+Veo)|” | G3(1+es)? Y J
l_\/g—s_Vl > + > Tr Vo> Ty, .
B 1+vg 1+vg The threshold amplitude of the incident field at which
R= 00(1+\/8—S) 2 03(1+\/S—S)2' (22) nonlinear effects first appear can be e_stimated. The maxi-
1+ \/s—s+ 121 > + > mum average electron energy following from E7)
1+ 1+ should be close to 1:
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V]_Ul?n

_nUn Ui(r)=U 00| e tsin |7 uce)der|de.
<§>ma><_2112'9g 1. (28 (7) (r)+v OJOe SIH(J’T_§ (&) f) 5(33)

As a result, we have reduced the original problem to the
integral equation(33) for the fieldU(7) in the superlattice.
© 2v, In the general case, Eq33) cannot be solved analytically.
Un=Un"=V -~ bo- (29 However, if the functionU(7) is assumed to be periodic in
] ! o ) the field of the incident wavé;(7) and the amplitudes of
As the electrons in the miniband are heated, their energye high harmonic components 0f 7) are sufficiently small

undergoes small oscillations about the mean at twice the frecompared with the amplitude of the fundamental harmonic,
guency of the pump field. The amplitude of these oscillationng. (33) can be solved by substituting into the integrand the

The expressioK28) gives us a corresponding estimate of the
amplitude of the incident field:

can be easily obtained from E(@6): first harmonic ofU(7), which for definiteness we choose in
2 the form
V]_Um
<7 465 (30 Uy(7)=U, cosr. (39)

The electron heating-induced change in the transmissioi(\/e no]:/v rﬁpresen_t tlr:1e c_omplet_e expressionugr) in the
coefficient for radiation passing through the structure can b orm of a harmonic Fourier series

taken into account on the basis of the approximations em- *
ployed. For this, the substitution U(r)= Ul(q-)JrKZ1 Aoy SIN(2k+1)7
U2
Bo— Op| 1— ——— 31 -
o O( (U(©))2 @D +> by, cod2k+1)r. (35)
k=1

mus}c)be made n Eq(zg). Then it follows that asUy, Likewise, we write the integral on the right-hand side of Eq.
—U;,” the screening action of the superlattice becomes neg(—33) as the Fourier series

ligible, and self-induced transparency due to dynamic elec-
tron localization occurg.Strictly speaking, these estimates Y vt T
do not hold for incident radiation amplitudes Closeuﬁf), Vaof e —sin f
but they correctly describe the tendency for the transmission

§U1(§’) d§’]d§

0

—

coefficient to increase withJ,, and the characteristic times _ i i %

over which the corresponding interaction regimes are estab- & Ap Slin+p:1 By cospr. (36)
lished. We shall study these interaction regimes in greater ) ) )

detail. Straightforward but unwieldy transformations yield expres-

sions for the expansion coefficiems, andB,:

[’

P S
Steady-state periodic nonlinear interaction regimes Ap=27TVt9of e ”gSln( ?)Jp( 2U, Slnz) dé,

0

We now return to Egqs(20), where the amplitude of the : :
incident field can be large enough that the dynamical system o _, 0 f‘”e_ ”: cos( p_)J (ZU s'n—)d 3
under study can demonstrate strongly nonlinear behavior. p= <m0 0 2)°P 15! 2 & (37)
We also assume that the system “forgets” the initial condi-

tions (a situation brought about by collisions, which destroy ) . : . .
the coherence of the electron motiand undergoes periodic functions. Since the integrands in the expressions for the
coefficientsA, andB, in Eq. (37) contain the product of an

motion in the harmonic field of the incident wave. We studyex onential and a periodic function. the corresponding infi-
the approximate situation in which the relaxation times of the P P ' P g

velocity and energy are equat{=v,=7). (This will enable nite integrals can be written as integrals over a period:
us to obtain certain analytic relations without qualitatively 2mvéy 4m [ pé i

i ; o i i Ag=r——————— e "sinl —|J,| 2U, sin= | d¢,
destroying the dynamics of the system. In addition, in reality,"?™ 1 —exg —47v) Jo 2 |vp 2
the frequencieg; andv, are, as a rule, close to one another,

where p=2k+1, k=0,1,2,3,..., and J,(x) are Bessel

|v1— v,/ <v;,.) Then an exact expression for the veloaity 27y o, am 313 &

: , - - B=————— e "écog —|J,| 2U; sin=|dé
can be obtained from the first two equatiof®)) with an P 1—exp—4mv) Jo 2 /%P 1> 5 s
arbitrary functionU(r): (38

In what follows, we consider two limiting cases: weak
(47mv<<1) and strong (4v>1) collisions.
(32 Infrequent collisionsNeglecting the small change in the

- . . exponential factor in the intervald, 4#) in the integrals
Substituting the expressidf2) into the last of Eqs(20) and (38), we obtain forAy, ; andByy., ;

making an obvious substitution of variables in the integrand,
we obtain Azk+1=20030(U1)Iok+1(Uy),

W(T):”ﬁ eXF[V(T’—T)]sin( fT,U(aJ’) da”)dr’.
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Ul T(l)

10t b

FIG. 2. 3 Field amplitudeU, in the superlattice at

L the first harmonic versus the amplitudk, of the

40 monochromatic wave incident on the structure. The
curve was calculated using E(t1) for parameter
values 6,= 10, 20, 40. b Transmission coefficient
T for radiation at the fundamental frequency ver-
sus the amplituddJ,, of the incident wave. The

L 10 curve was obtained from E@41) and (46) for the

same values of,.

04y

B,y 1=0. (39 typical value off, for which the corresponding approxima-

o ] . tion first breaks down can be obtained from the rigorous
Substituting expressiong85), (36), and (39) into Eq. (33)  pymerical calculations presented below.

gives The expressioni40) makes it possible to write out the
® relation between the amplitude of the incident wave and the
U,(7)=U, COST+ X, apysq SIN(2k+1)7 amplitudes of the harmonics in the superlattice:
k=1
) Un=UT+46535(U1)I3(Uy), (41)
+ ) bosqcog2k+1)7 U,
=1 @i=C0S ' > , (42)
. VUT+46535(U1)I3(Uy)
+26630(U) 2, Jaicea(Up)sin2k+1)7. - (40) Ao 1= —20036(U1)Jzes 1(Uy), (43)
bak+1=0, (44)

We call attention to the factor-Jy(U4) in the nonlinear
current. The amplitudeU(f) corresponding to the zeros of whereg; is the phase shift between the incident field and the
the Bessel functiorjo(u(ls))zo correspond to the so-called field at the fundamental frequency inside the superlattice.
dynamical localization of electrons, which can be interpretedEquation(41) yields the amplitude of the field at the funda-
as the collapse of the energy band in a high-frequency fieldnental frequency in a superlattice as an inverse function of
It can also be interpreted as a specific effect in which théhe amplitude of the incident wave, while E4-3) (together
phases of individual electrons are mixed, as a result of whichvith Eq. (41)) yields the corresponding parametric depen-
the macroscopic current vanishes. Of course, strict localizadence for the amplitudes of the harmonics.

tion disappears if higher harmonics are taken into account in ~ The curves constructed using E41) for various values
the integrand in Eq(33) in addition to the fundamental. of the parameted, are displayed in Fig. 2a. As one can see,
Higher harmonics play an ever greater role as the parametéinere exists a critical valuégc)~10 beyond which the func-

0, increases. Unfortunately, no precise criterion for the aption U;(U,) is no longer single-valued. This corresponds to
plicability of the present representation can be given, but théhe emergence of bi- or multistability in the system. The

Sy S5
0.3 0.015+
a

0.2r 0.010r
FIG. 3. Transformation coefficientS,,, ; (47) versus
the amplitudeJ ,, of the incident wave: Jginto the third
harmonic, b into the fifth harmonic, ford,=10 and

0.1t 0.005} 05=20.

0 15 20 0 5
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0.5 a
4 ! Al 1441 | A
e | |
Vi ,“ ”] [ : i i « FIG. 4. Oscillograms of the electron velocity for
] i Ji R R ” i ! various values of the amplitude of the incident wave
05 for §,=80,»,=0.2,=0.1: 3 U,,<Uy =15 (qua-

silinear regimg b) U,,=U}% =15 (transition to the
bleaching regime near threshgld) U,,>18 (tran-
sition to the bleaching regimed) U,,=20 (two-
step transition to the self-induced transparency re-
gime through an intermediate metastable $tate

points at which a transition occurs from one quasistationargtrongly on the electron density. The interaction of intense
periodic regime to anothéthe regimes are marked in Fig. 2a electromagnetic radiation with a lateral superlattice is ac-
by arrowg and the number of such points can be found bycompanied by self-action effects, which lead to multistable

solving the transcendental equation self-induced transparency and to generation of odd-
2 numbered harmonics, whose intensity is a nonmonotonic
205 9 . ; e
1+ — ——{J3(U,)J3(Uy)}=0, (45  function of the amplitude of the incident wave.
U; dU, Frequent collisionsIn the other limiting case, #4v>1,

where the relation betwean, andU, is given by Eq.(41).  the integrals(38), which give the Fourier coefficients in the
Equations(41)—(44) make it possible to write out ex- €xpansion of the current in the superlattice, can likewise be

pressions for the transmission coefficiéh} for radiation at ~@pproximated by expanding the trigonometric functions and

the fundamental frequency and the transformation coeffiBessel functions in the integrands in power series and retain-

cients S, 1) into higher harmonics: ing the leading terms. The result is
4\eg u2 (k+1)(2k+ 1)U+l
T= : 2 1124 2212 : 2 ' (46) Agicr1= 0o 2k 2(k+1) : (48)
(1+1e5)? UT+40535(U1)I5(Uy) 2%
160535(U 1) I3 1(U1) y2krt
= ) 4 B =mlp——"—. (49
SZk+1 U§+403J3(U1)J§(U1) ( 7) 2k+1 022k1}2k+1

where the amplitude of the field at the fundamental fre-  The harmonics of the nonlinear current described by
quency in the superlattice is related to the amplitude of the irEgs.(48) and(49) are monotonic functions df;, suggesting
the incident field by(41). The function(46) is displayed in  a lack of hysteresis. In principle, a more rigorous equation
Fig. 2b and the functiori47) is displayed in Fig. 3 for the describing the dynamics of the superlattice can be obtained
third and fifth harmonics at various values &f. The exis- in the limit of very frequent collisions ¥>1). For this, a
tence of hysteresis in the functids, (U,,) for 6,> agc) re-  quasistationary current—voltage characteristic, which is ob-
sults in bothT(U,,) andS,,, (U, begin multivalued. tained by neglecting the time derivatives in E¢&0), must
Thus, in the case of sufficiently infrequent collisions, be subsituted for the integral operator on the right-hand side
which do not destroy the coherent motion of current carriersf the relation(33). This yields a time-local algebraic rela-
over the course of many periods of the high-frequency fieldtion between the incident field and the field inside the super-
the system demonstrates complicated behavior that depentigtice:

FIG. 5. Numerically computed curves of the trans-
mission coefficients for a wave at the fundamental
frequency as a function of incident field amplitude
for @ 6,=20 (1—v,=v,=0.01; 2—v,;=v,=0.1;
3—v,=v,=0.3; 4—v,=v,=0.5) and B 6,=80
(5—v,=0.2, v,=0.1; 6—v,=v,=0.3; 7—v,=v,
=1).




JETP 87 (6), December 1998

Dodin et al.

1233

v6oU(7) Sare)
Ui(n=U(1+—5——>—. (50) 04f
v+ U4(7)
This equation also describes self-induced transparency due to 0.03k
the presence of a descending section in the static current—
voltage characteristic.
0.02F
5. NUMERICAL RESULTS
Since the analytic results presented above were obtained 001y
for individual limiting cases, they cannot cover the entire
picture of the interaction of the incident radiation with a

lateral quantum superlattice. It is probably impossible to con- 0
coct a more complete picture of the nature of this interaction
without recourse to numerical simulation, which can also beric. 6. Numerically computed transformation coefficients into the third and
used to check the accuracy of the analytic model. The nufifth harmonics versus the incident field amplitude fé§=20, v,=v,
merical calculations presented below are based on the sold-9-1-
tion of (20) with vanishing initial conditions.

Figure 4 displays oscillograms of the electron velocity,
illustrating the transient processes in the system under studyer (Fig. 49. When multistability is present, repeated switch-
for various values of the paramet@y and amplitudes) , of  ing in a strong incident field is possible in the systéims
the incident high-frequency field. The calculation was per-corresponds to a larg#,). Figure 4d shows a two-step tran-
formed for a regime in which the external field is turned onsient process in which the stationary state is reached through
gradually and the velocity at the linear stage “tracks” the an intermediate quasistationary state.
variation of the field in time with essentially no delay. Figure Figure 5 shows the transmission coefficients for a wave
4a demonstrates the subthreshold and, as we can see, almasthe fundamental frequency as a function of the amplitude
linear regime of electromagnetic field interaction with theof the incident electric field. The corresponding curves are
superlattice. Above the thresholdf;, for self-induced trans- shown for superlattices with various free-carrier densities
parency(Fig. 4b—4d the dynamics of the system and the and relaxation frequencies. We call attention to Fig. 5a,
nature of the transient processes depend strongly on the amwhere the paramete(fr curvel) correspond to the analytic
plitude of the incident field. For a field that exceeds thecalculations(Fig. 2h). As one can see, E¢46) predicts well
threshold value by a comparatively small amount, the amplithe behavior of the system right up &g~ 20. These calcu-
tude of the electron velocityand therefore the screening lations show that a characteristic feature of the self-reduced
curren} decreases comparatively rapidigver several peri- transparency effect is the multistéin the amplitude of the
ods to a certain stationary value and the motion of the curdincident wave character of the bleaching. This is due to the
rent carriers becomes anharmottieig. 4b. As the ampli-  multistability that emerges in the system at sufficiently high
tude of the incident field increases, the duration of thefree-electron densities and low relaxation rates. In very
corresponding transient process decreases and the anharmstrong fieldgmuch greater than the bleaching threshoide
nicity of the motion in the established regime becomes stronscreening action of the superlattice becomes negligible and
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the transmission coefficient asymptotically approaches &. CONCLUSIONS
value corresponding to the transmission coefficient for radia-  1pig paper contains results of an investigation of self-

tion propagating into the substrate with no film on its Sur-5ction and harmonic generation accompanying the interac-

face. We note that the reflection coefficient as a function ot;g, of electromagnetic waves with lateral quantum semicon-
the amplitude of the incident radiation, which can be foundy,cor superiattices. The calculations were performed in a

using Eqs(15) and(41), has all of the same featurésiul- ot consistent formulation based on material equations ob-
tistep nature, hysteresis behayias the corresponding trans- (aineq in the semiclassical approximation. Multistable self-

mission coefficients. _ _ induced transparency accompanied by efficient generation of
~ Efficient generation of higtiodd-numberedharmonics  oq4.numbered harmonics was found. This effect is due to the
is observed between the bleaching thresholds of the superlgfijyence of the nonlinear screening current flowing through

tice. We calculated the transformation coefficients into thepe gyperlattice. We found the threshold relations determin-
(2k+1)-st harmonic as a function of the amplitude on thejng the range of incident field amplitude and free-carrier den-

incident wave. Figures 6 and 7 show the results3gr, ; for sity where the corresponding effects materialize.

2k+1=3, 5, and 7 forf, and v, ; corresponding to Fig. 5. This work was supported by the Russian Fund for Fun-
We notg a _characterlstlc fe_ature _of the %enerfuc_)n of h'gl?iamental ReseardiGrant No. 97-02-17572
harmonics in the hysteresis regidh,,<Up, (Uy, is the
bleaching threshold where as the amplitude of the external 1a A ignatov, J. Genzer, E. Schombueg al, Ann. Phys5, 173(1995.
field decreases, the intensity of the harmonics is redistribute(gM. Hadjazi, J. F. Palmier, A. Sibillet al, Electron. Lett29, 648(1993.
so that the third harmonic becomes strongest and the maxi-M- L. Wanke, S. J. Allen, K. Maranowslet al, in Physics of Semicon-
int ity forU.<U* i ter th 9 in th . ductors M. Scheffter and R. Zimmerma¢Eds), World Scientific, Sin-

mum |rl ensity forU,<Up, is greater than in the region .0 1999, p. 1791.
U,>U}, . For example, fo®,=80,v,=0.2, andv,=0.1 the “H. Schneider, K. Fujiwara, H. T. Gratet al, Appl. Phys. Lett56, 605
intensities of the fifth and seventh harmonics decrease, whilg(199. _
the intensity of the third harmonic fdd,,~10<U¥ more ?&Ijagsfiﬁ;(fg;&kh' Poluprovodr§, 1841(1974 [ Sov. Phys. Semi-
than doubles gom_pared with the above-threshold vélue s gsaki and L. L. Chang, Thin Solid Filn@s, 285 (1976,
dashed curve in Fig.)7 L. Esaki and R. Tsu, IBM J. Res. Det4, 61 (1970.

In conclusion, we present in Fig. 8 the bleaching thresh-iﬁ- ':- llgnatOV agng- A. R}gm'fnsv,r;hyl&zs%tﬁs Sg;dgﬂigizl(;g;&

. s . A gnatov, . Genzer, K. F. Re al, £. YS. 3 .

old as a functlon of the CO||IS!OI’1 frequen@) and denSIty 10H. Noguchi, J. P. Leburton, and H. Sakaki, Inst. Phys. Conf. Ser. No. 129
(b). Note that while the bleaching threshold tends to decrease 1993, chap. 5, p. 299.
as the frequency of elastic collisions increases and/or th&A. A. Ignatov, E. P. Dodin, and V. I. Shashkin, Mod. Phys. L&{t1087
density of free current carriers decreases, the relative changg,(Al9\i/D- . 4 Antti-Pekia Jauho. Phvs. Rev. L8, 368 (199
in the transmission coefficient of the structure decreéses - Wacker and Antti-Pekka Jauho, Phys. Rev. L8@, 369 (1998.

curves3 and4 in Figs. 5a and curvé in Fig. 5b. Translated by M. E. Alferieff
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