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Abstract—The strain-induced roughening revealed by scanning tunneling microscopy on the surface of elas-
tically strained Ge(111) crystals and Fe70Cr15B15 amorphous alloy foils is discussed. It is demonstrated that the
strained-induced roughening can be considered a channel for a decrease in the elastic energy of the strained
surface. The diffusion mechanism of relief formation on a strained Ge(111) surface is proposed and justified.
© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The Zhurkov kinetic concept of fracture is based on
the postulate that, on the atomic level, fluctuations of
the thermal energy play a decisive role in the fracture of
a mechanically loaded solid [1]. In this respect,
Zhurkov believed that an important step toward justify-
ing the thermal fluctuation mechanism was to reveal the
thermal fluctuations and their manifestations using the
newest methods for analyzing the structure and atomic
dynamics of the crystal lattice. Such potentialities are
provided in particular by a rich arsenal of analytical
methods devised for solving problems in surface phys-
ics. Owing to its physical nature, the surface itself is an
interesting object of investigation from the standpoint
of defect formation. The mere fact that the surface is a
free boundary suggests its lower thermodynamic and
mechanical stabilities. All the above was the reason
why almost immediately after the advent of a new tech-
nique, namely, scanning tunneling microscopy (STM),
Zhurkov initiated investigations into the dynamics of
the relief of a mechanically strained surface on a
nanometer scale with the use of the STM method and
took an active part in these works.

Zhurkov et al. [2] were the first to undertake an
STM investigation of the dynamics of a Ge(111) sur-
face relief under biaxial lateral tension. It was found
that the strain-induced relief is formed at relatively
small loads of the order of 0.1 GPa. The strain-induced
relief is comprised of roughnesses (mounds) whose lat-
eral and vertical (perpendicular to the surface plane)
sizes are of the order of several hundreds and several
tens of nanometers, respectively. The evolution of
mounds with time was investigated in close detail. It
was revealed that, under a permanent applied load, the
mounds grow to the aforementioned sizes in approxi-
mately one hour and then remain unchanged. The
roughening is a reversible process. After the load is
removed, the roughness relaxes almost to the initial
level in approximately ten hours. More recently, similar
processes of formation of a strain-induced relief under
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uniaxial tension were observed on the surface of foils
prepared from the iron-based amorphous alloy
Fe70Cr15B15 [3, 4]. In this case, depending on the
applied load, the formation of a strain-induced relief
can proceed according to several scenarios to the extent
that this process ceases to be stabilized even when the
vertical sizes of roughnesses reach a micrometer scale
(at loads of approximately 1 GPa).

In the present work, we studied germanium and
amorphous alloys. These materials exhibit an elastic
behavior over a wide range of loads. Hence, we can
assume that, at loads of approximately 0.1 GPa, the
contribution made by the plastic strain to the bulk prop-
erties of the specimens will be insignificant. Therefore,
the observed evolution of the relief is a surface process
and its explanation should be sought in the manifesta-
tion of the structural features and physical properties of
the surface due to the presence of the free boundary.

Before proceeding to the formation of a strain-
induced roughness, we make a number of important
comments. Actually, the surface relief of a strained
solid is subject to nanometer-scale fluctuations and
these fluctuations of the surface relief, in any interpre-
tation, are manifestations of the aforementioned fluctu-
ations of the thermal energy. However, the fluctuations
of the thermal energy are not destructive but, contrast-
ingly, in some cases (at relatively small loads), lead to
the formation of stable spatial aggregates in the struc-
ture of the surface relief. This is not surprising because
the processes of fracture, recovery, and formation of a
structure always proceed “hand in hand” and the final
result depends on which of these processes dominates
under given conditions.

The revealed phenomenon, i.e., the relief formation
on an elastically strained Ge(111) surface, is in many
respects similar to the phenomenon of island epitaxy,
which has been extensively investigated both experi-
mentally and theoretically [5, 6]. Great interest
expressed by researchers in island epitaxy stems from
the unique features of this phenomenon. On the one
© 2005 Pleiades Publishing, Inc.
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hand, island epitaxy hinders the formation of homoge-
neous regions in the heterostructure. On the other hand,
under specific conditions, island epitaxy can be used
for the controlled formation of a surface relief, for
example, in the form of quantum dots. Thus, the prob-
lem formulated in terms of the mechanics of strained
solids somewhat unexpectedly turned out to be closely
related to the problems of microelectronics.

The similarity between the strain-induced roughen-
ing and island epitaxy suggests that these phenomena
have a common physical nature. In this work, we
extend the previously proposed interpretation of strain-
induced roughening, which is based on the principle of
minimum energy of a strained surface. In general
terms, our approach is consistent with the universally
accepted theoretical explanation of island epitaxy. The
difference lies in the nature of the mechanical surface
stresses, which are responsible for the mound nucle-
ation. In the case of heterostructures, these are the
stresses arising in an epitaxial layer due to the mis-
match between the lattice parameters of the layer and
the substrate. In our experiments, the strain in the sur-
face layers arises from in situ mechanical loading of the
specimen.

Our interpretation of the mound nucleation on a
strained surface can be divided into two parts, which
will be referred to as energetics and kinetics. In the
former (energetic) part, we justify the direction of the
process toward an increase in the roughness size. In this
case, the process is treated as a channel for a decrease
in the free energy of the strained surface. In the latter
(kinetic) part, we consider specific physical mecha-
nisms of mass transfer that, in principle, can explain the
observed spatiotemporal characteristics of the strain-
induced roughening.

2. ENERGETICS OF ROUGHNESSES

Let us evaluate the energy balance for the strain-
induced roughening approximately. Within the
mechanical approach, by analogy with the Griffith
analysis of an elastic crack [7], we estimate only the
mechanical energy and ignore the entropy contribution.
As the first step in analyzing the energetics of the strain-
induced roughening, we discuss a simple example in
which the energy balance initiates a specific mecha-
nism responsible for the structural transformation of a
solid, namely, plastic deformation of a mechanically
loaded specimen. We consider the experimental situa-
tion in which a cylindrical specimen is subjected to
uniaxial tension after the weight P is suspended from
the specimen. The plastic deformation results in an
elongation of the specimen at a constant volume V =
Sl = const, so the cross section of the specimen (on the
average) decreases. The change in the energy of the
system (specimen + weight) is determined by the
decrease in the potential energy of the weight and the
PHYSICS OF THE SOLID STATE      Vol. 47      No. 6      200
change in the elastic energy of the specimen due to the
variation in its cross section; that is,

(1)

Here, we take into account the constant volume and the
relationship σ = P/S and obtain

(2)

where E is the Young’s modulus. The final energy bal-
ance is invariably negative,

(3)

because the inequality σ < E is satisfied. Thus, we can
make the obvious inference that, under mechanical
loading, the elongation of the specimen leads to a
decrease in the energy of the entire system. The next
question arises as to which mechanism provides the
high efficiency of the process. It is known that the main
physical mechanism responsible for the above scenario
for a decrease in the energy is plastic deformation of the
specimen. However, for the materials under investiga-
tion (germanium, iron-based amorphous alloy), the
channel for a decrease in the energy due to plastic
deformation appears to be closed over a wide range of
loads. In our experiments, such is indeed the case: the
material in the bulk of the specimen is in an elastically
strained state, and the crystal structure can undergo
transformations only in surface layers.

When structural transformations in the bulk of the
specimen are “frozen” and the specimen is in an elasti-
cally strained state, the bulk of the specimen can be
treated as a “substrate” for surface atomic layers and
the strain of the substrate can be considered to be spec-
ified and fixed. For now, the boundary between the sub-
strate and the surface layer is drawn conventionally
because the boundary location depends on the physical
mechanism of transformation of the surface structure.
Our concern here is only with the change in the surface
relief due to the transformation of the surface structure.
Let us compare the mechanical energy of the initially
planar, strained surface layer with the energy of a sur-
face layer that has the same volume but is “recon-
structed” into an array of mounds. For simplicity, we
examine a more or less regular structure with pyramidal
mounds.

Next, we introduce a number of simplifying
assumptions which can be formulated in an explicit
form. First and foremost, we assume that, after the
pyramidal relief is formed, the material contained in the
pyramids appears to be in an unloaded unstrained state.
To put it differently, the relief reconstruction is accom-
panied by the dissipation of elastic energy over the
entire surface layer under consideration. Of course, the
pyramid bases in contact with the laterally strained sub-
strate are also strained and the strain is transferred to
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overlying atomic layers. However, as will be shown
below, this interlayer transfer of the lateral strain
decays rather rapidly and, hence, can be disregarded.
This is the essence of our first approximation. As a
result, the elastic-energy gain per pyramid can be rep-
resented in the form

(4)

where V is the pyramid volume.
Now, we analyze the process under consideration

from the standpoint of the energy consumption. The
energy consumption is caused by the increase in the
surface area after roughening. The physical nature of
the increase in the surface area during roughening is
somewhat different from that in the course of crack for-
mation in terms of the Griffith theory. The mechanical
rupture of chemical bonds in the bulk of the crystal is
obviously a more energy-consuming process as com-
pared to the detachment and migration of atoms over
the surface. However, as before, we use a purely
mechanical approach within which the surface energy
can be determined from the mechanical estimate [8]

(5)

where a is the lattice parameter. In this case, we also
disregard the possible dependence of the surface energy
on the crystallographic orientation of the surface region
under investigation. This is our second simplifying
assumption. As a consequence, the net energy in the
formation of the pyramid can be estimated as

(6)

where A is the linear size of the pyramid base and h is
the pyramid height. The final energy balance for the
strain-induced roughening (per pyramid) can be written
in the approximation of a small pyramid height (h ! A)
in the following form:

(7)

It can be seen from relationship (7) that the energy gain
(∆W < 0) is reached in the case when the vertical size of
the roughnesses (at a fixed lateral size of the rough-
nesses and at a specified load) does not exceed the crit-
ical value

(8)

where estimate (6) for the surface energy is taken into
account.

In the above analysis, the lateral size of roughnesses
A was assumed to be fixed but remained uncertain. The
theoretical grounds for estimating the quantity A will be
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considered in the next section. Here, the experimentally
determined lateral size of roughnesses (Aav ~ 300 nm)
on the Ge(111) surface is taken for estimation. Accord-
ing to expression (8), the maximum size of rough-
nesses, which is allowed by the energy balance on the
Ge(111) surface at σ = 0.1 GPa (a ~ 0.3 nm), is esti-
mated as hm ~ 3 nm. Recall that, according to experi-
mental data, the mean vertical size of strain-induced
roughnesses on the Ge(111) surface is equal to several
tens of nanometers. This size is one order of magnitude
larger than the above theoretical estimate. Such a dis-
crepancy should not be considered serious. This dis-
crepancy only confirms our inference that the surface
energy calculated in the framework of the mechanical
approach [see formula (5)] is overestimated. The main
result holds true: there is a range of geometric parame-
ters of the strain-induced roughness in which the sur-
face energy decreases. It should also be noted that, in
the case when the actual size of roughnesses h exceeds
the size permissible by the principle of energy gain,
there should occur an inverse process, i.e., deroughen-
ing. It is this process that is experimentally observed on
the Ge(111) surface at relatively small loads.

In closing the examination of the energy balance, we
go beyond the approximation of small vertical sizes of
roughnesses and write the exact expression for the crit-
ical vertical size of roughnesses:

(9)

For small loads and, correspondingly, small vertical
sizes of roughnesses, this expression transforms into
relationship (8). However, it is worth noting that,
according to formula (9), the dependence of the rough-
ness size on the load exhibits a critical behavior. Actu-
ally, when the load reaches the critical value,

, (10)

the vertical sizes of roughnesses are not limited from
above. For the same parameters a, A, and E (EGe ≅  1.3 ×
102 GPa), the critical load is estimated as σ∗  ≅  1.5 GPa.
Note that, under loads of the order of 1 GPa, rough-
nesses on the surface of the Fe70Cr15B15 amorphous
alloy foils grow at a high rate and reach micrometer-
scale sizes without a noticeable tendency toward stabi-
lization. This process of strain-induced roughening
results in the fracture of the specimen, which is initiated
on the surface.

3. DIFFUSION KINETICS

The energy criterion for strain-induced roughening
(considered in the previous section) indicates only a
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possible decrease in the surface energy due to the trans-
formation of the surface relief. Solving the problem
associated with the implementation of this possibility is
outside the scope of the simple energy balance treat-
ment and, as was noted above, calls for the kinetic
approach. Now, we should concretize our consider-
ation. In this respect, we will primarily discuss the data
obtained for the Ge(111) face. It is assumed that the
main mechanism responsible for the strain-induced
roughening is the surface diffusion assisted by external
loading. Therefore, it is necessary to answer two ques-
tions. First, can the diffusion mechanism of mass trans-
fer on the surface be efficient enough to ensure the
experimentally observed spatiotemporal characteristics
of strain-induced roughening? Second, what is the role
of mechanical loading in the initiation of the diffusion
mechanism? It is known that, in the absence of loading,
no transformations are observed on the surface at room
temperature, so that the surface diffusion is “frozen.”

For loads σ ~ 0.1 GPa used in our experiments with
Ge(111) crystals, the lattice strain (in the crystal bulk)
is estimated as ε ~ 10–3. This strain is substantially
weaker than that required for breaking chemical bonds.
Moreover, for this value of the volume strain, the role
played by the loading in the initiation of the diffusion
process remains unclear. Hence, we make the inference
that the surface structure should involve sources of
local strains. Strain concentrators can be edges of the
features existing in the surface relief. In this case, the
increase in the strain is caused by the mismatch
between the lengths of chemical bonds in two layers
located one above the other when the lower layer (con-
ventionally, the substrate) is characterized by a uniform
strain εb, whereas the overlying layer (conventionally,
adlayer) is an island with laterally limited sizes.
According to the calculations, the local strain εi in the
vicinity of the adlayer edge can be two orders of mag-
nitude larger than the strain of the substrate, provided
the lateral size of islands is estimated as A ~ 102 nm.
This estimate justifies the lateral size used for the pyra-
mid base in the previous section. Note that the strain of
overlying adlayers decays exponentially away from the
substrate. Therefore, if the initial surface is not ideally
planar (this is always the case), the strain is enhanced at
the edges of the existing islands. Moreover, surface
semiconductor layers (with a thickness of several
micrometers or several tens of micrometers) at approx-
imately identical loads and room temperature undergo
considerable plastic (microplastic) deformation [9],
which also leads to the formation of strain concentra-
tors. It is expected that this phenomenon can also man-
ifest itself in our experiments.

It remains now to answer the last question as to how
strain concentrators initiate the diffusion mechanism of
mass transfer. The surface diffusion of an atom is lim-
ited by its detachment with the formation of a vacancy–
adatom pair (an adatom is an atom that is rather weakly
bonded to the surface). The activation rate of vacancy–
PHYSICS OF THE SOLID STATE      Vol. 47      No. 6      200
adatom pairs is estimated from the real parameters of
surface diffusion on the Ge(111) face. According to
[10], the activation energy of surface diffusion on the
Ge(111) face at room temperature is estimated as Q0 ≅
1 eV. The subsequent diffusive motion of the adatom
over the surface is characterized by a relatively low
activation energy; as a result, an activation barrier of
~1 eV should be attributed to the stage of adatom for-
mation. More specifically, this activation energy should
be assigned to the atoms located at the edges of atomic
terraces, because the diffusion parameters for a rough
surface are measured from the deroughening rate.

Let us first estimate the expectation time for detach-
ment of such an edge atom from the initial surface in
the absence of external loading (hereafter, we will con-
sider room temperature). This time can be estimated
from the formula

(11)

where τ0 is the period of atomic vibrations. The physi-
cal meaning of formula (11) is obvious: the preexpo-
nential factor determines the frequency of attempts to
overcome the barrier per unit time, and the exponential
function describes the Boltzmann probability of a
favorable outcome of the attempt. The period of atomic
vibrations is taken to be τ0 ~ 10–12 s. Then, the expecta-
tion time for activation of the vacancy–adatom pair on
the initial surface in the absence of external loading
turns out to be of the order of 105 s, (i.e., one day). For
this expectation time, the surface relief remains stable.
However, as the activation energy Q0 decreases by only
10%, the expectation time decreases to 103 s (one hour).
When the activation energy decreases by 25%, the
expectation time decreases to 10 s. According to the
above estimate of the local strain εi, similar effects can
be observed in the vicinity of the bases of the mounds
in the existing roughness. Simple estimates also dem-
onstrate that this is sufficient to provide the mass trans-
fer revealed on the Ge(111) surface by scanning tunnel-
ing microscopy. Therefore, the surface diffusion in the
given case is an efficient mechanism of strain-induced
roughening.

The analysis of the results obtained for the surface
of the uniaxially strained foils produced from the iron-
based amorphous alloy [3, 4] shows that they have
much in common with those for the Ge(111) surface.
Obviously, the corresponding data should be inter-
preted in the same manner. In the case of foils, the evo-
lution of the relief is also initiated by external loading
and the onset of the evolution obeys the energy crite-
rion. However, taking into account that the observed
phenomenon exhibits a multiscale (from a nanometer
scale to a micrometer scale) behavior, the monoatomic
diffusion cannot be treated as a dominant physical
mechanism of mass transfer. At the same time, this phe-
nomenon cannot be completely explained, for example,
within the theory of plastic deformation. In our opinion,
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the best explanation is provided by an intermediate
variant which can be referred to as cluster diffusion.
Cluster diffusion is considered to mean not only the
surface diffusion of islands (clusters) but also the pos-
sible diffusive mass transfer inside the defective surface
layer. This brings up a number of important questions
about the role played by external loading in the initia-
tion and promotion of the diffusion process. In particu-
lar, the question arises as to whether the decrease in the
activation energy of the process due to strain concentra-
tors is of particular significance. All these problems call
for further investigation.

Turning back to the idea of the decisive role played
by fluctuations of the thermal energy in the structural
evolution of strained solids, we can argue that this role
is not reduced to the initiation of fracture. The strain-
induced roughening is a process that is also initiated by
external loading but has a “creative” nature. Investiga-
tions have revealed that, in some cases, this process
provides a means for forming a quasi-periodic structure
of the surface relief [2]. The main physical mechanism
responsible for the formation of quasi-periodic struc-
tures, at least on the Ge(111) surface, is associated with
the surface diffusion. Surface diffusion is a stochastic
process in which the elementary event (activation of
adatom–vacancy pairs) is an activation process; i.e.,
this event is a manifestation of the aforementioned ther-
mal-energy fluctuations. In our opinion, it is deeply
symbolic that a large contribution to the recognition of
the creative function of thermal fluctuations was made
by Serafim Nikolaevich Zhurkov.
P
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Abstract—The deformation and destruction of single-walled open carbon nanotubes are investigated in the
framework of the molecular dynamics model of charges localized at bonds, which takes into account the atomic
(ionic) and electronic degrees of freedom. This approach allows one to study excited electronic states induced
by electronic transitions and to investigate both the ionic and electronic subsystems simultaneously. The struc-
tural transformations of nanotubes with (10, 2) chirality under tension are investigated, and the tensile stress–
strain diagrams of these nanotubes in the temperature range 100–1000 K are calculated. It is established that,
at low and moderate temperatures, the destruction of the nanotubes has a similar nature: the interatomic cova-
lent bonds are broken in the normal cross section of the nanotube. At high temperatures, the nanotube undergoes
a scission along the stretching axis. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The considerable interest expressed in the design of
instruments and devices based on nanostructures has
raised problems regarding the description and predic-
tion of the mechanical properties of their components.
As a rule, these problems have been solved using
molecular dynamics simulation (see, for example, [1,
2] and references therein). Until recently, molecular
dynamics simulations and analytical calculations were
conveniently performed with the Tersoff–Brenner
empirical potential and modifications of it. However,
the key factor in molecular dynamics studies is appro-
priate choice of the potential of interatomic interactions
[3]. In the majority of molecular dynamics simulations
of atomic systems, the contribution of the electronic
subsystem is taken into account by implicitly assuming
that the electrons are always in the ground state. In
order to avoid this disadvantage, we elaborated a
molecular dynamics model of charges located at bonds
which takes into account both atomic (ionic) and elec-
tronic degrees of freedom. The fundamental difference
between our model and other currently available mod-
els is that, within classical mechanics, the model of
charges at bonds provides a means for investigating
both atomic (ionic) and electronic subsystems simulta-
neously. This approach accounts for the contribution
from the electronic subsystem even in the case when
the electrons are in the excited state or when the system
undergoes electronic transitions. The proposed model
makes it possible to observe the variation in the config-
uration on the electronic level and to extend informa-
tion thus derived to the atomic level closely related to
the experiment [4–7].

This model is especially useful in investigating non-
equilibrium electronic–atomic processes with a strong
1063-7834/05/4706- $26.00 1013
correlation and localization in space and time, particu-
larly in studying fullerenes and nanotubes. The advan-
tage of the new approach is that the structure is not pos-
tulated a priori and, moreover, can undergo significant
transformations with time [4–8]. However, the main
advantage of the model is that it offers considerable
possibilities for analyzing the influence of electric and
magnetic fields on the fullerenes and nanotubes under
dynamic conditions [9].

In the present study, we considered the destruction
of single-walled chiral carbon nanotubes. All calcula-
tions were carried in the framework of the new molec-
ular dynamics method, which was developed previ-
ously to investigate the self-organization of fullerenes
and nanotubes [5–7].

2. COMPUTER SIMULATION

We simulated the transformation of the structure of
the nanotubes simultaneously with the mechanical
properties during the process of their deformation. In
addition to the conventional tensile stress–strain dia-
grams, we calculated the mean force acting on the
atoms of the nanotube in a direction perpendicular to
the stretching axis. In order to obtain the tensile stress–
strain diagrams, we developed a special grip (Fig. 1).
The main features of this grip are as follows.

(1) The number of carbon atoms contained in the
grip is no less than 20% of the total number of atoms in
the nanotube.

(2) The grip as a whole is displaced by a distance
∆r = 0.001–1.0r0 only in the Nth step of integration,
where r0 is the equilibrium distance between the nearest
neighbor atoms (the C–C bond length) and N varies
© 2005 Pleiades Publishing, Inc.
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from 500 to 10 000. The parameters ∆r and N determine
the rate of deformation.

(3) In each step, the atoms of the grip are displaced
by different distances. Atoms 1 are displaced by a dis-
tance ∆r, atoms 2 by a distance ∆r/2, atoms 3 by a dis-
tance ∆r/4, etc.

(4) The nth atom of the grip in the N/nth step is addi-
tionally displaced by a distance ∆rn = ∆r/2n. This results
in displacement of the grip as a whole in the Nth step.

(5) For all other steps of integration, excluding the
motion of the grip itself, the atoms of the grip are
assumed to be rigidly fixed.

This procedure was referred to as the construction of
a flexible movable grip. Such a grip excludes breakage
of the nanotube at the boundary of the grip.

We investigated the destruction of nanotubes of
length 21r0 with (10, 2) chirality. It should be noted that
the chirality of single-walled nanotubes is designated
by two indices and is defined as follows. A point on the
atomic planar lattice with indices (l, m) is assumed to
correspond to the origin of the coordinates (0, 0) by
rolling a sheet cut from this plane. This results in the
formation of a cylinder with an axis of rotation of the
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Fig. 1. Schematic diagram illustrating the flexible grip.
Numerals near the circles are the numbers of atomic layers
located perpendicular to the tensile force. All atoms within
the same layer are displaced equally. The sequential posi-
tions of the atoms of the grip between the two main steps of
integration are shown from the top down.
P

order of l and of a step m. In the case when m = 0, the
tube is achiral. The simulation was carried out in the
temperature range 100–1100 K, and the rate of defor-
mation was 2.5 × 10–7 nm/ps. The initial configuration
of the chiral nanotube is given in Fig. 2. In this figure,
the small-sized spheres designate bonding electron
pairs located at the midpoints of covalent bonds and the
nonbonding (lone) electrons; the large-sized spheres
correspond to carbon atoms. In other respects, the com-
putational procedure is similar to that used before in the
study of the destruction of achiral single-walled carbon
nanotubes [8].

3. RESULTS OF THE COMPUTER SIMULATION

Figures 3 and 4 illustrate the evolution of the struc-
ture and the tensile stress–strain diagrams of a nanotube
at a temperature of 100 K. It can be seen from these fig-
ures that the destruction occurs through the breakage of
interatomic bonds independently in two nonadjacent
regions located in the vicinity of the normal cross sec-
tions of the nanotube and is accompanied by local com-
pression of the damaged regions. This process leads to
considerable fluctuations in the tensile force. A similar
tendency seems to exist also at the beginning of the pro-
cess occurring at a temperature of 500 K, but then the
destruction is localized in one of the regions shown in
Fig. 5a, whereas in another region in the time interval
400–800 ps, there appear anomalously stretched bonds
(Fig. 5b). The tensile stress–strain diagrams are practi-
cally identical to each other (Fig. 6). In contrast to the
destruction at low and moderate temperatures, the
destruction occurring at a temperature of 1100 K
evolves in a different manner. The destruction proceeds
in a considerable more extended region and looks more
like a longitudinal shear than a normal detachment
(Fig. 7). In this case, the tensile stress–strain diagrams
also differ significantly (Fig. 8). The destruction is very
similar to that observed upon destruction of a chain
crystal simulating a highly oriented polymer (see [10,
p. 199]). On the macroscopic level, this destruction cor-
responds to a scission of the polymer along the stretch-
ing axis.
Fig. 2. Initial configuration of the nanotube with (10, 2) chirality.
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200 ps

400 ps

800 ps

1600 ps

Fig. 3. Structural transformation of the nanotube in the course of stretching at a temperature of 100 K.
4. DISCUSSION

First and foremost, we compare the character of the
destruction of the chiral and achiral nanotubes. In the
achiral nanotubes, at all temperatures, the destruction
takes place in a narrow region located along the normal
to the tensile force and has a brittle nature [8]. The
thickness of this region, which is approximately equal
to r0 at low temperatures, somewhat increases with an
increase in the temperature and becomes approximately
YSICS OF THE SOLID STATE      Vol. 47      No. 6      200
equal to (2–3)r0 at 1300 K. The tensile stress–strain dia-
grams at all temperatures are identical to each other and
bear a resemblance to the tensile stress–strain diagrams
of anharmonic chains of atoms (see [10, p. 81]). Strictly
speaking, the tensile stress–strain diagrams calculated
by the molecular dynamics method are not generally
accepted, because they include forces localized on the
scale of a hexagonal unit cell. These forces generate
residual microstresses, which are called residual
5
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Fig. 4. Tensile stress–strain diagrams of the nanotube subjected to (a) a tensile force acting along the stretching axis z and (b) a
compressive force normal to the stretching axis at a temperature of 100 K.
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Fig. 5. Structural transformation of the nanotube in the course of stretching at a temperature of 500 K.
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Fig. 7. Structural transformation of the nanotube in the course of stretching at a temperature of 1100 K.
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stresses of the third kind. In order to change over to
conventional tensile stress–strain diagrams, it is neces-
sary to subtract the constant component associated with
these residual stresses from the “molecular dynamics”
diagrams. The analysis of the results presented in
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Fig. 8. Tensile stress–strain diagrams of the nanotube sub-
jected to (a) a tensile force acting along the stretching axis
z and (b) a compressive force normal to the stretching axis
at a temperature of 1100 K.

Fig. 9. Anomalously stretched bonds (at the center and in
the lower part of the figure) upon tension at a temperature of
500 K for 600 ps.
P

Figs. 4, 6, and 8 and in the corresponding figures given
in our previous paper [8] demonstrates that the value of
this component is approximately equal for the chiral
and achiral nanotubes. When we subtracted this con-
stant component from the molecular dynamics dia-
grams and then compared the tensile stress–strain dia-
grams, we found that the ultimate strength of the chiral
nanotubes is less than that of the achiral nanotubes by a
factor of approximately 5. Let us now elucidate what
the reasons are for this difference.

Within the theory of elasticity, a chiral nanotube is a
screw dislocation in a hollow right circular cylinder for
which the Burgers vector b is proportional to the chiral-
ity index m and the cylinder itself is a hollow hard rod.
The screw dislocation aligned parallel to the axis of the
cylinder of radius R induces a torque moment M and
twists this rod through an angle α. In the cylindrical
system of coordinates, these quantities are given in the
following form (see [10, p. 102]):

Here, µ is the shear modulus, u is the displacement, and
σ is the stress. It follows from these formulas that the
twisting increases with a decrease in the cylinder
radius. For this reason, the long and thin filamentary
crystals containing the screw dislocation greatly twist.
This effect is referred to as Eshelby twisting. Moreover,
the last formula suggests that, in a chiral nanotube,
there occurs a shear stress localized on the scale of the
whole nanotube. According to the stress classification,
this residual microstress is called the stress of the sec-
ond kind. For a nanotube with (l, m) chirality, this stress
is of the order of µm/l, which, in our case, is ~µ/5.
According to the estimate obtained by Frenkel (see [10,
p. 91]), this value is close to the theoretical shear
strength. As can be seen from the initial structure of the
nanotube (Fig. 2), the hexagonal unit cells are consid-
erably distorted as a result of the Eshelby effect. The
analysis of the structures presented in Figs. 2, 3, 5, and
7 (200 ps) demonstrates that, first, the deformation
develops as a transverse shear. The sharp decrease in
the strength of the chiral nanotubes as compared to that
of the achiral nanotubes can be explained by the fact
that the applied tensile stresses are summarized with
the twisting microstresses of the second kind, which are
close to the critical stresses.

One more circumstance should be mentioned. The
tensile stress–strain diagrams at a temperature of 500 K
exhibit strong fluctuations in the time intervals 400–
800 and 1100–1200 ps (Fig. 8). It is in these time inter-
vals that anomalously stretched bonds arise in the struc-
ture. They become particularly noticeable if we
increase the scale of the image (Fig. 9). It can be
assumed that both phenomena are related to each other.

M µb
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2
------, α b

πR
2

---------, uθ r z,( ) b
πR
-------z,= = =

uz r θ,( ) b
2π
------θ, σθz

µb
2πR
----------.= =
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In order to verify this assumption, we calculated the
force of interaction between the atoms located along
the stretching axis in the active part of the nanotube
between the grips (Fig. 10).

It can be seen from Fig. 10 that, at 500 K in the time
intervals 400–800 and 1100–1200 ps, the force of inter-
atomic interaction in the active part of the nanotube is
substantially greater than that in other time intervals. It
follows from Figs. 6 and 10 that the ratio of this force
to the tensile force is approximately equal to 0.6/3.0 =
0.2. Let us discuss this phenomenon. For the Morse
potential

,ϕ r( ) ϕ0 2α r r0–( )–[ ]exp 2 α r r0–( )–[ ]exp–{ }=
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Fig. 10. Thermal fluctuations of the modulus of the interac-
tion force between the atoms in the active part of the nano-
tube between the grips at temperatures of (a) 100, (b) 500,
and (c) 1100 K.
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the elastic moduli of the conventional and anomalously
stretched bonds are given, respectively, by (see [10, p. 84])

Here, ϕ0 is the energy of dissociation of the interatomic
bond, α2ϕ0 is the elasticity constant, and r0 is the equi-
librium distance between the atoms. In this case, we
have

which coincides with the ratio between the above
forces.

It is known (see [10, p. 81]) that anomalously
stretched bonds are local concentrators of potential
energy. The formation of anomalously stretched bonds
takes place even when the tensile force is less than the
ultimate strength. This slows down the destruction
because part of the strain energy is absorbed by anom-
alously stretched bonds. In our case, this phenomenon
manifests itself in the slowing down of the decrease in
the strength after the ultimate strength is reached; con-
sequently, the partially damaged tube can still sustain
some, but a smaller, load.
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Abstract—The formation of a supramolecular structure is studied in highly oriented polyethylene samples pro-
duced using two different methods based on melt extrusion. Relations between the degree of orientation, struc-
tural features, and mechanical properties of oriented samples are established. Zhurkov’s concepts regarding the
kinetic nature of the strength of solids are used to analyze the effect of the method employed to fabricate a
supramolecular structure on the behavior of the samples upon loading and their long-term mechanical proper-
ties. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

It is now generally accepted that high mechanical
properties of fibers and films made of flexible-chain
polymers can be obtained when a system becomes ori-
ented under the action of uniaxial tension. In the
absence of molecular orientation, flexible-chain poly-
mers are known to crystallize into folded crystallites
connected by through chains (i.e., their chains fold). It
is chain folding during crystallization that causes a low
degree of linkage between the crystallites and the for-
mation of an amorphous phase with through chains,
which is a trouble spot of the system. A low fraction of
through chains (according to Flory’s estimations [1], at
most 50% of the chains pass from every crystallite to a
neighboring one) is a factor that limits the mechanical
properties of the system. To increase these properties, it
is necessary to increase the number of through chains
and, especially, the number of load-bearing chains,
whose number is less than 5% of the total number of
chains in the cross section of a sample [2]. This prob-
lem does not arise when the self-folding of macromol-
ecules is replaced by their unfolding. Since a molecule
passes from one crystallite to another upon unfolding,
virtually all chains in amorphous regions become
through; this results in a sharp increase in the linkage
between crystallites and, as a consequence, in an
increase in the mechanical properties of the samples.
As has been shown by many researchers [3–5], the tran-
sition from folding crystallization to chain-unfolding
crystallization can be realized under conditions of
molecular orientation. In this case, the supramolecular
structure depends on both the degree of orientation and
the initial structure of a system.

The problems of strengthening of flexible-chain
polymers, in particular, commercial polymers, such as
polyethylene and polypropylene, have been dealt with
in many studies in Russia and abroad because of their
scientific and practical importance. Two scientific
schools have contributed substantially to the develop-
1063-7834/05/4706- $26.00 1020
ment of the scientific foundations and practical realiza-
tion of improved mechanical properties of flexible-
chain polymers: one is the school of the Ioffe Physi-
cotechnical Institute (IPI), Russian Academy of Sci-
ences, headed by Zhurkov, and the other is the school
of the Institute of Macromolecular Compounds (IMC),
Russian Academy of Sciences, headed by Frenkel.
Researchers belonging to these schools formulated
basic principles for the transition of flexible-chain poly-
mers into an oriented state and determined key factors
affecting this transition.

Studies of the supramolecular structure and struc-
tural transformations in crystallizing flexible-chain
polymers have shown that these transformations are
accompanied by the formation of certain structural ele-
ments and the failure of others. Therefore, two compet-
ing processes can simultaneously occur during uniaxial
tension: strengthening as a result of orientation-induced
straightening of molecules and their parallel arrange-
ment along the tensile axis and failure as a result of the
breaking of load-bearing through chains and the cleav-
age of crystallites. The competition between these two
processes specifies the efficiency of orientation used to
improve the mechanical properties. The main problem
in this case is to attain a situation where the process of
strengthening dominates over failure. The initial struc-
ture of a sample subjected to orientation plays a signif-
icant role. It has been found that failure of a polymer
sample can be avoided during deformation if its initial
state does not have a developed supramolecular struc-
ture in the form of a large number of coarse crystallites
but rather contains fine crystallites (which can easily be
rearranged) or is structureless. The domelike shape of
the crystallization rate versus temperature curve [6]
demonstrates that there are two regions where the crys-
tallization rate decreases to low values and where such
a structureless state can be achieved; more specifically,
in the left branch, near the glass transition temperature
Tg, and in the right branch, near the melting temperature
© 2005 Pleiades Publishing, Inc.
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Tm. Accordingly, researchers have developed and real-
ized strengthening processes in which the initial sys-
tems intended for subsequent orientation were formed
in these two temperature ranges in the kinetic curve.

Researchers at the IPI [7, 8] designed the process of
oriented drawing, where the initial structure was taken
to be a structure that forms in the lower temperature
branch of this curve, namely, an amorphous sample or
a sample with an isotropic fine-crystallite structure pre-
pared through crystallization at temperatures near Tg

under substantial supercooling. Using this quenching,
an amorphous, structureless state could be attained in
polypropylene which has a sufficiently high glass tran-
sition temperature (about 0°C). Polyethylene has a very
low Tg and a high crystallization rate [6]; therefore,
even deep quenching cannot result in an amorphous
state. However, a fine spherulite structure can be
formed and then placed under tension to perform
unfolding in crystallites and obtain a fibrillar structure
based on unfolded-chain crystallites. This transforma-
tion of a quenched structure makes it possible to avoid
failure if drawing is conducted at low tension rates and
in a few stages, with the temperature being successively
increased in each subsequent stage.

Another process of oriented crystallization
(designed at the IMC) involves the higher temperature
branch of the kinetic curve near Tm. In this process, a
supercooled melt is subjected to molecular orientation
in its highly elastic state [9–11]. This process occurs at
a high tension rate, so orientation precedes crystalliza-
tion and the crystallization takes place from a prelimi-
narily oriented melt. As a result of tension, molecules
in the melt acquire partly or completely unfolded con-
figurations, which are fixed by crystallization to form
crystallites with unfolded chains. The higher the ten-
sion of the melt before crystallization, the higher the
degree of chain unfolding and the higher the propor-
tion of the crystallites. The process of oriented crystal-
lization ends in solidification at the melting tempera-
ture of fibrillar crystallites. The noncrystallized por-
tion of the sample solidifies to form folded crystallites
when the temperature decreases to their melting tem-
perature [11].

Both processes (oriented crystallization initiated by
melt tension at a near-Tm temperature and oriented
drawing in which samples crystallized well below Tm is
subjected to uniaxial tension) lead to the formation of
highly organized supramolecular structures containing
crystallites with unfolded chains. However, these pro-
cesses differ substantially in terms of the shape, size,
and linkage of the structural elements. These different
structures undergo noticeably different long-term
changes in their mechanical properties. To analyze
these differences, the supramolecular structures of
highly oriented polyethylene samples produced using
these two methods were studied in [12, 13]. Samples of
both types were prepared from commercial LPPE linear
polyethylene with Mw = 2.35 × 105 and Mw/Mn = 6–8.
PHYSICS OF THE SOLID STATE      Vol. 47      No. 6      200
2. SUPRAMOLECULAR STRUCTURE 
PRODUCED BY ORIENTED DRAWING

To study the effect of oriented drawing on the struc-
ture of oriented films, we prepared samples using melt
extrusion at 270–290°C and jet drawing to 1.1–1.3. The
extruded melt from the spinneret was immediately
directed into a quenching bath having a temperature of
10°C. As shown in [8], these conditions are optimal for
the formation of an isotropic structure in samples. The
film produced was subjected to one-, two-, or three-
stage drawing on a laboratory gradient heater. The first
stage of drawing was carried out at 110°C. The temper-
ature of this stage, in which necking (i.e., transition to
an oriented state [14]) occurs, was chosen because seg-
ment mobility appears in polyethylene crystallites at
this temperature [15]; therefore, conditions are created
for chain unfolding and the transformation from folded
into fibrillar crystallites. In the second and third stages,
the drawing temperatures were 115 and 120°C, respec-
tively.

The supramolecular structure of the samples was
studied using scanning electron microscopy on a
MINISEM microscope (AKASHI, Japan). The internal
structure of the samples was examined by the “peeling”
method [16]. These studies showed that the main ele-
ment of the supramolecular structure of the samples
produced by oriented drawing is a microfibrillar aggre-
gation extended along the orientation axis. At low draw
ratios (λd = 6–9), the sample structure is inhomoge-
neous and reflects the temperature gradient of drawing.
In the surface layers, which were in direct contact with
the heater, the structure is more perfect and consist of
close-packed, well-oriented macroscopic fibrils 0.8- to
1.0-µm thick. Deeper layers have a looser, weakly orga-
nized structure and contain voids 0.03–0.14 µm in size.
An increase in the draw ratio in the first stage to λd = 14
results in the formation of a highly oriented,
microfibrillar structure (Fig. 1a). At these draw ratios,
the transition from a fine-crystallite (fine-spherulite)
initial structure to a fibrillar structure with unfolded-
chain crystallites is complete [8, 12, 17]. The main
building blocks of the latter structure are filamentary
0.1-µm-thick microfibrils separated by microvoids and
extended along the tensile axis. The microfibrils are
closely packed into macroscopic fibrils, and individual
microfibrils are connected by transverse stressed
through chains, which provide linkage between struc-
tural elements in the bulk of a sample.

In the second stage of drawing to a draw ratio λd =
25, the microfibrils are additionally oriented and their
length increases. However, the transverse through
chains disappear and the linkage between fibrils weak-
ens; as a result, the sample cleaves easily to form indi-
vidual microfibrils upon loading (Fig. 1b). With a fur-
ther increase in the orientation in the third stage of
drawing to λd = 30, the weakening of the linkage
between fibrils leads to loosening of the fibrillar struc-
ture and its structural elements are deformed to differ-
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Fig. 1. Electron micrographs of the peeled surface of samples produced by oriented drawing at λd equal to (a) 14.2, (b) 21.3, and
(c) 30.
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Fig. 2. Electron micrographs of the peeled surface of samples produced by oriented crystallization at λm equal to (a) 6, (b) 9, and
(c) 16.5.
ent degrees. These factors result in failure and partial
relaxation of the most stressed structural elements with
time. Figure 1c shows numerous structural details in the
form of curved aggregations after this relaxation.

As shown by x-ray diffraction, the increase in the
oriented-draw ratio is accompanied by a significant
increase in the fraction of a crystalline phase, which
reaches 85% in the samples drawn to λd = 30. The
mechanical properties also increase with λd: the elastic
modulus increases continuously to E = 35 GPa at λd =
30, and the strength becomes maximum (σ = 1.15 GPa)
at λd = 20–22 and then decreases to 1.0 GPa. We may
assume that the rupture of overstressed building blocks
causes a certain decrease in the strength at high draw
ratios and that an increase in the degree of orientation
provides a continuous increase in the elastic modulus,
which becomes slower at λd > 20.

3. SUPRAMOLECULAR STRUCTURE 
PRODUCED BY ORIENTED CRYSTALLIZATION

Oriented crystallization is a continuous one-stage
process with combined orientation and solidification
zones. According to this method, a polyethylene melt is
extruded at 180°C with a minimum possible jet-draw
ratio, which is close to unity. Then, the melt was
directed to rolls heated to 110°C, which ensured its
effective deceleration before subsequent tension and
crystallization induced by this orientation effect [10,
P

11]. The roll temperature was chosen on the basis of the
dependence of the strength on the crystallization tem-
perature determined earlier [12]. In our case, this tem-
perature corresponds to a supercooled melt, whose high
viscosity allows its tension to a high degree.

We studied samples produced at different degrees of
melt tension before crystallization. Electron micro-
graphs show that the samples produced at the lowest
degrees of melt tension (λm = 6.0) consist of extended
stripelike macroscopic fibrils 5- to 10-µm thick con-
nected by stretched, thin, filamentary through mole-
cules (strands) (Fig. 2a). The stripelike macroscopic
fibrils are separated by extended wedge microvoids
1-µm wide and 10-µm long. The edges of these voids
are connected by strands. The strands connecting void
edges with macroscopic fibrils in the planes that are
either normal or parallel to the surface lead to the for-
mation of a dense viscous structure that is difficult to
split.

At high degrees of tension (λm = 9.0 and 16.5, for
Figs. 2b and 2c, respectively), the sample acquires a
stripelike homogeneous supramolecular structure.
However, strands between structural elements disap-
pear. A comparison of Figs. 2a and 2c shows that, as the
degree of orientation increases, voids between stripe-
like aggregations disappear and the stripelike building
blocks become smoother and narrower (from 1 to
5 µm). The fibril length increases, the thickness of the
fibrils making up stripes decreases, and their packing
HYSICS OF THE SOLID STATE      Vol. 47      No. 6      2005
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becomes denser and more perfect. However, even at
λm = 16.5 (Fig. 2c), certain disorientation is retained in
the form of bent macroscopic fibrils and macroscopic
fibrils deviating from the main direction.

X-ray diffraction studies of orientationally crystal-
lized samples show that, at λm < 12, the large spatial
period is 250 Å and is independent of the degree of ori-
entation. At higher degrees of orientation of the melt
before crystallization, this period increases sharply to
400 Å. This increase in the crystallite size is accompa-
nied by a decrease in the intensity of discrete small-
angle scattering; at λm > 14, the small-angle reflection
disappears, which indicates a denser packing of the
amorphous phase in the intrafibrillar space and the for-
mation of unfolded-chain crystallites [12, 18].

All these changes indicate the formation of a more
perfect structure and significantly improve the mechan-
ical properties. Indeed, the strength and elastic modulus
of the samples produced at λm = 6 are 0.33 and 3.0 GPa,
respectively, whereas those of the samples produced at
λm = 16.5 are 1.05 and 13.3 GPa, respectively. As
shown in [18], at these degrees of orientation in the first
stage of crystallization, fibrillar crystals form during
cooling of an oriented melt at temperatures below the
melting temperature of the fibrillar crystals but above
Tm of folded crystals. As the temperature decreases fur-
ther, all the chains that have not been involved into the
fibrillar crystals undergo folding crystallization. The
higher the tension of the melt before crystallization, the
greater the proportion of fibrillar crystals in a sample
and the higher its mechanical properties.

4. COMPARISON OF THE SUPRAMOLECULAR 
STRUCTURES OF THE SAMPLES PRODUCED 

THROUGH ORIENTED CRYSTALLIZATION 
AND ORIENTED DRAWING

Thus, electron-microscopic studies demonstrate sig-
nificant differences in the structures of samples pro-
duced by the two methods indicated above, namely, dif-
ferences in the shape, size, and linkage of building
blocks. In the orientationally crystallized samples, the
building blocks are rather coarse monolithic stripelike
aggregations, which do not peel when the samples are
subjected to peeling. The building blocks of orienta-
tionally drawn samples are individual thin macroscopic
fibrils, which are separated into thinner microfibrils due
to peeling under load.

These differences are caused by the substantially
different mechanisms of structure formation inherent to
these two methods. The supramolecular structure of
orientationally crystallized samples forms from a melt
with homogeneously distributed crystallization centers,
and this structural homogeneity remains unchanged at
all degrees of melt tension. These samples are charac-
terized by strong linkage between building blocks irre-
spective of the degree of orientation, since fibrils con-
sisting of unfolded chains penetrate one another to form
PHYSICS OF THE SOLID STATE      Vol. 47      No. 6      2005
a continuous spatial skeleton embedded in the matrix of
folded crystals and noncrystallized chain segments.
This skeleton penetrates through a sample and takes the
applied to the sample during deformation; therefore,
the mechanical properties of the sample are specified
by the properties of this rigid skeleton and its volume
fraction. The strength of disordered polyethylene is
known to be less than 0.1 GPa. Although the volume
fraction of the skeleton in ordered polyethylene does
not exceed 15–20% [10], this amount is sufficient to
increase its strength by one order of magnitude.

The structure of orientationally crystallized samples
forms from an oriented melt at a near-melting tempera-
ture, i.e., under near-equilibrium conditions. Therefore,
the chains that are not involved in the crystalline skele-
ton can relax. Moreover, the high mobility of macro-
molecules under these conditions and the absence of
ordered building blocks makes it possible to tension the
viscous medium without the formation of voids and
other defects and to form monolithic crystalline aggre-
gations under conditions of rapid and free entrapment
of molecules by these aggregations. The sizes of grow-
ing crystallizing regions are only controlled by the rate
of material solidification, which controls crystalliza-
tion. The crystalline skeleton formed under these con-
ditions provides for high time stability of the mechani-
cal properties of the samples.

The structure of samples produced by oriented
drawing results from restructuring of the material crys-
tallized at significant supercooling under conditions far
from equilibrium. In this case, chain relaxation is hin-
dered. Therefore, multiple nucleation during crystalli-
zation (when one chain penetrates several crystallites)
leads to a large number of stressed through chains
(strands). The fracture of these strands upon drawing
can induce defects and free chain ends. Moreover,
when chains are subject to orientation and unfolding in
folded crystallites upon drawing, a tensile force is
applied to each crystallite. Thereafter, unfolded chains
are rearranged to form fibrillar aggregations under con-
ditions of low chain mobility in the solidified material
and short-term exposure to an elevated temperature.
Difficult transverse motion of chains during the forma-
tion of these aggregations results in very fine building
blocks (microfibrils), which manifest themselves dur-
ing the separation of their coarser aggregations (macro-
scopic fibrils) upon loading in the process of peeling
(Fig. 1c).

However, the possibility of reaching higher draw
ratios (up to λd = 30) and, hence, higher degrees of ori-
entation in multistage oriented drawing as compared to
the draw ratios typical of single-stage oriented crystal-
lization (up to λm = 15–17) provides improved mechan-
ical properties of the orientationally drawn samples in
spite of their inherent defects and voids.



 

1024

        

EL’YASHEVICH

          
5. LONG-TERM MECHANICAL PROPERTIES
OF ORIENTED SAMPLES

Although the orientationally crystallized and orien-
tationally drawn samples contain both fibrillar and
folded crystallites [12, 18], the differences in their
supramolecular structures substantially affect their
response to an applied load and their behavior under a
load. This behavior was analyzed under creep condi-
tions [19, 20].

5.1. Deformation Behavior of Samples Produced
by Oriented Drawing

In samples produced by oriented drawing, the link-
age between the main building blocks containing
unfolded-chain crystallites (macro- and microfibrils) is
not high enough to prevent their displacement under a
load. Therefore, the deformation behavior of these sam-
ples is characterized by creep at a load exceeding a cer-
tain critical value. We observed virtually no creep in the
samples with a strength of 0.9 GPa at loads below
~0.13 GPa (which is about 15% of the breaking stress).
At these loads, the sample elongation was less than 2%
at times to failure varying from one to a few months,
depending on the load.

The sample deformation was studied under a con-
stant load at stresses above the critical value [19]. It was
shown in [20] that, over a wide stress range, the depen-
dences of the strain rate  on the relative elongation
have a plateau (corresponding to steady-state-creep
conditions) and that the logarithm of  depends lin-
early on the applied load σ in the plateau. This depen-
dence is described by the Eiring equation

ε̇

ε̇

ε̇pln ε̇0/2( )ln ∆U/kT( )– σV /kT( ),+=

0.40.20
σ, GPa

10–3

10–5

10–7

ε p

Fig. 3. Dependence of the plateau strain rate  on the

stress σ.

ε̇p
P

where  is the value of  in the plateau,  is a con-
stant, ∆U is the activation energy, and V is the activation
volume.

For the orientationally drawn samples studied, the
ln (σ) dependence consists of two linear segments
with different slopes (Fig. 3), which indicates that two
creep mechanisms are operative. The first mechanism is
related to the development of deformation in amor-
phous regions (specifically, fibril slip with respect to
each other), and the second mechanism is related to
chain slip through a crystallite (i.e., restructuring in
crystallite regions). At low stresses, only the first pro-
cess occurs; the second process becomes operative after
reaching a certain critical stress. The linear segments in
the ln (σ) dependence correspond to two activation
processes with different activation volumes. An estima-
tion performed in [20] shows that the first process
(which occurs at low loads) has a larger activation vol-
ume (V1 = 16.5 × 10–29 m3) than the second process
(V2 = 7.4 × 10–29 m3), which becomes important at high
strain rates. The value of the activation volume V2
agrees well with the unit cell volume of polyethylene,
which supports the assumption that the second process
is related to α relaxation and chain slip through crystal-
lites, whereas the first activation volume characterizes
chain slip in less ordered interfibrillar and intercrystal-
lite regions.

Figure 4 shows the logarithm of the lifetime of the
samples produced by oriented drawing (the time to fail-
ure τ taken in seconds) as a function of the applied
stress σ. This curve consists of two linear segments.
Such dependences are described by the Zhurkov for-
mula [22]

ε̇p ε̇ ε̇0

ε̇

ε̇

τ τ 0 U0 γσ–( )/ kT( )[ ] ,exp=

0.20 0.4
σ, GPa

5

10

15

ln
τ

Fig. 4. Dependence of the logarithm of the time to failure τ
on the stress σ.
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where U0 is the fracture activation energy, γ is the fluc-
tuation volume, and τ0 is the preexponential factor.

The presence of two linear segments suggests two
fracture mechanisms to be operative. At low stresses,
one of them becomes dominant, and the second
becomes substantial at high stresses. Using the slopes
of the linear segments in Fig. 4, we calculated the fluc-
tuation volume for each mechanism (γ1 = 11.6 ×
10−29 m3, γ2 = 11.6 × 10–29 m3).

It should be noted that, for both the creep and life-
time of the samples, the point of transition between the
two deformation modes corresponds to σ = 0.3 GPa,
which is one-third of the breaking stress. This finding
unambiguously indicates the presence of a relationship
between the creep and fracture mechanisms. As in the
case of creep tests, the activation volume in lifetime
tests at high loads, γ2, is found to be larger than γ1. To
explain this fact, we assume that the structure of highly
oriented systems made of flexible-chain crystallizing
fibrils consists of fibrils with alternating crystalline and
amorphous zones and of unfolded, partly stressed
through molecular chains located in interfibrillar gaps
and mainly extended along the fibril axis [23].

According to Zhurkov’s concept of a loaded sample
[22], a load in certain chains is redistributed and some
of the chains become overstressed and fail. This process
leads to defect accumulation and, eventually, to fracture
of the sample. This redistribution proceeds during a
flow under a load. At small loads, fibrils and interfibril-
lar chains mainly slip with respect to each other, so
defects are predominantly accumulated in noncrystal-
line regions. This process is characterized by the fluctu-
ation volume γ1. At high loads, chains slip through crys-
talline regions; there occurs slip along crystalline
planes, and crystallites cleave. Therefore, fracture
accumulates in the chain areas that were initially in
crystallites. This behavior causes a decrease in the fluc-
tuation volume γ2.

Thus, the processes of both creep and fracture local-
ize in disordered regions at low loads and in the defect
zones of crystalline regions at high loads. The fact that
the transition between these two modes occurs at the
same load (compare Figs. 3, 4) indicates that creep pro-
cesses play a significant role in the fracture of oriented
samples upon loading.

5.2. Deformation of Orientationally Crystallized 
Samples upon Loading

The deformation behavior of orientationally crystal-
lized samples upon loading is radically different. After
initial elongation, they retain their sizes until fracture.
This behavior is explained by the fact that a load
applied to a sample is taken by a crystalline skeleton.
The initial elongation is specified by the deformation of
this skeleton. This elongation is 10–13% (which is vir-
tually equal to the elongation at fracture of the sample).
Thereafter, the sample behaves like a rigid solid and
PHYSICS OF THE SOLID STATE      Vol. 47      No. 6      200
withstands a load without any creep for a time deter-
mined by the long-term strength of the sample and by
the load. At loads higher than 0.12–0.15 GPa, the sam-
ples failed almost immediately, whereas lower loads
were withstood by the samples for several months at a
maximum elongation of 3%.

The orientationally crystallized samples also exhibit
this type of behavior (characteristic of brittle low-
molecular solids) upon heating under isometric condi-
tions, where the ends of a sample are fixed. As the tem-
perature increases up to the melting temperature of
fibrillar crystallites (at which the samples failed), no
increase in internal stresses was detected in the sam-
ples. These results agree with thermomechanical test
data (Fig. 5). Unlike ordinary oriented samples of flex-
ible-chain polymers, the orientationally crystallized
samples demonstrate a shrinkage-free plateau upon
heating to 100°C, whereas the samples produced by
drawing usually shrink at 50°C. Internal stresses are
retained in the samples up to the Tm of fibrillar crystal-
lites. The fibrils (whiskers) forming upon fracture of the
orientationally crystallized samples exhibit no shrink-
age upon heating up to the temperature Tm of unfolded-
chain crystallites, at which the stresses in a sample
drops sharply.

5.3. Time Variation in the Mechanical Properties 
of Oriented Samples

Measurements of the mechanical properties of as-
produced films show that the samples prepared using
the two different methods have comparable strengths
(1.15 and 1.03 GPa), whereas the elastic modulus E of
the samples produced by oriented drawing (Fig. 6a,
curve 2) is substantially higher than that of the orienta-
tionally crystallized samples (Fig. 6a, curve 1) at all
degrees of orientation. Measurements of these charac-

140120100806040
T, °C
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Fig. 5. Thermomechanical curves for (1) orientationally
crystallized polyethylene samples and (2) fibrils forming
upon fracture of a sample.
5



1026 EL’YASHEVICH
teristics performed after one year showed that the
strengths of the samples of both types decreased by
10% and that the elastic moduli of the samples pro-
duced by oriented drawing decreased substantially
(Fig. 6b).1 However, the elastic modulus of the orienta-
tionally crystallized samples remains unchanged after
one year [13].

As is seen from Fig. 6b, the decrease in the elastic
modulus E after one year is greater for larger values of
the draw ratio λd. For example, at a draw ratio λd = 15,
the elastic modulus E decreases by a factor of 2.5 and
becomes equal to the elastic modulus of the orientation-
ally crystallized samples (Fig. 6a). The decrease in the
elastic modulus indicates a decrease in the orientation
and slow relaxation of oriented building blocks with
time. This relaxation can be caused by a number of fac-

1 In 1977, Frenkel [9] theoretically predicted the phenomenon of
slow relaxation of the elastic modulus by comparing the proper-
ties of high-strength polyethylene and polypropylene samples
produced through oriented crystallization and oriented drawing.
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Fig. 6. (a) Dependence of the elastic modulus on the degree
of orientation for (1) samples produced by oriented drawing
and (2) orientationally crystallized samples. (b) Depen-
dence of the elastic modulus on the degree of orientation for
samples produced by oriented drawing: (1) for as-produced
samples and (2) after one-year storage.
P

tors. Thermal motion can decrease the degree of orien-
tation due to a weak linkage between the structural ele-
ments; the orientation can also be decreased because of
an increase in the void dimensions between the building
blocks as a result of a decrease in the transverse sizes of
fibrils, which become thinner (Figs. 1a, 1b). Moreover,
the appearance of discontinuities between fibrils
induces noticeable fibrillation in the samples. The
appearance of free (unfixed) fragments capable of
relaxing, as a result of the fracture of overstressed
microfibrillar building blocks, also favors a decrease in
the orientation and the elastic modulus.

However, the method of multiple oriented drawing
allows us to achieve higher limiting values of molecular
orientation as compared to oriented crystallization,
where the tension of a melt is restricted by solidification
during unfolded-chain crystallization, since the effec-
tive melting temperature of unfolded chains is higher
than the temperature of the process. An increase in the
melt tension temperature leads to a decrease in the melt
strength and, as a consequence, to a decrease in the
maximum draw ratios of the melt. Higher degrees of
orientation in the samples produced by multiple draw-
ing lead to higher values of the elastic modulus, which
remains rather high even after a decrease upon long-
term storage.

After ten years of storage, the elastic moduli of the
samples of both types remain unchanged, although the
samples prepared at maximum values of λd become
strongly fibrillar. The accumulation of defects upon
storage for ten years resulted in a 15% decrease in the
strengths of all samples.

6. CONCLUSIONS
Structural studies of highly oriented polyethylene

samples produced using two different methods allowed
us to establish the mechanism of formation of their
supramolecular structures and its effect on the deforma-
tion behavior and long-term mechanical properties of
the samples. Based on Zhurkov’s concepts of the
kinetic nature of the strength of solids, we have ana-
lyzed the relation between the structural factors and the
behavior of a polymer material upon loading (in partic-
ular, practically important properties such as long-term
strength and creep).
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Abstract—The structural transformations occurring in the course of the preparation of high-strength poly(eth-
ylene) fibers by gel spinning are investigated using x-ray diffraction and IR and Raman spectroscopy. A model
of the gel and xerogel structures is proposed. It is shown that the elastic and strength characteristics of poly(eth-
ylene) fibers can be improved through the extension of molecular folds and an increase in the degree of crystal
continuity along the fiber axis. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The design of new technologies for preparing poly-
mer materials with unique properties, including ultra-
high-strength characteristics, is an important problem
in polymer physics. At present, gel spinning has been
the most efficient method for strengthening flexible-
chain polymers [1, 2]. This method involves three main
stages: (i) transformation of a polymer solution into a
gel, (ii) gel spinning of fibers and subsequent removal
of the solvent (transformation into a xerogel), and
(iii) orientation drawing of spun fibers. The use of gel
spinning makes it possible to improve the strength
parameters of fibers based on ultrahigh-molecular-
weight polyethylene (UHMWPE) by one order of mag-
nitude. However, the strength characteristics remain far
from the theoretical limit (more precisely, they account
for approximately 10% of this limit). In our opinion,
further improvement of the mechanical properties of
these fibers can be based only on the results of complex
investigations into the structure–property relations for
gels and intermediate products at all stages of the tech-
nological process. In the present work, the structural
transformations occurring in ultrahigh-molecular-
weight polyethylene in the course of gel spinning of
high-strength fibers were investigated using IR and
low-frequency Raman spectroscopy, wide-angle x-ray
diffraction, and rheological and mechanical measure-
ments.

2. SAMPLE PREPARATION
AND EXPERIMENTAL TECHNIQUE

We studied initial UHMWPE powders with MW =
(1.7–14.2) × 106; solutions and gels of UHMWPE in
decalin, n-xylene, and Vaseline (liquid paraffin) at con-
centrations up to 5%; xerogel films; and UHMWPE
fibers (with different draw ratios) prepared at a pilot
plant of the Research Institute of Synthetic Fibers
1063-7834/05/4706- $26.00 1028
(Tver, Russia) [3]. The technique used for preparing
solutions and gels of ultrahigh-molecular-weight poly-
ethylene was described in detail in [4].

The IR spectra were recorded on an Equinox 55
Fourier-transform IR spectrometer equipped with a
polarizer. The molecular orientation in crystalline
regions was evaluated from the formula [6]

(1)

where θ is the angle between the orientation axis and
the axis of the molecular segment and R is the dichroic
ratio of the IR band at a frequency of 731 cm–1 associ-
ated with the pendular vibrations of the CH2 groups in
crystalline regions of the polymer.

The Raman spectra of the samples in the longitudi-
nal acoustic mode (LAM) range were measured using a
DILOR XY 800 triple monochromator equipped with a
NdYO4 laser (λ = 532 nm; power, 100 mW). The spec-
tra of oriented fibers were recorded in a 90° geometry
for the polarization XX. The fiber axis was collinear
with respect to the X direction. The Raman spectra in
the LAM range were processed according to the proce-
dure described in our earlier works [5, 6]. The length L
of straight chain segments, irrespective of their state
(amorphous, crystalline), and the longitudinal acoustic
mode frequency νL are related by the expression [7]

(2)

where νL corresponds to the frequency of acoustic
vibrations of the elastic rod, c is the velocity of light,
ρ is the density of the crystalline phase of the polymer,
and E is the Young’s modulus along the straight chain.
The shape of the LAM band determines the length dis-
tribution function F(L) of the straight chain segments
according to the relationship [8]

(3)

θcos
2〈 〉 2 R–( )/ 2 R+( ),=

νL 2cL( ) 1–
E/ρ( )1/2

,=

F L( ) 1 hcν/kT–( )exp–[ ]ν 2
I ,∝
© 2005 Pleiades Publishing, Inc.
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where T is the absolute temperature, I is the Raman
scattering intensity, k is the Boltzmann constant, and
h is the Planck constant.

The wide-angle x-ray diffraction experiments were
performed on a STADI P (STOE & CIE) diffractometer
(monochromatic radiation at λ = 0.154 nm). The trans-
verse size Lt of the crystallites was calculated from the
Debye–Scherrer formula [9, 10]

(4)

where K = 0.94 is a constant, β is the half-width of the
diffraction peak (in rad), and θ[200] is the diffraction
angle of the (200) diffraction peak.

The rheological parameters of the solutions and gels
were measured at a temperature of 60°C on a Carri-
Med CSL 100 rotational viscometer. The mechanical
characteristics (the strength and the elastic modulus for

Lt Kλ /β θ 200[ ] ,cos=
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Fig. 1. IR transmission spectra of UHMWPE gels (MW =

1.7 × 106) prepared from decalin solutions with (a) polymer
concentrations c = (1) 0.1 and (2) 1.5% and (b) the polymer
concentration c = 1.0% at temperatures of (1) 20, (2) 80, and
(3) 90°C.
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an extension of 2%) were determined with an Instron
1122 tensile testing machine for a gauge length of
150 mm and at an extension rate of 50 mm/s.

3. UHMWPE GELS AND XEROGELS

According to the IR spectroscopic data obtained in
[4, 6], poly(ethylene) gels contain a crystalline phase.
This can be judged from the “crystalline” doublet at fre-
quencies of 720 and 730 cm–1 in the IR spectrum of the
gels (Fig. 1a). An increase in the temperature leads to a
gradual decrease in the intensity of the doublet
(Fig. 1b), which completely disappears at a tempera-
ture of 90°C; the gel transforms into the solution. Upon
cooling, the crystal phase is again formed in the solu-
tion, which transforms into the gel, and the IR spectrum
regains its initial shape. As follows from the rheological
measurements, the solution  gel transition leads to
an increase in the shear modulus by three or four orders
of magnitude. An increase in the elastic characteristics
is also observed when the polymer concentration in the
solution reaches a critical value at which a continuous
spatial polymer network is formed [9]. The critical
UHMWPE concentration in different solvents varies
from 0.1 to 0.5%. It should be noted that an increase in
the molecular weight of the polymer leads to a decrease
in the critical concentration. The above data allow us to
make the inference that, according to the Keller model
[11], nodes of the spatial network in thermoreversible
UHMWPE gels are microcrystallites.

More precise data on the structure of crystalline
nodes can be obtained using Raman spectroscopy [5,
12–14] and wide-angle x-ray diffraction [9, 10, 15].
Figure 2a depicts the Raman spectra of UHMWPE gels
based on different solvents. It can be seen that, in the
low-frequency range, the spectrum contains a broad
LAM band. The length distribution functions F(L) of
straight chain segments were calculated from the
Raman spectra (Fig. 2b). These distribution functions
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Fig. 2. (a) Raman spectra of UHMWPE gels (MW = 1.7 ×
106, c = 2.5%) prepared from solutions in (1) n-xylene, (2)
Vaseline, and (3) decalin. (b) Calculated length distribution
functions of the straight chain segments.
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Fig. 3. Raman spectra of xerogels prepared from UHMWPE gels in (a) n-xylene and (b) Vaseline solutions. (c, d) Calculated length
distribution functions of the straight chain segments for xerogels prepared from (c) n-xylene and (d) Vaseline solutions.
are represented by asymmetric dome-shaped curves in
which the positions of maxima correspond to the most
probable length Lp of the straight chain segments in the
material. The location of the LAM band and, corre-
spondingly, the most probable length Lp of the straight
chain segments are virtually independent of both the
solution concentration in the range 0.1–5.0% and the
molecular weight of the polymers under investigation.
The independence of the most probable length Lp of the
straight chain segments from the solution concentration
indicates that the straight chain segments in the gels are
not isolated trans sequences but enter into the compo-
sition of crystallites whose sizes are determined by the
thermodynamic conditions of their formation. There-
fore, the most probable length Lp of the straight chain
segments can be considered to be equal to the mean
crystallite length Lc. The most considerable changes in
the value of Lp are observed upon replacement of the
solvent (Fig. 2b). In particular, the most probable
lengths Lp of straight chain segments in the gels pre-
pared from the solutions in n-xylene, decalin, and Vase-
line are equal to 3.7, 5.0, and 5.2 nm, respectively. As
was noted in our previous work [6], these differences
are associated with the differences between the boiling
temperature of the solvent and the crystallization tem-
perature (90–120°C) at which the gel network is
formed. Therefore, the Raman spectroscopic data con-
firm that the UHMWPE gels contain 3- to 6-nm-thick
P

microcrystallites. The thickness of these microcrystal-
lites depends on the solvent type.

The Raman spectra of solid samples (UHMWPE
xerogels) and their length distribution functions of the
straight chain segments are shown in Fig. 3. It can be
seen from Figs. 3a and 3b that, upon removal of the sol-
vent, the Raman spectrum of the xerogel contains a
broad LAM band and a narrow band in the vicinity of
the emission line of the laser. The length distribution
functions of the straight chain segments for the xero-
gels under consideration are presented in Figs. 3c and
3d. The bimodal form of the distribution functions F(L)
suggests that an increase in the length of straight chain
segments does not result from a gradual increase in the
thickness of primary crystallites. The presence of low-
intensity peaks (at ~12 and 17 nm) indicates the forma-
tion of a number of straight chain segments whose
lengths exceed the thicknesses of the initial crystallites
by several factors. We assume that these straight chain
segments penetrate into crystallites and link adjacent
crystallites together [10, 15].

The x-ray diffraction patterns of the UHMWPE gel
and the corresponding xerogel in the range of the equa-
torial diffraction peak [200] are shown in Fig. 4. Note
that the diffraction peak is asymmetric in shape and that
the asymmetry is more pronounced for the xerogel. The
decomposition of the diffraction peak into Gaussian
components [9, 10] revealed that the experimental peak
is adequately described by two components. The calcu-
lated parameters of both components are presented in
HYSICS OF THE SOLID STATE      Vol. 47      No. 6      2005
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Table 1. The angular positions θ of the diffraction peaks
in the x-ray diffraction pattern, according to the Wulff–
Bragg law,

(5)

determine the interplanar distances or the unit cell
parameters ai. Here, i is the number of individual com-
ponents in the diffraction peak and m is the diffraction
order (in our case, m = 2).

The unit cell parameters ai determined from rela-
tionship (5) are listed in Table 2. The transverse crystal-
lite sizes Lt calculated from formula (4) are also given
in Table 2. The principal diffraction peak [200] (i = 1)
at 2θ ≈ 24° corresponds to the orthorhombic crystallo-

2ai mλ / θi,sin=

(a)

23.5 24.0 24.5
2θ, deg
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ni
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23.5 24.0 24.5
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I,
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rb
. u
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Fig. 4. X-ray diffraction patterns of (a) the UHMWPE gel
and (b) the xerogel prepared from a 3.0% UHMWPE (MW =

1.7 × 106) solution in Vaseline.
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graphic unit cell, whose parameters a1 for the gel and
xerogel are equal to 0.739 and 0.740 nm, respectively.
These parameters are smaller than the standard param-
eter of 0.741 nm for block poly(ethylene). The peak at
smaller angles (i = 2) can be attributed to defect unit
cells with the parameter a2 differing from the parameter
a1. Since each Gaussian component is characterized by
its own values of Lt, it is believed that there are two
types of crystallites with different transverse sizes. The
areas under the Gaussian curves correspond to the
weight functions of crystallographic unit cells of two
types. The crystallite thicknesses Lp determined from
the Raman spectroscopic data are also presented in
Table 2.

Therefore, the analysis of the low-frequency Raman
spectroscopic data demonstrates that the UHMWPE gel
involves lamellar microcrystals (~5 nm thick), whose
planes have a highly defective structure. The wide-
angle x-ray diffraction data suggest a mosaic structure
of crystallites (cracked crystallites) in the UHMWPE
gel (Fig. 5a). This does not contradict the universally
accepted model of the structure of a physical gel (the
Keller model [11]) but only indicates a high degree of
defectiveness of the crystalline nodes in the spatial gel
network. According to Keller [11], the high deformabil-
ity of the physical gels is associated with their sparse
network and the high mobility of polymer chains. As a
result of the gel  xerogel transition, a number of
straight chain segments link adjacent lamellar crystal-
lites, thus forming clusters (a sandwich-type structure)
consisting of two or more coplanar lamellar crystallites
(Fig. 5b). The quasi-mosaic structure of primary crys-
tallites in the gel and xerogel is an additional factor that
facilitates the transformation of the crystalline phase
upon transition to a highly oriented state during the fab-
rication of high-strength fibers [9, 10, 15].

(a) (b)

Fig. 5. Structural models of (a) the UHMWPE gel and
(b) the UHMWPE xerogel.
Table 1.  Angular positions θ and half-widths β of the diffraction peaks for the (200) plane in the UHMWPE gel and the
UHMWPE-based xerogel

Sample 2θ1 2β1 2θ2 2β2

Gel 24.06 ± 0.01 0.69 ± 0.02 23.85 ± 0.05 0.18 ± 0.02
Xerogel 24.03 ± 0.02 0.52 ± 0.03 23.84 ± 0.04 0.27 ± 0.03
5
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4. ORIENTED UHMWPE FIBERS

The results of complex investigations into the
mechanical properties and structure of UHMWPE
fibers as a function of the draw ratio λ are presented in
Fig. 6. It should be noted that the fiber strength
increases almost proportionally to an increase in the
draw ratio λ, whereas the elastic modulus begins to
increase at λ ≈ 7 (Figs. 6a, 6b). The transverse crystal-
lite size Lt is stabilized when the molecular orientation
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Fig. 6. Dependences of the (a) strength, (b) elastic modulus,
(c) molecular orientation in crystallites, (d) transverse crys-
tallite size, and (e) axial length of the rigid amorphous phase
on the draw ratio of UHMWPE fibers.
PH
in crystallites (according to the IR spectroscopic data)
is completed (Figs. 6c, 6d). In this case, the elastic
modulus does not correlate with the crystallite orienta-
tion.

The positions of the maxima of the distribution
functions F(L) in Fig. 7 correspond to the effective
crystallite thickness Lc, which is equal to the sum of the
crystalline-core thickness Lcore and the length LRAP of
straight chain segments forming the so-called rigid

(a)
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F
(L
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. u

ni
ts

(b)

(c)

(d)

10 20 30 40
L, nm

Fig. 7. Length distribution functions of the straight chain
segments of UHMWPE fibers with draw ratios λ = (a) 7.7,
(b) 11.6, (c) 15.6, and (d) 22.8.
Table 2.  Parameters (nm) of the crystalline phase in the UHMWPE gel and the UHMWPE-based xerogel

Sample a1 a2 L1 L2 Lp

Gel 0.739 ± 0.01 0.743 ± 0.02 47.0 ± 2.0 12.0 ± 1.0 5.1 ± 0.1
Xerogel 0.740 ± 0.01 0.744 ± 0.01 31.0 ± 3.0 16.0 ± 2.0 4.3 ± 0.1
YSICS OF THE SOLID STATE      Vol. 47      No. 6      2005
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amorphous phase in the intermediate region between
the crystalline and amorphous regions [5]; that is,

(6)

The inequality LRAP ! Lcore is satisfied for a poorly ori-
ented sample (Fig. 8). The shift of the maximum of the
distribution function F(L) toward larger lengths L with
an increase in the draw ratio λ (Fig. 7) is caused by the
extension of chains on the surface of lamellar crystal-
lites. The extension of chains begins simultaneously
with an increase in the elastic modulus (cf. Figs. 6b,
6e). At λ > 15.6, the distribution function becomes bimo-
dal (Fig. 7c). The bimodality implies the appearance of
extended chains embedded in two adjacent crystallites.
An increase in the degree of crystal continuity along the
fiber axis in the course of orientation drawing is in agree-
ment with the Ward bridging model of the structure of
oriented poly(ethylene) samples [8, 16, 17].

5. CONCLUSIONS

Thus, structural investigations of thermoreversible
UHMWPE gels demonstrated that the modified Keller
model is valid for these materials. According to this

Lc Lcore LRAP.+=

LRAP

LRAP

Lc Lcore

Lc Lcore

(a)

(b)

Poorly oriented

Moderately oriented

Fig. 8. Structural models of (a) poorly and (b) moderately
oriented UHMWPE fibers prepared by gel spinning.
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model, lamellar crystallites ~4–5 nm in thickness and
~20–40 nm in transverse size are nodes of a spatial gel
network. The crystallite planes have a defect mosaic
structure. The gel  xerogel transformation results in
the formation of clusters composed of two or more
coplanar lamellar crystallites. Orientation drawing
leads to extension of the folds in lamellar crystallites,
an increase in the degree of crystal continuity along the
fiber axis, and, as a consequence, improvement of the
elastic-strength characteristics of fibers.
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Abstract—The evolution of the concepts of the concentration criterion of fracture of solids, proposed by
Zhurkov, in connection with its use for forecasting strong seismic events in earthquake source physics is con-
sidered. The results of long-term testing of the seismogenic fracture density as an earthquake precursor are
analyzed in various seismically active regions of the world. Data on its forecasting efficiency are considered. ©
2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The author’s idea to use the concentration (or crack
enlargement) criterion for fracture K* in seismology for
earthquake forecasting arose for the first time in the
spring of 1978 after the publication of an article by
Zhurkov et al. [1]. That work developed kinetic con-
cepts on the strength of solids and the thermal-fluctua-
tion mechanism of the in-time fracture process, and the
concentration criterion was formulated. This criterion
was formulated as follows. If the average distance l
between cracks in a loaded object is expressed in terms
of the size L of cracks on a given structural scale, one
can write

(1)

where c is the crack concentration. The parameter K*
characterizes the closeness of macroscopic cracks to
each other and, hence, their capability to interact via
local stress fields induced by them and to coalesce.

In 1977, researchers at the Institute of Volcanology
(Far East Division, Russian Academy of Sciences,
Petropavlosk-Kamchatskiœ), with the author’s partici-
pation, completed immense work on converting the
regional catalog of earthquakes of the Kamchatka Pen-
insula and Commander Islands (several tens of thou-
sands of events) to magnetic media and storing them on
computer. Since the concentration criterion has a clear
physical meaning, it was not very difficult to develop an
appropriate algorithm and to calculate spatiotemporal
distributions of this parameter for large volumes of
rocks in seismically active regions.

Based on the analogy of fracture processes at vari-
ous scale levels, the concepts of the concentration crite-
rion of crack enlargement have been extended to large-
scale processes in the Earth’s crust. This was done for
the first time in [2] to forecast strong earthquakes on the

l/L c
1/3–

/L K*,= =
1063-7834/05/4706- $26.001034
east coast of Kamchatka. An analogous analysis was
carried out for the Nurek water basin region in [3]. The
first result was rather encouraging. It was shown that
strong earthquakes take place mostly in regions with
decreased concentration criteria. On this basis, the seis-
mogenic fracture (crack) concentration parameter Ksf
[4] was implemented in seismological practice. This
parameter characterizes the seismological process in a
given seismically active volume V0 of the Earth’s crust
at an instant of time t. An analysis of the Ksf values
shortly before the instant of an earthquake showed them
not to differ significantly from the values of the concen-
tration criterion K* obtained in laboratory experiments
on the destruction of rocks and model materials (which
differ in size by 10–12 orders of magnitude) [1, 5–8].
These values (immediately before fracture) were fitted
well to the average distance between cracks plotted as
a function of their average length [9] (Fig. 1).

In [1, 10, 11], it was theoretically shown that the
probability of crack clustering is low in the case of
small crack concentrations, where K* > e (Fig. 2). At
K* < e, the clustering probability sharply increases.
Assuming that the crack concentration in such a cluster
is sufficient for their interaction, the condition K* = e ≈
3 controls the boundary of the transition from the stage
of random accumulation of small cracks to the stage of
their interaction, coalescence, and the transition of frac-
ture to the next scale level.

Later, based on the dynamics of the parameter Ksf
during a period prior to an earthquake (Fig. 3), an algo-
rithm was developed for using the crack concentration
parameter to forecast the location and time of strong
earthquakes, taking into account the features of seismic
processes in a seismically active region [4, 12]. The
algorithm developed was tested in several seismically
active regions of the world with different geodynamics
 © 2005 Pleiades Publishing, Inc.
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and seismic activity (the Caucasus, Turkmenistan,
southern California, northeast and southwest China,
Kirghizia, Greece, western Turkey, and the Kuriles).
This made it possible to estimate the forecasting capa-
bilities of the crack concentration parameter as an
earthquake precursor.

Testing showed that the values of the parameter 
differ in various seismically active regions (see alarm
level values in Table 1). In some regions, this difference
reached a factor of 8–10. In [13–16], the effect of non-
uniformity of the spatial distribution of seismogenic
fractures was studied in a seismically active layer and
explanations were provided for the observed depen-
dence of the crack concentration parameter on the frac-
ture scale (laboratory experiments with shock samples,
rock impacts in mines, earthquakes) and for the differ-
ences between various seismically active regions
(Table 1). To this end, the concept of the fractality of
seismic processes was involved and it was shown that

 depends on the fractal dimension of the spatial dis-

tribution of seismogenic fractures. In this case,  =

(L2/L1 , where  and  are the seis-
mogenic fracture density parameters in cells with char-
acteristic sizes L2 and L1, respectively; d is the fractal
dimension of the distribution of seismogenic fractures
(earthquakes); and r is the spatial dimensionality (r =
1, 2, 3).

In [17, 18], when analyzing the spatiotemporal dis-
tributions of the crack concentration parameter Ksf
based on data from the Caucasus earthquake catalog,
the fracture transitions from the lower (n – 1)th scale
level to the intermediate nth level and then to the higher
(n + 1)th level were discovered to occur prior to the cat-
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Fig. 1. Dependence of the average distance l = c–1/3

between cracks (c is the crack concentration prior to frac-
ture) on their characteristic length L for various-scale
objects [9].
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astrophic Spitak earthquake of 1988. This effect was
previously described for laboratory experiments [5,
19]. The result obtained was confirmed by the data from
the Turkmenistan and Kamchatka earthquake catalogs.
The data presented show that, based on the concentra-
tion criterion for fracture transition to the next scale
level, the scheme of laboratory object fracture under a
load is also applicable to seismic processes in the
Earth’s crust.

We note that the parameter Ksf is also useful for
studying the preparation and development of the Great
Fissure Tolbachik Eruption in 1975 on the Kamchatka
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Fig. 2. Dependence of the crack-clustering probability on
K* for m equal to (1) 3 and (2) 10.
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Table 1.  Retrospective statistical characteristics of the parameter Ksf in various seismically active regions

Kamchatka Caucasus Kirghizia Turkmenistan Southern
California

Northeast
China

Seismically active layer 
thickness, km

100 60 60 50 20 30

Observation period 1962–2000 1962–1990 1962–1992 1956–1991 1932–1989 1970–1996

Lower threshold of mag-
nitude Mtg or class Ktg of 
forecasted earthquakes

Ktg = 13.5 Ktg = 12.5 Ktg = 13.5 Ktg = 12.5 Mtg = 5.5 Mtg = 5.5

Alarm level 7.5 12.9 11.4 11.8 5.5 60.2

Detection probability 
P(Ksf|D1)

0.6351 0.3711 0.5197 0.5441 0.5071 0.3738

False alarm probability 
P(Ksf|D2)

0.0526 0.0733 0.0691 0.0647 0.1069 0.1751

Average expectation time 
Texp, years

5.3 ± 5.2 2.7 ± 2.8 4.8 ± 3.4 3.7 ± 3.4 6.6 ± 6.9 2.8 ± 1.8

Average expectation area 
Sexp, km2

5000 ± 765 3994 ± 1249 4554 ± 1063 4421 ± 1261 4439 ± 1232 3889 ± 1314

Predictive efficiency J 9.52 4.51 5.96 6.84 4.06 2.11

Southwest
China

Greece Western
Turkey Kuriles

GL AU catalog IG NOA catalog

Seismically active layer 
thickness, km

30 50 50 50 100

Observation period 1970–1993 1964–1996 1964–2003 1975–2000 1962–2001

Lower threshold of mag-
nitude Mtg or class Ktg of 
forecasted earthquakes

Mtg = 5.5 Mtg = 5.5 Mtg = 5.5 Mtg = 5.5 Ktg = 13.5

Alarm level 53.1 5.7 5.5 7.6 9.8

Detection probability 
P(Ksf|D1)

0.4812 0.3437 0.3991 0.4535 0.4970

False alarm probability 
P(Ksf|D2)

0.1345 0.0988 0.1235 0.1491 0.0898

Average expectation time 
Texp, years

3.3 ± 2.6 4.3 ± 3.8 7.7 ± 6.5 3.9 ± 3.6 2.9 ± 3.2

Average expectation area 
Sexp, km2

4127 ± 1217 4231 ± 1177 4161 ± 1286 4420 ± 1418 4269 ± 1238

Predictive efficiency J 3.35 3.29 2.97 2.98 5.04

Note: GL AU is the Geophysical Laboratory, Aristotle University (Thessaloniki); IG NOA is the Institute of Geodynamics, National
Observatory of Athens.

Ksf
al

Ksf
al
Peninsula [20]. The Northern Breakthrough Eruption
and the depression in the Tolbachik Crater Flat arose in
regions with decreased Ksf values. In [21], it was shown
that the fracture concentration criterion can be used to
forecast rock impacts, whose energy releases are inter-
mediate between those of earthquakes and of laboratory
macroscopic fractures, and a forecasting scheme was
proposed. Recently, the parameter Ksf has been widely
used to monitor seismicity during mining in mines and
P

shafts in the western Urals [22, 23] and the Kirovsky
mine of the Apatit Company (Kola Peninsula) [24].
According to [25], Ksf was the most helpful parameter
in forecasting large-scale seismicity in mining regions.

Thus, over the past 25–30 years, it has been demon-
strated that the concepts of fracture kinetics and the
concentration criterion based on them can be used to
forecast earthquakes, rock impacts in mines, and volca-
nic eruptions. In this study, we analyze recent data on
HYSICS OF THE SOLID STATE      Vol. 47      No. 6      2005
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the use of the crack concentration parameter as a pre-
cursor of strong earthquakes.

2. MODEL OF THE BEHAVIOR
OF THE PARAMETER Ksf PRIOR

TO AN EARTHQUAKE

For the conditions of a seismically active region, the
crack (seismogenic fracture) concentration parameter
Ksf is the ratio of the average distance between seis-
mogenic fractures that have taken place in a certain
seismically active volume V0 over a time ∆T to their
average length:

(2)

where µ = N/V0 is the volume density (concentration) of
fractures, which is determined by the earthquakes that
have occurred; lavr = (1/N)  is the fracture length
averaged over a crack ensemble; N is the total number
of earthquakes belonging to energy classes in the range
[Kmin, Kmax] that occurred in an elementary seismically
active volume V0 over a time ∆T; and lj is the length of
a single seismogenic fracture, which can be estimated
using the formula

(3)

Here, Kj characterizes the energy class (or magnitude)
of the earthquake. In various seismically active regions,
the coefficients a and c can take on various values.
Regional relations of the type of Eq. (3) were used
wherever possible. Based on experience in using the
parameter Ksf in seismically active regions of the world,
it should be noted that the most appropriate coefficients
were chosen by Riznichenko [26]: a = 0.244 and c =
−2.266 for the energy classes and a = 0.440 and c =
−1.289 for the magnitudes.

Seismically active regions to be analyzed were par-
titioned into elementary seismically active volumes Vi

with dimensions ∆X and ∆Y (in kilometers) and depth
∆H (in kilometers). In each elementary volume, the
crack concentration parameter was calculated using
formula (2). To smooth possible errors in determining
the earthquake hypocenters involved in Ksf calcula-
tions, adjacent seismically active volumes were taken
to be half-overlapping [12].

It should be noted that the choice of the initial
instant of time T0 is important in calculating Ksf, since
the seismogenic fracture concentration parameter is
cumulative in terms of its physical nature and is a
threshold quantity. When studying the behavior of the
crack concentration parameter under laboratory condi-
tions, it is reasonable to take T0 as the instant of onset
of sample loading. For actual conditions of a seismi-
cally active region, we choose T0 using the concept of a
seismic cycle presented in [27]. According to this con-

Ksf
Ravr

lavr
--------

µ 1/3–

lavr
----------,= =

l jj∑

l jlog aK j c.+=
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cept, each seismically active volume Vi (or group of
volumes) passes through its seismic cycle beginning
with the stage of accumulated tectonic deformations
and ending with the stage of stress release due to the
occurrence of an earthquake accompanied by after-
shocks (or probably without them). At the last stage, the
medium returns to the initial state, at which seismicity
is absent or insignificant. The seismic cycle time
depends on the energy class K completing the earth-
quake cycle and can be estimated from the formula
(see [28])

(4)

According to Eq. (4), the cycle duration, e.g., for earth-
quakes with K ≥ 12.5, is T ≥ 5 years. The time of the
beginning of a seismic cycle for each seismically active
volume Vi is taken as T0 in calculating the spatial distri-
bution of Ksf.

If in a time ∆Ti at least one strong earthquake
accompanied by aftershocks occurs in a seismically
active volume Vi, then further calculations of Ksf for this
volume begin from the instant the aftershock period ter-
minates. In this case, the influence of a strong earth-
quake on the seismic rate in nearby seismically active
volumes is monitored. If the seismic rate exceeds its
average long-term level NL by a quantity greater than
the standard deviation , then the volume under con-
sideration is included in the aftershock region and Ksf
for this volume is also calculated after the aftershock
period has passed. The end of this period is identified
from the instant the seismic rate reaches the long-term
(background) level.

The results of analyzing the spatiotemporal distribu-
tions of Ksf and experience from retrospective forecast-
ing [4] made it possible to propose the following
scheme for practical forecasting of strong earthquakes.

(i) Distributions of Ksf are calculated in steps ∆t for
preliminarily chosen sizes of elementary seismically
active volumes Vi, a range of energy classes, and depths
of earthquake hypocenters.

(ii) If Ksf ≤  for a volume Vi (where  is the
alarm level determined experimentally on the basis of
an analysis of retrospective data), the expectation
period of a strong seismic event is announced. The crit-

ical level  depends on the seismic activity of the
region under study, the size of the chosen seismically
active volume Vi, and the earthquake energy classes
used to calculate Ksf.

(iii) The expectation state in the volume Vi under

consideration is retained for the time interval  +
|σT | determined experimentally from retrospective data.
This state can be relieved after the end of a strong earth-
quake whose hypocenter was in this seismically active

Tyearlog
1
3
---K 3.5.–=

σNL

Ksf
al

Ksf
al

Ksf
al

T̃exp
5
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volume; the same can be done for nearby volumes
when the aftershock period begins.

For the volume where the earthquake has occurred,
the alarm is considered actual and the time interval
from the instant of the expectation state announcement
(the onset of the anomaly) to the instant of the earth-
quake is the expectation time. In the neighbor cells, out-
side the hypocenter, the alarm is considered false (since
the forecasted event has not formally occurred in these
cells) and the time elapsed from the onset of the anom-
aly to the beginning of the aftershock period is the time
of false alarms. For all elementary cells related to the
source region of the strong earthquake, the next seismic
cycle and, hence, time counting begin after the termina-
tion of the aftershock period.

(iv) If a strong earthquake does not occur in the vol-

ume Vi for a time  + |σT |, this time is considered the
time of false alarms.

The typical time dependence of Ksf before a strong
earthquake is shown in Fig. 3. As time passes, the num-
ber of earthquakes that occur in a given volume
increases and the average distance between them
decreases; hence, Ksf is lowered. In contrast to the
parameter N, which is simply indicative of the number
of earthquakes, the parameter Ksf takes into account
their energy. Therefore, if a seismic process in an ele-
mentary volume is accompanied by the generation of
high-energy events, then the Ksf decrease rate will be
higher and prerequisites for a strong earthquake will be
created more rapidly.

3. RESULTS OF STUDYING Ksf IN SEISMICALLY 
ACTIVE REGIONS AND DISCUSSION

Let us define the basic parameters used in this study.
We note that a detailed description of the technique of
their calculation can be found in [12].

The detection probability P(Ksf |D1) is the condi-
tional probability of a strong earthquake occurring
when the value of the seismogenic fracture concentra-
tion parameter Ksf becomes anomalous in a given spa-
tial cell. The detection probability is defined as the ratio
of the number of strong earthquakes prior to which the
parameter Ksf was anomalous (the number Ntg of pre-
dicted strong earthquakes) to the total number Ntot of
strong earthquakes that occurred within the observation
time Tobs on the observation area Sobs. The false-alarm
probability P(Ksf |D2) is the conditional probability of a
strong earthquake not occurring when the parameter Ksf
was anomalous.

The expectation (alarm) time Texp is the time elapsed
from the onset of an anomaly (the instant the value of a
prognostic factor becomes higher than a specified alarm
level) to the instant of the occurrence of a strong earth-
quake. If a strong earthquake does not occur, this time
is considered the false alarm time Tal. The average

T̃exp
P

expectation (false-alarm) time is defined as Texp.avr(fa.avr) =

(1/n) , where n is the number of anomalies
of the prognostic factors.

The expectation area Sexp of a strong earthquake is
the sum of the areas of the ∆X × ∆Y spatial cells in
which the expectation state is announced, i.e., in which
anomalous values of a prognostic factor are observed.
If a strong earthquake does not occur in these cells,
their area is included in the false alarm area Sfa. The
average area of expectation (false alarm) is given by
Sexp.avr(fa.avr) = (1/n) .

The precursor predictive efficiency J is defined as
the ratio of the flux density of strong earthquakes dur-
ing the expectation time to their density during the
observation time:

where Texp.tot is the total time of expectation (alarms). In
the case of random guessing, when the density of fore-
casted earthquakes during alarms is equal to their den-
sity over the observation time, we have J = 1.

The distributions of the Ksf values were calculated in
half-overlapping rectangular cells 50 × 50 km in size.
The cells covered the depth of a seismically active layer
in which there occurred no less than 90% of all earth-
quakes detected by a network of seismic stations in the
corresponding seismically active region (Table 1). The
nonuniformity of the seismic-rate distribution in the
seismically active layer volume was disregarded. Earth-
quakes with Ktg ≥ 12.5 (Mtg ≥ 5.5) were chosen as fore-
cast objects. The time window increased in steps ∆t =
3 months. Thus, sets of maps of the distributions of the
seismogenic fracture density parameter Ksf, character-
izing the state of a seismic process at the instant Ti, were
plotted for each seismically active region. These sets
were analyzed to determine the retrospective statistical
characteristics: the detection probability, the false-
alarm probability, and the predictive efficiency. As an
example, Fig. 4 shows maps of the Ksf values for Kam-
chatka as of January 1, 1993 (Fig. 4a), and January 1,
2001 (Fig. 4b), calculated using the data from the
regional earthquake catalogs for 1962–1992 and 1992–
2000, respectively. The maps include the epicenters of
all earthquakes with Ksf ≥ 13.5 that occurred over the
five subsequent years (see the average expectation time
for Kamchatka in Table 1). It follows from Fig. 4 that
most of the strong earthquakes occurred in regions with
decreased values of Ksf ≤ 7.5. From the comparison of
the maps (Fig. 4), we can see that the configuration and
position of anomalous zones significantly changed over
the eight years, which apparently reflects changes in the
seismic conditions in the region. At the same time, the
succession in both the configuration and position of
anomalous regions is evident.

Texp fa( )i 1=
n∑

Sexp fa( )i 1=
n∑

J
N tg/Texp.tot

N tot/Tobs
------------------------,=
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Fig. 4. Maps of the Ksf values for Kamchatka as of (a) January 1, 1993, and (b) January 1, 2001, calculated in cells 50 × 50 km in
size according to the data on earthquakes with K ≥ 9.5. Closed circles denote all earthquakes with Ktg ≥ 13.5 that occurred in the
region over the subsequent five years. The circle size is proportional to the fracture length in the source of the corresponding earth-
quake [26] on the map scale. The earthquake year and month are indicated above the circles. The ellipse restricts the region of after-
shocks of the Kronotsky earthquake (December 5, 1997, M = 7.9), detected in first three days after the main shock. The geographical
coordinate grid is denoted by the sign +. The scale of the Ksf levels is indicated on the right.
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The results of analyzing Ksf maps for all seismically
active regions are shown in Table 1. Above all, the sig-
nificant deviations in the alarm levels for northeast and
southwest China are worth noting. These deviations can
be caused by two factors [13–16]: (i) the neglected
PHYSICS OF THE SOLID STATE      Vol. 47      No. 6      200
effect of the nonuniform seismic-rate distribution over
the seismically active layer thickness, with the result
that aseismic regions of elementary cells V0 are
involved in the calculation of Ksf or (ii) inaccuracy of
the correlation relations between the magnitude and the
5
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fracture length in the source (especially in the range of
low magnitudes), which significantly differ from the
world average relations used for all other regions. We
note that there are no physical reasons for these devia-
tions. In the other regions considered, the values of the

alarm level  ranged from 5.5 to 12.9.Ksf
al

Table 2.  Retrospective statistical characteristics of the
parameter Ksf for cells of various sizes ∆S (data for western
Turkey)

∆S, km

50 × 50 75 × 75 100 × 100

Alarm level 7.6 7.6 8.0

Detection proba-
bility P(Ksf|D1)

0.4535 0.3671 0.5200

False alarm prob-
ability P(Ksf|D2)

0.1491 0.1526 0.1670

Expectation time 
Texp, years

3.9 ± 3.6 4.3 ± 4.2 3.7 ± 2.7

Expectation area 
Sexp, km2

4420 ± 1418 9141 ± 3312 17679 ± 5672

Predictive
efficiency J

2.98 2.32 2.89
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Fig. 5. Efficiency J of the precursor Ksf over regions.

Table 3.  Average efficiencies of predictive indications

Predictive indication J

Seismogenic fracture density Ksf 4.60 ± 2.15

Reproducibility curve slope 2.21 ± 0.69

Number of earthquakes
in the form of

quiescences Nq 3.05 ± 0.97

activations Na 4.44 ± 2.11

Seismic energy released 
in the form of

quiescences Eq 1.61 ± 1.04

activations Ea 1.87 ± 0.85
P

In Table 1, the retrospective data on Ksf in Greece
were obtained from two different versions of earth-
quake catalogs for this region, prepared at the Geophys-
ical Laboratory, Aristotle University (Thessaloniki)
(GL AU), and the Institute of Geodynamics, National
Observatory of Athens (IG NOA). The parameters for
calculating Ksf were identical in both cases. We can see
that the values of the alarm levels, detection and false
alarm probabilities, and predictive efficiencies are
rather close. This counts in favor of the fact that the
seismogenic fracture parameter indeed reflects the fea-
tures of the regional seismic process. However, it
should be noted that the expectation times differ by
almost two times.

Similar results were obtained based on the data from
the catalog of earthquakes in western Turkey, where the
parameter Ksf and its retrospective statistical character-
istics were calculated in cells of various sizes (Table 2).
Here, the alarm levels and predictive efficiencies are
also almost identical, which indicates a weak sensitiv-
ity of Ksf to the sizes of scanned cells. However, the
detection probabilities differ by a factor of 1.5. We note
that the results were obtained for only one region of
western Turkey and were not examined for others.

We now turn to the last line of Table 1, i.e., the data
on the predictive efficiency of Ksf for various seismi-
cally active regions. The average value of this parame-
ter over all regions is  = 4.6 ± 2.15 (Fig. 5). A com-
parison with the average efficiency of other seismolog-
ical precursors according to the data from [8] (Table 3)
suggests that the parameter Ksf is currently the most
efficient predictive criterion. In this case, 34–63% of
strong earthquakes took place in regions where Ksf ≤

 during expectation periods of 2.7–7.7 years, which
means that the parameter Ksf is a medium-term predic-
tive indication. Long-term experience in using the
parameter Ksf as an earthquake precursor and the data in
Table 1 allow us to conclude that it is unlikely to signif-
icantly decrease the expectation time Texp in the future
or to make Ksf a short-term precursor.

Testing of the parameter Ksf in various seismically
active regions showed not only its above-mentioned
positive features. There are also negative properties. Let
us consider one of them. In the maps shown in Fig. 4,
there are several anomalous zones with different areas
in which the parameter Ksf is below the alarm level

 ≤ 7.5. The total area of these anomalous regions is
Sexp = 20.1% of the observation area where the seismic
activity is higher than one earthquake per year. It is rea-
sonable to expect a strong earthquake with probability
P(Ksf |D1) = 63.5% in each of these zones for an expec-
tation time Texp = 5.3 years (see Table 1). However,
expected earthquakes did not occur in all of the anom-
alous regions by the end of the expectation period. They
took place only in regions A (1993 and 1996) and B

JKsf

K̃sf
al

K̃sf
al
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(1997), i.e., in the largest areas. In smaller anomalous
regions, strong earthquakes were not observed. It seems
impossible to determine in advance in which region the
next earthquake will occur. For this, parameters other
than seismological precursor parameters also need to
be used.

4. CONCLUSIONS

The concentration criterion for solid fracture devel-
oped by Zhurkov in the 1950s–1960s had a significant
effect on the establishment and development of earth-
quake source physics and the processes resulting in it.
The algorithm developed for applying the parameter Ksf
for forecasting strong earthquakes and its testing in var-
ious seismically active regions has demonstrated its
great potential to forecast the position, time, and mag-
nitude of an earthquake (in comparison with other seis-
mological precursors). The results obtained make it
possible to recommend the use of this algorithm simul-
taneously with other precursors. Maps of the Ksf values
can provide a basis for administrative decisions to pre-
pare industrial and social infrastructures in territories
within anomalous zones for strong earthquakes in order
to minimize possible damage.
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Abstract—The drift of regions in northeast Eurasia was studied using the precise satellite geodesy method
(Global Positioning System (GPS)). Observational data were analyzed invoking the International Database.
Despite the rather short observations (~6 years), the drift directions of the basic Eurasia and Northern America
regions were detected and the drift velocities were estimated. The results of the study are discussed in general
terms of the deformation and fracture of solids. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

This paper is devoted to analyzing the current data
on the drift of certain regions of the Earth’s crust. The
fact that giant continents are in continuous motion can
be explained using two fundamental concepts: (i) Con-
tinental drifts are caused by convective processes in
deep mantle layers. (ii) Tectonic plates move with cer-
tain velocities, and these local velocities can be signifi-
cantly higher at the plate boundaries. This factor makes
it possible to consider this process in terms of kinetic
concepts and invoke broad experience from the defor-
mation kinetics of solids.

The first statement is actively discussed in the scien-
tific literature, while the second concept still remains
obscure, since the available data are insufficient to
solve this physical problem. We interpret the available
original results in terms of kinetic concepts on the frac-
ture and deformation of solids, of which the Earth’s
crust is an example.

The transition from the microlevel to the macro-
scopic level in processes of deformation and fracture
has been confirmed in many experiments [1, 2]. The
experiments described in this paper, despite the short
duration of observations, show that some notions are
general and can initiate studies of deformation pro-
cesses on larger scales.

2. STATEMENT OF THE PROBLEM

The ideas of lithospheric plate tectonics were devel-
oped in the 1960s and were presented as a fundamental
concept in 1968 by Morgan, as well as by McKenzie
and Le Pichon. The concept that the structure of the
upper layers of the Earth’s surface forms a mosaic set
of solid fragments (plates) that are in continuous rela-
tive movement was an evident consequence of the study
of heat convection in the mantle and of physicochemi-
cal analysis of the interaction between the crust and the
1063-7834/05/4706- $26.00 ©1042
mantle. These mechanisms made it possible to explain
the dynamics of plate movement, since this motion
requires energy sources sufficient to be a driving force
of such large-scale phenomena. The current so-called
“geological” models of plate movement were devel-
oped based on analysis of three types of data: stripe
magnetic anomalies in oceans, azimuths of transform
faults in axial regions of Mid-Oceanic ridges, and azi-
muths of displacement vectors over ruptures during
earthquakes in subduction zones. This collection of
data was used to determine the vectors of relative rota-
tion of plates averaged over the past three million years.

There are several serious questions regarding the
geological models of plates.

(i) Can the velocities averaged over three million
years be considered to be contemporary?

(ii) What is the actual accuracy of geological mod-
els? This question arise from the fact that the models
are based on information on only oceanic regions.

Direct measurements using modern geodetic meth-
ods allow construction of an objective model of current
movements of the Earth’s crust.

This study is aimed at detecting and correcting the
poorly studied boundaries between the Eurasian and
North American tectonic plates and estimating the
velocities of their relative movement.

3. EXPERIMENT DESIGN
The development of satellite geodesy methods has

made an important and often decisive contribution to
modern investigations of geodynamic processes.
Improvement of satellite technologies made it possible
to measure long distances on the Earth’s surface with a
high accuracy unattainable with classical geodesy tech-
niques (triangulation, optical range finding, leveling,
etc.). These methods allow rather accurate ground-
based measurements only in an extremely narrow range
 2005 Pleiades Publishing, Inc.
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of distances (generally, within the line-of-sight range).
These circumstances have not allowed study of large-
scale geodynamic processes, because errors are accu-
mulated during unbending and leveling of geodetic net-
works. Determining the distances between points on
the Earth’s surface as long as thousands of kilometers
with an accuracy of 1–2 mm made it possible for the
first time to study the variation in the relative position
of remote fragments of the Earth’s surface with time
over several years and to detect their relative movement
characterized by an average velocity of several tens of
millimeters per year.

The Global Positioning System (GPS) used in this
study makes it possible to determine the position of an
object on the Earth’s surface with an accuracy of up to
several millimeters. Initially (in the 1980s), GPS was
developed as an off-line satellite navigation system. Its
application is based on the measurement of distances
from ground-based stations to active satellites emitting
specially shaped signals. These distances are deter-
mined by measuring the time it takes for an emitted sig-
nal to travel from the satellite to a ground-based
receiver. To determine coordinates in three-dimen-
sional space, it is theoretically sufficient to determine
the distances to three satellites; however, taking into
account clock errors, in fact four satellites should be
simultaneously observed.

Currently, the core of the system is a “constellation”
of 24 satellites. GPS satellites function as a carrying
platform for various types of equipment, including
radio transmission devices, atomic frequency standard,
computers, etc., that make it possible to determine
coordinates both on the Earth’s surface and in the air or
in circumterrestrial space. Each satellite generates a
signal of special shape carrying information that
enables one to identify the satellite and its position at
any point in time.

In the late 1980s, researchers in many geodynamic
and geodetic organizations came to the conclusion that
GPS technology can be efficiently employed in scien-
tific investigations, such as the study of earthquakes,
movements of faults in the Earth’s crust, and deforma-
tions of the crust as a whole, as well as in many other
applications. The basic idea of the organization of the
International GPS Service (IGS) was to develop a glo-
bal network whose points are arranged closely enough
for mutual referencing and to cover all land on the
Earth. With this configuration, the global network
forms a geocentric coordinate system, which makes it
possible to exactly calculate the geocentric coordinates
of the points under study on the basis of the precise
coordinates of the reference points due to simultaneous
processing of the data measured at points on the areas
under study and the reference points of the global net-
work. Referencing of local and regional grounds of
interest to the reference points forming the geocentric
coordinate system underlay future studies of the defor-
mation of the Earth’s crust on the global scale.
PHYSICS OF THE SOLID STATE      Vol. 47      No. 6      200
Before 1997, the entire northern region of Eurasia
was monitored by GPS points arranged only in its Euro-
pean region. This fact lead to significant difficulties for
geodetic measurements over the entire territory of East
-Siberia and the Far East, with the consequence that ill-
founded conclusions were made from geodynamic
analysis of these regions. Since 1997, on the basis of
seismological stations under the Geophysical Service,
Russian Academy of Sciences, we have created a refer-
ence network of GPS stations [3] over the entire terri-
tory of North Eurasia—the North Eurasia Deformation
Array (NEDA), covering the continent from the East
European Platform, through the Ural ridge and all Sibe-
ria, to Chukotka, Kamchatka, and Sakhalin. Recently,
NEDA stations have been involved in regional GPS
projects that were performed and improved with the
development of the NEDA in the regions of strongest
seismic activity at the boundaries of the three largest
stable interacting fragments of the Earth’s crust: the
Eurasian (EUR), North American (NAM), and Pacific
(PAC) segments. Within regional studies, we have car-
ried out [4, 5] long-term measurements (i) at the poorly
explored boundary between Eurasia and Northern
America in the region of the Chersky Ridge, (ii) in the
subduction zone of seismic and volcanic activity on the
Kamchatka Peninsula, and (iii) in the region of com-
plex deformation and high seismic activity caused by
the convergence of Eurasia and North America on
Sakhalin Island.

4. MEASUREMENT TECHNIQUE

Since 1997, the NEDA network has provided con-
tinuous GPS measurements in the vast expanse of
North Eurasia. All NEDA stations are classified by the
IGS service as global stations; i.e., the measurements
performed at them are processed daily by no fewer than
three international centers. The transmission of diurnal
measurements is fully automated, with the delay not
exceeding 1 h. Primary information is collected and
transmitted using computers connected to receivers.

Files with measured data are transmitted from the
station computers to the central server at the Geophys-
ical Center, Russian Academy of Sciences.

The data analyzed are transmitted from the central
computer of the Geophysical Center to global data cen-
ters of the International Service, where final processing
of the data on the entire planet is performed.

The results of the data analysis and the solutions of
problems obtained become available for regional cen-
ters (and, in particular, for the central computer of the
Geophysical Center) via the Internet.

The schematic diagram of data transmission by the
NEDA network is shown in Fig. 1.

An analysis of long-term series of observations over
the global network, including regional segments, per-
mits one to obtain (with sufficient confidence) the field
of relative velocities of individual points on the Earth’s
5
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Fig. 1. Schematic diagram of transmission of the data
obtained by the NEDA network.
P

surface. In this case, the general pattern of relative
movements of the segments of the Earth’s crust is con-
trolled by the field of horizontal velocities, which are
determined by projecting the relative velocities of these
points onto the Earth’s surface. It is very important that,
by analyzing this field, one can separate stable nonde-
forming fragments of the Earth’s surface and estimate
their relative movement. In this case, it is also important
to determine the degree of localization of the deform-
able boundary regions of these fragments, namely, to
elucidate whether the fragment boundaries form nar-
row deformation belts or deformations extend to inner
regions of assumed platforms, i.e., to determine the
degree of justification of the conventional concepts on
the stability of ancient platforms.

5. MEASUREMENT RESULTS
An analysis of long-time series of measurements

made it possible to determine which reference stations
relate to various nondeforming segments of the Earth’s
crust. As an example, Fig. 2 shows stable stations of the
Eurasian plate. It should be noted that the velocities of
relative movement of reference stations with respect to
one plate do not exceed 0.5 mm/yr. For this reason,
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GPS data.

Relative rotation
these land regions can be considered to be nondeform-
able segments of the Earth’s crust.

The determination of the system of reference sta-
tions made it possible to construct a relative coordinate
system based on the three largest plates: the Eurasian,
North American, and Pacific Ocean plates. This three-
plate relative coordinate system (including the vectors
of relative rotation of plates as key elements) formed
the basis for a geodynamic analysis of their interaction
in the three regions mentioned above.

The justified choice of the relative coordinate sys-
tem made it possible to estimate the position of the pole
of relative rotation of the Eurasian and North American
plates. This pole is indicated by an asterisk in Fig. 3. An
analysis of the GPS data revealed the relative move-
ment of these plates. As an example, Fig. 3 shows the
global clockwise movement of the entire North Ameri-
can plate with respect to Eurasia. The angular velocity
of rotation is ~0.2° per million years. Eurasia rotates
counterclockwise with respect to North America. Stud-
ies of the deformation zone configuration [5–7] at the
plate boundaries become possible due to detailed
regional measurements. These measurements were car-
ried out with allowance for the local conditions: either
PHYSICS OF THE SOLID STATE      Vol. 47      No. 6      200
at steadily positioned stations of regional grounds or at
field points of periodic observation at an interval of one
year.

Regional measurements were taken into account in
the combined analysis of the data obtained (i) at perma-
nent stations of the NEDA array of the Geophysical
Center (since 1997), (ii) at permanent IGS stations in
this region, and (iii) from field measurements carried
out repeatedly at an interval of one year (since 1995).

To analyze the kinematics of tectonic plates in
northeast Asia, let us compare their velocities with
respect to Eurasia and North America determined from
the GPS data [5, 8].

The velocities with respect to the EUR (Fig. 4a) are
less than 2 ± 1 mm/yr for stations arranged to the west
of the Chersky Ridge. The velocities of stations on the
east side of the Chersky Ridge, Chukotka, and north-
west Kamchatka are significantly higher, 3–8 mm/yr,
which indicates clockwise rotation of this region with
respect to Eurasia. The drift of stations in the Chersky
Ridge region indicates the possible effect of distributed
deformation at the EUR–NAM boundary. However, the
convergence velocity here is low due to the small dis-
tance to the pole of their mutual rotation; hence, the
5
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Relative rotation
effect of stress accumulation is also rather weak and
can be disregarded even at distances greater than
100 km from the boundary.

The velocities with respect to North America
(Fig. 4b) are less than 2 ± 1 mm/yr on Chukotka and in
the northwest Kamchatka region. Among the six sta-
tions on the east side of the Chersky Ridge, the three
most northern (SUS1, SEY2, OMS1) move the slowest
(at a velocity of 1 mm/yr), while the three others
(MAG0, KUL1, TAL1) move at a velocity of 2–
3 mm/yr. The velocities on the western side of the
Chersky Ridge are 2–11 mm/yr, which indicates coun-
terclockwise rotation and corresponds to the vector of
EUR–NAM relative rotation. From the comparison of
these velocities, it follows that the western branch of
the seismic belt of the Chersky Ridge is the northeast
boundary of Eurasia. The velocity of the TIXI station
(Fig. 2) near the Arctic boundary of Siberia with respect
to Eurasia is lower than that with respect to North
America; hence, in this region, the EUR–NAM plates
move mostly to the east of the TIXI.

6. RESULTS AND DISCUSSION

The main experimental results obtained in this study
are as follows.

A long-term experiment to develop a system of per-
manent GPS stations combined with seismic stations of
P

the Russian Academy of Sciences has been theoreti-
cally justified and implemented for North Eurasia. The
system is fully automated and makes it possible to solve
a number of fundamental scientific and practical prob-
lems, such as (i) improving the accuracy of determina-
tion of GPS satellite orbits, which is very significant for
precision real-time navigation, and (ii) creating a basis
for geodynamic investigations over the entire territory
of North Eurasia, primarily in seismically active
regions, based on observational regional networks.

A reference frame has been constructed, which is
based on the three largest plates: the Eurasian, North
American, and Pacific Ocean plates. The pole of rela-
tive rotation of the Eurasian and North American plates
was determined. This reference frame formed a basis
for geodynamic analysis of the interaction of the plates
in the Far East region.

Let us indicate the most important results of the
analysis.

(i) The present velocities of relative movement of
plates have been determined. These velocities were
shown to differ significantly from those given by the
geological model of plates.

(ii) It has been ascertained for the first time that the
western branch of the seismic belt of the Chersky Ridge
is the northeast boundary of Eurasia and that the
HYSICS OF THE SOLID STATE      Vol. 47      No. 6      2005
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Chukotka and Kamchatka peninsulas make up a single
whole with the North American continent.

We now attempt to interpret the results in terms of
the physical kinetics of deformation and fracture of sol-
ids and consider the possibility of extending the regu-
larities in the deformation of solids detected for small
samples under laboratory conditions to global objects
under natural deformation conditions.

This generalization is based on the concept of the
similarity of some physical phenomena at various scale
levels. For fracture processes, this similarity has been
confirmed experimentally [2]. The features of the crack
formation, accumulation, and propagation are similar
for various scale levels. The concentration criterion for
the fracture process to switch from a lower hierarchical
level to a higher level is valid both for laboratory sam-
ples with initial crack sizes of ~10–100 nm and for
cracks in the Earth’s crust that are several kilometers
long, which cause earthquakes. These problems are dis-
cussed in detail in [9, 10]. The relation between fracture
and deformation processes is also well known.

The structural self-similarity of solids is also
observed in a wide range of scales from nanostructures
to lithospheric plates [1]. We believe that the kinetic
concepts are universal for various scale levels and can
be used to analyze continental plate movement. Since
the plate velocities are directly measured in these stud-
ies, we can write a deformation kinetics equation and
estimate the parameters of interest. Unfortunately, the
short duration of these measurements and low deforma-
tion rates complicate this analysis. However, the high
measurement accuracy makes this technique pro-
mising.

We also note prospects for plate movement simula-
tion under laboratory conditions with selection of cer-
tain materials and loading conditions, which will make
it possible to estimate the stresses at the boundaries of
moving plates and to forecast the effect of their move-
ment.
PHYSICS OF THE SOLID STATE      Vol. 47      No. 6      2005
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Abstract—The specific features of the electron states in thin films of cubic crystals are considered in the energy
range above the vacuum zero of the crystal potential. It is demonstrated that bands of bound states embedded
in the energy continuum can exist along particular directions of the two-dimensional Brillouin zone. These
bands can substantially affect the intensity of low-energy electron scattering. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

In our previous works [1–3], we considered the spe-
cific features of scattering of low-energy electrons (E <
10–20 eV) by a planar crystalline film. These features
are associated with the existence of both bound electron
states with energies somewhat lower than the boundary
of the continuous spectrum and quasi-stationary states
with energies higher than this boundary. The reflected
intensity, in the former case, is determined by a crystal
analog of the Wigner formula for low-energy scattering
and, in the latter case, by the Breit–Wigner formula
describing the resonance at a quasi-discrete level [1–5].

In this paper, it will be demonstrated that bound
electron states can exist along particular directions of
the two-dimensional Brillouin zone of a cubic-crystal
film when the energy bands adjacent to the boundary of
the continuous spectrum are characterized by a specific
dispersion. These states are localized above the bound-
ary of the continuous spectrum bounded by an energy
paraboloid E = k2, i.e., above the first diffraction thresh-
old.1 The existence of bound electron states leads to a
1063-7834/05/4706- $26.00 1048
number of important consequences and offers strong
possibilities for controlling the intensity of the reflected
electrons by lowering the symmetry of the crystal under
specified actions.

2. THEORETICAL TREATMENT
Let us consider a Lippmann–Schwinger equation

describing the bound and quasi-stationary states of
electrons of a crystalline film:

(1)

where Ω stands for a unit cell infinite along the z direc-
tion and V(r) is the effective single-particle potential,
which is invariant with respect to the transformations of
the symmetry group of the film under consideration. It
is assumed that, at large distances from the surface of
the film, i.e., at |z | > z0, this potential becomes zero.2

The Green’s function of free electrons of the crystalline
film can be represented in the form

Ψk r E,( ) Gk
0( ) r r'; E,( )V r'( )Ψk r' E,( ) r',d

Ω
∫–=
(2)

Gk
0( ) r r'; E,( ) 1

2πS
---------

i k Kµ λ,+( ) r r'–( )[ ]exp

k Kµ+( )2 λ 2
E–+

------------------------------------------------------------- λd

∞–

+∞

∫
µ
∑=

=  
1–

S
------

i k Kµ E k Kµ+( )2
–,+( ) u u'– z z'–,( )[ ]exp

2i E k Kµ+( )2
–

------------------------------------------------------------------------------------------------------------------.
µ
∑

Here, S is the area of the cross section of the unit cell Ω
by the surface of the crystal, u(u') is the component of
the vector r(r') aligned parallel to the surface, k is the

1We use the atomic system of units with energy expressed in Ry.
reduced two-dimensional quasi-momentum, and E is
the electron energy. The summation is taken with
respect to the vectors of the reciprocal lattice of the film.

2This asymptotic cutoff of the potential is quite reasonable from
the physical standpoint and allows one to simplify significantly
the theoretical treatment without changing the nature of the
results [4].
© 2005 Pleiades Publishing, Inc.
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Separating out the term with Kµ = 0 in relationship (2),
we can rewrite expression (1) for z > z0 in the form

(3)

In essence, expression (3) is a plane-wave expansion of
the function Ψk(r, E). It follows from expression (3)
that, in the general case, when E > k2, the first term is a
nondecreasing function of z and the state Ψk(r, E)
ceases to be bound with respect to z in the discrete spec-
trum. However, under the condition

(4)

the function Ψk remains a function quadratically inte-
grable in Ω even in the region lying above the first
threshold Ψk(r, E). In this case, the states bound with
respect to z can exist above the energy boundary E = k2

of the continuous spectrum.

This situation can occur with films of cubic crystals.
Let us consider, for example, the specific case of a crys-
talline film with a (001) face-centered cubic lattice. For
this film, the Brillouin zone is a square with sides

, where A is the lattice constant of the film.
Next, we consider a state with wave vector k∆ aligned
parallel to the direction ∆ of the two-dimensional Bril-

louin zone (k∆ = (ξ, 0, 0), 0 < ξ < 1). According
to the Wigner theorem [6], the eigenfunctions Ψk(r, E)
can be transformed by the irreducible representations
of the group of wave vector k. The irreducible represen-
tations of the group of vector k∆, which is isomorphic
to the group C2v [5], are presented in the table. For the

function (r, E) transformed through the representa-
tion ∆3, integral (4) for E > k2 can be written in the form

(5)

Ψk r E,( ) e
iku z k

2
E––[ ]exp

2S k
2

E–
---------------------------------------=

× e
iku'–

e
k

2
E– z'

V r'( )Ψk r' E,( ) r'd

Ω
∫

+ e
i k Kµ+( )u z k Kµ+( )2

E––[ ]exp

2S k Kµ+( )2
E–

---------------------------------------------------------
µ
∑

× e
i k Kµ+( )u'–

e
z k Kµ+( )2

E–
V r'( )Ψk r' E,( ) r'.d

Ω
∫

e
iku'–

e
z' k

2
E–±
V r'( )Ψk r' E,( ) r'd

Ω
∫ 0,=

8π/A

2π/A

Ψk
∆3

e
iku–

z k
2

E–( )cos i z k
2

E–( )sin±[ ]
Ω
∫

× V r( )Ψk
∆3 r E,( ) r.d
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It is easy to see that the function e–ikucos( ) is
transformed by the representation ∆1 and that the func-

tion e–ikusin( ) is transformed through the rep-
resentation ∆2. The above integral vanishes as a conse-
quence of the well-known selection rule for matrix ele-
ments of the operators of scalar quantities. This implies
that bound states of the above symmetry can exist in the
energy continuum.3

Let us now analyze the scattering of electrons by
this film. The wave function of a scattered electron with

a momentum p = (k, ) satisfies the Lippmann–
Schwinger inhomogeneous equation

(6)

Taking into account type (2) of the function G(0)(r, r'; p)
for the forward-scattering amplitude [7], we derive the
expression4 

(7)

On the other hand, the equation determining the state of
electron scattering can be written in the form

(8)

Here, G(r, r'; p) is the single-electron Green’s function

that corresponds to the Hamiltonian of the film:  =
−∆ + V(r).

3 The same statement is true for the states transformed through the
representation ∆4. Similarly, it can be shown that bands of bound

states with energies E > k2 can exist along the direction Σ [kΣ =

(ξ, ξ, 0), (1 > ξ > 0)] of the Brillouin zone of the crystalline

film with a (001) face-centered cubic lattice.
4 In the case of low-energy states localized below the second dif-

fraction threshold [k2 < E < (k + Kµ)2], there exist only one
reflected electron beam and one transmitted electron beam.

z k
2

E–

z k
2

E–

2π
A

----------

E k2
–

Ψ r p,( ) e
ipr

G
0( ) r r'; p,( )V r'( )Ψ r' p,( ) r'.d

Ω
∫–=

a
+ p( ) = 1

1

2iS ER k( ) k2
–

--------------------------------------- e
ipr–

V r( )Ψ r p,( ) r.d

Ω
∫–

Ψ r p,( ) e
ipr

G r r'; p,( )V r'( )e
ipr' r'.d

Ω
∫–=

Ĥ

Irreducible representations of the group of vector k∆

∆(C2v) E C2 σ σC2

∆1 1 1 1 1

∆2 1 –1 –1 1

∆3 1 1 –1 –1

∆4 1 –1 1 –1

Note: E is the identical transformation, C2 is the rotation through
the angle π about the [100] axis, and σ is the reflection in the
plane z = 0.
5
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The film under consideration is assumed to be thin
enough for the separation between the adjacent quan-
tum-well subbands of bound states, which undergo
crowding with an increase in the film thickness, to be
relatively large. Hence, if the energies of states of the
discrete spectrum are close to the energy of incident
electrons, it follows from the theory of self-adjoint
operators that the function G(r, r'; p) can be represented
in the single-band form [4]:

(9)

where p0 = (k, ) and Ψ(r, p0) is the eigen-

function of the Hamiltonian  that corresponds to the

energy E0(k) of the bound state. The function (r, r';
p) does not have poles in the vicinity of the energy of
incident electrons.

In contrast to the well-known energy bands located
below the boundary of the continuous spectrum, the
bands of bound electron states with energies En(k)
higher than the energy boundary E = k2 of the contin-
uum spectrum do not form surfaces in the k space. For
En(k) > k2, the wave vector k deviates from the direc-
tion along which there can exist states that are normal-
ized in the cell of the film and described by a wave
function exponentially decreasing away from the sur-
face of the film toward vacuum (|z |  ∞). This devi-
ation transfers the aforementioned states to resonance
states with a finite lifetime. The wave function of these
resonance states increases for |z |  ∞ [5, 8]. The
existence of these resonances and their continuous tran-
sition to bound states (if they exist) follow from the
analytical k dependence of the energies of nondegener-
ate electron states corresponding to the solutions of
Eq. (1). Therefore, if bands of bound states localized
above the energy boundary of the continuous spectrum
arise along particular directions of the two-dimensional
Brillouin zone, there exists a surface of quasi-stationary
states,

(10)

which involves these bands; that is,

(11)

Taking into account the analyticity of the functions
E0(k) and Ψ(r, p0) with respect to the wave vector k,
from relationship (9) for the resonance states in the
vicinity of the energy boundary E0(k∆), we derive the
following expression:

(12)

G r r'; p,( )
Ψ r p0,( )Ψ* r' p0,( )

E0 k( ) E–
---------------------------------------------- G̃ r r'; p,( ),+=

E0 k( ) k2
–

Ĥ

G̃

ER k( ) %R k( ) iΓ k( ), Γ r( )– 0,>=

ER k∆( ) %R k∆( ) E0 k∆( ),= =

Γ k∆( ) 0.=

GR r r'; p,( ) = 
Ψ r pR,( )Ψ* r' pR,( )

ER k( ) E–
----------------------------------------------- G̃R r r'; p,( ),+
PH
where pR = (k, ) and Ψ(r, pR) is the wave
function of the resonance state, which is a solution to
Eq. (1) for the complex energies ER(k). The function

(r, r'; p) does not have poles in the vicinity of the
surface E = ER(k).

From relationships (12), (8), and (7) without regard
for the nonsingular contributions near the surface
ER(k), we obtain

(13)

The momentum of incident electrons can be given by

(14)

where

(15)

and

(16)

The deviation δky is assumed to be small. In the expan-
sion of the integrand in relationship (13), we use an
approximation linear in δky and obtain the following
expression for the forward-scattering amplitude:

(17)

where

(18)

and U(p∆0, r) is the periodic part of the Bloch function
Ψ(r, pR) = exp(ikr)U(pR, r) for the momentum pR =
p∆0. In this case, it is necessary to retain the contribu-
tions linear in δky, because, in the zeroth-order approx-
imation, as follows from condition (4), the integrals
involved in expression (13) are equal to zero and the
denominator has a double zero at δky  0.

The probability of the transmission of electrons is
determined by the expression [7]

(19)

where the function C(p, p') describes the distribution of
the momentum of incident electrons in the direction of
the momentum p. According to relationship (14), the
function C(p, p') can be considered a δ function. Taking
into account the symmetry of the Brillouin zone of the
crystalline film with a (001) face-centered cubic lattice,
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conditions (10) and (11), and the smallness of δky, we obtain the relationship

(20)I
+ p( )

W p∆0( ) 4

16S
2

1 Myy
1–

–( )
2

γ2
+[ ] p∆0z

2
1 Myy

1–
–( )δky

2
–[ ]

2
γ2δky

4
+

--------------------------------------------------------------------------------------------------------------------------------------,≈
where  is the diagonal component of the tensor of
the inverse effective mass,

(21)

and ε is the curvature5 of the cross section of the “reso-
nance zone” Γ = Γ(k) by the plane kx = k∆0. It follows

from expression (20) that, in the case when  > 1,
the transmission coefficient T(p) = |a+(p)|2 has a maxi-

mum at δky = 0. For  < 1, the transmission coeffi-
cient has a minimum at δky = 0 and a maximum at

(22)

In the first case, we have

and the transmission coefficient decreases most sharply
for grazing electron beams, i.e., near the point of inter-
section of the band of bound states with the energy
boundary of the continuum spectrum. In the second
case, the requirement of smallness of the quantity δky

gives

This limitation does not seem to be too severe. It can
hold not only in the vicinity of the energy boundary of
the continuous spectrum but also in the case of a nega-
tive effective mass and sufficiently far from it. The ratio
of the transmission coefficients for the momenta p and
p∆0, which differ by the quantity δky determined by
relationship (22), can be found from the expression

(23)

When the curvature ε is small, this ratio can be rela-
tively large.

Thus, the above analysis of the symmetry of elec-
tron states demonstrated that bands of bound states
embedded in the energy continuum can exist along par-

5 From symmetry considerations, ∂Γ(k∆0)/∂ky = 0.
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ticular directions of the two-dimensional Brillouin zone
in a crystalline film with a (001) face-centered cubic
lattice. These states can arise in energy bands that have
a specific structure and lie below the boundary of the
continuum spectrum. The energy spectrum of electrons
above the vacuum zero of the crystal potential should
contain bands involved in the paraboloid E = k2 bound-
ing the continuum spectrum. In actual fact, the exist-
ence of these bands (or at least special electron states)
follows from numerous calculations of the electronic
structure of crystalline films near the vacuum zero of
the potential of electrons Ev. For example, according to
the results obtained in [9, 10], upward directed energy
bands exist in the vicinity of the vacuum zero of the
potential Ev. However, what happens with these bands
at E > Ev has not been considered and the pattern of dis-
persion curves is simply cut off at some energy in the
vicinity of Ev .6 

3. CONCLUSIONS

The theoretical analysis performed above demon-
strated that the bands of bound states embedded in the
energy continuum can substantially affect the scatter-
ing of low-energy electrons by a very thin crystalline
film. In the case where the momentum of primary elec-
trons slightly deviates from the direction corresponding
to the band of states of the discrete spectrum, the trans-
mission coefficient reaches its maximum. For a weak
dispersion of the resonance bandwidth, the above coef-
ficient can differ significantly from the transmission
coefficient in the direction of the band of bound states.
This can be of interest for the modulation of electron
scattering by quantum-confined film structures. By
varying the quantity δky and measuring the ratio of the
transmission coefficient T(p) to the coefficient T(p∆0),
we can experimentally estimate the parameters γ and

 of the resonance band.7 Since within the electron–
hole interaction the wave function of diffraction of slow
electrons is a time-reversed wave function of the final
state of the photoelectron, these parameters can be

6 The dependence of the intensity of low-energy electron scattering
on the dispersion of the bands of bound states localized above Ev
but below the boundary of the continuum spectrum was consid-
ered in our earlier paper [2].

7 For a particular film, the value of  can be calculated from the

energy of quasi-stationary states according to the method pro-
posed in [3].

Myy
1–

Myy
1–
5



1052 WOLF, CHUBURIN
used, for example, in photoelectron spectroscopy of
very thin crystalline films.
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Abstract—Experimental data concerning the response of superconducting YBCO films to a weak ac magnetic
field in the vicinity of the superconducting transition point are analyzed. Earlier, these data were interpreted as
evidence of either the critical behavior of magnetic vortices in a thin film or the polarization of a system of two-
dimensional vortex dipoles. The frequency dependence of the response was related to the frequency dispersion
of the medium. In the present paper, the effect of an ac electromagnetic field on a two-dimensional vortex gas
is considered in layered superconductors above the Berezinskiœ–Kosterlitz–Thouless transition point. Local
model constitutive equations are employed in which neither frequency nor spatial dispersion is included. It is
shown that the main experimentally observed features of the film response can be explained in terms of the tem-
perature-dependent conductivity and the size effect in a finite-size sample © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The magnetic flux penetration into materials can be
explored by studying the response of samples to an ac
magnetic field. At present, there are a number of theo-
ries and models in which the temperature, field, and fre-
quency dependences of the response are associated
with certain physical phenomena and processes.

For normal metals, the central role is played by the
normal skin effect. In [1], the response of a plane-par-
allel conductive plate to an electromagnetic field under
symmetric boundary conditions was studied in the
quasi-stationary approximation [2]. It was shown that,
in this approximation, the response is determined by a
single parameter d/δ, where d is the plate thickness, δ =

c/  is the skin depth, ω is the field frequency,
and σ is the conductivity of the plate. The system was
shown to exhibit a size effect; namely, the dissipative
part of the susceptibility  at the fundamental fre-
quency reaches a maximum when the skin depth is
about half the plate thickness, d/δ ≈ 2.

For type-II superconductors, one of the most useful
concepts is the magnetic flux pinning, which results in
the Bean [3] and Kim [4] critical-state models based on
it. These models have provided a quantitative descrip-
tion of the magnetization and response of hard super-
conductors in terms of the critical current [5].

The discovery of high-temperature superconductors
made it possible to conduct experiments at higher tem-
peratures. It has been found that the metastable critical
state is destroyed by thermal fluctuations. The concept
of magnetic flux creep [6] was found to be useful under
these conditions and made it possible to explain the

2πσω
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characteristic frequency dependence of the response of
a superconductor to an applied magnetic field [7, 8].

The ideas mentioned above lead to a qualitative
understanding of the magnetization of bulk low-tem-
perature type-II superconductors, bulk high-tempera-
ture ceramic superconductors, and high-temperature
superconductor granular films at relatively low fre-
quencies (≤1 MHz) of the applied magnetic field. In all
these cases, a size effect is observed; namely, the tem-
perature-dependent dissipative part of the susceptibility
reaches a maximum at a temperature Tm where the mag-
netic field penetration depth becomes approximately
equal to the characteristic size of the sample. The lim-
iting frequency indicated above is rather conventional,
because its actual value depends on the properties and
dimensions of the superconducting samples.

At higher frequencies, it becomes observable that
magnetic flux vortices penetrating a sample do not have
time to reach the stationary critical state during a field
cycle. In this case, it is necessary to consider not only
the superconducting critical current but also normal
currents, whose dissipation is related to the relaxation
of the magnetic flux to the stationary critical state [9].

The theories and models mentioned above cover the
main set of ideas successfully used to describe the
response of a type-II superconductor to a weak ac mag-
netic field. However, several experiments measuring
the diamagnetic response of superconducting films [10,
11] have recently been reported, the results of which do
not conform with these models.

In the present paper, we briefly outline the main
results of those experiments and discuss the interpreta-
tions of the results from [11] given in [11, 12] in terms
of the frequency dispersion of the medium. Afterwards,
© 2005 Pleiades Publishing, Inc.
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we propose an alternative explanation for the experi-
mental data based on the Berezinskiœ–Kosterlitz–Thou-
less phase transition (BKT) [13, 14] in a gas of two-
dimensional (2D) vortices (pancakes) in layered super-
conductors and on the size effect. It is assumed that the
relation between the field and current is local. An argu-
ment in favor of the suggested approach is the evalua-
tion of the frequency dependence of the temperature at
which the maximum of the dissipative part of the sam-
ple response to an ac magnetic field is reached and a
model calculation of the temperature dependence of the
susceptibility, which agree with the experimental data.

2. DISCUSSION
OF THE EXPERIMENTAL DATA

The effect of a weak ac magnetic field on an epitax-
ial YBCO film was studied in [10]. The variation of the
temperature Tm at which the dissipative part of the
response (T) reaches a maximum at the fundamental
frequency was studied as a function of the magnetic
field amplitude (Hac = 40–500 mOe) and frequency
(ω = 1–30 kHz). The results were analyzed in terms of
the critical state and magnetic flux creep. According to
the Bean critical state model, the field amplitude is
related to the critical current at the temperature Tm [15,
16] and the flux creep model explains the temperature
Tm shift, which varies in proportion to lnω [7, 8].

Both of these features are clearly defined in the cal-
culated dependences. However, the kink in the

Tm( ) linear dependence is left unexplained. In our
opinion, this kink indicates that the nature of the dissi-
pation of magnetic field energy in the sample changes
at a temperature just below the superconducting transi-
tion temperature. The sample response is nonlinear
both below and above this temperature, which is con-
firmed by the dependence of Tm on the field amplitude.

In [11] (see also [17]), the temperature dependence
of the response of a YBCO film to a weak (<1 mOe) ac
magnetic field was studied at frequencies between
30 mHz and 800 kHz. At a temperature Tc, the nondis-
sipative part of the response exhibits a kink, and the dis-
sipative part of the response is nonzero only at temper-
atures T > Tc. We believe that here, as in the experiment
reported in [10], the nature of the response changes.
The maximum of the dissipative part of the response
shifts toward higher temperatures as the external field
frequency increases. It was suggested in [11] that, as
the temperature approaches Tc, the correlation length of
the superconductor becomes equal to the sample thick-
ness and a thickness-dependent phase transition (simi-
lar to the BKT transition in thin films [18]) takes place.
The sample response at T > Tc was attributed to the crit-
ical behavior of the system of free magnetic vortices,
which run through the sample and are created as a result
of fluctuation-induced dissociation of neutral vortex
pairs. The experimental data under discussion were

χ1''

Hac
2/3
P

explained qualitatively in [12] in terms of the phenom-
enological linearized theory of pancake dipoles in lay-
ered superconductors in an external field [19, 20]. In
[11, 12], the frequency dependence of the response
observed in [11] was attributed to the frequency disper-
sion of the medium and the maximum of the dissipative
part of the response was associated with the resonance
absorption of the electromagnetic field energy.

The fact that there are two separate interpretations
of a single experiment, neither supported by satisfac-
tory arguments, makes both of them suspicious. Addi-
tional modifications of the theory are necessary in order
to explain the nonlinear response observed in [10] (the
authors of [11, 12] are apparently unaware of that
paper). Moreover, we believe that the physical factors
responsible for the sample response in the models dis-
cussed in the papers mentioned above are not actually
dominant.

We suggest that the change in the nature of the sam-
ple response in the experiments reported in [10, 11] is
due to the BKT phase transition [13, 14] in the pancake
system in layered superconductors, that the frequency
dependence of the response is due to the viscous move-
ment of free pancakes, and that the maximum of the
dissipative part of the response is due to a size effect
similar to that described by Fisher and Kao [1].

The BKT transition is a reconstruction of the vortex
system state in a layered superconductor occurring at a
temperature TBKT. At low temperatures T < TBKT, the
magnetization of the film is determined by vortices that
enter the sample and run through its thickness. These
vortices are a bound state of pancakes localized in dif-
ferent layers of the superconductor [21]. The vortices
can be pinned by structural defects of the sample,
thereby causing a nonzero value of the critical current.
Magnetization of a superconductor in this state can be
described in terms of the critical-state model.

As the temperature increases, the state of high-tem-
perature YBCO superconductors changes. Free pan-
cakes appear in a superconductor and significantly alter
its properties. Though these superconductors are more
anisotropic than layered because of the strong Joseph-
son links between the layers, the transition between the
two phases is governed by the same factors as is the
BKT transition in 2D systems. The main factors are
(i) the instability of the system of dipoles (bound pairs
of pancakes) with respect to the dissociation into a free
vortex gas that occurs at the temperature T = TBKT and
(ii) the Debye screening of the free vortex interaction.

This model of the layered superconductors is based
on experimental and theoretical studies of their behav-
ior near TBKT. We mention only a few of them, the most
important for qualitative understanding of the physical
processes that occur in these systems. In [22], the cur-
rent-voltage characteristics of YBCO single crystals
were measured both along the superconducting layers
(in the ab plane) and across them (along the c axis). It
HYSICS OF THE SOLID STATE      Vol. 47      No. 6      2005
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was found that the transition temperature  from the
superconducting state to the normal state along the c

axis is lower than the temperature  at which the
transition to the normal state takes place in the ab plane.
We believe that this difference means that, at the tem-

perature , thermal fluctuations destroy coherence
between the adjacent layers and the sample turns into a
set of disconnected superconducting layers. From anal-
ysis of current–voltage characteristics, it follows that

 is close to and apparently coincides with TBKT. This
kind of behavior of layered superconductors is in good
agreement with the results of numerical simulations
based on the 3D anisotropic XY model [23].

The critical current, which is due to the tension of
Josephson vortices, disappears when the coherence of
the order parameter phase is destroyed. This fact was
confirmed by measurements of the current–voltage
characteristic of an epitaxial YBCO film presented in
[24]. It was shown that the critical current of the film
vanishes as a certain temperature TBKT < Tc is
approached from below, where the exponent of the cur-
rent–voltage characteristic switches from 3 to 1. A sim-
ilar result is reported in [11, inset to Fig. 1]. The
absence of a critical current means the absence of vor-
tex pinning.

Another characteristic feature of the behavior of lay-
ered superconductors in the vicinity of TBKT is related
to the penetration of magnetic flux into a sample. Above
this point, the superconductor state with vortices is
favored over the state without vortices even in a zero
magnetic field. Therefore, the lower critical field Hc1 is
zero and there is no energy barrier to the penetration of
a magnetic flux.

The results of the experiments reported in [10, 11]
can be qualitatively explained in terms of the features of
layered superconductors (YBCO in particular) dis-
cussed above. At low temperatures (below the BKT
transition point), a superconductor can be either in the
superconducting critical state (as in [10]) or in the
Meissner state, as in [11]. At high temperatures (T >
TBKT), the magnetization of a sample is determined by
the gas of free pancakes. In this case, the energy of the
external magnetic field is dissipated due to the viscous
flow of the magnetic flux and damping of normal cur-
rents.

Furthermore, we believe that there is no need to
include the frequency dispersion of the medium to
explain the experimental results in question. At the very
least, the frequency dependence of the susceptibility
observed in [11] is in good agreement with a model that
includes a linear local relation between the current and
electric field in the sample and in which the temperature
dependence of the conductivity is similar to that dic-
tated by the BKT transition.

Tc
c

Tc
ab

Tc
c

Tc
c
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Let us consider a plane-parallel plate of thickness d
subjected to electromagnetic waves incident on both
surfaces of the plate in such a way that the phases of the
magnetic field at both surfaces are always equal. Let the
current density be related to the electric field as j(x, t) =
σf(T)E(x, t). According to [1], the dissipative part of the
susceptibility is maximum when the skin depth δ =

c/  is about half the plate thickness, d/δ ≈ 2.
Here, σf is the conductivity of the superconducting
medium dictated by the viscous flux flow and related to
the normal-state conductivity of the material σn and to
the pancake concentration n(T) as σf(T) ~ σn/n(T). In
order to estimate n(T), we assume that the correlation
length ξ+ at T > TBKT is proportional to the Debye
screening length for the interaction between pancakes,

ξ+ ~ , where λ is the magnetic
field penetration depth, φ0 is the magnetic flux quantum,
and s is the period of the layered structure. Using the
relation ξ+(T) ~ exp{(T/TBKT – 1)–1/2} for T  TBKT

from above [25], we get n(T) ~ exp{–2(T/TBKT – 1)–1/2}.
Substituting these estimations into the condition for the
maximum of the dissipative part of the susceptibility,
we get

Taking the logarithm and keeping only the relevant
terms, we obtain the following relation between the

2πωσf

8πλ T( )2
T /φ0
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Fig. 1. Temperature Tm of the maximum in the dissipative
part of the susceptibility as a function of the applied mag-
netic field frequency ω (the experimental data from [11]).
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temperature Tm at which the susceptibility is maximum
and the magnetic field frequency ω:

(1)

The experimental results reported in [11] and replot-
ted in [12] are shown in Fig. 1. It can be seen that there
is reasonable agreement with our formula. Note that we
did not use any fitting parameters when deriving
Eq. (1). This is a very good reason to consider our sug-
gestion concerning the role of the BKT transition and
the local nature of the relation between the field and
current to be true.

However, our estimations do not agree with the
results from [10], where Tm was shown to depend on the
external magnetic field amplitude. This disagreement
suggests that the response is nonlinear both at low tem-
peratures T < TBKT and at T > TBKT. In the next section,
we perform a numerical model calculation of the non-
linear response of layered superconductors to an ac
electromagnetic field in the temperature range from
TBKT to Tc.

3. LOCAL NONLINEAR MODEL 
OF THE PANCAKE GAS SUSCEPTIBILITY

The main problem in calculating the susceptibility
of a superconductor in this state is to find the constitu-
tive relations between the current and electric field in
the medium. At present, there is no theoretical model
that provides relations between the current and field for
this medium in a sufficiently wide temperature range.

In order to numerically calculate the response of a
layered superconductor to an external ac magnetic
field, we employ an empirical model relation between
the current and electric field that qualitatively describes
the current–voltage characteristic of high-temperature
superconductors in the range between TBKT and Tc.

Calculations are performed for a flat plate of thick-
ness d under symmetric excitation by a magnetic field.
The x axis is normal to the plate, and the plate surfaces
are the x = ±d/2 planes. An electric field is directed
along the y axis, and a magnetic field is directed along
the z axis. In this geometry, the Maxwell equations
inside the plate can be written as

(2)

where we introduced dimensionless variables e =
Eyσn/JGL(0), b = Bzσn/JGL(0), l = x4πσn/c, and τ =
t(4πσn). Here, σn is the conductivity of the supercon-
ductor in the normal state and JGL(0) is the decoupling
current density at a zero temperature. It is convenient to

ωln
Tm

TBKT
----------- 1– 

 
1
2
---–

.–∼

∂e
∂l
-----

∂b
∂τ
------,

∂b
∂l
------– j e( ),–= =
P

write the constitutive relations in the form solved for
the electric field:

(3)

Here, jGL = (1 – T/Tc)3/2 is the dimensionless decoupling
current and e0 is a parameter which can be related to the
vortex core energy (in calculations, we set e0 = 6). The
value of a = K(Tc/T – 1) varies from 0 at T = Tc to 2 at
T = TBKT. K is a parameter characterizing the anisotropy
of the material; in calculations, this parameter is taken
to be 100, which roughly corresponds to YBCO. The
equation a(TBKT) = 2 determines the temperature TBKT.
The quantity a +1 is usually called the exponent of the
current–voltage characteristic.

In square brackets in Eq. (3), the first term describes
the contribution to the resistivity of the free pancakes
that appear due to thermal fluctuations above the BKT
transition point and the second term describes the con-
tribution of the vortices that appear as a result of sever-
ance of vortex dipoles by the current. Equation (3) cor-
rectly describes all current and temperature asymp-
totes. For intermediate values of the current and
temperature, this expression qualitatively describes the
behavior of real systems.

In the low-current limit, the second term in the
square brackets is much less than the first and we get a
linear e(j) dependence. In the region of intermediate
current values, the second term is greater than the first
but is much less than unity and we get a high-current
asymptotic behavior e ~ j a + 1. When the current value
approaches the decoupling current, saturation is
reached; most of the vortex dipoles are broken by the
current, and further growth of the current does not have
a significant effect on the free-vortex concentration. In
the limit j  jGL, the system passes to the normal
state. This type of e(j) behavior can be modeled by
introducing a current-dependent coefficient of the
exponent a. Typically, saturation is not observed in the
measured current–voltage characteristics because of
the thermal instability at high current values.

In the high-temperature limit T  Tc (or a  0),
Eq. (3) describes the transition of the system to the nor-
mal state with a linear e(j) dependence. In the opposite
limit T  TBKT (a  2), we get the characteristic
dependence e ~ j3 for all current values except in the
saturation region.

By eliminating the electric field from Eqs. (2), we
get a nonlinear diffusion equation for the magnetic
field,

(4)

e j( ) j
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where the diffusion constant is obtained by differentiat-
ing Eq. (3) and using the second of equations (2).

Symmetric boundary conditions lead to a symmetric
field distribution inside the plate. The magnetic field is
an even function of x, and the electric field is an odd
function of x. Therefore, we can restrict ourselves to
solving the problem only for one-half of the plate (e.g.,
for the right-hand half). The boundary conditions at the
plate center are

The tangential components of the magnetic induction
and of the electric field have to be continuous at the
plate surfaces. Therefore, we have

According to the statement of the problem, a plane
wave b(l, τ) = b0cos[ω(τ + l – d/2)] and e(l, τ) =
b0cos[ω(τ + l – d/2)] with an amplitude b0 is incident on
the right-hand plate surface from +∞. The reflected
wave is a superposition of plane waves propagating in
the positive direction of the x axis, with their ampli-
tudes and frequency spectrum depending on the proper-
ties of the nonlinear material of the plate. The electric
and magnetic fields of the reflected wave are similar in
direction to those of the incident wave and are related
to each other by the equation er(l, τ) = –br(l, τ) follow-
ing from the Maxwell equations in vacuum. Therefore,
the boundary conditions at the right-hand surface are

By adding these expressions, we get boundary condi-
tions for the field inside the plate. Therefore, the prob-
lem is completely defined by Eq. (4) and the boundary
conditions for the magnetic induction

(5)

We solved the boundary problem numerically by
using the explicit absolutely stable Dufort–Frankel
scheme [26]. Calculations were performed with a pre-
cision of no worse than 5%.

The temperature dependence of the susceptibility
was calculated using the following procedure. For each
amplitude of the magnetic field, calculations started
from the normal state at Tc (a = 0). An expression for the
magnetic field found analytically was used as the initial
conditions. As the temperature was varied from a = 0 to
1.98, the field found at the end of the previous stage was

∂b
∂l
------ 0 τ,( ) 0, e 0 τ,( ) 0.= =

bin
d
2
---± τ, 

  bout
d
2
---± τ, 

  ,=

ein
d
2
---± τ, 

  eout
d
2
---± τ, 

  .=

bin d/2 τ,( ) b0 ωτ( )cos br d/2 τ,( ),+=

ein d/2 τ,( ) b0 ωτ( )cos  – br d/2 τ,( ).=

b d/2 τ,( ) e d/2 τ,( )+ 2b0 ωτ( ),cos=

∂b
∂l
------ 0 τ,( ) 0.=
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used as the initial conditions for the next stage. The sys-
tem was allowed to relax to the stationary state during
one period, and the next period was used to calculate
the response of the system. We checked the adequacy of
this procedure by increasing the relaxation time at some
temperatures by up to 20 periods and did not found a
significant variation in the response.

The dimensionless parameters of the modeled sys-
tem were chosen so that (i) they satisfied the quasi-sta-
tionary condition (ω ! 1), (ii) the ratio of the sample
thickness and the skin depth in the normal state was
close to that typical for experiments (d ! δ), and
(iii) the minimum required precision was achieved with
reasonable computational effort. Accordingly, we set
the plate thickness to be d = 1 and the field frequency,
ω = 2π × 10–3. The dimensionless skin depth was δ =

 ≈ 17.8.

The results of numerical calculations of the temper-
ature dependence of the dissipative part of the suscepti-
bility at the fundamental frequency are presented in
Fig. 2 for values of the external magnetic field ampli-
tude ranging from b0 = 10–7 to 4 × 10–5. For compari-
son, the linear susceptibility of the system with the
same set of parameters is also shown for various fre-
quency values.

The temperature dependence of the dissipative part
of the susceptibility 4π  for field amplitudes b0 < 4 ×
10–5 has a maximum, which is situated close to TBKT
and whose position depends on the field amplitude. The
maximum is due to the size effect, and its position Tm

depends on the field amplitude because of the nonlinear
conductivity of the medium.

2/ω

χ1''

0.982 0.984 0.986 0.988 0.990
T/Tc

0

0.1

0.2

0.3

0.4

4π
χ 1'

'

ω = 2π × 10–6

2π × 10–5

2π × 10–4

2π × 10–3

b0 = 4 × 10–5

1 × 10–5

4 × 10–6

1 × 10–6

1 × 10–7

Fig. 2. Temperature dependences of the dissipative part of
the susceptibility of the model system calculated in the non-
linear mode (solid curves) for the external field frequency
ω = 2π × 10–3 and various values of the external field ampli-
tude b0 and in the linear mode for various frequencies
(dashed curves).
5
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This size effect becomes identical to the size effect
considered in [1] at a sufficiently low amplitude of the
external field, in the linear mode. The maximum in
4π (T) appears because the concentration of free vor-
tices decreases rapidly as the temperature approaches
TBKT from above, which leads to an increased conduc-
tivity σf . As a result, the skin depth decreases and
becomes approximately equal to half the sample thick-
ness at a certain temperature Tm. In the nonlinear mode,
the conductivity depends on the current and varies from
point to point inside the sample. Therefore, in contrast
to the linear mode, it is impossible to define the skin
depth in this case. However, there is a characteristic
field penetration depth, which decreases rapidly as TBKT

is approached; as a result, the nonlinear size effect takes
place.

The calculated dependences have several prominent
features. As the ac field amplitude decreases, the field-
amplitude dependence of the susceptibility weakens
progressively. At amplitudes b0 ≤ 10–7, the system is
practically in a linear mode. The maximum magnitude
of the dissipative part of the susceptibility 4π  ≈
0.417 is close to the value observed experimentally (see
[12, Fig. 1]). The peak value decreases as the tempera-
ture Tm becomes lower. The same tendency is observed
in the experimental data from [11] (replotted in [12]),
despite the fact that the reasons for the displacement of
the maximum in the model and in the experiment are
different. We believe that the variation in the peak value
of the dissipative part of the susceptibility in the exper-
iment is due to the nonlinear type of response, which
becomes more and more pronounced as TBKT is
approached. This tendency is clearly demonstrated in
Fig. 2, where all curves corresponding to the nonlinear
response for various values of the external field ampli-
tude merge into the curve of the linear response at high
temperatures.

The maximum value of the temperature Tm for a
given frequency is achieved at the minimum external
field amplitude, in the linear mode. An increase in the
field amplitude shifts Tm to lower temperatures. At b0 =

4 × 10–5 and ω = 2π × 10–3, the 4π (T) dependence
does not exhibit a maximum in the temperature range
from TBKT to Tc. Experimentally, the maximum in this
case is observed at a lower temperature, where the
response is determined by other physical mechanisms.

The calculated Tm(b0) dependence agrees qualita-
tively with the experimental data from [10], so the kink

in the linear Tm( ) dependence can be attributed to
the BKT phase transition occurring in the sample at a
temperature TBKT.

χ1''

χ1''

χ1''

Hac
2/3
P

4. CONCLUSIONS

It follows from the experiments performed in [10,
11] that there is a narrow temperature range (TBKT, Tc)
in which the response of YBCO films to an ac magnetic
field differs qualitatively from that observed at low tem-
peratures.

It was suggested in [11] that, at the temperature Tc

(TBKT in our notation), the film undergoes a phase tran-
sition, which depends on the film thickness and is sim-
ilar to the BKT transition in 2D systems. As a result,
free magnetic vortices running through the sample
appear and the sample response to an ac magnetic field
is determined by the behavior of these vortices in the
vicinity of the transition. The authors of [12] associated
the response with the frequency-dependent polarization
of neutral pancake dipoles under an ac external field.

In our approach, the response of superconducting
YBCO films in the temperature range in question is
related to the behavior of free pancakes, which
appeared because of the BKT transition and whose con-
centration depends both on the temperature and local
current density.

In the papers cited above, the frequency dependence
of the response and the presence of a maximum in the
nondissipative part of the susceptibility are attributed to
the frequency dispersion of the material. In our opinion,
these features are due to the viscous flow of free pan-
cakes and to the size effect in a finite-size sample, with
the relation between current and field being local. Apart
from providing qualitative agreement with experiment,
this approach has made it possible to adequately
describe, without using fitting parameters, the fre-
quency dependence of Tm (Fig. 1) and the peak value of
the dissipative part of the susceptibility.

The nonlinear character of the response in our
model makes us believe that the experimental data from
[10] can also be explained in this model. The decrease
in the temperature Tm with an increase in the field
amplitude in the model calculations is in qualitative
agreement with the dependences observed in the exper-

iments at temperatures above the kink on the Tm( )
line. The temperature at which this kink is observed can
be associated with the temperature TBKT. Our ability to
quantitatively fit the results of calculations to particular
experimental data is significantly challenged by the
large volume of computations involved.
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Abstract—The temperature dependence of the shape of the inelastic neutron scattering peak from TA phonons
in GaAs heavily doped by Te was studied within the temperature interval from 363 to 253 K. It was shown that
doping with tellurium (to a carrier concentration Ne ≈ 2 × 1018 cm–3) gives rise to the appearance of an additional
contribution to neutron scattering on the high-energy side of the TA phonon resonances at values of the reduced
wave vector q < 0.1a*. Below 320 K, the intensity of this additional component rises sharply, and then, below
273 K, the main TA peak and the additional shoulder merge almost completely. This additional scattering is
believed to be due to a defect-induced mode, which may be responsible for the observed anomalies in the phys-
ical properties in this crystal. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The existence of a phase transition (PT) in a system
of dipole centers remains an issue of undying interest in
solid-state physics. Indeed, according to the Langevin–
Debye theory describing the interaction between
dipoles in terms of the self-consistent-field model, one
would expect an unlimited rise in the polarizability of
this system (“polarization catastrophe”) with decreas-
ing temperature. In actual fact, however, no ferroelec-
tric PT was observed even in the early experiments [1,
2] on alkali halide crystals containing dipole impurities.
It was shown later in [3] that the reason for this dis-
agreement between theory and experiment lies in the
specific features of the dipole–dipole interaction;
indeed, not only the magnitude but also the sign of this
interaction depend on the relative spatial orientation
and position of the dipoles. In systems containing
impurities, this results in considerable fluctuations of
the local fields acting on the dipoles, thus making the
self-consistent-field approximation inapplicable. It has
also been shown that spatial fluctuations substantially
reduce the effective polarizability and prevent the onset
of ferroelectric instability. This conclusion fully holds
in the case of nonpiezoelectric crystals.

However, piezoelectric crystals exhibit a linear rela-
tion between polarization and elastic lattice strains.
This linear striction interaction suppresses long-wave-
length fluctuations of the ordering field, so, at a high
enough dipole impurity concentration, one may expect
the formation of an ordered state even in weakly polar-
izable crystals. It was demonstrated in [4] that, in III–V
compound semiconductors doped with Group VI ele-
ments, charged donor–vacancy complexes consisting
of impurity atoms and native structural defects form in

the reaction  +  + e–  (TeAsVGa)–, whereVGa
–

TeAs
+

1063-7834/05/4706- $26.00 1060
VGa denotes a vacancy on the Ga site. These complexes
may have the properties of dipole centers [5], possess
large dipole and elastic moments, and interact effi-
ciently with elastic lattice strains.

The possible existence of a PT in such systems was
predicted theoretically in [6, 7], where it was shown
phenomenologically that the free energy of a doped
crystal as a function of polarization can be written in
the form

(1)

where Pβ is the β component of the polarization, b1 and
b2 are the anharmonic constants of a pure crystal,
bd allows for the contribution from dipole centers to
second-order anharmonicity, and α' is a renormalized
parameter depending on both the temperature T and the
concentrations of charge carriers (Ne) and dipole
defects (Nd). As a result of renormalization of α, a crit-
ical temperature T0(Nc, Ne) at which the parameter
α'(T0) reverses sign appears at certain concentrations Ne

and Nd; i.e., the crystal as a whole becomes unstable
against transition to a state with a nonzero polarization.
Note that, because the components of the polarization
vector and strain tensor are linearly related, this PT
should be characterized by both spontaneous polariza-
tion and spontaneous strain and, therefore, should be a
ferroelectric–ferroelastic transition induced by a sys-
tem of dipole impurity centers.

The possible existence of this PT has been studied
experimentally on Te- and Se-doped GaAs piezoelec-
tric crystals. The concentration and temperature depen-
dences of the longitudinal velocity of sound VL(T, Ne)

F P( ) F 0( ) 1/2( )α'Pβ
2

b1Pβ
4

+ +=

+ 1/2( ) b2 bd+( )Pβ
2
Pα

2 ,
© 2005 Pleiades Publishing, Inc.



        

INELASTIC NEUTRON SCATTERING BY TA PHONONS 1061

                                                                                                      
and of the specific heat Cmol in Se-doped GaAs were
investigated in [6], and the infrared absorption coeffi-
cient α(Ne) in Te-doped GaAs was studied in [8]. At
300 K, anomalies were revealed in the VL(Ne) and α(Ne)
relations at Ne ≈ 2 × 1018 cm–3. This fairly high critical
concentration may be assigned to the fact that dipole
defects form only for Ne > 1017 cm–3 and that their con-
centration becomes substantial for Ne ≥ 1018 cm–3 [6].
Measurements of the VL(T) and Cmol(T) relations on a
sample with Ne ≈ 2 × 1018 cm–3 confirmed the existence
of anomalies at Tc ≈ 300 K.

Thus, these results give grounds to suggest the exist-
ence of a specific PT at the impurity concentration and
temperature indicated above. However, to date, there
have been almost no studies on the lattice dynamics of
such compounds. If this PT does exist, it should give
rise to anomalies in the low-energy part of the spec-
trum. For this reason, we investigated the low-energy
excitation spectrum and, in particular, obtained data on
the temperature-induced evolution of the shape of the
neutron resonance line corresponding to inelastic neu-
tron scattering from transverse acoustic (TA) phonons.

2. EXPERIMENTAL TECHNIQUE

Studies were conducted on a single, irregularly
shaped crystal of pure GaAs, about 4 cm3 in volume,
and a GaAs single crystal doped with tellurium (Nc ≈
2 × 1018 cm–3), 20 × 20 × 40 mm in size, on a Neutron-
3 neutron spectrometer at the WWR-M reactor (PNPI,

Gatchina). The crystal could be rotated about the [ ]
axis, and the incident neutron wavelength was 2.485 Å.
Pyrolytic graphite was used as a monochromator, and a
Cu(111) single crystal was used as an analyzer. All
measurements were performed in the vicinity of the
(220) point, for which the structural factor for inelastic
scattering from acoustic phonons is maximal for the
wave vectors accessible at the given neutron wave-
length. Measurements were carried out on pure gallium
arsenide at room temperature only and on the doped
crystal in the temperature interval from 363 to 253 K
for the values of the reduced wave vector in the range
0.06a* < q < 0.2a* (a* is the reciprocal lattice vector).
For q less than 0.06a*, intense Bragg scattering pre-
cluded from reliable determination of the weak inelas-
tic peak.

3. RESULTS AND DISCUSSION

In pure gallium arsenide, no line shape distortions
were observed for any values of q and the phonon res-
onance width was determined almost entirely by the
spectrometer energy resolution and could be fitted well
by a Gaussian function. The results agree well with the
data obtained at 12 K and reported in [9]. For this rea-
son, the temperature dependence of the line shape was
not studied further.

110
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Measurements performed on doped GaAs at large q
revealed, at all temperatures, phonon resonance with a
width determined by the energy resolution and
described by a Gaussian with parameters similar to
those obtained for pure GaAs. The resonance peak was
accompanied by a weak shoulder on the high-energy
side. As seen from Fig. 1, which displays inelastic neu-
tron scattering spectra for various values of the reduced
wave vector q at a temperature of 363 K, a decrease in
q results in an increase in the shoulder intensity. We fit-
ted the inelastic scattering spectra with a sum of the
Gaussians corresponding to the TA phonon, the addi-
tional shoulder, and the contribution due to elastic
Bragg scattering, which was observed at small q (the
Bragg tail) because of an insufficiently high resolution,
and a linear background. The fitting procedure con-
verged in several iterations to an acceptable χ2 value.

For q > 0.1a*, the shape of observed phonon reso-
nance did not vary on cooling. For small q (q < 0.1a*),
a decrease in temperature caused an increase in the
intensity of the additional shoulder and below 273 K
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Fig. 1. TA phonon resonance line shape plotted versus
reduced wave vector q in doped GaAs near the (220) point
measured at 363 K. Solid lines are fitting of the experimen-
tal data with a sum of Gaussians and a linear background.
Dotted lines are the contributions of individual components
to the observed inelastic neutron scattering spectrum.
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Fig. 2. Evolution of the shape of TA resonance in doped GaAs obtained at Q = (2,2,0.07) on cooling. The peak at E ≈ 0.2 THz is
the elastic Bragg scattering tail. The dotted line is the fit obtained by the method specified in the text.
the shoulder practically merged with the main TA peak.
The experiment yielded a broad bell-shaped inelastic
neutron scattering distribution, which made unambigu-
ous separation of the TA peak from the additional scat-
tering impossible. Figure 2 presents the temperature
dependence of the TA resonance line shape near the
(220) point; the solid line is the fit, and the dotted lines
are contributions from the above-mentioned compo-
nents. As already pointed out, starting from 273 K, the
main and the additional peaks practically merged, thus
making the fitting procedure ambiguous. We analyzed
the temperature dependence of the TA phonon reso-
nance parameters for T ≥ 300 K. As is well known, in
the high-temperature approximation (kT @ ω), the fol-
lowing scaling relation holds [10]:

I ~ T/ , (2)

where I is the integrated peak intensity, ωj is the fre-
quency of the jth phonon resonance, and T is the abso-
lute temperature. Thus, in the absence of strong mode-

coupling effects, the quantity  should not depend
on temperature. Figures 3 and 4 display the temperature
dependences of ITA/T (curve 1, Fig. 3) and ωTA (curve 1,
Fig. 4), where ωTA is the TA phonon frequency and ITA
is the integrated intensity. We see that the above rela-

ωj
2

Iωj
2
/T
P

tions hold even in the range 300–320 K, where the total
intensity of inelastic scattering in the vicinity of the TA
resonance grows most strongly (curve 3, Fig. 3); as a
result, both ωTA and ITA/T do not depend on tempera-
ture. This allows us, when fitting the data obtained
below 293 K, to fix the values of these parameters and
vary the parameters of the additional scattering only. As
is evident from Fig. 3 (curve 2), the intensity of the
additional wing grows substantially at temperatures
below 320 K, i.e., exactly in the region where heavily
doped GaAs revealed anomalies in the IR absorption
coefficient [8], the peak in specific heat, and the mini-
mum in the velocity of longitudinal acoustic waves [6].
It is also natural to expect a decrease in the velocity of
transverse acoustic waves. Figure 5 presents dispersion
curves for pure GaAs at room temperature (and at 12 K
from [9]) and for doped GaAs. We see that the trans-
verse sound velocity (which is proportional to the slope
of the dispersion curve at small q) in the doped GaAs is
slightly lower than that in the pure material and is
2991 ± 149 m/s for the doped GaAs and 3461 ± 173 m/s
for pure gallium arsenide. The latter value is in good
agreement with the value of 3345 m/s reported for
300 K in [11].

Ultrasonic studies at 12.5 MHz of the relative veloc-
ity variation (∆Vl/Vl) of longitudinal acoustic waves as
HYSICS OF THE SOLID STATE      Vol. 47      No. 6      2005
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a function of temperature in a doped crystal with Ne =
3 × 1018 cm–3 showed [6] that this quantity passes
through a local minimum near 300 K corresponding to
a change in ∆Vl/Vl of approximately 0.1% and that near
this point the temperature dependence of ∆Vl/Vl

changes slope. Unfortunately, it was not possible to
observe this effect experimentally for the transverse
acoustic branch, because the expected value is too
small to be measured.

Let us consider now the possible nature of the
observed shoulder in the inelastic neutron scattering
spectra. As is well known, vibrations of a perfect lattice
can be substantially modified by introducing, for
instance, point defects. This problem was analyzed in
considerable detail, in particular, in [12–14], where it
was shown that the square of the characteristic fre-
quency associated with a defect is ω2 = fd/md; here, fd is
the coupling constant and md is the mass of the defect.
Two different types of new (additional) vibrational
modes can be conceived of here, depending on the
actual relationship between these parameters: local
modes with frequencies above the maximum frequency
of the original-lattice vibrations (if fd > f and/or md < m)
and resonance modes with ω ! ωmax (if fd ! f and/or
md  @ m). In [15], the local-mode frequency in Ta88Nb12
(with the Nb atoms considered as a light impurity) was
derived from an analysis of coherent inelastic neutron
scattering and it was shown that this mode is observed
as a shoulder on the high-energy side of the transverse
(q, 0, 0) mode near the Brillouin zone boundary. Later,
a resonance mode of frequency ωmax/7 associated with
libration and axial displacement of two neighboring
interstitial atoms (which make up a dumbbell-shaped
structure) was theoretically predicted to exist in fcc
metals [16] in the case where the mass of each of the
two interstitial atoms is identical to the mass of an atom
of the original lattice (i.e., md = m; this situation arises,
for instance, when a sample is irradiated by thermal
neutrons). It was also shown in [16, 17] that these reso-
nance modes should be observed in coherent inelastic
neutron scattering at defect concentrations on the order
of 1019 cm–3 and with small q.

Experimentally, a similar mode was observed by
Nicklow et al. [18] in irradiated copper as a pronounced
shoulder on the high-frequency side of the TA phonon
resonance at 10 K, with the resonance frequency being
displaced noticeably toward higher energies with
respect to that of the transverse acoustic phonon for
pure copper. This additional shoulder dropped strongly
in intensity after annealing at room temperature, but
only 2-h annealing at 800 K removed it completely. As
for gallium arsenide, the local modes and the associated
effects were earlier observed repeatedly under doping
with carbon, boron, oxygen, or other light elements; the
results obtained in those studies can be found, e.g., in
[12, 19–21] (see also references therein). In our sample,
atoms of the impurity Te (atomic number 52, atomic
PHYSICS OF THE SOLID STATE      Vol. 47      No. 6      2005
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weight 127.61) are almost twice as heavy as Ga (atomic
number 31, atomic weight 69.72) and As atoms (atomic
number 33, atomic weight 74.91); therefore, one would
expect the appearance not of a local but rather of a
defect-induced resonance mode in the low-frequency
excitation region. If it originated from the formation of
the abovementioned dumbbell-shaped structures of Ga
or As atoms, then, based on the value ωmax ≈ 9 THz [9],
the frequency of this mode should be ωmax/7 [16],
which is about 1.28 THz. The frequency for similar
structures of Te atoms should be about one-half the
above value. Indeed, as seen, for instance, from Fig. 2,
the maximum of the additional shoulder at q = 0.07a*
for temperatures high enough for reliable determination
is observed at E ≈ 0.6 THz, which is in good agreement
with the purely qualitative estimate of the resonance
mode frequency indicated above. As already men-
tioned, this mode could account for the experimentally
observed distortion of the TA resonance shape and a
shift of the position of the maximum at small q. This
mode should be dispersionless if it is truly a resonance
mode. However, the above figures show clearly that this
mode exhibits dispersion and that its frequency at small
q decreases with decreasing temperature. Indeed, as the
temperature is reduced from 363 to 300 K (the temper-
ature at which we are still able to determine reliably the
position of the maximum of the additional shoulder),
the frequency at q = 0.07a* decreases by about 15%
(curve 2 in Fig. 4). In accordance with the relationship

I ~ , one should expect a growth of the intensityT /ωJ
2

0.4

0 0.05

ω, THz

q, a*
0.10 0.15 0.20

0.8

1.2

Fig. 5. TA resonance dispersion curves for pure GaAs (open
circles are data from [9] obtained at 12 K, filled squares are
our room-temperature results) and doped GaAs (our data:
filled circles and open triangles correspond to room temper-
ature and 310 K, respectively).
P

due to scattering on this mode by a factor of about 1.3,
which agrees well with the result presented in Fig. 3.

Because these defects have a dipole moment and
dipole forces are of the long-range type, a decrease in
temperature, as shown in [6, 7], should bring about the
onset of long-range order in the dipole system and,
accordingly, the appearance of a localized “soft” mode
that would propagate to finite distances and result in the
formation (below 320 K) of a spatially inhomogeneous
state similar to the one observed in the PbMg1/3Nb2/3O3
relaxor [22]. This consideration is persuasively sup-
ported by the observation of a strong rise in the IR
absorption coefficient at the carrier concentration Ne ≈
2 × 1018 cm–3 [8]. Thus, the fact that the temperature at
which the intensity of the additional shoulder exhibits a
strong increase coincides with the temperature at which
anomalies in the physical properties are observed finds
a logical explanation, and there are grounds to believe
that this mode is really responsible for the observed
anomalies in physical properties.

It should also be pointed out that if this mode does
indeed exist, one should expect, at small q, a strong
dependence of the TA phonon resonance line shape on
the Brillouin zone, in which the measurements are
being carried out, as has been observed, for instance,
for BaTiO3 [23] in the case of interacting modes. Our
preliminary measurements have shown that this effect
apparently exists, but the insufficiently high neutron
flux did not permit us to carry out a full-scale study of
the TA resonance line shape for various Brillouin zones
and determine the parameters of the defect-induced
mode and the parameters of its interaction with other
phonons.
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Abstract—ZnTe crystallites isolated from a druse of coarse-grained polycrystalline ZnTe, prepared by chem-
ical vapor synthesis at a temperature of ~650°C, were studied using x-ray diffractometry, luminescence, and the
heat pulse technique. The crystallites are stacked in {110}-oriented macroscopic layers with a common twin
system. The {111} twin planes separated at a distance of 50–100 µm are perpendicular to the (110) growth lay-
ers. Acoustic phonon propagation was studied using the heat pulse technique. A comparison of the responses
to the arrival of differently polarized phonons in a given sample with the responses obtained on high-purity
coarse-grained ZnTe with randomly distributed twin systems with a separation of 5–10 µm and on twin-free
single-crystal ZnTe suggests that twins radically affect the scattering of acoustic phonons. The mean free paths
of LA, FTA, and STA phonons were determined by comparing the experimental responses with Monte Carlo
calculations. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Zinc telluride (ZnTe) crystals are comparatively
poorly studied typical representatives of the group of
wide-bandgap II–VI compounds. While certainly being
a promising material with a high luminescence quan-
tum yield in the very convenient visible region, only a
fairly limited interest has been expressed in ZnTe for
applications because of a number of features inherent to
it (the original conduction of the p type characteristi-
cally observed in crystals and films prepared by any
method, a tendency to self-compensation, the presently
almost unattainable inversion of conduction type by
doping).

Nevertheless, in addition to its well-known applica-
tion as a substrate material, {110} ZnTe plates have
proved convenient for use as both coherent and inco-
herent electrooptical sensors in the terahertz region (2–
40 THz) due to the high quality and suitable electroop-
tical coefficients of this material [1].

With the possibility of regulating the ZnTe growth
technology, which permitted substantial variation of the
crystallization regimes, and by properly controlling the
crystal structure of samples grown in conditions far
from thermodynamic equilibrium, we carried out a
study of the effect of point defects and of the extent of
twinning on the scattering and propagation of acoustic
phonons and on the emissive properties of the samples
prepared.

This study was also motivated by the need to char-
acterize the material, which was grown using a modifi-
1063-7834/05/4706- $26.00 1066
cation of the chemical vapor deposition method
(namely, chemical vapor synthesis (CVS) from sepa-
rate components), by x-ray diffractometry, measure-
ment of the low-temperature luminescence, and the
heat-pulse technique.

The growth conditions in the method chosen by us
differ substantially from the quasi-equilibrium condi-
tions governing crystallization. In particular, obtaining
a few tens of grams of the material under quasi-equilib-
rium growth requires one day, whereas the CVS
method produces the same amount of material in tens of
minutes. It should be added that the total amount of the
main impurities in a CVS-grown material is, as far as
we know, very low and is at the level of the best mate-
rials. This method differs from the quasi-equilibrium
techniques in that, due to spontaneous nucleation of the
crystallites, the grown druse contains (depending on the
actual growth regime parameters) only 5–10% of the
total druse weight in the form of single-crystal grains
5–10 mm in size.

In publications [2, 3], the mechanism of phonon
scattering in high-purity coarse-grained (ZT04) [2] and
single-crystal (ZT-1) [3] zinc telluride was studied. The
ZT04 sample contains an insignificant amount of impu-
rities but consists of grains up to a few hundred microns
in size, which contain randomly oriented twin systems
with twin planes a few microns apart. By contrast, the
ZT-1 sample does not have twin planes but contains up
to 1017 cm–3 impurities. As for the ZnTe studied in this
work, its impurity content is intermediate between
those of the samples investigated in [2, 3], its twin sys-
© 2005 Pleiades Publishing, Inc.
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tem is ordered, and the distance between the twin
boundaries can be as large as a few hundred microns.

2. PREPARATION OF ZNTE
AND X-RAY STRUCTURAL STUDIES

A druse of polycrystalline ZnTe with a clearly pro-
nounced surface relief at the crystallization front was
obtained using CVS of component vapors interacting in
the crystallizer zone at a temperature of 650–700°C.
The synthesis was carried out in a quartz reactor 90 mm
in diameter in dynamic vacuum. The component vapors
were produced in separate cells joined with the crystal-
lizer and effused head-on. The flux densities and the
relative partial pressures of zinc and tellurium vapors
were controlled by properly varying the cell tempera-
tures.

The starting components in the process were tellu-
rium (in which the content of the main impurities was
less than 1016 cm–3) and commercial zinc (99.999%),
which we purified preliminarily.

The growth surface forming in the course of con-
densation at ~650°C with a vapor supersaturation of
~(1.5–5.0) × 103 and a pressure ratio PZn/  ≥ 2 con-
sisted of a multitude of fairly large crystallites with a
[110] growth direction (Fig. 1).

For a total mass of the components of ~250 g, no
more than 2 h of synthesis was required before the cells
no longer contained any material for reaction. We
believe that the rates of ZnTe crystallite formation
obtained are characteristic of nonequilibrium crystalli-
zation involving concentration and thermal fluctuations
before the crystallization front.

X-ray diffractometry showed that the crystallites
shaped as irregular tetrahedral pyramids are formed by
{110} macroscopic layers growing from the vertex of a
pyramid towards its base. A fragment of a crystallite
(ZT05) formed by one (110) macroscopic-layer system
was cut out for study. As in [2], a plate thus prepared
was found to contain twins represented by one system
of parallel lines in the etch pit pattern shown in Fig. 2.
X-ray studies revealed that the twin planes are arranged
perpendicular to the (110) growth layers, whereas in the
case where the direction of growth is along {111} they
are parallel to the growth layers [4]. Thus, transition
from the {111} layer growth characteristic of crystalli-
zation from congruently sublimed ZnTe to the {110}
layer growth observed in the synthesis from the starting
components is accompanied by both a change of the
growth plane and rearrangement of the twin planes rel-
ative to the growth surface. The twin formation mecha-
nisms in a CVS-grown material apparently differ from
those operating in ZnTe and CdTe films grown epitaxi-
ally on various substrates (see the wealth of data
reported in [5]). Figure 3 shows an atomic model of the
twin plane constructed by us for the case under consid-
eration.

PTe2
PHYSICS OF THE SOLID STATE      Vol. 47      No. 6      200
The ZnTe samples intended for photoluminescence
and heat pulse measurements were mechanically
ground and polished. After this, grease was removed
from the ZnTe sample by boiling it in acetone for two
minutes and the damaged layer was removed by chem-
ical wet etching in a 6 vol % Br2 solution in methanol
(dehydrated, OSCh grade) for two minutes (the rate of
damaged-layer removal was 60 µm/min). Following
the wet etching in Br2/methanol, the samples were thor-
oughly rinsed consecutively in methanol, a 1 N NaOH
solution in methanol for 5 min, again in methanol, in
hot distilled water, and finally in cool water, after which
they were dried in air.

Fig. 1. Photograph of part of a ZnTe druse. Arrows identify
crystallites. The ruled division, shown at the bottom, is in
units of 1 mm.

Fig. 2. Optical surface image of a ZT05 crystallite obtained
with a UNION 6551 microscope. The ruled division, shown
at the bottom, is in units of 10 µm.
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To reveal the crystallographic structure, the surface
from which the damaged layer was removed was sub-
jected to selective etching in a 12.5 N NaOH solution in
water at a temperature of 80°C for 15–120 s, with sub-
sequent rinsing in hot and cool distilled water. Selective
etching left clearly visible twin boundaries and disloca-
tions on the sample surface, with the dislocation density
being no greater than 102 cm–2.

Fig. 3. Atomic model of a twin in a sphalerite-type crystal
with a horizontal {111} twin plane perpendicular to the fig-
ure plane (schematic). Dashed line shows the twin plane.
Larger balls denote atoms of tellurium, and smaller balls
denote those of zinc.
P

3. PHOTOLUMINESCENCE 
MEASUREMENTS

The photoluminescence (PL) spectra were mea-
sured in helium vapor in the temperature range 5–30 K.
Optical excitation was provided by an argon and a
helium–cadmium laser with pump photon energies of
2.41 eV (5145 Å) and 2.81 eV (4416 Å), respectively.
Spectral measurements were performed under excita-
tion of both the natural sample growth face and of a
sample after etching. The excitation spot was about
100 µm in size. The spectrum was analyzed using a
DFS-24 double-grating monochromator with a resolu-
tion of no worse than 0.1 meV. The PM tube output was
measured in the photon counting mode.

Figure 4 displays an edge PL spectrum of the growth
surface of a single-crystal sample obtained at 5 K. Note
that the pattern of a spectrum does not depend on the
actual excitation spot. The integrated PL intensities
measured under excitation of the growth and etched
face of the sample differ only weakly. The spectrum
exhibits transitions originating from a free exciton
(FE), transitions associated with exciton–impurity
complexes, and their phonon (LO) replicas. The exci-
ton-impurity complexes (the ground-state line A0X)
contained Li, Cu, or Ag acceptors. This is indicated by
the fairly rich structure of the corresponding two-hole
transitions denoted by FA in the spectra; here, F stands
for the final state of the hole localized at the acceptor
and A, for the acceptor impurity (for instance, 3SACu).
The long-wavelength part of the spectrum (see inset to
Fig. 4) exhibits fairly strong radiation associated with
the isoelectronic impurity OTe. The very weak transition
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Fig. 4. PL spectrum of a single-crystal sample obtained at T = 5 K. Inset shows a fragment of the spectrum in the region of oxygen
emission.
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near 2.362 eV (IC) apparently derives from the exciton
bound to a doubly charged acceptor, whose manifesta-
tion in ZnTe is typical of the given nonequilibrium
growth conditions. These doubly charged acceptors can
be CTe, SiTe, or the zinc vacancy [6].

Let us consider in more detail the A0X line, which is
slightly broadened (the half-width is ~2.5 meV) and has
a long-wavelength wing. A similar effect is observed
for acceptor impurity concentrations NA ≥ 5 × 1015 cm–3

[7]. Such a concentration of a shallow acceptor impu-
rity also affects the pattern of excitonic PL. At T = 5 K,
there is practically no emission in the region of the exci-
ton band bottom. As the temperature is raised to 25 K,
where exciton ejection from a shallow impurity center
becomes efficient, fairly bright PL associated with the
polariton appears.

Thus, characterization based on PL suggests that the
sample under study is essentially a single crystal of
fairly high crystal lattice quality, which is indicated by
the high PL quantum yield, the presence of exciton
emission (which exhibits a clearly pronounced polari-
ton structure), the distinct two-hole transition pattern,
and the absence of any transitions associated with
extended defects and complexes. The uniform distribu-
tion of impurities (Ag, Li, Cu, O) in substituted sites at
a level of 5 × 1015 cm–3 is an important characteristic of
the sample under study.

A comparison of the PL spectra measured by us ear-
lier on a coarse-grained ZnTe sample (ZT04; the aver-
age acceptor concentration NA is less than 1015 cm–3) [2]
with the spectrum of this crystallite (ZT05) reveals the
following: (i) a higher total acceptor concentration in
the crystallite (~5 × 1015 cm–3); (ii) the absence of so-
called Y spectral lines, which are usually assigned to the
presence of extended defects, such as dislocations and
grain boundaries; and (iii) a substantially more intense
PL in the exciton region, which attests to high structural
perfection of the crystallite.

It also appears instructive to compare the PL spectra
of the ZT05 crystallite with the spectra of single crys-
tals (ZT-1) studied in [3]. In addition to the radiation
associated with substitutional Ag, Li, Cu, and O, single
crystals also exhibit radiation deriving from a donor
impurity and a complex with a zinc vacancy. The PL
quantum yield in the edge region of single crystals is
about one order of magnitude lower than that in the
crystallites studied here, and the emission intensity of
the latter in the oxygen region is several times weaker.
This difference should be attributed to the fact that
ZT05 crystallites have a lower oxygen concentration
and do not contain the various complex defects charac-
teristic of the single crystals (ZT-1) studied in [3].
PHYSICS OF THE SOLID STATE      Vol. 47      No. 6      200
4. STUDY OF NONEQUILIBRIUM 
HEAT TRANSPORT

Nonequilibrium heat transport was studied using the
heat pulse technique in transmission geometry. Non-
equilibrium phonons were produced either directly by
photoexcitation of the sample surface with nitrogen
laser pulses or by deposition of a gold film onto the
sample with heating by these pulses. Nonequilibrium
phonons were detected by a thin-film superconducting
bolometer 50 × 70 µm in size, which was made of gran-
ular aluminum. The schematic diagram of the experi-
ments is similar to that described in [2].

Figure 5 compares experimental bolometer
responses to the arrival of nonequilibrium phonons
detected in different ZnTe samples, ZT-1, ZT04, and
ZT05. We note first that the response at the moment of
laser pulse arrival is caused not by bolometer illumina-
tion directly by laser light (for instance, following mul-
tiple reflections from the helium chamber walls) but
rather by the incidence on the bolometer of the lumines-
cence that derives primarily from bound excitons (see
Section 3) and has passed through the crystal.

As shown in [2], the ZT04 response to the arrival of
nonequilibrium phonons has a clearly pronounced dif-
fusive pattern. Indeed, its rise is smooth and starts not
at the ballistic transit time of 200 ns but rather at
1500 ns; the response reaches a maximum at 7.5 µs,
and its shape does not depend on the method by which
the nonequilibrium phonons were produced or on the
excitation energy; and there is no phonon separation in
polarization. As demonstrated in [8], these features are
characteristic of the case where scattering from
extended rather than point defects is dominant. The
mean free path in ZT04 was shown in [2] to be 14 µm.

The situation observed with ZT05 is radically differ-
ent, with the response pattern approaching that revealed
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Fig. 5. Normalized bolometer response to the arrival of non-
equilibrium acoustic phonons in (1) ZT-1 [3], (2) ZT04 [2],
and (3) ZT05 obtained under photoexcitation.
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in single-crystal ZnTe. The response is noticeably
shorter, it starts at a time consistent with ballistic trans-
port, and differently polarized phonons are clearly
detected separately (this suggests the presence of
phonons with a mean free path of hundreds of microns).
The responses obtained from nonequilibrium phonons
generated by a gold film heated using pulsed laser radi-
ation differ from those produced under photoexcitation
(Fig. 6), and their shape depends on the excitation
energy, which indicates that the frequency-dependent
phonon scattering from point defects dominates over
the frequency-independent scattering from extended
defects.

The strong difference between the responses to non-
equilibrium phonons generated by a pulse-heated gold
film and those produced by photoexcitation can be
understood qualitatively by conceiving these responses
to consist, as it were, of two parts for which the differ-
ence between the phonon mean free paths is compara-
ble to the sample thickness. One part derives from
lower frequency phonons having a large mean free path
(a few hundred microns or greater). Depending on the
actual conditions, these phonons produce either peaks
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Fig. 6. Bolometer responses to the arrival of nonequilibrium
acoustic phonons obtained for ZT05 under (1) photoexcita-
tion and (2) pulsed heating of a gold film deposited on the
sample. The peaks at 190, 340, and 530 ns correspond to the
arrival of the LA, FTA, and STA phonons, respectively.

Calculated relaxation times of nonequilibrium acoustic
phonons due to their decay and elastic scattering from iso-
topes and their mean free path in ZnTe

Parameter
Phonon frequency, THz

3.0 2.0 1.5 1.0 0.75 0.5

Decay time, ns 2.8 21.4 90 700 2900 22000

Scattering time, ns 0.14 0.72 2.3 11.4 36 180

Mean free path, µm 0.56 2.8 9.2 45 140 720
P

or a steeply rising front at the times corresponding to
the ballistic transit of phonons through the sample. The
other part is due to higher frequency phonons. Because
of the strong frequency dependence of the phonon
mean free time (τ = ASCATν–4 for elastic scattering from
point defects), these phonons feature substantially
shorter (on the order of a few tens of microns) mean
free paths. These phonons are responsible for the diffu-
sive part of the response. In the case of photoexcitation,
the fraction of the high-frequency phonons is larger
and, accordingly, the intensity of the diffusive part of
the response is higher. Conversely, a heated metal film
produces ballistic peaks of a higher intensity, as has
been observed for germanium [8].

If the scattering from extended defects in ZnTe is
insignificant, one can carry out an analysis of the kind
conducted in [9] for CdTe and derive in this way the
quantities characterizing the propagation and evolution
of nonequilibrium phonons in ZnTe.

The basic assumption underlying our analysis is as
follows: because ZnTe is a material rich in isotopes
(zinc has five isotopes, with the main isotope, Zn64,
making up 48.6%; tellurium has eight isotopes, with the
most abundant of them, Te128 and Te130, present in con-
tents of 31.7 and 33.8%, respectively) and the content
of impurity atoms is, by contrast, small (and part of
them can be distributed over the lattice in the form of
precipitates), we assume phonon scattering from the
isotopes to be a dominant process. In this case, the scat-
tering intensity can be calculated using the technique
described in [10] and it can be found that ASCAT = 8.74 ×
10–41 s–3. A similar assumption was also made in [9] to
analyze the responses in CdTe. Taking now the values
of the third-order elasticity constants from [11] and cal-
culating the LA phonon decay intensity using the
expressions given in [12], we arrive at ALIFE(LA) =
1.46 × 10–54 s–4. The corresponding characteristic times
and phonon mean free paths with respect to elastic scat-
tering and decay are listed in the table as functions of
phonon frequency.

Although these calculations are no more than rough
estimates (particularly for the decay processes), they
nevertheless allow us to make some conclusions. First,
there occur several tens of scattering events for each
decay (see table). Second, for a plate thickness of a few
hundreds of microns, ballistic peaks may be produced
by phonons with frequencies on the order of 0.5 THz or
less. Third, most of the LA phonons arriving at times of
about 500 ns have a frequency of about 1 THz.

Estimation of the frequency of FTA and STA
phonons meets with some difficulties. First, we are not
aware of any references in the literature to calculations
of FTA and STA phonon decay rates in ZnTe; in any
case, however, the intensity of these processes is sub-
stantially weaker (see, e.g., [13] for NaF and [14] for
silicon). In addition, there is one more mechanism for
decreasing the TA phonon frequency, namely, elastic
scattering–induced conversion to LA phonons with
HYSICS OF THE SOLID STATE      Vol. 47      No. 6      2005
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their subsequent decay. Given the high intensity of scat-
tering processes, we believe that it is this mechanism
that is substantial for materials with a high intensity of
elastic scattering (e.g., ZnTe, CdTe). However, the den-
sity of states of LA phonons (6.3%) is considerably
lower than that of STA phonons (61%). Therefore,
decreasing the effective frequencies of the STA
phonons is a substantially slower process and their
average frequency turns out to be higher than that of the
LA phonons.

The above estimation of the phonon decay constant
should be considered a certain approximation, because
the third-order elasticity constants governing the lattice
anharmonicity were measured at room temperature and
not on samples prepared by our technology. Note that
the values of the LA phonon decay constants in silicon
and germanium calculated using data for low tempera-
tures were larger by a factor of 1.7–2.5 than those
obtained at room temperature [12]. This stimulated
Monte Carlo simulation of the nonequilibrium phonon
propagation in a ZnTe plate [15], with ALIFE(LA) used
as a fitting parameter. It was found possible to fit well
the calculated response to experimental response
(Fig. 7) with ALIFE(LA) = 7 × 10–54 s–4, which differs
from the calculated value by a factor of about 5. In the
simulation, it was assumed that the STA phonons did
not decay. The value of ALIFE(FTA) was assumed to be
one tenth of ALIFE(LA). This is certainly an inadequate
approach because, as a result of the low density of
states of LA phonons, FTA phonon decay may appre-
ciably affect the phonon spectrum evolution. Estima-
tion of this effect shows that ALIFE(FTA) may affect the
accuracy of ALIFE(LA) determination by 20–30%.

Having estimated the phonon decay intensity, it
becomes possible to calculate the probability of phonon
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Fig. 7. Comparison of the experimental response of a ZT-1
sample (circles) with Monte Carlo calculations performed
for LA phonon decay constant equal to (1) 1.46 × 10–54 and
(2) 7 × 10–54 s–4.
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scattering from twin planes in ZT04, as was done in [9]
for CdTe. The main difficulty encountered in this anal-
ysis is estimating the average plane separation. As
pointed out in [2], this distance can vary from one grain
to another from a few microns to a few tens of microns.
In simulation, this distance was taken to be equal to
5 µm (the corresponding model was described in con-
siderable detail in [16]). Figure 8 compares the results
of the calculations with the experimental response of
ZT04. The best fit is seen to be achieved for a ~30%
average probability of scattering from plane bound-
aries. This value is substantially larger than the corre-
sponding quantity calculated for phonon scattering
from twin planes in CdTe [9] (where it was found to be
4%) and in InTl [17] (about 1%).

We carried out calculations of the reflection and
transmission coefficients (including the case of mode
conversion) of phonons incident on a single twin
boundary in ZnTe, which is shown schematically in
Fig. 3. The calculations were performed in the long-
wavelength approximation. The room-temperature val-
ues of the elasticity tensor were used. The results of the
calculations averaged over the angles of incidence of
phonons show that the reflection probabilities amount
to a fraction of a percent for the LA and FTA phonons
and to 2% for STA phonons. A detailed account of these
calculations will be published in a later paper.

Thus, we witness a disagreement between the high
probability of phonon scattering from twin planes
obtained by Monte Carlo simulation of the responses
and the analysis of phonon propagation through a sin-
gle plane. It is conceivable that phonons scatter not only
from twins but also from grain boundaries (three to four
grains may be encountered in passage across the sam-
ple), where the scattering probability is close to unity
[16]. Otherwise, the models and approximations
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Fig. 8. Comparison of the experimental response of a ZT04
sample (circles) with Monte Carlo calculations performed
for various values of the probability of phonon scattering
from twin planes: (1) 20 and (2) 30%.
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employed to estimate phonon transmission through a
twin plane system are not adequate.

5. CONCLUSIONS
A study of acoustic-phonon scattering in ZnTe sam-

ples with different amounts of impurities, dislocations,
and twin systems has shown that, at a concentration of
impurities of 1015–1017 cm–3 and a dislocation density
of 102–104 cm–2, the absence or presence of twin planes
separated at a distance of a few tens of microns has
almost no effect on the mean free paths, which for these
samples are governed by isotopic scattering only. In
high-purity, coarse-grained ZnTe with randomly
arranged twin systems separated by 1–10 µm, however,
scattering from twins is dominant, so the mean free
path of acoustic phonons decreases by more than one
order of magnitude as compared to that in a twin-free or
weakly twinned (albeit more strongly doped) material.
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Abstract—Nonlinear absorption of a molecular crystal in an external magnetic field is considered. The exciton
absorption shape functions under polarized laser radiation and a weak magnetic field, as well as the mechanisms
responsible for the formation of a hysteresis loop in the dependence of the output light intensity on the applied
magnetic field, were studied for the particular case of benzene. It was established that, for the magnetooptical
response of the molecular crystal under study, the formation of bistable loops is inverse in character, which
makes it possible to monitor and control the behavior of bistable elements in optical logics systems with an
external magnetic field at a fixed illumination frequency. © 2005 Pleiades Publishing, Inc.
† Optical bistability (OB) has promising application
potential in the development of optical information
recording and storage systems [1]. This phenomenon is
observed under certain conditions of light propagation
through a medium, and its essence lies in the fact that,
for a fixed value of an input parameter (the intensity of
light or an external magnetic field), there are two stable
states differing in terms of the output signal intensity I.
While the mechanism of OB formation and the medium
in which it can be realized may differ [2], designing an
arbitrary OB system inevitably meets with the common
problem of having to search for a way to control the
development of nonlinear effects and to obtain a hyster-
esis loop at the output of the system with preset param-
eters.

Molecular crystals are specific in that they can sup-
port collective excited states, Frenkel excitons [3]. The
energy of such an excitation in one nondegenerate state
of an isolated molecule breaks up into bands of excited
states (exciton bands), whose number coincides with
the number of molecules in the unit cell of the crystal.
Each of these bands is characterized by a specific direc-
tion of the dipole moment of the exciton transition ini-
tiated by an external light wave of a specific polariza-
tion. Therefore, the absorption spectrum of polarized
light is associated with transitions that involve the
states of only one isolated exciton band [4, 5]. By con-
trast, illumination of a crystal with a beam of natural
(unpolarized) light can give rise to excitation of states
of several bands, which would be accompanied by the
observation of a structured absorption band. Variations
in the parameters of the exciting radiation or in other
external factors should bring about a transformation of
the absorption band shape, which favors the onset of
optical multistability.

† Deceased.
1063-7834/05/4706- $26.00 ©1073
In this paper, we report on a study of the effect
exerted on the exciton absorption band of a molecular
crystal by the polarization of exciting radiation and the
magnetic field H. We consider a molecular crystal
whose unit cell contains two molecules. One nondegen-
erate intramolecular excitation corresponds to two
exciton energy bands, E1(k) and E2(k), in this crystal.
This case can be illustrated by a benzene crystal whose
exciton bands are separated by the resonance (Davy-
dov) splitting ∆ = 40 cm–1 [6]. Assuming a quadratic
dispersion law, the energies of excitonic states in each
band can be written in the form

(1)

where E0 is the bottom of the lower exciton band, L is
its width, ηL is the width of the second band, and 0 <
y = ka/π < 1 is a dimensionless exciton quasimomen-
tum ranging from 0 to 1 (a is the lattice period).

The absorption coefficient K is determined [7] by
the transition probability of the electronic system of the
crystal to an excitonic state:

(2)

where Sα(ω) is the shape function of the absorption
band associated with the transition of the crystal to the
α–e excitonic state and

(3)

is the matrix element of electron–photon coupling; its
magnitude depends on the angle ϕα the light wave
polarization vector e0 makes with the direction of the
corresponding dipole moment dα. The exciton bands
under study can be associated with a pair of different,

E1 E0 Ly
2
, E2+ E0 ∆ ηLy

2
,+ += =

K ω ϕ,( ) 2π Dα
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mutually perpendicular transition dipole moments.
Therefore, we can write

(4)

where ξ is a parameter taking into account the difference
between the values of the dipole moments d1 and d2.

It was shown in [8] that the shape function of the
exciton absorption band of a crystal in a weak external
magnetic field has the form

(5)

where ∆α and Γα are the real and imaginary parts of the
mass operator of the system, respectively; ω = ("ω –

D1 D0 ϕ , D2cos ξD0 ϕ ,sin= =

Sα ω h,( )
Γα ωh( )

ωh Eα0– ∆α ωh( )–[ ] 2 Γα
2 ωh( )+
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Fig. 1. Absorption coefficient versus magnetic field strength
plotted for low exciton densities and the polarization vector
azimuth ϕ = 45°.
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Fig. 2. Magnetooptical bistability of benzene in the exciton
frequency range (ω = 0.06).
PH
E0)/L is a dimensionless quantity characterizing the
excitation frequency w of the exciton state; ωh = ω – h;
h = (δH2)/L; and δ determines the magnetic field–
induced diamagnetic shift of an exciton level.

We analyzed the dependence of the exciton absorp-
tion band on the orientation of the polarization vector of
the incident light wave and an external magnetic field.
With the magnetic field kept fixed, we studied the
polarization properties of the crystal. When the light
polarization vector coincides in direction with the
dipole moment d1 (ϕ = 0), an exciton absorption band
becomes clearly visible at the frequency of the lower
exciton band E1. Its shape has typical short-wavelength
asymmetry. In the case of the perpendicular polariza-
tion (ϕ = π/2), an absorption band is observed at the fre-
quency of the upper exciton band E2, which differs in
terms of both the absorption peak intensity and the
shape of the long-wavelength absorption wing (the
asymmetry changes sign). For the intermediate orienta-
tions of the polarization vector, the exciton band
acquires a structured pattern: the spectral response of
the absorption coefficient contains both components of
the Davydov doublet.

An increase in the magnetic field strength causes
parallel translation of the absorption band to higher
energies. Therefore, the optical properties of the crystal
undergo frequency selection: at a fixed frequency and
arbitrary orientation of the polarization vector of the
light beam (0 < ϕ < π/2), the K(H) dependence exhibits
a structure with a pair of clearly pronounced maxima.
Thus, by properly varying the magnetic field strength,
one can produce an effect equivalent to that of varying
the incident light frequency. Because the exciton level
shifts toward higher energies as the magnetic field
increases, one can fully reconstruct the frequency
dependence of the exciton absorption coefficient K(ω)
of a crystal illuminated in the short-wavelength wing of
the absorption band by properly varying the magnetic
field strength. The results of calculations performed for
crystalline benzene using the characteristic parameter
values (L = 103 cm–1, Ω0 = 120 cm–1, η = 0.7, ξ = 0.83)
are plotted in Fig. 1.

Intense laser pumping favors the formation of a vari-
able-density exciton gas in a crystal. The exciton
absorption coefficient (depending on the external mag-
netic field) and the exciton density N (governed by the
input signal intensity I0) are related by [7]

(6)

By fixing the input parameters (the intensity of the inci-
dent wave, its frequency and polarization) and using the
Bouguer–Lambert law, one can determine the depen-
dence of the output intensity on the external magnetic
field, I(H). The results of calculations performed for
ϕ = 45° are presented in Fig. 2. We can see a finite inter-
val of magnetic field strength ∆H = H↓ – H↑ within
which magnetooptical bistability (MOB) can exist.
Note that optical information can be recorded and read

N I0K ω H ϕ, ,( ).=
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with an MOB-based element by properly varying the
external magnetic field. This is the main feature distin-
guishing the MOB phenomenon from ordinary optical
bistability.

Note that, for the parameters chosen by us in the cal-
culation performed here, the interval within which
MOB exists is very narrow, which implies a fairly high
sensitivity of MOB elements to magnetic field strength.
Furthermore, the field range over which the MOB
exists does not depend on the input signal frequency ω.
Increasing the latter by an amount ∆ω produces a com-
pletely identical MOB hysteresis loop, which is
observed already at different values of the magnetic
field, H ' = H + ∆ω. In addition, the direction of motion
along a MOB hysteresis loop is the reverse of that for
the frequency-driven OB [2]. Thus, we obtain essen-
tially a reversed mechanism of MOB formation, in
which the crystal state is switched from strong to weak
absorption by decreasing the magnetic field. In the case
of ordinary OB, this is achieved by increasing the input
signal frequency, which assumes the availability of a
tunable laser. The MOB-based arrangement is free of
this shortcoming.
PHYSICS OF THE SOLID STATE      Vol. 47      No. 6      200
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Abstract—A model is proposed for ionic and superionic conduction in the α, β, and γ phases of the
Na3Sc2(PO4)3 compound. This model accounts not only for the conducting properties of the aforementioned
phases but also for their structural and kinetic parameters. Within the kinetic approach to the description of the
electrical conduction in the Na3Sc2(PO4)3 compound, it is established that the ionic conduction in the α dielec-
tric phase is governed by the localization and delocalization of ions in deep potential wells and that hoppings
between the wells are caused by the interaction of ions with phonons. The superionic conduction in the β and
γ phases is associated both with the increase in the contribution of the ion delocalization in potential wells due
to a decrease in their depth and with the decrease in the contribution of the ion localization. These contributions
are responsible for the flight mechanism of conduction in the superionic phases. The contribution of each con-
ducting channel to the total conduction is taken into account through the relaxation time of charge carriers. The
estimated relaxation times are close to the values determined from the data on the conducting and dielectric
characteristics of the α, β, and γ phases of the Na3Sc2(PO4)3 compound. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Superionic conductors have found wide application
as elements in systems for data processing and as
power sources. This has stimulated extensive investi-
gations into the physical properties of superionic con-
ductors of different structural types with the aim of
elucidating the mechanism responsible for superionic
conduction [1, 2].

As present, there is a wealth of information on the
structural parameters and the conducting and dielectric
properties of the superionic conductor Na3Sc2(PO4)3
and its analogs Na3M2(PO4)3 (M = Fe, Cr) belonging to
the NASICON family [3–11]. However, the mechanism
of superionic conduction in compounds of this family is
still not clearly understood. In this respect, the search
for adequate tools for studying the nature of this phe-
nomenon is an important problem. The purpose of the
present work was to construct a kinetic model that
would be entirely appropriate for describing both ionic
and superionic conduction in phosphate compounds
with a rhombohedral crystal lattice of the Na3Sc2(PO4)3
type.

2. QUALITATIVE ANALYSIS

The ionic conductivity of the α-Na3Sc2(PO4)3
dielectric phase increases initially by two orders of
1063-7834/05/4706- $26.00 1076
magnitude upon the transition to the β superionic phase
and then, again, by two orders of magnitude upon the
transition to the γ superionic phase [4, 9]. As a result of
two reversible phase transitions at Tα → β = 339 K and
Tβ → γ = 439 K, the conductivity of this compound
reaches an extremely high value of 2.5 × 10–2 (Ω cm)–1

at T = 570 K. The conducting properties and the struc-
tural characteristics of sodium scandium phosphate can
be described within an energy model that accounts for
the specific features of the occupation of small-sized
(A) and large-sized (B) holes by compensating cations
in the crystal lattice. According to Kalinin et al. [11],
the potential relief of a conducting channel revealed for
the {[Sc2(PO4)3]3–}3∞ rhombohedral crystal lattice in
the α, β, and γ phases of the Na3Sc2(PO4)3 compound
can be schematically drawn as profiles of one-dimen-
sional conducting channels. Note that, to a regular
alternation of the A and B holes in the crystal lattice,
there corresponds an alternation of the A shallow and B
deep wells in the potential relief (Fig. 1). The ferroelec-
tric properties [4] and the low conductivity of the α-
Na3Sc2(PO4)3 phase can be associated with the fact that
the {[Sc2(PO4)3]3–}3∞ mobile rhombohedral crystal lat-
tice is characterized by monoclinic distortions respon-
sible for the nonuniform occupation of B holes by
sodium cations with an asymmetric double-well poten-
tial [11]. In this case, sodium cations involved in the
© 2005 Pleiades Publishing, Inc.
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formation of random sodium dipoles can also serve as
charge carriers in the presence of an external electric
field. The most appropriate potential relief of the con-
ducting channel, with due regard for the available data
on the structure and conduction of the α-Na3Sc2(PO4)3

phase [3–11], is depicted in Fig. 1a. It can be seen from
this figure that the condensation of conduction cations
at the bottom of deep potential wells and the high
potential barriers in the conducting channel between
the A and B holes of the crystal lattice provide condi-
tions typical of the hopping conduction mechanism, as
is the case in the majority of dielectric materials.

Within the semicrystalline approach underlying our
analysis of the ionic conduction, the motion of ions is
accompanied by their interaction with phonons. In par-
ticular, this interaction results in the localization of ions
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Fig. 1. Schematic representation of the one-dimensional
model for the potential relief of a conducting channel in
(a) the α ferroelectric phase, (b) the β superionic phase, and
(c) the γ superionic phase of the Na3Sc2(PO4)3 compound.
Closed circles indicate sodium ions that occupy deep poten-
tial wells B and participate in hopping conduction. Open
circles represent sodium ions that occupy shallow potential
wells A and are involved in flight conduction. Solid lines
show channels of hopping conduction. Dashed lines repre-
sent potential barriers corresponding to the channels of
flight conduction. Arrows indicate the mechanical trajecto-
ries of conduction ions.
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in potential wells with their subsequent escape from
these wells. The well depth should be small enough for
an ion absorbing a thermal phonon to escape from the
well. From this standpoint, the conduction in the
α-Na3Sc2(PO4)3 phase can be treated as a migration of
sodium ions along the conducting channel that is
attended by the ion–phonon interaction leading to the
absorption and emission of phonons by ions. Certainly,
not any interaction of an ion with a phonon results in
the localization of this ion in a hole or its escape from
the hole. Nonetheless, it is these processes that are char-
acteristic of the conduction in the α-Na3Sc2(PO4)3
phase [10]. This conduction will be referred to as the
hopping conduction by analogy with the hopping con-
duction of electrons in semiconductors. However, in the
case of electrons acting as charge carriers in semicon-
ductors, hoppings occur through electron tunneling
from one state to another state. The term “hopping con-
duction mechanism” is used to describe the electron
hopping. In the case of ionic conduction, the probabil-
ity of tunneling an ion from one well to another well is
very low and hoppings occur according to the classical
scenario: an ion localized in a well absorbs a phonon
with an energy no less than the well depth, escapes
from the well, and moves freely to a collision, after
which the ion emits a phonon and is localized in
another well. Thus, in our case, the above term is only
a convenient name for a specific ion motion.

The ion–phonon interaction can be illustrated by the
scheme depicted in Fig. 2. Let us assume that a sodium
ion with momentum pB and energy εB, which is located
at the bottom of the B potential well, executes hopping
from this well due to the absorption of a phonon with
momentum q and energy ω, as is shown in Fig. 2a. The

p1B

p'1B

k

k
p'1B

p1B

(a)

(b)

Fig. 2. Schemes illustrating the scattering of sodium ions by
phonons: (a) phonon absorption by a sodium ion and
(b) phonon emission by a sodium ion.
5
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changes in the momentum pB  p and the energy
εB  εp of the interacting ion obey the laws of conser-
vation of momentum and energy. Upon absorption of
the phonon with momentum q and energy ω, we have

(1a)

(1b)

where εB < 0, ω > 0, and εp > 0.
For an ion with energy εp and momentum p to pass

into the B well, the ion must emit a portion of the
energy. In this case, we can write the relationships

, (2a)

(2b)

which describe the process inverse with respect to the
process corresponding to expressions (1a) and (1b).
Relationships similar to expressions (1a), (1b), (2a),
and (2b) can also be written for A wells. We can assume
that there occur the transitions A–A, B–B, and A–B
between the wells. However, it should be taken into
account that not just any interaction with the phonon
will correspond to a process [described by relation-
ships (2a) and (2b)] resulting in localization of the ion
in the A well. In the channel associated with the A wells,
the escape of the ion from one well and its localization
in another well can be separated by many collisions
until one of these collisions with the phonon will coin-
cide with the process corresponding to relationships
(2a) and (2b). Note that the A well with the localized ion
should not necessarily be adjacent to the B well from
which this ion has escaped. Therefore, the localization
and delocalization of ions in A and B wells are random
processes. For a further analysis, it is important to
emphasize that, between two sequential localization
events in the channels associated with the A–A, B–B,
and A–B wells, the ion can experience many collisions
with phonons. It should also be emphasized that ions
involved in the current form a nondegenerate gas.
Moreover, we should note that the number of ions in a
free state due to hoppings initiated by phonons is
important rather than the type of wells between which
the ion executes hoppings.

Unlike the α phase of the Na3Sc2(PO4)3 compound,
the conduction mechanism in the β and γ superionic
phases changes as a result of structural transformations
upon the phase transition and thus provides an anoma-
lously high conductivity. The α  β phase transition
leads to an almost complete disappearance of mono-
clinic distortions of the crystal lattice [3]. This results in
a lowering of the potential relief of the conducting
channel in the β-Na3Sc2(PO4)3 phase, the destruction of
random sodium dipoles, and a more uniform occupa-
tion of A and B holes by sodium cations (Fig. 1b).
According to [4, 6], three-fourths of sodium ions
occupy the B wells and only one-fourth of the ions
occupy the A wells. In Fig. 1b, superstructure distor-

pB q+ p,=

εB ω+ εp,=

p pB q+=

εp εB ω,+=
P

tions in the β-Na3Sc2(PO4)3 phase [3, 5] are represented
by ordered states of sodium cations in B holes of the
crystal lattice. It should be noted that sodium cations
located in the B deep wells, as before, can participate in
the hopping conduction, and a decrease in the barrier
height favors this process. However, the energy depth
of the A shallow wells is close to zero due to the disap-
pearance of monoclinic distortions. As a result, the
probability of transition of these cations to a free state
due to the phonon absorption increases considerably.
Furthermore, since the A wells almost disappear, the
flight length between two sequential localization events
in the B wells increases and a decrease in the depth of
the B wells apparently leads to a decrease in the local-
ization time. Therefore, the conduction in the β phase
in the electric field proceeds through a mechanism that
can be called the flight mechanism. This conducting
channel is absent in the α-Na3Sc2(PO4)3 phase. Most
likely, it is this flight mechanism that is responsible for
the increase in the conductivity by two orders of mag-
nitude upon the α  β phase transition.

A further jump in the conductivity upon transition
from the β phase to the γ-Na3Sc2(PO4)3 phase [9] can be
associated with the complete disappearance of mono-
clinic distortions in the crystal structure [5]. This results
in a new decrease in the potential barrier height and pro-
vides a regular relief of the conducting channel and a
uniform occupation of A and B holes by all sodium cat-
ions (see Fig. 1c). The ratio between the concentrations
of sodium cations occupying the A and B wells in the γ
phase remains identical to that in the β-Na3Sc2(PO4)3

phase. In this case, as in the β-Na3Sc2(PO4)3 phase, the
conduction can proceed according to both the hopping
(for sodium ions in the B wells) and flight (for sodium
ions in the A wells) mechanisms. It should be noted
that, in both cases, the efficiency of the conduction
mechanism in the γ phase substantially increases (i) as
a result of the decrease in the height of the potential bar-
rier between the A and B wells and the disappearance of
ordered states for hopping conduction and (ii) due to
the decrease in the depth of the A wells for flight con-
duction.

Consequently, the conduction in superionic conduc-
tors of this type occurs through the hopping and flight
mechanisms. It is not ruled out that the conduction in
other superionic conductors can proceed by a similar
mechanism. This is confirmed by the data presented in
[1, 2] for the α-AgI compound, according to which the
ratio between the flight time τf and the residence time τs

of silver ions in potential wells is of the order of unity.
However, in order to reveal the contribution of each
mechanism to the total superionic conduction, it is nec-
essary to analyze the kinetic and conduction parame-
ters.
HYSICS OF THE SOLID STATE      Vol. 47      No. 6      2005
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3. THE KINETIC DESCRIPTION

Now, we turn from the aforementioned qualitative
analysis to the kinetic description. As is known, a sys-
tem can be described by kinetic equations when it is a
stochastic system. Undeniably, the system of ions
under investigation is stochastic because, first, it is a
many-particle system and, second, ions of this system
interact with thermal phonons whose distribution obeys
the Bose–Einstein statistics. In an external electric
field, the mean velocity of directed motion of charged
carriers is often considerably lower than their thermal
velocity at reasonable temperatures. However, such a
ratio between the directed and thermal velocities is not
a necessary requirement for the applicability of the sto-
chastic approach, but if this ratio holds true, we are
always dealing with a stochastic system. As was noted
above, the hopping mechanism of ionic conduction fol-
lows the classical scenario, according to which ions
appear to be in wells through collision of free ions with
phonons rather than through tunneling, as is the case
with electrons in semiconductors.

Let us consider the kinetic equation with due regard
for the drift of conduction ions and their collisions with
phonons in the external electric field E; that is,

(3)

where f ≡ f(r, p, t) is the distribution function of con-
duction ions and Ic(p) is the ion–phonon collision inte-
gral. The collision integral will be written under the fol-
lowing assumptions.

(i) Conduction ions with each other are ignored,
because their density is two or three orders of magni-
tude lower than the density of lattice ions.

(ii) It is assumed that conduction ions obey the clas-
sical statistics. This is justified taking into account their
mass.

(iii) The interaction of conduction ions with other
particles of the crystal lattice is considered in terms of
the interaction between ions and phonons that are gov-
erned by quantum statistics.

It is important to note that, as will be shown below,
disregarding the collisions between conduction ions
leads to a linear collision integral. It should also be
noted that the conduction in the given case is provided
by free ions. The collision integral is determined by the
balance of conduction ions in a phase volume element
dpdr in the vicinity of the point (p, r): (1) ions enter this
volume from the A and B wells upon absorption of the
corresponding phonons and upon interaction with
phonons of other phase volumes, and (2) ions leave this
volume upon emission of phonons either to be localized
in the A and B wells or to pass into other phase volumes.

∂f
∂t
-----

p
m
----∂f

∂r
----- eE

∂f
∂p
------+ + Ic p( ),=
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The scheme illustrating this balance is shown in Fig. 3.
The collision integral takes the form

(4)

Here, Z(pA, q; p), Z(pB, q; p), and Z(p', q; p) are the
coefficients proportional to the probabilities of entering
the phase volume element dpdr in the vicinity of the
point (p, r) upon absorption of phonons with momen-
tum q and energy ω by an ion with momentum pA and
energy εA in the A well, an ion with momentum pB and
energy εB in the B well, and a free ion with momentum
p' and energy εp', respectively; W(p; pA, q), W(p; pB, q),
and W(p; p', q) are the probabilities of leaving the phase
volume element dpdr in the vicinity of the point (p, r)
upon emission of phonons with momentum q and
energy ω and localization of an ion with momentum pA

and energy εA in the A well, localization of an ion with
momentum pB and energy εB in the B well, and transi-
tion of an ion to the free state with momentum p' and
energy εp', respectively; NA and NB are the numbers of
A and B wells per unit volume, respectively; and n(q) is

Ic p( ) Z pA q; p,( )NAn q( )δ εA ω εp–+( )[
q pA,
∑=

– W p; pA q,( ) f p( )δ εp εA– ω–( ) ]

+ Z pB q; p,( )NBn q( )δ εB ω εp–+( )[
q pB,
∑
– W p; pB q,( ) f p( )δ εp εB– ω–( ) ]

+ p'Z p' q; p,( )n q( ) f p'( )δ εp' ω εp–+( )d∫[
q

∑
– p'W p; p' q,( ) f p( )δ εp εp'– ω–( )d∫ ] .

A
A

B
B

p'

p'

p, εp

q, ω

q, ω

p, ε
p, ε

q, ω

q, ω

q, ω

q, ω

Fig. 3. Scheme illustrating the ion balance in the phase vol-
ume dpdr.
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the phonon distribution function. This function will be
treated as an equilibrium function by assuming that the
current motion of ions is a weak perturbation of the sys-
tem. In relationship (4), the δ functions imply the con-
servation of energy in the corresponding interaction
processes. Hereafter, for simplicity, we will consider
the stationary, spatially homogeneous case.

In the collision integral (4), the first, third, and fifth
terms are associated with the transfer of the ions to the
phase volume element dpdr in the vicinity of the point
(p, r) due to the phonon absorption from the A well, B
well, and other phase volume elements, respectively.
The second, fourth, and sixth terms describe the escape
of ions due to the emission of phonons from the above
phase volume element to the A well, B well, and other
phase volume elements, respectively. The characteristic
feature of the collision integral (4) is that it is linear
with respect to the ion distribution function f(p). This is
explained by ignoring the direct interaction of conduc-
tion ions with each other. The interaction between con-
duction ions occurs through their interaction with
phonons.

By combining the terms independent of the distribu-
tion function f(p) and proportional to this function in
relationship (4), the collision integral can be rewritten
in the following form:

(5)

where

(6)

(7)

Under equilibrium conditions, the collision integral
is equal to zero; that is,

(8)

Hence, we immediately obtain

(9)

Ic p( ) Qq Rq f p( )–[ ] ,
q

∑=

Qq Z pA q; p,( )NAn q( )δ εA ω εp–+( )
pA

∑=

+ Z pB q; p,( )NBn q( )δ εB ω εp–+( )
pB

∑

+ p'Z p' q; p,( )n q( ) f p'( )δ εp' ω εp–+( ),d∫

Rq W p; pA q,( )δ εp εA– ω–( )
pA

∑=

+ W p; pB q,( )δ εp εB– ω–( )
pB

∑

+ p'W p; p' q,( )δ εp εp'– ω–( ).d∫

Ic p( ) 0.=

Qq f 0 p( )Rq.=
P

Substitution of expression (9) into the collision inte-
gral (5) gives the relationship

(10)

where the quantity

(11)

has the meaning of the momentum relaxation time.
Therefore, the approximation used for the collision
integral (4) (disregarding collisions between conduc-
tion ions), in essence, is the relaxation time approxima-
tion (τ approximation).

In the spatially homogeneous case, the current den-
sity j in a uniform electric field within the τ approxima-
tion is determined by the quantity f1(p) = f(p) – f0(p)
(see, for example, [12]). In this case, we have

(12)

and jx = σE, where the conductivity σ (under the
assumption that the electric field E is aligned with the
x axis) is given by the expression

(13)

Here, ni is the ion concentration, mi is the mass of con-
duction ions, and the relaxation time is described by
formula (11). Since the conductivity is determined by
the relaxation time and the concentration of conduction
ions, we consider in more detail relationship (11) and
the processes responsible for the change in the ion con-
centration ni. We introduce the following designations:

(14)

(15)

(16)

It is evident that the quantities τA, τB, and τp' have the
meaning of the corresponding relaxation times in the
case when there is, for example, only the channel asso-
ciated with the A wells without the other two channels,
etc. Then, as can been easily seen, the total relaxation
time τ is defined by the relationship

(17a)

or

Ic p( )
f p( ) f 0 p( )–

τ
-------------------------------,–=

τ Rq

q

∑ 
 
 

1–

=

f 1 p( ) eEτ
∂ f 0 p( )

∂px

-----------------=

σ
nie

2τ
mi

------------.=

1
τA

----- W p; pA q,( )δ εp εA– ω–( ),
pA

∑=

1
τB

----- W p; pB q,( )δ εp εB– ω–( ),
pB

∑=

1
τp'
----- p'Wd∫ p; p' q,( )δ εp εp'– ω–( ).=

1
τ
--- 1

τA

----- 1
τB

----- 1
τp'
-----+ +=
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(17b)

Hence, it follows that the total relaxation time is gov-
erned by the shortest time among the relaxation times
τA, τB, and τp'. It is clear that all three phases (α, β, and
γ phases) of the Na3Sc2(PO4)3 compound are character-
ized by the hierarchy of the relaxation times τp' < τA <
τB. For the α-Na3Sc2(PO4)3 phase in which the A and B
wells are sufficiently deep, the total relaxation time τ is
determined by the relaxation time τp'. However, the ion
concentration ni is governed only by the conducting
channels associated with the A and B wells. The equa-
tion for the concentration ni of conduction ions can be
written in the form

(18)

where kA, kB, KA, and KB are the rate constants of ion
escape from the A and B wells upon phonon absorption
and the rate constants of ion localization in the A and B
wells upon phonon emission, respectively. These rate
constants are determined by the corresponding proba-
bilities Z and W of the processes. In particular, the rate
constants kA and KA can be represented in the form

Similar relationships can be written for the rate con-
stants kB and KB. The stationary solution of Eq. (18) has
the form

(19)

Hereinafter, this stationary concentration ni0
[defined by expression (19)] rather than the concentra-
tion niwill be used in formula (13) for the conductivity
σ. According to [9], the conductivity of the α phase at
T = 290 K is determined to be σα = 2.6 × 10–5 (Ω cm)–1

(ni0 ≈ 1022 cm–3). Then, the total relaxation time for this
phase can be estimated as follows:

(20)

This estimate is close to the relaxation time τ = 8.5 ×
10–7 s, which was experimentally determined from the
dielectric characteristics ( ) [13]. The total
relaxation time in relationship (20) is close to the relax-
ation time τp'.

τ
τAτBτp'

τAτB τAτp' τBτp'+ +
---------------------------------------------.=

dni

dt
------- kANAnq KAni– kBNBnq KBni,–+=

kA
1
ni

---- pZ pA q; p,( )n q( )δ εA ω εp–+( ),d∫
pA q,
∑=

KA
1
ni

---- pW p; pA q,( ) f q( )δ εp εA– ω–( ).d∫
pA q,
∑=

ni0

kANA kBNB+
KA KB+

-------------------------------.=

τ
σαm

ni0e
2

----------- 2.6 10
7–
 s.×= =

δ ωlog( )tan
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In [9], the conductivity of the β phase at T = 350 K
was found to be σβ = 1.9 × 10–3 (Ω cm)–1. As a result,
the total relaxation time τ in the β phase is given by

(21)

This relaxation time is close to the relaxation time τ =
1.7 × 10–5 s obtained from the dielectric measurements
[13]. Consequently, the relaxation times for the α and β
phases of the Na3Sc2(PO4)3 compound differ by two
orders of magnitude. This difference can be explained
by both the decrease in the contribution of the ion local-
ization in the A wells and the decrease in the depth of
the B wells in the β-Na3Sc2(PO4)3 phase. Therefore, we
can make the inference that the relaxation processes
associated with the interaction in the p' channel are
steady-state processes.

In the β phase, the relaxation processes are con-
trolled by the slower processes in the A and B wells.
The relaxation time τβ is defined as follows:

(22)

Since the hierarchy between the relaxation times τA

and τB is obvious (τA < τB), estimate (21) corresponds to
the relaxation time τA. From the viewpoint of the con-
duction mechanism in the β-Na3Sc2(PO4)3 phase, we
can argue that the flight mechanism is initiated by the
considerable decrease in the depth of the A wells.

In the γ superionic phase of the Na3Sc2(PO4)3 com-
pound, the depth of the A and B wells becomes even
smaller as compared to the β phase, the localization of
sodium cations in the A wells is insignificant, and the
relaxation process associated with the channel of B
wells proceeds when the processes governed by the
other two channels are in equilibrium. At T = 570 K, we
have the conductivity σγ = 2.5 × 10–2 (Ω cm)–1 and the
relaxation time

(23)

Most likely, this is the relaxation time τB. In the γ supe-
rionic phase of the Na3Sc2(PO4)3 compound, the flight
mechanism of conduction becomes even more efficient.

It is evident that a similar mechanism of conduction
should be observed in sodium iron and sodium chro-
mium phosphates, whose composition, properties, and
structure are similar to those of the Na3Sc2(PO4)3 com-
pound.
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Abstract—The mechanism of electrical breakdown in solid dielectrics is analyzed using the results of our
investigations performed in this direction over a period of several decades. It is shown that the electrical break-
down in solid dielectrics involves interrelated prebreakdown processes, such as high-voltage polarization,
defect formation, electron impact excitation and electron impact ionization of luminescence centers and ions in
the host crystal lattice, etc. The electrical breakdown is initiated by electric-field and thermal generation of
defects in the crystal. In turn, the generation of defects leads to the formation of defect regions and channels
that provide an assisted transfer of charge carriers. Electron currents flow (and electrons are accelerated by the
electric field to energies sufficient to induce impact ionization) in these regions of the crystal with a lattice dis-
torted by defects. In this respect, the known approaches to the elaboration of the breakdown theory for alkali
halide and other dielectric crystals on the basis of analyzing the motion and acceleration of electrons in an ideal
crystal structure have appeared to be incorrect. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

There exist three types of breakdown in solid dielec-
trics, namely, thermal, electrical, and electrochemical
breakdown. The processes occurring in the course of
thermal and electrochemical breakdown are known in
sufficient detail, but the same cannot be said of the elec-
trical breakdown in solid dielectrics. Let us briefly
review the main stages of research into the mechanism
of electrical breakdown in solid dielectrics. In [1–3],
the authors considered a number of fundamental theo-
retical problems associated with the electrical break-
down in solid dielectrics. In his monograph [2],
Skanavi pointed out the first three well-justified classi-
cal theories of electrical breakdown in solid dielectrics.
These are the Rogovskiœ theory (breakdown of an ionic
crystal in an electric field), the Ioffe theory (impact ion-
ization by ions), and the Smurov theory (breakdown
due to the detachment of electrons from atoms). How-
ever, these theories led to overestimated breakdown
strengths and, thus, poorly represented the facts. None-
theless, the Ioffe theory was of considerable impor-
tance in the further development of the concept of elec-
trical breakdown in solid dielectrics, because the theory
of impact ionization accounts for an electrical strength-
ening, i.e., an increase in the breakdown strength with
a decrease in the electrode spacing. This effect has been
confirmed by the experimental data on the breakdown
in gases. The first experimental works seemingly
allowed the conclusion that thin layers of solid dielec-
trics undergo electrical strengthening. However, in later
experiments performed by Aleksandrov and colleagues
[4, 5], who more correctly measured the thickness of
the layer subjected to breakdown, this inference was
not confirmed. Quite possibly, as was noted in [5], the
breakdown developed in “weak” regions of the sam-
1063-7834/05/4706- $26.00 ©1083
ples; hence, the electrical strengthening could not be
revealed. The mechanism of electrical breakdown in
solid dielectrics due to electron impact ionization
remained more intriguing for researchers than the
mechanism associated with ion impact ionization,
because the mean free path of ions at a field strength of
106 V cm–1 should be greater than 100 lattice constants,
which is impossible. Moreover, there have been exper-
imental data that confirm the electron hypothesis of the
breakdown mechanism. Valter and Inge [6, 7] revealed
channels of incomplete breakdowns and short break-
down times (10–7 s) in alkali halide crystals, which lent
support to the electron mechanism of electrical break-
down in solid dielectrics. Hippel [8–10] also obtained
the experimental results (current instability prior to
breakdown, copper ions introduced into alkali halide
crystals remain fixed at their sites, development of a
discharge from an anode, etc.), which counted in favor
of the electron mechanism. In the Franz’ opinion [1],
Hippel proved that the electrical breakdown in solid
dielectrics occurs through the mechanism of electron
impact ionization. However, direct evidence for this
mechanism was lacking.

2. DEPENDENCE OF THE ELECTRICAL 
BREAKDOWN IN SOLID DIELECTRICS 

ON THE CATHODE MATERIAL. 
ELECTRICAL STRENGTHENING

In [11], it was established that the breakdown
strength Ebr of rock salt and ebonite at dc and pulsed
voltages does not depend on the material of metal elec-
trodes (lead, potassium, silver) or on the presence of
electronic and ionic surface charges. Hippel and Alger
[12] found that the breakdown strength Ebr of the KBr
 2005 Pleiades Publishing, Inc.
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crystal with gold electrodes is 60% less than the break-
down strength of the KBr crystal with electrolyte elec-
trodes and that the KBr crystal with an electrolyte cath-
ode has a higher value of Ebr. Subsequent investigations
demonstrated that the breakdown strengths Ebr of solid
dielectrics with metal and graphite electrodes are less
than those with electrolyte electrodes. These results
turned out to be very important for the development of
the theory of electrical breakdown in solid dielectrics,
because they made it possible to reveal new features of
this phenomenon.

The experiments performed by Aleksandrov and
colleagues [4, 5] suggested that the electrical break-
down could be conveniently studied with layers located
inside single crystals rather than with thin films. In this
case, coaxial holes in crystal plates should be mechan-
ically drilled (to a small depth). Then, these holes

Fig. 1. Micrograph of an alkali halide crystal layer with a
thin dielectric interlayer ~5 µm thick between holes.
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Fig. 2. Dependences of (1) the breakdown voltage Ubr and
(2) the breakdown strength Ebr on the thickness d of the
NaCl crystal layer.
P

should be deepened with an aqueous solution of the
corresponding salt to a required thickness of the dielec-
tric layer (Fig. 1). In more recent works [13], the layer
thickness was reduced with the use of water–ethanol
solutions. This made it possible to produce dielectric
layers with a smoother surface. The holes thus prepared
either were filled with graphite or an electrolyte or were
used to evaporate metal electrodes. According to [14],
the breakdown strength Ebr of NaCl crystal samples
with 0.3-µm-thick layers (this thickness corresponds to
the resolution of the optical microscope) and with
electrolyte electrodes amounted to approximately
~1010 V m–1 at the breakdown probability ψ = 90%.
This value is considerably higher than the breakdown
strength of thicker layers (d ~ 0.10–0.15 mm) (Fig. 2).

Thus, it was proved that electrical breakdown is
accompanied by electrical strengthening. Moreover, it
can be seen from Fig. 2 that the dependence of the
breakdown voltage on the thickness of the dielectric
layer Ubr = f(d) resembles the Paschen curve in the case
of gas breakdown.

3. ULTRASTRONG ELECTRIC FIELDS

One consequence of the electrical strengthening of
solid dielectrics with a decrease in their thickness is
noteworthy. Thin dielectric layers at electric field
strengths higher than the breakdown strength of thick
layers can exhibit phenomena that cannot be observed
in thicker layers due to the onset of the breakdown.
Investigations have demonstrated that, in micrometer-
sized layers of alkali halide crystals, it is possible to
observe new phenomena, such as the generation of
additional dislocations, impact ionization currents, and
electroluminescence (intrinsic and activator emission).
These (and other) phenomena, which can be discovered
in studying thin layers of solid dielectrics, have been
the subject matter of a new direction in the physics of
dielectrics, namely, the physics of ultrastrong electric
fields. This important problem was discussed in our
recent review [15] and will not be considered in detail
in the present paper. Note only that investigations into
the activator electroluminescence in alkali halide crys-
tals have proved the impact mechanism of excitation of
an activator whose luminescence involves photons with
energies higher than 6 eV. As the activator concentra-
tion increases, the intensity of activator luminescence
initially increases and then decreases. The decrease in
the luminescence intensity can be explained by the fact
that an increase in the activator concentration leads to
an increase in the frequency of scattering collisions of
electrons with activator ions. This results in an increase
in the mean free path of electrons within which they
accumulate the energy necessary for the impact excita-
tion of activator ions. Furthermore, upon deposition of
a semitransparent metallic film on the anode surface,
the emission of hot electrons through the anode into
vacuum is observed in ultrastrong electric fields. These
observations have proved that the electron impact ion-
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ization and the electron impact excitation of both ions
in the host crystal lattice and impurity ions play a deci-
sive role in the prebreakdown processes and the break-
down itself. However, it should be noted that noticeable
emission of hot electrons into vacuum occurs only in
the case where the crystal structure of the dielectrics
undergoes progressively enhanced transformations
upon application of sequential voltage pulses. Similar
transformations in the crystal structure of an alkali
halide dielectric have been observed when the crystal
exhibits electroluminescence. These experimental data
indicate that, under the given conditions, there occur
intensive degradation processes. It is evident that elec-
trons are differently accelerated in regions with
destroyed and undestroyed crystal lattices. In this
respect, it is necessary to investigate the defect forma-
tion in alkali halide crystals in prebreakdown electric
fields and to elucidate how this process affects the elec-
trical conductivity and elementary electro-optical
events.

4. DEFECT FORMATION AND CHARGE 
TRANSFER IN MICROLAYERS OF ALKALI 

HALIDE CRYSTALS

Earlier [16], we revealed that, in a strong (prebreak-
down) electric field, dislocations are generated in
microlayers of alkali halide crystals prior to the onset of
the breakdown. According to [17], the increase in the
number of dislocations depends on the electric field
strength and the exposure time. The effect of the elec-
tric field on the dislocation structure of the crystal has a
threshold nature. The shorter the exposure time, the
higher the field strength required to generate new dislo-
cations. The application of an electric field of the same
strength (alternately, with direct and reversed polarity)
retards the dislocation generation. As the temperature
decreases, the onset of intensive generation of disloca-
tions shifts toward stronger fields. New dislocation etch
pits are predominantly formed in regions where dislo-
cation outcrops have already been observed on the crys-
tal surface even before the application of an electric
field. Therefore, the dislocation generation in response
to an electric field is caused by the multiplication of dis-
locations that exist in the crystal prior to the application
of the electric field.

In [18], it was shown that, in a strong electric field,
new dislocations are generated on the cathode surface
of dielectrics. The nonuniform distribution of disloca-
tions over the bulk of the crystal layer and the absence
of pronounced slip bands after exposure to the electric
field indicate that an important role in the dislocation
generation is played by the electrostatic interaction of
the electric field with charged dislocation jogs and with
the system of point defects. These defects are redistrib-
uted in the layer and soften the cathode region. The dif-
ference between the etch patterns of the cathode and
anode surfaces suggests that the majority of generated
dislocations are half-loops emerging on the cathode
PHYSICS OF THE SOLID STATE      Vol. 47      No. 6      200
surface. In this case, the mechanism of dislocation mul-
tiplication can involve double transverse sliding of
screw dislocation portions with the formation of new
dislocation loops.

Investigations into the fundamental absorption spec-
tra of thin layers of alkali halide crystals before and
after exposure to an electric field have demonstrated
that, in a strong field, the effective band gap of the crys-
tal decreases [19]. This manifests itself in a shift of the
fundamental absorption edge toward the low-energy
range. Most likely, the additional absorption responsi-
ble for this shift is associated with both the optical gen-
eration of excitons and the absorption of light by point
defects in the vicinity of dislocations induced by the
strong electric field.

5. DEFECT FORMATION AND BREAKDOWN
IN MICROLAYERS OF ALKALI HALIDE 

CRYSTALS

In ultrastrong electric fields, the breakdown in alkali
halide crystals is preceded initially by the dislocation
generation (a component of the dark pause) and then by
the electroluminescence. As is known [20], the charge
transfer along dislocation lines occurs more readily.
The vacancy mobility in these channels is considerably
higher than that in other crystal regions. Owing to the
outflow of cation vacancies to the anode (in these chan-
nels), the local field strength in the vicinity of the cath-
ode microapex should increase and stimulate the injec-
tion of electrons into channeling regions.

Visual examinations of the dislocation etch patterns
after exposure of the layer to a pulsed ultrastrong elec-
tric field E > (2.5–3.0) × 108 V m–1, which induces an
electron current and electroluminescence, revealed
regions (spots) with an increased density and larger
sizes of etch pits on the surface of the layer (Fig. 3). The
application of additional pulses of an electric field of
the same strength leads to an increase in the sizes of
these regions; as a result, the regions with an increased
density of etch pits can cover the entire surface of the
layer.

Moreover, visual inspections of the luminescent
spots and the etch patterns revealed that local currents
flow in the regions with an increased density of etch
pits. According to calculations, the local currents
should cause an increase in the temperature and give
rise to mechanical stresses in the vicinity of conducting
channels [21]. Owing to the heat shock mechanism of
defect formation, these effects should bring about an
increase in the diameter of channels with an increased
electrical conductivity.

Electron microscope examinations of the regions
characterized by a local charge transfer in NaCl crystals
revealed the occurrence of thermoplastic phenomena
that lead not only to loosening of the material in the
charge transfer channels but also to a transfer of the
material to the surface (Fig. 4) [21, 22]. The cross sec-
5
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tion of these channels with a modified crystal structure
proves to be several orders of magnitude larger than the
initial cross section. The use of electrolyte electrodes in
the experiments limits the rate of rise and the magni-
tude of through currents in these channels of the dielec-
tric and provides time matching of the electron and hole
currents [21]. As a result, the alkali halide crystal
regions with a modified structure exhibit electrolumi-
nescence due to impact excitation of luminescence cen-
ters by hot electrons. The electroluminescence is
accompanied by impact ionization and is characterized
by a quasi-stationary distribution of the potential
throughout the layer thickness, as well as by a constant
current amplitude and luminescence intensity [21]. A
variation in the voltage within certain limits has no

100 µm

Fig. 3. Dislocation pattern on the surface of an alkali halide
crystal layer after the onset of electroluminescence. The
spot length is approximately equal to 100 µm.

Fig. 4. Microdamages on the anode surface of the NaCl
crystal layer in the vicinity of the charge transfer channel.
P

effect on this state. The electroluminescence at dc volt-
ages and small overvoltages lasts for several tens of
milliseconds at room temperature and for a few seconds
at –30°C. At ac voltages and low temperatures, the elec-
troluminescence can last for a few hours.

It should be noted that electroluminescence is not
observed in alkali halide crystals with metal electrodes,
because the stage of decrease in the breakdown strength
during the development of the electrical breakdown
immediately gives way to the stage of fracture of
dielectrics. For electrolyte electrodes, the electric dis-
charge attended by the electroluminescence can be
observed over a long time. This situation is similar to
electric discharges in gases. High-resistance electrolyte
electrodes play a stabilizing role in the development of
electrical breakdown due to the voltage redistribution
in local regions of the layer with an increase in the elec-
tric current.

6. CONCLUSIONS

Thus, it has been established that the motion of
charged defects and the defect formation precede and
stimulate all the basic prebreakdown processes occur-
ring in microlayers of alkali halide crystals. The electri-
cal breakdown is caused by the electron impact ioniza-
tion. However, electron currents accompanied by the
impact ionization flow in local regions of the dielectric
layer in which the electric field generates linear and
point defects. In turn, local passage of the electron cur-
rent brings about an enhanced local generation of
defects due to the thermoplastic phenomena. This stim-
ulates further development of the electrical breakdown.

Therefore, the electrical breakdown observed in
microlayers of alkali halide crystals is associated with
the electron impact ionization. This breakdown is char-
acterized by a number of specific features.

(1) The discharge occurs in channels with a loose
crystal structure due to the field-induced generation of
linear and point defects.

(2) In samples with electrolyte electrodes, the dis-
charge can last for a long time (the stage of catastrophic
fracture of dielectrics is absent). As a result, the devel-
opment of the electrical breakdown in alkali halide
crystals resembles the development of a gas discharge.

We believe that, in thick layers of alkali halide crys-
tals and other dielectrics with metal electrodes, all the
processes revealed in the study of thin layers of alkali
halide crystals occur simultaneously and stimulate each
other. As a consequence, the fracture of the dielectric
occurs at the final stage of the electrical breakdown.

It is obvious that the energy spectrum of electron–
hole states of the channels providing flow of the elec-
tron current accompanied by impact ionization and the
energy spectrum of the crystal prior to exposure to an
electric field should differ significantly due to the very
high concentration of linear and point defects, which
increases with an increase in the electric-field strength.
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Therefore, the known approaches to the construction of
the breakdown theory for alkali halide crystals on the
basis of analyzing the motion and acceleration of elec-
trons in an ideal crystal structure cannot offer satisfac-
tory results.
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Abstract—The equilibrium concentration of complexes composed of two B atoms is calculated for an A–B
diluted substitutional solid solution with a body-centered cubic lattice. The conditions under which the fraction
of the complexes becomes significant are determined. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

It is generally believed that, in A–B diluted substitu-
tional solid solutions with a low concentration of one of
the components, for example, B, the impurity atoms are
randomly distributed over the lattice. However, by anal-
ogy with interstitial solid solutions that are character-
ized by the formation of complexes, i.e., aggregates
consisting of several interstitial atoms [1], it can be
assumed that similar complexes exist in substitutional
solid solutions.

As a rule, the possibility of forming complexes is
estimated by calculating the energies of states for indi-
vidual atoms and atomic complexes with inclusion of
the elastic lattice distortions arising from the difference
between the radii of atoms of different types; i.e., the
complex formation is analyzed from the viewpoint of
the energy minimum [1]. In this paper, it will be shown
that, even without regard for geometrical distortions of
the lattice, complexes in substitutional solid solutions
under specific conditions are thermodynamically equi-
librium aggregates.

2. THEORETICAL ANALYSIS

We consider an A–B substitutional solid solution
with a body-centered cubic lattice that involves the
components A and B at atomic concentrations cA and
cB, respectively. (In what follows, cα will stand for the
atomic concentration of the component α.) It is
assumed that cB ! cA. Let n1 be the number of B atoms
randomly distributed over the crystal and n2 be the
number of complexes formed by B atoms in the solid
solution. In this case, the free energy of the solid solu-
tion can be represented in the form

(1)

where Econf is the configurational energy of the system,
and W1 and W2 are the thermodynamic probabilities of
the distributions of individual atoms and atomic com-
plexes in the crystal, respectively. Under the assump-

F Econf kT W1W2,ln–=
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tion that the complexes are noncrossing, the thermody-
namic probabilities can be written as

(2)

(3)

where N = NA + NB, Nα is the total number of atoms of
the α type in the solid solution, and z is the coordination
number of the lattice. It is obvious that W2 is the number
of possible variants of the distribution of n2 complexes
over zN/2 nearest neighbor pairs in the solid solution.

Let vαβ be the energy of interaction between α–β
nearest neighbor pairs with the minus sign. Then, the
configurational energy of the system Econf can be writ-
ten in the form

(4)

Here, we introduced the following designations:

(5)

The quantities n1 and n2 are taken as thermodynamic
variables of the problem. These quantities are related
by the expression

(6)

W1

NA n1 2 z 1–( )n2–+( )!
n1! NA 2 z 1–( )n2–( )!

--------------------------------------------------------,=

W2

z
2
---N 

  !

n1!
z
2
---N n2– 

  !

---------------------------------,=

Econf v BB 2 z 1–( )v AB+( )n2–=

– zN
2

------ n2– 2 z 1–( )n2– 
 

× v AAcA
2 v BBcB

2
2v ABcAcB+ +( ).

cA
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cB

n1

NA n1 2 z 1–( )n2–+
-------------------------------------------------.=

n1 2n2+ NB.=
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The equilibrium equations can be derived from the
conditions of the extremum of the function Φ = F +
λ(n1 + 2n2 – NB) with respect to the variables n1 and n2
(where λ is the Lagrange factor). These equations have
the form

(7)

(8)

In order to solve Eqs. (7) and (8), we take into

account the conditions  = c1 ! 1 and  = c2 ! 1.

Then, in expressions (7) and (8), we discard all (except
logarithmic) terms containing c1 and c2. As a result, we
have

(9)

(10)

where x = exp(–λ/kT). It follows from relationship (6)
that x can be found from the equation

(11)

where  = nB/NA. As a consequence, we obtain

(12)

(13)
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By using expressions (9), (10), (12), and (13), we find

(14)

(15)

Here, w = 2vAB – vAA – vBB is the energy of ordering of
the solid solution.

Let us now consider the specific case of ordering
alloys (w > 0) in the limit of high (w/kT ! 1) and low
(w/kT @ 1) temperatures. Since  is a small quantity,
from expressions (14) and (15), we obtain identical
asymptotic representations:

(16)

For decomposing alloys (w < 0), the situation is more
complicated. In the high-temperature range, the atomic
concentrations c1 and c2 are given by formulas (16). At
low temperatures, these alloys contain component B at
an atomic concentration exp(–w/kT) @ 1. Hence, the
atomic concentrations c1 and c2 can be written as

(17)

Since  = cB(1 – cB), from relationships (16) and (17),
we find that, in solid solutions with an ordering energy
w > 0, the number of B–B complexes is small over the
entire temperature range. By contrast, in solid solutions
with an ordering energy w < 0, the number of com-
plexes is small at high temperatures and tends to NB/2
at T  0; i.e., virtually all B atoms are joined into
pairs. From the physical standpoint, the nature of this
effect is quite clear. In solid solutions with an ordering
energy w > 0, there is a tendency toward ordering; i.e.,
the A atoms tend to surround the B atoms. In solid solu-
tions with an ordering energy w < 0, there is a tendency
toward decomposition; as a consequence, every atom
tends to surround itself by like atoms.

From expressions (9) and (10), we obtain one
more relationship between the atomic concentrations
c1 and c2:

(18)

It can easily be seen from relationship (18) that, since
c1 ≤ cB), the concentration of complexes in solid solu-
tions with an ordering energy w < 0 can be significant.
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The formation of complexes in alloys can easily be
revealed by measuring the residual resistance ρ0, i.e.,
the resistance caused by elastic scattering of conduc-
tion electrons at high and low temperatures. In the
approximation of weak scattering [2, 3], we have

(19)

where  is the matrix element of the potential of the
α atom (α = A, B) between the electronic states k and
k', and

The left-hand side of relationship (19) can be repre-
sented in the form

(20)

The symbol 〈…〉  denotes the configurational averaging.
By separating out the terms with n = n' and n ≠ n' in

relationship (20) and ignoring the correlation in the
solid solution, we obtain the following expressions for
the alloy containing only individual B atoms:

(21)
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From these expressions, we find

(23)

where A is a constant.

If the B atoms in the solid solution are joined into
complexes, the means of the terms involved in relation-
ship (23) are nonzero. The sum over n and n' (n ≠ n')
can be written as a sum over n and ri (i = 1, 2, …),
where ri stands for the radius vectors of the sites of the
ith coordination sphere with respect to the atom with
radius vector n. As a result, we obtain

(24)

Actually, if one of the sites with radius vector n is occu-
pied by the B atom, one of the sites with radius vector
n + r1 is also occupied by the B atom. This demon-
strates the validity of expression (24). As can easily be
seen, the sums over n and ri (i = 1, 2, …) become zero.
It follows from here that, in the case where all B atoms
are joined into complexes, we have

(25)

3. CONCLUSIONS

Thus, in solid solutions where complexes are not
formed, the residual resistance r0 has the same value at
high and low temperatures. In solid solutions contain-
ing B–B complexes, the low-temperature residual resis-
tance proves to be higher than the high-temperature
resistance.
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Abstract—Based on the hard-sphere model, the spatial correlations are considered in a system of impurities
with variable valency. In a zeroth approximation, the configurational entropy of the spatially correlated system
of impurity ions is identified with the configurational entropy of a system of hard spheres. The electron mobility
limited by scattering on the correlated system of impurity ions at finite temperatures is found. The theory devel-
oped explains experimentally observed anomalies of the carrier mobility in an iron-doped HgSe gapless semi-
conductor. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The hard-sphere model with a reasonable choice of
the fitting parameters allows quantitative description of
the correlation effects in liquids and gases. However,
there is a with the applicability of the model for calcu-
lating the correlation effects in systems that are not sim-
ilar to a system of hard spheres. In particular, this con-
cerns strongly correlated systems with Coulomb inter-
action.

One of these systems (an iron-doped HgSe com-
pound) was intensively studied experimentally over the
past decade, and the experimental results were inter-
preted in terms of the hard-sphere model. These com-
pounds are a typical example of systems containing an
impurity with variable valency (iron), with iron form-
ing a resonance level in the conduction band. We recall
that, in the HgSe matrix, iron atoms can be either in the
Fe+2 state (neutral with respect to the lattice) or in the
Fe+3 state (charged with respect to the lattice). At an
iron concentration nFe equal to a certain critical concen-
tration nc, the electron Fermi level coincides with the
resonance level of iron and is pinned at it. Therefore, at
nFe < nc, all iron atoms are ionized; for a sufficiently
high doping level (nFe > nc), the concentration of iron

ions is  = nc. For a high doping level, the iron ions
appear to be spatially correlated, since in this case the
iron atoms are ionized selectively. Spatial correlation of
iron ions has been described in terms of the hard-sphere
model (see references in [1]); the minimum distance rc

between the ions was taken to be the diameter of a
sphere. The concentration of hard spheres was identi-
fied with the concentration of iron ions. In the hard-
sphere model, the sphere diameter was determined
experimentally. In the theory of liquids, the radius of a
sphere is identified with the range of the potential of an
atom or a molecule and can be determined in scattering
experiments. For HgSe : Fe, the authors of [2] sug-

nFe
+
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gested determining rc from the measured concentra-
tion of iron ions. In [2], an equation was postulated
relating the parameter rc to the iron concentration in
the HgSe : Fe compound. In [3–5], we derived an equa-
tion relating the parameter rc to the iron concentration
by using the methods of statistical physics. We started
from a heuristic statement that, in equilibrium, Fe+3

iron ions (charged with respect to the lattice) tend to be
located as far as possible from each other. It was also
assumed that the iron atoms are distributed randomly.

In contrast to liquids, a correlated system of impu-
rity ions cannot be identified with a system of hard
spheres even in a zeroth approximation. Indeed, in the
limit rc  0, a system of hard spheres is an ideal gas
of point particles. In particular, the compressibility of
this system is equal to the compressibility of an ideal
gas. In the limit rc  0 (nFe  nc), the iron ions are
completely ionized and frozen into the crystal. In this
limit, the compressibility of the system of ions is equal
to that of the crystal. Thus, the system of impurity ions
is less similar to a system of hard spheres than is a liq-
uid. Therefore, a problem arises as to how to correctly
describe a system of impurity ions using the hard-
sphere model.

Spatial ordering of impurity ions is accompanied by
a change in the entropy of the system. The entropy
related to spatial correlations in the system of ions is
called the configurational entropy. We assume that the
configurational entropy of the system of impurity ions
(characterized by the minimum distance rc between the
ions) is similar to the configurational entropy of a sys-
tem of hard spheres of diameter rc. Therefore, in our
model in a zeroth approximation, the configurational
entropy of the system of impurity ions is identified with
that of a system of hard spheres. We apply our model to
describe correlation effects in HgSe : Fe compounds.
We derive a relation between the sphere diameter rc and
the concentration of iron atoms starting from the well-
© 2005 Pleiades Publishing, Inc.
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known equation of state for a system of hard spheres.
Based on this relation for rc, we consider the effect of
shallow donors on the mobility of electrons scattered
by a correlated distribution of iron ions. Furthermore,
we study the effect of correlations in the relative posi-
tions of Fe+2 and Fe+3 ions on the electron mobility and
consider the effect of shallow donors on the tempera-
ture dependence of the electron mobility in HgSe : Fe.

2. EQUATION FOR THE HARD-SPHERE 
DIAMETER rc

In HgSe : Fe with an iron concentration exceeding

the critical value, the concentration of iron ions  is
fixed and equal to the critical concentration nc. Thus,
the ionized iron atoms are located at distances larger
than rc from each other. The configuration of iron ions
can be described by the pair distribution function. We
identify this function with the pair correlation function
of a system of hard spheres whose concentration and
diameter are nc and rc, respectively [2]. To determine rc,
we write [3]

 (1)

where W(rc, ) is the probability of finding an iron
atom at a distance greater than rc from the nearest
neighbor iron ion. In [3], we estimated this probability
starting from a heuristic statement that, in equilibrium,
iron ions tend to be located as far as possible from each
other. To find this probability, we use the standard
methods of statistical physics. It can easily be shown

that the probability (rc, ) of finding a configura-
tion of the system of iron ions corresponding to a fixed
value of the parameter rc is given by [6]

 (2)

where ∆S(rc, ) is the change in the entropy of the
system of ions produced by a change in the minimum
distance between the ions from zero to a fixed value rc.

The quantity ∆S(rc, ) is the configurational entropy
of the system of ions. The configurational entropy per

iron ion is S0(rc, ) = ∆S(rc, )/ , and the expres-

sion W(rc, ) = exp[S0(rc, )/kB] can be treated as
the probability of finding an iron atom at a distance
greater than rc from the nearest neighbor iron ion.
Therefore, we can write an equation for finding the
parameter rc as

 (3)

In our theory, the configurational entropy of the system

of iron ions S0(rc, ) is identified with that of a sys-
tem of hard spheres. This quantity depends only on the
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PH
packing factor η (η = ). We denote the config-
urational entropy of a system of spheres by S0(η). Then,
the equation for the parameter rc assumes the form

 (4)

Thus, the problem of calculating the parameter rc in a
system of ions is reduced to the problem of calculating
the configurational entropy of a system of spheres.

The configurational entropy of a system of spheres
can be calculated using the equation of state of the sys-
tem. In general, the equation of state of a system of
spheres is

 (5)

Here,  is the number of spheres occupying the vol-
ume V (we recall that the number of spheres is equal to
the number of Fe+3 ions charged with respect to the lat-
tice). The function Φ(η)) describes the deviation of the
system of spheres from an ideal gas. In the limit η 
0, we have Φ(η)  0 and Eq. (5) reduces to the equa-
tion for an ideal gas. In thermodynamics, the pressure
P in the system can be expressed in terms of the deriv-
atives of the free energy F of the system as [6]

 (6)

Integrating Eq. (6) along an isotherm under condi-
tion (5), we obtain a general expression for the free
energy of the system of spheres,

 (7)

The entropy of the system of spheres can be calcu-
lated using the formula

 (8)

In order to separate the configurational entropy ∆S(η)
from the expression for the total entropy of the system
of spheres, we determine the integration constant C
from the condition that ∆S(η)  0 as η  0. The
function Φ(η) in equation of state (5) can be expressed
in terms of the virial coefficients [7]

 (9)

Using formulas (7)–(9) and the condition from
which the integration constant C is determined, we find
the configurational entropy per sphere to be

 (10)
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Substituting Eq. (10) into Eq. (4), we obtain an equa-
tion relating the minimum distance rc between Fe+3 ions
to the concentration of iron atoms nFe and the concen-
tration  of Fe+3 ions in the HgSe: Fe compound:

 (11)

The first five virial coefficients were calculated using
numerical methods [7]: b2 = 4, b3 = 10, b4 = 18.36, b5 =
28.26, and b6 = 39.53. For sufficiently strongly doped

HgSe : Fe (nFe > nc), the condition  = nc is satisfied.
The critical iron concentration is nc = 4.5 × 1018 cm–3 [1].

A numerical solution to Eq. (11) is shown in Fig. 1,
where the packing factor η is plotted as a function of

the parameter nFe/ . Curve 1 corresponds to Eq. (9)
with only the virial coefficient b2 retained; curve 2 cor-
responds to Eq. (9) with two virial coefficients, b2 and
b3; and curve 5 was calculated taking into account five
virial coefficients. It follows from Fig. 1 that the solu-
tion to Eq. (11) is rather sensitive to the accuracy of the
virial expansion and we need to take into account a suf-
ficiently large number of virial coefficients. To calcu-
late the mobility of electrons scattered by a correlated
distribution of iron ions within our model, we need to
know the pair correlation function for the system of
spheres. Since computations of the virial expansions of
the pair correlation function are extremely labor con-
suming, we use interpolation formulas. For this pur-
pose, we apply the Percus–Yevick method [7], which is
widely used for describing a system of spheres. The

pair correlation function (r, η, ) describing the
distribution of spheres in the Percus–Yevick approxi-
mation enables us to calculate the equation of state for
a system of spheres. Calculations can be performed in
two ways. Starting with the pressure P, the equation of
state can be found to be [7]

 (12)

Integrating Eq. (6) with the new condition (12), we
obtain an approximate expression for the configura-

tional entropy (η):

 (13)

Based on the isothermal compressibility α, the equa-
tion of state has the form [7]

 (14)
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Integrating Eq. (6) with condition (14), we obtain
another approximate expression for the configurational

entropy (η):

 (15)

Thermodynamically, both methods used to derive the
equations of state are equivalent. The difference
between the equations of state for spheres [Eqs. (12)
and (14)] derived using the Percus–Yevick approxima-
tion for the correlation function indicates that this
approximation is incorrect. Nevertheless, this method
is widely used in the theory of liquids to derive simple
interpolation formulas that make quantitative descrip-
tion possible. We also use the Percus–Yevick method in
our calculations. Substituting Eqs. (13) and (15) into
(4), we find the dependence of the parameter η on the
iron concentration in the Percus–Yevick approxima-
tion. The results are shown in Fig. 2. Curve a is calcu-

lated using the configurational entropy (η), and
curve b is calculated using the configurational entropy

(η). Curve c is calculated using virial expansion (10)
and can be considered a reference curve. In Fig. 2, we
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Fig. 1. Dependence of the packing factor η on the iron con-

centration (nFe is the concentration of iron atoms,  is the

concentration of Fe+3 ions). Curves 1–5 correspond to the
virial expansion in which the first several terms (from one
to five, respectively) are kept.
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see that, in a wide range of iron concentrations (1 <

nFe/  < 50), curve a is a good approximation to curve
c obtained using a regular virial expansion procedure.
For this reason, we use Eqs. (4) and (15) to calculate the
parameter rc at a given iron concentration nFe.

Figure 2 shows the results of previous calculations

of the packing factor η = . In one of the first
studies of the correlations in the positions of iron ions
in HgSe : Fe, the parameter rc was assumed to satisfy
the equation [2]

 

where the correlation volume is Vc = . The pack-
ing factor η calculated from this equation as a function
of the iron concentration is shown in Fig. 2 (curve 1).
We see that this curve is close to the reference curve c
only in a rather narrow range of iron concentrations

(1 < nFe/  <1.5). The authors of [2] used this equa-
tion to interpret the experimental data for HgSe : Fe in
terms of the weak-correlation model and qualitatively
described the anomalies in the electron mobility with-
out any additional assumptions.
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Fig. 2. Dependence of the packing factor η on the iron con-
centration calculated in (1) [2], (2) [8], and (3) [3]; curve c is
calculated using the virial expansion. The dashed curves a
and b are calculated within the Percus–Yevick approxima-
tion starting with the compressibility and pressure, respec-
tively.
PH
The authors of [8] analyzed the experimental data
for HgSe : Fe using the strong-correlation model.
Accordingly, they modified the equation from [2] by
introducing a fitting parameter into it and wrote the
equation in the form

 

where ηL = 0.45 (η = ). The maximum value of

the packing factor is ηL (in the limit nFe/   ∞, we
have η  ηL). At ηL = 1/8, this equation coincides with
the corresponding equation in [2]. The solution to the
equation postulated in [8] is plotted in Fig. 2 (curve 2). It
can be seen that the parameter η for curve 2 is several
times greater than that for curve c at relatively low iron

concentrations, namely, in the range 1 < nFe/  < 4,
where the anomalies in electron mobility were
observed. Therefore, in order to attain agreement
between the predictions from the strong-correlation
model and the experimental data, additional assump-
tions and additional fitting parameters were used in [8].

In our study [3], the equations for η were obtained
using the methods of mathematical statistics. We
started from the heuristic statement that, in equilibrium,
iron ions tend to be located as far as possible from each
other:

 (16)

Here, α = 5.92 and the packing factor for the fcc struc-
ture is η0 = 0.74. The solution to this equation is plotted
in Fig. 2 (curve 3). We see that curve 3 lies somewhat
lower than the reference curve c. Therefore, the values
of the mobility calculated by us in [3–5] on the basis of
curve 3 at the maximum are 15 to 20% lower than the
experimental values. Thus, using this intuitively clear
heuristic statement, we were able to give a rough quan-
titative description of the effects of correlation in the
positions of scatterers on the electron mobility in
HgSe : Fe. The entropy approach suggested in this
study allows one to give a quantitative description of
spatial correlations in the system of impurity ions using
regular methods.

3. ELECTRON MOBILITY AT T = 0

In HgSe : Fe at low temperatures, the main contribu-
tion to the electron mobility is from scattering by iron
atoms and shallow donor centers. In order of magnitude,
the concentration of shallow donors nD ~ 1018 cm–3 is
comparable to the critical iron concentration nc = 4.5 ×
1018 cm–3. With inclusion of shallow donors, the system
of scatterers consists of three types of impurity centers:
Fe+3 ions, Fe+2 atoms (neutral with respect to the lat-
tice), and shallow donors. The mobility controlled by
electron scattering on these impurity centers is [4]

η
ηL

------ 1
η
ηL

------
nFe

nFe
+

-------– 
  ,exp–=

VcnFe
+

/8

nFe
+

nFe
+

nFe
+

nFe 1 η /η0–( )α
.=
YSICS OF THE SOLID STATE      Vol. 47      No. 6      2005



SIMULATION OF SPATIAL CORRELATIONS OF IMPURITY IONS 1095
(17)

Here, V0(q) is the Fourier transform of the scattering
potential due to neutral impurity centers, V+(q) is the
Fourier transform of the screened Coulomb potential
(for impurity centers charged with respect to the lat-

tice),  is the Fourier transform of the partial corre-
lation function including the correlations in relative

positions of the iron ions, and  is the Fourier trans-
form of the correlation function including the correla-
tions in relative positions of the iron ions and shallow
donors (all shallow donors are assumed to be ionized).
The contribution from the interference terms, which
take into account correlations between the positions of
Fe+3 ions and “neutral” Fe+2 atoms, is proportional to
the product V0(q) (q) [4].

We recall that Eq. (17) for the electron mobility was
obtained in [4] using the Boltzmann transport equation
in the Born approximation with regard to the screening
of the Coulomb potential of impurity ions described
within the framework of the linear Thomas–Fermi the-
ory. These approximations are valid if certain parameters
are small. For HgSe : Fe, these parameters are (in order
of magnitude) "/τεF ≈ 3 × 10–3 (for the applicability of
the Boltzmann equation), (kFaB)–1 ≈ 0.1 (for the applica-
bility of the Born approximation in the case of Coulomb
scattering potential), and e2/κrεF ≈ 5 × 10–2 (for the appli-
cability of the Thomas–Fermi theory). Here, r is the aver-
age distance between electrons, aB is the Bohr radius,
and τ is the electron momentum relaxation time. We
made estimations using the parameter values character-
istic of HgSe : Fe, namely, the electron concentration
nc = 4.5 × 1018 cm–3, the Fermi energy εF = 210 meV, the
electron mass m/m0 = 0.07, the permittivity κ = 20, and
the electron mobility µ = 4 × 104 cm2/V s. The estima-
tions show that the Born approximation, which makes
it possible to obtain analytical expression (17) for the
mobility, is actually the “bottleneck” for our calcula-
tions and provides a calculation accuracy s of about
10%. Therefore, to avoid an obviously excessive accu-
racy, we should estimate the contributions from all
terms in Eq. (17) to the mobility. The corresponding
calculations, which are discussed in detail in what fol-
lows, show that the terms describing the correlations
between the ions (neutral and charged with respect to
the lattice) have a contribution of several percent to the
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mobility, which obviously provides an excessive accu-
racy. Therefore, in order to take into account the effect
of spatial correlation of iron ions on the electron mobil-
ity in HgSe : Fe, it suffices to use formula (17a) for the
mobility (see below), which does not contain terms of
the type V0(q) (q) describing the correlations
between the relative positions of neutral and charged
scatterers:

 (17a)

At sufficiently high concentrations of shallow donors, it
becomes important that, because of Coulomb repul-
sion, an iron ion cannot approach a shallow donor ion
to a distance less than a certain length . To allow for
this effect in Eq. (11), the concentration of iron atoms
nFe is replaced by the effective concentration  =

nFe(1 – ). Thus, instead of Eq. (11), we write [4]

 (18)

where  =  is determined from the equation

 (19)

We note that in [4], we used the following equation for
the parameter η obtained from heuristic assumptions:

 (20)

Here, α = 5.92 and the packing factor of the fcc struc-
ture is η0 = 0.74. When calculating the correlation func-

tion , the Percus–Yevick formula [7] was used, and

when calculating the correlation function  we made
use of an expression obtained by substituting the virial
expansion to lowest order in η:

 (21)

This approximation it is quite sufficient, since the cor-
relations between the positions of iron ions with respect
to shallow donors frozen into the lattice are much
weaker than the correlations between the relative posi-
tions of mobile iron ions. The potential V0(q) of scatter-
ing by a neutral atom was estimated using the formula
for electron mobility in the case of scattering by neutral
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centers µ = eτ0/m (formula (17) with nD = 0,  = 0).
When calculating the mobility, we set V0(q) = const and
identified the experimental value of the electron mobil-
ity (µ = 2.24 × 104 cm2/Vs in HgSe : Fe with an iron con-
centration nFe = 5.8 × 1020 cm–3 [9]) with µ0, since at such
iron concentrations the concentration of iron atoms in the
Fe+2 state (neutral with respect to the lattice) is two
orders of magnitude greater than the concentration of
Fe+3 atoms charged with respect to the lattice.

Based on Eqs. (17)–(20), we calculated the electron

mobility (we recall that the correlation function  was
calculated from the Percus–Yevick formula [7]) using
the following parameter values: nc = 4.5 × 1018 cm–3, εF =
210 meV, electron mass m/m0 = 0.07, and permittivity
of HgSe : Fe, κ = 20.

The results are shown in Figs. 3 and 4. Figure 3 pre-
sents the calculated electron mobility µ as a function of
the concentration nFe of iron atoms in pure HgSe : Fe
(nD = 0). All curves have a characteristic bell-shaped
form. At low iron concentrations, the main contribution
is from scattering by Fe+3 ions charged with respect to
the lattice. As the iron concentration increases, the sys-
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nFe × 10–18, cm–3

b
c
d

Fig. 3. Calculated electron mobility µ as a function of the
iron concentration in pure HgSe : Fe (nD = 0). Experimental
points are taken from (a) [10], (b) [9], (c) [11], and (d) [12].
Curve 2 does not include correlations in the relative posi-
tions of the Fe+2 and Fe+3 ions. The dashed curve takes into
account the correlations in the relative positions of the Fe+2

and Fe+3 ions. Curve 1 was calculated in [4].
PH
tem of scatterers becomes more ordered and the elec-
tron mobility grows. For high iron concentrations, the
scattering by Fe+2 ions, neutral with respect to the lat-
tice, is dominant. The concentration of these scatterers
increases with iron concentration, thereby decreasing
the electron mobility. Curve 1 represents the calcula-
tions performed in [4], where the parameter η was cal-
culated from Eq. (20). In [4], the interference contribu-
tion from correlations in relative positions of Fe+3 and
Fe+2 ions was disregarded. Therefore, in Eq. (17) for τ,
we disregarded the terms proportional to the product

V+(q) (q). In Fig. 3, we see that the mobility calcu-
lated in [4] is smaller than the experimental values by
20–25%. Curve 2 in Fig. 3 represents the calculations
in which the parameter η was determined from
Eqs. (18) and (19). As before, we disregarded the con-
tribution from correlations in the relative positions of
Fe+3 and Fe+2 ions to the mobility. To a good accuracy,
the experimental points fall on calculated curve 2. The
results of the calculations with regard to the correla-
tions in the relative positions of Fe+3 and Fe+2 ions are
shown in Fig. 3 by dashed curves. In Fig. 3, we see that
a more complete account of the correlations in the posi-
tions of scatterers increases the mobility only slightly
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Fig. 4. Electron mobility µ calculated as a function of the iron
concentration in HgSe : Fe for various values of the concen-
tration of shallow donors nD (1018 cm–3): (1) 0, (2) 1, (3) 1.5,
(4) 2, (5) 2.5, and (6) 3. The experimental points are the
same as those in Fig. 3.
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(by several percent) near the mobility maximum in a
small interval of iron concentrations. These results jus-
tify the above replacement of formula (17) for the
mobility by a simpler formula (17a), which was
obtained from formula (17) by omitting the terms pro-

portional to the factor V+(q) (q) and taking into
account the correlations in the relative positions of iron
ions, both neutral and charged with respect to the lat-
tice.

Let us compare the results of our calculations with
those obtained in [13], where the effect of correlations
in the positions of iron ions on the electron mobility in
HgSe : Fe was considered. The latter calculations were
based on two assumptions that were also made in a pre-
vious study [8]. The authors of [8] postulated an equa-
tion for the mobility that takes into account the effect of
correlations in the positions of the scatterers. In an
expression for the electron mobility [8, Eq. (3)], the
term describing the correlations in the relative positions
of Fe+3 and Fe+2 ions was assumed to have the form
2[( )1/2/NFe]|V+(q)V0(q)|S+0(q). For randomly

distributed scatterers (with the structure factor S+0(q) =
1), this interference term assumes the maximum value,
whereas the standard expression describing the inter-
ference [14] in this case is equal to zero. Thus, the
authors of [13] made an unphysical assumption that the
introduction of additional correlations in the positions
of Fe+3 and Fe+2 scatterers increases the scattering cross
section and, therefore, decreases the electron mobility.
When calculating the interference effects in the hard-
sphere model, the authors of [13] determined the pack-
ing factor η from the equation postulated in [8]. This
equation overestimates the parameter η (curve 2 in
Fig. 2). Therefore, according to [13], the electron
mobility controlled by their scattering on the correlated
system of Fe+3 ions (in the absence of correlations in
relative positions of Fe+3 and Fe+2 ions) is two times
greater than the experimental mobility at an iron con-
centration nFe = 2 × 1019 cm–3. To reconcile the results
of the theoretical calculations with the experimental
results, the authors of [13] had to use the artificial con-
structions made in [8], according to which the addi-
tional correlations in the positions of the scatterers can
increase the electron scattering cross section. Accord-
ing to these constructions, the correlations in relative
positions of Fe+3 and Fe+2 ions reduce the scattering
cross section by a factor of 2 and compensate for the
disagreement between the experimental data and the
values of the mobility calculated in [13]. These con-
structions raise doubts. We hold the generally accepted
view that any correlations in the distribution of scatter-
ers decrease the scattering cross section and, hence,
increase the carrier mobility (the more ordered the posi-
tions of scatterers, the smaller the corresponding scat-
tering cross section). Therefore, we believe that the cal-
culations in [13] are incorrect and, in what follows, we
refrain from commenting on those studies. Moreover,

V0
*

N
Fe

+3 N
Fe

+2
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the allowance for the contribution from correlations in
the positions of Fe+3 and Fe+2 ions to the carrier mobil-
ity is obviously in excess of the accuracy of the formula
for the mobility. Indeed, the application of the Born
approximation to calculating the mobility using for-
mula (17) limits the accuracy to about 10%. However,
the contribution from the correlations in the relative
positions of Fe+3 and Fe+2 ions to the carrier mobility
calculated using standard formulas is only several per-
cent.

In Fig. 4, the calculated dependence of µ on nFe is
plotted at different concentrations of shallow donors
nD. Curve 1 corresponds to the electron mobility of pure
HgSe : Fe (nD = 0), and curves 2–6 correspond to the
mobility for the concentration of shallow donors varied
from 1018 to 3 × 1018 cm–3 in steps of 5 × 1017 cm–3. It
can be seen that, for high iron concentrations, where
scattering by Fe+2 ions (neutral with respect to the lat-
tice) dominates, the electron mobility decreases with
increasing concentration of shallow donors (additional
scatterers). However, for iron concentrations at which an
anomalous increase in the mobility is observed, the pres-
ence of shallow donors gives rise to new anomalies.
Namely, in the region of iron concentrations 4.5 × 1018 <
nFe < 3 × 1019 cm–3, the electron mobility increases with
the concentration of shallow donors. This effect was
observed and studied in [15], and a consistent theory
was developed in our study [4]. The effect has a simple
explanation. Indeed, according to Eq. (11), the packing
factor η increases with the parameter nFe/ . In turn,
the parameter nFe/  = nFe/(nc – nD) increases with nD.
The increase in the correlations in the system of Fe+3

ions results in an anomalous increase in the electron
mobility with the concentration of shallow donors.

We see in Fig. 4 that, at low iron concentrations, the
experimental points lie in the region where there are
curves corresponding to low concentrations of shallow
donors. On the contrary, at high iron concentrations, the
experimental points are grouped near the curves corre-
sponding to higher concentrations of shallow donors.
Thus, it follows from our calculations that the content of
uncontrollable shallow donors in HgSe : Fe samples cor-
relates with the iron concentration in the samples. In the
HgSe : Fe samples with low iron content, the concentra-
tion of shallow donors is low. With increasing the iron
concentration from 2 × 1019 to 2 × 1020 cm–3, the concen-
tration of shallow donors grows from 1.5 × 1018 to 2.5 ×
1018 cm–3.

4. THE EFFECT OF TEMPERATURE 
ON SPATIAL CORRELATIONS 

OF IMPURITY IONS IN HgSe : Fe

The disorder in the system of impurity ions
increases with temperature. In our one-parameter
model, the order in the system is characterized by the
parameter rc. Large values of the parameter rc corre-

nFe
+

nFe
+

5
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spond to a greater degree of order in the system of
impurity ions. In the limiting case rc = 0, the impurity
ions are randomly distributed in space. In a correlated
system of impurity ions at finite temperature, any ion
configuration described by the pair correlation function

g(rc, r) with the parameter rc ≤  can occur (  is the
minimum distance between the ions at T = 0). In stan-
dard textbooks on statistical physics [6], it is proved
that the probability of finding a system in a configura-
tion with a given value of the parameter rc is propor-
tional to exp[–∆E + T∆S – P∆V]/T. Here, ∆E, ∆S, and
∆V are the variations in the internal energy, entropy, and
volume of the system, respectively, as the parameter rc

changes from zero to a given value. In our case, ∆E is
the correlation energy of the system of impurity ions
and ∆S is the configurational entropy of this system. We
disregard the variation in the volume of the system of
impurity ions during ordering. The thermodynamic
average of a physical quantity dependent on the param-
eter rc over all possible configurations of the system of
ions is given by [5]

 (22)

rc
0

rc
0

F rc( )〈 〉 F rc( )W rc( ) rc/ W rc( ) rc,d

0

rc
0

∫d

0

rc
0

∫=

12
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6
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0 10 3020

µ 
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4
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2

1

Fig. 5. Electron mobility µ calculated as a function of temper-
ature in HgSe : Fe (nFe = 1.78 × 1019 cm–3) for various values

of the concentration of shallow donors nD (1018 cm–3): (1) 0,
(2) 0.2, (3) 0.4, and (4) 0.6. Experimental points are taken
from [10].
PH
where

 

ε(rc) is the correlation energy per particle, and S0(rc) is
the configurational entropy per particle. In [5], we calcu-
lated S0(rc) using the Boltzmann formula S0(rc) =
kBlnW(rc), where the probability W(rc) of finding a near-
est neighbor ion at a distance from the impurity atom
exceeding rc is taken from [3]. In this study, the configu-
rational entropy is calculated from Eq. (10). To calculate
the correlation energy, we used the formulas [5]

 (23)

We applied our theory to study the effect of temperature
disordering in the system of iron ions in HgSe : Fe on
the electron mobility. The temperature dependence of
the electron mobility µ is calculated from Eq. (17), in
which the parameter rc was replaced by its thermody-
namic average rc(T) = 〈rc〉 . The results are shown in
Fig. 5. The dependence of µ on T is calculated for a
HgSe : Fe sample with an iron concentration nFe =
1.78 × 1019 cm–3. Since the concentration of shallow
donors in HgSe : Fe is uncontrollable and there are no
straightforward methods for measuring it, Fig. 5 shows
calculated curves for the mobility for several values of
the concentration of shallow donors. Curves 1–4 corre-
spond to the donor concentration varying from nD = 0
to nD = 6 × 1017 cm–3 in steps of ∆nD = 2 × 1017 cm–3.
Experimental points in Fig. 5 are taken from [16] for a
Hg1 – xFexSe sample with x = 0.001. All calculated
curves demonstrate a sharp decrease in electron mobil-
ity (approximately by a factor of 2) as the lattice tem-
perature changes from 1 to 50 K. This decrease in elec-
tron mobility is caused solely by a weakening of the
correlations in the positions of scatterers (iron ions)
with increasing lattice temperature. In Fig. 5, we see that,
to a good accuracy, the experimental points fall on the
calculated curves corresponding to the concentrations of
shallow donors in the range 4 × 1018 cm–3 < nD < 6 ×
1018 cm–3. In the temperature range 35–50 K, the scat-
tering by acoustic phonons appears. As a result, the cal-
culated values of the mobility in this temperature range
(where the electron scattering by acoustic phonons was
disregarded) are approximately 10% greater than the
experimental values of the mobility. Figure 5 clearly
demonstrates an anomalous increase in the electron
mobility with the concentration of shallow donors (the
curves corresponding to higher donor concentrations lie
higher). We mentioned this anomaly when discussing the
concentration dependence of the mobility (Fig. 4); it is
described in detail in [4, 15]. We note that the theory

W rc( )
S0 rc( )

kB

--------------
εc rc( )
kBT

--------------– .exp=

εc rc( ) 2πnFe
+

r
2

rV r( ) g̃ r( ) 1–[ ] ,d

0

∞

∫=

V r( ) e
2

κr
-----e

r/rTF.=
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developed here allows us to quantitatively describe the
temperature dependence of the electron mobility in
HgSe : Fe without using any fitting parameters and
without any additional assumptions.

5. CONCLUSIONS

We have suggested a modified version of the hard-
sphere model. In the standard model, in a zeroth
approximation, the particles are identified with hard
spheres (the radius of a sphere is assumed to be equal to
the range of the particle potential). In our model, there
are no explicit restrictions on the particle potentials;
instead, the configurational entropy of the system of
particles is identified with the configurational entropy
of the system of hard spheres and the diameter of a
sphere is assumed to be equal to the minimum distance
between the particles. This weakly restrictive version of
the hard-sphere model has allowed us to formally
extend it to systems of particles with a long-range
potential. We have applied this model to calculate spa-
tial correlations of iron ions in HgSe : Fe. The calcu-
lated temperature and concentration dependences of the
electron mobility agree well with the experimental
data.

Thus, estimations made within the suggested modi-
fication of the hard-sphere model can be used in exper-
imental studies of spatial correlations of charged impu-
rities in semiconductors.
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Abstract—Perturbation theory is developed for second-quantized operators in a basis of partly nonorthogonal
orbitals. This method may be helpful in carrying out ab initio calculations of the parameters of the crystal field
at the impurity center sites. As an illustration, when estimating the crystal field parameters for Yb3+ : KZnF3,
some fitting parameters are calculated using this method. The results agree well with experimental data, which
indicates that this theory shows considerable promise. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The concept of the crystal field is widely used in
interpreting experimental data on impurity centers in
crystals. However, ab initio calculations of its parame-
ters are severely complicated even for high-symmetry
centers and even in the cluster approximation, where
only the nearest neighbor environment is taken into
account. For this reason, efforts have been concentrated
on developing semiempirical models that include phe-
nomenological fitting parameters. These models can
explain the behavior of the physical characteristics of
an impurity ion by varying the fitting parameters [1, 2].
However, only quantum-mechanical calculations
enable one to determine the mechanisms of the interac-
tion of an impurity ion with its environment and can
validate the introduction of the fitting parameters. The
most efficient way to prove the validity of the theory is
to derive analytical expressions for the crystal field
parameters from first principles and compare them with
experimental data. In [3, 4], the crystal field operator
was found in terms of a superposition model taking into
account the overlapping effects and the transfer of an
electron from a ligand to the central ion and a compar-
ison with experiment was made for iron group ions. In
[5, 6], using the same method, the crystal field parame-
ters of ions in LiYF4 : Nd3+ and KZnF3 : Er3+ were cal-
culated. However, certain quantities involved in expres-
sions for the crystal field parameters were treated as
parameters in those studies. For example, the covalence
parameters were taken from [7, 8], where these param-
eters were adjusted when interpreting data on electron–
nuclear double resonance. In all the studies mentioned
above, there was good agreement with experimental
data. It should be noted that these parameters can be
introduced only if we know the one-electron orbitals of
the ground state of the central ion and its neighbor ions
or molecular complexes. Therefore, these orbitals can
be a fairly good zeroth approximation in the problems
in question. From the above, it follows that perturbation
theory can be developed in terms of a basis consisting
1063-7834/05/4706- $26.00 1100
of partly nonorthogonal orbitals. Certain steps in this
direction were made in [9, 10]. In [9], expressions for
an arbitrary second-quantized operator were obtained
in such a basis. In [9, 10], the electron transition ampli-
tudes from the 2s and 2p shells of a ligand to the 4f shell
of a rare-earth ion were calculated. The values of the
covalence parameters calculated with these amplitudes
agree well with experimental data. In this study, based
on the results obtained in [9], we derive an expression
for the crystal field operator without using the superpo-
sition model. This operator includes the contributions
from excited configurations that correspond to electron
transitions to empty and partially occupied shells.
Under the assumption of the existence of the matrix (I +
S)–1, the effects of nonorthogonality are included
exactly to all orders of perturbation expansion consid-
ered. As an example, we calculate the crystal field
parameters for Yb3+ : KZnF3. Because calculated elec-
tron transition amplitudes from a ligand to the empty
5d, 6s, and 6p shells and certain matrix elements are not
currently available, we make estimates taking into
account only the terms proportional to the overlap inte-
grals squared. Nevertheless, we show that certain terms
are absent from the expressions derived in [5, 6]. When
estimating the contributions due to the electron transi-
tion from a ligand to the 4f shell, we use the transition
amplitudes calculated in [9, 10].

2. PARTICLE NUMBER OPERATOR

In [9], we derived an expression for an arbitrary sec-
ond-quantized operator in terms of a basis of partly
nonorthogonal orbitals. In what follows, the representa-
tion of an operator in this basis will be referred to as the
Ψ representation. Let us find the particle number oper-
ator in this representation. According to [9], for an arbi-
trary one-particle operator, we can write

 (1)HΨ
1
2
---Q 

  H̃
1
2
---Q– 

  ,expexp=
© 2005 Pleiades Publishing, Inc.
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 (2)

where h is this operator in the coordinate representa-

tion, Q = , I is the identity operator, and
S is the overlap matrix for one-electron orbitals. For the
particle number operator in the coordinate representa-
tion, we have h ≡ 1. Substituting this value into Eq. (2),
we obtain

 (3)

and, hence,

 (4)

The representation defined by Eq. (2) will be referred to
as the non-Hermitian representation. It can be seen that
the particle number operator in both the non-Hermitian
and Ψ representations has the conventional form. Fur-
thermore, since the operators in these representations
are related by a similarity transformation, their eigen-
value spectra are identical. Therefore, there are systems
for which the non-Hermitian representation can be used
to perform calculations, e.g., systems consisting of a
small number of particles or systems for which it is
advantageous to use temperature Green’s functions [11]
(for these functions, the exponential factors in Eq. (1)
cancel each other under the operation of trace).

In concluding this section, the following general
remark should be made. It is well known that the form
of second-quantized operators in an orthonormal one-
particle basis is the same for bosons and fermions. In
much the same manner as that followed in [9, 12], it can
be shown that all expressions obtained in the section
Theory in [9] and Eqs. (3) and (4) in this paper are also
valid for bosons. This will occur if the creation and
annihilation operators satisfy the commutation rela-
tions for bosons, i.e.,

 (5)

and if all calculations are performed for the so-called
permanents (products of one-particle orbitals symme-
trized with respect to pair permutations). Then, in the
notation used in [9], the functions |{η}〉  will have the
form

 (6)

where nξ are the occupation numbers of the orbitals.
This approach may prove helpful if the one-particle
approximation is a good zeroth approximation for a
system of interacting bosons.

H̃ aξ
+
aξ' ξ〈 | I S+( ) 1– θ| 〉 θ〈 |h ξ'| 〉 ,∑=

aξ
+
aξ' ξ〈 |q ξ'| 〉∑

Ñ aξ
+
aξ∑=

NΨ aξ
+
aξ .∑=

aξaξ'
+

aξ'
+
aξ– δξξ ' ,=

aξaξ' aξ'aξ– aξ
+
aξ'

+
aξ'

+
aξ

+
– 0,= =

η{ }| 〉 Π
aξ

+( )
nξ

nξ!
-------------- 0| 〉 ,=
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3. THE HAMILTONIAN OF A SYSTEM OF IONS

Let us consider a system consisting of an arbitrary
number of ions. The ion positions and the quantum
numbers of the ion orbitals are indicated by indices ξ,
ξ', η, η', and so on; i.e., ξ = (Ri , nlmlms). A distribution
of electrons over ion orbitals will be referred to as a
configuration. The Hamiltonian of the system can be
written as

 (7)

where hk(r) is the kinetic energy and Zi is the nuclear
charge of an ion. We write the nuclear charge as the sum
Zi = qi + ni + mi, where qi is the ionic charge in the crys-
tal without impurities, ni is the number of electrons in a
certain configuration of an ion, and mi is a deviation
from the number of electrons in this configuration in the
impurity-free crystal. A deficiency and excess of elec-
trons correspond to mi > 0 and mi < 0, respectively. We
will refer to mi as a charge defect. Substituting the
above expression for the nuclear charge into Eq. (7), we
obtain

 (8)

In Eq. (8), the first term is the electrostatic energy of the
crystal in the ionic approximation and the second term
is the interaction energy between the charge defects and
the crystal lattice. It can be seen that the energy of the
crystal decreases when an electron either is removed
from a site with a positive Madelung energy or is added
to a site with a negative energy. The third term in Eq. (8)
is the interaction energy between the charge defects. If
we separate the intraionic interactions from the other
terms, then the interionic interactions will be the differ-
ence of quantities of the same order of magnitude and,
therefore, can be considered a perturbation. This parti-
tion of the Hamiltonian can be conveniently used to
consider virtual transitions of an electron between ions.
Passing over to second quantization in this case does
not pose complications, because the particle number
operator in the formalism we develop here was already
defined above.

H hk ri( ) 1
2
--- 1

ri r j–
-----------------

i j≠
∑ Z j
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------------------
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i
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1
2
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ZiZ j

Ri R j–
--------------------,

i j≠
∑

H
1
2
---

qiq j

Ri R j–
--------------------

i j≠
∑ miq j

Ri R j–
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i j≠
∑ 1

2
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mim j

Ri R j–
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i j≠
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Z j
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niZ j

Ri R j–
--------------------

i j≠
∑+

i

∑

+
1
2
--- 1

ri r j–
-----------------

i j≠
∑ 1

2
---

nin j

Ri R j–
--------------------.

i j≠
∑–
5



1102 ANIKEENOK
4. PERTURBATION THEORY

In order to solve our problem, we apply perturbation
theory for the degenerate case in the same form as that
used in [13] and described in detail in [14]. As shown in
[9, 10], the ratio of the electron transition amplitude to
the transition energy is on the order of the overlap inte-
gral corresponding to the transition in question. There-
fore, using the results obtained in [9], we can write the
Hamiltonian to third order in the transition energy as

 (9)

 (10)

 (11)

 (12)

 (13)

The matrices S1 and S2 can be found in [13, 14]. In the
expression for the operator Q written above (see the text
below Eq. (2)), q = ln(I + S). Note that the number of
orbitals included in the partly nonorthogonal basis is
determined by the matrix (I + S)–1 alone; indeed, if this
matrix exists, so does the matrix q. The commutator [Q,

](2), involved in Eq. (9), can be found to be

 (14)

 (15)

(16)

where the matrix elements in the right-hand sides of
Eqs. (15) and (16) can be written as

 (17)

 (18)

H H
1
8
--- Q H,[ ] 2( )

–
1
2
--- H S1,[ ] 1

2
--- H S2,[ ] ,+ +=

H aξ
+
aξ' ξ〈 |h ξ'| 〉∑=
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1
2
--- aξ

+
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+
aη'aξ' ξη〈 |g ξ'η'| 〉 ,∑
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--- ξ〈 |h θ| 〉 θ〈 | ξ '| 〉 ,∑+∑=
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P

The other terms can be transformed analogously. It can
be seen that, in our theory, the one-particle interaction
operators have a one-particle form and the two-particle
interaction operators have a two-particle form; i.e., so-
called n-particle interactions do not appear.

5. CRYSTAL FIELD OPERATOR

In order to find the crystal field operator, let us ana-
lyze each of the terms in Eq. (9). It was shown in [5, 6]
that, when including the excited configurations, prima-
rily the electron transitions from a ligand to the partly
filled and empty shells of the central ion should be
taken into account. The second-quantized operator that
involves these excited configurations and operates in
the space of the ground-state configuration is con-
structed in the usual way [15]. For this purpose, we
denote the electron creation (annihilation) operators of

the filled and partly filled shells as (aξ'), those of the

empty shells as (dη'), and those of a ligand as (bθ')
and use the commutation relations that are valid for the

ground-state configuration, namely, dη'  = δηη ' and

bθ' = δθθ'. In what follows, |ξa〉  are the orbitals for
electrons of the central ion and |ξb〉  are the orbitals for
electrons of the ligands. For the first term in Eq. (9), we
obtain

 (19)

where summation over  is performed only over the
filled shells of the ground-state configuration and P is
the permutation operator. The values of qb, nb, and mb

are also related to the ground-state configuration; and
H.c. stands for the Hermitian conjugate. Equation (19)
does not contain the first three terms of Eq. (8), because
these terms cause a shift in energy and will enter into
the denominators of the perturbation series.

Now, let us consider the second term in Eq. (9). If
the matrix elements of the operator Q are not small,
then the Hamiltonian of the system should be taken in
the form of Eq. (8) in order to separate the zeroth-
approximation Hamiltonian and the perturbation. In
ionic crystals, however, these matrix elements are
likely to be sufficiently small for the commutator in
question to be treated as a perturbation. In this case, the

aξ
+

dη
+

bθ
+

dη
+

bθ
+

H
1
2
--- aξ

+
aξ' δξξ '

qb mb+
Ra Rb–
---------------------

b

∑∑=

+ ξ〈 | θ| 〉 θ hk

Za

r
-----–

qb nb mb+ +
r Rb–

-----------------------------
b

∑– ξ'

+
1
4
--- aξ

+
aη

+
aη'aξ' ξη〈 | θζ| 〉 θζ〈 |g ξ'η'| 〉∑

+
1
2
--- aξ

+
aξ' ξθ̇b〈 | θζ| 〉 θζ〈 |g 1 P–( ) ξ'θ̇b| 〉∑ H.c.,+

θ̇b
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interaction Hamiltonian can be taken in the form of
Eq. (7). To within third-order terms, we can write
Eq.  (14) in the form

(20)

It can be seen that, in both Eqs. (19) and (20), the non-
orthogonality effects are included exactly if the matrix
(I + S)–1 exists. Therefore, these expressions are easy to
analyze. By separating the one-particle and two-parti-
cle single-center interactions in the first two terms in
Eq. (20), it can be found that the largest terms are the
Hartree–Fock energy, the Madelung energy, and the
interaction energy between a charge defect and the
crystal lattice, which are renormalized by the matrix
elements of Q and (I + S)–1. For example, for rare-earth
elements, the largest contribution to the last term in
Eq. (20) comes from expressions of the type Sb, 5d〈5d,
4f |g(1 – P)|5d, 4f 〉S5d, b (which are absent from the
expressions for the crystal field parameters derived in
[5, 6]). Note that these contributions from the filled
shells are canceled by the corresponding contributions
to the second term. This is immediately clear if the

operator  in this term is related to the electrons of
a filled shell. The other terms describe interactions of
the density–density type, which were discussed, e.g., in
[16] in terms of a phenomenological approach.

Let us turn to the third term in Eq. (9). The electron
transition amplitude between states |{ξ}| and |{ξ'}| that
differ in terms of only one of their quantum numbers
was determined in [9]. In what follows, this amplitude
will be designated as 〈{ξ}|HΨ|{ξ'}〉  = 〈ξ|G |ζ〉. Here, |ζ〉
is the state where an electron is annihilated and |ξ〉 is the
state where the electron is created. Using this notation,
we can write

 (21)

Q H,[ ] 2( )
aξ

+
aξ' ξ〈 |q θb| 〉 θb〈 |q ηa| 〉 η a〈 |h ξ'| 〉[∑=

– θb〈 |h ζb| 〉 ζ b〈 |q ξ'| 〉 ] aξ
+
aη

+
aη'aξ' ξ〈 |q θb| 〉∑+

× θb〈 |q αa| 〉 α aη〈 |g ξ'η'| 〉 θbη〈 |g ζbη'| 〉 ζ b〈 |q ξ'| 〉–[ ]

+ aξ
+
aξ' θ̇b〈 |q αa| 〉 α a〈 |q ζb| 〉 ζ bξ〈 |g θ̇bξ'| 〉[∑
– 2 ξ〈 |q ζb| 〉 α aζb〈 |g ξ'θ̇b| 〉 ]

+ aξ
+
aξ' ξ〈 |q ζb| 〉 ζ b〈 |q αa| 〉 θ̇bαa〈 |g θ̇bξ'| 〉[∑

– θ̇bζb〈 |g 1 P–( ) θ̇bβb| 〉 βb〈 |q ξ'| 〉 ]

– aξ
+
aξ' θ̇b〈 |q αa| 〉 α aξ〈 |g 1 P–( ) βaξ'| 〉 βa〈 |q θ̇b| 〉 H.c.+∑

aξ
+
aξ'

H S1,[ ] aξ
+
aξ'

ξ〈 |G θ̇b| 〉 θ̇b〈 |G ξ'| 〉
∆θ̇b ξ,

----------------------------------------∑=

–
ξa〈 |G θ̇b| 〉 θ̇b〈 |G ξa| 〉

∆θ̇b ξa,
-------------------------------------------∑

– aξ
+
aξ'

θ̇bξ〈 |g 1 P–( ) ηdξ'| 〉 η d〈 |G θ̇b| 〉
∆θ̇b ηd,

---------------------------------------------------------------------∑ H.c.,+
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where  is the energy of the electron transition

from a ligand to the central ion. It can be seen that, in
Eq. (21), as in Eq. (20), the contributions from the filled
shells to the first two terms cancel each other. Due to
summation over the empty shells in the second term, as
would be expected, the energy of the entire configura-
tion decreases. Most likely, the third term can make a
noticeable contribution only for rare-earth elements.

In the last term in Eq. (9), we retain only the contri-
butions from the electron transitions to the empty shells
of the central ion. As follows from the studies cited
above, these contributions have to be taken into account
for rare-earth elements. In this case, we obtain

 (22)

This term can also be significant for iron group ions if
some of the nearest neighbor ions are at a considerable
distance from the central ion [17]. Note that the expres-
sions written above can also be used to include the
covalency effects in impurity-free ionic crystals.

6. ESTIMATION OF THE CRYSTAL FIELD 
PARAMETERS FOR Yb3+ : KZnF3

The derivation of analytical expressions for the
operators discussed in the preceding section is very
labor consuming, because we need to know not only the
matrices (I + S)–1 and Q but also the matrix elements of
the relevant operators for arbitrary ion positions. Nev-
ertheless, modern computers make it possible to solve
this problem. To begin with, let us consider the simplest

operator (which we designate as )

 (23)

and, following [15], pass over from the second-quan-
tized operators to irreducible tensor operators. As a
result, we obtain

 (24)

∆θ̇b ηd,

1
2
--- H S2,[ ] d

=  aξ
+
aξ'∑ θ̇b〈 |G ηd| 〉 ξη d〈 |g 1 P–( ) ξ'αd| 〉 α d〈 |G θ̇b| 〉

∆θ̇b ηd, ∆αd θ̇b,
---------------------------------------------------------------------------------------------.

hc
a

hc
a 1

2
--- aξ

+
aξ' ξ〈 | I S+( ) 1– ξa| 〉 ∫∑=

× ξa

qb

r Rb–
-----------------

b

∑– ξ' H.c.+

aξ
+
aξ' ξ

qb

r Rb–
-----------------

b

∑– ξ'∑ aq
k
v q

k
,

k q,
∑=
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 (25)

 (26)

 (27)

where  are analogs of  in Eq. (24). Substituting
Eqs. (25) and (27) into Eq. (23) and passing over to irre-
ducible tensor operators, we obtain

 (28)

where (: : :) and {: : :} are 3j and 6j symbols, respec-

tively; [l] = 2l + 1; and  is the spherical tensor oper-

ator. The quantities  and  are determined by the
electron density distribution over the entire crystal. In
the case of cubic symmetry, b4 and b6 are experimen-
tally measured quantities and are defined as follows:

 (29)

Using the Gaussian expansion of Hartree–Fock func-
tions [18] (with expansion coefficients ai, αi), we obtain
the following results for the 4f shell:

 (30)

ξ
qb

r Rb–
-----------------

b

∑– ξ'

=  1–( )
l ml

ξ
– l k l

ml
ξ

– q ml
ξ' 

 
 

aq
k
,

k q,
∑

W0q
0k

2
1
2
---–

2k 1+( )
1
2
---

v q
k
, k 0,≠=

W00
00

N 2 2l 1+( )[ ]
1
2
---–

,=

ξ〈 | I S+( ) 1– ξ'| 〉

=  1–( )
l ml

ξ
– l k l

ml
ξ

– q ml
ξ' 

 
 

sq
k
,

k q,
∑

sq
k

aq
k

hc
a

sm1

j1 am2

j2 j1 j2 k

m1 m2 q– 
 
  j1 j2 k

l l l 
 
 

j1 j2m1m2kq

∑=

× k[ ] 1–( )l q+

l[ ] l k l

0 0 0 
 
 

------------------------------Cq
k

Bq
k

a c,( )Cq
k
,

kq

∑=

Cq
k

sm1

j1 am2

j2

Hcr Bq
k
Cq

k
, b4

kq

∑ 1
8
---B0

4
, b6

1
16
------B0

6
.= = =

a0
0 7

16
------- qb aia j

1
α iα j

---------- 
  4

x 105 1 x
2

–( )
3

[d

0

1

∫
i j,
∑

b

∑–=

+ 210α ijRab
2

x
4

1 x–( )2
84α ij

2
Rab

4
x

8
1 x

2
–( )+

+ 8α ij
3
Rab

6
x

12 ] α ijRab
2

x
2

–( )C0
0 θb ϕb,( ),exp
PH
 (31)

 (32)

where α ij = α i + α j, Rab is the distance between the

ionic nuclei, and (θb, ϕb) is the spherical tensor
function of the angles θb and ϕb defining the orienta-
tion of the a–b pair axis in a chosen coordinate frame.
Expressions (30)–(32) are valid for any distances Rab.
These expressions are obtained using the transforma-
tions

 (33)

which differ from the transformations used in [18]. In
Eq. (33), the integrand is a superposition of polynomi-
als like x2n(1 – x2)m rather than xn (as in [18]), which
makes mathematical manipulations much simpler. Note
that, using Eq. (33), the matrix elements of the Cou-
lomb interaction between electrons are also brought to
the form of Eqs. (30)–(32) and, hence, are analytic
functions of the ion position vectors.

The expressions given above for the matrix elements
of the operators involved in Eq. (9) are exact. However,
only the electron transition amplitudes to the 4f shell,
namely, 〈4f0 |G |2s〉  = G4fs, 〈4f0 |G |2p0〉  = G4fσ, and
〈4f1 |G |2p1〉  = G4fπ, have been calculated to date [9,
10]. The transition amplitudes to 5d, 6s, and 6p shells
have not yet been estimated numerically, and the matrix
elements of the operators (I + S)–1 and Q have not yet
been calculated. Therefore, we estimate the contribu-
tions from the operators considered in Section 5 to
within the terms quadratic in the overlap integrals. We
take into account the contributions missed in [5, 6] and
use the calculated transition amplitudes currently avail-
able. The other quantities are estimated using the com-
monly accepted approximations. As a result, we obtain
the following expressions for the crystal field parame-

a0
4 9

4
--- 2 7×

11
------------ qbRab

4
aia j

1
α iα j

---------- 
  2

ij

∑
b

∑–=

× x 11x
8

1 x
2

–( ) 2α ijRab
2

x
12

+[ ]d

0

1

∫
× α ijRab

2
x

2
–( )C0

4 θb ϕb,( ),exp

a0
6

5 7 13×
3 11×
--------------- qbRab

6
aia j

1
α iα j

---------- 
 

ij

∑
b

∑=

× x x
12 α ijRab

2
x

2
–( )exp[ ] C0

6 θb ϕb,( ),d

0

1

∫

Cij
k

1
r R–
---------------

2

π
------- y r R–( )2

y
2

–[ ] ,expd

0

∞

∫=

y
2 α ij x

2

1 x
2

–
--------------=
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ters  and  for a rare-earth ion in an octahedral
environment:

 

 

 

 (34)

 

 

 

 

 

 (35)

 

 

The parameters  and  are estimated for the dis-
tance R = 4.16 au corresponding to the KZnF3 : Yb3+

compound. We obtain (a, c) = 592 cm–1 and (a,
c) = 23 cm–1. The quantities S4fs = 0.009019, S4fσ =
−0.013558, and S4fπ = 0.008142 are calculated using the
functions from [19]. The quantities G4fs = –0.01297 au,
G4fσ = 0.01530 au, and G4fπ = –0.01013 au are deter-
mined in [9, 10], and the quantities |∆4fs | ≈ 1 au and
|∆4fσ| ≈ |∆4fπ| ≈ 0.3 au are taken from [7]. The Hartree–

Fock energies are  = –2.01 au,  = –1.07 au, and
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 = –0.18 au, the Madelung energies are  = 0.82 au

and  = –0.42 au, and the hole energy is hm = –0.23 au.
The other needed parameters are taken from [6]. The
Coulomb f–d interaction parameters are F (4)( f, d) =
0.05129 au, G(1)( f, d) = 0.04495 au, G(3)( f, d) =
0.03728 au, G(5)( f, d) = 0.02856 au, α = 0.43, S5ds =
0.19, S5dσ = –0.18, and S5dπ = 0.12. The covalency
parameters –G5di/ |∆5di | = γ5di are γ5ds = 0.02, γ5dσ =
−0.13, and γ5dπ = 0.09. Finally, the density–density

overlaps are  = 441 cm–1 and  = –19.2 cm–1. Sub-
stituting these values into Eqs. (34) and (35) and using
Eq. (29), we obtain b4 = 130 cm–1 and b6 = 8.4 cm–1. The
experimental values of these parameters for KZnF3 : Yb3+

[20] are b4 = 302 cm–1 and b6 = 13 cm–1. Thus, there is
fairly good agreement between the experimental data
and the tentative estimates, which we made with the aim
of testing the validity of the perturbation theory devel-
oped here. However, it is clear that the predicted values
of the crystal field parameters will be refined if more cor-
rect expressions are used for the operators (I + S)–1 and
Q. For example, the overlap integrals between the orbit-
als of a ligand and the 5d, 6s, and 6p orbitals of the cen-
tral ion are fairly large. Therefore, it is insufficient to
restrict ab initio calculations to the terms quadratic in
the overlap integrals. Furthermore, even the possibility
of including these orbitals in the basis is determined be
the existence of the matrix (I + S)–1. Therefore, the next
natural step forward would be to calculate this matrix
with inclusion of these orbitals and the electron transi-
tion amplitude from a ligand to these orbitals.
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Abstract—Ferromagnetic resonance (FMR) and vibrating-sample magnetometer techniques were used to
study the nature of the structural characteristics of yttrium iron garnet films deposited through either liquid
phase epitaxy or laser evaporation on a (111)-oriented gallium gadolinium garnet substrate. It was proved that,
based on the experimentally observed cubic magnetic anisotropy, deposited films should be considered to be
single crystals. However, the absence of the FMR domain branch in a nonsaturated film and the shape of the
magnetization curve indicate that a deposited film when demagnetized does not have a domain structure, as
would be expected for a single-crystal film. According to the model proposed, a deposited film consists of close-
packed single-crystal fragments with equal crystallographic orientation, the boundaries between which are in a
partially atomically disordered state. As a result, such a film is both locally and macroscopically anisotropic,
like a continuous single crystal. This film can split into domains only within a fragment (as is the case in a mag-
netic granular polycrystal); however, this does not happen, because the linear dimensions of a submicroscopic
fragment are smaller than the equilibrium domain width. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Garnet ferrite films, such as yttrium iron garnet
(YIG) films, fabricated using liquid phase epitaxy
(LPE), have been intensively studied for many years.
The interest is also drawn to garnet ferrite films depos-
ited through laser evaporation (LE) and electron beam
evaporation (EBE) [1, 2]. In particular, the LE method
has been used to deposit films of bismuth iron garnet
Bi3Fe5O12 that exhibit a record-high Faraday effect,
which was not possible with the LPE method. Analysis
of FMR spectra made it possible to observe presumably
bismuth magnetism in them [3]. When studied with a
polarizing light microscope, LE-deposited Bi3Fe5O12

films show an interesting property: no domain structure
is observed, even though the film thickness (~ 1 µm) is
more than sufficient to show a distinctly high magne-
tooptical contrast. However, x-ray structural analysis
shows that these films are almost single-crystal [4] and,
consequently, must have a domain structure. A similar
pattern was observed in LE-deposited YIG films,
whereas LPE-deposited YIG films did not exhibit a
domain structure.

In previous studies of ultrathin YIG films LPE-
deposited on an (111)-oriented gallium gadolinium gar-
net (GGG) substrate, it was shown that some informa-
tion on the film domain structure that was not visible
with a polarizing light microscope could be obtained by
analyzing FMR spectra and studying magnetization
reversal of the films in a quasistatic magnetic field [5].
1063-7834/05/4706- $26.00 ©1107
In this study of LE (EBE)-evaporated YIG films and
LPE-deposited YIG films, we compared their magneti-
zation values and used the FMR technique to elucidate
the nature of the structural features of LE (EBE)-evap-
orated YIG films.

2. EXPERIMENTAL

2.1. Specimens and Experimental Technique

Two types of specimens were studied: (i) ~1-µm-
thick single-crystal YIG films grown on a (111)-ori-
ented GGG substrate through liquid phase epitaxy from
an oxide solution in melt [6] and (ii) ~1-µm-thick YIG
films deposited on similar substrates using the LE and
EBE evaporation methods. To obtain magnetization
curves of the specimens studied, the vibrating-sample
magnetometer technique was used. To determine the
FMR parameters, a setup operating in the reflection
mode was employed, which made it possible to carry
out measurements in the range 1–10 GHz with mag-
netic-field modulation. A copper microstrip 0.1 mm in
thickness and 6 mm in length was used as a measuring
cell (sensitive element). A specimen 6 mm in diameter
was stuck to the end of the brass axis of a rotating
device and was tightly pressed to the microstrip with a
spring. The rotation axis of the specimen was normal to
that of the electromagnet rotating device, which
allowed the external magnetic field to be oriented along
the direction required in the experiment.
 2005 Pleiades Publishing, Inc.
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The minimum FMR linewidth at a frequency of
9.3 GHz was approximately 5 Oe for evaporated films.
When the external field was oriented arbitrarily with
respect to the film surface, two or three closely spaced
FMR lines were excited. When the external magnetic
field was oriented at 31° to the film normal, a single
spectral line was observed and its intensity was maxi-
mum. The same orientation of the field (31°) was used
to measure the cubic magnetic anisotropy by recording
the azimuth dependence of the resonance field (the
specimen was rotated around the film normal). In this
case, a single FMR line was also observed in the spec-
trum.

The FMR linewidth for LPE-deposited YIG films
was approximately 0.5 Oe. The gyromagnetic ratio, sat-
uration magnetization, and cubic anisotropy were the
same as those for the evaporated film.

2.2. Experimental Results

Figure 1 shows in-plane magnetization curves for
LPE- and LE-deposited YIG films recorded with a
vibrating-sample magnetometer. As seen from Fig. 1,
the saturation field Hs for the LE film (film 2) is one
order of magnitude lower than that for the LPE film
(film 1). Furthermore, curve 2 does not have features
that are seen in curve 1, such as a chain of specific hys-
teresis loops. It is interesting to compare this result with
the data from [7], where magnetization reversal of
LPE-deposited YIG films was studied using a ferro-
magnetometer and the domain structure was simulta-
neously examined using a polarizing light microscope.
The domain structure was observed due to the fairly
high magnetooptical contrast of a 7-µm-thick film. The
external magnetic field was applied in the film plane,
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Fig. 1. Hysteresis loops in an in-plane magnetic field for
films deposited using (1) liquid phase epitaxy and (2) laser
evaporation. The inset shows the full form of these loops.
P

and the saturation was reached in a field Hs ~ 50 Oe,
which is close to our result for an LPE-deposited YIG
film. The shape of the hysteresis loops is also the same
for both specimens, which indicates that the magnetiza-
tion processes are similar. It was shown that the features
of the magnetization curve of the film mentioned above
are due to domain walls moving stepwise with increas-
ing external field. This conclusion is supported by jum-
plike variations in the high-frequency magnetic suscep-
tibility [7]. Based on these data and taking into account
the shape of the curves in Fig. 1, we can assume that
film 2 is not split into domains and that its magnetiza-
tion reversal proceeds only through the magnetic
moment vector rotating towards the external field.

Figure 2 shows the azimuth dependence of the FMR
field measured for a fixed value of the polar angle (31°)
at a frequency of 9.3 GHz for a YIG specimen fabri-
cated using the LE method. An analogous dependence
of the resonance field is also observed for LPE-depos-
ited YIG films (earlier, this dependence was measured
for Bi3Fe5O12 bismuth iron garnet films produced using
the LE method [3]). As can be seen in Fig. 2, the axes
of cubic magnetic anisotropy are fairly distinct in the
studied specimen. This confirms the conclusion that, in
both cases (evaporated or LPE-deposited YIG films),
we deal with magnetic single crystals.

Figure 3 shows the frequency versus field (F−H)
curve of FMR for an LPE-deposited YIG film and for a
film fabricated using magnetron sputtering. The field is
normal to the film plane. It follows from Fig. 3 that, for
the former film, FMR is observed both in the saturation
region and in the region where domain structure exists
(domain FMR). This dependence is fairly well
described theoretically by taking into account the cubic
magnetic anisotropy in the single-crystal YIG film hav-
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Fig. 2. Dependence of the FMR field on the azimuth angle
for a laser-evaporated YIG film.
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ing a domain structure [5]. For the latter film, FMR is
not observed in the nonsaturated state. As the field
increases, a signal appears only close to the saturation
field of the specimen. For both films in the saturated
state, the F−H curves of FMR almost coincide in shape.
The F−H curve for this film in the vicinity of Hs is sim-
ilar to the theoretical curve [8] for a film that has neither
domain structure nor cubic anisotropy.

3. DISCUSSION OF THE RESULTS

The experimental results obtained for the evapo-
rated YIG films are obviously contradictory in terms of
the conventional concepts concerning the structure of
single-crystal YIG films. The results of x-ray structural
analysis and the presence of cubic crystallographic
anisotropy discovered using the FMR technique in the
saturated state (Fig. 2) indicate that the evaporated
films are single crystals. In this case, the films should
have a domain structure in the demagnetized (nonsat-
urated) state and domain FMR should be excited in
them, as is the case in the LPE-deposited YIG film.
However, as mentioned above, no domain FMR is
observed in the evaporated films, and the shape of the
magnetization curve in Fig. 1 indicates that, in all prob-
ability, a domain structure (domain walls) does not
exist.

What structure of the evaporated film could be con-
sistent with the results obtained? In our opinion, we can
assume that the single-crystal film is divided into frag-
ments by a network of submicroscopic “cracks” with
linear dimensions smaller than the equilibrium domain
width. In this case, the film does not split into domains.
In other words, the film is not continuous but rather
consists of close-packed fragments each of which is in
the saturated state and is characterized by a magnetic-
moment vector MF. All fragments of this film retain the
same crystallographic orientation of the lattice. There-
fore, the film is anisotropic not only microscopically
(like, for example, a finely dispersed polycrystalline
system) but also macroscopically (like a single crystal).
This conclusion is confirmed by the cubic magnetic
anisotropy that was experimentally detected by mea-
suring the azimuthal dependence of the FMR field for
the film in the saturated state (Fig. 2).

This structure could form as a result of island film
growth during deposition. When growing on a common
single-crystal substrate, all islands were subjected to
the influence of the crystallographic orientation of the
substrate, so they reproduced the same crystallographic
orientation of the lattice. Consequently, there are no
abrupt structural breaks at the island boundaries, con-
trary to the case of grain boundaries in a polycrystalline
material. For this reason and according to x-ray struc-
tural analysis data, the fragmented film does not differ
from a continuous single-crystal film.

However, an ideal matching of islands was not,
apparently, achieved in the growing film, so the match-
PHYSICS OF THE SOLID STATE      Vol. 47      No. 6      200
ing areas of the fragments are in a partially atomically
disordered state. This has an effect on structurally sen-
sitive parameters, such as the FMR linewidth, which in
the evaporated film is ten times larger than that in the
LPE-deposited film. Due to the atomically disordered
boundaries, the exchange coupling between the atoms
of the neighbor fragments is broken and the coordina-
tion in the mutual arrangement (orientation) of the
magnetic moments of the single-crystal fragments is
destroyed. Consequently, the magnetic moments MF

inside the fragments can be oriented in any of the six
easy magnetization directions in the (111) plane. An
additional contribution to misorientation of the vectors
MF can be made by long-range dipole interaction of the
entire ensemble of magnetic fragments of the film,
which minimize the magnetostatic energy.

We are unaware of any FMR theory for such a frag-
mented nonsaturated crystalline magnetic film. Appar-
ently, the ensemble of variously oriented magnetic
moments of film fragments not bonded by exchange
interaction cannot produce a uniform in-phase spin
wave excitation. This is the reason why domain FMR is
not observed in the evaporated YIG film. However,
FMR is observed in the saturated film, when the entire
ensemble of vectors MF is uniformly oriented along the
external magnetic field (Fig. 3).

Based on this model for the structure of the evapo-
rated film, let us again discuss Fig. 1. According to the
conventional concepts, magnetization reversal of a fer-
romagnetic crystal through motion of domain walls
requires less energy than in the case of rotation of the
magnetic moments. Therefore, saturation of the LPE-
grown film should be achieved in lower fields than sat-
uration of an evaporated film, which, according to our
model, does not have magnetic domains. However, the
experimental data in Fig. 1 demonstrate the opposite.
We believe that the high value of Hs in the LPE-grown
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Fig. 3. Frequency versus field curve of FMR for YIG films
deposited using liquid phase epitaxy (open dots) and mag-
netron sputtering (solid triangles).
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film is mostly due to tensile stresses that exist in this
film and cause uniaxial magnetic anisotropy along the
normal to the (111)-oriented film (so called stress-
induced anisotropy). This anisotropy should be sur-
mounted during magnetization of the film in its plane,
which causes an increase in Hs. The stresses arise due
to the difference in lattice parameters between the crys-
tal lattices of the YIG film (a0 = 1.2376 nm) and GGG
substrate (a0 = 1.2382 nm). Therefore, removal of this
difference will cause a decrease in the saturation field
of the film. With this aim, YIG films were LPE-grown
in which Sc3+ ions having a larger radius were partly
substituted for Fe3+ ions. The measured values of Hs for
these films are shown in Fig. 4. It can be seen that the
introduction of scandium caused the stress to decrease
and, as a result, the saturation field of YIG film
decreased to Hs = 2 Oe. It can thus be concluded that the
low value Hs of the evaporated YIG film in Fig. 1 indi-
cates that this film is almost free of stresses, which
relaxed due to the fragmented structure of the evapo-
rated film with atomically disordered fragment bound-
aries. It should be noted that the stresses in LPE-depos-
ited YIG films also decrease abruptly after the forma-
tion of a net of cracks caused by mismatching stresses.
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Fig. 4. Saturation field of an in-plane magnetized YIG spec-
imen as a function of the proportion of scandium substitut-
ing for iron.
P

The validity of the suggested model is also sup-
ported by the results of electron microscopic studies of
a laser-evaporated Bi3Fe5O12 film reported in [9]. The
microphotograph of a cross section of the approxi-
mately 1.3-µm-thick film demonstrates that there is a
columnar structure consisting of columns with submi-
cron cross-sectional dimensions oriented along the nor-
mal to the film surface (that is, along the direction of
film growth). We believe that the results of [9] addition-
ally validate the concept of the fragmented structure of
the deposited YIG films.

Thus, the fragmented-structure model proposed by
us gives a consistent explanation of the experimental
data on YIG deposited films presented above, although
it does not clarify the structure of the boundary that
breaks the exchange coupling between the fragments of
the magnetic crystal.
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Abstract—The transverse dynamic susceptibility of the 2D two-sublattice Hubbard model is calculated in the
static-fluctuation approximation. The static magnetic susceptibility is studied as a function of various parame-
ters of the system. The results for the special case of the one-dimensional Hubbard model are compared to the
exact solution. © 2005 Pleiades Publishing, Inc.
In [1, 2], a method for solving the Hubbard model
[3] in the static fluctuation approximation was devel-
oped. In [4], the ground-state energy of the two-dimen-
sional (2D) two-sublattice Hubbard model [5] was cal-
culated and investigated. A comparison of the results
from [4] with the exact solution of the one-dimensional
(1D) Hubbard model [6] proved that the static-fluctua-
tion approximation gives a rather faithful description of
a Hubbard system both in the weak and strong correla-
tion regimes. It was shown in [4] that the ground state
energy obtained in the approximation of static fluctua-
tions [1, 2] coincides with that for the exact solution in
the limits of U = 0 and U = ∞ and that there is good
agreement for intermediate values of U. Thus, the
static-fluctuation approximation is applicable not only
in the case of weak correlations but also for intermedi-
ate and strong correlations, the latter being of special
importance for application to layered cuprates [5].

The objective of the present work was to calculate
and study the transverse dynamic susceptibility of the
2D Hubbard model in the static-fluctuation approxima-
tion.

The magnetism in the Hubbard model has been
studied in a number of papers (see, for example, [7–
15]). The theory of ferromagnetism of itinerant elec-
trons in the molecular-field approximation was devel-
oped by Stoner [13]. Unfortunately, it has been found
that, at nonzero temperatures, the Stoner model does
not provide a consistent description of all physical
properties of magnetic transitional metals. The Stoner
model was enhanced by Hubbard [3], who used split-
ting of retarded Green’s functions and the random-
phase approximation [7]. However, these methods also
failed to remove the main drawbacks of the Stoner
model that appear when dealing with magnetic and
thermodynamic properties at nonzero temperatures.
1063-7834/05/4706- $26.00 1111
Further progress in methods for calculating the sus-
ceptibility was achieved when diagram techniques for
the Hubbard operators were used [14, 15]. This
approach is a generalization of the diagram technique
[16–19] used for spin operators of localized magnetic
moments.

While it is easy to substantiate the diagram analysis
for localized electrons (for example, the transverse ac
susceptibility of a system consisting of coupled itiner-
ant and localized electrons can be calculated, including
the Kondo anomalies [20], up to the third order in the
s−d exchange constant) [21, 22], the diagram technique
for the Hubbard model has not been developed as a
clear geometric algorithm, and the structure of the dia-
gram series is unknown [8]. For example, “no method
is known to obtain a priori graphic series not connected
to any particular precedence system” [8]. Recently, the
quantum Monte Carlo method has been widely used to
study the susceptibility of the Hubbard model [11].

However, often analytical solutions for the suscepti-
bility that are required, so the problem of calculating
the ac susceptibility is highly topical, especially since
new experimental data appear that require explanation
[23, 24].

In the 2D two-sublattice B–B'–U Hubbard model, in
contrast to the standard Hubbard model, it is assumed,
following [5], that the lattice consists of two sublattices
of atoms of different kinds and, furthermore, that elec-
tron transitions to the next-to-nearest neighbors in the
crystal lattice are taken into account. The Hamiltonian
of this model has the form

 (1)H H0 V ,+=
© 2005 Pleiades Publishing, Inc.
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(2)

 (3)

where , ajσ are the Fermi creation and annihilation
operators for an electron with spin σ on site j (j = f, l);

nfσ = afσ; ε1(ε2) is the self-energy of an electron on
a site belonging to the sublattice A (C); Bfl = B( f – l)
and Bl 'l = B(l ' – l) are the transfer integrals describing
electron jumps from atom to atom that occur at the
expense of the kinetic energy and crystalline field to the
nearest sites and to the next-to-nearest sites situated on
the square diagonal, respectively;  = –σ; ωe1 and ωe2
are the Zeeman frequencies of electrons belonging to
different sublattices; and U1(U2) is the Coulomb repul-
sion energy of two electrons situated on one site of the
sublattice A (C). In order to draw the system described
by the Hamiltonian in Eq. (1) closer to the case of holes
moving in CuO2 planes of HTSCs, it is assumed that
jumps along diagonals can be performed by electrons
belonging to only one sublattice (which models oxygen
atoms in CuO2 planes) and only within the same sublat-
tice. We should stress that, for the sake of simplicity, we
consider a hypothetical square lattice.

Magnetic excitations of electrons are described by
the operators

 

Here, an electron with wave vector p + q and spin up (↑ )
is excited into the state with wave vector p and spin
down (↓ ) and the subscript a (b) is related to the sublat-
tice A (C). By converting the spin density operators to
the Heisenberg representation

 

we get the following equation of motion:

(4)

where B(p) = –2B(cos(pxa) + cos(pya)) and B(p + q) can
be expressed in a similar way. The equations of motion
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for operators , , and  are
obtained similarly.

Let us consider the last terms in differential equa-
tion (4). The Stoner theory [13], which is based on the
Hartree–Fock approximation, is limited to the contribu-
tion [7]

 (5)

The spin S in Eq. (5) is defined as

 

Following [1, 2], we isolate the spin projection fluc-
tuation operator in the last two terms in Eq. (4). We get

 (6)

where ∆S is the spin fluctuation operator

 

The Heisenberg operators can be written as [1, 2]

 (7)

where

 (8)

We will call the representation of the Heisenberg oper-
ators in the form of Eq. (7) the interaction-like repre-
sentation. Notice that the Hamiltonian H0 in Eq. (7)
coincides with the Hamiltonian H0 in Eq. (1) to within
the renormalization
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We get the following set of two differential equations
for the unknown operator defined in Eq. (8) and the

operator (p, q, τ):

 (9)

where we denoted Φ2 = 1/4 – S2 and made use of the fact

that the spin projection fluctuation operator (τ) =
exp(–H0τ)∆S(τ)exp(H0τ) satisfies the equation

 

Therefore, (τ) = ∆S(0) = ∆S and (∆S)2 = Φ2 – 2S∆S.
The last equality can be easily proved by expressing the
particle number operator through the spin fluctuation

operator and making use of the equality  = nfσ.

The solution to the set of differential equations (8)

for the operator (p, q, τ) is given by

 (10)

Consequently, the general solution to differential
equation (4) is given by

 (11)

where (p, q, τ) = exp(H0τ) (p, q, 0)exp(–H0τ).

Solving the set of four differential equations, we get
solutions for the spin density operators:
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+ ap↓
+

ap q↑+ 0( ) 1
ε2↓ ε1↓–

2t p

--------------------+ 
  1

ε2↑ ε1↑–
2t p q+

--------------------– 
 

+ ap↓
+

bp q↑+ 0( ) 1
ε2↓ ε1↓–

2t p

--------------------+ 
  Bp q+

t p q+
------------

– bp↓
+

ap q↑+ 0( )
Bp

tp

------ 1
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bp q↑+ 0( )
Bp
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× e
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e
1
2
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1
2
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1
2
--- σS+ 
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1
2
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1
2
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A similar procedure can also be carried out for the spin

density operator (k, q). The expression obtained for

(k, q) is substituted into Eq. (11), and we obtain the

general solution for the operator (p, q, τ). An analo-

gous procedure is also carried out for the operator (p,
q, τ). Given these solutions, we can calculate the trans-

t p q+

ε2↑ ε1↑–
2

-------------------- 
  Bp q+

2
+ ,=

J p 4B' pxa( ) pya( ),coscos–=

J p q+ 4B' px qx+( )a( ) py qy+( )a( ).coscos–=

Sb
–

Sa
–

Sa
–

Sb
–

P

verse ac susceptibility of electrons belonging to the
sublattices A and C.

The transverse ac susceptibility is defined as

(13)

Using Eq. (11) and the solution for (p, q, τ), we can
obtain a rather cumbersome expression for the trans-
verse ac susceptibility. For high-temperature supercon-
ductivity, the strong correlation limit is of most interest.
As demonstrated in [2], in this case, we have S = 1/2. In
the special case of strong correlations and n = 1, the
total transverse susceptibility of the system is given by

χ+–
q ω,( ) i te

iωt– 〈 Sa
–

p q t, ,( ) Sb
–

p q t, ,( ),+[
p p',
∑d

0

∞

∫=

Sa
+

p' q– 0, ,( ) Sb
+

p' q– 0, ,( )+ ]〉 .

Sb
–

(14)

χ+–
q ω,( ) χaa

+–
q ω,( ) χab

+–
q ω,( ) χba

+–
q ω,( ) χbb

+–
q ω,( )+ + +=

=  
1
4
---

np↓
a〈 〉 np q↑+

a〈 〉–( ) 1
ε2↓ ε1↓–

2βt p

--------------------– 
  1

ε2↑ ε1↑–
2γt p q+

--------------------+ 
  βγ

Bp

tp

------
Bp q+

t p q+
------------–

ω βt p– γt p q+–
1
2
--- ωe1 ωe2 U1 U2– J p– J p q++ + +( )+

---------------------------------------------------------------------------------------------------------------------------------------------------------
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∑
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∑

+
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--------------------– 
  Bp q+
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------------- 1
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--------------------– 
  Bp
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-------–
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1
2
--- ωe1 ωe2 U1 U2– J p– J p q++ + +( )+

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------

+
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+
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+
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2βt p
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  Bp q+
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1
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----------------------------------------------------------------------------------------------------------------------------------------------------------------------------

+

np↓
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ε2↓ ε1↓–
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--------------------+ 
  1

ε2↑ ε1↑–
2γt p q+
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  βγ
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t p q+
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1
2
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---------------------------------------------------------------------------------------------------------------------------------------------------------







.

In Eq. (14), α and β take on two values, α = ±1 and β =

±1; (q, ω) and (q, ω) are the dynamical
responses of the electron subsystems A and C, respec-

tively; and (q, ω) and (q, ω) describe magneti-
zation transfer between the electron subsystems.

The correlation functions in the numerator of
Eq. (14) for the transverse ac susceptibility are calcu-
lated in the static-fluctuation approximation in a similar
way. In the end, we get (n = 1, S = 1/2; see, e.g., [1, 2, 4])

χaa
+– χbb

+–

χab
+– χba

+–
(15)

np↓
a〈 〉 1

2
--- 1

ε2↓ ε1↓–
2t p

--------------------– 
  f

+ ε1↓ ε2↓+
2

--------------------- t p+ 
 =

+ 1
ε2↓ ε1↓–

2t p

--------------------+ 
  f

+ ε1↓ ε2↓+
2

--------------------- t p– 
  ,

np q↑+
a〈 〉 1

2
--- 1

ε2↑ ε1↑–
2t p q+

--------------------– 
  f

+ ε1↑ ε2↑+
2

--------------------- t p q++ 
 =

+ 1
ε2↑ ε1↑–

2t p q+
--------------------+ 

  f
+ ε1↑ ε2↑+

2
--------------------- t p q+– 

  ,
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(16)

(17)

where f +(x) = 1/(1 + exp(βx)) is the Fermi distribution
function.

It follows from Eq. (15) that S = 1/2 in the case
where the Coulomb potential is large as compared to
the transfer energy. Substituting Eq. (15)–(17) into
Eq. (14), we get the final expression for the transverse
ac susceptibility of a system described by the Hubbard
Hamiltonian.

It is instructive to study the poles of the ac suscepti-
bility (the collective-excitation spectrum of the Hub-
bard model) given by Eq. (14). This spectrum is shown
in Fig. 1. For the parameter values indicated, the spec-
trum is a band consisting of four subbands. Two central
subbands cross each other and form a single subband,
so there are, in fact, only three subbands. The spectrum
shown in Fig. 1 apparently indicates an antiferromag-
netic ordering in the 2D Hubbard model.

It is also interesting to consider the static magnetic
susceptibility as a function of q. In [11], the static mag-
netic susceptibility χ(q, 0) was calculated numerically
as a function of q in the case of an exactly half-filled
band for an 8 × 8 lattice. The calculations showed that
there is a sharp peak in χ(q, 0) at q = (π, π). As the tem-
perature decreases, the peak increases in magnitude.
The dependence of the static magnetic susceptibility on
the antiferromagnetic wave vector q in the first Bril-
louin zone is shown in Fig. 2 for various temperatures.
According to numerical calculations, the susceptibility
has a maximum at q = (π, π). As the temperature
decreases, the peak increases and its width decreases.
In contrast to the results from [11], the dependence
under discussion is nonmonotonic. Local extrema can
be identified (cf. [11, Fig. 3.2a] at temperature T =
0.33B).

It was shown in [23] that the static magnetic suscep-
tibility of systems similar to Li-doped La2CuO4

np↓
b〈 〉 1

2
--- 1

ε2↓ ε1↓–
2t p

--------------------+ 
  f

+ ε1↓ ε2↓+
2

--------------------- t p+ 
 =

+ 1
ε2↓ ε1↓–

2t p

--------------------– 
  f

+ ε1↓ ε2↓+
2

--------------------- t p– 
  ,

np q↑+
b〈 〉 1

2
--- 1

ε2↑ ε1↑–
2t p q+

--------------------+ 
  f

+ ε1↑ ε2↑+
2

--------------------- t p q++ 
 =

+ 1
ε2↑ ε1↑–

2t p q+
--------------------– 

  f
+ ε1↑ ε2↑+

2
--------------------- t p q+– 

  ,

ap↓
+

bp↓〈 〉 bp↓
+

ap↓〈 〉=

=  
Bp

2t p

------- f
+ ε1↓ ε2↓+

2
--------------------- t p+ 

  f
+ ε1↓ ε2↓+

2
--------------------- t p– 

 – ,

ap q+ ↑
+

bp q+ ↑〈 〉 bp q+ ↑
+

ap q+ ↑〈 〉=

=  
Bp q+

2t p q+
------------- f

+ ε1↑ ε2↑+
2

--------------------- t p q++ 
  f

+ ε1↑ ε2↑+
2

--------------------- t p q+– 
 – ,
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y x

Fig. 1. Energy spectrum (the denominator of the transverse
susceptibility) calculated for S = 1/2, q = (π, π), U1 = 6 eV,
U2 = 2 eV, B = 1.5 eV, B' = –0.3B, and n = 1.
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Fig. 2. Static magnetic susceptibility χ(q, 0) as a function of
q for various values of T. S = 1/2, U1 = 6 eV, U2 = 2 eV, B =
1.5 eV, and B' = –0.3B.
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Fig. 3. Static magnetic susceptibility χ(q, 0) as a function
of temperature calculated for q = (π/2, π/2), U1 = 6 eV,
U2 = 2 eV, B = 1.5 eV, S = 1/2, ε1 = –3 eV, ε2 = –l eV, and
various values of B'.
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Fig. 4. Inverse susceptibility as a function of temperature
for various values of the Coulomb potentials and wave vec-
tor: (1) U1 = 8 eV, U2 = 4 eV, q = (0, 0); (2) U1 = 6 eV, U2 =
3 eV, q = (0, 0); (3) U1 = 8 eV, U2 = 4 eV, q = (π, π); and
(4) U1 = 6 eV, U2 = 3 eV, q = (π, π).
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Fig. 5. Magnetic susceptibility as a function of the Coulomb
potential for various values of the wave vector q and of the
transfer integral B' at T = 0.5B.
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Fig. 6. Inverse susceptibility of the 1D Hubbard model as a
function of the Coulomb potential for S = 1/2, ωe/B = 0.01,
T = 0.02B, and q = (π, π). (1) Exact solution taken from [25]
and (2) the solution in the random-phase approximation
according to Eq. (14).
P

strongly deviates from the Curie–Weiss law at low tem-
peratures. In particular, the susceptibility increases
with temperature at low temperatures and then passes
through a maximum and decreases slowly (see, e.g.,
[23, Fig. 3]). This behavior can be explained in terms of
the spin glass model [23]. Let us demonstrate that a
similar behavior is possible in the Hubbard model at
low temperatures under certain circumstances. The
dependence of the static susceptibility on temperature
(T/B) for various values of the diagonal transfer integral
is shown in Fig. 3 for the wave vector q = (π/2, π/2). It
follows from Fig. 3 that the inclusion of the diagonal
transfer integral B' causes a drastic change in the low-
temperature behavior of χ(q). A maximum appears on
the χ(q) dependence when B' is taken into account, and
the larger the magnitude of B', the higher the tempera-
ture of the maximum. If the system is in the strongly
correlated state, the inclusion of the transfer integral B'
with values B' < 0 (B > 0) promotes delocalization of
electrons and, consequently, decreases the magnetiza-
tion in comparison with the case of B' = 0. Assuming
that there is competition between the localization and
delocalization in the Hubbard model, the fraction of the
Pauli susceptibility becomes larger with inclusion of B'
as compared to the case where B' = 0. Therefore, the
peak observed experimentally in [23] can be explained
not only in terms of the spin glass state but also in terms
of the contribution from the diagonal transfer integral to
the susceptibility at a certain value of q at low temper-
atures.

In [24], the temperature dependence of the static
susceptibility is presented for various values of the
Coulomb potential U. In order to compare our results to
the data from [24], we also plotted the inverse suscepti-
bility as a function of temperature for various values of
the Coulomb potential (Fig. 4). The results are clearly
in qualitative agreement. As for the quantitative com-
parison, the results agree in order of magnitude; as the
temperature increases, the susceptibility decreases (the
inverse susceptibility increases) and the curves
approach straight lines. This kind of behavior corre-
sponds to the Curie–Weiss law χ ~ 1/(T + Θ) with Θ >
0, so there is no ferromagnetic transition (at least in the
given range of U). It follows from Fig. 4 that the inverse
susceptibility depends on q (cf. Fig. 1).

Another interesting property is the behavior of the
static magnetic susceptibility as a function of the Cou-
lomb potential (U1 + U2)/2 for various values of the
wave vector and the transfer integral B' at a constant
temperature (Fig. 5). It follows from Fig. 5 that the
static susceptibility depends on the Coulomb potential,
the transfer integral B', and q.

As mentioned above, the static fluctuation approxi-
mation made it possible to calculate the ground-state
energy of the Hubbard model. A comparison of the
results for the special case of the 1D Hubbard model
with the exact solution [6] shows that, in the limit of
weak or strong correlations, the solution obtained in the
HYSICS OF THE SOLID STATE      Vol. 47      No. 6      2005
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static-fluctuation approximation coincides with the
exact solution [6]. For intermediate correlations, the
ground-state energy values obtained by these methods
are quite close to each other [4]. In order to judge how
well Eq. (14) describes the susceptibility behavior, a
comparison with exact calculations is necessary. The
1D Hubbard model in a magnetic field was exactly
solved in [25]. The study in [25] is a logical extension
of the solution from both [6] and [26], i.e., the exact
solution of the 1D Hubbard model at temperature T ≠ 0.
Figure 6 presents the dependences of the inverse static
susceptibility obtained using the exact solution and cal-
culated in the random phase approximation according
to Eq. (14) (accurate to within a constant factor) [7]:

 

It follows that, qualitatively, the behaviors of the
inverse static susceptibility as calculated exactly and in
the static-fluctuation approximation are the same. Note
that we assumed that S = 1/2 in the calculations. If we
include the dependence of the spin on the Coulomb
potential [2, Fig. 4]), the curves coincide even better.

To conclude, the method of solving the Hubbard
model in the static-fluctuation approximation devel-
oped in [1, 2, 4] enables one to calculate not only the
Green’s functions and the ground-state energy but also
the magnetic susceptibility and to study the behavior of
the susceptibility as a function of various parameters of
the system. Comparison of the results obtained for the
special case of the 1D Hubbard model with the exact
solution of the 1D Hubbard model in a magnetic field
has shown that the static-fluctuation approximation
gives a faithful description of the properties of the Hub-
bard model. Preliminary results of this work were pre-
sented in the Winter Physics Theory School
“Kourovka” [27].
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Abstract—A theory of the magnetoelectric effect in ferromagnetic–piezoelectric bilayer structures is consid-
ered for platelike samples. The magnetoelectric voltage coefficient is expressed through the parameters charac-
terizing the magnetic and piezoelectric phases. It is shown that the magnetoelectric voltage coefficient consid-
erably increases in the region of electromechanical resonance. The thickness ratio between the ferromagnetic
and piezoelectric phases at which the magnetoelectric voltage coefficient is maximum is determined. The cal-
culated magnetoelectric voltage coefficients for Permendur–PZT (lead zirconate titanate) structures are pre-
sented and compared with the experimental data. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION
Magnetoelectric composites are mechanically inter-

acting mixtures of magnetostrictive and piezoelectric
components. The magnetoelectric effect in composites
is caused by a mechanical coupling between the mag-
netic and piezoelectric subsystems. In a magnetic field,
magnetostriction induces mechanical vibrations in a
magnetic material. These vibrations are transferred to
the piezoelectric phase and bring about polarization
due to the piezoelectric effect. Since the magnetoelec-
tric effect in magnetostrictive piezoelectric composites
is associated with the mechanical coupling of the sub-
systems, the magnetoelectric coefficient considerably
increases in the region of electromechanical resonance
[1–6]. If the scale of variations in external effects is
much larger than the characteristic sizes of the compos-
ites, these materials can be considered homogenous
media with effective parameters [7]. The theory of the
magnetoelectric effect for ferrite–piezoelectric com-
posites, which is founded on the method of effective
material parameters, and the experimental results
obtained for disklike and platelike samples based on
nickel spinel ferrite–lead zirconate titanate (PZT) are
given in our previous works [3–5]. The use of a ferro-
magnet with magnetostriction constants larger than
those of ferrite offers possibilities for increasing the
magnetoelectric coefficient. Laletsin et al. [6] experi-
mentally studied Permendur–PZT–Permendur struc-
tures. In this case, the composite cannot be considered
a homogenous medium and the above theory is not
applicable. In the present work, we obtained an expres-
sion for the magnetoelectric coefficient of heteroge-
neous composites.

2. THEORETICAL BACKGROUND
As a model, we consider a sample in the form of a

plate prepared from a bilayer composite, i.e., the
1063-7834/05/4706- $26.00 1118
mechanical joint of a ferromagnet (m) and a piezoelec-
tric (p) (Fig. 1). The outer surfaces of the piezoelectric
and the ferromagnet are coated with metallic contacts.
The thicknesses of these contacts are assumed to be
negligible. Let the sample be polarized along the nor-
mal to the contact plane (the X3 axis). Static (magnetiz-
ing) and alternating magnetic fields can be aligned both
along the normal to the contact plane and with the con-
tact plane along the X1 axis. In accordance with these
orientations of the magnetic fields, we will distinguish
between the longitudinal and transverse magnetoelec-
tric effects.

An alternating magnetic field induces vibrations in
the ferromagnet due to magnetostriction. These vibra-
tions propagate both across the thickness of the sample
and in the contact plane. We will restrict our consider-
ation to the specific case of volume vibrations propa-
gating along the plate, because these vibrations occur at
the lowest frequencies.

It is assumed that the thickness mh + ph and the width
W of the plate are considerably smaller than its length
L. The faces of the plate are considered to be free;
hence, the stresses at the surfaces of the plate are zero.
Since the plate is thin and narrow, we can assume that

x3 x2

x1L

P
1

2

3

3

Fig. 1. Schematic drawing of the heterogeneous structure:
(1) piezoelectric, (2) ferromagnetic, and (3) metallic con-
tacts. The arrow indicates the direction of polarization P.
© 2005 Pleiades Publishing, Inc.
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the stress components T2 and T3 are equal to zero not
only at the surfaces but also over the entire volume of
the plate and that only the component T1 of the stress
tensor is nonzero. In our case, the upper and lower faces
of the plate are equipotential. Therefore, only the com-
ponent E3 of the electric field vector is nonzero. The
equations for the strain tensor mSi in the magnet and for
the strain tensor pSi and the electric field induction Di in
the piezoelectric for the transverse orientation of the
fields have the form

 (1)

 (2)

 (3)

where ms11 and ps11 are the components of the magnetic
compliance tensor and the piezoelectric compliance
tensor, respectively; pε33 is the component of the per-
mittivity tensor for the piezoelectric; and pd31 and mq11
are the piezoelectric and piezomagnetic coefficients,
respectively. For the longitudinal orientation of the
electric and magnetic fields, relationship (1) contains
mq11H1 instead of mq31H3.

The stress components involved in relationship (1)
can be expressed through the strain components. By
substituting these components into the equation of
motion for the medium, we derive the differential equa-
tion with respect to the projection x of the displacement
vector of the magnetic medium mux. The solution to this
equation can be written in the form

 (4)

where mk = ω(mρms11)1/2 and mρ is the density of the fer-
romagnet.

Vibrations of the magnetic medium due to the
mechanical coupling induce vibrations of the piezo-
electric. The latter vibrations can be represented as a
superposition of vibrations caused by the coupling with
the magnet and natural vibrations initiated in the piezo-
electric by the induced electric field. Since the contact
between the layers is not ideal, the displacement of the
piezoelectric medium pux(x) can be written as

 (5)

where β ∈  (0.1) is the coupling coefficient between the

phases and (x) stands for the displacements of the
piezoelectric medium in the absence of coupling with
the ferromagnet. By solving the equation of motion of
the medium for the piezoelectric plate not coupled with
the ferromagnet, we derive the following relationship
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for the displacements (x) of the piezoelectric
medium:

 (6)

where pk = ω(pρps11)1/2, pρ is the density of the piezo-
electric, and pκ = pkL is the dimensionless parameter.

The integration constants A1 and B1 can be deter-
mined from the boundary conditions. Since the left and
right faces of the sample are free, the resultant force
affecting them is equal to zero. Consequently, we
obtain the following relationships for the left and right
boundaries:

 (7)

 (8)

Taking into account relationship (5) and boundary
conditions (7) and (8) for displacements pux(x) of the
piezoelectric medium, we derive the expression

 (9)

where mκ = mkL/2 and γ = (ps11/ms11)(mh/ph) are dimen-
sionless parameters.

The electric field strength appearing in the piezo-
electric under strains can be found from relationship (3)
using the open-circuit condition; that is,

 (10)

After substituting the obtained expressions into rela-
tionship (10) and calculating the integral for the electric
field strength E3 in the piezoelectric, we derive the
equation

 (11)

Here, we introduced the notation

(12)

where  = /(pε33
ps11) is the square of the electro-

mechanical coupling coefficient of the piezoelectric for
in-plane vibrations.
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Let us determine the magnetoelectric voltage coeffi-
cient for a bilayer structure from the relationship

 (13)

where Eav = U(mh + ph) is the average value of the elec-
tric field strength and U is the voltage difference across
the electrodes. By assuming that the total voltage drop
occurs across the piezoelectric, we obtain the following
relationship for the magnetoelectric voltage coefficient
at the transverse orientation of the electric and mag-
netic fields:

 (14)

For the longitudinal orientation of the electric and mag-
netic fields along the X3 axis, the piezomagnetic coeffi-
cient mq31 replaces mq11 in the expression for the magne-
toelectric coefficient. Since the quantity mq31 is usually
smaller than the quantity mq11 due to the demagnetizing
fields, the effect for the longitudinal orientation is usu-
ally one order of magnitude weaker than that for the
transverse orientation.

It follows from relationship (14) for the magneto-
electric coefficient that, at frequencies when ∆a = 0,
there occurs a resonant increase in the magnetoelectric
coefficient. The losses in the structure can be taken into
account through the damping coefficient by substitut-
ing the circular frequency in the form ω = ω' + iχ [8],
where χ is the parameter characterizing the damping.
Figure 2 shows the frequency dependences of the mag-
netoelectric voltage coefficient calculated for Permen-
dur–PZT structures from formula (15) with different
coupling coefficients β. The calculations were carried
out using the following parameters: ms11 = 5.5 ×
10−12 m2/N, mq11 = 63.75 × 10–10 m/A, mh = 0.36 mm,
ps11 = 15 × 10–12 m2/N, pd31 = –175 × 10–12 m/V,
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Fig. 2. Frequency dependences of the magnetoelectric volt-
age coefficient for the structure based on Permendur and
lead zirconate titanate with coupling coefficients β = (1) 1.0
and (2) 0.4.
P

pε33 /ε0 = 1750, ph = 0.36 mm, damping coefficient χ =
20000 rad/s, sample length L = 7.5 mm, and phase-cou-
pling coefficients β = 1.0 and 0.4.

It can be seen from Fig. 2 that, in the case of rigid
coupling between the ferromagnet and the piezoelectric
(β = 1), a resonant increase in the magnetoelectric coef-
ficient is observed at a frequency of approximately
330 kHz for a sample with the above dimensions. This
increase in the magnetoelectric coefficient is associated
with the resonance occurring in the ferromagnet. Under
the conditions where the coupling coefficient is less
than unity, an additional resonance peak appears in the
frequency dependence. In the case of rigid coupling,
the magnetic field induces mechanical vibrations in the
ferromagnet and the vibrations of the piezoelectric
repeat them. When the coupling coefficient is less than
unity, the vibrations of the piezoelectric medium with
the parameter mk are accompanied by vibrations charac-
terized by the parameter pk. This leads to the appear-
ance of an additional peak in the frequency dependence
of the magnetoelectric voltage coefficient.

In the low-frequency range, the magnetoelectric
coefficient is almost independent of the frequency and
its value is determined by the relationship

(15)
It follows from relationship (14) that the magnetoelec-
tric coefficient depends not only on the parameters of
the magnetic and piezoelectric phases but also on the
percentage of the composite and on the phase-coupling
coefficient. For a small coupling coefficient β, the mag-
netoelectric coefficient is directly proportional to it.
When the coupling coefficient β tends to unity, the
dependence becomes weaker. According to relation-
ships (14) and (15), the magnetoelectric coefficient
reaches a maximum when the thickness ratio between
the ferromagnetic and piezoelectric layers is given by

 (16)

As was shown in the experiments [6], the maximum
magnetoelectric coefficient is observed for a piezoelec-
tric layer of thickness ph = 0.6 mm and a magnetic layer
of thickness mh = 0.36 mm. After substituting the com-
pliances for the Permendur and PZT alloys, we found
that the experimental results are in good agreement
with theory for a coupling coefficient β ≈ 1.

3. CONCLUSIONS

Thus, the mechanical coupling between the magne-
tostrictive and piezoelectric subsystems in ferromag-
netic–piezoelectric composites gives rise to a magneto-
electric effect. The maximum magnetoelectric coeffi-
cient is observed for a specific thickness ratio between
the magnetic and piezoelectric phases. This ratio
depends on the phase-coupling coefficient and on the

αE T,
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dp
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ratio between the compliance moduli for the ferromag-
netic and piezoelectric phases.
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Abstract—Mean-field theory is generalized to lattice systems of interacting magnetic moments by introducing
a distribution function of random local magnetic fields to take into account the nonequivalence of various lattice
sites. Analytical and numerical methods developed in this approach are used to describe ferromagnetism of non-
magnetic semiconductors with magnetic impurities. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

This study deals with a generalization of mean-field
theory to lattice systems of paramagnetic ions with
exchange interaction. The idea behind this generaliza-
tion is simple, and generalization can be made to vari-
ous systems. For the sake of definiteness, however, we
consider a specific system, namely, a nonmagnetic
semiconductor with magnetic impurities.

Recently, ferromagnetism in semiconductors with
magnetic impurities has been intensively studied [1]
because these materials are candidates for electronic
technology. However, the mechanisms of this phenom-
enon are not clearly understood. Ferromagnetic order-
ing of the spins of magnetic impurities can be due to
various indirect interactions mediated by free carriers:
RKKY exchange [2], kinematic exchange [1, 3], etc.
[1]. The universal Bloembergen–Rowland (BR) mech-
anism [4] can also be operative; this mechanism does
not require the presence of carriers (or a high density of
carriers, which leads to degeneracy) and can be respon-
sible for ferromagnetism in systems like GaAs(Mn)
and GaN(Mn) [5]. In this mechanism, the spins of
impurities interact via virtual holes that arise in the
valence band when electrons are promoted from this
band to acceptor impurity levels. Since there is a thresh-
old for this process due to the finiteness of the acceptor
ionization energy ∆, the energy of this indirect interac-
tion decays exponentially with the distance between
impurity atoms. The characteristic energy of this decay
is determined by the de Broglie wavelength λ∆ =
"(2m∆)–1/2 of a hole with energy ∆ and mass m. The
energy W of the indirect interaction between the spins
1063-7834/05/4706- $26.00 ©1122
of two impurity atoms separated by a distance r is given
by [5]

 (1)

where Jpd is the contact interaction energy between an
impurity spin and a hole, N is the concentration of the
host lattice atoms, and K2 is the MacDonald function.
At large distances (r * r0), we have K2(2r/λ∆) ≈
(4r/πλ∆)–1/2exp(–2r/λ∆). Keeping only the exponential
part of the spatial dependence of the interaction energy
in Eq. (1) in this case, we write the dependence in the
form

 (2)

where r0 = λ∆/2 and J0 ~ m2∆/π3"4N2  or

 (3)

A similar expression for the interaction energy
between magnetic impurity atoms is used in the kine-
matic-exchange model [1]:

 (4)

where r0 is the characteristic interaction length.

2. GENERALIZED MEAN-FIELD THEORY

In this paper, we study the magnetic state of a sys-
tem of magnetic moments which interact with one
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another via exchange interaction described by Eq. (2)
or (4). We take into account that, in real systems, mag-
netic impurity atoms are located at host lattice sites (at
least when the impurity concentration is sufficiently
low). In this respect, the system under study closely
resembles the Ising model of magnetic dipoles. This
model is a lattice system of magnetic moments that can
point in one of two possible (opposite) directions and
interact only with their nearest neighbors.

In our case, however, we cannot restrict our consid-
eration to only nearest neighbor interactions. For this
reason, the properties of the magnetic systems in ques-
tion are analyzed using a generalized mean-field theory
and the required distribution function of local fields
(see below) is found using numerical methods.

The need to generalize the conventional mean-field
theory arises from the fact that this theory not only
neglects correlation between magnetic moments but
also assumes all lattice sites to be equivalent. Indeed,
the mean field is assumed to be the same at all sites,
whereas in actuality this field varies randomly from site
to site. It is natural to take into account these random
variations. A method for solving this problem was pro-
posed for the first time in [6], where a system of ran-
domly arranged magnetic dipoles was considered.
Later on, this method was analyzed in detail in a series
of papers [7], where an ad hoc energy distribution func-
tion of pairwise interactions was used. In this general-
ized model, the standard equation from the mean-field
theory

 (5)

(where j is the reduced magnetization of the system,
λ is the mean-field constant) is replaced by a general-
ized relation,

 (6)

Here, F(j; H) is the distribution function of local fields
H exerted on each magnetic moment of the system
(which is not necessarily regular) with magnetization j
by the other magnetic moments (equal to µ). Clearly,
when calculating this distribution function, it is more
consistent to use the spatial dependence of the pairwise
interaction energy W of magnetic moments (e.g., of the
form of Eq. (2)) than to employ an ad hoc distribution
of these interaction energies (as done in [7]). Note that
Eq. (5) given by the mean-field theory is equivalent to

 (7)

For square or simple cubic lattices (considered in the
Ising model), the distribution function F(j, H) can eas-
ily be found in an explicit form. Thereafter, the mag-

j
λ j
kT
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 tanh=

j
µH
kT
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  F j; H( ) H .dtanh
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kT
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netic properties of the system can be studied using
Eq. (6).1 In our model, the function F(j, H) can be
found analytically only in the (less interesting) case of
a high impurity concentration. For this reason, we per-
form numerical calculations.

3. NUMERICAL CALCULATIONS 
OF THE DISTRIBUTION FUNCTIONS

In order to calculate the random-field distribution
function, spins were randomly distributed over the lat-
tice sites within a fairly large spherical region (the total
number of spins was greater than 104) and the magnetic
field H was calculated at the center of this region. The
function F(j; H) was calculated for a large number
(about 104) of such samples. Figures 1–3 show numer-
ically calculated distribution functions F(j; H) for three
groups of three-dimensional (3D) systems. In one

group, the parameter  was varied at fixed values of
j = 1 and p = 0.1; in another group, the parameter p was

varied at j = 0.1 and  = 0.5; and in the third group,

the magnetization j was varied at  = 0.1 and p = 0.1.
It can be seen that the functions F(j; H) are close to

Gaussians for  * 1 and deviate from Gaussians out-
side this concentration range. The largest deviations are

observed for the function F(1; H): at  ! 1, this
function breaks up into separate peaks corresponding to
individual lattice sites.

4. ANALYTICAL CALCULATION 
OF THE DISTRIBUTION FUNCTIONS

According to computer simulations, the distribution
function F(j; H) is close to a Gaussian if  * 1, i.e.,
if the number of lattice sites in the effective-interaction
region is much greater than the coordination number z.
This is not surprising, because the local field in this case
is a sum of a large number of independent terms with a
large variance and, according to the limit theorem from
probability theory, is described by a Gaussian distribu-
tion function.

In order to find the function F(j; H) analytically, we
neglect the discreteness of the lattice and only take into
account that the minimum spacing between magnetic
moments cannot be less than the lattice parameter a.

In this model, the local effective fields h(r) = –W(r)/µ
are produced by magnetic moments randomly distrib-
uted in space. These fields vary randomly from point to
point. Their sum H is a random variable and is charac-
terized by a distribution function F(j; H). This function,
in general, depends on the magnetization j of the sys-
tem, which is determined by the average fraction η =
(1/2)(1 + j) of the magnetic moments directed along the
magnetization of the system. Note that F(1; H) is the

1 Other methods for solving this problem and an extensive bibliog-
raphy can be found in reviews [8–10].
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Fig. 1. Distribution functions F(1; H) for completely magnetized (j = 1), partly occupied (p = 0.1) cubic lattices of Ising magnetic
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distribution function in the case where all magnetic
moments are parallel to one another.

We find the distribution function using the Markov
method [11], according to which

 (8)

F j; H( ) 1
2π
------ A q( ) iqH–( ) q,dexp

∞–

∞

∫=

A q( )

=  iqhζ r ζ,( )[ ]τ r ζ,( ) r ζddexp

r  = a

rmax

∫
ζ( )
∫

Mmax

,
Mmax ∞→

lim
P

where

 (9)

is the effective magnetic field produced by a magnetic
moment situated at a random distance r from the coor-
dinate origin and hJ = J/µ. The random variable ζ takes
on values ±1 with probabilities η and (1 – η), respec-
tively, and defines the direction of the magnetic
moment; τ(r, ζ) is the distribution function for the ran-
dom variables r and ζ; and Mmax is the number of mag-
netic moments within the sphere of radius rmax over

hζ r ζ,( ) ζh r( ), h r( ) hJ r/r0–( )exp= =
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 = 0.5. At p * 0.1, these functions are close to Gaussians.Nr0
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which integration is performed. If the distributions of r
and ζ are uniform and not correlated, then

(10)

for a 3D system and

(11)

for a 2D system.

Substituting Eq. (10) into Eq. (8) gives

 (12)
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(13)

for a 3D system and

 (14)

for a 2D system.
Equations (12)–(14) are too complicated to be used

to find an analytical expression for the distribution
function F(j; H). For this reason, we use a small-q
approximation, based on the fact that large values of q
make an insignificant contribution to the inverse Fou-
rier transform of Eq. (8). In this approximation, the
functions cos[qh(ρ, α)] and sin[qh(ρ, α)] involved in
the integrals in Eqs. (13) and (14) are replaced by the
first nonvanishing term in their expansion in a power

C q( ) 4π 1 qh r( )[ ]cos– ij qh r( )[ ]sin–{ } r
2

rd
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∞
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series in qh and the integrals can easily be calculated.

For  @ 1 (i.e., a ! r0), we thus obtain

(15)

The distribution function F(j; H) in this case is
found to be a Gaussian,

(16)

where

(17)
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Fig. 3. Distribution functions F(j; H) for partly occupied
(p = 0.1) cubic lattices of Ising magnetic moments interact-
ing through the Bloembergen–Rowland mechanism
[described by Eq. (2)] for various values of the magnetiza-

tion.  = 0.1. At j ! 1, the distribution function is close

to a Gaussian. As j increases, the left-hand wing gradually
becomes shorter. At j = 1, the distribution function is non-
zero only for H > 0.

Nr0
3
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for a 3D system with interaction (2);

(18)

for a 3D system with interaction (4);

(19)

for a 2D system with interaction (2); and

(20)

for a 2D system with interaction (4).
As the magnetization decreases, the maximum of

the function F(j, H) (at H = jHj) shifts to lower fields,
while its width remains unchanged. The concentration
dependences of the parameters Hj and σ of the Gauss-
ian distribution derived above are supported by the
results of computer simulations shown in Fig. 1 (the
bottom left-hand panel in Fig. 1), which agree well with
Eqs. (17). There is also good agreement in the other
cases (for interaction (4) and for 2D systems).

The approximate expressions derived above are
valid if the effective-interaction region contains a large

number of magnetic moments, i.e., if  * 1. How-
ever, this criterion depends on the magnetization j of the
system. For example, at j = 1, the effective field cannot
be negative, i.e., F(1; H < 0) = 0. This condition is not
satisfied for Gaussian function (16); however, this func-
tion is exponentially small in the range H < 0 if Hj * σ
or, according to Eqs. (17)–(20),  * 1. In the case
of j = 0, the distribution function is symmetric relative
to H = 0 and can be a Gaussian even for much lower val-

ues of the parameter .

5. MAGNETIC PROPERTIES 
OF LATTICE SYSTEMS

The magnetic properties of the systems in question are
determined by the generalized mean-field equation (6).
If the distribution function F(j; H) is close to a Gauss-
ian, this equation reduces to the conventional mean-
field equation (5). Indeed, we have  = jHj in this case
and the mean-field constant involved in Eq. (5) is λ =

µHj ∝  . This leads to the conventional concen-
tration dependence of the Curie temperature TC ∝

. If the distribution function is not a Gaussian

(which is the case, as shown above, for  ! 1), we

H j/hJ 4π( )3/2
pNr0

3
,=

σ/hJ π/2( )3/4
pNr0

3
=

H j/hJ 2πpNr0
2
,=

σ/hJ π/2( )1/2
pNr0

2
=

H j/hJ 4πpNr0
2
,=

σ/hJ π/2( )1/2
pNr0

2
=

pNr0
D

pNr0
3

pNr0
D

H

J0 pNr0
D

J0 pNr0
D

pNr0
3

HYSICS OF THE SOLID STATE      Vol. 47      No. 6      2005



GENERALIZED MEAN-FIELD THEORY FOR LATTICE MAGNETIC SYSTEMS 1127
may expect deviations from the predictions from the
conventional theory.

The results obtained by solving Eq. (6) with the
numerically calculated distribution functions support

this conclusion (Figs. 4, 5). For  ~ 1, the deviations
from the concentration dependence of the Curie tem-
perature predicted from the mean-field theory are
noticeable at small values of the concentration p. As
might be expected, these deviations are observed for
smaller values of p in the case of interaction (2), which
decays more slowly with distance (Fig. 4). In both
cases, the linear portion of the TC(p) dependence is
shifted to larger values of p, which can be interpreted in
experiments as the existence of a threshold concentra-
tion pc ~ 0.01 (in the 3D case) below which the system
remains paramagnetic at T = 0. In actuality, the ground
state is always ferromagnetic (J0 > 0!).

As an illustration of the results obtained let us con-
sider the GaAs(Mn) compound. This nonmagnetic
semiconductor with magnetic impurities has been best
studied experimentally [1, 2, 12]. The contact-interac-
tion energy Jpd in GaAs(Mn) has not been determined
exactly; estimates range in value from 1 to 3 eV [2].
The ionization energy of Mn acceptors is ∆ ≈ 0.11 eV
[13]. With this energy and the hole effective mass m ≈
0.5m0, the effective interaction length is calculated to
be r0 ≈ 4.3 Å, which is close to the lattice parameter a ≈
5.6 Å for GaAs (therefore, the shortest spacing between

Mn atoms substituting for Ga atoms is a/  ≈ 4 Å). For

 ~ 1 in the 3D case, the characteristic indirect-inter-

Nr0
D
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3
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C
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Fig. 4. Curie temperature TC plotted as a function of the lat-
tice site occupation probability p for a cubic lattice of Ising
magnetic moments interacting through the Bloembergen–
Rowland (BR) or kinematic-exchange (KE) mechanism.
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3
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action energy between Mn spins is found from Eq. (3)

to be J0 ~ (1/64π3)( ) = 5–40 meV. The absolute
values of the Curie temperature calculated from the
average value of J0 = 20 meV (for the range indicated
above) are shown in Fig. 5 on the right-hand vertical
scale. It can be seen that the calculations agree well
with the experimental data on the GaAs(Mn) com-
pound [12].2

Similar results were also obtained for a system in
which impurities interact through the kinematic-
exchange (KE) mechanism. In this case, Eq. (4) gives
J0 ~ 200 meV, which is one order of magnitude greater
than the value for the BR mechanism. It follows that the
predicted absolute values of the Curie temperature are
similar in both cases, because, as seen from Fig. 4, the
values of the dimensionless parameter kTC/J0 for the
KE mechanism are one order of magnitude smaller than
those for the BR mechanism.

6. CONCLUSIONS

The conventional mean-field theory has been signif-
icantly refined by introducing the distribution function
F(H) of random local magnetic fields for both regular
and nonregular (random) systems with magnetic inter-
action. This function possesses a clear physical inter-
pretation and enables one to determine not only the

2 It should be noted that low-temperature annealing for a prolonged
period brings about a considerably increased Curie temperature
as compared to that of the initial samples. It is likely that the non-
monotonic TC(p) dependence shown in Fig. 5 is due to the insuf-
ficiently long duration of annealing treatment of samples in [13].
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Fig. 5. Curie temperature TC plotted as a function of the lat-
tice site occupation probability p for a cubic lattice of Ising
magnetic moments interacting through the mechanism

described by Eq. (2).  = 0.5. The right-hand scale cor-

responds to J0 = 20 meV. The inset shows the same in loga-
rithmic coordinates.
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magnetization but also the energy E = –

of the system and, hence, other characteristics, such as
the free energy and heat capacity. In systems with long-
range interaction (where the local field is produced by
a large number of interacting magnetic moments), the
distribution function F(H) is Gaussian (regardless of
the magnetization j of the system) and all information
on the interaction and the mean concentration of inter-
acting magnetic moments is contained in two parame-
ters of this distribution, namely, the position of the
maximum H = jHj and its width σ. The method under
discussion (neglecting the correlation between the
magnetic moments) is convenient because these param-
eters can be determined using a known simple proce-
dure [11]. The generalized model refines the conven-
tional mean-field theory, which can be verified by com-
paring their results with known exact solutions for
simple cases.

The most noticeable changes are brought about by
the generalized mean-field theory in the results for a
low-density system, where the spacing between mag-
netic moments is comparable to the interaction length.
In this case, the distribution function becomes signifi-
cantly non-Gaussian, analytical calculations are no
longer simple, and numerical model calculations have
to be made to find the function F(H).

Although the idea behind the method under discus-
sion was described long ago [7], this method has only
recently been used to study the magnetic properties of
various specific 2D and 3D systems [14]. In this paper,
we have applied this method to study the properties of
a lattice system of magnetic moments between which
the interaction decreases exponentially with distance.
One example of such systems is a nonmagnetic semi-
conductor with magnetic impurities. The magnetic
ordering that occurs in this case can be adequately
described in terms of the generalized mean-field theory.
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Abstract—The Faraday effect (FE) was studied in Co–Sm–O composite films consisting of nanoparticles of
metallic cobalt embedded in a samarium oxide dielectric matrix. The volume of the magnetic phase was ~60%.
The FE spectral dependence for the condensates studied revealed a substantial change as compared to that for
bulk cobalt samples, as well as for the films of nanocrystalline Co and CoSm films prepared in this study. An
enhancement of the FE was also observed in the short-wavelength part of the optical spectrum. © 2005 Pleiades
Publishing, Inc.
Composite materials made up of nanosized mag-
netic particles separated by a dielectric layer have con-
siderable potential for both basic research and practical
applications. The broad interest expressed in magnetic
nanocomposites stems primarily from their exhibiting a
number of unusual phenomena, such as giant magne-
toresistance, magnetically soft and high-resistivity
properties, optical transparency over a broad spectral
region, and significant magnetooptical effects [1–3].
Belonging to this group is also resonant enhancement
of magnetooptical effects (MOEs), which is revealed
by these materials in various optical regions and was
predicted by theorists (see, e.g., [4]). Because the reso-
nance MOE originates from surface plasma vibrations
in particles of the magnetic material, the MOE should
depend on the particle size, the content of the magnetic
phase in the composite, and the optical parameters of
the metal and the dielectric. The situation is compli-
cated by the fact that the optical and magnetooptical
parameters of nanosized metal particles may differ sub-
stantially from those of the bulk materials and that the
properties of composites with a high magnetic-phase
content are governed both by individual characteristics
of the nanoparticles and by the effects originating from
their interaction.

Progress in miniaturization places a particular
emphasis on film nanocomposites. The materials that
have been studied thus far are primarily Co–SiO2 film
composites (see, e.g., [5, 6]). In [7], Co–Sm–O films
were prepared for the first time in which a composition
structure in the form of ferromagnetic nanoparticles of
metallic Co embedded in a Sm oxide matrix arose
under certain conditions of condensation and additional
annealing. Direct observations of nanoparticles were
carried out using electron microscopy and revealed
some characteristic features of the magnetic properties
of these composites. The results of those studies sug-
gest that various distinctive features and magnetoopti-
cal properties could be expected in these composites,
1063-7834/05/4706- $26.00 1129
including variations in the spectral dependence of the
Faraday effect (FE).

Here, we report on a study of the spectral and field
dependences of the FE in films of the Co–Sm–O sys-
tem, whose structure and magnetic properties are
described in [7]. The films were prepared by pulsed
plasma sputtering (PPS) of a SmCo5 target in vacuum
under an initial pressure of 10–6 Torr. X-ray fluores-
cence analysis showed that the Sm concentration varied
from one sample to another within 13–17 at. %. The
samples were ~100-nm-thick and did not contain the
SmCo5 phase, because samarium has high chemical
reactivity and, in the vacuum conditions chosen, oxi-
dizes directly in the vacuum chamber in the course of
film deposition. Auger electron spectroscopy detected
certain amounts of carbon in the films. Electron micros-
copy and x-ray diffraction measurements established
that the film structure is made up of magnetic particles of
a Co(C) solid solution, D ~ 1.5 nm in size, embedded in
samarium oxide (Sm2O3), with the volume of the mag-
netic phase f being ~60% [7]. This morphology of the
film nanocomposite is obviously responsible for the high
electrical resistivity of the samples (ρ ~ 0.5 Ω cm). Start-
ing films are superparamagnetic. At room temperature,
the magnetization curve has no hysteresis, but when
samples are cooled, magnetic hysteresis appears, with a
coercive force Hc ≅  50 Oe at T = 77 K. The temperature
dependence of Hc was used to determine the blocking
temperature (the temperature of transition to the super-
paramagnetic state), which was found to be TB ≅  81 K.
Our studies involved subjecting the films to heat treat-
ment, namely, annealing in vacuum (10–6 Torr) at various
temperatures, which initiated hysteresis at room tem-
perature. The value of Hc depended on the actual
annealing regime; the films subjected to short anneal-
ings at T ≤ 500 K exhibited a weak coercive force (Hc ≤
3 Oe). For the purpose of comparison, we also prepared
samples using the same technology of pulsed plasma
© 2005 Pleiades Publishing, Inc.
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sputtering of targets of pure cobalt and Co5Sm targets
in ultrahigh vacuum (10–9 Torr). In this case, Sm did not
oxidize, as a result of which these films differed
strongly from the above samples in terms of their struc-
ture and magnetic properties.

The FE spectral dependences were obtained with
the null technique by modulating the plane of polariza-
tion of light in the 400- to 1000-nm spectral interval.
The accuracy of measuring the rotation of the plane of
polarization was ±0.2′ (Faraday rotation). A magnetic
field of up to 4.5 kOe was directed along the light beam
normal to the sample plane. The field was measured to
within ±20 Oe.

Figure 1 presents the FE spectral curves (2αF) for
the starting Co–Sm2O3 films (thickness ~100 nm)
deposited on different substrates. Three features imme-
diately attract attention. (i) Unlike the decrease in the
FE with decreasing wavelength of light λ in pure cobalt
films reported in the literature [8], here it is seen to
grow appreciably. A similar pattern was observed with
the FE in layered Co/SiO2 films [9]. (ii) the FE reverses
sign in the wavelength interval from 550 to 800 nm.
(iii) Single-crystal substrates are conducive to displace-
ment of the 2αF(λ) curves toward shorter wavelengths.

Figure 2 presents 2αF(λ) graphs for films prepared
on glass substrates: for the starting film (curve 1) and
for those annealed at different temperatures for 30 min
(curves 2, 3). We see that annealing at Tann = 620 K
brings about the appearance of a maximum near λ ~
550 nm, with the FE increasing approximately three-
fold in this region. The wavelength at which the FE
reverses sign does not shift. Thus, these graphs demon-
strate the following points, which require explanation.
First, there is a rearrangement of the FE spectrum as
compared to solid Co films, which is accompanied by
an enhancement of the effect in the short-wavelength
region of the spectrum. Second, there is a dependence
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Fig. 1. Dispersion graphs of the FE (2αF) measured in a
magnetic field H = 4.5 kOe for starting Co–Sm2O3 films on
various substrates: (1) glass plates, (2) single-crystal quartz,
and (3) single-crystal MgO. The effective cobalt thickness
used in calculations of the specific FE was determined by x-
ray fluorescence to within 5%.
PH
of the FE value and of the position of the characteristic
points in the spectrum on the substrate type and anneal-
ing regime.

Let us compare the FE dispersion curves obtained
for a Co–Sm2O3 composite film with those for films
prepared by ablation of metallic Co and SmCo5 targets
in ultrahigh vacuum (Fig. 3). All the films were depos-
ited on glass substrates using the PPS technology, have
the same effective thickness of the metallic component,
and were annealed at 620 K. The FE spectral curves for
the films prepared by ablation of a pure cobalt target or
of a Co5Sm target in a vacuum of ~10–9 Torr differ in
terms of their pattern from the FE graph obtained for
the nanogranular Co–Sm2O3 film and are closer to the
literature data quoted for solid Co films [8]. One can
judiciously assume that the difference in the FE spec-
tral dependences between films prepared in a higher
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Fig. 2. Dispersion graphs of the FE (2αF) measured in a
magnetic field H = 4.5 kOe for a Co–Sm2O3 film prepared
on a glass substrate: (1) starting film and (2, 3) after anneal-
ing at (2) 520 and (3) 620 K.
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Fig. 3. Spectral curves of the FE (2αF) measured in a mag-
netic field H = 4.5 kOe for (1) a Co–Sm2O3 film and (2, 3)
films prepared by ablation of (2) Co and (3) Co5Sm targets in
ultrahigh vacuum. All targets were annealed at 620 K.
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and a lower vacuum originates from the formation of
the Sm2O3 dielectric component in the latter case,
which finds ready explanation in the high chemical
reactivity of Sm.

As already mentioned, the observed changes in the
FE wavelength dependence resemble those described to
occur in multilayered Co/SiO2 films [9], which have
been interpreted satisfactorily in terms of the effective
permittivity tensor [10]. As shown in [7], cobalt parti-
cles in starting films are almost spherical in shape and
are distributed more or less uniformly over the bulk of
the film and the linear dimension of each particle is 1.5–
2.0 nm, which is about two orders of magnitude less
than the film thickness (~100 nm). Therefore, in a first
approximation, the effective permittivity tensor of a
composite film, εeff, can be calculated using the model
of spherical particles distributed uniformly over an infi-
nite matrix [10]. In accordance with this model, the
effective diagonal (εeff) and off-diagonal (γeff) compo-
nents of the permittivity tensor ε

 (1)

are related to the parameters of the composite compo-
nents through the relations

 (2)

 (3)

 (4)

where ε0 is the permittivity of the dielectric matrix (of
samarium dioxide in the case considered); ε and γ are
the diagonal and off-diagonal components of the per-
mittivity tensor for the particle material (cobalt),
respectively; f is the magnetic-phase filling coefficient;
and N = 1/3. We calculated the FE spectra by substitut-
ing Eqs. (2) and (4) into the well-known relation

 (5)

The values of ε and γ were taken from [11] and [12],

respectively, and it was assumed that εeff = . The cal-
culation is complicated by the lack of literature data on
ε0 of Sm2O3. Furthermore, the presence of a certain
amount of carbon in the film and the small dimensions
of the cobalt particles may make the optical parameters
of the material of the particles substantially different
from those of pure cobalt films [11]. A study of the
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parameters ε and γ of Co films as a function of their
thickness [12] showed that variations in the film thick-
ness have a noticeable effect on these parameters.

Figure 4 presents α(λ) graphs plotted for various
values of the magnetic phase filling coefficient f. We
used the values of γ' and γ'' from [12] for a film which
had a value of ε' closest in magnitude to that given in
[11]. Figure 4 demonstrates a substantial change in the
FE wavelength dependence as f is varied: there appears
a maximum at shorter wavelengths and the FE reverses
sign. The peak value of the FE, the energy position of
the maximum, and the point of reversal of the FE in
sign depend nonmonotonically on f. For certain values
of f, the FE remains negative throughout the spectral
range covered. The FE spectral dependence calculated for
f = 0.2 fits best to the experimental curves in Figs. 1–3.
This value of f is substantially smaller than the mag-
netic phase filling coefficient estimated on the basis of
the technological conditions. This discrepancy may be
assigned to the strong misfit between the optical and
magnetooptical characteristics of the particle material
and the characteristics accepted in the calculation.
Therefore, refining model calculations were carried
out. Figure 5 plots the FE spectra calculated for f = 0.6
from Eqs. (2), (4), and (5) using the values of γ' and γ"
quoted in [12] for all the cobalt films with different
thicknesses studied therein. Figure 6 shows variations
in the FE spectral dependence with the permittivity of
Sm2O3. Both of these parameters are seen to have a sig-
nificant effect on the FE spectra.

Another possible reason for the discrepancy
between the experimental and calculated FE spectra
may be the deviation of the shape of the particles from
a sphere. Indeed, it was established in [13] that the
magnetic moment of similar films prepared under iden-
tical conditions lies in the film plane. This is conceiv-
able if the particles are shaped like oblate ellipsoids
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Fig. 4. FE spectral dependences calculated from Eqs. (2)–
(5) for various values of the magnetic phase filling coeffi-
cient f: 1.0, 0.8, 0.6, and 0.2 (curves 1–4, respectively). The
values of ε were taken from [11], and the values of γ, from
[12] for a 26-nm-thick film [12, Table 2]; ε0 = 4.
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Fig. 5. FE spectral dependences calculated from Eqs. (2)–
(5) for f = 0.6 and ε0 = 0.4; ε and γ were taken from [12,
Tables 1, 2] for samples with thicknesses of 108, 58, 46, 36,
26, 22, and 13 nm (curves 1–7, respectively).
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Fig. 6. FE spectral dependences calculated from Eqs. (2)–
(5) for ε0 = 2.0, 2.5, 3.0, 3.5, and 4.0 (curves 1–5, respec-
tively) and f = 0.6. The values of ε and γ were taken from
[12] for a 26-nm-thick film.
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Fig. 7. Field dependences of the FE for (1) starting Co–
Sm2O3 film and (2, 3) after annealing at (2) 520 and
(3) 620 K.
P

with their long axes lying in the film plane. Figure 7 pre-
sents the FE field dependences plotted for the starting
sample (curve 1) and samples annealed at Tann = 520 K
(curve 2) and 620 K (curve 3). Annealing increases the
magnitude of the FE and its sensitivity to high magnetic
fields. Note that the field dependence of magnetization
for the samples described in [7] changes pattern already
at a heat treatment temperature of 573 K. Assuming that
the above-mentioned plane anisotropy occurs in the
samples and that the size of the Co particles depends
only weakly on annealing at the given temperatures
[13], one can derive the effective saturation magnetiza-
tion Meff from the field dependence of the Faraday rota-
tion, α = f(H⊥ ), by invoking the expression for the
shape anisotropy field HS = 4πMeff. The values of the
effective magnetization were found to be ~330 G for
the starting film and ~440 and ~520 G after annealing
for curves 2 and 3, respectively. Thus, the increase in
the FE observed in annealed films can be attributed
both to the growth of the effective magnetization and to
a change in the optical and magnetooptical parameters
of the material of the particles and/or of the matrix.

Thus, the magnetooptical properties of Co–Sm2O3
films with granular composite morphology, both start-
ing and heat treated, differ strongly from those of the
films of an alloy of the same elements but in the metal-
lic state. Analogous differences were observed for these
films earlier [7] in a study of the magnetic and electrical
properties: the coercive force in composite films is sub-
stantially lower and the electrical resistivity is consid-
erably higher than those for uniform metallic films pre-
pared from the same components. One should add here
the large magnitude of the FE in the short-wavelength
spectral region. The possibility of fabricating nan-
ogranular films with a large volume fraction of the
magnetic phase (~60%) is presently attracting consid-
erable attention for potential application.
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Abstract—Conditions that are imposed on the interatomic interaction and under which a certain ordered state
of  perovskites arises are determined with allowance for effectively pairwise interactions and the
configuration entropy of interchanges of B' and B'' ions. It is shown that, for the interaction potential u(R) =
u0/R6, the highest temperature of ordering of the 1 : 2 type (Tord (1 : 2)) corresponds to a structure observed at
A ≡ Ba. The highest temperature of ordering of the 1 : 1 type (Tord (1 : 1)) corresponds to a structure that typically
occurs in the case of A ≡ Pb. Within the approximation used, it is found that Tord (1 : 1) > Tord (1 : 2) for all
compositions and that the 1 : 1-ordered phase is most stable. For models with u(R) = u0/Rn (n = 1–6) including
the interaction in the first m coordination shells (m = 3, 6, 8, 11), it is shown that the ground state of

 corresponds either to a decomposed solid solution or to an ordered state similar to that observed
in PbMg1/3Nb2/5O3. © 2005 Pleiades Publishing, Inc.

ABx' B1 x–'' O3

ABx' B1 x–'' O3
1. INTRODUCTION

Ternary oxides  with perovskite struc-
ture, due to their unusual properties, attract attention as
a basis for developing a new generation of active mate-
rials for piezoelectric devices (lead-containing magne-
sium niobate and magnesium tantalate), microelec-
tronic devices (barium zirconate tantalate), reading
devices in computer engineering (lanthanum calcium
manganate), etc. From the viewpoint of fundamental
physics, an unexpected feature of ternary oxides

 is the ordered distribution of ions at sites
B in the perovskite structure, which arises as the tem-
perature decreases. In itself, ion ordering over sites B at
low temperatures is not surprising. According to the
Nernst theorem [1], the entropy decreases and causes
an ordered arrangement of B' and B'' ions. However, in
the theory of solid-solution ordering [2–5], it is
assumed that ordering should correspond to a chemical
composition of the initial material. In the case of

 compositions, this means that the perovs-
kite cubic phase should be ordered with cell multiplica-
tion, which allows 1 : 2 ordering. Hence, the number of
unit cells of the unordered phase forming one primitive
cell in the ordered state should be a multiple of three.
For example, this ordering is observed in Ba-based
complex oxides [6–10]. However, it turns out that, ener-
getically, the 1 : 2 ordering in complex oxides

 differs only slightly from the nonstoichio-
metric 1 : 1 ordered state [6–14]. Small additives (2–
3%) of a “third” element distributed over the perovskite

B sublattice (sites 1(a) in space group ) change the

AB1/3' B2/3
'' O3

AB1/3' B2/3
'' O3

AB1/3' B2/3
'' O3

AB1/3' B2/3
'' O3

Oh
1
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structure of the ordered phase and replace stoichiomet-
ric 1 : 2 ordering by nonstoichiometric 1 : 1 ordering
[10, 11].

Furthermore, ordering of ternary oxides

 is always of the 1 : 1 type [6–14].

2. STATEMENT OF THE PROBLEM

There can be several types of ordered structures with
ordering of the 1 : 2 or 1 : 1 type [1, 15]. The three sim-
plest types of possible stoichiometric 1 : 2 ordering of
B'B'' ions in  compounds are shown in
Figs. 1a–1c. Figures 2a–2c show three ordered struc-
tures of the 1 : 1 type that (i) satisfy the Lifshitz condi-
tion [1, 15] and (ii) are predicted as possible stable
structures [16] within the theory based on the Landau
potential [17] in the Gorsky–Bragg–Williams (GBW)
approximation [2–5, 17].

Figure 1a corresponds to the case where the equilib-
rium value of the order parameter in the ordered phase
is defined by two rays of the eight-rayed star of the

wave vector  ≡  ≡ ±(b1 + b2 + b3)/3. Here,
the subscript indicates the star of vector k; the numeri-
cal and Greek subscripts correspond to the Kovalev
[18] and the Bouckaert–Smoluchowski–Wigner [19]
notations, respectively. The superscript is the number of
a ray of the star according to [18]. Figures 1b and 1c
show the distribution of B' and B'' cations in the case
where translation symmetry violation is described by

rays of the stars of kΣ and k∆:  ≡ ±(b1 + b2)/3 and

PbB1/3' B2/3
'' O3

AB1/3' B2/3
'' O3

k9
1 2,( ) kλ

1 2,( )

kΣ
1 2,( )
© 2005 Pleiades Publishing, Inc.
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(a) (b) (c)

Fig. 1. Three structures of  compounds with a 1 : 2 ordered arrangement of B' and B'' ions. Cells filled with B' ions are

shaded.

AB1/3' B2/3'' O3

(a) (b) (c)

Fig. 2. Same as in Fig. 1, but for 1 : 1 ordering.
 ≡ b1/3. There are many types of structures corre-
sponding to 1 : 2 ordering of a quasi-binary solid solu-
tion [15]. However, they are either unlikely from the
viewpoint of the general Landau theory [1, 15] or are
unstable at low temperatures [20]. In what follows, we
restrict our consideration to competition between the
structures shown in Figs. 1 and 2.

At this point, several questions arise. Why does the
structure shown in Fig. 1a arise in all the ternary Ba-
based oxides  (A ≡ Ba)? This obvious ques-
tion should be complemented with other ones. Why is
nonstoichiometric 1 : 1 ordering shown in Fig. 2a
observed in lead-containing ternary oxides

? (Figures 2b, 2c show two more types of
the simplest perovskite structures with 1 : 1 ordering,
which are also allowed by the Landau theory of phase
transitions.) Why is 1 : 2 ordering in a ternary oxide so
unstable with respect to the addition of a small amount
of one more (fourth) cation and why does it switch to
an ordered state designated as 1 : 1 (see Fig. 2a)?

All these questions should be answered using
microscopic theory, which will relate the effective
interaction potentials of cations in complex oxides to
the ordering types observed in these compounds. In our
opinion, the problem is to determine a criterion for

k∆
1 2,( )

AB1/3' B2/3
'' O3

PbB1/3' B2/3
'' O3
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selecting (within a simplified ordering model) an ana-
lytical form of interatomic interaction potentials that
stabilize a given ordered structure. In this paper, the
problem is solved for the perovskite structure within a
model considering only effectively pairwise interac-
tions and only the configuration entropy.

3. REVIEW OF THEORIES OF THE GROUND 
STATE OF COMPLEX PEROVSKITES

Several theoretical papers have been published [7–
14] in which the objective was to explain the nonsto-
ichiometric ordering stability in  com-
pounds. In contrast to our statement of the problem, the
studies in [7–14] were mainly devoted to calculating
the energies that correspond to stable ordered states of
specific compositions by using various models of inter-
atomic interactions [7–9, 12, 14]. In this case, to pro-
vide reliable results, we considered a large number of
competing ordered structures selected on a rather arbi-
trary basis [9, 14].

In [9], the energy of the ground state of a structure
was calculated using the orthogonalized-plane-wave
method within the pseudopotential approximation. In
[8], the Vienna ab initio simulated program and the
one-electron approximation were used for the same

PbB1/3' B2/3
'' O3
5
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purposes to characterize the state of atoms. The size
and shape of ordered phase cells were chosen ran-
domly. According to [8, 9], the lowest energy corre-
sponds to an ordered structure having a tetragonal unit

cell with parameters aT = aC , bT = aC , and c =
3aC. The energy corresponding to this stable structure
differs by 1% from the energy of a rhombohedral
ordered structure having a unit cell with parameters

aR = aC , bR = aC , and cR = aC . Thus, the struc-
tures that could exist at low temperatures according to
[8, 9] are not among the ordered structures determined
from x-ray diffraction patterns [6–14].

In [7], the Monte Carlo method in the cluster
approximation was applied to calculate the ground state
of a binary (with a component content ratio of 1 : 2)
solid solution whose atoms are arranged at sites of a
simple cubic lattice 30 × 30 × 30 in size. In those calcu-
lations, only pair interactions between ions arranged at
the vertices of cubic unit cells and three-particle inter-
actions of the nearest neighbors arranged along a
straight line were taken into account. According to [7],
the inclusion of the latter interactions is necessary and
sufficient to stabilize the 1 : 2 ordered state. In this case,
it remains unclear how the conclusions made in [7] will
change if we include pair interactions or any other
three-particle interactions more completely. It is also
unclear how a change in the analytical form of the pair
and three-particle interactions used in the calculations
in [7] will alter the results.

The authors of [12] included the pair Coulomb inter-
action between cations screened due to the effective
permittivity, which should be attributed to the primitive
cell. On this basis, the energy of 6 × 6 × 6 clusters was
calculated using the Monte Carlo method [12]. Based
on the calculated energies for many types of structures,
the authors of [12] concluded that only stoichiometric
ordered structures correspond to the minimum total
energy of a cluster of heterovalent ions with pure Cou-
lomb interactions.

In [14], the interatomic interaction energy was con-
sidered most completely, including the Coulomb,
dipole, and quadrupole interactions of ions, whose state
was determined in the one-electron approximation. The
stabilization energy of nine types of ordered structures
(seven with x = 1/2 and two with x = 1/3) was estimated.
According to [14], the lowest energy of the ordered
state corresponds to a structure with quadrupling of one
of the periods along the fourfold axis of the perovskite
cubic cell. The difference in energy between this
ordered state and the next applicant for the ground state

(rhombohedral structure with a = b = aC  and c =

aC ) is 0.4% [14].

To our knowledge, none of the known studies pro-
vides answers the questions posed in Section 2. This
fact suggests that the energy V(R) of the effectively
pairwise interactions of ions accepted in the models

2 2

2 2 3

2

3

P

used in [7–9, 12, 14] seems to differ from the actual
energy in the crystal. The need to elucidate the restric-
tions imposed on the form of the V(R) interaction is one
of the arguments in favor of the statement of the prob-
lem solved in this study.

4. PHENOMENOLOGICAL MODEL 
OF TERNARY Ba-CONTAINING OXIDES 

WITH PEROVSKITE STRUCTURE

Let us characterize the ideal perovskite structure by
a reduced cubic cell containing a single formula unit
ABO3. The symmetry of the corresponding virtual crys-

tal (or praphase) is described by space group . We
choose a reference point so that A ions in the praphase
occupy the regular system of points (RSP) 1(b) with
coordinates (1/2, 1/2, 1/2) [21] and that B ions are
arranged over the RSP 1(a) with coordinates (0, 0, 0).
Stoichiometric 1 : 2 ordering, which is observed in ter-
nary Ba-containing oxides with perovskite structure,
requires consideration of an extended primitive cell [1]
containing 27 sites. We label these sites by choosing a
reference point in one of them:

1. (0, 0, 0); 2. (1, 0, 0); 3. (0, 1, 0); 4. (0, 0, 1); 

5. (1, 1, 0); 6. (1, 0, 1); 7. (0, 1, 1); 8. (–1, 0, 0); 

9. (0, –1, 0); 10. (0, 0, –1); 11. (–1, –1, 0); 

12. (–1, 0, 0); 13. (1, –1, 0); 14. (–1, –1, 1); 

15. (–1, –1, –1); 16. (1, –1, –1); 17. (1, 0, –1); (1)

18. (0, –1, 1); 19. (0, 1, –1); 20. (–1, –1, 0); 

21. (–1, 0, –1); 22. (0, –1, –1); 23. (1, 1, 1); 

24. (–1, 1, 1); 25. (1, –1, 1); 26. (1, 1, –1); 

27. (–1, –1, –1). 

The parenthesized site coordinates are given in units of
length of the unit cell edges of the cubic praphase.
Coordinate axes are directed along the fourfold axes of

crystal space group . In order to adequately describe
ordering in terms of a phenomenological model, we
have to consider at least up to four-particle effective
interactions between ordering cations [22]. However,
we restrict our consideration to only effectively pair-
wise interactions, because it turns out that, if we accept
certain empirically determined regularities (which
characterize the solutions to the equations of state
found within the self-consistent field approximation
[15, 16, 23]), some of the posed problems can be solved
even in this approximation of the phenomenological
theory.

The model of B' and B'' cation ordering over the sites
indicated in Eq. (1) contains 27 fitting parameters
Pj(B'), which are the probabilities of B' ions occupying
the jth sublattice characterized by Eq. (1). Let us con-
sider the energies VB'B' (R), VB''B'' (R), and VB'B'' (R) of
effectively pairwise interactions of B' and B'' ions,

Oh
1

Oh
1
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which depend on the distance R between ions and on
the ion type [2–6]. In general, the nonequilibrium inter-
nal energy as a function of pair interactions is given by
(see [22])

 (2)

where N is the total number of sites allowed for B' and
B'' atoms in the perovskite structure.

Passing in Eq. (2) to a system of 27 independent vari-
ables Pj = Pj(B') and Pi(B'') = 1 – Pi, where i, j = 1–27,
we obtain

 (3)

where u(|Ri – Rj |)PiPj ≡ VAA(|Ri – Rj |) + VBB(|Ri – Rj |) –
2VAB(|Ri – Rj |) are the ordering energies, which are
dependent only on the distance between sites i and j in
the approximation used. In Eq. (3), we introduced the
nonequilibrium collective generalized coordinate x (the
Frenkel order parameter [24])

 (4)

with the aim to analyze not only one-phase but also
two-phase ordered states as possible equilibrium states
of the quasi-binary solid solution of B' and B'' cations.
In a one-phase homogeneous equilibrium state, we
have x = 3 c.

The third term in Eq. (3) contains 378 types of prod-
ucts PiPj. By considering the symmetry of the perovs-
kite crystal structure and introducing new notation for
the infinite sums of ordering energies, determined
according to the lattice structure, we can formally
rewrite the nonequilibrium internal energy (3) in terms
of only four phenomenological parameters Wi:

 (5)

27
N
------E µB'P j B'( ) µB''

0( )
P j B''( )

j

∑+
j

∑=

+ V B'B' Ri R j–( )Pi B'( )P j B'( ){
j

∑
i

∑
+ V B''B'' Ri R j–( )Pi B''( )P j B''( )

+ V B'B'' Ri R j–( ) Pi B'( )P j B''( ) P j B'( )Pi B''( )+( ) } ,

27
N
------E ε0 µ13 3x–

1
N
---- u Ri R j–( )PiP j,

i j, 1=

N

∑+=

x
1
N
---- Pi

i 1=

N

∑=

3

27
N
------E ε0 µ13 3x–=

+ W1 P1P2 P1P3 … P7P16 … P19P27+ + + + +( ) ---




+ W2 P1P5 P1P6 … P16P19 … P25P27+ + + + +( )
+ W3 P1P14 P1P15 … P12P16 … P23P27+ + + + +( )

+ W8 Pi
2

i 1=

27

∑




,
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Wi are the sums of infinite series of ordering energies
for various coordination shells,

 (6)

In what follows, the distance between ions i and j is
measured in units of the edge length a of the reduced
cubic cell of the praphase.

We note that the sum of products PiPj in Eq. (5)
associated with the phenomenological parameter W1

contains 81 terms. The sums in Eq. (5) associated with
the parameters W2 and W3 contain 162 and 108 terms,
respectively.

In order to determine the types of ordered states that
can be predicted based on Eq. (5), it is convenient to
switch from the quasi-local generalized coordinates of
the crystal (the probabilities of sublattices 1–27 in
Eq. (1) being filled with ions B') to symmetric collec-
tive generalized coordinates—the components of the
Landau [1, 15] and Frenkel [24] order parameters.

The total number of Landau order parameters is 26.
The symmetry of eight of them with respect to transla-
tions by the praphase lattice constants is defined by the

star of the vector  ≡  [18]. Similarly, the trans-
lation properties of the other twelve and six order

parameters are defined by the stars of the vectors  ≡

 and  ≡ , respectively, at µ = 1/3 [18]. Thus,
the probability density ρ of the B' ion distribution over
the sublattices described by Eq. (1) can be expanded in

terms of four irreducible representations of group ,
one of which is constructed using the basis function in

Eq. (4) and belongs to the star of the vector  ≡ k12 =
0 and the other three belong to the stars of the vectors
kλ, kΣ, and k∆. We denote the linear combinations of Pi

forming 27 basis functions of the irreducible represen-

tations of  as γ, λi (i = 1–8), σj (j = 1–12), and ∆s (s =
1–6). For brevity, we write out only one function from
each set, namely, a basis function for the first line of
each of the four irreducible representations:

 (7)

W1 u a( ) u 2a( ) 4u 10a( ) …,+ + +=

W2 u 2a( ) 2u 5a( ) u 8a( ) …,+ + +=

W3 u 3a( ) 3u 6a( ) 3u 3a( ) …,+ + +=

W8 6u 3a( ) ….+=

kλ
1( ) k9

1( )

kΣ
1( )

k4
1( ) k∆

1( ) k8
1( )

Oh
1

kΓ
1( )

Oh
1

γ Pi

i 1=

27

∑ 
 
 

/ 27,=
5
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 (8)

 (9)

 (10)

The superscripts on , , and  indicate that

the irreducible representations of  appearing in the
expansion of ρ are constructed from invariant represen-

tations of the space group of the vectors , , and

k8. The subscript on , , and  is the number
of the basis function. The other functions appearing in

the expansion of ρ, namely,  to ,  to ,

and  to , can be derived from Eqs. (7)–(10)

using the symmetry operations of group  [18] and the
notation introduced in Eqs. (1). Using the linear sym-
metric combinations of Pi defined in Eqs. (7)–(10), we
write the quadratic part of the nonequilibrium energy
(5) in the form

 (11)

λ1
1( )

P1 P11 P12 P13 P17 P18 P19 ∫+ + + + + +=

+ P23 P27
1
2
--- Pk P14 P15 P16 P20+ + + +

k 2=

10

∑



–+

∫ + P21 P22 P24 P25 P26+ + + +




/ 6/9[ ] ,

σ1
1( )

P1 P2 P8 P14 P15 P18 P19 ∫+ + + + + +=

+ P25 P26
1
2
--- Pi Pg Pl

l 20=

24

∑+
g 9=

13

∑+
i 1=

8

∑



–+

∫ + P16 P17 P27+ +




/ 6/9[ ] ,

∆1
1( )

P1 P3 P4 P7 P9 P10 P18 ∫+ + + + + +=

+ P19 P22
1
2
--- P2 P5 P6 P8 P j

j 1=

17

∑+ + + +




–+

+ P20 P21 Pl

l 23=

27

∑+ +




/ 6/9[ ] .

λ1
1( ) σ1

1( ) ∆1
1( )

Oh
1

k9
1( ) k4

1( )

λ1
1( ) σ1

1( ) ∆1
1( )

λ2
1( ) λ8

1( ) σ2
1( ) σ12

1( )

∆2
1( ) ∆6

1( )

Oh
1

E2
N
27
------ µ2 Γ 1( )( )

2
b1λ λ i

1( )( )
2

i 1=

8

∑+




=

+ b1Σ σi
1( )( )

2
b1∆ ∆i

1( )( )
2

i 1=

6

∑+
i 1=

12

∑




,

P

where

 (12)

 (13)

 (14)

 (15)

Expressions (12)–(15) account for the interactions in
the first six coordination shells. This approximation is
justified. Indeed, a model that includes only pair inter-
actions (provided that the ordering energy sign is inde-
pendent of the distance between the ions) can be used
to describe a material having an additive free energy
only if the interactions (i) propagate to a finite distance
and (ii) sufficiently rapidly decrease with distance [15].
The term “sufficiently rapidly” implies that u(R) ≥
−α/R6 for α > 0 and u(R) ≥ –ω(R)/R3 for |ω(R)| ≤ ω0 at
large distances and that the interactions oscillate at
finite distances.

We restrict ourselves to the model described by
Eqs. (11)–(15) and construct the nonequilibrium Lan-
dau potential by considering only the configuration
entropy associated with interchanges of B' and B'' ions,
which is equivalent to the GBW approximation [2–5].
Let the pair interactions potentials Vi(R) and ordering
energies u(R) decrease at large distances as 1/R6 (Len-
nard–Jones potential). For this model, it can be shown
that, in the case of u(1) ≤ 0, the ground state of a quasi-
binary solid solution of B' and B'' ions below a certain
temperature

 (16)

corresponds to a two-phase state, which arises as a result
of decomposition of the solid solution [25]. The notation
TB is chosen since this temperature can be interpreted as
the Burns temperature [26] of decomposition observed
in PbMg1/3Nb2/3O3 or PbMg1/3Ta2/3O3 [26].

In the case of u(1) > 0, a stable ordered state arises
in the quasi-binary solid solution of B' and B'' ions
below the temperature

 (17)

µ2 = 3W1 6W2 4W3 W8+ + +( ) = 3u 1( ) 6u 2( )+

+ 4u 3( ) 3u 2( ) 12u 5( ) 12u 6( ) …,+ + + +

b1λ 3W1– 3W2 W3– 2W8+ +( )/2 3u 1( )–[= =

+ 3u 2( ) u 3( )– 3u 2( )– 6u 5( ) …+ + ] /2,

b1Σ 3W2– 2W3 2W8+ +( )/2 3u 2( )–[= =

+ 2u 3( ) 6u 5( )– 6u 6( ) …+ + ] /2,

b1∆ 3W1 4W3– 2W8+( )/2 3u 1( ) 4u 3( )–[= =

+ 3u 2( ) 12u 6( ) …+ + ] /2.

T TB
1( )

4.06u 1( )c 1 c–( )≈=

T Tord
1
3
---λ 

  1.33u 1( )c 1 c–( ).≈=
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This state is described by the equalities

 (18)

where η is the order parameter dependent on T and c.
The ordered state described by Eqs. (18) is shown in
Fig. 1a.

Other possible types of ordered states predicted by
the model that includes only pair interactions (in partic-
ular, the structures shown in Figs. 1b, 1c) do not occur,
since they can arise from a disordered state only at
lower temperatures [in comparison with the state
described by Eqs. (18)]. Within the model used, the
states that can be stable only at temperatures below
Tord(1/3λ) given by Eq. (17) are metastable at all tem-
peratures down to T = 0 [23]. Thus, the model consid-
ering only effectively pair interactions makes it possi-
ble to explain why the type of ordering shown in Fig. 1a

arises in all ternary oxides  with perovs-
kite structure. However, the existence of other possible
states that cannot be predicted on the basis of Eq. (5) or
(11) should also be examined.

5. PHENOMENOLOGICAL MODEL 
OF Pb-CONTAINING TERNARY OXIDES

WITH PEROVSKITE STRUCTURE

Thus, we should examine the relative stability of 1 : 2
and 1 : 1 ordered states in the case of an arbitrary pair
interaction potential. To this end, the calculations
resulting in Eqs. (1)–(17) and carried out for 1 : 2 order-
ing should be repeated for 1 : 1 ordering. In the case of
the latter ordering, we have a 2a × 2a × 2a extended unit
cell. Let us enumerate the eight sites of the RSP 1(a)
that compose extended cell 1:

 (19)

Similarly to Eqs. (7)–(10), we construct, based on
Eqs. (19), symmetric generalized coordinates that form

bases for irreducible representations of group 
belonging to the stars of the vectors k12 = kΓ = 0, k13 =

kR = (b1 + b2 + b3)/2,  =  = (b2 + b3)/2, and

 =  = b1/2. Using notation similar to that in
Eqs. (7)–(10), we write

(20)

Γ 1( )
27; σi 0, i 1 2 … 12;, , ,= = =

∆ j 0, j 1 2 … 6;, , ,= =

λ l 0, l 2 … 8; λ1 η ,≡, ,= =

BaB1/3' B2/3
'' O3

1. 0 0 0, ,( ); 2. a 0 0, ,( ); 3. 0 a 0, ,( ); 4. a a 0, ,( );

5. 0 0 a, ,( ); 6. a 0 a, ,( ); 7. 0 a a, ,( ); 8. a a a, ,( ).

Oh
1

k11
1( ) kM

1( )

k10
1( ) kX

1( )

Γ1 = P1 P2 P3 P4 P5 P6 P7 P8+ + + + + + +( )/ 8,

R4 = P1 P2– P3– P4 P5– P6 P7 P8–+ + +( )/ 8,

M1 = P1 P2– P3– P4 P5 P6– P7– P8+ + +( )/ 8,

X1 = P1 P2 P3 P4 P5– P6– P7– P8–+ + +( )/ 8.
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In the case of eight perovskite structure sublattices,
the Landau potential describing ordering in the RSP
1(a) to within the quadratic terms in the order parame-
ter components is given by

(21)

The phenomenological parameters µ2, a1R, a1M, and a1X

of Landau potential (21) are related to the ordering
energies u(R) as

 (22)

 (23)

 (24)

 (25)

From comparing Eqs. (22) and (12), it follows that, as
it must be for any partition into sublattices and any
u(R) > 0 dependence, theory predicts the same depen-
dence of the temperature of possible decomposition of
the solid solution on u(R). If the Lennard–Jones model
is used, then Eq. (16) for TB remains valid. Using
Eqs. (21) and (23), we can easily ascertain that, in the
case of u(1) > 0, the disordered state of the solid solu-
tion loses stability with respect to the ordering shown in
Fig. 2a at

 (26)

The loss of stability of the disordered state with
respect to the ordering shown in Fig. 2b takes place at
lower temperatures, where there already exists a stable
state (shown in Fig. 2a) defined by the equalities

 (27)

The loss of stability of the ordered state with respect to
the ordering shown in Fig. 2c can occur only at temper-
atures below TB given by Eq. (16), when the homoge-
neous state is absolutely unstable with respect to the
formation of a two-phase state.

F E0 µ1Γ– µ2Γ
2

a1RR
2

a1M M1
2

M2
2

M3
2

+ +( )+ + +




≈

+ a1X X1
2

X2
2

X3
2

+ +( ) T
1

2c 1 c–( )
---------------------- Γ 2

R
2

+(+

---+ M1
2

M2
2

M3
2

M4
2 )+ + +





N /8.

µ2 3u 1( ) 6u 2( ) 4u 3( )+ +=

+ 3u 2( ) 12u 5( ) 12u 6( ) …,+ + +

a1R 3u 1( )– 6u 2( ) 4u 3( )–+=

+ 3u 2( ) 12u 5( )– 12u 6( ) …,+ +

a1M u 1( )– 2u 2( )– 4u 3( )+=

+ 3u 2( ) 4u 5( )– 4u 6( )– …,+

a1X u 1( ) 2u 2( )– 4u 3( )–=

+ 3u 2( ) 4u 5( ) 4u 6( )– ….+ +

Tord R( ) 1.48u 1( )c 1 c–( ).≈

Γ 8c, R η 0,≠= =

M1 M2 M3 0, x1 x2 x3 0.= = = = = =
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Thus, if the crystal features 1 : 1 ordering, there can
occur only a transfer to the state shown in Fig. 2a or to
an inhomogeneous state with the formation of solid
solutions of two different compositions. A comparison
of Tord(1/3λ) in Eq. (17) and Tord(R) in Eq. (26) shows
that the loss of stability of the disordered state with
respect to ordering allowed by the Lifshitz condition
[1] occurs at a temperature that is higher than that at
which instability arises with respect to ordering (18),
characterized by tripling of the primitive cell period.
This conclusion is independent of the solid solution
composition for the model interaction potential used.

5. DISCUSSION

In the above, we used the approximation of effec-
tively pairwise interactions and considered only the
configuration entropy associated with possible inter-
changes of ordering ions. For numerical estimations of
the effect of remote neighbors, we used a potential of
the Lennard–Jones type. The theory developed in these
approximations predicts the following.

(i) If ordering occurs into a homogeneous state
allowed by the Lifshitz condition, then the order arising
in the distribution of B' and B'' ions (or of A' and A'' ions,
due to the features of the perovskite structure) is identi-
cal to the order that occurs in all lead-containing relax-

ors  (Fig. 2a) [3–14].

(ii) If ordering occurs into a homogeneous state with
tripling of the perovskite lattice constants, then the sta-
ble ordered state will be that shown in Fig. 1a. This
ordered state is characteristic of all compositions

 [6–14].

(iii) The loss of stability of the disordered state with
respect to the formation of the 1 : 2 ordered state (Fig. 1a)
occurs at the temperature Tord(λ) at which the disor-
dered state is absolutely unstable. Near the temperature
T = Tord(λ), the 1 : 1 ordered state is stable (Fig. 2a), and
this state is also stable in comparison with the 1 : 2
ordered state at all temperatures down to T = 0.

We note that all the results presented in Sections 2–
4 were obtained under the assumption that the ordering
energy depends on the distance as u(R) ~ 1/R6 and with
inclusion of the interaction in the first six coordination
shells. Let us next discuss the possible occurrence of
other ordered states in the case where the analytical
u(R) dependence varies and consider the influence of
the number of coordination shells included in the calcu-
lations on the results. To illustrate the effect of the cho-
sen model on the theoretical results, we restrict our con-
sideration to 24 models in which (i) the sign of the
ordering energy is independent of distance; (ii) the
u(R) ~ u0/Rn dependence is valid, where n = 1−6; and
(iii) the interaction extends to only the first three, six,
eight, or eleven coordination shells.

PbMe1/3
2+ Me2/3

5+
O3

BaMe1/3
2+ Me2/3

5+
O3
P

First, we note that homogeneous states arise only at
u0 > 0. At u0 < 0, only three phenomenological param-
eters of the Landau potentials in Eqs. (11) and (21) (µ2,
b1∆, a1X) can be negative, with  =  at any
value of u0. The sign of b1X depends on both n and m
(the numbers of coordination shells included in the cal-
culations). For example, if u0 < 0 and the first three
coordination shells are included (m = 3), we have b1X

(n = 1, 2, 3) > 0. In other models (i.e., at n = 1–6 and
m = 3, 6, 8, 11), b1X < 0. The parameter b1∆ likewise
depends on n and m. Thus, generally speaking, it could
be assumed that (taking into account the dependences
of the entropy on the order parameter that are character-
istic of the GBW model) there exist models in which
u0 < 0 and u(R) = u0/Rn. Within these models, the
ordered states shown in Figs. 1c and 2c are stable. How-
ever, this conclusion can only be preliminary without
studying the dependence of the following two differ-
ences on n and m:

 (28)

(29)

It is clear that the sign of differences (28) and (29) is
always identical to that of u0. Hence, at u0 < 0, in all
models considered above in which u(R) = u0/Rn, the
ordered states shown in Figs. 1c and 2c are not stable.
On the contrary, these models predict that, in the case
of u0 < 0, the state in which the initial quasi-binary solid
solution decomposed into two solid solutions with dif-
ferent contents of the components will be stable at low
temperatures. At u0 > 0, the phenomenological param-
eters b1λ, b1Σ, a1R, and a1M are negative. The stability of
the corresponding ordered states is dictated by the three
differences

 (30)

 (31)

(32)

µ2sgn u0sgn

µ2 a1X– 2u 1( ) 8u 2( ) 8u 3( ) 8u 5( )+ + +=

+ 16u 6( ) 10u 3( ) 16u 10( ) 24u 11( ),+ + +

µ2 b1∆– 3u 1( )/2 6u 2( ) 6u 3( ) 3u 2( )/2+ + +=

+ 12u 5( ) 18u 6( ) 6u 2 2( )+ +

+ 18u 3( ) 6u 10( ) 12u 11( ) 16u 2 3( ).+ + +

b1λ a1R– 3u 1( ) 9u 2( )– 7u 3( ) 9u 2( )–+[=

+ 15u 5( ) 27u 6( )– 9u 2 2( )– 33u 3( )+

– 36u 10( ) 30u 11( ) 9u 2 3( )–+ ] /2,

a1R a1M–  = –2u 1( ) 8u 2( ) 8u 3( )– 8u 5( )–+

+ 16u 6( ) 10u 3( )– 16u 10( ) 24u 2( ),–+

b1λ b1Σ– 3u 1( )– 6u 2( ) 3u 3( )– 3u 2( )–+[=

+ 12u 5( ) 9u 6( )– 6u 2 2( ) 9u 3( )–+

– 12u 10( ) 12u 11( ) 3u 2 3( )–+ ] /2.
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It follows from Eq. (30) that, for the assumed depen-
dence of the ordering energy on the distance between
ions, the stable ordered state is that shown in Fig. 1a
rather than the state shown in Fig. 2a in 5 of the 24 mod-
els under discussion, namely, in the models with n ≤ 3
and m = 3 and in the models with n ≤ 2 and m = 8. At
other values of m and n, the ordered state shown in
Fig. 2a is stable.

However, the problem of the stable state can be
solved only by comparing Eqs. (30)–(32). It turns out
that, (I) at m = 3 and n ≤ 4, the structure shown in
Fig. 2b is most stable; (II) at m = 8 and n = 1, the
ordered phase shown in Fig. 1b is most stable; and (III)
the ordered phase that arises in Ba-based ternary oxides
(Fig. 1a) is stable only in the model with m = 8 and
n = 2. When interpreting the experimental data, only
those theoretical conclusions have to be taken into
account that do not change as the number of coordina-
tion shells for which the interatomic interactions are
included tends to infinity. As is evident, refinement of
the theory by including the interaction with more dis-
tant coordination shells shows that results (I)–(III) are
nonphysical.

The main result of numerical calculations of the
sums in Eqs. (28)–(32) with an accuracy of up to 1% in
the case where the difference between the ordering
temperatures is determined to within 10% can be for-
mulated as follows. If ordering is due to only pair inter-
actions caused by Van der Waals forces, u(R) ~ 1/R6,
then the ground state in oxides  with per-
ovskite structure is an ordered state, the state described
by the star of the vector kR, or a two-phase state.

Certainly, a simple inverse power-law dependence
of the ordering energy on the distance between ions is
not a realistic assumption. The analytical form of the
u(R) dependence is determined within more compre-
hensive microscopic theories than the theory devel-
oped in this paper. The objective of this study was to
derive analytical relations defining the phase stability
in terms of the dependence on distance of the pair
interaction potentials u(R) and to illustrate the influ-
ence of some model assumptions [such as the assump-
tion concerning the number of coordination shells
included in sums (28)–(32)] on theoretical predictions.
Let us illustrate the utility of the results obtained using
an example. In pursuing the goal to determine the pair
interaction potential for which phase (1) (Fig. 1a) will
be stable, we considered several two- and three-param-
eter dependences of the ordering energies on the dis-
tance between ions. Among other factors, we consid-
ered the most realistic form

 (33)

at q ~ 1 [27, 28]. We succeeded in determining the
ranges of !, q, and @ values over which the phases
shown in Figs. 2b and 2c are stable. However, phase
(18) (Fig. 1a) is not stable for any value of the parame-

ABx' B1 x–
'' O3

u R( ) 1/R
6

– ! qrcos( )/ qr( )3 @/R
9

+ +=
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ters of ordering energy (33) in the phase diagram in the
space of phenomenological parameters. This result
agrees with the conclusions made in [7] and can be
taken as a basis to explain the narrow region of external
conditions (T and c) under which phase (18) is stable.
However, final conclusions concerning the role of
three-particle interactions in the stabilization of phase
(18) (Fig. 1a) require a more detailed analysis than that
performed in [7].
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Abstract—The temperature dependence of birefringence induced by an electric field in PBSN–6 relaxors was
studied. It was shown that the birefringence measured under different conditions of applying an electric field
reveals a number of features not characteristic of the behavior of birefringence in conventional relaxors, more
specifically, additional anomalies observed under sample cooling and heating in an electric field, a decrease in
the thermal hysteresis width with an increase in the electric field strength, and the absence of birefringence sat-
uration (impossibility to reach single-domain state of the sample during the experiment duration) at low tem-
peratures in fields of up to 3 kV/cm. The results obtained are attributed to inhomogeneity of the cubic paraelec-
tric relaxor phase caused by the coexistence of various polar regions having different dimensions and proper-
ties. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

In recent years, intense interest has been focused on
compounds that exhibit, in addition to relaxor proper-
ties, characteristics typical of normal ferroelectrics.
Among these materials are PbSc1/2Nb1/2O3 (PSN),
PbSc1/2Ta1/2O3 (PST) with different extents of ion order
[1, 2], and a number of PLZT-type ceramics [3, 4]. This
interest stems from both purely scientific grounds and
the application potential of these materials in electros-
triction actuators, acoustic sensors, and pyroelectric
transducers.

Stable relaxor behavior of the kind observed in the
classical relaxor lead magnesium niobate (PMN) has
yet to be successfully demonstrated in PSN and PST
compounds even under conditions of complete disorder
among the Sc and Nb (Ta) ions. Indeed, even in practi-
cally disordered compounds, a spontaneous phase tran-
sition (SPT) from the relaxor (microdomain) to a mac-
roscopic-domain ferroelectric state occurs below the
temperature at which the maximum in permittivity is
observed [5]. To reach a stable relaxor state in these
compounds, one usually creates additional disorder on
the lead sublattice by substituting barium for the lead
ions [6, 7].

It was shown in [6, 7] that an increase in the barium
content to 6 mol % suppresses the SPT in these com-
pounds and the relaxor state becomes frozen. At tem-
peratures 40–50°C below the maximum in ε, the tem-
perature dependences of ε and optical transmission in a
zero electric field no longer have any anomalies [8]
accompanying the SPT, but the macroscopic-domain
ferroelectric phase in these compounds can be induced
by comparatively weak electric fields. The dielectric
and optical studies reported in [8, 9] lead to the conclu-
1063-7834/05/4706- $26.00 1143
sion that this Ba ion concentration range is actually a
morphotropic region in which the cubic relaxor and
rhombohedral macroscopic-domain ferroelectric
phases coexist.

Phase coexistence in these compounds imparted to
them a number of features that are characteristic neither
of pure relaxor behavior nor of a normal ferroelectric.
Indeed, in a zero electric field at temperatures below the
maximum of permittivity, the cubic nonpolar matrix of
the crystal revealed the presence of spontaneously
polarized regions of the ferroelectric phase with dimen-
sions comparable to a wavelength of light (greater than
~104 Å), with the size and number of these nanoregions
growing with decreasing temperature [9]. This distin-
guishes the relaxor state of PBSN–6 compounds from
the classical relaxor state, in which nanoregions do not
grow noticeably in size and birefringence does not set
in down to liquid-nitrogen temperature. Because the
volume fraction of the rhombohedral phase in PBSN–6
is rather small (~30% at –20°C), no phase transition to
the macroscopic-domain state occurred throughout the
entire crystal and the birefringence (∆n) varied with
decreasing temperature not in a jump but rather mono-
tonically as the ferroelectric phase grew in volume [9].

Another feature of the PBSN–6 compounds is the
fact that the paraelectric relaxor phase contains not only
spontaneously polarized regions that can undergo SPT
but also nonpolar regions in which the critical field
needed to produce the ferroelectric phase is very low,
and even weak internal electric fields are capable of
driving the ferroelectric phase transition in these
regions under crystal cooling. As a result, PBSN–6
compounds are characterized by several temperatures
at which the physical properties exhibit anomalies,
namely, the frequency-dependent temperature of the
© 2005 Pleiades Publishing, Inc.
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maximum in ε (Tmax ≅  48–50°C); the Vogel–Fulcher
temperature Tf ~ 20–23°C, which is identified as the
point of static freeze-out of electric dipoles and the
transition to the dipole glass state; Tds ~ 22–25°C, cor-
responding to the depolarization temperature of regions
that can undergo an SPT; and the depolarization tem-
perature Tdr ~ 30–32°C of the nanoregions in which
cooling in an electric field induces the ferroelectric
phase.

To better understand the nature of the processes
occurring in the vicinity of these characteristic temper-
atures, we performed a study (reported in this paper) on
the temperature dependence of the electric field–
induced birefringence.

The few experimental studies that are available,
with the exception of [8], have dealt primarily with the
dielectric properties of PBSN. The observed anomalies
were, however, not always clearly pronounced, which
posed certain difficulties in their detection. Optical
methods for studying crystals (optical transmission
(OT), small-angle light scattering (SAS), birefringence
∆n) are more sensitive and suitable, particularly for
investigating the processes connected with variations in
the size of inhomogeneities. If a phase transition brings
about changes in the size of optical inhomogeneities,
these changes will affect not only light scattering and
optical transmission but also the birefringence. Scatter-
ing depends on the ratio of the size of the scatterer (a)
to the wavelength of light (λ). For small values of this
ratio, the scattered intensity is small; therefore, the
sample will be practically transparent and ∆n in the
cubic phase will be zero. Optical methods have been
successfully employed to study phase transitions in
relaxors. The existence of polar nanoregions in a cubic
nonpolar matrix is one of the reasons for the relaxor
behavior. If the size of these nanoregions varies insig-
nificantly at a phase transition and remains less than λ,
∆n should not undergo any changes.

0 20 40 60
T, °C

2

4

6

1

2

3

4

∆n × 10–4

Fig. 1. Temperature dependences of the birefringence ∆n
measured in a PBSN–6 crystal in different regimes of appli-
cation of an electric field E = 1 kV/cm: (1) ZFC, (2) FHaZFC,
(3) FC, and (4) ZFHaFC.
P

2. GROWTH OF SINGLE CRYSTALS 
AND EXPERIMENTAL TECHNIQUES

PBSN–6 single crystals were grown by spontaneous
crystallization. The growth technique, as well as the x-
ray diffraction and dielectric studies of these crystals, is
described in [6, 7]. The grown crystals were homoge-
neous in composition and were shaped as plates with
{100} faces. To preclude the generation of additional
stresses, all measurements were conducted on samples
not subjected to mechanical processing. A dc electric
field was applied in the [100] direction, and the light
was propagated along [001]. Various electric-field
application regimes were employed: zero field cooling
(ZFC), zero field heating (ZFH), field heating after ZFC
(FHaZFC), field cooling (FC), field heating after field
cooling (FHaFC), and zero field heating after field
cooling (ZFHaFC). Following each field application
and prior to each new measurement, samples were
heated at a temperature of 150°C for 0.5 h. To obtain
reproducible results and to preclude the dielectric age-
ing effect, which is strongly manifest in PBSN–6 [7],
dielectric and optical measurements were carried out
directly after sample annealing. The rate of sample tem-
perature variation could be varied from 2 to 10°C/min.

A He–Ne laser was used for optical measurements.
The sample birefringence ∆n was derived from the rela-
tion I = I0sin2π∆nd/λ, where I0 is the intensity of inci-
dent light, I is the light intensity transmitted through a
sample placed between two crossed polarizers (with the
optical axis of the sample making an angle of 45° with
the incident light polarization), λ = 632.8 nm is the
wavelength of light, and d is the sample thickness.

3. EXPERIMENTAL RESULTS AND DISCUSSION

Figure 1 presents temperature dependences of bire-
fringence for a PBSN–6 crystal measured in different
regimes of application of an electric field of 1 kV/cm in
the following sequence: ZFC  FHaZFC  FC 
ZFHaFC. In contrast to PMN and 0.9PMN–0.1PT crys-
tals, where ∆n, in the absence of an electric field, is
practically zero down to the lowest temperatures [10],
∆n measured in PBSN–6 under ZFC (curve 1) grows
slightly with decreasing temperature due to the exist-
ence of SPT regions. When measured in the FHaZFC
regime (curve 2), ∆n increases noticeably and passes
through a broad maximum (the width of the maximum
is ~40°C). The variation in ∆n in the course of this mea-
surement depends on the rate of sample temperature
variation; namely, the higher the rate of temperature
variation, the smaller the region of existence of the
induced ferroelectric phase and, hence, the smaller the
width of the ∆n(T) maximum. The difference in the
temperature dependence of ∆n measured in the ZFC
and FHaZFC regimes indicates that FHaZFC is a meta-
stable-state process. However, the temperature depen-
dence of ∆n(T) measured under ZFHaFC (curve 4)
reveals normal ferroelectric behavior; extrapolation of
HYSICS OF THE SOLID STATE      Vol. 47      No. 6      2005
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∆n to zero yields the depolarization temperature Td ≈
30–32°C. In purely relaxor compounds, such as PMN
and PLZT, the Vogel–Fulcher temperature (freeze-out
point) coincides with the temperature Td at which resid-
ual polarization disappears. This is also the temperature
at which the ∆n curves measured under FH (curve 2)
and FC (curve 3) diverge. (Td ≈ 30–32°C is the sample
depolarization temperature observed in the FH regime.)
The fact that the temperature Td is uniform over the
entire sample implies that the destruction of the macro-
scopic-domain state has become a collective process.
Note that the depolarization temperature measured in
PBSN–6 compounds whose cubic nonpolar matrix con-
tains spontaneously polarized regions of the ferroelec-
tric phase does not coincide with the Vogel–Fulcher
temperature.

Figure 2 shows the behavior of birefringence in dif-
ferent electric fields. Below Td, a pronounced thermal
hysteresis induced by the freeze-out of polar clusters is
observed. Note some features of this hysteresis. First,
the existence of two types of regions in the cubic non-
polar crystal matrix below the temperature of the max-
imum in ε gives rise to the appearance of additional
anomalies in the birefringence curves obtained under
cooling and heating. The anomaly exhibited by the
sample under field cooling in the vicinity of 15–19°C
(which is dependent on electric field) originates from
the phase transition from the relaxor to the ferroelectric
state in the regions where the electric field strength is
high enough to induce this phase. A further increase in
∆n is associated with the transition to the ferroelectric
phase in a small part of the SPT regions (curves 1, 2).
The temperature of the field-induced phase transition
under field cooling increases with the electric field
strength.

Second, the hysteresis width decreases with increas-
ing electric field (curves 1–3), thus distinguishing these
samples from typical relaxors, in which hysteresis
increases with increasing electric field. Indeed, the tem-
perature width of the hysteresis in PBSN–6 in a field of
~0.7 kV/cm is ~16°C (curve 1) and decreases to ~10°C
in a field of 1.5 kV/cm (curve 3). The reason for this
behavior of ∆n remains unclear. It may be associated
either with the coexistence of regions of various kinds
in the cubic matrix of the crystal or with the possibility
that the first-order phase transition occurring in weak
fields transforms into a second-order transition in high
fields.

Third, at low temperatures, ∆n does not saturate in
fields of up to 3 kV/cm (Figs. 2, 3). Saturation is char-
acteristic of single-domain samples. It is conceivable
that saturation of ∆n could be achieved if the electric
field were to be applied in the direction of spontaneous
polarization, i.e., along 〈111〉. The maximum in the ∆n
curve appearing at fields in excess of 1.5 kV/cm (curve 3
in Figs. 2, 3) is due to the electrooptical effect induced
in part of the sample volume and to the fact that the
induced phase difference between the ordinary and
PHYSICS OF THE SOLID STATE      Vol. 47      No. 6      2005
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Fig. 2. Temperature dependences of birefringence ∆n for a
PBSN–6 single crystal measured in heating and cooling
regimes in various electric fields E: (1) 0.7, (2) 1, and
(3) 1.5 kV/cm.

–30 0 30 60 90
T, °C

2

4

6

8

∆n, arb. units

Fig. 3. Temperature dependences of birefringence ∆n for a
PBSN–6 single crystal measured under heating and cooling
in an electric field of 3 kV/cm.
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extraordinary rays has reached π/2. The decrease in ∆n
with a further decrease in temperature demonstrates
inhomogeneity of the nonpolar sample matrix caused
by the presence of regions with different properties and
by the impossibility of producing a homogeneous sin-
gle-domain state in a field-cooled sample. Furthermore,
long-range order in PBSN–6 compounds sets in fairly
slowly in the presence of an electric field, with a long
incubation period. By cooling a crystal to lower tem-
peratures and holding it at a low temperature for an
extended period of time (more than 20–30 min), a sin-
gle-domain state and ∆n saturation were attained in [9].
The duration of our experiment is considerably shorter
than the incubation time, and this is probably why we
did not reach ∆n saturation. However, in 0.9PMN–
0.1PT compounds, in which a spontaneous phase tran-
sition and the relaxor state coexist in a zero field, a sin-
gle-domain homogeneous state has been successfully
induced under cooling during the experiment [10]. The
evolution of ∆n in PBSN–6 compounds in time will be
dealt with in a separate publication.

The fact that the cubic nonpolar matrix of the crystal
is inhomogeneous is also argued for by the phase dia-
gram obtained by us under crystal cooling and heating
and published in [9] (Fig. 4). As is evident from Fig. 4a
obtained under sample cooling, an intermediate inho-
mogeneous macroscopic-domain phase III exists
within a certain temperature interval between ergodic
relaxor phase II and homogeneous macroscopic-
domain ferroelectric phase IV and the region of exist-
ence of this phase does not shrink even as the electric
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Fig. 4. E–T phase diagrams derived from optical (open sym-
bols) and dielectric (filled symbols) studies under (a) cool-
ing and (b) heating of a PBSN–6 crystal. The rate of sample
temperature variation is 2°C/min. I is the paraelectric phase,
II is the ergodic relaxor phase, III is the inhomogeneous
(macroscopic-domain) ferroelectric phase, IV is the homo-
geneous macroscopic-domain ferroelectric phase, and V is
the nonergodic relaxor phase. Tf is the Vogel–Fulcher tem-
perature taken from [7]. The dashed line at Tf separates the
ergodic from the nonergodic relaxor phase.
PH
field increases. This phase is practically absent from
PBSN–6 samples in the field heating regime (Fig. 4b).

The phase diagram constructed in [4] is supported
by more comprehensive ∆n measurements performed
in the present study. The temperature dependences of
∆n (Fig. 2) obtained under cooling and heating in vari-
ous electric fields were used to calculate the derivative

 = (∆nh + 1 – ∆nh – 1)/(Th + 1 – Th – 1),
where ∆nh and Th are the hth measurements of the bire-
fringence and temperature, respectively. These rela-
tions are plotted in Fig. 5. The temperature dependence
measured under cooling (Fig. 5a) clearly exhibits two
maxima. The maximum seen at a higher temperature
can be assigned to the induced phase transition occur-
ring within a larger part of the polar nanoregions and to
a transfer of the crystal to the inhomogeneous macro-
scopic-domain phase. The lower temperature maxi-
mum is associated with the transition to the ferroelec-
tric state in regions supporting SPT. As the electric field
increases (curve 2 in Fig. 5a), the maxima shift to
higher temperatures, but the distance between them
remains practically unchanged, which is consistent
with the phase diagram in Fig. 4a. The presence of two
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Fig. 5. Temperature dependences of the derivative of the
birefringence obtained under (a) cooling and (b) heating in
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maxima indicates that the homogeneous macroscopic-
domain state cannot be obtained directly from the
ergodic relaxor phase in a PBSN–6 sample under field
cooling. Figure 5b presents analogous graphs derived
by heating a sample in an electric field. Note that, in this
case, the sample was held in an electric field at a tem-
perature of ~–20°C for about 10 min, until the birefrin-
gence practically reached saturation, after which the
sample was field-heated. It is seen that there is one
maximum at the sample depolarization temperature Td.
The fact that the depolarization temperature obtained
under heating is the same for the entire sample implies
that the destruction of the macroscopic-domain state
obtained by holding a sample for a long time in an elec-
tric field has become a collective process.

4. CONCLUSIONS

Thus, our comprehensive measurements of the bire-
fringence in a PBSN–6 crystal conducted in various
electric fields and in different field application regimes
have once more demonstrated inhomogeneity of the
cubic paraelectric relaxor phase of this crystal. This
phase contains not only spontaneously polarized mac-
roscopic-domain SPT regions but also a set of nonpolar
nanoregions characterized by different critical fields
needed to induce the ferroelectric phase. We have also
verified the phase diagram obtained by us earlier for
this crystal and refined the conditions under which the
macroscopic-domain state can be attained.
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Abstract—Single-crystal (001)-oriented PbZr0.47Ti0.53O3 and polycrystalline (111)-oriented PbZr0.47Ti0.53O3
thin ferroelectric films were studied using contact electrostatic force microscopy. Local electromechanical
response measurements permitted study of the polarization vector distribution in natural and intentionally cre-
ated polarization nanodomains in films. The principal components of an electromechanical response signal
encountered in studies of ferroelectric films (the piezoelectric response and the additional capacitive contribu-
tion) were isolated and analyzed. The effect of tip–surface contact stiffness on the capacitive contribution to the
electromechanical response signal was demonstrated experimentally and in terms of a model. It was shown that
more accurate information on the distribution of the polarization vector in ferroelectric films can be gained by
monitoring local variations in the tip–surface contact stiffness. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Studies of ferroelectric films by atomic force
microscopy (AFM) play an essential role in a number
of applications of ferroelectrics [1–3]. Since the radius
of curvature of the AFM probe tip is very small (~10–
100 nm), one can attain a high electric field in the gap
between the tip and the ferroelectric sample (E ~ 107–
108 V/m) by applying a rather small potential to the tip
(~1 V). Such high fields can be employed to advantage
both in probing the local polarization state and in polar-
ization switching of nanosized regions in a film. This
unique potential inherent in AFM makes it possible, for
instance, to develop ferroelectric storage systems with
a superhigh recording density of hundreds of gigabits
per square centimeter [4]. The most informative
method of diagnostics and domain structure modifica-
tion in ferroelectric films is contact electrostatic force
microscopy (EFM) [5, 6], which allows one to measure
the local electromechanical response (EMR) of a sam-
ple. All ferroelectric materials are actually piezoelec-
trics, and the EMR signal turns out to be sensitive to the
local inverse piezoelectric effect. This accounts for the
method being frequently called piezoresponse force
microscopy (PFM) [7]. When used in studies of thin
ferroelectric films, the EMR signal is sensitive (with a
resolution of better than 10 nm) to variations in the
local coercive field [8, 9] and the piezoelectric coeffi-
cient [5, 10]. Measurement of these important parame-
ters by EFM meets, however, with difficulties because
the EMR signal has an additional capacitive contribu-
tion that is not directly connected with the ferroelectric
properties of a sample.

It was shown in [11] that the capacitive contribution
is proportional to the potential difference between the
1063-7834/05/4706- $26.00 1148
AFM tip and the bottom electrode supporting the ferro-
electric film and is inversely proportional to the stiff-
ness of the tip contacting the sample. Local relief cur-
vature variations encountered by the tip displaced over
the surface strongly affect the magnitude of this stiff-
ness. As a result, the capacitive component of the EMR
signal from a sample with a rough surface relief should
be particularly pronounced. In this case, parts of the
relief that differ in curvature should also differ strongly
in terms of the EMR response; in other words, the EMR
signal within a polarization domain may be spatially
nonuniform. The capacitive contribution can be
revealed by comparing the dynamic and pulsed voltage
dependences of the EMR [11]. This approach, while
being useful, is, however, fairly complex and time con-
suming, which hinders its application for the analysis
of spatial variations in the capacitive contribution.

We propose a new, simpler procedure for revealing
the capacitive contribution, basically consisting in
recording, in parallel to the EMR signal, the variation
in the local stiffness of tip contact with the sample sur-
face. In this procedure, separation of the EMR signal
components reduces to searching for correlations
between the EMR and local stiffness images. The infor-
mation that can be gained with this approach is illus-
trated in the particular example of a study of purpose-
fully created and natural polarization domain structures
in a (001) PbZr0.47Ti0.53O3 single-crystal film and a
polycrystalline PbZr0.47Ti0.53O3 film with (111)-ori-
ented grains.

2. EXPERIMENTAL TECHNIQUE AND SAMPLES

Let us consider a metal-coated AFM tip in contact
with a ferroelectric film deposited on a conductive elec-
© 2005 Pleiades Publishing, Inc.
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trode (Fig. 1). If a voltage is applied between the tip and
the conductive electrode, the thickness of the film in the
contact region should change because of the inverse
piezoelectric effect. The response ∆H of a piezoelectric
plate to the applied bias U can be written as [12]

 (1)

where dzz is the piezoelectric coefficient. The minus
(plus) sign in this expression corresponds to the polar-
ization vector in the film coinciding with (being oppo-
site to) the direction of external bias.

To calculate ∆H under the AFM tip (Fig. 1), we have
to solve the problem of contact between the piezoelec-
tric plate and the indenter tip. An analysis of this prob-
lem performed in [10, 13, 14] reveals that Eq. (1) is also
adequately satisfied in an AFM experiment and that the
coefficient dzz is proportional to the local value of the
normal polarization vector projection. When the bias
applied between the electrodes exceeds the polariza-
tion-switching threshold U(↑ /↓ ) or U(↓ /↑ ) in the film
region under the tip, ∆H reverses sign in a jump. Polar-
ization switching in a film depends on the original state
of polarization and the prehistory of bias variation. For
instance, a domain is switched from the original ↓  sta-
ble polarization state to another stable state ↑  as the
voltage increases from zero to U(↓ /↑ ). Thereafter, as
the voltage is reduced, the domain remains in the ↓
state and then is switched to the ↑  state at a voltage
U(↑ /↓ ) different from U(↓ /↑ ), a process accounting for
the hysteretic behavior in the dependence of ∆H on the
dc bias.

In an AFM experiment, an ac (Uac) and a dc (Udc)
bias are applied between the tip and the electrode car-
rying a ferroelectric film. The amplitude of the ac volt-
age is chosen to be considerably lower than the polar-
ization-switching voltages. Local film thickness varia-
tions at the ac bias frequency (piezoresponse) give rise
to cantilever vibrations, which are measured optically
by recording cantilever deflections (Fig. 1). The distrib-
uted capacitive (Cps in Fig. 1) interaction of the tip with
the sample also causes cantilever vibrations at the ac
bias frequency [15]. Note that the softer the cantilever,
the stronger the additional vibrations. Because the term
“piezoresponse” does not reflect the AFM tip vibrations
adequately, one should preferably use the “electrome-
chanical response” (EMR) instead. The above contribu-
tions to the EMR (in practice, the amplitude Hω of the
first harmonic of the EFM signal is usually measured)
can be judiciously analyzed using a relation similar to
the one proposed in [11]:

 (2)

where k* is the stiffness coefficient of the AFM cantile-
ver with both its ends kept fixed (one is clamped in the
holder, and the other is in contact with the film surface)

and  is the average value of the contact

∆H dzzU ,+−=

Hω
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------
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V
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V
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+
2

-------------------+ 
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V
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V
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+( ) 2⁄
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potential difference between the tip and the surface of
the multidomain film. The film polarization directions
↓  and ↑  in the film correspond to the minus and plus
signs, respectively, given to the parameter dzz in Eq. (2).
The sign becomes reversed at certain polarization-
switching potentials U(↑ /↓ ) or U(↓ /↑ ).

Let us consider the Hω(Udc) graph in Fig. 2, which is
a plot of Eq. (2) for Uac = 1. Because the polarization in
the film switches at certain values of Udc (equal to
U(↑ /↓ ) and U(↓ /↑ )), this dependence has a hysteretic
pattern. The hysteresis may have other than square
shape and be markedly deformed because of the capac-
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4
5

6

Cps
–~

Fig. 1. Schematic diagram of an AFM experiment per-
formed to study the polarization domain structure in ferro-
electric films. (1) Conductive electrode, (2) ferroelectric
film, (3) metal-coated AFM probe, (4) position-sensitive
photosensor, (5) laser, and (6) ac and dc power supply.

Fig. 2. Model Hω and  dependences given by Eq. (2).Hω
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itive contribution, which is linear in Udc. This distorted
shape is indeed observed in AFM [11] (see also below).
In experiment, however, there is always noise, which,
combined with the shape distortion, reduces the accu-
racy of measurement of the piezoelectric coefficient dzz

and introduces uncertainty in the measurement of the
switching potentials U(↑ /↓ ) and U(↓ /↑ ). This situation
can be alleviated by using a short, rigid tip with a stiff-
ness coefficient as high as 50 N/m (large values of k* in
Eq. (2) reduce the contribution of capacitive interac-
tion). To preclude degradation of the resolution through
abrasion of the tip, the rigid tip should be wear resis-
tant. If conventional, moderately stiff tips (1–10 N/m)
are to be employed, the capacitive contribution will
have to be monitored.

This monitoring can be based on the shape of the

pulse response (Udc) measured in the following
manner [11]. Voltage pulses of different height are

applied to the film, and  is read off in a zero external
field directly after termination of a pulse. The pulses
probe the state of the film: in the case where their
amplitude exceeds the potential U(↑ /↓ ) or U(↓ /↑ ), the

polarization direction switches and  jumps to a new
value, whereas weaker pulses leave the polarization

state and the value of  unchanged. As shown in

Fig. 2, the  signal exhibits a clearly pronounced
square hysteresis loop, thus making more accurate
determination of the parameters U(↑ /↓ ), U(↓ /↑ ), and
dzz possible. Furthermore, the vertical translation of the

 curve as a whole is a measure of the distributed
capacitive contribution (the actual direction of the
translation, up or down, is determined by the relation-
ship between the work functions of the tip and sample
materials; see below). Thus, measurement of the pulse
responses helps one to estimate the capacitive contribu-
tion, which can subsequently be taken into account in
treating data obtained using standard tips with a moder-
ate stiffness.

In actual practice, this procedure is difficult to apply
to the determination of spatial variations in the parasitic
capacitive contribution, because it is fairly time con-
suming to measure the pulse responses at each point of
the scanning region. If, however, one fixes Udc, then
variations in the capacitive contribution will be domi-
nated by the local value of the stiffness coefficient k* of
the AFM tip in contact with the surface, as can be seen
from Eq. (2). This suggests a simpler approach to
revealing the parasitic capacitive contribution from
variations in the stiffness signal, which can be mea-
sured in the force modulation mode [16]. As will be
shown below, the idea behind this approach is to ana-
lyze correlations and anticorrelations in the EMR and
stiffness signals.

Hω
I

Hω
I

Hω
I

Hω
I

Hω
I

Hω
I

P

Two types of samples were chosen for the study.
One type was a ≈37-nm thick (001)-oriented single-
crystal PbZr0.47Ti0.53O3 film, which was deposited by
high-pressure plasma sputtering on a SrRuO3/SrTiO3
substrate. The other type was a ≈100-nm-thick poly-
crystalline PbZr0.47Ti0.53O3 film sol-gel-deposited on a
Pt/TiO2/SiO2/Si substrate; the grains in the film were
crystallographically aligned with the [111] axis normal
to the substrate plane. An electrode grid was deposited
on the top surface of a film for use in standard capaci-
tive measurements of polarization versus external-field
hysteresis loops [12]. Single-crystal films featured a
coercive field of ≈4 × 107 V/m and a spontaneous polar-
ization of ≈0.4 C/m2. For polycrystalline films, these
parameters were ≈107 V/m and ≈0.45 C/m2, respec-
tively. The description of the technology of film prepa-
ration and the results obtained in a study of the structure
and integrated ferroelectric parameters of the samples
can be found in [17, 18].

AFM experiments were conducted with a Solver
P47 instrument (NT-MDT, Moscow), which made con-
tact EFM mode operation, local-stiffness measure-
ments, and raster lithography possible [19]. Silicon
NSG11 tips were used that were coated with a Pt or
W2C conductive layer and had a stiffness of ≈5 N/m and
a resonance frequency of about 150 kHz. The pyramid-
shaped tip was 15- to 20-µm high and had a typical tip
curvature radius of less than 40 nm.

3. EXPERIMENT AND DISCUSSION

Figure 3 illustrates parallel measurements of the
voltage dependences of pulsed and dynamic EMR. The
measurements are performed in the following way.
Voltage pulses are applied, following a template
(Figs. 3a, 3b), to the AFM tip scanning a region of the
surface ~2 nm2 in area in the raster lithography mode
[19]. The EMR signal is read continuously during the
process (Fig. 3d). Figure 3e shows an averaged section
of the EMR signal, which reflects both the dynamic

(Hω) and pulsed ( ) dependences on the applied bias
(i.e., the amplitude of the signal during and after appli-
cation of a pulse, respectively). Figure 3c separately
plots the dynamic Hω response, and Fig. 3f shows the

pulsed  graph. The experimental curves in Figs. 3c
and 3f agree well with the model dependences shown in
Fig. 2. The dynamic Hω course plotted in Fig. 3c has a
hysteretic shape distorted strongly by the linear-in-Udc
capacitive contribution, which makes determination of
the piezoelectric coefficient and switching voltages dif-
ficult. The hysteresis in the pulsed response is more dis-
tinct, which unambiguously indicates the existence of
two polarization states in the film.

The data in Fig. 3f can be used to estimate the coer-
cive field (polarization-switching field) and piezoelec-
tric coefficient of the film. As one state switches to

Hω
I

Hω
I
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Fig. 3. Parallel measurement of local pulsed and dynamic responses of the EMR signal obtained on a (001)-oriented
PbZr0.47Ti0.53O3 single-crystal film. (a) Raster lithography template (256 × 256 pixels); (b) section of the image in panel (a);
(c) voltage dependence of dynamic the EMR signal Hω; (d) EMR signal image recorded by voltage lithography; (e) averaged section

of the EMR image; and (f) voltage dependence of the pulsed EMR signal .Hω
I

H
ωI

nA,
another, the pulsed  response crosses the central
line between the two states at external voltages of
approximately +1.5 and –8 V. In a first approximation,
the applied potential is distributed uniformly over the
thickness (37 nm) of the single-crystal film. There-
fore, the local coercive field is about +4.2 × 107 and
−21.6 × 107 V/m, which coincides with the average
macroscopic coercive field of 4 × 107 V/m for the
given sample for positive polarity and differs by a fac-
tor of more than 5 for negative polarity. The asymme-
try between these values may be due to a built-in elec-
tric field at the interface between the film and the bot-

Hω
I
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tom electrode and to mechanical stresses in the
ferroelectric film [20]. Note also that not all of the
applied voltage must necessarily be the voltage drop
across the ferroelectric film; indeed, this voltage may
also include the voltage drop across the dielectric gap
between the AFM tip and the film surface [10]. This
implies that the above values of the local coercive
fields may be considered an upper estimate. Accord-

ing to Eq. (2) and Fig. 2, the height of the  hyster-
esis loop divided by the ac voltage amplitude yields
twice the value of the piezoelectric coefficient dzz. To

Hω
I
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calculate the piezoelectric coefficient, we substitute
the amplitude of the ac voltage exciting the piezore-
sponse (1 V) into Eq. (2). The coefficient to reduce
nanoamperes to nanometers as measured by the stan-
dard technique recommended for P47H [19] is
40 nm/nA, and the signal amplification is 400. As a
result, we obtain dzz ≈ (0.25 nA × 40 nm/nA)/(1 V ×
400 × 2) = 12.5 pm/V. This value agrees well with the
earlier data obtained by AFM on thin PbZrTiO3 films
and published in [9], where the value of dzz was found
to be a few picometers per volt.

As already mentioned, the capacitive contribution in
a zero field (Udc = 0) is determined by the vertical dis-
placement of the pulsed response. Because of the asym-
metry with which the top (+0.05 nA) and the lower
(−0.2 nA) polarization states manifest themselves in

 (Fig. 3f), the capacitive contribution at the point
where the hysteresis is measured is –0.075 nA, which is
more than 30% of the hysteresis amplitude. The varia-
tion of the capacitive contribution at a fixed value of Udc
(in particular, at zero bias) is dominated by the local
stiffness k*. As follows from Eq. (2), an increase

(decrease) in stiffness translates the  hysteresis loop
as a whole upward (downward); i.e., the EMR signal
increases (decreases) irrespective of the polarization
state. If one derives the k* variation from the stiffness
signal, then inclusion of the parasitic capacitive contri-
bution can be reduced qualitatively to a search for and
analysis of coincidences between the EMR and stiff-
ness signal images.

Figure 4 combines the data illustrating the above
approach. The study was conducted on a 37-nm thick
(001)-oriented single-crystal PbZr0.47Ti0.53O3 film with
an average surface roughness on the level of a few
nanometers (see the AFM image in Fig. 4a and the cor-
responding section in Fig. 4d). Figure 4e presents a hys-
teretic dependence of the pulsed EMR typical of the
given film region, which reveals two polarization states
in the film. The arrow-up polarization state corresponds
to a signal level Hω ≈ +0.25 nA, while the opposite,
arrow-down polarization state is observed on a signal
level of ≈–0.7 nA. Complete polarization switching
occurs at a pulse amplitude above the threshold level,
which is about 5 V, and a further increase in the pulse
amplitude has almost no effect on the signal level.

Figure 4b displays an image of the EMR signal Hω
obtained for a surface region in which artificial polar-
ization domains were formed by raster lithography
[21]. The natural (single-domain) state of the film cor-
responds to the bright portions of the image. Against
their background, we can see a periodic square (15 ×
15) grid of darker regions produced in AFM lithogra-
phy by applying 1-ms-long voltage pulses with an
amplitude of –9 V. The inset to Fig. 4b shows a two-
dimensional Fourier transform of the image with dis-
tinct reflections, which identify the 200-nm periodicity
of the artificial domain structure. Figure 4f shows the

Hω
I

Hω
I

PH
cross section of the EMR Hω image along the bright
line crossing the lithographed region. In the range
between 0.8 and 3.8 µm, we can see a periodic oscilla-
tion of the signal between the upper (≈+0.25 nA) natu-
ral state and the lower (≈–0.7 nA) artificial state.

Note that the topographic image in Fig. 4a obtained
simultaneously with the data in Fig. 4b does not reveal
any periodic structure and the Fourier transform of this
image has a diffuse pattern. This argues for the artificial
structure at the center of the image in Fig. 4b having
predominantly a polarization contrast. A careful com-
parison of Figs. 4a and 4b brings to light, however, a
large number of correlated changes in the EMR signal
Hω and topography. For instance, the arrow in Fig. 4a
identifies a bright spot, a 5-nm-high hillock, which
coincides with a dark area in Fig. 4b. Such dark areas in
Fig. 4b are not related to the lower polarization state
and reflect only a change in the additional capacitive
component in the EMR signal Hω.

Figure 4c shows a stiffness signal obtained simulta-
neously with the topography and the EMR signal. A
comparison of the images in Figs. 4b and 4c, as well as
of the corresponding sections in Figs. 4f and 4g, sug-
gests that the periodic structure of polarization domains
does not manifest itself in any way in the stiffness. The
additional capacitive contribution to the EMR signal
can be established by the coincidence of contrast in the
stiffness and EMR signals. For samples with a rela-
tively smooth surface, topography and stiffness data
offer practically the same volume of information on the
additional capacitive contribution to EMR. If, however,
the surface is characterized by a strongly pronounced
relief, the stiffness signal provides more information
and makes it possible to gain a more accurate idea of
the structure of the polarization domains.

The need for simultaneous measurement of three
signals, namely, EMR, topography, and stiffness, is per-
suasively illustrated by Fig. 5, where the results of a
study of a 100-nm-thick (111) PbZr0.47Ti0.53O3 poly-
crystalline film are presented. The topography signal
images (Figs. 5a, 5d) show the film to have a granular
structure (with a characteristic height difference of
30 nm). Let us consider grains 1 and 2 surrounded by a
contour in Fig. 5a, as well as grain 3 within a contour in
Fig. 5d. The EMR contrast within grains 1, 2, and 3 var-
ies (Figs. 5b, 5e). This suggests that each grain contains
several differently polarized domains. The stiffness sig-
nal within grain 3 (Fig. 5f) is nonuniform in contrast
and increases or decreases practically within the same
nanosized regions as the EMR signal (Fig. 5e). Thus,
grain 3 is not multidomain and is uniformly polarized.
Within grains 1 and 2, the stiffness signal has uniform
contrast (Fig. 5c). Hence, each of these grains does
indeed contain two differently polarized domains.

To clarify the case, we turn back to Eq. (2), accord-
ing to which the capacitive contribution to the EMR
signal (or, in other words, the vertical displacement of

the  hysteresis loop in Fig. 2) is proportional to 1/k*.Hω
I
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Fig. 4. Contact EFM study of a sample of a (001)-oriented PbZr0.47Ti0.53O3 single-crystal film. (a) Topographic image; (b) EMR
image; and (c) stiffness signal image. The EMR signal (Hω, MagSin signal in Solver P47) was excited at a frequency of 30.175 kHz
at an amplitude Uac = 3 V and Udc = 0; to excite the stiffness signal (S, Mag signal in Solver P47), an ac voltage 0.1 V in amplitude
was applied at the same frequency to the z plates of the scanner carrying a sample. Each image specifies the pertinent Fourier data
in the top right-hand corner. The sections of (d) topography, (f) EMR, and (g) stiffness signals were obtained along the bright lines
in the corresponding images. (e) Hysteresis of the pulsed EMR signal response.
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It should be stressed that, as k* increases, the loop may
be displaced either upward or downward depending on
the slope of the central line in the dynamic hysteresis
loop and the position of the point at which this line
crosses the abscissa axis (Fig. 2). Note that experimen-
tal data show the average contact potential difference to
be positive (Fig. 3c); it is likewise positive for the sam-
ple regions shown in Figs. 4 and 5 [21]. It is also essen-
tial that the average slope of the dynamic response in
these three cases was chosen to be positive (the slope of
the EMR graph (Fig. 3c) may also be negative, because
it is determined by the phase difference between the
EMR and the lock-in detector reference signal). It is
because of these two conditions that the EMR rises as

100 nm 100 nm

1
2

3

(a) (d)

(b) (e)

(c) (f)

Fig. 5. Contact EFM study of a (111)-oriented, 100-nm-
thick sample of a PbZr0.47Ti0.53O3 polycrystalline film.
(a, d) Topographic images, (b, e) EMR images, and (c, f)
stiffness signal images. The dimensions of the images in
panels (a–c) and (d–f) are specified by the scale bars under
images in panels (a) and (d), respectively. The image
regions with grains 1–3 discussed in the text are surrounded
by contours.
P

the stiffness signal increases and the additional capaci-
tive contribution is revealed by the coincidence of the
contrast in the EMR and stiffness signals. If, however,
the slope of the dynamic response is negative (positive)
and the average contact potential difference is positive
(negative), then the additional capacitive contribution
will be revealed by the EMR and stiffness signals being
in anticorrelation.

Finally, two points have to be clarified. First, the
stiffness signal measured in the force modulation mode
depends directly on variations in the stiffness of the tip–
surface contact kc [16, 19] rather than in the stiffness k*.
Second, the stiffness k* of a probe in contact with the
surface differs from that of a suspended probe k. Let us
estimate first the range within which the k*/k ratio can
vary. To do this, it is expedient to treat the probe as a rod
with one end clamped and the other free, touching a
surface, or clamped. The lower the number of degrees
of freedom of the second end of the rod, the higher the
stiffness of the rod as a whole. The k*/k ratio in these
situations can be estimated from well-known analytical
relations (see [22, p. 121]) for weak deflection of a rod
under its own weight. Assuming for simplicity that the
stiffness coefficient is proportional to the displacement
of the rod center, we arrive at the conclusion that, as we
pass over from the free end to the end touching a sur-
face, the rod becomes stiffer by one order of magnitude
and about twice as stiff again as the end becomes
clamped. A similar behavior of the k*/k ratio under
variation of the constraints imposed on the rod end was
revealed by numerical modeling of the response of an
AFM probe in contact with a surface, which was car-
ried out in [23]. The state of the end of the probe was
specified in [23] by setting the contact stiffness kc,
which was calculated from an analytical solution to
Hertz’s contact problem (see [22, p. 46]). An essential
point in substantiating our approach is that the coeffi-
cients k* and kc behave similarly with a variation in the
local relief curvature, namely, that they both increase at
depressions and decrease at protrusions. The same
behavior is revealed by the stiffness signal measured in
the force modulation mode, which is proportional to
kc/k [16, 19].

4. CONCLUSIONS

We have outlined a complex technique for studying
thin ferroelectric films by AFM microscopy. It has been
shown that the obtainment of topography and EMR
images should be paralleled by measuring the stiffness
signal. The stiffness signal provides a more accurate
determination of the structure of polarization domains
in a film and permits separation of the capacitive con-
tribution from the piezoresponse in the EMR signal.
This approach has been illustrated by a study of (001)-
oriented PbZr0.47Ti0.53O3 single-crystal and (111) poly-
crystalline PbZr0.47Ti0.53O3 films with a grain size of
about 100 nm.
HYSICS OF THE SOLID STATE      Vol. 47      No. 6      2005
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Abstract—The temperature kinetics of martensitic transformations in a skeleton-type TiC/TiNi composite with
micron-sized structural constituents was studied. The composite is fabricated using a unique technique. Heat
treatment and a change in the chemical composition of the titanium carbide are shown to affect the transforma-
tion temperatures. This effect is related to the redistribution of the chemical elements between the carbide and
metallic components of the composite; as a result, the titanium nickelide becomes enriched in nickel. © 2005
Pleiades Publishing, Inc.
1. INTRODUCTION

The prospects for the creation of new materials with
unique, novel properties are mainly related to the
design of composites containing an alloy component
that undergoes a thermoelastic martensitic transforma-
tion [1, 2]. It is assumed that optimum choice of the
components of a composite and their proper spatial
arrangement can provide structures belonging to smart
materials in terms of their functional characteristics.
The functional response of such composites to external
factors is partly caused by a martensitic transformation
(MT) occurring in one of their components. The sen-
sory properties of materials with MTs are known to be
unique, since, depending on the alloy grade, the phase
transformation and structural changes can be stimu-
lated by temperature changes, mechanical stresses, a
magnetic field, hydrostatic pressure, or ultrasound. The
responses of a material to these factors are diverse,
from changes in its physical properties to mechanical
work against applied forces [3].

Therefore, it seems promising to design a composite
that has high strength and hardness and a sharp depen-
dence of its physicomechanical properties on tempera-
ture and other physical factors. Such a composite is
assumed to be based on carbide or nitride compounds
in combination with a TiNi alloy, which undergoes a
thermoelastic MT. The authors of [4–7] studied the
properties of sintered composite materials in which the
TiNi alloy was a binder and carbide or nitride particles
served as solid strengthening inclusions to ensure high
mechanical and operating properties of the composites.

In this work, we study the properties of a TiC/TiNi
composite with a radically different structural arrange-
ment, namely, with a skeleton-type structure. The mate-
1063-7834/05/4706- $26.00 1156
rial consists of two mutually penetrating frameworks,
titanium carbide and titanium nickelide frameworks.
The hard carbide phase provides high strength, hard-
ness, wear resistance, and size stability of the material,
and the metallic component improves the strength and
fracture toughness of the material. If the metallic phase
is assumed to undergo an MT, the physicomechanical
properties of the composite will change with tempera-
ture, depending on the structural state (austenite, mar-
tensite, or austenite + martensite) of the alloy.

It should be noted that, in skeleton-type composites,
a metallic phase occupies voids of a hard carbide skele-
ton that are several microns in size (specifically, 3–5 µm
in the material under study). Therefore, one of the
objectives of our study is to reveal possible MTs in TiNi
fragments of these sizes.

2. MATERIALS

TiC/TiNi composite samples were prepared in two
stages. In the first stage, a porous 5 × 5 × 25 mm billet
was formed from titanium carbide. To this end, a tita-
nium powder was compacted in a mold and the TiC
compound was synthesized by heating the powder to
1120 K in a flow of natural gas followed by subjection
to heat treatment. In a hydrocarbon (natural gas) atmo-
sphere, carbon is synthesized on the surface of titanium
particles. During further heat treatment, it reacts with
titanium to form titanium carbide as a continuous skel-
eton throughout the entire billet. The composition of
the formed stoichiometric (TiC) and nonstoichiometric
TiCy (y < 1) titanium carbides was controlled by vary-
ing the content of pyrocarbon deposited in the billet.
© 2005 Pleiades Publishing, Inc.
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A study of voids in the porous titanium carbide skel-
eton showed that they were open and, thus, could be
filled with a metallic melt. Therefore, in the second
stage, the carbide billet was soaked with a melt of an
equiatomic TiNi alloy in a vacuum furnace at 1570 K.
After solidifying the metal, we fabricated a composite
consisting of two phases, namely, a carbide and a
metallic phase. The volume fractions of these phases
and the characteristic size parameter of the metallic
phase are specified by the initial void content and the
void diameter in the TiC skeleton. Note that the proper-
ties of a composite that was produced by another proce-
dure and had a similar structure were studied in [8].

It is obvious that an MT in a composite material can
have characteristics other than those observed in con-
ventional alloys, which can be caused by the following
factors:

(1) constrained deformation of the lattice during the
transformation without possible plastic shape accom-
modation in some cases;

(2) unusual grain sizes and other size parameters
under conditions of confined geometry;

(3) a change in the chemical composition of an alloy
due to diffusion through boundaries separating com-
posite components; and

(4) thermal stresses induced by the difference in the
thermal expansion coefficients of the components.

These and other factors can result in changes in the
critical transformation temperatures and in the
sequence of transformations and even in a complete
suppression of martensitic phase transformations.

Therefore, the main purpose of this work, which is
the first stage in the study of a skeleton-type composite
material, was to investigate the development of MTs
and the effect of heat treatment and composition on
their temperature kinetics.

3. EXPERIMENTAL TECHNIQUE
We measured the electrical resistivity and the

Young’s modulus to study MTs in TiC/TiNi composite
samples.

The Young’s modulus was measured on a MUZA
device under excitement and recording of forced
mechanical vibrations of samples having a simple
shape near their eigenfrequencies. Mechanical vibra-
tions were excited and recorded with piezoelectric
transducers attached to damped sound-conducting rods,
and samples were fixed between the needle-shaped
ends of these rods. Mechanical vibrations were excited
with a sweep-frequency generator and were recorded
with a unit intended for examining the amplitude–fre-
quency characteristics. The apparatus allowed us to
measure the parameters of the resonance peaks (the res-
onance frequency and the half-width and amplitude of
peaks), which were used to calculate the elastic modu-
lus and internal friction. The frequency range of the
device was 30–300 kHz. Special-purpose equipment
PHYSICS OF THE SOLID STATE      Vol. 47      No. 6      200
provided measurements in the temperature range 10–
1300 K.

The electrical resistivity was measured using the
standard four-probe method. The temperature was
changed at a rate of less than 2 K/min, and the temper-
ature measurement accuracy was higher than 0.5 K. A
computer was used to control the experiments and per-
form real-time data processing and visualization.

Samples contained different carbon contents y in the
carbide phase of the TiC composite. The volume frac-
tion of titanium nickelide Φ in the composite was close
to 50%. The composition of the samples under study is
given in the table.

4. RESULTS AND DISCUSSION

The measured properties of the as-prepared samples
show that the skeleton-type composite material under-
goes an MT as the temperature varies. Examples of the
temperature dependences of the resistivity ρ and the
Young’s modulus (divided by its room-temperature
value, E/ERT) are shown in Fig. 1 for sample 4. It is seen
that, during continuous cooling and heating, the
Young’s modulus varies with a minimum near 235 K
and the temperature dependence of the resistivity is
anomalous. Similar behavior of the physical character-
istics is observed in titanium nickelide–based alloys in
the MT temperature range [3]; hence, we may conclude
that a martensitic transformation occurs in the compos-

Sample compositions

Sample no. y Φ

1 0.76 0.5

2 0.83 0.5

3 0.89 0.5

4 1 0.59
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Fig. 1. Temperature dependences of (1) the electrical resis-
tivity ρ and (2) reduced Young’s modulus E/ERT for com-
posite sample 4 and (inset) for titanium nickelide.
5



 

1158

        

BELYAEV 

 

et al

 

.

                                                                                  
ite material under study. Let us dwell on a few peculiar
features. The minimum in the temperature dependences
of the elastic modulus in the composite is substantially
smeared, whereas it is sharp in TiNi (which is seen from
comparing the curves in Fig. 1 and those in the inset to
Fig. 1). Moreover, after a cooling–heating cycle is com-
pleted, the resistivity does not reach its initial value and
the cycle turns out to be open. This behavior is likely to
indicate a nonequilibrium structure of the composite
and a substantial dispersion of its properties.

The TiNi solid solution in titanium nickelide–based
alloys is usually homogenized by quenching from a
temperature above 1070 K. Subsequent annealing of
aging alloys at 500–800 K causes the formation of a
number of phases in accordance with the phase dia-
gram. As a rule, this treatment leads to a change in the
temperature kinetics of the sequence of MTs in tita-
nium nickelide. Therefore, it seems natural to use dif-
ferent heat treatments to find methods for controlling
MTs in skeleton-type composites. To this end, samples
were water-quenched from 1070 K and then annealed at
570, 670, 770, and 870 K for 2 h in an argon atmo-
sphere.

During continuous cooling of the quenched sam-
ples, the temperature dependences of their resistivities
(Fig. 2a) exhibit an anomaly, which consists in a devia-
tion from a straight line at a point TR with increasing
resistivity. This deviation is known to be caused by the
transformation from the high-temperature B2 cubic
phase (CsCl type) to the martensite rhombohedral R
phase [3, 9]. The B2  R transformation occurs with
a small temperature hysteresis and is close to a second-
order phase transformation. Unlike other samples, sam-
ple 1 exhibits another phase transformation, from the
rhombohedral to monoclinic B19' phase. The R  B19'
transformation begins at a temperature MS correspond-
ing to the beginning of a sharp drop in the resistivity
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Fig. 2. Temperature dependences of (a) the electrical resis-
tivity and (b) reduced Young’s modulus of quenched sam-
ples. Numerals on the curves are the sample numbers.
PH
upon cooling, and this transformation has a significant
hysteresis. The temperature dependences of the
Young’s moduli of the quenched samples exhibit a min-
imum, as shown in Fig. 2b for samples 1 and 4. Note
that the positions of both the minimum of the modulus
on the temperature scale and the TR point depend on the
chemical composition of the TiCy phase in the compos-
ite. As the titanium carbide composition approaches the
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Fig. 3. Temperature dependences of the electrical resistivity
of sample 2 (1) quenched from 1070 K and (2–5) then
annealed at (2) 570, (3) 670, (4) 770, and (5) 870 K for 2 h.
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Fig. 4. Dependences of the transformation temperature TR
on the conditions of heat treatment. Numerals on the curves
are the sample numbers.
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stoichiometric composition, the TR temperature and the
minimum of the modulus shift toward low tempera-
tures.

The shape of the temperature dependences of the
physical characteristics shown in Fig. 2 for samples 2–
4 is typical of nickel-rich TiNi alloys. In these alloys,
the R  B19' transformation temperature becomes
lower than the boiling temperature of liquid nitrogen
and, hence, only the transformation from the cubic to
the rhombohedral phase occurs [10–12]. Therefore, we
may suppose that, when the TiC/TiNi composite sam-
ples were prepared and quenched, titanium atoms dif-
fused through the metal–carbide interface toward the
carbide phase [4]. As a result, the titanium nickelide
becomes enriched in nickel and the carbide is enriched
in titanium. It is clear that the intensity of the titanium
transport to the carbide phase is dictated by the initial
titanium concentration in the carbide. That is why this
process is less pronounced in sample 1, the TiNi com-
position remains close to stoichiometric, and two mar-
tensitic transformations (B2  R  B19') take
place upon cooling.

The temperature kinetics of transformations in
nickel-rich titanium nickelide is known to depend
mainly on particles of the Ti3Ni4 phase forming upon
annealing [13]. These particles are coherent with the
surrounding TiNi matrix and form local stress fields,
which favor heterogeneous nucleation of the rhombo-
hedral martensite [9, 10, 13]. As the annealing temper-
ature increases, the Ti3Ni4 particles coarsen and the TR

temperature increases. At the same time, the excess
nickel is removed from the TiNi phase, its composition
approaches the equiatomic composition, and two
sequential transformations can occur in the alloy. The
TiC/TiNi composite does behave like this. This behav-
ior is seen in Fig. 3, which shows changes in the tem-
perature dependences of the resistivity of sample 2 after
quenching and subsequent annealing. High-temperature
annealing at 870 K violates the coherence between the
Ti3Ni4 and TiNi phases and qualitatively changes the
temperature kinetics of the MT (Fig. 3) [14]. Figure 4
shows changes in the characteristic TR temperature
upon annealing of all samples under study. As follows
from these data, the transformation temperature
changes to form a maximum with increasing tempera-
ture.

The only exception is sample 1, in which the chem-
ical compositions of the components are likely to be
virtually unchanged during both fabrication and heat
treatment. The concentration dependences of the trans-
formation temperatures are most pronounced in the
quenched samples (Fig. 5). As the annealing tempera-
ture increases, this dependence smoothes and the char-
acteristic temperatures TR of all samples become equal
at 770 K.

In conclusion, we note that martensitic transforma-
tions in the TiNi phase of the designed TiC/TiNi com-
posite materials with a skeleton-type structure develop
PHYSICS OF THE SOLID STATE      Vol. 47      No. 6      200
according to laws identical to those occurring in the
related homogeneous metallic alloys. The carbide com-
ponent plays a significant role in the formation of the
properties of the composite, since its chemical compo-
sition specifies the direction and intensity of redistribu-
tion of chemical elements between the phases. The car-
bide-phase composition and the conditions of heat
treatment are the determining factors for controlling the
sequence and temperatures of the martensitic transfor-
mations and, hence, the entire set of physicomechanical
properties of the material.

The redistribution of chemical elements between the
carbide and metallic components of the composite
results in concentration gradients [8]. Since the marten-
sitic-transformation temperatures in the TiNi alloy
depend on the chemical composition, the transforma-
tions occur over a wide temperature range because of
the concentration gradients. As a result, the transforma-
tion-induced features in the temperature dependences
of the physical characteristics are strongly smeared.
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Abstract—The heat capacity of a [NH2(CH3)2]5Cd3Cl11 crystal was studied calorimetrically in the temperature
interval 100–300 K. The Cp(T) dependence indicates that, as the temperature is lowered, phase transitions occur
at temperatures T1 = 176.5 K and T2 = 123.5 K. The thermodynamic characteristics of this crystal were deter-
mined. It is shown that the transition at T2 = 123.5 K is an incommensurate–commensurate phase transforma-
tion and that the transition at T1 = 176.5 K is a normal–incommensurate phase transition. © 2005 Pleiades Pub-
lishing, Inc.
1. INTRODUCTION

The family of crystals containing a methyl ammo-
nium cation exhibits various structural phase transi-
tions (PTs). The comparatively new crystal
[NH2(CH3)2]5Cd3Cl11, or (DMA)5Cd3Cl11, which
belongs to this family, reveals, according to different
experimental studies, anomalies in its physical proper-
ties at 260, 180, 127 [1], 280 [2], and 127 and 178.5 K
[3]. The nature of these transitions still remains unclear.
It is known that the PT at 127 K is a first-order transfor-
mation and is associated with ordering of the dimethyl
ammonium cation and that the PT at 178.5 K is consid-
ered to be second-order [3]. Dielectric studies have
shown the (DMA)5Cd3Cl11 crystal to be an incipient
ferroelectric [1]. Investigations of the optical and elas-
tic properties of (DMA)5Cd3Cl11 suggested the possible
existence of an incommensurate phase in this crystal
within the temperature interval 127–178.5 K [3, 4]. It
appeared of interest to perform high-precision mea-
surements of the heat capacity of (DMA)5Cd3Cl11 to
refine the PT temperatures of this crystal, particularly
in view of the fact that, as far as we know, no heat
capacity studies of (DMA)5Cd3Cl11 have thus far been
attempted.

2. EXPERIMENTAL TECHNIQUE AND RESULTS

The heat capacity was measured in the temperature
region 100–300 K using a vacuum adiabatic calorimeter
with a discrete heat supply to the sample (m = 7.32 g).
The sample heating rate was 0.03–0.08 K/min. The heat
capacity measurements were performed in steps of 0.5–
1.5 K with an accuracy of 0.3%. The sample tempera-
ture was monitored by a platinum resistance thermom-
eter.
1063-7834/05/4706- $26.00 ©1161
Figure 1 displays the temperature dependence of the
specific heat of (DMA)5Cd3Cl11. The Cp(T) curve is
seen to have anomalies at the PT temperatures T1 =
176.5 K and T2 = 123.5 K. The dashed line identifies the
lattice part of the specific heat, which was obtained by
interpolation with a polynomial of the form of C =

. Numerical integration yielded entropy and
enthalpy changes of 9.6 J/K mol and 1185 J/mol for the
former PT and 5.9 J/K mol and 931 J/mol for the latter
PT, respectively. The smoothened values of the specific
heat and the changes in the thermodynamic functions
they correspond to, namely, the entropy S, the enthalpy
H, and the Gibbs free energy Φ, are listed in the table.

Note that the peaked shape of the anomaly at T2 =
123.5 K, as well as the increase in the experimental
time needed for thermal equilibrium to be obtained in
the region of this PT, suggests that the anomaly corre-
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Fig. 1. Temperature dependence of the specific heat of
(DMA)5Cd3Cl11.
 2005 Pleiades Publishing, Inc.
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sponds to a first-order phase transition. Furthermore,
the anomaly at T2 has a clearly pronounced asymmetric
shape (Fig. 1): on the high-temperature side, the spe-
cific heat is seen to fall off more slowly. According to
[5], because of the soliton structure, the specific heat in

Smoothened values of the specific heat and the changes in the
thermodynamic functions of (DMA)5Cd3Cl11

T, K
Cp(T) S(T) 

– S(100 K)
Φ(T)

– Φ(100 K)
H(T) 

– H(100 K),
J/molJ/K mol

100 475.6 0.000 0.000 0.0

120 560.5 94.26 17.55 10360

140 614.1 184.8 44.18 22106

160 654.9 269.6 75.53 34796

180 699.1 349.4 109.3 48337

200 734.2 425.0 144.3 62670

220 762.7 496.3 179.8 77638

240 787.2 563.8 215.2 93138

260 810.3 627.8 250.3 109112

280 834.4 688.7 284.9 125559

300 862.1 747.3 318.9 142524

0.006

0.004

0.002

0 0.5 1.0 1.5
(T – T2), K

(∆
C

p)
–

1 , (
J/

K
 m
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)–

1

Fig. 2. (∆Cp)–1 plotted as a function of T – T2 for
(DMA)5Cd3Cl11 in the region of the PT at T2 = 123.5 K.
P

the incommensurate phase near a PT should increase as
∆Cp ~ {(T – Tc)[ln(T – Tc)]–2}–1.

Figure 2 plots a graph of (∆Cp)–1 versus T – T2 for
(DMA)5Cd3Cl11 in the vicinity of the PT at T2 = 123.5 K.
As seen from the figure, this plot is linear in the temper-
ature interval from T2 to T2 + 1.5 K, which agrees with
the theoretical prediction. Hence, one may suppose that
the phase existing at temperatures T > T2 in the
(DMA)5Cd3Cl11 crystal is incommensurate and that a
PT from the incommensurate to the commensurate
phase occurs at T2 = 123.5 K.

The entropy of the incommensurate–commensurate
phase transition is known to be always substantially
smaller than that of a displacive transition, which is of
the order of 0.1R. The small value of the ∆S of lock-in
transitions should be assigned to the fact that a soliton
structure forms in the incommensurate phase in most
crystals close to the transition temperature. Entropy
changes ∆S ≈ 0.1 R due to incommensurate–commen-
surate phase transitions are observed in A2BX4-type
incommensurate-phase crystals with both an atomic
and an organic cation, with the exception of copper-
containing crystals. The fairly large PT entropy change
at T2 for the (DMA)5Cd3Cl11 crystal is apparently a
result of considerable structural changes that accom-
pany reorientation of the DMA molecular cations.

3. CONCLUSIONS

Our studies suggest that (DMA)5Cd3Cl11 undergoes
a PT sequence typical of crystals with an incommensu-
rate phase. The second-order PT at T1 = 176.5 K is a
normal-to-incommensurate phase transition, and the
first-order PT at T2 = 123.5 K occurs from the incom-
mensurate to a commensurate phase.
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Abstract—The critical properties of the three-dimensional fully frustrated Ising model on a cubic lattice are
investigated by the Monte Carlo method. The critical exponents α (heat capacity), γ (susceptibility), β (magne-
tization), and ν (correlation length), as well as the Fisher exponent η, are calculated in the framework of the
finite-size scaling theory. It is demonstrated that the three-dimensional frustrated Ising model on a cubic lattice
forms a new universality class of the critical behavior. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The ideas underlying the scaling and universality
hypotheses and the renormalization-group theory
appeared most fruitful in constructing a unified modern
theory of phase transitions and critical phenomena [1].

Until recently, it seemed that the theory of static
phase transitions and critical phenomena in essence had
been constructed and that progress on it had almost
stopped. However, data obtained, for example, in the
study of frustrated systems and spin systems with
quenched nonmagnetic disorder have demonstrated
that many results go far beyond the scope of the modern
theory of phase transitions and critical phenomena [2].

In the majority of traditional theoretical and exper-
imental methods for investigating such systems, seri-
ous problems are encountered in attempting to calcu-
late the critical parameters and to elucidate the spe-
cific features, the nature, and the mechanisms of the
critical behavior of these systems [2, 3]. For these rea-
sons and others, phase transitions and critical phe-
nomena have been extensively studied by Monte
Carlo methods [3–7].

In the present work, the critical properties of the
fully frustrated Ising model on a three-dimensional
cubic lattice was investigated by the Monte Carlo
method. Interest in this model is caused by the follow-
ing basic factors.

First, frustrated systems on triangular and hexago-
nal lattices have been studied in sufficient detail [4, 5–
7]. The critical properties of frustrated systems on a
cubic lattice have not been adequately investigated.

Second, many important physical properties of frus-
trated systems depend substantially on the lattice
geometry (the degree of frustration). Such a depen-
dence can lead to a decrease in the number of universal-
1063-7834/05/4706- $26.00 1163
ity classes of the critical behavior. This problem is still
not clearly understood.

Third, the first attempts to investigate the above
model were made when the power of computers and the
algorithms employed in the Monte Carlo method were
not sufficient to calculate the critical parameters with
the necessary accuracy.

Moreover, the results obtained in [8–12] are ambig-
uous and contradictory and, hence, make the elucida-
tion of all the specific features of phase transitions and
the critical behavior of the model under consideration
impossible. In particular, Chui et al. [8], Blankschtein
et al. [9], and Grest [10] interpreted the phase transition
revealed in the vicinity of the temperature TC = 1.34
(hereafter, the temperature will be given in terms of
|J |/kB) as a first-order phase transition. However, Diep
et al. [11] and Bernardi et al. [12] made the inference
that, at this temperature, the system undergoes a sec-
ond-order phase transition. It should be noted that, in
the majority of the aforementioned works, primary
attention was focused on the study of thermodynamic
and magnetic properties, whereas the critical parame-
ters were calculated in passing.

2. THE THREE-DIMENSIONAL FULLY 
FRUSTRATED ISING MODEL

Villain [13] was the first to propose the three-dimen-
sional fully frustrated Ising model on a cubic lattice as
a tool for adequately describing spin glasses. This
model is illustrated in Fig. 1a. Note that the system can
be divided into eight sublattices; however, sublattices
1–5, 2–4, 3–6, and 7, 8 are equivalent.

Figure 1b shows eight elementary cubes that
describe a spin configuration of the given model in the
ground state. It can be seen from this figure that each
elementary cube involves three frustrated bonds.
© 2005 Pleiades Publishing, Inc.
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The Hamiltonian of the system can be written in the
following form:

 (1)

where σ is the Ising spin and Jij is the exchange interac-
tion (J > 0 and J < 0 for the ferromagnetic and antifer-
romagnetic bonds, respectively). Frustrations in this
model are caused by competition between exchange
interactions [11, 13].

The magnetic and thermodynamic properties of the
above model were studied by the Monte Carlo method
in [11, 12]. It was shown that the system is character-
ized by two phase transitions at TC1 = 1.355 and TC2 ≈
0.7 according to [11] and at TC1 = 1.347 and TC2 ≈ 0.7
according to [12]. Bernardi et al. [12] rather conclu-
sively demonstrated that the phase transitions at the
temperatures TC1 and TC2 are second-order and first-
order transitions, respectively. Most likely, Diep et al.
[11] were the first to calculate a number of static critical
exponents. The most important exponents ν and α were
obtained by dividing the paraphase temperature range
into two ranges TC ≤ T ≤ 1.45 and T > 1.45. This proce-
dure seems somewhat questionable, and the crossover
temperature T = 1.45 determined in [11] is also in
doubt. Furthermore, the origin of the crossover in the
paraphase range remains unclear.

Moreover, the direct analysis of the Monte Carlo
simulation data and the determination of the exponents

H Jijσiσ j,
i j,〈 〉
∑–=

1 2
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J = 0

J > 0
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x

Fig. 1. (a) Three-dimensional fully frustrated Ising model
on a simple cubic lattice and (b) eight elementary cubes.
P

from the slopes of the dependences of the thermody-
namic parameters on a logarithmic scale are unconvinc-
ing, especially for the low Monte Carlo statistic
obtained in [11].

Of special note is the work by Bernardi et al. [12],
who determined the critical exponents α, β, ν, and η.
However, the main objective of that work was to inves-
tigate the magnetic and thermodynamic properties of
the model rather than to calculate the critical exponents.
Moreover, the finite-size scaling method chosen by
those authors for calculations, in our opinion, does not
possess a high accuracy.

Nonetheless, the data obtained in the aforemen-
tioned works demonstrate that the critical parameters of
the three-dimensional fully frustrated Ising model dif-
fer from those characterizing the universality class of
the pure Ising model.

According to the modern theory of phase transitions
and critical phenomena, the universality class of the
critical behavior depends primarily on the following
factors [1, 14]:

(i) the space dimension d,
(ii) the number of degrees of freedom of the order

parameter n,
(iii) Hamiltonian symmetry, and
(iv) the length of the characteristic interaction.
However, a considerable amount of available data

suggest that the universality class of frustrated systems
can depend not only on the aforementioned factors.
This is also confirmed by the Monte Carlo results
obtained for lattices with different geometries [4, 5–7].
Note also that asymptotic values of the critical parame-
ters for such systems have not been obtained with suf-
ficient accuracy.

In this respect, the purpose of the present work was
to attempt to determine the critical parameters of the
three-dimensional fully frustrated Ising model by using
reliable well-tried schemes within a unified approach
and with as high an accuracy as possible.

3. COMPUTATIONAL TECHNIQUE

Frustrated spin systems are rather complex objects
to be investigated even with the use of the Monte Carlo
method. As is known, the Monte Carlo method in the
vicinity of critical points is hampered by the problem of
“critical slowing down,” which, for frustrated systems
becomes even more serious. Consequently, many new
algorithms of the Monte Carlo method have been devel-
oped in recent years. Among them, the cluster algo-
rithms of the Monte Carlo method have proved the most
powerful and efficient for investigating critical phe-
nomena in different spin systems and models [15–18].
These algorithms have provided a way to calculate the
critical parameters of many model systems with a high
accuracy [3]. Unfortunately, the use of the cluster algo-
rithms for studying critical phenomena in frustrated
HYSICS OF THE SOLID STATE      Vol. 47      No. 6      2005
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systems has turned out to be inefficient. This is
explained by the fact that frustrated systems undergo a
phase transition at low temperatures and (or) a con-
structed cluster includes a very large region of the sys-
tem. In a number of cases, the cluster algorithms have
been used with a fitting parameter that makes it possible
to control the size of the constructed cluster. Hence,
frustrated systems have been investigated with special
cluster algorithms, which are efficient only for low-
dimensional models of frustrated systems [19, 20]. In
the study of three-dimensional models, the efficiency of
these algorithms has been shown to be even lower than
that of the standard Metropolis algorithm (see refer-
ences in [21]).

For this reason, the three-dimensional fully frus-
trated Ising model in our work was investigated using
the classical Metropolis algorithm [22]. The calcula-
tions were performed for systems of size L × L × L = N
(L = 8–30) with periodic boundary conditions. The
number N of spins in the simulated systems was equal
to 512, 1000, 1728, 2744, 4096, 5832, 8000, 10648,
13824, 17576, 21952, and 27000. The initial configu-
rations were specified so that all spins were aligned
with the z axis. In order to bring the system into a state
of thermodynamic equilibrium, a nonequilibrium seg-
ment of 5.0 × 105 MCS/spin in length was cut off. This
segment was longer than the nonequilibrium segment
itself by several factors. The thermodynamic quantities
were averaged over a Markovian chain of a length of up
to 3.0 × 106 MCS/spin.

4. RESULTS OF SIMULATION

The temperature dependences of the heat capacity
and the susceptibility were examined using the relation-
ships [23–25]

 (2)

 (3)

where K = |J |/kBT, N is the number of particles, U is the
internal energy, and m is the sublattice magnetization.

Figure 2 depicts the characteristic temperature
dependences of the heat capacity C for the systems with
linear sizes L = 8, 12, 16, and 20 (hereinafter, the error
does not exceed the symbol sizes).

Note that the dependences of the heat capacity C for
all the systems in the vicinity of the critical temperature
exhibit clear maxima, which become more pronounced
with an increase in the number of spins in the system.
Moreover, these maxima, within the limits of experi-
mental error, correspond to the same temperature even
for the systems with the minimum size L. This suggests
that, first, the periodic boundary conditions used in the
calculation are highly efficient and, second, many
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parameters under investigation reach saturation with
respect to the number N of spins.

In order to determine the critical temperature TC

more precisely, we used the method of fourth-order
Binder cumulants UL. The fourth-order Binder cumu-
lant has the form [26]

 (4)

According to the finite-size scaling theory, the tem-
perature dependences of the cumulant UL intersect at
the critical point [25].

Instead of the order parameter m in formula (4), we

used the quantity m = . Here, the

Edwards–Anderson order parameter qα is written in the
form [11]

 (5)

where α indicates the sublattice number.
The characteristic temperature dependences of the

Binder cumulant UL for sublattices 3–6 are plotted in
Fig. 3. The intersection point of these dependences cor-
responds to the critical temperature TC = 1.344(2). The
critical temperatures for the other sublattices were
determined in similar fashion.

It can be seen from Figs. 2 and 3 that the maxima in
the temperature dependences of the heat capacity for
the systems with different numbers N of spins corre-
spond to the critical temperature TC determined by the
Binder cumulant method. This demonstrates a high
reliability of determining the critical temperature.
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Fig. 2. Dependences of the heat capacity C/kB on the tem-
perature kBT/ |J |.
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The static critical exponents of the heat capacity α,
the susceptibility γ, the magnetization β, and the corre-
lation length ν were calculated from the relationships of
the finite-size scaling theory.

According to this theory, the free energy of a suffi-
ciently large system with periodic boundary conditions
at a temperature T close to the critical temperature TC of
an infinite system can be represented in the following
form [27, 28]:

 (6)

where t = |T – TC |/TC, TC = TC(L = ∞), and ν is the static
critical exponent of the correlation length for the infi-
nite system (L = ∞).

Relationship (6) leads to similar dependences of the
heat capacity, the susceptibility, and the spontaneous
magnetization per spin [24, 27, 28]:

 (7)

 (8)

 (9)

where α, γ, and β are the static critical exponents of the
system with L = ∞. These exponents are related by the
hyperscaling expression 2 – α = dν = 2β + γ [1].

Furthermore, a number of methods for determining
the critical exponent of the correlation length ν on the
basis of the finite-size scaling theory have been pro-
posed to date [4, 29, 30].

As follows from this theory, at the phase transition
point, we have

 (10)

F T L,( ) L
d–
F0 tL

1/ν( ),∝

C T L,( ) L
α /ν

C0 tL
1/ν( ),∝

χ T L,( ) L
γ/νχ0 tL

1/ν( ),∝

m T L,( ) L
β/ν–

m0 tL
1/ν( ),∝

Vn L
1/ν

gVn
,=

1.32 1.33 1.34 1.35 1.36
kBT/|J|
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0.55
U

L

L = 10
L = 12
L = 14
L = 16
L = 20

TC = 1.344

Fig. 3. Dependences of the Binder cumulant UL on the tem-
perature kBT/ |J |.
P

where  is a constant and the quantity Vn is defined
by the expression

 (11)

It follows from formulas (8) and (9) that the magneti-
zation and susceptibility in the system of size L × L × L
at T = TC with sufficiently large sizes L satisfy the fol-
lowing relationships [3, 24]:

 (12)

 (13)

These relationships were used to determine the crit-
ical exponents β and γ.

In our earlier work [31], it was shown that a similar
relationship for the heat capacity does not hold. In prac-
tice, the dependence of the heat capacity on the size L,
as a rule, can be approximated by the expression (see
references in [31])

 (14)

where A is a coefficient.

The characteristic dependence of the susceptibility
χ3 on the linear size L of the lattice for sublattice 3 on
the log–log scale is depicted in Fig. 4. It can be seen
from Fig. 4 that the data fit a straight line whose slope
determines the ratio γ/ν. A similar technique was
applied to determine the quantities α/ν, β/ν, and 1/ν.
Then, the exponents ν obtained were used to calculate
the exponents α, β, and γ. All the exponents thus deter-
mined are listed in the table. For comparison, the data
taken from [11, 12] are also presented in the table.

Of special note is the procedure used for determin-
ing the Fisher exponent η. By using the relationship

gVn

Vi
m'E〈 〉
m'〈 〉

--------------- E〈 〉 , i = 1 2 3 4, , ,( ).–=

m L
β/ν–

,∝

χ L
γ/ν

.∝

Cmax L( ) Cmax L = ∞( ) AL
α /ν

,–=

8 10 12 14 16 18 20 22 26 30
L

100

300

500

80
60

40

20

χ 3

Fig. 4. Dependence of the susceptibility χ3 on the linear size
L of the system at T = TC1.
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between the susceptibility χ and the correlation length
ξ [32]

 (15)

and the expression η = 2 – γ/ν relating the exponents η
and ν, we obtain

 (16)

where c is a constant. For systems with finite sizes, the
equality ξ = L is satisfied. Then, at T = TC, we have

 (17)

Relationship (17) was used to determine the expo-
nents η for all eight sublattices. These data are also pre-
sented in the table.

It should be noted that, to within the limits of error,
the critical exponents ν calculated in our work are in
agreement with those obtained in [12]. Our critical
exponents α and β somewhat differ from the data of
other authors [11, 12]. The critical exponent γ was most
likely determined in our work for the first time (to the
best of our knowledge, similar data are not available in
the literature). The Fisher exponent η agrees with that
calculated in [12] to within the limits of error. The crit-
ical temperature TC = 1.344(2) determined in our work
nearly coincides with the critical temperature TC =
1.355 obtained in [12].

5. CONCLUSIONS

Thus, the critical properties of the three-dimen-
sional fully frustrated Ising model on a simple cubic lat-
tice were investigated using the classical (Metropolis)
algorithm of the Monte Carlo method. The results
obtained made it possible to calculate all the static crit-
ical exponents. The critical exponents α (heat capac-
ity), γ (susceptibility), β (magnetization), and ν (corre-
lation length), as well as the Fisher exponent η, are cal-
culated from the relationships of the finite-size scaling
theory within a unified approach. The results of the cal-
culations showed that the three-dimensional fully frus-
trated Ising model on the cubic lattice belongs to a new

χ ξ γ/ν∝

χ/ξ2( )ln c η ξ ,ln–=

χ/L
2( )ln c η L.ln–=

Critical exponents α, β, γ, ν, and η

Critical 
parameter

Data of 
this work [11] [12]

Unfrustrated 
Ising model 
(see refer-

ences in [3])

α 0.46(2) 0.33(5) 0.32(2) 0.108

β 0.21(2) – 0.25(2) 0.326

γ 1.18(3) – – 1.239

ν 0.55(2) 0.55(2) 0.56(2) 0.631

η –0.15(5) –0.28(6) –0.10(2) 0.038

TC 1.344(2) 1.335(2) 1.347(1) 4.5108
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universality class. It seems likely that the critical expo-
nent of the susceptibility for this model was calculated
for the first time.
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Abstract—The conductivity of a quantum cylinder with a parabolic lateral confinement potential and a super-
structure is studied under conditions where uniform static quantizing electric and magnetic fields are applied
along the cylinder axis. The charge carriers are assumed to be scattered by optical phonons. The dependence of
the current density along the superlattice axis on the dc magnetic field is obtained. It is shown that, under certain
conditions, the so-called Stark-hybrid-phonon resonance appears due to the hybridization of the electronic
energy spectrum. In turn, this gives rise to a sharply nonmonotonic magnetic-field dependence of the current
density. © 2005 Pleiades Publishing, Inc.
The modern development of nanotechnology has
made it possible to fabricate surfaces of different curva-
ture using strained GaAs/GaAlAs layers [1], including
cylindrical surfaces with unusual physical properties
[2]. Special attention has been paid to quantum nano-
structures, where confinement can be modeled by a par-
abolic potential [3]. The optical properties of nano-
structures with a parabolic confinement potential were
studied in [3–5], where, in particular, it was shown that
the application of a magnetic field results in resonance
singularities at hybrid frequencies rather than at the
cyclotron frequency.

The aim of this study is to calculate the longitudinal
magnetoconductivity of a quantum cylinder with a
superstructure. We assume that an additional periodic
potential is created along the cylinder axis (thus, the z
axis is both the axis of the superlattice and the axis of
the quantum cylinder). Static quantizing magnetic and
electric fields are applied along the z axis and produce
hybridization in the electronic energy spectrum.
Accordingly, observation of some interesting effects
becomes possible. In particular, it is shown that the so-
called Stark-hybrid-phonon resonance should be
observed.

We describe a quantum cylinder with thin walls
using the approach proposed in [3]. We assume that the
dc electric field is sufficiently strong for the quantiza-
tion effect to be noticeable, i.e., that the following ine-
qualities are satisfied:

 (1)

 (2)

Here, Ωst = eEd/" is the Stark frequency, e is the ele-
mentary charge, E is the dc electric field (E || OZ), d is
the superlattice period, τ is the relaxation time, and

τΩ st @ 1,

"Ωst ! Eg.
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Eg is the miniband gap. Condition (1) means that the
discrete levels are not broadened by electron collisions
with lattice irregularities, and condition (2) implies the
possibility of using the single-miniband approxima-
tion.

The entire energy spectrum of charge carriers in a
quantum cylinder in the situation described above is
discrete and can be written as

 (3)

where Ω =  is the hybrid frequency; ωc =
|e |B/m*c is the cyclotron frequency; ω is the eigenfre-
quency of the confinement potential; λ =
2π"2ω2/m*L2Ω2 is the confinement energy; m* is the
carrier effective mass; L = 2πR is the length of the chan-
nel; R is the radius of the cylinder; n = 0, 1, 2, …; m =
0, ±1, ±2, …; and ν = 0, ±1, ±2, ….

The electron wave function corresponding to spec-
trum (1) can be written as

 (4)

where l = , Hn(x) is the Hermite polynomial.
Expressions (3) and (4) can be obtained from the corre-
sponding formulas in [3] by replacing the continuous

part of the spectrum /2m by the discrete component

ν"Ωst and by replacing exp(ipzz/")/  by the com-

ponent of the wave function Jν – z/d(∆/"Ωst)/  that
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takes Stark quantization into account [6]. Such replace-
ments are a consequence of the fact that E || H || OZ.

To calculate the current density, we use the general
theory of electrical conductivity of semiconductors in
quantizing fields, developed in [7]. Then, with regard to
[8], we may write the current density along the super-
lattice axis in the form

 (5)

where

 (6)

Hq = Cq , ρ is the density of the crystal,
Cq is the electron–phonon interaction constant, ωq is
the phonon frequency, q is the phonon wave vector,
Nq is the Planck phonon distribution function, V is the
normalizing volume (V = LxLyLz), f(n, m) is the non-
equilibrium electron distribution function (to be calcu-
lated separately), |M1, 2 |2 is the square of the modulus of
the matrix element of the operator exp(iqr) with wave
functions (4) given by the expression

 (7)

and

 

The current is due to electron hopping between the lev-
els of the Stark ladder with a simultaneous change in
the numbers n  n', m  m' and phonon emission
(j1) or absorption (j2). In what follows, we consider in
detail the case of electron interaction with optical
phonons, whose dispersion is disregarded for simplic-
ity (we assume that the quantities Hq, Cq, and ωq are
independent of q and denote them by H0, C0, and ω0,
respectively). It follows from (6) that the dependence of
the current density on the magnetic and electric fields
resembles a series δ-function maxima, whose positions
are determined by the condition of the Stark-hybrid-
phonon resonance

 (8)
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This condition differs from that of [8, 9], where the
magnetoconductivity of a one-dimensional superlattice
was studied and the resonance was observed at the
cyclotron rather than at the hybrid frequency.

At low temperatures, we can assume that the elec-
trons are concentrated on the lowest energy level; hence,
in the sums over n and m, we may retain only the terms
with n = m = 0. We introduce the notation f(0, 0) = n0,
where n0 is the concentration of electrons in the mini-
band. At low temperatures (kT ! ω0), we have Nq ! 1
and, therefore, j2 ! j1. Thus, the expression for the cur-
rent density assumes the form

 (9)

where β = λ/"Ω .

In the quasi-classical approximation, where zq @ 1,
we can sum over ν – ν' [8, 10, 11]:

 (10)

Here, Θ(x) is the step function and γn, m = n + βm2 +
ω0/Ω.

With regard to (10), the expression for the current
density becomes

(11)

After summing over q in (11), we obtain
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where we introduced the notation j0 =

16e Vn0/"2L2Ωstπ2, α = 2∆/"Ω , F(ϕ, k) is an elliptic
integral of the first kind,

 (13)

Γ(x) is the gamma function, 1F1(a, c, x) is the degener-
ate hypergeometric function, and χ = ωml/2RΩ.

The results of the simulation for the current density
as a function of the magnetic field using expression (12)
are plotted in the figure. The following typical superlat-
tice and quantum cylinder parameters were used in the
simulation: ∆ = 0.01 eV, n0 = 1014 cm–3, m* = 10–29 g,
superlattice period d = 10–6 cm, phonon frequency ω0 =
1.6 × 1012 s–1 [12], Cq = 5 × 108 eV/cm [13], frequency
of the confinement potential ω = 1.6 × 1013 s–1, cylinder
radius R = 10–6 cm [3], and Ωst ≈ 2 × 1012 s–1. At these
parameter values, we have j0 ≈ 0.3 A/mm2, which is
entirely attainable for experimental observation.

It is seen in the figure that the jumps in the current
density occur as the magnetic field increases. These
jumps can be explained in the following way. From the
conservation of energy, we obtain the inequality

 (14)

which determines the selection rules for m and n. Thus,
e.g., three terms correspond to the segment ab in the plot
(n = 1, m = 0; n = 0, m = –1; n = 0, m = 1). The current
surge bcde, caused by the addition of terms n = |m| = 1,
occurs if

 (15)

where B is the magnitude of the magnetic field vector
and

 (16)

The jump fg is related to the disappearance of the sum
over n (n = 0); this happens for

 (17)

In the limit of high magnetic fields (B @ 105 CGSE),
the ratio j/j0 tends to zero, since the energy gaps
between the hybrid quantum energy levels increase
with field, thus decreasing the carrier transition proba-
bility and, therefore, decreasing the current.
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Abstract—The transformation of electronic states in Ca(001) films in strong electrostatic fields is studied using
electron density functional theory. It is shown that an excess film charge of either sign pins the Fermi level (with
respect to the conduction band edge) in a wide range of fields. For positively charged films, the change in the
density of states at the Fermi level is small but the energy derivative of the density of states changes sign with
increasing excess charge of the film. For negatively charged Ca(001) films, the change in the density of states
at the Fermi level plays the main role in stabilizing the width of the occupied part of the conduction band; this
should be manifested in the electronic thermodynamic and transport properties of negatively charged Ca(001)
films with quantum confinement. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Variation in the electronic structure of a metal sur-
face can play an important role in the formation of its
physical properties in the presence of a strong external
electrostatic field [1, 2]. The transformation of electron
states at the Fermi level EF caused by the charging of
metal films is of great interest. Calcium can serve as a
convenient object for studying these phenomena. In
electrically neutral metallic calcium crystals, the Fermi
level lies near the extrema in the local densities of states
of s, p, and d types. In thin Ca(001) films, the density of
surface states also has a peak near EF [3, 4]. An applied
field changes the potential within the limits of the pen-
etration depth and thereby can cause a charge carrier
redistribution and change the transport and thermody-
namic characteristics [5, 6].

We are aware of very few calculations of the elec-
tronic structure of real metals in external electrostatic
fields [7–12].1 

This fact could be due to two main reasons. The first
reason is mostly technical and is related to the long-
range character of Coulomb interaction. When apply-
ing methods for calculating the electronic structure of
electrically neutral crystals to charged crystals, the
standard self-consistency procedure (which is an inte-
gral part of finding the electronic response of metals)
does not converge [13–15]. Therefore, for charged
crystals, it is necessary to develop special models and
methods for calculating the electronic states. To this
aim, the method of embedding potential has been
developed for bulk crystals [16, 17]. We have devel-

1 Studies of the electrostatic response of metals by using the jelly
model are more numerous. However, this model is very crude and
is mainly used for finding the electronic density distribution near
the metal surface.
1063-7834/05/4706- $26.00 1172
oped a method of self-consistent calculation for electri-
cally neutral and charged films that explicitly takes into
account strong electron screening of the electric field at
the metal surface [11].

The second reason is related to vanishing of the
external electrostatic field in the bulk of the metal. Due
to this, in bulk metallic crystals placed in an external
field, the charge-dependent part of the total density of
electronic states n(E) is determined only by the surface
contribution, is small as compared to the bulk contribu-
tion, and thus only slightly affects the physical proper-
ties of the sample.2 A different situation occurs in films
with quantum confinement consisting of 5–20 atomic
layers. In this case, the bulk and surface contributions
to n(E) are comparable and a strong change in the elec-
tronic states at EF and in the related physical properties
is possible.

To the best of our knowledge, this study is the first
to deal with the evolution of the density of electronic
states in a real thin metal film in the presence of a strong
electrostatic field.

2. STATEMENT OF THE PROBLEM
AND DETAILS OF THE CALCULATIONS

The electronic structure of charged Ca(001) films
was calculated using a new method [11] within the
framework of electron density functional theory [18].
This method takes into account electronic screening at
the metal surface. It should be noted that, today, elec-
tron density functional theory is probably the only

2 Surface-sensitive effects are an exception. For example, the inten-
sity of the second harmonic generation of electromagnetic radia-
tion at its reflection from a cubic crystal is entirely determined by
the surface transformation of electronic states.
© 2005 Pleiades Publishing, Inc.
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method that allows one to take account of exchange-
correlation effects when calculating the electronic
response of inhomogeneous systems with a compli-
cated band structure [19].

The system of self-consistent equations to be
solved is3 

(1)

Here, k is the reduced two-dimensional quasi-momen-
tum, Rn is the translation vector of the Bravais lattice of
the film considered, and q is the number of “uncompen-
sated” electrons in the unit cell Ω of the film. In calcu-
lating the electronic density (r, q), we sum over all
states with energies En(k, q) that lie below the Fermi
level EF(q).

The effective potential V[ (r, q)] is the sum of the
Coulomb and exchange-correlation contributions. The
Coulomb contribution was calculated using the method
developed in [20], in which the electrical neutrality of
the bulk of the metal film was explicitly taken into
account. This circumstance ensures the convergence of
the self-consistency procedure used when calculating
the electronic states of charged films. The exchange-
correlation contribution to V[ (r, q)] was calculated
using the local density approximation and the interpo-
lation Hedin–Lundqvist formula with the parameters
listed in [21].

For an electrically neutral system (q = 0), the bound-
ary conditions for Ψnk(r, q) are naturally related to zero
asymptotic behavior of the effective potential. The cor-
responding asymptotic expression for the wave func-
tions of the discrete spectrum is a decaying exponential
function. In the case of a charged film, the electrostatic
potential in free space is a linear function of the dis-
tance from the metal surface, as is the potential of a
charged plane [20]. An infinitely high potential barrier
can be introduced in free space at a distance zB from the
film surface, where the electronic density is negligibly
small; thus one may consider uncompensated charges
of both signs using the stationary state description. As
shown in [14, 22], if the barrier lies at a sufficient dis-
tance and the condition V[ (x, y, zB, q)] > EF(q) is sat-
isfied, its effect on the energies of occupied states is
negligible. A detailed description of the method used
can be found in [11].

The lattice constant in the calcium film was set equal
to its bulk value ACa = 10.5296 au and independent of
the film charge; to some extent, this can be justified by
the fact that the effect of surface relaxation on the sur-

3 We use the atomic system of units with energy measured in Ry.

∆– V r q,( )[ ]+{ }Ψ nk r q,( ) En k q,( )Ψnk r q,( ),=

Ψnk r Rn q,+( ) ikRn( )Ψnk r q,( ),exp=

Ψnk r q,( ) 2 rd

Ω
∫ 1, r q,( ) Ψnk r q,( ) 2

.
n k,
∑= =

ζρ

ζρ

ζρ

ζρ

ζρ

ζρ
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face density of electronic states in electrically neutral
Ca(001) films can be disregarded [3].

The strongest electric fields E considered in this
study (|q | ≤ 0.3, |E | ≤ 1.75 × 1010 V/m) are large but
quite accessible, e.g., at the electrode surface in an elec-
trochemical cell [14].

3. RESULTS AND DISCUSSION

Figure 1 shows the evolution of the density of occu-
pied electronic states in the conduction band of posi-
tively charged Ca(001) films. The changes in n(E, q)
with an increase in charge Q = qe– (here, e– is the ele-
mentary charge) completely disagree with the simple
picture based on the empirical rigid-band model [23].
Our calculations show that, in a five-layer Ca(001) film
throughout the entire range of charge variation (down
to 3 excess electrons per 10 film cells), the width of the
filled part of the conduction band ∆(q) varies by no
more than 0.048 eV, which is about 1% of ∆(q = 0).
Thus, in the entire range of the variation of positive
charge, a sort of pinning of the Fermi level near peak a
occurs (Fig. 1). According to [4], this peak lies in the
region of the energy localization of one of the surface
states (peak a1 in Fig. 1). The stability of ∆(q) is related
to the transformation of n(E, q) in the regions of ener-
gies close to the energies of surface states a5, a4, and a3
(Fig. 1) obtained in [4]. The increase of electrons in
number in the vicinity of state a3 (peak b in Fig. 1) is
almost fully compensated by the decrease in the concen-
tration of electrons whose energies lie near surface states
a4 (peak c) and a5 (peak e). A detailed evolution pattern
of EF(q) and n(E, q) near the Fermi levels for positively
charged films is shown in Fig. 2. We see that the changes
in n(EF, q) do not exceed 0.26 states/(cell eV) (number
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Fig. 1. Density of states in the occupied part of the conduc-
tion band of electrically neutral and positively charged
(Q > 0) Ca(001) films. Vertical lines show the positions of
the Fermi level EF(q) with respect to the bottom of the band.
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of states per unit cell per unit energy interval in elec-
tronvolts), or 4.1% of n(EF, q = 0). Therefore, the ther-
modynamics of the conduction electrons (electronic
contributions to the entropy, heat capacity, temperature
expansion coefficient, etc.) remains virtually
unchanged for positive charging of the film. We see in
Fig. 2 that, with increasing the positive charge of a film,
the energy derivative of the density of electronic states
at the Fermi level changes sign. For |q | ≤ 0.1, we have
∂n(EF, q)/∂E > 0, whereas for 0.2 ≤ |q | ≤ 0.3 we have
∂n(EF, q)/∂E < 0. This could prove important in study-
ing the temperature dependence of the chemical poten-
tial and thermoelectric phenomena in charged metal
films [6].

If the film charge is negative (q > 0), the evolution of
the density of states has a somewhat different character.
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Fig. 2. Density of electronic states at the Fermi level for
positively charged Ca(001) films.
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Fig. 4. Energy redistribution of negative screening charge in
Ca(001) films at small q.
PH
The Fermi level EF(q) is still pinned near the energy of
surface state a1 but ∆(q) is changed by 0.23 eV; this
value is an order of magnitude greater than in the case
of a positive charge and is 6.4% of the value ∆(q) for an
electrically neutral film (Fig. 3). The main changes in
n(E, q) appear already at moderate negative charges.
The presence of one excess electron per 20 film cells
(q = 0.05) results in a significant (about 27%) increase
in the density of states at the Fermi level. The value of
n(E, q) also appreciably increases near surface reso-
nances a4 and a5 (Fig. 3). It is interesting that, at very
small negative charges of a film cell (q = 0.005), the
electronic states in the vicinity of surface state a3 in an
electrically neutral film are strongly perturbed. As q
increases, overscreening appears and the increase in the
number of electrons near peaks a4 and a5 in the surface
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Fig. 3. Occupied part of the conduction band of an electri-
cally neutral and negatively charged (Q > 0) Ca(001) films.
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Fig. 5. Density of electronic states near the Fermi level for
negatively charged Ca(001) films.
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density of states of an electrically neutral Ca(001) film
becomes dominant even at q = 0.05 [4] (Fig. 4). At q ≥
0.05, the general structure in the n(E, q) curve for the
filled part of the conduction band of Ca(001) film is sta-
bilized (Fig. 3). The changes in ∆(q) do not exceed
0.08 eV. This is due not only to the transformation of
n(E, q) near the energies of surface states a4 and a5 but
also to a substantial increase in it at the Fermi level.
From the data shown in Fig. 5, we see that, in the inves-
tigated range of negative charges, the quantity n(EF, q)
changes by 3.362 states/(cell eV), i.e., by 53.4% of
n(EF, q = 0). Accordingly, the electronic contribution to

the heat capacity of the film (q) ~ n(EF, q) increases
by a factor of more than 1.5 [6].4 Likewise, other phys-
ical quantities that depend on the density of electronic
states at the Fermi level also change. In contrast to the
case of a positively charged film, in the investigated
region of negative charge, the energy derivative of
n(E, q) does not change sign at the Fermi level. 

Thus, for both positively and negatively charged
Ca(001) films, the Fermi level EF(q) is pinned near the
surface state lying at EF in the electrically neutral film.
However, if in the case of a positive charge the stability
of ∆(q) is ensured by the distribution of surface elec-
trons with energies lying deep inside the conduction
band of the film, in the case of a negative charge the
increase in the number of electrons at the Fermi level
plays a major role. This fact is expected to affect the
thermodynamic and transport characteristics of elec-
trons in negatively charged Ca(001) films.
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Abstract—The magnetic structure of a plane nanobridge consisting of two ferromagnetic film electrodes con-
nected by a nanosized crossbar of the same material is studied. Due to their magnetoresistive properties, such
bridges are of considerable interest for microelectronics. Using a numerical micromagnetics method, it is
shown that a domain wall is displaced from the center of the bridge crossbar as the anisotropy constant of the
system decreases and reaches a critical value. A phase diagram is constructed, which makes it possible to deter-
mine the possible magnetic states of real nanobridges. The mechanism of the phase transformation is described
in terms of an analytical model. This model explains the shape of the phase diagram of the nanobridge. For-
mally, the transformations of the magnetic structure of the nanocontact can be described in terms of the Landau
theory of phase transitions in a certain range of parameters of the system. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Ferromagnetic nanocontacts and nanowires have
recently been found to exhibit novel nontrivial effects,
which opens up vast opportunities for the application of
these structures in microelectronics. The first effect of
note is giant magnetoresistance, which can be as high
as several hundred percent at room temperature [1]. The
mechanisms responsible for giant magnetoresistance
have been studied in several publications. It has been
found that the behavior and properties of domain walls
(DWs) whose movement is restricted within a finite,
nanosized volume (nanoconfinement) dictate the resis-
tive properties of the magnetic nanocontact [2].

The behavior of DWs confined to a nanovolume is
currently a subject of intensive study. In [3–5], the
structure and properties of a DW confined to a nano-
contact separating two large ferromagnetic regions
were studied theoretically. It was found that, under
these conditions, DWs differ from Néel and Bloch
walls in terms of their structure and properties. One of
the main distinctions of a confined DW is its extremely
small size if the region to which the DW is confined is
small (e.g., in the case of a point nanocontact). The
effect of modulated anisotropy on the magnetization
distribution in a nanosized region was studied experi-
mentally in [6]. A theoretical model in which an exter-
nal magnetic field causes a DW to escape from the con-
fining region was considered in [4, 7]; it was shown that
the increase in the DW surface energy is compensated
for by a decrease in the magnetostatic energy.

Until recently, experiments were performed on
nanocontacts with almost uncontrolled geometry. The
study carried out in [1] was actually statistical in nature,
1063-7834/05/4706- $26.001176
because it was performed on contacts that formed ran-
domly as two oppositely magnetized rods were joined
or disjoined. In [8], it was shown that the magnetic
structure of nanocontacts like those studied in [1] is
extremely sensitive to even insignificant variations in
their geometry. Obviously, nanocontacts with well-
defined geometric parameters are required for their
application in practice and for obtaining reliable exper-
imental data.

In [9–11], such contacts are proposed to be fabri-
cated in the form of a film nanobridge, i.e., two plane
electrodes (banks) connected by a nanosized crossbar
(Fig. 1). The magnetic structure of a nanobridge with
oppositely magnetized banks was studied in [10] using
computer simulation. It was found that, as the parame-
ters of the system are numerically varied, there can
occur a spontaneous displacement of the DW from the
center of the nanobridge crossbar (spontaneous loss of
stability). This DW displacement can be hysteretic or
reversible, as is the case in first- and second-order phase
transitions, respectively. However, the physical mecha-
nism of this displacement is not understood. In analyz-
ing these magnetic transformations, the main problem

L
z

y

xa

b

Fig. 1. Plane magnetic nanobridge with oppositely magne-
tized banks (schematic).
 © 2005 Pleiades Publishing, Inc.
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is correct inclusion of the long-range magnetostatic
interaction, which is nonlocal and leads to the necessity
of solving complicated integrodifferential equations
using numerical methods.

In this paper, we perform a detailed micromagnetic
study of the magnetic structure of a nanobridge. Based
on the results of this study, we construct a phase dia-
gram, which determines the possible magnetic states of
the nanobridge, and propose a semiphenomenological
model describing the physical mechanism of the phase
transformations in the system and their dependence on
the geometry and material parameters. Within this
model, it is shown that, in a certain range of parameters,
the transformations of the magnetic structure of the
nanocontact can be formally described in terms of the
Landau theory of phase transitions.

2. MICROMAGNETIC MODELING 
OF NANOSTRUCTURES

Experimentally, the study of the magnetic structure
of a nanosystem is an extremely difficult problem,
which sometimes cannot be solved unambiguously
(see, e.g., [12]). Therefore, numerical calculations of
the magnetization distribution in a small structure are
of great importance. These calculations are based on
micromagnetics theory, which was first formulated by
Brown [13]. Modern micromagnetic methods combine
a phenomenological theory developed for calculating
the magnetization distribution in ferromagnetic struc-
tures subjected to given boundary conditions and
numerical computing methods. These methods have
been used to calculate the structure of many magnetic
nanosystems, such as magnetic particles [14], nanocon-
tacts [15], and three-layer spin switches [16].

In this study, we apply a much used numerical
micromagnetic technique in which a plane ferromag-
netic film is covered with a two-dimensional net and the
magnetization vectors are determined at the cell cen-
ters. The stationary states and the dynamics of the mag-
netic system are studied by solving the three-dimen-
sional Landau–Lifshitz magnetodynamics equations
[13, 17]. To analyze the results obtained, we use the fact
that the solution to the Landau–Lifshitz equations cor-
responds to a minimum of the total energy of the sys-
tem.

Neglecting the magnetostriction and surface anisot-
ropy, the total energy of the system E in the absence of
external magnetic fields can be written in the form [13]

 (1)

where Em is the magnetostatic energy, Ea is the anisot-
ropy energy, and Eex is the exchange energy. Let us con-
sider each contribution in more detail [13].

E Em Ea Eex,+ +=
PHYSICS OF THE SOLID STATE      Vol. 47      No. 6      200
2.1. Magnetostatic Interaction

The magnetostatic energy can be written as

 (2)

where G is the region under consideration. The magne-
tostatic field Hm is given by

 (3)

The magnetostatic energy is simple to understand phys-
ically but is difficult to calculate. The fundamental dis-
tinctive feature of this energy term as compared to the
other contributions to the total energy is its nonlocality:
the magnetostatic field at a point depends on the mag-
netization at all points of the solid. For this reason,
modeling of the magnetic structure of various systems
is a fairly difficult problem.

Equation (3) is an analog of the Coulomb law for
magnetic charges, whose volume density is equal to
divM:

 (4)

Therefore, we can determine divM using micro-
magnetic modeling of the nanobridge or another model
and calculate the integral in Eq. (3) by analogy with
electrostatic problems. According to Eqs. (2) and (3), if
there are magnetic charges on a boundary, then the
magnetic field produced by these charges tends to
reverse the magnetic dipoles located near this bound-
ary. Therefore, Hm is often referred to as a demagnetiz-
ing field.

2.2. Exchange Interaction

The exchange energy Eex is given by

 (5)

The exchange interaction favors a parallel alignment of
neighbor magnetic moments and thereby smoothes the
magnetization distribution.

2.3. Anisotropy

The anisotropy energy Ea in an easy-axis ferromag-
net is

 (6)

where K is the anisotropy constant, m is a unit vector
directed along the vector M, and n is a unit vector along
the easy axis. In terms of the anisotropy energy, it is

Em
1
2
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G
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favorable for the magnetization vector at each point to
be parallel to the easy axis.

2.4. The Total Energy

The total energy can be expressed as an integral of
the energy density ε:

 (7)

 (8)

Here, ϕ is the angle between the magnetization M at a
given point and the easy axis.

3. THE MAGNETIC STRUCTURE 
OF A NANOBRIDGE

We performed a numerical experiment to study a
nanobridge consisting of two wide films connected by
a narrow crossbar (Fig. 1). The magnetization and

E ε r( ) r,d

G

∫=

ε 1
2
--- HmM( )– K ϕcos

2
– A ∇ m( )2

.+=

H
I

Fig. 2. Numerically simulated magnetization of the nano-
bridge with the use of two current lines.
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Fig. 3. DW displacement from the center of the crossbar as
a function of the anisotropy constant for two values of the
crossbar length.
P

exchange energy are taken to be close to their values
in a permalloy: Ms = 800 emu/cm3 and A = 1.25 ×
10−6 erg/cm. The x axis is taken to be parallel to the
easy axis in the film. The crossbar width b is 40 nm,
the leads (banks) are 500 × 500 nm in size, and the
thickness of the structure is a = 1 nm (the notation
coincides with that in Fig. 1). The uniaxial-anisotropy
constant K and the crossbar length L are variable
quantities.

The numerical experiment is performed as follows
(Fig. 2). Through two current lines parallel to the y axis
(Fig. 1), current pulses are passed in opposite directions
perpendicular to the nanobridge having specific values
of the crossbar length and anisotropy constant. The cur-
rent pulses produce a magnetic field, which magnetizes
the banks in opposite directions, so a DW forms at the
center of the bridge crossbar. After current pulses are
terminated, the magnetization relaxes toward an equi-
librium distribution, in which the DW either remains at
the crossbar center or shifts to one of the banks. Further,
the reverse process is studied, in which the magnetiza-
tion relaxes starting from the initial distribution with a
DW displaced to one of the banks.

It is found that, at relatively large values of the
uniaxial anisotropy constant, the symmetric magnetic
configuration is stable. Therefore, in the equilibrium
state, the head-to-head DW is located at the center of
the nanobridge. As the anisotropy constant decreases
and reaches a critical value Kc, the position of the DW
at the center becomes unstable and the DW shifts to one
of the banks.

This displacement of the DW from the center of the
nanocontact crossbar is analogous to a phase transition
in which the symmetry of the system is changed. For
this reason, we will refer to this DW displacement as a
phase transformation. The order of this transformation
depends on the crossbar length, as seen from Fig. 3,
where the DW displacement d from the center is plotted
as a function of the anisotropy constant K. In the case
of a short crossbar, the DW displacement varies contin-
uously as the anisotropy constant decreases below the
critical value (dashed curve), as is the case for a second-
order phase transition. For a longer crossbar, hysteresis
takes place, as in the case of a first-order phase transi-
tion (solid curves in Fig. 3). As the crossbar length
increases further, only one branch of the hysteresis
curve remains. In this case, once a DW appears at the
crossbar center, it remains there at any positive value of
the anisotropy constant K.

Figure 4 shows a phase diagram in which the
regions of existence of possible magnetic states of the
nanobridge are indicated. In region I, the DW is located
near a bank; in region II, the DW is at the crossbar cen-
ter; and in region III, there are two stable equilibrium
positions of the DW (at the center and near a bank). The
boundaries between regions I, II, and III correspond to
phase transformations, which occur as the anisotropy
HYSICS OF THE SOLID STATE      Vol. 47      No. 6      2005
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constant K is varied in value. The A1Atcr line corre-
sponds to a continuous transition, and the AtcrK' and
AtcrK'' lines correspond to loss of stability of the sym-
metric and asymmetric metastable phases (lability
curves). On the phase diagram, there is a characteristic
(tricritical) point Atcr that separates the parameter range
where the DW displacement from the center of the
nanocontact occurs smoothly and the parameter range
where the DW displacement exhibits hysteresis. In the
vicinity of the tricritical point, all three magnetic states
of the nanobridge can exist.

Although there are materials for which the uniaxial
anisotropy constant depends on external factors (see,
e.g., [18]), the possibility of varying the K value contin-
uously is a distinctive feature of computer simulation
and cannot be realized in practice. Nevertheless, the
phase diagram obtained using computer simulation is
of considerable practical importance, because this dia-
gram makes it possible to determine the possible mag-
netic states and the magnetization-reversal parameters
of real nanobridges.

Figure 5 shows magnetization-reversal curves for
nanobridges of types I–III. A nanobridge of type I can
be switched by an external magnetic field (parallel to
the device axis) from one asymmetric state to another.
Nanobridges of types II and III are switched by a mag-
netic field from the symmetric to an asymmetric state.
At a zero field, an asymmetric state is unstable for type-
II nanobridges and the DW returns to the crossbar cen-
ter; for type-III nanobridges, this state is stable and the
DW, once switched to this state, remains in it. There-
fore, if the DW displacement is accompanied by a
change in the resistance of the system (see, e.g., [9]),
then a type-II nanobridge can be used as a memory cell
and a type-III nanobridge as a magnetic-field sensor.

Micromagnetic modeling of the magnetic structure
of a plane nanobridge was first performed in [10].

4. THE ENERGY OF THE NANOBRIDGE
AS A FUNCTION OF ITS MAGNETIC 

STRUCTURE

As a result of computer simulation, the three com-
ponents of the magnetization vector are found at each
cell of the computational grid. In order to determine the
mechanism of the transformations that occur in the
nanobridge, the calculated magnetization distributions
are analyzed qualitatively and quantitatively. As a
result, the energy of the nanobridge is found as a func-
tion of the physical parameters and the magnetic struc-
ture of the system.

Let us consider the contributions from the magneto-
static interaction, anisotropy, and exchange interaction
separately.
PHYSICS OF THE SOLID STATE      Vol. 47      No. 6      200
4.1. Magnetostatic Energy

In order to estimate the magnetostatic energy, we
need to find the distribution of magnetic charges in the
system. First, we determine the charge density near the
outer vertical sides (end faces) of the nanobridge,
where the magnetization is virtually uniform and per-
pendicular to the end faces of the film (Fig. 6a). At a
distance much larger than the film thickness a, the mag-

20

0
100

K, 103 erg/cm3

L, nm
150 200 250

40

60
II

50 300

III

I

Atcr

A1

K ''

K '

Fig. 4. Phase diagram of the magnetic nanobridge.
Regions I–III correspond to different sets of magnetic states
of real nanobridges. The boundaries between these regions
correspond to phase transformations that occur as the
anisotropy constant is varied. The A1Atcr curve corresponds
to a continuous transition, and the AtcrK' and AtcrK'' curves
correspond to two hysteresis branches. The parameters of
the nanobridge and explanation are given in the text.
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Fig. 5. Magnetic hysteresis loops for nanobridges with L =
150 nm and various values of K corresponding to re-
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netic field produced by these charges coincides with the
field of a uniformly charged straight line with a linear
magnetic-charge density λ. This density can be found
from Eq. (4) to be

 (9)

The distribution of magnetic charges in the nano-
bridge in the simplest case is schematically shown in
Fig. 6a. In the banks, near the outer vertical sides, the
magnetization is virtually uniform, the sides are uni-
formly charged with a positive linear charge density λ,
and their field is identical to the field of a charged
straight line. Calculations show that the influence of
this field on the magnetic structure near the crossbar
can be neglected because the distance to these sides is
large (500 nm).

Near the inner vertical sides of a bank at a large dis-
tance along the y axis from the crossbar, the magnetiza-
tion is uniform, and these sides are uniformly charged
with a negative linear charge density –λ. Near the DW,
the magnetic momenta are tilted from the x axis. As the
DW approaches a bank (Fig. 6b), the magnetic
moments in the bank tilt away from the horizontal plane

λ Ma.=

(a)

(b)

Fig. 6. Magnetization and magnetic-charge distributions
(a) in the nanobridge in the case considered in the text and
(b) near the crossbar in the case where the DW is near a
bank. Positive and negative magnetic charges are marked in
black and white, respectively. Ovals indicate the section of
the face of a bank on which the charges are not compensated
for by the unlike charges on the opposite face of the bank.
PH
and the magnetic-charge density on the vertical sides
decreases in magnitude. According to Eqs. (2) and (3),
the contribution from the magnetic moments of the
bank to the magnetostatic energy decreases in this case.
Therefore, the DW is attracted to a bank.

The force of attraction between the DW and a bank
depends on the spacing between them. An analysis of
the magnetization distribution (Fig. 7) shows that the
dependence of the angle ϕ between the magnetization
vector and the x axis on the distance from the DW cen-
ter can be fitted with good accuracy by an exponential
function,

 (10)

where c is the DW thickness. In the case where the
anisotropy constant is larger than ~20 kerg/cm3, the val-
ues of the parameter c of the DW in the crossbar and in
a bank are of the same order of magnitude. However,
these values are different, because the DW thickness in
the crossbar is influenced (via the magnetostatic field)
by the nearby faces of the crossbar. More specifically,
the DW thickness in the crossbar is smaller (this effect
is similar to that observed in [2–5]). In the case under
study, the value of c is on the order of the crossbar
thickness b, c = (0.5–0.8)b, depending on the value of
K.

Thus, the force of attraction between the DW and a
bank likewise decreases exponentially with distance,
and the range of this force is on the order of b for the
nanobridges under study.

One should separately treat the magnetic charges on
the faces of the crossbar and in its bulk. Computer sim-
ulation shows that the magnetization distribution near
the upper and lower faces of the crossbar is almost the
same; therefore, the magnetic charges on these faces

ϕ r( ) ϕ0e
r/c–

,=

0.5

0 40

ϕ, rad

r, nm
80 120

1.0
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2.0

L = 70 nm, K = 60 kerg/cm3

ϕL = 0.00 + 1.79e–r/26

Fig. 7. Dependence of the angle ϕ on the distance to the
DW r. Points are data from micromagnetic calculations,
and the curve is a model dependence of the type ϕ(r) = A +
Bexp(–r/c).
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are also similar in magnitude and opposite in sign.
These charges form a magnetic dipole, and its field
tends to align the magnetic moments of a bank along
the y axis in the negative direction. Since the y compo-
nents of the magnetic moments of a bank and the DW
are positive, the field of the magnetic dipole causes
repulsion between a bank and the DW. As in the analo-
gous case in electrostatics, the force of repulsion
decreases as (or more slowly than) the inverse cube of
the distance to the DW. Therefore, in contrast to the
attractive force associated with a decrease in the mag-
netostatic energy of the banks, the repulsion between
the DW and the magnetic charges of a bank is long-
ranged. The charges of the magnetic dipole can be esti-
mated as

 (11)

where the domain of integration is the upper or lower
side of the crossbar (hS). For the calculated magnetiza-
tion distributions, numerical integration gives values of
q lying in the range (0.7–1.2)λb, depending on the
nanobridge.

Since the magnetic charges on the faces of the cross-
bar are equal in magnitude and opposite in sign, the
total charge of the crossbar is equal to its space charge.
This charge can be estimated from the requirement that
the total magnetic charge of the system is zero. Since
the charge on the horizontal faces of the banks is virtu-
ally zero, the charge on the outer vertical faces of the
banks is canceled by the total charge on the inner verti-
cal faces of the banks and in the crossbar. The sections
of the outer faces of the banks on which the charge is
not compensated for by the charges on the inner vertical
faces are indicated by ovals in Fig. 6a. The magnetiza-
tion lines that begin at these sections terminate at the
faces of the crossbar or at its interior points. Therefore,
the total charge of the crossbar is 2λb in the simplest
approximation. Computer simulation shows that the
space charge density in the crossbar decays exponen-
tially with distance from the DW.

The field produced by the magnetic charges on the
vertical faces of the banks is directed along the x axis.
Since the magnetic moments in the DW are tilted to the
x axis, the DW is repelled from the banks. The repulsive
force is long-ranged because the field produced by the
charges of a bank decreases as (or more slowly than)
the inverse square of the distance from the bank. The
magnetic moments of the banks are likewise repelled
by the crossbar with its demagnetizing field.

4.2. Exchange Energy

Computer simulation shows that, if the DW is in one
of the banks, its profile is changed only slightly.1 How-
ever, since the DW volume is significantly larger in a

1 For values of K lying in the range 30–70 kerg/cm3.

q λ ϕ l,dsin

hS

∫=
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bank, the energy of the system increases as the DW
approaches a bank. Therefore, the DW is repelled from
a bank. The force of repulsion is determined by the
range over which the DW perturbs the magnetization
distribution. This force is short-ranged, because the
angle ϕ between the magnetization vector and the x axis
decreases exponentially with distance from the DW,
according to Eq. (10).

4.3. Anisotropy Energy

The anisotropy energy also reaches a minimum
when the DW is in the crossbar, because the DW vol-
ume is minimum in this case. Therefore, uniaxial
anisotropy causes repulsion of the DW from the banks.
This repulsion is likewise determined by the range over
which the DW perturbs the magnetization distribution
and is short-ranged.

5. MODEL PHASE DIAGRAM

5.1. Model Total Energy

Based on the results of micromagnetic modeling, we
develop a semiphenomenological model. An expres-
sion for the energy density of the nanobridge is con-
structed, from which the total energy of the system is
found. The total energy depends on the magnetic struc-
ture of the nanobridge. The minima of this energy
determine the position of the DW for a given set of
parameters of the system.

The model energy density is integrated over two
regions, S1 and S2 (Fig. 8). Over each of these regions,
the magnetization distribution is considered uniform.
The energy of the entire nanobridge is found from the
combined energy of these regions, which is calculated
in a special way. Namely, normalization factors ni are
introduced into the expression for the energy density in
the region S2 in order to relate the energy of the banks
(excluding the strip S1) to the energy of this region:

 (12)
ε 1

2
--- nkHm

k∑ M⋅( )– nanK ϕcos
2

–=

+ nexA ∇ m( )2
.

S2

S1

Fig. 8. Regions S1 and S2 used in calculating the total
energy of the nanobridge.
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The normalization factors are introduced for the anisot-

ropy, exchange interaction, and demagnetizing field 
of each magnetic object separately, because the one-
dimensional model (region S2) used to estimate the

Hm
k
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Fig. 9. Nanobridge energy as a function of the DW displace-
ment d from the center of the crossbar calculated in a semi-
phenomenological model for the crossbar length L equal to
(a) 80, (b) 160, and (c) 240 nm and for various values of the
anisotropy constant K (indicated in kerg/cm3 near the
curves).
PH
energy of the banks is not equally effective for the con-
tributions from the different interactions to this energy.
For example, the contributions from the field of the
magnetic dipole that forms in the crossbar and from the
field produced by the space charge of the crossbar are
different, because these fields decay differently with
distance and also differ in terms of their direction, as
follows from Eq. (2).

The fields of the magnetic dipole and the space
charge of the crossbar and the field produced by the
charges on the vertical faces of the banks are calculated
using the formulas for the fields of a point magnetic
dipole, a point charge, and a charged line, respectively.
The divergence at the lower limit of integration of the
form Hm ∝  r–n is eliminated using the substitution

 (13)

Depending on its physical meaning, the parameter δ is
chosen to be equal either to the nanobridge thickness a,
for the fields of the magnetic dipole and the vertical
faces of the banks, or to b/2, for the field of the space
charge of the crossbar. Replacing δ by a quantity lying
in the range (0.5–1.5)δ has almost no effect on the
results of calculations.

It is assumed that the magnetization distribution in
the crossbar and in the banks is described by Eq. (10).
Inside the crossbar, the parameter c is taken to be 0.65b
(which is the exact value of c at K = 40–60 kerg/cm3).
The value of c in the banks is adjusted to describe the
pattern of phase transformations most adequately. The
continuity of the magnetization distribution is achieved
by fitting the parameter ϕ0.

As the DW approaches a bank, the linear charge
density on the inner vertical faces of the bank
decreases. For this reason, this density is taken to be
equal to λ cos , where  is the angle between the mag-
netization vector and the x axis at the boundary between
the bank and the crossbar. It should be noted that, in a
nonzero approximation, one should take into account
that the magnetization lines beginning at the encircled
regions of the outer vertical faces of a bank do not all
terminate at the crossbar; part of them terminate at the
inner vertical faces of the bank. Therefore, the space
charge of the crossbar is taken to be (1 + cos )λb.

5.2. Energy Profiles

Figure 9 shows the energy of the nanobridge plotted
as a function of the DW displacement from the center
of the crossbar for various values of the crossbar length
L and anisotropy constant K. The DW position is indi-
cated by a circle and corresponds to a minimum energy.
There are three types of curves.

The curves in Fig. 9a have two symmetric minima,
which merge into one (central) minimum as K
increases. Therefore, for any value of K, there is a sin-

Hm
1

r
2 δ2

+( )
n/2

--------------------------.∝

ϕ̃ ϕ̃

ϕ̃
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gle (to within the symmetry) equilibrium position of the
DW relative to the center of the crossbar. This situation
corresponds to second-order phase transitions.

For the curves shown in Fig. 9b, there is one (cen-
tral) minimum at large values of K and two symmetric
minima at values of K close to zero. In the intermediate
range of K values, there are three equilibrium positions
of the DW. In this case, the actual position of the DW
depends on its history (as shown in Fig. 9b). This situ-
ation corresponds to first-order phase transitions.

In Fig. 9c, the curves have three minima even for a
zero anisotropy constant. If the DW is in the central
equilibrium position, it will remain in this position for
any positive value of the anisotropy constant. 

Note that, for energy profiles similar to those shown
in Fig. 9a, the transformations of the magnetic structure
of the nanobridge can be formally described in terms of
the Landau theory of phase transitions. In this case, the
order parameter is the DW displacement d and the coef-
ficients of the expansion of the free energy in powers of
d are determined by the geometric and physical param-
eters of the system, including the anisotropy constant,
which is varied in our computer simulation. Near the
tricritical point, the Landau theory can also be used to
describe first-order phase transitions, as was done in
[19]. This approach is inappropriate, however, in the
case where the critical values of the anisotropy constant
in the lability branches are significantly different.

5.3. Phase Diagram

The energy profiles depend on the crossbar length L,
anisotropy constant K, and normalization factors ni. For
fixed values of the factors ni, we can find the state of the
nanobridge for any values of the crossbar length L and
anisotropy constant K and thus construct the phase dia-
gram of the system. Even this rough model (with values
of ni kept fixed over the entire range of L and K values)
can qualitatively describe the pattern of phase transfor-
mations in the nanobridge. Figure 10 shows the phase
diagram obtained within this model for certain values
of the normalization factors.

6. THE MECHANISM
OF PHASE TRANSFORMATIONS 

IN THE MAGNETIC NANOBRIDGE

We can separate the following competing interac-
tions that determine the DW position:

(1) attraction between the DW and a bank that arises
because the magnetostatic energy of the bank decreases
as the DW approaches it and

(2) repulsion between the DW and a bank associated
with (a) the magnetostatic interaction between the mag-
netic moments of the bank and DW and (b) an increase
in the exchange energy of the system or (c) an increase
in the magnetic anisotropy energy caused by the DW
approaching the bank.
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Interactions 1, 2b, and 2c are short-ranged, with
their range being determined by the DW size. The
forces exerted on the DW due to these interactions
decay exponentially with the distance from a bank and
vanish at a certain distance. In contrast, the magneto-
static repulsion (interaction 2a) is long-ranged, because
the total demagnetizing field decreases as (or more
slowly than) the inverse square of the distance.

Thus, if the crossbar is sufficiently long, the only
force the banks exert on the DW located at the center of
the crossbar is magnetostatic repulsion. Therefore, at
the center, the DW has a minimum potential energy and
is in a stable equilibrium position for any value of the
anisotropy constant (Fig. 9c).

If the DW is near a bank at the same crossbar length,
then the force of magnetostatic attraction (interaction
1) will be stronger than the force of repulsion (interac-
tions 2a–2c) for a sufficiently small anisotropy con-
stant. In this case, there will be a second stable equilib-
rium position. As the anisotropy constant increases, the
side minimum disappears gradually and the DW jumps
into the center (Fig. 9c). This explains the existence of
a region in the phase diagram where there is only one
hysteresis branch.

At smaller values of the crossbar length and a suffi-
ciently small anisotropy constant, the attractive force
(interaction 1) causes the DW to shift from the center.
As the anisotropy constant increases, an energy mini-
mum appears at the center of the crossbar; therefore,
there are three equilibrium positions in this case: one is
at the center and two are closer to a bank (Fig. 9b). The
range of intermediate values of the anisotropy constant
in which there are three energy minima corresponds to
first-order phase transitions. In this case, the depen-
dence of the DW position on K exhibits hysteresis.

As the crossbar length decreases still further, the rel-
ative contribution from interactions 2a and 2b to the
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Fig. 10. Phase diagram calculated using a semiphenomeno-
logical model. Regions I–III are the same as in Fig. 4.
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potential energy of the DW at the center increases. As a
result, the values of the anisotropy constant in the two
lability branches approach each other. Under certain
conditions,2 both values of the anisotropy constant
coincide at a certain crossbar length (corresponding to
the tricritical point) and the energy profile of the system
has two symmetric minima (Fig. 9a). At these values of
the crossbar length, second-order phase transitions
occur in the system.

7. PREDICTION OF THE FEATURES 
OF THE PHASE DIAGRAM 

OF THE NANOBRIDGE

Based on the mechanism of phase transformations
in the magnetic nanobridge described above, we can

2 In some cases, only first-order phase transitions occur regardless
of the value of the crossbar length.

Fig. 11. Phase diagrams of (1) the initial nanobridge, (2) a
nanobridge with a = 1.5 nm, and (3) a nanobridge with
MS = 600 emu/cm3. The diagrams are calculated using
(a) the micromagnetic method and (b) a semiphenomeno-
logical model.

(b)

(a)
PH
predict the behavior of the system as its parameters are
varied. For example, if the thickness a of the nano-
bridge increases slightly, then, according to Eq. (4), all
magnetic charges will increase and, as a result, the
magnetization distribution in the nanobridge will
change. However, this change is a second-order effect
with respect to the variation in the charge. Taking into
account only first-order effects, we obtain the following
pattern: (i) interactions 2b and 2c change only weakly,
because they depend only on the magnetization distri-
bution, and (ii) interactions 1 and 2a are enhanced with
increasing magnetic charges.

Thus, the relative contribution from the attractive
forces increases in comparison with that in the initial
configuration of the system. Therefore, we may expect
that the phase diagram will shift upward along the K
axis, because an increase in the anisotropy constant is
required to compensate for the increased repulsive
forces.

Similarly, if the saturation magnetization MS

decreases slightly, then the magnetic charges will
decrease and the phase diagram will shift downward
along the K axis.

Figure 11a shows diagrams calculated using the
micromagnetic technique for a nanobridge with thick-
ness a = 1.5 nm and a nanobridge with saturation mag-
netization MS = 600 emu/cm3 and, for comparison, the
diagram for the initial nanobridge with a = 1 nm and
MS = 800 emu/cm3. Figure 11b shows the correspond-
ing phase diagrams calculated using the semiphenome-
nological model with the initial values of the factors ni.
It can be seen that the phenomenological model makes
it possible to predict the variations in the phase diagram
of the nanobridge.

8. CONCLUSIONS

We have performed a comprehensive theoretical
study into the magnetic structure of the plane magnetic
nanobridge.

Using computer simulation, the dependence of the
domain wall position on the anisotropy constant K has
been investigated. It was shown that, as the anisotropy
constant varies, the domain wall is displaced from the
center of the nanobridge crossbar and approaches a
bank. This process can be either irreversible (with hys-
teresis) or reversible, similar to first- and second-order
phase transitions. The phase diagram of the nanobridge
was calculated in the crossbar length versus anisotropy
constant coordinates. The curves along which phase
transformations occur with varying K (i.e., the symme-
try of the system is changed) are the boundaries of
closed regions of the phase diagram that correspond to
a set of stable magnetic states of real nanobridges.

Based on the results of the micromagnetic calcula-
tions, we have constructed a semiphenomenological
analytical model describing the formation of the mag-
netic structure of the nanobridge. Using this model, the
YSICS OF THE SOLID STATE      Vol. 47      No. 6      2005
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mechanism of first- and second-order phase transfor-
mations was investigated and the phase diagram of the
nanobridge was obtained. For second-order phase
transformations and for first-order phase transforma-
tions near the tricritical point, the dependence of the
magnetic structure of the nanobridge on its parameters
can be formally described in terms of the Landau theory
of phase transitions.

This model makes it possible to predict the behavior
of the system with variations in its parameters. As an
example, we have considered the case where the thick-
ness and saturation magnetization of the nanobridge are
varied. A comparison of the results of micromagnetic
calculations and the predictions of the phenomenologi-
cal model showed that this model is adequate.
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Abstract—A new mechanism is proposed for the formation of fullerenes from clusters of a “latent” phase,
which are referred to as kvatarons. According to this mechanism, hollow kvatarons initially arise in a supersat-
urated carbon-containing medium and then transform into rigid clusters (fullerenes) with characteristic icosa-
hedral symmetry due to the formation of bonds between carbon atoms. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

A considerable amount of time has elapsed since the
discovery of the stable carbon cluster consisting of 60
atoms and having a characteristic icosahedral symme-
try [1], according to which this cluster was given the
name fullerene C60. However, the mechanism of forma-
tion of the C60 fullerene and other carbon clusters
belonging to the fullerene family is still not clearly
understood. In particular, the well-known scheme of
assembling fullerenes from planar graphite fragments
was not confirmed in elegant experiments performed by
Ebbesen et al. [2], who attempted to answer the ques-
tion as to whether fullerenes are formed by individual
carbon atoms or fragments of graphite layers. In those
experiments, the graphite layers were composed of 12C
carbon isotopes, whereas 13C isotopes played the role of
individual atoms. Hence, it could be expected that the
formation of fullerenes from 12C fragments should not
be accompanied by the mixing of carbon isotopes;
however, this mixing was observed experimentally. A
more nonrealistic model was proposed by Kroto [3],
who assumed that graphite layers should be initially
curved. This model implies that the fullerene is formed
as a result of accidental closure of curved carbon clus-
ters that progressively increase in size. A number of
models describing the fullerene formation [4–6] are
based on the assumption that the fullerene-forming
medium contains cluster precursors of fullerenes. In
particular, Alekseev and Dyuzhev [6] assumed that the
most probable precursor of fullerenes is a two-ring
cluster with a single bond between the rings. According
to the experimental data obtained by Tomilin et al. [7],
the microclusters C2 and C10 are synthesized first and
then either an intermediate cluster nucleus or a final
lower fullerene is assembled from them. Von Helden et
al. [8] and Lozovik and Popov [9] suggested that a car-
bon cluster grows through the following sequence of
transformations: linear chain  monocyclic ring 
three-dimensional polycyclic cluster  fullerene.
The kinetic model proposed by Krestinin et al. [10] for
1063-7834/05/4706- $26.00 1186
condensation of carbon vapors implies that a fullerene
cage grows only due to the incorporation of C2 frag-
ments.

A detailed critical analysis of the existing models of
carbon cluster formation suggests that the most proba-
ble way to transform carbon clusters into fullerenes is
to crystallize a “liquid” cluster [9]. This hypothesis has
been confirmed by the nuclear magnetic resonance
studies of C60 fullerenes enriched in 13C isotopes,
according to which atoms that are neighbors in amor-
phous carbon clusters are not neighbors in fullerenes
[10, 11]. However, up to now, the mechanism of forma-
tion of such a liquid-cluster precursor containing car-
bon atoms in amounts necessary for assembling
fullerenes has defied explanation.

In this work, we proposed a radically new mecha-
nism of fullerene formation from so-called “latent”-
phase clusters, i.e., kvatarons, whose existence was
recently substantiated in [12, 13].

2. THE KVATARON MODEL
OF FULLERENE FORMATION

The energy of formation of a cluster involving n par-
ticles can be written as

 (1)

where S is the surface area of the cluster, σ is the inter-
facial energy per unit area, and ε is the energy per par-
ticle (bonding energy). Taking into account that the
interfacial energy per unit area σ depends on the radius
of curvature r, expression (1) for a spherical cluster
formed by atoms of diameter δ takes the following
form:

 (2)

∆G Sσ nε,–=

∆G 4πr
2σ0 1 2δ

r
------– 

  8
r
δ
-- 

 
3

ε.–=
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Here, the dependence of the interfacial energy σ on the
radius of curvature r is given by the relationship

 (3)

where σ0 is the interfacial energy per unit area for a pla-
nar interface. Relationship (3) is a good approximation
of the dependence σ(r) for radii of curvature r lying in
the range from molecular sizes to infinity. This relation-
ship differs from the classical Tolman formula [14]
(which is valid for r @ δ) and has a form similar to the
expression obtained by Reiss et al. [15] for molecular
particles in the framework of the scale-particle theory.
It is this relationship between σ and r that most ade-
quately describes the size dependence of the surface
energy for small-sized particles [16, 17]. It should be
noted that, within the quasi-thermodynamic approach,
the parameter δ (the Tolman length), as a rule, is inter-
preted as the thickness of the interface region. In rela-
tionship (3), this parameter has the meaning of the min-
imum distance within which a cluster atom and an atom
of the environment can come close to each other with-
out forming bonds between them. Therefore, the
parameter δ is approximately equal to the diameter of
cluster-forming atoms.

Taking into account this estimate of the parameter δ,
from expression (2), we can determine the number of
atoms in the cluster; that is,

 (4)

It is interesting to note that the quantity 2δ/r in relation-
ship (3) has the meaning of the ratio between the num-
ber of surface atoms and the total number of atoms in
the cluster. Actually, the number of surface atoms is
determined by the equality

 (5)

Hence, from formulas (4) and (5), we have ns/n = 2δ/r.
For the critical cluster size, which is determined by

the condition ∂∆G/∂r = 0, we obtain

 (6)

Substitution of this relationship into formula (2)
gives the following expression for the energy of cluster
formation:

 (7)

Expression (7) differs from the standard Gibbs formula
for the energy of formation of crystal nuclei in that it

σ σ0 1 2δ
r

------– 
  ,=
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3
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allows for the spontaneous formation of clusters (at
∆G < 0) whose radii satisfy the inequality r < 4δ. These
clusters are not nuclei of a new phase in the ordinary
sense; most likely, they are noncovalently bonded inter-
mediate aggregates. In [12], these specific clusters were
referred to as latent-phase clusters or kvatarons.

In the most general form, the geometric interpreta-
tion of kvatarons is reduced to their interpretation in
terms of Delaunay systems, or (R, r) systems. The
arrangement of atoms in kvatarons is not strictly fixed.
However, atoms in kvatarons can neither be farther
apart from each other than the distance R in the (R, r)
system nor be closer together than the distance r. These
two conditions, which determine the Delaunay system
[18], are entirely correct for kvatarons. Therefore, kva-
tarons can be treated as finite fragments of the
Delaunay system, much as crystal nuclei are considered
finite fragments of infinite crystal structures. Note that
the distances R and r in kvatarons are specified within
certain limits: the distance R does not exceed the
parameter δ, and the distance r is no shorter than a crit-
ical distance close to twice the ionic or covalent radius
of the atoms involved in the kvatarons.

It is known that crystals are considered a special
case of the (R, r) systems and adhere to the axiom of
regularity. A necessary and sufficient condition for a
crystal to be formed is the existence of a local regularity
within a region identical to the sphere of radius 4R (the
local theorem) [19]. Since the parameter δ is nearly
identical to the distance R in the kvataron (where R is
the maximum interatomic distance at which the kva-
taron remains intact), the quantity 4δ ≈ 4R determines
the region in which the system should become locally
regular. Once this situation occurs, the cluster trans-
forms into a crystal nucleus [20]. Thus, the fundamen-
tal importance of the local theorem lies in the fact that
it determines the minimum number of atoms required
from the system to form a crystal. Therefore, only a kva-
taron of size r = 4δ, which, according to formula (4),
contains 512 atoms, can be treated as a potential crystal
nucleus. Clusters of smaller radius have an amorphous
structure and are quasi-liquid aggregates.

Similarly, the energy of formation of hollow kva-
tarons with the inner and outer surfaces can be repre-
sented in the form

 (8)

Comparison of relationships (7) and (8) shows that the
formation of hollow kvatarons is energetically more
favorable at r < 4δ, whereas dense clusters are formed
at r > 4δ. In actual fact, the filling of the kvataron vol-
ume occurs even at r > 2δ, when, in accordance with
expression (3), the swelling of the kvataron gives way
to the action of a compressive force (the Laplace pres-
sure).

If the above hypothesis is true, it would appear rea-
sonable that hollow kvatarons can serve as precursors

∆G
8
3
---πr

2σ0 1 4δ
r

------– 
  .=
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of fullerenes. In this case, the formation of fullerenes
proceeds according to a very simple scenario: quasi-liq-
uid kvatarons initially arise in a supersaturated medium
and then, owing to the minimization of the kvataron
energy (the formation of bonds between atoms), trans-
form into rigid clusters (fullerenes) with fixed distances
R and r in terms of the (R, r) system. This scheme
excludes the sequential assembling of a fullerene cage
from individual atoms and is seen to be an inevitable
step in the evolution of the kvataron structure. The fea-
sibility of the proposed scenario for the transformation
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of kvatarons into fullerenes was demonstrated by the
molecular dynamics simulation.1 

The maximum number nkv of atoms occupying the
surface of a kvataron of radius r can be determined
from the condition

 (9)

In the case where the distance between atoms decreases
to a value δ1, the number nf of atoms located on the sur-
face of a rigid cluster formed in the process is given by

 (10)

According to the Euler theorem, a rigid icosahedral
cluster can consist of 12 pentagons and (n – 20)/2 hexa-
gons. Hence, the number nfi of atoms located on the sur-
face of rigid icosahedral clusters is smaller than the
number nf and is determined by the formula

 (11)

The correlation of the numbers nkv, nf, and nfi of atoms
located on the surfaces of the corresponding clusters is
shown in Fig. 1.

The radius of kvatarons depends on the supersatura-
tion of the medium. In our model, the analog of the
Kelvin equation that relates the supersaturation of a gas
phase to the radius of hollow clusters has the following
form:

 (12)

where k is the Boltzmann constant, T is the temperature,
and the supersaturation is expressed through the ratio
between the vapor (gas) phase pressure p over the kva-
taron and the equilibrium vapor pressure p0 over the flat
surface.

Now, we substitute the following parameters into
expression (12): δ ≈ 0.345 nm [this value, according to
the physical meaning of the parameter δ, is somewhat
smaller than the van der Waals diameter of the carbon
atom (0.354 nm) but exceeds the length of the weakest
π bond in graphite (0.335 nm)], σ0 = 350 erg/cm2 (cal-
culated from the energy of the interaction between the
networks of carbon atoms in graphite), and T = 2500 K.
As a result, we obtain

 (13)

The curve calculated from relationship (13) is plotted in
Fig. 2. As can be seen, this curve involves three charac-

1 The results of the molecular dynamics simulation and the kinetic
aspects of the fullerene formation will be published in a separate
paper.
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teristic points: (i) r = δ is the size of kvatarons under
equilibrium conditions, (ii) r = 2δ is the radius of kva-
tarons at the maximum (limiting) supersaturation, and
(iii) r = 4δ is the final size of kvatarons formed sponta-
neously.

Since the formation of fullerenes proceeds under
nonequilibrium non-steady-state conditions, there exist
several variants of the evolution of kvatarons with a
change in their radius r and the number n of atoms
located on the kvataron surface: (i) r ↑  n↑ ; (ii) r ↓  n↓ ;
(iii) r ↓  n↑ ; (iv) r ↑  n; (v) r ↑  n; (vi) r ↓ n; (vii) r, n ↑;
(viii) r, n ↓; and (ix) r, n. It is clear that not all these vari-
ants lead to the formation of fullerenes. For example, an
increase in the radius (r ↑ ) with a constant (n) or
decreasing (n↓ ) number of atoms [variants (iv), (v)]
results in the decay of kvatarons, whereas a decrease in
the radius at a constant number of atoms necessarily
brings about the formation of fullerenes from kva-
tarons.

Under equilibrium conditions, the kvataron has a
radius r = δ. The maximum number of atoms located on
the surface of this kvataron is determined to be n =
16(r/δ)2 = 16 atoms. Since the formation of covalent
bonds between atoms occurs in a jumpwise manner, the
interatomic distance decreases to δ1 = 0.1415 nm (this
value is equal to the mean length of C–C bonds in
fullerenes). As a result, the radius of a rigid limiting
cluster formed in the process decreases to 0.138 nm. An
increase in the number of atoms located on the surface
of a kvataron with a constant radius can lead to the for-
mation of a cluster containing 95 atoms (r = 0.345 nm).
Therefore, the kvataron of radius δ can be a precursor
to the formation of a large family of carbon clusters
from C16 (at n, r ↓ ) to C95 (at n ↑  r). This range of car-
bon clusters can be even wider provided both parame-
ters n and r change simultaneously. Under conditions of
a limiting (maximum) supersaturation, the kvataron has
a radius r = 2δ = 0.69 nm and can form rigid carbon clus-
ters over a wide range from C64 (at n, r ↓) (r = 0.276 nm)
to C380 (at n ↑  r) (r = 0.69 nm). The kvataron of radius
r = 4δ can provide the formation of carbon clusters in
the range from C256 to C1522. However, it is unlikely that
the upper limit can be reached because kvatarons of
such large sizes become double-walled, triple-walled,
or dense aggregates and, consequently, form multilayer
embedded structures, soot particles, or crystal nuclei
(graphite, diamond).

If the medium is not supersaturated, the inequality
r < δ is satisfied and the clusters contain a smaller num-
ber of atoms. For example, kvatarons whose radius falls
in the range δ/2 < r < δ form clusters containing from 3
to 23 atoms. It is interesting that, in some cases, the
mass spectra of carbon clusters exhibit a double-hump
distribution. One hump of this distribution in the range
C3–C23 can be associated with the clustering under con-
ditions of incomplete saturation. This can be clearly
seen in particular from the familiar figure given in [21].
PHYSICS OF THE SOLID STATE      Vol. 47      No. 6      200
Therefore, the carbon clusters, which are referred to
as kvatarons, provide a basis for the formation of a wide
variety of carbon clusters from C16 to C1522. Among
these clusters are the most stable aggregates with the
highest symmetry and the smallest number of contact-
ing pentagons.

It should be emphasized that the formation of the C60
fullerene is due to the evolution of both the kvataron of
radius r = δ = 0.345 nm (the initial number of atoms is
16) at r ↑  n ↑  and the kvataron of radius r = 2δ = 0.69 nm
(the initial number of atoms is 64) at r ↓  n ↓ , with the
second process being dominant. Consequently, the rel-
atively widespread occurrence of the first magic
fullerene C60 is not accidental. This is associated not
only with the minimum energy of the C60 fullerene and
its high symmetry responsible for the stability of the
structure but also with the probable attainment of the
limiting supersaturation under experimental conditions
where clusters contain carbon atoms in amounts neces-
sary for the formation of the architecture inherent in the
C60 fullerene. Possibly, the necessity of preliminarily
reaching the limiting supersaturation at which kva-
tarons have a radius r = 2δ is the main reason why other
elements virtually do not form fullerene-like clusters of
the C60 type. In particular, the limiting supersaturation
for silicon, according to formula (12), is considerably
higher than that for carbon because of the larger values
of δ and σ0.

In conclusion, one additional remark needs to be
made. It is known that, according to x-ray diffraction
data, the radius of the C60 fullerene is equal to 0.357 nm
[22], which is several percent smaller than the radius
predicted from formula (12). This discrepancy can be
associated with the fact that the true shape of the C60
fullerene differs from the ideal icosahedron whose
radius is determined from formula (12). Moreover, it is
not improbable that this discrepancy results from the
contraction of the fullerene due to electron density
transfer into the fullerene cage.
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Abstract—The deformation dynamics of nanovolumes in crystalline, quasicrystalline, and amorphous solids
is studied experimentally using continuous nanoindentation with a resolution of 0.1 nm. The elastic limits of
some materials are determined in a nanocontact region. A jumplike transition to a plastic flow (which is equiv-
alent to a drop in yield in uniaxial macroscopic tests) is revealed and studied. The dynamics and statistics of an
unstable plastic flow in strain-aging alloys are analyzed. The specific features of a local stress–strain curve asso-
ciated with a phase transformation under an indenter and with microcrack nucleation are revealed. The load-
carrying ability of a material upon nanocontact loading is shown to be many times its macroscopic yield
strength and to approach the theoretical ultimate strength even in plastic materials. The relaxation processes
occurring in submicrovolumes after unloading are found to induce an elastic aftereffect that is much larger than
that in macroscopic tests. In Si and Ge single crystals, the effect of a jumplike increase in the cracking resistance
with the strain rate is detected. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The kinetic approach to the strength and plasticity of
solids developed by Zhurkov and his colleagues and
followers over several decades as an alternative to var-
ious theories of the “limiting state” [1] has attracted
considerable interest. Moreover, application of the
powerful arsenal of modern physical methods for inves-
tigating the structural dynamics of solids on the meso-
scopic, dislocation, atomic, and, currently, electron–
spin scales has transformed the initial semi-intuitive
concepts of the development of deformation and frac-
ture in time into an experimentally verified system of
knowledge of the mechanical behavior of solids as a
multistage cascade of interrelated events at several hier-
archical structural levels [2–4]. The difficulty with this
approach consists in the fact that it is necessary to ana-
lyze objects and processes characterized by sizes L and
relaxation times τ that differ by many orders of magni-
tude (up to 1010 times in L and up to 1020 times in τ).
These large ranges are due to the wide variety of struc-
tural defects and their interactions responsible for dam-
age accumulation upon loading, to differences in the
dynamics and motion mechanisms of deformation car-
riers, to the different degrees of collectivization and
self-organization of events at low structural levels, etc.

Macroscopic plastic deformation always results
from a huge number of interrelated dynamic processes
occurring in the defect structure of a material. The
actual kinetics of a plastic flow at the microscopic level
is masked due to the large number of microscopic
deformation events per unit time and to the sluggish-
1063-7834/05/4706- $26.000995
ness of traditional mechanical means of testing materi-
als and, therefore, is difficult to study.

To experimentally investigate the dynamics of nano-
structures, in situ methods with high spatial and time
resolution are needed. Atomic force microscopy and its
related test methods and the dynamic nanoindentation
techniques developed intensively over the past decade
have made it possible to study mechanical properties in
nanovolumes and, in the limiting case, at the level of
individual molecules or small atomic groups. This
opens up fresh opportunities for solving a number of
unsolved fundamental problems in the physics of
strength and plasticity. The designing of nanomechani-
cal recorders, devices for ultrahigh-density data stor-
age, and other nanoelectromechanical systems and the
progress in nanotechnology on the whole have also
raised new questions regarding the nature of the
mechanical properties of nanoscale objects.

The available scarce experimental data indicate that
the mechanical properties of most materials in submi-
cron volumes are different, especially in regions with
characteristic sizes L ≤ 100 nm. Therefore, it is neces-
sary to study them and to reveal the physical causes and
mechanisms of the scale effects and kinetic processes
under these conditions.

Apart from nanotechnology and nanostructures,
there are many other common situations where nano-
contact interaction plays a key role: dry friction of
rough surfaces, abrasive and erosion wear, milling to
form nanoparticles, mechanical alloying and activation
in ball mills, etc. In all these processes, short-term
 © 2005 Pleiades Publishing, Inc.
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intense nanocontact interactions take place and they
can be modeled using dynamic nanoindentation.

In this work, we present data on the processes of
transition from purely elastic to elastoplastic deforma-
tion and to collective behavior of dislocations, a vis-
coelastic aftereffect, phase transformations, and micro-
crack nucleation occurring in various crystalline, quasi-
crystalline, and amorphous materials under the
conditions of local deformation of submicrovolumes.

2. EXPERIMENTAL

In this work, we use dynamic nanoindentation to
study the mechanical properties and behavior of vari-
ous solids at the submicron level. This method consists
in precise local loading of a material surface with a cer-
tified probe (usually, a Berkovich diamond indenter)
and continuous recording of the kinetics of its penetra-
tion with a resolution of a fraction of a nanometer.

25

15

5

0
0 50 150 250 350

h, nm
P

m
, G

Pa

1

2

3

h, nm

0 20 40 60

Fig. 1. Dependence of the mean contact pressure pm on the
indentation depth h in the initial stage of indentation for var-
ious materials: (1) W(001), (2) tetragonal metastable ZrO2,
and (3) cubic ZrO2. In tungsten, a strain jump is detected at
a pressure of 24.9 GPa.
P

These data are used to construct a load–indentation
depth (P–h) diagram, which is similar to the traditional
σ–ε curve in its meaning. By analyzing the P–h dia-
gram, one can derive about ten parameters characteriz-
ing the material at the nanoscopic level (including time-
dependent parameters) and can even reconstruct the σ–
ε curve using a special procedure.

A specific feature of local loading with a pyramidal
indenter is a change in the characteristic indentation
sizes L ~ h and the material volume involved in defor-
mation by several orders of magnitude during one test
cycle. Therefore, the strain rate  ≈ (1/h)dh/dt also
changes strongly with h during tests. At small values of
h (~1–10 nm), indentation at even moderate linear
velocities (dh/dt ~ 1 mm/s) produces deformation at
rates  ≥ 105 s–1, which are characteristic of a surface
explosion. Another specific feature of nanoindentation
tests is the fact that the mean contact pressure in an
indentation pm (Meyer hardness) reaches a certain finite
value in the elastic region. This value remains virtually
constant upon subsequent loading, although the inden-
tation depth increases (Fig. 1). In some materials, pm

reaches a maximum at h ~ 10–100 nm and then
decreases smoothly or jumpwise (sometimes, by sev-
eral times) and finally levels off. The nature of the scale
effect at h ≤ 100 nm is of particular interest. We also
note that, except in this initial stage, deformation, to a
first approximation, proceeds at a constant stress but
involves a material volume (V ~ h3) that increases by
many orders of magnitude. All these factors make it
possible to cover wide ranges of strain rates (from 105

to 10–3 s–1) and of maximum indentation loads (from
0.01 mN to 2 N). Thus, unlike uniaxial tension or com-
pression (where a sample with a constant volume is
subjected to tests under increasing stresses and the
strain increases at a constant rate), continuous nanoin-
dentation can scan the deformation-zone sizes and the
strain rates that vary by several orders of magnitude in
one test (see table). Modern procedures of nanoinden-
tation-data processing can separate the contributions

ε̇

ε̇

Comparison of two types of mechanical tests: continuous nanoindentation and uniaxial tension or compression

Characteristic
Test type

continuous indentation with a Berkovich indenter uniaxial tension or compression

Machine type “Soft” “Stiff”

Character of macroscopic deformation Nonuniform Uniform

Maximum strain εmax ≈ const ≈ 0.3 ε  var

Maximum averaged stress σ = kP/h2 ≈ const ≈ H σ = P/d2  var

Strain rate  ≈ dh/hdt ≈ v /h  var  ≈ const

Deformed volume V ≈ ch3  var V = ld2 ≈ const

Main features Nonuniform deformation of a strongly increasing 
material volume under virtually static stresses

Uniform deformation of a constant
volume under increasing stresses

ε̇ ε̇
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from the scale and rate factors and give a large amount
of information when one sample is subjected to nonde-
structive tests.

The problems that can be solved using nanoindenta-
tion methods are divided into two groups. One group
includes methods for finding the boundaries of the scale
invariance of mechanical properties and for determin-
ing the conditions under which destructive macro-
scopic tests can be replaced by nondestructive tests,
which give the same information but are more produc-
tive and material-saving. The other group includes
methods for revealing the character and causes of
changes in the mechanical behavior in small-scale
objects. In this work, we devote attention to both
aspects of the application of nanoindentation for solv-
ing various problems.

To find the hardness H and the elastic modulus E
from the indentation depth, we used the Oliver–Pharr
technique [5–7]. This technique makes it possible to
determine the actual indentation depth hp from the mea-
sured indentation displacement h and calculate the
indentation projection area A (which is needed to cor-
rectly determine H = P/A) with allowance for the actual
shape of the indenter tip. With this technique, we can
find the nanohardness only at one point on a loading
curve, namely, at the maximum load, since only for this
point can we determine the elastic bending flexure of
the sample surface around an indentation. Researchers
from the Institute for Superhard Materials designed a
method for finding the mean contact pressure pm for all
points of a loading curve for a Berkovich indenter [8];
this method was also applied for processing the experi-
mental data. These data were obtained using several
models of nanohardness testers having different charac-
teristics and possibilities: a NanoIndenter-II device
(MTS Systems), a DUH-W201E ultramicrohardness
tester (Shimadzu), and unique dynamic nanohardness
testers designed at Tambov State University [9, 10].
These last testers have a high indenter-displacement
resolution (~0.1 nm) and a time sampling of 0.3 µs
(against 50 ms for DUH-W201E and 100 ms for
NanoIndenter-II).

Structural studies and certification of the indenters
were performed on a Solver-LS atomic force micro-
scope operating in the contactless lateral mode. The
sample surfaces were produced through quasi-brittle
cleavage or mechanical polishing followed by chemical
etching. These methods eliminate the dependence of
results on the state of the surface layers that form dur-
ing treatment or as a result of interaction with the envi-
ronment. Check experiments showed that the parame-
ters measured characterize the properties of a homoge-
neous material rather than of oxidized layers forming
during sample preparation.
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3. YIELD STRENGTH 
IN A NANOSCALE VOLUME

We studied the transition from elastic to elastoplas-
tic deformation on a NanoIndenter-II nanohardness
tester at very small limiting loads (~0.1–1 mN). Typical
examples of P–h curves for materials that differ in
terms of their type and hardness are shown in Fig. 2.
The curves have a number of characteristic segments: a
monotonic increase in h with increasing load, a jump-
like increase in h, and a slow increase in h at P = const
(creep). It should be noted that, in some materials,
strain jumps occur not only in the stage of loading but
also upon storage at a maximum load or even upon
unloading (Fig. 2f). Although the Berkovich indenter is
considered a cuspate trihedral pyramid (with an apex
angle of 130.6°), the tip of a real indenter can be
treated, to a first approximation, as a sphere with an
effective radius R. From independent measurements,
we determined the radius of our indenter to be R =
220 nm. Thus, to a depth of several tens of nanometers,
our indentation tests are performed with a sphere rather
than a trihedral pyramid. In this case, the load increases
with depth according to Hertz’s law P ~ h3/2, which is
characteristic of the interaction of a solid ball with a
surface (Fig. 2a). In most cases, unloading to a strain
jump results in completely reversible, i.e., purely elas-
tic, behavior of a material (Fig. 3a). Some materials
exhibit rather unusual irreversible deformation in the
initial stage of indentation (Fig. 3b). Taking into
account the specific features of this deformation, we
may assume that it is caused by the generation and
motion of nonequilibrium point defects.

Two types of deviations from Hertz’s law are
observed: either a loading curve goes below Hertz’s
curve beginning from a certain load or h increases
jumpwise at P = const (a nanoindentometer is a “soft”
testing machine maintaining a given force). In the latter
case, we actually observe a local loss of stability that is
analogous to a yield drop in stress–strain curves of cer-
tain materials subjected to uniaxial tension or compres-
sion in a “stiff” testing machine. The critical load Pcr
and the jump amplitude ∆h depend on many factors,
such as the method of surface preparation, the degree of
alloying, the dislocation density, the loading rate, the
laboratory noise level, etc. For example, the surfaces
prepared by cleavage or chemical etching are much
more sensitive to jumps than are the mechanically
treated (grinded, polished) surfaces and the former sur-
faces withstand a much higher load up to the onset of
plastic flow (Fig. 2b). Jumplike deformation was
detected even for the unpolished surfaces of KCl, Cu,
Fe, and other single crystals, which are soft and
smoothly deform under ordinary conditions (Fig. 2).
An increase in the concentration of divalent Ca in KCl
from 0.01 to 0.3 wt % leads to a fourfold increase in Pcr
(Fig. 2a), whereas the hardness at h ≥ 100 nm increases
by less than 20% (from 0.24 to 0.28 GPa). As Pcr
increases, the jump amplitude likewise increases. It
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ε̇

should be noted that, before a jump, the average stress
in an indent (which is actually the yield strength in a
nanoscopic volume) approaches 0.1E (i.e., the theoret-
ical ultimate strength) even in these soft materials,
whereas the macroscopic yield strengths of these mate-
rials are lower by one to two orders of magnitude! In
other words, the load-carrying ability of a material
under nanocontact conditions can exceed its macro-
scopic yield strength by many times. This factor
increases the resistance of nanoscopic tools but creates
difficulties upon treatment and local plastic deforma-
tion of substrates in various nanotechnologies [11].

Among all possible causes of the occurrence of
large jumps at low loads (P ≤ 1 mN), nucleation and
motion of dislocations are assumed to be most proba-
ble. Let us consider the conditions of formation of dis-
location loops under an indenter in the initial stage of
P

indentation, when the indenter tip can be taken to be
spherical. In various planes where dislocation loops can
nucleate under an indenter, tangential stresses are oper-
ative [12]; their maximum is τmax = 0.31pmax, where
pmax = (6E*2P/π3R2)1/3 is the maximum contact pressure
in the indentation E* = (1/Em + 1/Ei)–1, and Em and Ei

are the Young’s moduli of the material under study and
the indenter, respectively. Note that the Meyer hardness
is H = (2/3)pmax. From energy considerations [13], it
follows that shear stresses τ ≥ Gb/rcr are necessary for
the homogeneous nucleation of a dislocation loop.
Therefore, we have

(1)rcr
Gb
0.31
---------- π3

R
2

6E*2P
---------------- 

 
1/3

,≥
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where G is the shear modulus, b is the Burgers vector,
and rcr is the critical radius of a nucleating dislocation
loop. However, in the field of strongly inhomogeneous
stresses, the following geometrical condition must be
satisfied: the size r' of the region where stresses are suf-
ficient for dislocation-loop nucleation must be greater
than or equal to the radius rcr of the critical loop.
Assuming r' = Ka (where a = (πR/2E*)(6E*2P/π3R2)1/3

is the radius of the contact region and K ≈ 1), we obtain

(2)

By equating Eqs. (1) and (2), we find the critical
value Pcr to be

(3)

The experimental dependence of Pcr on E*b3/2R1/2

for a number of materials studied [14] agrees qualita-
tively with Eq. (3), i.e., with the model of homogeneous
dislocation nucleation in nanoscopic volumes. From
the jump ∆h, the number of loops forming are estimated
to be N ≈ ∆h/b ≈ 10–50 for various materials, which
seems reasonable. In actual practice, where the surface
of a crystal is not perfectly planar and an indenter is not
a perfect sphere, there may be stress concentrators that
can decrease Pcr. However, the probability that such a
concentrator exists in a nanoscopic volume subjected to
loading is low. This conclusion is supported by the
qualitative agreement between the experimental data
and the results calculated using the model of homoge-
neous nucleation and also by the fact that, even after
fine mechanical polishing, strain jumps disappear and
the loading curve becomes smooth but lies below
Hertz’s curve almost from the very beginning (Fig. 2b).

Thus, the initial stage of nanoindentation has a
purely elastic character even in plastic materials; as a
result, before the jumplike transition to plastic flow, the
contact stresses reach values τmax ≈ (0.05–0.10)G,
which are comparable to the theoretical ultimate
strength. Since many modern elements of nanotechnol-
ogy-based devices operate under conditions of dynamic
nanocontact interaction (e.g., the probes in scanning
atomic force microscopes), it is necessary to take into
account a possible significant increase in the load-car-
rying ability of a material under these conditions.

The authors of [15, 16] described a technique for
translating P–h diagram data into the traditional σ–ε
coordinates for steels and even very brittle materials,
which cannot be plastically deformed in uniaxial tests.
If the scale factor is correctly taken into account, this
technique allows partial or complete substitution for
labor-consuming destructive tests of materials in stan-
dard macroscopic testing machines. Li [17] showed
that a number of creep characteristics of metals could
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also be obtained using local loading under a constant
load and continuous recording of indentation.

In [18], the activation parameters of plastic flow,
namely, the activation energy U0 and the activation
volume γ, were determined by analyzing the smooth
segments of σ–ε curves in the initial stage of elasto-
plastic deformation with the Zhurkov formula  =
ε0exp(−[(U0 – γσ)/kT]). In [19], the values of γ charac-
terizing the carrier type and the mass transfer mecha-
nism were estimated. In the initial stages of rapid
indentation, the values of γ for all materials under study
were found to be comparable to the atomic volume;
only in later stages and at greater depths did the values
of γ attain several tens or hundreds of atomic volumes
[20, 21]. This finding indicates unambiguously that
point defects and their small clusters play a significant
role in mass transfer at the initial stages of rapid inden-
tation and in the initiating of dislocation mechanisms of
plastic flow in subsequent stages.

4. UNSTABLE PLASTIC FLOW
DURING LOCAL LOADING

Local deformation in the elastoplastic range is often
accompanied by different types of instability. A typical
example is the serrated flow observed in aluminum–
magnesium alloys, which have been thoroughly studied
from this standpoint under uniaxial deformation. This

ε̇
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different loads. The unusual plastic deformation shown in
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circumstance makes it possible to compare the behavior
of the same material in macro- and microscopic vol-
umes. Regular flow instabilities in strain-aging alloys
(e.g., in Al–Mg alloys) are known as the Portevin–Le
Chatelier (PLC) effect. This effect is explained by col-
lective processes in a system of mobile dislocations that
are periodically pinned by atmospheres of easily mov-
able impurity atoms. Apart from the scientific interest
that determining the role of point defects in the effects
of self-organization of dislocation motion holds, the
PLC effect is also important for many practical applica-
tions. For example, in many cases, the jumplike charac-
ter of plastic flow makes it impossible to apply high-
technology aluminum–magnesium alloys in the pro-
duction of car parts, aircraft parts, disposable packag-
ing, etc., since a strain-induced roughness of the surface
makes the products unusable.

Berces et al. [22] showed that, under certain condi-
tions, continuous indentation of Al–Mg alloys caused
an unstable plastic flow with a characteristic serrated
P–h curve, which can be interpreted as the PLC effect
under the conditions of local plastic deformation of a
microvolume. In the case of a linearly increasing load
P = µt, two types of instabilities were observed; the typ-
ical P–h diagram obtained at a load rate µ = 12.5 mN/s
is shown in Fig. 4. In the first stage of loading, where
the depth h varies from zero to a certain conventional
critical depth hcr, chaotic instabilities of plastic flow are
observed. At moderate values of µ, this type of instabil-
ity is damped with increasing h and is replaced by
another (regular) type. The second type manifests itself
as jumps in depth (∆h) and in force (∆P), which
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Fig. 4. Typical P–h diagram for nanoindentation of an Al–
3 wt % Mg alloy under a linearly increasing load at a rate of
12.5 mN/s. The insets show typical h(t) kinetic indentation
curves: (a) the initial stage of indentation (irregular jumps),
(b) an intermediate stage, and (c) the stage of regular strain
jumps.
PH
increase with the indentation depth: ∆P = γP and ∆h =
0.5γh, where γ = ∆H/H is a constant (γ ≈ 0.05 for an Al–
3 wt % Mg alloy). In the case of an exponentially
increasing load, regular strain jumps of the second type
become clearly defined [23], which makes it possible to
perform statistic, autocorrelation, and other analyses of
their formation. The conditions for the appearance of
this type of instability are characterized by critical
parameters that specify its lower boundary: Pcr = αµ
and hcr = βµ1/2, where α ≈ 10 s and β ≈ 0.5 µm (s/mN)1/2
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Fig. 5. Regions of the appearance of strain jumps in the P(h)
diagrams of (a) bulk amorphous alloys and (b) Al–Mg
alloys subjected to dynamic nanoindentation by a symmet-
ric triangle force pulse (shown by points) at various rates.
The tested region is limited by the capacity of the device
and is shown by solid lines; h is the indentation depth;  is

the strain rate; and  and  are the depths at which the

transition occurs from a monotonic to jumplike flow in bulk
amorphous metallic alloys Zr46.8Ti8Cu7.5Ni10Be27.5 and
Pd40Cu30Ni10P20 during indentation. The region of the
appearance of strain jumps in the Zr46.8Ti8Cu7.5Ni10Be27.5
alloy is gray. I and II are the scale-dependent and scale-
independent regions of the appearance of jumps, respec-
tively; III and IV are the regions of irregular and regular
strain jumps, respectively.
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[24]. As is seen from Fig. 5, the generalizing critical
parameter of a regular-type instability is the strain rate

 = 0.05 s–1. The specific features of mechanical and

heat treatments affect the numerical value of  only
weakly. The data obtained for first-type instabilities
agree with the mechanism of formation and evolution
of slip bands, and the data obtained for second-type
instabilities agree with the theory of strain hardening of
random alloys.

The study of h(t) loading curves by using wavelet
analysis revealed another type of instability, which
manifests itself in the form of jumps with an amplitude
of about 1–2% of the depth h throughout the entire pro-
cess of deformation. Because of its low amplitude, this
type of instability is masked by instabilities of the reg-
ular type and cannot be revealed using other methods of
analysis. By processing a large data array, we also
revealed different types of jumps in the h–
pseudophase diagram (Fig. 5b). As follows from this
diagram, the scale effect begins to manifest itself at h <
2–3 µm; at h > 4–5 µm, the critical values  (corre-
sponding to the onset of serrated flow) do not differ
from their counterparts for macroscopic tests in spite of
all the differences between local and uniform loading.
This coincidence allows one to substitute nanoindenta-
tion for expensive macroscopic tests (at least in order to
determine safe deformation conditions that do not
cause a serrated flow).

Features of the P–h diagram that are qualitatively
similar to those described above for Al–Mg alloys were
also observed upon testing amorphous Pd40Cu30Ni10P20
and Zr46.8Ti8Cu7.5Ni10Be27.5 alloys (Fig. 6a). These
alloys do not exhibit the regular type of jumps [25–27].
We failed to measure the actual jump time despite the
very high speed of response of our apparatus; in other
words, the jump time is shorter than the time of sam-
pling (τd = 50 µs). By making allowance for the average
jump amplitude (∆hm ≈ 20 nm for Pd40Cu30Ni10P20 and
∆hm ≈ 10 nm for Zr46.8Ti8Cu7.5Ni10Be27.5), we estimated
the lower limit of the average velocity of the indenta-
tion surface during jumplike deformation to be 〈v 〉  =
∆hm/τd = 10–3 m/s. The actual velocity was likely much
higher than this threshold value. However, at high val-
ues of , both alloys demonstrate a clearly pronounced
boundary between the stable and unstable plastic-flow
modes (Fig. 5b). At h > 100 nm, we have  ≈ 10 s–1,
which is almost two orders of magnitude higher than in
Al–Mg alloys. Obviously, this difference results from
the different mechanisms of unstable plastic flow in
these two cases.

The study of an indentation and the surrounding
region using atomic force microscopy shows that
nanoindentation jumps can be caused by strain local-
ization in shear bands (Fig. 6b).
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5. PHASE TRANSFORMATIONS 
DURING LOCAL DEFORMATION

In the initial stages of indentation, a pressure of
about 0.1 of the Young’s modulus (see Section 3)
appears in an indentation; this pressure can cause phase
transformations (PTs) in certain materials. In contrast
to a conventional high-pressure apparatus, which gen-
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Fig. 6. (a) Unstable deformation during indentation of bulk
amorphous alloys (1) Zr46.8Ti8Cu7.5Ni10Be27.5 and
(2) Pd40Cu30Ni10P20. The inset shows fragments of the
loading curves for various loading rates: (3) 1120, (4) 56,
(5) 1.12, and (6) 0.56 mN s–1 for Pd40Cu30Ni10P20 and

(7) 0.80 mN s–1 for Zr46.8Ti8Cu7.5Ni10Be27.5. (b) The
atomic-force image of an indentation in
Zr46.8Ti8Cu7.5Ni10Be27.5 with sings of the material being
carried toward the surface by localized shear bands.
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erates hydrostatic pressure, indentation generates a
combined state of stress. Both high compressive and
high shear stresses are generated in an indentation, and
the relative shear stresses are higher than those gener-
ated upon uniaxial compression. This state of stress can
substantially affect the PT parameters or can even cause
PTs that do not occur with pure hydrostatic pressure.
For example, the pressure required for the martensitic
transformation of rhombohedral boron nitride into
cubic boron nitride decreases from 55 GPa upon hydro-
static compression to 5.6 GPa upon uniaxial compres-
sion [28].
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Fig. 7. Load dependences of the indenter displacement dur-
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not undergo phase transformations during indentation) and
(b) silicon (which undergoes polymorphic transforma-
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and (3) an α-Si + Si-III + Si-XII mixture. (c) Dependences
of the mean contact pressure on the indentation depth in sil-
icon at a loading rate of (1) 2, (2) 2.5, and (3) 3 mN s–1.
P

For most materials, the PT pressure is higher than
the stress for the onset of plastic deformation; hence, no
PT occurs in an indent during nanoindentation. How-
ever, in some solids, a structural collapse can take place
before the onset of plastic flow. As the loading rate
increases, the critical pressure for the transition from
elastic to elastoplastic deformation can increase sub-
stantially, which increases the probability of formation
of new phases and widens the range of materials that
can undergo PTs during nanoindentation. PTs have
been reliably detected to occur during indentation of
some semiconductors and other materials with a high
yield strength (e.g., silicon). The formation of high-
pressure phases in Si is indicated by an increase in its
electrical resistance in an indentation by a few orders of
magnitude [29]; by the extrusion of a plastic high-pres-
sure phase from an indentation [30]; and by electron
diffraction, electron-microscopic, and Raman
microspectroscopy data [31]. PTs in silicon under
indentation are clearly manifested in P–h diagrams
[32]. At Pmax < 20 mN, a specific “knee” is detected in
the unloading curve, and steps are observed at Pmax >
20 mN. In the former case, Raman microspectroscopy
only reveals amorphous silicon, and in the latter case it
reveals Si-III and Si-XII metastable phases [33]. Some-
times, the unloading curve contains a knee followed by
a step. In this case, Raman microspectroscopy reveals
both amorphous silicon and a mixture of metastable
phases Si-III and Si-XII in an indentation.

It should be noted that the contact pressure in an
indentation increases only in a short initial segment of
the loading curve (Fig. 1) and then remains virtually
unchanged during continuous indentation and depends
only on the apex angle of the indenter. If an indentation
is repeatedly loaded by a limiting load that is somewhat
(15–25%) higher than that in the previous loading
cycle, the deformation is mainly elastic and the contact
pressure in the indentation increases from almost zero
to the upper limit, which is bounded by the hardness.

If a load is repeatedly applied to a material that does
not undergo a PT during indentation (Fig. 7a), then
there appear narrow hysteresis loops, which are caused
by inevitable losses of elastic energy. In this case, there
are no specific features (knees or steps) in the unloading
and repeated-loading curves. This behavior during
nanoindentation is typical of the majority of crystalline
materials. When an indentation in glasses or polymers
is repeatedly loaded, large-area hysteresis loops form,
which is caused by the viscoelasticity of these materi-
als. For solid-phase polymorphic transformations, the
formation of broad hysteresis loops and steps in the
unloading and repeated-loading curves result from
changes in the material density (Fig. 7b). This change
can reach ~22–25% in silicon [33], whereas in most
other materials it is substantially lower. For example,
this change does not exceed 4–5% in zirconium diox-
ide–based ceramics. Accordingly, the strain-jump
amplitude during a PT in silicon is much higher than
HYSICS OF THE SOLID STATE      Vol. 47      No. 6      2005
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that in ZrO2. These ceramics do not exhibit a strain
jump in the single-loading curve, but they exhibit a hys-
teresis with characteristic features of a PT in repeated
loading cycles. Raman spectroscopy data support the
fact that this hysteresis is related to the martensitic
transformation of the initial metastable tetragonal
structure of ZrO2 into its stable monoclinic structure
[34]. PT-induced strain jumps can be used to estimate
the contact pressure that causes this PT. When studying
the correlation between PTs in submicrovolumes and
the shapes and sizes (the half-width at half-maximum
and the area) of hysteresis loops appearing upon multi-
cycle loading of an indentation, we detected PTs not
only in covalent crystals (Si, Ge) but also in ionic–cova-
lent crystals (CaF2), quasicrystals (YMgZn), and inter-
metallic compounds (TiNi).

The competition between the developing plasticity
and a contact pressure–induced PT can cause unstable
deformation in submicrovolumes, which would sub-
stantially affect the operating properties of a material.
This circumstance is particularly important for
ultradense nanomechanical data recording, fine
mechanical treatment, mechanochemical reactions, and
tribological and other processes related to rapid contact
interaction. However, only phase polymorphism in sil-
icon during contact loading has been studied thor-
oughly and systematically [33]. The effects of the
kinetic and scale factors on polymorphic transforma-
tions are poorly studied even for silicon.

Kailer et al. [31] showed that the phase composition
in an indentation depends on the rate of decrease of the
applied load (Fig. 7c). Upon rapid unloading, amor-
phous α-Si appears in an indentation. When the load
decreases slowly, a mixture of two crystalline metasta-
ble phases (Si-XII and Si-III) forms in an indentation,
with the amount of Si-III increasing as the unloading
rate decreases [33]. This behavior is caused by the fact
that, as the pressure in the indentation decreases, metal-
lic silicon Si-II first transforms into the metastable
phase Si-XII. When the pressure decreases further, the
Si-XII phase transforms into Si-III. High residual
stresses in the indentation hinder the completion of the
transformation of Si-XII into Si-III after complete
unloading of an indenter.

Since all available data [30–34] were obtained under
quasi-stationary loading conditions with a time resolu-
tion of about 0.1 s, it was useful to study the behavior
of different-type materials in contact spots with life-
times ranging from 20 ms to 100 s with a higher time
resolution (∆t = 50 µs). For a contact pressure–induced
martensitic transformation in zirconium dioxide–based
ceramics with a partly stabilized (PSZ) or totally stabi-
lized (TZP) tetragonal structure, we found that the
stress required for the formation of martensite in both
types of ceramics increases with dP/dt. In our studies,
the time it takes for the transformation from the tetrag-
onal to monoclinic phase to be completed was found to
be only several seconds. When a similar material
PHYSICS OF THE SOLID STATE      Vol. 47      No. 6      2005
(Y-TZP) was subjected to macroscopic tests, this time
was found to be several hundreds of seconds (according
to x-ray and neutron scattering data) [35]. This substan-
tial discrepancy can be due to a number of factors, such
as the effect of grain boundaries on the growth rate of the
martensite phase in the initial tetragonal phase, the effect
of shear stresses, and the presence of regions where con-
tact pressures significantly exceed the average stress
(e.g., near the edges and vertex of a pyramid) [36].

Apart from the loading rate, the scale factor substan-
tially affects the PT parameters in submicrovolumes.
For example, in zirconium ceramics with either par-
tially or totally stabilized structures, the pressure induc-
ing the martensitic transformation increases with
decreasing indentation size.

In some cases, PTs in submicrovolumes can occur
along with other manifestations of unstable deforma-
tion. Using atomic force microscopy and electron
microscopy, Suresh and coworkers [37] obtained direct
experimental evidence that the nanoindentation of bulk
amorphous metallic alloys generates localized shear
bands surrounded by a nanocrystalline structure that is
identical to the structure forming upon 783-K anneal-
ing of these alloys without deformation. In our experi-
ments on nanoindentation of a Y10Mg30Zn60 quasicrys-
tal, the loading curve contained ranges of both stable
monotonic and unstable jumplike deformation. Since
the internal structures of amorphous metallic alloys and
quasicrystals are similar in many respects, we can
assume that unstable deformation in this case results
from the generation of localized shear bands. However,
during repeated loading of an indentation, a hysteresis
appears only after an indentation depth characteristic of
the onset of unstable deformation is reached (Fig. 8a).
Moreover, the rate sensitivity of the hardness and the
activation volume γ change sharply at the indentation
depth ht corresponding to the first step in the P–h dia-
gram. The obvious tendency toward an increase in γ
with the indentation depth indicates that collective pro-
cesses and the degree of ordering of the system become
more important, which can be a direct consequence of
the formation of a nanocrystalline phase. Finally, the
hardness H of the crystalline phase should be lower,
since the dislocation mechanism of plastic deformation
becomes possible, and its Young’s modulus E should be
higher, since the crystalline phase is more ordered.
These assumptions are confirmed experimentally
(Fig. 8b). Thus, rearrangement of the structure can
occur in shear bands with the formation of a crystalline
phase in quasicrystals, as is the case in amorphous
alloys [38].

In concluding this section, we note that PTs under
nanocontact interaction can take place at pressures that
are well below those typical of uniaxial tests (let alone
those of hydrostatic compression) and at much higher
rates. High residual stresses in the vicinity of a nano-
contact zone help high-pressure phases to retain their
metastable states. In other words, the role of PTs in the
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deformation behavior of materials in nanocontacts,
especially dynamic nanocontacts, can be much more
substantial than that in macroscopic tests.

6. VISCOELASTIC AFTEREFFECT

In order to design high-density storage matrices
using dynamic local deformation of the surface of a
recording medium, as well as to develop other nanome-
chanical devices, one needs to know detailed informa-
tion on the mechanical behavior of materials not only
under loading but also after unloading. In particular, the
degree and kinetics of viscoelastic recovery of the
indentation geometry upon unloading (which have not
been studied under conditions of short-term local load-
ing) can limit the speed of response and the reliability
of such data recorders and readers. Moreover, dynamic
reactions in nanocontacts determine the diverse charac-
teristics of microscopically rough surfaces, including
the parameters of dry friction and abrasive wear.
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Fig. 8. (a) Unstable deformation in multicycle loading of a
Y–Mg–Zn quasicrystal induced by deformation localiza-
tion in shear bands (arrows show strain jumps) and by struc-
tural transformation inside the bands. (b) The variation in
(1) the hardness H and (2) the reduced elastic modulus E
with the formation of a crystalline structure in shear bands.
The inset demonstrates a material flow from an indentation
toward the surface in shear bands with simultaneous extru-
sion as a result of the phase transformation into a nanocrys-
talline state.
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Instrumental nanoindentation has high spatial and
time resolutions and allows one to model the situations
described above under well-controlled conditions in
both the stage of loading and the stage of elastic and
viscoelastic recovery of an indentation after unloading
[9, 10]. Using this method, we studied polymethyl
methacrylate (PMMA), ZrO2-based ceramics, single-
crystal LiF and Ge, polycrystalline Al and Cu, Wood’s
alloy (50 wt % Bi–25 wt % Pb–12.5 wt % Sn–12.5 wt %
Cd), and Rose’s alloy (50 wt % Bi–28 wt % Pb–22 wt %
Sn), which represent the main groups of solids in terms
of hardness, the nature of bonding forces, and the
microscopic mechanisms of plastic deformation. All
measurements were performed at 296 K with a unique
nanoindentation tester designed at Tambov State Uni-
versity. In the first series of experiments, a Berkovich
indenter penetrated into a surface under the action of a
triangular force pulse with various values of the ampli-
tude Pmax (from 4 to 235 mN), which were chosen so
that the same maximum dynamic indentation depth
hmax = 650 nm was reached in different materials for a
force rise time τ1 = 10 s and a force fall time τ2 =
200 ms. To retain a reliable contact between the
indenter and material after unloading, the load was
maintained at a level of several percent of Pmax. Under
these conditions, the nanotester operated as an indicator
of the indentation depth varying with time under the
action of relaxation processes.

Figure 9 shows the elastic recovery ∆he (this quan-
tity was actually taken to be the recovery within the
unloading time τ2 = 200 ms), the viscoelastic recovery
∆hv –e (within τ3 = 25 s after complete unloading), and
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Fig. 9. Relation between the total (α = ∆h/hmax), elastic (β =
∆he/hmax), and viscoelastic (γ = ∆hv –e/hmax) recoveries of
the nanocontact depth for (1) PMMA, (2) ZrO2, (3) Ge,
(4) Wood’s alloy, (5) LiF, (6) Al, (7) Cu, and (8) Rose’s
alloy. The inset shows a schematic P–h diagram for slow
(OAC curve) and rapid (OABC curve) unloading.
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the total recovery ∆h (within the time τ = τ2 + τ3) for
various materials (normalized to hmax). It was found
that, at a fixed indentation depth (hmax = 650 nm), the
quantity β = ∆he/hmax was 50–55% in Ge, ZrO2-based
ceramics and PMMA and did no exceed 18% in the
other materials. The relative magnitude of the vis-
coelastic recovery γ = ∆hv –e/hmax was rather high in all
materials under study and varied from 5% in Al to 28%
in Wood’s alloy (which is even higher than that in
PMMA). The quantities ∆h, ∆he, and ∆hv –e were found
to be very sensitive to the scale factor, especially in the
depth range 50 nm < hmax < 1 µm. In this range, a
decrease in hmax is accompanied by a twofold or greater
increase in the elastic recovery in metals and ionic and
covalent crystals (whose recovery is mainly elastic).
For materials with β > γ, a change in the indentation
depth was found to have the largest effect on ∆he,
whereas in solids with β ≈ γ (PMMA, Rose’s alloy) a
decrease in h had a substantial effect on ∆hv –e. As h
decreases, the relative magnitude of the elastic recovery
increases and that of the viscoelastic recovery
decreases in all solids under study. This effect is likely
due to the fact that certain viscoelastic recovery mech-
anisms are blocked at small values of h (which provides
an increase in the relative magnitude of ∆he). The
increase in γ at h < 200 nm in some materials can be
explained by their surface properties and by specific
structural-relaxation mechanisms becoming operative
(which are dominated by traditional mechanisms at
large indentation depths). In particular, in ionic and
covalent crystals, the role of point defects increases and
the role of dislocations decreases with decreasing Pmax

and hmax [19–21].

For all materials under study, the total recovery
depends on the rate of load rise µ = dP/dt in the stage of
loading. As µ increases from 2 mN/s to 1 N/s, the ratio
α = ∆h/hmax increases by 15–40% in different materials.
The rather high total recovery in Ge is explained by the
significant fraction of the elastic component (up to
90%). In Wood’s alloy, the elastic and viscoelastic
recoveries are of the same order of magnitude, with
∆hv –e even exceeding ∆he at small loading rates. As µ
increases within the range indicated above, the ratio of
∆hv –e to the total recovery decreases by factors ranging
from 1.5 in PMMA to 2 in Ge. It should be noted that
the lower the unloading rate and the lower the time res-
olution of the apparatus, the greater the portion of the
time-dependent viscoelastic recovery attributed to elas-
tic recovery by an observer. Apparently, even our rela-
tively high rates of unloading and data sampling (50 µs
between measurements) were insufficient to com-
pletely exclude this error for some materials.

Thus, with dynamic nanoindentation, we found a
relation between the elastic and viscoelastic compo-
nents of the shape recovery for various solids after plas-
tic deformation. The dependences of these quantities on
PHYSICS OF THE SOLID STATE      Vol. 47      No. 6      200
the loading rate were determined, and their sensitivity
to the scale factor was established.

7. MICROCRACK NUCLEATION
IN A LOCAL-DEFORMATION ZONE

The method of local loading has been used for a few
decades to determine the cracking resistance (or the
critical stress-intensity factor of the first kind, K1c) of
high-strength and low-plasticity structural and tool
materials, such as glasses, ceramics, hard alloys,
nitrides, and carbides [39].

The nucleation and development of cracks under
conditions of dynamic nanoindentation have been stud-
ied in various materials (fullerite C60, silicon, germa-
nium, lead tungstate PbWO4) for various values of
loads and strain rates. It was found that the nucleation
and development of microcracks causes another mode
of unstable deformation during nanoindentation; this
mode manifests itself in separate jumplike changes that
can occur under loading or unloading, depending on the
sample material. By scanning residual indentations
with an atomic force microscope, the formation of
radial surface cracks extending from the corners of the
indentations was observed and the rate dependences of
K1c in silicon and germanium were determined. More-
over, it was found that there occurs a jumplike increase
in the dynamic viscosity and fracture in these materials
with increasing strain rate (Fig. 10). Under ordinary
conditions of uniaxial tension, most materials exhibit a
decrease in K1c with increasing loading rate; i.e., they
become brittle. Therefore, at first glance, the termina-
tion of crack formation at a certain critical strain rate
seems to be paradoxical. However, cracks can nucleate
via conventional dislocation mechanisms if there is a
sufficient number of dislocations interacting with each
other at short distances. As follows from the results
described in Section 3 (Figs. 2a, 3), dislocations are
small in number and their formation at h ≤ 100 nm
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becomes even more difficult with increasing  and
shifts toward higher loads. Obviously, dislocation-free,
homogeneous microcrack nucleation requires still
higher stresses. Nevertheless, a residual indentation can
also form under these conditions, which indicates the
presence of plasticity. All these facts taken together
suggest that the sharp blocking of crack formation
under conditions of high-rate local deformation is due
to plastic strain occurring under these conditions via the
generation and motion of point defects rather than dis-
locations.

8. CONCLUSIONS

(1) The properties of materials in nanovolumes
change substantially as the nanovolume size decreases.
The role and the relative proportion of jumplike defor-
mation modes, as well as the contribution from elastic
strain to the total deformation, increase as the load (the
indentation size) decreases. However, in some cases,
one can find normalizing factors and parameter ranges
that provide invariance of the mechanical properties
(such as a serrated flow in Al–Mg alloys; yield strength
in metallic, semiconducting, and oxide single crystals;
creep characteristics in metals and alloys). Therefore,
nanoindentation can be used to solve two groups of
problems: (i) to study the behavior of a material in
nanovolumes and (ii) to replace (or to supplement) the
methods of mechanical macroscopic tests (e.g., to
determine the creep activation parameters, the charac-
teristics of high pressure–induced phase transforma-
tions, the critical strain rates for various plastic-flow
modes, etc.).

(2) Small characteristic sizes of a deformation
region in the initial stages of indentation make it possi-
ble to achieve extremely high local strain rates (  ~
105 s–1) during indenter penetration at rather moderate
linear velocities (~1 cm/s). This creates a unique oppor-
tunity for studying the role of the rate factors and the
time-dependent characteristics of materials over a very
wide range of  values.

(3) The high spatial and time resolutions of modern
nanoindenters allow one to study the kinetics and
dynamics of elementary events important for the for-
mation of mechanical properties, such as the nucleation
and motion of dislocations, their damping by Cottrell
clouds, and the formation and growth of new-phase
nucleation centers under high pressure, in order to
determine the instant of microcrack appearance, vis-
coelastic recovery after unloading, etc.

(4) The established regularities for the behavior of
materials open up fresh opportunities for improving the
operating properties of thin coatings, submicrovolumes
of materials, nanomachines, etc.
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