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The polarization operator of an axion in a degenerate gas of electrons occupying the ground-state
Landau level in superstrong magnetic fieldsHo=m2c® e =4.41x 10° G is investigated

in a model with a tree-level axion-electron coupling. It is shown that a dynamic axion mass, which
can fall within the allowed range of values 10eV =m,<10 2 eV, is generated under the
conditions of strongly magnetized neutron stars. As a result, the dispersion relation for axions is
appreciably different from that in a vacuum. 999 American Institute of Physics.
[S1063-776(19900101-9

1. Thea priori strong nonconservation @P parity in ~ <20. The axion synchrotron luminosity of neutron stars and
the standard model can be eliminated in a natural manner byhite dwarfs was also investigated in Ref. 11.
introducing axions — pseudo-Goldstone bosons associated In Refs. 8—11 a model with a derivative axion-electron
with the spontaneous breaking of the additional Peccei-couplingeag described by the interaction Lagrandtan
Quinn global symmetry) (1)pq."? According to the experi-
mental datd,the energy scale, for the U(1)pq Symmetry o 9ae — . &
breaking is much greater than the electroweak scale — Zae=5 - (WYY )d,a, @)
=10 GeV, and the constants of the possible couplings of ¢
an axion to the standard particles-{/v,) are very small
(the “invisible” axion: see Ref. 4 for a review of various
axion models
Axion effects can be appreciable under the astrophysicaLII
conditions of high matter densities, high temperatures, and
strong magnetic field§or example, in neutron stahs Axion Uae=Ce
production processes, which result in additional energy Va
losses by stars, and the limits obtained by astrophysical
methods on the parameters of axion models are examined if @ dimensionless coupling constant, where the numerical
Ref. 4. In so doing, the influence of electromagnetic fieldgfactorc, depends on the choice of the specific axion mddel.
were neglected. In models where axions are coupled only with heavy
The investigation of axion processes in strong magnetidermions by a tree-level coupling there arises an effective
fields commenced comparatively recently. The Compton anélirect low-energy axion—photon interaction of the type
Primakoff mechanisms of axion production on nonrelativis-yay.* This interaction is the basis of the Primakoff axion
tic electrons by thermal photong ¢ e—e+a) in the pres- photoproduction mechanism employed in Refs. 6 and 7. The
ence of a magnetic field are studied in Ref. 6. The extensiofynchrotron procese—ea in the absence of a tree-level
to relativistic electrons in a constant external electromagneti@xion—electron coupling was considered recently in Ref. 12.
field is given in Ref. 7(Primakoff effeci and Refs. 8 and 9 This process is due to resonant conversion of a longitudinal
(Compton effedt wheré® estimates were also obtained for plasmon(a photon in a mediu emitted by a relativistic
the contributions of the indicated processes to the axion luelectron in a magnetic field, into an axion.
minosity of a magnetized strongly degenerate relativistic ~ Decay of an axion in a strong magnetic field into a fer-
electron gas under the conditions of the crust of a neutromion pair @— f )3 and two photonsd— yy)* are also of
star. A new axion production mechanism — synchrotroninterest for astrophysics and cosmology.
emission of axions §—e+a) by relativistic electrons — In the present paper the mod#) is used to calculate the
was proposed in Ref. 10 and its contribution to the energyolarization operator of an axion moving in a strongly mag-
losses by a neutron star was calculated. In Refs. 6—10 it wasetized degenerate electron gas and the change in the disper-
assumed that the external field intensity<Ho=mZc%/eh sion relation of an axion in a medium is investigated using
=4.41x 102 G. In Ref. 11, numerical methods were used tothis operator.
extend the results of Ref. 10 to superstrong magnetic fields 2. Taking account of the contribution of the electrons
H=H,. It was found that the basic equation derived in Ref.only [see Eq.(1)] we obtain, using the real-time formalism
10 for the axion synchrotron luminosity for the semiclassicalof the finite- temperature quantum field thedsge, for ex-
case of high electron energiess¥m.?) and fields ample, Ref. 1§ the following momentum representation for
H<H, agrees with the numerical calculations upHéH, the one-loop polarization operator of an axion:

was used. Herem, is the electron mass andy®
=—i9%y19?y% the system of units such thdt=c=1 is

sed; the signature of the metric is - ——); and

Mg
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The first term inR, has poles at the pointgy=*¢
H(k,k")= —iGﬁf d*x d*x’ explikx—ik'x’) = +[m2+ 2hn+p2]'2, determining the energy spectrum of
A R an electron in a magnetic field. The second temﬁ((pé
XTI ky’G(x,x" )k’ y°G(x',x)]. (3)  —¢€?)) describes the effect of the electron-positron medium,
and

Herek (k) is the final(initial) 4-momentum of an axion;
G(x,x") is the time-dependent single-particle Green’s func-  Ng(po)= 0(po)[exd B(Po— 1)1+ 1] 1+ 6(—po)
tion of an ideal electron-positron gas in a constant magnetic

field;’® notations have also been introduced for the contrac- X[exd B(—po+ w)]+1]7" (10
tiona= y*a,, of a 4-vectora* with the Diracy matrices and is expressed in terms of the Fermi distribution function of
for the dimensional coupling constant electrons and positrons in a medium with temperature
T=1/B and chemical potentigk, and6(* pg) is the Heavi-
Ga= Yae _ (4) side step function.
2me 4. It is difficult to make a general analysis of the axion

On account of the translational invarian@nstant external Polarization operator for arbitrary values of the parameters
field, homogeneous isotropic mediurthe polarization op- H. T, andu. In the present paper we confine our attention to

erator(3) is diagonal in momentum space: superstrong magnetic fields and comparatively low tempera-
tures
(k,k")=(2m)*6W(k—k'")II(K). (5)
H>Hg, T<pu—me, (11

Herell(k) determines the axion propagaf(k) in the mo- . ) . )
mentum representation according to the Dyson equation ~and we require the chemical potential to satisfy
D(k)=[k2—m2—TI(k)]"%, (6) p?—mz<2h. (12)

and a mediury which is generated by the chiral anomaly of tribution of positrons in Eq(10) can be neglectedt is sup-
QCD? maNAZQCdUa- The renormalized valul(k) (see pressed by the factor expB(n—my)]) and the medium is a

below) gives the dispersion relation degenerate gas of electrons occupying the ground-state Lan-
2 0 @ dau level =0):
= ma+ HR( . 7
N =6(po) 6(—Po), =m3+p2. 13
3. We give the constant uniform magnetic figt|z in (Po)=8(Po) 8~ Po). P et P (13
terms of the 4-potentiad” in the gauge We also limit the range of the axion 4-momentum
A*=(0,0xH,0). (8) |k3—k2|<h. (14)

Then the Green’s functio®(x,x’) can be represented in the Then the main contribution of virtué@/acuun) electrons and
following form after summing over the spin quantum num- positrons is likewise formed by states witk=0. As a result,
ber and the sign of the energy in the general expression foetaining on the basis of Eqéll), (12), and(14) terms with
G in the form of a series in quadratic combinations of then=0 in the sum(9), we obtain the following approximate

eigenfunctions of the Dirac operatar expression for the Green’s function in a superstrong mag-
G(x,x') =[ (19, +eA,) +mK(x,X'), netic field: /
h\¥2 = dp. 1
h & (- G(X,X’)z(—) f —yexr{——(anr 7'?)+ipy(y
K(x,x")= vh > f dpodp,dp, w ) 2w 2 y
(2m)3i=0 J - ,
. . . ) d°p . ,
Xexp —ipo(t—t')+ipy(y—y") +ip,(z—2')] -y )U (Zw)zexp[—lpo(t—t )
XUn(MUn(7 )Ry 12+ +R2 ), 9
n(7Un(7") (R 12+ +Rp2 ) €) tip(z—2)]G(p)S. | 15

22 2hn m2ain]-1
R,=[po—pz—2hn—m;+i0] Here p=(p,,0,0p,) and

+ 271 8(pa— pZ—2hn—m2)Ne(po). G(p)=(p+my)[(p?—m2+i0) 1
e e

Here the electron charge—e<0, h=eH; n s o
=0,1,2, ... is the principal quantum numkgre number of +2mi 8(p”—mg)Ne(po) ] (16)
the Landau levef p, andp, are the eigenvalues of the pro- is the Fourier transform of the Green’s function in the two-
jection operators of the canonical momentum — the congimensional spacé0, 3. For Ne.=0 (no medium the ex-
stants of motion in the gaug®); andun(7) is a Hermite  pression (15) is the well-known, effectively  two-
function of argument dimensional, electron propagator used in the theory of elec-
7= \/ﬁ(x+py/h), 7' = n(x—x"), trody_n_amlc processes in _superstrong magnetic f|e_lds_and,
specifically, for investigation of the photon polarization
S.=(1%3)/2, Si=iy*yA operator®
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5. Let us substitute the expressi@tb) into Eq. (3) and
integrate ovet,t’,y,y’,z, andz’. This gives in the form of
a product of delta functions

I

n=0y,z

5(kr,1_kn)5(pr,1+kn_ pn)y

A. V. Borisov and P. E. Sizin

As a result, we find for the functioR(l) the integral repre-
sentation

2

the laws of conservation of energy and of the corresponding

projections of the momentum. The subsequent calculation of

the Gaussian integrals overx’ and the trivial integral over

me7 (1 ®
Fr(1?)=—i yp= fodvfo dx{[1+(1—0v?)7]
xexd —ix[1—(1—-v?) 7]]—exp —ix)}, (22
7=12/4m2.

p, gives 8(k;—k,). As a result, as should be the case, weHere renormalization is performed according to the well-
. . . . . 6
obtain a diagonal representation of the polarization operatdfnown rule

(5), where
_Gg p( kf)
(k)= —hexp = - |[F(H+M()], (17
F(|)=—if d’p T(,p)[p?—m2+i0] 1
(2m? °
X[(p—1?=mg+i0] (18)
d?p
wi)=2x o MNPy
T(l,p)

Herep=(py,0,00,) andl=(ky,0,0k,) are two-dimensional
vectors, and

1 a R “ A~ A
T(l,p)= ETI’[k‘yS(p-l-me)E,k'yS(p— I +me)2_].
(20)

In Eq. (17) the functionF corresponds to the purely field
contribution, andM describes the influence of the medium.
We note thatM does not contain a term-Ng(pgo)Ng(po
—1y), since

S(p?—m2)3((p—1)2—m2) 8(po) 6(po—10)=0.
Using the relations

[3-.p]=0,
Y2 =3,y 2,%.=0

the trace of Eq(18) reduces to a two-dimensional form and
can be easily calculated as

[2_,9°]=0,
(n=1,2),

1 A A A
T(1p)=Z Tl (p+me)l(p—T—me)]
=2(1p)2—1%(Ip+p2+m}). (22)

We calculate the Gaussian integrals opgrand p, in
Eq. (17) using the trace(21) and the well-known Fock—

Fr(1?)=F(12)—F(m3) — (12— m2)F'(m2).

In Eq. (22) the small mass parameté,=m2/4m2 is ne-
glected. Fom,<10 2 eV,>*?we haves,<10 8.
For 7<0 we obtain from Eqs(22) and (17) the field

contribution
k?
exp — E

to the axion polarization operator. Hea&gzgf,emrr (see Eq.
(4)), and the standard variable was introduced as

(1-8?
3

1—§|
+1T§n

3
(23

(1-§)?
T=— — 45 l (24)
which is convenient for analytical continuation it?

=4m§7.

For 7>1, a channel is open for axion decay into an
electron- positron pairgd—e~e*) in a magnetic field. Its
ratew for a real axion is related with the imaginary part of
the polarization operator on the mass shell by the well-
known relation

1 m2 H
w=——ImI=a,— —
1) R ™%, Ho

k2 1 —-1/2
><exp< - ﬁ) 07— 1)(1— ;) ,

wherew is the axion energy.

This result, which follows from Eg.(23) with
&=|¢lexplm) (see Eq.(24)), is identical to the result ob-
tained in Ref. 13 on the basis of a calculation of the elastic
scattering amplitude of an axion in a magnetic field. It can
also be found immediately, taking account of Etj7), from
the representatiofR2):

(25

12 (1
ImFg=— Ef dv 81— (1-v?)7]
0

—-1/2
=—m§a(7—1)(1—;) ) (26)

Schwinger proper-time representation for propagators of the

form

(A+i0)—1:—iFdsexms(mm)].
0

Let us consider the contributidvl (19) of the medium to
the axion polarization operator. We note that it does not
renormalize®® Integrating ovemp, in Eq. (19), using the delta
function and taking account of Eg&l3) and(21), gives
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2 and the condition(14) gives k?<h, so that exptk?/2h)

wde
M=— 2—e|2f —[D(l,p)+D(—1,p) =1. We note that the imaginary part of the polarization op-
m me 0 . . .
e erator is formed by the contribution of real electrons and
+D(1,p)+D(—1,p)] (27) positrons, and the expression for it holds under the weaker
' R condition k? <2h. Therefore the exponential factor can be
D(I,p)=[1?=2(Ip)+i0] . retained in Eq(25).

For 7<1 (substantially below the threshold of the decay

Here ¢ is the energy of electrons in the medium, processa—e-e*), we find from Eqs(22), (31), and(17)

=\e’— mez, and the two-dimensional scalar products are
Ip=koe —k,q andIp=koe +k,q.

The imaginary part of the expressi¢?/) is determined
using SokhotsKis formula

1
X+i0

a, H

HR=H=;{F)+H(M)=—m§—T votv_+r7
o HO

X : (34

1 ., 3 4
V++V,—§(V++V_)—§

1
= P;—iw&(x), (28
- e Here
where P signifies a principal value. From E¢&7) and (28)

we obtain on the mass shell vo*k,
ve=tanh At ¢)=

m?2 w*vk,’
IMM=—20(r=1)[0(p—z)+0(p—e)], (29
2 me 21172
v=tanh\= 1—(—)
® kz 1 1/2 M
8+:_i_ 1_ - . . . . . .
-2 2 T In this case the medium makes the main contributierr).

Heres. are the roots of the equatioh®—2we + 2k,q=0 The purely field contribution is~72. We note that if the
+ — <Rz :

From Eqs(17), (26), and(29) we find, taking account of axion moves in the direction of the field(k, =0), then
the expressioli25), the rate according to Eqs(33) and (34) [Ig—0 in the limit of a

massless axionnf,—0).

1 At high energies £>1) we obtain for the polarization
W=7 L0z —p)+ 6l —p)lw, (30 yperator the asymptotic representation
wherew is the decay raté25) in the absence of a medium, @ ,H noo
for the axion decay into as~e™ pair in the presence of a HR:?meH_O 4r+In(47)—4 ArCCOShrFe_'W , (39

magnetized degenerate electron gas. We underscore that the
imaginary part of the contributioi29) of the medium is and the field contribution predominates.

positive, and summed with the negative field contribution  Let us write the dispersion relatiqi¥) in the form
(26) it gives a blocking Pauli factor 1 (x) = 6(—x) in Eq.

2_1,2 2 2
(30). It forbids electron production inside a filled Fermi " =KT kg my +Tlg(k). (36
sphere(for &. <p). . It follows from Egs.(34)—(36) that in a magnetized medium
Taking account of E(28), we obtain for the real part of 3 radiation shift of the axion mass is genedate a dynamic
Eq. (27) on the mass shell the representation mass, whose square, according to the definition in Ref. 15, is
2
m A 1 2—
ReM:-fq-/J: dx S — omg=Rellg.
0 7= COSIT(X=4) For 7=1 we obtain the estimate
1 (31 H |12
1. ~ -
7—cost(x+ ) oma gaeme( Hy " (37)
Here the substitution of the variable—x was used: Assumingk, =m,, we obtain
& =me coshx and g=m,sinhx, and the parameteps and P
defined as 5 16 k. H 38
= PR — —_
ILL k ma~ gae 1Mev 10136 ( )
coshh=—, tanhy=—. (32)

Me w For g,e~10 % (Refs. 4 and 10 and H=10' G (such
were introduced. The integré8l) can be expressed in terms fields'®*® and everH~10'*-10%° G (Ref. 20 can exist in
of elementary functions. the i_néerior regions of neutron stay<Eq. (38) gives dm,

We shall confine our attention below to the limiting =10 > eV. _
cases that are of interest for astrophysical applications. The chemical potential of a degenerate gas of elec-
6. For an axion on the mass shell trons occupying the ground-state Landau leve+Q) in a

, , s 2 9o magnetic field is related with the electron densityby the
I2=4mir=w?—kZ=m3+k* >0, (33 well-known relation
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Owing to a funadmentally erroneous approach to calculations of the effective polaron mass
(calculations that use a model without spatial dispersion of the lattice polarizghitigypolaron

inertial mass has never before been distinguished from the mass as a measure of kinetic

energy. In this paper we derive an expression for the tensor of the inertial mass of a large polaron.
The tensor is found to be fully determined by two components: the longitudinal component,
corresponding to the case where the force acting on the polaron is parallel to the polaron velocity,
and the transverse component, corresponding to the case where the acceleration is
perpendicular to the polaron velocity. The components of the polaron inertial mass tensor depend
quasirelativistically on the polaron velocity due to the quasirelativistic compression of the
polarization field in the direction of motion, which constitutes the effect of spatial dispersion of
the lattice polarizability. We derive a formula that approximates the dependence of the
components of the polaron mass tensor on all the parameters: the frequency and dispersion of the
phonons, the polaron velocity, and the effective dielectric constant19@9 American

Institute of Physicg.S1063-776(99)01601-7

1. INTRODUCTION longitudinal. An example is the Hall effect. To solve the
problems of polaron electronics we must generally know the
The investigation of the problem of the effective mass ofpolaron inertial mass tensor. In other words, the results of
an autolocalized charge carrigr large polaronbegan when Ref. 7 must be augmented by a “transverse” effective po-
it was first demonstrated that such carriers can kaistl still  laron mass. Indeed, even in Ref. 9, where the necessity of
continues™". The problem is interesting both from the allowing for the spatial dispersion of the lattice polarizability
standpoint of experimentally observing polaron-related efin describing the motion of the cloud of polarization charge
fects and because of the potential of polaron electronics anggether with the charged particle generating this charge was
in connection with the possibility of realizing highs bipo-  demonstrated for the first time, it was shown that the polar-
laron superconductivity. Recently we derived expressions foization field of a moving point charge undergoes quasirela-
the “energy” effective polaron mas&commonly known as tivistic compression and resembles a disk. When the polaron
the effective polaron magsand the polaron longitudinal in- is in motion, such compression leads to effects similar to
ertial mas$in a model with spatial dispersion of the lattice relativistic effects: the velocity dependence of the energy po-
polarizability. As shown in Ref. 8, only in such a model is laron mas$and the inertial polaron masdue to a change in
the polaron mobile, i.e., not destroyed in its motion throughthe degree of compression of the polarization force in the
the crystal, if its velocityv is less than the minimum phase direction of motion. If there is also a nonlongitudinal field
velocity u of the phonons responsible for carrier autolocal-acting on the polaron, the disk rotates. This effect differs
ization (there is no autolocalized state wher-u). The re-  from the result of action of a longitudinal force, so that it is
sults of earlier studies that ignored the spatial dispersion ofatural to expect that the inertial polaron mass differs from
lattice polarizability~* suggest that the polaron inertial and the longitudinal polaron mass. The present paper studies the
energy masses coincide and depend neither on the polarsiependence on the polaron velocity of the transverse inertial
velocity nor on the dispersion of the phonons participating inmass. On the basis of this study we construct the polaron
the formation of the polaron. Only in Ref. 5 was an approxi-inertial mass tensor in an isotropic medium.
mate expression for the polaron energy mass derived for the
case of weak dispersion of the phonon brafemall u).
The research done in Refs. 6 and 7 demonstrated that in
contrast to ordinary ideas, the polaron inertial and energy. THE POLARON TRANSVERSE INERTIAL MASS
masses differ when the polaron velocityis finite (the dif-
ference is the greater the higher the values @ndu) and The polaron inertial mass can be obtained from the time
strongly depend on the polaron velocityand the value of derivative of the polaron momentu, assuming that the
the minimum phase velocity of the photons participating in  velocity is time-dependent,=v(t). If the z axis is directed
polaron formation. parallel to the polaron velocity, the componeni, of the
However, contrary to what was assumed in Ref. 7, theeffective mass tensor can be obtained by assuming that the
force acting on a polaron moving in a medium is not alwaysforce acting on the polaron is directed along the saraeis:

1063-7761/99/88(1)/4/$15.00 101 © 1999 American Institute of Physics
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oy dP[dv)\ 7t e
M2 :H(E> : @) p(r,t)z—*QZJ G(r—r"hy(r') d, (5)
€

An expression for thigarbitrary component of the polaron \yhereG(r,t) is the Green's function of the equation of mo-
inertial mass tensor was derived in Ref. 7. In the local systemy, for the density of the polarization charge in the polar-
of coordinates tied to the instantaneous directions of the vegy,. Equation(5) shows that the physical meaning of the
locity anq acceleration the polaron inertial mass tensor ig,nction G(r,t) is that this function is the density of the
always diagonal. Its components,=m,, (the purely trans-  yo|arization charge generated by a charged point particle
verse inertial magscan be calculated by assuming that the 6ying with a velocityo (this is how this density was ob-
force is directed along the (or y) axis, with thez axis  (ained in Ref. 9. When the dispersion law of the phonon
directed along the polaron velocity. branch has the forr}2(k) = Q2+ u2k? in a cylindrical sys-

_As noted in Ref. 7, the total polaron momentum can b&em of coordinates whoseaxis is directed along the particle
written as the sum of the average value of the charge-carrlg;ebcity the functionG(r,t) has the forr

momentum, which can be assumed equahta (wherem*
is the effective mass of the charge carrier in the cryssald ( exp{— Q[(z—vt)2/ B2+ Y2y}
the average momentum of the phonon participating in the > YU
formation of the polaron. According to Ref. 7, the second 4muBy[(z—vt)Br+re]
term can be written as follows: 02
v<u, Bi=1-—;

u

p =fﬁk[wP Pt s TeT
P 2 TR 20008 K cod Q[(z—vt)%/ B3 2 ¥3u}
| | dk ar-{ 2RI IE R
+ 57 P Tk 57 Poic T 2 ) 72— t<0,

vzt By

whereP, is the Fourier transform of the polarization vector, 7—0t<0

T=BPy, B=4me*IQ?, O is the frequency of longitudinal 0, v>u, r>|z— t,|/

optical vibrations at the center of the Brillouin zor&(k) is otl/ Bz,

the law of dispersion of such vibrations, anct1£ 1/e., ) v?

—1/g, is the reciprocal effective dielectric constant. k z—vt>0, 32:?‘

We assume that the force acting on the polaron is per-
pendicular to the polaron velocity and is such that the radius  The physical meaning ofi is that u is the minimum
of the curvature of the polaron’s path is much larger than thgyhase velocity of the phonons participating in polaron for-
polaron radius, so that the polaron trajectory can be considmation. Equation(6) shows that only whem <u holds will
ered a straight line if we examine sections of the path othe polarization charge generated by a moving charged point
order the polaron radius. Theh=i(k-v) BPy. If we also  particle be localized, with the characteristic size of the local-
allow for the fact thatP_,= —Py, we can write an expres- jzation region equal ta/u?—v?/Q in the direction of motion
sion for the average phonon momentum: andu/Q in the perpendicular direction. The typical values of
u/Q are much smaller than the polaron radius in the absence
_f dk  kBQ(k) 2[ B _Zﬂ_ of spatial dispersion(e.g., at Q=100cm ' and u=2
Pph= (2m3 2 k Q(k) x10°cms ! the ratiou/() is smaller than onérstran),
(3 i.e, the “smearing” of the carrier wave function in the po-
laron due to spatial dispersion is much smaller than the
The Fourier transform of the vector of the polarization gen-smearing due to the wave properties of the carrier. Hence, to
erated by a charge carrier moving in a straight line with asimplify the calculations of the polaron mass, we found it
velocity v smaller than the minimum phase velocityf the  appropriate to ignore the variation of the carrier wave func-
phonons participating in the formation of the polar@mly  tjon in the polaron due to spatial dispersion and allowed only
in this case will the carrier wave functiof(r,t) be localized  for the effect of this factor on the polarization charge and to

k-v |2
o]

in spacg has the form use in (4) the expression for the Fourier transform of the
. Pekar wave function given in Ref. 7. Substitutitg in (3)
- e ik 1 s ) and differentiatingop, with respect to time, we arrive at
= 2,

g*  |k|? (k-v)2+Q2(k) -~
herey? is the Fourier t f f th f th WP CO (ka0 )

where i is the Fourier transform of the square of the wave *2 3 2 T2/ 213

functionkof the charge carrier in the polaron. The wave func- dt e*¥2m IK* [0 = (kv)7] a

tion (r,t) of the charge carrier in the polaron can be ob- (k-v)?

tained by minimizing the carrier energy functional, in which X 1+3 reryak

the polarization charge densip(r,t) is expressed in terms (k)

of (r,t) as follows® (7)

(k-v)?

k-v| 3+ Qz(k))+ﬂ(k)
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In accordance with what has been said earlier, we sele@nergy mass, but the masses are not equal, in contrast to the
a system of coordinates in such a way that thaxis is relativistic case, where they coincide perfectly. What also
directed along the polaron velocity and thexis, along the sets the polaron mass apart from the mass of a relativistic

force acting on the polaron. Then particle is that the polaron mass increases to a finite value as
d(k-v) ds v—u rather thz_jm to infinity(this finite yalqe depends an).
k-v=k,v, —ar ~kegp (8) The behavior of the polaron longitudinal, transverse, and
energy masses can easily be understood if we examine for-

whereds/dt is the derivative of the unit vector determining mula (6) for the Green’s functiorG(r,t) of the equation of
the velocity’s direction. According t61), the transverse ef- motion for the polarization charge density in the polaron. As

fective mass can be obtained by the formula noted earlierG(r,t) is the density of the polarization charge
dP( ds) 1 generated by a charged point particle moving with a velocity

= p— (9) v. Forv<u the polarization charge, as E) implies, is

dt\ " dt localized within a region whose size in the direction of mo-
Plugging (9) into the expressiori7) for dp,,/dt, allowing tion is of orderyu?—v%/Q and perpendicular to that direc-
for (8), and bearing in mind that the first term(P) is odd in ~ tion, of orderu/€}. Thus, as the polaron velocity approaches
k, and thus vanishes under integration, we arrive at an exS critical value ¢ =u), the polarization charge generated

r.nXX

pression for the polaron transverse inertial mass: by each point section of the charge carrier distribution in the
polaron undergoes a quasirelativistic compression in the di-
o, 4€07 =k dk, dk, dk, rection of motion. As a result all polaron masses increase in
Mex =M™+ o qu4fo K2+ K24 K2 the limit v —u as,obviously, negative powers of the differ-
oy ence 1-v?/u?, which can be interpreted as the ratio of the
k§(1+302/u2)+k§+ k§+QZ/u2 squares of the smearing of the polarization charge parallel

(¥9)% (10 and perpendicular to that direction due to spatial dispersion,:
2 2_.2 2_..2 2

where the dispersion law of the phonon branch has been 4 Y _ Y4 ~7v U7V Q_ (12)

taken in the form2(k) = Q2%+ u?k?. The expression for the u? u? 0% u?

polaron’s Iongitudir?al inertial mass derived in Ref. 7 differs The smearing parameter in the direction of motion tends to
somewhat from10): zero aw —Uu. However, in the limity — u, the polaron mass
46202 [=dk, dk, k2 dk, tends to a finite value, since in addition to smearing related
f to spatial dispersion the polaron has smeafihgelated to
the wave properties of the carrier. If we introduce this pa-

(KZ(1=v2/u?) +KZ+ ki + Q%/u?)®

m** =m* +
“ e*m2utlo KZ+KZ+kK2
k2(1+302/u?) + ki + ki + 0% u?

(K3(1=v2/u?) + K+ ki +Q%/u?)?

As noted earlierm,,=my, andm,, are the only finite com-
ponents of the tensor of the effective polaron inertial mass in
the local system of coordinates linked to the instantaneous
directions of the velocity and acceleration, so that E6)

and (11) fully determine the tensor of the polaron effective
inertial mass.

(¥d)2. (1D

3. DISCUSSION

Figure 1 shows the dependence of the polaron longitudi-
nal inertial massm;; (curvesl, 1', and 1”), the polaron
energy massm** (curves2, 2, and 2"y, and the polaron
transverse inertial mass;; =myy (curves3, 3', and3’) on
the polaron velocity for three values of the minimum phase
velocity u of the phonons participating in the formation of
the polaron. Curvesl, 2, and 3 correspond tou=5 5
x10°cms !, curvesl’, 2', and3’ to u=1fcms?, and v, 107cmss
curvesl”, 2", and3” tou=2x 10°cms*. The values of the FIG. 1. Dependence of the polaron longitudinal inertial mag$ (curves
other parameters of the medium for the case shown in Flg i’ 1’, and1”), the polaron energy mag,'s’e‘;c (curves?2, 2', and?2"), and the
are 1t*=0.27,0=6.78x102¥ s !, andm* = me. We see  polaron transverse inertial massgy =mj* (curves3, 3', and3") on the
that the longitudinal inertial mass increases with polaron vepol?rzgzsve;‘;ig’ ;c;irnthriﬁetr\]/:?oi; g{iéueo;“tiﬂg““g;afg‘:sgu"rz'ogizfnghg
locity much faster than the energy mass and the transveréégrrespon‘zj e 16 Mt curvesl!. 2 andd 1o ue 10 ome
inertial mass, as also happens in the relativistic case. Thgq curves1”. 2. and3” to u=2x10° cms L. The values of the other
transverse inertial mass coincides almost perfectly with th@arameters are 47 =0.27, 0=6.78<10*s™%, andm*=m,_.

2 4 6 8 10 12 14 16 18 20
-1
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rameterR, which characterizes the polaron size in the ab- m* [ m*c2\2/ e?\4 u 12111
sence of spatial dispersion, into the numerator and denomi- m}y = 4< ) (— 1+ s+ )
nator of (12), we arrive at the expression 192:*41 hQ2 he RQ
u2-p2+R202 02 v2 vz |7

02 u2+ R202 u2+ R202 u“+R°Q
which leads to a finite value for the polaron masw atu, m*  [m*c?\2/ e?\4 u 12\ -1
while atv=0 the right-hand side of E13) is unity. Cal- men =m<m) (% +5g )
culations have shown that the velocity dependence of the
polaron mass can be approximated by the following formu- 02 -1.372
las: X|1-————— ,

an u?+R%02

2

m,,=mg(u)| 1— where the numerator is the Pekar polaron nfdssThese

u?+R%0? ' expressions approximate the values of the corresponding po-
) —12 laron masses to within 10%.
My =mo(u)| 1— (14) Thus, the velocity dependence of the polaron mass can
XX 0 2 212 ) . s . .
u“+RQ be described by relativistic formulas if we allow for the fact
_132 that the polaron size in the direction of motion tends as
2 : - : .
My mo(u)| 1— v v—u, hot to zero but to a finite value, which we characterize
e 0 U2+ R202 ’ by the parameteR. The ratio of the smearing/(} due to

) . . _Spatial dispersion to the quantum smearing paranRuis-
whereR is a parameter dependent on the effective d'eleCt”‘iinguishes between the polaron massifes0 and the Pekar

constant*. By comparing the values of mass calculated by ags: a5 this ratio increases the polaron mass decreases with
(14), by (10) and (11), and in Ref. 6 we can definR as v—0.

R=0.751b, whereb=m*e?/2%2¢* is the value of the pa-
rameter from Ref. 2 at which the energy functional of a

polaron with the trial wave function of the form *)E-mail: rochal@phys.rnd.runnet.ru
b213 E— )
Y(r)=—(1+br)e " (15) 1|, D. Landau and S. I. Pekar, Zhk&p. Teor. Fiz.18, 419(1948.
T 23, |. Pekar,Studies in Electron Crystal ThegriRept. AEC-tr-5575, U.S.

L o Atomic Energy Commissiofi1963.
attains its minimum. 3R. P. Feynman, Phys. Re97, 660 (1955.
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] .. P Academic Press, New Yorkl968.
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Energy splittingAE,.s in double magnetopolaron energy spectrum in rectangular quantum wells
as functions of the well widtld have been calculated. We have considered in the capacity

of interaction leading to resonant coupling between electrons and phonons the interaction with
confined phonons andor comparison with bulk LO phonons. We have obtained the

conditions when the interaction with bulk phonons yields correct results. Calculations for
AlAs/GaAs/AlAs and AISb/InSb/AISb structures have been performed. Alongside the parameter
AE,for a polaron, whose resonant magnetic field is determined by the con@ton, 4,

where() is the cyclotron frequency and, ; is the LO phonon frequency in the quantum w@
polaron, we have calculated E, . for D- (1=2w, ;) andF-polarons (=3w, 1), which is

a factor of\2 and+/3, respectively, smaller thakE, s for the A-polaron. Since the splittin E, ¢

for the A-polaron is very largéup to 0.Ziw| ;), it is more convenient to study in experiments

D- and F-polarons since their resonant magnetic fields are lower. We have predicted

existence of “weak” magnetopolarons, in which the splitting is proportional to a higher power
of Frdlich’s coupling constantr thana'2. © 1999 American Institute of Physics.
[S1063-776(199)01701-1

1. INTRODUCTION Below we consider a single quantum well as a 2D sys-
) ) o tem. Instead of bulk LO phonons, such systems have
When a polaron state is formed in magnetic field, thepponons of three typd@24 First, these are so-called half-
contribution of electron—phonon coupling increases considgy,ce phonons, which are vibrations of the barrier material
erably when the resonant condition is satisfied, i.e., when thﬁ/hich do not penetrate into the quantum well. Second, there
phonon frequencyw,; and electron(hole) cyclotron fre- 50 interface phonons, which decay fast with the separation
quency(} are related by the formula from the quantum well interfaces. Third, there are phonons
w1=jQ, j=12.3,... (1) confined vyithin the qu_antum weII: Thes<_a vibrations do not
penetrate into the barrier, and their amplitudes go to zero on
In this case, resonant coupling between electron levels takdbe interfaces. Interaction between electrons and holes on
place. Condition1) determines the crossing points betweenone side, and three types of phonons on the other has been
the energy levels of the electron—phonon system as functiorstudied previously®> 2’ Das Sarma and MadhuR8rcalcu-
of magnetic field(Fig. 1). Inclusion of magnetopolaron ef- lated the spectrum of thA-magnetopolaroriFig. 1) taking
fects leads to anticrossing of energy levels. Anticrossing efinto account interaction of electrons with confined and inter-
fects were detected in the interband magnetoabsorption speface phonons in an AlAs/GaAs/AlAs structure at three values
tra of InSb!~3 of the well width(20 A, 100 A, and 200 A They came to a
Formation of polaron states takes place in both threeeonclusion that the magnetopolaron spectrum in narrow
dimensional(3D) and quasi-two-dimensiondPD) systems. quantum wells is controlled by interaction with interface
In both systems, these states have considerable effect qgmonons.
spectra of various magneto-optical processes, such as inter- Many calculations of magnetopolaron spectra in a quan-
band light absorption, cyclotron resonance, and Raman scatam well took into account only interaction with Hich's
tering (see, for example, the reviefv§). The main differ-  bulk LO phonons. In other words, they took into account the
ence between the two systems is in the electtbale effect of size-quantization in a quantum well on the electron
spectrum. In 3D systems these are one-dimensional Landdhole) spectrum, whereas the phonon spectrum was the same
bands, whereas in 2D structures these are discrete energg in a homogeneous medium, as if the entire space were
levels. As a result, the splitting between levels of thefilled with the quantum well material. Strictly speaking, this
electron—phonon system due to anticrossing can vary: in thapproach is inconsistent and can yield only an approximate

3D case it is proportional te?®” whereas in 2D structures description of the magnetopolaron spectrum.

the splitting is proportional ta28-1° where« is Frdich’s In the reported work we have investigated the conditions

dimensionless electron—LO-phonon coupling constant. when Frdich’s interaction with LO phonons can be used in

1063-7761/99/88(1)/9/$15.00 105 © 1999 American Institute of Physics
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E-¢, phonons are assumed to be equabai, and their disper-
haw,, N=3, n=0 sion is neglected. The abscissa is the rdlidw, =1/j,
where

Q=|e|H/mgc, 2
e is the electron chargé] is the magnetic field strength,is
the speed of light in vacuum, ama,, is the electron effective
mass. The ordinate is the dimensionless en& @y units of
hw 1) of an electron measured with respecttp, which is
the mth level of size-quantization. The crossing points of
these levels correspond to polaron states. Full circles mark
double polarons, corresponding to crossing of only two lev-
els. Letn be the number of the Landau level passing through
a given crossing point when the number of phonons is
N=0. Then the conditions for the existence of a double po-
laron are

2j>n, n=j. ()]
It is clear thatj=1 corresponds to one double polaron de-
noted byA. The valugj =2, i.e.,Q)/w 1= 1/2, corresponds to
two double polaronsD and E, the numberj=3, i.e.,
Qw|,=1/3, to three double polaronk, K, andL, and so on.
The polarons that have the paramefbiw, ; below 1/3 are
not marked in Fig. 1. Above the double polarons, there are
triple polarons corresponding to crossings of three energy

3+

14 N=0, a=1

L . levels, in the range of higher energies there are four-fold
] 1325 123/5 23 34 1 polarons, etc. The number of polarons of each sort at given
Qlwy, = 1j is j. The triple polarons in bulk crystals were first considered

FIG. 1 E . . in Ref. 28 and in quantum wells in Ref. 19.
. 1. Energy levels of an electron—phonon system in a quantum well in a . .
strong magnetic field€) is the cyclotron frequencyy, , is the frequency of All the polarons mentioned above correspond to integer
LO phonons in the well materiaE is the electron energy, ane, is the  j. In addition, there are more crossing points in Fig. 1
size-quantized energy. Full circles mark double polarons, open circles demarked by open circles. They correspond to fractiopal
note weak polarons, triangles mark triple and squares four-fold polarons. Since the levels crossing at these points have the difference
between their numberAN=2, one-phonon transitions be-

calculations of magnetopolaron spectra in quantum wellstVeen them are forbidden. Let us term these polarons weak.
With this end in view, we calculated the splitting of Since the levels cross at certain points, their splitting is in-

electron—phonon energy levels as functions of the well widtrgVvitable, but the resulting splitting should be calculated tak-
d and numberj. Thej-dependence is interesting because aiNg into account virtual transitions via intermediate states. As

j>1 the resonant magnetic field is, in accordance with Eq2 "eSult, the energy Sﬁlzitting due to weak polarons is of

(1), a factor ofj lower, which is easier to realize in an ex- Nigher order ina thana , o
periment. Since the electron and hole effective masses are || W0 Or more values of the size-quantization numhrer

different, the resonant coupling can involve either electron&'® taken into account, the pattern of level crossing is com-
or holes. Below we will consider for definiteness magneto-Plicated considerably. Previously we analyzed combined

polarons including electrons, and spectra of hole magnetop(gnagnetopolarons in which two electron levels with different
larons must be similar. Landau numbera and differentm, or with differentm and

The paper is organized as follows. In Sec. 2 magnetopg€dua!n are coupled by the electron—phonon interactfon.

larons are classified. Section 3 contains general expressiondliS Paper is not concerned with combined polarBhisut
for the mass operator, which is included in the Dyson equa_consmers only double polarons marked by full C|r_cles in Fig.
tion that determines the magnetopolaron spectrum. Interac- 1€ polarons of the new types can be considered sepa-
tions with both confined and bulk LO phonons will be con- Fately and, moreover, the pattern of energy levels in Fig. 1
sidered. Section 4 is devoted to calculations ofcan be used under the condition that the energy splitting
magnetopolaron spectra. Section 5 describes magnetopolarBRtWeen neighboring size-quantized levels are wider than the

spectra in the limiting case of wide quantum wells. In Sec. e5Plitting AE s due to the polaron effect. Since the separa-
we will discuss the results and draw conclusions. tions between the size-quantized energy levels are smaller at

larger well widthsd, there is an upper limit fod (see Sec.

6). Our theory applies to all numbers andj that satisfy
condition (3). Numerical calculations have been performed
Figure 1 shows energy levels of the electron—phonorfor A, D, andF polarons. Foig, K, andL polarons, approxi-

system in a quantum well at a fixed size-quantization numbemate values of the splitting are given. The lettBrandC in
m. The limiting frequencies of the confined and bulk LO Fig. 1 mark the three- and four-fold polarons, respectively, at
j=1.The

2. CLASSIFICATION OF MAGNETOPOLARONS
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pattern shown in Fig. 1 is based on the assumptions that the = _d/2, B,=Q.d/2, Q.= 2MAE./#?
Landau levels are equidistant and excitonic effects can be

neglected. km=VQ2—K2, km=2meen/H>. (13
The electron energy measured with respect to the quantum
3. MODEL AND BASIC RELATIONS well bottom is

We are considering a type | quantum well with a band
gapEy and a heightAE, of the electron barrier. The mag-

netic field H is perpendicular to the quantum well plane |, gn infinitely deep quantum wellAE,— )
(aligned with thez-axis), and its vector potentiad, is ex- °

Emn=emt(N+1/240. (14)

pressed in the Landau gauge: £2m2m2
=, 15
Ao=(—YyH,0,0). (4) o 2med? 15
The wave function of an electron not coupled to phonons hag, . magnetopolaron energy spectrum is determined by poles
the form of the one-particle electron Green’s function
1
W kXY, 2) = —=€"on(y = yi) xm(2), (5) &= Emn—2(m,n,s)=0, (16)
VL
Where where3 (m,n,¢) is the mass operator.
The Hamiltonian of interaction between electrons and
1 ;{ y=v0? [y-y« confined phonons has the foffn
enly =YW= exg — 5—|Hn ,
V2mt 7R, 2Ry Ro - pw[ d )
6) .%c=% p:LEsw. CqpC08 | 2 5| (@gpTalyy)
R2 ch chik @) o q
0= Tam: YkT T Lo i + i
le|H eH +p:§,... Cg,psin T(Z—E (aq’p+a_q‘p)]e'm

k is the electron wave vector projection on thaxis,H,(y)
is a Hermite polynomiall, is the length to which the wave 17)

functions are normalized. In a rectangular quantum well of .. < ,<d and.77~=0 for z<0 andz>d. The factorC
finite depth, the functiory,(z) has the form is expressed as: e . a.p

Xm(2) = Cp( = 1) 312

8mal
cogknd/2)exp(kmz), z<0, Cqp=—ho \/Sod[q2+ (pmld)2] (18)
x{ cogkm(z—d/2)], 0sz<d, (8)
cogkdi2)exd — kn(z—d)], z=d where the dimensionless constant of coupling with confined
" " ’ phonons is

form=1,3,5... and

2
Xn(2)=Con( — 1) ™2 L R IR S (19
2h(1)|_1| Ew1 €01 2rne(l)l_]_

—sin(k,,d/2)exp( kn2), z<0,
x ¢ sifk,(z—d/2)], 0<z=<d, w1 Is the confined phonon frequengys dispersion is ne-

. _ _ glected, €9, (£.,1) is the statiahigh-frequency permittivity
sinknd/2)ex = k(z=d)], z=d of the quantum well materiat,=(x,y) andq=(qy,q,) are
) the two-dimensional radius vector of the electron and the

form=2,4,6 . .. ,whered is the quantum well width, so that two-dimensional phonon wave vector, respectivesy,,

0<z<d, (aq,p) is the creation(annihilation) operator of a confined
phonon with wave vectay and quantum numbex, which is
C - \/ 2Km (10 a substitute for the wave vector projectignin the 3D case,
m 1+ kd*xcogky,d) = (ky/Ky)sin(ky,d) andS, is the normalization area.

is the normalization constant, the upper signs are taken when If two energy levels of the electron—phonon system

mis odd and the lower signs whenis even. The parameter cross, it suffices to take into account the simplest diagram
k., hence the energy®, of a level in the quantum well, is (two vertices connected by electron and phonon imeshe
1 m 1

determined by the equations mass operato_ﬁ(m,n,s). The con_tr|but|ons of dlagram_s
with more vertices are smaller owing to the small coupling
cott=t/\/,8§—t2, m=135..., (11 constanta. Using standard techniques for calculation of

5 Feynman diagram contributions to the mass operator, we ob-
tant=—t/yBe—t5, m=244..., (120 tain the following expression:
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S(mne)= > > C2 [M(m“m
mq.ng q,p=13, ... 1
1+(—1)P*t
X(p) =5 M,
1—(—1)P]2 1o, (@]
X(P)—3 6 Emy i~ ho 115"
5—0. (20

The numerator of the last factor in the right-hand side of Eq.

(20) is the squared absolute value of the matrix element o

Hamiltonian (17) calculated using wave function$), and
the denominator is determined by the zero-order Green
functions of the electron and phonon. The temperature i

assumed to be low, so that no phonons are present, and the
electron—phonon interaction leads only to emission of

phonons. Equatio20) uses the following notation:

d d
(n})ml(p) JO dZXm(Z)Xml(Z)CO{pd—W( z— E) ,
p=135..., (21
d d
M, ()= fo dzxm(2) xm,(2)sin pd_”( 2— E) }
pP=246...,
1
In,nl(q): L_ J d?r exp{i (k— kl)x—|—iqr}
X‘Pn(y_yk)‘Pnl(y_ykl). (22

Although the functionsy,,(z) are nonvanishing outside
the quantum well, integration in E§21) is performed over
the interval G<z=d, because”-=0 outside the quantum
well. As follows from the expressions foy,(z), the inte-
grands are products of sines and cosines. One can eas

's
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min(n!,n4!)
maxn!,n,!)

[n—ny|

u|n—n1\e—u[|_min(n -

(W%
(29

||n,n1(q)|2:

where

RS

?l

ch
1242
u=lhe’s R =g

Ly is an associated Laguerre polynomial. After replacing
summation ovenq with integration in Eq.(20), taking into
account Eqgs(18), (19), (21), and(22), and neglecting the
glsper5|on of confined phonons, we obtain the following ex-
pression for the mass operator:

wc(m,n,ny)
&€ Em’nl_ﬁle"_ié’

S(m,n,e)=3c(mn,e)=>

ng

S

(26)
where
_ 2a_I min(n!,n;!)
We(m,n,ng) = (o) 21, max(n!,n;!)
% focduum—nl\—llze—u
0
XL (W7 §(BoN).  (27)
The function.,v”/fﬁ(x) for confined phonons is given by
w2p?
(x)=4x :Z X2+ m2p?
1 cogk,d) 12
7207 a2p— 4 P &
Equation(27) uses the notation
ﬁ0=d/|H=d\2|e|H/Cﬁ, |/|H:\/Q/(L)|_1 (29)

ily Alongside the interaction with confined phonons, let us

prove that the integral of the product of three sines or oneonsider Frtich’s interaction, in which the phonon spectrum

sine and two cosines is zero, therefore, the numhesnd

m; in Mﬁnl)m (p) should be of the same parity, and in
M, (P) they should have different parities. Since only the
casem m; will be discussed in what follows, only the
terms withM ) (p) are retained in Eq:20). The following
notation is introduced:
MP=M(p),

p=1,35... (23)

After performing integration ovez in Eq. (21) in a quantum
well of a finite depth, we have

cogk,d)
7?p?— 4k d? |’
(29)

where plus is taken in the case of odd and minus in the
case of evem. After calculating the integral in E¢22), we
obtain

+
5=

Mu(p)=(—1)P~D2CTdmp| —
TP

is determined for a homogeneous material. In calculating
Frdlich’s interaction, one should select a limiting LO phonon
frequency: either frequency, ; in the quantum well mate-
rial, assuming that it occupies the entire spaceyor of the
barrier material. In the case under discussion, it is reasonable
to choosew, 1, since the electrons interact with LO phonons
mostly within the quantum well. Flich’s interaction is de-
scribed by the formula

He= 2 Cqq,@XMi(ar+0,2)}bgq +H.c. (30
a.9;

c o —_in 4ral\1? 1 31

q’qz——l w0 _VO q, ( )

WherebqfqZ (bq,q,) is the creatiortannihilatior) operator of a
bulk optical phonon, and/, is the normalization volume.
Using Eq.(30), we obtain the following expression for the
mass operator:
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Caa)2IR(G)2lln, (0)2

|
2F(r.n!n!S)ZZ Z

(32
n Q.0 8_Em,nl_ﬁ“’Ll'Hg )

where
Ru@)= | delxa(2)Pexpiia ). 33

In contrast to Eq(21), here integration is performed over the
entire z-axis, since, at a finite quantum well depth, the elec-
tron wave function penetrates into the barrier, where the

electron interacts with phonons. After integration oggr,
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16\2
7%_’(?) Bou
m?
x , 38
pzé-.. o2 Bout prrd) (- pr2 3P
7F 8 [3,80\/6 N w2m?
I m— B3U+4772m2{ ) Bo\/ﬁ
At mA(1—exp( — Bou)) o
B3u(B3u+4m?m?) (39)

the mass operatdir(m,n, ) is reduced to a form similar to  These equations show that the difference between interac-

Egs. (26) and (27). The difference is in function/ (x),
which should be substituted foF $(x) in Eq. (27) and can
be expressed as

T (X)=Crd’[Dow(X)+Dg(X)]. (34)

The functionD o\(X) is due to the electron—phonon interac-

tion in the quantum well and has the form

tions with confined and bulk LO phonons is in functiofs;
and.7 T, which act as form factors in this case.

4. ENERGY SPECTRUM OF A DOUBLE MAGNETOPOLARON

The mass operator is a sum over Landau quantum num-
bersn,. If there is resonant coupling between Landau levels

Dow(X) 1 <1+sin§m N X nandn;,
X)=-—| 1%
Q 2x Em | A(XP+4£2) j=n-n; (40)
2sinéy, sin2¢, 2 and condition(3) is satisfied, the sum over; contains one
x| 1= & + 2t | ¢ large term where the denominator is small, and the rest of the
_ _ terms are small since they are proportionakt&1, so they
« 1 XC0s&m—2&mSiném| | sinh(x/2) all can be neglected. Suppose that the larger term corre-
X )<2+4gr2n X sponds ton, (this is the final state where an electron trans-
. fers by emitting a phongnThen we derive from Eq.16) a
X X . . : :
. : quadratic equation which determines the double magnetopo-
s - + .
X2+ 4§r2n( X Sinh7; COSEm + 28m COSN; SINéy laron spectrum:
35 w(m,n,n
(39 e— m,n_(—l): ) (41)
The electron—phonon interaction in the barriers is described e~ &mntA
by functionDg(x): A=(n—n)AQ—hao ;. (42)
p4 2P% X 4P2e‘x’2[ 1 X Parameteh is a deviation of magnetic field from the condi-
Dg(x)= + Sinh> tion (1). Equation(41) determines two branches of the mag-

Ln( 2Lt (2gm+x)2Jr 2 ptx|[x7 2

N 2&msiné,, coshix/2) +x cosé,, sinh(x/2)

36
X2+A4E2 (36

Equations(35) and (36) uses the notation
Em=Knd, In=kpd, x=0qd=Bo\u. (37)

The function P=cos§,/2) and plus are used when

m=1,3,5..., whereas P=sin(,/2) and minus when
m=2,4,6 . ... In thelimiting case of an infinitely deep well,
AE.—, we derive from Eqs(8)—(12)

Knd—mm, Qg—o°,
Km—%, &m— (hmm)?/2m.d?,
Xm— V2/d sinimzz/d), 0<z=<d,
x—0, z=<0, z=d

for both odd and evem. The formulas for7 S and.7 . are
simplified, accordingly:

netopolaron spectrum with the separation between them

AE(N)=\?+4wc(m,n,n,). (43
At the resonance, whene=0,
AEes=2yw(m,n,n,). (449

It follows from Eq.(27) or the similar formula for Friich’s
interaction with bulk LO phonons, where indéxs replaced
by F, that

AE o a. (45)

Equation(43) is valid if A<2+\w. If \>2w, terms with all
Landau numbers should be included. Laegall® deter-
mined the energy splitting for polarons in a different manner.
The result was presented as a sum over all types of phonons
in a quantum wel[Egs.(30) and (20) in Ref. 16 with fre-
quency w;, Wwithout dispersion. The form of electron—
phonon interaction was not specified. After substituting ex-
pression(17) describing interaction with confined phonons in
Egs. (30) and (20) from Ref. 16, one obtains Eq44) for

n-1, n;=0, i.e., for theA polaron.
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FIG. 2. Energy splitting between branches in magneto-
polaron spectraAE, e (Frdich’s interaction and
AE,esc (interaction with confined phonopsas func-
tions of the quantum well width in
Al 35a.6dGaAs/Ap s GaeAs at (@ m=1 and (b)
m=2. Curves 1-3 show AE, ., curves 1'-3'
AE,.sc; curvesl andl’ plot energy splitting due to the
A-polaron,2 and 2 refer to the D-polaron, an8, 3’ to

the F-polaron. The calculation parameters are listed in
the text. The dashed curve in Fig. 2a pl&E, ¢ for

an infinitely deep well, the dash-dotted line shows the
separation betweem=1 andm=2 levels in an infi-
nitely deep well in the case of Hich's interaction. The
dotted lines in Fig. 2b plotAE,. calculated by the
asymptotic formula56).

e i s 4

0 200 400 600

800 1000 0 200 400 600 800 1000
d, A d A

Solid lines in Figs. 2 and 3 shoWE, . and AE ¢ hw ,=0.047 eV3° and «=0.06. Figure 2a corresponds to
versus the quantum well widtd calculated by Eqgs(27), the size-quantization quantum numipe+ 1, curvesl and1’
(28), (34)—(36), and(44). The dashed line in Fig. 2a shows showAE.r and AE,.sc for the A-polaron, curves labeled
AE, ¢ for the A-polaron in an infinitely deep quantum well. by 2 and 2’ show similar curves for thé-polaron, and
The curves in Fig. 2 are plotted for the curves3and3’ for the F-polaron. Figure 2b is similar to 2a,
Al 3Gay 6AS/GaAS/AL 3 Gay gAS  Structure with param-  but for m=2. Figure 3 corresponds to the casenof 1 in
eters AE,=0.35 eV?° m,/my=0.067, hw ;=0.036 eV, the AISb/InAs/AISb structure, wher&E,=1.8 eV, m,/m,

=0.023,Aw ,=0.030 eV,iw ,=0.042 eV, andx=0.042.

The labels at curves in Fig. 3 are similar to those in Fig. 2.

AE . rey 10°, eV Figures 2 and 3 clearly show that the curvesAd . (d)

andAE,¢sc(d) converge asl increases. This means that the
effect of interaction with confined phonons is the same as
with bulk LO phonons. Section 5 will give an explanation of
this fact and determine the conditions when an interpretation
based on interaction with bulk phonons is admissible.

5. ENERGY SPLITTING DUE TO MAGNETOPOLARONS IN
WIDE QUANTUM WELLS

Let us investigate what approximate expression can be
substituted for exact formulas given above at ladg&o this
end, let us reconsider E@27) for function we(m,n,n;),
which occurs in Eq(44), and move one step back. Before
integration overz we have

2

e _ _ o0
Wc(m,n,nl):ﬁwug(é‘xl—% b fo den,nl(u)

il > Uldym{wp(y

p=13,... | Jo

2

0 200 400 600 800 1000 _l)
4 A 2

Pa(y) (46)

2 L
u+(mp/Bo)
FIG. 3. The same as in Fig. 2a for the AlSh/InAs/AlSb structure. wherey=2z/d, function (22) for n>n; can be replaced by
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ﬂ1! _ _ n—n
fon, (W= " "Ly (W) ]2, (47)
YY) = dxm(yd). (48)

Similarly, by introducing the integration variabte= q,d for
interaction with bulk phonons, we obtain

ﬁle e_z(s_l
47 d 77

xf dufn'nl(u)f dt
0 —

2

-1
WF(m!n!nl): —€p )

X f ) dye¥ty2(y) (49

u+(t/Bg)?

Let paramete3, in Egs.(46) and(49) go to infinity and let

us discard {rp/Bo)% and (/8,)? in the two respective de-
nominators. By performing the sum ovprin Eqg. (46) and

integration ovett in Eqg. (49), we obtain

ﬁle
We(Bo—®) = 2]

e? 1
E(s;l—saﬂfodywﬁn(y), (50

ﬁle e2
WE(Bo—®)= 2j d

(s;l—e(;l)f:dywﬁ«y). (5

In these calculations we have used the formula

nl! * —u,n—ny—1py N—N1 2_ 1 _1
o fO due Yu"™™M [Lnl (u)]°= =7 (52

n—ny

Thus, it turns out that in the limjB— o, the difference be-

tween the formulas foA E.s based on interaction with con-
fined and bulk phonons is only in the limits of integration
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3 e’ -1_ -1
AE{d—o)= j_ﬁqu(Soc —&g7). (56)

Note that the latter two equations could be also derived from
Egs.(27), (38), and(39) since in the limitd— o

_F(C
'%m( )(ﬁoﬂ"o):

3
. 5

BoVu 7
Certainly, this description of the transition to limdt— oo is
far from accurate. At large one should obtain results for a
conventional bulk crystal. The concept of a magnetopolaron
with fixed m makes no sense when the separation between
size-quantization levels is comparable to or less than the
splitting AE,¢ (the criterion will be discussed in Seg. @he
dotted lines in Fig. 2b show calculations &E{d) by Eq.
(56). It is clear that the error of Eq56) is considerable even
in the range ofd where the calculations &t E . labeled by
C andF are very close. Calculations indicate that Esp) is
fairly accurate when=2000 A. The cause of the large error
of Eq. (56) can be understood by analyzing Eg§9). In order
to obtain the limiting formula57) from this equation, one
must satisfy the condition

Bon n,>4mm?, (58)

where Un,n, is the characteristic value of variable as a

function of n and n;. Condition (58) is a more stringent
condition than equality oAE,.sc and AE, .. In order to
show this, let us reconsider Eq46) and(49). Exact calcu-
lation of the sum in Eq(46) yields

we(m,n,ng)

frn, (U)

Ju

1 e . %
:Zﬁwug(% — &g ),BOJO du

over y=2z/d. This difference between integration limits is
significant only in the case when the exact electron wave
functions(8) and (9) differ from those in an infinitely deep
guantum well, since in the latter case they equal zero outside
the quantum well. But in wide quantum wells penetration of
electrons into the barrier should be insignificéht criterion

1 1
r 2 2 ’
Xfodyfody YY) Um(y")

><e><|o(—Iy—y’Iﬁwﬁ)—e><|0[—(|y—y’|—l)ﬁoﬁ]
1+exp — Bo\u) '

will be specified below therefore, we can use wave func- (59)
tions for quantum wells of infinite depth in the limit— oo
and set Integration ovett in Eq. (49) leads to the exact formula
Yn(Y) == 2 siNmmy), 0<y<1, e . = fon, (1)
" " (53 we(m,n,ng) = Zﬁwug(sxl_so 1),30f0 du \/16
'//m(y):Ov y>1! yso o0 ) 2 2
><f dyf dy" din(Y) in(y")
For all quantum numbens —o —o
1 3 xexp(—|y =y’ Bou). (60)
4| dysiff(mmy)= =, (54)
0 2 In the limit By— Egs.(59) and(60) are identical to(50)

and we obtain very simple asymptotic expressions:

eZ
We(d— ) =we(d—w)= ﬂmelE(s;l—egl),

(59

and (51), respectively.
Given that

:80 un,nl>1-

we derive from Eq(59) the following expression:

(61)



112 JETP 88 (1), January 1999 Korovin et al.

5 previous sections contain, in addition to the correct term due
- @ i g [Tgemm™ g fined ph i tly calculated contributi f
Wc(m,n,nl)”—“zﬁwug(% — &g )ﬁof du o confined phonons, incorrectly calculated contributions o
0 Ju half-space and interface phonons. On the other hand, the ex-

1 1 pressions with indexC contain only the contribution of con-
xf dyf dy" 2 () o (y) fined phonons. Should correct contributions of half-space
o “Jo and interface phonons be added? As a matter of*faitte

, frequencyw| , of half-space phonons is far from, {, there-
xexp(—|y—y'| Boyu), (62) fore these phonons do not take part in formation of magne-
which differs from Eq(60) in the limits of integration ovey  topolarons. The case of interface phonons is more compli-
andy’. If the penetration of electrons into the barrier is neg-cated. Figure 2 in Ref. 26 shows various branches of the
ligible, functions ¢,(y) in Egs. (60) and (62) can be re- interface phonon frequency plotted agaigstOn the lower

placed by functiong53), then we have branch, their frequencies are closed,, on the upper to
1 o2 w2, SO the interface phonons, generally speaking, contrib-
we(m,n,ny)=wg(m,n,n;)= Zﬁqu ute to the magnetopolarons. In this paper the contribution of

the interface phonons has not been taken into account, there-
fore the results are correct only for such quantum well widths
d at which this contribution is small. Note that in calculating
exactly the contribution of interface phonons, one should
L N have taken into account their dispersion, which would com-
Xf dyf dy'lﬂﬁm(y)dfﬁm(y') pl|ca§e the proplem conS|derany._The crlltenon for small
0 0 contribution of interface phonons is identical to H&J).
, Really, the range of interface phonons in the quantum well is
X exp = |y=y'l Bovu). 63 of order ofq ! (see Table IV in Ref. 26 and since the mean
By substituting Eq(63) in (44), we obtain a formula describ-  valueql,~ \/m [see the notation in Eq25)], the condi-
ing curves ofAE,.{d) in Figs. 2 and 3 in the ranges df Lt
where curves labeled bg andF are very close.
Functions,,,(y) can be substituted by,,.(y) in the
case of infinitely deep wells, provided that

fn,nl(u)
u

X(S;l_sal)BOL du T

tion g~ 1<d again yields Eq(61).

Thus, if condition(61) holds, the contribution of inter-
face phonons can be neglected, alongside the “incorrect”
contribution of interface phonons to quantities with index

% If condition (61) is satisfied, we have E@60) for quantities
d>d,, dy=—F———m—=, (64  labeled byC and Eq.(62) with indexF. As was noted above,
2me(AEe~Em) the only difference between them is in the limits of integra-
whered, is the electron penetration range inside the barriertion overy and y’. The cause is that Eq62) contains the
For deep levelss ,<AE,, d, tends to the limit spurious contribution of half-space phonons. This spurious
contribution, however, is negligible if conditiof®4) holds,
_ h (65) and under this condition the expressions with indiCeand

%o V2mAE, F become identical, which leads to Ed6l). If d,
>IH/\/R, condition (61) may be satisfied, whereas con-

6. DISCUSSION dition (64) may fail. This is possible, in principle, at large

_ Thgs, if cqnditions(ﬁl) and (64) are sa.tisfie.d, in'terac— Sh”é I\gc:l::q i?\cfhoédéﬂ?ar:?uriqss;)li ?;i;geclggg?zggemhljg]i; o

tions with confined and bulk LO phoqo_ns yield identical for- Eq. (62) [or Eq.(27) with substitution(28)], which yields the

mulas(44) and(63) for the energy splitting due to magneto- correct contribution of confined phonons. The latter case,

]POItar_?_E el;fects.l Let lést glvedabqu&lltgtlvedlr:%%retgtlton of th'showever, is unrealistic in quantum wells discussed here at
act. The formulas obtained by Viort an or inteérac- m=1,2 since condition(64) is satisfied at smalled than

tion between electrons and phonons of three types, namelyhose determined by conditia®1) (see the dashed curve in
half-space, interface, and confined phonons, contain frequerﬁ_alg 23. Note that under resonant conditions
ciesw; 1 andw, ,, and permittivitiese 1, £..2, €91, andeg,. e

The subscript X2) corresponds to the material of the quan- ly=I \/1— (67)
tum well (barriep. Assuming so condition(61) transforms to

W1~ 02, €x17€x2, €017 €02 (66) I\/j—
and taking into account all three types of phonons in calcu- d> \/u_ (68)
lations of the energy splitting, one obtains #hE{d) the My
same formula as with interactio(80) involving bulk LO Sincel is inversely proportional tod ;me) Y2, in InAs |

phonons of frequency, ¢, i.e., Eq.(44) after substitution of is larger than in GaAs, as a result, the curve\&,.sc(d)

Eq. (27) and (34), or (60), which is equivalent. In other andAE,.e(d) in Fig. 3 converge at larget than in Fig. 2a.
words, all these equations take into account all three types dfigures 2 and 3 also show that the largethe smallerd at
phonons, but only if conditio(66) holds. Since Eq(66)  which the curves ofAE,.sc(d) and AEe(d) converge.
does not hold, the quantities with indéxcalculated in the This probably means that the left-hand side of &&) drops
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1/2

nn, Orows withj faster thanj Y2 The param-

with j, i.e.,u

etersl and dp(J of the quantum wells discussed above are a

follows:

|=40A, dp,= 12.3A (GaAs,

1=745A, d, =9.6A (InAs).
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Quantum de Haas—van Alphen oscillations and semiclassical angular magnetoresistance
oscillations are observed in the quasi-two-dimensional organic me(BIETS),GaCl,. The

behavior of these oscillations attests to the existence of two cylindrical Fermi surface sheets with
axes perpendicular to the conducting plane. The cross-sectional areas of these cylinders in

the conducting plane are equal to about 20 and 100% of the corresponding cross section of the
Brillouin zone. It is shown that the many-particle interaction can be suppressed

significantly in this compound. €999 American Institute of Physid$$1063-776(99)01801-6

All the known quasi-two-dimensional organic conduc- section of the Brillouin zone, regardless of the composition
tors that have been synthesized from the organic molecule af the x-type metal. Consequently, the original ellipse inter-
bis(ethylenedithigtetrathiafulvalene(ET) are organized in sects the Brillouin-zone boundary between tkleand Z
the same manner: the ET molecules form conducting catiorpoints(Fig. 1), and new Fermi surfaces form: one in the form
radical layers, which are separated from one another by norof a cylinder with a cross-sectional area in the conducting
conducting anion layers, so that the conductivity along theplane equal to about 20% of the area of the Brillouin zone
ET layers is several orders of magnitude higher than th@nd a second in the form of parallel rippled planes. Only two
conductivity between therh.The ET molecules can be possible modifications of the Fermi surface are presently
packed in the conducting layers in different ways, one ofknown in x-type metals.
which is k-type packing: Organic metals of th& type have The first modification is exhibited in, for example, the
been known for more than a decade and have aroused specsallt «-(ET),Cu(NCS),, which does not have an inversion
attention, particularly because superconductors with theenter* In such salts an energy gap forms between the small
highest known critical temperatures have been discoveredosed Fermi surface and the quasiplanes at the point of in-
among thent. Although «-type metals differ from one an- tersection on the Brillouin-zone boundaffyig. 1a. In this
other with respect to the chemical composition of the aniongase electrons can move in weak magnetic fields in the cor-
and are not always isostructural, the Fermi surfaces in themesponding closed orbit, which is termed #erbit, as well
are always similafFig. 1).13 as in the open quasiplanes.

According to theoretical calculations, the original Fermi In crystals likex-(ET),l5 with an inversion centérthe
surface in anyk-type metal is a cylinder, whose axis is per- gap is essentially absent, and electrons can move in a mag-
pendicular to the conducting plane and whose cross sectiametic field in open orbits, in thex orbit, and in the large
in that plane has the form of an ellipse. The area of theclosed orbit corresponding to the original ellipse, which has
ellipse is equal to about 100% of the corresponding crosbeen termed th@ orbit. This statement has been confirmed

1063-7761/99/88(1)/4/$15.00 114 © 1999 American Institute of Physics
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surface ink-type metals: a —-(ET),Cu(NCS), (Ref.
4); b — k-(ET),l5 (Ref. 5.
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experimentally. Quantum oscillations with frequencies  This paper presents the result of an investigation of
corresponding only to thea orbit are observed in quantum de Haas—van Alphen oscillations and semiclassical
x-(ET),Cu(NC9), in fields up to 15 T. In stronger fields angular magnetoresistance oscillationsc#{BETS),GaCl, .
frequencies associated with tigeorbit appear due to mag- It is shown that these effects contain contributions from the
netic breakdowr.Since there is no gap ir-(ET),l3, mag-  motion of electrons in both th@ and « orbits.

netic breakdown is not required for motion in tjgeorbit, The crystals measured had the form of parallelepipeds
and frequencies corresponding to teand B orbits coexist  with mean dimensions:22x 0.05 mn?, in which the small-
even in weak field$. est dimension of the samples corresponded tatheis. The

Many k-type organic metals have been synthesized fronresistance measurements were performed by the ordinary
bis(ethylenedithigtetraselenafulvalene(BETS), which is  four-point method with the measuring current flowing per-
a close analog of ET. One particular example ispendicularly to the conducting layers, i.e., along thaxis.
k-(BETS),GaCl,.2 This compound has an orthorhombic lat- The de Haas—van Alphen oscillations were detected in the
tice with an inversion center, and BETS layers lie in bee  variation of the rotational moment in a magnetic fi€ldAll
plane and alternate along the axis® The Fermi surface the measurements were performed in fields up to 15 T and in
gualitatively resembles the surface shown in Fig. 1b, and ithe temperature range 0.45-4.2 K.
can, therefore, be expected that the galvanomagnetic proper- Figure 2 depicts the de Haas—van Alphen oscillations in
ties are similar to those observed i (ET),l;. For this  «-(BETS),GaCl,. The results of Fourier transformation of
reason, the report of the discovery of only one frequency obuch oscillations, which are presented in the inset in the fig-
de Haas—van Alphen oscillations corresponding toghar-  ure, exhibit two frequencies, the smaller of which corre-

bit in x-(BETS),GaCl, in Ref. 9 is unexpected. sponds to thex orbit in the field direction under consider-
()]
L. T+t
2
2
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§ i FIG. 2. de Haas—van Alphen oscillationg=12°, T
T =0.45 K. Inset: fast Fourier transformatiqi®FT) of
% L these oscillations.
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ation, while the larger frequency corresponds to gherbit.  and 100% of the area of the corresponding cross section of
It should be noted that the two frequencies coexist in fieldghe Brillouin zone, in good agreement with the theoretical
stronger than about 10 T. The dependences of these frequegalculations in Ref. 9.
cies on the anglé@ (6 is the angle between the field direction Figure 3 presents the angular dependence of the magne-
and the a axig, as would be expected for quasi-two- toresistance ok-(BETS),GaCl, with clearly expressed an-
dimensional metals, are described by the relations gular oscillations, whose characteristic points are magnetore-
850 T 4400 T sistance maxima. These maxima.are pgriodig With respecj[ to
o~ Fp~ . the tangent ofg, as can be seen in the inset in Fig. 3. This
cosd cos¢ inset clearly shows that the angular magnetoresistance oscil-
Such relations describe two cylindrical Fermi surfaces withlations contain two sets of oscillations with different periods
axes along tha axis. The cross-sectional areas of these cyl-having a ratioA;/A,~2.25. Such behavior corresponds to
inders in the conductingc plane are equal to roughly 20% the motion of electrons on two cylindrical Fermi surface
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sheets, which are weakly rippled along their aXeH.it is betweenm’ and m., may be the significant weakening of
assumed that the cross sections of these cylinders ibdhe the many-particle interactions for electrons in theylinder.
plane are circular, their radii, , are specified by the simple Taking into account the way in which the Fermi surface is
relation formed ink-(BETS),GaCl,, in which thea and electrons
essentially belong to a single system, we can assume that this
weakening is also characteristic of electrons ingheylinder
whered is the distance between the conducting planes. Irand should be manifested in the behavior of their oscilla-
this case the ratio between the areas of the cylin8ers,; tions.
~5:1, i.e., it can be assumed in a rough approximation that  Taking into account the value of the effective mass of
the periods of the angular magnetoresistance oscillations atae 8 electrons determined from the temperature depen-
determined by the sizes of the cylinders in whose basea the dences of the oscillation amplitude of tige electrons,m’ﬁ‘
and g orbits lie. Thus, both the quantum and semiclassicak-5.3m,, and setting it equal to the band mass, we can esti-
oscillations provide evidence that electrons moving in bothmate the splitting factor for th@ electrons aS;~10.6. It
of these orbits contribute to these effects. follows from this value and the relatiofi) that spin zeros

It possible that Tajimat al® did not observer oscilla-  should be observed for the oscillations of {Beelectrons at
tions because the field direction in their experiment accidenangles equal ta+ 15°, +35°, etc. In fact, minima of the
tally coincided with a direction in which the amplitude of the amplitude of the quantum oscillations associated withghe
a oscillations tends to zero. Such directions do, in fact, existcylinder are observed at these ang(€sg. 4b. Thus, the
and they can be seen in Fig. 4a. The amplitude minima agssumption that the many-particle interactions are sup-
+21°, —43°, and—53° correspond to the so-called spin pressed ink-(BETS),GaCl, is justified. It should be noted
zeros associated with splitting of the Landau levels in a magthat the nature of the remaining extreiffdg. 4b is unclear
netic field!2 The condition for the existence of spin zeros is and calls for further research.

_ This work was carried out with financial support in the

cosmpugl2)=0, form of grants from the Russian Fund for Fundamental Re-
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We study the ballistic transport in quantum channels containing attractive impurities. We show
that coherent interaction between asymptotic resonances may cause resonances to disappear

and discrete levels to appear in the continuum at ceftaitical) values of the parameters of the
system. For the first time the tunneling of an electron through discrete levels is investigated.

We find that the transmissivity changes dramatically when the scattered electrons at infinity have
an energy coinciding with that of the discrete levels. It is found that a new type of degeneracy

may arise in the system at critical values of the parameters, a degeneracy in which one state is
described by a localized wave function and the other, by a propagating wave function. We
calculate the critical values of the parameters of the structure and discuss ways of experimentally
implementing this effect in two-dimensional channels. 1899 American Institute of
Physics[S1063-776099)01901-7

1. INTRODUCTION that discrete levels may appear in quantum channels at real-
After the di f tizati f duct ; istic values of the parameters of the system. We also derive
er the discovery ot quantization ot conductance, tWo-y,, \yaye function of the discrete levels in explicit form.

d|men§|(;nald nanosttru?ures can be tregardﬁd ast aﬁlteesttlng Next, we study the tunneling through discrete levels and
ground tor demonstrating new quantum conerent eliects.q i, e transmission amplitude for the case where the en-

The conductance of a nanostructure can be expressed &gy of the tunneling electron coincides with that of the dis-

o 3
ter(rjns_ OL t?e trgnzm;)ssw:twtansp;?fanc){[/.of the tchhannél N crete levels. We also demonstrate that nontrivial degeneracy
and Is determined by electron difiraction in h€ quantuMyg v states from the discrete and continuous spectra is pos-

structure and the interference of the wave in the scattering bgible and that states of different types can be prepared by
impurities. Resonances and dips in transmissiviy the different selection of the boundary conditions.

problem of quantum erosion of conductanbave been stud- Finally, we estimate the parameters of the nanostructure

ied very thoroughly be experimentér$ and theore- and impurity and discuss the conditions needed for discrete

i 7-19 ; ; ;
t'?'ans' In _partl_cular,_ n _Refs. 8171t was shov_vn that a levels to appear in quantum channels and consequences for
single attractive impurity in the channel gives rise to ang o problem of impurity erosion

asymmetric resonance in transmissivity, a Fano resorfince. The plan of the paper is as follows. In Sec. 2 we give an
When the channel contains two attractive impurities, tWOoverview of the general approach to describing quantum

types of resonance can be specified: ordinary Breit—Wignegtates in channels. In Sec. 3 we study both analytically and
resonances and resonances due to ‘“quasidonor” level

Rumerically the resonance structure of the scattering matrix
formed by virtual potential wells below each of the higher y 9

bbands. E Asi Il k the width fin the case of a single impurity. The matrix elements of the
SubbaNCs, Fano resonances. As 1S Weill known, the wicth o ﬁ‘npuriw potential are calculated in the Appendix. Section 4
Breit—Wigner resonance can vanish only if the quasiboun

. . AP devoted to the study of the coherent interaction of Fano
state is separated from the propagating states by infinitely t E

Is. Th K h st cited di v the sit sonances in the case of two attractive impurities. In Sec. 5
walls. 1he works we have Just cited discuss only the Situag, o gnqy how discrete levels can appear in the continuum.
tion where the resonance levels have a finite width. How

for h . ibility for th Section 6 contains a discussion of the structure of the scat-
\(/ev\i/gtrﬁsotro Vzr;]ci)srhesonances €re 1S a new possibility for e'{ering amplitude at critical values of the parameters of the

Th i . th h t effects that system. Section 7 generalizes the results to the case of levels
€ present paper examines the conerent etiects that &t are below the higher bands. Finally, in Sec. 8 we sum up
company the interaction of Fano resonances.

. : . . . the results and discuss the possible applications of the new
First we show that there are situations in which the P PP

: . . . coherent effects.
widths of asymmetric resonances vanish. As a result, discrete

levels appear in the continuum, The possibility that such2 MODEL AND EQUATIONS
states exist in quantum theory was discussed in 1929 by voni
Neumann and Wignért who used a model potential in their We examine a two-dimensional quantum channel, a
investigation. Similar states have been detected in atomiquantum waveguide aligned with tkexxis. Suppose that the

system& 24 (see also the Appendix in Ref. R2S/Ne show confinement potential acting in the transverse direction is

1063-7761/99/88(1)/10/$15.00 118 © 1999 American Institute of Physics
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described by a functioW(y); this can be e.g., a parabolic or The sum in(8) is over all the waves that propagate in the
rectangular well. We assume that the waveguide is long imuantum waveguide for a given energy

thex direction and is attached to ohmic contacts far from the

origin of coordinates. We describe the impurity potential by
a functionV(x,y). The wave function of the electrons in the

S : M . 3. SCATTERING BY A SINGLE IMPURITY AND FANO
waveguide is found by solving the Schlinger equation

RESONANCES
h2l 9* 92 - - .
— —| —+ — | T (x,y)+ V(Y)T(X,Y) We model the impurity by a short-range weih the
2m\ ox2 = gy? ’ ¢ ’ direction of electron motionwhose center is at the point
(Xs,Ys). Such a potential is specified by matrix elements of
+V(X-Y)\I’(X:Y): E\P(le) (1) the form
For a channel without impurities we ha¥4x,y)=0, and 52
the wave function and energy in this case are Vi (X)=— anyn,(s(x_xs), (10)
Yik(,Y) = exp(ikx) en(y), @

wherev, o =v, o (Ys) andv,,,>0. To do estimates and
h2k? numerical calculations, we use the impurity model proposed

Enk= 2m +Eq, (3 in Ref. 18. The parameters of the well and the matrix ele-
] . ments are given in the Appendix.
where¢n(y) andE, are the solutions of the equation Equations(6) and (10) imply that a short-range potential
2 is equivalent to the following boundary conditions imposed
[ ~5m ,«7_y2+V°(y) en(Y)=Enen(y). (4)  on the multicomponent functions<(=0):

(07)—¢n(07)=0,
It is convenient to decompose the wave functibiix,y) in ¥ ¥

the complete set of base functions generated by the solutions *
of Eq. (4): 0T ) =i (07 )==2 > vnn - (12)
n'=1
W(X,Y)= > h(X)@n(y). (5) Now we discuss the approximation concerning the matrix
n=1

elements of the potential, which is used to obtain analytical

Substituting(5) in (1), we arrive at an equation faf,(x): results. We assume that

2

B2 PPn(X) < —v? ,<|E,—E.|, n#n’ 12
I S Vo (0= (E-Eun(0, (6 2mUnar<IEam w0’ 13
2m (QXZ n'=1
where |E,—E,| is the distance between the size quantiza-
where the

tion levels([in the potentialV.(y)]. In this case we can ex-
amine the off-diagonal matrix element, ., in (6) by
Vn,n'(X):f en(YIV(X,y) en(y) dy (7)  perturbation-theory techniques. If we keep only the diagonal

. ) . . elements, , the solution of Eq(6) can be written
are the matrix elements of the impurity potential.

Here we are interested in the transmission and reflection  ,(X)= Vv, neXp(— v nlX|), (13
amplitudest, ,» andr, ., which describe the scattering of -
electrons from a channel with indeX into a channel with fi%vqn
en=E,———. (14)

indexn. The transmission amplitudes . (E), examined as
functions of the energ, contain a lot of information about ) o )
the system. First, the poles of the amplitudes in the complefduation(14) shows that in this case levels split away from
E plane correspond to levels or resonances. Second, the ai@ch size-quantization subband. The corrections to the level
plitude determines the conductan@Geof the structure. In €1 ¢an be found by ordinary perturbation techniques. Ac-
particular, the conductance measured by the two-probgording to(12), such corrections are small. The states of the

method is determined by the  Biker—Landauer formufs® higher subbands occupy positions in the continuum of the
lowest subbands. To calculate the correctionsetofor

n=2, we must use the variant of perturbation theory for
degenerate levefS. Since we are dealing with propagating
) o o states, it is convenient to study the poles of the scattering
in terms of the transmission coefficienlts . of the system, aix. To find the scattering matrix for a single impurity,

wheren andn’ stand fo_r 'Fhe labels of t_he incident and scat-\ye solve Eq(6) in the regions where the impurity potential
tered waves. The coefficients, ,, are given by the formula 5 ;¢r0:

2m

2e?
G= T E Tn,n’ (8)
n,n’

n

Apexplik,x) +Bhexp( —ik,x), x<O0,
Tn,n/:_|tn,n’|2- (9) n F( n ) n F( n )

o Un=) ¢ explik ). x>0, (19
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wherek,=2m(E—E,)/%. Note that solutions wittk,, real Transmission
belong to propagating states, while states Wijtk i |k,| (i.e., Ry
purely imaginaryk,) represent nonuniform waves. Substitut-
ing (15) in (11) yields 0.8r

A+B=C, /ZC=ikA, (16 06r e —
where we have used the matrix notation | =

04r 0

(D =1KnSnntonn, (Knn =Ky, 17
and the wave amplitudes are considered infinite vectors: 0.2p
(A),=A,, etc. We introduce the transmission and reflection 0 ‘ .
matrices; accordinglyC=tA andB=rA. Combining these 1.0 12 14 1.6 1.8 20
definitions with(16), we get vE

FIG. 1. Transmission coefficient through a waveguide with a single impu-
t=i/"%k, r=i/"k—1 (18 rity for the energy intervaE;<E<E,, whereE is measured in units of

_ . E,=m?h2/2mW2. The solid curve describes the behavior of the transmis-
When the particle energy is close to the bottom of thesion coefficientT;,(E) that follows from Eq.(19), and the dotted curve

first band, the one-channel approximation is applicable. Thédetermines the transmissivity in the one-channel approximation.

matrix t has one element for the open channgl(E)

=ik, (ik;+v17) L. A pole of the functiort,,(E) in the com-

plex energy plane occurs B{=—ivy;, or atE=¢;, where ~We conclude that near the zero or pole the amplitude can be
€, has been defined ifl4). If the energyE obeys the in-  written

equality E;<R<E, and is neare,, we must examine the

0

two-channel approximation exactly, since in this case the t (E)~————, (24)
two states have close energies. For instance, the transmission E-E+iT
amplitude in the open channel is where Eo, E,, and I' are the parameters of a Fano
o resonancé’
|k1(|k2+l)22) . . .
t14(E)=— - > (19 The probability of transmission through a channel with
(ikg+v1)(ika+v0) —v1, an attractive impurity is depicted in Fig. 1 as a function of

JVEIE; (E;=m?42/2mW?, with W the channel widthin the

case where the impurity parameterg=1.261,v,,=0.785,

2 andv ;o= —0.218(the matrix elements are given in units of

(200 7/W) were calculated according to E(7) in the Appen-
dix. The expressions for the other impurity parameters are

This amplitude has a pole when

~ hZ U%z
E= EZ_ ﬁ( V22~ ik1+011

We can write(20) approximately as also given in the Appendix. We see that the transmissivity
o 2 has the structure of a resonance—antiresonance pair. The dot-

E—E _il. T~ ATk 102 _ ted curve in Fig. 1 depicts a function monotonically increas-

P ' 2m(kf+v§1) ing with energy, the transmissivity in the one-channel ap-

proximation.

ﬁZUZZ/ 2011052 Thus, when an electron is scattered by an attractive im-

Ep=Es— 5 \ el b (21)  purity, the scattering amplitude has the shape of a Fano reso-
1 11

nance. If the energ¥, is real, the transmission coefficient
Comparing this result witkil4), we see that the renormaliza- Vanishes aE=E, but nearE, there is a peak of width'. At

tion of the position of the level and the fact that the level E=Eq we see that;;=0 andr;;=—1, and the electron is
acquires a width are due to the resonance interaction of th@tally reflected from the impurity. Note that for energies that
level and the continuous spectrum of the states belonging tare close to the upper bands, the amplitude can also be rep-
the continuum of band with=1. What is important is that resented by a Fano resonance, but genegglys complex-

the amplitudet,,(E) has a zero foik,|=v,,, or for the valued, and reflection from the impurity is not total. To il-

energy lustrate, we examine the case where the energy obeys the
) 2 inequalitiesE,<E<E;. We study in greater detail the am-
_ hv, plitude t,; found by inversion o¥ in the three-channel ap-
Eo— Ez_ (22)

2m proximation. The energy at which transmission is zero is

- given by the expression
From (21) and(22) we see that the energies at the pdt (

. 2 2
and the zero k) are close to each other in the complex E —FE._ ﬁ_(v _ Vs
energy plane, since o B ikt

2
(25)

2m

722 v If we have the small parametét2), we can expan5) in a
> 12%<Ep~EO_ (23 perturbation series. Equati¢@5) implies that the right-hand
m Vkit+oy side for the zero is real foE;<E<E,, since in this case
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2 2|
a r b FIG. 2. Transmission coefficient through a wave-
c L c guide with a single impurity for the energy interval
% % E,<E<Ej;, whereE is measured in units oE;
E g =m?h2/2mWP: (a) the impurity is at the center of
etp 0/ q 2 i the channel,Y,=0; and (b) for Y,=0.15WN. The
© ’(5;:..’. ............ © solid curves describe the behavior of the total trans-
=t " =1 mission coefficient(or conductance in units of
/'I 2€%/h), the dotted curves describe the behavior of
0 ) / ) 0 ) T11(E) calculated by(19), and the dashed curves
1 2 3 1 describe the behavior df,5(E).
vE
iko,=—|k,| holds. Here the transmission amplitude has thethe fact that the impurities are shifted in relation to the origin

shape of the Fano resonan(®) and reflection from the by x=*L/2, so that the phases bfandr differ from those
impurity may be total. When the particle energy satisfiesin (18):
E,<E<Ej,, the amplitudd, also has a zero, but the energy

—id/ 1d-1 —d(i /e
at which transmission is zero shifts into the compieplane: t=idsy kd™s, ry=diz, k=1d, (28)
—ig-l,-1 T A
5 . 112K 20 33 t,=id /5 kd, r,=d(i/; k—1)d. (29
Eo=Eo—ly, 7= m(ke+ 02, Here the matriceg’; and/’, depend on the impurity param-

eters and can be found frof7), andd, ,,=exp(6,) &, ,
with 8,=Kk,L/2 (the reader will recall that is the distance
: (26)  between the impuritigs
To simplify the calculations, we transform E@7) to a
where we have also requiregs<uv g3, so that the results are more convenient form. Substitutiri@8) and(29) in (27), we
manageable. From this reasoning we conclude that total rdind that
flection is present when the enerfyobeys the inequalities t=M"Ik, (30)
E,<E<E,. From(21) it follows that the zero-transmission
energy is a real quantity if the impurity is in the middle of where
:gfal\./vaveguide. In this case,;=0 holds and reflection is M=M k™ Mo+i(/1—7>), (31)
To demonstrate the nature of the Fano resonances in M;=/(d+d™*)—ikd,
relation to the position occupied by the impurity in the chan- Mo=(d—d-1/.—ikd
nel, we solved Eq(16) numerically. Figure 2 depicts thg;; 2=( )72~ ikd.
vs. E curves for two different position¥¢ of the impurity  Equation(27) implies that the nontrivial properties of the
center,Y,=0 andY¢,=0.15VN. The impurity parameters were energy dependence of the transmission amplitude are deter-
calculated according to formul@7) in the Appendix. mined by the properties of the mati. The case of iden-
tical impurities is the easiest’;=/, andM can be factor-
ized, or M=M,k *M,. The physical reason for such
factorization lies in the symmetry of the system. Since the
As noted earlier, an electron is strongly reflected from arHamiltonian is invariant under the transformatian- —x,
impurity if the electron energy is close to the eneEyof a  the solutions of the Schdinger equation can be chosen as
Fano-resonance zero. Now we take two impurities separatdeaving a definite parity. Then we can easily show that the
by a distancel, and study the interaction of Fano reso- matrix M¢=M; is responsible for symmetric states in the
nances. It is convenient to turn to the generalized Fabry-virtual channels; in the same way the mathk,=M, is
Perot scheme and use the well-known decompositiomiesponsible for antisymmetric states. The matrix elements of
method. According to this method, the scattering matrix forMs andM, can be found from(32):

two impurities can be written (Mg)n =27 . COSOns — 1K €XP(i 61) S 33)

2
ﬁzvss/ 2023022
U33™ 2 2
\ ky+v2,

(32

4. COHERENT INTERACTION OF FANO RESONANCES

t:tz(l—;rlrz ty, (27 (Ma)n,n’ZZi/‘n,n’ sin 6, — ik, exp(i 6n) oy - (34
) . . To establish the poles and zeros of the matrixve write

wheret,,r; andt,,r, are the amplitude matrices of the first %30) as

and second impurities, respectively. The right-hand side o

Eq. (27) takes into account all processes of transmission, M K

reflection, and transformation of waves in the scattering by ~ detM

two impurities. We base our gnqums p.f the passage of a\r}vhereMC is the adjoint ofM (see Ref. 2¥. From (35) it

electron through a structure with impurities on Eg7). follows that the poles oM are given by the equation
The scattering matrix for each impurity can be obtained

in the same way as in Sec. 3. However, one must allow for detM=0, (36)

(39
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and the zeros by equation of the form 2
M. =0. (37)

In view of the fact thatM can be factorized, oM
=Mk IM,, we can write Eq(36) for symmetric and an-
tisymmetric states independently:

detM =def /7 (d+d ) —ikd]=0, (39

Transmission

and
detM,=def(d—d 1)/ —ikd)] =0, (39

respectively. Note that in contrast to the general equation

(36), Eqs'(38) and (39) contain the matrix”, so there is no FIG. 3. Transmission coefficient through a symmetric two-impurity system

need to invert matrices when we analyze poles. for the energy intervaE,<E<Ej;. The distance between the impurities is
Now we determine the matrices for the energy intervalL=1.8,,". The dotted cure represents the contribution to transmissivity

E,<E<E, and examine the case where the electron energffom the second subband.

is near the unrenormalized level that has split away fEym

Here the interaction of the wave resonances in the two chan- o ) ]

nels may be strong, so that we must account for it exactly(41)- WhaF is important is that the u'nrgnormallzed valqes of

Below we discuss in detail only the case of symmetric statedN® energies of a zero and pole coincide. The corrections to

Using (38) and (33), we establish the equation for the pole: the position of the zero can be found frdb):

2.2
2(v 29~ [Ko|)cOSH 5| + kol exp(— | 62]) EOZEg_Zhrl;;livll siné, cosé;. (46)
40} 00| costy (400 Note that th 1f ti d ph the right-hand
=4v, 5 — —. ote that the wave functions and phases on the right-han
2(iky v 11)C0S6; ~ ike€XHi 61) side of Eq.(43), (44), and (46) depend on the unrenormal-
We are interested in the solutions of EGIO) that are ized energies of the pol@r zerg.
coupled with Fano resonances and are close to the real en- The transmission coefficiefit calculated numerically is
ergy axis. We solve Eq40) by expansion in powers of a depicted in Fig. 3 as a function ofE/E; when the distance
small parameter, when inequalit§2) holds. Suppose that | between the impurities equals #8". The dotted curve in
E® is the solution of the equation Fig. 3 indicates the contribution to transmission from the
2(v 92— K| ) cosH 6, + ko exp( — | 65]) = 0. (41) se_cond bahd. T_he energy inten| <E<E, cl.early con-
. N tains a Breit—Wigner resonance a{=2.120 with a width
In other words,E® gives the unperturbed position of the ', —0.322 and a pair of Fano resonances with parameters
pole. The correction can be derived from E40): ES=3.382, [\=0.092, E5=3.290, and E2Z=3.486, I',
ES_Es_irs (42) =0.0045,E5=3.495(for the energy unit we have takén).
PP ' For the energy intervak,<E<E5 with the given param-
where eters, there are only Breit—Wigner resonances.
We sum up the results and conclusions of our investiga-

2.2
ES=EO0s— Zﬁv—lzvll tion. Analysis shows that the interaction of resonances gives
P m rise to resonance—antiresonance pairs: the zeros are on the
. real axis and the poles are in the complex plane. Near the
% (2kq sin 6, +2v4, C0S0,)COSO, (43  energies related to the symmetric and antisymmetric pairs
k§+4§1cos’- 01+ 4v 1K1 Sin 6y cosel’ the amplitude resembles a Fano resonance and can be ap-
) 2 proximately described by Eq24); see Fig. 1. The structure
Is— 2h v, kiv1;COS 6, (44) of the “resonance” is related to the virtual states in a “mol-

ecule” in which the coupling and anticoupling levels lie in
the continuum and have a finite width. This conclusion
Now we wish to find the energy at which transmission isagrees with the numerical results of Kumar and Bagiell
zero. The zeros of the amplitudecan be found from37).  pyt not perfectly. Qualitatively, the difference arises because
We study the zerosM¢)1,=0, which are determined by the i the impurity model used in Ref. 10 the resonance is “cov-

M K2+ 4p2 cod 6,+4v .k, Sind; cosh;

expression ered” by the zero and cannot be seen in the transmission
[2(v22—|ka|)cosH 65] + kol exp(— | 62])] range.
X[2(v 22— [Ka|)sinh 65 — |ka|exp( —[ 62])]

5. DISCRETE LEVELS IN THE CONTINUUM

=4v2,sin 6, cosH); . 45 . .
012810, 01 (45) We wish to show that at certain values of the parameters

The initial position of a zero follows from45) with vy,  of the system the width of the resonances vanishes. Equation
=0. For the symmetric case this equation coincides with(42) implies thatI's vanishes for
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E TABLE |I. Spectral values of discrete levels and critical distances
4 k ‘ ; : (E@G),L3))-
[ j E(j)/E1 L(j)vn
3t Symmetric states
0 3.1878 0.1613+1]¢
1 3.3734 0.4795+1]
2 3.3828 0.7991+1]
2 3 3.3832 0.112p+2]
Antisymmetric states
1 3.3853 0.3195+ 1]
''''''' 2 3.3831 0.6393+1]
1 - L . L 3 3.3832 0.9590+ 1
0 2 4 6 8 10 vl
L T+n]=10".

FIG. 4. Two-parameter spectral problem. The solutioBs$j),L(j)) are
found graphically, whereE and L are measured in units oE;
=72h2/2mW? andv,; , respectively. The points of intersection of the solid
curves determine symmetric bound states, and the points at which a dotted

curve intersects a solid curve determine antisymmetric states. Using Eq.(6), we can find the wave function for the

discrete levels in explicit form. The wave function of the
discrete levels is normalized by the condition

cosf,=0. (47

For this to be true, Eqg41) and(47) must have a common
solution. Thus, we can formulate a two-parameter spectr
problem. For instance, if we select the particle endgggnd
the distancé. between the impurities as the parameters, the

nZl f |a(X)]? dx=1. (50)

aéolving Eq.(6) in the two-channel approximatig@as in Sec.
);3), we find that

can be found from Eq%42) and(47). First we write(42) and a, coskqyx, |x|<L/2,
(47) in the form P1(X)= 0, IX|> L2, (51
U22L
tanH 6,/ = ———1, cos#;=0. (48) a, coshiky|x, x| <L/2,
|62] (%)= (52)
Czexq_|k2||x|), |X|>L/2,

The first expression is exactly the equation that determines .

the levels in two wells corresponding to short-range potenWhereay, a,, andc, are constants determined by the bound-
tials. But the binding energy in a quantum waveguide is&"y cond|t!ons and normalization. Th_e solutlgb_rp is astand_-
higher byE, than in free space. If we examine the asymp-Ng wave in the open channel, agg is a Iocall'zed state in
totes| 6| ~v oL /2 for vl >1 and| 6, ~ vl for vyl <1, the closed channel. We see that the standmg WAYES
we establish that the solutioE lies in the intervalE,  (rapped because of reflection from Fano “mirrors.” The

—4h2 32/2m<E< E,—#% 52,2m. wave function for the critical parametdrs(0),E(0)] is de-
Correspondingly, the quasibound states are above the eRicted in Fig. 5. o
ergy of the Fano-resonance zero of a single \\&d. (22)]. ‘Thus, at certain value&(j),L(j) of the parameters,
The second condition if48) can be written which we call critical, the pole of the transmission matrix
“reaches” the real energy axis. This means that discrete lev-
B nPr?(2j+1)? els appear in the continuum. What will happen in this event
E=E,+ onL2 , 1=012.... (49) with the energy at which the scattering amplituglgis zero?

According to(46), for critical parameters the corrections to
Thus, Egs(48) and (49) determine the spectral characteris- the position of the zero also disappear, i.e., for the critical
tics E(j) andL(j). The solution of Eq(48) can easily be parameterd E(j),L(j)] the energies of the zero and pole
found numerically. A similar analysis was carried for anti- coincide. In other words, the transmission amplitude discards
Symmetric states, but in this case the solution exists Only forts zero and p0|e at the same values of the parameters' Gen-
vl >1. Figure 4 depicts the graphical solution of the equarally this means that in the corresponding channels the ele-

tions for the two-parameter problem, wherg,=0.785 and  ments of the adjoint matris . and the determinant dfl
v1,=0.218 (the quantityn/W is again chosen as a unit of myst vanish,

measuremept According to Eq.(48), the intersection of

solid curves makes it possible to determine the discrete lev- Mc=0, detM=0, (53
els and the critical distancelsE(]j),L(j)] for symmetric  \yhen the parameter are critical.

states. Similarly, the intersection of a dotted curve and a e decomposeM. and deM at the critical distance
solid curve yields the critical parameters of the antisymmety = (j) and at an energy close to the critical value,
ric states of the system. The values of a few critical paramg =g (j)+¢, |¢|<E(j). Since for critical parameter we
eters are listed in Table I. Note that it may prove more confave(53), we can write

venient to choose another parameter instead of the distance

L, say the widthw of the quantum channel. Mc=eM¢, detM=edetM’, (54)
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1.0f
0.8f
> t
{% 0.6f
>
§ 0'4' FIG. 5. Square of the absolute value of the wave function of the
0&_’ critical states withE,=3.187&, andL.=1.613,, .
0.2

wheref’=gf(E)/JE, with E=E(j). We see that in this case substituting the solution&6)—(58) into the boundary condi-

the amplitude must be finite: tions, we arrive at the following equations for the ampli-
/ tudes:
C
" Getm’ (59 (iky+vi)exp(—i6y) a+viiexplify) by
Thus, as Eqs(35) and (55) imply, the transmission am- +oidexp(|0y]) az+exp(—[6;]) bo]=ikiAy, (59

plitude changes dramatically &=E(j). We study the

—|ky| Fvo)exp(|65)) as+tuvaexp(—|6,]) b
modification of the transmission amplitude more thoroughly( [kl 020 expl] 62]) 8o +v20exR(~| 62]) bo

in Sec. 6. +uvJexp—ifq) a;+expiby) bi]=0, (60)
6. TUNNELING Iklequé’l) al_(ik1+U11)C1_U12C2:0, (61)
To examine the features of tunneling in the critical re-|K2l€X(—[62]) az+(—[ko| +v22)Co+v41,C1 =0, (62

gime, we study the structure of the scattering matrix for the . + n _

case where the energy of a tunneling electron coincides withk1 eXP(~16) by +015Cy +01C2=0, (63
Fhat of a Iocalizeq state in the channel. But first let us exam-=— |k,|exp(| 6,]) by +v1,C1 +v,5,C2=0, (64)
ine the general situation, where for the electron travelling in )

the channel witm=1 the energy is in the intervat,<E whered,=k,L/2, andd,=k,L/2. Now we turn to the situa-
<E,. The solution of the Schrbnger equatior(6) for x< tion in which the localization conditions are met. Below we

—L/2is discuss in detail only the symmetric case. As shown earlier,
the critical parameterfE(j),L(j)] can be found from the
. L : L formulas
T, =A;expik; x+§ +B;exg —ik; x+§ ,
exp(i 1) +exp—if)=0,
L
¢2:BzeXF{|k2| X5 (56) (— [kl +v22)[exp o]+ exp(—[62])]
In the region between the impurities,L/2<x<L/2, the so- +[kz|exp 62| =0. (69
lution is By substituting(65) into (59) and(60) and taking(61)—(64)
Y =ay exp(ik,x) + by exp(—ikx), into account we can easily verify that E(O) is satisfied
identically. Under these conditions EG9) yields
o =a, expl( — |Kz|x) + by exp( — [Kz|x), (57

—(ik1+v19)C1+v15C=v11C1—v1,Cy
2

2vp
+ —F Slnf'(| 02|) C]_: -

and forL/2<x we write the solution as

— 1 L
1=C,ex |k1(x— 5

L 202,
¢2=C2exr{—|k2|(x— EH (58) +|£—1zsmH62|

ik1+ 2011_U22

| C]_:iklAl. (66)
2

(To simplify the notation we redefine the phases of the inci-What is important is that Eq66) does not contailC,. Thus,
dent and scattered waves in the formulas that follodfter ~ the amplitudet;; can be written
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0.6

S FIG. 6. Transmission coefficierft;; as a function

vE 20 of the energyE (in units of E,) for different values
of L (in units of v,;): (8 L=1.26, (b) L=1.41,

0.8

0.6

(0) L=1.613, andd) L=1.73.

t1(E(j))=

ikq+ 2011~ (203 |Ko|)sinh 6]

(67)

Here the incident wavéexd ik;(E(j))x] with an energy co-

inciding with the energyE(j) of a localized state in the

generate states belong to different types of state, localized
and propagating. As is well known, electron states in a real-
istic potential field belong either to discrete levels with a
square-integrable wave function or to levels in the con-
tinuum, for which the wave functions cannot be normalized.

waveguide has a finite amplitude and a finite probability ofUsually these states are separated by a definite energy, the
passing through the structure, and the transmissivity of th&obility edge. In the system considered here, the discrete
quantum waveguide undergoes a drastic change, since tia@d propagating states have the same energy, i.e., states be-

zero and the resonance disappear.

Now let us show that for the same enefgfj) another
solution of Egs(59)—(64) can be found. If we puf\;=0 in
(59—(64), Eq. (66) impliesC;=0. Then from(61)—(64) we

find a;=b, and a,=Db,. This solution coincides perfectly

with the symmetric localized statés1). Thus, we have
shown that Eqs(59)—(64) yield two types of solution for the
critical parameters(a) waves propagating through the sys- Figs. 4a and 4b. Wheh reached (0) the Fano resonance
tem, and(b) localized states inside the system. Formally thisdisappears. The transmission coefficient has a finite value of
phenomenon is related to the fact that the system of equ®-.2098 at the energf(0)=3.1878. Figure 4d shows that
tions for the amplitudes becomes degenerate at critical paesonance appear again when the distance exceeds the criti-
rameters. It is significant that the wave functions of the de<al value.

longing to different classes of functions become degenerate.
To illustrate the effect of disappearance of resonances,

we show in Fig. 6 the transmission coefficidnt as a func-

tion of energy for various distancds=1.26, 1.41, 1.613,

and 1.73(for the unit of length we used,,’), where the

distancel (0)=1.613 is related to the minimum critical dis-

tances. The evolution of a pair of resonances can be seen in
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7. MULTICHANNEL APPROXIMATION Analysis of the right-hand side of Eq72) shows that a

i solution with a real energy is possible if
Let us first study the passage of the electron through two

impurities in the channel. We assume that the electron en-  Kiv13C0S 81+ kyv 3508 6,=0. (73

ergy E satisfiesE; <E<E,. For the symmetric case the ma- 1hig may happen only if either cdg,=0 or cog 6,=0. Let
trix M is determined by33). We also assume that the pa- o2 6,=0. Then Eq.(72) yields a complex-valued solution
rameters of the system are such that there is a standing Waye ine formE= E°+ SE—iT", which E® can be found from
in the channeh=1. This means that the impurities are at a

critical distance from each other and the condition for the  2(vss—|Ks|)cosh 65|+ [ks|exp(—|63]) =0, (74)
level width to vanish is cag=0. The structure oM sug-  gnd the level widtH® can be written

gests that de¥l; vanishes if

ﬁzv 33 kzl} 22 COS2 02

2
cosf,=0, D,,.=0, 68 = - . (75)
! % 8 M k2+4v3,c08 6,+4v,k; sin 6, cosb,

whereD,,. is the determinant of a matrix obtained frdvh
by striking out the first column and the first row. The form of
M; suggests that all the elements determinihg, are real,
i.e., Egs.(68) may have real solutions.

Let us prove this in the three-channel approximation
From (68) we find that

Note that the correctiodE has the same structure. Thus, we
have a resonance state in the subbard3, which decays
into the subbanch=2. Under these conditions, there is a
standing wave in the subbamd=1. A similar analysis can

‘be done near higher bands, and the characteristics of the
corresponding resonances can be obtained.

cos6,=0,

2(v 22— | ko|)cosh 6| + [ ko|exp(— [ 6]) 8. DISCUSSION

— 42 cosh 6| cosh 0| 69) We have studied new coherent effects in a quantum
23 2(v 33— | kg|)cosSH O3] + | ks|exp(— | 65]) waveguide with two attractive impurities. For a pair of im-
urities we found that the interaction of Fano resonances
ay change the transmission amplitude dramatically. One
consequence of this interaction may be the appearance of
2(v 29— |Ko| ) COSH 85| + | Ko| exp( — | 62]) =O. (70)  discrete levels in the continuum. We have formulated and
solved a two-parameter spectral problem to determine the
Let E] be a solution of Eq(70). The correction to this solu- values of the parameters of the system at which resonances
tion can be found fron{69) and has the fornE,=Eg+JE,  disappear and discrete levels appear. We have studied the
where tunneling through discrete levels and found that the probabil-
ity of an electron traveling through the waveguide is finite
. (7D when the electron energy is equal to the energy of the dis-
m  2(vgs—|ks|)cosh b+ |ks|exp(—|6)) crete level. We have found that this phenomenon is a conse-
pguence of the system of equations that determine the ampli-

right-hand side oD, in a series expansion. Since all the n;dtﬁz Ofa?;it]t;g?g él?orr?]l:rl]t'czznztigg:er%?; ?r't'gslc;a\ll:ae‘fe
terms in this expansion are real, the levels may shift only0 P g deg ' yp

along the real axis. We see that in the cisec E<E, we function for the critical parameters are possible here, local-
can always find a set of parameters at which discrete IeveI'sZed and propagating. The explanation is that two d|fferen.t
exist. types of statg with the same energy can be prepared by dif-

Qualitative discrepancies should be observed when th]éerent selection of the boundary conditions.

energy is close to the boundaries of the higher bands. In Secrh M.(:%(:ngzg niﬂ()ft-eggnog?gryneg?s C;:%V;’nc ;2,‘2: d .E:]rt'ﬂcé'l?]l
3 we found that for the higher bands there is usually no total purtt with Tixed p S r In quan-
um channels. Using the data from Table I, we can easily

reflection. For the two-impurity problem it also occurs that in . -
purnity p estimate the smallest values of the critical parameters of a

the perturbation-theory setting the expansion oftleton- channel of widthW: E(0)—3.18, and L(0)=0.41W,

tains complex-valued terms, which shift the levels into the YT ; :
complex energy plane. By way of an example we take the\:Nhere E,=n*%/2mW’. For instance, if we take a

interval E,< E<Es. Keeping the contribution&vin, we GaAs/ALGa, _,As-based two-dimensional channel of width

expand de¥l in perturbation series and write d&t=0 as

If we now use perturbation-theory techniques, in the zerot
approximation we have

25202 v,c0sH @
SE— 23 22c0sH 65

Calculations that use the higher bands yield real terms on t

W=300 nm, for such a structure the minimum critical dis-
tancelL(0) between the impurities is estimated at roughly

2(v33~ |Ks|)cosh 85| + [kl exp( — | 63]) 12(:“ner{1/ and the minimum critical distan&0) at roughly
42 cos6, cosh 0| The authors are grateful to Yong S. Joe for fruitful dis-
v1s 2(vq1tikq)cosh—iky exp(i6y) cussions. The work was supported by grants from the Rus-

sian Fund for Fundamental Resear@@rant No. 97-02-
+ap2, _ COS&ZCOSH_93| . (720 169233 and from KOSED, the CNU Reseach Fund, and the
2(v ot ikp)costr— ik, expli 6;) Ministry of Education of KoredGrant No. BSRI-97-2431
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APPENDIX

Here we calculate the matrix elemes ,» and the pa-
rametersy,, o of an impurity in a quantum channel. To de-

scribe the impurity we used the model proposed by Joe an

Cosby!®1®We assume that the impurity potential is

V(X_XSvy_Ys): _Vattf(x_xs)g(y_Ys)v (76)
where the function$(x) andg(y) are defined as

f(X):]-! |X|$La7 f(X):Ov |X|>La1

g(y)=1, [y|sW,, g(y)=0, [y|>W,, 77

Xs and Yy are the coordinates of the center of the impurity

potential,L, andW, are the dimensions of the well, aiv

is the well depth. For numerical calculations and estimates
we took the model of an infinitely deep well as the confine-

1

ment potential. In this case the solution of E4) is
ﬁ2772n2

+ J— j—

2

2
QDn(y):\/V:v-’Sln , En—my

where W is the width of the waveguide. Using the wave

5 (78)

mn

functions of(78), we can easily calculate the matrix elements

of the impurity potential76):

Vn,n'(X_Xs): _2Vattf(x_xs)gn,n’(wrys)u (79
where the diagonal elements are
1 1
Onn=5_| W~ sinnwcos 2y, (80

and the off-diagonal elementai¢n’) have the following
form:

1 ~(n—n")w )
gn,n’_ (n_n,) l 2 coi(n—n )ys]
1 ~(n+n")w
- sin cog(n+n’)yq], (81)
m(n+n’) 2
with
W, Y, 1
W=7Tw, Y= W+§ . (82)

Note that the matrix elementg9) rapidly decrease as func-
tions of[n—n’|, while in the model discussed in Ref. 8 they
are constant.

If the electron wavelengtir,, in an open channeh is
much longer tharn.,, i.e.,

2

7\n=k—>La, (83)
n
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2_2
|[E—Enl<—>. (85
a
ﬁlow we can write the matrix elements as
Vn,n’(x_xs) = 2Vatt|-a5(x_Xs)gn,n’(wvys)- (86)
Using the notation
2m
Un,n’:Fvanl-agn,n’(wiys)v (87)

we write (86) in the form(10). For numerical simulations we
used the dimensionless parameters

— Va — w
== 1% r=—0 ’
att El ’ n.n T n,n’
L

VZWWaa U_n,n’:'yvattgn,n’ ) (88)

the impurity parameters
L,=0.5W, W,=0.5W, Va~=5E;,
andE;=%2k3/2m as the energy unit.

*)E-mail: satanin@phys.unn.runnet.ru
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The dependence of the phonon spectrum of a crystal and the associated thermodynamic functions
on electron temperature in the absence of equilibrium between the electrons and the lattice

is investigated. The treatment is performed within the Thomas—Fermi approximation for a body-
centered cubic crystal at high pressures. 1@99 American Institute of Physics.
[S1063-776(199)02001-9

1. INTRODUCTION Coulomb interaction of the ionsThe equation of motion of
an ion of massM in the equilibrium position at lattice point
One characteristic feature of modern experiments on thewith the radius vectoR%(l) can be written in the form
interaction of laser radiation with solids using ultrashort laser —
pulses is violation of the equilibrium between the electronic MR(1)=— IEe _ 1)
and ionic subsystems of the sofic! The temperature of the IR(I)

radiation-absorbing electrons can be several orders of MagiereR(1) is the radius vector of an ion displaced as a result

nitude higher than the lattice temperature, since the pulsgs iprations. The bar denotes thermodynamic averaging
duration (~10"**~10"**s) and the thermalization time of qyer the electronic state. According to Ref. 12

the electronic subsystem~(10 '°—10 1%s) are much

shorter than the characteristic time for the exchange of en- JdEe [ dFe

ergy between the electrons and the lattice1Q 't s).>® dR() LR/, )’ 2

This raises the question of the influence of such a high elec- ¢

tron temperature on the phonon spectrum of a sdlid. therefore, the equation of motion of an ion can be written in
The behavior of the elastic constants of crystals with ahe form

gap in the electron excitation spectrum, i.e., crystals having ) =

diamond-like C, Si, and Ge lattices, as a function of the MR(l)=— aR(T)(Te’V)' 3)

density of electrons excited into the conduction band was
investigated in Refs. 9—11. Dramatic softening of the spect.e., the potential energy for ions at an assigned crystal vol-
trum of transverse acoustic phonons with increasing densityme V and an assigned temperature of the electronic sub-
of the electron-hole plasma was obtained. In addition, theystemT, is the Helmholtz free energ¥(T.,V) of the
presence of a gap in the electron excitation spectrum, espelectrons.
cially a large gap, as in the case of carbon, causes any in-
crease in the_ energy imparted to the crystal t(_) be accompa- c; MHOLTZ FREE ENERGY OF A CRYSTAL AT HIGH
nied by an increase in the number of excited electron$ressures
without significant alteration of their temperature. Con-
versely, in metals, where there is no gap in the spectrum, an We consider the dynamics of the lattice of a compressed
increase in the intensity of the laser pulse leads to a dramati@'ystal and accordingly take the Helmholtz free energy of the
rise in the electron temperature, while the temperature of thelectrons in the Thomas—Fermi approximation. Following
phonon subsystem is lower. Here we shall examine the deRef. 13, we write the energy of the electrofia atomic
pendence of the phonon characteristics of metals on the eleBnits) in the cell of phase space at the point with the coordi-
tron temperaturd,, assuming that the short thermalization nater; in the form
time of the electrons{ 10 *°~ 10 '* s under normal con-
ditions) allows us to treat their subsystem as a quasiequilib- ee(rj)=z n(rj,P,o)[e(p)—¢(rj)], (4)
rium system with that temperature. P

Within the adiabatic approximation the potential energywhere the occupation numbers of the states with the momen-
for ions is the electron enerdy,, which depends parametri- tum p, the kinetic energy(p), and the spin projectiowr,
cally on the ion coordinatefR(l)} (E. includes the direct which are denoted by(r;,p,o), for the electrons are equal

1063-7761/99/88(1)/7/$15.00 128 © 1999 American Institute of Physics
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to zero or unity, and(r;) is the electrostatic potential at the B
point r;. The total energy oN.=NZ electrons N is the o= | mo(r)n(r)dr. (12)

number of atomsZ is their atomic numberequals . . . . .
Going from summation ovgrandp to integration over and

Ee:; ee(r})—Uget U ) p, for F; we obtain
Here we took into account that in the summatiore(f;) the FO:J fo(r)dr, (13
energy of the electron—electron interactidg, is taken into h
account twice, and we added the direct Coulomb interactionf’ '¢'¢
of the nucleiU;; . The expression for the partition function of 2
the electronic system has the form fo(r)= —T Z[fl 1A ) — |3/z(§) (14
Ee 1 _ .
Qe=2, exp — - = ex 7 Uee— Ui~ uNe Here &(r) = uo(r)/Te, andl (&) is the Fermi integral:
{n} e/ {n} e
o= [ 19
= 2 (o) (e(P) = ()~ u) (6) o et

Thus, we obtain the Helmholtz free energy of the
-electron-nuclear system for the fixed positions of the nuclei
{R()} as a functional of the electron density for an assigned
specific volume per atora and an assigned electron tem-
peratureT,, which depends parametrically ¢R(I)}:

whereu is the chemical potential, which takes into account
the electrostatic interaction. In the Thomas—Fermi approxi-
mation it is related to the chemical potential of a free, inho-
mogeneously distributed electron gasg,(r), by the expres-

sion
= — n(r)
= po(r) = e(r). (7 F _f fo(r)dr— ZE J
The summation in6) is carried out over all the electronic |r I)|
occupation numbers. Considering them, as in Ref. 13, inde- n(ryn(r’ ) 1 72
pendent and assuming thelt,. is determined only by the 2[ f dr’'+ 52 —_—.
thermodynamic equilibrium(for the electronic subsystem [r=r| i[RI =R(A")
electron density, we obtain the partition function in the form (16)
Qe:exp<Uee—Un—MNe I 1+exp( Mo(rj)—f(p)”. Here £(r) is determined from the condition
Te j.p,o Te \/E
8 n(r)= ;Ti’zl 12 £), (17)

Then, from(8) we obtain the electron Helmholtz free energy:
whose solution relative t§ gives

w2 n(r)
f(r)_|1/2< \/E T3/2)

Herel_'(x) is the inverse ol (x), so thatl (1S *(x))=x.
Here the thermodynamic potenti@l, of an inhomogeneous We seek the electron densityr) by a variational method in
distribution of noninteracting electrons with a dengitfr) the form

equals
1+exp( Ho(rj)—€(p)
Te

Fe:_TeIn Qe:f ,uo(r)n(r) dr
(18
—f @(r)n(r) dr—Uget Uji + Q. )

3

n(r.{RIH =2 Z 3,2exq—y2<r—R(|>>2] (19

Qo=-TeIn []
].p,o

(10

with the variational parametey, which we determine from
the condition that the functiondll6) has a minimum at the
equilibrium positions of the nucléR°(l)}, which we denote
by F. The expressiori19) is normalized according to the
condition

Using ¢;(r) and¢.(r) to denote the potentials created at the
point r by the ions and electrons, we write the electron
Helmholtz free energy in the form

Fe=<1>o—f <pe<r>n<r>dr—f e (1N(F)dr —Uoet Uy + Qg

—Fot+Ugi+Uget Uj; . (11) f n(r)dr=Nz, 20
Here U,; and U, are, respectively, the energies of the and explicitly takes into account the screening of the nuclear
electron—ion and electron—electron interactiohg,andF,  charges, ensuring the correct acoustic behavior of the body-
=+ (), are the Gibbs free energy and the Helmholtz freecentered cubidbcg) crystal which we selected as a high-
energy of an inhomogeneous distribution of noninteractingporessure phase in the long-wavelength limit of phonon fre-
electrons: quencies.
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In the approximation under consideration it is conve-

nient to introduce the following reduced quantiti?sfor the
coordinates, which is defined by the relatioarz =3, n for
the electron densnyr(— nZz) andT for the electron tem-
perature To=T.Z*3). Then(16) takes the form

Fo=2""%F,, (21)

D. M. Medvedev and Yu. V. Petrov

A3 A2
N({1.82.83)= o 3/202 P{—Z[?)(t%-i-tg-l—t%)
_2(t1t2+t1t3+t2t3)]], (28
wheret;= I; (i=1,2,3), andl; are the integral compo-

nents of the vectoRO(I) in the ba3|s sed, , a,, ag of a bcc

where the reduced Helmholtz free energy, which dependgttice with the edge of the cubic unit cell:
parametrically on the reduced coordinates of the nuclei,

equals
= (trmges [NOdr
Fom [ Tamae=3 wact
f f nﬂn(ﬁ) 1 1
r + = —_— .,
=7 297 |R(H=R(")]
(22)
Here
f_o<r_)=£2 Z[am(f) 2132 ], (23
and ¢ is determined from the relation
n
f(_j_lllz( 72 —(3_/2) (24)
In this relation
Fm—:—EI ~ PRI (25

with the reduced paramet& which can be defined by the
relation y= yz?3,

For each value of the reduced electron temperaﬂre
and the reduced specific voluniTe(v=v_Z‘1) we can find

the value ofy which minimizes the functionaF® obtained
from (22) for the equilibrium positions of the nuclei in the

bec lattice that we selected. The expressionAPiper atom
can be written in the form

TRl 2
_gszz fo fo fo §|1/2(§)—§|3/2(§)}d§1d§2d§3
1 [Z 2 erfaq(1)) —erfa(q(1)/2)

+ 21/3;[ | |

_2_k<1_¢) 2
Val©o2y2) |
In Eq. (26)
N
erfo(z)= \/;L exp( —x°) dx, (27)

and wheng is calculated from(24), the reduced electron
density can be taken in the form

RO(I)=i231 liay (29)
a1=g(—1,1,1), (30
azzg(l,— 1,0, (31)
agzg(l,l,— 1). (32

In (26) v=2a%/2, wherea=azZ3 y has been replaced by
another(dimensionlessvariational parametex = ya;

I =\3(12+15+13) = 2(1 11+ 1413+1515), (33

q(hy=\l/2. (34)

The expressiof26) defines the reduced static Helmholtz free
energy of a bcc crystal for assigned values of the reduced
specific volumey and the reduced electron temperatlige

The static Helmholtz free energy of a crystal consisting of
atoms with an atomic numbé&t for a specific volume and

an electron temperaturé, can be found from the scaling
relation

FOT,0)=Z2"FYT,v)=2"F%Y 2" *°T,,2v). (35

3. LATTICE DYNAMICS

To consider the lattice dynamics, we expand the electron
Helmholtz free energyl16) in powers of the deviation of the
ions from their positions in an ideal bcc lattiog(l) = R(I)
—RO(I), confining ourselves to the quadratic terms. The re-
sultant force constant matriB,z(l) (a,6=1,2,3) is ex-
pressed in terms of the corresponding reduced matix1)
by the scaling relation

Bag()=Z°B (1) (36)
Here the reduced force constant matrix is
T 37
aﬂ I
aRa(O)&Rﬁ(l) {R0(|)}
and can be represented in the form
Bs(l)= a3(|)+B a0, (38
where
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\® 2O (=
Bl (1) = exp(—qz())f exp(— o) dny

T 55/3__ 5/3T1/2
2”7 3'I'e

©

X JleXp( —p3) dpzj%exn( —p3)

A A
PaTt ﬁwa(l)> ( pPp— ﬁwﬁ(l)

X
P (39
I _12(&(r))
In Eq. (39
RO(1

p= 7ﬁ[r— 2( )}. (40
Wl(l):_|1+|2+|3, (41)
wo(D)=11—=1l+l3, (42
wa(h)=1;+1,—15. (43

The second term ii38) can be represented in the form

Go(q(1)/+2)—4G,(q(l))

_ A3
Bgﬁ“): 2—0_ N,Ng

2q(1)
_ 3[Gy(a()/V2) = 242Gy (a(1))]
V2g%(1)
.\ 3[erfe(q(l)/y2)—2 erfo(q(l))]]
a®(1)
5 G1(q(/\2)—2\2Gy(q(1))
o V202(1)
_erfo(q(l)/ﬁ;—Zerqu(I))“_ "
a3
Here
_ d _ 2 2
Gl(z)—d—zerfc(z)——\/—;exq—z ), (45)
G 4 fo2)= -72 (46)
2<z>—dzzerc<z>—ﬁzexp< 2%,
andn is a unit vector:
n=(ny,n,,n3)=R(1/RO(I). (47

The reduced force constant matii®8) can be used to
define the reduced dynamic matrix:

_ 1 _ -
Daﬁ(k)zM—OZ Bas(lexdikRO()], (48)

which permits finding the reduced phonon frequencies as

function of the reduced wave vectbifrom the characteristic
equation

D. M. Medvedev and Yu. V. Petrov 131

defD os(k) — (k) 3051 = 0. (49

In (48) My is the atomic mass univl,=1823. The phonon
spectrumwy(k) (s=1,2,3) of a polyatomic bcc crystal con-
sisting of atoms with an atomic numb2rand a mass number
A can then be found as a function of electron temperature

and specific volume from the universal functieg(Te,v k)
using scaling:

wo(Te,0,K)=Z3A" Y24 (T, ,0,k)

=732p~ 12 (77437 7p, 2" V). (50)

For not excessively heavy elements the isotopes which are
stable againsB decay havéA~2Z. In this case we obtain a
scaling relation for the frequencies which depends only on
the single parametet:

zZ . _ __
wy(Te,v,K)=—= wy(Te,v,k)

2

= %wS(ZMaTe,Zv,ka).

Universal plots of the reduced phonon spectrum of a bcc
lattice for the high-symmetry directions in the Brillouin
zone, viz.,I'P, I'N, andI'H, and various values of the

reduced specific volume and the reduced electron tempera-

ture are presented in Figs. 1 and 2. The reduced lattice con-

stant isa= 1.6 for Fig. 1 anda= 2.0 for Fig. 2. The reduced
electron temperature is indicated near the curves in Figs. 1
and 2 and has values equal to 0.1, 4, 20, and 50 au. The
phonon frequencies of crystals with assigrnédnd A are
obtained from the curves in Figs. 1 and 2 using &) or,

for not excessively heavy element51). An increase in the
electron temperature leads to an increase in the phonon fre-
guencies for all directions in the Brillouin zone.

Analysis of the reduced phonon spectrum reveals that
the hardest of the phonon modes, which are longitudinal,
undergo the greatest changes as the reduced electron tem-
perature is varied in the broad range investigated from 0.1 to
50 au. The height of the maximum in the spectrum for the
I'H direction increases by more than three fold. At the same
time, the softer transverse modes of the phonon spectrum
vary to a lesser degree in response to significant variation of
the electron temperature, especially in the long-wavelength
region. When the specific volume is increased, the relative
changes in the phonon frequencies increase at a fixed elec-
tron temperature.

(51)

4. THERMODYNAMIC FUNCTIONS OF THE PHONON
SPECTRUM

The reduced phonon spectrum obtained from the solu-
tion of Eqg. (49 permits calculation of the thermodynamic
functions associated with lattice vibrations as a function of
the specific volume of the crystal and the lattice temperature
T,#T.. These functions include the isochoric specific heat
CvZ(Tiﬁs/aTi)Te,v- Calculated per atom, it equals
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8

w, a.u. @, a.u. a.u.

0.16f

FIG. 1. Reduced phonon frequencies
of a bcc crystal with the lattice param-
etera=1.6 in theT'H ([100]) (a), I'N
([210]) (b), andI'P ([111]) (c) directions
for various values of the reduced elec-
tron temperaturd, , which are indicated
(in atomic unit$ near the curves. The
phonon frequencies of a crystal with
specifiedZ andA are found from the val-
ues ofw using the scaling relation&0)

0.12]

0.08F

and (51).
0.047
0.1, 4, 20, 50
r 02 04 06 08 H r 02 04 06 08 N r 0:2 01.4 0..6 0..8 P
2 _ 3 wk)  wyk,8,
Cvzz ws(K) ex ws(K)/T;] vd k. C(0,0)= sli ): s( - (P). (54)
s Ti | {exdog(K)/T]-1}* (2m)®

(52)
. L . . o The expressiori53) permits finding the Debye tempera-
The integration in52) is carried out over the Brillouin zone. ture ®p(T,,v), which can be determined from the low-

In the low-temperature limit with respect T temperature specific heat. It obeys the scaling relation
277 wsmade
3 -

BT f f 0 6.9) B3 0p(Te,)=ZA Y05(T, 1)
where 6 and ¢ are the angles in the spherical coordinate — 7327129 (27 4RT,, , Zv) (55)
system fork, and the velocity of sound¢(8,¢) for long
waves equals with the reduced Debye temperature
w,a.u. w, a.u. @, a.u.

0.124 0.12 0.12

0.08f 0.08 0.08

FIG. 2. Same as in Fig. 1 fa=2.0.

0.047 0.04 0.04}1

0.1, 4, 20, 50

0.1
r 02 04 06 08 H r o0z 04 06 08 N T 02 04 06 08 P
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T,.au
b
0.6
&05;-————’—”’//,,—————————___
—= 0.041
QD’ au FIG. 3. Reduced Debye temperatig (a)
| a and melting poinfT,,, (b) of a bcc crystal as
0.08 a function of reduced electron temperature
for various values of the reduced lattice con-
12 0.03}+ stanta (which are indicated on the curves
0.06/_\ The Debye temperature and the melting
12 point of a crystal with specified andA are
- found from the respective quantities using
the relationg55) and(61).
0047"—“‘—~———___L§_________
0.02 16
/f-~_______¥ 2.0
2.0
0.02}F
O'Ol ﬁ
10 20 30_ 40 5 10 15 _ 20
T,. au T, au
. o = sin6de -3 tron temperature increases. This also applies to the pressure
Op(Te,v)=2-37| v z, J de | =—— . of the zero-point vibrations.
s J0O 0 cs(0,¢) We can use the phonon spectrum obtained to determine

(56 the dependence of the melting point of a crystal on electron
The reduced Debye temperature is shown in Fig. 3a as ®mperaturéwe recall that we are dealing with a situation in
function of the reduced electron temperature for the values ofvhich there is a lack of equilibrium between the electronic
the reduced lattice constaat=1.2, 1.6, and 2.0. The value Subsystem and the lattice and their temperatdieand T;
can differ significantly. Introducing the radiusRs of a
sphere with a volume equal to the specific volume per atom
§ U SO that

of (9_[,(?e v_) is determined by integrating the phonon spe-
cific heat, which is low-temperature with respectftpand
proportional toTi?’, over the Brillouin zone. The variation o

O, is less than 30% over the entire range?gfconsidered, 4 R3—y— a
i.e., the dependence of the Debye temperature on electron 37 s UV~ 5

temperature is weak over a broad range of valuék,ofThis . . .
. e e determine the relative mean-square displacement of the
is because the phonon modes which increase most strong : . o . . ]

uclei from their positions in an ideal lattice:

with electron temperature make the smallest contribution to

the Debye temperature when it is determined in this manner. ;= (u?)/R2. (57)
In accordance with the stronger variation of the spectrum ) ) )

at larger values of the lattice constant, the variation of thd1€re the mean-square d|sp.|acem(an’*t> is found by integra-

Debye temperature is more significant at largerBeing a tion over the Brillouin zone:

function gf electron temperature, the reduced Debye tem- , —E 1 1 1) vd3k

perature®p has a max_imum, which_ shjft; .toward. higher (u9)= =~ |4 Mws(k)Lexp[ws(k)/Ti]—lJri (277)3-

temperatures as the lattice constant is diminished, i.e., as the (59)

Fermi energy is increased. Since the hardest branches of pho-

non frequencies make a small contributiorftg as the elec- At large values off; near the melting poinTy, the expres-
— . sion (58) can be written in the form
tron temperaturd,, increases when the Debye temperature is
T, vd3k
(=2 '

determined in this manner, the energy of the zero-point vi-
brations, which is determined mainly by the hardest modes — T 3
s JBZ Mwi(k) (2m)

and is equal to 9_)D/8 per atom in the Debye approximation,
is poorly described by the Debye approximation as the electaking into account the scaling relatigf0), we obtain

(59
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sz(k)=Z3M0;2(f). (60) causes an increase in the phonon frequencies of a metal,
s _ S _ _ _ _ primarily of the hardest modes in the spectrum. At the same
We determine the melting poifit,, according to the Linde-  time, thermodynamic characteristics associated with the pho-
mann criterion, from the cntu;al value of the mean-squarengn spectrum, such as the Debye temperature and the melt-
displacement’,, which, following Ref. 14, we set equal to ing point, vary to a significantly smaller extent with electron
{m=0.076. This gives the following expression for the melt- temperature.
ing point: This work was performed with assistance from the Rus-
ST (T N U (4l sian Fund for Fundamental Research and the Program for
TilTew)=2"Tn(Te ) Z_3Tm(Z Te,Zv), (61 Supporting Leading Scientific Schools.
where the reduced melting poifit, equals

T (:ﬂ 29 vd®k
m eV _gm 47T S BZ (277)3M0;§(k_)
(62)
1S, 1. Anisimov, B. L. Kapeliovich, and T. I. Perel'man, Zﬁkﬁ). Teor.
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The first experimental and theoretical investigation of the difference in the temperature behavior
of the linear expansion coefficients of single crystals grown from isotopically highly

enriched and natural germanium is reported. A comparison of the datd@erand"Ge

crystals reveals the significant influence of isotopic composition over a wide range of temperatures
30-230 K. © 1999 American Institute of Physids$$1063-776(99)02101-(

Many problems in the theory of the thermal expansion ofEXPERIMENTAL OBSERVATION OF THE ISOTOPE EFFECT
crystal lattice have been thoroughly studiege, e.g., Ref. IN THE THERMAL EXPANSION OF GERMANIUM
1). To the best of our knowledge, however, the thermal ex-

pansion coefficiente for crystals differing solely in their X X ;
éhe temperature dependence of the difference in the linear

isotopic composition has not investigated. In this paper w X Hicients of chemicall 4 structurall
report the first experimental and theoretical study of the peSXPansion coetiiclents ot cnemically pure and structuratly

. g . . ) erfect germanium®Ge and"®Ge single crystals over a wide
havior of the coefficiente as a function of the isotopic com- b 9 gle cry

o . . femperature range 30—230K. According to mass-spectro-
position over a wide range of temperatures. We are specif

: . _ heter measurements, the content of the primary isotope in
cally concerned with natural germaniurffGe) and highly  7o5, single crystals is at least 99.99%. In this connection a

enriched(99.99% germanium (%Ge) samples. measurement of the Hall conductivity in it has shown that
The dependence of the thermal expansion coefficient ne total concentration of electrically active impurities does
on the temperatur€ is dictated by the temperature behavior not exceed % 102cm™2 (Ref. 2. The"™Ge single crystal is
of the heat capacity in many cases. This is because the totalmixture of five isotopes having an average mass of 72.59.
Gruneisen factory (which is sensitive to the anharmonic The thermal expansion of the samples was investigated
interatomic force parametgrgsually exhibits a weak depen- by means of a strain-gauge dilatometer. The recording part
dence onT. For germanium, on the other hand, the depen-of the instrument was a bridge circuit. The customary ap-
dence ofy on T is very strong. Here, sincg(T) is a sign-  proach in this method is to place the investigated sample and
indefinite function, the behavior of(T) for Ge is quali- @ standard sample on the instrument mounting, with identical
tatively determined primarily by the Gmeisen factor and standard resistance gaugési—Cu—Cr wire of diameter
not by the heat capacity. 30um, R=10002) attached to them. As the temperature is
In regard to kinetic phenomena two types of isotope efvaried, the deformatlon of the gal_Jges_dlffers be_cagse the
fects are possible, which differ in that one depends ”neaﬂysamples expand differently, producing different variations of

and the other quadratically on the difference in the masses P;rhg?js'r?;asn;ezeir;ii\t/?tuso(mzrfsit(?g camb ”_?Eg ;Jenrgalearr;(t:l?r.e-rhls
the isotopes. Linear effects are governed by the variation of y o P .
the phonon spectrum as the isotopic composition Changedependence of the thermal expansion was measured with the

dratic eff ated with the i lar distrib amples heated at a rate not greater than 0.3 K/min. The tem-
Quadratic effects are associated with the irregular distri uberature sensor was a copper—iron ¢@u05% Fe)—copper

tion of the isotopes and induce an additional relaxatiorkhermocouple. The mounting of the samples is shown in Fig.
mechanism of phonofand electroh scattering. Their role 1 |y principle, the experimental error can depend on the

tivity of germanium in, for example, Refs. 2 and 3. As for which the measurements are performed. Additional measure-
thermal expansion, on the other hand, both the linear and th@ents have shown that the error is less than 5%.

quadratic dependences on the isotopic mass are entirely the The quality of the measurement system was tested using
result of the variation of the phonon spectrum. a standard sample of pure copper, for which the values of the

We have performed for the first time measurements of

1063-7761/99/88(1)/3/$15.00 135 © 1999 American Institute of Physics
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- 1 3 FIG. 2. Temperature dependence of the fadter=a (M) — a(Mcy),
- [~ whereM,=72.59 andV .,= 70, theoreticalsolid curve and experimental
- (dots.

limited capabilities for regulating the temperature regime of

. / the experimental setup, for example, an insufficiently slow
temperature scanning rate in measuring the temperature de-

pendence of the relative thermal expansion of germanium.

T~

4

3

THEORETICAL ANALYSIS OF THERMAL EXPANSION TO

FIG. 1. Schematic view of the sample mountitg) Sample and standard; FIRST ORDER IN THE DIFFERENCE IN ISOTOPIC
(2) resistance gauge§3 ) thermocouple(4 ) quartz rod, to which the block pmASSES
with the samples is attached by thin nylon thread.

In the quasiharmonic approach to the linear isotopic
mass-difference approximation for cubic crystals the linear

thermal expansion coefficient are well known. Our data forexpansion coefficient is given by the relatiorfs

copper(in measurement relative to quardiffer by at most 1
5% from established data at temperatures of 20—§B&. a(T)= o(T), 1)
1) 30,Bg

To improve the reliability of the results in the present 1,
study, we performed direct measurements of the difference U(T)ZZ y(HC(T), C(M= T2¢ (Hn(w()
in the thermal expansion coefficients of chemically pure
niGe and’%Ge single crystals. The samples of natural and X[n(w(l))+1]. 2
isotopically pure germanium were mounted_ in two arms OfHere (1) is the phonon frequency of thkh mode with
thg measgrement b_rldge. The m_easured k_mdge unbalance dr&asimomentumi and polarizatiorj, i.e.,1={f, j}, n(w) is
this case is proportional to the difference in the thermal ex
pansions of the two sample¥Ge and’%Ge.

The samples were cut from germanium single crystals i
the shape of % 4x2-mm parallelepipeds with their longest _ dInw(l)
edges parallel to thel0Q] axis of the crystal. YW= o 00,

This setup was used to measure the relative thermal e
elongationAl/l of the sample. Our object of interest, the C; denotes the heat capacity of tlik mode () is the equi-
thermal expansion coefficient=(1/1)(dl/dT), was calcu- librium unit cell volume of the lattice, anB,, is the hydro-
lated by numerical differentiation of the graph &f/l as a  static compression modulus at=0. The Boltzmann and

the Planck distributiony(l) is the partia(mode Grineisen
r}‘actor, i.e., by definition

()

function of T. Planck constants are set equal to unity.
The results of measurements of the differeAeein the Equation(1) can be written in the form
thermal expansion coefficients of the two single crystals are 1
shown in Fig. 2. The scatter of the values&#& as a func- a(T)==——=—vT)C(T), (1)
tion of T was found to be-20% after differentiation of the 3By

experimental data with respect To The scatter oA a(T) is  where y(T) is the total Grumeisen factor, andC,(T)
large because the measured quantity is the temperature de-> C,(T) is the lattice heat capacity.

pendence of the small difference between the thermal expan- Note the following relation, which holds for any isotopic
sionsAl/l of the two single crystals"tGe and’%Ge). The  composition in any mode:

Aa(T) curve in Fig. 2 is smoothed by a polynomial. The M-w2(1) = of] 4
absolute rms error of the values so obtained Aa¥(T) is cw(D=e(), “)
~20% in the temperature range 60—200K an80—40%  where the effective force parametgfl) does not depend on
in the low-temperature range. Errors can also be attributed tthe average madd .. By definition,
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Egs.(6) and(7). We note that for the majority of the modes
Me=2 ciM;, the parametersy@(1)=y(1)+A¥®(1) increase with the
' temperature. The anharmonicity-induced renormalizations,
wherec; is the concentration anill; is the mass of isotopes for example, atT~150K, are approximately 4%. On the
of theith species. other hand, a nonstandard situation is encountered for soft
We now fix a specific isotopic composition by the index transverse modes. The corresponding values®fare ap-
Co. Making use of Egs(1) and(4), we then have a universal proximately 1.3 times smaller in absolute value as a result of
relation for an arbitrary isotopic composition, which we label anharmonicity at the same temperature of 150 K. Here the
with the indexc: calculations  yield Aa=a(Mq)— a(Mg,)=0.142
ad(M=ae(T), T'=T M. IM,. ®) t><_10‘6_K‘1 instead of the value of 0.12410"°K™* ob-
ained in the quasiharmonic approach. Consequently, when
We close this section with a few words about the generaginharmonicity is taken into account, the quantitative descrip-
case of an anharmonic crystal lattice. In such a lattice th&on of the experimental data improves, but the discrepancy

mode frequencyw(l) consists of the sum of the harmonic is still substantial.

and anharmonic contributions: We note that the theoretical calculations give results too
_ low in comparison with the experimental data. The disparity
o(l, )=w(l, Q)+A?(, Q). (6)  could stem from the small difference in the chemical purity

tA@ s determined by standard third- and of the germanium®Ge and’°Ge single crystals. According
to Ref. 10, the thermal expansion coefficient for Ge can dif-
fer for samples having different impurity concentrations.
Moreover, the model in Ref. 8 is also in need of further
development and refinement.
To summarize, for the first time we have measured the

The incremen
fourth-order anharmonic processesThe expression for the
anharmonic correction to the Greisen factory(l) now has
the form

ay() A w()}

(a) ~
AyE1L T)=AL(T) Qg Qg ™ temperature dependence of the difference in the linear expan-
Here Q(T)= AQ(T) + Oy is the unit cell volume. %on coefficients of chemically pure germaniuiiGe and

Second-order effects with respect to the difference in the Ge single crystals. We have_ found that theory and experi-
ment concur reasonably well in the temperature ran@@®

isotopic masses are not discussed in this paper, because N 00K, The agreement falls short at higher temperatures

estimate shows that their role is of little consequence in ap- ’ oy . . '

plication to germanium. Allowance for t.he anharmonicity of mtgractlon between pho-
non modes brings theory and experiment somewhat closer
together.

COMPARISON OF THEORY WITH EXPERIMENT The authors are grateful to E. A. Chistotina for assis-

Using relationg1)—(3) and (5), we calculate the coeffi- tance in processing the experimental results.
cientsa(T) for germanium crystals with average masses of ~ This work has received financial support from the IN-
72.59 and 70. Here we determine the frequencies of the phd-AS Foundation(Project 96-0546 and from the Russian
non modesw(l) from the Born—von Keman theory. We use  Fund for Fundamental Resear@roject 96-15-96738
the force parameters obtained previoldhy the fitting of
experimental inelastic neutron scattering data. We also use
the partial Grumeisen factorsy, determined in Ref. 8 in the o , o
microscopic bond-charge model. In addition, we assign the = Mal- 0zhogin@imp.kiae.ru
following values to the lattice constaat and the compres-
sion modulusB,: a,=5.658A; B,=0.772x 10*2dyn/cn?
(Ref. 9. 1S, 1. Novikova, Thermal Expansion of Solidn Russiaf, Nauka, Mos-
The results of the calculations are shown in the same cow (1974.
figure as the experimental dai&ig. 2). The difference 2V. I. Ozhogin, A. V. Inyushkin, A. N. Taldenkoet al, JETP Lett.63,

_ B - 490 (1996.
curves Aa_ ®(Mc))—a(Mc,) are shown for germanium -, Asen-Palmer, K. Bartkowski, E. Gmeligt al, Phys. Rev. B66, 9431
crystals with massed ;; = 72.59 andV ;.,= 70, respectively. (1997.
It is evident at once that theory and experiment are in rea#G. Leibfried, “Gittertheorie der mechanischen und thermischen Eigen-
sonably good agreement in the temperature rangg0 schaften der Kristall¢Lattice theory of the mechanical and thermal prop-
—100K. The agreement is unsatisfactory at higher tempera-e"ties of crystals” in Handbuch der PhysilS. Fiigge (Ed), Vol. 7, Part

1, Springer-Verlag, Berlir{1955, pp. 104—324.
tures. SM. A. Krivoglaz, Theory of X-Ray and Thermal Neutron Scattering by

In our work we have observed that the isotope effect is Real Crystals Plenum Press, New York969.
large in the thermal expansion of germanium. In the tem-ji- AS l;zistsland,TgechyS\i/ss of l;hhonor;Wilelﬁ l;lg&zflcgl;élw&

. . : . D. Zdetsis and C. S. Wang, Phys. Rev .
perature interval from 75K to 125K trtlae relative difference 8R. Eryigjt and I. P. Herman, Phys. Rev. 53, 7775(1996.
Aala reaches 10%. The data for in "Ge are borrowed °G [eibfried and N. BreueiRoint Defects in Metals, I: Introduction to the
from Ref. 1. According to the above calculatiodsy should Theory Springer-Verlag, Berlin(1978.
. . . Phys. Solid Stat®, 2451(1963].
We also estimate the anharmonic corrections to the par-

tial Gruneisen factors in the model of Ref. 8 on the basis offranslated by James S. Wood
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A method is proposed for constructing an exact ground-state wave function of a two-dimensional
model with spin 1/2. The basis of the method is to represent the wave function by a

product of fourth-rank spinors associated with the nodes of a lattice and the metric spinors
corresponding to bonds between nearest neighbor nodes. The function so constructed is an exact
wave function of a 14-parameter model. The special case of this model depending on one
parameter is analyzed in detail. The ground state is always a nondegenerate singlet, and the spin
correlation functions decay exponentially with distance. The method can be generalized for
models with spin 1/2 to other types of lattices. 1®99 American Institute of Physics.
[S1063-776(199)02201-3

1. INTRODUCTION sion formula, and we have shown that it can be reduced to
matrix form. Note, however, that both the recursive form and

There has been growing interest lately in quantum spirthe matrix form are essentially one-dimensional construc-
systems with frustrated interactiohis?® Of special impor-  tions and cannot be extended directly to higher-dimensional
tance are models in this category for which it is possible tasystems. We cite Ref. 17 in this regard, where a method has
construct an exact ground state. The first example of such laeen proposed for constructing an exact wave function of the
representation was the well-known Majumdar—Ghoshground state for models with spin 3/2 on a hexagonal lattice.
model! It comprises a chain of spins 1/2 with antiferromag- The same method is applicable to other systems with spin
netic interactions]; and J, of nearest neighbor and next- d/2.
nearest neighbor spins, whetge=J,/2. The ground state of In this paper we consider a class of models with spin 1/2
this model is doubly degenerate and consists of dimerizefbr which the exact wave function of the ground state can be
singlets; moreover, there is a gap in the spectrum of excitarepresented in an alternative form. In the one-dimensional
tions. Another example of an exactly solvable model is thecase this wave function reduces to a wave function that we
one-dimensional model with bilinear and biquadratic interachave found previousl{} but it admits generalization to
tions and spin 1, investigated by Affleck, Kennedy, Lieb, andhigher-dimensional systems. The present study is devoted
Tasakt? (the AKLT mode). Its ground state has a structure primarily to an analysis of the two-dimensional model.
of the type where each neighboring pair of spins has valence The article is organized as follows. In Sec. 2 we discuss
bonds. It is not degenerate, the spin correlation functions ithe method of constructing the exact wave function for a
the ground state decrease exponentially with distance, arehe-dimensional model wite=1/2. In Sec. 3 we formulate
there is a gap in the spectrum of excitations. This modehn exactly solvable two-dimensional model. In Sec. 4 we
therefore has properties predicted by Halddrier the one-  investigate the properties of this model with the aid of nu-
dimensional Heisenberg antiferromagnetic model with spirmerical calculations. In Sec. 5 we discuss the possibility of
1. The valence-bond ground state is also exact for systengeneralizing our treatment to other types of lattices. The Ap-
with many dimensions, but with spitV2 (d is the coordina- pendix gives a proof of the nondegeneracy of the ground
tion number of the lattice'* The one-dimensional AKLT state of the two-dimensional model in the presence of cyclic
model has subsequently been generalized and investigatedioundary conditions.
a number of paperS,where it has also been shown that the
wave function of the ground state can be represented by the

. o : . ONE-DIMENSIONAL MODEL

trace of the product of matrices describing the spin states o%
nodes of a chairithe “matrix” form). These two examples We have previousl’f investigated a one-dimensional,
are characterized by the fact that the total Hamiltonian of th@ne-parameter model containing two spins 1/2 in the unit cell
model is written as a sum of cell Hamiltoniashich are  and admitting exchange interactions between nearest neigh-
not mutually commuting and the exact ground-state wave bor spins and spins separated by two nodes of the lattice. The
function of the total system is the eigenfunction having theexact ground-state wave function of the cyclic chain can be
lowest energy of each F;e” Hamiltonian. written in the form

We have previously investigated an exactly solvable,
one-dimensional, frustrated model with spin 1/2, whose Yo=Tr[A(1,2 A(3,4) ... AIN=LN)], @)
properties by and large are similar to those of the AKLTwhereA(2i—1,2i) is a 2X2 matrix associated with thi¢h
model. The ground-state wave function has a special recuunit cell.

1063-7761/99/88(1)/10/$15.00 138 © 1999 American Institute of Physics
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Below we write the wave functioW’, in a form more A, (1, 2)=TN1)
suitable for subsequent generalization to other types of lat-

tices and give the general form of the Hamiltonian for which }(a Byt Braty) N
V¥, is an exact wave function of the ground state. 2 \TiP2 T2 172
We consider a chain oN=2M spins 1/2. The wave =G 1
function of this system is described by thgh-rank spinor —aya; - E(a132+ Biay)
\I,:\I,)\,uv...r’ (2) 1
— Cso - l, 9
where the indices, u, v, . ..,7=1,2 correspond to differ- 53 (@1h2™ Prer) ©

ent prqecﬂqqs of the spin 1/2.' . . where «; and B; denote the up and down projections of the
We partition the system into pairs of nearest neighbor_ . . : . .
pins, respectively, and is the unit matrix.

spins. The wave function can then be written as the produc% We now choose a HamiltoniaH for which the wave

of M second-rank spinors function (7) is an exact ground-state wave function. To do
T=Pr(L)WP(2) .. WI(M). (3)  so, we consider the part of the systésell) consisting of two
nearest neighbor spin pairs. In the wave functi@ the
We now form a scalar from Eq3), simplifying the latter factor corresponding to the two spin pairs is a second-rank
with respect to index pairs: spinor:

P =UN1)WE2) ... ¥TI(M). (4) WA(i)g,, Ui +1). (10)

Here subscripts correspond to the covariant components ¢f the general case, therefore, only two of the six multiplets
the spinor, which are related to the contravariant component§rming two pairs of spin 1/2—one singlet and one triplet—

(superscriptsthrough the metric spinor are present in the wave functi¢h0). Inasmuch as four spins
1/2 form two singlets and three triplets, the specific form of
\ 0 1 the singlet and triplet components present in the wave func-
Dhu=9 #:( 1 0)- (5 tion (10) depends on the ratio/c,. The cell Hamiltonian

acting in the spin space of nearest neighbor spin pairs can be
¥, =0,,P*, P =gV . (6)  Written as the sum of the projectors onto the four missing
multiplets with arbitrary positive coefficiends;, A5, A3, A4:
The scalar functiori4) can thus be written in the form

4
W =WM(1)g,, W (2)g, . .. V(M) - 7) Hi,i+1=k21 AP (12)

The scalar function¥’s does not depend on the angle of \; a1 Pik,i+1 is the projector onto the missing multiplets in
rotation of the coordinate system and therefore correspondg, corresponding cell Hamiltonian.

to the singlet state. _ - . , The wave functior(7) is now an exact wave function of
The second-rank spinor describing the pair of spins 1/2pe ground state of the cell Hamiltoniath, ;. ; with zero
can be written in the form energy, because '

\I,)\M:th}i\ﬂ‘}'csxpglu, (8) Hi,i+l|q,3>:0’ (12)

where ¥}* and w)* are symmetric and antisymmetric andq, \,, A3, A, are the excitation energies of the corre-
second-rank spinors, respectively, andndc, are arbitrary  sponding multiplets.
constants. We know that the symmetric second-rank spinor The total Hamiltonian of the entire system can be written
describes a system with spin 1, so that the pair of spins 1/2 ias the sum of mutually noncommuting cell Hamiltonians:
this case forms a triplet. W'** is an antisymmetric second-
rank spinor reducible to a scalar multiplied gy, , the spin
pair exists in the singlet state. Consequently, the ratio of the
constantsc; and cg determines the relative weights of the
triplet and singlet components on the pair of sgirsl/2 and ~ @nd since each teri; ;. ; in (13) yields zero in its action on
is a parameter of the model. In particular, =0 the wave Vs, We have
functic_m (8 gontains on_Iy a triplet component, and for H|W ) =0. (14)
¢;=0 it contains only a singlet component.
In general, we can make the ratio of the constagts;,  The nondegeneracy of the ground state of this Hamiltonian
different in different pairs, but to preserve translational sym-has been rigorously proved.
metry, we confine the discussion to the case in which this  Since the specific form of the existing and missing mul-
ratio is the same in every pair. tiplets in the wave functiori7) on every two nearest neigh-
We note that the wave functio@) has the matrix form bor spin pairs depends on the model parametéc,, the
(1), the matricesA(2i —1, 2i) representing a mixed second- projectors in(11) also depend ogg/c;. Each projector can
rank tensor: be written in the form

N
H=2) Hijia, (13
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PL?=18 (81 Sy 53-50) T I (51 8o+ 5, 5)
3351 54 5% Sy 1 (519 (55 5) -
+35%(s1 %) (%27 80) + 957 (51 ) (8-59) + €17,
(19

and this representation is unique for a fixed value of the
parameterc,/c; .

Substituting the above expressions for the projectors into
Eqg.(11), we obtain the general form of the cell Hamiltonians
Hi ;1. Inasmuch as the Hamiltoniart$; ;. ; have exactly
the same form for any, it suffices here to give the expres-
sion forH ,:

N
AN
AN
N

N
NN

A AN N

N\
AN
NN

AN AN

H1o= 31281 S+ S S) +J13(S1 S5+ 57 S4) +J1451 - S FIG. 1. Two-dimensional lattice on which the spin model is defined.
+ 3255 S5+ J1(S1- 52) (3 54) + Ja(S1 - $3)(S2 Sa)
FJa(S1-8) (82 %) +C, (16) these squares as nodes. The wave function of the system is

where all volume integrals depend on the model parameteatescribed by the product of fourth-rank spinors
and the spectrum of excited states J;

=Ji(Cs/Ciy N1, N2, N3, Nyg). In particular, forc,=0, choos- q;:H P AnknrnPn( ) (18
ing Ao=A3=M\, andX,/\,=3, we obtain an expression for n
Hyin the form By analogy with(7), from Eq.(18) we form the scalar
1 2
_ 24 2 v
Hio=L; Lo+ 3(Ll L,y)“+ 3 a7 \1,521;[ P nkn npn(n)gVn)‘n+agpn/’“n+b' (19

whereL;=s;+s, andL,=%;+5;.

The Hamiltonian(17) has the form of the AKLT Hamil-
tonian, a result that is not too surprising, becausecfer0
two spins 1/2 in a pair effectively form spin 1. Note, how-
ever, that forc,=0 a set of different forms of the Hamil-
tonianH , exists, corresponding to a different choice of co-

efficients, . o _ . To completely define the wave functida9), it is nec-

In gene_ral_, the H_amlltonla(]16) contains both bilinear essary to know the form of the node spinBt“". For this
a_md four-spin interactions. The I_atter can be echU(_jed by Seburpose we classify an arbitrary fourth-rank spinor, simpli-
ting J;=J,=J3=0 and solving these equations for gy and symmetrizing it with respect to different pairs of

N1y N2, N3, Mg However, sin_ce ) the .co.ndition indices. We have the following types of spinors as a result:
N1, N2, N3, A4>0, generally speaking, is not satisfied over 1) a fourth-rank spinof*“" symmetric with respect to
the entire range of the parameteg/c, the simplified ) indices:

Hamiltonian will also have a ground state described by the 2) three linearly independent products of a symmetric

wave function(7) only in the region where\;, A5, N3, A4 and an antisymmetric second-rank spingt“g, , ¢’g,,.,
are  positive. ~The nonzero exchange integralsyng heg . f 1
uvo

J12, J13, J14, Jo3 and the constan€ depend only on the pa-
rametercs/c,. The explicit form of this dependence is given
in Ref. 16, in which we have also calculated the ground-state

wherea andb are unit vectors in the andy directions.

The singlet wave functiofil9) is conveniently identified
graphically with a square lattice, each node corresponding to
a fourth-rank spinoflP*#"# (whose form is identical for all
nodes, and each segment linking nodes corresponds to a
metric spinorg, , (Fig. 2.

spin correlation functiors - s ), which decays exponentially ) oo

with correlation Iengthvml. ) v @+b) v +a+b)
We emphasize that the spin correlation functigiss Aaenfasn Aurass faran

-§;) do not depend on the choice af;, \,, A3, A4 for a Huab | Vaeb Hnsasb|Vnrash

fixed parametec,/c;, because the ground-state wave func- &t

tion of the four-parameter set of Hamiltonians is the same. & u. bt

3. TWO-DIMENSIONAL MODEL i le AvalBa
We consider arM X M-node square lattice with cyclic At Haialtasa

boundary conditions. We replace each node of the lattice by wrHP ) St ¥4 (n+a)

a squardFig. 1) with spinss=1/2 at its corners, making the

- 2 - -
total Oumber of spins equal toM. To aVQ'd misunder- £ 2. Graphical correspondence of the model wave function. The indices
standing, however, from now on we continue to refer toof the node spinors depend on the node inet shown in the figune
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3) two linearly independent products of two metric 543
spinors and a scalar functiog; ,9,,x andgy,,9,,x-
According to this classification, any fourth-rank spinor S 8,3)
can be written in the form
3
\I,)\MVPZClQ)\MVp_FCZQD;\.#ng—i_C3QD)2\Vg,U,p+C4(ngg,u,V SZ( k
+059)\,ugval+Cﬁg)\Vg,upX2' (20) 54(1) 84(2)

We note, however, that because the system of four spins 1/2
contains one quintet, three triplets, and two singlets,(E@). §;(H S;(h S¢2) 5(2)
still does not completely determine the formbt~*?, and it
is necessary to determine the specific form of the spinors S 52
)", ¢b”, and¢3” and the scalar functiong, and y.
Each symmetric second-rank spingr* describes a trip-
let state of the system, representing a linear combination of
the three basis triplet functiong*, ¢}, ande}4. We can
now specify nine linearly independent spinors describingbe eigenfunctions of the corresponding cell Hamiltonians
triplet states of four spins=1/2: Hi,andHys.
In general, when the node spind™~*? is not symmet-
ric with respect to any indices, the possible states of two

FIG. 3. Lattice nodes associated with interactiths, andH 3.

A A A
b1 gvp! P2 gvp ' b3 gvp '

‘Pﬁvg;w QD:\ZVg,up’ (pt*;g#p, (21 quart_ets of spins=1/2 con;ist of 70 multiplets. .A wave
function represented by a sixth-rank spinor contains only 20
o9 0890 @50, of them. Accordingly, the cell Hamiltoniand; , and H; 5

The products of two metric spinors and a scalar function”2" be represented by the sum of projectors onto the 50

9r.9.px1 @ndg,,9,, X2 describe singlets states of four spins missing multiplets:
s=1/2. Since there are two independent singlet functjpns 50 50
and x<,, We have four linearly independent scalars describ- Hi2= k21 MPe? Hig= kZl mePi, (26)
ing singlet states of four spirs=1/2:
where the positive constands, and u, are the excitation
DubupXstr  InubupXs2 energies oH; , andH; 5, and the specific form of the pro-
OnOupXstr  OnulupXsa- (22)  lectors depends on 14 model parameters.

Inasmuch as

As a result, the specific form of the fourth-rank spinor
wruve [and, hence, the wave functiq9)] describing the Hontd¥9)=0, Hpninl¥s)=0, (27)
system of four spins=1/2 is governed by $9+4=14  f{or the total Hamiltoniar(23) we have the expression
guantities, which are parameters of the model.

We now choose a HamiltoniaH for which the wave H|¥g)=0. (28)
function (19) is an exact ground-state wave function. As in Consequently¥ is the ground-state wave function of
the one-dimensional case, we seek the required Hamiltoniaghe total HamiltoniarH, because it is a sum of nonnegative
in the form of a sum of cell Hamiltonians acting in the spacedefinite cell Hamiltonians. Also, it can be rigorously proved

of two nearest neighbor spin quartets: (see the Appendixthat the ground state df is nondegen-
erate.
H=>, Hn,n+a+2 Hinsp- (23 As mentioned above, the specific form of the projectors
n n

depends on 14 model parameters, and in general the cell

The first term in Eq(23) is the sum of the cell Hamil- HamiltonianS(ZG), expreSSEd in terms of scalar prOdUCtS of
tonians in the horizontal direction, and the second term is théhe types-s;, (s-s) (s ), etc., have an extremely cum-
same for the vertical. The cell Hamiltonians along each dibersome form. We therefore consider a few special cases.
rection have the same form, but the “horizontal” and “ver- ~ When the node spinob*+"* is a symmetric fourth-rank
tical” Hamiltonians differ in general. In the ensuing discus- SPinor Q*** (corresponding to the two-dimensional AKLT
sion, therefore, we consider only the Hamiltoniatg, and model?), only the quintet component out of the six multip-
H, ; (Fig. 3, which describe interactions of “nodes” in the lets on each spin quartet is present in the wave fundfion
x andy directions, respectively. The sixth-rank spinor§24) and(25) are symmetric with re-

For the wave functiom]_g) to be an exact eigenfunction spect to two triplets of indices and, hence, contain four mul-

of the HamiltonianH, it is sufficient that the sixth-rank tiplets with S=0,1,2,3 formed from two quintets. Conse-
spinors quently, the cell HamiltonianH, , andH 3 coincide in this

cas@ has the form

\pMMmm(1)\1/”2”2”2”2(2)ng>\2, (24 66

MBI 1) WAHI(3)g, (25) Hio= kzl AP (29)
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4. SPIN CORRELATION FUNCTIONS IN THE GROUND
STATE

We now look at the problem of calculating the norm and
the correlation function of the model described by the wave
function (19). The expression for the norm of the wave func-
tion G=(W¥4V¥s) has the form

c=]1 <q;>\,',uévép,ﬁ( n) | Whnen¥nen(n))
n

X
9 ”n)‘n+agpn'“n+ bg Mgy agpng“rqéfb

_H nlu’n n+a'u’n+b_H Ra

MBpMntalnebd nBnn+aPn+p’

FIG. 4. Pattern of independent singlet pdidsuble lineg.
a;,5i={1,2,3,4, (35

WhereRanﬁnam;ﬁmb is a 4X4X4X4 matrix.

According to the selection rules for the projection of the
H1,=P4(S5+S)+[1-Py(S)Pa(S,)], (30 total spinS?, only 70 of the 256 elements in the expression
(WAntnPnen(n)|Whntnten(n))  are  nonvanishing. Conse-
quently, the matrixR also contains at most 70 elements. If
we regard the elements & as Boltzmann vertex weights,
the problem of calculating the norm reduces to the classical
70-vertex model.

Since the exact solution for the 70-vertex model is un-
known, numerical methods must be used to calculate the
norm and the expected values.

To calculate the above-indicated expected values, we

1 carry out Monte Carlo calculations on 2@0-node lattices.
Hi,=Py(S+S;) = 5381' S, As mentioned, the ground-state wave function of the model
depends on 14 parameters and, of course, cannot possibly be
1 analyzed completely. We confine the numerical calculations
+ 4—0(31'52)2+ 1—80(51'32)3 2520(51 S)*. to the case in which the spindk**"? depends on one pa-
rametera:

If we set\ =1 (k=1, 66), we can write Eq29) in the form

wheres§ is the total spin of the quartet of spias- 1/2 on the
ith node, S=s,(i) +s,(i) +s5(i) +4(i), and P,(S) is the
projector onto the state with spB=1.

If the four spinss=1/2 at each node are replaced by a
single spinS=2 and if the wave functiol9) is treated as a
wave function describing a system M2 spinsS=2, the
second term in the Hamiltoniai30) vanishes, and we arrive
at the Hamiltonian of the two-dimensional AKLT model:

(31)

. ) ) ] WMP=cosa- QMNP+ sina - (AMP— QNP (36)
Another interesting special case is encountered when the

system decomposes into independent one-dimension#therea e[ —m/2; m/2], the spinoQ**"* is symmetric with
chains. This happens if the node spinbt*”* reduces to a respect to all indices, and

product of two second-rank spinors, each describing two Nw N ,
spins 1/2. For example, AMP= @ (81) @*(S2) @"(S3) ©”(Sa).- 37

32) In this case we have a one-parameter model with two
well-known limiting cases. One correspondsde- w/4, for

In this case the Hamiltoniarid; , andH, 5 contain interac-  Which W*#*?=A*-"? and the system decomposes into inde-
tions of four rather than eight spins 1/2 and have the formendent singlet pairéFig. 4); the other limiting case corre-

WAPP(S) | 'Sy, S3,S4)= @M(S1, S3) @*P(Sy, Sy).

(16). sponds toa=0 (our model reduces to the two-dimensional
The simplest case is when the node spior“" is a AKLT model in this case, the spins at each node forming a
product of four first-rank spinors: quintey.
In the given model there are four spies-1/2 at each
WAPP(S,,S,, Sg, S4) = @M(S1) 9*(S2) 0" (S3) 9P (S4). node, and the enumeration of each spin is determined by the

(33)  order number of the lattice node to which it belongs and by
.its own number at this node. The spin correlation function
tRerefore has the form

fij(r)=(s(n)-s(n+r)). (39

In determining the spin structure of the ground state,
however, it is more practical to consider the more straight-
wheres ands; are the spins forming the singlet pairs. forward quantityF(r):

Now the system decomposes into independent singlet pair
(Fig. 4), and the total Hamiltonian of the system has the form

3

H= s+,
% [esd

(39
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(s{(D)sy(2))
0

-a/2 ~.1/4 /4 72

-0.50+

I

-al2 -4 0 x4 « a2

-0.75

FIG. 5. Dependence of the spin correlation functi@g(1)s,(2)) on the FIG. 7. Dependence of the correlation length on the parameter
parameter.

correlation lengthr, on the parameterr. The correlation
4 length is a maximum at the point=0 (two-dimensional
F(r)z_z (s(n)-s(n+r))=(S(n)-S(n+r)). (39  AKLT model), decreases a& increases, and at= /4,
W=t when the system decomposes into independent singlet pairs
The functionF(r) is left unchanged by a change of sign (Fig. 4), it is equal to zero. With a further increase anthe
of a. This invariance is attributable to the fact that the spinorcorrelation length increases and attains a second maximum at
(AMvP—QM7P does not contain a quintet component, soa=/2. Like the correlation functiorF(r), the function
that all the functions of this spinor are orthogonal to all func-r («) is symmetric with respect te. It is evident from Fig.

tions of the symmetric spinor 7 that the parametett has two rangess corresponding to
N i ¢ AN (A rp states with different symmetries. In the rangg < =/4 the
(Q |(AMP— QNP =0 (40 correlation functionF(r) exhibits antiferromagnetic behav-
forall A, w, v,pand\’, u', v',p'. ior:
In addition, since the total spin operat8rat a node F(r)oc(_l)rx+l’ye—\r|/rc (42)

4

commutes with§’=37,_

1SS, we then have . .
whereas the spins at one node are coupled ferromagnetically,

4 .
Ny p' Nevp_ YNATPY — (si(n)-s;(n))>0. On the other hand, in the rangd4<|a|
(@ |Z‘1 sl(A Q ))=0. (41) < /2 the correlation functioffr(r) is always negative:
It follows from Egs.(35), (40), and (41) that sinx and F(ryc—e e (43

cosy enter into the norm and into the expected valueynq gl the correlation functions at one node are also negative
(¥|S(n)-S(n+r)|¥) only in even powers, so tha(r) is (Fig. 8).

invariant under a change of sign ef We note, however, These ranges have two end points in common
that only the total correlation function, and nigi(r), pos- =+ /4, wherer ;= 0. Whereasy= /4 corresponds to the

sesses symmetry under a change of sige.OThis assertion  yivia| partition of the system into independent singlet pairs,
is evident, for example, in Fig. 5, which shows the depenine casar= — /4 is more interesting.

dencg off34(a) on a as an illustration. . In this case we have
Figure 6 shows plots oF(r) for certain values of the N N N
parametera. In every case it is found that the correlation ~ W"*"’=2Q""— A, (44)

function decays exponentially asincreases, differing from 4 o matrix<q,>\/ﬂfyfp/|q,wy,,>' which enters into the

the one-dimensional model in that the preexponential faCtoéquation for the nor(35) and the expected values, is trans-
also depends on. Figure 7 shows the dependence of theformed into

F(r,) (s (sy(D)

2t °
1 -
. 2 r,
0 5 o ™ © "
1 1 2 3 4 5
a
-2 . —? 4 0 al 2
-3 -0.14
<
4
-0.27

FIG. 6. Dependence of the spin correlation functiefr,) on the distance
along thex axis for various values of the parameter (¢) «=0; (®) « FIG. 8. Dependence of the spin correlation function at one node on the
=7/10; (O) a=*x/2. parametefw.
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AN P

(WK ) — 4 QNH | Q)

roror

—2<A)‘ mvip |Q>\MVP>

roror

_2<Q% n'v'p |A>\MVP>

roror

H(AN P ANHRY (45)

The symmetry of the spind@™*”? with respect to all the
indices leads to the relation

AN P

(Q Q)= (AN w0 Q)

[N

=(Qe AN, (46
Equation(45) therefore acquires the form
<\If}\/,ur,V,PI |\If)\/”’p> _ <A}\/,u,V,[JI |A)\ILVP>
25)\)\’5;1,/1’61/1/’6111)’ . (47)

From the equation for the nori85) we then have
G=[T (W ntnaen(n)|WHrnsnararn(n))
n

X
LETUNMIA VNSRS T8 VAR VT

2
:H 5)\”)\;]5#”#['15)\ \ :22M . (48)

) ’
n+atn+a Mn+bfnip

The latter equation has been derived with allowance for the

relation §,,:9,,0,/\'= S\’ -

We now calculate the expected vaILQdfls(n)sj(n
+r)|¥). If nodesn and n+r are not nearest neighbors,
(¥|s(n)-sj(n+r)|¥) decomposes into the product of the
expected values

([s()-5(n+n)|w)
= 2MEBpN 0 ()| () W)
X(‘I’)‘m”/ﬁv/upm(n-i‘ r)|sj(n+ r)|\lf”"”"”"’3"(n+ r))
X Byr1 Bt Byt Bppr Sy Sy Sy S =0. (49)

Consequently, foe=— /4 all the correlation functions at

Dmitriev et al.

27
(s3(1)-s1(2))=~ 55

It follows from Egs.(51) that

2 (s

ij=1

3
1)-§(2))=-7,

as in the case of independent singlets=(w/4). It can also
be shown that all the correlations functions at one node are
equal to zero.

In order to write the cell Hamiltoniatd, , in explicit
form for a= — w/4, we introduce the notation

‘I1=31(1)+sz(1)+s4(1), s =85(1),
L=5(2)+53(2)+4(2), [|S2=51(2),

52
‘h1:|1'31+|2'52a (52
ho=l-5+1;-5,.

Accordingly, choosing\ =1 (k=1,50), we can write
the cell HamiltoniarH , , in Eq. (26) in the form

Hy o= Pya(11) Pya12) P1(S1+ ) + Paiofl) Paiafl2) hig
+ Paiall1) P1jal2)ha+ Pyyol1) Paof ) hs, (53
where

. 207 49 3, .1 -
37256 T ga 2t gglt et (s ) (ily)

15h 1
TEah 3

—14h%(1;-1,)%+h.c],

h2+i 6hy(l1-1,)+4h2(14-1,)
2 64[ l( 1712 1( 1°12

h—3 ! 1| ! | | h
=1 g ety 1'Sz+z[(1'51)(1-52)+ .cl,
h_3 7
5=4 g et

1

4

1
l2 s+ Z(I2~52)(I2~sl)+h.c.}.
(54)

The cell HamiltonianH; 3 has the same forns3) but

non-nearest neighbor nodes are equal to zero. But if nedesyith a change of notation according to Fig. 3:
and n+r are nearest neighbors, the corresponding correla-

tion function assumes the form
(Pls(1)-5(2)|W)
= 22T (1) [5(1) [ WMD)

nom_n

><<’\I/}\WIMWVWPW(2)|%(2)|’\I,)\/Ilu vp (2)>
(50

X gv)\"gv')\/” 5}\)\/ 5##/ 5ppl 5#/1#/// 51///,//// (Sp/lp//l .

The exact calculation of the latter expression yields the fol

lowing results(Fig. 3J):

25 . .
(Si(l)-sj(2)>=—7—68, i=1,2,4, j=2,3,4,

15
(8(1)-51(2)=(5(1) §(2))= ~ 5, (51

S1=%4(1),

|I1=sl(1)+sz(1)+ss(1), [ 55

L=51(3)+53(3) +54(3), [$=%(3).

Of special interest is the case corresponding to
a= * 7/2. Unfortunately, exact expressions for the correla-
tion function cannot be obtained in this case, but the Hamil-
tonian can be written in explicit form. Since the node spinor
WMrP does not contain a quintet component for + /2,
the wave function of two nearest neighbor nod24) and

(25 will lack a component withS=3. A more detailed
analysis shows that 19 multiplets are present in the wave
function of two nearest neighbor nodes. In this case, there-
fore, the cell Hamiltonian has the general form

51

Hyo= gl MPE2. (56)
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For a definite choice ok, in Eq. (56) the cell Hamil-
tonian assumes the form

H1o=Pa(l1+5) + Pa(la+8) + Pyyol) Pryol12) Py
X(S1+ ) + Paall1) Pl 12) Pyl l1 + 51+ 57)
+ P3al[2) P11 Pl + 5+ 51), (57

where the notationéZ) and (55) are used for nearest neigh_ FIG. 9. Example of a graph corresponding to the wave fundii@

bor nodes along the horizontal and along the vertical, respec-

tively. o . .
Our results suggest that the spin correlation functions Each cell Hamiltonian is the sum of the projectors with

decay exponentially with a correlation lengthl for an ar- arbitrary positive coefficients onto all multiplets possible in

bitrary parametew. We also assume that the decay of thef[he corresponding two-node subsystem except those present

correlation function is of the exponential type for the 14-M the constructed wave function:

parameter model as well, i.e., for any choice of node spinor i

PAre This assumption is supported in special casgshd Hij= zk: APy (59
partition of the system into one-dimensional chains with ex-

actly known exponentially decaying correlation functions; 2 Then we haveH, ;| ¥')=0 and, accordinglyH|¥s)=0.

the two-dimensional AKLT model, for which the exponen- ~ Consequently¥s is an exact ground-state wave func-
tial character of the decay of the correlation function hag!on.

been rigorously provetf Further evidence of the stated as- ~ We note that any two lattice nodes can be joined by two,
sumption lies in the numerical results obtained for varioughree, or more bonds, because this does not contradict the
values of the parameter in the one-parameter model. principle according to which the wave function is con-
structed. Moreover, the general construction principle of the
wave function is valid not only for translationally symmetric
lattices, but for any graph in general. As an example, let us
consider the system shown in Fig. 9. The wave function of
this system has the form

5. GENERALIZATION OF THE MODEL TO OTHER TYPES OF
LATTICES

The wave function(7), (19) can be generalized to any W =W (1) Prer 1Py 2)Pr2r2y(3) WHeT2(4)
type of lattice. The general principle of wave function con-
struction for a system of spins 1/2 entails the following: X090, 9,9p19,9 7,7, (60)

i D dEach bonq or:ha glvhe?hlatncle hai asg,ozmated V}"th Itﬁnd describes a system containing ten spins 1/2.
WO Indices running through the vaiues 1 and 2, oné at éach ¢ o given lattice has dangling bondas occurs for

end of the bond. . I . ) systems with open boundary conditipnthe resulting wave
. 2) chh_bond has assomated_ with it a metric spmgr function represents a spinor of rank equal to the number of
with the indices of the ends qf this bond. L loose ends. The ground state of this kind of system is there-

3) Each nodg of the latticéa node. belng_lnterpreted fore 2'-fold degeneratéwherel is the number of loose ends
he_re, of course, in the Same sense as in S)evmtﬁ: m ou.t- For an open one-dimensional chain, for example, the ground
going ponds has assouateq with it axh-rank spinor with state corresponds to four functions—one singlet and three
the indices of the bonds adjacent to the node. triplet components. For higher-dimensional lattices this de-

d4) Trfhwf“f; funth'jon”'S ﬂ:? pro'duct of all spinors at generacy depends on the size of the lattice and increases
hodes of the fattice and all metric Spinors. exponentially as its boundaries grow.

It is obvious that each index in the formulated wave
function is encountered twice, so that the wave function is
scalar and, hence, singlet. 6. CONCLUSION

The wave function so constructed describes a system in  \we have proposed a method for the construction of an
which each lattice node contains as many sgind/2 as the  exact wave function for a class of two-dimensional spin
number of bonds emanating from it. models. In general this model depends on 14 parameters, and

To completely define the wave function, it is necessaryits Hamiltonian is written as the sum of the Hamiltonians of
to determine the specific form of all node spinors. The coefnearest neighbor spin quartets. The exact ground-state wave
ficients that determine their form are then parameters of thgnction of the total system is also the exact wave function of
model. each cell Hamiltonian. Since 20 of the 70 multiplets of two

The Hamiltonian of such a model is the sum of the cellnearest neighbor quartets are present in the exact wave func-
Hamiltonians acting in the spin space of the subsystenfion, the cell Hamiltonians are the sums of the projectors

formed by the spins at two mutually coupled nodes: with positive coefficients onto the other 50 multiplets. These
coefficients are the excitation energies of the corresponding
H :2 Hij - (58 multiplets. Different values of the coefficients correspond to

aP different Hamiltonians. In this case, however, the ground-
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state wave function itself and the spin correlation functions

in the ground state are identical for all Hamiltonians. This ‘I’ZAZV cOvuwp)- T @M, (A5)
means that the ground-state wave function, as defined by e .
Shastry and Sutherlartfljs superstable. where the summation is over th&# indices\;, u;, v, p;,

We have carried out Monte Carlo calculations of thec(Auvp) denotes coefficients that depend on these indices,
spin correlation functions in the ground state for the speciagnd ®*i#i”i?i(j) are arbitrary fourth-rank node spinofm
case of a model that depends on one parameter. For all vageneral, spinors at different nodes can ditfer
ues of the parameter the spin correlation functions decay We require that the wave functiofA5) obey the cell
exponentially with distance despite the complicated depenequation
dence of the correlation functions of nearest neighbor spins _

S . Hynia ¥)=0. (AB)
on the model parameter. It is justifiable to expect the spin '
correlations to decay exponentially in the general 14- By the construction of the singlet wave functi¢Al),
parameter model as well. which is matched by the cell Hamiltoniath, .. ,, any wave

In closing, we are pleased to acknowledge Prof. M. Yafunction at node® andn+ a that satisfies conditiofA6) is
Ovchinnikov for helpful discussions of the problems treateda linear combination of the 64 functions contained in the
in the article. This work has received financial support fromexpression
the Russian Fund for Fundamental Resed@tants No. 96-

\II}\n/’“nVnPn(n)\lf)\n+a//'n+a”n+apn+a(n+a)gv N , (A7)
03-32186 and No. 97-03-337R@and from the Program for ntn+a
Support of Leading Scientific School&rant No. 96-15-  because the cell Hamiltonidt,, ,,. o by definition is the sum
9749). of the projectors onto all multiplet§ ¥ n#n*nPn(n) and

Phratnrantafnta(n+a) are definite node spinors occurring
in the wave functionfAl)]. We note that these 64 functions
APPENDIX can be linearly dependefds is the case, for example, for the
two-dimensional AKLT modsl
In Sec. 3 we have constructed the singlet wave function  Thus, the general form of the wave function satisfying
Eqg. (A6) can be written

\I}S:];'[ q})\nﬂnvnpn(n)g"n)‘n+agpn“n+b (Al)
_ _ ¥=2 cO\uvplvaknia)d, s, P oaon(n)
for a system of M2 spinss=1/2 on a square lattice. The Apvp
following Hamiltonian was specially chosen for the resulting
wave function: XWhniatncaniabnia(nta) [ ®NHvi(),
j#£n,n+a
H=2 Honat 2 Hopeo, (A2) (A8)

_ _ _ wherec(\ uvp|v,\,+,) are coefficients that depend on the
for which the wave functiorfAl) is the zero-energy ground indices\;, u;, v;, p; exclusive of the indices,, and X, ,,
state: and®i#i%iPi(j) are arbitrary node spinors.

H|W)=0. (A3) Cgmparing Fhe function§A5) and (A8), we dedupe the
_following conditions that must be met by the functiohb)
We now show that the ground state of the system igg gptain the general form of the wave function satisfying
nondegenerate, i.e., the wave function satisfying B&8) is Eq. (AB):

unique. o _ 1. The spinors at nodes andn+ a must coincide with
Inasmuch as the HamiltonigA2) is a sum of nonnega- the node spinors of the wave functioAl):
tive definite cell Hamiltonians, any function satisfying Eq.

(A3) must satisfy all the cell equations P nkn?nPn( ) = PAokinnPn(),
H; J|\I}>:O (A4) (I))‘n+a/’“n+a”n+apn+a(n+a):\[f)‘n+al“n+a”n+apn+a(n+ a.
’ A9
This means that Eq$A3) and (A4) are equivalent. o (A9)
We prove the nondegeneracy of the ground state of the 2. The coefficient(\ uvp) have the form
Hamiltonian(A2) as follows. We first wpte the g_eneral form c(\mvp)=Cc(Apvp| Vn?\n+a)gvn>\n+a- (A10)
of the wave function for the system in question. We then
determine the general form of the wave function satisfying  From the equation
one of the cell equation®4). Making note of the conditions
quation®a). Making Hon 6l W) =0 (A11)

imposed on the general form of the wave function by each

cell equation and, at the same time, simultaneously satisfyingge deduce analogous conditions on the general form of the

these conditions for all the cell equations, we obtain the genwave function(A5):

eral form of the wave function satisfying all the equations B abnnPn( ) = W hnnvaen( )

(A4) and, hence, satisfying the total Hamiltonigk2). '
Any wave function of the given system can be written in ~ @*n+b4n+b?n+bPtb(n+ b) = Wrn+bintb¥n+bPnrb(n+ b)),

the form (A12)
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A superconducting transition in the temperature dependence aflifpane resistivity of
underdoped YBgCu;05 ., Crystals in the rang& <30 K has been investigated. Unlike the case
of samples with the optimal level of doping, the transition width increased insignificantly
with magnetic field, and in the range< 13K it decreased with increasing magnetic field. The
transition pointT.(B) was determined by analyzing the fluctuation conductivity. The

curves ofB.,(T) measured in the regioh/T.=0.1 did not show a tendency to saturation and
had a positive second derivative everywhere, including the immediate neighborhood of

T.. The only difference among the curves®f,(T) for different crystal states is the scalesTof
andB, so they can be described in terms of a universal function, which fairly closely

follows Alexandrov’s model of boson superconductivity. I®99 American Institute of Physics.
[S1063-776(99)02301-X]

1. INTRODUCTION they assumed, cause pair breaking and effectively suppress
superconductivity neaf.. The tendency to magnetic order-
The nature of high-temperature superconductivity ising at lower temperatures results in a lower spin-flip scatter-
presently one of the most interesting subjects of the solidng amplitude, thus enhancing superconductivity. The pres-
state physics. An important topic of research in this field isence of magnetic impurities is a common feature of HTSC,
the temperature dependence of the upper critical B since current carriers in most of them are due to doping,
In conventional (low-temperaturg superconductors, in ac- which generates magnetic defects at the same time.
cordance with the BCS theory, the cuiBg,(T) is described Spivak and Zhotstudied the role of Landau quantiza-
by a universal functiorbgcg(t) in terms of reduced vari- tion combined with a random potential. The quantization
ables: the temperature is scaled by the zero-field transitioads to a higher density of states on Landau levels, whereas
temperaturet=T/T, and the magnetic field is scaled by the the random potential brings to the Fermi level Landau sub-
product of T, and the derivative ofB,(T) at Tc: b levels with opposite spins at points close to one another in
=B/[To(—dB,/dT)1-1_]." The functionbgc(t) is linear  space. In this case, the random potential must satisfy two
in the neighborhood of ; and saturates tb=0.7 att=0. In  opposite conditions: its variation over the coherence leggth
high-temperature superconductdidTSC the behavior of should be larger than the Zeeman splitting, on the other
Be(T) is radically different. In TJBaCuQs? and hand, scattering by this potential should not wipe away peaks
BiZSrZCuq,3 films, and in K JBa, BiO; single crystal$®>a  in the density of states. The HTSC structure favors both
positive second derivative and a sharp increasBy{T) at  these conditions: fluctuations in the concentration of dopants,
low temperature have been detected. Similar properties ofhich are at the same time scattering centers, should occur
functionB.,(T) have been observed in other HTSC systemsgven in high-quality crystals, but these scatterers and current
namely, in YBa(Cu,_,Zn,)30s« With a critical tempera- carriers are separated in space.
ture lowered by the strong scattering and It is possible that there are more fundamental causes of
Smy gsC& 15CUO, — with n-type conductivity’ the peculiar shape d@.,(T) curves that can be put down to
HTSC is not the only class of materials where the uppeman exotic nature of superconductivity in HTSC. One example
critical field does not follow the BCS universal function is the “bipolaron” or, in a more general approach, the “bo-
bgc(t). But, as concerns HTSC, such deviations are probson” model of superconductivity suggested by Alexandrov
ably present in all materials of the family, and magnitudes ofand Mott'° The model assumes that paicharged bosons,
these deviations are enormouSTherefore, there is every e.g., bipolarons are preformed, and the superconducting
reason to seek fundamental causes of these deviations, whittansition consists in Bose-condensation of these pairs. In the
are general for all HTSC. presence of a random potential, the curveBg§(T) has a
Several models have been suggested. Ovchinnikov angositive curvature. The conventional superconductivity in a
Kresirf focused attention on magnetic impurities, which, asFermi liquid can transform to the boson superconductivity if

1063-7761/99/88(1)/9/$15.00 148 © 1999 American Institute of Physics
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the electron—phonon coupling is strong and the carrier derare separated by lines of second-order phase transitions:
sity is low. Again, HTSC materials are good candidates foB.(T) between the Meissner and mixed phasesBgdT)
realization of such a scenario. Their carrier concentration ibetween the mixed state and normal metal.
lower than in conventional metals and drops further with  Beyond the mean-field approximation, thermal fluctua-
decreasing doping level, whereas the coupling constarttons of the order parameter slightly change the phase dia-
A=1. gram configuration. Now, it contains a region of “vortex
Abrikosov suggested for HTSC a model whose centraliquid,” where fluctuations change largely the order param-
component is a saddle-like singularity in the electron speceter phaséwhich can be interpreted in terms of free motion
trum. This model predicts, in particular, a positive curvatureof Abrikosov’s flux lineg, and a region of critical fluctua-
of the B¢,(T) curve'! because the problem becomes effec-tions close toB.,(T), where the order parameter amplitude
tively one-dimensional due to the saddle point; as a resulffjluctuates and its mean value changes rapidly with the tem-
the magnetic field's capability of destroying superconductiv-perature or magnetic field intensity. There are superconduct-
ity is limited considerably. In the absence of the paramaging fluctuations aboveB;,(T) also, but their amplitude is
netic limit, the model yields the divergent functi@y,(T), small and decreases away from the lindg3gf(T). The phase
but if the paramagnetic limit is taken into account, the criti- transition to the superconducting state with a long-range or-
cal field is limited to a finite value. der established occurs on the boundary between the vortex
The experimental data accumulated over recent years atigluid and vortex latticdmelting line B.,(T)], whereas the
insufficient for making an ultimate choice of one of thesecurve ofB.,(T) determined in the mean-field approximation
model. Further research is needed, and the present paper islefines the line of a crossover from the normal metal, where
step in this direction. We present an investigation of the efthe order parameter fluctuation amplitude is low, to the vor-
fect of a magnetic field on the resistivity of YBau;Og,x  tex liquid, where the magnitude of the order parameter is
single crystals at doping levels below the optimal one. Thealmost unity4~1¢
aim of this work was to measure the temperature dependence In conventional superconductors, the regions of critical
of B, in this material atx such thatT.<30K and derive fluctuations and vortex liquid are quite narrow and essen-
from these data changes in parameters that coBrolvhen tially unobservable. The melting linB,(T) coincides with
T.—0. B.o(T), therefore, the mean-field approximation adequately
The paper is organized as follows. Section 2 presentdescribes the phase diagram. In HTSC the situation is differ-
basic theoretical concepts concerning the superconductent. Owning to the high critical temperature, small coherence
phase diagram in a magnetic field and the behavior of conlength, and high anisotropy, fluctuations play a more impor-
ductivity around the superconducting transition point; theytant part, and the vortex liquid phase occupies a considerable
are essential in the analysis of experimental data. Section i2gion of the phase diagram, &, and B, are separated.
describes sample fabrication techniques and experiment&8ince fluctuations broaden features of field dependencies of
procedures, Sec. 4 reports on experimental results. Theeansport and thermodynamic properties at p@gi, it is
curvesp(T) and their evolution induced by the magnetic most difficult to determine this point in experiment. None-
field are discussed in Sec. 4.1. The derivationBg(T) theless, the value d.,(T) is still very important since this
from resistance-versus-temperature data for HTSC has rés the parameter that controls the behavior of thermodynamic
mained a controversial issd&l3therefore this topic is given quantities in the region far from the line of transition, where
special treatment in Sec. 4.2. Since the transition broadeninifpe mean-field approximation is valid.
induced by magnetic field is insignificant, qualitative conclu- In materials with strong pinning, the phase diagram is
sions concerning the behavior Bf,(T) are not affected by further modified: the pinning destroys the order in the vortex
the specific routine employed in determination of the superiattice and transforms it to a vortex glass. The melting line is
conducting transition point. Nonetheless, in determiningreplaced by the “irreversibility line”B* (T), above which
B.»(T) quantitatively, we analyzed the fluctuation conduc-vortices are depinned by thermal fluctuations and move
tivity in the normal state as a function of temperature. Secfreely even at very low current densities, which results in a
tion 4.3. discusseB;,(T) derived from experimental data: finite resistivity and reversible dc magnetization. Below
the curvature ofB.,(T) curves proved to be positive B*(T) vortices are pinned in the low-current limit, and the
throughout the available temperature range, including thenagnetization curve shows a hysteresis.
close neighborhood df ; no signs of saturation in the low-
temperature range have been detected; the experimental data

are compared with existing models. 2.2. Resistive transition
In high-temperature superconductors with optimal dop-
2. BASIC THEORETICAL CONCEPTS ing, curves ofp(T)|g form a fan with a common transition

onset point, so the positions of the transition onset are almost
independent of the magnetic fieltil’ The drop in the resis-
The phase diagram of a type-ll superconductor in theivity around the transition onset is controlled by the contri-
B—T plane in the mean-field approximation contains abution of superconductive fluctuations to the conductivity.
Meissner region, where magnetic field is fully ejected from aThe characteristic field of fluctuation suppressionBis,
sample, a mixed state region, where a lattice of Abrikosov’shence the shift of the transition onset should follow the func-
flux lines exists, and a normal metal region. These regiontion B, ,(T). On the low-temperature side, the resistivity

2.1. Phase diagram
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should vanish when the vortex motion is frozen. Qualita-of block structure and shaped as plates 20 tou40 thick
tively, the line on theB—T phase diagram where the vortex with areas of several square millimeters. After oxygenating
mobility becomes significant is the “irreversibility line” at 500 °C, they had’ ;~90-92 K and fairly narrow resistive
B*(T). Thus, the resistive transition is confined by the linessuperconducting transitions withT <1 K.
B.»(T) andB*(T) and is associated with the vortex liquid In YBa,C3;04,, current carriergholeg are generated
region on the phase diagram so that the fan-like appearande CuO, planes as a result of capturing electrons in layers of
of resistivity curves is due to broadening of this region withCuQ, chains. The hole density depends on the oxygen con-
the magnetic field while the line &.,(T) is almost vertical. tentx and configuration of oxygen atoms in chains in GuO
The breadth of the vortex liquid region, hence the trandayers. Consequently, the carrier density in ¥8e;04. .
sition width, is determined by the relation between pinning(along with the superconducting transition temperatasn
and fluctuations. The vortex depinning is favored by thebe varied by two methods: changing the oxygen content and
small coherence length, high temperatures, and weak cou- varying its ordering in CuQlayers.
pling between neighboring superconducting layers of EuO The technique for changing the oxygen content is the
i.e., by the high anisotropy. Variations in the doping levelhigh-temperature annealing, and it allows one to produce the
(carrier densityn) to both sides from the optimal dopimg,;  whole range of states from antiferromagnetic insulator to op-
lead to lowerT. and larger¢. On the other hand, the anisot- timally doped superconductor. The annealing temperature at
ropy is stronger at lower doping and weaker at higher doping given partial pressure of oxygen controls the oxygen con-
levels. The resistivity curves of overdoped HTSC samplesent in a crystal and is a convenient technological parameter
with high carrier densities and low anisotropy are similar tojin processing superconducting sampteg order to reduce
those of conventional superconductors with strongthe oxygen content te=0.37-0.47, we annealed crystals in
pinning*® air at 700—800 °C and then quenched them in liquid nitrogen

The difference between over- and underdoped states wag prevent exchange of oxygen with the atmosphere during
demonstrated by comparing 18SrCu0, samples with  cooling.

differentx.'® Whereas a magnetic field &=8 T broadened The second technique allows us to vary the carrier den-
by 15-20K the resistive transition in an underdoped samplgity over a relatively narrow interval by changing the average
with x=0.08 andT.~30K, the transition curve in an over- |ength of oxygen chains at constant>2¢In chains of finite
doped sample witx=0.20 and approximately the sarile  |engths, there are oxygen atoms peg+1 copper atoms,
was shifted by magnetic field without changing its shdpe. hence, one hagyt+ 1)/q electrons per oxygen atom. For this
This observation was confirmed by other research&$, reason, oxygen atoms in shorter chains are less efficient in
who also reported that decreasing the oxygen content igapturing electrons from CuOplanes. The average chain
YBa;CuO6 4« thin films and single crystals considerably en- |ength can change owing to the high diffusion mobility of
hances effects Originated from vortex motion, in partiCUlar,oxygen in CuQ |ayers at the room temperature and above.
increases transition broadening in the magnetic field. A”Longer chains have lower energy, but they contribute less to
these experiments, however, used samples With40K,  the entropy, which makes them less preferable at high tem-
and it remained unclear whether this tendency should persigleratures. The balance between these two factors determines
in the range of lowT.. the average chain length in equilibriuthence, the number
There is an alternative interpretation of the resistive tranof h0|eg as a function of temperature. The relaxation time
sition in cuprates, which attributes most of the change in tn%trong|y depends on temperature, SO rapid Coo”ng freezes the
resistivity to a phase transition between the vortex liquid anthxygen configuration, thus fixing the carrier density. In real
vortex lattice(vortex glass at Bp(T).**"??In this case, the experiments, we heated crystals to 120—140°C and then
resistive transition is decomposed into a resistivity jump onquenched them in liquid nitrogen. This procedure notably
the B,,(T) line [well below B,(T)] and a crossover on line reduced the number of holes in the sample, hence lowered
Bc2(T),?* which can produce only slight changes in resistiv-T_ . After that samples could be stored in liquid nitrogen for
ity. indefinitely long times without any changes whatsoever. If a
The high conductivity in the normal state of overdopedsample was exposed to the room temperature, the carrier
cuprates might in fact mask the transition from the normal toconcentration increased gradually owing to oxygen coagula-
vortex |IC]UId Staté. But Changes in transport characteristicstion in |0nger chains. This aging process could be monitored
aroundB,, are evident even in high-quality YB&UsOs.x  continuously by measuring the sample resistance at a con-
crystals with optimal doping and very weak pinnfigThey  stant temperature and interrupted at any moment by cooling
should be the much more notable in underdoped sampleghe sample, thus we could obtain any intermediate value of
whose conductivity in the normal state is essentially lower. T_. The aging of a sample at the room temperature for sev-
eral days returns it to its initial equilibrium state. Since all
restructuring processes in the oxygen subsystem proceed at
relatively low temperatures, this method allows one to obtain
YBa,Cu;Og,  Single crystals were grown by slow cool- a sequence of sample states with minimal differences in con-
ing the melt containing 10.0 to 11.4 wt.% of YB2w,Og,,  figurations of defects and pinning centers.
and eutectic mixture of 0.28 BaO and 0.72 CuO as a solvent All in all, we have studied three crystals at several car-
with subsequent decanting of the residual flux. For our exsier densities in each. The sample parameters are listed in
periments, we selected single crystals without visible signgable I. The different crystals are numbered 1 to 3, their

3. EXPERIMENTAL
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TABLE I. samples with loweiT, the effect of magnetic field on the
resistive transition is radically different, and in this publica-
tion we concentrate on these effects, namely, the behavior of
YBa,Cu;04, « Samples in states with.<30 K (samples 1a,

Samples
Sample  poom/ pso K X Degree of quenching T., K Bg., T

. 5 0.43 _qi’e”Chg_dt 126655 33;08 2a, 3a, and 3b in all quenching statek these samples,
a : n 2323 ate st gg  Magnetic field shifts the transition without a notable broad-
2a 8 0.41 aged 19 28 e_ning(Fig. 1), which indicat_e_s that the effect of vortex mo-
2b 10 0.47 quenched 385 120 tion on the shape of transition curve no longer dominates.
aged 445 240  Nonetheless, the shape of the transition curve is affected by
sa 3 ~0.37 quenched 0 - the magnetic field, and one can see on curves of temperature
aged 6.3 0.61

derivativesdp/dT plotted on the right of Fig. 1 that these
changes are nonmonotonic. Since the normal state resistivity
is almost constant with temperature, the peak amplitude on
the derivative curve is inversely proportional to the resistive
states with different oxygen contents are labeled a and b, artdansition width. These graphs clearly show that, irrespective
the quenching states are referred to as itquenched, itintermef T, (<30K), the transition width is maximum at about
diate, and itaged. The ratio between resistances at the rooti8—14 K. If the zero-fieldT, is higher, the transition first
temperature and 50K, when the free path is largely conshifts to lower temperatures with magnetic field and broad-
trolled by defect scattering, is a characteristic of crystal puens(Fig. 18. Then, below 13-14 K, the transition narrows
rity. This parameter of sample 2 is a factor of about threeconcurrently with its shift to lower temperatures. Tf is
higher than in samples 1 and 3. Paramd&gy will be dis-  initially lower than 13-14 K(Fig. 1b and 1 the transition
cussed in Sec. 4.3. is narrowed by magnetic field concurrently with its shift to
We measured the resistance in #ieplane using a four- lower temperatures from the start, and the slope of the tran-
terminal circuit. Since YBgCu;Og .,  Crystals with low oxy-  sition curve in magnetic field becomes steeper than at zero
gen contents are highly anisotropic, it is very important thafield.
the current be uniformly distributed over the sample thick- The comparison between samples la and 2a demon-
ness, so that only one component of the resistivity tensor istrates that the nonmonotonic change in the transition width
measured. To this end, the current contacts were fabricatesdith magnetic field is a reproducible property and is little
over the entire surfaces of two opposite crystal faces. Thaffected by the sample quality. The superconducting transi-
contacts were made by a silver paste and fixed by annealingpn temperatures of these two samples were driven to one
before all thermal manipulations designed to vary the holevalue by annealingFig. 1b and 1§ but their parameters in
concentration. The resistance was measured by the standatg normal state were notably different. Sample 2a contained
technique using a nanovolt-range lock-in amplifier at 23 Hzless impurities and structural defects, as a result, its resistiv-
The probe current was weak enough to ensure the lineaty aroundT. was twice as smal(Fig. 1), it dropped more
regime and avoid overheating even at the lowest temperaapidly in the process of cooling from the room temperature
tures. The uncertainty in the geometrical factor restricted théo 50 K (Table ) and showed a smaller increase in the range
accuracy of absolute measurements of conductivity to 10-ef lower temperatures. Nonetheless, irrespective of all these
20%, nonetheless, note that the geometrical factor of eadtffifferences, both the transition shift rate in magnetic field
sample was the same in all conducting states. and the evolution of transition curves of these samples are
Most of experiments were performed in a cryostat with asimilar. Narrowing of the resistive transition in an under-
3He pumping system, which allowed us to vary the temperadoped YBaCu;Og., , With increasing magnetic field in this
ture between 0.3—300 K. At temperatures of 0.3—1.2K the temperature range was detected by Seietel.?® but, since
sample was immersed in liquitHe, at higher temperatures it their measurements were presented in a different form, it is
was in the’He atmosphere at a pressure of several torr senwdifficult to compare them directly with our results.
ing as a heat-exchange gas. The temperature was measured Such a behavior of transition curves is observed for all
by a carbon resistance thermometer calibrated by a referensamples withT.=6 K. In states with lower transition tem-
platinum thermometer/He vapor pressure, and cerium— peratures, we were not able to achieve sufficiently narrow
magnesium nitrate in appropriate temperature ranges. Theansitions at zero magnetic field to measitiggand transi-
magnetic field of up to 8.25T was applied along thaxis.  tion width. Therefore, the measurement data for sample 3b
Sample 3b in the aged state with Idw was tested in a will be given and discussed separately in Sec. 4.3.
dilution refrigerator at temperatures down to 30 mK and
magnetic fields of up to 14 T.

3b 3 ~0.37 aged ~3 -

4.2. Derivation of B,(T) from resistance measurements

4. RESULTS The absence of the notable transition broadening in mag-
netic field in YBgCu;Og, , Samples with lowT . indicates
that, unlike samples witlT .=30-35K, they have a nar-

In our experiments on samples with,=30-35K rower region of the “vortex liquid” on the phase diagram.
(samples 2b guenched and agesle record fans op(T)|g ~ The transition width, however, is not so small that it could be
curves similar to those reported by other authdrd. In neglected in determininB.,(T). Since the poinB,, is not

4.1. Temperature dependence of resistivity
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marked by a sharp feature on curves¢T), there is a good 1 e? .
reason to determine this point by fitting a theoretical curve ~ 9fn=7g74€ 2

describing the crossover between the normal metal and vor-
tex liquid to the experimental data. In developing this ap-
proach, let us consider the sample conductivity as a sum of In oxygen deficient crystals, the anisotropy is up to
the normal and fluctuation components:(T)=o,(T) (5—10)x 102 therefore Eq(2) is a fortiori valid through-
+ o4 (T). out the temperature range in question, except the neighbor-
The fluctuation conductivity o in quasi-two- hood of T,.
dimensional systems in zero field is usually described by the There is no consistent theoretical description of
Lawrence—Doniach formula: o1 (T,B) in nonzero magnetic field for arbitraB.,(T). Ul-
lah and Dorse¥f analyzedo, in a system with strong fluc-

2¢:(0) tuations in magnetic field and suggested a scaling expression

d for the fluctuation conductivity, which is often used in de-
scribing the resistive transition and determiniBg,(T) of
whered is the interplane separation. Friedmainal 2 show  cuprate superconducto$:®! Since their approach is based
that, even in analyzing optimally doped YR2u,O0g ., , Crys-  on the mean-field approximation and assumes a linear depen-
tals with the resistivity anisotropy no higher than 30—100,denceB.,(T) nearT., it does not apply wheiB:,(T) is
one can neglect the factor in brackets which takes into acstrongly nonlinear(It will be shown below that this is the
count effects of the third dimension and use Aslamazov-case in our samplesNonetheless, in the region well above
Larkin’s expression for two dimensions: T.(B) (eg=0.1), where Gaussian fluctuations dominate, a

—-1/2 _ T L
’ e_n-l—_v ( )

c

1 €?
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gk 1.0
0.8 FIG. 2. Characteristic points of the superconduct-
6r ing transition in sample 2a plotted {r) B— T and
(b) p—T planes(the resistivity is normalized to
0.6 function p,(T) in Eq. (4), which was used in de-
termination of the fluctuation conductivjty(open
4r circles “irreversibility line,” p=5uQ-cm;
0.4 (squarey peak of derivativedp/JT; (full circles)
B.,(T); (triangles “transition onset,” doy /9T
=10 (Q-cm) YK.
2 =
0.2
0 0

formula similar to that suggested by Aslamazov and LarkinThis function with three fitting parameters is used in process-
can be used: ing our experimental data.
By approximating the conductivity in zero magnetic
In ———, (3) field by a sum ofo,, from Eq. (4) and oy, from Eq. (2), T,
Te(B) andd being fitting parameters, along witl, 8, and y, we

in both zero and finite magnetic fieldsee Ref. 16 and ref- obtain reasonable values=8-15 A, which are in fair agree-
erences therejn Here T.(B) is the functional inverse of ment with the YBaCu;Og,, lattice constant along the
B(T). This formula also assumes, generally speaking, &-axis. This indicates that the Aslamazov—Larkin formula
linear dependencB.,(T), but a possible change in the ex- yields a correct estimate of the fluctuation conductivity in
ponent of this function should lead only to a small systematiaCuQ, layers and its application is justified. The normal con-
shift of the resulting curva¢(B). ductivity is fitted so as to obtain the best approximation of

In contrast to the case of optimal doping, the normalthe fluctuation conductivity throughout the range of magnetic
conductivity in our samples is low, of order ef/7id (Fig.  field. Nonetheless, the uncertainty in the normal resistivity
1), if d is assumed to be of order of the lattice constantyyas quite considerable. It turned out, however, that calcula-
11.7A. Simple estimates based on the Aslamazov—Larkifions of the transition temperature are little affected by ad-
formula (2) with a reasonable value af indicate that the mjssible variations ino,(T). The resulting uncertainties in
contribution of fluctuationsg, should be several percent ine transition temperature are shown in Fig. 2.
of o, even ateg=0.5. This makes determination of,(T) This procedure enable us to deriBe,(T) in the mean-
more difficult. The difficulties are exacerbated by the factfig|g approximation from our measurements. Since the re-
that the normal ;tate resistivity has a minimum in the regiony iting curve ofB.,(T) is nonlinear and it casts doubt on the
of 30-40K and increases at lower temperatures. Thereforgy,,jicanility of Eq.(3), we deem it necessary to demonstrate
we decide to sele priori the functionoy(T) with several o o the qualitative level, the shape of Big(T) curve is
fitting parameters. The fitting to experimental data is P€hot affected by subtleties of the data processing, owing to the

formed by varying all parameters in both (T) and ; o ; :
o(T).2 This procedure could hardly produce sensible re_absence of considerable transition broadening. Figure 2a

: . . shows the curve 0B ,(T) for sample 2a, along with its
sults if each curve(T) were described by a different set of ther characteristic fields, namely, the “irreversibility line”

parameters. Fortunately, the magnetoresistance 03 . B o :
. ) . . etermined ap=>5 w{)-cm, positions of the peak of deriva-
YB2;CusO 4 Crystals in the discussed region of fields and,; dpldT, and the line of “transition onset,” which was

temperatures is negligible in the normal state, i.e., the shapgefined as a point werdo,, /aT=10% (Q-cm)-YK. These

of o,(T) is constant with the magnetic field.
on(T) g lines are plotted in th&—T diagram in Fig. 2a, and Fig. 2b

Our previous investigations of YB&u;Og,, Single " . - ;
crystals near the boundary of the superconducting region oﬁhows positions of these points on the transition curileis

the phase diagrathrevealed that the normal resistivity of not_eworthy that the _values CBCZ_ are fairly C'O?_e to those
such samples af<20K is well described by a logarithmic which would be obtained by defining the transition point at a

function. In a broader temperature range (0.5 K< 150 K) constant resistivity leved/p,=0.8) Figure 2a clearly shows

the conductivity is very closely described by the empiricalth@t all curves in theB—T plane have positive curvature
function throughout the range of studied magnetic fields, including

. . the region of low fields. This leads us to a conclusion that,
on(T)=p, " =[a—BlogT+yT] " (4 even if the data processing procedure yields erroneous values

1
oxc—, where eg=
€B
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fB the t t d d f thi t FIG. 4. DependencieB.,(T) for different samples reduced to the universal
0 c21 € temperature dependence o IS parameter Iﬁmctlonbsc(t) using variable$5). The notation is the same as in Fig. 3. The

qualitatively correct. Our further analysis, however, will be inset plots the parameteB,. (left-hand axi$ and correlation lengt,
based on the values derived from measurement data for thelculated by Eq(6) (right-hand axis
fluctuation conductivity.

4.3. Universal temperature dependence of the upper critical

field

this interval is also positive and all measurement8gf(T)

ferent stategall the states of samples 1a and 2a and the age n be fitted to funct.|or(5). But, since no datq ]‘or Igwer
emperatures are available and the expected critical fields are

state of sample 3are given in Fig. 3. It turned out that the
. very high, the measurements of sample 2b have not been
curves for all the states can be brought to coincidence b
nalyzed in this context.

varying the scales of the magnetic field and temperature, i.e., Functionb,(t) is much different frombgcg(t). First, it

has no linear section net+ 1. This statement relies on Eq.
Bea=Bscdsc(t), t=T/Te, (5 (5), since for eactB.,(T) curve the limited precision allows
one to draw a straight line of a small slope in the region

whereB,. is the parameter characterizing the state lagt) within 1-2 K nearT., but if we consider the samples with
is a universal functiorfFig. 4). Functionb(t) contains an higherT,, this linear region would be more narrow, and the
arbitrary numerical factor. In Fig. 4 paramety, is defined  slope of functionbs(t) att=1 is smaller, which leads us to
as B., at a specific reduced temperature equal for alla conclusion that the universal curve has no linear section
samples, namelyT./2, i.e., the curves ofB;,(T) were neart=1.
brought to coincidence at two points, namely,tatl and Second b continues to rise as—0. Figure 4 shows
t=0.5. The values 0B for different states are listed in this tendency in the region down te=0.1. In order to test
Table 1 and plotted in the inset to Fig. 4 as a function of thehe range of lowert, we investigated sample 3b with
zero-field transition temperature. These points lie on ond.~3 K at millikelvin temperatures. Its transition curve is
smooth curve, even though they are derived from measurdeo wide to determine quantitativellj, and B.,(T). None-
ments of the three different samples. The characteristic scatbeless, the measurements yield important qualitative infor-
of magnetic field decrease&@ccordingly, the coherence mation. Figure 5 shows the sample resistance versus mag-
length increasgswith decreasing doping level more rapidly netic field obtained at temperatures of 50 and 36 mK
thanT,, i.e., Bs. is a superlinear function of .. This may normalized to the resistance at a magnetic field of 14T. It is
be the main cause of the narrowing of the vortex-liquid re-clear that a drop in temperature shifts the magnetoresistance
gion in theB—T phase diagram. As a result, YB2u;,04,,  curve to lower fields, i.eB.,(T) still grows with decreasing
crystals with a high degree of underdoping with=30K do  temperature even 8t/T.~0.01. We can obtain the follow-
not display notable broadening of the resistive transition duéng estimate: on the leved/p,=0.8, which approximately
to magnetic field. corresponds td.,(T) according to Fig. 2b, the magnetic

The functionB,(T) was measured on sample 2b in afield increases by 0.6 T; this yields a derivative of 40 T/K.
very narrow temperature rang&/T.=0.9, owing to the Unfortunately, we cannot plot these points in Fig. 4 for the
limit on available magnetic fields. Its second derivative inlack of T, andBs.

Measurements oB.,(T) in three samples and five dif-
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This observation oB,(T) increasing even at very low
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functional based on his model, which leads, naturally, to a
linear dependence &, in the first order in t.

The nonlinearity ofB.,(T) nearT, follows at present
only from the model of bipolaron superconductivfty®
which vyields positive curvature oB.,(T) for a charged
Bose-liquid in a localizing potential, this throughout the en-
tire temperature range. At temperatures that are not overly
low, the model predicts

)3/2} 3/2

T
Te

c

T 3/
L

=

Here &, is the correlation length ang| /2n characterizes

2mEs

n
2n

*
d

B (6)

of

Zhe random potential. Equatid) defines a universal func-

tion in reduced variables without free parameters. The only
normalization parameteBj corresponds to paramet&s.
introduced in Eq.(5). It follows from Eg. (6) that B}
=0.68,.. Comparison between our data and calculations

temperatures is in accord with measurements of other matgy Eq. (6) (Fig. 63 shows excellent agreement in the region
rials, e.g., TJBa,CuQs,” where the upper critical field con- T/T.>0.3. At lower reduced temperatures experimental

tinues to grow at temperatures downT6T .= 0.001.

Our data indicate that functioB.,(T) in underdoped
YBa,Cu;0g .,  is Nonlinear in the neighborhood af,, and
(chzl(?T)TC=O. This conclusion contradicts most theoreti-

points deviate from the theoretical curve, but note that in this
range we have only measurements of one stsaenple 3a
aged.

The factor (-n./2n)¥? in Eq. (6) is unknown, but,

cal models based on the BCS model or the Ginzburg-since neither in state 3a nor in state 3b have we detected a
Landau functional, which either predict a linear behavior ofre-entrant behavior dB,(T) predicted by Alexandrot it

this curve neafl ;. or assume its existeneepriori. This issue

should be rather close to unity. Assuming this, we can derive

was not discussed in previous publications of experimentalrom Eq.(6) the correlation lengtl§, (Fig. 4, right-hand axis

investigation€” but they all reported very low, if not zero,
values ofdB;,/dT at T..

The increase in the critical field owing to weakening of
the spin-flip scattering predicted by Ovchinnikov and Kr&sin

should occur in the range of low temperatures, so it leaves

the linearity of B.,(T) nearT. essentially unaffected. The
mechanism suggested by Spivak and Zhisteffective only

in high magnetic fields, where Landau quantization is signifi-

cant, i.e., it also should not affecB.,(T) near T..
AbrikosoV! derived B,(T) from the Ginzburg—Landau

in the insel. The length¢, varies between 70 and 300 A. The
notable increase in the correlation length may be the main
cause of the narrowing of the vortex-liquid region on the
B—T diagram.

In the low-temperature region G<t<0.6 the function
bs(t) can be empirically described by the exponential

bsc=bg exp(—t/ty), (7)

with parametersby=15 and ty,=5.4 (Fig. 6b. Such an

BcZ /Bsc I%‘ZIB.W
[ ¥ £ ;
3 b= 0.66t772(1 - 2P :
a
2 b

109 08 0.75

0.2

0.1 b= 15exp(-5.41)

0.1

b= 0.66:73(1 -

0 010203

FIG. 6. Functionbg(t) plotted in different coordi-
nates:(a) the coordinates are selected in accordance
with the boson model, Eq6); the inset shows the
section close to=T/T.=1 on the extended scaldj)
semilogarithmic coordinates; the dashed line follows
Eq. (6).
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This paper describes experimental and theoretical studies of the tails of the dipole-broadened
nuclear magnetic resonandMR) absorption spectra dfF in isomorphic single

crystals of Bak and Cak with the magnetic field directed along three crystallographic axes. The
results obtained by directly measuring the derivative of the tail of the NMR absorption

spectrum and the falloffs of the Engelsberg—Lowe free precession after Fourier transformation
qualitatively agree. It is shown that the shape of the tail is well described by an exponential
function in which the orientational dependence of the exponent does not reduce to variation of
the second moment. The observed shape of the tail and the orientational dependence of

its parameters are explained on the basis of a self-consistent fluctuating-local-field theory.
Nonlinear integral equations are derived for the correlation functions, taking into account the
changes of the actual number of nearest neighbors caused by the anisotropy of the
dipole—dipole interaction and the contribution of lattice sums with loops. The equations are
solved numerically. Good agreement is obtained for the computed dropoffs of the free precession,
the NMR spectra, and the cross-polarization rates with the experimental results99®

American Institute of Physic§S1063-776(99)02401-4

1. INTRODUCTION papers on measuring the rates of these processes the
The continued interest in the problem of the absorptionCltatlons and their analyses in Ref). The study of such

line shape and the spectra of other correlation functions medfOCESSes In tgrn IS glosely assougted with the general prob-
sured by nuclear magnetic resonari®MR) in the solid lem of mixing in nonlinear mechanics.

state has two causes: first, the important applied significance Because of this multifrequency behavior, calculation of
of NMR for studying the properties of solids at the mi- the tails of the spectra of the correlation functions imposes

crolevel, and second, as a typical many-body problem. Afequirements on the theory qnlike those Qf the calculation of
indisputable advantage of model crystals such as,caF the ce.ntral part. It is very difficult to experimentally measure
BaF, is the simplicity of the known laws governing the in- the tails, because they are small and are therefore strongly
teractions in their nuclear magnetic subsystefthe main affected by noise, nonideal properties of the apparatus, etc.
one of which is the dipole—dipole subsysteand the possi- For these reasons, the tails of the spectra have been insuffi-
bility of experimentally verifying the theoretical derivations. ciently studied both theoretically and experimentally. This is
The central part of the spectrum is ordinarily used in appliec®lSO very true for the tails of the NMR absorption line. The
problems in this case, whereas information concerning th€xperimental papers we are aware of measured either the
fundamental multiparticle dynamic properties of the systenfentral part or the Fourier transform—the falloff of the free
is included in the tails of the spectrum. This is because, in #recession. The former relates to the work of Bréieed the
homogeneous regular system, a response to an effect withlaiter to that of Engelsberg and Lowayhich is of tremen-
frequency many times as great as the rms precessional fréous interest among theoreticians because of the oscillations
quency in a local field is impossible unless a large number o6f the falloff of the free precession in CaFmeasured with
spins participate. The distant region of the spectttha tai)  high accuracy. In fact, it became the cornerstone of theories
is of the greatest practical interest when one is studying prosoncerning the NMR line shapésee, for example, Refs.
cesses involving the establishment of equilibrium in a spimMd—10.

system consisting of strongly differing resonance frequencies The exponential form of the tail of the NMR spectrum
of the subsystemgthe reservoirs—cross-relaxation pro- follows from the results of Ref. &ee Appendix A and this
cesses. This is shown by the large number of experimentalgrees with the results of a number of experimehts'“and

1063-7761/99/88(1)/11/$15.00 157 © 1999 American Institute of Physics
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TABLE |. Parameters of the NMR spectrum YF in BaF, for three directions of the magnetic field.

Field direction miher og? MZP, O 2H,,, Oe Ng SNES Ke Kg

[117] 1.055 1.219 0.4 25 0.12 0.10 0.4
[110] 2.284 2.324 0.5 20 0.17 0.18 0.5
[100] 5.966 5.798 0.6 12 0.09 0.05 0

of the theory constructed in the approximation of a self-simultaneously measuring the signal from a mark placed in
consistent fluctuating fieltP~2° Other papers on the theory part of the coil of the NMR sensor separately from the
of the line shape did not pay proper attention to the tail.sample. Particular attention was paid to choosing the opti-
Thus, for example, it falls off more quickly in the constant- mum rf field so that the saturation effect was below the noise
local-field approximatioh® than for a Gaussian function, level. The SNR was substantial increased by accumulating
whereas, when the field fluctuations are specified by a rarthe NMR signal by multiple scanning of the spectrithe
dom Markov proces§!°the tail becomes a power function. numberNg of scans is shown in Tablg.IThe time for one
In the theory that we developé®;8in which the approxi- scan was 20 min.
mation of a self-consistent fluctuating field is chosen, corre- The NMR lines were measured with a constant magnetic
sponding to the limit of systems of large dimensionality, allfield oriented along the crystallographic axes. Because the
the parameters are expressed in terms of one scale parametgectra are symmetric, Fig. 1a shows only half of them. Fig-
the second moment. However, the variations of the paramdre 1b shows the tails of these derivatives on a semi-log plot.
eters of the tails of the spectra of the experimental falloffs ofThe curves in the figures are normalized to unit area of the
the free precession in Ref. 3 are not described by the variabsorption line. The deviation of the field from the center of
tion of only the second moment when the magnetic field ighe spectrum in each orientation is expressed in units of
directed along the crystallographic axgk00], [110], and  M3?, whereM, is the second moment of the spectrum. This
[111]. eliminates the difference of the scales of the spectra and
This paper derives nonlinear integral equations for theallows their shapes to be compared.
correlation functions in the self-consistent fluctuating-local-  The experimental values dfl, were calculated by ex-
field approximatior;®~‘°taking into account the character- trapolating the ratio of the integrals of the product of the
istics of actual lattices, which, as a consequence of the armeasured first derivatives of the spectrum and the cube of the
isotropy of the dipole—dipole interaction, depend on thedetuning and the triple detuning to larger values of the upper
magnetic-field orientation. At the same time, this paper redimit of integration? Table | also shows the theoretical val-
ports the direct measurement of the tail of the NMR absorpues of the second moments for BaH he latter were calcu-
tion line of % in a Bak, crystal isomorphous with CaF  lated using lattice sums from Refs. 12 and 22, taking into
with the same magnetic-field directions. Such an experimeraccount the small contribution of the magnetic isotolféBa
seems important to us, since the fraction of high frequencieand'*’Ba, whose maximum is reached in tHel1] orienta-
in the spectrum is exponentially small, and they can easily béion and equals 3% of the contribution of th& nuclei.
distorted during observation in the dropoff of the free pre-Moreover, because the NMR line is broadened by modulat-
cession in a mixture with the central part of the spectruming the constant magnetic field with an amplitudeqf (see
The orientational dependences of the parameters of the taiT;able ), H2/4 should be added to these values of the second
measured by two methods, are in qualitative agreemenmoment?® The remaining differences of the theoretical and
These results are explained from the position of the theorgxperimental values of the moments are associated with im-

that we developed. precision in the orientation of the crystal in the magnetic
field. Since we consider spectra normalizedMg, a slight
5 EXPERIMENT discrepancy of the moments does not prevent the shapes of

the spectra from being compared. Therefore, we shall pay no

The single crystal of Bafstudied here was grown at the attention to these differences in what follows, nor to the con-
Crystallography Institute, Russian Academy of Sciences, byribution of the Ba nuclei and the field modulation to the
the Bridgman method. The quality of the crystal was moni-broadening. According to our estimates, the possible shape
tored by x-ray phase analysis and by NMR. The long spindistortions of the tail are below the experimental accuracy.
lattice relaxation time is evidence that the concentration of  Figures 1a and 1b also show the derivatives of the spec-
paramagnetic impurities in the test sample is low. The singléra obtained by Fourier-transforming the function
crystal was oriented on an x-ray diffractometer. The lattice
parameter of 6.2001 A in BaRRef. 20 is a factor of 1.14
greater than in CgF The experiment was run on a modified f(t)=exp{C[A—(A2+t2)1’2]}n];[1 (1-apt?), @
RYa-2310 spectrometer with an autodyne sensor in a 12-kOe
field at room temperature. The first derivative of the NMR which Engelberg and Loweused to accurately describe their
absorption line was digitally measured by a microprocessoexperimental dropoffs of the free precession in £aFhey
device with field scanning of the spectrum. The long-termdetermined the parameters which determine this function for
stability of the spectrometer parameters was monitored byhe same three magnetic field orientations. When the curves

61
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g'(H)M, in the figure were calculated, these parameters were ex-
0.4F a pressed in units of the experimental values of the second
0 moments for Caj-given in this paper. It can be seen from

the figure that the Fourier transform of the function given by
Eq. (1) generally describes our experimental NMR absorp-
tion spectrum. The small differences can be associated with
the noncoincidence of the orientations of the crystals and the
instrumental functions of the two methotf<®together with

the replacement of the actual falloffs of the free precession in
Ref.3 by the simple function given by Eq@l). We shall
return to this question below.

We proceed to an analysis of the shape of the tail of the
NMR spectrum. To describe it, we turn to the theory that we
developed;!®~1° based on the self-consistent fluctuating-
local-field approximation, by means of which, in the limit
H>M3? (the H field is measured from the center of the
spectrum, the desired tail is determined from

g(H)=co|H|¥exp(—|H|o), (2

where g is the coordinate of the closest two singular points,
symmetrically placed relative to the coordinate origin on the
imaginary time axis, and, and y are characteristics of the
singular points. In the limit of a large number of nearest
neighbors®:

T0=3.72M¥?, c,~29.3M,, x=1. (3)

A section of the curve corresponding to the derivative of Eq.
(2) is shown in Fig. 1b. It passes fairly close to the experi-
mental tail in theg/111] orientation. In the other two orienta-
tions, the tails of the experimental spectra fall more steeply.

We now turn to the Engelsberg—Lowe function given by
Eqg. (1). As can be seen from Fig. 1b, its spectrum decreases
more quickly in all three orientations. The asymptotic ex-
pression for the tail of the spectrum of this function, obtained
in Appendix A, has the form of Eq2) with y=—1/2 and
To=A. An unexpected orientational dependence is detected
in the exponential in this casé:is larger in thg110] orien-
tation than in thd 100] orientation.

Our analysis of the curves in Fig. 1b thus shows that,
first, the shape of the spectrum at the tail is close to expo-
nential, given by a straight line in the semi-log coordinates
chosen in the figure. Second, the slope of the corresponding
straight lines depends on the orientation of the crystal in the
magnetic field. Since the change in the width of the spectrum
with orientation is already taken into account in Fig. 1b after
transforming to dimensionless fields measured in units of
M%’Z, the remaining change of the slope of the straight lines
is evidence of an additional orientational dependence of the
argument of the exponential.

~H/M}?

FIG. 1. Derivatives of the NMR absorption spectra '8F in Bak [(a) 3. THEORY

central part,(b) tail] as a function of the detuning from the center of the

spectrum, with the magnetic field directions along the crystallographic axes ~ To explain the observed orientational dependence of the
[100] (triangles, [110] (closed circle and[111] (open circleg The dot-  t5i] of the NMR spectrum, let us consider the system of spins

dashed, dashed, and solid curves show the derivatives of the Fourier spectra__ 19 . . .
of the Engelsberg—Lowe function, E@L), in the corresponding orienta- t(rP_ 1/2) of the™™F nuclei of the fluorite CryStaI’ which form

tions. A thin line segment is drawn ifb) according to the asymptotic for- @ Simple cubic lattice. We write the Hamiltonian of the secu-

mula, Eq.(2). All the curves are normalized to unit area of the absorption lar part of the dipole—dipole interaction in a strong constant
spectrum and unit second moment. magnetic field® as
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and describes the independent precession of one of the spins

7/11:% by [1715— &1+ 1111, (40 of the system in its constant longitudinal local field,
23 b l%.
. iDijlj
whereb;; = y*h[1-3 CO§0ij]/2ri3j , 0 is the angle made by The transverse part of the interaction given by E,

the internuclear vector;; with the constant magnetic field consisting of the spin components perpendicular to the exter-
Ho, andé=1/2 is a parameter that we introduced for conve-nal constant magnetic field, as is well knoWnplays an
nience in the theoretical analysis. We shall describe the dyimportant role in transporting polarization from node to node
namics of the spin system by the correlation functions (spin diffusion. Taking into account the transport of the
o0 =Trfexp(i 7l exp 170N THR, (6 4 et
where the subscrigb=1,2,3 indicates the three correlation .
functions:T'1(t) =M, (t) is the correlation function of the M.(1)=T (t)+KftdrA(t )
projection of the total spin of the system or the transverse X » o dt’
component of the magnetization, coinciding with the falloff
of the free precessior;,(t)=I"y(t) and I'3(t)=I,(t) are where
the autocorrelation functions of thkeandz components of an K=9/4\%-1, 9)
individual spin of the system, respectively.

In the self-consistent fluctuating-local-field approxima-

M (t—t")dt’, (8)

andT', (t) is the correlation function given by Eg7) with

tion, corresponding to the limil—co, the system of equa- coefficientb;; increased by factor of. This equation, which

. . . . . . we shall call the basic approximate equation, gave a good
tlonsmf_olg the correlation function$4) is obtained in the description of the falloff of the free precession in Gdbr

form A=1.225(Ref. 4 and \=1.19° Note that the factoi in
t , e Refs. 4—6 and 16 has a different physical basis. We shall
gile0=" foGp(t_t )Tp(t")dt. (6)  regard it as a renormalization parameter of the longitudinal
local field, defined in terms of the moment of the spectrum.
The kernelsG(t) of the integral equationsthe memory The success of Eq8) in describing the falloff of the

functions can be represented as a series over irreducibl@ree precession suggests that, after the terms in(@cgor-
dressed skeletal diagrams, each term of which is expressedsponding to Eq(8) are singled out, the rest of the series for
via a multiple time integral of the products of the functions the kernel will play the role of a small correction. We carry
['x(t") andT',(t"). As shown in Refs. 16 and 17, the equa- out the indicated transformation by the following formal pro-
tions for the autocorrelation functions are the equations focedure. We represert, (t) as the solution of an integral
the precession of the magnetic moment in a threeequation of the form(6) with kernel Q(t), which can be
dimensional Gaussian random local field. These equationgiven by seriesG,(t) if the terms with vertices correspond-
have a complex form because the rotations around the timeéng to interaction between transverse spin projections are dis-
varying instantaneous field directions are noncommutativecarded from it. By combining the Laplace transforms of this
In this approximation, all the coefficients i@,(t) are ex-  equation and Eqg6) and(8), we find

pressed in terms dfl,, and therefore, in the solutions of the

equations, the orientational dependence repeats the depen- _ ft dl'\(t") i
dence ofM, and reduces to a variation of the time scale in M(O=TA(O+K o dt’ Myttt
Egs.(5).
For three-dimensional lattices, Refs. 15, 26, and 27 pro- f‘ , PN
. . . — | D(t—t")My(t")dt’, 10
posed to introduce correction terms in the ker@g(t), the 0 ( ML) (10

number of which rapidly increases as the number of vertices
on the diagrams increases. Such an equation is hard to use'l
practice. It is necessary to regroup the series for the kernel so t

that its first several terms are sufficient to describe the ex- ®(1)= jork(t_t'){Gl(t')_(lJrK)Q(t,)}dt,'

periments.

To do this, we separate out from the dipole—dipole in-The resulting equation makes it possible to find the necessary
teraction of Eq(4) the |Ongitudina| part, Consisting of the correction terms, since it is forma”y exact when the com-
spin components parallel to the external constant magnetielete series foG,(t) andQ(t) are retained.
field 14-6:8.10.1827A1though the coefficients of the two parts Another important consequence of the transverse inter-
in Eq. (4) differ by On|y a factor of two, the |ongitudina| part action is the time variation of the Spin orientation, which
is distinguished by the axial symmetry of the Hamiltonian,CaUSGS‘jZ to be replaced byjz(t) in the expression for the
which causes the projection of the total spin onto thexis  longitudinal local field. The basic approximate Ef) does
to be conserved in time. It is also important that fo¢0 the ~ not reflect such fluctuations, whose presence follows not
autocorrelation function given by E¢p) for thex projection ~ only from theory but also from experiments, for example,

ere

of spini is easy to comput&?® from the cross-polarization of the rare nuct&Cal® in
which the spectrum of these fluctuations is measured. There-
To(t)IH cogbyit) @ fore, although the falloff of the free precession is success-
; =7
j

fully described by this equation at short times, discrepancies
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with experiment appear at long times. In particular, beatsystem proposed in Ref. 28. This paper, besides the expan-

appear in the oscillations of the falloff of the free precessiorsion for short times, treated the diffusion asymptotics of the

and are especially appreciable in {160 orientation in the  autocorrelation function of the field ds-~. We do not do

region of the 5—7th zerdsThe tails of the Fourier spectra this, because the spectral tail of interest to us is determined

decrease more rapidly in the calculated falloffs of the freeby the singular points on a comparatively small time interval

precession than with Gaussian functions. from the beginning, and diffusion can not develop. Neglect-
We will include fluctuations of the longitudinal local ing diffusion tails allows us to write for Eq11) the follow-

field in the basic approximate equati¢8), having replaced ing expression, which is simpler than that in Ref. 28:

I',(t) with a new autocorrelation functioR(t). The proce-

dure for deriving Eq(10) allows us to make such a replace- <wi(t)wi>:)\22 bi2j ;j/i(t), (14)

ment in this equation. To determiri&(t), we consider the ]

F:c;(rsrle7lation function of the longitudinal local field at spin \yhere the attenuation of the fluctuations indicated above is

h introduced via the exponemt<1. In particular, when

_ —_1_ 2
203, byl (). v=ro=1-55/8;,
! the first two terms of the time expansion of Efj4) coincide
Interaction with this spin is excluded in the time evolution of with Eq. (12). At long times, additional attenuation of the

its neighboring spins: fluctuations from more complicated loops should be ex-
pected, as well as bulk interaction of the branches of the trees
19 ;
(0D 0))=AZD bizjrzj/i(t)+)\22 by byl 2jui (1) formed by theb;; bonds.” An estimate of the latter for the
i j.k Heisenberg model by numerical modelling of the placement

(1) of the trees on a cubic lattice gavue=v'~2/3.2° If this
value of v’ is used and both these effects are taken into
account, the index=v'yy changes from 0.55 to 0.61 in
different orientations. Bearing in mind that this is a rough

The first term contains the autocorrelation function of the
projection of spinj. The second term is the overlap correla-
tion function of the two sping andk. The slash indicates

that interaction with the selected spifis excluded, as men- €stimate, we shall set=1/2 in subsequent calculations.
tioned above. The contributions to the local field from the ~ The main advantage of the approximation given by Eq.

different spins of the neighborhood are not independent(.l4) is that it keeps the contributions of different spins to the
Such independence appears only in the lichit . 21617 |n longitudinal local field independent when the fluctuations of

fact, in this limit, lattice sums with loops composed of bondst€ latter are taken into account. Such an approximation

become negligible by comparison with lattice sums that conMakes it possible to obtain equations that are simple enough

tain no loops and that are expressed in terms of the power §f P& used in practice. As a result,

the second moment. Other model systems where there are no t

loops are systems on Bethe lattic@sThe contributions of in(t)~<9XF{2”\2 bijJ Ijz(t,)dt,}>

adjacent spins to the local field will also be independent in . 0

these systems, since interaction with spiis excluded in ] t

them. Bethe lattices have an advantage over hypercubic lat- :H <exr{ 2iNDby; Olj(t )dt D

tices of infinite dimensionality in that the numbéof neigh-

bors in them can be arbitrary. and the product of cosines in Eq) is replaced by the prod-
The contribution of the second term in Ed.1) is com-  uct

paratively small for a cubic lattice, although it does not dis-

appear. To estimate it, we expand Etfl) in powers of time: Pi(t)= H Fij(t) (15
i
’ N—=3\2 2y 4201 _ 2 2\ 42 4
(i) =A"5;+ 260151(1- 5,/5, - S /St +O(t()1’2) of functions that satisfy the equations
d t
where &Fij(t)z_JOGFij(t’)Fij(t_t,)dt’- (16)

Si=2 b3, S,=> b, S=2 bybybi (13  The memory function in Eq(16) can be determined as a
] ] Ik : ; ) : :
series, as was done in E@). The first term of this series,
are known lattice sum&:?2 The term withS, in Eq. (12) (1) fer 212 o0
o . ; . GEil (1) =NbiT7i(t) (17
results from excluding interaction with the selected spin, J 1=z
while the term withS; characterizes the correlation of the is the contribution to Eq(14) from spinj. The appearance of
contributions. The ratic;/S? in a cubic lattice varies from the remaining terms of the series is associated with the non-
0.17 in a[110] orientation to 0.09 in §100] orientation. coincidence of the correlation function of the product of the
It follows from Eq.(12) that correlation in the motion of operators
the spins that create the local field weakens its fluctuations. 5,
The same conclusion can be drawn from the expression for 1(t.)
the correlation function of the local field of a heteronuclear  p=1 1" P
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with the product of the two-spin correlation functions. In the Comparing the expressions fbf,, we find that
basic approximate equation, we restrict ourselves to the first _ 2 2
term of this series, Eq17). Its remaining part is implied in K=1+§n"-1,

the correction given by Eq10). As is to be expected, when hich transforms into Eq(9) when ¢=1/2. Equating the

the fluctuations are neglecteldor I';;;(t)=1], Eq. (15  coefficients in front of the lattice sums f&d , in Egs.(20),
gives a product of cosines, E(), whereas, in the limitof a \ye find

large number of neighbors, Eq4d.5)—(17) transform into an
expression fol,;(t) with a Gaussian random fietd-1°252° v=(1+2£-\%/&. (22

An auto_correlatmn func_tlorl?(t) that ta_kes Into account In particular, the values'=1/2 and ¢=1/2 correspond to
the fluctuations of the longitudinal local field is thereby ob—)\zz 11/8
tained. We next need to derive an equation for autocorrela- To re.store the missing contribution fro8s in Egs. (20)
tion functionI,;(t). We take Eq(6) for the corresponding 9 gs. (<

. o2 . . ) : .._for M,, we go overfrom Eq(8) to Eq.(10), replacel’, (t) in

function, while keeping only the first term in the series for its . . . i
kernet1617:26.27[e recall that the remaining part of this it by P(t), and write correctiorb(t) in the form

series is meant to be treated as correction terms of EYy: 3BS,M, [t _
d t Pat)=—, 55 | et tT){PE-t)
arzj(t):—%zg bjzkfol“xj(t’)ka(t’)l"zj(t—t')dt’_ 1 |
(18 XP(t")+P(t—t")P(t")}dt’, (23

To clarify the subsequent transformations, we have writterwhere
out the nodal indices of the interacting spins in Ef). As . dP(t)
pointed out above, the equation has such a form in the limit qo(t)=f rut)dt, P(t)=——,
of a large number of neighbors. When the number of neigh- o’ dt

bors is limited, it becomes important to exclude from theWhile the correlation functions under the integral are deter-
autocorrelation functions the interaction with spins already 9

N ) . mined without limitations on the interaction. For clarity, we
explicitly included viabs, . Carrying out such a procedure . . . .
. " . show this correction in the diagram representation of Refs.
and replacind’,;(t) with P;(t), we obtain

16-18:
d 5 ) t , e
mrzi"(t): 2 k(zsﬁi) bijo Pink(t") P j o k
X Pyij (1) (t=t")dt’, (19 TC e 'x 3

where we recall that the indices of the spins with which .
interaction is excluded are shown after a slash in the symbols ,/ N,\\k
of the functions. ; 1 f,f*}?“\f‘ j ™k

The system of Eqs(15)—(17) and (19) determines the + —0 % > *—
desired autocorrelation functions self-consistently. If func- ' v 0

tion P(t) is then substituted into Eq8) in place ofI',(t),
we get the basic approximate equation fbg(t), taking into
account the fluctuations of the longitudinal fields. For the
first two moments of the NMR spectrufthe coefficients of where X indicates a transverse vertex afd indicates a
the expansion oM,(t) in powers of timé, we get from |ongitudinal one, and the lines show the autocorrelation func-

(24)

these equations tions of sping, j andk (thex projections are shown by solid
M,=(1+K)\2S curves, and the projections by dotted curvgslLet us turn
2 o our attention to the approximate replacemehR{(t")
M, 2 vE? vE? S, ~I'J(t"—t")I';(t"), made when we go from E@24) to Eq.
WZH_W 1+7 -2 1+F e (23 to simplify the calculations. The two successive dia-
( )Si (20) grams with two vertices already taken into account in Eq.
(8),
This result should be compared with the exact expressions j k
for the momentg>° e
ic it d k
M,=(1+§)2S,, ; p o
2—B B i k
Ma_g g 27B)%, BS (21) . —~
2 1 Sl i ’] ] s J k
> o—56 *—
a¢ 6£2 J 0

TI1TE (1192 (25)
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The ratio of the contribution from the remaini@gneighbors
differ from ®,(t) in Eq. (24) in the placement of the verti- to the total second moment—the constaigt—was deter-
ces. The physical meaning of EQ4) is that the polarization mined by means of the lattice sums from Ref. 12.
can be transferred from spinto spin k not only via the Keeping only these interactions in Eq4.5)—(17) and
two-spin correlations given by E@25) but also via three- (19) and takingé=1/2, we get the following system of non-
spin correlations that have the form of a loop composed ofinear equations for the autocorrelation functions:
bonds and therefore do not reduce to the square of the two- .
spin correlations. Functiof (t) also contains diagrams with —Fq()= _)\quJ’ T (t—t)Fq(t)dt, (28)
another placement of four vertices. To simplify the equa- t 0
tions, we do not exhibit all of them, since they have the same

qualitative effect as those already shown, and their contribu- il“ _ 1 tF o bing ban,
. . . . . . z/q(t)_ z/q(t t ) 2., 2
tion was taken into account by the choice of the coefficientin  dt 2)o F2(t')  Fa(t))
Eq. (23). ,
Besides four-vertex correction®(t) contains correc- bsns by | R&(t")dt’
. . . . — , (29)
tions with a larger number of vertices. Since they have a F2(t)  F2t)| Fyt)
weaker role, to simplify the calculations we take them in 3 q a
simpler form than ind,(t): where
Dop(1) =KznDy(1), (26) Re(t) =F (D F2(1)F(1). (30)

At the same time, Eq10) for the correlation function of

t . .
Dn(t)= fodtlp(t_tl)rz(tl)D“fl(tl)’ D) =P(V). the x projection of the total spin takes the form

2
- » (@) tdP(t’") o
We choose the coefficients,,, for n>2 by fitting M,(t) to M,(t)= P(t)+Kf — M, (t—t")dt
the experimental dropoffs of the free precession. o dt
t
—f D(t—t" )M (t")dt’, (31
0
4. CALCULATION AND DISCUSSION
where
The system of Eqs(15—(17) and (19) consists of an
enormous number of nonlinear equations, which makes it ®(t)= >, ®,,(t), (32
hard to solve. Fortunately, the main contribution to the de- n=2
termination of the form of the spectrum comes from the in- P(t)=R,(t)R((1). (33)

teraction with a comparatively small numbgrof nearest . o

neighbor$:® Thus, in the case of Cafand Bak, we choose In EQ. (33), we have combined the contribution of a large
Z=20 when a strong constant magnetic field is along thewumber of distant spins in the form of the autocorrelation
[111] crystallographic axisZz=8 when it is alond110], and  function of the spin in a random Gaussian field:

Z=6 when it is alond100]. This variation ofZ results from 4 ;

the strong gnisotropy of the dipole_ interactiqn constants of Rf(t)zexp[ - 57\2(1—dc)f (t—t’)l“;(t’)dt’}, (34)
the magnetic moments of the fluorine nu&éiBecause of 0

the symmetry of the field orientations considered here, thgherel (t) is determined from an equation that differs from
interaction constants with th# chosen neighbors take no Eq. (29) in having A kernel does not contain the divisor
more than three values. We denote the three correspondirp,gq(t) and the subtrahenm/Fé(t). Finally, in Eq.(32) we

L 2 —
coefficientsbjj in Egs.(17) and (19) asbq (4=1,2,3) and  getermined,(t) from Eq.(23), and®,,(t) with n>2 from
express them in units oM,. We denote the number of £q (26).

ne_ighbo_rs with interaction coefficiebt, asn,. For the[100] Applying to the system of nonlinear equatiof28) and
orientation we get (29) the same analysis methods as in Refs. 1 and 16-19, it
b,=d./27, b,=4b,, can be shown that its solution has singular points on the
imaginary time axis(see Appendix B Consequently, the
ni=4, np;=2, d.=0.898, Fourier spectrum of this solution has exponential high-
for the [110] orientation we get freguency asymptotics _determin_ed by_ the negrest singular
points. Since the detunings achieved in experiment are not
b;=dc/36, by=4b;, bz=2by, large enough for us to limit ourselves to the first term of the
ni=4, n,=ns=2, d,=0.791, a_symptotic _series, we sha_ll not dwell on an analysis_ of the
singular points but immediately proceed to a numerical so-
and for the[111] orientation we get lution of the resulting equations.
b,=4m/9, b,=4m, by=27m/8, The system of Eqg28)—(31) was solved by the method

of finite differences. The falloffs of the free precession were
n,=6, n,=2, nz=12, m=8d./921, d.=0.825. accurately calculated on the time interval frors0 to
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FIG. 3. Tails of the derivatives of the Fourier spectra of the theoretical
curves shown in Fig. 2, in comparison with the experimental tails of the
NMR absorption spectra ofF in BaF, shown in Fig. 1. The theoretical
curves are solid for thgl11] orientation, dashed fdi10], and dot—dashed
for [100Q].

0
-0.2

FIG. 2. Falloffs of the free precessidn,(t) with the magnetic field direc-

tions a'ogg tﬂl‘e Cfg(sta"ogfiph'tc axéfgg] <a>d [1101001 T<g> anldd [111] (o), ,long times in Fig. 2b can be eliminated by addihg(t).

Increased at long times by tactors o an . € solld curves are . . .

theoretical results, and the dashed curves are the Engelsberg—Lowe fun%—Ince the. authors of Refs. 4__6 and 10 “eg'eCted polarization

tions, Eq.(1). transfer via complex correlations and restricted themselves to
the basic approximate equation, the calculated falloffs of the

free precession that they obtained shows significantly worse
t=20M, Y2, broken up into 2000 points. The results are @greement with experiment in these orientations.
shown in Fig. 2, while the derivatives of their Fourier spectra L€t US proceed to the results for the tail of the NMR
are shown in Fig. 3. The calculation usag=11/8, » spectrum. As can be seen from Fig. 3, the approximation
=1/2, and the values of the orientation-dependent parar.thosen to describe the local-field fluctuations and expressed
eters shown in Table I. A numerical analysis showed that thé EGs.(28) and(29) correctly describes the shape of the tail
basic approximate equation without corrections gives oscil@d its orientational dependence. It follows from this that the
lating falloffs of the free precession with an oscillation fre- damping of the tail speeds up as one goes from field orien-
quency less than the experimental value. The addition of@tion[111] to [110] and then tof100] mainly because the
®,(t) increases the oscillation frequency, but excessivelyumberZ of neighbors decreases. This can be explained
raises the amplitude of the first maximuivetween the sec- gualitatively by noting that the field is created Eyneigh-
ond and the third zerasThe correctiondg(t) made it pos- bqrs, but it varies becguse of the mteraqtlon with fhel .
sible to correct this distortion. The correctidny(t) was also ~ SPINS. In the self-consistent approach this occurs each time
included in thg110] and[111] orientations, since the role of MOre new spins are involved in the interaction with the pass-
the complex correlations in the transfer of polarization isiNd of time. Consequently, the ratio for the higher-order mo-
large in these orientations. This is reflected on the experiMeNts can be expected to be

mental falloffs of the free precession, in particular, in the n_ P n
inequivalence of the zerdgheir approximation One basic M2n(Z2)/[M2(2)]"~Man()[[Ma() I"[(Z = DI Z]".

approximate equation gives the falloff of the free precessiorerom this, the parameter in the exponential for the tail should
with equidistant zeros and a rapidly damped amplitudepe estimated as

Agreement with experiment can be achieved only by adding

correction terms. In particular, the difference remaining at  7o(Z)~ 7o()[2/(Z—1)]Y2
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Figure 3 shows that the calculated tail decreases some-
what more steeply than the experimental one. This can show
that the fluctuations of the longitudinal field in fact are at-
tenuated to a smaller degree than in our calculation when the
parameterv=1/2 is chosen, or rather that more neighbors
should be included in the system of nonlinear equations. At
the same time, we should point out that the correction terms
added to Eq(31), as shown by calculation, change the center
of the spectrum, in particular the position of the maxima of
the derivative, but have virtually no effect on the tail of the
spectrum.

The resulting equations for the spin-system dynamics
make it possible to describe other experiments as well as the
NMR absorption spectra. As an example consider the experi-
ment noted above, in which the rate of cross-polarization of
an impurity of the rare isotop&Ca from the dipole—dipole

0 0.5 1.0 1.5 2.0

reservoir of'°F nuclei in a Cak crystal is measuretf. The Hl’Mzm
dependence of the rate of this process on the rf field ampli-
tudeH; is determined b3t FIG. 4. Cross-polarization spectra f6iCa—"F in CaF, for two magnetic
field orientations. The experimental data of McArthur, Hahn, and Walstedt
1T is=Mysg(Hy)/ 7, are shown by the circle®@pen forH|[[111] and closed foiH|[[110]). The

) ) ) Fourier spectra of the correlation functiofig't) are shown by a solid curve
where M, is the second moment at the impurity nucleusfor Hy|[111] and by a dashed curve fét,|[110].

from the dipole interaction with the fluorine nuclei, and
g(H,) is the spectrum of the correlation function of the lon-
gitudinal local field of Eq(11) at the**Ca nucleus from the we can conclude that this function gives a fairly good de-
fluorine nuclei, normalized to unit area. As can be concludedcription of the tails of the spectra in th&00] and[111]
from the values of the lattice sum&*the contribution with  orientations, but makes the decreasing tail in [th&0] ori-
loops is even smaller in thel11l] and [110] experimental entation appreciably steeper.
field orientations than it was in the field at th& nucleus. Let us now analyze the shape of the tail that follows
Therefore,g(H,) coincides with the spectrum of the corre- from the theories cited above. The authors of Refs. 4 and 5 in
lation functionI',(t) with high accuracy. The equation for general failed to take into account the fluctuations of the
calculating this function with the total second moment can bdongitudinal local field, and therefore the tail of the NMR
obtained from EQq.(29) after eliminating the division by spectrum falls off even more steeply in their theory than does
F4(t") and adding in the brackets, in place of the subtractivehe tail of a Gaussian function. Reference 6 introduced a
term bq/Fg(t’), the contribution 4(%d.)/9 from distant substantial improvement: Instead of considering the entire
spins. The functiond=4(t) in this equation are calculated longitudinal local field to be unchanged, they considered the
from the previous nonlinear equations. Because of the slowontribution to it from the close-lying spir(ghe spins of the
damping ofl",(t), the time interval was increased to #0J*  cell) to be unchanged, while the field of the distant spins is
and broken up into 64 000 points. The results of the calculadescribed by a Gauss—Gauss random process. These changes
tion of the spectra are shown in Fig. 4 along with the experibrought the tail of the theoretical NMR spectrum closer to
mental data. A comparison shows that E(8) and (29)  the experimental spectrum, but the description of the center
gave a good description of the cross-polarization and, consef the spectrum became even worse. The approach in which
guently, of the fluctuations of the longitudinal local field. To a cell was distinguished was developed further in Ref. 9.
be fair, it must be said that an equation with a Gaussiatdowever, since the contribution of the distant spins is intro-
memory functiof! gave even better agreement. The reasomjuced into the falloff of the free procession by multiplying
is that the central part of thE,(t) spectrum, strongly nar- by the exponential multiplier from the Engelsberg—Lowe
rowed by fluctuations, was in fact experimentally observedfunction, Eqg.(1), the same tail is obtained as in the spectrum
as is evidenced by the large ratio of its momeMaZ/Mgz. of that function. Finally, Ref. 10 assumed that the longitudi-
Therefore a self-consistent description of the fluctuations hadal local field from all the spins fluctuated. A discontinuous
no advantage over describing them by a Gaussian functioMlarkov process is used to specify the field variations in
while a decrease appeared lh,, because the interaction time; this should work well for describing the changes of the
with distant spins was neglected in the nonlinear Eg8)— NMR spectra, because of the mobility of the atoms and
(30). molecules’>*2 This is by no means a successful approxima-
We have thus convinced ourselves that the equations oltion of the actual local-field fluctuations in a rigid lattice,
tained here correctly describe the experiment in terms o$ince it gives a Lorentzian tail for the spectrum and conse-
cross-polarization and the tail of the NMR absorption line,quently an infinite value for all the spectral moments,
measured by a continuous method. If we turn to the results iwhereas they should have finite values in a rigid latffce.
Fig. 1, obtained after Fourier-transforming the Engelsberg—  Another approach that does not use the concept of lon-
Lowe formula, Eq(1), for the falloffs of the free precession, gitudinal local field was given in Ref. 8. In that paper, the
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effect of the dipole—dipole interaction between the projec+o that involving the second moment. On the other hand, if
tions of the spins on the external magnetic field was mainlyone restricts oneself to the approximation of constant local
taken into account in a continued-fraction formalism. It wasfields, one can arrive at the erroneous conclusion, drawn, for
shown that, when the interaction between the transverse spgxample, by WaugF® that the spectrum will have a limit; if
components is truncated in the dipole—dipole Hamiltonianthe rf field is detuned beyond this limit, the field ceases to
the coefficients in the continued fraction increase linearly aheat the spin system. As shown above, this is not so. The
the number increases. When the truncated interaction is irspectrum, although exponentially weak, extends to virtually
cluded, the increase of the coefficients accelerates. To obtainfinite frequencies. This conclusion is important for the
a closed expression that could be used for a calculation, thiaeory of the establishment of equilibrium in spin systems.
authors had to make an assumption concerning the form of The authors are grateful to P. P. Fedorov for providing a
this dependence. It was proposed to extrapolate the quadrasigle crystal of Bafand to V. A. Atsarkin, F. S. Dzhepa-
dependence on the number, established from the exact valuesy, and A. A. Lundin for discussing the results of the work.
of the first four coefficients. A similar dependence was de-  This work was carried out with the financial support of
tected earlier in the anisotropic Heisenberg mdddlhe un-  the Krasnoyarsk Regional Science Fui@tant 5FO068

usual properties of continued fractions with such coefficients

were discussed in Refs. 33 and 34. It is interesting for us that

the tail of the spectrum is obtained as an exponential for SUCRPPENDIX A

an approximation, in agreement with the result of our theory

of a self-consistent fluctuating field. The formal transition in ~ From the theory for computing the asymptotic forms of
the continued fractions from a linear to a quadratic depenintegralsi® the Fourier transform of the Engelsberg—Lowe
dence of the coefficients on the number thereby obtained finction, Eq.(1), is determined for sufficiently large frequen-
physical explanation in our theory as a transition from con-Cies by its behavior on the imaginary time axis close to the
stant local fields to fluctuating fields. To simplify the calcu- Pranch point=iA. In this region, we substitute the variable
lations, instead of a quadratic dependence, the same®apéi=i 7 and rewrite the product in the function in E@) in a
later postulates that the coefficients, beginning with the fif-new form:
teenth, are constant. In this case, a spectrum is obtained with

i one it sinh(b 1+ a?7?
truncated tails. The truncations, it is true, are rather far from  [] (1+ a’r?) = h(b7) “n ,
the center. n=1 br a1 14 72(n7')?

This review of the work shows that the main advantag&ynere the factors with the first nonequidistant zeros of the
of the proposed theory over other theories is that, when the,| ¢t of the free precession have been retained in the prod-
correlation functions are computed from self-consstemuct' while the infinite product with equidistant zeros, (
equations, it becomes unnecessary to postulate their shapei_)rnT,, a prime that was absent in Ref. 3 is added to prevent
the shape of the memory function in the equations for themy from being confused with imaginary timés collected into
Other advantages that made it possible to achieve bettghq function singt)/bt (Ref. 3 with parameteb= /7. The
agreement with experiment are that the theory takes into aGroduct on the right-hand side of E€AL) varies insignifi-
count the finiteness of the number of nearest neighbors ar\f’antly on the intervali@,i%) of the imaginary axis of inter-
polarization transfer via complex correlations. At the sameyg; 1q us, and therefore we substitute into &) its value
time, the estimate of the attenuation of the field fluctuationgy ¢ pointt=iA (r=A), which has the following values in
still needs to be refined in order to more consistently takgne three orientations: 0.883 i100], 0.514 in[110] and
into account the contribution of the distant spins, as well ag) ggq in[111]. After this, the desired derivative of the spec-
the contribution of complex loops. trum is expressed in terms of the modified Bessel function of

the second kind. Limiting ourselves to the first terms of the

(A1)

5. CONCLUSION asymptotic series of this function, we get
12
Thus, both pulsed and continuous NMR studies have i wﬁ(i) Q- explA(C— Q) (A2)
revealed that the tails of the spectrum have an exponential dow 2b\2m

dependence. Varying the parameters of this dependence RQyhere

changing the orientation of the crystal in a magnetic field

does not alter the second moment of the spectrum. We ex- Q=[(0—b)*+C?*2

plain this fact by means of nonlinear equations for the coror ,=2M%?, the value of Eq(A2) is 15% less than the

relation functions, derived in the approximation of a self-cajculated spectrum of the function in Ed), whereas, be-
consistent fluctuating field, taking into account the propertiegjinning with 2.8 %2 it virtually coincides with it.

of the actual lattice. It has been shown that a tail of expo-

nential shape results from self-consistent local-field fluctua-

tions. The number of nearest neighbors and the contribution,o-npix B

of the complex correlations change with orientation because

of the anisotropy of the dipole—dipole interaction, and this  Let us determine the principal part of the solution of the
changes the intensity of the local-field fluctuations andsystem of Eqgs(28) and (29 in the neighborhood of the
causes a dependence of the parameters of the tail in additi@ngular point with coordinate,, using a method analogous
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to the Painlevenalysis of the movable singularities of non- *E-mail: root@iph.krasnoyarsk.su

linear ordinary differential equations. In order to do this, we )

write it in the form V. E. Zobov, A. A. Lundin, Zh. Esp. Teor. Fiz106, 1097(1994 [JETP
79, 595(1994)].
2
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The problem of the interaction of an ultrashort optical pulse and a thin film of resonant atoms
under the conditions of two-photon absorption, third-harmonic generation, and the inverse

effect of the latter on the pump pulse via Raman scattering is studied. The fact that the field acting
on an atom differs from the macroscopic field in the film is also taken into consideration. It

is shown that the polarization of the film undergoes dynamic relaxation even in the absence of
irreversible relaxation, suppressing Rabi oscillations and establishing stationary values of

the populations of the resonant energy levels and of the polarization of the film at the pump and
the third-harmonic frequencies. ®999 American Institute of Physid§1063-776(99)00301-7

1. INTRODUCTION Two-photon resonance in a multilevel medium or double
resonance in a three-level medium is a simple generalization

Low-dimensional systems have been attracting a greadf the model of a resonant medium forming a thin film on an
deal of attention for many years. A simple example of such anterface. The case of double resonance has been studied
system is a thin film, whose thickness is less than the wavesnly in Ref. 4, but the Lorentz field was neglected in the
length of optical radiation, on the interface between two di-model investigated. Two-photon resonance was studied in
electric media. The first investigations of nonlinear phenomRefs. 22 and 23. In Ref. 23, in contrast to Ref. 22, the pas-
ena in this system indicated the possibility of coherentsage of light through a thin film of resonant atoms was stud-
propagation of an optical pulse of a surface wave along théd taking account of the local field, and it was shown that
interface, containing a thin film of two-level atoms, betweenoptical bistability can appear in the quasistationary state.
dielectricd and established the conditions of reflection and It is knowr?*~?that if a monochromatic wave interacts
refraction of a plane wave passing through such arwith a medium under two-photon resonance conditions, then
interface’~* However, the models considered neglected thea response at the frequency of this wave and at the tripled
corrections due to the Lorentz fieldyhich are large pre- frequency of the wave necessarily arises in such a medium.
cisely in the case of a thin filhand for this reason they did Such third-harmonic generation also occurs when quasimo-
not reflect the true picture of the interaction between the fielchochromatic waves, which correspond to optical pulses, are
of an ultrashort optical pulse and a nonlinear interface. used. The basic problem studied in the present paper is to

Many other interesting phenomena are possible in a thitake account of correctly two-photon absorption and third-
film besides nonlinear surface waves. There are numerousrmonic generation as well as the inverse of these processes
treatments of the optical bistability accompanying diffractionin a thin film on the interface between linear dielectrics.
and reflection of an electromagnetic wave by a thin film of ~ The problem is formulated in Sec. 1. A distinguishing
resonant two-level atoms. It has been shown that a thin filnieature of the formulation is that third-harmonic generation
of resonant atoms can be described by the same system @fd its inverse effect on the interaction with the atoms in the
equations that arises in the model of a nonlinear Fabry—Perdim are taken into account. The effective Hamiltonian for
resonator Therefore it is natural to expect optical bistabil- the problem under study is obtained in Sec. 2. The Bloch and
ity and self-pulsation phenomena in the reflection of an ul-coupling equations are formulated in Secs. 3 and 4. The lat-
trashort pulse from a thin film of resonant atofld71*Op-  ter equations express in terms of the incident field and the
tical bistability, taking account of the finite thickness of the parameters of the medium the local field acting on an atom.
substrate, has been studied in Refs. 10 and 15-17. It wafn example of the application of the approach developed for
noted that in this case there exists an analogy with the prodaking account of third-harmonic generation and its inverse
lem of the passage of a wave through a system of opticagffect on the passage of an ultrashort pulse is discussed in
resonators. Sec. 5.

The parametric interaction of several waves is a typical
example of nonlinear optical phenomena. Three-wave inte
action in a thin film of a nonlinear dielectric on the interface
between two linear dielectrics was studied in Ref. 18. [t was  Let a thin film of atoms interacting resonantly with the
shown that coherent responses, specifically, photon ethoeslectromagnetic field of a light wave be present on the inter-
and superluminescent puls@s! can be generated in a thin face between two dielectric media in thke=0 plane. The
film of resonant two-level atoms in response to an externatlielectric media surrounding the film are characterized by
pulse. the permittivitiese; for x<<0 ande, for x>0. Thez axis is

ré. THIN FILM ON THE INTERFACE BETWEEN MEDIA

1063-7761/99/88(1)/8/$15.00 16 © 1999 American Institute of Physics
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chosen to lie in the plane of the interface. The resonant at- A(B,w)expig,x)+B(B,w)exp —igqx),
oms are described by an effective-Hamiltonian mdadéf.

The duration of the light pulse is assumed to be short comg x g )= x<0, .
pared with the relaxation times of the polarization and the C(B,w)expigzx),
population difference but much longer than the optical pe- x>0,
riod, so that the approximation of slowly varying complex
envelopes of such ultrashort pulses would be applicable. On
account of the presence of a planar interface the system &nd
Maxwell's equations decomposes into two independent sys-
tems describind E waves, ~
H(X1ﬁ7w)

(08,0, H=(R.0H) 0k HA(B,w)explia 0 — B(B,w)exp—iayx)},
and TM waves, X<0,

E=(E.0E,), H=(0H,.0. 0k~ 1C(B,w)exp(ig x),

x>0,

The film thicknesd is assumed to be much shorter than the
wavelength of the resonant radiation.

Let us consider an ultrashort TE pulse incident on thewhere g;= \/k28,-—,82, j=1,2. The boundary conditions
interface from thex<<0 region. The reflected wave propa- (1b) at x=0 give relations between the amplitudes of the
gates back into th<0 region, and the refracted wave incidentA, reflectedB, and refractedC waves and the polar-
propagates into the>0 region. The passage of an ultrashortjzation P= p of the film
pulse through the interface will be studied as in Refs. 2 and

3.
It is convenient to represent the field intensitieandH _20; S
and the polarizatiof® of the resonant atoms inside the thin ClBw)= g:+q AlB, @)+ g:+q Ps(B.),
film as
2
» dw dB . ) ~ @
E(x,z,t)=J — —exp —iwt+iBz)E(X,B,w),
o 27 27 2
a,— 4wk
) dw B(B.0)= o A+ e X0}
H(x,z,t)= f exp(—lwt+|,82)H(x,8w)
It is convenient to introduce notation for tliEresnel trans-
P(z,t)=J 2_2_,3 Xpl — it +i2)P(8. o). mission coefficienfT and the coupling constart
. , . = 20, 4mk?
Outside the film the Fourier componenEx,3,w) and T(B,w)= K(B,w)= .
H(x,8,0) of the field vectors are determined by Maxwell's d1ta2 d1t 02

equations, and the componentsxat0 are determined by
continuity so that for theTE case under consideration we

) - We shall now focus our attention on the refracted wave.
obtain the system of equations

We shall consider only the case<e,, where total internal

42 reflection does not occur for any angle of incidenge

— + (k2% BHE=0, =cos Y(q;/kye;) and the refraction anglé,, is determined

dx? by Snell's law

(1a)
o ,3~E o i dE =z sin, = BIk\eo,= /e, /e, SiN6;, .
=k P TRae BTR
with the boundary conditions If the polarization of the film is determined, then the

expressiong2) determine the field in all space. We empha-

E(x=0-)=E(x=0+), size that they are in no way related with the assumption of
slowly varying envelopes of the optical pulses and are exact.

A (x=0+)—H,(x=0-)=47ikPy(B,0). (1) ~ To find the polarization of the atoms in the film a model of

the resonant system must be specified. In addition, let the
Herej=1,2 andk= w/c. Outside the thin film the solution envelopes of the optical pulses and the polarization of the
of Eg. (1a), taking account of the behavior of the field far atoms vary slowly. The optical pulses are assumed to be
from the film, has the form ultrashort.
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3. EFFECTIVE HAMILTONIAN AND POLARIZATION OF A

THIN FILM H=e"SH,e'S— e ISEdeS—ite is

o 0
—|S_e ,

ot

Let us consider two-photon resonance, where th hich we expand in the standard manner
doubled frequency of the carrying wave of the ultrashort
pulse equals approximately the atomic transition frequency, . ] 1
but the transition itself is dipole-forbidden. It was shown in H=Ho—i[SHo]~ E[Sv[SvHOH_ -+~ Eatonfl
Refs. 24—26 that in this case the wave with the carrying
frequency generates polarization of the resonant medium at
the frequenciessy and 3w,. For this reason, if we takeac-
count of the inverse effect of the medium on the atoms in the

film, two fields with intensity + —iﬁe"sﬁe's.

1
+i [S, Eaton‘d] + E[S’[S’Eatomd]]

Eai=.Z1exp(—idg)+c.c., 5
] We represen§ andH as series expansions in powers of the
E.s=. 7Zsexp —3idg)+c.c., () electric field intensity

P o= wot — Bz, S=5104+82045024

with amplitudes #; and.~Z,, and carrying frequencies,
and 3wy act on the atoms in the film, and the two-photon
resonance conditions (S™M and H™™ are terms of orden in the fieldE,; and
ordermin the fieldE,,). Then

H=H©04+HLO L HOD L H2OL ©

200~ w¢y,

wherew .~ (E.— E,)/# is the transition frequency between HOO=H,,
the energy level&, andE,, are satisfied.
We now obtain an expression for the atomic polarization  Fwo- _ Eald_i[s(l,O),Ho]_i_hiS(l,O),
induced in the film by a quasimonochromatic wave with car- gt
rying frequencieswy and 3wy. The atomic polarization is
given by the standard formula HO= _ Eazd_i[S(Ovl)'Ho]_f_ﬁ%S(o;l)’

P(t,2)=NgTr(pd), (4)

~ i i ~
whereNj is the surface density of the atoms, and the density H<2~°>=§[S<1'°>,Ea1d]— 5[5(1,0),H(1,0)]
matrix p of the atoms satisfies the standard equation

J
. dp —i[S29, Ho]+7 — S20
i gy =[Ho~Eatonfl ). (5a L™ Hol #7555

_HereHo_ is the Hamiltonian of a resonant atom in the fildh, H<1'1):L[S<1'0),Ea2d]+ I—[S(O'l),Eald]

is the dipole moment operator of the atom, d@g,=E.; 2 2

+E,, is the intensity of the electric field acting on an atom. i i

The square brackets denote a commutator. — —[S%Y {107 ~[S10 F0.1
The resonant energy levels, andE, of the Hamiltonian 2 2

and the nonresonant energy levEls are eigenvalues of the 9

HamiltonianH,: —i[S(l'l),Ho]JrﬁES(l'l),

Hola)=E,|l@), a=a,c,0,0’, E.—E;~2wy.

- i i -
02__rg0y _ 10 70,1
To write down a system of equations describing only reso- H )_2[5( ' Eq2d] Z[S( L ROD]

nant levels and to construct the effective interaction Hamil-
tonian and the effective dipole moment operator of an atom,
we shall follow the approach described in Ref. 26. We use
the unitary operator exi®) to transform the atomic density

1%
—i[§°'2>,HO]+ﬁas<0v2>,

matrix as
H=e iSpelS, Let HO=H(OD=0. Hence, and from the condition that the
_ _ . field is switched on adiabatically, we find the following ex-
The equation for the transformed density matrix pressions for the matrix elements of the hermitian operators:
0w o~ ; J a—i® PRRT
5T idaa | #q,7'%0  Z7e'™0
ih—p=[H,p] (5b) SLo__ —ea / + ,

h \waa’_wo Waa two
is determined by the Hamiltonian (7)
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A% e3P0

©0n_ idaa’/ A qe 8% N
aa’

h \a)aar—3w0 waar+3w0 .
We take as the effective Hamiltonian
Heff=H(O,O)_,_H(2,0)+'|:|(1,1)+'|:|(0,2).

Following Ref. 26, it is not difficult to obtain elements of the
effective Hamiltonian matrix in the form

1 .
Hef= — 5./cinca(wo)+./43,/A’1*Hca(—wo) e 2%
S, H=E,ED ®
ES'=| 71|41 (wo) +|. 73| (3wo), a=a,c,o,
where
deoloa/ 1 1
Hca(a))—%: fi \w(,c-i-w Wea— W)’
(o) doo?[ 1 1
dw)= .
o' h \waa/-i—a) Wyp! — W

The polarization of the film can be expressed in terms of the

transformed density matrix and the effective dipole mo-
ment operatoD

P=N,Tr(pd)=N,yTr(e'Spe~'d)=NyTrpD,

o 1
D=e 'SdeS=d—i[S,d]- 5[S[Sd]]

Taking account of Eq(7), we obtain the following expres-

sions for the matrix elements of the effective dipole moment:

Dac=. 211155~ wg)e ™ Po+ 21 117, (wo) e P
+ Al1%(—Bwg)e 30+ _ZE 1% (3wy)e'3P0,

Daa=— % (wg)e Po— Z,11,(3wg)e **o+c.c.,

©)
Dee=— I (wg)e  Po— 7311 (3wg)e 3o+ c.c.

To calculate the polarization of the medium we shall

neglect the nonresonant terms as well as the terms propor-

tional to. 75 in the effective dipole moment operator, mak-
ing the assumption that

| 23| <|.#4]. (10)

Then, expressing the elements of the density matrix in terms yetermined by the field,

of the slowly varying amplitudes we obtain
P(t,z)=21(t,z)exp —idy) +75(t,2)
Xexp —3idy)+c.c.,
71(t,2)= = (I4(wp) paa+ e @0) Peo)- %1
+1E(wo)R 2T,

75(1,2) =TIg,(— wg)R 24, (11)
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R=pc.eXp2iDg).

We introduce the variableN=p,,—pc.. It will be

shown below thap,,+pe.= const. Choosing the constant
to be 1, the envelope of the polarization at the frequebgy
can be expressed as
Z1(t,2)= = (11 (wo) + 11 _(wo)N). %4
+1II5 (wo)R 27, (12

where

1

IT, (wg) = E(Ha(w0)+nc(a’0)),
1

IT_(wq)= E(Ha(wo)_nc(wo))-

4. THE BLOCH EQUATIONS

The equations for the elemenig,,pcc, andpea=pZ.
=Rexp(—2i®,) of the transformed density matrjx form a
closed system:

-
pfa:i(A*R—AR*),

&th:—i(A*R—AR*),
J
(E—iA)RﬂA(Raa—RCC),
where
1

A 2 o wg) +. g A5 oo — wo) |72,

:

A=2wg— wca—{|- 71| [Te( o) ~ Ma(wg)]
A3 [ M e(3wg) — M4(3wg) [} .

13

+

One can see that,,+ p..=const in the effective Hamil-
tonian approximation and neglecting relaxation, so that in
tersm of the variableR andN we have

J =iAR+iAN ﬁN—Z' A*R— AR* 14
ol AN, —-= i( ). (14

5. THE COUPLING EQUATIONS

The intensityE 4, Of the electric field acting on an atom
in the film and by the polariza-
tion P of the medium:

Eatom= Ef + &P,

where the parametef accounts for the environment. It is
often assumed that=4=/3 for an isotropic medium. If we
take into account third-harmonic generation, this expression
assumes the following form in terms of slowly varying vari-
ables:

A =E 1t EPL, A= i3t EPs.
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We neglect other harmonic§ifth and so on and the spread a,(7)=T(By,wq)ain(7) +g(a+iB)
in the parametet.

We shall obtain from Eq(2) relations for the slowly X{—m(k+1)a;+m(k—1)pa; +oaj +vo*ag},
varying amplitudes. Neglecting the dispersion of the linear (199
media we have

, ) . az(7)=9g(a+3iB){—m(k+1)a
Za(O)=T(Bor00) Zin(t) +i k(Bor00) 74(b), TR :

15) +m(k—1)paz+oa,}, (19b)

Z13(t) =1 k(3B0,3wo) 75(1). whereF=aZ+2yafa; and y~1, g=4mn,|l, | Je,. Here
v and v are the ratios of the elements of the matrix

Using the expressiofl?2) for the polarization of the medium
g b 12 P +(w), which differ only by the value of the argument.

at the pump frequency, we obtain the following dependencg[a’a
of the amplitude of the field acting on an atom on the ampli-These ratios are approximately 1, since the dispersion of
tude of the incident field and the parameters of the mediumtl,,»(w) is neglected. The parametetsand 8 are given

. b
A1=T(Bo,wo)U ™Y i+ (£—ix) (L4 (wo) Y
FTT(0)N) Zin+ (41 1) TTE () RZEY,  (16) A Ns—l, _ (/)] ,
3 cosf+\/cos O+ (e,— 1)/ e,
where
_ and the transmission coefficient is
U=(1—-£&(IT1(wo)+II_(wo)N))*+ «“(I1 . (wq)

2 cosd
cosf+\coL0+ (e,—eq)le;

+11_(wo)N)2— (&2+ k?)| I ¢4 wo)R|% T(Bo,wo) =

The standard condition of phase matching for bulk media o .

will appear in the present problem as a rule determining thavhere the angle of incidencgis employed.
anglesg3, 63, and 6, >* for which the harmonic wave will Certain sources in the literature give
propggate into the medium surrounding the thin fiI.m. The M,.~14x10 %emu, II,,~2X10 2*emu,
relations for these angles follow from the requirement

B(3wp) =3B(wo): I ~4x10 > emu,
N1 (3wg)sin 834 =n;(wg)sin 62, so thatk=2 andm~1.5—1.4. The parametay depends on
the density of resonant atoms and is X7® 2 emu, ifny
N,(3wo)Sin 03°=n;(wo)sin 62, (17ah =10 cm 3. In the subsequent numerical calculations the
N o refractive indices of the media surrounding the film were
N2(3wo)SiN b~ =Na(wo)sin b (179 held constants;=1 ande,=2.25. The parameters in Egs.
(18) and (19) were taken ag$=1, g=0.5, 27(I/\)=0.05,
k=2, andm=1.
6. PROPERTIES OF THE REFRACTION OF AN ULTRASHORT Let us consider first an ultrashort pulse, having a dura-
PULSE tion of the order of one period of the Rabi oscillations, inci-

dent normally on a thin film. To solve the system of equa-
Let the elements of the matrik;,(w) be real(other-  tions (18) and (19) numerically it was assumed that the
wise, their constant phases can be included in the phase abrmalized envelope of the incident pulse is described by the
the slowly varying amplitude of the density mafri*Ne ne-  function
glect the dispersion of these quantities and write

T~ Tm
He(w) (@) ain(7)=aOSGCVE - ), (20
=k, =2m p

Maa(w) Med(@) where a, is the amplitude,r, is the normalized duration
Introducing the normalized amplitudé, of the optical (7,=t,/ty), and 7, is the normalized time shift of this ul-
pulses and the characteristic timg= 2%(HacA§)*l so that trashort pulse.

The numerical solution of Eqg18) and (19) showed
that the shape of the transmitted pump pulse is the same as
the Bloch equations and the coupling equations can be writhat of the incident ultrashort pulse. The transmission coef-

5’1=A0al, 52=A0a2, gin:Aoain y t:toT,

ten in the normalized form ficient differs by less than 1% from the coefficient calculated
P using the Fresnel formula. This is because the shift in the
%9 _ iAwtoo+4im(k—1)(|a;|2+|as|2)o+iFp, resonant transition freque_ncy dl_Je to the high-frequency Stark
ar effect and the Lorentz field drive the system out of reso-

(189 nance, and we observe a weak perturbation of the atoms in
ap the thin film and, in consequence, a negligibly small re-
EzZi(oF* —o*F), (18  sponse of the atoms. Here it should be noted that for a two-

photon resonanc@n contrast to a one-photon resonantte
and high-frequency Stark effect plays the dominant role in this
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0.4 the form (20) with a,=0.657,=6, and
Tm=20.
0.4}
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dynamic destruction of resonance. In order of magnitude thare once again much longer than the duration of the ul-
harmonic signal is 107 times the pump amplitudé=ig. 1). trashort pulse. This behavior becomes understandable if the
Increasing the amplitude of the incident signal does noBloch equation is rewritten in the form
change the Fresnel character of the reflection of the pulse.
The harmonic signal acquires an oscillatory charatfégy.
2), attesting to rapid evolution of the Bloch vectgine nor-
malized effective field in the Bloch equations, which deter-
mines the angular rotation rate of the Bloch vector, can bgyheref, g;, andg, are certain functions that depend on the
estimated a& ~aj). incident field and the parameters of the medium according to

Let us now consider a normally incident ultrashort pulsethe general equationd.3), (14), and(16). It is evident that
persisting much longer than the period of the Rabi oscillathe Lorentz field and the characteristic features of the two-
tions. Here, in solving numerically the system of equationsphoton interaction together produce an effective relaxation
(18) and(19) it was assumed that the normalized envelope oimechanism whereby the polarization and the population dif-
the incident pulse has the form of a “plateau” ference of the atoms in the film reach stationary values. This

— —r — is seen especially clearly in the shape of the third-harmonic
tan)‘( 2— 1)~ tan)‘( 2#)
Tp Tp

, (21 signal (Fig. 4): The amplitude modulation near the leading
edge of the third harmonic is replaced by stationary har-
where 7,=tiqn/to iS the normalized width of the “pla- monic generation. We emphasize once again that in the case
teau.” In the calculations the slopes of the edges of this pulseonsidered the phase matching determines the direction of
were fixed. emission of the harmonic from the film but in no way influ-
A characteristic example of the numerical calculation isences the harmonic generation efficiency.
displayed in Fig. 3. Once again, the transmitted signal had This behavior of a normally incident ultrashort pulse is
the same shape as the incident ultrashort pulse but wasanifested with increasing angle of incidence of the funda-
weaker than the latter in accordance with the Fresnel formumental wave on the interface containing a thin film of reso-
las. This case differs considerably from the preceding one imant atoms, between two dielectric media. Since the effective
that the oscillations of the populations of the atoms in thefield penetrating into the film decreases with increasing angle
film decay and the population reaches a stationary value difef incidence, the period of the Rabi oscillations changes, so
ferent from the equilibrium value. It is important to empha- that such a pulse with a thin film can exhibit both types of
size that here the irreversible relaxation times in the systeriteraction for the same pulse length.

§~i(A+Re(f)N)R+i(gl+gzN)N—|m(f)NR, (22)

ain(1)=a9

1.8} 5[
a 4t
1.2
c
3 FIG. 2. Envelopesfoa — incident pulse of the
08+ d form (20), b — transmitted pulsec — harmonic
ot pulse, ad d — population difference.a,
=1.137,=6, andr,,=20.
0.4+
b i+
0 10 20 30 40 50 0 10 20 30 40 50
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FIG. 3. Envelopes of the incident puléas, transmitted pulséb), and popu-
lation difference(c) for a plateau-shaped pulse of the fundamental wate
with the parameteray=0.757,=6,7,,=6, and7,=8.
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7. CONCLUSIONS

We have examined effects associated with the passage of
an ultrashort electromagnetic pulse, under two-photon reso-
nance conditions through the interface, containing a thin film
of resonant atoms, between two dielectric media. The funda-
mental aspect of our analysis is that the Raman interaction of
the fundamental wave and the generated third harmonic is
taken into account. The matching conditions determine only
the direction and not the generation efficiency of the har-
monic radiation.

When the local Lorentz field is taken into account, a
dynamic relaxation of the polarization of the film of resonant
atoms occurs in times much shorter than the irreversible re-
laxation times of the medium. As a result, a stationary popu-
lation of the energy levels of the resonant atoms which is
different from the equilibrium value is established in the me-
dium. In the future it would be best to focus attention on
optical bistability, which is a characteristic phenomenon in
the situation considered.

The effects discussed can be conveniently observed in

Since the density of resonant atoms in the film was chogne third harmonic, since its signal can be easily distin-

sen to be low, a large change in the shape of the pump pulsgjished from the powerful pump wave by using filters and/or
was not observed in the series of investigations performeghe matching conditions.

For films with resonant atom density = 10?2 cm™ 2 or giant

It is worth noting that if a harmonic signal comparable to

dipole moments~10 D, the shape of an ultrashort pulse the pump signal can be obtained on account of a high density
interacting with the film will be strongly deformed because of resonant atoms in the film, then parametric bleacffng,
of the inverse effect of the film. As the amplitude of the where the population of resonant atoms remains constant
incident pulse increases, the transmitted pulse can be esuring the application of the electromagnetic pulses, can be
pected to split, just as in the case of an ultrashort pulsexpected. However, generation of the fifth and higher har-
propagating in an extended medium in the two-photon selfmonics is now possible, since for them phase matching in the
induced transparency regiméAs the angle of incidence of film is not required.

the pump radiation increases, the additional peaks in the en-

This work was supported by the Russian Fund for Fun-

velope of the transmitted pulse will vanish. Since the effec-damental ResearchiGrant No. 98-02-17429 One of us
tive field acting on an atom decreases, the number of RalfiA. M. B.) thanks the ZAO “Russkoe Zoloto” for assisting
oscillations, each of which corresponds to a peak in the enn this work.

velope of the transmitted pulse, decreases. The harmonic sig-

nal will exhibit all of these features of the pump pulse dy-

namics. This case must be investigated in greater detail.
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The shattering of a wav@uasiparticlg with a dispersion curve consisting of two quadratic

branches by a planar defect is discussed. The analog of such a process is the scattering of a similar
wave (quasiparticle¢ in a one-dimensional system by a point defect. It is shown that even

when the defect is passive, i.e., has no internal degrees of freedom, scattering may become
resonant. The physical explanation of this effect is that a wave with a lower-lying

spectrum scattered by the defect is in resonance with a localzmehd state emerging because

of the interaction between the defect and a wave with a higher-lying spectruni998

American Institute of Physic§S1063-776(199)02501-9

1. INTRODUCTION nance is also impossible. In this case the reflection coeffi-
cient (or the transmission coefficienhas no singularities.

The study of the scattering of various types of wave ina  Nevertheless, in a recent papgeBarinskii and Maugin
medium with point or planar defects has a long history and iglescribed resonance reflection of a transverse elastic wave
interesting not only from the scientific standpoint but alsofrom a thin passive planar defect in conditions where the
with regard to applications. The theoretical aspects of scafphase velocity of the incident wave is close to the velocity of
tering by a planar defect are interesting because analyzinidpe longitudinal elastic wave. This result has stimulated our
this process reduces to studying one-dimensional dynamicatudies of the physical reasons for the resonance effect.
problems and often allows for a simple analytical descrip-  To clarify the statement of the problem, we take a simple
tion. It is this fact that makes it possible to easily recordexample of scattering by a point defect in a one-dimensional
some features of scattering in a resonance situation. For th&/stem. This example has been described in many textbooks
reason we will deal in this paper with the scattering of waveson wave and particle scattering, but its analysis will allow us
by a planar defect. to introduce and recall necessary notation and terminology.

The occurrence of resonance scattering by a defect can We consider a one-dimensional system whose state is
easily be explained in two case@ when the defect has a described by a fieldV(x,t) obeying, in the case of steady-
structure and the wavelength of the scattered wave state vibrations ¥ (x,t)=#(x)e '"), the equation
matches the geometrical siZe of this structure, e.g.\
=2nh, wheren is an integergeometric resonangeand (b) 1 d?y )
when the defect has an internal dynamic degree of freedom
characterized by some frequency, and the frequency of the )
scattered wave coincides with the natural frequency of thdhe eigensolution of this equationy(x)=yoe'*, corre-
defect. The common approach to studying resonance scatteiPonds to an energy with a dispersion law
ing in quantum mechanics is to examine the scattering of K2
particles with a quadratic dispersion law by a double- g=g,+—. 2
humped potential, which in the one-dimensional case has the 2m

shape sche_mat_ically depicted in Fig. 1. If the c_iefect potentia{,\,hen there is a point defect localized at point 0, the
has a quasistationary level, the scattered particles with a AU&yht-hand side of Eq(1) acquires a local-potential term. In

dratic dispersion law and an enerdy satisfying Eoc<E  the |ong-wavelength approximation, the local potential can
<E,, may resonantly interact with this level. All the features always be written as

of such resonance scattering in the one-dimensional case are

determined by the shape of the potential and have been thor- U(x)=Ughd(x), 3)
oughly describedsee, e.g., Ref.)1 When the defect is pla-
nar, the coordinate is measured along the normal to the
defect plane.

If the planar defect is very thin and the wavelength is
much longer than its thicknesa ¥ h), geometric resonance
is impossible. On the other hand, if the defect is passive, i.e., y(x)=e**+Ae ', x<0,
has no internal vibrational modésr quasistationary energy
levels in the quantum problemordinary (frequency reso- Y(x)=BeX,  x>0. (4

whereh is the effective width of the localized perturbation
(kh<1).

Solving the scattering problem amounts to finding solu-
tion of the form

1063-7761/99/88(1)/6/$15.00 168 © 1999 American Institute of Physics
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FIG. 1. FIG. 2.

The amplitudesA andB determine the reflection coefficients Sec. 2 we will see that in this situation particles of the first

R=|A]? and transmission coefficienttransparency T  type may satisfy the conditiori=0 (R=1) and also the
=|B|?, with R+T=1. These coefficients can easily be conditionsT=1 (R=0).

found; in particular, the transmission coefficient is In Sec. 3 we will study the resonance scattering of a
5 transverse acoustic wave by a planar defect under conditions

T= k _ 5) in which the phase velocity of the wave along the defect lies

k?+(mhUg)? within the interval limited by the velocities of the transverse

and longitudinal acoustic waves. Finally, in Sec. 4, we will
For Up#0 the transmission coefficiefit has no singu-  discuss the scattering of a partidleave with a two-valley
larities fork real, i.e., in the region where plane waves existdispersion law by a point defect in a three-dimensional me-
(e>20), andT is always positive but smaller than unity.  dium. We will also find the particle energy at which the

The transmission coefficiefit may acquire a singularity wave is not scattered by the point defect.
only for e<eg andU, negative(a local attractive potentigl

at k=ix, with k=+2m(eg—¢) . However, a value<g,

ives rise to a localized state,
9 2. ONE-DIMENSIONAL MODEL: SCATTERING BY A POINT

P(X) = thoe™ K|X|, (6) DEFECT OF A WAVE HAVING A DISPERSION LAW
WITH TWO BRANCHES

which corresponds to an eigenvalue lying in the forbidden _
Suppose that the elementary excitations of the system

band for the natural frequencies of free wavparticles. - . ) .
Usually such a state is not directly related to the scattering of2Ve Wo branches in the dispersion law, similar to those

free waveswith £>e). depicted in Fig. 2, where is the energy(or the frequency
The situation changes if the dispersion law e(k) ina  Sduaredt andk is the wave vector. In the energy range

defect-free medium has several branct@svalleys, to use ~ £2~ 1 the quamics _Of th'e syst'em is described. by two
the terminology of electronic semiconductor theoryhis ~ 9roups of excitations with dispersion la@w). In an ideal

means that additional scattering “channels” can open due t§YStem. these particle-waves do not interact, and their dy-
the existence of several valleys. namics obeys a wave equation or the Sdimger equations

Usually the independent branches of vibratiémsgroup 1 d%y
of particleg differ in the parameters of their dispersion laws. e — e+
In the simplest case of two types of partidi@ave, the
dispersion law within a certain range of eigenvalues has the 1
form e =¢4(k) ande = ¢,(k) for the first and second groups, gfy— iyt >
respectively, where 2

2m; e
d 2 (8)
&_iko) ¥,=0.
The quasiparticles interact when there is a defect. The defect
k? k—kq)? : : de
_( 0 @) generates an interaction that corresponds to the additional

Ky=eg;+=— K)y=g,+ :
e1(k)=¢1 2m;’ s2(k)=22 2m, ' energy of the system localized at the defect. Assume that the
density of this energy is

with ,<e, (Fig. 2.

The excitations of different branches are independent in ~ Uin(X) = Uo{aq| th1|*+ ava| tho| >+ B( 47 2
an ideal medium. When the medium has defects, local hy- *
bridization of the excitations is possible, which may have a 4112 )}0(x). ©)
strong effect on the scattering processes. Let us assume th&$ a result the dynamical equations for the system with a
a passive local attractive potential allows for local states oflefect acquire the form
the form(6) for the second group when<e, holds. Then a 1 &y
scattered particle of the first group in a state of the fé@n _ n 1 u 0)+ 0)18(x
with ¢,<e<e, may find itself in resonance with the local e 2my dx? ol 212(0)+ A2(0)Jo(),
eigenstates of excitations belonging to the second branch. In (10
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1/d \? we haveB=1, and the scattering process is characterized by

e eathyt 5 d_x_|k0> 2 R=0 andT=1.
2 The physical meaning of the resonance conditions is
=Ug[ as¢,(0)+ B1(0)]16(X). (17 quite clear and can easily be explained by analyzing Egs.

(11) and(12). The amplitudeB vanishes ifiy;(0)=0, a con-

Clearly, the presence of a local perturbation poteriéial dition th hat E611) b dh
is equivalent to the presence of additional boundary condi- ition that means that E¢11) becomes autonomous and has

; N ; : localized solution if condition(17) is met (this follows
tions for Egs(8) at pointx= 0 (with the function x)and & ; ) i i !
P2(X) Cont?nuouﬁz P h1(x) from (12) if ,(0)=0). A localized vibration of the field

¥»(x) is the dynamical system which is in resonance with

dy; dyy the incident wave of the fielgy,(x) and creates conditions
dx  dx =2myUql a141(0)+ B2(0)], for total reflection of this wave.
. B (12) The coefficient T is equal to unity if aqiq(0)
dyp di, . + Bi»(0)=0, a condition that means that;(x) does not
Tax  ax - 2MeVolazyz(0)+ B (0)], feel the perturbation generated by the potentlgl so that
where the incident wave passes through the defect without being

distorted. As for the fieldy,(x), it becomes autonomous,

Pr=0 (+0), ¢.=¢,(—0), a=12. since in its right-hand side

Note that the adopted potential of the interaction of the a,— B2
fields ¢, and ¢, at the defect is similar to the free surface ~ @2%2(0)+B¥1(0)= ay $2(0).

energy of a superconductor introduced in Ref. 3, the energ¥| ) ) ) )
expressed in terms of the order paramatdn the presence ence Eq(12) again has a localized solution corresponding,
of a twinning boundary. Finding the spatial distribution of NOWever, to another energy, for which conditi) is met.

the order parameteg in the presence of a planar defect Thus, we have established that the resonance features of

reduces to solving a one-dimensional equation of the fornin€ Scattering of a wave of fielgh (x) by a point defect are

(8) (if we ignore the existence of the vector potential of the'€lated, as expected, to the features of the problem of steady

magnetic fieldl satisfying the boundary conditions, and Egs. &igenstates of the total field= y, + ¢, Here it is advisable

(12) can be considered a particular case of these conditionf0 @nalyze in detail the part of the eigenstate problem that is
Let us take the standard problem of the wakiéx) with related to this aspedbcattering by a point deféctSolving

an energye in the interval betweer, ande, (s;<e<e,) the pro.blem of steady eigenstates of the figld i, + ¢, we
scattered by such a defect. The wawgx) is sought in the ~€an write
standard form(4), and a natural expression for the wave Asin(kx—gy), x<O0,

¥o(X) is one generalizin@6), P1(x)= Bsin(kx—w,), X>0,
Pa(x) =M expox <Xl (13)

wherek?=2m;(s—&;), and k2=2m,(s,—¢). In (13) we _ _

have allowed for the continuity of the functiom,(x) atx ~ Wherek and« have been defined earlier.

=0 and for natural boundary conditions at infinity. The existence of the soll_Jtl(m9) implies that the steady
The continuity ofy,(x) connects the amplitudes of the Staté has two terms, a standing wave of the figi(x) on the

reflected @) and transmitted®) waves, & A=B, and Eqs.  €ntirex axis and a vibration localized near the defect.
(12) yield The solution(19) is characterized by five parameters: the

amplitudesA, B, and M and the phaseg; and ¢,. The
continuity of the function/,(x) and the boundary conditions

Ura(X) =Mexp{ — k|x| +ikox}, (19

_ |k(K+ 0[2m2U0)

A(e) ' (14 (12) lead to the a system of homogeneous algebraic equa-
. tions for the amplitude#\, B, andM:
ikBm,U,
=TT AGe) (15 Asing,—Bsing,=0,

A(e)=ik(k+ a,myUg) A(2a;miUgsing; +k cose;) —Bkcose,
+mU[ g+ (agap— BHMyUg]. (16) +2BmUgM =0, (20)

We see thaBZO |f Aﬁm2U0 Sin(Pl+(K+ af2m2U0)M :O

k(e)+ a,m,Uy=0. 17 By equating the determinant of the syst¢2®) to zero

we arrive at a relationship between the phagesand ¢,,
retaining one parametéor the difference of the parametgrs
as a free parameter.

This leads to two conclusionga) if the energye satis-
fiese;<e<e,, a quasilocalized vibration is the steady state
of the system; ancb) for ¢ fixed there is a continuous spec-
a1k+(ajar— B2myU =0, (18  trum of quasilocalized states.

This relationship is meaningful fak,Uy<0, i.e., if the po-
tential of the defect is attractive for the partielg(x). In this
case the reflection and transmission coefficients Ra€l
andT=0, respectively.

But if
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A remarkable feature of the set of quasilocalized vibra-sor andp is the density of the medium, the dynamical elas-
tions is that there is a steady state of the fig(c) in which  ticity equation perturbed by the defect plane has the form

a standing wave exists only on one semiaxis and a localized X

vibration exists on both semiaxes. Indeed, setfivgO in ITik _ ﬂ+ ﬂhé(z) (25
(20), we see thatp; is automatically equal to zero, i.e., IXk Jt2 K Jt2 '
#1(0)=0 and, in additionx+ a,m,U,=0. As for the am- . .
plitude M, it is uniquely determined by the formula where »=(M—m)/m, andh is the thickness of the defect
layer.
M= — KA 21) Equation(25) yields the obvious boundary conditions
2pmU,° )

Naturally, the condition for the existence of a quasilocal- 4" — o= 7hp J ui(20) . i=1,2,3. (26)

ized vibration of the type we have just describéaith at

B=0) coincides with the condition for total resonance re-
flection. Hence the standing wayg(x) with an amplitudeA
can exist only on one semiaxig<€0) if

Let us examine the scattering of a plane elastic wave by this
defect, assuming that the wave is polarized in the plane of
incidence. We select thex plane as the plane of incidence.
1, ) Then the conditiong26) that are important are those with
e=g,75 a;MyUp (22 j=x andi=z.

) ) ) o ) Allowing for the continuity of the vectou and its de-
and at the same time there is a localized vibration of the field, 4tives with respect to in the planez=0 and the mono-
¢2(x) with an amplitude(21). _ _ chromaticity of the wave, we can reduce the conditi28)

Finally, a steady state with a single standing wave alongg he following two:
the entirex axis with ¢, (0)# 0 corresponds to the conditions

- o[ Uz duy Woi(0 )
A=B, ¢1=¢2=7. (23) Ol 5z T oz | = WouL0), @7
In this case, as Eq$20) imply, we haveM = — a;A/ 8, and o Uk U\
the frequency can be found from the conditid8), which %7 T oz =Woux(0), (28)
yields
- whereu™ =u(z=+0), u”=u(z=—0), Wy=— phw?, with
=g E( a— B ) m.U2 (24) w the frequency, and, andc; are the velocities of the lon-
22l o 2o gitudinal and transverse acoustic waves, respectively.
This is possible if @, a,— 82)Us<O0. T_h_e conditipns(27) and _(28) g_eneralize the boundary
Clearly, the results of this section are weakly dependen?ond't'ons(lz) in the one-dimensional case. Note that the

on the type of boundary conditions “mixing” the fields; conditions (26)—(28) corresponds to the continuity of dis-

andy, and on the specific form of the dynamical equationsplaCements in the plane:_O a_md a discontinuity in the .
that lead to a “two-valley” dispersion law with different in stresses across _th_e opposite sides of the defect plane, and in
which the valleys have different depths. Moreover, the mairfnis sense are similar 1d.2). . . .
conclusions drawn in this section are valid not only for to 2. Different boundary conditions arise when the inter-

systems with continuous field distributions but also for dis-2{0Mic interaction along the defect plane varies. _
crete models. The ways of deriving the macroscopic boundary condi-

tions vary, but all are based on studying the long-wavelength
3. SCATTERING OF A TRANSVERSE ELASTIC WAVE BY A limit of the crystal lattice dynamics. However, the model
PLANAR DEFECT IN AN ISOTROPIC MEDIUM most often used here is that of a three-layer sandwich in

Examples of planar defects in crystals are well known:which the thickness of the middle layer goes to z€fthis

twinning boundaries, interphase boundaries, flat packingvas the approach used in Refs. 2 and 4 to obtain the bound-
faults, etc. In the long-wavelength approximatievhich we  ary conditions. Other boundary conditions were formulated
consider in this papér where the crystal dynamics is de- phenomenologically in Ref.)5
scribed by the theory of elasticity, such a defect may as- In the simplest case where the effective elastic moduli of
sumed to be lying on a plane. In this case, as shown in Sethe defect layer are small compared to the elastic moduli of
2, the presence of the defect manifests itself in additionathe medium, the boundary conditions presuppose that the
boundary conditions imposed on the equations of the field normal components of the stress tensor are continuous in the
our case the field of elastic displacememtsWe start with a  presence of a discontinuity of the corresponding components
discussion of the possible boundary conditions. Suppose thaf the displacement vector:
the defect is entirely in the plare=0. Two types of viola-
tion of the properties of the solid may be localized along this + _H

Oxz— U;Z_I_(u; - UX_),
plane. 1
1. The surface=0 coincides with a monatomic layer of (29
isotopes, atoms whose maddiffers from the mass of the or=0o :ﬁ(m —u;)
o4 o4 z z /7

regular atoms of the medium. &;, is the elastic stress ten- I3
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wherel; andl; are the effective thicknesses of the defectwhose components are linked through relationships that fol-

layer, which are inversely proportional to the elastic modulilow from (31). Technically the solution of the problem is

of this layer, andu is the shear modulus of the isotropic difficult, and here we give only the results that are of interest

medium. to us. In order to proceed with the discussion of the problem
The boundary condition29) are broadly applicable of resonance scattering, we write the expression for the am-

range if one assumes that the paramelteand|; are fixed.  plitude B, whose calculation yields

They have natural limits: dt=o (the appearance of a free 2ig

layen both o, and o, vanish at the defect layerz€0), B=— ——[2«c?+ nhw?]a,

while atl=0 the displacement&@nd stressesecome con- A

tinuous at the plane=0. ) (37)
Having established the boundary conditiq2g), (28), A= gh (nth_ZKCIZ)w_Z+(K2_q2) 77h|<20|2

or (29), we begin the solution of the problem by examining Ct

the scattering of a transverse wave. We assume that the wave . 2 2 2 2

is incident at an angl® to thez axis. Then the dependence ~2iq(2xci = nho®) = (nhk)“ci«],

of the displacement field on the coordinatés the same for  with o=c?/c?.

all the field components and is described by the wavéd%xp We see that total reflectiorBE0) occurs when
wherek=(w/c,)sinf. We also assuméhis is important] 5

that the phase velocitg of the wave along the surface is 2c2+ | K2— © A—mhwz (39)
wlk=c,/sin6<c, i.e., we assume that si»c,/c. ! C|2 m '

We write the displacement vectarfor the geometry of

the problem{ u=(u,=0,u,)] in the form Total reflection is possible only if there is a heavy defect
X ™~z

_ _ layer (M>m). In the long-wavelength approximatiorhK
u(x,z,t) =u(z)exp(ikx—iwt), (300 <1), the phase velocitg=w/k of a resonantly reflected

where the fieldu(z) determines the dependence of the sumVave is close to the velocitg, of longitudinal acoustic
of the longitudinal and transverse vibrations of the elastidvaves and is given by the formula

medium on the coordinate 1/ Am 2
du! dul e E(ﬁhk) } (39
u2)=uV+u®, kul=i—=—, ku)=-—i : . . L 21202
dx dz As is usual in such situationg,c/c~(Am/m)<h-k=.
(31 Note that the conditiofi38) determines the frequencgr
In the bulk #0), the longitudinal and transverse com- Phase velocityc) of a steady-state localized longitudinal
ponents obey the equations wave obeying the boundary conditi¢a7) in the absence of
a transverse component. In addition to the w#36), the
2 202 2d2ut total steady-state solution incorporates the standing trans-
(o= crk)u=c; 42 32 verse wave
i <
o2y L= asingqz, z<O0,
(wz—clzkz)u|=0,2d—22. (33 0, z>0,
) which exists only on one side of the planar defect.
It should be recalled thatk, by assumption, Now we turn to the second case, in which the boundary
ck<w=ck<ck, (34)  conditions(29) are employed. The solution of the problem

) _ under such boundary conditions is given in Ref. 6. Here we
and solving the standard problem of the scattering of a lonyi| again list the results related to the calculation of the

gitudinal wave reduces to finding the solution transmission coefficiedf=|B|2. It turns out that
u(t):|ae'éz+Ae'qz' z<0, - L 4sism1)[(2-9? 2sV1us_4(1-o9)]’
Be'%?, z>0, T A(s) kly,  klkl, — klg |’
| M e*?, z<0, (40
ul= Ne~ 2 250 (36)  wheres=(c/c,)?=(w/kc)), o=(c,/c))? andA(s) is sure to
' ' be a positive function o$ for s>1, i.e., forc>c;.
whereka,+qa,=0 for the polarization vector of the inci- The condition for total wave reflection corresponds to
dent transverse wave, witle,q=+\w’—c’k?=k\c?—c?, T=0. Equation(40) implies that this is possible either for
andc k= \/c?k?— w?. s=1 (c=c,, which corresponds to a wave gliding along the

We start with the problem of the scattering of the waveplanar defedtor for
by a defect that leads to the boundary conditi¢2® and e SN
(28). The conditions for the continuity of the total displace- ~ 25V1~ 05~ (2=9)%kls=4(1=as)kly, (4D
mentsu,(z) and u,(z) together with boundary conditions which is an equation for the phase velocity.
(27) and (28) constitute a system of four linear algebraic In the limit I,,1;—0, Eq. (41 simplifies and the phase
equations for determining the amplitudads B, M, andN,  velocity c tends toc,, i.e.,
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N(kl3)?

[2p(N+20)
where) and u are the Lameoefficients. whereg?=2m, e, and k?=2m,(g,—¢). The factorsy and

The same dependence oki4)? for the resonant phase Q can be found from the boundary conditiofs}):
velocity was obtained in Ref. 2. However, E@2) repre- k+2myasUg 2m,BU,
sents a more complicated dependence over a broad range of X~ A T A (47)
values of the parametels andl . _ ) P—

In Ref. 6 it was shown that Eq41) coincides with the A=(2mya;Uo=iq-n)(2myazUo+ «) —4mym,Ug.
condition for the existence of a steady-state quasilocalized (48)
solution, which forz<0 has the form of a standing trans- We see that if the point defect ensures particle attraction
verse wave and a longitudinal vibration localized near the(@,Uy<0), a situation withy=0 is possible if
defect(in full agreement with the results obtained with the V2my(eg—g)=2my|a,Uo|, (49)
other boundary conditions

If we introduce the notatio§=1,/l5, it is convenient to
write Eq.(41), which represents the dependence of the phas
velocity on, saykls, in the inverse-function form:

¢*=ci- klg<1, (42) ¢z=$exr5‘k°‘r‘”}, r2=x2+y?+22, (46)

which is a condition similar t¢38). The condition(49) de-
Eermines the energy at which the local stet6) would arise
in the absence of the wavgg . In the case of the scattering of
the wave(45), the amplitude of the local state is determined
2syl—os by the fact that the amplitude of the incident wave
:(2_5)2_4(1_05)5- 43 Q=(2m,BU) tis equal to unity.
Thus, we have shown that a point defect can be “reso-
Comparing(43) with the law of dispersion of pseudosur- nantly” transparent in a characteristic two-channel scattering
face wave$;” we conclude that the corresponding quasilo-process. This possibility is related to the fact that at a certain
calized wave has a phagegiven by the following relation-  energy there is a steady quasilocalized state in the system.
ship:

[1—s 5. CONCLUSION
€= 1—0500“0' There are two features that make the results of the

drr)resent study remarkable. From the standpoint of scattering

Thus, we have again demonstrated the general law f : : .
o theory, the resonance effects described in this paper are a
the occurrence of resonance conditions when a transverse_ . : . .

: manifestation of the scattering of a parti¢leave by a qua-
wave is scattered by a planar defect, a law related to the.
M . . ) ; Sisteady state. What sets these effects apart from those com-

multichannel” nature of the dispersion of the scattered

monly described in the literature is that in the case at hand

3

wave. the resonance effect is due entirely to the special features of
the two-valley dispersion law for the particles in an ideal

4. THE RESONANCE FEATURES OF SCATTERING BY A (defect-free medium and is weakly dependent on the shape

POINT DEFECT IN A THREE-DIMENSIONAL MEDIUM of the local potential that causes the scattering. From the

d | firm the ab lusion b | viewpoint of the theory of quasilocalized states, the above
. Ar\]n QOW ;zt us con w:n the aSove Conchusmrr: y ana yfz'results can be considered an addition to the results of Refs. 4
ing the three-dimensional case. Suppose that the state of the 7, where a complete one-parameter system of eigensolu-

particles with atwo-va_lley dispersion law is describe_d by thetions of the dynamical elasticity theory corresponding to
sum (_)f the wave functiong4(r) and wz(r)_ corr_espondmg to pseudosurface waves was derived.
the dispersion laws =¢ ,(k), «=1,2, which differ from the

dispersion laws7) by the simple fact that the wave vectdrs The author is grateful for the financial support provided

andk, are three-dimensional. by the Ukrainian Ministry of Science and Technology
A defect at pointr=0 “mixes” the statesy, and i,.  (Project 2.4/163).

We write the simplest local condition at the defect, a condi-

tion that acts as boundary conditions and generaliz2s *JE-mail: kosevich@ilt.kharkov.ua
UThe necessary calculations were done by D. Senfaginstudent of

Kharkov State University.
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This paper describes an experimental study of variations of the dispersion and damping of
magnetostatic surface waves in ferrite films, caused by three- and four-magnon interactions with
parametric spin waves excited by an auxiliary surface magnetostatic pump wave with
frequencyf,. The variations in the dispersion and damping were identified, respectively, with
variationsAk’ in the real part andk” in the imaginary part of the wave number of the

surface magnetostatic wave. TA&’' and Ak” values were determined from the ratio of the
changes of the phase incremeén$ and the amplitude incremetA of the surface

magnetostatic wave to the lendthof the nonequilibrium section of the film, where the parametric
spin waves exist. It is found that, when three-magnon decay processes are allowed for the
pump wave and the surface magnetostatic probe wave, the probe wave can substantially alter the
distribution of the parametric spin waves in the film. 199 American Institute of
Physics[S1063-776099)02601-3

1. INTRODUCTION neous parallel pumping served as the source of the paramet-
ric spin waves, while the excitation frequendyof the
Processes of parametric excitation of spin waves in fermagnetostatic wave and the interval of magnetic fietgs
rite films by travelling magnetostatic waves are of significantwere chosen to satisfy the condition
interest from both scientific and applied viewpoiht&ne am
effective way to experimentally study the parametric insta- f<fin, (1)
bility of magnetostatic waves is the two-pump metfioll. wheref3™ is the limiting frequency for three-magnon decay
This method is based on the effects of the interaction of thq:)rocesses_ The inequalitil) signiﬁe§ that three-magnon
probe signal of a magnetostatic wave whose poés less  processes for magnetostatic waves are forbidden by the con-
than the parametric instability threshdRy, with parametric  servation laws, and magnetostatic and parametric spin waves
spin waves created by a pump wave with frequeficyand  can directly interact only via four-magnon processes of type
power P,=Py,. When the probe signal passes through the
nonequilpibrium section of the film, containing the parametric 2f=f+1,, Zk=kitky, 2
spin waves, changes can be observed in its amplitudad  wheref andk are, respectively, the frequency and wave vec-
phase¢ from which one can judge whether parametric in-tor of the magnetostatic wave, whifg , andk; , are analo-
stability will appear in the pump wave and what its behaviorgous quantities that characterize the parametric spin waves.
will be beyond the thresholt:® Unlike Ref. 7, this paper discusses changes in the dis-
On the other hand, there is interest in the amplitdde  persion and damping of Damon—Eshbach surface magneto-
and phase variatio ¢ of the probe wave themselves, since static wave$in an yttrium—iron garnet film under the influ-
they carry information concerning the dispersion and dampence of such parametric spin waves, excited by
ing of the magnetostatic waves on the nonequilibrium secinhomogeneous pumping in the form of an additional mag-
tion of the film. Finally, there is interest in seeking the con-netostatic surface wave with frequen€y. Moreover, we
ditions under which the probe wave not only experiences theonsider the changes in the dispersion and damping of a
action of the parametric spin waves but also itself affectanagnetostatic surface wave, caused by interaction with para-
their distribution in the film. The goal of this paper is to metric spin waves both in processes of the fd&pand in
experimentally study the effect of parametric spin waves orthree-magnon processes, which satisfy the conservation
the dispersion and damping of magnetostatic waves in afaws'
yttrium—iron garnet film and to detect how the magnetostatic ff 1 f K=k, + k 3
waves affect the distribution of the parametric spin waves in 1 1 he
the film. In determining how parametric spin waves affect the dis-
Note that the effect of parametric spin waves on magnepersion and damping of magnetostatic surface waves, we use
tostatic waves in an yttrium—iron garnet film was apparentlyan approach in which the phase and amplitude variatiofis
considered for the first time in Ref. 7. Backward bulk mag-and AA of the probe signal passing through the film are
netostatic waves propagated in the film, and locally homogerelated to the overall changésk’ and Ak” in the real and

1063-7761/99/88(1)/8/$15.00 174 © 1999 American Institute of Physics
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imaginary parts of the wave numble=k’ +ik” of the mag-
netostatic surface wave when the length of the nonequilib-
rium section of the film id:

L
Aq&zf Ak’ (x)dx, (4
0
L
AA=—8.68f AK"(x)dx, (5)
0
whereA ¢ is the phase change of the signal in radiay4, is ) ) b
the amplitude change of the magnetostatic surface wave inf 5" A - £,
decibels, anc is the coordinate along the film. Thek’ and ! ! | |
Ak" values averaged over the length of the nonequilibrium 2 31 2 3
section of the film will then be determined by
,_Ad
Ak'=——, (6) toS 3 LI — 1t =
L I L S
AA . o
AK' = — 7) FIG. 1. Prototype of delay linga) Design: 1—input transducer of probe
8.64 " signal f,; 2—input transducer of pump signé, to create nonequilibrium

] o region L; 3—output transducer;4—board with movable transducer;
It is understood that the lengthof the nonequilibrium sec- 5—board with fixed transducer§—epitaxial film of yttrium—iron garnet;

tion must be known in order to imp|ement such an approach7—gad0|iniL.J'rT'I—'ga”iurT'l. garnet substrai®) Determining the Iengtl’n.* of

and this depends on the powBy, and the type(three- or the nonequiliorium region.

four-magnon of parametric instability process of the pump

wave?~®We shall show that this problem can be solved if, as

in Refs. 4—6, the pump and probe waves are excited by sep#ie sensitivity of the measurement apparatus. The spectrum
rate transducers the distan8®etween which can be varied ©Of the pump signal transmitted through the film was simul-

by displacing one of them along the surface of the film, justt@neously monitored from transducgr
as in the movable probe method of Ref. 10. The magnetic field was oriented parallel to the transduc-

ers and was varied within the limitd;=430-610 Oe. First,

this corresponded to the condition for excitation of magne-
tostatic surface waves at the frequencies of the pump and the
probe signals; second, fét,=560-610 Oe the limiting fre-
quency for three-magnon deca@{g‘ was within the limits of

the frequency band,<f3"<f,, wheref, and f are, re-

The studies were carried out on a prototype of aspectively, the Iong-wavelength and short—wavelength limits
magnetostatic-surface-wave delay line, consisting of thre€f the spectrum of magnetostatic surface waves in theilm.
parallel microstrip transducers 4 mm long and4@ wide  The conditions for three-magnon processes with the partici-
(Fig. 1). Transducefl was placed on separate polycore boardPation of parametric spin waves were satisfied in the fre-
4, while polycore board was common to transduce?sand ~ quency intervalfg"—f, in this case, whereas four-magnon
3, and, as in the movable-probe method of Ref. 10, wadrocesses played the main role at frequentied . For a
displaced relative to polycore boaddremaining in the same Magnetostatic surface pump wave with fixed frequefy
plane with it. In this case, the distan8g between transduc- three-magnon decay processes are possibleHfprH3™,
ers 1 and 2 could vary within the limitsS;=0.1-4mm, while four-magnon processes are possible Foy>H3",
while the distance between transduc2end3 was fixed and  whereH3™ corresponds to the conditidip, = f3M(H3M).
equalledS,=4 mm. On the transducers was placed an epi- The limiting frequencyf3™ and field H3™ were deter-
taxial yttrium—iron garnet film on a substrate made frommined experimentally from the bound on the output power of
gadolinium—gallium garnet with111) orientation. These the magnetostatic surface wave when it propagates under the
studies used 305-mm samples in which the film thickness conditions of three-magnon dec&§The power of the mag-
wash~5 um and~7 wm, the saturation magnetization was netostatic surface wave is bounded for frequenéiega" .
47My=1750 G, and the ferromagnetic resonance line width(The typical form of the amplitude—frequency characteristic
wasAH=0.2-0.3 Oe. and the position of the limiting frequencii™ when fre-

A pump signal with frequencyf,=3455.0 MHz and quencyf:™ lies within the excitation-frequency band of the
powerP',?s 60 mW was supplied to transduceror 1. Two  magnetostatic surface wave are shown in Fig.A2field of
other transducers were used to study the amplitudeH3"~589 Oe was obtained for the chosen pump frequency
frequency and phase—frequency characteristics of a protend the test film, in agreement with calculationsl—tﬂm and
signal with frequency f,=3-5.6GHz and power f?hm that take into account the effect of the anisotropy and
PI'=0.01-1 uW, where the lower limit was determined by inhomogeneous-exchange fields as indicated in Ref. 11.

2. THE INFLUENCE OF PARAMETRIC SPIN WAVES ON THE
DISPERSION AND DAMPING OF MAGNETOSTATIC
SURFACE WAVES
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A, dB

-20

-50 FIG. 2. Amplitude—frequency and phase—frequerity insets
characteristics of the prototype with a magnetostatic surface wave,
recorded for probe signdi, at various power level®, of the
pump signal {,=3455MH2: 1—P,<Py,, 2—P,>Py,, 3—P,
>Py,. (@ Hy = 579 Oe, for three-magnon decd¥>ft3hm; (b) Ho

A, dB = 598 Oe, for four-magnon instability,p<ff’hm; AA is the addi-
tional damping of the magnetostatic probe wave anl is the
phase change of the probe signal at the output of the prototype,

-20 both caused by parametric interaction with the parametric spin
waves.

~50

3259 M 3850  f, MHz

To study the effect of parametric spin waves on the dis<iting a magnetostatic surface wave and fieligi>f,/y for
persion and damping of the probe wave, the pump signal wawhich the pump frequency lies below the bottom of the spec-
fed to transducer2, and the surface magnetostatic probetrum of spin waves. Typical powers of the magnetostatic
wave was excited and detected by transdudeasid 3, re-  surface pump wave were 5-50% of the incident powﬁt
spectively(Fig. 1a. A pump wave with a poweP,>Py,in As in Refs. 2—6, the “threshold powerPy, refers to the
the path of the surface magnetostatic probe wave in this caggimp-wave poweP, at which an absorption band close to
created a nonequilibrium section of the filigee the shaded frequencyf , is formed in the amplitude—frequency charac-
area in Fig. 1. The overall length. of the section was made teisic of the probe signal. Curvein Fig. 3 shows how the
up of the lengths of the nonequilibrium sections in the for-i,ashold power at pump frequentyin the film depends on
ward (L") and reversel(~) directions, which correspond to the field Ho.

magnetostatic surface pump waves localized on the bound- The amplitude chana&A and phase chan of the
aries between the film and the air and between the film an P g P gk

th bstrat q g | ite directi ¢ ngrobe wave at the frequendy of the probe wave were de-
€ substrate and propagating in opposite CIrections 1rory, ;e g experimentally as shown in Fig. 2. Tha andA ¢

transducel. When the probe wave passes through the NoN- - ues thus obtained were then used in H65.and (7) to

equilibrium section, changes analogous to those observed in . . : ,
Refs. 2—6 appeared in its amplitude- -frequency and phasecialculate the corrections to the dispersion lak’', and to
frequency characteristics. the damping lawAk”, at the chosen frequendy

For cases in which a magnetostatic surface pump wave To determine the length of the nonequilibrium section,

excites parametric spin waves as a result of three-magndii€ PUmp signal was fed to transdudemwnhile transducerg

and four-magnon processes, Fig. 2 shows the behavior of tHfd'd3, which were used to analyze the amplitude—frequency
amplitude—frequency and phase—frequency characteristics §8aracteristic of the probe wave, were displaced along the
the pump supercriticality C=10 log(P,/Py,) increases, film (Fig. 1b. It is obvious that absorption bands in the

input transducer. The powét, was determined from type shown in Fig. 2 will be observed only until transduger
B is on the nonequilibrium section of the filnS{<L™). The
Pp=Pr(Ho) = Pr(Ho), ®) distance S; at which the pumping ceased to affect the

where P is the power reflected from the input transducer,amplitude—frequency characteristic was taken to be the
measured at fielt, corresponding to the conditions for ex- lengthL* of the nonequilibrium section for a given super-
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P, uW ditions of three-magnon decay of the surface magnetostatic
pump wave, the length of the nonequilibrium section begins
quickly to increase with increasing in the region of values
C>20dB, for which kinetic instability of the spin waves is

100 generated?'356For values oH,>H3", the increase of *

M slows down in the region of valug€s>12 dB, where kinetic
instability arises for four-magnon processes with the partici-
pation of magnetostatic surface waVes.

/ Note that for both three and four-magnon instability of a
magnetostatic surface wave with frequerfgyclose to the
) limiting frequency for three-magnon decay, spin waves are
excited, propagating almost parallel to the fiett.>®
580 590 600 Therefore, removal of the interaction products in our case
Hy, Oe must not cause a substantial difference in the length of the
FIG. 3. Dependence on external magnetic fidlgl of the threshold power _noneq_u,'“b”um sections for three-mggnon and four-magnpn
P, of the decay processésurve 1) and of the lengttL* of the nonequi-  INstability of a surface magnetostatic pump wave. The sig-
librium region for supercriticalityC= 10 dB (curve2), 20 dB(curve3), and  nificant increase of the size of the nonequilibrium region
30 dB(curved). The dashed line shows the boundary between the regions ofhserved whetd > H3" should consequently be associated
three-magnon and four-magnon processes. . 0 0
with the smaller damping of the pump wave under the con-
ditions of four-magnon instability than with three-magnon

criticality level C of the pumping. To determine the length d€C8Y processes.
L~ of the nonequilibrium section corresponding to a surface ~ igures 4 and 5 show the frequency dependence of the

magnetostatic pump wave propagating along the boundal’gf’”ec“o”S to the dispersion lawk’, and the damping law,
between the film and the substrate, the direction of figld k”, under conditions of t.hree- and four-magnon instability
is changed. Because of the nonreciprocity of magnetosta tigf @ surface magnetostatic pump wave, calculated from the
surface waved the lengthL ~ of the section in the reverse €Xperimental values ahA andA ¢ using Egs.(6) and(7),
direction is always less than in the forward direction; it sat-respectively. The same figures show the spectra of the pump
isfied L~<L /5 in our case. Note that, besides the nonreci-Signal transmitted by the film.
procity effect, the ratio of lengthis* andL ~ can be affected Most importantly, we compare the form of the frequency
by the difference of the film parameters at the boundarieslependence of the correctionsA&’ andAk” with the form
between the film and the air and between the film and th@f the spectrum of the output pump sigriake Figs. 4 and
substrate. 5). Under conditions of four-magnon instability of the pump
Curves2-4 in Fig. 3 show the how the length" of the ~ wave, the character of thek’ (f) andAk”(f) dependence as
nonequilibrium section in the forward direction depends ona whole corresponds to the form of the spectrum: the fre-
the fieldH, at different supercriticality levels of the pump- quency band in which the corrections to the dispersion and
ing. It can be seen that the size of the nonequilibrium regiorlamping law appear corresponds to the frequency band of
increases asC increases and is always greater for four-the existence of the noise spectrum close to the pump fre-
magnon instability of the magnetostatic surface wave thamuency(Fig. 5).
for three-magnon decays. However, the character ot the It can be seen from Fig. 4 that, under conditions of three-
=L"(C) dependence is essentially determined by the typenagnon decay, there can be an appreciable difference in the
of instability of the magnetostatic surface wave. Under confrequencied-g at which satellites exist in the pump spectrum

50

T

Q -20 a
<50 | . ] I Y VIR VO A : )
'= f50 b J
[
':J&..x.A.A.\J\ A A
FIG. 4. Spectrum of the output pump sigrial. Frequency depen-
c dence of the additional lossesk” (b) and of the dispersion
L so changes\k’ of the magnetostatic probe waw® caused by inter-
- action of the probe wave with parametric spin waves in the non-
£ equilibrium region forH,=490 Oe andC=22.5 dB in the case of
0‘4-_.;::_‘_.“&_4.— v.__a/ 1 AL A R, | th d >f3m
ﬁ " ree-magnon decay,>f".
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and those at which one finds corrections to the dispersiorconnected by the relationship,(Ho)~2F¢(Ho) —f,, exist

Ak’, and the dampingAk”, of the surface magnetostatic in the same range of magnetic fields (one such pair cor-
probe wave. Sincak’(f) andAk”(f) differ from zero only  responds to curvelsandb’ in Fig. 6). It is to be hoped that

at frequencie$, where absorption bands of the amplitude—there is a direct connection between such satellites and ab-
frequency characteristic exist, this difference is a consesorption bands.

guence of the noncoincidence of frequendigsandF ,— a We should point out that the satellites are secondary
fact pointed out earlier in Refs. 2, 4—6. At the same time, itmagnetostatic surface waves, generated on the nonequilib-
is to be hoped that there is a definite correspondence betweenm section of the film as a result of processes of blending
the satellites and the absorption bands in the amplitudeef parametric spin waves of the fotfn

frequency characteristic. To establish this correspondence, it forf.—F Kt ko= k ©)

was convenient to use the dependence of the frequeRgies thizmtsy MR Rs
andF on the fieldH,. Figure 6 shows the experimental field Note that theF4(H,) has a characteristic shap&*

dependence of the frequencies of the satellites and absorption As can be seen in Figs. 2-5, the instability of the pump
bands lying below pump frequendy,. It can be seen that wave increases the spatial damping rate and changes the
those satellites and absorption bands whose frequencies asave number of the surface magnetostatic probe wave. The

f. GHz
3.5
; /
R 0 3m
'&:‘M\,'-l’:"\‘\:nq’;:;"‘hm‘ H‘N'\\ \b ﬁm
,_4,.45 S%/’)K /} ;"‘P FIG. 6. Dependence on external magnetic fidlgl of the fre-
7”"“"‘ /"/ / quencies of the satellites in the spectrum of the output pump
%7‘/ signal (1) and of the damping bands in the amplitude—
13 A H/"’:/A / / frequency characteristic of the magnetostatic probe wave,
P ; caused by interaction with packets of parametric spin waves in
///b( / / the nonequilibrium region for a film with~7 um. Curvesb
// ff, andb’ are an example of parametric interdependence of the
’/‘////"/ a - / satellites and damping bandsandb, b’ are the dependences
e < corresponding to Figs. 8a and 8b, respectively.
/ o—o—c-]
1 -2
3.1 /
450 500 550 600

Hy, Oe
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indicated changes occur only at those frequentie§ the  mocouple, waddT~0.2 °C. If we assume that the tempera-
probe wave at which the conditions given by EB). or (3)  ture of the entire film increased lyT~0.2 °C, and note that
are satisfied, corresponding, respectively, to four-magnon axt room temperatures the rate of variation of the magnetiza-
three-magnon interaction with the parametric waves excitedion with varying temperature is-3.3 G/deg!® the magneti-
by the pump wave. Thak’ andAk” values recorded under zation of the entire film changes by0.7 G. If it is assumed
conditions of three-magnon decay of the pump wave are athat the other parameters of the film remained unchanged,
order of magnitude greater than for four-magnon instabilitythe increment of the real and imaginary parts of the wave
in this case. Note also that the dispersion of the probe waveumbers, obtained by solving the dispersion equation for the
assumes an anomalous character in the frequency regionagnetostatic surface wavesith parameters corresponding
where the absorption maximum is observed. to Fig. 2, areAk’~0.5-2cm * and Ak”~0.001-0.002 cm

In the linear approximation, the dispersion equation for !. Such changes of the wave numbers in our case will cor-
magnetostatic surface waves in a ferromagnetic film has theespond to an amplitude change ®#A~0.1-0.2dB and a

form® phase change ok $~30-90°. A comparison of thestA
- and A ¢ values with those observed in experimésete Fig.
exp(2kd) = (2+x1)— X3 (10) 2) shows that the contribution of heating to the observed
Xi— X% ' phase change of the magnetostatic surface wave could be

~50% in a number of cases, while the effect of heating on
where y; = ohon/ (04— 0?) and x,=won/(0;— 0?) are signal attenuation should be negligible. However, no phase
the components of the magnetic susceptibility tensor of theghange of the magnetostatic surface wave associated with
ferromagnet. If it is assumed that, for the probe wave, théheating appeared in experiments with a modulated pump sig-
processes given by Eq&) and(3) do not change the form nal. Such a discrepancy can be explained by assuming that
of the dispersion relation10), but only affect the suscepti- only the part of the film close to transduciis heated. If
bility of the ferromagnet, resulting in a small nonlinear ad-one starts from an accuracy of 3% in determinihg, the
dition Sy to the susceptibility ¢>6x), we get for long- heated region must not exceedl mm for the case corre-
waveleng th (kRd<1) magnetostatic surface waves sponding to Fig. 2, wheré ¢~130°-300°. Since the ther-
, " mocouples used for the measurements themselves had a size
Ak'~Redy, AK'~Im dy. 1D of ~0.5mm, we could convince ourselves only that the

Comparing the frequency dependenceAdd and Ak” with heated region in our case does not exceed 2 mm.
Egs.(11), we see that in essence they reflect the Kramers—

Kronig relations for the real and imaginary parts of the non-

linear additions to the susceptibility.

The increase of the losses and the variation of the di
persion of the magnetostatic surface wave shown in Figs.
and 5 can result not only from interaction with the paramet-  The interaction of the surface magnetostatic probe wave
ric spin waves when they pass through the nonequilibriumrand the parametric spin waves created by pumping can mani-
section, but also from the effect of the latter on the probefest itself not only in a change in the dispersion and in damp-
wave excitation and detection procegseand from thermal ing of the magnetostatic surface wave but also in reshaping
heating of the film by the pump waveThe effect of the of the distribution of the parametric spin waves in,k)
parametric spin waves on the excitation and detection prospace. If it is assumed that, in the absence of a surface mag-
cesses was eliminated by placing transdu¢easd3 beyond  netostatic probe wave, a pump wave with frequefgyand
the limits of the nonequilibrium sectior8;>L ", S,>L*. power P,>Py, has established a steady-state distribution

To estimate how thermal heating of the film affected theny(w,k) of parametric spin waves inw k) space, the pro-
measured results, the dependencégfandA ¢ on the in-  cesses given by Eq$2) and (3) with the participation of a
verse duty factol was studied by modulating the pump probe wave can not only change the number of already ex-
signal with square pulses at a frequencyf gf=1 kHz. Note  isting parametric spin waves(w,k)=ny(w,k)+ én(w,k),
that the time to establish a steady-state temperature distriblrut can also cause them to appear in other regionsgf)(
tion over the thickness= 0.5 mm of a structure consisting of space. When this happens, new frequency components can
a film with a substrate is=~0.1sec and can be calculated appear or new amplitude variations of the already existing
from 7=s%/D,*® whereD=0.02 cm/set is the thermal dif- satellites can be observed in the spectrum of the output pump
fusion coefficient. It was found that varying the inverse dutysignal. Of course, the indicated changes in the spectrum of
factor within the limits I=U=<5000 does not cause varia- the output signal are possible if tléa(w,k) values substan-
tions of AA andA ¢ to the accuracy with which these quan- tially exceed the level of thermal spin waves(w,k)
tities are measured, better than 3% over the entire frequendyn(w,k)>n;(w,k)].
range in which magnetostatic surface waves were excited. When the delay-line prototype shown in Fig. 1a is used,

Of course, the absence of appreciable variationd Af  the effect of the probe wave on the distribution of the para-
andA ¢ by no means indicates that there is no heating of thenetric spin waves created by the pumping will be deter-
film with microwave power—the temperature increase of mined by the poweP, and frequency, of the probe signal,
the section of the film close to transdu@&rmeasured with as well as by the distanc®, between the transducers that
the maximum level of decreasing power by means of a therexcite the probe wave and the surface magnetostatic pump

3. EFFECT OF A SURFACE MAGNETOSTATIC PROBE
WAVE ON THE DISTRIBUTI ON OF PARAMETRIC SPIN
SX\IAVES IN (o,k) SPACE
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FIG. 7. Variation of the spectral structure of one of the
satellites as a function of the pumping supercriticaltyat
Hy=480 Oe.

wave. The value 05, determines not only the losses of the Fig. 7, for C values close to the threshold where a satellite

probe wave on the way from transdudeto the boundaries appears, one can clearly see this structure as a set of nar-
of the nonequilibrium region of the film but also the mecha-rower satellites with widthA Q~10-100 kHz, unstable be-
nism by which the probe wave affects the distribution of thecause of parasitic deviations of the generator frequency and
parametric spin waves established by pumping. Actuallymagnetic-field fluctuations.

when the power of the probe wave is greater than the thresh- |t can be assumed that, for the chosen experimental pa-
old value close to transducér a nonequilibrium region of rgmeters {,#f,, S> L;+L;’), the surface magnetostatic
sizel, also arises, containing parametric spin waves creategrobe wave will have an appreciable effect on processes in
by the probe wave. I8, <L, +L, holds the distribution of  the system of parametric spin waves in combination with the
the parametric spin waves generated by the pump wave cgfymp wave if two conditions are satisfied: First, a region of
be altered not only by the surface magnetostatic probe wavg, k) space must be found where the spin waves are simul-
itself, but also by the parametric spin waves created BY it. taneously in parametric resonance with both the surface mag-

Here we consider the results for a film with=7 um,  peigstatic pump wave and the probe wave. Second, the indi-
optamed at such a distan& tha'F the nonequilibrium re-  .5taq spin waves at a pump level 6&=5-25dB must be
gions close to transducetsand2 did not overlap no matter |5<e to losing stability.

O
whatP, andP, values were used,>L, +L, . Moreover, The necessity of the second condition is associated with
the frequencies of the probe wave and the pump wave Werge chosen experimental technique, in which the three-

chosen to be different,,# f,, and such that three-magnon magnon decay processes are judged from the spectra of the

decay prorc]:esses were qlloweg for a magnitostatlg Surf""(E)‘?:Jtput signal or from the change of the amplitude—frequency

:’/V;\i/: d ?:/itthiisﬁgrﬁrilijtigcfsa 1T_ fog:Vv\\;er of the probe Wavind phase—frequency characteristics of the probe wave. Then
z ) in the indicated supercriticality interval, on one hand, the

Note that whenf,=f, holds adding the powers of the : . . : .
probe waveP, and the pump wave, gives an effect analo- pumping excites parametric spin waves in rather narrow re-
z P gions of (w,k) space, and, on the other hand, the interaction

gous to simply varying the supercriticality level of the pump- ! ; . .
ing. The processes that occur here in the system of paramecfI the Eatrametrlc ?pm waves W'thteaCh ci:]he‘r‘llj ngt y_et tgrs_flat
ric spin waves were studied in Refs. 2—6, 8, 14 and 17 fognougn to generale a noise spectrum-—the “kinetic Instabil-

the case of three-magnon decay of a magnetostatic surfagé(” of Refs. 12, 5 and, 6. ) i

wave. It was shown that, for magnetic field,=430— _ In or(_jer to ch_oose_e>_<per|_mental pa_rqmeters aF which the
600 Oe and a supercriticality level Gf~5-25 dB, satellites first requirement is satisfied, it was sufficient at a f|>§ed_ value
separated from the pump frequency hyF.=|f,—F| of Hy to set the frequency of the probe wave Wlthl!’] the
~5-200 MHz appear in the spectrum of the signal transmitfrequency interval of one of the absorption bands in the
ted by the filmé Since these satellites result from threshold-amplitude—frequency characteristig=F .. In this case, for

less processes involving the blending of parametric spir distance between the transducer$p# 0.1-4 mm, ampli-
waves of the form of Eq(9), the amplitudeA of the satel- tude changes whose character substantially depended on
lites is associated with the numbers of parametric spin wavetheir width and structure were observed at the satellites under

in the (w;,k;) and (w5,k,) regions by the influence of the probe signal.
When the width of the satellites was less than 1-2 MHz,

As*Nor( @1, K1) Moo @2, Ky). 12 a change was observed in the amplitude of the satellites as a

It is significant that, as the fielHl, increases, the satel- whole. The amplitude of the satellite directly associated with
lite widths vary within the range 0.5—-8 MHz and that fine the chosen absorption band in the amplitude—frequency char-
structure becomes distinguisha ble in them at some field. lacteristic and separated from the pump frequencyAlby
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Jp» MHz
3211 FIG. 8. Behavior of the spectrum of the output pump
A, dB signal in the neighborhood of the satellite frequency for
4 Ho=457 Oe,f,=3455 MHz,S, =4 mm when the probe-
3208 T e signal frequencyf, changes in a neighborhood that does
—40 y o — not correspond to the given satellite of the absorption
band forC=20.3 dB,C,=—2 dB (a); and that does cor-
=50t respond to the satellite of the absorption band @r
=16dB,C,=—2dB (b).
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~|F,—f /2 could be increased in this case by ric spin waves in {,k) space can change substantially at the

O0As~1-18dB. The amplitudes of all the other satellitessame time as the dispersion and damping of the probe wave.

could be decreased at the same timed#~1-18dB. To This work was partially supported by the Russian Fund

illustrate this, Fig. 8 shows how the signal spectrum of thefor Fundamental ReseardiGrant 96-02-16168A and the

satellite with central frequendys=3354.6 MHz depends on Ministry of Science and Technical Policy of the Russian

frequencyf, in a field of Hy=457 Oe(curve c in Fig. 6). FederationGrant 3.911/2-96

Figure 8a illustrates the situation in which the frequemgy

passed through a series of values in the neighborhood of the

absorption bandrF,~3208 MHz that had no direct connec- “g.mail: fi@sfire.saratov.su

tion with the chosen satelliteeurve a in Fig. 6). Figure 8b

illustrates the character of the changes in the spectrum of the

satellite for probe-signal frequencies corresponding to the'a. G. Gurevich and G. A. Melkowlagnetization Oscillations and Waves
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The behavior of the solution of the Korteweg—de Vries equation for large-scale oscillating
aperiodic initial conditions prescribed on the entire@xis is considered. It is shown that the
structure of small-scale oscillations arising in a Korteweg—de Vries systdmasloses

its dynamical properties as a consequence of phase mixing. This process can be called the
generation of soliton turbulence. The infinite system of interacting solitons with random

phases developing under these conditions leads to oscillations having a stochastic character. Such
a system can be described using the terms applied to a continuous random process, the
probability density and correlation function. It is shown that for this it suffices to determine from
the prescribed initial conditions amplitude distribution function of the solitons and their

mean spatial density. The limiting stochastic characteristics of the mixed state for problems with
initial data in the form of an infinite sequence of isolated small-scale pulses are found.

Also, the problem of stochastic mixing under arbitrary initial conditions in the dispersionless
limit (the Hopf equatiohis completely solved. ©1999 American Institute of Physics.
[S1063-776(199)02701-9

1. INTRODUCTION However, their structure as—o remains regular.
A fundamental difference from the cases described
The main features of the structure of the asymptotic soabove is the solution of the periodic problem

lutions of the Korteweg—de Vrie@dV) equation
Uo(X) = Ug(X+Xo),

Ugt BUU -+ 82Uy, =0 1) _ . . ,
whereXg is the period. This problem can be integrated ex-

are determined by the form of the initial potentiax,0) actly only if ug(x) is chosen from a special class of periodic
=Ug(X). functions called finite-band potentidis® The asymptotic

In the classical theory of the integration of this equationdynamics of the oscillations in the periodic problem can have
by the inverse-scattering method necessary condition is a very complicated charactén the cases<1 the number of
that the functionug(x) vanish with sufficient rapidity as nonlinear modes is large, of ordere)/ which has the out-
|x|—o (localized initial data The asymptotic solution of ward appearance of a disordered system of waves of differ-
this problem in the limit— < describes an ordered chain of ent amplitudes.
diverging solitons defined by the discrete spectrum for the  Despite this, the exact solution of this problem always
guantum-mechanical problem of scattering by the potentialmanifests its dynamical nature explicitly, strictly conserving
—Uug(X). The contribution of the continuous spectrum is rep-its periodicity in space: the conditiamn(x,t) = u(x+ Xg,t) is
resented by the oscillating wave “tail,” whose amplitude fulfilled at all times.
falls ast~ Y2 In the semiclassical cag€<1 (Refs. 2 and B The aim of the present work is to examine the
the number of solitongof order 1£), although large, is asymptotic behavior of the solutions of the KdV equation in
fixed, and the asymptotic limit of the solution &s>> re-  the semiclassical limie<<1 for aperiodic initial functions
mains regular regardless of the detailed form of the functiorug(x) oscillating on the entire axis. A more precise defini-
Ug(X). tion of the class of initial data will be given below.

The initial datauy(x) in the form of a smooth function As will be shown, this case differs fundamentally from
with different asymptotic limits at infinityug(—>)>u,  all solutions of the KdV equation considered previously. Al-
(+x) lead to the appearance of a continuously expandinghough at any finite time the structure of the solution, as
oscillator regiorf. before, has a dynamical character, its asymptotic limit as

An important difference from the classical theory is thatt—c completely loses its dynamical properties as a conse-
the number of solitons now grows without bound in time.quence of ergodic phase mixing. The infinite system of in-

1063-7761/99/88(1)/14/$15.00 182 © 1999 American Institute of Physics
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teracting solitons with random phases developing in this casealue problem in the Hopf limit but, on the other hand, dif-
gives rise to oscillations having a stochastic character. Sucters from it significantly. Finally, Sec. 5 determines for the
a system can be described in terms of a continuous randosame problem the steady-state correlation funckgs) set
process. Specifically, in the asymptotic linhit-oo the exact up ast—oo and, correspondingly, the spectral power of the
dynamical value ofu(x,t) loses meaning and it is possible process.
only to speak off (u;x,t), the probability density of finding The Conclusion summarizes the main features of the
at the pointx,t the given valuaiin the intervalu,u+du] or ~ process—the generation of soliton turbulence in the dynam-
of f(u,u’;x,t,x’,t"), the two-point distribution function, i.e., ics of a continuous one-dimensional nondissipative medium,
the joint probability density of having valu¢si, u+du ] at  described by the integrable KdV equation. In addition, we
the pointx,t and valuegu’, u’+du’] at the pointx’,t’; or ~ provide a brief comparison with other known mechanisms
of a three-point distribution function, etc. It is remarkable for the occurrence of a chaotic state in dynamical systems.
that the possibility arises here, as we will see below, of &f course, a rigorous basis of the stochastic systems consid-
significant simplification in the description of the asymptotic ered here requires a special mathematical study.
behavior of the solution. In particular, for a spatially homo- ~ Note also that integration of the KdV equation by the
geneous initial functionug(x) the probability densityf..(u)  inverse-scattering method establishes a direct connection be-
depends only on the velocity and the spatial correlation tween the dynamical theory considered here and the spectral
function K=K(s), wheres=|x—x’|. theory of disordered systems, one subject of which is the
Note that the evolution of random initial data in inte- quantum-mechanical Schiimger equation with so-called
grable systems has been investigated in a number of earliémetrically transitive random potentials'®*? It may there-
works; however, they only considered the influence of afore be supposed that the methods developed here may be of
small stochastic perturbation on the soliton soluti¢eee, interest not only for nonlinear dynamics, but also for the
e.g., Refs. 9 and 20 The question of the emergence of a theory of such quantum systems.
stochastic regime as a result of the purely dynamical evolu-
tion of an integrable system is posed in the present work for

the first time. . _ 2. DISPERSIONLESS LIMIT
This paper is organized as follows. Section 2 formulates
the initial-va lue problem for a spatially homogeneous oscil-  The main features of ergodic mixing can be illustrated

lating functionug(x). It then considers its solution in the by the example of dispersionless evolution, described by the
dispersionless limit, described by the Hopf equation, containHopf equation

ing neither dissipation nor dispersion. In this case, nonlinear
reversal gives rise to multistream flows. Here the number of dUFUIU=0,  Uu(X,0)=Uo(X), 2
streams, and consequently their density in velocity spage ( where ug(x) is an arbitrary smooth oscillating aperiodic
increases continuously with time. Thereforetasx to first  function prescribed on the entireaxis. We also assume that
order in O(1/t) a steady-state velocity distribution function the distancesbetween the zeros are contained in the interval
of the streamsf(u), is set up over all space. A general
solution of the problem is found, allowing one to determine
the form of the distribution functiof(u) for any initial func-  wherel min @nd | o are arbitrary finite values. The function

tion up(x). The asymptotic behavior of the correlation func- y,(x) has a finite maximuno,,, and a finite minimumu;, :
tions is determined, which shows thattas« in fact a dis-

tribution that is completely uncorrelated in space is set up.  Yomin=Uo(X)=<Uomax- (4)

Section 3 investigates the semiclassical KdV problemye also assume thaty(x) is spatially homogeneous, i.e.,
for the initial condition considerediy(X). As a consequence that there exists a scale, as large as desired but finite, starting
of the presence of the dispersion terfu,,, multistream  from which all the basic properties of the functiam(x)
flows never arise here. However, in the vicinity of the rever-repeat. This latter condition excludes the possibility of sin-

sal points of the original profile bands of regular small-scaleyyjar behavior of the functiomiy(x) at infinity. It is also
(with period ~¢) oscillations appear. With the passage of necessary that the value

time the oscillator regions expand and overlap. It is shown
that the structure arising @s— can be represented as a  UYo(X)=Uomin )

system of random interacting solitons homogeneous e repeated not less than once on the stal€onditions

space—time. They are described by a soliton amplitude digp)_(5) are satisfied by almost periodic or quasiperiodic
tribution functionf(a), and also by a mean soliton density in functionsu(x).

space(on the x axig), which defines the intensity of their The evolution(2), (3), as is well known leads after a

interaction. Specific examples of the calculation of the func+inite time t=t, to the appearance of a singularffjig. 1d
tion f(a) and the mean soliton density are given.

Section 4 considers the case in which the initial function
Ug(X) consists of an infinite sequence of isolated pulses. The
steady-state velocity distribution functioh,(u) is found,
which, on the one hand, has certain features in common witin the absence of dissipation and dispersion, multistreaming
the distribution functionf(u) obtained for the same initial- motion in the system is possible. In this case,tfeit, in the

Iming I<I max? (3)

ou

= (6)

X=X
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FIG. 1. Appearance of multistream flows in the Hopf equation.

vicinity of the singularity (6) three flows form: u;(i

Gurevich et al.

branches of the multivalued curegx,t) prescribed by the
implicit solution of the Hopf equatiof8). The solution(11)
in this case can be represented in the férm

N
fux,n=2, pi(xH3u=u(x), (12)
<
whereN is the total number of streams at the given paiat
the timet, andp;(x,t) is the relative weightor density of
theith stream:

pi(X,t) (13

1+|dxo/dul;
It follows from Eg. (13) that the weightp; at any timet is
determined directly by the initial functiong(x).
We will point out now the main asymptotic properties of
the solution(11), (12) for the initial function(2).
1. The number of streamd at any pointx ast—x

=1,2,3), each of which as before is described by the HOpbrOWS in direct proportion to the time:

equation

&tui+Vio7Xui=O, Vi:ui . (7)

At the singular points—the caustic points defined by condi
tion (6)—the flows join togethefsee Ref. 1#and the mul-
tistream system closeFig. 1(b)]. Such a solution is of
course equivalent to the implicit solution of the Hopf equa-
tion

X=ut+Xxg(u),

)

describing the evolution(x,t) in terms of multivalued func-
tions. Herexg(u) is the inverse function ofig(x). Note that
another, fundamentally different, approach to the solution o
the Hopf equation viewed as a limit of the dissipative Bur-
gers equation was developed by Sittai.

For the initial-value problen(2), as one can easily con-

(luql)

|uol)
Imin ’

a<<
Imax

Nxat,

(14)

where(|ug|) is the mean value of the magnitude of the initial
function andl i, and |5 are the half-periods, defined by
condition (3).

2. At any pointx for any valueu belonging to the inter-
val (4) on which the initial functioru, is defined, a stream,
is always found such that

lu—u|<s, 8=0(1k).

(15

3. The asymptotic limit for each stream for t>1 fol-
]‘ows from Eqgs.(8) and (12):

Mi_on, Mo

vince oneself, the developing regions of three-stream flow

gradually expand with time for t>t,; then as a result of
intersection of the regions of reversal of the original profile

ug(x) regions of five-stream flow, seven-stream flow, etc.,

successively appedfFig. 1c]. To describe the process of

multiplication of streams, it is convenient to use the stream

number density distribution functiof(u,x,t) in the phase
space (1,x) of the system(2) satisfying the Liouville equa-
tion

of of

—+u—=0.

at ox ©)

The dynamical formulation corresponds to initial conditions

in the form of ad-function:
fo(u,x,0)= S(u—ug(x)). (10

In our caseuy(x) is an oscillating aperiodic functiof2)
obeying conditiong3)—(5).
The system2), (10) has the obvious solution
f(u,x,t)="fy(u,x,t)=(u—ug(x—ut)). (11

The zeros of theS function are the streams in the arising

By virtue of the indicated properties, as follows from
Egs.(12—(15), in the asymptotic limit— <o the distribution
function f(u,x,t) can be represented in the form

f(u,x,t)="Ff(u)+0O(1h).
Here

f(u)=Ilim

t—oo u

B

(:jxo 5(u—ui)], Noct (t—o0),
| (16

and the sum is over all roots of E®) in the limitt—cc. The
asymptotic limit(16) implies that the distribution function
(112), prescribed at the initial timé=0 in the form of as
function, i.e., one stream at each poimtvashes out with the
passage of time due to the multiplication of streams and, as
t—oo, goes over in the 1/approximation to a distribution
that is uniform in spacéon thex axis) and smeared over the
entire interval of initial velocitieg4): f(u). This is the pro-
cess of ergodic mixing.

To determine the functiof(u), it is convenient to aver-
age the Liouville equation(9) over the spatial interval

multistream systen{7). These streams are defined as theL>1,,,. Defining
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f(u,t),_=% fOLf(u,x,t)dx, (17

we find from Eq.(9)

af_(u,t)_ u
g L

3 [f(u,L,t)—f(u,01)].

Hence it follows that ag —

af(u,t)
ot

L—oo

and, consequently, the averaged function does not depend on

time:
f(u,t)=f(u). (18)

This means that the limiting functiof{u) can be calculated
directly at the initial timet=0 by direct spatial averaging of
the initial function(11):

f(u)=fo(u)= lim

L—o

L
3 fo S(U—ug(x)) dx

LS 8(x—x;)

>

=1 |ug(x)]

il

In the last expression the angle brackgts .)Xi denote av-
eraging over the ensemble of roots=x(u) of Eq. (2).

In other words, the valuegly| are taken at the points
x;j(u) defined by the relation

1
=1 ug(x)|

1

|Uo|

(19

u=up(x). (20)

We emphasize that the existence of limit$), (17), and
(18) is ensured by ergodicity of the initial functioi2)—(5)
(for an exact definition of ergodicity, see, for example, Ref.
16).

The two-point distribution function and also higher

probability characteristics of the mixed state can be found il

an analogous way. Indeed, taking into account that the lim
iting function f(u) does not depend or, one can readily
convince oneself that the two-point distribution function
Fs(vq,v,;x",Xx";t) also possesses the same property in th
mixed state. Indeed, the functiof, satisfies a Liouville
equation analogous @®):

JdF, JF,
— v, —
ot ax’

JF
v —2=0

(21)
2 aXH

with initial conditions

Fa(v1,02;X",X";0)= 8(v1—Up(X")) 8(v 2= Up(X")).
(22
In Eq. (22) it is convenient to transform to the new variables

s=x'—x", X=X

Thus it takes the form
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dF,

ot

JF,
+(Ul_vz)g+

&FZ_O
Uzo'?_X_ .
By virtue of the spatial homogeneity of the problem, we
average the functioR, overx on the interva[O,L]. For the
averaged functiodF,), in this case we obtain the equation

%Jr vl—vz)[?(:jL:O(l/L) (23
with the initial condition
(F2)L(v1,02:8,0)
1 (L
= F fo S(v1—Up(X))8(vo—Ug(X+S)) dX. (29

The solution of Eq(23) is easily found and has the form

L
(Fo)i(viv2,81) 2 jo 8(v1—Ug(X)) 8(vo— Ug(X+S

—(vo—vt)) dx+O(1L). (25

Expression(25) can be represented as a sumsafunc-
tions:

(Fo) (v1,02,8,t)
1 s xG(00) —xB(v2) — (vp—v)b)
lup(x3(v 1)) lug(xg(v2))]

L2 &b
where, as beforexj(u) are the roots of the equation
Uo(x§) =v1. Physically, the meaning of the argument of the
6 function is obvious. It describes the increase with time of
the distances between correlated neighboring poixtsand
X, assuming that at the initial time=0 these points were
found a distance,,=x3—x} apart. For late enough times, if
v1# V5, the initial distances,, can be neglected. Thus from
EqQ. (26) in the limit L—o we obtain

(Fo)(vy,v2,8t)=8(s—(v1—v)t)f(vy)f(vy),

01751)2,

(26)

(27)

s the single-particle wherd(v,) and f(v,) are single-
particle distribution function§19). Hence it can be seen that
the pairwise correlation function in our case has in fact the
nature of as correlation and is completely determined by the

éingle-particle distribution. As can be seen from relation

(27), the spatial correlation functions are proportional to
(1) 6(slt—(v1—v>)) and, consequently, for any finisde-
cay with time as 1/

Note that in the derivation of relatiof27) it was as-
sumed that the initial functiony(x) is aperiodic. It can be
easily seen that in the case of a periodic function we obtain
analogous relations, but expressi@Y) will contain a sum
of terms §(s—(v,—vq1)t+Xpn), wheren is some integer
and X, is the period. Analogous relations also obtain for the
higher correlation functiong,, which are described by the
equation

dF,
ot

dF,

dF, 0
U1 (7Xl .

"'+UHW_
n

+
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Thus, in the limitt—« there exists only one nonzero The quantityy is a characteristic parameter of the initial-
function f (u). This implies that the initial distributiong(x) value problem under consideration. With the help of Eq.
becomes completely washed out. The limiting mixed staté19), we find the distribution function in the form
(16), (19) is thus completely uncorrelated. (1 aD)

Let us consider some examples of the mixing process. fuy=(1=a"y)o(u)+ i), (34)

Example 1. Initial data in the form of a periodic func- where the functiorf;(u) has the usual form:
tion.

d 2|du| 7t
We assign the initial function in the form yfl(u):< d_u 1> =T d_u : (35)
X X
Ug=asinx. (28 X
_ . the x;(u) are the roots of Eq(19), determined by the shape
andlt follows from Egs. (28) and (19) that x=arcsin(/a) of the initial pulseF(¢). The average in Eq.35) is calcu-
lated on a scale exceeding the width of the initial pulse
C 1 The presence of thé function in the solution is completely
(u) a]cosx(u)] Wm (29 understandable_ the initial d|str|bt11t)|c_182) has as its most
probable valuei=0. The constand'*’ is determined by the
The normalization constant in formul29) is chosen from normalization condition.
the condition For example, if the pulse shape has the form
Ja 2 2
f(u) du=1. F(é§)=1-——, ug(x)=1— , (36)
a €3] (612)° o(X) (612)°
We emphasize that although the probabifity) defined by  Then from Eq.(35) we find that
formula (29) for the periodic boundary conditiomg(x ) g 4
+Xg) =Ug(x) has a completely real meaning, total stochastic —+~/1-u au_# i—u
mixing in this case does not occur: for example, the pairwise x(u) -2 ™ 0 .
correllation function .forvlzvz gnd glllh.igher correlation and correspondingly
functions have, to first order in tl/infinite peaks forx,
—Xm=nXp (26). 1 " 1
Example 2. Quasiperiodic initial conditions. fa(u)= 2=y’ a™= jo f1(u) du=1. (37)
Let the initial velocity be prescribed in the form
) i Example 4. Random initial function.
Ug(X) = (ag+a;sin(kx))sinx. (30

Above we considered a purely dynamical initial model.
wherek is an arbitrary irrational numbek<1. Separating The mixing process takes place in a completely analogous
the fast and slow variables, we represent the funatig(x) way when the initial condition is prescribed by a random
as function. For example, if the initial function is periodic with
random amplitudea, then, as can be easily seen, for the

Uo(x) =a(X)sinx, distribution function that sets up after mixing, instead of the

where dependencé29) we have
X=kx, a(X)=agt+a;sinX.
Thus, to first order ifD(k) we obtain for the functiori..(u) fw= J W) ma?—u?’ (39
1 (=R dX wherey(a) is the prescribed distribution of the random vari-
fu)=— o m- (31)  ablea. Averaging over the parametess, a;, andk can be

done analogously for a quasiperiodic initial function.
This function can be expressed in terms of elliptic integrals.

Example 3. Infinite sequence of isolated pulses.

We consider the initial dynamical problea{x,0) in the
form of an infinite sequence of pulses of identical sh&pe
x—x0i>

u(x,0)=u0(x)=2i F( 7

3. STOCHASTIC SOLUTIONS OF THE KdV EQUATION

Let us turn now to our main problem, the asymptotic

(32 properties of the solution of the KdV equatigh) for the

case of aperiodic oscillating initial conditiori®)—(5). Since
Here 6 is the pulse width and the poimg; is the position of We Wwill make extensive use here of properties of the so-
the maximum of theith pulse. We assume th&(0)=1  called multiphase finite-band solutions of the KdV equation,
holds at the maximum, thussOF<1. The mean distance itis only natural to first recall the structure of these solutions.
between neﬁghboring poipts is equal tol, and the.ratio of 31 Multiphase KdV solutions
the pulse widthd to the distance between pulses is

The structure of the initial potentiatuy(x) plays an
0 important role in the integration of the KdV equation by the
y=—. (33 . i .
I inverse-scattering method.
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In the case in which the initial potential is a periodic
Refs. 5—7. The solutions of the KdV equation constructed -2
the so-called trace formul@ee Refs. 17 and)1 5A IOA [k A) A
points of the spectral surface of the complex variabla the
2g+1

function of a special class, the spectrum of the scattering
for such initial conditions are multiphasg-phase. They are R:
g 0 x
TUWOIOV
Ug(x,t)=r1—22 Mi(X,t) — JTH , (39 2[
=1 -4
finite-band scattering problem. This surface is prescribed by
y2=Rsn)=— [ -y, (40

problem consists of a finite number of allowed barigse 15 x
found in the theory of finite-band integration with the help of I
2
where the constants>0, j=1,...,3+1, are the branch
the algebraic equation
j=1

r1<r2< . .<I’29+1,

and is a two-sheet Riemann surface of geguwith cuts
along the allowed bands[—o%,r;], [rp,rs], ...,
[r2g ar29+1]-

The functionsu;(x,t) (the so-called auxiliary spectrum
of the finite-band ,Scatt?rmg p'roblétra_re desc”,bed by the FIG. 2. Multiphase solutions of the Korteweg—de Vries equation. &,—
system of Dubrovin ordinary differential equations =0, r,=0.2. b — Two-phaser,=0, r,=0.001, ry=3.5, r,=3.5005,

I 2i0'<R1/2( ) rs=7. c—Five-phaser1=O,r2=1,r3=_2,r4=3,r5=4, re=5,r,=6,
s Hi _ iTg (M rg=7, rg=10, rio=11, r;=14. d — Six-phaser;=0, r,=0.7, r;=4,
ax TP (=)

r,=5.6,r5=5.7,r4=5.8,r,=8.6,rg=13.2,ry=15.6,r ;= 22, r;=23.1,
r1,=23.11,r,,=27.4.

Hereo;= =1 are the signs of the square root of the function

Ry(uj). Eachy; lies in its own allowed bandr,;_;,r;]

and oscillates with variation ok, where each timeu; Fora=2. th temal) d ibes tw led i

reaches the edge of the bawnd,changes sign and the motion org=c, the sys en41) escribes two coupied oscil-

advances to the next sheet of the Riemann surface. The chafio'S, in particular, the motion of a heavy tofthe

acteristic period of the oscillations of the functioms, as is Kovalevskaya casesee, &g Ref. ])9

clear from Eqs(41), is of orders. Results of a numerical integration of systddil) for

Equations(41) in general describe a system of coupled Va110Uus values of are plotted in Fig. 2. It can be seen that
nonlinear oscillators. Fog=1 there is only one oscillator with increasingg the shape of the oscillation89) becomes

and Eqs(39) and(41) yield a single equation whose solution increasingly more ComP'eX’ and for 'f’”@!e enoyghey out- i

is expressed in terms of the Jacobian elliptic functidn: wardlly appear to be .d|sordered. Th|s IS understanda ble: if
the single-band solutiog=1 contains only one period and

its nonlinear harmonics, then tlgephase solution is a qua-

siperiodic function and contairngindependent periods, and

all their nonlinear harmonics.

Tritraz=ra, (42 At the same time, it should be emphasized that in the

wherem=(r,—r,)/(rs—r,) is the elliptic function param- multiphase solution, as in ca$é2) g=1, narrowing of the

eter andp, is an arbitrary initial phaséntegration constant ~ Jth allowed bandr ;1 —r5;—0, leads to the appearance of
The solutionu,(x) is a periodic function ok with amplitude ~ SPecial oscillations in the form of the solitons corresponding
a and periodT: to this band, separated by a large interi4):

i=12,...g. (42)

X
uy(X)=2(r,—ry)cr? (rs_r1)1/2g+<Po| m

a=2(r,—ry), T=2Y%(rz—r;) " YK(m), (43 TieceIn(LA(rgj 41— r2)))- (45)

whereK (m) is the complete elliptic integral of the first kind. On the other hand, in the case when all the allowed bands are
As m—1 the oscillations degenerate into a chain of isolatecharrow,r,; . 1—r,;—0,j=1,2, ... g, the entireg-phase so-
solitons of heighta, where the distance between solitonslution decays into solitons of different amplitudgsg. 2b.
grows as the distanag—r 5, i.e., the width of the allowed Foreg<T; these solitons are free to first order in the param-
band, decreases: etereg/T.
The temporal evolution of the functions;(x,t) is de-
T=2"V2g In( 16r3—r1>. (44) scribed by a weakly nonlinear system of differential equa-
F3g—rs tions




188 JETP 88 (1), January 1999 Gurevich et al.

0,&] (9,(1/] r3 '
A ™ o ] %
roi
with initial data which are found by integrating the steady- ;
state systent4l). X XN X

Also note that the finite-band KdV solutio{39)—(41), P X
(46) can be expressed in terms of an algebraic function on a b \/W_
g-dimensional torus—the theta function of the Riemann sur- j ! i

face (40) (see Ref. 19

3.2. The stochastization process

We will start off with a brief description of the evolution c —1 !
of a single localized perturbation ig=0{g=1{g=2{g=1| g=0 f
u(x,0)=ug(x), Ug(+o)=ug(—)=0. (47) X0 xn) X0 x50 x

The development with time of the smooth perturbationFiG. 3. Appearance of a multiphase structure.

u(x,t) is described by the Hopf equatid@) at the outset,

since the term with the higher derivative in the weak disper- S N )

sion limit e—0 is unimportant to start with. After passage at e turm now to the oscillating initial condition of inter-
the time t, through the critical reversal point,, where €St 10 us(2)=(5). In this case, reversal occurs at each inflec-
|ulax|—, three stream$7) and (12) appear in the solu- tion point of the mme}l curveug(x) [Fig. 3b]. Here bands of
tion of the Hopf equation in the vicinity of the poimy, i.e.,  Single-phase oscillations develop. Then, with the passage of
a multistream flow arises far>t, (Fig. 1). The dispersion time _the bands of single-phase oscillations begin to pve.rlap.
term with the higher derivative2®u/dx® begins to play a N this way, tvyo-phase, and then three-phase o§C|IIat|ons,
dominant role in the solution of the KdV equation. For this &tC-, develofFig. 3. They are described, respectively, by
reason the solution of the KdV equation remains alwaydVe, seven, etc. Riemann invariants. The variation of the
single-valued, i.e., single-stream, but as if to make up for itRiemann invariants; for ag-phase structure is described by
small-scale(with period ~ ) oscillations are excited in the & generalized system of Whitham equatiofSlaschka,

vicinity of the reversal point. It is important that these small- Kricheveret al21:28.2j.

scale oscillations can be represented in the form of a single-  5r, ar, .

phase solution of the KdV equatidq@?2), (43) with slowly Zp TVilr, o lagey) =0 =0, 1=1,.... g+1,
varying (in spacex and in timet) branch points on the Rie- (49)

mann surface—the parametexsr,,rs. The variation of the
parameters;(x,t) is described by the system of Whitham Fag+1=r2= ... =11=0,

modulation equation&’ Vagi1=Vag= ... =V =0.

(9_rt‘+vi(r1, r3)ﬁ=0, =123, (48) Equations(49) are written in a coordinate system moving

d d with velocity ugmin- In this coordinate system, the transition
from ag-phase structure to aft+ 1)- or (g— 1)-phase struc-
ture is completed at the caustic poiv@, where, according
We see that the system of equations for the Riemanio the rule described above for a single-phase system, the
invariantsr1,r,,r 5 in the region of the oscillations is entirely invariants coalesc®. For the initial-value problent2)—(5),
analogous to the Hopf equations for three streams arisingiith the passage of time the number of phases at each point
after reversal7). This analogy extends further in the char- grows,gect, but since the region of definition of the param-

acter of the matching with the nonoscillatory part of theetersr; is prescribed by the initial condition&) in the
solution® the matching takes place at a caustic paintt), bounded scale

where not only the invariants;, andr,, but also the veloci-

ties V; and V, coalesce; an analogous coalescence of the —Uomax—Uomin=r=0, (50

invariantsr, andr; and the velocitie®/, andV; takes place this means that the mean distance between the invariants

at the pointx™(t) [see Fig. 34 The difference from the (Ar)=(|r;,,—r;|) decreases with time as

three-stream Hopf equatiort$) is that the group velocities (Ar)er1h

V; now depend on all three invariants, not just However, '

fulfilment of conditions(48) and the matching conditions The above-described process is completely similar to the

for the invariants shows that in a qualitative sense the dymultiplication of streams in the solution of the Hopf equation

namics of the Riemann invariants is entirely similar to theand takes place uniformly over the entkexis. Therefore,

development of three-stream flow. in analogy with the multistream solution of the Hopf equa-
This is fully confirmed by the solutions of the corre- tion investigated in Sec. 2, a steady-state distribuign)

sponding problems obtaining for different initial conditions over the invariants that is completely determined to first

(see Refs. 4, 21-26 order inO(14) is asymptotically set up a@s—«. The distri-

r;=r,=r;=0, V3;=V,=V,;=0.
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bution functionF(r) describes the relative density of the distanceT; from each otherT;«t. But this means that as a
invariantsr; in the interval fromr to r +dr. A natural nor- consequenc e of the general law of conservation of mean

malization rule is density, the space between them is filled with solitons be-
-~ longing to other modes, i.e., solitons not related by a com-
f F(r)ydr=1. (51) mon origin and consequently possessing random phases. As
Fmin a result, ag—o0 a random distribution of solitons with uni-

The values ,;, andr ., are defined in accordance with con- formly distributed phases sets up over all space. Each soliton
dition (50). The phase relations of the various modes of thecan therefore be characterized by just its amplitadd’he
oscillations in this case are unimportant, so the transition ag'aximum value of the amplitude is bounded by the pre-
t— to a continuous distributio (r) already constitutes a Scribed initial conditiorug(x) [Egs.(2), (43), and(50)]:
stochastic description of the system. The continuum limit of am=2(Uoma— Uomin) -

the theta function introduced by Venakidemay serve as a . o o
definite analogy of such a description. In this case, for the aperiodic oscillating initial-value prob-

lem (2)—(5) the set of soliton amplitudes is countable and
hence dense on the intervaE@=a,,. The arising chaotic

3.5. Stochastic multisoliton structure structure can therefore be described by the amplitude distri-
Let us pause to note one important difference betweeRution function
the structure of the Riemann invariants of the KdV solution f(a), O=a<an. (54)

for the initial-value problem2)—(5) and the structure of a
multistream Hopf flow. Toward this end, we consider an!n what follows we will takeuomin=0 andugma=1 and con-
analysis of a single localized perturbation. For1 the  Sequentlya,=2.
asymptotic behavior of the solution of the initial-value prob- ~ The existence as— of thex-independent limif (a) is
lem (47) takes the form of a so-called soliton wai?&*a set @ consequence of the ergodicity of the initial functigyfx).
of solitons aligned in amplitude: the lead soliton has theThe soliton amplitude distribution functiofi(a) is deter-
greatest amplitude, followed by a soliton with lesser ampli-mined directly by the form of the initial functiony(x), Eq.
tude, etc. The distance between solitons grows linearly witi2)- Indeed, according to the inverse scattering problem, the
time, Texct, which is a natural consequence of the linearsolitons correspond to levels of the discrete spectrum of the
dependence of the soliton velocity on the amplitéde. Schralinger equation with the potentiat ug(x). By virtue

But, as follows from Eq(44), this means that the width of the smallness of the parameteiit is possible to use the

of the allowed band;—r, narrows exponentially with time: ~Semiclassical approximation in the solution of the
Schralinger equation. Thus, the soliton amplitude distribu-

(52) tion f(a) describing the number of solitons with amplitudes

t
r3—ro=rzexp - ——|, r{—0, t>1. . ‘
8 2 p( T(fs)) ! in the interval froma to a+da,

An analogous situation obtains for a two-phase, three-phase, dw=f(a)da, (55)
and indeed any multiphase systemtas». Solitons of dif-
ferent amplitudeas;, belonging to any given phage move
with a different velocityV(as;). Consequently, the perioh,

is determined by the shape of each individual potential well
of the initial function. Specifically?

increases with time and consequently, according to relation 1 1 D'(2)
(45), the width of thejth allowed band decreases exponen-  f(a)=— dz. (56)
tially with time: ame Jar \z-al2

(53) Here D(2z) is the width of the initial well at the leval=z.

M2j+1~ Moy exp(—t/ 7). A i~
The derivativeD ' (z) is related to the initial shape of the well
Thus, in the multiphase structure under consideration, ag(¢) by the obvious relation

t—oo the widths of the allowed bands at any pakarrow

down exponentiall y, and the widths of the forbidden bands /() _ _( o 4 57)
(1 T2i+1), (T2j+2.T2i+3), etc., decrease with time ast1/ |dF/déls ) [dF/dE|s )

This peculiarity distinguishes the structure of the distribution
of invariants in the KdV equation from the structure of mul-
tistream flows of the Hopf equation, where ajl-21 streams
are equivalent. At the same time, E§3) yields an impor-
tant consequence for the chaotic structure of the KdV equ
tion. First, it follows from fulfillment of condition(53) for 1 m

each phase that the structure developing-ase from the fla)=— > fu(@), (58)
initial condition (2)—(5) is a system of interacting solitons k=1

[see relation(45)]. Further, it follows from condition(53) wheref, is the distribution function in th&th well.

that the solitons belonging to a given mode, i.e., related by  Thus the functiorf(a) is normalized to the mean num-
their common origin from one hump of the initial function ber of solitons per wellN. According to condition4), it is
Uo(X) (2) and for this reason connected from the outset by gossible to limit the number of wells in this sum to a finite
definite phase relation, are found at a large and ever growingaluem on a sufficiently large intervadl of thex axis. In this

where &;(z) and &,(z) are the values of the two-valued in-
verse function of (&) at the point=(&) =z. By virtue of the

smallness of the parameter the system of levels can be
agonsidered separately in each well. As a result we obtain
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1+b
2

case, according to the initial-value problé®)—(5), the dis- y
tribution function f(a) to first order inO(6/L) does not CZE
depend on which segmehtof the initial function it is cal-
culated on. We give examples.

Example 1Let uy(x) be a sequence of isolated pulses of
the form(38). Then, according to formuléb6) we have

where according to Eq33) y=6,/1 (I is the mean distance
between pulsgs We emphasize that the density is
bounded—it does not exceed a quantity of order. For

0 1 dz 0 example, in the case of a single-phase wgd® the mini-
f(a)= J =a (59)  mum value of the period of the oscillatiofi,, is reached as
8me Jaz J1-2yz-al2 8¢ m—0 and according to formul&3) is equal to
We assume that the width of the pulses is modulated:
0= 0o(1+bcog(kx)), k<1. T o7
min 1/2°
a

In this case, averaging on a scdle-1/k, we obtain the

continuous soliton distribution _ o
Consequently, the maximum value of the density is equal to

fa)= 20142
(a)—g 3] 1 al?
Example 2. If ug(x)=b(1—cosx), then D(2) ™ Tmin e

=2 arccos(Xz/b) and from formula(56) we obtain
Hence it is clear tha€,, decreases as the soliton amplitude

f(a)= 1 0 dt decreases. Note that the soliton distribution function normal-
2778\/5 arccosl—a/2b) \/1— a/2b— cost ized to the spatial density of the solitonsfig(a)=Cf(a).

We emphasize that the possibility of describing the main

_ 1 ]z E r( \/E _ \/@) 60 properties of the structure under consideration with the help

~7e Vap ' |3 8b/" V a)’ (60 of a chaotic system of solitons characterized only by the

amplitude distribution and the mean density is determined by
the form of the initial functiorug(x).

An important role is played here by the condition of
spatial homogeneity of the initial functiamy(x) and condi-
tion (5), which exclude the effect of a singular point at in-
finity (X— =),

Despite the fact, as was indicated above, that the con-
tinuum limit of the theta functioft is a definite analog of the
system considered here, it is necessary to also turn our atten-

where F(¢;m) is the incomplete elliptical integral of the
first kind.

Next, considering the slow variation of the amplitude of
the oscillations of an initial functioruy(x) of the form
b=1+b;sinkx) (b;<1; k<1, wherek is irrationa), it is
also possible here to obtain a continuous distribufica) by
averaging expressiof60) on a scald.>1/k:

1 m dz
f(a)= f . tion to an important difference between them. The point is
V2an?e J-n 1+b;sinz that Ref. 31 considers the limit for gband structure, aris-
_ a 8(1+bysinz) ing, for _example, in _the case of a periodic initial-value prob-
X F| arcsin — ) lem. This structure is formed by a large numiger N~ 1/e
8(1+bysinz) a of soliton lattices’® each of which corresponds to a definite

Another important parameter is the mean spatial densitpand. The width of the allowed bands describing the lattices
of the solitonsC characterizing their interaction. The mean in this case is exponentially small in comparison with the
spatial density of the soliton€ is also determined directly Width of the forbidden bands describing the difference in the

by the form of the initial functionug(x). Indeed, the total levels of the solitons belonging to neighboring lattices. In
number of solitons in one individual well, according to for- other words, the soliton amplitudes in a mixed system are not

mula (56) is arbitrary, but vary by small &) jumps.
In the system under consideration, in the asymptotic
Ni:f f.(a) da. (61) limit as t—x no fjlstnjct _SO|I_tOI’] lattices arise. The quantum
levels of the initial distribution form a continuous system.

Correspondingly, a continuous distribution of soliton ampli-
tudes(56)—(58) arises ag— . We emphasize that although
in the semiclassical limit considered in Ref. 31 the continu-
umized description of the discrete spectrum is identical to a
m description of the continuous soliton distribution, upon
izl N;. (62 closer analysis, e.g., in a consideration of the correlation
functions, fundamental differences between them can arise,
According to conditiong3)—(5) the densityC does not de- as is already evident in the case of the Hopf equation. The
pend on the choice of segment of the initial distribution. Forpaper by Krylovet al3?is dedicated to a more detailed treat-
example, for the soliton density in the ca®&®) we have ment of the corresponding mathematical questions.

Determining the total number of solitons in all the wells on a
“representative” scald_, we find the mean soliton density
corresponding to the given initial-value problem:

C:

|~
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4. SEQUENCE OF ISOLATED PULSES IN THE KdV solitons with amplitude greater thancontribute tof_(u).
EQUATION We now take into account that the quantitiu/dx| for soli-
tons with the shapé&6) has the universal form

We consider for the KdV equation with weak dispersion

<1 initial data in the form of an infinite sequence of pulses dug V2
of identical shape32). We assume the pulses to be well dx| T g uvasu (68)
separated:
Substituting expressio(68) into formula (56) and integrat-
_ f ing, we arrive at a universal expression for the steady-state
y=—<1. (63 I i

| distribution function:
Over a timet<1/y>1 each pulse can be treated separately. C, [u
After this time the pulse transforms into a soliton wave, i.e.,  f=(W)=yD|5/. (69)

it decays into a large number of solitoNs~- 6/¢, aligned in _ o
amplitude?®2* The total number of solitons arising as a re- HereC, is a normalization constant.

sult of the decay of one pulse is equal to It is clear from EQ.(69) that the distribution function
f,(u) grows without bound like 1/ asu—0, so that the

N= fzf(a) da= i Jm JE(8) de. (64) distribytion(69) is not normalizable. .It should, however, pe
0 TE J-w borne in mind that for very smali the implemented approxi-

mation of noninteracting solitons breaks down.

To calculate the interaction between the solitqeee
Ref. 1), note that agy— 0 the solitons overlap mainly in the
vs=2a. (65 region of their exponential tails.

Therefore the velocity(x) in the interaction region can

Each soliton moves with its own velocity;, which is pro-
portional to its amplitude:

We now consider the asymptotic behavior of the solution
of the KdV equation with the initial conditiof2) with con-
dition (63) taken into account in the limit—c«. As was
shown in Sec. 3, as a consequence of ergodicity of the prob- X |a

u(x)zaexp< - E\[E

be represented in the form of a superposition of two expo-
lem the system passes into a uniformly mixed thex axis) . (70

nential soliton “tails”:
X—Xo [a
stochastic state. The process of multiplication of modes in-

vestigated in Sec. 3 is equivalent in our case to a graduas follows from Eq.(67), we must calculate’(u) as a
superposition of the soliton waves arising as a consequendgnction ofu. Differentiating expressiof70) and regrouping
of the differences in the velocities of the solitof@5). The  terms, we obtain a relation betwean(x) andu:

considered mixing process is more obvious by virtue of the , _ 1\ a7
fact that in the linear-iny approximation the interaction of In[(\/§u+s\/§u )(u\/a—z S\EU A

the solitons can be neglected. We are thus talking about the X

mixing in one-dimensional space of an ideal gas of noninter- =- ;0\/@+ In[ (a*?+a/ay) 2"3(a,/a+a3?)].
acting particlegsolitong with velocity spectrunf(v,). Note

that the kinetics of a gas of solitons with their interactions (71
taken into account was considered by Zakharov. By virtue of the smallness of the parametethe following

For the problem of interest to us, it is important that eachcondition is fulfilled:
soliton has a completely determined dependence of its shape

: Xo [a
Honxandt . "2\l (a%+ aay) ¥ (@, 2+ 3],
X—vgtfa
— — =2 S
u=us(x)=acosh ( e |2 (66) Therefore the solution of Eq71) can be represented in the
or
Therefore, following the results of Sec. 2, in order to find the
velocity distribution functionf..(u) in the stochastically (Vau+e3u')(ua,— e 2u’) V2272
mixed state in the leading approximation, it is necessary first
to consider the probability density distribution function in a :exp{ _ @\/E} (72)
soliton wave of fixed amplitude, € 2
2|dug ! Analysis of expressioli72) shows that there exists a mini-
fa(u)=(8(u—us(x)))x =7 axl mum valueu,, such that there is no solution for<u,,

where
and then average it over the soliton amplitudes:

2/ 1 2 (2 |dud? u.:i(\/%
fm(u)=I—<m>a=|—fuf(a)‘a da. (67 Ja Va

Here we have taken into account that the soliton amplitudes X exp — Xo Va2 _
are distributed according to the ru|g5), (56) and that only € 1+.a,/a

- \,a27a/(1+ Va27a)
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In this case, fodx/du we have the following relation: £
2 -
‘dx 1 2
— =, U=Upjn-
duuﬁu . VU= Unin

min

Thus we see that the d/divergence obtained earlier in
expression(69) for f.(u) is cut off at smallu at values
u=um,. Therefore, to eliminate the divergence in expres-
sion (69) it is necessary when averaging to introduce a cutoff
atu=u.,,. Note that exact calculation shows that the result
does not depend on how the cutoff is effected. Therefore it is 1
simplest to make the cutoff by introducing the Heaviside step )
functionH(x), which, as usual, is equal to zero fox 0 and 0 1 Zu
one forx>0. This function must be averaged over the posi- N . - .

. . . FIG. 4. Velocity distribution functionf(u) for the initial functionu(x),

tion of the second solitor, and over the amplitudes a,. It 4fined by Eqs(32 and (36); 1 — Korteweg—de Vries equatiof7).

can be shown that the probability of the relative arrangemenbashed line — corrections 42 ; 2 — dispersionless limit34), (37) (Hopf

of the solitons in the mixed stochastic state obeys Poissoequation.

statistics regardless of the form of the initial distribution. The

Poisson distribution is a spatial analog of the uniform distri-

bution of the phases over their periods. In other words, thépecial role of the small-amplitude solitons. Indeed, as is

probability that the distance between the solitons will takeclear from formula(66), the width of the solitom x5 grows
the valuex is as its amplitude decreases:

P(xg) = 4 73 Axg~ —
(Xo) = ~ &XP| ~Xog . (73 Xs~ &
Here we have taken into account that the mean distance b&he mean distance between solitons is equal to
tween the solitons in our cag®2), (62), (63) is equal to

4e/vy. Averaging over the Poisson distributigr3), we ob- (AX)= —~g—~—.
tain N "0 vy
w Therefore, fora~ y? the solitons overlap substantially and
<H(U)>x0=f P(Xo)H(U=Upin(Xg,a2,2)) dXo cannot be treated as weakly interacting. Thus, the distribu-
0 tion function(75) is valid only up to valuesi~ 92, i.e., up to
S 1 1 valuesf ..~ 1/y. For valuesu< y? its growth is truncated due
=y (—+ —) . (74 to the strong interaction of the small-amplitude solitons.
Va,  \a

This is also why the functiori,,(u) takes the form de-
Next it is necessary to average expressiod) over the soli-  picted qualitatively by the dashed line in Fig. 4. Its exact
ton amplitudesa anda,. This averaging is performed using calculation requires a complete account of effects?,
the soliton amplitude distribution function. As a result, in- Which goes beyond the scope of the present work.
stead of formula(56) for f..(u), we obtain the normalized We note in conclusion that for the same initial condi-
distribution tions (32) there exists a structural similarity between the dis-
tribution functions in the solution of the KdV equation,
_ (75) f..(u) given by Eq.(76) and the Hopf equatioi(u) given
by (34): both have a characteristic value of orderfor
u~1 and a large maximum in the limit—0 (see Fig. 4.
These features reflect the properties of the initial distribution

Ug(X)-

u
fm(u): %ulerIZD(E

The normalization constant in formul&5), as usual, is
found from the equation

f fo(u)du=1.
0 5. THE CORRELATION FUNCTION
Thus, for example, for the case when the initial function is
prescribed by a set of parabolic puld@6), the distribution
function for y<1 has the form

Let us turn now to the correlation function in the mixed
state. As usual, we define it by the formula

- K(s)=(u(x+s)u(x)) —(u(x))>. (77)
fo(u)= Yy \/1-= (76)  Here the angle brackets. . .) denote averaging over space
2 2 . ; . o
X. According to our earlier analysis of the probability func-
The distribution functior(76) is plotted in Fig. 4. tion f..(u) in the semiclassical problenz {0), in the case

Note that the divergence of the distribution functionsof a well-separated sequence of initial pulses{0) two
(75 and (76) asu—0 is a consequence of working to first regions stand out. The first of these is the main region of
order in+y . This approximation does not take account of thevaluesu~1, where the solution decays into a system of
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K(s)/K(0) a S(k)/S(0) b

1 1 FIG. 5. a — Correlation functiofK(s); b — Fourier spec-
trum S(k).

0 T2 4 o 1 2

well-separated solitons such that to first order in the param- > 0

eter y they can be taken to be noninteracting. The correla- D’(z)= = )

tions here are short-range and are determined only by the lu'(z)] 2vi-z

soliton scales. The second region is the region of very small
values ofu<y?, where the small-amplitude solitoras~ >
play the main role. In this case, the interaction between the 0

Therefore

solitons turns out to be not only important, but in fact pre- f(a)= 0 fl dz _J 8g’ 2=a=0,
dominant. In this region long-range correlations should natu- 8me Jan\(1-2)(z—al2) 0 -9
rally arise. y aze 81)

We consider here the first approximation in the param-
etery and, consequently, only the region of short-range corit follows from Eqgs.(78), (80), and(81) that
relations. In this approximation only the first term in expres-

sion (77) makes a contribution of ordey to the correlation _ V20 (2| coshs, 1 32
: . . K(s)= - 3517 = a““da. (82
function. It can be rewritten in the form 8l Jo|(sinhs;) sintf' s,
2 . . . .
K(s)=f f(a)K,(s) da, (79) From thls expression we find the asymptotic forms of the
0 correlation function:
where f(a) is the soliton amplitude distribution function 2 242
(56), andK,(s) is the correlation function of solitons of a K(s)s<8=1—5y -—], (83
given amplitudea: e
, 1 K _3.[® > L 2(s\® 2s
Ka(s)=a L“Tw TR (S)s2:=37| 5 35 &P~ |
L x+s/a) L2 x/ a2 Hence it is clear that the maximum value of the correlator is
XJ cosh 2| — > cosh 2| — 5| | dx K(0)=(2/15)y, and for large values of the parameteit
-t & falls off ass™°. The total integral of the correlation function
ead? [+ is of course proportional to the small parameter.

= cosh 2(x;+5;)cosh ?(xy) dxy,
\/EI - J= J'

= K(s)ds= \/E‘ys.
1/2 *

s
S1=—
1 €

a

. (79)

The form of function(82) is depicted in Fig. 5a.

The Fourier transform of the correlation function—the

Herel is the mean distance between pulses. After integratiorgpectrm power of the procéés—is usually also of significant
formula (78) yields interest:

< (s \/Esas’z[ coshs, 1
S1)= S;— .
ot I |(sinhs)® " sinits,

The functionK 4(s) takes its maximum value a&=0. Near
the maximum fors<e/a*? it can be represented in the form

(80 S0= 5 J K(s)esds, (84

In the case under consideration of a pulsed process with non-
overlapping pulses

\/E a3/2 a
_V¥2 2 2 2 12
Ka(s)= 5| 1= .55 S0 [ (o da
Eor s>gl/a'? the correlation function decreases exponens, hara
tially:
2
a2 sall? _ifw ke ek
Ka(S)sseratie= 4S|_ex% - \/E e | Uso(k)= 2 ﬂcusa(x)e dx= 27 sinf(ks(Zla)”Z)

The total correlation function depends on the soliton amiis the Fourier transform of an isolated soliton.
plitude distribution. Let us consider the specific example In the example(36) considered above the integrated
(36). In this case Fourier spectrum has the form
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0 (2 K2e4 In conclusion, we make a few remarks about the connec-
S(k)= FT J’ 5 7 da tion between the process considered here and other known
& Joan?sint?(\2ks/a'"?) models of the appearance of chaotic motion.

1. It is possible to discern an analogy between the

1 = dt . . : . .

= ——ye(ke)* f _ ) (85) Landau—Hopf mechanism of successive bifurcations in the
8’ ke t3sinkPt development of an instability in the flow of a dissipative

continuous mediufi and the successive increase in the

number of modes of a multiband structure in the theory con-

sidered here. But one should also note the substantial differ-

Expression(85) has the following asymptotic limits. For
ke<1 the spectrum tends toward a constant:

ye ence between them. While Landau—Hopf bifurcations de-
S(0)= 3072 velop as linear streaming instabilities, in our case singular
points in x-space play the defining role. It is precisely the
And for ke>1 the spectrum decreases exponentially: appearance of singularities as a consequence of the succes-
1 sive reversal of the velocity profile that leads to the gen-
S(k)= —= (ye)(ke)2e™ 2k, eration of new modes which immediately develop as a
4r? strongly nonlinear process in the local vicinity of the given

The general form of the Fourier spectru@g) is shown in singular pointx, . Note that the contemporary theory of hy-
Fig. 5b. drodynamic turbulencésee, e.g., Ref. 35lso points to the

important role of singularities in the higher correlations.

2. Sinceu(x,t) is the velocity, the trajectory of any
given pointx in the coordinate system moving with constant
The process examined in the present paper can be rgnean velocityu=(uy(x)), is described by the equation

garded as the generation of soliton turbulence in the dynam-

ics of a continuous, one-dimensional nondissipative medium  dx _

described by the integrable KdV equation. We recapitulate a:U(X,t)—U- 87
the main results of the theory.

1. For initial conditions haVing the form of Iarge-scale In our case all the trajectorieqt) begin as |arge-sca|e mo-
oscillationsug(x) prescribed on the entire axis, as a con-  tjon defined by Eq(87) with initial condition (2)—(5), but
sequence of the dynamics of the KdV equation stochastighen with the passage of time contracts to small-scale oscil-
small-scale oscillations set up &s-, which can be de- |ationsx(t) with characteristic scale of order This process
scribed in terms of a continuous random process: the probysf compactification of the trajectories(t) has a possible
ability densityf(u), the correlation functiot(s), and other  analogy with the attractors considered in the theory of dissi-
higher correlations. pative turbulence.

2. The statistical characteristid¢gu), K(s), and others 3. According to the theory of integrability of the KdV
are uniquely determined by the form of the initial function equation, an arbitrary large-scale, finite functiog(x)>0
Uo(x) and can be calculated. They are stable, i.e., they recan be approximated with a high degree of accurbafy
main invariant for arbitrary finite perturbatiodof the initial  grger exp-1/e)] by a multisoliton solution withN~ 1/e

6. CONCLUSION

function ug(x): (Ref. 3. It is important that each soliton has a definite am-
o _ plitude a;, but the position of its centex; in this case is
J=f |Su(x)|dx<ee,  Su=ug(X)—Uo(X). (86)  rigidly fixed. In regard to the oscillating initial function

Ug(X) (2)—(5) it can be said that the position of the soliton
A general proof of the last statement proceeds as follows: @mside each large-scale oscillation has a fixed pha¢g;).
finite perturbation of the initial conditio(86) corresponds to Thus, at the initial time=0 there is a rigid connection be-
a finite perturbation of the initial soliton structure and there-tween the amplitudes; and phases; of the solitons. Their
fore cannot alter the distribution functiof(a), which is  motion in spacex takes place with different velocities de-
formed by an infinite number of solitons. pending on their amplitude. As a result, the rigid initial con-
3. All the dynamical properties of the system are de-nection between their amplitudes and phasesp; breaks
scribed by corrections that af@(1/t). Ast—o they disap- down. We stress that the solitons do not move freely, but
pear asymptotic ally and only a statistical description re-4nteract with one another, and the more strongly, the larger is
mains possible. their mean density. Despite this fact, solitons of greater am-
Of course, an exact proof of these statements would replitude move on average faster than those with smaller am-
quire a detailed mathematical study, which would go beyondglitude, which follows directly from relation&48) and (52).
the scope of the present work. We also emphasize that th&s a result, as— o complete phase mixing takes place. Any
final expressions obtained here for the simple specific caseslue of the phase between 0 and 2 becomes possible for
given can be generalized using the analytical methods devedny soliton. Such a situation corresponds to the onset of soli-
oped in Refs. 3, 31, and 25 for minimizing the multisolito n ton turbulence.
interaction, or by numerical methods. It should also be noted From this standpoint the process of turbulization of a
that the proposed theory can be generalized to other conone-dimensional continuous medium described by the KdV
pletely integrable systems. equation can be considered as ergodic. This fact is under-
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We study the features of the stochastic dynamics of a Hamiltonian system with the poté&htial
subjected to an external monochromatic perturbation. Three regimes of stochastic diffusion,
which differ in the value of the amplitude of the external perturbation, are detected. We
demonstrate the possibility of chaotic regimes manifesting themselves in pendulum

vibrations of the well of a water-moderated and -cooled nuclear power reactor as an application
of the model being investigated. Finally, we propose a method of simple proportional

control, which makes it possible to control the chaotic vibrations of the anharmonic oscillator.

© 1999 American Institute of Physids$1063-776(99)02801-3

1. INTRODUCTION perturbation. The aim of the present work is to study the
chaotic regimes in this model. In Sec. 2 we briefly describe
The revival of interest in the classical problem of thethe structure of phase space and give an expression for the
dynamics of a linear system subjected to a periodic perturamplitude of the periodic perturbation, which makes it pos-
bation is due to two facts. On the one hand, the interest stemsible to determine the intervals of regular and chaotic mo-
from the need to describe the rapidly growing number oftion. In Sec. 3 we use the quasilinear approximation to derive
experiments dealing with the interaction of periodic fieldsan expression for the local diffusion coefficient and study the
and nonlinear systems, and on the other, the new ideas abowdrious diffusion regimes. In Sec. 4 we employ the model of
the dynamics of nonlinear systems, developed in the lasin anharmonic oscillator with a periodic perturbation to de-
decades;* require confirmation by models. The essence ofscribe the unidirectional vibrations of the well of a nuclear
these new ideas is that under certain conditions the motion qgfower reactor. We show that for the parameters of working
a strictly deterministic system acquires all the features ofvater-moderated and -coolédater—water reactors the vi-
random motion, although no visible source of stochasticity isbrations of the reactor well can become stochastic. Finally, in
present. Examples of dynamical chaos have been discover&ec. 5 we demonstrate the possibility of converting the cha-
in essentially all areas of physics, and their number is stillotic vibrations of an anharmonic oscillator into regular vibra-
increasing. tion by introducing a small programmed perturbation into the
A one-dimensional Hamiltonian system with a time- system. We study the stability of the proposed algorithm of
dependent interaction is the simplest dynamical system thathaos control against additive Gaussian noise.
allows for chaotic behavior. The case of a monochromatic
perturbation is convenient for analysis and reflects the ex-
perimental situation fairly accurately. The reason is that iny THE STRUCTURE OF PHASE SPACE
many cases the motion of three-dimensional objects can be
approximately described by one effective degree of freedom. In this paper we study the classical particle dynamics
Such a situation occurs, for instance, in the case of Rydbergenerated by the Hamiltonian
states i_n a micrpwave field or surface states_of an e_lectron H(p,x,t)=Hq(p,X) +Fx cosQt, 1)
above liquid heliunt. These systems are also interesting con-
ceptually from the viewpoint of the problem of quantum where the unperturbed Hamiltonian is

chao$?® 2
A general study of the dynamics of any nonlinear system  Hgy(p,x)= 2p_m +AX"=E (n=2l, [>1). 2
in which chaotic behavior is possible consists of the follow-
ing stages. Herep, X, andm are the particle momentum, coordinate, and
1. The numerical study of the structure of classical phasenass, and- and () are the amplitude and frequency of the
space. external field.
2. Analytical estimates of the critical parameters of the ~ The anharmonic oscillator described by the Hamiltonian
regularity-to-chaos transition. (2) fills the gap between two important physical models, the

3. The study of the dynamics of a system in chaoticharmonic oscillator if=2) and the infinitely high rectangu-
regimes and the development of methods for describing sudlar well (n=«). Research in both classical and quantum
behavior. dynamics of the anharmonic oscillat@®) has a rich history.

Our previous work"!! was devoted to solving the first (A detailed list of papers on the subject can be found in
two problems for an anharmonic oscillator under a periodidRef. 12)

1063-7761/99/88(1)/10/$15.00 196 © 1999 American Institute of Physics
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The Hamiltonian(1) can be written in terms of dimen-
sionless variables if we introduce arbitrary units of mags
lengthly, and timety. The new parameters(’, A’, F’, and
Q') are linked to the old ones through the relationship

FIN—2t2
A=—22C  0'=0t,,
Mo
FT2 m @
'=—, m=—.
Mgl Mo

By proper selection of the unitg, |, andty we can use
(3) to obtain “convenient” values of the parameters, A’,

F’, andQ’. Of the four parameters three can be fixed. For

instance, by selecting’=m’=Q"=1 we determine the fol-
lowing set of the basic units:

1 mQZ)l/(nZ)

T TR

me=m, 4
Here the only parametd¥ that enters into the Hamiltonian

2

%+Xn+ Fx cost

H

©)
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An analysis based on the Chirikov resonance overlap
criterion'* leads to an expression for the critical external-
field amplitude that ensures the overlap of neighboring odd
resonances (to first order in the amplitud€ of the external
field the widths of even resonances for the potential consid-
ered here are zero

2n/(n—2)

n(n-2) K4(n-2)

(n+ 2)2Xk

o

ECr= 2(2—3n)/(n—2)
k a

X[k(2+n)/(2_n)—(k+ 1)(2+n)/(2—n)]2_ (13)

This expression solves the problem of reconstructing the
structure of the phase space of the Hamiltor{ignfor arbi-
trary values of the parameters. The analysi1® reveals
the following main features of this structure:

1. For a rectangular welln(=), for every value ofF
there exists an enerdpr number of the resonancabove or
below of which the motion is regular or chaotic, respectively.

2. For everyn< there is always a valuEy(n) of the
external perturbation at which for @l<<Fy(n) the motion is
regular at all energies.

3. For everyF>Fg(n) the anharmonic oscillator under-

(below we drop the prime wherever this does not lead to @oes a regularity-to-chaos-to-regularity transition, i.e., in this

misunderstandingcan be expressed in terms of the initial
physical parameters:

:F<

The scaled Hamiltoniatdq(p,x) can be expressed in

terms of the action and angle variables &nd #) as

follows:*13

1 1/(n-2)

mQ2

A

mQ2

_F
mQ2,

F (6)

27 |“
where
I'(i+1/n) 2n
G(n=2(2m)"* r((1/2+ )y’ “Thr2 ®

The resonant values of the actidp, which are determined
from the condition

dHg
Ko(l)=1, w(l)ZT, k=1,2,..., 9
are
G(n) 2n/(n—2)
— (2+n)/(2—n)

If we expand the perturbation in a Fourier serie®jithe
total system Hamiltonian can be written

oo

> xg(l)cogko—t),

H(l,6,t)=Hg(t) + 11
k
where the Fourier coefficients, are given by the integrals

de
xk(l)=fzx(l,6)exmk0). (12

case we can always specify an energy interval within which
the motion is chaotic and outside of which the motion is
regular.

The reason for a regularity-to-chaos-to-regularity transi-
tion is the following*®** For high-lying resonancesmallk)
and fixedF, the resonance widths decrease as a function of
the order more slowly than the distances between the reso-
nances. This ensures the existence, as the perturbation in-
creases in strength, of the well-knovmorma) regularity-to-
chaos transition. However, this is true only within a limited
energy interval. The increase of the relative rate of decrease
of the resonance width in comparison with the rate at which
the distance between resonances decreases leads to a situa-
tion in which the conditions for resonance overlap cease to
be met, which results in a newanomalous chaos-to-
regularity transition.

The structure of the phase space varies smoothly with
the degree of anharmonicity. Hence for a typical example
we take the numerical results for=8. Figure 1 depicts a
phase diagram that makes it possible, for a fixed level of
external perturbation, to determine the energy intervals of
regular and chaotic motions. The synoptic dependence
E(x,t,=2mn) supports the hypothesis that there is an
anomalous chaos-to-regularity transition. Figure 1 clearly
shows that forkk>13 there are still isolated resonances cor-
responding to regular motion.

3. STOCHASTIC DIFFUSION

When the amplitudd= of the external perturbation is
large, there is a strong overlap of resonances, and the evolu-
tion of the system can be described by a distribution function
f(I,t) satisfying the Fokker—Planck equati@he quasilinear
approximation:
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FIG. 1. Above: stroboscopic images of the phase
space forn=8; to the right, F=0.01; to the left,
F=0.2. Below: the phase diagram far=8. The
dashed curve separates the regular rediorthe left

of the curve from the chaotic regiorito the right of

the curve. The black squares show the stability
boundary for the resonances whose numbers stand at
the squares, and, B, andC are the three regions in
the phase diagram corresponding to different stochas-

1073
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I 9 of What is important is that the integration of the second
E:ﬁ_qul(l)ﬁy (14 equation in(16) in the quasilinear approximation is done
along the unperturbed path,
whereD (1) is the quasilinear diffusion coefficient. A con-
all) 9 6(t)~ O+ . (17)

sistent derivation of Eq(14) and of an expression for the
quasilinear diffusion coefficient presupposes the use of the  Plugging(17) into the first equation ifi16) and then into
Liouville equation as the starting equation for the distribu-(15), averaging over the initial phases, and using the new
tion function in the (, #) space with subsequent averaging of variablest; —t, and ¢, +t,)/2, in thet— o limit we arrive at

the distribution function over the initial phases and with gn expression for the quasilinear diffusion coefficient:
analysis of the conditions for the smallness of the terms dis- , =

carded in the equation for the averaged distribution function 7k

(see, e.g., Ref.)l In this paper we limit ourselves to the Dq'Tk:z_w kzxﬁé(kw(l)—ﬂ). (18)
derivation of a formula foD,. For the starting expression

we use the formula for the diffusion coefficient for a test ~ We can use this formula to estimate the local diffusion

coefficient atl~I,. To this end we could use the explicit

particle,
expression for the Fourier coefficients, which are defined by
o1t t (12). This expression is too cumbersome, however. It was
Dq|(|)=t|"”f:c 2t fodtlfodt2(|(tl)l(t2))' (15) found that to make simple estimates we can approximate
a X, =X(A/E)" by the formula

wherel=dl/dt, and the horizontal bar indicates averaging 3k

over the initial phases. Belowin the present sectigrwe X ~0.47 ex;é - T) (19

distinguish between dimension@inprimed and dimension-

less(primed quantities. The correlator ifL5) can be calcu- atn=8. Figure 2 illustrates the fact thét9) is a good ap-

lated via the equations of motion in the, ¢) space: proximation of thex;, vs. k dependence fdc=3. Then, com-
bining (18) and (19), we arrive at an estimatéo within a

dl . : numerical factor of order unijyfor the local quasilinear dif-
a_Fk:E—m kx(1)sin(ke—€2e), fusion coefficient withn=28:

16
do 5 9 . Dyl WFZ(B)M o exp{_ T ] (20
a=w(t)+Fka g cogko—Q). alllk Al w3y 20y
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probability average. Note that the diffusion coefficient
D =lim,_.(1?)/t, defined in this diagram as the slope of the
line to the time axis, is different for the random walks of the
particle near the fifth and seventh primary resonances.

RegionB corresponds to moderate external-perturbation
amplitudes. Here the resonances effectively overlap and
hence the conditions for the quasilinear approximation are
met. The chaotic path(n) at F=0.2 is depicted in Fig. 3b,
and the dependence 6F%) on n is shown in Fig. 3d. The
linear nature of this dependence is evident.

RegionC corresponds to large external-perturbation am-
plitudes. Figure 4 illustrates the specific features of diffusion
in this region. Clearly, the dependence of the diffusion coef-
ficient on the square df, which is linear inB [this corre-
sponds to the quasilinear approximation; see [#8)], in C
becomes less slanted. This may be explained as follows. In
deriving the expression for the quasilinear diffusion coeffi-

The results of a numerical investigation of stochastic dif-cient we integrated with respect to the angle along the un-
fusion in our model (=8) are depicted in Fig. 3. Numerical perturbed patiisee Eq(17)]. As F increases, we must allow
analysis revealed the presence of three regions in the bifufer its effect on the path. In the theory of resonance
cation diagram in the dimensionless variablesK) charac-
terized by the different diffusion regimes, B, andC (see
Fig. 1). Below we give a brief qualitative characteristic for a resonance curve of a finite width, which increases With

each regime.

RegionA, in which the amplitudd- of the external per-
turbation is only slightly larger than the minimum critical

value Fy(8). Here the primary resonances overlap only
slightly, and diffusion involves secondary resonances. Figure

3a depicts a chaotic path of the dimensionless variat)es
and |, with t,=2mn, which first wanders around the fifth
primary resonance and then jumps to the seventh primarywhere y(F) is the exponential-curve width, which increases
resonance. Figure 3c depicts the dependendé?dfont, at
F=0.01, which is of a linear nature, with) standing for the

In/

broadening? this effect is taken into account by replacing
the delta function in the quasilinear diffusion coefficient with

We allow for this feature by replacing the delta function in
(18) with an exponential:

1 (kw— Q)2
expy ———m—
Jry 2

Y

S(kw—Q)— , (21)

with F. Then fory<w,Q) we have an estimate for the qua-
silinear diffusion coefficient:

0-

FIG. 3. Upper row: a chaotic path in the (lm)

0 10000 n 20000 n 20000 space. Lower row: the dependence(bf) onn: (a)
2 and(c), at F=0.01 (regionA); and (b) and(c), at
a f f F=0.2(regionB).
0.8}
0.06
0.67
0.041
04+
0.02
0.2t
O'L I i ot ' A
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masses and the stiffness and friction coefficients are obtained
by combining the results of theoretical calculations, bench
tests, computer modeling, and pre-operational t€sBener-
ally, the external forcdperturbation in these models con-
sists of two components: the random component, which re-
sults from local turbulent pulsations, and the regular
component, with several high peaks in the spectrion
more details concerning the origin of forces acting on the
reactor well see the review in Ref. 19
From the variations from measurement to measurement
of, say, the spectral characteristi@ito power spectra, co-
herence functions, and the phaséthe noise signals, which
0 002 004 006 '2 0.08 register well vibratio_ns, we can draw conclusions concerning
F the state of the devices inside the reactor vessel and of fas-
tening elements. The possibility of this follows from the fact
that different types of possible defects lead to variations in
different parts of the spectrufil However, when interpreting
the data of measurements one must bear in mind that due to
- Y contact with the reactor vessel tliguasjpendulum vibra-
Dq(1)—=Dq(1)=Dq(1)(1-4), Ax—c. (22)  tions of the well are essentially nonline4rso that a periodic
external force may make these vibrations chaotic. The prop-
For y=0 (22) leads to the previous estimaf20) and hence erties of chaotic motion cannot be taken into account by
to a linear dependence of the diffusion coeffici@nbn F2. jinear models, with the result that such models must be aug-
The est|maté22) Clearly ShOWS that an inCI'easel-FncauseS mented by an ana'ysis Of possib'e nonlinear effects_
an increase In'y, so that the dependence of the diffusion The first to Study nonlinear effects (rquas)pendu'um

D

0.101

0.05f

FIG. 4. Diffusion coefficientD =(12)/n as a function of the square of the
external-perturbation amplitude for regioBsand C.

coefficient onF? becomes less slanted. vibrations of a reactor well was Vavrfit,who, however, did
not consider the possibility of stochastization of these vibra-

4. THE ANHARMONIC OSCILLATOR UNDER A PERIODIC tions by an external periodic force. According to a recent

\F;:EBF;TAUT'TOBQQON AS A MODEL OF REACTOR-WELL report?? theoretical and experimental investigations of the

nonlinear effects in the vibrations of other elements of the

As a possible application of the above results, we studyntravessel devices, such as control rods and clusters of fuel
the possibility of chaotic regimes setting in in reactors of theelements, have just started.
water-moderated water-cooled power ty&/ER in Rus- Only estimates done with appropriate models can answer
sian, or simply a water—water reactor. In the course of op-the question of whether chaotic regimes occur at values of
eration, the reactor well experiences stresses due to the poRarameters corresponding to operating reactors. As one of
erful fluxes of the heat-transfer agent from the cold legs othe simplest models describing unidirectional quasipendulum
the circulation loops. In view of this, the well vibrates in Vvibrations of a reactor well we can take the above model of
relation to the reactor vessel, and these vibrations are regign anharmonic oscillator with a periodic perturbation. The
tered and analyzed by neutron-sensing elements placed o@scillator's potential energy models the elastic interaction
side the well but inside the vessélThe monitoring of the that emerges when the reactor well contacts the reactor ves-
movements of the well and the inner components during opsel, while the periodic perturbation models the force at the
eration is an important problem of reactor noise diagnosticsfrequency of rotation of the main circulating pumps.
which is being actively developed in countries that have ~ To determine the type of motiofchaotic or regular
nuclear reactorésee the materiat of the Specialists Meet- 0ccurring in quasipendulum vibrations we must connect the
ing on Reactor Noises, SMORN VIl What is especially parameters of the model with the parameters of the reactor.
worth mentioning is the possibility thétlue to wear and tear Let A be the amplitude of reactor-well vibrations at a fixed
of some of the fastening elemeptguasjpendulum vibra- €nergy,
tions of _the yveII as a bgam with a flxgd upper end can de- E— AAD. (23
velop, vibrations involving contact with the vessel in the
lower part of the welk Identifying, describing, and moni-  Then for the stifiness coefficier expressed in terms of the
fcorlng chahges in the characterlsycs of 'these V|brat|9ns argmplitudeA we have
important in the early stages of diagnosing construction de-
fects acquired in the process of operation. o2 A2 I'1+1/m)

Mon_itoring th_e reactor well a_lmounts to measuring a_nd A= ;mw FRA=™" Ipy= T(12+1n)° (24)
processing the signals from noise sensors and analysis of
these signals via theoretical models. In interpreting the datén terms ofA, the unit of length], is

on the vibrations of the welland other construction elements
2\ 12 2/(2—n)
(;) an

of the reactoy, models of linear oscillator&r coupled linear A (25)

oscillators are used. In these models the values of the

0=
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and hence the dimensionless energy is dimensionless quantitigsWe see that for a “typical” set of
2n/(2—n) parameters chaotic modes may set in. Stochastization of the
E'= E _ E I'ho (26) vibrations of the reactor well occurs in the vicinity of the
mQZIS m resonances that overlap for the given level of periodic per-

turbation. Here the parameterdetermines the “relative”
weight of the region with regular and chaotic motion within
Ghe range of admissible values of the parameters.

The law of variation of the momentum of the coolant
flow acting on the reactor well yields the force exerted by th
cold leg of a circulation loop:

F=pv2mr?, (27

where p is the density of the heat-transfer agentjs the 5. CONTROL OF THE CHAOTIC VIBRATIONS OF AN
average velocity of the heat-transfer agent in the cold leg/ANHARMONIC OSCILLATOR

andr is the radius of the pipe. The dimensionless resulting
force exerted by two opposite circulation loops is

2 ) 1/2an

An important feature of the dynamics of a nonlinear sys-
tem interacting with a periodic external field is the possibility
2l(n=2) of nonresonan(diffuse) absorption of energy. As applied to
) (28 the problem being discussed, this process may cause the am-
plitude of the reactor well vibrations to build up dangerously
where the coefficienty characterizes the imbalance of the due to absorption of the energy of the heat-transfer agent.
opposing pump$? Chaos plays a useful role since, by stimulating mixing, it
Equations(26) and (28) make it possible to determine affords a powerful heat and mass transfer mechanism. How-
where in the diagram in Fig. 1 the region corresponding tcever, in many case@n particular, for vibrations of the reac-
the characteristic values of the parameters for quasipendulutor well) chaos is undesirable, since it leads to additional
vibrations of the well of a VVIR-1000 reactor is situated. mechanical fatigue of the fastening elements, has an adverse
The rated values of the parameters @em=2.20< 10°kg,  effect on the operation of measuring devices, and hinders the
(2) W=2716.6 Hz,(3) r=0.425m, and4) A=0.06 mm. analysis of spectra. For this reason there have been signifi-
In Fig. 5, the hatched areas of the phase diagrams fatant recent attempts to control chaos, i.e., to convert it into a
different values o correspond to the following parameter periodic process. To this end a small programmed variation
intervals: w=2mX (2—6), anda=0.02-0.15 (see Ref. 24; of one(or several parameters of the system is enforteor
as in the previous figures, we have discarded the primes oa specially constructed external perturbation is (fSed.

Er F a pv2ar?
mo?l, A mo?

A

v
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As is well known, the extremely high sensitivity to small T
perturbations is the key feature of chaotic systems. In 1990, P(T)“GXF< - m) (31
the OGY group(Ott, Grebogi and Yorke) proposed using
this feature to control dissipative dynamical systems whoséor 7 large, where() is the average control locking time,
phase space contains a small attractor. OGY suggested thich is a power-law function of the range of admissible
following procedure to stabilize any unstable periodic orbitvalues of the parameter,
lying on the attractor. In the preliminary stage, the equations S
of motion or time series of the measured characteristics of (1)%(5P) max: (32
the systerfi are used to construct the Poincasection
Z,+1=F(Z,,po) for a certain fixed value of the parameter
p=po of the system available for control. When a pafht
on the chaotic path of the system in the Poincsgetion is P(7)ocr™?, (33

found to be close to a poit* (py) of the objective unstable , .
orbit of period k(Z*(po) =FX(Z* (po),Py)), We slightly where 1< «<<2. In this case the average control locking time

(7) is infinite.
In view of these difficulties, to stabilize the chaotic vi-

whereD is the information size of the attractor. Hence in this
case(r) is always finite. In Hamiltonian systems,

change the value of the control parameter(p,=po

+6p,) so that in the next iteration the poinZ,, 4 : 4 ) i
—F(Z,,p,) lands in the stable set of the saddle poimbratlons of an anharmonic oscillator, we use an alternative

Z*(p,). This condition leads to the main formula of the approximation, which we call simple pro_portional_con';rol. In
OGY control method: order to formulate the procedures of this approximation, we
note that the control process can be broken down into several
Nofy-6Z, stages.
5pn:m’ (29) 1. The system approaches the objective periodic orbit by
ergodic random walks. Special methods are sometimes used
where to shorten this stage.
2. Control locking. Here maximum control is exerted on
_IF(Z.p) the system.
ap Z*,po, 3. Exponential approach to the objective i€ the expo-
nend. The numerical value ofy can be interpreted as the
A\, is an unstable eigenvalue of the Jacobi matrix describingneasure of effectiveness of control and can be used as the
in the linear approximation the dynamics in the vicinity of objective function to optimize control.
Z*(po), andf, is a contravariant unstable eigenvector of the 4. The stabilization stage with a small chaotic compo-

0Z,=Zn—Z*(pg)y W

Jacobi matrix. Formul#29) can be written nent, whose value is determined either by noise or by fluc-
tuations due to the finite accuracy with which numbers are
Spn=Cfy-6Z,, (300 represented in a computer.

: L 5. Recreation of chaos after control has ceased. The
i.e., the deviation of the parameter from the rated value . ) .

. . stage is characters by exponentially rapid departure from the
needed for control is proportional to the veci®, on the o : :

L . objective orbit and by chaos buildup.
unstable directiorf,, and the constart is calculated from P . :
o - , . Note that the classification is universal both for discrete

the projection on the same direction of the system’s reaction

w to the perturbation of parameter p. The effectiveness of th%‘oizs and for fluxes described by ordinary differential equa-

OGY control method and its numerous generalizations has . L .
. . : . We consider a system whose dynamics is described by a
been demonstrated in all areas of scieffgeysics, chemis- : . .
two-dimensional mapgfor continuous systems we assume

try) and in medicingsee Ref. 28 . . . P
The vast majority of examples of chaos control achieveaIhat this map is generated by the corresponding Poincare

to date refer to motion on a strange attractor. The complexit;? ection
;J;thsgglos control in Hamiltonian systems is due to two 7z . =F(Z,). (34
1. In view of conservation of phase volume, for someThen we call the map
oints of a periodic path may have complex eigenvalues ly-
p p p y p g Yy ﬁ+1=F(Zn)+AF(Zn+1) (35)

ing on the unit circle. Hence in this case the OGY formula
(29) cannot be used directly. Of course, we can, using the, totally controlled map, WhereAF(ZnH):é(ZnH

Jacobi matrix for the orbit of periol, obtain real eigenval- _ 7« ), with

ues via formula29). In this case, however, using the control "%’

method at eaclkth step, we may either fail to achieve con- ~ [Cqy1 Cyo
trol or may lose control very fast even in the event of a weak CE( )
noise Ca Cz

2. The second reason is related to the duratief the  the matrix of control coefficients, argf., ; an unstable fixed
transient period just before control locking. In dissipative point or one of the points of the unstable period orbit of the
chaotic systems, for randomly selected initial conditions, map. Note that in the case where the additive control param-
has an exponential probability distributidh, eter enters only into one map roie.g., the upper roy the
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map (35) reduces to a controlled OGY map: the coefficientsof ergodic random walks, which precedes control locking,
C,; and Cy, are determined by OGY formulas, ar@,; lasts 30 to 40 iterations. In Fig. 6¢ the control process is
=C,,=0. illustrated by the time serieg(t,)). The control process de-
To find the coefficient<;; we can use one of the usual picted in Fig. 6d on the log-linear scale makes it possible to
optimization methodse.g., the gradient method, the method follow all the control stages mentioned earlier. Finally, in
of conjugate directions, the random search methtaking  Figs. 6e and 6f we depict the power specéf) of the
the exponenty as the objective function. system without the control methgd) and with the control
Figure 6 depicts the results of stabilization by controllingmethod(f) (n=150-230). In the latter case there is a dis-
the unstable orbit with period 3 of the anharmonic oscillatortinct peak, corresponding to the frequency of the objective
(5), with the matrixC found by random search. The admis- periodic orbit f=1/3).
sible perturbation of the system in the process of control is at  Figure 7 illustrates the stability of the adopted algorithm
most 0.03. Figure 6a depicts the synoptic Poinsaetion of  of chaos control against additive Gaussian noise. It depicts
the classical phase spafg(t,).x(t,)} at timest,=2an(n the same characteristics of the system as Fig. 6, with the only
=0,1,2...). All points in the chaotic region were obtained difference that 6y, ande 5,, have been added to the right-
via a single path; the lighk's denote the objective unstable hand sides of the equations. The independent random vari-
orbit with period 3. Figure 6b depicts the differenpét,,) ablesd,, and §,, have a Gaussian probability distribution, a
—pe(i) (i=1,2,3) between the running synoptic compo-zero mean value, and a unit variance. The noise ampliude
nentp(t,) and thep-coordinateof the unstable periodic orbit. was assumed equal to 0.03. It is possible to retain an ad-
The control method was initiated at the 50th iterationequate quality of contro{Figs. 7b, 7c, and 7dand fairly
and was discontinued at the 230th iteratitime small verti- good spectral purityFig. 7f) provided that the perturbation
cal arrows indicate these momenté/e see that the the stage level grows only up to 0.06.
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FIG. 7. The same as in Fig. 6 with external noise.
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6. CONCLUSION

In this paper we have studied the dynamics of an anhar-
monic oscillator subjected to a periodic monochromatic per-
turbation in relation to the stochastization of the vibrations

when the system parameters are varied. on el f _

A numerical analysis of the equations of motion made itstochastization of well vibrations may help to interpret the
to distinguish three regions representing different diffusionnoise spectra and hence to increase the reliability of conclu-
regimes in the E,F) plane. There is the region of small sions about the state of intravessel devices.

amplitudes, where diffusion primarily involves secondary

water type. We have found that for values of the parameters
of operating reactors of this type the well vibrations may be
either regular or chaotic, depending on the well-vessel gap
and the resulting force with which the heat-transfer agent
flux acts on the reactor well. Allowance for the possibility of

We have proposed an algorithm of simple proportional

resonance, and only occasionally do transitions betweeoontrol, which converts the chaotic vibrations of an anhar-
neighboring primary resonances occur. There is also the renonic oscillator into periodic vibrations, thus preventing a
gion of moderate amplitudes, where the conditions for thedangerous buildup of the vibration amplitudie the case of

quasilinear approximation are met. ThE) vs. t,, depen-

chaotic vibrations of the reactor weltue to nonresonant

dence in this region is clearly linear. Finally, there is theenergy absorption.
region of large amplitudes, in which deviations from the qua-

silinear approximation occur. Allowance for the effect of an

The authors would like to express their deep gratitude to

external perturbation on the unperturbed path used in deriv¥+ V- Bulavin (Russian Science Center “Kurchatov Insti-
ing the quasilinear diffusion coefficient provided a qualita-tute,” Russia and I. PazsitChalmers University of Science,

tive explanation for the observed deviation.

Sweden for discussing the problems related to applying the

As a possible application of our results we have examhonlinear oscillator model to reactor well vibrations of
ined the possibility of chaotic regimes developing in qua-water—water reactors. The work was made possible by a
sipendulum vibration of the well of a reactor of the water—grant from the Fund for Basic Research of the Ukrainian
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ERRATA

Erratum: Hexagonal optical structures in photorefractive crystals with a feedback
mirror [JETP 86, 614—627 (March 1998)]

P. M. Lushnikov

L. D. Landau Institute of Theoretical Physics, Russian Academy of Sciences, 117334 Moscow, Russia
Zh. Eksp. Teor. Fiz115 378 (January 1999

[S1063-776099)02901-7

1. The unnumbered equation following E42) on page 623 should read

W= D A AU,

ky T Ro=k

2. At the beginning of the second paragraph on page 623 “Substituting(#&2)sand (43) into ...."” should be replaced
by “Substituting Eq.(42) into ....”

3. Equation(43) on page 623 should be replaced by

IAx _ U C(0)] 1(0) 1(0) /(0) (0),/(0) (0)
—r = WAt S kl+%=k AklAkz—kl+k22+k3=k (L= (RO D B + (S ) i)
(RO Y N VRPN A AAK, (43)

Translated by M. E. Alferieff
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Erratum: Symmetries and causes of the coincidence of the emission spectra
of mirrors and chargesin 1 +1 and 3 +1 spaces [JETP 87, 25-34 (July 1998)]

V. . Ritus

P. N, Lebedev Physical Institute, Russian Academy of Sciences, 117924 Moscow, Russia
Zh. Eksp. Teor. Fiz115 378 (January 1999

[S1063-776(199)03001-2

The abstract should read as follows:

This paper discusses the symmetry of the wave field that lies to the right and left of a two-sided accelerated mittor in 1
space and satisfies a single condition on it. The symmetry is accumulated in the Bogolyubov matrix coeffiaimhsthat
connect the two complete sets of solutions of the wave equations. The amplitudes of the quantum processes in the right and
left half-spaces are expressed in termsv@nd 8 and are related to each other by transformafiiz). Coeﬁicientﬂj},m plays
the role of the source amplitude of a pair of particles that are directed to opposite sides with frequeanuiks’ but that are
in either the left or the right half-space as a consequence of the reflection of one of them. Such an interpretatimmakes
observable and explains the fact, given by Bg.and found earlier by Nikishov and Ritg{3ETP81, 615(1995] and by Ritus
[JETP83, 282(1996)], that the emission spectra of a mirror ir-1 space coincide with those of charges in13space by the
fact that the moment of the pair emitted by the mirror coincide with the moment of the single particle emitted by the charge.

The quantity 1 on the left-hand side of the first member of (#d)) should be replaced by 0, and the phrase in front of this
formula should be replaced by the following phrase: “In these cases the rms fluctuation of the number of bosonic pairs is

always greater than® and the rms fluctuation of the number of fermionic pairs is always Iessﬁﬁarbeing equal to
n(1=n), where,” etc.

1063-7761/99/88(1)/1/$15.00 207 © 1999 American Institute of Physics
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Erratum: Nonlinear waves in zinc  [JETP 87, 396—400 (August 1998 )]
V. G. Skobov and A. S. Chernov

Moscow State Institute of Engineering Physics, 115409 Moscow, Russia
Zh. Eksp. Teor. Fiz115 379 (January 1999

[S1063-776099)03101-7

In the article, the following sentence was omitted: “This work was supported in part by the Russian Fund for Fundamental
Researci{Grant No. 98-2-18393"

Translated by M. E. Alferieff
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Long-wavelength structure on a charged liquid surface
G. V. Kolmakov and E. V. Lebedeva*’

Institute of Solid-State Physics, Russian Academy of Sciences, 142432 Chernogolovka,
Moscow Region, Russia
(Submitted 5 May 1998

Zh. Eksp. Teor. Fiz115 43-49(January 1999

The problem of the equilibrium form of a charged surface of a dielectric liquid in a strong

electric field, such that a flat surface becomes unstable, is studied. A periodic long-wavelength
structure with a small amplitude can arise when the gap between the surface and a charged
electrode is small compared with the capillary length and the charge completely screens the electric
field. The equilibrium form of the surface is calculated assuming that the resulting wave is
one-dimensional. The effect of the boundary conditions at the vessel walls on the dependence of
the amplitude of the standing wave on the applied voltage is estimated. It is shown that

this dependence is very sensitive to the conditions of contact between the vessel walls and the
liquid. The possibility is discussed of using the theory developed in this paper to explain

the experimental results obtained with a charged liquid-hydrogen surfacd.999 American

Institute of Physicg.S1063-776(99)00401-1

1. INTRODUCTION eter was used in Ref. 8 to calculate the stationary form of a
charged liquid-helium surface.

In recent experiments on the reconstruction of a charged
liquid-hydrogen surfacé? a stationary structure was ob-
ser.ved f[o appear qn the sgrface of the liquid. This Wa§ % EQUILIBRIUM FORM OF THE SURFACE
soliton-like hump with amplitude much less than the capil-
lary lengtha= yo/pg, whereo andp are, respectively, the The equilibrium form of the surface corresponds to the
surface tension and density of the liquid. Such a phenomminimum of the effective energy of the liquid in an elec-
enon cannot be explained on the basis of the existingric force field with the potentiaV/ prescribed on the surface
theory?~®which was developed for electrons localized aboveand in the volume of the liquid,
the surface of bulk helium and predicted a “hard” transition
. X ) 1 d
into a reconstructed state with a structural amplitude of order 5  _ — f dr dz B, (1)

a. 8m &

In the present paper the equilibrium form of the surfaceyhere #,.., is the total mechanical energy of the liquid,
is calculated for the experimental conditions of Ref. 1, i.e..equal to the sum of the energy in the gravitational field and
when the distancd between the controlling electrode and a the surface energy. The second term in E4.is the energy
charged liquid-hydrogen surface is much smaller than thetored in the electric fieldthe integration extends over the
characteristic horizontal size of the deformation wave apvyolume between the surface and the controlling electrode,
pearing on the surface and the surface charge completelycated at a distance above the liquidl The z axis is ori-
screens the external electric fidttie charged clusters form a ented vertically in a direction opposite to the force of gravity,
quasi-two-dimensional layer beneath the surface of the ligr s a vector in the X,y) plane, andz= {(r) is the equation
uid). The calculation shows that a stationary periodic wavepf the surface.
with amplitude much less and period much greater than the  As the subsequent calculation will show, there exists an
capillary length can form in fields exceeding the critical interval of voltagesV where the spatial derivative satisfies
value Vo= J4mpgd®. The hump observed in the experi- |V{(r)|<1. When this inequality holds, perturbation theory
ments of Ref. 1 corresponds to one period of a wave with &an be used, treatirfg(r) as a small parameter, to calculate
maximum inside the experimental cell. Numerical calcula-the electrostatic energil). To simplify the calculations we
tions of the wave amplitude as a function of the voltageshall also assume that, together with the derivative, the de-
applied to the diode faces were performed, taking account dbrmation of the surface itself is smalf<d (the latter as-
the contact conditions between the cell walls and the liquidsumption is not fundamental

The existence of a small parameter, the slope angle of In the case at handd&a) the expressior(l) for the
the surface, makes it possible to simplify the calculation subenergy of the liquid has the form, up to terms cubicZidl,
stantially and to write down a local equation for the form of ,
the surface, identical to the equation for a periodic nonlinear P g f dr (V¢)2— PgYy f dr 72— v f dr 8
traveling wave on the surface of a liquid in a chanh@he C2 2 8md* '
approach based on an expansion in terms of a small param- 2

1063-7761/99/88(1)/4/$15.00 24 © 1999 American Institute of Physics
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Here y=V?/V3—1V,= J4mpgd®. We note that the quan- U
tity V¢ arises in the expressiof2) only from the surface
energy of the liquidi.e., from the first term in Eq(1)].

For voltagesV>V, (i.e., for y>0) the squared fre-
quency of surface waves with small wave numbers<0 U=C
and a flat liquid surface is unstabf&For y>0 the equation v A— 1
describing the equilibrium forni(r) of an incompressible 3o \/ 1ok
liquid, taking account of the fact that the total volume of the
liquid remains constant when the shape of the volume
changes, can be obtained by setting to zero the variation of

the sum O_f the energy of the |_iql_1id and the volume with an i 1. piot of the potential energy for the motion of a fictitious particle.
undetermined Lagrange multipligr!?

5 =0. ©)

&— dx . . -
pf ¢ Let the function assume its minimum value, at a
certain pointx=xXy. This corresponds to zero initial velocity
{' of the fictitious particle. Then for € x—xy<Xy/2 the

form of the surface can be found from the equation

The quantityp is a pressure acting on the surface of the
liquid. It follows from Egs.(2) and(3) that the equilibrium
form of the liquid surface is described by the equation

D—-1 3V2 (o dz
" ’ 2 — =X—Xp, (7)
= Hylt—-+p 0. (4) a \G(2) 0

HereD is the dimension of the space, and E&.was written ~ Where G({)=V(a1—{)({—a;)({—as). The integral in
in dimensionless variables: distances in the horizontal planEd- (7) can be expressed in terms of an incomplete elliptic
xy are measured in units of the capillary length, voltage idntegral of the first kind. A calculation using E() gives the
measured in units 0¥y, and the deformatiod(r) is mea- following expression for the equilibrium form of the surface:
sured in units of.

In what follows we shall consider the one-dimensional L(X)=agz+ ,
case P=1), where the deformation of the surface depends rPu

only on the coordinate. This corresponds to a system of where U= JagV(x—x0)/2, dn is an elliptic function with
“rolls” on the surface of the liquid. Then Ed4) has a first modulusk= \/ay/aray, and ;= e — @
L] I [

integral of the form For realu the period of the function dmu is 2K(k),
22+ U()=C, (5)  whereK(k) is a complete elliptic integral of the first kind.
Therefore the period of the stationary wai@® is

agzp

®

whereU(2) = yZ212+V2312+ p¢. The form¢(x) of the sur-

face can be obtained by integrating Ef) and then calcu- 4K (k)
lating p from the condition 0~ : ©)
a31V
f dxZ=0. 6) The deformation of the surface assumes the value

a1>0, X—Xp=(n+1/2)Xy,
(The level of the liquid is measured from its average value. {= <0 X—Xa=nX
The equation describing the equilibrium form of the sur- 2= oo
face(4) possesses periodic solutions with perkgldepend- wheren=0,£1, .... Thepresence of the parametgy in
ing on the voltageV and the amplitude of the wave. The EQg.(8) expresses the translational invariance of &j.
following mechanical analogy is helpful in describing the  Calculation of the integra(6) with the function {(x)
properties of such solutions. For fixpd=q. (4) can be inter-  from Eq. (8) gives the following equation that definpsm-
preted as the equation of motion of a fictitious point particleplicitly as a function of the energg:

with massm=1 in an external field with potential energy

U(¢). Here plays the role of the coordinate of the particle E(k)+ EK(k)zo_ (10)
and x plays the role of time. Then the functiond) is the 31
Lagrangian of the particle. The equatigh) expresses the We first consider a small-amplitude wave€-(0). The

law of conservation of energy; the first term on the left-handmodulusk is close to zero, and the roots can be found
side is the “kinetic energy” of the particle an@ is the  using the well-known asymptotic expressions for the inte-
“total energy” of the particle. A plot of the potential energy gralsK and E.!? It follows from Egs.(8) and (10) that we

for y>0 is displayed in Fig. 1. havea,= —a; and
The equationU({)=C has three solutions{=«;, B
i=1,2,3 (we assumex;>a,>as3). The periodic deforma- {={ocOSOX. (11)

tion wave of interest to us corresponds to the motion of arhe wave numberq=.'y does not depend onC,
particle in the regiorw,<{<ay, whereg'L—C—U(§)>0. {o={o(C) is the wave amplitude, and=0. This solution
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¢id This calculation shows that for a one-dimensional wave
0.2r arising on a horizontally unbounded surface and fixed volt-
age V>V, the shape of the surface can be described by a
0.17. one-parameter family of curves of the for(®. The wave
amplitude[or the constanC>0 related to it by(10)] is a
0 parameter. Therefore, in contrast to the well-known problem
of the equilibrium form of the surface of bulk liquid helium
-0.11 with a fixed number of charges localized at the surface, in the
case at handd<a) it is impossible to determine unequivo-
-0.2

—io (') 1'0 cally the equilibrium form of the surface without taking ac-
X count of the boundary conditions at the vessel walls.

Let us now consider the effect of the boundary condi-
tions on the possible stationary form of the surface. The sim-
plest boundary conditions correspond to setting the contact
angle 8 between the liquid and the vertical walls of the ves-
sel (whose width we denote bly):
corresponds to oscillations of a fictitious particle near the , ,
minimum =0 of the potentialu(¢), neglecting nonlinear {(=LI2)==06y, ({'(LI2)= 6o, (12)
terms(i.e., V2{,<7y). where 6= 6(xq) =cotB. We assume thafl;<1; otherwise,

For finite C>0 the rootse; required to calculate the the condition that’ is small, which is fundamental for the
form of the surface using E¢8) can be found numerically. derivation of Eq.(4), is not satisfied.

FIG. 2. Form of the liquid surface for fixed voltage and various wave
amplitudes ¢=0.3).

The quantityp determined from Eqg(10) is negative. A plot The conditions(12) limit the possible values of to a

of the function(8) for various wave amplitudes is presented discrete sequenc€, (n=0,1,2, ..). The numbem is the

in Fig. 2. number of maxima of the functiod(x) in the interval
The numerical calculations of the amplitugigof a one-  —L/2<x<L/2.

dimensional wave as a function of the perig are dis- We first consider the cag®y=0. The dependence of the

played in Fig. 3. It follows from the figure that for fixed  wave amplitude on the applied voltage can be determined
the period of the wave decreases with increasing amplitudérom the functiony(X,) calculated for an infinite surface.
For arbitrary values of the roots;, Eq.(8) possesses a The amplitude of a wave with a fixed numbeof maxima is
solution in the form of a solitary hump, which can be ob- the ordinate of the point of intersection of the cugX,)
tained by passing to the limKX,— . However, the forma- and the vertical straight lin&,=L/n. It follows from Fig. 3
tion of such a wave is forbidden by the condition that thethat {, decreases monotonically with increasing voltage
total volume of the liquid is constant, as expressed by Eq. The voltage dependence ¢§ for 6,#0 can be calcu-
(10). Indeed, it follows from Eq(9) that such a limit solution  lated similarly. This requires studying the points of intersec-
arises when the roota, and a3 of the polynomialG({)  tion of the vertical straight linex;=L/n and the plot of
merge. Therk— 1. In addition, Eq(10) has no solutions for  7,(x,), describing the amplitude as a function of theoor-
k close to 1; this can be shown by expanding the ellipticdinate of the pointdesignated as;) where the condition
integrals in terms of the small quantiky’=1— k2. (12) holds. A numerical calculation for the cagg>0 gives
It follows also from the absence of solutions with a double-valued functiody(xo) for fixed y. The result is
a,= ag that forC>0 the equatiot (£) —C=0 always pos- that the functior?y(y) possesses two branches, one of which
sesses three roots. Therefore the soluf®nof Eq. (4) is a  decreases monotonically and the other possesses a minimum.
periodic wave for any energ@>0 (i.e., for arbitrary ampli- At some y= vy, one branch passes into the other branch. If
tude of the wave v>1vy,; holds, a stationary solution with fixed does not
exist, since it is impossible to satisfy the boundary conditions
(12). Figure 4 shows the amplitudg of a wave with one
el hump versusy for two values of the vessel width.
0 In summary, it is impossible to pass continuously
0.4 between states with a different numbeof maxima, and a
hump forms on the surface with a jump in the wave ampli-
0.01 tude. For eacin there exists a minimum possible valfjg of
the amplitude of the wave formed. For smal, we have
0.2 ’ {m~ 6od in order of magnitude.

3. CONCLUSIONS

5 10 X 15 It follows from the calculations performed in this work
° that ford<<a a long-wavelength stationary wave of the form
FIG. 3. The amplitude of a wave on an infinite liquid surface versus the(8) With @ small amplitudé*soft” reconstruction of the sur-

period of the wave for various voltages. face can form on a charged liquid surface at voltages above
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&yl This calculation indicates that the amplitude dependence
I 2 of the wave formed in a finite vessel is extremely sensitive to
0.5 the form of the boundary conditions at the vessel walls.
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Using diffraction data for liquid cesium structure over a wide temperature range, models of

liquid cesium are constructed and the effective pair potentials are extracted using the theory of
liquids. The iterative procedure proposed by L. Reatto is used. In the range 323-1923 K

the pair potentials are weakly temperature-dependent. The potentials extracted from the diffraction
data differ from the potentials calculated using the Animalu—Heine pseudopotential. The self-
diffusion coefficients in liquid cesium are determined. Their temperature dependence is

described satisfactorily by a power-law function. 1®99 American Institute of Physics.
[S1063-776(199)00501-9

1. INTRODUCTION character can therefore be used to construct the models. The
most common one is the assumption that the interaction re-
A new and interesting direction in the physics of non-sponsible for the structure is pairwise, i.e., in constructing
crystalline condensed systems is unedr active study—thmodels the three-particle and cooperative contributions to the
construction of atomic models of one- and two-componenenergy can be neglected and effective pair interatomic inter-
liguids or amorphous substances on the basis of existing difaction potentials with a fixed volume of the system can be
fraction structural datéspecifically, on the basis of known introduced. This approach is used, for example, for liquid
structure factors or pair correlation function$his problem  and amorphous metals.
can be formulated as a purely geometric one. In this case, Including interaction potentials in the model makes it
points representing the atoms of the components must hsossible to formulate the inverse problem also, specifically,
arranged in space so that the pair correlation function of ahe problem of finding an interparticle potential such that the
one-component system or three independent partial pair comodel structure constructed for a liquid or amorphous mate-
relation functions of a two-component system for pairs 11yrial is quite close to the structure of the real body. This
12, and 22 are the sant® within reasonable accuracgs problem is solved in the present paper for liquid cesium. In
the corresponding functions obtained for a real substance byontrast to previous work, where individual states of a liquid
diffraction methods(x-ray or neutron scattering If the  are studiedsee beloy, we have constructed a series of mod-
model constructed in this manner is adequate, then investels of liquid cesium on the basis of diffraction data obtained
gation of the model will yield additional information about in a very wide range of temperatures, right up to 1923 K.
the structure of the system of interest. Doubtless this methoTthe existence of a definite temperature dependence of the
of analyzing noncrystalline structures has a great future. extracted pair potentials, which is due to an appreciable de-
The problem of well-posedness is directly related to thecrease in the density with increasing temperature, could
question of the uniqueness of the construction of the modekerve as an additional adequacy criterion for the models con-
Here uniqueness is taken to mean that the main structuratructed.
characteristics are the same as the corresponding character-
istics of a real body, provided that the pair correlation func-
. . L 2. METHODS FOR CONSTRUCTING MODELS USING
tions are the same. Existing data show that in principle theDIFFRACTION DATA
problem can be well-poseftio within the limits of accuracy
of the initial data for “dense” structures, such as simple Several methods have been proposed for calculating in-
liquids and liquid and amorphous metals. However, for loosderparticle potentials from existing diffraction structural data
systems with low coordination humbeisuch as liquid sili- for a liquid assuming a pair interactidwhich may not be
con, silica, and so gragreement between the pair correlationvalid in a real liquid.}~° This problem was first formulated
functions in the model and in the real body does not guaranin Ref. 1, where it was solved on the basis of the approxi-
tee that the three-particle correlation functions, distributionsmate Born—Green—Kirkwood and the Percus—Yevick equa-
of the azimuthal angles and Vorahpolyhedra, and so on tions. Schommers proposed a different apprdatHe found
will agree. a pair potential by an iterative procedure employing a step in
However, the problem at hand is not purely geometricwhich a molecular-dynamics model of the liquid is con-
since the equilibrium arrangement of the atoms at fixed temstructed using a trial potential and corrections are then intro-
perature and density is due to the form of the interparticleduced into this potential. The correction was calculated using
interaction potentials. Additional considerations of a physical special algorithm that takes account of the discrepancy be-
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tween the pair correlation function of the model and the pretions of the target model. In Refs. 4 and 5 this procedure

scribed pair correlation function of the redtarget™) liquid. gave convergence of the potential to the Lennard—Jones po-

Schommers used his method to construct a model of liquidential

Ga and to find the pair interparticle potential at the same

time. The procedure required a series of iterations in which Uo(r)=4e[(alr) 2= (alr)?], @

the potential and the pair correlation functigfr) con-  ysed to construct the target model.

verged asymptotically to the desired solution. A different iteration scheme was proposed in Ref. 6.
This procedure proved to be inadequate. While therhis scheme used a “hybrid algorithm” to reconstruct the

model function converges well to the target function, thejnterparticle potential. The algorithm can operate only at ab-

reconstructed potential(r) can approach a solution that is splute zero temperature, and it is therefore suitable for amor-

d|fferent from the target solution. This was pointed out byphous systems. The hybrid algorithm employed the condition

Reatto’® To calculate the corrections to the trial potential, of mechanical equilibrium for all particles and was found to
he proposed using the complete equation, containing a sgwe suitable for amorphous iron.

called bridge functiorB(r), from the theory of liquids: Finally, an iteration algorithm that employs the complete
u(r) Born—Green—Bogolyubov equation, without the superposi-
T =g(r)—1—c(r)—Ing(r)+B(r). (1) tional Kirkwood approximation, to extract the potential is

proposed in Ref. 7. In this method the three-particle correla-
Hereu(r) is the pair potentialg(r) is the pair correlation tion function is calculated for a trial model of the liquid.
function of the liquid, and(r) is the direct correlation func- Given this function and the pair correlation function of the
tion. The form of the functiom(r) for an arbitrary potential model, a trial pair potential can be calculated and this poten-
is unknown. The functiong(r) andc(r) are related by the tial can then be used for molecular-dynamics construction of

Ornstein—Zernicke equation the next model, and so on.
9N The methods of Refs. 2, 6, and 7 have also been ex-
TN [ res tended to binary systems. In Ref. 8 Schommer’s method was
h(r)= —-1= +—— h . LT o
(=g(r) c(r) Vr j c(s)s dlers (Htdt, used to calculate the pair potentials in the liquid alloy Ag—

(2)  Ge.In Refs. 9 and 10 the Born—Green—Bogolyubov equation
method was used for the liquid alloys Ag—Ge and He
In Ref. 11 Reatto’s iterative method was used for a lig-

uid with the pair potential4) under conditions different from
those of Refs. 4 and 5. The pair correlation function for this
state was calculated earlier by VertétThe standard devia-
Ua(r) _ ul(r) g(r) tion
KT +9(r)—9go(r)— go(r) ).

3 Ri={—

Hereg(r) andc(r) are the correlation functions of the liquid
with the potential;(r); u,(r) is the next approximation for can be used as a measure of the closeness of two functions
the potential; andyo(r) andcqy(r) are the correlation func- f4(r) and f,(r) in tabular form. Heren; and n, are the

wheren=N/V is the number of particles per unit volume. If
it is assumed that the functid®(r) is insensitive to the form
of the potentiali(r), then two successive approximations of
the potentialsi; andu, satisfy

1/2

E [fo(ri)—fa(ri)]? (5)

—n+17%

TABLE I. Iteration procedure for constructing models of liquid cesium at 573 K.

R Re R, R,-1000 rp,, A Un, eV rpn, A 1, A G(r) Cq Ho

9

0 0.8781 0.5520  49.4 5.7 —0.074 3.5 55 1978 0 0
0.0596 0.1279 0.0619 0.8765 5.7 —0.073 3.3 55 2161 —-19.14 —-0.8804
0.0458 0.0936 0.0501 0.5818 5.7 -0.072 3.3 55 2118 —18.16 —0.8806
0.0378 0.0805 0.0394 0.4787 5.8 —0.072 3.3 55 2082 -17.74 —-0.8718
0.0354 0.0796 0.0376 0.4679 5.8 —0.071 3.3 55 2.090 —17.60 —0.8743
0.0303 0.0754 0.0320 0.3983 5.8 -0.071 3.3 55 2.055-17.35 —0.8600
0.0258 0.0705 0.0260 0.3562 5.8 —0.071 3.3 55 2.059 -17.09 —0.8730
0.0230 0.0680 0.0231 0.3707 5.8 —0.071 3.3 55 2.035 -16.85 —0.8807
10 0.0187 0.0507 0.0196 0.2544 5.8 -0.071 3.3 55 2.038 -16.72 —0.8671
11 0.0151 0.0645 0.0143 0.2903 5.8 —0.071 3.3 55 2.027 —16.55 —0.8682
12 0.0138 0.0435 0.0119 0.2155 5.8 -0.071 3.3 55 2.010 —16.50 —0.8842
20 0.0081 0.0372 0.0069 0.1776 5.8 —0.072 3.3 55 2.002 —16.15 —0.8585

© oo~NOUA~ADNO d

Note: N— number of iterationsR, ,R. , andR, — standard deviations for the pair correlation functiGr),

and the structure factor, respectivelR; — standard deviation of the pair potentials at the preceding and given
iterations;r,, — coordinate of the potential minimunyj,, — value of the pair potential at the minimum,

r min — coordinate of the point where the pair correlation function is zefe;- coordinate of the first peak of
this function;G(r,) — height of this peakC, — value of the direct correlation function at0; H, — value

of the functionh(K)=a(K)—1 in the limit K—0.
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TABLE IlI. Values of the bridge function at iterations 21—-23 in the simulation of cesium at 1923 K.

Distance, A 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6

i=21 0.528 0.242 0.148 0.092 0.063 0.063 0.052 0.034 0.028
=22 0.458 0.239 0.124 0.088 0.066 0.058 0.047 0.049 0.048
i=23 0.487 0.207 0.109 0.076 0.025 0.034 0.039 0.016 0.012

summation limits of the tabular data. The deviatRnof the  particle potentials for liquid cesium, for which diffraction
pair correlation function of the mod&l1 from the pair cor-  structural data at temperatures 323—1923 K are avaitdble.
relation function of the Verlet model is 0.007dn the sec-

tion 0.88<r=2.40). Such a value indicates that the func-3. ANALYSIS OF THE DIFFRACTION DATA

tions are essentially identical. The values of the potential
energyU and the factopV/NKT (with a correction for cut-
off of the potential;p is the pressupealso were in good
agreement. However, the target potentdlin the region of
attraction could not be extracted using E8) even with a
large number of iterationggreater than 20 although the

Professor F. HenselMarburg, Germany kindly pro-
vided us with the initial structure factors of liquid cesidfn.
The pair correlation function of liquid cesium at various den-
sities and pressures were obtained using Filon’s implemen-
tation of the Fourier transform. In the process spurious oscil-

repulsive branch was extracted satisfactorily. The standar?gfgriegfattgﬁorfg;;ta%%rézla'gorlogggﬁtr'gn roargse%r?r']ngzlfy 14
deviation R; can be decreased to extremely low values AP prop '

(0.005—-0.008 for the pair correlation function and 0 OOl_for correcting the initial structure factor was used to improve

0.006 for the structure factpby increasing the molecular- the quality of the F_ourle_r _transform. _The least-squares

: method was used to find minimal corrections to the structure
dynamics run lengths up to 10000-15000 steps, but th . S .

. actor that at the same time minimize the amplitude of the

agreement between the extracted and target potentials does

. - - spurious oscillations. For liquid cesium, this amplitude was
not improve in the process. Moreover, asymptotic conver: P q P

gence to a definite function(r) was not observed with the decreased by approximately an order of magnitude by intro-

Reatto procedure as implemented in Ref. 11, since even icri]ucmg corrections of order 0.01 to the structure factor. The

states with the lowest values Bf the potential continued to pair corre’Iation functions obtained in the process were used

vary from one iteration to the next. This is evidently due o™ Reatto’s procedure.

the natural fluctuations of the pair correlation function and

the exceedingly high response of the direct correlation func: CONSTRUCTION OF MODELS OF LIQUID CESIUM AND

. . ' . : : EXTRACTION OF INTERPARTICLE POTENTIALS

tion to this near the first peaks in the pair correlation func-

tion. In all models, the main cube contained 1000 particles.
It is nonetheless evident from Refs. 4, 5, and 11 that foiThe initial potential for the Reatto procedure was calculated

liquids Reatto’s procedure makes it possible to construct aby the method of Refs. 4 and 5. The molecular-dynamics

almost ideal model in the sense that its pair correlation funcruns ordinarily consisted of 5000 steps at the initial iterations

tion and the structure factor of the model agree with theirand 10000 steps at the last stage. The NVT-ensemble method

target analogs. In this connection, in the present work thisvas used, and the size of the main cube was set according to

procedure was used to construct models and to extract intethe actual density of the metal. The pair correlation functions

g
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2.0F

L5r
FIG. 1. Pair correlation functions in liquid cesium at
323 K: 1 — model pair correlation functior — dif-

1.0+ fraction pair correlation function.
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1.2

1.0+

0.81
FIG. 2. Pair correlation functions in liquid cesium at
1923 K: 1 — model pair correlation functiorg — dif-

0.6r fraction pair correlation function.

were calculated in a molecular-dynamics run up to distancegon from the target function of about 0.003—0.005. Approxi-
~L/3, whereL is the edge length of the main cube, and thenmately such values were in fact attained for models of
the lengths were extended up to 60 A using the Ornstein-cesium at temperatures above 573 K.
Zernicke equation analogously to Refs. 4, 5, and 11. To ex- Just as in Ref. 11, the direct correlation function was
tend the pair correlation function to distances exceetifyy  found to be very sensitive to small differences between two
the potentialand therefore the direct correlation function, in pair correlation functions. The assumption that bridge func-
accordance with the Percus—Yevick equatiomms assumed tion varies little while a potential is being extracted is also
to be zero. unjustified. As an example, the values of the bridge function
As an example, Table | gives data for the iteration pro-B(r) in 21-23 iterations in the simulation of cesium at 1923
cedure used to construct models of liquid cesium at 573 KK are given in Table Il. It is evident from these data that the
After 20 iterations, quite small values were obtainedRgr  bridge function fluctuates from one iteration to another
(about 0.008 for the pair correlation function and fdR,  within several hundredths, i.e., more strongly than the pair
(less than 0.007or the structure factor and somewhat larger correlation itself changes. In accordance with ED, this
values were obtained fd®; (about 0.03Y for the direct cor- leads to fluctuations of the computed potential of order
relation function. At higher temperatures, in general, fewer0.0kT, i.e., by several meV with the minimum of the po-
iterations were required to achieve an acceptable vallg of tential being only~56 meV.
for the pair correlation function. As shown in Ref. 11, in Hence it follows that Eq(3) is inaccurate and the ex-
simulations with runs of 10000 steps the natural limit oftracted pair potential need not approach a definite limit func-
accuracy(because of fluctuations of the function it3ei§  tion. Indeed, the form of the extracted pair potential changes
Ry=0.003-0.004, and for runs with 15000 steps continuously during the iteration process. An appreciable de-
Ry=0.0025. Hence to extract a potential from the diffractioncrease in the rate of change of the depth of the minimum of
data a logical rule for terminating the iteration procga®- the computed potential is noticeable only at 1923 K, where
vided it convergeswould be a deviation of the model func- 24 iterations were performed. In all other cases this does not

TABLE lll. Characteristics of liquid cesium models constructed from the diffraction data. Model size — 1000
particles. Number of iterations — from 8 to 20.

VIN E, U, D-10,
’ kJ kJ cn?

T, K cmmole® LA R Re R a(0) P, MPA —— —— —
9 mole  mole s

Calc. Exp'® Calc. Exp'®

323 72.6 49.406 0.0188 0.1177 0.0498 0.087 0.015 98.3 03169 —209 284
573 79.1 50.835 0.0081 0.0372 0.0069 0.142 0.048 262 0311.7 —18.8 9.58
773 84.6 51.996 0.0055 0.0365 0.0075 0.102 0.08 461 0.3 16.1 6.38 18.6
1073 95.6 54.149 0.0068 0.0253 0.0078 0.194 0.18 333 0.6 12.8.534 31.2
1173 99.9 54.952 0.0063 0.0157 0.0139 0.372 0.29 146 0.3 3.A10.9 427
1373 109.9 56.727 0.0064 0.0203 0.0058 0.434 0.52 173 2.0 59811 546
1673 139.0 61.345 0.0057 0.0122 0.0638 0.814 1.10 105 5.3 9.201.7 96.6
1923 225.3 72.052 0.0140 0.0164 0.0209 2.28 254 213 96 15:B.96 196

Note: VIN — molar volume,L — edge length of the main cuba(0) — zero limit of the structure factor,
E — total energyU — potential energyD — self-diffusion coefficient.
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happen, even though the vaIueng were already in the TABLE IV. Comparison of the_ actual moduﬁ?xp_ofliqui(_j cesium with the
limit of stable molecular-dynamics determination in runs SemPuted modulKeq determined by the pair interaction.
with 10000 steps. In essence, the iteration process could kﬁ"?K 323 573 773 1073 1173 1923
continued further, even with an indefinite result for the po
tential. True, the changes in the depths of the minimum of//N, cn/mole 726~ 79.1 846 956 999 2253
the potential from one iteration to another are small. There%g,gziexf” P:a ‘2142'2 ‘1122"51 3'22 i'éi 2"22 g'gﬁ
fore the problem of extracting a potential on the basis of thegs. Ak pa 204 826 205 037 074 ~0
structure of the liquid cannot be solved uniquely if a certain
lower level of the standard deviation is fixed for the pair
correlation function(determined by the size of the models
and the length of the molecular-dynamics rurihis result  tribution of the electron gas. Even though the accuracy of the
is at variance with Refs. 4 and 5, where an asymptotic solucalculations is not very high, it is evident thAK decreases
tion for the potential was obtained with a finite number of rapidly (approximately ag/*lz) as the metal expands. The
Reatto iterations. free-electron model aT=0 gives a much weaker depen-
The pair correlation functions of our models are dis-denceAK~V 53 At 1923 K temperature the difference be-
played in Figs. 1 and 2. For the valuesRyf attained in this  tweenK o, and Kexp becomes less than the error in deter-
work, the difference between the “target” and model func- mining Ky, SO that at this temperature the electron gas no
tions is very small. The other characteristics of the modelsonger makes an appreciable contribution to the compress-
constructed are given in Table Ill. For not very high tem-ibility. The electrical conductivity also decreases rapidly as
peratures, the zero limit of the structure faca(0), ob-  the metal expands: At 1900 K and a pressure of 86 bar it is
tained by extending the pair correlation function using thep.016 times the conductivity at the melting temperatre.
Ornstein—Zernicke equation, turned out to be greater than the various characteristics of cesium models are given in
actual valu&® (see Table Ill. From the relation between Taple III: the pressure as well as the total eneggnd the
a(0) and the isothermal compressibiligyand the density of potential energy due to the effective pair interaction. Since

the liquid (N is the number of atoms in a volumg), they were calculated neglecting the volume electronic con-
N tributions to the energy, their values cannot be compared
a(0)= v BKT, (6) directly with the actual values.

The computed pair interparticle potentials in cesium at
it can be concluded that far from the critical point the com-various temperatures are shown in Figs. 3 and 4. They de-
pressibility of real cesium is 1.3-5.8 times smaller than thatrease rapidly in absolute magnitude with increasing dis-
of the model metal with a pair interparticle interaction. Thetance; forr>8 A they do not exceed a few meV, and for
discrepancy decreases with increasing temperature. This af>>10 A they are less than 1 meV. Monotonic variation of
fect is evidently due to the negative contribution of the elec-the potentials with increasing temperature is not observed. In
tron gas to the compressibility and has been discussed thetiie repulsion region the potential increases on heating up to
retically in previous work?® Using Eq.(6), the bulk modulus 773 K and once again decreases as temperature increases
K=1/g can be calculated. The actual modkli,, of liquid further. This is evidently because the calculated potentials
cesium and the computed mod#l,.., due to the pair inter- are highly sensitive to the form of the pair correlation func-
action are compared in Table IV; the mod#,.,r Were  tion; comparatively small errors in the computed functions
calculated taking account of the zero limag0) given in  lead to changes in the potentials that are much greater than
Table Ill. The differencé K = K¢;— KineoriS due to the con-  the regular changes occurring with increasing temperature.

0.7

0.5

N

0.4+

0.3+
FIG. 3. Interparticle potentials in cesium at various
0.2~ 3 temperaturesl — 323 K,2 — 573 K, 3 — 773 K.
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-0.1+
-0.2; ~ . - -
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! FIG. 4. Interparticle potentials in cesium at various
031 temperaturesl — 1073 K,2 — 1173 K,3 — 1973 K.
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The effective interionic potential in liquid cesium near a felicitous choice of the initial conditions and the initial
the melting temperature was calculated in Refs. 17 and 1Botential. However, there is no guarantee that a transition to
using the Animalu—Heine pseudopotential and Geldart-a different potential will not occur if the iteration process is
Vosko screening. It differs from the potential found from the extended further.
diffraction data. For example, the first node of our potential  This result is unpleasant from the standpoint of extract-
occurs at 4.7 A and the first node of the pseudopotentiaing the potential of real liquids, where the optimal initial
occurs at @ A ; the second nodes are located at 9.1 and 7.4onditions are unknown. As for the adequacy of the extrac-
A | respectively. The diffraction potential increases at smaltion of the structure of a liquid, for dense systems good
distances less rapidly than the pseudopoteffiimlexample, agreement between the actual and model pair correlation
at 4.5 A the diffraction potential is-24 meV, while the functions evidently guarantees agreement between other
theoretical potential is 53 m@VThe depth of the minimum structural characteristics, specifically, the angular correla-
of the diffraction potential at 5.7 A is-55.6 meV, while for  tions, distributions of the Vororigoolyhedra, and so off:?
the computed potential the minimum lies at the same locaThe obtained pair potential can be used to calculate proper-
tion but its depth is—26 meV. ties of a liquid, such as the vibrational spectrum, the self-

The self-diffusion coefficients found from the depen- diffusion coefficient, and the viscosity. This is no longer true
dence of the mean-square displacement of cesium atoms dor topologically loose systems with low coordination num-
the molecular-dynamics relaxation time are shown in the lasbers(such as liquid silicop since ideal agreement between
column of Table Ill. The self-diffusion coefficient increases the pair correlation functions of two states with completely
by the factor~70 in the temperature range 323-1923 K.different three-particle correlation functions can be
The temperature dependence is described satisfactorily hybtained??
the power-law expression

*) i H
— —1172.228 E-mail: dkbel@bel.misa.ac.ru
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Discrete thinning of free-standing smectic films in the de Gennes “pre-smectic liquid”
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It is shown that the successive discrete thinning of free-standing smectic(FB&F$, which is
observed when the films are heated above the temperature of the skengmatic bulk

phase transition, has a natural explanation in terms of the de Gennes “pre-smectic liquid” model,
provided that a sufficiently large external compressive force is applied to the free surfaces

of the FSSF. In a real situation this force stems from the curvature of the surrounding miniscus,
which plays the role of a volume reservoir. In this model a superheated FSSF is stabilized

by balancing the external compressive and elastic forces. When heating takes place the bulk
modulus of the pre-smectic lattice decreases, and when the superheating reaches a critical
value, the FSSF is subject to a long-wavelength instability in thickness beause the external
compressive and elastic forces can no longer be balanced for a fixed number of smectic

layers. If a superheated FSSF possesses adequate stability against disruption, the balance of forces,
which was disrupted, and hence the stability of the FSSF can be restored as a result of
spontaneous thinning of the film to a thickness corresponding to a smaller number of smectic
layers. In general, heating of a superheated FSSF is accompanied by a series of such

thinning transitions. Near the critical points where the balance of the forces breaks down, the
dislocation mechanism of spontaneous thinning, which could be responsible for the

stratified nature of the progressive discrete thinning of real FSSFs, can become dangerous.

© 1999 American Institute of Physids$1063-776199)00601-0

1. Discrete thinning of free-standing smectic 2. We recall that the de Gennes pre-smectic liquid
films (FSSF$, which is observed when the films are modef is a simplified version of the phenomenological
heated above the temperature of the smeaétidgsotropic  model of aNA transition?® describing short-range smectic
liquid! and smectic A—nematic (NA)>® bulk phase order effects above the bulKA transition temperature. In
transitions, remains one of the unsolved problems of théhis model a superheated FSSF is a thin layer of a pre-
physics of liquid crystals. It is well known that FSSFs pre-smectic(nematig liquid which is bounded by two parallel
pared below the temperature at which smectic order is defree surfaces and is connected at the periphery with the sur-
stroyed in the bulk can be easily superheated even above tfi@unding volume reservoir. A pre-smectic wave of mass den-

indicated temperature. Such superheating is made possibfY is induced in the space between the free surfaces. This
by the “attracting” action of the free surfaces and the re-makes it possible to speak of the indicated system as a

markable stability of smectic films against the formation of Smectic” film. _
perforations! When heated, superheated FSSFs undergo a For deﬂmtenes_s, let the free surfaces bounding a super-
series of spontaneous thinning transitions at various temperQ—eateci FSSF,Of thicknedsbe Iocate_d ar==L/2, aqd let
tures that terminates with the films rupturitif. The maxi- the pre-smectic wave of mass density be parametrized as
mum possible superheating of FSSFs is a power-law func-

tion of the film thicknes$;® the thermal expansion

coefficient of a superheated FSSF is negatiaed the pro- 80(2)=+200(2) co§ go(z+u(z))] , 1)
cess of discrete thinning itself is of a pronounced monotropic

characte2 It is shown in the present paper that the entire

spectrum of phenomena enumerated above has a natural §fhere p,(z) is the modulation amplitude of the mass den-
planation in the phenomenological pre-smectic liquid modekity, q,=2#/d, is the optimal wave numbed, is the pe-

of de Genne§, provided that a sufficiently large external riod of the volume smectic lattice, and(z) is a long-
compressive force is applied to the free surfaces of the FSSkvavelength variable describing the elastic displacement of
The remarkable fact is that in a real situation this force is dughe smectic layers.

to the curvature of the surrounding miniscus, which for a  In the harmonic approximation the free-energy func-
superheated FSSF acts like a volume reservoitional of a superheated FSSF can be written in the simple
(see Ref. 1. form (compare with Ref. 6

1063-7761/99/88(1)/5/$15.00 35 © 1999 American Institute of Physics
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L/2

o gz spatial nonuniformity of the amplitude,(z) to the free en-
o
—L/2

T60%+ —2[(V§ ergy of the FSSF, while the second term describes the elastic
Yo deformation energy unavoidably arising for thicknestes
different from the “integer” valued = Nd,.
, ) Subtracting from Eq(8) the L-independent purely sur-
face part of the free energy, we obtain the dimensional com-

+q3) 6012

where 7= (T—Tya)/ Tna IS the dimensionless superheating ponent of the free energy of a superheated FSSF:
of the FSSF relative to the critical temperature of the bulk affcggs L

NA transition (>0), £| o is the direct longitudinal smectic AFsm(L)=S—grrm7e 5+ eXF‘( &

correlation length,« is a dimensionless phenomenological

constant, and is the area of the FSSF. It follows from Eq. (9) that the free energy of a superheated

Substituting(1) into Eq. (2) reveals the nontrivial char- FSSF has an infinite sequence of local minima lferL y,
acter of the de Gennes model and yields the following ex{N€ depth of these minima increasing with decreadihfy

pression for the free-energy functional of a superheatea_he latter signifies that superheated FSSFs are systems in a
FSSF® metastable thermodynamic state.

4. It is obvious that as a result of the existence of a

—cos[¢]n|- (9

at (L2 volume reservoir, the thicknessof a superheated FSSF is a
—-_cQ______ 2 2 2 ’
Fsnl €o,U1=S— f,,_,zd4 Qo+ &cl(Vze0) free thermodynamic parameter. The oscilldtedependence
- ) of the energy(9) has the effect that the range of valued of
+0oeo(Vwt (3 is divided into sequentially alternating “allowed”

([AFgml{ =0) and “forbidden” ((AFgnl{ <0) zones
differing by the sign of the effective bulk modulus of the
pre-smectic lattice. When the inequali®) is satisfied, the
L>éc> qgl , (4)  widths of the alternating zones are closedg?2, and the
allowed zones(regions of positive elasticity of the pre-
smectic latticg are centered near “integer” values bf We
note that the positivity of the effective bulk modulus of the
pre-smectic lattice is a necessary condition for the stability of
superheated FSSFs. Therefore, under an external force the
thickness of a FSSF can vary continuously only within rela-
tively narrow limits, but in any case within the correspond-
ing allowed zone.

VJIe3V,ul=0, (5 On account of the inequalitiéd) the free energy9) can

be represented to within small terms in the simple form

where éc=& o7 Y2 is the bulk value of the longitudinal

smectic correlation length. Here and below we have

which is the condition for simultaneous applicability of the
long-wavelength approximation and “phonon” parametriza-
tion of the pre-smectic wave of mass density.

3. In terms of the functiona(3), the spatial distribution
of the amplitudepy(z) and the displacement(z) over the
thickness of the FSSF is given by the following system of
Euler equation$:

2ol 1+036C (V,u)? ] = £CV7eo (6) o
Following de GenneS,it is natural to assume that the  AF(, (L)=— S——cos[¢(L) Iy (10)
positions of the maxima of the pre-smectic wave of mass doéc
density are rigidly fixed on the free surfaces of the FSSFynere
Since the functiona(3) is invariant under the substitution ) o
— 00— @0, this means that B =2aq5éj0Q0seXP(— Ln/éc) (1)
L is the bulk modulus at the center of the pre-smectic wave of
Qo|L + 2u T) =27N , (7)  mass densitfsee below In the present approximation the

allowed zones are centered latL, and are given by the
whereN is the integer, equal to the number of smectic layersjnequality
closest toL/d,.

The solution of the systeit) and(6) with the boundary [L=Lnl= do/4 . (12
condition (7) is given in Ref. 6. The first derivation of an We note that the “melting through” points discussed by de
expression for the free energy of a pre-smectic wave of massenne8in the middle of a pre-smectic lattice fall outside the
density induced in the space between the two parallel “atallowed zones and therefore are unattainable in superheated
tracting” surfaces is also given there. For a fixed surface-SSFs.

value of the squared amplitude (= L/2)]2EQ§S, the re- 5. When an external force is applied to the free surfaces,
sult of de Gennes for the free energy of a pre-smectic wavan elastic restoring force
of mass density has the fofm (N)
(N) _ m .
L 1—cos] ¢y Gsm(L)=-S sin[&(L) In (13
= 2 R L doéc
Fsm(L)=Satéc0os tanl-( 2§c) + Sinh(L/g) |’ (8)

arises in the system. Here the valued.alo not exceed the
where [ ¢]y=0o(L—Ndg). The first term in Eq.(8) de- zones given by the inequalit{l2) (see Fig. 1 Near the
scribes the usuaharmonic theory contribution due to the minima of the energy10) Eq. (13) simplifies and assumes
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¢y
s | FIG. 1. Elastic force5{ as a function of the reduced
’: critical point of thicknessL/d,. The thick segments represent allowed
i breakdown of the balance zones centered &t=Nd,, whereN is the number of
,‘ of forces smectic layergsee Eq(12)). The dashed curves show
5 / sections corresponding to thermodynamically un-
External compressive force stable states. The horizontal line corresponds to an
external compressive forceAp. The points ©) of

intersection of the external compressive and elastic
1
'3— ')5— - 4*._. forces determine the spectrum of the equilibrium

H i}
." ,"I /
0 H T " 4 14 7 _t 7
{4 / g / GK / \_/' 8 - ’ 10 L/ thicknesses. The existence of such a spectrum makes
! ;’ / 0 possible the restoration of the balance of the external
;' compressive and elastic forces, which was destroyed
/ at the critical point (0) by the spontaneous thinning

of the superheated FSSF to an equilibrium thickness

= - allowed zone
N corresponding to a smaller number of smectic layers.

® — maximun values [G_ ]
Sm +

the form G~ —SBN(sL/¢c), where SL=L—Ly. The getically unfavorablgsee Sec. B For heating in the pres-

latter agrees with the fact that when the inequalit®shold,  ence of an external tensile force, the breakdown of the bal-

the elastic deformation is entirely concentrated at the centeance of the forces will inevitably be accompanied by

of the FSSF with thickness of ordei., where the bulk disruption of the FSSF.

modulus Bﬁﬁ‘) of the pre-smectic wave of mass density is 6. Let an external compressive force produce an addi-

minimal (see Ref. & tional pressuré\p>0 on the free surfaces. Then the condi-
It is obvious that because the allowed and forbiddertion of mechanical equilibrium of a superheated FS8te

zones alternate with one another, the elastic properties of eondition for the balance of forcess

superheated FSSF are discontinuous functions of the thick-
nessL. Specifically, the forcé13) has upper and lower lim- BN
its - sin[ ¢(L) In=4p , (15
Qoéc
B(N)
(G =+ s— T (14)  where, as earlier, the values lofstay within the correspond-

ing allowed zone. It is obvious that a superheated FSSF is

stable only ifB{\)/(qoéc)=Ap holds, which corresponds to
N)1*  exceeding the external

doéc

which are reached, respectively, at the botto#) (and top
(=) boundaries of the corresponding allowed zorigse an “upper” limiting vaIue[G§Sm T
Fig. 1. compressive forc&Ap (see Fig. 1
It is obvious, considering the relatiqi1), that the lim- It follows from Eq.(15) that when a superheated FSSF is
heated in the presence of an external compressive force, the

iting values(14) decrease rapidly with increasingand in-
crease with decreasing numbkeémnf smectic layergsee Fig.  equilibrium value ofL shifts continuously toward the lower
1). Therefore the heating of a superheated FSSF in the pre#imit of the corresponding allowed zor(éhe point wherel

ence of an external force inevitably terminates with the spon—Ly= —dy/4 holds; this corresponds to a negative thermal
taneous breakdown of the balance of the external and elast@xpansion coefficient of the superheated FSSF. This effect is
forces and, in consequence, mechanical instability of the trivial consequence of the decrease in the effective bulk
FSSF. When the external force is compressive, the balangeodulus of the pre-smectic lattice when heating occurs in the
of forces which was disrupted can be restored and hence thesence of a constant external compressive force. The lower
stability of the FSSF can be restored as a result of spontandéimit of the allowed zone is itself a critical point where the

ous thinning of the film to a thickness corresponding to abalance of the external compressive and elastic forces breaks
smaller number of smectic layefby shedding “excess” down, i.e., the point of mechanical instability of the FSSF
(see Fig. 1 It is obvious that this point is reached for a

smectic layers into the surrounding reseryoivoreover,
when a superheated FSSF with adequate stability against disritical superheating 7*(Ly) given by the condition

ruption is heated in the presence of an external compressir@ﬁﬁ‘)/(qogc)zAp.
force, in general a series of spontaneous thinning transitions We note that the breakdown of the balance of the exter-

at various temperatures should occur. It is obvious that theal compressive and elastic forces signifies a long-
specific scenario of such successive discrete thinning, includvavelength thickness instability of the superheated FSSF.
ing disruption of the FSSF, is probabilistic and a dynamicindeed, introducing a displacement of the free surfaces rela-
theory is required to analyze it. tive to the equilibrium positiong= *L/2 and adding to Eq.
We note that the successive discrete thinning of supert3) terms which explicitly account for the increase in the free
heated FSSFs is of a distinctly monotropic character. Indeedurface aregwhich are proportional to the surface tension
on cooling, on the one hand the balance of the forces acting), we can show that the critical points of breakdown of the
on a FSSF is not disrupted in any way, while on the othebalance of forces are simultaneously points of the long-
hand the transition to larger thicknesses is obviously enemwavelength instability of an antisymmetric capillary squeez-
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ing mode, which is responsible for the thermal thicknessorce depends weakly oh and gives a characteristic value
fluctuations:®!! Formally, this is related to the fact that the Ap~10°® dynes/cmd.”** Such a large “external” compres-
second derivative of the interaction energy of the free sursive force, together with the large value gféc~ 107 (for
faces with respect to thickness(in this case[AFgl/L 7~10"3 see, for example, Ref. 15makes it necessary to
vanishes at the critical points of breakdown of the balance oprovide Bﬁﬁ‘)~105 dynes/cr on the envelope of the critical
forces and plays the role of a gap in the spectrum of thepoints. The latter wittBs~ 10" dynes/cr (i.e., on the order
squeezing mode. Therefore anomalous enhancement of ligbf the typical value of the bulk modulB (Ref. 4) gives a
scattering by the squeezing mode can occur as the criticreasonable” value of the ratioLy/éE~4—5. Unfortu-
points where the balance of forces breaks down are amately, the lack of measurements of the maximum possible
proached(see Ref. 12 It can also be shown that as these superheating of FSSFs as a function of the nunibeof
points are approached, the thermal expansion coefficient of smectic layers and the temperature-dependence of the bulk
superheated FSSF should diver@ehile remaining nega- smectic correlation lengtke for the same substance together
tive); this reflects the divergence of the isothermal compresswith the uncertainty in the bulk modull&, make it impos-
ibility that is natural for the thickness instability. sible at the present time to discuss the experimental situation
7. It is obvious that if the dislocation mechanism of thin- in greater detail, and specifically, to check the “scaling”
ning is neglectedsee below, the critical points where the relation(17).
balance of forces breaks down are points with the maximum 9. We shall show that the dislocation mechanism of
possible superheating of the FSSF. The envelope of thespontaneous thinning of superheated FSSFs, which is asso-

points is determined by the equation ciated with the production of elementary edge dislocation
loops in the plane of the central layer, where the effective
exp( 5) __ 2Bs (16 uniaxial tension of such a dislocation is minimal, can be-

&k QofEAp ' come dangerous near the critical points where the balance of

forces breaks down. The effective uniaxial tension evidently
where B;= aq3¢] 405 is the “surface” value of the bulk  consists of “volume” €M) and “surface” EM) parts,
modulus andt¢ is the bulk smectic correlation length on the \which are related to the appearance of a distributed elastic
envelope. deformation field in the interior of the FSSF and with the
It follows from Eg. (16) that, to logarithmic accuracy, occurrence of transitional edge profiles at the free surfaces,
the envelope of the points of maximum possible superheataysing the thickness of the FSSF tro vary continuously by
ing of a FSSF follows a simple “scaling” relation an amount of orded, (see Refs. 16—18
* Since the amplitudeoy(z) varies slowly in the range
Ln/éc~const, 17 |z| < €&c, the well-known “parabolic” formula of de Gennes
where the constanthe logarithm of the right-hand side of can be used for the elastic deformation field produced by an
Eq. (16)) is large because of the left-hand inequality in Eq.edge dislocatioft;!® andE{\) can be estimated qualitatively
(4). The latter signifies that near the points of the maximumas
possible superheating, which lie on the “scaling” section of
the envelope, the thicknessof a superheated FSSF should
be much greatefat least severalfo)dthan the bulk smectic
correlation lengthé. .

h ¥Ve nﬂte thﬁt thehrel_atloﬁLY?_ IS :t:}lvizl Cor?seqluer?ce of where K is the Frank constant, determining the energy of
the fact that when the inequaliti¢g) holds, the elastic re- o\ erse bending of the director field in a neméticcan

storing force is short-range. Since the latter is unrelated ®e shown in turn that the width of the transitional edge pro-

the simplified cha.racter. of the de Gennes model, there iﬁle occurring at the free surface of the FSSF is given by the
hope that the relatiof7) is universal. Then for a power-law squeezing capillary |engthsq=(7/[AFsm]’L'L)”2- Using Eq.

function ¢é-(7) the envelope of the points of the maximum (N) . o
possible superheating® (Ly) should be a power-law func- (10), B¢ can be estimated qualitatively as

tion of Ly with an exponent that is the reciprocal of the

(BET']\I))3/4 K1/4d(2)

(N)
Em 12 !
C

(18

. . d2 ,yI/Z(B(N))l/ZdZ
exponent of the bulk smectic correlation length. E(SN) =~y o m 0 _ (19
8. Proceeding to numerical estimates, we note that the Nsq Y2

van der Waals forcdwhich is always present in the real

situation, the force due to the pseudo-Casimir effaimen- ~ Comparison of(18) and (19) shows that fory>(KB{\)) /2
sional screening of thermal fluctuations of a nematicthe “surface” contribution to the effective uniaxial tension
directon,*® and the force due to the pressure difference arisof an edge dislocation dominates. This inequality obviously
ing between the exterior and interior regions of a FSSF as holds, since in the typical situationy=30 ergs/crf,*
result of the curvature of the surrounding minisctfcould ~ K~107¢ dynes? and B\~ 10° dynes/cri (see Sec. B

act as the “external” compressive force inducing successive It can also be shown that in a wide neighborhood of a
discrete thinning of superheated FSSFs in conjunction witteritical point where the balance of forces breaks down, as
heating. The first two forces are long-range, and for thick-determined by the inequali@ﬁﬁ‘)/(qogc)2<Ap, the gain in
nesses L~10° cm, which are typical of known the free-energy density of a superheated FSSF as a result of
experiment$; they are of order 1 dyne/cmwhile the last the thinning of the film by an amount of ordeg is less than
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Apdy doécAp
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The Lancaster experimenit€. A. M. Castelijns, K. F. Coates, A. M. Guenault, S. G. Mussett,

and G. R. Pickett Phys. Rev. Le&6, 69 (1986] with a cylindrical wire moving in

superfluid®He-B are discussed, where the measured critical velocity of pair creation was much
below the Landau critical velocity. The phenomenon is shown to be analogous to the

instability of the electron—positron vacuum in an adiabatically alternating strong electric potential
of both signs, where the positive- and negative-root levels cross and thus the instability
threshold is half the conventional value in a single static potential well.1999 American

Institute of Physicg.S1063-776(199)00701-3

1. INTRODUCTION showg that adiabatic oscillation can do this job if the speed
of the wire exceeds some value, which was estimated to be
In superfluid Fermi systems pairs of quasiparticles are* =(1/5)v, .
produced by a uniformly moving object if its velocity ex- Here, we further develop these arguments, noting firstly
ceeds the Landau critical velocity; =Aq/pg. Herepe is  that in®He-B the surface leads to splitting of the gap intp
the Fermi momentum, anfl, is the superfluid gap in bulk and A, , and secondly that the classical description of the
liguid. The critical velocity v, is also called the pair- bound state in the surface layer must be replaced by a quan-
breaking velocity; it marks the threshold of instability of the tum mechanical description. We obtain a modified value for
superfluid vacuum: breaking of Cooper pairs which form thev*, which depends on the gap suppression. Since
superfluid condensate. In the vacuum of high energy physic8ogolyubov—Nambu fermions ifHe-B are in many re-
a similar situation can occur) in a strong electric field3 spects similar to Dirac electrons, we associate the critical
(i) in a strong gravitational field, for example near an eventradiation of quasiparticles by a slowly vibrating wire with
horizon* (iii ) if the hypothetical object, which is external to instability of the electron—positron vacuum in the presence
the physical vacuum, moves at superluminal speed. Here wef a strong electric field. The present case corresponds to a
consider pair creation in superfluitie-B, which is analo- slowly alternating electric potential, which allows for
gous to the production of electron—positron pairs in a stronglectron—positron production in much weaker fields than the
electric field. conventional mechanism discussed by Gershtein and
Such experiments have been conducted in LancaSter, Zel'dovich? In this scenario the classical positive- and
where a cylindrical wire vibrating in superflutHe-B has  negative-root solutions cross, which leads to particle—
been used as a moving object. It turned out that the measureuhtiparticle production(see also the discussion in Refl. 8
critical velocity, at which significant extra dissipation of the We construct a simple time-dependent potential for Dirac
wire was observed due to particle creation, was considerablglectrons that enables us to model the proposed scenario.
less tharv (about 0.25,, independent of the material and
radius of the wirg
It was qriginally suggestgd in Ref. 5 that such reduction, -rviONS IN A VIBRATING WIRE
has two origins: a geometrical factor 1/2 results from the
local enhancement of velocity near the wire, while the otheR-1. Fermionic spectrum i *He-B
reduction is related to suppression of the gap in the vicinity  |n pulk superfluid®He-B the fermionic spectrum is de-
of the surface of the Wir%<Ao. AS a result, the Landau fined by the fo"owing &K 4 matrix Hamiltonian
criterion for the filling of surface bound states is much less(Bogolyubov—Nambu Hamiltoniaf'®
thanv_ . To provide for momentum loss by the wire, how-
ever quasiparticles must escape to infinity, which is why the  H(p)=B8M(p)+cp-a, M(p)=ve(P—PE),
production of scattering states at subcritical velocity must be
explained. This scenario was developed by Lambert, who c=A,/pg. D

1063-7761/99/88(1)/6/$15.00 40 © 1999 American Institute of Physics



JETP 88 (1), January 1999 A. Calogeracos and G. E. Volovik 41

Here B8 and & are Dirac matrices, composed from th& 2 A
Pauli matricesr describing the Bogolyubov—Nambu spin in
particle-hole space andX22 Pauli matriceso for conven-

tional spin:

A0=ch

B=713, a=T1,0. 2

The energy spectrum is

E.(p)==VM?¥(p)+c?p* ©)

The quantityc plays the part of the speed of light, but in
contrast to the relativistic case, the madsdepends on the r-R

momentump. Since vg>c, the minimum (_)f the, positive FIG. 1. Schematic illustration of gaps, “speeds of light,” and bound states
energy occurs not ap=0 but atp=pg, with minE,(p) near the surface of the wire.

:Ao.

According to the Landau criterion, if the external body
moves at a velocity greater than =min (E.(p)/p)=c, it
will produce quasiparticles. In contrast to the relativistic
case, where the minimum is realizedt>, in *He-B it
occurs atp=pg.

thickness is of the order of the coherence length®He-B
this suppression is anisotropic, which leads to the two
“speeds of light” in the regionr —R~¢&~ve/Aq (see Fig.

In the reference frame of the body, the energy spectruml):

is Doppler shifted: H=BM(p)+[c(;—nih)+c, Aif;Ipig;,
H(p)=p-vs+BM(p)+cp-a, E.(p)=p-Vs+ VM2(p)+c?(A-p)2+c[A-p]?, (6)
E.(p)=p-Vex VMZ(p)+c?p? (40  wherec, =A, /pg andc,=A,/pg are the “speeds of light”

h is th fuid velocity in the bodv f It along the normafh=F to the surface of the wire and parallel
where vs 1S the supertiuid velocity In the body frame. 1 . y,q surface, respectively. According to Ref. 11, where dif-

US(OO)>C'. the positive squarg—root continuum merges W't.hfusive boundary conditions were considered, the transverse
the negative square-root continuum, and thus the productio

) L : Qpeed of light vanishesc, (r=R)=0, while c(r=R)
from the vacuum of pairs of quasiparticles with momentum_ 4. -+ T—0. Due to the suppression of the order param-

Pr becomes possible. Here we discuss the situation in Wh'cgter the surface layer serves as a potential well for quasipar-

pgrtlgle proqugtlon IS po§S|bIe even well below the Landau[icles, which contains bound states with energies below the
criterion. This is a combined effect of enhancement of the

2 .
Fig.
local superfluid velocity in the vicinity of the surface of the gap® (see Fig. 1
object, the decrease in the “speed of light” near the surface,

and adiabatic oscillation of the velocity of the body. 3. CRITICAL VELOCITIES AND NUCLEATION OF

QUASIPARTICLES
2.2. Fermions in the surface layer 3.1. Excitations of bound states

Experimentally’® the external body moving ifHe-B is We first consider a uniformly moving wire with constant
a cylindrical wire of radiuskR from 2 to 50 um, which is  velocity u. The filling of the bound states can occur at a
much larger than the coherence lengthv:/A,. The ve- velocity smaller than the Landau velocity for creation of
locity of the wire oscillatesu(t) =Xu(t), u(t)=ugcoswt), fermions in the continuous spectrum. This velocity can be
at frequencyw~ 10°—10° Hz, which is much less than the estimated from the Landau criterion for the classical spec-
characteristic quasiparticle energy of ordey; the motion is  trum in Eq.(6) for the surface fermions. Since the superfluid
thus extremely adiabatic. velocity is tangential near the wall, the Landau velocity for

The presence of a moving external object disturbs thewucleation of quasiparticles in surface states zj@“”
vacuum state of the superfluid. First, the velocity field is=min (E.(p)/p)=c,(r=R). The minimum first occurs ap,
modified by the moving wire. In the reference frame of the=pg andE . =pgc;(r =R); note that the transverse speed of
wire, the superfluid executes ideal dipole flow around thdight c, (r) does not enter into the criterion. Taking enhance-

wire: ment of the superfluid velocity near the wall into consider-
2 ation, one obtains that negative energy levels appear in the
vs(r,t)=—u(t)+ r_2[2f(f.u(t))_u(t)], r>R, (5) surface layer if the velocity exceeds

wherer=(x,y) is the 2D radius vector in the plane perpen- vy =%cu(r = R)=UL¥. (7)
dicular to the wire, reckoned from the center of the wite; 0
=r/r. At two lines at the surface of the wire the superfluid Here we used the Lambert notation for the various critical
velocity is twice the value at infinitwg(+ RY) = —2u(t). velocities (in his paper, however, he does not take splitting
The second effect is that the order paramétmp is  of the gap into account, and he assumes tatis very

suppressed near the surface of the wire in a layer whosemal).
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The situation does not change if instead of taking a clas-
sical approach to the energy spectrum in the surface layer,
one takes into account quantization of quasiparticle motion
along the normal to the wall. According to Ref. 12, the qua-

sicontinuum of the subgap bound states starts above the en

ergy peCi(r=R) with py=pg, which again vyields
(1/2)c)(r=R) as the Landau critical velocity for nucleation
of surface fermions.

Can negative energy levels in the surface layer be filled
by quasiparticles? For this it is necessary to connect to a
reservoir of quasiparticles. It appears that this always occurs
in the present situation. The negative square-root brénch
of quasiparticles in Eq(4) is always occupied. When the
velocity u exceedsvg , the energy of brancheE_ can be
positive, while the energy of brandh, can be negative, so
the branches overlap and a quasiparticle from the filled
branchE_ can jump to an empty level oB, . Since mo-
mentap, of these states are opposite, this can happen only if

A. Calogeracos and G. E. Volovik
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the momentunp, is not conserved, which is always the caseric. 2. zel'dovich mechanism of positron creation.
because of surface roughness.

3.2. Analog of Zel'dovich mechanism of positron nucleation

When the surface Landau velocity is reached, however, I thg ve!ocity of the*obj:ecF s kept constant, the emission
the created surface quasiparticles, which have zero energy RI quasiparticles ai> v} W'l_l finally stop after "_"" the nega-
the wire reference frame, cannot escape to infinity, where thEVe 1€vels become occupied. Then the object will move
minimum energy of the scattering state W,— peu W|thqut d!55|pat|on, but its mass will be g.reater due to the
=Ao[1-(1/2)(c,(r=R)/c)]>0. For quasiparticles to es- quasiparticles that occupied the negative-energy bound
Cape to |nf|n|ty, the Ve|ocity Of Wire must be Considerab'y states. In the case of mOVing vortices in Superﬂuids and su-
higher. This happens when the lowest energy of the boungerconductors, a similar enhancement of the mass due to
statepgc,(r =R) — 2pguUg merges with the continuum of the trapped quasiparticles is the origin of the so-called Kopnin
negative root states, whose upper edge is Ap+ pgu. This ~ mass of the vortexsee Ref. 11
yields a criterion for the emission of a quasihole;v7, Thus, for a uniformly moving object, dissipation is ab-
with sent even if its velocity exceeds; , and nothing happens

*_ _ until the Landau velocity, =c is reachedif, however, hy-

vi=leta(r=R3. ® drodynamic instability does not develop earfer The
This is equivalent to the production of a positron by thesource of this instability can be the following: filling of the
strong electrostatic potential well discussed by Zel’dOViCh,bound state leads to an increase in the normal Component
where the created electron fills the bound State, while th@ensity’ and thus to rearrangement of the whole Superﬂow
positron is emitted to infinity. ~ pattern due to mass conservati@ee Ref. 14 for the effect

It may be helpful to remind the reader of the essentialyf the packflow due to the normal component in the vortex
featqres of the Zel'dov[ch mechaniéifsee also REf- 13 forg core. At some velocity the superflow pattern becomes un-
detailed review. Consider an electron-attractive potential stable, being unable to satisfy mass conservation. Such hy-

}{N'”:. 6|‘ vzg_:atr:t tgl|s<|:|ret_e leveFig. _23' tSuppt(:]se_lfrr:at lthe lpo'_”drodynamic instability usually leads to the production of vor-
ential adiabatically increases in strength. The level will ;. by the moving object.

crosse=0 for some value/; of the potentialVV,= #/2 for . . . .
: ) . . . . Equation (8) is analogous to the criterion obtained by
a &function potentigl. There is nothing critical happening Lambert’ and transforms to his result i (r=R) is ne-
during the crossing. At some greater valvg the level ’ . . ! Uit |{r="r) 15 ne
glected. However, in realitg,(r=R)/c is not small: it is

crossesE=—M, and thus merges with the negative energy | ity f lar bound diti hile f
continuum(V,= 7 for a &function potential. The original close to unity for specular boundary conditions, while for

electron vacancy is now interpreted as the presence of a podiffuse conditions it is about,(r=R)/c=0.4"" Thus, the
itron, and since the positron occupies a scattering state, it cdROSt Optimistic estimate yields) =0.47%/, which is greater
escape to infinity(Fig. 29. If the potential now becomes than the experimental value, demonstrating that supercritical
weak again, we revert to the situation of a discrete energglissipation starts at-0.2% . Thus, it turns out that the
level (Fig. 2d, which however is now electron-filled. The Zel'dovich mechanism in its simplest form is not responsible
whole cycle clearly conserves charge; the positron escapet9r supercritical behavior. Modification of this mechanism is
however, when the potential is strong, and the electron igequired according to another scenario, also suggested by
observed when the potential returns to its original weak.ambert! who exploited the adiabatic oscillations of the
value. wire.
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Conduction band
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u=0 u=uy u=0 FIG. 3. Temporal evolution of two branches, (p,=pg) and
7777777777777 7 77 T777777777 7777777 77777777777, E_(px=—pg), of bound states.)&Subcritical regime. The half
a Valence band b of the period is shown in which the velocity increasesutp

and then decreases to zerg.lb the supercritical regime the
two branches cross each other, but the evolution of the levels
does not change if momentupy is conserved. cLevel flow in

the presence of mixing ofr pz and —pg states. The whole
period of oscillations is shown, in which an “electron—
positron” pair is created.

Conducti nynd

u=90 u=u,
E+(+pF)

Zener
tunneling

Valence band c

3.3. Radiation by adiabatically oscillating potential quasiparticle in the supercritical regime are shown in Fig. 3c
for a full period of oscillation. The transition of a quasipar-
ticle from branchE _(—) to branchE, (+) occurs either by
scattering or Zener tunneling. In one cycle, the particle
moves from the Dirac sea to the positive energy continuum
via bound states. This corresponds to the production of an
electron—positron pair via bound states.

This mechanism is different from the Zel'dovich mecha-

This mechanism exploits the fact that in an oscillating
wire u=ug, cost), the velocity changes sign twice per pe-
riod. Consider the case in which the amplitude of the veloc
ity up>vg in Eq. (7). After the peak velocity+u, is
reached, for example, the bound state with eneiy
=Aoc)(r=R)/c—2pgvy =0 will be filled by a quasiparti-

cle. If the wire vibrates slowly, which is the case sinoe . in which the bound-stat touches th ’
<A, after half a period the energy of this quasiparticle will nism, in which the bound-state energy touches the continuum
spectrum of the Dirac sea, the electron occupies the bound

— — *

tbhe;goenr"n](zz; ¢ oAt%C(‘a‘(;*ni n?%/lfn: ?;Fel;gy O\]fvt(:] erzlézttt:ﬁr:gpgtft e Ssta.te, and the positron is emitted. In the present case, criti-

which occurs for the opposite direction of the momentum:éallty occurs when the bound-state energy of the bI’éElph

E., (min scatteringyAg— pev . Thus, if reaches the zero energy and _thus touches the o_ccupl_ed bound

* o FFY¥o states of the branché&s_ . In this process two particles in the

vg>v, /5, i.e., ¢ (r=R)/c>2/5, (99  scattering states are creatétklectron” and “positron”),

resulting in the production of momentumpg from the

vacuum. The level flow along two other branchés,(p,

=pg) andE, (p,=—pg), is similar, but is shifted by half a

the continuum(conduction energy band is achieved and
guasiparticles will be emitted by the vibrating wire. If, how-
ever ¢ (r=R)<(2/5)c, then the same mechanism starts to_ " AR )

work at higher velocity, withu,>(1/5)v, . The latter case period. As a result, in this process the opposite momentum,
corresponds to the Lambert result obtained under the as_—ZpF’ can be produced during a cycle.
sumption thatvy is very small. Thus, the criterion for the
emission of quasiparticles by the vibrating wireug>v*, 4. ANALOGY WITH FERMION PRODUCTION IN A STRONG
with ELECTRIC FIELD

v¥=vg If vy>v /5, Since close to the threshold velocity the relevant quasi-

% article momentu is greatestp,= *pr, the termp-v
v*=v /5 if vg<vl/5. (10 E} Eq. (4) serves glijthe %imelikepgomp(r))r':]ent of the gf-vsector
The general scheme of particle productiondfigi>v* is  electromagnetic potentialp-vs= * prog(X,t) =eAg(X,t).
shown in Fig. 3. In the supercritical regimé), as Here the sign of the momentum plays the part of the electric
progresses, the two branchds, (p,=pg) and E_(p, charge. Thus we have the problem of Dirac particles in a
= —pg) of bound states cross each other if the momentunstrong electric field. The above mechanism of particle cre-

px is conserved. In a real situation, surface roughness mixeation requires five ingredients:
+ pe and — pg states, which leads to repulsion of levels. The 1) bound states;
temporal evolution of levels and one of the trajectories of a  2) for filling of the negative energy levels abov§ it is
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Electron scatterin/g states If wis large enough, the transition betwden andE , states
E=M Z o $s o . . . .
£ — is given by the matrix element’, while for small o the
Zener * E <7 process is determined by Zener tunneling through the gap
E=0 finneling = ¢ 27 between repelling levels.
A A ; E A similar effect in nuclear physics would correspond to
E=-M = hd — > a situation, different from that suggested by Gershtein and
7711171771 Dicac seaf/// 1717/, Zel'dovich. In their case positron production is possible dur-

FIG. 4. Spectral flow and pair production in a system of potentials alternat!"9 collision of two hea_v_y bare nuf:lel with total charge
ing in antiphase in the supercritical regime. greater that the supercriticZl, at which the electron bound
state with energ\e=—M appears. This would correspond
to critical strengthJ,= 7r of the &function potential. In our
case the critical strength ig,= /2. This means that we
necessary to have the mirror image branch of quasiparticleseeq considerably less total cha@eat which the negative
with opposite momenturti.e., with opposites); energy bound state for an electron appe&rs<0. But in
3) there must be an interaction that mixes the momentaqgition nearby one should have a similar hypothetical col-
Pr @and —pg, and thus allows the sigato change; lision of the anti-nuclei, which produces the potential of the
4) the potential A; must be strong enough for the gpposite sign. If the latter contains the bound state \Eith
positive-root and negative-root branches to cross; =E. , an electron occupying this bound state can tunnel to
5) the potentialA, must oscillate slowly in time. During  the hound state of the positively charged nucleus. As a result,

one cycle, the positive-root and negative-root levels crosgp glectron—positron pair will appear after such a collision.
and then return to their respectiypositive/negative con-

tinua.
This is why, in mapping to the Dirac problem, we need5. DISCUSSION
rticles with both n ive an itive char which can . : .
particles .t both negative and post_ e charges, which ca According to the present scenario, the observed critical
transform into one another. One possibility is to use, instead

. . : - T
of the timelike component of the four-vector electromagneticVGIOCIty for pair nucleation by a vibrating wireyg

~0.2%, ,° is determined by bound states near the surface of

potential, a time- and space-dependent mass term. In th\}ﬁ : d thus b . f th llel t th
case the spectrum is symmetric, so that positive and negati ge Wire, an us Dy suppression of the paraflel gap at the
Isurface of the wire in Eq(7). This yields an experimental

energy bound states can in principle approach one andthe estimate for the suppressed gap(r = R)~ 0.5, which is

in a manner similar to Fig. 3b. . . _ 11
The other possibility is to have the conventional electro_comparable to the theoretical estimatg(r =R)~0.44,.

magnetic fieldAy, but in the form of two spatially separated 1-‘Ii—2cljschl?;f/tiiﬂCyari)rr?:\r/:adaetisoﬁxr?]iré?aer?i;?‘ln?xliegt(r:grrorfiaelgmi?\l-
potentials with opposite signs & . In this case one has the hich particles Fc);an be created by a subcritical eIec?ric c;ten-
required mirror image of states. This can be modeled by th P y P

conventional Dirac Hamiltonian with potential lal because .Of level crossing. :
Other objects whose motion can be used to simulate par-

Ag(X,1)=U cog wt)[ S(x+a)— (x—a)]. (11)  ticle production from the vacuum are topological objects,
vortices and domain walls. For a discussion of the produc-

Assuming that the Dirac mas¥l=1 and oscillations are tion of momentum from the vacuum by a moving vortex, due
adiabatic,w<1, one obtains the time-dependent bound-statéo the axial anomaly phenomenon, see Ref. 17. Quasiparticle

energy levels production by a moving soliton in superfluitHe-A due to
the combined effect of Schwinger pair production, the event
E2=cof\+e *asiP\, N=Ucogwt), k*=1-EZ horizon, and the ergoregion, is discussed in Ref. 18.
12
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The two-orbital Hubbard model is used to obtain formulas for the fermion excitation spectrum in
the energy bands hybridized by the Anderson interaction. An analysis of lower part of the

energy spectrum leads to a formula for the superconducting transition tempéfratassociated

with the pairing of quasiparticles in one of the correlated bands. The dependehg®of

pressure is analyzed, and the individual influence of carrier density enhancement and interaction
strength is obtained as a function of oxygen concentration. The experimental discrimination
made by Honmaet al. [Solid State Commurf8, 395 (1996] in Y, Ca BaCu0O,_5 by
separating out the contributions due to carrier density and pairing strength can be reproduced
quantitatively, and perhaps with further refinement, so can the carrier concentration. Although the
prediction of the absolute value of the transition temperature using the present model is not
accurate, it is clear that it furnishes a reasonably accurate description of the change in transition
temperature with pressure. The component contributions due to the change in carrier
concentration and due to the change in interaction strength as a function of oxygen concentration
are also in reasonable agreement with the experimental resultd499® American Institute

of Physics[S1063-776199)00801-X

1. INTRODUCTION (AT¢)p, where AT,). is the change i due to pressure-
induced changes in the carrier density, aldr{), is the
The investigation of the mechanism of superconductivitychange inT,, due to pressure-enhanced electron paifing.,
in cuprate superconductors is related to the effects of 0XYG€Bhange in the electron-phonon coupling strength, or in the

doping and pressure on the superconducting transition tené'xchange coupling constanHonmaet al.® investigated the

perature ) of these substances. One of the advantages Oéependence GT, on the Hall number by changing the oxy-

using high-pressure techniques is the ability to change .
atomic distances without substitution of components, whic en content and the pressure igCa,82,Cu0, . They

often causes some side effetfsAt the present time several d€termined that the contribution oATTc)¢ to AT, increases
review articles concerning high-pressure work in cuprate sulVith decreasing oxygen content.

perconductors have been published. According to the experi- [N this work we use the idea thadT.=(AT).
mental results and the conclusions of Shaé¢ml,®> and +(AT¢), and apply the Anderson-Hubbard two orbital
Kubo et al.* the carrier concentration increases with increas-model to describe the experimental results of Ref. 6. In Sec.
ing pressure in many higlfiz materials. This increase in car- 2 we introduce the Hamiltonian of the problem, the Green’s
riers is considered to be due to charge transfer from a chargenctions of the quasiparticles in correlated bands, and the
reservoir layer to the Cu—O plane. The evidence for the deequation forT,. Section 3 is devoted to the calculation of
pendence of the carrier concentration on pressure comefe pressure effect on the superconducting transition tem-
from measurements of the Hall numbee®/; and the ther-  heratyre. By proposing a simple relation between the value

moelectric power under high pressure. Generdliyinitially ¢ hressure® and the width of the correlated bakid we can
increases with increasingellR, , but decreases whenel, obtain the dependence ©f on pressure. In addition, a com-

exceeds a specific value. However, the relation betwieen . . .
and 1€R, in high-pressure experiments varies among differ-parlson with experimental results on the dependence.of
Te, (AT¢)c and (AT¢), on the concentration of carriers in

ent cuprate superconductors. For instance, in La—Sr—Cu— . .
ceramics, T, increases with increasing pressure, but noYCaBaCuO is made. Good agreement between the theoreti-

change in %R, is observed. On the other hand, in the casec@! calculation of the dependence & T,), and ATc). on
of Y=Ba—Cu-0, a variation of . with 1/eR has been ob- Pressure and the experimental results is found. It is con-
served by several authors in high-pressure experiments. @uded that the model under consideration is quite promising
was proposetithat the change i, due to pressurdT,  for studying the effects of oxygen doping and pressure on the
should be expressed as the sum of two termdsS[ ), and  superconducting transition in cuprate superconductors.

1063-7761/99/88(1)/5/$15.00 46 © 1999 American Institute of Physics
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2. FORMULATION B..=cog a(Ny+ng) = (RS)?(Nk+ng).

One of the popular models used for describing a stronglyHeren,, ng, nk, andng are the population densities of the
correlated system is the Hubbard moBdRecently Kosov  energy states under investigation, which satisfy the condition
and Shilov® studied the superconducting transition andny+ng+ngng=1;
pressure effects by using a unified Hamiltonian containing K K
operators of the Hubbard two-orbital model and the Ander-  Rc=Ra=00Sa(C1A3—A,Cq)/v2
son interaction. The interaction considerably enhances the +sina(CyA— CyA;),
applicability of the Hubbard model and allowed the authors
to describe the interaction of non-localized and localized ~A=(1+A%+A3) Y2 A,=A,A;, Az;=AzA;,
electrons by proceeding from the mixing of their one-particle

states. Ap=(E —2E—-1)%/2V}, Ag=(E . —2E—1)%
The model in Refs. 7 and 8 is based on the following (E,—U,)?
Hamiltonian: ’

By=(1+B5,+B3) Y% By;=B1B,, B3=BaB,,

H=Hgo+H =2, Ho+ 2 ticisCis,

0 int 2] Oi IJZS ] ~isvis 5 (EM+2E—U)(EM—U1)—2V3

12— )
Hoi= — u(Niay +Nia) +Nigy +Nig ) +E(Njay +Nia ) V2Vo(Ew—Uy)

_'—%(niaT_niaf"nicT_nicL)‘HniaTnialU ‘/QVO

¥ Eu-Uy’
X (Nia1+Nia) (Nigy +Nic ) + U Njgq Ny

_ 2 2N -1P2 _ _
+Volajiciy e, +H.c), (1) Ca=(1+Cip+Co 7% C1=Ci1l5, Cp=CpLCs,
2
wherec;t, cis anda;’, a;; are field operators corresponding _(Ex—E-U)(Ex—U1)—2Vo _E—Uy
to free and Ioi:alized electron+s at the ditwith spin projec- 13 2V TRy,
tion s n;;s=a;58;s andn;.s=C;;Cs are the operators for the
number of electronsu is the chemical potentialy” is the Ex<Em<E..

applied magnetic fieldE is the one-particle energy of the The energy of the two-particle stat€ , E, , andEy

a-electrons], U, andU, are the energy parameters defining ., pe obtained by using the cubic equation
intra-atomic correlation; is the Hubbard interaction between

localized electronst) is the interorbital Coulomb interaction X3+AX?+BX+C=0,
of c- and a-electrons;U; is the repulsive interaction of . .
c-electrons on one sitd/, is the matrix element responsible A=—(I+U+U,+3E), B=(+2E)(1+U)

for the hybridization of the- anda-electronic state§Ander- +U(BE+U+1)—4(Vy)?,
son’s constant and H;,,; describes the interstitial tunneling )
of c-electrons with transport integrgj . C=2(Vg)*(1+2E+U1)—U(E+U)(2E+]I). ()

We need to check our results according to separate CoRrpo rootsX={X,,} of Eq. (3) define the energEy  u:
dition: E>0 andE<0. For this reason, we use the interme- Xn=2u+E, mm=K L M. ”

diate symbols: The chemical potentigl is determined by the concen-

B, E>0, D, E>O0, tration of electrons in the dispersed correlated band, which
Q:[A, E<0, :[C, E<0. equalsn.= (RR)%(nk+ng). The dependence of, and x on
V, shows different behaviors in the cases-0 andE<O.
This means, for example, that for val& we have An increase in the hybridization parametég leads to a

decrease im. for E>0, and to an increase f&<0.

A transition to the Hubbard operators allows the use of
the Green’s temperature function technique to take the inter-
gtitial jump term into account in order to study the supercon-

s |RR. E>O0,
RIRS, E<o.

We assume that the density of states in the dispersio

region has a rectangular shapd! ducting properties of the model. An analysis of the lower
part of the energy spectrum leads to the following formula

p(e)=(1/12W) O(W?—£2), for the superconducting transition temperature associated
with the pairing of quasiparticles in one of the correlated

where 2V is the width of thec-band. bands:
Carrying out calculations similar to those in Refs. 7 and ’
11, we obtain the following expression for the chemical po- T, 7{ glo(—W)glo(W)r’2 F{ 1

tential: 2W w? ~ AN
p=—AR—WB, /2+2(ng+ng W(RR)2—P_/2,  (2) £1o — W) = —2(R$)2(ny + Ng),

. (4

P.=(BIW?+2A,B_W+A$HY?, E1W)= — p+ (B, W—P, —A)/2,
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FIG. 1. Dependence of the functioh, on the oxygen conteny for
Y.9C& 1BaCu;0, obtained for the parameterk,=0.00024 GpPal, P
=2 GPa.

A(n,tg)=I(n,te)/A(n,ty),

I'(n,tg) =to[ coS a(Ng+ng)(Es—Ex)(Es+B_tp)
+(RR)2(ng+ Ng)Eq(Eq—Ex+B_to)],

A(Ntg) =W[B, (2u+A)+B_A,](2u+A—B. o).

The quantityA(n,ty) plays the role of the quasiparticle
scattering amplitude with different spin orientation. The at-

traction between quasiparticles in a correlated band takes dT,

place under the conditions:
A(n,to)>0, _W<t0<W, flO(W)ZO (5)

The conditiong5) can be used to determine the concen-
tration ng;<n<ng, for which T.#0 holds. Solving the
equationé;o(W) =0 gives the following value fong,:

2 cof a

Ng=—s——57.

27 cod a+(RR)?

(5a)

The conditionA(n,ty) =0 gives the following result for
_ 2cosa
NS~ cod ar 2(Ry)?
In particular, if we putVy=0 andE>0 in (58 and(5b),
we obtainng;=2/3 andng,=1. This result has been ob-
tained by Zaitsev and Ivand¥in the framework of the one-

orbital Hubbard mode(the so-called «kinematic mechanism
of superconductivity)

(5b)

3. PRESSURE EFFECTS

In applying the two-orbital Anderson-Hubbard model to
describe the pressure dependencé& gfwe choose to exam-

ine the energy parameters, which more sensitively depend on

the value of pressure. Sing¢ |, U, Vo, andE are on-site

properties, their pressure dependence can be neglected. The

transport integrat, depends on the spatial distribution of
atoms and is changed by applied pressure. Let us consid
the region wher&V depends linearly oy, (W=t,). Accord-
ing to Marsiglo and HirsH? the transport integral in cuprate

A. A. Kosov and R. I. Boughton

superconductors can be expressed trough the lattice param-
eters of the Cu@planesa, b, andc by the formulas

h? h?
“2ma’ ti:ZmLc’

t

wherem, andm, are the respective effective masses.
Neglecting any pressure dependence of the effective
masses, we estimate the magnitudel @f/d P:
dw _dt,
dP dP

Wdlna
dP

- =2Wk, (6)

Herek,, k,, andk. are the compressibility components
along each crystallographic direction, defined by

dinb
daP '’

dinc
dP -’

dina
dpP ’

a

c=

b=

In order to simplify the numerical estimation of the re-
sults, we consider the cagg=k,=k.. Using the relations
in the equation(6), we obtain the following expression for
the dependence of the bandwidth on pressure

W(P)=W(P=0)exp(2k,P). @

Formulas(4) and(7) allow us to expres$. as a function
of pressure. Using expressi®f) we can obtain formulas for
dT./dP anddInT./dP:

. dInT,
dP ¢ dP

dT,
~2Wkigw

(8)
0T Te [, o
aw 2w |t

B2 (P,—P_)W—A,B_(P,.+P_)
2P, P_

1 du

A(n,tg) dW
— B tol[cos a(ng+Ng)(Es—Ex)(Es

X|B_+

2W  dA(n,t)
+ 12
A“(n,tg) dW

dA(nto)  A(n,tg)
dw W

{[2(2u+A4)

+2B_to) + (RR)A(Nk+Ng)Eq(Eq— Ex
+2B_tg) +A(N,te)BLW(B (2u+A)

+A;B_)]—2WA(N,ty)[ 2B, (2u+A)

+A,B_—B%t,]},

B,

2

WB2 —A;B_
2P_

du

W= 2ROk +ng) -
By means of formuld8) we obtain a theoretical expres-
sion for (AT¢),:

dT.

dT,
(ATe)p="4p AP= qw

AW. (9)
er
To compare our results with the experimental data of

Ref. 6 we obtain the valueAT.). from formula(4):
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TABLE |. Parameter values used. (AT.) + (AT ). K
20
Curve —E/W /W Uy W u/w Vo /W
1 ~19 6.0 35 2.4 18 1
2 -1.9 6.0 3.5 2.4 2.0
3 -1.7 6.0 35 2.4 1.8 10p
4 -1.8 5.0 25 2.8 1.8
5 -1.9 6.0 2.4 35 2.0 5t
0.
AT dTCA dT. dnAP dT. dn AW (10 -5 N .
=——An=———— =— T . 2 6.4 6.6 6.8 7.0
(ATo)e=n dn dP dn dw 6 y
4. DISCUSSION FIG. 3. Dependence ofAT.),+(AT.). on the oxygen conteny for

Yo.sCa.BaCuwO, obtained for the parameterks,=0.00024 GPal, P

We have chosen to compare the theoretical results pre=2 GPa.
sented in the previous section with the recent experimental
results of Honmaet al.® who studied the pressure depen-
dence and the effect of oxygen doping on the transition tem-
perature of the ¥Ca, ;Ba,Cu;0, (YCBCO) system. These an absolute quantity like the critical temperature is not unex-
authors systematically investigated the critical temperatur@ected, since the absolute values of the potentials chosen are
dependence and the dependence of the Hall numled?;1/ involved in making such a comparison.
on pressure, in order to be able to distinguish between those In Figs. 2a and 2b are plotted the critical temperature

effects which result from changes in carrier densiiyT()., change at a pressure of 2 GPa and a compressikilityf
and changes in the coupling strengtblectron pairingg  0.0024 GPal, due to changes in carrier density and pairing
(ATo)p. strength AT.). and (AT.),, respectively, as a function of

The first comparison we shall examine is the dependencexygen conteny. Here, the agreement with the experimental
of the critical temperatur&., on the oxygen contert The  results of Honmeet al. (open circleg is fairly good. Once
theoretical results for a pressure of 2 GPa and a compresagain, the theoretical curves exhibit a concave-downward be-
ibility k, of 0.0024 GPa’ are displayed in Fig. 1, where five havior over the range of that was measured. Of the param-
curves are plotted, each with a variation in one or more okter sets chosen for illustration, it appears that the parameters
the following bandwidth-normalized parameters: the single-corresponding to curvé (—E/W=-1.9,1/W=6.0,U /W
particle energyE/W, the interatomic correlation energies =2.4,U/W=3.5, andV,/W=2.0) give the closest fit to the
/W, U, /W, andU/W; and the hybridization energy,/W. experimental data in both cases. Figure 3 illustrates the sum
The values of the parameters used in the various curves used the two effects to give the total change in temperature,
to fit the data are listed in Table | below. (AT¢)c+(AT,),=AT, plotted vs. oxygen contenyt, along

The data of Fig. 1 in the paper by Honnehal, are  with the experimental data. Once again the theoretical treat-
represented by open circles. As can be seen from the figurejent yields a set of concave-downward curves which quali-
the general concave-downward form of the experimental retatively approximate the data with the best fit to the experi-
sults can be qualitatively reproduced by the theoreticamental data given by curv® Overall, the theoretical model
curves with the same maximum value, and with little varia-appears to quite accurately account for the observed experi-
tion exhibited for different parameter combinations. The reg-mental variation with oxygen content. In contrast with the
uisite width of the curve exhibited by the experimental datafirst plot, these comparisons involve the change in critical
however, is not readily attained with any reasonable variatemperature with pressure and so can be more realistically
tion in the parameters. The difficulty in fitting the theory to accounted for by the theoretical model.

(AT), K (AT), K
4 15}
3-
2f 107 FIG. 2. Dependences ofA(T¢), (a and
(AT.). (b) on the oxygen conteny for
1+ 5t Y0.9Ca& 1BaCu;0, obtained for the param-
0 etersk,=0.00024 GPal, P=2 GPa.
0_
-1t
-2 . R -5 . P R
6.2 6.4 6.6 6.8 7.0 6.2 6.4 6.6 6.8 7.0
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FIG. 4. Dependence of the ratio=|(ATc)o|/(|(ATc)pl +](ATc)el) onthe g1, 5. T, as a function of pressure iN¥Cay 1BaxCu0, (X —y=86.59,
oxygen conte[]}y for Yo.Ca,Ba,Cu;0, obtained for the parametels,  «__y—6.72, 0—y=6.87—experimental daiaobtained for the parameter
=0.00024 GPa’, P=2 GPa. k,=0.0024 GPat (used for curves).

For the Hall number ¥R, , which should scale with the
ratio of the carrier density enhancement of the critical tem-Y 9 dCé& 1Ba,Cus0, (YCBCO) system. It appears that the ex-
perature AT.). to the sum of the absolute values of the perimental discrimination made by Honretal, in separat-
individual critical temperature enhancement$AT.).  ing out the contributions due to carrier density and pairing
+[(ATg)pl, the plot vs. oxygen concentrationshown in  strength can be reproduced quantitatively, and perhaps with
Fig. 4 illustrates the comparison between theory and experiurther refinement, as can the carrier concentration. Although
mental data of Honmat al., who labelled this ratiax. Here  the prediction of the absolute value of the transition tempera-
the fit is not good with any of the parameter variations thature is not accurate using the present model, it is clear that it
were tried. Although the experimental data fall on cudve furnishes a reasonably accurate description of the change in
nearAT./(|(ATo)c|+[(ATe) o) =1, where the temperature transition temperature with pressure. The component contri-
change is almost entirely due to change in carrier concentragutions due to change in carrier concentration and due to
tion, the slopes are clearly not in agreement. We believe thishange in interaction strength as a function of oxygen con-
discrepancy arises from the reduced accuracy in evaluatingentration are also in reasonable agreement with the experi-
this fraction when the Hall coefficient changes sign, which itmental results.
does in the case wherg (@) =(6.87,0.39). The theoretical
curve nevertheless gives a reasonable qualitative description
of the variation in this parameter, as a decreasing function 0fg.maji. kosov@margu.mari.ru
oxygen content. In order to determine hai./dn varies  "E-mail: boughton@bgnet.bgsu.edu
with oxygen concentratiory, we have used a third-order
polynomial fit of the form:dn(y)=azy3+ay?+a;y+a,.
The fitting parameters are obtained by using the data OflJ. S. Schilling and S. KlotzPhysical Properties of High Temperature
Honmaet al, aty=6.59, 6.72 and 6.87, respectively, and by superconductorsvol. Ill, ed. by D. M. Ginsberg, World Scientific, Sin-

settingdn(7.0)=0. The values of the fitting parameters are 291«‘:190"5(1992_- . _
a,=—461.1850, a;=141.5920, a,=—11.6100, as H. Takahashi and N. MorBtudies of High Temperature Supercondugtors

. . . . Vol. 16, ed. by Anant Narlikar, Nova Science Publisheir896.
=0.1135. This relation provides a reasonable idea about they, \y Shafer’yT_ Penny, B. L. Olson, R. L. Greene, and R. H. Koch, Phys.

strength of the effect of charge carrier density upoR, . Rev. B39, 2914(1988.
Finally, in Fig. 5, we plot the total change in the transi- ‘Y- Kubo, Y. Shimakawa, T. Monako, and H. Igarashi, Phys. Rew3B

tion temperature vs. pressure as obtained from the theoreticaﬁsTfélggghys Chem. Solic, 1561 (1992

model. The experimental results are shown as data pointst Honma, K. Yamaya, N. Mori, and M. Tanimoto, Solid State Commun.
according to the legend. It is apparent that the quality of the 98, 395(1996.
agreement is good, with no more than 10% discrepancy. ThéA. A. Kosov and V. E. Shilov, Fiz. Nizk. Temi22, 1032(1996 [Low

. i i R . Temp. Phys22, 787 (1996)].
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5. CONCLUSIONS

In this paper we have demonstrated that the application,
of the Hubbard model provides a good basis for describing
the observed variation of the pressure dependence of th&piished in English in the original Russian journal. Reproduced here with
critical temperature on oxygen concentration in thestylistic changes by the Translation Editor.
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The stimulated emission spectrum of uniaxially straipe@e is presented. The energy spectrum

of the states of a shallow acceptor in Ge under uniaxial compression is calculated. The

threshold pressure at which the acceptor state split off from the ground state becomes resonant is
found. The pressure dependence of the width of this resonant level is calculated. The

stimulated emission lines are identified. In particular, it is shown that the principal emission peak
corresponds to the transition of holes from the resonantls,) state to the locap-;

state. The probabilities of optical transitions are calculated. A mechanism of population inversion
due to the intense resonant scattering of hot holes with an energy corresponding to the

position of the &, level is proposed. ©1999 American Institute of Physics.
[S1063-776(19900901-4

1. INTRODUCTION is proposed. The probabilities of intra-impurity optical tran-
sitions and transitions from the continuous spectrum to local
Solid-state sources of electromagnetic radiation in thestates are calculated. It is shown that the principal peak in the
terahertz range, which corresponds to wavelengths of 10stimulated emission spectrum corresponds to a radiative tran-
1000 um, have been undergoing rapid development. Thesition from the lowest resonants1(1s,) state to the first
first pulsed semiconductor lasers with wavelengths in thexcited local .., state. The probability of this transition is
range 100—-30Qwm were developed in the mid-1980s using calculated; in particular, when the pressure along[ti]
emission fromp-Ge under the simultaneous action of strongaxis is P=6.85 kbar, for which the transition energy should
electric and magnetic fields at liquid-helium temperaturesoe 24 meV, the radiative transition time4s=2.2x 10 ®s.
(see, for example, Ref. 1 and the work cited thetewas
shown that t_he s_tlmulated emission is caused by an |nverte§1_ EXPERIMENT
hole population in momentum space. A cascade laser based
on intraband transitions in narrow quantum wells was re-  Gallium-dopedp-Ge crystals with a Ga concentration
cently developed and can, in principle, operate at wavefrom 3x 10" to 10"*cm 3 were investigated at liquid-
lengths from the mid-IR range to 1Q@m.23 helium temperatures. Match-shaped samples having a length
The stimulated emission gf-Ge subjected to uniaxial of 6—10 mm and a cross-sectional area of 0.5—’rmmare
compression was observed in a strong electric field in Ref. 4cut in the[111] or [100] crystallographic direction. A pres-
It was suggested that such stimulated emission is due to thteureP was applied along the sample in either of these direc-
appearance of resonant states as a result of the strain-induciaohs. Voltage pulses of duration 0.24&, which created an
splitting of the fourfold degenerate acceptor leV@his sys-  electric fieldE parallel to the pressure, were applied to con-
tem is of unquestionable interest for developing a new typeacts deposited on a laterdbng) face of the sample. The
of lasers for the terahertz range. Uniaxial strain appears, fadistance between the contacts was 4—-9 mm.
example, in heterostructures based on semiconductors with The terahertz emission of the samples was detected by a
lattice parameter mismatch, particularly in Ge—Si structurescooled Ga-doped Ge photodetector with a sensitivity band
This paper compares the stimulated emission spectra ¢fy>10meV. Figure la shows the pressure dependence of
uniaxially strainedp-Ge with the calculated energy spectrum the photodetector signal, which is proportional to the inte-
of the strain-split levels of a shallow acceptor. Analysis ofgrated luminescence intensity in the sensitivity band of the
the emission spectrum reveals that the stimulated emission detector, forE|P|[100] at various voltages. For samples
associated with the appearance of resonant acceptor statesch that the long faces deviated from parallel by less than
The possibility of adjusting the emission energy in the rangel’ the intensity increased abruptly at a certain threshold
from 10 to 42 meV by varying the pressure is demonstratedpressureP.. The intensity jump was also accompanied by a
A mechanism of population inversion as a consequence afurrent jump(by up to ten fold.
the accumulation of holes near the lower resonant state due The high-intensity emission observed is stimulated, as is
to the intense resonant scattering of free holes at that energghown by the following facts: )1there is a threshold pres-

1063-7761/99/88(1)/7/$15.00 51 © 1999 American Institute of Physics
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S. rel. units S. rel. units
2 | 104 b ——— 1100 V/iem
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] ; 10%r E FIG. 1. IntensityS of far-IR luminescence as a
i4.1 kV/em — 40 function of the pressur® for various values of the
2F N : mean fieldU/L. HereU is the applied voltage and
136 10%f =20 L is the sample lengthE|P|[100]. The nonparal-
r\.ll : lelism of the lateral(long) faces of the sample
1 ,///\. 26 ! equals about 4(a) and less than 20(b).
' 10tr i
ﬁ
=
0 . s . e ‘
0 4 8 0 2 4 6
P, kbar P, kbar

sure; 2 a resonator, which is formed in our case by parallelamount of power dissipated in the sample, which was equal
faces of the sample owing to total internal reflectisae, for  to ~100 mW/(Ref. 10] stimulated emission could be excited
example, Ref. § is needed for the appearance of the inten-in a continuous regime.

sity jump. A simple experiment showed that this is, in fact, The stimulated emission spectrum measured using a
the case. Rough grinding of one of the lateral faces of thgrating monochromator fdP =6.85 kbar is shown in Fig. 2.
sample removed both the intensity jump and the currentn these measurements a cryostat with the sample was placed
jump. Repeated polishing and etching of that face permittedt the entrance, and a cryostat with the photodetector was
restoration of the resonator, and the stimulated emissioplaced at the exit from the monochromator. The spectrum
reappeared. consists of several peaks. The energy at which the principal

The current jump appearing simultaneously with the in-maximum occurs varies from 21.2 meV Bt 6.85 kbar to
tensity jump, as well as the voltage dependenc®gof can  40.2 meV atP=11.5kbar(see the points in Fig.)8 The
be explained in the following manner. In uniaxially strainedwidth of the maxima is fairly large and amounts to 0.2—-0.5
Ge the redistribution of hot holes between different branchesneV for different peaks.
of the Ge valence band with different effective masses pro- The maxima in the spectra measured in greater detail
duces a negative differential conductivity, which leads to theexhibit a mode structure which results from the resonator
formation of electric domain&:® In this case the distribution modes. Figure 3 shows the principal stimulated emission
of the electric field along the sample is very nonuniform andmaximum atP=7.1kbar for a sample with a1 mn?
consists of strong- and weak-field regions. cross section. The inset shows the optical path in the sample

As the applied voltage is increased the length of theat resonance due to total internal reflection. It can be seen
strong-field domain increases, but the electric field intensitieshat the distance between the lines in the spectrum
inside and outside the domain scarcely depend on the appligd=0.11 meV) coincides with the value found from the con-
voltage®® therefore, the current—voltage characteristic of thedition KA =nL, where is the emission wavelength,is the
sample has a current-saturation segment. Stimulated emigefractive index (=4 for G@, L is the optical path length,
sion appears at a certain critical domain length. As wasndK is an integer. Thus, in our case, in analogy to Ref. 6,
shown in Ref. 10, the domain length increases with bothan optical resonator is formed as a result of total internal
increasing voltage and increasing pressure at a fixed voltageeflection from parallel longitudinal faces of the crystal.
Therefore, the smaller is the applied voltage, the greater is
the pressure which must be applied so that the domain length
would reach the critical valuésee Fig. 1L When the stimu- 0.07 meV p
lated emission intensity is sufficiently high, the domain dis- — E
appears, the field distribution in the sample becomes homo-
geneous, and the current abruptly increases to the value
corresponding to the homogeneous fild.

Stimulated emission could be obtained at a lower pres-
sure by improving the resonator. The best result, which was
obtained for a sample with the faces about 20t of paral-
lel, is shown in Fig. 1b. The intensity jump was observed at
P~4 kbar and at a significantly smaller voltageelow the
domain formation threshold beginning at the impurity 19 21 23 25
breakdown voltage. We note that in this case a domain could Energy, meV

not form at any applied voltage due to suppression of th(:f:IG. 2. Stimulated emission spectrufd|P|[111]. The peak at 21.2 meV

n?gatiVe diffe'_'en_tial conductivity by the high-intensity corresponds to the optical transition between the resonsstate and the
stimulated emission. At low voltagegdue to the small 2p.; acceptor state.
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3 kbar
Viem

inH
[V e
=




JETP 88 (1), January 1999 Altukhov et al. 53

P = 7.1 kbar trum consisting of two subbands, which can be called the
£ = 3kV/iem /P~ E heavy-hole £,,) and light-hole ¢,) subbands. Their extrema
are separated by the energy gap
0.07 meV h2¢
i Sdef:m_:bP’ @
0

whereb is the deformation potential; is the deformation

parameter, andn, is the free electron mass. In germanium
we haveb~4 and 6 meV/kbar for compression along the
[111] and[100] axes, respectively. The spectrum of the va-

21.7 22.1 225 lence subbands in a strained crystal has the form
Energy, meV

2
FIG. 3. Mode structure of the principal peak in the stimulated emissiong, , (k)= — —1| — 71(k§+ K2+ kf)
spectrum. The cross section of the sample measuxels hn?. The optical ’ 2mg Y
path in the sample is shown in the inset.

2= 290 (2K - K= KD) + Ay (KL + K5+ K2)?],
©

where y=(3vy3+2v,)/5, andy;, y,, andy; are the Lut-

To analyze the emission spectrum we calculated the painger parametersy,=13.38, y,=4.24, andy;=5.6913
sitions of the levels of a shallow acceptor in uniaxially com-  The positions of the levels of a shallow acceptor in
pressed Ge. As is well known, uniaxial strain removes thauniaxially compressed Ge were calculated both within the
degeneracy of the Ge valence bandat0 and splits it into  zero-radius potential model and by the variational method
two subbands with the momentum projectidviss +3/2 and  for Coulomb centers in the large-strain limit, where only one
M= *1/2 on the axis parallel t& (the z axis), which are  subband can be taken into account in the treatment of each
separated by an energy gap proportional to the applied preseries of levels. The details of the calculation of the splitting
sure. The degenerate acceptor ground state is similarly splif the I'g acceptor state in a strained semiconductor within
into two states, whose energy difference also increases witthe zero-radius potential model and of the lifetime of the
pressure. Figure 4 schematically shows the structure of theesonant states appearing in such a system were given in Ref.
Ge valence band and the positions of the ground state of &4. Here we present only the results and some brief explana-
shallow acceptor and the state split off from it by uniaxial tions.
compression at various pressures. Above a certain pressure The acceptor ground state in the unstrained semiconduc-
(P~4 kbar for P|[111] and P~3 kbar for P||[100]) the tor is fourfold degenerate with respect to the projection of
split-off acceptor state is in the continuous spectrum andhe total momentum onto theaxis. According to the zero-
forms a resonant levelsee the band diagrams fde radius potential method, the wave function of the impurity
=4 kbar in Fig. 4, while the ground state remains in the state is constructed as the Green’s function of the Luttinger
band gap. There should be two series of excited states bé&tamiltonian. The energies of the impurity levels appear in
longing to split valence subbands in the band gap and in ththe expressions for the wave functions as parameters for an
continuum. assigned value of the binding energy in the unstrained semi-

For the calculations we used the Luttinger Hamiltonianconductor. Above a certain pressure the energy of the impu-
in the spherical approximatiot:}? Diagonalization of this rity level with M= =3/2 has a complex value™3?—iT'/2,
Hamiltonian for uniaxial strain gives a valence-band specwhich corresponds to the passage of this level into the con-

3. ANALYSIS OF THE EMISSION SPECTRUM

FIG. 4. Structure of the valence band and position of the ac-
ceptor levels for various values Bf. The heavy-hole and light-
hole bands are denoted by andlh, the acceptor ground and

ik split-off states are denoted lpys andss, and the energy of the
optical phonon is denoted hy,,. For convenience the hole
—t— k 55 bands are shown as in the electron case.
—+ g / o Fopt

P=0 4 kbar 8 kbar 12 kbar
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TABLE I.

States Variational functions

1s C exp(— \/p2/a2+ Z%/b?)

2pg Czexp(p2aZ+7%b?)

2s (C1+Cyp?+Cyz?) exp(—pZ a2+ Z2Ib?)
2p.q C(xxiy)exp(- JpZaZ+Z2/b?)

formed only for fairly high pressures. In that limit, retaining
NN AR only the terms quadraticikin the expression under the radi-
01 23456 7 8910 cal sign in Eq.(2) and expanding it in a series in the small
P, kbar 2 . .
parametek</{, we obtain a valence-band spectrum consist-

FIG. 5. Positions of the tops of the light-hole and heavy-hole subbéinds ing of two noninteracting ellipsoidal subbands:
2) and binding energies of thesland 1s; impurity levels calculated by the
zero-radius potential metho@, 4), together with the & 2p,;, and Is; _ 2 2 12
levels obtained from a variational calculation, as functions of pressure. e (k)= 2mo[(71+27)kz+(7’1_ 7)(kx+ky)_§]v

P[111]. 42 ©)
en(k)= 5 ln=29)ke+ (714 NGk +].

2

tinuous spectrum of the light-hole subband and the appear-
ance of resonant states with lifetime=%/T". The calculation The large-strain limit corresponds to the transition from a
for Ga impurities in Ggthe binding energy is 11.3 mg\h  four-component basis set to two two-component basis sets
the zero-radius potential model gives the threshold valueé!+s, andu-,, of the Bloch functions, i.e., to the elimina-
£4e= 15.7 meV, at which the split-off4 state becomes reso- tion of the off-diagonal terms corresponding to the interac-
nant. When there is compression along [th&1] direction, tion of states with different values of the projection of the
this occurs aP=3.9 kbar. hole spin onto the axis, which is parallel td®, from the
Figure 5 presents plots of the dependence of the positiohuttinger Hamiltonian. In this approximation the Coulomb
of the tops of the light-holel] and heavy-holeK) subbands potential of the shallow acceptor impurity creates two series
(lines 1 and 2) and the energies of the strain-spi of acceptor levels below the bottom of each subband. We
==+1/2 andM = = 3/2 levels(curves3 and4) of an impurity ~ calculated the energies of the four lowest local states (1
center on the pressure applied to the sample, which wergp-1, 2Py, and ) below the bottom of the ellipsoidal
calculated by the zero-radius potential method, as well as theand, following Ref. 15, in which the energy spectra of a
results of a variational calculation of the energies of the resoshallow donor in Si and Ge were calculated. A similar ap-
nant Is (1s,) state and the local2., and Is states(We  proximation was employed to calculate the ground-state
note that a variational calculation of the potential of ttee 1 splitting in Ref. 11. We used the variational functions listed
and Is, states of a shallow acceptor was previously perdn Table | in the calculation.
formed in Ref. 111t is seen that the zero-radius potential ~ The energies of the levels of the shallow acceptor in Ge
model poorly describes the position of the resonant level agbtained are presented in Table Il. The energies of the states
large pressures. However, it makes it possible to estimate thre calculated relative to the edges of the respective sub-
magnitude of the decay of the resonant state. Figure 6 prédands(see Fig. . We recall that the 4 state below the
sents the dependence of the widtrof the resonant state on bottom of theh subband is a resonant state. The last column
applied pressure. contains the energies corresponding to possible optical tran-
A variational calculation of the level splitting, including sitions from the resonant stateg} to the local statesi}
the positions of the excited states of a Coulomb impurityindicated in the first column for splitting of the valence sub-
center in a uniaxially compressed crystal, has been pebands by 27.4 meV, which correspond$e 6.85 kbar. The
scheme of acceptor levels is presented in Fig. 7. The figure
also points out optical transitions that are split in the dipole
I, meVv approximation from the resonantslstate to local states.

08 Comparing these data with the spectrum in Fig. 2, we can

0.6t assign the principal peak in the stimulated emission spectrum
to the optical transition from the resonans, Istate to the

04} local 2p.; excited state and the peak at 20.5 meV to the
transition between the resonars, Istate and the local (%,

0.2+ state. We attribute the peak at 19.9 meV to the transition

from the 1s, state to shallow states which are located near
oL— e the edge of thd band and are not resolved in the present
34 5 6 7P kbar8 experiment. The peak at 23 meV is close to the expected
’ value for the optical transition between the resonamntstate
FIG. 6. Pressure dependence of the wilitbf the resonant leveP|[111]. and the local % state. However, transitions between thg 1
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TABLE II.

| subband h subband
M=+1/2 M==+3/2

Eder €15, T €, meV
States &, meV a-1f,cm  b-1Ffcm &, mevV a-10fcm b-10°cm (P=6.85 kbar)

1s 3.8 1.137 1.137 4.76 1.145 0.51 26.5
2p.g 13 1.57 2.3 0.9 2.71 1.338 24

2s 1.2 1.227 1.8 1.53 151 0.72 23.8
2pg 0.8 2.195 3.185 2 1.56 0.744 23.4

state and locas states are forbidden in the dipole approxi- edge becomes equal to the energy of the optical phonon at
mation. Therefore, we assume that this peak is caused By=12kbar). The splitting energy of the ground acceptor
optical transitions of carriers from the continuous spectrunstate is then=42 meV. Thus, the energy of the stimulated
to the 1s level. This is possible only if the energy distribu- emission can vary with pressure in the range from 10 to 42
tion of the free carriers has a local maximum near the energyeV.
of the resonant state.

Figure 8 shows the calculated energies of th& 1 4 POPULATION INVERSION MECHANISM
—2p- optical transition for holegthe solid ling and the ] o )
energy of the principal stimulated emission pépkintg as  Sumulated emission can appear only when there is an
functions of pressure. It should be noted that the distance§Verted energy distribution of the carriers. In our case there
between the peaks in the stimulated emission spectrum agr8&st be inverted population of the resonasst State with
well with the calculated values, but the entire spectrum id€SPeCt to the local states in the band gap, which are depopu-
shifted relative to the calculated spectrum by about 3 mev/ated by impact ionization. We associate the appearance of
This may be because the interaction of the light-hole and"Version with strong resonant scattering by acceptors of free
heavy-hole bands, which gives rise to the de€agnd to holgs_ with an energy close toe, whlch corresponds to the
displacement of the levels to smaller energies, was not takeRSition of the resonants} level (see Fig. 7. For the prob-

into account in the calculation performed. ability of resonant scattering we obtained the following ex-
The participation of the resonangLstate in the transi- Pression within the zero-radius potential model:
tion is confirmed by several additional facts. The minimum 2302 2
: . L . hoy1” &g (eleg)
pressure at which stimulated emission could be exdiFégl W 60.6=N—35 =5 5 5
1b) corresponds exactly to the pressure at which the acceptor M~ &7 (1—eleg)*+(I'gg)
1s, state split off from the ground state passes into the con- e
tinuous spectrumsee the diagrams in Fig.).4The energy X G %ef,eo,a>. (4)

splitting of the ground acceptor state at that pressure amounts
to about 10 me\MFig. 4). On the other hand, as can be seenHereN is the impurity concentratior, is the broadening of
from Fig. 1a, the intensity of the stimulated emission de-the resonant statd'<e), G is a function which specifies
creases sharply at a pressure of about 8 kbaPfpa00]. the angular dependence of the scattering, én@nd 6 are
Depopulation of the & state begins at that pressure becausehe angles of incidence and scattering relative toz|E
holes pass to the valence-band edge with emission of agirection. Figure 9 shows the angular dependenceGof
optical phonon. The corresponding hole transition is showrfor three values off, at ey=27.4meV, ande=¢,
in Fig. 4 for P||[111] (for this crystallographic direction the =22.6 meV(which corresponds te;. ). It is seen that the
energy of the split-off state measured from the valence-band r

£, meV

£ 40

ls, £
’ 20
L0 T 6 8 10 12
2s ls:] P, kbar

FIG. 8. Energy of the principal stimulated emission péa&int9 and cal-
FIG. 7. Impurity level diagram and intracenter optical transitions in uniaxi- culated energies of the optical transitions from the resonaptatceptor
ally strained Ge. state to the local @..; state(straight line.
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FIG. 10. Pressure dependence of the transition probability ratio: continuum
(e=e15)—1s level (Wy) and quasilocal & level—2p.; level (W,).

FIG. 9. Angular dependence of the probability of the resonant scattering of: . . . o
holes with an energy ~ ¢, on the scattering angle for three values of the {Ions between continuum states with an enesgin the in

angle of incidencef,: solid line — 6,==/2; dashed line —f,=7/3; terval (eo—1'/2,69+1'/2) and the local & state(these tran-

dotted line —@,= /4. P|[111]. sitions are shown in Fig.)7
2.2
e’y 1b

o Wy =Nf,——fioin = —21,dQ, (6)
momentum of the holes after scattering is directed, for the c’mg aZ b
most part, perpendicularly to the applied field and thus also » 2
gromotes the accumulation of holes with an energy close to Wo=Nf, — 12KzﬁwznS—(alsx)z(blsx)lzdﬂ, )

0 c’m, 0

0

wherefiw,; and% w, are the photon energies for these tran-
5. PROBABILITIES OF OPTICAL TRANSITIONS sitions,a;, b, anda,, b are the characteristic sizes of the
resonant &, state and the 4 state, respectivelyh,, is the
characteristic size of the localp2 ; state(see the tablgsn

ab|I|t|_e.s of tfhfe th_’IZpil, r|1ntracenter transmﬁnsl an:j the is the refractive index, anid andl, are dimensionless quan-
transitions of free holes with an energy-zq tothe local 5 05 A numerical calculation gived;=0.056 andl,

state. In the continuous spectrum there are two types of states; qo15 torp=6.85 kbar. The parameteris related toe
at the resonance energy, viz., quasilocalresonant states by the expressio =% 2x2y,/2m 0
and continuum states, which are specified by solutions of the Figure 10 presoents the lpresos.ure dependence of the ratio

unperturbed Luttinger Hamiltonian, and transitions to IocalOf transition probabilitiesh, /W, . The level widthl' found
states in the band gap are possible for them. According to th\?/ithin the zero-radius potential model was used in the cal-

selection rules, the si—1s transition is forbidden in the . otions ForP=6.85 kbar we hava, /W, ~0.3, which is

dipole approximation; therefore, transitions to the ground; e (4 the intensity ratio of the peaks at 23 and 20.5 meV in

state are possible only from continuum states near the reSPhe stimulated emission spectruiFig. 2)

panﬁe en(jergy.hThg tra}nsnmn frons,Ito thle: local D, statfe To conclude this paper, we present the expression for the
Is allowed In the dipole approximation. For transitions rom o ji4tive Jifetime of the spontaneous intracentef-2p-
states in the continuous spectrum to thestate we assume - ciio-.

that the initial energy of the carriers lies within an interval of
width I’ neare,. We suppose that the intense exchange be-  7[S]=5X10>(4P[kbar-3.5". 8
twet_a_n t_he resonant level and the band esta_blishes a quaglyy p=6.85 kbar we obtainr=2.2x10 ®s.
equilibrium between these types of states, which allows us to
introduce a single distribution functid . Then the concen-
tration p of holes in the interval of width’ neare is speci-
fied by the expression The experimental data presented and a comparison with
the results of calculations show that the terahertz stimulated
p=Ln(e0) I +NIf,, ®  emission of uniaxially strainep-Ge is caused by population
where N is the concentration of centers ang(e) inversion of pressure-split acceptor levels, which, in turn, is
=(2m) [ 8(e(k)— &) d3k is the density of states in the caused by the resonant scattering of holes heated by the elec-
continuous spectrum. tric field. One necessary condition for such inversion is that
Since the radiation emerges from the sample perpendicuhe acceptors have resonant states, i.e., states located in the
larly to thez axis in the experiment, we present expressiongontinuous energy spectrum of the valence band. The lines in
for the probabilityW, of the spontaneoussl—2p.., optical the spectrum have been identified. It has been shown, in
dipole transition, as well as for the probabillty, of transi-  particular, that the principal line in the stimulated emission

Let us now consider the relationship between the prob

6. CONCLUSION
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Longitudinal dynamic susceptibility of superparamagnetic particles with cubic
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We study the linear response of a system of single-domain ferromagnetic particles with cubic
magnetic anisotropy to a weak external a.c. magnetic field. By averaging the Gilbert

equation with a fluctuating field for the magnetization of an individual particle we derive a
system of recurrence equations for the spectra of equilibrium correlation functions describing the
longitudinal relaxation of the system. We find the solution of this system by using matrix
continued fractions. We also evaluate the longitudinal relaxation time and the spectrum of the
complex-valued magnetic susceptibility. Finally, we show that the nature of susceptibility
dispersion is determined by the anisotropy and dissipation parameters99@ American Institute

of Physics[S1063-776(99)01001-X]

1. Single-domain ferromagnetic particles are characterThe system of equations for the moments can be derived by
ized by an internal anisotropy potential, which may haveaveraging the Gilbert equation without using the Fokker—
several positions of local equilibrium with potential barriers Planck equatiod? It is difficult to employ the well-known
separating them. If the particles are smal{00 A) and as a methods of solving such a system of equations in the case of
result the potential barriers are low, thermal fluctuations mayveak dissipatioricharacteristic of single-domain particlgs
cause the magnetization vector to reorient itself over the barsince such calculations require using*2@® and more
riers from one equilibrium position to anothelhe thermal equations to achieve convergence. For this reason, calcula-
instability of magnetization leads to what is known astions and analysis of the spectrum of the complex-valued
superparamagnetisfriStudies of thermal fluctuations and the magnetic susceptibility in the case of cubic anisotropy for the
relaxation of magnetization of single-domain particles havediffusion model have yet to be done. The problem, however,
attracted much attention in connection with the problem ofcan be simplified significantly if we use the method of matrix
improving the characteristics of magnetic storage elenientscontinued fractions developed in Refs. 22 and 23 to solve

When relaxation processes in superparamagnets afefinite systems of recurrence equations for the moments. In
studied theoretically, to simplify the mathematics one usuthe present paper we use this method to calculate the relax-
ally examines the case of uniformly magnetized uniaxialation timer of the longitudinal component of magnetization
particles?*~*?Although using a uniaxial anisotropy potential and the dynamic magnetic susceptibiljy(w) of a system
simplifies the analysis significantly, the results obtained inof noninteracting single-domain particles for arbitrary values
this approximation are of limited valué.For other types of ~of the anisotropy and dissipation energy parameterand
anisotropy, such as cubic, either the discrete orientation ap¥. We determine and study the behavior gfand ()
proximation has been employed or solutions for the continuover the entire range of values ofand .
ous diffusion model that are only asymptotic have been stud- 2. If we allow for thermal fluctuations, the Gilbert equa-
ied (see, e.g., Refs. 2 and 13919However, neither tion for the magnetizatioM of a single-domain particle has
approach can be used in the most interesting case where tHee fornf-24
anisotropy energy is comparable to the thermal en&y
_ In the diffusion m_odel the dynamic_s of_ the_z magnetiza- —M(t)=yM(t) X[H(D)+h(t)— M (D)], (1)
tion vectorM (t) of a single-domain patrticle is similar to the dt
Brownian rotation of a macromolecule in a liquid and is

: . ..~ where y is the gyromagnetic ratioy is the friction coeffi-
described by the Fokker—Planck equation for the probability . : - . . i
distribution densityW({M1}.t) of magnetizatio:292! The cient, H is the total magnetic field, which an consist of ex

. 4 : . ternal fields applied to the system and the effective magnetic
Fokker—Planck equation is derived from the Gilbert. . ; : ;
equatio’®® with a fluctuating field that allows for the ther- field of the anisotropy, ant(t) is a random field having the

mal fluctuations of the magnetization of an individual par_propertles of white noise:

ticle. For the case of cubic anisotropy, the Fokker—Planck 7

equation can by formally solved by, say, expanding the dis-  Ni()=0, hi(t)hj(ty) = ——§;; 8(t1—to). v
tribution function W in spherical harmonic¥. In this ap-

proach, we need only solve an infinite system of recurrencélerev is the volume of the particle, and the horizontal bar
equations for averaged spherical harmoniosoment$.!®  stands for statistical averaging over an ensemble of particles

1063-7761/99/88(1)/8/$15.00 58 © 1999 American Institute of Physics
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having at timet the same magnetizatidvi (t). The order of 1 duyt)
magnitude of the amplitude dfi(t) can be estimated at - =—[afluy(t)+ux(t)uz(t)]hx(t)
kT/vMg (Mg is the magnetization of the material of the par- ag’'Ms dt
ticle), which at room temperature yields a vale€l00 Oe

and, the strength of the random field is thus comparable to

+ [ailux(t) - uy(t)uz(t)]hy(t)

that of the magnetic anisotropy field. +[1—u2(t)]h,(t)
If V is the free energy per unit volume expressed in ‘
terms of the components ™, the fieldH is determined by —[a™tuy(t) + ug(t)u () JH (1)

the equation
Y +la™tuy(t) —uy (DU TH(t)

H=— 2o 3 +[1—U2(D)]HL(1), 0

In the present case of weak cubic anisotropy we use th&herea=ynMjsis the dimensionless dissipation coefficient,
representatiof’

, Y
V=K(uzuZ+ufuZ+ulul) g (1+a?®)My’ ®
K . o
:Z(sin“f}sin2 2¢+sif 29), (4) uy=sindcose, uy=sindsing, u,=cosd,  (9)

with ¢ and 9 the azimuthal and polar angles, respectively.

whereK is the anisotropy constant, which is either positive yere e have ignored surface effects and assumed that in-
or negative(below we use the dimensionless anisotropy pasjge the particle the magnetization is uniform.

rameteroc=vK/4kT). WhenK is positive, the potential4) Below we use the spherical harmoni¥s ., (Ref. 26,

has 6 minima, 8 maxima, and 12 saddle poi@s., in the  \ynich in terms of the variables,, u,, andu; are
directions[100], [111] and[110], respectively.? WhenK is

negative, the minima and maxima change places.KEe0 (2n+1)(n—m)! )
both the heights of all the potential barriers and the energy at  Ynm=(=1)"™/ W(Uﬁ iuy)™
the saddle points are equal &g while for K<O0 the barrier

heights ard o|/3 and the energy at the saddle point$ds$ d™P,(u,)
(see Ref. 2 Below we limit ourselves to the case of positive XT
anisotropy,K>0. The case oK<0 can be examined along z
the same lines. _ _ _ Yn,fm:(_l)mY:,m! (11)

By transforming the Gilbert equatidi) to the Landau—
Lifshitz equatioR and writing the components of this equa- where theP,(x) are Legendre polynomiaf§. Moreover,
tion in the laboratory system of coordinates, we arrivé at when averaging and transforming the stochastic differential
equations(5)—(7) with multiplicative noise, it is convenient

m=0, (10

1 du(t) 1— A0 Tht to use the Stratonovich approachin particular, in this case
ag' M, dt =17 u(O () there is no need to first transform Eq®)—(7) into the
equivalent form of lfoequation$? Thus, bearing in mind
—[a tu,(t)+ Uy(t)uy(t) Thy(t) that in transformations of stochastic differential equations via
. the Stratonovich approathwe can use the rules of ordinary
Hla uy () —utux(t) Jhy(t) analysi>® we easily arrive at a stochastic differential
equation for the spherical harmonics:
+[1- (D) JH() a P
dY, m(t) 1
_r-1 nms_
[a uz(t)+ux(t)uy(t)]Hy(t) dt ux(t)+iuy(t)
+[ailuy(t)_uz(t)ux(t)]Hz(t)v (5) dUX(t) du (t)
x| mY, m(t) +i—
: dt dt
=IO - By TRy
_— = u,(t) —u,(t)u
ag’'M, dt Lo ud (DU Iy v n+m+1 duy(t) 15
, nm+1(t) Vosm=—1 dc I (12
+[1-ug(D)Ihy(1) o _
1 whereu,, u,, andu, can be found from5)—(7), respec-
~La Tux() +uy(Hux(t) () tively. Next, using the method developed in Refs. 12, 23, and
- 27 for solving nonlinear Langevin equations with multiplica-
+atu,(t) — uy(t)uy (1) JH(t
Lo (D) U DU, (O THL() tive noise, we can derive frortl2), after doing a series of
+[1—u§(t)]Hy(t) algebraic transformations, a system of coupled equations for

the equilibrium correlation functions characterizing the lin-
—[oflux(t)+uy(t)ux(t)]HZ(t), (6) ear response of the system:
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de, m(t o4
N dt( ) sgl r;4 dn,m,r,scn+r,m+4s(t)y (13)
where
Cn.m(t) =(cosH(0)Y,, m(t))o, (14)

with angle brackets ), standing for average over the equi-
librium state at timg=0, and

v
2kTag’

TN (15)

Yu. P. Kalmykov and S. V. Titov

7= fo C”(t) dtZCH(O), (22
can be measured in experiments or calculated4ly. We
assumed all along that the particles are identical. To allow
for the polydispersity of the particles we must also average
the susceptibility and relaxation time over the respective dis-
tribution functions®

3. A formal approach that uses matrix continued frac-
tions in the solution of recurrence equations of tyji8),
where two indices vary, was proposed in Refs. 22 and 23.
However, it proved to be extremely difficult to use this ap-

is the characteristic time of thermal fluctuations of magneti{roach to solve practical problems, since matrices of indefi-

zation. The expressions for the coefficiedts; , s are given
in Appendix A. The system of equatior{43) can also be
derived from the corresponding Fokker—Planck equation

L W _ 1 af vV 1 v
NGt sino 99| VKTl a9 asind de
+o"W N 1 d|v 1&V+ 1 oV W
a9 sind do| KT\ a 99  sind do
1 oW 16
sind de |’ (16)

Using (13) to find ¢, o(t), we can calculate the longitudinal

dynamic susceptibility and relaxation time, since according

to linear-reaction theofy the decrease in the magnetization
(M)(t) due to a sudden switch-on at timie=0 of a weak
external d.c. magnetic fieltl, parallel to thez axis of the
laboratory system of coordinates is of the form

(M ()= xH.Cy(1), (17)
where
t
Ci(t)= ;%(0)) (18)

is the normalized relaxation function of the longitudinal
magnetization component, and

v2M2N,

XI=
is the static magnetic susceptibilithere we have allowed
for the fact that in the case of cubic anisotropyZ),
=(uf)o=(u2)o=1/3), with Ny the number of particles per
unit volume. The longitudinal dynamic magnetic susceptibil-
ity x|(w) can be expressed in terms of the spect@yt) as
follows:

Xj(@)= x| (@) =ixj(0)=x{1-10C\in)}, (20)
where
Ciiw)= f:C”(t)e‘“‘"dt. (21)

Moreover, the relaxation time, of the longitudinal magne-

tization component, defined as the area under the curve

Cu(t), or

nite dimension have to be introduced into the
transformation$® Below we use a modified method, which
makes it it possible to reduce the solution procedure to op-
erations involving finite-dimensional matrices. Let us intro-
duce a vectoC,(t) by the formula

Can(1)
Can—1(t)
Can—2(t)
Can—3(t)

Cn(t)=

(23
Can—i,—a(n-1+5,5)(1)

Can—i,—a(n-2+5,4)(1)

Can—i(t)= i=0,1,2,3.

Can—i,—a(n—1+45,) (1)

The vectorC,(t) has &—2 elements. Thus, Eq13) re-
duces to the matrix equation
dCp(t)

dt

Q;Cn—l(t) + QnCn(t)

™

+QnChya(t), n=123..., (24)

where

Cy—a(t)

Cadt)

Cadt)

Cao(t)

Coo(t)

Crot)

The explicit form of the matrice®,, , Q,, andQ, is given
in Appendix A.

Using the general method of solving matrix recurrence

equation of Ref. 23see Appendix B we obtain the exact
solution for the Laplace transform &;(t) in the form

Co()=0, Cy(t)= (29

Ci(s)= [ sl — Q1— Qf Sy(9)] 71 C4(0)

(26)

+n§2 { k[[2 Qi_1S(5)(Q) * cn<0>],
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wherel is the identity matrix, and the matrix continued fracti§(s) is given by the formula

|
Si(s)= Q- 27

" _
NSl —Qn—Qp | Qn+1
Qn+2

.
NSl = Qny1—Qnig NS — Qpyg— - - -
n

The method of calculating the initial-value vect@g(0) via
matrix continued fractions is given in Appendix C. T~ ,
Formula(26) is the exact solution of Eq24) expressed 2\20(Jo+8la®+1)
in terms of matrix continued fractions. In this form the solu- The corresponding formut&*® for weak dissipation ¢
tion was obtained in Ref. 23. By its very nature, form(28)  <1) is
is the analytical representation of the numerical algorithm of
matrix continued fractions used in Risken’s monogré&ph. _ wkTem  myme’
An essential development of the results of Ref. 22 is, first, 20 AE gg2
that the solution is obtained in analytic form and is expressed ] o ]
by formula (26) and, second, that we have generalized theVNerewa=80ykT/uMsis the frequency of oscillations in a
method to the case where the dimensiorQgf, Q. , or Q' potential well, and&E~av K/4 is the energy loss per period
depends om. As shown in Ref. 23 by many examples, for- Of the almost periodic motion dfl () (see Ref. 18 Figure
mula (26) is convenient for calculations. In our problem the 1 Shows that in contrast to uniaxial particles, wheréry is
maximum dimension of all matrices required by the calculai"dependent o (see Ref. 6 and)9in the case of cubic
tions is of order 18, which makes it possible to use a per- 2nisotropy the ratior /7y strongly depends ow. This de-
sonal computer for all calculations. pendence is due to the interaction of transverse and longitu-
4. First we examine the dependence of the relaxatiorgi”a_l relaxation intrawell mpdes. This interaction leads, in
time 7 on the anisotropy parameter=yv K/4kT for different particular, to a nonmonotonic dependencerdfry on o for
values of the dissipation parameter The curves represent- small values ofx (for o<1, the contribution of longitudinal

ing this dependence calculated €82) and(26) are depicted Modes leads to a decrease 4y ry with increasingo; a
in Fig. 1. By its very physical meaning; is determined further increase i leads to a situation in which the contri-

primarily by the lowest-frequency longitudinal relaxation bution of the_ low-frequency Ion_gitudinal relaxation m(_)de be-
mode related to the transition of the magnetization vectofOMeS dominant and /7y begins to grow exponentially

over the barrier separating one potential well from anotherNOte that at intermediate values af (say, a~0.1) neither

The characteristic relaxation time of this low-frequency (28) nor (29) yields correct values ofy/7y. In this case a
mode is determined by the reciprocal value of the smallesi0re exact analysis is needed, and there are no formulas that
eigenvaluer, of the Fokker—Planck operator {46). In the would make it possible to estimate the valu_es of the r“zi’tllo..
low-temperature limit &> 1) and for strong and/or moder- _The dependence of Ion_gltudmal re_Iaxatlon on the dissi-
ate dissipation ¢=1), the estimate of is given by a rela- Pation parametew also manifests itself in the spectyé(w)

tionship derived in Refs. 2 and 15, which in the presentdepicted in Figs. 2 and 3. Two peaks are clearly visible in the
notation can be written loss spectrum(the necessary calculations were done at

szgNolkT: 1). The first(low-frequency peak appears at
frequencies on the order of the average frequency of the
reorientation of the magnetization vector. The characteristic

nTe”

o>0. (29)

o>0, (29)

log (‘t'"/TV)

i

2 log(-1m ;ql )

FIG. 1. Dependence of logl(n,) on the anisotropy parameterfor different
values of the dissipation parameter Solid curves represent the results of log(wry)

calculations by(22) and (26) for «— (curvel), a=1 (curve?2), a=0.1

(curve 3), and @=0.01 (curve 4); the @ and X represent the results of FIG. 2. Iog(—ImX"") vs. logwm) at o=10 for different values of the dis-
calculations by the asymptotic form@8) for a— and =1, respec-  sipation parametewr= (curvel), a=1 (curve2), «=0.1(curve3), and
tively; and the * represent the results of calculations(®§) at «=0.01. a=0.01(curve4).
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frequency and halfwidth of this band are determinedrby log(-Im x )
The susceptibility dispersion in this frequency range is of a
purely relaxational nature. The second, lower, peak appears
because of the contribution of high-frequency transverse and
longitudinal modes. Aso decreases, this high-frequency
band narrows and shifts toward higher frequencies, and the
nature of the dispersion changes from relaxation to resonant.
On the other hand, as increases, the band also shifts toward
higher frequencies, but it does not narrow significantly in the
process. Such behavior can be explained by the strongest
effect of transverse modes on this band, and these modes log(wny)
determme_ the transverse Suscept'_blhty spe_ctrum ajnd the ferfIG. 3. log(-Imy() vs. log(ny) at «=0.1 for different values of the an-
romagnetic resonance at frequencies coinciding with those &otropy parameters=0 (curve 1), o=1 (curve 2), o=5 (curve 3), and
which the magnetization vector precessegr~o(a7y) L, =10 (curved).
with damping~ ! (see Ref. &

The model we have developed can be used to explain the
results of measurements of the dynamic susceptibility of syspe calculated by formuld26) by using matrix continued
tems of single-domain particles with cubic anisotropy. Untilfractions in all ranges of the anisotropy and dissipation pa-
now the interpretation of experiments involving such sys-rameters. Here, in contrast to uniaxial particles, the spectrum
tems has been done within the uniaxial-particle mddee,  y,(w) and the relaxation time; of particles with cubic an-
e.g., Refs. 29 and 30, where the frequency and temperatuf§otropy are strongly dependent an owing to the interac-
curves of the linear and nonlinear dynamic susceptibilities ofjon of the longitudinal and transverse modes.
systems of single-domain particles are stugli¢tbwever, in The authors are grateful to W. T. Coffey and Yu. L.
the present paper we have shown that the behavior of thRaikher for fruitful discussions. The work was supported by
response of particles with cubic anisotropy differs from thaty grant from the Russian Fund for Fundamental Research
of uniaxial particles. In particular, one must take into accouniGrant No. 96-02-16762)a
the dependence of the response on the dissipation parameter
. Bitoh et al? probably were unable to achieve quantita-
tive agreement with the experimental data because they ig-
nored this. APPENDIX A: EXPLICIT FORM OF THE MATRICES Q ;, Q,,,

We believe that our approach will enable us to quantita-AND Q;; AND THEIR ELEMENTS

tively describe the experiments of Bitah al2°*° and simi- The matricesO- , 0., andQ™ of (24) are given by the
lar experiments. In a future paper we propose comparing i?or noeoene n 9 y

every detail the theory and experiment in relation to the fre- mulas
guency and temperature curves of the linear and nonlinear
. L : ) Jan 0 0 0
dynamic susceptibilities of systems of single-domain par-
ticles with cubic anisotropy, since this goal requires calculat- _ | Dan-1 Jan-2 O 0 ™
ing the transverse componept of the linear susceptibility, Qn = Pine2 Din—n Jan-2 o |’ (AL)

2) and comparison with the experimental data on the nonlin-
ear response requires calculating the nonlinear dynamic sus-
ceptibility. One must also take into account the volume dis-

B4n—3 P4n—3 D4n—3 J4n—3

tribution of the particles. All these problems can be solved Aan Ban Pan Dan
by our method, but such analysis lies outside the scope of the Bln A1 Bano1 Pan_1 a2)
Qn= , (A2
present pape?. o _ o "\ faPl, Bl.i  As—» Bans
5. Thus, the longitudinal dynamic susceptibilify()
. . . . . DT f PT BT A
and the relaxation time; in the case of cubic anisotropy can 4n 4n—1Fan-1 Pan-2 Aan-3
|
g4n+4‘J1n+4 D1n+3 f4n+2P1—n+2 Bl—n+3
Q+— 0 g4n+3‘]1n+3 D1n+2 f4n+1p-|4-n+l (A3)
" 0 0 94n+2‘]1n+2 D14—n+1 ,

0 0 0 Gan+1dan+1
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spectively, (&—2)X(8n—-2), (8n—2)X(8n+6), and
(8n—2)X(8n—10). An exception is the matri®, , which
degenerates into a vector of dimension 6.

In Egs.(A1)—(A3), the submatriced s, Asn_1, Asn_2,
Aun-3, Ban—1, Ban—2, Ban—3, Dan—1, Psn—1, @andPy,_, can
be represented as follows:

where the superscript T stands for “transposed,” and

2n—11
-~ 2n+9°

n—4

— (A4)

On=—

n

The dimensions of the matrice3,, Q, , andQ,, are, re-

.
Xan—i,—4(n-1+84) Xan—i,—4(n—1+5,0) 0 0
— +
Xan—i,—4(n-2+84) X4n—i,—4(n-2+38,) Xan—i,—4(n—2+5,) 0
Xan-i 0 X;n—i,—4(n—3+6i0) X4n—i,74(n73+5i0) 0 (AS)
0 0 0 Xan—i,4n—1+8,)

(i=0,1,2,3). They are of dimensidr2 (n+ &;p) —1]1X[2(n+ ;o) —1]. The submatriceBy,, Dan, Jan,s Pans Dan—2, Dan_3,
Jan—1, dan—2, Jan—3, andPy,_3 have the form

n
Xan—i,—4(n—1+5;) 0 0 0
n
Xan—i,—a(n-2+8 Xan—i,—a(n—2+5,) 0 0
- +
Xan—i= Xgn—i,—a(n—3+8y X4n—i,—4(n-3+38,) Xan—i,—4(n—3+5,) 0 (A6)

0 0 0

Xan—i,-4(n—1+ 80)

(i=0,1,2,3) and are of dimensidr2 (n+ &§;p) —1]X[2(n+ &;g) —3]. The submatrix elements iA5) and (A6) are given by

the formulas

9(n—1)n(n+1)(n+2)—15m?[6n(n+1)—5—7m?]
(2n—3)(2n—1)(2n+3)(2n+5) B

n(n+1)
2

Anm= dn,m,O,OZ o

15¢(n+m)(n—m+4)[n°—(m-3)?][n’— (m—2)?][n?>— (m— 1)2]
2(2n—3)(2n—1)(2n+3)(2n+5)

— At _
Ay m= 8, —m™ dn,m,Oﬁl_

3iom(3n°—5—7m?)

n2_m2
Van2-1’

bn,m: dn,m,—1|0: - a'(4n2—9)
~ . Sio (n+m—4)(n+m)[n’>—(m—3)?][n’—(m—2)?][n?— (m—1)?]
bpm=—bp —m=dnm-1-1=— )
’ ’ e 2a(4n%—9) 4n?-1

B _o(2n+9)(n*~n-2-7m? [(n*~m?)[(n—1)*~m’]
Po.n=0h.m—2.0= (50 "5)(2n=1)(2n+3) (2n+1)(2n-3)
pr:,m:p:,—m:dn,m,fzfl

a(2n+9) (n+m-3)(n+m)[n?—(m—2)?][n*— (m—1)?]

"~ 2(2n-5)(2n—1)(2n+3)

\/(n+m—5)(n+m—4)

(2n+1)(2n—-3)

7iom

m’)[(n—1)*—

m?I[(n—2)*—m’]

Vv

dnm=0nm-30=— a(2n—3)(2n—1)

(2n—=5)(2n+1)

io

(n+m—

6)(n+m-=5)---(n+m—=1)(n+m)(n—m+1)

dr?m:_d:’-m:dnimf3f1:2a(2n—3)(2n—1) (2n—5)(2n+1) ’
o B (e Y (o i Y o Y i
Inm=dnm 40~ 50 "5 2n—3)(2n—1) (2n—7)(2n+1) !
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N B o(n+1) \/(n+m—7)(n+m—6)---(n+m—1)(n+m)
Inm=ln-m=dnm-4-1=350 5 2n—3)(2n—1) (2n-7)(2n+1)

we have allowed for the fact that the coefficiemts,, ;  APPENDIX C: CALCULATING THE INITIAL- VALUE
obey the following relationships: VECTORS

It is convenient to calculate the initial-value vectors
C,,(0) in (26) by using matrix continued fractiorf4:3 Ac-
dnmas=dh+3—m-4s 35 cording to(14), the initial valuesc, (0) have the form

_A* _A*
dn,m,r,l_ dn,fm,r,fl’ dn,m,l,s_ dn+1,fm74s,71,s’

dn,m,z,s: fn+2dn+2,fm74s,72,s , Cn,m(o) = <COSﬂ(O)Yn,m(O)>O

)
A I RGPV
i i (2n+1)(2n+3) * NtLmo
wheres=0,—1, andf, andg, are defined iA4).
n2—m?
*Vanrnan=1) (Yo-1mo- D

In accordance with(13), the equilibrium averagegY, m)o
By using the Laplace transformation we can reduce Egsatisfy the recurrence relation

APPENDIX B: SOLUTION OF EQUATION (24)

(29 to ) .

Q;En_l(s) + |Qn—STN| |En(S) + Q:6n+1(8) s:z—l r;4 dn,m,r,S<Yn+r,m+4s>0:Ov (C2

=—7,C,(0), Bl . . . ;
™NCn(0) BD which can be written in the form of a matrix recurrence

wherel is the identity matrix, and relation:

~ o0 - + _ _

Cn(s):f Cn(t)e_Stdt. (BZ) Qn Rnfl+Qan+Qn Rn+1 01 n 11213 ey (CS)

0

~ where the matrice®,,, Q. , andQ, are given in(Al)—
Following Refs. 22 and 23, we seek the solutiog(s) (A3), and

in the form
- - lan <Y4n—i,—4(n—1+6io)>0
Cn(8)=S(s)Cp-1(s) +Un(s), (B3) Yans )

lan—1 an—i,—4(n—2+8;4)/0

where S,(s) is a matrix continued fraction given b§27). Rn= Fan_s |’ Fan—i= . '

Substituting(B3) into (B1) and allowing for the fact that, '

according to the definition of the continued fracti(2Y) Fan-3 (Yan—ian-1+ 6i0>>0
Si(8)=[s7n —Qn—Qn Sh+1(9)]7'Q, i=0,1,2,3,... .

we arrive at the recurrence equation The solution of Eq(C3) has the form
Un(8)=54(5)(Qq) T7nCol0)+Qq Unsa(9)].  (BY) & (0)S,_4(0)- - - S(0)S,(0)

Ry=Si(0)Ry-1= , (C9

This equation can be solved by successive substitutions and 4
has the form
whereS,(0) is the matrix continued fraction defined (&7)
-\ - with s=0 and where we have allowed for the fact t
Un(8) = 7S(9)(Qy) 1|cn<0> i s
Using (C4), we can write the initial-value vectof3,(0)
as

o k
+2 | I Qi 1Siem(s)
k=1 | m=1

_i % T
X(Qr;rm)il Cn(O)— \/E[Kn+[Kn+Kn+1Sn+l(0)]

Cn+k(0)] : (BS)

_ _ _ X 5(0)]S,-1(0)] - - - $1(0), (CH
Thus, allowing for(B3) and (B5), we obtain the desired so- .
lution (26) if we putn=1 andC,(0)=0. where the matriceK, andK, have the form
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0 U, 0 0 0O 00
Un 0 Upy O 5 0O 000
K=l o UL, 0 Un,|® 7| o o 0 o €6
0 0 U, , O Usm-z3 0 0 O
with the matrixl%l degenerating into a vector of dimension 6. The submattitgs 1, Usn_», andU,,_5 in (C6) are
Ugn—i,—4(n-1) 0 0 0
0 Ugn—i,—4(n-2) 0 0
Ugn-i= 0 0 Usn—i,~4(n-3) - 0 (€
0 0 0 “rr UWan—ian-1)
(i=1,2,3) and are of dimension (2-1)X(2n—1). The submatriXl,, is
Ugn,—an+4 0 T 0
0 Ugn,—an+g - 0
Uan= : : : (€8
0 0 “or Uansan-4
0 0 0
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Nonlinear-spectroscopy population effects due to spontaneous transfer of optical coherence are
examined. The existence in the velocity distribution of new resonance elements of a

specific form is established. The occurrence of these effects in the nonlinear resonance of a
counterpropagating wave is analyzed. 1899 American Institute of Physics.
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1. INTRODUCTION shown in Refs. 7-9 for linear emission, absorption and re-
fraction spectra.
The main physical “signature” of the nonlinear spec- In view of all this, we should expect that in the event of

troscopy of rarefied gases is the Benneit structure, which is @ptical-coherence transfer the fine nonlinear structure in the
system of fairly sharp “peaks” and “dips” in the distribu- velocity distribution will differ from the ordinary Bennett
tion of the atoms in the velocity projected on the wave vectorstructure due to the effect of the strong field on the level
of a monochromatic field resonantly interacting with thepopulations. In this paper we will focus on this problem. In
atoms' The spectral manifestations of the Bennett structureSecs. 2 and 3 we will use the simple model of nondegenerate
are closely linked to two other fundamental phenomena, thstates to derive a velocity distribution that allows for coher-
field-induced splitting of levels and the nonlinear interfer-ence transfer. In Sec. 4 we analyze, under the same condi-
ence effects, and critically depend on many factors, such aons, the nonlinear resonance of a counterpropagating probe
the type of radiative procegabsorption, scattering eicthe  wave. In Sec. 5 we generalize the results to degenerate levels
spectral and spatial properties of the field, the field intensityand discuss polarization effects.
and polarization, the nature of the collisions, the angular mo-
r_nenta of the levels, the oscillator strengths, and the externazl' THE MAIN RELATIONSHIPS
fields (see, e.g., Refs. 234

The shape of the components of the Bennett structure Radiative optical-coherence transfer has much in com-
follows the spectral lineshape of an immobile atom and inmon with collisional transféf but differs from the latter in
many cases is Lorentzian. Generally speaking, variations ithe origin or mechanism of transfer. In contrast to the colli-
the atomic velocities due to collisions affect the contours ofsional process, radiative spontaneous optical-coherence
the Bennett peaks and dips, sometimes significantly, but dovansfer has a unidirectional cascade nature. The spontaneous
not alter the dome-like shape of the contours. This “stabil-transfer of optical coherence is universal and is virtually in-
ity” of the shape of Bennett structures results from allowingdependent of the external conditiof@e exception is radi-
only for radiative and collisional transitions in the number of ating systems in a higlp} cavity that interact with a small
particles. If magnetic- and optical-coherence transfers araumber of modes Below we examine the process of spon-
taken into account, the situation changes dramatically. Thitaneous optical-coherence transfer for a system with a level
is a fact well known in the theory of collisional collapse of diagram sketched in Fig. 1.
spectral lines and in the spectroscopy of magnetooptic reso- To make things clear and simple, we begin with the
nances. For instance, a spontaneous magnetic-coherence ca®del of nondegenerate states. The fact that degeneracy ac-
cade generates a resonance whose contour is described tinally exists strongly complicates analysis due to the interac-
the product of two complex-valued Lorentzians and altertion of transitions withAM=0 andAM==1 (M is the
nates in sign(see, e.g., Refs. 5 and).6The spectral line magnetic quantum numberbut at the same time has little
reflecting radiative optical-coherence transfer undergoesffect on the qualitative picture of the phenomena. It is also
similar changes. More precisely, in Refs. 7-9 it was estabknown that some simple systems with small angular mo-
lished that radiative optical-coherence transfer from a highmenta are described directly by the model of nondegenerate
lying transitionm;—n; (Fig. 1) to a low-lying transitionm— states. In Sec. 5 we will show that a similar rule holds for our
nconstitutes a special type of radiative process, which differproblem. Note that in the level diagram depicted in Fig. 1
from the Bohr—Einstein procegparticle transferand the four transitions are allowedm;-n;, m-n, m;-m, and
Barrat—Cohen-Tannoudji proce@sagnetic-coherence trans- Ni—n. Moreover, for optical-coherence transfer to manifest
fer). While the latter processes determine the intensity andiself the differenced = wy, n, — @y, Must be small.
polarization, optical-coherence transfer generates a charac- Suppose that the electromagnetic field is a plane mono-
teristic interference, alternating-in-sign, structure, as waghromatic wavedfrequencyw, wave vectok, and amplitude

1063-7761/99/88(1)/10/$15.00 6 © 1999 American Institute of Physics
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S lepmlz_ZquGIP1)+le,
- 2.4
Fnlpnlz2Rd|G1p1)+in+Amlnlpmlr
Fmpm:_ZquG*P)"'Qm"'Amlumla
. 25
I'pn=2R€iG P)+Qn+Amnpm+AnlnPnly

where theQ; are the excitation rates of the levels The
terms Ajjp; describe spontaneous population cascades,
which, obviously, should be taken into account in examining
optical-coherence transfer. Substitutif@g3) in Egs. (2.4

and (2.5 yields the equations

—

FIG. 1. The transition diagram for a four-level system. The vertical arrows lepm1+ W1(Pm1_ Pnl) = le,

stand for polarizations induced by a resonant field, and the connecting (2.6)

slanted arrow stands for the optical-coherence transfer. (T —A ) +T =Q,,.+Q !
m; mny ) Pmy n,Pn; my ny

Fmpm+W(Pm_Pn):Qm+Am1uml+W(Pnl_pml)i
E). We use the standard resonance approximation and the (2.7
model of relaxation constantsee, e.g., Refs. 2 and.4Jn- (F'm=Amn)Pmt I'npn=Qm+ Qnt Am mpm, T An nfn,»

der the above restrictions and steady-state conditions, th\ﬁhere we have introduced the following notation for the
off-diagonal elementp andp, of the density matrix for the 9

s . stimulated transition rates:
transitons m-n and m;—n,;, respectively, obey the

equation8 _2rjaf? _2r,[Gy?
(I =19)p=iG(py—pm) +Ap1, T R T T
o 2.
(I'1=iQ9)p1=iG1(pn, = Pm,)- (2.8
2G*G,A

Here thep; (j=m,n,m;,n;) are the diagonal elements of W=Re — —.
the density matrix, anfl andI'; are the relaxation constants. (=i ) (I —iQy)
The termAp, describes optical-coherence transfer proces

SThe system of equatiori®.6) contains only the populations
with A the rate of spontaneous optical-coherence transfer: y d 2.6 y bop

Pm, and Pn, of the levels of the “upper” transition. Its so-

A=K AmmAnn (2.2 lutions enter into the right-hand sides of the equations of
) system(2.7), in accordance with the cascade nature of the
G=dnE/2h, Gi=dy,E/2h, Q'=0Q-k-v, spontaneous optical-coherence transfer. The physical mean-

, , ing of Eqgs.(2.6) and(2.7) is well known. An essentially new
Q=0=om, 4H=0"-A=0;,-kv, term corresponding to optical-coherence transfewig,
Ql:“’_“’mlnl’ A:wmlnl_wmn: Omm™ @nyn s —pml). We see that the coherent process of optical-
) . coherence transfer leads to a cascade population flux. Similar
whered;;, j;, andA;; are the dipole-moment matrix ele- (4 ginstein stimulated process@ghich are transitions due to
ments, the Bohr frequencies, and Einstein’s first Coeff'c'em%bsorption and stimulated emissjothe “coherent” transfer

for thei—j transition, andK is a proportionality coefficient a5 1 effect on the total excitation flux for the levedsand
of order unity, which actually depends on the degeneracy of, [the second equation if2.7)]. As in the case of Einstein

the level and will be specified in Sec. 5. According to EAS.prqcesses, the coherence transfer flux is proportional to the

(2.), differencepnl—pml of the populations at the “upper” tran-
iG, sition, which emphasizes its cascade origin. Frgh®) we
Plzm(l)nl—ﬁml), see that the raté/ is proportional to the field intensityE|?,
1™ 1

and in this respect optical-coherence transfer is no different
AG, (23 from other nonlinear effects. AIso,WocdmndmlnlA
P G(pn=pm) + m(pnl—pml) . oc\/AmnAmlnlAmlmAnln, which reflects the interference
! properties of optical-coherence transfer as a coherent pro-
In weak fields the level populationg; are assumed cess. In contrast tww andw,, which are proportional to or-
fixed. Equation(2.3) has been used in Refs. 7 and 8 to de-dinary Lorentz factors, the frequency dependencahbls
scribe the role of optical-coherence transfer in this approxidetermined by a product of two complex-valued Lorentzians
mation. To analyze the nonlinear phenomena, which are adind is found to alternate in sign. One can easily show that the
interest to us and are related to the variations in the populantegral of W with respect to the frequenay vanishes, as it
tions caused by the field, we examine the equationgfor  should for an interference effect. However, the integral of the
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flux W(pnl—pml) with respect tow is finite, since in the Nig 02 2T,
presence of nonlinear phenomena the populations are N;j= gl 3EXP< - =2)1 V= o (3.3
frequency-dependent. (Vo) v
Absorption(amplification of the field is determined by whereT, andm are the atomic temperature and mass.
the work done by the field: The expression inside the braces in E2}1) consists of
— e * terms describing the field-induced variation of the population
P==2hoRgi(G*p+C1p1)) difference, where the last two terms are related to cascade
=hao(W(py—pm) + (W1+W)(pﬂ1_pm1)>’ (2.9 population transfefeffects of the type discussed in Ref.)12
and of interest to us only in second order. We focus on the
where the angle brackets stand for averaging over the velociarm containing the rate; this term describes the variation
ties. The dependence &f on the frequency) stems from  of the populations due to coherence transfer fromnthen,
two factors: the lineshape of a single atom, which is specifieqransition to them—n transition. By its very appearance this
by w, wy, and W, and the variation of the difference of term giffers little from its analog related to “ordinary” tran-
populations as functions 1. Like the classical statement of sjtions: instead of the rate of stimulated Einstein transi-
the Karplus—Schwinger probleththe absorption lineshape tions we havew, and instead of the differend¢,—N,, we
for a strong monochromatic field changes, accordin@t®,  have the saturated population difference of the “upper” tran-
because of the second factor, the frequency dependence gfjon, pn,~Pm,- Hence the population variation due to

the ffld—(ljnduced Valr'at'or':?i_fpj -dThUS' olpt|cal-lcof_1erenfceh optical-coherence transfer experiences saturation both on the
transfer does not alter this fundamental conclusion of the, o transition and on the “lower” transitiorithe factor

theory. 1/(1+Tw)]. The components gb,— p, due to a population
cascade have the same propditye last two terms in Eq.
(3.D].

3. VELOCITY DISTRIBUTION OF THE ATOMS We now write the well-known expressions for the popu-

lations of the levels belonging to the “upper” transition,

When the atoms interact with a plane monochromatiGyhich enter into(3.1) and are simpler because they are not
wave and the Doppler broadening is large, the velocity dis«rgened” by cascade processes:

tribution of the atoms acquires a characteristic Bennett struc-

ture, which has been studied in detail in the two-level model T2k, 1

(see, e.g., Refs. 234Below we analyze such a structure in Pm; ™~ Nim, = m m(an_le)’
the four-level system with optical-coherence transfer. 1s 770 !

The solution of the system of equatiof.7) for p, L+ T, = Amn,
— pm Can be represented as T,= ;
I‘manl
Pn—Pm=Np—Np,
N Mk — )(N Nim.)
Pn, 7 Nn == , - n,~ Nm,)s
~ 7o TWNy = Nep) + TW(pn, ~ pr,) S F T TE R
2|G,|*T
Anln(pnl_an) Kl=$, (3.4
- - 1
Iy
FZK]_
Am,m(T'n=Amn) (Pm,—Nm,) — =l1-—= (N, —Npm.),
1 . 1 1 ' 3.1) Pn, ™ Pm, Fi*‘ﬂiz n,~ Nmy
2
where theN; have the meaning of populations of the levels , _ 2|G|"T
j=m,n,my,n; in the absence of a field, andis the effec- r -
tive time of interaction of the field and the two-level system
o YEM2 —r2(1+ky), T2=T%(1+x).
Q Q. +A, N Equations(2.9), (3.1), and(3.4) imply that as the field
N o=y =M Tl M intensity tends to infinity, the population differences
N Ty, ’ —pm and p, —pp, tend to zero as [E|? while the work
done by the field,P, tends to a finite value. Hence these
N :Qm+Am1mNm1 N :Q“+Am”Nm+A“1”N”1 properties of the classical saturation effect are not violated
m | A oo r, ' by optical-coherence transfer.
(3.2 It should be recalled tha2’ and(); are linear functions
I +T.—A of the projection of the atomic velocity on the wave vector
=$ k [see Eq.(2.2)], so that the dependence &' and O}
m* n

represents the velocity distribution. From E@2.9), (3.1,
We will assume that th&l; have a Maxwellian velocity dis- and (3.4) it follows that the distinctive pattern in the four-
tribution: level system considered here consists of Bennett “peaks”
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f tribution corresponds t&v =0 and can be at any point on
1.0 the horizontal axis in Fig. 2. Thus, optical-coherence transfer
0.8+ generates elements of a specific shape in the velocity distri-
bution, elements that differ from the Bennett structure proper
0.67 resulting from the interaction with the field and from the
o4k ] structure reflecting a cascade transfer of parti¢fespula-
) 5 tions).
0.2}
3
0 4. NONLINEAR RESONANCE OF A
_02} ) COUNTERPROPAGATING PROBE WAVE
_04f As is well known, when Doppler broadening is large, the
work P done by a traveling wave, regarded as a function of
’O-f_’ls m o 0 p frequency, has a Gaussian shape with a Doppler Wititte.,

x a Bennett structure does not lead to narrow nonlinear reso-
FIG. 2. The graphs of(v) as functions ofk— (ko — Q)/I': curvel, A—o  ances. Using Eq¢2.8), (2.9), and(3.4), we can easily show
andl'=T,; curve2, A=4T andl'=T',; curve3, A=4T andl'=2I';; and  that the above conclusion is also true in the case of optical-
curved, A= 10" andl' =3I, (the functionf(v) has been multiplied by 20 ~ coherence transfer. The fine structure of the velocity distri-
bution of the atoms can be detected by different versions of
the probe-field methoti:* Here we use the method of a
and “dips” and specific components reflecting the optical-counterpropagating probe wave of the same frequéncy,

coherence transfer process. A Bennett structure has the safiich is convenient from the experimental viewpoint since it
properties as a structure without optical-coherence transfggquires the use of only one laser.

(Lorentzian contours with characteristic halfwidthg and As is known, three types of nonlinear effects manifest
I'1s). The structure with optical-coherence transfer is dethemselves in the probe-field method: variation of popula-
scribed by the term on the right-hand side of E8}1) con-  tjons by a strong field, field-induced splitting of the levels

taining W. The transition rateV as a function ofv =k-v/k  jnto quasienergy sublevels, and nonlinear interference

has a nonstandard form. We write effects>* When there is a counterpropagating probe wave
AG*G, and large Doppler broadening, field-induced splitting of lev-
W= T f(v), els and nonlinear interference effects do not manifest them-
1

selves in the first nonvanishing nonlinear corrections, i.e.,
[T4[TT;+(A2)%2— (kv —Q+A/2)?] (3.5 only population effects are important in this approximation.
V)= EPSITTY ~ > Below we examine this simple case.
[I"+ (ko= Q)7][T1+ (ko — Q2+ 4)%] For the polarizationg,, and p;, induced by the probe
In Fig. 2 the functionf(v) is plotted for some values of Wwave at the “lower” and “upper” transitions, respectively,
|A|/T andT'/T;. The integral off (v) with respect tay van- ~ We have equations of the for(@.1):
ishes, and the function changes sign at

(Fl_iQi,u)Pl,u:iGl,u(Pnl_Pml)i

kv=Q— A2 +\(A/12)2+ TIT;. (3.6 L
, , , (I'=iQ,)p=1G ,(pn—pm) +Ap1,,
If A=0 holds, the functionf(v) is symmetric about the 4.1)
point kv=Q, GMdenEﬂ/Zh, GlM:dmlnlEﬂ/Zh’ ’
(o) I'Ty[I'T;—(kv—0)?] 57 Q,=0+ko, Qf,=0;+kv,
V)= y .
[T2+ (ko —Q)2|[T5+ (kv —Q)?] whereE,, is the amplitude of the probe wave, and the popu-

lations are independent of the characteristics of the probe
wave and are given by formuld8.1) and (3.4). The work
done by the probe field is described by the expression

and(if we discard the negative ta)lsesembles a Lorentzian.
But in the limit |A|>T,T'y, near the point&v = andkv
= —A the functionf(v) is described fairly well not by

Lorentzians but by dispersion curves: P.=—2hwReiG}p,+iG], p1,)

I, [(kv—0Q) G2 G1,l?
fo)~— — ————, |ko—Q|=~T, _ B ™) I _ 1Bl
(0)==3 2+ (ko — Q)2 | | 2hoRe| £ 50 1) P P T T i, T ko)

3.8
T Iy(kv—Q+A) ko — O+ A|~T o9 + AG,Cu, ](P —p )>
YA (k-2 : [T=i(QFko)J[T,—i(Qy+kv)][ P Pm) [

(curve4 in Fig. 2). The functionf(v) depends on three pa- (4.2)
rameters, e.gl'/T'y, A/T", andQ/T", but not on the charac- Combining this with(3.1) and (3.4 are keeping the first
teristics of the Maxwell distribution. The center of this dis- nonlinear correction terms, we obtain
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|G, T2k and the other is the nonlinear resonance in the Bennett struc-
P.,=2ho 5 ® > - 2) ture of the “upper transition”’m;—n, of the part of the po-
2+ (Q+ko) I'“+(Q—kv) larization that is induced by the probe wave and has experi-

AT enced optical-coherence transfer,
X(Ny=Np) = F- G* B1f (@) (No,~Nin)

| Re Ty r2
&\ TTIM=i(Q+ko)][T1=i(Q1+kv)] 124 (0, —kv)?/

LESR (Np. —Npm.) 4.9
Tir24(Q,—kp)2 ™ :
The integralsl 1,1, andl,,l5 characterize the spectrum of
|G|’y G;GIMAf absorption of the probe wave by the two-level systema
F§+(Ql+kv)2 T, (-v) andm,,n,, respectively, provided that these systems are not

coupled; the quantitiel; andlg—I g reflect population trans-
riKl fer (I¢) and optical-coherence transfer.
1- 24 (0 —Kko)? (Nn,—Nm) |, (4.3 The quantities ;—I 3 can be expressed in terms of the
1+ (Qy~kv) error function (probability integral of a complex-valued
argument? For instance,

where

A
mpny

U,

A, B r _aT _T-i0
o (44 Il_Re<l“—i(Q—kv)>_ o AWl P
! (4.10

Amn) Amlm N
T Ty

Tzz(l_

Equation(4.3) has eight different terms. Three terms corre-

spond to linear absorption of the probe wave: two VOigtw(p)=exr(p2)[1—<I>(p)], q)(p):i jpexp(—tz)dt,
contoursl, andl for the doubletw,,, wm . and the inter- Jm Jo

ference contout; described in Ref. 8: (4.11
2 NCa W r,—iQ,
1= F— ; l,=—=—Rdw(py)], p1=——=—,
2+ (Q+kv)? kv kv
(4.9

| b
2\ 24 Qg+ kv)?

mTTy _ w(p)—w(py)
>, la=(f(—v)). l3= e Re oTp (4.12

All averaged expressions i@.5—-(4.9) can be represented

The counterpropagating-wave resonances due to the ordin . ; X ’
partial fraction expansior(gs functions okv) and hence
Bennett structurd,, andl 5, and the cross-resonance due to a : . . S
can be written in the form of linear combinations of the

Bennett-structure population cascatlg,are proportional to functionsw(p) with different arguments. The quantitiés-

the factors I 5 have been thoroughly studied, so that we need to consider
2 r2 only l¢—lg, which reflect the interaction of the monochro-
4=< > , matic waves with both transitions and describe the contribu-
tion of the stimulated population transfer and optical-
(4.6)  coherence transfer to the nonlinear resonance of the
I < Ir? r? counterpropagating probe wave. Here we will not write the
5= , lengthy expressions fdg—I g in terms of the functionsv(p);
P+ (Qatke)? T (Qg—kv)? wegcozfinepourselves t& afl analysis of simple and p(hlzl)sically
clear limits and, primarily, the limit of large Doppler broad-

2 2
o= I 1 _ (4.7) ening C,I";<kv). _
I+ (Q+kv)? T3+ (Q;—kv)? The value of the parametek|/kv is important here. For

_ _ _|A]<kv and|Q|<kv a Bennett structure involving the lev-
Finally, there are two nonlinear terms related t0 optical-g|s of poth transitions and an optical-coherence transfer

coherence transfer: one is the nonlinear resonance of thg.,cryre develop within the Maxwell distribution. In this
counterpropagating wave in the population variation due tQ,<q the approximate expressions are
optical-coherence transfer,

2+ (Q+kv)? T2+ (Q—kv)?

Jal [(T+Ty)/2

|,= r 6 ke (T 4T 24t (0 A1)
T\ (Q+ko)? Y e
Q-AR2
| Y Xexp — — , (4.13
X Re (4.8 kv

[T=i(Q—kv)][T1—i(Q1—kv)]/’
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1, () In other words, the resonances near the frequerties,
15 ) A/2, andA are spectrally resolvable.

In the limit |A|>ko, the value of|Q|/kv plays an im-

1.0 portant role. If|Q],|Q,|>kv, all four levelsm, n, m;, and
n,; have no Bennett structure, and the Lorentz factors in
0.5 (4.7—(4.9 overlap by distant tails. Then
| =r2r§ i rar2
0~ 6 Qzﬂi, 7 93911
(4.19
05 | r? QL0
8:_ ] [} 1 >Kv.
003
-1.0 . .
-l 5 0 5,10 If |A] is still much larger tharkv but we have eithef(|

_ <kv or |Q|<kv, there is a Bennett structure involving the
FIG. 3. The graphs of,(Q) (solid curve$ andlg(Q)) (dashed curvesas
functions ofx=(Q— A/2)/T": curve 1, A—0 andl'=T'y; curves2 and5, Igvels of one transition, _and because of the resonance condi-
A=4T andT'=T,; curves3 and6, A=4T and['=2T';; and curvestand  1iONS the values of thg increase substantially:
7, A=10" andI"'=3I"; (the functionsl,; and|g have been multiplied by

10. fr r2 Vo T3
le= o —TﬁlmW(P),
(4.17
NCaw _
| =\/;_F Re e " & F2+Q2 [2l<ke,
T oke (T=iQ)[(T+T)R2—i(Q—A/2)]
) N re | [ ?
1 | e we |
xXexg —| =| |, (4.149 kv A2 kv
kv
3
N7y |7=—J;_Flr—3|m w(p,), (4.18
8 ZkU_ kv A
J— 2
e ITaexp—[(2-8)/ku ]’} SR CAYEN leﬂlzexr{_(“__l) Q4] <ko.
[(T+T /2= i(Q—AI2)][T1—i(Q—A)] 2kv AT2+02 v

(419 Hence, when the splitting of the doublet is so large that it

All three formulas have characteristic resonance singularitiegppreciably exceeds the Doppler width, the largest amplitude
at the frequency=A/2, right in the middle between the Of the resonance due to optical-coherence transfer is attained
components of the doubl® =0 andQ=A, right out of a  when the field frequency is scanned within the limits of the
clear sky, so to say. The reason is that the resonant rates Boppler width of the doublet componeritt; in (4.17) and
the Bennett structure for the “upper” transition ske=Q  lgin (4.18].
— A, and after the spontaneous transfer to the “lower” tran-  Let us discuss the amplitude properties of the reso-
sition they are in resonance with the counterpropagatingiances. We begin by noting their dependence on the Einstein
wave atkv=—. The two conditions match @ =A/2, a  coefficientsA;; of the four allowed transitions in the system
fact revealed in4.13—(4.15. The same arguments explain Of levels depicted in Fig. {note that @;;)*? is proportional
the splitting of the Lamb dip in gas lasers with a magneticto dj;). The resonances of the two-level systems, which are
field applied to their active mediuit:? described by the integralg I, andl,,ls, are proportional to

Formula (4.13 describes a nonlinear resonance of theAmnAm,n, @nd A% A%, . respectively. The other four
ordinary Lorentzian shape. The contours of the nonlinearesonances are closely related to the radiative transfer of par-
resonance#t.14) and(4.15), related optical-coherence trans- ticles or polarizations and contain products of all four coef-
fer, are characteristic of an interference effélg. 3) and ficientsAj; :
qualitatively resemblé(v), differing only in width and po-
sition of singularities(cf. Figs. 2 and B The resonances, |GG 1A% \VAmAm 0 AmmAnn (13,
andlg are shifted in relation to each other and overlap only .G, 1216, Ay A
in the regionQ~A/2, where they are partially balanced My oM ams Ny
when|A|>F,F1. o |G |2G1G*Aoc \/A nAmln AmlmAnln (|7),

Formulas(4.13—(4.15 are valid for|A|<kv, while the
halfwidthsI" andI'; can be either larger or smaller thik|. |G1|*GJLG1, A% \/AmnAmlnlAmlmAnln (Ig). (419

mlnlAnlnAmn (l 6)1




12 JETP 88 (1), January 1999 S. G. Rautian

The coefficientsA;; may differ substantially, by a factor of TABLE.
ten or more, and so the ratios of amplitudes of differemNO

e . I Jn I Jn AM

resonances may vary within broad limits. 1 L
Now let us examine the effect of Doppler broadening onl 1 0 0 1 0x1
the amplitude properties of linear and nonlinear resonanceg. 1 0 1 1 0x1
: X 1 1 0 1 0x1
We take the amplitude of a Doppler broadened spectral ling 0 1 1 0 Ol
in the absence of saturatighe., VaI'/kv) and use as the 5 0 1 1 1 0x1
unit in estimating the amplitudes of the other resonances$ 1 1 1 0 01
ignoring all other factors. Sincé(v) alternates in sign, the ’ 1 1 1 1 0x1
1/2 1/2 12 112 *1

contribution of optical-coherence transfer to the linear ab®
sorption coefficient contains an additional factor/kv (if
the conditions for resonance are met{,|Q|,|Q4|<kv) or

T/A] (if [A]>kv and|Q[~T) or Tko/AZ? (if |A|>kv and interpreted as the quantitie.1) after E, is replaced by
|[,/Q4|>kv). On the other hand, the nonlinear resonance£ ,,. Spontaneous magnetic-coherence transfer, which is ab-
due to optical-coherence transfer have relative amplitudesent in the model of nondegenerate states, proceeds with a
Jkxy (17) andk; (Ig), which may exceed the amplitude of rate*®

the linear resonances. Thus, the selectivity of the Bennett , ,

structure compensates for the negative effect of the fact that AlmMJImM |Jm1M1‘Jm1M1)

f(v) alternates in sign by replacing the factog /kv with

Jkky or k1 and, to within these factors, the amplitude of the =Am,m 2 (InM LI M)} (IpM 10]35 M7).
nonlinear resonances due to optical-coherence transfer re- 7

mains essentially the same as for immobile atoms. (5.3

Thus, the problem reduces to a set of four-level systems
5. DEGENERATE LEVELS jI;M; (j=m,n,my,n,) that to a certain extent are coupled
by spontaneous and stimulated processes. The problem be-
The analysis of Secs. 2—4 can also be applied to degeromes extremely cumbersome for arbitrary values;cdnd
erate states. To this end, each magnetic sublevel should g strong fields, especially because of the inclusion of all
considered a separate state. We then deal with a set of fOLWpeS of spontaneous cascade processes. Hence’ as in other
level systems each of which resembles the one depicted ifireas of nonlinear polarization spectroscopy, we limit our-
Fig. 1. We introduce the density matrix elementsselves to the analysis of specific cases.
p(JiM;,J;M;) (M; andM; are the magnetic quantum num- First we must mention the states of field polarization and
bers of the statesandj) and replace the matrix elemers  systems of levels with small values df, which can be
and G, of the interaction with the field and the optical- directly reduced to the model of nondegenerate states and to
coherence transfer rate via the well-known formu(ase,  which the first three rows in Table | correspond. For the

e.g., Refs. 2, 4, and)8 combinations represented by rows 4—8 of Table I, the prob-
lem of the interaction with a strong field also reduces to the
dmn
GoGymr=—m—e— model of degenerate states and can be solved exactly for
243h arbitrary field intensities. The distinctive nonlinear structure
of the velocity distribution contains the same elements as in
XE (_1)Jn—M’<JmM J,.—M'|10)E,, the model of nondegenerate staisge EQ.(3.4) and the

discussion that follows However, in the cases correspond-
(5.7 ing to rows 4—8 of Table | there are additional population

GG = Omyn, cascade channels, and because of this the relative amplitudes
LT 2y/3h of the various structure components change. The difference
between the cases represented by rows 1-3 and 4-8 is illus-
XZ (_1)Jn1—M’<Jm M J,. —M'|10)E, trated in I_:i_gs. 4a an(_JI 4b: the dashed arrows in Fig. 4b indi-
o 1 1 cate additional(relative to the model of nondegenerate

state$ spontaneous cascades, which contribute to the Ben-
nett structure in the levels involved in optical-coherence
transfer. Hence the systems listed Table | exhibit nothing

A—AIMIM 35 M13, M))

= VAm;mAnn > (IaM 10]Im M1) new in comparison to the model of nondegenerate states, so
v that we will not analyze then here in greater detail.
><<Jn'V|'1U|Jn1'V|D- (5.2) In diagrams of levels with large values of angular mo-

mentaJ;, the problem of the interaction with a strong field
HereE, is the circular component of the field, is the total becomes more complicated, which naturally leads to a more
angular momentum of statg d;; is the reduced dipole- complicated Bennett structure: each of the subsystenms
moment matrix elemertf and(---|---) stands for a vector andm,,n; acquire Bennett dips and peaks, and the squares
addition coefficient. AlsoG, and G;, of Sec. 4 must be of the corresponding widths are nonlinear functions of the
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E2=2 [E,.l% (5.5

and the effective time§,., T,,, andT,, are similar toT,
T,, and T, of the model of nondegenerate statesse Egs.
(3.2, (3.4, and(4.4):

2
a b T = am Nk aan _ amnxaanAmnK
: . . : © I'm T Pl
FIG. 4. Diagrams of optical coherence transfer in the case of row 1 in Table
| (& and in the case of row 8 in Table | and an additional spontaneous 2 2
population cascad@lashed arrows(h). T Amyn, N anmix @myngx@ngm, cAmyn, «
1™ - ’
Lm, In, P n,
power of the field. An example is the interaction of a high- T. = AnmcAmnc | Amyme
power linearly polarized field and the system with=J, 2™ 8myny | Bmie r, lerm

=2 discussed in Ref. 16. However, the frequency depen-

dence of the optical-coherence transfer rate similaitbas 8m,n, «Amn;« | Anjnk
the form 1/C—iQ)(I';—iQ;), as in the model of nonde- T anme| 8nmyx— T T (5.6)
. . m n n
generate states, i.e., we can say that the Karplus—Schwinger !
ideal! according to which in the strong-field problem the 331
broadening is due to light-induced population variation, re- amnKzg(_1)1+K+Jm+Jn[ noom ]
mains valid. At moderate intensities, when we can limit our- 1 Jnm
selves to the first nonlinear corrections, the theory leads to a
universal result for arbitrary values df and arbitrary polar- anm=3(— 1)1+Jn+Jm[Jm dh 1
ization states of the field. We will not write the expressions “ 1 J,
for the velocity distribution and the work done by the strong
field, and we limit ourselves to an analysis of the wétk A=A mAnn(—1)7m 20, +1
done by the probe field in the scheme with a counterpropa- ] 3 L
gating prove wave of the same frequency: ><\/m| my Yy ]
2 2 2 Jn Jn 1
P,=2ho| 5~ 2h 3 L ()Nt | 7 12(2) o L3 x (5.7)
n " Ajj = Ay (= DH J<2J.+1){Jj ) 1),
+ I, I3(Q)}anm1 2h 2E .
d=[—, N;=N,—N;.
T, dmn : :
X2 l(xq)lz(xm{—zumm
xq r The dependence d?, on the frequency) is given by
o2T, dZT the same .integrallsj((l) as in the model of nondegenerate
+ “15(Q)Npym ()N states defined by Eq$4.5—(4.9). Thel;(Q2) acquire other
2 T, o coefficients(in comparison to the model of nondegenerate
5 state$, which depend on field polarization and degeneracy of
dA R EI )+ d T1K| Q )N the levels. The quantitie§, andT,, are the effective times
FF r () r 8({2) MMy of the interaction of the field and the polarizations moments

in the transitionam—n and m;—n4, andT,, is the effective

(5.4 time of interaction for the spontaneous cascades through the
Herel(xq) andl ,(«q) are the normalized field polarization channelsm;—m, m;—m—n, n;—n, andm;—n;—n, a
tensors, parameter specific to four-level systertis two-level sys-
. tems there are only, andT,, ; see Refs. 2 and)4Formulas
EsEx (5.4) and (5.6) remain valid of the decay times of the polar-
(k) =32 (-1)* (Lo 1-0]

ization moments of the levels depend gnin this casel’;
must be replaced b¥;, in (5.6) (see Refs. 2 and)4
5 ) Note that the timed, andT,, specify the amplitudes of
E _2;4 |Eql*, “ordinary” nonlinear resonances due to saturatidn({})
and I15(Q2)) and nonlinear resonances due to optical-
E,, E* coherence transferl{(€)) and lg(2)).In the event this
(k=33 (~1) 1oy 1- o] kq) ——r seems quite obvious, but predicting it would be difficult. We
ooy ,L conclude that the relationship between the resonance

g0
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TABLE II. Values of I («q) ,(«q). TABLE Ill. Values of K.

Kq N T— ++ + - Jml J”l Jm ‘]n K

00 1 1 1 1 J J J J 1-13(3+1)

10 0 0 3/2 —3/2 J J J J+1 1/Q+1)

20 2 -1 1/2 1/2 J J J+1 J —V1+2/(2J+1)/(J3+1)
J J J+1 J+1 V1I-1/Q+1)?

®Note The “plus” and “minus” stand for circular polarizations, and the j J+1 J+1 J 1/(3+1)(23+1)

arrows stand for linear polarizations. The combinatipfisand T — corre- J+1 J J J+1 1/(3+1)(23+3)

spond to parallel and orthogonal linear polarizations of the counterpropay 1 J+1 J+1 J —1J+1)

gating waves. The values for linear polarizations are given in a systemy 1 J+1 J J+1 JI=2/(23+3)/(3+1)

whosez axis is directed along the field strength in one of the waves, and theJ+ 1 3 42 J41 JT-a(23 1 3)?

values for circular polarizations are given in a system whosgisis di-

rected along. J+1 J+1 J+2 1

14(Q),15(Q) and1,(€),14(L2) is weakly dependent on the which follow from the orthonormality of p-symbols, we
angular momenta of the levels and is fixed by the valdes have

andl'/T";.
In the method of a counterpropagating probe wave INPER /ZJi+1A~
within the adopted approximation in the intensity of the e 23;+1°

strong field, the nonlinear resonances of all three types de- (5.11
. e . 23, +1

pend in the same manner on the polarization of the fields, NE 1 \/W

with the dependence expressed by the product of polarization 2], +1 VMM mn

*
ten.sors,l(gq)lﬂ(xq). The yalues 9“("‘1)'u(",q) for the and, as can easily be shown, the effect of the cascade terms
ordinary(simples} combinations of linear and circular polar- » /11 on T andT.. diminishes asc increases. Note
izations are listed in Table II. This table readily shows that,jct" i some cas@: may be negativéin the ad'opted
2 - ;  x
the ajj, entering intoT, and T, may be present in the o, qvimation this happens wher=2 andd,,=J,=1), and

following combinations acting as factors ofi 1/ then the population cascade extends the time of interaction
M a2 .+2a2 with the field for the corresponding polarization moment.
ijo ij2r R . ) .
] 2 2 It is convenient to write the factoA (the optical-
T—: ajjo—ais, coherence transfer rate the form
3 1
++: ai,+-ai,;+-a’ [23, +1
jo 2 ijl 2 ij2 _ my
X . A= 2071 VAmmAn K, (5.12
_. 42 2 2
+ . allo_ia”l“_za”z (58) \]ml \]nl l
- _ _ _ _ K=(—1)Im"n20,+1,/2, +1 )
The validity of the following relationships can easily be ! Jo Im 1
proved: since the coefficienK obeys the inequalityK|<1 and is
a2 o +2a2 ,=al o +2a ., symmetric with res.pect to the permutatiodﬁcﬂ.lHJn anq
) 5 5 ) Jn, = Im- Table Il lists the values oK for possible combi-
Amn ™ Amn2 =~ Anm1 ~ Anme nations of angular momentyj. Other combinations reduce
3 3 to those listed if we use the symmetry properties. We see that

1 1
2 2 2 2 2 2 . . . . .
anotsa8mmt5a8me=amm T 5 am T 5am-. (5.9  there is a remarkable casé=1, in which the polarization

2 2 2 2 e ' " .
of them;—n, transition is shifted to then—n transition with
As a result, for counterpropagating waves of like polarizationa probability equal to unity for all values af. For other
(11 and+ +), the level lifetimed"[* enter intoT, andT;,  combinations of angular momenti(<1), the values oK
in the combinationd’,*+ T, * andF,;11+ Fﬁll. This is also  may be positive or negative, and they can increase or de-
the case for arbitrary polarizations whan=J,. The quan-  crease with increasing,.

tities in (5.8) have been thoroughly studied in Refs. 2 and 4,
where the cases of strong dependence of the relative ampli-

tudes on the field polarizations are also investigated. 6. DISCUSSION
In view of the inequalities One of the main conclusions that can be drawn from the
K Im In fact that there is spontaneous optical-coherence transfer is
V23t 1\/2Jn1+ 1 ! <1, that the common two-level approximation must be discarded
1 Jn Inm even under exact resonance conditions. Joint analysis of at

(5.10  |east a pair of two-level systems coupled by optical-
<1, coherence transfer is required. This becomes especially evi-
dent when an external fielé.g., a magnetic fie)ds applied

K ‘]ml J“l
\/ZJml+l\/2Jn+l 13

n Jm
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to the systems, with each quadruplet of the Zeeman sublevetgants. But if rate variations are significant, the optical-
of the statesn,, n;, m, andn playing an independent role. coherence transfer structure occupies a special position due
Spontaneous optical-coherence transfer introduces nete alternation of its sign. In particular, in the model of intense
features into the physical picture of the processes that play arollisions, optical-coherence transfer provides almost noth-
important role in nonlinear saturation spectroscopy. The veing to the homogeneous saturation band.
locity distribution of the atoms acquires, in addition to a In conclusion we note that in this paper we focused on
system of Bennett peaks and dips, elements of the {8tBh  the doubletwmlnl,wmn. Clearly, similar phenomena occur
with specific shapes, alternating in sign and having a zerear the doubletwp, m,wn: all the relationships of this
total area(Fig. 2. The amplitudes of this op_tical-cpherence paper remain valid when we go over to this spectral region if
transfer stru_ctu_re depgnd on many fa_ct_ors; in particular, they, o interchange the indices as follows:—n,, m;—mj, and
decrease with increasing relative splitting|/I" of the dou- 1, These two doublets carry common information, since
blet. the properties if each doublet depend on the characteristics of

Nonlinear resonances of a counterpropagating probg| four transitions between the levats, n, m,, andn;.
wave contain two terms due to optical-coherence transfer. .
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Samples of-type germanium with a donor concentratibig=2.4x 10*cm™2 are plastically
deformed to a degree of strain equal to 18—40% to detect static conduction by electrons
trapped on dislocations in a system of dislocation grids. In samples with<28%31%, which

retain an electronic type of conductivity, the conductivity 1o« 8 K, which is weakly
temperature-dependent, is associated with conduction by electrons trapped on dislocations. The
nonmonotonic dependence of the conductivity at 4.2 K on the degree of strain as the

latter increases from 18% to 40% attests to the existence of an energy gap between the donor
and acceptor dislocation states in strongly plastically deformed germaniuni999

American Institute of Physic§S1063-776(99)01101-4

1. INTRODUCTION location” band as a consequence of the semiconductor-metal
transition caused by plastic deformation.
The interest in the study of the conductivity of plasti- The idea that conduction is possible along dislocations

cally deformed germanium stems from the possibility ofwas also confirmed by observing the features of the micro-
quasi-one-dimensional conduction along dislocations and itgave conductivity of germanium with anisotropically ar-
relationship to the structure of the energy spectrum of disloranged 60° dislocations, whose density was less than 2
cations in semiconductors. X 10" cm 2 (Refs. 10,11 Investigations of the dislocation

In Ref. 1 plastically deformeg-type germanium was microwave conductivity in silicolf and germanium aided in
found to exhibit low-temperature static conductivity, which the development of theories regarding the structure of the
was characterized by a weak temperature dependence, tbaergy spectrum of dislocation states in covalent semicon-
essential absence of a Hall emf, and a conductivity at 4.2 Kiuctors. In Shockley’s pictut2 linear dislocation segments
exceeding that of the control sample by several orders cére represented in the form of rows of atoms with dangling
magnitude. It was assumed in Ref. 1 that the specific disloehemical bonds. These atoms can trap electrons from the
cation conductivity due to the motion of charge carriersconduction band or donate unpaired electrons to other cen-
trapped on dislocations in strongly deformed crystals is suters and consequently exhibit acceptor or donor activity, re-
perposed on the conductivity due to free charge carriersspectively. The states in a dislocation core were represented
which decreases as a function of temperature. It was subsat first by one level or a half-filled one-dimensional band and
quently establishéd* that dislocation conductivity appears later on in the form of two bands separated by a gap. Ac-
at a thresholdat a degree of straid>15% in Ref. 3 and cording to Refs. 14-17, the don@ower) E; and acceptor
6>30% in Ref. 4 and becomes a measurable Hall emf in(uppe) E, dislocation bands are separated by a dap
the dislocation conduction region asincreases further and ~0.18 eV and are located in the germanium band(gafike
that the signs of the Hall emf and the thermopower correthe model used to explain hole conduction on germanium
spond to hole-type conductivity. Structural investigatiots  bicrystal boundari¢§®. There are localizedE; acceptor
showed that the high-temperature deformation of germaniurstates(a narrow bangat a distance\;<<0.03 eV above the
and silicon to 5=15—-40% promotes the formation of a top of the donor ban&~" In Refs. 15 and 16 they were
block (cellulan structure and that 60° and screw dislocationshypothetically assigned to states of holes bound by Coulomb
(with a density~10°cm™?) are arranged, for the most part, attraction near negatively charged dislocation defects, such
in the form of grids in block walls. This permitted associat- as steps, kinks, and sites of intersection with other disloca-
ing dislocation conduction with the motion of holes trappedtions.
on dislocations along a branched system of dislocation seg- W.ithin this scheme it was possible to account for the
ments in block walls. decrease in the microwave conductivityristype germanium

The dislocation conductivity of strongly plastically de- with increasing dislocation densit{;}'as well as the depen-
formed germanium was investigated in Refs. 4 and 7—9 ovedence of the microwave conductivity on the concentration
broad ranges of temperatures and electric and magnetand type of the dopant preséfitThe dislocation conductiv-
fields, as well as in the frequency range 0.1-10 MHz. Thaty in strongly plastically deformed germanium was associ-
appearance of an activationless temperature dependence a&d in Ref. 3 with the same dislocation states as the micro-
the dislocation conductivity when a certain value &f is  wave conductivity. In this case there is probably static
attained, which depends on the deformation conditions, wasonductivity due to the motion of electrons trapped on dis-
attributed in Ref. 4 to the delocalization of carriers in a “dis- location grids inn-type germanium. In the present work an
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FIG. 1. Optical-microscopic image of t§&¢11 plane in a sample from group IB& 18%) after chemical etchin@ and image of a fragment of a dislocation
boundary in 112 plane obtained by transmission electron microscopy on a germanium samplé=x29% from group Ib(b).

attempt was made to detect such conductivity. improved. The measurements were performed on the linear
portions of the current—voltage characteristics. The magnetic
2. EXPERIMENT field strength could be varied from 0.05 to 0.7 T. The tem-

erature in the helium cryostat was held to withi®.05 K.
he maximum error in the determination of the conductivity
and the Hall coefficient wast20% and *=10%, respec-

The investigations were performed on single crystals o
n-type germanium cut from a G&0.1 ingot with a differ-
ence concentration of chemical dondentimony Ny=2.4 tivel
% 10'%cm™2 and a density of growth dislocations less than \)//V iously i tiqated the dislocati iruct f
10 cm 2. According to the data from spark mass spectrom- © previously investigate € disfocation structure o

etry, the oxygen and carbon concentrations in this ingot dgtrongly plastically deformed germanidnand silicort by

not exceed 1.2 10 and 4x 10%cm 3, respectively, and X-ray structural analysis, as well as optical and transmission

. . electron microscopy. It was established that the samples with
the concentration of other elements is less than 3;_ o
% 10%crm-3. 6=5-40% are composed of numerous blockslls) mea-

. . suring 1-20um (see Fig. 1a, as well as Fig. 2 in Refs. 3 and
Two groups of crystals in the form of parallelepipeds 5). The dislocations are concentrated mainly in the low-angle
measuring 18 6x 2.5 mn? were prepared for deformation. | y 9

They differed with respect to the direction of the compres—gtc;aggJ ?Zeiz Svigﬁl r?;gﬁoglvtélgclgs, ;;g;;:ﬁggo&lo;kerﬂf'nquir;?;_e
sion axis, which coincided with thgl0Q] direction in the y

5,21,22 ; ; _
crystals from group | and deviated by 10° in the crystals:scowz"S These boundaries are formed from partially or

dered rows of 60° and screw dislocations, which move dur-
from group Il. Consequently, the crystals from groups | and.

) ) . ing deformation, and dislocation segments formed as prod-
Il contained two primanf{111} slip planes or one such plane, o . .

. . " ) ucts of their interaction, i.e., they have the form of two-
respectively. All other deformation conditions being equal

this difference can influence the connectivity of the disloca-d!menSIonal dislocation grids. A8 rises, the number of

. . isordered rows of dislocations and incomplete fragments of
tion system. The other_e dges of the crystals were dIreCtegislocation grids decreases, and the fraction of reguiam-
along the[011] and[011] axes. These crystals were pol- '

ished mechanically and chemically, were coated by a thin
layer of gold(to prevent contamination by impurities during logo [Q - .cm™!]
deformation and were deformed afy=800°C in a dy- ]

namic regime to6=18—40%. The strained crystals were
cooled for 30 min affy and then cooled at a rate of 1-2
deg/min to room temperatuigroup I3 or were cooled to-
gether with the furnace without additional anneal{ggoups

Ib and II).

To measure the static conductivity and the Hall effect in
the temperature range 4.2—300 K, samples of lerghmm
and cross section-2x1.2mnt were cut from the central 0 100 200
part of the strained crystals. Six molten indium contacts were 1000/T, K~
deposited on chemically polished surfaces of these Sa‘mple}SFG. 2. Temperature dependence of the conductivity in cor{ipland

Aft_er high-voltage (25 kV) pulses were _SUpp"?d to each strained samples oftype germaniumi{y= 2.4x 10" cm™3, group I3 with
pair of current and potential contacts, their ohmic propertiesarious values o, %: 1 — 18.6,2 — 20.9,3 — 21.5,4 — 28.




68 JETP 88 (1), January 1999 S. A. Shevchenko
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FIG. 3. Temperature dependence of the conductivity in strained samples of E, /Q t
n-type germanium Kly=2.4x 10 cm™3, group Ib with various values of £ A
5, %: 5 — 27.6,6 — 28.4,7 — 31, 8 — 33.9 (p*-type), 9 — 49.1 £ :
o i "

plet-e) fragments of dislocation grids lil.(e. those shown in Fig'.FIG. 4. Energy diagram of dislocation states in germanium according to
1b increases. Therlefore, the connectlvllty of.the Macroscopig .. Jc ard 16 Heral, is the density of statesh,=0.07 eV, A!
system of dislocation segments covering distances of 300=¢ 03 ev,A,,~0.18 eV,A,=0.49 eV.

1000 A in block boundaries increases as a functiod.ofhe

estimated values of the mean dislocation densities in samples

with §=18-40% lie in the range X10°<Np<5 duction for 20%< 6<29%, the value ofr, , decreases with

X 10Ycm™2. increasingd and lies in the range 1¢—10 % Q" t.cm™L.
The small increase ia from 31% to 33.9% in samples
3. MEASUREMENT RESULTS and8 from group Ib, respectively, leads to inversion of the

type of conduction in the sample over the entire temperature
It follows from Fig. 2 that the conductivity in the control range and the appearance of dislocation conductionTfor
(k) sample decreases with decreasing temperature with an3g K, which was previously observed in Refs. 3, 4, 7, and
activation energy of 0.00480.0004 eV, which is equal to g |n this caseo,, increases by more than two orders of
half of the ionization energy of antimony atoms in germa-magnitude(compare curve and8 in Fig. 3. We shall call
nium and attests to the weak degree of compensation of th@amples8 and 9 p*-type samples. Thus, in plastically de-
original samples. In such crystals there is a transition to hopformed n-type germanium withNy=2.4x 101cm 3 the
ping conduction with a constant activation energy r yajue of o, , varies nonmonotonically as is gradually in-

<6K (Ref. 8. _ creased to 40%.
The o(T) curves for strained samples from groups la

and Ib are presented in Figs. 2 and 3. In strained sample

2—7, which retained an electronic type of conduction, theAS' DISCUSSION

conductivity for T>8 K decreases with increasing as a In the Shockley—Read modé&f$® some of the electrons
consequence of the decrease in the concentration and mobffom shallow chemical donors are trapped on states in dislo-
ity of free electrons, as has been observed repeatedly in preation cores im-type germanium af =0 K, and regions of
vious studie$:*® The number of electrons trapped on dislo- positive space chargd&kead cylindersform around the dis-
cations at 80 K equals-0.25N, for samplel and (0.5 locations. In accordance with the scheme of the energy spec-
—0.8)Nq for sample2, 3, 5, and6. In sample#t and7 with  trum of the dislocation statg§ig. 4) in strained samples of
the lowest conductivity in groups la and Ib, respectively, thegermanium withNy4=2.4x10*cm™2 and §<30%), which

Hall coefficient has a negative sign, but does not provideetain an electronic type of conduction, the cutoff for filling
information regarding the concentration of the charge carriof the dislocation states is found in tf& band. The free

ers in them. FoiT <8 K the temperature dependence of theelectrons within blocks are separated by dielectric regions
conductivity of then-type strained samples weakens appre-from the electrons trapped on dislocations in the walls and
ciably (except in the case of samplein Fig. 2). In samples  within the blocks. Therefore, several conduction mechanisms
2, 3, 5, and6 the conductivity for 4.2 K ¢, ) is 2-5 times are possible in such samples: conduction by free electrons
greater than the value for the control sample, =3 and hopping conduction between shallow chemical donors
x10*Q"t.cm™1), and in samples4 and 7 o04,<2 by electrons outside the Read cylinders and conduction by
x107%Q " 1.cm 1. In sample2—-7 the measurements of the electrons trapped on dislocations over the system of disloca-
Hall emf for T<10K are unreliable because of the low val- tion grids in block walls.

ues and instability of the signal at the5uV level. How- It follows from Figs. 2 and 3 that the conductivity by
ever, the voltage on the potential contacts used to calculateee electrons outside the Read cylindéas T>8 K) de-
the conductivity exceeds 0.5 mV. creases as the degree of strdiincreases. The exponential

We note that in the samples from group (WWith one  decrease in the concentration of free electrons as a function
primary slip plang which exhibit an electronic type of con- of temperature promotes a decrease in the contribution of
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this conductivity at low temperatures. According to Ref. 8, Therefore, the variation af, , in response to annealing or an
the hopping conductivity among shallow donors with a con-increase inéd is caused, with a high probability, by changes
stant activation energyat T<6 K) in n-type germanium in the system of dislocation segments itself.

with Ng=2.5x 10*cm™2 also decreases with increasiag The existence of a considerable dislocation conductivity

Since the dislocation conductivity i andp* -type ger-  in n-type germanium witfNg<1x 10'cm™3 following in-
manium is quite high in the range 2285<30% [o,,>5  version of the type of conduction was associated in Ref. 3
x10730"1.cm ! (Ref. 3], a connected system of conduct- with the appearance of a new structural element in them,
ing dislocation segments probably also formaitype ger-  viz., dislocation intersection sitégrid siteg. They belong to
manium at these values @ Taking these arguments into the category of dislocation line defects to which kinks, steps,
account, we can assume that in the strained san®ldsn and impurity atoms in dislocation cores are also assigned. It
Fig. 2 and sample5-7 in Fig. 3 the conductivity folT<8  was theorized in Refs. 15 and 16 that the doney) (and
K, which falls off slowly with temperature, is attributable to acceptor §,) states of such defects are located below the top
the motion of electrons trapped on dislocations in a continuof the E; donor band(Fig. 4. Some of the unpaired elec-
ous system of dislocation grids in block walls. It is distin- trons in dislocation cores pass into these states, and holes
guished from the dislocation conductivity in the and formin theE, band. Each such hole is attracted to the near-
p*-type samplegsee Ref. B by the significantly smaller st negatively charged dislocation defect and localized near
values ofo, , at similar values of$ and by the fact that it it. The narrowE; acceptor band was associated in Refs. 15
arises at lower temperatures. and 16 with just such dislocation defects.

In a disordered system of dislocation grids generally the ~ For 6<20% the concentration of dislocation defentp
static conductivity is exponentially dependent on the connecis small (14<<Ng), all the E; states are filled by electrons,
tivity of the dislocation segmenté.The very low values of the dislocation filling cutoff is located in th&, acceptor
04, (<107 %Q"t.cm 1) in the samples from group Il with band(Fig. 4), and the low-temperature conductivity is medi-
20< 5<29%, which were deformed under the same condi-2ted by electrons trapped on dislocations. If the valublpf
tions as the samples from groups la and Ib, can be regardé fixed andn (i.e., the number of acceptor states in the
as a manifestation of the influence of the connectivity of theP@nd is increased, the number of acceptors in Eyeband

dislocation system om,,. In fact, the motion of disloca- decreases with increasirdgas a consequence of the filling of

tions in intersecting (111) and (L} planes during defor- States in th&, band, and iny~Ny, theE, band is emptied.

mation of the samples from groups la and Ib promotes th(;rhIS case probably corresponds to the minimum value,of

o , ) ) o — in Figs. 2 and 3. Wheny> Ny holds, the cutoff for filling of
joining of dislocation grids lying in parallel (111) and (11 the dislocation states shifts into thg band with resultant

planes _into a single macroscopic dislocation grid pene”aﬂnﬂqversion of the type of conduction and the appearance of
the entire volume of the sample. _ hole-type dislocation conductiohit follows from Fig. 3 that
The connectivity of this system can probably be im-ihic gccurs already for strained sample (5=233.9%).
proved by annealing the strained samples at temperalures therefore, at such values éfthe total concentration of dis-
>Tq, which promotes an increase in the area of the regulafycation defects exceeds X406cm 2. This conclusion is
gr'dS?'Z.l'zz Preliminary investigations showed that after the consistent with the estimate of the possible concentration of
annealing of sample (p*-type, 6=45%) from Ref. 2 at  gjgiocation defects obtained by another method. For the
890 °C for 5 h the value of , , does, in fact, increase. There- aximum dislocation density in the samples with-30%
fore, it can be assumed that the annealing of sample8 e take the valudlp=5% 10cm™2, which corresponds to
=20.9%) and3 (6=21.5%) from group la at 800 °C pro- g concentration of unpaired electrorsl0®cm™3. Taking
motes improvement of the connectivity of the system of dis-nto account that the filling factor of the dislocation states in
location segments and an increasesif, in them to values  p-type germanium equals 0.85we obtain a concentration
comparable to those for sampl&sand 6 from group Ib,  of acceptor centers equal tox8.0*%cm™3.
which have higher values of (27.7 and 28.4%, respec- The conducting cluster probably contains only some of
tively). The influence of the small difference in the numberthe dislocation segments, i.e., the total number of dislocation
of electrons in theE, band in these samples is less signifi- holes is greater than the number of holes contributing to the
cant. On the other hand, since the connectivity of the dislodislocation conductivity. The concentration of the latter was
cation system increases as a functiorspthe sharp drop in  identified in Ref. 3 with the Hall numbey,,=1/eR (R is the
the value ofo, , in samplest (6=28%) and7 (6=31%) in  Hall coefficient, ande is the charge of an electrrwhich
comparison to sample3 and 6, respectively, is due to the was determined from measurementsRoin the dislocation
decrease in the concentration of electrons in Ejeband  conduction region. The values df,, for sample 4 (&
with increasingé. =36%) in Fig. 3 and samplé (6=39.3%) in Fig. 4 in Ref.
According to Refs. 25 and 26, the point defects and3 are equal to % 10'° and 6x 10*°cm™ 3, respectively, i.e.,
polyatomic complexes appearing during the plastic deformathey are, in fact, lower than the estimated concentration of
tion of germanium vanish after brigfor several minuteés dislocation defects. However, the relation betwggrand R
annealing at a temperatufe=700 °C. The bulk of the cop- for a percolation system of quasi-one-dimensional disloca-
per (one of the rapidly diffusing impurities in germaniyims  tion segments is unknown.
found near dislocations in the form of isolated precipitates. It follows from Fig. 3 that the dislocation conductivity
The latter bind some of the oxygen and, possibly, carbondecreases as a function of temperature in ftetype
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samples. It was established in Ref. 4 that the dislocatiotion cluster as the classical metal—insulator transition is ap-
conductivity can be described by a dependence of the formproached. We note that in two-dimensional conducting chan-
o(T)~TY over a very broad temperature ran@01-40 K nels based on silicon and gallium arseridf® the

and that the values of decrease from 1.5 to 0.4 asin- logarithmic dependence of on T in the metallic regiorat a
creases from 30 to 43%. The values yofor the samples high concentration of free electrogngives way to a power-
investigated in Ref. 3 decreased from 0.8 to 0.25am- law dependence witii= 0.8 when the electron concentration

creased from 22 to 39.3%. The valugs 0.35 and 0.23 are decreases. This was regarded as a manifestation of the cor-
obtained using such a description for sam@eand9 (Fig.  rection to the logarithmic dependence in the next approxima-
3). The disparity between the experimental values/dbr  tion.
samples with similar values af is due to the dependence of In this model the dislocation conductivity in the and
this parameter on the deformation conditions. It was noted ip* -type samples can be associated with the motion of delo-
Ref. 3 that no difference between the empirical dependencesalized holes, although the cutoff for filling of the dislocation
a(T)=TY ando(T)=In T can be traced foy<0.2 within the  states is located in thE; band. ForNp <10’ cm™2 the val-
experimental error for 42 T<20K. If T is written in the  ues ofny are small (10cm™ %), and the hole states are
form exp{InT) and expanded in powers ¢fInT, it can  positioned far from one another and are, in fact, localized.
easily be shown that the values ®f and 1+yInT fory  Consequently, microwave conductivity is not observed in
<0.2 are essentially indistinguishable in the temperatur@vercompensated sampfésWhenny is increased to values
range 4.2—20 K. It is knowAi that a function of the form of the order of 1&°cm™3, the situation can change, because
1+yInT characterizes the conductivity of a two- the dislocation defects are arranged in two-dimensional
dimensional degenerate electron das the weak-disorder grids, rather than distributed uniformly throughout the vol-
limit) with consideration of the quantum corrections in theume. In heavily dopegb-type semiconductors the impurity
weak-localization and electron-electron interaction theorieband merges with the valence band, if the mean distance
and that the corrections themselves are considerably smalleetween acceptors is equal to twice the radiysf the hole
than the value of the residual metallic conductivity. wave function(“complete” overlap of the wave functions
According to Refs. 28 and 29, the variation of the resis-For shallow chemical acceptors in germaniurg=_85A
tivity of strongly plastically deformeg-type germaniumina (Ref. 33. The estimated value of the transverse radius of the
magnetic field in the temperature range 0.1-4.2 K followswave functions of unpaired electrons and holes localized on
the laws characteristic of two-dimensional metallic systemsdislocation defects, whose states ar8.1 eV above the top
This fact is not surprising, since the localization radius ofof the valence band, is 10 A. The binding energy of dislo-
unpaired electrons on dislocations {0 A) is much smaller cation holes to negatively charged defects depends on the
than the distance between dislocation segments in gridslefect potential and probably does not exce®{l [A]
which are extended two-dimensional formatigaese the fig- <0.03 eV(Refs. 3 and §. If the distance occupied by hole
ures in References 6, 22, and 23 and Fig. Tinerefore, the wave functions along a dislocation is of the same order as
dislocation system in strongly plastically deformed samples ., then finding several kinks or steps on a dislocation seg-
consists of macroscopic fragments of two-dimensional disloment with a length of~500 A (Refs. 3 and 5is sufficient
cation grids joined in a specific manner. The lack of a temfor “complete” overlap of the wave functions of the local-
perature dependence of the Hall coefficient in the dislocatioiized holes. Then the dislocation holes are delocalized as a
conduction region af<10K (Refs. 2 and Bcan be evi- consequence of the broadening of Bhgband and its merger
dence that the Fermi level is located within the dislocationwith the E; band.
band. If the carriers are delocalized at the Fermi level, the Negatively charged dislocation defects are scattering
conductivity along dislocation grids has a metallic charactercenters for electrons in th&, band and can lead to the
and the weak decrease in the dislocation conductivity as partial or complete localization of states in this bahd.
function of temperature ip- andp* -type germanium can be Therefore, the amplitude and character of the temperature
associated with the influence of the quantum corrections. dependence of the electron conductivity along dislocation
We estimate the relative addition to the residual conducgrids can differ from those in thp- andp* -type samples at
tivity a=[o(T)—o0gl/lop=YyInT at 4.2 K for such a case equal values o¥. The narrowness of the temperature range
using the experimental values @f presented above. The precludes reliable determination of the character of the de-
minimum valuea, ,=0.12 was obtained for p-type sample pendence ofr on T in the n-type samples foT<8 K. It
(6=38% andy=0.08), on which the magnetoresistance wasfollows from Fig. 3 for sample$ (6=27.7%) and6 (o
measured in Refs. 28 and 29. The additionsotpfor y = =28.4%) that the value of,, (~10 3Q " 1.cm™1) is, in
=0.2 are found to be largey; ,=0.28), and they increase fact, significantly smaller than the values,,=4
with decreasing. Since macroscopic inhomogeneities inthe X107 20 *.cm™! in the p-type (6=27%, N,=2
samples influence the manifestations of the quantumx10?cm %) and p*-type (6=29%, Ny=1X10%cm 3)
effects® the decrease in the connectivity of the dislocationsamples from Ref. 3 prepared by the same method. Thus, at
cluster with decreasing probably has a significant influence a fixed value o6 (~28%) the value ofr, , depends oiNy,
on the character af(T) for T>4.2. Then, according to Ref. if Ny is comparable tong (for 1x10%<Ny<2.4
4, the plots ofo(T) < TY with y<0.1 atT<30K describe the X 10*cm™3), while no such dependence is observed when
metallic state far from the metal—insulator transition, and theNg<n.>
plots fory>0.2 characterize the conductivity of the disloca- This finding, as well as the nonmonotonic variation of
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Neutron-radiation analysis is used to investigate the subbarrier reflection of ultracold neutrons
from the surface of a titanium-stabilized Fe—Ni—Cr stainless steel. A significant selective
increase in the probability of neutron capture by nuclei of the medium in comparison to theory is
discovered. An explanation is given for the effect, which is associated with the existence of
titanium-containing clusters and structural defects that distort the form of the distribution of the
effective interaction potential between ultracold neutrons and the material surfacE99®

American Institute of Physic§S1063-776(199)01201-9

INTRODUCTION the number of nuclei per unit volumé=3%,cb; is the

It was reported in a preliminary publicatibthat theo- c_oherent scattering Iength averaged over the atomic compo-
sition of the mediumk is the wave numberg; is the in-

retically unexpected enhancement of ultracold-neutron cap-

ture by the principal elements comprising 1Kh18N9T stain—elasf"C scatte'nng cross section, anflis the .capture cross
less steel was discovered during an investigation of thé,eCtlon of theith element averaged over its isotopic compo-

subbarrier reflection of such neutrons from this material, FurSition- , _ ,
Experimental testing of the theory of the interaction of

ther study of the structural features of this steel using elec- > ) :
tron microscopy provided an explanation for the physict,:uultracold neutrons with a medium in the presence of subbar-

mechanism of this enhancement as a manifestation of thder reflection became possible following the appearance of
cluster structure of the material, which causes the charactdleutron-radiation analysis for ultracold neutrénin the

of ultracold-neutron capture to differ from the simple modelPresent work this method was used to study the interaction of
of this interaction for a homogeneous multielement mediumUltracold neutrons with stainless steel both with capture and

For a medium containing severaj)(elements uniformly ~ With inelastic scattering.

distributed throughout the volume with the relative nuclear A diagram of the setup is shown in Fig. 1. The sample

concentrations; , it is known that the total probability of the under investigation was irradiated by ultracold neutrons in a
interaction of ultracold neutrons with the surface is equal tocylindrical stainless steel vessel of length 112 cm and diam-
the sum of all the partial probabilitigs; of capture by each eter 8.8 cm. The sample, which was prepared from

specific element of the medium and the inelastic scatteringKh18N9T stainless steel, was an electropolished foil of

probability wie : thickness 20Qum in the form of a spiral of width 10 cm and
q external diameter 8 cm with a total ara 3120 cn?.
L= piet > pl, (1) Neutrons from an ultracold-neutron source entered the
i=1 vessel along a vertical neutron guide through an entrance

diaphragm with an aperture having an aB8ga=0.785 cnt or
through the entire cross section of the vessel when the dia-
phragm was removed. The velocity spectrum of the ultracold
f(v)=2y~Yarcsiny—y\1-y?], neutrons in the vessel was concentrated in the range from 0
to 4.4 m/s with a mean velocity=3.8(2) m/s. The flux
density of ultracold neutrons in the vessel and at its entrance
Herewv is the neutron velocityy=v/vm, vim=Vv2Eim/M  was measured by three gas proportional detediorsD,,

is the cutoff velocity of the mediunm is the neutron mass, andDj, to which the vessel is exposed through apertures of
Eim=h2Nb/27rm is the cutoff energy of the mediun is  areaS,. They rays appearing on the sample surface in con-

where uie= 7ief(v) and u.=7.f(v) are specified by the
relations

Nie= kO‘ie/47TE 77L= ka'iCCi/417E

1063-7761/99/88(1)/7/$15.00 72 © 1999 American Institute of Physics
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FIG. 1. Diagram of the setui:— entrance Al foil,2
— vertical neutron guide3 — rod for moving the
entrance diaphragn — inlet chamber5 — mov-
able entrance diaphragms, — lead shielding,7 —
198 converter8 — jacket with a heating element and
a heat shield9 — sample, 10 — vessel for ultracold
neutrons,11 — heating elementl2 — annealing
chamber,13 — rod for moving the samplel4 —
vacuum valve,15 — Ge detectorD,, D,, D3 —
ultracold-neutron detectors.

Ultracold
neutrons
_.E

junction with ultracold-neutron capture were detected by eentrance apertures of the detectors. The rajide was de-
Ge(Hp) detector made from ultrapure Ge with a resolutiontermined in an additional measurement with a polyethylene
of 2 keV at ay-ray energy of 1 MeV. Inelastically scattered reference sample.

ultracold neutrons were detected using®8 converter of The probability of ultracold-neutron capture by thé
thickness 1 cm positioned between the vessel and the eelement averaged over the flow was defined as

trance window of the detector. ALi nucleus forms in an

excited state with probability 0.96 in the reaction-°B —  2]i(B)eS @

= o+ 'Li and emits 477 keVy rays, which are picked up by e (J2t+j3)Bie,(E)S’

the detector.

When the background was measured or the sample wak¥herej;(E) is the counting rate in the total absorption peak
degassed, the latter was withdrawn from the vessel an@f ¥ rays with energyE, g; is the yield of quanta with
moved to a special chamber, which was separated from thenergyE per neutron capture act for a natural mixture of
vessel by a vacuum valve. The residual pressure in the vesséptopes of theth element, and ,(E) is the detection effi-
was maintained at2 10 >—5x 10" ° Torr, and the residual ciency of y rays with energyE emitted from the sample
pressure in the chamber wasl0 3 Torr. surface. The energy dependence of the ratjoE)/e was

When the total loss coefficient was measured, ultracoldletermined by additional measurements using polyethylene,

neutrons entered the vessel through the diaphragm. TH#anium, and aluminum reference samples.

counting rateg, j,, andj; of detectorsD,, D,, andD4 The measurements were performed after chemical clean-
were used to determine the quantity ing of the sample surface by etching iP{O, and vacuum
i o annealing at about 1000 K for 2 h. Figure 2 presents frag-
1S+ ;tstzz(ll__zhfb)so (2 ments of they-ray spectrum. Total absorption peaks of 477
Jot]s ’ keV and 2.22 MeVy rays, which are produced by the in-

— — - elastic scattering and capture of ultracold neutrons on surface
whereu and u; are the total loss coefficients averaged overhydrogen, can be seen in the spectrum. The spectra obtained
the uItracoId-ne_zutron ﬂOV\_’ for the sample surface and th§ye e treated with allowance for the externalbackground
vessel, respectively, ar} is th? surfac-e area of the ves§el. and they background caused by the interaction of ultracold
The value ofu;S; was determined with the sample with- neutrons with the vessel surface.

drawn from the vessel. The value pf for the sample was The measurements yielded the following valugs:
calculated from the results of two measurements by a differ— g 44(57X 1074, wio=1.57(26)x 10" and ut

. ’ e - ! c
ence method. =2.2(3.8)x10 6. There is a difference between the total

To measure the inelastic scattering probability and the — — .
partial capture coefficients of ultracold neutrons, the dia- 'L;) ilnd summed "@‘ej’%) prob.a.b|I|t|es, which equg'ls
phragm was removed so that they would enter the vesseti-1tc=4-85(62)< 10" and specifies the total probability
through the entire cross section. The inelastic scattering! ultracold-neutron capture by elements other than hyd-

probability averaged over the neutron velocity spectrum wa$09€n- _ .
Direct measurements of the partial capture probabilities

defined as ; i
_ were performed at the most intensg transitions for
—  2jieSee 3 ultracold-neutron capture by Fe, Ni, Cr, and Ti nuclei. For
'“ie_(j2+j3)Saie’ ®) comparison with theory, the values of the parametgfs

_i i af '
wherej,. is the pulse counting rate in the total absorption__'%/f(v) were determined from the values pf obtained

peak of 477 keVy rays, e, is the detection efficiency of N the approxmatlorf(u):f(v)=0.96. The results are pre-
ultracold neutrons that are inelastically scattered on th&€nted in Table I It can be seen from the table that
sample surface and manifestedjjg, ande is the detection  =i—1c=4.99(18)x 10 *, which is consistent with the in-
efficiency of ultracold neutrons that have passed through thdependent data obtained from measuremenis,gk;., and
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FIG. 2. Fragments of the-ray spectra for the irradiation of a sample by
ultracold neutronsp — number of pulses from the detector in relative

units.

;E'. A comparison of the experimental and theoretical val-

Arzumanov et al.

TABLE Il. Results of the atomic analysis of the samples.

Element Ti Fe Ni Cr Si C (0]
Content, at. %, methotl) 0.7 70.6 8.7 20.0 — — —
Content, at. %, metho®?) 0.6 70.7 8.3 20.4 — - -
Content, at. %, metho(B) 0.7 69.5 85 19.7 1.6 — -
Content, at. %, methoth) 0.3 324 4.2 11.3 — 28.8 23.0

deviation can be associated with the penetration of neutrons
with v>5.65m/s into a copper sample, this effect will be
weaker for stainless steel and can only partially account for
the increase in capture on Fe, but has little effect on the
observed enhancement for other elements.

Such enhancement might appear if there is a layer
strongly enriched with titanium on the surface. Sirxe0
holds for titanium, in such a model the potential at the sur-
face has the form of a potential well in front of a positive
potential jump of heighEj,,. Considerable enhancement of
ultracold-neutron capture on titanium nuclei would be pos-
sible in this case. To test this possibility, atomic analysis was
performed within the sample and in its surface layer using
(1) bulk neutron-radiation analysig2) x-ray fluorescence
analysis at a depth of 5am, (3) an x-ray spectral electron
probe microanalyzer at a depth ofidm, and(4) an x-ray
photoelectron spectrometer at deptdsd0nm. The results
are presented in Table Il. According to the data obtained by
methods(1)—(3), the content of the principle elements cor-
responds to 1Kh18N9T steel, for whicj, was calculated.

No tendency for an increase in the Ti content is observed as
the thickness of the layer being analyzed is decreased. More-
over, when the thickness of the layer is on the order of the
wavelength of ultracold neutrons, the absolute content of Ti
and the other elements of the stainless steel is less than the
bulk value because of oxygen, carbon, and hydrogen atoms,
to which method(4) is not sensitive. In addition, the ratio
between the concentrations of Ti, Fe, Ni, and Cr corresponds

ues of 5, reveals that the experimental capture probabilitiesy the bulk ratio.

are considerably higher than the theoretical values. This in-

The small value of the mean concentration of titanium

crease has a selective character and is most pronounced {Q he surface did not rule out the possibile existence of

titanium.

regions where it is localized with an increased content. This

The observed enhancement cannot be attributed t0 a POSsjsed the hypothesis that titanium forms clusters emerging

sible admixture in the spectrum of ultracold neutrons withy, 1he surface, whose dimensions are greater than the wave-
v=vjm=6m/s, which could increase the partial capturéjgngih of ultracold neutrons. Then neutrons freely pass into
probabilities as a result of the above-barrier penetration of,qqe clusters, move about in them, and are reflected from
ultracold neutrons into the bulk of the sample. Control meay,e poyndaries until they are captured or escape back into the
surements for a copper sample witly,=5.65m/s showed | 50,um. If the clusters contain some Fe, Ni, and Cr nuclei,
that the experimental value qfc" exceeds the theoretical yitracold neutrons will also be efficiently captured by them.
value by no more than a factor of 2-2.5. While this upward  To test this hypothesis, we investigated the structural
features of 1Kh18N9T steel using electron microscopy. A
JEOL-100CX transmission electron microscope and a DSM-
960 digital scanning electron microscope equipped with an
x-ray spectral analyzer were used. Thin samples with a

TABLE I. Results of measurements ac and 7.

Element Ni Ti Fe Cr -

— “translucent” thickness € 2000 A) were prepared electro-
pex 10° . 08310 1234 17410 1199  |ytically in an aqueous solution of sulfuric and orthophos-
77ic>< 10%, experiment 0.8611) 1.285) 1.81(11) 1.2410 phoric acid at room temperature.

7% 104, theory 0.128 0.014 0.60 0.207 Fi 3 ts photomicroaraphs of the same portion
Exp./theor. ratio 6.7 91 3 6 igure 5 presents p . I g_ phs S p _rl_ S
Apix 10t 0.7311) 1.275) 1.2111) 1.0310) of a sample surface obtained using the DSM-960 digital

scanning electron microscopy in various regimes: in second-
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FIG. 4. Photomicrographs of the structure of a sample obtained using a
JEOI-100CX transmission electron microscopy— group of small clus-
ters b — large cluster.

trast between these clusters and the matrix of iron, nickel,
and chromium. Estimation of the surface density of cluster
outcrops with linear dimensions greater thamuth from a
series of photographs showed that it is equal to-6
X 10*cm~2. The characteristic dimensions of the cluster
outcrops vary from 1 to &«m with a mean value of 3um.
Figure 4 presents photomicrographs of the structure of a
sample obtained using the JEOL-100CX transmission micro-
scope on regions with a very small thickng€900 A). A
group of small clusters measuring from 300 to 1000 A can be
clearly traced in Fig. 4a. An analysis of photomicrographs of
different regions of the sample showed that the diameter of
the small clusters varies in the range 150—-1500 A, that the
mean diameted equals 400 A, and that the bulk density
FIG. 3. Photomicrographs of a portion of the surface of a sample off=1.7(5)x 10 cm™3. When the diffraction patterns ob-
1Kh18NOT steel obtained using a DSM-960 digital scanning electron mi-tained from the small clusters were calculated, the values of
crosc_ope_in_various r_egimea—insecond electrond — in characteristic  ya interplanar distances for the second-phase inclusions
K, Ti radiation ¢ — in back-reflected electrons. . . L .
forming them were found to essentially coincide with the
tabulated values for titanium carbide T{Table IlI).

A large precipitate with characteristic dimensions of 2—3
ary electronga), in characteristid , Ti radiation(b), and in  um, which is assigned to a group of large titanium-
back-reflected electrong&). Figure 3a reflects the surface containing clusters, was discovered on one of the translucent
relief and reveals the existence of second-phase inclusiorezeas of the samplgig. 4b. Thus, two groups of titanium-
(clusters emerging on the surface with dimensions up tocontaining clusters of different size, which are uniformly dis-
9 um. Figure 3b attests to the presence of an appreciablgibuted throughout the volume of the sample, were discov-
amount of titanium in the composition of the clusters. Figureered in it. It is known that titanium can be present in
3c shows that the clusters contain an element with a smallKh18N9T steel in the form of small carbide precipitates,
value ofZ (probably carbo)) which provides for good con- whose formation has a thermodynamic character. Their size,
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TABLE Ill. Tabulated and experimental values of the interplanar distancegrum and isotropic distribution of the ultracold-neutron flow

dniq for titanium carbide. is W, = (1— E{/Enad?=0.35. Inside a cluster the mean ve-
hkl Ay, tabulated Ao €Xptl. locity for t.he ultracold-neutron flow decreases
=2.7m/s, since the spectrum of the flow takes on the form
i(l)é ;"112 g'fg F(E)xE from 0 to E,,=0.59Xx10 " eV. The mean free
220 152 1.49 path of the-ultracold neutrons before escaping from a cluster
311 1.30 - can be estimated as being of ordat. Hence for the small
222 1.245 122 clustersW,=2dNjovy /v, whereo=5.9 barn is the cross

section for the capture of neutrons with a velocity,
=2200m/s by titanium andl;=5x 10?>cm™2 is the num-

number, and distribution in the structure of the metal areber of titanium nuglel ina ugt volume of TIC. For the Iﬁrge
lusters W, =2.5dNtjovy/v. The value of Apug

determined by the annealing temperature and time of thé& <
steel part. In addition, titanium can be present in the form of=d*nNrjgvy/v, which is due to the existence of the group
metallurgical inclusions of various composition, which form of small clusters, equals (1.88.32)x10°°. Despite the
during the smelting and preparation of the steel. One chara¢oughness of the estimate, it can be seen that the existence of
teristic feature of these inclusions is their dimensions, whictihe small clusters makes only a 10% contribution to the se-
usually exceed several microns. Apparently, just such inclulective enhancement of capture on titanium.
sions are observed in Figs. 3 and 4b as clusters with charac- It should be noted that the closed small clusters are simi-
teristic dimensions greater thanun. lar to pores in a material, in which bound states of ultracold
The density of titanium carbide is 4.92 g/&mand the neutrons are possibfé. If the energy of the ultracold neu-
scattering lengths of carbon and titanium are equal to 0.660ns equals the resonance value, a neutron can penetrate a
X 10" *2cm and—0.34x 10 2cm, respectively. The cutoff pore with a high probability, increasing the probability of
energy E[°=4.1x10 % eV, which is appreciably smaller losses. However, evaluation of the volume fraction occupied
than the cutoff energy of the stainless stdgjy,=1.8 by small clusters in the sample material shows that this effect
x 10" 7 eV. Therefore, the clusters emerging on the surfacenakes only an insignificant contribution to the observed en-
deform the distribution of the effective potential for the in- hancement. _
teraction of ultracold neutrons with the surface. Neutrons Evaluation of the excess capture probabimybl' asso-
with an energyE>E['® can penetrate a cluster, move aboutciated with the penetration of ultracold neutrons into the
in it, and be reflected from its walls until they are captured onlarge  clusters gives A MP:E?*pNTigUm lv=(1.3-3.9)
escape back into the vacuum. If the diameter of the clustex 10"4. This value shows that the large titanium carbide
appreciably exceeds the wavelength of ultracold neutronglusters cause the required enhancement of ultracold-neutron
(A=900A), neutron capture will occur mainly on titanium capture by titanium nuclei.
nuclei. _ The enhancement of capture by other elements in the
In the classical approach the excess loss coeffidient  steel(Fe, Cr, and Ni could be associated, in principle, with
due to ultracold-neutron capture by titanium nuclei in clus-their presence as impurities in the titanium carbide clusters.
ters having an outcrop on the surface can be represented However, according to the literature data, the atomic concen-
the form tration of these elements in second-phase precipitates of TiC
Ti_ is extremely smaff. This is clearly seen on a qualitative level
Apd'=WWWe, > _ .
in Fig. 5, which shows photomicrographs of a sample surface
whereW, is the probability that ultracold neutrons strike the with several large clusters obtained using the scanning elec-
Outcrop cross section of a ClustM/,p is the prObab”lty that tron microscope in Secondary e|ectr0®' as well as in
they penetrate into the bulk of a cluster, aMd is the prob-  characteristick, Ti radiation (b) and characteristi&,, Cr
ab|l|ty of ultracold-neutron Capture by titanium within a clus- radiation(c)_ The clusters appear as Sharp'y contrasted dark
ter. The bulk density and real diameter of a group of smallspots superposed on the light figkig. 50 produced by the
clusters were determined from transmission photographgharacteristic radiation of Cr in the matrix, where its concen-
Since the mean outcrop cross-sectional area of the clustersggtion is equal to 18%. This is evidence that the concentra-
7Td_2/6 and the number of clusters emerging on a surface ofion of Cr is considerably smaller in the clusters than in the
unit area equals @, we haveW,=md°n/3. The densityp  matrix. Since the cross sections for neutron capture by Fe,
of cluster outcrops on the sample surface and the mean dizy, Nj, and Ti are comparable, the titanium-containing clus-
ameter of these outcrop$ were determined for the large ters can make only an insignificant contribution to the ob-
clusters. In this cas¥/,=wd?p/4. To estimateW, we as-  served excess capture of ultracold neutrons by these nuclei.
sume that the ultracold-neutron flow has a Maxwellian spec- A somewhat different mechanism for enhancement of
trum, F(E)<E from 0 to E.,,,=10" eV, which roughly ultracold-neutron capture by these nuclei, which is associ-
corresponds to the conditions of the experiment. Only ultraated with the presence of phase boundaries between the in-
cold neutrons with a normal velocity component greater tharividual grains of the stainless steel matrix, is possible in
vﬂr'f penetrate a cluster. If we neglect the quantum effects oprinciple. Phase boundaries can be clearly seen in Fig. 6,
the reflection of ultracold neutrons due to the potential jumpwhich presents a typical photomicrograph of the surface re-
at the entrance to a cluster, the value averaged over the spdief of a sample obtained using the DSM-960 scanning elec-
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FIG. 6. Typical photomicrograph of the surface relief of a sample obtained
using a DSM-960 electron microscope in secondary electrons. The mean
grain diameter is~10um.

tates measured 500 A. Thus, the probabty of ultracold
neutrons striking an enrichment region is fairly high and can
amount to 0.04. It is also known that holding austenitic stain-
less steel at 550-650 °C can lead to the precipitation of chro-
mium carbides on the grain boundarfeBhe increase in the
concentration of titanium and chromium in grain-boundary
regions adjacent to the surface can be promoted by the ac-
celerated diffusion of carbon along grain boundaries away
from the sample surfac€lable Il). Since chromium has a
comparatively small scattering length bd=0.35

x10 2cm,  by=1.03x10"2cm, and bg=0.95

X 10 *?2cm), arise in the relative concentration of Ti and Cr
in the intergrain regions can lower the value of the cutoff
energy in comparison to the cutoff energy of the matrix. The
same effect can be produced by an elevated hydrogen con-
centration in the intergrain regions, whose presence on the
surface follows from the measurement results.

If some of the ultracold neutrons can pass into the inter-
grain regions and be captured, the excess values of the partial
capture probabilitied », will be proportional toNc;o, . The
: LATSAIRLF T experimentally observed ratio between the values of the ex-

| S PR R R cess capture of ultracold neutrons by Fe, Cr, and Ni nuclei
6. 5. Photomi bs of | . " . st requires that their atomic concentrations be in the ratio
i v & o g Boceon oo nconiay” 392 0:1,0,_which gvesb= 31 o~0.75<10” 2o
electronsb — in characteristid, Ti radiation ¢ — in characteristi , Cr ~ The corresponding effective interaction potential of ultracold
radiation. neutrons is lower than the potential of the matrix; therefore,
the observed enhancement of capture can take place. The
cutoff energy of such a medium is determined by the number
tron microscope in secondary electrons. An analysis of sewvdensity of nuclei, which is no higher than the number density
eral such photographs showed that the mean grain diametef nuclei in the grains, and therefoi®;, is at most 1.5
is 10 um. It was established in Ref. 6 for 12R72 Fe—Cr—Ni x 10~ eV. Thus, the intergrain regions can also be regions
steel with a titanium content of 0.52 wt. % using electron-of reduced effective potential, which extend into the sample
microscopic methods that the maximum titanium concentrato a depth on the order of 1@m or more.
tion near the grain boundaries reached 7.7 at. % after stan- The estimate oE,,,, obtained is above the edge of the
dard heat treatment. The width of the enrichment zone wasltracold-neutron spectrum K10~/ eV), but the spectrum
2000 A, and the region occupied by grain-boundary precipicontains an admixture of ultracold neutrons with a higher

5 um




78 JETP 88 (1), January 1999 Arzumanov et al.

energy, as is indicated by control measurements with a cop- This work was performed with the support of the Inter-
per sample. If the relative fraction of ultracold neutrons withnational Association for the promotion of cooperation with
E>1.5x10 eV in the spectrum is 10%, the probability of scientists from the New Independent States of the former
their reflection from a grain boundary equals 0.9, and theSoviet Union(INTAS) (Grant 93-298 the Russian Fund for
probability of their absorption in the intergrain space is closeFundamental Researderant 93-02-92), and the Founda-
to 1, then the excess probability of losses as a result of cagion for Supporting Research by Young People at the Kur-
ture by Fe, Ni, and Cr nuclei can be of ordex40™ 4, which  chatov Institute Russian Scientific Cent&rant 20.
is sufficient for explaining the observed enhancement.

Thus, the observed selective enhancement of capturee_mail: hond@foton.polyn.kiae.su
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The presence of Iocalizgd regions .haVing an incre_a'sed COI'ky_ K. Ignatovich, The Physics of Ultracold Neutron€larendon Press,
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tering length and dimensions greater thamn the medium  _nal, Nauka, Moscow1986, p. 133.

: : : : : SA. M. Parshin,Structure, Strength, and Radiation Damage of Corrosion-
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experiment, A. K. Churakov for providing the program for "Yu. M. Lakhtin and V. P. Leont'evaMaterials Sciencdin Russiad,
. . . Mashinostroenie, Moscowi990.

treating the gamma spectra, and S. A. Teterin for performing

the atomic analysis of the samples. Translated by P. Shelnitz



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS VOLUME 88, NUMBER 1 JANUARY 1999

Search for low-energy upscattering of ultracold neutrons from a beryllium surface
Al. Yu. Muzychka and Yu. N. Pokotilovski*)

Joint Institute for Nuclear Research, 141980 Dubno, Moscow Region, Russia
P. Geltenbort

Institut Laue-Langevin, Grenoble, France
(Submitted 13 April 1998
Zh. Eksp. Teor. Fiz115 141-148(January 199p

We present results of a search for anomalous low-energy upscattering of ultracold neutrons from
a beryllium surface. This upscattering is considered one for the possible reasons for UCN
“disappearance” from very cold beryllium bottles, as observed in experiments. The indium foil
activation method was used to measure a very low intensity flux of upscattered UCN. The
(15-300 m/s velocity range of upscattered UCN is ruled out by these measurements at a
confidence level of 90%. €999 American Institute of Physid$1063-776199)01301-3

1. INTRODUCTION lower neutron energies. The reportedpscattering cross-
section of UCN from a beryllium surface at a surface tem-

There exists the well-known and long-standing puzzle ofperature of 80 K was 0.14b with an uncertainty of 30%, so it
ultracold neutror{UCN) storage times in closed volumes, or is quite possible that UCN upscattering takes place to the
equivalently, of anomalous losses of UCN upon reflectionenergy range below 1 meV. This hypothesis is consistent
from the inner surfaces of UCN traps. The most surprisinglywith the observed temperature independérafeanomalous
large discrepancy between experimental and predicted losssses of UCN if the vibrations causing this upscattering are
coefficients is observed in the most promising materials fonot thermal in nature. The frequency of these vibrations
long UCN storage times: cold beryllidrA and solid  (possibly surface wavess in the range 18-102Hz. From
oxygen® The anomaly consists of an almost temperatureq purely experimental point of viewwithout going into any
independentin the temperature range 10-300 Wall loss  hypotheses about the reasons for UCN anomalous lpsses
coefficient (~3-10°), corresponding to an extrapolated in- this low-energy upscattering channel is almost the only one
elastic thermal neutron cross sectiofi~0.9b. This experi- that has not yet been investigated with conclusive results.
mental figure for Be is two orders of magnitude higher than  Additional qualitative considerations favoring possible
the theoretical one, the latter being completely determined &iigh-frequency surface sound wave UCN upscattering comes
low temperatures by neutron capture in B2008H. The  from the rough coincidence of the typical surface roughness
experiment/theory ratio for a very cold oxygen surfacecorrelation length T~300-500A, UCN wavelength\,
reaches three orders of magnitid@pproximate universal- which is close to these values, and the possible surface sound
ity of the loss coefficient for beryllium and oxygen, and the wavelength. This coincidence may, in principle, increase the
temperature independence of the Be figures, forces one 10CN upscattering probability due to some kind of «reso-
suspect a universal reason for this anomaly. nance». If the surface sound velocity=10° cm/s then the

A series of experiments to find the channel by whichupscattered neutron enerdy=hc/A=10"%eV, which is
UCN leave the trap are described in Ref. 2. None of thgust outside of the investigated energy rafge.
suspected reasons has been confirmed: surface contamination Recently, results have been publish&ddescribing
by elements with large absorption cross-sections; penetratiosearches for UCN upscattering from a beryllium foil surface
of UCN through possible micro-cracks in the surface layersn which gas counters were used for upscattered neutron de-
of Be, hypothetical milliheating of UCN due to collisions tection. According to Ref. 5, the toté&lo the energy range
with a low-frequency vibrating surface; upscattering of UCN (10" '—10 ?)eV) reduced upscattering cross-section was
due to thermal vibrations of the wall nuclei. The latter item (0= 0.2)b at liquid nitrogen temperature, and%0.3)b at
deserves special and more careful consideration. room temperature. The first result is consistent with the early

According to the description of the experiment in Ref. 4data? but the second is in serious disagreement with the
(a subsequent conclusfoabout the absence of UCN upscat- previous results. The authors of Ref. 5 point out that these
tering from the beryllium surface at liquid nitrogen tempera-figures are not final, and that “these values were obtained
ture is based entirely on that experimenipscattered neu- after the subtraction of the large background from the trap
trons passed through 1.5 mm of copper, 1.1 mm of stainlessalls and separating foil and it is necessary to increase the
steel, and 2 mm of Al prior to entering the neutron detectoraccuracy of measurements to establish these values.”
For an isotropic distribution of upscattered neutrons, this In contrast, Refs. 6 and 7 give quite different figures for
means that the detection efficiency of upscattered neutrorthe upscattering loss factor upon UCN reflection from a Be
with energies of 0.5 meV was less than 0.2, and decreased sairface: (1.4%0.15)- 10 4 and (1.3%0.18)- 10" for two

1063-7761/99/88(1)/5/$15.00 79 © 1999 American Institute of Physics
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different beryllium samples at room temperature, and (2.6 —
+0.3)-10 % and (1.7-0.2)-10 ° at liquid nitrogen tem- %%-7‘
perature for the same two beryllium samples. 4 3 1}
According to the usual formalism with which UCN in- 24 \ 6/
teraction with a surface is considered, the UCN reflection 3 ]
probability as a function of the normal component of the 5
neutron momentunp, is vl
w=27n-X/y1— X%, x= P, /Pbound- FIG. 1. The layout of an experiment to search for the low-energy upscat-

tering of UCN from a Be surfacel—Vacuum stainless steel chamber
$60x0.5 mm. 2—Vertical UCN guide ¢60x0.5mm, height 12 cm.
3—Rouleau of aluminum foils with beryllium depositiod—Cylindrical
stack of In foils. 5—Detector of UCN fHe proportional counter
n=Imb/Reb, Imb=oj/2\, 6—Vertical UCN guide$60x 0.5 mm, height 60 cniz—Shielding(borated
polyethyleng.
whereb is the coherent scattering length of the wall material,

_ 172 ;
Bbéll‘\’l‘d_ ﬁﬁ(w't\lb.) . Ifh theﬂbott_mdary” momer?tutr;: ?ft tlhe From this follows a lower bound on the velocity range of the
» characterizing the refiecting wall, angh is the tota upscattered neutrons:>70 m/s (with no indicated confi-

cross-section of all inelastic UCN interaction processes Wll‘fh ence level
the wall surface.
Using the above relations, it is easy to obtain from Refs,
. ; . 2. EXPERIMENTAL METHOD
6 and 7 the thermal neutron energy inelastic scattering cross
sections for the two beryllium samples;,o=2\ 77 Reb: The measurements were performed at the test channel of
(4.1+0.4)b and (3.90.5)b for the room-temperature the UCN turbine source at the Institut Laue—LangeVifihe

samples, and (0.730.08)b and (0.4& 0.06)b for the liquid irradiation scheme is shown in Fig. 1.

The loss factor is

nitrogen temperature samples. Ultracold neutrons enter the stainless steel cylindrical
It is seen from the above that the results in Refs. 2, 5, 6chamberl (¢=60 mm, wall thickness 0.5 mnihrough the
and 7 are mutually inconsistent. vertical stainless steel neutron guigéheight 120 cmy and

For the sake of completeness, it is necessary also teebound from the surface of the specinzimade of alumi-
mention measuremefitef the UCN upscattering probability num foil covered with a beryllium layetfim thickness
to the thermal energy range from the surface of a room{2-3)-10°A). The specimens had the form of a corrugated
temperature beryllium foil after different high-temperatureribbon rolled into a spiral with an overall aréavo side$ of
procedures: 18:830 * before any heating of the sample, ~0.5 nf or ~0.25 nf. The upscattered neutrons leaving the
3.9-10 4 after heating at the 450 °C, 410 * after heating trap penetrate the cylindrical stack of indium foils surround-
at 700 °C with subsequent 5-min exposure to atmospheritig the tube and activate them with an activation cross-
air, and 2.210"* after heating at 700 °C in vacuum. section that conforms an inverse velocity law. The indium

Taking into account that according to Ref. 8 the meanfoils were 5—50um thick and were manufactured by means
velocity of the stored UCN was measured to$8.2 m/s, it  of electrolytic deposition on the surface of 16m copper
is possible to transform these figures into the room-foil. The homogeneity of the In thickness was thoroughly
temperature neutron upscattering cross-sections if we assuraerified by cutting the test foils into numerous small speci-
that the imaginary part of the wall potential can be attributedmens and weighing them, and was found to be better than
to this cross-section according E@). This procedure yields 5%. The density of the UCN flux in the trap was calibrated
for the reduced upscattering cross-sections for the cases mdoy means of the activation measurement of the flux of up-
tioned above 76, 16, 17, and 9b respectively, per atom of thecattered UCN from small polyethylene samples located at
wall. These and the previotis®” figures for the reduced the center of the irradiation chamber, and monitored with a
upscattering cross-section lead to unrealistically high con®He proportional counteb located after the UCN trap and
centrations of hydrogen in the surface layer of wall if we connected to the trap by a vertical neutron gusdérough a
take into account that the reduced UCN upscattering crossmall (0.5 cnf) hole. The UCN flux at the beryllium sample
section per hydrogen atom at room temperature(@—-8b.  measured in this way was40 cm ?s ..
It means that the usual procedure that relates the upscattering The efficiency of the UCN detector in the geometry of
cross-section to the imaginary part of the wall potential bythe experiment was simulated by the Monte Carlo method
means of Eq(1) is incorrect, and can only serve to compareunder various assumptions about the probability of diffuse
the results of different experiments. UCN reflection from the neutron guide walls between the

The authors of Ref. 9, which used neutron-induced rasmall hole and the membrane of the detector. The results of
diation analysis for the investigation of UCN interaction with this simulation show almost constaf#90%) efficiency in
beryllium samples, did not find any neutron-capture gammathe UCN energy interval of interest, 0—150 neV.
radiation from beryllium nuclei. From this fact they con- With the known efficiency of the UCN detector it is
cluded that anomalous upscattering with reduced crosgossible to determine from these measurements the effective
section 0.9b(Gatchina anomalycan not yield upscattered areas of the polyethylene samples and to compare them with
neutrons with velocity less thar70 m/s in the final state. the actual ones. Figures 2 and 3 show the results of the
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FIG. 2. Activation of the stack of indium foils as a result of UCN upscat-
tering from polyethylene scatterers with surface area: 1ireB.8 cn?; line
2—5.3 cnt; line 3—the empty stainless steel chamber.

activation measurements of indium stacks for two polyethyl-
ene samples with surface areas of 5.3 and 8.8 cm FIG. 4. Results of computer indium foil stack “activation experiments”
The response function of the activation of the stack of(solid curve$ and subsequent restoration of the incoming upscattered neu-

indium foils was calculated by the Monte Carlo method. Thetr_ons spectrdin relatlye unitg under the assumpthn that the spectrum con-
sts of two Maxwellian flux components: one with,=2.2-10° cm/s and

i

upscattergd neu_trons Wer_e assu_med t(_) eme_rge from the ér% other withvo=10" cmis, the latter had a weight 1/20 of the former
scatterer isotropically, having their starting points on the surtdotted curves The results of computer “activation” of indium foil stack
face of the Be spiral. Reflection and absorption of upscatbefore the restoration procedure were statistically Gaussian distributed with
tered neutrons along their trajectories were rigorously takef Standard deviation of 5% for each foil.

into account.

Detailed results of these simulations will be published i
elsewherd! In the absence of low-energy anomalous upscattering,

UCN acquire energy from the thermal vibrations of the be-
ciency (~70% 4 scintillation B-counter with active(4r ryllium lattice, anql with higher probability, from vibrations
plastic anticoincidence counjeand passivélead shielding. of surface contaminantsnostly hydrogenous The spectrum .
The area of the In foils whose activity was measured simul©f the upscattered neutrons has a «thermal» character, but it

taneously was-200 cn?. The counter background was about is not known. Informat_ion _about the spectrum of possible
1.05 s*in these measurements. The counter efficiency Wa;anomalous” upscattering is even more obscure. Therefore,

carefully measured for different thicknesses of irradiated 1" foil activity measured as a function of position in the stack
and Cu foils. A description of the counter and results of the(thickness coordinajevas approximated under the very gen-
calibration will be published in Ref. 11. eral assumption that the spectrum of upscattered neutrons

This method of measuring slow neutron spectra via acSONSISts of wo Maxwellian flux components, one with
tivation of a stack of In foils was calibrated by irradiating the vp=2.2-10° cms (“normal upscatterlng from room te_:m-
stack with a beam of monochromatic thermal neutronsperature_ Be and the other with low,, the latter b_elng
or a precisely measuredtime-of-flight method quasi- CNOSen in the range 10-300 nigmomalous upscattering
Maxwellian spectrum of cold and thermal neutrons. The 1he overall thickness of the indium stacks did not ex-

measured and calculated distributions of foil activity alongC€&d 250um in our measurementsng~0.3 for the isotro-
the stacks were in good agreement. pic thermal neutron flux so the accuracy of the upscattered

thermal neutron spectrum is not high. But it was demon-
strated by rigorous Monte Carlo simulatidrthat it is pos-

Activity of the In foils was measured with a high effi-

S . cm? sible not only to distinguish the low energy component of the
o upscattering from the high thermal background, but also to
12 i carry out rough spectrometry of this low-energy part of the
P spectrum.
//" Figure 4 demonstrates some results of the computer in-
8 //" dium stack «activation experiment» and restoration of the
//’“"“ incoming spectrum of upscattered UCN under the assump-
4 /,/" tion that the spectrum consists of two Maxwellian flux com-
,,/" ponents, one with ,=2.2- 10° cm/s and the second one with
4 vo=10%cm/s, the latter had a weight 1/20 of the former.
0 2 4 6 8 10 The results of computer “activation” of the indium foil
Scu, om stack before the restoration procedure were statistically

o . L o
FIG. 3. Measured effective polyethylene sample area obtained from indium(';aussmm distributed with a standard deviation of 5% for

foil activation measurements as a function of the polyethylene scatteree‘?‘Ch f_OiI- It can be seen that the method is able to reconstruct
surface area. with high confidence the small low energy-admixture to the
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Activity {(#m-s)"J/UCN {(s-em®)Y, 1073
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0 50 100 150 200

In thickness, y#m FIG. 7. The 90% exclusion contours for the cross sectiols,,, and o,

deduced from In foil activation measurement of upscattered UCN flux from
normal-temperature Be surface, under the assumption that the thermal com-
ponent of upscattering represents a Maxwellian neutron flux with room tem-
perature. The contours are presented for three different characteristic veloci-
tiesv, of anomalously(low-energy upscattered UCN, assumed to have a
Maxwellian flux form: line 1—v =15 m/s; line2—uv,=50 m/s; line3—
intensive thermal background, but it is not dependable in, =200 m/s.

extracting the thermal component of the spectrum from the

indium activation data.

FIG. 5. Measured In foil activation points as a function of indium thickness
coordinate for two different beryllium samples areas: full poins points 0.5
m?, empty points 0.2 f

oy, deduced from the In foil activation measurement of up-
3. RESULTS AND DISCUSSION scattered UCN fluxes from a normal temperature Be surface,
assuming that the thermal component of upscattering repre-
sents a Maxwellian neutron flux with room temperature.
The contours are presented for three different character-
igtic velocitiesvy of anomalously(low-energy upscattered
N, assumed to have a Maxwellian flux formig

Figure 5 shows the measured activity of irradiated In
foils as a function of the thickness coordinate for two beryl-
lium samples with different areas.

In our measurements, we used the compact surfac
sample with the enhanced area, so that the mean gap betwelé ) )
the adjacent turns of our helical ribbon sample with area L2 M/S:vo="50M/S;vo=200 m/s. .
~0.5 n? was about 1 mm. In UCN upscattering how effec- As is seen from Fig. 7 the room-temperature-adjusted

tively is the full surface area of the sample used with suchuc'\I upscatterir;]g ﬁ rtf)ss-sectiont to the dﬁgal tn'ermglzs nergy
narrow channels for UCN diffusion between the adjacentrange is very high for non-outgassed berylliup220),

turns? Additional activation measurements were carried ou\th'CIT IS ;:gn?sste%mtz t_getresul;c of Ref. 5 and tstome of the
with a sample of area-0.2 n? with ~2.5 times larger gaps resufts oriket. ©. We atlribute so 1arge an upscattering cross-

between the adjacent turns. Figure 6, representing the meg?ctlor; partly_';(r)] the pr(_aseﬂ_cehm tt?]e mt(;]orrgng l(JjCN spectrumf
sured indium stack activity as a function of sample surfac 0 ne”g ronsbwt| enc:lrglias '9 ertt an fe outr;] aryl energy o
area, shows good proportionality between area and activity, eryfium, but mostly o upscattering irom the ajuminum

attesting to evidence of the uniform and effective UCN up-guii of samplt(;_nbbons ?tOI _covirid W'tlh a ber;illlutrr;rllayer. Inl
scattering over the full sample area. oth cases, this upscattering takes piace not at the sample

The total measured flux of upscattered UCN from thesurface but in the bulk of the aluminum. This enhanced ther-

beryllium sample with area 0.5%was=50 s * mal upscattering was not very significant in our search for

As mentioned above, this method has low reproducibil-the low-energy anomalous component in the upscattered

ity in extracting the spectrum of the thermal component Ofneu'::rpn spgct:}um, t:ﬁt ';g;freasfe_g the ther{n_a:_ backgrounfd.
upscattered UCN. Therefore, the experimental data were pro- Igure © shows the o confidence restriction curves for
cessed under a different reasonable assumption about the

temperature of the thermal component. Figure 7 represents o b
the 90% exclusion contours for the cross-sectiofis,,, and e
r’/,
12¢ X
/I” e i A A
4 e 0 100 200 300
Lt v, m/s
s (]
V”
FIG. 8. The 90% confidence restriction curves for the reduced cross-section

0 2 4 6 as a function of the characteristic velocity, of the Maxwellian flux of
SBe. 10°%cm? anomalous low-energy UCN upscattering from room-temperature beryllium
sample under different assumptions about the characteristic velggitf
FIG. 6. Flux intensity of upscattered UCN normalized per primary UCN the thermal flux: linel—vy,=1600 m/s, line2—uvy,=2200 m/s; line3—
flux (relative unitg from the beryllium sample as a function of sample area. vy,=2800 m/s.
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the reduced cross-section as a function of the characteristauthors are grateful to Drs. V. V. Nitz and A. G. Belov for
velocity vy of the Maxwellian flux of anomalous low energy their permission to use these installations for our calibra-
UCN upscattering from a room-temperature berylliumtions. We also express our appreciation to the ILL reactor
sample under various assumptions about the characteristataff.

velocity vy, of the thermal flux.

In addition to (1) the following formulas were used in
the data processing. The loss probability of UCN with the
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We propose a kinetic model of transient nonequilibrium phenomena in metals exposed to
ultrashort laser pulses when heated electrons affect the lattice through direct electron-phonon
interaction. This model describes the destruction of a metal under intense laser pumping.

We derive the system of equations for the metal, which consists of hot electrons and a cold lattice.
Hot electrons are described with the help of the Boltzmann equation and equation of
thermoconductivity. We use the equations of motion for lattice displacements with the electron
force included. The lattice deformation is estimated immediately after the laser pulse up

to the time of electron temperature relaxation. An estimate shows that the ablation regime can be
achieved. ©1999 American Institute of PhysidsS1063-776(99)01401-9

1. INTRODUCTION onic emission, etc. It is evident that a strict kinetic approach

is needed to describe the various transport phenomena prop-
The first theoretical prediction of transient laser-inducederly and  derive  thoroughly —the equation  of

nonequilibrium electron temperature phenomena in metalghermoconductivity®
was made more than twenty years ddowas shown that an In this paper we present a theory of transient nonequi-

—13 — 12
ultrashort laser pulse~10""-10"""s) produces & non- |ibiiym phenomena in metals subject to ultrashort laser

equilibrium statg of the glectron gas [](192&!’ a metal Sl?rfacepulses. Our theory is based on the Boltzmann equation for
gfomz\r/;ré”exr;esggteerga:nﬂ'lgoii%%?]d ﬂr?otojr)nilsassiigs\tyedrlgsunthe nonequilibrium electronic partition function. We focus

able to meZsure and evenpfailed topobserve this nonequil mainly on times shorter than the electron-lattice relaxation
: ’é e . 1eqL time 7._,. Electrons therefore affect the lattice via direct

rium electron staté.This failure had a simple explanation in electron-phonon interactions. To consider lattice deforma-
terms of the theory of electron—lattice thermal relaxafion, P :

which yields a relaxation time,_,~10"2s. It was neces- tions, wg 'use the.equations of.the'so—called dynamical thgory
sary to use power pulses shorter than,. Such measure- of elasticity. Lattice deformation is due to the nonequilib-
ments with subpicosecond~(10 13s) pulses revealed a "um electron state and results from the effective “driving”
transient nonequilibrium regime in transmittivity and IR force (proportional toVTZ) on the lattice. This force also
reflection?®8 giant electron emissidn'*and the emission of governs the renormalizatididepending o) of the lattice
light 12-14 constantgsound velocity and optical phonon gapVe show

We briefly summarize the physical process. The ul-that the driving force leads to large lattice deformations, and
trashort laser pulse At~10 1*-10 13s) absorbed in a can destroy the crystal. These results are in agreement with
metal raises the electron temperatligeconsiderably higher measurements of time-resolvetiray diffraction synchro-
than the lattice temperature because of the difference in theitized with laser pumping’ A nonstationary increase in lat-
specific heatsg.<c|). Subsequent electron cooling results tice parameters of Ad11) and P¢111) single crystals was
mainly from two processes, namely electron-lattice thermajjetected. Measurements of the shift and intensity variation of
relaxation and _electron thermoconductivity. Thes_e_ are UsUgragg peaks, as well as the Debye-Waller factor, enables one
ally modeled with a set of coupled thermoconductivity equag, separate the effects of lattice deformation and heating. The

tions for the electron and lattice components. These equaz,nstormation of elastic into plastic deformation was also
tions are nonlinear and can generally be solved numencallyc)bserved

yielding the electron temperature relaxation. The solution The plan of the paper is as follows. In Sec. 2 we present
also shows that the subsequent ablation regime can bﬁ . p pap ' o P

achieved, which involves the «cold» destruction of a metaf"® k|pet|c theory of the process under St“‘?'y' the Boltzmann
into the parts consisting of different phases. “Hot" destruc- equation for an electron gas and the elastic equation for the

tion, namely melting, can also be studied with the help ofiattice are derived, along with the equation for thermocon-
this solution*® However, such an approach has several shortductivity. In Sec. 3, the solutions of the proposed equations
comings. First, the question remains as to whether the equare found for the times of interest. The lattice deformation is
tions of thermoconductivity are still hold at such high fre- calculated. In Sec. 4 the solutions are analyzed. The lattice
guencies £ 1/At). Second and more importantly, these deformation is estimated analytically in various limiting
equations can only describe the temperature dynamics of @ases. The possibility of crystal destruction under laser
metal but not electron transport, lattice deformation, thermipumping in discussed.

1063-7761/99/88(1)/5/$15.00 84 © 1999 American Institute of Physics
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2. THEORETICAL FRAMEWORK (xp | 9o
( ” ) ©)

Stf,=Stfo— 7| xp— 71| =—
Let us briefly recapitulate the main equations of our (1)
problem. For the lattice deformation we use the so-calledyhere the scattering rate
equation of dynamical theory of elasticiy*®

w
&ui &U| l_T2< F> 2TI'
Wy

o2 )\ijlmaxjaxm =G, (1)

p

The latter estimate is valid when the ion temperafiyds

wherep is the lattice density), is the tensor of elastic considerably higher than the Debye temperature; the dimen-
constants, and the driving force describes the effect of fregjonless electron—phonon coupling constapt\/eg~1.

carriers on the lattice, The brackets denote integration over the Fermi surface
g ( 2d% 2dS:
Gi_a_xjfw)\ij(p)fp(r,t)- 2 (..)= fv(zﬂ)g(
The deformation potential;;j(p) yields the change in the The first term in(5) comes from the contribution of the local
local electron spectrum, equilibrium partition function:

Se(p,r,t) =N\;j(p)ujj(r,t).

To find the electron distribution functiofy(r,t), we use

Stfy= 2 J(Z )3ka ole p) 0(8p’)]

fche Boltzmann equation with the electron—phonon collision ><[N(k”)(Te)—N(kn)(T|)][5(8p—8pf—wf(n))
integral
+8(ep—ep T oM. (6)
Stfp=§n: J—(Zw)aw(pnw(smk_sp*‘wﬁn)) This term describes the energy flow from electrons to
phonons when they are at different temperatures. This term
X[(L=F ) f NV = (1= ) (1+NE) ] is absent if the temperatures of the electron and lattice sub-
3 systems coincide.
+E f d°k W S(e — 8- o) The nonequilibrium part of the electron distribution
(27r)3 TPRTRTRE Pk function has to satisfy two conditions. The first is indeed the

conservation law of the number of carriers:

d°p  dfy
(2m)3XP s

X[(A=F)f (1N = (1=, )NMT, (3

with the probability of a scattering process involving a pho-
non of thenth branch,
This expression determines the chemical potentiahd re-
|e-(“))\i-(p)k-|2, sults in the renormalization of the deformation potential:
me M(P)—\(p) —(\(P))/(1).
The second condition

T
(n) _

W =
pk pwf(”)

where e and »{" are the polarization and spectrum of
phonons of thenth branch, respectively. dp afy

Since the phonon-phonon relaxation time is large (277)3(89_'“))(9%_0 @)
(~10 's) compared with the times of interest, the phonon
distribution functionN{" takes its equilibrium value at the
lattice temperaturd,,

enables us to define the local temperatlige(see Ref. 2))
i.e., to write the equation of thermoconductivity.
Substituting Eq(4) into the Boltzmann equation, we get

(n) - ; J J - /{1 JU;;
Ni(T) exp(0™/T)—1" %+V%+MWZ—GVE—)\”(D a_t”
The electron—electron relaxation time due to scattering on
phononsr~ T, '~10"'*s (see belowis much less than the fp_ ’u( ) Stfo/ _0 (8)
characteristic time of laser pumping. Therefore the electron Te

gas is nearly in thermal equilibrium at the local temperature  Tg obtain the equation for the local temperatiigér ,t),
Te(r,t). We seek a solution of the Boltzmann equation in thewe multiply the Boltzmann equation(8) by (ep
form —u)dfy/de and integrate ovep. With the help of Eq(7)
f we find the equation of thermoconductivity
fo=tf (8"_“ T
p~Tlo

Te ng 1 (4)

aT,
Ce(Te) — +dlvq Q—a(Te—T)), 9
wheref is the local equilibrium Fermi—Dirac partition func-

tion and x, is the nonequilibrium part. We obtain for the wherece(Te)z772(1>Te/35,6’Te is the electron heat capac-
collision integral(3) ity and q is the heat flow:
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B J 2d3p afo 10
q= WV(Sp_M)XpE- (10
Using Eq.(6), we can find the lastrelaxation term on the
right-hand side of Eq.9). For high temperatured,, T,

L. A. Falkovsky and E. G. Mishchenko

Jujj —p [T
_'J_;_M( € (15)

IT,
at Te | at '

Xp=—X\ij(p) Vor

Substituting the solutioril4), (15) into the heat flow(10),
and integrating over the energy variable accordingip

> wp, the electron—lattice relaxation constants =d(e,—u)dS:/v, we obtain

2dSds w? | (t t—t’ d d
_ (n) () - , _ iy
a ; fvv,(zw)ewpkwk . q(r,t) 6 <f_mdt exr( - Y §t,+v0r)
The densityQ of laser energy absorbed by electrons can
be taken in the form XTg(r—v(t—t’),t’)>. (16)

Q(z,t)=I(t)(1-R)xe "%, (11

The expressionl6) is linear inTg. It is convenient to intro-
whereR is the reflectivity andx is the inverse penetration dyce the new functio® (r,t)=T2(r,t) and take the Fourier
depth. The functiori(t) describes the pulse shape. transform with respect to space and time variables. Then Eq.

Equations(1) and (9) must be supplemented by the (16) yields the Fourier component of the heat flow:
proper boundary conditions. We assume the simplest geom-

etry: the metal occupies the half-spaze 0. Hence, the (K )_E (w—=VK)V
boundary conditions for the above equations are qt%.@)= 6 \w—vk+ir !

>®(k,w). (17

dTe duy Substituting this result into the equation of thermoconductiv-
—| =0, —| =0, 12 L .
iz|,_, az|{,_, ity (9), we obtain its Fourier component
signifying that the heat flow through the surface and the . 7 (w—Vk)vk
. — - 0 —1 @(k,w)
normal stress tensor component vanish on the surface. 3 w—VK+ir

We also need the boundary conditions for the kinetic
equation(8) at the metal surface. These boundary conditions =2x(1=-R)l(w)U(k), (18)
depend on the type of electron reflection from the surfaceywherel (w) is the Fourier transform of the pulse shdie).
We assume the specular reflection for simplicity. The factorQ(k) describes the spatial distribution of the laser
field (11), and

2k

3. DYNAMICS OF ELECTRON TEMPERATURE AND LATTICE Tkz’
K z

DEFORMATION

The above equations are nonlinear and very complicatedyh'Ch depends only ok, . Equation(18) yleld§ the t.empera.-
However, it is possible to solve them in an importantlimitingture dynamics of metals under laser heating with the time

case. Below we are interested in times shorter than th@nd space dlspersmn.h on for lattice disof
electron-lattice relaxation time,_;~c(Te)/. In this case We now turn to the equation for lattice displacements

the lattice temperature can be set to the initial temperatur )'_ Thg driving forceG;(r,t) can be evaluated as ip the
To, and the last terms in Eq&8) and (9) can be omitted. derivation of Eqs(16) and (17). Both the local equilibrium

To solve the systenfl), (8) for the half-space with the part_ition function and _nonequ_ilibrium patt) contribute to _
boundary conditiorf12), we use the even continuation of the (€ integral2). Expanding the integrals over the energy vari-

temperatureT(r,t) and the partition functiory,, and the able in powers off ./e¢ up to the second order, we obtain
odd continuation ofi,(r,t), into the half-space<0: a2 9 < ] (Pk;

To(z<0)=T«(—2,0), Gitko)=—F 7\ oovk+ir !

Uk)=

>®(k,w). (19)

U, (z<0)=—u,-20). (13

For the parallel components andu, one must use the even In addition to the electron forc€l9) we also obtain the
continuation, but owing to the fact that the external H8&)  temperature-dependent renormalization of the elastic con-
depends only orz, these components vanish. In E§) we  stants\j;, (sound velocities due to the interaction with
discard(xp,), which represents the “in-term” in the collision electrons(electron loop in the phonon self-energy function
integral. This term accounts for carrier conservation, i.e., folThe dominant contribution in the range of interest comes
the isotropic channel of collision processes. Therefore it doekom the local equilibrium partition function:
not affect the heat flow and lattice driving force.

Nijim = Nijim = (Nij (P)Nim(P))

The solution of Eq(8) has the form

t t—t’ Te &
Xp(r )= f_wdt’xp(r—v(t—t’),t’)exp( - T) - Eo\ij(p))\lm(p»'
(14 The electron contribution to the sound velocity is second

whereX,, is the right-hand side of Ed8), order in the electron temperatuies/s~T3/s2.
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Taking the Fourier transform of the left-hand side of Eq. The electron temperatul@3) just after the pulse peaks
(1), one needs to keep in mind the singularityzatO after  at the surface:
continuation(13) of the functionu,. This singularity con-

tributes the termdé(z)/dz in the second derivative 2 Ito(1—R) min( «,(Dty) ~¥?) (24)
d?u,/dZ?; such a term accounts for surface effects. The Fou- ™ B noo '
rier transform with respect to the coordinatever the entire

This result has a simple explanation. For short pulses
kyDty<<1, the time dependence of the temperature corre-

= p(0®= 57k Uy (k,0)=G(Kk,») +kC(w), (200 sponds to the local laser intensity at the observation point. In
wheres=X\,,,/p is the longitudinal sound velocity in the the opposite C"".SGC\/D_%> 1, the temperature distribution is
z-direction. In the last termC(w) must be determined from determined mainly by the diffusion process.

space gives

the boundary conditiof12), and takes the form _ Consider now the equatio_n for lattice displac_emeéﬁt_ﬁ
with the force(19). Note that in the hydrodynamic regime,

Clw)= —2iwsf dk Gy(k,w) (21) kv<7~1, the dominant contribution to the ford®; comes
27 w’—s%k? from the local equilibrium partition function, i.e., the first

Eerm in (4), if we consider times greater than the electron-
electron relaxation timg> 7. In this case, the force has the
simple expression

We next proceed to the electron temperature and lattic
deformations represented by Eq48) and (20) in various
limiting cases.
aT(r t
Gi(rat):Aij%
4. SPATIAL VARIATION OF ELECTRON TEMPERATURE i
AND LATTICE DEFORMATION

)

where the constants

Equation(18) describes the electron temperature evolu- 1 4 ds
tion under ultrashort laser heating of metals. This equation Ajj=75— _j —N\ij(p)~9B
generalizes the usual thermoconductivity equatitie are 32m deg ) v
interested in the wave vectdr which is the greater of the
inverse skin deptl (~10°cm %) and the electron diffusion
lengthv \/7t, during the laser pulsg,. In the usual experi-
mental situationr™1~10"“s™1, kv ~10%s™?, and the hy-
drodynamic regimexv <7~ ! is obtained. Thus, one can omit
the termkv in the denominator of the left-hand side of Eq. du, iA,x(1—-R) { dwdk kU (K)I ()
(18). The dominant contribution comes from the diffusion dz 0B j (2m)2 (w+ik?D)(w?—52K?)
pole w~ rv?k?< 7~ 1. Therefore, we can also omit every- _ _ _
where in comparison with-—* or kv. The solution of the x[ekz—gleldis)giot (25)
thermoconductivity equation reads

are of the order of the electron density of states at the Fermi
surface.

From Eq.(20) with the help of the expressiof21) one
can find the lattice deformation

The first term in the brackets in E(R5) represents the par-
i (» dkdedt'dZ , ticular solution of the inhomogeneous Ed), while the sec-
O(z1)=0o+ E —w (2m)*(w+iDk?) H(t") ond corresponds to the general solution of the homogeneous
form of Eq. (1), and represents the effect of the surface. The

Xexg —io(t—t")+ik(z—2')—«|Z'|], (22  integrand in(25) contains poles associated with the diffusion
where the diffusion coefficierd = 7(v2)/(1) is introduced. and sound-wave excitations. Sound singularities are by-
The constan®,=T2 comes from the solution of the corre- Passed using infinitesimal phonon damping;> w+i0.
sponding homogeneous equation, and represents the initial
temperature. Evaluating the integi@2) with respect tow

andk, we obtain 5. EFFECT OF ACOUSTIC AND OPTICAL DISPLACEMENTS
ON DESTRUCTION OF METALS

@ t —@ + ‘ dt' - d ’M
(2)=0 —o LY Bm(t—t')D Equation (25) descripes the effept of nonequili.brium
electron heating on lattice deformations of acoustic type.
% _ (z—2')? 29) This deformation vanishes at the surface0 according to
ex 4(t—t")D )’ the boundary conditioril2). For z#0, the second term in

brackets in(25) represents a deformation wave propagating

from the surface into the bulk of the metal. It makes a non-

zero contribution only at sufficiently small depttz<st

~10""cm. Thus, we see that the deformati@%) peaks at

5 , A [t , z~10 " cm<«"1. To obtain the order of the effect, we can

Te(0)=To+ 77_,3 fodt Q(Ot—t") drop the second term in parentheses. It is then convenient to

integrate overw, substituting the Fourier transfori{w).
X exp( k%Dt )erfo \x?Dt’). We obtain

We see immediately that the functiof23) satisfies the
boundary conditior(12). For the temperature at the surface
z=0, Eq.(23) gives
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du, Agx(1-R) ([t dk ture gradient reaches 10° K/cm. Note that the extremely
ENTJOM It )f Eu(k) high values of this parametéwhich is typical of metals
leads to nonequilibrium expansion of the lattice. Second,
(exq—isk(t—t’)]_ exq—kzD(t—t’)]) oikz subpicosecond elastic deformation of the lattice of the order
S(s+ikD) k°D*+s° "~ of 1073-1072, corresponding to an internal pressure 10—
(26) 100 GPa, can provide an effective mechanism for subsequent
laser fracture of metals.

Consider times greater than the duration of a putsetg)
but less than both the characteristic time of electron diffusion
(t<(x?D)"1~10'?s) and a sound-wave periodt (
<(sk) 1~10 1s) with characteristic wave vector of the

We are grateful to S. I. Anisimov and V. A. Benderskii
for many useful discussions and valuable comments. This

order of the inverse skin depth In this range we can ex- work was supported in part by the Russian Fund for Funda-
pand the exponentials i(26) in powers oft up to second mental ResearckGrant No 97-02-16044 One of the ?U'
order: thors (E. G. M) also thanks KFA Forschungszentrum; Ju
lich, Germany, for a Landau Postdoctoral Fellowship.
du, Altgx(1-R) tzjw

dk kk2 ikz 2
4z 208 5= U(k)ke™. 27

— 277
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A general formulation of cluster methods applied to calculations of thermodynamic quantities of
alloys in terms of renormalizing fields describing interaction between a cluster and its
environment is given. We have shown that the well-known cluster variation method and the
cluster field method, which was suggested earlier, are special cases of our approach. These
methods have been used in calculations of phase diagrams of fcc alloyk lyitnd L1,

ordering transitions with several realistic interaction models. It turns out that, for all these models,
the simple tetrahedron version of the cluster field method suggested in this paper describes

the phase diagrams almost as accurately as more complicated cluster variation techniques. Possible
applications of the tetrahedron version of the cluster field method to inhomogeneous states

and kinetics of phase transitions in fcc alloys are discussed.19@9 American Institute of
Physics[S1063-776019901501-2

1. INTRODUCTION into account interactions among nearest and second-nearest
neighbors are fairly accuraté!! especially when clusters of
Studies of thermodynamics and kinetics of phase transtarger sizes are defined in the disordered pHasiethe same
formations in alloys attract a lot of attention because, in partime, interactions among the third and farther neighbors are
ticular, the related problems are important for technical apysually weak and can be described in the mean-field
plications. Since experimental research in phase transitio%proximaﬂorﬁ,s Thus, the techniques for calculating phase
of this kind is usually complicated, development of adequat‘%jiagrams of homogeneous alloys based on the cluster varia-

theoretical techniques for their description is deemed VerYion method can be considered self-sufficient and well-
important}~’ The simplest theoretical method in this area isgrounded.

the mean-field approximation. In real alloys, however, this™  yg yhe physics of phase transformations is not limited to

apprqximation doe; not yield'quantitat'i\./ely gccurate resuI'Fsthe study of homogeneous and equilibrium systems. For ex-
and in the analysis of ordering transitions in fcc alloys 'tample, one topical problem in this field is kinetics of trans-

yields phase diagrams with incorrect configuratibfis is formations, in particularl1, and L1, ordering transitions

caused by the presence of strong interatomic correlatlonl§nentioned abov&® In reality, these phase transitioror

. gé’xample, after quenching into the region of thermodynamic
is comparable to or larger than temperattirewhereas the . " o . . .
instability of the initial statg proceed via generation of mi-

mean-field approximation neglects such correlations. In or—r i nuclei of a new oh within the initial oh nd
der to describe such correlations, more accurate cluster tecﬁ-otiwpc ut(;e foﬂ? € pt.t"?‘se Theref € tha phase a f
nigues, primarily the well-known cluster variation urther growth of these entities. Theretore, the process o

method*®-14 which are usually applied to calculations of phase transformation should be described in terms of evolu-

alloy phase diagrams, have been developed. Some researéW—n of essentially inhomogeneous and nonequilibrium statgs.
ers have also used computer simulations based on the Monfe @ matter of fact, fully homogeneous states are unattain-
Carlo method. As concems realistic models of alloys, how- @Pl€, and real alloys usually contain a lot of inhomogeneities,
ever, such numerical calculations demand a lot of CPU timel? Particular, interphase and antiphase boundaries. The mi-
therefore they are rarely used in practice. crostructure and macroscopic properties, such as plasticity
Various formulations and versions of the cluster ap-and strength, strongly depend, as a rule, on the thermal and
proximation have been discussed in numeroudinetic prehistory of a sample, in particular, on the kinetic
publications®*~**This method has been discussed mostly intrajectory of phase transformations. Therefore, topics con-
the context of applications to ordering transitions in fcc al-cerned with structure and evolution of inhomogeneous and
loys, in particular, the most commdnl, or L1, ordering  nhonequilibrium alloys have been intensely investigated and
(like in NisAl or TiAl), since the results obtained by the discussed in literatur®’ In this connection, generalization of
mean-field approximation proved unsatisfactory, as waghe cluster methods mentioned above to inhomogeneous and
stated above. The comparison with available Monte Carlainsteady states, in particular, to ordering in fcc alloys, is
calculations has demonstrated that the results of commonlyery significant from the viewpoint of both fundamental re-
used methods of tetrahedron cluster variati@@VM) and  search and applications.
tetrahedron—octahedron cluster variatigfOCVM) taking As is stated in earlier publicatiots'® and below, such

1063-7761/99/88(1)/12/$15.00 89 © 1999 American Institute of Physics
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generalizations of the conventional cluster variation methodlering and analyzes the results. Basic results of this work
lead to very cumbersome equations, which can hardly b&ill be summarized in the Conclusion.

used in practical calculations. At the same time, these gen-

eralizations can be fairly simple and practicable if one uses a. DESCRIPTION OF CLUSTER TECHNIQUES IN TERMS
simplified version of the cluster approximation, namely theOF RENORMALIZING FIELDS IN CLUSTERS

cIu(sj’Fer f'elﬂ metr(;od, WL‘%‘EQZ WZS Erewously erggrl%?d N This section presents general formulations of various
studies of thermodynamits““and short-range or N cluster techniques, including the cluster variation methods

some strongly correlated alloys. The question arises, hows,q ¢jyster field methods, in which basic physical quantities
ever, of the accuracy of this relatively simple method sincegye effective fields and interactions inside a cluster due to its
unlike the cluster variation technique, the accuracy of thgnieractions with the environment. This graphic approach,
cluster field method has yet been little investigated. Ongynich was described in detail earlallows one to see
should also keep in mind that the calculation accuracy mayjearly both the assumptions on which various generalized
depend on both the type of the adopted model and the spgersions are based and the opportunities offered by them.
cific version of the methoénamely, tetrahedron, TCVM, or  The feasibility of this approach in a special case of cluster
tetrahedron—octahedron, TOCYMmoreover, utilization of  variation method was mentioned previousiy* Below we
more complex clusters does not necessarily lead to a highejill generalize earlier resufts to the case of multicompo-
accuracy’ The accuracy of this technique based on somenent and, possibly, inhomogeneous alloys and rectify some
models and versions of the cluster field method in calculainaccurate statements.
tions of phase diagrams was tested by comparison to Monte 2.1. General formulation of cluster methodonsider a
Carlo or cluster variation calculatiol’s'® and proved to be substitutional alloy that contains atoms of sorts, p
fairly high. Such investigations, however, have not been sys=p, p,, .. .,Pm, including, possibly, vacancies. The dis-
tematic. At the same time, the accuracy of the cluster fieldribution of atoms over lattice sites is characterized by vari-
method in applications to simpler, equilibrium properties ofous sets of occupanci¢a,}, whereny;=1 if theith site is
materials should be investigated comprehensively in view obccupied by an atom of soptandn,,;= 0 if otherwise. At all
applying it to complex and little-known problem of phase i operatorsn,; satisfy the conditior®,n,;=1, so that only
transformation kinetics. m—1 of them are independent. Hereafter we assume that for

This publication is dedicated to these problems. We willone sort of atoms, specificallp=py,, this operator is ex-
discuss the accuracy of some simplest versions of the clust@ressed in terms of the rest, ;=1-3,., ny;, so that
field method in describing phase diagrams of fcc alloys withbelow the sums oveip include only m—1 terms with
L1, or L1, ordering. We will consider several models of p=p, P2, ...,Pm-1. INn the case of a binary alloy, sub-
such alloys. The accuracy of the versions of the clustescriptp can have only one value and is omitted.
method will be estimated by comparing calculations to re- A general expression for the configurational Hamiltonian
sults of one of the most accurate versions of the clusteH’ (i.e., it depends only on the distribution of atoms among
method described earlfet’ and applied to the same models. lattice site$ in terms of occupancies,; is
It will be shown that, for models that seem most realistic,
calculations based on a simple approximation corresponding H'= > <pipnpi+ E _ vﬂ-qnpinqj

pPai<]

to a generalization of Yang's “quasi-chemical tetrahedron pi
cluster method?®” and dubbed QCTCM hereafter, are fairly r
close to results of the cluster variation method. At the same +pqri2<j<k vﬁﬂ NpiNgjNek+ - - (1)

time, with less realistic models, such as those taking into

account interaction only among nearest neighBothe dif-  Here “external fields” ¢f are due to possible nonequiva-

ference between results of QCTCM and cluster variatiorlence of sites, for example, owing to lattice defects. In cal-

method can be appreciable. Calculations of ordering spinculations of equilibrium parameters, one should calculate

odals, i.e., boundaries of disordered phase stability againgermodynamic potential) as a function of temperature

ordering in the concentration—temperature plame-{), and relative chemical potentiabpwﬁ—ugm, where u°

will be also given. In most calculations of phase diagramsare “absolute” chemical potential§or example, measured

published in the literature these curves are not gi7én, with respect to the vacuum

whereas they are very important for studies in kinetics of

phase transformatiorfs. Q=-TinTrexp(—BH), H=H'-2 pn,. (2
Section 2 presents a general description of various clus- pi

ter techniques in terms of renormalizing fields in clusters.Here B=1T, and Tr denotes summation over all possible

This approach seems more simple and general than congonfigurations{n,;}. For brevity, the effective Hamiltonian

monly used onés** and admits various generalizations, in- H of the grand canonical distribution in E@2) will be

cluding those used in the reported work. In Sec. 3 generalubbed simply Hamiltonian, and its mean val) will be

results of Sec. 2 will be applied to cluster techniques used iralled energ\E.

our calculations. Section 4 describes applications of these Cluster techniques deal with clusters, i.e., sets of specific

techniques to calculations of phase diagrams and orderinigttice sites,j, ... ,|, which will be denoted for brevity by

spinodals for several models of alloys witi, or L1, or-  first letters of the Greek alphabet, e f.j, ... |}=a. The
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distributionp, of various configurations in cluster is char- - lal= ]
acterized by its effective Hamiltoniahl, and the corre- Ho=2 (—1)lel=My_, (7)

sponding potentiaf) ,, which is obtained, strictly speaking, ree
by averaging the full Gibbs distribution over variables ~
for all sites not included in the cluster: Ho= Eo’ Hy, ®)
Poa=eXAB(Q,—Hy)]= Trexd B(Q—H)], (3)  where|a| is the number of lattice sites in the cluster and
iea the sum is performed over all subclusteysof cluster «

obtained by excluding 0,1,2..,|a|—1 different sites. In
particular, for double and triple cumulants and one-particle

cluster fieldsTpgi, we have the following expressions in
If we denote for brevity the operator characterizing theterms of cumulants defined by E():

Q,=-TInZ,=—TIn Tr exp(—BH,). 4

iea

occupancy of staté={pi,qj, ... rk} in a certain subclus- -
ter y={i,j, ... k} of cluster @ by n;=nyng;...ny, Hij=H;;—H;—H;,
HamiltonianH , can be written in a compact form as a sum -~ _ 9
over all possible configurations of the cluster: Hijie=Hij—Hij —Hj— Hia T Hi T H - H ©)
~i i i ~iik _ gijk i ik i
H :E ( .+wa-_ )n N 2 (qu+ I/,a_ ) (/lpi_'vzlpi l/lpi' l//pi - Ppi 'ﬁpi l/lpi+¢pi' (10)
oy NPT Vi HplTpi T g VT Ppia Equations(5) and (7)—(10) clearly show that cumulants
H, and fieldsy; do not contain interactions and fields in-
XNpiNgj+ .. .= > (vet YN, (5)  cluded in the subclusters of the cluster. Therefore, it is natu-
fCa ral to expect that the contributions of these cumulants to all

8pysical guantities should decrease fairly rapidly with the
cumulant sizg «/.

If the entire lattice is treated as the largest cluster, Eq.
(8) reads as

Here the sums are performed over sites and configurations
clustera, v = ¢p— u, for “one-atom” occupancieg = pi,
and ¢ describes renormalization of variableg, i.e., fields
@pi and potentialy)P - owing to interaction between the
clustera and its environment. It follows from Eq$4) and ~
(5) that the mean occupangy=(n,) for all clustersa D¢ is H= za: He.
related to fieldy in this cluster by the formula

11

Selection of the approximation on stép means retention of
g§=(aQalazp‘g)T,U§. (6) alimited set of cumulant§a} on the right-hand side of Eq.
(11) with small norms| a|<|a|mnax and rejection of the rest

~ Hamiltonian H,, accurately describes interactiong  §  After this operation, exact expressions for cluster
within the cluster. Its interaction with the environment, how- yamiltoniansH, , i.e., fieldsy¢ in Eq. (5), are replaced by

ever, is described by variablefg , which can be calculated
in practice using some approximation. The contribution o in Eq. (11) in terms of cluster Hamiltoniandl,, we obtain

interactions within the c_Iuster_, as compared Wlth fiedds, the basic equations of the cluster methods:
grows, generally speaking, with the cluster size, and the ac-

curacy improves, but calculations become more complicated. H= E VH (12)
In calculating thermodynamic quantities, such as thermody- ~ Taar
namic potentialQ=—TIn Trexp(—BH), one should per-
form the following operations(a) express the full Hamil-
tonianH in terms of a combination of cluster Hamiltonians 12 .
H, as a series fast converging with the cluster sibpselect S1OWn by Sancheet al,™ for each subclustey of the basic
a decomposition of the lattice into clusters and an approxiSlusters satisfy the condition
mation for calculating fieldg; .

A consistent approach that should be used on &igejs 23: ve=1, (13
the method of cumulant expansicfswhose underlying =
ideas were discussed in several paférs The physical in-  which ensures equality of the factors in front of all interac-
dicator of convergence in this technique is the reduction irfions v n; on both sides of Eq(12). The left-hand side of
the contributions from irreducible correlations to all physical EQ. (12), on the other hand, does not contain renormalizing
quantities with the number of sites in the cluster. These confields ¢, so for all occupancieg these fields should be
tributions are obtained by subtracting from fuilparticle  related by the equation
correlators the contributions of all correlations involving
smaller numbers of particlesn=n—1,n—2,...,1,which > v =0. (14
compose subclusters of this cluster. This means that the ex- “2¢
pression for the energy should include, alongside “clus-  The largest, or “basic,” clustersyy, with |am=]|a|max
ter cumulant” HamiltoniansH , (for brevity called simply  which are not considered as parts of other clusters, contribute
cumulant$, which are related tél,, by the formulas to Egs. (13) and (14) only one term each withw=«a,,.

approximate ones. By expressing the retained cumuldpts

Here the sum is performed over the retained clusters of the
maximal size and their subclusters, and factefs as was
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Hence follows thav, =1 and,p“m—O, where the,, denote 2.2. Cluster variation method.he cluster variation tech-
nique relies only on those approximations that have led to
Eqgs.(12—(14). Therefore, in calculations of thermodynamic
parameters, i.e., average occupanggsnd potentiak) in
Eq. (16) as functions ofl andv,, one should solve equation
system(6) and (14).
Equation(6), which determines fieldg and potentials

Q, in Eq.(4) as functions of average occupanaigs can be
solved directly. With this end in view, note that, if the con-
tribution from a state with occupanay; to the partition
function Z, in Eq. (4) is denoted byS{, ie., Z,=1

2,S;, the quantityS; is related toyy =exd —B(v,+¢)]

y the equation

different |am|-particle occupanues of basis clusters. Thus,
interactions amongda,,,| particles, vg , in Egs.(3)—(5) for
the maximal clusters are not renormalized. This approximaz
tion, which limits the sum in Eq(11) to cumulants with
aC ay is the basic approximation of all cluster techniques.
The geometrical factorg, in Egs. (12) and (14) are
determined by Eq(13), i.e., they depend on the lattice con-
figuration (bcc, fcc, etd. and selection of basic clusters, but
they are independent of the atomic distribution in the lattice
in particular, on its order. These factors for the fcc lattice in
the most common versions of the cluster variation techniqu
and cluster field method will be given in Sec. 3. The genera
properties of factors, were discussed in Refs. 4 and 12,
where they were denoted lay, . Those papers mentioned, in In S¢= > n Yy (18
particular, an important property of such factors for “inner” meECa
subclusters of basic clusters, i.e., such subclustetsat are
parts of only one basic cluster,,. In order to discover this
property, let us apply Eq13) to an inner subclustey. We
obtain ve tr,=1 and »,=0, since in the basic cluster N
v, =1. Equation(14) indicates that in this case the fields Za9¢= > Sy

(ECnCa

1,//?"‘, corresponding to occupanciésn the inner subcluster . _ _ _ _
of the basis clustes,,, also go to zero. Thus, the factors This equation can be solved with respec§{oby induction,
for the inner subclusters in Eqél2)—(16) and the corre- Starting with the maximalé| = | a| and reducingé|, with the
sponding fleldswg"‘ in the basic clusters equal zero, so these help of the following identity for the polynomial coefficients:
subclusters do not contribute to observable quantities and m
can be discarded. This resglt, V\_/hich we QUb for brevity the > CK(—1)F 1=1—(1-x)",_,=1.
inner-subcluster theorem, simplifies considerably all cluster k=1
calculations and will be used in Sec. 3.

By integrating overB the thermodynamic relation

and Eq.(6), which determines; in terms of mean occupan-
ciesg,, takes the form

As a result, we have

o —1)l7l-1¢
(H)=-% (/39) aanexp( BH), (15) S Zang@( D"Eg,,
where(H) is calculated using approximatiqd2)—(14), we  where
obtain 1
Z,=exp—pQ,)=|1+> (-1l"g,| . (19)
Q=> v,Q,, (16) nCa

. ] ) Further, by solving Eq(18) with respect to lryg by induc-
where (), is defined by Eq(4). Here we have taken into tion on |¢| starting with the minimalé|=1, and increasing
account thafas follows from Eqs.(6) and (14)] the full ¢ similarly to the procedure described above, and express-
derivative of expressi0|(116) with respect to each indepen- j,q InS; in terms ofg,, using the above expression, we ob-

dent variabley{ is zero?® Really, if we express, using Ed. tain expression for fieldg{ in terms of mean occupancies
(14), somelpﬁ in terms of the rest of independent vanablesg

Yg, where a# B, the derivative dl/l?/dl,bg equals

(—v./vg) and, given Egs(6) and(14), we obtain Bloet ng’):(—l)‘f‘ nz,— S (—1)é-l
g

d B nCéCa
l’[’i):o. (17)
dysg XIn[ X (—1)ld-lg,|, (20

nC{Ca

dQ
dyg

Note in this connection that the self-consistency condi-

=0¢| Vot Vg

dynamic potentia(16) when independent parametef§ are  or {. Note that Eqs(14b) and (15) in Ref. 15, which are
varied at specified average occupanaigs Therefore, ex- similar to Eqgs.(20) and(23) of this paper, contain errors.
pression(16) can also be used in variational versions of the  After multiplying Eg. (20) by »,, performing the sum
cluster technique, where field@ are varied parameters and over all D¢, and using Eqs(13) and (14), we obtain an
the averageg); are Lagrange multipliers, the same for all equation system for all mean occupancigs with |¢|
clustersa. <|ap|:
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Bo;= Eg vl ¢{g}, (21)

a2

wherel £{g} denotes the right-hand side of EQO).
Substitution ofg, derived from Eq(21) in Egs.(19) and

(16) allows one to calculate the thermodynamic potertial
=Q(T,up). In solving physical problems, however, it is

more convenient to use instead Of the free energyF,
which is related td) by the formula
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which is the basic equations in the approaches developed

earlier®10-14

Note also that, in conventional versions of the cluster

variation techniqué®** “pseudospin” variables oy,
which are related tm,; by formulas likeop=2n,—1, are
substituted for occupancy operatars; . In our opinion, uti-
lization of natural variables,; instead of pseudospin vari-
ableso,; simplifies both the calculatiofsand physical in-

terpretation of results, especially
18,30

in  multicomponent

alloys:
2.3. Cluster field methodl'he cluster field method is a
simplified version of the cluster variation method, when clus-

h _ is th ¢ sitdo ter Hamiltonians(5) include only on-site fieldsjy; due to
w erecpi.—(npi> Is the mean occupancy o Sitdy an atom environment, whereas renormalizations of interactigifs
of type p in the alloy, which can be either homogeneous or,

) 71830 _ with (Jam| —1)=|&|=2 are ignored. In this case the equality
Thomogeneozuls. h l-ghgn the (cj)ne-partlcle T]e?ng,;i among multiparticle mearg; with |£|=2 in clusters of dif-
—Cpi I Eq. (,1) should be treated not as sought-for Tunc- o oy sizede| (which is achieved in the full cluster varia-
tions of chemical potentialg,, but as arguments of sought-

) , tion method by introducing renormalizations ¢f), gener-
for functions(, sy, apdgg for[£[=2. In th|s apprqach, Eq. ally speaking, no longer holds. Therefore the degree of self-
(21) for the one-particle occupanc§=pi determines the

) . consistency, hence the accuracy of the cluster field method,
ch_emlcal p.Otem'ahp(qu T), and Eqs(19) and(16) deter- should be, in a general case, lower than in similar versions of
mine functionQ(c,;,T).

X . . . .._the cluster variation method. Nonetheless, when cluster sizes
The main computational problem in the cluster variation

. . . : . . are sufficiently large, the contribution of renormalizations to
technique is solving nonlinear equation systéh) with re-

i ltinartic] for |¢/=2. We h ved interactions within one cluster is usually reduced, so errors
spect to multiparticle mearg for |¢[=2. We have solve due to omission of such renormalizations can be limited.

Fhls_equ_gtlon system by Newton s metfiBdThis progedure This circumstance was illustrated by comparing cluster field
is simplified by the opportunity to calculate analytically the calculations to cluster variation and Monte Carlo

matrix of derivativesl¢, =dl¢/dg,, of functionsly on the .1 1ationd519The more important is the fact that, in some
right of Egs.(20) and (21): specially selected basic clusters discussed below, interaction
renormalizations and their thermodynamic contributions van-
ish, i.e., fieldyg with |é&|=2 or factorsv,, in Egs.(12) and

(16) for clusters containing these fields go to zero. In this
case, the cluster field method is equivalent to the cluster
variation method, so both the degree of self-consistency and
where 6C(£MN7n) means that the sum is performed over calculation accuracy can be fairly high. The QCTCM ap-
clusters¢, which are subclusters of both and » clusters.  proximation mentioned above and discussed in detail in
The convergence of Newton’s method in this case is fairlySecs. 3 and 4 is one example. Therefore, the good accuracy
fast, but this requires inversion of the matricés,  of the QCTCM calculations of simple models, which will be
=2 .V4l¢,, which are often ill-conditioned and sensitive to discussed in the following sections, is quite natural.

initial conditions. Therefore, it seems that, given modern  Equation systeni19)—(21) is simplified considerably in
high-performance computers, one should use more simplge cluster field method. It is convenient to operate, instead
and stable methods, such as the method of conjugaigf y<;, with variables defined as “activitiesyy; of lattice

gradients’? sites and introduce them to E@t), definingQ,,:
Now let us discuss how our approach based on Egs. N N
ypi:eXFLB(Mp_ (Ppi_‘ppi)]- 27

(3)—(5) is related to the conventional cluster variation

H 12-14 . . . . .
technique$ based on distribution functions, in clus- The cluster partition functiod, in Eq. (4) takes the form of
a polynomial of poweta| with y*:

F(T,cpi)=0+§ Koo+ (22)

|gn:(_1)\§\—|nl+l

x{za1+ >

0C(éNmn)

> gg(_l)lélf\ﬁl

0CICa

-1
] . (23

ters and their entropieS, . In accordance with Eq$3)—(5),
expressions for the cluster mean enekjy and its entropy
S, can be written as

z,= 2 ex(—puy I1 v, (28)
Ca pieg
E“:<H“>:ga (et do)Ge, 24 which contains the product of all activitigs' corresponding
to the occupancy &={pii1,P2i2, .- Pmim} I-€.
Sa=B(Ea=Qy)==Trp,lnp,. (25 ygi Ve, Y - Equation(6) transforms to
Then, using Eqs(12)—(14) and (16), we express the full Co=y&aINZ,19y%. (29)

system entropys= B(E—():
According to Eq.(28), the right-hand side of Eq29) is
the ratio of two polynomials witly®, whose numerator in-

S= Vge— v,Q,|=— v,Trp,Inp,, - ; .
Bl 2 v8e 2 valde 2 vaTtpalnp, cludes only those terms of the denominator which contain

13 a a

(26)
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factor yg;. For all clustersa equation systeng29) can be i i :

easily solved with respect to function§;{c,;} using New- ; vij (Ypi =~ ¥pi) + i =0. (31
ton’s method. Then thermodynamic potentia{c,;} is de- -

rived from Eqs(4), (16), and(28), and Eqs(14) and(27) for ~ This equation illustrates additivity of fieldSHi acting on an

one site,£=pi, determine the chemical p0temiﬁla{0qi}5 atom of typep at sitei and generated by all “external” sites
j. Then the difference between field); in a 2-cluster{ij}
pp= <Ppi+T2 v Inys. (300  and total fieldwpi generated by all sites is only the contribu-
« tion of interaction {j): & 3=y, — ¥p;, and summation of

pi

Now let us comment on applications of basic equationsa” suph cqntri_butions over all interactionsj) yields the
of the cluster variation techniqué2l) and cluster field total field 4, i.e., Eq.(31). . .
method(29) to inhomogeneous states. The mean occupan- Equations(16) and(30) for Q1 and,, in the pair cluster
ciesg, for subclusterg corresponding to nonequivalent sites @PProximation have the form
are different. Therefore, the number of sought-for functions -
g¢ in Eq.(21) is large even for simple, ordered phases. So, in Q= O+ Qy, (32)
the tetrahedron—octahedron cluster variation method, analy- ! =
sis of pureL1, or L1, phases requires calculations of 27 or ~
22 functionsg,, respectively, and a description of a simple Mp— SDpi:MpiJF; Mdi- (33
inhomogeneous system, namely a plane antiphase boundary
in the L1, phase, based on the tetrahedron cluster variatiohiere {; and u,,; correspond to one-site contributions, i.e.,
method demands calculation of several thousandg ehd a  they describe an ideal solution, wher@a§ ;,“«.dl(]ipii are due
lot of computer timé:®3 Analysis of kinetic properties of to interactionsvP:
alloys requires solution of the kinetic master equation, which
is.a system of Qiﬁerential equation; cqntaining derivatives Qi=T|n(l—2 Cpi)i
with respect to time for all occupancigg in a lattice where p
all N sites are nonequivaleht:® Solution of this problem by
the cluster variation techniqgue would require solutions of Mpi:Tmyipi:T'n
equation systems like ER1) for all occupancieg, on each
time step (labeled by numbers), and for interesting ~ - L
system& with N=10° and s=10° such numerical calcula- Qij=Qy=Qi=Q,  ug=In(yplyp)- (39
tions are hardly feasible, at least, in the foreseeable future. At | the important case of a binary alloy AB, Eq&7)—

the same time, equatiori29) of the cluster field method are (29) can be solved analytically for an arbitrary distribution of
fairly simple, as was noted above, and algorithms for theifoca| concentrations;=(n,;).2%2 In Egs. (33)—(35) sub-

solutions are fast convergent and stable. Therefore, applic%triptp of the chemical potentiak,= u— ug can be omit-
tion of these equations to kinetic problems mentioned above, . ) _ In(1—c), w=TIn[c /(1p_c_)] and quantities),
" | 1/ I (| 171 1]

i ite feasible. ~
's quite feasible and ui' in Egs.(32)—(35) are expressed by

; (34)

cpi/(l—g cqi)

3. SELECTION OF BASIS CLUSTERS IN DIFFERENT Q;=-TIn(l-cc;gj), mI=TIn(1-c;g;), (36

VERSIONS OF CLUSTER TECHNIQUES . . , )
where g;; is expressed in terms of Meyer's functidi

In this section we will discuss several commonly used= exp(—Bv;)—1 so that
versions of the cluster variation and cluster field methods,
which will be used in Sec. 4. These versions are character- o 2f;;
ized by selection of maximal or basic clusters, which was " Ryj+1+fj(ci+c;)’
discussed in Sec. 2.1. _ 5 12

3.1. Approximation of pair clustergirst let us consider Rij={[(1+(ci+cpfiI°—4dcicify(f; + 1)} (37)
the simplest approximation of pair clusté@clusteryin an  In the case of weak interactiopp;; <1, Egs.(36) transform
alloy with pair interactionsvﬁq. The basic clusters in this into the results obtained by the mean-field approximation:
case are all pairs of sites,j} whose interactionsz;f}q are ﬁij:_vijcicj; ﬁ:izvijcj_
nonvanishing. As was proven above, interactiens for 3.2. Yang's tetrahedron approximatiéhAs was noted
|&ml=|am| in clusters with the maximal sizds,| are not in Introduction, an adequate description of ordering in fcc
renormalized. Since in the approximation of 2-clusters wealloys should take into account at least correlations among
have |am| =2, the renormalizing fieldsj; in Eq. (5) are  all nearest neighbors, i.e., tetrahedron clusters of these neigh-
nonzero only for one-site subcluste&ss pi, and the cluster bors should be includeti’®?” Such an analysis was first
variation method is equivalent to the cluster field method. performed by Yang’ He used the “quasi-chemical”

As follows from Eq.(13), one-site coefficients;; are  method, equivalent to the cluster approach discussed here,
related to pair factorsy; by the formulav;=1-3;v;, considered a model with interactions between nearest neigh-
wherev;; =1 if v9#0 andw;; =0 forvf%=0. Equation(14)  bors, and his basic clusters were tetrahedrons shown in Fig.
relating fieIdSngi and lﬁ'pi in 2- and 1-clusters can be rewrit- 1. These tetrahedrons have only one common point, and each
ten as lattice site is included in four tetrahedrons. Note that this
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fied if Bv, is small. But if the parameteBuv , is comparable
with unity, the pair cluster approximation described in Sec.
3.1 may have a better accuracy than the mean-field
approximation'°~26 At the same time, straightforward equa-
tions (32)—(37) make this approximation just as easy, at least
in the case of two-component alloys. This approximation,
which includes interaction between nearest neighbors in the
approximation of Yang’s tetrahedrons and interactiop$or
n=2 in the pair cluster approximation will be dubbed
QCTCM. Section 4 will be dedicated largely to investigation
of this relatively simple approximation.

Using results of Secs. 3.1 and 3.2, one can write expres-
sions for potential€) and u, in QCTCM in a form similar
to Egs.(32)—(35):

FIG. 1. Decomposition of the fcc lattice into tetrahedron clusters in Yang'’s
quasi-chemical approximatid.

choice of basic clusters is different from the configurations 0= Qi+ > , Qijnt 2 Qi (40)
of the conventional tetrahedron version of the cluster varia- ' e itz ety

tion technique to be discussed in Sec. 3.4, where the basic ~iin ~ ikl

clusters are all eight tetrahedrons including a specific lattice  #p™ %i:r“piJrj n§;2 Hpi +{.k|}em Mopi - (42)
site, so these tetrahedrons have, in addition to one common ' : '

point, common edges. Here(); and u; are the same as in Eq82)—(34), whereas

With Yang's selection of basic clusters, E43) or (14 Q;; , or ﬁipji'” stands forﬁij or ﬁ'pll in Eq. (35), but for
applied to subclusters withe| or ||, which are equated interaction betweemth neighbors. The notatiofijkl}etY
sequentially to 4, 3, 2, and 1, yield the factors=v,; and in the last sum of Eq(40) means that the sum is performed
fields y¢ (denoted for brevity bys(¢): over all Yang’s tetrahedrons including siteg k,I of the

_ o __a. lattice, and{jkl} etY,i in Eqg. (41) means that summation is
=1, =v,=0, =-3; 38 S
va vaTh " 38 performed over four Yang's tetrahedrons that contain isite

The variablesﬁijk, and ,ﬂg,k' for tetrahedror{ijkl} are de-
fined similarly to();; and,ﬂipji for pair clusters in Eq(35):

Thus, interactions within 4-clusters are not renormalized,
whereas 3- and 2-clusters do not contribute to observable

3
Ya=y5=95=0, yi=gu1. (39

ﬁijkI:Qijkl_Qi_Qj_Qk_Ql ;

quantities, thus the cluster variation method in this approxi- K n(yiik yi 42)
mation is again equivalent to the cluster field method. Note P! pr o Tpir
that the vanishing of factore; and v, and corresponding 3.4. Versions of the cluster variation methdifferent

fields z/;é‘ and zp‘z‘ is the result of the inner subcluster theorem approximations in the cluster variation methods have been
given in Sec. 2.1: Fig. 1 clearly shows that the subclusterslescribed in the literature in detéit°=*#In the notation used
formed by a face and an edge of a basic tetrahedron are innigr this paper, the thermodynamic potentials are expressed by
clusters. Note also that E(B9) relating fieldsy; and 7 in  Egs. (16), (19)—(22), and different versions correspond to
the 4-cluster and 1-cluster is again consistent with the condifferent configurations of basic clusters, hence different fac-
cept of additivity of field component generated by each “ex-tors v, in Egs.(16) and (21). Next is a brief discussion of
ternal” bond. The number of such bonds for a 4-cluster is 9most common versions of the cluster variation method for
and for a 1-clustefone sitg it is 12, which is in agreement fcc latticest®*3which will be used in calculations of Sec. 4.
with Eq. (39). In the tetrahedron approximation, basic clusters are all
3.3. Approximation of Yang's tetrahedrons and pair tetrahedrons including the nearest neighbors. Each triangle
clusters of non-nearest neighbor$.there are interactions of nearest neighborvhich is dubbed minimalis a part of
vp=vs, Vs, ...,UymWith second, third,. . . ,mth neighbors, only one basic cluster, i.e., it is an inner subcluster and,
the tetrahedron approximation described in the previous se@ccording to the inner subcluster theorem, does not contrib-
tion can be generalized to include these interactions. In thete to thermodynamic quantities. Each pair of nearest neigh-
cluster variation technique, this is done by using more combors (a “bond”) belongs to two different tetrahedrons, and
plex approximations with larger basic clusters, namely, theeach site belongs to eight basic clusters and twelve bonds.
tetrahedron—octahedron approximation taking into accounBy solving Eg. (13) with due account of these facts, we
v,, the double tetrahedron-octahedron approximation includebtain for factorsv,= v, in the tetrahedron approximation:
ing v, andvs, and so'oﬁ‘:m‘mFor most of real alloys and ve=1, 13=0, vy——1, =5 43)
temperatures interesting from the practical viewpoint, how-
ever, interactions between non-nearest neighbors are weak In the tetrahedron—octahedron approximai®®CVM)
and Bv,, is much lower than unity.In this connection, the the basic clusters are all elementary tetrahedrons and octahe-
contributions of interactions,,, wheren=2, are described drons, such a$1,2,3,4 and{1,3,4,5,6,7 in Fig. 2. All the
in terms of the mean-field approximatiéi,which is justi-  octahedron subclusters, except minimal triangles, bonds, and
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octahedron approximation for ordered phases and the double
tetrahedron—octahedron approximation for disordered
phases. We selected the more accurate approximation in the
latter case because fluctuation effects in the phase transition
region (which generate uncertainties largely responsible for
calculation errorsare appreciably stronger in the disordered
than in ordered phageAround the points of first-order phase
transitions discussed in this paper, fluctuation effects are no-
tably suppressed in the ordered phase owing to the presence
of the moderate-size order parameter. Therefore, in order to
obtain a similar degree of accuracy in both phases, one
should apply a more accurate technique to the disordered
phase.

As was noted in Sec. 3.3, the tetrahedron—octahedron
FIG. 2. Sites of the fcc lattice discussed in the paper in connection withapproximation is sufficient for taking into account interaction
different configurations of basic clusters. v, between second neighbors, and the double tetrahedron—
octahedron approximation takes into account interactigns
andv; between second and third neighbors, but they ignore

single sites, are inner, so their factars are zero, in accor- . : o ) 7
) . S . interactionsv,, with highern. At the same time, taking into
dance with the inner cluster theorem. Each minimal triangle

. 34 . .
(e.q.{1,2,3} in Fig. 2) belongs to one octahedron and Oneaccount experimental data far,,™ we will consider a

tetrahedron; each bon@uch as{1,3} in Fig. 2) belongs to model with nonvanishing ; andv,. As was stated in Sec.
L3 . 3.3, the contributions of interactions, beyond large basic
two octahedrons, two tetrahedrons, and four minimal tri-

angles; each single site belongs to six octahedrons, eight te({[usters will be included in the pair cluster approximation, as

o ) . in Egs. (40) and (41), i.e., we will add to expressions like
rahedrons, twenty-four minimal triangl€three in each tet- ; S o
. . . . (16) in the cluster variation approximation the components
rahedrom and twelve bonds. Using these relations in solving=

Eqg. (13), we obtain factorsv,= |, in the tetrahedron— Qij,n OF " from Eq. (40) or (41) with n=3 and 4 for the
octahedron approximation: tetrahedron—octahedron approximation ane 4 for the

double tetrahedron—octahedron approximation. Thus, unless
ve=v4=1, wvz3=—1, =1 w»=-1 (44 otherwise stated, we will hereafter define the cluster varia-

In the double tetrahedron—octahedron approximationtion technique in this manner, i.e., the tetrahedron—
the basic clusters are double tetrahedrons {ikg,3,4,7,8  octahedron approximation for ordered phases, double
and octahedrons lik¢1,3,4,5,6,F in Fig. 2, hereafter de- tetrahedron—octahedron for disordered phases, and, in addi-
noted bydt ando. Using Fig. 2, one can find that the over- tion, pair clusters for interactions, with n=3, if such in-
lapping (i.e., non-inner subclusters of these basic clustersteractions are present and ignored by the basic cluster ap-
are tetrahedrons formed of nearest neighbors and denoted Byoximation. _ _

t, tetrahedrons liké2,3,4,8 denoted by, right triangles like As concerns calculations by the cluster field method de-

{2,4,8 denoted as 3minimal triangles, bonds and single scribed in the next section, we will discuss, in addition to the
sites. Each tetrahedrdnbelongs to six double tetrahedrons basic QCTCM approximation treated in Sec. 3.3, an alterna-

(all of which have one common bond with, and each tet- tive version of this methodQCTCM), which uses basic

rahedrori belongs to one octahedron and one double tetra]c_:lusters of the tetrahedron cluster variation method, i.e., each

) = attice site belongs not to four QCTCM tetrahedrons, but to
hedron. Triangle 3vbelongs to one octahedron, two double gjght since this version relies on the main assumption of the
tetrahedron, and two tetrahedronsEach minimal triangle ¢|yster field method,y¢=0 for |£>1, the main self-

belongs to one octahedron, six double tetrahedrons, one tefpnsistency condition(6) is violated for |£[=2, i.e., the
rahedront, and three tetrahedroris Each bond belongs to mean occupancieg; for |£|=2 in the tetrahedrons and pair
two octahedrons, eleven double tetrahedrons, two tetrahelusters of nearest neighbors differ. Since the contribution of
dronst, ten tetrahedrons, and four minimal triangles, and these clusters to thermodynamic quantities, according to Eq.
each single site belongs to six octahedrons, thirty-six doublé€43) and unlike Eq(38), is nonvanishing, there is every rea-
tetrahedrons, eight tetrahedrandorty-eight tetrahedrons, ~ son to suppose that the accuracy of @M should be worse
twenty-four minimal triangles, and twelve bonds. All thesethan that of QCTCM. This opinion is supported by calcula-
relations and Eq.(13) yield factors v, for the double tions of Sec. 4.

tetrahedron—octahedron approximation:

4. CALCULATIONS OF PHASE DIAGRAMS WITH L1,

vai=Vo=1, »n=-5  1mi=-1, wv3=2,
AND L1, ORDERING BY DIFFERENT CLUSTER
1r3=v,=0, wv;=-1 (45  APPROXIMATIONS
3.5. Approximations employed in the reported wdrk. This section describes results obtained using methods

our calculations of phase diagrams by the cluster variatiospecified in Secs. 2 and 3 in calculating phase diagrams for
method reported in Sec. 4, we have used the tetrahedronrseme models with.1, or L1, ordering. In cubic structure
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L1, (which occurs, for example, in alloys like pil) mi-
nority atoms(Al) occupy predominantly sites of sublattice 1,
i.e., vertices of the cell cube shown in Fig. 2, whereas ma-
jority atoms(Ni) occupy predominantly sites of sublattice 2,
i.e., the centers of cube faces. The mean occupangiaad

c, of sites(for example, by minority atomsn these sublat-
tices are related to the mean concentratiai alloy compo-
nents and order parametsrby the formula®®

c;=c+37y, Cc,=c—7, (46)

where » may vary between zero ard

The tetragonal 1, structure(for example, in TiAl al- ‘ X . A
loys) is formed by alternatingi100] lattice planes occupied 0 01 02 03 04 ¢
predominantly by atoms of the first or second sort. In this; s 3 ppase diagram in the-T' plane of an fcc binary alloy @,
case, sublattices 1 and 2 are formed by alternating lattic@hereT’=T/v, is the reduced temperature, for the following constants of
planes, so their occupanciesandc, are related to the order cluster interactionsy,~3=0, e=v,/v,;=—0.5. The solid lines are curves

parametery by the formulas of equilibrium between phases;;(c), calculated by QCTCM as described
in Sec. 3.3. The dashed lines &fg(c) curves calculated by the cluster
ci;=Cc+mny, Cy=C—mn, (47) variation method described in Sec. 3.5. The regions separated by lines
) ) ) Tij(c) correspond to the following phasésom left to righd: disorderedA,
where 7, just as in Eq(46) varies between zero ard phase; coexistence @, andL1, phasesl 1, phase; coexistence &fl,

As was mentioned in Introduction, the main subject ofandL1, phases| 1, phase. The dotted line is the ordering spinatig(c)
this section is the accuracy of phase diagram calculationgdiculated by QCTCM.
based on the simple QCTCM approximation described in
Sec. 3.3 in comparison with more complicated calculations
based on the cluster variation method. The cluster variatioture, namely, the metastable region of nucleation and nucleus
method in this case is the version described in Sec. 3.5rowth for T>T,{c) and the region of exponential growth
which uses the tetrahedron—octahedron approximation fasf concentrational wave amplitudes with time, starting with
ordered phases and double tetrahedron—octahedron approkifinitesimally small fluctuations aff<T...5?° The dis-
mation for disordered phases. Earlier investigafidhd' cussed phase transitions to phalsés or L1, have the same
suggest that the accuracy of this version of the cluster variaerdering spinodal corresponding to “critical” concentration
tion method is extremely high, since the difference betweenvaves with the star wave vectkr=(27/a,0,0), wherea is
calculations by this method and Monte Carlo results wereahe lattice constant of the fcc structuré The shape of this
usually within one percent. spinodal can be derived from expressi@2) for free energy

As in Refs. 10 and 11, we will analyze only models with F of an ordered alloy with sublattice occupancigsandc,
interactionsv; andv, between nearest and second-neareséxpressed in terms of the mean concentratioand order
neighbors dubbed for brevity 2-models. In this case, phasparametery using Egs.(46) and (47). The line T,{c) is
transitions to theL1, or L1, phase are possible when  determined by the condition of thermodynamic stability
>0 andv,<0," and if the temperature is replaced by the against infinitely smally, i.e., the second derivative d¥
“reduced” temperaturel’ =T/v,, the phase diagram in the with respect ton should go to zero ay=0:
c—T' plane is determined by one parameterv,/v,<0.
The available experimental evaluations ef 2in 1such [°F(T.c,m)/dn°],=0=0. (48)
alloys+?>2634yield —0.3<e=<0. For this reason, we have In our calculations, we substituted in E¢8) the expression
used in our studies of 2-models four valueseobqual to for F in the L1, phase calculated by the QCTCM approxi-
—1/2,—1/4, —1/8, and 0. In addition, we have also studied mation[Egs.(22), (40), and(41)]. To the best of our knowl-
the model including interactions between up to fourth neigh-edge, previous calculations @fc) for ordering transition
bors (the 4-model at v, derived from experimental défa  to phased.1, andL1, were based on a very special model
for the Niy o,AAl o073 @lloy at T=673 K. These estimates of with interactions between nearest neighbofhe ordering
interaction constants are;=1680 K, v,=—-210 K, vy  spinodals given below contain information about important
=35 K, andv,= —207 K. Note that these values are of the kinetic characteristics of phase transformations based on
same order of magnitude as both experimérffaland more realistic alloy models.
theoretical data for various alloys of this kind. The calculation results are plotted in Figs. 3—7. In the

In calculations of temperaturg;(c) at which phases  models with pair interactions independent of the concentra-
andj are in equilibrium, we used conventional thermody-tions, phase diagrams are symmetrical with respect to the
namic equations, i.e., equilibrium conditions for chemicalline of mean concentratiot— 1/2, therefore the graphs show
potentialsy and potentiald) of these phase€'$:?? In addi-  only the regionc<1/2. Let us discuss the calculations plot-
tion, we also calculated the ordering spinodigi(c).! Lines  ted in the graphs.
T.{c) inthec—T plane separate regions of different kinetic First of all, it is clear that the calculations by all models,
mechanisms of phase transformations after quenching of except the model taking into account only interactions be-
homogeneous disordered alloy below the ordering temperaween nearest neighborgig. 7) discussed below, in the
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FIG. 4. The same as Fig. 3, but for a model witlk —0.25. The solid, FIG. 6. Phase diagram in ttee—T plane for the 4-model described in the

dashed, and dotted lines have the same meaning as in Fig. 3. The dadlext with v, derived from experimental dafA.The lines have the same

dotted lines showT;(c) curves calculated in the QM approximation ~ Meaning as in Fig. 3.
described at the end of Sec. 3.5.

QCTCM and cluster variation approximations are very close,higher temperatures of the phase transitiog(c)/v,, and

whereas the latter, as was noted above, should be fairly cIo@inOdal’TOS(C)/l_’l' as compared to the calculations by the
to exact results. Thus, in all these models, QCTCM quitez'mOOIel sh_own in Fig. 5. N

adequately describes thermodynamics of phase transforma- The spinodal tempe_rgturé'%§(C) In Figs. 3-6 are usu-
tions. This is our main result, which allows us to supposeaIIy very close .to transition pointg(c), remarkably, not
that QCTCM could be perfectly adequate for solving moreOnly in the region of ordered phadel,, but also in the

complex problems of phase transition kinetics mentioned ifegron ofAl andL1, coe>-<|st.ence._'.rhe.refore, kinetic effepts
Introduction. related to thermodynamic instability in a quenched disor-

At the same time, Fig. 4 demonstrates that the result Ogered alloy in the regiom <T,{c) and B2 ordering dis-

~ . . . cussed in earlier publicatiofiscan also show up in broad
QCTCM’ which Was_descrlbed_ in Sec. 3.5, at notable Con'ranges of temperature and concentration. Note also that in
centrationsc=0.2 differ considerable from both cluster

- : L . 2-models(Figs. 3-9 the ratiosT,{c)/Tc) drop with in-
variation and QCTCM calculations. This indicates that V'o'creasing|e|=|vzlv1|. So, for e= - 0.125(and in QCTCM

lation of the self-consistency conditidf) by QCTCM, i.e., models with* e=0) our calculations of ,(c)/T(c) in the

the condition of equal occupancies in different clusters €ON{ 1, phase and near the peak(c) are close to 0.75. The
tributing to thermodynamic quantities, may notably degrade|,ster variation calculations based on the tetrahedron—
the calculation accuracy. Therefore, one cause of the goog.iahedron scheme with e=0 yield notably higher
accuracy of QCTCM calculations may be the absence of_(c)/T (c)=0.96. Therefore, our simple calculations with

such a self-consistency violation in this technique. small e by the 2-model probably underestimate the spinodal
Comparison between graphs in Figs. 5 and 6 illustrates

the effect of interactions between non-nearest neighbors on

the phase diagram shape. The ratiov, /v in the 4-model T
in Fig. 6 is very close toe=—1/8 in calculations by the 0.5
2-model in Fig. 5. The presence of additional interactions in
the 4-model, however, primarily,~v,, leads to notably
0.4 o=
T
0.3}
0.2
1
0.1
0.1 0.2 0.3 04 ¢
FIG. 7. Phase diagram in the- T’ plane for a model of an fcc alloy with
pair interaction only between nearest neighbors describing equilibrium be-

0 0.1 0.2 0.3 0.4 c tween Al and L1, phases. The solid lines shoil;(c) calculated by
QCTCM, the dashed lines shoW;(c) calculated by TCVM, squares and
FIG. 5. The same as Fig. 3 for a model witk —0.125. crosses plot Monte Carlo calculatiots.
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temperatureT,{c), which might be caused by fluctuation used as a base for further development of theoretical models

effects in the phase transition region discussed below. of inhomogeneous states and ordering phase transition kinet-
The model with interaction between only nearest neighics in fcc alloys.
bors (=0) was studied by many research&t&*?®For We are grateful to Dr. G. Martin for his interest in this

this reason, Fig. 7 shows only a few calculations of equilib-work and hospitality shown to one of the auth¢ D. S)
rium lines between tha1 andL1, phases by this modét,?®  at Center d’Etude de Saclay, where this investigation began,
and these data are given as an illustration. The feature of thnd to V. V. Kamyshenko for help and useful discussions.
model is degenerac{in terms of energyof several phases This work was supported by the Russian Fund for Funda-
with different symmetry properties, in particuldrl, and mental ResearcfGrant No. 97-02-17842

DO,,, or L1, andA,B,,1?®as well as many different con-

figurations with short-range order. This leads to a consider-

able _ipcrease in various fluctuation effects near the phaseg_mail:vaks@mbslab.kiae.ru

transitions, hence a poorer accuracy of such simple approxiE-mail:G.D.Samolyuk@mbslab.kiae.ru

mations as QCTCM or TCVM. This, apparently, results in

notable differences between results of these methods and
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