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Abstract—The existence of the molecular ion H(2+)
3 in a magnetic field in a triangular and a linear

configuration is discussed. A variational method (with an optimization of the form of the vector potential)
is used. It is shown that, in the range of magnetic fields 108 < B < 1011 G, the system (pppe), with
the protons forming an equilateral triangle perpendicular to the magnetic line, has a well-pronounced
minimum in the total energy. Also, for B � 1010 G, if the protons are situated along a magnetic line
(linear configuration), a well-pronounced minimum in the total energy appears. Both configurations are
unstable under the decays H(atom) + p+ p and H(+)

2 + p. A possible connection between the H(2+)
3

molecular ion and a recently discovered absorption feature in a neutron-star atmosphere is discussed.
c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Recently, Sanwal et al. [1] announced a discovery
of two absorption features around 0.7 and 1.4 keV in
the isolated neutron star 1E1207.4-5209. Their anal-
ysis was based on Chandra data from January 2000
and January 2002 runs and it was later confirmed
by an independent analysis by Mori and Hailey [2].
Although so far there is no agreement among experts
about the origin of the absorption, one particular point
is not in doubt—this observation is an indication
of the atomic–molecular nature of the neutron star
atmosphere, which occurs in spite of a surface tem-
perature of (1.4–1.9) × 106 K [3]. These results do
not sound very surprising, since as far back as the
1970s Kadomtsev–Kudryavtsev [4] and Ruderman [5]
presented independent arguments for the existence of
new chemical compounds in a strong magnetic field,
different from the ones we deal with in everyday life.
In the present paper, I want to describe the simplest
exotic molecular system that does not exist in the ab-

sence of a magnetic field—the molecular ion H(2+)
3 . It

sounds natural to study the two most symmetric con-
figurations: (i) where the protons form an equilateral
triangle with a magnetic field directed perpendicular
to it and (ii) where the protons are situated along a
magnetic line forming a linear polymer. Certain im-
mediate physical arguments in favor of the existence

∗This article was submitted by the author in English.
1)On leave of absence from the Institute for
Theoretical and Experimental Physics, Bol’shaya
Cheremushkinskaya ul. 25, Moscow, 117259
Russia; e-mail: turbiner@nuclecu.unam.mx,
turbiner@heron.itep.ru
1063-7788/03/6611-1953$24.00 c©
of H(2+)
3 in the linear and triangular configurations

also can be presented. In a strong magnetic field,
the electron cloud takes a cucumber-like form elon-
gated along themagnetic line. Thus, for the triangular
configuration, the protons themselves are kept sta-
ble if the system rotates, developing a Lorentz force,
which compensates for the electrostatic repulsion. It
is easy to see that the protons forming an equilateral
triangle are stabilized by the cucumber-like electron
cloud of total charge one perpendicular to the triangle
and situated at its center. In the case of the linear
configuration, the argument is different—we arrive
at electrostatics in a quasi-one-dimensional domain
which assures the existence of a stable configuration.
Of course, as a natural approximation, the protons
are assumed to be infinitely heavy, so that the Born–
Oppenheimer approximation can be used.

Some time ago, there was presented theoretical
evidence based on the solution of the Schrödinger

equation that the molecular ion H(2+)
3 in a linear

configuration can exist in a strong magnetic field
B � 1010 G [6]. Later, it was demonstrated that it
even becomes the most stable one-electron system
at B � 1013 G [7]. Recently, it was shown that the

H(2+)
3 molecular ion can also exist in a triangular

configuration—the protons form an equilateral trian-
gle, where a magnetic field is directed perpendicu-
lar to it—for a range of magnetic fields 108 � B �
1010 G [8]. Both studies have used quite sophisticated
variational techniques. Our present goal is to present
an overview of the present situation of the molecular
2003 MAIK “Nauka/Interperiodica”
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Fig. 1. Geometrical setting for the (pppe) ion in a mag-
netic field directed along the z axis. For the triangular
configuration (see text), the protons are situated in the
x–y plane and marked by bullets. It is assumed that the
gauge center is situated along the bold dashed line which
connects the center of the triangle and the position of the
proton c (see text).

ion H(2+)
3 and to discuss briefly the possibility of de-

tecting such a system.
The Hamiltonian that describes three infinitely

heavy protons and one electron placed in a uniform
constant magnetic field directed along the z axis,
B = (0, 0, B), is given by

H = p̂2 +
2
Rab

+
2
Rac

+
2
Rbc
− 2
r1

(1)

− 2
r2
− 2
r3

+ 2(p̂A) +A2

(see Fig. 1 for notation), where p̂ = −i∇ is the mo-
mentum and A is the vector potential which corre-
sponds to themagnetic fieldB. Asmentioned above, a
natural triangular configuration appears if we assume
that the protons a, b, c form an equilateral triangle,
Rab = Rbc = Rac = R, and the magnetic field B is
perpendicular to it. This configuration of the pro-
tons is stable from the classical-mechanical point of
view, since electrostatic repulsion of the protons is
compensated for by the Lorentz force. This justifies
the use of the Born–Oppenheimer approximation and
also adds extra stability to the whole system (pppe). It
seems natural that a small perturbation of the position
of a proton outside the plane perpendicular to the
magnetic line can distort the above triangular con-
figuration. However, our calculations show that the
presence of the electron can stabilize the configura-
tion, at least, for small perturbations. Thus, the stabil-
ity of this configuration is of a different nature than the
PH
linear one (see details below). There, it appears to be
a consequence of the quasi-one-dimensionality of the
problem and compensation for the proton repulsion
by the interaction with the almost one-dimensional
electronic cloud [6, 7].

Atomic units are used throughout (� = me = e =
1), albeit energies are expressed in Rydbergs (Ry).
Sometimes, the magnetic field B is given in atomic
units with B0 = 2.3505 × 109 G.

2. OPTIMIZATION OF VECTOR POTENTIAL

It is well known that the vector potential for a
given magnetic field, even in the Coulomb gauge
(∇ · A) = 0, is ambiguous, up to the gradient of
an arbitrary function. This is related to a feature
of gauge invariance: the Hermitian Hamiltonian is
gauge-independent as well as the eigenvalues and
other observables. However, since we are going to use
an approximate method for solving the Schrödinger
equation with the Hamiltonian (1), our energies can
be gauge-dependent (only the exact ones should
be gauge-independent). Hence, one can choose the
form of the vector potential in a certain optimal way,
looking for a gauge that leads to minimal energy for
a given (fixed) class of trial functions. In particular,
if the variational method is used, an optimal gauge
can be considered as a variational function and then
is chosen by a procedure of minimization.

Let us consider a certain one-parameter family of
vector potentials in the Coulomb gauge correspond-
ing to a constant magnetic field B (see, for exam-
ple, [9])

A = B(−ξ(y − y0), (1 − ξ)(x− x0), 0), (2)

where ξ, x0, y0 are parameters. The position of the
gauge center, for which A(x, y) = 0, is defined by
x = x0, y = y0. If the gauge center is at the origin,
x0 = y0 = 0 and ξ = 1/2, we get the well-known and
widely used gauge that is called the symmetric or
circular gauge (see, for example, [10]). Otherwise, if
ξ = 1, this corresponds to the asymmetric or Landau
gauge (see [10]). By substituting (2) into (1), we
arrive at the Hamiltonian in the form

H = −∇2 +
6
R
− 2
r1
− 2
r2
− 2
r3

(3)

+ 2iB[−ξ(y − y0)∂x + (1− ξ)(x− x0)∂y]

+B2[(1− ξ)2(x− x0)2 + ξ2(y − y0)2],

where R is the length of one side of a triangle.
The idea of choosing an optimal (convenient)

gauge has widely been exploited in quantum field-
theory calculations. It has also been discussed in
quantum mechanics, in particular, in connection
with the present problem (see, for example, [11] and
YSICS OF ATOMIC NUCLEI Vol. 66 No. 11 2003



EXOTIC MOLECULAR STATES 1955
references therein). Perhaps, the first constructive
(and remarkable) attempt to apply this idea is due to
Larsen [9]. In his variational study of the ground state

of the H(+)
2 molecular ion, it was explicitly shown

that gauge dependence of the energy can be quite
significant and even an oversimplified optimization
procedure improves the numerical results.

Our present aim is to study the ground state of (1)
and (3). It can be easily demonstrated that, for a
one-electron problem, there always exists a certain
gauge for which the ground-state eigenfunction is a
real function. Let us fix the vector potential in (1).
Assume that we have solved the spectral problem
exactly and have found the exact ground-state eigen-
function. In general, it is a certain complex function
with a nontrivial, coordinate-dependent phase. Con-
sidering the phase as a gauge phase and then gaug-
ing it away finally results in a new vector potential.
This vector potential has the property we want—the
ground-state eigenfunction of the Hamiltonian (1) is
real. It is obvious that similar considerations can be
performed for any excited state. In general, for a given
eigenstate, there exists a certain gauge in which the
eigenfunction is real. These gauges can be different
for different eigenstates. A similar situation occurs for
any one-electron problem.

Dealing with real trial functions has an obvious
advantage: the expectation value of the term ∼A
in (1) or ∼B in (3) vanishes when it is taken over
any real, normalizable function. Thus, without loss
of generality, the term ∼B in (3) can be omitted.
Furthermore, it can be easily shown that, if the orig-
inal problem possesses axial symmetry with the axis
coinciding with the direction of the magnetic field, the
real ground-state eigenfunction always corresponds
to the symmetric gauge.

3. CHOOSING TRIAL FUNCTIONS

The choice of trial functions contains two impor-
tant ingredients: (i) a search for the gauge that leads
to the real ground-state eigenfunction and (ii) per-
formance of a variational calculation based on real
trial functions. The main assumption is that a gauge
corresponding to a real ground-state eigenfunction
is of the type (2) (or somehow is close to it).2) In
other words, one can say that we are looking for a
gauge of the type (2) which admits the best possi-
ble approximation of the ground-state eigenfunction
by real functions. Finally, in regard to our problem,
the following recipe for a variational consideration is

2)This can be formulated as a problem—for a fixed value of B
and fixed triangle size, find a gauge forwhich the ground state
eigenfunction is real.
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 11 20
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Fig. 2. Geometrical setting for the linear configuration of
H(2+)

3 . The positions of the charged centers are marked
by bullets.

used: First of all we construct an adequate varia-
tional real trial function Ψvar [12], ∆Ψvar/Ψvar = Vvar,
which allows us to reproduce the original potential
near Coulomb singularities and at large distances,
where ξ, x0, y0 would appear as parameters. Then,
we perform aminimization of the energy functional by
treating the free parameters of the trial function and ξ,
x0, y0 on the same footing.

In particular, such an approach enables us to
eventually find the optimal form of the Hamiltonian
as a function of ξ, x0, y0. It is evident that, for small in-
terproton distances R, the electron prefers to be near
the center of the triangle (coherent interaction with
all three protons); hence, x0, y0 should correspond to
the center of the triangle. In the opposite limit (large
R), the electron is situated near one of the protons
(a situation of incoherence—the electron selects and
then interacts essentially with one proton); therefore,
x0, y0 should correspond to the position of a proton.
We make the natural assumption that the gauge
center is situated on a line connecting the center of
the triangle and one of the protons; hence,

x0 = 0, y0 =
R√
3
d

(see Fig. 1). Thus the position of the gauge center is
measured by the parameter d—the relative distance
between the center of the triangle and the gauge
center. If the gauge center coincides with the center
of the triangle, then d = 0. On the other hand, if the
gauge center coincides with the position of proton,
d = 1.

In the case of the linear configuration, where the
protons are situated along the magnetic field direc-
tion (along the z axis) (see Fig. 2), the parameters
x0, y0 do not make much sense. Without loss of
generality, we set x0 = y0 = 0 in (2). Moreover, as
a consequence of the axial symmetry of the original
physical problem, the vector field should be axially
symmetric and, hence, the parameter ξ should be 1/2.
This makes the gauge fixing (2) unambiguous and we
03
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have arrived at the vector potential in the celebrated
symmetric gauge.

The above recipe was successfully applied in a

study of the H(+)
2 ion in a magnetic field, leading to

a unified description with very high accuracy for all
magnetic fields, where nonrelativistic considerations
hold [8, 13].

One of the simplest trial functions satisfying the
above-mentioned criterion is

Ψ1 = e−α1(r1+r2+r3)−B[β1x(1−ξ)(x−x0)2+β1yξ(y−y0)2]

(4)

(cf. [13]), where α1, β1x,1y , ξ, x0, y0 are variational
parameters. The requirement of normalizability of (4)
implies that α1, β1x,1y must be nonnegative numbers
and ξ ∈ [0, 1]. Actually, this is aHeitler–London-type
function multiplied by the lowest (shifted) Landau
orbital associated with the gauge (2). It is natural to
assume that the function (4) describes the domain of
coherence—small interproton distances and probably
distances near the equilibrium.

Another trial function,

Ψ2 = (e−α2r1 + e−α2r2 (5)

+ e−α2r3)e−B[β2x(1−ξ)(x−x0)2+β2yξ(y−y0)2]

(cf. [13]), is of the Hund–Mulliken type multiplied by
the lowest (shifted) Landau orbital. Here, α2, β2x,2y ,
ξ, x0, y0 are variational parameters. Presumably, this
function dominates for sufficiently large interproton
distances R, giving an essential contribution there.
Hence, it models an interaction of a hydrogen atom
and protons (charged centers) and can also describe

a possible decay mode into them, H(2+)
3 → H+ p+ p.

In a similar way, one can construct a trial function

that would model the interaction H(+)
2 + p,

Ψ3 = (e−α3(r1+r2) + e−α3(r1+r3) (6)

+ e−α3(r2+r3))e−B[β3x(1−ξ)(x−x0)2+β3yξ(y−y0)2].

One can say that this is a mixed Hund–Mulliken and
Heitler–London-type trial function multiplied by the
lowest (shifted) Landau orbital. Here, α3, β3x,3y, ξ,
x0, y0 are variational parameters. It is clear that this
function gives a subdominant contribution at large R
and a certain sizable contribution in the domain of
intermediate distances.

There are two natural ways—linear and nonli-
near—to incorporate the behavior of the system both
near equilibrium and at large distances in a single trial
function. A general nonlinear interpolation involving
the above trial functions is of the form

Ψ4–1 = (e−α4r1−α5r2−α6r3 (7)

+ e−α4r1−α5r3−α6r2 + e−α4r2−α5r1−α6r3
PH
+ e−α4r2−α5r3−α6r1 + e−α4r3−α5r1−α6r2

+ e−α4r3−α5r2−α6r1)e−B[β4x(1−ξ)(x−x0)2+β4yξ(y−y0)2]

(cf. [13]), where α4,5,6, β4x,4y , ξ, x0, y0 are varia-
tional parameters. In fact, this is a Guillemin–Zener-
type function multiplied by the lowest (shifted) Lan-
dau orbital. If α4 = α5 = α6, the function (7) repro-
duces (4). However, if α5 = α6 = 0, it reproduces (5).
If α4 = α5 and α6 = 0, it reproduces (6). The linear
superposition of (4)–(6) leads to

Ψ4–2 = A1Ψ1 +A2Ψ2 +A3Ψ3, (8)

where one of the parameters A1, A2, and A3 is kept
fixed, being related to the normalization factor. The
final form of the trial function is a linear superposition
of functions (7) and (8)

Ψtrial = A1Ψ1 +A2Ψ2 +A3Ψ3 +A4–1Ψ4–1, (9)

where three out of the four A parameters are defined
variationally. For a given magnetic field, the total
number of variational parameters in (9) is equal to
20 for the triangular configuration when ξ and d are
included. In the case of the linear configuration, the
number of free parameters is reduced, since x0 =
y0 = 0 (d = 0) and ξ = 1/2; also, β1x = β1y , β2x =
β2y , β3x = β3y , and β4x = β4y . Finally, the total num-
ber of variational parameters in (9) for the triangular
configuration is equal to 14.

It is worth mentioning the strategy of the calcu-
lations. The variational energy is defined by a ratio of
two three- or two-dimensional integrals, correspond-
ingly, depending on which configuration is consid-
ered: triangular or linear. The domain of integration is
the whole space, R3(R2), respectively. In a numerical
analysis, each infinite domain must be limited to a
certain finite domain. This finite domain is chosen
in such a way that the relative contribution com-
ing from outside does not exceed 10−8. In turn, for
each finite domain, a certain dynamical partitioning
is introduced following the profile of the integrand to
make the calculations reliable. Of course, a variation
of parameters in (9) changes the profile and hence
leads to a change of partitioning. Depending on the
value of the studied magnetic field, the number of
subdomains in each integral is varied, reaching about
50 for the highest magnetic fields.

Calculations were performed using the minimiza-
tion package MINUIT of CERN-LIB. Numerical
integrations were carried out with a relative accu-
racy of ∼10−7 by use of the adaptive NAG-LIB
(D01FCF) routine. All calculations were performed
on a 450-MHz Pentium-II PC.
YSICS OF ATOMIC NUCLEI Vol. 66 No. 11 2003
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Table 1. Total energy, equilibrium distances, and characteristics of the vector potential (2) [8] (comparison is given with

H(2+)
3 in a linear configuration aligned along the magnetic line [7, 13], hydrogen atom [14] as well as the H(+)

2 ion aligned
along the magnetic line [7, 13])

B, G H(2+)
3 (triangle) H(2+)

3 (linear) H atom H(+)
2 (parallel)

109

ET [Ry] −0.524934 – –0.920821 −1.150697

R [au] 3.161 1.9235

ξ 0.50005

d 0.0

1010

ET [Ry] 2.724209 1.846367 1.640404 1.090440

R [au] 1.4012 2.0529 1.2463

ξ 0.50102

d 0.00041

5× 1010

ET [Ry] 19.331448 16.661543 16.749684 15.522816

R [au] 0.7766 1.0473 0.7468

ξ 0.50205

d 0.0011
4. RESULTS (TRIANGULAR
CONFIGURATION)

The variational study [8] shows that, in the range
of magnetic fields 108 < B < 1011 G, the system
(pppe), with the protons forming an equilateral tri-
angle perpendicular to the magnetic line, has a well-
pronounced minimum in the total energy (see Table 1
and Figs. 3–6). With a magnetic field increase, the
total energy becomes larger, the size of the triangle
shrinks, but the height of the barrier increases (for
example, it grows from ∼0.028 Ry at 109 G to
∼0.037 Ry at 1010 G). It was checked that the
equilibrium configuration remains stable under small
deviations of the proton positions but is unstable

globally, decaying to H + p+ p and H(+)
2 + p. This

implies the existence of the molecular ion H(2+)
3 in

a triangular configuration for the range of magnetic
fields 108 < B < 1011 G.

The calculations show that the equilibrium posi-
tion always corresponds to the situation where the
gauge center coincides with the center of the triangle,
d = 0. Therefore, the optimal vector potential appears
in the symmetric gauge, ξ = 0.5 (see Table 1 and
the discussion above). In Figs. 3 and 6, two typical
situations of the absence of a bound state are pre-
sented. At B = 108 G, a certain irregularity appears
on the potential curve, but neither d = 1 and d = 0,
nor dmin curves develop a minimum. A similar sit-
uation holds for smaller magnetic fields B < 108 G.
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 11 20
At B = 1011 G, the situation is more complicated. If
the gauge center is kept fixed and coincides with the
center of the triangle, the potential curve displays a
very explicit minimum, which disappears after varying
the gauge center position (!). Something analogous
to what is displayed in Fig. 5 appears for larger mag-
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Fig. 3. Total variational energy of the system (pppe) at
the magnetic field 108 G as a function of the size of the
triangle (solid curve). The dotted curve is a variational
energy if the parameter d is kept fixed, d = 0 (the gauge
center coincides with the center of the triangle). If d = 1,
the curve of the variational energy at R > 6 au coincides
with the solid curve.
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Table 2. The comparison of the total energies and equilibrium distances of H(2+)
3 ion in a linear configuration [6] with

the hydrogen atom [14], the H(+)
2 ion aligned along the magnetic line [7, 13], and the Landau energy (total energies and

equilibrium distances are in au)

B = 0 B = 1011 G B = 1012 G B = 1013 G

ET L ET L ET L ET L

H –1.000 – 36.929 – 413.57 – 4231.6 –

H(+)
2 –1.205 1.997 35.036 0.593 408.300 0.283 4218.662 0.147

H(2+)
3 – – 36.429 1.606 410.296 0.692 4220.090 0.330

Free e – – 42.544 – 425.441 – 4254.41 –
netic fields, B > 1011 G. This artifact of the gauge
center fixing at d = 0 led to an erroneous statement

in [15] about the existence of H(2+)
3 in a triangular

configuration at B ≥ 1011 G.

Figure 4 displays the plots of different potential
curves corresponding to the gauge center fixed at the
position of one proton, at the center of the triangle and
also varying the gauge center at B = 109 G. A curve
describing the total energy demonstrates a clear,
sufficiently deep minimum. As was expected, small
distances correspond to a gauge center coinciding
with the center of the triangle, while large distances
are described by a gauge center situated on a proton.
It is important to emphasize that the domain of
near-equilibrium distances (and approximately up
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Fig. 4. Total energy of (pppe) at 109G as a function of
the size of the triangle (solid curve). The dotted curve
is the result of minimization if d = 0 is kept fixed. The
dashed curve describes a result of minimization if d = 1
(the gauge center and position of a proton coincide—see
text). The dash-dotted line displays the position of the first
vibrational state.
PH
to the position of the maximum) is described by
the gauge-center-at-center-of-triangle curve. The
well allows a vibrational state with energy Evib =
0.0113 Ry.

In Fig. 5, there are plots of different potential
curves corresponding to the gauge center fixed at the
position of one proton, at the center of the triangle
and also varying the gauge center at B = 1010 G.
A curve describing the total energy demonstrates a
clear, sufficiently deep minimum. Unlike the situa-
tion for B = 109 G, this well is unable to allow a
vibrational state. Similar to what happens for B =
109 G, small distances correspond to a gauge center
coinciding with the center of the triangle, large dis-
tances are described by a gauge center situated on a
proton, the domain of near-equilibrium distances and
up to the position of the maximum is described by the
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Fig. 5. Total energy of the system (pppe) at 1010 G as a
function of the size of the triangle (solid curve). The dotted
curve is the result of minimization if d = 0 is kept fixed.
The dashed curve describes a result of minimization if
d = 1 (the gauge center and position of proton coincide—
see text).
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Fig. 6. Total energy of the system (pppe) at 1011 G as
a function of the size of the triangle (solid curve). The
bullet denotes the position of a spurious minimum that
appears if the gauge center is kept fixed at x0 = y0 = 0
(d = 0, dotted curve) (the gauge center and the center of
the triangle coincide).

gauge-center-at-center-of-triangle curve. It is quite
interesting to investigate the behavior of the gauge
center position d as well as a gauge “asymmetry,”
ξ vs.R. Both plots are of a phase transition-type, with
change of behavior near the maximum of the barrier
(see Figs. 7, 8). The width of the transition domain is
∼0.02 au (and ∼0.1 au for B = 1010 G). The evolu-
tion of the electronic distributions with respect to the
size of the triangle is shown in Figs. 9 and 10 for 109

and 1010 G, respectively. For small and intermediate
R at B = 109 G, the distribution is characterized by
three more or less similar peaks near the proton posi-
tions. However, it changes drastically after crossing
the point of phase transition at R ∼ 3.93 au. One
peak disappears almost completely, while another one
decreases in height. At large distances, two peaks
disappear completely, and the distribution is charac-
terized by one single peak, centered approximately
at the position of one of the protons. For the case
of B = 1010 G, the electronic distribution is always
characterized by a single peak, which is situated at
the center of the triangle at small and intermediate
distances. Then, at R > 1.7 au, the position of the
peak shifts to a position of the proton. For both values
of themagnetic field at asymptotically large distances,
the center of the peak coincides exactly with the po-
sition of the proton. This picture describes a decay

H(2+)
3 → H + p+ p.
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 11 20
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Fig. 7. Dependence of the position of the gauge center d
on the size of the triangle for 109 G.

5. RESULTS (LINEAR CONFIGURATION)

Theoretical evidence for the existence the exotic
system H(2+)

3 in a linear configuration (see Fig. 2
for a geometrical setting) for magnetic fields B �
1011 G was provided in [6]. A great advantage of our
approach is that the same trial function (9) can be
used. From the computational point of view, a study of
the system (pppe) in the linear configuration is much
simpler than for a triangular one. Due to axial sym-
metry, the symmetric gauge is the optimal one, since
it is a unique gauge, which supports this symmetry.
The number of parameters in (9) is effectively reduced
to 14 and the three-dimensional integration becomes
a two-dimensional one.

For magnetic field B < 1011 G, the variational
electronic total energy E(R+, R−) of the system
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Fig. 8. Dependence of the parameter ξ on the size of the
triangle for 109 G.
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Fig. 9. Evolution withR of the integrated, normalized (to unity), electronic distributions ρ(x, y) =
∫
|Ψ|2(x, y, z)dz for H(2+)

3

in an equilateral triangular configuration at B = 109 G. The coordinates x, y are given in au, ρ(x, y) is in (au)−2.
(pppe) does not indicate any minimum for finite val-
ues of R+, R−. However, starting from B ∼ 1011 G,
the energy surface E(R+, R−) starts to develop

Table 3. Longitudinal localization length 〈|z|〉 and a nat-

ural size L for H(+)
2 and H(2+)

3 for different magnetic fields
(all distances are in au)

B, G
H(+)

2 H(2+)
3

〈|z|〉 L = R 〈|z|〉 L = R+ +R−

1011 0.624 0.593 0.864 1.606

1012 0.348 0.283 0.438 0.692

1013 0.214 0.147 0.242 0.330
PH
a well-pronounced minimum for finite values of
R+, R−. Moreover, this minimum turns out to be
stable under small deviations from linearity. It shows

the existence of the exotic molecular ion H(2+)
3 . In

Table 2, a comparison of the total energies and equi-
librium distances for different one-electron systems is
presented. It is quite striking that the total energy of

the ion H(2+)
3 once it appears becomes immediately

smaller than the total energy of the hydrogen atom

but remains larger than H(+)
2 . It implies that a decay

H(2+)
3 → H + p+ p is prohibited. It is worth noting

that the difference between the total energies of H(+)
2

and H(2+)
3 is very small in comparison to their total
YSICS OF ATOMIC NUCLEI Vol. 66 No. 11 2003
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Fig. 10.EvolutionwithR of the integrated, normalized (to unity), electronic distributions ρ(x, y) =
∫
|Ψ|2(x, y, z)dz for H(2+)

3

in an equilateral triangular configuration at B = 1010 G. The coordinates x, y are given in au, ρ(x, y) is in (au)−2.
and even binding energies. For some magnetic field
of the order of 1013 G, the total energies even become

equal and then the total energy of H(2+)
3 is smaller

than H(+)
2 (see below).

As in the case of H(+)
2 , the binding energy of

H(2+)
3 increases with magnetic field. The natural size

L = R+ +R− of the H(2+)
3 system defined by clas-

sical position of the protons decreases as the mag-
netic field grows similar to what happens with the

natural size L = Req of H(+)
2 . However, the striking

difference between these two systems is revealed. In
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 11 20
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Fig. 11. An illustration of the difference between elec-
tronic distributions for H(+)

2 and H(2+)
3 . The positions of

the protons are marked by bullets. The electron cloud is
in shadow domain.
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PH
contrast to the H(+)
2 ion, for H(2+)

3 , the longitudinal
localization length of the electron 〈|z|〉 is smaller
(or much smaller) than the natural size L of the
system determined by the classical positions of the

protons (see Table 3). Therefore, for H(2+)
3 , the elec-

tronic cloud mainly surrounds the central proton un-

like H(+)
2 , where both protons are surrounded by the

electron cloud (see Figs. 11 and 12).

In Fig. 13a, behavior of the potential energy
surfaces in the (R+, R−) variables (see Fig. 2) is
illustrated for different magnetic fields. These surfaces

develop valleys corresponding to a decay of H(2+)
3 →

H(+)
2 + p at large interproton distances. For a cer-

tain R+(R+ = R−), the potential energy surfaces
exhibit a well-pronounced minimum. However, for
B ≈ 1011 G, the minimum is shallow. The energy
of the lowest longitudinal vibrational state at B =
1011 G in the harmonic approximation is equal to
δE = 0.189 au and lies much above the top of the
barrier, whose height is ∆E = 0.054 au. However,
with growth of the magnetic field, the situation starts
to change. Already for B = 1012 G, the potential
well becomes sufficiently deep that δE = 1.033 au is
comparable with barrier height∆E = 0.833 au, while
for B = 1013 G the lowest vibrational state is kept
inside of the well (see Fig. 13b): δE = 2.406 au and
∆E = 3.58 au.
YSICS OF ATOMIC NUCLEI Vol. 66 No. 11 2003
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In the region B = 1011–1013 G, the system H(2+)
3

is unstable towards a decay to H(+)
2 + p. With the

growth of magnetic field, the total energy of H(2+)
3

becomes lower than the total energy for H(+)
2 . This

happens at B ≈ 1013 G. For example, concrete
calculations show that, at B = 4.414 × 1013 G, the
total electronic energies of H(2+)

3 and H(+)
2 are

18 723.88 and 18 724.48 au, respectively. Hence, for

B � 1013 G, the exotic molecular ion H(2+)
3 becomes

the most bound one-electron system.

6. CONCLUSION

We presented theoretical arguments based on a
variational study that three protons can be bound by
one electron in triangular and linear configurations
at magnetic fields B ≈ 109–1011 G and B � 1011 G,

respectively. Therefore, the exoticmolecular ionH(2+)
3

can exist in a strongmagnetic field. This ion in a linear
configuration becomes the most bound one-electron
system at B > 1013 G having the lowest total energy

in comparison with H, H(+)
2 , and exotic system H(3+)

4
(see [7]). Each of these systems is characterized by
a monotonic increase in the binding (ionization) en-
ergy with the magnetic field. These energies reach
extremely high values. For example, at B = 4.414 ×
1013 G, the ionization energies are

EB(H) = 0.430 keV, EB(H(+)
2 ) = 0.741 keV,

EB(H(2+)
3 ) = 0.750 keV, EB(H(3+)

4 ) = 0.589 keV.

Therefore, the absorption feature at 0.7 keV can be

explained naturally by the ionization of the ions H(+)
2

and H(2+)
3 if they are in a magnetic field B ≈ 3×

1013 G. This explanation is different than the ones
presented in [1, 2], where, in particular, the absorption
feature was assigned to a singly ionized helium atom
at a magnetic field B ≈ 2× 1014 G.
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Abstract—The complex quasienergy, including the level width Γ, is calculated for a loosely bound atomic
state in an intense monochromatic laser field of circular polarization. The method proposed by Zeldovich
for regularizing divergent integrals that involve the Gamow wave function is employed in this calculation.
The convergence of the method is demonstrated, and the conditions of its applicability are indicated.
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1. INTRODUCTION

In atomic, nuclear, and elementary-particle phy-
sics, as well as in some other realms of physics,
there often occur quasistationary states. Such states
correspond to particles or systems of particles that,
albeit undergoing decay within a finite time interval,
behave as stable formations in many respects and
which manifest themselves as resonances in scatter-
ing processes. The widespread examples of this kind
include the alpha decay of nuclei and the ionization
of atoms and molecules that is induced by external
fields—in particular, by an intense laser radiation.

Quasistationary states are described in terms of
a Gamow wave function satisfying the Sommerfeld
radiation condition, χk(r) ∼ exp(ikr) for r→∞;
here, k =

√
2E = k1 − ik2, where k1, k2 > 0 and

E = Er − iΓ/2 is the complex-valued energy of
a quasistationary state, with Er and Γ being the
resonance position and width, respectively.

1)Institute of Theoretical and Experimental Physics, Bol’shaya
Cheremushkinskaya ul. 25, Moscow, 117218 Russia.

*e-mail: poprz@theor.mephi.ru
1063-7788/03/6611-1964$24.00 c©
In view of an exponential growth of the wave func-
tion χk(r) at infinity, there arise serious difficulties
in solving specific problems, since even the normal-
ization integral

∫∞
0 |χk(r)|2dr diverges. A possible

method for overcoming this difficulty was suggested
by Zeldovich [1], who proposed treating a divergent
integral in a regularized sense. In particular, the nor-
malization integral N for the radial wave function in a
spherically symmetric case is defined as the limit

N =

∞∫

0

χ2
k(r)dr = lim

α→+0

∞∫

0

χ2
k(r)e

−αr2dr. (1)

This makes it possible to construct perturbation the-
ory for quasistationary states [1, 2] and to trace an
analogy between them and ordinary stationary states.

Here, problems related to the applicability of Zel-
dovich’s method will be discussed without recourse to
perturbation theory. This will be done by considering,
by way of example, the problem in which an atomic
level associated with short-range forces undergoes
ionization under the effect of the field of a circularly
polarized electromagnetic wave.
2003 MAIK “Nauka/Interperiodica”
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Table 1. Convergence of Zeldovich’s method

γ = 10, K0 = 4.5 γ = 3, K0 = 5.55

α Γ× 1013 α Γ× 109

1.6(−5) 1.2249 1.6(−5) 1.02429

4.0(−6) 1.2059 4.0(−6) 1.01786

1.0(−6) 1.2015 1.0(−6) 1.01626

2.5(−7) 1.2006 2.5(−7) 1.01586

α→ 0 1.2006 α→ 0 1.01573

γ = 3, K0 = 2 γ = 1, K0 = 3

α Γ× 103 α Γ× 103

2.5(−5) 1.06792 1.0(−4) 1.47816

6.25(−6) 1.06707 2.5(−5) 1.47415

1.56(−6) 1.06686 6.25(−6) 1.47314

3.91(−7) 1.06681 1.56(−6) 1.47289

α→ 0 1.06679 α→ 0 1.47281

Note: Quoted in this table are values obtained for the level width Γ via regularization according to Zeldovich’s method (β = 2). The
relevant calculation was performed for a few values of the parameter α. The limit α→ +0 was obtained by means of the extrapolation
described in Appendix 1. Here κ0 = 1 and the following notation was used: a(b) ≡ a× 10b.
2. BASIC EQUATIONS

Upon going over to a rotating reference frame [3],
the dipole-approximation expression for the Hamil-
tonian H(t) describing a charged particle subjected
to the effect of a central potential and the field of
a circularly polarized electromagnetic wave assumes
the form

Hω = −1
2
∆ + U(r)− ωLz + Ex, (2)

where ω and E are, respectively, the frequency and the
amplitude of the electric field of the wave and Lz is
the projection of the electron orbital angular momen-
tum onto the direction of wave propagation; here, we
have used the system of units where � = m = e = 1.
The spectrum of states of the operator H(t) that are
characterized by complex-valued quasienergies [4, 5]
coincides with the spectrum of quasistationary levels
of the Hamiltonian Hω. We will restrict our con-
sideration to the case of s-wave states, for which
one can use the zero-range approximation for U(r)
(three-dimensional delta-function potential). As is
well known from [2], this is equivalent to the boundary
condition

1
χ

dχ(r)
dr

∣
∣
∣
∣
r=0

= −κ0, (3)
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 11 20
where κ0 =
√

2I0, I0 is the ionization potential for the
ion being considered, and E0 = −I0 = −κ2

0/2 is the
energy of a level in the absence of a wave.

The complex-valued quasienergy E = Er − iΓ/2
of a quasistationary state is determined from the
equation that was first derived by Berson [6] and
by Manakov and Rapoport [7]. We represent this
equation in the form

I(ε; γ,K0) =
√
ε− 1, (4)

where

ε = ε + γ−2, ε = E/E0 = 1 + δ + iη,

Er = E0(1 + δ), Γ = κ2
0η, (5)

γ = ωκ0/E = 1/(2K0F ),

ε is the reduced quasienergy, γ is the Keldysh adia-
baticity parameter [8], F = E/κ3

0 is the reduced wave
field, and K0 = I0/ω = κ2

0/2ω is a parameter associ-
ated with the multiquantum character of the process.
Equation (4) formally holds for arbitrary F and makes
it possible to go beyond the region of applicability of
the weak-field approximation.

The left-hand side of Eq. (4) is obtained by analyt-
ically continuing, to the upper half-plane, the function
03
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specified by the integral

I =
1

(8πiK0)
1/2

∞∫

0

du

u3/2
(6)

×
{

exp
(

i
2K0

γ2

sin2 u

u

)

− 1
}

exp (−2iK0εu) ,

which is convergent in the lower half-plane Imε < 0.
In order to construct the required analytic contin-

uation of this integral, we will make use of Zeldovich’s
method. For solutions to Eq. (4), we will consider
functions obtained by going over to the limit α→ +0
in solutions to the equation

Iα(ε; γ,K0) =
√
ε− 1, (7)

where the function Iα(ε) is obtained from (6) by
means of the substitution

exp(−2iεK0u)→ exp(−2iεK0u)Rβ, (8)

Rβ = exp(−α uβ), β > 1.

The value of β = 2 corresponds to the regularization
method proposed by Zeldovich.

3. RESULTS OF THE CALCULATIONS

Below, we present the results obtained by numer-
ically solving Eq. (7) for two possible regularizations
(β = 2 versus β = 4). The data in Table 1 illustrate
the convergence of Zeldovich’s method over a broad
interval of widths Γ. In order to compute Γ with a
relative error of 10−4, it is necessary, as a rule, to
reach parameter values of α ≤ 10−6–10−7. Table 2
demonstrates that the results are independent of the
regularization method. Moreover, the correctness of
the results given in Tables 1 and 2 is confirmed by
the calculation of the shifts and widths of levels by
perturbation theory [9] at the same values of the pa-
rameters K0 and γ, in which case four to six terms in
the expansion of the integral in (6) in the field strength
prove to be sufficient.

For a few values of the Keldysh parameter, the cal-
culated level width Γ as a function of 1/K0 is shown
in Fig. 1. The dashed curves represent the results
for the level width in the semiclassical approximation
(Γ̃) [10–12]. It is valid forK0 � 1 if γ ≤ 1 or forK0 �
2 ln γ if γ � 1. Under such conditions, the method of
steepest descent can be used to calculate the width in
question. With allowance for the shift of the level, we
have [13]

Γ̃
κ2

0

=
γ

4τ0
[cosh(2τ0)− 1− γ2]−1/2 (9)

× exp{−2K0 [f(γ) + τ0δ]},
PH
  
ln

 
Γ

 

0

–4

–8

–12
0 0.5 1.0 1.5 1/

 

K

 

0

 

γ

 

 = 1

 

γ

 

 = 4

 

γ

 

 = 10

Fig. 1. Level width Γ as a function of 1/K0 = 2ω (Here,
we set κ0 = 1): (solid curves) results of a numerical
calculation on the basis of Eq. (7) and (dashed curves)
results obtained in the semiclassical approximation (Γ̃) on
the basis of Eq. (9). The values of the Keldysh parameter
γ are given on the curves; the scale along the ordinate is
logarithmic.

where δ specifies the shift of the level [see Eq. (5)],

f(γ) = 2τ0(1 + γ−2)− γ−2 sinh(2τ0), (10)

and τ0 satisfies the equation

sinh(2τ0)
τ0

− sinh2 τ0
τ2
0

= 1 + γ2. (11)

We note that the saddle point in the integral in (6)
is u0 = −iτ0, where τ0 is the total “imaginary” time
of the subbarrier motion of an electron [12]. Under
the conditions of applicability of the semiclassical
approximation, a large number of ionization channels
contribute to the total level width, so that the role of
each individual channel is insignificant. As the pa-
rameter γ increases, there appears a structure that is
associated with the presence of individual ionization
channels. One can clearly see this in Fig. 2, which
shows q = Γ/Γ̃ as a function of γ.2) It turned out that
the regularization according to (8) is inapplicable near
the threshold of n-photon ionization—that is, under
the condition

I + E2/2ω2 ≈ nω. (12)

Let us discuss reasons for which Zeldovich’s method
becomes inapplicable as one approaches the thresh-
old of n-photon ionization.

2)The results set forth below were partly announced in [14].
YSICS OF ATOMIC NUCLEI Vol. 66 No. 11 2003
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Table 2. Comparison of the results produced by two regularization methods

γ = 3, K0 = 3

β = 2 β = 4

α δ × 104 η × 106 α δ × 104 η × 106

1.0(−4) 8.2194 3.7913 1.0(−6) 8.2034 3.7479

2.5(−5) 8.2139 3.7465 1.0(−7) 8.2111 3.7279

1.56(−6) 8.2124 3.7354 1.0(−8) 8.2119 3.7313

3.91(−7) 8.2120 3.7319 1.0(−9) 8.2120 3.7316

α→ 0 8.2120 3.7316 1.0(−10) 8.2120 3.7316

γ = 0.5, K0 = 1.1

β = 2 β = 4

α δ × 100 η × 10 α δ × 100 η × 10

3.6(−3) 6.8605 1.1537 1.0(−4) 6.7616 1.1457

2.03(−3) 6.8667 1.1504 1.0(−5) 6.7605 1.1461

9.0(−4) 6.7854 1.1480 1.0(−6) 6.7604 1.1461

2.25(−4) 6.7666 1.1466 1.0(−7) 6.7604 1.1461

α→ 0 6.7604 1.1463 1.0(−8) 6.7604 1.1461

Note: Quoted in this table are the relative shifts δ and the relative widths η of a quasistationary level (κ0 = 1) according to calculations
with the aid of the regulator in (8) at β = 2 and β = 4.
4. APPLICABILITY LIMITS OF ZELDOVICH’S
METHOD

Let us consider the integral

J(ν) =

∞∫

0

du

u3/2
(1− e−iνu) =

√
4iπν, (13)

which is a simplified version of that in (6) and which
is convergent in the lower half-plane Imν ≤ 0. Intro-
ducing regularization according to Zeldovich,

J = lim
α→+0

Jα, (14)

Jα(ν) =

∞∫

0

du

u3/2
(1− e−(iνu+αu2)),

and performing integration by parts, we obtain

Jα(ν) =
√

4πiν
[

d1/2(z) +
1

2z2
d3/2(z)

]

, (15)

where

ds(z) = zs exp(z2/4)D−s(z), z =
iν

2α
, (16)

and D−s(z) is a Weber parabolic cylinder function.
Taking into account the asymptotic behavior [15] of
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 11 20
Weber functions for z →∞, we arrive at (ν = ν1 +
iν2)

Jα(ν) =
√

4πiν
[

1− 16α
ν2

(17)

+ sign(ν1)θ(ν2 − |ν1|)
iα√
2ν2

e−
ν2

4α

]

,

where θ(x) is the Heaviside step function. If ν2
1 >

ν2
2 , then relation (13) follows from the above in the

limit α→ +0. But if ν2 > |ν1|, the last term in (17)
grows exponentially, with the result that Jα(ν) does
not have a finite limit, this being due to the Stokes
phenomenon, which is well known in the theory of
asymptotic expansions. The expansion in the vicinity
of a Stokes line requires a dedicated consideration (in
this connection, see [16]).

Thus, we conclude that, for a quasistationary
state characterized by a momentum k = k1 − ik2,
Zeldovich’s recipe is applicable if

|k1| > k2; (18)

that is, if the width of the level in question is less than
the spacing between this level and the threshold. The
last condition, which was not highlighted in [1, 2],
is usually satisfied with a rather wide margin. At the
03
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Table 3

β = 2, a = 0.1

α
ImJα

ψ = 0 ψ = π/8 ψ = π/4 ψ = 3π/8

6.25(–2) 0.3595 0.3505 0.2822 0.1584

1.56(–2) 0.4990 0.5140 0.4407 0.2610

3.91(–3) 0.6580 0.7470 0.7487 0.5341

4.88(–4) 0.7809 0.9318 0.9977 2.0221

6.10(–5) 0.7908 0.9313 1.0440 −3.261(9)

1.53(–5) 0.7917 0.9315 3.0408 4.001(47)

α→ 0 0.7919 0.9322 – –

β = 4, a = 1.0

α
ImJα

ψ = 0 ψ = π/16 ψ = π/8 ψ = 3π/4

6.25(–2) 2.3598 2.5904 2.7864 2.9084

1.56(–2) 2.5346 2.8482 3.1937 3.9480

3.91(–3) 2.5674 2.8800 3.2611 4.9011

4.88(–4) 2.4965 2.6988 2.7681 −0.3063

6.10(–5) 2.5005 2.7305 2.8520 −5.5047

1.53(–5) 2.5003 2.7333 2.8996 −6.8222(1)

α→ 0 2.5003 2.7336 – –

Note: Given in this table is the imaginary part of the integral in (14) for various values of the argument ν = a exp (iψ) that lie in the
upper half-plane of the complex variable ν (ψ ≥ 0). The boundaries of the region of convergence (ψ = π/4 at β = 2 and ψ = π/8 at
β = 4) are consistent with (19).
same time, there can arise, in dealing with a dynam-
ical Stark effect in a strong field, cases in which the
inequality in (18) is violated, with the result that Zel-
dovich’s method becomes inapplicable. In particular,
precisely this situation is realized in solving Eq. (4)
in the vicinity of ionization thresholds, so that it is
impossible to construct, with the aid of Zeldovich’s
regularization, an analytic continuation of the integral
to the region Imε > 0.

This brings about the question of whether it is
advisable to employ, in (14), regulators that decrease
faster at infinity—for example, R4 = exp(−αu4). It
turns out that this is not so, however. A numerical
analysis of solutions to Eq. (14) reveals that, although
the rate of convergence in α increases upon going
over to the regulator R4, the region of applicability of
the method shrinks: the constraint k2 < 0.41|k1| (see
Table 3) takes the place of (18). For a regulator of
the general form (8), there is convergence within the
PH
angle

k2 < |k1|tan
π

2β
, β > 1, (19)

(see Appendix 2). For β →∞—that is, for R∞ =
exp(−αeu), for example—regularization is inappli-
cable for any k2 > 0. As the simplest example, we
consider the function

F (ν) =
1
ν

= i

∞∫

0

e−iνudu, Imν < 0, (20)

and an “exponential” regularization of this integral in
the form

Fα(ν) = i

∞∫

0

exp [− (iνu+ αeu)] du (21)

= iαiνΓ(−iν, α), Reα > 0,

where Γ(z, α) is an incomplete gamma function. By
YSICS OF ATOMIC NUCLEI Vol. 66 No. 11 2003
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Fig. 2. Ratio q = Γ/Γ̃ as a function of 1/K0 (a) at γ =
1.5, 1, and 0.5 and (b) at γ = 10 and 3.

using the expansion [15]

Γ(−iν, α) = Γ(−iν)−
∞∑

n=0

(−1)nαn−iν

n!(n− iν)
, (22)

ν �= 0,−i,−2i, . . . ,

we find from (21) that

Fα(ν) =
1
ν

+ iθ(Imν)αiνΓ(−iν), (23)

whence one can see that the regularization used can
be removed only for Imν < 0. Thus, an excessive
regularization of the integral in (20) does not lead to
a solution of the problem at all: the limit of Fα for
α→ +0 exists only at Imν < 0—that is, in the region
where the function being considered is specified by the
nonregularized integral.

5. CONCLUSION

The regularization method considered above was
proposed by Zeldovich as far back as 1960. Although,
in atomic and nuclear physics, there were, even at
that time, many diversified problems that called for
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 11 20
developing a mathematical formalism for the theory
of quasistationary states,3) attempts at applying Zel-
dovich’s method to specific physics problems were
not undertaken, to the best of our knowledge, for a
rather long period of time. In all probability, this was
because a specific implementation of the procedure
for regularizing integrals divergent exponentially at
infinity required considerable computational means
that were not available at that time. By now, the
situation has changed radically: an ordinary PC is
sufficient for obtaining the numerical results quoted
in the present article. It has been shown above that
Zeldovich’s method, as well as its natural extension
specified by Eq. (8), is quite efficient even beyond per-
turbation theory. Only upon introducing regulariza-
tion does the basic Eq. (4) acquire physical meaning.
In this connection, it is interesting to draw an analogy
with quantum field theory, where amplitudes, matrix
elements, and other similar quantities do not have
unambiguous physical meaning unless one indicates
the way of their regularization. In field theory, how-
ever, Feynman integrals suffer from a power-law or a
logarithmic divergence, while, in Eqs. (4) and (6), the
divergence is exponential. Nonetheless, Zeldovich’s
method is quite operative in that case as well.

In conclusion, we would like to indicate that prob-
lems in which one could employ Zeldovich’s regular-
ization method include those of Stark and Zeeman ef-
fects in a strong applied field and that of negative-ion
photodecay. The equations for the complex-valued
energy of a level associated with a delta-function po-
tential in a constant electric and a constant magnetic
field were derived in [18, 19]; the analogous equations
for the case of crossed fields were obtained in [20].
These equations have a form similar to that in (4), the
integrals involved, which are divergent at the upper
limit, requiring regularization. The first terms of the
expansions of Er and Γ in a weak field were found
in those studies; however, the region of a strong field
has yet to be explored. It would be of interest to
analyze the possibility of applying Zeldovich’s method
to these problems.
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APPENDIX 1

For the shift of a level and its width, Tables 1
and 2 give values that are the limiting ones (α→
+0) for Zeldovich’s procedure specified by Eqs. (1)

3)In this connection, see, for example, [17].
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and (8) and which correspond to the final result. In
calculating them, we have performed an extrapolation
by the formulas

f(0) = 3[f(h)− f(2h)] + f(3h),

f(0) =
1
3
[8f(h)− 6f(2h) + f(4h)],

and
f(0) = 4f(h)− 6f(2h) + 4f(3h) − f(4h),

whose order of precision is h2 and h3. The step h
here was chosen in the form h =

√
α, where α is the

parameter in (8). We note that this specific choice of
extrapolation step is not significant for the conver-
gence of the method.

APPENDIX 2

Here, we will discuss the derivation of condi-
tion (19). The normalization integral N , which enters
into Zeldovich’s perturbation theory, is formed at the
upper limit. In view of this, we consider the integral

I =

∞∫

0

exp(2ikr)dr = − 1
2ik

, (A.1)

which is convergent in the upper half-plane Imk >
0. However, the inequality Imk < 0 always holds for
quasistationary states, so that the integral diverges.
In order to impart unambiguous meaning to this in-
tegral, we consider Zeldovich’s procedure, taking a
regulator in the form (8):

I = lim
α→+0

Iα, (A.2)

Iα =

∞∫

0

exp{−αrβ + 2ikr}dr.

It identically follows that

Iα = − 1
2ik

[1− φ(z, ρ)], (A.3)

where

φ(z, ρ) =

∞∫

0

exp(−t+ ztρ)dt (A.4)

=
∞∑

n=0

Γ(nρ+ 1)
Γ(n+ 1)

zn,

z = 2ikα−ρ, and ρ = 1/β, 0 ≤ ρ < 1. In particular,
we have φ(z, 0) = exp z and φ(z, 1) = (1− z)−1.

Applying the method of steepest descent to (A.4),
we find, apart from a preexponential factor, that

φ(z, ρ) ∼ exp(cρz1/(1−ρ)), (A.5)
PH
with cρ = (1− ρ)ρρ/(1−ρ), whence one can see that,
for α→ +0, φ→∞ if argz < π

2 (1− ρ) and φ→ 0
if argz > π

2 (1− ρ). Therefore, Iα has the correct
limit (A.1) only in the second case, which, in the k
plane, corresponds to the angle

− π

2β
< argk < 0. (A.6)

It can easily be seen that the condition in (A.6) is
equivalent to (19). Although this condition was ob-
tained for a particular example, it is of rather general
importance, which is confirmed by numerical calcu-
lations of the width Γ. In Fig. 2 from [14], char-
acteristic discontinuities on the curves representing
Γ(F,ω) correspond to regions in the vicinity of ioniza-
tion thresholds. Within these, rather narrow, regions,
Zeldovich’s regularization method is not applicable.

The regularization method proposed in [1] corre-
sponds to β = 2. In this case, the integral in (A.2) can
be calculated exactly. The result is

Iα =
1
2

√
π

α
exp

(
k2

α

)

erfc
(

− ik√
α

)

, (A.7)

where erfcz =
2√
π

∫∞
z exp(−t2)dt. With allowance

for the well-known asymptotic formula (see, for ex-
ample, [15]), we then obtain

lim
α→+0

Iα =

{
−1/(2ik), −π/4 < arg k < 0,
∞, arg k < −π/4.

(A.8)

In practice, the condition of applicability of Zel-
dovich’s method, −π/4 < argk < 0, is usually sat-
isfied (for Γ� Er) in all cases, with the exception
of the special case of quasistationary states close to
the threshold. We note that, in [1, 2], this condition
was not indicated explicitly, although it follows from
an analysis of the formulas given in [2, p. 323 of the
Russian edition] (in all probability, the authors of [2]
did not take into account the possibility of a change in
the asymptotic behavior of an analytic function upon
the traversal of a Stokes line).

As the parameter β grows, the strength of the
regulator in (8) becomes greater, but the region of ap-
plicability of the regularization method shrinks con-
currently [in the limit β →∞, it disappears com-
pletely; see formulas (21)–(23)]. To some extent, this
resembles the situation that occurs in the theory of di-
vergent series: there exist powerful methods [21] that
make it possible to sum individual rapidly divergent
series, but they fail when applied to the series 1− 1 +
1− 1 + . . . = 1/2, which is very weakly divergent.4)

4)In mathematics, this fact is expressed in terms of theorems
of the Tauber type [21].
YSICS OF ATOMIC NUCLEI Vol. 66 No. 11 2003
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For the sum s of this series, it is natural to take the
limit

s = lim
x→1

∞∑

n=0

(−1)nxλn , (A.9)

where 0 < λ0 < λ1 < λ2 < . . . and λn →∞ for n→
∞. For λn = n (Abel’s method) and λn = nk with
k > 0, this yields s = 1/2. If, however, one chooses a
faster increasing sequence, λn = an with a > 1, then
the sum in (A.9) oscillates for x→ 1 without tending
to a specific limit (see Subsection 4.10 in [21]), and
this situation is quite typical.
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1. Ya. B. Zel’dovich, Zh. Éksp. Teor. Fiz. 39, 776 (1960)
[Sov. Phys. JETP 12, 542 (1960)].

2. A. I. Baz, Ya. B. Zeldovich , and A. M. Perelomov,
Scattering, Reactions, andDecays inNonrelativis-
tic Quantum Mechanics (Nauka, Moscow, 1971; Is-
rael Program for Scientific Translations, Jerusalem,
1966).

3. F. V. Bunkin and A. M. Prokhorov, Zh. Éksp. Teor.
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5. V. I. Ritus, Zh. Éksp. Teor. Fiz. 51, 1544 (1966) [Sov.
Phys. JETP 24, 1041 (1967)].

6. I. J. Berson, J. Phys. B 8, 3078 (1975).
7. N. L. Manakov and L. P. Rappoport, Zh. Éksp. Teor.
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105, 769 (1994) [JETP 78, 411 (1994)].

17. A. I. Baz’, Appendix in the Russian Translation of
E. Titmarsh, Eigenfunction Expansion Associated
with Second-Order Differential Equations (Inos-
trannaya Literatura, Moscow, 1961), Vol. II.

18. Yu. N. Demkov and G. F. Drukarev, Zh. Éksp. Teor.
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Abstract—The paper represents a review of our present knowledge on the phenomenology of weak decays
of quarks and their role in the determination of the parameters of the Standard Model. Specifically, we
focus on CP violation in B decays and the determination of the Cabibbo–Kobayashi–Maskawa matrix
element Vcb from exclusive and inclusive semileptonic B decays. We also briefly discuss phenomeno-
logical applications concerning the electron energy spectra in inclusive semileptonic B and Bc decays.
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1. INTRODUCTION

The goal of B physics is to test precisely the
flavor structure of the Standard Model (SM), i.e.,
the Cabibbo–Kobayashi–Maskawa (CKM) [1] de-
scription of quark mixing and CP violation. Flavor
physics played an important role in the development
of the SM. For a long time, the only experimental
evidence for CP violation came from the kaon sector:
|εK | = (2.28 ± 0.02) × 10−3, ε/ε′ = (1.73 ± 0.18) ×
10−3. The smallness of K0–K̄0 mixing led to the
GIMmechanism and calculation of the c-quark mass
before it was discovered [2]. The existence of CP vio-
lation in neutral-kaon decay provoked the hypothesis
of a third generation before its experimental discovery.
The large B0–B̄0 mixing was the first evidence for
a very large top-quark mass. Recently, one has had
experimental evidence ofCP violation in theB sector:
sin(2β) = 0.75± 0.09stat ± 0.04syst (BaBar Collabo-
ration [3]); sin(2β) = 0.99 ± 0.14stat ± 0.06syst (Belle
Collaboration [4]).

In this paper, we review the phenomenology of
weak decays of heavy quarks. Section 2 is focused
on CP violation in B decays. In Section 3, the deter-
mination of the Vcb matrix element from semileptonic
decays of B mesons is reviewed. Some phenomeno-
logical applications are considered in Section 4. We
do not attempt to give complete references to all
related literature. By now, there are excellent lectures
and minireviews that cover the subjects in great
depth [5–8]. We refer to these for more details and
for more complete references to the original literature
relevant to Sections 2 and 3.

∗This article was submitted by the author in English.
**e-mail: naro@heron.itep.ru
1063-7788/03/6611-1972$24.00 c©
2. CP VIOLATION IN B MESON DECAYS

The SM provides us with a parametrization of CP
violation but does not explain its origin. In fact, CP
violation may occur in three sectors of the SM: (i) in
the quark sector via the phase of the CKM matrix,
(ii) in the lepton sector via the phases of the neutrino
mixing matrix, and (iii) in the strong interactions via
the parameter θQCD.

The nonobservation of CP violation in strong in-
teractions is a mystery whose explanation requires
physics beyond the SM (such as a Peccei–Quinn
symmetry and axions). CP violation in the neutrino
sector has not yet been explored experimentally. CP
violation in the quark sector has been studied in some
detail and is the subject of this section.

2.1. CKMMatrix

The interactions between the quarks and gauge
bosons in the SM are illustrated in Fig. 1, where the
vertices (a), (b, c), and (d) refer to weak, electromag-
netic, and strong interactions, respectively. The vertex
for the charged-current interaction, in which quark
flavor i changes to j, is depicted in Fig. 1a and has
the Feynman rule

i
g2

2
√

2
Vijγ

µ(1− γ5), (1)

where g2 is the coupling constant of the SU(2)L
gauge group and Vij is the ij element of the CKM
matrix. Equation (1) illustrates the V −A structure
of the charged-current interactions.

Assuming the SM with three generations, the
CKMmatrix VCKM is a unitary 3× 3 one, relating the
2003 MAIK “Nauka/Interperiodica”
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Fig. 1.Quark interactions with gauge bosons. The indices i and j correspond to the different flavors (i = u, c, t; j = d, s, b).
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The general parametrization of VCKM in terms of

four parameters θij (ij = 12, 13, 23) and δ13 recom-

mended by the Particle Data Group [9] is







c12c13 s12c13 s13e
−iδ13

−s12c23 − c12s23s13e
iδ13 c12c23 − s12s23s13e

iδ13 s23c13

s12s23 − c12c23s13e
iδ13 −c12s23 − s12c23s13e

iδ13 c23c13








, (3)
where cij = cos θij and sij = sin θij , and δ13 is the
CP-violating phase parameter.

With only two families, e.g., in a world without
beauty (or t quarks), VCKM can always be reduced to
a real form, so that CP is necessarily conserved. In
case of three families, one can introduce the phase-
convention-invariant form

Im(VijVklV ∗
ilV

∗
kj) = J

3∑

m,n=1

εikmεjln, (4)

where J is the Jarlskog invariant [10]:

J = c12c23c
2
13s12s23s13 sin δ13. (5)

CP violation is proportional to J and is not zero if
δ13 �= 0.

2.2. Current Experimental Knowledge
of the CKMMatrix

Before continuing, we briefly review our current
experimental knowledge of each of the CKM magni-
tudes. The results are taken from the Particle Data
Group [9].

First, consider the submatrix describing mixing
among the first two generations. The parameter |Vud|
is measured by studying the rates for nuclear β decay.
Here, the isospin symmetry of the strong interac-
tions is used to control the nonperturbative dynamics,
since the operator d̄γµ(1− γ5)u is a partially con-
served current associated with a generator of chiral
SU(2)L × SU(2)R. The current data yield

|Vud| = 0.9734 ± 0.0008, (6)

so |Vud| is known at the level of 0.1%. The param-
eter |Vus| is measured via K → π�ν̄� and Λ→ p�ν̄�.
Here, chiral SU(3)L × SU(3)R must be used in the
hadronic matrix elements, since a strange quark is
involved. Because thems corrections are larger, |Vus|
is only known to 1%:

|Vus| = 0.2196 ± 0.0023. (7)

The CKMmatrix elements involving the charm quark
are not so well measured. One way to extract |Vcs|
is to study the decay D → K�+ν�. In this case, there
is no symmetry by which one can control the matrix
element 〈K|s̄γµ(1− γ5)c|D〉, since flavor SU(4) is
badly broken. One is forced to resort to models for
these matrix elements. The reported value is

|Vcs| = 0.996 ± 0.013. (8)

The error estimate should probably be taken to be
substantially larger. An alternative is to measure
Vcs from inclusive processes at higher energies. For
example, one can study the branching fraction for
W+ → cs̄, which can be computed using perturbative
QCD. The result of a preliminary analysis is

|Vcs| = 1.00± 0.13, (9)
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consistent with the model-dependent measurement.
The error in (9) is largely experimental and is unpol-
luted by hadronic physics.
Similarly, one extracts |Vcd| from deep-inelastic

neutrino scattering, using the process νµ + d→ c +
µ−. This inclusive process may be computed pertur-
batively in QCD, leading to a result with accuracy at
the level of 10%,

|Vcd| = 0.224 ± 0.016. (10)

The elements of Vij involving the third generation
are, for the most part, harder to measure accurately.
The branching ratio for t→ b�+ν� can be analyzed
perturbatively, but the experimental data are not very
good. If one imposes the unitarity constraint |Vtd|2 +
|Vts|2 + |Vtb|2 = 1 (see below), the present bound on
|Vtb| is

|Vtb| = 0.99 ± 0.15. (11)

There are as yet no direct extractions of |Vtd| or
|Vts|. One can use the experimental data for the ratio
BR(B → Xsγ)/BR(B → Xc�ν�) and the theoretical
prediction for BR(B → Xsγ) in order to determine
directly the combination |VtbV ∗

ts|/|Vcb|. In this way,
averaging the CLEO and ALEPH data [11, 12], one
obtains (for details, see [13])

|V ∗
tsVtb|
|Vcb|

= 0.93 ± 0.10, (12)

where all the errors were added in quadrature. Using
|Vtb| from (11) and |Vcb| = (40.6 ± 1.1) × 10−3 ex-
tracted from semileptonic B decays (see Section 3),
one obtains

|Vts| = 0.038 ± 0.07. (13)

This is probably the most direct determination of this
CKM matrix element. With an improved measure-
ment of BR(B → Xsγ) and Vtb, one expects to reduce
the present error on |Vts| by a factor of 2 or even more.
This leaves us with the matrix elements Vub and

Vcb, for which we need an understanding of B-meson
decay. This issue will be discussed in Section 3.

2.3. TheWolfenstein Parametrization

The parametrization (3) is general, but awkward
to use. For most practical purposes, it is sufficient
to use the simpler, but approximate, Wolfenstein
parametrization [14], which, following the observed
hierarchy between the CKM matrix elements, ex-
pands the CKM matrix in terms of the four param-
eters

s12 = λ, s23 = Aλ2, s13e
−iδ13 = Aλ3(ρ− iη),

(14)
PH
with λ being the expansion parameter. In terms of
these parameters, one obtains the following to O(λ6)
terms inclusive [15]

Vud = 1− 1
2
λ2 − 1

8
λ4, Vus = λ +O(λ7), (15)

Vcd = −λ +
1
2
A2λ5[1− 2(ρ + iη)], (16)

Vcs = 1− 1
2
λ2 − 1

8
λ4(1 + 4A2),

Vcb = Aλ2 +O(λ8), Vub = Aλ3(ρ− iη), (17)

Vts = −Aλ2 +
1
2
Aλ4[1− 2(ρ + iη)], (18)

Vtd = Aλ3(1− ρ− iη), Vtb = 1− 1
2
A2λ4.

The CKM matrix can be written, in the Wolfenstein
parametrization, as

VCKM (19)

=








1− λ2/2 λ Aλ3(ρ− iη)

−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1








.

The terms that are neglected are of O(λ4). This
parametrization corresponds to a particular choice of
phase convention that eliminates as many phases as
possible and puts the one remaining complex phase
in the matrix elements Vub and Vtd.
The parameter λ is known with good precision:

λ = sin θ12 = 0.2237 ± 0.0033. (20)

The rate of the allowed b→ c decay leads to a deter-
mination of the combination Aλ2:

Aλ2 = Vcb = (41.0 ± 1.6) × 10−3. (21)

The problem of determining ρ and η is best seen in
light of the unitarity relation.

2.4. The Unitarity Triangle

The unitarity of the CKM matrix implies various
relations between its elements:

∑

k

VijV
∗
kj = δij . (22)

The unitarity triangles are geometrical representa-
tions in the complex plane of the six Eqs. (22) with
i �= k. It is a trivial fact that any relationship of the
form of a sum of three complex numbers equaling zero
can be drawn as a closed triangle (see Fig. 2).
All the unitarity triangles have the same area, J/2.

However, while the triangles have the same area, they
YSICS OF ATOMIC NUCLEI Vol. 66 No. 11 2003
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are of very different shapes: e.g., the ds triangle has
two sides of order λ and one of order λ5, while the
sb triangle has larger sides of order λ2 and the small
side of order λ5, giving an angle of order λ2. It would
be very difficult to measure the area of such triangles.
This leaves us with the bd triangle corresponding to
the relation

VubV
∗
ud + VcbV

∗
cd + VtbV

∗
td = 0. (23)

This relation is phenomenologically especially inter-
esting as it simultaneously involves the elements Vub,
Vcb, and Vtd, which are under extensive discussion at
present. To an excellent accuracy, V ∗

cdVcb is

V ∗
cdVcb = Aλ3 +O(λ7). (24)

Rescale all terms in (23) by Aλ3 and put the vector
V ∗
cdVcb on the real axis. The coordinates of the re-
maining vertex correspond to the ρ and η parameters
or, in an improved version [15], to ρ̄ = (1− λ2/2)ρ
and η̄ = (1− λ2/2)η. The corresponding triangle is
shown in Fig. 3.

The angles α, β, and γ (also known as, respec-
tively, φ2, φ1, and φ3) are defined as follows:

α = arg
(

− V ∗
tdVtb

V ∗
udVub

)

, (25)

β = arg
(

−V ∗
cdVcb

V ∗
tdVtb

)

, γ = arg
(

−V ∗
udVub
V ∗
cdVcb

)

.

The lengths Ru and Rt are

Ru = |ρ + iη| =
∣
∣
∣
∣
V ∗
udVub
V ∗
cdVcb

∣
∣
∣
∣ , (26)

Rt = |1− ρ− iη| =
∣
∣
∣
∣
V ∗
tdVtb

V ∗
udVub

∣
∣
∣
∣ .

Since the area of the unitarity triangle is η/2, a nonflat
triangle implies CP violation. The form of the uni-
tarity triangle can be determined by measurements of
CP-conserving quantities.

The length of one side, |ρ + iη|, is extracted from
the determination of Vub, e.g., from the rates of the
forbidden b→ u semileptonic transitions. The other
side, |1− ρ− iη| is proportional to themass difference
∆md = mB0

d
−mB̄0

d
. The latter is determined from

the oscillation of B0
d mesons, which are dominated

by graphs with virtual top quarks (see Fig. 4). These
determinations (schematically shown in Fig. 5) point
to a nonflat triangle, i.e., to the presence of a certain
amount of CP violation.

Recall that, in the SM, the transitions Bq → B̄q,
q = d, s, are due to the box diagrams involving two
W bosons and two up-type quarks, as is the case
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 11 20
forK0–K̄0mixing. However, the long-range interac-
tions arising from intermediate virtual states are neg-
ligible for the neutral-B-meson systems, because the
large B mass is off the region of hadronic resonances.
The calculation of the dispersive M12 and absorptive
Γ12 parts of the box diagrams yields the following
predictions for the off-diagonal element of the mass
and decay matrices [16]:

M12 = −
G2
Fm

2
WηBmBqBBqf

2
Bq

12π2
S0(m2

t /m
2
W ) (27)

× (V ∗
tqVtb)

2,

Γ12 =
G2
Fm

2
bη

′
BmBqBBqf

2
Bq

8π

[

(V ∗
tqVtb)

2 (28)

+ V ∗
tqVtbV

∗
cqVcbO

(
m2

c

m2
b

)

+ (V ∗
cqVcb)

2O
(
m4

c

m4
b

)]

,

where GF is the Fermi constant, mW is the W bo-
son mass, mi is the mass of quark i, and mBq is
the Bq-meson mass. The factor fBq is the vacuum-
to-one-meson matrix element of the axial current,
which arises in the naive approximation obtained by
splitting thematrix element into two-quark terms and
inserting the vacuum state between them. This is
known as the vacuum-insertion approximation. The
quantity BBq is simply the correction factor between
that approximate answer and the true answer. It can
be estimated in various model calculations.
The known function S0(xt) can be approximated

very well with [17]:

S0(xt) = 0.784x0.76
t . (29)

The QCD corrections ηB and η′B are on the order of
unity. The only nonnegligible contributions to M12

and Γ12 are from box diagrams involving two top
quarks.
Many B0–B̄0 oscillation analyses have been per-

formed by the different collaborations (for the com-
plete list of references, see [18]). The aim of these
analyses is to measure the mass difference

∆md ≡ mH −mL, (30)

where the H and L stand for heavier and less heavy
B mesons. Although a variety of different techniques
have been used, the individual ∆md results obtained
at high-energy colliders have remarkably similar pre-
cision. Their average is compatible with the recent
and more precise measurements from asymmetric B
factories. Before being combined, the measurements
are adjusted on the basis of a common set of input
values, including the b-hadron lifetimes and fractions.
Combining all published measurements, the Particle
Data Group [9] quotes the value of

∆md = 0.489 ± 0.005stat ± 0.007syst ps−1. (31)
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Fig. 2. Six unitarity triangles.
An example of a recent global analysis of the unitarity
triangle, combining measurements of |Vcb| and |Vub|
in semileptonic B decays, |Vtd| in B–B̄ mixing, and
the CP-violating phase of V 2

td in K–K̄ mixing and
B → J/ψK decays, is given, e.g., in [19]. The values
obtained at 95% confidence level are

ρ̄ = 0.21 ± 0.12, η̄ = 0.38 ± 0.11. (32)

The corresponding results for the angles of the uni-
tarity triangle are

sin(2β) = 0.74 ± 0.14, (33)

sin(2α) = −0.14± 0.57, γ = 62◦ ± 15◦.

These studies have established the existence of the
CP-violating phase in the top sector of the CKM
matrix, i.e., the fact that Im(V 2

td) ∝ η̄ �= 0.

2.5. sin(2β) Measurements
The parameter sin(2β) is directly accessible

through a study of CP violation in the “golden decay

  

(0,0) (1,0)

 

R

 

u

 

R

 

t

 
η

ρ η,( )

ρ

α

γ β

Fig. 3.Unitarity triangle corresponding to Eq. (23).
PH
mode” of B0 mesons,

(B0
d or B̄

0
d)→ J/ψKS . (34)

The “golden” character ofB0
d → J/ψKS derives from

the fact that the final state is aCP eigenstate and that
this decay mode is dominated by a CP-conserving
tree diagram. AnyCP violation observed in this mode
must, to an excellent approximation, be attributed
to B0

d–B̄0
d mixing. As stated above, the transitions

B0
d–B̄0

d are described, in the lowest order, by a sin-
gle box diagram involving two W bosons and two
up-type quarks. The phase of the box diagram is
easily seen to be exp(2iβ). Therefore, measurement
of CP-violation effects in this decay mode can be
directly interpreted as a measurement of the β angle
in the unitarity triangle.

In decays of neutral B mesons into a CP eigen-
state fCP , an observable CP asymmetry can arise
from the interference of the amplitudes for decays
with and without B–B̄ mixing, i.e., from the fact
that the amplitudes for B0 → fCP and B0 → B̄0 →
fCP must be added coherently. The resulting time-

  
b t

W W

W

Wbd

b b

d

d t

t t

d

Fig. 4. SM box diagrams includingB0–B̄0 mixing.
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Fig. 6. Tree and penguin topologies inB → J/ψKS decays.
dependent asymmetry is given by

ACP (t) =
Γ(B̄0(t)→ fCP )− Γ(B0(t)→ fCP )
Γ(B̄0(t)→ fCP ) + Γ(B0(t)→ fCP )

(35)

=
2Im(λ̂)
1 + |λ̂|2

sin(∆mdt)−
1− |λ̂|2

1 + |λ̂|2
cos(∆mdt),

where
λ̂ = eiφdĀ/A, (36)

φd being the B–B̄ mixing phase (which in the SM
equals −2β) and A(Ā) denoting the B0(B̄0)→ fCP

decay amplitude. If the amplitude is dominated by a
single weak phase φA, then |λ̂| � 1 and

ACP (t) � ηfCP
sin(φd − 2φA) sin(∆mdt), (37)

where ηfCP
= ±1 is the CP signature of the final

state.
The decay B → J/ψKS (for which ηJ/ψKS

= −1)
is based on b→ cc̄s transitions, which in the SM
SICS OF ATOMIC NUCLEI Vol. 66 No. 11 20
can proceed via tree or penguin topologies, as shown
in Fig. 6. To an excellent approximation, the decay
amplitude for this process is real. A weak phase is
introduced only through components of the up- and
top-quark penguin diagrams that are strongly CKM
suppressed. Parametrically, the “penguin pollution”
to the weak phase from these effects is of order

φA ∼ λ2(P/T ) ∼ 1%, (38)

where P/T ∼ 0.2 is the tree-to-penguin ratio. Then,
neglecting φA, one obtains

ACP (t) � sin(2β) sin(∆mdt) (39)

with an accuracy of about 1%.

The results obtained by the Belle and BaBar
experiments are in reasonable agreement between
themselves. Combining the Belle and BaBar re-
sults with earlier measurements by CDF at Fermi-
lab (0.79+0.41

−0.44) and ALEPH and OPAL at CERN
03
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(0.84+0.82
−1.04 ± 0.16) gives the “world average”

sin(2βJ/ψKS
) = 0.734 ± 0.054. (40)

The discovery of CP violation in the B system,
as reported by the BaBar and Belle Collaborations,
is a triumph for the SM. There is now compelling
evidence that the phase of the CKM matrix correctly
explains the pattern of CP-violating effects in mixing
and weak decays of kaons and charm and beauty
hadrons. Specifically, the CKM mechanism explains
why CP violation is a small effect in K–K̄ mixing
(εK) and K → ππ decays (ε′/ε), why CP-violating
effects in tree levelD decays are below the sensitivity
of present experiments, and whyCP violation is small
in B–B̄ mixing (εB) but large in the interference of
mixing and decay inB → J/ψKS (sin(2βJ/ψK)).
The significance of the sin(2βJ/ψK) measurement

is that, for the first time, a large CP asymmetry has
been observed, proving thatCP is not an approximate
symmetry of nature. Rather, the CKM phase is,
very likely, the dominant source of CP violation in
low-energy flavor-changing processes. This opens
a new era in which the model is expected to be
scrutinized through a variety of other B and Bs

decay asymmetries. Impressive progress has already
been made in search for asymmetries in several
hadronic B decays, including B0 → π+π−, B0,± →
Kπ, and B± → DK±. Current measurements are
approaching the level of tightening bounds on the
CP-violating phase γ. These and forthcoming mea-
surements of Bs decays will enable a cross-check of
the CKMmodel.

3. Vcb DETERMINATION

As discussed in Section 2, |Vcb| sets the overall
scale for the lengths of the sides, and |Vub| determines
the length of one side. Precise determinations of both
are needed to complement the measurement of the
angles of the unitarity triangle. Thesematrix elements
are measured from semileptonic B decays. In this
section, we will discuss exclusive semileptonic decays
of B mesons, in which the b quark decays into a c
quark, and from which one can determine the |Vcb|
elements of the CKM matrix. In principle, |Vcb| can
be studied in any weak decay mediated by theW bo-
son. Semileptonic decays offer the advantage that the
leptonic current is calculable andQCD complications
only arise in the hadronic current. Unlike hadronic
decays, there are no final-state interactions. One still
needs some understanding of the strong interaction.
Some approaches offer detailed predictions for the
QCD dynamics in heavy-quark decays. These pre-
dictions allow measurement of |Vcb| with reasonable
precision.
PH
3.1. B → D∗�ν and B → D�ν Decays

The exclusive |Vcb| determination is obtained
through studying B → D∗�ν and B → D�ν decays.
These decays have been studied in experiments
performed at the Υ(4S) c.m. energy (CLEO [20],
Belle [21]) and at theZ0 c.m. energy at LEP (ALEPH
[22], DELPHI [23], and OPAL [24]).

3.1.1. Kinematics. The hadronic form factors
for semileptonic decays are defined as the Lorentz-
invariant functions arising in the covariant decom-
position of matrix elements of the vector and axial
currents. It is conventional to parametrize these
matrix elements by a set of scalar form factors. The
most appropriate to the heavy-quark limit is the set
of form factors hi(w), which are defined separately for
the vector and axial currents:

〈D(v′)|c̄γµb|B(v)〉 = h+(w)(v + v′)µ (41)

+ h−(w)(v − v′)µ,

〈D(v′)|c̄γµγ5b|B(v)〉 = 0, (42)

〈D∗(v′, ε)|c̄γµb|B(v)〉 = hV (w)iεµναβε∗νv
′
αvβ, (43)

〈D(v′)|c̄γµγ5b|B(v)〉 = hA1(w)(w + 1)ε∗µ (44)

− ε∗v[hA2(w)vµ + hA3(w)v′µ],

where meson states are denoted as |P (v)〉 for a pseu-
doscalar state and |V (v, ε)〉 for a vector state, where
v is the 4-velocity of a state and ε is the polarization
vector, and w = v · v′ is the velocity transfer which is
linearly related to q2, the invariant mass ofW . Other
linear combinations are also found in the literature.
In the case of heavy-to-heavy transitions, in the

limit in which the active quarks have infinite mass, all
the form factors are given in terms of a single function
F(w), the Isgur–Wise form factor [25]:

h+(w) = hV (w) = hA1(w) = hA3(w) = F(w),
(45)

h−(w) = hA2(w) = 0.

In the realistic case of finite quark masses, these
relations are modified: each form factor depends sep-
arately on the dynamics of the process.

3.1.2. The decayB → D∗�νB → D∗�νB → D∗�ν in heavy-quark ef-
fective theory (HQET).HQET (see, e.g., [26]) pre-
dicts that the differential partial decay width for B →
D∗�ν, dΓ/dw, is related to Vcb through an equation

dΓ
dw

(B → D∗�ν) =
G2
F|Vcb|2
48π3

K(w)F2
D∗(w), (46)

where KD∗(w) is a known phase-space factor

K(w) = (mB −mD∗)2m3
D∗

√
w2 − 1(w+1)2 (47)
YSICS OF ATOMIC NUCLEI Vol. 66 No. 11 2003
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×
[

1 +
4w

w + 1
m2

B − 2wmBmD∗ + m2
D∗

(mB −mD∗)2

]

.

The function FD∗(w) is the form factor for the B to
D∗ transition, i.e., the Isgur–Wise function combined
with perturbative and power corrections.
The precision with which Vcb can be extracted is

limited by the theoretical uncertainties in the evalu-
ation of these corrections. In the infinite quark mass
limit at the kinematical point, where D∗ is at rest in
the B rest frame, the wave function overlap is 1, i.e.,
FD∗(1) = 1. There are several different corrections to
the infinite mass value FD∗(1) = 1:

FD∗(1) = ηQEDηA

[
1 + δ1/m2

Q
+ . . .

]
, Q = c, b.

(48)

The correctionO(1/mQ) vanishes by virtue of Luke’s
theorem [27]. QED corrections ηQED ≈ 1.007, up to
leading logarithms. QCD radiative corrections to two
loops give ηA = 0.960 ± 0.007. Different estimates of
the 1/m2

Q corrections yield

1 + δ1/m2
Q

= 0.91 ± 0.04. (49)

The analytical expression of FD∗(w) is not known
a priori, and this introduces an additional uncertainty
in the determination ofFD∗(1)|Vcb|. In an experiment,
one measures the decay rate as function of w and
extrapolates to w = 1. As the kinematically allowed
range of w is small (w ∈ [1.0, 1.5]), the form factor is
approximated as a Taylor expansion around w = 1:
FD∗(w) = FD∗(1)(1 + (w − 1)ρ2 + c(w − 1)2).

(50)
SICS OF ATOMIC NUCLEI Vol. 66 No. 11 20
Figure 7 shows the latest CLEOmeasurement [20] of
FD∗ |Vcb| as a function of w. The results of the fits of
the latest experiments are given in Table 1. Averaging
the data, one gets

FD∗(1)|Vcb| = (38.3 ± 1.0) × 10−3. (51)

This gives the most updated value quoted from [8]

|Vcb| = (42.1 ± 1.1exp ± 1.9th)× 10−3. (52)

3.2. B → D�ν

The decay B → D�ν can be analyzed in the same
way as B → D∗�ν decay. The differential decay rate
forB → D�ν decay is

dΓ
dw

=
G2
F|Vcb|2
48π3

(mB + mD)2 (53)

Table 1. Experimental results after the correction to com-
mon inputs and world average (for details, see [8]); ρ2 is the
slope of the form factor at zero recoil as defined in (50)

Experiment |Vcb| × 103 ρ2

CLEO [20] 43.3± 1.3± 1.8 1.61± 0.09± 0.21

Belle [21] 36.0± 1.9± 1.8 1.45± 0.16± 0.20

ALEPH [22] 33.8± 2.1± 1.6 0.74± 0.25± 0.41

DELPHI [23] 36.1± 1.4± 2.5 1.42± 0.14± 0.37

OPAL [24] 38.5± 0.9± 1.8 1.35± 0.12± 0.31
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×m3
D(w2 − 1)3/2F2

D(w),

where we assume different form factors FD(w). The
precision with which |Vcb| can be determined is not
as good because of a smaller branching fraction,
larger backgrounds, and an additional kinematic
suppression factor w2 − 1 [compare Eqs. (47) and
(53)]. Nonetheless, it provides complementary in-
formation and provides a test of HQET predictions
for the relationships between the form factors for
semileptonic decays B → D and B → D∗.
Theoretical predictions for FD(1) are consistent:

1.03 ± 0.07 [28] and 0.98 ± 0.7 [29]. A quenched lat-
tice calculation gives FD(1) = 1.058+0.020

−0.017 [30]. Us-
ing FD(1) = 1.0± 0.07, the Particle Data Group [9]
quotes the value

|Vcb| = (41.3 ± 4.0exp ± 2.9th)× 10−3, (54)

consistent with (52). CLEO has also measured b→
u�ν decays, which are sensitive to |Vub|. Experimen-
tally, such measurements are difficult due to large
backgrounds from the CKM-favored b→ c�ν decays.

3.3. Inclusive Semileptonic Decays

Alternatively, |Vcb| can be extracted from mea-
suring inclusive semileptonic decay B → Xc�ν. For
beauty hadrons with mb � ΛQCD or Λ̄, where ΛQCD
is a QCD scale and Λ̄ is a QCD related scale of
order of 400 MeV [see Eq. (58) below], one can use
an operator product expansion (OPE) [31] combined
with HQET [26]. The spectator model decay rate is
the leading term in an OPE expansion controlled by
the parameter Λ̄/mb. Nonperturbative corrections to
the leading approximation arise only to order 1/m2

b .
The key issue in this approach is the ability to sep-
arate nonperturbative corrections, which can be ex-
pressed as a series in powers of 1/mb, and perturba-
tive corrections, expressed in powers of αs. Quark–
hadron duality is an important ab initio assumption in
these calculations [32]. An unknown correction may
be associated with this assumption [33]. Arguments
supporting a possible sizeable source of errors related
to the assumption of quark–hadron duality have been
proposed [34]. This issue needs to be resolved with
further measurements.
The OPE result for inclusive decay width ΓSL

reads

ΓSL =
G2
Fm

5
b

192π3

(

1− a1
αs

π
− a2

(αs

π

)2
+ . . .

)

(55)

×
((

1 +
λ1

2m2
b

)

f(ρ) +
λ2

2m2
b

g(ρ) + . . .

)

,

PH
where αs is the QCD coupling constant; a1 = 1.54
and a2 = 1.43β0 (β0 is the beta function) are co-
efficients of the perturbative expansion; mb(µ) and
mc(µ) are short-scale quark masses (in particular,
mb(µ ∼ 1GeV) = 4.58 ± 0.09GeV); and f(ρ) and
g(ρ) are known as parton phase-space factors,

f(ρ) = 1− 8ρ + 8ρ3 − ρ4 − 12ρ2 log ρ, (56)

g(ρ) = −9 + 24ρ− 72ρ2 + 72ρ3 (57)

− 15ρ4 − 36ρ2 log ρ,

with ρ = m2
c/m

2
b .

The parameters λ1 and λ2 are matrix elements of
the HQET expansion, which have the following intu-
itive interpretations: λ1 is proportional to the kinetic
energy of the b quark in the B meson and λ2 is the
energy of the hyperfine interaction of the b quark spin
and the light degrees of freedom in the meson. The
third HQET parameter, Λ̄, representing the energy of
the light degrees of freedom, is introduced to relate
the b-quark and B-meson masses through the ex-
pression

mb = m̄B − Λ̄ +
λ1

2mb
, (58)

where m̄B is the spin-averaged B-meson mass

m̄B =
1
4

(mB + 3mB∗) (59)

(m̄B = 5.313 GeV). A similar relationship holds be-
tween the c-quark mass mc and the spin-averaged
charm-meson mass (m̄D = 1.975 GeV).
The parameter λ2 can be extracted from theB∗–B

mass splitting and found to be

λ2 = 0.128 ± 0.010 GeV2, (60)

whereas the other parameters need more elaborate
measurements. The aim of the new inclusive analyses
is to determine λ1 and Λ̄ from experiment and there-
by decrease the theoretical uncertainty which comes
when extracting |Vcb| from ΓSL.
The first stage of this experimental program has

been completed recently. The CLEO collaboration
has measured the shape of the photon spectrum in
b→ sγ inclusive decays [35]. Its first moment, giving
the average energy of the γ emitted in this transition,
is related to the b-quark mass. This corresponds to
the measurement of the parameter

Λ̄ = +0.35 ± 0.07 ± 0.10GeV. (61)

For semileptonic decays B → Xc�ν, two methods
to determine Λ̄ and λ1 are known. The first method
measures the first and second hadronic mass mo-
ments. The second method uses the measured shape
YSICS OF ATOMIC NUCLEI Vol. 66 No. 11 2003
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Fig. 8. Constraints on the HQET parameters λ1 and Λ̄ from measurements of the momentsR0 andR1 [37].
of the lepton (� = e, µ) energy spectrum to determine
Λ̄ and λ1, through its energy moments, which are also
predicted by HQET. The truncated moments with a
lepton momentum cut p� = 1.5GeV

R0 =

∫

1.7

(dΓSL/dE)dE

∫

1.5

(dΓSL/dE)dE
, (62)

R1 =

∫

1.5

E(dΓSL/dE)dE

∫

1.5

(dΓSL/dE)dE
(63)

(E is the lepton energy) are employed to decrease
sensitivity of the measurement to the secondary lep-
tons from the cascade decays b→ c/d�ν. The theo-
retical expressions for these moments [36] are evalu-
ated by integrating over the lepton energy in the decay
b→ c�ν̄ for the dominant Γc component. Constraints
on Λ̄ and λ1 obtained from the CLEO measurements
of R0 and R1 [37] are shown in Fig. 8. They corre-
spond to

Λ̄ = 0.39± 0.03stat ± 0.06syst ± 0.12th GeV, (64)

λ1 = −0.25 ± 0.02stat ± 0.05syst ± 0.14th GeV.

Using the expression of the full semileptonic decay
width given in Eq. (55), one can extract |Vcb|. For
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 11 20
ΓexpSL = (0.43 ± 0.01)×10−10 MeV [8], assuming the
validity of quark–hadron duality,

|Vcb| = (40.8 ± 0.5ΓSL ± 0.4λ1,Λ̄ ± 0.9th)× 10−3,

(65)

where the first uncertainty is from the experimental
value of the semileptonic width, the second uncer-
tainty is from the HQET parameters (λ1 and Λ̄),
and the third uncertainty is the theoretical one. Non-
quantified uncertainties are associated with a possible
quark–hadron duality violation.

3.4. Conclusions

At present, our knowledge of λ1 and Λ̄ limits the
precision that we can achieve from inclusive semilep-
tonicB decays. The aim of the new inclusive analyses
is to determine λ1 and Λ̄ from experiment and thereby
decrease the theoretical uncertainty that comes when
extracting |Vcb| from ΓSL. Each analysis alone pro-
vides two constraints, allowing a measurement of Λ̄
and λ1. Combining the two analyses overconstrains
the theory parameters, thus allowing a test of the the-
oretical framework and experimental understanding
of b-quark decays.

While experimental errors have reached a 1–2%
level, the dominant uncertainties remain of theoretical
03
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origin. High-precision tests of HQET, checks on pos-
sible violations of quark–hadron duality in semilep-
tonic decays, and experimental determination of mb,
mb −mc, and λ1 are needed to complete this chal-
lenging experimental program.

4. ELECTRON SPECTRA IN B → Xc�ν

Electron energy spectra in inclusive B → Xc�ν
decays can also be treated using OPE. The result
(away from the endpoint of the spectrum) is that
the inclusive differential decay width dΓ/dE may be
expanded in Λ̄/mb. The leading term (zeroth order
in Λ̄/mb) is the free-quark decay spectrum, the sub-
leading term vanishes, and the subsubleading term
involves parameters from the heavy-quark theory, but
should be rather small, as it is of order (Λ/mb)2.
However, the calculation of the lepton energy

spectrum in OPE shows the appearance of singu-
lar distributions δ(n)(E −mb/2) near the endpoint,
where E = mb/2. The nonadequacy of the approach
is also evident from the fact that, although mb/2
is the largest lepton energy available for a free-
quark decay, the physical endpoint corresponds to
E = mB/2. In these windows, bound-state effects,
due to the Fermi motion of the heavy quark, become
important and the 1/mb expansion has to be replaced
by an expansion in twist. To describe this region, one
has to introduce a so-called shape function [38, 39],
which, in principle, introduces a hadronic uncertainty.
This is quite analogous to what happens for the
structure function in deep-inelastic scattering in the
region where the Bjorken variable xB → 1. A model-
independent determination of the shape function is
not available at the present time; therefore, a certain
model dependence in this region seems to be unavoid-
able unless lattice data become reasonably precise.
Two phenomenological approaches have been

applied to describe strong interaction effects in the
inclusive weak decays: the parton ACM model [40]
amended to include the motion of the heavy quark
inside the decaying hadron, and the “exclusivemodel”
based on the summation of different channels, one
by one [41]. The various light-front (LF) approaches
to consideration of the inclusive semileptonic tran-
sitions were suggested in [42–45]. In [42, 43], the
infinite momentum frame prescription pb = xPB and,
correspondingly, the floating b-quark mass m2

b(x) =
x2M2

B have been used. The transverse b-quark
momenta were consequently neglected. In [45], the
b-quark was considered as an on-mass-shell particle
with the definite massmb, and the effects arising from
the b-quark transverse motion in the B̄ meson were
included. The corresponding ansatz of [45] reduces
to a specific choice of primordial LF distribution
PH
function |ψ(ξ, p2
⊥)|2, which represents the probability

of finding the b quark carrying an LF fraction ξ and
a transverse momentum squared p2

⊥ = |p⊥|2. As a
result, a new parton-like formula for the inclusive
semileptonic b→ c, u width has been derived [45],
which is similar to the one obtained by Bjorken et al.
[46] in case of infinitely heavy b and c quarks.

4.1. ACMModel

The ACM model was originally developed to con-
sider in detail the endpoint of the lepton spectrum in
order to estimate a systematic error in modeling the
full spectrum. It incorporates some of the corrections
related to the fact that the decaying b quark is not
free, but in a bound state. It was explicitly constructed
to avoid mention of the b-quark mass. The model is
extensively used in the analysis of the lepton energy
spectrum in semileptonic decays. It reproduces very
well numerically the shape of the semileptonic spec-
tra, at least in their regular part.

The model treats the B meson with the mass mB
as consisting of the heavy b quark plus a spectator
with fixed mass msp; the latter usually represents a
fitting parameter. The spectator quark has a momen-
tum distribution Φ(p2) (p is its three-dimensional
momentum). The momentum distribution is usually
taken to be Gaussian: it is normalized so that

∫
Φ(p2)p2dp = 1. (66)

The decay spectrum is determined by the kinematic
constraints on the b quark. The energy-momentum
conservation in the B-meson vertex implies that the
b-quark energy

Eb = mB −
√

p2 + m2
sp; (67)

thus, the b quark cannot possess a definite mass.
Instead, one obtains a “floating” b-quark mass

(mf
b )2 = m2

B + m2
sp − 2mB

√
p2 + m2

sp, (68)

which depends on p2. The lepton spectrum is first
obtained from the spectrum dΓ(0)

b (mf
b , E)/dE of the

b quark of invariant mass mf
b (in the b-quark rest

frame),

dΓ(0)
b (mf

b , E)
dE

=
G2
Fm

4
b

48π3

x2(xmax − x)2

(1− x)3
(69)

× [(1− x)(3− 2x) + (1− xmax)(3− x)],

with x = 2Ee/mb, xmax = 1− ρ, and ρ = m2
c/m

2
b ,

then boosting back to the rest frame of the B meson
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and averaging over the weight function Φ(p2):

dΓB

dE
=

pmax∫

0

dpp2Φ(p2)
(mf

b )2

2pEb

E+∫

E−

dE′

E′
dΓ(0)

b (mf
b , E

′)
dE′ ,

(70)

where Eb is given by (67), and the perturbative cor-
rections are neglected for the moment. In Eq. (70),

pmax =
mB

2
− m2

c

2mB − 4E
, E± =

Emf
b

Eb ∓ |p|
. (71)

In fact, the upper limit of integration in (70) is notE+

but min(E+, Emax), where

Emax =
mB −msp

2

(

1− m2
c

(mB −msp)2

)

. (72)

These expressions conclude the kinematical analysis
in the ACMmodel.

4.2. B Meson on the Light Front

Similar to the ACM model, the LF quark model,
treats the beauty meson as consisting of the heavy b
quark plus a spectator quark. Both quarks have fixed
masses,mb andmsp, though. This is at variance with
the ACM model, which has been introduced in order
to avoid the notion of the heavy-quark mass at all.
The calculation of the distribution over lepton energy
in the LF approach does not require any boosting pro-
cedure but, instead, is based on the standard Lorentz-
invariant kinematical analysis.

There are three independent kinematical variables
in the inclusive phenomenology: the lepton energyE�;
q2, where q = p� + pν


; and the invariant massM2
X =

(pB − q)2 of a hadronic state. Introducing the dimen-
sionless variables y = 2E�/mB , t = q2/m2

B , and s =
M2

X/m2
B , the differential decay rate for semileptonic

B decay can be written as

dΓSL
dy

=
G2
Fm

5
B

64π3
|Vcb|2

tmax∫

0

dt

smax∫

s0

ds (73)

×
{

tW1 +
1
2

[y(1 + t− s)− y2 − t]W2

+ t

[
1 + t− s

2
− y

]

W3 + . . .

}

,

where the structure functions Wi = Wi(s, t) appear
in the decomposition of the hadronic tensor Wαβ in
Lorentz covariants. The ellipsis in (73) denotes the
terms proportional to the lepton mass squared. The
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kinematical limits of integration can be found from the
equation

s

1− y
+

t

y
≤ 1. (74)

They are given by 0 ≤ y ≤ 1− ρ, where ρ = m2
c/m

2
b ,

smax = 1 + t− (y + t/y), and tmax = y[1− ρ/(1 −
y)].
In a parton model, inclusive semileptonic Bc →

XQ′�ν� decay is treated in a direct analogy to deep-
inelastic scattering [45]. An approach is based on the
hypothesis of quark–hadron duality. This hypothesis
assumes that the inclusive decay probability into free
quarks for which no reference to a particular hadronic
state is needed equals one. The basic ingredient is
the expression for the hadronic tensorWαβ , which is
given through the optical theorem by the imaginary
part of the quark box diagram describing the forward
scattering amplitude:

Wαβ =
∫

L
(cb)
αβ (pb, pc) (75)

× δ[(pb − q)2 −m2
c ]
|ψ(ξ, p2

⊥)|2
ξ

θ(εc)dξd2p⊥,

where a quark tensor L(cb)
αβ (pb, pc) is defined as

Lcb
αβ(pb, pc) =

1
4

∑

spins

ūcOαub · ūbO+
β uc (76)

= 2(pcαpbβ + pcβpbα − gαβ(pcpb) + iεαβγδp
cγpbδ),

gαβ is the metric tensor, and the factor 1/ξ in Eq. (75)
comes from the normalization of the B-meson ver-
tex [47].
Equation (75) amounts to averaging the perturba-

tive decay distribution over motion of a heavy quark
governed by the distribution function |ψ(ξ, p2

⊥)|2. In
this respect, the approach is similar to the parton
model in deep-inelastic scattering, although it is not
really a parton model in its standard definition. The
normalization condition reads

π

1∫

0

dξ

∫
dp2

⊥|ψ(ξ, p2
⊥)|2 = 1. (77)

The function θ(εc), where εc is the c-quark energy,
is inserted in Eq. (75) for consistency with the use of
the valence LF wave function to calculate the b-quark
distribution in theB meson.
The endpoint for the quark decay spectrum is

ybmax = (mb/mB)(1 −m2
c/m

2
b), (78)

whereas the physical endpoint is

ymax = 1−m2
D/m

2
B , (79)
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wheremD is theD-meson mass. The endpoint for the
LF electron spectrum is in fact not ymax, but

yLFmax = 1−m2
c/m

2
B . (80)

This is the direct consequence of the p2
⊥ integration

in Eq. (75) [45]. Note that yLFmax coincides with yACMmax
with accuracy ∼ msp/mB . For mc ∼ 1.5 GeV, the
difference between yLFmax and ymax is on the order of
10−2.

4.3. The Distribution Function of the bQuark

An explicit representation for the B-meson Fock
expansion in QCD is not known. A priori, there is no
connection between equal-time (ET) wave function
w(k2) of a constituent quark model and LF wave
function ψ(ξ, p2

⊥). The former depends on the c.m.
momentum squared k2 = |k|2, while the latter de-
pends on the LF variables ξ and p2

⊥. However, there
is a simple operational connection between ET and
LF wave functions [48]. This is a model-dependent
enterprise, but it has its close equivalent in studies
of electron spectra using the ACM model. The idea
is to find a mapping between the variables of the
wave functions that will turn a normalized solution
w(k2) of the ET equation of motion into a normalized
solutionψ(ξ, p2

⊥) of the different-looking LF equation
of motion. That will allow us to convert the ET wave
function, and all the labor behind it, into a usable LF
wave function. This procedure amounts to a series
of reasonable (but naive) guesses about what the
solution of a relativistic theory involving confining
interactions might look like.

Specifically, one converts from ET to LFmomenta
by leaving the transverse momenta unchanged, k⊥ =
p⊥, and letting

piz =
1
2

(p+
i − p−i ) =

1
2

(

p+
i −

p2
i⊥ + m2

i

p+
i

)

(81)

for both the b quark (i = b) and the quark-spectator
(i = sp). Here, p±i = pi0 ± piz with

∑
p+
i = p+

B =
mB (in the B-meson rest frame).

In what follows, we identifyΦ(k2) = |w(k2)|2 with
the Gaussian distribution

Φ(k2) =
4√
πp3

F

exp
(

−k2

p2
F

)

. (82)

Then,

|ψ(ξ, p2
⊥)|2 =

4√
πp3

F

exp
(

−p2
⊥ + p2

z

p2
F

) ∣∣
∣
∣
∂pz
∂ξ

∣
∣
∣
∣ , (83)
PH
where

pz(ξ, p2
⊥) =

1
2

(

(1− ξ)mB −
p2
⊥ + m2

sp

(1− ξ)mB

)

, (84)

∣
∣
∣
∣
∂pz
∂ξ

∣
∣
∣
∣ =

1
2

(

mB +
p2
⊥ + m2

sp

(1− ξ)2mB

)

. (85)

The calculation of the structure functionsWi(t, s)
in the LF parton approximation is straightforward.
The result is

Wi(t, s) =
∫

wi(s, t, ξ) (86)

× δ[(pb − q)2 −m2
c ]
|ψ(ξ, p2

⊥)|2
ξ

θ(εc)dξd2p⊥,

where the structure functions wi(s, t, ξ) are analogs
ofWi(s, t) in (73) for the free-quark decay and can be
easily calculated using Eq. (76) {see, e.g., Eqs. (A.8)
of [45]}. Equation (86) differs from the corresponding
expressions of [42] and [43] by the nontrivial depen-
dence on p2

⊥ which enters both |ψ(ξ, p2
⊥)|2 and the ar-

gument of the δ function. For further details, see [45].

4.4. The Choice ofmb

An important technical issue that appears in the
problem is the definition of the quark mass mb. The
semileptonic decay rate is proportional to m5

b ; thus,
any uncertainty in the definition of heavy-quark mass
transfers into a huge uncertainty in the predicted rate.
The problem is to find a definition consistent with that
of HQET.
In the ACM model, it is known [49, 50] that, once

ΓACM is expressed in terms of mACM
b = 〈mf

b 〉 [which
is nothing but the floating mass mf

b (p2) of Eq. (68)
averaged over the distribution Φ(p2)], the correction
to first order in 1/mb both to the inclusive semilep-
tonic width and to the regular part of the lepton spec-
trum can be absorbed into the definition of the quark
mass, in full agreement with the general statement of
the absence of the 1/mb correction in total width.
The choice of mb in the LF approach was first

addressed in the context of the LF model for b→
sγ transitions [51]. It was shown that the LF model
can be made to agree with HQET, provided mLF

b
is defined from the requirement of the vanishing of
the first moment of the distribution function. This
condition coincides with that used in HQET to define
the pole mass of the b quark. In this way, one avoids
an otherwise large (and model-dependent) correction
of order 1/mb, but at the expense of introducing the
shift in the constituent quark mass, which largely
YSICS OF ATOMIC NUCLEI Vol. 66 No. 11 2003
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Fig. 9. The predicted electron energy spectrum [52] com-
pared with the CLEO data [53]. The calculation uses
pF = 0.4 GeV, mb = 4.8 GeV,mc = 1.5 GeV, and αs =
0.25 for the perturbative corrections. Thick solid curve
is the LF result, thin solid curve is the ACM result, and
dashed curve refers to the free-quark decay. The spectra
are normalized to 10.16, 10.23, and 10.37%, respectively;
|Vcb| = 0.042.

compensates the bound-state effects. It has also been
demonstrated that the values of mLF

b found by this

procedure agree well with the average values 〈mf
b 〉 in

the ACM model. Accepting the identification mLF
b =

mACM
b , a similar agreement, but for the semileptonic

b→ c decays, has been found in [52].

4.5. Electron Energy Spectra: LF Model
vs. ACMModel

In Table 2, for various values of pF, the values of
the total semileptonic width for the free quark with
the mass mb = 〈mf

b 〉 and the B-meson semileptonic
widths calculated using the LF andACMapproaches,
respectively, are given. In the last two columns are
shown the fractional deviations δ = ∆ΓSL/Γb

SL (in
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Fig. 10. The electron energy spectrum in semileptonic
Bc decays [55]. The calculation uses pF = 0.92 GeV,
mb = 5.0 GeV, mc = 1.5 GeV, and αs = 0.25 for the
perturbative corrections.

percent) between the semileptonic widths determined
in the LF and ACM models and that of the free
quark. The agreement between the LF and ACM
approaches is excellent for small pF. This agreement
is seen to break down at pF ≥ 0.4 GeV, but even for
pF ∼ 0.5 GeV, the difference between the ACM and
LF inclusive widths is still small and is of the order of
a percent level.

Figure 9 shows the three theoretical curves for the
electron spectrum in inclusive B → Xc�ν� decays for
the LF, ACM, and free-quark models. This is a direct
calculation of the spectrum and not a χ2 fit. A more
detailed fit can impose a constraint on the distribution
function and the mass of the charm quark. Such a
fit should also account for detector resolution. The
overall normalization of the electron energy spectra,

BRLF = 10.16%, BRACM = 10.23%, (87)

BRfree = 10.37%,

is in agreement with the experimental finding [53]
BRSL = (10.49 ± 0.17 ± 0.43)%.

The calculations implicitly include the O(αs) per-
turbative corrections arising from gluon bremsstrah-
lung and one-loop effects, which modify the electron
energy spectra at the partonic level (see, e.g., [54]
and references therein). It is customary to define a
correction function G(x) to the electron spectrum
03
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Table 2. Comparison of the LF and ACM results {in all cases, msp = 0.15 GeV, mc = 1.5 GeV, and the radiative
corrections are neglected; a momentum distribution of the b quark is taken in the standard Gaussian form (82) with the
Fermi momentum pF; |Vcb| = 0.04; experimental results are after the correction to common inputs and world average—
for details, see [8]}

pF, GeV 〈mf
b 〉, GeV Γb

SL, ps
−1 ΓACMSL , ps−1 ΓLFSL, ps

−1 δACM,% δLF,%

0.1 5.089 0.1007 0.1005 0.1005 0.2 0.2

0.2 5.004 0.0906 0.0902 0.0901 0.4 0.5

0.3 4.905 0.0799 0.0792 0.0789 0.9 1.2

0.4 4.800 0.0696 0.0688 0.0682 1.1 2.0

0.5 4.692 0.0602 0.0592 0.0584 1.7 3.0
dΓ(0)
b calculated in the tree approximation for the free-

quark decay through

dΓb

dx
=

dΓ(0)
b

dx

(

1− 2αs

3π
G(x)

)

, (88)

where x = 2E/mb. The function G(x) contains the
logarithmic singularities ∼ ln2(1− x), which for
mc = 0 appear at the quark-level endpoint xmax = 1.
This singular behavior at the endpoint is clearly a
signal of the inadequacy of the perturbative expansion
in this region. The problem is solved by taking into
account the bound-state effects. Since the radiative
corrections must be convoluted with the distribution
function, the endpoints of the perturbative spectra are
extended from the quark level to the hadron level and
the logarithmic singularities are eliminated.

4.6. Bc Decays

Our last example is the electron energy spectrum
in the semileptonic decays of the Bc meson [55].
The semileptonic width consists of two contributions,
ΓSL = Γb

SL + Γc
SL, which are, respectively, b→ c̄W+

with the c quark as the spectator and c̄→ s̄W− with
the b quark as the spectator. Since these processes
lead to the different final states, their amplitudes do
not interfere. In the simplest view, b and c̄ are free, and
the total semileptonic width is just the sum of the b
and c̄ semileptonic widths, with c decay dominating.
Approximating this by ΓSL(Bc) = ΓSL(B) + ΓSL(D)
yields ΓSL(Bc) ∼ 0.22 ps−1. This estimate is modified
by strong interaction effects.
Figure 10 shows the lepton energy spectrum in the

decay Bc → Xeνe. This calculation uses the quark
masses mb = 5 GeV and mc = 1.5 GeV as was
PH
chosen in [56]. The free-quark semileptonic widths

are Γc,free
SL = 0.218 ps−1 and Γb,free

SL = 0.090 ps−1. The
Fermi momentum pF is chosen as pF = 0.92 GeV,
corresponding to the Isgur–Scora model. Like the
OPE formalism, the LF approach leads to a reduction
of the free-quark decay rates caused by binding, but
the bound-state corrections for the c→ s semilep-
tonic rate is sizeably larger, ΓSL(Bc) = 0.18 ps−1,
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Fig. 11. The hadronic mass distribution spectrum in
semileptonicBc decays. The values of the parameters are
the same as in Fig. 10.
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than those reported in [56]. The result of [56] would
correspond to a rather soft Bc wave function with
pF ∼ 0.5GeV, which seems to be excluded by existing
constituent quark models.
Finally, we note that the theoretical results for the

electron spectrum can be translated into predictions
for the hadronic mass spectrum. In Fig. 11, we show
the invariant mass distribution of the hadrons recoil-
ing against �ν. The LF predictions for hadronic mass
spectra must be understood in the sense of quark–
hadron duality. The true hadronic mass spectrummay
have a resonance structure that looks rather different
from our inclusive predictions. Inclusive calculations
predict a continuum that is given by the inclusive
spectrum and is dual to a large number of overlapping
resonances.
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19. A. Höcker, H. Lacker, S. Laplace, and F. Le Diberder,
Eur. Phys. J. C 21, 225 (2001).

20. R. A. Briers et al. (CLEO Collab.), LNS Preprint
CLNS 01-1776 (2002); hep-ex/0203032.

21. K. Abe et al. (Belle Collab.), Phys. Lett. B 526, 247
(2002); hep-ex/0111060.

22. D. Buskulic et al. (ALEPH Collab.), Phys. Lett. B
395, 373 (1997).

23. P. Abreu et al. (DELPHI Collab.), Phys. Lett. B 510,
55 (2001).

24. G. Abbiendi et al. (OPALCollab.), Phys. Lett. B 482,
15 (2000).

25. N. Isgur and M. B. Wise, Phys. Lett. B 232, 113
(1989); 237, 527 (1990).

26. M. Neubert and M. B. Wise, Heavy-Quark Physics
(Cambridge Univ. Press, Cambridge, 2000).

27. M. Luke, Phys. Lett. B 252, 447 (1990).
28. D. Scora and N. Isgur, Phys. Rev. D 52, 2783 (1995).
29. Z. Ligeti, Y. Nir, and M. Neubert, Phys. Rev. D 49,

1302 (1994).
30. S. Hashimoto et al., Phys. Rev. D 61, 014502 (2000).
31. I. Bigi, M. Shifman, and N. G. Uraltsev, Annu. Rev.

Nucl. Part. Sci. 47, 591 (1997).
32. I. I. Bigi and N. G. Uraltsev, Int. J. Mod. Phys. A 16,

5201 (2001).
33. G. Buchalla, hep-ph/0202092, and references therein.
34. N. Isgur, Phys. Lett. B 448, 111 (1999).
35. S. Chen et al. (CLEO Collab.), hep-ex/0108032.
36. M. Gremm and A. Kapustin, Phys. Rev. D 55, 6924

(1997); hep-ph/9603448.
37. R. A. Briere et al. (CLEO Collab.), hep-ex/0209024.
38. I. Bigi et al., Int. J. Mod. Phys. A 9, 2467 (1994).
39. M. Neubert, Phys. Rev. D 49, 3392, 4623 (1994).
40. G. Altarelli, N. Cabibbo, G. Corbo, et al., Nucl. Phys.

B 202, 512 (1982).
41. N. Isgur et al., Phys. Rev. D 39, 799 (1989).
42. C. H. Jin, M. F. Palmer, and E. A. Paschos, Phys.

Lett. B 329, 364 (1994); C. H. Jin and E. A. Paschos,
in Proc. of the Int. Symp. on Heavy Flavor and
Electroweak Theory, Beijing, China, 1995, Ed. by
C. H. Chang and C. S. Huang (World Sci., Singa-
pore, 1996), p. 132.

43. V. L. Morgunov and K. A. Ter-Martirosyan, Yad. Fiz.
59, 1243 (1996) [Phys. At. Nucl. 59, 1221 (1996)].

44. I. L. Grach, I. M. Narodetskii, S. Simula, and
K. A. Ter-Martirosyan, Nucl. Phys. B 592, 227
(1997).

45. S. Kotkovsky, I. M. Narodetskii, S. Simula, and
K. A. Ter-Martirosyan, Phys. Rev. D 60, 114024
(1999).

46. J. Bjorken, I. Dunietz, and M. Taron, Nucl. Phys. B
371, 111 (1992).

47. N. B. Demchuck, I. L. Grach, I. M. Narodetskii, and
S. Simula, Yad. Fiz. 59, 2235 (1996) [Phys. At. Nucl.
59, 2152 (1996)].

48. F. Coester, Prog. Part. Nucl. Phys. 29, 1 (1992).
49. L. Randall and R. Sundrum, Phys. Lett. B 312, 148

(1993).
50. I. Bigi, M. Shifman, N. Uraltsev, and A. Vainstein,

Phys. Lett. B 328, 431 (1994).
03



1988 NARODETSKIĬ
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Abstract—The influence of isospin-violating (ρ0, ω) mixing is discussed for any pair of decays of ρ0, ω
into the same final state. It is demonstrated, in analogy to the CP violation in neutral kaon decays, that
isospin violation can manifest itself in various forms: direct violation in amplitudes and/or violation due to
mixing. In addition to the known decays (ρ0, ω)→ π+π− and (ρ0, ω)→ π0γ, the pair of decays to e+e−

and the whole set of radiative decays with participation of ρ0, ω (in initial or final states) are also shown to
be useful and promising for studies. Existing data on these decays agree with the universal character of the
mixing parameter and indirectly support enhancement of ρ0 → π0γ in respect to ρ± → π±γ. Future precise
measurementswill allow one to separate different forms of isospin violation and elucidate their mechanisms.
c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is widely known that isospin symmetry is vio-
lated. But nobody knows why and how it is violated.
There are at least two possible sources of the viola-
tion:

(1) QED does not respect the isospin, since differ-
ent members of any isomultiplet always have different
electric charges. As a result, the photon can be con-
sidered as a two-component object with isospins I =
0, 1. Therefore, the presence of photons, real or virtual,
inevitably spoils the symmetry. The corresponding
effect for processes without real photons is expected
to be O(α) in the amplitude.

(2) QCD can also violate isospin, due to differ-
ent properties of u and d quarks. Most popular here
are references to different quark masses, but other
properties, not always directly related to masses, may
also be efficient (as examples, I can mention magnetic
moments or difference of quark wave functions inside
hadrons). Estimates of the expected effect in such
approaches are rather ambiguous.

Experiments demonstrate isospin violation (e.g.,
hadron mass differences) mostly at the relative level
of order 10−2 or less. This does not even allow one
to discriminate between the two above mechanisms.
Thus, further studies, both theoretical and exper-
imental, are necessary to elucidate the underlying
physics.

A favorable site for such studies may be provided
by mixing of ρ0 and ω mesons, where some enhance-
ment becomes possible due to Mω ≈Mρ. A well-
and long-known example is the decay ω → π+π−.

∗This article was submitted by the author in English.
1063-7788/03/6611-1989$24.00 c©
The isospin symmetry totally forbids it (initial I = 0,
final I = 1), but the mixing opens the cascade transi-
tion ω → ρ0 → π+π−. The resulting branching ratio
achieves 2% [1], instead ofO(α2).

A more recent example of possible manifestation
of the mixing is given by decays ρ→ πγ. There is
experimental evidence for enhancement of the neutral
decay in respect to the charged one (see [1]; the exact
value is still uncertain, as evident from comparison of
the corresponding numbers in the neighboring issues
of Particle Data Group [1, 2]). Meanwhile, the isospin
conservation admits only the isoscalar photon com-
ponent to participate in those decays, and so proba-
bilities for ρ0 → π0γ and ρ± → π±γ were expected to
be the same. Their inequality (either enhancement or
suppression of the neutral decay) may emerge from
contribution of the cascade ρ0 → ω → π0γ, which is
impossible for the charged decay (see [3] and refer-
ences therein).

In a recent paper [4], I suggested broadening the
set of decays under consideration, since any pair of
decays ω, ρ0 → (the same final state) should be sen-
sitive to the (ρ, ω) mixing. This talk gives a brief
presentation of ideas and results of the paper [4].

2. VECTOR MESON MIXING

Let us begin with bare states ω(0) and ρ(0). They
have bare (complex) masses

M (0)
ω = m(0)

ω −
i

2
Γ(0)
ω , M (0)

ρ = m(0)
ρ −

i

2
Γ(0)
ρ

2003 MAIK “Nauka/Interperiodica”
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and bare propagators

[D(0)
ω (k2)]µν =

gµν −
kµkν

M
(0)2
ω

k2 −M (0)2
ω

, (1)

[D(0)
ρ (k2)]µν =

gµν −
kµkν

M
(0)2
ρ

k2 −M (0)2
ρ

.

Mixing arises if there exist transitions ω(0) → ρ(0) and
ρ(0) → ω(0). Corresponding transition vertices may
be described by transition amplitudes Gωρ and Gρω,
respectively.1) Summation over all mutual transitions
provides four different propagators for bare states:

Dρρ(k2), Dρω(k2), Dωρ(k2), Dωω(k2),

which describe all reciprocal transformations of ρ(0)

and ω(0). Together they may be considered as a 2×
2 matrix propagator. Its diagonalization picks out
physical propagatorsDω(k2) andDρ(k2) with physi-
cal masses

M2
ω = M2 +KδM2, M2

ρ = M2 −KδM2, (2)

where

δM2 =
M

(0)2
ω −M (0)2

ρ

2
, M2 =

M
(0)2
ω +M

(0)2
ρ

2
,

K =
√

1 + G̃ρωG̃ωρ, G̃ρω =
Gρω
δM2

, G̃ωρ =
Gωρ
δM2

.

Now, we can consider a process i→ f where ρ0

and/or ω appear as the intermediate states. Its ampli-
tude in terms of bare states is

Aif = A
(0)
iρ DρρA

(0)
ρf +A

(0)
iρ DρωA

(0)
ωf (3)

+A
(0)
iω DωωA

(0)
ωf +A

(0)
iω DωρA

(0)
ρf ,

where A(0)
iρ and A

(0)
iω are production amplitudes for

bare ρ(0) and ω(0) states, while A
(0)
ρf and A

(0)
ωf are

their decay amplitudes. The whole amplitude may be
rewritten in terms of physical states in the simple form

Aif = AiρDρAρf +AiωDωAωf , (4)

where the physical propagators Dρ(k2) and Dω(k2)
are used together with the physical amplitudes

Aiρ =

√
K + 1
2K

(

A
(0)
iρ −A

(0)
iω

G̃ωρ
K + 1

)

, (5)

Aiω =

√
K + 1
2K

(

A
(0)
iω +A

(0)
iρ

G̃ρω
K + 1

)

1)See [4] for more detailed description of the vertices.
PH
for the ρ0- and ω-meson production and

Aρf =

√
K + 1
2K

(

A
(0)
ρf −

G̃ρω
K + 1

A
(0)
ωf

)

, (6)

Aωf =

√
K + 1
2K

(

A
(0)
ωf +

G̃ωρ
K + 1

A
(0)
ρf

)

for the meson decays.

The picture of mixed ρ(0) and ω(0) states is similar
to the well-known picture of mixing for K0 and K̄0,
as described by Lee, Oehme, and Yang [5]. It corre-
sponds to diagonalization of the mass-squared matrix
of the (ρ, ω) system

M2 =



M
(0)2
ρ Gωρ

Gρω M
(0)2
ω



 (7)

(and its matrix propagator D = (k2 −M2)−1) in the
form

M2 =

√
K + 1
2K







1
G̃ωρ
K + 1

− G̃ρω
K + 1

1









M
2
ρ 0

0 M2
ω





(8)

×
√
K + 1
2K







1 − G̃ωρ
K + 1

G̃ρω
K + 1

1





 .

The bare states |ρ(0)〉 and |ω(0)〉 appear to be analogs
of flavor states |K0〉 and |K̄0〉, while the physical
states

|ρ〉 = Nρ

(

|ρ(0)〉 − G̃ρω
K + 1

|ω(0)〉
)

, (9)

|ω〉 = Nω

(
G̃ωρ
K + 1

|ρ(0)〉+ |ω(0)〉
)

play the role of |KS〉 and |KL〉 [compare with ex-
pressions (6); Nρ and Nω are normalizing factors].
The essential difference, however, is the nonvanishing
δM2, which would implyCPT violation in the case of
(K0K̄0). As for the neutral kaons, there is a possibil-
ity of rephasing for ρ(0) and ω(0). T invariance makes
it possible to fix their phases so that

G̃ρω = G̃ωρ ≡ G̃.
An analogy between the two systems would be more
evident if one could observe oscillating time distri-
butions of ρ and ω decays. This is, however, quite
unrealistic, and we can study only time-integrated
YSICS OF ATOMIC NUCLEI Vol. 66 No. 11 2003
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double-pole distributions in k2. A more detailed dis-
cussion of similarity and difference between (ρ0, ω)
and (K0, K̄0) may be found in [4]. I would like, never-
theless, to mention here one unfamiliar point: while
the bare states are orthogonal, the physical (ρ0, ω)
states are orthogonal only if G̃ is real.

3. MIXING AND ISOSPIN VIOLATION
IN DECAYS

Symmetry violations in decays of neutral kaons
are known to reveal themselves in two forms: mixing
violation, manifested in mixing parameters of eigen-
states; and direct violation, seen as a property of
one or another particular amplitude for kaon decays.
Isospin violation for the (ρ, ω) system may also have
two forms. It can be direct violation, seen in produc-
tion or decay amplitudes for bare states; or it can
be mixing violation due to dimensionless parame-
ters G̃ρω and G̃ωρ. Existing experience allows one to
expect relative effects in amplitudes ∼ 0.01 for the
direct violation, while |G̃| might be up to 0.1. This
apparent enhancement of G̃ arises due to the denom-
inator δM2, which is small at the hadron mass scale.
Nevertheless, the difference is not very strong, and
future accurate description may require accounting
for both kinds of isospin violation.

Let us compare a pair of decays (ω, ρ0)→ f with
the same final state. The ratio of their amplitudes is

aω/ρ0f ≡
Aωf
Aρf

= a
(0)
ω/ρ0f

(10)

×



1 +
G̃

(K + 1)a(0)
ω/ρ0f







1−
G̃a

(0)
ω/ρ0f

K + 1





−1

,

where we assume T invariance and define

a
(0)
ω/ρ0f

≡
A

(0)
ωf

A
(0)
ρf

.

Now, neglecting the difference of phase spaces in
the decays, we can easily describe the measurable
quantity

rω/ρ0f ≡
Γ(ω → f)
Γ(ρ0 → f)

= |aω/ρ0f |2. (11)

Each pair of decays has its own parameter a(0)
ω/ρ0f

,

while G̃ is universal.
For decays (ω, ρ0)→ π+π−, we can assume

the absence of direct isospin violation, i.e., take

a
(0)
ω/ρ0(2π)

→ 0, and obtain the simple relation

rω/ρ0(2π) ≡
Γ(ω → 2π)

Γρ
=

1
4
|G̃|2, (12)
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where deviation of K from unity has been neglected.
On the basis of the tables from [1], it gives

|G̃| = (6.2 ± 0.5)× 10−2. (13)

Large variation of this quantity when it is extracted
from the consequent issues of the Particle Data
Group [1, 2] shows that the realistic error should be
taken at least a factor of 2 higher.

Photonic decays (ω, ρ0)→ π0γ, ηγ, e+e− and
η′ → (ω, ρ0)γ contain a real or virtual photon and
have, therefore, nonvanishing direct isospin violation.
It can be assumed, however, to have a very simple
form based on the structure of the photon coupling to
light quarks:

euūu+ edd̄d =
eu + ed√

2
ūu+ d̄d√

2
+
eu − ed√

2
ūu− d̄d√

2
.

Evidently, the effective isovector charge is 3 times
more than the isoscalar one. We can use this fact
together with an additional assumption that the ūu
and d̄d components of the mesons produce the same
matrix elements (and, therefore, do not manifest any
true direct violation of isospin). Then, for the ratios

rη′ρ0/ω ≡
Γ(η′ → ρ0γ)
Γ(η′ → ωγ)

, rρ0/ωη ≡
Γ(ρ0 → ηγ)
Γ(ω → ηγ)

,

rρ0/ω(ee) ≡
Γ(ρ0 → e+e−)
Γ(ω → e+e−)

,

we obtain the same expression

r = 9

∣
∣
∣
∣
∣
∣
∣

1− 1
6
G̃

1 +
3
2
G̃

∣
∣
∣
∣
∣
∣
∣

2

. (14)

A given value of r corresponds to a circle in the
complex plane of G̃, which should intersect another
circle, related to Eq. (12), and determine G̃ up to the
sign of ImG̃.

Data of tables [1] provide the values

rη′ρ0/ω = 9.74 ± 1.05, rρ0/ωη = 10.3 ± 2.6, (15)

rρ0/ω(ee) = 11.42 ± 0.42,

which do not contradict each other. Experimental
errors transform all the corresponding circles into
circular bands shown in the figure. Though the errors
are large, the picture looks consistent with the value
of G̃ being universal for various decays and having
ReG̃ < 0.

In the same approach, we can write

rρ0/ρ±π ≡
Γ(ρ0 → π0γ)
Γ(ρ± → π±γ)

=
∣
∣
∣
∣1−

3
2
G̃

∣
∣
∣
∣

2

, (16)
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Properties of various (ρ0, ω)-decay pairs as seen on the complex plane of G̃ when using values (15). The long-dashed
uncovered band is for (ρ0, ω) → ηγ; the short-dashed band with left-inclined hatching is for (ρ0, ω) → e+e−; the dotted
band with right-inclined hatching is for η′ → (ρ0, ω)γ. The solid ring with double hatching is for (ω, ρ) → ππ, Eq. (13)
with the doubled error. The area to the left/right of the solid line corresponds to rρ0/ρ±π more/less than unity, i.e., to
enhancement/suppression of ρ0 → π0γ in respect to ρ± → π±γ.
which shows that interference of direct and cascade
contributions may either suppress or enhance the
neutral radiative decay. ReG̃ < 0 leads to enhance-
ment of the neutral-vs.-charged decay, in agreement
with experimental evidence [1]. This demonstrates
both the role of mixing in pairs of (ρ0, ω) decays and
the consistency of the discussed approach to descrip-
tion of the isospin violation.

The considered photonic decays can be easily de-
scribed in the framework of the additive quark model.
Its simplest form provides exactly the same expres-
sion as in Eq. (14). To check that they have a more
general meaning, we can consider many-particle de-
cays (ρ0, ω)→ π0π0γ, which are not easy for applica-
tion of the additive quark model. However, we can use
the fact of “isotopic separation” in these decays: only
the isovector (isoscalar) component of the photon
would participate in the decay of ρ0 (ω) in the absence
of some additional isospin violation because of mixing
or any direct effects. Therefore, the quantity

rρ0/ω(ππ) ≡
Γ(ρ0 → π0π0γ)
Γ(ω → π0π0γ)

(17)

should satisfy the same Eq. (14). Experimentally [1],
rρ0/ω(ππ) ≈ 11. The uncertainty is still large, but we
see just the expected tendency (rρ0/ω(ππ) seems to be
higher than the unmixed numerical value of 9).

Up to now, we have neglected any really direct
violation of the isospin symmetry. In photonic decays,
this meant that the arising matrix elements were as-
sumed to be the same for u and d components of the
PH
mesons, and violation emerged only due to the differ-
ence of eu and ed. However, the slight difference of
rη′ρ0/ω and rρ0/ω(ee) may be viewed as evidence for the
existence of some additional direct violation, giving
different matrix elements for the u and d components.
Other possible evidence for such violation comes from
the ratio

rω/ρ±π ≡
Γ(ω → π0γ)

Γ(ρ± → π±γ)
, (18)

which experimentally [1] equals 10.9 ± 1.3. This ex-
ceeds the expectation based on the expression

rω/ρ±π = 9
∣
∣
∣
∣1 +

1
6
G̃

∣
∣
∣
∣

2

, (19)

with G̃ satisfying Eq. (13) and having ReG̃ < 0.
Sources of additional (direct) violations are still to
be discussed.

4. CONCLUSION

The above examples demonstrate that the (ρ, ω)
mixing reveals itself not only in decays ω → π+π−

and ρ0 → π0γ. It also affects all pairs of decays of
ρ0, ω to the same final state and decays of heavier
particles with production of ρ0, ω.

Though the current precision is still insufficient
for firm conclusions, existing data on radiative decays
of (ρ0, ω) and decays to e+e− are shown to agree
with the regular, correlated manner expected for the
influence of mixing. The whole set of decays gives
YSICS OF ATOMIC NUCLEI Vol. 66 No. 11 2003



ISOSPIN VIOLATION IN MIXING 1993
additional indirect support for enhancement of ρ0 →
π0γ in comparison with ρ± → π±γ.

Future, more precise measurements of those and
other decays will help to separate isospin violation
due to (ρ, ω) mixing from direct violation in various
processes and to study them in detail. This will allow
one to pick out the underlying physics and construct
adequate models for isospin violation.
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Abstract—The approach to high-energy hadronic interactions based on the 1/N expansion in QCD
and the string model of hadrons is reviewed. The Quark–Gluon Strings Model (QGSM) is discussed
in detail. Applications of the QGSM to the multiparticle production at high energies are considered. It
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1. INTRODUCTION

Quantum chromodynamics (QCD) is a real can-
didate for a theory of strong interactions. Asymptotic
freedom of QCDmakes it possible to apply perturba-
tion theory to processes with large momentum trans-
fer, and predictions of perturbative QCD for these
processes are in good agreement with experimental
data. On the other hand, large-distance phenomena,
where the coupling constant is not small and nonper-
turbative effects are important, still present a problem
for the theory. It is very important to understand QCD
in this large-distance domain. Processes with small
momentum transfer, which give a dominant contri-
bution to high-energy hadronic interactions, provide
a natural testing ground for theoretical ideas and
QCD-based models of large-distance dynamics.

In this paper, I shall review the approach to high-
energy hadronic interactions based on the Reggeon
calculus and 1/N expansion in QCD [1–4]. Extra dy-
namical input is provided by the color-tube or string
models [6–9], which are closely related to the space-
time picture of interaction in 1/N expansion. The
existence of stringlike configurations of gluonic fields
is confirmed by lattice calculations.

The powerful method of Reggeon theory, based
on analyticity and unitarity, has been developed for
description of soft hadronic interactions at high ener-
gies. In this review, I shall show how to incorporate
the QCD-based models into this general scheme.

∗This article was submitted by the author in English.
**e-mail: kaidalov@heron.itep.ru
1063-7788/03/6611-1994$24.00 c©
As a result, many relations between parameters of
Reggeon theory are established. A model based on
these ideas was developed about 20 years ago in ITEP
by K.A. Ter-Martirosyan and myself [10–16] and is
called the Quark–Gluon Strings Model (QGSM).
A similar Dual Parton Model (DPM) has been de-
veloped independently by Capella et al. [17, 18] and
there are many important contributions to this field
by other authors [19–23]. A more complete list of
references can be found in the reviews [18, 24].

This approach has been applied to many differ-
ent problems of strong interactions: hadronic mass
spectrum [14], widths of resonances [15], relations
between the total cross sections, residues of Regge
poles [15], behavior of hadronic form factors [10],
and multiparticle production at high energies [12,
13, 16, 25, 26]. Here, I shall concentrate mainly on
the subject of multiparticle production in hadronic
collisions with an emphasis on the main predictions
of the QGSM and DPMmodels, their successes and
problems. Applications of this approach to new areas
of small-x physics and heavy-ion collisions at very
high energies will be also discussed.

The Pomeron is the main object of the Reggeon
approach to high-energy hadronic interactions. In the
first part of this paper, I shall discuss the properties
of 1/N expansion in QCD and its relation to the
dynamics of Reggeons and of the Pomeron. A review
of the main properties of the QGSM will be given
in Section 3, and comparison of its prediction with
experimental data on high-energy hadronic interac-
tions in Section 4. The role of interactions between
Pomerons and the relation of these interactions to
2003 MAIK “Nauka/Interperiodica”



HIGH-ENERGY HADRONIC INTERACTIONS 1995
a large-mass diffractive production is discussed in
Section 5.

In Section 6, I shall apply the formalism to inter-
actions of virtual photons with nucleons and nuclei.
A qualitative picture of diffractive dissociation of a
virtual photon will be described and a model based
on this picture and methods of Reggeon theory will
be formulated. This model gives a unified description
of both structure functions of the proton in a broad
region of virtualities Q2 and diffractive dissociation of
a virtual photon in this region. The model leads to
definite predictions for shadowing of nuclear structure
functions.

Section 7 is devoted to heavy-ion collisions. I
shall emphasize the importance of shadowing effects
in heavy-ion collisions. It will be shown how these
effects modify predictions of the Glauber model for
inclusive spectra and particle densities at very high
energies.

The main conclusions of the review are formulated
in Section 8.

2. 1/N EXPANSION
AND THE POMERON IN QCD

A nonperturbative method that can be used in
QCD for description of large-distance dynamics is
the 1/N expansion (or topological expansion) [1–3].

In this approach, the quantities 1/Nc [1] or 1/Nlf
[2, 3] (Nc is the number of colors andNlf is the number
of light flavors) are considered as small parameters
and amplitudes and Green’s functions are expanded
in terms of these quantities. In QCD, Nc = 3 and
Nlf � 3 and the expansion parameter does not look
small enough. However, in most cases, the expansion
parameter is 1/N2

c ∼ 0.1.
In the formal limit Nc →∞ (Nlf/Nc → 0), QCD

has many interesting properties and has been inten-
sively studied theoretically. There is hope of obtaining
an exact solution of the theory in this limit (two-
dimensional QCD has been solved in the limit Nc →
∞). However, this approximation is rather far from
reality, as resonances in this limit are infinitely narrow
(Γ ∼ 1/Nc). The case when the ratio Nf/Nc ∼ 1 is
fixed and the expansion in 1/Nf (or 1/Nc) is carried
out [2, 3] seems more realistic.

This approach is sometimes called the topological
expansion, because the given term of this expansion
corresponds to an infinite set of Feynman diagrams
with definite topology. It should be emphasized that
1/N expansion should be applied to Green’s func-
tions or amplitudes for white states.

The first term of the expansion corresponds to the
planar diagrams of the type shown in Fig. 1 for the bi-
nary reaction. These diagrams always have as border
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 11 20
lines the valence quarks of the colliding hadrons. At
high energies, they should correspond to exchanges
by secondary Regge poles αR(ρ,A2, ω, . . . ) “made
of” light quarks. The s-channel cutting of the planar
diagram of Fig. 1a is shown in Fig. 1b. Here and
in the following, we do not show internal lines of
gluons and quark loops. This diagram corresponds
to a multiparticle production, which has the same
properties as in themultiperipheral model. Let us note
that the planar diagrams correspond to annihilation
of a valence quark and an antiquark, belonging to
colliding hadrons.

It is necessary to take into account that 1/N is
the dynamical expansion. This means that it can work
better in some regions of kinematical variables, while
in some kinematical limits its convergence can be
worse. For example, in the case of 2→ 2 amplitude,
which is a function of two variables s, t, the 1/N
expansion becomes more accurate as t increases in
the positive-t region [27], while at high energies one
should consider several terms of the topological ex-
pansion. The last point we shall discuss in detail in
this paper.

The topological classification of diagrams in QCD
leads to many relations between parameters of the
Reggeon theory, hadronic masses, widths of res-
onances, and total cross sections (for a review,
see [26]). All these relations are in good agreement
with experiment.

A contribution of the planar diagrams to the total
cross section decreases with energy as 1/s1−αR(0) ≈
1/
√
s. This decrease is connected to the fact that

quarks have spin 1/2 and, in the lowest order of per-
turbation theory, an exchange by two quarks in the t
channel leads to the behavior of the cross section σ ∼
1/s, which corresponds to the intercept αR(0) = 0.
Interaction between quarks should lead to an increase
in the intercept to the observed value αR(0) ≈ 0.5.

A calculation of Regge trajectories in QCD is a
difficult problem, even for planar diagrams. It was
considered in papers [28] using the method of Wilson
loop path integral [29]. It was shown that, under a
reasonable assumption about large-distance dynam-
ics [minimal area law for Wilson loop at large dis-
tances, confirmed by numerous lattice data, 〈W 〉 ∼
exp(−σSmin) (σ is the string tension)], it is possible
to calculate the spectrum of qq̄ states. The resulting
spectrum for light quarks with a good accuracy is
described by a very simple formula

M2

2πσ
= L+ 2nr + c1, (1)

where M is the mass of the state, and L and nr are
orbital and radial quantum numbers. This spectrum
03
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Fig. 1. (a) Planar diagrams for a binary reaction; (b) s-
channel cuttings of planar diagrams (a). Full lines denote
quarks; wavy lines, gluons.

corresponds to an infinite set of linear Regge trajec-
tories similar to the one of dual and string models.

In [28], spin effects have not been taken into ac-
count. Realistic calculations of masses of hadrons,
which take into account spin effects, perturbative in-
teractions at small distances, and quark loops, have
been carried out recently [30]. The resulting Regge
trajectories are in good agreement with experiment.

There are diagrams for elastic scattering or re-
actions without quantum-number exchange in the t
channel, shown in Fig. 2a, where the valence quarks
of colliding hadrons are conserved in the process of
interaction. These are so-called cylinder-type dia-
grams and their s-channel cuttings correspond to
the multiparticle production configurations, shown in
Fig. 2b. These configurations correspond to produc-
tion of two chains of particles, and each chain has
the same structure as the one shown for the pla-
nar diagram of Fig. 1b. From the t-channel point of
view, the cylinder diagrams are due to exchange by
gluons in the t channel. It is usually assumed that
these diagrams lead to the Pomeron pole. From the
topological classification point of view, the cylinder
diagrams correspond to a sphere with two boundaries
given by the valence quark lines of colliding hadrons.

It is very important to calculate the Pomeron
trajectory in QCD. Perturbative calculations of the
Pomeron in QCD were carried out by Lipatov and
collaborators [31] (BFKL Pomeron) many years
ago. The Pomeron is related to a sum of ladder-
type diagrams with exchange of Reggeized gluons.
Reggeization of gluons (as well as quarks) is an
important property of QCD (at least, in perturbation
theory). In the leading approximation of perturbation
theory, an expression for the intercept of the Pomeron
αP(0) is [31]

∆ ≡ αP(0)− 1 =
4Nc ln 2
π

αs. (2)
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Fig. 2. (a) Cylinder-type diagrams and (b) cuttings of
these diagrams in the s channel.

In this approximation (for the QCD coupling con-
stant, αs ≈ 0.2), ∆ ≈ 0.5. NLO corrections have
been calculated recently [32] and strongly decrease
LO results for ∆. The value of ∆ depends on the
choice of renormalization scheme and renormaliza-
tion scale. The choice of a physical (BLM) scheme
leads to stable results for ∆ ≈ 0.17, which practically
does not depend on virtuality of a process [33].

An influence of the nonperturbative effects on the
Pomeron trajectory and relation to the spectrum of
glueballs was considered in [34, 35], using themethod
of Wilson loop path integral discussed above for the
case of qq̄ Regge poles.

In the approximation where the spin effects and
quark loops are neglected, the spectrum of two-gluon
glueballs is determined by the expression for the Wil-
son loop at large distances given above with the only
difference that the string tension (σ ≡ σfund) for the
qq̄ system is changed to σadj string tension for the
gg system. Thus, the mass spectrum for glueballs is
given by Eq. (1) with the change σ → σadj.

The value of σadj can be found from the string
tension σfund of the qq̄ system, multiplying it by
9/4, as follows from Casimir scaling observed on
the lattices. Taking the experimental Regge slope
for mesons α′ = 0.89 GeV−2, one obtains σfund =
0.18 GeV2 and σadj ≈ 0.40 GeV2.

The calculated spectrum of glueballs [35] is in per-
fect agreement with the results of lattice calculations.
The glueball Regge trajectory is close to qq̄ Regge
trajectories f, f ′ in the region of small t. In this region,
a mixing between gluonic and qq̄ Regge trajectories
is important. The mixing effects and account of small
distances by QCD perturbation theory allow one to
obtain a phenomenologically acceptable intercept of
the Pomeron trajectory and lead to an interesting
pattern of vacuum trajectories in the positive-t re-
gion [35]. I would like to emphasize that, in this
approach, the “hard” and “soft” Pomerons are mixed.
YSICS OF ATOMIC NUCLEI Vol. 66 No. 11 2003
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The equation for the Pomeron singularity contains
both nonperturbative effects and perturbative dynam-
ics. Thus, the resulting “physical” pole is a state due
to both “soft” and “hard” interactions. The Pomeron
in QCD has a very rich and interesting structure.

Regge poles are not the only singularities in the
complex angular momentum plane. Exchange of
several Reggeons in the t channel leads to moving
branch points (or Regge cuts) in the complex angular
momentum j plane. Contributions of these singu-
larities to scattering amplitudes Tn(s, 0) ∼ s1+n∆

are especially important at high energies for ∆ > 0.
The whole series of n-Pomeron exchanges should
be summed. An account of these multi-Pomeron
exchanges in the t channel leads to unitarization of
scattering amplitudes. The Gribov Reggeon diagram
technique [36] allows one to calculate contributions
of Regge cuts to scattering amplitudes.

From the point of view of 1/N expansion, n-
Pomeron exchange contributions correspond to more
complicated topologies with “handles.” Thus, each
topological class of surfaces is characterized by a
given number of boundaries (nb) and handles (nh).
Topological expansion allows one to give a complete
classification of diagrams and to determine their de-
pendence on the parameter 1/N . The diagrams of a
given topological class have the following dependence
on 1/N :

Tnb,nh
∼ (1/N)nb+2nh . (3)

Thus, the contribution of planar diagram (nb = 1,
nh = 0) to the scattering amplitude is ∼ 1/N , the
cylinder-diagram (nb = 2, nh = 0) contribution is
∼(1/N)2, and the amplitude for the diagram of two-
Pomeron exchange (nb = 2, nh = 1) is ∼(1/N)4.
Equation (3) is valid for four-point functions (am-
plitudes). For amplitudes with a larger number of
hadrons, one should take into account that each extra
external hadronic state introduces a factor 1/

√
N due

to normalization of its wave function.

Note that the ratio of the cylinder to the pla-
nar diagram is ∼ 1/N ; however, for the amplitudes
with vacuum quantum numbers in the t channel, the
cylinder-type diagrams will dominate at high ener-
gies, because this ratio increases as sαP(0)−αR(0) as
energy increases. This is one of the manifestations of
the dynamical character of the 1/N-expansion men-
tioned above. In many cases, the type of process (and
the number of boundaries) is fixed by the quantum
numbers in the t channel. In these cases, the expan-
sion is in the number of handles and, according to
Eq. (3), the expansion parameter is (1/N)2, as was
mentioned above.
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 11 20
3. QUARK–GLUON STRINGS MODEL

The topological or 1/N expansion discussed in
the previous section gives a useful classification of all
QCD diagrams. It becomes especially predictive if a
definite spacetime picture for these diagrams is given.

The process of hadronic interactions at high en-
ergies can be related to production of new objects—
color tubes or strings [24]. It is necessary to consider
separately two cases, corresponding to (1) the pro-
cesses with annihilation of valence quarks of the col-
liding hadrons, corresponding to the planar diagrams
of 1/N expansion, and (2) the processes of diffraction
type, where the valence quarks are conserved, con-
nected to the cylinder-type diagrams.

In the first case after an interaction and annihila-
tion of valence quarks, the color-tube configuration is
produced and, after some time, decays to two similar
configurations by production of qq̄ from the vacuum.
This process repeats until many white qq̄ states—
hadrons—are produced. The time needed for produc-
tion of a hadron with momentum p is τ ∼ p/m2, so
in the c.m.s. the fastest hadrons, which contain the
spectator quarks qa and q̄b, will be produced last.
Each produced q and q̄ have small relative momenta
in their rest system or small rapidity differences. As
a result, due to Lorentz invariance of the picture,
finally produced hadrons at high energies will be uni-
formly distributed in the rapidity and will have limited
transverse momenta—the same characteristics as in
multiperipheral models.

The total cross section of the process of particle
production with q̄aqb annihilation σ

(ann)
ab can be ex-

pressed in terms of the probabilities w(yq) of finding
in the fast moving hadron a quark with a given ra-
pidity yq or the momentum ratio xq. These variables
are connected by the relation yq = ln(2p0xq/m⊥q),
where p0 is the momentum of the hadron and m⊥q
is the transverse mass of the quark. The function
w(yq) depends on the invariants—rapidity differences
∆y = ȳq − yq � ya − yq, where ȳq is the mean value
of rapidity of the quark in the fast moving hadron. This
difference can also be written as ȳq − yq = ln(x̄q/xq),
where x̄q is the mean fraction of the initial hadron
momentum carried by the valence quark q.

The cross section σ
(ann)
ab can be written as the

product of probabilities of finding in a given system
the valence antiquark q̄a and the quark qb with close
rapidities, as only such pairs annihilate with large
cross section σ0 ∼ 1/m2:

σ
(ann)
ab (s) = w(ya − yq̄a)w(yqb − yb)σ0. (4)

The result evidently should not depend on the choice
of the reference frame—on the value of yq̄a � yqb. The
03
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only function that satisfies this condition at large ∆y
is

w(∆y) = C exp(−β∆y). (5)

Thus, the probability of finding in a fast hadron a slow
valence quark with the rapidity strongly different from
the rapidity of a hadron decreases exponentially with
∆y. The cross section σ(ann)ab has the following energy
dependence at large s (ya − yb = ln(s/(mamb))):

σ
(ann)
ab (s) ∼ exp [−β(ya − yb)] ∼ 1/sβ. (6)

The cross section has a power-law decrease as energy
increases. Comparing this behavior with the Regge
dependence σ(ann)ab (s) ∼ 1/s1−αR(0), corresponding to
the exchange of Regge poles αR, we conclude that
the constant β, which characterizes the behavior of
the valence quark distributions at ∆y � 1 or x→ 0,
is equal to 1− αR(0).

Analogous considerations in the impact-parame-
terb space lead to the following equation for the quark
distribution w(∆y,∆b):
∫
d2bqw(ya − yq,ba − bq)w(yq − yb,bq − bb) (7)

= cw(ya − yb,ba − bb).

The solution to this integral equation has the form

w(∆y,∆b) =
c exp(−β∆y)

4πα′∆y
exp

[

− (∆b)2

4α′∆y

]

. (8)

Equation (8) leads to the characteristic Regge behav-
ior for total cross section σ(ann)ab (s,b) in the impact-
parameter space, and the parameters β and α′ are
connected to the intercept and the slope of Regge
trajectories αR:

β = 1− αR(0), α′ = α′
R(0). (9)

Expression (8) can be interpreted as a result of a ran-
dom walk (diffusion) in the impact-parameter space
of a valence quark with a probability decreasing with
∆y.

Thus, in this model, the distributions of valence
quarks at small x are determined by the parameters
of the secondary (αR) Regge poles.

In the process of string (color tube) breaking, the
probability of producing only two final hadrons is
small at large energies (the mean number of produced
hadrons is proportional to ln s). For example, in the
process π+π− → π0π0, the valence uū(dd̄) quarks
of π+ and π− annihilate, and then the color tube is
formed. It breaks later with dd̄(uū) production from
the vacuum, which together with the quark specta-
tors produces the final π0 mesons. Using the t in-
variance (for this example, it is also possible to use
PH
isospin invariance), it is easy to see that the proba-
bility of the string breaking with production of only
two final pionswith rapidity difference∆y wππ(∆y) =
σπ+π−→π0π0/σ

(ann)
π+π− has the form of Eq. (8) with β =

1− αρ(0). In the reaction π+π− → K+K−, an ss̄
pair of quarks is produced under the string breaking,
and comparing the amplitude of this process with the
Regge dependence, we obtain

wKK̄ =
σπ+π−→KK̄

σ
(ann)
π+π−

∼ exp [−2(1− αK∗(0))∆y]
∆y exp [−(1− αρ(0))∆y]

.

(10)

In this case, β = 1− 2αK∗(0) + αρ(0) = 1− αφ(0).
The last equality is due to the relations between in-
tercepts of Regge trajectories obtained in [14].

These results can be generalized [11] to the situ-
ations where the hadronic state produced in the pro-
cess of the string fission has a large rapidity gap ∆y
between groups of particles. The probability of such a
configuration is determined by Eq. (8), and the values
of constants β and α′ depend on the type of quark qk.

Detailed models of string breaking have been de-
veloped [8] and are widely used now in Monte Carlo
simulations of multiparticle production.

Let us consider now the inelastic interaction of
hadrons in the case of cylinder-type diagrams, when
the valence quarks of colliding hadrons do not annihi-
late. In this case, an interaction is determined by the
gluonic exchanges, which lead to the color exchange
between colliding hadrons. The main contribution in
1/N expansion is due to the exchange of the state
with the quantum number of the color octet (as, for
example, a single-gluon exchange). Note that, in this
situation, contrary to the planar case, the valence
quarks are in their average configuration and it is
reasonable to assume that the probability of finding
soft gluons in any reference frame is not small. This
means that such cross section will not decrease with
energy and corresponds to the assumption that the
intercept of the Pomeranchuk pole αP(0) ≥ 1.

After the color exchange takes place, the colliding
hadrons move in opposite directions (in c.m.s.) and
are in the representation 8 of the group SU(3)c. The
configuration of the color field in this case in the large-
Nc limit corresponds to the sum of two strings of
the qq̄ type considered above. These strings decay
in the same manner as in the planar case, and the
decays of these strings are independent (in the leading
1/N order). The only correlation between strings is
that hadrons with close rapidities must have close
values of impact parameters ((∆b)2 ∼ 1/m2). This
is, however, essential in order to provide the Regge
pole nature for the Pomeron.
YSICS OF ATOMIC NUCLEI Vol. 66 No. 11 2003
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From the fact that there are two strings in the
Pomeron case, we conclude that the density of pro-
duced hadrons at very high energy and in the central
rapidity region in this case is twice as large as that in
the planar case. The same follows from the compar-
ison of the single-chain diagram of Fig. 1b with the
two-chain diagram of Fig. 2b. Thus, the string model
provides a simple picture of interaction for diagrams
of 1/N expansion.

Consider now the processes of multiparticle pro-
duction in more detail. The simplest process is the
single-particle inclusive production ab→ cX. The
inclusive distribution of hadrons for the planar dia-
grams of Fig. 1b can be written as

f (pl)
c =

1

σ
(pl)
ab (s)

Ec
d3σ

(pl)
c

d3pc
(11)

= F c(yqa − yc, yc − yq̄b , p2
⊥c).

When yqa − yc or yc − yq̄b � 1, F c does not depend
on the corresponding variable. This is the conse-
quence of the short-range nature of correlations in
rapidity for the process of string decay. Thus, at high
energies and in the fragmentation region of hadron
a when yqa − yc ∼ 1 and yc − yq̄b � 1, the function
F c of Eq. (11) depends only on two variables and
can be written in terms of the Feynman variable x =
pc||/pqa = pc||/pa:

f (pl)
c = F c(x, p2

⊥) ≡ Dc
qa(x, p

2
⊥)x. (12)

The functionDc
qa is the fragmentation function of the

quark qa to the hadron c. In the limit x→ 0, function
F c does not depend on x and Dc

qa = gc(p2
⊥). This

corresponds to a uniform distribution of final hadrons
in the central rapidity region.

The fastest hadrons usually contain the valence
quark qa, and it is possible to determine the behavior
of the function Dc

q in the limit x→ 1, when there is
a big rapidity gap ∆y � ln 1/(1 − x). The probability
of such a configuration is described by w(∆y)d(∆y)
with β = 1−αkk in Eq. (8) and d(∆y) = dx/(1− x);
index k denotes the type of exchanged quark. Coming
from the impact parameter to the transverse momenta
of hadrons, one obtains

Dc
qa(x, p2

⊥) = b(p2
⊥)(1 − x)αii(0)−2αik(p2⊥), (13)

x→ 1.

The fragmentation functions satisfy the relation

∑

c

1∫

0

Dc
q(x)xdx = 1, (14)
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which follows from energy–momentum conservation.
The behavior of fragmentation functions for different
types of quarks and hadrons can be determined in
the region x→ 1 [26]. This, together with the 1/x
dependence for x→ 0 and the relations that follow
from conservation of momentum [Eq. (14)], charge,
strangeness, etc., strongly limits possible behavior of
fragmentation functions.

Using planarity and the Kancheli–Mueller [37, 38]
theorem, which relates inclusive cross sections to the
discontinuity of the abc̄→ abc̄ forward scattering am-
plitude, it is possible to obtainmany relations between
inclusive particle spectra [24].

Consider now the case of the two-chain produc-
tion mechanism of Fig. 2b. Here, the quarks that pro-
duce each chain have only a fraction of the energy of
colliding hadrons. The final hadron c can be produced
in each of the chains and its distribution should be
the same as in the planar case. Thus, the inclusive
distribution can be written as a sum of two terms—
convolutions of the probabilities of having a string
of a certain length in the rapidity and the functions
F c of Eq. (11), which characterize the distribution of
hadrons produced in the process of string breaking:

f (cyl)
c (y) =

dσ
(cyl)
c

σ(cyl)dyc
=

1
σ(cyl)

∫
d2p⊥ (15)

× Ec
d3σ

(cyl)
c

d3pc
=
∫ ∫ ∫

d2p⊥dyqadyq̄bw
qa(yqa)

× wq̄b(yq̄b)F c(yqa − yc, yc − yq̄b , p2
⊥) + s.c.,

where s.c. denotes the analogous expression from the
contribution of the second chain. The function wi(yi)
determines the probability that the end of the string,
related to the quark i, has the rapidity yi or the fraction
of the momentum xi.

At high energies and in the fragmentation region
of the particle a, it is possible to write the inclusive
spectrum in terms of the variable x:

f (cyl)
c =

x̄

σ(cyl)

dσ
(cyl)
c

dx
=

1∫

x

dxqφ
a
q(xq) (16)

×Dc
q

(
x

xq

)
x

xq
+ s.c.,

where x̄ = Ec/pa and the functions φaq(xq) are the
distributions of “quarks” (ends of the strings) in
hadron a. They are connected to the functions w(yq)
introduced before by a relation w(yq)dyq =
φq(xq)dxq .

The ends of the strings corresponding to the va-
lence quark and antiquark of the initial hadron carry
the total momentum of the initial hadron:

∫ 1
0 (φaq(x) +
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φaq̄(x))xdx = 1. Using this condition and Eq. (16), it
is easy to verify that inclusive cross sections satisfy
the sum rule, which follows from the conservation of
the momentum:

∑

c

1∫

0

f (cyl)
c (x)dx = 1. (17)

The behavior of the valence quark distribution at x→
0 follows from Eq. (6):

φaqi(x) =
wqa(ln(x̄/x))

x
∼ x−αii(0), x→ 0. (18)

The behavior at x→ 1 can be obtained if we take into
account that, for xqi → 1, the corresponding q̄k is very
slow:

φaqk(x) ∼ (1− x)−αkk(0), x→ 1. (19)

Let us note that the behavior of the “quark” distribu-
tions and fragmentation functions, given byEqs. (18),
(19), and (13), correspondingly, is valid only for the
soft processes and are different from those valid in
hard processes for pointlike quarks.

The behavior of inclusive distributions for cylinder
diagrams in the limit x→ 1 follows from Eq. (16) and
Eqs. (13), (19):

f (cyl)
c (x) ∼ (1− x)1−αkk−αll = (1− x)1−2αkl , (20)

x→ 1.

This expression corresponds to the triple-Regge
asymptotics of inclusive spectra.

Equation (16) can be generalized to include de-
pendence on transverse momenta of hadrons [39].
In this case, it is necessary to introduce an extra
integration over transverse momentum of the end of
the string.

It was assumed in the QGSM that the Pomeron
corresponding to the cylinder-type diagrams is a sim-
ple pole with αP(0) > 1. The value of αP(0) was de-
termined from analysis of experimental data.

For such a “supercritical” Pomeron, higher terms
of the topological expansion associated with ex-
change by several Pomerons in the t channel are
also important. This is due to the fact that, though
the exchange by n Pomerons is ∼1/(N2)n, it is
enhanced by the factor (s)n∆. Thus, it is necessary
to sum many terms of the topological expansion at
very high energy. The s-channel discontinuities of
these diagrams are related to processes of production
of 2k (k ≤ n) chains of particles.

The AGK-cutting rules [40] make it possible to
determine the cross sections for 2k-chain (string)
production (with any number of uncut Pomerons)
if the contributions of all n-Pomeron exchanges to
PH
the forward elastic scattering amplitude are known.
These contributions can be calculated using the
Reggeon diagram technique [36]. In most calcula-
tions, diagrams of the eikonal type have been taken
into account [18, 24]. The inelastic diffraction was
taken into account in the “quasi-eikonal” approxi-
mation (for account of more complicated diagrams
with interactions between Pomerons, see below). In
this model, the cross sections of 2k-chain production
σk have the form [41]

σk(ξ) =
σP
kz

[

1− exp(−z)
k−1∑

i=0

zi

i!

]

, k ≥ 1, (21)

where

σP = 8πγP exp(∆ξ), z =
2CγP

R2 + α′
Pξ

exp(∆ξ),

ξ = ln(s/s0),

γP and R2 are parameters that describe the Pomeron
residue (see below). The quantity C = 1.5 takes into
account modification of the eikonal approximation
due to intermediate inelastic diffractive states.

The total interaction cross section in this model
has the form

σ(tot) =
∞∑

0

σk(ξ) = σPf
(z

2

)
, (22)

f
(z

2

)
=

∞∑

1

(−z)n−1

n · n!
,

where σ0(ξ) = σ(el) + σ(DD) is the cross section of
diffractive processes [(DD) denotes diffraction disso-
ciation] and it is given by the formula

σ0(ξ) = σP

[
f
(z

2

)
− f(z)

]
. (23)

The simplest parametrization of the Pomeron ex-
change

TP(ξ, t) = γP exp[αP(0)ξ + (R2 + α′
Pξ)t] (24)

has been used in Eqs. (21)–(23).

The parameters γP, R2, ∆, and α′
P were deter-

mined from the fit to the experimental data on the
total interaction cross sections and differential cross
section of elastic pp and pp̄ scattering at high ener-
gies [42, 43]. The most important quantities ∆ and
α′
P have the following values:

∆ = 0.12–0.14, α′
P = 0.2–0.25 GeV−2. (25)

It should be noted that the value of ∆ becomes larger
(∆ ≈ 0.2) if the interaction between Pomerons is
taken into account [44] (see below).
YSICS OF ATOMIC NUCLEI Vol. 66 No. 11 2003
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For superhigh energies, when ξ � 1, σ(tot)(ξ) has
a Froissart-type behavior

σ(tot)(ξ) � 8πα′
P∆
C

ξ2. (26)

This type of behavior for the total cross section is
common to a broad class of models with αP(0) > 1.
The slope of the diffraction cone increases asymptot-
ically also as ξ2.

Inclusive cross sections and multiplicity distribu-
tions can be obtained in this approach by summing
over hadronic production for all processes of 2k-chain
formation:

dσc
dyc

=
∞∑

0

σk(ξ)fkc (ξ, yc), (27)

σN (ξ) =
∞∑

0

σk(ξ)W k
N (N̄k(ξ)), (28)

where fkc (ξ, yc) = dσkc /(σkdyc) and W
k
N are rapidity

and multiplicity distributions for 2k-chain produc-
tion with mean values N̄k. The term with k = 0 in
Eqs. (27), (28) corresponds to the process of diffrac-
tion dissociation σ(DD).

The function f1
c has been considered above

[Eqs. (15), (16)]. For an arbitrary configuration where
there are both valence and “sea chains,” functions
fkc (ξ, yc) can be written in the form [16, 25] (we con-
sider here, as an example, pp collisions, where valence
chains connect the valence quark of one colliding
proton with the diquark of another proton)

fkc (ξ, x) = ac[f c,kq (x+)f c,kqq (x−) (29)

+ f c,kqq (x+)f c,kq (x−) + 2(k − 1)f c,kqsea(x+)f c,kq̄sea(x−)],

where x± =
1
2

[√
x2
⊥ + x2 ± x

]
, x⊥ =

2m̄c
⊥/
√
s, x+ = exp(yc − ymax

c ), and

f c,ki (x) =

1∫

x

dx1φ
a,k
i (x1)D′c

i

(
x

x1

)
x

x1
, (30)

i = q, qq, qsea.

The first two terms in Eq. (29) correspond to chains
connected to valence quarks and diquarks and gen-
eralize Eq. (16) to all values of rapidity. The function
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 11 20
D′c
i (z), which enters Eq. (29), differs from the func-

tionDc
i (z) only by the constant ac, which determines

the density of hadrons of a given type produced in the
central rapidity region in a single chain. The last term
in Eq. (29) is due to extra chains connected to sea
quarks.

From the discussion above, we know that, for
a single-cylinder case, the distribution functions of
quarks in pp collisions have the following behavior in
the limits x→ 0 and x→ 1:

φp,1q (x) =

{
c1x

−αR(0), x→ 0,
c2(1− x)αR(0)−2αN (0), x→ 1.

(31)

The x→ 1 behavior for a quark in a proton is
determined by the x→ 0 behavior of a diquark.
The last is related in this approach to the intercept
of the qq–q̄q̄ trajectory, which in this approach is
equal to αqq̄(0)− 2αqqq(0) = αR(0)− 2αN (0), where
αR(0) = 0.5 and αN (0) � −0.5 are the intercepts of
bosonic and fermionic Regge trajectories.

The distributions φp,kq (x) with k > 1 have the
same behavior as x→ 0. This is connected to the
fact that we consider the rescatterings with limited
masses in the intermediate states, so the probabilities
of having slow ends of sea chains must decrease as
x→ 0. The distributions of the type 1/x at small
x correspond to the “enhanced” diagrams with in-
teractions between Pomerons, which are neglected
in the “quasi-eikonal” model. For x→ 1, the dis-
tributions with k > 1 must be softer than for the
case k = 1, because, if one quark takes all the mo-
mentum of the initial hadron, all other constituents
must be soft. The probability of slowing each ex-
tra quark (antiquark) is ∼x1−αR(0). Thus, φp,kq ∼
(1− x)αR(0)−2αN (0)+2(1−αR(0))(k−1) as x→ 1.

Interpolation formulas have been used in the cal-
culations [16, 25]. For example,

φp,ku (x1) = Ckux
−αR(0)
1 (32)

× (1− x1)αR(0)−2αN (0)+2(1−αR(0))(k−1).

The coefficients Cki are determined from the normal-
ization condition:
Cku =
Γ (2− 2αN (0) + 2(1− αR(0))(k − 1))

Γ(1− αR(0))Γ (αR(0) − 2αN (0) + 2(1− αR(0))(k − 1) + 1)
. (33)
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The fragmentation functionsDc
i (z) have been de-

termined using the rules described above and interpo-
lating between the z → 0 and z → 1 limits [26]. The
functionDπ+

u , for example, was chosen in the form

zDπ+

u (z) = aπ(1− z)−αR(0)+λ, (34)

where λ = 2α′
Rp

2
⊥π ≈ 0.5. Using such interpolation

formulas for Dc
i (z) and sum rules, which follow from

conservation of momentum, charge, strangeness,
etc., it is possible to determine the fragmentation
functions of both quarks and diquarks for many types
of hadrons in a full kinematical region [26]. Here, I
give some examples:

zDπ−
u (z) = aπ(1− z)−αR(0)+λ+2(1−αR(0)), (35)

zDπ+

uu (z) = aπ(1− z)αR(0)−2αN (0)+λ, (36)

zDK+

u (z) = aK(1− z)−αφ(0)+λ(1 + a1Kz), (37)

zDK−
u (z) = aK(1− z)−αφ(0)+λ+2(1−αR(0)). (38)

The constants aπ, aK , and a1K are equal to aπ =
0.4–0.44, aK = 1

8aπ, and a1K � 2.
Thus, in contrast to other models, where fragmen-

tation functions are determined from experimental
data, in QGSM practically all parameters are fixed
theoretically. The inclusive spectra in this model au-
tomatically have the correct triple-Regge limit for
x→ 1 and double-Regge limit for x→ 0 and satisfy
all conservation laws.

4. COMPARISON WITH EXPERIMENT

After all the parameters of the Pomeranchuk pole
have been determined from a fit to experimental da-
ta on the total cross sections of pp, pp̄ interactions
and the slope of the diffraction cone B in elastic pp
scattering (Fig. 3), the predictions of the QGSM
for different characteristics of multiparticle produc-
tion at high energies contain practically no new free
parameters. Note that the asymptotic regime, where
both total cross sections and slopes of the diffraction
cone increase as ξ2, is achieved at extremely high
energies

√
s ∼ 104–105 GeV. It follows from Fig. 3

that the approximate linear dependence on ξ of the
slope of the diffraction cone in elastic pp scattering
observed at present energies will be modified in the
LHC energy range. This theoretical prediction can be
checked experimentally at LHC.

The model does not contain “odderon”-type sin-
gularities [45] with negative signature, which could
lead to a difference of pp and pp̄ scattering, so at
energies

√
s ≥ 102 GeV all characteristics of pp and

pp̄ interactions coincide. In the following, we shall
PH
often compare data on pp̄ interactions at energies of
present colliders with data on pp interactions at lower
energies.

For a sum of all n-Pomeron exchange diagrams
of the eikonal type (without interaction between
Pomerons), there is a cancellation of their contri-
butions to the single-particle inclusive spectra in
the central rapidity region for n ≥ 2 [40]. Thus, only
the pole diagram contributes and inclusive spectra
increase with energy as fa ∼ (s/s0)∆. This means,
in particular, that an energy dependence of inclusive
spectra in the central rapidity region gives more
reliable information on the value of ∆ than an energy
dependence of σ(tot), where Pomeron cuts strongly
modify energy dependence compared to the pole
diagram.

Rapidity (and pseudorapidity) distributions of
charged particles in pp (pp̄) interactions at different
energies are shown in Fig. 4. In the supercritical
Pomeron theory with account of “nonenhanced”
diagrams, which we consider now, inclusive cross
sections dσc/dy at very high energies and at y ≈ 0
increase with energy as (s/s0)∆. It follows from
Fig. 4 that the value of ∆ = 0.12–0.14 found from
analysis of σ(tot)(s) [42, 43] is in perfect agreement
with the rise of rapidity distributions with energy.
Let us note that, in the intermediate energy region√
s ∼ 10 GeV, there is an important effect, connected

with the fluctuations in rapidity of the ends of the
strings, which leads to an extra increase in inclusive
spectra in the central rapidity region [12].

An integral over a rapidity distribution gives an
average multiplicity of charged hadrons 〈Nch〉. The
model reproduces quite well both rapidity distribu-
tions and 〈Nch〉 at accessible energies. 〈Nch〉 in-
creases with energy much faster than ln(s/s0) and
reaches values of about 100 charged particles in the
LHC energy range.

The multiplicity distributions in the model are
given according to Eq. (28) by a sum of contributions
connected to a different number of cut Pomerons
(2k chains). Each of these contributions has a
Poisson-like form (only short-range correlations
inside chains), but their sum has a very peculiar
dependence on energy. At energies

√
s ≤ 102 GeV,

different contributions overlap strongly. This leads
to an approximate KNO scaling, i.e., dependence of
the quantity Ψ ≡ 〈Nch〉σNch/σ

(in) on the variable z =
Nch/〈Nch〉 only. The model reproduces multiplicity
distributions well at these energies [13]. The mean
number of chains increases with energy (as (s/s0)∆)
and the model predicts [13] the definite violation of
KNO scaling. This prediction was confirmed by the
experimental data at the Spp̄S collider—Fig. 5. In
YSICS OF ATOMIC NUCLEI Vol. 66 No. 11 2003
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Fig. 3. Energy dependence of the diffraction cone slopeB for elastic pp, p̄p scattering.
this figure, the multiplicity distribution at energy√
s = 105 GeV is also shown. As energy increases,

the maximum of the distribution in a variable z =
Nch/〈Nch〉 moves to the left and the distribution in-
creases in the region of large z. It is interesting to note
that, at superhigh energies

√
s ∼ 105 GeV, different

terms in the sum of Eq. (28) start to be separated and
the distribution has the corresponding maxima and
minima. At present energies

√
s ∼ 103 GeV, only the

first maximum and a “shoulder” start to appear. This
prediction of a structure in multiplicity distributions
at very high energies is consistent with experimental
observations at existing colliders.

The model also reproduces well the semi-inclusive
rapidity distributions and dependence of multiplicity
distributions on rapidity [13, 16]—see Fig. 6. Thus,
the study of multiplicity distributions not only con-
firms the multicomponent structure of the model, but
also shows that the weights of different components
(σk/σ(in)) are close to the predictions of the quasi-
eikonal approximation.

Another consequence of the multi-Pomeron con-
tributions is an existence of the long-range rapidity
correlations. It leads, in particular, to a large and fast
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 11 20
increasing with energy (as (s/s0)2∆) of the long-
range part of the correlation function C(y, 0) and to
strong forward–backward correlations. For a single-
Pomeron contribution, the correlations are of a short-
range order in rapidity; however, due to the presence
of several components with different densities of pro-
duced particles, the long-range correlations become
important. In the case of the forward–backward cor-
relations, for example, by increasing the number of
particles in the forward hemisphere, we automatically
increase the number of produced chains and thus
increase themean multiplicity of hadrons in the back-
ward hemisphere. The dependence of the mean multi-
plicity of charged hadrons, produced in the backward
hemisphere (rapidity region from −4 to −1), on the
number of charged particles in the forward rapidity
interval (from 1 to 4) is shown in Fig. 7. The model
reproduces the nearly linear dependence of experi-
mental data.

Let us consider now inclusive spectra of differ-
ent hadrons at high energies. The QGSM makes
it possible to calculate spectra for all values of the
variable x [16]. Spectra of π− and π+ mesons in pp
interactions are shown in Figs. 8a and 8b. Note that
03



2004 KAIDALOV

 

1

1 2 3 4 5

2

3

 
UA5
UA1
UA4

 

,pp–
s

 

= 540 GeV

 

s

 

= 53 GeV

 

y 

 

(

 

|η|

 

)

 
1
 

σ

 

---

 
d
 
σ
 

ch

 

d

 

η

 

-----------

1

 

σ

 

in

 

( )

 

----------

 

d

 

σ

 

π

 

+

 

π

 

–

 

dy

 

---------------

 

pp

 

, 

 

p

 

||

 

 = 205 GeV/

 

c
pp

 

,–
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the Feynman scaling is strongly violated in the region
of small x. On the other hand, in the fragmentation
region x ≥ 0.1, a violation of scaling is rather weak.
This has important implications for cosmic-ray ex-
periments.

Predictions of the model for inclusive cross sec-
tions and mean multiplicities of K± and K0

S mesons
are presented in [25] and are in good agreement with
experimental data. In the QGSM, the strange-quark
suppression factor is predicted theoretically [26] and
is confirmed by experimental data. The ratio of the
mean multiplicities of kaons and pions increases with
energy. This increase in the model is mainly due to
the mass difference of kaons and pions, and the ratio
tends to a constant value≈0.12 asymptotically.

The spectra of protons and antiprotons and the
corresponding theoretical curves [25] are shown in
Fig. 9. The spectra of the protons have a clear “lead-
ing” behavior (distributed in the region x ∼ 1) due to
the fragmentation of diquarks, which have a distri-
bution concentrated at xqq close to 1. The antipro-
tons, on the contrary, are determined mainly by the
“central” production in the valence chains and arise
also from sea chains. Asymptotically, in the central
region (x ≈ 0), the spectra of protons and antiprotons
PH
should be equal (the same is true for all particles and
antiparticles).

Another example of the “leading” behavior is
the spectrum of Λ hyperons, shown in Fig. 10.
The strange-quark suppression in the fragmentation
function of the model is a function of z and is propor-
tional to (1− z)αρ(0)−αφ(0) as z → 1. This leads to a
shift of the maximum of the spectrum for Λ to smaller
values of x than for nonstrange baryons (like n or ∆
isobar) in good agreement with experimental data.

Energy dependences of mean multiplicities for n,
p̄, and Λ̄ are shown in Fig. 11.

The model was extended to the processes of
charmed-particle production in [46]. The main prob-
lem here is a poor knowledge of the cc̄ trajectory. The
form of the x behavior and absolute normalization
depend strongly on the intercept of the cc̄ trajectory.
In [46], two values of αcc̄(0) have been used: αcc̄ =
−2, which follows from the mass spectrum under an
assumption of linear trajectories, and αcc̄ = 0 from
perturbative calculations. The nonperturbative value
is preferable from analysis of recent data on Λc pro-
duction. The model gives reasonable predictions for
energy behavior of inclusive cross sections of heavy-
particle production at superhigh energies and forms
YSICS OF ATOMIC NUCLEI Vol. 66 No. 11 2003
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of inclusive spectra for different charmed particles
[47, 48].

Thus, the QGSM gives a completely adequate
description of a large amount of experimental data
on multiparticle production at high energies. Monte
Carlo realizations of the model also exist [49].

5. DIFFRACTIVE-PRODUCTION
PROCESSES AND INTERACTIONS

BETWEEN POMERONS

Diffractive production of particles at high energies,
in the Regge pole model is described by the dia-
grams with Pomeron exchange. It is possible to have
excitation of one of the colliding hadrons—single-
diffraction dissociation (Fig. 12a)—or excitation of
both initial particles—double-diffraction dissociation
(Fig. 12b).

For all diffractive processes, there is a large ra-
pidity gap between groups of produced particles. For
example, for single-diffraction dissociation, there is
a gap between the particle 1′ and the rest system
of hadrons. This rapidity gap ∆y ≈ ln(1/(1 − x)),
where x is the Feynman variable of hadron 1′. The
mass of a diffractively excited state at large s can be
large. The only condition for diffraction dissociation is
si � s (i = 1, 2 in Fig. 12). For large masses of ex-
cited states, s2 ≈ (1− x)s and ξ′ = ln(s/s2) ≈ ∆y.

The cross section for inclusive single-diffraction
dissociation in the Regge pole model can be written
in the following form:

d2σ

dξ2dt
=

(g11(t))2

16π
|GP(ξ′, t)|2σ(tot)

P2 (ξ2, t), (39)

where ξ2 ≡ ln(s2/s0) and GP(ξ′, t) = η(αP(t)) ×
exp[(αP(t)− 1)ξ′] is the Pomeron Green’s function.
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The quantity σ(tot)
P2 (ξ2, t) can be considered as the

Pomeron–particle total interaction cross section [50].
Note that this quantity is not directly observable and
it is defined by its relation to the diffraction production
cross section [Eq. (39)]. This definition is useful,
however, because at large s2 this cross section has
the same Regge behavior as usual cross sections:

σ
(tot)
P2 (s2, t) =

∑

k

gk22(0)r
αk
PP(t)

(
s2
s0

)αk(0)−1

, (40)

where the rαk
PP(t) is the triple-Reggeon vertex, which

describes coupling of two Pomerons to Reggeon αk.
In this kinematical region s� s2 � m2, the in-

clusive diffractive cross section is described by the
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 11 20
triple-Regge diagrams (Fig. 13) and has the form

f1 =
∑

k

Gk(t)(1 − x)αk(0)−2αP(t)

(
s

s0

)αk(0)−1

.

(41)

The Pomeron–proton total cross section and
triple-Regge vertices rPPP, r

f
PP have been determined

from analysis of experimental data of diffractive pro-
duction of particles in hadronic collisions (see [51]).

In the eikonal-type models discussed above, the
diffraction dissociation to the states with not overly
large masses has been taken into account. Diffractive
production of states with large masses is related to
the diagrams with interactions between Pomerons.
Neglect of these interactions in the first approxima-
tion is justified by a smallness of triple-Pomeron and
four-Pomeron interaction vertices, found from anal-
ysis of diffractive processes [51]. However, at very
high energies, it is necessary to include the diagrams
with Pomeron interactions in order to have a self-
consistent description of high-energy hadronic in-
teractions, including large-mass diffractive produc-
tion of particles. The main drawback of the original
formulation of the QGSM and DPM models is an
absence of “enhanced” diagrams with interactions
between Pomerons. It was demonstrated in paper [44]
that inclusion of these diagrams leads in many cases
to predictions which are very close to the results of
eikonal-type models; however, the value of the “bare”
Pomeron intercept increases up to αP(0) ≈ 1.2. A
model for multiparticle production with an account of
the complete set of “enhanced” diagrams has yet to be
formulated. We shall demonstrate below that an ac-
count of interactions between Pomerons is important
for heavy-ion collisions at high energies and leads to
effects which are seen experimentally at RHIC.

6. SMALL-x PHYSICS

In this section, it will be shown that the meth-
ods developed for analysis of high-energy hadronic
interactions described above can be applied to physics
of small-Bjorken variable x studied in deep-inelastic
scattering. Experiments at HERA have found two ex-
tremely important properties of small-x physics: a fast
increase in parton densities as x decreases [52, 53]
and the existence of substantial diffractive production
in deep-inelastic scattering (DIS) [54, 55].

In DIS, it is possible to study different asymp-
totic limits. For a virtuality of the photon Q2 →∞
and x = Q2/(W 2 +Q2) ∼ 1 (W 2 = (pγ∗ + pp)2), the
usual QCD evolution equations can be applied and
Q2 dependence of the structure functions and dis-
tributions of partons can be predicted if an initial
03
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condition for structure functions at Q2 = Q2
0 is for-

mulated. On the other hand, if Q2 is fixed and x→
0 (or ln(1/x)→∞), the asymptotic Regge limit is
relevant. The most interesting question is: What is
the behavior of DIS in the region where both ln(1/x)
and lnQ2 are large? This is a transition region be-
tween perturbative and nonperturbative dynamics in
PH
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QCD, and its study can give important information
on the properties of confinement and its relation to
the QCD perturbation theory. The asymptotic Regge
limit in DIS can be related to the high-energy limit
of hadronic interactions and is usually described in
terms of the Pomeranchuk singularity.

6.1. Diffractive Processes in γ∗p Interactions

A fast increase in σ(tot)
γ∗p as W 2 ≡ s increases at

large Q2 observed experimentally [52, 53] raises a
YSICS OF ATOMIC NUCLEI Vol. 66 No. 11 2003
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question whether there are two different Pomerons—
“soft” and “hard.” From studies of the Pomeron in
QCD [35], it follows that there are no theoretical
reasons for such a situation and most probably the
rightmost pole in the j plane is generated by both
“soft” and “hard” dynamics. I shall assume that there
is one (“physical”) Pomeron pole with the sameαP(0)
as was determined from high-energy hadronic inter-
actions with an account of many-Pomeron cuts. On
the other hand, the effective intercept, which depends
on the relative contribution of multi-Pomeron dia-
grams, can be different in different processes.

There are good reasons to believe that the fast

increase in σ(tot)
γ∗p with energy in the HERA energy

range will change to a slower increase at much higher
energies. This is due to multi-Pomeron effects, which
are related to shadowing in highly dense systems of
partons, with eventual “saturation” of densities. This
problem has a long history (for reviews, see [56]) and
has been extensively discussed in recent years [57]. It
is closely connected to the problem of the dynamics of
very high energy heavy-ion collisions [58] (see below).

In [59], it was suggested that the increase in the
effective intercept of the Pomeron, αeff = 1 + ∆eff, as
Q2 increases from zero to several GeV2, is mostly due
to a decrease in shadowing effects with increasingQ2.
A parametrization of theQ2 dependence of ∆eff(Q2),

∆eff(Q2) = ∆0

(

1 +
2Q2

d+Q2

)

,

such that ∆eff ≈ 0.1 for Q2 ≈ 0 (as in soft hadronic
interactions) and∆eff ≈ 0.2 (bare Pomeron intercept)
forQ2 of the order of few GeV2, gives a good descrip-
tion of all existing data on γ∗p total cross sections
in the region of Q2 ≤ 5–10 GeV2 [59, 60]. At larger
Q2, effects due to QCD evolution become important.
Using the above parametrization as the initial condi-
tion in the QCD evolution equation, it is possible to
describe the data in the whole region of Q2 studied at
HERA [59, 61].

As was emphasized above, the value of∆eff should
depend not only on Q2 but also on x and it should
decrease as x→ 0. It is important to build an explicit
model based on Reggeon theory, where all these ef-
fects will be incorporated.

This problem was investigated recently in [62],
where the Reggeon approach was applied to the
processes of diffractive γ∗p interaction. It was em-
phasized in the previous section that, in the Reggeon
calculus [36], the amount of rescatterings (or multi-
Pomeron exchanges) is closely related to diffractive
production. AGK cutting rules [40] allow one to
calculate the cross section of inelastic diffraction if
contributions of multi-Pomeron exchanges to the
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 11 20
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elastic-scattering amplitude are known. Thus, it is
very important for self-consistency of theoretical
models to describe not only total cross sections, but,
simultaneously, inelastic diffraction. In particular, in
the Reggeon calculus, the variation of ∆eff with Q2 is
related to the corresponding variation of the ratio of
diffractive to total cross sections. In [62], an explicit
model for the contribution of rescatterings was con-
structed, which leads to the pattern of energy behavior

of σ(tot)
γ∗p (W 2, Q2) for different Q2 described above.

Moreover, it allows one to describe simultaneously
diffraction production by real and virtual photons.
In this model, it is possible to study quantitatively
a regime of “saturation” of parton densities.

Let us discuss briefly the qualitative picture of
diffractive dissociation of a highly virtual photon at
high energies. It is convenient to discuss this pro-
cess in the laboratory frame, where the quark–gluon
fluctuations of a photon live a long time ∼1/x (Ioffe
time [63]). A virtual photon fluctuates first to a qq̄
pair. There are two different types of configurations of
such pair, depending on transverse distance between
quarks (or k⊥).

(a) Small-size configurations with k2
⊥ ∼ Q2.

These small dipoles (r ∼ 1/k⊥ ∼ 1/Q) have a small
(∼r2) total interaction cross section with the proton.

(b) Large-size configurations with r ∼ 1/ΛQCD
and k⊥ ∼ ΛQCD � Q. They have a large total in-
teraction cross section, but contribute with a small
phase space at largeQ2, because these configurations
are kinematically possible only if the fraction of lon-
gitudinal momentum carried by one of the quarks is
very small: x1 ∼ k2

⊥/Q
2 � 1. This configuration cor-

responds to the “aligned jet,” introduced by Bjorken
and Kogut [64].

Both configurations lead to the same behavior of

σ
(tot)
γ∗p ∼ 1/Q2, but they behave differently in the pro-

cess of the diffraction dissociation of a virtual pho-
ton [65, 66]. The cross section of such a process
is proportional to a square of modulus of the corre-
sponding diffractive amplitude, and for a small-size
03
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configuration, it is small (∼ 1/Q4). For large-size
configurations, smallness is only due to the phase
space and the inclusive cross section for diffractive
dissociation of a virtual photon decreases as 1/Q2,
i.e., in the same way as the total cross section. This is
true only for the total inclusive diffractive cross sec-
tion, where characteristic masses of produced states
areM2 ∼ Q2. For exclusive channels with fixed mass
PH
(for example, production of vector mesons), the sit-
uation is different and these cross sections decrease
faster than 1/Q2 at largeQ2.

Inclusive diffractive production of very large mas-
ses (M2 � Q2) can be described in the first approxi-
mation by triple-Regge diagrams [67]. From the point
of view of the quark–gluon fluctuation of the fast
photon, the triple-Pomeron contribution corresponds
YSICS OF ATOMIC NUCLEI Vol. 66 No. 11 2003
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to diffractive scattering of a very slow (presumably
gluonic) parton, which has a small virtuality.

The model [62] uses the picture of diffraction dis-
sociation of a virtual photon outlined above and is a
natural generalization of models used for the descrip-
tion of high-energy hadronic interactions. The inter-
action of the small-size component in the wave func-
tion of a virtual photon is calculated using QCD per-
turbation theory. The main parameter of the model—
intercept of the Pomeron—was fixed from a phe-
nomenological study of these interactions discussed
above (∆P = 0.2) and was found to give a good de-
scription of γ∗p interactions in a broad range of Q2

(0 ≤ Q2 < 10 GeV2). Another important parameter
of the theory, the triple-Pomeron vertex, obtained

from a fit to the data (r(0)PPP/g
P
pp(0) ≈ 0.1) is also

in reasonable agreement with the analysis of soft
hadronic interactions [44, 67]. The description of the
structure function F2 as a function of x for different
values of Q2 (experimental data are from H1 [52],
ZEUS [53]) is shown in Fig. 14. Diffraction disso-
ciation of a virtual photon is usually represented as
a function of Q2,M2 (or β = Q2/(M2 +Q2)), and
xP = x/β = (M2 +Q2)/(W 2 +Q2). A description
of HERA data on diffractive dissociation [55] in the
model is shown in Figs. 15 and 16. The model can
be used to predict structure functions and partonic
distributions at higher energies or smaller x, which
will be accessible for experiments at LHC.

6.2. Shadowing Effects for Nuclear Structure
Functions

A study of the shadowing effects for structure
functions of nuclei in the small-x region provides a
stringent test of the Reggeon approach to the small-
x problem. The shadowing effects are enhanced for
nuclei (∼A1/3) and lead to deviations from A1 be-
havior for structure functions of nuclei. The Glauber–
Gribov [68, 69] approach to interactions of particles
with nuclei makes it possible to calculate rescattering
corrections for interaction of a virtual photon with a
nucleus in terms of diffractive interaction of a photon
with a nucleon, which was discussed above.

A contribution of a double-rescattering term to the
σγ∗A is directly expressed in terms of the differential
cross section for a diffraction dissociation of a virtual
photon in γ∗N interactions,

σ(2) = −4π
∫
d2bT 2

A(b) (42)

×
∫
dM2

dσ
(DD)
γ∗N (t = 0)

dM2dt
FA(tmin),
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where FA(tmin) = exp(R2
Atmin/3); tmin ≈ −m2

Nx
2
P,

xP = 1− xp; RA is the nuclear radius; and TA(b) is
the nuclear profile function (

∫
d2bTA(b) = A).

Higher order rescatterings are model-dependent,
and in the generalized Schwimmer model [70], we
obtain in the region of small x

F2A/F2N =
∫
d2b

TA(b)
1 + F (x,Q2)TA(b)

(43)

with

F (x,Q2) = 4π
∫
dM2

(
dσ

(DD)
γ∗N (t = 0)/dM2dt

)

×
(
FA(tmin)/σγ∗N (x,Q2)

)
.

Theoretical predictions [71] based on Eq. (43) and
the model for diffraction dissociation of [67] are in very
good agreement with NMC data on nuclear structure
functions at very small x [72]. We believe that this
approach gives reliable predictions for nuclear shad-
owing effects in the region of smaller x not yet studied
experimentally. This region will play an important
role in dynamics of heavy-ion collisions at superhigh
(LHC) energies.

7. HEAVY-ION COLLISIONS AT HIGH
ENERGIES

7.1. High-Energy Nuclear Interactions

Let us consider first high-energy hadron–nucleus
interactions. In the Glauber model, it is described by
diagrams that look like successive rescatterings of an
initial hadron on nucleons of the nucleus. However, as
was emphasized byGribov [69], the spacetime picture
of the interaction at high energy E > mhµRA (µ is a
characteristic hadronic scale ∼1 GeV) is completely
03
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different from this simple picture. At high energy,
there are coherent interactions of a fluctuation of
the initial hadron with nucleons of the nucleus. The
fluctuation is “prepared” long before its interaction
with the nucleus. Nevertheless, the elastic hA ampli-
tude can be written as a sum of the diagrams, with
elastic rescatterings that give the same result as the
Glauber model, plus all possible diffractive excita-
tions of the initial hadron. At not overly high energies
EL ∼ 102 GeV, these inelastic contributions lead to
corrections to the Glauber approximation of 10–20%
for the total hA cross section. However, at very high
energies and for inclusive cross sections, this modi-
fication of the Glauber approximation is very impor-
tant. The difference between the Glauber model and
Gribov’s theory is essential for understanding shad-
PH
owing corrections for structure functions of nuclei,
as was shown in the previous section, and for many
aspects of multiparticle production on nuclei [73].

An important consequence of the spacetime struc-
ture of high-energy interactions of hadrons with nu-
clei is the AGK result [40], according to which, for in-
clusive cross sections, all rescatterings cancel, so that
these cross sections are determined by the diagrams
of the impulse approximation. Note, however, that
this result, valid asymptotically in the central rapidity
region, only applies to diagrams of the Glauber type,
i.e., when masses of intermediate states in rescat-
tering diagrams are limited and do not increase with
energy. As a result, the inclusive cross section for the
production of a hadron a is expressed, for a given
impact parameter b, in terms of inclusive cross section
YSICS OF ATOMIC NUCLEI Vol. 66 No. 11 2003
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for hN interactions:

E
d3σahA(b)
d3p

= TA(b)E
d3σahN
d3p

. (44)

After integration over b, we get

E
d3σahA
d3p

= AE
d3σahN
d3p

. (45)

The total and inelastic hA cross sections in the
Glauber model can be easily calculated and are given
for heavy nuclei by well-known expressions. For ex-
ample,

σ
(in)
hA =

∫
d2b(1− exp(−σ(in)

hN TA(b)). (46)

The situation for nucleus–nucleus collisions is
much more complicated. There are no analytic ex-
pressions in the Glauber model for heavy-nucleus
elastic-scattering amplitudes. The problem stems
from a complicated combinatorics and from the
existence of dynamical correlations related to “loop
diagrams” [74, 75]. Thus, usually, an optical-type
approximation [76, 77] and probabilistic models for
multiple rescatterings [78] are used. For inclusive
cross sections in AB collisions, the result of the
Glauber approximation is very simple to formulate
due to the AGK cancellation theorem. It is possible
to prove, for an arbitrary number of interactions of
nucleons of both nuclei [79], that all rescatterings
cancel in the same way as for hA interactions. Thus, a
natural generalization of Eq. (44) for inclusive spectra
of hadrons produced in the central rapidity region
in nucleus–nucleus interactions takes place in the
Glauber approximation:

E
d3σaAB(b)
d3p

= TAB(b)E
d3σaNN
d3p

, (47)

where TAB(b) =
∫
d2sTA(s)TB(b− s), and A,B are

atomic numbers of colliding nuclei. After integration
over b, Eq. (47) gives

E
d3σaAB
d3p

= ABE
d3σaNN
d3p

. (48)

The densities of charged particles can be obtained
from Eqs. (47) and (48) by dividing them by the total
inelastic cross section of nucleus–nucleus interac-
tion. For example,

dn
(ch)
AB (b)
dy

=
TAB(b)

σ
(in)
AB

dσ
(ch)
NN

dy
(49)

and

dn
(ch)
AB

dy
=
AB

σ
(in)
AB

dσ
(ch)
NN

dy
. (50)
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Densities of charged hadrons dn(ch)/dη|η=0 in central
Pb–Pb collisions at

√
s = 130 GeV

Glauber With shadowing corrections Experiment [82]

1200± 100 630± 120 555± 12± 35

In the following, we shall use these results to calculate
particle densities in the central rapidity region at ener-
gies of RHIC and LHC.Reviews of applications of the
Glauber–Gribov approach, 1/N expansion in QCD,
and string model to processes of nucleus–nucleus
interactions can be found in [18, 80].

7.2. Particle Densities in Heavy-Ion Collisions
at Superhigh Energies

Now, we will address the question of particle den-
sities in heavy-ion collisions.

Equation (50) for particle densities integrated over
impact parameter (minimum bias events) can be
rewritten as

dn
(ch)
AB

dy
= nAB

dn
(ch)
NN

dy
, (51)

where nAB = ABσ
(in)
NN/σ

(in)
AB . It corresponds to the

average number of collisions in the Glauber model.
For A = B � 1, nAB behaves as CA4/3 with C ≈
σ

(in)
NN/(4πR

2
0)(RA = R0A

1/3). It is well known that
Eqs. (47), (48), and (51) can be applied to hard pro-
cesses, but in the Glauber approximation, they are
valid for soft processes as well. We shall see below
that, for both soft and hard processes, these equations
have to be modified.

Using Eqs. (50) and (51), we obtain for Pb–
Pb collisions at LHC at y = 0 the following num-
bers for minimum-bias events and central (b <
3 fm) collisions, respectively: dn(ch)/dy = 2100 and
dn(ch)/dy = 8500.

Thus, the Glauber approximation predicts very
large densities of charged hadrons in central heavy-
ion collisions at LHC. However, are these predictions
realistic? In order to answer this question, we will
consider possible limitations of the Glauber approx-
imation and also the corrections to the AGK cancel-
lation theorem that are important at high energies.

There are two types of corrections to Eqs. (44) and
(47).

(a) The effects due to energy–momentum con-
servation: the energy of the initial hadron is shared
by “constituents” and each subcollision happens at
smaller energy. These effects are very important in the
fragmentation regions of colliding hadrons (or nuclei)
03
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and reduce particle densities. For y = 0, this reduc-
tion decreases as (1/s)1/4. It is very important at SPS
energies and has some effect at RHIC; however, at
LHC energies in the central rapidity region, this effect
is small.

(b) Another dynamical effect is important at very
high energies when diffractive production of very
heavy hadronic states (M2 � m2

N ) becomes possi-
ble. It is related to the triple-Pomeron interaction
discussed above and corresponds to an interaction
between Pomerons (strings in the string models of
particle production). As the total and inelastic cross
sections of hA and AB interactions at high energies
are close to a black-disc limit due to Glauber-
type diagrams, these extra interactions have a small
influence on total cross sections. However, they are
very important for inclusive spectra in the central
rapidity region [73], where contributions of Glauber
rescatterings cancel due to AGK rules.

Extra shadowing effects related to these interac-
tions modify the A dependence of the Glauber ap-
proximation for inclusive spectra [Eqs. (44), (47)]
in such a way that the behavior dσAB/dy ∼ AB of
the Glauber approximation changes to dσAB/dy ∼
AαBα, where α < 1. For very strong interaction be-
tween Pomerons, α→ 2/3. This limit leads to uni-
versal particle densities in pp, pA, and AB collisions.
Due to a rather weak interaction between Pomerons
even at LHC energies, the value of α is close to 0.9.

The problem of shadowing for inclusive spectra
is not especially related to soft processes. The same
interactions are relevant also for hard processes
(production of jets or particles with large pT , heavy
quarks, large-mass lepton pairs, etc.). For hard
processes, due to the QCD factorization theorem,
inclusive spectra in nucleus–nucleus collisions are
given by convolutions of hard cross sections with
distributions of partons in the colliding nuclei. In
these cases, interactions between Pomerons describe
shadowing effects for nuclear structure functions (i.e.,
distributions of quarks and gluons in nuclei). Due
to a coherence condition, these effects are important
only in the region of very small xi of partons (xi �
1/(RAmN )). Thus, these effects are important only
at very high energies, when xi ≈MT /

√
s satisfy this

condition. This condition in terms of xi of partons
coincides with the condition on diffractive production
of large-mass states discussed above.

These effects were calculated in [81] in the same
model, which was used above for description of the
shadowing effects for nuclear structure functions. It
was predicted that an account of extra shadowing due
to interactions between Pomerons will lead to a de-
crease in particle densities compared to the Glauber
model predictions by a factor ≈4 at LHC and by a
PH
factor ≈2 at RHIC energies. Comparison with first
results from RHIC [82] is given in table. The experi-
ment clearly shows a large deviation from the predic-
tion of the Glauber approximation and demonstrates
an importance of the shadowing effects for inclusive
spectra of hadrons. This approach also reproduces the
dependence of particle densities at RHIC on number
of participants [83].

These results show that, already starting from
RHIC energies, interactions between Pomerons (or
strings) play an important role in the dynamics of
heavy-ion collisions. On the other hand, character-
istic values of partons xi ∼ 10−2 at these energies
and both experimental data on shadowing for nuclear
structure functions [72] and their theoretical interpre-
tation [71] show that we are very far from “saturation”
in this region.

8. CONCLUSION

The results presented in this paper show that ap-
plications of 1/N expansion inQCD and string model
to hadronic process allow one to understand many
characteristic features of strong interactions. The
Reggeon theory of high-energy interactions, based
on analyticity and unitarity, becomes much more
predictive, because there are many relations between
parameters of this theory. As a result, it was possible
to formulate a simple quark–gluon strings model that
contains only a few parameters and gives a good
description of many characteristics of multiparticle
production at high energies. The model allows us to
predict total cross sections, multiplicities, inclusive
spectra of different particles, and other observables
for energies of future colliders.

An important theoretical question is to prove di-
rectly from QCD the main assumption of this ap-
proach on the connection between planar diagrams
and Regge behavior.

A challenging problem for high-energy hadronic
physics and for this approach, in particular, is the
nature of the Pomeron. The analysis of this problem
in QCD with inclusion of both nonperturbative and
perturbative effects shows that the Pomeron has a
very rich dynamical structure.

The interactions between Pomerons are impor-
tant at very high energies. They are essential in
hadron–nucleus and especially in nucleus–nucleus
collisions [73, 81], where approach to thermalization
and conditions for quark–gluon plasma formation
strongly depend on the strength of interactions be-
tween strings.
YSICS OF ATOMIC NUCLEI Vol. 66 No. 11 2003
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Abstract—We discuss the multi-Regge form of QCD amplitudes and outline a way how to prove this
form. The key to the proof is given by the “bootstrap” requirement. This requirement leads to an infinite
set of bootstrap relations for multiparticle production amplitudes. On the other hand, all these amplitudes
are expressed in terms of the gluon trajectory and a finite number of Reggeon vertices. Therefore, it is
extremely nontrivial to satisfy all these relations. However, it turns out that all of them can be fulfilled if the
vertices and trajectory submit to several bootstrap conditions. Fulfillment of all these relations secures the
Reggeized form of the radiative corrections order by order in perturbation theory. c© 2003 MAIK “Nau-
ka/Interperiodica”.
1. INTRODUCTION

Multiperipheral kinematics and multi-Reggeon
processes were discovered by K.A. Ter-Martirosyan
many years ago [1], long before the appearance of
QCD, which is accepted now as a theory of strong
interactions. The importance of multiperipheral kine-
matics recognized by Ter-Martirosyan became ap-
parent in QCD very clearly, although not exactly
in the same relation that was mainly discussed by
Karen Avetovich. A marvelous property of QCD
is the asymptotic freedom that makes it possible
to apply perturbation theory to high-energy pro-
cesses. A remarkable phenomenon exhibited by QCD
perturbation theory is the Reggeization of elemen-
tary particles, quarks, and gluons [2–7]. Therefore,
a primary Reggeon in QCD turns out to be the
Reggeized gluon. The famous BFKL approach [4]
to the description of high-energy processes is based
on gluon Reggeization. The Pomeron, determining
high-energy behavior of cross sections, and the
Odderon, responsible for the difference of particle
and antiparticle cross sections, emerge as compound
states of two and three Reggeized gluons, respec-
tively.

Dominant contributions to the total cross sections
of QCD processes at high energy

√
s come from

multiperipheral, or, as it is now usually called, multi-
Regge kinematics (MRK). In perturbation theory,
amplitudes of such processes are given by gluon ex-
changes in channels with fixed (not increasing with s)

∗This article was submitted by the author in English.
**e-mail: fadin@inp.nsk.su
1063-7788/03/6611-2017$24.00 c©
transferred momenta. Despite a great number of con-
tributing Feynman diagrams, it turns out that, in the
MRK, amplitudes acquire a simple multiperipheral
form. It is quite uncommon that radiative corrections
to these amplitudes do not destroy this form, but give
only simple Regge factors, which can be interpreted
as a dependence of gluon spin onmomentum transfer.

This wonderful phenomenon was proved in the
leading logarithmic approximation (LLA), where only
the leading terms (αs ln s)n are resummed [8]. Owing
to this, the BFKL approach was grounded in the LLA.
Now, the approach is strongly developed in the NLA,
where the terms αs(αs ln s)n are also resummed. In
this approximation, the gluon Reggeization still re-
mains a hypothesis. Since it lies in the foundation of
the BFKL approach, its proof is extremely desirable.
It can be performed using the “bootstrap” relations,
required by compatibility of the gluon Reggeization
with the s-channel unitarity. It turns out that ful-
fillment of all these relations ensures the Reggeized
form of the radiative corrections order by order in
perturbation theory.

The bootstrap requirement leads to an infinite set
of bootstrap relations for the multiparticle production
amplitudes. On the other hand, all the amplitudes
are expressed in terms of the gluon trajectory and a
finite number of the Reggeon vertices. Therefore, it
is extremely nontrivial to satisfy all these relations.
Nevertheless, it turns out that all of them can be
fulfilled if the vertices and trajectory submit to several
bootstrap conditions.

Here, we discuss the Reggeized form of QCD
amplitudes and outline a way of proof of this form
in the NLA. The paper is organized in the following
2003 MAIK “Nauka/Interperiodica”
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Schematic representation of the process A+B → Ã+

P̃1 + . . .+ P̃n + B̃ in the MRK. The zigzag lines repre-
sent Reggeized gluon exchange; the black circles denote
the Reggeon vertices; qi are the Reggeon momenta; and
ci are the color indices.

way. In the next section, all necessary definitions and
notation are introduced and the multi-Regge form
of QCD amplitudes is presented. In Section 3, the
known results for the gluon Regge trajectory and the
Reggeon vertices are reviewed. The bootstrap rela-
tions are derived in Section 4. The conditions imposed
by these relations on the gluon Regge trajectory and
the Reggeon vertices are presented in Section 5,
where fulfillment of these conditions is briefly dis-
cussed. Section 6 summarizes the present status of
gluon Reggeization.

2. QCD AMPLITUDES IN MULTI-REGGE
KINEMATICS

We use the Sudakov decomposition of momenta,
which proves to be very convenient for analysis of
high-energy processes. For any momentum p, the
decomposition is written as

p = βp1 + αp2 + p⊥, (p1 + p2)2 = 2p1p2 = s,
(1)

sαβ = p2 − p2
⊥ = p2 + p2,

where p1 and p2 are light-cone momenta. Here and
below, the vector sign is used for components of mo-
menta transverse to the p1–p2 plane. These compo-
nents are supposed to be limited (not growing with s).
For high-energy process with initial particlesA andB
having momenta pA and pB, we can choose p1 and p2

in the pA–pB plane so that

pA = p1 +
(
m2
A/s

)
p2, pB = p2 +

(
m2
B/s

)
p1,
(2)

(pA + pB)2 � s = 2p1p2.
PH
The MRK means that, in the final state, we have
space jets well separated in rapidity with limited in-
variant masses, which are supposed to be of the order
of transverse momenta. Let us consider production
of n+ 1 jets: A+B → Ã + P̃1 + . . . + P̃n + B̃ (see
figure). If we denote momenta of the jets ki, 0 ≤ i ≤
n+ 1,

ki = βip1 + αip2 + ki⊥, (3)

sαiβi = k2
i − k2

i⊥ = k2
i + k2

i ,

then we have

α0 � α1 � · · · � αn � αn+1, (4)

βn+1 � βn � · · · � β1 � β0.

Equations (3) and (4) ensure that the squared invari-
ant masses of neighboring jets

si = (ki−1 + ki)2 ≈ sβi−1αi =
βi−1

βi
(k2
i + k2

i ) (5)

are large compared with the squared transverse mo-
menta

si 
 k2
i ∼ |ti| = |q2

i |, (6)

where

ti = q2
i ≈ q2

i⊥ = −q2
i , (7)

and their product is proportional to s:
n+1∏

i=1

si = s

n∏

i=1

(k2
i + k2

i ). (8)

Multiparticle amplitudes have a complicated analyti-
cal structure. It is not simple even in the MRK (see,
for instance, [9, 10]). Fortunately, only real parts of
these amplitudes are used in the BFKL approach in
the NLA as well as in the LLA. We restrict ourselves
also to consideration of the real parts, although it
is not explicitly indicated below. The real part of the
production amplitude can be written as (see [11] and
references therein)

AÃB̃+n
AB = 4(pApB)Γc1

ÃA
(9)

×






n∏

i=1

1
ti
γP̃i
cici+1

(qi, qi+1)



 si√
k2
i−1k

2
i





ω(ti)





× 1
tn+1



 sn+1√
k2
nk2

n+1





ω(tn+1)

Γcn+1

B̃B
,

where ω(t) is called a gluon Regge trajectory (al-
though actually the trajectory is j(t) = 1 + ω(t));
Γa
ÃA

and Γb
B̃B

are the particle–particle–Reggeon

(PPR) vertices, i.e., the effective vertices for A→ Ã
YSICS OF ATOMIC NUCLEI Vol. 66 No. 11 2003
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and B → B̃ transitions owing to interactions with
the Reggeized gluons having color indices a and b,
respectively; and γP̃i

cici+1
(qi, qi+1) are the Reggeon–

Reggeon–particle (RRP) vertices, i.e., the effective
vertices for production of jets P̃i with momenta ki =
qi − qi+1 in collisions of Reggeons with momenta qi
and −qi+1 and color indices ci and ci+1. Actually, in
the LLA, only one gluon can be produced in the RRP
vertex; in the NLA, a jet can contain two gluons or a
qq̄ pair.

Note that, in the amplitude concerned, there are
contributions of various color states and signatures in
the ti channels, so that, strictly speaking, we should
indicate somehow on the left-hand side of (9) that
only the contribution of a color octet with negative
signature is retained. But since in this paper we are
interested only in such contributions, here and be-
low, we have omitted this indication in order not to
entangle the notation; thus, a color octet and neg-
ative signature are always assumed, without explicit
indication, in channels with gluon quantum num-
bers. Recall that, in each order of perturbation theory,
amplitudes with a negative signature do dominate,
owing to the cancellation of the leading logarithmic
terms in amplitudes with a positive signature. The last
amplitudes become pure imaginary in the LLA due to
this cancellation.

In the following, we will use unitarity relations,
which involve a variety of amplitudes and a variety
of initial states, with momenta of initial particles not
necessary lying in the p1–p2 plane. Therefore, it is
important to realize that themulti-Regge form is valid
in such cases also. Actually, for its applicability, it is
sufficient to have small (compared with c.m.s. energy)
transverse momenta and masses of all participating
particles and strongly ordered longitudinal momenta
of produced particles.

3. REGGEON VERTICES AND TRAJECTORY

3.1. Vertices and Trajectory for the LLA

In the leading order (LO), the Reggeon vertices
and trajectory can be found without large efforts as-
suming the form (9). To find the vertex describing
A→ A′ transition, it is sufficient to calculate the sim-
plest elastic scattering amplitude with such transition
in the Born approximation. Of course, other processes
can be used to test whether form (9) is valid. In such
a way, one can find that the vertex for q(p)→ q(p′)
transition withmomenta p and p′ having predominant
components along p1 can be represented as

ΓcQ′Q = gū(p′)tc
�p2

2pp2
u(p), (10)
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 11 20
where g is the QCD coupling constant and tc are the
color group generators in the fundamental represen-
tation; for antiquarks, correspondingly,

ΓcQ̄′Q̄ = −gv̄(p)tc �p2

2pp2
v(p′). (11)

The vertices for gluon transitions acquire a simple
form in physical gauges. For gluons with predomi-
nant components of momenta along p1, we will use
physical polarization vectors e(p)p2 = 0 in the light-
cone gauge e(p′)p2 = 0, so that

e(p) = e(p)⊥ −
(e(p)⊥p⊥)

p2p
p2, (12)

e(p′) = e(p′)⊥ −
(e(p′)⊥p′⊥)

p2p′
p2,

and
ΓcG′G = −g(e∗(p′)⊥e(p)⊥)T cG′G, (13)

with the color generators in the adjoint represen-
tation. For momenta with predominant components
along p2, we have to replace in these formulas p2 →
p1 [evidently, this replacement in (12) means change
of the gauge].

All these vertices have identical form in the helicity
basis:

ΓcP ′P = gT cP ′P δλP ′λP
, (14)

where T cP ′P represent now the matrix elements of
the color group generators in corresponding repre-
sentations and λs are helicities of the partons. Here,
the conservation of s-channel helicities is explicitly
exhibited. Note that, for gluons and massive quarks,
it is valid only in the leading order.

In the LLA, there is only one RRP vertex, namely,
the RRG vertex, since only one gluon can be pro-
duced in Reggeon–Reggeon interactions. Knowl-
edge of the vertices (10) and (13) makes it possible
to extract the RRG vertex in the LO from Born
amplitudes for one-gluon production in any colli-
sion: quark–quark, quark–gluon, and gluon–gluon.
Evidently, vertices extracted from various processes
must coincide, which gives a test of the multi-Regge
form (9). The result [3] is

γGc1c2(q1, q2) = gT ac1c2e
∗
µ(k)C

µ(q2, q1), (15)

where a, k = q1 − q2, and e(k) are, respectively, the
color index, momentum, and polarization vector of the
gluon,

Cµ(q2, q1) = −qµ1 − qµ2 (16)

+ pµ1

(
q2
1

kp1
+ 2

kp2

p1p2

)

− pµ2

(
q2
2

kp2
+ 2

kp1

p1p2

)

= −qµ1⊥ − qµ2⊥ −
pµ1

2(kp1)
(k2

⊥ − 2q2
1⊥)
03
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+
pµ2

2(kp2)
(k2

⊥ − 2q2
2⊥).

In the light-cone gauge e(k)p2 = 0, we have

e∗µ(k)C
µ(q2, q1) = −2e∗⊥(k)

(

q1⊥ − k⊥
q2
1⊥
k2
⊥

)

. (17)

To find the gluon Regge trajectory in the LO, it
is sufficient to calculate one of the elastic-scattering
amplitudes in the one-loop approximation with loga-
rithmic accuracy. The result

ω(1)(t) =
g2Nct

2(2π)D−1

∫
dD−2q1

q2
1(q− q1)2

(18)

= −g2NcΓ(1− ε)
(4π)D/2

Γ2(ε)
Γ(2ε)

(q2)ε

does not depend on the process used. Here and in
the following,Nc is the number of colors,D = 4 + 2ε
is the spacetime dimension taken different from 4 to
regularize infrared and ultraviolet divergencies, and
Γ(x) is the Euler function.

In the LLA, all QCD amplitudes in the MRK are
expressed through these vertices and trajectory. In the
NLA, the complication is twofold. The first is that the
Reggeon vertices existing in the LLA and the gluon
trajectory must be taken in the NLO. The second is
the appearance of new vertices, since in the NLA one
of the jets can contain two particles.

3.2. The LLA Vertices and Trajectory in the NLO
Of course, finding the NLO vertices and trajec-

tory is not so easy. To find the PPR vertices, one
has to calculate nonlogarithmic terms in one-loop
elastic amplitudes; to discover the RRG vertex, it is
necessary to compute with such accuracy a gluon
production amplitude in the MRK. The vertices were
found in [10, 12–14]. In the case of massless quarks,
the QQR vertex can be represented as

ΓaQ′Q = Γa(B)
Q′Q

(

1 +
ω(1)(t)

2

[
1
ε

+ ψ(1− ε) (19)

+ ψ(1) − 2ψ(1 + ε) +
2 + ε

2(1 + 2ε)(3 + 2ε)

− 1
N2
c

(
1
ε
− (3− 2ε)

2(1 + 2ε)

)

− nf
Nc

(1 + ε)
(1 + 2ε)(3 + 2ε)

])

,

where the superscripts (B) and (1)mean the Born and
the one-loop approximations, ψ(x) is the logarithmic
derivative of the Euler Γ function, and nf is the num-
ber of quark flavors. Evidently, helicity of massless
quark is conserved, so that the one-loop vertex is
proportional to the Born one. It is not so in the gluon
case:

ΓaG′G = Γa(B)
G′G (20)
PH
×
{

1 +
ω(1)(t)

2

[
2
ε

+ ψ(1) + ψ(1− ε)

− 2ψ(1 + ε)− 9(1 + ε)2 + 2
2(1 + ε)(1 + 2ε)(3 + 2ε)

+
nf
Nc

(1 + ε)3 + ε2

(1 + ε)2(1 + 2ε)(3 + 2ε)

]}

+ gT aG′Ge
′∗
⊥µe⊥ν

(

gµν⊥ − (D − 2)
qµ⊥q

ν
⊥

q2
⊥

)

× εω(1)(t)
2(1 + ε)2(1 + 2ε)(3 + 2ε)

(

1 + ε− nf
Nc

)

.

The last term here exhibits violation of the helicity
conservation.

The one-gluon production vertex γGab(q1, q2) in the
NLO was calculated in [10, 15–18]. The calculation
has a long history. Note that the vertices (19) and
(20) at once were calculated for arbitrary spacetime
dimension D. It was not so in the case of the one-
gluon production vertex. The quark part of the vertex
also was found at once for arbitrary D [15]; instead,
in the gluon part, which is much more complicated,
firstly only the terms not vanishing at ε→ 0 were
found [10]. But in the process of calculation of the
NLO BFKL kernel, it was realized that, at small
transverse momentum k of the produced gluon, the
RRG vertex must be known for arbitrary D. After
this, the vertex at small k was calculated [16] for
arbitrary D. Later, the results of [10, 16] were ob-
tained by another method in [17]. But then it became
clear that, for verification of the bootstrap equation
for the BFKL kernel, the vertex must be known for
arbitrary D in a wider kinematical region. Finally, it
was calculated for arbitrary D in [18]. Unfortunately,
a complete expression for the vertex for arbitrary D
is rather complicated. We present it here in the form
where only terms singular at small k are given for
arbitrary D, but others in the limit ε→ 0. The result
is

γGc1c2(q1, q2) = γG(B)
c1c2 (q1, q2) (21)

×
[

1 +
2g2NcΓ (1− ε)

(4π)2+ε
(f1 + f2)

]

+ gT ac1c2
g2NcΓ (1− ε)

(4π)2+ε
[f3 − (2k2 − q2

1 − q2
2)f2]

×
(

pA
(kpA)

− pB
(kpB)

)

µ

e∗µ(k),

where γG(B)
ab (q1, q2) is the Born vertex (15) and

2f1 =
(

11
6
− nf

3Nc

)
(q2

1 + q2
2)

(q2
1 − q2

2)
ln
(

q2
1

q2
2

)

(22)
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− 1
2

ln2

(
q2

1

q2
2

)

−
(
k2
)ε
(

1
ε2
− 3ζ(2) + 2εζ(3)

)

,

2f2 =
(

1− nf
Nc

)
k2

3(q2
1 − q2

2)2

[

q2
1 + q2

2

− 2
q2

1q
2
2

q2
1 − q2

2

ln
(

q2
1

q2
2

)]

,

f3 =
(

11
3
− 2nf

3Nc

)
q2

1q
2
2

q2
1 − q2

2

ln
(

q2
1

q2
2

)

+
(

1− nf
Nc

)
k2

6
,

where ζ(n) is the Riemann zeta function. Note that
the vertex is presented in a form which is explicitly
gauge-invariant. As compared with the Born ver-
tex (15), it contains additional vector structure. The
coefficient ahead of this structure is infrared-finite, as
it should be.

The Reggeized gluon trajectory in the NLO was
found at arbitrary D in terms of integrals over trans-
verse momenta [19, 14]:

ω(t) =
g2Nct

2(2π)D−1

∫
dD−2q1

q2
1 (q1 − q)2

(23)

× (1 + f(q1,q)− 2f(q1,q1)) ,

where

f(q1,q) = − g2Ncq2

2(2π)D−1

∫
dD−2)q2

q2
2(q2 − q)2

(24)

×
[

ln
(

q2

(q1 − q2)2

)

− 2ψ(1 + 2ε)− ψ(1 − ε)

+ 2ψ(ε) + ψ(1) +
1

1 + 2ε

(
1
ε

+
1 + ε

2(3 + 2ε)

)]

+
4g2nfΓ(2−D/2)Γ2(D/2)

(4π)D/2Γ(D)

(
q2
)D/2−1

.

Let us stress that we systematically use the perturba-
tive expansion in terms of the bare coupling g, so that
everywhere before and below g is the bare coupling
constant related to the renormalized coupling gµ in
theMS scheme by the relation

g = gµµ
−ε
[

1 +
(

11
3
− 2

3
nf
Nc

)
ḡ2
µ

2ε

]

, (25)

ḡ2
µ =

g2
µNcΓ(1− ε)

(4π)2+ε
.

The integrals can be expressed in terms of elementary
functions only in the limit ε→ 0. They were calcu-
lated in this limit in [20]:

ω(t) = ω(1)(t)

{

1 +
ω(1)(t)

4
(
q2
)ε
[
11
3

(26)
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+
(
π2

3
− 67

9

)

ε+
(

404
27
− 2ζ(3)

)

ε2

− 2nf
3Nc

(

1− 5
3
ε+

28
9
ε2
)]}

,

where ω(1)(t) is the one-loop contribution (18). This
result was confirmed in [21]. Recently, it was obtained
quite independently by taking the high-energy limit of
the two-loop amplitudes for parton–parton scatter-
ing [22].

Note that, as well as in the LO, since amplitudes
of a variety of processes are expressed in terms of the
same trajectory and vertices, some of the processes
can be used to find the vertices and the trajectory and
others to test the multi-Regge form (9).

3.3. The Reggeon Vertices for Two-Particle
Production

The vertices and the trajectory presented above
admit description in the NLA production of particles
strongly ordered in the rapidity space, i.e., in the same
kinematics that contributes in the LLA. To obtain
production amplitudes in this kinematics in the NLA,
it is sufficient to take one of the vertices or the tra-
jectory in (9) in the NLO. But in the NLA, another
kinematics also becomes important: one of the pro-
duced jets can contain two particles. It is called quasi-
multi-Regge kinematics (QMRK).Wewill talk about
it as about production of jets, one of which is a two-
particle jet. Such a jet can be produced either in the
regions of fragmentation of initial particles or in the
central region, i.e., with rapidities far away from ra-
pidities of colliding particles. Production amplitudes
are given by (9), where the two-particle jet is in the
first case either Ã or B̃ and in the second one of
P̃i. Note that, because any two-particle jet in the
unitarity relations leads to loss of a large logarithm,
scales of energies in (9) are unimportant in the NLA;
moreover, the trajectory and the vertices are needed
there only in the LO. The trajectory and the RRG
vertex in this order are given in Section 3.1; the
Reggeon vertices for production of two-particle jets
are presented below.

Production in the fragmentation region. Let
us begin with vertices for production of two-particle
jets in the fragmentation region. To be definite, we
take the fragmentation region of the particle A. If
the particle A is a quark, only a quark–gluon jet can
be produced; but if it is a gluon, the jet can contain
either two gluons or a qq̄ pair. In all three cases, for
generality, we take pA as

pA = k = βp1 +
k2 +m2

A

βs
p2 + k⊥, (27)
03
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the momenta of produced particles as

k1 = β1p1 +
k2

1 +m2
1

β1s
p2 + k1⊥, (28)

k2 = β2p1 +
k2

1 +m2

β2s
p2 + k2⊥,

and use the notation

β1 = x1β, β2 = x2β, x1 + x2 = 1. (29)

In all three cases, we take polarization vectors of
participating gluons in the light-cone gauge (12).

In the case of quark–gluon production, let k1

and k2 be the momenta of final quark and gluon,
respectively, so that mA = m1 = m, m2 = 0. Then,
from [23], one can obtain

Γc{QG}Q = (tatc)i1i2 (A((x2k1 − x1k2)⊥) (30)

−A((k1 − x1k)⊥))− (tcta)i1i2
× (A((−k2 + x2k)⊥)−A((k1 − x1k)⊥)) ,

where i1 and i2 are the color indices of the outgoing
and incoming quarks, a is the color index of the pro-
duced gluonG, and the amplitudes A have the form

A(p⊥) = − g2

p2
⊥ − x2

2m
2
ū(k1)

�p2

βs
(31)

×
(

x1 �e∗⊥ �p⊥+ �p⊥ �e∗⊥ + �e∗⊥x2
2m

)

u(k).

Here, e is the polarization vector of the produced
gluon.

TheReggeon vertex for qq̄ production can be found
in [24]. It is written as

Γc{QQ̄}G = (tatc)i1i2 (A((k1 − x1k)⊥) (32)

−A((x2k1 − x1k2)⊥))− (tcta)i1i2
× (A((−k2 + x2k)⊥)−A((x2k1 − x1k2)⊥)) ,

where i1 and i2 are now the quark and antiquark
color indices, and a is the color index of the incoming
gluon G. The amplitudes A(p⊥) in the light-cone
gauge (12) are

A(p⊥) =
g2

p2
⊥ −m2

ū(k1)
�p2

βs
(33)

×
(

x1 �e⊥ �p⊥ − x2 �p⊥ �e⊥− �e⊥m
)

v(k2).

Here, e is the gluon polarization vector, and u(k1) and
v(k2) are the spin wave functions of the quark and
antiquark, respectively.

The vertex Γc{G1G2}G for two-gluon production
can be represented in the same form as (32), with
the difference that k1 and k2 are now the momenta
of the produced gluons and i1 and i2 are their color
PH
indices. Taking their polarization vectors e1 and e2 in
the light-cone gauge (12), we have from [24]

Γc{G1G2}G = (T aT c)i1i2 (A((k1 − x1k)⊥) (34)

−A((x2k1 − x1k2)⊥))− (T cT a)i1i2
× (A((−k2 + x2k)⊥)−A((x2k1 − x1k2)⊥)) ,

where the amplitudesA(p⊥) now have the form

A(p⊥) =
2g2

p2
⊥

[
x1x2 (e∗1⊥e

∗
2⊥) (e⊥p⊥) (35)

− x1 (e∗1⊥e⊥) (e∗2⊥p⊥)− x2 (e∗2⊥e⊥) (e∗1⊥p⊥)
]
.

Production in the central region. In the central
region, jets are produced by two Reggeons. Denoting
Reggeon momenta q1 and q2, we can set

q1 = βp1 + q1⊥, q2 = −αp2 + q2⊥, (36)

β = β1 + β2, α = α1 + α2,

where βi and αi are the Sudakov parameters for
the produced particles, i = 1, 2. The particles can be
either qq̄ or two gluons. For simplicity, we discuss
below the case of massless quarks, although the mas-
sive case can be considered quite analogously. Then,
for momenta of produced particles k1 and k2, we have

k = k1 + k2 = q1 − q2, ki = βip1 + αip2 + ki⊥,
(37)

sαiβi = −k2
i⊥ = k2

i , βi = xiβ, x1 + x2 = 1.

The Reggeon vertex for quark–antiquark pro-
duction in Reggeon–Reggeon collisions was found
in [25]. If k1 and k2 are the quark and antiquark
momenta, respectively, the vertex has the form

γQQ̄c1c2(q1, q2) =
1
2
g2ū(k1) (38)

×
[
tc1tc2a(q1; k1, k2)− tc2tc1a(q1; k2, k1)

]
v(k2),

where a(q1; k1, k2) and a(q1; k2, k1) can be written in
the following way [26]:

a(q1; k1, k2) =
4 �p1 �Q1 �p2

st̃1
− 1
k2
� Γ, (39)

a(q1; k2, k1) =
4 �p2 �Q2 �p1

st̃2
− 1
k2
� Γ,

with

t̃1 = (q1 − k1)2, t̃2 = (q1 − k2)2, (40)

Q1 = q1⊥ − k1⊥, Q2 = q1⊥ − k2⊥,

Γ = 2
[

(q1 + q2)⊥ − βp1

(

1− 2
q2

1

sαβ

)

+ αp2

(

1− 2
q2

2

sαβ

)]

.
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Using the notationD(p, q) and d(p, q),

D(p, q) = x1p
2
⊥ + x2q

2
⊥, (41)

d(p, q) = (x1p⊥ − x2q⊥)2,

for the denominators in the vertex and seeing that, for
arbitrary p⊥,

ū(k1) �p⊥v(k2) = ū(k1)
�p2

sβ
(42)

×
(
�k1⊥ �p⊥
x1

+
�p⊥ �k2⊥
x2

)

v(k2),

we can represent a(q1; k1, k2) and a(q1; k2, k1) as

a(q1; k1, k2) =
4
sβ
�p2b(q1; k1, k2), (43)

a(q1; k2, k1) =
4
sβ
�p2b(q1; k2, k1),

where

b(q1; k1, k2) =
�k1⊥(�k1⊥− �q1⊥)
D(k1 − q1, k1)

(44)

− x1x2

d(k2, k1)

(
q2
1⊥ �k1⊥ �k2⊥
D(k2, k1)

− �k1⊥ �q1⊥
x1

− �q1⊥ �k2⊥
x2

− q2
1⊥ + 2(q1⊥(k1 + k2)⊥)

)

− 1,

b(q1; k2, k1) =
(�k2⊥− �q1⊥) �k2⊥
D(k2, k2 − q1)

− x1x2

d(k2, k1)

(
q2
1⊥ �k1⊥ �k2⊥
D(k2, k1)

− �k1⊥ �q1⊥
x1

− �q1⊥ �k2⊥
x2

− q2
1⊥ + 2(q1⊥(k1 + k2)⊥)

)

− 1.

The vertex for two-gluon production was obtained
in [27] in a gauge-invariant form. In the light-cone
gauge (12) for both gluons, the vertex takes the
form [28]

γG1G2
ij (q1, q2) (45)

= 4g2(e∗1⊥)α(e∗2⊥)β
[(
T i1T i2

)
ij
bαβ(q1; k1, k2)

+
(
T i2T i1

)
ij
bβα(q1; k2, k1)

]
,

where e1,2 are the polarization vectors of the produced
gluons, i1,2 are their color indices, and

bαβ(q1; k1, k2) (46)

=
1
2
gαβ⊥

[
x1x2

d(k2, k1)

(

2q1⊥(x1k2 − x2k1)⊥

+ q2
1⊥

(

x2 −
x1k

2
2⊥

D(k2, k1)

))
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− x2

(

1− k2
1⊥

D(q1 − k1, k1)

)]

− x2k
α
1⊥q

β
1⊥ − x1q

α
1⊥(q1 − k1)

β
⊥

D(q1 − k1, k1)

− x1q
2
1⊥k

α
1⊥(q1 − k1)β

k2
1⊥D(q1 − k1, k1)

− x1q
α
1⊥(x1k2 − x2k1)

β
⊥ + x2q

β
1⊥(x1k2 − x2k1)α⊥

d(k2, k1)

+
x1q

2
1⊥k

α
1⊥k

β
2⊥

k2
1⊥D(k2, k1)

+
x1x2q

2
1⊥

d(k2, k1)D(k2, k1)

× ((x1k2 − x2k1)α⊥k
β
2⊥ + kα1⊥(x1k2 − x2k1)

β
⊥).

Here, we use the notation (41). Note that one can
come to (46) starting from the vertex in the gauge
e(k1)p1 = 0, e(k2)p2 = 0 [29]. Our bαβ(q1; k1, k2) can
be obtained from cαβ(k1, k2) defined in [29] by the
gauge transformation

bαβ(q1; k1, k2) =
(

gαγ⊥ − 2
kα1⊥k

γ
1⊥

k2
1⊥

)

cβγ (k1, k2).

(47)

4. BOOTSTRAP RELATIONS

To derive the bootstrap relation for elastic scatter-
ing amplitudes in the NLA, it is sufficient to note that,
with this accuracy,

1
−2πi

discs(lnn(−s) + lnn s) (48)

=
1
2

∂

∂ ln s
� [lnn(−s) + lnn s] ,

where discs denotes the s-channel discontinuity and
� denotes the real part. Therefore, we have

1
−2πis

discsAA
′B′

AB =
1
2

∂

∂ ln s
�
[
1
s
AA′B′
AB

]

. (49)

Using the Reggeized form (9) of the elastic amplitude
the on the right-hand side, we arrive at the bootstrap
relation

1
−2πis

discsAA
′B′

AB =
1
2
ω(t)�

[
1
s
AA′B′
AB

]

. (50)

Note that it is not an exact relation; we can not
demand it in approximations higher than the NLA.

The important point is that the left-hand side of
(50) can be calculated using the amplitudes (9) in
the unitarity condition. Since the amplitudes are ex-
pressed through the gluon Regge trajectory and the
vertices of Reggeon interactions, relation (50) im-
poses strong restrictions on the trajectory and the
vertices. The restrictions can be formulated as the
003
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bootstrap conditions for the color octet impact factors
and the BFKL kernel in theNLO [11]. Although these
conditions are very strict, their fulfillment cannot be
considered as proof of the Reggeization. Evidently,
there are bootstrap relations for the production am-
plitudes, and one can expect that restrictions which
they give are stronger. To derive these relations, we
need to use analytical properties of the production
amplitudes. Unfortunately, we do not know much
about them. But, fortunately, in the NLA, we do not
need much.

Let us consider the one-particle production am-
plitude A+B → A′ +B′ +G in the MRK. The dis-
continuities concerned with large logarithms are s1-,
s2-, and s-channel ones. Here, we face two compli-
cations in comparison with the elastic case. Firstly,
the discontinuities are not pure imaginary (e.g., the
discontinuity in s can have, in turn, discontinuities in
s1 and s2). The second is that, due to the relation

s1s2

s
= k2

1, (51)

the amplitude [without the common factor s, see (9)]
can depend on s1, s2, and s not only through powers
of (large) logarithms of these variables. These com-
plications can be overcome if only imaginary parts
of the discontinuities are considered and appropriate
combinations of them are taken [30].

Recall that we consider only negative signatures in
both ti channels, i.e., the part of the amplitude which
is antisymmetric with respect to any of the substitu-
tions s1 → −s1 and s2 → −s2. Due to relation (51),
which holds in all physical channels, this part is also
antisymmetric with respect to s→ −s.

An important observation is that a discontinuity of
a product fg is expressed through discontinuities of f
and g:

f+g+ − f−g− =
1
2
(f+ − f−)(g+ + g−)

+
1
2
(f+ + f−)(g+ − g−).

The second important observation is that the sum of
discontinuities of F (k2

1) on s1 and s is zero. From
these two observations, it follows that, for such a
sum, instead of analytical functions of k2

1, we can take
their real parts. The same is true for the sum of the
discontinuities on s2 and s and for the difference of
the discontinuities on s1 and s2.

Now, if the variables s1, s2, and s enter into the
amplitude not as the combination s1s2/s = k2

1, they
can enter only as Ŝ lnn1(−s1) lnn2(−s2) lnn3(±s),
with n1 + n2 + n3 = n, where n is less than or equal
to the order of perturbation theory and Ŝ is the
operator of symmetrization with respect to exchanges
PH
s1 ↔ −s1, s↔ −s and s2 ↔ −s2, s↔ −s. Note
that the terms containing products of ln(−si) ln(si),
where si can be s1, s2, or s, are forbidden, on the same
grounds as the terms containing ln(−s) ln(s) are
forbidden in the elastic amplitudes. Since in the NLO
we need to keep only the first two leading powers of
n, calculating the imaginary part of the discontinuity
in any one of the variables s1, s2, or s, we can take
only the real parts of logarithms of other variables. It
means that, with our accuracy,

�
[

1
−2πi

discsi

(
Ŝ lnn1(−s1) lnn2(−s2) lnn3(±s)

)
]

(52)

=
1
2

∂

∂ ln si
�
[
Ŝ lnn1(−s1) lnn2(−s2) lnn3(±s)

]
,

where si can be s1, s2, or s and the partial derivative is
taken at fixed sj �= si. Therefore, we have, for exam-
ple,

�
[

1
−2πis

(discs1 + discs)AA
′GB′

AB

]

(53)

=
1
2

(
∂

∂ ln s1
+

∂

∂ ln s

)

�
[
1
s
AA′GB′
AB

]

,

where in the right part the first derivative is taken at
fixed s2 and s and the second at fixed s1 and s2. Using
the fact that

(
∂

∂ ln s1
+

∂

∂ ln s

)

f(s1, s2, s) (54)

=
∂

∂ ln s1
f

(

s1, s2,
s1s2

k2
1

)

,

we arrive at

�
[

1
−2πis

(discs1 + discs)AA
′GB′

AB

]

(55)

=
1
2

∂

∂ ln s1
�
[
1
s
AA′GB′
AB

]

,

where in the right part the amplitude is considered
as a function of s1, s2, and k2

1. The requirement of
the Reggeized form (9) of the amplitude on the right-
hand side gives us the bootstrap relation

�
[

1
−2πi

(discs1 + discs)AA
′GB′

AB

]

(56)

=
1
2
ω(t1)�AA

′GB′
AB .

In the same way, we obtain

�
[

1
−2πi

(discs2 + discs)AA
′GB′

AB

]

(57)

=
1
2
ω(t2)�AA

′GB′
AB .
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The bootstrap relations for the amplitudes of mul-
tiparticle production in theMRK can be derived in the
same way. DenotingAA′B′+n

AB as the amplitude for the
process A+B → A′ +G1 + . . .+Gn +B′, we have
for any k from 0 to n+ 1

�
[

1
−2πis

(
n+1∑

l=k+1

discsk,l
−
k−1∑

l=0

discsl,k

)

AA′B′+n
AB

]

(58)

=
1
2

(
∂

∂ log sk,k+1
− ∂

∂ log sk−1,k

)

×�
[
1
s
AA′B′+n
AB (si,i+1)

]

,

where

si,j = (ki + kj)2, 0 ≤ i, j = 0 ≤ n+ 1, (59)

k0 = pA′ , k1 = pG1 , . . . , kn = pGn ,

kn+1 = pB′ .

Note that since s0,n+1 � s, discs0,n+1 in (58) includes
the s-channel discontinuity. On the right-hand side
of (58), the amplitude is expressed in terms of si,i+1,
which are considered as independent variables, and
transverse momenta.

If the amplitudes have the Reggeized form (9), we
obtain [30]

�
[

1
−2πi

(
n+1∑

l=k+1

discsk,l
−
k−1∑

l=0

discsl,k

)

AA′B′+n
AB

]

(60)

=
1
2

(ω(tk+1)− ω(tk))�AA
′B′+n

AB .

This equation gives a general form of the bootstrap
relations. Equations (50), (56), and (57) appear as
particular cases of (60) for n = 0 and n = 1.

Until now, we have considered production of single
particles in the MRK. As was already discussed, in
the NLA, a two-particle jet can be produced instead
of a solitary particle. Therefore, one can expect that,
to make the set (60) complete, we have to add the
bootstrap relations for the case of production of such
jets. But actually, (60) covers this case also, if we
allow one of the final particles with momentum km to
be replaced by a jet consisting of two particles with
momenta lm1 and lm2, lm1 + lm2 = km. Then discsi,m

means the sum of discontinuities in the channels
(ki + lm1)2, (ki + lm2)2, and (ki + km)2.

Evidently, (60) imposesmuch stronger restrictions
on the Reggeon vertices and trajectory than (50).
Their fulfillment proves the Reggeization hypothesis
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 11 20
in the NLA, since the energy dependence of the am-
plitudes can be calculated order by order in perturba-
tion theory using Eqs. (58). Indeed, the discontinu-
ities entering into the left-hand side of these equa-
tions in some order in the coupling constant g can
be expressed with the help of the unitarity relations
through the multiparticle amplitudes in lower orders
in g. Fulfillment of the bootstrap relations means that
the energy dependence has the Regge form.

5. BOOTSTRAP CONDITIONS
FOR THE REGGEON VERTICES

To obtain conditions imposed by the bootstrap
relations (60) on the gluon Regge trajectory and the
Reggeon vertices, we need to calculate the disconti-
nuities on the left-hand side of (60). It can be done
with the help of the unitarity condition, where the
amplitudes (9) must be used. The calculation is rather
complicated and intricate, and even representation
of the results is rather tedious. To simplify this, it
is convenient to introduce operators in the trans-
verse momentum representation. From the t-channel
point of view, we have to consider two interacting
Reggeized gluons with “coordinates” r and q− r
in the transverse momentum space, where q is the
total transverse momentum in the t channel. Let
us introduce r̂ as the coordinate operator of one of
the Reggeized gluons in the transverse momentum
space: r̂|ri〉 = ri|ri〉. The total transverse momentum
q is considered as the c number. With the normaliza-
tion 〈q1|q2〉 = q2

1(q1 − q)2δD−2(q1 − q2) , we have

〈Ψ2|Ψ1〉 = 〈Ψ2|r〉〈r|Ψ1〉 (61)

=
∫

dD−2r

r2(q− r)2
(Ψ2(r))

∗ Ψ1(r).

For the elastic amplitude AA′B′
AB , the calculation

of the discontinuity in the NLA was presented in
detail in [31]. The result is expressed in terms of the
impact factors ΦA′A and ΦB′B , which describe the
transitions A→ A′ and B → B′ caused by the inter-
action with Reggeized gluons, and the octet kernel
K of the nonforward BFKL equation. Both the kernel
and the impact factors are unambiguously defined in
terms of the gluon Regge trajectory and the Reggeon
vertices [11]. In the operator formalism, the s-channel
discontinuity is written as

discsAA
′B′

AB

−2πi
=

2sNc

(2π)D−1
〈A′A|

(
s

−t

)K̂
|BB′〉. (62)

The impact factors appear as the wave functions of
the t-channel states:

〈A′A|r〉 = ΦA′A(r,q− r), (63)

〈r|BB′〉 =
(
〈BB′|r〉

)∗ = ΦB′B(r− q,−r),
03
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where q = pA− pA′ = pB′ − pB ; and the kernel as the
operator K̂ with the matrix elements

〈r1|K̂|r2〉 = K(r1, r2;q). (64)

The last relation in (63) follows from the definition
of the impact factors given below [see Eqs. (72) and
(73)]. Note that we have changed here normalization
of the impact factors with respect to [11]. Recall that
a color octet is always assumed in the t channel, so
that the impact factors have a color index. We omit
this index here and will omit it (as well as color indices
of Reggeon vertices) everywhere if it does not lead to
uncertainties.

The kernel is given by the sum of the “virtual” part,
determined by the gluon trajectory, and the “real”
part Kr, related to the real particle production in
Reggeon–Reggeon collisions:

K (q1,q2;q) =
[
ω
(
−q2

1

)
+ ω

(
−q′

1
2
)]

(65)

× q2
1q

′
1
2δD−2 (q1 − q2) +Kr (q1,q2;q) ,

where q′i = q − qi. The real part of the kernel can be
represented as [11]

Kr(q1,q2;q) = KΛ
r (q1,q2;q) (66)

− 1
2

∫
dD−2r

r2(q− r)2
K(B)
r (q1, r;q)

×K(B)
r (r,q2;q) ln

(
s2
Λ

(q1 − r)2(q2 − r)2

)

,

where the “nonsubtracted” kernel KΛ
r is

KΛ
r (q1,q2;q) (67)

=
fc1c′1cfc2c′2c

Nc(N2
c − 1)

∑

J

∫
γJc1c2 (q1, q2)

×
(
γJc′1c′2

(
−q′1,−q′2

))∗ dφJ
2(2π)D−1

.

In (67), the sum is over all contributing jets J and
their quantum numbers; dφJ is the phase-space ele-
ment for a jet J consisting of particles with momenta
li, with total momentum kJ :

dφJ =
dk2

J

2π
θ(sΛ − k2

J)(2π)D (68)

× δD(kJ −
∑

i

li)
∏

i

dD−1li

(2π)D−1 2εi
.

The intermediate parameter sΛ in (66) must be taken
tending to infinity. The second term on the right-hand
side of (66) appears only in the NLO and serves for
subtraction of the contribution of the large k2

J region,
in order to avoid double counting of this region. In
the LO, only one-gluon production contributes, so
PH
that k2
J = 0, equation (67) does not depend on sΛ and

gives the kernel in the leading (Born) order

K(B)
r (q1,q2;q) (69)

=
g2Nc

2(2π)D−1

(
q2

1q
′
2
2 + q2

2q
′
1
2

(q1 − q2)2
− q2

)

.

In the NLO, the jets J in (67) can also contain a two-
gluon or a quark–antiquark pair. At large k2

J , only
the contribution of the two-gluon jet survives, so that
the dependence on sΛ in (66) disappears due to the
factorization property of the two-gluon production
vertex [11].

The remarkable properties of the kernel are

Kr(0,q2;q) = Kr(q1, 0;q) = Kr(q,q2;q) (70)

= Kr(q1,q;q) = 0

and

Kr(q1,q2;q) = Kr(q′
1,q

′
2;q) = Kr(−q2,−q1;−q).

(71)

The properties (70) mean that the kernel goes to zero
at zero transverse momenta of the Reggeons and
appears as a consequence of the gauge invariance;
Eq. (71) follows from symmetries of the right-hand
sides of Eqs. (65) and (67).

Representation of the impact factors is similar
to (66):

Φi
A′A(q1,q′

1) = Φi(Λ)
A′A(q1,q′

1) (72)

− 1
2

∫
dD−2r

r2r′2
Φi(B)
A′A(r, r′)K(B)

r (r,q1;q)

× ln
(

s2
Λ

(q1 − r)2q2

)

,

where r′ = q − r, q = pA − pA′ ,

Φi(Λ)
A′A(q1,q′

1) = i
f icc

′

Nc
(73)

×
∑

Ã

∫
Γc
ÃA

Γc
′

A′Ã

(
q2

q2
1

)ω(q21)/2( q2

q′2
1

)ω(q′1
2)/2

dφÃ.

Here, we have written explicitly the color index i

of the impact factor; the sum is over jets Ã in the
fragmentation region of the particle A, q1 = pA − pÃ,
q′1 = pÃ − pA′ , q2

1 � q2
1⊥, q

′
1
2 � q′21⊥. We have used

the property of the vertices Γc
AÃ

= (Γc
AÃ

)∗, so that the
definitions (72), (73) differ only by the factor i/

√
Nc

from that given in [11]. It is worthwhile to say that the
impact factors are supposed to be symmetric with re-
spect to the substitution q1 ↔ q′

1. For the quark [23]
and gluon [24] impact factors, this property is fulfilled
automatically. It is not so in more complicated cases;
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therefore, in the general case, symmetrization with
respect to the substitutionq1 ↔ q′

1 is assumed on the
right-hand side of Eq. (73).

We have to warn that, although sometimes to
present formulas in a more convenient way we do not
perform explicitly an expansion in the coupling g2,
actually the expansion is assumed and only the NLA
accuracy is warranted.

Comparing (50) and (62), we obtain

2sNc

(2π)D−1
〈A′A|

(
s

−t

)K̂
|BB′〉 (74)

=
ω(t)
2

2s
t

ΓA′A

(
s

−t

)ω(t)

ΓB′B .

If this equation were exact, then it should be [32]

|AA′〉i =
g

2
ΓiA′A|Rω〉, (K̂ − ω(t))|Rω〉 = 0, (75)

g2Nc

2(2π)D−1
〈Rω|Rω〉 =

ω(t)
t

,

with a universal (process-independent) eigenfunc-
tion |Rω〉 of the kernel with the eigenvalue ω(t).
These equations are called the strong bootstrap con-
ditions [33, 34]. In the LO, they were known long ago.
Fulfillment of the first of them in this order is easily
seen from Eqs. (73) and (14). Moreover, it follows
from these equations that

〈r|R(B)
ω 〉 = 1. (76)

After that, fulfillment of the second and third equa-
tions follows immediately from Eqs. (65), (69), and
(18).

An important point is that, in the NLO, the condi-
tions (75) cannot be derived from (50). Performing re-
spondent to theNLA expansions and using fulfillment
of (75) in the LO, one can see that, to satisfy (74), it
is sufficient [11] to require

〈R(B)
ω |(K̂ − ω(t))|R(B)

ω 〉 = 0, (77)
2gNct

(2π)D−1
〈R(B)

ω |AA′〉i = (2ω(1)(t) + ω(2)(t))ΓiA′A.

Fulfillment of the first of these conditions was shown
in [35] and [36] for the quark and gluon contributions
to the kernel, respectively. The quark contribution to
Kr was calculated in [35]. It has a very simple form:

KQr (q1,q2;q) =
g4nfNc

(2π)D−1
(78)

× Γ(1− ε)
ε(4π)2+ε

Γ2(2 + ε)
Γ(4 + 2ε)

{
(k2)ε

k2
(q2

1q
′
2
2 + q2

2q
′
1
2)

+ q2
(
(q2)ε − (q2

1)
ε − (q2

2)
ε
)
− q2

1q
′
2
2 − q2

2q
′
1
2

k2
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×
(
(q2

1)
ε − (q2

2)
ε
)

+ (q1 ↔ q′
1,q2 ↔ q′

2)
}

,

where k = q1 − q2 = q′
2 − q′

1. Showing that it satis-
fies (77) is a simple task. The properties (70), (71) for
this contribution are evident.

The gluon piece of Kr includes contributions of
one-gluon and two-gluon production. The one-gluon
contribution is determined by the RRG vertex, which
is known now for arbitrary D [18]. The two-gluon
contribution was found in [37] also for arbitrary D.
Unfortunately, the gluon piece of Kr has a rather
complicated form for arbitrary D, so that we present
it here only in the limit ε→ 0 [37]:

KGr (q1,q2;q) =
g2Nc

2(2π)D−1
(79)

×
{(

q2
1q

′
2
2 + q′

1
2q2

2

k2
− q2

)

×
(

1
2

+
g2NcΓ(1− ε)(k2)ε

(4π)2+ε

(

− 11
6ε

+
67
18
− ζ(2)

+ ε

(

− 202
27

+ 7ζ(3) +
11
6
ζ(2)

)))

+
g2NcΓ(1− ε)

(4π)2+ε

[

q2

(
11
6

ln
(

q2
1q

2
2

q2k2

)

+
1
4

ln
(

q2
1

q2

)

ln
(

q′
1
2

q2

)

+
1
4

ln
(

q2
2

q2

)

ln
(

q′
2
2

q2

))

+
1
4

ln2

(
q2

1

q2
2

)

− q2
1q

′
2
2 + q2

2q
′
1
2

2k2
ln2

(
q2

1

q2
2

)

+
q2

1q
′
2
2 − q2

2q
′
1
2

k2
ln
(

q2
1

q2
2

)

×
(

11
6
− 1

4
ln
(

q2
1q

2
2

k4

))

+
1
2

[

q2(k2 − q2
1 − q2

2)

+ 2q2
1q

2
2 − q2

1q
′
2
2 − q2

2q
′
1
2 +

q2
1q

′
2
2 − q2

2q
′
1
2

k2

× (q2
1 − q2

2)
] 1∫

0

dx

(q1(1− x) + q2x)2

× ln
(

q2
1(1− x) + q2

2x

k2x(1− x)

)]}

+
g2Nc

2(2π)D−1

× {qi ←→ q′
i}.

Note that the one-gluon and two-gluon contributions
separately have singularities∼1/ε2. Due to their can-
cellation, the leading singularity of the kernel is 1/ε.
It turns again into ∼ 1/ε2 after subsequent integra-
tions of the kernel because of the singular behavior
of the kernel at k2 = 0. The additional singularity
arises from the region of small k2, where ε| lnk2| ∼ 1.
03
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Therefore, we have not expanded the term
(
k2
)ε in

ε. The terms ∼ε are taken into account in the coef-
ficient of the expression divergent at k2 = 0 in order
to conserve all contributions nonvanishing after the
integrations in the limit ε→ 0.

The symmetries (71) of the kernel are easily seen.
The first of them is explicit in (79). To notice the sec-
ond, it is sufficient to change x↔ (1− x) in the inte-
gral in (79). In order to check that the kernel (79) goes
to zero at zero transverse momenta of the Reggeons,
one has to know the behavior of the integral in (79). A
representation suitable for this purpose is

1∫

0

dx

(q1(1− x) + q2x)2
ln
(

q2
1(1− x) + q2

2x

k2x(1− x)

)

(80)

=

∞∫

0

dz

z + k2

1
√

(q2
1 + q2

2 + z)2 − 4q2
1q

2
2

× ln

(
q2

1 + q2
2 + z +

√
(q2

1 + q2
2 + z)2 − 4q2

1q
2
2

q2
1 + q2

2 + z −
√

(q2
1 + q2

2 + z)2 − 4q2
1q

2
2

)

.

From this representation, one can see that singulari-
ties of the integral at zero transverse momenta of the
Reggeons are not more than logarithmic. After this,
no problems remain to verify (70).

In [23] and [24], the second condition (77) was
checked and proved to be satisfied for quarks and
gluons, respectively. The strong bootstrap condi-
tions (75) were also verified, although they are not
necessary for fulfillment of (74), and were proved to
be satisfied. For the impact factors it was done in [32],
where the eigenfunction Rω in the NLO was found:

〈r|Rω〉 = 1 +
ω(1)(t)

2

[

K̃1 +
((

r2

q2

)ε
(81)

+
(

r′2

q2

)ε
− 1
){

1
2ε

+ ψ(1 + 2ε)− ψ(1 + ε)

+
11 + 7ε

2(1 + 2ε)(3 + 2ε)
− nf
Nc

(1 + ε)
(1 + 2ε)(3 + 2ε)

}

− 1
2ε

+ ψ(1) + ψ(1 + ε)− ψ(1− ε)− ψ(1 + 2ε)
]

,

where r′ = q− r, t = −q2,

K̃1 =
(4π)2+εΓ(1 + 2ε)ε

(
q2
)−ε

4Γ(1− ε)Γ2(1 + ε)
(82)

×
∫

dD−2k

(2π)D−1
ln
(

q2

k2

)
q2

(k− r)2(k + r′)2
.

The result of integration in (82), in the form of an
expansion in ε, can be found in [23].
PH
Check of the strong bootstrap condition (75) for
the quark contribution to the kernel was performed
in [35, 34, 38]. For the gluon contribution, verification
requires much more efforts, but recently it was also
done [39].

Equation (74) also remains valid in the case when
A′ represents a two-particle jet in the region of frag-
mentation of the particle A. It leads to the bootstrap
conditions for theReggeon verticesΓi{P1P2}A describ-
ing productions of two-particle jets. Recall that, in
this case, the scale of energy in (74) is not important
and the trajectory and the vertices have to be taken in
the LO. Taking into account fulfillment of (75) in the
LO, the conditions can be written as

gNc

(2π)D−1
〈{P1P2}A|R(B)

ω 〉i =
ω(t)
t

Γi{P1P2}A, (83)

where the impact factor 〈{P1P2}A|R(B)
ω 〉 is given

by (73) in the LOwith the substitutionA′ → {P1P2}.
It gives

igf cab

(2π)D−1

∫
dD−2r

r2r′2
∑

Ã

Γa
ÃA

Γb{P1P2}Ã
(84)

=
ω(t)
t

Γc{P1P2}A,

where r⊥ = (pA− pÃ)⊥, r′⊥ = q⊥− r⊥, q = pA− kJ ,
and kJ is the jet momentum. In [28], it is shown that
this equation is fulfilled.

Fulfillment of the strong bootstrap conditions (75)
would be a miracle if there were not reasons for them.
But it occurs [39] that they must be satisfied for real-
ization of the bootstrap relations for inelastic ampli-
tudes. Let us consider the amplitude A+B → A′ +
G+B′ for production of the gluonGwithmomentum
k = βp1 + [k2/(βs)]p2 + k⊥, polarization e, and color
index a in the MRK. The unitarity condition in the s2

channel gives [30]

discs2AA
′GB′

AB

−2πi
=

2sNc

(2π)D−1
ΓA′A (85)

× 1
t1

(
s1√
q2

1k2

)ω(t1)

〈GR|
(

s2√
k2q2

2

)K̂

|BB′〉,

where q1 = pA− pA′ , q2 = pB′ − pB, and q1− q2 = k;
we can set q1 = βp1 + q1⊥ and q2 = −[k2/(βs)]p2 +
q2⊥; 〈GR| is the t2-channel state of the produced
gluon G and the t1-channel Reggeized gluon R. The
wave function of this state (it is the generalization
of the impact factor for the case when the on-mass-
shell gluon is replaced by the Reggeized gluon) is
YSICS OF ATOMIC NUCLEI Vol. 66 No. 11 2003
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expressed in terms of the Reggeon vertices. In the
LO,

〈GR|r⊥〉(B)
ij = i

f jcc
′

Nc

∑

G′

γG
′

ic (q1, r)Γc
′
GG′ , (86)

where i and j are the color indices in the t1 and t2
channel, respectively, and the sum is over discrete
quantum numbers of the gluon G′ with momentum
k′ = βp1 + [(q1− r)2/(βs)]p2 + q1⊥− r⊥. Again, the
symmetrization with respect to r↔ r′ is assumed, as
well as for the impact factors; the difference is that
now two Reggeized gluons are in the t2 channel, so
that r′ = q2 − r. Using (15) and (13), one obtains in
the light-cone gauge (12)

〈GR|r⊥〉(B)
ij = −g

2

2
T aije

∗
⊥ (87)

×
(

2q1⊥ − q2
1⊥

(
k⊥ + r⊥

(k⊥ + r⊥)2
+

k⊥ + r′⊥
(k⊥ + r′⊥)2

))

.

With the NLO accuracy,

〈GR|r⊥〉ij = i
f jcc

′

Nc

∑

J

∫
γJic(q1, r)Γ

c′
GJ (88)

×
(

k2
⊥

(q1 − r)2⊥

)(ω(q21)+ω(r2⊥))/2

×
(

k2
⊥

(q2 − r)2⊥

)ω((q2−r)2⊥)/2

dφJ

− 1
2

∫
dD−2r1⊥

r2
1⊥(q2 − r1)2⊥

K(B)
r (r1⊥, r⊥; q2⊥)

× 〈GR|r1⊥〉(B)
ij ln

(
s2
Λ

k2
⊥(r − r1)2⊥

)

.

The symmetrization with respect to r↔ q2 − r is
assumed.

The s-channel discontinuity can be represented
as [30]

discsAA
′GB′

AB

−2πi
=

2sNc

(2π)D−1
(89)

× 〈A′A|
(

s1√
q2

1k2

)K̂

Ĝ
(

s2√
k2q2

2

)K̂

|BB′〉,

where Ĝ is the operator of the gluon production with
change of total two-Reggeon state momentum from
q1 to q2. In the LO,

〈r1⊥|Ĝ(q1, q2)|r2⊥〉(B)
ij = 2

f iaa
′
f jbb

′

Nc
δabr

2
1⊥ (90)

× γ
G(B)
a′b′ (q1 − r1⊥, q2 − r2⊥)δD−2(r1⊥ − r2⊥).
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These matrix elements are assumed to be sym-
metrized with respect to r1⊥ ↔ (q1− r1)⊥ and r2⊥ ↔
(q2 − r2)⊥. In the NLO,

〈r1⊥|Ĝ(q1, q2)|r2⊥〉ij =
f iaa

′
f jbb

′

Nc
(91)

×




 2γGa′b′(q1 − r1⊥, q2 − r2⊥)r2

1⊥δab

× δD−2(r1⊥ − r2⊥) +

1−k2/sΛ∫

k′2/sΛ

dx′

2x′(1− x′)

×
∑

G′

γ
{G(k)G′(k′)}
ab (r1, r2)

×
γ
G′(−k′)
a′b′ (q1 − r1, q2 − r2)

(2π)D−1
+

1−k2/sΛ∫

k̃2/sΛ

dx′

2x′(1− x′)

×
∑

G̃

γ
G̃(k̃)
ab (r̃1, r̃2)
(2π)D−1

× γ
{G(k)G̃(−k̃)}
a′b′ (q1 − r̃1, q2 − r̃2)






−
∫

dD−2r⊥〈r⊥|Ĝ(q1, q2)|r2⊥〉(B)
ij

2r2
⊥(r − q1)2⊥

×K(B)
r (r1⊥, r⊥; q1⊥)ln

(
s2
Λ

(r− r1)2k2

)

−
∫

dD−2r⊥〈r1⊥|Ĝ(q1, q2)|r⊥〉(B)
ij

2r2
⊥(r − q2)2⊥

×K(B)
r (r⊥, r2⊥; q2⊥)ln

(
s2
Λ

(r− r2)2k2

)

,

where k′ = β′p1 − [k′2⊥/(β
′s)]p2 + k′⊥ and k̃ = β′p1 −

[k̃2
⊥/(β

′s)]p2 + k̃⊥ are the momenta of the interme-
diate gluon G′ and G̃, k′⊥ = r1⊥ − r2⊥ − k⊥, k̃⊥ =
r̃1⊥ − r̃2⊥, x′ = β′/(β + β′),

r1 = (β + β′)p1 + r1⊥, (92)

r2 =
(
k′2⊥
β′s

+
k2
⊥
βs

)

p2 + r2⊥,

r̃1 = β′p1 + r1⊥, r̃2 =
k̃2
⊥

β′s
p2 + r2⊥.

With account of (85) and (89), the bootstrap rela-
03
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tion (57) takes the form

2sNc

(2π)D−1



〈A′A|
(

s1√
q2

1k2

)K̂

Ĝ (93)

+ ΓA′A
1
t1

(
s1√
q2

1k2

)ω(t1)

〈GR|





(
s2√
k2q2

2

)K̂

× |BB′〉 = ω(t2)
2
· 2sΓiA′A

1
t1

(
s1√
q2

1k2

)ω(t1)

× γGij (q1, q2)

(
s2√
k2q2

2

)ω(t2)
1
t2

ΓjB′B .

Relation (93) can be satisfied only if Eqs. (75) are ful-
filled. Therefore, implementation of the strong boot-
strap conditions is an indispensable term of the gluon
Reggeization.

Besides (75), relation (93) imposes a restriction on
the state 〈GR| and the operator Ĝ. In the strong form,
it is written as

gt1
2
〈Rω|Ĝij + 〈GR|ij = γGij (q1, q2)

g

2
〈Rω|. (94)

Actually, (75) requires a weaker form of this con-
dition, not for vectors of states, but only for their
projections on |Rω〉, similarly to (77). But if we go
further [40] and consider production of two gluons in
the MRK, then we come to the strong form (94).

The bootstrap relation for production in the central
region of a jet J containing a couple of particles
P1 and P2 (it can be two gluons or a qq̄ pair) with
momenta

ki = βip1 +
m2
i − k2

i⊥
βis

p2 + ki⊥, i = 1, 2, (95)

k1 + k2 = k, β1 + β2 = β,

is obtained by the replacement G→ J from (93) with
arbitrary energy scales and the Reggeon trajectory
and vertices taken in the LO. In this order, one
has [28]

〈{P1P2}R|r⊥〉c1c2 (96)

= i
f ijc2

Nc

[
∑

G

γGc1i(q1, q1 − k′)Γj{P1P2}G

+
∑

P̃1

γP̃1P2
c1i

(q1, q1 − k′1 − k2)Γ
j

P1P̃1

+
∑

P̃2

γP1P̃2
c1i

(q1, q1 − k1 − k′2)Γ
j

P2P̃2

]

,

PH
where

k′ = βp1 −
(q1 − r)2⊥

βs
p2 + (q1 − r)⊥, (97)

k′1 = β1p1 +
m2

1 − (q1 − k2 − r)2⊥
β1s

p2

+ (q1 − k2 − r)⊥,

k′2 = β2p1 +
m2

2 − (q1 − k1 − r)2⊥
β2s

p2

+ (q1 − k1 − r)⊥

are the momenta of the intermediate particles G, P̃1,
and P̃2, respectively;

〈Rω|Ĵ {P1P2}|r⊥〉c1c2 = 2
f ijc1f i

′j′c2

Nc
(98)

×
[

1
(q1 − r)2⊥

γP1P2
jj′ (q1 − r⊥, q2 − r⊥)δii′

+
1

q̃2
1⊥(q1 − q̃1)2⊥

γP2
ii′ (q1 − q̃1, q1 − q̃1 − k2)

× γP1
jj′(q̃1, q̃1 − k1)

]

,

where q̃1 = β1p1 + (k1 + q2 − r)⊥. The last term here
appears only in the case of two-gluon production.
As usual, symmetrization with respect to r⊥ ↔ (q2 −
r)⊥ is assumed. The bootstrap condition

g

2
t1〈Rω|Ĵ {P1P2}ij + 〈{P1P2}R|ij (99)

= γ
{P1P2}
ij (q1, q2)

g

2
〈Rω|

is satisfied [28]. Note that, actually, the bootstrap
condition which was checked in [28] is weaker: it is
given by projection of (99) on |Rω〉. But from the proof
given in [28], it is easy to see that the condition is
fulfilled in the strong form (99).

Analogously, although for the impact factors
〈{P1P2}A| only condition (83) was proven in [28],
it is easy to see from the proof given there that the
stronger condition

g

2
〈{P1P2}A|i = Γi{P1P2}A〈Rω| (100)

is fulfilled in the LO.

Fulfillment of the bootstrap conditions (75), (100),
(99), and (94) ensures fulfillment of the bootstrap
relations for all MRK amplitudes, which is quite non-
trivial and crucial for proof of the gluon Reggeization.
Only the last of these conditions has not been checked
yet.
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6. SUMMARY

Multiperipheral kinematics plays an outstanding
role in QCD. It is extremely important since it gives
a dominant contribution to the total cross sections
of high-energy QCD processes. A remarkable phe-
nomenon is that QCD amplitudes in this kinematics
have a simple multi-Regge form and are expressed
in terms of the gluon Regge trajectory and a few
vertices of Reggeon interactions. The trajectory and
the vertices are known now in the next-to-leading
order.1)

The multi-Regge form was proven in the lead-
ing logarithmic approximation, but in the next-to-
leading approximation, it still remains a hypothesis,
which is not yet proven, although it stands a num-
ber of tests. The tests are related to its compatibil-
ity with the s-channel unitarity. The requirement of
the compatibility leads to an infinite set of bootstrap
relations for the multiparticle production amplitudes.
It turns out that all these relations can be fulfilled if
the vertices and trajectory submit to several bootstrap
conditions. This circumstance is extremely nontrivial
since an infinite set of demands is satisfied by a few
functions.

The bootstrap conditions are extraordinary signif-
icant, since they ensure fulfillment of the bootstrap
relations, which, being satisfied, guarantee the multi-
Regge form of QCD amplitudes in the MRK. There-
fore, fulfillment of all bootstrap conditions opens a
way for the proof of the gluon Reggeization in the
NLA. Now, all these conditions are derived and ful-
fillment of only one of them is not yet proven.
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1)In this paper, we have considered Reggeon vertices and im-
pact factors only for quarks and gluons. For phenomenolog-
ical applications, the most interesting are impact factors of
a highly virtual photon (see, for instance, [41] and references
therein). However, this is a separate large topic which cannot
be covered here.
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Abstract—Some short history of three-body methods originated from the famous Skornyakov–Ter-
Martirosyan equation is given, including the latest development of Faddeev formalism and Efimov states.
The 3q system is shown to require an alternative, which is provided by the hyperspherical method
(K harmonics), highly successful for baryons. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The Skornyakov and Ter-Martirosyan paper [1],
which appeared in 1956, marked the beginning of
a new era in few-body physics, when a somewhat
neglected part of nuclear physics was promoted to
the successful domain of theoretical physics. As a
result, the few-body science has become a field ac-
cumulating fast-developing methods: Faddeev gen-
eralized the Skornyakov–Ter-Martirosyan equation
(STME) [2] and has given a rigorous mathematical
foundation for the theory of three particles [3], and
many numerical methods have been introduced; for
a review and references, see [4]. As an immediate
consequence of the STME, a new effect was found
in 1970, called the Efimov effect [5], which has been
studied until now with respect to possible experimen-
tal consequences [6].

The STME and Faddeev technique is most useful
when particles are nearly on-shell, so that, e.g., three-
body results do not depend much on the potential
shape, but rather are described by the on-shell two-
body t matrix as it is for the quartet n–d scattering.
The bound states of tritium and 3He provide another
example where the interaction at small distances (far
off-shell) is important. To treat such systems, an al-
ternative method, the hyperspherical formalism (HF)
(or K-harmonics method), was developed and the
system of the Schrödinger-like equations was writ-
ten [7]. The development of the method was marked

∗This article was submitted by the author in English.
**e-mail: simonov@heron.itep.ru
1063-7788/03/6611-2033$24.00 c©
with many successful applications in both nuclear
and atomic physics (see, e.g., [8, 9]). Recently, it was
understood that the HF is probably the best suitable
for systems with confinement, such as three quarks,
where the interaction is a three-body one and confin-
ing, so that the t-matrix formalism cannot be applied.
The accuracy of the HF as applied to the 3q system
was found to be remarkably good [10, 11], allowing
for a 1% bias in the baryon mass [12].

This paper is intended to demonstrate the physics
of the three-body system and a qualitative analysis of
two alternative approaches discussed above.

2. THE STME AND FADDEEV APPROACH

In the system of three equal-mass particles with
arbitrary numeration, one can introduce the total ki-
netic energy E and the momentum k in the pair (2, 3)
and the relative momentum p of particle 1, namely,

p =
k2 + k3

3
− 2

3
k1, k =

k2 − k3

2
.

The symmetric function of the ground state Ψsymm
is expressed through partial w.f.:

Ψsymm = ψ(k23,p1) + ψ(k31,p2) + ψ(k12,p3) (1)

with the normalization condition
∫
|Ψsymm|2dkdp = 1. (2)
2003 MAIK “Nauka/Interperiodica”
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It is convenient to extract the free three-body Green’s
function, introducing

ψ(k,p) =
χ(k,p)

k2 + 3p2/4−mE
, (3)
PH
and the three-body rescattering equation, equivalent

to summing the “bridge”Feynman diagrams (nonrel-

ativistic), is [2]
χ(k,p) = χ0(k,p) − 2
∫

m
t(k, |p/2 + p′|, E − 3p2/(4m))χ(|p + p′/2|, p′)dp′

p′2 + p · p′ + p2 −mE
. (4)
Here, t(k, k′, ε) is the two-body tmatrix, representing
the “knot” in a bridge diagram, and

χ0(k,p) = −2m (5)

× t(k,p/2 + p0, E − 3p2/(4m))ϕα(p + p0/2)
p2 + p2

0 + p · p0 −mE
,

where ϕα is the two-body bound state, while p0 is the
momentum of incident particle.

Near the bound-state pole, the t matrix can be
written as

t(k, k′, ε) =
g(k, ε)g(k′ , ε)

(2π)2m(α + i
√

2mε)
+O(r0), (6)

where α = 1/a, a being the scattering length; r0 is
the effective radius; and g(k, ε) is the form factor;
g(0, 0) = 1 and g(k, ε) decreases fast when k ∼ 1/r0
and ε ∼ 1/(mr2

0).
Let us assume now that the range of integration

in (4) is small, p, p′ � 1/r0. Then, one can insert (6)
into (4) with g ∼= 1, and one gets for the three-body
bound-state w.f.
(

α−
√

3
4
p2 − E

)

χ(k,p) + 8π
∫

dp′

(2π)3
(7)

× χ(|p + p′/2|, p′)
p′2 + p · p′ + p2 −mE

= 0.

This is the STME for a three-body bound state.
The off-shell generalization of the STME is the
Faddeev Eq. (4). As was correctly stated in [1], the
bound-state Eq. (7) cannot be used for tritium and
3He, since it has no lower bound for energy due to the
Thomas theorem [13]. This can be easily understood
rewriting (7) in the form χ =

∫
Kχdp′ and calcu-

lating the norm of K, ||K|| =
∫
dpdp′(K(p,p′))2,

which diverges logarithmically at large momenta,
implying that there are formally infinitely many bound
states. The physical situation corresponds to the
cutoff form factors g(k, ε) present in K, which lead
to the finite result for the norm ||K||.

A specific situation occurs when the two-body
scattering length a is large, a	 r0. Then, the num-
ber of bound states lying between −1/(ma2) and
−1/(mr2
0) is approximately equal to

N ∼ 1
π

ln
|a|
r0
, (8)

and when |a| is increasing, |a| → ∞, there appears an
accumulation point of bound states (the Efimov ef-
fect [5]). For three nucleons, however, N < 1 and the
effect is absent, but for three 4He atoms, a = 104 Å,
r0 ∼= 7 Å, and the effect is theoretically possible [6].

Since the Efimov states are almost on-shell, it is
convenient to calculate them using the three-body
unitarity and theN/Dmethod [14]. Numerical results
obtained (see Fig. 7 of [14]) support the estimate (8)
and yield the explicit position of levels near the energy
threshold.

To conclude with the bound-state Eq. (7), it is
interesting to study the properties of the bound wave
function, e.g., the size of the bound system. Here,
one encounters an important difference between two-
and three-body systems [15]. Namely, the two-body
loosely bound system with a small binding energy ε,
mεr2

0 � 1, has a radius of the order of r2 = 1/
√
mε,

r2 	 r0. For the three-body system, the situation
may be twofold. In the case where a bound two-body
system exists as a subsystem and the three-body
bound state is close to the 2 + 1 threshold, one has a
quasi-two-body situation, whereas, when two-body
bound subsystems are absent, the size of the three-
body bound state is always r0, however small the
binding energy is [16]. Modern calculations of three-
body bound states in the framework of the STME
and its development—Faddeev equations—are done
for 3H and 3He using systems of about 30 equa-
tions and exploiting realistic potentials describing
NN scattering and bound states in a large energy
interval (0–350 MeV) (see, e.g., the review in [17]).
Unfortunately, the results of calculations yield signif-
icant underbinding of around 10–15%, maybe due
to three-body forces, which are not known exactly;
hence, the final results are model dependent (see [18]
for an example and references).

We go now to dN scattering, which was also a
topic of the primary paper [1]. The corresponding
equations look like

(
√

3k2/4−mE − αt)
k2 − k2

0

a3/2(k,k0) (9)
YSICS OF ATOMIC NUCLEI Vol. 66 No. 11 2003
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=
−1

k2
0 + k2 + k · k0 −mE

−
∫ 4πa3/2(k′,k0)

(k2 + k′2 + k · k′ −mE)(k2 − k2
0)

dk′

(2π)3
,

(
√

3k2/4−mE − αt)
k2 − k2

0

a1/2(k,k0)

=
1/2

k2
0 + k2 + k · k0 −mE

+
∫ 4π{(a1/2/2)(k′,k0) + (3b1/2/2)(k′,k0)}

(k2 + k′2 + k · k′ −mE)(k2 − k2
0)

× dk′

(2π)3
,

(
√

3k2/4−mE − αt)
k2 − k2

0

b1/2(k,k0)

=
3/2

k2
0 + k2 + k · k0 −mE

+
∫ 4π{(3a1/2/2)(k′,k0) + (b1/2/2)(k′,k0)}

(k2 + k′2 + k · k′ −mE)(k2 − k2
0)

× dk′

(2π)3
.

Here, α−1
t is the triplet scattering length of NN ;

a3/2 is the Nd quartet (S = 3/2) scattering ampli-
tude, and b1/2 and a1/2 are doublet (S = 1/2) am-
plitudes corresponding to the singlet and triplet last
NN interaction, respectively. It is seen that the ker-
nel for S = 3/2 is mostly negative and allows for a
faster convergence, in contrast to the doublet (S =
1/2) case. The numerical result for quartet scattering
length a3/2 = 5.1 fm obtained in [1] is not far from the
experimental value [19], whereas doublet scattering
requires a full off-shell calculation [4].

3. HYPERSPHERICAL METHOD

Heretofore, the basic dynamics was assumed to
be quasi-two-body (however, the Faddeev technique
allows for the full off-shell description), in the sense
that the typical distance R between an interacting
pair and a third spectator particle is large, R	 r0.
However, this situation is an exception, and not the
rule, which can be understood from the representation
of the w.f. through the three-body Green’s function
(ξ,η are Jacobi coordinates)

ψ(ξ,η) =
∫

G(ξ − ξ′,η − η′)V3(ξ′,η′) (10)

× ψ(ξ′,η′)dξ′dη′.
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Here, G(ξ,η) = K2(κρ)/ρ2, κ =
√

2m|E|, ρ =√
ξ2 + η2, and V3 includes all interaction terms. The

asymptotics of ψ is given by G and is equal to

ψ(ξ,η) ∼ 1/ρ4, ρ→∞. (11)

Hence, the three-body kinematics tends to concen-
trate all three-body w.f. inside the interaction region
of all three particles, which generates a small radius
of w.f. even for barely bound three-body states. (This
is also true for N-body systems N ≥ 3.) In this sit-
uation, any pair angular momentum lij contributes
to the total energy of the system an amount ∆E ∼
lij(lij + 1)/(2mr2

0), which, for the three-nucleon sys-
tem with r0 ∼ 1 fm and for lij = 1, is of the order of
∆E ∼ 50 MeV, while, for the 3q system with m =
mq ∼ 0.3 GeV and r0 ∼ 0.5 fm, ∆Eq ∼ 600 MeV.

Therefore, it is advantageous to have a wave func-
tion with the minimal number of nonzero pair angular
momenta for the given total momentum L. The basis
for that is provided by hyperspherical functions (K
harmonics) due to the following properties:

(i) The solution of the condition l̂ijΨ = 0, i �= j =
1, . . . , N , is given by the representation ΨK=0 =
Ψ0(ρ),

ρ2 =
1
N

N∑

i<j=1

(ri − rj)2, (12)

where all particles are assumed to have the same
mass.

(ii) The function ΨK(r1, . . . , rN ) = uK(Ω)χK(ρ),
where uK(Ω) = PK(r1, . . . , rN )/ρK andPK is a har-
monic polynomial, contains excited angular momenta
in Jacobi coordinates l1, . . . , lN−1, the arithmetic sum
of which is equal toK.

Therefore the basis ΨK corresponds to the min-
imal excitation of angular momenta and is advanta-
geous for compact N-body systems. Since, as was
explained, the majority of such systems are compact,
the hyperspherical expansion approach (HEA) [7] for-
mulated as a system of coupled integral or differential
equations has proved to be very successful both for
few-nucleon systems [7, 8], where short-range corre-
lations can be taken into account in the hyperspher-
ical correlated basis (last reference in [18]), and in
atomic physics [9]. It was understood afterwards [10,
11] that the HEA works even better for 3q systems,
since interaction there contains no repulsive core and
confinement excludes two-body channels.

Therefore, already the lowest approximation with
K = 0 yields a 1% accuracy for the baryon en-
ergy [10–12].

In the general case, the baryon state is character-
ized by the grand angular momentum K and radial
03
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Baryon masses (in GeV) averaged over hyperfine spin splitting for σ = 0.15 GeV2, αs = 0.4,mi = 0

State MKn + 〈∆Hself〉 〈∆HC〉 M tot
Kn M tot(exp)

K = 0, n = 0 1.36 −0.274 1.08 1.08

K = 0, n = 1 2.19 −0.274 1.91 ?

K = 0, n = 2 2.9 −0.274 2.62 ?

K = L = 1, n = 0 1.85 −0.217 1.63 1.6

K = 2, n = 0 2.23 −0.186 2.04 ?
quantum number n = 0, 1, 2, which counts the num-
ber of zeros of the w.f. in the ρ space. A typical calcu-
lation was done in [12], and the result depends on only
two input parameters, string tension σ = 0.15 GeV2

and αs = 0.4, while current masses of light quarks
have been set to zero. The spin-averaged masses
(MN +M∆)/2 have been computed to eliminate the
effect of hyperfine splitting.

To illustrate the simplicity of the method, let us
quote the equation for the dominant hyperspherical
harmonics ψK(ρ) = χK(ρ)/

√
ρ,

− 1
2µ

d2ψK
dρ2

+WKK(ρ)ψK(ρ) = EKψK(ρ), (13)

where WKK(ρ) is the sum of kinetic (angular) and
potential energies, and µ is a constituent quark mass
to be found below dynamically. The nonrelativistic
appearance of this equation nevertheless contains the
full relativistic dynamics, since µ is the einbein field
needed to get rid of square roots in the relativistic
quark action.

The explicit expression forWKK is

WKK(ρ) =
d

2µρ2
+ VKK(ρ), (14)

d = (K + 3/2)(K + 5/2),

while VKK(ρ) = (u+
K(Ω)V̂ uK(Ω)) is the total poten-

tial V̂ , including two-body and three-body parts, av-
eraged over hyperspherical harmonics, which is done
analytically. For example, for the Y -type 3q confining
potential, one has VKK(ρ) = 1.58σρ. It is remarkable
that, to find the eigenvalues EK with 1% accuracy,
one does not need to solve Eq. (13), but instead can
approximate WKK(ρ) near the minimum point ρ0 by
the oscillator well:

WKK(ρ) = WKK(ρ0) +
1
2
(ρ− ρ0)2W ′′

KK(ρ0),

(15)

dWKK

dρ

∣
∣
∣
∣
ρ=ρ0

= 0.
PH
The resulting eigenvalues are found immediately:

EKn ∼= WKK(ρ0) + ω(n+ 1/2), (16)

ω2 = W ′′
KK/µ.

The total baryon mass is calculated as MKn(µ) =
3µ/2 +EKn(µ), and finally µ = µ0 is to be found from
the stationary point condition

∂MKn(µ)
∂µ

∣
∣
µ=µ0

= 0.

This gives the constituent quark mass µ0 =
0.957

√
σ = 0.37 GeV, and, finally, the baryon mass

isMKn(µ0). The masses (Mn +M∆)/2 computed in
this way are shown in table, taken from [12], where
also definitions of all terms are given.

As is seen from table, the calculated spin-averaged
mass (MN +M∆)/2 agrees well with the experimen-
tal average; the same is also true for lowest nega-
tive parity states with K = L = 1, which should be
compared with the 1/2−, 3/2− states of N and ∆,
respectively.

We also notice that breathing modes (n > 0) have
excitation energy around 0.8 GeV, while orbital ex-
citations K = L = 1 have an energy interval around
0.5 GeV.

One important advantage of the HEA is that, in
the lowest approximation, there is no need for nu-
merical computations—as demonstrated above, the
result for the mass can be obtained analytically with
1% accuracy, as can be checked by comparison with
exact calculations (see [10–12]).

In conclusion, the on-shell approach of the STME
(and its Faddeev generalization) and the HEA are
two alternatives that describe opposite physical sit-
uations. Their coexistence has played a very impor-
tant stimulating role for the development of few-body
physics in the last four decades.
YSICS OF ATOMIC NUCLEI Vol. 66 No. 11 2003
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Abstract—Starting in the 1960s, an active group of physicists under the guidance of Prof. K.A. Ter-
Martirosyan began creating the theory of high-energy processes in QCD. From the beginning, the key
element of this theory is the notion of Regge trajectories and, in particular, of the Pomeron trajectory,
which have been introduced phenomenologically. In this talk, I review the problem of the spectrum and
Regge trajectories as it can be derived from nonperturbative QCD dynamics. c© 2003 MAIK “Nau-
ka/Interperiodica”.
1. INTRODUCTION

The problem of the QCD spectrum is the central
issue in nonperturbative QCD and is intimately con-
nected to problems of confinement and mass gen-
eration in QCD. These latter issues make QCD so
much different from QED and unusual; in addition,
an explicit form of nonperturbative interaction (NPI)
was not known for a long time. Recently, with the
introduction of the field correlator method (FCM) [1,
2], the situation has changed favorably, since NPI is
defined there in a gauge-invariant way and the simple
field correlators, which are sufficient for all dynamical
calculations, are known from lattice data [3, 4] and
analytic results [5].

In view of all this, one can put the problem of the
QCD spectrum in the most general framework, as
the many-channel problem of bound states of quarks,
antiquarks, and valence gluons with all possible mix-
ings, the states being stable in the limit Nc →∞,
and acquiring decay widths when Nc = 3. It is the
purpose of this talk to describe the QCD spectrum in
the Hamiltonian language, using the FCM and the
Nc →∞ limit. In addition, the FCM provides an-
other convenient limit—the gluon correlation length
Tg tends to zero, while the string tension σ is kept
constant. As a result, the universal Hamiltonian be-
comes local and has a transparent structure for any
number of constituents. As will be seen, it contains
only two fixed input parameters, σ and αs (or ΛQCD),
in addition to current quark masses and is able to
predict any meson, baryon, hybrid, and glueball states
and their mixings (for a review, see [6]).

∗This article was submitted by the author in English.
**e-mail: simonov@heron.itep.ru
1063-7788/03/6611-2038$24.00 c©
In doing so, one solves the following puzzles:
(i) constituent mass of quarks and gluons; (ii) meson
Regge trajectories with a correct slope and intercept;
(iii) the explicit notion of the valence gluon; (iv) hybrid
spectra and Regge trajectories.
Remarkably, all calculated spectra are in very good

agreement with lattice data and experiment, which
gives an additional justification for the FCM. How-
ever, the immediate consequences of the whole ap-
proach are far more reaching. They include a new for-
mulation of perturbation theory, the so-called back-
ground perturbation theory (BPTh) [7] with αs satu-
rating at small Euclidean momenta instead of diverg-
ing near the Landau ghost pole. The whole structure
of QCD becomes interconnected with the spectrum
via the quark–hadron duality, and hybrids and glue-
balls play a very important role in scattering and
decay.

2. HAMILTONIAN

There are two possible approaches to incorporat-
ing nonperturbative field correlators in the quark–
antiquark (or 3q) dynamics. The first has to deal
with the effective nonlocal quark Lagrangian con-
taining field correlators [8]. From this, one obtains
first-order Dirac-type integro-differential equations
for heavy–light mesons [8, 9], light mesons [10], and
baryons [10, 11]. These equations contain the effect of
chiral symmetry breaking [8], which is directly con-
nected to confinement.
The second approach is based on the effective

Hamiltonian for any gauge-invariant quark–gluon
system. In the limit Tg → 0, this Hamiltonian is sim-
ple and local, and in most cases where spin interac-
tion can be considered as a perturbation, one obtains
2003 MAIK “Nauka/Interperiodica”
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results for the spectra in an analytic form, which is
transparent.
For this reason, we choose below the second,

Hamiltonian, approach [12, 13]. We start with the
exact Fock–Feynman–Schwinger representation for
the qq̄ Green’s function (for a review, see [14]), taking
for simplicity the nonzero flavor case

G
(x,y)
qq̄ =

∞∫

0

ds1

∞∫

0

ds2(Dz)xy(Dz̄)xyr−K1−K2 (1)

× 〈tr(Γin(m1 − D̂1)Wσ(C)Γout(m2 − D̂2))〉A,
where

Ki =

s1∫

0

dτi

(

mi +
1
4
(ż(i)
µ )2

)

,

si, τi,mi, D̂i are proper times, current mass, and co-
variant derivative for particle i; Γin,out = 1, γ5, . . . are
meson vertices; and Wσ(C) is the Wilson loop with
spin insertions, taken along the contour C formed by
paths (Dz)xy and (Dz̄)xy ,

Wσ(C) = PFPA exp
(
ig

∫

C

Aµdzµ

)
(2)

× exp
(
g

s1∫

0

σ(1)
µν Fµνdτ1 − g

s2∫

0

σ(2)
µν Fµνdτ2

)
.

Here, PA and PF are ordering operators for the first
and second exponent, respectively. The last factor
in (2) defines the spin interaction of quark and anti-
quark. The average 〈Wσ〉A in (1) is taken over gluonic
vacuum with standard action and can be computed
exactly through field correlators 〈F (1)...F (n)〉A ;
keeping only the lowest one, 〈F (1)F (2)〉, which
yields according to lattice calculation [15] accuracy
around 1% [16], one obtains

〈Wσ(C)〉A (3)

� exp

(

− 1
2

[ ∫

Smin

dsµν(1)
∫

Smin

dsλσ(2)

+
2∑

i,j=1

si∫

0

σ(i)
µνdτi

sj∫

0

σ
(j)
λσdτj

]

〈Fµν(1)Fλσ(2)〉
)

.

Here, Smin is the surface of minimal area for the con-
tour C. The Gaussian correlator 〈Fµν(1)Fλσ(2)〉 ≡
Dµν,λσ(1, 2) can be rewritten identically in terms of
two scalar functions D(x) and D1(x) [2], which have
been computed on the lattice [3] to have the exponen-
tial form D(x)D1(x) ∼ exp(−|x|/Tg) with the gluon
correlation length Tg ≈ 0.2 fm.
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Thus, the first term in the exponent (3) yields
the area law 〈Wσ〉 ∼= exp(−σSmin), with the string
tension σ [2]

σ =
1
2

∫
D(x)d2x. (4)

We concentrate now on this confining term in (3)
and quote the result for the spin-dependent term at
the end of this section.
The important point to be discussed now is the

character of dynamics that one gets from (3), (4).
To this end, one should compare two characteristic
lengths (times) Tg and Tq [17], where Tq is the typical
period of quark motion, e.g., the classical period of
motion along the Coulomb orbit (for heavy quarks)
or along the orbit in the linear potential (for light
quarks). In all cases, one gets Tq � 1 fm and, hence,
Tq  Tg. Thus, one has a local dynamics, however,
relativistic for light quarks, but in any case the ex-
citation of gluonic vacuum degrees of freedom can
be neglected in the first approximation, so that the
dynamics is of the potential type.

As the next step, one introduces the einbein vari-
ables µi and ν, the first one to transform the proper

times si, τi into the actual (Euclidean) times ti ≡ z
(i)
4 .

One has [13]

2µi(ti) =
dti
dτi

,

∞∫

0

dsi(D4z(i))xy (5)

= const ·
∫

Dµi(ti)(D3z(i))xy.

The variable ν enters in the Gaussian representation
of the Nambu–Goto form for Smin and its stationary
value ν(0) has the physical meaning of the energy
density along the string. In the case of several strings,
as in the baryon case or the hybrid case, each piece of
string has its own parameter ν(i).

To get rid of the path integration in (1), one can go
over to the effective Hamiltonian using the identity

Gqq̄(x, y) = 〈x| exp(−HT )|y〉, (6)

where T is the evolution parameter corresponding
to the hypersurface chosen for the Hamiltonian: it is
the hyperplane z4 = const in the c.m. case [13] and
z+ = const in the light-cone case [18, 19].

The final form of the c.m. Hamiltonian (apart from
the spin and perturbative terms to be discussed later)
for the qq̄ case is [13, 20]

H0 =
2∑

i=1

(
m2
i + p2

i

2µi
+

µi
2

)

(7)
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+
L̂2/r2

2[µ1(1− ζ)2 + µ2ζ2 +
1∫

0

dβ(β − ζ)2ν(β)]

+
σ2r2

2

1∫

0

dβ

ν(β)
+

1∫

0

ν(β)
2

dβ.

Here, L̂2 ≡ L(l + 1), where L is the angular momen-
tum;

ζ =



µ1 +

1∫

0

βνdβ




/


µ1 + µ2 +

1∫

0

βνdβ



 ;

and µi and ν(β) are to be found from the stationary
point of the Hamiltonian

∂H0

∂µi

∣
∣
∣
∣
∣
µi=µ

(0)
i

= 0,
∂H0

∂ν

∣
∣
∣
∣
∣
ν=ν(0)

= 0. (8)

Note that H0 contains as input only m1, m2, and
σ, where mi are current masses defined at the scale
1 GeV. The further analysis is simplified by the ob-
servation that, for L = 0, one finds ν(0) = σr from (8)

and µ(0)
i =

√
m2 + p2; hence, H0 becomes the usual

relativistic quark model (RQM) Hamiltonian [21]

H0(L = 0) =
2∑

i=1

√
m2
i + p2 + σr. (9)

For large L, however, one can neglect µi as compared
to ν and one gets

H2
0 ≈ 2πσ

√
L(L + 1), (10)

ν(0)(β) =

√
8σL
π

1
√

1− 4(β − 1/2)2
.

From (9), (10), one can see that ν(0)(β) is indeed
the energy density along the string and µ(0) is the
c.m. energy of the quark, which plays the role of
constituent quark mass, as will be seen below.
To proceed, one can use two approximations.

First, replace H0 in (8) by its eigenvalue M0, which
is accurate within 5% [22]. Second, approximate the
L-dependent term in (7), introducing the correction
∆Hstr, namely,

H0 ≈ HR + ∆Hstr, (11)

HR =
2∑

i=1

(
p2 + m2

i

2µi
+

µi
2

)

+ σr,

and the mass correction due to ∆Hstr for the equal
mass case is [13]

∆str(L) = 〈∆Hstr〉 = −16
3
σ2L(L + 1)

M3
0

, (12)
PH
where M0 is the eigenvalue of HR; a more accurate
approximation is given by [23]

∆str(L) = −2σL(L + 1)〈1/r〉
M2

0

. (13)

But H0 is not the whole story; one should take into
account three additional terms: spin terms in (3)
which produce two types of contributions: self-energy
correction [24]

Hself =
2∑

i=1

∆m2
q(i)

2µi
, ∆m2

q(i) = −4σ
π
η(mi), (14)

η(0) ∼= 1–0.9,

where η(mi) is a calculable function of mi [24], and
spin-dependent interaction between quark and anti-
quark Hspin [6, 25], which is entirely described by the
field correlators D(x),D1(x), including also the one-
gluon exchange part present inD1(x).
Finally, one should take into account gluon ex-

change contributions [7, 11], which can be divided
into the Coulomb part HCoul = −(4/3)(αs(r)/r) and
Hrad including spacelike gluon exchanges and per-
turbative self-energy corrections (we shall system-
atically omit these corrections since they are small
for light quarks to be discussed below). In addition,
there are gluon contributions that are nondiagonal in
number of gluons ng and quarks (until now, only the
sector ng = 0 was considered) and, therefore, mixing
meson states with hybrids and glueballs [26]. We call
these terms Hmix and refer the reader to [26] and the
references cited there for more discussion. Assem-
bling all terms together, one has the following total
Hamiltonian in the limit of largeNc and small Tg:

H = H0 + Hself + Hspin + HCoul + Hrad + Hmix.
(15)

We start withH0 = HR +�Hstr. The eigenvalues
M0 ofHR can be given with 1% accuracy by [27]

M2
0 ≈ 8σL + 4πσ(n + 3/4), (16)

where n is the radial quantum number, n =
0, 1, 2, . . .. Remarkably, M0 ≈ 4µ0, and for L = n =
0, one has µ0(0, 0) = 0.35 GeV for σ = 0.18 GeV2,
and µ0 increases fast with growing n and L. This fact
explains that spin interactions become unimportant
beyond L = 0, 1, 2 since they are proportional to
dτ1dτ2 ∼ (1/4µ1µ2)dt1dt2 {see (3) and [25]}. Thus,
constituent mass (which is actually “constituent
energy”) µ0 is “running.” The validity of µ0 as a
socially accepted “constituent mass” is confirmed
by its numerical value given above, by the spin
splittings of light [28] and heavy–light mesons [29],
and by baryon magnetic moments expressed directly
through µ0 and being in agreement with experimental
values [30].
YSICS OF ATOMIC NUCLEI Vol. 66 No. 11 2003
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3. REGGE TRAJECTORIES

The next topic is Regge trajectories in QCD. As
is clear from (10), one has the correct asymptotic
Regge slope coinciding with the string picture, while
for small L, L ≤ 4, the approximation (11), (12)
holds [23] with almost the same slope. The Regge in-
tercept depends strongly on the term Hself [24], since
(16) yields too large a value forM0; e.g.,M0(0, 0) ≈
1.4 GeV is almost twice the ρ mass. However, the
self-energy term (14) defined unambiguously through
σ [24] has a negative sign and amagnitude that brings
the mass back near the experimental value. Thus, one
can understand the origin of the large negative phe-
nomenological constant, which is usually introduced
in the RQM, but it is also rewarding that it is not
actually constant, but depends on n, L via µ0(n,L),
so that the linear Regge behavior is preserved.
To compare with the experiment and disentangle

the contribution of spin interaction, we shall consider
the center-of-gravity (c.o.g.) masses for each meson
multiplet as in [23]. Then, the masses of all orbital
excitations (n = 0) can be nicely described by the
linear Regge trajectory, which we call the Regge L
trajectory with experimental parameters [23]

M̄2(L) = (1.23 ± 0.02)L + 0.37 ± 0.02 (GeV2)
(17)

or

L = 0.81M̄2(L)− 0.30. (18)

This is different from the leading ρ trajectory αJ(M2)

J = α′
JM

2(J) + 0.48, α′
J = 0.88 GeV2, (19)

αJ(0) = 0.48,

since its parameters depend on spin interactions.
Now, using (11)–(16), one obtains [23]

L = 0.80M̄2(L)− 0.34, (20)

which agrees with experiment (18) within 10%, the
accuracy being in accordance with the estimates
of the neglected terms from (15), namely, Hrad and
Hmix, while HCoul is accounted for. In this way, one
solves the problem of Regge trajectories for orbital
excitations in QCD, thus supporting the foundations
of the wide and fruitful activity undertaken by Prof.
K.A. Ter-Martirosyan and his group to describe the
high-energy scattering and production processes in
the framework of the Regge theory. This important
contribution was reviewed in [31].
We now come to the gluon-containing systems,

hybrids and glueballs. Referring the reader to the
original papers [32–34], one can recapitulate the
main results for the spectrum. In both cases, the total
Hamiltonian has the same form as in (15); however,
the contribution of corrections differs.
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 11 20
For glueballs, it was argued in [34] that H0 (11)
has the same form, but with mi = 0 and σ → σadj =
(9/4)σ, while Hself = 0 due to gauge invariance and
Hcoul is small due to strong cancellation between
tree graphs and loop corrections [35]. Thus, glueball
masses are expressed through only σ = 0.18 GeV2

(fixed by meson Regge trajectories) for the center
of gravity and, in addition, through αs for the spin
splittings. One can see in Table 1 of the first paper
in [34] the theoretical c.o.g. mass values computed
in [34] in comparison with lattice data. The agreement
is striking, especially if one takes into account that,
in theoretical calculations, there are no parameters at
all, σ was fixed beforehand at the same value as in the
lattice, and αs was neglected altogether for the reason
stated above.

We now come to the delicate and very important
topic of glueball trajectories and especially of the
Pomeron trajectory. Since the glueball Hamiltonian
is basically the same as for mesons, one expects that
the asymptotic slope of all Regge trajectories would
be

α′
G(M2 →∞) ≈ 1

2πσadj
=

4
9
α′
M , (21)

where the subscripts G and M refer to glueball and
meson trajectories, respectively. One expects that the
Pomeron trajectory passes through the states 2++

(2.29 GeV for σ = 0.18 GeV2) and 4++ (around
3.2 GeV), in which case the Pomeron intercept
appears too low, αP(0) < 1. A possible way out
was suggested in [34], where the intersection of the
two lowest meson trajectories with the Pomeron
trajectory was introduced yielding the correct inter-
cept αP(0) = 1.1–1.2 for reasonable parameters of
trajectory interactions. However, this topic is far from
clear, and the BFKL perturbative results for αP(0)
seem to be unstable with respect to inclusion of higher
orders and/or nonperturbative effects. It seems that
the Pomeron trajectory depends on both perturbative
and nonperturbative contributions and their possible
interference, and the problem was never considered in
that fullness.

Now, we come to the final topic of this talk—
hybrids and their role in hadron dynamics. We start
with the hybrid Hamiltonian and spectrum. This topic
in the framework of FCM was considered in [32, 33].
The HamiltonianH0 for a hybrid looks like [6]

H
(hyb)
0 =

m2
1

2µ1
+

m2
2

2µ2
+

µ1 + µ2 + µg
2

(22)

+
p2
ξ + p2

η

2µ
+ σ

2∑

i=1

|rg − ri|+ ∆Hstr,
03
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π

ρ

1 2 3 4 5 n

The spin-averaged meson mass squared M̄2(L, nr) vs. n = nr + 1. Theoretically calculatedmasses [39] are depicted by small
black dots and are connected by straight lines. Other points are experimental candidates. The lines from bottom up correspond
to L = 0, 1, 2, 3, respectively.
where µg is the einbein variable for the gluon; rg is
its coordinate; and pξ,pη are Jacobi momenta of the
three-body system. Hself is the same as for a meson,
whileHspin and HCoul have different structure [33].
The main feature of the present approach based

on the BPTh is that the valence gluon in the hybrid
is situated at some point on the string connecting
the quark and antiquark, and the gluon creates a
kink on the string, so that two pieces of the string
move independently (however, connected at the point
of the gluon). This differs strongly from the flux-tube
model, where the hybrid is associated with the string
excitation as a whole.
The difference between the two approaches is es-

pecially pronounced in the case of the hybrid with
static quarks separated by the distance R [33], where
the flux-tube model predicts for large R the terms
En(R) ∼ πn/R, while in the FCM there is another
branch corresponding to the longitudinal d.o.f. of the
gluon E(R) ∼ const/R1/3 [6, 33], and the lattice re-
sults certainly prefer the latter and contradict the flux-
PH
tube asymptotics. Also, at intermediate interquark
distances R, the spectrum of the FCM approach is
in much better agreement with lattice data than any
other model (see [33] for details and discussion).
Results for light and heavy exotic 1−+ hybrids are

also given in [6] and are in agreement with lattice
calculations. Typically, an additional gluon in the ex-
otic (L = 1) state “weights” 1.2–1.5 GeV for light to
heavy quarks, while a nonexotic gluon (L = 0) brings
about 1 GeV to the mass of the total qq̄g system.
It is understandable now that hybrids play a very

special role in QCD; namely, they describe the exci-
tation of the film (the string world sheet), which is be-
tween q and q̄ and, in particular, covers the gluon and
quark loops appearing in the αs renormalization. The
“additional gluon” mass Mg ≈ 1 GeV cited above
enters as a screening mass in the one-loop running
αs (see [7–36] for details and derivations),

αs(Q) = 4π

[

b0 ln

(
Q2 + M2

g

Λ2
QCD

)]−1

, (23)
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SPECTRUM AND REGGE TRAJECTORIES IN QCD 2043
and this form (in r space) is in a perfect agreement
with a recent calculation of αs on the lattice [37].
Thus, one can say that the perturbative QCD in

the IR region is defined by the hybrid physics. A sim-
ilar conclusion can be drawn with respect to the DIS
diagrams at small to moderate Q2, Q2 � 1 GeV2,
where familiar ladder diagrams with gluon exchanges
are replaced by (multi)hybrid Green’s functions, and
to the hadron–hadron scattering, where, e.g., a se-
quence of BFKL ladders is replaced by multihybrid
diagrams. Progress in this direction is highly desir-
able.
All discussion above refers to the leading large-

Nc limit, which has a remarkable accuracy, as was
recently demonstrated on the lattice [38] and by com-
parison of calculated and experimental masses in [23,
29, 33, 34]. We now turn to the 1/Nc effects, which, as
shown in [39], strongly modify the masses of radially
excited mesons. Typically, these mesons have radii
larger than 1.5 fm, and, as was argued in [39], at
the interquark distances R ≥ 1.4 fm, there appear
sea-quark holes in the confining film connecting q
and q̄ trajectories. It was assumed in [39] that the
film with virtual holes establishes a quasi-stationary
state, which can be called the “predecay state.” It is
clear that the effective string tension decreases due
to holes and the confining potential is partly screened
at R ≥ 1.4 fm. The masses of radially excited mesons
for L = 0, 1, 2, 3 and nr = 0, 1, 2, 3, 4 have been cal-
culated in [39] with the help of this potential and are
shown in figure. One can see a remarkable agreement
of theoretical masses (black dots) with experimental
candidates. Another remarkable feature is the almost
exact linearity of trajectories M̄2(L, nr) vs. nr. The
effect of mass decrease due to the sea-quark holes is
significant (for high nr, it is around 0.5 GeV).
Concluding the paper, I would like to stress the

simplicity of the method (FCM), which solves at
least four important problems in the QCD spectrum:
(i) Regge slope; (ii) Regge intercept; (iii) the problem
of constituent masses; (iv) problem of radial Regge
trajectories.
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Abstract—Three strong decay mechanisms are derived systematically from the QCD Lagrangian using
the field correlator method. The resulting operators contain no arbitrary parameters and depend only
on characteristics of field correlators known from lattice and analytic calculations. When compared to
existing phenomenological models, parameters are in good agreement with the corresponding fitted values.
c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

An enormous amount of experimental data on
strong decays of mesons and baryons is partly used
by theoreticians for comparison in the framework of
the 3P0 model [1] and its flux-tube modifications [2].
The analysis done in [3] confirmed the general validity
of the model, whereas in [4] results of other forms of
decay operators have also been investigated in meson
decays, and in [5] in baryon decays. On the whole, the
phenomenological picture seems to be satisfactory for
the 3P0 model with some exclusions discussed in [3]
and [6]. The recent extensive study of strong decays of
strange quarkonia based on the 3P0 model was done
in [7].

The key element that is missing in this situation
is the systematic derivation of all terms in the decay
Hamiltonian from the basic principles, i.e., from the
QCD Lagrangian. It is the purpose of the present
paper to make some progress in this direction using
the field correlator method (FCM) [8] and background
perturbation theory [9] to treat nonperturbative (NP)
QCD contributions together with perturbative ones.

In doing so, one should take into account the
special role of pions in the hadron decays and, there-
fore, accurately perform the chiral bosonization of the
effective quark Lagrangian obtained from the basic
QCD Lagrangian. This will give the first term in
the decay Hamiltonian, and the corresponding decay
mechanism will be referred to as a chiral decay mech-
anism (CDM). At the same time, one should take into
account the string degrees of freedom in the original
meson and the possibility of string breaking due to
the qq̄-pair creation. The corresponding term in the

∗This article was submitted by the author in English.
**e-mail: simonov@heron.itep.ru
1063-7788/03/6611-2045$24.00 c©
decay Hamiltonian will be derived below without free
parameters and this second mechanism will be called
the string-breaking mechanism (SBM). As will be
seen, the dominant term of the SBM has a structure
that can be compared quantitatively with the phe-
nomenological fits of the 3P0 model in [3, 4].

Finally, the QCD perturbation theory in the per-
turbative background developed in [9] allows one to
derive two additional terms in the decay Hamilto-
nian: one for the OZI-allowed decays, which has the
Lorentz form of the 3S1 type but proceeds through
the intermediate hybrid state, and another for the
OZI-forbidden decays, which proceeds through the
intermediate glueball state and only at very small
distances reduces to the two-gluon or three-gluon
qq̄-pair creation. We shall call these mechanisms the
hybrid mediated decay (HMD) and the glueball me-
diated decay (GMD), respectively.

2. THE CHIRAL BOSONIZATION
AND THE CHIRAL DECAY MECHANISM

One starts with theQCDLagrangian in Euclidean
spacetime and averages over the gluonic fields writ-
ing the general form of the gauge-invariant correla-
tor (known from lattice or analytic calculations—see
references in [8]) which contains the confining part
D(x), namely,

g2

Nc

〈
tr
(
Fµν(x)Φ(x, y)Fλσ(y)Φ(y, x)

)〉
(1)

= (δµλδνσ − δµσδνλ)D(x− y) +O(D1),

whereO(D1) contains a relatively small nonconfining
part D1(x) and Φ(x, y) = P exp(ig

∫ x
y Aµdzµ) is the

parallel transporter.
2003 MAIK “Nauka/Interperiodica”



2046 SIMONOV
Assuming also that all higher correlators can
be neglected (as is supported by lattice data—
see [10]), one obtains the effective quark Lagrangian
(EQL) [11]

L
(2)
EQL =

1
2Nc

∫
d4x

∫
d4yfψ+

aα(x) (2)

× fψbβ(x)gψ+
bγ(y)

gψaε(y)

×
[
γ

(4)
αβ γ

(4)
γε JE(x, y) + γ

(i)
αβγ

(i)
γε JM (x, y)

]
,

where the kernel J(x, y) is expressed through D(x);
fψaα is the quark operator with flavor index f , color
a, and spinor α; γ(µ)

αβ is the Euclidean Dirac matrix,

JE(M)(x, y) =

x∫

Y

dui

y∫

Y

dviK
(E(M))
xy (u, v)D(u − v),

(3)

i = 1, 2, 3;

and D(x) is connected to the string tension σ in the
usual way, σ = 1

2

∫
d2xD(x). Here, the string kernel

JE(M) contains color electric (magnetic) fields and
the former is dominant at large distances, and there-
fore the magnetic part will be omitted for simplicity.
At this point, one should specify the choice of in-
tegration contours, the kernel K, and the point Y
in (3). As is known, the full result of the integration
over gluon fields does not depend on the gauge and
shape of the contours (when all correlators are taken
into account); however, to write the contribution of
bilocal correlator (1) in the gauge-invariant form, one
has to use one of the variants of the contour gauge,

e.g., [12], whereK(E)
xy ≡ 1, and to choose the contour

corresponding to the minimal string that minimizes
the contribution of higher correlators. In this section,
we consider the following geometry: the quarks at the
points x, y in (2) are at one end of the string (they
are dynamically close [11]), while the point Y is at
the position of the heavy antiquark, as was introduced
in [11]. In the next section, we shall consider a more
general geometry where two points Y in (3) are dif-
ferent and integration over dui and dvi runs over two
different pieces of the broken string. For the results of
the present section, the exact definition of the point Y
is inessential since the pion is emitted from the end of
the string under consideration, while another end of
string is a spectator.

As the next step, the bosonization of the La-
grangian (2) can be done in the usual way, however,
with nonlocal mesonic fields with the result [13]

∆L = i

∫
d4xd4yψ+(x)M̂ (x, y)ψ(y), (4)
PH
where the kernel M̂(x, y) can be written as a nonlin-
ear form for pseudoscalar (PS) meson fields φA:

M̂(x, y) = MS(x, y) exp(iγ5φ̂(x, y)) + . . . , (5)

φ̂ =
φAλ

A

Fπ
, Fπ = 93MeV.

Here,MS(x, y) =
1
4
tr(∂̂ + M̂)−1JE(x, y), and the el-

lipsis implies all other omitted terms, including those
containing isovector scalars, vectors, and pseudovec-
tors.

One should note that, in our case, where confine-
ment is present, the constant condensate of scalar–
isoscalar field always enters multiplied by J(x, y) and
thus produces the scalar confining potential of the
string in MS(x, y) [13]. Namely, for long enough a
string, i.e., for |x−Y| � Tg, where Tg is the glu-
onic correlation length in D(x), one has approxi-
mately [11]

MS(x, y) ≈ σ|x|δ(4)(x− y). (6)

This is different from the instanton, or the NJLmodel,
where the scalar–isoscalar field acquires a nonzero
condensate, which is constant in all spacetime.

Inserting (6) into (5), one obtains a localized form
of the quark–meson Lagrangian, describing interac-
tion on one end of the string; to the lowest order in PS
field

∆L(1) =
∫
ψ(x)σ|x−Y|γ5

φAλ
A

Fπ
ψ(x)dtd3x. (7)

One can visualize in (7) the simultaneous pres-
ence of quark fields ψ, ψ̄, together with the string
σ|x−Y| and Nambu–Goldstone (NG) fields φA,
A = 1, . . . , n2

f − 1.

Using the Dirac equation for the quark field ψ(x),
one arrives, as in [13], at the familiar Weinberg La-
grangian [14]

∆LW = gqAtr(ψγµγ5ωµψ), (8)

ωµ =
i

2
(u∂µu+ − u+∂µu),

where u(x) = exp
(
i

2
γ5φ̂(x, x)

)

. In our derivation,

gqA is uniquely defined in the local limit,

gqA ≡ 1, (9)

which agrees with the large-Nc limit, discussed
in [14].

Note that both Lagrangians (7), (8) are local limits
of nonlocal expression (4), and for not a very long
string with the length L ∼ Tg ∼ 0.2 fm, the nonlo-
cality is essential. Although a string is apparently not
YSICS OF ATOMIC NUCLEI Vol. 66 No. 11 2003
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present in (8), both quark operators there are solu-
tions of the Dirac equation with the string entering as
a scalar potential. It is clear that the Lagrangian (8)
describes the pion field emission both from the quark
at one end of the string and from the antiquark at the
other end of the string. In case of baryons, one should
sum up in (8) over all three quarks.

The form (8) was used in [15] for the calculation
of pionic transitions in the heavy–light mesons with
gqA playing role of a fitting parameter, which turned
out to be around 0.7. This difference from (9) can
be considered as an indication of a possible role of
nonlocality.

3. THE STRING-BREAKING MECHANISM

This mechanism was considered in some detail
in [16] (see also references therein). In the present
section, we shall consider the pair-creation vertex
due to the nonperturbative QCD configurations. In
the 3P0 model [1], this vertex was modeled by an
adjustable constant and in [16] by some function F .
It is our purpose here to derive this vertex from the
basic 4q effective Lagrangian (2).

To describe the creation of the qq̄ pair in the
presence of the string that connects quark Q and
antiquark Q̄, one can, as in [11], take the large-Nc

limit of the same 4q Lagrangian (2), which is obtained
by replacing fψbβ(x)gψ+

bγ(y)→ δfgNcSβγ(x, y),

S = i(∂̂ +M)−1.
The resulting Lagrangian describes the creation

of the quark and antiquark at the points x and y,
respectively. Physically, it is clear that x and y should
lie on the (deformed) string connecting quark Q at
the point X and antiquark Q̄ at the point X̄ . Since
the final two strings connect X and x, and X̄ and y,
we can also choose the contours of integration along
the strings: e.g., A4(x) =

∫ X
x du1E1(u1), A4(y) =∫ y

X̄
dv1E1(v1), and the string is along axis 1. [This

change of contours from (3) can be traced to the
effect of cancellation in the sum of contours from the
quark Q to the point Y and with opposite sign, from
the antiquark q̄ to the point Y , which results in the
contour integral between positions Q(X) and q̄(x).]
As a result, the kernel JE is

JE(x, x4;y, y4) =

X∫

x

du1

y∫

X̄

dv1D(u1 − v1) (10)

∼= σ

π
exp

(

−(x4 − y4)2

4T 2
g

)

,

where forD(x) the Gaussian form was used (cf. [11]).
As in (4), one can find the effective mass operator
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(due to color electric fields) M(x, y), using the defi-
nition [12]

M(x, y) = −iγ4S(x, y)γ4J(x, y), (11)

and the estimate of the quarkGreen’s functionS(x, y)
for a long string, L� Tg, done in [11, 13], gives
S(x, y) ∼ iδ(3)(x− y).

As a result, one obtains for the effective La-
grangian the same form as in (4), but with another,
string-breaking, mass operatorM (br):

∆L(SBM) = i

∫
d4xd4yψ+

a (x)M (br)(x, y)ψa(y),

(12)

where

M (br)(x, y) =
σ

π
δ(3)(x− y) exp

[
(x4 − y4)2

4T 2
g

]

.

(13)

Integrating over d(x4 − y4), one gets in the Min-
kowskian spacetime

∆L(SBM) =
2Tgσ√

π

∫
d4xψ̄(x)ψ(x). (14)

The string-breaking Hamiltonian can be written
as

H
(SBM)
I = g

∫
d3xψ̄(x)ψ(x), (15)

g = 2Tgσ/
√
π, γ ≡ Tgσ√

πµ
=

g

2µ
,

where µ is the constituent quark mass computed
through σ [17]. Taking Tg ∼ (0.2–0.3) fm, σ ≈
0.2 GeV2, and µ ≈ 0.35 GeV, one obtains γ ∼
0.3–0.5, i.e., the values in the same ballpark as in the
phenomenological analysis [3, 4]. Several remarks are
now in order. Firstly, above, the simplified Gaussian
form of D(x) was used in (10), which requires
the redefinition of Tg; secondly, the contribution of
magnetic correlators and the term D1 in (1) has
been neglected. These additional contributions will
be considered elsewhere.

4. “PERTURBATIVE” PAIR CREATION VIA
THE HYBRID OR GLUEBALL FORMATION

Two decay mechanisms discussed in previous sec-
tions are of purely nonperturbative origin. Now, we
turn to the mechanisms that contain as a limit a
purely perturbative qq̄-pair creation by a gluon. At
large distances, one has to know how this process is
modified by the presence of nonperturbative confining
fields and to this end we shall use the background per-
turbation theory (BPTh) developed in [10], where the
03
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total gluonic field Aµ is separated into valence gluon
field aµ and background Bµ,Aµ = Bµ + aµ. The field
Bµ saturates correlator D(x) and therefore contains
its own mass scale, while perturbation theory is done
in powers of gaµ. The main physical outcome of the
analysis of [10] is that the valence gluons propagate
inside the film of the string world sheet, so that all
Feynman diagrams in the coordinate space can be
considered as filled inside by this film on the minimal
surface with boundaries specified by quark and gluon
trajectories.

At this point, it is clear that one should use the
path integral representation for the quark and gluon
Green’s function, namely, the Fock–Feynman–
Schwinger (FFS) formalism [18]. The FFS method
has proved useful in conjunction with the BPTh to
study meson, hybrid, and glueball Green’s functions
(see [17] for a review). In [19], this method has been
exploited to calculate mixing between meson, hybrid,
and glueball states, and in what follows we shall
pursue the same way to study matrix elements of de-
cays proceeding via hybrid and glueball intermediate
states.

We start with theOZI-allowed planar pair creation
mechanism by a gluon, propagating inside the film in
a hybrid state ϕ(H), and therefore the matrix element
for the meson decay via the hybrid states can be
written as

W (H) =
∑

n

λ(MH)
n W (H)

n , (16)

where λ(MH)
n is the dimensionless mixing coefficient of

the nth hybrid state in the given initial meson, which
according to [19] can be written as

λ(MH)
n =

V
(µ)
on

√
2µg(n)|M (n)

H −MM |
. (17)

Here, M (n)
H and MM are hybrid and meson masses,

respectively, and µg(n) is the constituent gluon mass
in the nth hybrid state, computed through the string
tension as in [17, 19].

Thematrix element V (µ)
on , introduced in [19], is that

of the pair-creation operatorH1,

H1 = g

∫
q̄(x, 0)â(x, 0)q(x, 0)d3x, (18)

between themeson stateΦ(M)
αβ (r) and the hybrid state

Φ(H)
µ,γδ(r1, r2), where we have specified quark Dirac in-

dices αβ, γδ and gluon component index µ (this is the
4× 4 representation typical for the Bethe–Salpeter
wave functions which is used to build up 2j + 1 com-
ponents of meson and hybrid wave functions—for
discussion and references see [19]).
PH
In a simplified form, Von can be written as [19]

V
(µ)
on = g

∫
drφ∗(H)(0, r)Γφ(M)(r) + perm., (19)

where “perm.” implies another term with gluon emit-
ted by antiquark, and Γ = γµ.

The term W
(H)
n in (16) is the decay amplitude of

the nth hybrid state into two mesons, which can be
written as

W (H)
n =

Vn,12√
2µg(n)V

, (20)

Vn,12 ≡
∫

Φ∗(M1)(r1)Φ∗(M2)(r2)

× Γ(H)(r1, r2)dr1dr2,

where Γ(H)(r1, r2) is the vertex operator for the hybrid
decay. Normalization of wave functions is (summa-
tion over repeating Dirac indices, which are omitted,
is implied)
∫
|Φ(H)|2dr1dr2 = 1,

∫
|Φ(Mi)|2dr = 1. (21)

Finally, the two-body decay probability of the hy-
brid with massM into two mesons with energies E1

and E2 is

dw = 2π|W (H)
n |2δ(E1 − E2 −M)

V dk
(2π)3

. (22)

As it is seen from (16) and (17), the decay proba-
bility is strongly enhanced when the decaying meson
mass is in the vicinity of some hybrid level. One
should stress that this situation is standard in the
mass range above 1.4 GeV, where the density of hy-
brid ground and excited states is fast growing with
mass.

We now turn to the OZI-forbidden, i.e., nonplanar,
qq̄-pair creation via valence gluons. The essential
step in this mechanism is the creation of the new
flavor quark–antiquark pair with the new string be-
tween them; hence, the creation operator contains at
least a two-gluon exchange. In the confining back-
ground, trajectories of these two gluons are con-
nected by the adjoint string (or, equivalently, at large
Nc by a double fundamental string), and therefore
a new meson is created by the two- or more-gluon
glueball, which is emitted virtually from the original
meson. The amplitude for this process can be written
as

W (G) =
∑

n

V
(MM2)
n V

(GM1)
n

M − E
(G)
n − E(M2)

, (23)

where notation

V (MM2)
n = 〈φ(M2)|Λ(G)

n |φ(M)〉, (24)
YSICS OF ATOMIC NUCLEI Vol. 66 No. 11 2003
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V (GM1)
n = (φ(M1)∗Λ̄(G)

n )

is used, and the two-gluon glueball vertex is

Λ(G)
n,αβ(x1, x2) (25)

= Ψ∗(G)
n,ν1ν2(x1, x2)(γν1S

(f)(x1, x2)γν2)αβ ,

Λ̄(G)
n,αβ(y1, y2)

= (γµ1S
(g)(y1, y2)γµ2)αβΨ

(G)
n,µ1µ2

(y1, y2).

Here, Ψ(G) is the glueball wave function, and S(g,f) is
the Green’s function of quarks with flavor g, f .

When all distances |yi − xk|, |x1 − x2|, |y1 − y2|
are small as compared to Tg, the two-gluon Green’s
function reduces to the two-gluon exchange of free
gluons. This limiting perturbative mechanism has
been known for a long time [20]. In the opposite limit,
only the lowest-mass term survives in the sum (23).

The most interesting case occurs when the de-
nominator in (23) becomes small, which is possible
when the mass of some glueball state is close to the
mass of the emitted meson M1. This amplification
may thus occur in the 0++ channel for M1 around
1.5 GeV or in other channels for M1 � 2 GeV [21].
A similar mechanism may take place in hadron–
hadron scattering with creation of the cc̄ states in the
mass range 3–4 GeV, where also glueball states are
predicted in lattice and in analytic calculations [21].

5. CONCLUSION

In the present paper, the first qualitative step was
done aimed at the systematic derivation of strong
decay amplitudes from the QCD Lagrangian. We
have considered three decay mechanisms, where the
nonperturbative contribution is very important.

The first one, the CDM, was already successfully
checked in heavy–light meson decays [15]. The next
step would be to apply the CDM to the pionic and
kaonic decays of light–light mesons and investigate
double- andmore-pion decays, which are given by the
nonlinear Lagrangian (8). The second mechanism,
the SBM, turns out to be mostly 3P0 (additional
terms due to the smaller nonscalar component in the
quarkGreen’s functionS considered in [11] have been
neglected above) and its amplitude is close to the
phenomenological fits [4]. The third type of mecha-
nism with a hybrid or a glueball in the intermediate
state is the nonperturbative background generaliza-
tion of the original purely perturbative mechanisms
of the 3S1 type [22] and of two-gluon exchange [20],
respectively. It is argued that a strong enhancement of
decay amplitudes is possible when the corresponding
levels of a hybrid or a glueball are close to the mass
of the original or final meson, respectively. The paper
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 11 20
does not contain quantitative predictions, which are
planned for the future, but is rather concentrated on
the general discussion of possible decay mechanisms
as they emerge from the basic QCD Lagrangian.

One of the immediate extensions of the present
result is the inclusion of the baryon decays, where all
three mechanisms discussed above are present in the
same form with only the replacement of the simple
mesonic string by the Y -shaped baryonic string.

Finally, one should have in mind that all three
mechanisms discussed above enter the decay am-
plitude additively, and therefore one can expect, in
general, some interference effects, which make the
analysis of data more complicated and perhaps more
interesting.
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Abstract—At a qualitative level, it is well known that QCD featuring a large number of quark flavors must
differ drastically from actual QCD. However, it is possible to consider the large-Nf limit (where Nf is the
number of light flavors in QCD) such that the basic dynamics of the system remains unchanged. This is the
region of chiral perturbation theory, where the limitNf →∞ is simultaneously the limit of a large number
of colors,Nc. Features are indicated that make it possible, in such a situation, to compare analytically the
same quantity in a simplified model of actual QCD and in the large-Nf limit, and methods are proposed
for calculating these features. Calculations in the limitNf →∞ are of no use in assessing quantities of the
theory at smallNf . c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Investigation of models involving a large number
N of components of multiplets of physical fields
(colors, Nc; light flavors, Nf ; replicas) has been
widespread in theoretical physics since the proposal
of ’t Hooft [1] to consider QCD where the number
of colors tends to infinity, Nc →∞. The objectives of
such investigations are quite diverse: some are aimed
at exploring possible nonperturbative phenomena [2]
or at deducing information that could be of use in
evaluating perturbative contributions [3], while others
are devoted to assessing the properties of actual
systems [4].1)

There arise the question of whether such estimates
may faithfully reproduce the situation in observed
physical processes and the question of whether the
features calculated in this way are close to those that
are observed if one substitutesNc = 3 orNf = 3. The
next question to be answered is that of whether it
is advisable to refine such estimates by calculating
higher order approximations inN−1.

It is quite clear that the change in Nc and espe-
cially in Nf affects the dynamical structure of QCD
significantly. In what is concerned with Nf , this is
well known: at large Nf , the asymptotic-freedom
regime is replaced by the zero-charge regime and a
chiral condensate is not formed. At the same time,
the asymptotic-freedom regime persists at arbitrarily
large values of Nc; therefore, one assumes that the
properties of QCD, including confinement, remain

*e-mail: dyatlov@thd.pnpi.spb.ru
1)The literature on these subjects is enormous.We will restrict
ourselves to examining a few typical examples.
1063-7788/03/6611-2051$24.00 c©
unchanged for Nc →∞. On the other hand, inves-
tigation of supersymmetric gauge models reveals [5]
that dynamics greatly depends on the ratio of Nc and
Nf .

For QCD, it would be desirable to perform a direct
comparison of the results of exact calculations in the
limit N →∞ and calculations at the observed value
of N for the same physical quantity. Of course, such
calculations must be performed in a situation where,
in both versions, the theory in question has the same
dynamical structure—that is, features that are pre-
served there include confinement, the presence of a
chiral condensate, and the presence of a multiplet of
pseudoscalar bosons arising as Goldstone particles
that are associated with the violation of chiral sym-
metry in the theory of massless quarks.
A direct comparison for the number of colors,N =

Nc, would be of greatest interest here, but explicit
calculations cannot be presently performed for this
case. However, an indirect way to Nc →∞ through
the limit Nf →∞ for the number of light quarks is
quite feasible, and we will follow it in the present
study. Let us clarify this statement.
The point is that, in the region of low energies,

QCD can be formulated in terms of only a light
flavor without recourse to color degrees of freedom.
This occurs in so-called chiral perturbation theory
(ChPT) [6, 7]. Within this approach, the limit Nf →
∞ is straightforwardly implementable; it is admissible
to calculate it without changing the dynamical struc-
ture inherent in actual QCD, the observable proper-
ties of this theory being preserved. This is obvious in
any calculations within chiral chromodynamics and
will be explicitly expounded in the present study. But
from the point of view of the quark formulation of
2003 MAIK “Nauka/Interperiodica”
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QCD, the possibility of preserving dynamical prop-
erties under any changes in Nf implies that Nc also
changes, adjusting itself in an appropriate way. For
example, the dynamics of the simplest beta function
in QCD undergoes no qualitative changes if, simul-
taneously with going over to the limit Nf →∞, one
increases Nc at a greater rate, Nf/Nc < 11/2.
Within chiral perturbation theory, low-energy

physics is controlled by the leptonic-pion-decay con-
stants fπ and the condensate density for one flavor,
〈q̄RqL〉. These quantities could be considered, by
definition, to be independent of Nf , if the invariability
of dynamical properties in QCD upon going over
to the limit Nf →∞ did not require that Nc also
change. For this limit to be precisely QCDat largeNf
inclusive, it is necessary to consider the dependence
of parameters on Nc as well.2) For a given ratio
Nf/Nc = ρ and at large values of Nc, the parameter
f2
π can be represented in the form

f2
π = NcQ(ρ) =

NfQ(ρ)
ρ

; (1)

that is, f2
π grows in direct proportion to Nc or Nf

everywhere, with the exception of small vicinities of
the zeros of the functionQ(ρ).
Formula (1) arises if, at large values ofNc andNf ,

one sums only planar diagrams [1] featuring various
numbers of internal irreducible quark loops (that is,
loops beyond the QCD beta function). The function
Q(ρ) has the form of an alternating series and can
have real-valued zeros. The derivation of formula (1)
and its corollaries are discussed in the Appendix. The
expectation value 〈q̄RqL〉 possesses similar proper-
ties.
The asymptotic procedure considered here will be

briefly referred to as the transition to the large-Nf
limit. This procedure is of particular interest owing to
the fact that it additionally involves large values ofNc.
In the present study, it is shown that features of

actual QCD, where Nf = 3, differ significantly from
those that are obtained by substituting Nf = 3 into
the results of the calculations at large values of Nf .
Any numerical consistency between the two results
in question may only be coincidental. At large values
of Nf , both versions—(i) f2

π ∼ Nf and (ii) f2
π is a

constant or grows more slowly than Nf—lead to re-
sults that, upon the substitution of Nf = 3, will differ
from those that are calculated in actual QCD, since
they are determined by different parts of the same
expressions and different properties.
First of all, it is necessary to choose a physical

object such that an analysis of this object would make

2)It was V.Yu. Petrov who called my attention to this point.
PH
it possible to draw a comparison between the cases
of Nf →∞ and Nf = 3. For this purpose, it is con-
venient to consider, within the simple model of chiral
QCD (where the quark mass ismq = 0), the second-
order corrections in the quark masses to the vacuum
energy and to the masses of particles belonging to
the pseudoscalar multiplet. Because of the complexity
of the problem, a complete calculation up to a final
result cannot be performed even for this modest, ap-
proximate, fragment of QCD. However, we can select
such physically significant quantities calculable at
any value of Nf that the results of the Nf →∞ and
Nf = 3 procedures are obviously different for them.
The fragment chosen here belongs completely to

the low-energy region, where QCD is described by
chiral perturbation theory, whose basic objects are [7]
unitary matrices that implement a nonlinear realiza-
tion of the SUL(3)× SUR(3) flavor group; that is,

U(x) = exp
{

i
√

2
πA(x)tA

fπ

}

, (2)

where tA is the flavor matrix, πA(x) are the operators
of the pseudoscalar multiplet of bosons arising as
Goldstone states of QCD in the limit of zero quark
masses (mq = 0), and fπ is the known leptonic-pion-
decay constant (fπ = 93.4MeV).
The representation of low-energy QCD in (2)

is similar to the bosonized representation of two-
dimensional fermion models [8, 9]. Therefore, the
procedure for isolating the sought correction to the
energies of states, as well as its physical properties,
can be clarified by calculating the corresponding
quantity in an appropriate exactly solvable two-
dimensional model.
In the present study, we will restrict ourselves to

a detailed analysis of the simplest problem—that of
calculating corrections to the vacuum state. A more
sophisticated analysis of corrections to the masses
of pseudoscalar particles can also be performed, but
the results of such an analysis will be similar. When
required, we mention these results to confirm our
conclusions.
The ensuing exposition is organized as follows.

The procedure for isolating that part ofmq corrections
to the energies of states in chiral QCD which receive
the main contribution from long distances is outlined
in Section 2. This procedure is clarified via the cor-
responding calculation within the two-dimensional
Schwinger model [9]. We follow here the bosonization
technique developed in [10]. In Sections 3 and 4, the
quantity in which we are interested is reduced to a
form that is convenient for calculating the limitNf →
∞, which is explored in Section 5. Mathematically,
the QCD problem requires disentangling the product
of two non-Abelian exponentials. In Sections 4 and 5,
YSICS OF ATOMIC NUCLEI Vol. 66 No. 11 2003
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we investigate the properties of such a procedure that
are necessary for our purposes. The consequences
of the formulas derived in the present study are dis-
cussed in Section 6. The derivation of formula (1) is
clarified in the Appendix.

2. STRUCTURE OF THE SECOND
PERTURBATIVE CORRECTION
IN THE QUARK MASSES

In the QCD of massless quarks, the octet of
pseudoscalar bosons is the Goldstone multiplet of
SUL(3)× SUR(3) flavor symmetry broken by a quark
condensate whose density is

〈q̄q〉 = 〈q̄RqL〉+ 〈q̄LqR〉, (3)

where qR,L(x) are the operators of right- and left-
handed chiral quarks.

The quark masses mf
q lead to a direct breakdown

of chiral and flavor symmetries via the mass term in
the QCD Lagrangian,

H ′(x) =
∑

f

mf
q q̄
f (x)qf (x) (4)

=
∑

f

mf
q

[
q̄fR(x)qfL(x) + q̄fL(x)qfR(x)

]

= h(x) + h+(x),
f = u, d, s.

Nonzero masses of pseudoscalar mesons are thought
to be an observable manifestation of H ′(x). To the
first order in the interaction in (4)—that is, in the
quark masses, the pseudoscalar-particle masses are
given by the well-known expressions [6]

m2
π = −〈q̄q〉

f2
π

(mu +md), (5)

m2
K+ = −〈q̄q〉

f2
π

(ms +mu),

m2
K0 = −〈q̄q〉

f2
π

(ms +md),

m2
η = −1

3
〈q̄q〉
f2
π

(mu +md + 4ms).

Similar contributions arise for other states and other
quantities in QCD. Such contributions are taken into
account within chiral perturbation theory [7].
The standard formula for the second-order correc-

tion to the energy of the nth level is straightforwardly
reduced to the relativistic form

δE(2)
n =

1
2i

∫
d4x〈n|T{H ′(x),H ′(0)}|〉n. (6)

The matrix element of the time-ordered product in (6)
receives contributions only from connected diagrams
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 11 20
that are irreducible with respect to the state |n〉. For
n = 0, the quantity δE(2)

n is then a correction that
is reckoned from the vacuum energy, which, in turn,
is also calculated to second-order terms in H ′(x)
inclusive.
The two operator terms on the right-hand side

of (4) change the helicity of a state by 1 and −1,
respectively. In view of this, the product

H ′(x)H ′(0) = h(x)h(0) + h+(x)h+(0) (7)

+ h+(x)h(0) + h(x)h+(0) = R±2(x) +R0(x)

is broken down into the term R±2, which changes the
helicity by ±2, and the helicity-conserving term R0.
The matrix elements of these two terms have sharply
different properties.
1. The matrix elements (6) of the nonzero-helicity

operators R±2(x) do not vanish only because of non-
perturbative terms, owing to the presence of conden-
sate (3). The contribution to this component from
the correction in (6) comes predominantly from the
low-momentum region—that is, the region of long
distances in the integral in (6). There, QCD is repre-
sented by the effective Lagrangian of chiral theory [7]
and is expressed in terms of the operator in (2), which
takes into account the lightest pseudoscalar bosons.
The contribution from that part of (7) is finite for
x→ 0. The four-dimensional integral of R±2(x) with
respect to x over the region of small x is determined
by the size of the region.
2. The chirality-conserving part of (7), R0(x),

grows fast for low x. It is the term R0(x) that in-
volves the perturbative component—the correspond-
ing part of the time-ordered product at low x (in the
asymptotic-freedom region) is a loop of free massless
R and L quarks that involves the propagatorsGR and
GL; that is,

tr GR(x)GL(−x) = tr
(
x̂

x4

−x̂
x4

)

∼ O
(

1
x6

)

. (8)

Therefore, the correction to the vacuum-state energy
from R0(x) diverges; as for corrections to the masses
of pseudoscalar particles, it can be shown that they
are finite, but no reliable estimates can be obtained
for them at present.
For our purposes, it is convenient to use that part

of the correction which originates from R±2(x). The
part that is associated with R0(x) could not be esti-
mated within QCD.
As is well known from chiral perturbation theory,

there exists, for the matrix Mff ′ = q̄(f)
R q

(f ′)
L in the

region of low energies, the representation that was
introduced in [7] and which is based on the use of the
flavor matrix (2). ForMff ′ , we adopt here a somewhat
03
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different, but equivalent form, representing (2) as a
normal-ordered product; that is,

Mff ′ = q̄fR(x)qf
′

L (x) (9)

= N
{

exp
[

i
√

2
πA(x)tA

fπ

]

〈q̄RqL〉
}

ff ′
,

where the condensate density is

〈q̄RqL〉 =
1
2
〈n̄n〉 = 1

2
〈d̄d〉 =

1
2
〈s̄s〉 (10)

and the operators πAtA are defined in terms of the
matrix of physical (massless!) pseudoscalar bosons as

πAt
A =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

π0

√
2

+
η8√
6

π+ K+

π− − π
0

√
2

+
η8√
6

K0

K− K̄0 −2η8√
6

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (11)

In (9), only the creation operators π+
A(x) and the

annihilation operators π−A(x) are disposed according
to the normal-order prescription, while the matrices
tA remain disentangled.
Usually, Mff ′ is written without recourse to a

normal-ordered product, but the representation in (9)
is more convenient for specific calculations. With the
aid of formula (11), it can straightforwardly be verified
that all of the first-order results in the interaction
in (4) are reproduced by (9) in a form that is identical
to that which is obtained on the basis of the standard
technique of chiral perturbation theory—namely, the
mass formulas (5), the definition of fπ in terms of the
flavor current d̄iγµγ5u, and the mixing of π0 and η
[6, 7].
Our model will consist in calculating quantities in

QCDwith the aid of the representation in (9) with the
free operators πA(x), but at all values of Nf (that is,
at Nc as well).
The procedure for isolating two parts of the mass

correction to the energy of a state will be clarified
by considering the example where this correction is
calculated within the massive Schwinger model.
The point is that the operator U(x) of chiral per-

turbation theory has a form that is similar to the boson
form of the operator of a massless two-dimensional
fermion (see [8, 10]). From this form, we obtain, for
the products ψ̄RψL and ψ̄LψR of two-dimensional
operators, a representation that has the form of a
normal-ordered product and which is similar to (9);
that is,

ψ̄R(x)ψL(x) = N
{

exp
[
i
(√

4πφ(x) + θ
)]
〈ψ̄RψL〉

}
,

(12)
PH
where θ is a constant parameter (ang1e θ) pecu-
liar to two-dimensional electrodynamics (that is, the
Schwinger model [9]);

φ(x) =
1√
V

∑

p

(

A(p)
eipx
√

2ωp
+A+(p)

e−ipx
√

2ωp

)

(13)

is the operator of a massive boson whose mass is

m2 = g2/π, ωp =
√
m2 + p2; (14)

g is the coupling constant; and A(p) and A+(p) are,
respectively, the boson-annihilation and the boson-
creation operator. The wave functions in (13) are nor-
malized to a finite volume V . The condensate density
here is given by [10]

〈ψ̄RψL〉 = meC/(4π), (15)

where C is the Euler constant. The role of the factor
eC in the Schwinger model is identical to that of the
nonperturbative factor exp(1/g2) in QCD. Since the
charge is a dimensional quantity in two dimensions,
this factor can only have the form exp

(
am2/g2

)
,

which features no dependence on the coupling con-
stant [this is becausem2 ∼ g2 (14)].
Using (12) и (13) and dividing (6) by the volume

V , we find the correction to the energy density in the
QED2 vacuum state. The result is

E
(2)
0 =

m2
q

4i

∫
d2x

(
meC

2π

)2

(16)

×
[(
e−2K0(x) − 1

)
cos 2θ +

(
e2K0(x) − 1

)]
,

where K0(x) ≡ K0(m(−x2 + iε)1/2) is a Bessel
function and x2 = t2 − x2. For z → 0,

K0(z)→ −
1
2

ln
z2

4
− C; (17)

in this region, we therefore have

exp 2K0(x)⇒
e−2C

2π2(−x2 + iε)
, (18)

exp[−2K0(x)]⇒ e2C(−x2).

It can be seen that, for |x| → ∞, the relevant in-
tegrals are well convergent and that the integration
contours can be shifted to the Euclidean region. The
first term in the bracketed expression on the right-
hand side of (16) corresponds to the contribution of
R±2. In this part of the integral, the contribution
from low values of x possesses no special features
and is small in relation to the contribution from the
dominant region around x ∼ m−1. For the R0 part of
the integral (second term), the integrand is singular—
it is proportional to x−2 [see (18)]—and the integral
YSICS OF ATOMIC NUCLEI Vol. 66 No. 11 2003
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diverges. This singularity is described by the product
of two-dimensional fermion propagators belonging to
the type in (8). The coefficient of the singularity does
not depend on the nonperturbative factor eC or on the
parameter θ. It coincides with the contribution of the
two-dimensional fermion loop.
The question of whether the singularity noticed

here—that of the type in (8)—which is a direct corol-
lary of asymptotic freedom, may be an impediment to
calculating quantities inQCD [(x2)−3! singularity] by
the methods of chiral perturbation theory (that is, by
means of an expansion in powers of the quarkmasses)
is of secondary importance for our purposes, but, to
conclude this section, we will discuss it for the sake
of completeness. The Schwinger model demonstrates
that only in an “unobservable” correction to the vac-
uum state does there arise a singularity. In the hadron
mass (14), the correction calculated within the model
(p2 = m2) no longer involves a divergence:

δm2 = −
2πm2

q

i

∫
d2x
(meC

2π

)2
(19)

×
{

cos2
px

2

[
e−2K0(x) − 1 + 2K0(x)

]
cos 2θ

+ 2 sin2 px

2

[
e2K0(x) − 1− 2K0(x)

]}
.

Here, K0(x) is the same function as in (16), px =
p0x0 − p · x, and p2 = m2. The singularity at low
values of x is compensated by a factor that represents
the hadron “wave function.”
A similar situation may exist in QCD as well: a

compensating factor proportional to x2 will emerge
from the cancellation of various contributions gen-
erated by the external factors of the nth state; it can
then be shown that the remaining (x2)−2 singularity
is canceled by logarithmic corrections to the quark
loop.

3. CORRECTIONS TO THE ENERGY
OF THE QCD VACUUM:

HELICITY-CHANGING CONTRIBUTION

Let us now consider that part of the QCD correc-
tion (6) which is associated with the nonperturbative
operatorR±2(x) in (7). Since the region of low x does
not play a significant role here, the quantity being
studied can be calculated on the basis of the repre-
sentation in (9), which corresponds to the properties
of QCD at rather large distances (x2 � f−2

π ).
For the correction to the vacuum state, we have

δE
(2)
0 =

1
i

∫
d4x〈q̄RqL〉2 (20)

× 〈0|T
{
tr
[
N
(
M exp

(
i
√

2
πA(x)tA

fπ

))]
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 11 20
×tr
[
N
(
M exp

(
i
√

2
πA(0)tA

fπ

)]}
|0〉,

where the matrix M is given by (9) and (11). The
contribution from large distances |x2| � f−2

π , which
is the only quantity calculable at any value of Nf ,
is obtained in the following way. In (20), we have
considered that R+2 and R−2 make identical contri-
butions. For the vacuum time-ordered product, we
obtain

∑

n,n′

(
i
√

2
fπ

)n+n′

1
n!n′!

tr(Mti1ti2 . . . tin) (21)

× tr(Mtj1tj2 . . . tjn′ )δnn′∆n(x)
×I(i1, i2, . . . , in; j1, j2, . . . , jn′),

where il and jl′ number the flavor indices A in (20);
the propagator of amassless Goldstone boson has the
form

∆(x)δAA′ =
1

4π2

1
−x2 + iε

δAA′ (22)

(of course, it is diagonal in flavor); and the operator I
represents a sum over all permutations of the indices
j1 . . . jn′ ,

Inn′ =
∑

P

δi1j1δi2j2 . . . δinjnδnn′ . (23)

The series to be calculated can be reduced to the form
∑

n

(−1)n
(

2∆(x)
f2
π

)n 1
(n!)2

tr(Mti1ti2 . . . tin) (24)

×
∑

P

tr(Mti1ti2 . . . tin).

The sum over the permutations P implies that the
matrices ti1 . . . tin in the second trace must be taken
in all possible orders of the indices i1 . . . in. The total
number of such terms is obviously equal to n!.
If all of these terms made identical contributions,

as is the case in Abelian theories, the result would be
similar to that in (16). It would involve (in Euclidean
space) the exponential function

exp
(

− 1
4π2f2

πx
2

)

, (25)

which is convergent for x2 → 0. It can easily be ver-
ified that, for the R0 contribution, the sign in the
exponent would be different, which corresponds to a
nonintegrable growth. In the non-Abelian case, the
sum over the flavors i = 1, 2, . . . , Nf is

tik�t
i
mn =

1
2

(

δknδ�m −
1
Nf
δk�δmn

)

. (26)
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Fig. 1. Notation for terms in the sum of the products of
traces in (24).

The problem consists in determining the coefficients
in the series in (24) and their dependence on n and
Nf . Obviously, we can consider any values ofNf .

First of all, we will show that all terms involving
(1/Nf )δk�δmn in (26) can be summed. As a result,
the problem reduces to taking into account only the
first term in this formula. The point is that terms
involving δk�δmn merely eliminate twomatrices t from
the product of the traces. In (24), we will now consider
any term where the first terms from (26) are taken
in the n products titi and where the second terms
are taken in the k products of respective matrices.
The problem of performing summation over k then
reduces to a combinatorial analysis:

∑

k

(−1)n+k

(
∆(x)
f2
π

)n+k (−1
Nf

)k
(27)

× 1
[(n+ k)!]2

[
(n+ k)!
n!k!

]2

k! =
1

(n!)2

×
(
−∆(x)
f2
π

)n
exp

∆(x)
Nff2

π

.

Thus, we obtain an exponential function that grows
for x2 → 0. However, it is not hazardous, since an
exact calculation of (24) with allowance for all factors
must lead to convergence, as occurred in the Abelian
case. We will observe this property in the follow-
ing. We note that exp(∆(x)/(Nff2

π)) begins to grow
in the region x2 � 1/(Nff2

π)—that is, beyond the
region of applicability of chiral perturbation theory.
Since the main contribution to the integral with re-
spect to x in (20) comes from the chiral-perturbation-
theory region x2 � 1/f2

π , we can discard the expo-
nential function (27).

It follows that the integrand in the correction con-
sidered here [see expression (20)] has the form
∑

n

(
−∆(x)
f2
π

)n C(n,Nf )
(n!)2

{trM2, (trM)2}. (28)
PH
In (28), it is considered that any term in the total
sum over permutations reduces either to trM2 or to
(trM )2.

It should be borne in mind that, with allowance
for the factor in (27), summation in the sum over n
actually begins from n = 2, since n = 0 corresponds
to disconnected diagrams and since the total sum
in (24) does not involve n = 1 because of the absence
of transitions from the vacuum to a pseudoscalar
state. This is of importanсe since the n = 0 and n = 1
contributions are those that decrease most slowly for
x2 →∞. The absence of the n = 0, 1 contributions
results in that the large-x behavior of the integral
in (20) features a logarithmic divergence, which is
a natural infrared singularity of chiral perturbation
theory, where this singularity generates, as is well
known (see [6]), terms that are not analytic in the
quark masses.

4. CALCULATION OF THE COEFFICIENTS
C(n,Nf )

We will now proceed to analyze the dependence
of the coefficients C(n,Nf ) and of the sum in (28)
on Nf , leaving aside variations in f2

π for the time
being. Our manipulations will eventually enable us to
visualize any possible version of the behavior of f2

π .

Let us represent the traces in (24) in the form of
closed ovals on which we specify points associated
with the matrices M and the matrices ti, the latter
corresponding to the points at which the ovals in-
tersect straight-line segments connecting them (see
Fig. 1). It is convenient to arrange, in opposite direc-
tions, the numbering of points associated with differ-
ent traces. Arrows indicate the direction of summa-
tion of indices. The term δknδ�m in (26) corresponds to
the transition of summation over matrix indices from
one trace to another, a line that connects the ovals
representing this in the figures. Such a transition
proceeds on one side of the line for the indices kn
and on the other side for the indices 3m. Figure 2
shows the simplest connections: two lines forming a
closed contour and lines that split two matrices M
[contribution to (trM )2].

Any closed contour that bypasses M yields the
factor Nf . At a given value of n, the maximum pos-
sible number of contours not involving M is n− 1
(see Fig. 1a). Each such contour includes only two
connecting lines. There can exist closed contours
containing a greater number of lines: 4, 6, . . . (see
Fig. 3). Therefore, the dependence of the coefficients
C(n,Nf ) on Nf can be represented as the series
YSICS OF ATOMIC NUCLEI Vol. 66 No. 11 2003
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Fig. 2. Simplest contributions to the coefficients
C(n,Nf ) of (a) trM2 and (b) (trM)2.

[here, we restrict ourselves to considering the contri-
bution to trM2—the situation around the contribu-
tion to (trM )2 is similar]

C(n,Nf ) = Nn−1
f + a2(n)Nn−3

f + . . . (29)

+ a2[n−1
2 ](n)N

n−1−2[n−1
2 ]

f ,

where
[
n− 1

2

]

is the integral part of
n− 1

2
. The

quantity κ = n− 1− 2
[
n− 1

2

]

is equal to zero for

odd and to unity for even n.
The coefficients a2k(n) are equal to the number of

diagrams (formed by n connecting lines) where the
power of (Nf )2k is less by unity than that which is
the maximum possible one for diagrams involving n
lines, Nn−1

f . Since all calculations deal exclusively
with lines connecting two traces in (24), we imply
only such lines in the following and omit the modifier
“connecting.”
The dependence on n in a2k(n) can be separated

from the dependence on k. This can be done in the
following way.
Diagrams that contain the simplest contours in-

volving two lines will be referred to as reducible dia-
grams: these two lines are reduced to one line without
changing the structure of the remaining trace (only
Nf is lost). After such a reduction, there remain only
irreducible diagrams, which may contain loops, but
these loops feature a greater number of lines, 4, 6, . . .
(see Fig. 3b).3) We denote by ck′+1(k) the num-
ber of irreducible diagrams that involve k′ + 1 lines
(the appearance of “1” is associated with the choice
of the contribution trM2) and in which 2k powers
of Nf are lost in relation to its maximum possible
power, that in Nk′

f . The number k
′ is obviously not

3)One can continue such an analysis in order to calculate the
coefficients ck+1 in (31), but this is not necessary for the
purposes of the present study.
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Fig. 3. Simplest diagrams determining the coefficients
ck′+1(k).

less than 2k, since the diagram in which each line
leads to the loss of Nf (for example, the diagram
in Fig. 3a and its multiple repetitions) is minimal.
At the same time, there exists the greatest number
of k′ = 4k, which arises because ck′+1(k) contains
only irreducible closed contours involving not less
than four lines (more precisely, four sides of these
lines). Diagrams featuring the maximum number of
lines arise in the case where the addition of four lines
increases the number of closed contours by the maxi-
mum number of 2 (recall that both sides of the lines
are involved). The loss of Nf is then given by N2

f .
These are diagrams belonging to the type of repeti-
tions of the diagram in Fig. 3b (and more complicated
ones).
Therefore, we have

2k ≤ k′ ≤ 4k. (30)

The dependence of n is determined by the distribution
of the remaining n− (k′ + 1) lines between reducible
loops that are formed by combining, in all possible
ways, all lines of irreducible diagrams. There arises
the series

a2k(n) =
(n− 1)(n− 2) . . . (n− 4k)

(4k)!
c4k+1 (31)

+
(n− 1)(n − 2) . . . (n− 4k + 1)

(4k − 1)!
c4k + . . .

+
(n− 1)(n − 2) . . . (n− 2k)

(2k)!
c2k+1

=
4k∑

k′=2k

Γ(n)
Γ(n− k′)

ck′+1(k)
Γ(k′ + 1)

.

It is very difficult to calculate the coefficients ck′+1(k),
especially as all diagrams must be distributed be-
tween two possibilities, trM2 versus (trM )2.4) Let us

4)In calculating similar corrections to the masses of the Gold-
stone pseudoscalar bosons πA, the number of combinations
of traces belonging to the tr(MπAMπA) type is as large as
nine.
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present the values of ck′+1 for small k:

k = 0: a0(n) = 1; (32)

k = 1: c5 = 1, c4 = 3, c3 = 3;
k = 2: c9 = 13, c8 = 71, c7 = 150,

c6 = 124, c5 = 40.

At the same time, the series in (28) are well
convergent—all coefficients inC(n,Nf ) cannot grow
with n faster than the total number n! of diagrams.
The quantities a2k(n), which are associated with
trM2, growmuchmore slowly. The closer k′ to 4k, the
lower the rate of growth of the coefficients ck′+1(k)
with k′ (that is, with k) in relation to the number
(k′ + 1)! of possible diagrams involving k′ + 1 lines,
those of them that grow at the greatest rate satisfying
the condition c2k+1 � (2k + 1)!. In order to calculate
the sum in (28) at largeNf , it is necessary to know, as
we will see below, the values of the quantities a2k(n)
at large n and k � n.

5. COMPARISON OF SMALL
AND LARGE Nf

Formulas (21)–(31) provide an exact expres-
sion for the integrand in the correction specified
by (20) and studied here. Two large parameters,
|Nf∆(x)/f2

π | � 1 and |∆(x)/f2
π | � 1, are possible

for constant or slowly growing f2
π in the sum in (28).

The first is large not only for Nf →∞ but also,
together with the second, for x2 → 0 as well. The
common type of behavior of this parameter at large
Nf and small x is an impediment to drawing pure
distinctions for different values of Nf . It is necessary
to perform summation and integration over all values
of x with exact QCD expressions, but this is impos-
sible. Moreover, the region |∆(x)/f2

π | � 1 is beyond
the boundaries of applicability of chiral perturbation
theory and has no bearing on QCD in calculations on
the basis of chiral perturbation theory.

However, this region cannot be of great impor-
tance. The point is that the series in (28) are well
convergent at large n for any Nf , since the coeffi-
cients a2k(n) in (29) grow more slowly than n!. To
demonstrate this, we note that, at a given value of n,
the total number of permutations in (24) (the number
of diagrams belonging to the type in Fig. 1) is n!.
Therefore, the number of diagrams contributing to
trM2 or to (trM )2 is

[n−1
2 ]∑

k=0

a2k(n) < n!. (33)
PH
Owing to the fact that the series in (28) are alternat-
ing, there arises, in either case, a function that is inte-
grable for x2 → 0. (This is precisely the circumstance
that was taken into consideration in choosing the
helicity-changing correction as an object of analysis.)
In view of this, the contribution to the integral in (20)
from the region of small x2—that is, from the region
|∆(x)/f2

π | > 1—is rather modest.

This means that, for our purposes, an examina-
tion of the main region of chiral perturbation theory,
|∆(x)/f2

π | � 1, is quite sufficient, which simplifies
and clarifies a comparison at different values of Nf .
The parameter |Nf∆(x)/f2

π | � 1 will be the only
possible large parameter of the scheme. After that,
it will not be difficult to trace the version of linear
growth, f2

π ∼ Nf .
At small values of Nf , it is possible to recast (28)

into the form of a series in powers of Nf , this series
beginning from the last terms in the series in (29) for
C(n,Nf ). The higher the power of Nf , the smaller
the coefficient of the corresponding term, since it
originates from terms corresponding to large n and
contains the large factors [Γ(n + 1)]2 in the denom-
inators. At the same time, the series in n for spe-
cific powers of Nf are well convergent and can be
summed. At actual values of Nf , we will thereby
obtain a series in powers of Nf , and it is sufficient to
retain, in actual practice, only a few first terms in this
series.

Let us compare it with the calculation for Nf �
1 under the same conditions. For this purpose, we
rewrite expression (28) by changing the variable of
summation as

N = n− 2k (34)

in order to collect all terms at powers of Nf . For the
part associated with trM2, we have

1
Nf

∑

N,k

(−∆(x)Nf
f2
π

)N 1
[Γ(N + 2k + 1)]2

(35)

×
(

∆(x)
f2
π

)2k 4k∑

k′=2k

Γ(N + 2k)
Γ(N + 2k − k′)

ck′+1(k)
Γ(k′ + 1)

.

Here, n > 2k + 1; therefore, we haveN ≥ 1.
At large Nf , large N are operative, the sums over

k being convergent for any power of N−1 even upon
the expansion in terms ofN . Using (31), we do indeed
find, upon the expansion inN , that

1
Nf

∑

N

(−∆(x)Nf
f2
π

)N 1
N2N

(36)
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×
∑

k

[
c4k+1

Γ(4k + 1)
+

1
N

c4k
Γ(4k)

+ . . .

+
1
N2k

c2k+1

Γ(2k + 1)

](
∆(x)
f2
π

)2k

.

It should be recalled that the coefficient ck′+1(k),
for example, is the number of irreducible diagrams
where k′ − 2k closed loops involving four or more
lines are formed from k′ + 1 lines (k′ ≤ 4k). With
increasing k′ (and k), the coefficients in question grow
more slowly than the number of diagrams from k′ + 1
lines—that is, than (k′ + 1)!. Taking into account
only the factorial factors (this means that we discard
exponential factors), which are themost important for
convergence, we obtain the following relationships at
large k.
The coefficient corresponding to the smallest

number (2k + 1) (at given k) of lines is restricted
only by the number of permutations of these lines,
(c2k+1 < (2k + 1)!)—that is, by the maximum pos-
sible value. For 2k < k′ < 4k, the coefficients ck′+1

grow in accordance with the interpolation formula
ck′+1 ∼ (4k − k′ + 1)!(k′ − 2k)!. The coefficient cor-
responding to the maximum number (4k + 1) of lines
is subjected to the most stringent constraint with
respect to the number of permutations, c4k+1 � (2k)!.
We further outline the proof of the last statement,

which is of greatest importance for our analysis.
In terms of the diagrams introduced in Section 4,

the change in the number c4k+1 in response to the
shift k → k + 1 proceeds in the following two ways:
(i) Each of the 4k + 1 lines is replaced by the set of

lines in Fig. 3b (four lines and two closed irreducible
loops are added). Thus, the number of diagrams is
a linear function of k, while the total number of di-
agrams grows in proportion to (4k + 1)[4(k − 1) +
1] . . . ∼ k!. This is not, however, the main way.
(ii) Each intersecting pair of lines is replaced by

two intersecting plates whose end faces are again
connected by lines. There are three types of such con-
nections. The number of lines again increases by four,
and there additionally arise two loops, as this must
occur for the inclusion in c4k+1 to be implemented.
The number of intersections grows in proportion to
the square of the number of lines—that is, in propor-
tion to (4k + 1)2k. But not all of the lines intersect
in all c4k+1 diagrams; therefore, the actual growth is
slower by a numerical factor. To a factorial precision,
the total number of diagrams grows in proportion to
(k!)2 � (2k)!.
At any fixed exponent in N−m, the series in k

that involve the coefficients c4k−m+1/Γ(4k −m+ 1)
converge. In the sum over k in (36), we therefore
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 11 20
arrive at an asymptotic series in powers of N−1, the
contribution to (36) from the first term in this series
being

1
Nf

∑

N

(−∆(x)Nf
f2
π

)N
(37)

× 1
N2N

∑

k

c4k+1

Γ(4k + 1)

(
∆(x)
f2
π

)2k

.

The quantity in (37) can be represented as the product
of the asymptotic expression for the Bessel function
J0

(
2
√

∆(x)Nf/f2
π

)
and some special functionK(z)

depending on the argument z = ∆(x)/f2
π and having

good properties in the region z � 1. At z = 0, we have
K(0) = 1. The values of N that are of importance in
the sum over n are

N ∼

√
∆(x)Nf
f2
π

. (38)

They are great for Nf →∞ and constant or slowly
growing fπ. The contributions from the sequence of
terms in the bracketed expression on the right-hand
side of (36) decrease in proportion to powers of Nf ;
that is, we have an asymptotic series inN−1

f .

A direct substitution of (37) into the four-dimen-
sional integral with respect to x in (20) would lead to
a divergence at large x, but the quantity |∆(x)Nf/f2

π |
will become less than unity in this region, so that
expression (37) is inapplicable there. As was men-
tioned above, it is necessary to take into account,
in this region, the subtraction of the first two terms
in the series over n, whereupon there remains only
a logarithmic infrared singularity, which is typically
observed in chiral perturbation theory [6].
In the region of its applicability, formula (37)

solves the problem being considered. Obviously,
expression (37) has no bearing on the first terms of the
series in (28), which reproduce the physical situation.

Let us now consider linearly growing f2
π ∼ Nf .

The region of N values as large as those in (38) then
disappears. Over the entire region of applicability of
chiral perturbation theory, the quantity |∆(x)Nf/f2

π |
is less than or on the order of unity. The situation
becomes similar to that which was described at the
beginning of this section for small values of Nf : only
a few first terms in the fast convergent series (28) are
operative at small values of the arguments. For the
coefficient of trM2, these are (we recall that n ≥ 2 for
the vacuum contribution)

(
∆(x)
f2
π

)2 Nf
(2!)2

−
(

∆(x)
f2
π

)3 N2
f + 3

(3!)2
(39)
03
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+
(

∆(x)
f2
π

)4 N3
f + 12Nf
(4!)2

+ . . . ,

where (∆(x)Nf/f2
π) ∼ 1 forNf →∞ and where only

lower order quantities in powers of Nf in the numer-
ators of the terms in the series in (39) are disregarded
in the asymptotic calculations. If the coefficients de-
crease fast, the role of these lower order quantities is
insignificant [the sum of all coefficients of all pow-
ers of Nf in the nth term of the series and in all
combinations involving trM2 and (trM)2 is n!]. If, in
addition, we assume that, upon the substitution ofNf
and Nc = 3, the asymptotic value of fπ from planar
diagrams becomes equal to the physical value, the
expressions obtained by calculating (39) for Nf = 3
andNf →∞ will be close to each other.
However, even this proximity is purely coinciden-

tal. Under the same conditions, we will calculate the
contribution to the mass of the pseudoscalar Gold-
stone boson. It can be proven that the contributions
from R±2 (7) to the square of the mass and to the co-
efficients of the factors tr(MφπMφπ), tr(MφπφπM),
(trMφπ)2, . . . can be represented as the series in (28)
with different C(n,Nf ) (here, φπ are matrices corre-
sponding to the multiplet particles). The sum of all
coefficients of all powers of Nf and of the combina-
tions tr(MφπMφπ) . . . now grows in proportion to
(n + 1)2n!. As before, the series converges fast; for a
pseudoscalar boson, it begins at n = 3 since there are
no π → 2π transitions. We have [for tr(MφπMφπ)]

−
(

∆(x)
f2
π

)3 2N2
f + 20
(3!)2

+
(

∆(x)
f2
π

)4 2N3
f + 70Nf
(4!)2

(40)

−
(

∆(x)
f2
π

)5 2N4
f + 162N2

f + 560
(5!)2

+ . . . .

Even in the first term, the factor 20 exceeds (at Nf =
3) the contribution that is reproduced in calculating
the asymptotic behavior in Nf by 100%. From the
coefficients of the series, it can be seen how fast the
number of nonplanar contributions belonging to the
type in Fig. 1b grows in relation to planar contribu-
tions, which are taken into account in the asymptotic
regime. In calculating higher order terms of the ex-
pansion in N−2

f , it is therefore necessary to include
ever farther terms of the series, and the result atNf =
3 in each order in Nf will again be inaccurate by
100%.

6. CONCLUSION

At large values ofNf , the result in (37) arises only
from terms in the series in (28) that correspond to
PH
large n. At small Nf , these terms are virtually imma-
terial since the main contribution comes from the first
terms of the series in n. At largeNf , the contribution
from expression (37) is small since, for Nf →∞, the
quantity in (37) decreases in proportion toN−(1+1/4)

f .
However, its continuation to actual values of Nf
would considerably affect the result obtained there. It
should be emphasized once again that formula (37)
and expressions that correspond to small values ofNf
emerge from different fragments on the series in n. In
the two case in question, that of small Nf and that of
Nf →∞, terms from the opposite ends of the series
in (29) for C(n,Nf ) are used in the calculations.
If, at large Nf , we have f2

π → NfQ(ρ)/ρ [at ρ =
Nf/Nc = const], the situation undergoes virtually no
changes. First, it would be natural to assume that, in
the low-energy series for f2

π and 〈q̄RqL〉, the param-
eters that are determined from an asymptotic calcu-
lation, but which are taken at Nf = Nc = 3, will be
different from physical QCD values. Second, it can be
conjectured that, even if this is not so, the emergence
of close results from calculations at small Nf and
Nf →∞ is accidental.
Under such conditions, it would be inadequate to

estimate the result of actual QCD on the basis of the
asymptotic behavior forNf →∞.
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APPENDIX

The derivation of formula (1) is based on the fol-
lowing properties of QCD at largeNc:
1. At large Nc, it is necessary to sum only the

contributions of planar diagrams [1], but, owing to
the fact that Nf takes simultaneously large values,
one must include all possible quark loops. The in-
variant charge is in inverse proportion to Nc {for the
one-loop contribution to the beta function, we have
αs ∼ [Nc(11− 2ρ)]−1}. Diagrams that determine fπ
(diagrams for 〈π|J (5)

µ (0)|0〉) are then proportional to
Nc orNf = ρNc.
2. The dependence on ρ in the function Q(ρ)

stems from two sources. First, there is a dependence
YSICS OF ATOMIC NUCLEI Vol. 66 No. 11 2003
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through the invariant charge—that is, the depen-
dence that emerges from quark loops within gluon
propagators (we refer to such loops as reducible
loops). Second, there are contributions from dia-
grams involving irreducible quark loops. Each loop
yields a minus sign and the factor Nf = ρNc. The
series in the loop contributions is alternating. In view
of this, the occurrence of real-valued zeros is highly
probable for the function Q(ρ). Of course, QCD
dynamics must be retained—that is, the possible
values of ρ are constrained (ρ < 11/2 for the one-loop
beta function).
3. The wave function 〈π| of the hadron entering

into the diagrams for fπ introduces the factorN
−1/2
c .

4. It is assumed that these diagrammatic state-
ments can be extended to the nonperturbative regions
of QCD as well.
We also note that the quantity NfQ(ρ) emerges

exclusively from planar diagrams, whence it follows
that, at Nf = 3 and ρ = 1, it must not generally co-
incide with the physical constant f2

π , which receives
contributions not only from planar but also from non-
planar diagrams, the number of the latter being, in
each order, greater than the number of the former by a
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 11 20
factorial factor. The quark-condensate density must
also change. All this may also affect the numerical
values of the calculated quantities.

REFERENCES
1. G. ’t Hooft, Nucl. Phys. B 72, 461 (1974).
2. E. Witten, Nucl. Phys. B 149, 285 (1979); D. I. Di-
akonov, V. Yu. Petrov, and P. V. Pobylitsa, Nucl. Phys.
B 306, 809 (1988).

3. J. A. Gracey, Nucl. Instrum. Methods Phys. Res. A
389, 361 (1997); hep-ph/9509276.
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Abstract—Branelike vertex operators, defining backgrounds with ghost–matter mixing in Neveu–
Schwarz–Ramond superstring theory, play an important role in a world-sheet formulation ofD branes and
M theory, being creation operators for extended objects in the second quantized formalism. We show that
the dilaton beta function in ghost–matter mixing backgrounds becomes stochastic. The renormalization
group (RG) equations in ghost–matter mixing backgrounds lead to non-Markovian Fokker–Planck
equations whose solutions describe superstrings in curved spacetimes with branelike metrics. We show
that the Feigenbaum universality constant δ = 4.669 . . . , describing transitions from order to chaos in a
huge variety of dynamical systems, appears analytically in these RG equations. We find that the appearance
of this constant is related to the scaling of relative spacetime curvatures at fixed points of the RG flow.
In this picture, the fixed points correspond to the period doubling of Feigenbaum iterational schemes.
c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Superstring theory is our current hope to put grav-
ity in a Prokrust bed of quantum mechanics. In spite
of all the spectacular progress in the last quarter of the
century [1], the full structure and underlying symme-
tries of the theory have yet to be unveiled. One of the
most striking features of string theory is a deep rela-
tion between renormalization group (RG) flows on a
world sheet and an evolution in a target space. Critical
points of these RG flows, described by 2D conformal
field theories (CFT), determine equations of motion
in a target space. The structure of these equations
is determined by the world-sheet correlation func-
tions of the appropriate vertex operators in respec-
tive CFT [2]. Thus, in the standard string pertur-
bation theory, the beta-function equations describe
the behavior of small fluctuations around flat back-
grounds. The CFT description of strings in curved
backgrounds, such as of strings in the presence of
branes, as well as the underlying CFT of strongly
coupled strings, is much harder a problem to tackle, in
particular, because adequate knowledge of quantum
degrees of freedom of M theory and nonperturbative
strings is still lacking. Some time ago, we proposed

∗This article was submitted by the authors in English.
†Deceased.
1)Theoretical Physics, Department of Physics, OxfordUniver-
sity, UK.

2)ITEP, Moscow, Russia.
3)Department of Physical Sciences, University of Helsinki and
Helsinki Institute of Physics, Helsinki, Finland.

**e-mail: Dimitri.Polyakov@helsinki.fi
1063-7788/03/6611-2062$24.00 c©
the formalism [3–6] that describes the nonperturba-
tive dynamics of solitons in string and M theory in
terms of a special class of vertex operators, called
branelike states. The crucial distinction of these ver-
tex operators from a usual one (such as a photon or a
graviton) is that they exist at nonzero ghost pictures
only. The simplest example of these vertices in the
closed-string case is given by

V
(−3)
5 (q) =

∫
d2ze−3φ−φ̄ψt1 . . . ψt5ψ̄t6e

iqaXa(z, z̄),

(1)

V
(−2)
5 (q) =

∫
d2zc∂χeχ−3φ−φ̄ψt1 . . . ψt5ψ̄t6

× eiqaXa(z, z̄),

V
(+1)
5 (q) =

∫
d2zeφ−φ̄ψt1 . . . ψt5 ψ̄t6e

iqaXa(z, z̄)

+ b− c ghosts;
a = 0, . . . , 3, ti = 4, . . . , 9.

It is important that the BRST nontriviality and invari-
ance conditions on this vertex confine its propagation
to the four-dimensional subspace (labeled by the a
index), transverse to its polarization defined by six ti
indices. This six-form vertex exists only at pictures
below −2 or above +1, while there is no version of
this operator at pictures 0 and −1.

This means that the discrete picture-changing
gauge symmetry is broken for such operators and
their superconformal ghost dependence cannot be re-
moved by any picture-changing transformation. We
shall refer to this property of the branelike vertices as
ghost–matter mixing. The crucial property of these
2003 MAIK “Nauka/Interperiodica”
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special vertex operators is that they do not correspond
to any perturbative string excitation but describe the
nonperturbative dynamics of extended solitonic ob-
jects, such as D branes. It appears that the nonper-
turbative character of these vertices is closely related
to their ghost–matter mixing properties on the world
sheet, with the latter encoding crucial information
about the brane dynamics. In [6], we have shown that
the low-energy effective action of the sigma model
with branelike states is given by the Dirac–Born–
Infeld (DBI) action for D branes. From the world-
sheet point of view, this means that the insertion
of vertices with the ghost–matter mixing makes the
deform CFT describing strings in flat spacetime and
it flows to a new fixed point, corresponding to the
CFT of strings in a curved background induced by
D branes. In this paper, we shall further investi-
gate RG flows in the ghost–matter mixing back-
grounds. It appears that properties of these RG flows
are stunningly different from the usual ones.We found
that ghost–matter mixing adds to RG flow operator-
valued stochastic terms. Even more intriguing is the
emergence of a universal constant in the RG equa-
tions which with accuracy less than 0.5% is nothing
but the logarithm of the famous Feigenbaum constant
δ = 4.669 [7]. This coincidence is not accidental but
reflects remarkable and new relations between su-
perstrings, chaos, gravity, and stochastic processes,
which is the subject of this paper.

2. DILATON BETA FUNCTION
IN GHOST–MATTER MIXING

BACKGROUNDS

A crucial property of world sheet conformal beta
functions (e.g., of a dilaton) in ghost–matter mixing
backgrounds is the presence of stochastic terms in
the RG equations. In usual perturbative backgrounds
(e.g., of a graviton or an axion), such terms are absent
and the beta-function equations are deterministic.
Things, however, become different in backgrounds
with ghost–matter mixing. One specific property of
the branelike states, distinguishing them from usual
perturbative vertex operators, is that their OPE alge-
bra is picture-dependent. Below, we will show that
this picture dependence leads to nondeterministic
stochastic terms in the dilaton beta function. The
stochasticity of the renormalization group, in turn,
will be shown to be closely related to the nonper-
turbative nature of the branelike states and their
relevance to the nonperturbative description of branes
and strings in curved backgrounds. Let us start with
the Neveu–Schwarz–Ramond (NSR) sigma model
in D = 10 perturbed by the dilaton and the ghost–
matter mixing vertex (1). The generating functional
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 11 20
for this model is given by

Z(ϕ, λ) =
∫

DXDψD[ghosts] : f(Γ) :: f(Γ̄) :

(2)

× exp
{

−SNSR +
∫

d4qλ(q)
∫

d2zV
(−3)
5 (z, z̄; q)

+
∫

d10pϕ(p)
∫

d2wV (−2)
ϕ (w, w̄; p)

}

.

Here, V
(−3)
5 is the ghost–matter mixing vertex (1),

creating theD3-brane background; V (−2)
ϕ is the dila-

ton vertex operator taken at the ghost picture −2;

: f(Γ) : = :
1

1− Γ
: = 1+ : Γ : + : Γ2 : + . . .

is the measure function of picture-changing oper-
ator; : Γ : = : eφG : with G = Gm + Ggh being the
full matter plus ghost world-sheet supercurrent. This
measure function is necessary to insure the correct
ghost number balance in the correlation function;
: f(Γ̄) : is defined similarly. In the perturbative case,
the : f(Γ)f(Γ̄) : insertion simply insures that all the
operator product expansions (OPE) of the vertex op-
erators are equivalent at all the picture levels and
all the structure correlation functions are picture-
independent. The dilaton vertex operator can be taken
at any negative picture. The negative value of the dila-
ton picture, along with the : f(Γ) : in the measure, in-
sures the correct overall ghost number in correlation
functions involving the dilaton (which must be equal
to −2 on the sphere); this vertex operator is picture-
independent (meaning the picture independence of its
matrix elements with other states) and the results of
the dilaton beta function are independent of the Vϕ
picture as well. It is convenient to take Vϕ at picture
−2 (both left and right), as in this case the dilaton
vertex operator is given by

Vϕ(p) =
∫

d2ze−2φ−2φ̄∂Xm

× ∂Xn(ηmn − kmk̄n − knk̄m).

In the absence of ghost–matter mixing, the func-
tions : f(Γ) : and : f(Γ̄) : simply insure that the beta-
function equations for any closed-string spacetime
fields are identical for any picture representation of
corresponding closed-string vertex operators. In or-
der to compute the dilaton beta function in the pres-
ence of the V5 operator, one has to expand this gener-
ating functional in ϕ and λ. In the absence of ghost–
matter mixing, the dilaton (or any other closed-string
field’s) beta function in any background is simply
given by the appropriate three-point correlators, or
03



2064 KOGAN, POLYAKOV
the structure constants. In the ghost–matter mix-
ing case, however, the situation is different, since
the structure constants are picture-dependent and,
therefore, expressing the beta function in terms of
three-point correlation functions is not well defined.
Therefore, to determine the beta function, one has
to point out the UV logarithmic divergences due to
the OPE singularities (generally speaking, picture
dependent) and to sum over all the pictures.

Expanding the generating functional (2) up to the
third order of λ and the second order of ϕ, we obtain

Z(ϕ, λ) =
∫

DXDψD[ghosts] : f(Γ) :: f(Γ̄) :

(3)

× e−SNSR

{

1 +
∫

d10pϕ(p)
∫

d2zV (−2)
ϕ (z, z̄; p)

+
∫

d4qλ(q)
∫

d2wV
(−3)
5 (w, w̄; q)

+
∫

d10p

∫
d4qλ(q)ϕ(p)

∫
d2z

∫
d2w

× V (−2)
ϕ (z, z̄; p)V (−3)

5 (w, w̄; q)

+
1
2

∫
d4q1λ(q1)

∫
d4q2λ(q2)

∫
d2w1

∫
d2w2

× V
(−3)
5 (w1, w̄1; q1)V

(−3)
5 (w2, w̄2; q2)

+
1
2

∫
d10p1ϕ(p1)

∫
d10p2ϕ(p2)

∫
d2z1

∫
d2z2

× V (−2)
ϕ (z1, z̄1; p1)V (−2)

ϕ (z2, z̄2; p2)

+
1
6

∫
d4q1

∫
d4q2

∫
d4q3λ(q1)λ(q2)λ(q3)

×
∫

d2w1

∫
d2w2

∫
d2w3V

(−3)
5 (w1, w̄1; q1)

× V
(−3)
5 (w2, w̄2; q2)V

(−3)
5 (w3, w̄3; q3) + . . .

}

,

where we dropped the higher order terms, as well
as those irrelevant to our discussion (such as those
of the order of λ2ϕ or ϕ2λ). To determine the UV
divergences in the partition function (2), (3), relevant
to the dilaton beta function, one has to point out
the relevant singular terms in the OPE algebra of
the dilaton and V5. In the on-shell limit, the relevant
terms in the operator algebra are given by

V
(−3)
5 (w1, w̄1; q1)V

(−3)
5 (w2, w̄2; q2) (4)
PH
∼
C[−3|−3](q1, q2)V

(−6)
ϕ (q1 + q2)

|w1 − w2|2
+ . . . ,

V
(−3)
5 (w1, w̄1; q1)V

(+1)
5 (w2, w̄2; q2)

∼
C[−3|1](q1, q2)V

(−2)
ϕ (q1 + q2)

|w1 − w2|2
+ . . . ,

V
(+1)
5 (w1, w̄1; q1)V

(+1)
5 (w2, w̄2; q2)

∼
C[1|1](q1, q2)V

(+2)
ϕ (q1 + q2)

|w1 − w2|2
+ . . . ,

where

C[−3|−3](q1, q2) ∼ (q1q2)(1 + (q1 + q2)2), (5)

C[−3|1](q1, q2) ∼ (q1q2),

C[1|1](q1, q2) ∼ (q1q2)(1− (q1 + q2)2).

Next, one has to point out the picture-changing rules
for the left (holomorphic) part of the V5 operator, in
order to specify how it is acted on by : f(Γ) :. The
antiholomorphic part and its interaction with : f(Γ̄) :
do not interest us since it is the photon-like part
existing at all pictures and all its picture changings
are trivial. The picture-changing transformation rules
for the V5 operators (1) can be written in the form

: Γ :n V
(k)
5 (p) = α[k|n+k]V

(N+k)
5 (p), (6)

α[i|j] = α[m|n] = α[s|t] = 1,

α[a|j] = α[a|b] = α[s|a] = 0,

α[i|m] = α[s|m] = 1 + p2;

s, t = −∞, . . . ,−4; i, j = −3,−2;
a, b = −1, 0; m,n = 1, 2, . . . .

In the beta-function calculations, when the vertex op-
erators are taken just slightly off-shell, the following
identities are useful:

α[i|m]C[m|n] = C[i|n]; α[i|m]C[m|j] = C[i|j]. (7)

Finally, using the fact that picture-changing oper-
ators form the polynomial ring

: Γ :m+n = : ΓmΓn : + [QBRST, . . .], (8)

the action of the : Γn : operator on the vertex opera-
tors inside the functional integral can be expressed as
〈: Γn : (w)V1(z1) . . . VN (zN )〉 =
k1+...+kN−1=n∑

k1,...,kN−1=0

N−n n!
k1! . . . kN−1!(n− k1 − . . .− kN−1)!

(9)
YSICS OF ATOMIC NUCLEI Vol. 66 No. 11 2003
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× 〈: Γ :k1 V1(z1) . . . : Γ :kN−1 VN−1(zN−1) : Γ :n−k1−...−kN VN (zN )〉;
i.e., the correlator does not depend on w. The fac-
tor N−n in (9) ensures the correct normalization of
amplitudes in the picture-independent case. Using
relations (6)–(9), we are finally in the position to start
evaluating the beta function. The first contribution of
interest to the beta function comes from the λ2 term,
bilinear in the V5 operator. At any given picture level
n, this term leads to the following divergence in the
order of λ2:

1
2

∫
d2w1

∫
d2w2〈: Γn+6 : V (−3)

5 (w1, w̄1) (10)

× V
(−3)
5 (w2, w̄2) . . . 〉 = log Λ · 2−n−7

×
n+6∑

k=0

(n + 6)!
k!(n + 6− k)!

α[−3|k−3]C[k−3|n+3−k]

× α[−3|n+3−k]

∫
d2ξ〈V (n)

ϕ (ξ, ξ̄) . . . 〉,

where we introduced the coordinate change ξ =
1/2(w1 + w2), η = 1/2(w1 − w2) and log Λ =∫
Λd2η/|η|2 is the log of the world-sheet UV cutoff,

appearing as a result of the integration over η (note
that the vertex operators on the right-hand side of
the operator product (10) are η-independent). For
the sake of brevity, we suppress the momentum
dependence of fields, vertices, and structure constants
here and below. This divergence is removed by renor-
malizing the dilaton field as

ϕ→ ϕ−
∞∑

n=0

2−n−7
n+6∑

k=0

(n + 6)!
k!(n + 6− k)!

α[−3|k−3]

(11)

× C[k−3|n+3−k]α[−3|n+3−k]λ
2 log Λ.

In the absence of picture dependence, the sum over
F ATOMIC NUCLEI Vol. 66 No. 11 20
k would have been reduced to (1/2)Cλ2 log Λ for
each picture, as it should be in the standard case
when ghost–matter mixing is absent (where C are
the structure constants with the picture indices sup-
pressed).

As a result of the dilaton RG flow, the λϕ cross-
term is renormalized by λ3 logarithmic divergence as

λϕ

∫
d2w1

∫
d2w2 (12)

× 〈: f(Γ) : V (−3)
5 V (−2)

ϕ . . . 〉λ3logΛ
∞∑

n=0

2−2n−12

×
k+l=n+5∑

k,l=0

(n + 5)!(n + 6)!
k!l!(n + 5− l)!(n + 6− k)!

α[−3|n+2−l]

× α[−3|k−3]α[−3|n+3−k]C[k−3|n+3−k]

∫
d2w1

×
∫

d2w2〈V (−6)
ϕ (w1, w̄1)V

(n+6)
5 (w2, w̄2) . . . 〉,

where in our derivation we used the invariance of Vϕ
and transformation properties (6) of V5 under the
picture changing. In the absence of ghost–matter
mixing when one always has α = 1 and picture-
independent C, it is easy to check that λϕwould have
been renormalized to

−1
2
Cλ3 log Λ

∫
d2w1

∫
d2w2V (w1, w̄1)V (w2, w̄2)

(13)

at each picture level (again, we suppressed the rel-
evant indices for the structure constants and vertex
operators). In the case under consideration, however,
using identities (7) relating α and C, we can recast
the renormalization of the λϕ term under the flow (11)
as
Aλϕ ∼ λϕ : f(Γ) : λϕ
∫

d2w1

∫
d2w2V

(−3)
5 V (−2)

ϕ (14)

→ −λ3logΛC[−3|−3]α[−3|1]

∫
d2w1

∫
d2w2V

(−6)
ϕ (w1, w̄1)V

(n+6)
5 (w2, w̄2)

×
∞∑

n=0

k=n+6;l=n+5∑

k,l=0; k �=2,3,n+3,n+4; l �=n+2,n+3

(n + 5)!(n + 6)!
k!l!(n + 5− l)!(n + 6− k)!

.

This gives the renormalization of the λϕ cross-term
under the RG flow (11) of the dilaton field in the
ghost–matter mixing case. This contribution to the
world-sheet renormalization group has the order of
λ3. The other contribution of the same order of λ3

to the dilaton beta function comes from the OPE
03
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singularities inside the λ3 term itself, appearing in
the expansion (3) of the partition function. Using
the OPE (4) and evaluating the singular world-sheet
integrals as in (10), (11), we get

Aλ3 =
1
6
λ3

∫
d2w1

∫
d2w2

∫
d2w3 (15)

× 〈V (−3)
5 (w1, w̄1)V

(−3)
5 (w2, w̄2)

× V
(−3)
5 (w3, w̄3) . . . 〉 ∼

1
2
λ3logΛ

∞∑

n=0

3−n−10

×
k+l=n+9∑

k,l=0

(n + 9)!
k!l!(n + 9− k − l)!

∫
d2w1

∫
d2w2

× 〈V (−6)
ϕ (w1, w̄1)V

(n+6)
5 (w2, w̄2) . . . 〉

×
{
C[k−3|l−3]α[−3|k−3]α[−3|n+6−k−l]α[−3|n+6]

+ C[k−3|n+6−k−l]α[−3|k−3]α[−3|l−3]α[−3|n+6]

+ C[k−3|n+6−k−l]α[−3|l−3]α[−3|n+6−k−l]α[−3|n+6]

}
.

Again, it is easy to see that, in the absence of ghost–
matter mixing (α = 1; allC are picture-independent),
this contribution would sum up to

1
2
Cλ3 log Λ

∫
d2w1

∫
d2w2V (w1, w̄1)V (w2, w̄2),

(16)

precisely canceling the divergence of the same λ3

type originating from the renormalization of the λϕ
cross-term under the flow. In the picture-independent
case, this ensures that the renormalization (11) of the
dilaton field under the flow does not bring about any
PH
additional singularities from higher order terms, such
as the cubic one and the λϕ cross-term. In particular,
this guarantees that terms of the type

∼Cλ3log Λ
∫

Λ

d2wV5(w, w̄) (17)

(
∫
Λ denotes the world-sheet integral cut at the Λ

scale) never appear in the dilaton or other perturba-
tive close-string field beta functions in the picture-
independent case. This ensures, in turn, that, in the
absence of ghost–matter mixing, the world-sheet be-
ta function is always deterministic (just as it is well
known to be the case in the standard string pertur-
bation theory). On the contrary, should terms of this
type appear in the beta function, that would imply
that the RG equations become stochastic, since, from
the point of view of the spacetime fields, world-sheet
operator

∫
Λ d2wV5(w, w̄) is a stochastic random vari-

able, with the cutoff parameter Λ playing the role of
the stochastic time. In this case, the RG equations
have the form of non-Markovian Langevin equations,
where the memory of the noise is determined by the
world-sheet correlation of the V5 operators. This ex-
actly is what happens in the ghost–matter mixing
backgrounds, when the OPE of vertex operators are
picture-dependent. As a result of the picture depen-
dence, the flows of the λϕ and λ3 terms under the RG
do not cancel each other and, as a result, the beta
function of the dilaton gets the stochastic terms, as
Aλ3 + Aλϕ �= 0. Indeed, using identities (7), we can
write (15) in the form
1
2
C[−3|−3]α[−3|1]λ

3logΛ
∞∑

n=0

3−n−9
k+l=n+9∑

k,l=0;k �=2,3;l �=2,3;k+l �=n+5,n+6

(n + 9)!
k!l!(n + 9− k − l)!

(18)

×
∫

d2w1

∫
d2w2〈V (−6)

ϕ (w1, w̄1)V
(n+6)
5 (w2, w̄2) . . . 〉,
giving the contribution of the Aλ3 term to the flow.
Now, to get the total flow on the λ3 level, one has
to subtract the flow (14) from this expression. The
difference would give the overall coefficient before the
stochastic term of the type (17) in the beta function of
the dilaton. Comparing (14) and (18) and performing
the summations, we find that the additional renor-
malization of the dilaton field necessary to remove the
extra singularities from the λ3 and λϕ terms, arising
due to the OPE picture dependence in ghost–matter
mixing backgrounds, is given by

ϕ→ ϕ− C[−3|−3]α[−3|1]λ
3logΛ (19)
×
∫

d2wV
(−3)
5 (w, w̄)

{

−1 +
∞∑

n=0

[
(n + 4)2

× (n + 5)3(n + 6) · 2−2n−12 +
1
96

(n + 8)(n + 9)

× (n + 13)(2/3)n+9 − ((n + 4)2(n + 5)

+ (1/2)(n + 5)2(n + 6)) · 2−n−6
]
}

.

The summation over n converges to

−σ = −1 +
∞∑

n=0

[

(n + 4)2(n + 5)3 (20)
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× (n + 6) · 2−2n−12 +
1
96

(n + 8)(n + 9)

× (n + 13)(2/3)n+9 − ((n + 4)2(n + 5)

+ (1/2)(n + 5)2(n + 6)) · 2−n−6

]

= −1.534.

Therefore, the resulting beta-function equations for
the dilaton in the ghost–matter mixing background
give

dϕ

dlogΛ
= −δSϕ

δϕ
+ σC[−3|−3]α[−3|1] (21)

×
∫

Λ

d2wV
(−3)
5 (w, w̄),

where Sϕ ∼
∫

dx∂mϕ∂mϕ is the low-energy effective
action for the dilaton in the absence of the V5 back-
ground.

With the restored momentum dependence, this
equation can be written as

dϕ(p)
dlogΛ

= − δSϕ
δϕ(p)

+ σC(p)
∫

d4qλ(q) (22)

×
∫

Λ

d2wV
(−3)
5 (w, q),

C(p) =
∫

d4kC[−3|−3](p, k)λ
(

k + p

2

)

λ

(
k − p

2

)

,

with σ = 1.534 . . . . Thus far, we have considered only
one particular example of the ghost–matter mixing—
the branelike vertex operator V

(−6)
5 and its incarna-

tions in higher pictures. There are other examples of
vertex operators with ghost–matter mixing, and they
also lead to stochastic terms in the beta function of
the dilaton. In particular, we have also considered
the dilaton field in the background of closed-string
operators of higher ghost cohomologies:

W5 ∼
∫

d2ze−4φ−φ̄∂X(m1
. . . ∂Xm3)ψ̄m6 (23)

× eik
⊥XGm1...m5,m6 ,

where the G tensor is symmetric and traceless in
m1, . . . ,m5 (round brackets imply the symmetriza-
tion in spacetime indices) and k⊥ is transverse to
m1, . . . ,m6 directions, and

U5 ∼
∫

d2ze−4φ−φ̄∂X(m1
. . . ∂Xm4)ψm5 (24)

× ψm6ψ̄m7e
ik⊥XGm1...,m7 .

We have found that, even though the OPE details
are quite different in each case, nevertheless, in the
end one always gets the beta-function equations in
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 11 20
the form (22). The crucial point is that the σ fac-
tor, reflecting the stochasticity of the beta function,
appears to be universal and its value is independent
of details of the ghost–matter mixing. Namely, we
have found [8] σ = 1.541 . . . for the W5 insertion and
σ = 1.538 . . . for theU5 case. In other words, the form
of these equations is determined by the corresponding
coefficient of the OPE of two operators before the
dilaton and the numerical factor of σ. What is quite
remarkable, the coefficient σ = 1.534 . . . before the
stochastic term is always the same and seems to be
invariant to details of the ghost–matter mixing (in the
absence of ghost–matter mixing, of course, σ = 0).
What is even more remarkable, we can easily check
that, in fact,

σ = ln δ, (25)

where δ = 4.669 . . . is the famous Feigenbaum uni-
versality constant describing the universal scaling of
the iteration parameter in a huge variety of dynamical
systems under bifurcations and transitions from order
to chaos [7]. Usually, this constant can be obtained
numerically for the dynamical systems under the bi-
furcations. In our approach, however, the log of the
Feigenbaum constant has emerged analytically, as
the limit of convergent series (20) in the stochastic
term in the beta function for various ghost–matter
mixing backgrounds. In the next section, we will
show that the appearance of the Feigenbaum con-
stant in the beta function for the dilaton in ghost–
matter mixing backgrounds is not at all occasional,
but is deeply related to the peculiarities of the non-
Markovian stochastic processes, associated with the
Langevin equations and their implications for the
spacetime geometry.

3. FEIGENBAUM UNIVERSALITY
AND FIXED POINTS OF STOCHASTIC

RG EQUATIONS
To understand the physical meaning behind the

appearance of the Feigenbaum constant in (20), it
is necessary to analyze the non-Markovian Fokker–
Planck (FP) equation describing the stochastic pro-
cess which can be straightforwardly derived from the
Langevin Eq. (22). We shall present here the FP
equation for scaling functions λ(q) = λ0/q

4:

∂PFP(ϕ, τ)
∂τ

(26)

= −
∫

d4p

∫
d4q

δ

δϕ(p, τ)

(
δSϕ

δϕ(q, τ)
PFP(ϕ, τ)

)

+ σ2λ6
0

∫
d4k1

∫
d4k2

∫
d4p

p4

∫
d4q

q4

∫
dξα[−3|1]

×C[−3|−3]

(
k1 + p

2

)

α[−3|1]C[−3|−3]
03
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×
(

k2 + q

2

)
δ

δϕ(p, τ)
G5(ξ, τ)

δ

δϕ(q, ξ)
PFP(ϕ, τ),

where τ = log Λ now plays the role of the stochastic
time variable. The Green’s function G5(ξ, τ, p, q) is
defined by the cutoff dependence of the two-point
correlator of the V5 vertices:

G5(ξ, τ) =
∫

Λ1

d2z

∫

Λ2

d2w|z − w|−4 (27)

× δ(p + q) =
(

1 + eξ−τ

1− eξ−τ

)2

δ(p + q),

ξ = log Λ1, τ = log Λ2.

We shall look for the ansatz solving this equation
in the form (for more details, see [3] and references
therein)

PFP(ϕ, τ) = exp[−HADM(ϕ, τ)] (28)

= exp
[

−
∫

d4p
{
g(τ)(∂τϕ)2 + f(τ)p2ϕ2

}
]

.

Substituting it into (26), we find that (28) solves the
FP equation provided that the functions f(τ) and
g(τ) satisfy the following differential equations:

g′(τ) + 4g(τ) +
σ2λ6

0

2
= 0, (29)

1
4
f ′′ +

(

1 +
1
4τ

)

f ′ +
(

1 +
1
4τ

+
1

4σ2λ6
0

×
(

1− 1
τ2

))

f −
(

1− 1
τ2

)(

e−2τ +
1

4σ2λ6
0

)

= 1.

The first equation is elementary, its solution being
given by

g(τ) =
σ2λ6

0

2
(e−4τ − 1), τ < 0. (30)

The second equation on f(τ) can be reduced to a
Bessel-type equation by substituting

f(τ) = ρ(τ)e−2τ +
1

σ2λ6
0

.

The solution is given by

f(τ) = 1 + σ2λ6
0e

−2τ

(

1 + J 1

σλ3
0

(
τ

σλ3
0

))

, (31)

where J 1

σλ3
0

(
τ

σλ3
0

)

is a Bessel function. In terms of

the τ coordinate, the stochastic process describing
the RG flow in ghost–matter mixing backgrounds
evolves in the direction of τ = −∞. Next, let us study
the behavior of the FP distribution (28), (30), (31)
PH
in the conformal limit of τ → −∞. In this limit, the
exponents become very large and, moreover,

J 1

σλ3
0

(
τ

σλ3
0

)

∼ O

(
1√
τ

)

 1, (32)

and after rescaling the distribution reduces to

H(ϕ, τ) = R2

∫
d4p
{
e−4τ (∂τϕ)2 + p2e−2τϕ2

}
,

(33)

which is just the ADM Hamiltonian for the AdS5

gravity in the temporal gauge [9]. It is easy to see that
the λ6

0 parameter has the meaning of the square of the
radius R2 of the metric.

Let us now analyze inmore detail the solution (28),
(30), (31) to the non-Markovian FP equation, leading
to a new space geometry. Let us note first of all that
the limit λ0 → 0 is not the same as λ0 = 0 (ghost–
matter mixing absent). The RG flow described by
the effective metric (30), (31) must be single-valued;
since Bessel functions at zero argument are single-
valued for integer orders only, this leads to the quan-
tization condition

(σλ3
0)

−1 = N. (34)

Moreover, since Jν(τ) ∼ τν as τ → 0, the absence
of unphysical singularities at τ = 0 requires N to be
positive. The quantization condition (32) implies that

((λ0)N )−3 = Nσ, e(λ0)−3
N = δN , (35)

implying the iteration law

e(λ0)−3
N+1 − e(λ0)−3

N

e(λ0)−3
N − e(λ0)−3

N−1

= δ, (36)

with δ being the Feigenbaum number.
Therefore, the Feigenbaum iteration rule (36) de-

termines the scaling of characteristic curvatures of
geometries emerging at fixed points of the stochastic
renormalization group. The role of the iteration pa-
rameter characterizing the bifurcations is played by

∼exp
(

− 1
R2

)

, vanishing at R = 0 and being finite

at large R, as it should be the case for the scaling
parameter of the Feigenbaum iteration scheme.

From the quantization condition (34), it is clear
that the stochastic renormalization group (22) has
fixed points for 0 < λ0 < 1 (physically, these points
correspond to large curvatures). Moreover, the period
doublings that lead to the transition to chaos corre-
spond to N →∞, i.e., λ0 → 0, which is a singular-
ity. Thus, we reached an amazing conclusion that,
precisely near a singularity, our RG flow becomes
chaotic. It is tempting to assume that this may be the
mechanism which can solve the problem of singular-
ities in string theory.
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4. CONCLUSION

In this paper, we discussed how matter–ghost
mixing can radically modify the nature of the world-
sheet RG flows and lead to the emergence of chaos
near curvature singularities. Here, we analyzed only
dilaton evolution, but a similar picture can be ob-
tained for other massless fields, for example, met-
ric [8].

It is amusing that, recently, chaotic behavior of
a metric was discussed in [10] (for earlier papers,
see [11] and references therein), where the emergence
of chaos in supergravity near a cosmological singu-
larity was demonstrated in the presence of higher rank
antisymmetric tensor fields, i.e., R–R fields. It will
be extremely interesting to understand how chaos
emerging during cosmological evolution in super-
gravity can be related to the chaotic nature of RG
flows in underlying string theory in the presence of the
sources of the background R–R fields.

It is tempting to assume that the resolution of
the singularities problem is transition to chaos and
emergence of smooth distributions of fields, not re-
stricted on-shell. One can imagine that curvature R
is some new Reynolds number in string theory, and
for large R one has transition to chaotic behavior in
a similar fashion as in hydrodynamics where there is
a transition from a laminar to a turbulent flow. These
ideas definitely need further investigation.
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Abstract—The present theory is based on the assumption that, at very small (Planck scale) distances our
spacetime is discrete, and this discreteness influences the Planck scale physics. Considering our (3 + 1)-
dimensional spacetime as a regular hypercubic lattice with a parameter a = λPl, where λPl is the Planck
length, we have investigated a role of lattice artifact monopoles, which is essential near the Planck scale
if the family-replicated gauge group model (FRGGM) is an extension of the Standard Model (SM) at
high energies. It was shown that monopoles have N times smaller magnetic charge in the FRGGM
than in the SM (N is the number of families in the FRGGM). These monopoles can give an additional
contribution to β functions of the renormalization-group equations for the running fine structure constants
αi(µ) (i = 1, 2, 3 correspond to the U (1), SU (2), and SU (3) gauge groups of the SM). We have used the
Dirac relation for renormalized electric and magnetic charges. Also, we have estimated the enlargement
of a number of fermions in the FRGGM leading to the suppression of the asymptotic freedom in the
non-Abelian theory. The different role of monopoles in the vicinity of the Planck scale gives rise either
to anti-GUT or to the new possibility of unification of gauge interactions (including gravity) at the scale
µGUT ≈ 1018.4 GeV. We discussed the possibility of the [SU (5)]3 SUSY or [SO(10)]3 SUSY unifications.
c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Trying to gain insight into nature and considering
the physical processes at very small distances, physi-
cists have made attempts to explain the well-known
laws of low-energy physics as a consequence of the
more fundamental laws of nature. The contemporary
physics of electroweak and strong interactions is de-
scribed by the Standard Model (SM), which unifies
the Glashow–Salam–Weinberg electroweak theory
with QCD theory of strong interactions.

The gauge group of symmetry in the SM is

SMG = SU(3)c × SU(2)L × U(1)Y , (1)

which describes the present elementary particle
physics up to the scale≈100 GeV.

Recently, it was shown in a number of papers [1]
that the family-replicated gauge groups of the type

SU(n)N × SU(m)N (2)

play an essential role in construction of renormal-
izable, asymptotically free, four-dimensional gauge

∗This article was submitted by the authors in English.
1)Niels Bohr Institute, Copenhagen, Denmark.
**e-mail: laper@heron.itep.ru
***e-mail: hbech@alf.nbi.dk
****e-mail: ryzhikh@heron.itep.ru
1063-7788/03/6611-2070$24.00 c©
theories that dynamically generate a fifth dimension
(or fifth and sixth ones). This theory leads to nat-
ural electroweak symmetry breaking, relying neither
on supersymmetry nor on strong dynamics at the
TeV scale. The new TeV physics is perturbative, and
radiative corrections to the Higgs mass are finite.
The Higgs scalar is an extended object (pseudo-
Nambu–Goldstone boson) and a novel Higgs poten-
tial emerges naturally requiring a second light SU(2)
doublet scalar.

We see that the family-replicated gauge groups
provide a new way to stabilize the Higgs mass in the
SM.

2. FAMILY-REPLICATED GAUGE GROUP

The extension of the SM with the family-replica-
ted gauge group (FRGG)

G = (SMG)N = [SU(3)c]N (3)

× [SU(2)L]N × [U(1)Y ]N

was first suggested by Froggatt and Nielsen [2].
In Eq. (3), N designates the number of quark and

lepton families. If N = 3 (as experiment confirms),
then the fundamental gauge groupG is

G = (SMG)3 = SMG1st fam (4)

× SMG2nd fam × SMG3rd fam.
2003 MAIK “Nauka/Interperiodica”
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The generalized fundamental group

Gf = (SMG)3 × U(1)f (5)

was suggested by the fitting of fermion masses of the
SM [3].

Recently, a new generalization of FRGG model
was suggested in [4], in which the fundamental group

Gext = (SMG× U(1)B−L)3 (6)

≡ [SU(3)c]3 × [SU(2)L]3

× [U(1)Y ]3 × [U(1)(B−L)]
3

takes into account the seesaw mechanism with right-
handed neutrinos, describes all modern neutrino
experiments, and gives a reasonable fitting of the
SM fermion masses and mixing angles. The group
G = Gext contains 3× 8 = 24 gluons, 3× 3 = 9 W
bosons, and 3× 1 + 3× 1 = 6Abelian gauge bosons.

The model is renormalizable: it has no anomalies,
neither gauge nor mixed.

The gauge group Gext undergoes spontaneous
breakdown (at some orders of magnitude below
the Planck scale) by seven different Higgs fields to
the gauge group that is the diagonal subgroup of
Gext. Therefore, seven Higgs fields break the FRGG
model to the SM. The field φWS corresponds to
the Weinberg–Salam theory. Its VEV is known,
〈φWS〉 = 246 GeV, so that we have only six free
parameters (six VEVs) to fit the experiment in the
framework of this model.

Froggatt, Nielsen, and Takanishi [4] have used
them with aim to find the best fit to conventional
experimental data for all fermion masses and mixing
angles in the SM, and also to explain the experi-
ments in the neutrino oscillations. The typical fit was
encouraging in the crude approximation. Also, the
neutrino masses were predicted.

Finally, we conclude that, in general, the theory
with FRGG symmetry is successful in describing the
SM experiment.

3. LATTICE-LIKE STRUCTURE OF OUR
SPACETIME

Having an interest in the fundamental laws of
physics, we can consider two possibilities:

(i) At very small (Planck length) distances, our
spacetime is continuous and there exists a fundamen-
tal theory with a very high symmetry.

(ii) At very small distances, our spacetime is dis-
crete, and this discreteness influences the Planck
scale physics.

The second item is an initial (basic) point of view
of the present theory, but not an approximation. It is a
basis of the theory of physical processes proceeding
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 11 20
at small distances on the order of the Planck scale
λPl = M−1

Pl :

MPl = 1.22 × 1019 GeV. (7)

In the simplest case, we can imagine our (3 + 1)
spacetime as a regular hypercubic lattice with a pa-
rameter a = λPl. Then, the lattice artifact monopoles
can play an essential role near the Planck scale. But,
of course, it is necessary to comment that we do not
know (at least on the level of our knowledge today)
what lattice-like structure (random lattice, or foam,
or string lattice, etc.) plays a role in the description of
physical processes at very small distances [5].

The aim of the present paper is also to show that
monopoles cannot be seen in the usual SM up to
the Planck scale, because they have a huge magnetic
charge and are completely confined. Supersymmetry
does not help to see monopoles.

We suggest considering a possibility of the exis-
tence of monopoles in our world, extending the Stan-
dard Model group (SMG) to the family-replicated
gauge group ((SMG)N ).

4. RENORMALIZATION-GROUP
EQUATIONS FOR ELECTRIC

AND MAGNETIC FINE STRUCTURE
CONSTANTS

Schwinger [6] was first to investigate the prob-
lem of renormalization of the magnetic charge in
quantum electromagnetodynamics (QEMD), i.e., in
the Abelian quantum field theory of electrically and
magnetically charged particles (with charges e and g,
respectively).

Considering the “bare” charges e0 and g0 and
renormalized (effective) charges e and g, Schwinger
obtained

e/g = e0/g0, (8)

which means the absence of the Dirac relation for the
renormalized electric and magnetic charges.

But there exists another solution of this prob-
lem [7–9] which gives

eg = e0g0 = 2πn, n ∈ Z, (9)

i.e., the existence of the Dirac relation (charge-
quantization condition) for both, bare and renormal-
ized, electric and magnetic charges. Here, we have
n = 1 for the minimal (elementary) charges.

These two cases lead to the two possibilities for the
renormalization-group equations (RGEs) describing
the evolution of electric and magnetic fine-structure
constants,

α =
e2

4π
and α̃ =

g2

4π
, (10)
03
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which obey the following RGEs containing the elec-
tric and magnetic β functions:

d(log α(µ))
dt

= ±d(log α̃(µ))
dt

= β(e)(α) ± β(m)(α̃).

(11)

In Eq. (11), we have

t = log
(

µ2

µ2
R

)

, (12)

where µ is the energy scale and µR is the renormal-
ization point.

The second possibility (with minuses) in Eq. (11)
corresponds to the validity of the Dirac relation for
the renormalized charges. We believe only in the
case of the Dirac relation considered by the authors
in [9], where we have used the Zwanziger formalism
of QEMD [10].

In the present paper, excluding Schwinger’s re-
normalization condition (8), we assume only the
Dirac relation for running α and α̃:

αα̃ = 1/4. (13)

It is necessary to comment that RGEs (11) are valid
only for µ > µthreshold = mmon, where mmon is the
monopole mass.

If monopole charges, together with electric ones,
are sufficiently small, then β functions can be consid-
ered perturbatively:

β(α) = β2(α/4π) + β4(α/4π)2 + . . . (14)

and

β(α̃) = β2(α̃/4π) + β4(α̃/4π)2 + . . . (15)

with (see [18] and references therein)

β2 = 1/3 and β4 = 1 for scalar particles (16)

and
β2 = 4/3 and β4 ≈ 4 for fermions. (17)

For scalar electric and magnetic charges, we have
β(e) = β(α) and −β(m) = β(α̃); therefore,

d(log α(µ))
dt

= −d(log α̃(µ))
dt

(18)

= β2
α− α̃

4π

(

1 + 3
α + α̃

4π
+ . . .

)

with β2 = 1/3, and approximately the same result
is valid for fermionic particles with β2 = 4/3. Equa-
tion (18) shows that there exists a region where both
fine structure constants are perturbative. Approxi-
mately, this region is given by the following inequali-
ties:

0.2 � (α, α̃) ≤ 1. (19)
PH
Using the Dirac relation (13), we see from Eq. (18)
that, in the region (19), the two-loop contribution is
not larger than 30% of the one-loop contribution, and
the perturbation theory can be realized in this case.

It is necessary to comment that the region (19)
almost coincides with the region of phase-transition
couplings obtained in the lattice compact QED [11].

5. EVOLUTION OF RUNNING FINE
STRUCTURE CONSTANTS

The usual definition of the SM coupling constants
is given in the modified minimal subtraction scheme
(MS):

α1 =
5
3
αY , αY =

α

cos2 θMS

, (20)

α2 =
α

sin2 θMS

, α3 ≡ αs =
g2
s

4π
,

where α and αs are the electromagnetic and SU(3)
fine-structure constants, respectively; Y is the hy-
percharge; and θMS is the Weinberg weak angle in
the MS scheme. Using RGEs with experimentally
established parameters, it is possible to extrapolate
the experimental values of three inverse running con-
stants α−1

i (µ) (here, i = 1, 2, 3 correspond to U(1),
SU(2), and SU(3) groups of SM) from the elec-
troweak scale to the Planck scale.

It is well known (see, for example, [12]) that (in the
absence of monopoles) the one-loop approximation
RGEs can be described by the following expressions:

α−1
i (µ) = α−1

i (µR) +
bi
4π

t, (21)

where slopes bi are given by the following values:

bi = (b1, b2, b3) =
(

− 4
3
Ngen −

1
10

NS , (22)

22
3
NV −

4
3
Ngen −

1
6
NS , 11NV −

4
3
Ngen

)

.

The integers Ngen, NS , and NV are, respectively, the
numbers of generations, Higgs bosons, and different
vector gauge fields.

In the SM, we have

Ngen = 3, NS = NV = 1, (23)

and the corresponding slopes (22) describe the evolu-
tions of α−1

i (µ).
The precision of the LEP data allows us to make

the extrapolation of RGEs with small errors up to
the Planck scale unless the new physics pops up, of
course. Assuming that these RGEs for α−1

i (µ) con-
tain only the contributions of the SM particles up to
YSICS OF ATOMIC NUCLEI Vol. 66 No. 11 2003
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µ = µPl ≡MPl and doing the extrapolation with one
Higgs doublet under the assumption of a “desert” and
absence of monopoles, we have the following result
obtained in [13]:

α−1
1 (µPl) ≈ 33.3; α−1

2 (µPl) ≈ 49.5; (24)

α−1
3 (µPl) ≈ 54.0.

The extrapolation of α−1
1,2,3(µ) up to the point µ = µPl

is shown in Fig. 1 as function of the variable x =
log µ (GeV). In this connection, it is very tempting
to consider also the gravitational interaction.

The gravitational interaction between two parti-
cles of equal massesM is given by the usual classical
Newtonian potential,

Vg = −GM2

r
= −

(
M

MPl

)2 1
r

= −αg(M)
r

, (25)

which always can be imagined as a tree-level approx-
imation of quantum gravity.

Then, the quantity

αg =
(

µ

µPl

)2

(26)

plays a role of the running “gravitational fine-struc-
ture constant,” and the evolution of its inverse quan-
tity is also presented in Fig. 1 together with the evo-
lutions of α−1

i (µ).

6. DROPPING OF THE MONOPOLE
CHARGE IN THE FAMILY-REPLICATED

GAUGE GROUP MODEL

In the simplest case, the scalar monopole β func-
tion in QEMD is (see [14] and [15])

β(α̃) =
α̃

12π
+

(
α̃

4π

)2

+ . . . (27)

=
α̃

12π

(

1 + 3
α̃

4π
+ . . .

)

.

From the last equation, it follows that the theory
of monopoles cannot be considered perturbatively at
least for

α̃ >
4π
3
≈ 4. (28)

This limit is smaller for non-Abelian monopoles.
Using the Dirac relation, it is easy to estimate, in

the simple SM, the Planck scale value α̃(µPl) (mini-
mal for U(1)Y gauge group):

α̃(µPl) =
5
3
α−1
1 (µPl)/4 ≈ 55.5/4 ≈ 14. (29)
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 11 20
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Fig. 1. The evolution of three inverse running constants
α−1

i (µ), where i = 1, 2, 3 correspond to U(1), SU(2),
and SU(3) groups of the SM, respectively. The extrap-
olation of their experimental values from the electroweak
scale to the Planck scale was obtained by using the
renormalization group equations with one Higgs doublet
under the assumption of a “desert.” The precision of the
LEP data allows us to make this extrapolation with small
errors. The intersection of the inverse “gravitational fine
structure constant” α−1

g (µ) with α−1
1 (µ) occurs at the

point (x0, α
−1
0 ): α−1

0 ≈ 34.4, and x0 ≈ 18.3, where x =
log µ (GeV).

This value is really very big compared with the es-
timate (28) and, of course, with the critical cou-
pling α̃crit ≈ 1, corresponding to the confinement–
deconfinement phase transition in the lattice QED
[11]. Clearly, we cannot do the perturbation approx-
imation with such a strong coupling α̃.

It is hard for such monopoles not to be confined.
There is an interesting way out of this problem

if one wants to have the existence of monopoles,
namely, to extend the SM gauge group so cleverly
that certain selected linear combinations of charges
get bigger electric couplings than the corresponding
SM couplings. That could create monopoles which
for these certain charge linear combinations couple
more weakly and thus have a better chance of being
allowed “to exist.” An example of such an exten-
sion of the SM that can impose the possibility of
the allowance of monopoles is exactly the Family-
Replicated Gauge GroupModel (FRGGM). Accord-
ing to the FRGGM, at some point µ = µG < µPl (or
really in a couple of steps), the fundamental group
G ≡ Gext undergoes spontaneous breakdown to its
diagonal subgroup,

G −→ Gdiag.subgr = {g, g, g||g ∈ SMG}, (30)

which is identified with the usual (low-energy) group
SMG.

It should be said that, in the FRGGM, each family
has its own gluons, own W , and own photons. The
03
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breaking just makes a linear combination of a certain
color combination of each family’s gluons that exists
in the SM below µ = µG and down to low energies.
We can say that the phenomenological gluon is a
linear combination (with amplitude 1/

√
3 for N =

3) for each of the FRGG gluons of the same color
combination. Then, we have the following formula
connecting the fine structure constants of the non-
Abelian FRGG model and low-energy surviving di-
agonal subgroupGdiag.subgr ⊆ (SMG)3:

α−1
i,diag = α−1

i,1st fam + α−1
i,2nd fam + α−1

i,3rd fam. (31)

Here, i = 1, 2 correspond to SU(2), SU(3), and i = 3
means that we talk about the gluon couplings.

Assuming that three FRGG couplings are equal
to each other, we obtain

α−1
i,diag ≈ 3α−1

i,one fam ≡ 3α−1
i,G. (32)

In contrast to non-Abelian theories, in which the
gauge invariance forbids the mixed (in families) terms
in the Lagrangian of FRGG theory, the U(1) sector of
FRGG contains such mixed terms:

1
g2

∑

p,q

Fµν,pF
µν
q =

1
g2
11

Fµν,1F
µν
1 +

1
g2
12

Fµν,1F
µν
2

(33)

+ · · · + 1
g2
23

Fµν,2F
µν
3 +

1
g2
33

Fµν,3F
µν
3 ,

where Fµν,p is the gauge field strength tensor and
p, q = 1, 2, 3 are the indices of three families of the
group (SMG)3. Now, it is easily seen that, if the
specific electric charges of different families are equal
(equal αpq), then, taking the diagonal subgroup, we
get [16]

α−1
diag ≈ 6α−1

G , (34)

which shows that we can increase electric α by a
factor 6, replacing it with the electric αone fam ≡ αG.

Taking into account (34), we can get themonopole
fine-structure constant α̃G = α−1

G /4, which is smaller
by a factor of 6 in comparison with α̃ in the SM. We
can estimate at the Planck scale:

α̃G(µPl) ≈ 14/6 ≈ 2.3. (35)

But it seems (see below) that, in the FRGGM, we
have at the Planck scale

α̃G(µPl) ≈ 1,

and the perturbation theory works for the β function
of scalar monopoles near the Planck scale.

The conclusion: if one wants monopoles “to exist,”
it is necessary to drive in the direction of a model like
FRGG.
PH
7. THE POSSIBILITY OF GRAND
UNIFICATION NEAR THE PLANCK SCALE

In the anti-GUT model by Froggatt and Nielsen
[2–4], the FRGG breakdown was considered at µG ∼
1018 GeV.

But the aim of this investigation is to show that we
can see quite different consequences of the extension
of the SM to the FRGGM if the G group undergoes
breakdown to its diagonal subgroup (i.e., SM) not
at µG ∼ 1018 GeV, but at µG ∼ 1014 or 1015 GeV,
i.e., before the intersection of α−1

2 (µ) with α−1
3 (µ) at

µ ≈ 1016 GeV.
Then, in the region µG < µ < µPl, we have three

SMG×U(1)B−L groups for three FRGG families. In
this region, we have a lot of fermions, mass-protected
or not mass-protected, belonging to usual families
or to mirror ones. In the FRGGM, the additional six
Higgs bosons, with their large VEVs, are responsible
for themass protection of many new fermions appear-
ing in the region µ > µG. In this region, we designate
the total number of fermions NF , which is different
fromN .

Also, a role of artifact monopoles can be important
in the vicinity of the Planck scale. Lattice monopoles
are responsible for the confinement in lattice gauge
theories, which is confirmed by many numerical and
theoretical investigations (see review [17] and pa-
pers [18]). In the compact lattice gauge theory, the
monopoles are not physical objects: they are lattice
artifacts driven to infinite mass in the continuum
limit.

In [19–22], we have developed the Higgs Mono-
pole Model (HMM) approximating the lattice arti-
fact monopoles as fundamental pointlike particles de-
scribed by the Higgs scalar field. Indeed, the simplest
effective dynamics describing the confinement mech-
anism in the pure gauge latticeU(1) theory is the dual
Abelian Higgs model of scalar monopoles [17, 18].
This model considers the following Lagrangian:

L = − 1
4g2

F 2
µν(B) +

1
2
|(∂µ − iBµ)Φ|2 − U(Φ),

(36)

where

U(Φ) =
1
2
µ2|Φ|2 +

λ

4
|Φ|4 (37)

is the Higgs potential of scalar monopoles with mag-
netic charge g and Bµ is the dual gauge (photon)
field interacting with the scalar monopole field Φ. In
this model, λ is the self-interaction constant of scalar
fields, and themass parameter µ2 is negative. Consid-
ering the renormalization-group improvement of the
effective Coleman–Weinberg potential [14], written
YSICS OF ATOMIC NUCLEI Vol. 66 No. 11 2003
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in [19–22] for the dual sector of scalar electrodynam-
ics in the two-loop approximation for β functions,
we have calculated the U(1) critical values of the
magnetic fine-structure constant,

α̃crit = g2
crit/4π ≈ 1.20, (38)

and (by the Dirac relation) the electric fine-structure
constant,

αcrit = π/g2
crit ≈ 0.208. (39)

These values coincide with the lattice result [11].
Writing the following RGEs for αi(µ) containing

β functions for the Higgs scalar monopoles,

d(log αi(µ))
dt

= β(αi)− β(m)(α̃i), i = 1, 2, 3, (40)

we can use the one-loop approximation for β(αi)
because αi are small and the two-loop approximation
for dual β function β(m)(α̃i) by the reason that α̃i are
not very small near the Planck scale.

It was shown in a number of investigations (see,
for example, [18] and references therein) that the con-
finement in the SU(n) lattice gauge theory effectively
comes to the same U(1) formalism. The reason is
the Abelian dominance in their monopole vacuum:
monopoles of the Yang–Mills theory are the solutions
of the U(1) subgroups, arbitrarily embedded into the
SU(n) group. After a partial gauge fixing (Abelian
projection by ’t Hooft [23]), SU(n) gauge theory is
reduced to the Abelian U(1)n−1 theory with n− 1
different types of Abelian monopoles. With choice of
the Abelian gauge for dual gluons, it is possible to
describe the confinement in the lattice SU(n) gauge
theories by the analogous dual Abelian Higgs model
of scalar monopoles.

Using the Abelian gauge by ’t Hooft and tak-
ing into account that the directions in the Lie al-
gebra of monopole fields are gauge-dependent, we
have found in [21] an average over these directions
and obtained the group-dependence relation between
the phase-transition fine-structure constants for the
groups U(1) and SU(n)/Zn:

α−1
n,crit =

n

2

√
n + 1
n− 1

α−1
U(1),crit. (41)

We have calculated this relation using only the
one-loop approximation diagrams of non-Abelian
theories.

According to Eq. (41), we have the following rela-
tions:

α−1
U(1),crit : α−1

2,crit : α−1
3,crit = 1 :

√
3 : 3/

√
2. (42)

Near the Planck scale, we are in the vicinity of the
critical points [19–22].
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 11 20
Finally, taking into account that, in the non-
Abelian sectors of the FRGG, we have the Abelian
artifact monopoles, we obtain the following RGEs:

d(α−1
i (µ))
dt

=
bi
4π

+
NM

αi
β(m)(α̃U(1)), (43)

where bi are given by the following values:

bi = (b1, b2, b3) =
(

−4
3
NF −

1
10

NS, (44)

22
3
NV −

4
3
NF −

1
6
NS , 11NV −

4
3
NF

)

.

The integers NF , NS , NV , and NM are, respectively,
the total numbers of fermions, Higgs bosons, vector
gauge fields, and scalar monopoles in the FRGGM
considered in our theory.

Approximating artifact monopoles by the Higgs
scalar fields with a magnetic charge g, we have the
following Abelian monopole β function in the two-
loop approximation [21]:

β(m)(α̃U(1)) =
α̃U(1)

12π

(
1 + 3

α̃U(1)

4π

)
. (45)

Using the Dirac relation αα̃ = 1/4, we have

β(m) =
α−1
U(1)

48π

(
1 + 3

α−1
U(1)

16π

)
, (46)

and the group dependence relation (41), which is
approximately valid in the vicinity of the critical points
on the Planck scale, gives

β(m) =
Ciαi

−1

48π

(

1 + 3
Ciαi

−1

16π

)

, (47)

where

Ci = (C1, C2, C3) =

(
5
3
,

1√
3
,

√
2

3

)

. (48)

Finally, we have the following RGEs:

d(α−1
i (µ))
dt

=
bi
4π

+ NM
Ciαi

−2

48π

(

1 + 3
Ciαi

−1

16π

)

,

(49)

where bi and Ci are given by Eqs. (44) and (48),
respectively.

In our FRGGmodel,

NV = 3, NM = 6 for i = 1, (50)

NV = NM = 3 for i = 2, 3,

because we have 3 times more gauge fields (N = 3)
in comparison with usual SM and one Higgs scalar
monopole in each family.

Assuming six scalar Higgs bosons (NS = 6)
breaking the FRGG to the SMG and the total
03



2076 LAPERASHVILI et al.

 

40

20

0

 
α
 

i

 
–1
 

α

 

1
–1

 

α

 

2
–1

 

α

 

3
–1

 

16 17 18 19
log

 

µ

 

 (GeV)

 

µ

 

Pl

 

FRGGM

Fig. 2. The evolution of the inverse fine structure con-
stants α−1

1,2,3(µ) beyond the SM in the FRGGM with
influence of monopoles near the Planck scale.

number of fermions NF = 2Ntot (usual and mirror
families), Ntot = N ·Ngen = 3× 3 = 9 (three SMG
groups with three generations in each group), we
have obtained the evolutions of α−1

i (µ) near the
Planck scale by numerical calculations for NF = 18
and µG = 1014 GeV. Figure 2 shows the existence of
the unification point. We see that, in the region µ >
µG, many new fermions and a number of monopoles
near the Planck scale change the one-loop approxi-
mation behavior of α−1

i (µ), which we had in the SM.
In the vicinity of the Planck scale, these evolutions
begin to decrease, when approaching the Planck
scale µ = µPl, which means the suppression of the
asymptotic freedom in the non-Abelian theories.
Figure 3 demonstrates the unification of all gauge
interactions, including gravity (the intersection of
α−1
g with α−1

i ), at

α−1
GUT ≈ 27 and xGUT ≈ 18.4. (51)

It is easy to calculate that, for one family, we have

α̃GUT, one fam =
α−1
GUT, one fam

4
=

α−1
GUT

4× 6
≈ 27

24
≈ 1.125,

(52)

and

αGUT, one fam ≈ 0.22, (53)

which means that, at the GUT scale, electric and
monopole charges are not large and can be considered
perturbatively.

At this GUT scale, we can expect the existence of
[SU(5)]3 SUSY or [SO(10)]3 SUSY unification with
superparticles of masses

M ≈ 1018.4 GeV. (54)
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1,2,3(µ) in the SM and beyond

it. The breakdown of FRGG occurs at µG ∼ 1014 GeV.
The possibility of the [SU(5)]3 SUSY unification of all
gauge interactions, including gravity, is shown at α−1

GUT ≈
27 and xGUT ≈ 18.4, where x = log µ (GeV).

The scale µGUT = M , given by Eq. (54), can be con-
sidered as a SUSY-breaking scale.

The unification theory with [SU(5)]3 symmetry
was first suggested by Rajpoot [24].

Considering the predictions of such a theory for
low-energy physics and cosmology, maybe in the fu-
ture we shall be able to answer the question: “Does
the unification of [SU(5)]3 SUSY or [SO(10)]3 SUSY
really exist near the Planck scale?”

8. CONCLUSIONS

In the present paper, we have shown the following.

(i) The existence of monopoles in nature leads to
the consideration of the FRGG of symmetry as an ex-
tension of the SM in the sense that, using monopoles
corresponding to the family-replicated gauge fields,
we can bring the monopole charge down from the
unbelievably large value which it gets in the simple
SM, according to the Dirac relation.

(ii) If our (3 + 1)-dimensional spacetime is dis-
crete and has a lattice-like structure, then the lattice
artifact monopoles play an essential role near the
Planck scale if the FRGGM works there. We have
approximated these artifact monopoles by the Higgs
scalar fields.

(iii) The breakdown of FRGG at µG ∼ 1014 GeV
produces a lot of fermions in the regionµG < µ < µPl,
which gives the suppression of asymptotic freedom
near the Planck scale.

(iv) In contrast to the anti-GUT by Froggatt–
Nielsen, predicting the absence of supersymmetry
and unification up to the Planck scale, these fermions,
YSICS OF ATOMIC NUCLEI Vol. 66 No. 11 2003
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together with monopoles, lead to the possible exis-
tence of unification of all interactions (including grav-
ity) at

µGUT = 1018.4 GeV

and

α−1
GUT = 27.

(v) The possibility of [SU(5)]3 SUSY or [SO(10)]3
SUSY unifications was discussed in the present in-
vestigation.
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Abstract—A parton–Reggeon model that, for basic partons, employs gravitons of virtuality on the order
of the Planck scale is proposed to describe inelastic interactions at trans-Planckian energies. A graviton
analog of the Pomeron with an intercept of α(0) = 3 is introduced on the basis of the structure of the
gravitational field of a fast particle. Its unitarization leads to inelastic cross sections growing in proportion
to s and corresponds to the pattern of a collision between black disks of radius about E1/2

i . The inclusive
spectra of hard gravitions whose behavior is determined by the size of the region of overlap of colliding black
disks at various impact parameters and various energies is found. The graviton system formed in this way
proves to be unstable against the gravitational attraction of particles having close momenta. This leads to
the emergence of a multiperipheral chain of black holes at the stage of divergence—the structure of such a
chain depends greatly on the impact parameters of a collision. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Mechanisms that are responsible for the gravi-
tational interaction of particles at trans-Planckian
energies of

√
s� mp = G−1/2 have yet to be under-

stood conclusively, although this issue has been ex-
plored for a long time [1–9]; some of the more recent
studies are also worthy of note (see, for example [10–
17]). Of course, the inability of modern particle theory
to provide a decisive solution is due to the complexity
of the problem itself and to the complete absence of
experimental data. There are presently a few reasons
for which a further study of this issue is of interest.

(i) Gravitational interaction becomes strong for√
s� mp. In view of this, its dynamics may have

many features in common with the dynamics of
hadron interactions, whose asymptotic behavior is
controlled, to a considerable extent, by the set of
nonlinear unitarity conditions. Therefore, an attempt
at extending, to the case of gravitational interactions,
basic methods that are successfully used to describe
high-energy processes (such as the Reggeon ap-
proach and partons) would be quite reasonable.

(ii) At energies of
√
s� mp, it is natural to expect

the production of black holes that proceeds with large
cross sections of about s/m2

p. The pattern behind this,
albeit a rather naive one, is the following. In a collision
process, a high energy of about

√
s is concentrated

in a small spatial region. The static Schwarzschild
radius corresponding to this mass is large, about

*e-mail: kancheli@heron.itep.ru
1063-7788/03/6611-2078$24.00 c©
√
s/m2

p. Therefore, it is possible that, in such a col-
lision, there will arise a horizon of events that has
transverse dimensions of about

√
s/m2

p and which
will capture colliding particles and will transform into
a long-lived black hole. Approaches in which a more
precise picture were proposed in [1–9], but they also
employ the classical general theory of relativity in
configurations where curvatures are much greater
than the Planck value.

(iii) In recent years, a number of models was
proposed where the Planck scale mp ∼ 1019 GeV
falls effectively down to occur in the teraelectronvolt
region [18]. If such a possibility is realized in nature,
then gravitational interactions (and, hence, string
interactions together with them) may become the
subject of an experimental investigation at next-
generation colliders.

A direct consideration of these issues within string
theories is of course possible in principle and is the
most consistent, but it so involved that only the first
attempts have been undertaken along these lines. The
situation here is similar to that inQCD,where a direct
approach to describing soft processes characterized
by large cross sections is yet impossible, although
qualitative arguments inspired by QCD are of con-
siderable use for obtaining deeper insight into the
structure and magnitudes of quantities appearing in
Reggeon phenomenology and the parton model.

In the approach employed in this study to tackle
the above range of problems, we follow the Reggeon
2003 MAIK “Nauka/Interperiodica”



GRAVITATION INTERACTIONS 2079
scheme of strong interactions rather closely, tak-
ing into account the fact that gravitons are mass-
less only through a correction. If gravity obeyed a
massive theory (with the graviton mass satisfying
the condition µg � mp) and if, at the same time,
it were cut off at the Planck or the string scale,
then the pattern of gravitational interactions would
probably be similar to that in hadron collisions. But
for µg → 0, there would appear new transverse long-
wave effects; accordingly, the relevant cross sections
would grow faster—the Froissart cross-section be-
havior σ ∼ (1/µ2

g) ln2 s would gradually give way to
the power-law form σ ∼ (1/m2

p)(s/mp)c. However,
no significant changes in the vicinity of the Planck
scale is expected upon such a transition.

In the present study, we will also employ, to the
maximum possible degree, the parton interpretation
of the Reggeon scheme, since this interpretation ab-
sorbs all of the basic constraints that follow from the
s-channel unitarity. For partons, we choose gravitons
themselves and assume that, at the Planck scale,
there is a short-wavelength cutoff following from the
string approach.1)

The ensuing exposition is organized as follows.We
begin by considering the gravitational field of a fast
particle and expand it in terms of partons—this will
yield the zero-order approximation to the parton wave
function. We will then discuss changes that higher
order corrections introduce in this parton distribution.
As a result, we will arrive at a Reggeon whose inter-
cept is α(0) = 3 + ∆ and which is an analog of the
Pomeron for gravitational interactions. Further, we
will estimate the effect of the fact that the graviton is
massless on the contribution of this Reggeon. After
that, we will discuss the unitarization of the prob-
lem being studied and consider some applications—
specifically, we will calculate inclusive cross sections
and estimate possible long-wave instabilities of the
final state that lead to the formation of black holes.

2. GRAVITONS AS PARTONS: WW
APPROXIMATION AND GRAVITON

CASCADE

The simplest way to find the gravitational field
of a fast particle whose mass is much less than
the Planck mass, m� mp = G−1/2, is to boost the
Schwarzschild solution in isotropic coordinates. For
high energies of E � mp, this yields a result that is

1)For the sake of simplicity, we will not take into account
massless string degrees of freedom other than gravitons
(such as the dilaton) or higher massive excitations. More-
over, we will not distinguish between the string scale and
the Planck scale, since, within our consideration, this would
probably lead only to additional coefficients.
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 11 20
nearly identical to that which corresponds to a boost
of the Newtonian solution; that is,

gµν − g(0)
µν �

2GPµPν√
m2x2

⊥ + E2(z − βt)2
, (1)

where g
(0)
µν is the Minkowski metric, Pµ is the 4-

momentum of the particle being considered, and β =
p/E. Going over to the limit β → 1 and perform-
ing a coordinate transformation that is singular in t
and z, we can represent this metric in the standard
Aichelburg–Sexl (AS) form [19]

ds2 = dx+dx− + 4GE lnx2
⊥δ(x

−)(dx−)2 − (dx⊥)2,
(2)

where x+ = t + z, x− = t− z, and x⊥ are the light-
cone coordinates.

Let us now proceed to consider a parton rep-
resentation of this metric. Of course, the choice of
partons is not unambiguous. Possibly, some string
coordinates (string bits [20]) would be the “best”
partons, but the character of their interaction at high
densities is unknown at present. For this reason, we
will take transverse gravitons for partons and, for their
spectra at k⊥ ≥ mp, use a prescription suggested by
the string pattern (as a matter of fact, we merely cut
them off at k⊥ ∼ mp).

Going over to the Fourier components of the met-
ric,
∑

λ

aλ(k)ε(λ)
µν = ω

∫
d3xeikx(gµν(x)− g(0)

µν (x)),

(3)

where ε(λ)
µν is the graviton polarization tensor and ω =√

k2
z + k2

⊥, and substituting the AS metric from (2)

or directly expression (1) into the expression on the
right-hand side of (3), we obtain

∑

λ

aλ(k)ε(λ)
−− =

E

mp
ω

1
k2
⊥
. (4)

It is convenient to use the gauge where ε
(λ)
+µ = 0.

From the transverseness conditions kµε
(λ)
µν = 0, we

obtain the following relation between the longitudi-
nal and the transverse projection of the polarization
tensor:

ε
(λ)
−− = ε

(λ)
⊥⊥

(k+)2

k2
⊥

. (5)

If aλ(k) is normalized in accordance with (3), the total
number of partons (transverse gravitons) in the field of
a fast particle is given by

N =
∫

d3kn⊥(k) =
∫

d3k

ω

∑

λ

aλ(k)a+λ(k). (6)
03
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Substituting (4) and (5) into (6), we obtain n⊥(k),
which is the spectrum of gravitons in an AS disk; that
is,

dn⊥(E,ω, k⊥) ∼ (aλ)2

ω
dωd2k⊥ (7)

∼
( E

mp

)2 ω

(k+)4
dkzdk

2
⊥ ∼

( E

mp

)2dω

ω3
d2k⊥.

This spectrum differs significantly from “ordinary”
QED spectra of vector partons2) both in the character
of the dependence on ω and k⊥ and in the general
growth of the parton density in proportion to E2.

Let us now discuss higher order corrections to
these parton spectra. If gravitation is literally treated
as a nonrenormalized theory, it is of course difficult
to isolate the classes of dominant diagrams. But if
one assumes that transverse momenta are cut off at
some effective scale (about the Planck mass mp),
then ladder diagrams generating a “leading”Reggeon
may become dominant, in just the same way as in
superconvergent theories. As to further corrections,
they can be obtained by systematically construct-
ing various Reggeon diagrams from this Reggeon,
whereby the complete unitarity of the approach is
ensured.

In terms of partons, ladder diagrams can be
associated with a parton cascade in which there
arises an additional growth of the number of low-
energy partons. The spectrum corresponding to such
a parton cascade can be represented as a chain of
L− 1 successive convolutions of the primary spectra
n⊥(ωi, ωi+1, k⊥) belonging to the type in (7). As a
result, we obtain

∫
dω1d

2k1n
⊥(E,ω1, k1) (8)

×
∫

dω2d
2k2n

⊥(ω1, ω2, k2) . . .

×
∫

dωL−1d
2kL−1n

⊥(ωL−1, ωL, kL)

∼ ∆L

(L− 1)!

( E

mp

)2 1
ω3
L

lnL−1
( E

ωL

)
,

2)With the aid of the procedure usually used in textbooks on
field theory, the spectra given by (7) can also be obtained
from the Weizsäcker–Williams factorization of diagrams in-
volving one-graviton exchange. Expression (7) can straight-
forwardly be generalized to the case of fields of arbitrary

spin J . The result is dn⊥ ∼ g2
J

(
k⊥E

ω

)2J(
ωdω
E2

)
d2k⊥
k4
⊥

=

g2
J

dx
x2J−1

d2k⊥
k
2(2−J)
⊥

, where x = ω/E is a scaling variable and

gJ stands for the relevant coupling constants: g1 ↔ eQED,
g2 ↔

√
G, . . ..
PH
where

∆ = m−2
p

∫
d2k⊥Γ2

( k2
⊥

m2
p

)
. (9)

In order to take into account nonlocal (string) ef-
fects, which are responsible for the cutoff at high k⊥,
we also included in (8) the effective dimensionless
graviton-emission vertices Γ; at low k⊥ � mp, these
vertices reduce to Γ(k2

⊥/m
2
p) = 1. Performing sum-

mation over the number L of steps in the cascade, we
obtain Reggeized parton–graviton spectra:

dn⊥(E,ω, k⊥) =
( E

mp

)2(E
ω

)∆ dω

ω3
d2k⊥. (10)

Such spectra are more strongly concentrated at low
values of ω than the primary spectra in (7). However,
the actual value of∆ may prove to be equal to zero, in
which case the mean number of steps in a cascade
does not grow asymptotically with energy, and we
adduce arguments in favor of this below.

It should be noted that the parton spectra in (7)
and (10) must be treated with caution since they
violate the sum rules for the longitudinal momentum
at E � mp; the total momentum calculated with
the aid of (10) grows in proportion to E2+∆. We
will correct this by introducing the saturation of
partons (see below). It should also be noted that
the quantity ∆ is strictly positive only for symmetric
(ladder) diagrams. Moreover, logarithmic corrections
belonging to the 1/ ln2a(E/ω) type, where a ∼ 1, and
changing the character of the corresponding Regge
singularity are possible for the most interesting case
of ∆ = 0 in (10).

We will now consider, in a cascade (Reggeon),
that the graviton is massless. Because of this, infrared
contributions to the primary spectra n⊥ appearing
in (8) arise from the ki⊥ → 0 regions. If some steps in
the cascade in (8) involve small ki⊥ → 0, then, in the
space of impact parameters b, these steps (cells of the
Reggeon ladder) correspond to large jumps δb ∼ k−1

i⊥ .
These jumps shift the hard cascade to a far region in
b, with the result that the relevant expectation value
becomes 〈δb〉 ∼ m−1

p . This behavior of infrared cells
leads to singularities of the t ln t type in t-channel
amplitudes.

In order to take this phenomenon into account,
we rewrite expressions for the parton cascade in (8)
in terms of impact parameters; in n⊥(E,ω, k⊥), this
corresponds to a transition from k⊥ to x⊥. We start
from one soft cell. Making a Fourier transformation
in amplitudes, we can easily find the distribution of
partons for x⊥ � m−1

p . The result is

∂3n

∂ω∂2x⊥
∼
( E

mp

)2 1
ω3

1
x4
⊥
. (11)
YSICS OF ATOMIC NUCLEI Vol. 66 No. 11 2003
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In (11), the mean transverse momenta of partons for
x⊥ � m−1

p are about ∼ x−1
⊥ ; under such conditions,

the spectra in (11) are actually determined by means
of the substitution ∂n/∂x⊥ ∼ ∂n/∂k−1

⊥ in (7).
But if, in the cascade in (8), we insert two or

more infrared chains, then we will obtain a smaller
contribution at larger b. In order to demonstrate
this, we note that, upon the convolution of two
spectra belonging to the type in (11), there arise the
integrals

∫

|x⊥−bi|>m−1
p

d2x⊥/(b1 − x⊥)4(x⊥ − b2)4

∼ mp/(b1 − b2)4,

in which, for (b1 − b2)2 � m−2
p , the main contri-

bution comes from the regions near the boundaries
of integration, in which case one of the cells is
hard.

The spectra in (11) for x⊥ � m−1
p are associ-

ated with soft gravitons characterized by 〈k⊥〉 ∼ x−1
⊥ ,

but their energies ω may be much greater than mp.
Therefore, such gravitons may in turn serve as a
source for gravitons with 〈k⊥〉 ∼ mp in subsequent
hard steps of the cascade. Further, a simple gener-
alization of (8) and (11) yields the Reggeized spectra

∂3n

∂ω∂2x⊥
∼
( E

mp

)2(E
ω

)∆ 1
ω3

1
x4
⊥
, (12)

∂n

∂x2
⊥
∼
( E

mp

)2+∆ m2
p

(mpx⊥)4

for hard partons characterized by 〈k2
⊥〉 ∼ m2

p and
x⊥ � m−1

p .
Let us now consider the interaction between a

pointlike target and a fast particle whose partonic
spectrum is given by (10). The growth of the total
inelastic cross section with energy is described by the
formula

σin =
∫

dωd2k⊥n(E,ω, k⊥)σ̂(ω, k⊥) ∼ s2+∆,

(13)

where σ̂ is the cross section for parton scattering on a
pointlike target.

3. GRAVITATIONAL ANALOG
OF THE POMERON

Cross sections growing in accordance with (13)
correspond to a Regge pole in the vacuum channel
with the intercept

α(0) = 3 + ∆. (14)
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This Reggeon can be treated as an analog of the
Pomeron for gravitational interactions (for the sake of
brevity, we will hereafter refer to this Reggeon as the
2G particle).3) The cross section (13) can be rewritten
in the space of impact parameters as

σin(s, b) ∼
( s

m2
p

)2+∆ 1
(bmp)4

. (15)

The generalization of (15) to the case of an arbitrary
number of (soft) infrared steps in a cascade (soft loops
in the 2G Reggeon) has the form

σin(s, b) ∼
( s

m2
p

)2+∆( a0

ln s
exp

( −b2
4α′ ln s

)
(16)

+
a1

(bmp)4
+

a2 ln b

(bmp)6
+ . . .

)
,

where numerical coefficients have only been intro-
duced to distinguish between contributions from
different numbers of soft loops. In expression (16), the
first term, which is proportional to a0, corresponds
to the contribution featuring no soft loops, α′ ∼
m−2
p , while the terms that follow correspond to loop

contributions—the generic term proportional to an
stems from the contribution involving n soft loops.
The following structure of t-channel singularities in
the elastic-scattering amplitude at t ∼ 0 corresponds
to this expression:

a0 + a1t ln t + a2

(
t ln t

)2 + · · · . (17)

From (16), it can be seen that, for b� m−1
p , only

one-soft-cell contributions, which lead to the term
proportional to a1, are significant. It follows that the
terms in (17) that are singular in t can formally be
included in the (g0(t)→ g0(t) + g1(t) ln t + . . .) ver-
tices, which are associated with the exchange of a
2G Reggeon, although a wider rapidity interval may
correspond to relevant cells.

It should be noted that, in contrast to what occurs
in massive theories like QCD, only the first term,
which involves a0 and which decreases fast at large
b [in proportion to exp (−b2/(4α′ ln s))], is present
in (16) if there are no massless particles in the spec-
trum. Upon unitarization, this leads to the Froissart
behavior of cross sections (∼ln2 s).

Let us now consider the unitarization of the
gravitational cross sections (15). The cross sections

3)States of the 2G type are not seen in “perturbative” sec-
tors of string theories. Since the mean number of steps in
a cascade is probably finite in view of the vanishing of ∆
(∆ = 0), it is more plausible that a 2G state must not be
seen in principle—it may be masked by that contribution to
the S matrix which corresponds to a unitarized black disk.
Possibly, it is a composite state that manifests itself only in
the case of strong coupling as some membrane-like object.
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σin(s, b) grow fast with E and, at some E values
dependent on b exceed the maximum possible value
allowed by the unitarity condition, σin = 1, this upper
limit corresponding to the absorption of the entire flux
from the initial state at given b with a subsequent
transition to other states.

The simplest way to remedy the situation with-
out changing the parton wave function itself is
to take into account parton shadowing during the
interaction. Usually, this is done by means of one
type of elastic eikonalization or another, in which
case

σin(s, b)→ F
(
σin(s, b)

)
, (18)

where the function F (v) is such that

F (v)→ 1 for v →∞,

F (v) � v for v � 1.

The most popular form of eikonal unitarization
is that for which F (v) = 1− exp(−v). In terms of
partons, it corresponds to the following: if a parton
colliding with a dense target interacts, on average,
with v particles and if these interactions are indepen-
dent, then the probability |S(s, b)|2 that this parton
undergoes no interaction is given by the Poisson ex-
pression exp(−v), and this is the result that leads to
the eikonal formula.

What is of importance is that, for any reasonable
form of F (v), the corresponding S(s, b) matrix in-
volves the contribution from a black disk, where the
parton density ∂n/dx2

⊥ in (12) exceeds the critical
value of about m2

p. The radius of this disk is deter-
mined from the condition σin(s � 2mE, b) ∼ 1. The
result is

R2
⊥(E) � m−2

p

( E

mp

)1+∆/2
. (19)

Beyond this black disk, where x⊥ > R⊥(E), the den-
sity of gravitons playing the role of partons decreases
as

∂n

∂x2
⊥
∼ m2

p

(R⊥(E)
x⊥

)4
. (20)

Unitarized expressions of the type in (18) for
σin(s, b) take into account the mutual shadow-
ing of partons in the process of their interaction
with the target. But at the same time, the ac-
tual mean density of partons in a stationary state
of a fast particle is given by the same expres-
sion (10), which grows with energy. It follows that,
for b < R⊥(E), the two-dimensional density of par-
tons having an energy ω ∼ mp considerably exceeds
the Planck density; since such partons strongly
interact with one another, their mean transverse
PH
momentum in such a state must be on the or-
der of the inverse mean spacing between neigh-
boring partons (more precisely, on the order of
the mean inverse range in the parton medium of
such density); that is, we generally have 〈k⊥〉 �
mp.

However, this is at odds with our basic assumption
that the spectra of partons are cut off for k⊥ � mp

(removed from the states being considered). There-
fore, we also assume that the parton density is satu-
rated4) at the scale on the order of the Planck scale
m2
p, ceasing to grow with energy in the internal part

of the disk, where x⊥ < R⊥(E). In just the same way
as this occurs in QCD, parton recombination may be
the only mechanism responsible for this stabilization.
The corresponding total S matrix

S(y, b) = exp(iδR(y, b)− δI(y, b)) (21)

involves the real part δR(y, b) of the phase shift; for
large b, b > R⊥(E), this real part coincides with the
“classical” phase shift

δR(y, b) ∼
(

s

m2
p

)

ln
B0

b

and is responsible for elastic scattering. The imagi-
nary part δI(y, b) of the phase shift decreases fast for
b > R⊥(E): δI � σ

(0)
in (s, b). If partons are saturated

within the black disk, the imaginary part of the phase
shift is given there by δI(y, b) � 1 and is independent
of b.

Such a black disk is similar to the parton black
disk arising in the hadronic Froissart regime. The
basic distinction consists in the energy dependence of
the radius: R ∼ m−1 ln(s/m2) in the Froissart case
for massive theories versus R ∼ m−2

p

√
s in the case

of massless gravity. Yet, it is difficult to estimate,
for such a disk, its degree of blackness, which is
given by 1− |S(y, b)|2, since it is governed by the

4)By the present time, many pieces of evidence have been
accumulated that, in gravity and in string theory, the density
of excited degrees of freedom can hardly exceed a maximum
value that is determined by the Planck (string) scale (see,
for example, the review article of Bousso [21]). The following
pattern is popular at the moment: upon reaching (exceeding)
this density, the system undergoes a transition to a different
phase where it can adequately be represented only in terms of
new degrees of freedom whose density is again less than the
critical one. In this scenario, local fluctuations of the density
that exceed the critical density are of course possible, but
their contribution to the wave function is in all probability
strongly suppressed. One cannot rule out the possibility that
merely a faster recombination of extra degrees of freedom
than their generation in the region of densities higher than
the critical density always forms a basis for the corresponding
microscopic mechanism.
YSICS OF ATOMIC NUCLEI Vol. 66 No. 11 2003
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details of dynamics at the Planck (string) scale.5)

For the sake of simplicity, we assume below that,
far from the boundaries, a saturated disk of Planck
density is absolutely black, |S|2 = 0. At a finite
transparency that is independent of energy, additional
coefficients of about unity arise in cross sections and
spectra.

So far, we have considered only partons of energy
ω ∼ mp since their contribution to the interaction is
dominant. The above formulas can easily be general-
ized to partons of different energy ω; their spectrum at
arbitrary ω and x⊥ has the form

dn = F
[
n̂(E,ω, x⊥)

]
(m2

pd
2x⊥)

dω

ω
, (22)

n̂ =
(E
ω

)2+∆ 1
(x⊥mp)4

,

where the density n̂ is dimensionless and is invari-
ant under boost transformations; as in (18), the op-
eration F [. . .] corresponds to either unitarization or
saturation. In terms of the logarithmic variables Y =
ln(E/mp), y = ln(ω/mp), and ζ = ln(x⊥mp)2, the
parton distribution (22) assumes a still simpler form;
that is,

dn = F
[
e(2+∆)(Y −y)−ζ]dydζ. (23)

From the condition n̂ ∼ 1, we can obtain the radius
of a black parton disk for various values of ω. The
result is

R2
⊥(E,ω) = m−2

p

(E
ω

)1+∆/2
. (24)

It follows that, in the (ζ, y) space, the region that is
filled with partons of saturated density is a cone whose
boundary is given by ζ < (2 + ∆)(Y − y). In terms of
the variables x⊥ and ω, this corresponds to the region
x⊥ < R⊥(E,ω). The cone in question is surrounded
by a diffuse cloud in which the parton distribution is
given by the classic expression (23).

5)In QCD, we run into the analogous problem of the degree
of transparency of a saturated Froissart disk. There, the
two-dimensional density of partons (gluons) within the disk
is not stabilized at a specific value of about Λ−2

QCD, but it
continues indefinitely growing with energy; concurrently, the
mean transverse momentum of partons in the disk grows.
Therefore, the disk unboundedly blackens with increasing
energy: |S|2 → 0. That the stabilization of the parton density
is impossible in a theory featuring finitemasses can be proven
even on the basis of general arguments [22] by considering
variations in the disk penetrability |S|2 under longitudinal
boosts. In gravitation, the picture is probably different, since
a transverse long-range interaction, which was absent in the
massive case, occurs here owing to zeromass of the graviton.
In that case, a saturated disk may remain asymptotically
gray, or it blackens because of some coherent mechanism
associated with long-wave partons.
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For soft partons of energy ω � mp, the density
also seems to be saturated at values of n̂ ∼ 1 up
to x⊥ ∼ R⊥(E,ω), since we have assumed that, for
partons with k⊥ ∼ mp, the density cannot exceed the
Planck density m−2

p and since these partons trans-
form into soft partons under a longitudinal boost (see
Section 5 below). On average, each such parton is
localized (smeared) in the transverse plane within
a region of dimension δx⊥(ω) ∼ 1/ω; therefore the
density of partons is high on the natural quantum
scale (δx⊥(ω))−2, about n̂m2

p(mpδx⊥)2 ∼ n̂m4
p/ω

2.
By comparing the size of the region of smearing,

δx⊥(ω), with the disk radius R⊥(E,ω), we can find
the critical values of x⊥ and ω at which these two
dimensions become commensurate:

x⊥ = R̃(E) ∼ m−1
p

( E

mp

)1+2∆/(2−∆)
,

ω = ω̃ ∼ 1/R̃(E).

For x⊥ > R̃(E), the interaction of partons with
the target is weak and basically reduces to classical
elastic scattering and the classical emission of soft
gravitational waves.

It can easily be proven that, on average, weakly in-
teracting pointlike partons of energy ω are distributed
over a longitudinal region having a dimension l(ω) ∼
1/ω or a larger dimension—this yields the thickness
of an ω disk. For basic partons forming a black disk,
we have l(ω ∼ mp) ∼ 1/mp. For partons of energy
ω � mp, this leads to l(ω)� m−1

p , which looks sus-
picious and which probably requires an approach that
directly employs string degrees of freedom. But for
soft partons of energy ω � mp, the longitudinal di-
mensions of the localization region may become large
and commensurate with the transverse dimensions,
l(ω ∼ ω̃) ∼ R̃(E).

To conclude this section, we note that, for the
most interesting case of ∆ = 0, the expression for
R⊥(E,ω) may develop additional logarithmic cor-
rections that change the form of (24), which would
become

R2
⊥(E,ω) =

E

ωm2
p

/
lna
(E
ω

)
, a ∼ 1.

However, a more precise approach that is beyond the
scope of the present study is required for refining this
point.

4. INELASTIC GRAVITATIONAL PROCESSES

Let us now proceed to consider multiparticle-
production processes in particle interactions at trans-
Planckian energies. Such processes are predomi-
nantly determined by the excitation of partons in the
03
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Fig. 1. Shapes of the overlapping regions (shaded regions) of colliding black disks in the (b, y) plane at various values of B.
Only the projection b⊥ is displayed. The width of the shaded region at a given value of y is approximately in direct proportion
to the inclusive cross section at this value of y.
overlapping regions of colliding black disks. Since
collisions of hard partons are local in x⊥, it is natural
to expect that the same degrees of freedom as those
that were dominant in the initial state (these are
gravitons with k⊥ ∼ mp) will be produced (released).

Here, we will make use of a rather general (al-
beit somewhat formal) approach where inclusive
processes are constructed from cut Reggeons, the
Reggeons themselves being such that they describe
elastic scattering adequately and that they “corre-
spond” to the partonic content of the fast particle
involved. This approach, which is successfully applied
to describing high-energy hadronic processes, is
advantageous in that basic constraints following
from t-channel unitarity prove to be automatically
taken into account there. Also, we will simplify the
situation considerably by taking, as a starting point,
the unitarized S matrix (21), which corresponds to a
saturated black disk (this matrix can be considered
as an analog of the Froissaron in the case of QCD)
rather than the 2G Reggeon.

As the main object intended for constructing
Reggeon diagrams, we introduce the normalized
Green’s function defined in terms of the S matrix (21)
as

D(y, b) = i(1− S(y, b)) (25)

∼ i θ
(
R2

⊥(y)− b2
)

+ Dsoft(y, b),

where Dsoft(y, b) is the soft component of D—it
contains gravitons satisfying the conditions ω, k⊥ �
mp.6) Further, the Green’s function D(y, b) can be
used to calculate Reggeon diagrams for amplitudes
and various inclusive cross sections. For example,

6)Below, we assume everywhere (with the exception of Sec-
tion 5) that ∆ = 0. This simplifies expressions appearing
in the ensuing calculations and seems to correspond to a
correct value.
PH
the inelastic cross section for the production of gravi-
tons characterized by k⊥ ∼ mp is straightforwardly
obtained by cuttingD(y, b):

σin(Y ) =
∫

d2B ImD(Y,B) � πR2
⊥(Y ) + σsoft

in (Y ).

(26)

The inclusive cross section corresponding to these
processes and describing, at fixed values of the to-
tal energy s = m2

p exp (Y ) and the impact parameter
B, the production of a particle that has a specific
transverse position b and a specific rapidity y is also
readily expressed in terms of the contribution from a
Reggeon diagram involving two cutD. The result is

ρ(y, b, Y,B) � γImD(y, b)ImD(Y − y,B − b)
(27)

= V θ
(
R2

⊥(y)− b2
)
θ
(
R2

⊥(Y − y)

− (B − b)2
)

+ ρsoft(y, b, Y,B),

where γ is the inclusive vertex of the emission of
gravitons characterized by k⊥ ∼ mp. This vertex
depends, of course, on the details of dynamics at
the Planck (string) scale and appears in (27) as a
phenomenological parameter. Corrections from soft
gravitions of energy ω � mp and corrections from
boundary effects were included in ρsoft.

By applying a similar procedure, one can eas-
ily construct two-particle correlation functions and
other higher cross sections fromD(y, b).

Let us now consider the behavior of ρ(y, b, Y,B) in
greater detail. The region where the hard contribution
to ρ(y, b, Y,B) is not small is schematically shown
in Fig. 1. Higher Reggeon diagrams for ρ, which
involve additional loops ofD, does not change ρ in the
region where the black parts of D overlap. A similar
mechanism of the cancellation of the contributions
from loops involving the component θ

(
R⊥(y)− b

)
of

D(y, b) was long ago indicated by Cardy [23] for the
YSICS OF ATOMIC NUCLEI Vol. 66 No. 11 2003
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B B
B

A1 A2

A3

Fig. 2.Common configuration of colliding black disks at different rapidities and identical values of s andB. The pictures trans-
form into one another under longitudinal boosts. Configuration A1 is closer to the fragmentation region, while configuration
A3 refers to the c.m. frame; configurationA2 is intermediate between them. There is a straightforward correspondencebetween
these configurations and the inclusive spectra in Fig. 3.
Froissart case. At the same time, these contributions
may be significant in the case where the edges of the
disks touch each other. This is the region where there
occur processes of diffractive generation and other
peripheral processes.

At specific values of the rapidity y and the trans-
verse coordinate b, hard gravitons of transverse mo-
mentum k⊥ ∼ mp can be formed only in collisions
of those parts of the black disks that correspond to
the same values of b. This directly corresponds to
the contribution of the overlap of two θ functions
in (27). Therefore, the total inclusive spectrum of hard
particles is proportional to the area of the region of
overlap of two black disks at the preset value of the
rapidity y.

For various values of B and y, there can arise
three configurations of the overlap of these disks, as is
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 11 20
shown in Fig. 2. For configurations of the A1 and A2

types, the disks overlap, and the area of the overlap
region in Planck units, A(B,R⊥(E1), R⊥(E2)), de-
termines the inclusive cross section at a given value
of y. In configuration A3, the black disks do not
overlap at relevant values of B and y, so that the hard
inclusive cross section is equal to zero.

If we disregard the smearing of the disk edges,
then

ρ(B, y, Y ) � γm2
pA(B,R1, R2), (28)

whereR1 = R⊥(E1),R2 = R⊥(E2), E1 = mpe
y, and

E2 = mpe
Y−y. The area A(B,R⊥(E1), R⊥(E2)) of

the overlapping regions of the disks can be repre-
sented in the form
A �
∫

d2x⊥θ(R2
1 − x2

⊥)θ(R2
2 − |x⊥ −B|2)⇒

{
A = ζ1R

2
1 + ζ2R

2
2 for |R1 −R2| < B < R1 + R2

A = min(πR2
1, πR

2
2) for B < |R1 −R2|,

(29)
where

ζ1 = θ1 −
1
2

sin 2θ1, ζ2 = θ2 −
1
2

sin 2θ2,

cos θ1 =
B2 + R2

1 −R2
2

2BR1
, cos θ2 =

B2 + R2
2 −R2

2

2BR2
.

The inclusive spectra corresponding to these ex-
pressions are schematically depicted in Fig. 3. The
shape of the spectra depends greatly on the impact
parameter, changing drastically from a structure hav-
ing a sharp peak in y at the center for B ∼ 0 to con-
figurations featuring two small peaks near the edges
of the spectrum at maximum values of B ∼ m−2

p

√
s.

The region not filled with particles is formed around
y = Y/2 in the central part of the inclusive spectrum
forB > Bcr, this occurring fromB = Bcr. This region
corresponds to a configuration where only the edges
of the two black disks touch each other, which deter-
mines Bcr = 2R⊥(Y/2).

Obviously, the multiplicities of hard gravitons,
N(B, s) =

∫
ρ(B, y, Y )dy, also strongly depend on

B, and the character of this dependence changes
sharply atB ∼ Bcr ∼ m−1

p (s/m2
p)

1/4. From (29), one
can easily derive the approximate expression

N(B, s) = θ
(
Bcr −B

)
√
s

mp
f
( B

Bcr(s)

)
(30)

+ γ
θ
(
B −Bcr

)
θ
(
Bmax −B

)

(mpB)2
s

m2
p

,

where the function

f(B/Bcr)
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Fig. 3. Inclusive spectra of gravitons of transverse momenta k⊥ ∼ mp for various values of the impact parameterB. Here,Bcr

is the critical impact-parameter value at which the black parton disks of colliding particles begin to overlap in the c.m. frame.
=
γ mp√

s

∫
dyA

(
B,R⊥(y), R⊥(Y − y)

)
∼ 1

depends only slightly on the argument and Bmax ∼
m

−3/2
p
√
s.

For s� m2
p, the dimensions of the black disks are

great, in which case possible local fluctuations of their
density have virtually no effect on the mean number
of product particles. Therefore, the multiplicity dis-
tribution of product hard particles is determined pri-
marily by the geometric parameters of the collision—
specifically, by fluctuations ofB from one event to an-
other. In this case, the distribution of the probability of
formation of n hard gravitons can easily be estimated
if the dependence N(B, s) is known. This is done by
inverting this dependence [B = B(N, s)]. The result
is

wn �
1
n2

+

(
m2
p

s

)

f1

(

n
mp√
s

)

θ(n− ncr). (31)

At small n, the term that decreases in proportion to
1/n2 and which receives contributions from collisions
at large B, B > Bcr(s), is of importance in the distri-
bution wn. It corresponds to the second term on the
right-hand side of (30) and to spectra featuring two
maxima. The same region of n values makes a dom-
inant contribution to the total inelastic cross section,
that of order sm−4

p . The term involving the function
f1 ∼ 1, which is expressed in terms of f , is of im-
portance only for n > ncr ∼

√
s/mp and arises from
PH
collisions at impact-parameter values in the region
B < Bcr(s). In such processes, the multiplicity is
large (about

√
s)—it is close to themaximum possible

value; their cross sections grow only in proportion to
B2
cr(s) ∼ m−2

p

√
s/mp.

Themeanmultiplicity of hard gravitons that corre-
sponds to (31) is small (〈n〉 ∼ 1 for all s), but the vari-
ance of this distribution grows (〈n− 〈n〉〉2 ∼ ln s),
albeit not sharply.

It is also noteworthy that, as follows from (28) and
(29), the total inclusive spectra of hard gravitons,

ρ̃(y, Y ) = σ−1
in (Y )

∫
d2Bρ(B, y, Y ) (32)

�
πm2

pR
2
1R

2
2

R2(s)
= π

E1E2

mpE
∼ 1,

have a simple scaling form, as in the case of asymp-
totically constant total cross sections, although the
corresponding multiplicity distribution (31) has noth-
ing in common with the Poisson distribution. Also,
the deviation from the Froissart regime is sizable here.

5. ON THE ROLE OF SOFT GRAVITONS
TREATED AS PARTONS

For the inclusive production of hard particles at
various values of y, we have considered above a simple
partonic interpretation in terms of collisions of black
disks filled with gravitons playing the role of partons
and having the Planck density. However, an attempt
YSICS OF ATOMIC NUCLEI Vol. 66 No. 11 2003
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at developing a similar partonic interpretation of total
inelastic cross sections runs into a difficulty.

The inelastic cross section corresponding to a col-
lision of two black disks having energies E1 and E2,

σin(E1, E2) � π
(
R⊥(E1) + R⊥(E2)

)2

∼
(
E

(2+∆)/4
1 + E

(2+∆)/4
2

)2
,

depends on the choice of longitudinal coordinate
frame. Under the longitudinal boost transformations

E1 → E1ξ, E2 → E2/ξ, (33)

the quantity σin(E1ξ,E2ξ
−1) is independent of ξ only

at ∆ = −2, in which case the radii of the black
disks exhibit no growth with energy. The quantity
σin(E1, E2) is maximal in the laboratory frame of
one of the particles, where it coincides with the
“invariant” expression (26). We then have the pat-
tern of interaction between a large black disk and
a slow (standing) target. In this coordinate frame,
corrections from soft partons of energy ω � mp are
small. But in longitudinal coordinate frames, which
are closer to the c.m. frame, the black disks do not
overlap at the same large impact-parameter values of
B ∼ √s/m2

p; however, the densities of soft partons
are high, whence it follows that their interaction with
the black disk of the other particles may lead to large
cross sections.

The fact that, in the partonic description, the con-
dition of the invariance of cross sections under boost
transformations of the type in (33) may impose strin-
gent constraints on dynamical quantities is inter-
esting, but it is not surprising.7) A probable reason
for this is that the condition requiring that all cross
sections calculated in different longitudinal coordi-
nate frames be invariant under boost transformations
plays, for the partonic scheme, the role of the t-
channel unitarity condition.

Before proceeding to estimate σin(E1, E2) with
allowance for soft partons, we will discuss the ques-
tion of how particles of energy ω � mp can interact
with another black disk. For this, we will consider

7)For massive theories like QCD, the asymptotic rate of
growth of the partonic-black-disk radius R⊥(E) is deter-
mined, apart from a constant factor, from the condition of
invariance of the inelastic cross section σin = π(R⊥(E1ξ) +

R⊥(E2/ξ))
2 under variations of the boost-transformation

parameter ξ. This condition yields only two solutions. These
areR⊥(E) = const andR⊥(E) = c lnE, which lead to con-
stant cross sections and the Froissart regime, respectively.
Moreover, it can be proven, on the basis of invariance under
boost transformations, that the blackness (nontransparency)
of a Froissart disk becomes more pronounced with increas-
ing energy [22].
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the interaction of a massless “test” particle of mod-
erate energy E2 with a trans-Planckian particle of
energy E1, assuming that s � 2E1E2 � m2

p. If we
choose ξ (that is, the longitudinal coordinate frame)
in such a way that E2 ∼ mp, then, as was discussed
above, the probability that the particle of energy E2

is absorbed by the black part of the disk is equal
to unity for all impact-parameter values satisfying
the condition x⊥ < x⊥0 = R⊥(E1). This absorption
initiates the excitation of the parton system of en-
ergy E1 and subsequent particle production, as was
described in the preceding section. The probability
of such a process cannot depend on the choice of
longitudinal coordinate frame. We now choose ξ � 1
in such a way thatE2 � 1, whereupon the interaction
of the particle of energy E2 for the same values of x⊥
must not change—the particle in question must be
absorbed by the black disk of energy E1. But upon
such a transition to a different coordinate frame, the
radius of the black disk grows:

R⊥(E1)→ R⊥(E1ξ) = ξ1/2R⊥(E1).

Therefore, the particle of energy E2 must now be ab-
sorbed by the disk with a probability of unity at larger
impact-parameter values of up to x⊥ ∼ ξ1/2R⊥(E1).
This probability must not depend on ξ either. Nat-
urally, there arises the question of assessing values
up to which one can increase ξ and, accordingly,
maximum x⊥ and simultaneously assume that the
probability of soft-particle absorption remains equal
to unity. For this, it is necessary, among other things,
that the particle of energy E2 be localized, to a
fairly high degree of precision, within the black disk
of energy E1. It is clear that the dimension of the
transverse region in which the particle is localized is
not less than 1/E2 ∼ ξ. This dimension grows with ξ
faster than R⊥(E1ξ) ∼

√
ξ. Therefore, the condition

of their equality, 1/E2 ∼ R⊥(E1), determines the
minimum values E2 � mp for which the probability
of particle (parton) absorption by the black disk
remains approximately equal to unity.

Let us now estimate maximum impact parameters
B at which the probability of the capture of a soft
parton from one disk by a part of the other black disk
is equal to unity. Two conditions must be satisfied for
this.

First, there is a geometric condition: the number
of soft gravitons of energy ω � mp that fall within
the area of one of the colliding black disks and which
belong to the tail of the distribution of partons with
respect to b in the other black disk must not be less
than unity:

n̂(E2, ω,B)R2
⊥(E1, ω1 ∼ mp) ∼ m−2

p .
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Second, the dimension of the region of the trans-
verse localization of a soft parton (on average, it is
about 1/ω) must be much smaller than the radius
of the other black disk; otherwise, a soft parton will
predominantly undergo elastic scattering on the black
disk instead of being captured by it. This yields a
condition on minimal ω:

ωR⊥(E1,mp) ∼ 1.

By employing these conditions and the explicit ex-
pressions (22) and (24) for, respectively, n̂ and R⊥
with an arbitrary intercept ∆, we can easily find B =
R⊥max and ωmin:

ωmin ∼ mp

(mp

E1

)(2+∆)/4
,

(Bmp)2 ∼
(E1

mp

)1+3∆/4+∆2/8(E2

mp

)1+∆/2
.

Therefore, the total inelastic cross section for the
process being considered (in the chosen longitudinal
coordinate frame) has the form

σin(E1, E2) ∼
(
R⊥max(E1, E2)

)2 (34)

+
(
R⊥max(E2, E1)

)2

∼ m−2
p

(E1

mp

)1+3∆/4+∆2/8

×
(E2

mp

)1+∆/2
+
(
E1 ↔ E2

)
.

It can easily be verified that this cross section can
be invariant under boost transformations (this corre-
sponds to ∂σin(E1ξ,E2ξ

−1)/∂ξ = 0) only if the pow-
ers of E1 and E2 in (34) coincide. Only in this case
is σin ∼ 2E1E2 ∼ s independent of ξ, whence we ob-
tain, for ∆, a condition that has two solutions,

∆ = 0, ∆ = −2.

The first solution corresponds to the cross section
σin ∼ sm−4

p , which was considered in the preceding
section, while the second solution is trivial and corre-
sponds to constant ωmin ∼ mp and R⊥max ∼ m−1

p .

6. FINAL-STATE INTERACTION:
FORMATION OF A CHAIN OF BLACK

HOLES

In the collision process, some partons are excited
and are converted into free particles having inclusive
spectra that are greatly dependent on B and E and
which were described above. Within some time after
a collision, product particles may continue interacting
with their neighbors (until their three-dimensional
density becomes small because of divergence), and
this may additionally distort the spectra.
PH
In the case of QCD, this final-state interaction is
short-range; it follows that, although the spectra may
undergo local changes because of resonance decays
and some other low-energy reactions, the general
structure of the spectra remains unchanged. In this
case, the eventual spectra reproduce (apart from a
factor of about unity) the spectra of product particles.

But in the case of gravity, we additionally have a
long-wave interaction between product particles, and
this may lead to the clustering of particles and to large
distortions in the spectra of released partons.

The main instability is due to the attraction be-
tween particles of modest relative energy—that is,
particles of the spectrum ρ(y) that have close values
of the rapidity y. Therefore, we can break down the
spectrum ρ(y), by convention, into rapidity layers of
width δ ∼ 1 and choose δ in such a way that the
relative energies of particles within the layers (these
are predominantly gravitons characterized by k⊥ ∼
mp) are quite moderate. At the same time, δ must
be such that particles from neighboring layers look
like ultrarelativistic particles; that is, their mean lon-
gitudinal momenta must be much greater than their
transverse counterparts.

It is of importance that immediately after a colli-
sion, the three-dimensional density of product parti-
cles is high—it is close to the critical density of about
m−3
p . Therefore, particles of close rapidity interact

strongly with neighboring particles within a specific
time interval, this taking place until the density of
these particles becomes low. Owing to such a local
interaction, the particles in question are thermalized
to some extent and are delayed within a layer for some
time. A much more comprehensive consideration,
taking into account various details of string dynamics
at Planck densities, is required for refining the value of
δ, which is about unity. What is of importance for us
here is that δ may be virtually independent of s� m2

p

and B.
The following analogy is quite instructive. The

longitudinal distribution with respect to the momenta
of the system of particles produced in a collision of
black disks (as well as in all multiperipheral reac-
tions) is similar to that which would be observed in
a one-dimensional expanding cosmological solution.
In either case, particles are “injected” at the “initial
instant,” so that the distribution of particles logitu-
dinally flying apart is identical in any longitudinally
boosted coordinate frame. Moreover, the “injection”
of particles (a transition of virtual partons to real par-
ticles) that occurs locally at t = t0 ∼ m−1

p takes place
later by a time of about t0 exp y in other longitudinally
boosted systems (other layers) and, hence, at a lon-
gitudinal distance of about t0 exp y. In this analogy,
the dimensions δ of the region are on the order of
YSICS OF ATOMIC NUCLEI Vol. 66 No. 11 2003
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distances to the horizon of events in the cosmolog-
ical solution. In expanding cosmological solutions,
the maximum dimensions of the regions in which
the growth of density perturbations is possible are
bounded by such a “horizon.” For the same reasons,
the formation of clusters larger than those that are
contained in a region of dimension δ is improbable.

For the sake of simplicity, we have taken δ to be
a constant equal to its mean value. Of course, the
width of this region fluctuates; each time (and at each
value of x⊥ and y), it is determined by the density
distribution of product (released) partons.

If we choose a longitudinal coordinate frame in
such a way that a layer of given rapidity y1 is at rest
in it (this layer is indicated in Fig. 4), then particles
from other lays fly apart fast in this coordinate frame.
Moreover, these particles remain in a virtual (par-
tonic) state for some time—only after a lapse of a time
t of about mp exp |y − y1| do they become released
(transform into free particles).

Therefore, we can consider a further evolution of
this layer, disregarding the effect of other layers. Its
mass is

M(y1) ∼ m3
pA(y1, Y,B) ∼ ρ(y1, Y,B), (35)

where A is the transverse area of the layer corre-
sponding to y1. This mass of “thermalized” particles
is concentrated in a spatial region of longitudinal
dimension about m−1

p exp (δ), the transverse dimen-

sions being about
√
A. These dimensions are much

smaller than the dimensions of the horizon of a black
hole having the same massM(y1). At the same time,
particles in the layer are not ultrarelativistic, the range
being not longer than the longitudinal dimension of
the layer (and the more so its transverse dimensions).

It follows that, within a time of about
√
A, the

majority of the particles from the layer corresponding
to y1 will occur in a black hole having a mass M(y1)
and a transverse position that is determined by the
center of gravity of regionA. Within the same time in-
terval, the horizon “surrounding” the layer undergoes
a transition from an oblate, pancakelike configuration
to a sphere.8) It should be noted that this process may
proceed through some stages of formation and subse-
quent fusion of smaller black holes corresponding to
various x⊥, since the transverse dimensions of a layer
may be large.

The neighboring layers corresponding to y1 − δ
and y1 + δ move fast with respect to the layer of
rapidity y1. They also undergo a transition to black

8)The process of formation and growth of such horizons has so
far been studied only for a classical evolution of the system.
In terms of particles, the growth of the mutual coherence of
product gravitons is likely to have some bearing on it.
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Fig. 4. Inclusive spectrumof product particles (gravitons)
that is partitioned by convention into rapidity layers of
width δ. The magnitude of δ is chosen in such a way as
to correspond to the mean longitudinal dimension of the
long-wave-instability region where the density grows. In
the process of a further evolution, layers transform into
black holes having the same values of the rapidity and
mass, ρ(y).

holes havingmasses ofmpρ(y1− δ) andmpρ(y1 + δ),
respectively, but this occurs much later, the velocities
of these black holes with respect to the black hole
of rapidity y1 being about unity. In this way, a chain
of black holes characterized by a multiperipheral ra-
pidity distribution9) and masses determined by the
quantity ρ(y1, Y,B) is formed from the layers.10)

Since each such black hole is formed from a layer
of partons having close longitudinal velocities, these
black hole will not rotate. A slight rotation of a black
hole may arise because of “thermal” fluctuations and
boundary effects. But most of the angular momentum

9)It is possible that a uniform rapidity distribution of black
holes is slightly distorted since the effective layer width δ can
be weakly dependent on the layer mass (transverse dimen-
sions).

10)Within this pattern of trans-Planckian interactions, black
holes are formed because of final-state instability to long-
wave attraction in a large cloud of product particles. In the
evolution of the system, a long classical stage following the
purely quantum stage of a collision between black partonic
disks actually corresponds to this stage. In view of this, it
is improbable that there exist simple operator constructions
describing the production of black holes from the initial stage
of colliding particles—in other words, it is hardly possible
to find simple trajectories (instantons) in the relevant path
integral that lead to the production of black holes. In this
sense, a purely classical consideration of D’Eath [1], where,
upon a collision of twoAS disks, there can occur the focusing
of their normals (partons), which is followed by the formation
of gravitational singularities, is more consistent with our
case; yet, one must then use, instead of the ordinary general
theory of relativity, an effective classical theory that would
include all higher order corrections to the action functional
in curvature.
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from the initial state (especially at large B) is con-
verted into a relativemotion in the chain of black holes
and surrounding particles not captured into black
holes.

The mass and rapidity distributions of black holes
in individual events are determined primarily by the
corresponding values of the impact parameter and
by the behavior of the function ρ(y, Y,B). For B <

Bcr = m−1
p (E/mp)1/4, we have a multiperipheral

chain of black holes that is continuous in y. For
B > Bcr, there arise two multiperipheral chains of
black holes that are separated by a rapidity gap of
width ∆y � Y − 2 ln(Bmp). For large ∆y, in which
case B ∼

√
s/m2

p, such events look like a typical
diffractive generation of black holes whose masses
are aboutmp.

Some product particles falling “in between” the
layers and gravitons of low transverse momenta will
not be captured into black holes. However, a quali-
tative investigation of this issue presents a separate
problem, which is quite involved.

The question of whether a fragment of the black-
hole chain (or even all terms of this chain) can merge
into larger black holes during the process of diver-
gence is also of interest. This can generally occur
if the formation of horizons and their longitudinal
growth proceed faster than the divergence of black
holes, but it is necessary to perform a more accurate
analysis in order to clarify this point.

To conclude this section, we will briefly discuss
special features that the version considered above
acquires in the limiting case where the layer width
δ coincides with the entire continuous section of the
inclusive spectrum in Fig. 4. In collisions at impact-
parameter values in the region B < Bcr(s), all parti-
cles produced within a time interval of about m−2

p

√
s

will then merge, in this regime, into a single black
hole of mass about

√
s, while, in collisions at impact-

parameter values of B > Bcr(s), two black holes will
be produced that fly fast apart and which have masses
of about s/m3B2 ∼

√
s(Bcr(s)/B)2.

This final state at smallB is similar to that which is
predicted by a naive classical pattern and that which
is predicted in [1, 16] on the basis of an analysis of
the formation of trap surfaces in a collision process
within the classical theory of general relativity. This
is quite surprising and, within the approach adopted
in the present study, seems a mere coincidence since,
in trans-Planckian collisions, curvatures at classical
fronts corresponding to (2) are much greater than
Planckian curvatures; therefore, corrections to the
classical pattern may be large in general.

Also, it does not seem necessary, in this limiting
case to introduce logarithmic corrections to the radii
PH
of black disks, and the sum rules for momenta can
easily be satisfied. It may turn out that this case will
stand out upon taking into account all string degrees
of freedom.

7. CONCLUSION

For E � mp, we have thus arrived at a pattern of
gravitational interactions that is similar in many re-
spects to the asymptotic pattern of hadronic reactions
in the Froissart limit:

(i) A collision of trans-Planckian particles looks
like a collision of black disks whose radii are depen-
dent on their energies.

(ii) The production of secondaries having specific
momenta occurs in the region of intersection of these
disks in the longitudinal coordinate frame where the
particles in question are slow.

The main distinctions between trans-Planckian
interactions in QCD and those in gravity stem from
the fact that the graviton is massless.

The radii of the black disks growwith energy much
faster for gravitational interactions than for hadronic
processes (E1/2 versus lnE).

Yet another important distinction between the
hadronic and the gravitational case is that in the
character of final-state interaction. In the case of
QCD, this interaction is short-range; therefore, there
occur no global changes in particle spectra in the
process of hadronization and divergence of product
particles. But in the case of gravitation, there also
exists a long-range attraction, which leads to the
growth of density perturbations collapsing, later on,
into a chain of black holes.
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Abstract—The main obstacle in attempts to construct a consistent quantum gravity is the absence of
independent flat time. This can in principle be cured by going out to higher dimensions. The modern
paradigm assumes that the fundamental theory of everything is some form of string theory living in space of
more than four dimensions. We advocate another possibility that the fundamental theory is a form ofD = 4
higher derivative gravity. This class of theories has a nice feature of renormalizability, so that perturbative
calculations are feasible. There are also finite N = 4 supersymmetric conformal supergravity theories.
This possibility is particularly attractive. Einstein’s gravity is obtained in a natural way as an effective
low-energy theory. The N = 1 supersymmetric version of the theory has a natural higher dimensional
interpretation due to V.I. Ogievetsky and E.S. Sokatchev, which involves embedding our curvedMinkowski
spacetime manifold into flat eight-dimensional space. Assuming that a variant of the finite N = 4 theory
also admits a similar interpretation, this may eventually allow one to construct consistent quantum theory of
gravity. We argue, however, that, even though future gravity theory will probably use higher dimensions as
construction scaffolds, its physical content and meaning should refer to four dimensions, where an observer
lives. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Karen Avetovitch belongs to the first generation of
the Landau school. A characteristic feature of Lan-
dau and his disciples was dislike of “philosophy.”
The latter was understood in the broad sense as any
kind of discussion without explicit formulas or num-
bers. A scientific paper should involve a derivation of
some new formula or new number—this was themain
lesson that Landau taught to K.A. and which K.A.
taught to his students including myself. In my own
scientific activity, I mostly tried to follow this com-
mandment, but human beings are weak and sinful,
and cannot really be good all the time. Sometimes,
when the task to derive things scientifically is too
hard (as is the case for quantum gravity), it is very
difficult to resist the temptation to think and, which is
worse, to talk about these matters. When discussing
the foundations of quantum gravity, one has to do
a philosophical talk or no talk at all. Today, I have
chosen the first option and can only hope that K.A.
will not condemn me too much.

Actually, we do not understand what quantum
gravity is. To understand why we do not understand
this, letme briefly recall the things that we understand
well.

∗This article was submitted by the author in English.
1)On leave of absence from ITEP, Moscow, Russia; e-mail:
smilga@subatech.in2p3.fr
1063-7788/03/6611-2092$24.00 c©
(i) We understand well Newton’s laws and, gener-
ically, the dynamics of any classical system, where
equations of motion have Cauchy form: you set up
the initial conditions at a given time moment and find
out how the system will look at later times. The num-
ber of dynamic variables can be finite (this is called
classical mechanics) or continuously infinite (this is
called classical field theory). Such dynamic systems
often enjoy extra symmetries. The symmetries might
be global (with Nöther currents, etc.) or dynamical
(involving theHamiltonian). The important represen-
tative of the latter is Lorentz symmetry. There are
also gauge symmetries, which are not symmetries but
rather additional constraints imposed in phase space,
which are respected during the time evolution of the
system prescribed by its Hamiltonian.

(ii) We know how to construct quantum counter-
parts for all theories mentioned above. You introduce
a Hilbert space and write the Schrödinger equation
for wave functions (in the case where the number
of degrees of freedom is finite) or wave functionals
(in the case where the number of degrees of freedom
is continuous). To tackle the continuous number of
dynamic variables in field theories, one should first
make it finite (introduce ultraviolet and infrared regu-
larization) and then explore the limit when the corre-
sponding cutoffs are lifted. In some cases (as for QED
or forλφ4 theory, or for any field theory with spacetime
dimension 5 or greater), this leads to trouble: the
2003 MAIK “Nauka/Interperiodica”



QUANTUM GRAVITY 2093
continuum limit does not exist. But in many phys-
ically important cases (D = 4 non-Abelian gauge
theories), the continuous limit is well defined.

And this is all that we know for sure. The reader
might be surprised why did I not mention classical
gravity. A common believe is that, though quantum
gravity is, indeed, not constructed and not under-
stood yet, the classical theory, Einstein’s gravity, is
something which we know well and are sure about.
Mostly, this is true, but not quite. The discussion of
this nontrivial point is what I would like to begin with.

2. EINSTEIN’S GRAVITY

The action of the theory is

S = m2
P

∫
R
√
−g d4x+

∫
Lmatter

√
−g d4x. (1)

The equations of motion are

Rµν −
1
2
gµνR =

1
m2

P

Tµν , (2)

whereR is scalar curvature,Rµν is Ricci’s tensor,mP
is Planck mass, and Tµν is the energy–momentum
tensor of the matter fields.

The main problem of this theory is the problem
of time (see, e.g., [1] for an extensive discussion). In
“normal” systems, time is an independent variable,
not a dynamical one. In gravity, time is just one of
the coordinates on a D = 4 manifold and is inter-
twined with spatial coordinates, which are related
to the dynamical variables. The dependence on time
cannot be disentangled from other dependences. At
the classical level, this means that the problem of
solving Einstein’s Eqs. (2) cannot always be reduced
to a Cauchy problem.

We hasten to comment that, in all cases repre-
senting physical interest, it can. This can be done if
the four-dimensional manifold can be represented as
a set of three-dimensional slices of the same topology
(the interval between any two points on such a slice is
spacelike). In other words, the topology of spacetime
should be Σ×R. In the physically interesting case, Σ
is topologically equivalent toR3 and is asymptotically
flat. Choosing some coordinate along the timelike
factor R, we may call it time and rewrite Einstein’s
equations such that they would express evolution
with respect to this time. This procedure is called the
canonical Arnowitt–Deser–Misner (ADM) formal-
ism [2].

Trouble strikes back in the following way. Suppose
we pose some initial conditions at the spacelike slice
Σ corresponding to the moment t = 0 and are inter-
ested in what happens at later times. For generic ini-
tial conditions, singularities will develop (black holes
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 11 20
will be formed). The formation of black holes as such
does not lead to inconsistencies. The point is that
the singularity in the center of the hole is normally
surrounded by an event horizon (as is the case for the
Schwarzschild solution) and is thereby unreachable:
if we place the observer far away from the holes,
where the metric is nearly flat, he will not get signals
from the regions close to singularities and, as far as
this observer is concerned, the future evolution of the
system is uniquely determined by the Cauchy data in
the past.

The conjecture of Penrose [3] was that singulari-
ties are always surrounded by horizons and a “naked”
singularity is never possible (the so-called cosmic
censorship principle). It was found, however, that
this conjecture is not true in its strong form: there
are solutions to Einstein’s equations involving naked
singularities (see [4] for a recent review). A separate
question is whether these solutions are physically
realized. The answer to this is probably negative: all
such solutions seem to be unstable, so that a small
fluctuation of initial conditions destroys them. But
in principle, naked singularities are not forbidden in
general relativity.

The presence of a naked singularity means that
a distant observer receives information from regions
of arbitrarily large curvature, where classical theory
does not apply. Still, he does not receive in this case
information from the singularity proper, and Cauchy
interpretation is not spoiled yet on this stage. But
there are cases when it is. First of all, the symmetry
of the equations with respect to time reversal tells one
that, on top of black-hole solutions, there are white-
hole solutions, for which the world lines, matter, and
information flow out of the singularity through the
horizon to infinity. Again, these solutions are not
stable and are not physically realized (at least, at
the macroscale), but, at the foundational level, they
present trouble.

This conforms even more the wormhole solutions
with closed time loops [5]. They have roughly the
same status as the naked-singularity solutions and
white-hole solutions. The topology of the correspond-
ing 4-manifolds is more complicated than Σ×R (so
that the ADM canonical formalism does not apply
here) and involves a “handle” with two “mouths.”
The distance between the mouths in the usual space
may be large, while the geodesic distance measured
through the wormhole may be small. As a result, the
particles traveling through the wormhole will effec-
tively move faster than light from the viewpoint of
an outer-space observer, and this means violation of
causality, which is trouble. In particular, no Cauchy
interpretation for the equations of motion is possible
in this case [6].
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In other words, general relativity describes well
observable physical events at the macroscale level,
but it has inherent problems at the foundational level.
The same difficulty appears in any gravity theory in-
cluding the general covariance principle. The basic
reason for this is the absence of independent flat time.

3. QUANTIZATION

If the problems are there at the classical level, they
are not going to disappear when we try to quantize
the theory. Actually, they become much more severe.
If in the classical case noncausality showed up only
for rather special solutions, it is an inherent and un-
avoidable feature of quantum gravity.

I mean here in the first place Hawking’s para-
dox [7] associated with black-hole formation. As was
discussed above, in the classical theory, there are “be-
nign” solutions that describe the formation of black
holes prudently surrounded by a horizon. These solu-
tions present no conceptual problems. But in quan-
tum theory, black holes are not completely black; they
radiate by a Hawking mechanism. This radiation is
purely stochastic and does not carry any information
on what particular kind of matter fell in the black hole.
This information is lost completely. Therefore, our
system, having presented a pure quantum state at t =
0, is necessarily transformed into mixed state after
the black hole was formed and radiated a little bit.
This means loss of unitarity.2) In a quantum system
with a well-defined Hilbert space endowed by a norm
invariant under time evolution, such a transformation
of pure states into mixed states does not happen, and
nobody knows how to formulate a quantum theory
where the norm in Hilbert space is not conserved.

To be more precise, there were attempts to for-
mulate non-Schrödinger quantum theories. In the
framework of the ADM approach, one can naturally
derive the so-called Wheeler–de Witt equation [8]. It
says

ĤΨ = 0 (3)

(no term iΨ̇ on the right side). One obtains zero
on the right side, because the ADM Hamiltonian,
the generator of time translations, represents here
one of the gauge constraints: in gravity, the symme-
try with respect to coordinate translations is local,
not global. There are comparatively “kosher” quan-
tum systems described by the wave equation of the

2)In quantum theory, unitarity and causality are related no-
tions, and breaking of unitarity usually leads to breaking of
causality (see more detailed discussion at the end of Sec-
tion 5). Causality in quantum gravity is broken also more
directly via production of virtual wormholes.
PH
Wheeler–deWitt type. One of them is a quantum rel-
ativistic particle. The Klein–Gordon equation (p̂2 −
m2)Ψ = 0 has exactly the form (3), and this is not
accidental. The classical action

S =
m

2

∫ (
dxµ
dτ

)2

dτ (4)

is invariant with respect to reparametrizations τ →
f(τ) and is reminiscent of gravity in this respect. The
Klein–Gordon operator plays exactly the role of the
ADM Hamiltonian. However, this theory can also
be formulated in a standard Schrödinger form if x0

is chosen as time. The Schrödinger Hamiltonian is
then ĤSchröd = p0 =

√
p̂2 +m2. For systems where

the wave function does not change too rapidly (so

that the square root
√
−∂2

i +m2Ψ is well defined),

the equations ĤADMΨ = 0 and ĤSchrödΨ = iΨ̇ are
equivalent.

For gravity, one can in principle also use this trick,
but:

Even for the simple system (4), there is still no
complete equivalence of the Schrödinger equation
and the Wheeler–de Witt one; the restriction for the
wave functions not to change too rapidly should be
imposed. Moreover, at least in the case when an
external electromagnetic field is present, the Klein–
Gordon equation (as well as the Dirac one) is known
to be not internally self-consistent because it does not
take into account the creation of particle–antiparticle
pairs, which always occurs in strong fields.

In gravity (in contrast to the relativistic particle),
we do not have a unique natural recipe how to choose
time. As a result, the system (3) meets very seri-
ous, probably insurmountable, difficulties in interpre-
tation [1].

4. STRING STORY

Besides the difficulties discussed above, a standard
quantum gravity also has another problem: it is a
theory with dimensional constant mP and, as such,
is nonrenormalizable. This refers to the quantum ver-
sion of the standard Einstein’s gravity and also to its
supersymmetric versions (though some divergences
cancel out in supergravity, evenN = 8 supersymme-
try is not powerful enough to get rid of the infinite
number of counterterms). To cure this problem, string
theory was invented. The latter cures it for the simple
reason that a finite size of a string serves as an ul-
traviolet regulator and the ultraviolet divergences are
effectively cut off.

There are two points that I want to emphasize
here.
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(i) Even though perturbative string theory is,
indeed, benign in ultraviolet, it is in some sense
not constructed even now! We understand it well
at the tree level: we can very well calculate tree
string amplitudes described by the picture in Fig. 1a
(2-sphere with sources) and also at the one-loop
level (torus with sources). But already the calculation
of the two-loop graph in Fig. 1c is a tremendously
difficult task. It involves integration overmoduli space
for 2-manifolds of genus 2, and the latter has a
very complicated structure. This moduli space (called
Teichmüller space) involves certain singular points
corresponding to the cases where the width of one of
the handles in Fig. 1c shrinks to zero. The integral
for string amplitudes becomes divergent at these
singular points, and though these divergences are
not ultraviolet, but rather infrared in nature, they
are also nasty. Very recently, the solution of the
problem for two-loop amplitudes was announced [9]
(see also [10]), but we still do not know how to treat
divergences and calculate string amplitudes in the
general case.

(ii) Even if consistent string perturbation theory
for an arbitrary number of loops is ever constructed,
it will solve the problem of renormalizability, but will
hardly solve real conceptual problems of quantum
gravity discussed above: the absence of causality and
unitarity.

Let us discuss this point in some more detail.
String theory has one nice feature compared to
simple-minded quantum gravity: if strings are em-
bedded into flatmultidimensional target space (usu-
ally called bulk), there is a natural definition of time.
However, strings are nonlocal objects, and, in the full
theory treated nonperturbatively, this should bring
about noncausalities at the Planck scale (though
perturbative string amplitudes are probably causal).
Noncausalities in the bulk are bound to lead to
noncausalities in effective four-dimensional theory.

The question whether string theory is unitary has
different answers depending on whether we consider
it in the bulk (then hopefully it is) or from the view-
point of a four-dimensional observer. In the latter
case, it is definitely not because the effective four-
dimensional theory is still Einstein’s (super) gravity
and Hawking’s paradox is still there.

My personal opinion (I will give more arguments
in its favor later) is that string theory (at least the
conventional string theory in the framework of mid-
1980s paradigm) has little chance to prove to be
the fundamental theory of quantum gravity and/or of
Everything. Actually, nowadays, most string theorists
also think that one should look beyond string theory
to find a really fundamental one (M theory?).
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Fig. 1. String amplitudes: (a) tree level, (b) one loop, and
(c) two loops. Crosses stand for sources.

My own suggestion, however, is that, instead of
looking beyond strings, one can try to look in a
different direction.

5. CONFORMAL GRAVITY

Going to strings instead of fields is a rather bold
and radical step. The main conceptual problem is the
impossibility of defining the Hilbert space and path
integral in reasonably rigorous terms.

Of course, mathematicians maintain that the path
integral is not defined even in field theory, but for a
physicist, there is no problem there. The Euclidean
path integral is defined constructively and has been
calculated numerically by thousands of people in the
last 20 years. We believe that the Minkowski path
integral can also be calculated and the problem here
is purely technical. But for strings, we have no idea
how to do it. In field theory, we have an infinite number
of dynamical variables marked by spatial points x; in
string field theory, dynamical variables are function-
als on loop space; i.e., the argument for the string
field variable is a particular embedding of the string
in space {x(σ)}. In quantum theory, the basic object
would be a complex-valued “hyperfunctional” defined
on the set of all such functionals. Many people tried to
obtain some practical results in this direction, but to
no avail. Two loops is the limit of our understanding
now.

Bearing this in mind, it is reasonable to explore
less revolutionary approaches. String theory makes
gravity renormalizable, but is it not possible to make
it renormalizable in a conservative field theory frame-
work?

Yes, it is—is the answer. The quantum version
of Einstein gravity is nonrenormalizable due to the
presence of a dimensional constant. It is easy to write
a generally covariant Lagrangian, where the coupling
is dimensionless and the theory is renormalizable. The
Einstein–Hilbert action (1) is linear in R. Renormal-
izable gravity is quadratic in R. There is a family of
such theories with the actions

S = α

∫
RµνR

µν√−gd4x+ β

∫
R2√−gd4x. (5)
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The structure RµνρσR
µνρσ is reduced (at least, in

perturbation theory) to the two structures in Eq. (5)
due to the Gauss–Bonnet identity

R2 − 4RµνR
µν +RµνρσR

µνρσ = total derivative.
(6)

It has been known for a long time that the theories of
the class (5) are renormalizable. Moreover, they are
asymptotically free [11]! We will concentrate on one
particular theory in the family (5) with the action

S = −1
h

∫
CµνρσC

µνρσ√−gd4x, (7)

where

Cµνρσ = Rµνρσ (8)

+
1
2
[gµσRνρ + gνρRµσ − gµρRνσ − gνσRµρ]

+
R

6
[gµρgνσ − gµσgνρ]

is the Weyl tensor. A distinguishing feature of the
theory (7) is its invariance under local scale trans-
formations,

gµν(x)→ λ(x)gµν(x). (9)

Bearing in mind the relation (6), the action (7) is
perturbatively equivalent to (5) with β = −α/3 =
2/(3h).

An immediate objection against the idea that the
theory (7) describes the real world could be that it
does not have a Newtonian limit. The nonrelativis-
tic potential corresponding to the action (7) is not
Coulomb-like, but grows ∝ r (this follows from di-
mensional counting). The objection to this objection
is that effective long-distance theory need not co-
incide with the fundamental one. In fact, it can well
coincide with Einstein’s gravity!

Aswasmentioned, conformal gravity is an asymp-
totically free theory. The explicit one-loop calculation
gives [11]

1
h

∣
∣
∣
∣
µ

=
1
h0
− 199

30
1

16π2
ln
ΛUV

µ
, (10)

where ΛUV is the ultraviolet cutoff. Asymptotic free-
dom makes the physics of conformal gravity rather
similar to that of QCD. At large energies, perturba-
tion theory works, but at some scale µ ∼ Λconf. grav,
where the effective constant becomes large, nonper-
turbative effects come into play. The scale Λconf. grav
determines the mass of hadron-like states. This is the
standard dimensional transmutation. It is natural to
associate the scale Λconf. grav with the Planck scale.

In QCD, there are distinguished states, the pions,
which remain massless in the chiral limit. Thus, the
effective theory for massless QCD is the chiral theory
PH
describing pion interactions. The form of the leading-
order chiral effective Lagrangian

Lchiral =
F 2
π

4
Tr{∂µU∂µU

†} (11)

is dictated by symmetry considerations.
The effective Lagrangian for conformal gravity is

not invariant under local scale transformations (9),
but general covariance should still be there. This dic-
tates

Seff = Λ
∫ √

−gd4x+ κ

∫
R
√
−gd4x, (12)

where Λ is now the cosmological constant. A priori,
Λ ∼ m4

P and κ ∝ m2
P. The estimate Λ ∼ m4

P is about
130 orders of magnitude larger that the experimental
value of the cosmological constant. Thus, the the-
ory (7) is not viable as a realistic fundamental theory
of gravity. This refers actually to any nonsupersym-
metric theory. But if we start with supersymmetric
conformal gravity without the cosmological term, the
induced cosmological constant vanishes.3) In other
respects, the physics of conformal supergravity is
similar to that of conformal gravity. In particular,
conformal supergravity is asymptotically free and in-
volves dimensional transmutation.

The second term in Eq. (12) is the induced
Einstein’s gravity. The idea by which the Einstein–
Hilbert action is not present in the tree action, but
is generated spontaneously due to loops of usual
matter fields, was put forward a long time ago by
Sakharov [12]. It was mentioned in [13] that this
mechanism works also for conformal (super)gravity
and the analogy with the dimensional transmutation
mechanism in QCD was emphasized.

At the scale pchar ∼ Λconf. grav ∼ mP, nonperturba-
tive effects come into play. In QCD, the nonperturba-
tive effects are not reduced to, but are well represented
by, instantons, classical solutions to Euclidean field
equations. In gravity, there are also such solutions;
they are Ricci-flat four-dimensional manifolds called
gravitational instantons. The simplest such solution
is the Eguchi–Hanson (EH) solution [14] with the
metric

ds2 =
dr2

1− a4/r4
+ r2

[

σ2
x + σ2

y + σ2
z

(

1− a4

r4

)]

,

(13)

where

σx =
1
2
(sinψdθ − sin θ cosψdφ) , (14)

3)In the real world, supersymmetry is broken and it is not clear,
again, why the cosmological constant is so small. Nobody
can yet answer this troublesome question.
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σy = −
1
2
(cosψdθ + sin θ sinψdφ) ,

σz =
1
2
(dψ + cos θdφ)

are Cartan–Mauer forms. The metric (13) is locally
asymptotically flat. It satisfies the conditions Rµν =
0, which are equations of motion for Einstein’s gravity
withoutmatter, but Ricci flatness also implies that the
equations of motion for conformal gravity

gµν(3CαβγδCαβγδ + 2R;α
;α)− 4(RRµν −R;µ;ν)

(15)

+ 12(2Rα
µRνα −R;α

µν ;α −RµαβγR
αβγ
ν ) = 0

are satisfied.
In contrast to Einstein’s Euclidean action, which

is not positive definite and the corresponding path
integral is ill-defined, the Weyl action is positive defi-
nite. TheWeyl action of the EH instanton is

S inst =
48π2

h
. (16)

The contribution of the EH instanton to the path in-
tegral is nonanalytic in h, ∝ exp{−(48π2)/h}, which
is quite similar to what happens in Yang–Mills theory.
The EH instanton is analogous to the BPST instan-
ton also in other aspects: (i) The Riemann tensor for
the EH instanton is self-dual, as the field strength
tensor for the BPST instanton is. (ii) Like the BPST
instanton, the EH instanton can be interpreted as a
Euclidean tunneling trajectory interpolating between
two topologically distinct vacua [15]. In the Yang–
Mills case, different vacua are characterized by dif-
ferent Chern–Simons numbers. In the gravity case,
there are two classical vacua with flat R3 metric, but
with different orientation. Following the EH instan-
ton tunneling trajectory, flatR3 space turns inside out
and goes over to its mirror image.

Questions and Answers

Not everything is so rosy, however. Conformal
gravity also has certain difficulties that we are in a
position to discuss now.

First of all, when writing Eq. (10), we tacitly as-
sumed (and this is true) that the one-loop countert-
erm has the same functional form as the tree action.
However, the classical conformal symmetry of the
Weyl action is broken by quantum effects. This means
that we cannot guarantee that higher loop countert-
erms are all proportional to (7). The admixture of the
structure R2 cannot be ruled out. Thus, pure Weyl
gravity is not renormalizable. Of course, one could
consider the theory (5) with two charges. Its physics
is roughly the same as for the conformal gravity, but
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 11 20
it is much less beautiful and hence much more suspi-
cious. The same concerns theN = 1 supersymmetric
version of Weyl theory. It is also asymptotically free,
conformal symmetry is anomalous, and nonconformal
counterterms are bound to appear at the two-loop
level and higher.

Aesthetically more appealing are themodels where
conformal symmetry of the classical action is sus-
tained at the quantum level. They are not only renor-
malizable, but simply finite: the β function vanishes
identically and counterterms of dimension 4 do not
appear whatsoever. The best known example of such a
theory isN = 4 supersymmetric Yang–Mills (SYM).
Finite theories based on conformal gravity are also
known. The minimal variant of N = 4 conformal su-
pergravity happens not to be finite, but the coupling
constant ceases to run if an extraN = 4 SYMmulti-
plet is included with the gauge group U(1)× U(1) ×
U(1) × U(1) or SU(2) × U(1) [11].

If the β function vanishes, we do not have the
mechanism of dimensional transmutation at our dis-
posal and the question arises how the effective Ein-
stein action involving a dimensional coupling is gen-
erated. The answer is rather transparent: conformal
symmetry is not broken explicitly by quantum effects
in this case, but it can be broken spontaneously.
The point is that N = 4 finite theories involve scalar
Higgs fields. For certain nonzero values of the fields,
the classical potential vanishes. Supersymmetry dic-
tates that the potential is not generated at the quan-
tum level either: classical flat directions remain flat
in quantum theory. A set of all Higgs values where
the potential vanishes, is called vacuum valley or
vacuum moduli space. This is a situation of neutral
equilibrium: no particular point on the vacuummoduli
space is preferred, and we have a family of theories
characterized by particular Higgs expectation values.
This all is very well known for N = 4 finite gauge
theories, but it is also true for finite N = 4 conformal
supergravities.

Higgs expectation values bring about dimensional
constants so that an effective low-energy theory is
not conformal anymore. In the case of finite gauge
theories, the effective theory is akin to the Stan-
dardModel, involving spontaneous breaking of gauge
symmetry by the Higgs mechanism. The effective
theory for the finite conformal supergravity involves
Einstein’s term and its superpartners.

Let us discuss another difficulty that conformal
supergravity has. The Lagrangian (5) involves four
derivatives of the metric. Field theories with higher
derivatives are usually considered sick because they
are intrinsically noncausal. The latter also applies to
conformal gravity. To understand this, consider the
theory involving on top of the higher derivative terms
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also the Einstein term, L ∼ m2
PR+R2. The propa-

gator of graviton has then the form4)

D(k2) ∝ 1
m2

Pk
2 − k4

=
1
m2

P

(
1
k2
− 1

k2 −m2
P

)

.

(17)

In other words, on top of an ordinary massless gravi-
tonG, a massive particleG∗ with negative residue at
the pole appears. Production of particles with nega-
tive residues would violate unitarity.

However, it is known that unitarity is actually not
violated here [16, 17]. What is violated is causality.
The point is that, when loop corrections are taken into
account, the massive pole is shifted from the real axis,
and the “particle” G∗ ceases to be an asymptotic state
and cannot be produced in collision of usual massless
gravitons. Indeed, nothing prevents the particle G∗

from going into a set of massless gravitons, and this
makes the polarization operator Π(m2

P) correspond-
ing to the propagator (17) complex. If G∗ were a
“normal” particle with positive metric, the resultant
propagator

1
k2 −m2

P −Π(m2
P)

would involve a pole in the lower half-plane of k2
0

(Im[Π(m2
P)] < 0 in this normalization). When the

residue is negative, the propagator

1
−k2 +m2

P −Π(m2
P)

has the pole in the upper half-plane of k2
0 [Π(m2

P) is
determined by the same graphs as for a usual particle
and has the same value]. This property prevents mak-
ing a usual Wick rotation and is not consistent with
causality.5)

Currently, it is not clear whether the causality
breaking at the Planck scale persists in the finite
superconformal theories discussed above. In [11], a
careful optimism was expressed that maybe it does
not. But even if it does, we do not see why it should
be considered as a major problem. At a nonpertur-
bative level, microcausality is broken in any gravity
theories, with string theory not being an exception.
In conformal supergravity models, it is probably also
broken perturbatively.

So what?

4)We are not worried about numerical factors now.
5)In the papers [16], higher derivative theories were studied
mainly in association with the Pauli–Villars regularization
procedure. The conclusion was that the regularized La-
grangians lead to unitary amplitudes, but that causality is
broken at the regulator scale.
PH
6. SUPERGRAVITY AS A THEORY
OF 3-BRANE: OGIEVETSKY–SOKATCHEV

APPROACH

In the previous section, we argued that conformal
supergravity (probably, a finite, anomaly-free version
thereof) can be considered as a viable candidate for
the fundamental gravity theory. It solves the problem
of nonrenormalizability of standard gravity even bet-
ter than string theory does (we say better, because
perturbative calculations to any order in coupling
constant present no essential technical difficulties
there) and the difficulties it has are intrinsic for any
gravity theory.

String theory has one attractive feature, however.
It is formulated not in curved four-dimensional space,
but in the flatmultidimensional bulk. This gives a fun-
damental solution to the problem of time and brings
forward hopes of constructing a self-consistent quan-
tum theory.

We want to note here that similar hopes can actu-
ally be associated with standard supergravity if the
latter is described in the superfield formalism due to
Ogievetsky and Sokatchev [18].

The Ogievetsky–Sokatchev approach to super-
gravity has a lot of advantages compared to the
standard Wess–Zumino approach. Unfortunately,
the former is not so widely known, and we are in a
position to explain briefly its basic features. In the
Wess–Zumino approach, the basic superfield is EA

M ,
a supersymmetric generalization of vierbein. This
superfield has a lot of unphysical components; to get
rid of them, one has to impose constraints of a rather
complicated form.

The Ogievetsky–Sokatchev approach is based
on a beautiful geometric construction. Consider a
curved (4 + 4)-dimensional supermanifold (it has
four bosonic coordinates xm and four real or two
complex fermionic coordinates θα) embedded into
flat (8 + 4)-dimensional superspace involving four
complex (which is equivalent to eight real) bosonic
coordinates zm and two complex fermionic coor-
dinates. Such an embedding is characterized by
the superfield Hm(xn; θ̄α̇, θα), where Hm coincides
with the imaginary parts of flat coordinates zm and
xm—with their real parts. The Lagrangian of the
standard Einstein supergravity is none other than the
supervolume of the associated hypersurface:

Ssugra = m2
P

∫
Ber||EA

M ||d4xd4θ, (18)

where EA
M is the induced supervierbein on the hy-

persurface and "Ber" stands for the Berezinian (or
superdeterminant). Now, EA

M and Ber||E|| can be
expressed in terms of Hm(xn; θ̄α̇, θα) (in a not so
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simple but explicit way). One can check that they
obey the constraints that are imposed on EA

M in the
Wess–Zumino approach. On the other hand, no con-
straints on the axial superfield (we are using the
Ogievetsky–Sokatchev terminology) Hm need to be
imposed.

The Lagrangian (18) is invariant with respect
to general reparametrizations of all bosonic and
fermionic coordinates on the hypersurface. This group
is too large, however, which is not convenient. In
addition, such a generic reparametrization destroys
the simple form

Im(zm) = Hm
(
Re(zn); θ̄, θ

)
(19)

chosen by us to describe the hypersurface.
The form (19) is preserved by a subgroup of the

general reparametrization group. To describe it, intro-
duce left and right coordinates xmL,R = xm ± iHm and
require them to reduce to the familiar

xmL,R = xm ± iθ̄σmθ (20)

in the limit when the embedded hypersurface repre-
sents a hyperplane. Then, the transformations

xmL → fm(xnL, θβ), (21)

θα → χα(xnL, θβ)

obviously preserve the form (19). To provide for the
invariance of the action (18) or, which is the same,
to provide for the fact that the transformations (21)
represented a reparametrization of the coordinates on
the hypersurface, it is sufficient to require that the
super-Jacobian of the transformation (21) be equal
to 1,

Ber

∣
∣
∣
∣

∣
∣
∣
∣
∂(x′L, θ

′)
∂(xL, θ)

∣
∣
∣
∣

∣
∣
∣
∣ (22)

= det

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∂x

′m
L

∂xnL
− ∂x

′m
L

∂θα

∂θα
∂θ′β

∂θ′β
∂xnL

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
det−1

∣
∣
∣
∣

∣
∣
∣
∣
∂θ′α
∂θβ

∣
∣
∣
∣

∣
∣
∣
∣ = 1.

The gauge symmetry (21) allows one to greatly re-
duce the number of components of Hm. There are
altogether 64 components. The transformations (21)
involve 48 parameters, but the condition (22) fixes
8 of them leaving 40 free parameters. As a result,
we obtain 24 (12 bosonic and 12 fermionic) gauge-
invariant degrees of freedom. They exactly correspond
to the counting in component approach [19]: The La-
grangian involves 38 components (16 for the vierbein
ema , 16 for the gravitino ψmα , and 6 for the auxiliary
fields S,P,Am). There are 4 (general coordinate) plus
6 (local Lorentz) plus 4 (supersymmetry) = 14 gauge
parameters. Now, 38 − 14 = 64− (48− 8) = 24.

It is convenient to choose the normal gauge
(analogous to the Wess–Zumino gauge used in the
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analysis of supersymmetric gauge theories), in which
case

Hm ∼ ema θ̄σaθ + other terms. (23)

One can then be directly convinced (though the cal-
culation is tedious) that the bosonic part of the ac-
tion (18) coincides (up to a total derivative!) with R.
The other terms in the component Lagrangian are
restored by supersymmetry.

Now, N = 1 conformal supergravity can also be
described in these terms: its Lagrangian can be ex-
pressed via the unconstrained axial superfield Hm.
This Lagrangian (see the papers [18] for explicit for-
mulas) is invariant with respect to the general trans-
formations (21) (not restricted by the requirement of
unit super-Jacobian).

Note in passing that also the variant of supergrav-
ity with the cosmological term is nicely expressed
in the Ogievetsky–Sokatchev formalism. It turns
out that the corresponding action represents a total
derivative and the problem is reduced to the choice
of boundary conditions. Thus, the question why the
cosmological term vanishes acquires the same status
as the question why the θ term in QCD vanishes. No
comprehensive answer to any of these questions is
known, but we are sure at least that, if we start with a
supersymmetric theory with vanishing cosmological
term, the latter is not generated by quantum effects,
by the same token as the θ term in QCD is not
generated.

Our main point is that, once flat space appears in
the formulation of the theory, a natural definition of
time exists, which should allow one to present the
equations of motion in the Cauchy form. The the-
ory becomes quite similar to string theory, only it is
in a sense much more complicated: the latter deals
with embeddings of 2-surfaces into flat Minkowski
bulk, while the former depends on embeddings of 4-
surfaces (3-branes in modern terminology) there.

On the other hand, supergravity is still much sim-
pler than the full string field theory. Indeed, in spite
of the fact that the action (18) describes multidi-
mensional geometry, it is four-dimensional in na-
ture. The basic dynamical variables in such theory
are embeddings themselves rather than frightening
functionals in the loop space, which we would even-
tually have to learn to deal with if we stuck to the
conventional string theory paradigm.

7. DISCUSSION

Before going further, let us reiterate briefly the
main points of our reasoning so far (you may call it
a party line, bearing in mind that the corresponding
party is not numerous and in opposition).
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(i) We do not know how to construct a consistent
gravity theory strictly in a four-dimensional frame-
work. The main problem here is the problem of time,
which has not been fully solved even in classical gen-
eral relativity and becomes a real mayhem when one
attempts to quantize it.

(ii) Quantum version of Einstein’s gravity has an-
other problem: nonrenormalizability. It persists in su-
persymmetric generalizations.

(iii) The latter problem is cured in string theory,
but a simpler and in many respects nicer medicine
is provided by conformal gravity. The effective low-
energy theory for conformal gravity is Einstein’s the-
ory (modulo the problem of the cosmological term,
which is more tractable for supersymmetric versions
of the theory, but is far from being fully resolved). In
a nonsupersymmetric or N = 1, 2, 3 supersymmetric
versions of the theory involving a conformal anomaly,
Einstein’s constant is generated due to a dimensional
transmutation mechanism. We like better N = 4 fi-
nite superconformal theories, where Einstein’s con-
stant is generated due to spontaneous breaking of
conformal symmetry when a particular point on flat
Higgs moduli space is picked up.

(iv) With all probability, causality is broken in
these theories at the perturbative level (though this
was not explicitly demonstrated) due to the presence
of higher derivatives in the Lagrangian and complex-
ification of negative metric poles by the Lee and Wick
mechanism. But any gravity theory is acausal in four
dimensions.

(v) N = 1 supergravity and conformal supergrav-
ity have a nice interpretation due to Ogievetsky and
Sokatchev, where the classical field configuration can
be thought of as an embedding of a 3-brane into
eight-dimensional flat bulk space. This gives one a
natural definition of time, and one can hope to con-
struct a unitary quantum theory with a well-defined
Hilbert space in the bulk. The reasons are the same
as the reasons why we believe that string theory
(we mean string theory in the second quantization
framework, when it is a form of two-dimensional field
theory) is unitary in the bulk.

As the reader has probably already guessed, we
believe6) that the future fundamental theory of gravity
(and probably of Everything) is a variant of finite
superconformal gravity theory. We also believe that
this theory can be represented as a theory of 3-brane
embedded into a higher dimensional flat space.

There are still several points that are not clear now.
The last one is especially worrisome.

6)As we live now in civilized times and the risk of being severely
punished (being stoned, etc.) for a false prophecy is compar-
atively low, I am allowing myself to make one.
PH
(i) We believe that Ogievetsky–Sokatchev super-
gravity is unitary and causal in the bulk, but do not
know how to prove it. This is going to be a muchmore
complicated problem than proving unitarity for string
theory (such a proof is also absent at present).

(ii) The nice geometric interpretation discussed
above has been found so far only for N = 1 theories.
Little is known in this respect about N = 4 theory.
An educated guess is that the bulk in this case is
ten-dimensional rather than eight-dimensional. One
can notice in this respect that, in the problem of
embedding of a four-dimensional manifold into Rm,
the dimensions 8 and 10 are distinguished. Namely,
(i) one can always embed an n-dimensional manifold
into R2n without self-crossings, and (ii) one can al-
ways embed an n-dimensional manifold into R2n+2

without knots (so that all embeddings of a given
manifold are topologically equivalent) [20].

(iii) The finite superconformal gravity theories dis-
cussed above do not have realistic matter content.
They are based on the gauge group SU(2)× U(1) or
U(1)4, whereas we need the group SU(3)× SU(2)×
U(1) or larger, three fermion generations, etc. It is not
clear, however, that realistic superconformal gravity
theories will ever be found.

(iv) There is also a major philosophical problem.
The physics of 20th century is based on positivistic
philosophy. We want to formulate theory in terms of
physical observables and dismiss as meaningless all
attempts to talk about “real” electron trajectories, etc.
A real physical observable is by definition something
that can be measured by a real physical observer, who
is four-dimensional, as we are. But if we treat the
theory in a multidimensional bulk, the wave function
of the Universe and (in the proposed approach) the 3-
brane transition amplitudes can be measured only by
a “divine” observer living in the bulk. This smells of
mystics, but I do not know how to get rid of it here.

For any opponent, the negative program is usually
much stronger than the positive one. That is why I
want to finish with some comments on what, I think,
the fundamental theory of everything is not.

I am personally rather skeptical towards the as-
sertions that higher dimensions are really there. The
point is that even ordinary field theory is ill-defined if
the dimension of spacetime is five or more: the path
integral simply does not have continuum limit there
(at least, for D ≥ 5, we are not aware of any example
where such a limit exists). I cannot imagine that the
string field theory path integral is defined any better.
Thus, I do not believe in the ideas (rather popular
now) of large extra dimensions, the brane new world,
etc.
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It may be beneficial and even necessary to think
of our physical space as being embedded into a mul-
tidimensional flat bulk, but the physical space it-
self should be four-dimensional. In other words, my
attitude towards higher dimensions is close to the
standpoint of the Catholic Church with respect to the
heliocentric ideas of Kopernicus and Galileo. There
were no problems as far as they were proposed as a
convenient mathematical tool to facilitate calculation
of physical observables like planet positions, etc. (for
people of 16th century, the physical observer must, of
course, dwell on Earth), but the suggestion that Earth
really rotates around Sun was unacceptable.7)

7)My reasons are not religious, however, but simply a desire to
be able to define the path integral.
F ATOMIC NUCLEI Vol. 66 No. 11 20
Close to the end, but not in the very end, I want to
present, on top of a historical philosophical analogy,
an artistic one and simultaneously justify the queer ti-
tle of this paper. “Dragon” is a gravure by Escher. It is
reproduced in Fig. 2. As was emphasized in [21], this
dragon seems to be very much three-dimensional;
it kind of tries to escape the sheet of paper, where
it is drawn. But the only “physical dragon” that is
at our disposal is the gravure itself, which is two-
dimensional. It tries to make us believe that its real di-
mensionality is more than two, but it is a false claim.
Likewise, gravity may be conveniently formulated in
higher dimensional terms, but our physical world has
only four dimensions.

The last paragraph of the paper is reserved for a
physical argument. The idea that an essentially four-
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dimensional theory can be conveniently described
with fictitious higher dimensional scaffolds is not new.
This is exactly the content of Maldacena’s conjecture
on AdS/CFT correspondence: the correlators of
four-dimensional SYM theory coincide with certain
correlators in ten-dimensional supergravity defined
on the boundary of some particular background [22].
Many other quantities in ten-dimensional theory can
be defined and considered, but they are declared to be
meaningless as far as SYM theory is concerned.
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21. D. R. Hofstadter, Gödel, Escher, Bach: an Eternal
Golden Braid (Basic Books, 1979).

22. J. M. Maldacena, Adv. Theor. Math. Phys. 2,
231 (1998); S. S. Gubser, I. R. Klebanov, and
A. M. Polyakov, Phys. Lett. B 428, 105 (1998).
YSICS OF ATOMIC NUCLEI Vol. 66 No. 11 2003



Physics of Atomic Nuclei, Vol. 66, No. 11, 2003, pp. 2103–2111. Translated from Yadernaya Fizika, Vol. 66, No. 11, 2003, pp. 2152–2160.
Original Russian Text Copyright c© 2003 by the Editorial Board.
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SSS-Wave of ππ Scattering from Data on the Reaction π− p→p→p→ π0π0nnn

N. N. Achasov and G. N. Shestakov

The results of recent experiments performed at KEK, Brookhaven National Laboratory, Institute for High-
Energy Physics (Protvino), and CERN to study the reaction π−p→ π0π0n are analyzed in detail. For S-wave
ππ scattering in the channel of isospin I = 0, new data are obtained for the phase shift δ0

0 and the inelasticity
parameter η0

0 . Difficulties that arise in using, for the amplitudes of the S andD waves of the final π0π0 system,
physical solutions selected on the basis of partial-wave analyses are discussed. It is noteworthy that other
solutions are preferable in principle in the region of the invariant massm of the π0π0 system above 1 GeV.With
the aim of clarifying the situation and further studying the properties of the f0(980) resonance, it is proposed
to perform, in the reaction π−p→ π0π0n, an especially careful examination of the region of m values in the
vicinity of theKK̄ threshold.

Phenomenological Analysis of Channels of the Production of Three or Four Alpha
Particles in 16Oppp Collisions at a Momentum of 3.25 GeV/ccc per Projectile Nucleon

É. Kh. Bazarov, V. V. Glagolev, K. G. Gulamov, V. V. Lugovoi, S. L. Lutpullaev,
K. Olimov, A. A. Yuldashev, and B. S. Yuldashev

A phenomenological analysis of channels involving the production of three or four alpha particles in 16Op
collisions at a momentum of 3.25 GeV/c per projectile nucleon is performed for the first time under the
conditions of 4π geometry. Azimuthal asymmetries and collinearity observed experimentally are described on
the basis of a phenomenological model that assumes that the excitation of the target nucleus proceeds via a
peripheral process, but that its decay is statistical. It is shown that the azimuthal asymmetries in question
are due to the transverse motion of the fragmenting nucleus. It is found that the mean value of the transverse
momentum of product alpha particles and the collinearity of their emission are independent of the transverse-
momentum transfer to the target nucleus.

Production of Protons in 16Oppp Collisions at a Momentum of 3.25 GeV/ccc
per Projectile Nucleon

É. Kh. Bazarov, V. V. Glagolev, K. G. Gulamov, V. D. Lipin, S. L. Lutpullaev, K. Olimov, A. A. Yuldashev,
B. S. Yuldashev, and Kh. Sh. Khamidov

The momentum features of protons originating as fragments from 16Op collisions at a momentum of
3.25 GeV/c per projectile nucleon are analyzed for the first time under the conditions of 4π geometry. A
universal regularity is observed in the production of protons traveling in the forward direction in the rest frame
of the fragmenting nucleus: the mechanism of production of such protons (all of them, with the exception
of evaporated ones) is independent of the primary energy or the type of the target nucleus. The shape of
the momentum spectrum of protons appearing as fragments (especially slow ones) is shown to be strongly
correlated with the degree of excitation of the fragmenting nucleus.

Estimating the Number of “Photon Plus Jet” Events to Determine the Gluon Distribution
at the Tevatron in the RUN II Experiment

D. V. Bandurin and N. B. Skachkov

It is shown that, at an integrated luminosity of Lint = 3 fb−1, about one million events of the “prompt pho-
ton plus jet” type that are selected according to previously proposed criteria can be collected in the Run II
experiment at the Tevatron. Such statistics would make it possible to advance into the kinematical region
that was not explored in previous experiments aimed at measuring the proton structure functions and where
1063-7788/03/6611-2103$24.00 c© 2003 MAIK “Nauka/Interperiodica”
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2× 10−3 < x < 1.0 at Q2 values in the range 1.6× 103 ≤ Q2 ≤ 2× 104 (GeV/c)2, which, on average, is one
order of magnitude higher than values reached in experiments conducted at the HERA collider.

Production of Triply Charmed Ωccccccccc Baryons in e+e−e+e−e+e− Annihilation
S. P. Baranov and V. L. Slad

The total cross section and the differential cross sections for the production of triply charmed Ωccc baryons
in e+e− annihilation are calculated at the Z-boson pole.

Production of Heavy Quarks on Protons within the Semihard QCD Approach
S. P. Baranov, N. P. Zotov, and A. V. Lipatov

The inclusive production of heavy quarks in pp̄ interactions at the Tevatron and LHC energies is considered
within the semihard QCD approach. The dependence of the total and differential cross sections for the
production of b quarks and B mesons (as well as muons arising in the subsequent semileptonic decay
B → µνµX) on various sets of unintegrated distributions of gluons is investigated. The results obtained by
calculating azimuthal correlations between the transverse momenta of final-state particles are presented. The
theoretical results of the present study are compared with the latest experimental data obtained by the D0 and
CDF Collaborations at the Tevatron.

Production of a Pair of Charmed Mesons in Photon–Photon Interaction
A. V. Berezhnoy, V. V. Kiselev, and A. K. Likhoded

The exclusive production of a pair of charmed mesons in photon–photon interaction is calculated on the
basis of the constituent model. The resulting predictions are compared with heavy-quark effective theory. It is
shown that the light valence quark of the D meson plays a significant role not only in hadronization but also
in the process leading to the production of a heavy c quark. Moreover, it is shown that, because of the strong
interaction of a primary photon with the charge of a light quark, a similar situation persists even in the limit
mQ →∞, whence it follows that the application of heavy-quark effective theory to the case of photon–photon
interaction is incorrect, since this theory disregards one of the dominant mechanisms of the production of heavy
mesons.

Processes e+e− → cc̄cc̄e+e− → cc̄cc̄e+e− → cc̄cc̄ and e+e− → J/e+e− → J/e+e− → J/ψ+ gg+ gg+ gg at
√

s = 10.59
√

s = 10.59
√

s = 10.59 GeV
A. V. Berezhnoy and A. K. Likhoded

Data obtained in the BELLE experiment on the inclusive production of J/ψ particles in the processes
e+e− → J/ψ + gg and e+e− → J/ψ + cc̄ are discussed. A comparison of these data with the predictions of
perturbative QCD is performed either with the aid of information about the J/ψ wave function or without
recourse to this information by using only the assumption of quark–hadron duality. In either case, there is
pronounced disagreement between the results of the calculations and the data in question. The cross section
for the process e+e− → J/ψ + gg is studied as a function of the effective gluon mass. Estimates are presented
for the production of doubly charmed baryons Ξcc.

Elastic Scattering of Intermediate-Energy Protons by 9Be Nuclei within the 2αnnn Model
Yu. A. Berezhnoy and V. P. Mikhailyuk

A dispersive alpha-cluster model is developed for the case of the 9Be nucleus. In the relevant calculations,
two configurations are used for the ground-state density of this nucleus. The 9Be nucleus is considered either
as that which consists of a core (8Be nucleus) and an additional cluster (neutron), which, with the highest
probability, can execute vibrations about the center of mass of the core, or as that which consists of two
alpha-particle clusters and a neutron that occur at the vertices of an equilateral triangle. On the basis of this
approach and the theory of multiple diffractive scattering, polarization observables are calculated for elastic
proton scattering by these nuclei. The observables of elastic p9Be scattering that were calculated within this
approach are in agreement with available experimental data.
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 11 2003
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TTT-Odd Correlation inK+ →K+ →K+ → πlllνγ Decays beyond the Standard Model
V. V. Braguta, A. A. Likhoded, and A. E. Chalov

The dependence of the T -odd correlation ξ = q · [pπ × pl]/m3
K in K+ → πlνγ, l = e, µ, decays on the

parameters of the effective Lagrangian is considered. It is shown that the quantity under study is an effective
one from the point of view of searches for new physics in the vector and the pseudovector sector of the
Lagrangian being studied. No significant refinement of the currently existing constraints on the parameters
of various extensions of the Standard Model can be achieved by studying the above T -odd correlation in the
scalar and the pseudoscalar sector of this Lagrangian.

Measurement of Cross Sections for γγγ Transitions in Excited Nuclei Originating
from the Interaction of 1.1-GeV Protons with Silicon Nuclei

A. A. Vasenko, N. D. Galanina, K. E. Gusev, U. S. Demidov, E. V. Demidova, I. V. Kirpichnikov, V. A. Kuznetsov,
B. N. Pavlov, A. Yu. Sokolov, A. S. Starostin, and N. A. Khaldeeva

Cross sections are measured for processes in which the formation of excited nuclei in 28Si(p, xp, yn)A∗

reactions is followed by a γ transition to a state at a lower excitation energy or to the ground state. The exper-
iment was performed in an external proton beam from the accelerator installed at the Institute of Theoretical
and Experimental Physics (ITEP, Moscow). A Ge(Li)–NaI(Tl) anticoincidence gamma spectrometer, which
recorded prompt gamma radiation emitted by the excited final nucleus, was used to identify the reactions in
question. The sensitivity of the experiment was 1.5 mb. The cross sections were obtained for 24 γ transitions
in 17 product nuclei. The cross sections for disintegration reactions are estimated. A comparison with available
experimental data and with the results of calculations by a semiempirical formula, as well as with the results of
simulations of hadron interactions on the basis of the GEANT and INUCL codes, is presented.

Features of pppC Interactions at a Momentum
of 4.2 GeV/ccc versus the Degree of Centrality of a Collision between a Proton

and a Carbon Nucleus: Kinematical Features of Secondaries
A. S. Galoyan, E. N. Kladnitskaya, O. V. Rogachevsky, R. Togoo, and V. V. Uzhinskii

The mean values of the momenta and emission angles of charged pions and protons in the laboratory frame
are presented both for the total ensemble of interactions between 4.2-GeV/c protons and a carbon nucleus and
for six groups of events characterized by different degrees of collision centrality. The distributions with respect
to the total and the transverse momentum are presented for the particles being studied, along with the rapidity
distributions. Our experimental data are compared with the predictions of the cascade–evaporation model and
of two versions of the refined FRITIOF model. It is shown that, as the degree of collision centrality becomes
higher, the mean momenta and rapidities of secondaries decrease, the transverse momenta remain virtually
unchanged, and the mean angles of particle emission increase. This is consistent with particle cascading in
nuclei. However, the mean transverse momentum 〈pt〉 of participant protons that was obtained on the basis
of the cascade–evaporation model decreases with increasing degree of collision centrality, in contrast to what
is observed in our experiment. A satisfactory description of experimental data was obtained on the basis of
the refined FRITIOF model taking into account ∆+ and ∆0 isobars. The stopping power of carbon nuclei for
4.2-GeV/c protons is also determined.

Transparency of Nuclei and Proton and Pion Ranges
in Nuclear Matter at Intermediate Energies

I. V. Glavanakov
In the second resonance region of the photon energy, the differential yield of neutral and charged pions in

the (γ, πp) reactions on Li, C, and Al nuclei is measured as a function of the proton energy and the azimuthal
angle of pion emission. These experimental data are analyzed on the basis of a model that includes single and
double quasifree pion photoproduction. This makes it possible to obtain the energy dependences of the proton,
neutral-pion, and charged-pion ranges and to estimate the transparency of nuclei.
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 11 2003
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Integration over Moduli Space in Superstring Theory
G. S. Danilov

A calculation of multiloop superstring amplitudes is considered, the equivalence of popular approaches
to determining these amplitudes being discussed. A calculation of poorly defined integrals over singular
configurations is clarified. Amplitudes obtained by a correct method do not involve divergences in any order
of perturbation theory.

Properties of Products Originating from the Interaction of 35-MeV/nucleon 7Li Ions
with Pb Nuclei

N. A. Demekhina, G. S. Karapetyan, S. M. Lukyanov, Yu. É. Penionzhkevich, N. K. Skobelev, and A. B. Yakushev

The results are presented that were obtained bymeasuring and analyzing the yields and kinematical features
of radioactive products of the reactions initiated in a lead target by lithium ions accelerated to an energy of
35 MeV/nucleon. The cross sections, charge and mass distributions, and kinematical and energy features of
various reaction products associated with the fission and the evaporation channels of the decay of excited nuclei
are determined. Quantities that are calculated in the present study include the momenta and kinetic energies
of residual nuclei, as well as the momentum transfer and the excitation energy of intermediate nuclear systems
formed upon complete and incomplete fusion. On the basis of an analysis of data obtained in our experiment,
the total cross section for nuclear interaction and partial widths with respect to various channels of the decay
of intermediate compound nuclei are determined in the energy range being investigated.

Excitation of the Discrete Levels of the 54Fe and 56Fe Nuclei in (e, e′e, e′e, e′) Reactions
V. V. Denyak, V. M. Khvastunov, V. P. Likhachev, A. A. Nemashkalo, S. A. Pashchuk, and U. P. Schelin

The excitation of the discrete levels of the 54Fe and 56Fe nuclei in (e, e′) reactions at an excitation energy of
8 MeV is investigated in the momentum-transfer range between 0.6 and 1.7 fm−1. A nontraditional procedure
of multipole analysis is employed in experimental-data processing. Information about the reduced probability
andmultipole orders is obtained for 12 low-lying states of the 54Fe nucleus and for 10 states of the 56Fe nucleus.
Five levels in the 54Fe nucleus and three levels in the 56Fe nucleus are identified for the first time in (e, e′)
reactions. The latest compilation of data on discrete levels contains no information about two of them.

Phase Transitions between Axisymmetric and Nonaxial Nuclear Shapes
R. V. Jolos

Within the interacting-boson model, phase transitions between different nuclear shapes are considered
in the space of three governing parameters. Depending on the values of these parameters, the equilibrium
nuclear shape may be spherical, deformed axisymmetric, and deformed nonaxial. It is shown that the phase
transition from an axisymmetric to a nonaxial deformation is a second-order phase transition. Within the
Bohr–Mottelson model, an approximate solution is found that describes a nucleus in the vicinity of the critical
point of the phase transition from a spherical shape to a nonaxial deformation. The results obtained for the
energies and probabilities of E2 transitions are close to experimental data for 134Ba.

Stability of the Vacuum in Nambu–Jona-Lasinio Models
I. T. Dyatlov

In Nambu–Jona-Lasinio models for a dynamical breakdown of chiral symmetry, nonperturbative diver-
gences prevent a direct comparison of the vacuum energies of different solutions. In the presence of a few
solutions to the equations for fermion masses, the choice of a stable vacuum can nevertheless be performed
since, for unstable states, tachyons appear in the spectrum of composite scalar bosons of the model.
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 11 2003



FUTURE PUBLICATIONS 2107
Isotopic Effect in the Widths of Giant Dipole Resonances of Light Nuclei
M. A. Elkin, B. S. Ishkhanov, I. M. Kapitonov, E. I. Lileeva, and E. V. Shirokov

An isotopic effect in the widths of giant dipole resonances is established on the basis of an analysis of the
latest systematics of photoabsorption cross sections for nuclei containing 12 to 65 nucleons. This effect arises
owing to isospin splitting of a giant resonance. It is enhanced by its configuration splitting.

Relativistic Description of Pγ∗γPγ∗γPγ∗γ Transition Form Factors within the Quasipotential
Approach

A. A. Zarzhitsky and V. I. Savrin

The possibility of constructing a nonperturbative description of the π0γ∗γ, ηγ∗γ, and η′γ∗γ transition form
factors is investigated. The analysis is performed within the quasipotential approach in the lowest order in
the electromagnetic coupling constant. This makes it possible to derive analytic expressions for the relevant
transition form factors in terms of relativistic mason wave functions. A quantitative description of currently
available experimental data can be obtained owing to a natural choice of the quasipotential wave function
for pseudoscalar mesons. A comparison of wave-function parameters for the π0, η, and η′ mesons clearly
demonstrates a relativistic character of the motion of quarks in light mesons.

Electroweak Radiative Effects in Polarized Møller Scattering
V. A. Zykunov

Bremsstrahlung-induced electroweak radiative corrections to observables of polarized Møller scattering
are calculated. The covariant method is used to remove infrared divergences. Owing to this, the eventual result
does not involve unphysical parameters. The electroweak corrections being considered reduce the polarization
asymmetry in the region studied by the E-158 experiment at SLAC. For example, the asymmetry is shifted by
approximately −11% at E = 48 GeV and y = 0.5.

Single-Particle Levels and Spin-Orbit Splittings in the Vicinity of the Doubly Magic
Nucleus 48Ca

V. I. Isakov

On the basis of a detailed analysis of available experimental data, the spectrum of single-particle states
and the isotopic dependence of spin–orbit splitting are determined for nuclei in the vicinity of the neutron-rich
nuclide 48Ca. The spectrum of excited states of the isobaric nucleus 48Sc is calculated.

Relativistic Analysis of Bremsstrahlung in the Process pp→ pppp→ pppp→ ppγ with Allowance
for Isobar Channels and Possibility of Choosing between Different Types

of Nucleon–Nucleon Interaction
V. A. Knyr and N. A. Khokhlov

A relativistic quasipotential formalism for describing electromagnetic processes involving nucleons that
takes into account an explicit coupling to theN∆ (1232 MeV) and NN∗ (1440 MeV) channels is developed.
On one hand, this formalism is a relativistic generalization of the Lomon–Ray approach to describing
nucleon–nucleon scattering within a framework explicitly including isobar degrees of freedom; on the other
hand, it relies on the formalism developed by Lev within relativistic quantum mechanics to construct the
operator of the electromagnetic current of interacting particles. The formalism makes it possible to construct
a consistent description of a two-nucleon system in the energy region extending up to 1 GeV. It is applied to
describing the reaction pp→ ppγ over a kinematical region in which corrections associated with a virtual delta
isobar in the proton–proton system are of importance. The sensitivity of this reaction to the type of short-range
component of the nucleon–nucleon potential and the possibility of choosing between the Moscow potential
and meson-exchange potentials on the basis of experimental data are confirmed.
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Yield of Neutrons upon the Irradiation of Thin Foils from TiD2

with a Superstrong Laser Pulse

V. P. Krainov

The yield of neutrons from the thermonuclear-fusion reaction D(d, n)3He induced in a thin skin layer by the
interaction of a high-intensity laser pulse of picosecond duration with thin foils made from TiD2 is calculated.
A multiple ionization of titanium atoms at the forward front of the laser pulse is considered. The heating of free
electrons proceeds via inverse absorption induced by braking in elastic electron scattering on multiply charged
titanium ions. The electron temperature is calculated. It proves to be about 10 keV at the laser-pulse intensity
of 5× 1018 W/cm2 at the peak. The yield of neutrons is estimated at 104 per laser pulse. These results are in
qualitative agreement with experimental data.

Leptonic Decays of theWWW Boson in an Intense Electromagnetic Field

A. V. Kurilin

The probability ofW -boson decay into a lepton and neutrino in a strong electromagnetic field,W± → (±ν�,
is calculated. On the basis of the method for deriving exact solutions to relativistic wave equations for charged
particles, an exact analytic expression is obtained for the partial decay width Γ(κ) = Γ(W± → (±ν�) at an
arbitrary value of the external-field-strength parameter κ = eM−3

W

√
−(Fµνqν)2. It is found that, in the region

of comparatively weak fields (κ 
 1), corrections to the standard decay width of the W boson in a vacuum
are about a few percent. As the external-field strength is increased, the partial width with respect toW -boson
decay through the channel in question, Γ(κ), first decreases, the absolute minimum of Γmin = 0.926Γ(0) being
reached at κ = 0.6116. A further increase in the external-field strength leads to a monotonic growth of the
decay width of the W boson. In superstrong fields (κ � 1), the probability of W -boson decay is greater than
the corresponding probability of the decayW± → (±ν� in a vacuum by a factor of a few tens.

Neutron Emission from the Reaction 232Th(n, xn′fn, xn′fn, xn′f )

G. N. Lovchikova, A. M. Trufanov, M. I. Svirin, and V. A. Vinogradov

The energy distributions of neutrons accompanying the fission of 232Th is measured by the time-of-flight
technique at the bombarding-neutron energies of En = 14.6 and 17.7 MeV. The data obtained in this way
are compared with the results of previous investigations. An excess of soft neutrons that was observed in the
experimental spectra of neutrons from 238U fission at En = 13.2, 14.7, 16.0, and 17.7 MeV in relation to the
results of the calculations based on the model of two sources is also present in the spectra for 232Th. The
discrepancy between the results of the calculations and experimental data disappears as soon as one assumes
the presence of a third source that is related to neutron emission from nonaccelerated fragments.

On the Pair Production of Vector Charmonia in Electron–Positron Annihilation into Two
Photons at

√
s = 10.6
√

s = 10.6
√

s = 10.6 GeV

A. V. Luchinsky

The results recently obtained by the BELLE Collaboration from a measurement of the exclusive pair
production of cc̄ mesons in electron–positron annihilation deviate from theoretical predictions considerably.
It was recently assumed that a significant part of this discrepancy may be attributed to the process e+e− →
2γ∗ → 2J/ψ, and the cross section for this process was presented. It is shown that these results are erroneous
and yield excessive cross-section values. Correct values are given for cross sections describing the pair
production of various vector charmonia.
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Potential of Present-Day Experiments Aimed at a Model-Independent Determination
of Parameters Characterizing the Gamma Decay of Compound Heavy-Nucleus States

A. M. Sukhovoi and V. A. Khitrov

Experimental data on two-quantum cascades initiated by thermal-neutron capture in 184,186W and
190,192Os nuclei are analyzed from the point of view of prospects for improving reliability of a model-
independent determination of the level density in a given interval of Jπ and radiative strength functions for
E1 andM1 transitions exciting these levels in the region Eexc ≤ Bn.

Properties of Multi-Skyrmions and Their Quantization
in a Generalized Chiral Soliton Model

A. M. Shunderyuk

A semiclassical quantization of the Skyrme model featuring a sixth-order term in the derivatives of the
chiral field in the Lagrangian is performed. The orbital, isotopic, interference, and flavor tensors of inertia are
calculated. For this version of the model, numerical calculations are performed for the excitation energies of
flavors in baryon systems.

A New Look at the KLOE Data on the Decay φ →→→ ηπ0γ

N. N. Achasov and A. V. Kiselev

The analysis of the recent high-statistical KLOE data on the φ→ ηπ0γ decay is presented. This decay
mainly goes through the a0γ intermediate state, which gives an opportunity to investigate properties of the α0.
It is shown that KLOE data prefer a higher a0 mass and a considerably larger a0 coupling to the KK̄ than
those obtained in the analysis of the KLOE group.

Near-Threshold Radiative 3π Production in e+e−e+e−e+e− Annihilation
A. I. Ahmedov, G. V. Fedotovich, E. A. Kuraev, and Z. K. Silagadze

We consider the π+π−π0γ final state in electron–positron annihilation at c.m. energies not far from the
threshold. Both initial and final state radiations of the hard photon are considered but without interference
between them. The amplitude for the final-state radiation is obtained by using the effective Wess–Zumino–
Witten Lagrangian for pion–photon interactions valid for low energies. In real experiments, energies are
never so small that ρ and ω mesons have a negligible effect. So, a phenomenological Breit–Wigner factor
is introduced in the final-state radiation amplitude to account for the vector meson influence. Using radiative
3π production amplitudes, aMonte Carlo event generator was developed which could be useful in experimental
studies.

Description of Composite Systems in the Spectral Integration Technique: The Gauge
Invariance and Analyticity Constraints for the Radiative Decay Amplitudes

V. V. Anisovich and M. A. Matveev

The constraints following from gauge invariance and analyticity are considered for the amplitudes of
radiative transitions of composite systems when composite systems are treated in terms of spectral integrals.
We discuss gauge-invariant amplitudes for the transitions S → γS and V → γS with scalar S and vector V
mesons being two-particle composite systems of scalar (or pseudoscalar) constituents, and we demonstrate
the mechanism of cancellation of false kinematical singularities. Furthermore, we explain how to generalize
the our consideration to quark–antiquark systems, in particular, to the reaction φ(1020) → γf0(980). Here,
we also consider in more detail the quark-model nonrelativistic approach for this reaction.
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Lepton-Pair Production in Relativistic-Ion Collisions and Its Correspondence
with the Crossing Process

E. Bartoš, S. R. Gevorkyan, and E. A. Kuraev

Using the Sudakov technique, we sum the perturbation series for the 3→ 3 process and obtain a compact
analytic expression for the amplitude of this process, this expression taking into account all possible Coulomb
interactions between colliding particles. Comparing it with the amplitude of lepton-pair production in heavy-
ion collisions—i.e., in the process 2→ 4—we show that the amplitudes obtained in the high-energy limit lose
the crossing-symmetry property (which holds only at the Born level).

On Rescattering Effects in the Reaction πππ−ddd→→→ πππ−ddd

V. V. Baru, A. E. Kudryavtsev, and V. E. Tarasov

Rescattering corrections to the impulse approximation for the processes π−d→ π−d and γd→ π0d are
discussed. It is shown that the rescattering effects give a nonnegligible contribution to the real part of
these amplitudes. At the same time, the contributions from the imaginary parts of impulse and rescattering
corrections drastically cancel each other. This cancellation means that the processes π−d→ π0nn and γd→
π+nn/π−pp are strongly suppressed near the threshold as required by the Pauli principle.

Study of Collective Flow Effects in CC Collisions at a Momentum
of 4.2 GeV/ccc per Nucleon

L. V. Chkhaidze, T. D. Djobava, L. L. Kharkhelauri, E. N. Kladnitskaya, and A. A. Kuznetsov

The directed (in-plane) flows of protons, pions, and projectile light fragments (d, t, 3He, 4He) have been
observed by investigating the dependence of the mean transverse momentum in the reaction plane 〈px〉 on
the rapidity y in the c.m. The comparison of our in-plane flow results of protons with flow data for various

projectile/target configurations was made using the scaled flow Fs = F/(A1/3
p + A

1/3
t ). Fs demonstrates a

common scaling behavior for flow values from different systems. From azimuthal distributions of protons and
π− mesons the out-of-plane (squeeze-out) flow effects have been observed and the parameter a2 (the measure
of the anisotropic emission strength) have been extracted. The quark–gluon string model reproduces quite
well the experimental results.

Signals of the AbelianZ ′Z ′Z ′ Boson within the Analysis of the LEP2 Data
V. I. Demchik, A. V. Gulov, V. V. Skalozub, and A. Yu. Tishchenko

The preliminary LEP2 data on the e+e− → l+l− scattering are analyzed to establish a model-independent
search for the signals of virtual states of the Abelian Z ′ boson. The recently introduced observables make it
possible to pick up uniquely the Abelian Z ′ signals in these processes. The mean values of the observables
are in accordance with the Z ′ existence. However, the accuracy of the experimental data is insufficient for
detecting the signal at higher than the 1σ confidence level. The results of other model-independent fits and
further prospects are discussed.

SU(2)× SU(2)SU(2)× SU(2)SU(2)× SU(2) Chiral Quark Model with Nonlocal Interaction
A. E. Dorokhov, A. E. Radzhabov, and M. K. Volkov

Starting with the model with the chiral invariant SU(2)× SU(2) four-quark interaction with a nonlocal
kernel, we describe masses and interactions of light mesons. The nonlocal kernel is chosen in the form that
ensures the absence of ultraviolet divergences in the Feynman diagrams and poles in the quark propagator.
Within this model we demonstrate that in the chiral limit the pion mass equals zero and the Goldberger–
Treiman relation is fulfilled. The sigma-meson mass and the widths of strong decays σ → ππ, ρ→ ππ are
estimated.
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On the Determination of Quark Masses from the Dalitz Plot
of the Decay η →→→ π+π−π0

B. V. Martemyanov and V. S. Sopov

The experimental Dalitz-plot distribution of η → π+π−π0 decay is fitted using the theoretical one obtained
in Chiral Perturbation Theory with unitarity corrections taken into account. The fit shows that the difference of
light quark masses is larger than that expected from electromagnetic mass differences of neutral and charged
kaons.

Radiative Corrections to QCD Amplitudes in Quasi-Multi-Regge Kinematics
V. S. Fadin, M. G. Kozlov, and A. V. Reznichenko

Radiative corrections to QCD amplitudes in the quasi-multi-Regge kinematics are interesting, in partic-
ular, since the Reggeized form of these amplitudes is used in the derivation of the NLO BFKL. This form is a
hypothesis which must at least be carefully checked, if not proved. We calculate the radiative corrections in the
one-loop approximation using the s-channel unitarity. Compatibility of the Reggeized form of the amplitudes
with the s-channel unitarity requires fulfillment of the set of nonlinear equations for the Reggeon vertices. We
show that these equations are satisfied.
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