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The amplitude of two-photon axion decay in a crossed field is calculated, taking into account the
polarization states of the photons. The decay probability and amplitude in an external
electromagnetic field exceed the decay probability and amplitude in vacuum even for values of
the invariant parametey= \/ez(szk)/mg greater than the small quantity, /m;.

Astrophysical aspects associated with this circumstance are discusse@9%American
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The decay processes of elementary particles with mass>F,, and the decay probability in a magnetic field exceeds
near or equal to zero have been of continuing interest for théhat in vacuum by many orders of magnitude.
last several decades. As a rule, this is associated with astro- That paper discusses the effect of an electromagnetic
physical and cosmological aspects such as the missing-mafisld on two-photon axion decayg—2vy, and shows that
problem, the “aging” of photons, and other problems. Forwhen the actual values of the invariant field parameter
example, the process of photon decaysplitting y—2vy in s
an external constant and homogeneous electromagnetic field, _ _ V€ (kF7k) )
which is forbidden in vacuum because of considerations of m

CP invariance, has been intensively discussed in the ) o )
literaturel™* In fields F<F0=m2/e=441>< 1013G. the are much less than unity the decay probability in a field
. e . L

splitting amplitude is proportional t63 (Ref. 1), and in a exceeds the decay probability in vacuum. A similar circum-
purely magnetic field with inductiorfF>F, goes to a stance was pointed out earlier only in beta decay with a small

constant,? Without answering the questions associated with€"€rgy yield" (of course, we are not thinking of processes

the red shift(because of the smallness of the interstellarth@t are in general forbidden in the absence of an external

fields), this effect can cause the observed linear polarizatiofi€!d-
of the hard radiation of pulsafsA feature of the kinematics An axion is a pseudoscalar Goldstone boson that appears

is that the momenta of the “decay” photons and the initial in the spontaneous breakdown of the global symmetry intro-

photons are parallel, so that the phase volume can be writtefHc€d by Peccei and Quirtflts existence, although not yet
as confirmed experimentally, would be extremely desirable for

a natural explanation of the observe&lP invariance of
. 5 strong interaction>'* The coupling constants of an axion
f & %5(k—k —Ky) = z fldx 1) with ordinary particles are inversely proportional te-the
2kyo J 2kao 2 ) energy scale of the breakdown of global symmetry—uwith the
lower limit of f being extremely largef=10'°GeV (an in-

wherek; =kx, k,=k(1—x), andk is the momentum of the visible axion, but the axion massn, is a fraction of an

decaying photon. When the mass of the initial particle is electron volt or lesgin this connection, an axion can be a

nonzero, the contributions to the matrix element that describ§andidate for the role of the carrier of the missing maisss
the deviation from “parallelness” and the decay probability 28Sumed that the only decay channel is two-photon decay,

will contain k?=m? . For small mass, this allows them to be With an effective interaction Lagrangian of
neglected by comparison with the contribution from the

e

other invariant paramete(®r example, the field parameters Lay=— EQYF’”TZ url 3
that enter into the problertthis circumstance will be used
below). Here we have pu, = —6207/27Tf, wherec,~1 is a model-

Another decay that is of interest, of a massive neutringjependent  dimensionless parameter, andF,,,
to less massive ones;— v;y, is possible in models with  —(1/2)e ,,,,F# is the dual tensor of the radiation field.

mixing.2~8 The massive relict neutrinos formed at the time of The corresponding decay probability per unit time egials
the Big Bang very probably owe their origin to precisely this

channel, and this has a direct relationship to the missing- a’c?m;
mass problem. The inhibiting factors are associated here with W0:32 23K 2 (4)
i (27)°kof
the smallness ofi;, the phase volumeng;—m;), and with
the GIM mechanism.As shown in our papef these limi-  while the quantitngl is greater than the lifetime of the
tations are largely removed in superstrong magnetic fieldsiniverse.
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iaC, (= dsdsds,

M=— V1V2efi<1> et ek
27Tf 0 (S+Sl+Sz)2(Q ) 1v,~2v,
+(y1e72). (8
Here we have introduced the notation
2 2 2
FIG. 1. b= me(S+ S1tS))— B + —+ —2Be(k,Fky)

2
e
2 2 2
The most “economical” version of the implementation T3 e+ pa(kaFoky) +pa(keFoko) ], (89)

of the Peccei—Quinn mechanism is expressed in a direct
axion—fermion coupling of the forff __59% p=S,+S,— S+ 5152
S+s,+s,’ 1h2 s '
i C¢y — 5 Ja
Zar=5e (Vyuy ‘I’)aT. 5 1 . . .
n Q2= ZTi[(Me+Vy+T+ Y°Ap) y'2(me+V+T
while the interaction with the other particles has an effective

character. . _ +95A) Y"1 (me+ Vo + To+ y°A)ky®], (8
In the presence of an external magnetic fieldliagrams

with an electron loop f{=e) contribute both to the axion &_ f(x#) T—

mass, which is estimated to be considerably less than “ 2s @’ B

and to the field-dependent part of the two-photon decay am- ,
plitude (see Fig. 1 The corresponding Lagrangian is the A =E(XI~:) ’
sum of Eq.(5) and the electrodynamic pae(V y,¥)A*. ° 2 ‘

Further calculations are carried out in the crossed-fieldhe form of p1 is obtained fromp by cyclic permutation,
configuration, in which both invariantsf, F*” and  and V1o, T1,, andA; , are obtained fronV, T, andA by
Fu JE#¥ equal zero. Such an approach is fairly general andpbvious extensions of the symbols, with the following defi-
moreover significantly simplifies the calculations. The com-nition of the differential operators acting @'
putations are largely analogous to those in Ref. 4, which

discussed the photon-splitting process in a crossed field, also Xig=—i—) Xpo=i i X, = = Xyg—Xog -
described by an electron tripole. kg’ ok “ ©oo
The Green’s function of the Dirac equation for an elec- (8¢

tron in a crossed field in the proper-time representation has \ye note the following circumstances as important for

the form the subsequent transformations:
(a) It is easy to show that theyf < y,) term in Eq.(7)

H X2 ! !
G(Xval):eXF{ —IGJX (dX'A(X")) [S(x2=X1),  (6)  reduces to the replacemeft>—F in the first term, so that
! only even powers of the field remain in the total amplitude.
= ds ix?2 (b) The field-independent contribution can be related to
S(x)=— Ppy; f - F{— s ismg the effective Lagrangian of the interaction of the axion with
(4m)" Jo s the radiation field, Eq(3), so that we are interested for now
|se 2 ;( s& » in the “field” contribution
12 P Met 55— 5 (9FX) Me=M—M|r_o. ©)
se ie (c) The terms~ kiz remain in Eq.(8a) for ® and can be
e

(6a) set equal to zero only after carrying out differential opera-
tions; the same holds true of the term&? and (;Fk,),
As a result of certain transformations, the decay matrixwhich can then be dropped as inserting a power of an addi-

(YFV)_EV (yFx)|.

element, defined in the usual wéycan be written as tional small parametem2/mZ into M.
2 i e (d) As in Ref. 4, it should be recalled that the result of
__ M a 4 ex ex k° the action of the differential operators en'?® in linear com-
M d*x | d*%,Tr[S(x5)e5 S(x1)e7 S(X)ky*]
f binations has the form
ie ; ; < kla k2a
Xexpg — E(XzFX)_l(klx)""(kzXz) +(y1e72), (1) X,—X,=28 P S_+e(kF)“
1 2
wheree; are the polarization vectors of the photors; x; e2
+x,=0, k=k;+k,, and the notation ¥,+y,) denotes + 5(—p1(k1F2)a+p2(k2F2)a) , (10a

photon permutation. Using E¢6a and integrating over the
spatial coordinates, we get and so on, and, in cubic combinations,
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XlaXBXZU*}’XlQ/;{BXZU
2

. < gﬁa €

+2|B[Xla(s_l_eFﬁzr_§plFf3(r>
2

~ Jap e 2
* X2 S—Z—EFaB— §PzFa5)
1%y 227 1 eF ¢ F2 10b)

B s €Fuo gp ao| |* ( )

We shall not show the resulting form of the teng@f1”2
because it is too complicated.

Further simplifications are associated with the introduc-
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MPV iceamg Zfld fld 2
F = 6f X 0 qu UVZ% @y (Z)
1
—Z(,sz”(Z)“' §Z3X2(P4fm/(z) ' Z:Q_lls.
(15

In the limit having practical significancg,<1, the value
of z is everywhere large in the region of integration, and,
using the relationshigf(z)|,_,.=1/z and Egs.(Al) and
(A2), it is easy to find that

iccam;
" 240mf X

MEV= (143x), (16)

tion of two independent states of linear polarization of the

photons of the form

<V>:& (P)_ (kaF) 4

T k)| (ka2

and new dimensionless variables

11

S1+S, S1
U= ,
S$1+S,

n=mi(s+s,+sy), u=

 Sts+s,’

fw ds dsds, 12

1 (1 1 oo
—2—>—zf duuf dvf dxz.
0 (s+s;+sy) mg/0 0 0
In this notation, we get

: 2
ICcaxm 1 1 ©
PV__ &7 e 2
MP g Xfoduufodvfo dn 7y

X (13

. | r
@1+ing,+ §x2773¢>4)e e
where

d=1+ 1 20
= §7] s

Q=x?u*{[v(1—uv)—x(1—u)]?

+4xuv(1—u)(1-v)?}, (13a
the variablex and the parametey are given by Eqgs(l) and
(2) and the functionsp; » 4(u,v,X) are given in the Appen-
dix. The form ofM " is obtained fromM Y by the replace-
mentsv —1—v andx— 1—x, while M{¥=MEP=0, which

which corresponds to a double interaction with the field in
the electron loop.

This expression is actually valid even in the case of ar-
bitrary constant field& = const, since the possible difference
would consist of an addition to? of a term of the form
(F#'F ,,/F§)(m3/mZ), which is much less thay? in the
limit ko>m,. Moreover, as follows from the form of the
effective Lagrangian in Eq(3), the matrix element for
“free” decay differs in order of magnitude from E{L6) by
the replacement ofnZy? by 10°m2. Thus, the field contri-
bution begins to dominate in the limi> yo=10(m,/my),
and this, for example, for a value ofi,~0.1eV, gives a
lower limit yo~1076.

Assuming that this is satisfied, we get the total decay
probability into unpolarized photons in a constant and homo-
geneous field==const:

1
_ PV|2 VP2
We=gamic | OHIMEY2+[MEPP) an
ie.,
7c2a®miy?
We=——er TeX (18)
2X 240°(27) 3Kk, f2

where we have allowed for the indistinguishability of the
photons by dividing by 2. Of course, when the axion mass is
small, the effect of the dominance of the field contribution to
the decay probability increases for smgll

In the asymptotic limity>1, it is impossible in Eq(15)
to simply take the derivatives of the Hardy—Stokes function
as zero(as was done, for example, in Ref. 4 in studying the
photon-splitting process since the integral from the third
term will diverge asu,v—1 (this singularity occurs when
the mass operator of an axion in a crossed field is computed
In this connection, the power of in the amplitude can be

is associated with th€P invariance of the theory. Thus, in greater than 2/3. In this version, the field contribution is the
the approximation used here, an axion in a crossed field d&etermining contribution in any case.

cays to photons with orthogonal polarizations. Introducing

the complex Hardy—Stokes function

f(z):ij:dtexp{—i

we rewrite the final general result in the form

t3

+_
zt 3

, (14)

Our analysis thus allows us to conclude that, even in
comparatively weak fields, the decay of a “stiff” axion is
completely controlled by the value of this field, as follows
from the conditiony>m,/m, and the form ofy given by
Eqg. (2). However, this has hardly any significance in astro-
physical terms, since interstellar fields are rather weak, and
the axion lifetime relative to two-photon decay remains as
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before much longer than the lifetime of the universe because

of the smallness of the coupling constant.Ifhe presence

of strong magnetic fields in collapsed objects such as neutron

V. V. Skobelev

+9v(2—3u)+3v%(—4+6u+u?)

—3v3u(1-u)}. (A3)

stars, however, cannot substantially reduce their assumed ax-

ion luminancé® because of small spatial size.

In conclusion, we note that our result does not coincid

in the asymptotic limity<<1 with the result of Ref. 19, in
which, using pseudoscala pseudoscalar coupling in the
Lagrangian¥,;, it was found thatWg~ x&.

APPENDIX A

The form of the functionsp;(u,v,X) in the expression
for the amplitude, Eq(15), is the following:

e1=Uv[4—3u+3u’—3u(7+u)v +24uv?]

+ux[8—21u+9u?+3(—4+7u+u?)

Xv+12u(2—-3u)v?], (A1)
©,=4uv(1-3uv+2u?v?)+4ux5—6u
+u?=3(2—u)(1—uv)v], (A2)

©4=2u%{20v3(1—2uv)(1—uv)(1-u??)+xv6(1
—u)2+2u3(3+u)+3v(—4+2u+8u?—7u®
—3u*) +v2u(24—52u+ 15u°+ 13u®) + 6v3u?(2
+3u—4u?)+2v%ud(— 12+ 11u) ]+ x%v(1—u)
X[2(3—15u+20u?—4u®)+ 3v(— 8+ 34u—38u?
+3ul+u*) +4v3(6—21u+14u?+5u®) +v3u¥(1

—u)(36—1w)]+2x3(1—u)—7+10u—u?

YThis result was obtained again in a recently published papihout re-

€ ferring to our pape?.

17. Bialynicka-Birula and I. Bialynicki-Birula, Phys. Rev. 12, 2341
(1970.

23, L. Adler, J. N. Bahcall, C. G. Callan, and M. N. Rosenbluth, Phys. Rev.
Lett. 25, 1061(1970.

3D. V. Gal'tsov, Yu. M. Loskutov, and V. V. Skobelev, Vestn. Mosk. Gos.
Univ. Fiz. Astron. No. 5, 6011972.

4V. O. Papanyan and V. |. Ritus, Zhk&p. Teor. Fiz.61, 2231 (1971
[Sov. Phys. JETR4, 1195(1972)]. )

SV. N. Baier, A. K. Mil'shtein, and R. Zh. Shiaultanov, Zh. Esp. Teor.
Fiz. 111, 52 (1997 [JETP84, 29 (1997)].

6S. M. Bilenky, S. T. Petcov, and B. Pontecorvo, Phys. Rev. 168t309
(1977.

"W. J. Marciano and A. |. Sanda, Phys. Lett6® 303(1977.

8J. Liu, Phys. Rev. D44, 2879(1997).

9S. L. Glashow, J. lliopoulos, and L. Maiani, Phys. Rev2[1285(1970.

10y, V. Skobelev, zh. Esp. Teor. Fiz108 3 (1995 [JETP81, 1 (1995].

1A, 1. Nikishov and V. I. Ritus, Trudy Fiz. Inst. Akad. Nauk SSSI®8,
232(1986.

12R. D. Peccei and H. R. Quinn, Phys. Rev. L&8, 1440(1977.

BR. D. Peccei and H. R. Quinn, Phys. Rev1B, 1791(1977.

14K. Choi, K. Kang, and J. E. Kim, Phys. Rev. Le®2, 849 (1989.

15G. Raffelt, Phys. Rev. [33, 897 (1986.

16G. Raffelt, Phys. Repl98, 1 (1990.

17v. B. Berestetskj E. M. Lifshitz and L. P. PitayevskyRelativistic Quan-
tum Theory Pergamon Press, Oxford971); Russian original, Nauka,
Moscow (1971), 285 pp.

18y, V. Skobelev, Zh. Ksp. Teor. Fiz112, 25(1997) [JETP8S5, 13(1997)].

9. A. Vasilevskaya, N. V. Mikheev, and A. Ya. Parkhomenko, Yad. Fiz.
60, 2223(1997 [Phys. At. Nucl.60, 2041(1997].

Translated by W. J. Manthey



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS VOLUME 88, NUMBER 2 FEBRUARY 1999

Violation of the factorization theorem in large angle radiative Bhabha scattering
A. B. Arbuzov,*) E. A. Kuraev, and B. G. Shaikhatdenov

Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russia
(Submitted 22 June 1998
Zh. Eksp. Teor. Fiz115 392-403(February 1999

The lowest order QED radiative corrections to the radiative large angle Bhabha scattering
process in the region where all kinematic invariants are large compared to the electron mass are
considered. We show that the leading logarithmic corrections do not factorize before the

Born cross section, contrary to the picture assumed in the renormalization group approach. The
leading and non leading contributions for typical kinematics of the hard process at the

energy of thed factory are estimated. €999 American Institute of Physics.
[S1063-776(199)00202-4

1. INTRODUCTION e’ (py)+e (p)—ef(py)+e (py)+y(ky). (1)

The large angle Bhabha scattering process LABS play%pecifically, if at the Born level we need to consider eight

an important role ire*e™ colliding beam physicS.First, it Feynman diagrams, then at the one-loop level we have as
is tradition.ally used for calibratiqn, becayse it has a Iar.gemany as 72. Furthe’rmore, performing loop momentum inte-
cross section and can be recognized easily. Second, it Mighf4tion, we introduce scalar, vector, and tensor integrals up
provide essential background information in a study ofi, the third rank with 2, 3, 4, and 5 denominatgesset of

quarkonia physics. The result obtained below can also bgevant integrals is given in our prepfintA high degree of

used to construct Monte Carlo event generators for Bhabhéymmetry of Feynman diagrams for a cross section can be
scattering processes. exploited to calculate the matrix element squared. Using it,

In our previous papers we considered the following con~ye can restrict ourselves to the consideration of interferences
tributions to the large angle Bhabha cross section: pair proof the Born-level amplitudefFig. 1 (1-4)] with those that
duction (virtual, soft? and hard) and two hard photorfs.  contain one-loop integral&ig. 1 (5-16)]. Our calculation is
This paper is devoted to the calculation of radiative correcsimplified since we omit the electron massin evaluating
tions to a single hard-photon emission process. We considehe corresponding traces due to the kinematic region under
the kinematics essentially of type-23, in which all possible consideration:
scalar products of 4-momenta of external particles are large
compared to the electron mass squared. S~S1~ —ty~ —t~—U~— Uy~ x1 2~ X} > M2,

Considering virtual corrections, we identify gauge in- ' ’
variant sets of Feynman diagrams. Loop corrections associ- , ,
ated with emission and absorption of virtual photons by the S~ 2P1P2: 1= 72P2py, U= —2pip;,
same fermionic line are called as Glass-ty@g corrections.

The case in which a loop involves exchange of two virtual S$1=2p1P5, t1=—2pip;, Ui=—2p,yp;,

photons between different fermionic lines is called Box-type
(B) Feynman diagrams. The third class includes the vertex
function and vacuum polarization contributiofBII-type).

We see explicitly that all terms that contain the square of
large logarithms Irgn?), as well as those that contain the
infrared singularity parameteffictitious photon mass\),
cancel out in the total sum, where the emission of an addi- s;+t+u;=—x;, t+x;=t;+x;. 2
tional soft photon is also considered.

We note here that the part of the general result associ- e found that some kind of local factorization took
ated with scattering-type diagranisee Fig. 1(1, 5] was  place both for the G- and B-type Feynman diagrams: the
used to describe radiative deep inelastic scattering with reading logarithmic contribution to the matrix element
diative corrections taken into account in Refvie labeled it squared, summed over spin states, arising from interference
the Compton tensor with heavy phojorA similar set of  of one of the four Feynman diagrams at the Born Idd).
Feynman diagrams can be used to describe the annihilation (1-4)] with some one-loop-corrected Feynman diagrams

X1,.2=2K1P1 2, Xi,zz 2k1p1’2,

s+ +t+ty+ut+u;=0, s+t+u=yxg,

channef [Fig. 1 (5-16)], turns out to be proportional to the interfer-
The problem of virtual radiative corrections calculationsence of the corresponding amplitudes at the Born level. The
at the one-loop level is cumbersome for the process latter has the form

1063-7761/99/88(2)/7/$15.00 213 © 1999 American Institute of Physics
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&) @
)] © ) ®
FIG. 1. G- and B-type Feynman diagrams for radiative
Bhabha scattering.
E ——
9) )] un ()]
e
3 U4 5) 16)
- P1—P1 S—S;
Eo=(4 3> IMy? - ,
o= (4ma) 22 M| Z=| PPy Uty |,
16 1 - 1 kl_) — kl t,tl—>t,t1
=7 2 3 ""(P101P10O1) 7 TH(P275P27,) It can be shown that the total matrix element squared,
summed over spin states, can be obtained using symmetry
- _ 16 (u2+u§+32+s§) properties realized by means of the permutation operations:
tX1x1 '

> IM|?=(4ma)’F,

Oo=(4ma) *2 M;M3
F=(1+P+Q+R)®

—8<S+Sl+u+ul 24 s2) +tty (124 tD) + 24+ ul
tti\xix2  X1x2 XXz XaXi :16831(3 SpF (T ) +uu (U™ uy)
ssitty
X (UP+us+s?+s3),
s S1 t ty u U
X + - + +

! ! ! ! ! 1
I0=(47ra)732 M, (M3 + M%) X1X2  X1X2 X2X2 XiXi1  XiX2 XX

, q):EO+OO_|O' (4)
_ (1+2) 4 [ 4U1X2+4U(Sl+t1)(s+t) R
ts, Y1 Yaxi The explicit form of theP,Q,R operators is
2 P1— P S—S;
— ——[2suy+(u+uq)(uu+ss—tty)] P=|py——p; tety |,
2
+ ~[2tuus+ (u+ug)(uug+tty—ss) ], P2 —P1 Sty
X1X1 A ' ’
Q= P2—P2 Siind! ,
P1tky p1—ky P1.Ki—p1ky U UI—UUy
Oll’ = 7pT Y™ Yu X1 Yo I
- P1=—pP2 St
O11=011v(p—u), 3 R= pP1—P1 sty |, (5)

where theZ-operator acts as follows: P2.Ki—pa.ky U U= UL Uy
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VXYY

@

\y =§%/ . y+ \é?/ +\y+ 4 mirror FD FIG. 2. Content of the notation for Fig. 1.
@ (e)
T TT T e
1 2 1 2 1 2
] ()

The differential cross section at the Born level in the case ohs compared ta@’(a/) terms calculated in this paper. Note
large angle kinematic&) was found in Ref. 7: that the terms irf7) are less than 10 for typical moderately
3 o' dPp d’ high energy collidersDA®NE, VEPP-2M, BEP§ Unfortu-
a p1d°padky . )
dog(py,ps) = 5F — nately, the non leading terms are too complicated to be pre-
327 €187w; sented analytically, so we have only estimated them numeri-

4 I cally. In Sec. 5 we consider emission of an additional soft
X 8 (py+p2—pr—Pz—Ky), ©) photon in our radiated Bhabha process. To conclude, we note
whereeq, €5, andw; are the energies of the outgoing fer- that the expression for the total correction, taking into ac-
mions and photon, respectively. The collinear kinematics reeount virtual and real soft photon emission in the leading
gions (real photon emitted in the direction of one of the logarithmic approximation, has a very elegant and handy
charged particlgscorresponding to the case in which one of form, although it differs from what one might expect in the
the invariantsy; , x/ is of orderm? yields the main contribu- approach based on renormalization group ideas. Besides ana-
tion to the total cross section. These require separate inveltic expressions, we also give numerical values, along with
tigation, and will be considered elsewhere. the non leading terms for a few points under typical experi-

Our paper is organized as follows. In Sec. 2 we considemental conditions.
the contribution due to the set of Feynman diagrams Fig. 1
(5-8) calledglasseshere(G-type diagrams Using crossing
symmetry, we construct the whole G-type contribution from?2- CONTRIBUTION OF G-TYPE DIAGRAMS
the gauge-invariant set of Feynman diagrams in Fig51 We begin by explicitly checking the gauge invariance of
Moreover, only the set of Feynman diagrams depicted in Figine tensor
2(d) can be considered in practical calculations, due to an
additional mirror symmetry in the diagrams of Fig(®and u(pp)RILu(py). (8)
€). We therefore start by c_hecking the gauge invgriance OII'his was done indirectly in Ref. 5, where the Compton ten-
th_e Compton tensor desp ribed by the Feynman diagrams %for for a heavy photon was written in terms of explicitly
Fig. 2(d and ¢ for all fermions and one of the photons on the

. o “gauge invariant tensor structures. We use the expression
mass shell. In Sec. 3 we consider the contribution of ampli-

tudes containing vertex functions and the virtual photon po- RI% =R¥1+ RXi, (9)
larization operator shown in Fig.(13-16) and Fig. 2(f and ’ .
g). In Sec. 4 we take into account the contribution of Feyn- d’k

: g . X1= kiy,+ | —
man diagrams with virtual two-photon exchange, shown in RU=Azyoke, i

Fig. 1 (9-12), called boxes her€B-type diagramps Again, A . .
using the crossing symmetry of Feynman diagrams, we show « | M(P1=K) vo(Pr—ki—K) m(P1—kD) v,

how to use only the Feynman diagrams of Fig9}1in cal- —x1(0)(2)(q)

culations. We show that the terms containing infrared singu- . o .

larities, as well as these containing large logarithms, can be Ya(P1=K) Yo(P1—Ki—=K) Y. (P1—K) 7y

written in simple form, related to certain contributions to the (0)(1)(2)(q) » 19
radiative Bhabha cross section in the Born approximation

(3). We also control terms in the matrix element squared thaf’
do not contain large logarithms and are infrared-finite. Thug0)=k?>—\2, (2)=(p;—k)2—m?, (1)=(p;—k)?—m?,
our considerations permit us to calculate the cross section in

the kinematic regioni2), in principle, to power-law accuracy, (q)=(p,—ky—k)2—m? A2=3< _ E)

i.e., neglecting terms that are ’ a2

here

2

a m X1
5 2 —
6(77 < LS), @) Ly=In"2. (11)
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The quantityR*t corresponds to the Feynman diagrams3. VACUUM POLARIZATION AND VERTEX INSERTION
depicted in Fig. 2d, whileR¥1 corresponds to those in Fig. CONTRIBUTIONS
2(e). The first te_rm on the ri_ght—hand side of E@,O) corre- Let us examine a set &flI-type Feynman diagrams. The
sponds to the first two of Fig. 2d under conditioi®. The . nuibution of the Dirac form factor of fermions and
gauge invariance conditioRy’;k,=0 is clearly satisfied. | 5cuum polarizatior{see Fig. 1(13-16)] can be param-
The gauge invariance condition regarding the heavy photogyrized as (¥ T,)/(1—1II,), while the contribution of the

Lorentz index provides some check of the loop momentunpayji form factor is proportional to the fermion mass, and is
integrals, which can be found in Ref. 6: omitted here. We obtain

u(py)RT4 U(p1)a,e, (k) =Akie,(ky),
L, —2 Lo—1

X X

R — (120 where
X1 X1

The gauge invariance is thus satisfied due to the Lorentz Ft=g((lnm—1)(1—Lt)—ELt—1Lf+ Eé’z ,
condition for the on shell photore(k,)k;=0. As stated ™ A 47 4 2

dog o A A oa
da'rn=?;2(1+P+Q+R)(Ft+ﬂt)®, (16)

A=—2

above, the use of crossing symmetries of amplitudes permits wll 5 _t

us to consider onlfRX1. For interference of amplitudes at the Ht:-(— Li—=|, Li=In—. (17)
Born level[see Fig. 1(1-4) and Fig. 1(5-8)], we obtain in 713 9 m

terms of the replacement operators In realistic calculations, the vacuum polarization due to had-

A A oA A rons and muons can be taken into account in a very simple
(AM[?)g=2%m*(1+P+Q+R)(1+2) fashion® just by adding it toll, .
X[El5+ 055135~ 135, (13
with
4. CONTRIBUTION OF THE B-TYPE SET OF FEYNMAN
o 161 i i DIAGRAMS
Eis= 12 7 TT(P1RP1Qu11) 7 Tr(P27,P27,), _ _ _
A procedure resembling the one used in the previous
16 1 1 section, applied to the B-type set of Feynman diagrffic.
O%t= T ZTf(ﬁiR“f’l?’p) Z“(f’z?’af’éozzf), 1 (9-12a)], enables us to use only certain one-loop diagrams
! in practical calculations, specifically three of those in the

o A1 ., scattering channel with uncrossed exchanged photon legs:
l35= Tr(p1R**P10120274P27,),

35 ta 4 PP A
tsy 4 (AIM[2)g=2%a*7? Re(1+ P+ Q+R)[(1— Py X
41 ~
|Zé:EZTV(piRnpl?’ppz‘}’apéol/z'): +(1+Py)l3e—11, (18
oA . where
btk P1—Ky ,
O = VPX—i Yu— VMT Yo P2 =Py S—u
R R Poy= P1P1 S1=Ug |, (19
O “Paki = Patky p1.ki—pp ke L=ty
22 ‘yy ’ ‘yp yp X2 ‘)/,u! and
P1—ky —Patk; |X1_f d’ L 161
RO e 197 ) T (0@ (Pt 07— m?) T 4
a7 T _al_ 1 ) R 1 . n A~ A
Oyrpi=7y &,kly +y pz—,kl,y ) (14) XTr(plBX1p1011')ZTr(pzya(_pz_k)%\pz’)’p),
g X1 a ox P
In the logarithmic approximation, the G-type amplitude con- X1_ J ik 1 ESE
tribution to the cross section has the form 29 i (0)(q)((patk)*—m?) t; 4
dog a P e 1 e,
dUG:? ;(1+P+Q+R)d> XTr(PlB“pﬂ’p)ZTF(Pz)’a(—pz—k)ﬁ’xpzozzf),
1, 3 A dk 1 [41_ [, .
X _ELM—'—ELH—'—ZLHI”E’ |=f?m S—lzTr pzypplBlelo Po(A+B)

—t a1
Ly, =In——. (15 + 5 7 T1(P201/2/P1BXP17,P2(A+B))
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A~ T A r 3 !
A ’)’a(_pz_k)%\' B ')’)\(_pz"'k)?’a. 20 SSoft_ _ 4770;j d kz(_ P1 . F,31
(P2t k)Z—m? (—pat+k)2—m? 167° ) wp | piky  pik;
1\ 2
Here L P2 F,)z ) (24)
o R P2ka  pakz w0y<Ae
X1— YA(P1=K1=K) ¥ (P1—Ki) v,
BY1= —x1(d) The soft photon energy does not excekd<e,;=¢,
=g~g;~¢,. Inorder to calculate the right-hand side of Eq.
y(P1—ki—k) yﬂ(pl—k) Yo (24), we use the master equation:
(d)(1) 47Taf d3k (q;)? a (mAs)
- N —Ta3 | 2 =——In ,
Yu(Pi+ kD) n(P1=K) v, 16m=) o (a7, oy, 7 L e
x1(1) ' w=KZ+\2, (25
(@) =(p2—p2tK)Z*=\?,  (d)=(py—k;—k)*=m?, 47Taj d*k 29,0, U m*(Ae)?
_ - - - = n| ————
16m° | o (kgp)(kagyp) w9\ Nk
(D=(p1-K)?=m?,  (0)=k2—)\2, (21 T s o
, 1 (e m 0
Analytic evaluations divulge a lack of both double logarith- +t5Lg—3In e 3 tLi 00525 : (26)

mic (o Lg) and infrared logarithmicIn(\/m)L) terms in the
box contribution. In spite of the explicit proportionality of Here we used the notation

the individual contributions to the structurgg, Oq, andl, )

the olver'all expression' turns out'to be somewhgt copvolutequzmﬁqz_, qi:q%:m{ —2=—(q;—qp)>>m?,
despite it has a factorized form in each gauge-invariant sub-
set of diagrams. We pgrametrlze the COI’I’.eCtIOH coming from Q1= (812,012, 6=010, (27)
the B-type Feynman diagrams as follows:

wheree, €5, and @ are the energies and angle between the
3-momentag,, (,, respectively, and is the fictitious pho-
ton masgall defined in the center of mass sysjem

(22 The contributions of each possible term on the right-

hand side of Eq(24) are
The total virtual correction to the cross section has the form

e ss 2 tty
dO'B:dO'();LSAB, AB:ZInU_ul+E(¢Q+(DR)In£

w
_5SOﬁ: _Al_AZ_Ai_Aé—'_AlZ—’_Al’Z'

. a ) 11 @
do"=dog+dorg+dog=doy—| —L5+Lg 3
7T +A117+A227_A127_A172,
A
- 5 mAe mAe mAe
+4Inm+AG+AFH+AB +/(1)}, Ay=A,=In = Al=In e Aj=In =
1 2
1 s’ t? i mAe 1 w2
+Arp== —+ —+ — = — L2 —
AG AFH F <(I) Inttl q)RInSS_L (I)an SSl A12_2Ls|n 8)\ + 2 s 3 ,
+<1>p|ns—i (23) Aol [ MAe*) 1, 1 fe)
tty 172 = slnm Sts Ens_é 3
where®p=P®, ®o=Q®d, and®r=Rd. 0115
P 0= Q R +L|2(co§ L2 )
2
2 ! 2
5. CONTRIBUTION FROM ADDITIONAL SOFT PHOTON Ajp=L, In M + ELZ - Emz f1)_ ™
EMISSION “ len? ] 27w 2 3
Consider now radiative Bhabha scattering accompanied L co§£
by emission of an additional soft photon in the center of 2 2 )
mass reference frame. By soft we mean that its energy does 5 , 5
not exceed some small quantifye, compared to the energy Aoor=L. I (mae) n }Lz £|n2(2> ™
¢ of the initial beams. The corresponding cross section has 22t ge/\? 27t 2 € 3

the form

d Usoft: d oo 5soft,



218 JETP 88 (2), February 1999 Arbuzov et al.

TABLE |. Numerical estimates oA, andA versusy,,y,,Cq,C5.

. o
d O.SOfH-VIrt: d oo—
w

Ae
|_S 4 In?+AL

Y1 Y2 Cy C, Ay A
1 036 089 -070 —0.10 1070  —24.53
2 059  0.66 029 -006 48 —1141 +A(Y1,Y2,€1,C) |,
3 067 067 0.50 0.30 582 —3558
4 068  0.65 060 —0.50 410 -10.45
A _3+|n(1_01)(1—02) nY1+YZ_
- (1+cq)(1+cy) Y1Y2
1 s? s 2 t2
mAe)?\ 1 e\ g = ®In—+dp In +<I)an +<I> In—
App=L, (0287 12 L 2(_1)—_ TEP M s s
1 LI 27 2 € 3
+21 Ssl+2(q> +dp)l e (31)
0+, n—+ = (Po+dPr)in—.
+Li, sinZTl), uu  F !
The functionA(y4,Y»,C1,C,) iS quite complicated. To
3 (mAg)?\ 1 , 1 ,[e 2 compare it withA, , we give their numerical value@mit-
Az =LyIn eej\2 ELU_ EI _é T3 ting vacuum polarizationfor a certain set of points from
physical regiong32) andy;+y,>1, D>0 (see Table)l
L coszﬁ Considering the kinematics typical of large angle inelastic
2 Bhabha scattering, we show the lowest-order contribution
previously obtainetf and the radiative corrections calculated
L,=In— Lu1=ln 7 in this work.

After performing loop integration and shifting loga-
2dx rithms (L;=Ls+L;s), one can see that the terms contammg
Liy(z)= _f —In(1—x), (28)  infrared singularities and double logarithmic terms.2, are

o X associated with a factor equal to the corresponding Born con-

wheree | &5 are the center of mass energies of the scattereffibution. This is true of all types of contributions.

electron and positron, respectivelg; ,6,., are their scat- The phase volume

tering anglesmeasured from the initial electron momentum d®p! d®pLdk

direction; and 6, is the angle between the scattered elec- dI'= 1,—,21 8 (py+pa—pi—ps—kq)
tron and positron momenta. €18,

Separating out large logarithms, we obtain can be transformed in various walfsWe introduce the vari-

- mAe tty ables[see Eq(30)]
55oft= 4(L —1)In—+L +Lg In—
up g! —
1—Cqro yi::’ Ci:cosai” ei’:pl'pi/’
L=+ (1)
0<y;<1, —1<c;,<1, (32)

C1r2/=C0Sb1 12 . @9 which parametrize the kinematics of the outgoing particles

This can be written in another form, using experimentally(these do not include a common degree of freedom, a rota-
measurable quantities, the relative energies of the scatterd¢idn about the beam axisThe phase volume then takes the

leptons and the scattering anglege Table )t form
e , 1 yity.—1 sdy,dy,dc;dc
yi=:', Ci=cost, S(1-Cyp)=="T"—, dr = >0 0Y2C60C O(y;+y,—1)
Yay2 2\D(y1.Y2.€1,C2)
t 1+c, u 1-c, ty 1-cy
—gzyz 5 , —gzyz > , —gzyl > , X®[D(Y1,Y2-Cla(:2)],2
D(Y1,Y2,C1,Cp)=p2—C5—C5—2C1/2/C1Cy,
s . . Uy 1+c, 0 (Y1,Y2,€1,C2)=p 17 G 112:€1C2
<= YitYe—l, ——=VY:1 . 1— 1—
> > 2 p?= 21y S YVUTY2D) (33)
Y1Y2

6. CONCLUSIONS . . L . .
The allowed region of integration is a triangle in the,y»

The double logarithmic terms of tyde? and those pro- plane and the interior of the ellipg2>0 in thec, ,c, plane.
portional toLgIn(A/m) cancel in the overall sum with the We now discuss the relation of our result to the renor-
corresponding terms from the soft photon contributi@®).  malization group approach. The dependencéefz in (31)
Omitting vacuum polarization, we obtain in the logarithmic disappears when one takes into account hard two-photon
approximation emission. The leading contribution arises from the kinemat-
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ics when the second hard photon is emitted close to the diake place. We also see frof@1) that factorization will take

rection of motion of one of the incoming or outgoing par-
ticles:

a 1+2°
do_hard: _ Ls[

5 bs 7= (doo(zPy1,P2,P1,P2)
+do’0(plvzp21pi:pé))dz
1+75
l_Zl

!

+

p1
dUo(prz,z_lapz)dh
1+2
1_22d0'0

+

. P2
(plrp21plvz_)d22
2

_ Yi
yitx;'

z=1-X,, z (39

place if all the logarithmic terms become equal, i.e.,
In(s;/m?)=In(s/mP)=.... The source for the violation of the
factorization theorem, we found, might have a relation to
some of those found in other problers.

Numerical estimate¢see Table)l for the & factory en-
ergy range (/s=1 GeV) shows that the contribution of the
non leading terms coming from virtual and soft real photon
emission might reach 35%. Additional hard photon emission
will also contribute toA; andA. To get an explicit form of
that correction, one has to take into account a definite experi-
mental setup.

Obviously, an analogous phenomenon of the factoriza-
tion theorem violation takes place in QCD in processes like
gg—qqgg andggq—qqy. A consistent investigation of the
latter processes, taking into account the phenomenon found,
can give a certain correction to predictions for large angle jet
production and direct hard photon emission at proton—

The fractional energy of the additional photon varies withinantiproton colliders.

the limits Ae/e<X,=w,/e<<1. This formula agrees with
the Drell-Yan form of radiative Bhabha scatterirtgith
switched-off vacuum polarization

do(prsPap}pY) = f dxa (X0 Z(xp)dar

X

I !
P1 P2
X1P1,X2P2, 2_1 2—2

XNz Az)dndz,  (35)

where the non-singlet structure functiopsare'

a

21 2
ZWL) E;/i (2)+...,

N2)=5(1-2)+ 5 LAV () +
au

1+2°
AV(z)= lim

Aol 172

@(1—Z—A)+5(1—z)(2 InA+ ;)
(36)

In our calculations we see explicitly a factorization of
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This work is a continuation of the experimental and theoretical investigations of the effect of the
Z3 correction to the stopping power of ions on the passage of heavy*ians®®Fe, °7Au,

Blxe, and?*% with energies of about 1 GeV/nucleon through a homogeneous medium. The
previously observed systematic deviations of the calculations based on the first Born
approximation to the scattering of a particle by the atomic electrons in the medium from the
experimental values of the total ionization ranges of the nuclei and their stopping powers is
confirmed. The discrepancy increases with the atomic number of the projectile nucleus. It is
shown that thi? correction in the form proposed by Jackson and McCarthy eliminates, especially
for ions with Z,>50, the systematic discrepancy between the computed and experimental
values. For the experimental energy range relativistic Mott scattering of a particle by the atomic
electrons in the target makes the dominant contribution to the obs&gvetfect. © 1999

American Institute of Physic§S1063-776(99)00302-9

1. INTRODUCTION 0.004 S, 0.002 I, 1.031 Br, and 1.036 )Agvere exposed in

rt_he Bevalac acceleratdBerkeley, CA USA in beams of
40 ;

mation, data on the passage of heavy nuclei through hom 505-MeV/nucleon*Ar nuclei, 500 and 1000-MeV/nucleon

geneous media remains sporadic and incomplete. Most mod.Fe nuclei, %3147'2"\/'9_\//””0"90}?7’6‘“ nuclei, and 927.6-
els describing the overall characteristics of the passage dfl€V/nucleon U nuclei. The average fluence in the irradia-
heavy nuclei with energies of about 1 GeV/nucleon, such aons was 500-1500 particles/€nTThe dimensions of an in-
the ionization ranges of heavy nuclei, the longitudinal anddividual layer were close to 2010x0.05 cni. The beam
transverse stragglings of these ranges, and the stopping pofdtered a stack of photoemulsion plates approximately par-
ers of heavy ions, were developed and tested more than Zlel to the surface of the layers in all irradiations. The angle
years ago on charged particles with small mass and lownade by the beams of nuclei in an undeveloped emulsion
energy'~® was less than 2°. Two 22Am thick layers of black paper

In recent years, indications of appreciable deviations ofind one 19Qum thick layer of polyethylene were present in
the ranges of these nuclet® and their stopping powels  front of the emulsion during irradiation. The photographic
from the simplez? dependence, prescribed by the Bethe—processing of the chambers was performed in the high-
Bloch theory!? on the atomic number of the ion have beenenergy laboratory at the Joint Institute of Nuclear Research
obtained in a number of experimental works investigating(Dubna, Russia Before the chambers were developed, the
the passage of nuclei with atomic number greater than 75. thickness of each layer of emulsion was measured at four

This work is a continuation of the experimental and the-symmetrically arranged points. It was found that the thick-
oretical investigations of the effect of t@g correction to the  ness of an undeveloped layer fluctuates with standard devia-
stopping power of ions when heavy nuclei with energies oftion close to 4um. All plates were marked with a photo-
about 1 GeV/nucleon pass from neon to uranium through graphically applied millimeter grid.
homogeneous medium under the conditions of a complete The search for stopped primary ions was conducted by
experiment allowed by the nuclear-emulsion metfod®In  gouble (fast and slow scanning along the primary track in
this work, new experimental data were obtained on the tota\1B|-9 microscopes with 18 15, 20x 15, and 4(< 15 mag-
ionization ranges of nuclei with the BR-2 emulsion, preparedsifications. lon tracks showing indications of inelastic or
at the NIKFI, and on the distributions of these ranges. Theastic interaction with the emulsion nuclei were excluded.
effect of the projectile energy, charge, and mass and of thghe choice of very low magnification of the experimental
atomic numb_er of the target on the overall characteristics OBbjects for the primary scanning was dictated by the specific
the process is analyzed. nature of the tracks studied. The visible thickness of a track
due to a uranium nucleus varied from 20 to bfh along the
track. Tracks due to gold nuclei had similar thicknesses. For

Five chambers, consisting of 30—35 layers of the BR-2comparison, we note that a millimeter grid is close toudrs
emulsion with the standard composittBtinumber of nuclei,  thick.
n;-10 22 per cnt: 3.148 H, 1.412 C, 0.396 N, 0.956 O, A coordinate method was used to determine the charac-

Despite the apparent abundance of experimental info

2. EXPERIMENT

1063-7761/99/88(2)/7/$15.00 220 © 1999 American Institute of Physics
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dN/dR dN/dR _
120 a 180 FIG. 1. FIG. 1. lonization range distribution of
160 924.3-MeV/nucleor™®® ions (1a, 0.05 mm cell
100} 140 and 1144.4-MeV/nucleoA”Au (1b, 0.2 mm cell
80 120 stopped in a BP-2 emulsion. The parameters of the
100 Gaussian distributiongfor 2% N=518 tracks,
60 80 (R)=28.197 mm, ¢=0.116 mm; for Au N
40t 60 =537 tracks{R)=42.75 mm,c=0.471 mm were
40 determined from experiment. The fitting criteria
20 20 with 16 degrees of freedom axg/k=2.19 (a) and
0 , 0 X*Ik=9.43 (b).
27.8 28.2 28.6
R, mm

teristics of an individual track® The method used a three- wheree andm, are the electron charge and mags,andv
dimensional coordinate system, including the number of there the atomic number and velocity of the i@ b/c, c is
plate in the chamber, the coordinates of a square in the mikthe speed of light in vacuunz,, is the atomic number of the
limeter grid of a plate, and the coordinates of an event withiratoms in the mediuml.(3,Z,) is the “logarithm” in the
a square. Each track was characterized by the entrance co@ethe—Bloch formula, which is often written in the form
dinate of a nucleus in the plate and the coordinate of the

event(stopping point or interactignMultiple measurements 2mgv? 1 C
were performed on specific tracks to estimate the accuracy of L(8,Z5)=In 0 +In 55 - B2- = 2
the coordinate method. Measurements were performed every (1-89 2

week for three months, and the standard deviation of an in- . o '
dividual measurement of the length of the same track was 3¢here(l) is the average ionization potential of the target.
4m on a 30000—8000@m baseline. The first term is the standard form of the logarithm in the

The numbers of the observed and measured tracks d¥ethe formula, the second and third terms are the relativistic
40Ar, S8Fe, 197Au, and 238U ions which stopped without un- corrections, and the fourth term is a correction for the effect
dergoing nuclear interactions were 267, 786 two ener- of the binding of the electrons in an atom. Quite often,
gies, 537, and 518 tracks, respectively, which is more tharcharge effects due to the capture of electrons from the me-
two times larger than the data sample in Ref. 12. Figure Hium by a moving low-velocity ion are taken into consider-
shows the experimental distributions, obtained in the preser@tion.
work, of the track lengths of uranium nuclei with initial en- It should be noted that only the first Born approximation
ergy 924.3 MeV/nucleolFig. 13 and 1144.4-MeV/nucleon is used in the classical Bethe—Bloch theory for describing the
gold nuclei(Fig. 10 which stopped in the BR-2 emulsion. In scattering of a particle by the atomic electrons in a medium.
determining the energy of the nuclei, the energy losses in th&he second Born approximation contributes a small positive
material traversed by the beam of nuclei before entering th&rm, proportional tZ3, in the expression for the total stop-
emulsion were taken into account. One can see that theddng powerSs:
unimodal distributions resemble Gaussian distributions, but
the x?/k fitting criteria are far from unity. The straggling of Se3=Seal 1+ Zyer(I/N) ], ©)
the ranges of uranium nuclei was estimated toot3€0.017
mm on the basis of data on the straggling of protons with thavhereZ, is the effective ion charge, the ter8, corre-
same velocity?® taking account of the inverse proportionality sponds to the standard Bethe—Bloch models, atdis a
between the relative straggling and the square root of themall positive quantity. Indeed, an effect of the same kind
uranium mass. This value af is approximately 10 times was discovered experimentally by Barkas and his colleagues
smaller than the experimental value. The observed deviatioria measurements of the ranges»f and 7~ mesons with
of the experimental distributions of the ion range lengthsthe same energy in a nuclear photoemulsion. It was found
from the theoretical Gaussian distributions are probably dughat their ranges differ by several percéhtn addition, this
to the energy spread of the beam of incident nuclei. difference was present even at nonrelativistic velocities,

where the correction following directly from the second

Born approximation in the Mott electron scattering is
3. MODELS AND TESTING PROGRAMS negligible?” Andersen and Ziegler also established such an

effect?®2?* They showed on the basis of a compilation of

The foundations of the theory of stopping of high-energyseveral thousands of experimental data points that the elec-
charged particles were laid by Bohr, Bethe, and BIb&fihe  tronic energy losses af particles are greater than the four-

stopping power $,,) can be written in the form fold losses for protons at the same velocity. This is at vari-
4726 ance with the classical dependerggoZ2.
Ser= T Z,L(B,Z,) (1) Quantitative estimates of th&$ correction were made
> Z3),

Mgv by Jackson and McCarthy in Ref. 22. Their formula is
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J 13 J e F(v) where the addi'FionaI cor_rt_actio@z(ﬁlzl)_is due to_ ele_ctrqn_

T (I—) ( ) :2L(ﬁ 7 + - (4)  capture at low ion velocities of heavy ions. Ordinarily, it is
rel nonrel 142 Z; considered to be a universal function gfZ; for a given

wherea=1/137 is the fine structure constah{,3,Z,) is the type of emulsion and does not depend on the atomic number

logarithm in the Bethe—Bloch formula=137y8Z, 2, and ~ Of the projectile.

7:(1_[32)—1/2. The fUﬂCtiOﬂF(V) is tabulated in Ref. 22 Using the RANGE program, the funCtidhz(,B/Z]_) was
and can be expressed &r)=0.3v"2 for v<15, F(») obtained for a series of ions by a numerical mettmceed-
=0.50"23for 1.5< v<4, andF (»)=0.50"25 for v>4. ing from precalculated values &(8) for heavy ions and the

The form of the terms in the expression il is due to ~ corresponding proton rangasat the same velocitg). The
the fact that physics of thg? correction is different in dif- results of the calculations showed that in the ZBL model the
ferent velocity ranges. In the relativistic cadiest term itis ~ function Cz(flzl_) can be considered to be “universal” only
due to the second Born approximation in the scattering of 4 Within 10%, since for heavy nucleAu, U) the correction
particle by the atomic electrons in the target. This correctior-2(/3/Z1) reaches a plateau appreciably more rapidly with
is appreciable at relativistic velocities of the incident ion andincréasing ion velocity, and the magnitude of this plateau is
is approximately proportional to the particle velocity: somewhgt less than for the lighter nuclei Ne, Ar, and Fe. The
(J/1),o¢< 8. The second term is an extension of the Asmey,umversahty of the curveC,(B/Z,) breaks down due to the
Anderson, Ritchie, and Brandt thedfy?® (the so-called different nature of the velocity dependence of the effective
ARB approximation for ther correction in the weakly- charge of the ions undergoing stopping—ions With a higher
relativistic region, and it is due to the additional incorpora- &t0Mic number reach the valug/Z=1 more rapidly as
tion of the displacement of an electron over the collisiontn€r velocity increases. We note that the universality of the
time. The nonrelativistic correction has a large effect at lowCOTTectionCy(B/Z,) wasod|scussed in Ref. 8 only for ions
incident-particle velocities, wherel{l) nonref< 8~ 2. Z,=18 with possible 10% errors.

The calculations of the passage of fast nuclei through a Dat@ on the maximum correction to the range of heavy
photoemulsion were performed using the PRAL-96 programnuclel as a result of electron capture at low heavy-ion veloci-

which is based on the well-known Ziegler—Biersack—ties are of special interest. These maximum corrections
Littmark (ZBL) modef® of continuous electronic stopping (C,(B1Z1)M1Z1") to the range of heavy nuclei with initial
and takes account of the elastic collisions of an ion with the?"€79y 1 GeV/nucleon were 0.08 mm, 0.1 mm, 0.6 mm, and
atomic nuclei in the medium, and on the basis of an im-0-7 MM, respectively, fof°Ar, **Fe, **Au, and*** nuclei
proved ZBL model, which is incorporated in the RANGE-96 (With a total range of 146 mm, 100 mm, 38.8 mm, and 34.5
program packag® which makes it possible to perform cal- MM respe(_:tlvely i.e., in the_glgaelectron volt energy range
culations, both neglecting the? correction(i.e., in accor- thiS correction, even fof*U, increases the range by no more

dance with the ZBL modgland taking this correction into than 2% and has little effect dR(p) for heavy ions.
account via the relation&@) and (4). Thus, the results of the addmonal check shovv_ed that
An additional check was required in order to use thesd®©th the universal ZBL model of continuous electronic stop-
programs to calculate the passage of relativistic particles in BiNg: including elastic collisions of an ion with the atomic
photoemulsion. This check was performed using experimen2uclél in the medium, that is the basis of the PRAL and
tal datd~" on the ranges and stragglings of H and He in anRANGE program package, as well as the programs them-
Inford G5 emulsion. For an emulsida multicomponent me-  S€IVes, make it possible to describe with good accuracy the
dium), the ionization stopping power was calculated usingknow_n_ stqppmg parameters for_llght nuclei with relativistic
the Bragg rule. The results of the testing showed that th&€locities in homogeneous media.
PRAL and RANGE programs give the same results within
less than 0.1% of the range of H and He nuclei in an emU|'4_ AVERAGE IONIZATION RANGES OF HEAVY IONS
sion. The particle ranges computed with the PRAL and
RANGE programs were found to be systematically less The experimental data on the total ranges of nuclei and
proximately by 2% than Barkas’ experimental and compu- the.com.puted values of these quan_tities are given for com-
tational data. Taking account of the indicated systematic disParison in Tableg | and 1. Table | gives the ranges®fr,
crepancies, the largest discrepancy between the theoreticare, **’Au, an_d % nuclei measured in the present work in
and experimental data in both the Barkas calculations and i BR-2 emulsion and the data of Ref. 16 on the ranges of
the calculations performed in the present work is the samé ‘Au and*®U nuclei in lexan (GgH;405 with density 1.2
and is less than 1.5—2%. g/cn?). The energy of the incident nuclei, given in column 2
The RANGE and PRAL algorithms were further tested of the table, takes account of the thickness of the material
by calculations of the passage of heavier nuclei through #aversed by the beams of nuclei before entering the emul-
photoemulsion. In most works, Barkas’ semiempirical for-sion. The results of direct measurements are in column 3 of
mula is used to determine the ionization range of a particle if able I. One can see that the computational accuracy in the
a nuclear emu|sioﬁ_|n this formu'a, the RANGER(E) of a present work is quite h|gh This is due to the quite Iarge data
heavy ion with male and atomic numbezl is related to Sample of measured tracks. The next three columns in this
the range of a proton with the same velocity(3)) by table give the computed values of the ion ranges obtained
using the semiempirical relatigh), the PRAL program, and
R(B)=(M1/ZDN(B)+Cy(BIZ1)M,Z3, (5)  the RANGE program neglecting t& correction. It follows
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TABLE I. lonization ranges of heavy ions in a BP-2 emulsion and lexan.

lonization rangeR, mm

Calculation

no Z3 correction

Type of ion Energy, with Zi-correction,
and target MeV/nucleon Experiment  (5) PRAL RANGE RANGE
Ar 504.2 53.11 54.71 54.25 54.23 53.26
Br-2 +0.05 (3%) (2.14% (2.11% (+0.28%
Fe 498.7 34.84 36.26 35.82 35.85 34.94
Br-2 +0.01 (4%) (2.81% (2.90% (+0.29%
Fe 980.8 95.16 98.0 96.10 96.05 93.38
Br-2 +0.04 (3%) (0.99% (0.94% (—-1.87%
Au 1144.4 42.75 46.23 45.81 45.76 42.11
Br-2 +0.05 (8.1%  (7.15% (7.04% (—1.49%
U 924.3 28.197 31.35 30.68 30.66 27.90
Br-2 +0.02 (11% (8.80% (8.80% (—1.05%
Au 975.0 79.49 - 87.79 87.75 81.84
Lexan +2.44 (10.4% (10.4% (2.95%

U 901.0 63.50 - 70.50 70.48 650.9
Lexan +1.90 (11.0% (11.0% (2.50%

Note. The deviationss of the computed from the experimental ranges are given in parenth@sé¢$R.,
—Rexp)/Rexgl-100%. The errors iR, were determined taking account of the experimental variance of the
range length distribution. The experimental data on the ranges in lexan were taken from Ref. 16.

from these data that the PRAL and RANGE programs givdall outside the bounds of the possible experimental and
very close computed values of the ranges, and the calculatia@omputational errors, as well as possible differences of the
using the relatior{5) predicts somewhat largéon the aver- charge states of ions with different valueszf at low ion
age by 1% ion ranges. velocities. The correctionC,(B8/Z)M,Z2®, as shown
Comparing the experimental data and the computed valabove, contributes no more than 2% to the increase in the
ues, it is evident that the relative discrepandy[(R.yc  range of a heavy ion. In this connection, we inferred that the
— Rexp)/Rexpl- 100% between the computédeglecting the observed discrepancies in the experimental and computed
Z3 correction values and the experimental data increaseson ranges are mainly due to the fact that only the first Born
systematically with the atomic number of the projectile approximation is used in the calculations to describe the scat-

nucleus from 2% for Ar Z;=18) up to 9-11% for U Z;
=92) for virtually all calculations performed neglecting the and the second approximation was neglected.
Zf correction. The observed deviations are systematic and The calculations for estimating the effect of tﬂ% cor-

TABLE Il. Ranges of 900-MeV/nucleon gold ions in various media.

Target type

RangeR, g/cn?

Calculation

no Z3 correction

with Z3 correction

tering of a particle by the atomic electrons in the medium

rection on the particle ranges were performed using the
RANGE program and the relatior{8) and (4). The compu-
tational results for the total ranges with tAg correction are
given in column 7 in Table I. It was found that the relative
decrease of the ranges due to ﬁb}eeffect in the stopping
powers of ions for the cases considered in Table | are about
10% and 8%, respectively, for U and Au and less than 3%
for all other ions. It is evident that taking account of the

(Z,) Experiment! Ref. 11 RANGE RANGE o . X
second Born approximation appreciably improved the agree-
(CH) 8.57+0.01 9-1?)4 9-104 8-5:‘ ment between the experimental and computed values for the
35 (6.81%  (6.64% (=0.35% heavy nucleilAu, U) and that the systematic increase in the
© 9.67£0.07  10.070  10.06 9.38 ) ) . i
6 (4.14%  (4.03% (—3.00% discrepancies between experiment and theory, which was ob-
(Al 10.54-0.05 11.364 11.33 10.50 served with increasing atomic number of the ion, essentially
13 (7.72%  (7.39% (—0.47% vanished.
(Cu 12.10£0.04  13.027  13.07 12.05 For an additional check of our supposition that @i
29 (7.66%  (8.02% (—0.41% L e -
correction in the ionization energy losses of the particles
(sn 13.98+0.08  14.877  15.06 13.80 ; I
50 6.42%  (7.73% (—1.29% strongly influences on the characteristics of the process, we
(AU) 15.59+0.01  16.636 16.74 15.26 performed calculations of the ranges of 900-MeV/nucleon
79 6.71%  (7.38% (—2.12% gold nuclei in CH, C, Al, Cu, Sn, Au, and Rexperiment of
(Pb 15.72£0.04 16863  17.02 15.51 Ref. 11, both with and without th& effect. The results are
82 (7.27%  (8.27% (—1.34%

presented in Table Il. It follows from these data that the

Note The deviationss of the computed from experimental ranges are indi- C@lculations based on the conventioﬂéldependence of the
cated in parentheses= (R ac— Rexp)/Rexpl 100%.

electronic stopping powsthe first Born approximationus-
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Reate! Raxp Reaic! Rexp
g b FIG. 2. Ratios of the calculated and experimen-
a } ; 1.08F a i I b tal ranges of Ar, Fe, Au, and U ions in a BP-2
1.10r ; _____ T 9 } emulsoin and in lexan versus the atomic number
108t e ’ 1.06F E o Z, of the ion(a — experiment of this work and
......... i H Ref. 16 and of 900-MeV/nucleon Au ions ver-
ro6f 1.041 § sus the atomic numbez, of the target(b —
............. L experiment of Ref. 1) Filled circles — calcu-
Loar ¢ 1.02f lation (R0 Of this work neglecting th&3 cor-
1.02F I ...... 100: rection, open circles — calculationRf,) of
...... I l l O 3739 this work taking account of th&3 correction,
LOO—1—T § 0.98} 2 §§ rectangles — calculationR,) of Ref. 11
0.98} § } T § (standard Bethe—Bloch modelThe solid lines
P . 0.96L . . : " . show the relationRyc/Rex;=1 and the dotted
10 20 30 40 50 60 70 80 9OZ 100 0 20 40 60 80 2 100 lines show the relatioRc e/ Rexy=1+0.001Z;.
1 2

ing the RANGE program agree within the limits of the com- where R,(E) is the range of an ion with enerdy in the
putational errorabout 1% with the calculations performed targetZ,, calculated neglecting th& correction, andRs(E)
in Ref. 11 and differ from the experimental data by an averds the range calculated taking account of ﬂﬁecorrection.
age of 7.5%. The second Born approximat(d’rezf correc- The calculation showed that in the energy range 300—
tion) eliminates the discrepancies between the theory and thE000 MeV/nucleomg(E,Z,) increases weakly with the ion
experimental datésee Table I\. The remaining small differ- energy(in hydrogen from 0.062 to 0.079 fGfFe and from
ences 6~(1-2)%) could be due to possible deviations 0.056 to 0.075 fof*3U). As the atomic number of the target
from the standard values of the target densities used in thiacreases, the changes become greater—in the passage from
experiments. a hydrogen to a silver targetyg(E,Z,) increases to 0.113
The changes indicated are illustrated in Fig. 2. It followsfor 1000-MeV/nucleorr®Fe and 0.104 for*8. Thus, ex-
from Fig. 2a that the rati®R ./ Rey, (N€glecting theZ'f ef-  periments with the highest primary-ion energies and a target
fect) increases with the atomic numb2y of the ion essen- with a high atomic number are recommended for reliable
tially linearly as 1+ 10 %24, i.e., the range computed on the experimental determination of the coefficiemg(E,Z,) of
basis of the first Born approximation for ionization energythe relative decrease of particle ranges due toZl%eorrec-
losses is much greater than the experimental ion range, arithn. Unfortunately, however, the accuracy of the experimen-
this difference grows continuously with coefficient foup  tal data(Table Il, Fig. 2b is still too low to distinguish this
to the superheavy ions, which agrees with the theoreticadffect.
estimates of the"_f correction according to Eq$3) and (4). A very unexpected result is the dependence of the rela-
One can see that this correction in the calculation removetve decrease of the particle ranges not only on the velocity
the observed systematic change. It follows from Fig. 2b thabf the incident ion and the atomic nhumber of the medium,
the average ratio of the computed to the experimental rangashich follows in a natural manner from the physics of the
for 900-MeV/nucleon gold nuclei, determined according toprocess, but also od; (the atomic number of the incident
the classical scheme, is virtually independent of the atomiéon): the largerZ,, the smaller the coefficientvg(E,Z,).
number of the medium and is close to 1.07. Taking accounThus, for 300 MeV/nucleori®Fe and®* in silver, the co-
of the second approximation decreases this ratio to 1. efficient ar(E,Z,) was 0.097 and 0.088, respectively.
In the present work, the effect of tlief correction in the  Analysis showed that this effect is due mainly to the increase
ionization losses of fast multiply charged particles on theiras a function ofZ, of the correctionC,M 1Z§’3 to the range
range in three homogeneous media—in hydrodeln p of the nuclei as a result of electron capture when the velocity
=0.0715 g/cm), in BR-2 emulsion, and in silvefAg, p of the heavy ion is low and the consequent decrease in
=10.5 g/cnf)—was analyzed. The range calculations wereag(E,Z,).
performed with the PRAL and RANGE programs fSFe
and 2% nuclei with energies from 300 to 1000 MeV/ 5. STOPPING POWER OF HEAVY IONS
nucleon. We note that the contribution df' (), to the stop- ) .
ping power exceeds the corresponding contribution from 1he data examined above show that the reIauwZﬁc_
(J/1,4) by more than a factor of 10 starting at energies abové:orrectlo_n in the stopping powers of ions must be taken into
100 MeV/nucleon, i.e., the correctidﬁ(v)/zé’z in Eq. (4) gccoynt in order to calcula}te adequate_ly the ranges of heavy
plays a very weak role in this case. ions in mattgr. However, it would be |mportant' to perform
To distinguish the effect of the atomic number of the direct experimental measurements of the stopping powers of
medium and the particle energy, we introduced the coeffiheavy relat|V|_st|c particles with the same velocmes_._ln_ Ref.
cientag(E,Z,) of the relative decrease of the particle rangest /> the stopping powers of 985-MeV/nucleon relativistic Ar

due to thez3 correction: nuclei and 780-MeV/nucleon Xe nuclei in Be, C, Al, Zn, and
! Bi were measured in experiments on the Bevalac accelerator.
an(E.Zy)= Ra(E) —Rs(E) ©6) The authors indicated a systematic differenee60o) be-
R\IB&2) = 755 =y

Z,Ry(E) tween the measured values of the stopping pov@(Xe)
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TABLE lll. Electronic stopping powers of 985-MeV/nucleon Ar nuclei and 780-MeV/nucleon Xe nuclei in
various media Z,).

S.(Ar), meV/(mg/cnt) S.(Xe), meV/mg/cnt)
RANGE RANGE

noz3 with Z3 noz3 with Z3
Z, Experiment’ correction correction Experiméhit correction correction
4 0.58+0.02 0.583 0.593 5:80.1 5.57 5.86
Be (0.529% (2.249% (—3.97% (1.039%
6 0.64+0.02 0.641 0.653 6:50.1 6.12 6.45
C (0.16% (2.03% (—5.85% (=0.77%
13 0.58-0.02 0.574 0.585 5:80.1 5.46 5.78
Al (—1.03% (0.86% (—5.86% (—0.34%
30 0.50+0.02 0.506 0.517 520.1 4.80 5.12
Zn (1.209% (3.40% (=7.50% (—1.54%
83 0.39-0.01 0.393 0.402 4:60.05 3.72 3.99
Bi 0.77% (3.08% (—7.00% (—0.25%

Note The deviations of the computed values of the electronic stopping power from experiment are given in
parenthesesd=[ (S~ SZP)/S2. 100%.

for xenon ions in various media and the results of the corre3, and in the classical approach the ratio of the stopping

sponding Bethe—Bloch calculations, while for argon ionspowers of these ions with equal velocities should be 10. Tak-

such differences are not observed. ing account of the small difference of the velocities of Ar
The results of Ref. 17 are presented in Table Il togetheand Xe ions givesS,(Ar)/S,(Xe)=9.5. The available ex-

with the corresponding calculations which we performedperimental ratidS,(Ar)/Se(Xe) is 10.157 0.25 The stop-

both on the basis of the standard ZBL model and takingping powers of Ar and Xe ions computed taking account of

account of theZ? effect. It is evident that the calculations the Z3 effect give a different ratio, 9.9, which improves

correctly describe the experimental dependence of the stoggreement with the experiment.

ping powers of ions in various media on the atomic number

Z, of the target. On the average, it is a decreasing function of

Z,. In addition, Z, oscillations of the stopping powers are

clearly observed in the experiment and in both computationat. CONCLUSIONS

variants. ThusSg(Ar) and Sy(Xe) for beryllium and alumi-

num targets are less than for a carbon target. At the same N summary, in the present work, a comprehensive in-

time, the stopping powers calculated for the Xe ions neglectvestigation of the effect of the atomic number and energy of

ing the Z$ effect are systematically 6% less than the experithe projectile nucleus and the atomic number of the target

mentally measured values. TE§ correction gives numeri- nuclei on the basic characteristics of the passage of heavy

cal agreement between the experimental data and tHauclei with energies near 1 GeV/nucleon through homoge-

calculations. neous media was performed on an enlarged data sample.
Figure 3 displays the ratios of the stopping powers of ~ The systematic deviation, observed in previous work, of

780 MeV/nucleon Xe nuclei to the stopping powers of 985-the calculations based on the first Born approximation for the

MeV/nucleon Ar nuclei for various media from beryllium to Scattering of a particle by the atomic electrons of the medium

bismuth. The ratio of the charges of the relativistic nuclei is(the Bethe—Bloch formula, the Barkas formula, ﬂfﬁes.cal.—
ing theory from the experimental values of the total ioniza-

tion ranges and stopping powers of nuclei has been con-

S,(Xe)S,(Ar) firmed. It increases with the atomic number of the projectile
f nucleus.
The effect of the second Born approximati¢the Z3
10.5 S N i
} g I { } correction in the ionization losses of fast multiply charged
10.0t particles on the ranges and the stopping power of these par-
95 ticles in homogeneous media was investigated. It was shown
. " . : . . that introducing thif correction in the form proposed by
0 20 40 60 80 z 2100 Jackson and McCarthy eliminates the systematic discrepancy

between the computed and experimental values. For the ex-
FIG. 3. Ratio of the electronic stopping power of 780-MeV/nucleon Xe ionsperimental energy range the relativistic Mott scattering of
to the electronic stopping power of 985-MeV/nucleon Ar ions versus theparticles by the atomic electrons in the target makes the de-
atomic numbeiZ, of the target(experiment of Ref. 1j7 Lines—results of isive contribution to the Observaﬁ effect.

the calculation performed in the present work using the standard ZBL mode? . .
on the basis of th&? dependencésolid line) and taking account of thes This work was supported by the Russian Fund for Fun-

correction(dashed ling damental ReseardiProject 98-02-18173
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analysis of nonlinear effects

D. V. Vysotskii*) and A. P. Napartovich

Troitsk Institute of Innovative and Thermonuclear Research, 142092 Troitsk, Moscow Region, Russia
(Submitted 26 March 1998
Zh. Eksp. Teor. Fiz115 416-430(February 1999

An equation is derived for the smooth envelope of a wave field propagating in a plane stratified
medium possessing the resonance small-scattering effect on one period of the structure.
Rectilinear propagation of the envelope of the field is detected ixthy@ane, wherex is normal

to the layers. The conditions under which this equation can be used are indicated. For a

linear array of semiconductor diodes with a stepwise dependence of the permittivity on the
coordinates, the conditions for stable propagation of the radiation are analyzed and an explicit
solution of the isolated-soliton type is found. €99 American Institute of Physics.
[S1063-776(199)00402-3

1. INTRODUCTION linear diode array.From a more general viewpoint, one is
dealing with periodic structures in which the band gap is
An enormous number of monographéand other pub- close to zero because of the correspondimgofile (in quan-
lications have been devoted to the problem of radiatiortum mechanics, the potentiadver a period.
propagation in stratified periodic media. Synthesized peri- This paper develops the approach described in Ref. 8,
odic structures that essentially reconstruct the spectrum dbr which the general conditions needed to derive equations
propagating waves(so-called photonics-band structures for a smooth envelope in a layered medium are formulated
have been actively developed in recent years. Bragg struen the basis of the theory of second-order coupling matrices.
tures, used as distributed feedbddk naturally appearing The nonsteady-state equation that describes radiation propa-
during scattering and four-wave mixing, play a special rolegation, allowing for nonlinearity of the medium, is derived
in laser physics. As indicated in Ref. 4, a linear array offor a resonant linear diode array. The stability with respect to
semiconductor diodes with structural elements of a certaifthe self-focusing of radiation is analyzed in terms of the re-
size can also be regarded as an analog of a Bragg structuselting equation, and steady-state solutions that describe an
with respect to the lateral propagation of radiation. analog of the self-focusing channel are constructed.
In ordinary distributed-feedback devices, which reflect
radiation incident on them along the normal, a large reflec-
tance builds up over a distance of many periods of the struc-

ture,N>1. This is because the modulation depth of the per—2' GENERAL CONSIDERATIONS

mittivity is usually small,|Se[<e,, where g, is the mean A linear array of diodes is a rather complex structure
value andde is the modulation amplitud@n general, com-  (see Fig. 1, in which field propagation should be described
plex) of the permittivity.| de| is also small in a linear diode by the vector Maxwell equations. However, in most cases,
array, but it should be comparable with the small angle ofhe scalar Helmholtz equation for a coherent field can be
incidence of the radiation on the layer, since the wave vectofised as a first approximation. Since the size of the active
on the average is directed along the axis of the diode lasergone is extremely small, the field structure in this direction,
i.e., parallel to the faces of the layers. The typical structure ofgjled the transverse direction, stabilizes quickly. This gives
a linear diode array is shown schematically in Fig. 1. a basis for averaging the Helmholtz equation along the trans-
The small fraction of the radiation reflected from oneyerse direction, as a result of which the averaged equation
distributed-feedback period makes it possible to derive thg,cludes a form factor that allows for the overlap of the field
differential equations widely used in the literature foryith the active zone and an effective permittivity produced

coupled waves.Similar equations can be derived for linear py averaging the product of the two-dimensional field distri-
diode arrays, which constitute a resonant structure for lateray tion and the locak:”

waves® The reason that differential equations can be derived

is also that the reflectance of a lateral wave from one cell of  d?7/(x) ) 5

the periodic structure is small. However, this smallness is T+%(X)(k €(x)—p%)=0, @
ensured by a resonant transmission effect and accordingly

occurs for waves whose lateral wave vector differs little fromwhere 72(x) is the wave amplitudex is the lateral coordi-
the resonance value. It is precisely such structures and wavesite,k is the wave vector3 is the propagation constant, and
that have turned out to be extremely promising from thee(x) is the effective permittivity of the medium, which is a
viewpoint of obtaining powerful coherent radiation from a periodic function ofx. An equation in the form of Eq(l)
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When TrT=2 holds, Eq.(4) implies that the discrete
second-order derivative vanishes. Such an equation evidently
has two independent solutiorss,=c, and a,,=c,;m. The
second solution can obviously be regarded as smoothly vary-
ing if one is dealing with a large number of cells in the linear

a array,N>1. We shall assume in what follows that this con-
= s B e — b  dition is satisfied. If TiT=—2 holds, the problem can be
(@] QO QO q c reduced to the preceding one by the replacement

S d a,=(—1)"a,,. The condition given by Eq5) thus gener-
alizes the evident criterion ordinarily used in the theory of
S =<2 % €  distributed feedback:
4 IT—Ell<1,
[ f
9 where|| || signifies the norm of the matrix.

In an alternative approach to the analysis of E),
FIG. 1. Layout of a linear array of semiconductor lasers:paGaAs is a b d Bloch f . PP . Il k ﬁl . hm
supplementary absorber, Ip-Aly:Ga,As is a waveguide, c— ased on Bloch functions, it is well known that, in the spec-

p-AloGaAs, d—GRIN-SCH-SQW is an active zone, e— trum of the waves propagating in a periodic lattice, band

Al Gay As, f—radiation field, g—a*-GaAs is the substrate. gaps appear whose center corresponds to the Bragg condi-
tions. The eigenvalug that is found by substituting a power
solution into Eq.(4) is associated with the Bloch vect@rby

also arises in solid-state theory and quantum mechanics. Ir%be relationship

terest in its properties has been maintained by studies on
nanotechnology.

One method of solving Eq1) with a periodice(x) is
the T-matrix method. Introducing two basis functiof§&x,,)
and g(x,,), which are linearly independent solutions of Eq.
(1) on the period with numbem (i.e., X, is defined inside
one cell of the periodic structurewe represent the general
solution of Eq.(1) in the form

N=exp(£iQA),

where A is the period of the structure. When T2, the
eigenvaluex =1 is doubly degenerate. This corresponds to
the disappearance of the band gap. When inequéBityis
satisfied, the band gap is accordingly small. The conditions
of ordinary distributed-feedback theory correspond to the
consideration of high-lying bands whose width is exponen-
7= apf(Xm) + bmg(Xmy)- (2  tially small. Thus, in the language of band theory, the con-
dition of smoothness can be formulated as the requirement
that the band gaps are narrow.

Since a simple replacement reduces the case=T+ 2
to the case TF =2, we restrict ourselves to the latter. Intro-
ducing the quantityA=TrT—2, we replace the discrete
equation(3) by a differential equation, which is allowable
for smoothly varying functions; as noted above, this equation
is valid for 74(x,X,,), wherex=mA is a smooth variable:

The values of the coefficientsandb in the mth element are
associated with the values in then{-1)st element by the
coupling matrix:

am
b,
The elements of matrixd@ can be expressed in general in
terms of the values of functiongx,,) andg(x,,) at the cell
boundaries? In this case, the determinant Bfequals unity. 5
It is well known! that any matrix identically satisfies its Azd A%\ Xm)
own secular equation: dx?

2 —

T=TrT-T+E=0, ©) The value ofA depends om=kc (c is the velocity of lighg
where TIT=Tq,+ T, is the sum of the diagonal elements of and 8 as on parameters. If one distinguishes values of the
the matrix. Acting with the left-hand side of the secular carrier frequencyw, of the radiation and the propagation
equation on the column of field amplitude%“(l), we get constantB, close to their values for a pure resonance, when

mee TrIT=%2, Q=w—w, and 58= 8- B, will essentially be
Fourier variables when the total field is expanded in plane
waves. Expanding\ in powers of() and B, we have

Am+1 =T

b1

=A-2/(X,Xm). (6)

the equation that connects the amplitudes offtheaves in
three adjacent cells:

am 11— TrT-an+ay,_1=0. 4
i H 2 2
Precisely the same equation is also valid for gheave, and A=ic,Q+icsdB+C 27+ C3()- 6B+ C1(6B) +Ce.
hence also for the total field amplitud&. The necessary @

condition that the field amplitude changes slowly as one goeg
to an adjacent cell directly follows from E@4). It can be
written in the form

ssuming that the field variations in time and along the
propagation axig are fairly smooth for the solutions of in-
terest to us, we can easily obtain the following equation from
[TrT+2|<1. (50 Egs.(6) and(7):
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only multiplied by the number<{1)?, whereoc=|+m+1.

In this case, there is no wave coupling. In actuality, such a
kny| situation occurs only for a wave with a strictly determined
frequency and propagation constght 8,. The waves res-

q catter into each other both when the cell parameters deviate
A from the resonant valudg this case, the waves transmitted
without scattering in general disappgaand for a resonant
structure for waves that differ from the resonance values. If it
FIG. 2. Layout of one element of a linear array of semiconductor lasers iiS recalled that there is always absorption or amplification in
the effective-permittivity approximation. actual structures, it can be understood that pure resonance is
virtually never observed. However, as shown numericsilly,
and later analytically® structures and modes that can be

s/2 d

0 A2

LU Pw P Pw called near-resonant present the greatest interest for genera-
PV +Cy 7 +C 2 tCo tion in a linear array. In this case, the trace of mafrixan be
represented approximately in the fdfin
V4 o _ T 2
+C4—+C5—— +Ce=0. (8) TrT=(-1)%2-F%), 9
at Jz
) o o ~ where
To find the coefficientg,, ... Cg, it iS necessary to specify
the €(x) dependence in Ed1). 2

Po Jo
Forms of potential wells at which there is no scattering P1S* %qld) PusT aqld)' (19

are well known from quantum mechanitn these cases, it Here q, and p; are defined as the differences of the

atg)omplex-valued lateral wave vectors within the antiguide

I ri in riodi r r nstr from layer . .
also arises in a pe od C.St ucture co structed fro aYeT%ore and the interelement gap from their resonant values,
with a corresponding profile on a period. Below we consider espectively, i.e

the simplest version of such a structure in which theoretica[
calculations can be completed. di1=9—do. P1=P—Po;

Jo=m(l+1)/d, po=mm/s.
3. THE EQUATION FOR A LINEAR DIODE ARRAY IN THE , . oo
APPROXIMATION OF A STEPPED e(x) The magnitudes of the vectopsandq are determined in this

case from
In the theory of linear diode arraygx) is usually cho-

sen to be a step function with two values, in the active q*=k’eo— % pP=k’e;—

element ande; in the passive gap. We restrict ourselves(see also Fig. R For typical parameters of a linear laser
below to a linear arraysee Fig. 2in which amplification is  diode array,

localized in an antiguide core of width whereas absorption

can be introduced in a zone with a high refractive index and €1~ €0l <Reeo;

width s (zonea in Fig. 1). Moreover, we include the nonlin- j e the permittivity step is much less than the magnitude of
ear part of the complex permittivity, which we write, follow- the permittivity. Since the conditions<s and A<d are

ing Ref. 12, in the form satisfied when the wavelength of the radiation in vacuum is

de \, the lateral angles at which the radiation propagates are
en(x)zr(x)m (N(x)—Np), small. ConsequentlyB~kn, holds to within small correc-
N=Ng tions (heren, is the mean refractive indexThese correc-

tions play a decisive role in calculating the lateral wave vec-

whereN(x) is the carrier concentratiohlg is the same in the
absence of a radiation field, afi{x) is a factor that allows 'S

for the overlap of the wave field with the active region in the  FOr e€vena, it follows fzrom Eq. (9) that the quantity
transverse direction. introduced above iA=—F<. In order to find the coeffi-

The choice of basis functiorfsandg and the derivation Cients in Eqs(7) and (8), p, andq, must be expressed in
of expressions for the elements of maffithat satisfy natu- €'ms of 88 and Q. This is easy to do, using the explicit
ral conditions on the side faces of the semiconductor ar&XPressions given above fprandg:
described in Ref. 10. A cell of the periodic structure is shown P1Po=kQe; /c+k2Ses— BB,
in Fig. 2. The functionf(x,,) corresponds to a wave trans- _ 2
mitted through the antiguide core barrier when it is incident G1G0=kQeo/CHk deq— OB,
from the left, whereag(x,,) corresponds to a wave incident where 25¢; and 25¢4 are the detunings of the permittivity in
on the antiguide core from the right. In a resonant structuréhe waveguide and antiguide core zones, respectively. Note
in which (1 +1) half-waves fit inside the antiguide core and that these deviations in general consist of two parts each: one
m half-waves fit in the waveguide gap &nd m are whole  occurs because the actual parameters of the structure deviate
number$, in the absence of amplification and absorption thefrom the strictly resonant values, and the second part is
wavesf and g pass through the cell with no losses, beingcaused by the variation of the nonlinear component of the

11
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permittivity. The possibility of operating with a piecewise- antiguide core elements. The figures in Ref. 14 show clearly
constant nonlinear addition wis not evident in general and that the boundary of the beam propagating inside the set is a
requires special consideration. Recalling that the originaktraight line. An estimate gives an angle close to that written
one-dimensional model is an approximation, as well as thebove. Note that when radiation initially fills part of the cross
role of carrier diffusion in semiconductors, it can be assumedection of the cavity homogeneously along thexis the
that replacing the actual distribution of the nonlinear compo-entire cross section also becomes filled by a wave in the
nent of e, averaged, as noted above, over the transverse ctateral direction with constant velocity, determined by the
ordinate, with a stepwise value can satisfactorily describe théormula A/+/—c,. This also strongly differs from the
nonlinear effects in a linear array in our case. In this case, thdiffusion-like spreading usual for a plane-parallel cavity.
total field intensity, averaged over the acti@mtiguide corg Finally, when the structure differs appreciably from a
and passive zones, respectively, appears in the theory inrasonant structure, so that a special role is played in the
natural way. Using Eqg10) and(11), we writeA=—F2in propagation of radiation by the first-order derivatives with
the form of Eq.(7), whence for the coefficients,, ... cq respect toz or t, Eq. (8) approaches in its properties the
we get ordinary parabolic equation of optics.

Ci=— L4 cp= —k2eALYC? Since the actual bpqr]dary or init_ial conditions are often

1 b2 ' such that, close byor initially), the field cannot be repre-

cs=—2BkeL%c, c,=ik3e[de'L4+ LY, sented in the form of Eq3) with a,, andb,,, smoothly vary-
. . . ing from element to element, the natural evolution of the
Cs=ipkY o€’ L +L7], ce=k'oe'LE, (120 field in space and in time has the effect in this case that, after

some distancétime), Eqg. (8) becomes usable for the subse-
quent description. However, the question of the boundary or
e=(e15+ eod)/A, initial conditions requires special treatment in this case.
Below we shall consider problems for an infinite set of
diodes, which corresponds to the approximation of small

where we have introduced the mean permittivity

the mean detuning

0€’ =(sdest+ddeq)/ A, scales of structures that in our case embrace a rather large
and the characteristic lengths gluer;beenrtsof elements, although less than the total nuriNbefr

L*=A(s/p3+d/q3), L%=A(sées/p5+ddeq/qd).

These expressions for the coefficients of Ef) are 4. SELF-FOCUSING OF RADIATION WITH A PLANE
some of the most important results of this paper; to illustrateVAVEFRONT

the possibilities of using them, we will solve specific prob- . . i
: . . Let us consider the steady-state propagation of radiation
lems in what follows. Note that in E¢6) the coordinate,, . g . .
in an infinite array of semiconductor lasers. In this case we

inside the cell is a free parameter. The dependence on t E VG, = Ca C.— 0. A solution in the form of a plane wave-
internal coordinate enters into the total field via functions 27 ST AT o P

. . . front for the envelope of the field/(x,z),
f(xyn) andg(x,,), which also, strictly speaking, depend on
the Fourier variables over which the expansion in &9.is 72¢=Eqexpidpz), (13
carried out. However, a more careful analysis shows that thgorresponds td =0 (or F=0), whence we get two allow-
distortion of the basis functions in the space—time variation,fleble values fo: '
of the field can be neglected in calculating the total field, '

since their contribution is smaller by a factor Nfthan for _koe'

the coefficientsa,, and b,,. Analogously, provided one re- ong (14)
mains close to resonance, as given by inequalty the

variations of the refraction indices should also be taken into k Lﬁ

account only when solving E@8). 5'82:n_0 LA’ (15)

We should point out a number of limiting cases in which ) )
Eq. (8) is easy to interpret. In particular, for a resonant struc-each of which makes one of the parentheses in(£g.go to
ture in which amplification, absorption, and nonlinearity arezero, and here the propagation constant is taken to be ap-

neglected Se.= Seg=0, we have proximat.elygw_ kno. The intensity (_jependence in Ec(i.él)
and(15) implicitly enters the detuningédes and deq via the
C4=C5=C=0. carrier concentration. It is easy to verify by direct substitu-

Then, for steady-state propagation of radiation alange  tion that5p; corresponds to a field distribution of
get a hyperbolic equation, describing propagation along W1=1(Xm) +9(Xn),

straight lines at an angle of _ ) )
whereas the solution with propagation constdgt has the

—-1/2
3 form

A [ d® LS
J=c, 2noA[A3(1+1)2 ASm2] Vo= (X)) — G(Xen).

This unexpected outcome is confirmed by experiffénom  The field structure for each of the indicated waves is illus-
the amplification of the radiation in an array of twenty-onetrated in Fig. 3 for a grating with parametetss0 and
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p FIG. 3. Mode structure fot=0, m=3: a—modef

\\/ V/\ VA\} | U

m= 3. Note that these solutions were obtained earlier in Ref.

+g, corresponding tosB,, b—mode f—g, corre-
sponding tos83,.

k?A2|Al?(ReA)?+c,(ReAB* )2>ReAB* ReA(|A|?

4 for a purely resonance grating and in the absence of non-

linearity. The second of the solutiong,, is evidently un-

+2c¢,ReB). (22)

suitable from the viewpoint of laser action, since the field isIt follows from inequality (18) that a solution with RA
determined in equal degree by the active and passive ZOnes.y is unstable for any perturbations, whereas, foAReD,

Moreover, for a finite number of elements, losses to the ra
diation through the edge will be large for field propagation of

type %,.

Let us apply the standard analysis to the linear stabilityCl

We introduce the field perturbatidf(x,z), so that
7%/=(Eqy+E)exp(i Bz).

The linearized equation fdE is written in the form

A2&2E+ a2E+2_5 7 + aE+ E+E*
2 Cy 7 [ ,35 Cs 77 ( )
_dcs  dce|
X |5,8(9—|+(9—| 0 0, (16

where the derivatives of the coefficients of Ef) and 58

are taken for the mean intensity=|Ey|? in an element.

Expanding the perturbation in plane waves,
E=a(«,y)expli kx+ yz) +b(k, y)exp —ikx+ y*2),
we get the dispersion relation

Y?|A|?+ 2y(Re(AB*) — Q?ReA) + Q%(Q%?—2 ReB)=0,
(17
where
A:C5+2i5ﬁcl, B:|5ﬁlo(9C5/(9|+|01906/(9|,
Q2=K2A2—C1’)/2.

The values of the coefficientd& and B for which, for real

the perturbations increase only for certain values<pfor
which at least one of the inequaliti€s9)—(22) breaks down.
Moreover, when inequality2l) is satisfied, recalling that
<0, inequality(19) follows, so that it is possible to restrict
the discussion to the inequaliti€®0)—(22).

In practice, one tries to localize the field mainly in the
antiguide core zone; also, to reduce the divergence of the
radiation in the far field, it is desirable that the size of the
radiative zone be close to the period of the structure. Both
these requirements are satisfied in the limpig/qe|>1. The
coefficient ReA can be written in this case as

Bk?sd
ReA=+———(Im deq—Im Se;),
do

where the upper sign refers &8 determined from Eq(14),
and the lower sign to that from E¢L5). Since the amplifi-
cation is concentrated in the antiguide cores in the type of
linear diode array considered here, while losses are some-
times specially introduced into the waveguide gap, we find
that the solution withdB8= 68, is unstable, and therefore it
is assumed in the subsequent analysis &t 58,.

If detuning de= deq— deg Of the permittivity step is in-
troduced at the boundary of the antiguide core, the coeffi-
cient ReAB* can be written as

B k°B| 5e|*s*d?l o

REAR* — doe’
e = qg m dl s

values ofk, values ofy exist in which the real part is posi- S© that if ReAB* >0 holds, as in the case that is important in

tive correspond to a region of instability of the propagationPractice, when the sign on the derivative is determined by the
of a plane wavefrontself-focusing. In accordance with the decrease of the amplification as the intensity increases the

Rouse—Hurwits criterion, Eq17) has no roots with a posi- inequality (20) is satisfied for anyc. Then self-focusing oc-
tive real part(i.e., the solution is stableif the following ~ €urs when at least one of the following conditions is satis-

system of inequalities is satisfied: fied:
ReA<0, (18) K?<Kg (23
|A|2—2c,k%A%+2¢c,ReB>0, (19 or
ReAB* — k2A%ReA>0, (20 k?<(Ko—K,)Gd/s, (24)
k%(k*A?—2ReB)>0, (21 where the following notation has been introduced:
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2k*sdl, dse’ value (R&e>0), whereas self-defocusing occurs when it is
Ko= 2)2 e( €l ) below that value. This agrees with the results of the numeri-
Yo cal calculations of Ref. 12.

dominance of the parabolic term in the original E8)], we
can setQ= kA in Eq. (17), reducing it to square iry. For
large positive detunings\>|e,|, Eq. (17) can be rewritten

k4sd2|5e|2< s) For the condition|y|< &8 [which corresponds to pre-
1= 5.2 1
d

q2A3

d !
G=Alolm<T)/dlm56. as
52425 Q2+ 2— 2"} 02(Q?—240%)=0
For further simplification, it is necessary to specify the 7" 727 Qo+ Q AT+171y) Q*(Q°~2aQp) =0,
form of the intensity dependences & and §eq4. Since the (26)

overlap of the radiation field with the amplification zone is . .
k . .. Where we have introduced the notation
weak in the interelement space, we neglect the amplification
in this zone. The permittivity detuning in the interelement ';,: vIAl, Q§=k4sd2620A:¢/q2ISA(1+Io/IS)Z.
gap can also be considered independent of intensity, assum- - _ _
ing des=A+iar, whereA is the real detuning from the We flndzfrom 2Eq-(26) that -y reaches its maximum value
resonance value, angy is the additional interelement loss. When Q“~aQyp, so that the maximum growth rate of the
The permittivity detuning in the antiguide core is determinedpPerturbations,

as? i
:k2d|0 620‘//) ((a2+1)1/2_ 1)
deq= €207 a—1)I(1+1/1y), T BTG (14 19/19)2 !
where is reached when the characteristic transverse size of a pertur-
7= (Jrgled—Ng)/No bation is
A2 1+1o/1g

is a dimensionless parameter that allows for amplification | _ — - ]
and the difference oN(x) from Ny as a consequence of 2d? (a&ZOA.f’/)S|O/A|S)l/2
pumping,J is the injection current density,. is the sponta-
neous lifetime,e is the charge of the electrom, is a line-
width enhancement factok, is the saturation intensity, and
e20=Togng/k (o4 is the amplification cross section, aiid ((®+1)Y2—1)e,qA1,
is a coefficient that allows for the overlap of the field of the A> (1+1,/192 , (27)
mode with the active zone in the transverse diregtion 07s/ Ts

As follows from inequalitie23) and(24), self-focusing  while the condition that the field vary little over one period,
is possible when at least one of the conditidhg>K, or  |Q[<1, implies the inequality
Ko>0 is satisfied. p

Under the assumptions made here, the first condition in (g sslo/Alg) " <)\_2
the absence of losses in the interelement gap=(0) re- 1+1o/ls 2d?’
duces to a quadratic inequality far=A(1+1,/1g)/(€207)

The condition that makes it possible to reduce 8q) to a
square can be written as

(28)

When the pump power is close to the lasing threshotd (

o ~1), inequalities(27) and (28) are simultaneously satisfied
2(H+1)—27+H-1<0, for the entire range oA values that are small in comparison
with the permittivity step at the boundary of the antiguide
where core.

H:(1+|S/|0)S/d
o _ 5. SOLITON SOLUTIONS IN A LINEAR ARRAY OF DIODE
This inequality has a nonempty set of values only when asgrs

H<2 holds, i.e., for fairly large intensities: ) )
Reference 15 used numerical calculations to show that,

I0>|S/(\/§d/s— 1). besides solutions in the form of a plane wavefront, solutions
of the isolated wave or soliton type are also possible in a
linear array of diode lasers. Such a soliton is small by com-
parison with the size of the entire linear array, but must be
large by comparison with the size of one element. Below we
a?—1 construct such a solution in the model of a smooth envelope

al+ar— mezo¢>0- (25 of the field for the condition that the pump power weakly

0''s exceeds the threshold.

Thus, when there is no modulation of the losses and the We shall use a model of a laser cavity in the form of a
radiation intensity is not too large, self-focusing occurs whermedium homogeneous in the longitudinal direction, with dis-
the detuning of the permittivity step is above the resonancéributed losses responsible for the output of radiation from

For smaller intensities, only the inequalif®3) remains.
The condition Ko>0 can be reduced to the form
R (a—1)8e]<0 or, in more detall,
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‘92%(1 +| 6 '+L21 26 |i ‘%Jr Lo 6
-v € — = v —
9E? L4 dE \ L4
X(8e' —0)72=0, (30)

where£=x—vt. Equation(30), with intensity-dependent co-
efficients for the first derivative and the free term, was inves-
tigated as a consequence of the generalized Ginzburg—
Landau equation in Ref. 17. It was also shown there that it
allows as solutions both plane wavefrohighich correspond

FIG. 4. Formation of a band when a linear array of lasers is detuned frorrto Stationary points in the phase space of m)] and spa-

resonance: the dashed lines are the dispersion curves in strict resonance,
the solid curves are the dispersion curves for positive detuning of the pe

mittivity step from resonance.

the cavity'® Moreover, the longitudinal coordinate and time

appear in Eq.(8) in a symmetric way, so that E48) in

general reduces to an equation in two variables. Specifically,

if a field-independent replacement of the coordinates
X=L%kx/A and t=kct/e+kz/n,
is made, Eq(8) can be written as

a7 L%

P Pw M
(ﬁ, +F5€/74:0.

X2 at?

4
' Lf

+i| e +—4

(29

?t_f‘glly limited structuregwhich correspond to the separatrices

that connect the stationary points; see, for example, Ref. 18
for an application to optical systemssuch as wavefronts,
solitons, sources, and sinks. At the same time, it is very
difficult to analyze Eq(30) even for the simplest versions of
the dependence of the amplification on the field intensity,
because all the quantities in the equation are complex.
With pumping close to threshold, the imaginary part of
the permittivity detuning in the antiguide core is small by
comparison with the real part, and the intensity is small by
comparison with the saturation intensity. This makes it pos-
sible to represent the detuning in the antiguide core as

5€d: 560_ 62|&//|2/|5,

where ey ande, are real parameters ahgis the saturation
intensity. Then, in the approximation of strong confinement
of the field in the antiguide coregpy|>|q|, and in the ab-

the envelope, as can easily be seen from &%), is a

second-order algebraic equation. Neglecting the imaginary
parts of the permittivity, the dispersion equation can be illus-

trated on plane wave vecto&B and k, (see Fig. 4. The
values of 68, , in Fig. 4 are determined by Eq§l4) and

ficients in Eq.(30) can be written as
d |7?

— € — ——
2A ISI

, S
oe'— 6= Kﬁe— 01

4 2702
(15). The dashed lines show the dispersion curves for strict -e |7

resonance, where (0,0) is the point of degeneracy. For non-
zero detuningiwhich can be caused by nonlinear field de-
pendence ofSe; and Sey), the pair of straight lines trans-

=—01—¢€

ls

where 8, = 60— S¢, is a renormalized free parameter afel

forms into two branches of a hyperbola. A band gap arises it¢ the detuning of the permittivity step between the wave-
this case. Thus, for a linear array with parameters differengu_'de ?‘”d the antiguide core zones. In thls case, a solution
from the resonance values, there is an interval of constarftXists in the form of a stationary ¢ 0) soliton having the

propagation §3,<8B< 8B, (or 8B,<56B<5B1), where

plane waves are forbidden. If we now construct a solution,
taking 68 from the indicated interval for the intensity of the
light to be equal to zero, the parameters can be chosen so
that, as the intensity increases, the original dispersion curve
is transformed so thaiB goes beyond the limits of the band

gap (we recall thatéB; and 58, depend on the intensity of
the ligh9. In such a situation, E29) obviously must allow
a soliton solution.

The translationally invariant solution of E(R9) is writ-
ten as

w=exp(—i6t) 2Z(x—vt),
where ¢ is a free parameter, and is the velocity of the

structure ¢ andv are real. Equation(29) can then be re-
written as

form

0156'5

. 1/2 S

Pf— -1 —

” 62[(d+A)01/S—56]) cosh ( 0156/\5)'
(31

It is obvious from Eq.31) that the conditions for the exis-
tence of such a soliton am® 5e>0, which means that there

is no radiation propagation whdr=0, ande,((d+A)#0,/s

— 8e)>0, which means that transmission is no longer for-
bidden when the intensity is greater than a certain threshold
value. This confirms the qualitative considerations expressed
above.

Figure 5 illustrates the overall structure of the soliton.
There are small discontinuities at the boundaries of the ele-
ments of the periodic structure because the envelope of the
soliton actually covers about three elements. This means that
the transition to a continuous variable that we used in deriv-
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A gquasi-collinear and partially degenerate four-wave mixing model is proposed to explain the
optical phase-conjugation property of various types of stimulated backscattering.

According to this model, after passing through a phase-disturbed medium or an aberration plate,
the input pump beam can be resolved into two portions: a stronger undisturbed regular

portion and a weaker phase-disturbed irregular portion. These two portions interfere with each
other and create a volume holographic grating in the pumped region of the scattering

medium. Only the stronger undisturbed portion of the pump field can excite an initial backward
stimulated scattering beam with a regular wavefront. When the I@tea reading beam

passes through the induced holographic grating, a diffracted wave will be created and then
amplified together with the reading beam. A rigorous mathematical analysis shows that

under certain conditions the combination of these two portithhesreading wave and the diffracted
wave of the backward stimulated scattering can be an approximate phase-conjugate field of

the input pump field. The major theoretical conclusions are basically supported by the experimental
results based on a specially designed two-beam interference setup99®American

Institute of Physicg.S1063-776(99)00502-§

1. INTRODUCTION expressed as an infinite serié€:*=3!n those cases, it was
extremely difficult to obtain a rigorous analytical solution of
Optical phase-conjugation is one of the most interestinghe wave equation.
research subjects in nonlinear opttésSo far, there are two In this paper we intend to propose an alternative physical
major technical approaches to generate optical phasenodel as well as a novel mathematical approach to explain
conjugate waves: one is based on degenerate or partially déhe phase-conjugation property of BSS. The suggested model
generate four-wave mixing, the other is based on back- is based on a quasi-collinear and partially-degenerate four-
ward stimulated Brillouin, Raman, or Rayleigh-wing wave mixing process, or equivalently, a quasi-collinear ho-
scattering™'* In addition, for certain arrangements, speciallographic wavefront-reconstruction process. The proposed
three-wave mixing>'® the photon echo techniqdé!®and  mathematical approach is based on the assumption that both
the self-pumped photorefractive effect can also be used tthe pump field and the BSS field can be viewed as composed
produce phase-conjugate waves?! of two portions: a portion of the regular-wave and a portion
Now backward stimulated scatterifBSS is one of the of the aberration-wave. The advantage of the suggested ap-
most sophisticated techniques to generate optical phas@l‘oach is that an explicit analytic solution of the wave equa-
conjugate waves. A considerable number of theoretical pations can be obtained.
pers on this specific issue have been published since the late
1970s?2~3!Most of those theoretical studies have been based
on a particular assumption that there is gain discriminatio
between the phase-conjugate portion and non-phase-
conjugate portions of the backward stimulated scattering; Before starting our theoretical discussions, it is helpful
only the former can obtain the maximum gain and be effecto describe briefly the typical experimental setup for demon-
tively amplified. However, for a long time, a clear theoretical strating the phase-conjugation property of the BSS from a
model or physical explanation to support this assumptiorgiven medium. Figure la shows the typical experimental
was lacking. Therefore, a better physical understanding o$etup without using an aberration plate. In this case, a quasi-
this effect is still necessary, as indicated by Ref. 32. Anotheplane pump beam is focused into the center of a scattering
feature of most theoretical papers cited here is that both thmedium. Most experimental observations show that the BSS
pump field and the BSS field were represented by a functioexhibits nearly the same beam size and beam divergence as

. QUASI-COLLINEAR HOLOGRAPHIC INTERACTION
ODEL

1063-7761/99/88(2)/11/$15.00 235 © 1999 American Institute of Physics
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does the pump beam. These facts can be explained by theccording to this principle, after passing through a phase

following two considerations. First, only those portions of object the total optical field can be expressed as a superpo-

the initial BSS which are propagating within the solid aper-sition of two portions®>

ture angle(measured from the sample center to the focusing

lens of the pump beam can get the maximum gain _Iength. U=UD+U®=AD expip,)+A® expli @)

Second, the divergence angle of the collimated BSS is deter- ,

mined by its spot size in the pumped region of the gain =exp(i g){AV + A exd i (os— ¢i) 1} 1)

medium, which is limited by the spot size of the pump beam.

We can assume that near the focal point region the focusedereU( is the undisturbed part of the transmitted fidld®

pump beam exhibits a Gaussian transverse intensity distribuhe secondary wave arising from the presence of the object;

tion. Considering the threshold requirement of the burst oA") andA® are their amplitude functions; arg and ¢, are

stimulated scattering, the minimum spot sipeam waistof  the corresponding phase functions, respectively.

the stimulated scattering should be slightly smaller or quite  The Gabor principle described above is applicable to

closer to that of the pump beam. Therefore, after passinghost phase-conjugation experiments based on BSS. In this

back through the focusing lens the BSS output manifests aase, as shown schematically in FigEZw) is a quasiplane

slightly smaller or nearly the same beam divergence angle gsump wave; after passing through an aberration plate, the

the pump beam. pump field appears as a superposition of two portions: a
Figure 1b shows the same experimental setup except thatronger undisturbed wave;(w) and a weaker distorted

a transparent aberration plate is placed between the beawave E,(w). After passing through a focusing lens, these

splitter and the focusing lens. In this case, after passing badkvo portions interfere with each other in the focal region

through the aberration plate the BSS may show a signifiinside a gain medium and create an induced volume holo-

cantly reduced aberration influence. That is the typical exgraphic grating that is due to the intensity-dependent refrac-

perimental evidence of the phase-conjugation property of théve index change of the gain medium. Only thg( w) wave

BSS1o-14 is strong enough to fulfill the threshold requirement and to
To describe how can we employ the quasi-collinear ho-generate an initial BSS waue;(w'), the latter exhibits the

lographic interaction model to explain the basic experimentabame regular wavefront as does the former. When the

results mentioned above, it is worth returning to the originalE;(w') wave passes backward through the induced holo-

idea of Gabor’s holography principle. In that case, a coherergraphic grating region, a diffracted watg(w') is created.

light wave passing through a transparent objgdtase ob- Here we see a typical holographic wavefront-reconstruction

ject), the object is assumed to be such that a considerablgrocess: the induced grating is formed by the reghlgiw)

part of the wave penetrates undisturbed through it, and aave(reference beajrand the irregulaE,() wave (signal

hologram is formed by the interference between the secondseam; the initial backward stimulated scatterirfgz(w’)

ary wave arising from the presence of the object and thevave is a reading beam with a regular wavefront like the

strong background wave, as clearly described in Ref. 33E;(w); therefore, the diffracted wavE,(w’), as a recon-
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structive beam, will be the phase-conjugate replica of theand small-signal approximation the growth of an initial
E,(w) wave. stimulated scattering signal can be described as

Egrthgrmore, thE4(Q’) wave WE|| experience a further 11w’ )=1(0,0")e G~ 3
amplification together with th&;(w’) wave because both
waves have the same signal frequency. In the case of stimwherew’ is the frequency of the stimulated Stokes scatter-
lated Brillouin scatteringw~w’, it is a nearly degenerate ing, |(I=0,0") is the initial intensity,« is the linear attenu-
quasi-collinear four-wave mixingFWM) process in the ation coefficient,G is the exponential gain coefficieriin
sense of phase-conjugate formation. In the case of stimulatethits of cm %), and| is the effective gain lengttin units of
Raman scatteringy> o', there is a partially degenerate and cm) of the medium. The threshold requirement for the burst
frequency down-converted FWM process. In the case of antief an observable stimulated scattering can be written as
Stokes stimulated scattering<w’, there is a partially de- (G—a)l

e >1. (4)
generate and frequency up-converted FWM process. Based
on the explanations described above, one can see that therelige exponential gain coefficie@ is assumed to be propor-
a common mechanispump field-induced holographic grat- tional to the local intensity of the pump field, i.e.,
|_ng) playlng the same key role fo_r phase-conjugation _form_a- G(2)=glo(z,®). (5)
tion in both FWM and BSS. This common mechanism is
applicable to any types of backward stimulated scatterindiere the pump intensitho(z, ) is in units of MW/cnf, and
processes including stimulated  Brillouin, Raman,d is the exponential gain factor in units of cm/MW.
Rayleigh-wing®*%*and Kerr scattering®>>8even though the
specific scattering mechanisms are totally different among
them. 4. GENERALIZED DEFINITIONS OF AN OPTICAL PHASE-
CONJUGATE WAVE

3. PUMP FIELD-INDUCED HOLOGRAPHIC GRATING

AND STIMULATED SCATTERING GAIN The term “optical phase-conjugation” is specially used

to described the wavefront reversal property of a backward

Let us consider an isotropic scattering medium. We aspropagating optical wave with respect to a forward propagat-

sume thatw andw’ are the frequencies of pump wave anding optical wave. Suppose there is an input quasi-

stimulated scattering wave, both of which are linearly polar-monochromatic wave with a certain phase-distortion depart-
ized along thex axis. The induced refractive index change ing from an ideal plane wavefront, i.e.,

S;(gse;;edngzd by the stimulated scattering wave can be ex E(zxy.0)=E(zx,y)e ot

=Ao(z,x,y)ei[k”‘P(Z'X'y)]e‘“"t. (6)

Here, z is the longitudinal variable along the propagation
direction,x andy are the transverse variables along the bean
section,w is the frequency of the fieldk=2mny/\ is the
magnitude of the wave vectoE(z,x,y) is the complex am-
é)litude function,Aq(z,x,y) is the real amplitude function,
and, ¢(z,x,y,k) is a phase-distortion function. If there is a
backward propagating wave which can be expressed as

An(w')= X (-0 o' —0,0)Ew)? (2

2n0(w')

whereny(o') is the linear refractive indexy¥=x3), is a
real matrix element of the third-order nonlinear susceptibility
tensor, andE(w) is the electric field function of the incident
pump beam. In the focal region inside the gain medium, th
values of local intensity of the pump field(x,y,z,o)
«|E(x,y,z,0)|?, can be quite high with a spatial intensity ,
fluctuation that is due to the interference between the two E’(z,X,y,0)=aE*(z,x,y)e "
portions(disturbed and undisturbgdf the pump beam. As a i i
result, an intensity-dependent holographic grating can be =aAg(zxy)e e ezleier, @)
formed via the mechanism described by Ez). wherea is any real constant, the fied' (z,x,y,w) is called

If the local pump intensity is high enough, stimulated the frequency-degenerate phase-conjugate wave of the input
scattering and subsequent stimulated amplification may odield E(z,X,y,w). This type of optical phase-conjugate wave
cur in the focal region of the pump beam inside the mediumcan be experimentally generated by using the well-known
As in the case of one-photon pumped lasing, in steady-statdegenerate four-wave mixing technigtié.
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In a more general case, if there is a backward propagatHere, w(z) represents the change in the pump-beam size

ing optical field with a different frequency’, which can be
written as

E"(Z,X,y,w’) — aAo(Z,X,y)e_i[k/Z+ @(Z,X,y)]e—iw't,

be the

8

then E"(z,x,y,w') can termed

along thez axis near the focal point regiom is the mini-
mum spot size of the beam at the focal plafizjs the focal
depth of the focused beam, aR@z) describes the change of
the radius of curvature as a function ofin writing Eq. (9),

frequency- We simply neglect the amplitude depletion of the pump field

nondegenerate phase-conjugate wave of the same originaithin a distance comparable 2.

field E(z,X,y,w). This type of phase-conjugate wave can be

experimentally generated by usirfg various BSS with a
considerable frequency-shift!® or (ii) a partially degener-
ate FWM839-42

5. DESCRIPTION OF A FOCUSED INPUT PUMP FIELD

A detailed schematic illustration for the beam-path ge-

ometry of the BSS in a scattering medium is shown in Fig.
In this case, a quasi-parallel pump beéhick lineg passes

through an aberration plate and is focused into the center of
the medium. After passing through the aberration plate, the
pump beam can be imagined as composed of two portions.

According to Gabor’s principle and Edl), the total
pump field near the focal point region can be expressed as a
combination of two portions:

E(erava) = El(Z,X,y,w) + Ez(Z,X,y,w)
=[A1(z,X,Y) +Ax(z,x,y)]exi(kz— wt)]

B Wo ‘{ 5 o ik
> S| N YW R
—i tan*15—zZ +C2exp[i9(z,x,y)]]

xXexdi(kz— wt)]. (11

One is a relatively strong undisturbed quasi-plane wWavgiere . andC, are real amplitude constants for normaliza-
(medium-thick lineg the other is a relatively weak distorted tion, andé(z,x,y) is an unknown function depending on the

wave (thin lines. These two portions of the input pump

aberration plate. The first term witB, in the braces of Eq.

beam can interfere with each other in the overlap region 3”911) represents the undistorted portion of the pump field; the

create a volume holographic grating. For the undistorted po
tion of the input pump beam, the optical field in the focal
region can be approximately treated as the fundament

mode of a Hermite-Gaussian beam, &3
_ Wo 2.2
E1(21X1y1w)_clw(z) exq (X +y )

1 ik

X| = 1
w<(z) 2R(2)

—itan”

z
el
x exfli(kz— wt)], ©)

whereC, is a real amplitude constant, and the parametgrs
R and 6z are determined by

2
1+

w(z) =w} =

a 2
1+(§ } R(z)=z

(10

'Second term withC, represents the distorted portion of the
pump field. It is assumed that the latter amplitude is distrib-
'i‘]ted nearly uniformly near the focal point with a cross sec-
tion considerably larger thawg. As shown in Fig. 3, this
assumption is based on the fact that the aberration plate
causes a wide and diffuse halo in the focal plane compared to
the small focal spot of the undistorted wave. Nevertheless,
apart from the focal plane these two portions overlap consid-
erably with each other and can induce a holographic grating.

6. FORMATION OF PHASE-CONJUGATE WAVE
BY BACKWARD STIMULATED SCATTERING

As shown in Fig. 3, the two portions of the input pump
beam can interfere with each other in the overlapping region
and create a volume holographic grating. However, on the
other hand, since the focused undisturbed portion of the
pump beam has a much smaller focal spot size and much
higher local intensity than that of the distorted portion, an
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initial BSS (medium-thick dashed lingsvith a regular wave- whereg’ =k’ x, is the exponential gain factor of the stimu-
front can be excited only by the stronger undisturbed pumpated emission for a given medium. In order to solve this
field. In propagating backward this initial BSS experiencesequation, we could solve for the Fourier transformAdf,
further amplification, and creates a diffracted wave throughhen obtain the solution of\; through the reverse Fourier
the induced holographic grating. This diffracted portitnin  transform?® Omitting the intermediate mathematical proce-
dashed linescan be viewed as a secondary seeded signal angure, the final solution of; is given by

therefore will undergo further amplification together with the
initial BSS signal. The remaining issue is whether the com-
bination of these two portions of the backward emission can
be a phase-conjugate replica of the combination of the two
portions of the input pump field. %

!

A'=C’&ex 1 'C3(z—2zp)
1 lW,(Z) 29 1 0

exp{ —(x?+y?)

1 ik’

W'Z(Z) * 2R’'(2)

+itan? z (16)
itan "—.
oz’
Here C; is a real amplitude constant, the first exponential
term represents the amplitude gain effect, the second expo-
According to the proposed model, it is assumed that théential term describes the behavior of the transverse intensity
backward stimulated emission field also consists of two porand wavefront curvature, argg is the starting position of the
tions and can be expressed as initial backward stimulated emission. The other new param-
eters in the above equation are defined as

6.1. Description of the BSS field: the Ej(w') wave

E'(z,x,y,0')=Ej(z,x,y,0') +E5(Z,X,y,@")
=[AL(z,Xx,y)+A(z,X,y)]

xexgi(—k'z—w't)], 12 w'3(z)=w,?

where Ai(z,x,y) is the complex amplitude function of the
initial BSS wave andA;(z,x,y) is the complex amplitude
function of the diffracted wave created by the former through R'(z)=z
the induced holographic grating.

According to the physical model described in Sec. 2, theand
A field is generated by thA, field through the BSS pro- 1
cess. Therefore, the electric polarization component corre- ,— ~g'C2sz
sponding toA; field can be formally written aén Sl unit9 3

pi(w'):igoxé|Al|2Ai exgi(—k'z—w't)] In the condition

., Ciwg 2(x%+y?)
—|80XeW2(Z)eX - w2(2)

6z'=néz, wi?=(kik') pw3,
G 2
9)

=)
EREN
FERE)

xexfi(—k'z—o't)], (13 we have §z' =8z, w’~wj, w'?(z)~w?(z) and R'(2)
=R(z). Comparing Eq(16) to Eq. (11), one can see that
only in that case can the; field be approximately the phase-
conjugate replica of the inp, field. Later, we will discuss
the real experimental conditions that fulfill the above re-
irement and will also consider the influence of the differ-
ce betwee’ andk.

Now let us consider the gain behavior of the backward
stimulated emission described by the first exponential term
in Eq. (16). We have already choser=0 at the focal point

n3(w') 9°E; Pl(w") position in the sample center, and we assume that the initial
T T2 g2 Moz (14 backward stimulated emission starts roughly from the posi-
tion —zo~ — 6z/2. If the optical path length of the gain me-

wherep, is the permeability in vacuung, the speed of light  djum is much longer thaz, the effective single-path am-
in vacuum, andno(a)') the linear refractive index at the p||tude gain can be written as

frequency ofw’. In the slowly-varying-amplitude approxi-

1+

1+ , (17

(18

1 2
A n= §9'C152

1 ~1, (19

whereeg is the permittivity of vacuum ang,, is a phenom-
enologically introduced effective third-order susceptibility
coefficient (a real coefficientthat is employed to describe
the gain behavior of the BSS process. The above expressi
is based on the assumption that the initial BSS experience
an exponential gain, and the exponential gain coefficient is
proportional to the intensity of th&; field [see Eq(5)]. The
wave equation oE; can be written as

V2E;

i i i - 1
mat!on, the solution of Eqg(14) obeys the following equa A(d)wex;{—g’ciéz). (20
tion: 2
f?_AiJr i—VzA’ _ g'C? If the sample thickness is much shorter than the focal depth,
gz 2k’ 1T 2[1+(2/62)?) i.e., d< 6z, then we have

2(x%+y?)
xexg — W2

1
A, (15) A(d)~exp(§g'c§d). (21)
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This indicates that the BSS grows exponentially along theThis is a rather complicated partial differential equation;

whole optical path length within the medium.
6.2. Description of the BSS field: the  E; wave

Next we shall consider the diffractdt}, wave created by

however, it can be greatly simplified with the following con-
siderations. First, since there is an exponential term on the
right-hand side of Eq(26), we may expect that the solution
of A7 should also involve a corresponding exponential gain

the E; wave through the induced holographic grating nearterm. As a result, the conditionA/9z> A}/ 5z should be
the focal region. Like a partly degenerate FWM process, thédulfilled; therefore, compared to the first term, the fourth and

nonlinear polarization componeRt, , which corresponds to
the E, wave, can be written 45%°

Pi(w')=ieoxeA1AS AL exdi(—k'z—w't)], (22

wherey is a nominally introduced effective third-order sus-
ceptibility (a real coefficientthat is used to characterize the
gain behavior of FWM or a grating diffraction process. As-

suming that the condition of Eq19) is satisfied and th&;
field is phase-conjugated with the, field, then, based on
Egs.(11), (16), and(19), we can obtain an explicit expres-
sion for P5:

C,C,Ciw2

exp —
w2 F{

1
Xexq—ie)exp{zg’cf(z—zo)

2(x>+y?)
w?(z)

Pé(w )_|80Xe

Xexgi(—k'z—w't)]. (23
Substituting Eq(23) into a nonlinear wave equation like Eq.
(14), we find that the comple&, function is governed by the

following equation:

(7A2 i g” C,C,C;
ot o ViIA= S
2k 2 1+(z/6z)
2(x*+y?) .
Xexr{—wz—(z) exp—if)
1 r~2
X ex 79 Ci(z—1zp)|, (29
whereg”=k' .. SinceA; does not appear on the right-hand
side of Eq.(24), we can give a trial solution oA, as
, CoCy 2(x*+y?)
A2— Cl eX[{ - WZ(Z) 2 (25)

whereAj is an unknown function to be solved. Substituting

Eq. (25) into Eq. (24) leads to

oAy 2 aAg &Ag
9z s+ 2o\ oz 0z (9y
i (aZAg 9?A} i
+ 50 >+t ——= |~ 7
2k’ \ ax ay 6z[ 1+ (z/ 62)7]
4(x%+y? 4(x24+y?
ol g A i y9) - (x“+y%) .
w?(2) SzWA(2)
1 HC 1 1 C2 i
2g 1mex 509'Cl(z—1zp) |exp(—i6).
(26)

the fifth terms on the left-hand side of E@6) can be ne-
glected. Second, the focal depth is much larger that the beam
size, i.e., 6z>x,y; the longitudinal variation of the beam
intensity is faster than the transverse variation, i#3/dz
>agA%dx, dASldz> A%l dy. Therefore, the second term on
the left-hand side of Eq26) can also be neglected. Then Eq.
(26) can be finally simplified as
&A” i VZ g//CZ

2k’ 2= 2[1+(z/52)7]

expg—if). (27)

1 r~2
X ex Eg Ci(z—zp)
To solve this equation we can further assume a trial solution,
Az x,y)=A7(z)exd —i8'(z,x,y)]. (28)

Here theA’' (z) term represents the real amplitude as a func-
tion of z, and the exponential term represents the phase front
as a function ofz, x andy. Substituting Eq(28) into Eq.
(27), we obtain the following pair of equations:

(9Am A//r //CZ
acd 2/ V2 o — g9 ,
2k 2[1+(z/62)7]
1 1 ~2
X ex 79 Ci(z—1zy)|coséé,
90" 1 [[a6'\? [a6"\?
oz Tk |\ ox ) T W
g - siné6 29
_2[1+(Z/5Z)2] g 1(2 ZO) Ag/ ’ ( )
where
50=0—10".

In the small aberration approximation, the second-order spa-
tial derivative or the square of the first-order spatial deriva-
tive of the functiond’ can be neglected, then Eq&9) can

be simplified as

aAg’ B guci 1 ,CZ )
oz 2[1+(2ds2)71 Y29 1(z2—12,) |c0s 50,

90’ - gr/CE - sinso .
E_mex 29 H(z—2) A,z,, (30)

As mentioned in Sec. 5, the distorted portion of the input
pump field has a uniform amplitude distribution near the
focal point region[see Eq.(11)]. This assumption is based

on the fact that the beam waist of this portion is considerably
larger than that of the undistorted portion of the pump field
(see Fig. 3 In Fig. 3 one can also see that for the distorted
portion of the pump field, the variation of the shape of the
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To obtain this solution, we have assumed that

depth range. Hence we can further assume that the longitd/\/1+ (z/ 5z)?~1, which is valid forz< 6z. From Eq.(38)

dinal variation of the wavefront of the distorted portion of

the pump field within the focal depth range can be neglected,

ie.,
26/ 9z=0. (31

Subtracting the second equation of E§0) from Eg. (31),
we obtain a new pair of coupled equations as

&A'z" g//Ci 1 o
9z 2[1+(zs2)7H 29 Ci(z—zo) |c0S56,
9(89) 9'C3 1., sinsg

iz 2[1+(z/ 62)?] eXn 59 Ci(z—1zp) A—g’ (32)

Dividing the first equation by the second in E¢82), we
find

dA; | €0SSH 23

9(80) " ?sinse - (33
This implies that

AZ(2)sin86(z) =A% (—zy)Sin56(—zy) =B, (39

whereB is a constant considerably smaller tha}i. Substi-
tuting cossd=+/(A3)?—B?/A} into the first equation of
Egs.(32), we have
Ay oAy g'ch
\/(Afz”)2_|32 9z 2[14(2/62)?]

. (35

1 2
X ex zg’Cl(z—zo)
Since B2<(A%)?, Eq. (35) can be approximately rewritten
as
INy 9"Ci 1., .,
oz~ 1+ (dez)? 29 C1z- )

. (36)

Now let us consider the physical meaning of the factors®
g’C? andg”"C3. The former is used to describe the gain of

one can find the initial value o atz= -z,

A7 (—zp)=1. (39)

Next, the remaining issue is to consider the phase func-
tion 6’ (z,x,y) of the A field expressed by Eq28). From
Eq. (34) we have

sin59(2)=sin56(—zo)% (40
Substituting Eqs(38) and (39) into Eq. (40) leads to
sinsf(z)=sin 8(z)— 6’ (z)]=sin56(—zy)
xex;{—%g’cf(z—zo) . (41)

From Eq.(41) we see that during backward propagation the
phase front of thé\} field is getting closer and closer to the
phase front of thé\, field. Specifically, if the stimulated gain
is high enough, i.e.,

1 2

Eg’Cl(z—zO)>1, (42
we find

sinf(z)—6'(z)]—0, 0'(2)—06(z). (43

Based on Eqgs(25), (28), (38) and (43), the diffracted
portion of the backward stimulated scattering field can be
finally obtained as

r_ ZC:;- 1 r~2
- exp[gg Ci(z—29)
2(x*+y?) . 44
Xexg — W22) exp—if). (44

.3. The total BSS field: the E;+ E; wave
Based on Eqq12), (16) and(44), the total BSS field can

the A; field due to stimulated scattering amplification, thefinally be written as

latter is nominally employed to describe the growth of &je
field through the holographic grating diffractiofor the
equivalent four-wave mixing It is important to point out

that the initial A; field can be viewed as a secondary seed

signal, which will experience an additional gain from the
stimulated scattering amplification like that of thg field.

Under most BSS experimental conditions, the subsequent

gain of theA, field comes mainly from the stimulated am-
plification rather than the equivalent FWM or the grating
diffraction. Hence, in Eq(36) we can replace thg”Ci term
by theg’ C? term, and rewrite Eq(36) as

A7 g'C? 1 )
gz 2[1+(262)7] ex’{iglcl(z_zt’) ' (37)
The final solution of this equation is
m 1 2
AY :exp{zg’cl(z—zo) . (39

E'(z,x,Y,w)=[A1(Z,X,Y)+ ANz, x,y)]exdi(—k'z— w't)]
C; w
St Clwg)ex;{—(xz

[

1 2
exp 59'CHz~2)

NV

.z

+y?) w2 + PR +i tan 1§>
2 2

+C, exp{— Z(V);ZELZ))/ ) exp(—i 0)}

Xexgi(—k'z—w't)]. (45

The above expression is obtained assumming that the re-
quirements described by Eq&19) and (42) are fulfilled.
Here we can combine these two requirements as

R




242 JETP 88 (2), February 1999 Dun Liu and Guang S. He

) Compared Eq(52) to Eq.(51) we see that the requirements
59'Ci(z=29)>1. (46)  for observing the phase-conjugate property of a BSS wave

can be basically fulfilled by common experimental condi-

On the other hand, the total input pump field is given by Eq.tijons.

(11) and can be rewritten as The phase-conjugation property of the BSS from a gain

E(ZXYV. @) =[ A (Z.X.Y)+As(Z.X, i(Kz— ot medium, in general, is not perfect for the follqwing reasons.
(2xy,0)=[AuzXy) + Az xy) Jexili(kz— w)] First, all the mathematical derivations described above are
Wo based on the small-aberration approximation, so that a sub-

={Cy j ex —(X?+y?)

w(z w(z) stantial part of the distorted pump wave may overlap the
_ undisturbed pump wave in the focal region to generate a

_ ik i tan‘li holographic grating. Second, only the majoentra) part of
2R(2) 6z the BSS may exhibit high-fidelity phase-conjugation, as in-

dicated by the requirement of EGI8). One can expect that
+C, exp(ie)]exp:i(kz— ot)]. (47) und_er a.larger ab'erration influence, the fidelity of phase-
conjugation behavior should become poorer.

So far the difference betwedrandk’ has been ignored,
which has a certain influence on the fidelity of the phase-
conjugation of a BSS wave. This influence should be essen-
tially the same as when we create a hologram by using two
[2(x*+y?)/w?(z)]<1, (48)  beams of wavelength and then read this hologram by using
another beam of wavelength’. Nevertheless, comparing
Eq. (45 to Eq.(47) one can see that the difference between
[A1(z,x,Y) +AL(Z,%,Y)]c[A(Z,x,Y) +Ax(Z,x,y)]*. (49  kandk’ has no influence on the relationshiy(z) = 6(2),

. . which is the most essential requirement for distortion com-
Based on the above relationship, one can conclude that tE d

. . . ion. But the diff Kk’ ff
total BSS field can be approximately phase-conjugate to th ensation. But the difference betwekrand k' does affect

total input field ided that certai diti hold e radius of curvature of the undistorted part of a BSS field
otal input pump hield provided that certain conditions Nold. 5y causes an apparent displacement of the focal point of the

BSS wave.

It should also be noted that the holographic model em-

7. DISCUSSIONS ployed in this work is qualitatively compatible with the ex-
) ] _ isting theoretical explanation for phase-conjugate formation

The conclusion that a BSS field can be an approximatf hackward stimulated Brillouin scattering, which is based
phase-conjugate of the input pump field holds under certaign the assumption that there is a highly nonuniform pump
conditions. First, the gain requirements expressed by Eqntensity distribution, i.e., a volume speckle pattern in the
(46) should be fu_IfiIIed. As;umi_ng that the effe_ctive gain focal region. Only the phase-conjugate portion of the BSS
length of the nonlinear medium is nearly determined by theje|q whose intensity distribution best matches the nonuni-
focal depth of the focused pump beam, e.@  form gain distribution, experiences the maximum exponen-
=(0.4-0.5¥z andzy= — (0.4-0.5pz, according to the first 5| gain coefficient, twice that of the non-phase-conjugate

requirement expressed by E¢6) portion?*** In terms of the holographic model the volume
grci52~ 12-23, (50) specklle is a result of interferenge between the undistorted

and distorted parts of the pump field.

the required gain of the intensity of a small BSS signal  Finally, it is important to indicate that the Gabor holo-
should be graphic interaction model and the theoretical treatment pre-
) ~2 N P2 ooy sented in this paper are suitable not only for various BSS
exH g’ Ci(z—20) ]~ expg’ Croz) ~exp(12-23 processes but also for other kinds of backward coherent

~1X10°—1x 10 (51 emission processes, provided that there is a high exponential

i i ) i gain mechanism for small initial backward coherent signal as

In this case, the sec_:ond rngrement of Ep) is autom_at|— well as an effective holographic grating induced by the pump
C:ally fglfllled. The hlg.h gain requwgment can be readﬂy ful- field%6 Recently, we have observed a nearly perfect phase-
filled in mo;t experimental 'COI’]dI'FlonS for.observmg t'he conjugation property in the backward frequency-upconverted
backward stimulated scattering without using any optlcalS imulated emission from a two-photon pumped lasing
feedback devices. For example, the values of the exponentiﬁkediumg This observation may suggest a new technical

gain factorgg of stimulated Brillouin scattering for the com- approach to generate optical phase-conjugate waves and can

mon transpare_nt solventsuch as acetone, be4nzene, andbe explained very well based on the same theoretical model
toluene are estimated to be 0.01-0.03 cm/M##* Assum- described hers-5

ing the typical pump intensity i$,=500 MW/cn? and the

effective gain lengthfocal depth is 6z=1.5cm, the gain g SOME RECENT EXPERIMENTAL RESULTS
should be

Comparing Eq(45) to Eq. (47), if we neglect the difference
betweerk andk’ and only consider the central portion of the
field within the region of

we have

So far, most experimental studies of phase-conjugation
Oglgdz~8-22. (52 fidelity of BSS have been based on measurements of the
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~ = = Screen for BSBS beams

Frequency-doubled

Nd:YAG laser i f=10cm CS; cell
R =
FIG. 4. Experimental setup for measuring the phase-
A B conjugation property of the backward stimulated Brillouin scat-
4 4 i i - i
1 _ A E: CS, cell tering with two-beam interference method.
| 1
Aberration B «pander
plate eam-exp:

~ = = Screen for pump beams

[ﬁ Camera

near-field and far-field distributions. We present here somenough to generate BSBS in both liquid cells. Furthermore,
recent experimental results on the phase-conjugation profpy means of two-edge beamsplitters and a<lifeam ex-
erty of backward stimulated Brillouin scatterin®SBS,  pander, the interference pattern of the two incident pump
based on measuring the fidelity of wavefront reconstructiorbeams could be observed on a screen and recorded by a
by using the two-beam interference technique. The advarcamera. In the same manner, the interference pattern of the
tage of this method is that it can provide both near-field andwo BSBS beams from these two liquid cells could be also
the wavefront information of the tested beams. observed in another screen. In order to test the wavefront-
The experimental setup is shown schematically in Fig. 4reconstruction ability, a hydrofluoric acid-etched glass slide
A 532-nm master pump laser beam was provided by avas used as an aberration plate, which could introduce an
Q-switched and frequency-doubled pulsed Nd:YAG laseraberration of 10—15 mrad on the pump bedin This aber-
source; the pulse duration, beam size and divergence anglation plate can be placed either at position A or position B.
of this beam were 10 ns, 4 mm, and 1 mrad, respectively. Figure 5a shows the photograph of the pump beam IlI:
After passing through a beamsplitter and a reflecting mirrorhere we see a relatively uniform intensity distribution in the
that master beam was divided into two beams, which werdeam section. Figure 5b shows the photograph of the pump
finally focused into two 10-cm-long G3iquid cells through  beam | after passing through an aberration plate placed at
two f=10cm focusing lenses. The intensities of these twaosition A; here we see a random transverse intensity fluc-
pump beams could be adjusted separately and were highation caused by the aberration plate. Figure 5c¢ shows the

FIG. 5. Photographs ofa) the pump beam Il(b) the pump
beam | after passing through an aberration platethe inter-
ference pattern of the two pump beams without no aberration
plate, and(d) the interference pattern of the two pump beams
with aberration plate in position A shown in Fig. 4.
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FIG. 6. Photographs ofa) the BSBS beam excited by the
pump beam Il (b) the BSBS beam excited by the pump beam

| passing through an aberration plate) the interference pat-
tern of the two BSBS beams with no aberration plate, @hd
the interference pattern of the two BSBS beams with an aber-
ration plate in position B shown in Fig. 4.

photograph of the interference pattern formed by the twdion. The result shown in Fig. 6¢ basically supports this con-
incident pump beams with no aberration plate; here we canolusion. The second conclusion is that under a large aberra-
see the regular and straight fringes that indicate a nearly idedébn influence, the wavefront reconstruction will not be
plane wavefront for both beams. Finally, Fig. 5d shows aperfect. The result shown in Fig. 6d basically supports that
photograph of the interference pattern when the aberrationonclusion. In the latter case, when the BSBS beam from the
plate was placed at position A; here we can no longer see arsecond liquid cell passed through the aberration plate at po-
clear and regular fringes because of the severe aberratigition B, the original wavefront of the pump beam | can be
influence on one beam. To obtain the photographs shown iassentially, but not perfectly, reconstructed.
Fig. 5¢ and 5d, the intensities of the two interfering beams
were kept nearly the same. _

Under the same conditions, a set of photographs can beE-mail: gshe@acsu.buffalo.edu
obtained for the BSBS beams from the two,Qi§uid cells.
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We study laser cooling by velocity-selective coherent population trappM&gPT) in a double-

A scheme with decay beyond the working levels. We show that this additional decay

channel filters diffused atoms from trapped ones and provides an ultrasharp atomic momentum
distribution. © 1999 American Institute of Physids§1063-776(99)00602-3

1. INTRODUCTION of the atoms that have diffused toward the wings are not

Coherent population trapping was observed for the firsfeerCted n the_ peak W'qth and dark-state population. C.OH'
time by Alzettaet al! as a decrease in fluorescent emissionsequemly’ the increase in the peak value and decrease in the

in a laser optical pumping experiment involving a three—level}’v'dtfh of tch;e fmgl at%mm nsomentutnr: d|str||t?ut|9rt1r,] which ISI
atomic system with two ground levels and one excited level!al TTom f>aussian, do not mean the cooling, they merely
ndicate the accumulation of atoms in the dark state. A

This effect results from coherent superposition of the ground_ : - ) e
states which is stable against absorption from the radiatioﬁIrnple analytlgal d.eSCHptIOI’l of t'rappmg versus d'foS'O.n
field. Various theoretical and experimental aspects of coher/as r'e'cently given in Ref. 19. A nice way to confine atomic
ent population trapping have been reviewed in severax/ldoc'tIes dzlérmg_ the VSCP_T phase has been pTOPOSGd by
paper€-S This phenomenon has been exploited in very dif- arte et al: Thls_ me_thod is _based on the coexistence of
ferent applications: metrology, optical bistability, high- VSCPT and polarlzathn-gradlent cooling.

resolution spectroscopy, laser multiphoton ionization, four- The purpose of this paper is to show that one can use

wave mixing, laser-induced structures in the continuum,VSCPT to perform not only accumulation but also filtering

laser manipulation of atoms, adiabatic transfer, lasing With—Of atoms in momentum space. Based on the theorefical
out inversion, and matched pulse propagation. model of Ref. 11, we introduce a doubdemodel, where an

The application of velocity-selective coherent populationf”‘ddition"’II upper level with possible decay outside the work-

trapping (VSCPT) to laser manipulation of atoms has been N9 configuration is added. We find that this new decay chan-
studied intensively~ '8 The basic idea of VSCPT is to pump nel can separate the atoms in the wings from atoms near the

atoms into a noncoupled state that has a well-defined md2€aks of the momentum distribution, and hence laser cooling

mentum, where the atoms do not interact with the laser ra(-)f atoms below the rec_0|I limit can be achieved.
The paper is organized as follows. In Sec. 2 we formu-

diation. Accumulation of atoms in this special velocity- . . .
,ﬁte the model and present the basic equations for the atomic

selective trapping state is due to spontaneous emission. L it trix 6l ts. In Sec. 3 f ical
VSCPT experiments’® with “He metastable atoms, very Z€NSity-malrix elements. in Sec..> we pertorm a numerica
analysis. Finally, Sec. 4 contains conclusions.

narrow final distributions of atomic momenta are observed.
The form and width of the momentum distribution has been

des_cribed_the(_)retically for various_ sche_mes and in va_riou§_ MODEL AND BASIC EQUATIONS

regimest'~*8It is common to associate either the peak width

or the dark-state population of an atomic momentum distri-  We consider an ensemble of atoms of mislssioving in
bution with an effective temperature. Based on this effectivehe z direction. The atoms have two degenerate ground lev-
temperature, the authors of Refs. 7-18 conclude that lasels,g_ andg, , and two nondegenerate excited leveland
cooling below the recoil limit has been achieved. Howevere'. We denote the energy of the atomic leve(j
spontaneous emission produces, as shown in these refere,e’,g_,9.) by fw;. The ground sublevelg,_ andg. ,
ences, not only the accumulation of atoms in the trappingan be coupled to the levelby two counterpropagating laser
state but also diffusion of some of those atoms toward higtbeams with the same frequeney , the opposite wave vec-
values of momentum. Unlike the velocity-selective trappingtors k and —k being aligned along the direction, and the
phenomenon, the diffusion of atoms in the momentum spacstrengths being characterized by the Rabi frequenfies
tends to increase the temperature. Due to such a randoand () _, see Fig. 1. Similarly, the leved’ can also be
process, the wings of the momentum distribution are notoupled to the levelg_ andg, by two counterpropagating
Gaussian. In the meantime, the wing shape and the fractiolaser beams with frequenay, and strengths characterized

1063-7761/99/88(2)/8/$15.00 246 © 1999 American Institute of Physics
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lower levelsg_ andg, with the ratel’. The corresponding
probability of emitting a photon with momentumalong the
z axis is denoted byd’(u). In addition, we assume that an
atom in the upper leved’ can decay with the ratB} into a
fifth level, which is not shown in the figure. This dissipative
irreversible decay will remove the untrapped diffused atoms
from the working configuration.

Such a filtering process enables us to separate heated
FIG. 1. Energy levels and optical transitions in the doubleenfiguration. atoms from cooled ones, that is, to geta cooled system. The

cooling efficiency is determined by the accumulation effi-
ciency from one side and the separation efficiency from the

by the Rabi frequencie€’, and Q' . The second pair of other side. Since the atomic separation efficiency is propor-
laser beams is aligned in th& direction, which may be tional to the ratel“c’, of the decay into the outside of the
different from thez direction, but should be very close. We working configuration, we expect that for a subsequent ap-
denote the projections of the wave vectors of these laseplication of the pairs of the laser beams, a higher decay rate
beams onto theaxis byk’ and—k’. In what follows we are  I'g will enable us to obtain a cooler atomic system.
interested only in the atomic center-of-mass motion along We derive in Appendix the generalized optical Bloch
the z axis. We take into account the spontaneous emission gfquations
atoms from the upper levetsande’ to the ground sublevels
- and_g+. In addition, we assume that the _Iewsfl can _Pee(plvPZ)Z[gpee(prZ)
decay into another level, which is not shown in the figure.dt dt
Furthermore, the fields can be switched on and off at differ-
ent times, that is, the Rabi frequenci@s , Q_, Q! , and
Q' are generally functions of time.

We introduce the stat,p), which represents an atom
in the internal statg¢ with linear momentunp along thez +
axis. Because of momentum conservation, the interaction of
the atom with the fields can couple,p only with |g_,p
—#k’) and |g, ,p+#k’), and |e’,p) only with |g_,p
—7#k’) and|g, ,p+#k’). The Hamiltonian corresponding
to the unitary evolution of the system is of the form

+

Ham

d
mpee(pl-pz)} )
r

d d d
&Pe'e’(plfpz)_{&pe’e’(plfpﬂ ape’e’(pllpz)}

+
Ham r’

d
&Pe’e’(plxpz) )

’
1-‘d

+
Ham

d d
&p++(p1,pz):{mp++(p1,p2) &paﬂ,(pl,pz)}

r

d
H=Ha+Hin, ) + apti(plipZ)} '
l"!
where
P* d()—[d<)+d<>}
HA:m+ﬁwe|e><e|+hwe,|e’><e’| 2)  qrPer\P1:P2) =i Pex(P1.P2 . dt Pex(P1,P2 .
describes the translational and internal degrees of freedom af d d
the atom and &Pe':(plxpz): &Pe':(plxpz) Ham+ &Pe':(pl,pz) .

Hintzzp (hQ+|e’p><g*!p_hk|+hQ*|e’p><g+1p + %pe’t(pllDZ)} y

'
l-‘d

+7ik))e el X (RO e’ p)(g- ,p—ik’| d d
p ap—+(P1,pz): EP—+(D1,P2)

Ham

+#Q" |e’,pXg. ,p+hik'|)e @'+ H.c. (3

d d
describes the interaction of the atom with the laser fieldsmpee,(pl,pz)z[apee,(pl,pz)

d
apee’(plipz)}
which are taken to be classical. r

+
Ham

We assume that an atom in the upper lexeln decay d d
into the lower levelsy_ and g, , emitting a fluorescence +| = peer(P1,P2) | +| 55 Peer(P1,P2)
: C ) o dt dt ,
photon in any direction. This spontaneous emission leads to r Ty
the damping of the population efand the associated coher- 4)
ences and to the feeding gf andg, . We assume that the
atomic decay rat& and the normalized probabilityl (u) of These equations govern the evolution of the density-

emitting a photon with momentumn along thez axis do not  matrix elements of the atom with the internal and external
depend on the center-of-mass motion and are the same fdegrees of freedom, and will be solved numerically in the
transitions frome to g_ andg. . Analogously, we assume next section. Using this numerical solution, we will calculate
that an atom in the upper level can decay into each of the and study the atomic momentum distribution. We will then
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calculate the mean deviation of the atomic momentum fromelements,ojljz(pl,p2)|t:0 are thus vanish, except for
the nearest peak, which characterizes the effective tempera-
ture of the atomic subsystem.

Note that the above model is very simple, but it can
reveal the underlying physics of actual situations, in which
atomic level configurations are usually much more compli-
cated. A specific example that is nearest to our model is neon

L?a:]hseiti:)nnest?rfgb(ﬁé' Ifr\]/:rl]’n\levllt201552;t§q€fs an‘lqh?isf;tsnaizc For the standard width of the initial momentum distribution
y P 3 we choose the value= 37 k. The variable is discretized in

level configuration is used in the laser cooling experiment - - -
reported by Shimiziet al?* A scheme to achieve velocity- steps ofe=7Kk/30, froM ~ Pay 10 Pmax Where Prg,=307k.
The chosen value of is small enough compared to the nar-

selective coherent population trapping in a multilevel systemrowest structure that emerges in the solution of E4js.The

under two-frequency laser excitation is proposed in Ref. 18, hosen value ob,., is large enough that the interesting part

One difference between our model and the model of Ref. 1§ . - X
) . . . ", of the solution(nearp=0) for the largest value of consid-
is that a trapping state in our model is a superposition of twg -~ 1 .

. ered here {=600"" ") is not affected by the truncation of
ground levels, and is created by two laser beams of the sa

. . . ; e p range. For such values @f,,, andt, the momentum

frequency, while a trapping state in the other model is 4iffusion from b values laraer tha 0 p=0 is neqli
time-dependent superposition of three ground levels and is. P 9 Pmax 10 P 9

i T ible.
created by two-color fields. Moreover, dissipative irrevers-9 . : L
ible decay out of the working configuration plays a signifi- We are interested in the momentum distribution of those

cant role in our model, while the authors of Ref. 18 consid—atoms that have not decayed from the doubleenfigura-

: tion at the end of the interaction with the laser fields. The
ered only decay from the excited levels to the ground levels, . . _ .
probability density of finding such an atom with linear mo-

mentump along thez axis is

3. NUMERICAL ANALYSIS W(P)=ped P,P) *+ perer(PsP) +p-—(P,P) + P+ +(P,P).

We now study numerically the generalized optical Bloch (7)
equations(4) for the case in which the laser detunings  Due to the decay of the atoms from the doull@&onfigura-
=w_ —we and § = w| —we are zero and the spontaneous- tion, the functionW(p) is not normalized with respect to the
emission rates from the upper levels to the ground sublevelgariablep. When we integrate this function overwe obtain
are equal [ =T""). We choose, for our example, an atomic the probability
massM and the wave numbek such that the recoil fre- .
quencyw,ecz_ﬁkZ/ZM IS w,e=0.0271", which corresponds Wremam:J’ W(p)dp, (8)
to the experimeriton He atoms. The decay ral&, of the —
atoms from the levek’ into the outside of the doubl&-
configuration is chosen to bE;=10I". Since the atomic
separation efficiency is proportional Itj;, the value chosen
for this parameter is good enough to demonstrate filtering,
and consequently, cooling the atoms below sub-recoil energy Whorrd P) =
for reasonable interaction times. For a significantly higher or
lower value Oﬂ_‘é, the Coonng efﬁciency’ which depends on is the momentum distribution Corresponding to the sub-
the rate of Separation of heated and cooled atoms, iS, in ﬂ'@semble of atoms that remain in the Working levels after the
case of subsequent application of the pairs laser beams, elteraction with the fields.
pected to be higher or lower, respectively. The temporal evo-  In order to characterize the effective temperature in the
lution is obtained by incrementation starting from variouscooling process, we introduce the quantity
initial conditions. The time increment is 001, small - 112
enough to avoid artificial instabilities introduced by the in- Vz[f [P—Pmad P) " Whom( P)dP} (10
cremental approach. Since the exact shapes of the kernels -

H(u) and H'(u), characterizing the spontaneous-radiationich, js the mean deviation of the atomic momentoifrom
patterns, are not importaht,we take the constant forms the nearest peaR.(p). The effective temperature of the

1
P——(Pap)|t=o:§Wo(P),

1
P++(p,p)|t:0:§W0(p)- (6)

that an atom remains in one of the working levels. The nor-
malized function

W(p) 9

Wremain

H(u)=1/2hk andH'(u) = 1/2:k". o _ atomic system is defined as

For the initial atomic state, we take a statistical mixture
of the two ground sublevelg_ andg,, with momentum O =V2I2M. (11
distribution . .

The sub-recoil cooling occurs whef.;<6,.. where 6,q.
1 p2 ) =(#k)?/2M is the recoil energy.
W =—=eXg — 5/, 5 . . -
o(p) PN 252 5 The deviatiornV characterizes the statistical spread of the

atomic ensemble in momentum space. However, the geo-
which is a normalized Gaussian function with a peakpat metrical peak width and the dark-state population used to
=0 and a standard widthr. The initial density-matrix characterize VSCPT! correspond only to a part of the en-
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semble. This is the principal difference between our effective
temperature and the effective temperature used in
VScPT/ !

When the momentum distributioW,,,,(p) has only one
peakpmax Which is, due to the symmetry of the initial con-
ditions and the evolution equations, positioned at the mean
momentump =0, the quantityv coincides with the momen-
tum standard deviation,

i
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\% _f p Wnorm(p)dp_f (P—m Wiom{ P)dp, 0= N A AN =
- - -2 -1 0 1 2
(12 plhk
and characterizes the spread of the atoms around the peakrms. 2. Atomic momentum distributions produced by the successive appli-
well as the spread of the whole momentum distribution. cation of two pairs of laser beams with equal wavenumitgrsk. The
When the central peak at=0 splits into two symmetri- dashed curve illustraté#/(p) at the end of the operation of the first pair of

cal side peaks positioned at ( >0) we can consider laser beams. The solid curve and the dashed-dotted curve correspond to
P p Po(Po ! W(p) andW,,(P), respectively, at the end of the operation of the second

the system of the atoms that remain in the working levehair of the laser beams. The dotted curve corresponds to the initial momen-
configuration after the interaction with the fields as a two-tum distribution. Here we have chosen the parameters3fik, I''=T,

component system, one component wite 0 and the other F{i:lOFv730reczﬁk2/2'\/':0-0271 Q4=0,=03l, T=150I""*, and
component withp<0. Note that the normalized momentum Tr=4asor
distributions of these two components ai&,2,(p=0) and

ii\(/)Vr?om{pgo), respectively. Hence, we see from the eXpres_curves in Fig. 2 the probability density/(p) for an atom to

have momenturp at timest=T andt=T+T’, respectively,
) 0 ) while remaining in the doublé- level configuration. Since
v =2f0 (P=Po)"Whomi( P)dp (13 the decay out of the doublé- configuration occurs only
when the second pair of laser beams is turned on, the prob-
that V characterizes the spread of the atoms around eacihility densityW(p), which corresponds to the original en-
peak, as well as the spread of the momentum distribution ofemple, and the normalized momentum distribution
each component. Woorml P), Which corresponds to the sub-ensemble of atoms
In what follows, we show and discuss numerical resultSnpside the working configuration, are identical tat T but
for the case in which the two pairs of laser beams are applieglifferent att=T+T’. Therefore, we additionally plot the
in succession. The detailed sequence is the following. Th@nction W,om(P) Obtained att=T+T’ by the dashed-

first pair of laser beams resonant with the transitieasg_  dotted curve. For comparison, the initial momentum distri-
and e—0g4 is turned on for the timd and then shut down. bution Wo(p) is denoted by a dotted curve.

The second pair of laser beams resonant with the transitions  The dashed curve in Fig. 2 shows that the atomic mo-

e’—g_ ande’—g, is then turned on for the tim&'. The  mentum distribution obtained at the end of the interaction
time-dependent Rabi frequencies corresponding to the lasgfith the first pair of the laser beams exhibits two resolved
pulses in each pair are taken to be the same, and have th@aks emerging at 7k above the initial distribution* Such

rectangular forms a structure results from the accumulation of atoms in the
Q_=0Q, =0 6(1)— o(t=T)], state
Q5= =Qo[ 6(t=T) — 6(t=T=T")]. a9 o)== (g, ~AK)—|g. AK)), (15
V2

Here, Q, and Q) are the maximal values of the Rabi fre-
guencies, and(t) is the Heaviside step function. which is a velocity-selective coherent trapping state with re-
We have solved Eqe4) for the parameter€),=Q) spect to the first pair of laser beams. The mechanism for
=0.3T", T=150T""%, and T'=450I"* for two different accumulating atoms in this trapping state is momentum re-
casesk’ =k andk’=1.1k. According to Aspecet al,'*the  distribution resulting from the spontaneous emission from
peak width of the momentum distribution is of order the upper levek to the ground sublevelg_ andg. . Be-
MQo/k\TT for the first step, anM Q/k’ (T'+T )T’ for  sides the double narrow-peak structure, one sees that some of
the second. We therefore expect that the chosen interactidhe atoms have diffused toward higher momentum values.
times T=150I""! and T'=450I" ! are large enough to All the above features of the momentum distribution de-
show two resolved peaks at the end of the first step and twpicted by the dashed curve in Fig. 2 have been studied in
very narrow peaks at the end of the second. For larger valueggtails in Ref. 11.
of TandT’, the effect becomes more dramatic. The solid curve in Fig. 2 shows that the second pair of
the laser beams take off those atoms whose momenta are not
near to+#k. The spread of the distribution functidf/(p)
We first present results for equal wavenumbers, that iswith respect to the peaks is greatly reduced, while the peak
the case whek’ =k. We show by the dashed and the solid heights, which have the meaning of the probability densities

3.1. The case of k'=k
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FIG. 4. Final atomic momentum probability density(p) in the case of

FIG. 3. Temporal evolution of the effective temperatégg in units of the unequal wave_numberls :l'lkfk (solid curvg. Al Jparameters are th? .
same as for Fig. 2. For comparison, we show the initial momentum distri-

recoil energyé,. for the period of successive application of two pairs of bution and the final momentum probability density(p) in the case of

laser beams with equa_l wavenumb:kl‘yk_(sohd curvg. All parameters etgual wavenumbers’' =k (dotted curve and dashed curve, respectively
are the same as for Fig. 2. For comparison, the dashed curve represen

corresponding values df. /6, for the case of a single pair of laser beams
that operate on an upper level with no decay out of the working configura- L . .
tion. where a very similar system was considered but the atomic

momentum diffusion was not taken into account in the defi-
L o nition of the effective temperature. The sudden decrease in
for an atom from the original ensemble to remain within they e rring for a short time period is associated with the
working level configuration with linear momentuk or  gpjitiing of the central peak into the side peaks, whose loca-
_hk; do not change appreciably. The reason is that whel,ng very quickly move from 0 ta-#k. In other words, this
k=K', the state(15) is also a velocity-selective coherent ,ase ransition-like behavior is a result of the splitting of
trapping state with respect to the second pair of laser beamg, o 4tomic system from one component, with the momentum

and those gtoms which are not in this trapping state f_;lt thBeak at 0, into two components, with momentum peaks at
end of the first stage must undergo decay into the outside of | contrast to the first pair of laser beams, the second
the working level configuration in the second stage. The Corbair operating fromt=150T" "1 to t=600T""*

responding probability for an atom to remain in one of the , shotonic decrease in the effective temperatige By the

working levels isWreygi=0.074. end of the interactionfy is approximately 0.008%.—a
The dash-dot curve in Fig. 2 shows that the peaks of thg a6 which is small in comparison with the initial value

normalized momentum distributioWnow(p) created att g4 a5 well as with the recoil energye.. This decrease in

=T+T' become not only much narrower but also Muchy,q effective temperature is a signature of laser cooling be-
higher than the peaks of the dashed curve creatde=at |5,y the one-photon recoil energy. It should be emphasized

Thus, we observe a decrease in the momentum deviatiofe that the underlying physics of the cooling obtained here

around the peaks, or in other words cooling of the suby,,qes velocity-selective coherent population trapping, on

ense_mble_ of atoms th_at cont_inue _to stay in th(_':' double- he gne hand, and the filtering of the atoms in momentum
configuration after the interaction with the two pairs of Iaserspace’ on the other.

beams. This cooling is due to the accumulation of atoms in
the trapping state in combination with filtering of the atoms
in momentum space.

In Fig. 3, we plot by the solid line the temporal devel- We now present numerical results for unequal wave-
opment of the effective temperatufig; in units of the recoil numbersk’ and k. All conditions are the same as in the
energy 6, for the whole time period of subsequent opera-previous case except thiat=1.1k.
tion of the two pairs of the laser beams. For comparison, we In Fig. 4, the solid curve is the probability density(p)
depict by the dashed line the corresponding values ofor an atom to have momentumat timet=T+T’, remain-

Ot/ 6o fOr the case in which the first pair of laser beamsing inside the doubleé: configuration of levels. The total
continues to operate without the intervention of the secongbrobability for an atom to remain inside this configuration is
pair for the entire time perio@*! It is worth noting that  W,emai=0.035. The dotted curve represents the initial mo-
during the operation of the first pair of laser beams, that ismentum distribution. The dashed curve represents the prob-
for the part at<150I" " for the solid line and for the entire ability density W(p) for an atom to have momentum at
dashed line, the effective temperatuig; is in general in- time t=T+T' in the case whek’=Kk. As in the case of
creasing, except for a short time during which a sharp dropequal wavenumbergdashed cunjethe probability density
like a phase transition, suddenly occurs. This increagkgq4n  function W(p) in the case of unequal wavenumbésslid

is due to atomic momentum diffusion and clearly shows thaturve is very narrow compared to the initial momentum
the atomic system at this stage is not cooled but heatedlistribution(dotted curv¢and photon momentik andzk’,
despite the accumulation of atoms in the dark state. Thiand is free from diffusion wings. However, the two peaks
result is quite different from statements of Refs. 7 and 11resulting from interaction with the second pair of laser beams

, causes a

3.2. The case of k'#k
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G two curves in Fig. 5 tend to merge with each other when
» >450I" 1. The reason is that after interaction with the sec-
24 ond pair of laser beams for a long enough time, the new peak

structure of the atomic momentum distribution is well estab-
lished and most of the atoms having momenta in the diffu-
sion wings are removed. The effective temperattgg is
then proportional to the peak width, which does not depend
on the initial conditions in this limit! This is why the dif-
ference in the effective temperatufigy between the case of
k’ #k and the case df' =k becomes small when the time of
the interaction with the second pair of laser beams is long
enough.

0 150 300 450 600
It
4. CONCLUSIONS
FIG. 5. Temporal evolution of effective temperatufig; in units of the ) o ) )
recoil energyd,.. during successive application of two pairs of laser beams ~ We have studied the application of velocity-selective co-

with unequal wavenuml_)etS:lesék (SO|?d curve. All other parameters  herent population trapping to laser manipulation of atomic
are the same as for Fig. 2. For comparison, we sliiy/6,.. for equal center-of-mass motion in the framework of a simple
wavenumbergdashed curve

doubleA model.

We have introduced a variance of the momentum distri-
are now positioned gi=#k’=1.1%k. Moreover, the peaks bution with respect to the peaks, which can be used to char-
of W(p) in the case of unequal wavenumbésslid curve acterize the effective temperature of atoms in the presence
are lower than the corresponding peaks in the case of equatomic momentum diffusion.

wavenumbergthe dashed curye We have found that during the operation of the first pair
The reason is that: whek’ #k, the velocity-selective Of laser beams, operating in an upper level with no atomic
trapping state decay out of the working configuration, the effective tem-

perature is in general increasing, except for a short time dur-
ing which a sharp drop, like a phase transition, suddenly

occurs. Such an increase in the effective temperature is due
. ) ) ) to atomic momentum diffusion, and indicates heating of the

of the atoms interacting with the second pair of laser beamgy, ¢ system at this stage in despite of the dark-state popu-
is different from the trapping statelo), Eq. (19), of the 15450 accumulation. The sudden decrease in the effective
atoms with respect to the first pair of the laser beams. Aftefeeratyre occurring for a short time is associated with the

interaction with the first pair of laser beams, the number Ofcentral peak splitting into two side peaks.

atoms_ in the statgWo), which corresponc_is to momenta The subsequent application of the second pair of laser
iﬁ_k' is greater than the number 9f atoms in the sfitg), beams, operating on the other upper level with possible
which corresponds to momentaik’. However, the second o mic decay into out of the working configuration, can filter
pair of laser beams takes away the atomsty) while it a10ms in the wings from the atoms near the peaks of the
does not affect the atoms |t¥q). This explains the shift in 1o mentum distribution, cause a monotonic decrease in the
the peak positions from:fik to +4k’, as well as the de- gfective temperature, and thereby lead to the laser cooling
crease In the peak h?'ghts' L ) below the one-photon recoil energy.

In Fig. 5, we depict by the solid line the time develop- g gifference between the wave numbers of the two
ment of the effective temperatuiiy in units of recoil en- airq of |aser beams results in a shift of the peak positions, a
ergy bre for unequal wavenumbeis =1.1k#k. For com-  yecrease in the peak heights, and a decrease in the cooling
parison, we replotdashed lingthe corresponding values of ...

Oett/Bhec T equal wavenumbers’ =k. The figure shows Our model is very simple, and has been used just to
that the second pair of laser fields in the case of unequalyg,y the underlying physics of real situations, where atomic
wavenumbers can also reduce the effective temper#ife |gye| configurations are usually much more complicated.
to a much lower value than the recoil ener@y.;, which is From this model we have seen clearly tfat the known
indicative (_)f s_ub-recoil coolingl. During the operation of the ;2ndard VSCPT scheme does not cool, but, in fact, it heats
second pair, i.e., fot>150I""", the cooling effect fok” o \yhole ensemble of atoms, since the trapped atoms are
7K (50“(? line) is not as strong as the cooling effect in the vy with the diffused onegp) an additional dissipative
case ofk’ =k (the Qashed Im)e The reason 1S the difference irreversible decay channel can filter atoms in momentum
be_:tween the vgloc_ny-selectlve trapping sta{_tk_%) and|¥o) space, andc) the use of VSCPT in a combination of accu-
with k' k. This difference leads to the shift in the peaks of y ,jation and filtering steps can cool atoms below the recoil

the atomic momentum distribution from locations:k, cre-  gnergy To study the cooling effect in a specific real medium,
ated by the first pair of the laser beams, to the location$, iher work will be required.

+#k’, created by the second pair. Such a process is not
favorable for the dark-state population accumulation as well  F.L.K. gratefully acknowledges the support of the
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APPENDIX A
Generalized optical Bloch equations

We use the simplified notation
ped P1,P2) =(€,P1lple,p2),
perer(P1,P2)=(€",p1|pl€’,p2),
p++(P1,P2)=(9= .Palp|: .P2),

pe+(P1.p2)=(e,p1lplg ,pre'!,
per+(P1.P2) =(€",p1|p|g- ,pr)e’L,

p—+(P1,P2)=(9-,P1lp|9+ ,P2).
pee/(pl,pz)=<e,p1|p|e’,p2>ei(“’L*‘*’D‘,
Piyiy(P2.P1)=p] i, (P1.P2),

wherej,j.=e,e’,g_,g,. By using the Schidinger equa-
tion

o |d
i (A2)

at” =[H,p],

Ham
the equations of unitary evolution for the matrix elements of
the density operatgs are found to be
2_ .2
P27 P71 .
=15 7 PeeP1.P2) —1Qp_e(py

Ham

d
[apee(pl,pz)

—1ik,po) +1Q% pe_(P1,p2— k)
—i1Q_pye(p1tik,py)
+iQ% pey(p1,p2+7k),

_ P
- 2M#A Pe’e’(plpz)

Ham

d
&Pe’e’(pl’pz)

—iQ\p_e(p1—1K',py)
+iQ ¥ per (P, p2— k')
—iQ pie(py+hik’,py)
+iQ " per i (p1,p2+1k'),

p3—ps
2M7

=i p++(P1,P2)

Ham

d
[§p++(p1,p2)}

T1Qzpe(P1,p2+1ik)
F1QLpse(P1,p+hK)
—i10% pe (P 7K, p2)
—iQ per (P + K’ p2),
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S [d

apet(pl’pZ) =i

)pei(plvp2)

o+

Ham
—i1Q<[p++(p1E7ik,py)
~ Ped P1,P2+7K)]
—iQipz(p1+7k,p2)

+iQL pee(P1,p2FAK'),  (A3)

p3—pl
2M#%A

S+

d
{ape':(pl,pz)} )Pe’t(plapz)

Ham
—iQL[pr+(p1ERK ,py)
— Perer(P1,P2FAk")]
—iQLp=+(p1FhkK',py)
+iQ 5 pere(P1P2F 1K),

P3Pl

d
=i mp—+(p1,pz)

ap—+(p1,pz)

|

Ham
+iQ _p_o(pP1,p2— %K)
—iQ% pes(P1+7k,py)
+iQp_e(p1,p2—#ik’)
—iQ " per i (p1+1K',p2),

p3—ps

d H !
{mpee'(plvpz)} :|(5L_5L+ )pee’(plapz)
Ham

—iQ,p_o(p1—1ik,py)
—iQ _peo(p1tiik,py)
+iQ* pe_(p1,p2— k")
1O per(p1,pathik’).

The terms describing the spontaneous emission from the
upper levele to the lower levelyy_ andg, are
[ d

mpee(plva) =—=I'peedP1,P2),

T

r
F: - Epei(pl!DZ)v

[ d
apei(plaDZ)
(A4)

r
:_Epee’(plrpz)v

[ d
_apee/(plva) -

- q
giP--(P1.P2) | =|G;P++(P1.P2)
L T r

fk
fﬁﬁkdUH(u)Pee(pl"'u1p2+u)'

Analogously, the terms describing the spontaneous emission
from the upper leveé’ to the lower levelgy_ andg, are

r

2
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[ d
&Pe’e’(pbpz)} =—T"perer(P1,P2),
L l_'/

[ d r’

ape'i(pl,Pz) =_7pe’i(plap2)1

L 1_‘/

(A5)

!

F,: - ?pe’(plva)i

d
&pee’(plapz)

g d
&Pf—(plypz) = ap++(plvp2)
L r’ r

' (ax ,
:7 IdUH (u)perer
—hk

X(pytu,pptu).
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We examine elastic and inelastic scattering of electrons by ions in intense laser light. A method
of numerical investigation of the scattering characteristics based on regularizing the

Coulomb singularity is proposed. We show that over a broad range of parameter values the
transport scattering cross section is weakly dependent on the intensity of the high-frequency field.
We detect a significant modification of the dependence of the effective inelastic scattering

cross section. We also show that the energy exchange with the field is determined by a fairly small
group of electrons, called the representative electrons. Finally, we propose a qualitative

model that explains our results by the fact that the leading contribution is provided by inelastic
collisions of electrons with relatively small impact parameters traversing the region

important for the interaction at large angles. 99 American Institute of Physics.
[S1063-776(199)00702-1

1. INTRODUCTION velocity slowly changesonly slightly during each field pe-
riod). Hence the scattering angles acquired in each oscilla-

The effect of a strong electromagnetic field on electron—tion or, what is the same, the increments of the drift velocity,
ion collisions in a plasma has long been under intensiveare simply added. That is, while traveling past an ion, the
investigations™® This is because the problem is not only oscillating electrons are deflectéd the drift velocity) in the
fundamental for plasma physics in general but also importaréame direction—toward the idin the region with a stronger
for applications. In the last decade this became especiallfield). Here the scattering in the total particle velocity is
evident after new powerful terawatt lasers were bluilt. small-angle. As a result, the angle of scattering in the drift

Starting with the pioneering work of Dawson and velocity, which is actually responsible for variation in the
Oberman and Silin? it was noticed that this effect may be transverse energy and the transport scattering cross section,
very large. The greatest progress was achieved with themay be much larger than the angle obtained in the hypothesis
model of small-angle scatterifig® (in this model the unper- of independent collisions.
turbed electron path is a straight lijnéAnother model, the Another effect, as we will shortly see, arises because the
low-frequency approximatiofi,® describes strong collisions probability of effective inelastic collisioncross section
with large scattering angles. It is assumed that an externarows due to the same multiple oscillations. It is found that
(and fairly strong electric field accelerates the electron be-in addition to the majority of electrons, which experience
fore and after the collision, while in the scattering processmall-angle scattering and hence exchange little energy with
proper (which is instantaneodionly the static field of the the field, there is a relatively small group of electrdtise
nearest ion is important. The region within which the small-“representative” electrons that undergo strong inelastic
angle approximation can be used is naturally that of largescattering accompanied by a large change in their drift en-
impact parameters and high drift velocitiemmpared to the ergy. Although the number of such electrons is relatively
oscillator velocity. In the low-frequency approximation it is small, their contribution to the effective scattering cross sec-
assumedoften implicitly) that each passage of an electrontion is dominant. Such scattering events are strongly corre-
near an ior{each act of “instantaneous” scattering totally ~ lated with the field. This is seen in the fact that owing to the
independent of the previous one, i.e.,the squares of the scdtcusing properties of the Coulomb potential the oscillating
tering angles are always added rather than the angles theralectrons with large impact parameters are attracted to an ion
selves. (without changing the electron average engragmpd, if the

The main idea of the present work is to consistentlyphase of the field is suitable when an electron lands in the
analyze the correlation effects. It is possible to divide theseegion of substantial energy exchange, the electrons are ef-
effects into two classes. First, a rapidly oscillating electronfectively scattered with a substantial change in their average
moves past an ion at a low drift velocity and returns manyenergy.
times to that ion as it travels through the interaction region.  Correlation effects were examined in Refs. 8—10 using
In the course of these multiple oscillations the electron driftstraight electron pathsn relation to the drift velocity. How-

1063-7761/99/88(2)/9/$15.00 254 © 1999 American Institute of Physics
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w0, x there is substantial energy exchange between the electron
and the high-frequency field near an igdor details see Sec.
5).Y Then each oscillating electron can pass the ion many
times before it leaves the scattering region. Moreover, far
from an ion, at each moment in time the ensemble of elec-
trons may be considered uniformly distributed over the im-
pact parameters and the drift velocities. This means that in-
‘ _ , . ) stead of analyzing a many-body plasma problem we can
2030 20 <10 10 20 30 consider the scattering by a single ion of many electrons with
Z a uniform impact-parameter distribution. In a real plasma,
FIG. 1. Typical electron pattsolid curve, drift path (dashed straight line ~ Debye scattering is equivalent to replacing the Coulomb po-
and the parameters of the scattered electroris(the velocity,p is the  tential by a Yukawa potential.
impact parameter, and is the angle velocity and fiell). Analysis of the electron paths was done by using the
classical Newton equation

ever, in view of the adopted approximations, these effects .

cannot explain the results of numerical investigatitmnsthe mR=— —R+eEsinwt, 2

cell method), which show that the effective scattering cross R

section increases at low drift velocitiésompared to the 0os- which describes the motion of an electron in the field of an
cillator velocity). ion with chargeZe and in a uniform electric fiel& varying

In this paper we use the classic@onrelativisti¢ ap-  according to the harmonic law with a frequeney Here the
proach to analyze the scattering of monoenergéticthe  radius of electron oscillations in the laser field is assumed
drift velocity) beams of electrons, either isotropic or unidi- small compared to the wavelength.
rectional, by a single ion in a high-frequency electric field. We introduce new dimensionless variablBg=R/rg
As a result we obtain and analyze expressions for the crossndt,= wgt and reduce Eg(2) to dimensionless form. To
sections of such collisions. We find that under conditionsdescribe the strong variations in the Keplerian path that the
where the electron drift velocity is low compared to the os-field initiates, it is convenient to select the characteristic
cillator velocity (the “thermal energy” is low compared to scales in the form
the oscillator energy the effective inelastic scattering cross
section and the effective collision frequency may be many B \/972 _ 4]eB _ 4|Z€E
times the standard values obtained by estimating the Ruther- "€~ VE' “~ \ 2 VSV 2 &
ford scattering cross section using the oscillator velocity.

The plan of this paper is as follows. In Sec. 2 we discusavhererg is the distance from the Coulomb center at which
the formal statement of the problem and introduce expresthe field ioneZ/rZ is equal toE, andw is the characteristic
sions that are convenient for numerically finding the quantifrequency for the motion along a “Keplerian” orbit of radius
ties of interest(the transport and total scattering cross sec’e - As a result{dropping the subscriptin the formulas that
tions and the effective collision frequencyThere we also follow) we get
discuss the numerical model. In Sec. 3 we analyze inelastic
collisions, which are responsible for exchange of energy be- R=— — +nsinQt, (4
tween particle and field. Section 4 is devoted to elastic ef- R
fects, which are responsible for the rate with which the elecqq e is the unit vector pointing in the same direction as
tron distribution function becomes isotropic in the course ofg |4 £ (E=En), and
electron—ion collisions. Finally, in Sec. 5 we perform several

analytical interpolations of our results and briefly discuss the m2z\ " & )

. L Q=0 —| =— 5
future for such investigations. = g
2 BASIC RELATIONS is the dimensionless frequency. Thus, dimensional analysis

) ) ~ shows that one parametd®, suffices to describe our prob-
Let us examine the problem of the scattering by an ionNgm This parameter contains the frequency and the field
of a single electroiiFig. 1) with chargee moving with a drift strength in the combination/E3“, which means that the
velocity_v in a strong uniform electric fiel& polarized along  |imit of an ultrahigh field €—) corresponds to a quasi-
the z axis: static field —0).
E(Rt)=E sinwt. (1) We introduce the concept of the drift coordinafe) of

i o i the electron by assuming that the total electron coordinate
We assume that the radius of oscillations is small comparege(t) can be written

to the particle separation. Following a many-particle plasma
approach we begin with the following concepts, which are
quite common in the model of pair collisions. Suppose that ~ R(t)=r(t)—r_sinQt, rw=§zo. (6)
we are dealing with many scattering ions. The distance be-
tween the ions is larger than the size of the region where Thus, prior to a collision the electron had a velocity
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To clarify the meaning of the formuléL0) for o, we

Vo()=v_+v.cosit, v.=—52, (7)  reason in the following standard way. First we note that, by
its very definition, a variation in the energy of the external
and after the collision the velocity is field in a physically small volum& is related to a variation
V. (1) =V, (1) +V_ cosQt, ®) in the electron energy in the same volume as follows:

We chose the region where the drift velocity ceases to ,
change for our computer simulations. This means that the dWU_ dW, U=—o n<mv~>U
e =T Veff )

size L of this region meets the following condition: dt —  dt (13

L>r_. 9

wheren is the electron number density. This relationship is
actually the definition of the effective collision frequency
vesi, Which in turn is related to the effective scattering cross
sectiono g

Of course, we must formally pass to the linhit- .

In these terms the effective differential cross section re
sponsible for the deviation of particles in their drift velocity
from the initial direction is

(v2—v?)

7 0P (10 Verr= et NU _, (14)

dO’eﬁ(V, Ve :P) =

it characterizes the extent to which the scattering is inelastic. . . . . . .
5 . . WhereN is the scattering-centdion) density. Since particle

Hered“p is the area element in the plane perpendicular toener variations in the volume are due onlv to eneray ex-

the direction of the incident beam around the impact param- 9y y 9y

. o . change with the field in the electron—ion scattering process,
eter vectorp (Fig. 1). Similarly, the transport cross section Eq. (13) yields
(0)F) ,  dwy

doy(v_,v.)= dop= (11
v? v? dw mo? (v2—v2)
_ ) o ) _ o ——U=pygun| —— U=UNnv_mf ——F—dp.
is responsible for the deviation of particles in their drift ve- dt 2 2
locity from the initial direction, since,, is the component (15

of the total velocity at the exit that is perpendicular to the

direction_of.the incident beam. The angle bracket_s(]jﬁ) Combining (14) and (15), we get(10). As expected, this
and(ll} |nd|ca_1te averages over the period O,f th.e field. Thequanti'[y is a characteristic of only pair interactions and does
denominator in(10) corresponds to normalization to the

X ) not depend on the electron and ion densities. Of course, both
time-average of the energy of the scattered particles and the

q . (11 q lizati he et and o coincide with the expressions used in Refs. 8
enominator in(11) corresponds to normalization to the and 9. What makes this expression convenient is that one can

square of the mean velocity. _ o oflirectly find this quantity by means of computer modeling.
Letus examine more thor_oughly the physmal meaning o In our computer experiment we found that the motion of
the cross sectiofil0) gnd (1D lu.St mltroduged.. First, we re- an electron at small distances from the Coulomb singularity
pall that to characterize scattgrlng in statlc_flelds one gsuallys characterized by a sharp change of path, which may lead to
mtroduces_ the concept of differentigéffective) scattering errors in calculations. Since the requirement with respect to
cross section precision in this section of the path is found to be the deter-
dN mining factor in studying the long-term electron dynamics,
do=— (12 the problem consisted in seeking a coordinate and time trans-
formation that would make the equation describing the mo-
as the ratio of the flux of electrons scattered into the solidion again regulafi.e., the equation was to have no singu-
angled( to the initial number of particles passing in unit larity at the point occupied by the ipnHere it proved
time through unit area of the beam cross sects®e p. 49 in  convenient to introduce, by analogy with Levi—Civita
Ref. 11). For static scattering, where everything is deter-coordinates? a new times that coincides with the “normal”
mined only by the drift velocity of the incident electrons, timet at large distancesR>r¢) and with the “rapidly pass-
such a definition is indeed convenient, since the scatteringhg” time as the electron approaches the Coulomb singular-
angle is independent of the time when a particle entered thity (R<rg). As an example, here is the replacement of time
scattering region. But if the oscillation velocity is high, i.e., used in our calculations:
the scattering strongly depends on the phase of the field as
the particles enter the scattering regidnthe quantity
(da)y,, the differential scattering cross section averaged over — dt R?
the incident phases, reflects the situation more correctly. ds 71+R2’
What we are interested in, however, is not the scattering
cross section but its “energy” manifestations. The quantities
(10) and(11) characterize these effects. The final form of the system of equations is

(16)
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FIG. 2. Effective cross section of longitudinal_(||E) inelastic collisions as
a function of the velocity/v _ for three values of frequency.

Below we list the most important features of the behav-
ior of the effective scattering cross section as a function of
velocity.

1. In the limitv <1 the cross section increases according

( i R? to the lawdoe; ~Q%/v2. What is important is that such an
1+R?’ approximation is true for all scattering anglés
5 2. For Q=<1 the cross section changes sign near
r_ pXR UV~U .
1+R?’ 3. In the limitv >v _ the absolute value of the scattering
5 cross section decreases. In this range a good approximation
,_ PR , (177  of the curve at all angles o~ 14,
1+R? To determine howd affects the sign of the scattering
X cross section, we did a detailed study(at=0.32 for two
pL=— —, values of the drift velocity of the scattered beany 3 and
r(1+R%) v=>5 (Fig. 3.
2 z The figure shows that the region of solid angles with
p,=——c0sQt— —————. negative values oflo increases as a function of the drift-
\ 1+ R? R(1+R?)

to-oscillator velocity ratio. The asymptotic behavior for

Three values of frequency were used in the computep>v -~ probably corresponds to the Marcuse effeg ~1
experiment£2=0.1, 0.32, and 1. We studied beams of elec-~ 30S? (see Ref. § At the same time, the absolute value
trons with drift velocities in the 107— 10! range and impact ©f the maximum of the negative value, which is reached at
parameters (in the drift velocity in the 10 1—10* range 6=0, decreases with increasiry _Wl_thln our accuracy for
that were uniformly distributed over all incident phases. The{?=0.32 andQ=1 we see that in isotropic scattering the
initial distance from the Coulomb singularity to the leading total effective scattering cross section remains posttive.
center of the particles was chosen to be 1A0032); a Note that on the whole only a small fraction of the elec-
particle was assumed to have left the interaction region wheHOns is responsible for the energy exchange. We call these
the distance from the leading center to the Coulomb Singuelectrons “representative” electrons. The effect is illustrated
larity was at least 10_ . Special attention was paid to select- PY Fig. 4, in which the regions of substantial energy ex-
ing a large enough number of particles in one field periodchange, more thgn .half the oscillator energy, for longitudinal
For instance, in calculating inelastic interactions, the numbefV-[|E) particle incidence are marked in the,¢) plane

of particles in one field period reached 2000 in some calculimpact parameter vs. incident phasghe fact that there are
lations. vertical lines is due to the discreteness of calculations in

impact parameters. Of course, the true “branches” are con-
tinuous rather than discrete. Estimates show that these par-
ticles are responsible for more than 70% of the total energy
To estimate the extent to which a collision is inelastic,exchange. The fraction of these particles is small, of order
we calculated the effective scattering cross sectiof)?<1. Note that although the representative electrons have
doek(6,v,Q) defined in(10) and responsible, as noted in different incident phases, all collisions take place at strongly
Sec. 2, for the energy exchange between particles and fieldorrelated field phasdfig. 5), which depend on the value of
Recall thaté is the angle between the velociyof the inci-  the initial drift velocity. Here the collision correlation is pre-
dent particles and the fieH (Fig. 1). The main calculations pared by the “elastic” drift of particles in the Coulomb field
were done for longitudinaly_||E) and transversev( L E) of the ion. The figure depicts the phase of the field when the
collisions for several values af: 7/8, w/4, and 37/8. electrons are nearest to the ion as a function of the initial
Let us analyze the dependence of the effective scatteringhase. All electrons begin their motion along the field with
cross section for longitudinal collisions ddv (Fig. 2). an impact parameter= 4.6, which corresponds to represen-

3. INELASTIC COLLISIONS
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X
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FIG. 6. Dependence of the energy variation on the impact parameter in
longitudinal scattering, averaged over the incident phaseQ,=a0.32 and

2! v=1.

dence on the incident phase is unimportant, and hence the
low energy exchange approximation is valiti® 10
Calculations show that there are two types of represen-

0 1 2 3 4 .

P tative electrons. There are electrons whose energy-exchange

. . o times are much shorter than the period of the fighast”

FIG. 4. Regions of substantial energy exchafaints in the (b, ¢) plane  ¢q|jisions; Fig. 74 There are also electrons whose energy-
(impact parameter vs. incident phase longitudinal scattering\(_||E) at . . -
(@ v=1 and(b) v=3. exchange times are comparable to the period of the field
(“slow” collisions; Fig. 7b). As noted earlier, both represen-
tative electron types are present not only in head-on colli-
sions but also for significant impact parameters, when it

tative electronsthe vertical bar in Fig. 4 Clearly, the actual 5105 one or several field periods to deliver an electron to the
energy exchange with the field takes place within a NarroWnalastic-collision region

band of field phases. The “steps” in this dependence corre-  \qte that slow collisions occur at velocities of order of

spond to a shift in the moments of collision by one field o oggillator velocity. Their effectiveness rapidly decreases
per,'oq Figure 6 shows that _the dependence O_f the energt low and high velocities. We found that slow collisions
variation as a function of the impact parameter in Iongltudl-maimy lead to a decrease in the electron endwdyjft en-

nal scattering, averaged over the incident phases, is esse@r—gw and rapidly disappear as the angle between the direc-

tially nonmonotonic. The same conclusion can be drawnyo, of the initial drift velocity and the direction of the field
from Fig. 4. The number of side maxima depends on thg, . eases.

ratio of the drift velocity to the oscillator velocity{v) and Figure 8 depicts the final dependence of the energy ac-

increases with the decreasing parameter. Wien ., there i 1y the electrons on the initial electron drift velocity in

is only the central peak. Its width can estimated by the sizg ,qyerse scattering. What sets this type of scattering apart
of the Rutherford region determined from the total |nC|dentfr0m longitudinal scattering is that, is positive definite for

electron velocity. The contribution of the side maxima is 5 yelocities of the electrons being scattered. For conve-
found to be dominant, so that the effective scattering crossiance we use the log—log scale. We see that, as in longitu-

section for drift velocities lower than . increases substan-
tially and is found to be of ordeR?/v?, the geometric mean

of the Rutherford cross sections estimated by the oscillat
velocity, o_~Q*, and by the drift velocitygq~ 1*.

On the other hand, for high drift velociti€s compari-
son to the oscillator velocijythe result agrees, as expected
with the small-angle approximatidifrig. 2), so that the scat-
tering cross section is of orderuf. In this case the depen-

dinal scattering, this dependence is approximated fairly well
by functions of the formox1/v? at low energies and
Ofoc1/v* at high energies.
Note that this results is not accidental. Dimensional

analysis of the scattering problem for an arbitrary incidence
rangle shows that for all drift velocities of the scattered beam
the variation of energy as a function of the dimensionless
parameters of the problem obeys the relationship

QZ
geﬁ:?fl(ﬂv,cos? 6) + Q%f,(Qu,cog 6). (18)

Here, as computer simulation shows, the first function expe-
riences a sharp drop ne@w =1 and decreases in proportion
to 1/(Qv)? at high velocities, while the second function de-
creases at both high and low velocities. Furthermore, we can
expect the second function to always be negative.

4. ELASTIC COLLISIONS

FIG. 5. Dependence of the phase of the field in a “collision” on the initial Figure 9 depictg CharaCtelriStiC paths of particles under-
phase of the field. going strong elastic scattering for parameter valfes
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v=1; (b) slow collision at( =0.32 andv = 3. The upper
dw half of the figure depicts the paths of the particselid
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=0.32 andv =1. For the same parameter values but for dif-weak dependence of. Substantial anisotropy is observed
ferent incident phases there are electrons undergoing strormnly at low velocities. In this case it is found that the
inelastic scattering. average-potential model is insufficient, i.e., inelastic effects

Typical curves representing the impact-parameter deperare important in such collisions. To support this statement
dence of the beam transverse energy averaged over the inge have drawn the lines of constaihr,, for two frequency
dent phasegW, [Eq. (11)], are depicted in Figure 10. Note values(Fig. 12. Clearly, appreciable anisotropy is observed
that these curves are not always monotonic at low drift ve-only at fairly low velocities.
locities of the particles, and they suddenly break off at large  The results of the calculations have been used to con-
impact parameters. In particular, whep>r_, their struct curves representing the dependence of the total trans-
asymptotic behavior is clearly that of @8 which corre- port scattering cross sectian, (i.e., the differential cross
sponds to scattering in the static field of the ion. Thus, asection(11) was integrated over the solid angles the ini-
expected, the contribution of the high-frequency field to thetial particle velocity(see Fig. 13 For comparison we also
transport scattering cross section decreases at large distanckspict the corresponding dependence of the Rutherford scat-
in an integrable manner. When the scattering is not longitutering cross section determined from the drift velocity,
dinal, the dependence of the averaged energy on the impaat=4/v* (dotted curve Qualitatively, the plot ofr, vs.v
parameter is anisotropicee Fig. 11 can be divided into three parts.

Qualitatively, such behavior is quite understandable if 1. v>v_. Small-angle elastic scattering provides the
instead of the problem of elastic scattering in a strong highmain contributior?:*°
frequency field we consider the problem of scattering in the 2. Q<v<wv .. In addition to small-angle elastic scatter-
drift velocity by an averaged potential whose analytical ex-ing, inelastic processdsee Sec. 3 responsible for the non-
pression i&* monotonic dependence afW,, on p, begin to contributécf.

2 1 ( 1 m) )

V= o \/2(1 ) ) 19 dq
wherer_. =r=r_, andK(m) is the complete elliptic integral 190
of the first kind. Here the side maxima can be related to the X\
presence of two scattering centers. In particular, as the en- IOE‘—>;$5£E
ergy of the scattered beam increases, the side maxima disap- -
pear, since for high-energy beams the spherically symmetric .
part of the scattering potential, the Coulomb potential, is the 2
most significant part of the potential. The constant-averaged- -
potential surfaces are axisymmetiithe symmetry axis is 0.1 i
parallel to the external fiejdand are shaped as “dumbbells”
with a logarithmic divergence In(3d) at the center and a
square-root singularity Vk.r _ atz~=*r_. 00{)1 5 o

Studies of the dependence of the transport scattering ' ’ Qu
Cross Sec“f)rd"tr On the angled between the elecm? field FIG. 8. Velocity dependence of the effective inelastic scattering cross sec-
and the drift velocity have shown that even at fairly 10W tion in transverse scatteringn the log—log scaleat 2 =0.32; the dotted
velocities(higher tharv g in dimensional variablgghere isa  and dashed curves represent the.s vs. 162 anddoe vs. 1b* plots.
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> FIG. 9. Characteristic paths of a particle scattered by a
———— . ) Coulomb center for different values of the impact param-
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Figs. 10 and B However, sincero~AW~1/v? [see Eq. €ver, a detailed investigation has shoy8ec. 4 that to a
(18)], the contribution of inelastic collisions is of the same certain extent this coincidence is not an obvious fact, since a
order as that of elastitsmall-angl¢ collisions. comparable contribution to the transport scattering cross sec-
3. v=<(. Quasicapture(trapping of particles near a tion is provided by particles inelastically scattered to large
Coulomb center for a time much longer than one field periocangles(relatively small impact parametgrd'he dependence
probably become important. Because of the complexity oPn the scattering angle at velocities much lower than the
the calculations, we have not studied this range of paramescillator velocity is substantially anisotropic. Nevertheless,
eters thoroughly enough, since the requirements with respegown to the very low velocities at which quasicapture pro-
to precision become more stringent due to the need to an&esses become significant, integration over the angles, i.e.,

lyze the long-term evolution of each electron. These resultghe transition to the total transport scattering cross section,
demand further investigations. leads to the Rutherford formula. Our calculations have

The most interesting feature of these curves is the reshown that above these velocities the total scattering cross

markable coincidencgembracing the huge drop imandv)  Section is approximated fairly well by the expression
with the Rutherford scattering cross section, calculated from Ao

the drift velocity. This result is even more remarkable ifwe 5 -
account for the fact that the impact-parameter dependence of v2(v2+A(Q,0))
the average transverse enei@yg. 10 is highly nonmono-

. . ) . where A(Q,v) is a correction that is essential wher=()
tonic for velocities lower than the oscillator velocity.

(the correction requires further refinement
2. Inelastic collisions at drift velocities lower than the
5. CONCLUSION oscillator velocity are chiefly determined by a small fraction
The main idea of the present investigation is that inelas® the electron, the representative electrons. Energy ex-
change between these electrons and the field occurs at cor-

tic collisions of electrons with ions in ultrahigh fields in- e - -
volve, in a coherent manner, only the representative eled€lated moments in time corresponding to the arrival of all

trons, which land in the c-neighborhood of the ion with the these electrons with a predetermined field phase in a small
same values of the phase of the fi¢idore precisely, with neighborhood of an ion. Outside this neighborhood there is
almost the same valuesBearing this in mind belo’w we adiabatic drift of the oscillating electrons due to the focusing
formulate the main results of our work. properties of the Coulomb potential. _

1. Elastic collisions(the transport scattering cross sec- At high velocities(in comparison to the oscillator veloc-

tion) are unaware, so to speak, of the external fiEig. 13. ity), our results are in good agreement with those of the

This cross section is close to the Rutherford cross sectior?lgna”'angle ?gpl)(r)oximation in the Dawson—Oberman-Silin
calculated from the drift velocity. Formally, this result can be( OS model. What makes them different is the absence

obtained even in the small-angle approximafiot?. How- of a logarithmic factor, whose presence in the small-angle
approximation(the DOS modelis due to small impact pa-
rameters. In terms of dimensionless variables, the result of

aw,, the DOS model isreg v, At low velocities, representa-

. tive electrons provide the leading contribution to the effec-
2 i
0 5 10 15

P

FIG. 10. The averaged transverse energy as a function of the impact param-
eter p (longitudinal incidence with 1=0.32 andv=1. The solid curve
represents the case of longitudinal incidence and the dotted line, the case BfG. 11. The averaged transverse energy as a function of the impact param-
a zero high-frequency field. eter vectorp (longitudinal incidencewith 0=0.32 andv =1.
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FIG. 12. The transport scattering cross section as a function of the incidence(aloglg the vertical axjsand velocity(along the horizontal axjiswith
0 =0.1(to the lef) and (2 =0.32(to the righ}.

tive scattering cross sectideee Sec. 8 Among representa- . 12
tive electrons there are slow electrons, with energy-exchange g4~ —g —2T (21
times of order field period, and fast electrons, with energy- nrp v

exchange times much shorter than one field period. Slovxf_ ithi | ithmic factor. thi lationshi . b
collisions are important only at drift velocities comparable to 0 within & logarithmic factor, his refationship arises be-
cause the effective scattering cross section found in the

the oscillator velocity. : AR :
y course of our investigation is equal to the geometric mean of

At lower velocities the leading contribution is provided the effecti teri i iimated by the th
by fast collisions, which on the face of it are described fairly € ellective scattering cross sections estimated by the ther-
mal velocity and by the oscillator velocity.

well by the low-frequency approximatiotf. This model . . .
In conclusion we note that the conventional ideas un-

leads, in terms of dimensionless variables, to value% ked t f i v f ¢ field
e~ 0%, i.e., to the Rutherford scattering cross section, es: €rgo a marked transtormation only for very strong helds,
timated from the oscillator velocity. In the same range we"
arrived at a much larger quantity; Q%/v?2, the geometric 38
mean of the scattering cross sections obtained in the low- <, _~7Y4x2x 101 P ) _ (22)
ences probably arise because the low-frequency approxima- ) ] )
tion does not allow for “coherent aiming,” where the One can expect that in such fields the plasma is a non-
electrons do not change their drift energy and are attracted to
are rapidly scattered, changing their drift energy in the pro- logo,
cess. These effects lead to a significant increase in the effec- 10
tive scattering cross section compared to the results provided

Formally our results are valid only in an extremely low- 5
density plasmaN<(\v/c)~3, where \ is the radiation
wavelength. It can be expected, however, that similar effects

c

i.e., forr _>rg (wg>w), or in dimensional variables,
frequency and small-angle approximations. These differ-
an ion in the course of one or several field periods, and then
by standard models.

occurs in a dense plasma. Indeed, the one thing that is im- 0 by
portant is that in the volume defining the effecting scattering Y
region,r _o., there was no more than one particle. If we |
take into account our numerical results for the effective in- -5

elastic scattering cross section, this statement is equivalent to

re<rp forvi<v._, (20 _10_2 _1 0 1

logv
where o 1S the Debye radius. Under these conditions, WeFIG. 13. The transport scattering cross section as a function of the initial

can make an estimate of the effective collision frequency irparticle velocity for three values of the frequery 1 (O), 0.32 (+), and
dimensional variables: 0.1 (X).
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Radiation with a spectrum representing a discrete analog of the extended spectrum observed in
the generation of a supercontinuum in gases is generated in the self-focusing of 30-ps

pulses with a wavelength of 1.Q6m in hydrogen at pressures up to 120 atm. The spectrum
contains lines with similar intensities, an average frequency spacing approximately equal to the
rotational transition frequency in hydrogen (587 ¢y and a smooth spatial profile. The

lines consist of several vibrational—-rotational components. As the pressure is increased, the spectral
lines are transformed so that at a pressure above 60 atm each line in the spectrum contains
one or two components formed as a result of the smaller number of cagcadgonal and
vibrationa) processes. Self-focusing is manifested in the occurrence of a radiating channel

up to 12cm in length. The formation of a channel of this length is associated mainly with the
variation of the refractive index in vibrational excitation of the hydrogen molecules by

electrons heated in the pump field. ®99 American Institute of Physics.
[S1063-776(199)00802-1

1. INTRODUCTION the pump beam into the hydrogen-filled cell. The maximum
The generation of coherent optical radiation with a specpressure of the hydrogen in Refs. 1-12 was 40 atm.
trum consisting of equidistant spectral lines by means of vi-  |f the series of vibrational—rotational lines, which extend
brational, rotational, or combined vibrational-rotational a|| the way from the infrared to the ultraviolet in many cases,
stimulated Raman scatterif§RS and resonance parametric do not contain any parts having a distinctive intensity, these
processes, specifically in gaseous hydrogen, has been rgaries can be regarded as a discrete analog of the extended
ported in a multitude of papefs. Cascade vibrational lines spectrum observed in the generation of a supercontinuum in
in the Stokes and anti-Stokes regions have been observed faqes. The generation of a supercontinuum in gases has been
the presence of a linearly polarized pump, because the vibray, ,died in detail in several papéersi® where it has been

tlolna: Rarlnap g;un IS a.maX|m_um In th|.s c.é§é.|l.:o.r a C'(;' h shown to be associated with self-focusing of the pump beam.
cularly polarized pump isotropic scattering is eliminated, the, | some papers on supercontinuum generatidfi the sig-

vibrational Raman gain decrease;, anq rotational SRS b?ﬁficant broadening of the frequency spectrum has been ac-
comes dominant. Cascade rotational lines have been ob-

i . ) companied by only a slight variation of the spatial spectrum,
served using a circularly polarized pumiSeveral authors P y ony g b P

have reported the detection of cascade vibrational lines witrt1he divergence of the beam after the gas-illed cell being

. . . } . . Im | toi nvergen ntering th Il.
rotational lines on both sides of the vibrational lifigsas almost equal to Its convergence entering the ce

well as cascade rotational lif83! after the pumping of hy- . dW? have p(;evulausly rf: ortedlthattr\]/v ?en Ilm(ejarly polar-
drogen by an elliptically polarized wa¥& or with the ap- '28¢ Picosecond pulses with waveleng /08 and energy

plication of a polarized biharmonic pump having a difference'P to 40 mJ are self-focused in hydrogen at high presaire

frequency equal to the frequency (587-cH of the hydro- (@ 120 atm, radiation is ge:neraté%iyvith an extended spec-
gen rotational transitioS,(1) (Refs. 7, 8, and Il Kawasaki  rUm consisting of a series of single-component or two-
et al” have used radiation from two dye layers for the sam&Eomponent vibrational—rotational lines having similar inten-
purpose. Othefd! have generated frequency-shifted radia-Sities within the visible range, an average frequency interval
tion in an auxiliary cell, in which pure rotational SRS was between lines (593 cnt) approximately equal to the rota-
induced by circular polarization of the pump wave. The re-tional transition frequency in hydrogen (587¢h), and a
sulting SRS was steady-state in some of the cited papers a§hooth spatial profile.

time-dependent in others. The first and second Stokes vibra- In this paper we give the results of an experimental study
tional components have been efficiently geneﬁgtmj con- of the distinctive features of the structural formation of the
nection with time-dependent SRS in hydrogen at pressurefisequency and spatial spectra of radiation generated by rota-
up to 40 atm pumped by pulses of duration 30 ps, wavelengttional and vibrational SRS and by parametric cascade pro-
1.06um, and energy 90mJ; to avoid optical breakdown,cesses in the presence of self-focusing of strong picosecond
lenses having focal lengths of at least 1 m were used to focysulses in hydrogen at pressures up to 120 atm.

1063-7761/99/88(2)/9/$15.00 263 © 1999 American Institute of Physics
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____:8 D4 FIG. 1. Experimental setufl) passive mode-locked
| I 7 , picosecond Nd:YAG laser oscillator with negative

\\ I ; feedback §,=1.06um, 7,=30 p9; (2) electroopti-

2 4 \\ l ; cal modulator;(3) amplifiers; (4) pyroelectric detec-

\\ ] ; tor; (5) hydrogen-filled cell;(6) diffraction grating;

\\ I ; (7) diffraction monochromator(8) multichannel opti-

_l__ r ——p \\“ ; cal analyzer.
3 i —_—= = 6
/=

2. EXPERIMENTAL SETUP AND OPTICAL SYSTEM erated in gasé$8and is a discrete analog of it. It will be

The experimental setup is shown schematically in Fig. 1_shown below that for a hydrogen pressur&0atm and a

A passively mode-locked Nd:YAG driving laser with nega- sufficiently high pump energy each line in the_investigated
tive feedback generates a train of 10—12 pulses of duratio .pectrum consists of one or two components with an average

30ps. A solitary pulse is isolated from the middle of the ine spacin_g approximately ec#:al o the_ rotati_onal transition
train. Two LiTaQ; electrooptical modulators are used to en_frequ_er_lcy n hydrogen (.587C ) Vibrational lines cannot
hance the contrast of the isolated pulse against the bacl%e distinguished by their energies. As the pump energy a_nd
ground. The solitary pulse is amplified in a system of ampli-t e hydrogen pressure are increased, the energies of the lines
fiers to an energy<40mJ. The contrast of the amplified increase across the board without any change in their ratio to
solitary pulse relative to thé background is at leastiZ? in one another. We call this series of spectral lines a quasirota-

intensity and 18 in energy. This linearly polarized pulse is tional spectrum.

focused into a cell of length 25cm containing compressed The far-.fleld beam profiles and, heqce, their d|v§rgences
re determined by means of the multichannel optical ana-

hydrogen. The diameter of the pump beam at the focusm(g/zer. The beam profiles of the various lines are smgpbiy.

lens is 4.4 mm. The hydrogen pressure is varied from O t The di £ th b for th ted cell
120 atm. The radiation emitted from the cell is resolved into; ) eo IVergence ot the pump beam for fhe evacuated ce
its spectrum by diffraction gratings, and the energy distribu-> 0'.75 » and the divergences of the pump bea_m and the
tion among the spectral lines is measured by means of £d-ine (=10, A=0.65zm) and green-ine '(c,: 16,
pyroelectric detector. The detailed structure of the spectrur%‘zo'53g“m) beams ap=100atm are equal to 0.9°, 1.5,
is is investigated by means of a diffraction monochromatorand L7, rgspegtwelly. is ob d when th
andepending on e spectal rangemulichamel oica ' ST shec s oserved e e p
analyzer by photomultiplier. The cell has a side wmdow,ing focal lengthsE = 25— 35 cm. When lenses wiff=50 cm

through which the radiating channel created by self—focusin%lre used, the output radiation undergoes a radical change of

of the pump pulses can be observed. The lateral Iumines—h racter iina the sh £ rin . nding to th
cence spectrum of this channel is recorded by using a mufnaracter, acquiring the shape of fings correspo g to the

tichannel optical analyzer by projecting the image of thegeneration of a series of vibrational lines. To avoid optical
channel onto the slit of a diffraction monochromator. breakdown of the cell windows during the experiments using

3. EXPERIMENTAL RESULTS

WiV,
At a sufficiently high hydrogen pressugeand pump L,

energyW, the radiation emitted from the cell is an almost
pure white beam with a 1:52° divergence, which exceeds
the divergence of the pump beam after the cell (0.9°). This 107
radiation is expanded into its spectrum by a 600 lines/mm

grating for recording in the IR region or by a 1200 lines/mm

grating for recording in the visible and UV regions. The 1072
spectral dependence obtained by means of the pyroelectric

detector is shown in Fig. 2, in which the ordérsf the lines B
are read from the pump. At a pump energy of 30 mJ the 10 ' A
energy of each line in the green region is approximately 1.0 1.3 20 4 %‘,5

10 wJ. The graphs of the spectra obtained by means of the k 10°cm

600 lines/mm and 1200 lines/mm gratings are matched &tG. 2. Energy of the lines of the quasirotational spectrum at a hydrogen
line i=10 on the assumption that the reflection coefficientspressure of 100 atm and a pump energy of 30 mJ. The lines are numbered

of the two gratings are identical in this spectral region. TheEom the pump. Lines 1-10 were recorded with a 600 lines/mm grating, and

21

28

- . e . ines 10—30 were recorded with a 1200 lines/mm grating. The energy of
spectrum shown in Fig. 2 is S|m|lar n the. W_'dth and shape Ofach line in the green region 810 uJ (Wi, is the energy of the strongest
its envelope to the supercontinuum emission spectrum getine).
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1, arb. units I, arb. units
It a Ik ¢
FIG. 3. Spatial beam profiles for various hydrogen
0 h i 0 L s - pressures, measured with the projection of far-field
0 50 100 150 0 50 100 150 images on matte glass onto the multichannel optical
I arb. units z, arb. units 1. arb. units z, arb. units analyzer{(a) 1.06.um pump,p=0 atm;(b) the same,
11 b ’ 1t g p=100 atm; (c) red line (=10, A=0.65 um) at
p=100 atm;(d) green line(i=16, A=0.53 um) at
100 atm(z is the transverse coordinate
0 A . . 0 2 ; :
0 50 100 150 0 50 100 150
z, arb. units z, arb. units

lenses withF=50cm, the cell is lengthened by means of shown in Figs. 5 and 6, respectively. The energy reaches its
special adapters. maximum value at a certain pressyrg; (in these figures the

A quasirotational spectrum is not observed when theenergies of the components are normalized to their saturation
quality of the spatial profile of the pump radiation deterio- values. For rotational SRS the pressysg, decreases a#/,,
rates as a result of poor adjustment of the experimental apacreases, the produqgbs, W, remaining almost constant
paratus, breakdown of the surface of the active element, diFig. 7).
other factors. The experimental setup has been designed with A different situation is encountered for the first Stokes
considerable attention to the attainment of a good spatiafibrational componentFig. 6). For W,=14mJ its energy
profile on the part of the pump radiation; in particular, spatialreaches saturation at hydrogen pressures attainable in our
filters are used in the amplification channel with this objec-cell, specifically atpg,=110atm. For this componerm
tive in mind. remains unchanged with any further increasé\ip.

Cascade multiplication of the Stokes components of the  When the hydrogen pressure is higher tigag for rota-
rotational and vibrational SRS by virtue of four-photon para-tional SRS, cascade rotational components are observed,
metric processes plays a significant role in the formation otheir intensity decreasing with distance from the pump line
the series of vibrationa;—rotational lines. A quantum diagramand their positions extending to the yellow region of the
of the processes of generation of the first Stokes rotationadpectrum. As the pressure is further increased, vibrational
and vibrational SRS components and several components tomponents emerge with cascade rotational components on
the anti-Stokes region relative to the pump is shown in Figboth sides. Various vibrational-rotational components are
4, grouped into lines. In analyzing the detailed structure of the

The initial stage in the formation of the total spectrum isspectrum of these lines over a wide range of pressures, we
the generation of the first Stokes rotational and vibrational
components. The experimentally measured dependences of

their energy on the hydrogen pressure for pump energies are WiW,,,
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FIG. 5. Dependence of the energy of the first Stokes purely rotational com-
FIG. 4. Quantum diagram of the processes of generation of the first Stokgsonent § =1.13 xm) on the hydrogen pressure at various pump energies.
vibrational v_, o and rotationalv, _; SRS components and the components For each graph the energy of the Stokes rotational component is normalized

V10, Yo1: Vo2, ---,Vo7as aresult of four-photon parametric processes. to its maximum value (Vg is the energy of the component @f,).
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WiW,, Fig. 8b is the 14th purely rotational cascade component. As
1.0 the pressure is increased, the structure of the line is trans-

% formed so as to suppress the (0, 14), (1,7), and—(B)
components and leave only the (2,0) component. The situ-
ation with linesi =13, 14, 17 is typical: At a pressure above
60 atm for not too low a pump energy the transformation of

. the structure of the spectra ceases, and the spectral lines be-

come essentially single-component or two-component lines

A . (a quasirotational spectrum is formeth the pressure range

wyy 60 8 100 120 above 60 atm the energies of the various lines in the visible

1.0t and UV regions of the spectrum increase with increasing

o pressure in the same way as the energy of the first Stokes

o vibrational component.

0.5k . The quasirotational spectrum is formed in the event of

. self-focusing of the pump, which results in the formation of

o a radiating self-focusing channel, and the latter is observed

B through the side window of the cell. The spectrum of the
or | . . . lateral emission of this channel in the spectral sensitivity

60 80 100 120 range of the analyzer mimics the guasirotational spectrum

recorded at the cell output. The lateral emission of the chan-

nel is perceived as white light. We are therefore looking at
the scattering of radiation generated in the self-focusing
channel. This kind of scattering was investigated in an early
have found that the frequencies of all the observed compagpaper on the laser spafkwhere it was established that the
nents are described by the relation scattering is attributable to Fresnel reflections form the inter-
_ _ _ faces of regions with different electron densities. The higher
Vnm=9397cm "+n-4185 cn 4+ m-587 cnt Y, @ the energygof the quasirotational spectrum at the cell output,
where 4155 cm?* and 587 cm*® are the vibrational and ro- the brighter is the emission of the channel. As a rule, the
tational transition frequencies in hydrogen, respectively, andniddle of the channel is the brightest, the brightness dimin-

n andm are the orders of the vibrational and rotational cas-shing toward the beginning or end.

cade processdshey can be either positive or negativiévVe As the pressure and the pump energy are increased, the

label the various components,(m) to indicate the orders of end of the channel scarcely moves at all and occupies the

the corresponding cascade processes. same position as the linear focus. The beginning of the chan-
The hydrogen molecule is distinguished by the propertynel, on the other hand, shifts toward the focusing lens as the
that the vibrational transition frequency (4155¢H is  pump energy and the pressure are increasedWger 25 mJ

46 cmi * higher than seven times the rotational transition fre-andp= 100 atm the length of the channeldsl2 cm, and the

quency (587 cm'). As the pressure is varied, the compo- focusing lens must therefore be shifted along the axis of the

nent constituency of the lines is transformed, but the distancbeam so that the beginning of the channel can be determined.
between consecutive components is always 46'crliheith The diameter of the channel is measured by projecting
line contains componentsn(m), wherei, n, and m are its lens-magnified image onto the multichannel optical ana-
bound by the relatiomn=7n-+m. Figure 8a shows the trans- lyzer so that the image is perpendicular to the light-sensitive
formation of the spectral line= 13, Fig. 8b shows the same rule. For W,=25mJ andp=100atm the diameter of the
for line i=14, and Fig. 8c corresponds te=17. All the  channel at its widest middle section is approximately
spectra in these figures are normalized to their values at tt@00um. The diameter of the channel decreases with increas-
maximum. In Fig. 8a the (0,13) component is the 13thing distance from the middle, becoming equal to.86 near
purely rotational cascade component. Initially, as the presthe linear focus.

sure is increased, this component becomes stronger than the

others, and then, with a further increase in the pressure, it

and the (1, 6) and (3;8) components are suppressed, leav-

ing only the (2,—1) component. The (0, 14) component in 4. DISCUSSION OF THE RESULTS

FIG. 6. The same as Fig. 5 for the first Stokes vibrational component (
=1.91 um).

The initial stage in the formation of the quasirotational
spectrum is stimulated Raman scattering by rotational (

Psqr Wy, atm - mJ =0, J=1—0v=0, J=3) and vibrational =0, J=1—v

700 . =1, J=1) transitions of hydrogen. The transformation to
° yarog
L d ® the quasirotational spectrum takes place inside the channel
500 L y - v Y e formed in self-focusing of the pump beam. The excitation of
0 5 10 15 20 25 30 35 .
W.md : hydrogen molecules by electrons heated in a strong laser
P’ '

field has a significant influence on the self-focusing condi-
FIG. 7. Dependence df, W, on the pump energy,, . tions.
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4.1. Characteristics of Rotational and Vibrational Stimulated
. max__
Raman Scattering I =1gex

: )

1/2
AwS|Mij|2|_Nf |pdt)

The SRS observed in the present study is time- . .
dependent. First, even gi=100atm the pump pulse is where A IS a constaptms is the frequency of thg Stokes
shorter than the dephasing tirfig, which at this pressure is wave,Mj; is the matrix element for Raman scattering by the
equal to 32 ps for the rotational transition and 62 ps for the%ﬁ.J transmon,_N IS the density of hydrogen molecules, and
vibrational transitior?-?2 Second, in the ensuing discussion ;P> the pump intensity. It follows from Eq_2) that the peak
we address the fact that the formation of the self-focusindntenSItyIS is given by the product
channel is caused by a moving focus, in the presence of _
which the time of interaction of the molecules with the field N [ 1,dt=NI,7,~NW,.
becomes shorter than the pulse duration. For time-dependent
SRS the peak intensith'® of the Stokes component at the If we assume that as the pressure or the pump energy in-
exit from a nonlinear medium of length is given by the creases|{® must increase from the initial levé) (e.g., the

expressiofr+?4 noise level to a fixed value dictated by saturation, we infer
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from Eq. (2) that the product of the pressupg, at which
| saturates and the pump enedgy must be independent
of W,, as is indeed th case for rotational SKSg. 7).

The saturation of rotational scattering at a high pump
energy is obviously attributable to transfer of a large fraction
of the molecules in the interaction zone into coherent rota-
tion. The strong emissions of the pump and the Stokes wave
are capable of coherently exciting in the interaction zone a
large portion of the molecules situated at the first rotationaf'C- 9- Optical diagram of the focusing of the pump beam into the
level. Following Ref. 25, we write the expression for the ydrogen-filled cell for locating the beginning of the self-focusing channel.
Rabi frequency of two-photon resonance nutations:

d

Y

L

similar to that reported by Corkurat al*~1°where the di-

vergence of the beam is almost equal to its convergence in a
gas-filled cell. The authors regarded this condition as an ex-

Here do/do is the Raman scattering cross section of thetremely dramatic and important' observation. It can be .attrib-
transition. Based on the cross section of the 3 rotational uted to the fact that self-focusing was not accompanied by

transition of hydrogen at a laser wavelength of 488(Ref constriction of the beam to dimensions significantly smaller
26), for our case we obtaido/do=6.1x 10~ 22cn/sr Le't than the diameter of the waist in the case of a linear focus. In

the pump intensity with allowance for “smearing” along the our experiments this result is further corroborated by direct

moving focus bd .= 10°W/cn?, and let the intensity of the observation of the diameter of the self-focusing channel,
otational Stokespwave He— 10° W/enm?: then for the nuta-  Which is greater than or close to the diameter of the linear
tion period we obtailTg=1 ps. This estimate is crude, but it waist (110um).

characterizes the efficiency of rotational excitation of mol- I? the expﬁrlwen;allyl obr??trvid length of the .chanﬂel
ecules in the interaction zone. consistent with the focal shift that must occur in self-

o i i ?
The energy of the vibrational Stokes component Satufocus!ng asa Fes‘?” of the opt!cal Kerr effgct. In our case the
cusing lens is situated outside the nonlinear med(kig.

rates in the pressure range where the rotational scatterirfg dth or’ of the f h all ; i
energy reaches saturation and self-focusing, together with the’ and the positiort ™ of the focus with aflowance for Sefl-
ocusing can be determined from the relatidns

increase in the length of the self-focusing channel, is at
maximum. In the presence of a moving focus each group of

167%c? do

02=—"" 1 =7
R hlwd P*do

)

_ , , ( 1 1 1 ka3
molecules in the region of the self-focusing channel interacts =+, Z=—/——,
foz V2(P/Py—1)

only with part of the pump pulse, not with the entire pulse.
Consequently, as the pump energy is increased, the interac- P.=1.2-10 2\?c/n,,
tion time 7, decreases relative to the pulse duratign so
that the effective energy density of the putinyp,. depends

4

wheref is the position of the linear focud ( andf are read
from the beginning of the linear mediynz; is the length at

weakly on its total energyV,. Saturation of the vibrational

SRS therefore sets in approximately at the same pressures

irrespective of the pump energy.
Even though the pump is linearly polarized, the energ

for vibrational SRS. This disparity stems from the fact that in
pumping by pulses having a wavelength of 1,08 the

which self-focusing of a parallel beam of radiag at the
entrance to the nonlinear medium takes plé&tes the power
of the pump beanP,, is the critical power for self-focusing,

and pressure threshold for rotational SRS is much lower thaﬁlnd Nz is the nonlinear refractive index. The radius of the

eam at the focusing lens has been measured and is equal to
2.2 mm. The value ofi, for hydrogen cannot be found in the
literature; we have estimated it from the valuesgfor CO,

Stokes frequency for the rotational transition is 1.7 times th ) —(o_ 17
same frequency for the vibrational transition; according tji?&'lgzma?d I\Hbergseef. 2? pnzzl()(ozatri.sp\jvleo o%rtrjin
Eqg. (2), the gain is proportional to the square root of the ;” = ' i . _

Stokes frequency. On the other hand, if the wavelength OE” 200 MW, and the focal shift & =1 GW should only

the pump pulses is 0.53m, the Stokes frequency for the | e 0.9cm. E\_/en it we assume that our estimate.oks too
) ST : ow and we increase this value of, sevenfold, the focal
rotatlona_l trap5|t|on is qnly 1.25 'qmes the same frequenc'yShift is still only 2.6 cm.
e et rmons SRS s oo o The Sgifcan dSpary betveen re obered chamnel
a linearly polarized pump in this case length and the above—calculqted foca}I shift Ieave_s no chou;e
' but to assume that the effective nonlinear refractive index is
considerably higher, as can be the case if excitation of the
medium is taken into accoufft. The shift of the focus is
The spatial structure of the radiation at the cell output,governed by distortion of the pump wave front by self-
unlike its spectral composition, does not undergo any radicaocusing, which begins to take effect right at the entrance to
changes. The divergence of the pump beam after the cell attae nonlinear medium. In the region from the entrance to the
hydrogen pressure of 100 atm and a pump energy of 24 mideginning of the radiating channel the only possible source
(0.9°) is only slightly greater than the convergence of theof excitation of the hydrogen molecules is collisions with

pump beam entering the cdl.75°). This situation is very electrons heated in the pump field. Vibrational excitation of

4.2. Self-Focusing Conditions
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the hydrogen molecules sets in when the electron energsopy, and yet it exhibits the greatest variation of the polariz-
attains 0.5eV. The cross section of this process is a maxability (19%) as a result of vibrational excitation. The refrac-
mum at an energy=2 eV, where the effective frequency of tive index of hydrogen ap=100atm is equal to 1.014;
the collisions responsible for vibrational excitation of the accordingly, for a relative density of excited molecules
hydrogen molecules attaing=10"3s™! (p=100atm.3* I N*/N the variation of the refractive index i&n,=3

the energy interval from 0.5eV to 8.7eV, i.e., up to the x 10 3N*/N (Ref. 33.

energy of the first excited electron level of the hydrogen |n the initial part of the nonlinear medium, where the
molecule, an electron can expend its accumulated energybrational excitation of hydrogen molecules by electrons is
mainly in the vibrational excitation of molecules. For esti- prevalent, the only possible source of electrons is the ioniza-
mates we can assume here that the above-indicated effectiyign of easily ionized impurities. Let us calculate the relation
collision frequency is constant in this energy interval. Thepetween the relative density of excited molectM&gN and
electron begins to efficiently excite the electron levels whenpe relative electron density,/N. An energy of 1.5eV, at
the time to build up an energy of 8.7 eV is comparable withyhich the efficient vibrational excitation of hydrogen mol-

the effective time constant of vibrational excitationvl/ . les already takes place, is built up by an electron after
=100fs. The average time between collisions of the e|ECtr°’1.5/AsE[eV] collisions, i.e., at a pressure of 100atm in a

with hydrogen molecules is ij,=2 fs atp=100 atm(Ref.
31). Thus, if an energy of 8.7 eV is attained after 50 colli-
sions, the probability of electronic excitation will be close to
the probability of vibrational excitation, i.e., if the energy
Aeg acquired by the electron in one collision is 0.18eV.
According to Ref. 32, in a field of power densityand fre-
guencyv=c/\ we have

time of 2-1.5/Aeg[eV] fs. The time of interaction of mol-
ecules with the field is approximately equal to the pulse
duration of 30ps in this region of the nonlinear medium,
and within this time one electron excites kg [eV]
=2X10°I [W/cn?] molecules. Consequently,
N*/N=2x10"°I [W/cnm?]Ng/N, and An;=6x10 13
[W/cm?]No/N. At a pressure of 100 atm the variation of
6.3- 1041 W/cn¥] the refractive index due to the optical Kerr effect in the
Asg[eV]= A2 i7" case of unexcited molecules isAn=n,l/c=0.8
m —18 ; —7
X 10" 18 [W/cm?]N /N, and if Ng/N>1.3x10 ', then
so that forh=1.06um andv>v,, we obtainAeg[eV]=2 An, is greater thanAn. This means that foN./N>1.3
X 10~ 13 [W/cm?]. The required condition is satisfied for x 10”7 the focal power of the lens created by the variation of
| =9x 10" W/cm?, which is attained at a distance3 cm  the refractive index as a result of the vibrational excitation of
from the middle of the linear waist for a pump power of hydrogen molecules is greatéand indeed substantially
1GW, alens withF =35 cm, and a beam radius of 2.2 mm at greater if the electron density is sufficiently layghan the
the lens. In our case, therefore, vibrational excitation prevail$ocal power of the lens induced by the optical Kerr effect in
over electronic excitation in the region from the entrance tathe presence of unexcited molecules.
the nonlinear medium almost to the linear focus. The efficient ionization of molecules takes place directly
But can vibrational excitation significantly alter the re- jn the focal regior?* The generated plasma has a stabilizing
fractive index? A certain refinement is needed here. If wanfluence on the diameter of the beam waist, owing to the
assume that the number of vibrationally excited moIecuIe$je]c()(:lJSing effect of the electrons. The corresponding incre-
increases by an integral law within the pulse durat®®ps,  ment in the refractive index 4 ne= — w’/ w2 We have not
the time dependence of the refractive index can be written aSttempted any estimates of the plasma frequesigy having

follows in our case: found it impossible to estimate the electron density. How-
t ever, the proportionality of this increment to the square of
nt)= n0+Anl( j EX( T)dT) the frequency can account for the increase in the divergence
o of the beams as the frequency of the lines of the quasirota-
t tional spectrum increases. As the frequency increases, the
fﬁmEz( T)dT) E%(). (5 incrementAn,, decreases, so that the defocusing effect of the
electronic plasma diminishes accordingly, and high-
The second term in Eq5) corresponds to time-dependent frequency radiation beams constrict to a smaller diameter
self-focusing in which the trailing edge of the pulse is fo- and undergo greater divergence in the far field.
cused closest to the lens. The third term corresponds to the The fixed position of the end of the channel is an argu-
optical Kerr effect with allowance for excitation of the me- ment in favor of the conclusion that self-channeling does not
dium; here, as in the case of quasisteady self-focusing, thiake place, and the formation of the self-focusing channel is
leading and trailing edges of the pulse are focused near thattributable to the moving focus effect.
linear focus.

The calculation of the second term in Eg) is not too
difficult. The variations of the polarizability for several mol- The detailed structure acquired by the spectral lines at a
ecules in the presence of vibrational excitation and the optipressure above 60atm in the anti-Stokes region is shown
cal Kerr effect are given in Ref. 33: The hydrogen moleculeschematically in Fig. 10 for the example of lines 7—14.
holds a special place in this scheme. The optical Kerr effectines i=7,14, like all linesi=7n, have one component
is very small for this molecule by virtue of its small anisot- each, and their frequencies are given by 8g.with m=0,

+n,

4.3. Structure of the Spectral Lines
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7 14 F=50cm are used, this propagation regime breaks down,
whereupon the spectrum and spatial profile of the output
radiation change radically.

! The waveguide propagation of light beams along an ion-

ized channel created, for example, by the focusing of another

| ] "l I pulse in a gaseous medium by a conical lens has been dem-
onstrated in several papefs81l'inskit and Mikheev® have
4155 ew”! investigated so-called waveguide SRS, where Stokes radia-
FIG. 10. Structure of the quasirotational spectrum in the interval of Iinestion propagates along the waveguide created by the increase
i=7.— 14.1. The spectrum eghibits a similar Fs)tructure in the intervald4 in the refractive index during the vibrational _eXCItatlon of
—21 andi=21- 28. hydrogen molecules. The presence of a conical component
along with the axial component in the Stokes radiation was
explained by the mode structure of the radiation propagating
along the waveguide.

587 cm!
587 em™!

46 cm

<

i.e., are equal to the frequency of tinéh vibrational anti- The authors are arateful to N. I. Koroteev. A. V
Stokes component. For this reason, the average distance b&ﬁ 9 "y S

tween the lines is determined by 1/7 of the vibrational tran- dreev, V. T. Platonenko, K. N. Drabovich, V. P. Kandi-
" . . y — . dov, A. M. Zheltikov, O. G. Kosareva, and S. Yu. Nikitin for
sition frequency, i.e., is approximately 593¢f Lines 8

and 13 are also essentially sindle-component lines I_inehelpful discussions. This work was supported by the Russian
. |y 9 P ' Pund for Fundamental Resear@@rant No. 95-02-05259;a
i=7+m (2=m=5) consist of components (f) and o X .

. : - and the State Scientific-Technical Program “Fundamental
(2,m=7). In Fig. 9 the intensities of the components are

normalized so that the sum of the intensities of the Compo-SpeCtrOSCOpy (02072, Project 4.4

nents forming one line will be independentmof This situa- o . _
tion corresponds to a weak dependence of the total intensity® Ml tunkin@sr.phys.msu.su
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We use the relativistic configuration-interaction method and the model potential method to
calculate the scalar and tensor components of the dipole polarizabilities for the excited states
1s3p 3P, and 1s3p 3P, of the helium atom. The calculations of the reduced matrix

elements for the resonant terms in the spectral expansion of the polarizabilities are derived using
two-electron basis functions of the relativistic Hamiltonian of the atom, a Hamiltonian that
incorporates the Coulomb and Breit electron—electron interactions. We formulate a new approach
to determining the parameters of the Fuss model potential. Finally, we show that the
polarizability values are sensitive to the choice of the wave functions used in the calculations.

© 1999 American Institute of Physids$1063-776(99)00902-§

1. INTRODUCTION higher-order perturbation effects, which are needed for a
meaningful interpretation of the results of measurements. For

The anticrossing of atomic levels in an external fieldthis reason, Schumanet al! justified the need to employ
constitutes an effective method for precise measurements @fiethods of quantum mechanics and quantum electrodynam-
the fine- and hyperfine-structure intervals and other spectrdes to analyze the results of measurements of drte-5()
scopic constants, such as the exchange energy and the diagtio (6“’=8772.517(16) MHz is the fine-structure interval
onal and off-diagonal matrix elements of the spin—orbit cou-in a zero field) at the point of anticrossing of thes3p P,
pling operators. In a recent paper, Schumabal® studied and 1s3p 3P, levels of helium. Another interesting result of
the 0" X0~ anticrossing of the 43p 3P, (J=0,2) levels of  that paper was the possibility of studying the effects of spin—
helium by methods of high-resolution laser spectroscopy. Agpin mixing of helium levels with different values of orbital
the anticrossing point, the error in measuring the fine-angular momentuni but the same parity®
structure intervald= Egsp — E33sp, amounted to+5 MHz, The aim of the present paper is to analyze theoretically
and the use of microwave devices makes it possible to redudbe contribution of relativistic effects in calculations of the
this value by a factor of at least 100. Nevertheless, the degregcalar and tensor components of dipole polarizabilities,
of accuracy already achieved makes it possible to drawvhich determine the shift and splitting of the3p 3P, (J
important conclusions concerning the optimum choice=0,2) levels of helium. We employ two alternative ap-
of theoretical approaches describing the effectproaches based on the relativistic configuration-interaction
of 100—200kV cm* electric fields on the spectrum of the method and on the Fuss model potential mettfod.
helium atom.

In particular, the widely used semiempirical approach,
which makes it possible to analyze the observed spectrum i
terms of averaged values of the atomic Hamiltonian with
allowance for relativistic correction@ither spin-dependent
or spin-independenbf order «? Ry (Refs. 2 and B with « The shift and splitting of a leveginJLM) in a uniform
the fine-structure constant, does not require allowing foffield F is described by the formula

. ALLOWING FOR RELATIVISTIC EFFECTS
N CALCULATIONS OF DIPOLE POLARIZABILITIES
OF THE HELIUM ATOM

1063-7761/99/88(2)/6/$15.00 272 © 1999 American Institute of Physics
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Note that atM =0 the matrix elemenV; ;..,=0 (see, e.g.,
ABum=—5 anyimF?, (1) Ref. 10, so that the state ¥, remains isolated, i.e., does
not mix with states withi=0 andJ=2.
where the polarizabilityr, 5,y contains a scalar component Equation(4) also implies that the minimum value far
(apy) and a tensor componentf;), i.e., in an electric fieldanticrossing of the fine-structure sublev-
elg) is attained at

s . ¢ 3M?-JJ+1) s s t
angim= @pgt apy J(23-1) 2 _ 25(0)(“33P0_a33pz+a33pz)
. . i FoF= (@Sa, —aSap +atas )2+8(ats, )2 ©
As the field strengtlfr increases, the splitting of the level 33, “3%, " T33P, 3%,

may reach values comparab_le o the distance betweer_l adja- pe problem of exacb initio relativistic calculations of
cent levels of the same paritghe components of the fine the quantitiesrs, — o and ot in Egs.(4) and (6) is
structure of an atomic multipletHence in the case under T73%p,  T3%P, 3%, ~

investigation, i.e., the $3p 3P, and 1s3p 3P, levels and a extremely difficult and involves calculating spectral sums
field strengthF of several hundred kilovolts per centimeter, OVer the complete set of unperturbed states. The need for
the level shiftAE, ; y=E— E,;.» can be found by solving such summation(irrespective of the general approach

the secular equation emerges in the process of determining the perturbed wave
functions or energy shifts of atomic levels in the
det|| AE 5 mb33 — Vi5]|=0. (3)  perturbation-theory setting. In addition to direct summation

over the discrete spectrum of intermediate states and integra-
Here the finite off-diagonal matrix elements, correspond tion over the continuous spectrum of intermediate states,
to dipole transitions between the fine-structure componentghich are extremely involved processes in the relativistic
in second-order perturbation theory in the external fleld  case, we basically used two methods to effectively calculate
To derive a formula describing the dependenceSa@in  such spectral sum&omposite matrix elementsa method
F, we use the solutions of E¢3) and the definition of the for integrating inhomogeneous differential equations and a
scalar and tensor components of the polarizabiy The = method that uses the formalism of Green’s functions.

result is In the first approach, the polarizability of the sté® is
1 5 given by the formula
t t
5: \/ 5(0)_5 Fz(aggpo_agg,Pz‘f' a33P2) +2F4(a33pz)2 a|o>=—2<‘P|D|(/lo>, (7)
1 in which the perturbed wave functigi’) satisfies the inho-
=~ 50— > Fz(agspo_ a§3pz+ at33pz) mogeneous equation
c4 (H—Eo)¥=—DW,. ®
t A
+ @(a33p2)2+ T (4) In (7) and(8), D is the dipole moment operator, ahtdis the

relativistic Hamiltonian.

This expression allows for the principal, or resonant, part of ~ An important advantage of this method is the possibility
the hyperpolarizabilityfourth-order corrections in the exter- Of using different expressions for the atomic potential in the
nal field of the interacting sublevels of the multipleB,  numerical integration of E(8), and the calculations can be
with a zero projection of total angular momentuM,=0. done not only for a purely Coulomb interaction but in the
The contribution of the nonresonant part to the hyperpolarmulticonfiguration interaction approximatidrthe Hartree—
izability is at most a few percefitin deriving (4) we allowed ~ Fock—Dirac approximatio, and the relativistic random
for the fact that the matrix elemeit;, is finite atd’=J  Phase approximation with exchantfeThe most exact rela-
+1,J+2 and contains only a tensor part, which depends ofiVistic calculations were done by Johnson and Chéfigr
the projectionM of the total angular momenturd. If we th_e polarizability of the ground state of a hel?umlike atom
ignore the multiplet splittingEf%)L— EES)rL in comparison to Wlth 2<7=<30, but a_t presgnt there are no similar results for
the energy differenc&(%), —E'®),, , between different mul- excited states of helium with #0. , o
tiplets withn’ #n, the matrix elemen¥;; can be expressed The effecnyeness of the .method of Green; functions is
largely determined by the existence of appropriate represen-

. . .ge 3
m_terms of Fhe tgnsor polarlz_ablhty of thes_?.p .P2 state. In tations of these functions. Since in the relativistic case the
this approximation the matrix elemeNt, is given by the

formula’ expressions for the Green'’s functions are known only for the
Coulomb field, the use of this approach is restricted to prob-
F2 lems in which the difference of the potential and the Cou-
Vo= — —agsp ) (5)  lomb potential is insignificant or can be taken into account
V2 by perturbation-theory techniqués®®

) o To allow for the contribution of relativistic corrections in
. The ?ffere_nce of the scalar polarizabilities in Bd),  cajculations of the scalar and tensor components of polariz-
a33p,~ A33p,, IS determined by the contribution of relativ- gpjjities, we used the resonance approximation for the
istic effects, which means it is a small quantity of ordet second-order composite matrix elements, i.e., in the spec-
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trum of intermediate states we isolated the terms that correFABLE I. Reduced matrix elements of the dipole moment operator.
spond to transitions in which the principal quantum number

Transition Matrix element
does not change.
For instance, for the scalar polarizability of the triplet 1s3p *Po—1s3s°S, —6.4797
InJLM) state 1s3p ®P,—1s3s3S,; —14.489
' 1s3p °Py—1s3d °D; 8.2923
2 |<nJLHr||n’J’L’>|2 1s3p °P,—1s3d °D, 1.8542
Ay =— , 9) 1s3p ®P,—1s3d °D, 7.1805
3(2‘]+1) n'J'L’ EHJL_ EnrJrLr 1s3p 3P2—>153d 3D3 16.994
the resonant term:) in (9) has the form
2 ’
Sy 28531 L(2J'+1) B anJ,L_l
JLT nJ L- JL
" 3 3 Enai—Eny -1 " qll(F):kZﬂ Cl™ Dy (12)
2 ' . . . . .
« L J 1 D (L+1)(23°+1) Here thed,, are two-particle basis functions with fixed val-
J L-1 1 3 Epsi—Eny Li1 ues of total angular momentud its projectionM, and par-
, ity. We found the weighting factor€}(” from the varia-
» R L1 L J 1 10 tional principle by using the relativistic no-pair Hamiltonian,
Bny L+1Rn3L J L+1 1 ' (10 which incorporates the Coulomb and Breit electron—electron

o interaction operator&;?? averaged over the functiord2).
Here the {! 12 13} are Wigner §-symbols!® and the To exclude the contribution of negative-energy statee
o positron spectrum the two-particle operators in the relativ-
istic Hamiltonian were multiplied by products of single-
particle operators projecting on the subspaces of solutions of
the positive-energy Dirac equatién.
{ cost,., J=L, The wave function$12) are normalized by the condition
nJL

1, J#L, 1y

whered,,, is the singlet—triplet mixing angle. Chalgoted
that 6, is almost entirely independent af and the typical
values ofé, atL=1,2,3 are 0.02°, 0.5°, and 30°, respec-
tively. The tensor part of the polarizability has a similar
structure and differs fronG10) only in angular coefficients;

RY)'L" are radial matrix elements. In E€L0), the effects of
singlet—triplet mixing of levels are taken into account by the
parameter

> 1c{PP=1. (13
k=1

The single-particle basis orbitals employed in the
configuration-interaction method incorporates she, d, f,
and g partial waves, with a spline approximation used for
each wave. Estimates of the convergence rate of the method

for the sake of brevity we will not write it here. . ; .
S(r) 1(r) ... (for calculations of given accuraggan be found in Refs. 13
To calculatea,y/ and a,;{ we used exact relativistic and 22

results for the radial integrals, while for the energy denomi- I .
. . X The results of relativistic calculations for the reduced
nators we used precise experimental dit@alculations of : . .
matrix elements(without allowance for retardation effects

the other terms i®9) with n’ # n were done with nonrelativ- . . )
- . i . for the dipole moment operatoare listed in Table I.
istic values for the radial matrix elements of the dipole mo- : .
In Tables Il and Ill we list the results for the contribu-

ment operator. To this end we used exact numerical data f%rons of the intermediat& andD states in calculations of the

the' oscillator strengths of thg—p and p—d trgn§|t|ons N scalar polarizabilities of thesBp 3P, (J=0,2) states of he-
helium calculated with multiparameter variational wave . . .
19.20 lium. The difference between the tensor part of the polariz-

functions: I, 3 .
This approach is applicable primarily because the contri-abIIIty of the 1s3p P, level and the scalar part is that the

. L, . : ; ; contributions of the intermediate statessris3S; and
bution of states witi'’ =n in (9) is numerically predominant 1sn’'d 3D, have opposite signs and that the total contribution
and amounts to roughly 95% in the case of excite@d>P; L P g

rq 3 . .y . s
(3=0.2) levels of heliumsee Tables Il and 111 below of the 1sn’d °Dj states contains an additional numerical fac

tor, —2/7.
Table IV summarizes the results of numerical calcula-
3. SELECTION OF THE BASIS WAVE FUNCTIONS AND tions of the scalar and tensor components of helium polariz-
DISCUSSION OF THE RESULTS OF CALCULATIONS abilities. The dependence @ on F near the anticrossing

In recent years the configuration-interaction method ha®©int is plotted in Fig. 1. _ _
been successfully used to obtain precise wave functions and 'Note that the differencé a remains almost the same if
matrix elements for atoms with a small number of electronsVe USe nonrelgnwstl‘c v?natlonal valueg for the resonant ma-
e.g., heliumlike systems. In the present paper we use thiix elements in(10): azsp =17207, agsp =17 198, and
technique developed by Johnseinal.*3to calculate the re- Aa=9. The explanation is that the principal contribution to
duced matrix elements corresponding to the resonant termsa is provided by the relativistic corrections for the fine
in the expansiorni10). structure of the levels in the energy denominatoryk#)

The wave function of the initia{l) and final ) states rather than the relativistic corrections for the matrix elements

can be written of the dipole moment operatgsee Table)l
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TABLE II. Contributions of theS and D states of the intermediate spectrum to the polarizability of the
1s3p P, state of helium.

n’ 1sn's3S; (A;=0.698) 1sn's3S; (A\g=—10.302) sn's3S; 1sn'd®D;
2 -0.34 —1.67 —1.57

3 —2377.93 —2682.56 —2638.45 18742.21
4 451.87 319.37 312.17 623.53
5 25.38 18.27 17.92 86.01
6 6.36 4.60 4.72 27.16
7 2.59 1.88 1.85 12.29
8 1.34 0.97 0.96 6.72

9 0.79 0.57 0.57 4.13
10 0.51 0.37 0.34 2.59
Total —1888.6 —2337.7 —2301.50 19540.63

To test the above results, we did alternative polarizabil+adial quantum numbeh, the effective orbital angular mo-
ity calculations using the method of the Green’s functions ofmentum, andv,, the effective principal quantum number in

an optical electron to sum over the complete intermediatethe formula for the energy of the atomic stéte),
states spectrum i(®). )

Note that the correct selection of the initial analytical E. —— Z_ (17)
representation of the Green’s functioBs(r,r,) plays an " 2v§,'
important role in specific polarizability calculations, since it
makes it possible to obtain the result in the form most ratio- Here and in(15), Z is the charge of the residual ion. The
nal and convenient for further applications. In this paper we explicit expression foRy,(r) coincides in form with hydro-

3
have taken the Green’s function for the Fuss model potentlaqllenllke wave functioné:

from Ref. 14. The angular part @g(rq,r,) is simply the 27312 27r
product of spherical harmonics, while for the radial part — Rn(r)=-——U, |( » ) (18)
g,(E;rq,r,) we have taken an expansion in Sturm functions, ni n!
which have only a discrete spectrdm: The parametek, (I may represent a specific set of spin—
orbit quantum number, in addition to representing a specific
Gg(ry,ro)= 2 9i(E;re,r2)Yim(ny)Yin(ny), (14)  angular momentuincan be found by comparinfl?) with
experimental values of the lowest state of a valence electron
% with a givenl (see Ref. 2B The radial quantum number,
QI(Eiry,rp) = 4z 2 Uw(2Zr, /v)U(2Zr3/v) , (15  of this state is assumed to be zero. As shown by Sirflags,
Vok= kK+X+1-v represents the entire experimental spectrum of the atom
wherev=2/\/— 2E, and fairly well (in most cases the weak dependenca obn the
position of the energy level can be ignoyed
[k F( ) 2)\|+1 With such a definition of\; for atomic series whose
V()= F(k+ 2+2\)) Trzran) X ex 0. lowest states are the ground and the metastable, the error in

(16)  calculating the radial matrix elemengal|rt|n’I)L=1 with
The radial wave functionR,,(r) are obtained from the resi- Wave functions(18) may reach 50%. In view of this we
dues of the Green's function at the poles fformulated a modified approach to the definitiomefand\,
9i(Eiry,r5): v=wy,=n,+\+1, with n,=0,1,2... the Iinthese serie& which allowed us to significantly refine the
calculations of the spectroscopic characteristics of atoms in
ground and excited states. Here the radial quantum number
TABLE lIl. Contributions of theSandD states of the intermediate spectrum of the lowest stat€ground or metastableof the series is
to the polarizability of the $3p *P, state of helium. assumed to be unity, so that the effective orbital angular

=}

’ 1sn's3s; 1sn'd °D, 1sn'd °D, 1sn'd °D,

2 —-1.57 . - .
3 _2638.76 187.32 2809.37 15 735.95 TABLE IV. Scalar and tensor polarizabilities of the helium atom.
4 312.15 6.23 93.52 523.74 - -
5 17.92 0.86 12.90 72.95 Quantity Numerical value
6 4.72 0.27 4.07 22.81 oS 17 203
7 1.85 0.12 1.84 10.32 a0 17191
8 0.96 0.07 1.01 5.65 A3a Pza Cad 10
9 0.57 0.04 0.62 3.47 o 3% “3%, 351 65
33p, ’
10 0.34 0.03 0.39 302.17 = 2 0.29 343 10-4

Total —2301.83 194.94 2923.72 16 376.36 =150.99kvcm'?t
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Sx10% TABLE V. Scalar and tensor polarizabilities of the helium atom calculated
1.34 by the model potential method.
1.32 Quantity Numerical value
1.30 aSap 17 266
1.28F a§3PZ 17 255
1.26} Aa=agsp ~a3sp, 11

al 374.16
1.24 —
e [= 0.28 458104
1.22 . . . =146.45kVcm?

0 50 100 150 200
F, kV cm-1

FIG. 1. Dependence af (in atomic unit$ on the electric field strength in

. . I cant figures cancel out. This loss of accuracy can be avoided
the vicinity of anticrossing-.

if we expand the polarizabilities as functions of the energy of
an atomic level in a Taylor series. The calculation then re-
duces to finding the energy derivatives of the polarizabilities,
: and these can be expressed in terms of third-order dipole
cipal quantum number of the lowest state. Note that the Wave v elements with two Green's functions. which. in par-

function of the ]owest Igvel at, =1 coincides precisely with ticular, enter into the expression for the hyperpolarizability
the wave function obtained by the quantum-defect method N the atomic state?

5
atoms’ It is no accident that the numerical results in Tables IV

Thus, the sets of states of an atom with spin—orbit quans g v arer close, since the model potential method yields a

tum numbers of the ground and metastable levels are, Stric“é(orrect dependence in the higher-order matrix elements for

oy =0. Hence the radial Groen functions i the subspases g% SeT8Y of the atomic eveS provided that we se the
tr;e séries in question contain additional “imaginary” terms xact (experimenta| val_ues fo_r_the energies of _the fine-
with n,=0 and an effective principal quantum numbsy, structure sublevels. Thls (_:ondltlon ma_k_es_ it possible to 'Fake
—, _’1 The binding energy of the “imaginary” state, de- into acc_ount the contrlbutlor_]s of relativistic and correlat|(_)n
finegd in.(17) is almost ten times higher than the exci'éation effects In the model pot(_antlal method. Furthermore, using
energy of ar,1y level in a series, so that its contribution to thethIS method, one can easily Sh.OW that the s?ates bgl_on.gmg 0

i 2 . ’ . a complete set and not taken into account in relativistic cal-
optical-transition amplitude can be ignored.

Note also that the wave function of a valence electron inculations(the states belong to the continuum and to the dis-
state [nl) has the correct sign in the asymptotic region crete spectrum witin’ >10) contribute no more than 0.2%

. ) o gn n ympi 99N 5 the numerical values of the guantities considered here.
(which provides the principal contribution to multiple matrix

lements only if we multiply it by an addition ph factor The present work was made possible by the financial
e E only € muftiply 1t by an addition phase facto support the Russian Fund for Fundamental Resedbcant
(=1), wherek=n—n,—1-1.

The second and third columns of Table Il contain th697-02-16407and an international grant with the German Re-
contributions of the intermediatesh’s S, states to the sca- search Society 96-02-00257, 436 RUS 113/16R/9] and

lar polarizability of the £3p 3P, state calculated by the tra- ah?’el?L;.S. National Science Foundatidrant PHY 95-
ditional and modified approaches, which yield values\ pf '

equal to 0.698 ar)eL 0.30.2, .respectwely. _A comparison with SE-mail: pal@kalium.physik tu-berlin.de

the data of precise variational calculatiofiee fourth col- bpt97@ftri.extech.msk.su
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We analyze the possibility of superradiance in an ensemble of three-level atoms in the absence
of population inversion. We show that in the case of @onfiguration of the active

transitions this effect can occur for an initially coherent superposition of the states of the lower
doublet. We also study how splitting of the lower levels influences this effect and discuss

ways of creating low-frequency coherence. 1®99 American Institute of Physics.
[S1063-776(199)01002-1

1. INTRODUCTION the scheme an external field that produces the low-frequency
coherence.
The theory of collective spontaneous emission of radia-
tion (superradiangewas first developed by Dickefor an 5 MODEL AND BASIC EQUATIONS
ensemble of two-level atoms. Further studies of this etféct
were done primarily with this model. Stepping outside the

scope of the two-level approximatideay, by assuming that o i
P bp dsay, by g assume that the splitting frequeney; for the lower levels is

the ground state is a doubldeads to new effects in super- .
9 ) P much smaller than the frequencies; and ws, of the tran-

“’?“?"ance’ effects produced by competition between the trans_itions between the upper state 3 and the states of the lower
sitions. Among such effects we note quantum beats and p

larization features in the superradiance emission S®na|(%j'oublet, 1 and 2. To describe the interaction of such a system
P ‘and an electromagnetic field in quasiresonance with the high-

. 10 4 T .
Elyutin et al.“ discussed the possibility of superradiance anoﬁequency transitions we use the one-dimensional version of

photon epho in a magnetodipolg transition when cohere%e semiclassical approach, in which we assume that the

superposition of allthreg states is produced by a strong q,antities describing the state of the atomic system and the

optlca'l resonant pulse. - ) ~ field vary in only one direction while all the vectors are
It is well known that a necessary condition for inducing girected in the same way along the perpendicular direction.

superradiance in the two-level model is the presence of iniThen the evolution of the system obeys the following system
tial population inversion of the levels involved in the active of Maxwell-Bloch equations:

transition. Recently the problem of inversionless amplifica-

Let us examine an ensemble of three-level atoms with a
A configuration of the active transitionsee Fig. 1. We

; ; ; ; : d3 % d3of
tion hgs been. widely (jlscussést.\e, e.g.,_Refs. 117).15I'h|s par= — | Waypai—I i(l)as—m])ﬂ ipﬂ' 1)
effect is possible, for instance, if there is an additional level f fi
that is close to the ground levéhe A configuration of lev- . dap” Aoy
els). If the initial state of the lower doublet is prepared as a  p3,= —iwgpzo—i T(p33— poo) +i — Pz 2
coherent superposition to which a transition from the upper
level is forbidden, the orthogonal superposition, to which a . _ dg & Cdgp
transition is allowed, is found to be unpopulated. Hence a P21~ —l®w210217| szaﬂ 7 Psv €
resonant pulse passing through a medium prepared in this
way will be amplified. . Ay

The main goal of the present investigation is to show  P117! (PP, @
that in addition to inversionless amplification there can be
inversionless superradianéa preliminary discussion of the bzz:i d3_2"((p32_p23), (5)
problem can be found in be found in Ref.)1&h Sec. 2 we h
formulate the model and present the basic equations of the day? dap?
theory. In Sec. 3 we study the case of a degenerate doubletin  pz3=—i T(p31—p13) =i T(p32— P23, (6)

the ground statéhis case allows for an analytical investiga-

tion). The effect of splitting of the lower level is examined in 2 1 g2 A PP

Sec. 4. Section 5 is devoted to an analysis of the possible (—— - )(5= — o (7)
ways of forming the low-frequency coherence, which is nec- ¢t at

essary for inversionless superradiance. Finally, in Sec. 6 werhere thep,; are the elements of the density matrix of

solve the general equations of the model, incorporating intdhe three-level atom at the point with coordinatat time

X% c?ot?
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3 If we now pass in the usual way from the system of
equationg1)—(7) to a similar system for the amplitudes, we
get

Ra1= —iA31Ra1+ &[ a1(p3z— p11) — aapail, (11)

@, Rap= —iAgRayt e[ ad paz— p22) — maip1al, (12

- p21= i wp1po1+ 31 REyT 3z * Ray, 13

p11= p3i(eR5+* Ray), (14)

2 p2o=mad eR%y+ e* Ry, (19

| — p33= — ma(eR5+e* Ry) — ualeR5,+e* Ry, (16)

FIG. 1. Diagram of energy levels and optical transitiqdesignated by é:QZ(MisSfF M32R32), (17)

arrows of a three-level atom.
whereQ = \27w3,d’°No/#, e = —idE/# is the amplitude of
the electric field in frequency unitAz=wsz— w., Az
t (a,8=1,2,3),ds; andds, are the dipole moments of the =wzz—wc, pz1=0dz:/d, and ugz=dz/d, with d
3<1 and 3-2 transitions(these moments are assumed to= J(dZ,+d2,)/2. Note that this system of equations has the
be real and positive =N, (d3yp3,+ d3op30) +C.C. is the  following constants of motion:
polarization of the mediunl\, is the the atom number den- T oot D=1 (19)
sity, and# is the electric field strength. Population relaxation PuT P22 Pas™ &
and polarization relaxatioeither homogeneous or related to P+ part paat 2(|pail®+ Ryl >+ |Rsg?) = const, (19)
inhomogeneous broadeningre not taken into account, since
the superradiance process is assumed to be faster.
Let us suppose that the atoms are uniformly distributed
over the vole of a higl ring cavity (field damping due t0 3 A DEGENERATE DOUBLET
cavity losses is ignorgdand that the transitions with fre- ) ) _
quenciesws; and ws, are in quasiresonance with one of the In the two-level scheme _of |nver5|(_)n_l_ess superr_ad|ance
cavity modes(frequencyw.). We also assume that the su- We would have only atte_nuatlon of the initial fluctuations of
perradiance spectrum and the value of the double splittinRs1 @nd Rz they certainly do not become stronger. The
w,1 do not overlap the gap between cavity modes, i.e., we afituation changes dramatically, however, when the ground

|€|2+ p33=const. (20)

We seek the solution of the system of equatiéhys-(7) ~ frequency coherences contain terms proportional to the low-
in the form frequency coherence,;. To be specific, let us assume
o . p33(0) = p11(0) = p33(0) = p22(0) = 0. Now, if p21(0)#0, the
Z=Eexd—i(ot—kx)]+cc, (8 pehavior(weakening or strengtheningf the initial fluctua-
par=Rarexi —i(wt—kx)], (9) tions of R3; and Ry, depends on the phase p$,(0): for
positive values ofp,;(0) these fluctuations still become
p32=Raexgd —i(wt—kx)], (100 weaker, but for negative values the strength of these fluctua-

tion increases in a snowballing manner, thus initiating super-
radiance. Note that this becomes possible without population
inversion in the high-frequency channels-3 and 3-2
and is ensured by conversion of the low-frequency coherence
(p21) to the high-frequency coherenceRsf and R3,). The
latter effect manifests itself explicitly in the constant of mo-
tion (19).

The mechanism of this conversion and development of
state of the cavity changes little during the time ”ghtinversionless supe_rradiance allows a simple interpretation
traverses the cavitythe mean-field approximation This when the low level is two-fold degenerate and the frequency

makes it possible to ignore the spatial dependence of th@f the atomic transition coincides precisely. with the cavity
amplitude and thus exclude effects of propagation and amr€dUeNCcy Qa=As=w;=0). Then, passing to a new
plification of light in the active medium. Such simplifications P@sis of atomic StateSL“L):(M31|1>+M32|2>)/\/§_ and
are not very important for the effect considered in this paper|,._>.: (M31|1>_M32|2>)/\/§, we see that the stafe-) is ac-
i.e., inversionless superradiance. The study of inversionledd/€ in the superradiant transitidthe dipole moment of the
superradiance in an open extended system with allowand@)—|+) transition is finite and equal ¢8|d|+)=y2d).

for the factors ignored by the adopted model constitutes &t the same time, the superpositipa), which is orthogonal
separate problem. to |+), does not interact with the upper sta8 ((3|d|-)

wherek.= w./c (c is the speed of light in vacuumE, Rj;,
and R3, are the amplitudes of the field and of the off-
diagonal elements of the density matftke last two quanti-
ties are known as coherengewhich are assumed to vary
slowly on the scale of the optical periodr2w3;. Note that
the analogous approximation on ther/2s,;-scale, i.e., for
the low-frequency coherengs,, is not used.

To simplify the problem still more, we assume that the
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=0) and in this sense is passive in superradiance. Thus, ipopulation inversion for one of the active transitions is not
the new basis the problem is equivalent to the two-level onesufficient for superradiance to occ{guperradiance is also a

and the system of equatiofi$1)—(17) reduces to coherent effegt
1 If we substitute Rg,=(0Q/2Q)?sing, W=(Q/
Fzg+=E €(paz—p++), (21)  20)2%cos, and e= 6, whereQy=2Q[R3, (0)+W?(0)]*/4

in the system of first-order differential equatio(8) and
(29), we obtain the second-order equation

6—Q2sin6=0, (33

p__=0, (22

b++:ER3+v b33:_5R3+= (23 . . . S -
which describes nonlinear oscillations of a simple pendulum.

e=40°%R,, , (24)  The oscillation period’y depends on the initial deflection of
the pendulum from the equilibrium positioA(0). When the
initial polarizationR5, is small andW(0) is positive(con-
ditions characteristic of superradiancehe angled(0) is
close to zero. Here the oscillation peridg is approximately

wherep, . andp__ are, respectively, the populations of the
active and passive states=2+2 &, and Rs. is the active-
channel coherence:

1, ) 40,4In[8/6(0)] (see Ref. 8
P+ + =§(M31P11+ M3op22T 2 a3z Repoy), (25
1 4. A NONDEGENERATE DOUBLET
== (u5p1at w5020~ 2 Rep,y) (26) ineti i i it
P——=75 h3P11T M31p22™ M31432REP21), The kinetics of superradiance in the presence of splitting

of the lower doublet ,,#0) was studied by solving the
1 system of equation&ll)—(17)numerically. The natural fre-
R3+=E(M31R31+ M3R30). (27)  quency of the cavityw,, was selected as the arithmetic
mean of the frequencies;; and ws,, i.e., w.=(ws3;
Equations(26) and (25) imply thatp__ andpsst+p, + w3y)/2. For simplicity the dipole moments of the-31
are constants of motion. By introducing the half-differenceand 3—2 transitions were taken to be equak;= uz=1.

of populations in the active chann®\/=(p33—p . ,)/2, we The calculations were done with the following initial
reduce(25)—(27) to data: p11(0)=p2(0)=0.35, p33(0)=0.3, p,,(0)==0.35,

. . R3(0)=R3,(0)=108, and £(0)=0. The positive(nega-

Rz =€eW, W=—¢€Rs,, 28 tive) sign of p,;(0) means that the system has been prepared

— 40%R 29 in the active(passive state. Here there is no population in-
€= 3+ @9 Version in the 31 and 3-2 channels:ps3(0)— p11(0)

This system of equations describes the cooperative emissionpss(0)—p2o(0)=—0.05. At the same time, population in-
in an ensemble of two-level atoms in the mean-fieldversion between the upper and active states is 0.3. Finite

approximatiort~+68°|ts solution demonstrates superradiantvalues ofR3;(0) andR3,(0) are needed for initiating super-
behavior in the presence of initial inversion in the activeradiance. Here we are interested in fluctuations of superradi-
channel W(0)>0), i.e., at time zero the following condi- ance, so that the initial valud®;;(0) andR3,(0) are speci-
tion must be met: fied as deterministic parameters, which corresponds to the
conditions for stimulated superradiandé?

The upper half of Fig. 2 represents the results of calcu-
lating the kinetics of deexcitation of the system obtained for
negative values g,,(0) (initially the active state is unpopu-

+2131432REp21(0)]. (30 lated. In the absence of splitting of the lower levels, we have
If we prepare the system of atoms in such a way that théhe periodic superradiance regime, which is described by the

1
p33(0)>p, . (0) =§[M§1p11(0) + u5op2A0)

active states are not populated,(, (0)=0), nonlinear pendulum mod¢B3). Splitting of the lower levels
1 1 (wy1#0) results in modulation of superradiance signals
911(0)=§#§z[1—933(0)], pzz(0)=§,u§][1—933(0)], (slow modulation on the scale of the cooperative frequency

Q) for w,1<Q) and rapid modulation fow,,>). The rea-
(3D son is that when the splitting of the lower doublet is finite,
the |+) and|—) states are not stationary, so that with the

1
P21(0)=—§M31M32[1—P33(0)], (320  passage of time the active state periodically becomes the
passive state.
where 1-p33(0) is the total population of the lower level, The lower half of Fig. 2 present similar results obtained,

then inversion between the upper and active states iBowever, for a positive value of the initial low-frequency
achieved for all populations of the upper state. This situatiorcoherencep,4(0) (initially, the active state is populated, and
can also be achieved in the casg(0)<<p11(0)+ p,x(0), population inversion between this state and the upper state
i.e., without population inversion in the large. At the sameneeded for superradiance to develop is alsémtcomplete
time, if initially the states of the lower doublet are populatedagreement with the results of Sec. 3, no superradiance signal
in an incoherent manner, i.g31(0)=0, the fact that there is is detected at zero splitting. For small valueswgf (smaller
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0.3F @y spectrum overlaps the low-frequency doublet, which is the
f A A A A A A ﬁ'= condition for population trapping.
of j As the doublet splitting increases, superradiance signals
0.3F in the two cases in question resemble each other more and
“w ot more irrespective of the sign of the initial coherengg(0)
RN § (cf. the upper and lower halves of Figl. Hence, when the
; o.g: o113 lower level is spli_t, the initial phasp,4(0) plays no signifi-
-‘é d "MMWAMMMMWMWN\AMWW cant role. Asw,; increases, the superradiance intensity de-
£ ok creases due to the increasing detuning of the transition fre-
=03 quencyws; and ws, from the cavity frequency.. .
. JMMNMMMMM
0.3F 5. FORMATION OF LOW-FREQUENCY COHERENCE
9 BY AN EXTERNAL FIELD
Ok : M ; : M \ —er The above treatment of inversionless superradiance pre-
0 50 100 150 200 330 supposes the existence of initial coherence of the stabes
Time, Q and|2). In this section we study the possibility of creating
the necessary coherence by introducing an external pulsed
03f “u_p| field interacting with the -2 transition. This interaction
- Q" may occur either in the electrodipole approximation if the
ok, i . i _ ) gquantum system has no inversion center or in the magneto-
0.3f 0.050 dipole approximation if the doublet in question is magneti-
SRR
~2 ok , X X A \ Let us examine a situation in which the length of the
= 03¢ 0.113 pulse forming the coherence in the low-frequency channel is
% WWWAAAAW smaller than the time by which the next superradiance pulse
é Ogi, , / : ‘ | is delayed. Then it is obvious that the evolution of the low-

E0.300 frequency channel 2 1 in the external field and the devel-
E opment of superradiance are separated in time. Below we
o : , ‘ . ] o . ;

demonstrate the possibility of such separation directly by a

0'3_' 3.000 numerical solution of the Maxwell-Bloch equations that in-
9 corporate an external field into the low-frequency channel.
OF: : i : n M n J In the notation adopted here, the evolution of the doublet
0 50 100 }50 200 250 s described by the following system of equations for a two-
Time, Q level atom in an external field:
FIG. 2. Kinetics of inversionless superradiance for different values of the b21: —iwpyp—21.7,(1)Z, (34)

doublet splittingw,, (indicated in the figure The cavity frequency is tuned
exactly to the midpoint between the levels 1 andogs (w3, + w3y)/2. The Foi 35
results presented in the upper half of the figure were obtained for a negative =1.7i(0)(p21~ P12, (39

value of the low-frequency coherengp,,(0)= —0.35; initially the anti- _ 7 ; : _
symmetric superposition of the states of the doublet is populatétle the whereZ= (p22 011)/2 and/'(t) is the external field mea
results presented in the lower half were obtained for a positive value of théUred in frequency units.

low-frequency coherendep,,(0)=0.35; initially the symmetric superposi-
tion of the states of the doublet is populatedhe other parameters have 5.1. Wideband excitation

been Choseﬁs as followspy3(0)=p2(0)=0.35, p3x(0)=0.3, Rs(0) If the pulse lengthT, is such thafT <2/ w,; and, in

=Rx(0)=10"%, ands(0)=0. addition, |.7;|>w,;, the term with w,; in (34) can be
dropped. Then the solution of the system of equati@#s
and (35) has the form

= A+ =—Bsin(. %+

than Q) the signal is delayed by a time interval that is ex- Z=Bcod A4 dy)s IMpy=—Bsin. 2+ dy), (36
actly equal to the half-period of the low-frequency coherencevhere .Z=2[¢7;(t)dt is the field pulse area,B
oscillations, 7/ w,1, i.e., a time interval after which the sign = =Z?(0)+[Imp,(0)]?, and sirp;=Imp,,(0)/B. Accord-
of the signal changes. ingly, for the density-matrix elements we have

At first it seems strange that these signals do not exhibit —Rep(0)—iB sin(.Z+ 3
the expected exact periodicity in timésignal period P21 P21(0) 1B SIN. 7+ ), 37
2wl w,1). We relate this behavior to the population trapping
effect® (a fraction of the population of the lower state is
trapped in a passive state not related to the upper)state
the cases under investigation such an effect is possible, since _E y
for a small value of the splittingd,,;<Q) the superradiance P22= 51 P11(0) +p2o O)]+ B COL 7+ ). (39

1
Pllzz[P11(0)+P22(0)]_BCOEL/%*’ b1), (38)
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If initially the system is in an incoherent state, i.p(0)
=0, Eqgs.(37)—(39) become

Zaitsev et al.

5.1). However, its optimum value for distingt;; and wg, is
still given by (43). Since in the limit in question T,

> 27l w,1), poy rapidly oscillates withw,,, the phase oR,;
after the external pulse has travelled through the system is
unimportant, in contrast to the previous case.

1
p21= _Ei[Pzz(o)_Pll(O)]Sin=/Zy (40

1 1
pP11= E[Pzz(o) +p11(0)] _E[Pzz(o) —p11(0)]cos. 7,
(41)

6. INITIATING INVERSIONLESS SUPERRADIANCE
BY AN EXTERNAL LOW-FREQUENCY FIELD

The system of equations describing the behavior of the
three-level medium in question and allowing for the action of
an external field in the low-frequency channeb2 has the
form

1 1
p22= E[Pzz(o) +p11(0)] "'E[Pzz(o) —p11(0)]cos. 7.
(42)

As can be seen fror#0)—(42), maximum coherencén ab-

solute valug is achieved when only one level, 1 or 2, is R31=—iA31R31+8[M3l(p33—p11)—/1,32p2ﬂ—i.%R:;z,

populated initially and the field pulse area$2. (47)
Attaining maximum coherence corresponds to the opti- S .
mum condition for inversionless superradiance only if the Reo= — 183 Raot e[ ad pag— p22)_“3lplﬂ_"%iRaé)

values of the transition dipole momenis; and u5, are the

same. Whenug; differs from us,, the pulse area must be P21=—101p01F 318 Ri+ pae* Ra1—1.71(p2o— p1a),

selected on the basis @81) and (32). Then if level 1 is (49
initially populated we have . .

1 p11=uz(eR3+ ¥ Ra) +1.71(p21— p12), (50

cos Z==(u2,—u2), sin.z= . (43) : .

2('“32 Han Haiftaz P22~ M32(8R§2+8*R32)_'-%i(le—Plz), (51)
Note .that the value of the pulse area determlnes only the paz= — us(eRE+ £* Rap) — s eRG+6*Ryp),  (52)
magnitude ofp,,, although the phase is also important for
realizing the optimum condition for inversionless superradi- é:QZ(Misler 13oR30). (53

ance[see(32)]. As (37) implies, in this case an external , deni h Its of ical calculati ¢
pulse generates only the imaginary part of the low-frequency ' '9ure 3 depicts the results of numerical calculations o
coherence, which does not directly initiate superradian?uPerrad'ance kinetics corresponding to the excitation of the

emission. The optimum phase of coherence emerges in tH8W-frequency coherence by the scheme discussed in Sec.

process of the time evolution gf,;cexp(—iw,it) after the
pulse has already acted.

5.2. A resonant low-frequency pulse

Now we study the situation withwj=wy, T,

>2mlwy, and|.7;|<w,;. Under these conditions we can

use the expansions7;(t)="f;(t) exp(~iw,t)+c.c. and
p21(t) = Ryq(t) exp(—iwyt), wheref,(t) and R,q(t) are the

amplitudes that slowly vary on the scale of the period

27/ w,q1, and pass in the usual way from E@84) and(35)

to the equations for the slow variables, whose solution is

Z=Ccod. 7+ ¢,), (45)
where . 7Z=2ftfi(t)dt is the pulse area, C

:\/ZZ(O)‘F[RGQZJ_(O)]Z, and tamzsz?m_(o)/Z(o) In
particular, for a state that is initially incoherenR4(0)
=0) we have

R,1=2Z(0)sin..Z2, Z=2Z(0)cos.7. (46)

5.1. The calculations were done with initial dapg;(0)
=0.7, p2x(0)=0, p21(0)=0, p33(0)=0.3, R35(0)=R31(0)
=108, ande(0)=0. The external field was a rectangular
/2 pulse of heighf) (in frequency units Note that if there
were no external field in the low-frequency channel, the sys-
tem would not radiate.

When analyzing the results, it is convenient to bear in
mind the following four time scales that are natural to the
problem in question: the lengfh, of the external-field pulse
(the shortest time the periodT,;=27/w,, Of variation of
the low-frequency coherence, the superradiance tige
~( 1, and the time delay of the superradiance pukg,
due to the smallness of the initial valueskf; andR3,.

The external pulse generates the purely imaginary off-
diagonal matrix elemeni,;, which evolves in time and ini-
tiates superradiance. As Fig. 3 shows, a small variation in the
value of theTp-to-T,, ratio (for T,1>Tg, which is actually
the casghas a strong effect on the intensity of the radiated
pulses. The explanation is that there is a time intedval
(shorter thanT,,/4) that separates the moments of onset of
the threshold f33=p..) and optimum p,,=0) condi-
tions for inversionless superradiance. Hy<AT the radi-

This means that the maximum value of the absolute value ofiting process begins prematurely, in the sense that the opti-
the coherencelR,, =|p22(0)—p11(0)|/2, is attained for a mum condition is not attainedrig. 39. At Tp~AT the
pulse area Z=m/2 (similar to the case discussed in Sec.radiating process begins exactly in optimum conditi¢fig.
5.1). Here the magnitud¢R,;| of the coherence is largest 3b). As the doublet splitting increases and herigg de-

(for a given total population of the doubJet only one level

creases, so thdiy>AT, superradiance is delay€HBig. 30.

is populated(which is also completely analogous to Sec.Butif Ty is much longer thai T, the onset of superradiance
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0.30F @y 0.05 b =(w41+w3)/2. The initial data arep;1(0)=0.7, p,(0)=0,
eZQ? 015k Q p21(0)=0, p35(0)=0.3, R35(0)=Ry3;(0)=10 "5, and=(0)=0.

0
0.70¢
0 AW

0.33F
Rep, 0—/\\,/\/\NVVWW
035 NS —

0.35
Im%l Om
03 e e

0.30
90 120 15

0Ot
0 30 60

Time, Q!

0

may be postponed, so to say, to the next favorable ¢ffite ~ the difference frequencw,;. Note that the superradiance
3d). Superradiance intensity is determined by the differencdinetics in this case coincides almost perfectly with that cal-
in the populations of the upper and active states at the timeulated in conditions where the low-frequency coherence is
the radiating process begins and remains, for all practicgbart of the initial datasee the curves in Fig. 2 obtained for
purposes, the same. wy1=30).

The kinetics of inversionless superradiance calculated We conclude this section by discussing the possibility of
under the condition that the low-frequency coherence is exeetecting inversionless superradiance in atomic sodium va-
cited by a resonant/2 pulse(the scheme developed in Sec. por, which Kocharovskaya and Manéfetonsidered a suit-
5.2) is depicted in Fig. 4. The initial data for the calculation able object for realizing inversionless amplificatirelated
were take from the previous case. The low-frequency cohero inversionless superradiancdt is well known that the
ence was formed by ar/2 pulse of frequencyw;=w,;  ground state of a sodium atom$Bis the spin—orbit doublet
=3() and a rectangular envelope of length= 8001 As  325;,3?S,,, with the transition frequency 1.77 GHz, which
a result of the action of the pulse, the subsystem of states @ combination with an appropriate excited state of opposite
the doublet is prepared in the superposition stfife parity (say, ) may serve as a model of a three-level
=(1/\2)[|1)+exp(—iwyxt)|2)], which is periodically con-  A-system. Estimates of the characteristic superradiance time
verted(with the passage of timao the passive combination scale {Tg) for a vapor density of roughly tbcm=2 with a
|-Y=(1/2) (|1)—|2)), leaving the active statd+)  10% occupancy of the excited state yiekD.1ns, which is
=(1/y/2) (|1)+]|2)) unpopulated for this period and thus shorter by a factor of ten than the relaxation tifffe~1 ns
creating the conditions for inversion between staBsand  due to Doppler broadeniryHere the superradiance delay
|+). After a certain delay, needed for the cooperative dipoldgime Tp~10Tg~1ns~T;, which makes it possibldat
moment to develop, the system emits a superradiance pulseast in principle to realize the deexcitation regime in ques-
representing beats of two signals of the same amplitude witkion. Thus, creating a coherent state of the doublet in the
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ground state requires a gigahertz electromagnet&pulse 7. CONCLUSION
shorter than 10 n$é.e., shorter than the lifetime of the ex- In multiatomic svstems consisting of three-level atoms
cited statg, values that can be attained by the spin echo Y 9

technique?* Another possible effective way of creating the W't.h a doublet structure of thg ground_ stétbe A conf_lgu-_
ration of transitiony superradiance without population in-

low-frequency coherence is to use an external optical NaNQjersion in the large is possible. This effect requires the pres-

second pulse that is in resonance with anothensuperra- oo of initial coherence between the states of the doublet,
diant transition, as suggested in Ref. 10. , , which can be created either by a wideband pulse or a reso-
Among other possible objects in which the inversionless, ¢ low-frequency coherent pulse with a certain area.
superradiance effect can appear are crystals activated by \yhen the low-frequency coherence is produced by a
rare-earth ions. Auzett a'-zz_ reported detecting suaerradi— pulsed field, the superradiance intensity strongly depends on
ance in LiYF, with EF* ions that involved the®lyy,  the relationship between the splitting of the low-frequency
— 113, transition. The lifetime of the excited statei1,is  doublet and delay time of the superradiant pulse. As is
of order 0.1 isee Ref. 22; this transition is dip0|e-f0rbidden known, the latter can be controlled by using the stimulated-
in a single E?* ion). This means that it is easy to create the superradiance approath®in which the process is initiated
low-frequency coherence involving the Zeeman sublevels oby a small-area ultrashort pulse in quasiresonance with the
Er* in the ground state by applying a microwave pulsed3«1 and 3—2 transitions. Such a pulse generates initial
field. For a density of excited Ef ions in the®l,,, state of  polarization in the superradiance channels B and 3—2
order 5x 10t cm ™3 (see Ref. 2P the characteristic superra- that exceeds the level of the spontaneous fluctuations of po-
diance time scal@y is in the nanosecond range- (0 ns). larization and thus reduces the superradiance delay time.
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We derive convenient analytical formulas in the effective-range approximation for the asymptotic
coefficientC, of the radial wave function at infinity and for the average radius of the

system. A comparison with the results of numerical calculaticiome by the Hartree—Fock

method for multi-electron atoms and ions reveals that this approximation has good accuracy for
valences-electrons in all atoms from hydrogen to uranium. We calculate the values of the
scattering lengths and the effective ranges for electron—atom and electron—ion scattering. We also
examine the quasiclassical approximation @yr. Finally, we discuss the logarithmic

increase in the effective ranges o states asi—«. © 1999 American Institute of Physics.
[S1063-776(199)01102-9

1. The wave function of thes state has the asymptotic quasiclassical approximation for the coefficie@ts. In Sec.
behavior 5 we discuss the cade~0 and in Sec. 6, the logarithmic
5 5 increase in the effective ranges 10§ states asi—«. The
¥ (1)=C \/Ee"“(;cr)”‘l[l— v +... Appendix deals with the derivation of the expansi8hn the
x “N 2kr details of calculations, and some lengthy formulas.
2. The effective range expansionWe assume that the
[v—1] potential is given by the formula
—, D)
K"ap V(r)y=—2Zr 1+U(r),

r>r,

2 _ _ .
where [y, d*r=1, \=\=2E, E is the level energy»  \hereU(r) is its short-range part with a characteristic range

=Z/x, with Z the charge of the atomic core, is the radius | of the forces. The normalized wave function of the shal-
of the core,ag=1/Z is the Bohr radius, and atomic units oy s level has the form

(A=m=e=1) are used throughout

The asymptotic coefficient€, are important physical X () =vVamry,(r)
parameters of bound states and are continually encountered 1 _
in quantum mechanicsatomic and nuclear physiéséin the —ol-v, 12 ¢(NIT(1=v), r=ro, )

inverse problem of quantum scattering thedfetc? Their
exact calculation constitutes a fairly involved problem and, . .
e.g, for heavy atoms requires numerical calculation of the'Nerel =0, ko<1, ¢(r) is the wave function correspond-
Hartree—Fock equations for multi-electron systems, with thdN0 10 Zero energy\, ., is the Whltt_aker function, and is
calculation error sometimes reaching 10—30% or even IargetF1e Sommerfeld parametéfor the discrete spectrynThe

valuest! In this paper we specify simple analytical approxi- region vy?ere the expressions @) are mat‘?he‘?' |sr.0<r
mations for the coefficientC,, approximations that de- <min(x .,aB),_and thg buildup of the normalization integral
scribe the results of numerical calculations fairly well. These?cCUrs primarily at distances>r, and can be calculated

formulas can also be used for other Coulomb systems Witﬁnalytlcally. Tk?e chorrectltf)nhdue to S.mf" distances: )
short-range interactior(e.g., in the theory of hadronic dePends on the shape of the potentigr) and can be ex-
atomd?). pressed in terms of the nuclear Coulomb effective range

(see Refs. 13—15As a result we arrive at the expansi@ee
Appendix A

W, 12(2kr), r>ro,

The plan of the paper is as follows. In Sec. 2 we intro-
duce the effective range expansion for the coeffici€hts
compare it with the results of numerical calculations, and —_Opq_ 3\1—1/2
give the results of calculations of the scattering lengths and W= Gt Cartest Ol(xro)D) 5 ®
effective ranges for some atoms and ions. In Sec. 3 we illusvhereC!) andc; are universal functions of the parameter
trate the expansio(8) using model potentials that allow an (see Figs. 1 and)2
exact solution(in particular, we give the explicit expressions
for the s-scattering lengtha, and the effective range, for 21 1

(0) — _
the case of the Hulfmepotentia). In Sec. 4 we consider the Cw I'(i+v) F(»),

, 4

1063-7761/99/88(2)/11/$15.00 286 © 1999 American Institute of Physics
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Cel

FIG. 1. The asymptotic coefficient at infinity for neu-
tral atoms ©) and singly charged positive iond():

the solid curve corresponds @2, the dashed curve
corresponds to the quasiclassical approximatR),

and the points correspond to the results of Hartree—
Fock calculationgRef. 11).

2

-2 What makes the expansioff3 and(5) so remarkable is
] : (43 that they contain no terms quadratic in the effective rafige.
Furthermore, the coefficient &;, which we calculated for
with ¢’ (v) the trigamma functiod® When the Coulomb in-  several model potentiald(r), are smal[see Eq(19)]. This
teractio n is switched off ¥—0), the range s tends tors  proadens the range of applicability of these expansions.
and We compare the results of Hartree—Fock calculatibns
1 and the zeroth approximatiod,,~C'?, i.e.,r,=0 in (3).
c§<0>:_(1+al,,+ ), Cp=1-2p+--- The values of the coefficien&s in Ref. 11 differ from those
2 of C, in normalization:A=2«""2C,_. The open circles in
(a,=IN2—1+C=0.2704, withC=5772...), sothat the Fig. 1 refer(in order of increasing) to the ground states of

expansion(3) assumes the form corresponding to a short-neutral atomé$! He(r=0.744), Z11.203, Au(1.215,
range potential: Cu(1.326, Ag(1.340, Ru1.359, Cr(1.418, Y(1.460,

Yb(1.475, U(1.484, Ca1.493, Pal.519, Sr1.548,
La(1.563, Li(1.587, Ba1.616, Na1.626, K(1.770,

sinwv
F(V)Z(l_(

mv

vy (v)—v— >

Soz LTt Ca(KTg) . )  RK1.805, and C£1.869.
“ In Fig. 1 the values ofC, are also marked K) for
Asv—n=1.273..., Eq.(4) yields several positive ions: Li(»=0.848), He (1.000),
on-1 1 Al*(1.701), BE(1.729), zn(1.741), Cd(1.794),
cO= - [1+b;8+0(8%)], c1:§52—153+ Fe'(1.833), Mg (1.903), Ti'(2.002), and Ca(2.141) (we

©6) considered only the cases where the valence electron is in the

where §=(v—n)/n, and b;=a;~0.270 atn=1, b;~
—0.459 atn=2, etc. The value€¥=2""?/n! andc,;=0

[
correspond to a purely Coulomb£ n) spectrun? Finally, 1.6
for highly excited(Rydberg states,
v—1 H
co_ sif vy |
© I'(v+1) 127213 0.5+
sirné oY) 69 ¢x 10
Ci=——— v .
! 2m2v?
In the limit »>1 the coefficient, is small numerically and 0 ' 1 ’ > * 3
the dependence dof, on the effective range.; becomes v

unimportant(the same is true for close to integral values i, 2. The coefficient, in the expansior(1) as a function ofv. For
n=12,... ) v>0.7, the scale along the vertical axis is increased by a factor of ten.
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TABLE |. Low-energy parameters of negative ions.

lon K ag I C,.

H™ 0.235 6.17 2.65 1.15
Li™ 0.212 6.6 2.7 1.09
Na~ 0.201 7.1 3.0 112
K™ 0.192 7.1 2.7 1.03
Rb™ 0.189 6.7 2.2 0.92
Fe 0.171 8.4 3.5 112
Cu” 0.301 4.7 1.9 1.09
Ag~ 0.309 4.7 2.1 117

Note The quantities referring to the negative hydrogen ion have been taken

from Ref. 10.

s statg. It is clear that even the zeroth approximation de-

Mur et al.

,...gl
o = W

0.5

FIG. 3. The dependence of 2(12 on «rg (for the ground staje Curvesl
and 2 correspond to the Hulfimeand Breit potentials, and cun& corre-
sponds to a rectangular well.

scribes rather well the results of Hartree—Fock calculations

and has roughly a 10% accura@ven though the expansion
parameter satisfiesr .s~1). The explanation is that numeri-
cally the coefficientg; andc; in (3) and(5) are small. Thus,
we havec;=0.0458 forv=0.75, and itsmaximum value
in the region Kv<= is equal toc,,=0.0236 (v,~1.45).

In the presence of Coulomb interaction, the formulas
become somewhat more complicated:

[ [Ccd)? L
il [ < | —=kvf(v)— s Kkr.s, (8)
1 K

acs 2

les™

The coefficients ot; of the cubic term depend on the Shapewheref(v) is the function defined irfA4). Here, however,

of the potentialJ(r), and|c3|=0.15 for all the models con-
sidered.

Note that the coefficient& have a much larger spread
than theC,.. For instanceA?=0.18, 4.00, 8.24, and 42 for
the atoms Cs, H, and He and the iorf Lirespectively, while
C2=0.854, 1.000, 0.986, and 1.04. The coefficieBis, in
contrast toA, are scale invarianf.e., do not change under
the scaling transformation— ar in the Schrdinger equa-
tion), so that they depend on the shape of the poteNt{a)

due to the smallness of the coefficient (see Fig. 2, the
calculation of the effective range.s by this formula is not
very reliable, and we employ a different calculation method.
The experimental values of the quantum de¥efcrr s states,
listed in Ref. 11, were used to calculate the valuagfby
the Seaton formufd*®

a.=— (27Z) ttanmd,,

after which the range.s was calculated by the second equa-

and not on the depth and range of the potential separately. ljon in (8).

particular, in the Coulomb problenv,(r)=—Z/r, these co-
efficients are independent &f.

Most cases have€, > C&O), i.e., they correspond to posi-
tive values ofr s (see Table), but sometimesC, <C(")
holds(the points in Fig. 1 lying below the solid curven the

cases of the Be ion and the Cs atom, this cannot be ex-

Note that for alkali and alkali-earth elements, the values
of a.s are negative and small compared to the Bohr radius
ag, which corresponds to weak attraction of the highly ex-
cited s electrons to the atomic core. Here, due to the small-
ness of the scattering length, the effective ranggsmay
become relatively large in this connection see form(#a)

plained by the imprecision of the Hartree—Fock calculationsand the formulas that follow in Appendix)BOn the other

while for the other atomsC .~ C(?) within two standard de-
viations.
Using (3) or (5) and the effective range expansibit?

hand, for positive iongexcept Mg') the a., are positive,
which can be interpreted as effective repulsion of the outer
electron by the core. In this case the fractional part of the

we can easily calculate the low-energy parameters, the scafuantum defecfd,} is larger than 0.8note that{J,}~0.5

tering length and the effective range, from the valuescof
andC, . Forinstance in the case whefe- 0 (negative iong

Lt
— _’ a
2¢c2

1
o - —KZI'S,

=k @

Kl g=

which yields the values ohg andr listed in Table I. This
table shows thags>r(, as it should be for loosely bound
(krs<1) systems. Here the effective rangesvary from
two to three Bohr radii and the values of s vary from 0.41
for Rb™ to 0.65 for Ag, which is within the limits of ap-
plicability of expansion5) (see Fig. 3 and19) below). The
asymptotic coefficient€, listed in Table | have been recal-

corresponds to the transformation region for the atomic
spectrum?). The results of calculations are listed in Table II.

Expansions similar t43) and(5) can be obtained for the
moments of the electron density distribution,

a\ _ < 2 @
(r )_fo X (ryredr.
In particular,
1
(r)= 5-{(3v+cy)(1+C1xTcd + O((T0)?)}. (9)

For atoms of alkali elements even the zero-range) ap-
proximation, i.e.r.s=0 in (9), has an accuracy of 10—20%.

culated from the data of Ref. 11 by the method mentionedror instance(r)/{r),=1.021, 1.058, 1.11, 1.15, and 1.20

earlier.

for Li, Na, K, Rb, and Cs, respectively. Thus, the above
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TABLE Il. Parameters of neutral atoms and positive ions.

Atom or ion v acs Fes c® C. c,X 100
Li 1.589 0.490 0.59 1.063 1.0760.03 1.87
Na 1.627 —0.308 2.71 1.060 1.04600.03 1.64
K 1.770 —-0.101 18.4 1.044 0.950.1 0.71
Rb 1.805 —0.070 40.5 1.038 0.940.09 0.52
Sr 1.546 -0.179 24.5 1.065 1.050.1 2.08
Ca 1.492 —0.290 13.0 1.066 1.060.1 2.29
Mg* 1.903 —-0.018 25.9 1.021 1.0250.01 0.13
ca" 2.141 0.056 14.2 0.965 0.97®.03 0.20
Srt 2.221 0.103 9.60 0.942 0.924.03 0.14
Ba" 2.332 0.298 8.09 0.907 1.39.36 0.70

Note As in Table I, the values of scattering lengths and effective ranges are measured in atomic urtits, and
andc, are dimensionless factors.

expansions make it possible to easily estimate the values of g
C, and(r%) for multi-electron atoms and ions. Um=--——

Simple analytical formulas similar t9) have been ob- 2R exp(r/R)—1]
tained for the rms radiué)*? and the higher moments of resembles the Yukawa potential and is often used in atomic
the s-electron density distribution. Allowance for corrections 54 nuclear physics. The bound state appears ag=4g,,
of orderxr s to the effective-range values determined earlier_ 2 (see Ref. @

(see Table Il is important and usually leads to good agree-

(12

ment with the results of numerical calculations. We limit g—3dn

ourselves to two examples: for the ground state of the Li KR= %~

atom we haver)=3.82(3.87) and(r?)>=4.16(4.21), and

for Na we have(r)=4.09 (4.21) and (r?)¥2=4.40 (4.55; n+ xR F(n+1+2«R)

th i 2\1/2 i i i C.= . (13
e radii{r) and(r<)*'< are measured here in atomic units, 2(n+2xR) I'(n+1)I'(1+2«R)

and the figures in parentheses are the values calculated by t

; ; 6
Hartree—Fock methott tAllﬁe s-scattering length and the effective range®are

3. Comparison with exact solutions.Let us examine * 1 1
some potentials for which the Scldinger equation witH as=Ra(g)=2RY, n( —+—,
=0 can be solved analytically. This will make it possible to =t \@70n Gn
establish the limits of applicability of the expansigi3$ and 2 d?(ag)
(5). rs=§R a—2a 2 > T4L(3) |1, (14
(a) For a rectangular welbof rangeR=r, and depthJ,, dg
with g=2U,R? the dimensionless coupling constante  where a(g)=#(1+g)+ ¥ (1—\g)+2C, with ¥(2)
have° =I""(2)IT'(z), and{(3)=1.202(Ref. 16. It only remains to
1— 2/ 11/2 expand these expressions for- 0, but for an arbitrary the
{ («R)?IQ|Y% o : ar
= KR (10 formulas become very complicated. We limit ourselves to
2(1+ kR) the ground state, where
. A . tanJg ~ \/1
a;=R¢, rg T £ i g=1+2«R, g0;=1, C, 2(1+KR)(1+2KR),
Expanding these expressions far—0 and g—g,=(n and(see Appendix B
—1/2)?72%, we obtain 11-16{(3)
5 Ca=—¢, = —0.1525. (15
1 (kR)? [2 g,+2 5
2_(:2:1_"R”L 3 3 P )("R) e (c) The simplest model ofJ(r) is the Breit potential,
x " n which is used to describe nucleon—nucleon interactions at
1 1 low energies and in the theory of resonance nuclear
=1l-krst|z- ZT> (Krg)+---. (1)  reactionst®>?°The potential is specified by the boundary con-
n ditions
In accordance witl5), the expansion in powers @fr ¢ does rx'(r)

not have a termcrg (in contrast to the expansion in powers x(r)=0, O0<r<R; 0] =—g. (16)
of kR). For the ground level,g;=%/4 and cz=1/3 X r=R
—2772=0.1307. In this case there is only orelevel, for whichkR=g>0,

(b) The Hulthen potential and
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1
Ckzﬁeg, a.=(1+ g HR,
29(1+g+g?%3
(1+9)?
This implies that
- 31T ((2k+1)/3)
=D di(krg*, di= 17
9= 2, M e o) (tra
and, finally,
1 -2 : k
2—C2=e 9’=1—Kr5+k23 c(kro)¥, (18)
where  c3=1/6, c,=1/12, cs=—1/120, cg=
—83/1440, ...

plains why the approximatio€,~[2(1— «rg)]~*? main-
tains good accuracy up to values,~0.5 (Fig. 3.
(d) We also studied the delta-function interaction

U(r)=—%5(r—R)

and the separable Yamaguchi poterftatiere are the results
of calculations for the Hulthe potential, the Yamaguchi po-
tential, the rectangular well, the delta-function potential, and

the Breit potential, respectively:

c3=—0.152,2/27, 0.131,3/20, and 1/16 (19

(the values of; for the Hulthen potential and the rectangu-

lar well refer to the ground stateAlthough c; is model-

dependent, we may assume that its numerical smallness is

retained for realistic potentiald(r).
Figure 3 depict<C, 2 as a function ofkr. The straight

Mur et al.

01=—1+p,

where p=R/ag, andag=1/Z is the Bohr radius. For the
general case=n we have, forp<1,

2 3 4
L2 e

3n® nd

n—-1
cO—

K n! ’

C,=Cl?

(21)

where the coupling constant {&i6) corresponding tae=n is

2

2
2 Pt

On=—1+p+ (21'")

3n
Thus, the corrections to the val@® from the distortions of
the Coulomb potential in the<R range begin with terms
«(kR)3. But if the potentiaM(r) is finite for 0<r <R, the
correction is even smaller, of ordekRR)*.
4. Now we study the WKB approximation for the

. The rapid decrease of these coefficients exasymptotic coefficients at infinity:

CWKB=§( 2K> 1

— | ——=(kr) ™"
PREPR

xexpr Kl g— fr (|p(r)|—;<+rZ
t

T _ZJH dr
"% Jo p(r)

(I=0). Here the energy of thes level is determined by the
(modified Bohr—Sommerfeld quantization rule:

dr} , (22

fortpu)dr:(n—m,

p2=—k2—2V(r), (23

in which the phaseyw depends on the behavior of the po-

n=n+1=123...,

dashed line corresponds to a situation where all the expanential at short distances. W (r)«r® for r—oo, then for
sions terms in(5) beginning with r¢)® are dropped. This attractive potentials we hate
simple approximation proves to be remarkably accurate even

outside thexr <1 range, so that in many cases we can limit E a=0,
ourselves to the first-order correction g . y=1 4 (24)
(e) The formulas become much more complicated when (a+1)/12(a+2), —2<a<0.

there is Coulomb interaction. We limit ourselves to the Breit

model (16), for which In particular,y=0 for potentials with the Coulomb singular-

ity at zero(Yukawa, Hulth@, and other potentialsand y

Xo(1)=21"".Y2C, W, 15(2Kr) 0(r —R), (200  =1/4 for potentials that are finite at zero.
In Egs.(22) and(23), p(r) is the quasiclassical momen-
1 . * W2, (%) dx= 1 c02 tum, r, is the turning pointT, is the period of radial oscil-
2c2 per U2 EX= 7] lations of a classical particle, arix)= £(x,0), where
2xR Xx+afllzefx
x{l—clf wz(x)dx], (20) ¢(x,a)=y2m ['(x+a)
0
wherew=I"(1—v)W, 15(X). _ a4 @ B
With the Breit model it is convenient to examine the 1 2xjL 24)(2Jr X7 25

special casez=n, so that the energy of thes level is the

- _h? P T _
same as in a purely Coulomb field. Fo=1 we have with a,=b"~1/12, a,=3a;+4b”~b, andb=a-1/2.

The fact that(22) containsé as a factor reflects the need
to modify the Kramers matching conditions near the turning
point in the case of shallow levels. According to Refs. 23 and
24, this is because the quasiclassical region does not overlap

2
Ci=[e #(1+2p+2p")] Yo=1-3p—p*+ .-,
(21)
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the region near point; where the linear expansion of the
potential is valid(which is used to derive ordinary matching
conditiong). As a result, the quasiclassical wave function in
the subbarrier region>r, should be multiplied by (2\/u)

if the potential V(r) decreases as exppur) at large dis-
tances(for potentials with a Coulomb “tail” at infinity,
u=0 and§(»)=1).

We illustrate the expressio22) by the Hulth@ poten-
tial, which allows an exact solution for states wltk 0. In
this case the quantization rui23) yields’? (as it does for the
Coulomb potentidP) the exact spectrum aflevels[see the
first formula in(13)]. From (22) we obtain

WKB _ _ A1 n
ChH®= £ -1) \ g =g "

S S 26)
(A=Y On’
_Cpl®  g(n\)  &(n+2kR)

PEC T E N En) @)

The approximatiori22) has a high accuracy fer>1 and for
an arbitrary level energy

kR 1 2

Pr= 1t Gt 2eR) T 7on2

kR
n+2«R

for shallow levels this approximation has a high accuracy fo
alln=1,2,... [owing to the factor(2«R) in (22)]:

pn=1+d;kR+d,(kR)?+ .-, kR<1,

1
d;=2[Inn—¢(n)]— o

1

d ——d2+2n—+1—2 ! 28
=50t &' (n) (28)

(d;=0.154 andd,=-0.278 atn=1, d;=0.041 andd,
—0.039 atn=2, and d;~1/6n*> and d,~—1/3n® for
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2e

)

cXVKB:(sw)—”Z(— (30)
(see the paper by Ammosat al.® in which n*=v is the
effective principal quantum number and the asymptotic co-
efficient C«, differs from our coefficient by a factor of
two). For v=1 this expression is in good agreement with
C®, as Fig. 1 shows. However, as-0, formula(30) does
not become expansia®) [in contrast to(3)], which expan-
sion is valid for loosely bound states in a short-range poten-
tial. An advantage of3) is also that(3) allows for the cor-
rection from the effective range of the system, which, in
particular, makes it possible to find the parametgrandr .
(see Tables | and )l

5. The casd #0. For arbitraryl the asymptotic behavior
of the normalized wave function can be expressed by the
formula

g

3
(1)~ 23,0 | € k) i
(31

For the lowest state with angular momentlirim the Cou-
lomb problem,V(r)=—2Z/r, we havé C,,=1 for any|
=0,1, ... ,which explains the choice of tHedependent fac-
tors in(31).

For I=1, the solution of the Schdinger equation that
decreases at infinity iW,,,Hl,Z(ZKr)ocr*' whenr—0, so
IIhat the zero-range approximation is not valid. A fairly gen-
eral result can be obtained for the case where there is a
shallow| level in the “inner” potentialU(r). When thel
level appears, its wave function decreases at infifdte to
the centrifugal barrier,1#0) and remains normalized:
xi(N=Ar ~'r>r,. Applying the matching procedure in the
region ro<r<min(x 1,ag) and allowing for the coupling
1/AZ with the effective range of the systethye get
ri+1-» |°

217 (14 1)

21-1
2 <

C2=(21+2)!

I=1, (32

Nl

whereT, is the value of the effective range at the moment

n>1). Even in the least favorable case of deep levels wgyvhen thel level appears. Note thactz"1/7| is a dimension-

have p,— 1/£(n), which amounts to 1.042, 1.028, and 1
+0.08% ! for n=2, n=3, andn—, respectively.

less parameter, withr;<0. For instance for a rectangular
well of rangeR,

Similar results were obtained for other potentials. For

instance, for V(r)=—g/2R’cosH(r/R) we have kR
=g+ 1/4— Jg,+1/4, 9g,=2n(2n—1), and

_[&2(n+«R),1/2)
B £(2n,1/2)

Pn (29

which vyields p,=1+ kR/48n(n+2«xR)—1 for n>1, and
pn=1 at the moment when thes level appears, while in the
case of deep levelsk{—»=) we havep,—[£&(2n,1/2)]"*?
=0.9898, 0.9948, and 10.010h" ! for n=1, 2, andn

_ Bl Rl*2|

(B1=3, B2=15, B3=315,
short-range potentials.
There is an important difference betwe€) and (32):
while in (3) the first term is universal and is determined
entirely by the Coulomb interactioand the energy of the
level), (32) incorporates the effective range, which de-
pends on the short-range part of the potentidl). For
states withl # 0 there is no analog of expansi¢®) that is

T (33

...), andsimilarly for other

>1, respectively. These examples show that the quasiclasdisensitive to distortions in the Coulomb potential at dis-
cal approximation modified in accordance with Refs. 22—24ances ~ry<<ag. Note that the presence of a shallblevel

is not only asymptotically exact in the limit—« but re-
mains so even for moderate quantum numivessl.

Finally, for V(r)=—2Z/r we have £=1, the turning
pointr,=2v?/Z, and

(not a Coulomb level, i.ex+# n) already points to the trans-
formation of the atomic spectrufthe Zel'dovich effeck for
states withl #0 (Refs. 28 and 2P Formula(32) belongs to
this case.
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FIG. 4. Effective range§n at the time thens level
appearsg=g, . CurvesH, Y, C, E, andG refer, re-
spectively, tav (x)=(e*—1)"1, e ¥/x, 1/cosBx [the
potential is written in the form(C1)], exp(—x), and
exp(—x?). In the caseE the numerical values of the
ranges are reduced by a factor offive. The dots indi-
cate the results of numerical calculations.

I 2 345 10 1520 S50 100 200 1 2 345 101520 50 100 200
n n

6. The expansion$3) and (5) relate the asymptotic co- coincide with the characteristic rangg introduced in(2)].
efficient at infinity to the effective range of the system. If the The difference * x3(r) becomes exponentially small for
explicit expression forC, is known, its expansion fok >r, , where

—0 yields the value of range"r',nzrs(gf gn) at the time (ur ) =Ing,—2(a+B—1)InIng,+- - -
when thens level appearsand also the first correctionx).
Using (13), for the Hulthe potential we obtain For n>1 the quasiclassical approximation can be used.
- ~ N Henceg,>=n? and, forro<r<r, ,
rs(g):rn_ﬁr’\Krn+"'a 9—0n, (34) 1
where |xO<r>|5[—U<r>]1’4~gn1’4<ur>ﬁ’2exp[zwr>“
=B8R Ba=4[y(n+1)—§(1)]-n"". (35 Inn r)]e
These expressions can also be derived by expanding the ex- xexp — |10 r, <1 (39)

act formula(1’4) nearg=g, . For the ground level we h?"e The integral in the Schwinger—Smorodiriskirmula (A9) is
B.1=3 and =719, for n=2 we have,=5.5 andB;  oncentrated at distancessr, (here the transient region
=79/121, and for highly excited states we have Ir=r,|~r, /Inn is narrow forn— ), which means thak

~ 1 1 ~ at+tpB—-1
r.=4R Inn+C+R—E+-~>, rn=2(““)’“,ul[(lnn)1’“— ”
1 ? (1-a)la
Bl=mp ———————+ ... . (36) X(Inn) Inlnn+---¢. (40)
"2 24Inn+C)2

In particular, for potentials with a purely exponential

Similarly, for U(r)=—g/2cosR(r/R h . ) : .
imilarly, for U(r) g/2coshi(r/R) we have (a=1 andB=0) “tail” at infinity, this asymptotic behavior

Ta=2R[#(2n)+C] agrees with the exact formul#35) and(37), where the ex-
pansion is in reciprocal powers of:
1 1
=2R Inn+(C+In2)————+~--1. (37) _ k, k
4n 4802 Fo=dp InN+k0+Wl+N—22+-~ : (42)

We will show that the logarithmic increase in the effec-
tive rangeq , for highly excitedns states is a general prop-
erty of short-rangébut not finite potentials(see also Fig. %
Suppose that

whereN=n-— v, with the constanty, which dot depend on
n, defined in(24). For instance, for a potentials with a Cou-
lomb singularity at zerde.qg., the Hulthe potentia), y=0
andN=n, while for potentials that are finite at zeld=n
—1/4. Closed analytical expressions can be obtained for two
coefficients ,k, andk; (see Appendix ¢
On the other hand, the Yukawa potential kas 1 and
B=1/2, so that the asymptotic formulgd0) contains a
double logarithm: see curvé in Fig. 4a, which shows that
Xo(r)=1—gna ?(ur) 2@tF-D for the Yukawa potential the asymptotic behavior specified
by (40) sets in much later than for potentials with a purely
Xexp{—(ur)“p+---, r—o (383 exponential “tail” (curvesH and C). Figure 4b shows that

[the parameter. ! refers to the asymptotic behavior of the the increase in the effective rangesfor the Gaussian po-
potential U(r) at large distances and does not necessarilyential (#=2) is slower than atr=1 and corresponds to a

%_1 2 —-2B _ @ >
U(r)~==5gu(ur) = exp{—(ur), r>ro. (39

Then at the moment when thes level appears, the wave
function of this level, ag —», is
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T . Inn dependencéhe results depicted in Fig. 4 by points provided in doin_g the num_eric_al calcylations and in prepar-

were obtained by solving the Scldiager equation numeri- N9 the manuscript for publlcatlon.. This work was made pos-

cally). sible by a grant from the Russian Fund for Fundamental
Thus, the effective range of thes state(atg~g,) “ex-  esearchGrant No. 98-02-17007

pands” logarithmically with increasing. We note a certain

similarity between this result and the well-known Froissart

constraint in high-energy physic&3! APPENDIX A:
7. We concludw with some remarks. The expansibn . ' '
is valid only in the resonance case;,<1 and|ag>rq, i.e., To derive effective range expansions we note that the

in the presence of a shallow levgeal or virtua) in a short- ~ wave function of the shallovg level in the Coulomb field
range potential(r). As for (3), the above condition is not V(r)=—Zr"'+U(r) distorted at small distances $r,
necessary for this expansion to be true, since the particles aréx ") has the form(2), where

coupled not byU(r) but by the Coulomb attractionZ( 1

>0). As(3) shows, the correction 6% contains the factor T'(1—»)W,, 1/(2«r)=wW(r)=v(r ,KZ)—Epf(V)U(I’,KZ),

c,. For v>1 we havec;*v?>—0, which ensures that the

zeroth approximatiorC,~C{” is accurate in the case of AD
hlgh‘:’?if::f?ié?::;jremains small in the region~1-2, u(r, <%= 77(p)+%"2r277(p)+o((’<r)4)’ (A2)
to which. 'Fhe .Iarger fraction of t.he states of neutral atoms 1

d o ors brgsss .3 Housw i) i B0, s
S s s ST DRSS 1)y, s T,

=rg, but actually the reason is that the coefficients in the
effective range expansion become anomalously large.as v=Z/«=(kag) ', p=2r/ag, ag=1/Z is the Bohr radius,
—0: regxrias,, etc.[see(B7)]. This case must be exam- andW,, 1, is the Whittaker function, ang(r) is the wave
ined separately. As implied b§21), here the correction to function of the system corresponding to zero energy; here

C(® is small but does not vanish at=n. We have written

r
the final expression for the expansi@) in a form that is o(r)=~&(p)— a—n(p), r=ry. (A5)
valid for all v>r, including the values of the parameter cs

close to the integral values=1,2,3 ... . The functionsé, 7, etc., in(A2) and(A3) can be expressed

Finally, we note that an expression of the fofB) for  in terms of cylinder functions, with&(0)="¢(0)= 7(0)
the asymptotic coefficient of the wave function also arises I_70)=1. For instancé® 7(p)=p Y23,(2Vp) and

the two-channel problem with Coulomb interaction in one 12

channel and short-range interaction in the other. These probg—(p) o *Ny(2Vp), so that, ap—0,
lems were studied in Refs. 32 and 33 by emplgying th_e ex- ( )=1—E+p—2+ o

ample of a proton—antiproton atom in which thp andnn ne 2 12 '

channels are coupled because of strong interaction at small 1
(r~ro<apg) distances. Here the problem effectively reduces  ¢(p)=1—plnp—(2C—1)p+=p%lnp+---,
to a one-channel problem, with formulé® and(4) remain- 2
ing valid if the parameter in (3) is replaced witf

- 11
. n(p)=1=Zptop*+- -,
rcs_>(1+P2)re_P2(2A) v2 12" 24

o33/

wherea, and a, are the scattering lengths with isospins 0
and 1,A= \/Zmn(mn—mp)wlmfm‘l, re=rq,;=ro, are the 12 34 ™
effective-range matrix elements, apd is the relative prob- n(p)~a "p~sin 2\/’;_2 '
ability of finding the system in than state within the range

of ngclear forcegwhat is important is thgd:l(v) retains its £(p)= 771/2,)1/4(:05( 2\/’;_Z>’
previous value(4)]. However, the question of whether the

coefficient of the next termo{«2) in the expansion vanishes etc. The functionf(7) in (A4) enters into the equation that

was not discussed in those papers. determines the spectrum of shallow atomic levels in the Cou-
The authors are grateful to I. L. Bgman, N. B. Delone,  |gmp problem with short-range interactioh3®

B. O. Kerbikov, V. P. Kranov, L. B. Okun’, and the re-

viewer for discussions and useful remarks, and to S. G. (Z)

Pozdnyakov, A. V. Sergeev, and M. N. Markina for the help K

1 1

1 1 2 ~ 1 2 1 2
1 _+__2A>] | 4 Ep=1-3pnp+35(2-3C)p+gpinpt - (AB)
0 1

Q a

(C=0.577...)and, aspp—»,

1 1
—_ 4L -2 4
= acs—i— > K restO(k™), (A7)
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wherea.g andr . are the nuclear Coulomb scattering length APPENDIX B:

and effective rang&~°in particular,

rcszzf [
0

2

§(22r)—aL77(22r) —QDZ(I’)] dr (A8)

(in view of (A5) this integral converges at distances

r~rpy). When thens level appearsa.s=« (if Z#0) or
a;,=x (if Z=0), and(A8) becomes

?cszzf:[f%zzn—so%(r)] dr,

"r‘s=2f0 [1-x5(r)]dr. (A9)
This formula was obtained by Schwing®r and
Smorodinski;®’ see also p. 553 in Ref. 1. A tilde indicates
guantities that refer to the time at which the boundtate
appears.

By comparing(Al) and(A5) and allowing for Eq(A7)
we find that the functionsi(r) and¢(r) are matched in the
region ro<r<min(x !, ag). The normalization condition
Joxi(r)dr=1 yields

22T (1-) frl 2(r)d +f°c ’(r)d
— = r r Wo(r r
KCi 0 ¢ ry
Jow

0

—mw%r)

where we have use(A8) and taken the matching poing
from the specified region. Equatiot&l), (A6), and(A7) for
r<r, yield

(r)dr—2rgg

5 r
-5 7
Acs

2
}dr,

(A10)

r3

3acs

r 1 ~
g_a_ EKZ rzg /A ] +O(K4),

CS

n+

w(r)=(

so that the last integral ifA10) is of orderxzrg and con-
tributes nothing to the terms («ry)?2 in the expansion of

C.?. Since
joe) . 2
’ ar
v+1
2 }’ (A11)

for kro<<1 we arrive at(3). Note that the first two terms in

this expansion have already been obtained in the theory of

Coulomb systems with short-range interacti@madronic

atoms223. There a cruder method was used, however, and it

was not understood that the terms?inr, r?, andriinr
(which actually exis in the expansion of Coulomb radial
wave functions ag—0) always cancel out without a re-

mainder, in view of which the terms not taken into account

in (3) are of order krg)°.

Mur et al.
In the case of ais wave,
f(k)+f*(k 1 1
k cotdo(k)=— M ——+orgk2+ -,
f(k)—f*(k) as 2
(B1)

where oy(k) is the phase ofs scattering, andf(k)

=|f| exp(—i&) is the Jost function. The Schiimger equa-

tion with =0 and potentia(12) has exact solutions, which
can be expressed in terms of the Gauss hypergeometric func-
tion. By normalizing the discrete-spectrum wave function we
arrive at(13), and forf(k) we havé

©

(0-TI (1_ g )_ I'(1-2ikR)
B0 1 Rn—2ikR) )~ T(1-ikR+ Vg (kR?)
1

X . B2
I'(1-ikR—+Jg—(kR)?) (B2)

Expanding this expression with— 0, we arrive at formulas

(14) for the scattering length and the effective range in the

Hulthen potential. For the functiom(g) introduced in(14)

we find that

a(g)=mcotmz+2[§(1+2)+Cl+ (1+2)*
=z 1= 2 an”, (83)
m=1
where z= \/a—l, a,=1 atm=135..., a,=2{(m+1)

—1atm=24, ..., and(s) is the Riemann zeta functidf.
We transform(14) into

!

2
_ T lhae 1 _hr2 _ 2
=3 b+b(1 b )+1+ 16£(3)b° ;R (B4)
where b=1/la=z—7>+2z3—2cZ*+4c2+---, b’'=db/
dz, andc=2—-{(3). As aresult we have
re 1
§:3—7KR+ 5[41—16§(3)](KR)2+ (B5)

and for

1 n+1l__ n
22 =1- n}) (—1)"(2"1-1)(«kR)
we have the expansiofb) with the coefficientc; given by
(15). Here, as expected, the term quadratic in the effective
range is not present i(b).

For short-range potentials we have the following expan-
sions at the moment when times level appearsd—g,,, n
..) wehave

>, Bi(9=an),

l

R E (-G, = (86)

and near the zeros of the scattering length; g,,, we have

as . R .
R= S 5= 2 Ao’ (B7)
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with 0<g;<9,<0,<g,<--- . For instance, for a rectan-

gular well \/Ej_nz(n—1/2)w,

(B8)

and the values o, can be found from the equation tég
= /g, from which it follows that

1
VOp= n+§ W_E—’_.“ (n>1),
_1 _1 1 1
=3 @=g| 1 5g |
B ! : B 1+ (B9)
-2 3ai 3 —1 3 gn,....

For the Hulthe potential,

-, - -1 3
y a1=2n, CYOZEBOZZ[I/I(”)‘FC]"‘%

gnh=n
(B10)
For highly excited statesng>1) we obtain

~ 1
a0=2(lnn+C)+ﬁ+~-~,
~  (Inn)? 1 2C 811
=T +m+"', (B1Y
R T Er TR

2(Inn)2 (Inn)3 2n? 812
g~ n o ®T2T 5 BTy (B12)

When the coupling constant satisfigs-g,, the scattering

length vanishes, while the effective ranggg) has second-

order poles? and it may become eithet = (say, for the

Hulthen potentia) or —oo (rectangular wejl This explains

the presence of the corresponding curves in Fig. 3.
Finally, for g—0 we have

%:_J—; g, %=j;lﬁ{g’l (B13)
For instance, for a rectangular well we have
224+3-2 6
aj'=wg(2j+2), ,8’,125, (Bl4)

(@1=1/3, ap=2/15, a3=17/315, etg, and for the Hulthe

potential we have
a/=27(2j+1), BL,;=4{(5)[{(3)] *=2.871(B15)

(here we have used™=(—1)"*n! {(n+1) forn=1).

Mur et al. 295
APPENDIX C:
We write the short-range attractive potential
U(r)= J (r =—U,f C1
(r)= PN (ur), (CY

where R=r is the range of the forces, and the parameter

w1 refers to the asymptotic regiorsR, in which U(r)

—0. The functionv (r/R), or f(ur), specifies the shape of
the potential. We impose the condition
f(x)=e *+0(e ™), A>3/2, (C2

asx— oo, which ensures the convergence of the intedyah
(C4). It is common practice to assuniR=u "1 andv(x)
=f(x), but this is not always convenie(d.g., in the case of
the Woods—Saxon potentjal

Using the WKB method, we can derive formulas for the
expansion coefficients ifd1):

1
ko=C—=InJo, ki=5—Jo(1-Jy), (C3

whereC=0.5772...

1 (= 1 (= - y
Jo=;f0 VEo dx, Jl=§fo ([FO0] Y2 —e?) dx
(Ca)

(see p. 147 in Ref. 38We discuss several examples. For the
Hulthen potential(12), »~*=R and

N=n, ko=C, k;=1/4,
while for v(x) = 1/coshx we getu~'=R/2 and
N=n—-1/4, ky=C+In2=1.270, k;=—1/4. (C6)

These values fully agree with the expansid&6) and (37),

which follow from the exact formulas far,. For the expo-
nential potentialu~*=R and

N=n—1/4, ko=C+In(m/2)=1.029, k;=1/7>
(€7
(the difference in the slopes of the curves in Fig. 4a can be

explained by the different values of the parametdn these
cases Finally, assuming that

is Euler’s constant, and

(CH

f(x)=(e*+a) !, —l=<a<w, (C9
we have
2
JO=;¢(a), Ji=a[¢(a)— (1+1+a) 1],
~ arcsinf/—a/y—a, —1<a<0,
$@=| g-121n(Ja+ JT¥a), a>0, (€9
with
mla—+\1l+a+---, a——1,
d(a)=4 1—(1l/6a+(3/40a’+- -, a—0,

(1/2a"YIn4a+1/2a+-- ),

The family of potentialgC8) includes the Hulthe po-
tential @=—1), the exponential potentiab&0), and the

a—o,
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Woods—Saxon potential known from nuclear physies (
=exp(uR), with R the nuclear radius, and ? is the diffu-
sivity of the edge of the nucleys In the latter case,

-2

2In2
2qr2 1+ —— +0(e™ ")

On=n?m p=puR>1,

—Inp+0(1), (C10

‘ 1
0~ 2 p
In the limit u— <0 the potential becomes finita rectangular
well of rangeR) and the term iff41) leading to a logarithmic
increase in the effective range vanishes.
In conclusion we note tha#l) is usually a divergent
series. For instance, in the case of the Huitpetential, the

expressions i35) imply that

kj=—] 'B;<(—1)Aj—1)! (2m) 7], (C1y

i.e., the coefficientgwith evenj) increase as factorials. The
same is true of the example specified (8Y).

j—,

*E mail: karnak@theor.mephi.msk.su
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This paper discusses the magnetohydrodynamic flow of a supersonic plasma flux around a thin
conductive body. The specific features of the inductive interaction of the body with the

plasma and the process by which plasma waves are generated when the body rotates are
investigated. The structure of the magnetic-field perturbations and the distribution of the plasma
currents that result from the inductive interaction are studied. Expressions are obtained for

the forces that act on a plate and the torques produced by these forces. A simple model is used
to take into account the kinetic effects associated with the finiteness of the absorption and
emission currents that transport charge from the plate to the plasma and back. A surface-
potential distribution is found that can substantially accelerate particles in the neighborhood

of the body. ©1999 American Institute of Physid$1063-776(99)01202-0

1. INTRODUCTION ideal magnetohydrodynamics by a current flowing over the
surface of the bod§? and the structure of the transition layer

In ordinary gas dynamics, a moving body is deceleratedhat determines how a current flows from the plasma to the
by the direct interaction of the incident gas flow with the body and back. The latter problem is associated with the
surface of the body. When the body is in supersonic motionpossibility that the surface can emit and absorb charged par-
this interaction causes a shock wave to be generated. ticles of the plasmé’ It has a largely kinetic character and

The picture is very different in a highly disperse magne-strongly depends on the physical structure of the body
tized plasma. Direct interaction of the particles with the sur-around which the flow occurs—this can be, for example, a
face of the body is less substantial here. On the other hand,solid surface, or even a fairly dense near-surface collisional
new form of interaction appears, associated with the inducplasma(like the lower layers of the ionosphere or the lower
tion of an electric field and currents on the surface of theregion of the solar corona Significant longitudinal(i.e.,
body. This interaction electromagnetically decelerates th@long the magnetic fie)delectric fields can appear in the
body and causes an Alfuewave and other magnetohydro- near-surface emission and absorption layer because of induc-
dynamic(MHD) waves to be generated in the plasma. SucHive interaction, causing the particles to be accelerated and
electromagnetic interaction of conductive bodies with a maggenerating high-frequency radiation as well as other auroral
netized plasma has become known as inductive interactionprocesses.

Drell, Foley, and Rudermarwere the first to indicate This paper will discuss how the rotation of a body
that inductive interaction could accompany streamline flowaround which a plasma flows affects both the generation of
around a body under ideal magnetohydrodynamic conditiondYlHD waves and the structure of the near-surface layer.
The detailed theory of this phenomena was developed by
Gurevich, Krylov, and Fedoro¥.They showed that it can
play a substantial role in a plasma in outer space. Recently -, 5\v AROUND BODIES IN IDEAL
obtained experimental data confirm that it is important toyacNETOHYDRODYNAMICS
consider inductive effects® A number of studies® have .
been devoted to applications of the theory to various specifié-1- Fundamental equations
problems, for example, the Jupiter—Ilo interaction and the Let us consider the flow around a rotating body by a
motion of a highly elongated conductive filament in the iono-supersonic flux of plasma with a frozen-in magnetic field. To
sphere(theta ring. We should emphasize that only transla- do this, we investigate the inductive interaction caused by
tional motion of the body around which flow occurs was the generation of a current on a body with finite conductivity.
considered in all these papers. Specifically, in a coordinate system connected to the

At the same time, bodies around which a space plasmmoving body there is an induction electric field
flows, for instance planets, rotate, and this rotation can sub-
stantially affect the inductive-interaction effects. This paper vXB
is devoted to an investigation of this question. E=- ¢’ @

It should be emphasized that the actual process of induc-
tive interaction of a body with a magnetized plasma consistsvherev is the velocity at which the plasma flows relative to
of two independent problems: the generation of waves irthe body. The electric current that appears in this case in a

1063-7761/99/88(2)/12/$15.00 297 © 1999 American Institute of Physics
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FIG. 1. Spatial disposition of the plate relative to the magnetic field. X z
du, 1 dp 1 (db, ab,
ax M ox MA( X 9z 0, (10
body with finite conductivity perturbs the external field and
. U : dby 1 Juy
the plasma velocity, resulting in the generation of MHD — - — =0, (11)
waves. X Ma dz
To describe steady-state streamline flow, we use the dby, 1 au,
equations of ideal magnetohydrodynamics: i M_A EIO’ (12
divpv=0, divB=0, cur(vxB)=0, 2
db, 1 9u, M dp
———————=0. (13

1 1
(v-V)v=— —gradp— ——BX(curlB). 3) X Mp dz Mp dx
p 47p

The boundary conditions on the plate are determined
In order to investigate purely inductive effects, we as-from the following considerations. Naturally, the normal

sume that the body is an infinitely thin circular plaeof  component of the plasma velocity at the plate must vanish:

radius R, located along the incoming flux, with normal

n=n,e,+nze;. We assume thag; is directed along mag- (u-n)|s=0. (14

netic field By, which in turn has no component along the Then, because a surface current is present, the magnetic field

translational velocity of the plate. Unit vectey is directed  parallel to the surface of the plate experiences a jump:

along this velocity, whiles, forms with them an orthogonal

coordinate system. Here in general we consider a plate tilted {nxb}g= . (15)
relative to the field, i.en,#0. It follows from this that field cMaBg
Bo has no component along theaxis and that thg axis in - Here {f}5 denotes the jump of the value 6fas one goes
general does not lie in th? plane of the pl@;ee Fig. 1 through the surface of the plate, ahis the surface current.

The surface conductivity. of the plate is written as Finally, the tangential component of the electric field is also

s S continuous:
S P
_( -3, zp)’ @ E=-civxB)=-c By,

where 3, is the Pedersen conductivity, ad, is the Hall ~ (this equation is valid because the normal velogifyvan-
conductivity. isheg. However, the normal component of fieRl is also

The structure of the perturbations is studied in the mosgontinuous, and hence we find that the the tangential velocity
natural coordinate system, connected to the center of thef the plasma is continuous as one goes through the plate. In
plate and moving along with it. In this system, the unper-the general case of arbitrary tilt of the plate, this means that
tgrbed values of the field, the velocity, and the plasma den- {ugs={uy}s={uz}s=0. (16)
sity are

Under the conditions

Bo=Boes, Vo=voer, p=po-

1<M <M (17)

The perturbations of these quantities are sought in the form
the equations split, giving three waves: an Aliveave, and

B=Bot Mab, V=Vot Mal, p=potMp, ®)  fast and slow magnetodynamic waves:
where duy 1 dby 0 dby 1 duy 0 19
J ——— 7 =V, —— 7 —=U,
M=volvs, vs= a—p) . Ma=vglva. X Mp dz X Mp 9z
Pls au, 1 (b, db ab, ab,
i N I e N s Yy Z_p (19
The corrections are assumed to be small, so that the problem 5x " M,| gy oz Ty oz '

can be studied by linearizing the MHD equations, E@S.
and(3), with respect to these corrections. As a result of lin- 9Py 1 duy, b, M dp 20
earization we find X Mpu 9z "X Maox
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dp 1 du,
ox M gz

du, 1 dp

x M2 0. (21

The accuracy of this system is the same as that of the
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Here the rotation of the body causes the presence of the
second term in Eq(28), proportional to the angular fre-

quency().
The solution of Eq(27) with the boundary conditions of

system considered in Ref. 2, which describes the inductioeg. (28) can immediately be written out:

effects caused by translational motion of a plate. Our paper
investigates inductive-interaction phenomena caused by the
rotation of a body. As we can see, the basic system of equa- bx:§ —fp(X7,y),  npy+n3z<O,
tions (18)—(21) maintains its form in this case. The introduc-

1 [ foe(xTy),  nay+nsz>0,

(29

tion of rotation of the body only changes the boundary conwhere

ditions of the problem.

In what follows, we shall assume that the conditions
given by inequalitieg17) are satisfied, which allows us to
consider the excitation of the different types of waves sepa-

rately.

2.2. The Alfve n wave

For the Alfven wave we have Eq18) with the boundary
conditions

{bx}S:47T|y/CMABOV {UX}SZO. (22)

We shall write out in detail the expression for the surfac

current. To do this, we introduce théy’z’ coordinate sys-
tem, with thex’ axis along the direction of motion, th&
axis normal to the plate, and th@ axis in the plane of the
plate and perpendicular td andz’. In this system, field,
has the form (®,By,n3Bg). The velocity of a point on the
plate with coordinatesx(,y’,0) is

V=006 +QXr’.

A surface induction field of

-+ —

Ny +ngz
XT=XFMpy——.

N3

It can be seen that a nonzero solution exists only inside
the Alfven cylindersF given by the condition
2
+ y
(X*)2+ —= R?,

N3
and that the perturbations characteristically are communi-
cated along the magnetic field, as expected for an ordinary
Alfvén wave. In marked contrast with the case of purely
translational motion, the magnetic field in the resulting solu-

€ion is no longer constant inside the cylinder, but depends

strongly on position.
The perturbation of velocity, in this case is written in
the form

n2y+ n32> O,

Ux= N,y +nzz<0. (30)

1 fp(X+,y),
5] fpxy),

To study how rotation affects the flow pattern, we con-
sider the structure of the currents in space. Their volume

vXB Bona( Qx ) (23 density equals
¢ ¢ \Qy-ug . C(O by abﬂ @D
is generated at this point. The result of this is the surface 1= 4\ dz’ ay )’
current Substituting Eq.(29) into this formula, we find that a
- Bong[ 2p X+ 2pQy" —2pvg homogeneous volume current
I=3E=— , . (24
c Epr _EhQX—EpUO ) thna Q (MM A3 =S ) 32
+ = y Y M na n -
Sincey’ =y/n5, we finally obtain I 2c ' 2cM, " 2TAThTSp
Bgns y exists inside the cylinder. The presence of a nonzero volume
=== 2pQXJFEhQn_s—EhUo : (25 current inside the Alfe cylinders fundamentally differs
from the case of a nonrotating plate, where there was no
Bons y internal current and the entire current flowed along the sur-
y="¢ Ean—a —ZpQX—2 o] . (26) faces of discontinuity, passing through the edges of the plate.

By simple transformations, we obtain from Ed.8) to-

gether with Eq(26) the following boundary-value problem:

9%b,

ox? M3 922

1 4°b,
=0, (27)

A7 QR 47
{bx}s:fp(XaY): ?Evanf{' U_O 2

c

X (28)

y X by
Epﬁ—n32h§ ) E =0.
S

The presence of an internal current is a direct consequence of
the rotation and the resulting dependence of the internal
magnetic field on the coordinatésee Ref. 2

It can also be seen from E(B2) that, owing to rotation,
Alfvén waves are generated not only because of the Pedersen
conductivity %, but also because of the Hall conductivity
3. This is true only when rotation enters the picture; it is
absent for purely translational motion. The volume current
that flows inside the Alfve cylinders and the surface current
on the plate are closed through the surface of the Alfve
cylinders, where a delta-function current flows, associated
with the magnetic-field jump at the boundafsee Fig. 2
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== L,fa(fl,fz)dfldfz

27Tn3

v O(X— 1= M V(Y — €2)%+ (z+n,€,/n3)?)
V(x— &) 2= MA[(Y— £2)2+ (z+nyé,/n3) %]
(39

whereS’ is the projection ofSonto thexy plane, and(z) is
FIG. 2. Volume current inside the Alfvecylinders:(a) side view,(b) front the Heaviside function. It can be seen that a nonzero solution
view; F is the surface of the Alfve cylinders. exists only within the Mach cong?+ 22<X2/Mi.

Because the boundary conditions are linear, we can rep-
resent the solution as a sum of two part8,and ™, caused

: . . by translational and rotational motion, respectively. Let us
Such a singular current appears because in the ideal case Y\ﬁé/estigate the asymptotic behavior of these parts. For a non-
are considering currents can be transmitted through thF

: : . . : tating disk, i.e., forQ}=0, an explicit expression can be
plasma with as large a density as we like. This assumption O(fbtained fory? in the approximatiorR<x,y,z with (x,y,2)

ideal magnetohydrodynamics i_s of course not valiq in an ing fairly deep inside the Mach cone. In this case, by ex-
actual plasma, where the velocity of the charge carriers anganding the expression under the integral in powers of
their spatial density are limited. This circumstance will beg Ix,£,1y.£&,17 and integrating, we find that

112621 Y4,62 ’

taken into account in what follows by considering the kinetic

effects associated with the fact that current is transported o 20,3, mR?N3
from the plate to the plasma via electron emission and ab- ¥ (X,¥,2)= —F—5=., (40)
CoVXS—Mar

sorption, with the corresponding currents being finite.
wherer = \y?+ 72.
The magnetic-field perturbations have a toroidal struc-

2.3. The fast magnetosonic wave ture:

To consider the fast magnetosonic wave, we use the sys- 2,3 hsznng\

0
tem of Egs.(19) and (20) with the boundary condition fol- by= c2(x2—M2r2)372 Z, (42)
lowing from Eq.(25): A
2 Rn;M3
My L (b, dby| by b, s bg:_lz)AEth—zzg/;\y- 42)
ax  Ma\ldy 9z 7 oy 9z (33 C(X"=Mar)
Starting from these expressions, it is easy to analyze
dby 1 duy _Mag (34 the structure of the currents. Specifically, we find
IX Mp 9z P="M Pz b=curl(ye;), while
cMBg
4 QR 47vp i= curl curk( e;)
{ngb,—ngby}s=fg(x,y)= ?Ethn:;‘f' U—O 2 A 1
< _CMaBo| Py Py Py Py “3
X Epn3§ +2h%) ) {uy}s=0. (35 ~ A4m 32y 9%z ' adydx "9zax |’
) ) As a result, we see that there is no toroidal component of the
We introduce a functions(x,y,z) such that current, and
2 2 2 vaShTR*NM 3B,
= = = _ 0 __ 2 2.2
by 7z Py Uy=Ma—. (36) JX_ch(xz—Mirz)W(Zx +Mar?), (44)
Then Eqs(33) and(34) yield the two-dimensional wave . vAEhwR4n3MiBo
equation ir= PRENTALS (45)
2mc(x2—Mar?)°?
M2&2_I7//_ 52_‘:”_ ﬂ—o 37) The equation for the current linedx/dr=j,/j, looks
A2 2 2 i
X ay dz like
dx  2x2+M2r2
n a—l//+n % —f hd =0 (38) dr 3xrA (46
2oy " Pazfg B |ox)g

and has as its solutior?=Cyr*3+M32r2. It can be seen

Its solution can be written as that, at large distances from the body, these are simply cones.
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3 = const

FIG. 3. Current surfaces and surfaces of constant potefitialthe absence
of rotation.

For comparison, we note that the surfaces of constaate
determined by the equatiof=M34r2+C? (see Fig. 3

Under the same assumptioRs<x,y,z, we can find the
asymptotic form of the second term in E@9), which de-
scribes the rotation effects:

WRS[UAEpX_ Uozhn3MA(y_ nzz)]
2C2(X2_ I\/lil’ 2)3/2 ’

Y'=ng (47)

In summary, we obtain at large distances from the platéj

" ) 2v RN,
X,Y,2)= —F——
N o Mar?

QR R(Z px—3;MA(nay —n,2z))
X 2h+v_ 2 > 2 .
0 4(x“—Mar<)

(48)

It can be seen from this equation that perturbations Uz
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UAEp’TTRAQn:;MiX

- 2cvo(X%— Mirz)s’zy'

(51)

Consequently, the current has no toroidal component, and we
have for the remaining components of the current

37R*N;OM
= X3, (2X%+ 3M2r?), (52
b 2c(x2—M32r2)72""P A
37TR4I’13Q|\/|A

== s IS p(AXP+ MAr?). (53)
I 2c(x2—M32r2)72 7P A
The equation of the current lines
dx x 2x2+3Mar?

= (54)

dr 1 4x2em2r?
gives the following form of the current surfaces:
(x2—M32r?)5=C,xr4.

It can be seen that in this case, in the limit of large distances,
these surfaces approach a cofe= M4r2.

Note also that, for nonzero rotational veloci€y, the
structure of the fast magnetosonic wave explicitly depends
not only on the Hall conductivit¥,, (as was true in the case
of purely translational motiognbut also on the Pedersen con-
uctivity > .

2.4. The slow magnetosonic wave

The behavior of the slow magnetosonic wave is deter-
mined by the velocityu,, which enters into the boundary
conditions for Eqs(21):

:W(X!y)! {UZ}SZO' (55)

S

n;
=——u
S Ng y

caused by rotation decrease with distance more rapidly than

do translational perturbations, so that the current structure at

distances of

>REPQRf S >3 M
x>Rg . or 3,>3%Ma,

QR
X>RMAU_, f0r Ep<2hMA7
0

will mainly be determined by the translational motion.

If 2,=0 holds, however, the fast magnetosonic wave y,
caused by translational motion does not appear at all, and the
perturbation structure will therefore be determined only by

the rotation of the plate. In this case
UAE pWRAQ n3X

2¢% (X2~ Mjr?)¥2

p(Xy,2)= (49

As in the case of purely translational motion, the field

for 3,=0 is toroidal:
a2, TR*QN;M2X

= Z,
Y 2cuo(x2—M2r2)572

(50

It can be seen that, as in the case of a nonrotating plate,
slow sound is not excited fan,=0 when the plane of the
plate is orthogonal to the magnetic field.

We obtain the following boundary-value problem from
Eq. (21):

azuz_iazuzz
x> M? 9z7°

0, (56)

=w(xy), {uz}s=0. (57)

S

n;
=——Uu
S n3 y

These equations are quite analogous to the Alfvase,
so that it is easy to obtain

1 [W(xT,y),  ngy+ngz>0,
UZZE[ w(X7,y), Nyy+ngz<O, (58
1 [WXTy),  ny+ngz>0,
P= E[ —W(X7,y), npy+n3z<O, (59
where
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. N,y + N3z presence of the magnetosphere, affect the particle accelera-
X=X+ n—S tion and the auroral processes in the near-polar regions of the
earth.

As in the case of an Alfve wave, here all the perturba- We should emphasize that the absorption and emission

tions are concentrated inside divergent cylinders, which areurrentsj, themselves usually strongly depend on the value
now tilted at an angle of arctan{@)), and not arctan(M ).  and distribution of potentiag on the body. It is determined
The solution of the problem inside the cylinders is com-by kinetic processes close to the surface, by the structure of
pletely determined by velocity,, and hence bys on the  the surface itself or by the near-surface plasma, by the ab-
surface of the plate. However, on the surface of the bodygorption or recombination conditions, and also by charged-
itself, at distances less thd®) the integration of Eq(39) to  particle emission processes. Establishing the surface layer
find ¢ is appreciably more complicated because now it mushetween the ideal MHD plasma and the surface of the body
be carried out not over the entire surface of the plate, as wagus constitutes a separate problem, which depends on the
done when obtaining the asymptotic behavior given by Egsspecific conditions and is determined by many physical pa-
(40) and (47), but only over that part of it where the argu- rameters. We consider here the simplest case of free absorp-
ment of the Heaviside function is positive. tion and emission of electrons. Assuming that the transla-
tional velocityv, of the body satisfies the conditions

UTi<Uo<UTe (64)
3. THE TRANSITION LAYER AT THE SURFACE OF THE
BODY (v, =VT/M, vy =yT/m are the thermal velocities of the
ions and electrons, respectivielyhe ion current can be ne-

_ glected. The free absorption of electrons is described in this
As is well known, because of the processes of electrogase by(see, for example, Ref. 11

absorption and emission and ion recombination, a body in a

3.1. Fundamental equations

plasma does not remain neutral. It acquires an electric 1, >0,
charge, which causes an irrotational electric field to appear j,=—j, ed (65)
on the surface of the body. ex;{ ?) $<0,
E=-V¢, (60) T
_ _ o : jo=\/z——eN. (66)
whereg is the surface potential. After rewriting the continu- 27m

ity equation for the current on the surface of the plate, we get . : o
yed P g HereN is the plasma density. For free emission of electrons,

ly aly the dependence of the current on the surface potential has a
—+——={ils- 6D similar form:
X ay
The current on the surface now equals 1, $<0,
P e¢
R vXB 12=] e >0. (67)
1=-3 V¢+T). (62) © eXp( 7 470
Substituting this expression into E@1), we obtain the well- Everywhere in what follows we shall confine ourselves
known equatior{See Refs. 12, 9, and Lthat determines the to just these laws when specifically considering absorption
surface potential distribution: and emission currents.
) UXB It was shown earli€r'® that, with purely translational
divg 3| Vo + —) ={jJs. (63  motion, a substantial surface potential arises only in narrow
¢ regions at the edge of a body, where the surface conductivity
By knowing the potential distribution, it is possible, using varies sharply. _ _
Eq.(62), to construct a picture of how the surface currkist Actually, the gradien¥ ¢ far from the edge of a plate is
distributed, which can then be used to determine the strucsmall if the conductivity of the plate is constant along its
ture of the MHD waves. surface and satisfies the condition
It is important to take into account the potential that voBo
appears on the body, because that is what determines the e=——<1 (68

longitudinal potential difference in the transition layer be-
tween the ideal MHD flux and the surface of the body. The(see Ref. 10 Neglecting it in Eq.(63), we see thaj,=0,
longitudinal electric field can accelerate the plasma particlege., the potential isp=0.

to rather large energies. Thus, for example, the decimeter However, at the very edge of the plate, where the surface
radiation of the auroral zones of Jupiter is usually affected byconductivity abruptly falls off to zero, a term arises with a
precisely such a mechanism, when it is assumed that pasingular value ofgX/Jr. Because of this, a curreft#0
ticles accelerated in the neighborhood of lo collide with theappears close to the edge, afie-0. A thin layer(by com-
upper layers of the polar regions of the Jovian atmosphergarison with the size of the platen which ¢>T/e holds, is
The same effects, but in a more complex form because of thiermed in this region. If we consider a region of positive
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potential, this causes the emission current to be suppressé@king into account that the absorption current in the layer
and the absorption current to be amplified to its maximuntakes the maximum valjye
value ofjg. In a region of negative potential, the situation is The solution of this equation in our one-dimensional ver-
accordingly the reverse. It is immediately possible to estision is
mate the order of magnitude of the thickness of the current :

: . . jo OB
layer. The induction potential creates a total current of  4(x)= <__ i
| ~E; gl 2 on the plate, wheréis the characteristic scale of 2 ¢
the body, in our case the radif&sof the plate. In order to e define the boundary conditions for the potential equation
pump such a current from the plasma to the plate by emism the following natural way. First, according to E§6), the
sion or absorption, Eq$65), (67), it is necessary to have an current density in space now cannot excggdAs a result,
area of at leass~Ey¢l 2/]jo. If it is assumed that this aré®  the surface currenit, perpendicular to the edge of the plate
extends along the edge of the plag:Ix,, we obtain an  must go to zero; i.e., the following condition must be satis-

X2+ Cyx+C,. (70

estimate of the thickness of the current layer: fied:

X0~ EingX/jo- (i v VX B)) 0 -

., . + — =0.
If the conditions of the problem are such that the layer is ¢ c ‘0 (71)
actually narrowxy<R [for this, as can easily be seen, the , . )
condition given in inequalit{68) must be satisfield we can Hence, using the explicit expression farwe have
simplify the problem by regarding it as quasi-one- e >1Bovo Bo .
dimensional. More precisely, we can assume in this case =TS ¢ cose———(vosing—QR). (72)
P

that, inside the layer, all the derivatives along the layer are x=0
negligible by comparison with those across the layer, be- The second condition is given at the inner limjtof the
cause of which the problem becomes one-dimensional.  boundary layer, where(xy) = 0. Because of the same bound
on the spatial current, it is natural to assume thattkhem-
ponent of the surface current is continuous at this point. For
3.2. The geometry of the transition layer this to be true, it is obviously necessary that

We shall s_tudy the p_roble_m for the simplest case, d(x0)=0, ' (Xo)=0, (73
n,=0. We consider the region right at the edge of the plate ) . o )
at scales of the order of the layer thickness. Since this thick/here the prime denotes differentiation with respect.to
ness is assumed to be smille conditions necessary for this ~ The three boundary conditions of Eq§’2) and (73)
will be obtained subsequenilywe can in general consider Make it possible to determine the constaBisandC; in the
the edge of the plate to be flawe let the radius of the plate €XPression for the potential and the position of the edge of
tend to infinity. We then need only solve the problem of the boundary layer:

plasma flow onto a semi-infinite plate, examine the structure BoQRZ, Boug '

of the transition layer, and then generalize the result. Ci= o Y (Zpsing+Xy, cose), (74
Consider the case @b>0; the results forp<0 can be Jo Jo

obtained from simple symmetry considerations. We intro- Cf io QB

duce at the edge of the plate a rectangular coordinate system C2= (T) (2— - T) (75)

with its x axis directed into the plate perpendicular to the P

edge, while they axis is parallel to the edge. It can then be BoQ2R%, Bgug i

seen that the axis is antiparallel to the radius of the polar ~ X0~ ~ C—io+ o (2psing+Xpcose). (76)

coordinate system with origin at the center of the plate, while
they axis is antiparallel tap at the same point.

We shall assume that the normal to the edge of the plate io B
and the velocity of the incoming plasma make a certain angle ~ ¢(X)= (E_ e (X—Xo)?. (77
a between them. In the case of a circular plate, this angle is P
a=— ¢, and therefore it is angle that will be used below. Taking this into account, we obtain for the surface cur-
WhenQ #0 holds, an additional component of the velocity, rent in the coordinate system of the edge of the plate that
QR, appears along, or, in the local system of the edge of QB3
the plate, in the negative direction of thi@xis. The velocity = —Z(jo— P
of the inflowing flux in such a geometry is ¢

The expression for the potential can then be rewritten as

(R=r—=Xo(¢))

S By

_ ; B
v=(v cose, —v Sing—Qr,0). +U?(Epsinqo+2hcos$)— OR, (78)

Assuming that the plate is semi-infinite, all the quantities are

independent of and, measuring from the edge of the plate, 2y QB3I
we can rewrite Eq(63) in a one-dimensional version as ly=2 JOE_p_ P (R=r—Xo(¢))
#¢p 2QB  2j, vB B
- = 69 hing _ . h20
a e 3, (69 + (3, Cc08¢— 3 sing)+ QR. (79
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FIG. 4. Potential distribution on the plate ifo¥=0: (a)
Ar position of the transition layergp) dependence of the
4 R — x™ potential on the distance to the edge of the plate.
e 0
U ¢>0
7L YoByEs + T
40 Ay
< »
In the region of negative potential, the thickness of the vB
. 2 2
layer behaves like Xg = -OVEp'*‘ %5

Bov BoQRY
Xo= 0 O(Epsingo+2hc03go)+ M, (80
Jo Clo
and the potential itself varies inside the layer as
JO QB 2
00=-| g+ o) o) (81

is attained wherpy,,= m/2—arctanky/2,). However, if the
angle equals— ¢o=—arctang,/%;) or 7— ¢, the thick-
ness of the boundary layer goes to zero. The thickmg'8s
must be small by comparison witR, and consequently

UoBo \/2F2)+Ehlcj0R<l;

(89)

It is now easy to generalize these results to the case of iee., inequality(68) is in fact satisfied. As already mentioned,
plate of arbitrary shape. To do this, it is simply necessary tdhe surface potential outside the layéar from the edge of

take the same formulas for the potential and the layer

the plate is very small in this case, and the absorption and

thickness<8 , Where these quantities are now considered deemission currents in this region exactly cancel. In the region

pendent orp as the angle that determines the position of th

& — ¢o, T ¢g), We obtain a boundary layer with a positive

point under consideration at the edge of the plate. Theotential where the absorption current dominates. In the in-

boundary layer itself will now have a variable width which
depends on angle according to Eq(76).

We first examine what will occur in our case of a circu-

lar plate in the absence of rotation. Whén=0 holds, the
solution takes the form

B0 = £ (x—%0)%. ®2
P

The surface current in the boundary layer in this cas
equals

2]0 _UB
_ <2p Eh) zp(x Xo) TSIn(p
T _Eh Ep vB
—Tcos<p

vB
2jo(X=Xg) — ?(Ep sing+3},cose)

. Eh vB .
—Zloz—p(x—xo)— —~ (Xpcose—Xpsing)

(83

The boundary layer has a thickness that dependsg on
according to the law

Bovo .
—— (2, sing+3,cose).
0

Xo= (84)

Its maximum thickness

terval (7m— ¢g,2m— @), a layer is formed with a negative
potential and, accordingly, an emission current. Because of
symmetry, the total currents flowing through these layers are
equal to each other in magnitude and consequently com-
pletely compensate each other, thus closing the current cir-
cuit (see Fig. 4.

Let us examine what will occur whe@d #0 holds. Here
we no longer have such clear symmetry as we had for
éQ 0. The geometry of the boundary layer is substantially
altered: the extents of the layers of the positive and negative
potentials will be different. Specifically, the layer of positive
potential now does not extend tobut is included within the
angles

2p

QR
( Qo+ arcsn{ \/E—TZEh
Ep

" ’_( OR
7T~ pg— arcsi

VEa+3h)
A layer of negative potential accordingly takes up the rest of
the range of angles. The widths of the layers also change: the

positive layer becomes thinner; the negative layer, con-
versely, widens. The maximum width of the former is now

B
z—j\/2§+2§—
0

while that of the latter is

BoQ2RZ,
Cio

max__

g (86)
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a y
II//'
a_,
A2 0 FIG. 5. Position of the transition layers on the surface of the
x x plate forQ#0: (a) the cased <O, (b) the case}>O°"
@ y//3¢>0
RN ¢ < 0
max_ E \/W BoQIRZ, sufficiently large currentg, in the plasma:
Xg =Vt It ———. (87) _
Clo Clo OBy, /Cjp<1.
cr . . . .
It _can be seen that, as() approaches () This potential creates an additional absorption current

=vo\/2h2+22p/REp in magnitude, the range of angles within with density

which the layer of positive potential lies decreases, and the

layer itself becomes narrower. &=, this layer disap- jT=jo(1—exp(ed/Te))=BoQ3, /c. (90)

pears altogether. The situation is reversed with the layer ofp;g current, according to inequalitg8), is much less than

negative potential—it broadens, increasing in the longitudirrengj,, in the boundary layer. On the other hand, however,

nal direction. In the limit)— O, it occupies the entire edge ¢ is collected from essentially the entire surface of the plate,

of the plate and, as the angular velocity increases further, is @nereas the boundary layer where current flows with a large

margin of variable width at the edge of the plésee Fig. 3 gensity is small. This additional absorption current gives a
A question arises: How are the currents on the plat§qy| cyrrent equal tarR?B,= /¢, whereas the excess of

closed, since the excess emission current will now flowe emission current over the absorption current in the

through the boundary layer without being balanced by an,yndary layer is, as shown by an elementary calculation,
absorption current in the positive layer? To answer this ques-

tion, it is necessary to turn to the region outside the boundary
7 ) : : Al
layer. When rotation is brought into consideration, we can no
longer neglect the potential generated in this part of the plate.
Specifically, we take Eq63) and, as was done earlier, we XJ xS (@)dp=
L L. . JRolp)Ue
neglect the derivatives of the potential in the region far from

the edge. Then we obtain i.e., the same amount. This is how the current is closed on a
QB j, body around which flow occurs as it rotates: the emission
< s (88)  current flows only in a narrow band given by Eg6) close

P

_ S S o to the edge, while the absorption current that compensates it
Assuming that the potential difference in this region is smallfows onto the entire surface.

by comparison withT./e, we can expand the current in
powers ofe@/T in Eqg. (88), which is the sum of the absorp-
tion current, Eq(65), and the emission current, E@§7). We
obtain as a result a constant positive potential
T, 3,08, There is substantial interest in considering the limit of
=27 (89 small emission and absorption currents or of a high rotational
rate of a body when the relationship inverse to inequality
(see Fig. 6. The solution given by Eq89) is valid only for  (68) is satisfied:

~io(S = S)=io|_xa(e)deio

BoQS,

- 7R?, (91)

3.3. The case of small emission and absorption currents

e Cjp

a geg ? b as>q

the edge of the plate fd2 # 0: (a) the case€) < Q% (b)

VR r FIG. 6. Dependence of the potential on the distance to
the case}>0°.
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_EvoBO

> OB, unwieldy integration in the general case, but it is much sim-
= = =
TR

2= ¢, >1. (92 plerin the limiting cases: in the limf:R<uv it obviously is
simply equal to zero, but in the opposite case(R>v,

Such a situation can occur in a disperse plasma or at I0We find thatC=QB,R?/4c.
temperature when the thermal velocity of its particles does |t js easy to physically interpret the resulting picture.
not give rise to large current densities. Actually, if the inequalitieg92) are valid, the current trans-

If inequalities (92) are satisfied, we can no longer as- mitted through the plate by the induction potential only is of
sume that the main current in our case is concentrated in th@e order ofE;,¢S R, which is much larger than the current
boundary layer, where the current density eqyiglsSpecifi-  that can flow out of the plasma. In summary, the surface
cally, as the angular velocit§ increases, the picture of the notential is aligned on the surface of the body so as to cancel
potential distribution over the surface of the plate qualita-the induction potential difference on the plate as much as

tively changes approximately as follows: the edge layer ofyossible and consequently to reduce the current through it to
negative potential gradually broadens, while the positive pogpoytjR2.

tential in the internal regions of the plate linearly increases

with increasing(). When this potential is comparable in

magnitude withT./e (this occurs when parameter, be-

comes~1), the current in the internal regions will behave in

a nonlinear manner. In this case, as can easily be seen, tB& The field and currents in the transition layer

size of the boundary layer becomes ab&jtand our as- o ) )

sumption concerning one-dimensionality breaks ddsee Now, after clg_rlfymg the details of the geomet_rlcal struc-

Ref. 9. ture of the _trans_|t|on_layer, we can proceed to find the cur-
When inequalitie92) are satisfied, however, it is com- €nts Q”d fields in this layer.

paratively simple to find the potential distribution over the ~ USing Eqs.(78) and(79) for the components of the sur-

surface. Specifically, we now must solve the complete Eqface current, we obtain the current component alongythe

(63) without assuming that it is one-dimensional. However,aXis in a Cartesian coordinate system with its origin at the

because of inequalitig92), the emission and absorption cur- center of the plate:

rents on its right-hand side can be neglected. Then the equa-

tion for the potential is rewritten in polar coordinates as

19 (9(;5 1 (92¢ QBO Jy:|r3|n§D+|¢COS(‘D (97)
ar r? (9(,02 c

r or

The boundary condition for Eq93), i.e., the vanishing
of the normal component of the surface current at the edge of = 2(X—Xg)
the plate, is now rewritten as

jo QOB .
S "¢ (2, sine—Xy, cose)
p

Bv3, QrB
dp Zpdp  Boug Bo2p(2R - P (3,sing—3cos 98
PRI i . p ¢ h ®). (98)
3p o + R 7¢ c (Xpsing+Zy, cose) c c c
(94)
This boundary-value problem is similar to a classical
Neumann problem. Its solution is found in the form Note that the currend, does not go to zero at the very

edge of the plate, since, although=0 holds atr =R, we
- ) havel ,#0. This causes a jump &, to appear in the field at
¢:m2:1 [an(r)codme)+ Bp(r)sin(me)]. 99 the edge of the plate and, as a consequence, produces delta-
function Alfven currents in the plasma. An apparent paradox
Substituting this into Eq(93) and using the boundary appears, since these currents must be closed by the normal
condition of Eq.(94) and the condition that there is no sin- component of the current flowing over the plate, but there is
gularity in the solution at =0, we find nontrivial functions no such component. This contradiction is easy to resolve if

a@mBm only for m=0,1. The complete solution is we recall that, in the presence of a nonzero currgnta fast
OB, Bovo magnetosonic wave will be generated in the space around the
d(r,p)=— ?rzﬂ?singﬁc, (96) plate. It naturally also creates its own currents, which will

just compensate the delta-function Alfveurrents at the
where C is an arbitrary constant, to determine which oneboundary of the cylinders. As a result, the current balance is
more boundary condition is necessary. It can be obtained bsestored, and the apparent contradiction associated with it is
balancing the total current on the plate: since the absorptioremoved—there are no delta-function currents in the total
and emission currents virtually everywhere have a derjgity solution.

(since¢>Tl/e), it is necessary that the area occupied by the  Substituting Eq(98) into Eqg.(15), we obtain the bound-
positive potential be equal to the area occupied by the negary condition for the field componeitt,, after which it is

tive potential. The constar@ strongly depends on the ratio easy to immediately write out the solution by analogy with
betweenQ)R andv,. The expression fo€ involves a very the earlier solution:
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27068, QR 2704 Soy— St magnetic field and the speed of the plasma. The calculation
by=-——F-————F = is fairly simple when fieldB, is arbitrarily oriented relative
C"Ma Vo ¢ to the body. We therefore go to a coordinate system with its
. + . z axis normal to the plate, and assume that figfdhas all
Jo _Zpy—2pX Jo N
+8| 25 R—E——= — 25— (S,y— 31X ") three componentB, ,By ,B, .
2p \/y7+(x )2 2p In this case, as shown by a calculation carried out simi-
2 2 <2, 412 . larly to Ref. 2, the total force is made up of a deceleration
_ E 2py —2h(x7) % 2mup 2pY —ZpX force, a shearing force, and a buoyancy force and equals
CXp  y24(xT)? vo ¢ R s g
itvi - voB,7R? Pz
\é\:gzrﬁé, equals unity in the layer and zero everywhere out p U0 22 ~3.B, (101)
. c
Having the expression for the field, the spatial current By2h—ByZp

density can be found in the layer neighborhoods of th

> X eComparison with the results obtained in Ref. 2 for purely
Alfven cylinders:

translational motion shows that rotation does not contribute

S 8 x+ to the forces acting on the body. It turns out, however, that it
jy*= _QRﬁ-F 2B —2j0—2(2hx*—2py) produces a torque that did not exist in the case of transla-
¢ 2R tional motion. The torque equals
, VoBo yX (23+30) QR v 1 1 .
T ey, R4 v 2¢ M:LE[VXUXBo)]dS:_Lg{rx[z(VOXBo)Bo]}dS
3 S XT+Y >,B,—%,B
x _Zﬁuy(p—shy)”, (99 QB,aRY Y TP
R =— -2B,—3,B, |. (102
4c —2B,3
. ORI, d) i 1 X (Zpx T+ 2py) Zp
Jz T My 2cRT 2BMy, Jo[ 17 R2S, If we consider the various components of the torque
P separately, the following picture appears: The toryuede-
vB y(x*)2(2§+2ﬁ) QR v4 celerates the rotation of the body according to the law
cp R* vy 2¢ B%S 7R*
Q=Qoexp( -], (103
22'3 x*(pr*+Ehy)H (200 21,c
R R® ' wherel, is the moment of inertia of the body around the axis

All the formulas for the case<0 are written in a simi- ~ coinciding with the normal. _
lar way. It can be seen that the spatial current that flowed The terms inM, and M, proportional to %, tend
earlier along the surface of the cylinders now flows in a layef© rotate the plate so that its normal becomes parallel
of finite thickness given by Eq76). tq thg magnetic field, with the angle between' the field
Similarly, by computing thex component of the current dlrectlogl and th2e normal decreasing prop_oonnaIIy to
on the plate in terms df, and|,, the field and the currents €XP(~B;mRZ/4c?l,). It can be seen that the time constant
in the fast magnetosonic wave can be found. of this process is essentially the same as for the deceleration
of the rotation, which means that, generally speaking, these
two processes in fact occur together.
3.5. The forces and torques acting on the body Finally, the terms ifM¢, M, that are proportional t&,

The currents that appear on a moving body interact wittfFause the plate to precess relative to the magnetic-field di-
the external magnetic field, and this results in the appearand&ction. The nature of this precession is easy to understand.
of forces acting on the body. The value of the forces is about? fact, a nonzero magnetic moment is generated by the sur-
JB/c, whereJ is the total current on the body, and substan-face current on the plate. A calculation using E@5) and
tially depends on the current densijtyin the plasma. lf,is  (26) gives
h|gh,. correspond!ng to !deal magne_tohydrodynanﬂas,de— _ RIS B
termined by the induction mechanism of current generation ,— h=z
on the body and depends only on its conductivity, the veloc- 4c?l,
ity of the body, and fieldB. If, conversely, inequalitie$92)
are satisfied, the curredt depends only orj, and on the

(104

for this moment, wherd is the angular momentum of the
Iplate around the normal. The precession of this magnetic

case here, in which current densjlyis assumed to be large moment in fieldB also results in precession of the plate

and inequality(68) is consequently satisfied. dL S B.R
To compute the forces and torques acting on a rotating — =mXx B=Q, XL, Qp=- %B. (105
body, it is sufficient to use the unperturbed values for the 4cl,
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We use the asymptotic solution of the one-dimensional Burgers equation to study the self-
preservation of large-scale random structures. We show that in the process of their evolution, large-
scale structures remain stable against small-scale perturbations for the case of a continuous
initial spectrum with a spectral index smaller than unity. We study both analytically and
numerically the correlation coefficient of a large-scale structure and of the same structure

with a high-frequency perturbation and show that with the passage of time the coefficient tends
to unity. Using the asymptotic formulas of the theory of random excursion of stochastic
processes, we study the statistical properties of the perturbing field and find that the effect of high-
frequency perturbations is equivalent to the introduction of effective viscosity19@9

American Institute of Physic§S1063-776(99)01302-5

1. INTRODUCTION information about the amplitude and shape of the initial per-
_ - _ _ turbation is completely lost. When the initial field is noise,
The 2nonl|near diffusion equation, first proposed Dbythe coordinates and velocities of the discontinuities are ran-
Burgers+? as a model of hydrodynamic turbulence, plays andom quantities, which leads to merging of the shock fronts.
important role in studies of the evolution of nonlinear waves  pye to multiple merging of the discontinuities, over long
in nondispersive media. Indeed, this equation describes tWanough time intervals the statistical characteristics of turbu-
main effects inherent in turbulence: the nonlinear redistribuience also become self-similar and are determined by a
tion of energy in the spectrum, and the decrease in energy iéingle scald(t), the integral turbulence scdid.in the re-

the region of small-scale components of the spectrum. Whegio of jarge wave numbers of the signal energy spectrum a
the initial conditions or the external forces are random, thigiversal power-law asymptotic behavi(k,t)o<k 2 re-

equation describes turbulence of a gas without pre§$ure|,ated to discontinuity formation sets in. Here the law of
commonly known as Burgers turbul_ence. . rowth ofl (t) owing to discontinuity merging, and the shape
. What makes the B_urgers qugtlon. so remarkable is th f the probability distributions and turbulence spectra
't. has an ex‘f"CF analytical solution. This leads to se\_/eral strongly depend on the behavior of the initial spectrum
rigorous statistical resultssee, e.g., Refs. 2,6—19which Eo(K)k" in the region of small wave numbets. For

m rv for verifyin roxim meth in . . . . .
ay serve as tests for verifying approximate method used >2 the parametric generation effect gives rise to a univer-

studies of hydrodynamic turbulence. Later it was found tha . .
: : .sal low-frequency asymptotic behavior of the spectrum, and
the Burgers equation also describes a broad class of nonlin- ) -,
e law of growth ofl(t) is very sensitive to the type of

ear effects in wave propagation theory, plasma physics, and =™ - " .
acoustic$2%2! The Burgers equation and its multidimen- statistics of the initial perturbation. In particular, when the

sional vector generalization arise in the problem of surfacetatistics of the initial perturbation is Gaussian, the external
growth?2-251n this case the vector field satisfying the given SCa€!(t) incregsesé in proportion td' with a certain loga-
equation describes the gradient of a growing surface. ThEthmic correctior:® Here I(t) is determined only by the
three-dimensional Burgers equation also forms the basis dptégral characteristics of the initial spectrum. Ford<2

the adhesion model, which is used to describe the formatio’€ Iow-frequency part of the spectrum is “frozerz(k 1)

of the large-scale structure of the unive?$&-2° =Eq(k) k", but the larger fraction of the energy is concen-

A characteristic feature of solutions of the Burgers equalrated in the frequency rande-ky(t), and the external scale
tion for infinite Reynolds numbers is the existence of locall (t) is proportional tt*? as it is in the case whem>2 (see
and statistical self-similarity. The term “local self- Ref.15. Whenn<1, the low-frequency part of the spectrum
similarity” means that because of the combined action ofiS preserved, and it is this part that determines the law of
nonlinearity and viscosity, each field realization exhibits uni-growth of the external scalt)=t%("*3). Here the law of
versal behavior: over large time intervals the field becomes growth ofI(t) and the shape of the spectrum do not depend
sequence of triangular pulses with the same slope1/t.  on the behavior of the high-frequency part of the spectrum.
When the initial conditions are periodic, the relative discon-  In the present paper we study the stability of the evolu-
tinuity velocities are zero, with the result that the periodicitytion of nonlinear structures(x,t) generated by an initial
of the field is preserved. Here, because of the combined adield vy(x) with respect to external perturbations,(x).
tion of nonlinearity and viscosity at the discontinuities, theWhenuvy(x) is a periodic signal, random perturbations lead

1063-7761/99/88(2)/11/$15.00 309 © 1999 American Institute of Physics
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to fluctuations in the velocity of the discontinuities, discon- (x—y)? y
tinuities merge and, as a result, total destruction of the peri-  G(X.y.)=So(Y) = —%—, So(y)= —f vo(x) dx,
odic structure occur€® When the initial fieldv o(x) is noise, 3

the highly nonlinear structures continuously interact and, due

to the merging of discontinuities, their characteristic scalevherey(x.t) is the coordinate of the absolute maximum of

I(t) constantly increases. The presence of a noise perturbi?e functionG(x,y,t) iny, which is known as the Lagrang-

tion vp(x) results in additional fluctuationdx,(t) in the ian coordinate, and(x,t)=G(x,y(x,t),t) is the Eulerian

discontinuity coordinates, and these fluctuations increase iRotential of the velocity field.It is on the basis of this solu-

strength with the passage of time. tion that the majority of the statistical results concerning
Thus, the final result of the evolution of the field is de- Burgers turbulence were obtained.

termined by the competition of two factors, the increase in Let us introduce the characteristic time for the manifes-

the external scalé(t) of the structures and the increase in tation of nonlinear effects,,=lo/0, whereoq andl, are,

the strengthAx,(t) of discontinuity fluctuations, the latter respectively, the characteristic amplitude and the spatial

being related to the perturbation,(x). If the condition scale of the initial velocity field. For timets>t,, a global

|Ax(t)|<I(t) is met for all values ot, such structures re- maximum iny of the functionG(x,y,t) lies within a small

main stable against random perturbations. neighborhood of a local maximum of the initial potential
We then examine the stability of large-scale structures(Y), i.e., the zero of the initial fieldo(x). Thus, in the

against small-scale perturbations that have the same spdéhit ©—0 the Lagrangian coordinatgx,t) is a step func-

trum Eo(k) k™ but are located in the high-frequency part of tion of x, with the result that the velocity field function

the spectrum. Preliminary estimates made by Aueetl3t  v(X,t) behaves in the universal manner

have shown that fan<<1 large-scale structures remain stable X

against small-scale perturbations. In this paper we calculate, v(x,t)=

both analytically and numerically, the coefficier{t) of the

correlation of the unperturbed and perturbed fields. This coin each cell between the discontinuities. The positions of the

efficient is the quantitative measure of closeness of the givetiiscontinuities are determined by the condition that two ab-

structures. We show that, for<1, even in the case where solute maxima are equalG(Xy,Yi—1,t)=G(Xk,Yk.t), at

the initial correlation coefficient, is much smaller than point x,:

unity and the perturbation,(x) substantially exceeds in am-

plitude the fieldvo(X), i.€., |vn|>|v,l, the evolution of non- _ Yk+1T Yk So(Yi) ~ So(Yk+1)

. . . . X +Vit, V.= . 5
linear structures leads to an increase in the correlation coef- 2 K k Yk+1— Yk ©

ficient r(t), and asymptoticallyr (t) tends to unity. As is A - e
(1), . ymp y (1) . y If the initial conditions are specified in the form of a
known, the interaction of the low- and high-frequency com- : o .
! . . random field, the velocities of the shock fronts formed in the
ponents can be interpreted as the manifestation of turbulen . ! .
. o . . process of evolution of the field are also random quantities.
viscosity> In our research we establish that the asymptotic_ =~~~ ° : — .
his implies that the discontinuities merge, which means that

stability of large-scale structures is equivalent to the effect OEhe characteristic distance between them increases and. re-
the increase in Reynolds numbers in a medium with finite !

viscosity? spectiyely, the numbgr o'f such discontinuities decreases. We
call this characteristic distandé€t) the external turbulence

scale, which can be estimated by E8). The spatial interval

|x—y| where a global maximum d&(x,y,t) may be located

2. THE BASIC PROPERTIES OF BURGERS TURBULENCE is approximatelyi (t) long and is determined by the condi-

tion that the increments of the initial potential and of the

parabola are of the same order:

Yk
t 1

Xk— 1 <X<Xg (4)

The nonlinear diffusion equation, i.e., the Burgers equa
tion

v v P |ASol=[So(y +1) = So(y)[= V(D)= 7, (6)
E—Fv&:,u—z, v(X,t=0)=vqy(x), (1)
X wheredy(z) is the structure function of the initial potential,
reduces to the linear diffusion equatiéand hence has an ds(P)={(So(X+p) = So(x))?). Equation(6) implies that the

exact solutioh if we use the Hopf—Cole change-of-variables asymptotic law of the increase of the external turbulence
proceduré'® scale is determined by the behavior of the structure function

However, statistical analysis is difficult if we use the & large distancesis(p>1o). We postulate that the energy
exact equation, especially in the case of large Reynolds nunfPectrum of the initial perturbation of the velocity has a
bers, which corresponds to letting approach zero. On the power-function asymptotic behavior in the region of small
other hand, in the case of vanishingly small viscosity, theVave numbers:
solution of_ tQ(ga Burgers equation has the asymptotic Ev(k)=aﬁk“bo(k), bo(0)=1, by(k>ke)=0, (7)
representatioft”

wherebgy(k) is the high-frequency cutoff factor.
X—y(x,t) _9S(x.b) @ Depending on the value of the index the structure

v(x,H= t VD= ax function exhibits the following asymptotic behavidr:
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B2 L " p>l,, n<li, 3. PRESERVATION OF THE LARGE-SCALE STRUCTURE OF
de(p)= 5 (8) A RANDOM FIELD: A NUMERICAL EXPERIMENT
20¢, p>lg, n>1,
Let us consider the evolution of two random initial per-
2ma? turbationsv o(x) andvo(X):
Bi= : . oi=(SD). ~
I'(n=2)sin(m(1-n)/2) Vo(X)=vo(X)+vh(X). (12)

We assume that the energy spectra of both processes are

described by Eq.7) but that for the processy(x) the cutoff

frequency isk, , while for the process(x) the cutoff fre-

guency iskg>k, . This means that the initial velocities

(9) vo(X) andvy(x) have a common part of their Fourier trans-
forms in the regionke[0k,] and that the processy(x)
contains an additional high-frequency perturbatiog(x)

wherek(t) is a characteristic spatial frequency near whichwhose spectrum is in the frequency interkat [k, ,kq]. In

there is a crossover of the energy spectrptk,t)=k" to  this paper we employ an algorithm based on the fast Leg-

the next sectiorE, (k,t)«k™2. Here the turbulence energy endre transform to solve the one-dimensional Burgers equa-

Then Egs.(6) and (8) yield the following estimate of the
external turbulence scale:

(Ct’nt)Z/(n+3), n<1,
(o2, n>1,

kc_l=l(t):{

o?(t)=(v?(x,t)) decreases according to the law tion numerically. Using the fact that(x,t) is a nondecreas-
ing function and the definition of the fast Legendre

2 a§/<n+3>t—<2n+2>/<n+3>, n>1, transform, ¢(x) = max][®(a,0)+xa], we can construct the

a?(t)= —ZOCaﬁkc(t):{ 201 solution of the Burgers equation @(Nlog,N) steps, where
t oS/t n<(1.0) N is the number of points of the discrete grid on which the

initial conditions are specifietf. Figure 1 shows the realiza-
tions of an unperturbed fiel@) and two casegb) and(c) of
Thus, the properties of the solution of the Burgers equay perturbed field for different values of the cutoff wave num-
tion are different for different values afi. For n>1 the berko,>k, . Clearly, in both cases the variance of the unper-
increase in the external turbulence scale is determined by, phed field is much smaller than the variances of the per-
certain integral characteristics of the spectrum of the initiakrhed fields. However, fars>t,,, when the fields have well-
potential,Eg(k). As shown in Refs. 7 and 9, in this case the geveloped discontinuities, the realizations of the initial large-
statistical properties of the Burgers turbulence are selfscaje field and those of the perturbed fields differ little from
similar forn>2 andt>t,, and the energy spectrum exhibits gach other, which supports the hypothesis that large-scale
universal behavior in the region of smakE((k,t)<I/k’t?)  stryctures remain stable against small-scale perturbations
and large E,(k,t)=I*k?/t?) wave numbers. Fan<litcan (Figs. 2 and R
also be shown that the statistical properties of turbulence 1¢ prove this assumption, we investigated both analyti-

Reynolds numbet The increase in the external scale is |ation coefficient

due to the local behavior of the initial spectrum in the region

of large values ok, and the energy spectrum is preserved in B(t) ~

the intervalk<k(t). r t):m’ B(t)=(v(x,Hhu(x,1)),
We assume that not only is the low-frequency part of the

spectrum preserved, but the large-scale components of field 52(t)=(v2(x,t)), d(t)=(v2(x,1)),

realizations also remain stable against a high-frequency per- o o o

turbation. A simple model of Burgers turbulence for the casdN€ quantitative characteristic of the similarity of these pro-

wheren<1 was proposed in Refs. 33 and 34. The initial ©85S€S, which have a common low-frequency part of the

perturbation was represented by an infinite sum of the ha/SPectrum at input. For initial perturbations with an energy

monics k,=kes ™™ (the Weierstrass spectrynwith very spectrum(7), the initial correlation coefficient is

sparse frequencies$1). The main assur_nption was that r(t=0)=r0=(k*/ko)“‘”)’z, (13)

the energy of each component decreases independently from

the other component energies and that the total turbulenc&hich means that foky,>k, the correlation is weak.

energy is approximately equal to the sum of the energies of The characteristic time for the nonlinear effects of a sig-

all the components. It was found that the external turbulenc@l with an initial spectrum of the forni7) and a cutoff

scale and energy in the given discrete model are describfeduencyk, to manifest themselves is

approximately by the same power function as for the

continuous-noise spectrum and are independent of the num- t,=

. . I k,o

ber of high-frequency modes in the initial spectrum. *
The objective of the present work is to show that theFort<t, the nonlinear distortions of the wave are small and

assumption that high-frequency components of the spectrum(x,t)=vy(x), while fort>t, the wave becomes a sequence

have a small effect on the low-frequency components is alsof triangular pulses with equal slopes. The power spectrum

true for the continuous spectrum. E,(k,t) at this stage becomes self-simifar,

(12

- :[ank.(,cn+3)/2]7l'
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0 1000 2000 3000 4000 0 1000 2000 3000 4000 FIG. 1. The process((x) with a cutoff wave
* x numberk, =32 (a); the process o(x) with a cut-

off wave number&k,= 128 andk,=2048[(b) and
(c), respectively at timet=0.

3 signals are almost the same at the stage of well-developed
Ev(k,t)z—zﬁ(kl) discontinuities is one confirmation of the assumption that
t high-frequency components have a small effect on the low-
and reproduces the initial spectruiy(k) in the spatial fre- frequency components.
quency range&k<k.(t)=(ay,t) ~?"*3) with the energy de- Three stages can be distinguished in the behavior of the
creasing according to the lai0), o?(t)=a?k1*%(t). Fig-  correlation coefficien(12). For t<t,=[a,k{""*"4"1, the
ure 4 shows the energy spectra of the proces¢gg) and  nonlinear distortions of both signals are small aft)=r .
v(x,t) att=0 andt;>t, for white noise, with the cutoff In the intervalt,,<t<t, only the distortions of field (x,t)
frequencies being, andk,= 8k, , respectively. Clearly, for are significant. If we assume that the low-frequency part of
t>t, the spectra of both signals are almost the same anghe signaf&(x,t) remains almost the same, we have
have a high-frequency asymptotic behaviy(k,t)ok 2.

~ /.2 _ 2
The fact that the spectra of the perturbed and unperturbed (v (X,Dv(X,1))=(v5(X))= 03, (14
x,t), B(x,1) Av
3 . 3
. a b
2_
2-
1k FIG. 2. Evolution of the process(x,t) with a cut-
{ off wave numbek, =32 (dashed curveand that of
i Ir the processv(x,t) with a cutoff wave number
0 :, ko=128 (solid curve (a) and their differenceAv
(b) at timet=0.125 k.=4).
—1k 0 l l
] ; s - N

H J A i [l 1
0 1000 2000 3000 4000 0 1000 2000 3000 4000
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wx,1), Blx,0) Av
3 3
| b
2_
21
l b
1+ FIG. 3. The same as in Fig. 2 with the parameter
0 valuesk, =32 andk,=2048(a) and(b).
0
-2 L ' s t -1 1 ) 1 t
0 1000 2000 3000 4000 0 1000 2000 3000 4000
x x

and the correlation coefficieril2) can be estimated in the potential of the processy(x). Below we present the analyti-
following way: cal results and confirm the computer-modeling data both
qualitatively and quantitatively.

2 (n+1)/2
ol k
rt)= ——=| — =(k,I(t))n+Dr2
ooo(t)  \Ke(t) *
0 4. STABILITY OF LARGE-SCALE STRUCTURES AGAINST
oct(M+1)/(n+3) (15)  SMALL PERTURBATIONS

The results of the numerical experiments confirming this as- We consider the behavior of realizations in the limit
sumption are illustrated by Fig. 5. We show the dependencE>tn by employing the asymptotic solution of the Burgers
of the correlation coefficient on the ratiok,/k, of spatial €duatior{see Eqs(1)—(3)]. In accordance with this solution,

frequencies for two values of time; and t,<t;[K.(t,) y(x,t) in (2) is the coordinate of the absolute maximum of
=4k (ty)]. It is assumed that fot, andt, the condition the functionG(x,y,t) (Eq. (3)). The curvature of the pa-

k, <k.(t)<k, is met, i.e., we can ignore the nonlinear dis- rabola in(3) is 14, and the curvature of the initial potential
tortions of the initial perturbation obo(x). In the initial ~ So can be estimated at

section of the diagramkg<<k.(t)), where we can ignore the V2 a K+
nonlinear distortions of both initial fields, the correlation co- T, :<(Sg)2>1/2:”—* (16)
efficient decreases with increasikgand is described by the 0 (n+3)Y2

expression(13), r(t)=roxky” (Fig. 5b clearly shows thjs Thus, fort>t,=1/o,: the parabola ir(3) is a smooth func-
< < i i i 0
Fork, <ke(t) <k, only the perturbed field is distorted, and tion on the scale of the initial potential. This means that a

:Eg Cg:g?}iir gfefﬁg of hlgh-freq_uency c_omponents reOlucegﬁobal maximum of the functio®(x,y,t) lies within a small
perturbed signal. Figure 5 shows that . : L .
under the given conditions the correlation coefficient reachege'ghborhOOd of a local maximum of the initial potential
a plateau and becomes independentkgf[see Eq.(15)],
which confirms the hypothesis that the low-frequency part of In Ek.1)
the field does not chandsee Eq.(14)]. The results of the 4
numerical experiment suggest that in the asymptotic region »
r(ty)/r(t,)=1.97 holds, in good agreement with the theoret- of ~
ical prediction that (t,)/r (t,) =[Kc(tp)/kc(t1)]¥2=2. \1 ,
In the last stage, whette>1,, holds, both signals become
sequences of the triangular pulé® and nonlinear absorp-
tion of the low-frequency part of the initial spectrum occurs.
The results of numerical experiments designed to calculate sk 34
the correlation coefficient in this stage are shown in Fig. 6. In | N\
this case, a¥ increases, the correlation coefficient also
reaches a plateau, which is close to unity. -12F k. k, ko
Figure 7 depicts the behavior of the correlation coeffi- -
cient in time for fixed values of the parametées and k. Ink
Clearly, as time passes the correlation coefficient increases _
and tends to a value close to unity. The reason is that af-'C: 4 Eneray spectra of the procasg(x) with a cutoff wave number
though the positions of the shock fronts of the perturbed ané*;lozi(f:;’\/eelz)) "’;;dti;:s tggce;?é’(;‘gei‘;v':‘voﬁuggaoztv‘;a";:”S’_rggeer
unperturbed fields are close, they do not coincide because g?mn with k,=32 (curves3 and4) on a log—log scale ai=0 (averaging
the presence of a high-frequency perturbation of the initials over 1000 realizations
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Inr
-4

FIG. 5. Correlation coefficients of the perturbed and
unperturbed velocity fields as functions of the cutoff
N wave number ratiok,, /k, ) at different timegfor two
different values ofk.) on linear(a) and log—log(b)
scales atk, =32: O, Kk(t;)=8k, ; and A, K(t,)
=32, (statistical averaging is over 100 realizations,
-1r and every tenth point is identifigd

L

i 2 i A1 L
6 8 0 05 10 15 20 25
(ko/k)12 In(kg/k")

So(y) and that the solutiori2) exhibits universal behavior The high-frequency perturbatian, can be characterized
between two discontinuitiefEq. (4)], with y, the coordi- by the parameters
L (k_*) n+1
Ko
n

nates of the local maxima @(y).
The occurrence of a high-frequency perturbatigiix) Zaﬁkgﬂ
leads to fluctuations in the “zeros” of a sawtooth wave. o, =(vp(X))= , (18)
- ) 5 2a? k,\1n
So(y)=So(y) + Sn(y)- 17 O'Sh:<8h(x)>:m 1- K : (19
From (5) we see that the perturbatids,(y) gives rise to *
fluctuations in the discontinuity velocity, owing to which the
k 1-n
)]
Ko
-1
: (20)

With the new component(x) in the initial velocity [Eq. n+1
(11)], a perturbation is added to the initial potential:
strength of the fluctuations of the discontinuity positions, 5 Uéh 1+n 1
Ax(t), increases linearly with time. For a periodic unper- |h:G_2: 1-n KL+l
turbed signal the discontinuities are at reSi(yys1) ’h * 00

k* n+1

1_ —_—
i

=Sy(yx) and V=0 [Eq. (5)]. Hence an arbitrarily small
rwherelh is the spatial scale of the high-frequency perturba-

perturbation sets the discontinuities in motion, merges them, X
and, as a result, completely destroys the regular periodic

sawtooth structurd’ When the initial perturbation is noise,
the discontinuities of the large-scale structure have rando

velocities by themselves, which causes them to merge antéon_l_shh(y)' th toff f . th locit
results in an increase in the external turbulence dga)e If us, as the cutoff frequendy, increases, the velocity

the rate of merging of the discontinuities of the Iarge—scalevir'anceoih increases monotonically, the potential variance
structure is h|gh enough and at all times such tl'mx| O'Sh increases up to a value determined by the Spatial fre-
<I(t) holds, we can speak of self-preservation of the evoluquencyk, and then becomes constant, and the spatial scale
tion of the large-scale structure. of the signal decreases with increaskgand forky>Kk, :

Inr
-4
b
_3t
a

0.6

bk FIG. 6. The same as in Fig. 5 & =32 with the

following parameters:O, k.=k,/4; and A, k.

0.4r A =k, /8.

“1F
0.2t

0 2 4 6 8 0.5 1.0 15 20 25

(kg/k*)12 In(ky/k")
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r(k,1) Inr
1.0 -2.5
0.8 =201
0.6 FIG. 7. Correlation coefficients of the perturbed and
. -1.5r unperturbed velocity fields as functions of the ratio
k, /k.~t%2 on linear(a) and log—log(b) scales with
0.4 -10F k,=16: O, ko=64k, ; O, ko=4k, ; and A, kg
=2k, (statistical averaging is over 100 realizations,
] and every tenth point is identifigd
0.2 -0.5¢
A . A . 0.0
0 4 8 12 16 -6
ki ln(k'/kc)
1+n of Ks n/2 Here aéh is the is the variance of the potential of the high-
—_— —1/2 % . .
Ih= 1-n (ki ko) ( Ko frequency perturbatiofEq. (19)], andl(t)=(7,) is the ex-

ternal turbulence scale. Thus, the size of the fluctuations in

Wezbegin by examining the case of small perturbations_the positions of the discontinuities increases with time but

o, <0p. Such perturbations cause fluctuations in the positasches a plateau as the cutoff spatial frequégdyicreases.

tions of the zero$Eq. (4)] and to fluctuations in the positions To calculate the correlation coefficientt) [Eq. (12)],

X of the discontinuitie$Eq. (5)] we examine the difference between the two proceséegd)
S;k:yw' Ayy, ;(k=Xk+AXk. (21) anduv(x,t):

In a small neighborhood of a local maximum $§(y) the Av=F(x.) =0 (x.1), o7

fluctuations in the positions of the zeros are determined by
the equation

SHykt Ay =vo(Yict Ayi) =0, (22)
vo(Yk+ Ay Tun(Ykt Ay =vo(Y) Ayt vn(yw =0,

(AvA)=0%(t)+ 0?(t)— 2r(t)a(t) o (t). (28)

For k.(t) <k, ,kq the variances(t)=¢(t) and the correla-
tion coefficient can be written as follows:

vn(Yi)
= e(t) (Av?)
vo(Yk) r(t)=1—T, e(t)= 20
g
Using this equation, we can estimate the fluctuation:
o5, n+3 1 Hko)”” .

2 ik,
vé *

Yk

(29

whereg(t) is the relative deviation of the two processes. The
(23) differenceAv is the sum of rectangular pulses of two types
(Figs. 2b and 3p If the processes(x,t) andv(x,t) at point
_ _ ) X belong to the same cell containing the zerp, then
Clearly, their strength increases with the cutoff frequekgy Av=Ay,/t, and the pulse widtlx,.,— X, is approximately
and does not depend on tirhe equal tol (1), wherel (t) is the external turbulence scale. If at
In accordance with Eq(S), there are two reasons for {he pointx these processes are inside different cells, then
fluctuations in the positions of the shock fronts: the ﬂUCtua'sz(ka—yk)/t, and the pulse amplitude is proportional
tions in the zerog, and the fluctuations in the veloci¥ of 1o |(t)1t, while its length is equal to the shift in the position
the discontinuities: of the discontinuity AX, .
Ax= Ay, +AV,dt. (24) Using the expressiofil0) for the turbulence energy, we

. N . . . can estimate the relative deviatienas follows:
The main contribution to the fluctuations in the velocity of a

discontinuity is provided by the perturbation of the initial

AyZ=(Ay?)=

— — — —
potential, e= % % = % % + _Ath (30)
|2 I |2 I I
Sh(Yi) = Sn(Yk+1)
AVy= v kT Yk+1~ Yko (25 _ _ o
7k Such estimates can also be made in the case of a periodic
while Ax, can be estimated as follows: initial signal with a high-frequency perturbation. For a peri-
odic signal,I=1g=const ande increases with time. This
- g . _ .
Axk=<Axﬁ>1’2:Ayk+Ath, Avkzl_sh_ 26) means that the presence of high-frequency noise destroys

periodic structuré®
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But if we have noise as the initial signay(x), the final ) 2aﬁk2+3
result depends on the rate of growth of the external scale Sy(Y)=— %0, Oy="hy3
[(t). Using(9), (18), (22), and(25), we arrive at an estimate
for the relative deviatiorz: where y, is a dimensionless parameter characterizing the

size of the second derivative in the neighborhood of the local
t)=¢e(t)+e5(t)+e3(t), 31 . . .
s()=e1()+e5() +o5(t) GY  aximum of Sy(y), and o is the variance of the second

(35

n+3 [/ ko\""? ke(t)]? derivative of the potential. For a rough estimate we can take
ed)= 7 E) B Hf} . o= e, Hy and the dispersion @&,(y) to be of the same order. Then
K| Y ()] (32 the deviat_ion in the position of the_ absolute maximuhyk_
83:\/5(1_”)1/2{1_(_*) } Rl =y—Vy, in Eq. (34) can be obtamed~ from the condition
Ko Ky Ay2=S,/|Sj|. This yields estimates fdf, andAy,:

Thus, whenk, is fixed the relative deviation tends to

zero with the passage of time, decreasingrigrl in pro- Ao~ ge = Zaﬁ

portion tot(""V/("*3) This means that the solutian(x,t) k=08, (1—n)ki™™

remains stable against small perturbations. But=ifconst

and the variance of the high-frequency perturbatigix) os nt3 1

decreases with increasirkg, then from(32) it formally fol- (Aydy=—""=1 > (36)
lows that the relative deviatiogy (t) increases without limit. YkOs 1= kS

However, rigorous analysis shows that even in the case
strong fluctuations im,(x) the large-scale structure remains
stable against the high-frequency perturbatigi{x) (see

C‘Fhus, forn<1, when the variance of the perturbed potential
is finite, even in the case of a strong perturbation of the
velocity field,vy,, the relative fluctuations of the coordinates

Figs. 2 and } of the zeros of the sawtooth wave,
5. SELF-PRESERVATION OF LARGE-SCALE STRUCTURES (Ay?)
AGAINST STRONG PERTURBATIONS e= =ggt M3 (37

|2 h

Now we turn to the limitky>k, where the initial energy _ _ N
of the perturbation is much higher than the initial energy ofand the relative fluctuations of the positions of the shock
the unperturbed signalr; > o5, and the initial correlation ~ fronts,

coefficientry is much smaller than unity. But since the =
. . L L AVt Ht
asymptotic behavior of a realization of the velocity field is gy=—— = _:(,Sht—(l—m/(n%), (38)
determined by the properties of the initial potentia(3) we ' 12
can assume that for<1 the relative deviatior(t) tends to o : L
remain finite as the variance, of the perturbation in-

zero with the passage of time due to the finiteness of the ) ] ; ]
variance of the perturbation potent[&q. (19)]; creases, i.e., ag, increases, and decrease in strength with
the passage of time.

Let us now study in greater detail the statistical proper-
ties of the coordinatg, and height, of an absolute maxi-
. . mum of the procesSy(y) in a small neighborhood of a local
. qu t>t, a global maximum of the funCt'OG(?(’y’t) maximum ofSy(y) in Eq. (34). Clearly, solving this problem
lies within a small neighborhood of a local maximum of means finding the statistical characteristics of the absolute
So(y), so that we must ggcclunt for th_e efiect of the ran_dommaximum ofG(x,y,t) given by Eq.(3) in the asymptotic
processS,(y) on the positiory, and heighiH, of the maxi-  spjution (2) of the Burgers equation with the time varialle
mum of the proces§(y) within a small neighborhood of a replaced by 686(yk))*1, the curvature radius of the unper-
local maximum ofSy(y): turbed potential. The latter problem was thoroughly studied
~ in Refs. 7 and 9, where it was found that over long time
So(Y) = So(y) +Sn(y) intervals the absolute maximum has a Gaussian dist?ibution
1 and its value, a double exponential distribution. Construction
=§Sg(yk)(y_yk)2+ So(Yi) + Sn(y)- (34 of an asymptotic theory is possible if the time intervals are
such that the parabola i{8) is a fairly smooth function on
The perturbation actiors,(y) in Egs. (17) and (34) is a  the scale of the initial actio,(y) and a large number of
statistically homogeneous process with a finite variamge  |ocal maxima of the initial action contend for the right to be
[Eqg.(19)] and a spatial scalg [Eqg. (20)] that decreases with the absolute maximum d&(x,y,t).
increasingko. Returning to our problent34), we note that we must
We would like to make some preliminary estimates be-estimate the characteristic numb¢iof the local maxima of
fore we discuss the results obtained by the asymptotithe perturbationS,(y) within the regionAy, [Eq. (36)]
theory. where the local maxima contend for the right to be absolute
We write the second derivative of the unperturbed initialmaxima. Equation$20) and (36) imply that for ko>k, this
potential as number is

2
2 %n

I sk, 33
O'Sh (1_n)k;|;,n 0 * ( )
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Ay <k0><1+n>/2 Thus, for ko>k, and n<1, all global maxima of

N=——~ E >1 G(x,y,t) are approximately within a small neighborhood of

In
_ _ the corresponding absolute maxima@®(x,y,t), and the po-
and increases witRy. Thus, forko>k, we can use the re- tential3(x,t) satisfies the following expression:

sults of the asymptotic theory developed in Refs. 7and 9 to ~
find the statistical characteristigg andH, in (36). For this S(x,t)=S(x,t) +(H). (47)

we must formally replace the time variailen the appropri-  1he asymptotic solution(2) shows that the behavior of

ate formulas of Refs. 7 and 9 with the curvature of the un-l;(x t) asymptotically reproduces the behavior of the unper-
perturbed actiorgy(y), i.e.,t— 1y oy . ' ymp y rep P

The asymptotic theory of Refs. 7 and 9 contains a Iargé[urbed fieldv(x,t). In the case of a strong perturbation, the

dimensionless parametey which is the ratio of the timeto relative deviation of the processesandv is still described

the characteristic time of manifestation of nonlinear effects.by Eq.(30), where

In our case it is . :(n+3 1/2( kc(t))z 1 o I
oy, oy, M tli-n Ke | yinm’ 2 v
= 1" = = (39) B (48)
2l hSO 27T|h’}/k0'5n Yk 1/2( kc(t))(l n)/2 1
e3=(1—n)~ .
where Ky Jin

27 (1+n)

1 [(n+3)(1—n)]¥2[ ko\"*? koMt Thus, fork.(t)>k, , the deviation is also due to fluctuations
5= (k_) =A( k_) . (400 inthe positions of the discontinuities in the velocity field and
* * tends to zero with the passage of time.
Note thatM ~N?2, whereN is the number of local maxima The above analysis provides a good qualitative and
contending for the right to be the absolute maximum ofquantitative explanation of the results of computer simula-
So(y). The results of Refs. 7 and 9 imply that ff>1 the  tion of the dependence of the correlation coefficient on the

heightH, of the absolute maximurfEq. (36)] is spatial frequenc¥, of the high-frequency perturbation and
on timet. In particular, the formulas give a good description

n of the process in which the correlation coefficiemeaches a

=0g bkt o, §_k (41) plateau, where its value depends weakly on the bandwidth of
the perturbation spectruky,. For instance, in Fig. 6 the the-

where 7 is a dimensionless random quantity obeying theoretical value ofr at k.=k, /4 obtained by the formula

F|L<:Ush§k

o
&k

double exponential distribution r=1-¢/2=1-¢4/2[Eq.(48)] is equal to 0.8925, while ex-
o periment yields =0.89. The results of the theoretical treat-
Fo.(n)=e° (42 ment imply that ag increases, the correlation coefficient of

the perturbed and unperturbed fields must tend to unity. In
the numerical experiments the evolution of the fields was
studied in finite-size regions. Asymptotically, only a single

triangular pulse remains in such a region, and the fluctua-

[ M &
o exp( - j) =1, &=VInM—Iny. (43 tions of its zero are weak but finite. This is the reason why

tends to a value close to unity.

with {7)~({5?)~1. Here&, is the solution of the transcen-
dental equation

We see that foky/k, >1 the height of the absolute maxi-

mum is weakly dependent on the local curvature of the po-

tential, Si(yx) = yo's and for all practical purposes is a de- 6 SMALL-SCALE PERTURBATIONS AND TURBULENT
terministic function with a mean VISCOSITY

~ N ] It is well known that the effect of small-scale perturba-
(H)= 75,605, VINM 44 tions on large-scale flows can be described by introducing an
effective turbulent diffusion coefficient. In connection with

and a small variance . ) o
the Burgers equation, this problem was studied in Refs. 32

ol g%h and 36. Here we briefly discuss the features of the effect of
(AW): _thl__ (45) viscosity and small-scale perturbations on the evolution of
& nM noise signals. For infinite Reynolds numbers, the initial field

becomes a sequence of triangular pulses, all having the same

The coordinatey of a local maximum has a Gaussian dis- slopev, =1/t and completely determined by the positions of

tribution with a mean(y,) =y, and a variancdy,: the zerosy,, and of the discontinuities;, . For a small but
o = 1 1 finite dissipation_ cqgfficien]u, viscosity is important only
(Ay?)= S /" (46) near the discontinuities and broadens the shock front. In the
£ g YK 1I-n K2y \InM’ neighborhood of a discontinuity,
. . . . : i X—X
r;lgli‘::]egjg;i?sss with the increasing rati'k, of the spa p(x,t)=Av, tant 5 k, 49)
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(a1, (B(x,0) Bearing in mind that foky>k, the perturbed action has
8 a double exponential distribution, we can show that the mean
field is still described by49), where the effective viscosity is
4
4+ ¢ 2ar 2/320'Sh
Meﬁ=(—) — &=\InMm.
14 4 / an g
0 A:v Here the shock-front width is determined by the fluctuations
i v in the positions of the shock fronts, and the relative devia-
L tions (38), which are inversely proportional to the Reynolds
-4 number, decrease with the passage of time.
-8 7. CONCLUSION

0 1000 2000 3000 4000
* Let us discuss the effect of high-frequengmall-scalg
FIG. 8. Evolution of the unperturbed field x,t) with a cutoff wave number  perturbations on the evolution of the large-scale components
k, =32 (dashed curveand that of the mean fiekb (x,t)) with an additon ~ of the field for different indicesn of he spectrum of the
high-frequenc_y part in th_e energy spectrum and a (_:utoff wave numbefnitial perturbation (Eq. (7). We assume that the energy
O ratane of the Mo eiency pontriatan, - radmg e over 1090 spectrum of the initial fieldo(x) and the perturbation;,(x)
obeys a power lawEy(k) «aik". Forvg(x) the cutoff fre-
quency isk, , and the perturbation spectrum occupies the
interval k e [k, ,kq], with ko>k,

whereAuv, is the discontinuity amplitude, ang=2u/Av, is In Refs. 6-10, 14 and 15 it was shown that if the initial
the discontinuity width. In the discontinuity stage, field obeys Gaussian statistics, the turbulence energy dimin-
| ishes forn>1 as
Yi+17 Yk
Avk:pr a'z(t):crstflln*l/z(tafla's), (51

where 03=(S3) is the variance of the initial potentigsee
Eq. (3)), and o=(v}) is the initial-velocity variance. For
fhe unperturbed field(x,t) from Eq. (7) we have o3
=ki~!, while for the perturbed field)(x,t) we haveo-g
Av(t)I(t) 1(t)  13(t) zkg’l. Thus, forky>k, the variance of the perturbed field
Re(t)= T a EO ut (50 is much larger than the variance of the unperturbed field for
n>1, which means that large-scale structures are unstable
equal to the ratio of the external turbulence sdt¢ to the  with respect to small-scale structures in the case being dis-
internal scaled(t). cussed here. The physics of this is that fior 1 large-scale
For a periodic signal,= const. Due to the increase in the structures form because of parametric generation of low-
width of the shock front, the Reynolds number diminishes frequency components, which in turn is due to the nonlinear
and at Re{) ~1 the wave reaches the linear regime. With ainteraction between the spectral components of the entire
noise perturbation there are two competing factors: the inspectrum. Here, even in the nontrivial cas€ 1<2, when
crease in the external scalé) owing to the merging of the low-frequency part of the spectrum is preserved
discontinuities, and the increase in the internal scale owingE(k,t) = Eq(k) ~ k", k—0), the main fraction of the en-
to dissipation. For random signals with the spectri@nfor  ergy of the field is determined by the processes of parametric

wherel is the external turbulence scale, add ut/l. The
degree of nonlinearity of the waves can be characterized by
dimensionless parameter known as the Reynolds number

n<1 we find that Eqs(9) and(50) yield generation of low-frequency components, and the decrease
Lonin+3) in energy is described by E¢p1) (see Ref. 1h Note that for
Re(t)~t , n>1, the evolution of the low-frequency components is sen-

. . L sitive not only to small-scale perturbations but also to the
i.e., the Reynolds number increases with time and the shap% y P

. shape of the probability distribution of the initial
of the wave becomes more and more nonlinear. P P y

We arrive at the same conclusions if we examine th(i‘p()ter]tial'12'17’19
The case—1<n<1 andkg,k, — corresponds to a

evolution of the mean fieldv(x,t)), assuming that the av-  gjyation in which the initial potential is a fractal Brownian
eraging is done over the ensemble of realizations of the highs5cess. In this case the fieldx,t) is strictly statistically
frequency perturbation,(x). Indeed, the perturbed coordi- ge_similar and it is possible to find the velocity distribution,
nates of the zeros have mea(g)=yi, so that Eq.(4)  the discontinuity amplitudes, etc., for’it®'Here the low-
implies that far from the discontinuities the mean of the perfrequency part of the spectrum is preserved, and it is this part
turbed field is equal to the unperturbed fiel(ﬂ(x,t)) that determines the asymptotic behavior of the field. In Ref.
=v(x,t), a fact that Fig. 8 clearly demonstrates. Near a dis-33 it was shown, with a rigor that would be accepted by most
continuity we must allow for the effect of perturbations on physicists, that at a finite cutoff frequenky the laws gov-

the position of the discontinuity coordinatgsg. (5)]. erning the evolution of the energy spectrum are the same as
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The structure and mobility of negative ions of oxygen in liquid Xe is investigated. It is shown
that the strong exchange interaction of the outer, weakly bound electron of the negative

ion with the surrounding liquid leads to a partial compensation of the electrostriction effect, and
it prevents the formation of a solid cluster around the negative ion. A simple perturbative

model describing the structure of the negative ion in the liquid matrix is developed. The mobility
of O, ions in liquid Xe on the saturation line is estimated. The reasons for the difference in
mobility of negative and positive ions are discussed. 1899 American Institute of Physics.
[S1063-776(199)01402-X

1. INTRODUCTION Similar complexes, in which a light quantum particle is lo-
calized inside the liquid density fluctuation and kept station-

In liquefied rare gases, the structure and properties ohry, were first suggested and investigated by Fértellex-
admixed ions are considered, as a rule, in the context gblain the anomalously long life-time of positronium in liquid
Atkins’ model! This model takes into consideration the ef- helium due to creation of a cavit§*bubble”) around the
fect of electrostriction, and it predicts the formation of a positronium. Bubbles in nonpolar liquids can also be created
solid cluster around the ion. The cluster then determines tharound free electrons, excited atoms, and positive and nega-
transport properties of such an ion in the condensed phastve ions. Detailed discussions of this problem can be found
The consequences of this theory are in good agreement wiih the special issue «lons and Atom in Superfluid Helium»,
experiments on the mobility of positive ions. However, Zeitschrift fr Physik B, Cond. Matte®8, No 3 (1995.

Atkins’ theory does not depend on the sign of the ionic A difference in the mobilities of positive and negative
charge, and it predicts the same effects for positive and negéns was also observed in liquefied rare gases with high po-
tive ions. larizability. For example, in liquid xenon, negative ions of

Recently, experimental data on the mobility of certainO, and Sk exhibit mobility several times that of positive
negative and positive ions in liquid xenon became availabléons? As a result of the high polarizability of atoms of the
which indicate a difference in the transport properties ofmedium, no microcavity is created in this case, but the strong
positive and negative ions. It was found that negative iongxchange interaction leads to partial cancellation of the elec-
exhibit higher mobility than positive ions of comparable trostriction and it prevents the formation of a solid cluster
size?3 around the negative ion. The determination of the structure

The difference in transport properties of positive andof the negative ion becomes complex because of the more
negative ions is, above all, due to the fact that the outecomplicated nature of the interaction of the outer electron of
electron of the negative ion is localized in a spatial regionthe ion with the liquid.
with a characteristic size appreciably greater than that of the In this paper, we propose a simplified model of the ionic
inner electron shells of the parent atom or molecule of thestructure that considers the influence of the weakly bound
ion. When a negative ion is located in a dense gas or liquid ielectron of the negative ion on the liquid matrix. From these
perturbs the surrounding medium. The character of the peresults, we estimate the mobility of,0in liquid Xe by
turbation depends on the character of interaction of the outgneans of a modified Stokes equation.
electron with the medium. One important factor that deter-
mines the qualitative difference in the perturbation near posi-
tive and negative ions is the repulsive exchange in.teracFiog_ SELF-CONSISTENT FIELD MODEL OF A NEGATIVE ION
of the weakly bound outer electron of the negative ion with;y A NONPOLAR LIQUID
the electron shells of the surrounding atoms or molecules.

The structure of negative ions in dense gases and liquids We consider a lone electron bound by the polarization
with atoms of low polarizabilityHe and Ne were investi- potential to the molecule that formed the negative ion. The
gated recently:® It was shown that the competition between asymptotic form of the electron wave functiof(r), in the
the short-range exchange repulsion and the long-range polgpolarization potential of the molecules is very well known.
ization attraction of the outer electron with the atoms of theAt large distancesr, the wave function varies ag(r)
medium leads to the formation of a microcavity around thexr ~texp(—r/\). The characteristic sizk of the spatial re-
negative ion, which is surrounded by a denser layer of atomgion where the electron is localized is determined by its
This effect largely determines the negative ion mobility. ground state energy in the negative iod,\ =%/+/2me.

1063-7761/99/88(2)/5/$15.00 320 © 1999 American Institute of Physics
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In the following, we consider weakly bound electrons delta function,r andR; are the coordinates of the electron
for which \ is appreciably greater than the size of the parentand scattering center, respectively. We also assume that the
molecule. The weakly bound electron spends a significantonditions for the optical model are satisfied, i.e.,
time far from the molecule. It moves with an average kinetic 3
energy e, <%22m\2. The motion of such an electron has  Lei(N)<A,  NLgg(N)<1. 1)

many features in common with the motion of a quasifreerne gehiginger equation for the wave function of a weakly
electron of the same energy. In rarefied gases this interactiqfy \nq electron in the liquid acquires the form

results in scattering of the electron by isolated molecules.

The scattering potential consists of a short-range repulsive #2 27h?

part due to exchange interaction and an attractive long-range ﬁA¢(r)+U(r)zp(r)+2i o Le(N) 8(r —Ri) y(r)
polarization part.

In a liquid, the situation is significantly more compli- =[E=Up(N)]y(r), 2
F:ated. Her e, the Iong—range_ part of _the.polanzatlo.n pc)tem""‘\}vhereE is the electron ground state energy of the negative
is determined by the atomic polarization potentials of the. I . .

. . . ion in the liquid andJ(r) is the potential of the molecule on
atoms around the ion. In this case the potential of a scatterer, . ) : .
which the electron is localized. The shift of the electron en-

can be represented by a superposition of the electron-atorgrgyup(N) was taken into account in E€2). The electron

interaction potential and the screened polarization potentials )
of all other atoms around the ion. The total scattering potenSanergy Is then
tial of an electron is described as a “muffin-tin” potentfal. e=E—Uy(N).

It is worthwhile to note that the potential decays faster
than 1f* as a result of the screened polarization. This leads We assume that the effect of the mediumeois small,
to a reduction in the characteristic size of the interaction oh2
region. In rare gases, in the supercritical region at liquid 8>As=(¢(r)|2
densities and on the saturation line in liquids, the elastic ] m
electron-atom cross-section depends weakly on electron ey o o perturbation theory supports this notiolmte-
ergy and scattering angle. There is essentially no Ramsauer—

T d eff d th : ) ¢ : @rating Eq.(3) over the electron coordinate and averaging
ownsend effect, and the scattering cross-section of & SloW, . the atomic coordinates, we obtain the following rela-

electron is determined by an effective scattering Iengtr1ionship between the de Broglie wavelength of the electron

Leﬁ(N%‘ | Hect ing | his a functi f)" the electron effective scattering length in the medium
The electron effective scattering length is a function o L.«(N), and the number density of the liquid:

the liquid densityN. It can be determined from experimental

Ler(N)S(r=Rp[¢(r)). (3

data on the quasifree electron mobifftyn the low-density 3 20
limit, the effective scattering potential is transformed into the m>47ﬂ‘ N eXF{ N 4)
potential of an isolated atom, and(N) becomes the elec-
tron scattering length of an isolated atom This places an additional constraint on the electron bind-
ing energy of the ion. In fact, whek> o, the right-hand
@ @ side of Eq.(4) is proportional tox3, but its left-hand side is
La= \/a:OCOt‘\/m, linear in \. At very large\, the number of atoms of the

medium NA® in the vicinity of the electron orbit can be

where a is the atomic polarizabilitya, is the Bohr radius, Iarge_. In this case, _the inter_action of '_[he electron with the
and R, denotes the effective radius of the short-range hardnedium, as determined by its scattering length, cannot be
core of the electron—atom interaction potentfaWvith in- ~ considered weak. The contribution of the medium to the
creasing liquid density, the relative role of attraction in the®/€ctron binding energy is significant, and inequality .
scattering process decreases as a result of polarizatidf Violated. In conjunction with Eq(l), Eq. (4) determines
screening. This leads to a decrease in scattering length, aff@e range of applicability of the current approximation.

even to a sign reversal at sufficiently high densities. ~ We now turn to a discussion of the free energy func-

In the optical approximatiofi® the energy of the bottom tional AF{N(r), ¢(r)} of the negative ion-liquid system. The
of the electron conduction band i,=27h2NL.(N)m  Presence of the negative ion in the I|qU|d.Ieads to a change in
+UL(N), whereU = — a€?F N/2¢ is the shift in electron the local stru_cture of th_e Il_qwd near the ion. In other words,
energy as a result of the screened polarization interactiof’® Perturbation of the liquid affects the electron spectrum of
The Lorentz screening facforF, (N)=[1+8maN/3] the nega’_uv_e ion. The structure of the complex is determined
takes into account the weakening of the polarization field ofy the minimum free energy, which can be represented as a
a particular atom by its interaction with the induced dipolesSUm of two terms,
of all other atoms of the mediuna; is the radius of the first _
peak of the pairwise correlation function of the liquid. AFINE), (1)} = AB{N(r), ()} + ARAN(D)}-

We model the motion of the weakly bound electron of aThe first represents the change in electron ground-state en-
negative ion in a nonpolar liquid as the motion of the elec-ergy due to the presence of the liquid. An accurate calcula-
tron in the field of point scatterers with an effective potentialtion of AE is complicated, and requires a self-consistent cal-
Veg=2mh?Leg(N)&(r —R;)/m, where &r) is the Riemann culation of the local liquid densityN(r) and the electron
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wave function¢(r). If the conditions of the perturbation N(r)IN .
theory are satisfied, however, the problem can be simplified 1.08 i
significantly, andAE can be written i
EH
2mh? i i
AB{p(N.N(}=(w(n)| 2~ 106 H
X Len(N) 8(r = Ry)| () + Up{N(1)}. |
) 1.04f “‘.

The second term in the free energy functional
AF{N(r)} represents the change in free energy of the liquid 102
as a result of a change in its local density. The relation be- '
tween the optimum density profilsl(r) and the electron
wave functiony(r) is determined by minimizing the free
energy, SAF{N(r),(r)}/N(r)=0. A knowledge of ]'000
N{(r)} enables one to determine the potential energy of
electron interaction with atoms of medium. This leads to the
roninear Scinger equan. s SO, i o e o o S, o o o e s
Obtal.ned numencal.ly’ is usually very Comphcate(?’ and Wein a(%ordance with{6) for different temperaturest) 161.4,2) 200 K. The
consider only the simplest case of small changes in the l0Cfashed curves were calculated in accordance with Atkins' model for the
density|N(r) —N|/N<1.

In this case, the relation betweBkfr) andy{r) becomes
very simple:

same temperature8) 161.4,4) 200 K.

~ the presence of this ion as an admixture in essentially all
N(r)/N=exg — yV(r)/Ms?], (6)  experiments on electron and ion mobilities in liquefied rare

whereM is the atomic mass is the velocity of sound in the 9ases. Furthermore, experimental data on the mobility;0f O

liquid, andy=C,(T)/Cy(T) is the ratio of specific heats of in dense gases ahd Ilqu_|ds are available. The b|r_1d_|ng energy
oo o~ N = of the electron in @ in vacuum (electron affinity is

the liquid. The functiorV(r) =Vy(r) +Va(r) represents the _q 4q eV, which corresponds #0o=5.53,. In the atomic

effectwe_ Interaction potent!al between the .electron and IIq'density range considered here, the electron—atom, scattering

uid. In first-order perturbation theory, the first term has the

form cross-section depends weakly on the electron energy, and
there is no Ramsauer—Townsend efféctherefore, we as-
~ 2mh? sume for simplicity that the cross-section is independent of
Va(r)=(y(r")| - Le(N)S(r—r")|y(r")) energy, and that it is determined by the effective scattering
2 length L.4(N). The applicability condition for perturbation
ar
- Log(N)| (1) 2. 7) theory is then satisfied for Oin liquid Xe. The effect of the

medium on the weakly bound electron of the negative ion
This takes electron scattering by the effective potential into02 at the triple point results in a correction to the electron

} ] ~ ) ground-state energy adfe=0.05eV, which is significantly
consideration. The second term Y{(r) takes into account |ass than the electron affinity of,On vacuum.

the fact that when the electron is near a scattering center, it Liquid density profiles were calculated at the triple point
interacts with the screening potentials of the other atoms of Xe, atT=161.4K,N=1.36x 10%2cm 3, and on the satu-

thg quuiq. These coqtribute to,(r), but they do not par-  ation curve atT=200 K, N=1.23< 10%cm™3. For these
ticipate in the scattering process: conditions we adopted effective electron scattering lengths
VITR , e o , Les(N=1.36x 10?2cm %) =0.6a, and Leg(N=1.23
Vo) =) Vp(r=r)g(r=r)F(N)[e(r). (®) x 10%cm %) =0.3a,. Results of the calculations are shown
Here, g(r—r’) is the pairwise correlation function of the in Fig. 1. In the same figure, density profiles calculated by
atoms comprising the liquid. In liquids made up of atomsmeans of Atkins’ model are shown. Far from the ion, the
with small polarizability, where the atomic polarization po- long-range polarization part of the interaction potential plays
tentials are essentially unscreendd,(r) is negligible in  the main role. Closer to the center of the ion, the exponen-
comparison withV;(r). Note that in the limitr>a, V,(r)  tially increasing ternisee Eq(7)], which takes the exchange
takes the natural form of the screening polarization interacinteraction into consideration, becomes dominant. In liquid
tion: Vz(r)= — a€?F (N)/2r. Xe, in splte of |Fs h!gh polarlzablllth27.11.a.u.., the ex-
change interaction is so strong that as the liquid density in-

creases] .«(N) reverses sign from negative to positive at
The present model was used to investigate the structud* =1.1x10?2cm™ 3. The increasing importance of,(r)

of the negative ion of the oxygen molecule, On liquid Xe  results in a slower rise in the local density near the center of
on the saturation line, with the aim of comparing calculatecthe ion. The density profiled(r), shown in Fig. 1 for small
and experimental resulfdnterest in the @ ion stems from  distances of the order of the radius of the first coordination

3. RESULTS AND DISCUSSION
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difference between them. This is exhibited by the differing
slopes ofu(T) »(T) = const for the two types of ions, and it
demonstrates the differing dependencies of the structures of
T the positive and negative ions on liquid density and tempera-
ture.

lonic motion in a liquid results in energy dissipation.
The liquid layer with maximum viscosity is attached directly
to the surface of the ionic sphere. This layer contributes most
actively to dissipation. With this assumption, it is possible to
estimate the effective radii of the charged complexes,

2 Rei(N)=RZ (N) (17 / ), (10)

whereR_ (N) are the radii of positive and negative ion com-
L plexes, respectivelyy,, are the maximum viscosities near
the ion, andy is, as before, the viscosity of the bulk liquid.
1] N 1 N 1 . . . .
160 170 180 190 200 Expa_mdmgpmlm T_ay!or series up to the secor_1d order in the
T, K relative variation in liquid density, we can write

-1 =2
* 8
T

LI
¥

g-cm-V

%
N
T

un, 10

FIG. 2. Experimental resuftdor u(T) 7(T): 1) O, ion; 2) positive ion of Bm= n(N'T)[1+ fT(Nm_ N)T, (11
n-pentane in liquid Xe on the saturation curve.

where N,,, denotes the maximum density near the ion. The
effective ionic radii are then

sphere, cannot be correct, since the applicability of the RE(N) = RE(N) (1 AN AN=N-—N 12
present model would be violated. But we speculate that an  RelN)=Re (N)(1+£7AN), =Np—N. (12

accurate calculation would not change the qualitative picture,  \we now analyze the situations for negative and positive

because the probability of finding an electron in this region i§ons separately. In case of the negative ion, it is evident from
low. _ _ the calculationgFig. 1) that beyond the maximunAN de-

As can be seen from Fig. 1, the assumption of smalkreases withN. In other words, the characteristic size of the
changes in liquid density near the ion is entirely justified|qcgjization region of the weakly bound electrandeter-

(note the expanded scale of the ordinate contrast, the ines the size of the negative ion. For a simple estinie,
Atkins’ model predicts a large increase in liquid density near.gn pe set to\. and can be considered independent of the

the ion. As the result of the strong exchange interaction, thﬁquid density. Then, according to E@12), Rx(N) is an
changes are so small that the creation of a solid-like CI“St%creasing function C’)fAN and consequeﬁtlyeg decreasing
around a negative ion is not observed. We believe that this i§,ction of the liquid density, which is consistent with the
the main reason for the experimentally meastineadbility experimental data shown in Fig. 2.

difference between the Oion and positive ions. Measure- \yg next consider the mobility of the negative ion, using
ments of the mobility of an Oion are not available, but the the present model for the region of enhanced density and
mobility of the positive ions ofi-pentane and tetramethylsi- ressure near the ion. This region results in a local increase

lane in liquid Xe were found to be almost three times les§, snear viscosity. As the viscosity of the liquigi(N,T)

than the @ mobility. o _ depends on density and temperatupé;) can be evaluated
For a simple estimate of the negative ion mobility in @ 55 4 function of distance from the center of the ion.
liquid, we assume that during the motion of the ion inaweak  ag can be seen from Fig. 1, the local density increase is
electric field, a viscous flow of the liquid occurs that is de- g1 Moreover, the viscosity of the liquid Xe under these
termined by its local density near the ion. Itis then possible,gngitions is approximately a linear function of the liquid
to model the motion of both negative and positive ions as thgressure. The local viscosity as a function of distance from
motion of spheres with effective radi; that differ for the  the center of the ion can be written as(r)=7.[1
two kind of ions. From the Stokes formula, the mobility is +(Ry/r)*], where 7, is the viscosity of the unperturbed
e liquid and R,=[(dn/dP)r(aF (N)e*N/27.)]** is the

(9)  characteristic distanc&®, depends on properties of the lig-

uid, and does not depend on any properties of the ion.
where 7 is the viscosity of the undisturbed liquid and the Previous resulf$ were used to calculate negative ion
numerical constant= 4 for a bubble or & for a clustet'”  mobility. The effective ion radiuRes=R; ¢, Where¢ is a
It follows from Eq.(9) that the produci.z is independent of  dimensionless number that includes corrections to the Stokes
the kinetic characteristics of the liquid. It is determinedformula. For a bubbléperfect slip boundary condition®f
solely by the structure of the resulting ionic complex. radiusR_ and yoz(R”/Rc‘)4> 1, we use the approximate

In Fig. 2 the experimental dependence @f; on the  expressioft

temperature of liquid Xe along the saturation curve is shown.
It is obvious that besides the quantitative differenceg.in
of the positive and negative ions, there is also a qualitative

a cRe7’

8v2 8v2
¢(Yo)= Eyé"‘[ 1- gyo‘*"‘] (13
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12 function of N at small AN. We obtain Rj;={3(N/AN)Y4
T * + ,NY4AN®4 where/; and ¢, are also weak functions of

_; 10 N. From these qualitative considerations it can be seen that

o the increase iR} with N is related to the increase in the
g8 cluster radiuR; despite a simultaneous decrease in the dis-

i 6 tortion of the local liquid densitAN near the cluster. This

- result is in good agreement with the experimental Yata
=2

a4 L shown in Fig. 2.

160 170 180 190 200 The radius of the negative ion depends weakly on liquid
L.k density, and is mainly determined by the inner state of the

FIG. 3. Mobility of the G ion in liquid Xe on the saturation curve. The 10N. As result, the distortion of the liquid density near the

curve is calculated in accordance with the Stockes formula, and the pointaegative ion is the principal factor determiniRgg(N). With

are the experimental resus. increasing liquid density, the role of the exchange interaction

of the weakly bound electron with atoms is augmented,
_ which results in an increase I(N) and a larger decrease in
The estimates ofR, were made atT=170K and AN near the ion. Therefore, the present model enables us to

T=200K. The results were very similar for the two points. jnterpret qualitative differences in the structure and mobility
Based on the present approach for these two casegs negative and positive ions.

R,~8.6a; andp~1.56. Our calculation of negative ion mo-

bility by means of the modified Stokes formu@ and(13) The authors are grateful to W. F. Schmidt for stimulating

is presented in Fig. 3. We obtain satisfactory agreement witldiscussions. This work was supported by Russian Fund for

experiment although we consider these results to be preFundamental Researdfsrant No 96-02-00230and by the

liminary. Deutsche Forschungsgemeinschg@Brant No RUS 113/
For a positive ionR; (N) denotes the radius of the clus- 433/0O(R,9]. One of the authoréA.G.K.) thanks the NATO

ter created from the surrounding atoms as a result of eledor a traveling grant.

trostriction.R; (N) is a sharp function of the liquid density,

and it can be determined using the modified Atkins’ mddel. »g_mail khrapak@inmech.msu.su

Near the triple point, the cluster size is determined by the

surface tension of the liquid—solid interface, and can be writ-1, o Atkins, Phys. Revi16, 1339(1959.

ten 20. Hilt, W. F. Schmidt, and A. G. Khrapak, IEEE Trans. Dielectr. Electr.
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Negative Ca and Ba ions of large radii on the surface of and in bulk liquid helium have been
studied. Our results indicate that these ions are adsorbed on the helium surface. lons on

free liquid helium surfaces have not been studied previously because it was thought impossible
to confine them on the surface. Cand Ba ions have very low binding energies,

therefore, like electrons, they form a bubble of large radius in bulk helium, whose energy is
higher than on the surface. The behavior of ions on the surface exhibits a number of previously
unknown features owing to their large masses and strong localization in the horizontal

plane. Even in the absence of confining electric field, a hole is formed under an ion due to the
polarization attraction between the liquid helium and the charged ion. This hole formation
reduces the ion mobility by several orders of magnitude and increases its effective mass
severalfold. The critical density of electrons and ions is approximately the same on the
surfaces of thin and thick helium films. @999 American Institute of Physics.
[S1063-776(199)01502-4

1. INTRODUCTION connected two-dimensional electronic system is produced. In
order to discriminate between these two scenarios,

Numerous studies have been dedicated to properties @f might be useful to have an opportunity to switch quantum
electrons on a helium surfa¢see, e.g., the monograph cited gffects on and off in the electron system on the helium sur-

as Ref. ). This intense interest stems from the great numbeg, .o j e 1o vary the electron mass. This trick can be used in
of beautiful and novel effects that occur in systems of sun‘ac&;eal experiments, since there are negative @ad Ba ions

electrons, and also because some effects observed in semi- - - . . .
conducting heterostructures and interesting from the stancr-”th negligible binding energies and enormous dlmensllons
point of technical applications can be more conveniently see Table ) The;e 'ons arg adsorbed on the helium
studied using the electron gas on a helium surface. Ionsc‘,urface and, °W'”9 to the!r large masses, can be
however, until now have been studied only inside bulk he{féated as classical particles at all reasonable
lium, because almost all the ions placed on a helium surfacEmperatures.
“drown.” The reason is that the polarization energy associ- A mixture of electrons and Caand Ba' ions on a he-
ated with the attraction of an ion to helium overwhelms othedium surface in the regime of the quantum Hall effect is a
contributions unless the ion size is very large. The latter casgnique object for experimentThe point is that the roles of
is discussed in this paper. The binding energy of an extrghallow and charged impurities in formation of plateaus on
electron in such an ion is negligible, so the localization ra-curve of Hall resistance versus magnetic field have remained
dius of this electron, which determines the ion size, is veryunclear thus far. It is impossible to separate the contributions
large. _ _ of shallow and charged impurities to parameters of solid-
Recently research into effects on helium surfacesate heterostructures tested in the regime of quantum Hall
has undergone a revival sparkegj by the creation of aRgfect Given that the helium surface is pure, i.e., it has no
electron gas of high densitye~10'" cn¥* on thin films of impurities, one can separate the effects of charged impurities

liquid helium. Mitsuraet al2 detected quantum melting of an by varving the temperature or density of negative ions in the
electron Wigner crystal, which takes place when the eIectronY ying P y 9

density increases. The interpretation of these experimentglq'xture of electrons and Ca_or Ba ions. Specmcally, at
data? however, is far from certain, since other scenarios aréow temperatures Caand Ba ions form a Wigner crystal,

possible. At low electron densitiesn,, owing to which generates a periodic potential for surface electrons,

imperfection of the substrate below the thin helium film, theythereby lifting the infinite-fold degeneracy of the electron
may form isolated “pools” superposed on a long- Landau levels in a magnetic field without broadening the

wavelength potential relief generated by the substratdevels. At higher temperatures the Wigner crystal melts and
At higher densities, however, these pools may overlap, and the electron Landau levels are broadened.

1063-7761/99/88(2)/7/$15.00 325 © 1999 American Institute of Physics
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TABLE |. Numerical calculations of bubble energy and optimal radius in bulk liquid helium and on its surface
for several typical ions of large radius, with characteristics of these ions.

Optimal
Elgctron affinity _ lon size Atom or mo_Ic_ecuIe Turning point bL_Jbee _radius
in vacuum in vacuum polarizability —(al v g in helium

lon Eo, eV Lo, A B, a3 fo=(a/2g.d) ™, R A

O, —0.46 2.87 10.6 2.23 8.0

Ba~ —0.145 4.87 270 6.5 12.0

Ca —0.0245 11.84 170 9 141

Correction to ion Potential
Correction to Optimal energy on surface barrier for ion
ion energy separation between  Eg, taking into account on surface of
in helium volume ion and surface hole shape, thick helium film

lon Ei,—Eq, eV h, A (estimate eV (estimate A, eV

0, -0.024 - - ~0

Ba~ 0.024 14 —0.011 0.04

Ca 0.060 20 —0.003 0.065
2. ENERGY OF A NEGATIVE ION IN BULK HELIUM + oo, r<b,

Let us calculate the energy of negative ions in bulk he- Be? b<r<R
lium and prove that Caand Ba ions are adsorbed on he- =4 - or4’ r=% &)
lium surface, whereas ions of smaller radisach as @ or
H™) submerge or “drown” in the helium. tUo, >R,
In bulk helium an ion for?s a bubble whose energy is\yhere the core radius is derived from the binding energy

composed of three components: E, of the outer electron in vacuum, andy, can be set to

+ . Next, following Ref. 4, the segmepb,R] is divided in

2
A _ 2 871 €& two: one segment extending to the turning poigtand one
En(R)=4maR 26 "R Eo(R). @ beyond it. The turning point is given by
. . i i . 1/4
The first term on the right is the energy of surface tension in _ B P 2mE, @
the bubble ¢ is the surface tension coefficignThe second 0 agks) 0 %2

term is due to the polarization interaction between an elec-

tron and liquid helium with dielectric constaat The dimen-  Hereag is the Bohr radius anthis the electron mass. On the
sionless factow is close to unity and depends on the chargefirst segmentb,rq] we neglect the binding energy in com-
distribution within the bubble. We have=1 if the charge is  Parison with the potential, while on the second segment
concentrated at its center. For an electron delocalized insidg o,R] we neglect the potential in comparison with the bind-
the bubble,»=1.35. Taking into account the approximate INg energy. Afterwards the solutions of the Safinger
shape of the outer electron wave function, let us assumgduations are matched at the paipt

»=1.16, which is accurate to within 5%. The most difficult ~In this approximation, one can derive the functieg(R)

part is the calculation of the last terig(R), which is the ~ Without solving the Schuinger equation on the interval
ground-state energy of the outer electron in the potential of0.ro), and an important point is that no assumption is made
the polarization interaction with the atom and confinedabout the potential shape lat'r, thus the solution is made
within the bubble by the spherically symmetrical wall of notably simpler and more gener@s will be shown below,
liquid helium. This potential has not been evaluated accuthe potential described by E(B) cannot be used in the case
rately because it results from the complicated interaction off Ca~ and Ba ions). Immersion of an ion in helium does
the outer electron with the rest of the electrons. We knownot affect the potential for<r, but shifts the outer electron
only the binding energy of this electron to its atom and theenergy. If on the interval (8;) we neglect in comparison

potential shape at large separations from the atom center; With the potential not the energy but only the energy shift
due to the helium environment, leaving alone the total bind-

ing energy, the helium surface does not change the wave
ur)=—-—, 2) function atr<ry. Thus, the logarithmic derivative of the
2r* wave functionys(r) to the left of the joining point does not
change as a result of immersion in the helium:
wheref is the atom polarizability. In their calculation of the
energy of an @ ion in liquid helium Volykhinet al* used X'(ro—=0) J-2mE
the model potential x(ro—0) 07 oo
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whereyx(r)=¢(r)r. To the right of the matching point, with x'(ro)
due account of the conditidiEg|>|U(r)|, the wave function (o)

has the form
In the limit k(R—rg)>1 we can find an analytical solution
of this equation:

=—kg— (k53— k?)rg=—k cotf k(R—rg)]. (7)

1
I’D:F sinf k(R—r)],
4 exd —2kg(R—rg)]
1+2K0r0

Eo(R)—Eo=—Ey (8

and turns to zero on the bubble surface. By equating the

logarithmic derivatives at point, we obtain an equation for
thg energyE(R): Poi : For arbitraryx(R—r) Eq.(7) cannot be solved analyti-

cally with respect toc. We can find only the inverse function

X' (ro) 2_ .2
——=—Kp=— t R— 1 Kot ro(kg— k%)
o) ko= —k COt k(R—r¢)], R(K)=r0+;tanh‘1 0 o(Ko )
2.2
EJR)=— h7x (5) The only difference between E(B) and the correspond-
€ 2m - ing expression derived from Eqb) is the factor (1

+2koro) L. This factor is 0.3 for Ba and 0.4 for Ca.

The ne_glect of the binding energy is legitimate at aIIThus, Eq.(7) yields more accurate results, although it is also
r<rgonly if rox<<1 holds. In fact, we haveyx~1, so Eq. approximate

(5) is only approximately c_:orrect. .More accurate calculations At low temperatures the helium density on the bubble
can be performed numerically, given the exact shape of thB . .
oundary around 9 increases locall, which leads to a

potential. Before proceeding to these calculations, let us tr¥1igher polarization contribution in Eq1). This effect, how-

to refine Eq.(5) on the basis of the following considerations. .
. . o ever, need not be taken into account because we have already
The change in the logarithmic derivative of the wave func- . .
. ) ) ... neglected an effect of the same order of magnitude but with
tion on the left of the turning point due to the energy shift L . -
the opposite sign due to the difference between the Radfii
has the form o . i i
the polarization and exchange interactions with the surround-
ing liquid helium. Moreover, the polarization pressure
. (6) P=pe?/2vR* is a rapidly decaying function with range,
r=ry—0 and for the large Ca and Ba ions of interest to us these
effects are very weak.
In order to improve the reliability of our results, we have
performed a numerical calculation of the enefgy(R). In
this connection, let us discuss the selection of the potential
acting on the outer electron. Equati®) is a poor approxi-

X _AxT_X'Ax
X r=ro—0 X X2

The first term

ro2M 3
ALY'(0)+ [ix"dr] A{ oz V(D EIxelr

x(To) - x(ro) mation for Ca and Ba ions. Specifically, since these atoms
have large polarizabiliies8g,=270a3 and Bc,=170a3
froxdr >Bo,= 10.683, with a potential like that defined by E¢B)
. 2m Jo A we should set the boundary of the hard core at a distance
a2 x(ro) ' b~4 A from the atom center so that the outer electron en-

ergy be equal to the binding energy in vacuum. It is clear that
The last integral on the right requires knowledge of the wavehe range of the exchange repulsion should be approximately
function on the segmeril0ro]. Gribakin et al> performed  equal to the atom size, i.e1 A. Elaborate numerical
an accurate numerical calculation of interaction between agalculationg show that the outermost node of the wave func-
extra electron and the rest of the electrons in (8a”, and  tion isin factat 1.2 Ain Ba and 0.8 Ain Ca. So, the inner
Sr™ions in vacuum. As a result, they determined the wavewall in the model potential should be set at these distances
functions of the extra electrons in these ions in vacuum. Thérom the atom center. In order to satisfy this condition, we
calculated binding energigsare in reasonable agreement selected the potential in the form
with experimental dat&’ Assume that the wave function on

the interval (O;o) changes little when an ion is immersed in te, r<b,
gzi;ui?. Then, using the outer electron wave funcfiome U1 - Be? b<r<R ©
2(r2+a??’ '
fgo)(drN + oo, r>R,
x(ro) o wherebg,=1.2 A, bc;=0.8 A, andby,=0.482 A. The pa-

The second term on the right of E€6) is small, since rametera is derived by equating the electron energyRat
the pointr, is close to the maximum of(r), where the =% in this potential to the ion binding energy in vacuum:
wave function is determined largely by the normalization@sa=2.335 A, ac,=2.593 A, andao,=0. This potential is
condition and is little affected by the energy shift. With the closer to the real one than that defined by E).and also
correction given by Eq(6), we replace Eq(5) by admits an analytical solution in the limE—0. Then, by
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solving numerically the Schdinger equation with this po- 3. PROPERTIES OF NEGATIVE IONS ON A HELIUM
tential, we obtairE.(R). It is well approximated by the em- SURFACE

irical formula . - -
P Even in the absence of a confining electric field, a nega-

4 2R R? tive ion on a helium surface generates a static surface defor-
E.(R)— Eo= —E, exfl —2xo(R—To)] o mation around it, which we term a hole, by analogy with the
1+2korg 3ro deformation produced by electrons. Recall that an electron
(100 produces a hole only in a strong electric fiélHole forma-
tion in a zero confining field is caused by the polarization
In order to determine the optimal bubble radiRg and interaction between the ion and liquid helium.

the ion energy in heliunk¢(Ry), we should solve the equa- Let us assume first that the helium surface deformation
tion is small and calculate the height at which the ion levitates.
This effective ion sizeh can be calculated similarly to the
9Ein optimal radius of the bubble in helium, i.e., by minimizing
IR =0, the full energy on the surfacgg,, which contains, in the

case of a plane surface, only two terms, namely, the energy

L of polarization interaction between the ion and helium
where Ey, is given by Eq.(1) and E¢(R) by Eq. (10). The (e?/4z)(e—1)/(e +1) and the energ¥, due to the cut-off

results are !.'Sted n _Table | for several typlc_al negative 10NS,¢ e guter electron wave function on the helium surface. In
of large radii alongside parameters of these ions. The para

Mistimating the latter, let us use the approximation of a uni-
eters 1k, and r, were derived from available g ’ PP

measurements of binding energyE, of negative ions and form distribution over solid angle:

atomic polarizabilitieqthe latter are the same as in Refs. 4 1 h

and 5. The discrepancy between energy corrections calcu- Eb(h)”ﬂ f [Ee(R)—EoldQ, R(Q)= coso’ (11)

lated from Eq.(7) and numerically is 10 to 15%, while the

corresponding dsicrepancy between calculations of the optihence

mal radius is less than 5%. These are the error estimates in 1 1 h

our calculations. Ey(h)== f [Ee(_) —E,
In order to avoid confusion, note that the ion radius in 2 Jo cos¢

the third column of Table | is the separation from the atom 1

center at which the absolute value of the wave function drops ~——[Eq(h)—Eq],

by a factor~ e, whereas the exponential tail of this function 4xoh

extends much further. The wave function goes to zero on thghereE(R) is given by Eq.(10). By solving the equation

bubble boundary. Therefore the optimal bubble radius is the

distance at which the wave function tail is cut off. This leads ~ 9Esur_ 0

to the considerable difference betweemgland R, which oh

increases with the ion binding energy in vacuum, i.e., with _ ) )
the energy gained by cutting off the wave function tail. we calculate the optimal separation between the ion and he-

Table | clearly shows that the energies of Cand Ba UM surface:hg,=14 A andhc;=21 A. Let us analyze the
ions in helium are higher than in vacuum. This result is easSU"face shapé(r). The hole shape under the ion should

ily understandable. The electron affinities in these atoms argatisy the conditions
negligible (see Table), and the outer electron is almost free
(in Ca the localization radius is-12 A). Like free elec- £'(0)=0, ¢&"(0)=
trons, these electrons form a large bubble in bulk helium, and
the main contribution to the bubble energy is due not to thet should also be localized mostly within the ion radius, since
polarization attraction to heliuntas for small iong but to  only in this case can the energy of polarization attraction be
the energy of electron compression by the bubble boundargignificant. The surface tension enefgy for such a hole is
and surface tension energy. The additional energy of a freproportional to the square of its dep#i at the centerE,,
electron in helium isA~0.15 eV, and for Ca A~0.06 eV.  «a?, and is little affected by the hole shape. For example, if
The radius of the bubble around a free electroRis=17 A,  the hole shape is fitted to the ion radius
while around Ca it is R~14 A. Thus, the bubble param-
eters around a free electron and around a ©a are similar. _[h—a—vh*=r? r<ih®-(h-a)?

We have thus proven that Caand Ba are adsorbed on &(r)= £=0, r=h?—(h—a)?
a helium surface, where their energy is lower than in vacuum
owing to long-range polarization forces of attraction to theits surface tension energy &, =7a’a. Such a deformation
gas—liquid helium interface. Owing to their large masses ands Not smooth around the edges. For a smooth hole, which is
initial localization in the horizontal plane, surface ions haveenergetically preferable, of the form
a number of properties which are unusual compared with ;{ 2 )

d(cos#h)

I )

those of surface electrons. Let us proceed to a discussion of ()= _ 5 ex

these properties. ﬁ
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the surface energy loss due to attraction is smaller by only ¢he field of velocities generated by the hole. The hole is

factor of 2. rather flat[ £'(r)<1], so we havey <V, and the boundary
When a hole forms the outer electron wave function iscondition

additionally compressed. In order to minimize the energy

change due to this compression, it suffices to have an almost

flat surface at the center of the hdkhis region makes the V-n=0

major contribution to the correctioBy, to the outer electron

energy. This condition is satisfied by holes wii=0. For

example, a surface deformation described by the function transforms to

)=- [{ ' ) z|z=0—Vo '(r)cosé.
r X| -
&( ae 2 v 3

generates surface enerfly,= waa. The increase in the en- In the limit of large Reynolds numbers, when viscosity can
ergy of the polarization interaction of the ion charge in suchP® neglected in the hydrodynamic equations, the velocity

a hole is field is determined by the equations
* 62(8_1) 8_1 v:V(Pi A(P:O! ()Dr,Z~>00_>0;
Ee|~—af 27rdr———=—¢€%a :
h Aqr? 4h?
SinceE,xa? and Eq* —a, at smalla one always has Je B ,
E,+Eg<O0. Let us calculate the optimal hole depthby 9z Zzo—Vog (r)cose. (13
minimizing

) In our calculations, we have selected the hole shape

_ _ 2 e a
Ewi—E,tEc~ma“a— H(S_l)’

r =T
oo 1 ) 1+r2/h?
E/ (a)=2maa—¢? =0,

tot( ) 4h2

which satisfies all necessary conditions for the hole under the

whence it follows that ion. The calculation uses the expansion in terms of Bessel

functions:
e?(e—1) (7.4 A forBa,
a=———= _ (12
8wah? |33 A forCa. .
§(r)=f G(w)Jy(wr)wdw,
The total change in the ion energy is 0
e?a(e—1) [(4x10°3 eV  forBa, where
ot gh2  |0.8x10°% ev forCa .

Let us estimate the mobility and effective mass of Ca _[- n2
and Ba ions on helium surface. Here we use the approxi- Glw)= fo §(N)Jdo(wnrdr=ahKo(wh).
mation suggested by Shikin and Monarkifier studying dy-
namic properties of surface electrons. The local deformation
of the helium surface adiabatically follows the moving ion The solution of Eq(13) has the form
and generates a certain field of hydrodynamic velocities as
the ion moves across the surface. Although the laterallsize
of the hole under the ion is smaller than under a free elec-
tron, at temperatures above the superfluid transitidn (
>2.18 K) this size is, nonetheless, larger than the mean free
path of thermal excitations. Therefore the hydrodynamic ap-
proximation applies. HereJy, J;, andK, are Bessel functions.

In a reference frame traveling with the ion at velocity The aggregate mass of a surface ion is given by the
V,, the full velocity of the liquid isV=V,y+uv, wherev is  expression

x(r,z)=V,cosf f G(w)e *“Jy(wr)w dw.
0
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M:ﬁ2 J v2d3V
Vo
=ﬁfw v )d3v:—ﬁf % 4s
V2 eV V2 ) ®an
0 0
p

9 4= f dr [“"docos
Y ¢57dS=p | rdr| “doco

X fo(w)Jl(wr)w dwwa(w')Jo(w’r)w’zdw'
0 0

:Wpf G?(w)w?dw=mpa’h*
0

F 2 2 a
X fo Ko(wh)w“dw=pa h@

10 %%y for Ba~
10.3x10°%g  forCa,

wherep is the liquid helium density an& is a surface ele-
ment. Thus, the polarization correction to the ion mass i

approximately equal to the ion mass.

In the mobility calculation we use the energy balance
equation(Ref. 9, p. 79 —eEVo=W. If Ap=0 holds, the

energy dissipation is described by the fornfula
W= f &Uzdsvz V3
) on Vo

” _ 2 ” ’ 12 ’
Xfo( 0)G(w)w da)fo Glo')w'dw

2 o0
xf daf rdr
0 0

+J1(wr)Jl(w'r)

Ji(wr)Jj(w'r)cog 0

Sir? 0
w

® rr2

%—47777V3 f G?(w)w*dw,
0

where  is the viscosity. In our specific case

77_2

© © 27
f Gz(w)w4dw=a2h4f Kg(wh)w4dw=
0 0

Thus, the mobility is

Vo (4 FGZ( o )1 128 h
- = ar w)w w == —
. eE 7)a 277 pa’®

1.3x10" cm/g forBa
m[ 10" cm/g for Ca
0.21 cnf/s-V for Ba~
:[1.6 cnf/s:V  forCa,

+J1(wr)d(w'r)cog 0
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where the helium viscosity at=4 K is assumed to be
7=3-10"° g/lcm-s.

Note that, if we consider a hole of a different shape but
with the equal depth and lateral size, the result will be very
close. For example, fof(r)=aexp(-r/h) we have

a/h

Glw)= [(1/h)2+w2]3/2'

Further calculations similar to those described above yield

M_772 ha? _4h

3772776[2'

The difference between the parameters of holes of different
shapes is a factor close to unity. However, if we had used the
same hole shape as that under the electron confined by ex-
ternal electric field but with different parameters so that the
vertical and lateral sizes of the hole under the ion were iden-
tical, we would obtain markedly different mobilities and ef-
fective masses. This fact clearly shows the difference be-
tween the shapes of the helium surface deformations induced
é)y electrons and ions.

The external confining field generates additional surface
deformation under an ion. As in the case of an electron, this
deformation has a lateral size of order the gravitational cap-
illary length:

1 \/7

—=1\/—>h,

K [28)
i.e., many times larger than the hole size. Therefore, the sur-
face tension energy of these two deformations are simply
added, and the deformations are superimposed indepen-
dently. The electrostatic hole depth is given by EL) in
Ref. 8 by substituting-—h, i.e., the ion size, which is the
only difference from the case of electrons, affects the hole
depth weakly, since this parameter enters in the argument of
the logarithm.

The expression for the critical density of charged par-
ticles on the surface of a thick helium film,

nmax— ﬂ, ( 14)
2me?

was obtained in the metallic approximatithirhe only con-
dition that was used in deriving E@14) is that the helium
surface should be equipotential. In the case of ions, this con-
dition holds, because the surface vibration frequency near the
critical concentratiom™® (i.e., the energy of surface excita-
tions divided by Planck’s constanis so small that ions,
notwithstanding their low mobility, are mobile enough to
follow changes in the potential. Therefore, Efi4) also ap-
plies to ions on a helium surface.

On a thin film surface, electrons are strongly localized in
a hole owing to the strong field of image forces and, like
ions, have a low mobility. Therefore, the difference between
electrons and ions becomes insignificant. The minimal thick-
ness of a charged helium film,
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d.. = -t n— (15) DEquation(15) was derived in Ref. 1, Sec. 15.3 using the same notation.
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The aim of this work is to examine the influence of a wéak the energy scalenagnetic field

on the state of dislocations and point defects in ionic crystals. It is found that complex

point defects existing in a metastable state are sensitive to a magnetiBfieldl. The
contributions are identified, and the kinetics of various types of reactions within the structural
defects and between them leading to plastification of the crystals in a magnetic field are
determined. The effect of light on the sensitivity of the point defects to a magnetic field is
described, and the spectral characteristics of this effect are determined. A resonant effect

of the combined action of a weak constant magnetic field and a high-frequency magnetic field on
the dislocation mobility is found to occur when these fields satisfy the conditions of

electron paramagnetic resonance. 1899 American Institute of Physics.
[S1063-776(199)01602-9

1. INTRODUCTION ionic crystals gives reason to believe that short-lived radical
reactions between defects can take place during plastic de-
In recent years it has been reliably determined that dormation that are sensitive to a weak magnetic field.
magnetic fieldB~1 T can have a strong effect on the dislo- The aim of the present work is to identify the thermody-
cational plasticity of ionic crystals. The action of a magneticnamic reasons for the effect of a weak magnetic field on the
field has been observed to shift dislocations in unloadedtate of the structural defects and the plasticity of ionic crys-
crystals} increase their segment lengths in the presence ofals, and determine the type of magnetically sensitive pro-
loading? alter their microhardnes’} increase the level of cesses and the defects participating in them.
dislocational internal frictiofl,and lower their flow limit
All these phenomena are commonly referred to as magnet%—
plastic effects. It has been found that these effects are sensi-
tive to the type of dominant impurity in the crystiland to To exhibit the various aspects of the effect of a magnetic
x-ray irradiation®! This fact has elicited the hypothesis of field on the state of the defects and the plasticity of nomi-
an electronic nature of these effects in ionic crystaidéand  nally pure crystals of NaCl, LiF, and KCI, we employed a set
the suggestion of a possible mechanism of the action of af complementary technigques. Changes in the characteristics
magnetic field on their plasticity?~° of the mobility of individual edge dislocations as a result of
The difficulties in explaining the magnetoplastic effect the action of a magnetic fiel@nean velocity, size and num-
are connected with the fact that the energy communicated blger of the jumps executed by them, duration of the pauses
a field with B~1T to one paramagnetic centéwrhich in  between jumps, etcwere observed using methods of con-
ionic crystals can be identified with some impurity defect ortinuous or double chemical etching by measuring 100-400
an electron localized on a dislocatjon is  dislocation segment lengths and the sizes of the etch pits for
AU~ pugB~10 *eV (wherepug is the Bohr magnetgn At each point on the graphs. Here we initiated motion of freshly
temperature§ ~ 300K, which are typical for these experi- introduced(by a scratchdislocations by two fundamentally
ments, AU <KT. Therefore, under conditions near thermody- different techniques: by a mechanical compression pulse
namic equilibrium it cannot be expected that a magnetic fieldvhich was the same in all of the ruriduration 0.2s and
with B~1 T can affect the plastic properties of nonferromag-amplitude 0.5 MPa for Na€knd by exposing the samples to
netic crystals. a magnetic field in the absence of an external mechanical
However, at present a wide class of electronic processdsad. As will become clear from what follows, fundamen-
are known which are sensitive to a magnetic field, in particutally different characteristics of the mobility of the disloca-
lar, magnetically sensitive chemical reactions involving radi-tions are produced by these two different techniques.
cals to which the foregoing thermodynamic arguments can- Exposure of the sample to a magnetic field before and
not be extended, by virtue of the short lifetimes of theirafter introduction of the dislocations prior to application of
intermediate spin-dependent steps, during which thermahe mechanical load or in combination with it, exposing the
fluctuations “do not have enough time” to destroy the cor- sample to light, and other variations of the conditions of the
relation of the spins in the particle pait5:2°The presence of experiment allowed us to identify the contributions of the
paramagnetic properties in a number of structural defects imarious factors to the magnetoplastic efféatparticular, the

TECHNIQUE
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role of changes in the states of the point defects and of th V'\B B=0
dislocations themselves in a magnetic fledahd to bring out
the possible multistep character of the processes of fielc
stimulated modification of defects. 0.3 0.3

We examined the effect of a magnetic field on the mac-  , 02
roplastic characteristics of crystals in a specially designet
deforming machine with quartz rods and supports providing 01 0.1
conditions of “ideally soft” loading with linearly increasing
(in time) mechanical compression loads= at, where the
constanta=(1-10)x 10* Pa/s was held fixed during the
course of a run. This technique, in contrast to the traditiona
technique of hard loadingin which the linearly time- (110) {110] (T10)
dependent relative deformatianis prescribey allows one a b
to eliminate negative feedback between the machine and the
sample, in the presence of which the softening initiated b)f'G- 1. Fraction of dislocationd shifted _in the four pc_;ssjble directipns ina

. stal of NaCl: ain crystals treated with a magnetic field pulsg,imthe

the external action reduces the load on the sample and upciﬁmrol runs.
cessation of plastic flow can “mask” the softening effect. In
addition, the soft technique allows one to directly ascertain

that in a magnetic field retraction of the rods, heating of the To reveal the kinetic features of magnetic-pulse stimu-

sample, and other side effects capable of distorting the Me&5ted motion of the dislocations, we used the continuous

surement results are absent. _ etching method. Toward this end, a sample with freshly in-
A constant magnetic fielB up t9 2.27T was created with troduced dislocations was placed in a capsule with a “slow”

an electromagnet. The magnetic-field pulses had the shapeg chant in which a dislocation pit @m in size was formed

a half-period of a sine wave with amplitude 7T and durationafter a 10-second etch. The crystal, still immersed in the

10 .25 and were generated in a solenoid of few turns by %tchant, was exposed to a magnetic field pulse and 50 s later

thyristor generator. was pulled out of the etchant. In the control runs without a
magnetic field, the crystal was kept in the etchant for the
same amount of time as in the runs with the magnetic field.

3. RESULTS We found that in both cases during the entire time the sample

i . . . ) was kept in the etchant the dislocations execute intermittent
1. In the first series of experiments we investigated mo-

. ¢ disl . ; | | loaded b Imotion with several stops and staffgauses However, in
tion o IS pcaﬂons in NaC c_rysfcas not loaded by externaly, crystals subjected to magnetic-field treatment the velocity
forces, initiated by a magnetic field pulse wi=7 T. To

. i , of the dislocations between pauses, the number of jumps, and
elucidate the role of internal stresses and the possible effegt. 12| time of the motion. measured by the technique de-

oln the ?_‘?b“w of theh edgﬁ dislocatiqn? ‘ij the S,Olinoid""lscribed in Ref. 21, were substantially greater than in the con-
electric field arising when the magnetic field is switched ony, runs (Fig. 2). Each dislocation pit, standing as evidence

a'md off, we mgasured ?he sggment Ienglﬁsgnd the frac- of a serial pause of the dislocation, was formed during a time
tion of dislocationsd shifted in the four possible crystallo- ~5-10s, which is substantially exceeds the duration of a

graphic directions{110], [110], [110], and [110]. We  magnetic-field pulse (IFs). Consequently, the facilitated
found that regardless of the orientation of the magnetic fielqnotion of the dislocations took place over an extended time
B relative to the crystallographic axese investigated three  after the magnetic field was already switched off, and almost

directions:100], [110], and[001]) d andL* were identical the entire segment length was formed in its absence. An
for the four groups of dislocations within the limits of accu-

racy of the experiments and were equadite 0.25+ 0.03 and

L*=26x1 um. Qualitatively, an analogous result was also v, pmis

obtained for motion of dislocations occurring in these crys-
tals when not acted on by a magnetic field, as a result of two 6t
successive chemical etches. In this cdse0.25+0.03 and |
Lo=9=+1 um [Fig. 1b]. Of course, in the absence of a mag- 2
netic field the dislocations could move only under the action
of the random internal stress fields, which should be cancel
out in an unloaded crystal. The results obtained in our ex-
periments with a magnetic field indicate that the action of the L
solenoidal electric field for the magnetic field varying in time ) )

at the rate~10°T/s is negligibly small, and the magnetic 0 10 20 30 r,pm

field indeed exerts no motive force on the dislocations. It ] ) o )
only faciitates depinning of lslocations from pinning cen- 1% U1 ety f b dteatonsis Nac ey e 2 ton o
ters, and their motion takes place as in the runs without ithout a magnetic field2 — motion of dislocations stimulated by
magnetic field under the action of internal stresses. magnetic-field pulses witB=7 T.

110 110} (110 110
{ ]d {110} [ }1 {110}

[110]

(%3
T
~
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FIG. 3. The deformation jumpe caused by a magnetic field pulse with FIG. 4. Dependence of the relative deformation juigp caused by a mag-

B=7 T in NaCl crystals with flow limite, versus the total deformation of netic field pulse wittlB=7 T in pre-quenched NaCl crystals having already

the crystals:. Inset shows a typical fragment of the deformation diagram atreached a deformation of 0.15% on their preliminary storage tina¢ T

the instant the magnetic field is switched on. =700 K (average rate of subsequent cooling 9K/ and on the average
quench ratey for 7=10"s (2).

increased velocity of the dislocations between pausesas

also observed at distances: 10— 30um from their original  effec) on the interaction of slip dislocations with a forest
location (Fig. 2. This is indicative of magnetic-pulse- dislocations. This is also indicated by the results of experi-
induced residual changes in the crystal, which even after thments in which we used two types of NaCl crystalscdys-
field is switched off continue to have an effect on the mobil-tals stored for several years @t=293K, and 2 crystals

ity of the dislocations. guenched from 700 K with a cooling rate>4 K/s. During

2. To elucidate the role of a magnetic field in the depin-deformation of crystals of the first type, repeated switching
ning of dislocations from pinning centers under conditions ofof the magnetic field had no effect on the plastic flow rate of
macro-deformation, we carried out a second series of experthe crystals within the limits of accuracy of the experiments.
ments. The effect of a magnetic field on the macroplastidf the crystals were subjected to quenching before being de-
deformation of NaCl crystals created by a linearly increasingormed, the process of their plastic flow became sensitive to
(in time) mechanical compression stress could be assessawvitching the field on. We found that to elicit the effect of
from measurements of the deformation cusfer) made af- quenching, it was necessary to hold the crystalf=a700 K
ter switching on a magnetic-field pulse with strenBth 7 T,  for a time7>7* =4Xx 10°s. Forr<7* the plastic properties
directed along the compression axis. Switching on a magef the crystals remained insensitive to a magnetic fi€id.
netic field in the elastic region did not produce any changed). The efficiency of temperature sensitization of the crystals
in the deformation diagram. Switching on the field not longto a magnetic field also depended on their average cooling
before reaching the flow limite, decreased the latter. ratey: when it was lowered to 0.1K/s heat treatment did not
Switching on the field at the stage of easy slipping broughincrease the sensitivity of the crystals to a magnetic field
about a discontinuous increasedni.e., a short-lived soft- (Fig. 4). Note that in unquenched crystals stored under un-
ening of the crystal took place. The maximum size of thecontrolled conditions a less systematic magnetoplastic effect
jump Ae was observed right after the flow limi#, was was recorded and also without preliminary heat treatment;
reachedFig. 3). however, in this case it was considerably weaker.

The deformation jump took place not while the field was 3. Identification of the mechanisms of the softening ac-
acting, but only 100-150ms after termination of thetion of a magnetic field requires that we determine the ob-
magnetic-field pulse. For 5-7s after the magnetic-fieldjects in the crystal that are exposed to its effect. Since it is
induced jump, the plastic flow rate was decreased in comunlikely that the physical properties of the defect-free re-
parison with its value before the field was switched on.gions of ionic crystals can be altered in a weak magnetic
Switching the field on during this time had a significantly field, the softening of the crystals can be explained by sev-
weaker effect on the plasticitfor simply no effect was re- eral possible factors:)ahe magnetic field alters the state of
corded. The delay in the softening discontinuity relative to the point defects, Joa magnetic field alters the state of the
the magnetic-field exposure and the reduced sensitivity odlislocations, and)cthe very process by which a dislocation
the crystal to the field after the jump indicate that underbecomes depinned from a pinning center is sensitive to a
conditions of macroplastic deformation an after-effect of themagnetic field.
magnetic field is in fact observed, caused by residual In order to determine which of these possibilities are
changes in the state of the structural defects. indeed realized, we performed a third series of experiments

The narrow range of deformations near the flow limit in in which the plastic properties of the crystals were assessed
which the magnetoplastic effect is manifested implies thabn the basis of the segment lengths of individual dislocations
the magnetic field efficiently facilitates the surmounting of acted on by a calibrated mechanical compression pulse, andt
point defects by dislocations and has a weak effectno  he crystals were exposed to a magnetic field idth1 T I)
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L, um . . strength, magnetic exposure time, and the loading-pulse pa-
I —— t  rameterg the dislocation mean free segment lengtn the
301 I 4 e group-Il runs was greater than in the first grofig. 5.
pll | 1 J_ [(B] «[0]s . In the group-I and group-Il runs, creation of a noticeable
. change in the state of the crystal leading respectively to a
! B 50% and a 100% increase iIn required exposure of the
m * S crystals to a field wittB=1 T for a durationt;~10°s atT
20} 1 =293K (Fig. 5. When, on the other hand, crystals with
freshly introduced dislocations were subjected to the simul-
v L___'@L, taneous action of a magnetic field and a mechanical (aad

in the group-lll rung, a twofold increase i was reached

§ . ; I v ] i even 5-10s after exposure to the magnetic fi€id. 5).
10 1 -J- % 4. In the experiments of the fourth series, after exposure
in a constant magnetic field dislocations were introduced into
0 2 4 6 1, 10 s the crystal and then, to initiate their motion the crystal was

subjected to a magnetic-field pulsg£7 T, duration 10?s)
FIG. 5. Dependence of the dislocation mean free segment ldndtre to instead of a mechanical load. In contrast to the runs of the
the mechanical loading of the NaCl crystélise same in all of the rupn®n third series, in which the mechanical load could stimulate
the‘ expc_)sure timé¢; to a constant magnetic field.WiIﬁ:l T; | — dislo- depinning of the dislocations from all types of pinning cen-
cations introduced after exposure to a magnetic field Btal T; Il —  orq regardless of their sensitivity to a magnetic field the
dislocations introduced before exposure to a magnetic field Batti T; 11l . . . .
— crystals were simultaneously loaded and exposed to a magnetic field ffXPeriments of the fourth series the external testing action
6 's; IV — magnetic field was absent during the pause between introductiofmagnetic-field pulsecould initiate depinning of disloca-
of dislocations and loading&=0 T). The diagram on the right shows the tions only from magnetically sensitive pinning centers, and
sequence of procedures in runs of each tyBe{ exposure to magnetic  ntion of the dislocations took place in the internal mechani-
field, o — mechanical loading, arrow — introduction of dislocations, aster- . . .
isk — etching. cal stress field. For exposure timgs:4x 10° s in a constant
magnetic field, in contrast to the analogous runs in the third
series of experimentd, was observed to decrease with in-
before introduction of fresh dislocations and commencementreasing; in comparison with the behavior &f* in crystals
of loading, Il) between the introduction of fresh dislocations not subjected to a preliminary exposure to a magnetic field
and commencement of loading, and) Ituring loading of  (Fig. 6). For t;>4x10°s the value ofL recovered, ap-
crystals with freshly introduced dislocatio(see the diagram proaching a value somewhat less tHah with further in-
on the right side of Fig. b crease of;. The kinetics of recovery of the dislocation seg-

In the runs of group | the crystal was kept in the mag-ment length is insensitive to the presence of a constant
netic field during a time interval ©t;<10*s, dislocations magnetic field on this rising segment bft;) (Fig. 6).
were then introduced, and after the chemical etching proce- If a crystal without freshly introduced dislocations is
dure which exhibited their original arrangement the samplesubjected to the action of a brief field pulsB=£€7 T, dura-
was subjected to compression with the same mechanicsibn 10 2s) instead of an extended exposure to a constant
loading pulse in all runs. Measurement of the mean free segnagnetic field, and dislocations are then introduced into it,
ment lengthL of the dislocations in runs of this type enabled then when a second pulse just like the first is switched on the
us to establish that it is greater in the crystals exposed to theean free segment lengthis found to be less thah* (Fig.
magnetic field than in the control runs without a field for  7) as in the runs with a constant magnetic field. In special
<8x%10°s (Fig. 5. For t;>8x10®s the magnitude of.  experiments we found that one magnetic-field pulse is
returned approximately to its original value. “Memory” in enough so that repeated field pulses have no effect on the
the crystals of their exposure to a magnetic field can also bstate of the crystal and do not alter the mobility of the sub-
revealed by measurements of the microhardness performesgquently introduced dislocations. Under these conditions,
immediately after exposure to the the field. After thethe action of the first magnetic-field pulse modifies the state
guenched crystals were treated in a magnetic fidldation  of the crystal, and subsequent motion of fresh dislocations
20s andB=2 T) their microhardness fell by-6%. In crys-  under the action of a second field pulse can serve as an
tals subjected to an extended isothermal anneal at 700 K anddicator of the number of magnetically sensitive centers re-
subsequent slow cooling fb=290 K over the course of 6 h, maining in the crystal, from which dislocation depinning is
the magnetic-field pulses left no residual changes. facilitated by a magnetic field.

In runs of group lI(Fig. 5 the freshly introduced dislo- We found that the the mean free segment length of the
cations as well as point defects could be exposed to the adlislocations initiated by a second field pulse depended on the
tion of the magnetic field wittB=1 T since the dislocations timet, between the two magnetic-field treatments.tjs/as
were introduced into the crystal before it was exposed to théncreased, the mean free segment lengths of the dislocations
magnetic field. The segment lengths of the dislocations exinitiated by the second field pulse increasedy. 7), i.e., the
posed to the magnetic field were measured, as in the firghobility of the dislocations recovered. Switching on an ad-
group of runs, after the field was switched off. It was deter-ditional intermediate magnetic-field pulse just before intro-
mined that under the same experimental conditidfiedd  duction of dislocations in this series of experiments had no
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first
L, um stage second stage

25¢
! L . . . FIG. 6. Dependence of the dislocation mean free segment
4 lengthL due to the magnetic field pulgthe same in all of
the runs,B=7 T) in NaCl crystals on the duration of their
preliminary exposuré; to a constant magnetic field with
B=1T (@®). Dependence of the dislocation mean free seg-
ment lengthL due to a magnetic field pulgéhe same in all
of the runs,B=7 T) in NaCl crystals subjected to a pre-
liminary exposure to a magnetic fieRl=1 T for 60 min on
n ‘ . the timet elapsed between the start of exposure of the
f crystals to a constant magnetic field and introduction of
ist ! dislocations &). Notation the same as in Fig. 5, the mag-
60 min netic field pulse is denoted by the half-period sine wave. A
?’ ,ﬁ;\, prime indicates values of the dislocation mean free segment
! lengthL* initiated by a magnetic field pulse in crystals not
4 subjected to preliminary exposure to a constant magnetic
L, l: ., field, and of the mean free segment lengthdue to double
10 etching without a magnetic field.

20t

0 5 10 15 20 Ly, 10°s

effect on the kinetics of recovery of the mean free segmenit is well known that monochromatic light in the optical
length or on the level to which rose with further increase of range is capable of selectively modifying certain types of
t, (Fig. 7). point defects if the light frequency coincides with resonance
5. Such experimental procedures as quenching, mecharfrequencies of intra-center electron transitions or corresponds
cal loading, and introduction of dislocations affect the stateo transitions to the conduction band. A photostimulated
of all types of structural defects simultaneously. This hinder%hange in the states of some types of point defects exp|ains
identification of the magnetically sensitive centers and deterthe photoplastic effects observed in Refs. 22 and 23. This
mination of their physical characteristics. At the same timegyggests that the point defects, from which depinning is fa-
cilitated by the action of a magnetic field in our experiments,
can also be selectively modified by light.

L, pm To test this conjecture, we carried out a fifth series of
L * E * experiments in which crystals of NaCl, KCI, and LiF were
201 illuminated for 15min by a DKSSh-200 lamp through a
BB\, il -
T diffraction-grating monochromator in the wavelength range
Ip 200-800 nm. We then introduced dislocations and subjected
/A [A * ﬁ?\' them to the action of magnetic-field pulse wiB=7T.
b L, " Upon termination of the pulse, the crystals were again etched

to determine the new locations of the dislocations. We found
that the mean free segment length in the crystals exposed to
157 light L’ depends nonmonotonically on the photon endggy
and differs from the mean free segment length in the
“dark” crystals (those not exposed to lightFig. 8. The
greatest value of the differend&’—L*| was reached at
photon energies of the exciting light equalEe=2.8 eV for

i L, I * * KCI, E,=3.6eV for NaCl, and as was determined by ex-
10§ trapolation of the Gaussian dependencé (&) in the short-
'(f) " 55 s wavelength region of the spectrut;=6.6 eV for LiF. For
(. 10%s all types of crystald.’ was substantially less thdr*. Con-

sequently, their illumination before magnetic-field exposure
FIG. 7. The dislocation mean free segment lenptinitiated by a test suppressed the magnetoplastic effect.
magnetic field pulse in NaCl crystals subjected to a preliminary magnetic The photo-stimulated change in the sensitivity of the

field pulse before introduction of dislocations as a function of the duration | ic field b lained eith b
of the pause, between magnetic field pulse®]; the same thing under crystals to a magnetic field can be explained either by a

conditions where the sample is subjected to an additional intermediate mageneral lowering of the mobility of the dislocations regard-
netic field pulse before introduction of dislocatior®). A prime indicates  |ess of the reason for their motion in the crystelg., as a

values of the dislocation mean free segment ledgthinitiated by a mag-  yagy|t of a modification of the pinning centers that are insen-
netic field pulse in crystals not subjected to preliminary exposure to a con-

stant magnetic field, and of the mean free segment lebgitue to double Siti\_/e to the m.a.gnetic. fieddor by a mOdiﬁcatio'j‘ of the-mag—
etching without a magnetic field. Notation is the same as in Figs. 5 and 6netically sensitive point defects. Of course, in the first case
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FIG. 9. Schematic depiction of types of reactions between crystal defects,
during which a magnetic field can have an effect: Ry+ Rp—My, 2)
Rp1+ Rp2—My, 3) Rpr+Rpre>M3, 4) Ry +RpresMy, Rpy+Rpy—+Mg
Rp are paramagnetic centers localized in the dislocation nucRusre
L . ’ ; . .
10 - paramagnetic point defects; in the formulas the primed subscripts corre-
C . L . . spond to reagents belonging to the same structural defects, and the sub-
2 34 S EeV scripts with numbers correspond to reagents belonging to different structural

defects.
FIG. 8. Dependence of the dislocation mean free segment lengths due to a

magnetic field pulse in NaCl crystals; (1), and due to mechanical loading,
L (2), on the photon enerdy of the preliminary photo-exposufexposure

to light). A prime indicates values of the mean free segment lemgth fects have found a consistent description within the frame-
initiated by loading or by a magnetic field pulse in “dark” crystals, and of

the mean free segment lendth due to etching. Notation is the same as in WOrk of the theory of spin-dependent intercombinational
Fig. 5, Ph — photo-exposure. transitions observed in a reaction cell in the absence of ther-
modynamic equilibriunt®?° In Refs. 11 and 12 it was pro-
posed to use elements of this theory to describe the interac-
the dislocation segment lengths due to the action of externalon of dislocations with a local pinning center in the crystal.
mechanical stresses will decrease after exposure to ligl®bviously, such an approach can be applied only for those
(photo-exposurethe same as those due to the action of aexperimental conditions for which the magnetic field exists
magnetic field. In the second case, for mechanical loading ofvhile the dislocation approaches the obstacle and when it
crystals exposed to light one can also expect an incredse inovercomes it. As follows from the results presented in the
in comparison withL*. preceding Section, after the magnetic field is switched off

The choice between these two possibilities motivated aesidual changes are preserved in the crystal which influence
series of experiments in which the order of the procedurethe mobility of the dislocations for an extended time. Since
was similar, but the magnetic-field pulse was replaced by ¢hese changes can appear even if the crystal is exposed to the
mechanical compression pulse. The magnitude of the loarhagnetic field in the absence of freshly introduced disloca-
was chosen so that the dislocation mean free segment lengtlons, we must broaden the spectrum of possible spin-
in the “dark” crystalsL, was equal td_*. We found thatin  dependent reactions in the crystal that can be affected by a
contrast to the experiments in which motion of the disloca-magnetic field. Possible types of reactions capable of playing
tions was initiated by a magnetic-field pulse, pre-exposure oa role in the formation of plastic properties of crystals in a
the crystals to light increasdd,, (Fig. 8). Consequently, the magnetic field are depicted schematically in Fig. 9. Motion
“mechanical” mobility of the dislocations in this case grew, of dislocations in the crystal is necessary for only two of
and the susceptibility to an external magnetic field was lostthese reaction typesRg+Rp«—M; and Rp;+ Rpy— My;
Taking the above facts into account, this means that théor an explanation of the notation see the caption to Fig. 9
photo-stimulated change in the mobility of the dislocations isThe remaining reactions can occur in an unloaded crystal. Of
a consequence of the effect of light on specifically thosecourse, to establish the mechanisms of the action of a field, it
point defects from which dislocation depinning is facilitated is necessary to determine the contribution of each of the
in a magnetic field. reactions to the total effect of softening of the crystals in a
magnetic field. The results of our study of the effect of a
magnetic field on the mobility of individual dislocations al-
low us to do this.

In ionic crystals many point defects and dislocation nu-  Let us first discuss the possibility of the effect of a mag-
clei containing dangling bonds or electrons and holes capretic field on the state of the crystals in the absence of
tured by the deformation potential, as is well known, possesfeshly introduced dislocations. In the group-l runs of the
paramagnetic propertié$?> Consequently, during structural third series of experiment&Fig. 5 and in the runs of the
rearrangements covalent bonds between them can be forméalirth series of experimentdig. 6) in which the crystals
and broken. A set of examples of the effect of weak magnetievere subjected to magnetic-field treatment before fresh dis-
fields on the kinetics and the yields of these reactions is wellocations were introduced, this field, in principle, could
known in the chemistry of radical reactiotfs® These ef-  stimulate depinning of the growth dislocations present in the

4. DISCUSSION
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crystal from the impurity atmospheres, thereby influencingntroduced. Preliminary experiments show that an external
the redistribution of long-range internal stresses. However, if’ariable electric field with field strengtk 10 kV/cm leads to
this factor could have an effect on the mobility of subse-the appearance of sensitivity of point defects to a magnetic
guently introduced dislocations, it could not be expected thafield in those crystals in which their sensitivity to a magnetic
with increase of the duration of the exposure of the crystal tdield was suppressed by isothermal annealing.
the magnetic field t¢>4x 10° s) the mobility of the subse- Thus, for B=7T a magnetic-field pulse of duration
quently introduced dislocations would spontaneously recovet0 2 s proves sufficient for the occurrence of the first step of
almost to their original value. In actual fact, the decrease irithe relaxation process in the subsystem of metastable point
the mobility of the dislocations for;<4x 10°s and its re-  defects, which proceeds in a magnetic field vtk 1 T after
covery fort;>4x10°s cannot be explained by the same 4x10°s. The second step, during which the thermodynamic
factor—relaxation of internal stresses upon depinning opotential of the crystal with point defects also continues to
growth dislocations. decrease, occurs after termination of the magnetic-field
This suggests that in the experiments in which the cryspulse. As a result of the second step, the point defects wind
tals were exposed to a magnetic field before fresh dislocadp in a state from which they can be transferred to an ex-
tions were introduced, the field could affect only the state oftited, magnetically sensitive state upon introduction of dis-
the point defects since during the time the crystals were extocations.
posed to a magnetic field fresh dislocations were absent, and At present, the efficient action of a we&n the energy
the observed nonmonotonic changes in the plastic propertiesale magnetic field on the relaxation rate of various sys-
cannot be explained by relaxation of internal stresses upotems from a metastable state is widely known. These include
depinning of growth dislocations in a magnetic field. Conse-the rate of chemical reaction;*® the photoconductivit?
quently, the following reactions in the subsystem of pointand viscosity of amorphous materidlsetc. The irreversibil-
defects could be susceptible to the action of a magnetic fieldty of the change in the states of point defects in a magnetic
Rp/+Rpre~Mz andRp; + Rpy— Mg (Fig. 9). field observed in our experiments, and also the necessity of
Although in the third series of experimentfig. 5 pre-excitation of the crystals by introducing dislocations or
magnetic-field treatment of the crystals temporarily in-quenching to elicit a magnetoplastic effect in théig. 3
creased the mobility, and in the runs of the fourth serieguts this effect into the same class with the phenomena de-
performed in the absence of external mechanical load it wascribed above and clarifies thermodynamic aspects of the ef-
observed to decreagEig. 6) and then recover with the pas- fect of a magnetic field on the plasticity. Quenching or the
sage of time in both cases. At first glance, this may seem telectric field of the moving dislocations creates in the crystal
imply that the reactions Rp:+Rpre—M3; and Rp; a nonequilibrium distribution of structural defects over the
+Rp,— Mg are reversible, i.e., that a magnetic field excitesavailable states, and a magnetic field facilitates their relax-
the point defects, which then relax to their initial state. How-ation by accelerating only the rate of relaxation processes
ever, the mobility of the dislocations recovers to a leveltaking place in the subsystem of point defects and in the
lower than its original level, and the rising segment¢f;) absence of a field. The possibility of a magnetic-field effect
is insensitive to the presence of a constant magnetic fieldn the state of the point defects in crystals that have not been
(Fig. 6). This may imply that the nonmonotonic variation of exposed to any preliminary excitation is probably connected
the mean free segment length after the action of a magnetiwith the presence in them of a biographic nonequilibrium
field can be explained by a multistep relaxation process imistribution over degrees of aggregatedness, orientation, or
the subsystem of point defects in which the magnetic fieldsome other property.
plays the role of a “trigger,” opening up the possibility of Note that other authot<® have observed depinning of
the occurrence of reactions prohibited in its absence. dislocations from pinning centers in a magnetic field in well-
If this is not the case, then switching on an additionalannealed crystals on the macroplastic as well as the micro-
intermediate magnetic-field pulse just before introducing displastic level. This indicates that the plastification channel we
locations in the fourth series of experimefEg. 7) should have discovered of crystals in a magnetic field is not unique.
make their mean free segment length the same as it wasla the absence of magnetically sensitive point defects, a
short time after the first magnetic-field pulse. However, themagnetic field can also alter the kinetics of the other reac-
experiments show that an intermediate pulse has no effect dions enumerated in the caption to Fig. 9, which would also
the kinetics of recovery of the mean free segment length ocause changes in the plasticity.
on the level to which the dependentét) rises (Fig. 7). Let us now consider the runs in which both dislocations
Consequently, the state of the point defects is irreversiblyand point defects could be simultaneously exposed to the
altered, and the recovery of the sensitivity of the dislocatioraction of a magnetic fieldruns of group I, see Fig.)4The
mean free segment length to a magnetic field may be a corstill greater softening of the crystals, in comparison with the
sequence of excitation of point defects during the introductuns of group |, arising in such experimeiig. 4) indicates
tion of dislocations or a consequence of motion of chargedhat the state of the dislocations can also be exposed to the
dislocations in the crystal. action of a magnetic field, i.e., reactions of the tyRg
The most likely reason for the sensitization of point de-+ Rp»«>M, can occur and be sensitive to the presence of a
fects to a magnetic field upon introduction of dislocations ismagnetic field. An alternative explanation of this experimen-
action of the strong electric fields arising during the motiontal fact may be that a magnetic field affects the depinning of
of charged dislocations at the moment the dislocations ardislocations from pinning centers from the start and, as a
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consequence, facilitates their motion upon subsequent loadhdependent local reactions, which include reorientations of
ing. To what extent each of these factors can contribute talefects, pair dissociation, transitions to another electron level
the additional softening of the crystals in a magnetic fieldinside a defect, etc., and) dimolecular—mutually depen-
can be determined from an analysis of the experimental datdent processes, examples of which include recombination of
on the motion of dislocations produced by continuous etchwandering defects into pairs, capture of electrons from the
ing. conduction band into traps, and other reactions requiring an
If depinning in a magnetic field, from the start, of a encounter of reagent molecules of the same or different spe-
larger number of dislocations than in the control runs wouldcies. During a monomolecular process the number of pinning
produce a noticeable redistribution of the internal mechanicatenters that have changed their state as of the timer
stresses and to a collective effect of growth of the mobility,termination of excitation is given byN(t)=Ng(1l—exp
then it may be expected that motion of the dislocationg—t/7)). Bimolecular processes obey a hyperbolic law of
should be to a significant extent correlated—pinning and devariation of the concentration of excited defects in time:
pinning of each dislocation should affect the others, and thé&l(t) ~1/(1+ct"), n>0 (Ref. 28. The well-known relation
waiting time for each dislocation would be interrelated with betweenL andN (Lx<N~%2) (Ref. 29 enables us to deter-
the parameters of its further motion from the start. mine to which of these processes the reactions belong that
Measurement of the dimensions of the dislocation pitsare initiated in the crystals after termination of the magnetic
allowed us to determine the waiting times for 90 dislocationspulse.
at pinning centers and how long they move between pauses Fitting of the dependence of the quantity {L*)/L*
by the technique described in Ref. 21. We found that theon t; in the first step of the relaxation proce@sg. 6) by a
correlation coefficient’; between the time elapsed from the straight line on a semi—log plot gives a root-mean-square
start of etching to the first depinning and the total dislocatiorerror that is 30% less than the fit obtained by a straight line
mean free segment length is close to zdrg= —0.11). The on a log-log plot. In the second step, in contrast, the root-
correlation coefficient between the waiting time until the firstmean-square error of the log—log fit is four times less than
depinning and the time of motion of a dislocation until its that of the semi-log fit. In light of the above, this may imply
first pause is also very lowl{(,= —0.03). This suggests that that the reaction occurring in the first step of the relaxation
magnetic-field stimulated depinning of dislocations in factprocess in the subsystem of point defects in a magnetic field
has no noticeable effect on their subsequent motion from this a monomolecular reaction of the typé;— Rp:+ Rpr,
start. In addition, for 90% of the moving dislocations the firstand in the second step—a bimolecular reaction—of the type
depinning occurs after termination of the magnetic-fieldRp;+ Rp,— Mg, for example. An additional argument in fa-
pulse. This all suggests that the increased velocity of theor of this supposition is offered by the results obtained in
dislocations at large distances from their original location isRef. 30, where it was established that a pulsed magnetic field
a consequence of a “memory” in the structural defects ofis capable of leading to such a change in the picture of the
their exposure to a magnetic field. This viewpoint is alsodecoration of the surface of ionic crystals, which corresponds
supported by the delay of the macroplastic deformation jumpo dissociation of an aggregated impurity. Bimolecularity of
initiated by a short magnetic-field pul¢Eig. 3). the reactions in the second step of the transformation of point
Thus, the effect of a magnetic field on the depinning ofdefects can explain the diffusion times of their relaxation
dislocations from paramagnetic centéitg., on reactions of after termination of the magnetic-field pulse that are prob-
the typeRp + Rp«— M ;) discovered by Al'shitet all cannot  ably necessary to realize encounters of randomly wandering
be the only reason for motion of dislocations in unloadedreagent molecules. This viewpoint is also supported by the
crystals. Another reason may be changes in the states aicrease in the rate of the transition of the defects to a new
isolated structural defects, i.e., point defects and dislocatiostate when the temperature is raiSédhich is probably due
nuclei. Consequently, a complete treatment of the magnetde a growth of the mobility of the reagent molecuks, and
plastic effect in ionic crystals would have to take into ac-Rp,.
count at least three types of magnetically sensitive reactions: Thus, there are grounds to assume that in a magnetic
1) reactions between point defects in the bulk of the crystalfield a monomolecular process of formation of reagent mol-
2) reactions between point centers in the dislocation nucleugcules occurs via dissociation of composite point defébts
and 3 reactions between a point defect and a paramagnetimagnetic field stimulates the reactiMy— Rp: + Rpr). The
center in a dislocation nucleus. products of this decay recombine with each other or combine
We can render this general picture of the effect of awith other defects after termination of the magnetic-field
magnetic field on the plasticity concrete by availing our-pulse.
selves of data on the types of defects that can be affected by We can make the step from a phenomenological treat-
a magnetic field, and on the kinetics of processes takingnent of the magnetoplastic effect to a determination of the
place in the subsystem of point defects after exposure of thmechanisms of the action of a magnetic field by availing
crystal to a magnetic field. Experimental data on the kineticourselves of the results of experiments on optical quenching
of magnetically stimulated processes together with qualitaef the sensitivity of crystals to a magnetic field. Since the
tive estimates allow us to establish the direction of the reacatomic rearrangement of the configuration of point defects
tion Rp, + Rpr>M5. Processes that could take place with occurring instantly under the action of light requires photon
point defects after exposure to a magnetic field can be nomienergies near or greater than the x-range, and since radiation
nally divided into two groups: )lmonomolecular—mutually from the far-infrared is commonly used to match the fre-
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guency of the external radiation with the resonance fre- I, ym
guency of the local natural oscillations of the defects, it can
be asserted with a high degree of confidence that the use « 201
light in the optical range with photon energy less than the
width of the band gap will result in a rearrangement of the
electronic structure of the magnetically sensitive centers
Consequently, an explanation of the magnetoplastic effec
can be had by taking into account the effect of a magnetic
field on the electronic properties of the defects. This gives 15
reason to suppose that the process of electron interactio
between defects is sensitive to a magnetic field, i.e., the re
actions described above probably are of a chemical natur
and consist of the formation of a spin—dependent exchang
coupling between paramagnetic defects. The important role
of solid-state chemical reactions between structural defect 10}
in the formation of the optical and electronic properties of §

crystals has been known for a long tiftfe> However, treat- 0 “0'2 0‘4 0f6 0'.8
ments of the plastic properties of crystals, as a rule, take intc ' ' B, T

account only the elastic or electrostatic interaction between _ ,

FIG. 10. Dependence of the dislocation mean free segment |éndtie to

4 .
the defects.’ Such an approach, ObVIOUS|y’ does not allow usa constant magnetic fieB, applied for 15 min with simultaneous applica-

to explain the entire panoply of experimental data on th&ion of a perpendicular high-frequency magnetic field=©.5 GHz (®)
effect of a magnetic field on the mobility of dislocations in and without (). A prime indicates a value of the mean free segment length
ionic crystals. Lo due to etching in crystals not exposed to the action of external fields.

Let us review the experimental facts which provide di-
rect evidence of the need for an account of short-range ex-
change forces in any treatment of the interaction betweef the action of the microwave magnetic field in the absence
point defects and dislocations. If the hypothesis of the spi®f the constant magnetic field was the same in magnitude,
nature of the magnetoplastic effect is valid, then the comi.€., treatment of the crystals with only the variable magnetic
bined action of a weak constant magnetic field and a microfield did not affect the mobility of the dislocatioriBig. 10.
wave magnetic field under certain conditions can give rise to  In the absence of the microwave field, exposure of the
a magnetic resonance in defect complexes, influence the efrystals to the constant magnetic field for 15 min caused an
ficiency of formation of secondary reaction products, andncrease in the mean free segment length of the dislocations
thus be reflected in the mobility of the dislocations. A test ofin comparison withL,. As can be seen from Fig. 10, in the
this hypothesis would consist of a study of the mobility of absence of the microwave field a monotonically increasing
individual edge dislocations under conditions of the simulta-dependence df(By) was observed.
neous action of a weak constant magnetic field and a high- Exposure of the crystals to a constant magnetic field
frequency magnetic field crossed with it. Such a formulationwith simultaneous action of the microwave field for 15 min
of the experiment is analogous to RYDMR, the well-known (in the configuratiorB, L By, whereB; is the amplitude of
technique for studying chemical reactions in crossed magthe microwave magnetic fieldgave rise to a peak in the
netic fields from the final product yield&:3" L(Bo) dependence foB,.=0.33+0.01 T (Fig. 10.

In the experiments we used NaCl single crystals an- A similar result obtains for the frequency of the variable
nealed at 700K and cooled back down to 293K during 1 Hield equal to 152.2 MHz, where fd,s~0.005 T a resonant
with an impurity of bivalent metalémainly Ca at the level increase in the segment lengths of the dislocations is also
0.01 at. % dislocations were placed inside aJiectangular observed, albeit weaker, but fully distinguishable. When the
waveguide, connected to a klystron which worked at a freconstant and microwave fields were applied in the configu-
quency of 9.5GHz and generated an electromagnetic fieltRtion By[By, the peak in thé (Bo) dependence disappeared
flux with power ~10 mW through the sample. The wave- and the dependence itself became similar to that observed in
guide was located between the poles of an electromagnéte absence of the microwave field. Thus, over a wide range
which could create a constant magnetic fiBlglbetween 0.2  of microwave frequencies by varying the strength the con-
and 0.8 T in the vicinity of the crystal. The segment lengthsstant magnetic field it was possible to observe peaks in the
of individual edge dislocations, which fulfilled the role of an L(Bo) dependence.
indicator of magnetically sensitive processes in the crystal, ~Both in the combined action of a microwave and a con-
were measured in the conventional way by double chemicatant magnetic field and when the crystals are exposed to a
etching_ Each point on the graphs was constructed by avegonstant magnetic field in the absence of the microwave
aging 100-400 segment lengths of individual dislocationdield, on average an equiprobable motion of the dislocations
measured under identical conditions. Double etching of thés observed in the four crystallographic directionk10],
samples in the absence of external forces yielded a medril10], [110], and[110] on all faces of the sample. Con-
displacement of the dislocationsy=12+1 um. The dis- sequently, the role of external fields in our experiments re-
placement of the dislocations in crystals exposed for 15 mirduces to a depinning of the dislocations from the pinning
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Phonon transport in ferroelectric ceramics and single crystals has been experimentally
investigated. Our measurements indicate that, in the temperature range 1.7—-3.8 K studied, the
effective phonon diffusion coefficient behaveslag< T~ ° in ferroelectrics with a

broadened phase transition. This experimental dependence is in accord with the presence of a
plateau in the thermal conductivity of such materials. The scattering by domain walls in

BaTiO; single crystals has been identified, and our results are in quantitative agreement with
calculations. ©1999 American Institute of Physid$1063-776(99)01702-3

1. INTRODUCTION of a nonequilibrium phonon pulse as a function of tempera-
ture in such materials was calculated by Koatkal3'?

In our experiments we have studied propagation of  Thus, the aim of this work was the experimental inves-
weakly nonequilibrium phonons &T=T,—T,<Ty, where tigation of phonon scattering by domain walls in single crys-
Ty, is the heater temperature afig is the ambient tempera- tals and in ceramic grains of the conventional Bagférro-
ture, in a number of ferroelectric materials in single-crystalelectric with a narrow phase transition, together with
and ceramic modifications. When the thermal pulseceramics and single crystals with a diffusive phase transition,
techniqué is used, i.e., the size of the samples in the phonorsuch as PbMgaNb,:0; (PMN), PbSg,Nb;,0; (PSN,
flux direction is larger than their diffusion length, the propa-solid solutions based on these materials, and
gation of nonequilibrium phonons is described by the conPly; 1 5,Zrg esTig ad-ax (x=0.06—-0.1)(PZTL).
ventional heat equation. The peak amplitude of the bolom-
eter signal as a function of temperature yields information

. 2 ._2. EXPERIMENTAL TECHNIQUE
about the mechanism of phonon scattering in the materlaF, CHNIQUES

and in ceramics about the structure of grain bound&res. All ferroelectric ceramic and single-crystals samples
The interest in studies of ferroelectric materials is stimu-used in our experiments were fabricated by conventional
lated by at least two objectives. technologies. The ceramics were densely packed with a den-

1. Identification of the contribution of phonon scattering sity of 97—98% of the theoretical single-crystal density at an
on grain boundaries. At present numerous theoretical calcluaverage grain dimension of about focm.
lations of coherent ultrasound reflection and refraction on  The structure of a sample cleaved surface was tested by
grain boundaries are availafté.On the other hand, no ex- a Joal JSM-840 scanning electron microscope. The micro-
perimental data that are at all trustworthy have been obtainegraphs characterized on the qualitative level a single-crystal
to date, primarily because the reflection of coherent ultradomain structure or a pattern of grains and grain boundaries
sound waves from domain boundaries is very foSuslov  in a ceramic sample. The phonon kinetics at helium tempera-
and Kagaft® attempted to determine the contribution of do- ture was studied by the thermal pulse technique described in
main boundaries to scattering of phonons in a thermal pulsdetail elsewheré Recall that a thin gold film is deposited on
in virtual ferroelectrics SrTi@ and KTaQ in an applied one side of a plate of tested material, and this film is heated
electric field, but the interpretation of the experimental databy a very short €10 7 s) current pulse, so that it acts as an
proved to be very complicated. injector of nonequilibrium phonons into the sample. On the

2. Determination of the main phonon scattering mechaopposite sample surface, a tin bolometer of a meandered
nism in a thermal pulse in ferroelectric ceramics and singleshape with area 0:80.25 mm is fabricated. If the bolometer
crystals, which are characterized by anomalies in their lowcharacteristic is biased by a weak magnetic field~o?
temperature specific heat and thermal conductivity that carx 10? Oe, one can measure nonequilibrium phonon scatter-
be interpreted in terms of the glass motfeThis model pre-  ing versus temperature over a range of 1.7—3.8 K. The power
supposes that, in addition to low-energy excitations of crysdissipated in the heater is set at a sufficiently low level that
talline materials, there are additional low-energy excitationghe injected phonons could be described in terms of the am-
in glasses, responsible for the low-temperature thermodybient temperature in analyzing experimental data.
namics and phonon kinetics. With a view to interpreting  The basic parameter measured in the experiments is the
measurements by the thermal pulse method, the transit tinteansit timet,,,,, of the nonequilibrium phonon peak detected

1063-7761/99/88(2)/5/$15.00 342 © 1999 American Institute of Physics
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FIG. 1. Electron micrographs ofa) strip domains in thexy
plane of a BaTiQ@ single crystal andb) cleaved surface of a
PMN ceramic sample fabricated by the hot-pressing technique.

by the bolometer. Its dependence on the temperature artine are bell-shaped with clearly defined peaks, which is
features of the tested sample structure has been analyzed.typical of the diffusion propagation mode. Some data on
propagation of thermal pulses in samples of different lengths
3. RESULTS AND DISCUSSION from one material and at different temperatures are plotted in
Fig. 2. The transit time,,,, of the nonequilibrium phonon
Typical micrographs of sample surfaces are shown irheak to the bolometer is proportional ité with good accu-

Fig. 1. The BaTiQ single crystal is characterized by a fairly racy, whereL is the plate size in the phonon flux direction
regular pattern ofb-type domains(Fig. 1a. The boundary (see the inset to Fig.)2

between the domains is a region where the order parameter is i ent
inhomogeneou¥’ and its widthr . can be treated as a domain

wall boundary thickness. There is good reason to assume thf"Host materials studied in our experiments, the thermal con-

£°~ gggbgg Asi\:)e{ﬁlat :ﬁtetlciorfg:?:/z\r\]/tesl,enl.teﬁ’inlguri?leori-dumivny x and specific hea€, at helium temperature are
¢ ' P 9 PeM Y nown. This allowed us to calculate the phonon diffusion

ments isk,,>r.. In real crystals a domain wall is pinned by -
ph c —
defects, crystal inhomogeneities on crystal boundaries and i%(?efflment by the standard formula=«/C, and.compare .
ith our measurements. It turned out that the discrepancy in

the wall region, i.e., elastic stress is present in the layer of/th ¢ : ) o 0.13
thickness~r . The domain structure determines most of theth€ Single crystals and BaTi@eramic was within 10%."
ferroelectric properties of practical significance, and one ainf? PMN and PZTL ceramics tﬂsmdlscrepancy is notably
of the reported work was to estimate its effect on the phonofigher, by a factor of up to twd:*~*We do not think that
kinetics at low temperature. this discrepancy is of major importance, since there are un-
All ceramic samples under study were characterized bgertainties in models of phonon propagation in ceramic
dense packing of most of their grains, of which the majoritymaterialsz, and processes used to synthesize ceramic materi-
looked like crystallitesFig. 1b). The statistical analysis of als may vary.
large sets of grains yielded the mean grain $zer a spe- In our opinion, observation of the proportionality,ay
cific sample. «L2in all the sample$Fig. 2) and absolute measurements of
Before proceeding to the analysis of nonequilibriumthe diffusion coefficient for the dominant group of phonons
phonon propagation, let us discuss features common to ailh fairly good agreement with independent measurements
the samples. Thus, the curves of bolometer signal versusrovide solid evidence in favor of the applicability of the

max: ONe can estimate the effective diffusion co-
efficient of the dominant phonon grodp s~ L2/t ;.. FOr
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diffusion modet to our results, so we can proceed to the Phonon scattering by low-energy vibrational excitations
analysis of the,,, temperature dependence with a view to typical of dielectric glasses has been detected in samples of
determining the phonon scattering mechanism in the ferroPbMg,;;sNb,z0;—PbSg,Nb;,0; ceramic solid solutions.
electrics studied. For samples of all compositiorig,,, follows a T° law.

The curves oft,,, versus temperature for the tested All in all, the analysis of data on ferroelectrics with
samples can be classified in two grodPg1) ferroelectrics  glass-like kinetic properties leads us to conclude that the
with a diffusive (broadeneg phase transition, hence with thermal pulse technique unambiguously identifies such prop-
glass-like properties(2) ferroelectrics with a narrow phase erties, since the peak position of the signal due to nonequi-
transition, hence with crystal-like kinetic properties. librium phonons in the temperature range of 2 to 3.8 K fol-

Figure 3 shows records of thermal pulses at several diflows the lawt,T°. Figure 4 shows curves of thermal
ferent temperatures in a typical ferroelectric of the firstconductivity of PZTL and PMN ceramics and of the $iO
group, namely, PR_15yZrgeslipsd-ac (x=0.08), where glass® versus temperature with the characteristic flat sec-
the ion disorder is considerable and translational symmetry isons near 10 K. The graph also plots our measurements of
broken due to La dopintf. so the kinetic properties are effective diffusion coefficients for the tested materials. The
glass-like. For curves in Fig. 3 the laty,,T° is in accord temperature intervals corresponding to the flat sections of the
with theoretical estimatés?! for the region of the thermal thermal conductivity and to the diffusion coefficients de-
conductivity plateau in glassy ferroelectrics. scribed by the formuleD =T ° are fairly close to each

The inset to Fig. 3 shows the signal due to nonequilib-other.
rium phonons in pure PZT ceramic not doped with La. The = The assumption that scattering on grain boundaries is
propagation time in the pure material is considerably shortersmall and does not affect properties of glass-like ceramics in
only a few microseconds. This case can be regarded as quasiie low-temperature range is supported by direct measure-
ballistic propagation. Recall that the transition in this ce-ments of the diffusion coefficient of nonequilibrium phonons
ramic is narrow, and its kinetic properties are those charadn a PMN single crystal fabricated by the hot-pressing
teristic of crystalsl.1 method (Fig. 1b. At a temperatureT=3.8 K we have

IW‘W

FIG. 3. Signals due to nonequilibrium phonons in a PZTL
sample withL =0.008 cm ai1) T=3.81 K; (2) 3.43 K; (3) 3.17
3 K; (4) 2.8 K; (5) 2.49 K. The inset shows the nonequilibrium
signal in a PZT ceramic sample with=0.1 cm atT=3.82 K.
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x, Wiem - K D{ﬁ,cmZ/s the phonon frequency or, in this specific case, the sample
y temperaturé! In our experiment ., T, wherek~ —1.

The inset to Fig. 5 shows curves of the nonequilibrium
phonon signal for a BaTi@single crystal, which implies
tmax TT, Wherem~2. In single crystals the effective diffu-
sion coefficient for phonons is a factor of 10 to 20 higher,
but, what is more important, it has a different temperature
dependence.

This result unambiguously indicates that the contribution
of domain boundaries to phonon scattering is minimal and
does not affect our measurements. In the BgTsiDgle crys-
tal the phonon scattering is controlled by domain wall
boundaries. Let us make some quantitative estimates. In the
model with diffusion of nonequilibrium phonoh t,,., is
related to the effective phonon free path by the simple for-

mula
t 3 L? @
max—_ o T —
2 lefiUs
" . » " wherev_s is the mean phonon velocity in the sample. Using
0.1 1 10 100 T,K the data plotted in Fig. 5, we obtaigg(3.8 K)~10 3
FIG. 4. Temperature dependence of thermal conductivity of ceramics and o\thICh mcregses Wlth decre_asmg temperature: .
glasseq(1) SiO,; (2) PMN; (3) PZTL] and those of diffusion coefficients Two neighboring Fiomfauns Ina ferroe.lectrlc are regions
Des=L%tmay [(1') SiO,; (2') PMN; (3') PZTL] derived from measure- Of the same crystal with different orientations related to one
ments of this work. another by one or more symmetry operations. A phonon flux

can undergo reflection on their boundary. This problem was
solved for the case of heat transfer in a system\bplane-

eff 25 CW?/S for both S|ng|e Crysta| and ceramic Samp|espara”e| |ayerS of thicknesd. The effective free path is ex-

to within the accuracy of the measurements. pressed by the formula

Now let us consider curves of the signal due to nonequi-
librium phonons for ferroelectrics with a narrow phase tran- _L(1-9) 2)
sition. As was noted above, propagation of a thermal pulse in ¢ 1+sL/d’ (

PbZn, g5Tig 305 not doped with La is quasi-ballisti¢ig. 2).

Measurements of the typical ferroelectric Bafi@re shown whereL=Nd is the sample thicknessjs the phonon reflec-

in Fig. 5. The main set of the curves was obtained in aivity on the boundary between two layers. At room tempera-
ceramic sample with thickneds=1 mm. The main result, ture our samples hawd~3x10"° cm (see Fig. 15 and we
IMmax/ 9T<0, is typical of ballistic propagation inside grains assume that this parameter is little changed as a result of the
and scattering on thin interfaces between them, where thphase transition taking place as the temperature drops
acoustic impedance is low owing to the low material densityfrom room to helium. Using the experimental result
and concentration of micropores. In this situation phonong.s~10 3 cm, we estimate the reflectivitg(3.8 K)~3

pass through grain boundaries more readily the higheik 10 2. This measurement seems fairly reasonable in view

P
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FIG. 5. Signals due to nonequilibrium phonons in a Ba;la®ramic
'," w /\W'v, 'V'V\WM twl sgmple ‘withL=(_J.1 cm. The inset shows _nonequilibrium phonon

1’ {(Wx signals in a BaTiQ@ single-crystal sample with =0.043 cm.
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The Ginzburg—Landau expansion in the simple model of a superconductor with a
pseudogap

A. |. Posazhennikova*) and M. V. Sadovskii™

Institute of Electrophysics, Ural Branch of the Russian Academy of Sciences, 620049 Ekaterinburg, Russia
(Submitted 16 June 1998
Zh. Eksp. Teor. Fiz115 632-648(February 1999

We propose a simple model of the electron spectrum of a two-dimensional system with hot
sections on the Fermi surface that significantly transforms the spectral dgrsstydogapin these
sections. Using this model, we set up a Ginzburg—Landau expansiaafaid type

Cooper pairing and analyze the effect of the pseudogap in the electron spectrum on the main
properties of a superconductor. €99 American Institute of Physics.
[S1063-776(19901802-9

1. INTRODUCTION 2. ELEMENTARY MODEL OF A PSEUDOGAP STATE OF A
TWO-DIMENSIONAL ELECTRON SYSTEM
Among the various anomalies in the properties of high- . . .
T. superconductors, the existence of a pseudogap in the elec; As noted earlier, we adopt the simplest possible model

. . . of a pseudogap state, a model based on the picture of well-
tron spectrum of such materials at carrier concentrations be; P gap P

. 4dn developed fluctuations of short-range antiferromagnetic or-
low the _o_ptlmum value has_ drawn muc_h attenttonThe der and close the model of “hot points” on the Fermi
most striking proof of the existence of this remarkable statey rfacel®l et us assume that the Fermi surface of the two-

has been obtained in measurements of photoemission specifnensional electron system has the shape depicted in Fig. 1.

with angular resolution in the BSCCO systérhwhich dem- A similar Fermi surface was proposed by Zheleznyak

onstrated that the normal phaseXT.) exhibits essentially et al,'2who remarked that this Fermi surface resembles very

anisotropic variations in the spectral density of the currentlosely the one observed by Dessawal ¥4 for some high-

carriers. In particular, in these experiments the maximunT,_ systems. We assume that the short-range order fluctua-

pseudogap value was observed near the pain@) in the tions are static and Gaussian and define their correlation

Brillouin zone, while no pseudogap was observed along théunction as follows(cf. Ref. 7:

diagonal. Correspondingly, the Fermi surface disintegrates £ g

near the point 4,0), while along the diagonal the surface S

remains intact. In this sense it is common to speak of a 7 (Ox— Q)2+ &2 (ay—Qy)?+£72

type pseudogap symmetry, Which coincides with the symmey,. _ pP<q,=<p° and — p3$qy$ pS’ where¢ is the corre-

try of a superconducting gap in such systems. These anomayiion length of the fluctuations, ar@, = Q,=2p¢ . For val-

lies exist up to temperaturds=T* much higher tharc . ues ofqg, and g, that lie outside the specified ranges we
There are many theoretical approaches that attempt tgssume tha®(q) = 0. The effective interaction between elec-

give an explanation of such anomalies. Two main groups ofrons and these fluctuations will be described by the quantity

these approaches can be singled out: the pattern of formatiq2 )2W?S(q), where the paramet& with the dimensions

of Cooper pairs above&, (see Ref. 1, 5 and)pand an alter-  of energy defines the energy scétgdth) of the pseudogap.

nation scheme based on the assumption that fluctuations @hus, we assume that only electrons belonging to the “hot”

antiferromagnetic short-range order play the key fofé. sections of the Fermi surface are scattered by the short-range
Most papers on the subject deal mainly with the study offluctuations, with the scattering being actually one-

the pseudogap state of a high-system in the normal phase dimensional.

(T>T.). Our goal was to investigate the qualitative effects ~ The choice of the scattering vectQ=(2pg,2pg) pre-

of the influence of a pseudogap in the electron spectrum ofUPPOSES a pattern of incommensurate quctuations._BeIow_we

the main superconducting properties. We use the ideas d¥ll consider the case of commensurate scattering with

veloped in Refs. 7—11 but propose a very simple model 09=(7r/a,7r/a), wherea is the lattice constant. In the limit

the pseudogap state in the normal phase, a model that allovgs?m’ such a model allows an exact solution by the methods

o o , . proposed by Sadovald®*®while for finite £ one can employ
a complete analytical investigation. On the basis of thlsf[)he method developed by Sadovskind Timofee¥’*8 (with
model we do a microscopic derivation of the Ginzburg—

Land wpansion for tems withand d pairin nd certain reservations; see Refs. 10, 11, ang B&low we
andau expansion for systems a pairings a examine the simple case with—~, where the effective

study the qualitative effects of the influence of a pseudogaflnnteraction with fluctuationgl) takes the simplest form
(the disintegration of sections of the Fermi surface the

main properties of the superconducting state. (27)°W?S(0x— 2pg) S(dy— 2PF) ()

@
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FIG. 1. The Fermi surface of a two-dimensional system. The hot sections L
are depicted by thick straight lines, whose width is of ordef™ 1. 0_3 __'2 -‘l 0 i 12

3
€W

FIG. 2. Spectral density of the Green’s function in a hot section of the Fermi

0 0 0 0 . surface: curvel, ¢£,=0; curve2, ¢,=0.1W; and curve3, &,=0.5W.
for —py<aq,<py and —p,<q,<p,. Here we can easily P P P

sum the entire perturbation series for an electron scattered by
such fluctuation'$'® and obtain the one-electron Green's

function in the form and has a similar form in the other quadrants of the Brillouin

zone. Equation (6) demonstrates the non-Fermi-liquid
o ient &p (pseudogapbehavior with ad-type symmetry in the vicinity
G(en.p)= J; dfexp(—{) (ie,)%— E2— (WA( ) S of the hot sections of the Fermi surface and the free behavior
n P in the cold sections. The behavior of the spectral density in a
where £,=ve(|p|—pg), with ve the velocity at the Fermi  hot section of the Fermi surface is depicted schematically in
surface,e,=(2n+1)7T, and W(¢) is defined for B<¢  Fig. 2. Allowing for the fact that the integral with respect to

< /2 as follows: the polar angleg of an arbitrary functionf[W(¢)], with
- - W(¢) defined in(4), is obviously
W, Oﬁqﬁﬁa, E_a$¢$§’ 2m
W( )= (@) | g fIW($)]=8af[W($)]+(27-8a)f(0), (7
0, as¢s< T a. I .
2 we can usd6) to easily find the density of states:
Here aztanfl(pglpp), and ¢ is the polar angle, which N(E) 1 (27de (= .
specifies the director of the vectprin the (py,py) plane. m: - ;L ﬂj,mdgp ImG™(e&y,)

For other values ofp, the parameteW(¢) is determined
quite similarly to(4) by symmetry considerations. Clearly,
by varying o within the range 8a=</4, we actually
change the size of the hot sections on the Fermi surface, in ) )
which sections the nesting conditidy o= — &, is satisfied. Where_z Ng(0) is the de_nS|ty of fre_e-electron S'Fates at the
In particular,«= /4 corresponds to a square Fermi surfacem€Mi level, andNy(€) is the density of states in the one-
on which the nesting condition is satisfied everywhere. Outdimensional problenta square Fermi surfapéound in Refs.
side the hot sectionfthe second inequality in4)] the 15 and16:
Green'’s function(3) simply coincides with the free-electron Ny(€)

No(0), ®

—4 N + 4
=« wie)+| 7 —a

€

Green'’s function fEZ/Wng exp—{)
The spectral density corresponding to the Green'’s func- No(e)  [WlJo Ve IW?—¢
tion (3), is 2
=2 € exp( € )Erfi < (9
1 4w T W’
p(e&y)=— ;sgnelm G(eép) (5) w
where Erfix is the probability integrakerror function of
[ 1 , e2— gg imaginary argument.
W(ld +&psgne) O(e”— &) exp W Figure 3 depicts the density-of-state curves in our model

for different values of the parametes; i.e., for hot sections
of different size. We see that the pseudogap in the density of
' (6)  states becomes obscured rather quickly as the area of the hot
sections decreases and generally is not very distinct. In a
certain sense the effect of a decreasings similar to the
7 effect of a decreasing correlation lengt§ of the
fluctuations:’8 so that in this sense the above approxima-

T
2
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ME)IN, previous model through an angle af4 for — w/4+ a<d¢
1.3 < 7/4+ a:
W, 7ld—-a<¢<7l/ld+a,
W(¢p)= 10
(¢) 0, —mwld+a<od<ald—a, (10
1.0r .
0 5 where Osa=<m/4. Moreover, in the present case we must
P allow for a different combination of the Feynman diagrams,
which must correspond to electron scattering by commensu-
0s 3 rate fluctuations® As a result, in(3) we must replace
S j
|“azen-o (11
1 .
0 : L . . with
05 1 1.5 2 2.5
EIW o dg’ l
FIG. 3. Density of electron states for hot sections of different size: clyrve fo —2 TT{ expg — Z) . (12

a=ml4; curve2, a=w/6; curve3, a=7/8; curved, a=w/12; and curve
5, a=mwl24.

3. THE EQUATION FOR T,

tion £&—o0 may not be a stringent restriction on the applica- . ) .
bility of the model. One advantage of this approximation is_ €t US now investigate the problem of superconductivity
the possibility of obtaining all the results in analytical form. N the adopted model. We assume that the potential for Coo-

Concluding Sec. 2, we examine briefly the case of comPer pairing has the usual separable fétm
mensurate fluctuationQ= (w/a,w/a). Figure 4 depicts the " — N _ /
model of the Fermi surface used in this problem. The hot Vipp)=V(#,¢")=—Veldle(¢"), 13
sections touch the boundaries of a new Brillouin zone thawvhere as beforep is the angle specifying the direction of
appears after long-range ord@.g., antiferromagnetichas  electron momenturp in the plane, an@(¢) obeys the fol-
set in, and the strong scattering by fluctuations occurs dpwing model:
Q=(m/a,w/a). In this geometry the pseudogap opens in the
direction of the diagonals of the Brillouin zone, which does e( )=
not correspond to experiments involving high-supercon- J2cos2p (d pairing).
ductors but is of certain theoretical interest. The problem is

solved in the same way as in the previous case and generéﬁ‘-S usual, the attractive constaltis assumed finite in a

izes the solution of the one-dimensional model first foundCertaln strip of width 2o in the vicinity of the Fermi level

by Wonneberger and Lautenschlad®rThe one-electron (w is the characteristic frequency of the photons ensuring
Green’s function is similar t63), andW(¢) is again a func- the attraction of electronsin this case the superconducting

tion with a period#/2, but “turned” with respect to the gap (the order parametghas the form

1 (s pairing),
(14)

A(p)=A(¢)=Ae(9). (15
p The equation for the transition temperaturg can be
a obtained from the ordinary equation for Cooper instability,
1-x(0,0=0, (16)

where the generalized Cooper susceptibij0,0) can be
calculated by exact summation of the entire series of dia-
—xla 0 7ia grams that allow for scattering by the short-range order fluc-
tuations(2), in the same way the polarization operator was
calculated by Sadovskt>'® As a result the equation foF,
becomes

=3

d’p
(2m)?

e?( d’){GgWZ

-7la

FIG. 4. The Fermi surface in the Brillouin zone of a two-dimensional sys- X (€n ;D,D)Gng( —€n;—P,—P)+ F§W2

tem in the hot-section model for the case of short-range order fluctuations

corresponding to period doubling. Also shown are the boundaries of the new X(€y;p,Pp— Q) Fng( —€y;—P,—p+Q)}, (17
Brillouin zone, which arises after long-range order set$eiy., due to an

antiferromagnetic transition where
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FIG. 5. T./T., as a function of the effective
pseudogap widthV/ T, for hot sections of differ-
ent size in the incommensurate fluctuation model
for (a) s pairing (curve 1, a=m/4; curve 2,
a=ml6; curve 3, a=m/8; and curve 4,
a=m/12), and(b) d pairing (curve 1, a= w/4;
curve2, a=7/6; curve3, o= =/8; and curves,
a=m/12).

T./Ty
1.0
a
0.8+
0.6r
4
0.4r
3
0.2+ 5
1
0 5 lb 1‘5 Zb 25
WIT,
ient§p
Gowe(€n;p,p)= = ,
" (i€n)2— E2— LWA( )
VEW( )

(18)

F P.p—Q)=
awe(€niP.P=Q) (ien)z—fg—ZWZ(QS)

for d pairing. Hereg=N(0)V is the dimensionless Cooper-
pairing constant. Figure 5 depicts curves representing the
dependence ofT./T.; on the parameteW/T.,, which
specifies the effective pseudogap width, for different values
of a (hereT, is the transition temperature of an ideal sys-
tem without a pseudogapWe see that for both types of

are, respectively, the normal and anomalous Green's fund?airing the occurrence of a pseudogap in the hot sections of

tions of a system with a dielectric gap?®
Applying standard transformations (&@7), we get

1_ )
v—JO d¢

= d?p e(¢)
XeXF( g) Tc; o (277_)2 €ﬁ+§g+§wz(¢) .

(19

Summing over the frequencies yields
1 N(O)fmd foc d
T PR I

sz’f de €%( ) tanhv§2+§W2(¢)
0 2VE+WA(¢)  2Tc

If we now integrate with respect t¢ as we did in(7),
we arrive at the following formulas:

(20

1 4 * we /&2 2
—=—af dgexp(—g)f 96 annt W
g mJo 0 JE+ W2 2T,
( 4a) w dé hi
+ 1—7 fo ?tan 2T, (22
for s pairing, and
1 4a+sin 4af°°d B fwc dé
e
VE+IW?  m—4a—sinda (o dé 3
X tanh o7, + o fo ?tanhz—_l_C
(22)

the Fermi surface causes significant suppressioh;ofand
the larger these hot sections are the stronger the suppression.
Naturally, the suppression df; is stronger in the case af
pairing than in the case afpairing, since the dielectrization
of the spectrumpseudogapis in antiphase with the pairing
interaction.

For commensurate fluctuatiofBig. 4) andd-type pair-
ing, the equation foif . becomes

1_4a—sin4ade§exp(—§/4) o.  dé

g 27 Jo 2Jmr Jo JE+oWP
}“W 7T—4a+5in4a/f“’c dé h £
xtanh 2T, " 2 0 ?tan 2T’
(23)

Curves presenting the dependencelpf Ty on the pa-
rameterW/ T for different values ofx in this case are de-
picted in Fig. 6. Here the suppressionTgfby the pseudogap
is less noticeable, since the superconducting gap reaches its
maximum on the cold sections of the Fermi surface, where
there is no pseudogap.

4. THE GINZBURG-LANDAU EXPANSION

The standard Ginzburg—Landau expansion for the differ-
ence in the free-energy densities of the superconducting and
normal states is

B
Fs_Fn:A|Aq|2+q2C|Aq|2+§|Aq|4: (29

whereA,, is the Fourier transform of the order parameter:

A(¢,q)=Aqe(). (29
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In particular, straightforward calculations yield
AN o [Carex-o [ o
2T2 27Jo 0
2 de €’(¢)
< el 29
0 cosH(VE*+ LW?()/2T,)
so that after integrating with respect gowe get
am [
! A—Z—Tcﬁa . Fexp(—¢)
0 4 8 12 16 20
W, @ d
/Ty xf ¢ HJ% +1-8., (29
FIG. 6. T, /Ty as a function of the effective pseudogap witlthT ., for hot 0 cosh(ve+IW (¢)/2TC)
sections of different size in the commensurate fluctuation model for the case
of d pairing: curvel, a= m/4; curve2, a=/6; curve3, «=m/8: and curve ~ Where
4, a=1/12.
4
i (s pairing),
Expansion(24) can be represented by the diagrams of g,= _ (30
the loop expansion for the free energy in the field of the 4atsinda (d pairing).

order parameter fluctuations with a small wave veajor

These diagrams are depicted in Fig. 7, where all processes of

scattering by short-range order fluctuatia@s are summed Figure 8 depicts curves representing the dependend&,of
exactly in all loops(this can easily be done if we use the o the effective pseudogap widthi/ T, for different values
method developed in Refs. 15 and) 16 all other respects ©Of @. Here we show only the curves for the cases phiring.

the method of calculation is similar to that used Refl2as ~ Qualitatively the corresponding curves fbpairing are simi-

in Ref. 20, subtraction of the second diagram in Fig. 7 enlar, but all variations are on essentially smaller scales of
sures the vanishing of the coefficiehtat the transition point W/Tco, as in Fig. 5.

T=T.. As a result, the Ginzburg—Landau coefficients can ~ T0 calculateC, we must perform an expansion in a

be written Taylor series in powers df in the expression
A=ApK,, C=CyKe, B=ByKg, (26) . - d2p
where byA,, C,, andB, we denote the expressions for the ~ fo dfexp(—¢) Tc; fo (277_)262(¢){G§W2(¢)

case of a two-dimensional isotropécsuperconductor in the

absence of a pseudogap<0), X(€niP+,P+)Ganz(g)(—€ns—P—, —P-) +Fawzig)

— 2 X(€1:P+ P+ —Q)F 2 (—€ni—P- ,—P_+ ,(31
A0=N(0)TTTC, Co:N(0)7§(32)v—Z, (€niP+ P+ —Q)F w2 (—€ns—P p-+Q)}, (31
¢ 32m" To wherep.=p=q/2, and select the terms witt. To sim-
7L(3) plify presentation, from now on we will use the notation
Bo=N(0) —. (27)
8Ty

Gowz(p)(€n;P,P)=Gpp,
and all the features of the models are reflected in the dimen-
sionless coefficient&,, Kc, andKg. In the absence of a
pseudogap, all these coefficients are equal to unity, while in
the case ofd pairing only Kg differs from unity, or

Fonzg)(€niPP—Q)=Fppq.

After lengthy calculations we arrive at an expression for

Kg=3/2. the coefficientC:
A A . . .
q FIG. 7. The diagrammatic representation of the
p +2’ €n P€, Ginzburg—Landau expansion in the field of short-
A range order fluctuations. The electron lines repre-
_ 4 2 sent Nambu matrices composed of normal and
F-F = ~1A} + i A +. .
son q anomalous Green'’s functior{48), and the loops
are averaged over the paramefewith a distribu-
-p +1, -€, -p, -, tion (11) or (12). The second loop is calculated
2 R forq=0 andT=T,.
A A
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K +Gp-0p-C-p+o.-p+aFpp-oF -p-prol- (34
Here we can directly verify that the sum of the last two terms
0.8+ in (34) yields a zero contribution, so that
- %)
0.6F B=N(0)T d ex J
5 (OT.2 | dlex—0) (2)2
045 2 X(GppG-p.—ptFpp-oF —p—pra)* (35
This implies that
0.2+
i N(O c
e 2 dgexrx 0
0 4 8 12 16 20

WiT,

4

<[ g 2m dge’(9) 36

FIG. 8. The coefficienK, as a function of the effective pseudogap width 730 ¢ 0 (62+ §2+ §W2(¢))2, (36)
W/T,, for hot sections of different size in the incommensurate fluctuation n

model for the case of pairing: curvel, a= w/4; curve2, a= m/6; curve3, and after integrating with respect goand ¢ we arrive at an
a=7/8; and curved, a=m/12. . >
expression foKg similar to (33):

3 3

K Bb f dg exp( é’)E !
N B™
c=-Topv2S [Cazeni-o [ a e NET o
y Fwd¢e2<¢><§2—3e§—3§w2<¢>>cos2¢ - where
0 2(Eﬁ+ §2+ §W2( ¢))3 . 4_6(’ (S pairing),
Accordingly, after integrating ove¢ and the anglep, Bo= ™ (39)
we arrive at an expression for the dimensionless coefficient ' ° 4a 4sinda  sin8a .
Kec: - 3 + 6 (d pairing).

4773T2 * 1 Thus, fors pairing the coefficient&g andK¢ simply coin-
KC_BC7§(3) JO dieXIO( 4)2 (\/W)g_l—l Bc: cide. . N -
(33) To conclude Sec. 4 we give the explicit expressions for

) , the dimensionless Ginzburg—Landau coefficients for the case
where B.= B, [see Eq.(30)]. The respective relations be- ¢ 4 hairing in the model of commensurate short-range order
tweenK ¢ and the paramete/ T, for the case of pairing fluctuations:
are depicted in Fig. 9. The pattern is similar tbpairing, but
all variations are on essentially smaller scaleS\fT ..

Examining the fourth-order term in the Ginzburg—

Landau expansion is even more difficult technically. To ob- Kc

tain an expression for the coefficieB; we must find the Lo
trace of the product of four Green’s functio®,, each of
which is a Nambu matrix composed of normal and anoma- 0.8F
lous Green'’s function§18): 4
& _( Gpp  Fopa ) 0.6}
= ) 3
* \Fo-ap Gp-ap-0
After we find the trace of the matrig,G_,G,G_,, we can 0.4f 5
write an expression foB:
(¢) 0.2+
B=N(0)T f dfexp(—{) f
X{(GppG—p_p+ Fp'p,QF,p,,erQ)Z 0o 4 8 1z 16 2

+Gp,pG—p,—pF—prq.pFp-ap o ) ) )
FIG. 9. The coefficienK; as a function of the effective pseudogap width

+ G—p+Q,—p+QG—p,—pr,p—QFp—Q,p WIT,, for hot sections of different size in the incommensurate fluctuation
model for the case df pairing: curvel, a= 7/4; curve2, a= m/6; curves3,
+ GP,DGD*Q,D*QF - p+Qrpr p,—p+Q a=/8; and curved, a=m/12.
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g 1 J'wdg exp(— {14) EXTYE(T)
APa2T o 2\
X f v d¢ +1-8 (39)
0 cos(VE+ IW2T,) &
o 4773Tgfocdg exp(— {/4)
co=Per7z3) o 2wt
X D ! +1-8 (40)
n (\/6n+§W2)3 cbe
where . . ;
0 1 2 3 4
4a—sinda wIT
= T e {.{)
Ba ﬁC T )
4 sin 4 FIG. 10. The coherence Ieng@ﬁ(T)/fécs(T) as a function of the effective
_Ga o pseudogap widthW/ T in the model ofd pairing: curvel, a=m/4; curve
ﬂb_? e (5+cos4a). (4D 2, a=m/8; and curve30, a=ml12.

It is also easy to write the formulas reflecting the dependence

of these coefficients oW/T., and different values otr. where \5=mc?/47n€? determines the penetration depth at
Qualitatively these expressions are similar to those in thd=0. For the general case we have an expression for the
incommensurate case, and the main difference are due topgenetration depth in terms of the Ginzburg—Landau coeffi-

different scale along th&/T ., axis (cf. Fig. 6). cients:
) c2 B
N(T) == —— 2a (47)
5. PHYSICAL CHARACTERISTICS OF SUPERCONDUCTORS 32me? AC
WITH A PSEUDOGAP Then in the adopted model we have

1/2

As is known, the Ginzburg—Landau equations determine A(T) _( Kg (48)

two characteristic lengths, the coherence length and the pen- A (T) | KxK¢

etration depth for the magnetic field. . .

The coherence length at a given temperatd(@), is Curve; representing the dependence of thls'p.arameter on the
the characteristic scale of inhomogeneity in the order paramg{::?ggvii Igngeuiifgap width for the casedbpairing are de-
eterA, which means it is actually the size of the Cooper pair: Now let us calculate the Ginzburg—Landau parameter

C
E(M=-1. (42 MT)_ ¢ [B
A ““ET " ecVar “9

In ordinary superconductof@ the absence of a pseudogap

C
2 -0 AMTWAp(T)
s D=2 43 o
£acs(T)=0 74t (44) 8t
o ST
whereé&,=0.1& ¢ /T.. For our case we have 61
2T) K
AL - (45) of ;
&acdT) A
The corresponding dependencegé(T)/gécs(T) on the pa- 2k 2
rameterW/ T, for the case ofl pairing and incommensurate B o —
short-range order fluctuations is depicted in Fig. 10. ‘ i 3
The penetration depth for the magnetic field in an ordi- 0 1 2 3 4
nary superconductors is given by the formula WiT,

1 Ao ( ) FIG. 11. The penetration depi(T)/\gcyT) as a function of the effective
Aged T) == —, 46 pseudogap widthW/ T, in the model ofd pairing: curvel, = m/4; curve
V2 J1I-TIT, 2, a=m/8; and curves, a=/12.
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FIG. 12. The Ginzburg—Landau parametefxkgcs as a function of the  FIG. 13. The normalized slope of the curves for the upper critical field as a
effective pseudogap widthW/T, in the model ofd pairing: curvel, function of the effective pseudogap widit/ T¢, in the model ofd pairing:
a=ml4; curve2, a=/8; and curvel, a=m/12. curvel, a=w/4; curve2, a=/8; and curve3, a= w/12.

In this model of a superconductor,

C,—C, 87Ty

A VKe (50) ( Q ) N =73) 59

Kc ' Teo
KBcs c ¢

where Then the size of the heat-capacity discontinuity in our model
can be expressed in terms of the dimensionless coefficients
3c Te 51) Ka andKg as follows:
Kpcs™
V7¢(3) e v2N(0) (Cs—Cn1, T, K3

is the Ginzburg—Landau parameter for the ordinary case. (C—Cpr, TcoKg' (56)

Curves representing the dependenc&/ofgcs on W/ T, for ] )
the case ofl pairing are depicted in Fig. 12. Curves representing the dependence of the size of the heat-

NearT, the upper critical fieldH, is expressed in terms Capacity discontinuity on the effective pseudogap width for
of Ginzburg—Landau coefficients: the case ofl pairing are depicted in Fig. 14. We see that the
discontinuity diminishes as the pseudogap widens.

Ho—— ﬁ ﬁ (52) Curves representing the dependence of the above quan-
c2 tities for the case of pairing and for the model of commen-

2w C’
where ¢o=cr/e is the quantum of magnetic flux. Then the surate fluctuations are more or lgsgialitatively) similar to
0_ .

slope of the curve for the upper critical field néaris

dHc2’ _ 247T¢0 KA

- o (53) (A0 1A Oy,
dT o 7e@t Ke 10
Curves representing the dependence of the slope of the
curves for the field|dH.,/dT|r , normalized to the slope of 0.8r
the curves for the field af.y, on the effective pseudogap
width W/ T, for the case ofl pairing are depicted in Fig. 13. 0.6"

We see that the slope rapidly decreases with increasing
pseudogap width.

We can also calculate the size of the heat-capacity dis- 0.4r
continuity at the transition point, which is generally calcu- 1 3
lated by the formula 0.2f 5
Cs—C, T A \? I
SQ n = EC ﬁ) y (54) i i Il
c 0 1 2 3 4

whereCg andC,, are the heat capacities of the superconduct- WiTo

mg and norn*_nal states, respectlvely,_ afidis the volume. . FIG. 14. The normalized size of the heat-capacity discontinuity as a func-
Th|s re@”}’ yields a formula for the size of the heat-capacity;ion of the effective pseudogap widti/ T, in the model ofd pairing: curve
discontinuity atT.o (W=0): 1, a=7/4; curve2, a=/8; and curves, a=7/12.
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those depicted in Figs. 10—14, differing in the scale along thgap anomalies in the formation of a superconducting state in

W/T, axis, in accordance with Figs. 5 and 6. the region of the phase diagram of high-systems where
these effects manifest themselves already in the normal
6. CONCLUSION phase. More realistic models will be analyzed later.
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The phase diagram, nature of the normal state pseudogap, type of the Fermi surface, and
behavior of the superconducting gap in various cuprates are discussed in terms of a correlated
state with valence bonds. The variational correlated state, which is a band analogue of

the Andersor(RVB) states, is constructed using local unitary transformations. Formation of
valence bonds causes attraction between holes im-ttteannel and corresponding
superconductivity compatible with antiferromagnetic spin order. Our calculations indicate that
there is a fairly wide range of doping with antiferromagnetic order in isolated,CuO

planes. The shape of the Fermi surface and phase transition curve are sensitive to the value and
sign of the hopping interactioti between diagonal neighboring sites. In underdoped

samples, the dielectrization of various sections of the Fermi boundary, depending on the sign of
t’, gives rise to a pseudogap detected in photoemission spectra for various quasi-
momentum directions. In particular, in bismuth- and yttrium-based cerartiics0(), the

transition from the normal state of overdoped samples to the pseudogap state of underdoped
samples corresponds to the onset of dielectrization on the Brillouin zone boundary near
k=(0,7) and transition from “large” to “small” Fermi surfaces. The hypothesis abswave
superconductivity of La- and Nd-based ceramics has been revised: a situation is predicted
when, notwithstanding thel-wave symmetry of the superconducting order parameter, the
excitation energy on the Fermi surface does not vanish at all points of the phase space

owing to the dielectrization of the Fermi boundarykat= +k, . The model with orthorhombic
distortions and two peaks on the curveTgf versus doping is discussed in connection

with experimental data for the yttrium-based ceramic. 1899 American Institute of Physics.
[S1063-776(199)01902-2

1. INTRODUCTION ductivity. One test of the theory should be its ability to ac-
count for the anisotropic pseudogap in the normal state of
In recent years, important results concerning electroniainderdoped samples. In preliminary interpretatiths, the
structure of HTSE® have been reported. They include the pseudogap anisotropy was identified with the anisotropy of
proof of thed-wave symmetry of the superconducting orderthe d-wave superconducting gap. For this reason, the
parameter in a number of cupratesgetection of such ef- pseudogap was considered as a precursor of superconductiv-
fects as a small Fermi surfale pseudogap in the normal ity in underdoped samples. Our previous publicatBhsex-
staté®* of underdoped samples, and characteristic resopressed a different view on the pseudogap nature and related
nances in spectra of inelastic neutron scattering. The task &f to the structure of the lower Hubbard subband.
theory is to develop a self-consistent description of these The present work is a continuation of our pseudogap
phenomena and their relation to the phase diagram and magtudies. Here we set forth a clear and quantitatively accurate
netic properties of HTSCs. interpretation of the phase diagram and some spectral prop-
Theoretical studies of strongly correlated systélosal-  erties of cuprates in terms of a variational correlated state,
ized approaches, calculations for finite clusters, and band calvhich takes into account both antiferromagnetic correlations
culationg have identified the most important types of and correlations of the valence bond type. A classification of
correlations;? namely, the antiferromagnetic alternation of cuprates in accordance with the Fermi surface topology and
spins and short-range correlations of type of the valenc@seudogap anisotropy in the normal state of underdoped
bond formation. The former is fairly adequately described bysamples is proposed. Experiments that could test the pro-
both the localized approach and mean-field band calculationsosed scheme are discussed. In particular, we propose argu-
with double magnetic elementary cells. The important role ofments in favor of the hypothesis dfwave superconductivity
antiferromagnetic correlations is also recognized in recenin all cuprates, including La ,Sr,CuO, (LSCO and
publications'*** The idea of a correlation nature of super- Nd,_,CgCuQ,_, (NCCO), which have been traditionally
conducting pairing, which was set forth and justified in sometreated as-wave superconductors.
publicationst*® has remained quite attractive. Accordingto ~ The term resonating valence bon¢RVB) first sug-
Refs. 16 and 17, the valence bond formation causes attragested by Andersdfi means that system configurations are
tion between holes in thd-channel andd-wave supercon- composed of singlet pairs of particles that form the bonds.

1063-7761/99/88(2)/14/$15.00 356 © 1999 American Institute of Physics
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Recently®'® we constructed variational correlated 1

functions—the band analogues of RVB states—for a Hub- ~ Znm= "~ 5 > inmeBom-o

bard model with arbitrary doping. The method of unitary 7

local transformations used in Refs. 16 and(tBcontrast to inm(r:(Clngg—H-C-), Anm—o=Nn_g—Nm_y. (4)

representations like Gutzwiller's ans&tzallows one to con- '

struct not only the correlated function, but also an effective ~ The sense of this transformation is illustrated by a two-

Hamiltonian. The lattefunlike the Hamiltonian of the—J  Site system{a,b} with molecular orbitalsg,(u,)=(a,

mode) is not subject to additional constraints, so it can be® b,)/v2. In this case, operator W=exp(aZy)

analyzed in the mean-field approximation. This allowed us ta=€X{a(g]gu;u;—H.c.)] transforms the uncorrelated two-

calculate constants of superconducting pairing variationallyparticle dimer stated(a,b)=|g{g]) to the exact singlet

without empirical parameters, and calculations did not vio-dimer state wher assumes the optimal value.

late the additional local constraints. Thus, the unitary transformatioiV allows one to adjust
The specific goal of the present work is to study the the hole localization degree and optimize the bond charge

base of the generalized Hubbard modele role of weak State. The unitarity ofV enables one to calculate the effec-

hopping interactiont’ between neighboring diagonal sites in tive (transformed Hamiltonian

formation of the pseudogap, the effect tf on the phase ~

diagram, the Fermi surface topology, and behavior of the H(a)=W'(e)HW(a), ®)

superconducting gap. Concurrently, we propose a possiblgcting in the space of functionB, and to express the aver-

classification of specific cuprates in accordance with theage energy

types of their electron bands and Fermi surfaces. As back- __ _

ground, Sec. 2 gives a brief description of the calculaton H=(¥YHW¥)=(PH®) (6)

techniques and main results of the previous wrk. in terms of one-electron averages. Hence it is possible to use

the self-consistent procedure of energy minimization with
respect tob and then with respect to the variational param-
2. CORRELATED STATE OF VALENCE BONDS IN THE BAND etera.
MODEL Previously two types of valence bond structures were
studied in detail. One of them is an alternating structure of
&onoverlapping dimers of a particular orientatfdnin its
description,a= a(nm) was assumed to be nonzero only for
H=H(U,t)+AH(V,t)), intrac_iime_r bonds, and an exact formula for thg effectiye
Hamiltonian(5) was derived. The pesent study, like that in
Ref. 16, is concerned with another type of state, namely, a
HU,HD=—t 2 (cl,CcmetH.c)+2X Unyn,, (1) homogeneous state of valence bonds with parametesm-
(nm), " mon for all bonds in the system. In this case, the effective
Hamiltonian was calculated and analyzed by taking terms of
AH(V,t)=V > npnptt’ > > (¢! cmotH.C).  the two lowest orders i
(nm) (nm)) o
(2 ~ a?
H(a)~H+a[H,Z]+7[[H,Z],Z]. )

Consider the generalized Hubbard model providing th
single band mappirfg=2%of the CuQ plane of HTSC:

As will be shown below, the low-temperature properties

of a system described by E(l) are very sensitive to the Thys, expansior(7) is applicable only forU/t<9, which
weak hopping interaction’ between diagonal neighboring corresponds to small values of the variational parameter
sites ((nm)). For this reason, the interactiot’ and  4<0.23. An explicit expression for the effective Hamil-
Coulomb-like interactionV between neighboring sites are tonianF(U,t) in terms of fermion operators allowed us to
added to the HamiltoniaH(U,t) of the basic Hubbard qptain self-consistent solutions with antiferromagnetic and

model(1). . superconducting order. The calculation procedure was de-
The variational function? of the correlated state of va- gcriped in detaif® In reality, all calculation in the previod

lence bonds is constructed by applying a unitary transformaang present work were performed with the effective Hamil-
tion to the uncorrelated statk: tonian

T=W(a)®, W(a)=exgaZ), Z=2 Zym. 3 H=H(a,U,)+AH(V,t"), ®
(nm) in which the main part(U,t) was acted upon by the unitary

Here® is an uncorrelated function of the most general form,transformation, according to Eq7), whereas in the weak
namely, a BCS wave function with a double magnetic cellinteractionAH(V,t") only the terms of zeroth order in
for testing the feasibility of anticipated antiferromagnetic andwere retained.
superconducting pairing. The unitary operaféf«) respon- The basic results of Ref. 16 are the following.
sible for valence bond formation depends on the variational 1. Most of the gain in energy is due to the antiferromag-
parametera. The local anti-Hermitian operatat,,,, acting  netic ordering of spins accompanied by formation of valence
on the bondnm) between neighboring sites is bonds(the optimala is nonzerg. Valence bond correlations
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narrow the doping rangel —n|< &, in which antiferromag-

Ovchinnikov et al.

Finally, note that any time-dependent perturbation of the

netic order occurss.~0.3 atU/t~8, whereas the simple form

mean-field approximation predict§,~0.45. But both esti-

mates of the region of long-range two-dimensional antiferro-
magnetism are considerably wider than the experimentally

determined range of bulk antiferromagnetigifi*~0.05. It

V(t)= Ek‘, [v(t)Crp+H.C]

acting on the system in the correlated ground state

is feasible that in reality the range of antiferromagnetic cor«y=\Wd® generates both one-particle and multiparticle exci-
relationsR,r is finite, although fairly large. A solution of the  tations. Specifically,

effective problem in the mean-field approximation cannot

determine this radius. But for calculating the energy and
short-range effects of valence bond formation, it suffices that
Rar is much larger than the bond length, unless we investi
gate diffusion or spin-wave processes of antiferromagneti
order breaking at long distances. Arguments in favor of this

two-dimensional antiferromagnetism in Cu@lanes in a

wide range of doping are given in Ref. 16 and in this paper.

2. The attraction between holes in tltechannel is
largely due to terms like

T
~aU[CpyCrmeNn —oNm — o T H.C.],

\A/(t)‘lf=W; [0(t)Cyy+ H.CT| D). (13)

J:—|ere the “dressed” operatoc,,=W'c,,W contains both
one-fermion and multifermion operators:

<3 a3 3

=
K \/N n me (nm)

a2
+CmBam o) 5L

(Cnojnm,fo

(14

which appear during formation of valence bonds. UnlikeThe operatorg andA in Eq. (14) are determined by Ed4).
Hirsch’s empirical coupling constants of correlated hopping

interaction®® here it is determined variationally through the
parameterr. Note that a similar correlated hopping interac-

tion occurs also in theé—-J Hamiltonian, but, unlike the

effective HamiltonianH (<), it cannot be analyzed in the

3. PHASE DIAGRAM AND STRUCTURES OF BANDS AND
FERMI SURFACE

Let us discuss in detail the phase diagram of the model

mean-field approximation since double occupation of sites i$1), (2). The calculation techniques and procedures were de-

strictly forbidden.

3. d-wave superconductivity exists only in the doping

scribed in Ref. 16.
One unexpected result was that the phase boundary, i.e.,

range of two-dimensional antiferromagnetism, i.e., whereghe curve of the superconducting transition temperafidras
5< 6, because the density of states on the Fermi boundarg function of dopingé=|1—n|, had a broad plateau in the

increases when the original band is split into two.

basic Hubbard modeH(U,t), and the critical temperature

To conclude this section, let us recall the sense of quaremained almost constant up &-0.02 atU/t~8. The cal-

siparticle bands for the correlated stB based on a solu-

culations for the modeH (U,t) did not show a sharp drop of

tion of the effective probleni in the mean-field approxima- Tc(é) on both sides of the optimal dopinf,, corresponding
tion. The uncorrelated statk, which minimizes the average {0 maximumT,. In an attempt to eliminate this discrepancy,
energy(6), is characterized by a set of one-electron energie§teractions defined by Eq(2) were introduced. It was

E,, and the one-electron functigg], , which are eigenfunc-

tions of linearized HamiltonianH), (for details see the Ap-
pendix and Ref. 16

(9)

For the most general type of statds=W(a)®d with both
antiferromagnetic and superconducting ordeg, and Xl%
are derived from the equations

(ﬁ)LXE)\:EE)\XIA'

Xlx:{ClT ’ C{T . C ok, CRhiSh, LiAA=1,....4,

Ke () K, (10)
hij(K)Sj=Si\Ein, 1, A=1,... .4, 11
Eo=*VEN—u)2+ W2, »=1.2. (12)

The matrixh;; and expressions fd&,"~ andW," are given by
Egs.(33), (38), and(39) in the Appendix(see also Ref. 16
In the absence of superconductivity, when the functden

shown that the interactiod>0 changes the shape ©f(6)

in the desired manner, but it also suppresses superconductiv-
ity and reducesT; considerably. In the present work, we
have used//t=0.1 in all calculations. Given this value bf

and t'>0, the maximum critical temperature 7>
~0.014, which gives T'®*~80 K for t~0.5 eV?* For
V/t=0 andt’>0, we haveT{"®=0.023~135 K.

The most interesting question is the effect of the hopping
interactiont’ between nearest diagonal lattice si{¢amy)
with [n—m|=/2 on the functiorT(5). The interest in in-
teractiont’ is connected with three reasons.

1. This interaction has considerable effect on the Fermi
surface structure and its image in angle-resolved photo-
emission spectréARPES. This effect is connected with the
position of flat regions of lower electron band near the Fermi
surface.

2. In the one-band projection of the Emery model, the
magnitude and even the sign of constaht(unlike other
parameterdJ, t, andV of the Hubbard modglare sensitive

does not describe pairing of electrons with different spin proto the input parametersy, €,, tp,q, andt,, of the CuQ
jections, Fermi excitations are determined by the upper anglane owing to the competition between two diagonal-

lower Hubbard subbands;(,.

hopping channels, namely, the direct channeltyjpand the



JETP 88 (2), February 1999 Ovchinnikov et al. 359

log(Z. /1)
-1.5

FIG. 1. Logarithm of the superconductivity transition temperafiyeersus FIG. 2. EnergyE(0,7) — u of the lower Hubbard subband measured with
doping 6=|1—n| for models withU =8t, V=0.1t, and varioug’. Curves respect to the chemical potential, versus doping for the same model param-
1, 2, 3, 4, and5 are characterized by valueégt=0, 0.05, 0.1,—0.05, and eters as in Fig. 1. The curvas2, 3, 4, and5 are characterized by the values
—0.1, respectively. The dashed lines plot the results for the m@deith ~ t'/t=0, 0.05, 0.1,-0.05, and—0.1, respectivelysolid lineg. The dashed

ax

the orthorhombic perturbationr=0.0% and t'=0.0% (curve 2') and curves plot the maximum energiEﬁ“(X —u on sections of the lower sub-

t’=0.1t (curve3’) at the samaJ andV. band alongk,- or k,-axes for the models with orthorhombic perturbation.
The inset shows the pseudogAp as a function of doping in the normal
state at’/t=0.05 and 0.1 in the regions where a pseudogap exists.

second-order processt? /(€4 €p) 2> Thus, parametet’
depends on the material an_d its measurements in varioysii, the optimal dopings,; corresponding to maximurii,
cuprates are of fundamental importafte?® (curves2 and3 in Figs. 1 ond 2

3. A_s will b(_a _shown below, in the_pr_esence of antiferro- In systems witht’ <0 (curves4 and5 in Figs. 1 and 2
magnetic  splitting, energy  variations SE=E(7,0)  gne hasE(,0)— x>0 for all 6=|1—n|. The density of
—E(m/2,m/2)~—4t" along the nesting line are responsible gate5 on the Fermi boundary is lower than in systems with
for the pseudogap effects detected in various experiments:~ o and decreases with doping. This leads to a IoWEX
Parameter ¢ determlne_s the energy scale of these effectsiyan in the case of >0, a wider peak on the phase curve
[HereafterE(k) = Ey" (k) is the energy of the lower Hubbard T(5), and the superconductivity range shifted to lowser

subband in the case of hole dopihg. N The difference between the two different types of bands
Figure 1 shows the logarithm of the critical temperaturegy, 17~ o andt’ <0, and the corresponding Fermi surfaces is
T. as a function of doping for systems with)=8t, illustrated by Fig. 3.

V=0.1, t'/t=0,£0.05+0.1. The phase curve shape is Since in the interesting range of doping< s, two-
strongly affected by the magnitude and sign ©f For  gimensional antiferromagnetism persists, let us recall some

t">0 the shape of thd () Curvr%_is similar to that mea-  ¢amiliar concepts concerning evolution of Hubbard subbands
sured in the bismuth-based cerarhig, contrast to the curve it the strong on-site interactidd. It is very important for

: ’_ _n 16 H
with a broad plateau at' =0 andV=0." The maximum i ierpreting both ARPES data and the occurrence of a

transition temperatur@, " is almost constant with’ for t’ pseudogap.

>0, but the optimal doping shifts wittf to higher values, For U=0 andt>0 there is only one unperturbed band
while remaining inside the region of two-dimensior(ak )

lateny antiferromagnetisf®® On the contrary, att’<0 Eo(k) = —2t(cosk,+ cosk,) +4t’ cosk, cosk, (15

curves of T¢(8) have wider peaks, an@g™ notably de-  with a minimum at the poinf'(0,0) and a maximum at the
creases with growingt'|. The difference between k()  point Y(rr,) in the Brillouin zone— m<ky,<m of the
shapes at’ <0 andt’>0 is caused by the different behavior original crystal lattice. Fos< 5., the lowest in energy self-

of the energiesE(k) of the Hubbard subbandshe lower  consistent solution of the effective Hamiltonid) yields
subband in the case of hole doping and the upper in the casfynzero spin densities of opposite signs in the two sublat-
of electron doping Recall thatE(k) is one of the eigenval- tjces:

ues of the linearized HamiltoniarH(, , i.e., the one-particle

energy obtained by diagonalizing effective Hamiltoni&h dIZEE 1<Clr0n+| Da(—1)nFny,
in the mean-field approximation. Figure 2 shows the energy 245 Jof 2 ’
of the lower Hubbard subband with respect to the chemical 1|=0.2,2 (16

potential, E(7,0)— w, at the pointM=(,0). In systems
with t’>0 this point corresponds to the most flat region ofand the band splits into two subbarE%(Fz)(k) separated by
the band spectrum and to a Van Hove singularity in thethe antiferromagnetic gap or~Udg. Figure 3 shows the
density of statesi(E). By comparing Figs. 1 and 2, one can shapes of the lower subban@gk, ,k,) in the magnetic Bril-
see that the doping at which the Fermi boundary passes louin zone|k,*=k,|<. The corresponding Fermi surfaces
through the pointM, i.e., whenE(#,0)— u=0, coincides of two types of underdoped systems with>0 andt’'<0
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FIG. 3. Left: energyE(k, ,k,) of the lower Hubbard sub-
band as a function of componenis and k, within the
magnetic Brillouin zone|k,*k,|<, for an underdoped
system ¢=0.15) witht'/t=0.1(top) andt’/t=—0.1 (bot-
tom); the other parameters are standatd/t=8 and
V=0.1. Right: Fermi boundariesolid curve$ and nearest
energy levelgwith a step of 0.0 are shown in the full
\kx(y)\Sﬂ- Brillouin zone. Dielectric sections of the gener-
alized Fermi boundary are shown by bold daste=e the
text).

are shown in the full Brillouin zone. In the absence of super-momentak near the poinl”=(0,0) and impossible from the
conducting order, the shape of the lower Hubbard subbancegion neary = (7, 7). Thus, only the spectrum around the
E=E?" is determined by Eq(38) in the Appendix, which pointT is scaled and fitted to ARPES data.

can be approximated by 2. In the case of antiferromagnetically split bands, both
the lower and upper Hubbard subbands are periodic with the
magnetic Brillouin zone. But the photoemission intensity has
no such period® Roughly speaking, the lower subband is
divided into the main part in the first magnetic Brillouin zone

E(Kky,ky)=[€o+2t'cosk, cosk,+ . ..]

—[Udg+ ...J%+{2t(cosky+cosk,) + ...}°.

17

The dots in bracketg...] and{ ...} denote omitted con-
tributions of either even or odd,(,l,) harmonics in Kk ky).
The band spectrur(iL?) is very different from the stan-

(the solid curves in Fig. ¥and the shadow section outside it
(the dashed line in Fig.)4In reality, the transition matrix
element drops off gradually in the transition from the main to
the shadow part of the band.

dard representation of band energy in terms of a sum of
harmonics(so-called tight-binding approximatiéf:

E(k)= >, t, cosk,,cosk,l,,
(i)

1=(0,7),(1,0,(1,2), ... (19

It is precisely this approximation that is usually used for

fitting a band spectrum to ARPES data. The main difference

between representatioft7) and(18) is that the lower Hub-

bard subbandl?) is periodic with the period of the magnetic

Brillouin zone, whereas the spectrufd8) is periodic with

the full Brillouin zone. This means th&i(k) defined by Eq.

(17) is the same at the points=(0,0) andY = (7, ), which

is not the case for the fitting formuld 8). There are several

reasons why susch different band shapes can be fitted to the

same ARPES data. FIG. 4. Profiles of band enerdg(k) — u as a function of quasimomentum
1. Direct photoemission measures only a part of an elecvaried along the contodf(0,0)— Y (1, 7)— M (m,0)—T for a system with

tron spectrum below the chemical potentia(k)<u, since  U/t=8,V=0.1, t’=0.0%, and 6=0.2 in the normal state. The solid and

ashed lines correspond to the m&aimnshadowand shadow parts of the
one can extract an electron only from a populated level. | ower and upper Hubbard subbands. The thin line shows the spectrum cal-

the case of a _sin-gle _UnSp"t _band and hole doping, t-hiS Meangated without antiferromagnetic splitting. The horizontal dashed lines are
that photoemission is possible only from states with quasitevels of chemical potential in the split and unsplit band.
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Figure 4 shows that the shape of the unsplit band below » n
the chemical potential and the nonshadow part of the lower ,! 1t
Hubbard subband are similar. This is why both these shapes
can be fitted to APRES data, but the two representations ' i
yield different ratiost’/t of the hopping interactions. 1t

Direct photoemission, in particular, ARPES, cannot
measure the band level5,>u and thus cannot detect di- \
rectly the dielectric gap in the hole-doped materials. This 0_3 ST 0_4 ) 0
gap, however, should reveal itself in electron-doped Nd- E-pu E-p

based materials with a partial population of the upper Hub- _ o
bard subband, which is seen, apparently, in the ARPES speEl-g'ls' pensity (,)f sztafeB(E)-for the same systems as in Fig. 3 wifit
.1 (left) and t'/t 0.1 (right). Fort’>0 the Van Hove singularity

tra of these materials &— u< —300 meV3 corresponds to the pseudogap enegyu=—A*(6). Fort’<0, two Van

Let us reconsider the effect of diagonal hoppirigon  Hove singularities correspond to energigm,0)— >0 andE(#w/2,7/2)
the shape of the spectrum and Fermi surface. The ratios#=<0-
t'/t=+0.05+0.1 used in our calculations are smaller than
empirical values t'/t~0.2—-0.4>* The most consistent
determinatio® of the ratiot’/t in the t—t'—J model or in  introduced for interpretation of transport properties of cu-
t—t’—U Hubbard model is based on fitting the energies ofPrates in the normal stafé.. .
lowest excitations in a Gucluster with four, five, and six Another type of Fermi surface correspondsttec0 in
holes to a three-band model whose parameters were calcflo/e-doped materialgor to t'>0 in electron-doped sys-
lated in the local density-functional approattDA). This ~ €ms. Our attention is still focused on the region of two-
procedure yielded'/t=0.17 (0.13 for the hole(electro  dimensional antiferromagnetismi<d,, since only inside
doped material® Given thatt’ is very sensitive to model this region are the solutions with superconductivity obtained.

G . ; Two Van Hove singularities in the density of states of the
parameters and changes its sign as, is varied, the values lower Hubbard sgbband(Fi 55 ea)k/ at energies
used in our calculations, namety0.05+=0.1, do not seem —E(7.0) and e,— E(m/2 /g)'< F[c))r low dopin 2
anomalous. Even such small variationstinmay radically 61_) thT(re’ amall Ifér_mi sﬁrféqc-:res thzlt.are shc\)an iEI ng]g 23 are
change the phase diagram and low-energy characteristics Poﬁned around the pointsM=(=.,0), (0= ) T.he

the models. Calculations based on the tight-binding approxi- . o .
mation (18) and fitting of the Fermi surface shape to LDA dashed lines in this graph show sections of the boundary of

. . the magnetic Brillouin zone. When the quasimomentiim
6 -
calf:ulat|o,n§ or to bands derlv_ed from ARPES d%&a)v_er varies along a trajectory connecting the poiht€,0) and
estimatet’/t, since the approximation based on E) ig-

. . - Y(m,) and crossing one of these boundary sections, the
nores the antiferromagnetic band splitting, even though th%lectron work functiomd w(k) measured in the ARPES ex-

nekces§ary renormalizations of unperturbed LDA bands ar5eriments as a lower edge of the electron distribution func-
taken into account. tion (in brief, as a photoemission edgeowhere vanishes.

Consider the first type of Fermi surface, which COMe-The minimum shift mildw(K)| along this trajectory takes

sponds tot’>0 in a hole-doped material. For smal 200 at the pointk, + ky=m where it crosses the zone
< Jgpt, the Fermi surfaceéshown by solid lines in Fig. 3has boundary.

the form of hole pockets around the points/2,7/2). This Thus, for small doping antf <0 a pseudogap should be
shape of the Fermi surface has been discussed in severgliacted in the ARPES spectra in the direction(1,1). At
publlcatl_onsl.'29'3° The heavy dashes in Fig. 3 show the the same time, the absorption edge should spread, like the
boundaries of the magnetic Brillouin Zone on which proadened photoemission edge on the boundary of the mag-
E(k)<wu holds. Wherk changes along any link(l) cross-  netic Brillouin zone in the case of an underdoped dielectric.
ing this boundary, the work functiofE(k) — | remains fi-  For high doping, where,=E(m/2,7/2)> s, the Fermi sur-
nite, and the minimum work function on this line is value of t3ce transforms to a large connected Fermi surface around
the pseudogap derived from ARPES measurements kvith the pointT" or Y. Moreover, for antiferromagnetic states,
varied along this line. Note that, if the band were unsplit, likethere are both main and shadow Fermi boundaries inside and
that described by Eq18), there would be no trajectory con- outside the magnetic Brillouin zone in hole-doped materials.
nectingl" and Y not crossing the real Fermi boundary. On |n the case of an electron-doped material, the main and
this trajectory, there would always be a point whéfie-u  shadow Fermi boundaries interchange.

=0 and no pseudogap would be detected. As in the basic two-parameter Hubbard mo#lU t),

The behavior of the phase curvig(d) also becomes in the extended model described by Egs) and (2) for
understandable. The density of states at the Fermi level is <0 the Fermi level never crosses the eneegy: E(,0)
maximal até= &y (Fig. 53. In the ranges™> ., it drops  at the pointM corresponding to the Van Hove singularity at
rapidly, soT.—0. In the ranged< d,, the density of states the dielectric gap edgéFig. 5. As a result, the maximum
also drops, although not so fast. Note that the density oéritical temperaturell® is lowered, the peak on the phase
statesn(E) in the lower Hubbard subband shown in Fig. 5acurveT.(d) is broadened, and the entire curve shifts to lower
reproduces the density of state with the peak due to the Vadoping.

Hove singularity below the chemical potential, which was  The main feature of models of this type with<O0 is the
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absence of fermion excitations with zero energy in the superderek=k— (7, ), and functionsp, 7, R, andQ including
conducting state, regardless of the presence of nodes in thérms of up to the second order inare given by Eqs(41),
d-wave superconducting order parameter. This means tha#2) and(44) in the Appendix. The final result was calcu-
measurements of specific heat and the NMR Knight shift, inated by the formula

other words, all experiments measuring the absolute value of

the excitation gap, should display characteristics typical of

s-wave superconductors, namely an exponential temperature A(kw):; IR\*F(ENI(E\— )

dependence with a finite minimum gap. Such behavior has

always been considered to be a prookafave symmetry of

= 2rq_
the order parameter. Calculations based on models with _; QUL F(EVIYE,+w), @3
t’<0 indicate thatd-wave superconductors can also have
such properties. where f(E) is the Fermi distribution function, ané(x) is

replaced by the intentionally broadened Gaussian function
g(x) =exd —(¥o)?] with 0=0.02 for more visible presen-
4. MANIFESTATIONS OF PSEUDOGAP AND tgtion of the results and to simulate a finite spectral resolu-
SUPERCONDUCTING GAP IN PHOTOEMISSION SPECTRA tion.
Figure 6 shows calculations of photoemission intensity
Since one of the major sources of information aboutA(k,w) (in arbitrary unit3 calculated by Eq(23) as a func-
HTSC band structure is APRES, let us try to calculate photion of o (in units oft) for several values ok uniformly
toemission spectra based on our models. The simplesfistributed over the segmeri€—D] or [A-M—B] in the first
scheme assumes that the interaction with electric f#lg guadrant of the phase plafithe lower left section of Fig.)6
=Eq€'“! removing a high-energy electron with momentgm In an underdoped system with=0.15, the shift of the pho-
and its projectiong,, on theab plane is described by the toemission edg& w(M) at the pointM occurs in both the

operator superconducting and normal states and it is almost entirely
_ due to the dielectric pseudogap. At the optimal doping
V(1) ~Eof(q,k)[€'"ag,Cr,t H.C]8(qap— k= 27mn). 6=0.2, the shiftAw(M) vanishes in the normal state. This

(19 means that aT <T, this shift is entirely determined by the
superconducting gap.

Figure 7 shows the shifdw(k) on the generalized
Fermi boundary f1,M’), which consists of the dielectric
sections of the magnetic Brillouin zone boundary and of the
nonshadow parts of the Fermi boundary. Calculations for

Here we do not specify the structure of on-site operatqys

and polarization form-factof(q,k) and suppose that it is a
smooth function ofg andk. Then the direct angle-resolved
photoemissiofARPES signal is proportional to the spectral

function A w(k) were carried out for the superconducting and normal
1 N1 Ne (2. BE. states of an underdoped system witk0.15, t'=0.0%,
Alko)= > Ef (W ok oW %e PRis U=8t, andT.=0.0091. Figure 7 also shows similarw(k)
; curves fork varied along the real Fermi boundarg,&') of
X(w—u+ Ef'\‘efl_ EiNe)' (200  the optimally doped system &= 0.2, other parameter being

the same. For this type of band’'&0), there is always a
HereZ is the partition function angg=1/kT. In the basis of point on the Fermi surfacé, =k, , where the superconduct-
one-determinant function®, the matrix element in Eq20) ing gap vanishes, in accordance with the conventional wis-

can be expressed as dom aboutd-wave superconductivity.
5 5 The situation is different in underdoped systems with
M(k)=<d>;\'e_l|ck,g|<biNe), Cho=WT'(a)ci,W(a). t'<0. The shift of the photoemission edgkw(k) on the

(21 generalized Fermi surfacdsee the curve for5=0.1,

) ) - t'=-0.08, andU/t=8 in Fig. 8 does not vanish anywhere
Unlike the simple operatoc,,, the dressed quasiparticle for T<T_, although the sign of the superconducting order
operatorcy, including terms of up to second order parameter changes. This means that the features of all physi-
generates both one-particle and multiparticle excitationgal parameters sensitive to the minimum energy of fermion
against the background of the uncorrelated mean-field staigxcitation(such as specific heat, Knight shift in NMR, etc.
®. Let us restrict our analysis to one-particle excitations.should be similar to those of conventiorsalvave supercon-
Then the contribution t@,,, can be represented in the form ductors. Nonetheless, phase-sensitive experiments should
of an expansion in the eigenfunctiong, of the linearized still detect a change in the sign of the order parameter.
Hamiltonian: Qt|)L This section can be summarized differently if we follow

the system evolution in the reversed direction from a higher
~ o doping 6> 6.~0.3 t0 6=0, i.e., to the undoped state of the

Cr = ¢(K) Cip T m”(k)%’ antiferromagnetic dielectric. Fof> &, we have a metallic

paramagnetic state with an unsplit energy band. &ars,
=E Rxxkx+(%—U)QAXl>\]- (22) there .is a long-range, two—di.m.ensional antiferromagnet.ic or-
) der with the energy band split into two and an increase in the

1
§+0'
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density of states. But in this material, which is still over- only electron-doped material Nd,CeCu0,_, (NCCO).
doped, the Fermi surface remains large dowrnsted,,; at  The features on which this classification is based are as fol-
t'>0 or §=4, att'<0. In the latter cas&(#/2,7/2)— u lows.

=0 at 6= &,. Only below &, (or <5, att’<0) do some 1. Different TM®, which varies between 90-120 K for
sections of the previously large Fermi surface become dieleghe cuprates of group | and is about 36 and 25 K for LSCO
tric, which appears as a pseudogap in specific directions @&nd NCCO, respectiveff3

the quasimomentum in the normal state. In this state, the 2 vanishing(for group |) and finite(for group Il) mini-
large Fermi surface decomposes into small hole pocketghum energy of fermion excitations in the superconducting
around the points 7/2,+ m/2) att’>0 or around (Oy),  state. This parameter is derived from measurements of spe-
(7,0) att’<O0. cific heat, the Knight shift of NMR, and other physical prop-
erties. These measurements are usually considered as tests of
whether the superconducting order parameter had-thave
(group ) or swave symmetry(LSCO and NCCO of group

).

It seems worthwhile to discuss which of cuprates can be 3. Direct detection ofl-wave symmetry of the supercon-
described in terms of which type of electron bantt0 or  ducting order parameter in BSCCO and YBCO of grodf I.
t'<0). No such measurements of group Il materials are available.

Usually*? cuprates are divided into two groups in accor- Recently*® a smalls-wave component added to the main
dance with their properties. Typical representatives of grougl-wave order parameter due to orthorhombic distortions has
| are BLSrL,CaCyOg,. s (BSCCO and YBaCuwuO,;_ 5  been detected.

(YBCO). Group Il includes La_,Sr,CuQ, (LSCO) and the 4. In ARPES spectra of underdoped BSCCO materials in

5. SUGGESTED CLASSIFICATION OF CUPRATES IN
ACCORDANCE WITH BAND CONFIGURATIONS
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Aw- 100
M Y
FIG. 7. Top left: minimal energA w(k) (in units of t) of
fermion excitations versus quasimomentlnvaried along
the generalized Fermi bounddryl’,M] shown on the right
; r M and composed of dielectric parts and nonshadow part of the
M M Fermi boundary around the hole pocket centered at the point
(m/2,7/2). The system parameters atk=8, V=0.1 and
Aw- 100 t’=0.05 in units oft. Curvesl and 2 correspond to the
4 superconducting T{=0.0017<T.) and normal T=0.02
>T.) states. Bottom: the same for a system with optimal
7 Y doping 6=0.2 with the quasimomentum varied along the
S Fermi boundary S',S] (right).
4
s 5 r s

the normal state, an anisotropic pseudogapshift of the related Emery models, although in an intermediate stage
electron energy distribution edg&as detected around the these calculations include renormalizations of the paramag-
point M = (7,0),(047). No such measurements for materials netic susceptibility, which tent to be based more on empirical
of group Il are available. data.

5. A small Fermi surface in the form of a hole pocket 8. For the two cuprate groups, the main difference in
aroundk~ (7/2,7/2) in underdoped BSCCQ@Qgroup ) was their Fermi surface shapes derived from quantum-chemical

detected®!! calculations of uncorrelated baffd$y the LDA method is
6. The Hall coefficient in LSCO and NCC@roup ) in the role of interactions between non-nearest neighbors.
changes its sign at a certain dopitig>® For cuprates of group | the Fermi surface displays a nesting

7. Two materials from different groups, namely YBCO with Q~ (ar,7).*® It is shaped as a square with rounded
and LSCO, have different peaks in coherent inelastic neutroangles and sides along the linés+k,| =, and is centered
scattering at excitation enerdgyw— 0. In YBCO there is one at the pointY. In group Il the calculated Fermi surface looks
peak at Q=(m,m). In LSCO there are four peaks at more like a turned rounded square with the sides parallel to
Q=(mxA,m), (m,m=A). 3 Theoretical analysfs*?un- k- andk-axes. In terms of the one-band unperturbed model,
ambiguously ascribes this difference to differences in paramthis form corresponds td’'/t<0. Note that unperturbed
eters and shapes of Fermi surfaces of corresponding uncdrands of the tight-binding model cannot be used directly

Aw(x) - 100
12

FIG. 8. The same as in Fig. 7 for an underdoped model of type Il with
t’=—-0.08 and §=0.1 versusk varied along the generalized Fermi
boundary composed of sections around hole pockets centered at the
points (7,0) and (Or), and the section of the dielectric part of the
magnetic Brillouin zone boundary. Curvésand 2 correspond to the
superconductingT=0.001%) and normal T=0.02) states. The su-
perconducting gapV,7(k) plotted by the dashed linéq. (39) in the
Appendiy changes sign.
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(without renormalization to analyze the low-energy pro- 3. In checking the hypothesis of tltewave supercon-
cesses. ductivity in all cuprates, phase-sensitive experiments with

Now let us briefly discuss the direct comparison betweerL, SCO and NCCO are very important. From the theoretical
uncorrelated bands deriving from LDA calculations andviewpoint, the d-wave symmetry is preferable for CyO
those constructed using ARPES data in accessible regions pfanes in all cuprates, since the on-site repulsion does not
the phase spadsee the comments on Fig. 4 in the texdn  suppress the-wave order parameter, unlike tisavave su-
average, the calculations with the predetermined resolutioperconductivity.
adequately describe the Fermi surface shape, but they over- 4. The model witht’/t>0 provides a reasonable inter-
estimate band dispersions in comparison with measurementgretation of the anisotropic pseudogap manifesting itself in
This discrepancy is usually eliminated by introducing renor-the shift of the photoemission edge fomear the directions
malizations, often of empirical charact€rThe calculated (0,m) and (7,0) in underdoped BSCCO samples. The
and measured bands can differ because the former do npseudogap results from the dielectrization of zone bound-
take into account alternations of the spin density and th@ries near the poirl = (0,7) under conditions of antiferro-
resulting valence band splitting. As was mentioned aboveinagnetic band splitting. Some authors supp8ttdhat the
the antiferromagnetic gap can be directly observed in photopseudogap has tliewave symmetry, implying that a certain
emission spectra only in electron-doped materialsparameter characterizing the pseudogap changes sign. The
Sakisak&' and King et al*® in fact detected such a gap at pseudogap was regarded as a precursor ofitwave super-
ho=E,— u<—300 meV, which contradicts LDA calcula- conducting gap. Our models makes such hypotheses redun-
tions. Moreover, the finite resolution in both energy dnd dant. Our interpretation of properties of group Il cuprates
may distort the averaged interpretation of ARPES spectranight be verified by experiment on detection of the
The uncertainty in the Fermi boundary derived from poorlypseudogap in LSCO and NCCO along directidns =k, .
resolved spectra was analyzed in Ref. 24. It seems necessary 5. The detection of the small Fermi surfatmle pockets
to reprocess ARPES spectra on the base of @Jsand(23  around the point £/2,m/2) in BSCCQ® supports our as-
for band energies and intensities, which take account of thumption that this material is described by the model with
antiferromagnetic band splitting and partial dielectrization oft’/t>0. There is hope that, given a higher ARPES resolu-
the zone boundary. Yet the only material in which the prestion, it will be possible to distinguish between the smooth
ence of small Fermi surfaces and pseudogap has been expefielectric and sharp metallic parts of the generalized Fermi
mentally proven is the BSCCO ceranfic:t boundary.

All this allows us to associate cuprates of groups | and Il 6. Changes in the sign of the Hall constant in LSCO and
with two types of correlated Hubbard models withit>0 NCCO may be due to transitions from small to large Fermi
andt’/t<0, respectively. Specifically, self-consistent calcu-surfaces.
lations taking account of antiferromagnetic correlations and 7. An important task of the theory is to check out
correlations like valence bonds have revealed the followingwhether features in the magnetic susceptibij§Q,») de-

1. The maximum critical temperatures in models withtected in neutron scattering could be described in terms of
t'/t=0.05 and 0.1 ard®=0.0129 and 0.0114 respec- antiferromagnetically split bands without arbitrary renormal-
tively, whereas in models with//t=—0.05 and—0.1 only izations.(One has to use various renormalizations when con-
TI™=0.0072 and 0.0024% These results apply to models sidering an unsplit, unperturbed ban@he affirmative an-
with V/t=0.1. AtV=0 the critical temperature is a factor of swer to this question would support the hypothesis that the
~1.7 higher. The ratio betweéf{"® for the two types of the Main mechanism forming the lower and upper Hubbard sub-
model is in fair agreement with this ratio for two cuprate band is antiferromagnetic ordering of spins.
groups.

2. In models witht'/t<0, unlike the case’'/t>0, the
minimum energy of Fermi excitations in the superconductin

state is nonvanishingee Fig. 8 almost over the entire range Of special note is the effect of orthorhombic distortions
of superconductivity §< 5,), although the superconducting on the band structure, Fermi surface, and shape of the phase
order parameter has tliewave symmetry. This allows us to cyrve T,(8). Such distortions occur in YBCO owing to the
abandon the hypothesis of tisavave superconductivity in  |ayers composed of CuO chains. In order to produce a simple
LSCO and NCCO and suggest tliwvave superconductivity — description of orthorhombic effects, let us introduce different

occurs in all Cupl’ates, inCIUding LSCO and NCCO. OW|ng tohoppingstx andty for bonds a”gned with the- andy_axes:
the dielectrization of Brillouin zone boundaries in the direc—tx(y):t; 7, i.e., we will analyze the model

tion ky=ky, the latter hypothesis is in accord with measure-
ments that yield a finite minimum energy of excitations.
Note also that in electron-doped systems the second type of
Fermi surfaces with electron pockets around the points ~ AH(7)=172 [(Clgcn+ex,o—0§gcn+ey,0)+H-C-]- (24)

(= m,0) and (0;£ 7r) corresponds to the positive sign of ne

which is opposite to the sign df for hole-doped system To construct a correlated statd) with correlations of va-
with the same shape of Fermi surface. The reason is that fdence bond type, generally speaking, requires using a unitary
t'>0 the shape of the upper Hubbard subband looks like theransformation with different parameters, and «, for
inverted lower subband fdr <0 (Fig. 3. bonds aligned withx- and y-axes. Our rough calculations,

gﬁ. MODEL OF ORTHORHOMBIC PERTURBATIONS IN YBCO

H=H(U,t,V,t")+AH(7),
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FIG. 9. Left: Fermi boundarybold line) and nearest zone
energy levels(with a step of 0.08 in the region— =
<kyy<m calculated by Eq(25) with U=8, V=0.1,
t’=0.1, and7=0.05(in units oft) at a dopingé=0.15.
Right: density of stategbold curve. The thin curve cor-
responds to the doping=0.2 of the second peak on the
phase curve. The inset shows lines of superconducting
gap nodes defined by ER9) with the swave contribu-
tion at doping corresponding to the first peak on the curve
of T¢(6).

however, were based on a variational function with one pas=0.0%, the region of higher doping on the experimental
rametera,= ay,=a. We have used the following approxi- phase curve has a higher critical temperatlitethan the
mate effective Hamiltonian region of lower doping. This discrepancy may be due to the
~ ~ ) ~ crude approximation used in our calculations. Undoubtedly,
H=H(a,U,)y + AH(V,t') +AH(7), (29 the correlation function with different parameterg and ey,
and calculated the first main term to two ordersagfthe  for bonds aligned withx- andy-axes should correspond to a
weak interactionAH(V,t’) in zeroth order, and the third lower energy. More accurate calculations, together with in-
term in the zeroth and first orders . By applying the vestigations of superconductivity in alternating dimer struc-
model to YBCO, wheré,>t,>0 for thea- andb-axes, and tures of valence bondS,might clarify the situation.
determining the signs df and 7 in Egs. (1) and (24), we Note that, throughout the studied doping rangje< s
obtain >0. < 4,, we have different connectivities of regions in the phase
The phase curveg,(5) for the model described by Egs. space ork,- andky-axes occupied by electrons. Unlike the
(24) and (25) with 7=0.05 and parameteld =8, V=0.1, line I'(0,0)—-T'(0,27), the lineI'(0,0)—T'(2,0) does not
t’=0.1 and 0.05in units oft) are plotted in Fig. Xdashed cross the Fermi boundary. Such is the structure of the lower
lines). They have two peaks due to the more complex bandiubbard subband. There is an unanswered question of
structure. For the model with =0.1 with dopingé=0.15,  Wwhether this can be a reason of the observed high anisotropy
the Fermi surface and density of states in the lower Hubbar@f resistivity, a,/a,=2.2, even at a small anisotropy of the
subband are shown in Fig. 9. Now the two energy parametef@opping interactiont,/t,=0.9 (r=0.08). The resistivity
4t' and 2r characterize features of the lower Hubbard sub-anisotropy prescribetg /t,= 0.6 in the tight binding approxi-
bandE(k) near the Fermi level. The parametedetermines mation with an unsplit valence band, i.e+=0.25.2° The
the difference between maximum energigs™ andEy**in  difference between these two values may be attributed to
profiles of the band energy fdk varying along the path different susceptibilities of the Fermi surface to weak inter-
I'(0,00—T'(27,0) on thek,-axis and along the patfi(0,0)  actionst’ and 7 with and without band splitting in Eq$17)
—T(0,2m) on thek,-axis. On thek,-axis the curveE(k) has ~ and(18), respectively.
one peakEy®™ at k=(,0). On thek,-axis the profile of Finally, let us estimate the admixture of teevave sym-
E(k) has two peaksEy™ of equal energies ak=(0, metry to the superconducting order parameter due to ortho-
m+A,) (the crosses in Fig.)9 Since the band energy is a rhombic distortions in our model. For simplicity, we con-
periodic function with the period of the magnetic Brillouin Sider only three anomalous averages={w;,wg w3},
zone, E(O,q-r)zE(q-r,O)zE)’f‘ax<E;“aX. Curves of E;”(";‘l))‘(g) i=d1,2,3. Here we retain only the main order parameter
for the model(24) with 7=const=0.0% andt’=0.1t are =~ W;=Ww;, of all d-wave anomalous averages and add two
given in Fig. 2. The corresponding density of states is showis-wave parameters. Thus, the following anomalous averages
in Fig. 9, where the main Van Hove singularity correspondsare included:
to energyEy™. This singularity is associated with the first
peak on the phase curig(d) (the dashed line 3in Fig. 1). Wd(s):i s ([cnC teo.c ]
It corresponds to the doping,, at which the chemical po- LGN 4 Mrnitnted e d
tential coincides with the energy of the Van Hove singular- _
ity: Ej®™—pu=0. The dopingd,, for which Ef*—u=0 +[Cnicn+eyT+Cn¢CnfeyT]+H-C->! (26)
holds, approximately corresponds to the second peak on the
phase curvd ().
The measured phase diagram of ¥Ba;Og ., in fact,
has two regions witlfg *~45 K andT{®*~95 K at excess
oxygen concentrationg~0.65 andy~0.96. The parameter The transition temperatur€, is calculated by equating
y is related(but not identical to the dopings of the CuQ  to zero the determinant of the uniform linear equation system
plane. In contrast to results obtained for mod24) with  for the anomalous averages:

1
Wg=m 2 <CniCnT+H-C->- (27)
n
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wi—Z Dj;w;=0. (28)  on the phase curvé.(6) shifted in the region of lower dop-
i ing. These properties are determined by the different band
The matrixD;; for the given set of anomalous averages isstructures and Fermi sur_face shapes in these models. In un-
determined by Eqs45)—(48) in the Appendix. The eigen- derdoped systems of this sort, hdlelectron pockets are
vector {w;} of equation systen{28) corresponding to the located around the pointsl=(0,% x),(+,0), and there
zero eigenvalue allows us to express the anisotropic supef'® dielectric sections of the magnetic Brillouin zone bound-
conducting gapparing interaction in the lower Hubbard sub- &y near the nodes of the superconducting gap. As a result,

band determined by Eq39) and (49)] as follows: the minimal energy of fermion excitations is finite every-
A where. The applicability of these models to LSCO and
Wi (K)=Ag(cx—cy) + A B8(K) + As(cytCy), NCCO has been argued. Thus, we have purt forward the

(29) hypothesis that all the cuprates can be described in terms of
the d-wave order parameter. For NCCO, this hypothesis is
The coefficientsA; and functiong(k) = cosy, are given by  supported by the coincidence between the sign of calculated
Egs.(40) and(50) of the Appendix. One can easily check out t’/t>025-2" and the sign ot’/t>0 required for shaping of
that functionB(k) has the same symmetrg(k)=—(k), type Il Fermi surfaces in the case of electron doping. This
as the third term on the right of ER9). The superconduct- hypothesis, however, seems more questionable in the case of
ing gap described by Eq29) changes sign, as in a pure LSCO, where the calculated and empiritdt have opposite
d-wave superconductor. At a dopidy- §;, corresponding to  signs. The role of the lattice superstructure in LSCO has also
the first peak ofT(5), the curve of nodes of the supercon- remained uncledf® Phase-sensitive experiments for LSCO
ducting gap(29) is that shown in Fig. 9. The deviation of the and NCCO, and detection of pseudogaps with asymmetry
nodal line of function(29) from linesk,= =k, prescribed for  different from that of BSCCO might help in discovering the
the pured-wave symmetry rises with increasing in the  truth.
model with constantr. The Fermi surface asymmetry is, Models taking account of orthorhombic distortions yield
probably, more important for the observed orthorhombic distwo peaks on the phase curi¥g(s) due to new features in
tortions in YBCG**than the small admixture of trewave  the lower Hubbard subband. The approximate calculation,
symmetry to the maim-wave contribution in pairing inter- however, yields an inverse ratio between two maximum criti-
action (29). In order to clarify the situation, more detailed cal temperature3_"®* in comparison with that measured in
investigations are needed, including studies of the role o¥BCO. The contribution of ars-wave component added to
interaction between two neighboring Cu@lanes in YBCO. the basicd-wave order parameter has also been estimated.
The present work was supported by the Russian Fund for
Fundamental Researdrojects 97-03-33727A and 96-15-
97492 and ISTC(Grant No. 872 which we gratefully ac-
Let us summarize the main results of the present work knowledge here. The authors are indebted to V. Ya. Krivnov
A description of superconductivity and other low-energy for helpful discussions.
effects in cuprates in the range of doping where gplanes
are characterized by long-range antiferromagnetic correlg®PPENDIX
tions can be based on correlated states of the one-band Hub- Eqy the one-determinant BCS functidn with a double
bard model with correlations of valence bond type. Themagnetic elementary cell, the mean ene_lfmyi)=<wH‘lf)

short-range attraction between holes in thehannel is due DED d q the set of d ¢
to formation of valence bonds, and the constants of this at—_< ) depends on the set of averages {r; ,d;,wi}; 0

traction can be calculated variationally. one-electron operators

The phase curv@  (6) for the superconducting transi- ~ 1 +
tion and other properties are very sensitive to the interaction 'l :2_n| % Cn,oCn+l,0
between second nearest neighbors. The sign of this interac- '
tion t'/t determines the band structure and Fermi surface . 1 > WO
topology at low doping. Models of the first typ&’ ¢&0) for d'_2_n| = (=1 [g] CnoCntlo (30)
underdoped systems are characterized by the presence of
small Fermi surfaces, namely, hole pockets around the point ~ 1 T S N S
(£ m/2,=x/2). The latter account for the presence of the W'_4_nI “~ signh=1y)Len,oCns1,— o+ H-C 3D
anisotropic pseudogap in ARPES spectra and its doping de- ) )
pendence. The optimal doping is uniquely determined by th&&lculated with wave functionb. Here | =0,112,215,3,
coincidence between the chemical potential and the energ§d ™ is the number of all vectors of lengthl =|I| over
of Van Hove singularity connected with the flat region of the Which the sums are performed. The valugsare nonzero
lower Hubbard subband around the poMt=(,0). Argu-  Only when (,+1,) is even, and anomalous averagesof

ments in favor of applicability of this model to BSCCO and the d-wave symmetry onlyl,#1, are included. The one-
YBCO materials have been presented. determinant function minimizingd is an eigenfunction of

The models of the second type correspond’ta0 for the linearized Hamiltonian, which is expressed in the basis of
hole-doped systemér t'>0 for electron-doped systems fermion operatorsbkiz{c% : C~,J£T , C_x;, C_%}i in the
They show lower transition temperatures and broader peaksrm

Cx(y) = COSkX(y) .

7. CONCLUSION
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<F|>L=;F

The matrixh;; is given by the formula

hi;(K)bJ.by;+ const. 32 , _ _
1 1 (KIBiby (32 Given the eigenfunctions and spectrum, one can calculate the

desired averageg and so obtain a self-consistent solution.
Details of the calculation procedure were described

4 tanyk=2Ak/(ek— 6]'() (40)
=

elsewheré?®
e§—un Ay W, 0 The one-particle contribution to annihilation operators
Ay €—p 0 Wi Cy, is determined by Eq(22), where the functions and 7
hij= , (33 are determined by the expressions
W 0 —(&—w) — A )
0 W — Ay —(e&g—p) p(k)=1-a (Cx+cy)[(1_2r0)r1
— +ro(1—rg)+d3+2r2], 41
_lE&H —12‘9H o(1=ro)+dg+2r1] (41
=7 4 o, 9. ATz 4 5g ek, 7(K)==2(Cy+Cy)do(1+a?r2),  Cyy)=COsKy(y)
(42)
1 JH Let us expand,,, in (22) in terms of one-particle operators
W=7 Z a_qu'(k)' (34) Xko» Which determine the eigenfunctish of the linearized

The functionsg, (k) andq,(k) are determined by the equa- HamiltonianH, :

tions I Ck1:2>\Q>\XIA- (43)
1 The expressions foR, and Q, are different for quasi-
9i(k)= 5 [cosk,d coskyl,+cosk,l, coskyl,], momenta inside Ke F) and outside K& F) the first mag-

netic Brillouin zone:

1
ql(k)=§sign(|§—|§)[cos|<x|xcosky|y

e(K)Sp\+ 7(K) Sy, keF,

—cosk,l,coskyl,]. (35) R\(K)=Qx (K)=1 — 5(k)S;, + ¢(K)S,.,  k&F.
Herek=k+ (7, ). In sums ovet in the expression foe,, (44)
Ay, andW,, the indexl runs through allr|, or d|_, or w, HereX'=\'(\) corresponds to the eigenval@g, = —E, .

from the complete set of one-electron averagesiinOne- By virtue of symmetry relationé44) betweerQ, andR, and
electron eigenfunctiong, and spectrunk, (k) of the lin-  the formulaf(E,)=1—f(—E,) for the Fermi distribution
earized Hamiltonian are calculated by diagonalizing the mafunction, we have final expressi@@3) for the spectral func-

trix (33): tion A(kw).
In analyzing the model described by E¢84) and (25)
Xlx: 2 bljsj'% . hijSA=S,\Ex (36) and including the perturbation of the orthorhombic symmetry

proportional tor, we consider only the principal average
d_
for all ke F within the magnetic Brillouin zone. The ap- W1=W; of thed-wave anomalous avirag(ﬁl) and add two
proximate numerical diagonalization yields fairly accurateS'Wave anomalous averages, andw; given by Egs.(26)
results thanks to the smallnedg<A, of the superconduct- and (27). Thus, we treat only three superconducting order
ing gap in comparison with the antiferromagnetic one. TheParametew;={wy,Wo,wi}. Then the critical temperature of

approximate eigenvalues; are a hole-doped system is determined by E2B) with matrix
Dij :(9Wi/69Wj atW|:0 equal to
_ 1-2f(E
E,=~+ \/(EﬁF_M)Z_;_(WﬁF){ A=1,...,4, v=12. Dij: N1 z FR”(k)a“‘ —(1), (45)
(37) k 2E1

Here the energie€’y,, of the upper and lower Hubbard 1 , ) 1 )

subbands are Rll:Z(Cx_Cy) + Rpp=cosyj,  Rgg=7(cxtcy)%,
(46)

1 1 1 L
Elly =5 (et T \ 7 (e e’ +Af, (38) Riz=7(cx=¢)cosm,  Rig=7(c{= ),

and interactionW." responsible for the superconducting 1

pairing in one of the subbands in the case of hale=) or Ras=5 (Cxt Cy)COS Y. (47)
electron (v=2) doping is given by

Herec,yy=cosky,, vk derives from Eq(40), f is the Fermi
distribution function £, (k) = E;7 (k) — u is the energy of the
lower Hubbard subband with respect to the chemical poten-

1
AF —+ =
W ==[W—WiEcosy (W +WyY)], v=12, (39 tial, and coefficients;; are given by

2
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The formation of periodic surface structures by ultrashort laser pulses was observed
experimentally and explained theoretically. The experiments were performed on graphite with
picosecond laser pulses. The spatial period of the structures is of the order of the
wavelength of the incident radiation, and the orientation of the structures is correlated with the
direction of polarization of the light. The key point of the theoretical model proposed is
resonance excitation of surface electromagnetic waves, which under conditions such that the
temperature of the electronic subsystem is decoupled from the temperature of the crystal
lattice causes a “temperature grating” to be written on the flat solid surface of the sample while
the laser pulse is being applied on account of the temperature dependence of the surface
impedance. The formation of a periodic surface profile from the temperature grating occurs by
the volume expansion of a melted layer near the surface of the material. For typical

values of the surface tension and viscosity for metals, there is not enough time for the periodic
profile to be resorbed before the liquid layer solidifies. The formation of periodic surface
structures is delayed in time relative to the laser pulse.1999 American Institute of Physics.
[S1063-776(99)02002-9

1. INTRODUCTION of periodic surface structures, if it happens, should occur
The formation of periodic surface structures, which areafter the laser action ceases; this is what distinguishes fun-

responsible for spatially modulated surface profiles with d@mentally the ultrashort laser pulse regime from the con-

period on the order of the wavelength of light, is one of theventional case. In addition, t_here are other import_ant features
most common phenomena occurring under the action of lasélf the ultrashort laser action regime: decoupling of the
radiation on condensed medid@he mechanism of this phe- conduction-electron temperature from the crystal lattice
nomenon for metals and semiconductors is based on resizmperaturéand smallness of the modulated-heating depth.
nance excitation of surface electromagnetic wévedose In our opinion, all this gives grounds for believing that the
interference with the incident wave results in spatial modudiscovery of the formation of periodic surface structures un-
lation of the energy release, which in the presence of positivéler given conditions in itself can be exceedingly important
feedback gives rise to a periodic surface profile by means dPr understanding the physics of the interaction of ultrashort
an appropriate thermophysical mechanigfor example, laser pulses with condensed media.
evaporation or thermal expansjon In the present paper we report experimental data that
As far as we know, all investigations performed thus farconfirm the formation of periodic surface structures on
on periodic surface structures concern the action of compargraphite by picosecond laser pulses, and we propose a theory
tively short laser pulses, so that the physical processes aef the formation of such structures by ultrashort laser pulses.
companying the development of the phenomenon can be This paper is organized as follows. In Sec. 1, the results
treated as quasistationary. At the same time, for ultrashorf an experimental investigation of the formation of periodic
laser pulsegpicosecond and shorter duratjpmot only can  surface structures on graphite are reported. In Sec. 2, the
the assumption of quasistationarity break down, but it mayphysical processes that result in the formation of such struc-
even become impossible for some of these processes to ocdures by ultrashort laser pulses interacting with a metal are
during the laser pulse. Under such conditions, the formatiomnalyzed theoretically. Laser absorption, instability with re-

1063-7761/99/88(2)/7/$15.00 370 © 1999 American Institute of Physics
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FIG. 1. Arrangement of the focusing spdfy of the heating pulse on the
graphite sample2 — sample surface3 — side face of the samplet —
graphite layers.

spect to the formation of spatially modulated temperature
fields over the application time of the laser pulse, and the
formation of a periodic profile after the laser pulse ends are
studied separately. The results are discussed in Sec. 3.

2. EXPERIMENT

A periodic surface structure was observed on the surface
of microcrystalline pyrolytic graphite when-1 ps laser
pulses were applied to the surface of the sample. The graph-
ite sample was prepared in the form of tabléis). 1), whose
flat surface is perpendicular to the symmetry aisCorre-
spondingly, the side face of the tablet is parallel to the sym-
metry axis.

Investigation of the initial sample by transmission elec-
tron microscopy, x-ray diffractometry, and Raman scattering
spectroscopysee Figs. 2 and 3 belgvehowed that the ini-
tial sample consists of microcrystalline graphite with 10—30
nm grains. The diffraction pattern for the sample surface
resembles that obtained when the crystallites have a distin-
guished predominant orientation. The graphite layers are ar-
ranged parallel to one another, but the distance between them
is not fixed. A distinct texture is observed, i.e., microcrystals
are slightly disoriented with respect to one another. On the
basis of these investigations it can be concluded that the ) ) ) ) ]
propertes (specifically, the thermal conductviyof this L 2 £ nictoscony of mcracnsalne oyt orpide e
sample are strongly anisotropic. after irradiation with pulses with duration=1 ps(b) and 500 p<c).

The experimental investigations were conducted using
the laser system based on multicascade SRMB and SRS
compression of the initial nanosecond pulse from a Nd:YAGto normal incidencdFig. 1). The energy density in the fo-
laser, generating simultaneously several pulses of differentusing spot was=0.5 J/cnd. When laser pulses are applied
duration in the femto- and picosecond ranges with repetitiomepeatedly with repetition frequency 10 Hz, a strongly re-
frequencies up to 10 Hz. The parameters were monitoreflecting (reflection three to four times more intense than the
using the measurement part of the system, including photanitial reflection microregion arises at the center of the fo-
sensors for the pulse energy, an image converter wiBps  cusing spot on the side face and increases in size up to the
time resolution, and an autocorrelator with50 fs resolu-  size of the focusing spot. The reflection increases very little
tion. All measurements, including diagnostic, were fed into ain the flat surface of the sample. An electron microscope
multichannel digital information reading and processing unit.showed that a periodic surface relief with peried.6um
This unit consisted of several highly sensitive digital videoon the spots on the side facé€sSig. 2b and with period
cameras and analog signal inputs, an information reading=1um in the spot on the surface of the sample is present in
synchronization unit, a controller for the the laser setup andll spots. The structure on the sample surface is not as sharp
the computer that made it possible to control the setup acas on the side face.
cording to a prescribed program, extract and process simul- Raman spectroscopy¥ig. 3 showed that for the crater
taneously information from the outputs of the image con-located on the surface of the sample, the presence of an
verter, oscillograph, autocorrelator, energy sensors, photamorphous phase of carbon is identified at both the center
sensors, and spectroscopic instruments. and periphery. The fraction of the amorphous phase is higher

A heating laser pulse of lengtle 1 ps with wavelength at the center of the crater. Reflections corresponding to the
780 nm was focused into a spet200um in diameter on the microcrystalline phase of graphite are observed simulta-
lateral face and the surface of the graphite at an angle closgeously with the amorphous phase at the same points. At the
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o crystalline structure with traces of an amorphous phase.

[2] a . . .

€ o 3. The formation of periodic surface structures and an
3 /”"""\_ﬂ amorphous phase of graphite were likewise observed when
mo d the experimental sample was heated with laser pulses with
o Ak Q duration 7~1 ps in a shallow vacuum (16 bar) (Fig. 3b,

= ____,/\J!\' curveb).

- '\T,__ﬁ. 4. Such investigations were performed on a different
[0 0"""""".“”""\.'""/ \---—--4 form of graphite, a pyrolytic graphite single crystal. Raman
= 7o 1.2 1.4 1.6 1.8 spectroscopy of this sample reveals a single-crystal structure

1

3 - . . .
v, 10" cm on the surface and a microcrystalline structure on the side

face(Fig. 39. The formation of a periodic surface structures

b was not observed after repeated application of laser pulses
o 08 (7=~1 ps). The Raman spectra show the presence of a micro-
a8 crystalline structure with traces of an amorphous phase.
5 06 5. An accumulation effect is observed with the appear-
8" ance of periodic surface structures on samples of microcrys-
% talline graphite, i.e., if a periodic structure is observed at the
— 04 center of a focusing spot with one application of a heating
%‘ pulse with the appropriate energy density, then under re-
S 02 peated application of pulses with approximately the same
£ parameters, the region of formation of such a structure is
ol observed to increase in size until the entire area of the focus-

1.0 12 14 16 18 ing spot is filled(the energy distribution in the focusing spot
v, 10°cm™ is close to Gaussian.

3. THEORETICAL ANALYSIS

3.1. Formulation of the problem

A characteristic feature of the action of picosecdadd
shortej laser pulses with moderate energy densitiesl (
—5J/cnt) on strongly absorbing condensed media is that
radiation absorption occurs over the duratiof the laser
pulse and the absorbed energy is redistributed between the
subsystems in the materi@onduction electrons and lattice

ol _ . . . l : ,
10 1.2 1.4 1.6 1.8 while all other processes, such as thermal expansion, vapor-

Intensity, 10° counts/s

! ization, and possibly meltingrequire a longer time and pro-

. . . ceed after the laser pulse ends. Thus, elastic unloading of a
FIG. 3. Raman spectroscopy of pyrolytic graphite after laser a¢torves h d f f thickness- 105 hich
1 — initial surface: a — heating of the surfacgurve 2) and of the side eated layer of matter ot thickne ¢m, which re-

v, 10 cm™

face (curve 3) of the sample by laser pulses with duratios1 ps; b —  Sults in thermal expansion, occurs over a timed/s=3
heating of the side face of the sample with-500 ps(curve4) and 1 ps —10 ps 6 is the sound speeda_ppreciably longer than the
(curve 5, vacuum); ¢ — heating of the side face of the single crystal for

duration 7 of the laser pulse. Hence it follows that a stage
when a spatially modulated temperature fiéleiting of a
temperature gratingorms as a result of an unstable process
with positive feedback over a timet< r, should precede the
same time, for the spots located on the side face of théormation of a periodic surface structure. An important char-
sample, the Raman measurements show the presence of omlgteristic of this process is that under the action of picosec-
an amorphous carbon phase without any traces of microcrysnd and shorter pulses it proceeds with a large decoupling of

T=1ps.

talline graphite. the electron temperature from the crystal-lattice temperature.
The following investigations were performéuh all ex- The process leading to the formation of a periodic tem-

periments, the side face of the experimental sample of miperature profile by action on high-conductivity materials

crocrystalline graphite was heajed must be based on the resonance excitation of surface electro-

1. When the polarization plane of the heating pulsemagnetic waves accompanying the diffraction of the incident
changed(rotated by 45f, the orientation of the lines of laser wave by the flat surface with spatial modulation of the
the periodic surface structure also changed by the amoumiptical properties by the periodic modulation of the tempera-
@p~45°, ture. It is significant that the modulation depth can be both

2. Formation of periodic surface structures was not ob-greater than and of the order of the skin-layer depth.
served(Fig. 29 when the duration of the heating laser pulse If periodic surface structures form for- 7 as a result of
was increased ta~500 ps(wavelength 530 nm The Ra- the thermal expansion of a melted layer of matter, stamping
man spectrdFig. 3b, curved) show the presence of a micro- of a grating(second stagethen it is followed by the reverse
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process(as the third stage resorption of the grating as a where g is the periodicity vector of the surface structure,
result of surface tension. The fixation of a periodic surfacewhich satisfies the resonance condition for a surface electro-
profile ultimately depends on whether or not spatial modulaimagnetic wave,

tion of the surface temperature remains before the melted Ik + ol = wlc )
surface layers of the material can solidify and whether or not g ’
the viscosity of the melt can be sufficiently effective to pre-Kk; is the projection of the wave vector of the incident wave
vent resorption of the periodic profile by surface tension be-on the boundary plane of the samgle] = (w/c)sing, and 6

fore solidification occurs. is the angle of incidence.

A detailed examination of the above-enumerated ele- The solution of the problem of diffraction of a plane
ments of the formation of periodic surface structures by ul-wave by a flat surface with spatially modulated optical prop-
trashort laser pulses is the content of the analysis of thigrties, determined by the relatio(®—(5) consistent with the
section. boundary conditiorf1) as done for a similar problem in Ref.

7 leads to expressions for the magnetic and electric field
vectors of a surface wave that give the following relation for
the interference spatially-modulated part of the density of the

3.2. Resonant diffraction by a flat surface with periodic absorption of laser power:

modulation of the optical properties

. . . . oTy)
To solve this problem it is convenient to use an imped- =_ — — i <_'
6Q(2) m(1-R)IAB cosd exp(—uz+id) T

ance boundary condition in the Leontovich fofm:

= T ¢
E=TnxH, I ®)
wherekE; is the part of the electric field intensity vector that 4 '

is tangent to the surface] is the magnetic field vectonis  HereR is the reflection coefficient corresponding to the lat-

the unit vector of the normal directed into the sample, tice temperaturd;, | is the intensity of the incident radia-
_ tion, u=2(w/c)Im(1/{),
{=¢+o¢ ) p
|E,, cosys+ Egcosé siny|
is the effective surface impedance, consisting of a uniform A= , )

2 2
(averaged over the surfacpart  and a spatially modulated |EP| +|Eg|* cos' 0
part 57, where|6¢|<|{|. We shall assume below that the E, andE are the components of the field amplitude of the
depth of uniform(in the plane of the surfageheating is incident wave, respectively, in and perpendicular to the plane
greater than the skin-layer depth. Théns an equilibrium  of incidence,is is the angle between the vectdtst+g and
function of the crystal-lattice temperatufie averaged over k;, andd is an angle in the range
the surface. Assuming that the temperatligeto which the Y
condl_Jction electrons are heated is low compared \_/vith th_e Z< ﬂg,n__'_tan—lﬂ, '=Im¢, ®)
Fermi temperature and the temperatures corresponding to in- 2
terband transitiong; is independent of .. Here and below,
the metal under study is assumed to be nonmagnetic. o .
. ) : incident laser wave relative to the surface wave.
To find the small spatially modulated correctid to . .
. : . We note that the expressidf) for the spatially modu-
the surface impedance, we proceed in the same manner as in . .
lated part of the power absorption density corresponds to

the derivation of the impedance boundary condition in the : : . o .
. . , . ) resonant diffraction with excitation of one surface wave with
conventional cas€Using Maxwell's equations in matter we

: . ta o .
express the tangential components of the electric and mathe wave vectok, +g. The situation corresponding to angles

-: + _ - . - .
netic fields at the boundary in terms of one another. Com% = (/2= 0) requires a special analysis. In this case, two

paring the relation so obtained and the expressiahsnd surface electr_omag_netlc waves with wave _vectqHsg and
2), we find ki—g are excited simultaneously and are in resonance. The

expression6) for 5Q is modified by adding to it an addi-
aL (= ~ tional term obtained from the initial term by complex conju-
of= ﬁ@Ti), <5Ti>E,U«fO dzéTiexp(—u2z), (3)  gation and by the substitutioms— —g, ¢— — .
1

and is determined by the detuning of the resonance of the

V\{hereﬁz —2i(w/c)(1/¢) andw andc are, respectively, the - 33 Formation of a periodic profile of the temperature field
circular frequency and the speed of light. We emphasize that . . , .
in such a simple form the boundary conditigi for nonuni- The periodically modulated radiation absorption is
form (as a function of depthmodulated(over the surfage ~ Sharply selective with respect to the periodicity vegamn
heating of the metal is valid to first orer @, account of resonance in the surface electromagnetic wave, as
[ . . .
We note that the spatially modulated parts of the surfacg@lculated in the preceding subsection. In the presence of

impedance and temperatures depend on the coordinates pRsitive feedback an instability against the formation of a
the boundary plane as periodically modulated temperature field therefore develops

in the surface layer of the sample. To study this process we
8L, 6T, 0T xexpig-r), (4 shall employ the two-temperature model developed in Refs.
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3 and 8. In accordance with this model, the system of equafor this reason, we shall employ it in what follows to make

tions for the spatially modulated part of the conduction-estimates without any restrictions on the frequency of the

electron temperature and the crystal-lattice temperature uriAcident radiation.

der the condition§ .>T,, 6T.> 6T, has the form For intensities appreciably above threshold, the growth
rate of the temperature grating in the regime of deep spatial

J 7 98T, ion is gi i i
(Ce 5T, )\ STt 8Q, 6 = adT,. 9 modulation is given, according to E(.2), by the expression
0Q(0) a
Here c, and c; are, respectively, the specific heats of the ¥~ ci(ST}) \/_7 (16)
conduction electrons and crystal lattice, €
_ This expression and the analogous subsequent formula for
a=a+\eg? (100 the growth rate have two free parameters: the anglaad

ppearing in the expression féQ [see the relation$6)—

8)]. Here and below, these guantities must be determined by
maximizing the real part of the growth rate. Specifically, the
wave vector of the periodic spatial structure is established in

a is a parameter describing energy transfer between the co
duction electrons and the crystal lattice, andis the elec-
tronic thermal conductivity.

We seek the unstable solution of the syst®mnas usual,

in the form this manner.
On the basis of this and the relatio@®—(8), it follows
6T, 0T;xexp(yt), Rey>0. (11  from Eqg.(16) that by the moment the laser pulse ends in the

. ) , regime under study, the real part of the exponent in the re-
Two regimes of the behavior of the growth ragewith re- lations (11), I'= 7 Rey, is approximately
spect to the intensity of the incident radiation can be distin-

guished, depending on the role of the electronic thermal con- [ ~, 7 B u(1-R)r 1
ductivity. In the first regime, where the diffusion length of aQ 1o Q= oT, (17
heat into the sample for spatially modulated heating is large

compared with the skin-layer depihi* (relatively long la- In accordance with the role of the thermal conductivity de-
ser pulsek the last term on the right side of Eq€) plays scribed above, the applicability condition of the expressions
the role of a surface source. Then, taking account of(Bg. (16 and(17) for the first regime is

and substituting the expressi¢hl) into Eq.(9), we arrive at Nert?/Ce|¥|>1. (18
the following equation for the growth rate:

We shall now consdier the second regime of formation

1 5Q(0) a of a temperature grating, where the heat diffusion length into
Y 7’+_e \/_— (12 the sample for spatially-modulated heating is small com-
pared with the skin-layer depth,
where Newlcd 7] <1. 19
_Ce N TN In this case the thermal conductivity in the system of equa-
Te =’ a=vaiheau (13 tions (9) can be neglected, and the expression

In the visible and near-infrared ranges, where the \/ ﬁa 6Q(0) (20
‘y:
(

conduction-electron momentum relaxation timg satisfies % C{OT) T
. L . put+p)a Ci i/Te
wTy>1, the quantityB appearing in the expressidf) for
8Q(z) (and defined thepeat temperatures above the Debye is obtained for the growth rate of the instability with respect
temperature, WheremocTi_l, is real, essentially independent to formation of a temperature grating. Hence it follows, tak-
of the lattice temperature, and close to unity: ing account of the relation®)—(8), that by the moment the
laser pulse ends the real part of the exponent in the relations

B~1. (14 (112) in the regime under study is given approximately by
Under these conditions, taking account of the expres@&@pn .
for the source and the conditiaB) on its phase, it follows I'~+/0—. (21)
from Eg. (12) that in the regime under study, for radiation Te
intensities below the threshold determined in order of mag-
nitude by the expression 3.4. Evolution of periodic surface structures at the stage

of a melted near-surface layer

~ - “1lc T
[(A-Rjapr] "cT, (19 We shall now discuss the evolution of periodic surface

there is no solution of the systef®) that increases with structures for the case in which the structures form from a
time, and so an aperiodic surface structure does not form. temperature grating by thermal expansion of a melted layer

In what follows, we shall assume that the conditionnear the surface of the material. After the laser pulse ends,
wTy>1 is not necessary. The expressidd), however, to  the electron and lattice temperatures equaliZe,=(T;
within a factor of order unity, remains valid over the entire =T, 6T.= 6T;=6T), and a melted layer forms near the sur-
range of applicability of the impedance approximation, andface, a periodic surface profile with depth
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1 tronic temperature, which is uniform in the interface, should
h=3B4TA, (22)  also occurithough the decoupling is not as layge
To interpret the experimental data concerning the subse-
where A is the effective depth of the spatially modulated gyent stages of the formation of periodic surface structures,
heating andg is the thermal expansion coefficient of the we proceed from the fact that after the temperature grating is
melt, forms as a result of elastic relaxation accompanied byixed a periodic relief forms by the thermal expansion of the
isotropic thermal expansion. At this stage, surface tensionmelted near-surface layer of the material. An indirect argu-
which tends to flatten the boundary and thereby cause the thent in favor of this is that both the periodic structure and
periodic structure to be resorbed, comes into play. The 5°|Uamorphous graphit® appear in much sharper form on the
tion of the equations of hydrodynamics taking account of thesige face section of the sample boundary than on the surface
surface tension and viscosity gives an exponential time desf the sample. This is easily understood on the basis of the
pendence of the depth of the surface profile: fact that the near-surface melted layer plays a dominant role
h(t)=h(0)exp( —t/t*). (23 compared with vaporization followed by deposition on a sur-
) face, if the following circumstance is taken into account. On
n th%uzcount of the layered structure of the sample, the thermal
conductivity in a direction normal to the boundary is appre-

The relaxation time appearing here is determined,
shallow-water approximatiSrgA<1, g=|g|, by

37 ciably higher on the side face than on the surface of the

*= 3 (24) sample. As a result, the melted layer cools more rapidly on

o9(ga) the side face and correspondingly the conditions for a tran-

where 7 is the dynamic viscosity and is the surface ten- sition of the liquid layer into the amorphous state are more

sion. favorable. The same is true for the formation of periodic
surface structures, since, as noted above, the mechanism

4. DISCUSSION based on spatially modulated thermal expansion of the liquid

layer requires rapid solidificatiofdue to the diffusion of
heat into the sampleand slow relaxation of the spatially
modulated temperature field due to the diffusion of heat in
the boundary plane. We shall compare the characteristic

The writing of a spatially modulated temperature field
(temperature gratings a characteristic, very important, and
inevitable (under the conditions of ultrashort laser pujses
preliminary stage in the formation of periodic spatial struc-,. .

. : . : Hmes of the corresponding processes.
tures. As shown in the preceding section, this stage an

. . . . The surface tension and viscosity for liquid graphite that
therefore the entire process leading to the formation of peri- . : . 2
are required in order to estimate the relaxation time of the

odic structures under the conditions considered are ~. " ' o
: eriodic profile on a liquid surfacEg. (24)] are unknown.
threshold processes. We shall estimate the threshol . L I
owever, the ratio of these two characteristics for liquid

|nten3|t2y determined by ~the efriressmﬁlS). Setting metals falls into a comparatively narrow range. For liquid Al,
a~102Wicm®-K, u~3x10Ccml, 1-R~0.7, X\, : Ty o
'3 Bi, Pb, Cu, and Fe, this ratio lies in the rangéo=(1
~1W/cmK, ¢;=1.6 Jcm-K, 7,~103%s, T;~10° K, we s . o . .
obtain from Eq. (13 a~3 and from Eq.(15) l.~2 —4)x10° s/cm. Assuming that for liquid graphite this
q q th guantity does not fall far outside these limits, and setting

X 10 W/en?. s 1 ) .
Noting that the real part of the exponent in H4.1) f?*;zlxnio cm andg~10> cm ™, we obtain the estimate

should bel"~10 when the laser pulse ends, for the values o The relaxation time of the spatially modulated thermal

and \, adopted above we conclude that for laser pulse_ .. e :
guration;qw 18,12 s the second of the two regimes corf)sid- profile due to diffusion of heat in the boundary plane of the

; ; 2y-1
ered in the preceding section is realized in the experimen?amIOIe Is determined by the expressipr (g-) -, where

performed. Since the energy flux in the experiment wa is the thermal diffusivity. Setting¢~0.1 ent/s with g

. . . ~10° cm ! we havet,~1 ns.
0.1-0.5 J/crh, we find on the basis of the relatiof&l) and . T e
(17) that the required values df are attained. Finally, according to Ref. 4, solidification of the surface

We note that since according to Eq8) and (11) 8T, for the laser action regime under consideration occurs over a

_ o time of ordert} ~100 ps.
= (a/yc;) 6T, and in view .Of the fact that the threshc_(IﬁS) Comparing the times*,t,, andts we conclude that on
corresponds to the conditigry| 7.~ 1, for laser pulse inten-

sities above threshold the periodically modulated parts of th(%he one hgnd the spatial modulation of the surface tempera-
; : ure remains before the melted layer near the surface solidi-
electron and lattice temperatures satisfy

fies, while on the other hand there is not enough time for the
Ce periodic surface profile to be resorbed on account of surface
|6Ti|<=—[6Tel- tension. All this suggests that the proposed mechanism of
ati formation of periodic surface structures due to the thermal
Hence it follows, sincec.<<c;, that a temperature grating expansion of a melted layer near the surface of the graphite
can form only if the modulated part of the electron tempera-<corresponds to the experiment performed.
ture is substantially decoupled from the lattice temperature. We note that for sufficiently long laser pulses, such that
At the same time, satisfaction of the inequality| 7.>1 decoupling of the electronic temperature does not occur, the
above threshold, taking account of the estimiater~10,  system of two equationéd) becomes a single equation for
implies that under these conditions decoupling of the electhe modulated part of the equilibrium temperatué,
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=¢6T;=46T. The solution of the equation in the fordl), periodic surface structure becomes fixed if the solidification
taking account of the relation$), (8), and(14), corresponds process is more rapid than the relaxation of the surface pro-
to Rey<O. file on the liquid surface.

To conclude this section, we wish to make two addi- The estimates made above confirm that the proposed
tional remarks. First, the character and quality of the periodienodel adequately describes the experiment with formation of
surface modes which are formed can depend strongly on thgeriodic surface structures on graphite by picosecond laser
initial state of the surface. Thus, in Refs. 11-14 it is shownpulses.
that a specially produced nonuniformity of the surface, for  This work was supported by the Russian Fund for Fun-
example, in the form of a straight line, greatly facilitates thedamental Research(Grants 96/52-18494a and 96/52-
formation of periodic surface modes and improves theirl8495a.
quality. The second remark concerns the high laser power
densities used in our experiments. As shown in Ref. 13, foPE-mail: agranat@tiv.phys.msu.su
intensities~ 102 W/cn? the field corrections to the permit- “We note that an instability induced in the periodic surface structure by the
tivity can become appreciable, which can cause the period 01spatia| modulation of the temperature under the action of relati\_/ely_ long

. laser pulses and therefore differing fundamentally from that studied in the
the surface structures to depend on the laser power densityyesent paper was investigated in Ref. 5.
Both of these aspects have a direct bearing on the physics of
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The ferromagnetic resonance and magnetization of single-crystalZRn100 A films grown in

the (110 direction are measured in the temperature range 20—400 K. The films are

prepared by molecular-beam epitaxy on single-crystal sapphp®;41120) substrates with a
Nb(110buffer layer. The angular dependence of the parameters of the ferromagnetic
resonance spectrum is observed to have a 180° character when the static magnetic field is rotated
in the plane of the sample. It is established that this angular dependence can be described

on the assumption that the lattice distortions are essentially trigonal. A comparative analysis of
previous data for R@01) films with the data for F.10) films shows that the source of

the corrections to the cubic anisotropy constant is the characteristic distribution of the strains
along the thickness of the film. @999 American Institute of Physics.
[S1063-776(99)02102-2

1. INTRODUCTION hybridization at the interface. Roughness of the film surface

The last decade has witnessed enormous interest ilso contributes to the magnetic anisotropy of a film by di-
multilayer systems made up of alternating thin layers of fer-minishing the demagnetizing factor when the magnetization
romagnetic and nonmagnetic metals. The reason is twofolds oriented perpendicular to the plane of the film. Among the
an encouraging outlook for practical applications of suchvarious mechanisms that contribute to magnetic anisotropy,
systems and the discovery of extraordinary phenomena imterface effects induced by a difference in the periods of the
them—exchange interaction of the ferromagnetic layers thatrystal lattices of contiguous layers of the substrate and film
oscillates as a function of the thickness of the nonmagneti¢the epitaxial misfit isp=(ay—as)/as, whereay andag are
metal layer; and giant magnetoresistarc&iant magnetore- the lattice constants of the film and the substrate, respec-
sistance is observed for antiferromagnetic mutual orientatiofively) are decisive in many instanc&® For example, in
of the magnetic moments of adjacent ferromagnetic layeraultrathin Fe films on single-crystal Ag, Au, Cu, and Pd sub-
This phenomenon can be utilized in the design of exceptionstrates with thicknesses up to 15 A grown in t81) orien-
ally sensitive magnetic sensors or magnetic read heads. Tiation epitaxial misfit induces an homogeneous lattice strain,
achieve any kind of mutual orientation of the magnetizationsadding fourfold corrections to the cubic anisotropy constants
it is necessary that the interaction energy of the layers exceeghd creating twofold anisotropy.
the magnetic anisotropy energy in each ferromagnetic layer. Experimental data on the magnetic anisotropy of an Au/
Consequently, to understand the magnetic and transpo@o/Au sandwich with Co film thicknesses from 12 A to 80 A
properties of multilayer magnetic systems, apart from studyhave been analyzed with allowance for epitaxial mpsfit.
ing the interaction of the ferromagnetic layers, it is of utmostthe analysis it was assumed that a film of thickness smaller
importance to know the sources of magnetic anisotropy ofhan a critical valud., completely bonds with the substrate,
ferromagnetic thin films. i.e., the lattice straire=— 7. For large thicknessek the

At the present time we see abundant examples of théleal epitaxy states becomes metastable, and epitaxial dislo-
powerful influence of surface and interface effects on thecations appear. In this case the strains relax according to the
magnetic anisotropy of films. The classic manifestation oflaw e=— 7L /L. Estimates have shown that the magnetic
their influence is the so-called Heanisotropy® which is a  anisotropy proportional t&. ~* in Au/Co/Au and Cu/Co/Cu
consequence of symmetry breaking of the internal crystatandwiches can be explained by taking into account the
field on the surface of a film or at an interface. As a result ofstated strain relaxation law, which causes the magnetic an-
this effect the magnetization of films having a thickness onisotropy to change by virtue of spontaneous magnetostric-
the order of a few atomic layers tends to order in the direction. For thicker ferromagnetic films, on the other hand, a
tion normal to the film surface. Interface anisotropy is alsoqualitative analysis of experimental data on the magnetic
influenced by the perturbation of the crystal field and bandproperties of epitaxial Fe films with thicknesses up to 200 A

1063-7761/99/88(2)/8/$15.00 377 © 1999 American Institute of Physics
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on GaAs substrates suggests that the magnetic anisotroplgposition. The niobium was evaporated by electron-beam
contribution due to epitaxial misfit is dominant for such films heating from a crucible of volume 14 émThe substrate
as well® Despite a fair number of papers on the role oftemperature was maintained close to 900 °C during niobium
epitaxial misfit in the magnetic properties of ferromagneticdeposition. The niobium cooling rate was measured during
films, we still lack a clear understanding of how epitaxial evaporation by an optical method; a rate of 0.5A/s was
misfit affects magnetic anisotropy. found to be optimal from the standpoint of obtaining high-

The objective of the present investigations is to clarifyquality Nb(110 single crystals. The thickness of the Nb
the nature of the influence of growth distortions induced byfilms in our samples ranged from 100 A to 600 A.
epitaxial misfit of the film and substrate on the magnetic ~ Upon completion of the deposition process the niobium
anisotropy of ferromagnetic films. Iron films grown on was subjected to a short-tint&5-min) anneal at 950 °C. Iron
MgO(001) and ALO;(1120) substrates have been chosen forwas deposited from a evaporator unit producing a highly
the investigations. This choice is dictated by the abundanstable flow. The iron film was grown at a rate of 0.1 A/s; its
use of iron in the preparation of superlattices. It is thereforghickness was estimated from the growth time and was sub-
of utmost importance to understand the nature of the magsequently refined on the basis of SAXS data. The substrate
netic anisotropy of iron thin films. The choice of Mg@1)  temperature was lowered to 100 °C for iron deposition. Since
as the substrate material stems from the results of a smallbe iron evaporator unit was tilted relative to the substrate
angle x-ray scatteringSAXS) study of the strain distribution holder, the latter was rotated to ensure a uniform sample
using synchrotron radiation in application to(B@1) films  thickness. Protective layers of niobium and palladium of
grown by rf sputtering in argohln contrast with iron films  thickness 30 A each were deposited on top of the iron layer.
on MgQO(001) substrates, whose plane coincides with theDuring the growth of each layer its thickness was monitored
crystallographic(001) plane, the plane of iron films grown in situ by recording the small-angle diffraction of electrons.
on sapphire AIO5(1120) substrates with a Nib10) buffer
layer is oriented parallel to the crystallograpkid 0) plane.  2.2. Small-angle x-ray scattering

In the first stage of our investigatidhSwe have mea-

. o mall-angle x-ray scatterin xXperiments were con-
sured the ferromagnetic resonafE®IR) and magnetization S angle ay scatiering experiments were co

ducted using an 18-kV x-ray source with a copper anode.

of Fe001) films of thickness from 25A to 500A on : :
. hese measurements were performed to determine the thick-
MgO(001) substrates. An analysis of the data has shown tha .
nesses of the layers in the sample and the roughness param-

the corrections to the cubic anisotropy constant and the per- ) .
) - ; eters of the surface and interfaces. Typical angular plots of
pendicular uniaxial anisotropy constant depend strongly on

to saturation fol. <50 A. The results are interpreted on the Y

basis of the notion that the epitaxial misfit of the film and theand the film-substrate interface. Fitting of the resulting angu-

substrate provide the dominant contribution to the magnetiéar scattering dlagrams_ by the Par_ratt formafiSyields a
) . ) : interface roughness heighkt6 A for films prepared by both
anisotropy of the investigated films.

: . . . methods. The film thicknesses determined from this fitting of
In this paper we give the experimental results of inves-,

tgations of the FMR and magnetization of (E20) fims e /2 SPeclra were subsequently used as the fnal thick-
grown on sapphire substrates with a(llb0) buffer layer. A '
comparative analysis of the data for(6@l) and Fé€110
films has shown that the corrections to the cubic anisotropy-3- Bragg x-ray diffraction
constant in F@O0Y) films and the anisotropy constant in- Bragg x-ray scattering measurements in the direction
duced by trigonal distortions in FEL0) films are attributable perpendicular to the plane of the film have shown that iron
to the same mechanism: a characteritienideal distribu- o ALLO5(1120) substrates with a Nb10) buffer layer
tion of the epitaxial misfit-induced strains along the thick- grows in the (110) orientation. The structural coherence
ness of the film. length is comparable with the film thickness. Similar in-
The article is organized as follows. The preparation antyjane measurements have enabled us to determine the epi-
characteristics of the samples are described in Sec. 2. Thgyjal ratios of the components in our samples. We have
experimental FMR results are given in Sec. 3, and they argstaplished that an iron film grows as a continuation of the
analyzed in Sec. 4. The results for the anisotropy constantgiobium structure, i.e., the Nb and Fe01] axes are parallel.
are discussed in Sec. 5. The Nb and Fé111] axes are oriented parallel to toeaxis
of the ALO3(1120) substrate in this case.
The indicated sample preparation procedures and their
characteristics are discussed in greater detail in Refs. 11 and
2.1. Film preparation 12.

2. SAMPLES

The Fe films were grown by molecular epitaxy on sap- o
phire ALO5(1120) substrates with a Nb buffer layer. The 24 Magnetization measurements
working vacuum in the chamber was10 '° mbar. The The magnetization was measured by means of a SQUID
single-crystal AJO;(1120) substrates were degassed andmagnetometer in the temperature range from 4.2 K to 300 K.
were annealed at 1000 °C for one hour immediately prior toTo preclude the influence of the demagnetizing field, the
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TABLE |. Saturation magnetization al=20 K for the investigated cavity at a frequency of 9400 MHz in the temperature range
samples. from 4.2 K to 400 K. The angular dependence of the param-
Sample L A 47M, kG eters of the FMR spectrum was measured relative to the di-
rection of the static magnetic field with the static and micro-

E:((ﬂg; 12; fg'; wave magnetic fields oriented parallel to the plane of the
Fe(110 27 176 film. The direction of the static magnetic field for the

Bulk samplé® 21.9 Fe(110 films was characterized by the anglg relative to
the in-plane[001] axis of the iron film. The detected FMR
signal corresponded to the derivative of the absorbed micro-

i i . wave power with respect to the magnetic field. The reso-
field dependence of the magnetic moment was measured iN&nce fieldsH, were chosen half way between the fields

magnetic field of strength up to 5kOe, which was oriented iny,es00nding to extrema of the derivative of the absorption.
the longitudinal direction relative to the plane of the film. At The peak-to-peak uncertaintyH,, of the linewidth was

- i pp
temperatures below 100K the paramagnetic contribution 0f e/, “s that the error of determination of the resonance field

uncontrollable impurities in the substrate material to thewas of order 0.AH The error in determining the mag-
; ; A Mpp-
magnetic moment of the sample became comparable with the.yic field orientation was less than 2°. The magnetic field

fer_romagneuc_moment of the film. For this reason the S"?‘tu'strength was determined by means of an NMR magnetome-
ration magnetic moments at low temperatures were obtain

by linear extrapolation of the field dependence of the mag- Figure 1 shows FMR spectra for iron films of thickness

netic moment of the sample from high fields to zero fields.) og 4’jn the direction of a static magnetic field correspond-
For more accurate accounting of the substrate contribution tfhg to various angleg,, at two temperatures, and Fig. 2
the magnetic moment of the sample the magnetic momenig,, s the angular dependence of the resonance field at the
of the substrates were measured separately after the irQq, .o temperatures. At high temperatufes340 K and for
films had been removed. Estimates show that such a correg, girection of the static magnetic field a solitary line is

tion can impart at most 10% error to the resulting magr‘eticobserved, and at low temperatures two resonance lines are

moment. Another error source in the determination of theobserved in the vicinity of thé110] axis of the iron film.

magnetic moments of the films is roughness of the film SU'rhese lines merge and vanish when the direction of the static
face. As mentioned, the degree of surface roughness of Olrlll']agnetic field deviates approximately 25° from tHel0]

films was less than 6 A. For a film of thickness 100 A this 5yis For thinner samples the angular dependencel ofs

height can produce an additional error of order 3%. Consegpsened to form a loop over the entire investigated tempera-
quently, the total error of determination of the saturation

ture range.
magnetic moments of the investigated films is expected to be The?inewidth as a function o,

less than 13%.

as in the case of the

Fe(002) films, becomes a maximum at angles corresponding

Table | gives the results of measurements of the Magney the maximum values d#H,/36y|. This behavior is ob-
tization of F€110 films on sapphire substrates with a Nb served for both types of angular dependenceigf
buffer layer at 20 K. The observed slight thickness depen-

dence of the magnetization has previoddlyeen attributed
to the presence a nonmagnetic iron layer having a thickness ANALYSIS OF THE EXPERIMENTAL RESULTS
of order 5A at the iron-niobium interface. This layer is the

ne I _ To analyze the FMR results, we use Suhl's equafion
result of cross diffusion of Fe and Nb at the Fe/Nb interface

specifying the FMR condition:
2 2 2 2 2

3. EXPERIMENTAL RESULTS ON FERROMAGNETIC w\°_ 1 JFFIFF [F

RESONANCE y)  (Msing)?| 96 a¢> \dbap| |

The FMR measurements were performed on a BrukeHerey=gug/#, andgis the g factorf is the magnetic part
Instruments BE-R 418spectrometer in a rectangular g&  of the free energy density, an@l and ¢ are the polar and

@

dP/dH dP/dH
-\/' t9_u= 20° a 8.=40°Db
! __\____—____9_5_0_ [ __——’_\_6_0:_
! -__—-_/\/__l i —————’—\.’/\-6/60—
- - FIG. 1. Ferromagnetic resonance spectra for an
1 A/V 90’ f 87 Fe(110 film of thicknessL=100 A with the static
magnetic field in directions corresponding to various
u 105° - o angles#,; at two temperaturega) T=365 K; (b) T
—_————/\/—’— ———"\/\lﬁ_ =205 K
N 160 i —/\L‘L
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200

H, Oe H, Oe



380 JETP 88 (2), February 1999 Goryunov et al.

H, - 107 Oe Hy - 107 Oe
12} al 14t b
10F 12r

FIG. 2. Angular dependence of the resonance field
for an F¢110 sample of thicknesk =100 A: (8 T
=365 K; (b) T=295 K.

azimuth angles characterizing the direction of the magnetinetic field is applied at the anglek, relative to the[001]

zation M. The equilibrium direction of the magnetization, axis and¢y relative to the[110] axis. In our experiments

characterized by the anglég and ¢, is given by the zeros ¢,=0.

of the first derivative of the free energy. These free energy contributions due to magnetic anisot-
The magnetic part of the free energy density consists ofopy are valid only for films having an ideal cubic structure.

the Zeeman energy, the demagnetization energy, and tha reality, however, the crystal lattice of an epitaxial film is

magnetic anisotropy energy. distorted. The epitaxial misfit of the film and substrate lat-
An external magnetic field augments the free energy ofices induces in-plane deformations, which, in turn, create
the film with the Zeeman energy Poisson deformations perpendicular to the plane of the film.

As a rule(see, e.g., Ref. 16films with a cubic structure
grown along the crystallographj©01] direction have tetrag-
For thin films it is also necessary to take into account theonal distortions.
anisotropy associated with the shape of the sample and gov- The growth distortions induced by epitaxial misfit in

F,=—M-H. 2)

erned by the demagnetization energy: Fe(110 films mainly have a trigonal character, because the
) iron [111] axis coincides with thec axis of the sapphire
Fp=27M1, () substrate, whose lattice has axial symmetry. We have used
whereM, is the component of the saturation moment per-Crystal field theory(see, e.g., Ref. 17to analyze the free
pendicular to the film surface. energy con_trlbutlons mducgd by in-plane trigonal distortions
For an ideal cubic crystal the crystal anisotropy contri-Of an iron film. These contributions have a complex general
bution to the free energy density is written in the form form and contain a whole set of parameters. However, nu-

merical estimates of these parameters indicate small terms
that can be disregarded. Combining various terms with iden-
tical angular dependence, we find that the main factors con-
tributing to the crystal anisotropy energy in our case, apart
from the pure cubic contributiofd), can be written in the

direction cosines of the magnetization. form Fyiq=K, sir?+K| sin*6. This conclusion is consistent
For thin films it is also necessary to include the twofold with the assumption set forth in Ref. 18.

contribution to the anisotropy energy from symmetry break- In the adopted coordinate system the total free energy
ing of the crystal field on the surface of the film or at an density is written in the form

interface(the so-called Nel contributiori). This contribution

has the same angular dependence as the contribution from F=—MH(cosé cosfy+sinfdsinf, coseo)

the demagnetization energy. For this reason it is customary

to include it in the FMR equations in combination with the +27M2Sir? 6 sir? ¢+ EKl(sinz 20

demagnetization term by introducing the effective magneti- 4

zationM ¢ (Ref. 16:

A47M o= 4TM — 2K /M, (5)

1
FAI—EKl(ai-i-as-l-ai). (4

HereK; is the cubic anisotropy constant ang denotes the

+sin*  cog 2¢) + K, sir? 6+ K| sin’* 4. (6)

Suhl's general condition for ferromagnetic resonafige
where K, is the uniaxial anisotropy constant, which varies gives
with the thicknes4. as 1L when this contribution is a pure

surface effect, and/ is the magnitude of the equilibrium (2)2: H cod By— 64y) + Eﬁ(cosm +3 cos 4,)

magnetization. o W2 M 0 0
For FE€110 films it is more convenient to analyze the K K’

FMR data in a coordinate system whetés the polar angle +2—2€0S 205+ 2+ (COS 20— COS 46,)

characterizing the deviation of the magnetization vedfor M M

from the [001] axis, and¢ is the azimuth angle measured

from the iron[110] axis in thexy plane. The external mag- X| H cog 6p— 6) +47M g
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25 5 s+ 16 c0s -3 7 2 s ;
§V( cos ¥, cos ¥,—3)|. (7) 10 S - L=100 A
g o .
Equation(7) together with the equilibrium condition > 8 ; 0 100 200 300 400
() T.K
7" 6
) 1K, . = ®
H sin(0p— 0y)= — —+ —Sin 20y(1+ 3 cos 2,) ol
4 M < ¢
’ /'/.
K4 Gin 26— = <42 sin 26, sin 46 e
Vsm o EV( sin 26¢—sin 46,) 0// k

)

determinesH, as a function of the anglé,, the effective
magnetization 4 M, and the anisotropy constarks and
K. . The constanK, is set equal to its value for bulk Fe
(Ref. 13.

An analysis has shown that two kinds of angular depen-
dence are possible for certain relations between the effectivgg. 3. Thickness dependence of the anisotropy constéptand K, for
magnetization 4M .+ and the anisotropy fields, one an open Fe(110) films at T=300 K.
curve and the other in the form of a loop, as observed ex-
perimentally (Fig. 2. The influence of the parameters
47Mq and K, differs in these two cases. In the first case,5.1. Correction K, to the cubic anisotropy constant
when FMR is observed for all orientations of the external
magnetic field, the influence of#M . reduces to a change
in the average position of the line above the horizontal axis
T_he parameteK, charagterlzes the amplitude of the varia- the range of thicknesses from 80 A to 500 A this dependence
tion of Hy. In contrast, in the second caée closed loop :

. o . can be written
when FMR is observed only near a hard magnetization axis,
the parameteK , gives the position of the center of the loop Ky 7.3
above the horizontal axis, whereas the parameteMd M:_Fkoe’ ©
gives the amplitude of the loop. The paramefgr, on the
other hand, in both cases characterizes the depth of t

h he h is in th I f ; : i
trough near the hard axis in the angular dependendgo lar to one obtained previoudlyfor Fe001) thin (<15 A)

Typical results of fitting the angular diagrams of the _ . .
: _ P films on single-crystal A@O01)) substrates, for which the
fiel for g=2.09 (Ref. 1 h Fig. . . . .
resonance fieldi, for g=2.09 (Ref. 13 are shown in Fig correction to the cubic anisotropy constafit=—1.254d is

2. They exhibit good agreement with the experimental data: iated with a fourfold surf i
These calculations give us the values of the anisotropy corfSSociated with a fourtold surtace correction.
The negative sign of this contribution for @81)/

stantsK,, and K|, and the effective magnetizationmM g, e .
which are shown in Figs. 3 and 4. Ag(001) samples indicates that the surface anisotropy energy

For comparison Fig. 5 shows the cubic anisotropy cor-
rectionsK;=K;— Kk{ for F&(00)) films on MgO substrates as

o
th

10 20 30 40
1000/L, A™!

'
u

K} - 107, erg/cm?
5

<

The experimentally determined correctign to the cu-
bic anisotropy constant in the @91)/MgO samples depends
strongly on the sample thicknesBig. 5. At T=300 K in

h\ghered is the film thickness expressed in monolayeds (
=L1/1.433 for bcec Fe This dependence is qualitatively simi-

functions of the film thickness. These corrections are attrib- et kG
utqble to tetragonal distortions of the filmg alopg foe1] ol ° 2 -
axis and have been calculated from data given in Ref. 9, Fig. = 19 L=100 A
4. The quantityKE is interpreted as the cubic anisotropy :%18'
constant for bulk iron samplés. 20t LY
0 100 200 300 400
T,K
18+
5. DISCUSSION OF THE RESULTS .\\
To achieve our stated goal in the investigations, i.e., to 167 ~ PY
ascertain how epitaxial misfit of the film and substrate influ- "\
ences the magnetic anisotropy of ferromagnetic films, we 14 » o
need to discuss the totality of our experimental data on iron . . .
films, including the data reported in our earlier w8r&uch a 0 10 20 3:)000/L 40
AT

discussion can lead to conclusions regarding the interrela-
t!onshlp between the nature of the gr(?Wth of ferromagnetiG:g, 4. Thickness dependence ofrM o for Fe(110) films at T=300 K.
films in general and their magnetic anisotropy. Inset: temperature dependence ofM . for a sample with. =100 A.
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K, 1075, erg/icm? order 16 A. The FMR-measured contribution of surface an-
isotropy for such films is therefore averaged over the entire
0 . thickness, exactly as in the case of films with thicknedses
L=100 A : L . o :
<\ (i.e., the contribution is proportional tb™"). This
("en® " " conclusion does not apply exclusively to a pure surface con-
tribution to the magnetic anisotropy. Owing to the presence

100 200 30(} ]200 of long-wavelength magnetization transfer processes, an in-

-2r terface anisotropy source localized in a boundary layer of
thicknesséL <L near the interface will appear to be a sur-
face anisotropy contribution, depending on the film thickness
asL™L It is obvious that as soon as the film thickndss

_4t attains the boundary layer thicknasls, the thickness depen-

- dence of the anisotropy constant must reach saturation.
5 L 0 2'0 ” . 20 . . We assume, then, tha@ the strains induced by epitaxial
1000/L. A1 misfit at the film-substrate interface have the effect of alter-
’ ing the magnetic anisotropy constant of the boundary layer.
FIG. 5. Thickness dependence of the correction to the cubic anisotropyt has been established by SAXS in the systeni0B#®/
constantk, for Fe(OO:'L) films at T=300 K. Inset: temperature dependence MgO(001) that these lattice strains are localized in a layer of
of K, for a sample with. =100 A. thickness on the order of 30 monolayers near the interface.
However, it is impossible to construct the detailed form of
has an easy magnetization axis parallel to{tti} direction,  the strain distribution on the basis of existing experimental
implying the existence of a certain thickness at which thedata. For a crude analysis of our experimental magnetic an-
observed anisotropy constat;=K;+K; changes sign, isotropy data we assume an elementary distribution of the
i.e., the easy magnetization axis switches from{m to strains in the form of a step function, which yi6|dS the fol-
the {110 direction. If we assume that the thickness depenlowing distribution of the corresponding contribution to the
dence ofK, in our situation has a form consistent with Eq. anisotropy constant:

(9) down to the smallest thicknesses, the change of sign of 0 for O=z<L— &L
the film anisotropy constant should take place lfer 36 A K.(2)= 0 ’ (10)
(K,/M=0.9 kOe atT=300 K, Ref. 13. (2=) kP for L—sL<z<L.

However, it is evident from Fig. 5 that this is not the
case. It is highly probable that in our case the obseked The magnetoelastic contribution averaged over the film
contribution does not come solely from the surface. We caithickness can then be written as
assume th{;\t our obsgrved contributikn is attributable to (5L/L)K? for L>oL,
epitaxial misfit of the film and the substrate. We know from L
SAXS experimentsthat Fe films grow on Mg@®01) sub- K=l fo Ki(z)dz=}) ko for L<oL. (1D
strates to thicknesses on the order of ten atomic layers in the
form of islands. The islands, which initially harbor small As long asL< 6L holds, Eq.(11) provides a magnetic

strains, merge as the film thickness increases. The maximuanisotropy contribution that depends on the thickness as
strains are observed at this time. The strain then begins tb™1. Once the thicknest becomes smaller thaAl, K,
decline rapidly. Strains localized near an interfacial zone casaturates, eliciting deviations from the 1&@) and ruling out
alter the magnetic anisotropy constant in these boundary laya change of sign of the anisotropy field. It is obvious that a
ers through magnetostriction. The variation of the anisotropyertain smooth distribution df, exist in reality, accounting
constant in the vicinity of the interface can exert the follow- for the observed behavior &f; with a continuous transition
ing influence the magnetic anisotropy of the film as whole. from theL ! law to saturation at small thicknesses. Fitting
It is well known'® that for films having a thickness the experimental data oK, to the thickness dependence
smaller than the so-called exchange Ilength,, given by Eg. (11), we obtain the parameterK?~ -4
=(AI2rM?)'2 the anisotropy field measured by the FMR X 10° erg/cn? and SL~45 A. The resulting estimate of the
method can be written as a combination of the bulk anisotthickness of the strained layer is in excellent agreement with
ropy contribution and the surface anisotropy contribution,SAXS data’ whence it follows that the lattice strains of the
which is inversely proportional to the film thicknelssSince  film drop abruptly at thicknesses on the order of 30 mono-
the room-temperature spin stiffness coefficient of irorAis layers. Unfortunately, the lack of a microscopic theory of the
=1x10 % erg/lcm and the saturation magnetizationMs magnetic anisotropy of ferromagnets makes it impossible to
=1700 G, we obtain\g=50 A. It has been assumed form valid estimates of the correctidfy itself.
previously® that the anisotropy constant of films with The validity of the proposed model has been further cor-
=\ €Xxhibits a more complex dependence on the surfaceoborated in FMR measurements on specially prepared
anisotropy contribution than the~! law. However, Tagi- Fe&001) films having thicknesses of 120 A, 250 A, and 500 A
rov’s calculations in Ref. 9 have shown that a ferromagnetigrown on MgQ001) substrates at a temperature of 470 K.
film subjected to an in-plane external magnetic field can bélhe thickness dependence Kf for this set of samples can
regarded as a “dynamically thin” film up to thicknesses of be described by the empirical relation
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K, 4.1 An analysis of the data in Figs. 3—5 brings us to the
M- d kOe. (12 conclusion thatk,, K,, K/, andK, depend on thickness
similarly; they all change considerably &sdecreases, and
A comparison ofK; for samples grown at different sub- they stop changing below a certain thickness. This behavior
strate temperatures shows that the procsL [see Ed. s most likely indicative of a common origin of the thickness
(11)] for samples grown at 470K is smaller than for samplesjependence of all these parameters. It has been shown
prepared at room temperature. This disparity can be attribyreviously that strains produce a combination of opposite
uted to the fact that in films grown at a higher substratesign from that observed experimentally. Note, however, that
temperature the epitaxial strains are smaller, and they relax §ie relaxation of strains induced by epitaxial misfit at film
shorter distances from the film-substrate interface. Our datgjcknesses greater than the critical value-10 A occurs
therefore show that the fourfold correcti¢fy to the cubic  pecayse of the onset of epitaxial dislocations. Symmetry is
anisotropy constant in our investigated films is attributable tq, qken on a dislocation line in exactly the same way as on
strains induced by epitaxial misfit. the surface. It is difficult to estimate this contribution to the
perpendicular uniaxial anisotropy. On the other hand, it is
5.2. Trigonal anisotropy constants K, and K|, obvious that the density of dislocations, like the number of

For MgO/Fé001) the in-plane symmetry of the atomic planes with broken symmetry, is extremely high and
substrate-induced strains coincides with the crystal Symmefosters rapid relaxation of the lattice misfit at distaqces of
try of the iron film. The additional free magnetic energy termorder 40-50A. We can therefore conclude that theelNe
has fourfold symmetry. Films of Nit10) and F€110) are ~Mechanism, which gives the correct sigrkof, can be mag-
oriented so that thEL11] axes are parallel to theaxis of an nified considerably by epitaxial dislocations, and the results
A|203(11§)) substrate. This epitaxial relation with the obtained for FEL10) are qualitatively the same as the results
AlLO; substrate induces trigonal distortions of the Fe and Ni°r F&001). S
lattices. These distortions require the introduction of correc- " Summary, we have shown that epitaxial misfit of the
tions to the magnetic anisotropy of an Fe film, which can bdilm and the substrate exerts a powerful influence on the
effectively taken into account in the form of the twofold and Magnetic anisotropy of iron films. The epitaxial misfit cor-
fourfold constants, andK' (see Sec. 4 Clearly, the con- rections to the in-plane fourfold cubic anisotropy constants

u . ) . .
stantsK, and K, must vanish in the transition to the bulk @nd the perpendicular twofold anisotropy constant vary as

material, as is indeed observed experimentéfig. 3. It is L ! as the film thicknesk decreases, obeying this law down
also evident from this figure that at the threshold~050 A to a certain thickness of order 50 A. When the thickness is

the anisotropy constants no longer increase as the film thicktrther decreased, these values reach saturation. The ob-
ness decreases, i.e., again we have the same characteri§fVed behavior of the magnetic anisotropy constants is at-

thickness of the strained layer as in the case o068/ tributable to the presence in the films of regions having a
MgO(002). thickness of order 50 A near the interface, where the strains

induced by epitaxial misfit are localized for the most part.
These strains alter the magnetic anisotropy constants in the
given region by virtue of magnetostriction and the presence
The results of our magnetization measurements using &f epitaxial dislocations. Owing to the existence of long-
SQUID magnetometefsee Fig. 3 in Ref. Pshow that the wavelength magnetization transfer processes, this source of
saturation momenm of Fe001)/MgO(00)) films does not anisotropy is manifested as a surface contribution to the an-
depend on the thickness of the iron film, whereas the saturasotropy of the film, depending on the film thicknessLas
tion moment measured in the present stsise Table)l for for large thicknesses.
Fe(110/Nb(110/Al,04(1120) films exhibits a slight thick- A comparison of the results of our investigations with
ness dependence, which, as mentioned above, is associatxdsting data shows that the nature of the magnetic anisot-
with the formation of a nonmagnetic iron layer at the Fe/Nbropy of thin films is complex and multifaceted. It is governed
interface. This means that for the magnetically active part oby the growth characteristics of the films. Depending on the
an F€110 film the real saturation moment again does notmaterial chosen for the substrate and the conditions of depo-
depend on the thickness of the iron film. In addition, thesition of the ferromagnetic layer, the growth of a film can
effective magnetization of Fe01) films (Fig. 5 in Ref. 9 proceed one atomic monolayer after another, or it can begin
and F€110 films (Fig. 4) are essentially identical as func- with island growth followed by overlapping of the islands
tions of thickness. With high probability the resulting mag- when certain thicknesses are attained. A model strain distri-
netization curves are determined by the uniaxial twofold anbution in the vicinity of the interface is applicable in the first
isotropy constanK,, [see Eq.(5)]. This type of anisotropy case, the films bonding completely with the substrate at
can be induced by magnetostriction or by perpendiculal Ne thicknesses smaller than a critical valug, i.e., the lattice
anisotropy® A previous analysishas shown that the magne- strain e=— 7, and then the ideal epitaxy state becoming
tostriction contribution causéd . to increase, contradicting metastable at greater thicknesses, with the onset of epitaxial
our experimental results. Estimates of theeNeontribution  dislocations. Strain relaxation obeys the law — 7L /L. In
have shown that the sign of this contribution is correct, buthe second case, as established in our investigations, the
its value is too small to account for the observed reduction obource of “interface” anisotropy is an expansive region situ-
the magnetization. ated near the interface. Thus, the magnetic anisotropy of thin

5.3. Effective magnetization
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The results of an experimental investigation of low-temperature optical spectra and phase
relaxation of electronic excitations of Primpurity ions in a %,SiOs crystal are reported. It is
established that at low temperatures spectral lines are broadened by a mechanism that is
uncharacteristic for crystals and is due to the interaction of impurity ions with two-level systems.
The constants characterizing the interaction f"Fmpurity ions with phonons and two-

level systems are found. @999 American Institute of Physid$1063-776(99)02202-7

1. INTRODUCTION quantum tunneling at low and ultralow temperatures, are of
special interest, since the contributions of phonons and two-

The numerous investigations of the dynamics of elecievel systems to the homogeneous width of spectral lines can
tronic excitations of crystals have been concerned mainlpe distinguished in this case. Since disorder is weaker in
with determining the general mechanisms for the homogecrystals than in glasses, the number of different two-level
neous broadening of the spectral lines of impurity cenltéts. systems can be limited, and it may be possible to identify a
Universal mechanisms that determine spectral line broadenyeneralized coordinate of a multilevel adiabatic potential and
ing as a result of elastic, magnetic, and electric interactiong, study the quantum motion of impurity centers on a micro-
of an impurity center with its crystal environment were gcqpic level. As an example, the variety of two-level systems
established™ The universality of these mechanisms is suchjp glasses is so largéhe relaxation times can vary over 10
that any change in the crystal matrix or impurity is reflectedy qars of magnitud&t~1 starting with 105 s), that this
only in the value of the parameters that characterize them'problem is seems to be impossible to solve.

An “impurity-center—crystal-environment system” can * - 1y,,5 the crystal YSO : Bf is of great interest. In this

havte, tog'tehtrzﬁr with :hle umvers;ﬂ ||nterr|:19t|fns ?f thir:r?puf{'tycrystal a hierarchy of nonequivalent states with different en-
center wi € crystal, a specilic local interaction that o enFrgies can exist for impurity ions. These states can be asso-
cannot be specified at a microscopic level. As a result of .

. . ) ) ' . ciated primarily with the substitution of two nonequivalent
interactions of this type, a quasicontinuous or discrete energ

: ] - : "W ationic sites in the YSO lattic®.Even though this feature is
spectrum of interatomic origin can appear at an impurity bserved in YSO : N (Ref. 26 and YSO : Ed* (Ref

center. An example is the inhomogeneous broadening o . ' .
P 9 g 7) crystals, as is confirmed by the presence of two optical

spectral line$’ or Shpol'ski multiplets® It is believed=1° o . 3 28
that the inhomogeneous broadening of the optical spectra caent.ers, itis n.ot. begn observeq in the YSO .+Pcr¥stal..
crystals is determined by static disorder. However, by anal® ut in contradistinction to this, in Ref. 29 spectral lines iden-
ogy to glasses!*static disorder in crystals can also dependtIfled as lines belonging to impurity ions #r occupying

on the time scale of the experiméd1®For glasses at low nonequivalent cationic sites were observed in a limited spec-

temperatures, the time dependence of the disorder is detdf@! range n an investigation of the optical spectra of
mined by tunneling transitions in two-level systéii€ YSO : PP*. A detailed investigation of the contour of a

. : ! . ) . X i 30 ; " 3
which are associated with the multiwell adiabatic potential ofSPectral liné” corresponding to the transitiotH(0)—°Po
the nucleifl~1417.18 gch excitations are called tunne- ©f impurity ions in a YSO : = crystal as well as the ex-

lons 1314 ternal Stark effeéP in the transition®H,(0)—D,(0) re-

The interaction of an impurity center with two-level sys- Vealed nonequivalent impurity-ion states of a different type,
tems reduces to transitions of the |mpur|ty center betweeﬁ)ut within the localization site. In the latter case, there is a
nonequivalent states with different energies. This mechanisiPecific local interaction of the impurity ion with the crystal-
also contributes to the homogeneous broadening of the speliae environment. This interaction can vanish if either the
tral lines of an impurity centelt~*For crystals, the multi- crystal matrix or the impurity changes.
well adiabatic potential remains exofit;?* and the exis- In the present work an investigation of the low-
tence of two-level systems and their manifestation intemperature optical spectra of a YSO 3Prerystal un-
relaxation processes are especially unclear. For this reasoequivocally established two Pr optical centers, which cor-
cases where a multilevel adiabatic potential with a low acti+espond to localization of impurity ions in two nonequivalent
vation energy of two-level systems, which ensures efficientationic sites. Analysis of the temperature dependence of the

1063-7761/99/88(2)/7/$15.00 385 © 1999 American Institute of Physics
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amplitude of a two-pulse photon echo in the transition % 303.6 (286.4)

3H,4(0)-3P, of PP" impurity ions established a neor UL T 130.6 (153.9)

crystalg dephasing mechanism due to thermally stimulated % — 0

transitions of the Pr ion between nonequivalent states B

within the localization site. The constants characterizing the 0

. . . o . y 797.1 (951.3)

interaction of impurity ions with phonons and two-level sys- 4

tems are obtained in a multiwell adiabatic potential model. . 73 492.3 (668.4)
g 72 221.7 (367.2)

2. EXPERIMENTAL TECHNIQUE ;(,) (5)7.6 (54.5)

The optical absorption and luminescence spectra of a LHEUE

YSO : PP* crystal were investigated using an automated gx gg‘l"f

spectrofluorimeter, which was based on a MDR-23 grating 62 340.1

monochromator. The spectra were detected with &-E80 gi 2849

photomultiplier operating in the photon-counting mode. 3y s, 205.2

Electronic modules, assembled in a CAMAC standard, con- ¢ 5 1436

trolled the stepping motor of the monochromator and re- s 89’7'

corded the single-photon counts. The CAMAC crate was

coupled through an interface with a personal computer run- 4 0

ning on an Intel 286 processor.

An R-118 helium optical cryostat was used to obtain low
temperatures. In the crysostat the samples were placed 220981.1(20867.2 cm™? (the numbers indicate the position of the Stark
helium vapor. components in cm®; the data for the second type of optical centers 6f Pr

To eliminate any influence due to the optical anisotropyare shown in parentheses
of the experimental crystal, the two-pulse photon echo was

observed in a collinear geometry. The experimental equip-

4,34-38 ; . .
ment used to excite and detect the echo signal is described ﬂ?“a-s 3Th% next tern;s n ord.er of increasing energy are
Refs. 30 and 31. Hs,°Hg,°F,,°F,4, and “G,. This group of terms deter-

The YSO : P?* crystals were grown by the Czochralski _mines the energ{_sagectrum (_)f the’ Pimpurity ion, inc!ud-
€438 The optical spectrum of the Pr im-

method. The concentration of praseodymium in the chargg]g the IR rang

was 0.1 at.%. The experimental samples consisted of plat rity ion forms as a result of quaznturr; ”ag‘s'“‘i”s between
1-5 mm thick. tark components of the termisl,,2D,,3P,,%P,, 4, and

3Ps.434738The energy splitting between the centers of grav-
ity of the terms G, and 'D, is 7000cm?! on the
average:®**~38 The frequencies of the electronic transitions
with participation of the!S, term lie in the far-Uv
range?34~38 Since the experimentally most interestiig®’
terms?D; and®P, are well separated in energy from other
terms, the spectrum of optical transitions between the Stark

FIG. 1. Simplified scheme of energy levels of &Prion in a Y,SiOg
crystal: »,=16538.2(16483.7 cm %, »,=20540.2(20742.6 cm %, v,

3. SPECTROSCOPY OF THE YSO : PR3+ CRYSTAL

A Pr** impurity ion embedded in different crystal ma-
trices is probably one of the most thoroughly studied bns.
In the Russell-Saunders ba¥ighe 4f? electronic configu-
ration of the P¥" ion gives rise to four singlet terms,
15,,'D,,'G,, and llg, and nine triplet terms, components of the term¥,,'D,, and>P, is simple and
®H,.%Hs,2Hg, °F,, 3F3.3F,,3Po,3P,,3P,. Their relative easy to interpret. We shall assume that the qualitatively de-
arrangement and therefore the structure of the energy levetgribed energy level structure of the*Prion remains valid
of the PP ion are determined primarily by the Coulomb in the YSO crystal. For this reason we shall employ a sim-
interaction between thefdelectrons and by the spin-orbit plified schemeFig. 1) to interpret the optical spectra of a
interaction®23 The fine structure of the energy levels of a YSO : PP crystal and to find the exact arrangement of the
rare-earth ion in a crystal is determined by the Stark splittingerms®H,,'D,, and®P, and their Stark splitting parameters.

of the terms, which depends on the point symmetry group of

the localization site of the impurity ioff:>3 Since both non-
equivalent cationic sites in a YSO crystal poss€gspoint
symmetry?® the degeneracy of the terms offPrshould be

The absorption spectrum of the YSO :2Prcrystal(Fig.

2) consisted of two groups of spectral lines which could be
distinguished according to their narrowness. The ratio of the
widths at half-height of the corresponding spectral lines in

completely lifted. The energy scale of the Stark splitting ofeach group was 3:1. We start the analysis and interpretation
the terms of rare-earth ions can vary from tens to hundreds aif the absorption spectruffrig. 2) with the group of widest

cm1.3233|n the first-order perturbation thed?y**the crys-

tal field does not shift the center of gravity of the multiplets.

spectral lines, marked by the letters. According to the energy
scale of the Stark splitting of the terms of rare-earth

We shall employ this fact to interpret the optical spectra of @ons***~3 it should be expected that &=6.0 K only the
YSO : PP* crystal on the basis of spectroscopic data forlowest of the nine Stark components of the telty, (Fig. 1)

different crystals activated by Pr ions*34-38

will be populated. Taking account of this and the results of

The term3H, corresponds to the ground state of thethe investigation of the optical spectra of the’Piion in

impurity ion. This follows from Hund’'s ruf&®3 and the
Pauli principlé?33and is confirmed by existing experimental

other crystal$;®>*~3® we shall compare the spectral lines
Yo:Y1s ---» Ya @nd Bg (Fig. 2) with the optical transitions
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T=6K A T=80K 'R %
2 %
%’ ‘ *FZ; FIG. 2. Fragments of the absorption spectra of a
c c Y,SiOs: PP™ crystal at different temperaturésvo
FC_’. % % groups of lines belonging to different optical centers
= @ 4 & o vl = Pr* are marked by letters with and without an as-
2a,%0 A ARALR?! ”E)M terisk).
/\ RN
470 480 490 565 585 605 470 480 490 565 585 605
A, nm A nm

from the lowest Stark compone#y, of the term3H, to the  2b). The frequency intervals determining their position with
five Stark components of thtD, term and the®P, term  respect to the analyzed spectral lines coincide exactly with

(Fig. 1. the frequency intervals determining the position of the same
The validity of this interpretation of the spectral lines spectral lines in the luminescence spectriffiy. 3). There-
Yo,Y1, - - -, 7Ys @nd By (Fig. 2) is additionally confirmed by fore the spectral satellite$; and 5, appear aff =80 K (Fig.

the following experimental facts. The excitation of lumines-2b) as a result of absorption from thermally occupied Stark
cence of Pt" impurity ions to any of the spectral lines components’; and &, of the term®H, (Fig. 1). Aside from
Bo,ag, a1, anda;, (the spectral linesyy,a;, anda, corre-  §; andé,, the seven remaining spectral lines, corresponding
spond to optical transitions with the participation of the Starkto transitions from the metastable levedg and y, to the
components of the termi,; andl) is accompanied by the nine Stark componentdy, ..., 8g of the term®H, (Fig. 1),
formation of a spectrum consisting of two identical sectionscan be seen in the luminescence spect(Ein. 3). Therefore
(only one section of the spectrum is displayed in Fi. 3 one group of spectral line€Fig. 2) can be “tied” to the
originating from the two spectral ling8, and y, which are  adopted energy level schenfigig. 1), and the exact energy
in resonance with the same lines in the absorption spectruparameters, which determine the relative arrangement of the
(Fig. 2. This agrees with the well-known f4c¥~*that the  terms®H,,!D,, and 3P, and their spliting by the crystal
emission spectrum of the $r impurity ions forms as a re- field, can be found from the experimental spedifigs. 2
sult of optical transitions from two metastable levBigsand  and 3. The energy parameters found in this manner are
vo (Fig. 1). shown in Fig. 1.

As the temperature of the experimental crystal increases, The weaker but narrower spectral lines present in the
temperature-dependent spectral satellites, located in the lowhsorption spectrum of a YSO : Prcrystal (in Fig. 2 they
frequency range with respect to each of the analyzed linegre marked by a letter with an astediséo not fit, according
Y0,7Y1, ---» ¥4 @and By, appear in the absorption spectrum to their number and spectral position, into the scheme of
(Fig. 2b. The most intense satellites are observed near thRvels of the P¥" ion with these energy parametéfg. 1).

Bo line (in the scale of Fig. 2b the spectral satellites near tha, ref. 29 the spectral liney, and v} were attributed to
other lines are hard to seeAt T=80 K two such spectral absorption in the transitiodH,(0)—D,(0) of PP* impu-
satellites,d; and 9,, can be indicated near thg, line (Fig. ity jons occupying nonequivalent cationic sites in a YSO
crystal?® Considering the larger set of “narrow” spectral
lines B3 ,v5, v5, ---» vy (apparently, the line/; acciden-
7 tally coincided with the intense lingg, Fig. 2, we assume
% 6 that they can be “tied” to the energy level scheme of the
Pr* ion (Fig. 1) but with different parameters. Therefore a
second type of Pi optical centers can be identified. In this
9 interpretation, the spectral ling&; ,v5 , ..., vs correspond
P to the absorption of Bf optical centers of the second type.
This absorption is due to transitions from the lowest Stark
component of the termH, to the Stark components of the
terms’D, and3P,. “Narrow” spectral lines are also present
in the region of optical transitions involving the Stark com-
ponents of the term&P, and!l4 (Fig. 2). However, since the
J Stark components of the term®; and®l4 intermix3~8it

é 3 is difficult to interpret them unequivocally and additional

investigations are required.

Intensity
Qn

N b On the microscopic level, one cationic site is coordi-
600 605 610 615 Anm nated with six oxygen atoms and the other with efgH In

FIG. 3. Fragment of the luminescence spectrum of,8i9;: PR+ crystal addmon, Fhe catl_onlc sites have SUbStant_la”y different aver-

at temperaturd = 6.0 K (the spectrum does not depend on the excitation on89€ '0n_l|gahd distances and_ therefore different average vol-

any of the spectral linegy,aq,a;, anday). umes. For this reason, the®Prions occupy predominantly a
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cationic position with a large volume, because their ionic
radius(1.06 A) is greater than the ionic radius of ¥ (0.92
A).2® Therefore, since the “narrow” spectral lines are
weaker(Fig. 2) and the splitting of the terms by the crystal is
somewhat greatefFig. 2), these lines belong to Pr ions

which are localized in more dense cationic sites. Selective

excitation of P#* optical centers of one type, for example,
on the B, absorption ling(Fig. 2) at temperaturd =6.0 K
led only to their luminescencéig. 3). Therefore P¥ im-
purity ions occupy nonequivalent cationic sites in different
unit cells and do not interact with one anottigre average
distance between different cationic sites of*Ywithin the
same unit cell is 3 A in order of magnitut&9.

4. MICROSCOPIC MECHANISM OF THE PHASE
RELAXATION OF THE ELECTRONIC EXCITATIONS
OF IMPURITY IONS IN A YSO : PR3* CRYSTAL

A photon echo in a YSO : B¥ crystal was invstigated
for one type of Pt" optical centers which have wider ab-
sorption lineg(Fig. 2). To obtain the maximum amplitude of
the photon echo signal, the laser line (0.2¢n was
scanned inside the spectral ligg (Fig. 2). It was noted that

Borisov et al.
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FIG. 4. Temperature dependence of the homogeneous width of the spectral
line B, corresponding to the transitidii ,(0) —*P, of PP+ impurity ions in

a Y,SiO; crystal. The asterisks are experimental points; curve 1 is a least-
squares fit of the experimental points on the basis of the relétipwith
Ae=89 cmi ! and variable parameter, curve 2 is a least-squares fit of the
experimental points on the basis of the simultaneous application of the re-
lations (1) and(3) with Ae=89 cm %, £¢=0.25 cm ¢, and variable param-
etersa and .

the intensity of the photon echo signal varies honmonotoni-

cally along the spectral contour of the ligig. According to  and !l closest to®Py lie at quite high energies}*~**they

Ref. 29, this signifies that a restructuring occurred with re-can be neglected at helium temperature. For this reason, the
spect to the spectral contours which correspond to nontemperature contribution to the homogeneous width of the
equivalent positions of the impurity praseodymium ionspectral line of the transitiofH,(0)—°P, will have the
within cationic sites of a given type during the scanninngrm40

process.

Since the amplitude of the echo signal, determined by

the relationl ocpg~exp(=2¢1(T)S) (where y(T) is the homo-
geneous, temperature-dependent width of the spectraldine,
is the time interval between the exciting laser pulses,Taisd
temperaturg makes it possible to obtain directly the law
y(T)=m/T,(T) (T,(T) is the phase relaxation time of elec-
tronic excitation§ a two-pulse photon echovas used to

Ae

Yor(T) =« exp( - ﬁ) ,

where « is the width of the Stark componedt, (1) at
half-height andA ¢ is the energy gap between the Stark com-
ponentsH,(0) and3H,(1).

If we take account of the exponential dependence of the
amplitude of the photon echo op(T)%* and the relation

()

investigate the temperature mechanisms of the phase relait), it becomes clear that the slope of the experimental curve

ation of the electronic excitations of impurity centers in a
YSO : PP* crystal.

To identify the characteristic features of the phase relax
ation of the electronic excitations in a YSO :*Prcrystal,

presented in the plot in Ref. 40 gives directly the energy gap
between the Stark componeritd,(0) and®H,(1). The pa-
rameterAe determined in this manner was 49 ch differ-

ent from the value 57 cimt found directly from the optical

we shall make a comparative analysis of the results with thepectra of the crystal LaF Pr*.434 Despite this discrep-

analogous results for an LaFPr* crystal?® To verify the
correctness of our experimeiftwe completely reproduced
the results of Ref. 40.

The temperature-dependence of the amplitude of a pho-

ancy, the temperature dependence of the amplitude of the
photon echo in an Laff PP* crystaf® was described satis-
factorily by the relation(1) with a=2.4x 10** 571,40

In contrast to Lag: Pr*™,4°the temperature dependence

ton echo was presented in Ref. 40 in a plot in which theof the amplitude of the photon-echo signal in a YSO *'Pr

double logarithm of the intensity of the echo signal was plot-

crystal in the same electronic transitidH ,4(0) —>P, of the

ted along the ordinate and the reciprocal of the temperaturinpurity ions (the spectral ling3, in Fig. 23 had two char-

was plotted along the abscissa. Then the experimental poin

tcteristic sections where the slopes of the experimental

fall on a straight line, and this temperature behavior wasurves® presented in a plot similar to that in Ref. 40, were
explained in Ref. 40 by direct absorption and emission ofdifferent. The slope of the experimental curves on the high-

phonons with the participation of the Stark components clos
est in energy to the resonant optical transition. Specifically
for an Lak: PP" crystal the Stark componeRH (1), ly-

ing 57 cm ! above®H,(0), will determine the phase relax-
ation of electronic excitations in the transition
3H,(0)-%P,.%*%* Since the energy levels of the termB;

temperature sectionT(E10—19 K) was virtually identical

to the Stark splitting of the componeritsl ,(0) and®H,(1)

of the term®H, in the YSO crystalFig. 1). The behavior of
the experimental curves within the entire temperature inter-
val of y(T) (Fig. 4 could not be described satisfactorily
using the relation1) with a variable paramete and Ae
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FIG. 5. Models of the symmetri@) and asymmetric
(b) two-well adiabatic potentialsA=g;,—¢, is the
activation energy of two-level systemé,is the bar-
rier height, andq is the generalized anharmonic co-
ordinate.

=89 cm L. Fora=1.4x10's !, a satisfactory description sponding to them. Since according to Ref. 29 the total width
was obtained only in the temperature interval 10—1gFlg.  of the liney, at half-height is 1 cm* and that of the lineyj,
4). The description of the experimental results did not im-is 0.3 cnmi'*, the desired energy differences are 0.25¢m
prove even when higher energy Stark components of thend 0.15 cm*, respectively. Such a small energy difference
term3H, (Fig. 1) were included in the analysis. We consid- can also arise as a result of tunneling splitting of the
ered also the Raman mechanism of scattering of phonons Bgvels®?>®* and asymmetry of the multiwell adiabatic
an impurity center of the type*3that makes a contribution potential?®***If only two minima are considered, as a sim-
~T’ to the homogeneous width of the spectral lind’, plification, then the adiabatic potentials displayed in Fig. 5
though it is knowf*4°to be unimportant in the temperature can be realized for a Pt impurity ion in a YSO crystal. In
range 6-10 K. As expected, this likewise did not improvea Symmetric two-well adiabatic potential, temperature-
the description of the experimental resulisg. 4). In other  independent quantum tunneling can occur with the frequency
words, the known temperature mechanismfi$3determining | |
the homogeneous broadening of the spectral lines of impu- _ QT2 —
rity centers in crystals could describe satisfactorily the varia- @~ %o exp{ h 2mv
tion of y(T) for the YSO : P#* crystal over the entire tem- o
perature rangéFig. 4). (wherem is the mass of the tunneling system aads the
Analysis of the structure of th¥ SO: PP* crystal and  average vibrational frequency near one of the minima of the
its rare-earth analogs?®and the way in which rare-earth ion adiabatic potentiat’*82°??as well as temperature-depen-
impurities enter these crystal$®2°enabled us to infer that a dent tunneling with the participation of phonot{s-82°2%or
mechanism, previously not encountered in crystals buan asymmetric potentialFig. 5b both processes will be-
known for glasse&'** of temperature broadening of spec- come weaker with increasing asymmetfy 82022
tral lines due to the interaction of an impurity center with the  The nonequivalent states, which we are discussing, of a
two-level systems of its multiwell adiabatic potential can op-PF* ion in a YSO crystal have no relation with the Jahn—
erate in YSO : Pt'. The key point in this supposition was Teller effecf?*! in the “slow rotation” limit*!, since the
the presence of a number of nonequivalent positions of imedegeneracy of the terms of the®Prion with respect to the
purity ions in the YSO : F¥" crystal. The positions associ- total angular momentum is lifted. This is unequivocally con-
ated with the substitution of nonequivalent cationic $t&€  firmed by the optical spectri@ig. 2), and the energy scale of
are of no interest, since an impurity ion cannot pass from onéhe Stark splitting of the term&ig. 1) likewise precludes the
position to another. For this reason, the nonequivalent stateaanifestation of the pseudo Jahn—Teller efféct.
of the PF* impurity ions within a localization siféC that The effect of two-level systems on the homogeneous
can be represented in a multiwell adiabatic potential modelvidth of the spectral lines of impurity centers which interact
are of interest, though at the microscopic level it remainswith these systems has been analyzed systematically for
unclear which generalized nuclear coordinate gives rise tglasses>'#In our case the problem simplifies substantially,
this adiabatic potential. Specifically, this potential will have since according to our assumption & Pimpurity ion inter-
four minim&® for cationic sites of one type and two acts only with one two-level system. Therefore, to describe
minim&?® for cationic sites of a different type. The popula- the experimental results presented in Fig. 4 we must sum the
tions of the minima of the adiabatic potential in the groundadditive contributions to the homogeneous width of a spec-
state of the impurity ion are close, singg is formed by four  tral line which form as a result of the interaction of an im-
and y§ by two spectral lines of essentially the samepurity center with phonons and with a two-level system. By
intensity?® Using the widths of the spectral lingg andy; ,  analogy with phonons>*3the contribution to the homoge-
the energy splitting between the lowest levihe activation  neous width of a spectral line in the case of an interaction of
energy of two-level systemsan be estimated in each mini- an impurity center with one two-level system is determined
mum of the adiabatic potential. For this, the total width atby the change in the structure of the adiabatic potential. This
half-height of the linesy, and y§ must be divided by the change is expressed as the difference of the Hamiltonians of
number of nonequivalent states of the impurity ion corre-the groundH, and excitecH,, state$®**
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P crystal lattice. The energy difference between the same Stark
H.—Hg=ea'a+pB(a”+a)q— 7 (2)  components of impurity ions in nonequivalent cationic sites
depends on the type of term and fluctuates from tens to hun-
wheres =A.— Ay is the difference of the activation energies greds of cni. The structural crystallographic nature of the
of the two-level systems in the excited and ground states dfjfferences of two nonequivalent cationic sites in the YSO
the impurity center8=(B.— By)/2 is the difference of the |attice signifies that the impurity ions substituting for them at
coupling constants with phonons in the excited and grounghe sites behave as independent ensembles of impurity par-
states of the impurity centea,” anda are tunnelon creation ticles. Nonequivalent states of a different type in the YSO
and annihilation operators, amylis the generalized coordi- crystal lattice are realized within the localization site of an
nate. impurity ion. The energy difference between such states is
In the dynamic approximatidft'* the first term in Eq.  small, and according to the experimental data it can range
(2) gives the contribution to the homogeneous spectral lingrom tenths to several cit. In this paper it was suggested
width that exhibits Saturatid'ﬁ with ianeaSing temperature. that at low temperatures the |mpur|ty ions in Qyos Pr3+
We shall not consider this Contribution, since it does notcrysta| can undergo phonon_induced transitions from one
improve the description of the experimental results. The sechonequivalent state to another within a localization site. Such
ond term in the relatior(2), associated with the phonon transitions of an impurity ion were represented formally in a
stimulation of transitions between the minima of the adia-myltilevel adiabatic potential model. The temperature broad-
batic pOtential, giveS the contribution to the homogeneou%ning of the Spectra| line of the transitiém4(0)_3po of

width with a temperature dependence of the forf impurity ions in a YSO crystal was described very well by
A using an additional mechanism whereby an impurity ion in-
Yrs(T)=A sinh‘1<ﬁ_), (3) teracts with a two-level system of its multilevel adiabatic

potential. Determining more accurately the reasons for the
where\ is a parameter that depends Bnand the spectral appearance of a multilevel adiabatic potential for &"Am-
function of the phonort$*andA=A~A,. purity ion in a YSO crystal will make it possible in the future
The relation(3) has the property that we require. Spe-to perform an experiment that is unthinkable for glasses:
cifically, for kT=A it gives an almost linear temperature investigation of the quantum motions of impurity centers in
dependence for the homogeneous width of the spectral lingrystals at the microscopic level.
and for this reason it will be used together with Efj) to
describey(T) (Fig. 4). To obtain the best least-squares fit of 1y, m. Agranovich and R. M. HochstrassEEds], Spectroscopy and Ex-
the experimental points, the parametarand\ in the rela- citation Dynamics of Condensed Molecular SysteBlsevier, N. Y.,
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The energy and action for skyrmions in two-dimensional electron gas with nonlocal exchange
have been calculated. The energy of positively charged skyrmions is considerably lower

than the energy of negatively charged skyrmions and does not contain an exchange contribution.
The action has been calculated taking into account collective skyrmion null modes.
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After the pioneering work by Sondei al.' a number of 1. CALCULATION OF ACTION AND ENERGY
publications were dedicated to calculating the energy of a
specific spin texture—a skyrmion having an odd filling fac-
tor of Landau levels in a 2D electronic structdré.Such

Let us briefly discuss the procedure for calculating the
action® The action is calculated in the Hartree—Fock

approximation, which is valid for the case of one fully filled

textures are characterized by rotation (.)f average sp?n with fandau level. One can also obtain this approximation via the
nonzero degree of the 2D plane mapping on the unit SpherI‘glubbard—Stratonovich transform. In this case, the term in

of spin dlrec.t|ons. It was found tha_t generation of a pair Ofthe Hamiltonian describing the interaction can be expressed
skyrmions with opposite charges yields a lower energy thalgjIS

formation of a spin exciton.

Calculations of the energy of an isolated skyrmion in _j _ + P\t 2 2,
subsequent publications were not fully self-consistent. The V(r=ra) (o) (r )Wﬁ(r Ja(Ndrd7r.
authors assumed that the required textures could be obtaingg, ., , and 8 are spin indicesX ,4(r, r ')=<¢//T(r)$ﬁ(f')>

via rotation of spins in the uniform state using a coordinate{g he Hubbard—Stratonovich exchange field corresponding

dependent rotation matrikd(r), but they assumed that the (, the softest degree of freedom, namely, the spin rotation in
electron spinors belonged to states of the same Landau levgle exchange approximatiofihe angular brackets denote
both before and after rotation. Moreover, they used a certaiguantum-mechanical averagingrhe direct interaction can
reduced rotation matrfx Uq, which is not unitary: pe included using the well-known expression for the average
U e 1. In addition, the unreduced rotation matrices ini- charge density © In the uniform casdthe lower spin sub-
tially used were considered to be functions of two Eulerlevel of the lower Landau level is fully populatgdthe
angles, which necessarily gives risesingularities for nonguantum-mechanical average has the form
trivial degrees of mapping, whereas the effective formulas
did not takeT into gccour.\t this fact. o _ xgﬁ(r,r/)ZE 5a55a0q>;0(r)cppo(r/)_ )

These inconsistencies can be eliminated using a self-
consistent approach based on smooth rotation matdd¢ey  We introduce instead dﬁgﬁ the transformed matrix
which are functions of the three Euler angles another o 0
equivalent set of parametgrgaking into consideration the X171 =U g (NUp(r) Xop(r.r0),
full representation of electron spinors in terms of LandauwhereU(r) is a matrix of spinor rotation'U=1). One
wave functions, and using an expansion in terms of derivacan get rid of the rotation operator in the interaction term by
tives of the rotation matrixJ(r).>® introducing new spinorg and x' via the unitary transform

A flaw of previous calculations was the assumption thaty(r)=U(r)x(r), so that the interaction term regains its ini-
the exchange term was uniform, which applies only to thetial form
case of a short-range interaction potential. Moreover, the fi-
nal expressions for the action contained a number of serious —f v(r—rl)xgﬁ(r,rl)xg(rl)xa(r)d% d?ry
errors. The present work is aimed at eliminating these flaws,
which is essential for calculating the energy of an isolatedor the transformed spinors, since their potential interaction
skyrmion. does not change under this unitary transform. In the case of a

1063-7761/99/88(2)/6/$15.00 392 © 1999 American Institute of Physics
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coordinate-dependent rotation matrld(r) must be differ-

entiated in the expression for the kinetic energy in the full

Hamiltonian. As a result, we have

1
H= —

=5 X (=iV+A+Q o)) 2xd?r

1
+j XTQItm)(dzr— 5

XfV(r—rl)XL(r)Xﬁ(rl)XL(rl)

X xo(r)d2rd?r;.

We have written out the full second-quantization Hamil-

tonian, whereﬂ'va,:—iUTaVU, o, are Pauli matrices and

A, is the vector potential of applied magnetic field. Here we

use a system of units such that 1, I3=c#/eH=1, and
H=1, so the reciprocal electron massnlis measured in
units of Aw,. Parameters)!, expressed in terms of Euler’s
angles are given by

0}=5(d,a+cosBd,),

Q%==(sinpB cosad,y—sinad,p),

B NP N

OY==(singBsinad,y+cosad,B).

N

The assumed small value of gradientslballows us to
develop a perturbation theory in terms@f(gradient expan-
sion) for calculating the action as a functional df To this
end, we decompose the Hamiltonian into two parts:

1
HOZJ dzl’{

S X (Z1V+ Ao+ Qo) 2+ x Doy

- f V(=1 )X (1 DXL xpr)drdr, (2)

and

1
Hi=—2

5 J V(r=r)x 0 xa(r ) xXE) Xalr)

—2X3,(r1,r)]1d?rd?r, 3

wherexgﬁ is averaged over the fully filled spin-up Landau
sublevel.
The action, which is a function of the rotation mattix
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FIG. 1. Hartree—Fock diagrams for action. The dashed lines denote the
interaction potential.

braic error. This paper presents calculations including terms
through zeroth order in fid without assuming that the spin
exchange is uniform, unlike the previous publicatfon.

The HamiltonianH, can be decomposed into the main
part

1 .
Hoo:% f XT(_|V+A0)2Xd2r

—f fV(r—rl)Xza(rl,r)XL(r)XB(rl)dzrdzrl,

plus small corrections of first order i,
P 0! ; 2
H,=| Qiod H—a X QMUI(_|(7M+A0M)Xd r
and second order if,

H>

=5 x'(QL0)%=i13,0)011xd?.

As was shown in the previous publicatidthe contribu-
tion of H, is offset by the contribution ofl; in the second
order. In addition, the contribution dn{o—| can be trivially
calculated and is not discussed here.

The Green’s functioris, for the HamiltonianH g corre-
sponding to the fully filled lower Landau spin sublevel is
calculated very easily and has the form

Go(rr",@) =2, Gs(0) Do) PE(T). @
Here we have performed the Fourier transform to the fre-
quency representatio?, are the electron wave functions

of the sth level in the Landau gauge. The levels needed for
our calculations are=0:

can be calculated in the Hartree—Fock approximation and ignqs=1:

expressed by diagrams in Fig. 1, whe&i® denotes the cor-

rection to the Green'’s function of the full Landau level due

to terms with(}, in HamiltonianH,. The quantityS, is the
action calculated with the Hamiltoniaf,:

=i Trl ©
So=1 rnGO,

The corrections linear idG are included irS,. The quantity
Sy was calculated previously to lowest order imifor uni-
form spin exchang®but that calculation contained an alge-

G=Gy+ 5G.

N _1lto, 1 1-o, 1
(@)= 5 TE2—16 ' 2 w_Eg2tid’
6—+0, ()
- _1-i-a'Z 1
91(0)= 5= it (E,—Eg2) +15

l1-o, 1

— — (6)
2 w—1lim—Ey/2+ié

Higher levelss are essential only for calculation of contribu-
tions higher than second order@h. The Green'’s function is
calculated for the chemical potentigh=1/2m—1/2E,,
which
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corresponds to the full population of the lower spin sublevel.
The exchange energies for the fully filled Landau levels are

calculated easily:

f
-

whereV(q) is the Fourier transform of the interaction poten-
tial. For the Coulomb interaction

N
2
wherek is the dielectric constant.

The expansion of the actid®, to second order i, has
the form

2

d<q
(2m)?

Eo=

e 2y(q),

qu q2
2mEz® V@,

1 2

:2—E0:

e

El 2K|H’

@)

[
580:| TrHlG0+ ETrHlGOH160+| TrH2Go (8)

The calculation procedure uses the representatioH ,0fh
the form

e
= [ LT 0l o,

where Q':=(Q'yiiﬂ'x)/2 and the operatorﬁlt raise and
lower the Landau level index:

M- ®g= 250 1, T, Ogp=V2(s+1)Pg.1p. (9)

After omitting the terms compensated for i,, we
have in the first ordér

0y 1 f |de2rdt 10
S T gm | T (19
The terms of second order are expresséd as
2 1+o E
2)__ % Tz al =20
SO mz Tr 0| 2 Ullgl( 2 )]
><J ar gn 4t 11
Ut 27 (1)

By expandingf;l(— Ey/2) to second order imand using the
identity curlQ?=(i/2) T{o,01, 07} (2,0, —QLQ)),  we
have

%6 % 39 9. 9% 92% % 39
m FIG. 2. Diagrams illustrating different ways of inserting into the
= + + + exchange diagram the first-order corrections containlhg
U shown by a wavy line.
G % 9 9 % % 9 9% ¢ %

d?rdt
2w

6Sy= 0S5+ 5sgz>=—2Eof 0" o' +2E,

|
xfﬂ"ﬂ

d?rdt
2

011010,

2

, d’rdt
27

(12

+

The contributions of order fii cancel out in the suns
+ S [this result differs from that given in Ref. 6 because
the sign of the first term on the right of E(L.2) was wrong.
Thus the contributior§10) of the mean field of order i
(all the spins are locally directed upwayds fully cancelled
out by fluctuations in the spin alignment in the second-order
component of the action. The remaining quantities are of
order the exchange energy/«l,, and there are no terms
proportional tof .. In order to complete the calculation of
the action in the second order in terms of gradients of rota-
tion matrix U, we must calculate the contribution of the sec-
ond graph in Fig. 1. This diagram is decomposed in Fig. 2,
where the the different ways of inserting the Green’s func-
tion components due to the ground and first Landau levels
are shown. The contribution of the last two diagrams in Fig.
2 is equal to zero by virtue of isotropy ®(r). The first two
diagrams on the right yield equal contributions:

~,[ Eo
oo h o

|r+r’ N ok RUNY.
xfm o [ @0 @7, (1), (NP1 0"

(=2)

1+o,
> 2Tr
m

2

S

!

+r

X
2

)V(r—r’)dzrdzr’. (13

Integration with respect to the coordinates is performed

fairly easily, and we obtain

2rdt
o T 2(Ep—E3)

Sur=2(Eo— El)f QZ—Qi

x> | Q' dzrdt+2(E =
l#z T 2w 0 !
rdt
xf curl Q* = (19

As a result, we have the action to second order with respect
to the gradients ob(r,t):
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Zerdt Do d?rdt Khaetski® Note that the suggested expression yields the
55:_f Qi— 25 2 fﬂih oy skyrmion classical energy without quantum corrections.
01,0107 - d?rdt
—2E,Tr f Q' . (15)
2 + 27 2. NULL COLLECTIVE MODES

If Q'is expressed in terms of Euler's angles, the action  The skyrmion energy is independent of the rotation
for the skyrmion is given by the equation angle of the spin reference frame with respect to the orbital
frame, since adding an arbitrary constanto anglex does
d’rdt E; (1[/on;\?d’dt E o oF T
it = (ﬂ it = not change energgl3) (the magnetic field is assumed to be

5s=—f o

2m 2 J alox 2m 2 aligned with thez-axis). This degeneracy can be lifted only

d2rdt d2rdt by a spin—orbit coupling. Thusy=const corresponds to a

xf curl Q? o +|g|,qu (H-n—H) oy null collective modé. The corresponding motion must have
the form of free rotation. In order to analyze this motion, let
1 e2 d2rd?r’ us use the standard technique applied to null mddes,

- EJ ——curl QF(r)curl Q(r") > dt, namely, introduce a collective coordina€t) and calculate
r=r] (2) the action through expansion in terms of the angular velocity
(16) 4.

which includes the small contributions of the Zeeman and  BY c_on_siderin_g only terms_that_ are not total derivatives,
Coulomb energies and contains the unit vector aligned witt{'e ©Ptain in the linear approximation
the averaged spin:

B ,d2rdt 1 d’rdt
n=(sinBcosa, singBsina, cosp). Sl__j U on _EJ YBaSINBo—

In calculating the Coulomb energy, we have used the eXPregyhere g, is the minimizing stationary solutiohand 8, is

sion for dens::ypz (§+cu|rl QZ)/Zq-(rj frorln FIQ(%‘;Sh 1 a_nd 6. the small correction to the stationary solution. The term qua-
As was shown by Belavin and Polyakothe minimum dratic in y in the action is easily derived from the second-

%ﬂﬁpt energy is expressed in terms of the topological NS rder termSz=(i/2)TrQ}o|GOQ{‘akGO. In the lowest order

in m, we can restrict our analysis to the lowest Landau level
1 and obtain
Q=— f curl Q%d?r,
2
| )/2
which corresponds to the degree of mapping of the 2D plane 2= f Tdt’
on the unit sphere of spin directions, by the formula

1 (ani 2 where the “inertia” moment is given by

_ _ 20
8 5Xk d°r |Q|

1 . d’r
_ . o l=-— | sifBy=—,
Thus, the energy of a skyrmion with char@eis given by 2E 2m

_E 2 and we have neglected in the calculation the deviatiop of
E_7(Q+|Q|)+|9|“B (H'n_H)ﬁ’LE from its time-independent value. The total action has the
form

<[ S anermeunere) T g
cur rycur r . 22 2
Y 2 |‘y 1 . . d<rdt
Ir=r'l (2m) S:S(alaﬁl)+f7dt+§f YB1SINBo— —,

For skyrmions withQ<<0 the exchange contribution is zero

since the gradient energy is cancelled by the topologicallyvhere the first term is the action as a quadratic functional of

invariant term, so the energy contains only the Coulomb andjeviationsa; and 8, from the time-independent values of

Zeeman components. As for the skyrmions w@k-0, their o, and 8, without taking into account null modes. This ac-

energy contains an exchange component. tion is independent of anglg and is expressed in the mixed
According to Ref. 7, the solution that yields the mini- representation, which is the Hamiltonian dn and 8;, and

mum energy decays with the distanceras?, as a result, Lagrangian iny. The transition to the fully Hamiltonian rep-

the Zeeman energy contains the large logarithmic factoresentation is performed by introducing the conserved angu-

In(|glugH/E,) at |Q|=1, whereas the energy of skyrmions |ar moment

with |Q|>1 has no such factor. For this reason, the skyr-

mion with Q=—-2 has a lower energy than that with .1 (B )

Q=—1. States with lowerQ (Q<-2), however, have M:|7’+§f 57 SINBod°T,

higher energies owing to the increase in the Coulomb energy

with |Q|. This fact was pointed out by Nazarov and which yields the Hamiltonian action
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2
dt. (19

_ 1 The factor8’E,/(88)? denotes the second derivative with
S=S(ay,B1)+ f Mydt—>5; respect tg3 of the sum of the Zeeman and Coulomb energies
at the steady-state value. These equations contain the large
1 i parameted =E,/4, but the operators proportional fohave
X [ |M=35 | Bisinfo nontrivial solution that cause them to go to zew;=y
) _ ) =const, B1=r4d,8y. Therefore, low-frequency oscillations
The last term describes interaction between the null rotaz deteran%inedf; solutions of this forr?l andyone must con-
tional thde and COIIeC}}'Ve_mOd? of hlglher orrt]jers. ion d sider, as usual, projections of the equations on the corre-
In the presence of spin—or It coupling, the action de-g onding eigenfunctions. The first equation is to be be mul-
pends on the rotation angles of the spin reference frame andlied by unity, the second bydg,/dr, and each is
thel olrbltalhfram(_a, SO bt_he deggnerr]acy IS I|ft§:d. We dc; ?loﬁntegrated over the coordinates. As a result, the terms con-
calcu ate t_ € spin—orbit term in the actlop in terms of 1 etaining\] vanish, and we obtain a system of linear equations
microscopic theory, but restrict our analysis to the phenom-

enological approach, which yields an expression in the low- . . PBo| , . Bo ,
est order in the gradients: lwCy | sInfo| == dr=Aso s'nz'BOWd ry,
et @3
Seo= —)\SOJ n-v divn 5 19  and
wheren is the vector of the average spin directianis the , _ IBo\ » 9Bo\*°Ecz ,
normal to the 2D plane. We assume that there is a certain ' ®Y sinBo P dr=c, P (53)2d
asymmetry that defines a unique directiorwofThis expres- (24)

sion is T-invariant and isotropic in the 2D plane. It can be
shown that the constant, is related to the bare spin—orbit
coupling constanta .= \oE;/ fiw.. The bare constam, is

By equating to zero the determinant of this equation sys-
tem, we obtain the characteristic frequency:

included in the spin—orbit Hamiltonié%H_Soz Noe”¥p; o, _ 9Bo A2 [ d?r | 3By)\2 6%Eqc
wherep; is the electron momentum ard* is the absolutely |)\50|f smzﬂ()T z—f 2—( r a_r) >
antisymmetrical tensor. The paramegf, can be expressed h202— mJoem (6B)
in terms of Euler angles: (J i a,BOd )2
Prat sin Bor or r
Seo= — Mo 2—sin2,8(c03ao7x/3+ sinad,B). (20
m N AsQugH (25)
Owing to the smallness of the spin—orbit coupling, we can L* -
substitute in the first approximation the steady-state sol(tion Lln '

Cc
B=PBo(r), a=Qo¢+ v, whereQ is integer andp is the polar i ) i
angle in the expression for the spin—orbit energy, whichHereL.=vlglugH/J is the distance at which the Zeeman

yields and gradient energies of the skyrmion are equal, and the
skyrmion size is
: d*r 13
Esozksof SmZBOCOE{(Q_l)‘P"")’]_- |g|:uBH L
o L= g,
Cc

For Q#1 this energy vanishes after integration with respect )
to the angle, and the system remains degenerate in the fir§tée. for example, Ref. 12Here the lengths are measured in

order in\g,. Let us consider the case @=1, when the units of magnetic Igngth. Such oscillations change con-
energy has a minimum at= 1 if AsdB,/dr>0 holds or at currently the skyrmion sizk. and angley between the spin
y=0 if AodBo/dr<0 holds. In this case, a specific mode is @nd orbital axes. _ _ N
generated with oscillatings and variable skyrmion core di- There is also a collective mode described eafién
mension. which a skyrmion is translated as a whole, when the rotation
In order to determine characteristic frequencies of such &1atrix U (r —X) is a function of the skyrmion center position
radial-angular mode, let us use equations of motion obtained (1) As in the zero rotational mode, the action contains a
by varying the action and linearized in the neighborhood ofterm linear in velocityX and describing interaction with
the minimum solutior: other collective oscillations, so the action is expressed by

—iwa;sinBy+ J[AB,+SsiPBoV agV ay 5SZJ X(COSBoVal—,BlSinﬁovao)dzrdt
2
8°E
+5in 266(V a)?B1]+ — =5 f1=0, (20 mix)?
(o8) +f = —dt+S(ay,By).

i wﬂlsinﬁ0+\]V[Sin2B0V a1+ﬁ1 Sin Zﬂovao]
The skyrmion massm,=|Q|#%%Eyl3 was calculated
earlier!? Since the skyrmion has charg®, there is an ad-

. dBo
+ ——a;=0. o . . .
NsoSir Bo dr *1 0 (22) ditional term in the action due to the vector potential of the
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external magnetic field. After going over to the Hamiltonian RPI-273 and the Russian Fund for Fundamental Research

expression for the action, as in the derivation of &), and
taking into account the other collective modes, we obtain

eQ 2
P— TAO_a dt+S(al,ﬁ1)a

. : 1
szf Mydt+f PXdt— o (M—1)2dt
where

2

Sj
dr

|:ﬁf Blsmﬂo7;

2wl

2

d<r
a=h (COSﬁOV a1~ Blsinﬁov ao)_z,
27l

h? d’r
=_— | sir? .
2E, '8027Tlf|
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Generalized Ginzburg—Landau equation and the properties of superconductors
with Ginzburg—Landau parameter « close to 1
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An expression is derived for the free energy of a superconductor near the critical temperature,
taking account of the terms of next highest order in the parametélf/T.. These terms

become important for Ginzburg—Landau parameter valuesl|<1, and in this case, in an
external magnetic fieltl close toH,, the structure of the order parameter is determined

by the relative values of the three small paramelters1|, 1—T/T., and H.,—Hg)/H¢,. Three
types of lattices are investigated: triangular with one and two flux quanta per cell and

square with one flux quantum per cell. €999 American Institute of Physics.
[S1063-776(99)02402-9

1. INTRODUCTION parameter +T/T;, we shall make use of the system of
The Ginzburg—Landau equatidnkave the important equations for the Green’s functiors integrated over the

property that for Ginzburg—Landau parameter1 there energy variablet.*~® These equations have the form

exists in a cylindrical geometry B-vortex solution with an

arbitrary position of the zeros of the order parameter in a

G+wG—-Gw=0,

plane perpendicular to the axis of the cylindérAs a result V'E

of this degeneracy, all coefficientstarting with the second

ong in the Taylor series expansion of the Ginzburg—Landau  _ a, —iBp A

free energy in powers dfi.,— B, whereB is the magnetic G:(iﬁ W ) G*=1, 1)
p H

field induction andH, is the critical field of the supercon-
ductor, vanish ax—1.!

Naturally, even a small perturbation of the Ginzburg—
Landau equations will completely destroy this enormous de-
generacy. In real superconductors, the perturbing terms are
proportional to +T/T;, whereT, is the superconducting A (0 A) A

! pp

where

w=w1,—ie(v-A)r,—iA-inS,,

transition temperature. As a result, in magnetic fieldls
close toH.,, (Ho—Hg)/H,<1, three small parameters
arise: |k—1|,1-T/T., and H.—B)/H,. Depending on
the relative value of the parametérs— 1| and 1- T/T,, the
free energy Es—Fy)/V of the mixed state as a function of
the parameterH .,— B)/H ., can have the form of one of the
three plots shown in Fig. 1Hy<H) or Fig. 2 (Hq

iv .
—A* 0 _ff 0pp, Gp, d€p, - @
In Eq. (2) A is the order parameter of the superconductor,
opp is the electron scattering cross section of an impurity,
andn is the impurity density. The order parametkris re-
lated to the Green’s functiog, by

>Hep). o ) T, A de
In magnetic fieldsHo<H.,, in the (casea) vortex-free Aln T =27TY, |—— 4—,8p , 3)
state or a state witB~H, forms. The casd® corresponds ©>0 \ @ ™

to a classical type-Il superconductor, and in the caseta-
stable vortex lattices can form. As will be shown below, all
three cases can be realized. The free energy as a function
the parameterH.,—B)/H., in magnetic fieldHy>H, is
displayed in Fig. 2, and all three possibilitieg,lp,c) can
obtain. It is obvious that the free energy depends on the form ) ~

of the vortex lattice. We shall examine below three types of ¢~ BpBp= 1. (4)
vortex lattices: triangular with one or two flux quanta per
unit cell and square with one flux quantum per unit cell.

whereT, is the superconducting transition temperature. We
%(?ek only the first few corrections to the Ginzburg—Landau

equations in the parameter—I/T.. The equationG2=1
implies

Solving this equation up to fourth-order termsAnwe find

2. GINZBURG-LANDAU EQUATION WITH CORRECTION _ BoBo  (BpBp)?
TERMS ap=singu| 1-—7———g—|. )

To obtain expressions for the free energy of a supercon-
ductor taking account of the terms of next higher order in theWe find from the system of equatiori¥)

1063-7761/99/88(2)/8/$15.00 398 © 1999 American Institute of Physics
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FIG. 1. Free energyHs— Fy)/V versus the parameteH(,— B)/H, in the
rangesx<<1 andHy<H,,.

1 nv
E(V-(?f)ﬁp-i- 0B~ Aap-i-?f a'ppl(,Bpapl— ap,Bpl)del= 0,

1 ~ ~ nv ~ ~
_E(V- 9.)Bpt wB,—A* ap+7J O'ppl(ﬁpapl— apﬁpl)dﬂpl=((é,)

where
d.= i +2ieA
i_ﬁ_ IeA.
The system of equation®) and (6) can be solved by ex-
panding the quantities,, and,~8p in spherical harmonics with

arbitrary electron mean-free path. Simple calculations using
Egs.(5) and(6) reduce Eq(3) for the order parameter to the

form
Al Te 2aT
n? 13
A|A]Z  3A|A|* b2 92 A
N I NN
©>0 2w 8w® 12 2(w+1/27,)

v4(LUr—1/7,) (8% )2A
+
288w3(w+ 1/27) 2w+ (1/2) (17— 1I1y))

A[* JA[°
——t

2 |(9_A|2 R

Yu. N. Ovchinnikov 399

FIG. 2. Free energyRs— Fy)/V versus the parameteH(,—B)/H, in the
rangesx<<1 andHy>H,,.

04((9%)2+4€®H2— (4iel3)(VXH-d_))A
+

80w (w+ 1/27y) *(w+ (1/2) (17— 1i7y))

v23% (A|A]?) ,
_—+ . *

20wt 12y U AUO-8)- 9L A%)
+(a1ar)- (A, A*) | 48w T w+ 1/27y)?

+02A((a,A)-(a+A*)) v2(|A|20% A+ A%92 A%)
2403 (w+ 1/27,)? 240w*(w+ 1/27,)

v20_-(A(AGLA*—A*9_A)) o
24w3(w+1/27,)? '

Y

The scattering “time” 7y in Eq. (6) is determined in the
standard manner as

ty.P f vo o
m NTP[ T e N TR SR

In accordance with the general assumptions, (Bgis a
variational derivative of the free energy with respect to the
parameteiA* . Direct calculations give the following expres-
sion for the free energisg:

1 1 1

Tir T T1

®

v} (Ur—1Iry)|% A2

;
TC)|A|2_27TT2

>0

FS_FNZVJ dSI’[ _ln

v4(|d2 A2+ 4e?H?| A|>— (2ie/3)V X H-(A* 9_A—
+

40° 805 1202 (01127 ' 28803 w+ 1/2r,) 2w+ (1/2)(Llr—1lry))

AdLA*®)) v?
+

80w(w+ 1/27)X(w+ (112)(Lir— 1ry))

b2 {1(5|A|2

+ —
240w+ 1127, 2\ o

2
) +2[A[%(0-A)- (9, A%)

A2 (9_A)-(a,A*
24w3(w+1/27'tr)2(| I18-8)-(0,47))

(€)

+if d® (VXA—Hg)?
8w o’
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The last term in Eq(9) is the magnetic-field energy and *

v=mpy/27? is the density of states at the Fermi surface.Ale 2 Cn exp(—2ieBNx1y)DM(2\/§3(x—le)).
This coefficient is found by setting the standard expression -

for the current density equal to the corresponding expressio
obtained from Eq(9) by variation with respect to the vector
potentialA. Performing the summation over the frequercy

in Eg. (9), we obtain finally

Mh Eq. (12) the Dy (x) are parabolic cylinder functions.
Using Egs.(10) and (11) we find the critical fieldH,
and the equation for the first correctidh, to the vector

potential A:
T 74(3
FS—FNZVJ d%[—ln(%)MW—%lM“ | Te ﬂ'eDHC2+ezH§2v4/a1 1 1 +4b1 0
4 N7 4T 8 |\9\r 7 5
wD 312(5)|A1®  vH(Ur—1i7y)
+ o= d_A2— - 1 A emD ev?
8T 1287414 288 Bl Y 2y_ Y
2 2 4 g2 | 4T Vx(0,0]80]%) 75502V
xay|d2A|2— —a,|Al2d_Al2— —b 20 x 12
110~ 24°2 - 242 9% Aol o an (1 1
X 0,0; —ev'B| szl —— — a1
2\2 4 ar? 36\t 7
[ H AN a0 2] - b
2\ o |Al*[0-A[%] = ggbs L
" +gbs V X(0,0/A¢|%)¢. (13
e
X |a%A|2+4e2H2|A|2—TVXH-(A*a,A
To obtain Eq.(13) for the vector potentiah;, we employed
1 3 5 the relation
—Ad,A¥) 5| EPr(VXA=—Hy?. (10)
AE° Ag—Agd% Al =—iVX(0,0]Aq?), (14)

In Eqg. (10) H, is the external magnetic field arddx) is the

Riemann zeta function. Expressions for the coefficientsyhered® = a/dr — 2ieA,.

ai2,b12, andD are given in Appendix A. The equation(14) follows from the expressiof12) for
We note that the expressi¢hO) for the free energy of a  A,. Using the gaugeV-A;=0, we find from the second

superconductor holds ne&g taking account of the first cor-  equation(13) the following expression for the magnetic field
rections with respect to the parameter T/T. and for arbi-  H:

trary values of all other parameters: the magnetic field, the

mean-free path, the Ginzburg—Landau parameteand so Hi=VXA;, i=12,...
on.
Hyz — m0(00.0] o0 _e2yap 21 1], 4y
S B ] b e
3. SUPERCONDUCTOR IN A MAGNETIC FIELD H, CLOSE
TO Hep ) oy &P
X(|Ao*=([Aq] >)—%b1_2|Ao| - (15
The structure of the superconducting state of a supercon- ar

ductor in an external magnetic fieldy, close toH ., was first
obtained by AbrikosoV. However, the situation arising for
values of the parametet in the limit |[x—1|<1 is much
more interesting and divergeee also Refs. 8 and.9

We seek the order paramet&rand the vector potential
A in the range of field§H ,—Ho|<H, in the form of a

In the expressiofi10) for the free energy, the terms con-
tainingH, cancel up to terms of ordeéa|®, inclusively. To
check this assertion, we employ the following relations:

<|(9_A|2)=ZeB<|AO|2>+Ze<(H1+ H2)|A0|2>

power series inlfl.,—B) (Refs. 8 and 8 +46%(A2|Ao|2+ 4ie(Ar- (A5 P AL — A% AT))
A:A0+A1+A2+..., _<Al(a9r)2A‘i€>,
A=(0Bx,0)+A;+A,. (11 .
L N (|92 A|2)=4€2B(|Aq|?) +8ieB(A,- (A5 ° Ag
In the gaugeV-A=0 the quantitiesA;, (x,y) are
bounded functions in thex(y) plane, and we represent the —AgdlAE))+8ie?B(A;- (AF° A— Agd AT)

order parameteA in the forn’—°
P o +87B(H,|Agf%) + 166%B(A A %)

Af% Cnexp{2ieBNxy —eB(x—Nx;)?}, H(((32)2A)((3%2)2A%)) +4ie((Ar-°A%)
- X((92)%A1) = (Ay- 3% Ag)((45)%AT))
Ba= 2 et (AoAiu-1a.. =0, 12 +166%((Ay- 0 Ao)(Ar- ) AE)), (16
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(HZA[%)=B2((|Ao?) +(|A[2) +(HI Ao + (—ieA|Ag?+2(A5° A= Agd} AT))).
+2B(H(|Ao*+ (A5 A +A0AT)))
+2B(H,| Aol (VXH-(A*d_A—Ad, A%)) Subtracting from Eq(10) the equatior(13) for Hg, mul-
INE 2512 tiplied by vfd®r(J]Ag|2+]A4|?) and using Eqgs(15) and
=i< Hla | 2°| >+i<H2& |40 > +(VXH;- (16), we reduce the expressioh0) for the free energy to the
ar form

1 weD a;(l1 1 b,
FS—FN=EJ d3r<<B—Ho>2—H§>+vJ dSr[—F(ch—mlel%ezv“(Hiz—Bz)lelz > ;——)+10)
7 31£(5
- 65(2 —— (|80l +2[A0/ (A AL+ AT Ag ))—12§4;4| 0|6+ [4e2A1|A0|2+4|eA1 (A% A — Ao AF)

—A¥(8°)2A,—2eHg, A2 —v? —é [8ie?BA;- (AX° A —Agd% AT)+16e°BAZ| Aol

ale(l 1
2887 1)
+((0°)2A 1) ((9)2A% ) +die((Ar- d%LAF)(°)2A1— (Ar- % Ag)(9%)2A%) +16%(A1- ° Ag)(Ar- %A%)]

Cv? ([alAg? 2+2(9|Ao|2
4872\ or ar

d v?
(BT854 |~ 5@+ 20187 80)- (£47)+ 20Ay |47

11} by,
"72)+E)|A1|
2.4 e4

e’v U
- —bl[BZ|A1|2+ HE| Ao *+2BH(AgAT +AFAy) ]+ 5 b1V X Hl-(2eA1|AO|2+i(A3§°Al—AO(ﬁA’l‘))} :

a;
X (0,0]A0/2)+2€B|Ag|2(AF AL+ AcAT) — (AFAT (% Ag)2+AA1 (9, A} )2)]—|—e2v4H02(72

17
|
In what follows we shall study solutions of the form 2m3eDT H.,—B
(12), which form in the ,y) plane for|A|? lattices with (|Ao?) = 723) ° 5
unit-cell vectors a, ,.5° Let K;, be the elementary £B3) Ba—(Ba— 1)k
reciprocal-lattice vectors. We shall represent the order pa-
rameter|Ay|? in this case in the form of a Fourier series as 1 74(3) IE Co CM
ap=—
- M MMIB(|Ag)) 4nleDT| AL N
[Bol*= > Cmexp(i(NKy+MKp)-r). (18)
NM=—o 2 c C - 4eBM 21
The functionA} A is also a periodic function of the coor- a K_ Kceo N 2 ] (21)

dinates and therefore can be expressed in a Fourier series as

In Egs.(21), the quantityB, is the Abrikosov structural
A3A¥=NEK CkeXiK i 1) (190 parameter,

whereK yx=NK;+KKs,. Ba={Ac/{|Agl?)?, (22)
The values of|Ag|?) and @y can be found from the
conditions of an extremum of the free enerdy) with re-  and the Ginzburg—Landau parameteis determined by the

spect to these parameters, i.e., equation
d(Fs—F d(Fs—F
( S 2N) -0, ( S N) _ (20) . 1 75(3) 1/2 (23)
o[ Aol%) day o 72eD\ 27v |
On the basis of Eqs(20), it is sufficient to find the
values of(|A¢|?) and ay, to leading order in +T/T,. Us- We employed the following relatiofigo obtain the ex-

ing Egs.(17)—(20) we find pressiong21) for ay :
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(AYAY™)=MI(]A[%),

J J
AW&A;—Aga"Ayzi(— —&>(A3A¥)—2\/e_BMA3A2"1(1;—i). (24)

&y;

The equation$13), (15), (21), and(24) make it possible to reduce E@.7) for the free energy to an expression containing
only sums of various combinations of the quantitiésx and C,’i,"K. For arbitraryx this expression foF s—Fy is given in
Appendix B. For|x?—1|<1, we find from Eq.(B.1)

Fs—Fn_ 1 , 1 Ba(He—B)? 28874 T4In(T, /T)/ 1) 1]b1)
v 85 (HeeHo) = 7—(Hea=B)(Hea=Ho) + ———— (K?=1)+ (703))% \9 ;—7_—2 15
1674T4N(T,/T) (He;—B)® 1 314(5) Bar(Heo—B)3IN(T,/T)

- 3by) |- ————(x*-1)>, —RYRY -

L@y 2P| T AR L 87(7¢(3))*He,
w3(HC2—B)3T4In(TC/T)[8{ aif1 1) 4b1) 2Baby Z[GZJFG:,, 8Gi(ay(1 1)

18 (2Ba—1)| = | =— —|+—| - 7 ——=

I P S A -l E A A 2 9lr n
2b;\ b b, M+1 a; /1 1) 2b
+?1 +1—;(G —12G,) + (1+3A1 2Ba+ = Gl) +1442 i RY(RY - 2MR2)(91(;—T—2)+?1)

1 1) 4 4
+1443, R2<R2” AMRY) 6;1 “7) :1) hic b3, M.R2<(R2” AMRY) - 6R1)}
2

273 (Hep—B)3T4IN(T,/T) RYRY
T 2 e, {bz(ﬁA+4% —r | * (@2 +2by) ﬁA+82 MIR1 MRY - 262) (25)

For the three types of lattices—triangular with one or two flux quanta per cell and square with one flux quantum per
cell—the coefficientsCy, and CN, were found in Ref. 9. For this reason, we shall not present them here. A numerical
calculation of the sums in E@25) gives the following values of the free energy as a function of the paraBetad type of
lattice.

1. Triangular lattice with one flux quantum per cell:

Ba=1.159595, S, =1.423012,

Fs—Fn 1 , 1 Ba(H—B)?| 167*T4n(T./T)( 18/a;(1 1
v 8, (HeeHo) = 7—(Hea=B)(Hea=Ho) + ———— (« _1)+W 2977
lJbl) 1 (Heo—B)° 31(5)
+—|——(ay+3b,) | |- —=——14.361:10 %(k>—1)+1.423 ————In(T./T
15 KC|( 2 2)) 87THc2 (K ) (7§(3))2 ( C )
1874 T4IN(T,/T) 1 1 1674 T4IN(T,/T)
— | 1.3424| —— — | +8.3625D; | - —_———————1.4666a,+3b,) | . (26)
(74(3))“kg T T2 (74(3))%kq
2. Triangular lattice with two flux quanta per cell:
Ba=1.33898, B, =2.02588,
Fs—Fy 1 Ba(He—B)?[ 167*T4N(T./T)[ 18(ay(1 1
v gn(He™ Ho)?— 7T(ch—|3)(Hc2—Ho)+T (K —1)+W K_é 9lr
11b,) 1 (Heo—B)® 3145 Te
1—5)—K—d(a2+3b2) ST 0.252 k>—1)+2. OZSWI 5
187*T4n(T,/T) 1 1 167 T4IN(T,/T)
——————— 1 2.2488| — — — | +14.398®; | - ————————2.27798a,+3b,) (. (27
(74(3))°kg T T2 (74(3)) Kk

3. Square lattice with one flux quantum per cell:
Ba=1.18034, Ba =1.4971,
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Fs—Fn 1 , 1 Ba(H—B)? 167*T4n(T./T)( 18/a;(1 1
v g5 HeeHo) = 7 (Hea = B)(Hea=Ho) + ————| («"~ 1)+ T e l2lelr
1Jb1) 1 (He,—B)® 314(5)  Te
+—|——(a,+3b,) | | - —5—-—10.068798x%—1)+1.4971 ———In—
15 KC.( 2 2)> 87H,, 8 ) (7¢(3)2 T
1874 T4In(T./T) 167 T4In(T./T)
+————— 5 (145306, +9.10216®;) - ————————-1.56589a,+3b,) | . (28
(74(3))°kg (74(3))%kq
|
Aside from Eq.(B.5) the relation can be realized by an appropriate choice of the parameters of
MM MM the superconductor. We recall also that the field inducBon
2> RaRs =4, Rk e 20) is determined from the conditién
7 Ml M! 2 @9
d(Fs—Fn)
probably also holds. —p O (33

The ratio of the Ginzburg—Landau parameters in dirty N _ _
(Kdir) and clean (<C|) Superconductors can be eas”y found Using the Condltlor(33) it can be shown that there exists a
with the aid of Appendix A and is parameter range where a triangular lattice with two flux

quanta per cell has a lower energy than a triangular or square

Kdir _ 74(3) lattice with one flux quantum per cell.

— . (30

Ko 2m°Try 4. CONCLUSIONS

Let us assume that in a clean superconductor we have The strong degeneracy arising in the Ginzburg—Landau
kq<<1. Then the condition~1 signifies that ZT7,<1.In  equation withk=1 can be removed by correction terms pro-
the limit of a short electron mean-free path, in E¢@6)—  portional to 1-T/T.. Near the transition temperature, the
(28) the contributions of the terms proportionaldg andb;,  type of solution is determined by the ratio of the small pa-
are small. In this limit, we find for the coefficienég andb, rameterd k>— 1| and 1—T/T,. It was shown that in an ex-

from Appendix A: ternal magnetic fieldH, close toH, all possible types of
) dependences of the free energy on the paranietesan be
A= 14£(3) 7y realized with an appropriate choice of the quantitigsand
Ldir w2 T2(1r—1lTy) ' 1-T/T. and electron mean-free path. The sign of the coef-
ficient of the quadratic termH,— B)? can be change(ith
Ty k close to 1 by a small change in the impurity density. Since
bZd"_E' (D) all types of dependence of the free energy on the pararBeter

shown in Figs. 1 and 2 can be realized, the transition into the
From Eqs.(30) and(31) it is easy to see that the coefficient gyperconducting state can be either first- or second-order.
of (H—B)® in Egs. (26)~(28) can be made positive, e also note that the minimum of the free energy can be
changing the sign of the coefficient dfif,—B)? by chang-  reached. for example, on a triangular lattice with two flux
ing the value ofk. Clean superconductors satisfy quanta per cell.

b,=b,=a,. (32) This work was supported by the CRD{Grant RP1-

The effect of Eqs(32) is that if in a clean superconductor the

parameterx is close to 1, then the coefficient of the term 5 APPENDIX A

(He;—B)2 in Egs. (26)—(28) can be easily made negative. From Egs.(9) and(10) we find the coefficient®, b, ,,
We have thus shown that all cases shown in Figs. 1 and @nda, , appearing in the expression for the free energy:

D_ultr _, 8T (1 1 1
AU R PR T S I

b,=27T > ! I A [72(3)—27°T+ n(T)]]
2 5o wHw+1/2r,)  A7°T3( 6 r ! ’
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1 thr J
a,=2mT E =
2 o 0w+ 12r)?2 =272

1 1
7((3)— 47T ry— 47T 1y’ (2 s )
r

+3(47Try)? 1+ ! !
(AmTre)"| ¢ 2 Aoy “all(
1 27T (47 Tr)?  (47T)3 1 1
b= 2aTS [ 27°T(4aTr?  (4aT)%r ( . )
00 wX(w+1/27)%(w+(1/2) (17— 1/7,)) 167T4T4l Yr—1lr, Ury=Ur, " 2 AwTry
(47T)4 /¢<1+ 1 (1 1)) w(l)) (4T 87 T7y 4nT
_ Rt ettt I RS el 1) R/ S B _
(1/7'—1/7'2)2(1/7'1—1/7'2)2\ 2 4nT\7 7 2 "\ U, =1, (Ur,—1I7,)?

X

W

a3l

1

a,=27T =
! L;o 03w+ 121) A w+ (12 (Ur—1/ry))  327°T5

[
l
(47T) / (1 1 (1 1))_11/(%

(Ur— V(U -1m? '\ 2 a7 7,

24(3 )(47TT)3Ttr (47 T)47s (1 1 )

Ur—21r, Ur—1lm, 2 4nTry,

3 Tir 1
Ury =1ty (Ury—1ry)?

+(47TT)57§,(

1 2 Tir

1
X — — .
(1r,—1ry)? Uri— 1/T2) (17— Ury)X(Lr— 1/72)2) ]

1 1 ) (l)
1/ E'i‘m — > +—(47TT) Ttr

6. APPENDIX B
For arbitrary« the free energyl17) can be put into the following form using Egd.3), (15), (21), and(24):

Fs—Fy 1 , 1 Ba(k?—1)(H—B)?
=~ (Hep—Hg)2— ~—(Hgz—B)(Hgp—H
] g, (He2=Ho)"= 7-(Hea=B)(Hez—Ho) + 872 Br (Br 1))

__i)+ﬁ— . l‘ 27 Ba(Hep= B)TIN(Te /T)
5 1563 (74(3))%kka(Ba(Ba—1)/Kk?)?

1
==

. 36m°Ba(Hea— B)THN(T/T) [y
(7¢(3)2k3(Ba— (Ba—1)1x?)?| 9
(Heo—B)3 4G,
8mkHeo( Ba— (Ba— 1)k «*
| 3UG)BM(He—BINTIT)  a¥(He—B)*TiIn(T/T) | 18[
87(7¢(3)2kHep(Ba—(Ba— 1)/ k)3 (7¢(3)2k3H ca Ba—(Ba—1)11D)3|

2

M
X (ap+3by,) — RY'+ — Ry
K

1
T2 MM!(

Bat—

dfl 1) 4Dy} 2Baby| 7AGptGs—8Gyayl 1} 2by) by(G,—12Gy) by
9\7 m 5 1542 K 2 9\ m 5 15 10
2 M+1 1 AM 1 4M a; (1 1
M M M M 1
X l+,8Al_2BA+ §Gl) +182 W - Rl +7R2 ((l"’ E) Rl _FRZ 3 ;—T—2>
2b;| 36 1 1\, oam ) w2l 1) 4b;| 12
+?>+FM W - Rl+7R2 (R1_4MR2)§——T—2 +T—5K2
1 1 4M 273 (Heo—B)3TAN(T /T
X2 sl | 17 5 R+ = RY ((RQ"—4MR§")—6R§")J+ 2( c2” B)7TIn(Te/T) —
M : K K (74(3))“krkgH o Ba— (Ba— 1)/ k%)
Ba—1 RY 1 4M Ba—
Xl-bz ,BA(/BA_ 5 +2 VIV R e R2A+_2R2A +(ax+2by)| Ba| Ba—
K M : K K K
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11
2

4M

2
RY'+—RY | -~ =G,
K

}. (B.1)

In Eq. (B.1), ¢ is the Ginzburg—Landau parameter of a To obtain the expressio(B.1) for the free energy, we

clean superconductor used the relation
187 T2
T (B.2) >, CaCRiKRL=2eBBA(A0)?. (B.4)
7¢(3)vev? N.L
We have writtenBa;={|Aq|%)/(|Ao2)3, andV is the In accordance with the general assertions, the following

volume of the superconductor. We also introduced the fol€duation should hold:

lowing notation:
G +4E (R2)2— (B.5)

E CniCNL =RY(|A012)?,

KnL#

> CaiCMLIKE =RY(|Ao|?)%eB,

KNL#0
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We study the nonlinear dynamics of the interaction of two-level atoms and a selected mode of a
high-Q cavity with frequency modulation analytically and numerically. In the absence of
modulation, the corresponding semiclassical Heisenberg equations for the expectation values of
the collective atomic observables and the field-mode amplitudes allow, in the rotating

wave approximation and in the strong-coupling limit, an exact solution with arbitrary detuning.
Using this solution, we detect the coherent effect of trapping of the population of atomic

levels and of trapping of the number of photons in the cavity. The explanation for this effect lies
in the destructive interference of the atomic dipoles and the field mode. The integrable

version of the system of equations exhibits a separatrix near which a stochastic layer is formed
when modulation is introduced. The width of the layer is found to gradually increase with
degree of modulation, and finally it fills the entire energy-permissible volume of the phase space.
We show that the rotating wave approximation does not hinder the formation of Hamiltonian
chaos in cavity semiclassical electrodynamics. The calculation of the maximum Lyapunov indices
of nonlinear(in this approximatiopequations of motion as functions of the modulation

frequencys and the frequency of natural Rabi oscillations of the atom—field sysfensuggests

that Hamiltonian chaos appears first in the area of the fundamental parametric resonance,
6/2Q)=1. Parametric instability increases with increasing modulation and decreasing detuning
from the atom—field resonance, generating at exact resonance new areas of chaos
corresponding to multiple parametric resonances. The results of numerical experiments and
estimates of the characteristic parameters show that Rydberg atoms placed inarhigrowave
cavity are possible objects for observing parametric instability and dynamical chaos.

© 1999 American Institute of Physids$1063-776099)02502-0

1. INTRODUCTION Semiclassical factorization of the standard Jaynes—

The basis for cavity quantum electrodynamifer a re- Cummings model leads to a system of equations that are
view see, e.g., Ref.)lis the micromaset,a real device op- exactly integrable in the rotating wave approximation. As is
erating with Rydberg atoms in a high- superconducting well known, when this approximation is discarded, i.e., when
microwave cavity, which in the single-mode regime and thenonresonant terms describing virtual transitions are taken
strong-coupling limit is described by the Jaynes—Cummingdnto account in the Hamiltonian, the semiclassical model be-
model® Among other things, an attractive feature of suchcomes chaoti¢=® However, these terms play an important
systems is the possibility of experimentally studying the acrole when the number density of the atoms is extremely high,
tion of the atoms and the radiation field on the semiclassicat=10""cm™2, i.e., when the validity of the approximation of
semiquantum, and fully quantum levels by varying the num-honinteracting atoms adopted in Refs. 4-6 is problematic.
ber of atoms in the cavity. The study of the quantum behav-  In our recent papef§ we showed that when two-level
ior of the atom—field system in regimes where the semiclasatoms travel through a single-mode cavity, Hamiltonian
sical description of the system leads to dynamical instabilitychaos appears even in the rotating wave approximation in the
and chaos touches upon a new aspect of the old problem @bsence of external agents. Such a situation can be realized
guantum—classical correspondence, the relation betwedn micromaser experiments. Chaotic oscillations of atomic
guantum mechanics and nonlinear classical mechanics. inversion and the number of photons may appear in the semi-

This paper studies analytically and numerically Hamil- classical modéland in the semiquantum modtin the latter
tonian chaos in a parametric atom—field system whose equa&ase, the field, interatomic, and first-order atom—field quan-
tions of motion can be found from the operator Heisenbergum correlations are taken into account when the equations
equations via a semiclassical procedure of factorizing th@f motion for the expectation values are derivess a result
guantum correlators. On the one hand, such an approaeh new effect of cavity quantum electrodynamics appears,
leads to a dynamical system that can be analyzed by methosighich became known as chaotic Rabi vacuum oscillatfons.
of nonlinear classical mechanics. On the other, it allows oné his effect reflects the dynamical instability and chaos in the
to take into account some quantum correlation effects bynteraction of atoms and the vacuum in a hiQteavity. Note
carrying out semiguantum factorization. that reliable diagnostics of chaos in numerical experiments

1063-7761/99/88(2)/9/$15.00 406 © 1999 American Institute of Physics
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by the values of the maximum Lyapunov index requires highare valid only for times much shorter than the field-mode
velocities of the atomg;=10® cms !, and large values of decay timeT; and the atomic relaxation tim&,. Such a
the vacuum Rabi frequency),=10"rads . For moving situation occurs, for instance, with Rydberg atoms in high-
atoms, the mechanism of chaos formation is related to th® (Q=10'% microwave cavities cooled to subkelvin tem-
modulation of the vacuum Rabi frequen@yf(r) due to the peratures. In these conditions, the lifetime of microwave
spatially inhomogeneous structure of the cavity mode dephotons in the cavityT, is roughly 10*-10"?s, and the
scribed by a functiorf(r) (see Ref. 10 Here the natural lifetime of circular Rydberg states of aton¥,=10"2s (see
restrictions on the atomic velocities and hence on the moduRef. 1), is several orders of magnitude longer than even the
lation frequency limit parametric oscillations in the atom—period of single-atom Rabi vacuum oscillationg;,
field system to the adiabatic regime. =27/0,<10"°s. Note that the characteristic natural fre-
In the case of modulation of the energy of the activequency of a multiatomic system is the collective vacuum
atomic transition and/or the selected cavity mode with a freRabi frequencyQy=QqN at which theN-atom ensemble
guencyw,,, the atom—field system may demonstrate variousand the field mode coherently exchange energy. Thus, the
regimes of parametric oscillations: the adiabatic regimeHamiltonian approach provides a meaningful description of
(0w <QoyN), the nonadiabatic regimen{,>QyYN), and the atom—field dynamics only in what is known as the
nonlinear ~ parametric  resonance nu{(n=2QyN,  strong-coupling regimeQ,>T, 1 T; 1.
n=1,2,...,whereN is the number of atoms in the cavity A classical dynamical system generated by the Hamil-
In the present research we use analytical solutions and ntenian(1) is obtained as a result of replacing the Heisenberg
merical experiments to show how in the parametric resoequations for the operators by equation for the expectation
nance regime a system of immobile two-level atoms in avalues of these operators. Of course, the result of such a
single-mode high® cavity becomes extremely sensitive to transition is an infinite hierarchy of equations for the expec-
the slightest variations in the initial state of the atoms and th¢ation values. In the semiclassical approximation this
field mode. This becomes observable in chaotic oscillationinfinite-dimensional system of equations is truncated, and the

of the atomic inversion and the number of photons. result is a simple closed self-consistent system of equations
in which the reciprocal effect of the radiation field is taken
2. MODEL into account but the quantum correlations are ignored. The

] ] ] semiclassical approximation fof atoms can be showfsee
~ The interaction oN two-level atoms and a single mode (e Appendiy to be accurate t&(1/N). In the semiclassical
in a highQ cavity with parametric modulation is described |imit the natural quantum states over which averaging is
in the rotating wave approximation by the Jaynes—performed are generalized coherent states, i.e., the direct
CummingsN-atom Hamiltonian with time-dependent param- ,oqyct of a Glauber field coherent state and a Bloch atomic

eters: coherent state. As a result we arrive at the nonlinear dynami-
1 N 1 cal system
H= Eﬁwa 2 o)+ hog a'a+ >
= Xx=—y—QzP, y=x—QzE z=Q(xP+yE), (2)
N
+moj§1 (ad) +afol). (1) E—wP—0y, P=—wE—0x

For simplicity we assume that all the atoms are at rest angby three atomic variables,
have the same electric-dipole transition frequeagyand the

same vacuum Rabi frequen€ly,, i.e., the linear dimensions 1[N 1
of the atomic sample are assumed much smaller than the x= N< 2 a{(> y=N<
radiation wavelength. Modulations of the frequency of the =1

atomic transition by an external field and of the frequency of N

the selected cavity mode are possitde least in principlg 1 S o 3
The second type of modulation can be achieved in cavities z N T2/ ®)
with movable wall$! or in a cavity filled with a homoge-

neous medium with a time-dependent dielectric consfant. and two field variables,

Lately such systems have drawn much attention in connec-

tion with the possibility of producing photons from the 1 i

vacuunt® and of generating squeezed electromagnetic-field E=-—=(a+a'), P=-—=(a'—a). (4)
statest? Ignoring all quadratic effects, we model the selected WN WN

cavity mode by a simple harmonic oscillator with a vanable_l_he dot in (2) indicates the derivative with respect to the

frequencyw; . The results obtained in this paper can easily .. ol timer=w-t. and th trol A
be generalized to the case of a modulated atomic frequenc MENSIONIESS mer= w,l, an € control parameters are
e dimensionless collective vacuum Rabi frequency

w,, since the ratid6) of these frequencies is actually the
independent variable of the problem. QN
We study the complexity of the Hamiltonian semiclassi- __0

cal dynamics generated by the operdfigr Hence our results Wa

j=1

®)
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and the dimensionless variable detuning from resonance, _ 132 _
: arl . . (wo—1)2| Clwo—1)
which for the sake of definiteness has been chosen in the z°—|++-——-—|2°— |1+ ———|Z
form 2 20?2 20?2
w=wy(l+ asindr), (6) w C?
0 . _ _ - = ——|=0. (14)
where wo=wilw,, o6=wnlw, is the dimensionless 2 20

h ic-modulation f f the field mode, ands . .
armonic-moduration frequency ot the field mode, an We seek the solution for the unknowns of the integrable

the degree of modulation. . f the initial Svst ta=0 in the f
To be sure, the simple factorization of the correlators’€"S10N Of the Initial Sys en2) at =0 in the form

means that we project the motion of observables in an s
infinite-dimensional space of a completely quantum model X= — siN(wo7+ #) —U CO woT+ 0),
on the five-dimensional space of the variabi@sand (4) of

the semiclassical model. The presence of natural constants of s
motion, y=— 7 codwor+ ) —usin(wor+ 6),
X2+y?+z2=1, E*+P%+2z=W, (7) _
E=v sin(wgr+0), P=vcogwort ). (15

which reflect the unitarity of atomic evolution and the con- _ _
servation of the total energy, limits the motion of the dy- Using the constants of motion, we can easily show that all
namical systen(2) to three-dimensional space. By introduc- the new variable®, s, u, andv are functions of only one

ing new complex-valued variables, (old) variablez:
=X+iy, =P+iE, 8 C+ -1)z
Y y f ( ) s= (wO ) , U:im,
we can reduce the system of five nonlinear equation to a Q
single second-order complex-valued equation with variable 5 c 1
coefficients, 122 _[Ct (o Vz
u==*x1/1-z , 0 dr’.
1 1 v 0 W-2z
E—i(w+1)E— w+i(;)+§(12w)g+§()2§|g|2=o. (16)
(9) Thus, in the absence of modulation the motion is limited

This i lex Duffi il ith . . to a two-dimensional surface and is fully characterized by
NS 1S a compiex Dutling 0scil ator wit par.ametrlc excna-. the above general solutiqii2)—(16) describing the periodic
tion, which in our case describes the semiclassical Hamil-

. . . ) exchange of energy between the atoms and the field gener-
tonian dynamics of the interaction of two-level atoms and &ted by the atoms

single-mode frequency-modulated field. It is natural to sup- In terms of the new variables, the integrable version of
pose that such an oscillator may be chaotic, despite the Ze19) is
right-hand side of its equation of motidf).

. o1 s? s
3. EXACT SOLUTION OF AN INTEGRABLE SYSTEM v=Qu, u= EQU(W—UZ) +Q E+(wo— 1) o
In the absence of modulationr& 0), the initial system
(2) acquires an additional constant of motion, . s )
0=Q0—, s=(1—wyuv. 17

Q(XE—yP)—(wy—1)z=C, (10) v?
which reflects the conservation of the energy of interactionAt exact resonancey,=1, for C=0 andwW>0, the system
of the atoms and the field in the rotating wave approxima-of equation reduces to the equation of motion of the free
tion. By virtue of this constant of motion, the system of Duffing oscillator, whose phase plane,{) contains a pair
equations2) yields a closed equation for atomic inversion, of homoclinic trajectories that converge at the singular point
5 S, (Up=0,v9=0). In terms of the old variables, this sin-
: C+(wo—1)z ; : —y — -
7=+ \/(W— 22)(1-23)— | ————— (11)  gular point has the coordinateg=y=0, z,=1, andE,
Q =P,=0. The point is always unstable at exact resonance

This equation has an exact solution in terms of Jacobi's eland corresponds to the situation with fully inverted atoms in
liptic functions: a cavity with the vacuum field. The solution on the separatrix
(W=2) can be found from Egg15) and (16) and has the

Z3—Z Z,—2 ; .
2=2,+ (2o~ 2,)ST7 32 1Q(r— To);% 12 following form:
) ! X= = 2 sin Q r)tanh Q 7)cos 7+ 6y),
where
Y= *2 sinfQ r)tanh(Q 7)sin( 7+ 6y),
_ 1 le dz 13
20l a2 22) z;=1-25sinfQ7, (18

andz,<z,<z; are the roots of the characteristic equation Ps==*=2 sinQ7)cog 7+ 6,),
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Es=*2sinQ7)sin(7+ 6y), initial states of the atoms is equal to the phase of the field,
hered. i bit le. H d'in what foll ¢ the amplitude of the oscillations afis extremely small. The
WhEre b, IS an arbitrary angle. Here and in what 1ollows, 10 .o 554 for population trapping is the destructive interference

write the _solutio_n correctly, we select i_n the expressions with, e a1omic dipoles and the field mode. In the semiclassical
double signs either only the upper signs or only the Iowerlimit, one can find the explicit expressions for the corre-

SIigns. sponding initial conditions folN identical atoms and the
field, which in the case of exact resonaneg=1, lead to
4. TRAPPING OF THE POPULATION OF ATOMIC LEVELS population and radiation trapping:

The general exact solutiod5) of the integrable system Xo==* \/1—23 cosi,
contains an interesting particular solution that describes the _ )
coherent effect of trapping of the population of two-level ~ Yo=*V1—Zsinyg, 2zy=-p", (20)

atoms and trapping of the number of photons in the cavity. A _ — —
direct check readily shows that a solution of the form Eo=+V20=2y "COS¢y,  Po=2+2Zp—2, " siny,

> wo+1
Xy=*+\1—2z5co0 Trﬂp

where is an arbitrary number from the intervakQ8?<1,

) and ¢ is an arbitrary phase. Obviously, trapping is possible
at resonance if the initial Bloch vector is in the lower Bloch
hemisphere. The limizg= — 1 corresponds to the initial state

' [Xo=Yo=Eq=Py=0, zg=—1), which is the trivial equilib-
rium pointS_ of system(2).

+1

w
V1-25 sin( 02 ™+

<
Il
I+

20) , wo+1 5. PARAMETRIC RESONANCES AND HAMILTONIAN
By=+ -] V1-24 COE( 5Tt @), CHAOS: NUMERICAL RESULTS
20 wot1 Let us now go back to the syste(®) with modulation of
P,==* 1 \/1—20z sin(T T+ol, (190  the frequency detuning). In Sec. 3 we established that the
wo—

integrable version of this system has special homoclinic tra-
with ¢ an arbitrary phase, describes an interaction process ijectories(18). On the phase portraits of the integrable sys-
which the inversion densityz and the photon density tem, these trajectories constitute a family of two-dimensional
n=(E2+ P?)/4 remain unchanged. If if19) we put7=0, homoclinic tori converging to the saddle poi&t and pa-
we arrive at the initial conditions that lead to population andrametrized by the value of the total energ¥ Each torus is
radiation trapping. This phenomenon occurs when the atonthe location of states of the atom—field system with com-
are prepared in a superposition state with a certain phase aptetely excited atoms that emit and absorb light for an infi-
the field is prepared in a coherent state with the same phaseitely long time in the cavity with initial vacuum. It is to be
Note that the initial inversioz, can take any value from the expected that when a perturbation is introduced into the sys-
upper Bloch hemisphere,<09z,<1. The solutiong19) are  tem (in our case the perturbation is the frequency modula-
valid for arbitrary detuning from the resonance between theion), the steady and unsteady manifolds of the saddle mo-
mode frequency and the atomic transition frequency. tion begin to cross transversely, thus generating chaotic

The limit z,=0 is realized at exact resonance, oroscillations of the atom—field system.
wo=1. This corresponds to the initial atomic superposition  An illustration of the destruction of invariant manifolds
[xo=cose, Yo=sine, 2=0) and the initial field with an in- and the onset of chaos is provided by Poincseetions. Fig-
finite number of photons, which can be interpreted as theire 1 depicts the results of successively mapping the states of
phase state of the field. The other lingt,=1, corresponds the system in the plane of the field variablésand P for
to the initial state|xo=Yyo=E,=Po=0, zo=1), which is different degrees of modulatioa and fixed values of the
the equilibrium pointS, in the semiclassical approximation, other control parametersg= =1 and()}=0.5). The initial
since in this approximation all sources of spontaneous emisstate of the systenix,=yo=0, zg=1, Eq=Py=0.1), cor-
sion are discarded. Allowance for interatomic quantumresponding to the value®/;=2.02 andC=0 of the con-
correlationg results in a situation in which the state with stants of motion is near the singular poSit . The trajecto-
completely excited atoms decays in the vacuum, leading imies of motion of the integrable system€0) corresponds
the strong atom—field coupling regime to Rabi vacuum osto a regular Poincarsection(Fig. 18. When modulation is
cillations. switched on(even if the modulation is very loa stochastic

It is well known'* that population trapping is possible in layer appears near the separatrix. As the modulation-
the Jaynes—Cummings modelyhich in the rotating wave creases, the stochastic layer widens, and this manifests itself
approximation describes the interaction of a two-level atomn the corresponding section$igs. 1b and 1c Finally,
and a single mode of the quantized field in the case of zervhen « gets large enough, the trajectory fills the entire
detuning. Then the population inversion can be expresseenergy-permissible part of theE(P) plane (Fig. 1d. All
analytically by a series in the occupation numbers, whos¢hese figures depict Poincasections for a single trajectory.
numerical integration showthat when the phase of the Clearly, for the selected initial value of the total energy,
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P
2

(S

FIG. 1. Poincaresections in the plane of the
field variables E and P at §=wy=1,
0=0.5,W,=2.02, andC=0: (a) =0, (b)
a=0.01,(c) «=0.07, and(d) «=0.2.

W=2.02, the points of the mapping cannot land in the regiorcally increases witlf) and is almost entirely independent of

near the centeEy=P,=0 because of the restrictions im- §.

posed by the conservation lawg). With moderate detuning from resonanees= 0.9, there
Lyapunov indices serve as a quantitative characteristigre two areas of chad§ig. 2), whose centers in thes(Q)

of chaos, since they are the measure of local instability of glane correspond to a frequency rafit?Q=1. Here() is

dynamical system. For systems with several control paramsimply the frequency2o/N of natural oscillations of the

eters, topographia-maps$'’ usually provide a graphic PIC- unperturbed atom—field system divided by [see Eq(5)].

ture of chaos. In these maps the values of the maximump g 5/20=1 is the condition for the fundamental paramet-

Lyapunqv index\ are dep|cte_dusually by different shades ;. resonance. At exact atom—mode resonanggs 1, new

of gray) in the form of a function of two control parameters areas of chaos corresponding to the fundamental resonance

at f')_;_id vaIucTts offthel otlh?_r patrhameter§ ' L indi and the first subresonance witii2Q) ~1/2 appear(Fig. 3).
€ resufts of cajcuating the maximum Lyapunov INdl- o 4, Figs. 2—4 indicate the contours of the parameter

ces as functions of two chara_cterlstlc frequencies of the&/z&), while the number in the parentheses indicates the
atom—field system, the modulation frequengyon the log-

linear scalg and the collective Rabi frequendy, are de- value of this ratio, (1/2)(1), and (2),corresponding to a
picted in Figs. 2 and 3 at=1 and different values of the subresonance,'the fuqdamgntal resonance, and a superreso-
detuning amplitudewy=0.9 (Fig. 2 and wo=1 (Fig. 3. nance, respec_tlvely. Itis qglte natural that the stochastization
The strength of Hamiltonian chaos is characterized\bhy Qf the atom—field system |s.the strongest vyhen the mo‘?'F"a'
whose scale is depicted in the right part of the figures byion frequency and the Rabi frequency satisfy the condition
shades of gray. For the initial state we topky=Yy,=0, for the.fundamenta! pgramgt_nc resonance. However, fro.m
zo=1, Eg=Py=1) with completely excited atoms and a the entire parametric instability area specified by the ratio
photon number densitp=1/2. Areas of chaos are clearly 6/2Q2=1 we select values of that are integral multiples of
visible on these maps, and the number of these areas and thte other characteristic frequencies of the systen,and
chaos strength in them increase as the carrier frequency ©f-

of the mode approaches the atomic transition frequengy As expected, a decrease in the modulation narrows the
i.e., aswy— 1. Under the same conditions the calculatiedt ~ areas of parametric instability of the system. Figure 4 depicts
not shown here\-map forwy,=0.1 suggests that the chaos the A\-map in the ¢,(2) plane for the same conditions as in
is extremely weak(in the calculation range ©9Q =<5, the Fig. 3 but for a lower modulationy=0.2. The broad area of
maximum Lyapunov index is 0.006its strength monotoni- chaos ate=1 (Fig. 3) disintegrates into a chain of small
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FIG. 2. Topographic map of maximum

003 Lyapunov indices\ as functions of the

modulation frequencys (on the log-linear
| scalg and the Rabi oscillation frequendy
. 202 ata=1 andwy=0.9.
._zg_.' — 2497
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“islets” of chaos ata=0.2(Fig. 4). The chaos in these islets initial conditions. IfA;>0 (\;<0), the volume element in-

is much weaker than the chaos in the area: the correspondingeasegdecreasesin the respective direction as the system

maximum Lyapunov index is less than 0.01 in the islets.  evolves. In a Hamiltonian systefwhich our semiclassical
As is well knOW”vls_ Lyapunov indices are the measure atom-—field model i5 the phase volume in an invariant mea-

of the_ ratg of deformqtlon of the phase volume along d'ﬁer'sure, so thaB™ ;\;=0.

ent directions. Anm-dimensional system ha®s Lyapunov Positive Lyapunov indices determine the Krylov—

indices (\;, i=1,2,...m) ordered according to their val- . . _ wn<my (+)
Ues,\;<A,<---<A.=A\, and generally depending on the Kolmogorov—Sina metric entropyh=2;=;"\;"’ (see Ref.

2.4

log &

. . @ o

FIG. 3. The same as in Fig. 2 far,=1 and
a=1.

2.5 S0
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16). According to the algorithmic theory of dynamical in the atom-field system are represented by topographic
systems,*® the entropyh is formally equivalent to the al- \-maps in which the areas of equal values of the maximum
gorithmic complexityK of a trajectory, a quantity that is the Lyapunov index of the systerm are depictedby different
measure of the randomness of the sequence generated by tbisades of grgyas functions of the values of two control
trajectory. On the other hand, the purely dynamical characparameters. The stochastization of the system is the strongest
teristic A of the system is related to a statistical characterisin the vicinity of the fundamental parametric resonance
tic, the reciprocal correlation-decoupling timerd/ which is  (§/2Q0=1), when the modulation frequency is approxi-
present in the expression for the correlation funct®ft)  mately two times higher than the frequency with which the
=Coexp(-t/r). As a result, the maximum Lyapunov index atoms and the mode exchange energy. Parametric instability
A, the metric entropyh, the algorithmic complexit, and  increases as the detuning from the resonance between the
the reciprocal correlation-decoupling timerdare quantities  atomic and field frequencies decreases<1), and at exact

of the same order. Thus, statistical laws can emerge as res@isonance new areas of chaos corresponding to multiple

. s . . . ’20 . . B
of local instability in the chaotic dynamics: parametric resonances arise. As the modulatiatecreases,
the system becomes more stable, which manifests itself in
6. CONCLUSION the disintegration of the broad area of chaos in thg))

We have studied the nonlinear dynamics of the interacPlane ate=1 (Fig. 3) into a chain of small “islets” of chaos
tion of an ensemble of identical two-level atoms and a sedta=0.2(Fig. 4 and in a sharp decrease in the valuea of
lected cavity mode. In the rotating wave approximation, the ~ Thus, in the semiclassical Jaynes—Cummings model
semiclassical approximation, and the strong-coupling limitWwith parametric modulation, Hamiltonian chaos appears even
we have derived explicitly the general exact solution of thein the rotating wave approximation. While in a system with-
respective Heisenberg equations for the expectation values 6fit the rotating wave approximation chaos is a threshold
the atomic and field observables for an arbitrary detuningffect, appearing fof2=0.5-1(see Refs. 4 and)6in the
from resonance. Using this solution, we detected the coheparametric model, as shown by our numerical experiments,
ent effect of trapping of the population of atomic levels andmeasurable chaos appears at much smaller values of the Rabi
of trapping of the radiation in the cavity, an effect that arisesfrequency,2=0.05. This means that the dynamics of Ryd-
because of destructive interferences of the atomic dipoleberg atoms with a typical active transition frequency
prepared in a superposition state with a certain phase and the,=10"rad s ! that interact with frequency-modulated mi-
field mode prepared in a coherent state with the same phasgiowave radiation in the millimeter range becomes para-

By using Poincaresections we have found that the metrically unstable, provided th&,/N=10%. Obviously,
modulation of the frequency of the selected mode leads, evelhis must be reflected in the broadening of the Rabi oscilla-
in the rotating wave approximation, to the formation of ation spectrum. Thus, chaos appears at typitathe strong-
stochastic layer near the separatrix of the integrable modetoupling limit) values of the one-photon vacuum Rabi fre-
and the width of the layer increases with the modulation. Thejuency of Rydberg atoms),=1Crads ! (see Ref. 1,
results of the numerical investigation of Hamiltonian chaoswhen the number of these atoms is relatively small,
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N=10'". For such values oN, the rotating wave approxi- dAl L _
mation, the semiclassical approximation, the approximation ——gi =1 @A’ + 5 Qn(SHiSy).

of noninteracting atoms, and the assumption that the linear

dimensions of the atomic Samp]e are small may be Consid.n the semiclassical ||m|t, the equations of motion for the
ered adequate. corresponding expectation values of the operators,

What are the prospect for studying quantum-—classical 2=(S),  7=(S), Z=(S),
correspondence using Hamiltonian chaos in atom—field sys- N Ty
Z=(AT+A), 7=i(AT-A), (24)

tems in cavities as an example? The Heisenberg approach
makes it possible to take the quantum correlations and fludn terms of the dimensionless time= w,t have the form
tuations into accounfsee the Appendix and the Refs. 8, 9,
21, and 22 cited thereinIn a recent paper of oufswe
derive a closed systesaquations that describes in the rotat-
ing wave approximation the dynamics of the interaction of
two- Igvel atoms and a cavity mode Wlth allowance for the e O 25
field, interatomic, and first-order atom—field quantum corr-
elators. The commutators of the normalized operators vanish
In a future publication we plan to obtain the exact solu-whenN is large. Obviously, in this limit the semiclassical
tion of the integrable version of thisemiquantum system approximation is valid. ForN finite, the relative error
study the onset of chaos in such a system in the presence afmounts to a quantity of orderN/ The equation of motion
parametric modulation, and compare the results of the semfor these operators and the expectation values are indepen-
quantum and semiclassical analyses. dent ofN. Using the normalizatiof21) and the semiclassical
This work was supported by the Russian Fund for Fundynamical system, we can derive a hierarchy of dynamical
damental ReseardfProjects 96-02-19827 and 96-02-18746 systems in which the quantum corrections due to quantum
correlations and fluctuations are taken into account explic-
itly. Indeed, when the commutatof&2) do not vanish, the
dependence on the small parametdt frdanifests itself only
in the quantum correlators. The quantum corrections can be
taken into account by the Nfexpansion method by intro-
ducing cumulants of order (M)" (a description of how to
use this approach in the Jaynes—Cummings model can be
found in Ref. 2}, a method based on averaging the operators
over generalized coherent states at the initial montseé
Ref. 22 for a description of the Dicke model in an external
coherent fiely or by other methods(see Ref. 8 for a de-
scription of the Dicke model with moving atoms

L==Y-QZP Y=2-QZZ,

Z=2P+YE), L=0r—QY,

APPENDIX

We introduce new operators normalized to the nuniber
of atoms by the formulas

A= AT a,

N
sx=$<§a'> Sy=%<

a,
(21)
=1
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The transition of liquid®He to the superfluid phase in aerogel &=0 is considered. It is

shown that in a magnetic field, the quantum phase transition with respect to pressure is split in two.
The amount of splittingdP is estimated. The components of the superfluid density tensor

are calculated near the critical pressures. 1899 American Institute of Physics.
[S1063-776(199)02602-3

1. The behavior of superfluidHe in a silica aerogel 1. . .
environment is a subject of recent experimental fo(K)= ;j Fo(k,©)dé=(f I+ f,a)iay, 3
investigations- The scattering of quasiparticles on a ran-
dom network of SiQ@ strands affects superfluid correlations, where the unit vectok specifies the location on the normal
thus considerably modifying the phase diagram of liqlié  state Fermi sphere.
in the millikelvin  temperature range. In?}eresting In an external magnetic field=Hgh, the functionsg,,
observatlon%vx_/ere made concerning the behavior bfe gt and?w satisfy a set of equatior(&)():woﬁ, wo=YHy):

T=0 where, in contrast to bulk liquidHe, superfluidity
shows up only above some critical density (at pressures
P>P,).

The situation afT=0 for *He in aerogel was recently
considered theoreticalfy.It is shown that according to a
simple model with scattering effects characterized by the
guasiparticle mean free paltk v, the critical pressur®,
is given by the equation

i
0,A+0,As+ of ,— > wof ,=0,

[
O0,A+g,A+ wfw—zwofwzo. 4
Here pin-singlet and spin-triplet order paramet&tsand
A, respectively, are the components of the matrix
Teo(Po)=vel/mr, Inyg=C=0.577, (1) A(R)=(AST+At&)i5'y, (5)

whereT.y(P) is the P-dependent critical temperature of the Which is found according to the self-consistency equation
transition of bulk®He to the superfluid state. NeBg the gap
function (the order parametgis A(k)==TY, (V(k,k"HE,(k)), (6)

Teo(P) ) whereV(k,k’) is the Cooper pairing interaction and angle
Teo(Pe) brackets denote averaging across the Fermi surface.

. I . . _ The set of equation&) should be supplemented by the
The investigation carried out in Ref. 5 is based on the

_ ) - «boundary» conditions

assumption that the superfluid state RtP. is of the

B-phase type. It should be remembered that the appearance gf,+ gfa+f§,+f§,=1, 0,9, 1 fofo=0. (7
of aB-phase-like state in aerogel at low pressures is expecte.fi
when the magnetic contribution to quasiparticle scattering
events is suppressed bHe layers covering the silica fo=8,90, f0=8,00, Jo=—8,8,04: (8
strands’ In what follows we extend the results of Ref. 5 to
the B phase in a magnetic field. Our obvious motivation is to
explore an expected magnetic splitting of quantum phase signw
transition atT=0. The behavior of magnetically distorted 0,=— ———,
3He-B in aerogel atT=T, has been considered by us in Vitagyl+ag
Ref. 6.

2. In what follows we use quasiclassical Green’s func- a
tions (the &integrated Gorkov functionsin the Matsubara
representation: This is our starting point when considering the properties
of the magnetize® phase. In order to take into account the
quasiparticles scattering on aerogel spatial irregularities
(1/7#0), the “impurity”-induced renormalization of the

A%(P)= i¢9(P—P )In
T2 c

he structure of Eqg4) and(7) implies that
and the solution is easily obtained:

i 2iAst wed, i 2iA+wea,

© 2 w—Aa, ’ =3 w—Aga, ©

Sy C 1 ol > T ~
0,1 = — [ 6,k.Hde=g,1+ 0,8

1063-7761/99/88(2)/5/$15.00 415 © 1999 American Institute of Physics
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frequenciesw and wg and of the order parametdr is to be AZ(R)=Aﬁ(P,T)(TR)Z+Af(P,T)(TXR)Z, (16)

performed according to a standard prescription: ) o
and in zero magnetic field ,=A, =A.

w—B=0+iMy, wi—oe=wy—2hMg, Using Egs.(12) and(14), and taking into account that
A(k)—:iA-;)—A.(k,)’erg), | .(10) Z)zw—ziT<g;(I2)> 17
where the “impurity”’-generated self-energies are given by
R R i R with
M“’:M“’HM‘“&:Z_r(g‘”(k))’ - 3 Af
5 a8 AT AL (18

M, = (m, i+ mw&)iayzziﬁw(lz». (12) . _
T equations for amplituded\,(P,T) and A, (P,T) can be
Before proceeding, an important comment should bgeadily derived.
made. Since we are going to consider a superfluid state with ~ Let us consider first the planar phask, 0). Near the
p-wave Cooper pairing for WhicN(R,R’)zgg(RR’)' from transition to the normal state fdr, (k) we obtain
Eq. (6) it is certainly clear than,=0 and A, satisfies the

. 1 1 .
equation In_l_co+zp 2+W) W 2) A, (k)
A(k)=gmT> (3kk'f5 (k). (12 3ydw)
© =7 (2am?Z (KK |AL(K")[*AL (k"))
The does not mean, however, that in our starting expressions
for a, anda, we have to forget about the presenceAqf. w3 (1/2+w) 2 S
The point is that when considering the “impurity” renormal- 12 (27T)? (aD)A,(k), (19

ization,,, the contribution stemming from the spin-singlet B ) . )
partm, must be taken into account. This involves the calcu-Wherew(T) =1/4=Tr. After simple averaging we obtain an

lation of the superfluid density tenspf”, which is a re- equation fora , (P, T):

sponse of the system to the superfluid velocity figlénd is 0 1 1 1
contained in the expression for the supercurrent AL{ In—+y 5) - l//(§+W + gl//(z) 5tw
js=2mikeNETS (Rgg 1 ig(K)).- (13 © ot AV
” + 5% 5w | 5] (=0 (20)

Here'vs is’, absorbgd ing(k) =ke(kvs) and N,F denotes 1 the limit T—0(w—), it is found that for the planar
the quasiparticle density of states at the Fermi level. As Wef)hase

noted in Ref. 6, to first order ig, the spin-singlet par; . i,
is proportional to (1#)weq and contributes te{ in the
magnetized phase in the aerogel environment.

3. Now we turn to the calculation of equilibrium prop- , o _ )
erties of magnetizedHe-B in a quasiparticle scattering me- Where A“(P) is given by the Mineev solutioitat wo=0),
dium. Noticing that in the absence of superflovg ( Eq. (2). The coefficient 15/16 in Eq21) is due to the aver-

=0)A(K) is not renormalized in nonmagnetic scattering, anoaﬁg‘sgéamﬂzo (which gives an answer analogous to the

ddressing Eq€9), it can be shown that to lowest order in P . .
addressing Eq49), it can be shown that to lowest order in As will be seen below, the solutiof2l) extends up to

the magnetic field strength, ! "
g g the pressurd®>= P, whereA first appears. The new critical

2 15 2
AT(P)=75A%(P), (21

1 pressureP; is given by

fo(K)= ——=—=
Vo +A%(k) To(P) 4
InT P =§(w07) . (22
1 3 Af 71)(2) CO( c)
X A=7| 4 252+ A2 |22+ A2] (14) To show this we turn back to Eq$12) and (14) and,

after simple calculations, a set of equationsfqrandA is
In this expression the longitudinal component &f  gbtained(again in the limitT=0):

=A,+A, is given by

1
A(R)=(RA(K)R=A,(P,T)(Tk)A, (15) Ay AT+ E(AE—A%—AZ}:o,
where the magnetic-field induced orbital anisotropy &s 2 3
defined ad;=h,R,; with R,; being the components of an Ay Af+ 7z (Af—AT)— A%+ Z o
orthogonal matrix of 3D relative spin-orbit rotations. We
note also that The solution of Eqs(23) for Aj#0, A, #0 is (P=P))

=0. (23
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4 3 TP 29e\? fiylkg)?
AZ(P)=A2— —wi=>In olP) :(E) (7iy/Ks) _ (30)
37 77 Teo(Py) 37| Teo(Pe)(dTco/P)p.

A2(P)=AZ(P)+ ng_ (24) Using experimental data ofi.o(P), we find that atP,
=7 bar the coefficieniv=2-10 2 bar(kG)? and increases
gradually toa=2.8-10" 2 bar{kG)? at P,= 10 bar.

4. Now we turn to the calculation of the superfluid den-

sity tensor

It can be verified that? (P,) matches the solutio(24)
Finally we conclude that aP<P. the normal state is

realized; in the pressure range< P<P, the planar phase is

stabilized; and afP>P; a magnetically distorted® phase

appears. p!
At P, a discontinuity of the magnetic susceptibility takes

place(similar to a discontinuity of the compressibility Bt).  For this purpose Eq13) is to be used and; i, should be
In order to demonstrate this property the superfluid contribuzonstructed. Returning to Eqé9) and performing “impu-
tion @5 to the thermodynamic potential density is to be CON-rity” renormalizations according to Eqg(10), it can be

'S):Pﬁs)h'ﬁpf)((sij_|i|j)-

i (31)

structed. In the Ginzburg—Landau regigwhich we con-
side

2 Teo(P) , 1] Teo(P) 1 2| v 2

q’s‘ﬁNF[_'”Tcomc) AT MTpy 2 oA
7 1 1

+5 Aj+§A;‘+ E(Af—Af 2 ] (25

It is easily verified that the solutions of Eq23) realize the
minima of ®g.

At zero magnetic field o=0)A, =A;=A, and in this
case(see Ref. b

TcO( P)
TcO( Pc)

(DS:(I)SO:NF _In (26)

2
2.7 \a
A+6A}'

It can be shown that in equilibrium the magnetic field oq il be seen shortl

contribution®gy=®s—dg; is

1
D=

9 Teo(P

A A I’]2 CO( ) y ch P$ PH y
16" Teo(Pe)

1] Te(P) 2 , ,

5 nm 5(&)07') ((DOT) s P?P”.

(27)

This expression is certainly continuous R&P;. On the
other hand,

Fogg |° e s
CTE @9

g PNelogr, PP,

which signals the discontinuity of magnetic susceptibility

atPy.
Now we shall estimate the value 6P=P,— P, which

characterizes the magnetic splitting of the superfluid phase

transition of°He in aerogel al =0. According to Eq(22),

1
Teo(Pe)

dTeo 4 )
W) . oP= §(w07') ,
Cc

(29

so thatéP= aHZ2, where

equations fom

shown that

A’g+imamt) 3 @2

@ —
(Z)Z+ AZ)S/Z 2 ('5)2_{_ A2)5/2

w+iq™

2\, 3 i@
X 1_ZZ)2+A2 AHq_Z(Z)2+A2)5/2

w

2
AHmQ)_ E L(Am(}))
w+

(32

~ 2
@ 42 RAaymd
('ZOZ_I_AZ)B/Z(:L 2 '5)2+A2)(hA)mw !

ymnt" andm{™) are proportional ta.
The renormalized frequenci@s and @, obey

G 1 3 DAL a3
0=+ 2 (Z)2+A2)1/2+ 8 (@2+A2)52/" (33

~ A2
Bo=wot oo | ———— (34)
0ot o (@2+A2)3"2 '

In order to construct equations fam(;)l) and m‘;}” we
have to address the expressions figr ;, andf;,,q. In the
lowest order inwg andAg

N wwy(hA) —2i w?Aq

fa) 2 (w2+A2)3/2 ' (35)
~2 ~ 2
. @ w, @[, 3 A" |09
fZ) - (5)2+A2)372 m; + P ( 2 w2+ A2 (hA) D
. (ha)(AmE)
_ L) _g> 727 @7
5| ml-3—— |1 36)

Now, according to Eq(11) and using Eq(33) for the

renormalized frequenc®, we easily obtain the following
@.

0
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D A2 @ According to the definition ofQ, the spin-singlet part
( 27 m@z) m m () is absent from the planar phask,E0). We begin our
consideration op{® with just this simple case, for which in
1 o0’ i o’ A the Ginzburg— Landau regime,
27 (02 A2 B2+ A2 Mo i
3 A2 \Q gy)=— W[AﬁquiE)Alm%)], (42)
1257573 S |
N N A mP=— ! % (42)
whereQ=((kA)q) = (1/3)KgA Ivs. ) ® 67/ w|+A% /B2

A little more algebra is needed to construct an equation

for md- Now, using Eq(13) for the supercurrent, it can be easily
@ shown that for the planar phase
(Amz")A pld 2
@4 2 AT
(“’”‘w z<m>) : > 5|~|3,
RN s
=52 =2 A2\
+ = = 4
27 (@°+4%° o =mT 2 |@ |3 5 67'|w|+A %2 43
~2  ~
I @Q 1. (}))ﬁ with @ = w+ (1/27)signe.
"2z (22 +AH)%2\B2+A% 37 Considering the limiT =0, we convert thesv-summation
G (1) )A+(A (1))h to integration and, using the frequency renormalization equa-
m; m> ;
tion
1 1 w
5 (HA)Z(iaq+Am§~}>) 1—2—<—~2 . 1,2> == (44)
- E (Z)2+A2)2 T [(l) +AL(k)] @
pass to a new variablg w) =270(w). Fore, =27A, <1,
| (1)0(1)
m bR 38 1 €
3 @ anmme ] B remz14 i 54, (45)

It is evident thaﬁm I which appears in Eq37), must

be calculated aibo=0. Addressing Eq(38), we readily find  S° ot =0

that in this caséim'® is given by 1 (= €
® 7T (. .):—f L dz[1-2 (). (46)
Z’u A2 i 22 1-é3 3z
D
27( 24 Az)?’;z)h ® 27 (0%+ A2)3;2Q' Now, from Eqgs.(43) it is readily obtained that af=0
(39 andP.<P<P,
Since in what follows we consider the Ginzburg—Landau (9 7 pl® 5 3
region(nearT. or nearP. at T=0), a set of equations is to —= —ef. —= —Gf 1+ =In—|. (47)
p 5 p 5 6 €
be used: L
1) The case witlA | #0 andA;#0 needs much more ef-
(1) @ (|/2)hm +Ql/w fort. Here bothm%) and m—f;)l) contribute to the supercurrent.
© D 27w|+A%D? Starting from the general expressi¢h3), linearizing with
o respect tog and using Eq(32), after quite lengthy calcula-
Am® — — 3iQ/w (40)  tions the following answers fop(® andp(® are obtained at
® A~ .| L A2/~2"
67w +A%D T=0 near the critical pressui®,(e,=27A,):
In the denominators of these expressions the t&ftH? is p'¥ 1(4 , 1,0 1, 3
retained. When considering the vicinity af., it is to be —=5|celtce|tzelIn—, (48)
. . p 2\5 5 3 €7
dropped as a higher-order correction. On the other hand, at
T=0 this term must be preserved, as well shall see shortly, (9 1/92 3
. . ) . . P\ 2 2 2
in order to avoid unphysical divergences stemming fromthe —=5|-€l+ €|+ 5€/In—
vicinity of w=0 P25 S 3 €1
The appearance cmf;l)aéo is due to a mixing of states 1, 2 2 2
with S;=0 of spin-singlet 6=0) and spin-triplet $=1) tgeiaz 16(2"IN3) A2 AZ' (49)

configurations in the presence of three factors: quasiparticle
scattering (1##0), magnetic field ,#0), and supercur- The last term upﬁs) is a contribution of the spin-single cor-
rent (Q+#0). relations described bm(l)
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In zero magnetic fieldo=0), from Egs.(48) and(49)  in generalTo(x) is a nonmonotonic function of. For in-
we immediately obtain that stance, in La_,Sr,CuQ,, T.o(X) is bell-shaped with a maxi-
mum at an optimal doping.

o PP 1, 2 3
—=—=z€11+5In—|. (50 ) .
P p 2 3 € We are indepted to V. P. Mineev for useful comments.
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As a final remark we point out that the results found in : X
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Ref. 5 can be readily transcribed to the casd ef0 prop-
erties of nonmagnetic impurity-containing HTSC. In this
situation, the transition temperature to the superconductinge._imai: gogi@iph.hepi.edu.ge
stateT.q for a pure sample depends on the level of the hole
doping x so that the critical concentration of holeg at =~ _
which a quantum phase transition should occuat0 is % V- Porto lll and J. M. Parpia, Phys. Rev. Let4, 4667 (1995.

. . . . D. T. Sprague, T. M. Haard, J. B. Kycia, M. R. Rand, Y. Lee, P. J. Hamot,
given by Eq.(1) with the pressur® being substituted by the  _ 4\ p. Halperin, Phys. Rev. Lelt5, 661 (1995.
hole concentratiorx. The superconducting order parameter 3p. T. Sprague, T. M. Haard, J. B. Kycia, M. R. Rand, Y. Lee, P. J. Hamot,

A(X) nearx, is given by and W. P. Halperin, Phys. Rev. Left7, 4568(1996.
4K. Matsumoto, J. V. Porto, L. Pollack, E. N. Smith, T. L. Ho, and J. M.

) a  Te(X) | O(x—x.), (ITcoldX)x >0, Parpia, Phys. Rev. Let?9, 253 (1997.
A%(X)=—In—r— ’ (51 5V. P. Mineev, JETP Lett66, 693 (1997.
T Tco(xc) @)(XC_X)’ (‘QTCO/[?X)XC<O' 6G. Baramidze, G. Kharadze, and G. Vachnadze, JETP B&t.107

. - 1996.
Here we have used a simpkwave pairing model, (1998

where in the weak go_gpling apprOXimatiqn the coefficiant pyplished in English in the original Russian journal. Reproduced here with
=6/5. The two possibilities in Eq51) take into account that stylistic changes by the Translation Editor.
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