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The amplitude of two-photon axion decay in a crossed field is calculated, taking into account the
polarization states of the photons. The decay probability and amplitude in an external
electromagnetic field exceed the decay probability and amplitude in vacuum even for values of
the invariant parameterx5Ae2(kF2k)/me

3 greater than the small quantityma /me .
Astrophysical aspects associated with this circumstance are discussed. ©1999 American
Institute of Physics.@S1063-7761~99!00102-X#
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The decay processes of elementary particles with m
near or equal to zero have been of continuing interest for
last several decades. As a rule, this is associated with a
physical and cosmological aspects such as the missing-m
problem, the ‘‘aging’’ of photons, and other problems. F
example, the process of photon decay~or splitting! g→2g in
an external constant and homogeneous electromagnetic
which is forbidden in vacuum because of considerations
CP invariance, has been intensively discussed in
literature.1–4 In fields F!F05me

2/e54.4131013G, the
splitting amplitude is proportional toF3 ~Ref. 1!, and in a
purely magnetic field with inductionF@F0 goes to a
constant.3,1! Without answering the questions associated w
the red shift ~because of the smallness of the interste
fields!, this effect can cause the observed linear polariza
of the hard radiation of pulsars.2 A feature of the kinematics
is that the momenta of the ‘‘decay’’ photons and the init
photons are parallel, so that the phase volume can be wr
as

E d3k1

2k10
E d3k2

2k20
d~k2k12k2!5

p

2 E
0

1

dx, ~1!

wherek15kx, k25k(12x), andk is the momentum of the
decaying photon. When the massmi of the initial particle is
nonzero, the contributions to the matrix element that desc
the deviation from ‘‘parallelness’’ and the decay probabil
will contain k25mi

2 . For small mass, this allows them to b
neglected by comparison with the contribution from t
other invariant parameters~for example, the field parameters!
that enter into the problem~this circumstance will be use
below!.

Another decay that is of interest, of a massive neutr
to less massive ones,n i→n jg, is possible in models with
mixing.6–8 The massive relict neutrinos formed at the time
the Big Bang very probably owe their origin to precisely th
channel, and this has a direct relationship to the miss
mass problem. The inhibiting factors are associated here
the smallness ofmi , the phase volume (mj→mi), and with
the GIM mechanism.9 As shown in our paper,10 these limi-
tations are largely removed in superstrong magnetic fie
2091063-7761/99/88(2)/4/$15.00
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F@F0, and the decay probability in a magnetic field excee
that in vacuum by many orders of magnitude.

That paper discusses the effect of an electromagn
field on two-photon axion decay,a→2g, and shows that
when the actual values of the invariant field parameter

x5
Ae2~kF2k!

me
3

, ~2!

are much less than unity the decay probability in a fie
exceeds the decay probability in vacuum. A similar circu
stance was pointed out earlier only in beta decay with a sm
energy yield11 ~of course, we are not thinking of process
that are in general forbidden in the absence of an exte
field!.

An axion is a pseudoscalar Goldstone boson that app
in the spontaneous breakdown of the global symmetry in
duced by Peccei and Quinn.12 Its existence, although not ye
confirmed experimentally, would be extremely desirable
a natural explanation of the observedCP invariance of
strong interactions.13,14 The coupling constants of an axio
with ordinary particles are inversely proportional tof —the
energy scale of the breakdown of global symmetry—with
lower limit of f being extremely large,f *1010GeV ~an in-
visible axion!, but the axion massma is a fraction of an
electron volt or less~in this connection, an axion can be
candidate for the role of the carrier of the missing mass!. It is
assumed that the only decay channel is two-photon de
with an effective interaction Lagrangian of

Lag52
1

16p
ggFmnF̃mna. ~3!

Here we have putgg52e2cg/2p f , wherecg;1 is a model-
dependent dimensionless parameter, andF̃mn

5(1/2)«mnabFab is the dual tensor of the radiation field
The corresponding decay probability per unit time equals15

W05
a2cg

2ma
4

32~2p!3k0f 2
, ~4!

while the quantityW0
21 is greater than the lifetime of the

universe.
© 1999 American Institute of Physics
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The most ‘‘economical’’ version of the implementatio
of the Peccei–Quinn mechanism is expressed in a di
axion–fermion coupling of the form16

La f5
cf

2 f
~C̄gmg5C!

]a

]xm
, ~5!

while the interaction with the other particles has an effect
character.

In the presence of an external magnetic fieldF, diagrams
with an electron loop (f 5e) contribute both to the axion
mass, which is estimated to be considerably less thanma ,
and to the field-dependent part of the two-photon decay
plitude ~see Fig. 1!. The corresponding Lagrangian is th

sum of Eq.~5! and the electrodynamic parte(C̄gmC)Am.
Further calculations are carried out in the crossed-fi

configuration, in which both invariants,FmnFmn and
FmnF̃mn, equal zero. Such an approach is fairly general a
moreover, significantly simplifies the calculations. The co
putations are largely analogous to those in Ref. 4, wh
discussed the photon-splitting process in a crossed field,
described by an electron tripole.

The Green’s function of the Dirac equation for an ele
tron in a crossed field in the proper-time representation
the form

G~x2 ,x1!5expF2 ieE
x1

x2
~dx8A~x8!!GS~x22x1!, ~6!

S~x!52
1

~4p!2 E0

` ds

s2
expF2

ix2

4s
2 isme

2

2
ise2

12
~xF2x!GFme1

x̂

2s
2

se2

3
~gF2x!

1
mese

2
~gFg!2

ie

2
g5~gF̃x!G . ~6a!

As a result of certain transformations, the decay ma
element, defined in the usual way,17 can be written as

M52
2p iace

f E d4xE d4x2Tr@S~x2!ê2* S~x1!ê1* S~x!k̂g5#

3expF2
ie

2
~x2Fx!2 i ~k1x!1 i ~k2x2!G1~g1↔g2!, ~7!

whereei are the polarization vectors of the photons,x1x1

1x250, k5k11k2, and the notation (g1↔g2) denotes
photon permutation. Using Eq.~6a! and integrating over the
spatial coordinates, we get

FIG. 1.
ct

e

-

d

d,
-
h
lso

-
s

x

M52
iace

2p f E
0

` ds ds1ds2

~s1s11s2!2
~Qn1n2e2 iF!e1n1

* e2n2
*

1~g1↔g2!. ~8!

Here we have introduced the notation

F5me
2~s1s11s2!2bS k2

s
1

k1
2

s1
1

k2
2

s2
D 22be~k2Fk1!

1
be2

3
@r~kF2k!1r1~k1F2k1!1r2~k2F2k2!#, ~8a!

b5
ss1s2

s1s11s2
, r5s11s22s1

s1s2

s
,

Qn1n25
1

4
Tr@~me1V̂11T11g5Â1!gn2~me1V̂1T

1g5Â!gn1~me1V̂21T21g5Â2!k̂g5#, ~8b!

Va5
Xa

2s
2

se2

3
~XF2!a , T5

mese

2
~gFg!,

Aa5
ie

2
~XF̃!a ,

the form of r1,2 is obtained fromr by cyclic permutation,
and V1,2, T1,2, andA1,2 are obtained fromV, T, andA by
obvious extensions of the symbols, with the following de
nition of the differential operators acting one2 iF:

X1a52 i
]

]k2
a

, X2a5 i
]

]k1
a

, Xa52X1a2X2a .

~8c!

We note the following circumstances as important
the subsequent transformations:

~a! It is easy to show that the (g1↔g2) term in Eq.~7!
reduces to the replacementF→2F in the first term, so that
only even powers of the field remain in the total amplitud

~b! The field-independent contribution can be related
the effective Lagrangian of the interaction of the axion w
the radiation field, Eq.~3!, so that we are interested for no
in the ‘‘field’’ contribution

MF5M2M uF50 . ~9!

~c! The terms;k1,2
2 remain in Eq.~8a! for F and can be

set equal to zero only after carrying out differential ope
tions; the same holds true of the terms;k2 and (k1Fk2),
which can then be dropped as inserting a power of an a
tional small parameterma

2/me
2 into MF .

~d! As in Ref. 4, it should be recalled that the result
the action of the differential operators one2 iF in linear com-
binations has the form

Xa→X̃a52bFk1a

s1
2

k2a

s2
1e~kF!a

1
e2

3
~2r1~k1F2!a1r2~k2F2!a!G , ~10a!

and so on, and, in cubic combinations,
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X1aXbX2s→X̃1aX̃bX̃2s

12ibF X̃1aS gbs

s1
2eFbs2

e2

3
r1Fbs

2 D
1X̃2sS gab

s2
2eFab2

e2

3
r2Fab

2 D
1X̃bS gas

s
1eFas2

e2

3
rFas

2 D G . ~10b!

We shall not show the resulting form of the tensorQn1n2

because it is too complicated.
Further simplifications are associated with the introd

tion of two independent states of linear polarization of t
photons of the form

e1a
~V!5

~k1F !a

A~k1F2k1!
, e1a

~P!5
~k1F̃ !a

A~k1F̃2k1!
~11!

and new dimensionless variables

h5me
2~s1s11s2!, u5

s11s2

s1s11s2
, v5

s1

s11s2
,

E
0

` ds ds1ds2

~s1s11s2!2
→

1

me
2E0

1

du uE
0

1

dvE
0

`

dh. ~12!

In this notation, we get

MF
PV52

iceame
2

6p f
x2E

0

1

du uE
0

1

dvE
0

`

dh h

3S w11 ihw21
i

3
x2h3w4De2 iF, ~13!

where

F511
1

3
h3V,

V5x2u2$@v~12uv !2x~12u!#2

14xuv~12u!~12v !2%, ~13a!

the variablex and the parameterx are given by Eqs.~1! and
~2! and the functionsw1,2,4(u,v,x) are given in the Appen-
dix. The form ofMF

VP is obtained fromMF
PV by the replace-

mentsv→12v andx→12x, while MF
VV5MF

PP50, which
is associated with theCP invariance of the theory. Thus, i
the approximation used here, an axion in a crossed field
cays to photons with orthogonal polarizations. Introduc
the complex Hardy–Stokes function

f ~z!5 i E
0

`

dt expF2 i S zt1
t3

3 D G , ~14!

we rewrite the final general result in the form
-
e

e-
g

MF
PV52

iceame
2

6p f
x2E

0

1

du uE
0

1

dv z2Fw1f 8~z!

2zw2f 9~z!1
1

3
z3x2w4f-8~z!G , z5V21/3.

~15!

In the limit having practical significance,x!1, the value
of z is everywhere large in the region of integration, an
using the relationshipf (z)uz→`.1/z and Eqs. ~A1! and
~A2!, it is easy to find that

MF
PV.2

iceame
2

240p f
x2~113x!, ~16!

which corresponds to a double interaction with the field
the electron loop.

This expression is actually valid even in the case of
bitrary constant fieldsF5const, since the possible differenc
would consist of an addition tox2 of a term of the form
(FmnFmn /F0

2)(ma
2/me

2), which is much less thanx2 in the
limit k0@ma . Moreover, as follows from the form of the
effective Lagrangian in Eq.~3!, the matrix element for
‘‘free’’ decay differs in order of magnitude from Eq.~16! by
the replacement ofme

2x2 by 102ma
2 . Thus, the field contri-

bution begins to dominate in the limitx@x0510(ma /me),
and this, for example, for a value ofma;0.1 eV, gives a
lower limit x0;1026.

Assuming that this is satisfied, we get the total dec
probability into unpolarized photons in a constant and hom
geneous fieldF5const:

WF5
1

32pk0
E

0

1

dx@ uMF
PVu21uMF

VPu2#, ~17!

i.e.,

WF5
7ce

2a2me
4x4

232402~2p!3k0f 2
, ~18!

where we have allowed for the indistinguishability of th
photons by dividing by 2. Of course, when the axion mas
small, the effect of the dominance of the field contribution
the decay probability increases for smallx.

In the asymptotic limitx@1, it is impossible in Eq.~15!
to simply take the derivatives of the Hardy–Stokes funct
as zero~as was done, for example, in Ref. 4 in studying t
photon-splitting process!, since the integral from the third
term will diverge asu,v→1 ~this singularity occurs when
the mass operator of an axion in a crossed field is comput!.
In this connection, the power ofx in the amplitude can be
greater than 2/3. In this version, the field contribution is t
determining contribution in any case.

Our analysis thus allows us to conclude that, even
comparatively weak fields, the decay of a ‘‘stiff’’ axion i
completely controlled by the value of this field, as follow
from the conditionx@ma /me and the form ofx given by
Eq. ~2!. However, this has hardly any significance in ast
physical terms, since interstellar fields are rather weak,
the axion lifetime relative to two-photon decay remains
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before much longer than the lifetime of the universe beca
of the smallness of the coupling constant 1/f . The presence
of strong magnetic fields in collapsed objects such as neu
stars, however, cannot substantially reduce their assume
ion luminance18 because of small spatial size.

In conclusion, we note that our result does not coinc
in the asymptotic limitx!1 with the result of Ref. 19, in
which, using pseudoscalar̂ pseudoscalar coupling in th
LagrangianLa f , it was found thatWF;x8.

APPENDIX A

The form of the functionsw i(u,v,x) in the expression
for the amplitude, Eq.~15!, is the following:

w15uv@423u13u223u~71u!v124u2v2#

1ux@8221u19u213~2417u1u2!

3v112u~223u!v2#, ~A1!

w254uv~123uv12u2v2!14ux@526u

1u223~22u!~12uv !v#, ~A2!

w452u3$2v3~122uv !~12uv !~12u2v2!1xv2@6~1

2u!212u3~31u!13v~2412u18u227u3

23u4!1v2u~24252u115u2113u3!16v3u2~2

13u24u2!12v4u3~212111u!#1x2v~12u!

3@2~3215u120u224u3!13v~28134u238u2

13u31u4!14v2~6221u114u215u3!1v3u2~1

2u!~36219v !#12x3~12u!2@27110u2u2
se

on
ax-

e

19v~223u!13v2~2416u1u2!

23v3u~12u!#%. ~A3!

1!This result was obtained again in a recently published paper5 without re-
ferring to our paper.3
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Violation of the factorization theorem in large angle radiative Bhabha scattering
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The lowest order QED radiative corrections to the radiative large angle Bhabha scattering
process in the region where all kinematic invariants are large compared to the electron mass are
considered. We show that the leading logarithmic corrections do not factorize before the
Born cross section, contrary to the picture assumed in the renormalization group approach. The
leading and non leading contributions for typical kinematics of the hard process at the
energy of theF factory are estimated. ©1999 American Institute of Physics.
@S1063-7761~99!00202-4#
ay

rg
ig
o
b

b

n
r

ec
id

rg

n-
o
th

a
pe
rte

o
e

d

oc

r

ti

ns

ht
as

te-
up

be
it,

ces

der

k
the
nt
nce

ms
r-
he
1. INTRODUCTION

The large angle Bhabha scattering process LABS pl
an important role ine1e2 colliding beam physics.1 First, it
is traditionally used for calibration, because it has a la
cross section and can be recognized easily. Second, it m
provide essential background information in a study
quarkonia physics. The result obtained below can also
used to construct Monte Carlo event generators for Bha
scattering processes.

In our previous papers we considered the following co
tributions to the large angle Bhabha cross section: pair p
duction ~virtual, soft,2 and hard3! and two hard photons.4

This paper is devoted to the calculation of radiative corr
tions to a single hard-photon emission process. We cons
the kinematics essentially of type 2→3, in which all possible
scalar products of 4-momenta of external particles are la
compared to the electron mass squared.

Considering virtual corrections, we identify gauge i
variant sets of Feynman diagrams. Loop corrections ass
ated with emission and absorption of virtual photons by
same fermionic line are called as Glass-type~G! corrections.
The case in which a loop involves exchange of two virtu
photons between different fermionic lines is called Box-ty
~B! Feynman diagrams. The third class includes the ve
function and vacuum polarization contributions~GP-type!.
We see explicitly that all terms that contain the square
large logarithms ln(s/m2), as well as those that contain th
infrared singularity parameter~fictitious photon massl!,
cancel out in the total sum, where the emission of an ad
tional soft photon is also considered.

We note here that the part of the general result ass
ated with scattering-type diagrams@see Fig. 1~1, 5!# was
used to describe radiative deep inelastic scattering with
diative corrections taken into account in Ref. 5~we labeled it
the Compton tensor with heavy photon!. A similar set of
Feynman diagrams can be used to describe the annihila
channel.3

The problem of virtual radiative corrections calculatio
at the one-loop level is cumbersome for the process
2131063-7761/99/88(2)/7/$15.00
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e1~p2!1e2~p1!→e1~p28!1e2~p18!1g~k1!. ~1!

Specifically, if at the Born level we need to consider eig
Feynman diagrams, then at the one-loop level we have
many as 72. Furthermore, performing loop momentum in
gration, we introduce scalar, vector, and tensor integrals
to the third rank with 2, 3, 4, and 5 denominators~a set of
relevant integrals is given in our preprint6!. A high degree of
symmetry of Feynman diagrams for a cross section can
exploited to calculate the matrix element squared. Using
we can restrict ourselves to the consideration of interferen
of the Born-level amplitudes@Fig. 1 ~1–4!# with those that
contain one-loop integrals@Fig. 1 ~5–16!#. Our calculation is
simplified since we omit the electron massm in evaluating
the corresponding traces due to the kinematic region un
consideration:

s;s1;2t1;2t;2u;2u1;x1,2;x1,28 @m2,

s52p1p2 , t522p2p28 , u522p1p28 ,

s152p18p28 , t1522p1p18 , u1522p2p18 ,

x1,252k1p1,2, x1,28 52k1p1,28 ,

s1s11t1t11u1u150, s1t1u5x18 ,

s11t1u152x1 , t1x15t11x18 . ~2!

We found that some kind of local factorization too
place both for the G- and B-type Feynman diagrams:
leading logarithmic contribution to the matrix eleme
squared, summed over spin states, arising from interfere
of one of the four Feynman diagrams at the Born level@Fig.
1 ~1–4!# with some one-loop-corrected Feynman diagra
@Fig. 1 ~5–16!#, turns out to be proportional to the interfe
ence of the corresponding amplitudes at the Born level. T
latter has the form
© 1999 American Institute of Physics
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FIG. 1. G- and B-type Feynman diagrams for radiati
Bhabha scattering.
d,
try
s:
E05~4pa!23( uM1u2

52
16

t2

1

4
Tr~ p̂18Õ118p̂1O118!

1

4
Tr~ p̂2gsp̂28gr!

52
16

tx1x18
~u21u1

21s21s1
2!,

O05~4pa!23( M1M2*

5
8

tt1
S s

x1x2
1

s1

x18x28
1

u

x1x28
1

u1

x2x18
D

3~u21u1
21s21s1

2!,

I 05~4pa!23( M1~M3* 1M4* !

52~11Ẑ!
4

ts1
H 2

4u1x28

x1
1

4u~s11t1!~s1t !

x2x18

2
2

x1x2
@2suu11~u1u1!~uu11ss12tt1!#

1
2

x1x18
@2t1uu11~u1u1!~uu11tt12ss1!#J ,

O1185gr

p̂181 k̂1

x18
gm2gm

p̂12 k̂1

x1
gr ,

Õ1185O118~r↔m!, ~3!

where theẐ-operator acts as follows:
Ẑ5U p1↔p18

p2↔p28

k1→2k1

s↔s1

u↔u1

t,t1→t,t1

U .

It can be shown that the total matrix element square
summed over spin states, can be obtained using symme
properties realized by means of the permutation operation

( uM u25~4pa!3F,

F5~11 P̂1Q̂1R̂!F

516
ss1~s21s1

2!1tt1~ t21t1
2!1uu1~u21u1

2!

ss1tt1

3S s

x1x2
1

s1

x18x28
2

t

x2x28
2

t1

x1x18
1

u

x1x28
1

u1

x2x18
D ,

F5E01O02I 0. ~4!

The explicit form of theP̂,Q̂,R̂ operators is

P̂5Up1↔2p28

p2↔2p18

k1→k1

s↔s1

t↔t1

u,u1→u,u1

U ,

Q̂5U p2↔2p18

p28→p28

p1 ,k1→p1 ,k1

s↔t1

s1↔t
u,u1→u,u1

U ,

R̂5U p1↔2p28

p18→p18

p2 ,k1→p2 ,k1

s↔t
s1↔t1

u,u1→u,u1

U . ~5!
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FIG. 2. Content of the notation for Fig. 1.
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The differential cross section at the Born level in the case
large angle kinematics~2! was found in Ref. 7:

ds0~p1 ,p2!5
a3

32sp2 F
d3p18d

3p28d
3k1

«18«28v1

3d~4!~p11p22p182p282k1!, ~6!

where«1 , «2 , andv1 are the energies of the outgoing fe
mions and photon, respectively. The collinear kinematics
gions ~real photon emitted in the direction of one of th
charged particles! corresponding to the case in which one
the invariantsx i ,x i8 is of orderm2 yields the main contribu-
tion to the total cross section. These require separate in
tigation, and will be considered elsewhere.

Our paper is organized as follows. In Sec. 2 we consi
the contribution due to the set of Feynman diagrams Fig
~5–8! calledglasseshere~G-type diagrams!. Using crossing
symmetry, we construct the whole G-type contribution fro
the gauge-invariant set of Feynman diagrams in Fig. 1~5!.
Moreover, only the set of Feynman diagrams depicted in F
2~d! can be considered in practical calculations, due to
additional mirror symmetry in the diagrams of Fig. 2~d and
e!. We therefore start by checking the gauge invariance
the Compton tensor described by the Feynman diagram
Fig. 2~d and e! for all fermions and one of the photons on th
mass shell. In Sec. 3 we consider the contribution of am
tudes containing vertex functions and the virtual photon
larization operator shown in Fig. 1~13–16! and Fig. 2~f and
g!. In Sec. 4 we take into account the contribution of Fey
man diagrams with virtual two-photon exchange, shown
Fig. 1 ~9–12!, called boxes here~B-type diagrams!. Again,
using the crossing symmetry of Feynman diagrams, we s
how to use only the Feynman diagrams of Fig. 1~9! in cal-
culations. We show that the terms containing infrared sin
larities, as well as these containing large logarithms, can
written in simple form, related to certain contributions to t
radiative Bhabha cross section in the Born approximat
~3!. We also control terms in the matrix element squared t
do not contain large logarithms and are infrared-finite. Th
our considerations permit us to calculate the cross sectio
the kinematic region~2!, in principle, to power-law accuracy
i.e., neglecting terms that are

O S a

p

m2

s
Ls

2D , ~7!
f

-

s-

r
1

.
n

f
of

i-
-

-
n

w

-
e

n
at
s
in

as compared toO ~a/p! terms calculated in this paper. Not
that the terms in~7! are less than 1024 for typical moderately
high energy colliders~DAFNE, VEPP-2M, BEPS!. Unfortu-
nately, the non leading terms are too complicated to be p
sented analytically, so we have only estimated them num
cally. In Sec. 5 we consider emission of an additional s
photon in our radiated Bhabha process. To conclude, we
that the expression for the total correction, taking into a
count virtual and real soft photon emission in the lead
logarithmic approximation, has a very elegant and han
form, although it differs from what one might expect in th
approach based on renormalization group ideas. Besides
lytic expressions, we also give numerical values, along w
the non leading terms for a few points under typical expe
mental conditions.

2. CONTRIBUTION OF G-TYPE DIAGRAMS

We begin by explicitly checking the gauge invariance
the tensor

ū~p18!R1,18
sm u~p1!. ~8!

This was done indirectly in Ref. 5, where the Compton te
sor for a heavy photon was written in terms of explicit
gauge invariant tensor structures. We use the expression

R1,18
sm

5Rx11Rx18, ~9!

Rx15A2gsk̂1gm1E d4k

ip2

3H gl~ p̂182 k̂!gs~ p̂12 k̂12 k̂!gl~ p̂12 k̂1!gm

2x1~0!~2!~q!

1
gl~ p̂182 k̂!gs~ p̂12 k̂12 k̂!gm~ p̂12 k̂!gl

~0!~1!~2!~q!
J , ~10!

where

~0!5k22l2, ~2!5~p182k!22m2, ~1!5~p12k!22m2,

~q!5~p12k12k!22m2, A25
2

x1
S Lx1

2
1

2D ,

Lx1
5 ln

x1

m2 . ~11!
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The quantityRx1 corresponds to the Feynman diagram

depicted in Fig. 2d, whileRx18 corresponds to those in Fig
2~e!. The first term on the right-hand side of Eq.~10! corre-
sponds to the first two of Fig. 2d under conditions~2!. The
gauge invariance conditionR1,18

sm km50 is clearly satisfied.
The gauge invariance condition regarding the heavy pho
Lorentz index provides some check of the loop moment
integrals, which can be found in Ref. 6:

ū~p18!R1,18
sm u~p1!qsem~k1!5Ak1

mem~k1!,

A522
Lx1

22

x1
26

Lx
18
21

x18
. ~12!

The gauge invariance is thus satisfied due to the Lore
condition for the on shell photon,e(k1)k150. As stated
above, the use of crossing symmetries of amplitudes per
us to consider onlyRx1. For interference of amplitudes at th
Born level@see Fig. 1~1–4! and Fig. 1~5–8!#, we obtain in
terms of the replacement operators

~DuM u2!G525a4p2~11 P̂1Q̂1R̂!~11Ẑ!

3@E15
x11O25

x12I 35
x12I 45

x1#, ~13!

with

E15
x15

16

t2

1

4
Tr~ p̂18R

x1p̂1Q118!
1

4
Tr~ p̂2grp̂28gs!,

O25
x15

16

tt1

1

4
Tr~ p̂18R

x1p̂1gr!
1

4
Tr~ p̂2gsp̂28O228!,

I 35
x15

4

ts1

1

4
Tr~ p̂18R

x1p̂1O12p̂2gsp̂28gr!,

I 45
x15

4

ts

1

4
Tr~ p̂18R

x1p̂1grp̂2gsp̂28O1828!,

O1185gr

p̂181 k̂1

x18
gm2gm

p̂12 k̂1

x1
gr ,

O2285gm

2 p̂282 k̂1

x28
gr2gr

2 p̂21 k̂1

x2
gm ,

O1252gm

p̂12 k̂1

x1
gr2gr

2 p̂21 k̂1

x2
gm ,

O18285gr

p̂181 k̂1

x18
gm1gm

2 p̂282 k̂1

x28
gr . ~14!

In the logarithmic approximation, the G-type amplitude co
tribution to the cross section has the form

dsG5
ds0

F

a

p
~11 P̂1Q̂1R̂!F

3F2
1

2
Lt1

2 1
3

2
Lt1

12Lt1
ln

l

mG ,
Lt1

5 ln
2t1

m2 . ~15!
n

tz

its

-

3. VACUUM POLARIZATION AND VERTEX INSERTION
CONTRIBUTIONS

Let us examine a set ofGP-type Feynman diagrams. Th
contribution of the Dirac form factor of fermions an
vacuum polarization@see Fig. 1~13–16!# can be param-
etrized as (11G t)/(12P t), while the contribution of the
Pauli form factor is proportional to the fermion mass, and
omitted here. We obtain

dsGP5
ds0

F

a

p
2~11 P̂1Q̂1R̂!~G t1P t!F, ~16!

where

G t5
a

p H S ln
m

l
21D ~12Lt!2

1

4
Lt2

1

4
Lt

21
1

2
z2J ,

P t5
a

p S 1

3
Lt2

5

9D , Lt5 ln
2t

m2 . ~17!

In realistic calculations, the vacuum polarization due to h
rons and muons can be taken into account in a very sim
fashion,8 just by adding it toP t .

4. CONTRIBUTION OF THE B-TYPE SET OF FEYNMAN
DIAGRAMS

A procedure resembling the one used in the previo
section, applied to the B-type set of Feynman diagrams@Fig.
1 ~9–12a!#, enables us to use only certain one-loop diagra
in practical calculations, specifically three of those in t
scattering channel with uncrossed exchanged photon leg

~DuM u2!B525a4p2 Re~11 P̂1Q̂1R̂!@~12 P̂228!I 19
x1

1~11 P̂228!I 29
x12I #, ~18!

where

P̂2285U p2↔2p28

p1↔p1

p18 ,k1→p18 ,k1

s↔u
s1↔u1

t,t1→t,t1

U , ~19!

and

I 19
x15E d4k

ip2

1

~0!~q!~~p21k!22m2!

16

t

1

4

3Tr~ p̂18B
x1p̂1O118!

1

4
Tr~ p̂2gs~2 p̂22 k̂!glp̂28gr!,

I 29
x15E d4k

ip2

1

~0!~q!~~p21k!22m2!

16

t1

1

4

3Tr~ p̂18B
x1p̂1gr!

1

4
Tr~ p̂2gs~2 p̂22 k̂!glp̂28O228!,

I 5E d4k

ip2

1

~0!~q! H 4

s1

1

4
TrS p̂28grp̂18B

x1p̂1O12p̂2~Â1B̂!

1
4

s

1

4
Tr~ p̂28O1828p̂1Bx1p̂1grp̂2~Â1B̂!!J ,



h-

f

te
u
o

rm

ie
o
o

y
ha

q.

the

ht-

217JETP 88 (2), February 1999 Arbuzov et al.
Â5
gs~2 p̂22 k̂!gl

~p21k!22m2 , B̂5
gl~2 p̂281 k̂!gs

~2p281k!22m2 . ~20!

Here

Bx15
gl~ p̂12 k̂12 k̂!gs~ p̂12 k̂1!gm

2x1~d!

1
gl~ p̂12 k̂12 k̂!gm~ p̂12 k̂!gs

~d!~1!

1
gm~ p̂181 k̂1!gl~ p̂12 k̂!gs

x18~1!
,

~q!5~p22p281k!22l2, ~d!5~p12k12k!22m2,

~1!5~p12k!22m2, ~0!5k22l2. ~21!

Analytic evaluations divulge a lack of both double logarit
mic (}Ls

2) and infrared logarithmic (} ln(l/m)L) terms in the
box contribution. In spite of the explicit proportionality o
the individual contributions to the structuresE0 , O0 , andI 0 ,
the overall expression turns out to be somewhat convolu
despite it has a factorized form in each gauge-invariant s
set of diagrams. We parametrize the correction coming fr
the B-type Feynman diagrams as follows:

dsB5ds0

a

p
LsDB , DB52 ln

ss1

uu1
1

2

F
~FQ1FR!ln

tt1

ss1
.

~22!

The total virtual correction to the cross section has the fo

dsvirt5dsG1dsGP1dsB5ds0

a

p F2Ls
21LsS 11

3

14 ln
l

m
1DG1DGP1DBD1O ~1!G ,

DG1DGP5
1

F S F ln
s2

tt1
1FR ln

t2

ss1
1FQ ln

t1
2

ss1

1FP ln
s1

2

tt1
D , ~23!

whereFP5 P̂F, FQ5Q̂F, andFR5R̂F.

5. CONTRIBUTION FROM ADDITIONAL SOFT PHOTON
EMISSION

Consider now radiative Bhabha scattering accompan
by emission of an additional soft photon in the center
mass reference frame. By soft we mean that its energy d
not exceed some small quantityD«, compared to the energ
« of the initial beams. The corresponding cross section
the form

dssoft5ds0dsoft,
d,
b-
m

d
f
es

s

dsoft52
4pa

16p3 E d3k2

v2
S 2

p1

p1k2
1

p18

p18k2

1
p2

p2k2
2

p28

p28k2
D 2U

v2,D«

. ~24!

The soft photon energy does not exceedD«!«15«2

[«;«18;«28 . In order to calculate the right-hand side of E
~24!, we use the master equation:9

2
4pa

16p3 E d3k

v

~qi !
2

~qik!2U
v,D«

52
a

p
lnS mD«

l« i
D ,

v5Ak21l2, ~25!

4pa

16p3 E d3k

v

2q1q2

~kq1!~kq2!
U

v,D«

5
a

p FLq lnS m2~D«!2

l2«1«2
D

1
1

2
Lq

22
1

2
ln2S «1

«2
D2

p2

3
1Li2S cos2

u

2 D G . ~26!

Here we used the notation

Lq5 ln
2q2

m2 , q1
25q2

25m2, 2q252~q12q2!2@m2,

q1,25~«1,2,q1,2!, u5q1q2̂, ~27!

where«1 , «2 , andu are the energies and angle between
3-momentaq1 , q2 , respectively, andl is the fictitious pho-
ton mass~all defined in the center of mass system!.

The contributions of each possible term on the rig
hand side of Eq.~24! are

p

a
dsoft52D12D22D182D281D121D1828

1D1181D2282D1282D182 ,

D15D25 ln
mD«

«l
, D185 ln

mD«

«18l
, D285 ln

mD«

«28l
,

D1252Ls ln
mD«

«l
1

1

2
Ls

22
p2

3
,

D18285Ls1
lnS ~mD«!2

«18«28l
2 D 1

1

2
Ls1

2 2
1

2
ln2S «18

«28
D 2

p2

3

1Li2S cos2
u1828

2 D ,

D1185Lt1
lnS ~mD«!2

«18«l2 D 1
1

2
Lt1

2 2
1

2
ln2S «18

« D 2
p2

3

1Li2S cos2
u18
2 D ,

D2285Lt lnS ~mD«!2

««28l
2 D 1

1

2
Lt

22
1

2
ln2S «28

« D 2
p2

3

1Li2S sin2
u28
2 D ,
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D1825Lu1
lnS ~mD«!2

««18l
2 D 1

1

2
Lu1

2 2
1

2
ln2S «18

« D 2
p2

3

1Li2S sin2
u18
2 D ,

D1285Lu lnS ~mD«!2

««28l
2 D 1

1

2
Lu

22
1

2
ln2S «

«28
D 2

p2

3

1Li2S cos2
u28
2 D ,

Lu5 ln
2u

m2 , Lu1
5 ln

2u1

m2 ,

Li 2~z![2E
0

z dx

x
ln~12x!, ~28!

where«18 ,«28 are the center of mass energies of the scatte
electron and positron, respectively;u18 ,u28 , are their scat-
tering angles~measured from the initial electron momentu
direction!; andu1828 is the angle between the scattered el
tron and positron momenta.

Separating out large logarithms, we obtain

dsoft5
a

p H 4~Ls21!ln
mD«

l«
1Ls

21Ls ln
tt1

uu1

1Ls ln
12c1828

2
1O ~1!J ,

c18285cosu1828 . ~29!

This can be written in another form, using experimenta
measurable quantities, the relative energies of the scatt
leptons and the scattering angles~see Table I!:

yi5
« i8

«
, ci5cosu i8 ,

1

2
~12c1828!5

y11y221

y1y2
,

2
t

s
5y2

11c2

2
, 2

u

s
5y2

12c2

2
, 2

t1

s
5y1

12c1

2
,

s1

s
5y11y221, 2

u1

s
5y1

11c1

2
. ~30!

6. CONCLUSIONS

The double logarithmic terms of typeLs
2 and those pro-

portional to Ls ln(l/m) cancel in the overall sum with th
corresponding terms from the soft photon contribution~29!.
Omitting vacuum polarization, we obtain in the logarithm
approximation

TABLE I. Numerical estimates ofDL andD versusy1 ,y2 ,c1 ,c2 .

N y1 y2 c1 c2 DL D

1 0.36 0.89 20.70 20.10 10.70 224.53
2 0.59 0.66 0.29 20.06 4.86 211.41
3 0.67 0.67 0.50 0.30 5.82 235.58
4 0.68 0.65 0.60 20.50 4.10 210.45
d

-

ed

dssoft1virt5ds0

a

p FLsS 4 ln
D«

«
1DLD

1D~y1 ,y2 ,c1 ,c2!G ,
DL531 ln

~12c1!~12c2!

~11c1!~11c2!
1 ln

y11y221

y1y2

1
1

F FF ln
s2

tt1
1FP ln

s1
2

tt1
1FQ ln

t1
2

ss1
1FR ln

t2

ss1
G

12 ln
ss1

uu1
1

2

F
~FQ1FR!ln

tt1

ss1
. ~31!

The functionD(y1 ,y2 ,c1 ,c2) is quite complicated. To
compare it withDL , we give their numerical values~omit-
ting vacuum polarization! for a certain set of points from
physical regions~32! and y11y2.1, D.0 ~see Table I!.
Considering the kinematics typical of large angle inelas
Bhabha scattering, we show the lowest-order contribut
previously obtained10 and the radiative corrections calculate
in this work.

After performing loop integration and shifting loga
rithms (Li5Ls1Lis), one can see that the terms containi
infrared singularities and double logarithmic terms;Ls

2, are
associated with a factor equal to the corresponding Born c
tribution. This is true of all types of contributions.

The phase volume

dG5
d3p18d

3p28d
3k1

«18«28v1
d~4!~p11p22p182p282k1!

can be transformed in various ways.10 We introduce the vari-
ables@see Eq.~30!#

yi5
« i8

«
, ci5cosu i8 , u i85p1 ,pi8̂,

0,yi,1, 21,c1,2,1, ~32!

which parametrize the kinematics of the outgoing partic
~these do not include a common degree of freedom, a r
tion about the beam axis!. The phase volume then takes th
form

dG5
psdy1dy2dc1dc2

2AD~y1 ,y2 ,c1 ,c2!
Q~y11y221!

3Q@D~y1 ,y2 ,c1 ,c2!#,

D~y1 ,y2 ,c1 ,c2!5r22c1
22c2

222c1828c1c2 ,

r252~12c1828!
~12y1!~12y2!

y1y2
. ~33!

The allowed region of integration is a triangle in they1 ,y2

plane and the interior of the ellipseD.0 in thec1 ,c2 plane.
We now discuss the relation of our result to the ren

malization group approach. The dependence onD«/« in ~31!
disappears when one takes into account hard two-pho
emission. The leading contribution arises from the kinem
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ics when the second hard photon is emitted close to the
rection of motion of one of the incoming or outgoing pa
ticles:

dshard5
a

2p
LsF11z2

12z
~ds0~zp1 ,p2 ,p18 ,p28!

1ds0~p1 ,zp2 ,p18 ,p28!!dz

1
11z1

2

12z1
ds0S p1 ,p2 ,

p18

z1
,p28Ddz1

1
11z2

2

12z2
ds0S p1 ,p2 ,p18 ,

p28

z2
Ddz2G ,

z512x2 , zi5
yi

yi1x2
, x25

v2

«
. ~34!

The fractional energy of the additional photon varies with
the limits D«/«,x25v2 /«,1. This formula agrees with
the Drell–Yan form of radiative Bhabha scattering~with
switched-off vacuum polarization!

ds~p1 ,p2 ,p18 ,p28!5E dx1dx2D~x1!D~x2!ds0

3S x1p1 ,x2p2 ,
p18

z1
,
p28

z2
D

3D~z1!D~z2!dz1dz2 , ~35!

where the non-singlet structure functionsD are11

D~z!5d~12z!1
a

2p
LP ~1!~z!1S a

2p
L D 2 1

2!
P ~2!~z!1...,

P ~1!~z!5 lim
D→0

F11z2

12z
Q~12z2D!1d~12z!S 2 lnD1

3

2D G .
~36!

In our calculations we see explicitly a factorization
the terms containing double logarithmic contributions a
infrared single logarithmic ones, which arise from G- a
GP-type Feynman diagrams. To be precise, the correspo
ing contributions to the cross section have the structure
the Born cross section~6!. But the above claim fails to be
true for terms containing single logarithms. Hence,
Drell–Yan form~35! is not valid in this case, and the facto
ization theorem breaks down, because the mass singula
~large logarithms! do not factorize before the Born structur
That is because of plenty of different type amplitudes a
kinematic variables, which describe our process. The rea
for the violation of a naive usage of factorization in th
Drell–Yan form has presumably the same origin with th
found in Ref. 12, where the authors claimed that it is nec
sary to study independently the renormalization group
havior of leading logarithms before different amplitudes
the same process. Note that in theem→emg reaction, which
can easily be extracted from our results, factorization d
i-

d

d-
of

e

ies

d
on

t
s-
-

f

s

take place. We also see from~31! that factorization will take
place if all the logarithmic terms become equal, i.
ln(s1 /m2)5ln(s/m2)5... . The source for the violation of th
factorization theorem, we found, might have a relation
some of those found in other problems.13

Numerical estimates~see Table I! for the F factory en-
ergy range (As.1 GeV) shows that the contribution of th
non leading terms coming from virtual and soft real phot
emission might reach 35%. Additional hard photon emiss
will also contribute toDL andD. To get an explicit form of
that correction, one has to take into account a definite exp
mental setup.

Obviously, an analogous phenomenon of the factori
tion theorem violation takes place in QCD in processes l
qq̄→qq̄g and qq̄→qq̄g. A consistent investigation of the
latter processes, taking into account the phenomenon fo
can give a certain correction to predictions for large angle
production and direct hard photon emission at proto
antiproton colliders.
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Zh. Éksp. Teor. Fiz.115, 404–415~February 1999!

This work is a continuation of the experimental and theoretical investigations of the effect of the
Z1

3 correction to the stopping power of ions on the passage of heavy ions40Ar, 56Fe, 197Au,
131Xe, and 238U with energies of about 1 GeV/nucleon through a homogeneous medium. The
previously observed systematic deviations of the calculations based on the first Born
approximation to the scattering of a particle by the atomic electrons in the medium from the
experimental values of the total ionization ranges of the nuclei and their stopping powers is
confirmed. The discrepancy increases with the atomic number of the projectile nucleus. It is
shown that theZ1

3 correction in the form proposed by Jackson and McCarthy eliminates, especially
for ions with Z1.50, the systematic discrepancy between the computed and experimental
values. For the experimental energy range relativistic Mott scattering of a particle by the atomic
electrons in the target makes the dominant contribution to the observedZ1

3 effect. © 1999
American Institute of Physics.@S1063-7761~99!00302-9#
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1. INTRODUCTION

Despite the apparent abundance of experimental in
mation, data on the passage of heavy nuclei through ho
geneous media remains sporadic and incomplete. Most m
els describing the overall characteristics of the passag
heavy nuclei with energies of about 1 GeV/nucleon, such
the ionization ranges of heavy nuclei, the longitudinal a
transverse stragglings of these ranges, and the stopping
ers of heavy ions, were developed and tested more tha
years ago on charged particles with small mass and
energy.1–8

In recent years, indications of appreciable deviations
the ranges of these nuclei9–16 and their stopping powers17

from the simpleZ1
2 dependence, prescribed by the Beth

Bloch theory,1,2 on the atomic number of the ion have be
obtained in a number of experimental works investigat
the passage of nuclei with atomic number greater than 7

This work is a continuation of the experimental and th
oretical investigations of the effect of theZ1

3 correction to the
stopping power of ions when heavy nuclei with energies
about 1 GeV/nucleon pass from neon to uranium throug
homogeneous medium under the conditions of a comp
experiment allowed by the nuclear-emulsion method.12–15 In
this work, new experimental data were obtained on the t
ionization ranges of nuclei with the BR-2 emulsion, prepa
at the NIKFI, and on the distributions of these ranges. T
effect of the projectile energy, charge, and mass and of
atomic number of the target on the overall characteristics
the process is analyzed.

2. EXPERIMENT

Five chambers, consisting of 30–35 layers of the BR
emulsion with the standard composition18 ~number of nuclei,
ni•10222 per cm3: 3.148 H, 1.412 C, 0.396 N, 0.956 O
2201063-7761/99/88(2)/7/$15.00
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0.004 S, 0.002 I, 1.031 Br, and 1.036 Ag!, were exposed in
the Bevalac accelerator~Berkeley, CA USA! in beams of
505-MeV/nucleon40Ar nuclei, 500 and 1000-MeV/nucleon
56Fe nuclei, 1147.2-MeV/nucleon197Au nuclei, and 927.6-
MeV/nucleon238U nuclei. The average fluence in the irradi
tions was 500–1500 particles/cm2. The dimensions of an in-
dividual layer were close to 1031030.05 cm3. The beam
entered a stack of photoemulsion plates approximately
allel to the surface of the layers in all irradiations. The an
made by the beams of nuclei in an undeveloped emuls
was less than 2°. Two 220mm thick layers of black pape
and one 190mm thick layer of polyethylene were present
front of the emulsion during irradiation. The photograph
processing of the chambers was performed in the hi
energy laboratory at the Joint Institute of Nuclear Resea
~Dubna, Russia!. Before the chambers were developed, t
thickness of each layer of emulsion was measured at
symmetrically arranged points. It was found that the thic
ness of an undeveloped layer fluctuates with standard de
tion close to 4mm. All plates were marked with a photo
graphically applied millimeter grid.

The search for stopped primary ions was conducted
double ~fast and slow! scanning along the primary track i
MBI-9 microscopes with 10315, 20315, and 40315 mag-
nifications. Ion tracks showing indications of inelastic
elastic interaction with the emulsion nuclei were exclude
The choice of very low magnification of the experimen
objects for the primary scanning was dictated by the spec
nature of the tracks studied. The visible thickness of a tr
due to a uranium nucleus varied from 20 to 50mm along the
track. Tracks due to gold nuclei had similar thicknesses.
comparison, we note that a millimeter grid is close to 15mm
thick.

A coordinate method was used to determine the cha
© 1999 American Institute of Physics
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FIG. 1. FIG. 1. Ionization range distribution o
924.3-MeV/nucleon238U ions ~1a, 0.05 mm cell!
and 1144.4-MeV/nucleon197Au ~1b, 0.2 mm cell!
stopped in a BP-2 emulsion. The parameters of
Gaussian distributions~for 238U N5518 tracks,
^R&528.197 mm, s50.116 mm; for 197Au N
5537 tracks,̂ R&542.75 mm,s50.471 mm! were
determined from experiment. The fitting criteri
with 16 degrees of freedom arex2/k52.19 ~a! and
x2/k59.43 ~b!.
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teristics of an individual track.19 The method used a three
dimensional coordinate system, including the number of
plate in the chamber, the coordinates of a square in the
limeter grid of a plate, and the coordinates of an event wit
a square. Each track was characterized by the entrance
dinate of a nucleus in the plate and the coordinate of
event~stopping point or interaction!. Multiple measurements
were performed on specific tracks to estimate the accurac
the coordinate method. Measurements were performed e
week for three months, and the standard deviation of an
dividual measurement of the length of the same track was
mm on a 30000–80000mm baseline.

The numbers of the observed and measured track
40Ar, 56Fe, 197Au, and238U ions which stopped without un
dergoing nuclear interactions were 267, 756~for two ener-
gies!, 537, and 518 tracks, respectively, which is more th
two times larger than the data sample in Ref. 12. Figur
shows the experimental distributions, obtained in the pres
work, of the track lengths of uranium nuclei with initial en
ergy 924.3 MeV/nucleon~Fig. 1a! and 1144.4-MeV/nucleon
gold nuclei~Fig. 1b! which stopped in the BR-2 emulsion. I
determining the energy of the nuclei, the energy losses in
material traversed by the beam of nuclei before entering
emulsion were taken into account. One can see that th
unimodal distributions resemble Gaussian distributions,
the x2/k fitting criteria are far from unity. The straggling o
the ranges of uranium nuclei was estimated to bes50.017
mm on the basis of data on the straggling of protons with
same velocity,20 taking account of the inverse proportionali
between the relative straggling and the square root of
uranium mass. This value ofs is approximately 10 times
smaller than the experimental value. The observed deviat
of the experimental distributions of the ion range leng
from the theoretical Gaussian distributions are probably
to the energy spread of the beam of incident nuclei.

3. MODELS AND TESTING PROGRAMS

The foundations of the theory of stopping of high-ener
charged particles were laid by Bohr, Bethe, and Bloch.1,2 The
stopping power (Se2) can be written in the form

Se25
4pZ1

2e4

mev
2

Z2L~b,Z2!, ~1!
e
il-
n
or-
e

of
ry

n-
0

of

n
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e
e
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e

e
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wheree andme are the electron charge and mass,Z1 andv
are the atomic number and velocity of the ion,b5b/c, c is
the speed of light in vacuum,Z2 is the atomic number of the
atoms in the medium,L(b,Z2) is the ‘‘logarithm’’ in the
Bethe–Bloch formula, which is often written in the form

L~b,Z2!5 ln
2mev

2

^I &
1 ln

1

~12b2!2
2b22

C

Z2
, ~2!

where ^I & is the average ionization potential of the targ
The first term is the standard form of the logarithm in t
Bethe formula, the second and third terms are the relativi
corrections, and the fourth term is a correction for the eff
of the binding of the electrons in an atom. Quite ofte
charge effects due to the capture of electrons from the
dium by a moving low-velocity ion are taken into conside
ation.

It should be noted that only the first Born approximati
is used in the classical Bethe–Bloch theory for describing
scattering of a particle by the atomic electrons in a mediu
The second Born approximation contributes a small posi
term, proportional toZ1

3, in the expression for the total stop
ping powerSe3:

Se35Se2@11Z1eff~J/I !#, ~3!

whereZ1eff is the effective ion charge, the termSe2 corre-
sponds to the standard Bethe–Bloch models, andJ/I is a
small positive quantity. Indeed, an effect of the same k
was discovered experimentally by Barkas and his colleag
in measurements of the ranges ofp1 andp2 mesons with
the same energy in a nuclear photoemulsion. It was fo
that their ranges differ by several percent.21 In addition, this
difference was present even at nonrelativistic velociti
where the correction following directly from the secon
Born approximation in the Mott electron scattering
negligible.22 Andersen and Ziegler also established such
effect.23,24 They showed on the basis of a compilation
several thousands of experimental data points that the e
tronic energy losses ofa particles are greater than the fou
fold losses for protons at the same velocity. This is at va
ance with the classical dependenceSe2}Z1

2.
Quantitative estimates of theZ1

3 correction were made
by Jackson and McCarthy in Ref. 22. Their formula is
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J

I
5S J

I D
rel

1S J

I D
nonrel

5
pab

2L~b,Z2!
1

F~n!

Z2
1/2

, ~4!

wherea51/137 is the fine structure constant,L(b,Z2) is the
logarithm in the Bethe–Bloch formula,n5137gbZ2

21/2, and
g5(12b2)21/2. The functionF(n) is tabulated in Ref. 22
and can be expressed asF(n)50.3n22 for n,1.5, F(n)
50.5n22.3 for 1.5,n,4, andF(n)50.5n22.5 for n.4.

The form of the terms in the expression forJ/I is due to
the fact that physics of theZ1

3 correction is different in dif-
ferent velocity ranges. In the relativistic case~first term! it is
due to the second Born approximation in the scattering o
particle by the atomic electrons in the target. This correct
is appreciable at relativistic velocities of the incident ion a
is approximately proportional to the particle velocit
(J/I )rel}b. The second term is an extension of the Ashl
Anderson, Ritchie, and Brandt theory25–28 ~the so-called
ARB approximation for theZ1

3 correction in the weakly-
relativistic region!, and it is due to the additional incorpora
tion of the displacement of an electron over the collisi
time. The nonrelativistic correction has a large effect at l
incident-particle velocities, where (J/I )nonrel}b22.

The calculations of the passage of fast nuclei throug
photoemulsion were performed using the PRAL-96 progra
which is based on the well-known Ziegler–Biersack
Littmark ~ZBL! model23 of continuous electronic stoppin
and takes account of the elastic collisions of an ion with
atomic nuclei in the medium, and on the basis of an i
proved ZBL model, which is incorporated in the RANGE-9
program package,29 which makes it possible to perform ca
culations, both neglecting theZ1

3 correction~i.e., in accor-
dance with the ZBL model! and taking this correction into
account via the relations~3! and ~4!.

An additional check was required in order to use the
programs to calculate the passage of relativistic particles
photoemulsion. This check was performed using experim
tal data3–7 on the ranges and stragglings of H and He in
Inford G5 emulsion. For an emulsion~a multicomponent me-
dium!, the ionization stopping power was calculated us
the Bragg rule. The results of the testing showed that
PRAL and RANGE programs give the same results wit
less than 0.1% of the range of H and He nuclei in an em
sion. The particle ranges computed with the PRAL a
RANGE programs were found to be systematically less~ap-
proximately by 2%! than Barkas’ experimental and comp
tational data. Taking account of the indicated systematic
crepancies, the largest discrepancy between the theore
and experimental data in both the Barkas calculations an
the calculations performed in the present work is the sa
and is less than 1.5–2%.

The RANGE and PRAL algorithms were further test
by calculations of the passage of heavier nuclei throug
photoemulsion. In most works, Barkas’ semiempirical fo
mula is used to determine the ionization range of a particl
a nuclear emulsion.8 In this formula, the RANGER(b) of a
heavy ion with massM1 and atomic numberZ1 is related to
the range of a proton with the same velocity (l(b)) by

R~b!5~M1 /Z1
2!l~b!1Cz~b/Z1!M1Z1

2/3, ~5!
a
n
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where the additional correctionCz(b/Z1) is due to electron
capture at low ion velocities of heavy ions. Ordinarily, it
considered to be a universal function ofb/Z1 for a given
type of emulsion and does not depend on the atomic num
of the projectile.

Using the RANGE program, the functionCz(b/Z1) was
obtained for a series of ions by a numerical method~proceed-
ing from precalculated values ofR(b) for heavy ions and the
corresponding proton rangesl at the same velocityb). The
results of the calculations showed that in the ZBL model
functionCz(b/Z1) can be considered to be ‘‘universal’’ onl
to within 10%, since for heavy nuclei~Au, U! the correction
Cz(b/Z1) reaches a plateau appreciably more rapidly w
increasing ion velocity, and the magnitude of this plateau
somewhat less than for the lighter nuclei Ne, Ar, and Fe. T
universality of the curveCz(b/Z1) breaks down due to the
different nature of the velocity dependence of the effect
charge of the ions undergoing stopping—ions with a hig
atomic number reach the valueZeff /Z51 more rapidly as
their velocity increases. We note that the universality of
correctionCz(b/Z1) was discussed in Ref. 8 only for ion
Z1<18 with possible 10% errors.

Data on the maximum correction to the range of hea
nuclei as a result of electron capture at low heavy-ion velo
ties are of special interest. These maximum correcti
(Cz(b/Z1)M1Z1

2/3) to the range of heavy nuclei with initia
energy 1 GeV/nucleon were 0.08 mm, 0.1 mm, 0.6 mm, a
0.7 mm, respectively, for40Ar, 56Fe, 137Au, and238U nuclei
~with a total range of 146 mm, 100 mm, 38.8 mm, and 34
mm, respectively!, i.e., in the gigaelectron volt energy rang
this correction, even for238U, increases the range by no mo
than 2% and has little effect onR(b) for heavy ions.

Thus, the results of the additional check showed t
both the universal ZBL model of continuous electronic sto
ping, including elastic collisions of an ion with the atom
nuclei in the medium, that is the basis of the PRAL a
RANGE program package, as well as the programs the
selves, make it possible to describe with good accuracy
known stopping parameters for light nuclei with relativist
velocities in homogeneous media.

4. AVERAGE IONIZATION RANGES OF HEAVY IONS

The experimental data on the total ranges of nuclei a
the computed values of these quantities are given for c
parison in Tables I and II. Table I gives the ranges of40Ar,
56Fe, 197Au, and238U nuclei measured in the present work
a BR-2 emulsion and the data of Ref. 16 on the ranges
197Au and 238U nuclei in lexan (C16H14O3 with density 1.2
g/cm3). The energy of the incident nuclei, given in column
of the table, takes account of the thickness of the mate
traversed by the beams of nuclei before entering the em
sion. The results of direct measurements are in column 3
Table I. One can see that the computational accuracy in
present work is quite high. This is due to the quite large d
sample of measured tracks. The next three columns in
table give the computed values of the ion ranges obtai
using the semiempirical relation~5!, the PRAL program, and
the RANGE program neglecting theZ1

3 correction. It follows
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TABLE I. Ionization ranges of heavy ions in a BP-2 emulsion and lexan.

Ionization rangeR, mm

Calculation

Type of ion Energy,
no Z1

3 correction
with Z1

3-correction,
and target MeV/nucleon Experiment ~5! PRAL RANGE RANGE

Ar 504.2 53.11 54.71 54.25 54.23 53.26
Br-2 60.05 ~3%! ~2.14%! ~2.11%! ~10.28%!
Fe 498.7 34.84 36.26 35.82 35.85 34.94
Br-2 60.01 ~4%! ~2.81%! ~2.90%! ~10.29%!
Fe 980.8 95.16 98.0 96.10 96.05 93.38
Br-2 60.04 ~3%! ~0.99%! ~0.94%! ~21.87%!
Au 1144.4 42.75 46.23 45.81 45.76 42.11
Br-2 60.05 ~8.1%! ~7.15%! ~7.04%! ~21.49%!
U 924.3 28.197 31.35 30.68 30.66 27.90
Br-2 60.02 ~11%! ~8.80%! ~8.80%! ~21.05%!
Au 975.0 79.49 – 87.79 87.75 81.84
Lexan 62.44 ~10.4%! ~10.4%! ~2.95%!
U 901.0 63.50 – 70.50 70.48 650.9
Lexan 61.90 ~11.0%! ~11.0%! ~2.50%!

Note. The deviationsd of the computed from the experimental ranges are given in parentheses:d5@(Rcalc

2Rexp)/Rexp#•100%. The errors inRexp were determined taking account of the experimental variance of
range length distribution. The experimental data on the ranges in lexan were taken from Ref. 16.
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from these data that the PRAL and RANGE programs g
very close computed values of the ranges, and the calcula
using the relation~5! predicts somewhat larger~on the aver-
age by 1%! ion ranges.

Comparing the experimental data and the computed
ues, it is evident that the relative discrepancyd5@(Rcalc

2Rexp)/Rexp#•100% between the computed~neglecting the
Z1

3 correction! values and the experimental data increa
systematically with the atomic number of the project
nucleus from 2% for Ar (Z1518) up to 9–11% for U (Z1

592) for virtually all calculations performed neglecting th
Z1

3 correction. The observed deviations are systematic

TABLE II. Ranges of 900-MeV/nucleon gold ions in various media.

RangeR, g/cm2

Calculation

Target type
no Z1

3 correction
with Z1

3 correction
,

^Z2& Experiment11 Ref. 11 RANGE RANGE

~CH! 8.5760.01 9.154 9.14 8.54
3.5 ~6.81%! ~6.64%! ~20.35%!
~C! 9.6760.07 10.070 10.06 9.38
6 ~4.14%! ~4.03%! ~23.00%!
~Al ! 10.5460.05 11.364 11.33 10.50
13 ~7.72%! ~7.39%! ~20.47%!
~Cu! 12.1060.04 13.027 13.07 12.05
29 ~7.66%! ~8.02%! ~20.41%!
~Sn! 13.9860.08 14.877 15.06 13.80
50 ~6.42%! ~7.73%! ~21.29%!
~Au! 15.5960.01 16.636 16.74 15.26
79 ~6.71%! ~7.38%! ~22.12%!
~Pb! 15.7260.04 16.863 17.02 15.51
82 ~7.27%! ~8.27%! ~21.34%!

Note. The deviationsd of the computed from experimental ranges are in
cated in parentheses:d5@(Rcalc2Rexp)/Rexp#•100%.
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fall outside the bounds of the possible experimental a
computational errors, as well as possible differences of
charge states of ions with different values ofZ1 at low ion
velocities. The correctionCz(b/Z1)M1Z1

2/3, as shown
above, contributes no more than 2% to the increase in
range of a heavy ion. In this connection, we inferred that
observed discrepancies in the experimental and comp
ion ranges are mainly due to the fact that only the first Bo
approximation is used in the calculations to describe the s
tering of a particle by the atomic electrons in the mediu
and the second approximation was neglected.

The calculations for estimating the effect of theZ1
3 cor-

rection on the particle ranges were performed using
RANGE program and the relations~3! and ~4!. The compu-
tational results for the total ranges with theZ1

3 correction are
given in column 7 in Table I. It was found that the relativ
decrease of the ranges due to theZ1

3 effect in the stopping
powers of ions for the cases considered in Table I are ab
10% and 8%, respectively, for U and Au and less than
for all other ions. It is evident that taking account of th
second Born approximation appreciably improved the agr
ment between the experimental and computed values for
heavy nuclei~Au, U! and that the systematic increase in t
discrepancies between experiment and theory, which was
served with increasing atomic number of the ion, essenti
vanished.

For an additional check of our supposition that theZ1
3

correction in the ionization energy losses of the partic
strongly influences on the characteristics of the process,
performed calculations of the ranges of 900-MeV/nucle
gold nuclei in CH, C, Al, Cu, Sn, Au, and Pb~experiment of
Ref. 11!, both with and without theZ1

3 effect. The results are
presented in Table II. It follows from these data that t
calculations based on the conventionalZ1

2 dependence of the
electronic stopping power~the first Born approximation! us-
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FIG. 2. Ratios of the calculated and experime
tal ranges of Ar, Fe, Au, and U ions in a BP-
emulsoin and in lexan versus the atomic numb
Z1 of the ion~a — experiment of this work and
Ref. 16! and of 900-MeV/nucleon Au ions ver-
sus the atomic numberZ2 of the target~b —
experiment of Ref. 11!. Filled circles — calcu-
lation (Rcalc) of this work neglecting theZ1

3 cor-
rection, open circles — calculation (Rcalc) of
this work taking account of theZ1

3 correction,
rectangles — calculation (Rcalc) of Ref. 11
~standard Bethe–Bloch model!. The solid lines
show the relationRcalc/Rexp51 and the dotted
lines show the relationRcalc/Rexp5110.001Z1.
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ing the RANGE program agree within the limits of the com
putational error~about 1%! with the calculations performed
in Ref. 11 and differ from the experimental data by an av
age of 7.5%. The second Born approximation~theZ1

3 correc-
tion! eliminates the discrepancies between the theory and
experimental data~see Table II!. The remaining small differ-
ences (d;(1 – 2)%) could be due to possible deviation
from the standard values of the target densities used in
experiments.

The changes indicated are illustrated in Fig. 2. It follo
from Fig. 2a that the ratioRcalc/Rexp ~neglecting theZ1

3 ef-
fect! increases with the atomic numberZ1 of the ion essen-
tially linearly as 111023Z1, i.e., the range computed on th
basis of the first Born approximation for ionization ener
losses is much greater than the experimental ion range,
this difference grows continuously with coefficient 1023 up
to the superheavy ions, which agrees with the theoret
estimates of theZ1

3 correction according to Eqs.~3! and~4!.
One can see that this correction in the calculation remo
the observed systematic change. It follows from Fig. 2b t
the average ratio of the computed to the experimental ran
for 900-MeV/nucleon gold nuclei, determined according
the classical scheme, is virtually independent of the ato
number of the medium and is close to 1.07. Taking acco
of the second approximation decreases this ratio to 1.

In the present work, the effect of theZ1
3 correction in the

ionization losses of fast multiply charged particles on th
range in three homogeneous media—in hydrogen~H, r
50.0715 g/cm3), in BR-2 emulsion, and in silver~Ag, r
510.5 g/cm3)—was analyzed. The range calculations we
performed with the PRAL and RANGE programs for56Fe
and 238U nuclei with energies from 300 to 1000 MeV
nucleon. We note that the contribution of (J/I )rel to the stop-
ping power exceeds the corresponding contribution fr
(J/I rel) by more than a factor of 10 starting at energies ab
100 MeV/nucleon, i.e., the correctionF(n)/Z2

1/2 in Eq. ~4!
plays a very weak role in this case.

To distinguish the effect of the atomic number of t
medium and the particle energy, we introduced the coe
cientaR(E,Z2) of the relative decrease of the particle rang
due to theZ1

3 correction:

aR~E,Z2!5
R2~E!2R3~E!

Z1R2~E!
, ~6!
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where R2(E) is the range of an ion with energyE in the
targetZ2, calculated neglecting theZ1

3 correction, andR3(E)
is the range calculated taking account of theZ1

3 correction.
The calculation showed that in the energy range 30

1000 MeV/nucleonaR(E,Z2) increases weakly with the ion
energy~in hydrogen from 0.062 to 0.079 for56Fe and from
0.056 to 0.075 for238U). As the atomic number of the targe
increases, the changes become greater—in the passage
a hydrogen to a silver target,aR(E,Z2) increases to 0.113
for 1000-MeV/nucleon56Fe and 0.104 for238U. Thus, ex-
periments with the highest primary-ion energies and a ta
with a high atomic number are recommended for relia
experimental determination of the coefficientaR(E,Z2) of
the relative decrease of particle ranges due to theZ1

3 correc-
tion. Unfortunately, however, the accuracy of the experim
tal data~Table II, Fig. 2b! is still too low to distinguish this
effect.

A very unexpected result is the dependence of the r
tive decrease of the particle ranges not only on the velo
of the incident ion and the atomic number of the mediu
which follows in a natural manner from the physics of t
process, but also onZ1 ~the atomic number of the inciden
ion!: the largerZ1, the smaller the coefficientaR(E,Z2).
Thus, for 300 MeV/nucleon56Fe and238U in silver, the co-
efficient aR(E,Z2) was 0.097 and 0.088, respectivel
Analysis showed that this effect is due mainly to the incre
as a function ofZ1 of the correctionCzM1Z1

2/3 to the range
of the nuclei as a result of electron capture when the velo
of the heavy ion is low and the consequent decrease
aR(E,Z2).

5. STOPPING POWER OF HEAVY IONS

The data examined above show that the relativisticZ1
3

correction in the stopping powers of ions must be taken i
account in order to calculate adequately the ranges of he
ions in matter. However, it would be important to perfor
direct experimental measurements of the stopping power
heavy relativistic particles with the same velocities. In R
17, the stopping powers of 985-MeV/nucleon relativistic
nuclei and 780-MeV/nucleon Xe nuclei in Be, C, Al, Zn, an
Bi were measured in experiments on the Bevalac accelera
The authors indicated a systematic difference ('6%) be-
tween the measured values of the stopping powersSe(Xe)
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TABLE III. Electronic stopping powers of 985-MeV/nucleon Ar nuclei and 780-MeV/nucleon Xe nucle
various media (Z2).

Se~Ar!, meV/~mg/cm2! Se~Xe!, meV/~mg/cm2!

RANGE RANGE

no Z1
3 with Z1

3 no Z1
3 with Z1

3

Z2 Experiment17 correction correction Experiment17 correction correction

4 0.5860.02 0.583 0.593 5.860.1 5.57 5.86
Be ~0.52%! ~2.24%! ~23.97%! ~1.03%!
6 0.6460.02 0.641 0.653 6.560.1 6.12 6.45
C ~0.16%! ~2.03%! ~25.85%! ~20.77%!
13 0.5860.02 0.574 0.585 5.860.1 5.46 5.78
Al ~21.03%! ~0.86%! ~25.86%! ~20.34%!
30 0.5060.02 0.506 0.517 5.260.1 4.80 5.12
Zn ~1.20%! ~3.40%! ~27.50%! ~21.54%!
83 0.3960.01 0.393 0.402 4.060.05 3.72 3.99
Bi ~0.77%! ~3.08%! ~27.00%! ~20.25%!

Note. The deviations of the computed values of the electronic stopping power from experiment are gi
parentheses:d5@(Se

calc2Se
exp)/Se

calc#•100%.
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for xenon ions in various media and the results of the co
sponding Bethe–Bloch calculations, while for argon io
such differences are not observed.

The results of Ref. 17 are presented in Table III toget
with the corresponding calculations which we perform
both on the basis of the standard ZBL model and tak
account of theZ1

3 effect. It is evident that the calculation
correctly describe the experimental dependence of the s
ping powers of ions in various media on the atomic num
Z2 of the target. On the average, it is a decreasing functio
Z2. In addition,Z2 oscillations of the stopping powers a
clearly observed in the experiment and in both computatio
variants. Thus,Se(Ar) and Se(Xe) for beryllium and alumi-
num targets are less than for a carbon target. At the s
time, the stopping powers calculated for the Xe ions negle
ing theZ1

3 effect are systematically 6% less than the expe
mentally measured values. TheZ1

3 correction gives numeri-
cal agreement between the experimental data and
calculations.

Figure 3 displays the ratios of the stopping powers
780 MeV/nucleon Xe nuclei to the stopping powers of 98
MeV/nucleon Ar nuclei for various media from beryllium t
bismuth. The ratio of the charges of the relativistic nucle

FIG. 3. Ratio of the electronic stopping power of 780-MeV/nucleon Xe io
to the electronic stopping power of 985-MeV/nucleon Ar ions versus
atomic numberZ2 of the target~experiment of Ref. 17!. Lines—results of
the calculation performed in the present work using the standard ZBL m
on the basis of theZ1

2 dependence~solid line! and taking account of theZ1
3

correction~dashed line!.
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3, and in the classical approach the ratio of the stopp
powers of these ions with equal velocities should be 10. T
ing account of the small difference of the velocities of A
and Xe ions givesSe(Ar)/Se(Xe)59.5. The available ex-
perimental ratioSe(Ar)/Se(Xe) is 10.15760.25.17 The stop-
ping powers of Ar and Xe ions computed taking account
the Z1

3 effect give a different ratio, 9.9, which improve
agreement with the experiment.

6. CONCLUSIONS

In summary, in the present work, a comprehensive
vestigation of the effect of the atomic number and energy
the projectile nucleus and the atomic number of the tar
nuclei on the basic characteristics of the passage of he
nuclei with energies near 1 GeV/nucleon through homo
neous media was performed on an enlarged data sampl

The systematic deviation, observed in previous work,
the calculations based on the first Born approximation for
scattering of a particle by the atomic electrons of the medi
~the Bethe–Bloch formula, the Barkas formula, theZ1

2 scal-
ing theory! from the experimental values of the total ioniz
tion ranges and stopping powers of nuclei has been c
firmed. It increases with the atomic number of the projec
nucleus.

The effect of the second Born approximation~the Z1
3

correction! in the ionization losses of fast multiply charge
particles on the ranges and the stopping power of these
ticles in homogeneous media was investigated. It was sh
that introducing theZ1

3 correction in the form proposed b
Jackson and McCarthy eliminates the systematic discrepa
between the computed and experimental values. For the
perimental energy range the relativistic Mott scattering
particles by the atomic electrons in the target makes the
cisive contribution to the observedZ1

3 effect.
This work was supported by the Russian Fund for Fu

damental Research~Project 98-02-18173!.
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Equation for the envelope of the field in a linear array of semiconductor lasers and an
analysis of nonlinear effects
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An equation is derived for the smooth envelope of a wave field propagating in a plane stratified
medium possessing the resonance small-scattering effect on one period of the structure.
Rectilinear propagation of the envelope of the field is detected in thexz plane, wherex is normal
to the layers. The conditions under which this equation can be used are indicated. For a
linear array of semiconductor diodes with a stepwise dependence of the permittivity on the
coordinates, the conditions for stable propagation of the radiation are analyzed and an explicit
solution of the isolated-soliton type is found. ©1999 American Institute of Physics.
@S1063-7761~99!00402-3#
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1. INTRODUCTION

An enormous number of monographs,1,2 and other pub-
lications have been devoted to the problem of radiat
propagation in stratified periodic media. Synthesized p
odic structures that essentially reconstruct the spectrum
propagating waves~so-called photonics-band structure!
have been actively developed in recent years. Bragg st
tures, used as distributed feedback3 or naturally appearing
during scattering and four-wave mixing, play a special r
in laser physics. As indicated in Ref. 4, a linear array
semiconductor diodes with structural elements of a cer
size can also be regarded as an analog of a Bragg stru
with respect to the lateral propagation of radiation.

In ordinary distributed-feedback devices, which refle
radiation incident on them along the normal, a large refl
tance builds up over a distance of many periods of the st
ture,N@1. This is because the modulation depth of the p
mittivity is usually small,udeu!e0, wheree0 is the mean
value andde is the modulation amplitude~in general, com-
plex! of the permittivity.udeu is also small in a linear diode
array, but it should be comparable with the small angle
incidence of the radiation on the layer, since the wave ve
on the average is directed along the axis of the diode las
i.e., parallel to the faces of the layers. The typical structure
a linear diode array is shown schematically in Fig. 1.

The small fraction of the radiation reflected from o
distributed-feedback period makes it possible to derive
differential equations widely used in the literature f
coupled waves.5 Similar equations can be derived for line
diode arrays, which constitute a resonant structure for lat
waves.6 The reason that differential equations can be deri
is also that the reflectance of a lateral wave from one cel
the periodic structure is small. However, this smallness
ensured by a resonant transmission effect and accordi
occurs for waves whose lateral wave vector differs little fro
the resonance value. It is precisely such structures and w
that have turned out to be extremely promising from
viewpoint of obtaining powerful coherent radiation from
2271063-7761/99/88(2)/8/$15.00
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linear diode array.7 From a more general viewpoint, one
dealing with periodic structures in which the band gap
close to zero because of the correspondinge profile ~in quan-
tum mechanics, the potential! over a period.

This paper develops the approach described in Ref
for which the general conditions needed to derive equati
for a smooth envelope in a layered medium are formula
on the basis of the theory of second-order coupling matric
The nonsteady-state equation that describes radiation pr
gation, allowing for nonlinearity of the medium, is derive
for a resonant linear diode array. The stability with respec
the self-focusing of radiation is analyzed in terms of the
sulting equation, and steady-state solutions that describ
analog of the self-focusing channel are constructed.

2. GENERAL CONSIDERATIONS

A linear array of diodes is a rather complex structu
~see Fig. 1!, in which field propagation should be describe
by the vector Maxwell equations. However, in most cas
the scalar Helmholtz equation for a coherent field can
used as a first approximation. Since the size of the ac
zone is extremely small, the field structure in this directio
called the transverse direction, stabilizes quickly. This giv
a basis for averaging the Helmholtz equation along the tra
verse direction, as a result of which the averaged equa
includes a form factor that allows for the overlap of the fie
with the active zone and an effective permittivity produc
by averaging the product of the two-dimensional field dis
bution and the locale:7

d2U~x!

dx2
1U~x!~k2e~x!2b2!50, ~1!

whereU(x) is the wave amplitude,x is the lateral coordi-
nate,k is the wave vector,b is the propagation constant, an
e(x) is the effective permittivity of the medium, which is
periodic function ofx. An equation in the form of Eq.~1!
© 1999 American Institute of Physics
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also arises in solid-state theory and quantum mechanics
terest in its properties has been maintained by studies
nanotechnology.

One method of solving Eq.~1! with a periodice(x) is
the T-matrix method. Introducing two basis functionsf (xm)
and g(xm), which are linearly independent solutions of E
~1! on the period with numberm ~i.e., xm is defined inside
one cell of the periodic structure!, we represent the genera
solution of Eq.~1! in the form

U5amf ~xm!1bmg~xm!. ~2!

The values of the coefficientsa andb in themth element are
associated with the values in the (m11)st element by the
coupling matrix:

S am11

bm11
D5TS am

bm
D .

The elements of matrixT can be expressed in general
terms of the values of functionsf (xm) andg(xm) at the cell
boundaries.10 In this case, the determinant ofT equals unity.

It is well known11 that any matrix identically satisfies it
own secular equation:

T22Tr T•T1E50, ~3!

where TrT5T111T22 is the sum of the diagonal elements
the matrix. Acting with the left-hand side of the secul
equation on the column of field amplitudes (bm21

am21), we get

the equation that connects the amplitudes of thef waves in
three adjacent cells:

am112Tr T•am1am2150. ~4!

Precisely the same equation is also valid for theg wave, and
hence also for the total field amplitudeU. The necessary
condition that the field amplitude changes slowly as one g
to an adjacent cell directly follows from Eq.~4!. It can be
written in the form

uTr T62u!1. ~5!

FIG. 1. Layout of a linear array of semiconductor lasers: a—p-GaAs is a
supplementary absorber, b—p-Al 0.3Ga0.7As is a waveguide, c—
p-Al0.6Ga0.4As, d—GRIN–SCH–SQW is an active zone, e—n-
Al0.6Ga0.4As, f—radiation field, g—n1-GaAs is the substrate.
In-
on

es

When TrT52 holds, Eq. ~4! implies that the discrete
second-order derivative vanishes. Such an equation evide
has two independent solutionsam5c0 and am5c1m. The
second solution can obviously be regarded as smoothly v
ing if one is dealing with a large number of cells in the line
array,N@1. We shall assume in what follows that this co
dition is satisfied. If TrT522 holds, the problem can b
reduced to the preceding one by the replacem
ãm5(21)mam . The condition given by Eq.~5! thus gener-
alizes the evident criterion ordinarily used in the theory
distributed feedback:

iT2Ei!1,

wherei i signifies the norm of the matrix.
In an alternative approach to the analysis of Eq.~1!,

based on Bloch functions, it is well known that, in the spe
trum of the waves propagating in a periodic lattice, ba
gaps appear whose center corresponds to the Bragg co
tions. The eigenvaluel that is found by substituting a powe
solution into Eq.~4! is associated with the Bloch vectorQ by
the relationship

l5exp~6 iQL!,

whereL is the period of the structure. When TrT52, the
eigenvaluel51 is doubly degenerate. This corresponds
the disappearance of the band gap. When inequality~5! is
satisfied, the band gap is accordingly small. The conditi
of ordinary distributed-feedback theory correspond to
consideration of high-lying bands whose width is expone
tially small. Thus, in the language of band theory, the co
dition of smoothness can be formulated as the requirem
that the band gaps are narrow.

Since a simple replacement reduces the case TrT522
to the case TrT52, we restrict ourselves to the latter. Intro
ducing the quantityD5Tr T22, we replace the discret
equation~3! by a differential equation, which is allowabl
for smoothly varying functions; as noted above, this equat
is valid for U(x,xm), wherex5mL is a smooth variable:

L2
d2U~x,xm!

dx2
5D•U~x,xm!. ~6!

The value ofD depends onv5kc (c is the velocity of light!
and b as on parameters. If one distinguishes values of
carrier frequencyv0 of the radiation and the propagatio
constantb0 close to their values for a pure resonance, wh
Tr T562, V5v2v0 and db5b2b0 will essentially be
Fourier variables when the total field is expanded in pla
waves. ExpandingD in powers ofV andb, we have

D5 ic4V1 ic5db1c2V21c3V•db1c1~db!21c6 .
~7!

Assuming that the field variations in time and along t
propagation axisz are fairly smooth for the solutions of in
terest to us, we can easily obtain the following equation fr
Eqs.~6! and ~7!:
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L2
]2U

]x2
1c1

]2U

]z2
1c2

]2U

]t2
1c3

]2U

]z]t

1c4

]U

]t
1c5

]U

]z
1c6U50. ~8!

To find the coefficientsc1 , . . . ,c6, it is necessary to specify
the e(x) dependence in Eq.~1!.

Forms of potential wells at which there is no scatteri
are well known from quantum mechanics.9 In these cases, i
should be expected that an anomalously narrow band
also arises in a periodic structure constructed from lay
with a corresponding profile on a period. Below we consid
the simplest version of such a structure in which theoret
calculations can be completed.

3. THE EQUATION FOR A LINEAR DIODE ARRAY IN THE
APPROXIMATION OF A STEPPED e„x …

In the theory of linear diode arrayse(x) is usually cho-
sen to be a step function with two values,e0 in the active
element ande1 in the passive gap. We restrict ourselv
below to a linear array~see Fig. 2! in which amplification is
localized in an antiguide core of widthd, whereas absorption
can be introduced in a zone with a high refractive index a
width s ~zonea in Fig. 1!. Moreover, we include the nonlin
ear part of the complex permittivity, which we write, follow
ing Ref. 12, in the form

en~x!5G~x!
de

dNU
N5N0

~N~x!2N0!,

whereN(x) is the carrier concentration,N0 is the same in the
absence of a radiation field, andG(x) is a factor that allows
for the overlap of the wave field with the active region in t
transverse direction.

The choice of basis functionsf andg and the derivation
of expressions for the elements of matrixT that satisfy natu-
ral conditions on the side faces of the semiconductor
described in Ref. 10. A cell of the periodic structure is sho
in Fig. 2. The functionf (xm) corresponds to a wave tran
mitted through the antiguide core barrier when it is incide
from the left, whereasg(xm) corresponds to a wave inciden
on the antiguide core from the right. In a resonant struct
in which (l 11) half-waves fit inside the antiguide core an
m half-waves fit in the waveguide gap (l and m are whole
numbers!, in the absence of amplification and absorption
waves f and g pass through the cell with no losses, bei

FIG. 2. Layout of one element of a linear array of semiconductor laser
the effective-permittivity approximation.
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only multiplied by the number (21)s, wheres5 l 1m11.
In this case, there is no wave coupling. In actuality, suc
situation occurs only for a wave with a strictly determin
frequency and propagation constantb5b0. The waves res-
catter into each other both when the cell parameters dev
from the resonant values~in this case, the waves transmitte
without scattering in general disappear!, and for a resonan
structure for waves that differ from the resonance values.
is recalled that there is always absorption or amplification
actual structures, it can be understood that pure resonan
virtually never observed. However, as shown numerically13

and later analytically,10 structures and modes that can
called near-resonant present the greatest interest for ge
tion in a linear array. In this case, the trace of matrixT can be
represented approximately in the form10

Tr T5~21!s~22F2!, ~9!

where

F25S p1s1
p0

q0
q1dD S p1s1

q0

p0
q1dD . ~10!

Here q1 and p1 are defined as the differences of th
complex-valued lateral wave vectors within the antigui
core and the interelement gap from their resonant valu
respectively, i.e.,

q15q2q0 , p15p2p0 ;

q05p~ l 11!/d, p05mp/s.

The magnitudes of the vectorsp andq are determined in this
case from

q25k2e02b2, p25k2e12b2

~see also Fig. 2!. For typical parameters of a linear las
diode array,

ue12e0u!Ree0 ;

i.e., the permittivity step is much less than the magnitude
the permittivity. Since the conditionsl!s and l!d are
satisfied when the wavelength of the radiation in vacuum
l, the lateral angles at which the radiation propagates
small. Consequently,b'kn0 holds to within small correc-
tions ~heren0 is the mean refractive index!. These correc-
tions play a decisive role in calculating the lateral wave v
tors.

For evens, it follows from Eq. ~9! that the quantity
introduced above isD52F2. In order to find the coeffi-
cients in Eqs.~7! and ~8!, p1 and q1 must be expressed in
terms of db and V. This is easy to do, using the explic
expressions given above forp andq:

H p1p05kVe1 /c1k2des2bdb,

q1q05kVe0 /c1k2ded2bdb,
~11!

where 2des and 2ded are the detunings of the permittivity in
the waveguide and antiguide core zones, respectively. N
that these deviations in general consist of two parts each:
occurs because the actual parameters of the structure de
from the strictly resonant values, and the second par
caused by the variation of the nonlinear component of
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permittivity. The possibility of operating with a piecewise
constant nonlinear addition toe is not evident in general an
requires special consideration. Recalling that the origi
one-dimensional model is an approximation, as well as
role of carrier diffusion in semiconductors, it can be assum
that replacing the actual distribution of the nonlinear com
nent ofe, averaged, as noted above, over the transverse
ordinate, with a stepwise value can satisfactorily describe
nonlinear effects in a linear array in our case. In this case,
total field intensity, averaged over the active~antiguide core!
and passive zones, respectively, appears in the theory
natural way. Using Eqs.~10! and~11!, we writeD52F2 in
the form of Eq.~7!, whence for the coefficientsc1 , . . . ,c6

we get

c152b2L4, c252k2e2L4/c2,

c3522bkeL4/c, c45 ik3e@de8L41Le
4#/c,

c55 ibk2@de8L41Le
4#, c65k4de8Le

4 , ~12!

where we have introduced the mean permittivity

e5~e1s1e0d!/L,

the mean detuning

de85~sdes1dded!/L,

and the characteristic lengths

L45L~s/p0
21d/q0

2!, Le
45L~sdes /p0

21dded /q0
2!.

These expressions for the coefficients of Eq.~8! are
some of the most important results of this paper; to illustr
the possibilities of using them, we will solve specific pro
lems in what follows. Note that in Eq.~6! the coordinatexm

inside the cell is a free parameter. The dependence on
internal coordinate enters into the total field via functio
f (xm) and g(xm), which also, strictly speaking, depend o
the Fourier variables over which the expansion in Eq.~7! is
carried out. However, a more careful analysis shows that
distortion of the basis functions in the space–time variati
of the field can be neglected in calculating the total fie
since their contribution is smaller by a factor ofN than for
the coefficientsam and bm . Analogously, provided one re
mains close to resonance, as given by inequality~5!, the
variations of the refraction indices should also be taken i
account only when solving Eq.~8!.

We should point out a number of limiting cases in whi
Eq. ~8! is easy to interpret. In particular, for a resonant str
ture in which amplification, absorption, and nonlinearity a
neglected,des5ded50, we have

c45c55c650.

Then, for steady-state propagation of radiation alongz, we
get a hyperbolic equation, describing propagation alo
straight lines at an angle of

L

A2c1

5
l

2n0LF d3

L3~ l 11!2
1

s3

L3m2G21/2

.

This unexpected outcome is confirmed by experiment14 from
the amplification of the radiation in an array of twenty-o
l
e
d
-
o-
e
e

a

e

he
s

e
s
,

o

-

g

antiguide core elements. The figures in Ref. 14 show cle
that the boundary of the beam propagating inside the set
straight line. An estimate gives an angle close to that writ
above. Note that when radiation initially fills part of the cro
section of the cavity homogeneously along thez axis the
entire cross section also becomes filled by a wave in
lateral direction with constant velocity, determined by t
formula L/A2c2. This also strongly differs from the
diffusion-like spreading usual for a plane-parallel cavity.

Finally, when the structure differs appreciably from
resonant structure, so that a special role is played in
propagation of radiation by the first-order derivatives w
respect toz or t, Eq. ~8! approaches in its properties th
ordinary parabolic equation of optics.

Since the actual boundary or initial conditions are oft
such that, close by~or initially!, the field cannot be repre
sented in the form of Eq.~3! with am andbm smoothly vary-
ing from element to element, the natural evolution of t
field in space and in time has the effect in this case that, a
some distance~time!, Eq. ~8! becomes usable for the subs
quent description. However, the question of the boundary
initial conditions requires special treatment in this case.

Below we shall consider problems for an infinite set
diodes, which corresponds to the approximation of sm
scales of structures that in our case embrace a rather l
number of elements, although less than the total numberN of
elements.

4. SELF-FOCUSING OF RADIATION WITH A PLANE
WAVEFRONT

Let us consider the steady-state propagation of radia
in an infinite array of semiconductor lasers. In this case
havec25c35c450. A solution in the form of a plane wave
front for the envelope of the fieldU(x,z),

U5E0 exp~ idbz!, ~13!

corresponds toD50 ~or F50), whence we get two allow-
able values fordb:

db15
kde8

n0
, ~14!

db25
k

n0

Le
4

L4
, ~15!

each of which makes one of the parentheses in Eq.~10! go to
zero, and here the propagation constant is taken to be
proximatelyb'kn0. The intensity dependence in Eqs.~14!
and ~15! implicitly enters the detuningsdes andded via the
carrier concentration. It is easy to verify by direct substi
tion thatdb1 corresponds to a field distribution of

U15 f ~xm!1g~xm!,

whereas the solution with propagation constantdb2 has the
form

U25 f ~xm!2g~xm!.

The field structure for each of the indicated waves is illu
trated in Fig. 3 for a grating with parametersl 50 and
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FIG. 3. Mode structure forl 50, m53: a—modef
1g, corresponding todb1, b—mode f 2g, corre-
sponding todb2.
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m53. Note that these solutions were obtained earlier in R
4 for a purely resonance grating and in the absence of n
linearity. The second of the solutions,U2, is evidently un-
suitable from the viewpoint of laser action, since the field
determined in equal degree by the active and passive zo
Moreover, for a finite number of elements, losses to the
diation through the edge will be large for field propagation
type U2.

Let us apply the standard analysis to the linear stabil
We introduce the field perturbationẼ(x,z), so that

U5~E01Ẽ!exp~ idbz!.

The linearized equation forẼ is written in the form

L2
]2Ẽ

]x2
1c1S ]2Ẽ

]z2
12idb

]Ẽ

]z D 1c5

]Ẽ

]z
1~Ẽ1Ẽ* !

3S idb
]c5

]I
1

]c6

]I DE0
250, ~16!

where the derivatives of the coefficients of Eq.~8! and db
are taken for the mean intensityI 05uE0u2 in an element.
Expanding the perturbation in plane waves,

Ẽ5ã~k,g!exp~ ikx1gz!1b̃~k,g!exp~2 ikx1g* z!,

we get the dispersion relation

g2uAu212g~Re~AB* !2Q2ReA!1Q2~Q222 ReB!50,
~17!

where

A5c512idbc1 , B5 idbI 0]c5 /]I 1I 0]c6 /]I ,

Q25k2L22c1g2.

The values of the coefficientsA and B for which, for real
values ofk, values ofg exist in which the real part is posi
tive correspond to a region of instability of the propagati
of a plane wavefront~self-focusing!. In accordance with the
Rouse–Hurwits criterion, Eq.~17! has no roots with a posi
tive real part~i.e., the solution is stable! if the following
system of inequalities is satisfied:

ReA,0, ~18!

uAu222c1k2L212c1ReB.0, ~19!

ReAB* 2k2L2ReA.0, ~20!

k2~k2L222ReB!.0, ~21!
f.
n-

s
es.
-

f

.

k2L2uAu2~ReA!21c1~ReAB* !2.ReAB* ReA~ uAu2

12c1ReB!. ~22!

It follows from inequality ~18! that a solution with ReA
.0 is unstable for any perturbations, whereas, for ReA,0,
the perturbations increase only for certain values ofk, for
which at least one of the inequalities~19!–~22! breaks down.
Moreover, when inequality~21! is satisfied, recalling tha
c1,0, inequality~19! follows, so that it is possible to restric
the discussion to the inequalities~20!–~22!.

In practice, one tries to localize the field mainly in th
antiguide core zone; also, to reduce the divergence of
radiation in the far field, it is desirable that the size of t
radiative zone be close to the period of the structure. B
these requirements are satisfied in the limitup0 /q0u@1. The
coefficient ReA can be written in this case as

ReA57
bk2sd

q0
2 ~ Im ded2Im des!,

where the upper sign refers todb determined from Eq.~14!,
and the lower sign to that from Eq.~15!. Since the amplifi-
cation is concentrated in the antiguide cores in the type
linear diode array considered here, while losses are so
times specially introduced into the waveguide gap, we fi
that the solution withdb5db2 is unstable, and therefore
is assumed in the subsequent analysis thatdb5db1.

If detuningde5ded2des of the permittivity step is in-
troduced at the boundary of the antiguide core, the coe
cient ReAB* can be written as

ReAB* 52
k6budeu2s2d2I 0

q0
4

Im S dde8

dI D ,

so that if ReAB* .0 holds, as in the case that is important
practice, when the sign on the derivative is determined by
decrease of the amplification as the intensity increases
inequality ~20! is satisfied for anyk. Then self-focusing oc-
curs when at least one of the following conditions is sa
fied:

k2,K0 ~23!

or

k2,~K02K1!Gd/s, ~24!

where the following notation has been introduced:
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K05
2k4sdI0

q0
2L2

ReS de
dde8

dI D ,

K15
k4sd2udeu2

q2L3 S G1
s

dD ,

G5LI 0 Im S dde8

dI D /d Im de.

For further simplification, it is necessary to specify t
form of the intensity dependences ofdes andded . Since the
overlap of the radiation field with the amplification zone
weak in the interelement space, we neglect the amplifica
in this zone. The permittivity detuning in the intereleme
gap can also be considered independent of intensity, ass
ing des5D1 iaT , where D is the real detuning from the
resonance value, andaT is the additional interelement loss
The permittivity detuning in the antiguide core is determin
as12

ded5e20P ~a2 i !/~11I /I s!,

where

P 5~Jtc /ed2N0!/N0

is a dimensionless parameter that allows for amplificat
and the difference ofN(x) from N0 as a consequence o
pumping,J is the injection current density,tc is the sponta-
neous lifetime,e is the charge of the electron,a is a line-
width enhancement factor,I s is the saturation intensity, an
e205Gsgn0 /k (sg is the amplification cross section, andG
is a coefficient that allows for the overlap of the field of t
mode with the active zone in the transverse direction!.

As follows from inequalities~23! and~24!, self-focusing
is possible when at least one of the conditionsK0.K1 or
K0.0 is satisfied.

Under the assumptions made here, the first condition
the absence of losses in the interelement gap (aT50) re-
duces to a quadratic inequality fort5D(11I 0 /I S)/(e20P )
2a:

t2~H11!22t1H21,0,

where

H5~11I S /I 0!s/d.

This inequality has a nonempty set of values only wh
H,A2 holds, i.e., for fairly large intensities:

I 0.I S /~A2d/s21!.

For smaller intensities, only the inequality~23! remains.
The condition K0.0 can be reduced to the form

Re@(a2 i )de#,0 or, in more detail,

aD1aT2
a221

11I 0 /I s
e20P .0. ~25!

Thus, when there is no modulation of the losses and
radiation intensity is not too large, self-focusing occurs wh
the detuning of the permittivity step is above the resona
n
t
m-

n

in

n

e
n
e

value (Rede.0), whereas self-defocusing occurs when it
below that value. This agrees with the results of the num
cal calculations of Ref. 12.

For the conditionugu!db @which corresponds to pre
dominance of the parabolic term in the original Eq.~8!#, we
can setQ5kL in Eq. ~17!, reducing it to square ing. For
large positive detunings,D@ue2u, Eq. ~17! can be rewritten
as

g̃212g̃S Q0
21Q2

e20P

D~11I /I s!
D1Q2~Q222aQ0

2!50,

~26!

where we have introduced the notation

g̃5guAu, Q0
25k4sd2e20DP /q2I sL~11I 0 /I s!

2.

We find from Eq.~26! that g̃ reaches its maximum valu
when Q2'aQ0

2, so that the maximum growth rate of th
perturbations,

gmax5
k2dI0

bLI s

e20P

~11I 0 /I s!
2
~~a211!1/221!,

is reached when the characteristic transverse size of a pe
bation is

Lchar5
Ll2

2d2

11I 0 /I s

~ae20DP sI0 /LI s!
1/2

.

The condition that makes it possible to reduce Eq.~17! to a
square can be written as

D@
~~a211!1/221!e20P I 0

~11I 0 /I s!
2I s

, ~27!

while the condition that the field vary little over one perio
uQu!1, implies the inequality

~ae20DP sI0 /LI s!
1/2

11I 0 /I s
!

l2

2d2
. ~28!

When the pump power is close to the lasing thresholdP

;1), inequalities~27! and ~28! are simultaneously satisfie
for the entire range ofD values that are small in compariso
with the permittivity step at the boundary of the antigui
core.

5. SOLITON SOLUTIONS IN A LINEAR ARRAY OF DIODE
LASERS

Reference 15 used numerical calculations to show t
besides solutions in the form of a plane wavefront, solutio
of the isolated wave or soliton type are also possible in
linear array of diode lasers. Such a soliton is small by co
parison with the size of the entire linear array, but must
large by comparison with the size of one element. Below
construct such a solution in the model of a smooth envel
of the field for the condition that the pump power weak
exceeds the threshold.

We shall use a model of a laser cavity in the form of
medium homogeneous in the longitudinal direction, with d
tributed losses responsible for the output of radiation fr
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the cavity.16 Moreover, the longitudinal coordinate and tim
appear in Eq.~8! in a symmetric way, so that Eq.~8! in
general reduces to an equation in two variables. Specific
if a field-independent replacement of the coordinates

x̃5L2k2x/L and t̃ 5kct/e1kz/n0

is made, Eq.~8! can be written as

]2U

] x̃2
2

]2U

] t̃ 2
1 i S de81

Le
4

L4D ]U

] t̃
1

Le
4

L4
de8U50. ~29!

The dispersion equation corresponding to the plane wave
the envelope, as can easily be seen from Eq.~29!, is a
second-order algebraic equation. Neglecting the imagin
parts of the permittivity, the dispersion equation can be ill
trated on plane wave vectorsdb and kx ~see Fig. 4!. The
values ofdb1,2 in Fig. 4 are determined by Eqs.~14! and
~15!. The dashed lines show the dispersion curves for s
resonance, where (0,0) is the point of degeneracy. For n
zero detuning~which can be caused by nonlinear field d
pendence ofdes and ded), the pair of straight lines trans
forms into two branches of a hyperbola. A band gap arise
this case. Thus, for a linear array with parameters differ
from the resonance values, there is an interval of cons
propagation db1,db,db2 ~or db2,db,db1), where
plane waves are forbidden. If we now construct a soluti
takingdb from the indicated interval for the intensity of th
light to be equal to zero, the parameters can be chose
that, as the intensity increases, the original dispersion cu
is transformed so thatdb goes beyond the limits of the ban
gap ~we recall thatdb1 anddb2 depend on the intensity o
the light!. In such a situation, Eq.~29! obviously must allow
a soliton solution.

The translationally invariant solution of Eq.~29! is writ-
ten as

U5exp~2 iu t̃ !Û~ x̃2v t̃ !,

where u is a free parameter, andv is the velocity of the
structure (u and v are real!. Equation~29! can then be re-
written as

FIG. 4. Formation of a band when a linear array of lasers is detuned f
resonance: the dashed lines are the dispersion curves in strict resonanc
the solid curves are the dispersion curves for positive detuning of the
mittivity step from resonance.
y,
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so
ve

]2Û

]j2
~12v2!1S de81

Le
4

L4
22u D iv

]Û

]j
1S Le

4

L4
2u D

3~de82u!Û50, ~30!

wherej5 x̃2v t̃ . Equation~30!, with intensity-dependent co
efficients for the first derivative and the free term, was inv
tigated as a consequence of the generalized Ginzbu
Landau equation in Ref. 17. It was also shown there tha
allows as solutions both plane wavefronts@which correspond
to stationary points in the phase space of Eq.~29!# and spa-
tially limited structures~which correspond to the separatric
that connect the stationary points; see, for example, Ref
for an application to optical systems!, such as wavefronts
solitons, sources, and sinks. At the same time, it is v
difficult to analyze Eq.~30! even for the simplest versions o
the dependence of the amplification on the field intens
because all the quantities in the equation are complex.

With pumping close to threshold, the imaginary part
the permittivity detuning in the antiguide core is small b
comparison with the real part, and the intensity is small
comparison with the saturation intensity. This makes it p
sible to represent the detuning in the antiguide core as

ded5de02e2uUu2/I S ,

wherede0 ande2 are real parameters andI S is the saturation
intensity. Then, in the approximation of strong confineme
of the field in the antiguide core,up0u@uq0u, and in the ab-
sence of modulation of the losses, the field-dependent c
ficients in Eq.~30! can be written as

de82u5
s

L
de2u12e2

d

L

uUu2

I S
,

Le
4

L4
2u52u12e2

uUu2

I S
,

whereu15u2de0 is a renormalized free parameter andde
is the detuning of the permittivity step between the wav
guide and the antiguide core zones. In this case, a solu
exists in the form of a stationary (v50) soliton having the
form

Û5S u1deI S

e2@~d1L!u1 /s2de# D
1/2

cosh21SAu1de
s

L
j D .

~31!

It is obvious from Eq.~31! that the conditions for the exis
tence of such a soliton areu1de.0, which means that there
is no radiation propagation whenI 50, ande2((d1L)u1 /s
2de).0, which means that transmission is no longer fo
bidden when the intensity is greater than a certain thresh
value. This confirms the qualitative considerations expres
above.

Figure 5 illustrates the overall structure of the solito
There are small discontinuities at the boundaries of the
ments of the periodic structure because the envelope of
soliton actually covers about three elements. This means
the transition to a continuous variable that we used in de

m
and
r-
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ing the main Eq.~8! introduces an appreciable error. On t
whole, however, it is evident that Fig. 5 correctly reflects t
shape of the soliton.

6. CONCLUSION

An equation has thus been derived in this paper for
smooth envelope of the wave field in a plane stratified m
dium characterized by weak scattering over one per
caused by resonance effects. It has been found that, sta
from the elliptical type of Helmholtz equation in the var
ables (x,z), the equation for the envelopes can be tra
formed into a hyperbolic equation that describes the fi
propagation in a stratified medium at some angle. The c
ditions have been specified under which the concept o
smooth envelope is valid and under which this equation
be used. For a linear array in which the permittivity has
stepwise dependence on the coordinates, the condition
stable propagation of radiation with a plane wavefront ha
been analyzed, and an explicit nonlinear isolated soliton
lution has been found.

FIG. 5. Intensity profile of a fundamental soliton in a linear array of dio
lasers, normalized to the saturation intensity, when the permittivity ste
detuned from resonance byde50.003.
e

e
-

d,
ing

-
d
n-
a
n

a
for
e
o-

This work was carried out with the financial support
the Russian Fund for Fundamental Research~Grant No. 96-
02-19203!.

* !E-mail: dima@fly.triniti.troitsk.ru

1L. A. Brekhovskikh, Waves in Layered Media, Academic Press, New
York ~1980! @Russian original, Nauka, Moscow~1973!#.

2P. Yeh,Optical Waves in Layered Media, Wiley, New York ~1988!.
3N. N. Il’ichev, L. A. Malyutin, P. P. Pashininet al., Pis’ma Zh. Tekh. Fiz.
8, 460 ~1982! @Sov. Tech. Phys. Lett.8, 200 ~1982!#.

4C. A. Zmudzinski, D. Botez, and L. J. Mawst, Appl. Phys. Lett.60, 1049
~1992!.

5H. Kogelnik and C. V. Shank, J. Appl. Phys.43, 2327~1972!.
6A. P. Napartovich and D. Botez, Proc. SPIE2994, 600 ~1997!.
7D. Botez, in Diode Laser Arrays, D. Botez and D. R. Scifres~Eds.!,
Cambridge University Press~1994!.

8V. V. Likhanskii and A. P. Napartovich, Proc. SPIE1840, 256 ~1991!.
9L. D. Landau and E. M. Lifshitz,Quantum Mechanics–Non-Relativistic
Theory, vol. 3 of Course of Theoretical Physics, Pergamon Press, New
York ~1977!; Fizmatgiz, Moscow~1963!.

10D. Botez and A. P. Napartovich, IEEE J. Quantum Electron.30, 975
~1994!.

11F. R. Gantmakher,The Theory of Matrices, Chelsea, New York~1959!
@Russian original Gl. Red. Fiz. Mat. Lit., Moscow~1975!#.

12R. F. Nabiev and D. Botez, IEEE J. Sel. Top. Quantum Electron.1, 138
~1995!.

13D. Botez, L. J. Mawst, G. L. Peterson, and T. J. Roth, IEEE J. Quan
Electron.26, 482 ~1990!.

14C. Zmudzinski, D. Botez, L. J. Mawstet al., IEEE J. Sel. Top. Quantum
Electron.1, 129 ~1995!.

15R. F. Nabiev, P. Yeh, and D. Botez, Opt. Lett.18, 1612~1993!.
16Ya. I. Khanin,The Dynamics of Quantum Generators, Sov. Radio, Mos-

cow ~1966!.
17W. van Saarlos and P. C. Hohenberg, Physica D56, 303 ~1992!.
18N. N. Rozanov,Optical Bistability and Hysteresis in Distributed Nonlin

ear Systems, Nauka, Moscow~1997!.

Translated by W. J. Manthey

is



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS VOLUME 88, NUMBER 2 FEBRUARY 1999
Quasi-collinear and partially degenerate four-wave mixing: an alternative explanation
of the phase-conjugation property of backward stimulated scattering
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A quasi-collinear and partially degenerate four-wave mixing model is proposed to explain the
optical phase-conjugation property of various types of stimulated backscattering.
According to this model, after passing through a phase-disturbed medium or an aberration plate,
the input pump beam can be resolved into two portions: a stronger undisturbed regular
portion and a weaker phase-disturbed irregular portion. These two portions interfere with each
other and create a volume holographic grating in the pumped region of the scattering
medium. Only the stronger undisturbed portion of the pump field can excite an initial backward
stimulated scattering beam with a regular wavefront. When the latter~as a reading beam!
passes through the induced holographic grating, a diffracted wave will be created and then
amplified together with the reading beam. A rigorous mathematical analysis shows that
under certain conditions the combination of these two portions~the reading wave and the diffracted
wave! of the backward stimulated scattering can be an approximate phase-conjugate field of
the input pump field. The major theoretical conclusions are basically supported by the experimental
results based on a specially designed two-beam interference setup. ©1999 American
Institute of Physics.@S1063-7761~99!00502-8#
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1. INTRODUCTION

Optical phase-conjugation is one of the most interest
research subjects in nonlinear optics.1,2 So far, there are two
major technical approaches to generate optical ph
conjugate waves: one is based on degenerate or partially
generate four-wave mixing,3–8 the other is based on back
ward stimulated Brillouin, Raman, or Rayleigh-win
scattering.9–14 In addition, for certain arrangements, spec
three-wave mixing,15,16 the photon echo technique,17,18 and
the self-pumped photorefractive effect can also be use
produce phase-conjugate waves.19–21

Now backward stimulated scattering~BSS! is one of the
most sophisticated techniques to generate optical ph
conjugate waves. A considerable number of theoretical
pers on this specific issue have been published since the
1970s.22–31Most of those theoretical studies have been ba
on a particular assumption that there is gain discriminat
between the phase-conjugate portion and non-ph
conjugate portions of the backward stimulated scatter
only the former can obtain the maximum gain and be eff
tively amplified. However, for a long time, a clear theoretic
model or physical explanation to support this assumpt
was lacking. Therefore, a better physical understanding
this effect is still necessary, as indicated by Ref. 32. Anot
feature of most theoretical papers cited here is that both
pump field and the BSS field were represented by a func
2351063-7761/99/88(2)/11/$15.00
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expressed as an infinite series.9,22,24–31In those cases, it was
extremely difficult to obtain a rigorous analytical solution
the wave equation.

In this paper we intend to propose an alternative phys
model as well as a novel mathematical approach to exp
the phase-conjugation property of BSS. The suggested m
is based on a quasi-collinear and partially-degenerate f
wave mixing process, or equivalently, a quasi-collinear h
lographic wavefront-reconstruction process. The propo
mathematical approach is based on the assumption that
the pump field and the BSS field can be viewed as compo
of two portions: a portion of the regular-wave and a porti
of the aberration-wave. The advantage of the suggested
proach is that an explicit analytic solution of the wave equ
tions can be obtained.

2. QUASI-COLLINEAR HOLOGRAPHIC INTERACTION
MODEL

Before starting our theoretical discussions, it is help
to describe briefly the typical experimental setup for dem
strating the phase-conjugation property of the BSS from
given medium. Figure 1a shows the typical experimen
setup without using an aberration plate. In this case, a qu
plane pump beam is focused into the center of a scatte
medium. Most experimental observations show that the B
exhibits nearly the same beam size and beam divergenc
© 1999 American Institute of Physics



a

236 JETP 88 (2), February 1999 Dun Liu and Guang S. He
FIG. 1. Experimental setups for observation of
phase-conjugate backward stimulated scattering:~a!
without using an aberration plate and~b! with an
aberration plate.
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does the pump beam. These facts can be explained by
following two considerations. First, only those portions
the initial BSS which are propagating within the solid ap
ture angle~measured from the sample center to the focus
lens! of the pump beam can get the maximum gain leng
Second, the divergence angle of the collimated BSS is de
mined by its spot size in the pumped region of the g
medium, which is limited by the spot size of the pump bea
We can assume that near the focal point region the focu
pump beam exhibits a Gaussian transverse intensity distr
tion. Considering the threshold requirement of the burst
stimulated scattering, the minimum spot size~beam waist! of
the stimulated scattering should be slightly smaller or qu
closer to that of the pump beam. Therefore, after pass
back through the focusing lens the BSS output manifes
slightly smaller or nearly the same beam divergence angl
the pump beam.

Figure 1b shows the same experimental setup except
a transparent aberration plate is placed between the be
splitter and the focusing lens. In this case, after passing b
through the aberration plate the BSS may show a sign
cantly reduced aberration influence. That is the typical
perimental evidence of the phase-conjugation property of
BSS.10–14

To describe how can we employ the quasi-collinear
lographic interaction model to explain the basic experimen
results mentioned above, it is worth returning to the origi
idea of Gabor’s holography principle. In that case, a cohe
light wave passing through a transparent object~phase ob-
ject!, the object is assumed to be such that a consider
part of the wave penetrates undisturbed through it, an
hologram is formed by the interference between the seco
ary wave arising from the presence of the object and
strong background wave, as clearly described in Ref.
the
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According to this principle, after passing through a pha
object the total optical field can be expressed as a supe
sition of two portions:33

U5U ~ i !1U ~s!5A~ i ! exp~ iw i !1A~s! exp~ iws!

5exp~ iw i !$A
~ i !1A~s! exp@ i ~ws2w i !#%. ~1!

HereU ( i ) is the undisturbed part of the transmitted field,U (s)

the secondary wave arising from the presence of the ob
A( i ) andA(s) are their amplitude functions; andw i andws are
the corresponding phase functions, respectively.

The Gabor principle described above is applicable
most phase-conjugation experiments based on BSS. In
case, as shown schematically in Fig. 2,E(v) is a quasiplane
pump wave; after passing through an aberration plate,
pump field appears as a superposition of two portions
stronger undisturbed waveE1(v) and a weaker distorted
wave E2(v). After passing through a focusing lens, the
two portions interfere with each other in the focal regi
inside a gain medium and create an induced volume h
graphic grating that is due to the intensity-dependent refr
tive index change of the gain medium. Only theE1(v) wave
is strong enough to fulfill the threshold requirement and
generate an initial BSS waveE3(v8), the latter exhibits the
same regular wavefront as does the former. When
E3(v8) wave passes backward through the induced ho
graphic grating region, a diffracted waveE4(v8) is created.
Here we see a typical holographic wavefront-reconstruct
process: the induced grating is formed by the regularE1(v)
wave~reference beam! and the irregularE2(v) wave~signal
beam!; the initial backward stimulated scatteringE3(v8)
wave is a reading beam with a regular wavefront like t
E1(v); therefore, the diffracted waveE4(v8), as a recon-
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FIG. 2. Schematic illustration of Gabor’s holograph
model for the phase-conjugation formation of bac
ward stimulated scattering.
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structive beam, will be the phase-conjugate replica of
E2(v) wave.

Furthermore, theE4(v8) wave will experience a furthe
amplification together with theE3(v8) wave because both
waves have the same signal frequency. In the case of st
lated Brillouin scattering,v'v8, it is a nearly degenerat
quasi-collinear four-wave mixing~FWM! process in the
sense of phase-conjugate formation. In the case of stimul
Raman scattering,v.v8, there is a partially degenerate an
frequency down-converted FWM process. In the case of a
Stokes stimulated scattering,v,v8, there is a partially de-
generate and frequency up-converted FWM process. Ba
on the explanations described above, one can see that th
a common mechanism~pump field-induced holographic gra
ing! playing the same key role for phase-conjugation form
tion in both FWM and BSS. This common mechanism
applicable to any types of backward stimulated scatter
processes including stimulated Brillouin, Rama
Rayleigh-wing,34,35and Kerr scattering,36–38even though the
specific scattering mechanisms are totally different am
them.

3. PUMP FIELD-INDUCED HOLOGRAPHIC GRATING
AND STIMULATED SCATTERING GAIN

Let us consider an isotropic scattering medium. We
sume thatv andv8 are the frequencies of pump wave a
stimulated scattering wave, both of which are linearly pol
ized along thex axis. The induced refractive index chang
experienced by the stimulated scattering wave can be
pressed as

Dn~v8!5
1

2n0~v8!
xe

~3!~2v8;v8,2v,v!uE~v!u2, ~2!

wheren0(v8) is the linear refractive index,xe
(3)5xxxxx

(3) is a
real matrix element of the third-order nonlinear susceptibi
tensor, andE(v) is the electric field function of the inciden
pump beam. In the focal region inside the gain medium,
values of local intensity of the pump field,I (x,y,z,v)
}uE(x,y,z,v)u2, can be quite high with a spatial intensi
fluctuation that is due to the interference between the
portions~disturbed and undisturbed! of the pump beam. As a
result, an intensity-dependent holographic grating can
formed via the mechanism described by Eq.~2!.

If the local pump intensity is high enough, stimulate
scattering and subsequent stimulated amplification may
cur in the focal region of the pump beam inside the mediu
As in the case of one-photon pumped lasing, in steady-s
e
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and small-signal approximation the growth of an initi
stimulated scattering signal can be described as

I ~ l ,v8!5I ~0,v8!e~G2a!l , ~3!

wherev8 is the frequency of the stimulated Stokes scatt
ing, I ( l 50,v8) is the initial intensity,a is the linear attenu-
ation coefficient,G is the exponential gain coefficient~in
units of cm21!, and l is the effective gain length~in units of
cm! of the medium. The threshold requirement for the bu
of an observable stimulated scattering can be written as

e~G2a!l@1. ~4!

The exponential gain coefficientG is assumed to be propor
tional to the local intensity of the pump field, i.e.,

G~z!5gI0~z,v!. ~5!

Here the pump intensityI 0(z,v) is in units of MW/cm2, and
g is the exponential gain factor in units of cm/MW.

4. GENERALIZED DEFINITIONS OF AN OPTICAL PHASE-
CONJUGATE WAVE

The term ‘‘optical phase-conjugation’’ is specially use
to described the wavefront reversal property of a backw
propagating optical wave with respect to a forward propag
ing optical wave. Suppose there is an input qua
monochromatic wave with a certain phase-distortion dep
ing from an ideal plane wavefront, i.e.,

E~z,x,y,v!5E~z,x,y!e2 ivt

5A0~z,x,y!ei @kz1w~z,x,y!#e2 ivt. ~6!

Here, z is the longitudinal variable along the propagatio
direction,x andy are the transverse variables along the be
section,v is the frequency of the field,k52pn0 /l is the
magnitude of the wave vector;E(z,x,y) is the complex am-
plitude function,A0(z,x,y) is the real amplitude function
and,w(z,x,y,k) is a phase-distortion function. If there is
backward propagating wave which can be expressed as

E8~z,x,y,v!5aE* ~z,x,y!e2 ivt

5aA0~z,x,y!e2 i @kz1w~z,x,y!#e2 ivt, ~7!

wherea is any real constant, the fieldE8(z,x,y,v) is called
the frequency-degenerate phase-conjugate wave of the i
field E(z,x,y,v). This type of optical phase-conjugate wav
can be experimentally generated by using the well-kno
degenerate four-wave mixing technique.3–7
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FIG. 3. Schematic illustration of the optical-path geom
etry for the formation of a phase-conjugate backwa
stimulated scattering.
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In a more general case, if there is a backward propa
ing optical field with a different frequencyv8, which can be
written as

E9~z,x,y,v8!5aA0~z,x,y!e2 i @k8z1w~z,x,y!#e2 iv8t, ~8!

then E9(z,x,y,v8) can be termed the frequency
nondegenerate phase-conjugate wave of the same ori
field E(z,x,y,v). This type of phase-conjugate wave can
experimentally generated by using~i! various BSS with a
considerable frequency-shift,12,13 or ~ii ! a partially degener-
ate FWM.8,39–42

5. DESCRIPTION OF A FOCUSED INPUT PUMP FIELD

A detailed schematic illustration for the beam-path g
ometry of the BSS in a scattering medium is shown in Fig
In this case, a quasi-parallel pump beam~thick lines! passes
through an aberration plate and is focused into the cente
the medium. After passing through the aberration plate,
pump beam can be imagined as composed of two porti
One is a relatively strong undisturbed quasi-plane w
~medium-thick lines!; the other is a relatively weak distorte
wave ~thin lines!. These two portions of the input pum
beam can interfere with each other in the overlap region
create a volume holographic grating. For the undistorted p
tion of the input pump beam, the optical field in the foc
region can be approximately treated as the fundame
mode of a Hermite-Gaussian beam, i.e.,25,43

E1~z,x,y,v!5C1

w0

w~z!
expH 2~x21y2!

3F 1

w2~z!
2

ik

2R~z!G2 i tan21S z

dzD J
3exp@ i ~kz2vt !#, ~9!

whereC1 is a real amplitude constant, and the parameterw,
R anddz are determined by

w2~z!5w0
2F11S z

dzD
2G , R~z!5zF11S z

dzD
2G ,

dz5
kw0

2

2
. ~10!
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Here, w(z) represents the change in the pump-beam s
along thez axis near the focal point region,w0 is the mini-
mum spot size of the beam at the focal plane,dz is the focal
depth of the focused beam, andR(z) describes the change o
the radius of curvature as a function ofz. In writing Eq. ~9!,
we simply neglect the amplitude depletion of the pump fie
within a distance comparable todz.

According to Gabor’s principle and Eq.~1!, the total
pump field near the focal point region can be expressed
combination of two portions:

E~z,x,y,v!5E1~z,x,y,v!1E2~z,x,y,v!

5@A1~z,x,y!1A2~z,x,y!#exp@ i ~kz2vt !#

5H C1

w0

w~z!
expS 2~x21y2!F 1

w2~z!
2

ik

2R~z!G
2 i tan21

z

dzD1C2 exp@ iu~z,x,y!#J
3exp@ i ~kz2vt !#. ~11!

HereC1 andC2 are real amplitude constants for normaliz
tion, andu(z,x,y) is an unknown function depending on th
aberration plate. The first term withC1 in the braces of Eq.
~11! represents the undistorted portion of the pump field;
second term withC2 represents the distorted portion of th
pump field. It is assumed that the latter amplitude is distr
uted nearly uniformly near the focal point with a cross se
tion considerably larger thanw0 . As shown in Fig. 3, this
assumption is based on the fact that the aberration p
causes a wide and diffuse halo in the focal plane compare
the small focal spot of the undistorted wave. Neverthele
apart from the focal plane these two portions overlap con
erably with each other and can induce a holographic grat

6. FORMATION OF PHASE-CONJUGATE WAVE
BY BACKWARD STIMULATED SCATTERING

As shown in Fig. 3, the two portions of the input pum
beam can interfere with each other in the overlapping reg
and create a volume holographic grating. However, on
other hand, since the focused undisturbed portion of
pump beam has a much smaller focal spot size and m
higher local intensity than that of the distorted portion,
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initial BSS~medium-thick dashed lines! with a regular wave-
front can be excited only by the stronger undisturbed pu
field. In propagating backward this initial BSS experienc
further amplification, and creates a diffracted wave throu
the induced holographic grating. This diffracted portion~thin
dashed lines! can be viewed as a secondary seeded signal
therefore will undergo further amplification together with t
initial BSS signal. The remaining issue is whether the co
bination of these two portions of the backward emission
be a phase-conjugate replica of the combination of the
portions of the input pump field.

6.1. Description of the BSS field: the E18„v8… wave

According to the proposed model, it is assumed that
backward stimulated emission field also consists of two p
tions and can be expressed as

E8~z,x,y,v8!5E18~z,x,y,v8!1E28~z,x,y,v8!

5@A18~z,x,y!1A28~z,x,y!#

3exp@ i ~2k8z2v8t !#, ~12!

whereA18(z,x,y) is the complex amplitude function of th
initial BSS wave andA28(z,x,y) is the complex amplitude
function of the diffracted wave created by the former throu
the induced holographic grating.

According to the physical model described in Sec. 2,
A18 field is generated by theA1 field through the BSS pro
cess. Therefore, the electric polarization component co
sponding toA18 field can be formally written as~in SI units!

P18~v8!5 i«0xe8uA1u2A18 exp@ i ~2k8z2v8t !#

5 i«0xe8
C1

2w0
2

w2~z!
expF2

2~x21y2!

w2~z! GA18

3exp@ i ~2k8z2v8t !#, ~13!

where«0 is the permittivity of vacuum andxe8 is a phenom-
enologically introduced effective third-order susceptibil
coefficient ~a real coefficient! that is employed to describ
the gain behavior of the BSS process. The above expres
is based on the assumption that the initial BSS experien
an exponential gain, and the exponential gain coefficien
proportional to the intensity of theA1 field @see Eq.~5!#. The
wave equation ofE18 can be written as

¹2E182
n0

2~v8!

c2

]2E18

]t2 5m0

]2P18~v8!

]t2 , ~14!

wherem0 is the permeability in vacuum,c the speed of light
in vacuum, andn0(v8) the linear refractive index at th
frequency ofv8. In the slowly-varying-amplitude approxi
mation, the solution of Eq.~14! obeys the following equa
tion:

]A18

]z
1

i

2k8
¹'

2 A185
g8C1

2

2@11~z/dz!2#

3expF2
2~x21y2!

w2~z! GA18 , ~15!
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whereg85k8xe8 is the exponential gain factor of the stimu
lated emission for a given medium. In order to solve th
equation, we could solve for the Fourier transform ofA18 ,
then obtain the solution ofA18 through the reverse Fourie
transform.25 Omitting the intermediate mathematical proc
dure, the final solution ofA18 is given by

A185C18
w08

w8~z!
expF1

2
g8C1

2~z2z0!GexpH 2~x21y2!

3F 1

w82~z!
1

ik8

2R8~z!G1 i tan21
z

dz8J . ~16!

Here C18 is a real amplitude constant, the first exponent
term represents the amplitude gain effect, the second e
nential term describes the behavior of the transverse inten
and wavefront curvature, andz0 is the starting position of the
initial backward stimulated emission. The other new para
eters in the above equation are defined as

dz85hdz, w08
25~k/k8!hw0

2,

w82~z!5w08
2F11S z

dz8D
2G ,

R8~z!5zF11S dz8

z D 2G , ~17!

and

h5
1

3
g8C1

2dzF S z

dzD
3

2S z0

dzD
3G . ~18!

In the condition

h5
1

3
g8C1

2dzF S z

dzD
3

2S z0

dzD
3G'1, ~19!

we have dz85dz, w08
2'w0

2, w82(z)'w2(z) and R8(z)
5R(z). Comparing Eq.~16! to Eq. ~11!, one can see tha
only in that case can theE18 field be approximately the phase
conjugate replica of the inputE1 field. Later, we will discuss
the real experimental conditions that fulfill the above r
quirement and will also consider the influence of the diffe
ence betweenk8 andk.

Now let us consider the gain behavior of the backwa
stimulated emission described by the first exponential te
in Eq. ~16!. We have already chosenz50 at the focal point
position in the sample center, and we assume that the in
backward stimulated emission starts roughly from the po
tion 2z0'2dz/2. If the optical path length of the gain me
dium is much longer thandz, the effective single-path am
plitude gain can be written as

D~d!'expS 1

2
g8C1

2dzD . ~20!

If the sample thickness is much shorter than the focal de
i.e., d!dz, then we have

D~d!'expS 1

2
g8C1

2dD . ~21!
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This indicates that the BSS grows exponentially along
whole optical path length within the medium.

6.2. Description of the BSS field: the E28 wave

Next we shall consider the diffractedE28 wave created by
the E18 wave through the induced holographic grating ne
the focal region. Like a partly degenerate FWM process,
nonlinear polarization componentP28 , which corresponds to
the E28 wave, can be written as44,45

P28~v8!5 i«0xe9A1A2* A18 exp@ i ~2k8z2v8t !#, ~22!

wherexe9 is a nominally introduced effective third-order su
ceptibility ~a real coefficient! that is used to characterize th
gain behavior of FWM or a grating diffraction process. A
suming that the condition of Eq.~19! is satisfied and theE18
field is phase-conjugated with theE1 field, then, based on
Eqs. ~11!, ~16!, and ~19!, we can obtain an explicit expres
sion for P28 :

P28~v8!5 i«0xe9
C1C2C18w0

2

w2 expF2
2~x21y2!

w2~z! G
3exp~2 iu!expF1

2
g8C1

2~z2z0!G
3exp@ i ~2k8z2v8t !#. ~23!

Substituting Eq.~23! into a nonlinear wave equation like Eq
~14!, we find that the complexA28 function is governed by the
following equation:

]A28

]z
1

i

2k8
¹'

2 A285
g9

2

C1C2C18

11~z/dz!2

3expF2
2~x21y2!

w2~z! Gexp~2 iu!

3expF1

2
g8C1

2~z2z0!G , ~24!

whereg95k8xe9 . SinceA28 does not appear on the right-han
side of Eq.~24!, we can give a trial solution ofA28 as

A285
C2C18

C1
expF2

2~x21y2!

w2~z! GA29 , ~25!

whereA29 is an unknown function to be solved. Substitutin
Eq. ~25! into Eq. ~24! leads to

]A29

]z
2 i

2

dz@11~z/dz!2#
S x

]A29

]z
1y

]A29

]y D
1

i

2k8
S ]2A29

]x2 1
]2A29

]y2 D 2
i

dz@11~z/dz!2#

3F12
4~x21y2!

w2~z! GA291
4~x21y2!

dzw2~z!
A29

5
1

2
g9C1

2 1

11~z/dz!2 expF1

2
g8C1

2~z2z0!Gexp~2 iu!.

~26!
e

r
e

This is a rather complicated partial differential equatio
however, it can be greatly simplified with the following con
siderations. First, since there is an exponential term on
right-hand side of Eq.~26!, we may expect that the solutio
of A29 should also involve a corresponding exponential g
term. As a result, the condition]A29/]z@A29/dz should be
fulfilled; therefore, compared to the first term, the fourth a
the fifth terms on the left-hand side of Eq.~26! can be ne-
glected. Second, the focal depth is much larger that the b
size, i.e.,dz@x,y; the longitudinal variation of the beam
intensity is faster than the transverse variation, i.e.,]A29/]z
.]A29/]x, ]A29/]z.]A29/]y. Therefore, the second term o
the left-hand side of Eq.~26! can also be neglected. Then E
~26! can be finally simplified as

]A29

]z
1

i

2k8
¹'

2 A295
g9C1

2

2@11~z/dz!2#

3expF1

2
g8C1

2~z2z0!Gexp~2 iu!. ~27!

To solve this equation we can further assume a trial solut

A29~z,x,y!5A2-~z!exp@2 iu8~z,x,y!#. ~28!

Here theA2-(z) term represents the real amplitude as a fu
tion of z, and the exponential term represents the phase f
as a function ofz, x, and y. Substituting Eq.~28! into Eq.
~27!, we obtain the following pair of equations:

]A2-

]z
1

A2-

2k8
¹'

2 u85
g9C1

2

2@11~z/dz!2#

3expF1

2
g8C1

2~z2z0!Gcosdu,

]u8

]z
1

1

2k8 F S ]u8

]x D 2

1S ]u8

]y D 2G
5

g9C1
2

2@11~z/dz!2#
expF1

2
g8C1

2~z2z0!G sindu

A2-
, ~29!

where

du5u2u8.

In the small aberration approximation, the second-order s
tial derivative or the square of the first-order spatial deriv
tive of the functionu8 can be neglected, then Eqs.~29! can
be simplified as

]A2-

]z
5

g9C1
2

2@11~z/dz!2#
expF1

2
g8C1

2~z2z0!Gcosdu,

]u8

]z
5

g9C1
2

2@11~z/dz!2#
expF1

2
g8C1

2~z2z0!G sindu

A2-
. ~30!

As mentioned in Sec. 5, the distorted portion of the inp
pump field has a uniform amplitude distribution near t
focal point region@see Eq.~11!#. This assumption is base
on the fact that the beam waist of this portion is considera
larger than that of the undistorted portion of the pump fie
~see Fig. 3!. In Fig. 3 one can also see that for the distort
portion of the pump field, the variation of the shape of t
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beam waist along thez axis is negligible within the foca
depth range. Hence we can further assume that the lon
dinal variation of the wavefront of the distorted portion
the pump field within the focal depth range can be neglec
i.e.,

]u/]z'0. ~31!

Subtracting the second equation of Eq.~30! from Eq. ~31!,
we obtain a new pair of coupled equations as

]A2-

]z
5

g9C1
2

2@11~z/dz!2#
expF1

2
g8C1

2~z2z0!Gcosdu,

]~du!

]z
52

g9C1
2

2@11~z/dz!2#
expF1

2
g8C1

2~z2z0!G sindu

A2-
. ~32!

Dividing the first equation by the second in Eqs.~32!, we
find

]A2-

]~du!
52A2-

cosdu

sindu
. ~33!

This implies that

A2-~z!sindu~z!5A2-~2z0!sindu~2z0!5B, ~34!

whereB is a constant considerably smaller thanA2- . Substi-
tuting cosdu5A(A2-)22B2/A2- into the first equation of
Eqs.~32!, we have

A2-

A~A2-!22B2

]A2-

]z
5

g9C1
2

2@11~z/dz!2#

3expF1

2
g8C1

2~z2z0!G . ~35!

SinceB2!(A2-)2, Eq. ~35! can be approximately rewritte
as

]A2-

]z
5

g9C1
2

2@11~z/dz!2#
expF1

2
g8C1

2~z2z0!G . ~36!

Now let us consider the physical meaning of the fact
g8C1

2 andg9C1
2. The former is used to describe the gain

the A18 field due to stimulated scattering amplification, t
latter is nominally employed to describe the growth of theA28
field through the holographic grating diffraction~or the
equivalent four-wave mixing!. It is important to point out
that the initialA28 field can be viewed as a secondary se
signal, which will experience an additional gain from th
stimulated scattering amplification like that of theA18 field.
Under most BSS experimental conditions, the subsequ
gain of theA28 field comes mainly from the stimulated am
plification rather than the equivalent FWM or the grati
diffraction. Hence, in Eq.~36! we can replace theg9C1

2 term
by theg8C1

2 term, and rewrite Eq.~36! as

]A2-

]z
5

g8C1
2

2@11~z/dz!2#
expF1

2
g8C1

2~z2z0!G . ~37!

The final solution of this equation is

A2-5expF1

2
g8C1

2~z2z0!G . ~38!
tu-

d,

s
f

d

nt

To obtain this solution, we have assumed th
1/A11(z/dz)2'1, which is valid forz,dz. From Eq.~38!
one can find the initial value ofA2- at z52z0

A2-~2z0!51. ~39!

Next, the remaining issue is to consider the phase fu
tion u8(z,x,y) of the A29 field expressed by Eq.~28!. From
Eq. ~34! we have

sindu~z!5sindu~2z0!
A2-~2z0!

A2-~z!
. ~40!

Substituting Eqs.~38! and ~39! into Eq. ~40! leads to

sindu~z!5sin@u~z!2u8~z!#5sindu~2z0!

3expF2
1

2
g8C1

2~z2z0!G . ~41!

From Eq.~41! we see that during backward propagation t
phase front of theA29 field is getting closer and closer to th
phase front of theA2 field. Specifically, if the stimulated gain
is high enough, i.e.,

1

2
g8C1

2~z2z0!@1, ~42!

we find

sin@u~z!2u8~z!#→0, u8~z!→u~z!. ~43!

Based on Eqs.~25!, ~28!, ~38! and ~43!, the diffracted
portion of the backward stimulated scattering field can
finally obtained as

A285
C2C18

C1
expF1

2
g8C1

2~z2z0!G
3expF2

2~x21y2!

w2~z! Gexp~2 iu!. ~44!

6.3. The total BSS field: the E181E28 wave

Based on Eqs.~12!, ~16! and~44!, the total BSS field can
finally be written as

E8~z,x,y,v!5@A18~z,x,y!1A28~z,x,y!#exp@ i ~2k8z2v8t !#

5
C18

C1
expF1

2
g8C1

2~z2z0!G H C1

w0

w~z!
expS 2~x2

1y2!F 1

w2~z!
1

ik8

2R~z!G1 i tan21
z

dzD
1C2 expF2

2~x21y2!

w2~z! Gexp~2 iu!J
3exp@ i ~2k8z2v8t !#. ~45!

The above expression is obtained assumming that the
quirements described by Eqs.~19! and ~42! are fulfilled.
Here we can combine these two requirements as

h5
1

3
g8C1

2dzF S z

dzD
3

2S z0

dzD
3G'1,
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1

2
g8C1

2~z2z0!@1. ~46!

On the other hand, the total input pump field is given by E
~11! and can be rewritten as

E~z,x,y,v!5@A1~z,x,y!1A2~z,x,y!#exp@ i ~kz2vt !#

5H C1

w0

w~z!
expS 2~x21y2!F 1

w2~z!

2
ik

2R~z!G2 i tan21
z

dzD
1C2 exp~ iu!J exp@ i ~kz2vt !#. ~47!

Comparing Eq.~45! to Eq. ~47!, if we neglect the difference
betweenk andk8 and only consider the central portion of th
field within the region of

@2~x21y2!/w2~z!#,1, ~48!

we have

@A18~z,x,y!1A28~z,x,y!#}@A1~z,x,y!1A2~z,x,y!#* . ~49!

Based on the above relationship, one can conclude tha
total BSS field can be approximately phase-conjugate to
total input pump field provided that certain conditions ho

7. DISCUSSIONS

The conclusion that a BSS field can be an approxim
phase-conjugate of the input pump field holds under cer
conditions. First, the gain requirements expressed by
~46! should be fulfilled. Assuming that the effective ga
length of the nonlinear medium is nearly determined by
focal depth of the focused pump beam, e.g.,z
5(0.4– 0.5)dz andz052(0.4– 0.5)dz, according to the first
requirement expressed by Eq.~46!

g8C1
2dz'12– 23, ~50!

the required gain of the intensity of a small BSS sign
should be

exp@g8C1
2~z2z0!#'exp~g8C1

2dz!'exp~12– 23!

'13105– 131010. ~51!

In this case, the second requirement of Eq.~46! is automati-
cally fulfilled. The high gain requirement can be readily fu
filled in most experimental conditions for observing t
backward stimulated scattering without using any opti
feedback devices. For example, the values of the expone
gain factorgB of stimulated Brillouin scattering for the com
mon transparent solvents~such as acetone, benzene, a
toluene! are estimated to be 0.01–0.03 cm/MW.32,44 Assum-
ing the typical pump intensity isI 0.500 MW/cm2 and the
effective gain length~focal depth! is dz.1.5 cm, the gain
should be

gBI 0dz'8 – 22. ~52!
.
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Compared Eq.~52! to Eq. ~51! we see that the requiremen
for observing the phase-conjugate property of a BSS w
can be basically fulfilled by common experimental con
tions.

The phase-conjugation property of the BSS from a g
medium, in general, is not perfect for the following reaso
First, all the mathematical derivations described above
based on the small-aberration approximation, so that a s
stantial part of the distorted pump wave may overlap
undisturbed pump wave in the focal region to generat
holographic grating. Second, only the major~central! part of
the BSS may exhibit high-fidelity phase-conjugation, as
dicated by the requirement of Eq.~48!. One can expect tha
under a larger aberration influence, the fidelity of pha
conjugation behavior should become poorer.

So far the difference betweenk andk8 has been ignored
which has a certain influence on the fidelity of the pha
conjugation of a BSS wave. This influence should be ess
tially the same as when we create a hologram by using
beams of wavelengthl and then read this hologram by usin
another beam of wavelengthl8. Nevertheless, comparin
Eq. ~45! to Eq. ~47! one can see that the difference betwe
k and k8 has no influence on the relationshipu8(z)5u(z),
which is the most essential requirement for distortion co
pensation. But the difference betweenk and k8 does affect
the radius of curvature of the undistorted part of a BSS fi
and causes an apparent displacement of the focal point o
BSS wave.

It should also be noted that the holographic model e
ployed in this work is qualitatively compatible with the ex
isting theoretical explanation for phase-conjugate format
of backward stimulated Brillouin scattering, which is bas
on the assumption that there is a highly nonuniform pu
intensity distribution, i.e., a volume speckle pattern in t
focal region. Only the phase-conjugate portion of the B
field whose intensity distribution best matches the nonu
form gain distribution, experiences the maximum expon
tial gain coefficient, twice that of the non-phase-conjug
portion.24,44 In terms of the holographic model the volum
speckle is a result of interference between the undisto
and distorted parts of the pump field.

Finally, it is important to indicate that the Gabor holo
graphic interaction model and the theoretical treatment p
sented in this paper are suitable not only for various B
processes but also for other kinds of backward cohe
emission processes, provided that there is a high expone
gain mechanism for small initial backward coherent signa
well as an effective holographic grating induced by the pu
field.46 Recently, we have observed a nearly perfect pha
conjugation property in the backward frequency-upconver
stimulated emission from a two-photon pumped las
medium.47 This observation may suggest a new techni
approach to generate optical phase-conjugate waves and
be explained very well based on the same theoretical mo
described here.48–50

8. SOME RECENT EXPERIMENTAL RESULTS

So far, most experimental studies of phase-conjuga
fidelity of BSS have been based on measurements of
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FIG. 4. Experimental setup for measuring the phas
conjugation property of the backward stimulated Brillouin sca
tering with two-beam interference method.
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near-field and far-field distributions. We present here so
recent experimental results on the phase-conjugation p
erty of backward stimulated Brillouin scattering~BSBS!,
based on measuring the fidelity of wavefront reconstruct
by using the two-beam interference technique. The adv
tage of this method is that it can provide both near-field a
the wavefront information of the tested beams.

The experimental setup is shown schematically in Fig
A 532-nm master pump laser beam was provided by
Q-switched and frequency-doubled pulsed Nd:YAG la
source; the pulse duration, beam size and divergence a
of this beam were 10 ns, 4 mm, and 1 mrad, respectiv
After passing through a beamsplitter and a reflecting mir
that master beam was divided into two beams, which w
finally focused into two 10-cm-long CS2 liquid cells through
two f 510 cm focusing lenses. The intensities of these t
pump beams could be adjusted separately and were
e
p-

n
n-
d

.
a
r
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y.
r,
re

o
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enough to generate BSBS in both liquid cells. Furthermo
by means of two-edge beamsplitters and a 103 beam ex-
pander, the interference pattern of the two incident pu
beams could be observed on a screen and recorded
camera. In the same manner, the interference pattern o
two BSBS beams from these two liquid cells could be a
observed in another screen. In order to test the wavefr
reconstruction ability, a hydrofluoric acid-etched glass sl
was used as an aberration plate, which could introduce
aberration of 10–15 mrad on the pump beam~I!. This aber-
ration plate can be placed either at position A or position

Figure 5a shows the photograph of the pump beam
here we see a relatively uniform intensity distribution in t
beam section. Figure 5b shows the photograph of the pu
beam I after passing through an aberration plate place
position A; here we see a random transverse intensity fl
tuation caused by the aberration plate. Figure 5c shows
ion
s

FIG. 5. Photographs of~a! the pump beam II,~b! the pump
beam I after passing through an aberration plate,~c! the inter-
ference pattern of the two pump beams without no aberrat
plate, and~d! the interference pattern of the two pump beam
with aberration plate in position A shown in Fig. 4.
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FIG. 6. Photographs of~a! the BSBS beam excited by the
pump beam II,~b! the BSBS beam excited by the pump bea
I passing through an aberration plate,~c! the interference pat-
tern of the two BSBS beams with no aberration plate, and~d!
the interference pattern of the two BSBS beams with an ab
ration plate in position B shown in Fig. 4.
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photograph of the interference pattern formed by the t
incident pump beams with no aberration plate; here we
see the regular and straight fringes that indicate a nearly i
plane wavefront for both beams. Finally, Fig. 5d shows
photograph of the interference pattern when the aberra
plate was placed at position A; here we can no longer see
clear and regular fringes because of the severe aberra
influence on one beam. To obtain the photographs show
Fig. 5c and 5d, the intensities of the two interfering bea
were kept nearly the same.

Under the same conditions, a set of photographs can
obtained for the BSBS beams from the two CS2 liquid cells.
Figure 6a shows the photograph of the BSBS beam exc
by the pump beam II: here we see a relatively uniform
tensity distribution with no discrete-spot structure. Figure
shows a photograph of the BSBS beam excited by the pu
beam I with the aberration plate at position A. Here we se
randomly fluctuating intensity distribution, analogous to th
shown in Fig. 5b. Figure 6c shows a photograph of the re
lar interference pattern formed by two BSBS beams with
aberration plate. Compared Fig. 6c to Fig. 5c, one can
that the two stimulated backscatter beams exhibit a ne
ideal plane wavefront, with no aberration plate. Finally, F
6d shows a photograph of the interference pattern formed
the two BSBS beams with the aberration plate at position
In this case we can still see the clear fringes, although th
is a small irregularity among them in comparison with F
6c.

The results shown in Fig. 6c and 6d can be readily
plained in terms of the two basic theoretical conclusio
given in Sec. 7. The first conclusion is that if the stimulat
scattering gain is high enough and the aberration influenc
small, one can expect a nearly perfect wavefront reconst
o
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tion. The result shown in Fig. 6c basically supports this co
clusion. The second conclusion is that under a large abe
tion influence, the wavefront reconstruction will not b
perfect. The result shown in Fig. 6d basically supports t
conclusion. In the latter case, when the BSBS beam from
second liquid cell passed through the aberration plate at
sition B, the original wavefront of the pump beam I can
essentially, but not perfectly, reconstructed.
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Atom cooling by VSCPT: accumulation plus filtering
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We study laser cooling by velocity-selective coherent population trapping~VSCPT! in a double-
L scheme with decay beyond the working levels. We show that this additional decay
channel filters diffused atoms from trapped ones and provides an ultrasharp atomic momentum
distribution. © 1999 American Institute of Physics.@S1063-7761~99!00602-2#
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1. INTRODUCTION

Coherent population trapping was observed for the fi
time by Alzettaet al.1 as a decrease in fluorescent emiss
in a laser optical pumping experiment involving a three-le
atomic system with two ground levels and one excited lev
This effect results from coherent superposition of the grou
states which is stable against absorption from the radia
field. Various theoretical and experimental aspects of coh
ent population trapping have been reviewed in seve
papers.2–6 This phenomenon has been exploited in very d
ferent applications: metrology, optical bistability, hig
resolution spectroscopy, laser multiphoton ionization, fo
wave mixing, laser-induced structures in the continuu
laser manipulation of atoms, adiabatic transfer, lasing w
out inversion, and matched pulse propagation.

The application of velocity-selective coherent populati
trapping ~VSCPT! to laser manipulation of atoms has be
studied intensively.7–18 The basic idea of VSCPT is to pum
atoms into a noncoupled state that has a well-defined
mentum, where the atoms do not interact with the laser
diation. Accumulation of atoms in this special velocit
selective trapping state is due to spontaneous emission
VSCPT experiments7–10 with 4He metastable atoms, ver
narrow final distributions of atomic momenta are observ
The form and width of the momentum distribution has be
described theoretically for various schemes and in vari
regimes.11–18It is common to associate either the peak wid
or the dark-state population of an atomic momentum dis
bution with an effective temperature. Based on this effect
temperature, the authors of Refs. 7–18 conclude that l
cooling below the recoil limit has been achieved. Howev
spontaneous emission produces, as shown in these r
ences, not only the accumulation of atoms in the trapp
state but also diffusion of some of those atoms toward h
values of momentum. Unlike the velocity-selective trappi
phenomenon, the diffusion of atoms in the momentum sp
tends to increase the temperature. Due to such a ran
process, the wings of the momentum distribution are
Gaussian. In the meantime, the wing shape and the frac
2461063-7761/99/88(2)/8/$15.00
t
n
l
l.
d
n
r-
al
-

-
,
-

o-
a-

In

.
n
s

i-
e
er
,
er-
g
h

ce
m
t

on

of the atoms that have diffused toward the wings are
reflected in the peak width and dark-state population. C
sequently, the increase in the peak value and decrease i
width of the final atomic momentum distribution, which
far from Gaussian, do not mean the cooling; they mer
indicate the accumulation of atoms in the dark state.
simple analytical description of trapping versus diffusi
was recently given in Ref. 19. A nice way to confine atom
velocities during the VSCPT phase has been proposed
Marte et al.20 This method is based on the coexistence
VSCPT and polarization-gradient cooling.

The purpose of this paper is to show that one can
VSCPT to perform not only accumulation but also filterin
of atoms in momentum space. Based on the theoreticaL
model of Ref. 11, we introduce a double-L model, where an
additional upper level with possible decay outside the wo
ing configuration is added. We find that this new decay ch
nel can separate the atoms in the wings from atoms nea
peaks of the momentum distribution, and hence laser coo
of atoms below the recoil limit can be achieved.

The paper is organized as follows. In Sec. 2 we form
late the model and present the basic equations for the ato
density-matrix elements. In Sec. 3 we perform a numer
analysis. Finally, Sec. 4 contains conclusions.

2. MODEL AND BASIC EQUATIONS

We consider an ensemble of atoms of massM moving in
the z direction. The atoms have two degenerate ground l
els,g2 andg1 , and two nondegenerate excited levels,e and
e8. We denote the energy of the atomic levelj ( j
5e,e8,g2 ,g1) by \v j . The ground sublevels,g2 andg1 ,
can be coupled to the levele by two counterpropagating lase
beams with the same frequencyvL , the opposite wave vec
tors k and 2k being aligned along thez direction, and the
strengths being characterized by the Rabi frequenciesV1

and V2 , see Fig. 1. Similarly, the levele8 can also be
coupled to the levelsg2 andg1 by two counterpropagating
laser beams with frequencyvL8 and strengths characterize
© 1999 American Institute of Physics
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by the Rabi frequenciesV18 and V28 . The second pair of
laser beams is aligned in thez8 direction, which may be
different from thez direction, but should be very close. W
denote the projections of the wave vectors of these la
beams onto thez axis byk8 and2k8. In what follows we are
interested only in the atomic center-of-mass motion alo
thez axis. We take into account the spontaneous emissio
atoms from the upper levelse ande8 to the ground sublevels
g2 and g1 . In addition, we assume that the levele8 can
decay into another level, which is not shown in the figu
Furthermore, the fields can be switched on and off at diff
ent times, that is, the Rabi frequenciesV1 , V2 , V18 , and
V28 are generally functions of time.

We introduce the stateu j ,p&, which represents an atom
in the internal statej with linear momentump along thez
axis. Because of momentum conservation, the interactio
the atom with the fields can coupleue,p& only with ug2 ,p
2\k8& and ug1 ,p1\k8&, and ue8,p& only with ug2 ,p
2\k8& and ug1 ,p1\k8&. The Hamiltonian correspondin
to the unitary evolution of the system is of the form

H5HA1H int , ~1!

where

HA5
P2

2M
1\veue&^eu1\ve8ue8&^e8u ~2!

describes the translational and internal degrees of freedo
the atom and

H int5(
p

~\V1ue,p&^g2 ,p2\ku1\V2ue,p&^g1 ,p

1\ku!e2 ivLt1(
p

~\V18 ue8,p&^g2 ,p2\k8u

1\V28 ue8,p&^g1 ,p1\k8u!e2 ivL8 t1H.c. ~3!

describes the interaction of the atom with the laser fie
which are taken to be classical.

We assume that an atom in the upper levele can decay
into the lower levelsg2 and g1 , emitting a fluorescence
photon in any direction. This spontaneous emission lead
the damping of the population ofe and the associated cohe
ences and to the feeding ofg2 andg1 . We assume that the
atomic decay rateG and the normalized probabilityH(u) of
emitting a photon with momentumu along thez axis do not
depend on the center-of-mass motion and are the sam
transitions frome to g2 and g1 . Analogously, we assum
that an atom in the upper levele8 can decay into each of th

FIG. 1. Energy levels and optical transitions in the double-L configuration.
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lower levelsg2 andg1 with the rateG8. The corresponding
probability of emitting a photon with momentumu along the
z axis is denoted byH8(u). In addition, we assume that a
atom in the upper levele8 can decay with the rateGd8 into a
fifth level, which is not shown in the figure. This dissipativ
irreversible decay will remove the untrapped diffused ato
from the working configuration.

Such a filtering process enables us to separate he
atoms from cooled ones, that is, to get a cooled system.
cooling efficiency is determined by the accumulation e
ciency from one side and the separation efficiency from
other side. Since the atomic separation efficiency is prop
tional to the rateGd8 of the decay into the outside of th
working configuration, we expect that for a subsequent
plication of the pairs of the laser beams, a higher decay
Gd8 will enable us to obtain a cooler atomic system.

We derive in Appendix the generalized optical Bloc
equations

d

dt
ree~p1 ,p2!5F d

dt
ree~p1 ,p2!G

Ham

1F d

dt
ree~p1 ,p2!G

G

,

d

dt
re8e8~p1 ,p2!5F d

dt
re8e8~p1 ,p2!G

Ham

1F d

dt
re8e8~p1 ,p2!G

G8

1F d

dt
re8e8~p1 ,p2!G

G
d8

,

d

dt
r66~p1 ,p2!5F d

dt
r66~p1 ,p2!G

Ham

1F d

dt
r66~p1 ,p2!G

G

1F d

dt
r66~p1 ,p2!G

G8

,

d

dt
re6~p1 ,p2!5F d

dt
re6~p1 ,p2!G

Ham

1F d

dt
re6~p1 ,p2!G

G

,

d

dt
re86~p1 ,p2!5F d

dt
re86~p1 ,p2!G

Ham

1F d

dt
re86~p1 ,p2!G

G8

1F d

dt
re86~p1 ,p2!G

G
d8

,

d

dt
r21~p1 ,p2!5F d

dt
r21~p1 ,p2!G

Ham

,

d

dt
ree8~p1 ,p2!5F d

dt
ree8~p1 ,p2!G

Ham

1F d

dt
ree8~p1 ,p2!G

G

1F d

dt
ree8~p1 ,p2!G

G8

1F d

dt
ree8~p1 ,p2!G

G
d8
.

~4!

These equations govern the evolution of the dens
matrix elements of the atom with the internal and exter
degrees of freedom, and will be solved numerically in t
next section. Using this numerical solution, we will calcula
and study the atomic momentum distribution. We will th
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calculate the mean deviation of the atomic momentum fr
the nearest peak, which characterizes the effective temp
ture of the atomic subsystem.

Note that the above model is very simple, but it c
reveal the underlying physics of actual situations, in wh
atomic level configurations are usually much more com
cated. A specific example that is nearest to our model is n
in the metastable 1s5 , level, with 1s522p9 and 1s522p2

transitions and decay channel from 2p2 to 1s3 . This atomic
level configuration is used in the laser cooling experim
reported by Shimizuet al.21 A scheme to achieve velocity
selective coherent population trapping in a multilevel syst
under two-frequency laser excitation is proposed in Ref.
One difference between our model and the model of Ref
is that a trapping state in our model is a superposition of
ground levels, and is created by two laser beams of the s
frequency, while a trapping state in the other model is
time-dependent superposition of three ground levels an
created by two-color fields. Moreover, dissipative irreve
ible decay out of the working configuration plays a sign
cant role in our model, while the authors of Ref. 18 cons
ered only decay from the excited levels to the ground lev

3. NUMERICAL ANALYSIS

We now study numerically the generalized optical Blo
equations~4! for the case in which the laser detuningsdL

5vL2ve and dL85vL82ve8 are zero and the spontaneou
emission rates from the upper levels to the ground suble
are equal (G5G8). We choose, for our example, an atom
massM and the wave numberk such that the recoil fre-
quencyv rec[\k2/2M is v rec50.027G, which corresponds
to the experiment7 on He atoms. The decay rateGd8 of the
atoms from the levele8 into the outside of the double-L
configuration is chosen to beGd8510G. Since the atomic
separation efficiency is proportional toGd8 , the value chosen
for this parameter is good enough to demonstrate filter
and consequently, cooling the atoms below sub-recoil ene
for reasonable interaction times. For a significantly higher
lower value ofGd8 , the cooling efficiency, which depends o
the rate of separation of heated and cooled atoms, is, in
case of subsequent application of the pairs laser beams
pected to be higher or lower, respectively. The temporal e
lution is obtained by incrementation starting from vario
initial conditions. The time increment is 0.01G21, small
enough to avoid artificial instabilities introduced by the i
cremental approach. Since the exact shapes of the ke
H(u) and H8(u), characterizing the spontaneous-radiati
patterns, are not important,11 we take the constant form
H(u)51/2\k andH8(u)51/2\k8.

For the initial atomic state, we take a statistical mixtu
of the two ground sublevels,g2 and g1 , with momentum
distribution

W0~p!5
1

sA2p
expS 2

p2

2s2D , ~5!

which is a normalized Gaussian function with a peak ap
50 and a standard widths. The initial density-matrix
ra-
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elementsr j 1 j 2
(p1 ,p2)u t50 are thus vanish, except for

r22~p,p!u t505
1

2
W0~p!,

r11~p,p!u t505
1

2
W0~p!. ~6!

For the standard width of the initial momentum distributio
we choose the values53\k. The variablep is discretized in
steps ofe5\k/30, from 2pmax to pmax wherepmax530\k.
The chosen value ofe is small enough compared to the na
rowest structure that emerges in the solution of Eqs.~4!. The
chosen value ofpmax is large enough that the interesting pa
of the solution~nearp50! for the largest value oft consid-
ered here (t5600G21) is not affected by the truncation o
the p range. For such values ofpmax and t, the momentum
diffusion from p values larger thanpmax to p50 is negli-
gible.

We are interested in the momentum distribution of tho
atoms that have not decayed from the double-L configura-
tion at the end of the interaction with the laser fields. T
probability density of finding such an atom with linear m
mentump along thez axis is

W~p!5ree~p,p!1re8e8~p,p!1r22~p,p!1r11~p,p!.

~7!
Due to the decay of the atoms from the double-L configura-
tion, the functionW(p) is not normalized with respect to th
variablep. When we integrate this function overp, we obtain
the probability

Wremain5E
2`

`

W~p!dp, ~8!

that an atom remains in one of the working levels. The n
malized function

Wnorm~p!5
1

Wremain
W~p! ~9!

is the momentum distribution corresponding to the su
ensemble of atoms that remain in the working levels after
interaction with the fields.

In order to characterize the effective temperature in
cooling process, we introduce the quantity

V[H E
2`

`

@p2pmax~p!#2Wnorm~p!dpJ 1/2

, ~10!

which is the mean deviation of the atomic momentump from
the nearest peakpmax(p). The effective temperature of th
atomic system is defined as

ueff[V2/2M . ~11!

The sub-recoil cooling occurs whenueff,urec where u rec

[(\k)2/2M is the recoil energy.
The deviationV characterizes the statistical spread of t

atomic ensemble in momentum space. However, the g
metrical peak width and the dark-state population used
characterize VSCPT7,11 correspond only to a part of the en
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semble. This is the principal difference between our effect
temperature and the effective temperature used
VSCPT.7,11

When the momentum distributionWnorm(p) has only one
peakpmax which is, due to the symmetry of the initial con
ditions and the evolution equations, positioned at the m
momentump̄50, the quantityV coincides with the momen
tum standard deviation,

V25E
2`

`

p2Wnorm~p!dp5E
2`

`

~p2 p̄!2Wnorm~p!dp,

~12!

and characterizes the spread of the atoms around the pe
well as the spread of the whole momentum distribution.

When the central peak atp50 splits into two symmetri-
cal side peaks positioned at6p0(p0.0), we can consider
the system of the atoms that remain in the working le
configuration after the interaction with the fields as a tw
component system, one component withp>0 and the other
component withp<0. Note that the normalized momentu
distributions of these two components are 2Wnorm(p>0) and
2Wnorm(p<0), respectively. Hence, we see from the expr
sion

V252E
0

`

~p2p0!2Wnorm~p!dp ~13!

that V characterizes the spread of the atoms around e
peak, as well as the spread of the momentum distributio
each component.

In what follows, we show and discuss numerical resu
for the case in which the two pairs of laser beams are app
in succession. The detailed sequence is the following.
first pair of laser beams resonant with the transitionse↔g2

ande↔g1 is turned on for the timeT and then shut down
The second pair of laser beams resonant with the transit
e8↔g2 ande8↔g1 is then turned on for the timeT8. The
time-dependent Rabi frequencies corresponding to the l
pulses in each pair are taken to be the same, and have
rectangular forms

V25V15V0@u~ t !2u~ t2T!#,

V28 5V18 5V08@u~ t2T!2u~ t2T2T8!#. ~14!

Here, V0 and V08 are the maximal values of the Rabi fre
quencies, andu(t) is the Heaviside step function.

We have solved Eqs.~4! for the parametersV05V08
50.3G, T5150G21, and T85450G21 for two different
cases:k85k andk851.1k. According to Aspectet al.,11 the
peak width of the momentum distribution is of ord
MV0 /kAGT for the first step, andMV08/k8A(G81Gd)T8 for
the second. We therefore expect that the chosen interac
times T5150G21 and T85450G21 are large enough to
show two resolved peaks at the end of the first step and
very narrow peaks at the end of the second. For larger va
of T andT8, the effect becomes more dramatic.

3.1. The case of k 85k

We first present results for equal wavenumbers, tha
the case whenk85k. We show by the dashed and the so
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curves in Fig. 2 the probability densityW(p) for an atom to
have momentump at timest5T andt5T1T8, respectively,
while remaining in the double-L level configuration. Since
the decay out of the double-L configuration occurs only
when the second pair of laser beams is turned on, the p
ability densityW(p), which corresponds to the original en
semble, and the normalized momentum distributi
Wnorm(p), which corresponds to the sub-ensemble of ato
inside the working configuration, are identical att5T but
different at t5T1T8. Therefore, we additionally plot the
function Wnorm(p) obtained att5T1T8 by the dashed-
dotted curve. For comparison, the initial momentum dis
bution W0(p) is denoted by a dotted curve.

The dashed curve in Fig. 2 shows that the atomic m
mentum distribution obtained at the end of the interact
with the first pair of the laser beams exhibits two resolv
peaks emerging at6\k above the initial distribution.11 Such
a structure results from the accumulation of atoms in
state

uC0&5
1

&
~ ug2 ,2\k&2ug1 ,\k&), ~15!

which is a velocity-selective coherent trapping state with
spect to the first pair of laser beams. The mechanism
accumulating atoms in this trapping state is momentum
distribution resulting from the spontaneous emission fr
the upper levele to the ground sublevelsg2 and g1 . Be-
sides the double narrow-peak structure, one sees that som
the atoms have diffused toward higher momentum valu
All the above features of the momentum distribution d
picted by the dashed curve in Fig. 2 have been studied
details in Ref. 11.

The solid curve in Fig. 2 shows that the second pair
the laser beams take off those atoms whose momenta ar
near to6\k. The spread of the distribution functionW(p)
with respect to the peaks is greatly reduced, while the p
heights, which have the meaning of the probability densit

FIG. 2. Atomic momentum distributions produced by the successive ap
cation of two pairs of laser beams with equal wavenumbersk85k. The
dashed curve illustratesW(p) at the end of the operation of the first pair o
laser beams. The solid curve and the dashed-dotted curve correspo
W(p) andWnorm(p), respectively, at the end of the operation of the seco
pair of the laser beams. The dotted curve corresponds to the initial mom
tum distribution. Here we have chosen the parameterss53\k, G85G,
Gd8510G, v rec[\k2/2M50.027G, V085V050.3G, T5150G21, and
T85450G21.
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for an atom from the original ensemble to remain within t
working level configuration with linear momentum\k or
2\k, do not change appreciably. The reason is that w
k5k8, the state~15! is also a velocity-selective cohere
trapping state with respect to the second pair of laser bea
and those atoms which are not in this trapping state at
end of the first stage must undergo decay into the outsid
the working level configuration in the second stage. The c
responding probability for an atom to remain in one of t
working levels isWremain.0.074.

The dash-dot curve in Fig. 2 shows that the peaks of
normalized momentum distributionWnorm(p) created att
5T1T8 become not only much narrower but also mu
higher than the peaks of the dashed curve created att5T.
Thus, we observe a decrease in the momentum devia
around the peaks, or in other words cooling of the s
ensemble of atoms that continue to stay in the doublL
configuration after the interaction with the two pairs of las
beams. This cooling is due to the accumulation of atoms
the trapping state in combination with filtering of the atom
in momentum space.

In Fig. 3, we plot by the solid line the temporal deve
opment of the effective temperatureueff in units of the recoil
energyu rec for the whole time period of subsequent ope
tion of the two pairs of the laser beams. For comparison,
depict by the dashed line the corresponding values
ueff /urec for the case in which the first pair of laser beam
continues to operate without the intervention of the sec
pair for the entire time period.7,11 It is worth noting that
during the operation of the first pair of laser beams, that
for the part att<150G21 for the solid line and for the entire
dashed line, the effective temperatureueff is in general in-
creasing, except for a short time during which a sharp dr
like a phase transition, suddenly occurs. This increase inueff

is due to atomic momentum diffusion and clearly shows t
the atomic system at this stage is not cooled but hea
despite the accumulation of atoms in the dark state. T
result is quite different from statements of Refs. 7 and

FIG. 3. Temporal evolution of the effective temperatureueff in units of the
recoil energyu rec for the period of successive application of two pairs
laser beams with equal wavenumbersk85k ~solid curve!. All parameters
are the same as for Fig. 2. For comparison, the dashed curve repre
corresponding values ofueff /urec for the case of a single pair of laser beam
that operate on an upper level with no decay out of the working config
tion.
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where a very similar system was considered but the ato
momentum diffusion was not taken into account in the de
nition of the effective temperature. The sudden decreas
ueff occurring for a short time period is associated with t
splitting of the central peak into the side peaks, whose lo
tions very quickly move from 0 to6\k. In other words, this
phase-transition-like behavior is a result of the splitting
the atomic system from one component, with the moment
peak at 0, into two components, with momentum peaks
6\k. In contrast to the first pair of laser beams, the seco
pair, operating fromt5150G21 to t5600G21, causes a
monotonic decrease in the effective temperatureueff . By the
end of the interaction,ueff is approximately 0.0085u rec—a
value which is small in comparison with the initial valu
9u rec as well as with the recoil energyu rec. This decrease in
the effective temperature is a signature of laser cooling
low the one-photon recoil energy. It should be emphasi
here that the underlying physics of the cooling obtained h
involves velocity-selective coherent population trapping,
the one hand, and the filtering of the atoms in moment
space, on the other.

3.2. The case of k 8Þk

We now present numerical results for unequal wa
numbersk8 and k. All conditions are the same as in th
previous case except thatk851.1k.

In Fig. 4, the solid curve is the probability densityW(p)
for an atom to have momentump at timet5T1T8, remain-
ing inside the double-L configuration of levels. The tota
probability for an atom to remain inside this configuration
Wremain.0.035. The dotted curve represents the initial m
mentum distribution. The dashed curve represents the p
ability density W(p) for an atom to have momentump at
time t5T1T8 in the case whenk85k. As in the case of
equal wavenumbers~dashed curve! the probability density
function W(p) in the case of unequal wavenumbers~solid
curve! is very narrow compared to the initial momentu
distribution~dotted curve! and photon momenta\k and\k8,
and is free from diffusion wings. However, the two pea
resulting from interaction with the second pair of laser bea

nts

-

FIG. 4. Final atomic momentum probability densityW(p) in the case of
unequal wavenumbersk851.1kÞk ~solid curve!. All parameters are the
same as for Fig. 2. For comparison, we show the initial momentum di
bution and the final momentum probability densityW(p) in the case of
equal wavenumbersk85k ~dotted curve and dashed curve, respectively!.
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are now positioned atp5\k851.1\k. Moreover, the peaks
of W(p) in the case of unequal wavenumbers~solid curve!
are lower than the corresponding peaks in the case of e
wavenumbers~the dashed curve!.

The reason is that: whenk8Þk, the velocity-selective
trapping state

uC08&5
1

&
~ ug2 ,\k8&2ug1 ,\k8&) ~16!

of the atoms interacting with the second pair of laser bea
is different from the trapping stateuC0&, Eq. ~15!, of the
atoms with respect to the first pair of the laser beams. A
interaction with the first pair of laser beams, the number
atoms in the stateuC0&, which corresponds to moment
6\k, is greater than the number of atoms in the stateuC08&,
which corresponds to momenta6\k8. However, the second
pair of laser beams takes away the atoms inuC0& while it
does not affect the atoms inuC08&. This explains the shift in
the peak positions from6\k to 6\k8, as well as the de-
crease in the peak heights.

In Fig. 5, we depict by the solid line the time develo
ment of the effective temperatureueff in units of recoil en-
ergy u rec for unequal wavenumbersk851.1kÞk. For com-
parison, we replot~dashed line! the corresponding values o
ueff /urec for equal wavenumbersk85k. The figure shows
that the second pair of laser fields in the case of uneq
wavenumbers can also reduce the effective temperatureueff

to a much lower value than the recoil energyu rec, which is
indicative of sub-recoil cooling. During the operation of th
second pair, i.e., fort.150G21, the cooling effect fork8
Þk ~solid line! is not as strong as the cooling effect in th
case ofk85k ~the dashed line!. The reason is the differenc
between the velocity-selective trapping statesuC08& anduC0&
with k8Þk. This difference leads to the shift in the peaks
the atomic momentum distribution from locations6\k, cre-
ated by the first pair of the laser beams, to the locati
6\k8, created by the second pair. Such a process is
favorable for the dark-state population accumulation as w
as the cooling of the atoms. Furthermore, we note that

FIG. 5. Temporal evolution of effective temperatureueff in units of the
recoil energyu rec during successive application of two pairs of laser bea
with unequal wavenumbersk851.1kÞk ~solid curve!. All other parameters
are the same as for Fig. 2. For comparison, we showueff /urec for equal
wavenumbers~dashed curve!.
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two curves in Fig. 5 tend to merge with each other whet
.450G21. The reason is that after interaction with the se
ond pair of laser beams for a long enough time, the new p
structure of the atomic momentum distribution is well esta
lished and most of the atoms having momenta in the dif
sion wings are removed. The effective temperatureueff is
then proportional to the peak width, which does not depe
on the initial conditions in this limit.11 This is why the dif-
ference in the effective temperatureueff between the case o
k8Þk and the case ofk85k becomes small when the time o
the interaction with the second pair of laser beams is lo
enough.

4. CONCLUSIONS

We have studied the application of velocity-selective c
herent population trapping to laser manipulation of atom
center-of-mass motion in the framework of a simp
double-L model.

We have introduced a variance of the momentum dis
bution with respect to the peaks, which can be used to c
acterize the effective temperature of atoms in the prese
atomic momentum diffusion.

We have found that during the operation of the first p
of laser beams, operating in an upper level with no atom
decay out of the working configuration, the effective tem
perature is in general increasing, except for a short time d
ing which a sharp drop, like a phase transition, sudde
occurs. Such an increase in the effective temperature is
to atomic momentum diffusion, and indicates heating of
atomic system at this stage in despite of the dark-state po
lation accumulation. The sudden decrease in the effec
temperature occurring for a short time is associated with
central peak splitting into two side peaks.

The subsequent application of the second pair of la
beams, operating on the other upper level with poss
atomic decay into out of the working configuration, can filt
atoms in the wings from the atoms near the peaks of
momentum distribution, cause a monotonic decrease in
effective temperature, and thereby lead to the laser coo
below the one-photon recoil energy.

The difference between the wave numbers of the t
pairs of laser beams results in a shift of the peak position
decrease in the peak heights, and a decrease in the co
rate.

Our model is very simple, and has been used just
show the underlying physics of real situations, where atom
level configurations are usually much more complicat
From this model we have seen clearly that~a! the known
standard VSCPT scheme does not cool, but, in fact, it he
the whole ensemble of atoms, since the trapped atoms
mixed with the diffused ones,~b! an additional dissipative
irreversible decay channel can filter atoms in moment
space, and~c! the use of VSCPT in a combination of acc
mulation and filtering steps can cool atoms below the rec
energy. To study the cooling effect in a specific real mediu
further work will be required.
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APPENDIX A

Generalized optical Bloch equations

We use the simplified notation

ree~p1 ,p2!5^e,p1urue,p2&,

re8e8~p1 ,p2!5^e8,p1urue8,p2&,

r66~p1 ,p2!5^g6 ,p1urug6 ,p2&,

re6~p1 ,p2!5^e,p1urug6 ,p2&e
ivLt,

~A1!
re86~p1 ,p2!5^e8,p1urug6 ,p2&e

ivL8 t,

r21~p1 ,p2!5^g2 ,p1urug1 ,p2&,

ree8~p1 ,p2!5^e,p1urue8,p2&e
i ~vL2vL8 !t,

r j 2 j 1
~p2 ,p1!5r j 1 j 2

* ~p1 ,p2!,

where j 1 , j 25e,e8,g2,g1. By using the Schro¨dinger equa-
tion

i\F d

dt
rG

Ham

5@H,r#, ~A2!

the equations of unitary evolution for the matrix elements
the density operatorr are found to be

F d

dt
ree~p1 ,p2!G

Ham

5 i
p2

22p1
2

2M\
ree~p1 ,p2!2 iV1r2e~p1

2\k,p2!1 iV1* re2~p1 ,p22\k!

2 iV2r1e~p11\k,p2!

1 iV2* re1~p1 ,p21\k!,

F d

dt
re8e8~p1 ,p2!G

Ham

5 i
p2

22p1
2

2M\
re8e8~p1p2!

2 iV18 r2e8~p12\k8,p2!

1 iV18* re82~p1 ,p22\k8!

2 iV28 r1e8~p11\k8,p2!

1 iV28* re81~p1 ,p21\k8!,

F d

dt
r66~p1 ,p2!G

Ham

5 i
p2

22p1
2

2M\
r66~p1 ,p2!

1 iV7r6e~p1 ,p27\k!

1 iV78 r6e8~p1 ,p27\k8!

2 iV7* re6~p17\k,p2!

2 iV78* re86~p17\k8,p2!,
os-

r
-

f

F d

dt
re6~p1 ,p2!G

Ham

5 i S dL1
p2

22p1
2

2M\ D re6~p1 ,p2!

2 iV7@r66~p16\k,p2!

2ree~p1 ,p27\k!#

2 iV6r76~p17\k,p2!

1 iV78 ree8~p1 ,p27\k8!, ~A3!

F d

dt
re86~p1 ,p2!G

Ham

5 i S dL81
p2

22p1
2

2M\ D re86~p1 ,p2!

2 iV78 @r66~p16\k8,p2!

2re8e8~p1 ,p27\k8!#

2 iV68 r76~p17\k8,p2!

1 iV7re8e~p1p27\k!,

F d

dt
r21~p1 ,p2!G

Ham

5 i
p2

22p1
2

2M\
r21~p1 ,p2!

1 iV2r2e~p1 ,p22\k!

2 iV1* re1~p11\k,p2!

1 iV28 r2e8~p1 ,p22\k8!

2 iV18* re81~p11\k8,p2!,

F d

dt
ree8~p1 ,p2!G

Ham

5 i S dL2dL81
p2

22p1
2

2M\ D ree8~p1 ,p2!

2 iV1r2e8~p12\k,p2!

2 iV2r1e8~p11\k,p2!

1 iV18* re2~p1 ,p22\k8!

1 iV28* re1~p1 ,p21\k8!.

The terms describing the spontaneous emission from
upper levele to the lower levelsg2 andg1 are

F d

dt
ree~p1 ,p2!G

G

52Gree~p1 ,p2!,

F d

dt
re6~p1 ,p2!G

G

52
G

2
re6~p1 ,p2!,

~A4!F d

dt
ree8~p1 ,p2!G

G

52
G

2
ree8~p1 ,p2!,

F d

dt
r22~p1 ,p2!G

G

5F d

dt
r11~p1 ,p2!G

G

5
G

2 E
2\k

\k

duH~u!ree~p11u,p21u!.

Analogously, the terms describing the spontaneous emis
from the upper levele8 to the lower levelsg2 andg1 are
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F d

dt
re8e8~p1 ,p2!G

G8

52G8re8e8~p1 ,p2!,

F d

dt
re86~p1 ,p2!G

G8

52
G8

2
re86~p1 ,p2!,

~A5!

F d

dt
ree8~p1 ,p2!G

G8

52
G8

2
re8~p1 ,p2!,

F d

dt
r22~p1 ,p2!G

G8

5F d

dt
r11~p1 ,p2!G

G8

5
G8

2 E
2\k8

\k8
duH8~u!re8e8

3~p11u,p21u!.

The terms corresponding to the decay from the upper le
e8 into the outside of the working configuration are

F d

dt
re8e8~p1 ,p2!G

G
d8
52Gd8re8e8~p1 ,p2!,

F d

dt
re86~p1 ,p2!G

G
d8
52

Gd8

2
re86~p1 ,p2!, ~A6!

F d

dt
ree8~p1 ,p2!G

G
d8
52

Gd8

2
ree8~p1 ,p2!.

The generalized optical Bloch equations are obtained by a
ing the terms of Eqs.~A3!–~A6!.
el
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We examine elastic and inelastic scattering of electrons by ions in intense laser light. A method
of numerical investigation of the scattering characteristics based on regularizing the
Coulomb singularity is proposed. We show that over a broad range of parameter values the
transport scattering cross section is weakly dependent on the intensity of the high-frequency field.
We detect a significant modification of the dependence of the effective inelastic scattering
cross section. We also show that the energy exchange with the field is determined by a fairly small
group of electrons, called the representative electrons. Finally, we propose a qualitative
model that explains our results by the fact that the leading contribution is provided by inelastic
collisions of electrons with relatively small impact parameters traversing the region
important for the interaction at large angles. ©1999 American Institute of Physics.
@S1063-7761~99!00702-7#
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1. INTRODUCTION

The effect of a strong electromagnetic field on electro
ion collisions in a plasma has long been under intens
investigations.1–6 This is because the problem is not on
fundamental for plasma physics in general but also impor
for applications. In the last decade this became espec
evident after new powerful terawatt lasers were built.7

Starting with the pioneering work of Dawson an
Oberman1 and Silin,2 it was noticed that this effect may b
very large. The greatest progress was achieved with
model of small-angle scattering8–10 ~in this model the unper-
turbed electron path is a straight line!. Another model, the
low-frequency approximation,3–5 describes strong collision
with large scattering angles. It is assumed that an exte
~and fairly strong! electric field accelerates the electron b
fore and after the collision, while in the scattering proce
proper ~which is instantaneous! only the static field of the
nearest ion is important. The region within which the sma
angle approximation can be used is naturally that of la
impact parameters and high drift velocities~compared to the
oscillator velocity!. In the low-frequency approximation it i
assumed~often implicitly! that each passage of an electr
near an ion~each act of ‘‘instantaneous’’ scattering! is totally
independent of the previous one, i.e.,the squares of the
tering angles are always added rather than the angles th
selves.

The main idea of the present work is to consisten
analyze the correlation effects. It is possible to divide th
effects into two classes. First, a rapidly oscillating electr
moves past an ion at a low drift velocity and returns ma
times to that ion as it travels through the interaction regi
In the course of these multiple oscillations the electron d
2541063-7761/99/88(2)/9/$15.00
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velocity slowly changes~only slightly during each field pe-
riod!. Hence the scattering angles acquired in each osc
tion or, what is the same, the increments of the drift veloc
are simply added. That is, while traveling past an ion,
oscillating electrons are deflected~in the drift velocity! in the
same direction—toward the ion~in the region with a stronge
field!. Here the scattering in the total particle velocity
small-angle. As a result, the angle of scattering in the d
velocity, which is actually responsible for variation in th
transverse energy and the transport scattering cross sec
may be much larger than the angle obtained in the hypoth
of independent collisions.

Another effect, as we will shortly see, arises because
probability of effective inelastic collision~cross section!
grows due to the same multiple oscillations. It is found th
in addition to the majority of electrons, which experien
small-angle scattering and hence exchange little energy
the field, there is a relatively small group of electrons~the
‘‘representative’’ electrons! that undergo strong inelasti
scattering accompanied by a large change in their drift
ergy. Although the number of such electrons is relative
small, their contribution to the effective scattering cross s
tion is dominant. Such scattering events are strongly co
lated with the field. This is seen in the fact that owing to t
focusing properties of the Coulomb potential the oscillati
electrons with large impact parameters are attracted to an
~without changing the electron average energy! and, if the
phase of the field is suitable when an electron lands in
region of substantial energy exchange, the electrons are
fectively scattered with a substantial change in their aver
energy.

Correlation effects were examined in Refs. 8–10 us
straight electron paths~in relation to the drift velocity!. How-
© 1999 American Institute of Physics
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ever, in view of the adopted approximations, these effe
cannot explain the results of numerical investigations~by the
cell method8!, which show that the effective scattering cro
section increases at low drift velocities~compared to the os
cillator velocity!.

In this paper we use the classical~nonrelativistic! ap-
proach to analyze the scattering of monoenergetic~in the
drift velocity! beams of electrons, either isotropic or unid
rectional, by a single ion in a high-frequency electric fie
As a result we obtain and analyze expressions for the c
sections of such collisions. We find that under conditio
where the electron drift velocity is low compared to the o
cillator velocity ~the ‘‘thermal energy’’ is low compared to
the oscillator energy!, the effective inelastic scattering cros
section and the effective collision frequency may be ma
times the standard values obtained by estimating the Rut
ford scattering cross section using the oscillator velocity.

The plan of this paper is as follows. In Sec. 2 we disc
the formal statement of the problem and introduce exp
sions that are convenient for numerically finding the qua
ties of interest~the transport and total scattering cross s
tions and the effective collision frequency!. There we also
discuss the numerical model. In Sec. 3 we analyze inela
collisions, which are responsible for exchange of energy
tween particle and field. Section 4 is devoted to elastic
fects, which are responsible for the rate with which the el
tron distribution function becomes isotropic in the course
electron–ion collisions. Finally, in Sec. 5 we perform seve
analytical interpolations of our results and briefly discuss
future for such investigations.

2. BASIC RELATIONS

Let us examine the problem of the scattering by an
of a single electron~Fig. 1! with chargee moving with a drift
velocity v in a strong uniform electric fieldE polarized along
the z axis:

E~R,t !5E sinvt. ~1!

We assume that the radius of oscillations is small compa
to the particle separation. Following a many-particle plas
approach we begin with the following concepts, which a
quite common in the model of pair collisions. Suppose t
we are dealing with many scattering ions. The distance
tween the ions is larger than the size of the region wh

FIG. 1. Typical electron path~solid curve!, drift path ~dashed straight line!,
and the parameters of the scattered electron (v is the velocity,r is the
impact parameter, andu is the angle velocity and fieldE!.
ts
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there is substantial energy exchange between the elec
and the high-frequency field near an ion~for details see Sec
5!.1! Then each oscillating electron can pass the ion m
times before it leaves the scattering region. Moreover,
from an ion, at each moment in time the ensemble of el
trons may be considered uniformly distributed over the i
pact parameters and the drift velocities. This means that
stead of analyzing a many-body plasma problem we
consider the scattering by a single ion of many electrons w
a uniform impact-parameter distribution. In a real plasm
Debye scattering is equivalent to replacing the Coulomb
tential by a Yukawa potential.

Analysis of the electron paths was done by using
classical Newton equation

mR̈52
Ze2

R3
R1eE sinvt, ~2!

which describes the motion of an electron in the field of
ion with chargeZe and in a uniform electric fieldE varying
according to the harmonic law with a frequencyv. Here the
radius of electron oscillations in the laser field is assum
small compared to the wavelength.

We introduce new dimensionless variablesRn5R/r E

and tn5vEt and reduce Eq.~2! to dimensionless form. To
describe the strong variations in the Keplerian path that
field initiates, it is convenient to select the characteris
scales in the form

r E5AeZ

E
, vE5A4 eE3

m2Z
, vE5A4 Ze3E

m2
, ~3!

wherer E is the distance from the Coulomb center at whi
the field ioneZ/r E

2 is equal toE, andvE is the characteristic
frequency for the motion along a ‘‘Keplerian’’ orbit of radiu
r E . As a result~dropping the subscriptn in the formulas that
follow! we get

R̈52
R

R3
1n sinVt, ~4!

wheren is the unit vector pointing in the same direction
field E (E5En), and

V5vS m2Z

eE3 D 1/4

5
v

vE
~5!

is the dimensionless frequency. Thus, dimensional anal
shows that one parameter,V, suffices to describe our prob
lem. This parameter contains the frequency and the fi
strength in the combinationv/E3/4, which means that the
limit of an ultrahigh field (E→`) corresponds to a quas
static field (V→0).

We introduce the concept of the drift coordinater (t) of
the electron by assuming that the total electron coordin
R(t) can be written

R~ t !5r ~ t !2r; sinVt, r;5
1

V2
z0 . ~6!

Thus, prior to a collision the electron had a velocity
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V2~ t !5v21v; cosVt, v;52
1

V
z0 , ~7!

and after the collision the velocity is

V1~ t !5v1~ t !1v; cosVt. ~8!

We chose the region where the drift velocity ceases
change for our computer simulations. This means that
sizeL of this region meets the following condition:

L@r ; . ~9!

Of course, we must formally pass to the limitL→`.
In these terms the effective differential cross section

sponsible for the deviation of particles in their drift veloci
from the initial direction is

dseff~v2 ,v; ,r!5
^v1

2 2v2
2 &

v;
2 /2

d2r; ~10!

it characterizes the extent to which the scattering is inelas
Here d2r is the area element in the plane perpendicular
the direction of the incident beam around the impact para
eter vectorr ~Fig. 1!. Similarly, the transport cross section

ds tr~v2 ,v;!5
^~v1!'

2 &

v2
2

d2r5
dwtr

v2
2

~11!

is responsible for the deviation of particles in their drift v
locity from the initial direction, sincev1' is the component
of the total velocity at the exit that is perpendicular to t
direction of the incident beam. The angle brackets in~10!
and ~11! indicate averages over the period of the field. T
denominator in~10! corresponds to normalization to th
time-average of the energy of the scattered particles and
denominator in~11! corresponds to normalization to th
square of the mean velocity.

Let us examine more thoroughly the physical meaning
the cross section~10! and ~11! just introduced. First, we re
call that to characterize scattering in static fields one usu
introduces the concept of differential~effective! scattering
cross section

ds5
dN

N
~12!

as the ratio of the flux of electrons scattered into the so
angledV to the initial number of particles passing in un
time through unit area of the beam cross section~see p. 49 in
Ref. 11!. For static scattering, where everything is det
mined only by the drift velocity of the incident electron
such a definition is indeed convenient, since the scatte
angle is independent of the time when a particle entered
scattering region. But if the oscillation velocity is high, i.e
the scattering strongly depends on the phase of the fiel
the particles enter the scattering region,12 the quantity
^ds& t0

, the differential scattering cross section averaged o
the incident phases, reflects the situation more correc
What we are interested in, however, is not the scatte
cross section but its ‘‘energy’’ manifestations. The quantit
~10! and ~11! characterize these effects.
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To clarify the meaning of the formula~10! for seff , we
reason in the following standard way. First we note that,
its very definition, a variation in the energyW of the external
field in a physically small volumeU is related to a variation
in the electron energy in the same volume as follows:

dW

dt
U52

dWu

dt
U[2neff nK mv;

2

2 L U, ~13!

wheren is the electron number density. This relationship
actually the definition of the effective collision frequenc
neff , which in turn is related to the effective scattering cro
sectionseff :

neff5seff Nv2 , ~14!

whereN is the scattering-center~ion! density. Since particle
energy variations in the volume are due only to energy
change with the field in the electron–ion scattering proce
Eq. ~13! yields

dW

dt
U[neff nK mv;

2

2 L U5UNnv2mE ^v1
2 2v2

2 &
2

d2r.

~15!

Combining ~14! and ~15!, we get ~10!. As expected, this
quantity is a characteristic of only pair interactions and do
not depend on the electron and ion densities. Of course,
neff and seff coincide with the expressions used in Refs.
and 9. What makes this expression convenient is that one
directly find this quantity by means of computer modeling

In our computer experiment we found that the motion
an electron at small distances from the Coulomb singula
is characterized by a sharp change of path, which may lea
errors in calculations. Since the requirement with respec
precision in this section of the path is found to be the de
mining factor in studying the long-term electron dynamic
the problem consisted in seeking a coordinate and time tr
formation that would make the equation describing the m
tion again regular~i.e., the equation was to have no sing
larity at the point occupied by the ion!. Here it proved
convenient to introduce, by analogy with Levi–Civit
coordinates,13 a new times that coincides with the ‘‘normal’’
time t at large distances (R@r E) and with the ‘‘rapidly pass-
ing’’ time as the electron approaches the Coulomb singu
ity (R<r E). As an example, here is the replacement of tim
used in our calculations:

dt

ds
5

R2

11R2
. ~16!

The final form of the system of equations is
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¦

t85
R2

11R2
,

x85
pxR

2

11R2
,

z85
pzR

2

11R2
,

px852
x

r ~11R2!
,

pz85
R2

11R2
cosVt2

z

R~11R2!
.

~17!

Three values of frequency were used in the compu
experiment:V50.1, 0.32, and 1. We studied beams of ele
trons with drift velocities in the 1022– 104 range and impac
parametersr ~in the drift velocity! in the 1021– 104 range
that were uniformly distributed over all incident phases. T
initial distance from the Coulomb singularity to the leadi
center of the particles was chosen to be 10r ;(10/V2); a
particle was assumed to have left the interaction region w
the distance from the leading center to the Coulomb sin
larity was at least 10r ; . Special attention was paid to selec
ing a large enough number of particles in one field peri
For instance, in calculating inelastic interactions, the num
of particles in one field period reached 2000 in some ca
lations.

3. INELASTIC COLLISIONS

To estimate the extent to which a collision is inelast
we calculated the effective scattering cross sect
dseff(u,v,V) defined in ~10! and responsible, as noted
Sec. 2, for the energy exchange between particles and fi
Recall thatu is the angle between the velocityv of the inci-
dent particles and the fieldE ~Fig. 1!. The main calculations
were done for longitudinal (v2iE) and transverse (v2'E)
collisions for several values ofu: p/8, p/4, and 3p/8.

Let us analyze the dependence of the effective scatte
cross section for longitudinal collisions onVv ~Fig. 2!.

FIG. 2. Effective cross section of longitudinal (v2iE) inelastic collisions as
a function of the velocityv/v; for three values of frequency.
r
-
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n
-
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r
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,
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Below we list the most important features of the beha
ior of the effective scattering cross section as a function
velocity.

1. In the limitv!1 the cross section increases accord
to the lawdseff ;V2/v2. What is important is that such a
approximation is true for all scattering anglesu.

2. For V<1 the cross section changes sign ne
v;v; .

3. In the limit v@v; the absolute value of the scatterin
cross section decreases. In this range a good approxima
of the curve at all angles isdseff ;1/v4.

To determine howu affects the sign of the scatterin
cross section, we did a detailed study atV50.32 for two
values of the drift velocity of the scattered beam,v53 and
v55 ~Fig. 3!.

The figure shows that the region of solid angles w
negative values ofdseff increases as a function of the drif
to-oscillator velocity ratio. The asymptotic behavior fo
v@v; probably corresponds to the Marcuse effectseff ;1
23cos3u ~see Ref. 6!. At the same time, the absolute valu
of the maximum of the negative value, which is reached
u50, decreases with increasingu. Within our accuracy for
V50.32 andV51 we see that in isotropic scattering th
total effective scattering cross section remains positive.2!

Note that on the whole only a small fraction of the ele
trons is responsible for the energy exchange. We call th
electrons ‘‘representative’’ electrons. The effect is illustrat
by Fig. 4, in which the regions of substantial energy e
change, more than half the oscillator energy, for longitudi
(v2iE) particle incidence are marked in the (r,w) plane
~impact parameter vs. incident phase!. The fact that there are
vertical lines is due to the discreteness of calculations
impact parameters. Of course, the true ‘‘branches’’ are c
tinuous rather than discrete. Estimates show that these
ticles are responsible for more than 70% of the total ene
exchange. The fraction of these particles is small, of or
V2!1. Note that although the representative electrons h
different incident phases, all collisions take place at stron
correlated field phases~Fig. 5!, which depend on the value o
the initial drift velocity. Here the collision correlation is pre
pared by the ‘‘elastic’’ drift of particles in the Coulomb fiel
of the ion. The figure depicts the phase of the field when
electrons are nearest to the ion as a function of the in
phase. All electrons begin their motion along the field w
an impact parameterr54.6, which corresponds to represe

FIG. 3. Dependence ofdseff on cos2u at V50.32 forv53 and 5.
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tative electrons~the vertical bar in Fig. 4!. Clearly, the actual
energy exchange with the field takes place within a narro
band of field phases. The ‘‘steps’’ in this dependence cor
spond to a shift in the moments of collision by one fiel
period. Figure 6 shows that the dependence of the ene
variation as a function of the impact parameter in longitud
nal scattering, averaged over the incident phases, is es
tially nonmonotonic. The same conclusion can be draw
from Fig. 4. The number of side maxima depends on t
ratio of the drift velocity to the oscillator velocity (Vv) and
increases with the decreasing parameter. Whenv@v; , there
is only the central peak. Its width can estimated by the si
of the Rutherford region determined from the total incide
electron velocity. The contribution of the side maxima
found to be dominant, so that the effective scattering cro
section for drift velocities lower thanv; increases substan-
tially and is found to be of orderV2/v2, the geometric mean
of the Rutherford cross sections estimated by the oscilla
velocity, s;;V4, and by the drift velocity,sdr;1/v4.

On the other hand, for high drift velocities~in compari-
son to the oscillator velocity! the result agrees, as expected
with the small-angle approximation~Fig. 2!, so that the scat-
tering cross section is of order 1/v4. In this case the depen-

FIG. 5. Dependence of the phase of the field in a ‘‘collision’’ on the initia
phase of the field.

FIG. 4. Regions of substantial energy exchange~points! in the (r,w) plane
~impact parameter vs. incident phase! in longitudinal scattering (v2iE) at
~a! v51 and~b! v53.
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dence on the incident phase is unimportant, and hence
low energy exchange approximation is valid.1,2,8–10

Calculations show that there are two types of repres
tative electrons. There are electrons whose energy-exch
times are much shorter than the period of the field~‘‘fast’’
collisions; Fig. 7a!. There are also electrons whose energ
exchange times are comparable to the period of the fi
~‘‘slow’’ collisions; Fig. 7b!. As noted earlier, both represen
tative electron types are present not only in head-on co
sions but also for significant impact parameters, when
takes one or several field periods to deliver an electron to
inelastic-collision region.

Note that slow collisions occur at velocities of order
the oscillator velocity. Their effectiveness rapidly decrea
at low and high velocities. We found that slow collision
mainly lead to a decrease in the electron energy~drift en-
ergy! and rapidly disappear as the angle between the di
tion of the initial drift velocity and the direction of the field
increases.

Figure 8 depicts the final dependence of the energy
quired by the electrons on the initial electron drift velocity
transverse scattering. What sets this type of scattering a
from longitudinal scattering is thatseff is positive definite for
all velocities of the electrons being scattered. For con
nience we use the log–log scale. We see that, as in long
dinal scattering, this dependence is approximated fairly w
by functions of the forms}1/v2 at low energies and
s}1/v4 at high energies.

Note that this results is not accidental. Dimension
analysis of the scattering problem for an arbitrary inciden
angle shows that for all drift velocities of the scattered be
the variation of energy as a function of the dimensionle
parameters of the problem obeys the relationship

seff5
V2

v2
f 1~Vv,cos2 u!1V2f 2~Vv,cos2 u!. ~18!

Here, as computer simulation shows, the first function ex
riences a sharp drop nearVv51 and decreases in proportio
to 1/(Vv)2 at high velocities, while the second function d
creases at both high and low velocities. Furthermore, we
expect the second function to always be negative.

4. ELASTIC COLLISIONS

Figure 9 depicts characteristic paths of particles und
going strong elastic scattering for parameter valuesV

FIG. 6. Dependence of the energy variation on the impact paramete
longitudinal scattering, averaged over the incident phases, atV50.32 and
v51.
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FIG. 7. ~a! Fast energy exchange atV50.32 and
v51; ~b! slow collision atV50.32 andv53. The upper
half of the figure depicts the paths of the particle~solid
curves! and of the drift center~dashed curves!, while the
lower half depicts the time dependence of the variation
the electron energy.
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50.32 andv51. For the same parameter values but for d
ferent incident phases there are electrons undergoing st
inelastic scattering.

Typical curves representing the impact-parameter dep
dence of the beam transverse energy averaged over the
dent phases,dWtr @Eq. ~11!#, are depicted in Figure 10. Not
that these curves are not always monotonic at low drift
locities of the particles, and they suddenly break off at la
impact parameters. In particular, whenr@r ; , their
asymptotic behavior is clearly that of 1/r2, which corre-
sponds to scattering in the static field of the ion. Thus,
expected, the contribution of the high-frequency field to
transport scattering cross section decreases at large dist
in an integrable manner. When the scattering is not long
dinal, the dependence of the averaged energy on the im
parameter is anisotropic~see Fig. 11!.

Qualitatively, such behavior is quite understandable
instead of the problem of elastic scattering in a strong hi
frequency field we consider the problem of scattering in
drift velocity by an averaged potential whose analytical e
pression is14

V~r !52
2

p

1

Ar 1r 2

KSA1

2 S 12
r1r2

r 1r 2
D D , ~19!

wherer65r6r; , andK(m) is the complete elliptic integra
of the first kind. Here the side maxima can be related to
presence of two scattering centers. In particular, as the
ergy of the scattered beam increases, the side maxima d
pear, since for high-energy beams the spherically symme
part of the scattering potential, the Coulomb potential, is
most significant part of the potential. The constant-averag
potential surfaces are axisymmetric~the symmetry axis is
parallel to the external field! and are shaped as ‘‘dumbbells
with a logarithmic divergence ln(1/r) at the center and a
square-root singularity 1/Ar 6r ; at z;6r ; .

Studies of the dependence of the transport scatte
cross sectionds tr on the angleu between the electric field
and the drift velocity have shown that even at fairly lo
velocities~higher thanvE in dimensional variables! there is a
-
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weak dependence onu. Substantial anisotropy is observe
only at low velocities. In this case it is found that th
average-potential model is insufficient, i.e., inelastic effe
are important in such collisions. To support this statem
we have drawn the lines of constantds tr for two frequency
values~Fig. 12!. Clearly, appreciable anisotropy is observ
only at fairly low velocities.

The results of the calculations have been used to c
struct curves representing the dependence of the total tr
port scattering cross sections tr ~i.e., the differential cross
section~11! was integrated over the solid angles! on the ini-
tial particle velocity~see Fig. 13!. For comparison we also
depict the corresponding dependence of the Rutherford s
tering cross section determined from the drift veloci
sR54p/v4 ~dotted curve!. Qualitatively, the plot ofs tr vs.v
can be divided into three parts.

1. v@v; . Small-angle elastic scattering provides t
main contribution.9,10

2. V<v<v; . In addition to small-angle elastic scatte
ing, inelastic processes~see Sec. 3!, responsible for the non
monotonic dependence ofDWtr on r, begin to contribute~cf.

FIG. 8. Velocity dependence of the effective inelastic scattering cross
tion in transverse scattering~on the log–log scale! at V50.32; the dotted
and dashed curves represent thedseff vs. 1/v2 anddseff vs. 1/v4 plots.
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FIG. 9. Characteristic paths of a particle scattered by
Coulomb center for different values of the impact param
eter (V50.32 andv51).
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Figs. 10 and 6!. However, sinceseff;DW;1/v2 @see Eq.
~18!#, the contribution of inelastic collisions is of the sam
order as that of elastic~small-angle! collisions.

3. v<V. Quasicapture~trapping! of particles near a
Coulomb center for a time much longer than one field per
probably become important. Because of the complexity
the calculations, we have not studied this range of par
eters thoroughly enough, since the requirements with res
to precision become more stringent due to the need to
lyze the long-term evolution of each electron. These res
demand further investigations.

The most interesting feature of these curves is the
markable coincidence~embracing the huge drop ins andv)
with the Rutherford scattering cross section, calculated fr
the drift velocity. This result is even more remarkable if w
account for the fact that the impact-parameter dependenc
the average transverse energy~Fig. 10! is highly nonmono-
tonic for velocities lower than the oscillator velocity.

5. CONCLUSION

The main idea of the present investigation is that inel
tic collisions of electrons with ions in ultrahigh fields in
volve, in a coherent manner, only the representative e
trons, which land in ther E-neighborhood of the ion with the
same values of the phase of the field~more precisely, with
almost the same values!. Bearing this in mind, below we
formulate the main results of our work.

1. Elastic collisions~the transport scattering cross se
tion! are unaware, so to speak, of the external field~Fig. 13!.
This cross section is close to the Rutherford cross sect
calculated from the drift velocity. Formally, this result can
obtained even in the small-angle approximation.8–10 How-

FIG. 10. The averaged transverse energy as a function of the impact pa
eter r ~longitudinal incidence! with V50.32 andv51. The solid curve
represents the case of longitudinal incidence and the dotted line, the ca
a zero high-frequency field.
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ever, a detailed investigation has shown~Sec. 4! that to a
certain extent this coincidence is not an obvious fact, sinc
comparable contribution to the transport scattering cross
tion is provided by particles inelastically scattered to lar
angles~relatively small impact parameters!. The dependence
on the scattering angle at velocities much lower than
oscillator velocity is substantially anisotropic. Neverthele
down to the very low velocities at which quasicapture p
cesses become significant, integration over the angles,
the transition to the total transport scattering cross sect
leads to the Rutherford formula. Our calculations ha
shown that above these velocities the total scattering c
section is approximated fairly well by the expression

s tr5
4p

v2~v21D~V,v !!
,

whereD(V,v) is a correction that is essential whenv<V
~the correction requires further refinement!.

2. Inelastic collisions at drift velocities lower than th
oscillator velocity are chiefly determined by a small fracti
of the electron, the representative electrons. Energy
change between these electrons and the field occurs at
related moments in time corresponding to the arrival of
these electrons with a predetermined field phase in a s
neighborhood of an ion. Outside this neighborhood there
adiabatic drift of the oscillating electrons due to the focus
properties of the Coulomb potential.

At high velocities~in comparison to the oscillator veloc
ity!, our results are in good agreement with those of
small-angle approximation in the Dawson–Oberman–S
~DOS! model.1,2,10What makes them different is the absen
of a logarithmic factor, whose presence in the small-an
approximation~the DOS model! is due to small impact pa
rameters. In terms of dimensionless variables, the resul
the DOS model isseff}1/v4. At low velocities, representa
tive electrons provide the leading contribution to the effe

m-

ofFIG. 11. The averaged transverse energy as a function of the impact pa
eter vectorr ~longitudinal incidence! with V50.32 andv51.
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FIG. 12. The transport scattering cross section as a function of the incidence angle~along the vertical axis! and velocity~along the horizontal axis! with
V50.1 ~to the left! andV50.32 ~to the right!.
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itial
tive scattering cross section~see Sec. 3!. Among representa
tive electrons there are slow electrons, with energy-excha
times of order field period, and fast electrons, with ener
exchange times much shorter than one field period. S
collisions are important only at drift velocities comparable
the oscillator velocity.

At lower velocities the leading contribution is provide
by fast collisions, which on the face of it are described fai
well by the low-frequency approximation.3,4 This model
leads, in terms of dimensionless variables, to val
seff;V4, i.e., to the Rutherford scattering cross section,
timated from the oscillator velocity. In the same range
arrived at a much larger quantity,;V2/v2, the geometric
mean of the scattering cross sections obtained in the l
frequency and small-angle approximations. These dif
ences probably arise because the low-frequency approx
tion does not allow for ‘‘coherent aiming,’’ where th
electrons do not change their drift energy and are attracte
an ion in the course of one or several field periods, and t
are rapidly scattered, changing their drift energy in the p
cess. These effects lead to a significant increase in the e
tive scattering cross section compared to the results prov
by standard models.

Formally our results are valid only in an extremely low
density plasma,N!(lv/c)23, where l is the radiation
wavelength. It can be expected, however, that similar effe
occurs in a dense plasma. Indeed, the one thing that is
portant is that in the volume defining the effecting scatter
region, r ;seff , there was no more than one particle. If w
take into account our numerical results for the effective
elastic scattering cross section, this statement is equivale

r e!r D for vT!v; , ~20!

where r D is the Debye radius. Under these conditions,
can make an estimate of the effective collision frequency
dimensional variables:
ge
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neff;
vp

nrD
3

vT
2

v;
2

. ~21!

To within a logarithmic factor, this relationship arises b
cause the effective scattering cross section found in
course of our investigation is equal to the geometric mean
the effective scattering cross sections estimated by the t
mal velocity and by the oscillator velocity.

In conclusion we note that the conventional ideas u
dergo a marked transformation only for very strong field
i.e., for r ;@r E (vE@v), or in dimensional variables,

v!vE;Z1/43231010S P F W

cm2G D 3/8

. ~22!

One can expect that in such fields the plasma is a n

FIG. 13. The transport scattering cross section as a function of the in
particle velocity for three values of the frequencyV: 1 (s), 0.32 (1), and
0.1 (3).
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equilibrium medium (seff may change sign in relation to th
process of generation of harmonics of the incident radiatio!;
the spectrum of the bremsstrahlung harmonics beco
much richer, stimulated recombination of electrons and i
may occur, etc. We believe that these and other obvi
problems, such as an analytical model of elastic and inela
collisions in ultrahigh fields in a disperse plasma, collisio
in a dense plasma, and generation of harmonics of ult
trong radiation in a dense plasma, will be the most promis
topics of future investigations.
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bution function for scattered electrons can exist has yet to be found.
find no reason in principle why this is impossible for smaller values ofV.
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Transformation of strong picosecond pulses in radiation with an extended
quasirotational spectrum during self-focusing in high-pressure hydrogen

V. B. Morozov, A. N. Olenin, and V. G. Tunkin* )

International Science-Educational Laser Center, M. V. Lomonosov Moscow State University, 119899
Moscow, Russia
~Submitted 25 June 1999!
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Radiation with a spectrum representing a discrete analog of the extended spectrum observed in
the generation of a supercontinuum in gases is generated in the self-focusing of 30-ps
pulses with a wavelength of 1.06mm in hydrogen at pressures up to 120 atm. The spectrum
contains lines with similar intensities, an average frequency spacing approximately equal to the
rotational transition frequency in hydrogen (587 cm21), and a smooth spatial profile. The
lines consist of several vibrational–rotational components. As the pressure is increased, the spectral
lines are transformed so that at a pressure above 60 atm each line in the spectrum contains
one or two components formed as a result of the smaller number of cascade~rotational and
vibrational! processes. Self-focusing is manifested in the occurrence of a radiating channel
up to 12 cm in length. The formation of a channel of this length is associated mainly with the
variation of the refractive index in vibrational excitation of the hydrogen molecules by
electrons heated in the pump field. ©1999 American Institute of Physics.
@S1063-7761~99!00802-1#
ec
v
a
ic

s
ed
br

th
b
o

i

ce

m
ia
s

re
a

br

ur
g
n
c

m

d
s,
se

nded
in

been

am.

ac-
m,
ing

r-

-
o-
n-
val
-

dy
he
ota-
ro-
ond
1. INTRODUCTION
The generation of coherent optical radiation with a sp

trum consisting of equidistant spectral lines by means of
brational, rotational, or combined vibrational–rotation
stimulated Raman scattering~SRS! and resonance parametr
processes, specifically in gaseous hydrogen, has been
ported in a multitude of papers.1–18 Cascade vibrational line
in the Stokes and anti-Stokes regions have been observ
the presence of a linearly polarized pump, because the vi
tional Raman gain is a maximum in this case.1–4 For a cir-
cularly polarized pump isotropic scattering is eliminated,
vibrational Raman gain decreases, and rotational SRS
comes dominant. Cascade rotational lines have been
served using a circularly polarized pump.5 Several authors
have reported the detection of cascade vibrational lines w
rotational lines on both sides of the vibrational lines6–9 as
well as cascade rotational lines10,11 after the pumping of hy-
drogen by an elliptically polarized wave6,10 or with the ap-
plication of a polarized biharmonic pump having a differen
frequency equal to the frequency (587 cm21) of the hydro-
gen rotational transitionS0(1) ~Refs. 7, 8, and 11!. Kawasaki
et al.7 have used radiation from two dye layers for the sa
purpose. Others8,11 have generated frequency-shifted rad
tion in an auxiliary cell, in which pure rotational SRS wa
induced by circular polarization of the pump wave. The
sulting SRS was steady-state in some of the cited papers
time-dependent in others. The first and second Stokes vi
tional components have been efficiently generated12 in con-
nection with time-dependent SRS in hydrogen at press
up to 40 atm pumped by pulses of duration 30 ps, wavelen
1.06mm, and energy 90 mJ; to avoid optical breakdow
lenses having focal lengths of at least 1 m were used to fo
2631063-7761/99/88(2)/9/$15.00
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the pump beam into the hydrogen-filled cell. The maximu
pressure of the hydrogen in Refs. 1–12 was 40 atm.

If the series of vibrational–rotational lines, which exten
all the way from the infrared to the ultraviolet in many case
do not contain any parts having a distinctive intensity, the
series can be regarded as a discrete analog of the exte
spectrum observed in the generation of a supercontinuum
gases. The generation of a supercontinuum in gases has
studied in detail in several papers,13–18 where it has been
shown to be associated with self-focusing of the pump be
In some papers on supercontinuum generation13–15 the sig-
nificant broadening of the frequency spectrum has been
companied by only a slight variation of the spatial spectru
the divergence of the beam after the gas-filled cell be
almost equal to its convergence entering the cell.

We have previously reported that when linearly pola
ized picosecond pulses with wavelength 1.06mm and energy
up to 40 mJ are self-focused in hydrogen at high pressure~up
to 120 atm!, radiation is generated19 with an extended spec
trum consisting of a series of single-component or tw
component vibrational–rotational lines having similar inte
sities within the visible range, an average frequency inter
between lines (593 cm21) approximately equal to the rota
tional transition frequency in hydrogen (587 cm21), and a
smooth spatial profile.

In this paper we give the results of an experimental stu
of the distinctive features of the structural formation of t
frequency and spatial spectra of radiation generated by r
tional and vibrational SRS and by parametric cascade p
cesses in the presence of self-focusing of strong picosec
pulses in hydrogen at pressures up to 120 atm.
© 1999 American Institute of Physics
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FIG. 1. Experimental setup:~1! passive mode-locked
picosecond Nd:YAG laser oscillator with negativ
feedback (lp51.06mm, tp530 ps!; ~2! electroopti-
cal modulator;~3! amplifiers; ~4! pyroelectric detec-
tor; ~5! hydrogen-filled cell;~6! diffraction grating;
~7! diffraction monochromator;~8! multichannel opti-
cal analyzer.
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2. EXPERIMENTAL SETUP AND OPTICAL SYSTEM

The experimental setup is shown schematically in Fig
A passively mode-locked Nd:YAG driving laser with neg
tive feedback generates a train of 10–12 pulses of dura
30 ps. A solitary pulse is isolated from the middle of t
train. Two LiTaO3 electrooptical modulators are used to e
hance the contrast of the isolated pulse against the b
ground. The solitary pulse is amplified in a system of amp
fiers to an energy<40 mJ. The contrast of the amplifie
solitary pulse relative to the background is at least 23103 in
intensity and 102 in energy. This linearly polarized pulse
focused into a cell of length 25 cm containing compres
hydrogen. The diameter of the pump beam at the focus
lens is 4.4 mm. The hydrogen pressure is varied from 0
120 atm. The radiation emitted from the cell is resolved in
its spectrum by diffraction gratings, and the energy distrib
tion among the spectral lines is measured by means
pyroelectric detector. The detailed structure of the spect
is is investigated by means of a diffraction monochroma
and~depending on the spectral range! a multichannel optical
analyzer by photomultiplier. The cell has a side windo
through which the radiating channel created by self-focus
of the pump pulses can be observed. The lateral lumin
cence spectrum of this channel is recorded by using a m
tichannel optical analyzer by projecting the image of t
channel onto the slit of a diffraction monochromator.

3. EXPERIMENTAL RESULTS

At a sufficiently high hydrogen pressurep and pump
energyWp the radiation emitted from the cell is an almo
pure white beam with a 1.522° divergence, which exceed
the divergence of the pump beam after the cell (0.9°). T
radiation is expanded into its spectrum by a 600 lines/m
grating for recording in the IR region or by a 1200 lines/m
grating for recording in the visible and UV regions. Th
spectral dependence obtained by means of the pyroele
detector is shown in Fig. 2, in which the ordersi of the lines
are read from the pump. At a pump energy of 30 mJ
energy of each line in the green region is approximat
10 mJ. The graphs of the spectra obtained by means of
600 lines/mm and 1200 lines/mm gratings are matched
line i 510 on the assumption that the reflection coefficie
of the two gratings are identical in this spectral region. T
spectrum shown in Fig. 2 is similar in the width and shape
its envelope to the supercontinuum emission spectrum g
.
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erated in gases13–18 and is a discrete analog of it. It will be
shown below that for a hydrogen pressure.60 atm and a
sufficiently high pump energy each line in the investigat
spectrum consists of one or two components with an aver
line spacing approximately equal to the rotational transit
frequency in hydrogen (587 cm21). Vibrational lines cannot
be distinguished by their energies. As the pump energy
the hydrogen pressure are increased, the energies of the
increase across the board without any change in their rati
one another. We call this series of spectral lines a quasir
tional spectrum.

The far-field beam profiles and, hence, their divergen
are determined by means of the multichannel optical a
lyzer. The beam profiles of the various lines are smooth~Fig.
3!. The divergence of the pump beam for the evacuated
is 0.75°, and the divergences of the pump beam and
red-line (i 510, l50.65mm! and green-line (i 516,
l50.53mm! beams atp5100 atm are equal to 0.9°, 1.5°
and 1.7°, respectively.

A quasirotational spectrum is observed when the pu
beam is focused into the hydrogen-filled cell by lenses h
ing focal lengthsF525– 35 cm. When lenses withF>50 cm
are used, the output radiation undergoes a radical chang
character, acquiring the shape of rings corresponding to
generation of a series of vibrational lines. To avoid optic
breakdown of the cell windows during the experiments us

FIG. 2. Energy of the lines of the quasirotational spectrum at a hydro
pressure of 100 atm and a pump energy of 30 mJ. The lines are numb
from the pump. Lines 1–10 were recorded with a 600 lines/mm grating,
lines 10–30 were recorded with a 1200 lines/mm grating. The energ
each line in the green region is'10 mJ (Wmax is the energy of the stronges
line!.
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FIG. 3. Spatial beam profiles for various hydroge
pressures, measured with the projection of far-fie
images on matte glass onto the multichannel opti
analyzer:~a! 1.06-mm pump,p50 atm;~b! the same,
p5100 atm; ~c! red line (i 510, l50.65 mm! at
p5100 atm; ~d! green line ~i516, l50.53 mm! at
100 atm~z is the transverse coordinate!.
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lized
lenses withF>50 cm, the cell is lengthened by means
special adapters.

A quasirotational spectrum is not observed when
quality of the spatial profile of the pump radiation deter
rates as a result of poor adjustment of the experimental
paratus, breakdown of the surface of the active elemen
other factors. The experimental setup has been designed
considerable attention to the attainment of a good spa
profile on the part of the pump radiation; in particular, spa
filters are used in the amplification channel with this obje
tive in mind.

Cascade multiplication of the Stokes components of
rotational and vibrational SRS by virtue of four-photon pa
metric processes plays a significant role in the formation
the series of vibrationa;–rotational lines. A quantum diagr
of the processes of generation of the first Stokes rotatio
and vibrational SRS components and several componen
the anti-Stokes region relative to the pump is shown in F
4.

The initial stage in the formation of the total spectrum
the generation of the first Stokes rotational and vibratio
components. The experimentally measured dependence
their energy on the hydrogen pressure for pump energies

FIG. 4. Quantum diagram of the processes of generation of the first St
vibrationaln21,0 and rotationaln0,21 SRS components and the componen
n1,0, n0,1, n0,2, . . . , n0,7 as a result of four-photon parametric processe
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shown in Figs. 5 and 6, respectively. The energy reache
maximum value at a certain pressurepsat ~in these figures the
energies of the components are normalized to their satura
values!. For rotational SRS the pressurepsat decreases asWp

increases, the productpsatWp remaining almost constan
~Fig. 7!.

A different situation is encountered for the first Stok
vibrational component~Fig. 6!. For Wp514 mJ its energy
reaches saturation at hydrogen pressures attainable in
cell, specifically atpsat5110 atm. For this componentpsat

remains unchanged with any further increase inWp .
When the hydrogen pressure is higher thanpsat for rota-

tional SRS, cascade rotational components are obser
their intensity decreasing with distance from the pump l
and their positions extending to the yellow region of t
spectrum. As the pressure is further increased, vibratio
components emerge with cascade rotational component
both sides. Various vibrational–rotational components
grouped into lines. In analyzing the detailed structure of
spectrum of these lines over a wide range of pressures

es
FIG. 5. Dependence of the energy of the first Stokes purely rotational c
ponent (l51.13 mm! on the hydrogen pressure at various pump energ
For each graph the energy of the Stokes rotational component is norma
to its maximum value (Wsat is the energy of the component atpsat).
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have found that the frequencies of all the observed com
nents are described by the relation

nn,m59397 cm211n•4155 cm211m•587 cm21, ~1!

where 4155 cm21 and 587 cm21 are the vibrational and ro
tational transition frequencies in hydrogen, respectively,
n andm are the orders of the vibrational and rotational c
cade processes~they can be either positive or negative!. We
label the various components (n, m) to indicate the orders o
the corresponding cascade processes.

The hydrogen molecule is distinguished by the prope
that the vibrational transition frequency (4155 cm21) is
46 cm21 higher than seven times the rotational transition f
quency (587 cm21). As the pressure is varied, the comp
nent constituency of the lines is transformed, but the dista
between consecutive components is always 46 cm21. The ith
line contains components (n, m), where i, n, and m are
bound by the relationi 57n1m. Figure 8a shows the trans
formation of the spectral linei 513, Fig. 8b shows the sam
for line i 514, and Fig. 8c corresponds toi 517. All the
spectra in these figures are normalized to their values a
maximum. In Fig. 8a the (0, 13) component is the 13
purely rotational cascade component. Initially, as the pr
sure is increased, this component becomes stronger tha
others, and then, with a further increase in the pressur
and the (1, 6) and (3,28) components are suppressed, lea
ing only the (2,21) component. The (0, 14) component

FIG. 6. The same as Fig. 5 for the first Stokes vibrational componenl
51.91 mm!.

FIG. 7. Dependence ofpsatWp on the pump energyWp .
o-

d
-

y

-

ce

he

s-
the
it

-

Fig. 8b is the 14th purely rotational cascade component.
the pressure is increased, the structure of the line is tra
formed so as to suppress the (0, 14), (1, 7), and (3,27)
components and leave only the (2, 0) component. The s
ation with linesi 513, 14, 17 is typical: At a pressure abov
60 atm for not too low a pump energy the transformation
the structure of the spectra ceases, and the spectral line
come essentially single-component or two-component li
~a quasirotational spectrum is formed!. In the pressure range
above 60 atm the energies of the various lines in the vis
and UV regions of the spectrum increase with increas
pressure in the same way as the energy of the first Sto
vibrational component.

The quasirotational spectrum is formed in the event
self-focusing of the pump, which results in the formation
a radiating self-focusing channel, and the latter is obser
through the side window of the cell. The spectrum of t
lateral emission of this channel in the spectral sensitiv
range of the analyzer mimics the quasirotational spectr
recorded at the cell output. The lateral emission of the ch
nel is perceived as white light. We are therefore looking
the scattering of radiation generated in the self-focus
channel. This kind of scattering was investigated in an ea
paper on the laser spark,20 where it was established that th
scattering is attributable to Fresnel reflections form the in
faces of regions with different electron densities. The hig
the energy of the quasirotational spectrum at the cell out
the brighter is the emission of the channel. As a rule,
middle of the channel is the brightest, the brightness dim
ishing toward the beginning or end.

As the pressure and the pump energy are increased
end of the channel scarcely moves at all and occupies
same position as the linear focus. The beginning of the ch
nel, on the other hand, shifts toward the focusing lens as
pump energy and the pressure are increased. ForWp525 mJ
andp5100 atm the length of the channel is'12 cm, and the
focusing lens must therefore be shifted along the axis of
beam so that the beginning of the channel can be determi

The diameter of the channel is measured by project
its lens-magnified image onto the multichannel optical a
lyzer so that the image is perpendicular to the light-sensi
rule. For Wp525 mJ andp5100 atm the diameter of the
channel at its widest middle section is approximate
200mm. The diameter of the channel decreases with incre
ing distance from the middle, becoming equal to 80mm near
the linear focus.

4. DISCUSSION OF THE RESULTS

The initial stage in the formation of the quasirotation
spectrum is stimulated Raman scattering by rotationalv
50, J51→v50, J53) and vibrational (v50, J51→v
51, J51) transitions of hydrogen. The transformation
the quasirotational spectrum takes place inside the cha
formed in self-focusing of the pump beam. The excitation
hydrogen molecules by electrons heated in a strong la
field has a significant influence on the self-focusing con
tions.
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FIG. 8. Transformation of the structure of the spectru
of quasirotational lines as the hydrogen pressure is
creased atWp540 mJ:~a! i 513; ~b! i 514; ~c! i 517.
Each spectrum is normalized to its maximum value.
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4.1. Characteristics of Rotational and Vibrational Stimulated
Raman Scattering

The SRS observed in the present study is tim
dependent. First, even atp5100 atm the pump pulse i
shorter than the dephasing timeT2, which at this pressure is
equal to 32 ps for the rotational transition and 62 ps for
vibrational transition.21,22 Second, in the ensuing discussio
we address the fact that the formation of the self-focus
channel is caused by a moving focus, in the presence
which the time of interaction of the molecules with the fie
becomes shorter than the pulse duration. For time-depen
SRS the peak intensityI s

max of the Stokes component at th
exit from a nonlinear medium of lengthL is given by the
expression23,24
-

e

g
of

ent

I s
max5I 0expF S AvsuMi j u2LNE I pdtD 1/2G , ~2!

where A is a constant,vs is the frequency of the Stoke
wave,Mi j is the matrix element for Raman scattering by t
i→ j transition,N is the density of hydrogen molecules, an
I p is the pump intensity. It follows from Eq.~2! that the peak
intensity I s

max is given by the product

NE I pdt5NĪ ptp;NWp .

If we assume that as the pressure or the pump energy
creases,I s

max must increase from the initial levelI 0 ~e.g., the
noise level! to a fixed value dictated by saturation, we inf
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from Eq. ~2! that the product of the pressurepsat at which
I s

max saturates and the pump energyWp must be independen
of Wp , as is indeed th case for rotational SRS~Fig. 7!.

The saturation of rotational scattering at a high pu
energy is obviously attributable to transfer of a large fract
of the molecules in the interaction zone into coherent ro
tion. The strong emissions of the pump and the Stokes w
are capable of coherently exciting in the interaction zon
large portion of the molecules situated at the first rotatio
level. Following Ref. 25, we write the expression for th
Rabi frequency of two-photon resonance nutations:

VR
25

16p2c2

\2vs
4

I pI s

ds

do
. ~3!

Here ds/do is the Raman scattering cross section of
transition. Based on the cross section of the 1→3 rotational
transition of hydrogen at a laser wavelength of 488 nm~Ref.
26!, for our case we obtainds/do56.1310229cm2/sr. Let
the pump intensity with allowance for ‘‘smearing’’ along th
moving focus beI p51010W/cm2, and let the intensity of the
rotational Stokes wave beI s5109 W/cm2; then for the nuta-
tion period we obtainTR51 ps. This estimate is crude, but
characterizes the efficiency of rotational excitation of m
ecules in the interaction zone.

The energy of the vibrational Stokes component sa
rates in the pressure range where the rotational scatte
energy reaches saturation and self-focusing, together with
increase in the length of the self-focusing channel, is a
maximum. In the presence of a moving focus each group
molecules in the region of the self-focusing channel intera
only with part of the pump pulse, not with the entire puls
Consequently, as the pump energy is increased, the inte
tion time t int decreases relative to the pulse durationtp , so
that the effective energy density of the pumpI pt int depends
weakly on its total energyWp . Saturation of the vibrationa
SRS therefore sets in approximately at the same press
irrespective of the pump energy.

Even though the pump is linearly polarized, the ene
and pressure threshold for rotational SRS is much lower t
for vibrational SRS. This disparity stems from the fact that
pumping by pulses having a wavelength of 1.06mm the
Stokes frequency for the rotational transition is 1.7 times
same frequency for the vibrational transition; according
Eq. ~2!, the gain is proportional to the square root of t
Stokes frequency. On the other hand, if the wavelength
the pump pulses is 0.53mm, the Stokes frequency for th
rotational transition is only 1.25 times the same frequen
for the vibrational transition, and it has been shown exp
mentally that vibrational SRS is generated predominantly
a linearly polarized pump in this case.

4.2. Self-Focusing Conditions

The spatial structure of the radiation at the cell outp
unlike its spectral composition, does not undergo any rad
changes. The divergence of the pump beam after the cell
hydrogen pressure of 100 atm and a pump energy of 24
~0.9°) is only slightly greater than the convergence of
pump beam entering the cell~0.75°). This situation is very
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similar to that reported by Corkumet al.13–15 where the di-
vergence of the beam is almost equal to its convergence
gas-filled cell. The authors regarded this condition as an
tremely dramatic and important observation. It can be att
uted to the fact that self-focusing was not accompanied
constriction of the beam to dimensions significantly sma
than the diameter of the waist in the case of a linear focus
our experiments this result is further corroborated by dir
observation of the diameter of the self-focusing chann
which is greater than or close to the diameter of the lin
waist (110mm!.

Is the experimentally observed length of the chan
consistent with the focal shift that must occur in se
focusing as a result of the optical Kerr effect? In our case
focusing lens is situated outside the nonlinear medium~Fig.
9!, and the positionf 8 of the focus with allowance for self
focusing can be determined from the relations27

1

f 8
5

1

f
1

1

zf
, zf5

ka0
2

A2~P/Pcr21!
,

Pcr51.2•1022l2c/n2 , ~4!

wheref is the position of the linear focus (f 8 and f are read
from the beginning of the linear medium!, zf is the length at
which self-focusing of a parallel beam of radiusa0 at the
entrance to the nonlinear medium takes place,P is the power
of the pump beam,Pcr is the critical power for self-focusing
and n2 is the nonlinear refractive index. The radius of th
beam at the focusing lens has been measured and is equ
2.2 mm. The value ofn2 for hydrogen cannot be found in th
literature; we have estimated it from the values ofn2 for CO2

~Ref. 28! and N2 ~Ref. 29!: n25(222.5)310217cm3

•erg21
•atm21. Hence, at p5100 atm we obtain

Pcr5200 MW, and the focal shift atP51 GW should only
be 0.9 cm. Even if we assume that our estimate ofn2 is too
low and we increase this value ofn2 sevenfold, the focal
shift is still only 2.6 cm.

The significant disparity between the observed chan
length and the above-calculated focal shift leaves no cho
but to assume that the effective nonlinear refractive inde
considerably higher, as can be the case if excitation of
medium is taken into account.30 The shift of the focus is
governed by distortion of the pump wave front by se
focusing, which begins to take effect right at the entrance
the nonlinear medium. In the region from the entrance to
beginning of the radiating channel the only possible sou
of excitation of the hydrogen molecules is collisions wi
electrons heated in the pump field. Vibrational excitation

FIG. 9. Optical diagram of the focusing of the pump beam into t
hydrogen-filled cell for locating the beginning of the self-focusing chann
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the hydrogen molecules sets in when the electron ene
attains 0.5 eV. The cross section of this process is a m
mum at an energy'2 eV, where the effective frequency o
the collisions responsible for vibrational excitation of t
hydrogen molecules attainsnv51013s21 (p5100 atm!.31 In
the energy interval from 0.5 eV to 8.7 eV, i.e., up to t
energy of the first excited electron level of the hydrog
molecule, an electron can expend its accumulated en
mainly in the vibrational excitation of molecules. For es
mates we can assume here that the above-indicated effe
collision frequency is constant in this energy interval. T
electron begins to efficiently excite the electron levels wh
the time to build up an energy of 8.7 eV is comparable w
the effective time constant of vibrational excitation 1/nv
5100 fs. The average time between collisions of the elect
with hydrogen molecules is 1/nm52 fs at p5100 atm~Ref.
31!. Thus, if an energy of 8.7 eV is attained after 50 co
sions, the probability of electronic excitation will be close
the probability of vibrational excitation, i.e., if the energ
D«E acquired by the electron in one collision is 0.18 e
According to Ref. 32, in a field of power densityI and fre-
quencyn5c/l we have

D«E@eV#5
6.3•1017I @W/cm2#

~4p2n21nm
2 !

,

so that forl51.06mm andn@nm we obtainD«E @eV#52
310213I @W/cm2#. The required condition is satisfied fo
I 5931011W/cm2, which is attained at a distance'3 cm
from the middle of the linear waist for a pump power
1 GW, a lens withF535 cm, and a beam radius of 2.2 mm
the lens. In our case, therefore, vibrational excitation prev
over electronic excitation in the region from the entrance
the nonlinear medium almost to the linear focus.

But can vibrational excitation significantly alter the r
fractive index? A certain refinement is needed here. If
assume that the number of vibrationally excited molecu
increases by an integral law within the pulse duration~30 ps!,
the time dependence of the refractive index can be writte
follows in our case:

n~ t !5n01Dn1S E
2`

t

E2~t!dt D
1n2S E

2`

t

E2~t!dt DE2~ t !. ~5!

The second term in Eq.~5! corresponds to time-depende
self-focusing in which the trailing edge of the pulse is f
cused closest to the lens. The third term corresponds to
optical Kerr effect with allowance for excitation of the m
dium; here, as in the case of quasisteady self-focusing,
leading and trailing edges of the pulse are focused near
linear focus.

The calculation of the second term in Eq.~4! is not too
difficult. The variations of the polarizability for several mo
ecules in the presence of vibrational excitation and the o
cal Kerr effect are given in Ref. 33: The hydrogen molec
holds a special place in this scheme. The optical Kerr ef
is very small for this molecule by virtue of its small aniso
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ropy, and yet it exhibits the greatest variation of the polar
ability ~19%! as a result of vibrational excitation. The refra
tive index of hydrogen atp5100 atm is equal to 1.014
accordingly, for a relative density of excited molecul
N* /N the variation of the refractive index isDn153
31023 N* /N ~Ref. 33!.

In the initial part of the nonlinear medium, where th
vibrational excitation of hydrogen molecules by electrons
prevalent, the only possible source of electrons is the ion
tion of easily ionized impurities. Let us calculate the relati
between the relative density of excited moleculesN* /N and
the relative electron densityNe /N. An energy of 1.5 eV, at
which the efficient vibrational excitation of hydrogen mo
ecules already takes place, is built up by an electron a
1.5/D«E @eV# collisions, i.e., at a pressure of 100 atm in
time of 2•1.5/D«E @eV# fs. The time of interaction of mol-
ecules with the field is approximately equal to the pu
duration of 30 ps in this region of the nonlinear mediu
and within this time one electron excites 104D«E @eV#
5231029I @W/cm2# molecules. Consequently
N* /N5231029I @W/cm2#Ne /N, and Dn156310212I
@W/cm2#Ne /N. At a pressure of 100 atm the variation o
the refractive index due to the optical Kerr effect in th
case of unexcited molecules isDn5n2I /c50.8
310218I @W/cm2#Ne /N, and if Ne /N.1.331027, then
Dn1 is greater thanDn. This means that forNe /N.1.3
31027 the focal power of the lens created by the variation
the refractive index as a result of the vibrational excitation
hydrogen molecules is greater~and indeed substantially
greater if the electron density is sufficiently large! than the
focal power of the lens induced by the optical Kerr effect
the presence of unexcited molecules.

The efficient ionization of molecules takes place direc
in the focal region.34 The generated plasma has a stabilizi
influence on the diameter of the beam waist, owing to
defocusing effect of the electrons. The corresponding inc
ment in the refractive index isDnel52vpl

2 /v2. We have not
attempted any estimates of the plasma frequencyvpl , having
found it impossible to estimate the electron density. Ho
ever, the proportionality of this increment to the square
the frequency can account for the increase in the diverge
of the beams as the frequency of the lines of the quasir
tional spectrum increases. As the frequency increases,
incrementDnel decreases, so that the defocusing effect of
electronic plasma diminishes accordingly, and hig
frequency radiation beams constrict to a smaller diame
and undergo greater divergence in the far field.

The fixed position of the end of the channel is an arg
ment in favor of the conclusion that self-channeling does
take place, and the formation of the self-focusing channe
attributable to the moving focus effect.

4.3. Structure of the Spectral Lines

The detailed structure acquired by the spectral lines
pressure above 60 atm in the anti-Stokes region is sh
schematically in Fig. 10 for the example of linesi 57214.
Lines i 57, 14, like all lines i 57n, have one componen
each, and their frequencies are given by Eq.~1! with m50,
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i.e., are equal to the frequency of thenth vibrational anti-
Stokes component. For this reason, the average distanc
tween the lines is determined by 1/7 of the vibrational tra
sition frequency, i.e., is approximately 593 cm21. Lines 8
and 13 are also essentially single-component lines. Li
i 571m (2<m<5) consist of components (1,m) and
(2,m27). In Fig. 9 the intensities of the components a
normalized so that the sum of the intensities of the com
nents forming one line will be independent ofm. This situa-
tion corresponds to a weak dependence of the total inten
of the lines in the visible region of the spectrum on th
order number~see Fig. 2!.

If we define the total order of a cascade process as
sumunu1umu, the following law emerges: one component,
two components of the lowest total order, become domin
In the pressure range where the quasirotational spectrum
already formed (.60 atm! we do not perceive any of th
phase synchronization effects typical of parametric p
cesses: As the pressure increases, the quasirotational
trum behaves as a unit whole, and the energies of the l
increase identically. If phase synchronization is not sign
cant, this law is perfectly natural: the components formed
a result of a smaller number of cascade processes bec
dominant.

5. CONCLUSION

High-intensity pump radiation in high-pressure hydrog
is transformed into radiation whose spectrum consists o
series of lines having close intensities and extending fr
the IR to the UV. The lines of the spectrum have a smo
spatial profile and are separated by spectral intervals app
mately equal to the rotational transition frequency. Seve
factors are operative in the focal region and determine
ray behavior in this region: self-focusing due to vibration
and electronic excitations of the hydrogen molecules and
focusing due to the electronic plasma. Akhmano
Sukhorukov, and Khokhlov have remarked35 that even if a
self-channeling regime does not set in, the actual behavio
rays in a focused laser beam differs significantly from t
calculated in the linear approximation. In this case it
meaningful to consider the waveguide propagation of
pump and emitted radiation and to attribute this phenome
to the generation of quasirotational lines with a smooth s
tial profile. It is conceivable that when focusing lenses w

FIG. 10. Structure of the quasirotational spectrum in the interval of li
i 57214. The spectrum exhibits a similar structure in the intervalsi 514
221 andi 521228.
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F>50 cm are used, this propagation regime breaks do
whereupon the spectrum and spatial profile of the out
radiation change radically.

The waveguide propagation of light beams along an i
ized channel created, for example, by the focusing of ano
pulse in a gaseous medium by a conical lens has been d
onstrated in several papers.36–38Il’inski � and Mikheev39 have
investigated so-called waveguide SRS, where Stokes ra
tion propagates along the waveguide created by the incr
in the refractive index during the vibrational excitation
hydrogen molecules. The presence of a conical compon
along with the axial component in the Stokes radiation w
explained by the mode structure of the radiation propaga
along the waveguide.
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We use the relativistic configuration-interaction method and the model potential method to
calculate the scalar and tensor components of the dipole polarizabilities for the excited states
1s3p 3P0 and 1s3p 3P2 of the helium atom. The calculations of the reduced matrix
elements for the resonant terms in the spectral expansion of the polarizabilities are derived using
two-electron basis functions of the relativistic Hamiltonian of the atom, a Hamiltonian that
incorporates the Coulomb and Breit electron–electron interactions. We formulate a new approach
to determining the parameters of the Fuss model potential. Finally, we show that the
polarizability values are sensitive to the choice of the wave functions used in the calculations.
© 1999 American Institute of Physics.@S1063-7761~99!00902-6#
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1. INTRODUCTION

The anticrossing of atomic levels in an external fie
constitutes an effective method for precise measuremen
the fine- and hyperfine-structure intervals and other spec
scopic constants, such as the exchange energy and the
onal and off-diagonal matrix elements of the spin–orbit co
pling operators. In a recent paper, Schumannet al.1 studied
the 02302 anticrossing of the 1s3p 3PJ (J50,2) levels of
helium by methods of high-resolution laser spectroscopy
the anticrossing point, the error in measuring the fin
structure intervald5E3 3P0

2E3 3P2
amounted to65 MHz,

and the use of microwave devices makes it possible to red
this value by a factor of at least 100. Nevertheless, the de
of accuracy already achieved makes it possible to d
important conclusions concerning the optimum cho
of theoretical approaches describing the eff
of 100– 200 kV cm21 electric fields on the spectrum of th
helium atom.

In particular, the widely used semiempirical approa
which makes it possible to analyze the observed spectru
terms of averaged values of the atomic Hamiltonian w
allowance for relativistic corrections~either spin-dependen
or spin-independent! of ordera2 Ry ~Refs. 2 and 3!, with a
the fine-structure constant, does not require allowing
2721063-7761/99/88(2)/6/$15.00
of
o-
iag-
-

t
-

ce
ee
w
e
t

,
in

r

higher-order perturbation effects, which are needed fo
meaningful interpretation of the results of measurements.
this reason, Schumannet al.1 justified the need to employ
methods of quantum mechanics and quantum electrodyn
ics to analyze the results of measurements of thed-to-d (0)

ratio (d (0)58772.517(16) MHz is the fine-structure interv
in a zero field4! at the point of anticrossing of the 1s3p 3P0

and 1s3p 3P2 levels of helium. Another interesting result o
that paper was the possibility of studying the effects of spi
spin mixing of helium levels with different values of orbita
angular momentumL but the same parity.5,6

The aim of the present paper is to analyze theoretic
the contribution of relativistic effects in calculations of th
scalar and tensor components of dipole polarizabiliti
which determine the shift and splitting of the 1s3p 3PJ (J
50,2) levels of helium. We employ two alternative a
proaches based on the relativistic configuration-interac
method7 and on the Fuss model potential method.8

2. ALLOWING FOR RELATIVISTIC EFFECTS
IN CALCULATIONS OF DIPOLE POLARIZABILITIES
OF THE HELIUM ATOM

The shift and splitting of a levelunJLM& in a uniform
field F is described by the formula
© 1999 American Institute of Physics
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DEnJLM52
1

2
anJLMF2, ~1!

where the polarizabilityanJLM contains a scalar compone
(anJL

s ) and a tensor component (anJL
t ), i.e.,

anJLM5anJL
s 1anJL

t 3M22J~J11!

J~2J21!
. ~2!

As the field strengthF increases, the splitting of the leve
may reach values comparable to the distance between
cent levels of the same parity~the components of the fin
structure of an atomic multiplet!. Hence in the case unde
investigation, i.e., the 1s3p 3P0 and 1s3p 3P2 levels and a
field strengthF of several hundred kilovolts per centimete
the level shiftDEnJLM5E2EnJLM can be found by solving
the secular equation

detiDEnJLMdJJ82VJJ8i50. ~3!

Here the finite off-diagonal matrix elementsVJJ8 correspond
to dipole transitions between the fine-structure compone
in second-order perturbation theory in the external fieldF.

To derive a formula describing the dependence ofd on
F, we use the solutions of Eq.~3! and the definition of the
scalar and tensor components of the polarizability~2!. The
result is

d5AFd~0!2
1

2
F2~a3 3P0

s
2a3 3P2

s
1a3 3P2

t
!G2

12F4~a3 3P2

t
!2

.d~0!2
1

2
F2~a3 3P0

s
2a3 3P2

s
1a3 3P2

t
!

1
F4

d~0!
~a3 3P2

t
!21•••. ~4!

This expression allows for the principal, or resonant, par
the hyperpolarizability~fourth-order corrections in the exte
nal field! of the interacting sublevels of the multiplet 33PJ

with a zero projection of total angular momentum,M50.
The contribution of the nonresonant part to the hyperpo
izability is at most a few percent.9 In deriving~4! we allowed
for the fact that the matrix elementVJJ8 is finite at J85J
61, J62 and contains only a tensor part, which depends
the projectionM of the total angular momentumJ. If we
ignore the multiplet splittingEnJL

(0) 2EnJ8L
(0) in comparison to

the energy differenceEnJL
(0) 2En8J8L8

(0) between different mul-
tiplets withn8Þn, the matrix elementVJJ8 can be expresse
in terms of the tensor polarizability of the 1s3p 3P2 state. In
this approximation the matrix elementV02 is given by the
formula1!

V0252
F2

A2
a3 3P2

t . ~5!

The difference of the scalar polarizabilities in Eq.~4!,
a3 3P0

s
2a3 3P2

s , is determined by the contribution of relativ

istic effects, which means it is a small quantity of ordera2.
ja-

ts

f

r-

n

Note that atM50 the matrix elementVJ J61[0 ~see, e.g.,
Ref. 10!, so that the state 33P1 remains isolated, i.e., doe
not mix with states withJ50 andJ52.

Equation~4! also implies that the minimum value ford
in an electric field~anticrossing of the fine-structure suble
els! is attained at

F5F̄5A 2d~0!~a3 3P0

s
2a3 3P2

s
1a3 3P2

t
!

~a3 3P0

s
2a3 3P2

s
1a3 3P2

t
!218~a3 3P2

t
!2

. ~6!

The problem of exactab initio relativistic calculations of
the quantitiesa3 3P0

s
2a3 3P2

s anda3 3P2

t in Eqs.~4! and~6! is

extremely difficult and involves calculating spectral sum
over the complete set of unperturbed states. The need
such summation~irrespective of the general approac!
emerges in the process of determining the perturbed w
functions or energy shifts of atomic levels in th
perturbation-theory setting. In addition to direct summati
over the discrete spectrum of intermediate states and inte
tion over the continuous spectrum of intermediate sta
which are extremely involved processes in the relativis
case, we basically used two methods to effectively calcu
such spectral sums~composite matrix elements!, a method
for integrating inhomogeneous differential equations an
method that uses the formalism of Green’s functions.

In the first approach, the polarizability of the stateu0& is
given by the formula

a u0&522^CuDuc0&, ~7!

in which the perturbed wave functionuC& satisfies the inho-
mogeneous equation

~Ĥ2E0!C52DC0 . ~8!

In ~7! and~8!, D is the dipole moment operator, andĤ is the
relativistic Hamiltonian.

An important advantage of this method is the possibil
of using different expressions for the atomic potential in t
numerical integration of Eq.~8!, and the calculations can b
done not only for a purely Coulomb interaction but in th
multiconfiguration interaction approximation,7 the Hartree–
Fock–Dirac approximation,11 and the relativistic random
phase approximation with exchange.12 The most exact rela-
tivistic calculations were done by Johnson and Cheng13 for
the polarizability of the ground state of a heliumlike ato
with 2<Z<30, but at present there are no similar results
excited states of helium withLÞ0.

The effectiveness of the method of Green’s functions
largely determined by the existence of appropriate repres
tations of these functions. Since in the relativistic case
expressions for the Green’s functions are known only for
Coulomb field, the use of this approach is restricted to pr
lems in which the difference of the potential and the Co
lomb potential is insignificant or can be taken into accou
by perturbation-theory techniques.14,15

To allow for the contribution of relativistic corrections i
calculations of the scalar and tensor components of pola
abilities, we used the resonance approximation for
second-order composite matrix elements, i.e., in the sp
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trum of intermediate states we isolated the terms that co
spond to transitions in which the principal quantum num
does not change.

For instance, for the scalar polarizability of the tripl
unJLM& state,

anJL
s 52

2

3~2J11! (
n8J8L8

u^nJLir in8J8L8&u2

EnJL2En8J8L8

, ~9!

the resonant termanJL
s(r ) in ~9! has the form

anJL
s~r !52

2bnJL
2

3 H (
J8

L~2J811!

EnJL2EnJ8 L21
FbnJ8 L21RnJL

nJ8 L21

3H L J 1

J8 L21 1J G2

1(
J8

~L11!~2J811!

EnJL2EnJ8 L11

3FbnJ8 L11RnJL
nJ8 L11H L J 1

J8 L11 1J G2J . ~10!

Here the $m1 m2 m3

j 1 j 2 j 3% are Wigner 6j -symbols,16 and the

RnJL
n8J8L8 are radial matrix elements. In Eq.~10!, the effects of

singlet–triplet mixing of levels are taken into account by t
parameter

bnJL5H cosunL , J5L,

1, JÞL,
~11!

whereunL is the singlet–triplet mixing angle. Chang17 noted
that unL is almost entirely independent ofn, and the typical
values ofunL at L51,2,3 are 0.02°, 0.5°, and 30°, respe
tively. The tensor part of the polarizability has a simil
structure and differs from~10! only in angular coefficients
for the sake of brevity we will not write it here.

To calculateanJL
s(r ) and anJL

t(r ) we used exact relativistic
results for the radial integrals, while for the energy denom
nators we used precise experimental data.18 Calculations of
the other terms in~9! with n8Þn were done with nonrelativ-
istic values for the radial matrix elements of the dipole m
ment operator. To this end we used exact numerical data
the oscillator strengths of thes–p and p–d transitions in
helium calculated with multiparameter variational wa
functions.19,20

This approach is applicable primarily because the con
bution of states withn85n in ~9! is numerically predominan
and amounts to roughly 95% in the case of excited 1s3p 3PJ

(J50,2) levels of helium~see Tables II and III below!.

3. SELECTION OF THE BASIS WAVE FUNCTIONS AND
DISCUSSION OF THE RESULTS OF CALCULATIONS

In recent years the configuration-interaction method
been successfully used to obtain precise wave functions
matrix elements for atoms with a small number of electro
e.g., heliumlike systems. In the present paper we use
technique developed by Johnsonet al.7,13 to calculate the re-
duced matrix elements corresponding to the resonant te
in the expansion~10!.

The wave function of the initial~I! and final (F) states
can be written
e-
r

-

i-

-
or

i-

s
nd
,

he

s

C I ~F !5(
k> l

Ckl
I ~F !Fkl . ~12!

Here theFkl are two-particle basis functions with fixed va
ues of total angular momentumJ, its projectionM , and par-
ity. We found the weighting factorsCkl

I (F) from the varia-
tional principle by using the relativistic no-pair Hamiltonia
which incorporates the Coulomb and Breit electron–elect
interaction operators,21,22 averaged over the functions~12!.
To exclude the contribution of negative-energy states~the
positron spectrum!, the two-particle operators in the relativ
istic Hamiltonian were multiplied by products of single
particle operators projecting on the subspaces of solution
the positive-energy Dirac equation.7

The wave functions~12! are normalized by the condition

(
k> l

uCkl
I ~F !u251. ~13!

The single-particle basis orbitals employed in t
configuration-interaction method incorporates thes, p, d, f ,
and g partial waves, with a spline approximation used f
each wave. Estimates of the convergence rate of the me
~for calculations of given accuracy! can be found in Refs. 13
and 22.

The results of relativistic calculations for the reduc
matrix elements~without allowance for retardation effect
for the dipole moment operator! are listed in Table I.

In Tables II and III we list the results for the contribu
tions of the intermediateSandD states in calculations of the
scalar polarizabilities of the 1s3p 3PJ (J50,2) states of he-
lium. The difference between the tensor part of the pola
ability of the 1s3p 3P2 level and the scalar part is that th
contributions of the intermediate states 1sn8s 3S1 and
1sn8d 3D1 have opposite signs and that the total contribut
of the 1sn8d 3D3 states contains an additional numerical fa
tor, 22/7.

Table IV summarizes the results of numerical calcu
tions of the scalar and tensor components of helium pola
abilities. The dependence ofd on F near the anticrossing
point is plotted in Fig. 1.

Note that the differenceDa remains almost the same
we use nonrelativistic variational values for the resonant m
trix elements in~10!: a3 3P0

s
517 207, a3 3P2

s
517 198, and

Da59. The explanation is that the principal contribution
Da is provided by the relativistic corrections for the fin
structure of the levels in the energy denominators of~12!
rather than the relativistic corrections for the matrix eleme
of the dipole moment operator~see Table I!.

TABLE I. Reduced matrix elements of the dipole moment operator.

Transition Matrix element

1s3p 3P0→1s3s 3S1 26.4797
1s3p 3P2→1s3s 3S1 214.489
1s3p 3P0→1s3d 3D1 8.2923
1s3p 3P2→1s3d 3D1 1.8542
1s3p 3P2→1s3d 3D2 7.1805
1s3p 3P2→1s3d 3D3 16.994
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TABLE II. Contributions of theS and D states of the intermediate spectrum to the polarizability of
1s3p 3P0 state of helium.

n8 1sn8s 3S1 (l050.698) 1sn8s 3S1 (l0520.302) 1sn8s 3S1 1sn8d 3D1

2 20.34 21.67 21.57
3 22377.93 22682.56 22638.45 18 742.21
4 451.87 319.37 312.17 623.53
5 25.38 18.27 17.92 86.01
6 6.36 4.60 4.72 27.16
7 2.59 1.88 1.85 12.29
8 1.34 0.97 0.96 6.72
9 0.79 0.57 0.57 4.13
10 0.51 0.37 0.34 2.59

Total 21888.6 22337.7 22301.50 19 540.63
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To test the above results, we did alternative polariza
ity calculations using the method of the Green’s functions
an optical electron to sum over the complete intermedia
states spectrum in~9!.

Note that the correct selection of the initial analytic
representation of the Green’s functionsGE(r1 ,r2) plays an
important role in specific polarizability calculations, since
makes it possible to obtain the result in the form most ra
nal and convenient for further applications. In this paper
have taken the Green’s function for the Fuss model poten
from Ref. 14. The angular part ofGE(r1 ,r2) is simply the
product of spherical harmonics, while for the radial p
gl(E;r 1 ,r 2) we have taken an expansion in Sturm functio
which have only a discrete spectrum:15

GE~r1 ,r2!5(
lm

gl~E;r 1 ,r 2!Ylm~n1!Ylm* ~n2!, ~14!

gl~E;r 1 ,r 2!5
4Z

n (
k50

`
Ukl~2Zr1 /n!Ukl~2Zr2 /n!

k1l l112n
, ~15!

wheren5Z/A22E, and

Ukl~x!5A k!

G~k1212l l !
xl l expS 2

x

2D Lk
2l l11

~x!.

~16!

The radial wave functionsRnl(r ) are obtained from the resi
dues of the Green’s function at the poles
gl(E;r 1 ,r 2): n5nnl5nr1l l11, with nr50,1,2, . . . the

TABLE III. Contributions of theSandD states of the intermediate spectru
to the polarizability of the 1s3p 3P2 state of helium.

n8 1sn8s 3S1 1sn8d 3D1 1sn8d 3D2 1sn8d 3D3

2 21.57
3 22638.76 187.32 2809.37 15 735.95
4 312.15 6.23 93.52 523.74
5 17.92 0.86 12.90 72.25
6 4.72 0.27 4.07 22.81
7 1.85 0.12 1.84 10.32
8 0.96 0.07 1.01 5.65
9 0.57 0.04 0.62 3.47
10 0.34 0.03 0.39 302.17

Total 22301.83 194.94 2923.72 16 376.36
l-
f
-

l

-
e
al

t
,

radial quantum number,l l the effective orbital angular mo
mentum, andnnl the effective principal quantum number i
the formula for the energy of the atomic stateunl&,

Enl52
Z2

2nnl
2

. ~17!

Here and in~15!, Z is the charge of the residual ion. Th
explicit expression forRnl(r ) coincides in form with hydro-
genlike wave functions:23

Rnl~r !5
2Z3/2

nnl
2

Unr l S 2Zr

nnl
D . ~18!

The parameterl l ( l may represent a specific set of spin
orbit quantum number, in addition to representing a spec
angular momentum! can be found by comparing~17! with
experimental values of the lowest state of a valence elec
with a givenl ~see Ref. 23!. The radial quantum numbernr

of this state is assumed to be zero. As shown by Simons,8 l l

represents the entire experimental spectrum of the a
fairly well ~in most cases the weak dependence ofl l on the
position of the energy level can be ignored!.

With such a definition ofl l for atomic series whose
lowest states are the ground and the metastable, the err
calculating the radial matrix elements^nlur Lun8l &L>1 with
wave functions~18! may reach 50%. In view of this we
formulated a modified approach to the definition ofnr andl l

in these series,24 which allowed us to significantly refine th
calculations of the spectroscopic characteristics of atom
ground and excited states. Here the radial quantum num
of the lowest state~ground or metastable! of the series is
assumed to be unity, so that the effective orbital angu

TABLE IV. Scalar and tensor polarizabilities of the helium atom.

Quantity Numerical value

a3 3P0

s 17 203

a3 3P2

s 17 191

Da5a3 3P0

s
2a3 3P2

s 10

a3 3P2

t 351.65

F̄ 0.29 34331024

5150.99 kV cm21
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momentuml l is equal tong22, with ng the effective prin-
cipal quantum number of the lowest state. Note that the w
function of the lowest level atnr51 coincides precisely with
the wave function obtained by the quantum-defect metho
atoms.25

Thus, the sets of states of an atom with spin–orbit qu
tum numbers of the ground and metastable levels are, str
speaking, incomplete since they do not contain states w
nr50. Hence the radial Green’s functions in the subspace
the series in question contain additional ‘‘imaginary’’ term
with nr50 and an effective principal quantum numbern im

5ng21. The binding energy of the ‘‘imaginary’’ state, de
fined in ~17!, is almost ten times higher than the excitati
energy of any level in a series, so that its contribution to
optical-transition amplitude can be ignored.

Note also that the wave function of a valence electron
state unl& has the correct sign in the asymptotic regi
~which provides the principal contribution to multiple matr
elements! only if we multiply it by an addition phase facto
(21)k, wherek5n2nr2 l 21.

The second and third columns of Table II contain t
contributions of the intermediate 1sn8s 3S1 states to the sca
lar polarizability of the 1s3p 3P0 state calculated by the tra
ditional and modified approaches, which yield values ofl0

equal to 0.698 and20.302, respectively. A comparison wit
the data of precise variational calculations~the fourth col-
umn in Table II! suggests that the discrepancy of the fin
results is less than 2% if the valuel0520.302 is used,
while calculations withl050.698 yield an error exceedin
20%.

The results of polarizability calculations based on t
use of Green’s functions in the method of the Fuss mo
potential are listed in Table V. The numerical discrepanc
of the data of Tables IV and V are due, on the one hand
the semiempirical approximation of the model potent
method and, on the other, to the allowance for the contri
tion of the continuous spectrum in the Green’s functio
method. Note that the results for the difference of sca
polarizabilities and for the tensor polarizability of th
1s3p 3P2 state differ from those in Table IV only by 10%
To obtain numerical values of the difference of scalar po
izabilities with an accuracy of about 1%, the calculations
the radial integral should be done with an accuracy of five
six figures, since, as Table V implies, the first three sign

FIG. 1. Dependence ofd ~in atomic units! on the electric field strengthF in

the vicinity of anticrossingF̄.
e

in

-
tly
th
of

e

n

l

el
s
to
l
-

s
r

-
f
r
-

cant figures cancel out. This loss of accuracy can be avo
if we expand the polarizabilities as functions of the energy
an atomic level in a Taylor series. The calculation then
duces to finding the energy derivatives of the polarizabiliti
and these can be expressed in terms of third-order dip
matrix elements with two Green’s functions, which, in pa
ticular, enter into the expression for the hyperpolarizabil
of the atomic states.26

It is no accident that the numerical results in Tables
and V arer close, since the model potential method yield
correct dependence in the higher-order matrix elements
the energy of the atomic levels,23 provided that we use the
exact ~experimental! values for the energies of the fine
structure sublevels. This condition makes it possible to t
into account the contributions of relativistic and correlati
effects in the model potential method. Furthermore, us
this method, one can easily show that the states belongin
a complete set and not taken into account in relativistic c
culations~the states belong to the continuum and to the d
crete spectrum withn8.10) contribute no more than 0.2%
to the numerical values of the quantities considered here
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Inversionless superradiance of an ensemble of three-level atoms in a high- Q cavity
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We analyze the possibility of superradiance in an ensemble of three-level atoms in the absence
of population inversion. We show that in the case of aL configuration of the active
transitions this effect can occur for an initially coherent superposition of the states of the lower
doublet. We also study how splitting of the lower levels influences this effect and discuss
ways of creating low-frequency coherence. ©1999 American Institute of Physics.
@S1063-7761~99!01002-1#
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1. INTRODUCTION

The theory of collective spontaneous emission of rad
tion ~superradiance! was first developed by Dicke1 for an
ensemble of two-level atoms. Further studies of this effec2–9

were done primarily with this model. Stepping outside t
scope of the two-level approximation~say, by assuming tha
the ground state is a doublet! leads to new effects in supe
radiance, effects produced by competition between the t
sitions. Among such effects we note quantum beats and
larization features in the superradiance emission sign6

Elyutin et al.10 discussed the possibility of superradiance a
photon echo in a magnetodipole transition when cohe
superposition of all~three! states is produced by a stron
optical resonant pulse.

It is well known that a necessary condition for inducin
superradiance in the two-level model is the presence of
tial population inversion of the levels involved in the acti
transition. Recently the problem of inversionless amplific
tion has been widely discussed~see, e.g., Refs. 11–15!. This
effect is possible, for instance, if there is an additional le
that is close to the ground level~the L configuration of lev-
els!. If the initial state of the lower doublet is prepared as
coherent superposition to which a transition from the up
level is forbidden, the orthogonal superposition, to which
transition is allowed, is found to be unpopulated. Henc
resonant pulse passing through a medium prepared in
way will be amplified.

The main goal of the present investigation is to sh
that in addition to inversionless amplification there can
inversionless superradiance~a preliminary discussion of the
problem can be found in be found in Ref. 16!. In Sec. 2 we
formulate the model and present the basic equations of
theory. In Sec. 3 we study the case of a degenerate doub
the ground state~this case allows for an analytical investig
tion!. The effect of splitting of the lower level is examined
Sec. 4. Section 5 is devoted to an analysis of the poss
ways of forming the low-frequency coherence, which is n
essary for inversionless superradiance. Finally, in Sec. 6
solve the general equations of the model, incorporating
2781063-7761/99/88(2)/8/$15.00
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the scheme an external field that produces the low-freque
coherence.

2. MODEL AND BASIC EQUATIONS

Let us examine an ensemble of three-level atoms wit
L configuration of the active transitions~see Fig. 1!. We
assume that the splitting frequencyv21 for the lower levels is
much smaller than the frequenciesv31 andv32 of the tran-
sitions between the upper state 3 and the states of the lo
doublet, 1 and 2. To describe the interaction of such a sys
and an electromagnetic field in quasiresonance with the h
frequency transitions we use the one-dimensional versio
the semiclassical approach, in which we assume that
quantities describing the state of the atomic system and
field vary in only one direction while all the vectors a
directed in the same way along the perpendicular direct
Then the evolution of the system obeys the following syst
of Maxwell–Bloch equations:

ṙ3152 iv31r312 i
d31E

\
~r332r11!1 i

d32E

\
r21, ~1!

ṙ3252 iv32r322 i
d32E

\
~r332r22!1 i

d31E

\
r12, ~2!

ṙ2152 iv21r212 i
d31E

\
r231 i

d32E

\
r31, ~3!

ṙ115 i
d31E

\
~r312r13!, ~4!

ṙ225 i
d32E

\
~r322r23!, ~5!

ṙ3352 i
d31E

\
~r312r13!2 i

d32E

\
~r322r23!, ~6!

S ]2

]x2
2

1

c2

]2

]t2D E5
4p

c2

]2P

]t2
, ~7!

where therab are the elements of the density matrix
the three-level atom at the point with coordinatex at time
© 1999 American Institute of Physics
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t (a,b51,2,3), d31 andd32 are the dipole moments of th
3↔1 and 3↔2 transitions~these moments are assumed
be real and positive!, P 5N0 (d31r311d32r32)1c.c. is the
polarization of the medium,N0 is the the atom number den
sity, andE is the electric field strength. Population relaxati
and polarization relaxation~either homogeneous or related
inhomogeneous broadening! are not taken into account, sinc
the superradiance process is assumed to be faster.

Let us suppose that the atoms are uniformly distribu
over the vole of a high-Q ring cavity ~field damping due to
cavity losses is ignored! and that the transitions with fre
quenciesv31 andv32 are in quasiresonance with one of th
cavity modes~frequencyvc). We also assume that the s
perradiance spectrum and the value of the double split
v21 do not overlap the gap between cavity modes, i.e., we
limit ourselves to the single-mode approximation.

We seek the solution of the system of equations~1!–~7!
in the form

E5E exp@2 i ~vct2kcx!#1c.c., ~8!

r315R31exp@2 i ~vct2kcx!#, ~9!

r325R32exp@2 i ~vct2kcx!#, ~10!

wherekc5vc /c (c is the speed of light in vacuum!; E, R31,
and R32 are the amplitudes of the field and of the o
diagonal elements of the density matrix~the last two quanti-
ties are known as coherences!, which are assumed to var
slowly on the scale of the optical period 2p/v31. Note that
the analogous approximation on the 2p/v21-scale, i.e., for
the low-frequency coherencer21, is not used.

To simplify the problem still more, we assume that t
state of the cavity changes little during the time lig
traverses the cavity~the mean-field approximation!. This
makes it possible to ignore the spatial dependence of
amplitude and thus exclude effects of propagation and
plification of light in the active medium. Such simplification
are not very important for the effect considered in this pap
i.e., inversionless superradiance. The study of inversion
superradiance in an open extended system with allowa
for the factors ignored by the adopted model constitute
separate problem.

FIG. 1. Diagram of energy levels and optical transitions~designated by
arrows! of a three-level atom.
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If we now pass in the usual way from the system
equations~1!–~7! to a similar system for the amplitudes, w
get

Ṙ3152 iD31R311«@m31~r332r11!2m32r21#, ~11!

Ṙ3252 iD32R321«@m32~r332r22!2m31r12#, ~12!

ṙ2152 iv21r211m31«R32* 1m32«* R31, ~13!

ṙ115m31~«R31* 1«* R31!, ~14!

ṙ225m32~«R32* 1«* R32!, ~15!

ṙ3352m31~«R31* 1«* R31!2m32~«R32* 1«* R32!, ~16!

«̇5V2~m31R311m32R32!, ~17!

whereV5A2pv31d
2N0/\, «52 idE/\ is the amplitude of

the electric field in frequency units,D315v312vc , D32

5v322vc , m315d31/d, and m325d32/d, with d
5A(d31

2 1d32
2 )/2. Note that this system of equations has t

following constants of motion:

r111r221r3351, ~18!

r11
2 1r22

2 1r33
2 12~ ur21u21uR31u21uR32u2!5const, ~19!

u«u21r335const. ~20!

3. A DEGENERATE DOUBLET

In the two-level scheme of inversionless superradia
we would have only attenuation of the initial fluctuations
R31 and R32; they certainly do not become stronger. Th
situation changes dramatically, however, when the gro
state is a doublet. Note that Eqs.~11! and ~12! for the high-
frequency coherences contain terms proportional to the l
frequency coherencer21. To be specific, let us assum
r33(0)2r11(0)5r33(0)2r22(0)50. Now, if r21(0)Þ0, the
behavior~weakening or strengthening! of the initial fluctua-
tions of R31 and R32 depends on the phase ofr21(0): for
positive values ofr21(0) these fluctuations still becom
weaker, but for negative values the strength of these fluc
tion increases in a snowballing manner, thus initiating sup
radiance. Note that this becomes possible without popula
inversion in the high-frequency channels 3↔1 and 3↔2
and is ensured by conversion of the low-frequency cohere
(r21) to the high-frequency coherences (R31 and R32). The
latter effect manifests itself explicitly in the constant of m
tion ~19!.

The mechanism of this conversion and developmen
inversionless superradiance allows a simple interpreta
when the low level is two-fold degenerate and the freque
of the atomic transition coincides precisely with the cav
frequency (D315D325v2150). Then, passing to a new
basis of atomic states,u1&5(m31u1&1m32u2&)/A2 and
u2&5(m31u1&2m32u2&)/A2, we see that the stateu1& is ac-
tive in the superradiant transition~the dipole moment of the
u3&→u1& transition is finite and equal tô3ud̂u1&5A2 d).
At the same time, the superpositionu2&, which is orthogonal
to u1&, does not interact with the upper stateu3& (^3ud̂u2&
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50) and in this sense is passive in superradiance. Thu
the new basis the problem is equivalent to the two-level o
and the system of equations~11!–~17! reduces to

Ṙ315
1

2
e~r332r11!, ~21!

ṙ2250, ~22!

ṙ115eR31 , ṙ3352eR31 , ~23!

ė54V2R31 , ~24!

wherer11 andr22 are, respectively, the populations of th
active and passive states,e52A2 «, andR31 is the active-
channel coherence:

r115
1

2
~m31

2 r111m32
2 r2212m31m32Rer21!, ~25!

r225
1

2
~m32

2 r111m31
2 r2222m31m32Rer21!, ~26!

R315
1

A2
~m31R311m32R32!. ~27!

Equations~26! and ~25! imply that r22 and r331r11

are constants of motion. By introducing the half-differen
of populations in the active channel,W5(r332r11)/2, we
reduce~25!–~27! to

Ṙ315eW, Ẇ52eR31 , ~28!

ė54V2R31 . ~29!

This system of equations describes the cooperative emis
in an ensemble of two-level atoms in the mean-fie
approximation.2–4,6,8,9Its solution demonstrates superradia
behavior in the presence of initial inversion in the acti
channel (W(0).0), i.e., at time zero the following condi
tion must be met:

r33~0!.r11~0!5
1

2
@m31

2 r11~0!1m32
2 r22~0!

12m31m32Rer21~0!#. ~30!

If we prepare the system of atoms in such a way that
active states are not populated (r11(0)50),

r11~0!5
1

2
m32

2 @12r33~0!#, r22~0!5
1

2
m31

2 @12r33~0!#,

~31!

r21~0!52
1

2
m31m32@12r33~0!#, ~32!

where 12r33(0) is the total population of the lower leve
then inversion between the upper and active states
achieved for all populations of the upper state. This situat
can also be achieved in the caser33(0),r11(0)1r22(0),
i.e., without population inversion in the large. At the sam
time, if initially the states of the lower doublet are populat
in an incoherent manner, i.e.,r21(0)50, the fact that there is
in
e,

on

t

e

is
n

population inversion for one of the active transitions is n
sufficient for superradiance to occur~superradiance is also
coherent effect!.

If we substitute R315(V0/2V)2 sinu, W5(V0/
2V)2 cosu, and e5 u̇, whereV052V@R31

2 (0)1W2(0)#1/4

in the system of first-order differential equations~28! and
~29!, we obtain the second-order equation

ü2V0
2 sinu50, ~33!

which describes nonlinear oscillations of a simple pendulu
The oscillation periodT0 depends on the initial deflection o
the pendulum from the equilibrium position,u(0). When the
initial polarizationR31 is small andW(0) is positive~con-
ditions characteristic of superradiance!, the angleu(0) is
close to zero. Here the oscillation periodT0 is approximately
4V0ln@8/u(0)# ~see Ref. 9!.

4. A NONDEGENERATE DOUBLET

The kinetics of superradiance in the presence of splitt
of the lower doublet (v21Þ0) was studied by solving the
system of equations~11!–~17!numerically. The natural fre-
quency of the cavity,vc , was selected as the arithmet
mean of the frequenciesv31 and v32, i.e., vc5(v31

1v32)/2. For simplicity the dipole moments of the 3↔1
and 3↔2 transitions were taken to be equal:m315m3251.

The calculations were done with the following initia
data: r11(0)5r22(0)50.35, r33(0)50.3, r21(0)560.35,
R32(0)5R31(0)51028, and «(0)50. The positive~nega-
tive! sign ofr21(0) means that the system has been prepa
in the active~passive! state. Here there is no population in
version in the 3→1 and 3→2 channels:r33(0)2r11(0)
5r33(0)2r22(0)520.05. At the same time, population in
version between the upper and active states is 0.3. F
values ofR31(0) andR32(0) are needed for initiating super
radiance. Here we are interested in fluctuations of superr
ance, so that the initial valuesR31(0) andR32(0) are speci-
fied as deterministic parameters, which corresponds to
conditions for stimulated superradiance.17,18

The upper half of Fig. 2 represents the results of cal
lating the kinetics of deexcitation of the system obtained
negative values ofr21(0) ~initially the active state is unpopu
lated!. In the absence of splitting of the lower levels, we ha
the periodic superradiance regime, which is described by
nonlinear pendulum model~33!. Splitting of the lower levels
(v21Þ0) results in modulation of superradiance sign
~slow modulation on the scale of the cooperative freque
V for v21,V and rapid modulation forv21.V). The rea-
son is that when the splitting of the lower doublet is finit
the u1& and u2& states are not stationary, so that with t
passage of time the active state periodically becomes
passive state.

The lower half of Fig. 2 present similar results obtaine
however, for a positive value of the initial low-frequenc
coherencer21(0) ~initially, the active state is populated, an
population inversion between this state and the upper s
needed for superradiance to develop is absent!. In complete
agreement with the results of Sec. 3, no superradiance si
is detected at zero splitting. For small values ofv21 ~smaller
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than V) the signal is delayed by a time interval that is ex
actly equal to the half-period of the low-frequency coheren
oscillations,p/v21, i.e., a time interval after which the sign
of the signal changes.

At first it seems strange that these signals do not exh
the expected exact periodicity in time~signal period
2p/v21). We relate this behavior to the population trappin
effect19 ~a fraction of the population of the lower state i
trapped in a passive state not related to the upper state!. In
the cases under investigation such an effect is possible, s
for a small value of the splitting (v21,V) the superradiance

FIG. 2. Kinetics of inversionless superradiance for different values of t
doublet splittingv21 ~indicated in the figure!. The cavity frequency is tuned
exactly to the midpoint between the levels 1 and 2,vc5(v311v32)/2. The
results presented in the upper half of the figure were obtained for a nega
value of the low-frequency coherence@r21(0)520.35; initially the anti-
symmetric superposition of the states of the doublet is populated#, while the
results presented in the lower half were obtained for a positive value of
low-frequency coherence@r21(0)50.35; initially the symmetric superposi-
tion of the states of the doublet is populated#. The other parameters have
been chosen as follows:r11(0)5r22(0)50.35, r33(0)50.3, R32(0)
5R31(0)51028, and«(0)50.
e

it

ce

spectrum overlaps the low-frequency doublet, which is
condition for population trapping.

As the doublet splitting increases, superradiance sign
in the two cases in question resemble each other more
more irrespective of the sign of the initial coherencer21(0)
~cf. the upper and lower halves of Fig. 2!. Hence, when the
lower level is split, the initial phaser21(0) plays no signifi-
cant role. Asv21 increases, the superradiance intensity d
creases due to the increasing detuning of the transition
quencyv31 andv32 from the cavity frequencyvc .

5. FORMATION OF LOW-FREQUENCY COHERENCE
BY AN EXTERNAL FIELD

The above treatment of inversionless superradiance
supposes the existence of initial coherence of the statesu1&
and u2&. In this section we study the possibility of creatin
the necessary coherence by introducing an external pu
field interacting with the 1↔2 transition. This interaction
may occur either in the electrodipole approximation if t
quantum system has no inversion center or in the magn
dipole approximation if the doublet in question is magne
cally active.

Let us examine a situation in which the length of t
pulse forming the coherence in the low-frequency channe
smaller than the time by which the next superradiance pu
is delayed. Then it is obvious that the evolution of the lo
frequency channel 2↔1 in the external field and the deve
opment of superradiance are separated in time. Below
demonstrate the possibility of such separation directly b
numerical solution of the Maxwell–Bloch equations that i
corporate an external field into the low-frequency channe

In the notation adopted here, the evolution of the doub
is described by the following system of equations for a tw
level atom in an external field:

ṙ2152 iv21r2122i F i~ t !Z, ~34!

Ż5 i F i~ t !~r212r12!, ~35!

whereZ5(r222r11)/2, andF i(t) is the external field mea
sured in frequency units.

5.1. Wideband excitation

If the pulse lengthTp is such thatTp,2p/v21 and, in
addition, uF i u.v21, the term with v21 in ~34! can be
dropped. Then the solution of the system of equations~34!
and ~35! has the form

Z5B cos~A1f1!, Im r2152B sin~A1f1!, ~36!

where A52*0
t
F i(t) dt is the field pulse area,B

5AZ2(0)1@ Imr21(0)#2, and sinf15Imr21(0)/B. Accord-
ingly, for the density-matrix elements we have

r215Rer21~0!2 iB sin~A1f1!, ~37!

r115
1

2
@r11~0!1r22~0!#2B cos~A1f1!, ~38!

r225
1

2
@r11~0!1r22~0!#1B cos~A1f1!. ~39!
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If initially the system is in an incoherent state, i.e.,r21(0)
50, Eqs.~37!–~39! become

r2152
1

2
i @r22~0!2r11~0!#sinA, ~40!

r115
1

2
@r22~0!1r11~0!#2

1

2
@r22~0!2r11~0!#cosA,

~41!

r225
1

2
@r22~0!1r11~0!#1

1

2
@r22~0!2r11~0!#cosA.

~42!

As can be seen from~40!–~42!, maximum coherence~in ab-
solute value! is achieved when only one level, 1 or 2,
populated initially and the field pulse area isp/2.

Attaining maximum coherence corresponds to the o
mum condition for inversionless superradiance only if t
values of the transition dipole momentsm31 andm32 are the
same. Whenm31 differs from m32, the pulse area must b
selected on the basis of~31! and ~32!. Then if level 1 is
initially populated we have

cosA5
1

2
~m32

2 2m31
2 !, sinA5m31m32. ~43!

Note that the value of the pulse area determines only
magnitude ofr21, although the phase is also important f
realizing the optimum condition for inversionless superra
ance @see ~32!#. As ~37! implies, in this case an externa
pulse generates only the imaginary part of the low-freque
coherence, which does not directly initiate superradi
emission. The optimum phase of coherence emerges in
process of the time evolution ofr21}exp(2iv21t) after the
pulse has already acted.

5.2. A resonant low-frequency pulse

Now we study the situation withv i5v21, Tp

@2p/v21, and uF i u!v21. Under these conditions we ca
use the expansionsF i(t)5 f i(t) exp(2iv21t)1c.c. and
r21(t)5R21(t) exp(2iv21t), where f i(t) and R21(t) are the
amplitudes that slowly vary on the scale of the peri
2p/v21, and pass in the usual way from Eqs.~34! and ~35!
to the equations for the slow variables, whose solution is

R215C sin~A1f2!1 i Im R21~0!, ~44!

Z5C cos~A1f2!, ~45!

where A52*0
t f i(t) dt is the pulse area, C

5AZ2(0)1@ReR21(0)#2, and tanf25ReR21(0)/Z(0). In
particular, for a state that is initially incoherent (R21(0)
50) we have

R215Z~0!sinA, Z5Z~0!cosA. ~46!

This means that the maximum value of the absolute valu
the coherence,uR21u5ur22(0)2r11(0)u/2, is attained for a
pulse areaA5p/2 ~similar to the case discussed in Se
5.1!. Here the magnitudeuR21u of the coherence is larges
~for a given total population of the doublet! if only one level
is populated~which is also completely analogous to Se
i-

e

-

y
t
he

of

.

.

5.1!. However, its optimum value for distinctm31 andm32 is
still given by ~43!. Since in the limit in question (Tp

@2p/v21), r21 rapidly oscillates withv21, the phase ofR21

after the external pulse has travelled through the system
unimportant, in contrast to the previous case.

6. INITIATING INVERSIONLESS SUPERRADIANCE
BY AN EXTERNAL LOW-FREQUENCY FIELD

The system of equations describing the behavior of
three-level medium in question and allowing for the action
an external field in the low-frequency channel 2↔1 has the
form

Ṙ3152 iD31R311«@m31~r332r11!2m32r21#2 i F iR32,
~47!

Ṙ3252 iD32R321«@m32~r332r22!2m31r12#2 i F iR31,
~48!

ṙ2152 iv21r211m31«R32* 1m32«* R312 i F i~r222r11!,
~49!

ṙ115m31~«R31* 1«* R31!1 i F i~r212r12!, ~50!

ṙ225m32~«R32* 1«* R32!2 i F i~r212r12!, ~51!

ṙ3352m31~«R31* 1«* R31!2m32~«R32* 1«* R32!, ~52!

«̇5V2~m31R311m32R32!. ~53!

Figure 3 depicts the results of numerical calculations
superradiance kinetics corresponding to the excitation of
low-frequency coherence by the scheme discussed in
5.1. The calculations were done with initial datar11(0)
50.7, r22(0)50, r21(0)50, r33(0)50.3, R32(0)5R31(0)
51028, and «(0)50. The external field was a rectangul
p/2 pulse of heightV ~in frequency units!. Note that if there
were no external field in the low-frequency channel, the s
tem would not radiate.

When analyzing the results, it is convenient to bear
mind the following four time scales that are natural to t
problem in question: the lengthTp of the external-field pulse
~the shortest time!, the periodT2152p/v21 of variation of
the low-frequency coherence, the superradiance timeTR

'V21, and the time delay of the superradiance pulse,TD ,
due to the smallness of the initial values ofR31 andR32.

The external pulse generates the purely imaginary
diagonal matrix elementr21, which evolves in time and ini-
tiates superradiance. As Fig. 3 shows, a small variation in
value of theTD-to-T21 ratio ~for T21.TR , which is actually
the case! has a strong effect on the intensity of the radiat
pulses. The explanation is that there is a time intervalDT
~shorter thanT21/4) that separates the moments of onset
the threshold (r335r11) and optimum (r1150) condi-
tions for inversionless superradiance. ForTD,DT the radi-
ating process begins prematurely, in the sense that the
mum condition is not attained~Fig. 3a!. At TD'DT the
radiating process begins exactly in optimum conditions~Fig.
3b!. As the doublet splitting increases and henceT21 de-
creases, so thatTD.DT, superradiance is delayed~Fig. 3c!.
But if TD is much longer thanDT, the onset of superradianc
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FIG. 3. Kinetics of inversionless superradiance in the formation
the low-frequency coherence by a an external field in the form o
rectangularp/2-pulse of heightV ~in frequency units! for different
values of the doublet splittingv21 ~indicated in the figure!; vc

5(v311v32)/2. The initial data arer11(0)50.7, r22(0)50,
r21(0)50, r33(0)50.3, R32(0)5R31(0)51028, and«(0)50.
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may be postponed, so to say, to the next favorable cycle~Fig.
3d!. Superradiance intensity is determined by the differe
in the populations of the upper and active states at the t
the radiating process begins and remains, for all pract
purposes, the same.

The kinetics of inversionless superradiance calcula
under the condition that the low-frequency coherence is
cited by a resonantp/2 pulse~the scheme developed in Se
5.2! is depicted in Fig. 4. The initial data for the calculatio
were take from the previous case. The low-frequency coh
ence was formed by ap/2 pulse of frequencyv i5v21

53V and a rectangular envelope of lengthTp580V21. As
a result of the action of the pulse, the subsystem of state
the doublet is prepared in the superposition stateut&
5(1/A2 ) @ u1&1exp(2iv21t)u2&], which is periodically con-
verted~with the passage of time! to the passive combinatio
u2&5(1/A2 ) (u1&2u2&), leaving the active stateu1&
5(1/A2 ) (u1&1u2&) unpopulated for this period and thu
creating the conditions for inversion between statesu3& and
u1&. After a certain delay, needed for the cooperative dip
moment to develop, the system emits a superradiance p
representing beats of two signals of the same amplitude
e
e

al

d
x-

r-

of

e
lse
th

the difference frequencyv21. Note that the superradianc
kinetics in this case coincides almost perfectly with that c
culated in conditions where the low-frequency coherence
part of the initial data~see the curves in Fig. 2 obtained fo
v2153V).

We conclude this section by discussing the possibility
detecting inversionless superradiance in atomic sodium
por, which Kocharovskaya and Mandel20 considered a suit-
able object for realizing inversionless amplification~related
to inversionless superradiance!. It is well known that the
ground state of a sodium atom (3S) is the spin–orbit doublet
3 2S3/2,3

2 S1/2 with the transition frequency 1.77 GHz, whic
in combination with an appropriate excited state of oppos
parity ~say, 3P) may serve as a model of a three-lev
L-system. Estimates of the characteristic superradiance
scale (TR) for a vapor density of roughly 1011cm23 with a
10% occupancy of the excited state yield;0.1 ns, which is
shorter by a factor of ten than the relaxation timeT2* ;1 ns
due to Doppler broadening.9 Here the superradiance dela
time TD;10TR;1 ns;T2* , which makes it possible~at
least in principle! to realize the deexcitation regime in que
tion. Thus, creating a coherent state of the doublet in
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FIG. 3 ~Continued.!
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ground state requires a gigahertz electromagneticp/2 pulse
shorter than 10 ns~i.e., shorter than the lifetime of the ex
cited state!, values that can be attained by the spin ec
technique.21 Another possible effective way of creating th
low-frequency coherence is to use an external optical na
second pulse that is in resonance with another~nonsuperra-
diant! transition, as suggested in Ref. 10.

Among other possible objects in which the inversionle
superradiance effect can appear are crystals activated
rare-earth ions. Auzelet al.22 reported detecting superrad
ance in LiYF4 with Er31 ions that involved the4I 11/2

→4I 13/2 transition. The lifetime of the excited state4I 11/2 is
of order 0.1 s~see Ref. 22; this transition is dipole-forbidde
in a single Er31 ion!. This means that it is easy to create t
low-frequency coherence involving the Zeeman sublevels
Er31 in the ground state by applying a microwave puls
field. For a density of excited Er31 ions in the4I 11/2 state of
order 531011cm23 ~see Ref. 22!, the characteristic superra
diance time scaleTR is in the nanosecond range (;10 ns).
o

o-

s
by

f

7. CONCLUSION

In multiatomic systems consisting of three-level atom
with a doublet structure of the ground state~the L configu-
ration of transitions!, superradiance without population in
version in the large is possible. This effect requires the pr
ence of initial coherence between the states of the doub
which can be created either by a wideband pulse or a re
nant low-frequency coherent pulse with a certain area.

When the low-frequency coherence is produced by
pulsed field, the superradiance intensity strongly depend
the relationship between the splitting of the low-frequen
doublet and delay time of the superradiant pulse. As
known, the latter can be controlled by using the stimulat
superradiance approach,17,18 in which the process is initiated
by a small-area ultrashort pulse in quasiresonance with
3↔1 and 3↔2 transitions. Such a pulse generates init
polarization in the superradiance channels 3↔1 and 3↔2
that exceeds the level of the spontaneous fluctuations of
larization and thus reduces the superradiance delay t
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FIG. 4. As in Fig. 3, but the low-frequency coherence
formed by an external field in the form of a resonantp/2
pulse with a rectangular envelope of lengthTp580V21.
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Controlling stimulated superradiance by varying the area
the ultrashort pulse, we can optimize the intensity of inv
sionless superradiance. Note that if the dipole moment
the active transitions are not collinear, the effect weak
due to the weakening of channel coupling and may disapp
completely when their polarizations are orthogonal.
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We derive convenient analytical formulas in the effective-range approximation for the asymptotic
coefficientCk of the radial wave function at infinity and for the average radius of the
system. A comparison with the results of numerical calculations~done by the Hartree–Fock
method! for multi-electron atoms and ions reveals that this approximation has good accuracy for
valences-electrons in all atoms from hydrogen to uranium. We calculate the values of the
scattering lengths and the effective ranges for electron–atom and electron–ion scattering. We also
examine the quasiclassical approximation forCk . Finally, we discuss the logarithmic
increase in the effective ranges ofns states asn→`. © 1999 American Institute of Physics.
@S1063-7761~99!01102-6#
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1. The wave function of thes state has the asymptoti
behavior

ck~r !5CkAk3

p
e2kr~kr !n21F12

n22n

2kr
1•••G ,

r @r 0 ,
un21u

k2aB

, ~1!

where *ck
2 d3r 51, l5A22E, E is the level energy,n

5Z/k, with Z the charge of the atomic core,r 0 is the radius
of the core,aB51/Z is the Bohr radius, and atomic unit
(\5m5e51) are used throughout

The asymptotic coefficientsCk are important physica
parameters of bound states and are continually encount
in quantum mechanics,1 atomic and nuclear physics,2–8 in the
inverse problem of quantum scattering theory,9,10 etc.1! Their
exact calculation constitutes a fairly involved problem an
e.g, for heavy atoms requires numerical calculation of
Hartree–Fock equations for multi-electron systems, with
calculation error sometimes reaching 10–30% or even la
values.11 In this paper we specify simple analytical approx
mations for the coefficientsCk , approximations that de
scribe the results of numerical calculations fairly well. The
formulas can also be used for other Coulomb systems w
short-range interaction~e.g., in the theory of hadronic
atoms12!.

The plan of the paper is as follows. In Sec. 2 we int
duce the effective range expansion for the coefficientsCk ,
compare it with the results of numerical calculations, a
give the results of calculations of the scattering lengths
effective ranges for some atoms and ions. In Sec. 3 we il
trate the expansion~3! using model potentials that allow a
exact solution~in particular, we give the explicit expression
for the s-scattering lengthas and the effective ranger s for
the case of the Hulthe´n potential!. In Sec. 4 we consider th
2861063-7761/99/88(2)/11/$15.00
ed
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quasiclassical approximation for the coefficientsCk . In Sec.
5 we discuss the caselÞ0 and in Sec. 6, the logarithmi
increase in the effective ranges ofns states asn→`. The
Appendix deals with the derivation of the expansion~3!, the
details of calculations, and some lengthy formulas.

2. The effective range expansion.We assume that the
potential is given by the formula

V~r !52 Zr21 1U~r !,

whereU(r ) is its short-range part with a characteristic ran
r 0 of the forces. The normalized wave function of the sh
low s level has the form

xk~r !5A4p rck~r !

5212nk1/2CkH w~r !/G~12n!, r &r 0 ,

Wn,1/2~2kr !, r @r 0 ,
~2!

where l 50, kr 0!1, w(r ) is the wave function correspond
ing to zero energy,Wn,1/2 is the Whittaker function, andn is
the Sommerfeld parameter~for the discrete spectrum!. The
region where the expressions in~2! are matched isr 0!r
!min(k21,aB), and the buildup of the normalization integr
occurs primarily at distancesr .r 0 and can be calculated
analytically. The correction due to small distances (r &r 0)
depends on the shape of the potentialU(r ) and can be ex-
pressed in terms of the nuclear Coulomb effective ranger cs

~see Refs. 13–15!. As a result we arrive at the expansion~see
Appendix A!

Ck5Ck
~0!$12c1kr cs1O~~kr 0!3!%21/2, ~3!

whereCk
(0) andc1 are universal functions of the parametern

~see Figs. 1 and 2!:

Ck
~0!5

2n21

G~11n!
F~n!, c15

1

2 Fsinpn

pn
F~n!G2

, ~4!
© 1999 American Institute of Physics



-

e–

287JETP 88 (2), February 1999 Mur et al.
FIG. 1. The asymptotic coefficient at infinity for neu
tral atoms (s) and singly charged positive ions (m):
the solid curve corresponds toCk

(0) , the dashed curve
corresponds to the quasiclassical approximation~30!,
and the points correspond to the results of Hartre
Fock calculations~Ref. 11!.
rt
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s
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.

F~n!5H 12S sinpn

pn D 2Fn2c8~n!2n2
1

2G J 21/2

, ~4a!

with c8(n) the trigamma function.16 When the Coulomb in-
teractio n is switched off (n→0), the ranger cs tends tor s

and

Ck
~0!5

1

A2
~11a1n1••• !, c15122n1•••

(a15 ln2211C50.2704, with C55772 . . . ), sothat the
expansion~3! assumes the form corresponding to a sho
range potential:

1

2Ck
2

512kr s1c3~kr s!
31•••. ~5!

As n→n51,2,3, . . . , Eq.~4! yields

Ck
~0!5

2n21

n!
@11b1d1O~d2!#, c15

1

2
d22d31 . . . ,

~6!

where d5(n2n)/n, and b15a1'0.270 at n51, b1'
20.459 atn52, etc. The valuesCk

(0)52n22/n! and c150
correspond to a purely Coulomb (n5n) spectrum.2! Finally,
for highly excited~Rydberg! states,

Ck
~0!5

2n21

G~n11! F11
sin2 pn

12p2n3
1•••G ,

c15
sin2 pn

2p2n2
@11O~n23!#. ~6a!

In the limit n@1 the coefficientc1 is small numerically and
the dependence ofCk on the effective ranger cs becomes
unimportant~the same is true forn close to integral values
n51,2, . . . ).
-

What makes the expansions~3! and~5! so remarkable is
that they contain no terms quadratic in the effective rang3)

Furthermore, the coefficient sc3 , which we calculated for
several model potentialsU(r ), are small@see Eq.~19!#. This
broadens the range of applicability of these expansions.

We compare the results of Hartree–Fock calculation11

and the zeroth approximationCk'Ck
(0) , i.e., r cs50 in ~3!.

The values of the coefficientsA in Ref. 11 differ from those
of Ck in normalization:A52kn11/2Ck . The open circles in
Fig. 1 refer~in order of increasingn) to the ground states o
neutral atoms:4! He(n50.744), Zn~1.203!, Au~1.215!,
Cu~1.326!, Ag~1.340!, Ru~1.359!, Cr~1.418!, Y~1.460!,
Yb~1.475!, U~1.484!, Ca~1.493!, Pa~1.515!, Sr~1.546!,
La~1.563!, Li~1.587!, Ba~1.616!, Na~1.626!, K~1.770!,
Rb~1.805!, and Cs~1.869!.

In Fig. 1 the values ofCk are also marked (m) for
several positive ions: Li1(n50.848), He1(1.000),
Al1(1.701), Be1(1.729), Zn1(1.741), Cd1(1.794),
Fe1(1.833), Mg1(1.903), Ti1(2.002), and Ca1(2.141) ~we
considered only the cases where the valence electron is in

FIG. 2. The coefficientc1 in the expansion~1! as a function ofn. For
n.0.7, the scale along the vertical axis is increased by a factor of ten
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s state!. It is clear that even the zeroth approximation d
scribes rather well the results of Hartree–Fock calculati
and has roughly a 10% accuracy~even though the expansio
parameter satisfieskr cs;1). The explanation is that numer
cally the coefficientsc1 andc3 in ~3! and~5! are small. Thus,
we havec150.0458 forn50.75, and itsmaximum value
in the region 1,n,` is equal tocm50.0236 (nm'1.45).
The coefficients ofc3 of the cubic term depend on the sha
of the potentialU(r ), anduc3u&0.15 for all the models con
sidered.

Note that the coefficientsA have a much larger sprea
than theCk . For instance,A250.18, 4.00, 8.24, and 42 fo
the atoms Cs, H, and He and the ion Li1, respectively, while
Ck

250.854, 1.000, 0.986, and 1.04. The coefficientsCk , in
contrast toA, are scale invariant~i.e., do not change unde
the scaling transformationr→ar in the Schro¨dinger equa-
tion!, so that they depend on the shape of the potentialV(r )
and not on the depth and range of the potential separatel
particular, in the Coulomb problem,V(r )52Z/r , these co-
efficients are independent ofZ.

Most cases haveCk.Ck
(0) , i.e., they correspond to pos

tive values ofr cs ~see Table I!, but sometimesCk,Ck
(0)

holds~the points in Fig. 1 lying below the solid curve!. In the
cases of the Be1 ion and the Cs atom, this cannot be e
plained by the imprecision of the Hartree–Fock calculatio
while for the other atoms,Ck'Ck

(0) within two standard de-
viations.

Using ~3! or ~5! and the effective range expansion,13,14

we can easily calculate the low-energy parameters, the s
tering length and the effective range, from the values ok
andCk . For instance in the case whereZ50 ~negative ions!,

kr s512
1

2Ck
2

, as
215k2

1

2
k2r s , ~7!

which yields the values ofas and r s listed in Table I. This
table shows thatas@r 0 , as it should be for loosely boun
(kr s!1) systems. Here the effective rangesr s vary from
two to three Bohr radii and the values ofkr s vary from 0.41
for Rb2 to 0.65 for Ag2, which is within the limits of ap-
plicability of expansion~5! ~see Fig. 3 and~19! below!. The
asymptotic coefficientsCk listed in Table I have been reca
culated from the data of Ref. 11 by the method mention
earlier.

TABLE I. Low-energy parameters of negative ions.

Ion k as r s Ck

H2 0.235 6.17 2.65 1.15
Li2 0.212 6.6 2.7 1.09
Na2 0.201 7.1 3.0 1.12
K2 0.192 7.1 2.7 1.03
Rb2 0.189 6.7 2.2 0.92
Fe2 0.171 8.4 3.5 1.12
Cu2 0.301 4.7 1.9 1.09
Ag2 0.309 4.7 2.1 1.17

Note: The quantities referring to the negative hydrogen ion have been ta
from Ref. 10.
-
s

In

,

at-

d

In the presence of Coulomb interaction, the formu
become somewhat more complicated:

kr cs5
1

c1
F12S Ck

~0!

Ck
D 2G , 1

acs
5kn f ~n!2

1

2
k2r cs , ~8!

where f (n) is the function defined in~A4!. Here, however,
due to the smallness of the coefficientc1 ~see Fig. 2!, the
calculation of the effective ranger cs by this formula is not
very reliable, and we employ a different calculation metho
The experimental values of the quantum defect5! for s states,
listed in Ref. 11, were used to calculate the value ofacs by
the Seaton formula17,18

acs52 ~2pZ!21 tanpd0 ,

after which the ranger cs was calculated by the second equ
tion in ~8!.

Note that for alkali and alkali-earth elements, the valu
of acs are negative and small compared to the Bohr rad
aB , which corresponds to weak attraction of the highly e
cited s electrons to the atomic core. Here, due to the sm
ness of the scattering length, the effective rangesr cs may
become relatively large in this connection see formula~B7!
and the formulas that follow in Appendix B!. On the other
hand, for positive ions~except Mg1) the acs are positive,
which can be interpreted as effective repulsion of the ou
electron by the core. In this case the fractional part of
quantum defect$d0% is larger than 0.5~note that$d0%'0.5
corresponds to the transformation region for the atom
spectrum12!. The results of calculations are listed in Table

Expansions similar to~3! and~5! can be obtained for the
moments of the electron density distribution,

^r a&5E
0

`

xk
2~r !r a dr.

In particular,

^r &5
1

2k
$~3n1c1!~11c1kr cs!1O~~kr 0!2!%. ~9!

For atoms of alkali elements even the zero-range (^r &0) ap-
proximation, i.e.,r cs50 in ~9!, has an accuracy of 10–20%
For instance,̂ r &/^r &051.021, 1.058, 1.11, 1.15, and 1.2
for Li, Na, K, Rb, and Cs, respectively. Thus, the abo

en

FIG. 3. The dependence of 1/2Ck
2 on kr s ~for the ground state!. Curves1

and 2 correspond to the Hulthe´n and Breit potentials, and curve3 corre-
sponds to a rectangular well.
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TABLE II. Parameters of neutral atoms and positive ions.

Atom or ion n acs r cs Ck
(0) Ck c13100

Li 1.589 0.490 0.59 1.063 1.07660.03 1.87
Na 1.627 20.308 2.71 1.060 1.04060.03 1.64
K 1.770 20.101 18.4 1.044 0.9560.1 0.71
Rb 1.805 20.070 40.5 1.038 0.9460.09 0.52
Sr 1.546 20.179 24.5 1.065 1.0560.1 2.08
Ca 1.492 20.290 13.0 1.066 1.0660.1 2.29
Mg1 1.903 20.018 25.9 1.021 1.02560.01 0.13
Ca1 2.141 0.056 14.2 0.965 0.97060.03 0.20
Sr1 2.221 0.103 9.60 0.942 0.92460.03 0.14
Ba1 2.332 0.298 8.09 0.907 1.1960.36 0.70

Note: As in Table I, the values of scattering lengths and effective ranges are measured in atomic units,Ck

andc1 are dimensionless factors.
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expansions make it possible to easily estimate the value
Ck and ^r a& for multi-electron atoms and ions.

Simple analytical formulas similar to~9! have been ob-
tained for the rms radiuŝr 2&1/2 and the higher moments o
thes-electron density distribution. Allowance for correction
of orderkr cs to the effective-range values determined ear
~see Table II! is important and usually leads to good agre
ment with the results of numerical calculations. We lim
ourselves to two examples: for the ground state of the
atom we havêr &53.82~3.87! and^r 2&1/254.16~4.21!, and
for Na we have^r &54.09 ~4.21! and ^r 2&1/254.40 ~4.55!;
the radii ^r & and ^r 2&1/2 are measured here in atomic unit
and the figures in parentheses are the values calculated b
Hartree–Fock method.11

3. Comparison with exact solutions.Let us examine
some potentials for which the Schro¨dinger equation withl
50 can be solved analytically. This will make it possible
establish the limits of applicability of the expansions~3! and
~5!.

~a! For a rectangular well~of rangeR[r 0 and depthU0 ,
with g52U0R2 the dimensionless coupling constant! we
have3,10

Ck5F12~kR!2/g

2~11kR! G1/2

ekR, ~10!

as5Rj, r s5S 12
1

gj
2

1

3j2D R, j512
tanAg

Ag
.

Expanding these expressions fork→0 and g→g̃n5(n
21/2)2p2, we obtain

1

2Ck
2

512kR1
~kR!2

g̃n

1S 2

3
2

g̃n12

g̃n
2 D ~kR!31•••

512kr s1S 1

3
2

1

2g̃n
D ~kr s!

31•••. ~11!

In accordance with~5!, the expansion in powers ofkr s does
not have a term}r s

2 ~in contrast to the expansion in powe
of kR). For the ground level,g̃15p2/4 and c351/3
22p2250.1307.

~b! The Hulthén potential
of

r
-

i

the

U~r !52
g

2R2@exp~r /R!21#
~12!

resembles the Yukawa potential and is often used in ato
and nuclear physics. The bound statens appears atg5g̃n

5n2 ~see Ref. 9!:

kR5
g2g̃n

2n
,

Ck5A n1kR

2~n12kR!

G~n1112kR!

G~n11!G~112kR!
. ~13!

The s-scattering length and the effective range are6!

as5R a~g!52R(
n51

`

nS 1

g2gn
1

1

gn
D ,

r s5
2

3
RH a22a22Fd2~ag!

dg2
14z~3!G J , ~14!

where a(g)5c(11Ag )1c(12Ag )12C, with c(z)
5G8(z)/G(z), andz(3)51.202~Ref. 16!. It only remains to
expand these expressions fork→0, but for an arbitraryn the
formulas become very complicated. We limit ourselves
the ground state, where

g5112kR, g̃151, Ck5A1

2
~11kR!~112kR! ,

and ~see Appendix B!

c35
11216z~3!

54
520.1525. ~15!

~c! The simplest model ofU(r ) is the Breit potential,
which is used to describe nucleon–nucleon interactions
low energies and in the theory of resonance nucl
reactions.19,20The potential is specified by the boundary co
ditions

x~r ![0, 0,r ,R;
rx8~r !

x~r !
U

r 5R

52g. ~16!

In this case there is only ones level, for whichkR5g.0,
and
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Ck5
1

A2
eg, as5~11 g21!R,

kr s5
2g~11g1g2/3!

~11g!2
. ~17!

This implies that

g5 (
k51

`

dk~kr s!
k, dk5

3k21G~~2k11!/3!

2kk! G~~42k!/3!
~17a!

and, finally,

1

2Ck
2

5e22g512kr s1 (
k53

`

ck~kr s!
k, ~18!

where c351/6, c451/12, c5521/120, c65
283/1440, . . . . The rapid decrease of these coefficients
plains why the approximationCk'@2(12kr s)#21/2 main-
tains good accuracy up to valueskr s;0.5 ~Fig. 3!.

~d! We also studied the delta-function interaction

U~r !52
g

2R
d~r 2R!

and the separable Yamaguchi potential.21 Here are the results
of calculations for the Hulthe´n potential, the Yamaguchi po
tential, the rectangular well, the delta-function potential, a
the Breit potential, respectively:

c3520.152, 2/27, 0.131, 3/20, and 1/16 ~19!

~the values ofc3 for the Hulthén potential and the rectangu
lar well refer to the ground state!. Although c3 is model-
dependent, we may assume that its numerical smallne
retained for realistic potentialsU(r ).

Figure 3 depictsCk
22 as a function ofkr s . The straight

dashed line corresponds to a situation where all the exp
sions terms in~5! beginning with (kr s)

3 are dropped. This
simple approximation proves to be remarkably accurate e
outside thekr s!1 range, so that in many cases we can lim
ourselves to the first-order correction inkr 0 .

~e! The formulas become much more complicated wh
there is Coulomb interaction. We limit ourselves to the Br
model ~16!, for which

xk~r !5212nk1/2CkWn,1/2~2kr !u~r 2R!, ~20!

1

2Ck
2

522nE
2kR

`

Wn,1/2
2 ~x! dx5

1

2
@Ck

~0!#2

3H 12c1E
0

2kR

w2~x! dxJ , ~208!

wherew5G(12n)Wn,1/2(x).
With the Breit model it is convenient to examine th

special casen5n, so that the energy of thens level is the
same as in a purely Coulomb field. Forn51 we have

C15@e22r~112r12r2!#21/2512
2

3
r32r41•••,

~21!
x-

d

is

n-

n
t

n
t

g15211r,

where r5R/aB , and aB51/Z is the Bohr radius. For the
general casen5n we have, forr!1,

Cn5Ck
~0!S 11

2r3

3n3
2

r4

n3
1••• D , Ck

~0!5
2n21

n!
, ~218!

where the coupling constant in~16! corresponding ton5n is

gn5211r1
n221

3n2
r21•••. ~2188!

Thus, the corrections to the valueCk
(0) from the distortions of

the Coulomb potential in ther ,R range begin with terms
}(kR)3. But if the potentialV(r ) is finite for 0,r ,R, the
correction is even smaller, of order (kR)4.

4. Now we study the WKB approximation for th
asymptotic coefficients at infinity:

Ck
WKB5jS 2k

m D 1

2kATr

~kr t!
2n

3expH kr 02E
r t

`S up~r !u2k1
n

r D drJ , ~22!

Tr52E
0

r t dr

p~r !

( l 50). Here the energy of thens level is determined by the
~modified! Bohr–Sommerfeld quantization rule:

E
0

r t
p~r ! dr5~n2g!p,

p252k222V~r !, n5nr1151,2,3, . . . , ~23!

in which the phasegp depends on the behavior of the p
tential at short distances. IfV(r )}r a for r→`, then for
attractive potentials we have22

g5H 1

4
, a>0,

~a11!/2~a12! , 22,a<0.

~24!

In particular,g50 for potentials with the Coulomb singular
ity at zero ~Yukawa, Hulthe´n, and other potentials!, and g
51/4 for potentials that are finite at zero.

In Eqs.~22! and~23!, p(r ) is the quasiclassical momen
tum, r t is the turning point,Tr is the period of radial oscil-
lations of a classical particle, andj(x)[j(x,0), where

j~x,a!5A2p
xx1a21/2e2x

G~x1a!

512
a1

2x
1

a2

24x2
1•••, x→`, ~25!

with a15b221/12, a253a1
214b32b, andb5a21/2.

The fact that~22! containsj as a factor reflects the nee
to modify the Kramers matching conditions near the turn
point in the case of shallow levels. According to Refs. 23 a
24, this is because the quasiclassical region does not ove
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the region near pointr t where the linear expansion of th
potential is valid~which is used to derive ordinary matchin
conditions1!. As a result, the quasiclassical wave function
the subbarrier regionr .r t should be multiplied byj(2l/m)
if the potential V(r ) decreases as exp(2mr) at large dis-
tances~for potentials with a Coulomb ‘‘tail’’ at infinity,
m50 andj(`)51).

We illustrate the expression~22! by the Hulthén poten-
tial, which allows an exact solution for states withl 50. In
this case the quantization rule~23! yields22 ~as it does for the
Coulomb potential25! the exact spectrum ofs levels @see the
first formula in ~13!#. From ~22! we obtain

Cns
WKB5j~n~l21!!A l11

8pn~l21!
an,

a5
ll

~l21!l21
, l5

g

g̃n

, ~26!

rn[
Cns

WKB

Cns
5

j~nl!

j~n!
5

j~n12kR!

j~n!
. ~27!

The approximation~22! has a high accuracy forn@1 and for
an arbitrary level energy

rn511
kR

6n~n12kR!
1

1

72n2 S kR

n12kRD 2

1•••;

for shallow levels this approximation has a high accuracy
all n51,2, . . . @owing to the factorj(2kR) in ~22!#:

rn511d1kR1d2~kR!21•••, kR!1,

d152@ ln n2c~n!#2
1

n
,

d25
1

2
d1

21
2n11

n2
22c8~n! ~28!

(d150.154 andd2520.278 at n51, d150.041 andd2

520.039 at n52, and d1'1/6n2 and d2'21/3n3 for
n@1). Even in the least favorable case of deep levels
have rn→1/j(n), which amounts to 1.042, 1.028, and
10.083n21 for n52, n53, andn→`, respectively.

Similar results were obtained for other potentials. F
instance, for V(r )52g/2R2cosh2(r/R) we have kR

5Ag11/42Agn11/4, g̃n52n(2n21), and

rn5Aj~2~n1kR!,1/2!

j~2n,1/2!
, ~29!

which yields rn511kR/48n(n12kR)→1 for n@1, and
rn51 at the moment when thens level appears, while in the
case of deep levels (k→`) we havern→@j(2n,1/2)#21/2

50.9898, 0.9948, and 120.0104n21 for n51, 2, andn
@1, respectively. These examples show that the quasicla
cal approximation modified in accordance with Refs. 22–
is not only asymptotically exact in the limitn→` but re-
mains so even for moderate quantum numbersn;1.

Finally, for V(r )52Z/r we have j51, the turning
point r t52n2/Z, and
r

e

r

si-
4

Ck
WKB5~8pn!21/2S 2e

n D n

~30!

~see the paper by Ammosovet al.,6 in which n* [n is the
effective principal quantum number and the asymptotic
efficient Cn* 0 differs from our coefficient by a factor o
two!. For n*1 this expression is in good agreement w
Ck

(0) , as Fig. 1 shows. However, asn→0, formula~30! does
not become expansion~5! @in contrast to~3!#, which expan-
sion is valid for loosely bound states in a short-range pot
tial. An advantage of~3! is also that~3! allows for the cor-
rection from the effective range of the system, which,
particular, makes it possible to find the parametersr s andr cs

~see Tables I and II!.
5. The caselÞ0. For arbitraryl the asymptotic behavio

of the normalized wave function can be expressed by
formula

ck lm~r !'2l 13/2Ck lA k3

~2l 12!!
e2kr~kr !n21YlmS r

r D .

~31!

For the lowest state with angular momentuml in the Cou-
lomb problem,V(r )52Z/r , we have1 Ck l51 for any l
50,1, . . . ,which explains the choice of thel-dependent fac-
tors in ~31!.

For l>1, the solution of the Schro¨dinger equation that
decreases at infinity isWn,l 11/2(2kr )}r 2 l when r→0, so
that the zero-range approximation is not valid. A fairly ge
eral result can be obtained for the case where there
shallow l level in the ‘‘inner’’ potentialU(r ). When thel
level appears, its wave function decreases at infinity~due to
the centrifugal barrier,lÞ0) and remains normalized
x l(r )'Alr

2 l r @r 0 . Applying the matching procedure in th
region r 0!r !min(k21,aB) and allowing for the coupling
1/Al

2 with the effective range of the system,26 we get

Ck l
2 5~2l 12!! F G~ l 112n!

2l 112nG~ l 11!
G 2Uk2l 21

r̃ l
U , l>1, ~32!

where r̃ l is the value of the effective range at the mome
when thel level appears. Note thatk2l 21/ r̃ l is a dimension-
less parameter, with7! r̃ l,0. For instance for a rectangula
well of rangeR,

r̃ l52b lR
122l ~33!

(b153, b2515, b35315, . . . ), and similarly for other
short-range potentials.

There is an important difference between~3! and ~32!:
while in ~3! the first term is universal and is determine
entirely by the Coulomb interaction~and the energy of the
level!, ~32! incorporates the effective ranger̃ l , which de-
pends on the short-range part of the potentialU(r ). For
states withlÞ0 there is no analog of expansion~3! that is
insensitive to distortions in the Coulomb potential at d
tancesr;r 0!aB . Note that the presence of a shallowl level
~not a Coulomb level, i.e.,nÞn) already points to the trans
formation of the atomic spectrum~the Zel’dovich effect! for
states withlÞ0 ~Refs. 28 and 29!. Formula~32! belongs to
this case.
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FIG. 4. Effective rangesr̃ n at the time thens level

appears,g5g̃n . CurvesH, Y, C, E, andG refer, re-
spectively, tov(x)5(ex21)21, e2x/x, 1/cosh2x @the
potential is written in the form~C1!#, exp(2x), and
exp(2x2). In the caseE the numerical values of the
ranges are reduced by a factor offive. The dots in
cate the results of numerical calculations.
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6. The expansions~3! and ~5! relate the asymptotic co
efficient at infinity to the effective range of the system. If t
explicit expression forCk is known, its expansion fork
→0 yields the value of range,r̃ n[r s(g5gn) at the time
when thens level appears~and also the first correction}k).
Using ~13!, for the Hulthén potential we obtain

r s~g!5 r̃ n2bn8k r̃ n
21•••, g→g̃n , ~34!

where

r̃ n5bnR, bn54@c~n11!2c~1!#2 n21 . ~35!

These expressions can also be derived by expanding the
act formula~14! nearg5g̃n . For the ground level we hav
b153 and b1857/9, for n52 we haveb255.5 and b28
579/121, and for highly excited states we have

r̃ n54RS ln n1C1
1

4n
2

1

12n2
1••• D ,

bn85
1

2
1

p2

24~ ln n1C!2
1 . . . . ~36!

Similarly, for U(r )52g/2cosh2(r/R) we have

r̃ n52R@c~2n!1C#

52RF ln n1~C1 ln 2!2
1

4n
2

1

48n2
1•••G . ~37!

We will show that the logarithmic increase in the effe
tive rangesr̃ n for highly excitedns states is a general prop
erty of short-range~but not finite! potentials~see also Fig. 4!.
Suppose that

U~r !'2
1

2
gm2~mr !22b exp$2~mr !a%, r @r 0 . ~38!

Then at the moment when thens level appears, the wav
function of this level, asr→`, is

x0~r !512gna22~mr !22~a1b21!

3exp$2~mr !a%1•••, r→` ~38a!

@the parameterm21 refers to the asymptotic behavior of th
potential U(r ) at large distances and does not necessa
ex-

ly

coincide with the characteristic ranger 0 introduced in~2!#.
The difference 12x0

2(r ) becomes exponentially small forr
.r * , where

~mr * !a5 ln gn22~a1b21!ln ln gn1•••.

For n@1 the quasiclassical approximation can be us
Hencegn}n2 and, forr 0!r ,r * ,

ux0~r !u&@2U~r !#21/4;gn
21/4~mr !b/2expH 1

4
~mr !aJ

}expH 2
ln n

2 F12S r

r *
D GaJ !1. ~39!

The integral in the Schwinger–Smorodinski� formula ~A9! is
concentrated at distancesr &r * ~here the transient region
ur 2r * u;r * /lnn is narrow forn→`), which means that8!

r̃ n52~a11!/am21H ~ ln n!1/a2
a1b21

a

3~ ln n!~12a!/aln ln n1•••J . ~40!

In particular, for potentials with a purely exponenti
(a51 andb50) ‘‘tail’’ at infinity, this asymptotic behavior
agrees with the exact formulas~35! and ~37!, where the ex-
pansion is in reciprocal powers ofN:

r̃ n54m21 S ln N1k01
k1

N
1

k2

N2
1••• D , ~41!

whereN5n2g, with the constantg, which dot depend on
n, defined in~24!. For instance, for a potentials with a Cou
lomb singularity at zero~e.g., the Hulthe´n potential!, g50
andN5n, while for potentials that are finite at zero,N5n
21/4. Closed analytical expressions can be obtained for
coefficients,k0 andk1 ~see Appendix C!.

On the other hand, the Yukawa potential hasa51 and
b51/2, so that the asymptotic formula~40! contains a
double logarithm: see curveY in Fig. 4a, which shows tha
for the Yukawa potential the asymptotic behavior specifi
by ~40! sets in much later than for potentials with a pure
exponential ‘‘tail’’ ~curvesH and C!. Figure 4b shows tha
the increase in the effective rangesr̃ n for the Gaussian po-
tential (a52) is slower than ata51 and corresponds to
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r̃ n}Alnn dependence~the results depicted in Fig. 4 by poin
were obtained by solving the Schro¨dinger equation numeri
cally!.

Thus, the effective range of thens state~at g'gn) ‘‘ex-
pands’’ logarithmically with increasingn. We note a certain
similarity between this result and the well-known Froiss
constraint in high-energy physics.30,31

7. We concludw with some remarks. The expansion~5!
is valid only in the resonance case:kr 0!1 anduasu@r s , i.e.,
in the presence of a shallow level~real or virtual! in a short-
range potentialU(r ). As for ~3!, the above condition is no
necessary for this expansion to be true, since the particle
coupled not byU(r ) but by the Coulomb attraction (Z
.0). As ~3! shows, the correction toCk

(0) contains the factor
c1 . For n@1 we havec1}n2→0, which ensures that th
zeroth approximationCk'Ck

(0) is accurate in the case o
highly excited states.

The coefficientc1 remains small in the regionn;1–2,
to which the larger fraction of thes states of neutral atom
and positive ions belongs~see Fig. 1!. However,c1(n)→0
as n→n, and the condition for the applicability of~3!
changes, since the approximation~2! breaks down. Formally
this manifests itself in the vanishing ofw(r )/G(12n) for r
&r 0 , but actually the reason is that the coefficients in
effective range expansion become anomalously large asacs

→0: r cs}r 0
3/acs

2 , etc. @see~B7!#. This case must be exam
ined separately. As implied by~21!, here the correction to
Ck

(0) is small but does not vanish atn5n. We have written
the final expression for the expansion~3! in a form that is
valid for all n@r 0 , including the values of the parametern
close to the integral valuesn51,2,3, . . . .

Finally, we note that an expression of the form~3! for
the asymptotic coefficient of the wave function also arises
the two-channel problem with Coulomb interaction in o
channel and short-range interaction in the other. These p
lems were studied in Refs. 32 and 33 by employing the
ample of a proton–antiproton atom in which thepp̄ andnn̄
channels are coupled because of strong interaction at s
(r;r 0!aB) distances. Here the problem effectively reduc
to a one-channel problem, with formulas~3! and~4! remain-
ing valid if the parameterr cs in ~3! is replaced with9!

r cs→~11r2!r e2r2~2D!21/2,

r25H S 1

a0
2

1

a1
D Y S 1

a0
1

1

a1
22D D J 2

, ~42!

wherea0 and a1 are the scattering lengths with isospins
and 1,D5A2mn(mn2mp)'1/4 fm21, r e5r 115r 22 are the
effective-range matrix elements, andr2 is the relative prob-
ability of finding the system in thenn̄ state within the range
of nuclear forces@what is important is thatc1(n) retains its
previous value~4!#. However, the question of whether th
coefficient of the next term (}k2) in the expansion vanishe
was not discussed in those papers.
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APPENDIX A:

To derive effective range expansions we note that
wave function of the shallows level in the Coulomb field
V(r )52Zr211U(r ) distorted at small distances (r &r 0

!k21) has the form~2!, where

G~12n!Wn,1/2~2kr ![w~r !5v~r ,k2!2
1

2
r f ~n!u~r ,k2!,

~A1!

u~r ,k2!5h~r!1
1

6
k2r 2h̃~r!1O~~kr !4!, ~A2!

v~r ,k2!5j~r!1
1

2
k2r 2j̃~r!1O~~kr !4!, ~A3!

f ~n!52c~12n!22 lnn1 n21 , c~z![ G8~z!/G~z! ,
~A4!

n5Z/k5(kaB)21, r52r /aB , aB51/Z is the Bohr radius,
and Wn,1/2 is the Whittaker function, andw(r ) is the wave
function of the system corresponding to zero energy; her

w~r !'j~r!2
r

acs
h~r!, r @r 0 . ~A5!

The functionsj, h, etc., in~A2! and~A3! can be expressed
in terms of cylinder functions, withj(0)5 j̃(0)5h(0)
5h̃(0)51. For instance,10! h(r)5r21/2J1(2Ar ) and
j(r)52pr1/2N1(2Ar ), so that, asr→0,

h~r!512
r

2
1

r2

12
1•••,

j~r!512r ln r2~2C21!r1
1

2
r2 ln r1•••,

h̃~r!512
1

12
r1

1

24
r21•••,

j̃~r!512
1

3
r ln r1

2

9
~223C!r1

1

9
r2 ln r1••• ~A6!

(C50.577 . . . ) and, asr→`,

h~r!'p21/2r23/4sinS 2Ar2
p

4 D ,

j~r!5p1/2r1/4cosS 2Ar2
p

4 D ,

etc. The functionf (h) in ~A4! enters into the equation tha
determines the spectrum of shallow atomic levels in the C
lomb problem with short-range interaction:12,35

Z fS Z

k D5
1

acs
1

1

2
k2r cs1O~k4!, ~A7!
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whereacs andr cs are the nuclear Coulomb scattering leng
and effective range;12–15 in particular,

r cs52E
0

` H Fj~2Zr !2
r

acs
h~2Zr !G2

2w2~r !J dr ~A8!

~in view of ~A5! this integral converges at distanc
r;r 0). When thens level appears,acs5` ~if ZÞ0) or
as5` ~if Z50), and~A8! becomes

r̃ cs52E
0

`

@j2~2Zr !2w0
2~r !# dr,

r̃ s52E
0

`

@12x0
2~r !# dr. ~A9!

This formula was obtained by Schwinger36 and
Smorodinski�;37 see also p. 553 in Ref. 1. A tilde indicate
quantities that refer to the time at which the bounds state
appears.

By comparing~A1! and~A5! and allowing for Eq.~A7!
we find that the functionsw(r ) andw(r ) are matched in the
region r 0!r !min(k21, aB). The normalization condition
*0

`xk
2(r ) dr51 yields

22n22G2~12n!

kCk
2 5E

0

r 1
w2~r ! dr1E

r 1

`

w2~r ! dr

5E
0

`

w2~r ! dr22r cs

2E
0

r 1Fw2~r !2S j2
r

acs
h D 2G dr,

~A10!

where we have used~A8! and taken the matching pointr 1

from the specified region. Equations~A1!, ~A6!, and~A7! for
r ,r 1 yield

w~r !5S j2
r

acs
Dh1

1

2
k2S r 2j̃2

r 3

3acs
h̃2r csrh D1O~k4!,

so that the last integral in~A10! is of orderk2r 0
3 and con-

tributes nothing to the terms}(kr 0)2 in the expansion of
Ck

22 . Since

E
0

`

@Wn,1/2~x!#2 dx52G2~n11!H 12S sinpn

p D 2

3Fc8~n!2
2n11

2n2 G J , ~A11!

for kr 0!1 we arrive at~3!. Note that the first two terms in
this expansion have already been obtained in the theor
Coulomb systems with short-range interaction~hadronic
atoms12,32!. There a cruder method was used, however, an
was not understood that the terms}r 2ln r, r 2, and r 3ln r
~which actually exist16 in the expansion of Coulomb radia
wave functions asr→0) always cancel out without a re
mainder, in view of which the terms not taken into accou
in ~3! are of order (kr 0)3.
of

it

t

APPENDIX B:

In the case of ans wave,

k cotd0~k!52 ik
f ~k!1 f * ~k!

f ~k!2 f * ~k!
52

1

as
1

1

2
r sk

21•••,

~B1!

where s0(k) is the phase ofs scattering, and f (k)
5u f u exp(2id0) is the Jost function. The Schro¨dinger equa-
tion with l 50 and potential~12! has exact solutions, which
can be expressed in terms of the Gauss hypergeometric f
tion. By normalizing the discrete-spectrum wave function
arrive at~13!, and for f (k) we have9

f ~k!5 )
n51

` S 12
g

n~n22ikR! D5
G~122ikR!

G~12 ikR1Ag2~kR!2 !

3
1

G~12 ikR2Ag2~kR!2 !
. ~B2!

Expanding this expression withk→0, we arrive at formulas
~14! for the scattering length and the effective range in
Hulthén potential. For the functiona(g) introduced in~14!
we find that

a~g!5p cotpz12@c~11z!1C#1 ~11z!21

5 z21 112 (
m51

`

amzm, ~B3!

where z5Ag21, am51 at m51,3,5, . . . , am52z(m11)
21 atm52,4, . . . , andz(s) is the Riemann zeta function.16

We transform~14! into

r s5
1

3 H b91
2

b
~12b82!1

3b8

11z
216z~3!b2J R, ~B4!

where b51/a5z2z212z322cz414cz51•••, b85db/
dz, andc522z(3). As aresult we have

r s

R
5327kR1

1

2
@41216z~3!#~kR!21•••, ~B5!

and for

1

2Ck
2

512 (
n51

`

~21!n~2n1121!~kR!n

we have the expansion~5! with the coefficientc3 given by
~15!. Here, as expected, the term quadratic in the effec
range is not present in~5!.

For short-range potentials we have the following expa
sions: at the moment when thens level appears (g→g̃n , n
51,2, . . . ) wehave

as

R
5 (

j 521

`

ã j~g2g̃n! j ,
r s

R
5(

j 50

`

b̃ j~g2g̃n! j , ~B6!

and near the zeros of the scattering length,g→gn , we have

as

R
52( j 51

` a j~g2gn! j ,
r s

R
5 (

j 522

`

b j~g2gn! j , ~B7!
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with 0,g1,g̃1,g2,g̃2,••• . For instance, for a rectan

gular wellAg̃n5(n21/2)p,

ã2152, ã0512
1

2g̃n
,

b̃051, b̃152
1

2g̃n

, . . . , ~B8!

and the values ofgn can be found from the equation tanAg
5Ag, from which it follows that

Agn5S n1
1

2Dp2
1

np
1••• ~n@1!,

a15
1

2
, a25

1

4 S 12
1

2gn
D ,

b2252
1

3a1
2

52
4

3
, b215

4

3 S 11
1

gn
D , . . . . ~B9!

For the Hulthe´n potential,

g̃n5n2, ã152n, ã05
1

2
b̃0 52@c~n!1C#1

3

2n
.

~B10!

For highly excited states (n@1) we obtain

ã052~ ln n1C!1
1

n
1•••,

b̃152
~ ln n!2

n S 11
2C

ln n
1••• D , ~B11!

Agn5n112
1

2~ ln n1C!
1•••,

a1' 2
~ ln n!2

n
, a2' 2

~ ln n!3

n2
, b22'

2n2

ln n
. ~B12!

When the coupling constant satisfiesg5gn , the scattering
length vanishes, while the effective ranger s(g) has second-
order poles,11! and it may become either1` ~say, for the
Hulthén potential! or 2` ~rectangular well!. This explains
the presence of the corresponding curves in Fig. 3.

Finally, for g→0 we have

as

R
52(

j 51

`

a j8g
j ,

r s

R
5 (

j 521

`

b j8g
j . ~B13!

For instance, for a rectangular well we have

a j85
22 j 1322

p2 j 12
z~2 j 12!, b218 5

6

5
, . . . ~B14!

(a1851/3, a2852/15, a38517/315, etc.!, and for the Hulthe´n
potential we have

a j852z~2 j 11!, b218 54z~5!@z~3!#2252.871 ~B15!

~here we have usedc (n)5(21)n11n! z(n11) for n>1).
APPENDIX C:

We write the short-range attractive potential

U~r !52
g

2R2
vS r

RD[2U0f ~mr !, ~C1!

whereR[r 0 is the range of the forces, and the parame
m21 refers to the asymptotic regionr @R, in which U(r )
→0. The functionv(r /R), or f (mr ), specifies the shape o
the potential. We impose the condition

f ~x!5e2x1O~e2lx!, l.3/2 , ~C2!

asx→`, which ensures the convergence of the integralJ1 in
~C4!. It is common practice to assumeR5m21 and v(x)
[ f (x), but this is not always convenient~e.g., in the case of
the Woods–Saxon potential!.

Using the WKB method, we can derive formulas for th
expansion coefficients in~41!:

k05C2 ln J0 , k15
1

2p
J0~12J1!, ~C3!

whereC50.5772 . . . isEuler’s constant, and

J05
1

pE0

`
Af ~x! dx, J15

1

2E0

`

~@ f ~x!#21/2 2ex/2! dx

~C4!

~see p. 147 in Ref. 38!. We discuss several examples. For t
Hulthén potential~12!, m215R and

N5n, k05C, k151/4, ~C5!

while for v(x)51/cosh2x we getm215R/2 and

N5n21/4, k05C1 ln 251.270, k1521/4. ~C6!

These values fully agree with the expansions~36! and ~37!,
which follow from the exact formulas forr̃ n . For the expo-
nential potential,m215R and

N5n2 1/4 , k05C1 ln ~p/2! 51.029, k151/p2

~C7!

~the difference in the slopes of the curves in Fig. 4a can
explained by the different values of the parameterm in these
cases!. Finally, assuming that

f ~x!5 ~ex1a!21 , 21<a,`, ~C8!

we have

J05
2

p
f~a! , J15a@f~a!2 ~11A11a!21#,

f~a!5H arcsinA2a/A2a, 21<a,0,

a21/2 ln~Aa1A11a !, a.0,
~C9!

with

f~a!5H p/a2A11a1•••, a→21,

12~1/6!a1~3/40!a21•••, a→0,

~1/2!a21/2~ ln 4a11/2a1••• !, a→`.

The family of potentials~C8! includes the Hulthe´n po-
tential (a521), the exponential potential (a50), and the
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Woods–Saxon potential known from nuclear physicsa
5exp(mR), with R the nuclear radius, andm21 is the diffu-
sivity of the edge of the nucleus! . In the latter case,

g̃n5n2p2H 11
2 ln 2

r
1O~e2r!J 22

, r5mR@1,

k05
1

2
r2 ln r1O~1!, k152

r2

4p2
1•••. ~C10!

In the limit m→` the potential becomes finite~a rectangular
well of rangeR) and the term in~41! leading to a logarithmic
increase in the effective range vanishes.

In conclusion we note that~41! is usually a divergent
series. For instance, in the case of the Hulthe´n potential, the
expressions in~35! imply that

kj52 j 21Bj}~21! j /2~ j 21!! ~2p!2 j , j→`, ~C11!

i.e., the coefficients~with even j ) increase as factorials. Th
same is true of the example specified by~37!.

*E-mail: karnak@theor.mephi.msk.su
1!For example, the probability of an atom or ion being ionized in electric a

magnetic fields is proportional toCk
2 ~Refs. 2–8!. The coefficientsCk are

also present in calculations of the interaction of atomic particles over la
distances and in the theory of other peripheral processes.8

2!Here we ignore the sign ofCk , which in the case of a Coulomb field i
determined by the value of the factor (21)n21 ~the common definition1!.

3!As for the next terms in the expansion, they are generally finite; see
example~18!.

4!The figures in parentheses are the values of parametern.
5!The energyEnl of highly excited ~Rydberg! states is2Z2/2(n2d l)

2,
where the quantum defectd l depends on the orbital angular momentuml
but is almost entirely independent ofn.

6!To our knowledge, the literature does not contain the expressions forCk ,
as , and r s ~these expressions are derived in Appendix B!. Here and in
what follows a tilde indicates quantities that refer to the moment whe
level appears.

7!For states withl>1 in a short-range potential.26 On the other hand, fors
states the effective ranger̃ s is positive only if the potentialU(r ) does not
contain a wide barrier.27

8!It is assumed thatU(r ) is a smooth function and that the quasiclassi
approximation is applicable. The obvious counterexample is finite po
tial, say, a rectangular potential well~for which r̃ s5R irrespective of the
number of the level; see, e.g., Ref. 10! or the delta-function potential.

9!The definitions of the scattering lengthsa0 anda1 given in Refs. 32 and 33
differ in sign. Here we follow Ref. 32.

10!The explicit expressions for the functionsh̃ and j̃ are cumbersome and
can be found, say in Ref. 34.

11!In contrast, the effective ranger s(g) has a first-order pole wheng→0.
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Inductive interaction of rapidly rotating conductive bodies with a magnetized plasma
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This paper discusses the magnetohydrodynamic flow of a supersonic plasma flux around a thin
conductive body. The specific features of the inductive interaction of the body with the
plasma and the process by which plasma waves are generated when the body rotates are
investigated. The structure of the magnetic-field perturbations and the distribution of the plasma
currents that result from the inductive interaction are studied. Expressions are obtained for
the forces that act on a plate and the torques produced by these forces. A simple model is used
to take into account the kinetic effects associated with the finiteness of the absorption and
emission currents that transport charge from the plate to the plasma and back. A surface-
potential distribution is found that can substantially accelerate particles in the neighborhood
of the body. © 1999 American Institute of Physics.@S1063-7761~99!01202-0#
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1. INTRODUCTION

In ordinary gas dynamics, a moving body is decelera
by the direct interaction of the incident gas flow with th
surface of the body. When the body is in supersonic mot
this interaction causes a shock wave to be generated.

The picture is very different in a highly disperse magn
tized plasma. Direct interaction of the particles with the s
face of the body is less substantial here. On the other han
new form of interaction appears, associated with the ind
tion of an electric field and currents on the surface of
body. This interaction electromagnetically decelerates
body and causes an Alfve´n wave and other magnetohydro
dynamic~MHD! waves to be generated in the plasma. Su
electromagnetic interaction of conductive bodies with a m
netized plasma has become known as inductive interact

Drell, Foley, and Ruderman1 were the first to indicate
that inductive interaction could accompany streamline fl
around a body under ideal magnetohydrodynamic conditio
The detailed theory of this phenomena was developed
Gurevich, Krylov, and Fedorov.2 They showed that it can
play a substantial role in a plasma in outer space. Rece
obtained experimental data confirm that it is important
consider inductive effects.3–5 A number of studies6–8 have
been devoted to applications of the theory to various spe
problems, for example, the Jupiter–Io interaction and
motion of a highly elongated conductive filament in the ion
sphere~theta ring!. We should emphasize that only transl
tional motion of the body around which flow occurs w
considered in all these papers.

At the same time, bodies around which a space plas
flows, for instance planets, rotate, and this rotation can s
stantially affect the inductive-interaction effects. This pap
is devoted to an investigation of this question.

It should be emphasized that the actual process of ind
tive interaction of a body with a magnetized plasma cons
of two independent problems: the generation of waves
2971063-7761/99/88(2)/12/$15.00
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ideal magnetohydrodynamics by a current flowing over
surface of the body,2,9 and the structure of the transition laye
that determines how a current flows from the plasma to
body and back. The latter problem is associated with
possibility that the surface can emit and absorb charged
ticles of the plasma.10 It has a largely kinetic character an
strongly depends on the physical structure of the bo
around which the flow occurs—this can be, for example
solid surface, or even a fairly dense near-surface collisio
plasma~like the lower layers of the ionosphere or the low
region of the solar corona!. Significant longitudinal~i.e.,
along the magnetic field! electric fields can appear in th
near-surface emission and absorption layer because of in
tive interaction, causing the particles to be accelerated
generating high-frequency radiation as well as other aur
processes.

This paper will discuss how the rotation of a bod
around which a plasma flows affects both the generation
MHD waves and the structure of the near-surface layer.

2. FLOW AROUND BODIES IN IDEAL
MAGNETOHYDRODYNAMICS

2.1. Fundamental equations

Let us consider the flow around a rotating body by
supersonic flux of plasma with a frozen-in magnetic field.
do this, we investigate the inductive interaction caused
the generation of a current on a body with finite conductivi

Specifically, in a coordinate system connected to
moving body there is an induction electric field

E52
v3B

c
, ~1!

wherev is the velocity at which the plasma flows relative
the body. The electric current that appears in this case
© 1999 American Institute of Physics
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body with finite conductivity perturbs the external field a
the plasma velocity, resulting in the generation of MH
waves.

To describe steady-state streamline flow, we use
equations of ideal magnetohydrodynamics:

div rv50, divB50, curl~v3B!50, ~2!

~v•¹!v52
1

r
gradp2

1

4pr
B3~curlB!. ~3!

In order to investigate purely inductive effects, we a
sume that the body is an infinitely thin circular plateS of
radius R, located along the incoming flux, with norma
n5n2e21n3e3 . We assume thate3 is directed along mag
netic field B0 , which in turn has no component along th
translational velocity of the plate. Unit vectore1 is directed
along this velocity, whilee2 forms with them an orthogona
coordinate system. Here in general we consider a plate t
relative to the field, i.e.,n2Þ0. It follows from this that field
B0 has no component along thex axis and that they axis in
general does not lie in the plane of the plate~see Fig. 1!.

The surface conductivityŜ of the plate is written as

Ŝ5S Sp Sh

2Sh Sp
D , ~4!

whereSp is the Pedersen conductivity, andSh is the Hall
conductivity.

The structure of the perturbations is studied in the m
natural coordinate system, connected to the center of
plate and moving along with it. In this system, the unp
turbed values of the field, the velocity, and the plasma d
sity are

B05B0e3 , v05v0e1 , r5r0 .

The perturbations of these quantities are sought in the fo

B5B01MAb, v5v01MAu, r5r01Mr, ~5!

where

M5v0 /vs , vs5S ]p

]r D
s

, MA5v0 /vA .

The corrections are assumed to be small, so that the prob
can be studied by linearizing the MHD equations, Eqs.~2!
and ~3!, with respect to these corrections. As a result of l
earization we find

FIG. 1. Spatial disposition of the plate relative to the magnetic field.
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]bx

]x
1

]by

]y
1

]bz

]z
50, ~6!

]r

]x
1

1

M S ]ux

]x
1

]uy

]y
1

]uz

]z D50, ~7!

]uy

]x
1

1

M

]r

]y
1

1

MA
S ]bz

]y
2

]by

]z D50, ~8!

]uz

]x
1

1

M

]r

]z
50, ~9!

]ux

]x
1

1

M

]r

]x
1

1

MA
S ]bz

]x
2

]bx

]z D50, ~10!

]bx

]x
2

1

MA

]ux

]z
50, ~11!

]by

]x
2

1

MA

]uy

]z
50, ~12!

]bz

]x
2

1

MA

]uz

]z
2

M

MA

]r

]x
50. ~13!

The boundary conditions on the plate are determin
from the following considerations. Naturally, the norm
component of the plasma velocity at the plate must vanis

~u–n!uS50. ~14!

Then, because a surface current is present, the magnetic
parallel to the surface of the plate experiences a jump:

$n3b%S5
4p

cMAB0
I . ~15!

Here $ f %S denotes the jump of the value off as one goes
through the surface of the plate, andI is the surface current
Finally, the tangential component of the electric field is a
continuous:

Et52c21~v3B! t52c21Bnv t

~this equation is valid because the normal velocityvn van-
ishes!. However, the normal component of fieldB is also
continuous, and hence we find that the the tangential velo
of the plasma is continuous as one goes through the plat
the general case of arbitrary tilt of the plate, this means t

$ux%S5$uy%S5$uz%S50. ~16!

Under the conditions

1!MA!M ~17!

the equations split, giving three waves: an Alfve´n wave, and
fast and slow magnetodynamic waves:

]ux

]x
2

1

MA

]bx

]z
50,

]bx

]x
2

1

MA

]ux

]z
50, ~18!

]uy

]x
1

1

MA
S ]bz

]y
2

]by

]z D50,
]by

]y
1

]bz

]z
50, ~19!

]by

]x
2

1

MA

]uy

]z
50,

]bz

]x
2

M

MA

]r

]x
50, ~20!
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]r

]x
1

1

M

]uz

]z
50,

]uz

]x
1

1

M

]r

]z
50. ~21!

The accuracy of this system is the same as that of
system considered in Ref. 2, which describes the induc
effects caused by translational motion of a plate. Our pa
investigates inductive-interaction phenomena caused by
rotation of a body. As we can see, the basic system of eq
tions ~18!–~21! maintains its form in this case. The introdu
tion of rotation of the body only changes the boundary c
ditions of the problem.

In what follows, we shall assume that the conditio
given by inequalities~17! are satisfied, which allows us t
consider the excitation of the different types of waves se
rately.

2.2. The Alfvé n wave

For the Alfvén wave we have Eq.~18! with the boundary
conditions

$bx%S54pI y /cMAB0 , $ux%S50. ~22!

We shall write out in detail the expression for the surfa
current. To do this, we introduce thex8y8z8 coordinate sys-
tem, with thex8 axis along the direction of motion, thez8
axis normal to the plate, and they8 axis in the plane of the
plate and perpendicular tox8 andz8. In this system, fieldB0

has the form (0,n2B0 ,n3B0). The velocity of a point on the
plate with coordinates (x8,y8,0) is

v5v0ex81V3r 8.

A surface induction field of

E52
v3B

c
52

B0n3

c S Vx

Vy2v0
D ~23!

is generated at this point. The result of this is the surf
current

I5ŜE52
B0n3

c S SpVx1ShVy82Shv0

SpVy82ShVx2Spv0
D . ~24!

Sincey85y/n3 , we finally obtain

I x52
B0n3

c S SpVx1ShV
y

n3
2Shv0D , ~25!

I y852
B0n3

c S SpV
y

n3
2ShVx2Spv0D . ~26!

By simple transformations, we obtain from Eq.~18! to-
gether with Eq.~26! the following boundary-value problem

]2bx

]x2
2

1

MA
2

]2bx

]z2
50, ~27!

$bx%s5 f p~x,y!5
4p

c2
SpvAn31

VR

v0

4pvA

c2

3S Sp

y

R
2n3Sh

x

RD , H ]bx

]z J
s

50. ~28!
e
n

er
he
a-

-

-

e

e

Here the rotation of the body causes the presence of
second term in Eq.~28!, proportional to the angular fre
quencyV.

The solution of Eq.~27! with the boundary conditions o
Eq. ~28! can immediately be written out:

bx5
1

2 H f p~x1,y!, n2y1n3z.0,

2 f p~x2,y!, n2y1n3z,0, ~29!

where

x65x7MA

n2y1n3z

n3
.

It can be seen that a nonzero solution exists only ins
the Alfvén cylindersF given by the condition

~x6!21
y2

n3
2

5R2,

and that the perturbations characteristically are commu
cated along the magnetic field, as expected for an ordin
Alfvén wave. In marked contrast with the case of pure
translational motion, the magnetic field in the resulting so
tion is no longer constant inside the cylinder, but depen
strongly on position.

The perturbation of velocityux in this case is written in
the form

ux52
1

2 H f p~x1,y!, n2y1n3z.0,

f p~x2,y!, n2y1n3z,0. ~30!

To study how rotation affects the flow pattern, we co
sider the structure of the currents in space. Their volu
density equals

j5
c

4pS 0,
]bx

]z
, 2

]bx

]y D . ~31!

Substituting Eq.~29! into this formula, we find that a
homogeneous volume current

j65F0, 2
VShn3

2c
,

V

2cMA
~n2MASh6Sp!G ~32!

exists inside the cylinder. The presence of a nonzero volu
current inside the Alfve´n cylinders fundamentally differs
from the case of a nonrotating plate, where there was
internal current and the entire current flowed along the s
faces of discontinuity, passing through the edges of the pl
The presence of an internal current is a direct consequenc
the rotation and the resulting dependence of the inte
magnetic field on the coordinates~see Ref. 2!.

It can also be seen from Eq.~32! that, owing to rotation,
Alfvén waves are generated not only because of the Pede
conductivity Sp , but also because of the Hall conductivi
Sh . This is true only when rotation enters the picture; it
absent for purely translational motion. The volume curre
that flows inside the Alfve´n cylinders and the surface curre
on the plate are closed through the surface of the Alfv´n
cylinders, where a delta-function current flows, associa
with the magnetic-field jump at the boundary~see Fig. 2!.



e
th

n
a
an
be
tic
rte
a

sy

tion

rep-

us
on-

e

x-
of

uc-

yze
d

the

nes.

300 JETP 88 (2), February 1999 Rafikov et al.
Such a singular current appears because in the ideal cas
are considering currents can be transmitted through
plasma with as large a density as we like. This assumptio
ideal magnetohydrodynamics is of course not valid in
actual plasma, where the velocity of the charge carriers
their spatial density are limited. This circumstance will
taken into account in what follows by considering the kine
effects associated with the fact that current is transpo
from the plate to the plasma via electron emission and
sorption, with the corresponding currents being finite.

2.3. The fast magnetosonic wave

To consider the fast magnetosonic wave, we use the
tem of Eqs.~19! and ~20! with the boundary condition fol-
lowing from Eq.~25!:

]uy

]x
1

1

MA
S ]bz

]y
2

]by

]z D50,
]by

]y
1

]bz

]z
50, ~33!

]by

]x
2

1

MA

]uy

]z
50, r5

MA

M
bz , ~34!

$n2bz2n3by%S5 f B~x,y!5
4p

c2
ShvAn31

VR

v0

4pvA

c2

3S Spn3

x

R
1Sh

y

RD , $uy%S50. ~35!

We introduce a functionc(x,y,z) such that

by5
]c

]z
, bz52

]c

]y
, uy5MA

]c

]x
. ~36!

Then Eqs.~33! and~34! yield the two-dimensional wave
equation

MA
2 ]2c

]x2
2

]2c

]y2
2

]2c

]z2
50, ~37!

H n2

]c

]y
1n3

]c

]zJ
S

5 f B , H ]c

]x J
S

50. ~38!

Its solution can be written as

FIG. 2. Volume current inside the Alfve´n cylinders:~a! side view,~b! front
view; F is the surface of the Alfve´n cylinders.
we
e

of
n
d

d
b-

s-

c52
1

2pn3
E

S8
f B~j1 ,j2!dj1dj2

3
u~x2j12MAA~y2j2!21~z1n2j2 /n3!2!

A~x2j1!22MA
2@~y2j2!21~z1n2j2 /n3!2#

,

~39!

whereS8 is the projection ofSonto thexy plane, andu(z) is
the Heaviside function. It can be seen that a nonzero solu
exists only within the Mach coney21z2,x2/MA

2 .
Because the boundary conditions are linear, we can

resent the solution as a sum of two parts,c0 andc rot, caused
by translational and rotational motion, respectively. Let
investigate the asymptotic behavior of these parts. For a n
rotating disk, i.e., forV50, an explicit expression can b
obtained forc0 in the approximationR!x,y,z with (x,y,z)
lying fairly deep inside the Mach cone. In this case, by e
panding the expression under the integral in powers
j1 /x,j2 /y,j2 /z and integrating, we find that

c0~x,y,z!5
2vAShpR2n3

c2Ax22MA
2r 2

, ~40!

wherer 5Ay21z2.
The magnetic-field perturbations have a toroidal str

ture:

by
05

2vAShpR2n3MA
2

c2~x22MA
2r 2!3/2

z, ~41!

bz
052

2vAShpR2n3MA
2

c2~x22MA
2r 2!3/2

y. ~42!

Starting from these expressions, it is easy to anal
the structure of the currents. Specifically, we fin
b5curl(ce1), while

j5
cMAB0

4p
curl curl~ce1!

5
cMAB0

4p S 2
]2c

]2y
2

]2c

]2z
,

]2c

]y]x
,

]2c

]z]xD . ~43!

As a result, we see that there is no toroidal component of
current, and

j x
05

vAShpR4n3MA
3B0

2pc~x22MA
2r 2!5/2

~2x21MA
2r 2!, ~44!

j r
05

vAShpR4n3MA
3B0

2pc~x22MA
2r 2!5/2

3rx. ~45!

The equation for the current linesdx/dr5 j x / j r looks
like

dx

dr
5

2x21MA
2r 2

3xr
~46!

and has as its solutionx25C0r 4/31MA
2r 2. It can be seen

that, at large distances from the body, these are simply co
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For comparison, we note that the surfaces of constantc are
determined by the equationx25MA

2r 21C1
2 ~see Fig. 3!.

Under the same assumptionsR!x,y,z, we can find the
asymptotic form of the second term in Eq.~39!, which de-
scribes the rotation effects:

c rot5n3

pR3@vASpx2v0Shn3MA~y2n2z!#

2c2~x22MA
2r 2!3/2

. ~47!

In summary, we obtain at large distances from the pl

c~x,y,z!5
2vApR2n3

c2Ax22MA
2r 2

3FSh1
VR

v0

R~Spx2ShMA
2~n3y2n2z!!

4~x22MA
2r 2!

G .

~48!

It can be seen from this equation that perturbatio
caused by rotation decrease with distance more rapidly
do translational perturbations, so that the current structur
distances of

x@R
SP

Sh

VR

v0
, for Sp.ShMA ,

x@RMA

VR

v0
, for Sp,ShMA ,

will mainly be determined by the translational motion.
If Sh50 holds, however, the fast magnetosonic wa

caused by translational motion does not appear at all, and
perturbation structure will therefore be determined only
the rotation of the plate. In this case

c~x,y,z!5
vASppR4Vn3x

2c2v0~x22MA
2r 2!3/2

. ~49!

As in the case of purely translational motion, the fie
for Sh50 is toroidal:

by5
vASppR4Vn3MA

2x

2cv0~x22MA
2r 2!5/2

z, ~50!

FIG. 3. Current surfaces and surfaces of constant potentialc in the absence
of rotation.
e

s
an
at

e
he
y

bz52
vASppR4Vn3MA

2x

2cv0~x22MA
2r 2!5/2

y. ~51!

Consequently, the current has no toroidal component, and
have for the remaining components of the current

j x5
3pR4n3VMA

2c~x22MA
2r 2!7/2

xSp~2x213MA
2r 2!, ~52!

j r52
3pR4n3VMA

2c~x22MA
2r 2!7/2

rSp~4x21MA
2r 2!. ~53!

The equation of the current lines

dx

dr
5

x

r

2x213MA
2r 2

4x21MA
2r 2

~54!

gives the following form of the current surfaces:

~x22MA
2r 2!55C2x2r 4.

It can be seen that in this case, in the limit of large distanc
these surfaces approach a conex25MA

2r 2.
Note also that, for nonzero rotational velocityV, the

structure of the fast magnetosonic wave explicitly depe
not only on the Hall conductivitySh ~as was true in the cas
of purely translational motion!, but also on the Pedersen co
ductivity Sp .

2.4. The slow magnetosonic wave

The behavior of the slow magnetosonic wave is det
mined by the velocityuy , which enters into the boundar
conditions for Eqs.~21!:

uzUS52
n2

n3
uyU

S

5w~x,y!, $uz%S50. ~55!

It can be seen that, as in the case of a nonrotating p
slow sound is not excited forn250 when the plane of the
plate is orthogonal to the magnetic field.

We obtain the following boundary-value problem fro
Eq. ~21!:

]2uz

]x2
2

1

M2

]2uz

]z2
50, ~56!

uzUS52
n2

n3
uyU

S

5w~x,y!, $uz%S50. ~57!

These equations are quite analogous to the Alfve´n case,
so that it is easy to obtain

uz5
1

2 H w~x1,y!, n2y1n3z.0,

w~x2,y!, n2y1n3z,0, ~58!

r5
1

2 H w~x1,y!, n2y1n3z.0,

2w~x2,y!, n2y1n3z,0, ~59!

where



-
a

m

od

us
w
q
-

ro
in
tr
e

u-
g

g

ru

a

e
h
le

et
b

pa
he
er
f t

lera-
f the

sion
lue

e of
ab-
ed-
ayer
ody

the
pa-
orp-
la-

e
-
this

ns,
as a

es
ion

l
ow

ivity

its

ace
a

e

302 JETP 88 (2), February 1999 Rafikov et al.
x65x7M
n2y1n3z

n3
.

As in the case of an Alfve´n wave, here all the perturba
tions are concentrated inside divergent cylinders, which
now tilted at an angle of arctan(1/M ), and not arctan(1/MA).

The solution of the problem inside the cylinders is co
pletely determined by velocityuy , and hence byc on the
surface of the plate. However, on the surface of the b
itself, at distances less thanR, the integration of Eq.~39! to
find c is appreciably more complicated because now it m
be carried out not over the entire surface of the plate, as
done when obtaining the asymptotic behavior given by E
~40! and ~47!, but only over that part of it where the argu
ment of the Heaviside function is positive.

3. THE TRANSITION LAYER AT THE SURFACE OF THE
BODY

3.1. Fundamental equations

As is well known, because of the processes of elect
absorption and emission and ion recombination, a body
plasma does not remain neutral. It acquires an elec
charge, which causes an irrotational electric field to app
on the surface of the body.

E52¹f, ~60!

wheref is the surface potential. After rewriting the contin
ity equation for the current on the surface of the plate, we

]I x

]x
1

]I y

]y
5$ j z%uS . ~61!

The current on the surface now equals

I 52ŜS ¹f1
v3B

c D . ~62!

Substituting this expression into Eq.~61!, we obtain the well-
known equation~See Refs. 12, 9, and 10! that determines the
surface potential distribution:

divSF ŜS ¹f1
v3B

c D G5$ j z%S . ~63!

By knowing the potential distribution, it is possible, usin
Eq. ~62!, to construct a picture of how the surface currentI is
distributed, which can then be used to determine the st
ture of the MHD waves.

It is important to take into account the potential th
appears on the body, because that is what determines
longitudinal potential difference in the transition layer b
tween the ideal MHD flux and the surface of the body. T
longitudinal electric field can accelerate the plasma partic
to rather large energies. Thus, for example, the decim
radiation of the auroral zones of Jupiter is usually affected
precisely such a mechanism, when it is assumed that
ticles accelerated in the neighborhood of Io collide with t
upper layers of the polar regions of the Jovian atmosph
The same effects, but in a more complex form because o
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presence of the magnetosphere, affect the particle acce
tion and the auroral processes in the near-polar regions o
earth.

We should emphasize that the absorption and emis
currentsj z themselves usually strongly depend on the va
and distribution of potentialf on the body. It is determined
by kinetic processes close to the surface, by the structur
the surface itself or by the near-surface plasma, by the
sorption or recombination conditions, and also by charg
particle emission processes. Establishing the surface l
between the ideal MHD plasma and the surface of the b
thus constitutes a separate problem, which depends on
specific conditions and is determined by many physical
rameters. We consider here the simplest case of free abs
tion and emission of electrons. Assuming that the trans
tional velocityv0 of the body satisfies the conditions

vTi
!v0!vTe

~64!

(vTi
5AT/M ,vTe

5AT/m are the thermal velocities of th
ions and electrons, respectively!, the ion current can be ne
glected. The free absorption of electrons is described in
case by~see, for example, Ref. 11!

j z52 j 0H 1, f.0,

expS ef

T D , f,0,
~65!

j 05A T

2pm
eN. ~66!

HereN is the plasma density. For free emission of electro
the dependence of the current on the surface potential h
similar form:

j z5 j 0H 1, f,0,

expS 2
ef

T D , f.0. ~67!

Everywhere in what follows we shall confine ourselv
to just these laws when specifically considering absorpt
and emission currents.

It was shown earlier9,10 that, with purely translationa
motion, a substantial surface potential arises only in narr
regions at the edge of a body, where the surface conduct
varies sharply.

Actually, the gradient¹f far from the edge of a plate is
small if the conductivity of the plate is constant along
surface and satisfies the condition

e5
Sv0B0

c j0R
!1 ~68!

~see Ref. 10!. Neglecting it in Eq.~63!, we see thatj z50,
i.e., the potential isf50.

However, at the very edge of the plate, where the surf
conductivity abruptly falls off to zero, a term arises with
singular value of]S/]r . Because of this, a currentj zÞ0
appears close to the edge, andfÞ0. A thin layer~by com-
parison with the size of the plate!, in whichf@T/e holds, is
formed in this region. If we consider a region of positiv
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potential, this causes the emission current to be suppre
and the absorption current to be amplified to its maxim
value of j 0 . In a region of negative potential, the situation
accordingly the reverse. It is immediately possible to e
mate the order of magnitude of the thickness of the curr
layer. The induction potential creates a total current
I;EindlS on the plate, wherel is the characteristic scale o
the body, in our case the radiusR of the plate. In order to
pump such a current from the plasma to the plate by em
sion or absorption, Eqs.~65!, ~67!, it is necessary to have a
area of at leastS;EindlS/ j 0 . If it is assumed that this areaS
extends along the edge of the plate,S; lx0 , we obtain an
estimate of the thickness of the current layer:

x0;EindS/ j 0 .

If the conditions of the problem are such that the layer
actually narrow,x0!R @for this, as can easily be seen, th
condition given in inequality~68! must be satisfied#, we can
simplify the problem by regarding it as quasi-on
dimensional. More precisely, we can assume in this c
that, inside the layer, all the derivatives along the layer
negligible by comparison with those across the layer,
cause of which the problem becomes one-dimensional.

3.2. The geometry of the transition layer

We shall study the problem for the simplest ca
n250. We consider the region right at the edge of the pl
at scales of the order of the layer thickness. Since this th
ness is assumed to be small~the conditions necessary for th
will be obtained subsequently!, we can in general conside
the edge of the plate to be flat~we let the radius of the plate
tend to infinity!. We then need only solve the problem
plasma flow onto a semi-infinite plate, examine the struct
of the transition layer, and then generalize the result.

Consider the case off.0; the results forf,0 can be
obtained from simple symmetry considerations. We int
duce at the edge of the plate a rectangular coordinate sy
with its x axis directed into the plate perpendicular to t
edge, while they axis is parallel to the edge. It can then b
seen that thex axis is antiparallel to the radius of the pol
coordinate system with origin at the center of the plate, wh
the y axis is antiparallel tow at the same point.

We shall assume that the normal to the edge of the p
and the velocity of the incoming plasma make a certain an
a between them. In the case of a circular plate, this angl
a52w, and therefore it is anglew that will be used below.
WhenVÞ0 holds, an additional component of the veloci
VR, appears alongew or, in the local system of the edge o
the plate, in the negative direction of they axis. The velocity
of the inflowing flux in such a geometry is

v5~v cosw,2v sinw2Vr ,0!.

Assuming that the plate is semi-infinite, all the quantities
independent ofy and, measuringx from the edge of the plate
we can rewrite Eq.~63! in a one-dimensional version as

]2f

]x2
1

2VB

c
5

2 j 0

Sp
~69!
ed
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~taking into account that the absorption current in the la
takes the maximum value!.

The solution of this equation in our one-dimensional v
sion is

f~x!5S j 0

Sp
2

VB

c D x21C1x1C2 . ~70!

We define the boundary conditions for the potential equat
in the following natural way. First, according to Eq.~66!, the
current density in space now cannot exceedj 0 . As a result,
the surface currentI x perpendicular to the edge of the pla
must go to zero; i.e., the following condition must be sat
fied:

S ŜS ¹f1
v3B

c D D U
x50

50. ~71!

Hence, using the explicit expression forv, we have

]f

]x U
x50

52
ShB0v0

Spc
cosw2

B0

c
~v0 sinw2VR!. ~72!

The second condition is given at the inner limitx0 of the
boundary layer, wheref(x0)50. Because of the same boun
on the spatial current, it is natural to assume that thex com-
ponent of the surface current is continuous at this point.
this to be true, it is obviously necessary that

f~x0!50, f8~x0!50, ~73!

where the prime denotes differentiation with respect tox.
The three boundary conditions of Eqs.~72! and ~73!

make it possible to determine the constantsC1 andC2 in the
expression for the potential and the position of the edge
the boundary layer:

C15
B0VRSp

c j0
2

B0v0

c j0
~Sp sinw1Sh cosw!, ~74!

C25S C1
2

4 D S j 0

Sp
2

VB0

c D , ~75!

x052
B0VRSp

c j0
1

B0v0

c j0
~Sp sinw1Sh cosw!. ~76!

The expression for the potential can then be rewritten

f~x!5S j 0

Sp
2

VB

c D ~x2x0!2. ~77!

Taking this into account, we obtain for the surface cu
rent in the coordinate system of the edge of the plate tha

I x522S j 02
VBSp

c D ~R2r 2x0~w!!

1
vB

c
~Sp sinw1Sh cosw!2

SpB0

c
VR, ~78!

I y52S j 0

Sh

Sp
2

VBSh

c D ~R2r 2x0~w!!

1
vB

c
~Sp cosw2Sh sinw!1

ShB0

c
VR. ~79!
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FIG. 4. Potential distribution on the plate iforV50: ~a!
position of the transition layers,~b! dependence of the
potential on the distance to the edge of the plate.
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In the region of negative potential, the thickness of t
layer behaves like

x05
B0v0

c j0
~Sp sinw1Sh cosw!1

B0VRSp

c j0
, ~80!

and the potential itself varies inside the layer as

f~x!52S j 0

Sp
1

VB

c D ~x2x0!2. ~81!

It is now easy to generalize these results to the case
plate of arbitrary shape. To do this, it is simply necessary
take the same formulas for the potentialf and the layer
thicknessx0

V , where these quantities are now considered
pendent onw as the angle that determines the position of
point under consideration at the edge of the plate. T
boundary layer itself will now have a variable width whic
depends on anglew according to Eq.~76!.

We first examine what will occur in our case of a circ
lar plate in the absence of rotation. WhenV50 holds, the
solution takes the form

f~x!5
j 0

Sp
~x2x0!2. ~82!

The surface current in the boundary layer in this ca
equals

I 52S Sp Sh

2Sh Sp
D S 2 j 0

Sp
~x2x0!2

vB

c
sinw

2
vB

c
cosw

D
52S 2 j 0~x2x0!2

vB

c
~Sp sinw1Sh cosw!

22 j 0

Sh

Sp
~x2x0!2

vB

c
~Sp cosw2Sh sinw!

D .

~83!

The boundary layer has a thickness that depends ow
according to the law

x05
B0v0

c j0
~Sp sinw1Sh cosw!. ~84!

Its maximum thickness
e

f a
o

-
e
e

e

x0
max5

vB

c j0
ASp

21Sh
2

is attained whenwmax5p/22arctan(Sh /Sp). However, if the
angle equals2w052arctan(Sh /Sp) or p2w0 , the thick-
ness of the boundary layer goes to zero. The thicknessx0

max

must be small by comparison withR, and consequently

v0B0ASp
21Sh

2/c j0R!1; ~85!

i.e., inequality~68! is in fact satisfied. As already mentione
the surface potential outside the layer~far from the edge of
the plate! is very small in this case, and the absorption a
emission currents in this region exactly cancel. In the reg
(2w0 ,p2w0), we obtain a boundary layer with a positiv
potential where the absorption current dominates. In the
terval (p2w0,2p2w0), a layer is formed with a negative
potential and, accordingly, an emission current. Because
symmetry, the total currents flowing through these layers
equal to each other in magnitude and consequently c
pletely compensate each other, thus closing the current
cuit ~see Fig. 4!.

Let us examine what will occur whenVÞ0 holds. Here
we no longer have such clear symmetry as we had
V50. The geometry of the boundary layer is substantia
altered: the extents of the layers of the positive and nega
potentials will be different. Specifically, the layer of positiv
potential now does not extend top but is included within the
angles

S 2w01arcsinS VR

v0

Sp

ASp
21Sh

2D ,

p2f02arcsinS VR

v0

Sp

ASp
21Sh

2D .

A layer of negative potential accordingly takes up the res
the range of angles. The widths of the layers also change
positive layer becomes thinner; the negative layer, c
versely, widens. The maximum width of the former is no

x0
max5

vB

c j0
ASp

21Sh
22

B0VRSp

c j0
, ~86!

while that of the latter is
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FIG. 5. Position of the transition layers on the surface of t
plate forVÞ0: ~a! the caseV,Vcr, ~b! the caseV.Vcr.
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x0
max5

vB

c j0
ASp

21Sh
21

B0VRSp

c j0
. ~87!

It can be seen that, asV approaches Vcr

5v0ASh
21Sp

2/RSp in magnitude, the range of angles with
which the layer of positive potential lies decreases, and
layer itself becomes narrower. AtV5Vcr, this layer disap-
pears altogether. The situation is reversed with the laye
negative potential—it broadens, increasing in the longitu
nal direction. In the limitV→Vcr, it occupies the entire edg
of the plate and, as the angular velocity increases further,
margin of variable width at the edge of the plate~see Fig. 5!.

A question arises: How are the currents on the pl
closed, since the excess emission current will now fl
through the boundary layer without being balanced by
absorption current in the positive layer? To answer this qu
tion, it is necessary to turn to the region outside the bound
layer. When rotation is brought into consideration, we can
longer neglect the potential generated in this part of the pl
Specifically, we take Eq.~63! and, as was done earlier, w
neglect the derivatives of the potential in the region far fro
the edge. Then we obtain

VB

c
5

j z

Sp
. ~88!

Assuming that the potential difference in this region is sm
by comparison withTe /e, we can expand the currentj z in
powers ofef/T in Eq. ~88!, which is the sum of the absorp
tion current, Eq.~65!, and the emission current, Eq.~67!. We
obtain as a result a constant positive potential

f5
Te

e

SpVB0

c j0
~89!

~see Fig. 6!. The solution given by Eq.~89! is valid only for
e
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sufficiently large currentsj 0 in the plasma:

VB0Sp /c j0!1.

This potential creates an additional absorption curr
with density

j 15 j 0~12exp~ef/Te!!5B0VSp /c. ~90!

This current, according to inequality~68!, is much less than
currentj 0 in the boundary layer. On the other hand, howev
it is collected from essentially the entire surface of the pla
whereas the boundary layer where current flows with a la
density is small. This additional absorption current gives
total current equal topR2B0SpV/c, whereas the excess o
the emission current over the absorption current in
boundary layer is, as shown by an elementary calculatio

DI 5 j 0~S22S1!5 j 0E
S2

x0
2~w!dw2 j 0

3E
S1

x0
1~w!dw5

B0VSp

c
pR2, ~91!

i.e., the same amount. This is how the current is closed o
body around which flow occurs as it rotates: the emiss
current flows only in a narrow band given by Eq.~76! close
to the edge, while the absorption current that compensat
flows onto the entire surface.

3.3. The case of small emission and absorption currents

There is substantial interest in considering the limit
small emission and absorption currents or of a high rotatio
rate of a body when the relationship inverse to inequa
~68! is satisfied:
to
FIG. 6. Dependence of the potential on the distance
the edge of the plate forVÞ0: ~a! the caseV,Vcr, ~b!
the caseV.Vcr.
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e15
Sv0B0

c j0R
@1, e25

SVB0

c j0
@1. ~92!

Such a situation can occur in a disperse plasma or at
temperature when the thermal velocity of its particles d
not give rise to large current densities.

If inequalities ~92! are satisfied, we can no longer a
sume that the main current in our case is concentrated in
boundary layer, where the current density equalsj 0 . Specifi-
cally, as the angular velocityV increases, the picture of th
potential distribution over the surface of the plate quali
tively changes approximately as follows: the edge layer
negative potential gradually broadens, while the positive
tential in the internal regions of the plate linearly increas
with increasingV. When this potential is comparable i
magnitude withTe /e ~this occurs when parametere2 be-
comes;1), the current in the internal regions will behave
a nonlinear manner. In this case, as can easily be seen
size of the boundary layer becomes aboutR, and our as-
sumption concerning one-dimensionality breaks down~see
Ref. 9!.

When inequalities~92! are satisfied, however, it is com
paratively simple to find the potential distribution over t
surface. Specifically, we now must solve the complete
~63! without assuming that it is one-dimensional. Howev
because of inequalities~92!, the emission and absorption cu
rents on its right-hand side can be neglected. Then the e
tion for the potential is rewritten in polar coordinates as

1

r

]

]r S r
]f

]r D1
1

r 2

]2f

]w2
522

VB0

c
. ~93!

The boundary condition for Eq.~93!, i.e., the vanishing
of the normal component of the surface current at the edg
the plate, is now rewritten as

Sp

]f

]r
1

Sh

R

]f

]w
5

B0v0

c
~Sp sinw1Sh cosw!2

B0SpVR

c
.

~94!

This boundary-value problem is similar to a classic
Neumann problem. Its solution is found in the form

f5 (
m51

`

@am~r !cos~mw!1bm~r !sin~mw!#. ~95!

Substituting this into Eq.~93! and using the boundar
condition of Eq.~94! and the condition that there is no sin
gularity in the solution atr 50, we find nontrivial functions
ambm only for m50,1. The complete solution is

f~r ,w!52
VB0

2c
r 21r

B0v0

c
sinw1C, ~96!

where C is an arbitrary constant, to determine which o
more boundary condition is necessary. It can be obtained
balancing the total current on the plate: since the absorp
and emission currents virtually everywhere have a densitj 0

~sincef@T/e), it is necessary that the area occupied by
positive potential be equal to the area occupied by the ne
tive potential. The constantC strongly depends on the rati
betweenVR andv0 . The expression forC involves a very
w
s

he
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f
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unwieldy integration in the general case, but it is much si
pler in the limiting cases: in the limitVR!v0 it obviously is
simply equal to zero, but in the opposite case ofVR@v0 ,
we find thatC5VB0R2/4c.

It is easy to physically interpret the resulting pictur
Actually, if the inequalities~92! are valid, the current trans
mitted through the plate by the induction potential only is
the order ofEindSR, which is much larger than the curren
that can flow out of the plasma. In summary, the surfa
potential is aligned on the surface of the body so as to ca
the induction potential difference on the plate as much
possible and consequently to reduce the current through
about j 0R2.

3.4. The field and currents in the transition layer

Now, after clarifying the details of the geometrical stru
ture of the transition layer, we can proceed to find the c
rents and fields in this layer.

Using Eqs.~78! and~79! for the components of the sur
face current, we obtain the current component along thy
axis in a Cartesian coordinate system with its origin at
center of the plate:

Jy5I r sinw1I w cosw ~97!

52~x2x0
V!S j 0

Sp
2

VB

c D ~Sp sinw2Sh cosw!

2
BvSp

c
2

VrB

c
~Sp sinw2Sh cosw!. ~98!

Note that the currentJy does not go to zero at the ver
edge of the plate, since, althoughI r50 holds atr 5R, we
haveI wÞ0. This causes a jump ofbx to appear in the field a
the edge of the plate and, as a consequence, produces
function Alfvén currents in the plasma. An apparent parad
appears, since these currents must be closed by the no
component of the current flowing over the plate, but there
no such component. This contradiction is easy to resolv
we recall that, in the presence of a nonzero currentI w , a fast
magnetosonic wave will be generated in the space around
plate. It naturally also creates its own currents, which w
just compensate the delta-function Alfve´n currents at the
boundary of the cylinders. As a result, the current balanc
restored, and the apparent contradiction associated with
removed—there are no delta-function currents in the to
solution.

Substituting Eq.~98! into Eq.~15!, we obtain the bound-
ary condition for the field componentbx , after which it is
easy to immediately write out the solution by analogy w
the earlier solution:
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bx
152

2pv0Sp

c2MA

2
VR

v0

2pvA

c2

Spy2Shx1

R

1d lS 2
j 0

Sp
R

Spy2Shx1

Ay21~x1!2
22

j 0

Sp
~Spy2Shx1!

2
vB

cSp

Sp
2y22Sh

2~x1!2

y21~x1!2
1

VR

v0

2pvA

c2

Spy2Shx1

R D ,

whered l equals unity in the layer and zero everywhere o
side it.

Having the expression for the field, the spatial curre
density can be found in the layer neighborhoods of
Alfvén cylinders:

j y
152VR

Sh

2cR
1

d l

2BF22 j 0

x1

SpR2
~Shx12Spy!

24
v0B0

cSp

y2x1~Sp
21Sh

2!

R4
2

VR

v0

v
2c

3S 22
Sh

R
1

y~Spx11Shy!

R3 D G , ~99!

j z
15

VR

MA

Sp

2cR
1

d l

2BMA
F2 j 0S 11

x1~Shx11Spy!

R2Sp
D

24
vB

cSp

y~x1!2~Sp
21Sh

2!

R4
2

VR

v0

vA

2c

3S 2
Sp

R
2

x1~Spx11Shy!

R3 D G . ~100!

All the formulas for the casez,0 are written in a simi-
lar way. It can be seen that the spatial current that flow
earlier along the surface of the cylinders now flows in a la
of finite thickness given by Eq.~76!.

Similarly, by computing thex component of the curren
on the plate in terms ofI r and I w , the field and the current
in the fast magnetosonic wave can be found.

3.5. The forces and torques acting on the body

The currents that appear on a moving body interact w
the external magnetic field, and this results in the appeara
of forces acting on the body. The value of the forces is ab
JB/c, whereJ is the total current on the body, and substa
tially depends on the current densityj 0 in the plasma. Ifj 0 is
high, corresponding to ideal magnetohydrodynamics,J is de-
termined by the induction mechanism of current genera
on the body and depends only on its conductivity, the vel
ity of the body, and fieldB. If, conversely, inequalities~92!
are satisfied, the currentJ depends only onj 0 and on the
geometrical size of the body. We shall consider the form
case here, in which current densityj 0 is assumed to be larg
and inequality~68! is consequently satisfied.

To compute the forces and torques acting on a rota
body, it is sufficient to use the unperturbed values for
-

t
e

d
r

h
ce
ut
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n
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r

g
e

magnetic field and the speed of the plasma. The calcula
is fairly simple when fieldB0 is arbitrarily oriented relative
to the body. We therefore go to a coordinate system with
z axis normal to the plate, and assume that fieldB0 has all
three componentsBx ,By ,Bz .

In this case, as shown by a calculation carried out si
larly to Ref. 2, the total force is made up of a decelerat
force, a shearing force, and a buoyancy force and equal

F5
v0BzpR2

c2 S 2SpBz

2ShBz

BySh2BxSp

D . ~101!

Comparison with the results obtained in Ref. 2 for pure
translational motion shows that rotation does not contrib
to the forces acting on the body. It turns out, however, tha
produces a torque that did not exist in the case of tran
tional motion. The torque equals

M5E
S

1

c
@r3~ I3B0!#dS52E

S

1

c2
$r3@Ŝ~v03B0!B0#%dS

5
VBzpR4

4c2 S ShBy2SpBx

2ShBz2SpBy

22BzSp

D . ~102!

If we consider the various components of the torq
separately, the following picture appears: The torqueMz de-
celerates the rotation of the body according to the law

V5V0 expS 2
Bz

2SppR4

2I zc
2

t D , ~103!

whereI z is the moment of inertia of the body around the ax
coinciding with the normal.

The terms in Mx and M y proportional to Sp tend
to rotate the plate so that its normal becomes para
to the magnetic field, with the angle between the fie
direction and the normal decreasing proportionally
exp(2Bz

2pR4Spt/4c2I z). It can be seen that the time consta
of this process is essentially the same as for the decelera
of the rotation, which means that, generally speaking, th
two processes in fact occur together.

Finally, the terms inMs , M y that are proportional toSh

cause the plate to precess relative to the magnetic-field
rection. The nature of this precession is easy to underst
In fact, a nonzero magnetic moment is generated by the
face current on the plate. A calculation using Eqs.~25! and
~26! gives

m5
pR4ShBz

4c2I z

L ~104!

for this moment, whereL is the angular momentum of th
plate around the normal. The precession of this magn
moment in fieldB also results in precession of the plate

dL

dt
5m3B5Vpr3L , Vpr52

pShBzR
4

4c2I z

B. ~105!
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Thus, we have found that the resulting motion of t
plate under the action of the torques associated with the
ductive forces caused by rotation is a superposition of p
cession, deceleration of the main rotation, and alignmen
the plate perpendicular to the field. The variation of t
torque considered here is qualitatively similar to that appe
ing in the magnetosphere of pulsars.13
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Self-preservation of large-scale structures in a nonlinear viscous medium described
by the Burgers equation
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We use the asymptotic solution of the one-dimensional Burgers equation to study the self-
preservation of large-scale random structures. We show that in the process of their evolution, large-
scale structures remain stable against small-scale perturbations for the case of a continuous
initial spectrum with a spectral index smaller than unity. We study both analytically and
numerically the correlation coefficient of a large-scale structure and of the same structure
with a high-frequency perturbation and show that with the passage of time the coefficient tends
to unity. Using the asymptotic formulas of the theory of random excursion of stochastic
processes, we study the statistical properties of the perturbing field and find that the effect of high-
frequency perturbations is equivalent to the introduction of effective viscosity. ©1999
American Institute of Physics.@S1063-7761~99!01302-5#
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1. INTRODUCTION

The nonlinear diffusion equation, first proposed
Burgers1,2 as a model of hydrodynamic turbulence, plays
important role in studies of the evolution of nonlinear wav
in nondispersive media. Indeed, this equation describes
main effects inherent in turbulence: the nonlinear redistri
tion of energy in the spectrum, and the decrease in energ
the region of small-scale components of the spectrum. W
the initial conditions or the external forces are random, t
equation describes turbulence of a gas without pressu3

commonly known as Burgers turbulence.
What makes the Burgers equation so remarkable is

it has an exact analytical solution.4,5 This leads to severa
rigorous statistical results~see, e.g., Refs. 2,6–19!, which
may serve as tests for verifying approximate method use
studies of hydrodynamic turbulence. Later it was found t
the Burgers equation also describes a broad class of no
ear effects in wave propagation theory, plasma physics,
acoustics.9,20,21 The Burgers equation and its multidime
sional vector generalization arise in the problem of surf
growth.22–25 In this case the vector field satisfying the give
equation describes the gradient of a growing surface.
three-dimensional Burgers equation also forms the basi
the adhesion model, which is used to describe the forma
of the large-scale structure of the universe.9,26–29

A characteristic feature of solutions of the Burgers eq
tion for infinite Reynolds numbers is the existence of lo
and statistical self-similarity.9 The term ‘‘local self-
similarity’’ means that because of the combined action
nonlinearity and viscosity, each field realization exhibits u
versal behavior: over large time intervals the field become
sequence of triangular pulses with the same slopevx851/t.
When the initial conditions are periodic, the relative disco
tinuity velocities are zero, with the result that the periodic
of the field is preserved. Here, because of the combined
tion of nonlinearity and viscosity at the discontinuities, t
3091063-7761/99/88(2)/11/$15.00
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information about the amplitude and shape of the initial p
turbation is completely lost. When the initial field is nois
the coordinates and velocities of the discontinuities are r
dom quantities, which leads to merging of the shock fron

Due to multiple merging of the discontinuities, over lon
enough time intervals the statistical characteristics of tur
lence also become self-similar and are determined b
single scalel (t), the integral turbulence scale.6,9 In the re-
gion of large wave numbers of the signal energy spectru
universal power-law asymptotic behaviorE(k,t)}k22 re-
lated to discontinuity formation sets in. Here the law
growth of l (t) owing to discontinuity merging, and the shap
of the probability distributions and turbulence spec
strongly depend on the behavior of the initial spectru
E0(k)}kn in the region of small wave numbersk. For
n.2 the parametric generation effect gives rise to a univ
sal low-frequency asymptotic behavior of the spectrum, a
the law of growth ofl (t) is very sensitive to the type o
statistics of the initial perturbation. In particular, when t
statistics of the initial perturbation is Gaussian, the exter
scalel (t) increases in proportion tot1/2 with a certain loga-
rithmic correction.6,9 Here l (t) is determined only by the
integral characteristics of the initial spectrum. For 1,n,2
the low-frequency part of the spectrum is ‘‘frozen,’’E(k,t)
5E0(k)}kn, but the larger fraction of the energy is conce
trated in the frequency rangek.ks(t), and the external scale
l (t) is proportional tot1/2, as it is in the case whenn.2 ~see
Ref. 15!. Whenn,1, the low-frequency part of the spectru
is preserved, and it is this part that determines the law
growth of the external scalel (t)}t2/(n13). Here the law of
growth of l (t) and the shape of the spectrum do not depe
on the behavior of the high-frequency part of the spectru

In the present paper we study the stability of the evo
tion of nonlinear structuresv(x,t) generated by an initia
field v0(x) with respect to external perturbationsvh(x).
Whenv0(x) is a periodic signal, random perturbations le
© 1999 American Institute of Physics
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to fluctuations in the velocity of the discontinuities, disco
tinuities merge and, as a result, total destruction of the p
odic structure occurs.30 When the initial fieldv0(x) is noise,
the highly nonlinear structures continuously interact and,
to the merging of discontinuities, their characteristic sc
l (t) constantly increases. The presence of a noise pertu
tion vh(x) results in additional fluctuationsDxk(t) in the
discontinuity coordinates, and these fluctuations increas
strength with the passage of time.

Thus, the final result of the evolution of the field is d
termined by the competition of two factors, the increase
the external scalel (t) of the structures and the increase
the strengthDxk(t) of discontinuity fluctuations, the latte
being related to the perturbationvh(x). If the condition
uDx(t)u! l (t) is met for all values oft, such structures re
main stable against random perturbations.

We then examine the stability of large-scale structu
against small-scale perturbations that have the same s
trum E0(k)}kn but are located in the high-frequency part
the spectrum. Preliminary estimates made by Aurellet al.31

have shown that forn,1 large-scale structures remain stab
against small-scale perturbations. In this paper we calcu
both analytically and numerically, the coefficientr (t) of the
correlation of the unperturbed and perturbed fields. This
efficient is the quantitative measure of closeness of the g
structures. We show that, forn,1, even in the case wher
the initial correlation coefficientr 0 is much smaller than
unity and the perturbationvh(x) substantially exceeds in am
plitude the fieldv0(x), i.e., uvhu@uv0u, the evolution of non-
linear structures leads to an increase in the correlation c
ficient r (t), and asymptoticallyr (t) tends to unity. As is
known, the interaction of the low- and high-frequency co
ponents can be interpreted as the manifestation of turbu
viscosity.32 In our research we establish that the asympto
stability of large-scale structures is equivalent to the effec
the increase in Reynolds numbers in a medium with fin
viscosity.9

2. THE BASIC PROPERTIES OF BURGERS TURBULENCE

The nonlinear diffusion equation, i.e., the Burgers eq
tion

]v
]t

1v
]v
]x

5m
]2v

]x2
, v~x,t50!5v0~x!, ~1!

reduces to the linear diffusion equation~and hence has a
exact solution! if we use the Hopf–Cole change-of-variabl
procedure.4,5

However, statistical analysis is difficult if we use th
exact equation, especially in the case of large Reynolds n
bers, which corresponds to lettingm approach zero. On the
other hand, in the case of vanishingly small viscosity,
solution of the Burgers equation has the asympto
representation2,4,9

v~x,t !5
x2y~x,t !

t
, v~x,t !52

]S~x,t !

]x
, ~2!
-
i-

e
e
a-
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s
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-
nt
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e
c

G~x,y,t !5S0~y!2
~x2y!2

2t
, S0~y!52Ey

v0~x! dx,

~3!

wherey(x,t) is the coordinate of the absolute maximum
the functionG(x,y,t) in y, which is known as the Lagrang
ian coordinate, andS(x,t)5G(x,y(x,t),t) is the Eulerian
potential of the velocity field.9 It is on the basis of this solu
tion that the majority of the statistical results concerni
Burgers turbulence were obtained.

Let us introduce the characteristic time for the manife
tation of nonlinear effects,tn5 l 0 /s0, wheres0 and l 0 are,
respectively, the characteristic amplitude and the spa
scale of the initial velocity field. For timest@tn a global
maximum iny of the functionG(x,y,t) lies within a small
neighborhood of a local maximum of the initial potenti
S0(y), i.e., the zero of the initial fieldv0(x). Thus, in the
limit m→0 the Lagrangian coordinatey(x,t) is a step func-
tion of x, with the result that the velocity field function
v(x,t) behaves in the universal manner

v~x,t !5
x2yk

t
, xk21,x,xk ~4!

in each cell between the discontinuities. The positions of
discontinuities are determined by the condition that two
solute maxima are equal,G(xk ,yk21 ,t)5G(xk ,yk ,t), at
point xk :

xk5
yk111yk

2
1Vkt, Vk5

S0~yk!2S0~yk11!

yk112yk
. ~5!

If the initial conditions are specified in the form of
random field, the velocities of the shock fronts formed in t
process of evolution of the field are also random quantit
This implies that the discontinuities merge, which means t
the characteristic distance between them increases and
spectively, the number of such discontinuities decreases.
call this characteristic distancel (t) the external turbulence
scale, which can be estimated by Eq.~3!. The spatial interval
ux2yu where a global maximum ofG(x,y,t) may be located
is approximatelyl (t) long and is determined by the cond
tion that the increments of the initial potential and of t
parabola are of the same order:

uDS0u.uS0~y1 l !2S0~y!u.Ads~ l !5
l 2

t
, ~6!

whereds(z) is the structure function of the initial potentia
ds(r)5^(S0(x1r)2S0(x))2&. Equation~6! implies that the
asymptotic law of the increase of the external turbulen
scale is determined by the behavior of the structure func
at large distances,ds(r@ l 0). We postulate that the energ
spectrum of the initial perturbation of the velocity has
power-function asymptotic behavior in the region of sm
wave numbers:

Ev~k!5an
2knb0~k!, b0~0!51, b0~k.k0!50, ~7!

whereb0(k) is the high-frequency cutoff factor.
Depending on the value of the indexn, the structure

function exhibits the following asymptotic behavior:9
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ds~r!.H bn
2r12n, r@ l 0 , n,1,

2ss
2 , r@ l 0 , n.1,

~8!

bn
25

2pan
2

G~n22!sin~p~12n!/2!
, ss

25^S0
2&.

Then Eqs.~6! and ~8! yield the following estimate of the
external turbulence scale:

kc
215 l ~ t !.H ~ant !2/~n13!, n,1,

~sst !
1/2, n.1,

~9!

wherekc(t) is a characteristic spatial frequency near wh
there is a crossover of the energy spectrumEv(k,t)}kn to
the next sectionEv(k,t)}k22. Here the turbulence energ
s2(t)5^v2(x,t)& decreases according to the law

s2~ t !5
l 2

t2
}an

2kc~ t !.H an
4/~n13!t2~2n12!/~n13!, n.1,

ss
2/t21, n,1.

~10!

Thus, the properties of the solution of the Burgers eq
tion are different for different values ofn. For n.1 the
increase in the external turbulence scale is determined
certain integral characteristics of the spectrum of the ini
potential,ES(k). As shown in Refs. 7 and 9, in this case t
statistical properties of the Burgers turbulence are s
similar for n.2 andt@tn , and the energy spectrum exhibi
universal behavior in the region of small (Ev(k,t)} l /k2t2)
and large (Ev(k,t)} l 4k2/t2) wave numbers. Forn,1 it can
also be shown that the statistical properties of turbule
become self-similar irrespective of the value of the init
Reynolds number.9,33 The increase in the external scale
due to the local behavior of the initial spectrum in the reg
of large values ofk, and the energy spectrum is preserved
the intervalk,kc(t).

We assume that not only is the low-frequency part of
spectrum preserved, but the large-scale components of
realizations also remain stable against a high-frequency
turbation. A simple model of Burgers turbulence for the ca
where n,1 was proposed in Refs. 33 and 34. The init
perturbation was represented by an infinite sum of the h
monics km5k0«2m ~the Weierstrass spectrum! with very
sparse frequencies («@1). The main assumption was th
the energy of each component decreases independently
the other component energies and that the total turbule
energy is approximately equal to the sum of the energie
all the components. It was found that the external turbule
scale and energy in the given discrete model are descr
approximately by the same power function as for t
continuous-noise spectrum and are independent of the n
ber of high-frequency modes in the initial spectrum.

The objective of the present work is to show that t
assumption that high-frequency components of the spect
have a small effect on the low-frequency components is a
true for the continuous spectrum.
-
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3. PRESERVATION OF THE LARGE-SCALE STRUCTURE OF
A RANDOM FIELD: A NUMERICAL EXPERIMENT

Let us consider the evolution of two random initial pe
turbationsv0(x) and ṽ0(x):

ṽ0~x!5v0~x!1vh~x!. ~11!

We assume that the energy spectra of both processes
described by Eq.~7! but that for the processv0(x) the cutoff
frequency isk* , while for the processṽ0(x) the cutoff fre-
quency is k0.k* . This means that the initial velocitie

v0(x) and ṽ0(x) have a common part of their Fourier tran
forms in the regionkP@0,k* # and that the processṽ0(x)
contains an additional high-frequency perturbationvh(x)
whose spectrum is in the frequency intervalkP@k* ,k0#. In
this paper we employ an algorithm based on the fast L
endre transform to solve the one-dimensional Burgers eq
tion numerically. Using the fact thaty(x,t) is a nondecreas
ing function and the definition of the fast Legend
transform,w(x)5maxa@F(a,0)1xa#, we can construct the
solution of the Burgers equation inO(Nlog2N) steps, where
N is the number of points of the discrete grid on which t
initial conditions are specified.35 Figure 1 shows the realiza
tions of an unperturbed field~a! and two cases~b! and~c! of
a perturbed field for different values of the cutoff wave nu
berk0@k* . Clearly, in both cases the variance of the unp
turbed field is much smaller than the variances of the p
turbed fields. However, fort@tn , when the fields have well-
developed discontinuities, the realizations of the initial larg
scale field and those of the perturbed fields differ little fro
each other, which supports the hypothesis that large-s
structures remain stable against small-scale perturbat
~Figs. 2 and 3!.

To prove this assumption, we investigated both anal
cally and numerically the perturbed–unperturbed field cor
lation coefficient

r ~ t !5
B~ t !

s~ t !s̃~ t !
, B~ t !5^v~x,t !ṽ~x,t !&,

~12!
s2~ t !5^v2~x,t !&, s̃2~ t !5^ṽ2~x,t !&,

the quantitative characteristic of the similarity of these p
cesses, which have a common low-frequency part of
spectrum at input. For initial perturbations with an ener
spectrum~7!, the initial correlation coefficient is

r ~ t50!5r 05~k* /k0!~n11!/2, ~13!

which means that fork0@k* the correlation is weak.
The characteristic time for the nonlinear effects of a s

nal with an initial spectrum of the form~7! and a cutoff
frequencyk* to manifest themselves is

tn5
1

k* s0
.@ank

*
~n13!/2#21.

For t,tn the nonlinear distortions of the wave are small a
v(x,t).v0(x), while for t@tn the wave becomes a sequen
of triangular pulses with equal slopes. The power spectr
Ev(k,t) at this stage becomes self-similar,9
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FIG. 1. The processv0(x) with a cutoff wave

numberk* 532 ~a!; the processṽ0(x) with a cut-
off wave numbersk05128 andk052048@~b! and
~c!, respectively# at time t50.
an

b

ped
hat
w-

the

of
Ev~k,t !5
l 3

t2
Ẽ~k l !

and reproduces the initial spectrumEv(k) in the spatial fre-
quency rangek,kc(t).(ant)22/(n13), with the energy de-
creasing according to the law~10!, s2(t).a2kc

n11(t). Fig-
ure 4 shows the energy spectra of the processesv(x,t) and

ṽ(x,t) at t50 and t1@tn for white noise, with the cutoff
frequencies beingk* andk058k* , respectively. Clearly, for
t@tn the spectra of both signals are almost the same
have a high-frequency asymptotic behaviorEv(k,t)}k22.
The fact that the spectra of the perturbed and unpertur
d

ed

signals are almost the same at the stage of well-develo
discontinuities is one confirmation of the assumption t
high-frequency components have a small effect on the lo
frequency components.

Three stages can be distinguished in the behavior of
correlation coefficient~12!. For t, t̃ n5@ank0

(n13)/2#21, the
nonlinear distortions of both signals are small andr (t).r 0.
In the interval t̃ n,t,tn only the distortions of fieldṽ(x,t)
are significant. If we assume that the low-frequency part
the signalṽ(x,t) remains almost the same, we have

^v~x,t !ṽ~x,t !&.^v0
2~x!&5s0

2 , ~14!
FIG. 2. Evolution of the processv(x,t) with a cut-
off wave numberk* 532 ~dashed curve! and that of

the processṽ(x,t) with a cutoff wave number
k05128 ~solid curve! ~a! and their differenceDv
~b! at time t50.125 (kc54).
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FIG. 3. The same as in Fig. 2 with the paramet
valuesk* 532 andk052048 ~a! and ~b!.
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and the correlation coefficient~12! can be estimated in th
following way:

r ~ t !.
s0

2

s0s̃~ t !
.S k*

kc~ t ! D
~n11!/2

.~k* l ~ t !!~n11!/2

}t ~n11!/~n13!. ~15!

The results of the numerical experiments confirming this
sumption are illustrated by Fig. 5. We show the depende
of the correlation coefficientr on the ratiok0 /k* of spatial
frequencies for two values of time,t1 and t2,t1@kc(t2)
54kc(t1)#. It is assumed that fort1 and t2 the condition
k* !kc(t)!k0 is met, i.e., we can ignore the nonlinear d
tortions of the initial perturbation ofv0(x). In the initial
section of the diagram (k0!kc(t)), where we can ignore the
nonlinear distortions of both initial fields, the correlation c
efficient decreases with increasingk0 and is described by the
expression~13!, r (t).r 0}k0

1/2 ~Fig. 5b clearly shows this!.
For k* !kc(t)!k0 only the perturbed field is distorted, an
the nonlinear decay of high-frequency components redu
the variance of the perturbed signal. Figure 5 shows
under the given conditions the correlation coefficient reac
a plateau and becomes independent ofk0 @see Eq.~15!#,
which confirms the hypothesis that the low-frequency par
the field does not change@see Eq.~14!#. The results of the
numerical experiment suggest that in the asymptotic reg
r (t1)/r (t2)51.97 holds, in good agreement with the theor
ical prediction thatr (t1)/r (t2)5@kc(t2)/kc(t1)#1/252.

In the last stage, wheret@ t̃ n holds, both signals becom
sequences of the triangular pulse~4! and nonlinear absorp
tion of the low-frequency part of the initial spectrum occu
The results of numerical experiments designed to calcu
the correlation coefficient in this stage are shown in Fig. 6
this case, ask0 increases, the correlation coefficient al
reaches a plateau, which is close to unity.

Figure 7 depicts the behavior of the correlation coe
cient in time for fixed values of the parametersk* and k0.
Clearly, as time passes the correlation coefficient increa
and tends to a value close to unity. The reason is that
though the positions of the shock fronts of the perturbed
unperturbed fields are close, they do not coincide becaus
the presence of a high-frequency perturbation of the ini
-
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potential of the processṽ0(x). Below we present the analyti
cal results and confirm the computer-modeling data b
qualitatively and quantitatively.

4. STABILITY OF LARGE-SCALE STRUCTURES AGAINST
SMALL PERTURBATIONS

We consider the behavior of realizations in the lim
t@tn by employing the asymptotic solution of the Burge
equation@see Eqs.~1!–~3!#. In accordance with this solution
y(x,t) in ~2! is the coordinate of the absolute maximum
the functionG(x,y,t) ~Eq. ~3!!. The curvature of the pa
rabola in~3! is 1/t, and the curvature of the initial potentia
S0 can be estimated at

sv08
5^~S09!2&1/25

A2 ank
*
~n13!/2

~n13!1/2
. ~16!

Thus, fort@tn.1/sv08
the parabola in~3! is a smooth func-

tion on the scale of the initial potential. This means tha
global maximum of the functionG(x,y,t) lies within a small
neighborhood of a local maximum of the initial potenti

FIG. 4. Energy spectra of the processv0(x) with a cutoff wave number

k* 5128 ~curve 1! and the processṽ0(x) with a cutoff wave number
k051024 ~curve 2! at time t50, and their evolution at timet50.006
.10tn with kc532 ~curves3 and4! on a log–log scale atn50 ~averaging
is over 1000 realizations!.
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FIG. 5. Correlation coefficients of the perturbed an
unperturbed velocity fields as functions of the cuto
wave number ratio (k0 /k* ) at different times~for two
different values ofkc) on linear ~a! and log–log~b!
scales atk* 532: s, kc(t1)58k* ; and n, kc(t2)
532k* ~statistical averaging is over 100 realization
and every tenth point is identified!.
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S0(y) and that the solution~2! exhibits universal behavio
between two discontinuities@Eq. ~4!#, with yk the coordi-
nates of the local maxima ofS0(y).

The occurrence of a high-frequency perturbationvh(x)
leads to fluctuations in the ‘‘zeros’’ of a sawtooth wav
With the new componentvh(x) in the initial velocity @Eq.
~11!#, a perturbation is added to the initial potential:

S̃0~y!5S0~y!1Sh~y!. ~17!

From ~5! we see that the perturbationSh(y) gives rise to
fluctuations in the discontinuity velocity, owing to which th
strength of the fluctuations of the discontinuity position
Dxk(t), increases linearly with time. For a periodic unpe
turbed signal the discontinuities are at rest:S0(yk11)
5S0(yk) and Vk50 @Eq. ~5!#. Hence an arbitrarily smal
perturbation sets the discontinuities in motion, merges th
and, as a result, completely destroys the regular perio
sawtooth structure.30 When the initial perturbation is noise
the discontinuities of the large-scale structure have rand
velocities by themselves, which causes them to merge
results in an increase in the external turbulence scalel (t). If
the rate of merging of the discontinuities of the large-sc
structure is high enough and at all times such thatuDxu
! l (t) holds, we can speak of self-preservation of the evo
tion of the large-scale structure.
.
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,
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e

-

The high-frequency perturbationvh can be characterized
by the parameters

svh

2 5^vh
2~x!&5

2an
2k0

n11

n11 F12S k*
k0

D n11G , ~18!

sSh

2 5^Sh
2~x!&5

2an
2

~12n!k
*
12n F12S k*

k0
D 12nG , ~19!

l h
25

sSh

2

svh

2
5

11n

12n

1

k
*
12nk0

n11 F12S k*
k0

D 12nG
3F12S k*

k0
D n11G21

, ~20!

wherel h is the spatial scale of the high-frequency perturb
tion Sh(y).

Thus, as the cutoff frequencyk0 increases, the velocity
variancesvh

2 increases monotonically, the potential varian

sSh

2 increases up to a value determined by the spatial

quencyk* and then becomes constant, and the spatial s
of the signal decreases with increasingk0 and fork0@k :
*
FIG. 6. The same as in Fig. 5 atk* 532 with the
following parameters:s, kc5k* /4; and n, kc

5k* /8.



d
io

s,

315JETP 88 (2), February 1999 S. N. Gurbatov and G. V. Pasmanik
FIG. 7. Correlation coefficients of the perturbed an
unperturbed velocity fields as functions of the rat
k* /kc;t2/3 on linear~a! and log–log~b! scales with
k* 516: L, k0564k* ; s, k054k* ; and n, k0

52k* ~statistical averaging is over 100 realization
and every tenth point is identified!.
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12n
~k* k0!21/2S k*

k0
D n/2

.

We begin by examining the case of small perturbatio
svh

2 !s0
2. Such perturbations cause fluctuations in the po

tions of the zeros@Eq. ~4!# and to fluctuations in the position
xk of the discontinuities@Eq. ~5!#:

ỹk5yk1Dyk , x̃k5xk1Dxk . ~21!

In a small neighborhood of a local maximum ofS0(y) the
fluctuations in the positions of the zeros are determined
the equation

S̃08~yk1Dyk!5 ṽ0~yk1Dyk!50, ~22!

v0~yk1Dyk!1vh~yk1Dyk!.v08~yk!Dyk1vh~yk!50,

Dyk5
vh~yk!

v08~yk!
.

Using this equation, we can estimate the fluctuation:

Dyk
25^Dyk

2&.
svh

2

sv08
2 5

n13

n11

1

k
*
2 F S k0

k*
D n11

21G . ~23!

Clearly, their strength increases with the cutoff frequencyk0

and does not depend on timet.
In accordance with Eq.~5!, there are two reasons fo

fluctuations in the positions of the shock fronts: the fluctu
tions in the zerosyk and the fluctuations in the velocityVk of
the discontinuities:

Dxk5Dyk1DVkt. ~24!

The main contribution to the fluctuations in the velocity of
discontinuity is provided by the perturbation of the initi
potential,

DVk5
Sh~yk!2Sh~yk11!

hk
, hk5yk112yk , ~25!

while Dxk can be estimated as follows:

Dxk5^Dxk
2&1/25Dyk1DVkt, DVk.

sSh

l
. ~26!
,
i-

y

-

HeresSh

2 is the is the variance of the potential of the hig

frequency perturbation@Eq. ~19!#, and l (t).^hk& is the ex-
ternal turbulence scale. Thus, the size of the fluctuation
the positions of the discontinuities increases with time
reaches a plateau as the cutoff spatial frequencyk0 increases.

To calculate the correlation coefficientr (t) @Eq. ~12!#,
we examine the difference between the two processesv(x,t)
and ṽ(x,t):

Dv5 ṽ~x,t !2v~x,t !, ~27!

^Dv2&5s̃2~ t !1s2~ t !22r ~ t !s̃~ t !s~ t !. ~28!

For kc(t)!k* ,k0 the variances(t).s̃(t) and the correla-
tion coefficient can be written as follows:

r ~ t !512
«~ t !

2
, «~ t !5

^Dv2&

s2~ t !
, ~29!

where«(t) is the relative deviation of the two processes. T
differenceDv is the sum of rectangular pulses of two typ
~Figs. 2b and 3b!. If the processesv(x,t) andṽ(x,t) at point
x belong to the same cell containing the zeroyk , then
Dv5Dyk/t, and the pulse widthxk112xk is approximately
equal tol (t), wherel (t) is the external turbulence scale. If a
the point x these processes are inside different cells, th
Dv5(yk112yk)/t, and the pulse amplitude is proportion
to l (t)/t, while its length is equal to the shift in the positio
of the discontinuity,Dxk .

Using the expression~10! for the turbulence energy, we
can estimate the relative deviation« as follows:

«5
Dyk

2

l 2
1

Dxk

l
5

Dyk
2

l 2
1S Dyk

l
1

DVkt

l D . ~30!

Such estimates can also be made in the case of a per
initial signal with a high-frequency perturbation. For a pe
odic signal, l 5 l 05const and« increases with time. This
means that the presence of high-frequency noise dest
periodic structure.30
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But if we have noise as the initial signalv0(x), the final
result depends on the rate of growth of the external sc
l (t). Using ~9!, ~18!, ~22!, and~25!, we arrive at an estimate
for the relative deviation«:

«~ t !5«1~ t !1«2~ t !1«3~ t !, ~31!

«1~ t !5
n13

n11 F S k0

k*
D n11

21GFkc~ t !

k*
G2

, «25A«1 ,

~32!

«35A2~12n!21/2F12S k*
k0

D 12nG1/2Fkc~ t !

k*
G ~12n!/2

.

Thus, whenk* is fixed the relative deviation tends t
zero with the passage of time, decreasing forn,1 in pro-
portion to t (n21)/(n13). This means that the solutionv(x,t)
remains stable against small perturbations. But ift5const
and the variance of the high-frequency perturbationvh(x)
decreases with increasingk0, then from~32! it formally fol-
lows that the relative deviation«1(t) increases without limit.
However, rigorous analysis shows that even in the cas
strong fluctuations invh(x) the large-scale structure remain
stable against the high-frequency perturbationvh(x) ~see
Figs. 2 and 3!.

5. SELF-PRESERVATION OF LARGE-SCALE STRUCTURES
AGAINST STRONG PERTURBATIONS

Now we turn to the limitk0@k, where the initial energy
of the perturbation is much higher than the initial energy
the unperturbed signal,svh

2 @s0
2, and the initial correlation

coefficient r 0 is much smaller than unity. But since th
asymptotic behavior of a realization of the velocity field
determined by the properties of the initial potential in~3!, we
can assume that forn,1 the relative deviation«(t) tends to
zero with the passage of time due to the finiteness of
variance of the perturbation potential@Eq. ~19!#:

sSh

2 5
an

2

~12n!k
*
12n

, k0@k* . ~33!

For t@tn a global maximum of the functionG(x,y,t)
lies within a small neighborhood of a local maximum
S0(y), so that we must account for the effect of the rand
processSh(y) on the positionỹk and heightH̃k of the maxi-
mum of the processS̃(y) within a small neighborhood of a
local maximum ofS0(y):

S̃0~y!5S0~y!1Sh~y!

5
1

2
S09~yk!~y2yk!

21S0~yk!1Sh~y!. ~34!

The perturbation actionSh(y) in Eqs. ~17! and ~34! is a
statistically homogeneous process with a finite variancesSh

2

@Eq. ~19!# and a spatial scalel h @Eq. ~20!# that decreases with
increasingk0.

We would like to make some preliminary estimates b
fore we discuss the results obtained by the asympt
theory.

We write the second derivative of the unperturbed init
potential as
le

of

f

e

-
ic

l

S09~yk!52gksS9 , sS9
2

5
2an

2k
*
n13

n13
, ~35!

where gk is a dimensionless parameter characterizing
size of the second derivative in the neighborhood of the lo
maximum ofS0(y), and sS9 is the variance of the secon
derivative of the potential. For a rough estimate we can t
H̃k and the dispersion ofSh(y) to be of the same order. The
the deviation in the position of the absolute maximum,Dyk

5y2yk , in Eq. ~34! can be obtained from the conditio
Dyk

2.Sh /uS09u. This yields estimates forH̃k andDyk :

H̃k.sSh
5A 2an

2

~12n!k
*
12n

,

^Dyk
2&.

sSh

gksS9

5An13

12n

1

k
*
2 gk

. ~36!

Thus, forn,1, when the variance of the perturbed potent
is finite, even in the case of a strong perturbation of
velocity field,vh , the relative fluctuations of the coordinate
of the zeros of the sawtooth wave,

«15
^Dyk

2&

l 2
.sSh

t24/~n13!, ~37!

and the relative fluctuations of the positions of the sho
fronts,

«35
DVkt

l
.

H̃kt

l 2
.sSh

t2~12n!/~n13!, ~38!

remain finite as the variancesvh
of the perturbation in-

creases, i.e., ask0 increases, and decrease in strength w
the passage of time.

Let us now study in greater detail the statistical prop
ties of the coordinateỹk and heightH̃k of an absolute maxi-
mum of the processS̃0(y) in a small neighborhood of a loca
maximum ofS0(y) in Eq. ~34!. Clearly, solving this problem
means finding the statistical characteristics of the abso
maximum of G(x,y,t) given by Eq.~3! in the asymptotic
solution ~2! of the Burgers equation with the time variablet
replaced by (2S09(yk))

21, the curvature radius of the unpe
turbed potential. The latter problem was thoroughly stud
in Refs. 7 and 9, where it was found that over long tim
intervals the absolute maximum has a Gaussian distribu
and its value, a double exponential distribution. Construct
of an asymptotic theory is possible if the time intervals a
such that the parabola in~3! is a fairly smooth function on
the scale of the initial actionS0(y) and a large number o
local maxima of the initial action contend for the right to b
the absolute maximum ofG(x,y,t).

Returning to our problem~34!, we note that we mus
estimate the characteristic numberN of the local maxima of
the perturbationSh(y) within the region Dyk @Eq. ~36!#
where the local maxima contend for the right to be absol
maxima. Equations~20! and ~36! imply that for k0@k* this
number is
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N.
Dyk

l h
;S k0

k*
D ~11n!/2

@1

and increases withk0. Thus, fork0@k* we can use the re
sults of the asymptotic theory developed in Refs. 7and 9
find the statistical characteristicsỹk andH̃k in ~36!. For this
we must formally replace the time variablet in the appropri-
ate formulas of Refs. 7 and 9 with the curvature of the u
perturbed actionS0(y), i.e., t°1/gksS9 .

The asymptotic theory of Refs. 7 and 9 contains a la
dimensionless parametert, which is the ratio of the timet to
the characteristic time of manifestation of nonlinear effec
In our case it is

t5
svh

2p l hS09
5

svh

2p l hgksS9

5
M

gk
, ~39!

where

M5
1

2p

@~n13!~12n!#1/2

~11n! S k0

k*
D n11

5AS k0

k*
D n11

. ~40!

Note thatM;N2, whereN is the number of local maxima
contending for the right to be the absolute maximum
S̃0(y). The results of Refs. 7 and 9 imply that forM@1 the
height H̃k of the absolute maximum@Eq. ~36!# is

H̃k5sSh
jkS 11

h

jk
2D 5sSh

jk1sSh

h

jk
, ~41!

where h is a dimensionless random quantity obeying t
double exponential distribution

F`~h!5e2e2h
, ~42!

with ^h&;^h2&;1. Herejk is the solution of the transcen
dental equation

A M

jkgk
expS 2

jk
2

2 D 51, jk.Aln M2 ln gk . ~43!

We see that fork0 /k* @1 the height of the absolute max
mum is weakly dependent on the local curvature of the
tential, S09(yk)5gsS9 and for all practical purposes is a d
terministic function with a mean

^H̃&5sSh
jk.sSh

Aln M ~44!

and a small variance

^DH̃2&5
sSh

2

jk
2

.
sSh

2

ln M
. ~45!

The coordinateỹk of a local maximum has a Gaussian d
tribution with a mean̂ ỹk&5yk and a varianceDyk :

^Dyk
2&5

sSh

jksS9gk

.An13

12n

1

k
*
2 gk

1

Aln M
, ~46!

which decreases with the increasing ratiok0 /k* of the spa-
tial frequencies.
to

-

e

.

f

-

Thus, for k0@k* and n,1, all global maxima of
G̃(x,y,t) are approximately within a small neighborhood
the corresponding absolute maxima ofG(x,y,t), and the po-
tential S̃(x,t) satisfies the following expression:

S̃~x,t !.S~x,t !1^H̃&. ~47!

The asymptotic solution~2! shows that the behavior o

ṽ(x,t) asymptotically reproduces the behavior of the unp
turbed fieldv(x,t). In the case of a strong perturbation, th
relative deviation of the processesṽ andv is still described
by Eq. ~30!, where

«15S n13

12nD 1/2S kc~ t !

k*
D 2 1

Aln M
, «25A«1 ,

~48!

«35~12n!21/2S kc~ t !

k*
D ~12n!/2 1

Aln M
.

Thus, forkc(t)@k* , the deviation is also due to fluctuation
in the positions of the discontinuities in the velocity field a
tends to zero with the passage of time.

The above analysis provides a good qualitative a
quantitative explanation of the results of computer simu
tion of the dependence of the correlation coefficient on
spatial frequencyk0 of the high-frequency perturbation an
on timet. In particular, the formulas give a good descriptio
of the process in which the correlation coefficientr reaches a
plateau, where its value depends weakly on the bandwidt
the perturbation spectrumk0. For instance, in Fig. 6 the the
oretical value of r at kc5k* /4 obtained by the formula
r 512«/2.12«3/2 @Eq. ~48!# is equal to 0.8925, while ex
periment yieldsr 50.89. The results of the theoretical trea
ment imply that ast increases, the correlation coefficient
the perturbed and unperturbed fields must tend to unity
the numerical experiments the evolution of the fields w
studied in finite-size regions. Asymptotically, only a sing
triangular pulse remains in such a region, and the fluct
tions of its zero are weak but finite. This is the reason whr
tends to a value close to unity.

6. SMALL-SCALE PERTURBATIONS AND TURBULENT
VISCOSITY

It is well known that the effect of small-scale perturb
tions on large-scale flows can be described by introducing
effective turbulent diffusion coefficient. In connection wit
the Burgers equation, this problem was studied in Refs.
and 36. Here we briefly discuss the features of the effec
viscosity and small-scale perturbations on the evolution
noise signals. For infinite Reynolds numbers, the initial fie
becomes a sequence of triangular pulses, all having the s
slopevx851/t and completely determined by the positions
the zeros,yk , and of the discontinuities,xk . For a small but
finite dissipation coefficientm, viscosity is important only
near the discontinuities and broadens the shock front. In
neighborhood of a discontinuity,

v~x,t !.Dvk tanh
x2xk

d
, ~49!
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whereDvk is the discontinuity amplitude, andd52m/Dvk is
the discontinuity width. In the discontinuity stage,

Dvk5
yk112yk

t
;

l

t
,

where l is the external turbulence scale, andd;mt/ l . The
degree of nonlinearity of the waves can be characterized
dimensionless parameter known as the Reynolds numbe

Re~ t !.
Dv~ t !l ~ t !

m
5

l ~ t !

d~ t !
.

l 2~ t !

mt
, ~50!

equal to the ratio of the external turbulence scalel (t) to the
internal scaled(t).

For a periodic signal,l 5const. Due to the increase in th
width of the shock front, the Reynolds number diminish
and at Re(t);1 the wave reaches the linear regime. With
noise perturbation there are two competing factors: the
crease in the external scalel (t) owing to the merging of
discontinuities, and the increase in the internal scale ow
to dissipation. For random signals with the spectrum~7! for
n,1 we find that Eqs.~9! and ~50! yield

Re~ t !;t ~12n!/~n13!,

i.e., the Reynolds number increases with time and the sh
of the wave becomes more and more nonlinear.

We arrive at the same conclusions if we examine
evolution of the mean field̂ṽ(x,t)&, assuming that the av
eraging is done over the ensemble of realizations of the h
frequency perturbationvh(x). Indeed, the perturbed coord
nates of the zeros have means^ ỹk&5yk , so that Eq.~4!
implies that far from the discontinuities the mean of the p
turbed field is equal to the unperturbed field,^ṽ(x,t)&
5v(x,t), a fact that Fig. 8 clearly demonstrates. Near a d
continuity we must allow for the effect of perturbations o
the position of the discontinuity coordinates@Eq. ~5!#.

FIG. 8. Evolution of the unperturbed fieldv(x,t) with a cutoff wave number

k* 532 ~dashed curve! and that of the mean field̂ṽ(x,t)& with an addition
high-frequency part in the energy spectrum and a cutoff wave num
k051024 ~solid curve! at time t50.125 (kc54); averaging is over 1000
realizations of the high-frequency perturbation.
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Bearing in mind that fork0@k* the perturbed action ha
a double exponential distribution, we can show that the m
field is still described by~49!, where the effective viscosity is

meff5S 2p

an
D 2/32sSh

j
, j.Aln M .

Here the shock-front width is determined by the fluctuatio
in the positions of the shock fronts, and the relative dev
tions ~38!, which are inversely proportional to the Reynold
number, decrease with the passage of time.

7. CONCLUSION

Let us discuss the effect of high-frequency~small-scale!
perturbations on the evolution of the large-scale compone
of the field for different indicesn of he spectrum of the
initial perturbation ~Eq. ~7!!. We assume that the energ
spectrum of the initial fieldv0(x) and the perturbationvh(x)
obeys a power law:E0(k)}an

2kn. For v0(x) the cutoff fre-
quency isk* , and the perturbation spectrum occupies t
interval kP@k* ,k0#, with k0@k*

In Refs. 6–10, 14 and 15 it was shown that if the init
field obeys Gaussian statistics, the turbulence energy dim
ishes forn.1 as

s2~ t !.sSt21ln21/2~ tsv
2/sS!, ~51!

wheresS
25^S0

2& is the variance of the initial potential~see
Eq. ~3!!, and sv

25^v0
2& is the initial-velocity variance. For

the unperturbed fieldṽ(x,t) from Eq. ~7! we have sS
2

.k
*
n21 , while for the perturbed fieldṽ(x,t) we haves S̃

2

.k0
n21. Thus, fork0@k* the variance of the perturbed fiel

is much larger than the variance of the unperturbed field
n.1, which means that large-scale structures are unst
with respect to small-scale structures in the case being
cussed here. The physics of this is that forn.1 large-scale
structures form because of parametric generation of lo
frequency components, which in turn is due to the nonlin
interaction between the spectral components of the en
spectrum. Here, even in the nontrivial case 1,n,2, when
the low-frequency part of the spectrum is preserv
(E(k,t)5E0(k);an

2kn, k→0), the main fraction of the en
ergy of the field is determined by the processes of parame
generation of low-frequency components, and the decre
in energy is described by Eq.~51! ~see Ref. 15!. Note that for
n.1, the evolution of the low-frequency components is se
sitive not only to small-scale perturbations but also to
shape of the probability distribution of the initia
potential.12,17,19

The case21,n,1 and k0 ,k*→` corresponds to a
situation in which the initial potential is a fractal Brownia
process. In this case the fieldv(x,t) is strictly statistically
self-similar and it is possible to find the velocity distributio
the discontinuity amplitudes, etc., for it.2,16,18Here the low-
frequency part of the spectrum is preserved, and it is this
that determines the asymptotic behavior of the field. In R
33 it was shown, with a rigor that would be accepted by m
physicists, that at a finite cutoff frequencyk* the laws gov-
erning the evolution of the energy spectrum are the sam

er
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those that govern the evolution of purely fractal Browni
motion (k*→`). Avellanedaet al.13 found that the shape o
the probability distribution of velocity and the derivatives
the velocity at large deviations are also independent of
cutoff frequencyk* of the initial spectrum.

Thus, as a result of our research we found that for21
,n,1 not only statistical characteristics but also t
random-field realizations proper remain stable against in
small-scale perturbations of both small and large amplitud

For 23,n,21, when the velocity itself is fracta
Brownian motion,11,29 it is obvious that the evolution o
large-scale structures also remains stable against small-
perturbations. It would be interesting to know how sensit
the probability distribution of the discontinuity amplitude
and the distances between the discontinuities are to the v
of the cutoff frequencyk* .

In conclusion we note that the asymptotic stability
large-scale structures forn,1 is equivalent to the effect o
the increase in Reynolds numbers in a medium with fin
viscosity.9,10,36
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made possible by grants from the Russian Fund for Fun
mental Research~RFBR Project 96-02-19303! and a RFBR–
INTASproject ~Grant No. 95-IN-RU-723!.

* !E-mail: gurb@rf.unn.runnet.ru

1J. M. Burgers, Proc. R. Neth. Acad. Sci.17, 1 ~1939!.
2J. M. Burgers,The Nonlinear Diffusion Equation, Reidel, Dordrecht
~1974!.

3A. M. Polyakov, Phys. Rev. E52, 6183~1995!.
4E. Hopf, Commun. Pure Appl. Math.3, 201 ~1950!.
5J. D. Cole, Q. Appl. Math.9, 225 ~1951!.
6S. Kida,93, 337 ~1979!.
7S. N. Gurbatov and A. I. Saichev, Zh. E´ ksp. Teor. Fiz.80, 689 ~1981!
@Sov. Phys. JETP53, 347 ~1981!#.

8J. D. Fournier and U. Frisch, J. Mec. Theor. Appl.2, 699 ~1983!.
9S. N. Gurbatov, A. N. Malakhov, and A. I. Saichev,Nonlinear Random
e

l
s.

ale
e

lue

e

s
a-

Waves in Nondispersive Media@in Russian#, Nauka, Moscow~1990!,
p. 215.

10S. N. Gurbatov, A. N. Malakhov, and A. I. Saichev,Nonlinear Random
Waves and Turbulence in Nondispersive Media: Waves, Rays, Parti,
Manchester Univ. Press~1991!, p. 1.

11Ya. Sinai, Commun. Math. Phys.148, 601 ~1992!.
12S. Alberio, S. A. Molchanov, and D. Surgalis, Probab. Theory Re

Fields100, 457 ~1994!.
13A. Avellaneda, R. Ryan, and E. Weinan, Phys. Fluids7, 3067~1995!.
14S. A. Molchanov, D. Surgalis, and W. A. Woyczhynski, Commun. Ma

Phys.168, 209 ~1995!.
15S. N. Gurbatov, S. I. Simdyankin, E. Aurellet al., J. Fluid Mech.344, 339

~1997!.
16G. N. Molchan, J. Stat. Phys.88, 1139~1997!.
17T. J. Newman, Phys. Rev. E55, 6989~1997!.
18R. Ryan, Commun. Pure Appl. Math.LI , 47 ~1998!.
19S. Gurbatov and U. Frisch, inAdvances in Turbulence VII, U. Frisch,

Kluwer Academic Publishers, Dordrecht~1998!, p. 437.
20O. V. Rudenko and S. I. Soluyan,Theoretical Foundations of Nonlinea

Acoustics, Consultants Bureau, New York~1977!.
21G. Whitham,Linear and Nonlinear Waves, Wiley, New York ~1974!.
22M. Kardar, G. Parisi, and Y. Zhang, Phys. Rev. Lett.56, 889 ~1986!.
23A.-L. Barabasi and H. E. Stanley,Fractal Concepts in Surface Growth,

Cambridge Univ. Press, Cambridge~1995!.
24J.-P. Bouchaud, M. Mezard, and G. Parisi, Phys. Rev. E52, 3656~1995!.
25V. Gurarie and A. Migdal, Phys. Rev. E54, 4908~1996!.
26S. N. Gurbatov, A. I. Saichev, and S. F. Shandarin, Mon. Not. R. Astr

Soc.236, 385 ~1989!.
27S. F. Shandarin and Ya. B. Zeldovich, Rev. Mod. Phys.61, 185 ~1989!.
28D. Weinberg and J. Gunn, Mon. Not. R. Astron. Soc.247, 260 ~1990!.
29M. Vergassola, B. Dubrulle, U. Frischet al., Astron. Astrophys.289, 325

~1994!.
30S. N. Gurbatov, Izv. Vyssh. Uchebn. Zaved. Radiofiz.26, 3, ~1983!; 26,

283 ~1983!.
31E. Aurell, S. Gurbatov, and I. Wertgeim, Phys. Lett. A182, 1 ~1993!; 182,

109 ~1993!.
32I. G. Yakushkin, Zh. E´ ksp. Teor. Fiz.81, 967~1981! @Sov. Phys. JETP54,

513 ~1981!#.
33S. N. Gurbatov, I. Yu. Demin, and A. I. Saichev, Zh. E´ ksp. Teor. Fiz.87,

497 ~1984! @Sov. Phys. JETP60, 284 ~1984!#.
34S. N. Gurbatov and D. G. Crighton, Chaos5, 3 ~1995!; 5, 524 ~1995!.
35A. Noullez and M. Vergassola, J. Sci. Comput.9, 259 ~1994!.
36S. N. Gurbatov, I. Yu. Demin, and N. V. Pronchatov-Rubtsov, Zh. E´ ksp.

Teor. Fiz.91, 1352~1986! @Sov. Phys. JETP64, 797 ~1986!#.

Translated by Eugene Yankovsky



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS VOLUME 88, NUMBER 2 FEBRUARY 1999
Negative ions in liquid xenon
A. G. Khrapak* ) and K. F. Volykhin

Institute for High Temperatures, Russian Academy of Sciences, 127412 Moscow, Russia
~Submitted 15 June 1998!
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The structure and mobility of negative ions of oxygen in liquid Xe is investigated. It is shown
that the strong exchange interaction of the outer, weakly bound electron of the negative
ion with the surrounding liquid leads to a partial compensation of the electrostriction effect, and
it prevents the formation of a solid cluster around the negative ion. A simple perturbative
model describing the structure of the negative ion in the liquid matrix is developed. The mobility
of O2

2 ions in liquid Xe on the saturation line is estimated. The reasons for the difference in
mobility of negative and positive ions are discussed. ©1999 American Institute of Physics.
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1. INTRODUCTION

In liquefied rare gases, the structure and properties
admixed ions are considered, as a rule, in the contex
Atkins’ model.1 This model takes into consideration the e
fect of electrostriction, and it predicts the formation of
solid cluster around the ion. The cluster then determines
transport properties of such an ion in the condensed ph
The consequences of this theory are in good agreement
experiments on the mobility of positive ions. Howeve
Atkins’ theory does not depend on the sign of the ion
charge, and it predicts the same effects for positive and n
tive ions.

Recently, experimental data on the mobility of certa
negative and positive ions in liquid xenon became availa
which indicate a difference in the transport properties
positive and negative ions. It was found that negative io
exhibit higher mobility than positive ions of comparab
size.2,3

The difference in transport properties of positive a
negative ions is, above all, due to the fact that the ou
electron of the negative ion is localized in a spatial reg
with a characteristic size appreciably greater than that of
inner electron shells of the parent atom or molecule of
ion. When a negative ion is located in a dense gas or liqu
perturbs the surrounding medium. The character of the
turbation depends on the character of interaction of the o
electron with the medium. One important factor that det
mines the qualitative difference in the perturbation near p
tive and negative ions is the repulsive exchange interac
of the weakly bound outer electron of the negative ion w
the electron shells of the surrounding atoms or molecule

The structure of negative ions in dense gases and liq
with atoms of low polarizability~He and Ne! were investi-
gated recently.4,5 It was shown that the competition betwee
the short-range exchange repulsion and the long-range p
ization attraction of the outer electron with the atoms of
medium leads to the formation of a microcavity around
negative ion, which is surrounded by a denser layer of ato
This effect largely determines the negative ion mobili
3201063-7761/99/88(2)/5/$15.00
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Similar complexes, in which a light quantum particle is l
calized inside the liquid density fluctuation and kept statio
ary, were first suggested and investigated by Ferrell6 to ex-
plain the anomalously long life-time of positronium in liqui
helium due to creation of a cavity~‘‘bubble’’ ! around the
positronium. Bubbles in nonpolar liquids can also be crea
around free electrons, excited atoms, and positive and n
tive ions. Detailed discussions of this problem can be fou
in the special issue «Ions and Atom in Superfluid Helium
Zeitschrift für Physik B, Cond. Matter98, No 3 ~1995!.

A difference in the mobilities of positive and negativ
ions was also observed in liquefied rare gases with high
larizability. For example, in liquid xenon, negative ions
O2 and SF6 exhibit mobility several times that of positiv
ions.2 As a result of the high polarizability of atoms of th
medium, no microcavity is created in this case, but the str
exchange interaction leads to partial cancellation of the e
trostriction and it prevents the formation of a solid clus
around the negative ion. The determination of the struct
of the negative ion becomes complex because of the m
complicated nature of the interaction of the outer electron
the ion with the liquid.

In this paper, we propose a simplified model of the ion
structure that considers the influence of the weakly bou
electron of the negative ion on the liquid matrix. From the
results, we estimate the mobility of O2

2 in liquid Xe by
means of a modified Stokes equation.

2. SELF-CONSISTENT FIELD MODEL OF A NEGATIVE ION
IN A NONPOLAR LIQUID

We consider a lone electron bound by the polarizat
potential to the molecule that formed the negative ion. T
asymptotic form of the electron wave function,c(r ), in the
polarization potential of the molecules is very well know
At large distancesr, the wave function varies asc(r )
}r 21 exp(2r/l). The characteristic sizel of the spatial re-
gion where the electron is localized is determined by
ground state energy« in the negative ion,7 l5\/A2m«.
© 1999 American Institute of Physics
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In the following, we consider weakly bound electro
for which l is appreciably greater than the size of the par
molecule. The weakly bound electron spends a signific
time far from the molecule. It moves with an average kine
energy«k}\2/2ml2. The motion of such an electron ha
many features in common with the motion of a quasifr
electron of the same energy. In rarefied gases this interac
results in scattering of the electron by isolated molecu
The scattering potential consists of a short-range repul
part due to exchange interaction and an attractive long-ra
polarization part.

In a liquid, the situation is significantly more compl
cated. Here, the long-range part of the polarization poten
is determined by the atomic polarization potentials of
atoms around the ion. In this case the potential of a scatt
can be represented by a superposition of the electron-a
interaction potential and the screened polarization poten
of all other atoms around the ion. The total scattering pot
tial of an electron is described as a ‘‘muffin-tin’’ potential8

It is worthwhile to note that the potential decays fas
than 1/r 4 as a result of the screened polarization. This le
to a reduction in the characteristic size of the interact
region. In rare gases, in the supercritical region at liq
densities and on the saturation line in liquids, the ela
electron-atom cross-section depends weakly on electron
ergy and scattering angle. There is essentially no Ramsa
Townsend effect, and the scattering cross-section of a s
electron is determined by an effective scattering len
Leff(N).

The electron effective scattering length is a function
the liquid densityN. It can be determined from experiment
data on the quasifree electron mobility.9 In the low-density
limit, the effective scattering potential is transformed into t
potential of an isolated atom, andLeff(N) becomes the elec
tron scattering length of an isolated atom

La5Aa

a0
cotA a

a0Ra
2,

wherea is the atomic polarizability,a0 is the Bohr radius,
and Ra denotes the effective radius of the short-range h
core of the electron–atom interaction potential.10 With in-
creasing liquid density, the relative role of attraction in t
scattering process decreases as a result of polariza
screening. This leads to a decrease in scattering length,
even to a sign reversal at sufficiently high densities.

In the optical approximation,7,8 the energy of the bottom
of the electron conduction band isV052p\2NLeff(N)/m
1Up(N), whereUp52ae2FLN/2s is the shift in electron
energy as a result of the screened polarization interact
The Lorentz screening factor8 FL(N)5@118paN/3#21

takes into account the weakening of the polarization field
a particular atom by its interaction with the induced dipo
of all other atoms of the medium;s is the radius of the first
peak of the pairwise correlation function of the liquid.

We model the motion of the weakly bound electron o
negative ion in a nonpolar liquid as the motion of the ele
tron in the field of point scatterers with an effective potent
Veff52p\2Leff(N)d(r2Ri)/m, where d~r ! is the Riemann
t
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delta function,r and Ri are the coordinates of the electro
and scattering center, respectively. We also assume tha
conditions for the optical model are satisfied, i.e.,

Leff~N!!l, NLeff
3 ~N!!1. ~1!

The Schro¨dinger equation for the wave function of a weak
bound electron in the liquid acquires the form

2
\2

2m
Dc~r !1U~r !c~r !1(

i

2p\2

m
Leff~N!d~r2Ri !c~r !

5@E2Up~N!#c~r !, ~2!

whereE is the electron ground state energy of the negat
ion in the liquid andU(r ) is the potential of the molecule o
which the electron is localized. The shift of the electron e
ergy Up(N) was taken into account in Eq.~2!. The electron
energy is then

«5E2Up~N!.

We assume that the effect of the medium on« is small,

«@D«5^c~r !u(
j

2p\2

m
Leff~N!d~r2Rj !uc~r !&. ~3!

First-order perturbation theory supports this notion.7 Inte-
grating Eq.~3! over the electron coordinate and averagi
over the atomic coordinates, we obtain the following re
tionship between the de Broglie wavelength of the elect
l, the electron effective scattering length in the mediu
Leff(N), and the number densityN of the liquid:

l

Leff~N!
@4pl3N expS 2

2s

l D . ~4!

This places an additional constraint on the electron bi
ing energy of the ion. In fact, whenl@s, the right-hand
side of Eq.~4! is proportional tol3, but its left-hand side is
linear in l. At very large l, the number of atoms of the
medium Nl3 in the vicinity of the electron orbit can be
large. In this case, the interaction of the electron with
medium, as determined by its scattering length, cannot
considered weak. The contribution of the medium to t
electron binding energy is significant, and inequality Eq.~4!
is violated. In conjunction with Eq.~1!, Eq. ~4! determines
the range of applicability of the current approximation.

We now turn to a discussion of the free energy fun
tional DF$N(r ),c(r )% of the negative ion-liquid system. Th
presence of the negative ion in the liquid leads to a chang
the local structure of the liquid near the ion. In other word
the perturbation of the liquid affects the electron spectrum
the negative ion. The structure of the complex is determin
by the minimum free energy, which can be represented a
sum of two terms,

DF$N~r !,c~r !%5DE$N~r !,c~r !%1DFl$N~r !%.

The first represents the change in electron ground-state
ergy due to the presence of the liquid. An accurate calcu
tion of DE is complicated, and requires a self-consistent c
culation of the local liquid densityN(r ) and the electron
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wave functionc~r !. If the conditions of the perturbation
theory are satisfied, however, the problem can be simpli
significantly, andDE can be written

DE$c~r !,N~r !%.^c~r !u(
j

2p\2

m

3Leff~N!d~r2Rj !uc~r !&1Up$N~r !%.

~5!

The second term in the free energy function
DFl$N(r )% represents the change in free energy of the liq
as a result of a change in its local density. The relation
tween the optimum density profileN(r ) and the electron
wave functionc~r ! is determined by minimizing the fre
energy, dDF$N(r ),c(r )%/dN(r )50. A knowledge of
N$c(r )% enables one to determine the potential energy
electron interaction with atoms of medium. This leads to
nonlinear Schro¨dinger equation. Its solution, which can b
obtained numerically, is usually very complicated, and
consider only the simplest case of small changes in the l
densityuN(r )2Nu/N!1.

In this case, the relation betweenN(r ) andc~r ! becomes
very simple:

N~r !/N5exp@2gṼ~r !/Ms2#, ~6!

whereM is the atomic mass,s is the velocity of sound in the
liquid, andg5Cp(T)/CV(T) is the ratio of specific heats o

the liquid. The functionṼ(r )5Ṽ1(r )1Ṽ2(r ) represents the
effective interaction potential between the electron and
uid. In first-order perturbation theory, the first term has
form

Ṽ1~r !5^c~r 8!u
2p\2

m
Leff~N!d~r2r 8!uc~r 8!&

5
2p\2

m
Leff~N!uc~r !u2. ~7!

This takes electron scattering by the effective potential i

consideration. The second term inṼ(r ) takes into accoun
the fact that when the electron is near a scattering cente
interacts with the screening potentials of the other atoms
the liquid. These contribute toUp(r ), but they do not par-
ticipate in the scattering process:

Ṽ2~r !5^c~r 8!uVp~r2r 8!g~r2r 8!Fl~N!uc~r 8!&. ~8!

Here, g(r2r 8) is the pairwise correlation function of th
atoms comprising the liquid. In liquids made up of atom
with small polarizability, where the atomic polarization p
tentials are essentially unscreened,V̄2(r ) is negligible in
comparison withV̄1(r ). Note that in the limitr @s, V̄2(r )
takes the natural form of the screening polarization inter
tion: V̄2(r )52ae2Fl(N)/2r 4.

3. RESULTS AND DISCUSSION

The present model was used to investigate the struc
of the negative ion of the oxygen molecule, O2

2, in liquid Xe
on the saturation line, with the aim of comparing calcula
and experimental results.2 Interest in the O2

2 ion stems from
d
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the presence of this ion as an admixture in essentially
experiments on electron and ion mobilities in liquefied ra
gases. Furthermore, experimental data on the mobility of2

2

in dense gases and liquids are available. The binding en
of the electron in O2

2 in vacuum ~electron affinity! is
«.0.46 eV, which corresponds tol.5.5a0 . In the atomic
density range considered here, the electron–atom, scatte
cross-section depends weakly on the electron energy,
there is no Ramsauer–Townsend effect.11 Therefore, we as-
sume for simplicity that the cross-section is independen
energy, and that it is determined by the effective scatter
length Leff(N). The applicability condition for perturbation
theory is then satisfied for O2

2 in liquid Xe. The effect of the
medium on the weakly bound electron of the negative
O2

2 at the triple point results in a correction to the electr
ground-state energy ofD«.0.05 eV, which is significantly
less than the electron affinity of O2 in vacuum.

Liquid density profiles were calculated at the triple po
of Xe, atT5161.4 K, N51.3631022cm23, and on the satu-
ration curve atT5200 K, N51.2331022cm23. For these
conditions we adopted effective electron scattering leng
Leff(N51.3631022cm23)50.6a0 and Leff(N51.23
31022cm23)50.3a0 . Results of the calculations are show
in Fig. 1. In the same figure, density profiles calculated
means of Atkins’ model are shown. Far from the ion, t
long-range polarization part of the interaction potential pla
the main role. Closer to the center of the ion, the expon
tially increasing term@see Eq.~7!#, which takes the exchang
interaction into consideration, becomes dominant. In liq
Xe, in spite of its high polarizabilitya527.11 a.u., the ex-
change interaction is so strong that as the liquid density
creases,Leff(N) reverses sign from negative to positive
N* .1.131022cm23. The increasing importance ofV̄1(r )
results in a slower rise in the local density near the cente
the ion. The density profilesN(r ), shown in Fig. 1 for small
distances of the order of the radius of the first coordinat

FIG. 1. Profiles of local density as a function of the distance to the cente
the O2

2 ion in Xe on the saturation curve. The solid curves were calcula
in accordance with~6! for different temperatures:1! 161.4,2! 200 K. The
dashed curves were calculated in accordance with Atkins’ model for
same temperatures:3! 161.4,4! 200 K.



th
a
r
i

a
ed

a
th
st
is

-

i-
s

a
a
e
bl
th

e

ed

wn

tiv

ng
it
s of
ra-

n.
ly
ost
to

-
r
.

he

he

ive
om

e

the

g

ng
and
ase

e is
se
id
om

d

-

n

kes

e

323JETP 88 (2), February 1999 A. G. Khrapak and K. F. Volykhin
sphere, cannot be correct, since the applicability of
present model would be violated. But we speculate that
accurate calculation would not change the qualitative pictu
because the probability of finding an electron in this region
low.

As can be seen from Fig. 1, the assumption of sm
changes in liquid density near the ion is entirely justifi
~note the expanded scale of the ordinate!. In contrast, the
Atkins’ model predicts a large increase in liquid density ne
the ion. As the result of the strong exchange interaction,
changes are so small that the creation of a solid-like clu
around a negative ion is not observed. We believe that th
the main reason for the experimentally measured2 mobility
difference between the O2

2 ion and positive ions. Measure
ments of the mobility of an O2

1 ion are not available, but the
mobility of the positive ions ofn-pentane and tetramethyls
lane in liquid Xe were found to be almost three times le
than the O2

2 mobility.
For a simple estimate of the negative ion mobility in

liquid, we assume that during the motion of the ion in a we
electric field, a viscous flow of the liquid occurs that is d
termined by its local density near the ion. It is then possi
to model the motion of both negative and positive ions as
motion of spheres with effective radiiReff

6 that differ for the
two kind of ions. From the Stokes formula, the mobility is

m5
e

cReff
1 h

, ~9!

where h is the viscosity of the undisturbed liquid and th
numerical constantc54p for a bubble or 6p for a cluster.12

It follows from Eq.~9! that the productmh is independent of
the kinetic characteristics of the liquid. It is determin
solely by the structure of the resulting ionic complex.

In Fig. 2 the experimental dependence ofmh on the
temperature of liquid Xe along the saturation curve is sho
It is obvious that besides the quantitative differences inmh
of the positive and negative ions, there is also a qualita

FIG. 2. Experimental results2 for m(T)h(T): 1! O2
2 ion; 2! positive ion of

n-pentane in liquid Xe on the saturation curve.
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difference between them. This is exhibited by the differi
slopes ofm(T)h(T)5const for the two types of ions, and
demonstrates the differing dependencies of the structure
the positive and negative ions on liquid density and tempe
ture.

Ionic motion in a liquid results in energy dissipatio
The liquid layer with maximum viscosity is attached direct
to the surface of the ionic sphere. This layer contributes m
actively to dissipation. With this assumption, it is possible
estimate the effective radii of the charged complexes,

Reff
6 ~N!.Rc

6~N!~hm /h!, ~10!

whereRc
6(N) are the radii of positive and negative ion com

plexes, respectively;hm are the maximum viscosities nea
the ion, andh is, as before, the viscosity of the bulk liquid
Expandinghm in Taylor series up to the second order in t
relative variation in liquid density, we can write

hm.h~N,T!@11jT~Nm2N!#, ~11!

whereNm denotes the maximum density near the ion. T
effective ionic radii are then

Reff
6 ~N!5Rc

6~N!~11jTDN!, DN5Nm2N. ~12!

We now analyze the situations for negative and posit
ions separately. In case of the negative ion, it is evident fr
the calculations~Fig. 1! that beyond the maximum,DN de-
creases withN. In other words, the characteristic size of th
localization region of the weakly bound electronl deter-
mines the size of the negative ion. For a simple estimate,Rc

2

can be set tol and can be considered independent of
liquid density. Then, according to Eq.~12!, Reff

2 (N) is an
increasing function ofDN, and consequently a decreasin
function of the liquid densityN, which is consistent with the
experimental data shown in Fig. 2.

We next consider the mobility of the negative ion, usi
the present model for the region of enhanced density
pressure near the ion. This region results in a local incre
in shear viscosity. As the viscosity of the liquidh(N,T)
depends on density and temperature,h(r ) can be evaluated
as a function of distance from the center of the ion.

As can be seen from Fig. 1, the local density increas
small. Moreover, the viscosity of the liquid Xe under the
conditions is approximately a linear function of the liqu
pressure. The local viscosity as a function of distance fr
the center of the ion can be written ash(r )5h`@1
1(Rh/r )4#, whereh` is the viscosity of the unperturbe
liquid and Rh5@(]h/]P)T(aFL(N)e2N/2h`)#1/4 is the
characteristic distance.Rh depends on properties of the liq
uid, and does not depend on any properties of the ion.

Previous results13 were used to calculate negative io
mobility. The effective ion radiusReff5Rc

2w, wherew is a
dimensionless number that includes corrections to the Sto
formula. For a bubble~perfect slip boundary conditions! of
radiusRc

2 and y05(Rh /Rc
2)4.1, we use the approximat

expression13

w~y0!>
8&

2p
y0

1/4F12
8&

3p
y0

23/4G . ~13!
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The estimates of Rh were made at T5170 K and
T5200 K. The results were very similar for the two poin
Based on the present approach for these two ca
Rh'8.6a0 andw'1.56. Our calculation of negative ion mo
bility by means of the modified Stokes formula~9! and~13!
is presented in Fig. 3. We obtain satisfactory agreement w
experiment,2 although we consider these results to be p
liminary.

For a positive ion,Rc
1(N) denotes the radius of the clus

ter created from the surrounding atoms as a result of e
trostriction.Rc

1(N) is a sharp function of the liquid density
and it can be determined using the modified Atkins’ mode2

Near the triple point, the cluster size is determined by
surface tension of the liquid–solid interface, and can be w
ten

@Rc
1~N!#3.

ae2

16p«s« lssl
t ~Ns2N!3 . ~14!

Here a is the polarizability of the Xe atom,«s and « l are
permittivity of solid and liquid Xe, respectively,Ns is the
density of solid Xe, andssl

t is the surface tension of th
liquid–solid interface at the triple point. Substituting~14!
into ~12!, we haveReff

1 5(z1 /DN)1z2, wherez1 and z2 are
weak functions ofN.

Thus, the effective radius of a positive ion is a decre
ing function of DN, and consequently it is an increasin
function of the liquid densityN. We obtain the same cond
tion on the saturation curve far from the triple point, where
is possible to neglect the effect of surface tension on clu
properties. In this case, the cluster radius is given by

@Rc
1~N!#45

ae2N

8p«s« l~Ps2P!
}

ae2Ng

8p«s« ls
2DN

. ~15!

Substitution of Eq.~14! into Eq.~12! results in an increasing

FIG. 3. Mobility of the O2
2 ion in liquid Xe on the saturation curve. Th

curve is calculated in accordance with the Stockes formula, and the p
are the experimental results.2
s,

th
-

c-

e
t-

-

t
er

function of N at small DN. We obtain Reff
1 5z3(N/DN)1/4

1z4N1/4DN3/4, wherez3 andz4 are also weak functions o
N. From these qualitative considerations it can be seen
the increase inReff

1 with N is related to the increase in th
cluster radiusRc

1 despite a simultaneous decrease in the d
tortion of the local liquid densityDN near the cluster. This
result is in good agreement with the experimental da2

shown in Fig. 2.
The radius of the negative ion depends weakly on liq

density, and is mainly determined by the inner state of
ion. As result, the distortion of the liquid density near t
negative ion is the principal factor determiningReff

2 (N). With
increasing liquid density, the role of the exchange interact
of the weakly bound electron with atoms is augment
which results in an increase inL(N) and a larger decrease i
DN near the ion. Therefore, the present model enables u
interpret qualitative differences in the structure and mobi
of negative and positive ions.
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Negative Ca 2 and Ba 2 ions of large radius on the surface and in the volume of liquid
helium
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Negative Ca2 and Ba2 ions of large radii on the surface of and in bulk liquid helium have been
studied. Our results indicate that these ions are adsorbed on the helium surface. Ions on
free liquid helium surfaces have not been studied previously because it was thought impossible
to confine them on the surface. Ca2 and Ba2 ions have very low binding energies,
therefore, like electrons, they form a bubble of large radius in bulk helium, whose energy is
higher than on the surface. The behavior of ions on the surface exhibits a number of previously
unknown features owing to their large masses and strong localization in the horizontal
plane. Even in the absence of confining electric field, a hole is formed under an ion due to the
polarization attraction between the liquid helium and the charged ion. This hole formation
reduces the ion mobility by several orders of magnitude and increases its effective mass
severalfold. The critical density of electrons and ions is approximately the same on the
surfaces of thin and thick helium films. ©1999 American Institute of Physics.
@S1063-7761~99!01502-4#
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1. INTRODUCTION

Numerous studies have been dedicated to propertie
electrons on a helium surface~see, e.g., the monograph cite
as Ref. 1!. This intense interest stems from the great num
of beautiful and novel effects that occur in systems of surf
electrons, and also because some effects observed in s
conducting heterostructures and interesting from the sta
point of technical applications can be more convenien
studied using the electron gas on a helium surface. Io
however, until now have been studied only inside bulk h
lium, because almost all the ions placed on a helium surf
‘‘drown.’’ The reason is that the polarization energy asso
ated with the attraction of an ion to helium overwhelms oth
contributions unless the ion size is very large. The latter c
is discussed in this paper. The binding energy of an e
electron in such an ion is negligible, so the localization
dius of this electron, which determines the ion size, is v
large.

Recently research into effects on helium surfac
has undergone a revival sparked by the creation of
electron gas of high densityne;1011 cm2 on thin films of
liquid helium. Mitsuraet al.2 detected quantum melting of a
electron Wigner crystal, which takes place when the elect
density increases. The interpretation of these experime
data,2 however, is far from certain, since other scenarios
possible. At low electron densitiesne , owing to
imperfection of the substrate below the thin helium film, th
may form isolated ‘‘pools’’ superposed on a lon
wavelength potential relief generated by the substr
At higher densities, however, these pools may overlap, an
3251063-7761/99/88(2)/7/$15.00
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connected two-dimensional electronic system is produced
order to discriminate between these two scenar
it might be useful to have an opportunity to switch quantu
effects on and off in the electron system on the helium s
face, i.e., to vary the electron mass. This trick can be use
real experiments, since there are negative Ca2 and Ba2 ions
with negligible binding energies and enormous dimensio
~see Table I!. These ions are adsorbed on the heliu
surface and, owing to their large masses, can
treated as classical particles at all reasona
temperatures.

A mixture of electrons and Ca2 and Ba2 ions on a he-
lium surface in the regime of the quantum Hall effect is
unique object for experiment.3 The point is that the roles o
shallow and charged impurities in formation of plateaus
curve of Hall resistance versus magnetic field have remai
unclear thus far. It is impossible to separate the contributi
of shallow and charged impurities to parameters of so
state heterostructures tested in the regime of quantum
effect. Given that the helium surface is pure, i.e., it has
impurities, one can separate the effects of charged impur
by varying the temperature or density of negative ions in
mixture of electrons and Ca2 or Ba2 ions. Specifically, at
low temperatures Ca2 and Ba2 ions form a Wigner crystal,
which generates a periodic potential for surface electro
thereby lifting the infinite-fold degeneracy of the electro
Landau levels in a magnetic field without broadening t
levels. At higher temperatures the Wigner crystal melts a
the electron Landau levels are broadened.
© 1999 American Institute of Physics
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TABLE I. Numerical calculations of bubble energy and optimal radius in bulk liquid helium and on its su
for several typical ions of large radius, with characteristics of these ions.

Ion

Electron affinity
in vacuum

E0 , eV

Ion size
in vacuum

1/k0, Å

Atom or molecule
polarizability

b, aB
3

Turning point

r05~a/aBk0
2!1/4, Å

Optimal
bubble radius

in helium
R, Å

O2
2 20.46 2.87 10.6 2.23 8.0

Ba2 20.145 4.87 270 6.5 12.0
Ca2 20.0245 11.84 170 9 14.1

Correction to ion Potential
Correction to Optimal energy on surface barrier for ion
ion energy separation between Esur taking into account on surface of

in helium volume ion and surface hole shape, thick helium fi
Ion Ein2E0 , eV h, Å ~estimate! eV ~estimate! D, eV

O2
2 20.024 2 2 '0

Ba2 0.024 14 20.011 0.04
Ca2 0.060 20 20.003 0.065
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2. ENERGY OF A NEGATIVE ION IN BULK HELIUM

Let us calculate the energy of negative ions in bulk h
lium and prove that Ca2 and Ba2 ions are adsorbed on he
lium surface, whereas ions of smaller radius~such as O2

2 or
H2) submerge or ‘‘drown’’ in the helium.

In bulk helium an ion forms a bubble whose energy
composed of three components:1

Ein~R!54paR22
«21

2«
n

e2

R
1Ee~R!. ~1!

The first term on the right is the energy of surface tension
the bubble (a is the surface tension coefficient!. The second
term is due to the polarization interaction between an e
tron and liquid helium with dielectric constante. The dimen-
sionless factorn is close to unity and depends on the char
distribution within the bubble. We haven51 if the charge is
concentrated at its center. For an electron delocalized in
the bubble,n51.35. Taking into account the approxima
shape of the outer electron wave function, let us assu
n51.16, which is accurate to within 5%. The most difficu
part is the calculation of the last term,Ee(R), which is the
ground-state energy of the outer electron in the potentia
the polarization interaction with the atom and confin
within the bubble by the spherically symmetrical wall
liquid helium. This potential has not been evaluated ac
rately because it results from the complicated interaction
the outer electron with the rest of the electrons. We kn
only the binding energy of this electron to its atom and
potential shape at large separations from the atom cente

U~r !52
be2

2r 4
, ~2!

whereb is the atom polarizability. In their calculation of th
energy of an O2

2 ion in liquid helium Volykhinet al.4 used
the model potential
-

n

c-

e

de

e

f

-
f

e

U~r !55
1`, r ,b,

2
be2

2r 4
, b,r ,R,

1U0 , r .R,

~3!

where the core radiusb is derived from the binding energ
E0 of the outer electron in vacuum, andU0 can be set to
1`. Next, following Ref. 4, the segment@b,R# is divided in
two: one segment extending to the turning pointr 0 and one
beyond it. The turning point is given by

r 05S b

aBk0
2D 1/4

, k0
2[2

2mE0

\2
. ~4!

HereaB is the Bohr radius andm is the electron mass. On th
first segment@b,r 0# we neglect the binding energy in com
parison with the potential, while on the second segm
@r 0,R# we neglect the potential in comparison with the bin
ing energy. Afterwards the solutions of the Schro¨dinger
equations are matched at the pointr 0.

In this approximation, one can derive the functionEe(R)
without solving the Schro¨dinger equation on the interva
(0,r 0), and an important point is that no assumption is ma
about the potential shape atr ,r 0, thus the solution is made
notably simpler and more general~as will be shown below,
the potential described by Eq.~3! cannot be used in the cas
of Ca2 and Ba2 ions!. Immersion of an ion in helium doe
not affect the potential forr ,r 0 but shifts the outer electron
energy. If on the interval (0,r 0) we neglect in comparison
with the potential not the energy but only the energy sh
due to the helium environment, leaving alone the total bin
ing energy, the helium surface does not change the w
function at r ,r 0. Thus, the logarithmic derivative of th
wave functionc(r ) to the left of the joining point does no
change as a result of immersion in the helium:

x8~r 020!

x~r 020!
52k052

A22mE0

\
,
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wherex(r )5c(r )r . To the right of the matching point, with
due account of the conditionuEeu@uU(r )u, the wave function
has the form

c5
1

r
sinh@k~R2r !#,

and turns to zero on the bubble surface. By equating
logarithmic derivatives at pointr 0 we obtain an equation fo
the energyEe(R):

x8~r 0!

x~r 0!
52k052k coth@k~R2r 0!#,

Ee~R![2
\2k2

2m
. ~5!

The neglect of the binding energy is legitimate at
r ,r 0 only if r 0k!1 holds. In fact, we haver 0k;1, so Eq.
~5! is only approximately correct. More accurate calculatio
can be performed numerically, given the exact shape of
potential. Before proceeding to these calculations, let us
to refine Eq.~5! on the basis of the following consideration
The change in the logarithmic derivative of the wave fun
tion on the left of the turning point due to the energy sh
has the form

D
x8

x U
r 5r 020

5
Dx8

x
2

x8Dx

x2 U
r 5r 020

. ~6!

The first term

D@x8~0!1*0
r 0x9dr#

x~r 0!
5

DF *0
r 0

2m

\2
~U~r !2E!xdrG
x~r 0!

'2
2m

\2

E
0

r 0
xdr

x~r 0!
DE.

The last integral on the right requires knowledge of the wa
function on the segment@0,r 0#. Gribakin et al.5 performed
an accurate numerical calculation of interaction between
extra electron and the rest of the electrons in Ca2, Ba2, and
Sr2 ions in vacuum. As a result, they determined the wa
functions of the extra electrons in these ions in vacuum. T
calculated binding energies5 are in reasonable agreeme
with experimental data.6,7 Assume that the wave function o
the interval (0,r 0) changes little when an ion is immersed
helium. Then, using the outer electron wave function,5 we
obtain

*0
r 0xdr

x~r 0!
'r 0 .

The second term on the right of Eq.~6! is small, since
the point r 0 is close to the maximum ofx(r ), where the
wave function is determined largely by the normalizati
condition and is little affected by the energy shift. With th
correction given by Eq.~6!, we replace Eq.~5! by
e

l

s
e

ry

-
t

e

n

e
e

x8~r 0!

x~r 0!
52k02~k0

22k2!r 052k coth@k~R2r 0!#. ~7!

In the limit k(R2r 0)@1 we can find an analytical solutio
of this equation:

Ee~R!2E052E0

4 exp@22k0~R2r 0!#

112k0r 0
. ~8!

For arbitraryk(R2r 0) Eq. ~7! cannot be solved analyti
cally with respect tok. We can find only the inverse functio

R~k!5r 01
1

k
tanh21S k01r 0~k0

22k2!

k D .

The only difference between Eq.~8! and the correspond
ing expression derived from Eq.~5! is the factor (1
12k0r 0)21. This factor is 0.3 for Ba2 and 0.4 for Ca2.
Thus, Eq.~7! yields more accurate results, although it is al
approximate.

At low temperatures the helium density on the bubb
boundary around O2

2 increases locally,4 which leads to a
higher polarization contribution in Eq.~1!. This effect, how-
ever, need not be taken into account because we have alr
neglected an effect of the same order of magnitude but w
the opposite sign due to the difference between the radiiR in
the polarization and exchange interactions with the surrou
ing liquid helium. Moreover, the polarization pressu
P5be2/2vR4 is a rapidly decaying function with rangeR,
and for the large Ca2 and Ba2 ions of interest to us thes
effects are very weak.

In order to improve the reliability of our results, we hav
performed a numerical calculation of the energyEe(R). In
this connection, let us discuss the selection of the poten
acting on the outer electron. Equation~3! is a poor approxi-
mation for Ca2 and Ba2 ions. Specifically, since these atom
have large polarizabilitiesbBa5270aB

3 and bCa5170aB
3

@bO2
510.6aB

3 , with a potential like that defined by Eq.~3!

we should set the boundary of the hard core at a dista
b'4 Å from the atom center so that the outer electron
ergy be equal to the binding energy in vacuum. It is clear t
the range of the exchange repulsion should be approxima
equal to the atom size, i.e.,;1 Å. Elaborate numerica
calculations5 show that the outermost node of the wave fun
tion is in fact at 1.2 Å in Ba2 and 0.8 Å in Ca2. So, the inner
wall in the model potential should be set at these distan
from the atom center. In order to satisfy this condition, w
selected the potential in the form

U~r !55
1`, r ,b,

2
be2

2~r 21a2!2
, b,r ,R,

1`, r .R,

~9!

wherebBa51.2 Å, bCa50.8 Å, andbO2
50.482 Å. The pa-

rametera is derived by equating the electron energy atR
5` in this potential to the ion binding energy in vacuum
aBa52.335 Å, aCa52.593 Å, andaO2

50. This potential is
closer to the real one than that defined by Eq.~3! and also
admits an analytical solution in the limitE→0. Then, by
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solving numerically the Schro¨dinger equation with this po
tential, we obtainEe(R). It is well approximated by the em
pirical formula

Ee~R!2E052E0

4exp@22k0~R2r 0!#

112k0r 0
coth

k0R2

3r 0
.

~10!

In order to determine the optimal bubble radiusR0 and
the ion energy in heliumEe(R0), we should solve the equa
tion

]Ein

]R
50,

whereEin is given by Eq.~1! and Ee(R) by Eq. ~10!. The
results are listed in Table I for several typical negative io
of large radii alongside parameters of these ions. The par
eters 1/k0 and r 0 were derived from available
measurements6,7 of binding energyE0 of negative ions and
atomic polarizabilities~the latter are the same as in Refs.
and 5!. The discrepancy between energy corrections ca
lated from Eq.~7! and numerically is 10 to 15%, while th
corresponding dsicrepancy between calculations of the o
mal radius is less than 5%. These are the error estimate
our calculations.

In order to avoid confusion, note that the ion radius
the third column of Table I is the separation from the ato
center at which the absolute value of the wave function dr
by a factor;e, whereas the exponential tail of this functio
extends much further. The wave function goes to zero on
bubble boundary. Therefore the optimal bubble radius is
distance at which the wave function tail is cut off. This lea
to the considerable difference between 1/k0 and R, which
increases with the ion binding energy in vacuum, i.e., w
the energy gained by cutting off the wave function tail.

Table I clearly shows that the energies of Ca2 and Ba2

ions in helium are higher than in vacuum. This result is e
ily understandable. The electron affinities in these atoms
negligible~see Table I!, and the outer electron is almost fre
~in Ca2 the localization radius is;12 Å!. Like free elec-
trons, these electrons form a large bubble in bulk helium,
the main contribution to the bubble energy is due not to
polarization attraction to helium~as for small ions!, but to
the energy of electron compression by the bubble bound
and surface tension energy. The additional energy of a
electron in helium isD;0.15 eV, and for Ca2 D'0.06 eV.
The radius of the bubble around a free electron isR2517 Å,
while around Ca2 it is R'14 Å. Thus, the bubble param
eters around a free electron and around a Ca2 ion are similar.

We have thus proven that Ca2 and Ba2 are adsorbed on
a helium surface, where their energy is lower than in vacu
owing to long-range polarization forces of attraction to t
gas–liquid helium interface. Owing to their large masses
initial localization in the horizontal plane, surface ions ha
a number of properties which are unusual compared w
those of surface electrons. Let us proceed to a discussio
these properties.
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3. PROPERTIES OF NEGATIVE IONS ON A HELIUM
SURFACE

Even in the absence of a confining electric field, a ne
tive ion on a helium surface generates a static surface de
mation around it, which we term a hole, by analogy with t
deformation produced by electrons. Recall that an elect
produces a hole only in a strong electric field.1 Hole forma-
tion in a zero confining field is caused by the polarizati
interaction between the ion and liquid helium.

Let us assume first that the helium surface deformat
is small and calculate the height at which the ion levitat
This effective ion sizeh can be calculated similarly to th
optimal radius of the bubble in helium, i.e., by minimizin
the full energy on the surfaceEsur, which contains, in the
case of a plane surface, only two terms, namely, the ene
of polarization interaction between the ion and heliu
(e2/4z)(«21)/(«11) and the energyEb due to the cut-off
of the outer electron wave function on the helium surface
estimating the latter, let us use the approximation of a u
form distribution over solid angle:

Eb~h!'
1

4p E @Ee~R!2E0#dV, R~V!5
h

cosu
, ~11!

whence

Eb~h!5
1

2 E
0

1FEeS h

cosu D2E0Gd~cosu!

'
1

4k0h
@Ee~h!2E0#,

whereEe(R) is given by Eq.~10!. By solving the equation

]Esur

]h
50,

we calculate the optimal separation between the ion and
lium surface:hBa514 Å andhCa521 Å. Let us analyze the
surface shapej(r ). The hole shape under the ion shou
satisfy the conditions

j8~0!50, j9~0!<
1

h
.

It should also be localized mostly within the ion radius, sin
only in this case can the energy of polarization attraction
significant. The surface tension energyEa for such a hole is
proportional to the square of its deptha2 at the center,Ea

}a2, and is little affected by the hole shape. For example
the hole shape is fitted to the ion radiush:

j~r !5H h2a2Ah22r 2, r ,Ah22~h2a!2,

j50, r>Ah22~h2a!2,

its surface tension energy isEa5pa2a. Such a deformation
is not smooth around the edges. For a smooth hole, whic
energetically preferable, of the form

j~r !52a expS 2
r 2

2h2D ,
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the surface energy loss due to attraction is smaller by on
factor of 2.

When a hole forms the outer electron wave function
additionally compressed. In order to minimize the ene
change due to this compression, it suffices to have an alm
flat surface at the center of the hole~this region makes the
major contribution to the correctionEb to the outer electron
energy!. This condition is satisfied by holes withj950. For
example, a surface deformation described by the functio

j~r !52a expS 2
r 4

2h4D
generates surface energyEa5pa2a. The increase in the en
ergy of the polarization interaction of the ion charge in su
a hole is

Eel'2aE
h

`

2pr dr
e2~«21!

4pr 4
52e2a

«21

4h2
.

SinceEa}a2 and Eel}2a, at smalla one always has
Ea1Eel,0. Let us calculate the optimal hole deptha by
minimizing

Etot5Ea1Eel'pa2a2
e2a

4h2
~«21!,

Etot8 ~a!52paa2e2
«21

4h2
50,

whence it follows that

a5
e2~«21!

8pah2
'H 7.4 Å for Ba2,

3.3 Å for Ca2.
~12!

The total change in the ion energy is

Etot52
e2a~«21!

8h2
'H 431023 eV for Ba2,

0.831023 eV for Ca2.

Let us estimate the mobility and effective mass of C2

and Ba2 ions on helium surface. Here we use the appro
mation suggested by Shikin and Monarkha8 for studying dy-
namic properties of surface electrons. The local deforma
of the helium surface adiabatically follows the moving io
and generates a certain field of hydrodynamic velocities
the ion moves across the surface. Although the lateral sil
of the hole under the ion is smaller than under a free e
tron, at temperatures above the superfluid transitionT
.2.18 K! this size is, nonetheless, larger than the mean
path of thermal excitations. Therefore the hydrodynamic
proximation applies.

In a reference frame traveling with the ion at veloc
V0, the full velocity of the liquid isV5V01v, wherev is
a

s
y
st

h

i-

n

s

c-

e
-

the field of velocities generated by the hole. The hole
rather flat@j8(r )!1#, so we havev!V0 and the boundary
condition

V•n50

transforms to

vzuz505V0j8~r !cosu.

In the limit of large Reynolds numbers, when viscosity c
be neglected in the hydrodynamic equations, the velo
field is determined by the equations

v5¹w, Dw50, w r ,z→`→0,

]w

]z U
z50

5V0j8~r !cosu. ~13!

In our calculations, we have selected the hole shape

j~r !5
a

11r 2/h2
,

which satisfies all necessary conditions for the hole under
ion. The calculation uses the expansion in terms of Bes
functions:

j~r !5E
0

`

G~v!J0~vr !v dv,

where

G~v!5E
0

`

j~r !J0~vr !r dr 5ah2K0~vh!.

The solution of Eq.~13! has the form

x~r ,z!5V0 cosu E
0

`

G~v!e2vzJ1~vr !v dv.

HereJ0 , J1, andK0 are Bessel functions.
The aggregate mass of a surface ion is given by

expression
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M5
r

V0
2 E v2d3V

5
r

V0
2 E ¹~w¹w!d3V52

r

V0
2 E w

]w

]n
dS

'2
r

V0
2 E w

]w

]z
dS5rE r dr E

0

2p

du cos2u

3E
0

`

G~v!J1~vr !v dvE
0

`

G~v8!J0~v8r !v82dv8

5prE
0

`

G2~v!v2dv5pra2h4

3E
0

`

K0
2~vh!v2dv5ra2h

p3

32

'H 10222g for Ba2

0.3310222g for Ca2,

wherer is the liquid helium density andS is a surface ele-
ment. Thus, the polarization correction to the ion mass
approximately equal to the ion mass.

In the mobility calculation we use the energy balan
equation~Ref. 9, p. 79! 2eEuuV05Ẇ. If Dw50 holds, the
energy dissipation is described by the formula9

Ẇ5h E ]v2

]n
dS'2hV0

2

3E
0

`

~2v!G~v!v2dvE
0

`

G~v8!v82dv8

3E
0

2p

duE
0

`

r dr FJ18~vr !J18~v8r !cos2 u

1J1~vr !J1~v8r !
sin2 u

vv8r 2
1J1~vr !J1~v8r !cos2 uG

'24phV0
2 E

0

`

G2~v!v4dv,

whereh is the viscosity. In our specific case

E
0

`

G2~v!v4dv5a2h4 E
0

`

K0
2~vh!v4dv5

27p2

29
.

Thus, the mobility is

m5
V0

eEi
5S 4ph E

0

`

G2~v!v4dv D 21

5
128

27p3

h

ha2

'H 1.331011 cm/g for Ba2

1012 cm/g for Ca2

5H 0.21 cm2/s•V for Ba2

1.6 cm2/s•V for Ca2,
is

where the helium viscosity atT54 K is assumed to be
h53•1025 g/cm•s.

Note that, if we consider a hole of a different shape b
with the equal depth and lateral size, the result will be ve
close. For example, forj(r )5a exp(2r/h) we have

G~v!5
a/h

@~1/h!21v2#3/2
.

Further calculations similar to those described above yie

M5
p2

16
rha2, m5

4h

3p2ha2
.

The difference between the parameters of holes of differ
shapes is a factor close to unity. However, if we had used
same hole shape as that under the electron confined by
ternal electric field but with different parameters so that
vertical and lateral sizes of the hole under the ion were id
tical, we would obtain markedly different mobilities and e
fective masses. This fact clearly shows the difference
tween the shapes of the helium surface deformations indu
by electrons and ions.

The external confining field generates additional surfa
deformation under an ion. As in the case of an electron,
deformation has a lateral size of order the gravitational c
illary length:

1

k
5A a

rg
@h,

i.e., many times larger than the hole size. Therefore, the
face tension energy of these two deformations are sim
added, and the deformations are superimposed inde
dently. The electrostatic hole depth is given by Eq.~13! in
Ref. 8 by substitutingL→h, i.e., the ion size, which is the
only difference from the case of electrons, affects the h
depth weakly, since this parameter enters in the argumen
the logarithm.

The expression for the critical density of charged p
ticles on the surface of a thick helium film,

nmax5AArga

2pe2
, ~14!

was obtained in the metallic approximation.10 The only con-
dition that was used in deriving Eq.~14! is that the helium
surface should be equipotential. In the case of ions, this c
dition holds, because the surface vibration frequency near
critical concentrationnmax ~i.e., the energy of surface excita
tions divided by Planck’s constant! is so small that ions,
notwithstanding their low mobility, are mobile enough
follow changes in the potential. Therefore, Eq.~14! also ap-
plies to ions on a helium surface.

On a thin film surface, electrons are strongly localized
a hole owing to the strong field of image forces and, li
ions, have a low mobility. Therefore, the difference betwe
electrons and ions becomes insignificant. The minimal thi
ness of a charged helium film,
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dmin5S 27L1

8pa
ln

1

k̃ l j
D 1/3

, ~15!

is approximately the same for ions and electrons.1! The small
difference due to the difference between electron and
sizesl j is offset by the ions’ inability to tunnel through th
film. Along with dmin , the critical densities of charged pa
ticles on a thin helium film are also very similar.
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sian Fund for Fundamental Research~Grant 96-02-18168!
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Effect of a weak magnetic field on the state of structural defects and the plasticity of
ionic crystals

Yu. I. Golovin* ) and R. B. Morgunov

G. R. Derzhavin State University, 392622 Tambov, Russia
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The aim of this work is to examine the influence of a weak~on the energy scale! magnetic field
on the state of dislocations and point defects in ionic crystals. It is found that complex
point defects existing in a metastable state are sensitive to a magnetic fieldB;1 T. The
contributions are identified, and the kinetics of various types of reactions within the structural
defects and between them leading to plastification of the crystals in a magnetic field are
determined. The effect of light on the sensitivity of the point defects to a magnetic field is
described, and the spectral characteristics of this effect are determined. A resonant effect
of the combined action of a weak constant magnetic field and a high-frequency magnetic field on
the dislocation mobility is found to occur when these fields satisfy the conditions of
electron paramagnetic resonance. ©1999 American Institute of Physics.
@S1063-7761~99!01602-9#
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1. INTRODUCTION

In recent years it has been reliably determined tha
magnetic fieldB;1 T can have a strong effect on the disl
cational plasticity of ionic crystals. The action of a magne
field has been observed to shift dislocations in unloa
crystals,1 increase their segment lengths in the presence
loading,2 alter their microhardness,3,4 increase the level o
dislocational internal friction,5 and lower their flow limit.6

All these phenomena are commonly referred to as magn
plastic effects. It has been found that these effects are se
tive to the type of dominant impurity in the crystal7,8 and to
x-ray irradiation.9,10 This fact has elicited the hypothesis
an electronic nature of these effects in ionic crystals11,12 and
the suggestion of a possible mechanism of the action o
magnetic field on their plasticity.13–15

The difficulties in explaining the magnetoplastic effe
are connected with the fact that the energy communicate
a field with B;1 T to one paramagnetic center~which in
ionic crystals can be identified with some impurity defect
an electron localized on a dislocation! is
DU'mBB;1024 eV ~wheremB is the Bohr magneton!. At
temperaturesT;300 K, which are typical for these exper
ments,DU!kT. Therefore, under conditions near thermod
namic equilibrium it cannot be expected that a magnetic fi
with B;1 T can affect the plastic properties of nonferroma
netic crystals.

However, at present a wide class of electronic proces
are known which are sensitive to a magnetic field, in parti
lar, magnetically sensitive chemical reactions involving ra
cals to which the foregoing thermodynamic arguments c
not be extended, by virtue of the short lifetimes of th
intermediate spin-dependent steps, during which ther
fluctuations ‘‘do not have enough time’’ to destroy the co
relation of the spins in the particle pairs.16–20The presence o
paramagnetic properties in a number of structural defect
3321063-7761/99/88(2)/10/$15.00
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ionic crystals gives reason to believe that short-lived rad
reactions between defects can take place during plastic
formation that are sensitive to a weak magnetic field.

The aim of the present work is to identify the thermod
namic reasons for the effect of a weak magnetic field on
state of the structural defects and the plasticity of ionic cr
tals, and determine the type of magnetically sensitive p
cesses and the defects participating in them.

2. TECHNIQUE

To exhibit the various aspects of the effect of a magne
field on the state of the defects and the plasticity of nom
nally pure crystals of NaCl, LiF, and KCl, we employed a s
of complementary techniques. Changes in the characteri
of the mobility of individual edge dislocations as a result
the action of a magnetic field~mean velocity, size and num
ber of the jumps executed by them, duration of the pau
between jumps, etc.! were observed using methods of co
tinuous or double chemical etching by measuring 100–4
dislocation segment lengths and the sizes of the etch pits
each point on the graphs. Here we initiated motion of fres
introduced~by a scratch! dislocations by two fundamentally
different techniques: by a mechanical compression pu
which was the same in all of the runs~duration 0.2 s and
amplitude 0.5 MPa for NaCl! and by exposing the samples
a magnetic field in the absence of an external mechan
load. As will become clear from what follows, fundame
tally different characteristics of the mobility of the disloc
tions are produced by these two different techniques.

Exposure of the sample to a magnetic field before a
after introduction of the dislocations prior to application
the mechanical load or in combination with it, exposing t
sample to light, and other variations of the conditions of t
experiment allowed us to identify the contributions of t
various factors to the magnetoplastic effect~in particular, the
© 1999 American Institute of Physics
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role of changes in the states of the point defects and of
dislocations themselves in a magnetic field! and to bring out
the possible multistep character of the processes of fi
stimulated modification of defects.

We examined the effect of a magnetic field on the m
roplastic characteristics of crystals in a specially desig
deforming machine with quartz rods and supports provid
conditions of ‘‘ideally soft’’ loading with linearly increasing
~in time! mechanical compression loadss5at, where the
constanta5(1 – 10)3104 Pa/s was held fixed during th
course of a run. This technique, in contrast to the traditio
technique of hard loading~in which the linearly time-
dependent relative deformation« is prescribed!, allows one
to eliminate negative feedback between the machine and
sample, in the presence of which the softening initiated
the external action reduces the load on the sample and u
cessation of plastic flow can ‘‘mask’’ the softening effect.
addition, the soft technique allows one to directly ascert
that in a magnetic field retraction of the rods, heating of
sample, and other side effects capable of distorting the m
surement results are absent.

A constant magnetic fieldB up to 2.2 T was created with
an electromagnet. The magnetic-field pulses had the sha
a half-period of a sine wave with amplitude 7 T and durat
1022 s and were generated in a solenoid of few turns b
thyristor generator.

3. RESULTS

1. In the first series of experiments we investigated m
tion of dislocations in NaCl crystals not loaded by extern
forces, initiated by a magnetic field pulse withB57 T. To
elucidate the role of internal stresses and the possible e
on the mobility of the edge dislocations of the solenoid
electric field arising when the magnetic field is switched
and off, we measured the segment lengthsL* and the frac-
tion of dislocationsd shifted in the four possible crystallo
graphic directions@110#, @ 1̄10#, @11̄0#, and @ 1̄1̄0#. We
found that regardless of the orientation of the magnetic fi
B relative to the crystallographic axes~we investigated three
directions:@100#, @110#, and@001#) d andL* were identical
for the four groups of dislocations within the limits of acc
racy of the experiments and were equal tod50.2560.03 and
L* 52661 mm. Qualitatively, an analogous result was al
obtained for motion of dislocations occurring in these cr
tals when not acted on by a magnetic field, as a result of
successive chemical etches. In this cased50.2560.03 and
L05961 mm @Fig. 1b#. Of course, in the absence of a ma
netic field the dislocations could move only under the act
of the random internal stress fields, which should be can
out in an unloaded crystal. The results obtained in our
periments with a magnetic field indicate that the action of
solenoidal electric field for the magnetic field varying in tim
at the rate;103 T/s is negligibly small, and the magnet
field indeed exerts no motive force on the dislocations
only facilitates depinning of dislocations from pinning ce
ters, and their motion takes place as in the runs withou
magnetic field under the action of internal stresses.
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To reveal the kinetic features of magnetic-pulse stim
lated motion of the dislocations, we used the continuo
etching method. Toward this end, a sample with freshly i
troduced dislocations was placed in a capsule with a ‘‘slow
etchant in which a dislocation pit 3mm in size was formed
after a 10-second etch. The crystal, still immersed in th
etchant, was exposed to a magnetic field pulse and 50 s la
was pulled out of the etchant. In the control runs without
magnetic field, the crystal was kept in the etchant for th
same amount of time as in the runs with the magnetic fie
We found that in both cases during the entire time the sam
was kept in the etchant the dislocations execute intermitte
motion with several stops and starts~pauses!. However, in
the crystals subjected to magnetic-field treatment the veloc
of the dislocations between pauses, the number of jumps,
the total time of the motion, measured by the technique d
scribed in Ref. 21, were substantially greater than in the co
trol runs ~Fig. 2!. Each dislocation pit, standing as evidenc
of a serial pause of the dislocation, was formed during a tim
;5210 s, which is substantially exceeds the duration of
magnetic-field pulse (1022 s!. Consequently, the facilitated
motion of the dislocations took place over an extended tim
after the magnetic field was already switched off, and almo
the entire segment length was formed in its absence.

FIG. 1. Fraction of dislocationsd shifted in the four possible directions in a
crystal of NaCl: a! in crystals treated with a magnetic field pulse, b! in the
control runs.

FIG. 2. Mean velocity of the dislocationsv in NaCl crystals as a function of
the traversed distancer : 1 — motion of dislocations in the control runs
without a magnetic field,2 — motion of dislocations stimulated by
magnetic-field pulses withB57 T.
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increased velocity of the dislocations between pauses,v, was
also observed at distancesr'10230mm from their original
location ~Fig. 2!. This is indicative of magnetic-pulse
induced residual changes in the crystal, which even after
field is switched off continue to have an effect on the mob
ity of the dislocations.

2. To elucidate the role of a magnetic field in the dep
ning of dislocations from pinning centers under conditions
macro-deformation, we carried out a second series of exp
ments. The effect of a magnetic field on the macropla
deformation of NaCl crystals created by a linearly increas
~in time! mechanical compression stress could be asse
from measurements of the deformation curve«(s) made af-
ter switching on a magnetic-field pulse with strengthB57 T,
directed along the compression axis. Switching on a m
netic field in the elastic region did not produce any chan
in the deformation diagram. Switching on the field not lo
before reaching the flow limit«y decreased the latter
Switching on the field at the stage of easy slipping brou
about a discontinuous increase in«, i.e., a short-lived soft-
ening of the crystal took place. The maximum size of t
jump D« was observed right after the flow limit«y was
reached~Fig. 3!.

The deformation jump took place not while the field w
acting, but only 100–150 ms after termination of t
magnetic-field pulse. For 5–7 s after the magnetic-fie
induced jump, the plastic flow rate was decreased in co
parison with its value before the field was switched o
Switching the field on during this time had a significan
weaker effect on the plasticity~or simply no effect was re-
corded!. The delay in the softening discontinuity relative
the magnetic-field exposure and the reduced sensitivity
the crystal to the field after the jump indicate that und
conditions of macroplastic deformation an after-effect of
magnetic field is in fact observed, caused by resid
changes in the state of the structural defects.

The narrow range of deformations near the flow limit
which the magnetoplastic effect is manifested implies t
the magnetic field efficiently facilitates the surmounting
point defects by dislocations and has a weak effect~or no

FIG. 3. The deformation jumpD« caused by a magnetic field pulse wit
B57 T in NaCl crystals with flow limit«y versus the total deformation o
the crystals«. Inset shows a typical fragment of the deformation diagram
the instant the magnetic field is switched on.
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effect! on the interaction of slip dislocations with a fore
dislocations. This is also indicated by the results of expe
ments in which we used two types of NaCl crystals: 1! crys-
tals stored for several years atT5293 K, and 2! crystals
quenched from 700 K with a cooling rateg.4 K/s. During
deformation of crystals of the first type, repeated switch
of the magnetic field had no effect on the plastic flow rate
the crystals within the limits of accuracy of the experimen
If the crystals were subjected to quenching before being
formed, the process of their plastic flow became sensitive
switching the field on. We found that to elicit the effect
quenching, it was necessary to hold the crystals atT5700 K
for a timet.t* 543103 s. Fort,t* the plastic properties
of the crystals remained insensitive to a magnetic field~Fig.
4!. The efficiency of temperature sensitization of the cryst
to a magnetic field also depended on their average coo
rateg: when it was lowered to 0.1 K/s heat treatment did n
increase the sensitivity of the crystals to a magnetic fi
~Fig. 4!. Note that in unquenched crystals stored under
controlled conditions a less systematic magnetoplastic ef
was recorded and also without preliminary heat treatme
however, in this case it was considerably weaker.

3. Identification of the mechanisms of the softening a
tion of a magnetic field requires that we determine the
jects in the crystal that are exposed to its effect. Since i
unlikely that the physical properties of the defect-free
gions of ionic crystals can be altered in a weak magne
field, the softening of the crystals can be explained by s
eral possible factors: a! the magnetic field alters the state
the point defects, b! a magnetic field alters the state of th
dislocations, and c! the very process by which a dislocatio
becomes depinned from a pinning center is sensitive t
magnetic field.

In order to determine which of these possibilities a
indeed realized, we performed a third series of experime
in which the plastic properties of the crystals were asses
on the basis of the segment lengths of individual dislocati
acted on by a calibrated mechanical compression pulse,
he crystals were exposed to a magnetic field withB51 T I!

t

FIG. 4. Dependence of the relative deformation jumpD« caused by a mag-
netic field pulse withB57 T in pre-quenched NaCl crystals having alrea
reached a deformation of 0.15% on their preliminary storage timet at T
5700 K ~average rate of subsequent cooling 9 K/s! ~1! and on the average
quench rateg for t5104 s ~2!.
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before introduction of fresh dislocations and commencem
of loading, II! between the introduction of fresh dislocatio
and commencement of loading, and III! during loading of
crystals with freshly introduced dislocations~see the diagram
on the right side of Fig. 5!.

In the runs of group I the crystal was kept in the ma
netic field during a time interval 0,t f,104 s, dislocations
were then introduced, and after the chemical etching pro
dure which exhibited their original arrangement the sam
was subjected to compression with the same mechan
loading pulse in all runs. Measurement of the mean free s
ment lengthL of the dislocations in runs of this type enable
us to establish that it is greater in the crystals exposed to
magnetic field than in the control runs without a field fort f

,83103 s ~Fig. 5!. For t f.83103 s the magnitude ofL
returned approximately to its original value. ‘‘Memory’’ in
the crystals of their exposure to a magnetic field can also
revealed by measurements of the microhardness perfor
immediately after exposure to the the field. After t
quenched crystals were treated in a magnetic field~duration
20 s andB52 T! their microhardness fell by;6%. In crys-
tals subjected to an extended isothermal anneal at 700 K
subsequent slow cooling toT5290 K over the course of 6 h
the magnetic-field pulses left no residual changes.

In runs of group II~Fig. 5! the freshly introduced dislo
cations as well as point defects could be exposed to the
tion of the magnetic field withB51 T since the dislocations
were introduced into the crystal before it was exposed to
magnetic field. The segment lengths of the dislocations
posed to the magnetic field were measured, as in the
group of runs, after the field was switched off. It was det
mined that under the same experimental conditions~field

FIG. 5. Dependence of the dislocation mean free segment lengthL due to
the mechanical loading of the NaCl crystals~the same in all of the runs! on
the exposure timet f to a constant magnetic field withB51 T; I — dislo-
cations introduced after exposure to a magnetic field withB51 T; II —
dislocations introduced before exposure to a magnetic field withB51 T; III
— crystals were simultaneously loaded and exposed to a magnetic fiel
6 s; IV — magnetic field was absent during the pause between introduc
of dislocations and loading (B50 T!. The diagram on the right shows th
sequence of procedures in runs of each type (B — exposure to magnetic
field, s — mechanical loading, arrow — introduction of dislocations, ast
isk — etching.
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strength, magnetic exposure time, and the loading-pulse
rameters! the dislocation mean free segment lengthL in the
group-II runs was greater than in the first group~Fig. 5!.

In the group-I and group-II runs, creation of a noticeab
change in the state of the crystal leading respectively t
50% and a 100% increase inL required exposure of the
crystals to a field withB51 T for a durationt f;103 s atT
5293 K ~Fig. 5!. When, on the other hand, crystals wi
freshly introduced dislocations were subjected to the sim
taneous action of a magnetic field and a mechanical load~as
in the group-III runs!, a twofold increase inL was reached
even 5–10 s after exposure to the magnetic field~Fig. 5!.

4. In the experiments of the fourth series, after expos
in a constant magnetic field dislocations were introduced i
the crystal and then, to initiate their motion the crystal w
subjected to a magnetic-field pulse (B57 T, duration 1022 s!
instead of a mechanical load. In contrast to the runs of
third series, in which the mechanical load could stimula
depinning of the dislocations from all types of pinning ce
ters~regardless of their sensitivity to a magnetic field!, in the
experiments of the fourth series the external testing ac
~magnetic-field pulse! could initiate depinning of disloca
tions only from magnetically sensitive pinning centers, a
motion of the dislocations took place in the internal mecha
cal stress field. For exposure timest f,43103 s in a constant
magnetic field, in contrast to the analogous runs in the th
series of experiments,L was observed to decrease with i
creasingt f in comparison with the behavior ofL* in crystals
not subjected to a preliminary exposure to a magnetic fi
~Fig. 6!. For t f.43103 s the value ofL recovered, ap-
proaching a value somewhat less thanL* with further in-
crease oft f . The kinetics of recovery of the dislocation se
ment length is insensitive to the presence of a cons
magnetic field on this rising segment ofL(t f) ~Fig. 6!.

If a crystal without freshly introduced dislocations
subjected to the action of a brief field pulse (B57 T, dura-
tion 1022 s! instead of an extended exposure to a const
magnetic field, and dislocations are then introduced into
then when a second pulse just like the first is switched on
mean free segment lengthL is found to be less thanL* ~Fig.
7! as in the runs with a constant magnetic field. In spec
experiments we found that one magnetic-field pulse
enough so that repeated field pulses have no effect on
state of the crystal and do not alter the mobility of the su
sequently introduced dislocations. Under these conditio
the action of the first magnetic-field pulse modifies the st
of the crystal, and subsequent motion of fresh dislocati
under the action of a second field pulse can serve as
indicator of the number of magnetically sensitive centers
maining in the crystal, from which dislocation depinning
facilitated by a magnetic field.

We found that the the mean free segment length of
dislocations initiated by a second field pulse depended on
time tp between the two magnetic-field treatments. Astp was
increased, the mean free segment lengths of the disloca
initiated by the second field pulse increased~Fig. 7!, i.e., the
mobility of the dislocations recovered. Switching on an a
ditional intermediate magnetic-field pulse just before int
duction of dislocations in this series of experiments had
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FIG. 6. Dependence of the dislocation mean free segm
lengthL due to the magnetic field pulse~the same in all of
the runs,B57 T! in NaCl crystals on the duration of thei
preliminary exposuret f to a constant magnetic field with
B51 T (d). Dependence of the dislocation mean free se
ment lengthL due to a magnetic field pulse~the same in all
of the runs,B57 T! in NaCl crystals subjected to a pre
liminary exposure to a magnetic fieldB51 T for 60 min on
the time t elapsed between the start of exposure of t
crystals to a constant magnetic field and introduction
dislocations (m). Notation the same as in Fig. 5, the ma
netic field pulse is denoted by the half-period sine wave
prime indicates values of the dislocation mean free segm
lengthL* initiated by a magnetic field pulse in crystals no
subjected to preliminary exposure to a constant magn
field, and of the mean free segment lengthL0 due to double
etching without a magnetic field.
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effect on the kinetics of recovery of the mean free segme
length or on the level to whichL rose with further increase of
tp ~Fig. 7!.

5. Such experimental procedures as quenching, mech
cal loading, and introduction of dislocations affect the sta
of all types of structural defects simultaneously. This hinde
identification of the magnetically sensitive centers and det
mination of their physical characteristics. At the same tim

FIG. 7. The dislocation mean free segment lengthL initiated by a test
magnetic field pulse in NaCl crystals subjected to a preliminary magne
field pulse before introduction of dislocations as a function of the durati
of the pausetp between magnetic field pulses (d); the same thing under
conditions where the sample is subjected to an additional intermediate m
netic field pulse before introduction of dislocations (s). A prime indicates
values of the dislocation mean free segment lengthL* initiated by a mag-
netic field pulse in crystals not subjected to preliminary exposure to a c
stant magnetic field, and of the mean free segment lengthL0 due to double
etching without a magnetic field. Notation is the same as in Figs. 5 and
nt
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e
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it is well known that monochromatic light in the optica
range is capable of selectively modifying certain types
point defects if the light frequency coincides with resonan
frequencies of intra-center electron transitions or correspo
to transitions to the conduction band. A photostimulat
change in the states of some types of point defects expl
the photoplastic effects observed in Refs. 22 and 23. T
suggests that the point defects, from which depinning is
cilitated by the action of a magnetic field in our experimen
can also be selectively modified by light.

To test this conjecture, we carried out a fifth series
experiments in which crystals of NaCl, KCl, and LiF we
illuminated for 15 min by a DKSSh-200 lamp through
diffraction-grating monochromator in the wavelength ran
200–800 nm. We then introduced dislocations and subjec
them to the action of magnetic-field pulse withB57 T.
Upon termination of the pulse, the crystals were again etc
to determine the new locations of the dislocations. We fou
that the mean free segment length in the crystals expose
light L8 depends nonmonotonically on the photon energyE
and differs from the mean free segment lengthL* in the
‘‘dark’’ crystals ~those not exposed to light! ~Fig. 8!. The
greatest value of the differenceuL82L* u was reached a
photon energies of the exciting light equal toE152.8 eV for
KCl, E253.6 eV for NaCl, and as was determined by e
trapolation of the Gaussian dependence ofL(E) in the short-
wavelength region of the spectrum,E356.6 eV for LiF. For
all types of crystalsL8 was substantially less thanL* . Con-
sequently, their illumination before magnetic-field exposu
suppressed the magnetoplastic effect.

The photo-stimulated change in the sensitivity of t
crystals to a magnetic field can be explained either b
general lowering of the mobility of the dislocations regar
less of the reason for their motion in the crystal~e.g., as a
result of a modification of the pinning centers that are ins
sitive to the magnetic field! or by a modification of the mag
netically sensitive point defects. Of course, in the first ca
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the dislocation segment lengths due to the action of exte
mechanical stresses will decrease after exposure to
~photo-exposure! the same as those due to the action o
magnetic field. In the second case, for mechanical loadin
crystals exposed to light one can also expect an increaseL
in comparison withL* .

The choice between these two possibilities motivate
series of experiments in which the order of the procedu
was similar, but the magnetic-field pulse was replaced b
mechanical compression pulse. The magnitude of the l
was chosen so that the dislocation mean free segment le
in the ‘‘dark’’ crystalsLm was equal toL* . We found that in
contrast to the experiments in which motion of the dislo
tions was initiated by a magnetic-field pulse, pre-exposure
the crystals to light increasedLm ~Fig. 8!. Consequently, the
‘‘mechanical’’ mobility of the dislocations in this case grew
and the susceptibility to an external magnetic field was lo
Taking the above facts into account, this means that
photo-stimulated change in the mobility of the dislocations
a consequence of the effect of light on specifically tho
point defects from which dislocation depinning is facilitat
in a magnetic field.

4. DISCUSSION

In ionic crystals many point defects and dislocation n
clei containing dangling bonds or electrons and holes c
tured by the deformation potential, as is well known, poss
paramagnetic properties.24,25 Consequently, during structura
rearrangements covalent bonds between them can be fo
and broken. A set of examples of the effect of weak magn
fields on the kinetics and the yields of these reactions is w
known in the chemistry of radical reactions.16–18 These ef-

FIG. 8. Dependence of the dislocation mean free segment lengths due
magnetic field pulse in NaCl crystals,L8 ~1!, and due to mechanical loading
Lm ~2!, on the photon energyE of the preliminary photo-exposure~exposure
to light!. A prime indicates values of the mean free segment lengthL*
initiated by loading or by a magnetic field pulse in ‘‘dark’’ crystals, and
the mean free segment lengthL0 due to etching. Notation is the same as
Fig. 5, Ph — photo-exposure.
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fects have found a consistent description within the fram
work of the theory of spin-dependent intercombination
transitions observed in a reaction cell in the absence of t
modynamic equilibrium.19,20 In Refs. 11 and 12 it was pro
posed to use elements of this theory to describe the inte
tion of dislocations with a local pinning center in the cryst
Obviously, such an approach can be applied only for th
experimental conditions for which the magnetic field exi
while the dislocation approaches the obstacle and whe
overcomes it. As follows from the results presented in
preceding Section, after the magnetic field is switched
residual changes are preserved in the crystal which influe
the mobility of the dislocations for an extended time. Sin
these changes can appear even if the crystal is exposed t
magnetic field in the absence of freshly introduced dislo
tions, we must broaden the spectrum of possible sp
dependent reactions in the crystal that can be affected b
magnetic field. Possible types of reactions capable of play
a role in the formation of plastic properties of crystals in
magnetic field are depicted schematically in Fig. 9. Moti
of dislocations in the crystal is necessary for only two
these reaction types (RD1RP↔M1 and RD11RD2↔M2;
for an explanation of the notation see the caption to Fig.!.
The remaining reactions can occur in an unloaded crystal
course, to establish the mechanisms of the action of a fiel
is necessary to determine the contribution of each of
reactions to the total effect of softening of the crystals in
magnetic field. The results of our study of the effect of
magnetic field on the mobility of individual dislocations a
low us to do this.

Let us first discuss the possibility of the effect of a ma
netic field on the state of the crystals in the absence
freshly introduced dislocations. In the group-I runs of t
third series of experiments~Fig. 5! and in the runs of the
fourth series of experiments~Fig. 6! in which the crystals
were subjected to magnetic-field treatment before fresh
locations were introduced, this field, in principle, cou
stimulate depinning of the growth dislocations present in

o a

FIG. 9. Schematic depiction of types of reactions between crystal defe
during which a magnetic field can have an effect: 1! RD1RP↔M1, 2!
RD11RD2↔M2, 3! RP81RP9↔M3, 4! RD81RD9↔M4, RP11RP2↔M5

(RD are paramagnetic centers localized in the dislocation nucleus,RP are
paramagnetic point defects; in the formulas the primed subscripts co
spond to reagents belonging to the same structural defects, and the
scripts with numbers correspond to reagents belonging to different struc
defects.
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crystal from the impurity atmospheres, thereby influenc
the redistribution of long-range internal stresses. Howeve
this factor could have an effect on the mobility of subs
quently introduced dislocations, it could not be expected t
with increase of the duration of the exposure of the crysta
the magnetic field (t f.43103 s! the mobility of the subse-
quently introduced dislocations would spontaneously reco
almost to their original value. In actual fact, the decrease
the mobility of the dislocations fort f,43103 s and its re-
covery for t f.43103 s cannot be explained by the sam
factor—relaxation of internal stresses upon depinning
growth dislocations.

This suggests that in the experiments in which the cr
tals were exposed to a magnetic field before fresh dislo
tions were introduced, the field could affect only the state
the point defects since during the time the crystals were
posed to a magnetic field fresh dislocations were absent,
the observed nonmonotonic changes in the plastic prope
cannot be explained by relaxation of internal stresses u
depinning of growth dislocations in a magnetic field. Con
quently, the following reactions in the subsystem of po
defects could be susceptible to the action of a magnetic fi
RP81RP9↔M3 andRP11RP2↔M5 ~Fig. 9!.

Although in the third series of experiments~Fig. 5!
magnetic-field treatment of the crystals temporarily
creased the mobility, and in the runs of the fourth ser
performed in the absence of external mechanical load it
observed to decrease~Fig. 6! and then recover with the pas
sage of time in both cases. At first glance, this may seem
imply that the reactions RP81RP9↔M3 and RP1

1RP2↔M5 are reversible, i.e., that a magnetic field exci
the point defects, which then relax to their initial state. Ho
ever, the mobility of the dislocations recovers to a lev
lower than its original level, and the rising segment ofL(t f)
is insensitive to the presence of a constant magnetic fi
~Fig. 6!. This may imply that the nonmonotonic variation
the mean free segment length after the action of a magn
field can be explained by a multistep relaxation process
the subsystem of point defects in which the magnetic fi
plays the role of a ‘‘trigger,’’ opening up the possibility o
the occurrence of reactions prohibited in its absence.

If this is not the case, then switching on an addition
intermediate magnetic-field pulse just before introducing d
locations in the fourth series of experiments~Fig. 7! should
make their mean free segment length the same as it w
short time after the first magnetic-field pulse. However,
experiments show that an intermediate pulse has no effec
the kinetics of recovery of the mean free segment length
on the level to which the dependenceL(t) rises ~Fig. 7!.
Consequently, the state of the point defects is irrevers
altered, and the recovery of the sensitivity of the dislocat
mean free segment length to a magnetic field may be a
sequence of excitation of point defects during the introd
tion of dislocations or a consequence of motion of charg
dislocations in the crystal.

The most likely reason for the sensitization of point d
fects to a magnetic field upon introduction of dislocations
action of the strong electric fields arising during the moti
of charged dislocations at the moment the dislocations
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introduced. Preliminary experiments show that an exter
variable electric field with field strength;10 kV/cm leads to
the appearance of sensitivity of point defects to a magn
field in those crystals in which their sensitivity to a magne
field was suppressed by isothermal annealing.

Thus, for B57 T a magnetic-field pulse of duratio
1022 s proves sufficient for the occurrence of the first step
the relaxation process in the subsystem of metastable p
defects, which proceeds in a magnetic field withB51 T after
43103 s. The second step, during which the thermodynam
potential of the crystal with point defects also continues
decrease, occurs after termination of the magnetic-fi
pulse. As a result of the second step, the point defects w
up in a state from which they can be transferred to an
cited, magnetically sensitive state upon introduction of d
locations.

At present, the efficient action of a weak~on the energy
scale! magnetic field on the relaxation rate of various sy
tems from a metastable state is widely known. These incl
the rate of chemical reactions,16–18 the photoconductivity26

and viscosity of amorphous materials,27 etc. The irreversibil-
ity of the change in the states of point defects in a magn
field observed in our experiments, and also the necessit
pre-excitation of the crystals by introducing dislocations
quenching to elicit a magnetoplastic effect in them~Fig. 3!
puts this effect into the same class with the phenomena
scribed above and clarifies thermodynamic aspects of the
fect of a magnetic field on the plasticity. Quenching or t
electric field of the moving dislocations creates in the crys
a nonequilibrium distribution of structural defects over t
available states, and a magnetic field facilitates their rel
ation by accelerating only the rate of relaxation proces
taking place in the subsystem of point defects and in
absence of a field. The possibility of a magnetic-field effe
on the state of the point defects in crystals that have not b
exposed to any preliminary excitation is probably connec
with the presence in them of a biographic nonequilibriu
distribution over degrees of aggregatedness, orientation
some other property.

Note that other authors6,10 have observed depinning o
dislocations from pinning centers in a magnetic field in we
annealed crystals on the macroplastic as well as the mi
plastic level. This indicates that the plastification channel
have discovered of crystals in a magnetic field is not uniq
In the absence of magnetically sensitive point defects
magnetic field can also alter the kinetics of the other re
tions enumerated in the caption to Fig. 9, which would a
cause changes in the plasticity.

Let us now consider the runs in which both dislocatio
and point defects could be simultaneously exposed to
action of a magnetic field~runs of group II, see Fig. 4!. The
still greater softening of the crystals, in comparison with t
runs of group I, arising in such experiments~Fig. 4! indicates
that the state of the dislocations can also be exposed to
action of a magnetic field, i.e., reactions of the typeRD8
1RD9↔M4 can occur and be sensitive to the presence o
magnetic field. An alternative explanation of this experime
tal fact may be that a magnetic field affects the depinning
dislocations from pinning centers from the start and, a
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consequence, facilitates their motion upon subsequent l
ing. To what extent each of these factors can contribute
the additional softening of the crystals in a magnetic fi
can be determined from an analysis of the experimental
on the motion of dislocations produced by continuous et
ing.

If depinning in a magnetic field, from the start, of
larger number of dislocations than in the control runs wo
produce a noticeable redistribution of the internal mechan
stresses and to a collective effect of growth of the mobil
then it may be expected that motion of the dislocatio
should be to a significant extent correlated—pinning and
pinning of each dislocation should affect the others, and
waiting time for each dislocation would be interrelated w
the parameters of its further motion from the start.

Measurement of the dimensions of the dislocation p
allowed us to determine the waiting times for 90 dislocatio
at pinning centers and how long they move between pau
by the technique described in Ref. 21. We found that
correlation coefficientG1 between the time elapsed from th
start of etching to the first depinning and the total dislocat
mean free segment length is close to zero (G1520.11). The
correlation coefficient between the waiting time until the fi
depinning and the time of motion of a dislocation until
first pause is also very low (G2520.03). This suggests tha
magnetic-field stimulated depinning of dislocations in fa
has no noticeable effect on their subsequent motion from
start. In addition, for 90% of the moving dislocations the fi
depinning occurs after termination of the magnetic-fie
pulse. This all suggests that the increased velocity of
dislocations at large distances from their original location
a consequence of a ‘‘memory’’ in the structural defects
their exposure to a magnetic field. This viewpoint is a
supported by the delay of the macroplastic deformation ju
initiated by a short magnetic-field pulse~Fig. 3!.

Thus, the effect of a magnetic field on the depinning
dislocations from paramagnetic centers~i.e., on reactions of
the typeRD1RP↔M1) discovered by Al’shitset al.1 cannot
be the only reason for motion of dislocations in unload
crystals. Another reason may be changes in the state
isolated structural defects, i.e., point defects and disloca
nuclei. Consequently, a complete treatment of the magn
plastic effect in ionic crystals would have to take into a
count at least three types of magnetically sensitive reacti
1! reactions between point defects in the bulk of the crys
2! reactions between point centers in the dislocation nucle
and 3! reactions between a point defect and a paramagn
center in a dislocation nucleus.

We can render this general picture of the effect o
magnetic field on the plasticity concrete by availing ou
selves of data on the types of defects that can be affecte
a magnetic field, and on the kinetics of processes tak
place in the subsystem of point defects after exposure of
crystal to a magnetic field. Experimental data on the kine
of magnetically stimulated processes together with qua
tive estimates allow us to establish the direction of the re
tion RP81RP9↔M3. Processes that could take place w
point defects after exposure to a magnetic field can be no
nally divided into two groups: 1! monomolecular—mutually
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independent local reactions, which include reorientations
defects, pair dissociation, transitions to another electron le
inside a defect, etc., and 2! bimolecular—mutually depen
dent processes, examples of which include recombinatio
wandering defects into pairs, capture of electrons from
conduction band into traps, and other reactions requiring
encounter of reagent molecules of the same or different s
cies. During a monomolecular process the number of pinn
centers that have changed their state as of the timet after
termination of excitation is given byN(t)5N0(12exp
(2t/t)). Bimolecular processes obey a hyperbolic law
variation of the concentration of excited defects in tim
N(t);1/(11ctn), n.0 ~Ref. 28!. The well-known relation
betweenL and N (L}N21/2) ~Ref. 29! enables us to deter
mine to which of these processes the reactions belong
are initiated in the crystals after termination of the magne
pulse.

Fitting of the dependence of the quantity (L2L* )/L*
on t f in the first step of the relaxation process~Fig. 6! by a
straight line on a semi–log plot gives a root-mean-squ
error that is 30% less than the fit obtained by a straight l
on a log–log plot. In the second step, in contrast, the ro
mean-square error of the log–log fit is four times less th
that of the semi-log fit. In light of the above, this may imp
that the reaction occurring in the first step of the relaxat
process in the subsystem of point defects in a magnetic fi
is a monomolecular reaction of the typeM3→RP81RP9 ,
and in the second step—a bimolecular reaction—of the t
RP11RP2→M5, for example. An additional argument in fa
vor of this supposition is offered by the results obtained
Ref. 30, where it was established that a pulsed magnetic
is capable of leading to such a change in the picture of
decoration of the surface of ionic crystals, which correspo
to dissociation of an aggregated impurity. Bimolecularity
the reactions in the second step of the transformation of p
defects can explain the diffusion times of their relaxati
after termination of the magnetic-field pulse that are pro
ably necessary to realize encounters of randomly wande
reagent molecules. This viewpoint is also supported by
increase in the rate of the transition of the defects to a n
state when the temperature is raised,31 which is probably due
to a growth of the mobility of the reagent moleculesRP1 and
RP2.

Thus, there are grounds to assume that in a magn
field a monomolecular process of formation of reagent m
ecules occurs via dissociation of composite point defects~the
magnetic field stimulates the reactionM3→RP81RP9). The
products of this decay recombine with each other or comb
with other defects after termination of the magnetic-fie
pulse.

We can make the step from a phenomenological tre
ment of the magnetoplastic effect to a determination of
mechanisms of the action of a magnetic field by availi
ourselves of the results of experiments on optical quench
of the sensitivity of crystals to a magnetic field. Since t
atomic rearrangement of the configuration of point defe
occurring instantly under the action of light requires phot
energies near or greater than the x-range, and since radi
from the far-infrared is commonly used to match the fr
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quency of the external radiation with the resonance
quency of the local natural oscillations of the defects, it c
be asserted with a high degree of confidence that the us
light in the optical range with photon energy less than
width of the band gap will result in a rearrangement of t
electronic structure of the magnetically sensitive cente
Consequently, an explanation of the magnetoplastic ef
can be had by taking into account the effect of a magn
field on the electronic properties of the defects. This giv
reason to suppose that the process of electron interac
between defects is sensitive to a magnetic field, i.e., the
actions described above probably are of a chemical na
and consist of the formation of a spin–dependent excha
coupling between paramagnetic defects. The important
of solid-state chemical reactions between structural def
in the formation of the optical and electronic properties
crystals has been known for a long time.32,33However, treat-
ments of the plastic properties of crystals, as a rule, take
account only the elastic or electrostatic interaction betw
the defects.34 Such an approach, obviously, does not allow
to explain the entire panoply of experimental data on
effect of a magnetic field on the mobility of dislocations
ionic crystals.

Let us review the experimental facts which provide
rect evidence of the need for an account of short-range
change forces in any treatment of the interaction betw
point defects and dislocations. If the hypothesis of the s
nature of the magnetoplastic effect is valid, then the co
bined action of a weak constant magnetic field and a mic
wave magnetic field under certain conditions can give rise
a magnetic resonance in defect complexes, influence the
ficiency of formation of secondary reaction products, a
thus be reflected in the mobility of the dislocations. A test
this hypothesis would consist of a study of the mobility
individual edge dislocations under conditions of the simu
neous action of a weak constant magnetic field and a h
frequency magnetic field crossed with it. Such a formulat
of the experiment is analogous to RYDMR, the well-know
technique for studying chemical reactions in crossed m
netic fields from the final product yields.35–37

In the experiments we used NaCl single crystals
nealed at 700 K and cooled back down to 293 K during
with an impurity of bivalent metals~mainly Ca! at the level
0.01 at. % dislocations were placed inside a TE10 rectangular
waveguide, connected to a klystron which worked at a f
quency of 9.5 GHz and generated an electromagnetic fi
flux with power ;10 mW through the sample. The wav
guide was located between the poles of an electroma
which could create a constant magnetic fieldB0 between 0.2
and 0.8 T in the vicinity of the crystal. The segment leng
of individual edge dislocations, which fulfilled the role of a
indicator of magnetically sensitive processes in the crys
were measured in the conventional way by double chem
etching. Each point on the graphs was constructed by a
aging 100–400 segment lengths of individual dislocatio
measured under identical conditions. Double etching of
samples in the absence of external forces yielded a m
displacement of the dislocationsL051261 mm. The dis-
placement of the dislocations in crystals exposed for 15
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to the action of the microwave magnetic field in the abse
of the constant magnetic field was the same in magnitu
i.e., treatment of the crystals with only the variable magne
field did not affect the mobility of the dislocations~Fig. 10!.

In the absence of the microwave field, exposure of
crystals to the constant magnetic field for 15 min caused
increase in the mean free segment length of the dislocat
in comparison withL0. As can be seen from Fig. 10, in th
absence of the microwave field a monotonically increas
dependence ofL(B0) was observed.

Exposure of the crystals to a constant magnetic fi
with simultaneous action of the microwave field for 15 m
~in the configurationB1'B0, whereB1 is the amplitude of
the microwave magnetic field! gave rise to a peak in the
L(B0) dependence forBres50.3360.01 T ~Fig. 10!.

A similar result obtains for the frequency of the variab
field equal to 152.2 MHz, where forBres8 '0.005 T a resonan
increase in the segment lengths of the dislocations is
observed, albeit weaker, but fully distinguishable. When
constant and microwave fields were applied in the confi
rationB1iB0, the peak in theL(B0) dependence disappeare
and the dependence itself became similar to that observe
the absence of the microwave field. Thus, over a wide ra
of microwave frequencies by varying the strength the c
stant magnetic field it was possible to observe peaks in
L(B0) dependence.

Both in the combined action of a microwave and a co
stant magnetic field and when the crystals are exposed
constant magnetic field in the absence of the microw
field, on average an equiprobable motion of the dislocati
is observed in the four crystallographic directions@110#,

@ 1̄10#, @11̄0#, and @ 1̄ 1̄0# on all faces of the sample. Con
sequently, the role of external fields in our experiments
duces to a depinning of the dislocations from the pinn

FIG. 10. Dependence of the dislocation mean free segment lengthL due to
a constant magnetic fieldB0 applied for 15 min with simultaneous applica
tion of a perpendicular high-frequency magnetic field (n59.5 GHz! (d)
and without (s). A prime indicates a value of the mean free segment len
L0 due to etching in crystals not exposed to the action of external field
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centers, and the motion of the dislocations takes place u
the action of random internal mechanical stresses.

Without touching upon the specific mechanisms of d
pinning of dislocations from pinning centers, let us discu
the general conclusions that follow from our results. T
experimentally found valueBres50.3360.01 T corresponds
to the field Bth5hn/mBg at which for the microwave fre-
quencyn59.5 GHz resonant transitions take place betwe
the spin sublevels of the electron with Lande´ factor g
52.0660.05, which are split in the constant magnetic fie
The possibility of recording a resonant increase in the m
bility of the dislocations at the microwave frequencyn
5152.2 MHz for the corresponding value ofB0 is additional
evidence of the resonant nature of the phenomenon.

Usually the role of the resonant microwave field is
increase the intensity of the transitions between the sin
and triplet sublevels of a nonequilibrium pair consisting
paramagnetic particles.37 Intensification of such transitions i
the short-lived pair D1 T, as was shown theoretically i
Ref. 38, can be reflected in the mobility of the dislocatio
Thus, the combined influence of a constant magnetic fi
and a high-frequency magnetic field on the plasticity c
distinguish the spin-dependent part of the forces braking
motion of the dislocations from the sum of elastic, elect
static, and exchange interactions with the point defects.

5. CONCLUSIONS

We have shown experimentally that one of the prereq
sites for a magnetic field to have an effect on structural
fects is their pre-existence in a metastable state. This clar
the thermodynamic aspects of the effect of weak electrom
netic fields on the physical properties of materials. We fou
that a magnetic field can alter the state of the disloca
nuclei as well as the state of the complexes. We have id
tified the types and order of the reactions between vari
defects and within one type of defect which are influenc
by a magnetic field. We have uncovered the possibility
selective modification of magnetically sensitive point defe
by light in the optical range, and also by the combined act
of a constant magnetic field and a high-frequency magn
field, making it possible to create experimental conditions
their identification. We have shown that to explain the s
sitivity of intracrystalline reactions to a magnetic field it
necessary to take into account the electronic degrees of
dom of the defects which participate in the formation
chemical bonds between them. This points to a signific
role for exchange forces in the formation of the plastic pro
erties of ionic crystals. The suggested mechanisms by w
a magnetic field can affect the state of defects in ionic cr
tals do not possess any specifics associated with the spe
type of material, and under certain conditions can be use
explain magnetoplastic effects in metals, semiconduct
and polymers. The ensuing experimental situations can
the role of model conditions for the study of more compl
objects sensitive to a magnetic field: polymer and prot
macromolecules, and also biological systems.

The authors express their gratitude to Prof. V. I. Al’sh
and Prof. M I. Molotski� for fruitful discussions of this work.
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Propagation of nonequilibrium phonons in ferroelectric ceramics and single crystals
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Phonon transport in ferroelectric ceramics and single crystals has been experimentally
investigated. Our measurements indicate that, in the temperature range 1.7–3.8 K studied, the
effective phonon diffusion coefficient behaves asDeff}T25 in ferroelectrics with a
broadened phase transition. This experimental dependence is in accord with the presence of a
plateau in the thermal conductivity of such materials. The scattering by domain walls in
BaTiO3 single crystals has been identified, and our results are in quantitative agreement with
calculations. ©1999 American Institute of Physics.@S1063-7761~99!01702-3#
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1. INTRODUCTION

In our experiments we have studied propagation
weakly nonequilibrium phonons atDT5Th2T0!T0 , where
Th is the heater temperature andT0 is the ambient tempera
ture, in a number of ferroelectric materials in single-crys
and ceramic modifications. When the thermal pu
technique1 is used, i.e., the size of the samples in the phon
flux direction is larger than their diffusion length, the prop
gation of nonequilibrium phonons is described by the c
ventional heat equation. The peak amplitude of the bolo
eter signal as a function of temperature yields informat
about the mechanism of phonon scattering in the mate
and in ceramics about the structure of grain boundaries.2,3

The interest in studies of ferroelectric materials is stim
lated by at least two objectives.

1. Identification of the contribution of phonon scatterin
on grain boundaries. At present numerous theoretical ca
lations of coherent ultrasound reflection and refraction
grain boundaries are available.4,5 On the other hand, no ex
perimental data that are at all trustworthy have been obta
to date, primarily because the reflection of coherent ul
sound waves from domain boundaries is very low.6,7 Suslov
and Kagan8,9 attempted to determine the contribution of d
main boundaries to scattering of phonons in a thermal p
in virtual ferroelectrics SrTiO3 and KTaO3 in an applied
electric field, but the interpretation of the experimental d
proved to be very complicated.

2. Determination of the main phonon scattering mec
nism in a thermal pulse in ferroelectric ceramics and sin
crystals, which are characterized by anomalies in their lo
temperature specific heat and thermal conductivity that
be interpreted in terms of the glass model.10 This model pre-
supposes that, in addition to low-energy excitations of cr
talline materials, there are additional low-energy excitatio
in glasses, responsible for the low-temperature thermo
namics and phonon kinetics. With a view to interpreti
measurements by the thermal pulse method, the transit
3421063-7761/99/88(2)/5/$15.00
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of a nonequilibrium phonon pulse as a function of tempe
ture in such materials was calculated by Kozubet al.3,11

Thus, the aim of this work was the experimental inve
tigation of phonon scattering by domain walls in single cry
tals and in ceramic grains of the conventional BaTiO3 ferro-
electric with a narrow phase transition, together w
ceramics and single crystals with a diffusive phase transit
such as PbMg1/3Nb2/3O3 ~PMN!, PbSc1/2Nb1/2O3 ~PSN!,
solid solutions based on these materials, a
Pb(121.5)xZr0.65Ti0.35Lax (x50.06– 0.1)~PZTL!.

2. EXPERIMENTAL TECHNIQUES

All ferroelectric ceramic and single-crystals sampl
used in our experiments were fabricated by conventio
technologies. The ceramics were densely packed with a d
sity of 97–98% of the theoretical single-crystal density at
average grain dimension of about 1023 cm.

The structure of a sample cleaved surface was teste
a Joal JSM-840 scanning electron microscope. The mic
graphs characterized on the qualitative level a single-cry
domain structure or a pattern of grains and grain bounda
in a ceramic sample. The phonon kinetics at helium tempe
ture was studied by the thermal pulse technique describe
detail elsewhere.1 Recall that a thin gold film is deposited o
one side of a plate of tested material, and this film is hea
by a very short ('1027 s) current pulse, so that it acts as a
injector of nonequilibrium phonons into the sample. On t
opposite sample surface, a tin bolometer of a meande
shape with area 0.330.25 mm is fabricated. If the bolomete
characteristic is biased by a weak magnetic field of'2
3102 Oe, one can measure nonequilibrium phonon scat
ing versus temperature over a range of 1.7–3.8 K. The po
dissipated in the heater is set at a sufficiently low level t
the injected phonons could be described in terms of the
bient temperature in analyzing experimental data.

The basic parameter measured in the experiments is
transit timetmax of the nonequilibrium phonon peak detecte
© 1999 American Institute of Physics
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FIG. 1. Electron micrographs of~a! strip domains in thexy
plane of a BaTiO3 single crystal and~b! cleaved surface of a
PMN ceramic sample fabricated by the hot-pressing techniq
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by the bolometer. Its dependence on the temperature
features of the tested sample structure has been analyze

3. RESULTS AND DISCUSSION

Typical micrographs of sample surfaces are shown
Fig. 1. The BaTiO3 single crystal is characterized by a fair
regular pattern ofa-type domains~Fig. 1a!. The boundary
between the domains is a region where the order parame
inhomogeneous,12 and its widthr c can be treated as a doma
wall boundary thickness. There is good reason to assume
r c equals several lattice constants, i.e., in BaTi3

r c'20– 30 Å, so that the phonon wavelength in our expe
ments islph@r c . In real crystals a domain wall is pinned b
defects, crystal inhomogeneities on crystal boundaries an
the wall region, i.e., elastic stress is present in the laye
thickness;r c . The domain structure determines most of t
ferroelectric properties of practical significance, and one a
of the reported work was to estimate its effect on the pho
kinetics at low temperature.

All ceramic samples under study were characterized
dense packing of most of their grains, of which the major
looked like crystallites~Fig. 1b!. The statistical analysis o
large sets of grains yielded the mean grain sizeR for a spe-
cific sample.

Before proceeding to the analysis of nonequilibriu
phonon propagation, let us discuss features common to
the samples. Thus, the curves of bolometer signal ve
nd
.

n

r is

at

i-

in
of

n

y

all
us

time are bell-shaped with clearly defined peaks, which
typical of the diffusion propagation mode. Some data
propagation of thermal pulses in samples of different leng
from one material and at different temperatures are plotte
Fig. 2. The transit timetmax of the nonequilibrium phonon
peak to the bolometer is proportional toL2 with good accu-
racy, whereL is the plate size in the phonon flux directio
~see the inset to Fig. 2!.

Given tmax, one can estimate the effective diffusion c
efficient of the dominant phonon group,2 Deff'L2/tmax. For
most materials studied in our experiments, the thermal c
ductivity k and specific heatCv at helium temperature ar
known. This allowed us to calculate the phonon diffusi
coefficient by the standard formulaD5k/Cv and compare
with our measurements. It turned out that the discrepanc
the single crystals and BaTiO3 ceramic was within 10%.10,13

In PMN and PZTL ceramics this discrepancy is notab
higher, by a factor of up to two.10,14–16We do not think that
this discrepancy is of major importance, since there are
certainties in models of phonon propagation in ceram
materials,2 and processes used to synthesize ceramic ma
als may vary.

In our opinion, observation of the proportionalitytmax

}L2 in all the samples~Fig. 2! and absolute measurements
the diffusion coefficient for the dominant group of phono
in fairly good agreement with independent measureme
provide solid evidence in favor of the applicability of th
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FIG. 2. Signals due to nonequilibrium phonons in a PNM c
ramic sample of thicknessL50.0085 cm at~1! T53.82 K; ~2!
3.46 K; ~3! 3.15 K; ~4! 2.81 K; ~5! 2.46 K; ~6! 2.22 K. The inset
showstmax versus PMN sample length atT53.8 K.
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diffusion model2,3 to our results, so we can proceed to t
analysis of thetmax temperature dependence with a view
determining the phonon scattering mechanism in the fe
electrics studied.

The curves oftmax versus temperature for the teste
samples can be classified in two groups:10 ~1! ferroelectrics
with a diffusive ~broadened! phase transition, hence wit
glass-like properties;~2! ferroelectrics with a narrow phas
transition, hence with crystal-like kinetic properties.

Figure 3 shows records of thermal pulses at several
ferent temperatures in a typical ferroelectric of the fi
group, namely, Pb(121.5)xZr0.65Ti0.35Lax (x50.08), where
the ion disorder is considerable and translational symmetr
broken due to La doping,10 so the kinetic properties ar
glass-like. For curves in Fig. 3 the lawtmax}T5 is in accord
with theoretical estimates3,11 for the region of the therma
conductivity plateau in glassy ferroelectrics.

The inset to Fig. 3 shows the signal due to nonequi
rium phonons in pure PZT ceramic not doped with La. T
propagation time in the pure material is considerably shor
only a few microseconds. This case can be regarded as q
ballistic propagation. Recall that the transition in this c
ramic is narrow, and its kinetic properties are those cha
teristic of crystals.11
-

f-
t

is

-
e
r,
si-

-
c-

Phonon scattering by low-energy vibrational excitatio
typical of dielectric glasses has been detected in sample
PbMg1/3Nb2/3O3– PbSc1/2Nb1/2O3 ceramic solid solutions.
For samples of all compositionstmax follows a T5 law.

All in all, the analysis of data on ferroelectrics wit
glass-like kinetic properties leads us to conclude that
thermal pulse technique unambiguously identifies such pr
erties, since the peak position of the signal due to none
librium phonons in the temperature range of 2 to 3.8 K f
lows the law tmax}T5. Figure 4 shows curves of therma
conductivity of PZTL and PMN ceramics and of the SiO2

glass10 versus temperature with the characteristic flat s
tions near 10 K. The graph also plots our measurement
effective diffusion coefficients for the tested materials. T
temperature intervals corresponding to the flat sections of
thermal conductivity and to the diffusion coefficients d
scribed by the formulaDeff}T25 are fairly close to each
other.

The assumption that scattering on grain boundaries
small and does not affect properties of glass-like ceramic
the low-temperature range is supported by direct meas
ments of the diffusion coefficient of nonequilibrium phono
in a PMN single crystal fabricated by the hot-pressi
method ~Fig. 1b!. At a temperatureT53.8 K we have
L
FIG. 3. Signals due to nonequilibrium phonons in a PZT
sample withL50.008 cm at~1! T53.81 K; ~2! 3.43 K; ~3! 3.17
K; ~4! 2.8 K; ~5! 2.49 K. The inset shows the nonequilibrium
signal in a PZT ceramic sample withL50.1 cm atT53.82 K.
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Deff52.5 cm2/s for both single-crystal and ceramic samp
to within the accuracy of the measurements.

Now let us consider curves of the signal due to noneq
librium phonons for ferroelectrics with a narrow phase tra
sition. As was noted above, propagation of a thermal puls
PbZn0.65Ti0.35O3 not doped with La is quasi-ballistic~Fig. 2!.
Measurements of the typical ferroelectric BaTiO3 are shown
in Fig. 5. The main set of the curves was obtained in
ceramic sample with thicknessL51 mm. The main result
]tmax/]T,0, is typical of ballistic propagation inside grain
and scattering on thin interfaces between them, where
acoustic impedance is low owing to the low material dens
and concentration of micropores. In this situation phono
pass through grain boundaries more readily the hig

FIG. 4. Temperature dependence of thermal conductivity of ceramics an
glasses@~1! SiO2 ; ~2! PMN; ~3! PZTL# and those of diffusion coefficients
Deff5L2/tmax @(18) SiO2 ; (28) PMN; (38) PZTL# derived from measure-
ments of this work.
i-
-
in

a

he
y
s
r

the phonon frequency or, in this specific case, the sam
temperature.17 In our experimenttmax}Tk, wherek'21.

The inset to Fig. 5 shows curves of the nonequilibriu
phonon signal for a BaTiO3 single crystal, which implies
tmax}Tm, wherem'2. In single crystals the effective diffu
sion coefficient for phonons is a factor of 10 to 20 high
but, what is more important, it has a different temperat
dependence.

This result unambiguously indicates that the contribut
of domain boundaries to phonon scattering is minimal a
does not affect our measurements. In the BaTiO3 single crys-
tal the phonon scattering is controlled by domain w
boundaries. Let us make some quantitative estimates. In
model with diffusion of nonequilibrium phonons2,3 tmax is
related to the effective phonon free path by the simple f
mula

tmax5
3

2

L2

l effv̄s

, ~1!

wherev̄s is the mean phonon velocity in the sample. Usi
the data plotted in Fig. 5, we obtainl eff(3.8 K)'1023 cm,
which increases with decreasing temperature.

Two neighboring domains in a ferroelectric are regio
of the same crystal with different orientations related to o
another by one or more symmetry operations. A phonon fl
can undergo reflection on their boundary. This problem w
solved9 for the case of heat transfer in a system ofN plane-
parallel layers of thicknessd. The effective free path is ex
pressed by the formula9

l eff5
L~12s!

11sL/d
, ~2!

whereL5Nd is the sample thickness,s is the phonon reflec-
tivity on the boundary between two layers. At room tempe
ture our samples haved'331025 cm ~see Fig. 1a!, and we
assume that this parameter is little changed as a result o
phase transition taking place as the temperature dr
from room to helium. Using the experimental resu
l eff'1023 cm, we estimate the reflectivitys(3.8 K)'3
31022. This measurement seems fairly reasonable in v

of
n

FIG. 5. Signals due to nonequilibrium phonons in a BaTiO3 ceramic
sample withL50.1 cm. The inset shows nonequilibrium phono
signals in a BaTiO3 single-crystal sample withL50.043 cm.
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of the results of Refs. 6 and 7 and an estimate of the pho
reflectivity on boundaries between grains in the ceramic
rundum,s52.631022.18

These estimates have been made under the assum
that phonon scattering due to changes in the density
stiffness in domain walls can be neglected. Inclusion of
flections due to fluctuations in densityDr/r and elasticity
Dc/c in the domain wall region5,17 accounts for the tempera
ture dependence oftmax observed in our samples, where
quantitative estimates are difficult owing to the lack of da
on Dr/r andDc/c in the domain wall region.

In summary, the technique based on propagation of n
equilibrium phonons in ferroelectrics allows one to sel
materials with glass-like properties at helium temperatu
and obtain quantitative estimates of phonon scattering
domain boundaries in single crystals.

The work was supported by the Russian Fund for F
damental Research~Grant 97-02-16810!.
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The Ginzburg–Landau expansion in the simple model of a superconductor with a
pseudogap
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We propose a simple model of the electron spectrum of a two-dimensional system with hot
sections on the Fermi surface that significantly transforms the spectral density~pseudogap! in these
sections. Using this model, we set up a Ginzburg–Landau expansion fors andd type
Cooper pairing and analyze the effect of the pseudogap in the electron spectrum on the main
properties of a superconductor. ©1999 American Institute of Physics.
@S1063-7761~99!01802-8#
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1. INTRODUCTION

Among the various anomalies in the properties of hig
Tc superconductors, the existence of a pseudogap in the
tron spectrum of such materials at carrier concentrations
low the optimum value has drawn much attention.1,2 The
most striking proof of the existence of this remarkable st
has been obtained in measurements of photoemission sp
with angular resolution in the BSCCO system,3,4 which dem-
onstrated that the normal phase (T.Tc) exhibits essentially
anisotropic variations in the spectral density of the curr
carriers. In particular, in these experiments the maxim
pseudogap value was observed near the point (p,0) in the
Brillouin zone, while no pseudogap was observed along
diagonal. Correspondingly, the Fermi surface disintegra
near the point (p,0), while along the diagonal the surfac
remains intact. In this sense it is common to speak ofd
type pseudogap symmetry, which coincides with the symm
try of a superconducting gap in such systems. These ano
lies exist up to temperaturesT.T* much higher thanTc .

There are many theoretical approaches that attemp
give an explanation of such anomalies. Two main groups
these approaches can be singled out: the pattern of forma
of Cooper pairs aboveTc ~see Ref. 1, 5 and 6!, and an alter-
nation scheme based on the assumption that fluctuation
antiferromagnetic short-range order play the key role.7–11

Most papers on the subject deal mainly with the study
the pseudogap state of a high-Tc system in the normal phas
(T.Tc). Our goal was to investigate the qualitative effec
of the influence of a pseudogap in the electron spectrum
the main superconducting properties. We use the ideas
veloped in Refs. 7–11 but propose a very simple mode
the pseudogap state in the normal phase, a model that al
a complete analytical investigation. On the basis of t
model we do a microscopic derivation of the Ginzburg
Landau expansion for systems withs and d pairings and
study the qualitative effects of the influence of a pseudo
~the disintegration of sections of the Fermi surface! on the
main properties of the superconducting state.
3471063-7761/99/88(2)/9/$15.00
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2. ELEMENTARY MODEL OF A PSEUDOGAP STATE OF A
TWO-DIMENSIONAL ELECTRON SYSTEM

As noted earlier, we adopt the simplest possible mo
of a pseudogap state, a model based on the picture of w
developed fluctuations of short-range antiferromagnetic
der and close the model of ‘‘hot points’’ on the Ferm
surface.10,11Let us assume that the Fermi surface of the tw
dimensional electron system has the shape depicted in Fi
A similar Fermi surface was proposed by Zhelezny
et al.,12 who remarked that this Fermi surface resembles v
closely the one observed by Dessauet al.13,14 for some high-
Tc systems. We assume that the short-range order fluc
tions are static and Gaussian and define their correla
function as follows~cf. Ref. 7!:

S~q!5
1

p2

j21

~qx2Qx!
21j22

j21

~qy2Qy!21j22
~1!

for 2px
0<qx<px

0 and 2py
0<qy<py

0 , wherej is the corre-
lation length of the fluctuations, andQx5Qy52pF . For val-
ues of qx and qy that lie outside the specified ranges w
assume thatS(q)50. The effective interaction between ele
trons and these fluctuations will be described by the quan
(2p)2W2S(q), where the parameterW with the dimensions
of energy defines the energy scale~width! of the pseudogap
Thus, we assume that only electrons belonging to the ‘‘ho
sections of the Fermi surface are scattered by the short-ra
fluctuations, with the scattering being actually on
dimensional.

The choice of the scattering vectorQ5(2pF,2pF) pre-
supposes a pattern of incommensurate fluctuations.Below
will consider the case of commensurate scattering w
Q5(p/a,p/a), wherea is the lattice constant. In the limi
j→`, such a model allows an exact solution by the metho
proposed by Sadovski�,15,16while for finite j one can employ
the method developed by Sadovski� and Timofeev17,18 ~with
certain reservations; see Refs. 10, 11, and 19!. Below we
examine the simple case withj→`, where the effective
interaction with fluctuations~1! takes the simplest form

~2p!2W2d~qx22pF!d~qy22pF! ~2!
© 1999 American Institute of Physics
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for 2px
0<qx<px

0 and 2py
0<qy<py

0 . Here we can easily
sum the entire perturbation series for an electron scattere
such fluctuations15,16 and obtain the one-electron Green
function in the form

G~en ,p!5E
0

`

dz exp~2z!
i en1jp

~ i en!22jp
22zW2~f!

, ~3!

wherejp5vF(upu2pF), with vF the velocity at the Ferm
surface,en5(2n11)pT, and W(f) is defined for 0<f
<p/2 as follows:

W~f!5H W, 0<f<a,
p

2
2a<f<

p

2
,

0, a<f<
p

2
2a.

~4!

Here a5tan21(py
0/pF), and f is the polar angle, which

specifies the director of the vectorp in the (px ,py) plane.
For other values off, the parameterW(f) is determined
quite similarly to ~4! by symmetry considerations. Clearl
by varying a within the range 0<a<p/4, we actually
change the size of the hot sections on the Fermi surface
which sections the nesting conditionjp2Q52jp is satisfied.
In particular,a5p/4 corresponds to a square Fermi surfa
on which the nesting condition is satisfied everywhere. O
side the hot sections@the second inequality in~4!# the
Green’s function~3! simply coincides with the free-electro
Green’s function.

The spectral density corresponding to the Green’s fu
tion ~3!, is

r~ejp!52
1

p
sgne Im G~ejp! ~5!

55
1

W2
~ ueu1jpsgne!u~e22jp

2!exp
e22jp

2

W2
,

if 0<f<a,
p

2
2a<f<

p

2
,

d~e2jp!,

if a<f<
p

2
2a,

~6!

FIG. 1. The Fermi surface of a two-dimensional system. The hot sect
are depicted by thick straight lines, whose width is of order;j21.
by

in

e
t-

-

and has a similar form in the other quadrants of the Brillou
zone. Equation ~6! demonstrates the non-Fermi-liqui
~pseudogap! behavior with ad-type symmetry in the vicinity
of the hot sections of the Fermi surface and the free beha
in the cold sections. The behavior of the spectral density
hot section of the Fermi surface is depicted schematically
Fig. 2. Allowing for the fact that the integral with respect
the polar anglef of an arbitrary functionf @W(f)#, with
W(f) defined in~4!, is obviously

E
0

2p

df f @W~f!#58a f @W~f!#1~2p28a! f ~0!, ~7!

we can use~6! to easily find the density of states:

N~E!

N0~0!
52

1

pE0

2p df

2pE2`

`

djp Im GR~ejp!

5
4

p
aNW~e!1S p2

4

p
a DN0~0!, ~8!

where N0(0) is the density of free-electron states at t
Fermi level, andNW(e) is the density of states in the one
dimensional problem~a square Fermi surface! found in Refs.
15 and 16:

NW~e!

N0~e!
5U e

WU E
0

e2/W2

dz
exp~2z!

Ae2/W22z

52U e

WUexpS 2
e2

W2D Erfi
e

W
, ~9!

where Erfix is the probability integral~error function! of
imaginary argument.

Figure 3 depicts the density-of-state curves in our mo
for different values of the parametera, i.e., for hot sections
of different size. We see that the pseudogap in the densit
states becomes obscured rather quickly as the area of th
sections decreases and generally is not very distinct. I
certain sense the effect of a decreasinga is similar to the
effect of a decreasing correlation lengthj of the
fluctuations,17,18 so that in this sense the above approxim

FIG. 2. Spectral density of the Green’s function in a hot section of the Fe
surface: curve1, jp50; curve2, jp50.1W; and curve3, jp50.5W.

s



a
is
.

m

ho
ha

th
es

er
n

st
s,
su-

ity
oo-

f

ing
g

,

ia-
uc-
as

e

ys
tio
ne

349JETP 88 (2), February 1999 A. I. Posazhennikova and M. V. Sadovski 
tion j→` may not be a stringent restriction on the applic
bility of the model. One advantage of this approximation
the possibility of obtaining all the results in analytical form

Concluding Sec. 2, we examine briefly the case of co
mensurate fluctuations,Q5(p/a,p/a). Figure 4 depicts the
model of the Fermi surface used in this problem. The
sections touch the boundaries of a new Brillouin zone t
appears after long-range order~e.g., antiferromagnetic! has
set in, and the strong scattering by fluctuations occurs
Q5(p/a,p/a). In this geometry the pseudogap opens in
direction of the diagonals of the Brillouin zone, which do
not correspond to experiments involving high-Tc supercon-
ductors but is of certain theoretical interest. The problem
solved in the same way as in the previous case and gen
izes the solution of the one-dimensional model first fou
by Wonneberger and Lautenschlager.19 The one-electron
Green’s function is similar to~3!, andW(f) is again a func-
tion with a periodp/2, but ‘‘turned’’ with respect to the

FIG. 3. Density of electron states for hot sections of different size: curv1,
a5p/4; curve2, a5p/6; curve3, a5p/8; curve4, a5p/12; and curve
5, a5p/24.

FIG. 4. The Fermi surface in the Brillouin zone of a two-dimensional s
tem in the hot-section model for the case of short-range order fluctua
corresponding to period doubling. Also shown are the boundaries of the
Brillouin zone, which arises after long-range order sets in~e.g., due to an
antiferromagnetic transition!.
-

-

t
t

at
e

is
al-
d

previous model through an angle ofp/4 for 2p/41a<f
<p/41a:

W~f!5H W, p/4 2a<f< p/4 1a,

0, 2 p/4 1a<f< p/4 2a,
~10!

where 0<a<p/4. Moreover, in the present case we mu
allow for a different combination of the Feynman diagram
which must correspond to electron scattering by commen
rate fluctuations.19 As a result, in~3! we must replace

E
0

`

dz exp~2z! ~11!

with

E
0

` dz

2Apz
expS 2

z

4D . ~12!

3. THE EQUATION FOR Tc

Let us now investigate the problem of superconductiv
in the adopted model. We assume that the potential for C
per pairing has the usual separable form20

V~p,p8!5V~f,f8!52Ve~f!e~f8!, ~13!

where as beforef is the angle specifying the direction o
electron momentump in the plane, ande(f) obeys the fol-
lowing model:

e~f!5H 1 ~s pairing!,

A2 cos 2f ~d pairing!.
~14!

As usual, the attractive constantV is assumed finite in a
certain strip of width 2vc in the vicinity of the Fermi level
(vc is the characteristic frequency of the photons ensur
the attraction of electrons!. In this case the superconductin
gap ~the order parameter! has the form

D~p![D~f!5De~f!. ~15!

The equation for the transition temperatureTc can be
obtained from the ordinary equation for Cooper instability

12x~0,0!50, ~16!

where the generalized Cooper susceptibilityx(0,0) can be
calculated by exact summation of the entire series of d
grams that allow for scattering by the short-range order fl
tuations~2!, in the same way the polarization operator w
calculated by Sadovski�.15,16 As a result the equation forTc

becomes

1

V
52E

0

`

dz exp~2z! Tc(
n
E

0

` d2p

~2p!2
e2~f!$GzW2

3~en ;p,p!GzW2~2en ;2p,2p!1FzW2

3~en ;p,p2Q!FzW2~2en ;2p,2p1Q!%, ~17!

where

-
ns
w
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FIG. 5. Tc /Tc0 as a function of the effective
pseudogap widthW/Tc0 for hot sections of differ-
ent size in the incommensurate fluctuation mod
for ~a! s pairing ~curve 1, a5p/4; curve 2,
a5p/6; curve 3, a5p/8; and curve 4,
a5p/12), and~b! d pairing ~curve 1, a5p/4;
curve2, a5p/6; curve3, a5p/8; and curve4,
a5p/12).
n
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:

GzW2~en ;p,p!5
i en1jp

~ i en!22jp
22zW2~f!

,

FzW2~en ;p,p2Q!5
Az W~f!

~ i en!22jp
22zW2~f!

~18!

are, respectively, the normal and anomalous Green’s fu
tions of a system with a dielectric gap.15,16

Applying standard transformations to~17!, we get

1

V
5E

0

`

dz

3exp~2z! Tc(
n
E

0

` d2p

~2p!2

e2~f!

en
21jp

21zW2~f!
.

~19!

Summing over the frequencies yields

1

V
5

N~0!

2p E
0

`

dz exp~2z!E
2`

`

dj

3E
0

2p df e2~f!

2Aj21zW2~f!
tanh

Aj21zW2~f!

2Tc
. ~20!

If we now integrate with respect tof as we did in~7!,
we arrive at the following formulas:

1

g
5

4a

p E
0

`

dz exp~2z!E
0

vc dj

Aj21zW2
tanh

Aj21zW2

2Tc

1S 12
4a

p D E
0

vc dj

j
tanh

j

2Tc
~21!

for s pairing, and

1

g
5

4a1sin 4a

2p E
0

`

dz exp~2z!E
0

vc dj

Aj21zW2

3tanh
Aj21zW2

2Tc
1

p24a2sin 4a

2p E
0

vc dj

j
tanh

j

2Tc

~22!
c-

for d pairing. Hereg5N(0)V is the dimensionless Coope
pairing constant. Figure 5 depicts curves representing
dependence ofTc /Tc0 on the parameterW/Tc0 , which
specifies the effective pseudogap width, for different valu
of a ~hereTc0 is the transition temperature of an ideal sy
tem without a pseudogap!. We see that for both types o
pairing the occurrence of a pseudogap in the hot section
the Fermi surface causes significant suppression ofTc , and
the larger these hot sections are the stronger the suppres
Naturally, the suppression ofTc is stronger in the case ofd
pairing than in the case ofs pairing, since the dielectrization
of the spectrum~pseudogap! is in antiphase with the pairing
interaction.

For commensurate fluctuations~Fig. 4! andd-type pair-
ing, the equation forTc becomes

1

g
5

4a2sin 4a

2p E
0

`dz exp~2z/4!

2Apz
E

0

vc dj

Aj21zW2

3tanh
Aj21zW2

2Tc
1

p24a1sin 4a

2p E
0

vc dj

j
tanh

j

2Tc
.

~23!

Curves presenting the dependence ofTc /Tc0 on the pa-
rameterW/Tc0 for different values ofa in this case are de
picted in Fig. 6. Here the suppression ofTc by the pseudogap
is less noticeable, since the superconducting gap reache
maximum on the cold sections of the Fermi surface, wh
there is no pseudogap.

4. THE GINZBURG–LANDAU EXPANSION

The standard Ginzburg–Landau expansion for the diff
ence in the free-energy densities of the superconducting
normal states is

Fs2Fn5AuDqu21q2CuDqu21
B

2
uDqu4, ~24!

whereDq is the Fourier transform of the order parameter

D~f,q!5Dqe~f!. ~25!
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Expansion~24! can be represented by the diagrams
the loop expansion for the free energy in the field of t
order parameter fluctuations with a small wave vectorq.
These diagrams are depicted in Fig. 7, where all processe
scattering by short-range order fluctuations~2! are summed
exactly in all loops~this can easily be done if we use th
method developed in Refs. 15 and 16!. In all other respects
the method of calculation is similar to that used Ref. 20.1! As
in Ref. 20, subtraction of the second diagram in Fig. 7
sures the vanishing of the coefficientA at the transition point
T5Tc . As a result, the Ginzburg–Landau coefficients c
be written

A5A0KA , C5C0KC , B5B0KB , ~26!

where byA0 , C0 , andB0 we denote the expressions for th
case of a two-dimensional isotropics superconductor in the
absence of a pseudogap (a50),

A05N~0!
T2Tc

Tc
, C05N~0!

7z~3!

32p2

vF
2

Tc
2

,

B05N~0!
7z~3!

8p2Tc
2

, ~27!

and all the features of the models are reflected in the dim
sionless coefficientsKA , KC , andKB . In the absence of a
pseudogap, all these coefficients are equal to unity, whil
the case ofd pairing only KB differs from unity, or
KB53/2.

FIG. 6. Tc /Tc0 as a function of the effective pseudogap widthW/Tc0 for hot
sections of different size in the commensurate fluctuation model for the
of d pairing: curve1, a5p/4; curve2, a5p/6; curve3, a5p/8; and curve
4, a5p/12.
f

of

-

n

n-

in

In particular, straightforward calculations yield

A5N~0!
T2Tc

2Tc
2

1

2pE0

`

dz exp~2z!E
0

vc
dj

3E
0

2p df e2~f!

cosh2~Aj21zW2~f!/2Tc!
, ~28!

so that after integrating with respect tof we get

KA5
1

2Tc
baE

0

`

dz exp~2z!

3E
0

vc dj

cosh2~Aj21zW2~f!/2Tc!
112ba , ~29!

where

ba5H 4a

p
~s pairing!,

4a1sin 4a

p
~d pairing!.

~30!

Figure 8 depicts curves representing the dependence oKA

on the effective pseudogap widthW/Tc0 for different values
of a. Here we show only the curves for the case ofs pairing.
Qualitatively the corresponding curves ford pairing are simi-
lar, but all variations are on essentially smaller scales
W/Tc0 , as in Fig. 5.

To calculateC, we must perform an expansion in
Taylor series in powers ofq in the expression

2E
0

`

dz exp~2z! Tc(
n
E

0

` d2p

~2p!2
e2~f!$GzW2~f!

3~en ;p1 ,p1!GzW2~f!~2en ;2p2 ,2p2!1FzW2~f!

3~en ;p1 ,p12Q!FzW2~f!~2en ;2p2 ,2p21Q!%,~31!

where p65p6q/2, and select the terms withq2. To sim-
plify presentation, from now on we will use the notation

GzW2~f!~en ;p,p![Gpp ,

FzW2~f!~en ;p,p2Q![Fpp2Q .

After lengthy calculations we arrive at an expression
the coefficientC:

se
e
t-

re-
nd

d

FIG. 7. The diagrammatic representation of th
Ginzburg–Landau expansion in the field of shor
range order fluctuations. The electron lines rep
sent Nambu matrices composed of normal a
anomalous Green’s functions~18!, and the loops
are averaged over the parameterz with a distribu-
tion ~11! or ~12!. The second loop is calculate
for q50 andT5Tc .



ie

-

–
b

a

ms

for
ase
der

th
io

th
ion

352 JETP 88 (2), February 1999 A. I. Posazhennikova and M. V. Sadovski 
C52Tc

N~0!

2p
vF

2(
n
E

0

`

dz exp~2z!E dj

3E
0

2pdf e2~f!~j223en
223zW2~f!!cos2 f

2~en
21j21zW2~f!!3

. ~32!

Accordingly, after integrating overj and the anglef,
we arrive at an expression for the dimensionless coeffic
KC :

KC5bc

4p3Tc
3

7z~3!
E

0

`

dz exp~2z!(
n

1

~Aen
21zW2 !3

112bc ,

~33!

where bc5ba @see Eq.~30!#. The respective relations be
tweenKC and the parameterW/Tc0 for the case ofs pairing
are depicted in Fig. 9. The pattern is similar ford pairing, but
all variations are on essentially smaller scales ofW/Tc0 .

Examining the fourth-order term in the Ginzburg
Landau expansion is even more difficult technically. To o
tain an expression for the coefficientB, we must find the
trace of the product of four Green’s functionsĜp , each of
which is a Nambu matrix composed of normal and anom
lous Green’s functions~18!:

Ĝp5S Gp,p Fp,p2Q

Fp2Q,p Gp2Q,p2Q
D .

After we find the trace of the matrixĜpĜ2pĜpĜ2p , we can
write an expression forB:

B5N~0!Tc(
en

E
0

`

dzexp~2z!E
0

`d2p e4~f!

~2p!2

3$~Gp,pG2p,2p1Fp,p2QF2p,2p1Q!2

1Gp,pG2p,2pF2p1Q,pFp2Q,p

1G2p1Q,2p1QG2p,2pFp,p2QFp2Q,p

1Gp,pGp2Q,p2QF2p1Q,2pF2p,2p1Q

FIG. 8. The coefficientKA as a function of the effective pseudogap wid
W/Tc0 for hot sections of different size in the incommensurate fluctuat
model for the case ofs pairing: curve1, a5p/4; curve2, a5p/6; curve3,
a5p/8; and curve4, a5p/12.
nt

-

-

1Gp2Q,p2QG2p1Q,2p1QFp,p2QF2p,2p1Q%. ~34!

Here we can directly verify that the sum of the last two ter
in ~34! yields a zero contribution, so that

B5N~0!Tc(
en

E
0

`

dz exp~2z!E
0

`d2p e4~f!

~2p!2

3~Gp,pG2p,2p1Fp,p2QF2p,2p1Q!2. ~35!

This implies that

B5
N~0!Tc

2p (
n
E

0

`

dz exp~2z!

3E
2`

`

djE
0

2p df e4~f!

~en
21j21zW2~f!!2

, ~36!

and after integrating with respect toj andf we arrive at an
expression forKB similar to ~33!:

KB5bb

4p3Tc
3

7z~3!
E

0

`

dz exp~2z!(
n

1

~Aen
21zW2!3

112bb ,

~37!

where

bb5H 4a

p
, ~s pairing!,

4a

p
1

4 sin 4a

3p
1

sin 8a

6p
, ~d pairing!.

~38!

Thus, fors pairing the coefficientsKB andKC simply coin-
cide.

To conclude Sec. 4 we give the explicit expressions
the dimensionless Ginzburg–Landau coefficients for the c
of d pairing in the model of commensurate short-range or
fluctuations:

n

FIG. 9. The coefficientKC as a function of the effective pseudogap wid
W/Tc0 for hot sections of different size in the incommensurate fluctuat
model for the case ofs pairing: curve1, a5p/4; curve2, a5p/6; curve3,
a5p/8; and curve4, a5p/12.
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KA5ba

1

2Tc
E

0

`dz exp~2z/4!

2Apz

3E
0

vc dj

cosh2~Aj21zW2/2Tc!
112ba , ~39!

KC,B5bc,b

4p3Tc
3

7z~3!
E

0

`dz exp~2z/4!

2Apz

3(
n

1

~Aen
21zW2!3

112bc,b , ~40!

where

ba5bc5
4a2sin 4a

p
,

bb5
4a

p
2

sin 4a

6p
~51cos 4a!. ~41!

It is also easy to write the formulas reflecting the depende
of these coefficients onW/Tc0 and different values ofa.
Qualitatively these expressions are similar to those in
incommensurate case, and the main difference are due
different scale along theW/Tc0 axis ~cf. Fig. 6!.

5. PHYSICAL CHARACTERISTICS OF SUPERCONDUCTORS
WITH A PSEUDOGAP

As is known, the Ginzburg–Landau equations determ
two characteristic lengths, the coherence length and the
etration depth for the magnetic field.

The coherence length at a given temperature,j(T), is
the characteristic scale of inhomogeneity in the order par
eterD, which means it is actually the size of the Cooper pa

j2~T!52
C

A
. ~42!

In ordinary superconductors~in the absence of a pseudogap!,

jBCS
2 ~T!52

C0

A0
, ~43!

jBCS~T!'0.74
j0

A12T/Tc

, ~44!

wherej050.18vF /Tc . For our case we have

j2~T!

jBCS
2 ~T!

5
KC

KA
. ~45!

The corresponding dependence ofj2(T)/jBCS
2 (T) on the pa-

rameterW/Tc0 for the case ofd pairing and incommensurat
short-range order fluctuations is depicted in Fig. 10.

The penetration depth for the magnetic field in an or
nary superconductors is given by the formula

lBCS~T!5
1

A2

l0

A12T/Tc

, ~46!
ce

e
a

e
n-

-
:

-

wherel0
25mc2/4pne2 determines the penetration depth

T50. For the general case we have an expression for
penetration depth in terms of the Ginzburg–Landau coe
cients:

l2~T!52
c2

32pe2

B

AC
. ~47!

Then in the adopted model we have

l~T!

lBCS~T!
5S KB

KAKC
D 1/2

. ~48!

Curves representing the dependence of this parameter o
effective pseudogap width for the case ofd pairing are de-
picted in Fig. 11.

Now let us calculate the Ginzburg–Landau paramete

k5
l~T!

j~T!
5

c

4eC
A B

2p
. ~49!

FIG. 10. The coherence lengthj2(T)/jBCS
2 (T) as a function of the effective

pseudogap widthW/Tc0 in the model ofd pairing: curve1, a5p/4; curve
2, a5p/8; and curve3, a5p/12.

FIG. 11. The penetration depthl(T)/lBCS(T) as a function of the effective
pseudogap widthW/Tc0 in the model ofd pairing: curve1, a5p/4; curve
2, a5p/8; and curve3, a5p/12.
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In this model of a superconductor,

k

kBCS
5

AKB

KC
, ~50!

where

kBCS5
3c

A7z~3! e

Tc

vF
2AN~0!

~51!

is the Ginzburg–Landau parameter for the ordinary ca
Curves representing the dependence ofk/kBCS on W/Tc0 for
the case ofd pairing are depicted in Fig. 12.

NearTc the upper critical fieldHc2 is expressed in term
of Ginzburg–Landau coefficients:

Hc252
f0

2p

A

C
, ~52!

wheref05cp/e is the quantum of magnetic flux. Then th
slope of the curve for the upper critical field nearTc is

UdHc2

dT U
Tc

5
24pf0

7z~3!vF
2

Tc

KA

KC
. ~53!

Curves representing the dependence of the slope of
curves for the field,udHc2 /dTuTc

, normalized to the slope o
the curves for the field atTc0 , on the effective pseudoga
width W/Tc0 for the case ofd pairing are depicted in Fig. 13
We see that the slope rapidly decreases with increa
pseudogap width.

We can also calculate the size of the heat-capacity
continuity at the transition point, which is generally calc
lated by the formula

Cs2Cn

V
5

Tc

B S A

T2Tc
D 2

, ~54!

whereCs andCn are the heat capacities of the supercondu
ing and normal states, respectively, andV is the volume.
This readily yields a formula for the size of the heat-capac
discontinuity atTc0 (W50):

FIG. 12. The Ginzburg–Landau parameterk/kBCS as a function of the
effective pseudogap widthW/Tc0 in the model of d pairing: curve 1,
a5p/4; curve2, a5p/8; and curve3, a5p/12.
e.

he

g

s-

t-

y

S Cs2Cn

V D
Tc0

5N~0!
8p2Tc0

7z~3!
. ~55!

Then the size of the heat-capacity discontinuity in our mo
can be expressed in terms of the dimensionless coeffici
KA andKB as follows:

~Cs2Cn!Tc

~Cs2Cn!Tc0

5
Tc

Tc0

KA
2

KB
. ~56!

Curves representing the dependence of the size of the h
capacity discontinuity on the effective pseudogap width
the case ofd pairing are depicted in Fig. 14. We see that t
discontinuity diminishes as the pseudogap widens.

Curves representing the dependence of the above q
tities for the case ofs pairing and for the model of commen
surate fluctuations are more or less~qualitatively! similar to

FIG. 13. The normalized slope of the curves for the upper critical field a
function of the effective pseudogap widthW/Tc0 in the model ofd pairing:
curve1, a5p/4; curve2, a5p/8; and curve3, a5p/12.

FIG. 14. The normalized size of the heat-capacity discontinuity as a fu
tion of the effective pseudogap widthW/Tc0 in the model ofd pairing: curve
1, a5p/4; curve2, a5p/8; and curve3, a5p/12.
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those depicted in Figs. 10–14, differing in the scale along
W/Tc0 axis, in accordance with Figs. 5 and 6.

6. CONCLUSION

We have studied a very simple model of a pseudoga
a two-dimensional electron model, which nevertheless qu
tatively explains a number of observed features of the e
tron structure of underdoped high-Tc superconducting sys
tems. In particular, with this model one can easily obtain
d symmetry of the pseudogap state, a symmetry that is du
the pattern of the hot sections on the Fermi surface cause
strong scattering by fluctuations of short-range~antiferro-
magnetic! order. Naturally, the model can be directly gene
alized to the case of a large number of hot sections, an
can reformulated in a way that is closer to the model of
points ~Refs. 10 and 11!; other generalizations can also b
made fairly easily.

The main simplifying assumption~and the main draw-
back! of the model is that we use thej→` limit for the
fluctuation correlation length, due to which the main resu
can be written as formulas. In realityj is not very large and
depends on the temperature and the degree of doping, so
it is an important parameter that controls the physical pict
of all phenomena. Our model allows, at least in principle
generalization to finitej in the sense of Refs. 17 and 18, b
all calculations becomes extremely involved. At the sa
time it is clear that the effect of a finitej reduces mainly to
a situation in which the pseudogap becomes closed,17,18 so
that in this sense~as noted earlier! it simulates a decrease i
the size of the hot sections in our model. This is true
effects basically controlled by the density of states~an ex-
ample of a corresponding quantity is the transition tempe
ture Tc). At the same time, this is not true of ‘‘kinetic’
quantities~determined by the two-particle Green’s function!,
such as the coefficientC of the gradient term in the
Ginzburg–Landau expansion.

Another radical simplification of our model is the a
sumption that short-range order fluctuations are static
Gaussian. The validity of this assumption can be justified
the high-temperature limitT@vsf , wherevsf is the charac-
teristic frequency of spin fluctuations.9–11 Accordingly, the
validity of the assumption that the fluctuations are static
questionable at temperatures nearTc . Nevertheless, our in
vestigation shows that the Ginzburg–Landau expansion
vides a good description of the influence of the main eff
of ‘‘disintegration’’ of certain sections of the Fermi surfac
on the main characteristics of a superconductor with
pseudogap, and demonstrates the important role of pse
e
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gap anomalies in the formation of a superconducting stat
the region of the phase diagram of high-Tc systems where
these effects manifest themselves already in the nor
phase. More realistic models will be analyzed later.
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Pseudogap and symmetry of superconducting order parameter in cuprates
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The phase diagram, nature of the normal state pseudogap, type of the Fermi surface, and
behavior of the superconducting gap in various cuprates are discussed in terms of a correlated
state with valence bonds. The variational correlated state, which is a band analogue of
the Anderson~RVB! states, is constructed using local unitary transformations. Formation of
valence bonds causes attraction between holes in thed-channel and corresponding
superconductivity compatible with antiferromagnetic spin order. Our calculations indicate that
there is a fairly wide range of doping with antiferromagnetic order in isolated CuO2

planes. The shape of the Fermi surface and phase transition curve are sensitive to the value and
sign of the hopping interactiont8 between diagonal neighboring sites. In underdoped
samples, the dielectrization of various sections of the Fermi boundary, depending on the sign of
t8, gives rise to a pseudogap detected in photoemission spectra for various quasi-
momentum directions. In particular, in bismuth- and yttrium-based ceramics (t8.0), the
transition from the normal state of overdoped samples to the pseudogap state of underdoped
samples corresponds to the onset of dielectrization on the Brillouin zone boundary near
k5(0,p) and transition from ‘‘large’’ to ‘‘small’’ Fermi surfaces. The hypothesis abouts-wave
superconductivity of La- and Nd-based ceramics has been revised: a situation is predicted
when, notwithstanding thed-wave symmetry of the superconducting order parameter, the
excitation energy on the Fermi surface does not vanish at all points of the phase space
owing to the dielectrization of the Fermi boundary atkx56ky . The model with orthorhombic
distortions and two peaks on the curve ofTc versus doping is discussed in connection
with experimental data for the yttrium-based ceramic. ©1999 American Institute of Physics.
@S1063-7761~99!01902-2#
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1. INTRODUCTION

In recent years, important results concerning electro
structure of HTSC1–6 have been reported. They include th
proof of thed-wave symmetry of the superconducting ord
parameter in a number of cuprates,7,8 detection of such ef-
fects as a small Fermi surface,9 a pseudogap in the norma
state10,11 of underdoped samples, and characteristic re
nances in spectra of inelastic neutron scattering. The tas
theory is to develop a self-consistent description of th
phenomena and their relation to the phase diagram and m
netic properties of HTSCs.

Theoretical studies of strongly correlated systems~local-
ized approaches, calculations for finite clusters, and band
culations! have identified the most important types
correlations,1,2 namely, the antiferromagnetic alternation
spins and short-range correlations of type of the vale
bond formation. The former is fairly adequately described
both the localized approach and mean-field band calculat
with double magnetic elementary cells. The important role
antiferromagnetic correlations is also recognized in rec
publications.12,13 The idea of a correlation nature of supe
conducting pairing, which was set forth and justified in so
publications,14,15 has remained quite attractive. According
Refs. 16 and 17, the valence bond formation causes at
tion between holes in thed-channel andd-wave supercon-
3561063-7761/99/88(2)/14/$15.00
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ductivity. One test of the theory should be its ability to a
count for the anisotropic pseudogap in the normal state
underdoped samples. In preliminary interpretations,10,11 the
pseudogap anisotropy was identified with the anisotropy
the d-wave superconducting gap. For this reason,
pseudogap was considered as a precursor of supercondu
ity in underdoped samples. Our previous publications16,17ex-
pressed a different view on the pseudogap nature and re
it to the structure of the lower Hubbard subband.

The present work is a continuation of our pseudog
studies. Here we set forth a clear and quantitatively accu
interpretation of the phase diagram and some spectral p
erties of cuprates in terms of a variational correlated st
which takes into account both antiferromagnetic correlatio
and correlations of the valence bond type. A classification
cuprates in accordance with the Fermi surface topology
pseudogap anisotropy in the normal state of underdo
samples is proposed. Experiments that could test the
posed scheme are discussed. In particular, we propose a
ments in favor of the hypothesis ofd-wave superconductivity
in all cuprates, including La22xSrxCuO4 ~LSCO! and
Nd22xCexCuO42y ~NCCO!, which have been traditionally
treated ass-wave superconductors.

The term resonating valence bonds~RVB! first sug-
gested by Anderson18 means that system configurations a
composed of singlet pairs of particles that form the bon
© 1999 American Institute of Physics
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Recently16,19 we constructed variational correlate
functions—the band analogues of RVB states—for a H
bard model with arbitrary doping. The method of unita
local transformations used in Refs. 16 and 19~in contrast to
representations like Gutzwiller’s ansatz20! allows one to con-
struct not only the correlated function, but also an effect
Hamiltonian. The latter~unlike the Hamiltonian of thet –J
model! is not subject to additional constraints, so it can
analyzed in the mean-field approximation. This allowed us
calculate constants of superconducting pairing variation
without empirical parameters, and calculations did not v
late the additional local constraints.

The specific goal of the present work is to study~on the
base of the generalized Hubbard model! the role of weak
hopping interactiont8 between neighboring diagonal sites
formation of the pseudogap, the effect oft8 on the phase
diagram, the Fermi surface topology, and behavior of
superconducting gap. Concurrently, we propose a poss
classification of specific cuprates in accordance with
types of their electron bands and Fermi surfaces. As ba
ground, Sec. 2 gives a brief description of the calculat
techniques and main results of the previous work.16

2. CORRELATED STATE OF VALENCE BONDS IN THE BAND
MODEL

Consider the generalized Hubbard model providing
single band mapping21–23 of the CuO2 plane of HTSC:

H5H~U,t !1DH~V,t8!,

H~U,t !52t (
^nm&,s

~cns
† cms1H.c.!1(

n
Unn↑nn↓ , ~1!

DH~V,t8!5V (
^nm&

nnnm1t8 (
^^nm&&

(
s

~cns
† cms1H.c.!.

~2!

As will be shown below, the low-temperature properti
of a system described by Eq.~1! are very sensitive to the
weak hopping interactiont8 between diagonal neighborin
sites ^^nm&&. For this reason, the interactiont8 and
Coulomb-like interactionV between neighboring sites ar
added to the HamiltonianH̃(U,t) of the basic Hubbard
model ~1!.

The variational functionC of the correlated state of va
lence bonds is constructed by applying a unitary transfor
tion to the uncorrelated stateF:

C5Ŵ~a!F, Ŵ~a!5exp~aZ!, Z5 (
^nm&

Znm . ~3!

HereF is an uncorrelated function of the most general for
namely, a BCS wave function with a double magnetic c
for testing the feasibility of anticipated antiferromagnetic a
superconducting pairing. The unitary operatorW(a) respon-
sible for valence bond formation depends on the variatio
parametera. The local anti-Hermitian operatorZnm acting
on the bond̂ nm& between neighboring sites is
-

e

e
o
ly
-

e
le
e
k-
n

e

a-

,
ll

al

Znm52
1

2 (
s

j nmsDnm,2s ,

~4!
j nms5~cns

† cms2H.c.!, Dnm,2s5nn2s2nm2s .

The sense of this transformation is illustrated by a tw
site system$a,b% with molecular orbitalsgs(us)5(as

6bs)/A2. In this case, operator W5exp(aZab)
[exp@a(g↑

†g↓
†u↓u↑2H.c.)# transforms the uncorrelated two

particle dimer stateF(a,b)5ug↑
†g↓

†& to the exact singlet
dimer state whena assumes the optimal value.

Thus, the unitary transformationW allows one to adjust
the hole localization degree and optimize the bond cha
state. The unitarity ofW enables one to calculate the effe
tive ~transformed! Hamiltonian

H̃~a!5W†~a!HW~a!, ~5!

acting in the space of functionsF, and to express the aver
age energy

H̄5^CHC&5^FH̃F& ~6!

in terms of one-electron averages. Hence it is possible to
the self-consistent procedure of energy minimization w
respect toF and then with respect to the variational para
etera.

Previously two types of valence bond structures w
studied in detail. One of them is an alternating structure
nonoverlapping dimers of a particular orientation.19 In its
description,a5a(nm) was assumed to be nonzero only f
intradimer bonds, and an exact formula for the effect
Hamiltonian~5! was derived. The pesent study, like that
Ref. 16, is concerned with another type of state, namely
homogeneous state of valence bonds with parametera com-
mon for all bonds in the system. In this case, the effect
Hamiltonian was calculated and analyzed by taking terms
the two lowest orders ina:

H̃~a!'H1a@H,Z#1
a2

2
@@H,Z#,Z#. ~7!

Thus, expansion~7! is applicable only forU/t<9, which
corresponds to small values of the variational parame
a<0.23. An explicit expression for the effective Hami
tonian H̃(U,t) in terms of fermion operators allowed us
obtain self-consistent solutions with antiferromagnetic a
superconducting order. The calculation procedure was
scribed in detail.16 In reality, all calculation in the previous16

and present work were performed with the effective Ham
tonian

H̃5H̃~a,U,t !1DH~V,t8!, ~8!

in which the main partH(U,t) was acted upon by the unitar
transformation, according to Eq.~7!, whereas in the weak
interactionDH(V,t8) only the terms of zeroth order ina
were retained.

The basic results of Ref. 16 are the following.
1. Most of the gain in energy is due to the antiferroma

netic ordering of spins accompanied by formation of valen
bonds~the optimala is nonzero!. Valence bond correlations
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narrow the doping rangeu12nu,dc in which antiferromag-
netic order occurs:dc;0.3 at U/t;8, whereas the simple
mean-field approximation predictsdc;0.45. But both esti-
mates of the region of long-range two-dimensional antifer
magnetism are considerably wider than the experiment
determined range of bulk antiferromagnetismdc

exp;0.05. It
is feasible that in reality the range of antiferromagnetic c
relationsRAF is finite, although fairly large. A solution of the
effective problem in the mean-field approximation cann
determine this radius. But for calculating the energy a
short-range effects of valence bond formation, it suffices t
RAF is much larger than the bond length, unless we inve
gate diffusion or spin-wave processes of antiferromagn
order breaking at long distances. Arguments in favor of t
two-dimensional antiferromagnetism in CuO2 planes in a
wide range of doping are given in Ref. 16 and in this pap

2. The attraction between holes in thed-channel is
largely due to terms like

;aU@cns
† cmsnn,2snm,2s1H.c.#,

which appear during formation of valence bonds. Unli
Hirsch’s empirical coupling constants of correlated hopp
interaction,15 here it is determined variationally through th
parametera. Note that a similar correlated hopping intera
tion occurs also in thet –J Hamiltonian, but, unlike the
effective HamiltonianH̃(a), it cannot be analyzed in th
mean-field approximation since double occupation of site
strictly forbidden.

3. d-wave superconductivity exists only in the dopin
range of two-dimensional antiferromagnetism, i.e., wh
d,dc because the density of states on the Fermi bound
increases when the original band is split into two.

To conclude this section, let us recall the sense of q
siparticle bands for the correlated state~3! based on a solu
tion of the effective problemH̃ in the mean-field approxima
tion. The uncorrelated stateF, which minimizes the averag
energy~6!, is characterized by a set of one-electron energ
Ekl and the one-electron functionxkl

† , which are eigenfunc-
tions of linearized Hamiltonian (H̃)L ~for details see the Ap-
pendix and Ref. 16!:

~H̃ !Lxkl
† 5Ekl

† xkl
† . ~9!

For the most general type of statesC5Ŵ(a)F with both
antiferromagnetic and superconducting order,Ekl and xkl

†

are derived from the equations

xkl
† 5$ck↑

† , ck̃↑
† , c_k↓ , c_k̃↓% iSil , i , j ,l51, . . . ,4,

k̃5~p,p!1k, ~10!

hi j ~k!Sj l5SilEkl , i , j ,l51, . . . ,4, ~11!

Ekl56A~En
AF2m!21Wn

2, n51,2. ~12!

The matrixhi j and expressions forEn
AF andWn

AF are given by
Eqs.~33!, ~38!, and~39! in the Appendix~see also Ref. 16!.
In the absence of superconductivity, when the functionF
does not describe pairing of electrons with different spin p
jections, Fermi excitations are determined by the upper
lower Hubbard subbandsE1(2)

AF .
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Finally, note that any time-dependent perturbation of
form

V̂~ t !5(
k

@vk~ t !cks1H.c.#

acting on the system in the correlated ground st
C5WF generates both one-particle and multiparticle ex
tations. Specifically,

V̂~ t !C5W(
k

@vk~ t !c̃ks1H.c.#uF&. ~13!

Here the ‘‘dressed’’ operatorc̃ks5W†cksW contains both
one-fermion and multifermion operators:

c̃ks5
1

AN
(

n
H cns2

a

2 (
mP^nm&

~cns j nm,2s

1cmsDnm,2s!1
a2

2
@ . . . #J . ~14!

The operatorsj andD in Eq. ~14! are determined by Eq.~4!.

3. PHASE DIAGRAM AND STRUCTURES OF BANDS AND
FERMI SURFACE

Let us discuss in detail the phase diagram of the mo
~1!, ~2!. The calculation techniques and procedures were
scribed in Ref. 16.

One unexpected result was that the phase boundary,
the curve of the superconducting transition temperatureTc as
a function of dopingd5u12nu, had a broad plateau in th
basic Hubbard modelH(U,t), and the critical temperature
remained almost constant up tod;0.02 atU/t;8. The cal-
culations for the modelH(U,t) did not show a sharp drop o
Tc(d) on both sides of the optimal dopingdopt corresponding
to maximumTc . In an attempt to eliminate this discrepanc
interactions defined by Eq.~2! were introduced. It was
shown that the interactionV.0 changes the shape ofTc(d)
in the desired manner, but it also suppresses supercondu
ity and reducesTc considerably. In the present work, w
have usedV/t50.1 in all calculations. Given this value ofV
and t8.0, the maximum critical temperature isTc

max

;0.014t, which gives Tc
max;80 K for t;0.5 eV.22 For

V/t50 andt8.0, we haveTc
max50.023t;135 K.

The most interesting question is the effect of the hopp
interactiont8 between nearest diagonal lattice sites^^nm&&
with un2mu5A2 on the functionTc(d). The interest in in-
teractiont8 is connected with three reasons.

1. This interaction has considerable effect on the Fe
surface structure and its image in angle-resolved pho
emission spectra~ARPES!. This effect is connected with the
position of flat regions of lower electron band near the Fe
surface.

2. In the one-band projection of the Emery model, t
magnitude and even the sign of constantt8 ~unlike other
parametersU, t, andV of the Hubbard model! are sensitive
to the input parametersed , ep , tpd , and tpp of the CuO2

plane owing to the competition between two diagon
hopping channels, namely, the direct channel viatpp and the
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second-order process;tpd
2 /(ed2ep).21,24Thus, parametert8

depends on the material and its measurements in var
cuprates are of fundamental importance.24–26

3. As will be shown below, in the presence of antiferr
magnetic splitting, energy variations dE5E(p,0)
2E(p/2,p/2);24t8 along the nesting line are responsib
for the pseudogap effects detected in various experime
Parameter 4t8 determines the energy scale of these effe
@HereafterE(k)5E1

AF(k) is the energy of the lower Hubbar
subband in the case of hole doping.#

Figure 1 shows the logarithm of the critical temperatu
Tc as a function of doping for systems withU58t,
V50.1t, t8/t50,60.05,60.1. The phase curve shape
strongly affected by the magnitude and sign oft8. For
t8.0 the shape of theTc(d) curve is similar to that mea
sured in the bismuth-based ceramic,2 in contrast to the curve
with a broad plateau att850 and V50.16 The maximum
transition temperatureTc

max is almost constant witht8 for t8
.0, but the optimal doping shifts witht8 to higher values,
while remaining inside the region of two-dimensional~or
latent! antiferromagnetism.16 On the contrary, att8,0
curves of Tc(d) have wider peaks, andTc

max notably de-
creases with growingut8u. The difference between theTc(d)
shapes att8,0 andt8.0 is caused by the different behavio
of the energiesE(k) of the Hubbard subbands~the lower
subband in the case of hole doping and the upper in the
of electron doping!. Recall thatE(k) is one of the eigenval-
ues of the linearized Hamiltonian (H̃)L , i.e., the one-particle
energy obtained by diagonalizing effective Hamiltonian~5!
in the mean-field approximation. Figure 2 shows the ene
of the lower Hubbard subband with respect to the chem
potential, E(p,0)2m, at the pointM5(p,0). In systems
with t8.0 this point corresponds to the most flat region
the band spectrum and to a Van Hove singularity in
density of statesn(E). By comparing Figs. 1 and 2, one ca
see that the dopingd at which the Fermi boundary pass
through the pointM , i.e., whenE(p,0)2m50, coincides

FIG. 1. Logarithm of the superconductivity transition temperatureTc versus
dopingd5u12nu for models withU58t, V50.1t, and varioust8. Curves
1, 2, 3, 4, and5 are characterized by valuest8/t50, 0.05, 0.1,20.05, and
20.1, respectively. The dashed lines plot the results for the model~24! with
the orthorhombic perturbationt50.05t and t850.05t ~curve 28! and
t850.1t ~curve38! at the sameU andV.
us
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with the optimal dopingdopt corresponding to maximumTc

~curves2 and3 in Figs. 1 and 2!.
In systems witht8,0 ~curves4 and5 in Figs. 1 and 2!

one hasE(p,0)2m.0 for all d5u12nu. The density of
states on the Fermi boundary is lower than in systems w
t8.0 and decreases with doping. This leads to a lowerTc

max

than in the case oft8.0, a wider peak on the phase curv
Tc(d), and the superconductivity range shifted to lowerd.

The difference between the two different types of ban
for t8.0 andt8,0, and the corresponding Fermi surfaces
illustrated by Fig. 3.

Since in the interesting range of dopingd,dc two-
dimensional antiferromagnetism persists, let us recall so
familiar concepts concerning evolution of Hubbard subba
with the strong on-site interactionU. It is very important for
interpreting both ARPES data and the occurrence o
pseudogap.

For U50 andt.0 there is only one unperturbed ban

E0~k!522t~coskx1cosky!14t8 coskx cosky ~15!

with a minimum at the pointG(0,0) and a maximum at the
point Y(p,p) in the Brillouin zone2p,kx(y),p of the
original crystal lattice. Ford,dc , the lowest in energy self-
consistent solution of the effective Hamiltonian~5! yields
nonzero spin densities of opposite signs in the two sub
tices:

dl5
1

2 (
s

s

usu ^cns
† cn1 l ,s&F~21!nx1ny,

u l u50,A2,2, . . . , ~16!

and the band splits into two subbandsE1(2)
AF (k) separated by

the antiferromagnetic gapDAF;Ud0. Figure 3 shows the
shapes of the lower subbandsE(kx ,ky) in the magnetic Bril-
louin zone ukx6kr u<p. The corresponding Fermi surface
of two types of underdoped systems witht8.0 and t8,0

FIG. 2. EnergyE(0,p)2m of the lower Hubbard subband measured wi
respect to the chemical potential, versus doping for the same model pa
eters as in Fig. 1. The curves1, 2, 3, 4, and5 are characterized by the value
t8/t50, 0.05, 0.1,20.05, and20.1, respectively~solid lines!. The dashed
curves plot the maximum energiesEy(x)

max2m on sections of the lower sub
band alongkx- or ky-axes for the models with orthorhombic perturbatio
The inset shows the pseudogapD* as a function of doping in the norma
state att8/t50.05 and 0.1 in the regions where a pseudogap exists.
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FIG. 3. Left: energyE(kx ,ky) of the lower Hubbard sub-
band as a function of componentskx and ky within the
magnetic Brillouin zone,ukx6kyu<p, for an underdoped
system (d50.15) witht8/t50.1 ~top! andt8/t520.1 ~bot-
tom!; the other parameters are standard:U/t58 and
V50.1t. Right: Fermi boundaries~solid curves! and nearest
energy levels~with a step of 0.02t) are shown in the full
ukx(y)u<p Brillouin zone. Dielectric sections of the gene
alized Fermi boundary are shown by bold dashes~see the
text!.
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are shown in the full Brillouin zone. In the absence of sup
conducting order, the shape of the lower Hubbard subb
E5E1

AF is determined by Eq.~38! in the Appendix, which
can be approximated by

E~kx ,ky!5@e012t8coskx cosky1 . . . #

2A@Ud01 . . . #21$2t~coskx1cosky!1 . . . %2.

~17!

The dots in brackets@ . . . # and $ . . . % denote omitted con-
tributions of either even or odd (l x ,l y) harmonics in (kx ,ky).

The band spectrum~17! is very different from the stan
dard representation of band energy in terms of a sum
harmonics~so-called tight-binding approximation27!:

E~k!5 (
~ l x ,l y!

t l coskxl x coskyl y ,

l 5~0,1!,~1,0!,~1,1!, . . . ~18!

It is precisely this approximation that is usually used
fitting a band spectrum to ARPES data. The main differe
between representations~17! and~18! is that the lower Hub-
bard subband~17! is periodic with the period of the magnet
Brillouin zone, whereas the spectrum~18! is periodic with
the full Brillouin zone. This means thatE(k) defined by Eq.
~17! is the same at the pointsG5(0,0) andY5(p,p), which
is not the case for the fitting formula~18!. There are severa
reasons why susch different band shapes can be fitted to
same ARPES data.

1. Direct photoemission measures only a part of an e
tron spectrum below the chemical potential,E(k),m, since
one can extract an electron only from a populated level
the case of a single unsplit band and hole doping, this me
that photoemission is possible only from states with qua
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momentak near the pointG5(0,0) and impossible from the
region nearY5(p,p). Thus, only the spectrum around th
point G is scaled and fitted to ARPES data.

2. In the case of antiferromagnetically split bands, bo
the lower and upper Hubbard subbands are periodic with
magnetic Brillouin zone. But the photoemission intensity h
no such period.28 Roughly speaking, the lower subband
divided into the main part in the first magnetic Brillouin zon
~the solid curves in Fig. 4! and the shadow section outside
~the dashed line in Fig. 4!. In reality, the transition matrix
element drops off gradually in the transition from the main
the shadow part of the band.

FIG. 4. Profiles of band energyE(k)2m as a function of quasimomentum
varied along the contourG(0,0)→Y(p,p)→M (p,0)→G for a system with
U/t58, V50.1t, t850.05t, andd50.2 in the normal state. The solid an
dashed lines correspond to the main~nonshadow! and shadow parts of the
lower and upper Hubbard subbands. The thin line shows the spectrum
culated without antiferromagnetic splitting. The horizontal dashed lines
levels of chemical potential in the split and unsplit band.
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Figure 4 shows that the shape of the unsplit band be
the chemical potential and the nonshadow part of the lo
Hubbard subband are similar. This is why both these sha
can be fitted to APRES data, but the two representati
yield different ratiost8/t of the hopping interactions.

Direct photoemission, in particular, ARPES, cann
measure the band levelsEk.m and thus cannot detect d
rectly the dielectric gap in the hole-doped materials. T
gap, however, should reveal itself in electron-doped N
based materials with a partial population of the upper H
bard subband, which is seen, apparently, in the ARPES s
tra of these materials atE2m,2300 meV.3

Let us reconsider the effect of diagonal hoppingt8 on
the shape of the spectrum and Fermi surface. The ra
t8/t560.05,60.1 used in our calculations are smaller th
empirical values t8/t;0.2–0.4.24 The most consisten
determination25 of the ratio t8/t in the t –t8–J model or in
t –t8–U Hubbard model is based on fitting the energies
lowest excitations in a Cu5 cluster with four, five, and six
holes to a three-band model whose parameters were c
lated in the local density-functional approach~LDA !. This
procedure yieldedt8/t50.17 ~0.13! for the hole ~electron!
doped materials.25 Given thatt8 is very sensitive to mode
parameters21 and changes its sign astpp is varied, the values
used in our calculations, namely60.05,60.1, do not seem
anomalous. Even such small variations int8 may radically
change the phase diagram and low-energy characteristic
the models. Calculations based on the tight-binding appr
mation ~18! and fitting of the Fermi surface shape to LD
calculations26 or to bands derived from ARPES data27 over-
estimatet8/t, since the approximation based on Eq.~18! ig-
nores the antiferromagnetic band splitting, even though
necessary renormalizations of unperturbed LDA bands
taken into account.

Consider the first type of Fermi surface, which corr
sponds to t8.0 in a hole-doped material. For smalld
,dopt, the Fermi surface~shown by solid lines in Fig. 3! has
the form of hole pockets around the points (p/2,p/2). This
shape of the Fermi surface has been discussed in se
publications.1,29,30 The heavy dashes in Fig. 3 show th
boundaries of the magnetic Brillouin zone on whi
E(k),m holds. Whenk changes along any linek( l ) cross-
ing this boundary, the work functionuE(k)2mu remains fi-
nite, and the minimum work function on this line is value
the pseudogap derived from ARPES measurements wik
varied along this line. Note that, if the band were unsplit, li
that described by Eq.~18!, there would be no trajectory con
nectingG and Y not crossing the real Fermi boundary. O
this trajectory, there would always be a point whereEk2m
50 and no pseudogap would be detected.

The behavior of the phase curveTc(d) also becomes
understandable. The density of states at the Fermi leve
maximal atd5dopt ~Fig. 5a!. In the ranged.dopt it drops
rapidly, soTc→0. In the ranged,dopt the density of states
also drops, although not so fast. Note that the density
statesn(E) in the lower Hubbard subband shown in Fig.
reproduces the density of state with the peak due to the
Hove singularity below the chemical potential, which w
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introduced for interpretation of transport properties of c
prates in the normal state.31

Another type of Fermi surface corresponds tot8,0 in
hole-doped materials~or to t8.0 in electron-doped sys
tems!. Our attention is still focused on the region of two
dimensional antiferromagnetismd,dc , since only inside
this region are the solutions with superconductivity obtain
Two Van Hove singularities in the density of states of t
lower Hubbard subband~Fig. 5b! peak at energies
e15E(p,0) ande25E(p/2,p/2),e1. For low doping (e2

,m) the small Fermi surfaces that are shown in Fig. 3
formed around the pointsM5(6p,0), (0,6p). The
dashed lines in this graph show sections of the boundar
the magnetic Brillouin zone. When the quasimomentumk
varies along a trajectory connecting the pointsG(0,0) and
Y(p,p) and crossing one of these boundary sections,
electron work functionDv(k) measured in the ARPES ex
periments as a lower edge of the electron distribution fu
tion ~in brief, as a photoemission edge! nowhere vanishes
The minimum shift minuDv(k)u along this trajectory takes
place at the pointkx1ky5p where it crosses the zon
boundary.

Thus, for small doping andt8,0 a pseudogap should b
detected in the ARPES spectra in the directionk;(1,1). At
the same time, the absorption edge should spread, like
broadened photoemission edge on the boundary of the m
netic Brillouin zone in the case of an underdoped dielect
For high doping, whene25E(p/2,p/2).m, the Fermi sur-
face transforms to a large connected Fermi surface aro
the point G or Y. Moreover, for antiferromagnetic state
there are both main and shadow Fermi boundaries inside
outside the magnetic Brillouin zone in hole-doped materia
In the case of an electron-doped material, the main
shadow Fermi boundaries interchange.

As in the basic two-parameter Hubbard modelH(U,t),
in the extended model described by Eqs.~1! and ~2! for
t8,0 the Fermi level never crosses the energye15E(p,0)
at the pointM corresponding to the Van Hove singularity
the dielectric gap edge~Fig. 5!. As a result, the maximum
critical temperatureTc

max is lowered, the peak on the phas
curveTc(d) is broadened, and the entire curve shifts to low
doping.

The main feature of models of this type witht8,0 is the

FIG. 5. Density of statesn(E) for the same systems as in Fig. 3 witht8/t
50.1 ~left! and t8/t520.1 ~right!. For t8.0 the Van Hove singularity
corresponds to the pseudogap energyE2m52D* (d). For t8,0, two Van
Hove singularities correspond to energiesE(p,0)2m.0 andE(p/2,p/2)
2m,0.
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absence of fermion excitations with zero energy in the sup
conducting state, regardless of the presence of nodes in
d-wave superconducting order parameter. This means
measurements of specific heat and the NMR Knight shift
other words, all experiments measuring the absolute valu
the excitation gap, should display characteristics typica
s-wave superconductors, namely an exponential tempera
dependence with a finite minimum gap. Such behavior
always been considered to be a proof ofs-wave symmetry of
the order parameter. Calculations based on models
t8,0 indicate thatd-wave superconductors can also ha
such properties.

4. MANIFESTATIONS OF PSEUDOGAP AND
SUPERCONDUCTING GAP IN PHOTOEMISSION SPECTRA

Since one of the major sources of information abo
HTSC band structure is APRES, let us try to calculate p
toemission spectra based on our models. The simp
scheme assumes that the interaction with electric fieldE(t)
5E0eivt removing a high-energy electron with momentumq
and its projectionqab on theab plane is described by th
operator

V~ t !;E0f~q,k!@eivtaqs
† cks1H.c.#d~qab2k62pn!.

~19!

Here we do not specify the structure of on-site operatorscns

and polarization form-factorf(q,k) and suppose that it is
smooth function ofq and k. Then the direct angle-resolve
photoemission~ARPES! signal is proportional to the spectra
function

A~kv!5
1

Z (
i , f

u^C f
Ne21uck,suC i

Ne&u2e2bEid

3~v2m1Ef
Ne21

2Ei
Ne!. ~20!

HereZ is the partition function andb51/kT. In the basis of
one-determinant functionsF, the matrix element in Eq.~20!
can be expressed as

M ~k!5^F f
Ne21uc̃k,suF i

Ne&, c̃ks5W†~a!cksW~a!.
~21!

Unlike the simple operatorcks , the dressed quasiparticl
operator c̃ks including terms of up to second order ina
generates both one-particle and multiparticle excitati
against the background of the uncorrelated mean-field s
F. Let us restrict our analysis to one-particle excitatio
Then the contribution toc̃ks can be represented in the for
of an expansion in the eigenfunctionsxkl of the linearized
Hamiltonian: (H̃)L

c̃ks5w~k!cks1
s

usu
h~k!ck̃s

5(
l

H S 1

2
1s DRlxkl1S 1

2
2s DQlxkl

† J . ~22!
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Here k̃5k2(p,p), and functionsw, h, R, andQ including
terms of up to the second order ina are given by Eqs.~41!,
~42!, and ~44! in the Appendix. The final result was calcu
lated by the formula

A~kv!5(
l

uRlu2f ~El!g~El2v!

[(
l

uQlu2@12 f ~El!#g~El1v!, ~23!

where f (E) is the Fermi distribution function, andd(x) is
replaced by the intentionally broadened Gaussian func
g(x)5exp@2(x/s)2# with s50.02t for more visible presen-
tation of the results and to simulate a finite spectral reso
tion.

Figure 6 shows calculations of photoemission intens
A(k,v) ~in arbitrary units! calculated by Eq.~23! as a func-
tion of v ~in units of t) for several values ofk uniformly
distributed over the segments@C–D# or @A–M–B# in the first
quadrant of the phase plane~the lower left section of Fig. 6!.
In an underdoped system withd50.15, the shift of the pho-
toemission edgeDv(M ) at the pointM occurs in both the
superconducting and normal states and it is almost enti
due to the dielectric pseudogap. At the optimal dopi
d50.2, the shiftDv(M ) vanishes in the normal state. Th
means that atT,Tc this shift is entirely determined by th
superconducting gap.

Figure 7 shows the shiftDv(k) on the generalized
Fermi boundary (M ,M 8), which consists of the dielectric
sections of the magnetic Brillouin zone boundary and of
nonshadow parts of the Fermi boundary. Calculations
Dv(k) were carried out for the superconducting and norm
states of an underdoped system withd50.15, t850.05t,
U58t, andTc50.0091t. Figure 7 also shows similarDv(k)
curves fork varied along the real Fermi boundary (S,S8) of
the optimally doped system atd50.2, other parameter bein
the same. For this type of band (t8.0), there is always a
point on the Fermi surface,kx5ky , where the superconduct
ing gap vanishes, in accordance with the conventional w
dom aboutd-wave superconductivity.

The situation is different in underdoped systems w
t8,0. The shift of the photoemission edge,Dv(k) on the
generalized Fermi surface~see the curve ford50.1,
t8520.05t, andU/t58 in Fig. 8! does not vanish anywher
for T,Tc , although the sign of the superconducting ord
parameter changes. This means that the features of all ph
cal parameters sensitive to the minimum energy of ferm
excitation~such as specific heat, Knight shift in NMR, etc!
should be similar to those of conventionals-wave supercon-
ductors. Nonetheless, phase-sensitive experiments sh
still detect a change in the sign of the order parameter.

This section can be summarized differently if we follo
the system evolution in the reversed direction from a hig
dopingd.dc;0.3 tod50, i.e., to the undoped state of th
antiferromagnetic dielectric. Ford.dc we have a metallic
paramagnetic state with an unsplit energy band. Ford,dc

there is a long-range, two-dimensional antiferromagnetic
der with the energy band split into two and an increase in
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FIG. 6. Top: the spectral functionsA(kv) plotted againstv
and calculated by Eq.~23! for an underdoped system with
d50.15, U58t, V50.1t, and t8/t50.05 in the supercon-
ducting state for a set of quasimomenta uniformly distribut
over the segments@C2D# and@A2M2B# in the first quad-
rant of the full Brillouin zone~left section at the bottom!. The
bottom right section shows spectral functions for an op
mally doped system withd50.2 andkP@A2M2B#. The
dashed curve corresponding to the pointM with k5(0,p)
showsA(kv)31.5 for the same system in the normal sta
for T50.02t.Tc ~the factor 1.5 is introduced for better vis
ibility !.
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density of states. But in this material, which is still ove
doped, the Fermi surface remains large down tod5dopt at
t8.0 or d5d2 at t8,0. In the latter caseE(p/2,p/2)2m
50 at d5d2. Only belowdopt ~or d,d2 at t8,0) do some
sections of the previously large Fermi surface become die
tric, which appears as a pseudogap in specific direction
the quasimomentum in the normal state. In this state,
large Fermi surface decomposes into small hole poc
around the points (6p/2,6p/2) at t8.0 or around (0,p),
(p,0) at t8,0.

5. SUGGESTED CLASSIFICATION OF CUPRATES IN
ACCORDANCE WITH BAND CONFIGURATIONS

It seems worthwhile to discuss which of cuprates can
described in terms of which type of electron band (t8.0 or
t8,0).

Usually32 cuprates are divided into two groups in acco
dance with their properties. Typical representatives of gro
I are Bi2Sr2CaCu2O81d ~BSCCO! and YBa2Cu3O72d

~YBCO!. Group II includes La22xSrxCuO4 ~LSCO! and the
c-
of
e
ts

e

p

only electron-doped material Nd22xCexCuO42y ~NCCO!.
The features on which this classification is based are as
lows.

1. Different Tc
max, which varies between 90–120 K fo

the cuprates of group I and is about 36 and 25 K for LSC
and NCCO, respectively.32,33

2. Vanishing~for group I! and finite~for group II! mini-
mum energy of fermion excitations in the superconduct
state. This parameter is derived from measurements of
cific heat, the Knight shift of NMR, and other physical pro
erties. These measurements are usually considered as te
whether the superconducting order parameter has thed-wave
~group I! or s-wave symmetry~LSCO and NCCO of group
II !.

3. Direct detection ofd-wave symmetry of the supercon
ducting order parameter in BSCCO and YBCO of group I7,8

No such measurements of group II materials are availa
Recently34,35 a smalls-wave component added to the ma
d-wave order parameter due to orthorhombic distortions
been detected.

4. In ARPES spectra of underdoped BSCCO materials
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FIG. 7. Top left: minimal energyDv(k) ~in units of t) of
fermion excitations versus quasimomentumk varied along
the generalized Fermi boundary@M 8,M # shown on the right
and composed of dielectric parts and nonshadow part of
Fermi boundary around the hole pocket centered at the p
(p/2,p/2). The system parameters areU58, V50.1 and
t850.05 in units of t. Curves1 and 2 correspond to the
superconducting (T50.0017t,Tc) and normal (T50.02t
.Tc) states. Bottom: the same for a system with optim
doping d50.2 with the quasimomentum varied along th
Fermi boundary@S8,S# ~right!.
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the normal state, an anisotropic pseudogap~a shift of the
electron energy distribution edge! was detected around th
point M5(p,0),(0,p). No such measurements for materia
of group II are available.

5. A small Fermi surface in the form of a hole pock
aroundk;(p/2,p/2) in underdoped BSCCO~group I! was
detected.10,11

6. The Hall coefficient in LSCO and NCCO~group II!
changes its sign at a certain doping.36–38

7. Two materials from different groups, namely YBC
and LSCO, have different peaks in coherent inelastic neu
scattering at excitation energy\v→0. In YBCO there is one
peak at Q5(p,p). In LSCO there are four peaks a
Q5(p6D,p), (p,p6D).39,40 Theoretical analysis41,42 un-
ambiguously ascribes this difference to differences in par
eters and shapes of Fermi surfaces of corresponding un
n

-
or-

related Emery models, although in an intermediate st
these calculations include renormalizations of the param
netic susceptibility, which tent to be based more on empiri
data.

8. For the two cuprate groups, the main difference
their Fermi surface shapes derived from quantum-chem
calculations of uncorrelated bands43 by the LDA method is
in the role of interactions between non-nearest neighb
For cuprates of group I the Fermi surface displays a nes
with Q;(p,p).43 It is shaped as a square with round
angles and sides along the linesukx6kyu5p, and is centered
at the pointY. In group II the calculated Fermi surface look
more like a turned rounded square with the sides paralle
kx- andky-axes. In terms of the one-band unperturbed mod
this form corresponds tot8/t,0. Note that unperturbed
bands of the tight-binding model cannot be used direc
ith
i
t the
e

FIG. 8. The same as in Fig. 7 for an underdoped model of type II w
t8520.05t and d50.1 versusk varied along the generalized Ferm
boundary composed of sections around hole pockets centered a
points (p,0) and (0,p), and the section of the dielectric part of th
magnetic Brillouin zone boundary. Curves1 and2 correspond to the
superconducting (T50.0017t) and normal (T50.02t) states. The su-
perconducting gapW1

AF(k) plotted by the dashed line@Eq. ~39! in the
Appendix# changes sign.
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~without renormalization! to analyze the low-energy pro
cesses.

Now let us briefly discuss the direct comparison betwe
uncorrelated bands deriving from LDA calculations a
those constructed using ARPES data in accessible region
the phase space~see the comments on Fig. 4 in the text!. On
average, the calculations with the predetermined resolu
adequately describe the Fermi surface shape, but they o
estimate band dispersions in comparison with measurem
This discrepancy is usually eliminated by introducing ren
malizations, often of empirical character.43 The calculated
and measured bands can differ because the former do
take into account alternations of the spin density and
resulting valence band splitting. As was mentioned abo
the antiferromagnetic gap can be directly observed in ph
emission spectra only in electron-doped materia
Sakisaka44 and King et al.45 in fact detected such a gap
\v5Ek2m,2300 meV, which contradicts LDA calcula
tions. Moreover, the finite resolution in both energy andk
may distort the averaged interpretation of ARPES spec
The uncertainty in the Fermi boundary derived from poo
resolved spectra was analyzed in Ref. 24. It seems nece
to reprocess ARPES spectra on the base of Eqs.~17! and~23!
for band energies and intensities, which take account of
antiferromagnetic band splitting and partial dielectrization
the zone boundary. Yet the only material in which the pr
ence of small Fermi surfaces and pseudogap has been ex
mentally proven is the BSCCO ceramic.9–11

All this allows us to associate cuprates of groups I and
with two types of correlated Hubbard models witht8/t.0
and t8/t,0, respectively. Specifically, self-consistent calc
lations taking account of antiferromagnetic correlations a
correlations like valence bonds have revealed the followi

1. The maximum critical temperatures in models w
t8/t50.05 and 0.1 areTc

max50.0129t and 0.0114t, respec-
tively, whereas in models witht8/t520.05 and20.1 only
Tc

max50.0072t and 0.00247t. These results apply to mode
with V/t50.1. At V50 the critical temperature is a factor o
;1.7 higher. The ratio betweenTc

max for the two types of the
model is in fair agreement with this ratio for two cupra
groups.

2. In models witht8/t,0, unlike the caset8/t.0, the
minimum energy of Fermi excitations in the superconduct
state is nonvanishing~see Fig. 8! almost over the entire rang
of superconductivity (d,d2), although the superconductin
order parameter has thed-wave symmetry. This allows us t
abandon the hypothesis of thes-wave superconductivity in
LSCO and NCCO and suggest thatd-wave superconductivity
occurs in all cuprates, including LSCO and NCCO. Owing
the dielectrization of Brillouin zone boundaries in the dire
tion kx5ky , the latter hypothesis is in accord with measu
ments that yield a finite minimum energy of excitation
Note also that in electron-doped systems the second typ
Fermi surfaces with electron pockets around the poin
(6p,0) and (0,6p) corresponds to the positive sign oft8
which is opposite to the sign oft8 for hole-doped system
with the same shape of Fermi surface. The reason is tha
t8.0 the shape of the upper Hubbard subband looks like
inverted lower subband fort8,0 ~Fig. 3!.
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3. In checking the hypothesis of thed-wave supercon-
ductivity in all cuprates, phase-sensitive experiments w
LSCO and NCCO are very important. From the theoreti
viewpoint, the d-wave symmetry is preferable for CuO2

planes in all cuprates, since the on-site repulsion does
suppress thed-wave order parameter, unlike thes-wave su-
perconductivity.

4. The model witht8/t.0 provides a reasonable inte
pretation of the anisotropic pseudogap manifesting itsel
the shift of the photoemission edge fork near the directions
(0,p) and (p,0) in underdoped BSCCO samples. T
pseudogap results from the dielectrization of zone bou
aries near the pointM5(0,p) under conditions of antiferro-
magnetic band splitting. Some authors supposed10,11 that the
pseudogap has thed-wave symmetry, implying that a certai
parameter characterizing the pseudogap changes sign.
pseudogap was regarded as a precursor of thed-wave super-
conducting gap. Our models makes such hypotheses re
dant. Our interpretation of properties of group II cuprat
might be verified by experiment on detection of th
pseudogap in LSCO and NCCO along directionskx56ky .

5. The detection of the small Fermi surface~hole pockets
around the point (p/2,p/2) in BSCCO!9 supports our as-
sumption that this material is described by the model w
t8/t.0. There is hope that, given a higher ARPES reso
tion, it will be possible to distinguish between the smoo
dielectric and sharp metallic parts of the generalized Fe
boundary.

6. Changes in the sign of the Hall constant in LSCO a
NCCO may be due to transitions from small to large Fer
surfaces.

7. An important task of the theory is to check o
whether features in the magnetic susceptibilityx(Q,v) de-
tected in neutron scattering could be described in terms
antiferromagnetically split bands without arbitrary renorm
izations.~One has to use various renormalizations when c
sidering an unsplit, unperturbed band.! The affirmative an-
swer to this question would support the hypothesis that
main mechanism forming the lower and upper Hubbard s
band is antiferromagnetic ordering of spins.

6. MODEL OF ORTHORHOMBIC PERTURBATIONS IN YBCO

Of special note is the effect of orthorhombic distortio
on the band structure, Fermi surface, and shape of the p
curveTc(d). Such distortions occur in YBCO owing to th
layers composed of CuO chains. In order to produce a sim
description of orthorhombic effects, let us introduce differe
hoppingstx and ty for bonds aligned with thex- andy-axes:
tx(y)5t7t, i.e., we will analyze the model

H5H~U,t,V,t8!1DH~t!,

DH~t!5t(
n,s

@~cns
† cn1ex ,s2cns

† cn1ey ,s!1H.c.#. ~24!

To construct a correlated state~3! with correlations of va-
lence bond type, generally speaking, requires using a uni
transformation with different parametersax and ay for
bonds aligned withx- and y-axes. Our rough calculations
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FIG. 9. Left: Fermi boundary~bold line! and nearest zone
energy levels~with a step of 0.02t) in the region2p
,kx(y),p calculated by Eq.~25! with U58, V50.1,
t850.1, andt50.05 ~in units of t) at a dopingd50.15.
Right: density of states~bold curve!. The thin curve cor-
responds to the dopingd50.2 of the second peak on th
phase curve. The inset shows lines of superconduc
gap nodes defined by Eq.~29! with the s-wave contribu-
tion at doping corresponding to the first peak on the cur
of Tc(d).
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however, were based on a variational function with one
rameterax5ay5a. We have used the following approx
mate effective Hamiltonian

H̃5H̃~a,U,t !1DH~V,t8!1DH̃~t!, ~25!

and calculated the first main term to two orders ofa, the
weak interactionDH(V,t8) in zeroth order, and the third
term in the zeroth and first orders ina. By applying the
model to YBCO, wheretb.ta.0 for thea- andb-axes, and
determining the signs oft and t in Eqs. ~1! and ~24!, we
obtaint.0.

The phase curvesTc(d) for the model described by Eqs
~24! and ~25! with t50.05 and parametersU58, V50.1,
t850.1 and 0.05~in units of t) are plotted in Fig. 1~dashed
lines!. They have two peaks due to the more complex ba
structure. For the model witht850.1 with dopingd50.15,
the Fermi surface and density of states in the lower Hubb
subband are shown in Fig. 9. Now the two energy parame
4t8 and 2t characterize features of the lower Hubbard su
bandE(k) near the Fermi level. The parametert determines
the difference between maximum energiesEx

max andEy
max in

profiles of the band energy fork varying along the path
G(0,0)→G(2p,0) on thekx-axis and along the pathG(0,0)
→G(0,2p) on theky-axis. On thekx-axis the curveE(k) has
one peakEx

max at k5(p,0). On theky-axis the profile of
E(k) has two peaksEy

max of equal energies atk5(0,
p6Dy) ~the crosses in Fig. 9!. Since the band energy is
periodic function with the period of the magnetic Brillou
zone, E(0,p)5E(p,0)5Ex

max,Ey
max. Curves of Ex(y)

max(d)
for the model~24! with t5const50.05t and t850.1t are
given in Fig. 2. The corresponding density of states is sho
in Fig. 9, where the main Van Hove singularity correspon
to energyEx

max. This singularity is associated with the fir
peak on the phase curveTc(d) ~the dashed line 38 in Fig. 1!.
It corresponds to the dopingd1, at which the chemical po
tential coincides with the energy of the Van Hove singul
ity: Ey

max2m50. The dopingd2, for which Ex
max2m50

holds, approximately corresponds to the second peak on
phase curveTc(d).

The measured phase diagram of YBa2Cu3O61y , in fact,
has two regions withTc

max;45 K andTc
max;95 K at excess

oxygen concentrationsy;0.65 andy;0.96. The paramete
y is related~but not identical! to the dopingd of the CuO2

plane. In contrast to results obtained for model~24! with
-

d

rd
rs
-

n
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-

he

t50.05t, the region of higher doping on the experimen
phase curve has a higher critical temperatureTc than the
region of lower doping. This discrepancy may be due to
crude approximation used in our calculations. Undoubted
the correlation function with different parametersax anday

for bonds aligned withx- andy-axes should correspond to
lower energy. More accurate calculations, together with
vestigations of superconductivity in alternating dimer stru
tures of valence bonds,19 might clarify the situation.

Note that, throughout the studied doping ranged1,d
,d2, we have different connectivities of regions in the pha
space onkx- and ky-axes occupied by electrons. Unlike th
line G(0,0)→G(0,2p), the lineG(0,0)→G(2p,0) does not
cross the Fermi boundary. Such is the structure of the lo
Hubbard subband. There is an unanswered question
whether this can be a reason of the observed high anisot
of resistivity,aa /ab52.2, even at a small anisotropy of th
hopping interaction,ta /tb50.9 (t50.05t). The resistivity
anisotropy prescribesta /tb50.6 in the tight binding approxi-
mation with an unsplit valence band, i.e.,t50.25t.26 The
difference between these two values may be attributed
different susceptibilities of the Fermi surface to weak int
actionst8 andt with and without band splitting in Eqs.~17!
and ~18!, respectively.

Finally, let us estimate the admixture of thes-wave sym-
metry to the superconducting order parameter due to or
rhombic distortions in our model. For simplicity, we con
sider only three anomalous averageswi5$w1

d ,w0 ,w1
s% i ,

i 51,2,3. Here we retain only the main order parame
w1

d[w1 of all d-wave anomalous averageswl and add two
s-wave parameters. Thus, the following anomalous avera
are included:

w1
d~s!5

1

8N (
n

^@cn↓cn1ex↑1cn↓cn2ex↑#

7@cn↓cn1ey↑1cn↓cn2ey↑#1H.c.&, ~26!

w0
s5

1

2N (
n

^cn↓cn↑1H.c.&. ~27!

The transition temperatureTc is calculated by equating
to zero the determinant of the uniform linear equation syst
for the anomalous averageswi :
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wi2(
j

Di j wj50. ~28!

The matrixDi j for the given set of anomalous averages
determined by Eqs.~45!–~48! in the Appendix. The eigen
vector $wi% of equation system~28! corresponding to the
zero eigenvalue allows us to express the anisotropic su
conducting gap@paring interaction in the lower Hubbard su
band determined by Eqs.~39! and ~49!# as follows:

W1
AF~k!5A1~cx2cy!1A2b~k!1A3~cx1cy!,

cx~y!5coskx~y! . ~29!

The coefficientsAi and functionb(k)5cosgk are given by
Eqs.~40! and~50! of the Appendix. One can easily check o
that functionb(k) has the same symmetry,b( k̃)52b(k),
as the third term on the right of Eq.~29!. The superconduct
ing gap described by Eq.~29! changes sign, as in a pur
d-wave superconductor. At a dopingd;d1, corresponding to
the first peak ofTc(d), the curve of nodes of the superco
ducting gap~29! is that shown in Fig. 9. The deviation of th
nodal line of function~29! from lineskx56ky prescribed for
the pured-wave symmetry rises with increasingd in the
model with constantt. The Fermi surface asymmetry i
probably, more important for the observed orthorhombic d
tortions in YBCO34,35than the small admixture of thes-wave
symmetry to the maind-wave contribution in pairing inter-
action ~29!. In order to clarify the situation, more detaile
investigations are needed, including studies of the role
interaction between two neighboring CuO2 planes in YBCO.

7. CONCLUSION

Let us summarize the main results of the present wo
A description of superconductivity and other low-ener

effects in cuprates in the range of doping where CuO2 planes
are characterized by long-range antiferromagnetic corr
tions can be based on correlated states of the one-band
bard model with correlations of valence bond type. T
short-range attraction between holes in thed-channel is due
to formation of valence bonds, and the constants of this
traction can be calculated variationally.

The phase curveTc(d) for the superconducting trans
tion and other properties are very sensitive to the interac
between second nearest neighbors. The sign of this inte
tion t8/t determines the band structure and Fermi surf
topology at low doping. Models of the first type (t8.0) for
underdoped systems are characterized by the presenc
small Fermi surfaces, namely, hole pockets around the p
(6p/2,6p/2). The latter account for the presence of t
anisotropic pseudogap in ARPES spectra and its doping
pendence. The optimal doping is uniquely determined by
coincidence between the chemical potential and the en
of Van Hove singularity connected with the flat region of t
lower Hubbard subband around the pointM5(p,0). Argu-
ments in favor of applicability of this model to BSCCO an
YBCO materials have been presented.

The models of the second type correspond tot8,0 for
hole-doped systems~or t8.0 for electron-doped systems!.
They show lower transition temperatures and broader pe
r-
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on the phase curveTc(d) shifted in the region of lower dop
ing. These properties are determined by the different b
structures and Fermi surface shapes in these models. In
derdoped systems of this sort, hole~electron! pockets are
located around the pointsM5(0,6p),(6p,0), and there
are dielectric sections of the magnetic Brillouin zone boun
ary near the nodes of the superconducting gap. As a re
the minimal energy of fermion excitations is finite ever
where. The applicability of these models to LSCO a
NCCO has been argued. Thus, we have purt forward
hypothesis that all the cuprates can be described in term
the d-wave order parameter. For NCCO, this hypothesis
supported by the coincidence between the sign of calcula
t8/t.025–27 and the sign oft8/t.0 required for shaping of
type II Fermi surfaces in the case of electron doping. T
hypothesis, however, seems more questionable in the ca
LSCO, where the calculated and empiricalt8/t have opposite
signs. The role of the lattice superstructure in LSCO has a
remained unclear.46 Phase-sensitive experiments for LSC
and NCCO, and detection of pseudogaps with asymm
different from that of BSCCO might help in discovering th
truth.

Models taking account of orthorhombic distortions yie
two peaks on the phase curveTc(d) due to new features in
the lower Hubbard subband. The approximate calculat
however, yields an inverse ratio between two maximum cr
cal temperaturesTc

max in comparison with that measured i
YBCO. The contribution of ans-wave component added t
the basicd-wave order parameter has also been estimate

The present work was supported by the Russian Fund
Fundamental Research~Projects 97-03-33727A and 96-15
97492! and ISTC~Grant No. 872! which we gratefully ac-
knowledge here. The authors are indebted to V. Ya. Krivn
for helpful discussions.

APPENDIX

For the one-determinant BCS functionF with a double
magnetic elementary cell, the mean energyH̄(yi)5^cHC&
5^FH̃F& depends on the set of averagesyi5$r l ,dl ,wl% i of
one-electron operators

r̂ l5
1

2nl
(
l ,s

cn,s
† cn1 l ,s ,

d̂l5
1

2nl
(
l ,s

~21!n
s

usu
cn,s

† cn1 l ,s , ~30!

ŵl5
1

4nl
(
l ,s

sign~ l x
22 l y

2!@cn,s
† cn1 l ,2s

† 1H.c.# ~31!

calculated with wave functionF. Here l 50,1,A2,2,A5,3,
and nl is the number of all vectorsl of length l 5u lu over
which the sums are performed. The valuesdl are nonzero
only when (l x1 l y) is even, and anomalous averageswl of
the d-wave symmetry onlyl xÞ l y are included. The one
determinant function minimizingH̄ is an eigenfunction of
the linearized Hamiltonian, which is expressed in the basi
fermion operatorsbki5$ck↑

† , ck̃↑
† , c2k↓ , c2 k̃↓% i in the

form
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~H̃ !L5(
k

F (
i , j 51

4

hi j ~k!bki
† bk j1const. ~32!

The matrixhi j is given by the formula

hi j 5S ek2m Dk Wk 0

Dk e k̃2m 0 Wk̃

Wk 0 2~ek2m! 2Dk

0 Wk̃ 2Dk 2~e k̃2m!

D , ~33!

ek5
1

2 (
l

]H̄

]r l
gl~k!, Dk5

1

2 (
l

]H̄

]dl
gl~k!,

Wk5
1

2 (
l

]H̄

]wl
ql~k!. ~34!

The functionsgl(k) and ql(k) are determined by the equa
tions

gl~k!5
1

2
@coskxl x coskyl y1coskyl x coskxl y#,

ql~k!5
1

2
sign~ l x

22 l y
2!@coskxl xcoskyl y

2coskyl xcoskxl y#. ~35!

Here k̃5k1(p,p). In sums overl in the expression forek ,
Dk , andWk , the indexl runs through allr l , or dl , or wl

from the complete set of one-electron averages inH̄. One-
electron eigenfunctionsxkl and spectrumEl(k) of the lin-
earized Hamiltonian are calculated by diagonalizing the m
trix ~33!:

xkl
† 5(

j
bk j

† Sj ,l , hi j Sj ,l5Sj ,lEl ~36!

for all kPF within the magnetic Brillouin zone. The ap
proximate numerical diagonalization yields fairly accura
results thanks to the smallnessWk!Dk of the superconduct
ing gap in comparison with the antiferromagnetic one. T
approximate eigenvalueshi j are

El57A~En
AF2m!21~Wn

AF!2, l51, . . . ,4, n51,2.
~37!

Here the energiesE1(2)
AF of the upper and lower Hubbar

subbands are

E1~2!
AF 5

1

2
~ek1e k̃!7A1

4
~ek2e k̃!

21Dk
2, ~38!

and interactionWn
AF responsible for the superconductin

pairing in one of the subbands in the case of hole (n51) or
electron (n52) doping is given by

Wn
AF5

1

2
@Wk2Wk̃6cosgk~Wk1Wk̃!#, n51,2, ~39!
-

e

tangk52Dk /~ek2e k̃!. ~40!

Given the eigenfunctions and spectrum, one can calculate
desired averagesyi and so obtain a self-consistent solutio
Details of the calculation procedure were describ
elsewhere.16

The one-particle contribution to annihilation operato
c̃ks is determined by Eq.~22!, where the functionsw andh
are determined by the expressions

w~k!512a2~cx1cy!@~122r 0!r 1

1r 0~12r 0!1d0
212r 1

2#, ~41!

h~k!522~cx1cy!d0~11a2r 1
2!, cx~y!5coskx~y! .

~42!

Let us expandc̃ks in ~22! in terms of one-particle operator
xks , which determine the eigenfunctionF of the linearized
HamiltonianH̃L :

ck↑5(lRlxkl , ck↓5(lQlxkl
† . ~43!

The expressions forRl and Ql are different for quasi-
momenta inside (kPF) and outside (k¹F) the first mag-
netic Brillouin zone:

Rl~k!5Ql8~k!5H w~k!S1l1h~k!S2l , kPF,

2h~k!S1l1w~k!S2l , k¹F.

~44!

Herel85l8(l) corresponds to the eigenvalueEl852El .
By virtue of symmetry relations~44! betweenQl andRl and
the formula f (El)512 f (2El) for the Fermi distribution
function, we have final expression~23! for the spectral func-
tion A(kv).

In analyzing the model described by Eqs.~24! and ~25!
and including the perturbation of the orthorhombic symme
proportional tot, we consider only the principal averag
w1

d[w1 of thed-wave anomalous averages~31! and add two
s-wave anomalous averagesw0 and w1

s given by Eqs.~26!
and ~27!. Thus, we treat only three superconducting ord
parameterwi5$w1

d ,w0 ,w1
s%. Then the critical temperature o

a hole-doped system is determined by Eq.~28! with matrix
Di j 5]wi /]wj at wl50 equal to

Di j 52N21 (
k

FRil ~k!al j

122 f ~E1!

2E1
, ~45!

R115
1

4
~cx2cy!2, R225cosg k

2 , R335
1

4
~cx1cy!2,

~46!

R125
1

2
~cx2cy!cosgk , R135

1

4
~cx

22cy
2!,

R235
1

2
~cx1cy!cosgk . ~47!

Herecx(y)5coskx(y) , gk derives from Eq.~40!, f is the Fermi
distribution function,E1(k)5E1

AF(k)2m is the energy of the
lower Hubbard subband with respect to the chemical pot
tial, and coefficientsai j are given by
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ai j 5
]2H̄

]wi]wj
U

wi50

. ~48!

In a hole-doped system with antiferromagnetic band sp
ting, the role of the superconducting pairing~superconduct-
ing gap! is played by quantity~39!. If the anomalous aver
ages ~26! and ~27! are retained, it includesd-wave and
s-wave contributions,

Wk5A1~cx2cy!12A2 cosgk1A3~cx1cy!, ~49!

with coefficients

Ai5
1

2
@ai1w1

d1ai2w01ai3w1
s#. ~50!

Heregk andai j are given by Eqs.~40! and ~48!.
Note added in proof~18 December 1998!. Some of our

results are close to those obtained in Ref. 1~below!, where
the same problems were studied in the different~probably
equivalent! language of thet –J model and spin-polaron pair
ing. In both cases, superconductivity is described with
any empirical parameters and occurs inside the doping
gion where 2D antiferromagnetic spin order exists. In b
cases the value and sign of diagonal hopping greatly in
ence the phase curveTc(d) and the type of Fermi surface
Reference 2 should also be mentioned.
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Zh. Éksp. Teor. Fiz.115, 675–688~February 1999!

The formation of periodic surface structures by ultrashort laser pulses was observed
experimentally and explained theoretically. The experiments were performed on graphite with
picosecond laser pulses. The spatial period of the structures is of the order of the
wavelength of the incident radiation, and the orientation of the structures is correlated with the
direction of polarization of the light. The key point of the theoretical model proposed is
resonance excitation of surface electromagnetic waves, which under conditions such that the
temperature of the electronic subsystem is decoupled from the temperature of the crystal
lattice causes a ‘‘temperature grating’’ to be written on the flat solid surface of the sample while
the laser pulse is being applied on account of the temperature dependence of the surface
impedance. The formation of a periodic surface profile from the temperature grating occurs by
the volume expansion of a melted layer near the surface of the material. For typical
values of the surface tension and viscosity for metals, there is not enough time for the periodic
profile to be resorbed before the liquid layer solidifies. The formation of periodic surface
structures is delayed in time relative to the laser pulse. ©1999 American Institute of Physics.
@S1063-7761~99!02002-8#
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1. INTRODUCTION

The formation of periodic surface structures, which a
responsible for spatially modulated surface profiles with
period on the order of the wavelength of light, is one of t
most common phenomena occurring under the action of l
radiation on condensed media.1 The mechanism of this phe
nomenon for metals and semiconductors is based on r
nance excitation of surface electromagnetic waves,2 whose
interference with the incident wave results in spatial mo
lation of the energy release, which in the presence of posi
feedback gives rise to a periodic surface profile by mean
an appropriate thermophysical mechanism~for example,
evaporation or thermal expansion!.

As far as we know, all investigations performed thus
on periodic surface structures concern the action of comp
tively short laser pulses, so that the physical processes
companying the development of the phenomenon can
treated as quasistationary. At the same time, for ultras
laser pulses~picosecond and shorter duration!, not only can
the assumption of quasistationarity break down, but it m
even become impossible for some of these processes to o
during the laser pulse. Under such conditions, the forma
3701063-7761/99/88(2)/7/$15.00
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of periodic surface structures, if it happens, should oc
after the laser action ceases; this is what distinguishes
damentally the ultrashort laser pulse regime from the c
ventional case. In addition, there are other important featu
of the ultrashort laser action regime: decoupling of t
conduction-electron temperature from the crystal latt
temperature3 and smallness of the modulated-heating dep
In our opinion, all this gives grounds for believing that th
discovery of the formation of periodic surface structures u
der given conditions in itself can be exceedingly importa
for understanding the physics of the interaction of ultrash
laser pulses with condensed media.

In the present paper we report experimental data
confirm the formation of periodic surface structures
graphite by picosecond laser pulses, and we propose a th
of the formation of such structures by ultrashort laser puls

This paper is organized as follows. In Sec. 1, the res
of an experimental investigation of the formation of period
surface structures on graphite are reported. In Sec. 2,
physical processes that result in the formation of such st
tures by ultrashort laser pulses interacting with a metal
analyzed theoretically. Laser absorption, instability with
© 1999 American Institute of Physics
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spect to the formation of spatially modulated temperat
fields over the application time of the laser pulse, and
formation of a periodic profile after the laser pulse ends
studied separately. The results are discussed in Sec. 3.

2. EXPERIMENT

A periodic surface structure was observed on the surf
of microcrystalline pyrolytic graphite when;1 ps laser
pulses were applied to the surface of the sample. The gr
ite sample was prepared in the form of tablets~Fig. 1!, whose
flat surface is perpendicular to the symmetry axisC. Corre-
spondingly, the side face of the tablet is parallel to the sy
metry axis.

Investigation of the initial sample by transmission ele
tron microscopy, x-ray diffractometry, and Raman scatter
spectroscopy~see Figs. 2 and 3 below! showed that the ini-
tial sample consists of microcrystalline graphite with 10–
nm grains. The diffraction pattern for the sample surfa
resembles that obtained when the crystallites have a di
guished predominant orientation. The graphite layers are
ranged parallel to one another, but the distance between
is not fixed. A distinct texture is observed, i.e., microcryst
are slightly disoriented with respect to one another. On
basis of these investigations it can be concluded that
properties ~specifically, the thermal conductivity! of this
sample are strongly anisotropic.

The experimental investigations were conducted us
the laser system based on multicascade SRMB and
compression of the initial nanosecond pulse from a Nd:YA
laser, generating simultaneously several pulses of diffe
duration in the femto- and picosecond ranges with repeti
frequencies up to 10 Hz. The parameters were monito
using the measurement part of the system, including ph
sensors for the pulse energy, an image converter with;3 ps
time resolution, and an autocorrelator with;50 fs resolu-
tion. All measurements, including diagnostic, were fed int
multichannel digital information reading and processing u
This unit consisted of several highly sensitive digital vid
cameras and analog signal inputs, an information read
synchronization unit, a controller for the the laser setup a
the computer that made it possible to control the setup
cording to a prescribed program, extract and process sim
taneously information from the outputs of the image co
verter, oscillograph, autocorrelator, energy sensors, ph
sensors, and spectroscopic instruments.

A heating laser pulse of length.1 ps with wavelength
780 nm was focused into a spot.200mm in diameter on the
lateral face and the surface of the graphite at an angle c

FIG. 1. Arrangement of the focusing spots~1! of the heating pulse on the
graphite sample:2 — sample surface;3 — side face of the sample;4 —
graphite layers.
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to normal incidence~Fig. 1!. The energy density in the fo
cusing spot was.0.5 J/cm2. When laser pulses are applie
repeatedly with repetition frequency 10 Hz, a strongly
flecting ~reflection three to four times more intense than t
initial reflection! microregion arises at the center of the f
cusing spot on the side face and increases in size up to
size of the focusing spot. The reflection increases very li
in the flat surface of the sample. An electron microsco
showed that a periodic surface relief with period.0.6mm
on the spots on the side faces~Fig. 2b! and with period
.1mm in the spot on the surface of the sample is presen
all spots. The structure on the sample surface is not as s
as on the side face.

Raman spectroscopy~Fig. 3! showed that for the crate
located on the surface of the sample, the presence o
amorphous phase of carbon is identified at both the ce
and periphery. The fraction of the amorphous phase is hig
at the center of the crater. Reflections corresponding to
microcrystalline phase of graphite are observed simu
neously with the amorphous phase at the same points. A

FIG. 2. Electron microscopy of microcrystalline pyrolytic graphite~in the
side face plane! after laser action: initial surface before irradiation~a! and
after irradiation with pulses with durationt51 ps ~b! and 500 ps~c!.
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same time, for the spots located on the side face of
sample, the Raman measurements show the presence o
an amorphous carbon phase without any traces of microc
talline graphite.

The following investigations were performed~in all ex-
periments, the side face of the experimental sample of
crocrystalline graphite was heated!.

1. When the polarization plane of the heating pu
changed~rotated by 45°!, the orientation of the lines o
the periodic surface structure also changed by the am
w'45°.

2. Formation of periodic surface structures was not
served~Fig. 2c! when the duration of the heating laser pul
was increased tot'500 ps~wavelength 530 nm!. The Ra-
man spectra~Fig. 3b, curve4! show the presence of a micro

FIG. 3. Raman spectroscopy of pyrolytic graphite after laser action~curves
1 — initial surface!: a — heating of the surface~curve 2! and of the side
face ~curve 3! of the sample by laser pulses with durationt.1 ps; b —
heating of the side face of the sample witht.500 ps~curve 4! and 1 ps
~curve 5, vacuum!; c — heating of the side face of the single crystal f
t.1 ps.
e
nly
s-

i-

e

nt

-

crystalline structure with traces of an amorphous phase.
3. The formation of periodic surface structures and

amorphous phase of graphite were likewise observed w
the experimental sample was heated with laser pulses
durationt'1 ps in a shallow vacuum (1026 bar) ~Fig. 3b,
curve5!.

4. Such investigations were performed on a differe
form of graphite, a pyrolytic graphite single crystal. Ram
spectroscopy of this sample reveals a single-crystal struc
on the surface and a microcrystalline structure on the s
face~Fig. 3c!. The formation of a periodic surface structur
was not observed after repeated application of laser pu
(t'1 ps). The Raman spectra show the presence of a mi
crystalline structure with traces of an amorphous phase.

5. An accumulation effect is observed with the appe
ance of periodic surface structures on samples of microc
talline graphite, i.e., if a periodic structure is observed at
center of a focusing spot with one application of a heat
pulse with the appropriate energy density, then under
peated application of pulses with approximately the sa
parameters, the region of formation of such a structure
observed to increase in size until the entire area of the foc
ing spot is filled~the energy distribution in the focusing sp
is close to Gaussian.

3. THEORETICAL ANALYSIS

3.1. Formulation of the problem

A characteristic feature of the action of picosecond~and
shorter! laser pulses with moderate energy densities (<1
25 J/cm2) on strongly absorbing condensed media is t
radiation absorption occurs over the durationt of the laser
pulse and the absorbed energy is redistributed between
subsystems in the material~conduction electrons and lattice!,
while all other processes, such as thermal expansion, va
ization, and possibly melting,4 require a longer time and pro
ceed after the laser pulse ends. Thus, elastic unloading
heated layer of matter of thicknessd;1025 cm, which re-
sults in thermal expansion, occurs over a time;d/s.3
210 ps (s is the sound speed! appreciably longer than the
durationt of the laser pulse. Hence it follows that a sta
when a spatially modulated temperature field~writing of a
temperature grating! forms as a result of an unstable proce
with positive feedback1! over a timet<t, should precede the
formation of a periodic surface structure. An important ch
acteristic of this process is that under the action of picos
ond and shorter pulses it proceeds with a large decouplin
the electron temperature from the crystal-lattice temperat

The process leading to the formation of a periodic te
perature profile by action on high-conductivity materia
must be based on the resonance excitation of surface ele
magnetic waves accompanying the diffraction of the incid
laser wave by the flat surface with spatial modulation of
optical properties by the periodic modulation of the tempe
ture. It is significant that the modulation depth can be b
greater than and of the order of the skin-layer depth.

If periodic surface structures form fort.t as a result of
the thermal expansion of a melted layer of matter, stamp
of a grating~second stage!, then it is followed by the reverse
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process~as the third stage!: resorption of the grating as
result of surface tension. The fixation of a periodic surfa
profile ultimately depends on whether or not spatial modu
tion of the surface temperature remains before the me
surface layers of the material can solidify and whether or
the viscosity of the melt can be sufficiently effective to pr
vent resorption of the periodic profile by surface tension
fore solidification occurs.

A detailed examination of the above-enumerated e
ments of the formation of periodic surface structures by
trashort laser pulses is the content of the analysis of
section.

3.2. Resonant diffraction by a flat surface with periodic
modulation of the optical properties

To solve this problem it is convenient to use an impe
ance boundary condition in the Leontovich form:6

Et5 z̃n3H, ~1!

whereEt is the part of the electric field intensity vector th
is tangent to the surface,H is the magnetic field vector,n is
the unit vector of the normal directed into the sample,

z̃5z1dz ~2!

is the effective surface impedance, consisting of a unifo
~averaged over the surface! part z and a spatially modulated
part dz, where udzu!uzu. We shall assume below that th
depth of uniform ~in the plane of the surface! heating is
greater than the skin-layer depth. Thenz is an equilibrium
function of the crystal-lattice temperatureTi averaged over
the surface. Assuming that the temperatureTe to which the
conduction electrons are heated is low compared with
Fermi temperature and the temperatures corresponding t
terband transitions,z is independent ofTe . Here and below,
the metal under study is assumed to be nonmagnetic.

To find the small spatially modulated correctiondz to
the surface impedance, we proceed in the same manner
the derivation of the impedance boundary condition in
conventional case:6 Using Maxwell’s equations in matter w
express the tangential components of the electric and m
netic fields at the boundary in terms of one another. Co
paring the relation so obtained and the expressions~1! and
~2!, we find

dz5
]z

]Ti
^dTi&, ^dTi&[m̃E

0

`

dzdTi exp~2m̃z!, ~3!

wherem̃522i (v/c)(1/z) andv andc are, respectively, the
circular frequency and the speed of light. We emphasize
in such a simple form the boundary condition~1! for nonuni-
form ~as a function of depth! modulated~over the surface!
heating of the metal is valid to first orer indTi .

We note that the spatially modulated parts of the surf
impedance and temperatures depend on the coordinat
the boundary plane as

dz,dTi ,dTe}exp~ ig–r !, ~4!
e
-
d
t

-
-

-
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where g is the periodicity vector of the surface structur
which satisfies the resonance condition for a surface elec
magnetic wave,

ukt1gu.v/c, ~5!

kt is the projection of the wave vector of the incident wa
on the boundary plane of the sample,uktu5(v/c)sinu, andu
is the angle of incidence.

The solution of the problem of diffraction of a plan
wave by a flat surface with spatially modulated optical pro
erties, determined by the relations~2!–~5! consistent with the
boundary condition~1! as done for a similar problem in Re
7 leads to expressions for the magnetic and electric fi
vectors of a surface wave that give the following relation
the interference spatially-modulated part of the density of
absorption of laser power:

dQ~z!52m~12R!IAB cosq exp~2mz1 iq!
^dTi&

Ti
,

B5
Ti

z8

]z

]Ti
, z85Rez. ~6!

HereR is the reflection coefficient corresponding to the la
tice temperatureTi , I is the intensity of the incident radia
tion, m52(v/c)Im(1/z),

A5
uEp cosc1Es cosu sincu2

uEpu21uEsu2 cos2 u
, ~7!

Ep andEs are the components of the field amplitude of t
incident wave, respectively, in and perpendicular to the pl
of incidence,c is the angle between the vectorskt1g and
kt , andq is an angle in the range

p

2
,q<p1tan21

uz9u

z8
, z95Im z, ~8!

and is determined by the detuning of the resonance of
incident laser wave relative to the surface wave.

We note that the expression~6! for the spatially modu-
lated part of the power absorption density corresponds
resonant diffraction with excitation of one surface wave w
the wave vectorkt1g. The situation corresponding to angle
c56(p/22u) requires a special analysis. In this case, t
surface electromagnetic waves with wave vectorskt1g and
kt2g are excited simultaneously and are in resonance.
expression~6! for dQ is modified by adding to it an addi
tional term obtained from the initial term by complex conj
gation and by the substitutionsg→2g, c→2c.

3.3. Formation of a periodic profile of the temperature field

The periodically modulated radiation absorption
sharply selective with respect to the periodicity vectorg on
account of resonance in the surface electromagnetic wav
calculated in the preceding subsection. In the presenc
positive feedback an instability against the formation o
periodically modulated temperature field therefore devel
in the surface layer of the sample. To study this process
shall employ the two-temperature model developed in R
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3 and 8. In accordance with this model, the system of eq
tions for the spatially modulated part of the conductio
electron temperature and the crystal-lattice temperature
der the conditionsTe@Ti , dTe@dTi has the form

S ce

]

]t
1ã D dTe5le

]2

]z2
dTe1dQ, ci

]dTi

]t
5adTe . ~9!

Here ce and ci are, respectively, the specific heats of t
conduction electrons and crystal lattice,

ã5a1leg
2, ~10!

a is a parameter describing energy transfer between the
duction electrons and the crystal lattice, andle is the elec-
tronic thermal conductivity.

We seek the unstable solution of the system~9!, as usual,
in the form

dTe ,dTi}exp~gt !, Reg.0. ~11!

Two regimes of the behavior of the growth rateg with re-
spect to the intensity of the incident radiation can be dis
guished, depending on the role of the electronic thermal c
ductivity. In the first regime, where the diffusion length
heat into the sample for spatially modulated heating is la
compared with the skin-layer depthm21 ~relatively long la-
ser pulses!, the last term on the right side of Eqs.~9! plays
the role of a surface source. Then, taking account of Eq.~6!
and substituting the expression~11! into Eq.~9!, we arrive at
the following equation for the growth rate:

gAg1
1

te
5

dQ~0!

ci^dTi&

a

Ate

, ~12!

where

te5
ce

ã
, a5Aa2/leãm2 . ~13!

In the visible and near-infrared ranges, where
conduction-electron momentum relaxation timetm satisfies
vtm@1, the quantityB appearing in the expression~6! for
dQ(z) ~and defined there! at temperatures above the Deb
temperature, wheretm}Ti

21 , is real, essentially independe
of the lattice temperature, and close to unity:

B'1. ~14!

Under these conditions, taking account of the expression~6!
for the source and the condition~8! on its phase, it follows
from Eq. ~12! that in the regime under study, for radiatio
intensities below the threshold determined in order of m
nitude by the expression

I th;@~12R!amte#
21ciTi , ~15!

there is no solution of the system~9! that increases with
time, and so an aperiodic surface structure does not form

In what follows, we shall assume that the conditi
vtm@1 is not necessary. The expression~14!, however, to
within a factor of order unity, remains valid over the enti
range of applicability of the impedance approximation, a
a-
-
n-

n-

-
n-

e

e

-

d

for this reason, we shall employ it in what follows to mak
estimates without any restrictions on the frequency of
incident radiation.

For intensities appreciably above threshold, the grow
rate of the temperature grating in the regime of deep spa
modulation is given, according to Eq.~12!, by the expression

g.S dQ~0!

ci^dTi&

a

Ate
D 2/3

. ~16!

This expression and the analogous subsequent formula
the growth rate have two free parameters: the anglesq andc
appearing in the expression fordQ @see the relations~6!–
~8!#. Here and below, these quantities must be determined
maximizing the real part of the growth rate. Specifically, t
wave vector of the periodic spatial structure is establishe
this manner.

On the basis of this and the relations~6!–~8!, it follows
from Eq. ~16! that by the moment the laser pulse ends in
regime under study, the real part of the exponent in the
lations ~11!, G5t Reg, is approximately

G'S a2Q̃2
t

te
D 1/3

, Q̃5
m~12R!I t

ciTi
. ~17!

In accordance with the role of the thermal conductivity d
scribed above, the applicability condition of the expressio
~16! and ~17! for the first regime is

lem
2/ceugu@1. ~18!

We shall now consdier the second regime of format
of a temperature grating, where the heat diffusion length i
the sample for spatially-modulated heating is small co
pared with the skin-layer depth,

lem
2/ceugu!1. ~19!

In this case the thermal conductivity in the system of eq
tions ~9! can be neglected, and the expression

g5A m̃a

~m1m̃ !ã

dQ~0!

ci^dTi&te
. ~20!

is obtained for the growth rate of the instability with respe
to formation of a temperature grating. Hence it follows, ta
ing account of the relations~6!–~8!, that by the moment the
laser pulse ends the real part of the exponent in the relat
~11! in the regime under study is given approximately by

G'AQ̃
t

te
. ~21!

3.4. Evolution of periodic surface structures at the stage
of a melted near-surface layer

We shall now discuss the evolution of periodic surfa
structures for the case in which the structures form from
temperature grating by thermal expansion of a melted la
near the surface of the material. After the laser pulse en
the electron and lattice temperatures equalize (Te5Ti

5T, dTe5dTi5dT), and a melted layer forms near the su
face, a periodic surface profile with depth
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h5
1

3
bdTD, ~22!

where D is the effective depth of the spatially modulate
heating andb is the thermal expansion coefficient of th
melt, forms as a result of elastic relaxation accompanied
isotropic thermal expansion. At this stage, surface tens
which tends to flatten the boundary and thereby cause the
periodic structure to be resorbed, comes into play. The s
tion of the equations of hydrodynamics taking account of
surface tension and viscosity gives an exponential time
pendence of the depth of the surface profile:

h~ t !5h~0!exp~2t/t* !. ~23!

The relaxation time appearing here is determined, in
shallow-water approximation9 gD!1, g5ugu, by

t* 5
3h

sg~gD!3
, ~24!

whereh is the dynamic viscosity ands is the surface ten-
sion.

4. DISCUSSION

The writing of a spatially modulated temperature fie
~temperature grating! is a characteristic, very important, an
inevitable ~under the conditions of ultrashort laser pulse!
preliminary stage in the formation of periodic spatial stru
tures. As shown in the preceding section, this stage
therefore the entire process leading to the formation of p
odic structures under the conditions considered
threshold processes. We shall estimate the thres
intensity determined by the expression~15!. Setting
a'1012 W/cm3

•K, m'33105 cm21, 12R'0.7, le

'1 W/cm•K, ci'1.6 J/cm3
•K, te'1023 s, Ti'103 K, we

obtain from Eq. ~13! a'3 and from Eq. ~15! I th'2
31010 W/cm2.

Noting that the real part of the exponent in Eq.~11!
should beG'10 when the laser pulse ends, for the values
m and le adopted above we conclude that for laser pu
durationst'10212 s the second of the two regimes cons
ered in the preceding section is realized in the experim
performed. Since the energy flux in the experiment w
0.1– 0.5 J/cm2, we find on the basis of the relations~21! and
~17! that the required values ofG are attained.

We note that since according to Eqs.~9! and ~11! dTi

5(a/gci)dTe and in view of the fact that the threshold~15!
corresponds to the conditionugute;1, for laser pulse inten-
sities above threshold the periodically modulated parts of
electron and lattice temperatures satisfy

udTi u,
ace

ãci

udTeu.

Hence it follows, sincece!ci , that a temperature gratin
can form only if the modulated part of the electron tempe
ture is substantially decoupled from the lattice temperatu
At the same time, satisfaction of the inequalityugute.1
above threshold, taking account of the estimateugut'10,
implies that under these conditions decoupling of the e
y
n,
he
u-
e
e-

e

-
d
i-
e
ld

f
e

nt
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-

tronic temperature, which is uniform in the interface, shou
also occur~though the decoupling is not as large!.

To interpret the experimental data concerning the sub
quent stages of the formation of periodic surface structu
we proceed from the fact that after the temperature gratin
fixed a periodic relief forms by the thermal expansion of t
melted near-surface layer of the material. An indirect arg
ment in favor of this is that both the periodic structure a
amorphous graphite10 appear in much sharper form on th
side face section of the sample boundary than on the sur
of the sample. This is easily understood on the basis of
fact that the near-surface melted layer plays a dominant
compared with vaporization followed by deposition on a s
face, if the following circumstance is taken into account. O
account of the layered structure of the sample, the ther
conductivity in a direction normal to the boundary is app
ciably higher on the side face than on the surface of
sample. As a result, the melted layer cools more rapidly
the side face and correspondingly the conditions for a tr
sition of the liquid layer into the amorphous state are m
favorable. The same is true for the formation of period
surface structures, since, as noted above, the mecha
based on spatially modulated thermal expansion of the liq
layer requires rapid solidification~due to the diffusion of
heat into the sample! and slow relaxation of the spatiall
modulated temperature field due to the diffusion of heat
the boundary plane. We shall compare the character
times of the corresponding processes.

The surface tension and viscosity for liquid graphite th
are required in order to estimate the relaxation time of
periodic profile on a liquid surface@Eq. ~24!# are unknown.
However, the ratio of these two characteristics for liqu
metals falls into a comparatively narrow range. For liquid A
Bi, Pb, Cu, and Fe, this ratio lies in the rangeh/s5(1
24)31025 s/cm. Assuming that for liquid graphite thi
quantity does not fall far outside these limits, and sett
D'231026 cm andg'105 cm21, we obtain the estimate
t* .1 ns.

The relaxation time of the spatially modulated therm
profile due to diffusion of heat in the boundary plane of t
sample is determined by the expressiont r'(xg2)21, where
x is the thermal diffusivity. Settingx'0.1 cm2/s with g
'105 cm21 we havet r'1 ns.

Finally, according to Ref. 4, solidification of the surfac
for the laser action regime under consideration occurs ov
time of orderts* '100 ps.

Comparing the timest* ,t r , and ts we conclude that on
the one hand the spatial modulation of the surface temp
ture remains before the melted layer near the surface so
fies, while on the other hand there is not enough time for
periodic surface profile to be resorbed on account of surf
tension. All this suggests that the proposed mechanism
formation of periodic surface structures due to the therm
expansion of a melted layer near the surface of the grap
corresponds to the experiment performed.

We note that for sufficiently long laser pulses, such th
decoupling of the electronic temperature does not occur,
system of two equations~9! becomes a single equation fo
the modulated part of the equilibrium temperaturedTe
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5dTi5dT. The solution of the equation in the form~11!,
taking account of the relations~6!, ~8!, and~14!, corresponds
to Reg,0.

To conclude this section, we wish to make two ad
tional remarks. First, the character and quality of the perio
surface modes which are formed can depend strongly on
initial state of the surface. Thus, in Refs. 11–14 it is sho
that a specially produced nonuniformity of the surface,
example, in the form of a straight line, greatly facilitates t
formation of periodic surface modes and improves th
quality. The second remark concerns the high laser po
densities used in our experiments. As shown in Ref. 13,
intensities;1012 W/cm2 the field corrections to the permit
tivity can become appreciable, which can cause the perio
the surface structures to depend on the laser power den
Both of these aspects have a direct bearing on the physic
the formation of periodic surface modes by ultrashort la
pulses and merit special investigations.

5. CONCLUSIONS

The main results of this work are as follows.
The formation of light-induced periodic structures on

graphite surface by picosecond laser pulses was detecte
perimentally. The closeness of the spatial period of the st
ture to the wavelength of the incident radiation and the c
relation of their orientation and the radiation polarizati
made it possible to link the mechanism leading to the form
tion of such structures to resonant excitation of surface e
tromagnetic waves.

A theoretical model was proposed for the process le
ing to the formation of periodic surface structures by
trashort laser pulses. In this model the process proceed
three stages. In the first stage, spatial modulation of the t
perature and pressure along the surface is produced ove
application time of the pulse under conditions such that
electronic temperature is decoupled from the lattice temp
ture. In the second stage, elastic unloading of a layer nea
surface occurs and, on account of thermal expansion, a
odic surface relief with preservation of its temperature mo
lation is formed. In the third stage, two processes occur
multaneously: resorption of the periodic relief due to surfa
tension and cooling of the surface with solidification. T
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periodic surface structure becomes fixed if the solidificat
process is more rapid than the relaxation of the surface
file on the liquid surface.

The estimates made above confirm that the propo
model adequately describes the experiment with formation
periodic surface structures on graphite by picosecond la
pulses.
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1!We note that an instability induced in the periodic surface structure by

spatial modulation of the temperature under the action of relatively lo
laser pulses and therefore differing fundamentally from that studied in
present paper was investigated in Ref. 5.
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Magnetic anisotropy of epitaxial iron films on single-crystal MgO „001… and Al 2O3„112̄0…
substrates
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The ferromagnetic resonance and magnetization of single-crystal thin~27–100 Å films grown in
the ~110! direction are measured in the temperature range 20–400 K. The films are
prepared by molecular-beam epitaxy on single-crystal sapphire Al2O3(112̄0) substrates with a
Nb~110!buffer layer. The angular dependence of the parameters of the ferromagnetic
resonance spectrum is observed to have a 180° character when the static magnetic field is rotated
in the plane of the sample. It is established that this angular dependence can be described
on the assumption that the lattice distortions are essentially trigonal. A comparative analysis of
previous data for Fe~001! films with the data for Fe~110! films shows that the source of
the corrections to the cubic anisotropy constant is the characteristic distribution of the strains
along the thickness of the film. ©1999 American Institute of Physics.
@S1063-7761~99!02102-2#
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1. INTRODUCTION
The last decade has witnessed enormous interes

multilayer systems made up of alternating thin layers of f
romagnetic and nonmagnetic metals. The reason is twof
an encouraging outlook for practical applications of su
systems and the discovery of extraordinary phenomen
them—exchange interaction of the ferromagnetic layers
oscillates as a function of the thickness of the nonmagn
metal layer,1 and giant magnetoresistance.2 Giant magnetore-
sistance is observed for antiferromagnetic mutual orienta
of the magnetic moments of adjacent ferromagnetic lay
This phenomenon can be utilized in the design of except
ally sensitive magnetic sensors or magnetic read heads
achieve any kind of mutual orientation of the magnetizatio
it is necessary that the interaction energy of the layers exc
the magnetic anisotropy energy in each ferromagnetic la
Consequently, to understand the magnetic and trans
properties of multilayer magnetic systems, apart from stu
ing the interaction of the ferromagnetic layers, it is of utmo
importance to know the sources of magnetic anisotropy
ferromagnetic thin films.

At the present time we see abundant examples of
powerful influence of surface and interface effects on
magnetic anisotropy of films. The classic manifestation
their influence is the so-called Ne´el anisotropy,3 which is a
consequence of symmetry breaking of the internal cry
field on the surface of a film or at an interface. As a result
this effect the magnetization of films having a thickness
the order of a few atomic layers tends to order in the dir
tion normal to the film surface. Interface anisotropy is a
influenced by the perturbation of the crystal field and ba
3771063-7761/99/88(2)/8/$15.00
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hybridization at the interface. Roughness of the film surfa
also contributes to the magnetic anisotropy of a film by
minishing the demagnetizing factor when the magnetizat
is oriented perpendicular to the plane of the film. Among t
various mechanisms that contribute to magnetic anisotro
interface effects induced by a difference in the periods of
crystal lattices of contiguous layers of the substrate and
~the epitaxial misfit ish5(ad2as)/as , wheread andas are
the lattice constants of the film and the substrate, resp
tively! are decisive in many instances.4–6 For example, in
ultrathin Fe films on single-crystal Ag, Au, Cu, and Pd su
strates with thicknesses up to 15 Å grown in the~001! orien-
tation epitaxial misfit induces an homogeneous lattice str
adding fourfold corrections to the cubic anisotropy consta
and creating twofold anisotropy.4

Experimental data on the magnetic anisotropy of an A
Co/Au sandwich with Co film thicknesses from 12 Å to 80
have been analyzed with allowance for epitaxial misfit.5 In
the analysis it was assumed that a film of thickness sma
than a critical valueLc completely bonds with the substrat
i.e., the lattice strain«52h. For large thicknessesL the
ideal epitaxy states becomes metastable, and epitaxial d
cations appear. In this case the strains relax according to
law «.2hLc /L. Estimates have shown that the magne
anisotropy proportional toL21 in Au/Co/Au and Cu/Co/Cu
sandwiches can be explained by taking into account
stated strain relaxation law, which causes the magnetic
isotropy to change by virtue of spontaneous magnetos
tion. For thicker ferromagnetic films, on the other hand
qualitative analysis of experimental data on the magn
properties of epitaxial Fe films with thicknesses up to 200
© 1999 American Institute of Physics
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on GaAs substrates suggests that the magnetic aniso
contribution due to epitaxial misfit is dominant for such film
as well.6 Despite a fair number of papers on the role
epitaxial misfit in the magnetic properties of ferromagne
films, we still lack a clear understanding of how epitax
misfit affects magnetic anisotropy.

The objective of the present investigations is to clar
the nature of the influence of growth distortions induced
epitaxial misfit of the film and substrate on the magne
anisotropy of ferromagnetic films. Iron films grown o
MgO~001! and Al2O3(112̄0) substrates have been chosen
the investigations. This choice is dictated by the abund
use of iron in the preparation of superlattices. It is theref
of utmost importance to understand the nature of the m
netic anisotropy of iron thin films. The choice of MgO~001!
as the substrate material stems from the results of a sm
angle x-ray scattering~SAXS! study of the strain distribution
using synchrotron radiation in application to Fe~001! films
grown by rf sputtering in argon.7 In contrast with iron films
on MgO~001! substrates, whose plane coincides with t
crystallographic~001! plane, the plane of iron films grown
on sapphire Al2O3(112̄0) substrates with a Nb~110! buffer
layer is oriented parallel to the crystallographic~110! plane.

In the first stage of our investigations8,9 we have mea-
sured the ferromagnetic resonance~FMR! and magnetization
of Fe~001! films of thickness from 25 Å to 500 Å on
MgO~001! substrates. An analysis of the data has shown
the corrections to the cubic anisotropy constant and the
pendicular uniaxial anisotropy constant depend strongly
the film thicknessL, varying as 1/L for L>50 Å and tending
to saturation forL,50 Å. The results are interpreted on th
basis of the notion that the epitaxial misfit of the film and t
substrate provide the dominant contribution to the magn
anisotropy of the investigated films.

In this paper we give the experimental results of inv
tigations of the FMR and magnetization of Fe~110! films
grown on sapphire substrates with a Nb~110! buffer layer. A
comparative analysis of the data for Fe~001! and Fe~110!
films has shown that the corrections to the cubic anisotr
constant in Fe~001! films and the anisotropy constant in
duced by trigonal distortions in Fe~110! films are attributable
to the same mechanism: a characteristic~nonideal! distribu-
tion of the epitaxial misfit-induced strains along the thic
ness of the film.

The article is organized as follows. The preparation a
characteristics of the samples are described in Sec. 2.
experimental FMR results are given in Sec. 3, and they
analyzed in Sec. 4. The results for the anisotropy const
are discussed in Sec. 5.

2. SAMPLES

2.1. Film preparation

The Fe films were grown by molecular epitaxy on sa
phire Al2O3(112̄0) substrates with a Nb buffer layer. Th
working vacuum in the chamber was;10210 mbar. The
single-crystal Al2O3(112̄0) substrates were degassed a
were annealed at 1000 °C for one hour immediately prio
py
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deposition. The niobium was evaporated by electron-be
heating from a crucible of volume 14 cm3. The substrate
temperature was maintained close to 900 °C during niob
deposition. The niobium cooling rate was measured dur
evaporation by an optical method; a rate of 0.5 Å/s w
found to be optimal from the standpoint of obtaining hig
quality Nb~110! single crystals. The thickness of the N
films in our samples ranged from 100 Å to 600 Å.

Upon completion of the deposition process the niobiu
was subjected to a short-time~15-min! anneal at 950 °C. Iron
was deposited from a evaporator unit producing a hig
stable flow. The iron film was grown at a rate of 0.1 Å/s;
thickness was estimated from the growth time and was s
sequently refined on the basis of SAXS data. The subst
temperature was lowered to 100 °C for iron deposition. Sin
the iron evaporator unit was tilted relative to the substr
holder, the latter was rotated to ensure a uniform sam
thickness. Protective layers of niobium and palladium
thickness 30 Å each were deposited on top of the iron lay
During the growth of each layer its thickness was monito
in situ by recording the small-angle diffraction of electron

2.2. Small-angle x-ray scattering

Small-angle x-ray scattering experiments were co
ducted using an 18-kV x-ray source with a copper ano
These measurements were performed to determine the th
nesses of the layers in the sample and the roughness pa
eters of the surface and interfaces. Typical angular plots
the SAXS intensity exhibit distinct oscillations associat
with the interference of x-rays reflected from the film surfa
and the film-substrate interface. Fitting of the resulting an
lar scattering diagrams by the Parratt formalism10 yields a
interface roughness height,6 Å for films prepared by both
methods. The film thicknesses determined from this fitting
the x-ray spectra were subsequently used as the final th
nesses of the iron layers.

2.3. Bragg x-ray diffraction

Bragg x-ray scattering measurements in the direct
perpendicular to the plane of the film have shown that ir
on Al2O3(112̄0) substrates with a Nb~110! buffer layer
grows in the ~110! orientation. The structural coherenc
length is comparable with the film thickness. Similar i
plane measurements have enabled us to determine the
taxial ratios of the components in our samples. We ha
established that an iron film grows as a continuation of
niobium structure, i.e., the Nb and Fe@001# axes are parallel.
The Nb and Fe@111# axes are oriented parallel to thec axis
of the Al2O3(112̄0) substrate in this case.

The indicated sample preparation procedures and t
characteristics are discussed in greater detail in Refs. 11
12.

2.4. Magnetization measurements

The magnetization was measured by means of a SQ
magnetometer in the temperature range from 4.2 K to 300
To preclude the influence of the demagnetizing field,
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field dependence of the magnetic moment was measured
magnetic field of strength up to 5 kOe, which was oriented
the longitudinal direction relative to the plane of the film. A
temperatures below 100 K the paramagnetic contribution
uncontrollable impurities in the substrate material to
magnetic moment of the sample became comparable with
ferromagnetic moment of the film. For this reason the sa
ration magnetic moments at low temperatures were obta
by linear extrapolation of the field dependence of the m
netic moment of the sample from high fields to zero fiel
For more accurate accounting of the substrate contributio
the magnetic moment of the sample the magnetic mom
of the substrates were measured separately after the
films had been removed. Estimates show that such a co
tion can impart at most 10% error to the resulting magne
moment. Another error source in the determination of
magnetic moments of the films is roughness of the film s
face. As mentioned, the degree of surface roughness of
films was less than 6 Å. For a film of thickness 100 Å th
height can produce an additional error of order 3%. Con
quently, the total error of determination of the saturati
magnetic moments of the investigated films is expected to
less than 13%.

Table I gives the results of measurements of the mag
tization of Fe~110! films on sapphire substrates with a N
buffer layer at 20 K. The observed slight thickness dep
dence of the magnetization has previously14 been attributed
to the presence a nonmagnetic iron layer having a thickn
of order 5 Å at the iron-niobium interface. This layer is th
result of cross diffusion of Fe and Nb at the Fe/Nb interfa

3. EXPERIMENTAL RESULTS ON FERROMAGNETIC
RESONANCE

The FMR measurements were performed on a Bru
Instruments BE-R 418S spectrometer in a rectangular TE102

TABLE I. Saturation magnetization atT520 K for the investigated
samples.

Sample L, Å 4pM , kG

Fe~110! 100 20.1
Fe~110! 48 18.8
Fe~110! 27 17.6
Bulk sample13 21.9
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cavity at a frequency of 9400 MHz in the temperature ran
from 4.2 K to 400 K. The angular dependence of the para
eters of the FMR spectrum was measured relative to the
rection of the static magnetic field with the static and mic
wave magnetic fields oriented parallel to the plane of
film. The direction of the static magnetic field for th
Fe~110! films was characterized by the angleuH relative to
the in-plane@001# axis of the iron film. The detected FMR
signal corresponded to the derivative of the absorbed mi
wave power with respect to the magnetic field. The re
nance fieldsH0 were chosen half way between the fiel
corresponding to extrema of the derivative of the absorpti
The peak-to-peak uncertaintyDHpp of the linewidth was
10%, so that the error of determination of the resonance fi
was of order 0.1DHpp . The error in determining the mag
netic field orientation was less than 2°. The magnetic fi
strength was determined by means of an NMR magneto
ter.

Figure 1 shows FMR spectra for iron films of thickne
100 Å in the direction of a static magnetic field correspon
ing to various anglesuH at two temperatures, and Fig.
shows the angular dependence of the resonance field a
same temperatures. At high temperaturesT.340 K and for
any direction of the static magnetic field a solitary line
observed, and at low temperatures two resonance lines
observed in the vicinity of the@11̄0# axis of the iron film.
These lines merge and vanish when the direction of the s
magnetic field deviates approximately 25° from the@11̄0#
axis. For thinner samples the angular dependence ofH0 is
observed to form a loop over the entire investigated temp
ture range.

The linewidth as a function ofuH , as in the case of the
Fe~001! films, becomes a maximum at angles correspond
to the maximum values ofu]H0 /]uHu. This behavior is ob-
served for both types of angular dependence ofH0 .

4. ANALYSIS OF THE EXPERIMENTAL RESULTS

To analyze the FMR results, we use Suhl’s equatio15

specifying the FMR condition:

S v

g D 2

5
1

~Msinu!2F]2F

]u2

]2F

]f2 2S ]2F

]u]f D 2G . ~1!

Hereg5gmB /\, andg is the g factor,F is the magnetic part
of the free energy density, andu and f are the polar and
an

s

FIG. 1. Ferromagnetic resonance spectra for
Fe~110! film of thicknessL5100 Å with the static
magnetic field in directions corresponding to variou
anglesuH at two temperatures:~a! T5365 K; ~b! T
5295 K.



ld

380 JETP 88 (2), February 1999 Goryunov et al.
FIG. 2. Angular dependence of the resonance fie
for an Fe~110! sample of thicknessL5100 Å: ~a! T
5365 K; ~b! T5295 K.
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azimuth angles characterizing the direction of the magn
zation M . The equilibrium direction of the magnetizatio
characterized by the anglesu0 andf0 , is given by the zeros
of the first derivative of the free energy.

The magnetic part of the free energy density consists
the Zeeman energy, the demagnetization energy, and
magnetic anisotropy energy.

An external magnetic field augments the free energy
the film with the Zeeman energy

FZ52M•H. ~2!

For thin films it is also necessary to take into account
anisotropy associated with the shape of the sample and
erned by the demagnetization energy:

FD52pM'
2 , ~3!

whereM' is the component of the saturation moment p
pendicular to the film surface.

For an ideal cubic crystal the crystal anisotropy con
bution to the free energy density is written in the form

FA52
1

2
K1~ax

41ay
41az

4!. ~4!

HereK1 is the cubic anisotropy constant anda i denotes the
direction cosines of the magnetization.

For thin films it is also necessary to include the twofo
contribution to the anisotropy energy from symmetry bre
ing of the crystal field on the surface of the film or at
interface~the so-called Ne´el contribution3!. This contribution
has the same angular dependence as the contribution
the demagnetization energy. For this reason it is custom
to include it in the FMR equations in combination with th
demagnetization term by introducing the effective magn
zationMeff ~Ref. 16!:

4pMeff54pM22Kn /M , ~5!

whereKn is the uniaxial anisotropy constant, which vari
with the thicknessL as 1/L when this contribution is a pure
surface effect, andM is the magnitude of the equilibrium
magnetization.

For Fe~110! films it is more convenient to analyze th
FMR data in a coordinate system whereu is the polar angle
characterizing the deviation of the magnetization vectorM
from the @001# axis, andf is the azimuth angle measure
from the iron@11̄0# axis in thexy plane. The external mag
i-
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netic field is applied at the anglesuH relative to the@001#
axis andfH relative to the@11̄0# axis. In our experiments
fH50.

These free energy contributions due to magnetic ani
ropy are valid only for films having an ideal cubic structur
In reality, however, the crystal lattice of an epitaxial film
distorted. The epitaxial misfit of the film and substrate l
tices induces in-plane deformations, which, in turn, cre
Poisson deformations perpendicular to the plane of the fi

As a rule~see, e.g., Ref. 16!, films with a cubic structure
grown along the crystallographic@001# direction have tetrag-
onal distortions.

The growth distortions induced by epitaxial misfit
Fe~110! films mainly have a trigonal character, because
iron @111# axis coincides with thec axis of the sapphire
substrate, whose lattice has axial symmetry. We have u
crystal field theory~see, e.g., Ref. 17! to analyze the free
energy contributions induced by in-plane trigonal distortio
of an iron film. These contributions have a complex gene
form and contain a whole set of parameters. However,
merical estimates of these parameters indicate small te
that can be disregarded. Combining various terms with id
tical angular dependence, we find that the main factors c
tributing to the crystal anisotropy energy in our case, ap
from the pure cubic contribution~4!, can be written in the
form F trig5Ku sin2u1Ku8 sin4u. This conclusion is consisten
with the assumption set forth in Ref. 18.

In the adopted coordinate system the total free ene
density is written in the form

F52MH~cosu cosuH1sinu sinuH cosf!

12pMeff
2 sin2 u sin2 f1

1

4
K1~sin2 2u

1sin4 u cos2 2f!1Ku sin2 u1Ku8 sin4 u. ~6!

Suhl’s general condition for ferromagnetic resonance~1!
gives

S v

g D 2

5FH cos~u02uH!1
1

2

K1

M
~cos 2u013 cos 4u0!

12
Ku

M
cos 2u012

Ku8

M
~cos 2u02cos 4u0!G

3FH cos~u02uH!14pMeff
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1
1

8

K1

M
~3 cos 4u0116 cos 2u023!G . ~7!

Equation~7! together with the equilibrium condition

H sin~u02uH!52
1

4

K1

M
sin 2u0~113 cos 2u0!

2
Ku

M
sin 2u02

1

2

Ku8

M
~2 sin 2u02sin 4u0!

~8!

determinesH0 as a function of the angleuH , the effective
magnetization 4pMeff , and the anisotropy constantsKu and
Ku8 . The constantK1 is set equal to its value for bulk F
~Ref. 13!.

An analysis has shown that two kinds of angular dep
dence are possible for certain relations between the effec
magnetization 4pMeff and the anisotropy fields, one an op
curve and the other in the form of a loop, as observed
perimentally ~Fig. 2!. The influence of the paramete
4pMeff and Ku differs in these two cases. In the first cas
when FMR is observed for all orientations of the extern
magnetic field, the influence of 4pMeff reduces to a chang
in the average position of the line above the horizontal a
The parameterKu characterizes the amplitude of the vari
tion of H0 . In contrast, in the second case~a closed loop!,
when FMR is observed only near a hard magnetization a
the parameterKu gives the position of the center of the loo
above the horizontal axis, whereas the parameter 4pMeff

gives the amplitude of the loop. The parameterKu8 , on the
other hand, in both cases characterizes the depth of
trough near the hard axis in the angular dependence ofH0 .

Typical results of fitting the angular diagrams of th
resonance fieldsH0 for g52.09 ~Ref. 13! are shown in Fig.
2. They exhibit good agreement with the experimental d
These calculations give us the values of the anisotropy c
stantsKu and Ku8 and the effective magnetization 4pMeff ,
which are shown in Figs. 3 and 4.

For comparison Fig. 5 shows the cubic anisotropy c
rectionsKt5K12K1

b for Fe~001! films on MgO substrates a
functions of the film thickness. These corrections are att
utable to tetragonal distortions of the films along the@001#
axis and have been calculated from data given in Ref. 9,
4. The quantityK1

b is interpreted as the cubic anisotrop
constant for bulk iron samples.13

5. DISCUSSION OF THE RESULTS

To achieve our stated goal in the investigations, i.e.
ascertain how epitaxial misfit of the film and substrate infl
ences the magnetic anisotropy of ferromagnetic films,
need to discuss the totality of our experimental data on i
films, including the data reported in our earlier work.9 Such a
discussion can lead to conclusions regarding the interr
tionship between the nature of the growth of ferromagne
films in general and their magnetic anisotropy.
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5.1. Correction K t to the cubic anisotropy constant

The experimentally determined correctionKt to the cu-
bic anisotropy constant in the Fe~001!/MgO samples depend
strongly on the sample thickness~Fig. 5!. At T5300 K in
the range of thicknesses from 80 Å to 500 Å this depende
can be written

Kt

M
52

7.3

d
kOe, ~9!

where d is the film thickness expressed in monolayersd
5L/1.433 for bcc Fe!. This dependence is qualitatively sim
lar to one obtained previously4 for Fe~001! thin (,15 Å)
films on single-crystal Ag~001!! substrates, for which the
correction to the cubic anisotropy constantKt521.25/d is
associated with a fourfold surface correction.

The negative sign of this contribution for Fe~001!/
Ag~001! samples indicates that the surface anisotropy ene

FIG. 3. Thickness dependence of the anisotropy constantsKu and Ku8 for
Fe~110! films at T5300 K.

FIG. 4. Thickness dependence of 4pM eff for Fe~110! films at T5300 K.
Inset: temperature dependence of 4pM eff for a sample withL5100 Å.
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has an easy magnetization axis parallel to the$110% direction,
implying the existence of a certain thickness at which
observed anisotropy constantK1i5K11Kt changes sign,
i.e., the easy magnetization axis switches from the$100% to
the $110% direction. If we assume that the thickness dep
dence ofKt in our situation has a form consistent with E
~9! down to the smallest thicknesses, the change of sig
the film anisotropy constant should take place forL536 Å
(K1 /M50.9 kOe atT5300 K, Ref. 13!.

However, it is evident from Fig. 5 that this is not th
case. It is highly probable that in our case the observedKt

contribution does not come solely from the surface. We
assume that our observed contributionKt is attributable to
epitaxial misfit of the film and the substrate. We know fro
SAXS experiments7 that Fe films grow on MgO~001! sub-
strates to thicknesses on the order of ten atomic layers in
form of islands. The islands, which initially harbor sma
strains, merge as the film thickness increases. The maxim
strains are observed at this time. The strain then begin
decline rapidly. Strains localized near an interfacial zone
alter the magnetic anisotropy constant in these boundary
ers through magnetostriction. The variation of the anisotro
constant in the vicinity of the interface can exert the follo
ing influence the magnetic anisotropy of the film as whol

It is well known16 that for films having a thicknes
smaller than the so-called exchange lengthlex

5(A/2pM2)1/2 the anisotropy field measured by the FM
method can be written as a combination of the bulk anis
ropy contribution and the surface anisotropy contributio
which is inversely proportional to the film thicknessL. Since
the room-temperature spin stiffness coefficient of iron isA
.131026 erg/cm and the saturation magnetization isM
.1700 G, we obtainlex.50 Å. It has been assume
previously19 that the anisotropy constant of films withL
>lex exhibits a more complex dependence on the surf
anisotropy contribution than theL21 law. However, Tagi-
rov’s calculations in Ref. 9 have shown that a ferromagne
film subjected to an in-plane external magnetic field can
regarded as a ‘‘dynamically thin’’ film up to thicknesses

FIG. 5. Thickness dependence of the correction to the cubic anisot
constantKt for Fe~001! films at T5300 K. Inset: temperature dependen
of Kt for a sample withL5100 Å.
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order 103 Å. The FMR-measured contribution of surface a
isotropy for such films is therefore averaged over the en
thickness, exactly as in the case of films with thicknesseL
,lex ~i.e., the contribution is proportional toL21). This
conclusion does not apply exclusively to a pure surface c
tribution to the magnetic anisotropy. Owing to the presen
of long-wavelength magnetization transfer processes, an
terface anisotropy source localized in a boundary layer
thicknessdL!L near the interface will appear to be a su
face anisotropy contribution, depending on the film thickne
as L21. It is obvious that as soon as the film thicknessL
attains the boundary layer thicknessdL, the thickness depen
dence of the anisotropy constant must reach saturation.

We assume, then, that the strains induced by epita
misfit at the film-substrate interface have the effect of alt
ing the magnetic anisotropy constant of the boundary lay
It has been established by SAXS in the system Fe~001!/
MgO~001! that these lattice strains are localized in a layer
thickness on the order of 30 monolayers near the interfa
However, it is impossible to construct the detailed form
the strain distribution on the basis of existing experimen
data. For a crude analysis of our experimental magnetic
isotropy data we assume an elementary distribution of
strains in the form of a step function, which yields the fo
lowing distribution of the corresponding contribution to th
anisotropy constant:

Kt~z!5H 0 for 0<z<L2dL,

Kt
0 for L2dL,z<L. ~10!

The magnetoelastic contribution averaged over the fi
thickness can then be written as

Kt5
1

L E
0

L

Kt~z!dz5H ~dL/L !Kt
0 for L.dL,

Kt
0 for L<dL. ~11!

As long asL,dL holds, Eq.~11! provides a magnetic
anisotropy contribution that depends on the thickness
L21. Once the thicknessL becomes smaller thandL, Kt

saturates, eliciting deviations from the law~9! and ruling out
a change of sign of the anisotropy field. It is obvious tha
certain smooth distribution ofKt exist in reality, accounting
for the observed behavior ofKt with a continuous transition
from theL21 law to saturation at small thicknesses. Fittin
the experimental data onKt to the thickness dependenc
given by Eq. ~11!, we obtain the parametersKt

0;24
3105 erg/cm3 anddL;45 Å. The resulting estimate of th
thickness of the strained layer is in excellent agreement w
SAXS data,7 whence it follows that the lattice strains of th
film drop abruptly at thicknesses on the order of 30 mon
layers. Unfortunately, the lack of a microscopic theory of t
magnetic anisotropy of ferromagnets makes it impossible
form valid estimates of the correctionKt itself.

The validity of the proposed model has been further c
roborated in FMR measurements on specially prepa
Fe~001! films having thicknesses of 120 Å, 250 Å, and 500
grown on MgO~001! substrates at a temperature of 470
The thickness dependence ofKt for this set of samples can
be described by the empirical relation

py
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Kt

M
52

4.1

d
kOe. ~12!

A comparison ofKt for samples grown at different sub
strate temperatures shows that the productKt

0dL @see Eq.
~11!# for samples grown at 470 K is smaller than for samp
prepared at room temperature. This disparity can be at
uted to the fact that in films grown at a higher substr
temperature the epitaxial strains are smaller, and they rela
shorter distances from the film-substrate interface. Our d
therefore show that the fourfold correctionKt to the cubic
anisotropy constant in our investigated films is attributable
strains induced by epitaxial misfit.

5.2. Trigonal anisotropy constants K u and K u8

For MgO/Fe~001! the in-plane symmetry of the
substrate-induced strains coincides with the crystal sym
try of the iron film. The additional free magnetic energy te
has fourfold symmetry. Films of Nb~110! and Fe~110! are
oriented so that the@111# axes are parallel to thec axis of an
Al2O3(112̄0) substrate. This epitaxial relation with th
Al2O3 substrate induces trigonal distortions of the Fe and
lattices. These distortions require the introduction of corr
tions to the magnetic anisotropy of an Fe film, which can
effectively taken into account in the form of the twofold an
fourfold constantsKu andKu8 ~see Sec. 4!. Clearly, the con-
stantsKu and Ku8 must vanish in the transition to the bu
material, as is indeed observed experimentally~Fig. 3!. It is
also evident from this figure that at the threshold of;50 Å
the anisotropy constants no longer increase as the film th
ness decreases, i.e., again we have the same charact
thickness of the strained layer as in the case of Fe~001!/
MgO~001!.

5.3. Effective magnetization

The results of our magnetization measurements usin
SQUID magnetometer~see Fig. 3 in Ref. 9! show that the
saturation momentM of Fe~001!/MgO~001! films does not
depend on the thickness of the iron film, whereas the sat
tion moment measured in the present study~see Table I! for
Fe~110!/Nb~110!/Al 2O3(112̄0) films exhibits a slight thick-
ness dependence, which, as mentioned above, is assoc
with the formation of a nonmagnetic iron layer at the Fe/
interface. This means that for the magnetically active par
an Fe~110! film the real saturation moment again does n
depend on the thickness of the iron film. In addition, t
effective magnetization of Fe~001! films ~Fig. 5 in Ref. 9!
and Fe~110! films ~Fig. 4! are essentially identical as func
tions of thickness. With high probability the resulting ma
netization curves are determined by the uniaxial twofold
isotropy constantKn @see Eq.~5!#. This type of anisotropy
can be induced by magnetostriction or by perpendicular N´el
anisotropy.3 A previous analysis9 has shown that the magne
tostriction contribution causesMeff to increase, contradicting
our experimental results. Estimates of the Ne´el contribution
have shown that the sign of this contribution is correct,
its value is too small to account for the observed reduction
the magnetization.
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An analysis of the data in Figs. 3–5 brings us to t
conclusion thatKt , Ku , Ku8 , and Kn depend on thickness
similarly; they all change considerably asL decreases, and
they stop changing below a certain thickness. This beha
is most likely indicative of a common origin of the thickne
dependence of all these parameters. It has been sh
previously9 that strains produce a combination of oppos
sign from that observed experimentally. Note, however, t
the relaxation of strains induced by epitaxial misfit at fil
thicknesses greater than the critical valueLc;10 Å occurs
because of the onset of epitaxial dislocations. Symmetr
broken on a dislocation line in exactly the same way as
the surface. It is difficult to estimate this contribution to th
perpendicular uniaxial anisotropy. On the other hand, it
obvious that the density of dislocations, like the number
atomic planes with broken symmetry, is extremely high a
fosters rapid relaxation of the lattice misfit at distances
order 40–50 Å. We can therefore conclude that the N´el
mechanism, which gives the correct sign ofKn , can be mag-
nified considerably by epitaxial dislocations, and the resu
obtained for Fe~110! are qualitatively the same as the resu
for Fe~001!.

In summary, we have shown that epitaxial misfit of t
film and the substrate exerts a powerful influence on
magnetic anisotropy of iron films. The epitaxial misfit co
rections to the in-plane fourfold cubic anisotropy consta
and the perpendicular twofold anisotropy constant vary
L21 as the film thicknessL decreases, obeying this law dow
to a certain thickness of order 50 Å. When the thickness
further decreased, these values reach saturation. The
served behavior of the magnetic anisotropy constants is
tributable to the presence in the films of regions having
thickness of order 50 Å near the interface, where the stra
induced by epitaxial misfit are localized for the most pa
These strains alter the magnetic anisotropy constants in
given region by virtue of magnetostriction and the prese
of epitaxial dislocations. Owing to the existence of lon
wavelength magnetization transfer processes, this sourc
anisotropy is manifested as a surface contribution to the
isotropy of the film, depending on the film thickness asL21

for large thicknesses.
A comparison of the results of our investigations wi

existing data shows that the nature of the magnetic ani
ropy of thin films is complex and multifaceted. It is governe
by the growth characteristics of the films. Depending on
material chosen for the substrate and the conditions of de
sition of the ferromagnetic layer, the growth of a film ca
proceed one atomic monolayer after another, or it can be
with island growth followed by overlapping of the island
when certain thicknesses are attained. A model strain di
bution in the vicinity of the interface is applicable in the fir
case, the films bonding completely with the substrate
thicknesses smaller than a critical valueLc , i.e., the lattice
strain «52h, and then the ideal epitaxy state becomi
metastable at greater thicknesses, with the onset of epita
dislocations. Strain relaxation obeys the law«.2hLc /L. In
the second case, as established in our investigations,
source of ‘‘interface’’ anisotropy is an expansive region si
ated near the interface. Thus, the magnetic anisotropy of
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films requires detailed study in each specific instance.
cordingly, in testing various theoretical models of the int
action of ferromagnetic layers in multilayer systems, it
imperative to bear in mind the real values of the magne
anisotropy of the ferromagnetic layers, as they can exc
the interaction constants and obstruct the formation of p
ticular magnetic structures.

This work has received financial support from the Ru
sian Fund for Fundamental Research~Project 96-02-16332a!.
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Zh. Éksp. Teor. Fiz.115, 704–715~February 1999!

The results of an experimental investigation of low-temperature optical spectra and phase
relaxation of electronic excitations of Pr31 impurity ions in a Y2SiO5 crystal are reported. It is
established that at low temperatures spectral lines are broadened by a mechanism that is
uncharacteristic for crystals and is due to the interaction of impurity ions with two-level systems.
The constants characterizing the interaction of Pr31 impurity ions with phonons and two-
level systems are found. ©1999 American Institute of Physics.@S1063-7761~99!02202-7#
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1. INTRODUCTION

The numerous investigations of the dynamics of el
tronic excitations of crystals have been concerned ma
with determining the general mechanisms for the homo
neous broadening of the spectral lines of impurity centers1–5

Universal mechanisms that determine spectral line broad
ing as a result of elastic, magnetic, and electric interacti
of an impurity center with its crystal environment we
established.1–4 The universality of these mechanisms is su
that any change in the crystal matrix or impurity is reflect
only in the value of the parameters that characterize the

An ‘‘impurity-center–crystal-environment system’’ ca
have, together with the universal interactions of the impu
center with the crystal, a specific local interaction that of
cannot be specified at a microscopic level. As a result
interactions of this type, a quasicontinuous or discrete ene
spectrum of interatomic origin can appear at an impu
center. An example is the inhomogeneous broadening
spectral lines6,7 or Shpol’ski� multiplets.8 It is believed6–10

that the inhomogeneous broadening of the optical spectr
crystals is determined by static disorder. However, by an
ogy to glasses,11–14static disorder in crystals can also depe
on the time scale of the experiment.4,15,16For glasses at low
temperatures, the time dependence of the disorder is d
mined by tunneling transitions in two-level systems17,18

which are associated with the multiwell adiabatic potentia
the nuclei.11–14,17,18 Such excitations are called tunn
lons.13,14

The interaction of an impurity center with two-level sy
tems reduces to transitions of the impurity center betw
nonequivalent states with different energies. This mechan
also contributes to the homogeneous broadening of the s
tral lines of an impurity center.11–14 For crystals, the multi-
well adiabatic potential remains exotic,19–24 and the exis-
tence of two-level systems and their manifestation
relaxation processes are especially unclear. For this rea
cases where a multilevel adiabatic potential with a low a
vation energy of two-level systems, which ensures effici
3851063-7761/99/88(2)/7/$15.00
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quantum tunneling at low and ultralow temperatures, are
special interest, since the contributions of phonons and t
level systems to the homogeneous width of spectral lines
be distinguished in this case. Since disorder is weake
crystals than in glasses, the number of different two-le
systems can be limited, and it may be possible to identif
generalized coordinate of a multilevel adiabatic potential a
to study the quantum motion of impurity centers on a mic
scopic level. As an example, the variety of two-level syste
in glasses is so large~the relaxation times can vary over 1
orders of magnitude,11–14 starting with 10215 s), that this
problem is seems to be impossible to solve.

Thus, the crystal YSO : Pr31 is of great interest. In this
crystal a hierarchy of nonequivalent states with different
ergies can exist for impurity ions. These states can be a
ciated primarily with the substitution of two nonequivale
cationic sites in the YSO lattice.25 Even though this feature is
observed in YSO : Nd31 ~Ref. 26! and YSO : Eu31 ~Ref.
27! crystals, as is confirmed by the presence of two opti
centers, it is not been observed in the YSO : Pr31 crystal.28

But in contradistinction to this, in Ref. 29 spectral lines ide
tified as lines belonging to impurity ions Pr31 occupying
nonequivalent cationic sites were observed in a limited sp
tral range in an investigation of the optical spectra
YSO : Pr31. A detailed investigation of the contour of
spectral line30 corresponding to the transition3H4(0) –3P0

of impurity ions in a YSO : Pr31 crystal as well as the ex
ternal Stark effect29 in the transition3H4(0) –1D2(0) re-
vealed nonequivalent impurity-ion states of a different typ
but within the localization site. In the latter case, there is
specific local interaction of the impurity ion with the crysta
line environment. This interaction can vanish if either t
crystal matrix or the impurity changes.

In the present work an investigation of the low
temperature optical spectra of a YSO : Pr31 crystal un-
equivocally established two Pr31 optical centers, which cor-
respond to localization of impurity ions in two nonequivale
cationic sites. Analysis of the temperature dependence of
© 1999 American Institute of Physics
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386 JETP 88 (2), February 1999 Borisov et al.
amplitude of a two-pulse photon echo in the transiti
3H4(0) –3P0 of Pr31 impurity ions established a new~for
crystals! dephasing mechanism due to thermally stimula
transitions of the Pr31 ion between nonequivalent state
within the localization site. The constants characterizing
interaction of impurity ions with phonons and two-level sy
tems are obtained in a multiwell adiabatic potential mode

2. EXPERIMENTAL TECHNIQUE

The optical absorption and luminescence spectra o
YSO : Pr31 crystal were investigated using an automa
spectrofluorimeter, which was based on a MDR-23 grat
monochromator. The spectra were detected with a FE´ U-100
photomultiplier operating in the photon-counting mod
Electronic modules, assembled in a CAMAC standard, c
trolled the stepping motor of the monochromator and
corded the single-photon counts. The CAMAC crate w
coupled through an interface with a personal computer r
ning on an Intel 286 processor.

An R-118 helium optical cryostat was used to obtain lo
temperatures. In the crysostat the samples were place
helium vapor.

To eliminate any influence due to the optical anisotro
of the experimental crystal, the two-pulse photon echo w
observed in a collinear geometry. The experimental equ
ment used to excite and detect the echo signal is describe
Refs. 30 and 31.

The YSO : Pr31 crystals were grown by the Czochrals
method. The concentration of praseodymium in the cha
was 0.1 at.%. The experimental samples consisted of pl
1–5 mm thick.

3. SPECTROSCOPY OF THE YSO : PR31 CRYSTAL

A Pr31 impurity ion embedded in different crystal ma
trices is probably one of the most thoroughly studied ion4

In the Russell–Saunders basis,32 the 4f 2 electronic configu-
ration of the Pr31 ion gives rise to four singlet terms
1S0 ,1D2 ,1G4 , and 1I 6 , and nine triplet terms
3H4 ,3H5 ,3H6 , 3F2 , 3F3 ,3F4 ,3P0 ,3P1 ,3P2 . Their relative
arrangement and therefore the structure of the energy le
of the Pr31 ion are determined primarily by the Coulom
interaction between the 4f electrons and by the spin-orb
interaction.32,33 The fine structure of the energy levels of
rare-earth ion in a crystal is determined by the Stark splitt
of the terms, which depends on the point symmetry group
the localization site of the impurity ion.32,33 Since both non-
equivalent cationic sites in a YSO crystal possessC1 point
symmetry,25 the degeneracy of the terms of Pr31 should be
completely lifted. The energy scale of the Stark splitting
the terms of rare-earth ions can vary from tens to hundred
cm21.32,33 In the first-order perturbation theory32,33 the crys-
tal field does not shift the center of gravity of the multiple
We shall employ this fact to interpret the optical spectra o
YSO : Pr31 crystal on the basis of spectroscopic data
different crystals activated by Pr31 ions.4,34–38

The term 3H4 corresponds to the ground state of t
impurity ion. This follows from Hund’s rule32,33 and the
Pauli principle32,33and is confirmed by existing experiment
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data.4,34–38The next terms in order of increasing energy a
3H5 ,3H6 ,3F2 ,3F4 , and 1G4 . This group of terms deter
mines the energy spectrum of the Pr31 impurity ion, includ-
ing the IR range.34–38 The optical spectrum of the Pr31 im-
purity ion forms as a result of quantum transitions betwe
Stark components of the terms3H4 ,2D1 ,3P0 ,3P1 ,1I 6 , and
3P6 .4,34–38The energy splitting between the centers of gra
ity of the terms 1G4 and 1D2 is 7000 cm21 on the
average.4,34–38 The frequencies of the electronic transitio
with participation of the 1S0 term lie in the far-UV
range.4,34–38 Since the experimentally most interesting4,29,30

terms2D1 and 3P0 are well separated in energy from oth
terms, the spectrum of optical transitions between the S
components of the terms3H4 ,1D2 , and 3P0 is simple and
easy to interpret. We shall assume that the qualitatively
scribed energy level structure of the Pr31 ion remains valid
in the YSO crystal. For this reason we shall employ a si
plified scheme~Fig. 1! to interpret the optical spectra of
YSO : Pr31 crystal and to find the exact arrangement of t
terms3H4 ,1D2 , and3P0 and their Stark splitting parameter

The absorption spectrum of the YSO : Pr31 crystal~Fig.
2! consisted of two groups of spectral lines which could
distinguished according to their narrowness. The ratio of
widths at half-height of the corresponding spectral lines
each group was 3:1. We start the analysis and interpreta
of the absorption spectrum~Fig. 2! with the group of widest
spectral lines, marked by the letters. According to the ene
scale of the Stark splitting of the terms of rare-ea
ions,4,34–38, it should be expected that atT56.0 K only the
lowest of the nine Stark components of the term3H4 ~Fig. 1!
will be populated. Taking account of this and the results
the investigation of the optical spectra of the Pr31 ion in
other crystals,4,34–38 we shall compare the spectral line
g0 ,g1 , . . . , g4 and b0 ~Fig. 2! with the optical transitions

FIG. 1. Simplified scheme of energy levels of a Pr31 ion in a Y2SiO5

crystal: n1516538.2 ~16483.7! cm21, n2520540.2 ~20742.6! cm21, n3

520981.1~20867.2! cm21 ~the numbers indicate the position of the Sta
components in cm21; the data for the second type of optical centers of Pr31

are shown in parentheses!.
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FIG. 2. Fragments of the absorption spectra of
Y2SiO5 : Pr31 crystal at different temperatures~two
groups of lines belonging to different optical cente
Pr31 are marked by letters with and without an a
terisk!.
s

s
s

r

n
3

ru

-

se
lo
ine
m
th
th
l

th
ith

me

rk

ing

the
l

are

the

of

O
l

he
a
is

e.
ark
e
t
-

al

i-

er-
vol-o
from the lowest Stark componentd0 of the term3H4 to the
five Stark components of the1D2 term and the3P0 term
~Fig. 1!.

The validity of this interpretation of the spectral line
g0 ,g1 , . . . ,g4 andb0 ~Fig. 2! is additionally confirmed by
the following experimental facts. The excitation of lumine
cence of Pr31 impurity ions to any of the spectral line
b0 ,a0 ,a1 , anda2 ~the spectral linesa0 ,a1 , anda2 corre-
spond to optical transitions with the participation of the Sta
components of the terms3P1 and1I 6) is accompanied by the
formation of a spectrum consisting of two identical sectio
~only one section of the spectrum is displayed in Fig.!,
originating from the two spectral linesb0 andg0 which are
in resonance with the same lines in the absorption spect
~Fig. 2!. This agrees with the well-known fact4,34–38that the
emission spectrum of the Pr31 impurity ions forms as a re
sult of optical transitions from two metastable levelsb0 and
g0 ~Fig. 1!.

As the temperature of the experimental crystal increa
temperature-dependent spectral satellites, located in the
frequency range with respect to each of the analyzed l
g0 ,g1 , . . . , g4 and b0 , appear in the absorption spectru
~Fig. 2b!. The most intense satellites are observed near
b0 line ~in the scale of Fig. 2b the spectral satellites near
other lines are hard to see!. At T580 K two such spectra
satellites,d1 andd2 , can be indicated near theb0 line ~Fig.

FIG. 3. Fragment of the luminescence spectrum of a Y2SiO5 : Pr31 crystal
at temperatureT56.0 K ~the spectrum does not depend on the excitation
any of the spectral linesb0 ,a0 ,a1 , anda2).
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2b!. The frequency intervals determining their position wi
respect to the analyzed spectral lines coincide exactly w
the frequency intervals determining the position of the sa
spectral lines in the luminescence spectrum~Fig. 3!. There-
fore the spectral satellitesd1 andd2 appear atT580 K ~Fig.
2b! as a result of absorption from thermally occupied Sta
componentsd1 andd2 of the term3H4 ~Fig. 1!. Aside from
d1 andd2 , the seven remaining spectral lines, correspond
to transitions from the metastable levelsb0 and g0 to the
nine Stark componentsd0 , . . . , d8 of the term3H4 ~Fig. 1!,
can be seen in the luminescence spectrum~Fig. 3!. Therefore
one group of spectral lines~Fig. 2! can be ‘‘tied’’ to the
adopted energy level scheme~Fig. 1!, and the exact energy
parameters, which determine the relative arrangement of
terms 3H4 ,1D2 , and 3P0 and their splitting by the crysta
field, can be found from the experimental spectra~Figs. 2
and 3!. The energy parameters found in this manner
shown in Fig. 1.

The weaker but narrower spectral lines present in
absorption spectrum of a YSO : Pr31 crystal~in Fig. 2 they
are marked by a letter with an asterisk!, do not fit, according
to their number and spectral position, into the scheme
levels of the Pr31 ion with these energy parameters~Fig. 1!.
In Ref. 29 the spectral linesg0 and g0* were attributed to
absorption in the transition3H4(0) –1D2(0) of Pr31 impu-
rity ions occupying nonequivalent cationic sites in a YS
crystal.25 Considering the larger set of ‘‘narrow’’ spectra
lines b0* ,g0* , g2* , . . . , g4* ~apparently, the lineg1* acciden-
tally coincided with the intense lineg0 , Fig. 2!, we assume
that they can be ‘‘tied’’ to the energy level scheme of t
Pr31 ion ~Fig. 1! but with different parameters. Therefore
second type of Pr31 optical centers can be identified. In th
interpretation, the spectral linesb0* ,g0* , . . . ,g4* correspond
to the absorption of Pr31 optical centers of the second typ
This absorption is due to transitions from the lowest St
component of the term3H4 to the Stark components of th
terms1D2 and3P0 . ‘‘Narrow’’ spectral lines are also presen
in the region of optical transitions involving the Stark com
ponents of the terms3P1 and1I 6 ~Fig. 2!. However, since the
Stark components of the terms3P1 and 1I 6 intermix,34–38 it
is difficult to interpret them unequivocally and addition
investigations are required.

On the microscopic level, one cationic site is coord
nated with six oxygen atoms and the other with eight.25,26 In
addition, the cationic sites have substantially different av
age ion–ligand distances and therefore different average
umes. For this reason, the Pr31 ions occupy predominantly a

n
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cationic position with a large volume, because their io
radius~1.06 Å! is greater than the ionic radius of Y31 ~0.92
Å!.39 Therefore, since the ‘‘narrow’’ spectral lines a
weaker~Fig. 2! and the splitting of the terms by the crystal
somewhat greater~Fig. 2!, these lines belong to Pr31 ions
which are localized in more dense cationic sites. Selec
excitation of Pr31 optical centers of one type, for exampl
on theb0 absorption line~Fig. 2! at temperatureT56.0 K
led only to their luminescence~Fig. 3!. Therefore Pr31 im-
purity ions occupy nonequivalent cationic sites in differe
unit cells and do not interact with one another~the average
distance between different cationic sites of Y31 within the
same unit cell is 3 Å in order of magnitude25,26!.

4. MICROSCOPIC MECHANISM OF THE PHASE
RELAXATION OF THE ELECTRONIC EXCITATIONS
OF IMPURITY IONS IN A YSO : PR31 CRYSTAL

A photon echo in a YSO : Pr31 crystal was invstigated
for one type of Pr31 optical centers which have wider ab
sorption lines~Fig. 2!. To obtain the maximum amplitude o
the photon echo signal, the laser line (0.2 cm21) was
scanned inside the spectral lineb0 ~Fig. 2!. It was noted that
the intensity of the photon echo signal varies nonmonoto
cally along the spectral contour of the lineb0 . According to
Ref. 29, this signifies that a restructuring occurred with
spect to the spectral contours which correspond to n
equivalent positions of the impurity praseodymium i
within cationic sites of a given type during the scanni
process.

Since the amplitude of the echo signal, determined
the relationI echo;exp(22g(T)d) ~whereg(T) is the homo-
geneous, temperature-dependent width of the spectral lind
is the time interval between the exciting laser pulses, andT is
temperature!, makes it possible to obtain directly the la
g(T)5p/T2(T) (T2(T) is the phase relaxation time of ele
tronic excitations!, a two-pulse photon echo5 was used to
investigate the temperature mechanisms of the phase r
ation of the electronic excitations of impurity centers in
YSO : Pr31 crystal.

To identify the characteristic features of the phase rel
ation of the electronic excitations in a YSO : Pr31 crystal,
we shall make a comparative analysis of the results with
analogous results for an LaF3 : Pr31 crystal.40 To verify the
correctness of our experiment,30 we completely reproduced
the results of Ref. 40.

The temperature-dependence of the amplitude of a p
ton echo was presented in Ref. 40 in a plot in which
double logarithm of the intensity of the echo signal was pl
ted along the ordinate and the reciprocal of the tempera
was plotted along the abscissa. Then the experimental po
fall on a straight line, and this temperature behavior w
explained in Ref. 40 by direct absorption and emission
phonons with the participation of the Stark components c
est in energy to the resonant optical transition. Specifica
for an LaF3 : Pr31 crystal the Stark component3H4(1), ly-
ing 57 cm21 above3H4(0), will determine the phase relax
ation of electronic excitations in the transitio
3H4(0) –3P0 .4,34 Since the energy levels of the terms3P1
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and 1I 6 closest to3P0 lie at quite high energies,4,34–38 they
can be neglected at helium temperature. For this reason
temperature contribution to the homogeneous width of
spectral line of the transition3H4(0) –3P0 will have the
form40

gph~T!5a expS 2
D«

kTD , ~1!

where a is the width of the Stark component3H4(1) at
half-height andD« is the energy gap between the Stark co
ponents3H4(0) and3H4(1).

If we take account of the exponential dependence of
amplitude of the photon echo ong(T)5,40 and the relation
~1!, it becomes clear that the slope of the experimental cu
presented in the plot in Ref. 40 gives directly the energy g
between the Stark components3H4(0) and3H4(1). The pa-
rameterD« determined in this manner was 49 cm21, differ-
ent from the value 57 cm21 found directly from the optical
spectra of the crystal LaF3 : Pr31.4,34 Despite this discrep-
ancy, the temperature dependence of the amplitude of
photon echo in an LaF3 : Pr31 crystal40 was described satis
factorily by the relation~1! with a52.431011 s21.40

In contrast to LaF3 : Pr31,40 the temperature dependenc
of the amplitude of the photon-echo signal in a YSO : Pr31

crystal in the same electronic transition3H4(0) –3P0 of the
impurity ions ~the spectral lineb0 in Fig. 2a! had two char-
acteristic sections where the slopes of the experime
curves,30 presented in a plot similar to that in Ref. 40, we
different. The slope of the experimental curves on the hi
temperature section (T510219 K) was virtually identical
to the Stark splitting of the components3H4(0) and3H4(1)
of the term3H4 in the YSO crystal~Fig. 1!. The behavior of
the experimental curves within the entire temperature in
val of g(T) ~Fig. 4! could not be described satisfactori
using the relation~1! with a variable parametera and D«

FIG. 4. Temperature dependence of the homogeneous width of the sp
line b0 corresponding to the transition3H4(0) –3P0 of Pr31 impurity ions in
a Y2SiO5 crystal. The asterisks are experimental points; curve 1 is a le
squares fit of the experimental points on the basis of the relation~1! with
D«589 cm21 and variable parametera; curve 2 is a least-squares fit of th
experimental points on the basis of the simultaneous application of the
lations~1! and~3! with D«589 cm21, «50.25 cm21, and variable param-
etersa andb.
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FIG. 5. Models of the symmetric~a! and asymmetric
~b! two-well adiabatic potentials (D5«12«2 is the
activation energy of two-level systems,V is the bar-
rier height, andq is the generalized anharmonic co
ordinate!.
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589 cm21. For a51.431010 s21, a satisfactory description
was obtained only in the temperature interval 10–19 K~Fig.
4!. The description of the experimental results did not i
prove even when higher energy Stark components of
term 3H4 ~Fig. 1! were included in the analysis. We consi
ered also the Raman mechanism of scattering of phonon
an impurity center of the type1–4,13that makes a contribution
;T7 to the homogeneous width of the spectral line;T7,
though it is known4,30,40to be unimportant in the temperatu
range 6–10 K. As expected, this likewise did not impro
the description of the experimental results~Fig. 4!. In other
words, the known temperature mechanisms1–4,13determining
the homogeneous broadening of the spectral lines of im
rity centers in crystals could describe satisfactorily the va
tion of g(T) for the YSO : Pr31 crystal over the entire tem
perature range~Fig. 4!.

Analysis of the structure of theYSO: Pr31 crystal and
its rare-earth analogs25,26and the way in which rare-earth io
impurities enter these crystals25,26,29enabled us to infer that a
mechanism, previously not encountered in crystals
known for glasses,11–14 of temperature broadening of spe
tral lines due to the interaction of an impurity center with t
two-level systems of its multiwell adiabatic potential can o
erate in YSO : Pr31. The key point in this supposition wa
the presence of a number of nonequivalent positions of
purity ions in the YSO : Pr31 crystal. The positions assoc
ated with the substitution of nonequivalent cationic sites25–27

are of no interest, since an impurity ion cannot pass from
position to another. For this reason, the nonequivalent st
of the Pr31 impurity ions within a localization site29,30 that
can be represented in a multiwell adiabatic potential mo
are of interest, though at the microscopic level it rema
unclear which generalized nuclear coordinate gives rise
this adiabatic potential. Specifically, this potential will ha
four minima29 for cationic sites of one type and tw
minima29 for cationic sites of a different type. The popul
tions of the minima of the adiabatic potential in the grou
state of the impurity ion are close, sinceg0 is formed by four
and g0* by two spectral lines of essentially the sam
intensity.29 Using the widths of the spectral linesg0 andg0* ,
the energy splitting between the lowest levels~the activation
energy of two-level systems! can be estimated in each min
mum of the adiabatic potential. For this, the total width
half-height of the linesg0 and g0* must be divided by the
number of nonequivalent states of the impurity ion cor
-
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sponding to them. Since according to Ref. 29 the total wi
of the lineg0 at half-height is 1 cm21 and that of the lineg0*
is 0.3 cm21, the desired energy differences are 0.25 cm21

and 0.15 cm21, respectively. Such a small energy differen
can also arise as a result of tunneling splitting of t
levels20,22,33 and asymmetry of the multiwell adiabati
potential.20,22,33If only two minima are considered, as a sim
plification, then the adiabatic potentials displayed in Fig
can be realized for a Pr31 impurity ion in a YSO crystal. In
a symmetric two-well adiabatic potential, temperatu
independent quantum tunneling can occur with the freque

v5Ã0 expS 2
uq12q2u

\
A2mV D

~wherem is the mass of the tunneling system andv̄ is the
average vibrational frequency near one of the minima of
adiabatic potential!17,18,20,22 as well as temperature-depe
dent tunneling with the participation of phonons.17,18,20,22For
an asymmetric potential~Fig. 5b! both processes will be
come weaker with increasing asymmetry.17,18,20,22

The nonequivalent states, which we are discussing,
Pr31 ion in a YSO crystal have no relation with the Jahn
Teller effect32,41 in the ‘‘slow rotation’’ limit41, since the
degeneracy of the terms of the Pr31 ion with respect to the
total angular momentum is lifted. This is unequivocally co
firmed by the optical spectra~Fig. 2!, and the energy scale o
the Stark splitting of the terms~Fig. 1! likewise precludes the
manifestation of the pseudo Jahn–Teller effect.41

The effect of two-level systems on the homogeneo
width of the spectral lines of impurity centers which intera
with these systems has been analyzed systematically
glasses.13,14 In our case the problem simplifies substantial
since according to our assumption a Pr31 impurity ion inter-
acts only with one two-level system. Therefore, to descr
the experimental results presented in Fig. 4 we must sum
additive contributions to the homogeneous width of a sp
tral line which form as a result of the interaction of an im
purity center with phonons and with a two-level system.
analogy with phonons,1,3,13 the contribution to the homoge
neous width of a spectral line in the case of an interaction
an impurity center with one two-level system is determin
by the change in the structure of the adiabatic potential. T
change is expressed as the difference of the Hamiltonian
the groundHg and excitedHe states13,14



s
s

un

-

lin
.
o
e
n
ia
ou

l

e-
re
lin

of

n

is
e

e

p

he
f

er
ur

nd

-
h
im

tark
tes
un-
e
O
at
par-
O

an
s is
nge
d

ne
uch

a
ad-

y
in-
tic
the

e
es:
in

ys.

390 JETP 88 (2), February 1999 Borisov et al.
He2Hg5«a1a1b~a11a!q2
«

2
, ~2!

where«5De2Dg is the difference of the activation energie
of the two-level systems in the excited and ground state
the impurity center,b5(be2bg)/2 is the difference of the
coupling constants with phonons in the excited and gro
states of the impurity center,a1 anda are tunnelon creation
and annihilation operators, andq is the generalized coordi
nate.

In the dynamic approximation13,14 the first term in Eq.
~2! gives the contribution to the homogeneous spectral
width that exhibits saturation14 with increasing temperature
We shall not consider this contribution, since it does n
improve the description of the experimental results. The s
ond term in the relation~2!, associated with the phono
stimulation of transitions between the minima of the ad
batic potential, gives the contribution to the homogene
width with a temperature dependence of the form13,14

gTLS~T!5l sinh21S D

kTD , ~3!

wherel is a parameter that depends onb and the spectra
function of the phonons13,14 andD5De'Dg .

The relation~3! has the property that we require. Sp
cifically, for kT>D it gives an almost linear temperatu
dependence for the homogeneous width of the spectral
and for this reason it will be used together with Eq.~1! to
describeg(T) ~Fig. 4!. To obtain the best least-squares fit
the experimental points, the parametersa andl in the rela-
tions ~1! and ~3! were varied independently. In the relatio
~1! the valueD«589 cm21 ~Fig. 1! was used, andD in the
relation ~3! could assume two values. One value
0.25 cm21, which follows from the estimate according to th
width of the spectral lineg0 . The other value equals th
energy gap found in Eq.~30! between the spectral lineb0

and its high-frequency satellite, which is 8.1 cm21. The lat-
ter value was considered in a preliminary analysis30 to be the
activation energy between nonequivalent states of the im
rity praseodymium ion. In both cases, the relations~1! and
~3! describe the experimental points~Fig. 4! very well, and
the values of the varied parameters area51.04•1010 s21

and l51.1•105 s21 for D50.25 cm21 and a51.01
•1010 s21 andl53.9•106 s21 for D58.1 cm21.

5. CONCLUSIONS

In summary, it has been shown in this work that t
familiar temperature-dependent mechanisms in crystals
broadening lines in the optical spectrum of impurity cent
do not permit describing systematically the temperat
variation of the homogeneous widthg(T) of a spectral line
corresponding to the transition3H4(0) –3P0 of impurity ions
in a Y2SiO5 : Pr31 crystal. The low-temperature spectra a
ultrahigh resolution spectroscopic data made it possible
observe in a Y2SiO5 : Pr31 crystal two types of nonequiva
lent states, having different energies, of impurity ions. T
states of one type are associated with the substitution of
purity ions at two nonequivalent cationic sites in the Y2SiO5
of

d

e

t
c-

-
s

e,

u-

or
s
e

to

e
-

crystal lattice. The energy difference between the same S
components of impurity ions in nonequivalent cationic si
depends on the type of term and fluctuates from tens to h
dreds of cm21. The structural crystallographic nature of th
differences of two nonequivalent cationic sites in the YS
lattice signifies that the impurity ions substituting for them
the sites behave as independent ensembles of impurity
ticles. Nonequivalent states of a different type in the YS
crystal lattice are realized within the localization site of
impurity ion. The energy difference between such state
small, and according to the experimental data it can ra
from tenths to several cm21. In this paper it was suggeste
that at low temperatures the impurity ions in a Y2SiO5 : Pr31

crystal can undergo phonon-induced transitions from o
nonequivalent state to another within a localization site. S
transitions of an impurity ion were represented formally in
multilevel adiabatic potential model. The temperature bro
ening of the spectral line of the transition3H4(0) –3P0 of
impurity ions in a YSO crystal was described very well b
using an additional mechanism whereby an impurity ion
teracts with a two-level system of its multilevel adiaba
potential. Determining more accurately the reasons for
appearance of a multilevel adiabatic potential for a Pr31 im-
purity ion in a YSO crystal will make it possible in the futur
to perform an experiment that is unthinkable for glass
investigation of the quantum motions of impurity centers
crystals at the microscopic level.
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Skyrmions in electron gas with nonlocal exchange in a strong magnetic field
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The energy and action for skyrmions in two-dimensional electron gas with nonlocal exchange
have been calculated. The energy of positively charged skyrmions is considerably lower
than the energy of negatively charged skyrmions and does not contain an exchange contribution.
The action has been calculated taking into account collective skyrmion null modes.
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After the pioneering work by Sondhiet al.,1 a number of
publications were dedicated to calculating the energy o
specific spin texture—a skyrmion having an odd filling fa
tor of Landau levels in a 2D electronic structure.2–4 Such
textures are characterized by rotation of average spin wi
nonzero degree of the 2D plane mapping on the unit sph
of spin directions. It was found that generation of a pair
skyrmions with opposite charges yields a lower energy t
formation of a spin exciton.

Calculations of the energy of an isolated skyrmion
subsequent publications were not fully self-consistent. T
authors assumed that the required textures could be obta
via rotation of spins in the uniform state using a coordina
dependent rotation matrixU(r ), but they assumed that th
electron spinors belonged to states of the same Landau
both before and after rotation. Moreover, they used a cer
reduced rotation matrix4 U red, which is not unitary:
U red

† U redÞ1. In addition, the unreduced rotation matrices i
tially used were considered to be functions of two Eu
angles, which necessarily gives risesingularities for n
trivial degrees of mapping, whereas the effective formu
did not take into account this fact.

These inconsistencies can be eliminated using a s
consistent approach based on smooth rotation matricesU(r )
which are functions of the three Euler angles~or another
equivalent set of parameters!, taking into consideration the
full representation of electron spinors in terms of Land
wave functions, and using an expansion in terms of der
tives of the rotation matrixU(r ).5,6

A flaw of previous calculations was the assumption t
the exchange term was uniform, which applies only to
case of a short-range interaction potential. Moreover, the
nal expressions for the action contained a number of ser
errors. The present work is aimed at eliminating these fla
which is essential for calculating the energy of an isola
skyrmion.
3921063-7761/99/88(2)/6/$15.00
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1. CALCULATION OF ACTION AND ENERGY

Let us briefly discuss the procedure for calculating t
action.6 The action is calculated in the Hartree–Fo
approximation, which is valid for the case of one fully fille
Landau level. One can also obtain this approximation via
Hubbard–Stratonovich transform. In this case, the term
the Hamiltonian describing the interaction can be expres
as

2E V~r2r1!^ca
†~r !cb~r 8!&cb

†~r 8!ca~r !d2r d2r 8.

Here a and b are spin indices,Xab(r, r 8)5^ca
†(r )cb(r 8)&

is the Hubbard–Stratonovich exchange field correspond
to the softest degree of freedom, namely, the spin rotatio
the exchange approximation~the angular brackets denot
quantum-mechanical averaging!. The direct interaction can
be included using the well-known expression for the aver
charge density.126 In the uniform case~the lower spin sub-
level of the lower Landau level is fully populated!, the
quantum-mechanical average has the form

Xab
0 ~r ,r 8!5( dabda0Fp0* ~r !Fp0~r 8!. ~1!

We introduce instead ofXab
0 the transformed matrix

Xmn~r ,r1!5Uam
† ~r !Unb~r1!Xab

0 ~r ,r1!,

whereU(r ) is a matrix of spinor rotation (U†U51). One
can get rid of the rotation operator in the interaction term
introducing new spinorsx andx† via the unitary transform
c(r )5U(r )x(r ), so that the interaction term regains its in
tial form

2E V~r2r1!Xab
0 ~r ,r1!xb

†~r1!xa~r !d2r d2r 1

for the transformed spinors, since their potential interact
does not change under this unitary transform. In the case
© 1999 American Institute of Physics
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coordinate-dependent rotation matrix,U(r ) must be differ-
entiated in the expression for the kinetic energy in the
Hamiltonian. As a result, we have

H5
1

2m E x†~2 i“1A01Vls l !
2xd2r

1E x†V t
ls lxd2r 2

1

2

3E V~r2r1!xa
†~r !xb~r1!xb

†~r1!

3xa~r !d2rd2r 1 .

We have written out the full second-quantization Ham
tonian, whereVn

l s l52 iU †]nU, s l are Pauli matrices and
A0 is the vector potential of applied magnetic field. Here
use a system of units such that\51, l H

2 5c \/eH51, and
H51, so the reciprocal electron mass 1/m is measured in
units of \vc . ParametersVn

l expressed in terms of Euler’
angles are given by

Vn
z5

1

2
~]na1cosb]g!,

Vn
x5

1

2
~sinb cosa]ng2sina]nb!,

Vn
y5

1

2
~sinb sina]ng1cosa]nb!.

The assumed small value of gradients ofU allows us to
develop a perturbation theory in terms ofV ~gradient expan-
sion! for calculating the action as a functional ofU. To this
end, we decompose the Hamiltonian into two parts:

H05E d2r H 1

2m
x†~2 i¹1A01Vls l !

2x1x†V t
ls lxJ

2E V~r2r1!Xba
0 ~r1 ,r !xa

†~r !xb~r1!d2rd2r 1 ~2!

and

H852
1

2 E V~r2r1!xa
†~r !xb~r1!@xb

†~r !xa~r1!

22Xba
0 ~r1 ,r !#d2rd2r 1 , ~3!

whereXab
0 is averaged over the fully filled spin-up Landa

sublevel.
The action, which is a function of the rotation matrixU,

can be calculated in the Hartree–Fock approximation an
expressed by diagrams in Fig. 1, wheredG denotes the cor-
rection to the Green’s function of the full Landau level d
to terms withVn in HamiltonianH0. The quantityS0 is the
action calculated with the HamiltonianH0:

S05 i Tr ln
G

G0
, G5G01dG.

The corrections linear indG are included inS0. The quantity
S0 was calculated previously to lowest order in 1/m for uni-
form spin exchange,6 but that calculation contained an alg
ll

is

braic error. This paper presents calculations including te
through zeroth order in 1/m without assuming that the spi
exchange is uniform, unlike the previous publication.6

The HamiltonianH0 can be decomposed into the ma
part

H005
1

2m E x†~2 i“1A0!2xd2r

2E E V~r2r1!Xba
0 ~r1 ,r !xa

†~r !xb~r1!d2rd2r 1 ,

plus small corrections of first order inV,

H15E V t
ls ld

2r 1
1

m E x†Vm
l s l~2 i ]m1A0m!xd2r

and second order inV,

H25
1

2m E x†@~Vm
l s l !

22 i ]mVm
l s l #xd2r .

As was shown in the previous publication,6 the contribu-
tion of H2 is offset by the contribution ofH1 in the second
order. In addition, the contribution ofV t

ls l can be trivially
calculated6 and is not discussed here.

The Green’s functionG0 for the HamiltonianH00 corre-
sponding to the fully filled lower Landau spin sublevel
calculated very easily and has the form

G0~r ,r 8,v!5(
p,s

ĝs~v!Fsp~r !Fsp* ~r 8!. ~4!

Here we have performed the Fourier transform to the f
quency representation;Fsp are the electron wave function
of the sth level in the Landau gauge. The levels needed
our calculations ares50:

ĝ0~v!5
11sz

2

1

v1E0/22 id
1

12sz

2

1

v2E0/21 id
,

d→10, ~5!

ands51:

ĝ1~v!5
11sz

2

1

v21/m1~E12E0/2!1 id

1
12sz

2

1

v21/m2E0/21 id
. ~6!

Higher levelss are essential only for calculation of contribu
tions higher than second order inV. The Green’s function is
calculated for the chemical potentialm51/2m21/2E0,
which

FIG. 1. Hartree–Fock diagrams for action. The dashed lines denote
interaction potential.
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FIG. 2. Diagrams illustrating different ways of inserting into th
exchange diagram the first-order corrections containingH1,
shown by a wavy line.
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corresponds to the full population of the lower spin sublev
The exchange energies for the fully filled Landau levels
calculated easily:

E05E d2q

~2p!2
e2q2/2V~q!,

E15E d2q

~2p!2

q2

2
e2q2/2V~q!,

whereV(q) is the Fourier transform of the interaction pote
tial. For the Coulomb interaction

E15
1

2E0
5Ap

2

e2

2k l H
, ~7!

wherek is the dielectric constant.
The expansion of the actionS0 to second order inH1 has

the form

dS05 i Tr H1G01
i

2
Tr H1G0H1G01 i Tr H2G0 . ~8!

The calculation procedure uses the representation ofH1 in
the form

H15
1

m E x†~V1
l P̂21V2

l P̂1!s lxd2r ,

where V6
l 5(Vy

l 7 iVx
l )/2 and the operatorsP̂6 raise and

lower the Landau level index:

P̂2Fsp5A2sFs21p , P̂1Fsp5A2~s11!Fs11p . ~9!

After omitting the terms compensated for byH2, we
have in the first order6

S0
~1!52

1

2m E curlVz
d2rdt

2p
. ~10!

The terms of second order are expressed as6

S0
~2!52

2

m2
TrH s l

11sz

2
s l 1

ĝ1S 2
E0

2 D J
3E V2

l V
1

l 1
d2rdt

2p
. ~11!

By expandingĝ1(2E0/2) to second order inm and using the

identity curlVz5( i /2)Tr$szs l 8s l%(Vx
l Vy

l 82Vy
l Vx

l 8), we
have
l.
e dS05dS0

~1!1dS0
~2!522E0E d2rdt

2p
V2

l V1
l 12E1

3E d2rdt

2p
V2

z V1
z 22E0Tr

s l 8s lsz

2

3E V1
l 8V2

l d2rdt

2p
. ~12!

The contributions of order 1/m cancel out in the sumS0
(1)

1S0
(2) @this result differs from that given in Ref. 6 becau

the sign of the first term on the right of Eq.~12! was wrong#.
Thus the contribution~10! of the mean field of order 1/m

~all the spins are locally directed upwards! is fully cancelled
out by fluctuations in the spin alignment in the second-or
component of the action. The remaining quantities are
order the exchange energye2/k l H , and there are no term
proportional to\vc . In order to complete the calculation o
the action in the second order in terms of gradients of ro
tion matrixU, we must calculate the contribution of the se
ond graph in Fig. 1. This diagram is decomposed in Fig.
where the the different ways of inserting the Green’s fun
tion components due to the ground and first Landau lev
are shown. The contribution of the last two diagrams in F
2 is equal to zero by virtue of isotropy ofV(r ). The first two
diagrams on the right yield equal contributions:

SHF5
~22!

m2
2TrH 11sz

2
s l ĝ1

2S 2
E0

2 Ds l 8J
3E V1

l S r1r 8
2 DF0p~r !F1p1

* ~r 8!F0p1
* ~r !F1p~r 8!V2

l 8

3S r1r 8
2 DV~r2r 8!d2rd2r 8. ~13!

Integration with respect to the coordinates is perform
fairly easily, and we obtain

SHF52~E02E1!E V2
z V1

z d2rdt

2p
12~E02E1!

3(
lÞz

E V2
l V1

l d2rdt

2p
12~E02E1!

3E curlVz
d2rdt

2p
. ~14!

As a result, we have the action to second order with resp
to the gradients ofU(r ,t):
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dS52E V t
z d2rdt

2p
22E1 (

lÞz
E V2

l V1
l d2rdt

2p

22E1Tr
s l 1

s lsz

2 E V
1

l 1V2
l d2rdt

2p
. ~15!

If V l is expressed in terms of Euler’s angles, the act
for the skyrmion is given by the equation

dS52E V t
z d2rdt

2p
2

E1

2 E 1

4 S ]ni

]xk
D 2 d2rdt

2p
2

E1

2

3E curlVz
d2rdt

2p
1ugumBE ~H•n2H !

d2rdt

2p

2
1

2E e2

ur2r 8u
curlVz~r !curlVz~r 8!

d2rd2r 8

~2p!2
dt,

~16!

which includes the small contributions of the Zeeman a
Coulomb energies and contains the unit vector aligned w
the averaged spin:

n5~sinb cosa, sinb sina, cosb!.

In calculating the Coulomb energy, we have used the exp
sion for densityr5(11curlVz)/2p from Refs. 1 and 6.

As was shown by Belavin and Polyakov,7 the minimum
gradient energy is expressed in terms of the topological
variant

Q5
1

2p E curlVzd2r ,

which corresponds to the degree of mapping of the 2D pl
on the unit sphere of spin directions, by the formula

1

8p E S ]ni

]xk
D 2

d2r 5uQu.

Thus, the energy of a skyrmion with chargeQ is given by

E5
E1

2
~Q1uQu!1ugumBE ~H•n2H !

d2r

2p
1

1

2

3E e2

ur2r 8u
curlVz~r !curlVz~r 8!

d2rd2r 8

~2p!2
. ~17!

For skyrmions withQ,0 the exchange contribution is zer
since the gradient energy is cancelled by the topologic
invariant term, so the energy contains only the Coulomb
Zeeman components. As for the skyrmions withQ.0, their
energy contains an exchange component.

According to Ref. 7, the solution that yields the min
mum energy decays with the distance asr 2uQu, as a result,
the Zeeman energy contains the large logarithmic fac
ln(ugumBH/E1) at uQu51, whereas the energy of skyrmion
with uQu.1 has no such factor. For this reason, the sk
mion with Q522 has a lower energy than that wit
Q521. States with lowerQ (Q,22), however, have
higher energies owing to the increase in the Coulomb ene
with uQu. This fact was pointed out by Nazarov an
n

d
h

s-

-

e

ly
d

r

-

y

Khaetski.8 Note that the suggested expression yields
skyrmion classical energy without quantum corrections.

2. NULL COLLECTIVE MODES

The skyrmion energy is independent of the rotati
angle of the spin reference frame with respect to the orb
frame, since adding an arbitrary constantg to anglea does
not change energy~13! ~the magnetic field is assumed to b
aligned with thez-axis!. This degeneracy can be lifted onl
by a spin–orbit coupling. Thus,g5const corresponds to
null collective mode.9 The corresponding motion must hav
the form of free rotation. In order to analyze this motion,
us use the standard technique applied to null mod9

namely, introduce a collective coordinateg(t) and calculate
the action through expansion in terms of the angular velo
ġ.

By considering only terms that are not total derivative
we obtain in the linear approximation

S152E V t
z d2rdt

2p
5

1

2 E ġb1sinb0

d2rdt

2p
,

whereb0 is the minimizing stationary solution,7 and b1 is
the small correction to the stationary solution. The term q
dratic in ġ in the action is easily derived from the secon
order termS25( i /2)TrV l

ts lG0V t
kskG0. In the lowest order

in m, we can restrict our analysis to the lowest Landau le
and obtain

S25E I ġ2

2
dt,

where the ‘‘inertia’’ moment is given by

I 5
1

2E0
E sin2 b0

d2r

2p
,

and we have neglected in the calculation the deviation ob
from its time-independent value. The total action has
form

S5S~a1 ,b1!1E I ġ2

2
dt1

1

2 E ġb1sinb0

d2rdt

2p
,

where the first term is the action as a quadratic functiona
deviationsa1 and b1 from the time-independent values o
a0 andb0 without taking into account null modes. This a
tion is independent of angleg and is expressed in the mixe
representation, which is the Hamiltonian ina1 andb1, and
Lagrangian ing. The transition to the fully Hamiltonian rep
resentation is performed by introducing the conserved an
lar moment

M5I ġ1
1

2 E b1

2p
sinb0d2r ,

which yields the Hamiltonian action
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S5S~a1 ,b1!1E M ġdt2
1

2I

3E S M2
1

2 E b1 sinb0D 2

dt. ~18!

The last term describes interaction between the null ro
tional mode and collective modes of higher orders.

In the presence of spin–orbit coupling, the action d
pends on the rotation angles of the spin reference frame
the orbital frame, so the degeneracy is lifted. We do
calculate the spin–orbit term in the action in terms of t
microscopic theory, but restrict our analysis to the pheno
enological approach, which yields an expression in the lo
est order in the gradients:

Sso52lsoE n•n div n
d2rdt

2p
, ~19!

wheren is the vector of the average spin direction,n is the
normal to the 2D plane. We assume that there is a cer
asymmetry that defines a unique direction ofn. This expres-
sion is T-invariant and isotropic in the 2D plane. It can b
shown that the constantlso is related to the bare spin–orb
coupling constant:lso5l0E1 / \vc . The bare constantl0 is
included in the spin–orbit Hamiltonian10 Hso5l0ez jkpjsk ,
wherepj is the electron momentum andez jk is the absolutely
antisymmetrical tensor. The parameterSso can be expresse
in terms of Euler angles:

Sso52lso E d2rdt

2p
sin2b~cosa]xb1sina]yb!. ~20!

Owing to the smallness of the spin–orbit coupling, we c
substitute in the first approximation the steady-state solut7

b5b0(r ), a5Qw1g, whereQ is integer andw is the polar
angle! in the expression for the spin–orbit energy, whi
yields

Eso5lsoE sin2 b0 cos@~Q21!w1g#
d2r

2p
.

For QÞ1 this energy vanishes after integration with resp
to the angle, and the system remains degenerate in the
order in lso. Let us consider the case ofQ51, when the
energy has a minimum atg5p if lsodb0 /dr.0 holds or at
g50 if lsodb0 /dr,0 holds. In this case, a specific mode
generated with oscillatingg and variable skyrmion core di
mension.

In order to determine characteristic frequencies of suc
radial-angular mode, let us use equations of motion obtai
by varying the action and linearized in the neighborhood
the minimum solution:7

2 iva1sinb01J@Db11sin2b0“a0“a1

1sin 2b0~“a0!2b1#1
d2EZC

~db!2
b150, ~21!

ivb1sinb01J“@sin2b0“a11b1 sin 2b0“a0#

1lsosin2 b0

db0

dr
a150. ~22!
-

-
nd
t

-
-

in

n
n

t
rst

a
d
f

The factord2EZC /(db)2 denotes the second derivative wi
respect tob of the sum of the Zeeman and Coulomb energ
at the steady-state value. These equations contain the
parameterJ5E1/4, but the operators proportional toJ have
nontrivial solution that cause them to go to zero:a15g
5const, b15r ] rb0. Therefore, low-frequency oscillation
are determined by solutions of this form, and one must c
sider, as usual, projections of the equations on the co
sponding eigenfunctions. The first equation is to be be m
tiplied by unity, the second byrdb0 /dr, and each is
integrated over the coordinates. As a result, the terms c
taining J vanish, and we obtain a system of linear equatio

ivc1E sinb0S r
]b0

]r Dd2r 5lsoE sin2b0

]b0

]r
d2rg,

~23!

and

2 ivgE sinb0S r
]b0

]r Dd2r 5c1E S r
]b0

]r D 2 d2EcZ

~db!2
d2r .

~24!

By equating to zero the determinant of this equation s
tem, we obtain the characteristic frequency:

\2v25

ulsou E sin2b0

]b0

]r

d2r

2p E d2r

2p S r
]b0

]r D 2 d2EZC

~db!2

S E sinb0r
]b0

]r
dr D 2

;
lsogmBH

Lcln
L*

Lc

. ~25!

Here L* 5AugumBH/J is the distance at which the Zeema
and gradient energies of the skyrmion are equal, and
skyrmion size is

Lc5S ugumBH

J
ln

L*
Lc

D 1/3

~see, for example, Ref. 12!. Here the lengths are measured
units of magnetic lengthl H . Such oscillations change con
currently the skyrmion sizeLc and angleg between the spin
and orbital axes.

There is also a collective mode described earlier12 in
which a skyrmion is translated as a whole, when the rotat
matrix U(r2X) is a function of the skyrmion center positio
X(t). As in the zero rotational mode, the action contains
term linear in velocityẊ and describing interaction with
other collective oscillations, so the action is expressed b

dS5E Ẋ~cosb0“a12b1 sinb0“a0!
d2rdt

2p

1E ms~Ẋ!2

2
dt1S~a1 ,b1!.

The skyrmion mass ms5uQu \2/E0l H
2 was calculated

earlier.12 Since the skyrmion has chargeeQ, there is an ad-
ditional term in the action due to the vector potential of t
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external magnetic field. After going over to the Hamiltoni
expression for the action, as in the derivation of Eq.~20!, and
taking into account the other collective modes, we obtain

S5E M ġdt1E PẊdt2
1

2I E ~M2 l !2dt

2
1

2ms
E S P2

eQ

c
A02aD 2

dt1S~a1 ,b1!,

where

l 5\E b1sinb0

d2r

2p l H
2

,

a5\E ~cosb0“a12b1sinb0“a0!
d2r

2p l H
2

,

ms5uQu \/E0l H
2 , I 5

\2

2E0
E sin2b0

d2r

2p l H
2

.
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Generalized Ginzburg–Landau equation and the properties of superconductors
with Ginzburg–Landau parameter k close to 1
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An expression is derived for the free energy of a superconductor near the critical temperature,
taking account of the terms of next highest order in the parameter 12T/Tc . These terms
become important for Ginzburg–Landau parameter valuesuk21u!1, and in this case, in an
external magnetic fieldH0 close toHc2 , the structure of the order parameter is determined
by the relative values of the three small parametersuk21u, 12T/Tc , and (Hc22H0)/Hc2 . Three
types of lattices are investigated: triangular with one and two flux quanta per cell and
square with one flux quantum per cell. ©1999 American Institute of Physics.
@S1063-7761~99!02402-6#
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1. INTRODUCTION

The Ginzburg–Landau equations1 have the important
property that for Ginzburg–Landau parameterk51 there
exists in a cylindrical geometry aN-vortex solution with an
arbitrary position of the zeros of the order parameter in
plane perpendicular to the axis of the cylinder.2,3 As a result
of this degeneracy, all coefficients~starting with the second
one! in the Taylor series expansion of the Ginzburg–Land
free energy in powers ofHc22B, whereB is the magnetic
field induction andHc2 is the critical field of the supercon
ductor, vanish ask→1.1

Naturally, even a small perturbation of the Ginzburg
Landau equations will completely destroy this enormous
generacy. In real superconductors, the perturbing terms
proportional to 12T/Tc , whereTc is the superconducting
transition temperature. As a result, in magnetic fieldsH0

close to Hc2 , (Hc22H0)/Hc2!1, three small parameter
arise: uk21u,12T/Tc , and (Hc22B)/Hc2 . Depending on
the relative value of the parametersuk21u and 12T/Tc , the
free energy (FS2FN)/V of the mixed state as a function o
the parameter (Hc22B)/Hc2 can have the form of one of th
three plots shown in Fig. 1 (H0,Hc2) or Fig. 2 (H0

.Hc2).
In magnetic fields,H0,Hc2 , in the ~casea! vortex-free

state or a state withB;Hc2 forms. The caseb corresponds
to a classical type-II superconductor, and in the casec meta-
stable vortex lattices can form. As will be shown below,
three cases can be realized. The free energy as a functio
the parameter (Hc22B)/Hc2 in magnetic fieldsH0.Hc2 is
displayed in Fig. 2, and all three possibilities (a,b,c) can
obtain. It is obvious that the free energy depends on the f
of the vortex lattice. We shall examine below three types
vortex lattices: triangular with one or two flux quanta p
unit cell and square with one flux quantum per unit cell.

2. GINZBURG–LANDAU EQUATION WITH CORRECTION
TERMS

To obtain expressions for the free energy of a superc
ductor taking account of the terms of next higher order in
3981063-7761/99/88(2)/8/$15.00
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parameter 12T/Tc , we shall make use of the system
equations for the Green’s functionsĜ integrated over the
energy variablej.4–6 These equations have the form

S v–
]

]r D Ĝ1v̂Ĝ2Ĝv50,

Ĝ5S a, 2 ibp

i b̃p , 2a D , Ĝ251̂, ~1!

where

v̂5vtz2 ie~v–A!tz2 i D̂2 inŜpp ,

D̂5S 0 D

2D* 0 D , Ŝpp52
iv
2 E spp1

Ĝp1
dVp1

. ~2!

In Eq. ~2! D is the order parameter of the superconduct
spp8 is the electron scattering cross section of an impur
andn is the impurity density. The order parameterD is re-
lated to the Green’s functionbp by

D lnS Tc

T D52pT (
v.0

S D

v
2E dVp

4p
bpD , ~3!

whereTc is the superconducting transition temperature. W
seek only the first few corrections to the Ginzburg–Land
equations in the parameter 12T/Tc . The equationĜ251
implies

a21bpb̃p51. ~4!

Solving this equation up to fourth-order terms inD we find

ap5singvF12
bpb̃p

2
2

~bpb̃p!2

8
G . ~5!

We find from the system of equations~1!
© 1999 American Institute of Physics
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1

2
~v–2!bp1vbp2Dap1

nv
2 E spp1

~bpap1
2apbp1

!dVp1
50,

2
1

2
~v–1!b̃p1vb̃p2D* ap1

nv
2 E spp1

~ b̃pap1
2apb̃p1

!dVp1
50,
~6!

where

65
]

]r
62ieA.

The system of equations~5! and ~6! can be solved by ex
panding the quantitiesbp andb̃p in spherical harmonics with
arbitrary electron mean-free path. Simple calculations us
Eqs.~5! and~6! reduce Eq.~3! for the order parameter to th
form

2D lnS Tc

T D22pT

3 (
v.0

H 2
DuDu2

2v3
1

3DuDu4

8v5
1

v2

12

]2
2 D

v2~v11/2t tr!

1
v4~1/t21/t2!~]2

2 !2D

288v3~v11/2t tr!
2~v1~1/2!~1/t21/t2!!

FIG. 1. Free energy (FS2FN)/V versus the parameter (Hc22B)/Hc2 in the
rangesx!1 andH0,Hc2 .
g

1
v4~~]2

2 !214e2H22~4ie/3!~“3H–2!!D

80v2~v11/2t tr!
2~v1~1/2!~1/t21/t2!!

2
v2]2

2 ~DuDu2!

24v4~v11/2t tr!
1 v2D~~2D!•1D* !

1~]/]r !•~D1D* !D 48v4t tr~v11/2t tr!
2

1
v2D~~]2D!•~]1D* !!

24v3~v11/2t tr!
2

2
v2~ uDu2]2

2 D1D2]1
2 D* !

24v4~v11/2t tr!

1
v2]2•~D~D]1D* 2D* ]2D!!

24v3~v11/2t tr!
2

50. ~7!

The scattering ‘‘time’’ tN in Eq. ~6! is determined in the
standard manner as

1

tN
YN

P

uPu
5nvE spp1

YN

P1

uPu
dVp1

,
1

t tr
5

1

t
2

1

t1
. ~8!

In accordance with the general assumptions, Eq.~6! is a
variational derivative of the free energy with respect to t
parameterD* . Direct calculations give the following expres
sion for the free energyFS :

FIG. 2. Free energy (FS2FN)/V versus the parameter (Hc22B)/Hc2 in the
rangesx!1 andH0.Hc2 .
FS2FN5nE d3r H 2 lnS Tc

T D uDu222pT (
v.0

F2
uDu4

4v3
1

uDu6

8v5
2

v2

12v2

u]2Du2

~v11/2t tr!
1

v4~1/t21/t2!u]2
2 Du2

288v3~v11/2t tr!
2~v1~1/2!~1/t21/t2!!

1
v4~ u]2

2 Du214e2H2uDu22~2ie/3!“3H–~D* ]2D2D]1D* !!

80v2~v11/2t tr!
2~v1~1/2!~1/t21/t2!!

1
v2

24v3~v11/2t tr!
2
~ uDu2~]2D!•~]1D* !!

1
v2

24v4~v11/2t tr!
S 1

2S ]uDu2

]r D 2

12uDu2~]2D!•~]1D* ! D G J 1
1

8pE d3r ~“3A2H0!2. ~9!
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The last term in Eq.~9! is the magnetic-field energy an
n5mp0/2p2 is the density of states at the Fermi surfac
This coefficient is found by setting the standard express
for the current density equal to the corresponding expres
obtained from Eq.~9! by variation with respect to the vecto
potentialA. Performing the summation over the frequencyv
in Eq. ~9!, we obtain finally

FS2FN5nE d3r H 2 lnS Tc

T D uDu21
7z~3!

16p2T2
uDu4

1
pD

8T
u]2Du22

31z~5!uDu6

128p4T4
2

v4~1/t21/t2!

288

3a1u]2
2 Du22

v2

24
a2uDu2u]2Du22

v2

24
b2

3S 1

2S ]uDu2

]r D 2

12uDu2u]2Du2D2
v4

80
b1

3S u]2
2 Du214e2H2uDu22

2ie

3
“3H•~D* ]2D

2D]1D* !J 1
1

8pE d3r ~“3A2H0!2. ~10!

In Eq. ~10! H0 is the external magnetic field andz(x) is the
Riemann zeta function. Expressions for the coefficie
a1,2,b1,2, andD are given in Appendix A.

We note that the expression~10! for the free energy of a
superconductor holds nearTc taking account of the first cor
rections with respect to the parameter 12T/Tc and for arbi-
trary values of all other parameters: the magnetic field,
mean-free path, the Ginzburg–Landau parameterk, and so
on.

3. SUPERCONDUCTOR IN A MAGNETIC FIELD H0 CLOSE
TO Hc2

The structure of the superconducting state of a superc
ductor in an external magnetic fieldH0 close toHc2 was first
obtained by Abrikosov.7 However, the situation arising fo
values of the parameterk in the limit uk21u!1 is much
more interesting and diverse~see also Refs. 8 and 9!.

We seek the order parameterD and the vector potentia
A in the range of fieldsuHc22H0u!Hc2 in the form of a
power series in (Hc22B) ~Refs. 8 and 9!:

D5D01D11D21 . . . ,

A5~0,Bx,0!1A11A2 . ~11!

In the gauge“•A50 the quantitiesA1,2, . . .(x,y) are
bounded functions in the (x,y) plane, and we represent th
order parameterD0,1, . . . in the form7–9

D05(
N

CN exp$2ieBNx1y2eB~x2Nx1!2%,

D15 (
M51

`

aMD1
M , ^D0DM* &M51,2, . . .50, ~12!
.
n
n

s

e

n-

D1
M5 (

N52`

`

CN exp~22ieBNx1y!DM~2AeB~x2Nx1!!.

In Eq. ~12! the DM(x) are parabolic cylinder functions.
Using Eqs.~10! and ~11! we find the critical fieldHc2

and the equation for the first correctionA1 to the vector
potentialA:

lnS Tc

T D2
peDHc2

4T
1

e2Hc2
2 v4

8 S a1

9 S 1

t
2

1

t2
D1

4b1

5 D50,

1

4p

]2A1

]r2
5nH epD

4T
“3~0,0,uD0u2!2

ev4

120
b1“

3S 0,0,
]2uD0u2

]r2 D 2e2v4BS 1

36S 1

t
2

1

t2
Da1

1
1

5
b1D“3~0,0,uD0u2!J . ~13!

To obtain Eq.~13! for the vector potentialA1 , we employed
the relation

D0* ]2
0 D02D0]1

0 D0* 52 i“3~0,0,uD0u2!, ~14!

where2
0 5]/]r22ieA0 .

The equation~14! follows from the expression~12! for
D0 . Using the gauge“•A150, we find from the second
equation~13! the following expression for the magnetic fie
H1 :

H i5“3A i , i 51,2, . . .

H152pn~0,0,1!H peD

T
2e2v4BS a1

9 S 1

t
2

1

t2
D1

4

5
b1D

3~ uD0u22^uD0u2&!2
ev4

30
b1

]2

]r2
uD0u2J . ~15!

In the expression~10! for the free energy, the terms con
tainingH2 cancel up to terms of orderuD0u6, inclusively. To
check this assertion, we employ the following relations:

^u]2Du2&52eB^uD0u2&12e^~H11H2!uD0u2&

14e2^A1
2uD0u214ie^A1•~D0* ]2

0 D12D0]1
0 D1* !&

2^D1~]1
0 !2D1* &,

^u]2
2 Du2&54e2B2^uD0u2&18ieB^A1•~D0* ]2

0 D0

2D0]1
0 D0* !&18ie2B^A1•~D0* ]2

0 D12D0]1
0 D1* !

18e2B^H2uD0u2&116e3B^A1
2uD0u2&

1^~~]2
0 !2D1!~~]1

0 !2D1* !&14ie^~A1•]1
0 D0* !

3~~]2
0 !2D1!2~A1•]2

0 D0!~~]1
0 !2D1* !&

116e2^~A1•]2
0 D0!~A1•1

0 D0* !&, ~16!
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^H2uDu2&5B2~^uD0u2&1^uD1u2&!1^H1
2uD0u2&1

12B^H1~ uD0u21~D0* D11D0D1* !!&

12B^H2uD0u2&,^“3H–~D* ]2D2D]1D* !&

5 i K H1

]2uD0u2

]r2 L 1 i K H2

]2uD0u2

]r2 L 1^“3H1•
p
s

-
es
~2 ieA1uD0u212~D0* ]2
0 D12D0]1

0 D1* !!&.

Subtracting from Eq.~10! the equation~13! for Hc2 mul-
tiplied by n*d3r (uD0u21uD1u2) and using Eqs.~15! and
~16!, we reduce the expression~10! for the free energy to the
form
FS2FN5
1

8pE d3r ~~B2H0!22H1
2!1nE d3r H 2

peD

4T
~Hc22B!uD0u21e2v4~Hc2

2 2B2!uD0u2S a1

72S 1

t
2

1

t2
D1

b1

10D
1

7z~3!

16p2T2
~ uD0u412uD0u2~D0* D11D1* D0!!2

31z~5!

128p4T4
uD0u61

pD

8T
@4e2A1

2uD0u214ieA1•~D0* ]2
0 D12D0]1

0 D1* !

2D1* ~]2
0 !2D122eHc2uD1u2#2v4S a1

288S 1

t
2

1

t2
D1

b1

80D @8ie2BA1•~D0* ]2
0 D12D0]1

0 D1* !116e3BA1
2uD0u2

1~~]2
0 !2D1!~~]1

0 !2D1* !14ie~~A1•]1
0 D0* !~]2

0 !2D12~A1•]2
0 D0!~]1

0 !2D1* !116e2~A1•]2
0 D0!~A1•]1

0 D0* !#

2
v2

48
b2S S ]uD0u2

]r D 2

12
]uD0u2

]r
•

]

]r
~D0D1* 1D0* D1! D2

v2

24
~a212b2!@ uD0u2~~]2

0 D0!•~]1
0 D0* !!12eA1•uD0u2“

3~0,0,uD0u2!12eBuD0u2~D0* D11D0D1* !2~D0* D1* ~]2
0 D0!21D0D1~]1D0* !2!#1e2v4Hc2

2 S a1

72S 1

t
2

1

t2
D1

b1

10D uD1u2

2
e2v4

20
b1@B2uD1u21H1

2uD0u212BH1~D0D1* 1D0* D1!#1
ev4

60
b1“3H1•~2eA1uD0u21 i ~D0* ]2

0 D12D0]1
0 D1* !!J .

~17!
In what follows we shall study solutions of the form
~11!, which form in the (x,y) plane for uDu2 lattices with
unit-cell vectors a1,2.8,9 Let K1,2 be the elementary
reciprocal-lattice vectors. We shall represent the order
rameteruD0u2 in this case in the form of a Fourier series a

uD0u25 (
N,M52`

`

CNMexp~ i ~NK11MK2!•r !. ~18!

The functionD0* D1
M is also a periodic function of the coor

dinates and therefore can be expressed in a Fourier seri

D0* D1
M5(

N,K
CNK

M exp~ iKNK•r ! ~19!

whereKNK5NK11KK2 .
The values of̂ uD0u2& and aM can be found from the

conditions of an extremum of the free energy~17! with re-
spect to these parameters, i.e.,

]~FS2FN!

]^uD0u2&
50,

]~FS2FN!

]aM
50. ~20!

On the basis of Eqs.~20!, it is sufficient to find the
values of^uD0u2& andaM to leading order in 12T/Tc . Us-
ing Eqs.~17!–~20! we find
a-

as

^uD0u2&5
2p3eDT

7z~3!

Hc22B

bA2~bA21!/k2
,

aM52
1

M M !B^uD0u2&

7z~3!

4p3eDT
H (

N,L
CNLCNL

M*

2
1

k2 (
KN,LÞ0

CNLCNL
M* S 12

4eBM

KNL
2 D J . ~21!

In Eqs.~21!, the quantitybA is the Abrikosov structural
parameter,

bA5^uD0u4&/^uD0u2&2, ~22!

and the Ginzburg–Landau parameterk is determined by the
equation

k5
1

p2eD
S 7z~3!

2pn D 1/2

. ~23!

We employed the following relations9 to obtain the ex-
pressions~21! for aM :
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^D1
MD1

M* &5M ! ^uD0u2&,

D1
M]1

0 D0* 2D0* ]2
0 D1

M5 i S ]

]y
;2

]

]xD ~D0* D1
M !22AeBMD0* D1

M21~1;2 i !. ~24!

The equations~13!, ~15!, ~21!, and~24! make it possible to reduce Eq.~17! for the free energy to an expression containi
only sums of various combinations of the quantitiesCNK and CNK

M . For arbitraryk this expression forFS2FN is given in
Appendix B. Foruk221u!1, we find from Eq.~B.1!

FS2FN

V
5

1

8p
~Hc22H0!22

1

4p
~Hc22B!~Hc22H0!1

bA~Hc22B!2

8p F ~k221!1
288p4T4ln~Tc /T!

~7z~3!!2kcl
2 S a1

9 S 1

t
2

1

t2
D1

11b1

15 D
2

16p4T4ln~Tc /T!

~7z~3!!2kcl

~a213b2!G2
~Hc22B!3

pHc2
~k221!(

M

1

M !
R1

MR2
M2

31z~5!bA1~Hc22B!3ln~Tc /T!

8p~7z~3!!2Hc2

2
p3~Hc22B!3T4ln~Tc /T!

~7z~3!!2kcl
2Hc2

H 18F ~2bA21!S a1

9 S 1

t
2

1

t2
D1

4b1

5 D2
2bAb1

15 G172FG21G328G1

2 S a1

9 S 1

t
2

1

t2
D

1
2b1

5 D1
b1

15
~G2212G1!1

b1

10S 11bA122bA1
2

3
G1D G1144(

M

M11

M !
R2

M~R1
M22MR2

M !S a1

9 S 1

t
2

1

t2
D1

2b1

5 D
1144(

M

1

M !
R2

M~R1
M24MR2

M !S a1

9 S 1

t
2

1

t2
D1

4b1

5 D2
48

5
b1(

M

1

M !
R2

M~~R3
M24MR1

M !26R1
M !J

1
2p3~Hc22B!3T4ln~Tc /T!

~7z~3!!2kclHc2
H b2S bA14(

M

R3
MR2

M

M ! D 1~a212b2!S bA18(
M

1

M !
R1

MR2
M22G2D J . ~25!

For the three types of lattices—triangular with one or two flux quanta per cell and square with one flux quant
cell—the coefficientsCNL and CNL

M were found in Ref. 9. For this reason, we shall not present them here. A num
calculation of the sums in Eq.~25! gives the following values of the free energy as a function of the parameterB and type of
lattice.

1. Triangular lattice with one flux quantum per cell:

bA51.159595, bA1
51.423012,

FS2FN

V
5

1

8p
~Hc22H0!22

1

4p
~Hc22B!~Hc22H0!1

bA~Hc22B!2

8p F ~k221!1
16p4T4ln~Tc /T!

~7z~3!!2 S 18

kcl
2 S a1

9 S 1

t
2

1

t2
D

1
11b1

15 D2
1

kcl
~a213b2!D G2

~Hc22B!3

8pHc2
H 4.361•1022~k221!11.423•

31z~5!

~7z~3!!2
ln~Tc /T!

1
18p4T4ln~Tc /T!

~7z~3!!2kcl
2 S 1.3424a1S 1

t
2

1

t2
D18.36257b1D2

16p4T4ln~Tc /T!

~7z~3!!2kcl

1.4666~a213b2!J . ~26!

2. Triangular lattice with two flux quanta per cell:

bA51.33898, bA1
52.02588,

FS2FN

V
5

1

8p
~Hc22H0!22

1

4p
~Hc22B!~Hc22H0!1

bA~Hc22B!2

8p F ~k221!1
16p4T4ln~Tc /T!

~7z~3!!2 S 18

kcl
2 S a1

9 S 1

t
2

1

t2
D

1
11b1

15 D2
1

kcl
~a213b2!D G2

~Hc22B!3

8pHc2
H 0.252~k221!12.0258

31z~5!

~7z~3!!2
ln

Tc

T

1
18p4T4ln~Tc /T!

~7z~3!!2kcl
2 S 2.2488a1S 1

t
2

1

t2
D114.3985b1D2

16p4T4ln~Tc /T!

~7z~3!!2kcl

2.27793~a213b2!J . ~27!

3. Square lattice with one flux quantum per cell:

bA51.18034, bA1
51.4971,
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FS2FN

V
5

1

8p
~Hc22H0!22

1

4p
~Hc22B!~Hc22H0!1

bA~Hc22B!2

8p F ~k221!1
16p4T4ln~Tc /T!

~7z~3!!2 S 18

kcl
2 S a1

9 S 1

t
2

1

t2
D

1
11b1

15 D2
1

kcl
~a213b2!D G2

~Hc22B!3

8pHc2
H 0.068798~k221!11.4971•

31z~5!

~7z~3!!2
ln

Tc

T

1
18p4T4ln~Tc /T!

~7z~3!!2kcl
2 ~1.45306a119.102163b1!2

16p4T4ln~Tc /T!

~7z~3!!2kcl

•1.56589~a213b2!J . ~28!
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Aside from Eq.~B.5! the relation

2(
M

R2
MR3

M

M !
54(

M

R1
MR2

M

M !
2G2 . ~29!

probably also holds.
The ratio of the Ginzburg–Landau parameters in di

(kdir) and clean (kcl) superconductors can be easily fou
with the aid of Appendix A and is

kdir

kcl
5

7z~3!

2p3Tt tr

. ~30!

Let us assume that in a clean superconductor we h
kcl!1. Then the conditionk'1 signifies that 2pTt tr!1. In
the limit of a short electron mean-free path, in Eqs.~26!–
~28! the contributions of the terms proportional toa2 andb1

are small. In this limit, we find for the coefficientsa1 andb2

from Appendix A:

a1dir5
14z~3!t tr

2

p2T2~1/t21/t2!
,

b2dir5
pt tr

24T3
. ~31!

From Eqs.~30! and ~31! it is easy to see that the coefficie
of (Hc22B)3 in Eqs. ~26!–~28! can be made positive
changing the sign of the coefficient of (Hc22B)2 by chang-
ing the value ofk. Clean superconductors satisfy

b15b25a2 . ~32!

The effect of Eqs.~32! is that if in a clean superconductor th
parameterkcl is close to 1, then the coefficient of the ter
(Hc22B)3 in Eqs. ~26!–~28! can be easily made negativ
We have thus shown that all cases shown in Figs. 1 an
ve

2

can be realized by an appropriate choice of the paramete
the superconductor. We recall also that the field inductioB
is determined from the condition8

]~FS2FN!

]B
50. ~33!

Using the condition~33! it can be shown that there exists
parameter range where a triangular lattice with two fl
quanta per cell has a lower energy than a triangular or sq
lattice with one flux quantum per cell.

4. CONCLUSIONS

The strong degeneracy arising in the Ginzburg–Land
equation withk51 can be removed by correction terms pr
portional to 12T/Tc . Near the transition temperature, th
type of solution is determined by the ratio of the small p
rametersuk221u and 12T/Tc . It was shown that in an ex
ternal magnetic fieldH0 close toHc2 all possible types of
dependences of the free energy on the parameterB can be
realized with an appropriate choice of the quantitieskcl and
12T/Tc and electron mean-free path. The sign of the co
ficient of the quadratic term (Hc22B)2 can be changed~with
k close to 1! by a small change in the impurity density. Sinc
all types of dependence of the free energy on the parametB
shown in Figs. 1 and 2 can be realized, the transition into
superconducting state can be either first- or second-or
We also note that the minimum of the free energy can
reached, for example, on a triangular lattice with two fl
quanta per cell.

This work was supported by the CRDF~Grant RP1-
194!.

5. APPENDIX A

From Eqs.~9! and ~10! we find the coefficientsD, b1,2,
anda1,2 appearing in the expression for the free energy:
D5
v l tr

3
h~T! , h~T!512

8Tt tr

p S cS 1

2
1

1

4pTt tr
D2cS 1

2D D ,

b252pT (
v.0

1

v4~v11/2t tr!
5

t tr

4p3T3H p4

6
24pTt tr@7z~3!22p3Tt trh~T!#J ,
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a252pT (
v.0

1

v3~v11/2t tr!
2

5
t tr

2

p2T2H 7z~3!24p3Tt tr24pTt trc8S 1

2
1

1

4pTt tr
D

13~4pTt tr!
2S cS 1

2
1

1

4pTt tr
D2cS 1

2D D J ,

b152pT (
v.0

1

v2~v11/2t tr!
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5
1

16p4T4H 2p3T~4pTt tr!
2
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1

~4pT!3t tr
2

1/t121/t2
c8S 1

2
1

1

4pTt tr
D

2
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4pTS 1
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2
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t2
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2S 8pTt tr
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1

1

4pTt tr
D2cS 1

2D D J ,

a152pT (
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5
1

32p5T5H 7z~3!
~4pT!3t tr

2

1/t21/t2
2

~4pT!4t tr
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1
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4pTt tr
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~1/t21/t2!3~1/t121/t2!2S cS 1

2
1

1

4pTS 1
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1/t121/t2
2

1

~1/t121/t2!2D
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2t tr

1/t121/t2
D 2
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6. APPENDIX B

For arbitraryk the free energy~17! can be put into the following form using Eqs.~13!, ~15!, ~21!, and~24!:

FS2FN

V
5

1

8p
~Hc22H0!22

1

4p
~Hc22B!~Hc22H0!1
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12(
M

R1
M

MM ! S S 12
1

k2D R1
M1

4M

k2
R2

M D 2
2

k2
G2G J . ~B.1!
a
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In Eq. ~B.1!, kcl is the Ginzburg–Landau parameter of
clean superconductor

kcl
2 5

18pT2

7z~3!ne2v4
, ~B.2!

We have writtenbA15^uD0u6&/^uD0u2&3, and V is the
volume of the superconductor. We also introduced the
lowing notation:

(
KNLÞ0

CNLCNL
M* 5R1

M^uD0u2&2,

(
KNLÞ0

CNLCNL
M* /KNL

2 5R2
M^uD0u2&2/eB,

(
KNLÞ0

CNLCNL
M* KNL

2 5R3
M^uD0u2&2eB,

(
KNLÞ0

(
KN1L1

Þ0
CNLCN1L1

CN1N1 ,L1L1
* ~KNL

•KN1L1
!/~KNL

2 KN1L1

2 !5G1^uD0u2&3/eB, ~B.3!

(
KNLÞ0

(
KN1L1

Þ0
CNLCN1L1

CN1N1 ,L1L1
* ~KNL

•KN1L1
!/KN1L1

2 5G2^uD0u2&3,

(
KNLÞ0

(
KN1L1

Þ0
CNLCN1L1

CN1N1 ,L1L1
* ~KNL

•KN1L1
!2/~KNL

2 KN1L1

2 !5G3^uD0u2&3.
l-

To obtain the expression~B.1! for the free energy, we
used the relation

(
N,L

CNLCNL* KNL
2 52eBbA^uD0u2&2. ~B.4!

In accordance with the general assertions, the follow
equation should hold:

G114(
M

M

M !
~R2

M !250. ~B.5!
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Zh. Éksp. Teor. Fiz.115, 740–753~February 1999!

We study the nonlinear dynamics of the interaction of two-level atoms and a selected mode of a
high-Q cavity with frequency modulation analytically and numerically. In the absence of
modulation, the corresponding semiclassical Heisenberg equations for the expectation values of
the collective atomic observables and the field-mode amplitudes allow, in the rotating
wave approximation and in the strong-coupling limit, an exact solution with arbitrary detuning.
Using this solution, we detect the coherent effect of trapping of the population of atomic
levels and of trapping of the number of photons in the cavity. The explanation for this effect lies
in the destructive interference of the atomic dipoles and the field mode. The integrable
version of the system of equations exhibits a separatrix near which a stochastic layer is formed
when modulation is introduced. The width of the layer is found to gradually increase with
degree of modulation, and finally it fills the entire energy-permissible volume of the phase space.
We show that the rotating wave approximation does not hinder the formation of Hamiltonian
chaos in cavity semiclassical electrodynamics. The calculation of the maximum Lyapunov indices
of nonlinear~in this approximation! equations of motion as functions of the modulation
frequencyd and the frequency of natural Rabi oscillations of the atom–field system,V, suggests
that Hamiltonian chaos appears first in the area of the fundamental parametric resonance,
d/2V.1. Parametric instability increases with increasing modulation and decreasing detuning
from the atom–field resonance, generating at exact resonance new areas of chaos
corresponding to multiple parametric resonances. The results of numerical experiments and
estimates of the characteristic parameters show that Rydberg atoms placed in a high-Q microwave
cavity are possible objects for observing parametric instability and dynamical chaos.
© 1999 American Institute of Physics.@S1063-7761~99!02502-0#
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1. INTRODUCTION

The basis for cavity quantum electrodynamics~for a re-
view see, e.g., Ref. 1! is the micromaser,2 a real device op-
erating with Rydberg atoms in a high-Q superconducting
microwave cavity, which in the single-mode regime and
strong-coupling limit is described by the Jaynes–Cummi
model.3 Among other things, an attractive feature of su
systems is the possibility of experimentally studying the
tion of the atoms and the radiation field on the semiclassi
semiquantum, and fully quantum levels by varying the nu
ber of atoms in the cavity. The study of the quantum beh
ior of the atom–field system in regimes where the semic
sical description of the system leads to dynamical instab
and chaos touches upon a new aspect of the old proble
quantum–classical correspondence, the relation betw
quantum mechanics and nonlinear classical mechanics.

This paper studies analytically and numerically Ham
tonian chaos in a parametric atom–field system whose e
tions of motion can be found from the operator Heisenb
equations via a semiclassical procedure of factorizing
quantum correlators. On the one hand, such an appro
leads to a dynamical system that can be analyzed by met
of nonlinear classical mechanics. On the other, it allows
to take into account some quantum correlation effects
carrying out semiquantum factorization.
4061063-7761/99/88(2)/9/$15.00
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Semiclassical factorization of the standard Jayne
Cummings model leads to a system of equations that
exactly integrable in the rotating wave approximation. As
well known, when this approximation is discarded, i.e., wh
nonresonant terms describing virtual transitions are ta
into account in the Hamiltonian, the semiclassical model
comes chaotic.4–6 However, these terms play an importa
role when the number density of the atoms is extremely hi
.1021cm23, i.e., when the validity of the approximation o
noninteracting atoms adopted in Refs. 4–6 is problemati

In our recent papers7,8 we showed that when two-leve
atoms travel through a single-mode cavity, Hamiltoni
chaos appears even in the rotating wave approximation in
absence of external agents. Such a situation can be rea
in micromaser experiments. Chaotic oscillations of atom
inversion and the number of photons may appear in the se
classical model7 and in the semiquantum model.8 In the latter
case, the field, interatomic, and first-order atom–field qu
tum correlations are taken into account when the equat
of motion for the expectation values are derived.9 As a result
a new effect of cavity quantum electrodynamics appea
which became known as chaotic Rabi vacuum oscillation8

This effect reflects the dynamical instability and chaos in
interaction of atoms and the vacuum in a high-Q cavity. Note
that reliable diagnostics of chaos in numerical experime
© 1999 American Institute of Physics
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by the values of the maximum Lyapunov index requires h
velocities of the atoms,v.108 cm s21, and large values o
the vacuum Rabi frequency,V0.107 rad s21. For moving
atoms, the mechanism of chaos formation is related to
modulation of the vacuum Rabi frequencyV0f (r ) due to the
spatially inhomogeneous structure of the cavity mode
scribed by a functionf (r ) ~see Ref. 10!. Here the natural
restrictions on the atomic velocities and hence on the mo
lation frequency limit parametric oscillations in the atom
field system to the adiabatic regime.

In the case of modulation of the energy of the act
atomic transition and/or the selected cavity mode with a
quencyvm , the atom–field system may demonstrate vario
regimes of parametric oscillations: the adiabatic regi
(vm!V0AN ), the nonadiabatic regime (vm@V0AN ), and
nonlinear parametric resonance (nvm.2V0AN,
n51,2, . . . ,whereN is the number of atoms in the cavity!.
In the present research we use analytical solutions and
merical experiments to show how in the parametric re
nance regime a system of immobile two-level atoms in
single-mode high-Q cavity becomes extremely sensitive
the slightest variations in the initial state of the atoms and
field mode. This becomes observable in chaotic oscillati
of the atomic inversion and the number of photons.

2. MODEL

The interaction ofN two-level atoms and a single mod
in a high-Q cavity with parametric modulation is describe
in the rotating wave approximation by the Jayne
CummingsN-atom Hamiltonian with time-dependent param
eters:

H5
1

2
\va (

j 51

N

sz
j 1\v f S a†a1

1

2D
1\V0 (

j 51

N

~as1
j 1a†s2

j !. ~1!

For simplicity we assume that all the atoms are at rest
have the same electric-dipole transition frequencyva and the
same vacuum Rabi frequencyV0, i.e., the linear dimension
of the atomic sample are assumed much smaller than
radiation wavelength. Modulations of the frequency of t
atomic transition by an external field and of the frequency
the selected cavity mode are possible~at least in principle!.
The second type of modulation can be achieved in cavi
with movable walls11 or in a cavity filled with a homoge-
neous medium with a time-dependent dielectric constan12

Lately such systems have drawn much attention in conn
tion with the possibility of producing photons from th
vacuum13 and of generating squeezed electromagnetic-fi
states.12 Ignoring all quadratic effects, we model the select
cavity mode by a simple harmonic oscillator with a variab
frequencyv f . The results obtained in this paper can eas
be generalized to the case of a modulated atomic freque
va , since the ratio~6! of these frequencies is actually th
independent variable of the problem.

We study the complexity of the Hamiltonian semiclas
cal dynamics generated by the operator~1!. Hence our results
h

e

-

u-

-
s
e

u-
-

a

e
s

d

he

f

s

c-

ld
d

y
cy

-

are valid only for times much shorter than the field-mo
decay timeTf and the atomic relaxation timeTa . Such a
situation occurs, for instance, with Rydberg atoms in hig
Q (Q.1010) microwave cavities cooled to subkelvin tem
peratures. In these conditions, the lifetime of microwa
photons in the cavity,Tf , is roughly 1021–1022 s, and the
lifetime of circular Rydberg states of atoms,Ta.1022 s ~see
Ref. 1!, is several orders of magnitude longer than even
period of single-atom Rabi vacuum oscillations,T0

52p/V0,1025 s. Note that the characteristic natural fr
quency of a multiatomic system is the collective vacuu
Rabi frequencyVN5V0AN at which theN-atom ensemble
and the field mode coherently exchange energy. Thus,
Hamiltonian approach provides a meaningful description
the atom–field dynamics only in what is known as t
strong-coupling regime,VN@Ta

21 ,Tf
21 .

A classical dynamical system generated by the Ham
tonian~1! is obtained as a result of replacing the Heisenb
equations for the operators by equation for the expecta
values of these operators. Of course, the result of suc
transition is an infinite hierarchy of equations for the expe
tation values. In the semiclassical approximation t
infinite-dimensional system of equations is truncated, and
result is a simple closed self-consistent system of equat
in which the reciprocal effect of the radiation field is take
into account but the quantum correlations are ignored. T
semiclassical approximation forN atoms can be shown~see
the Appendix! to be accurate toO(1/N). In the semiclassica
limit, the natural quantum states over which averaging
performed are generalized coherent states, i.e., the d
product of a Glauber field coherent state and a Bloch ato
coherent state. As a result we arrive at the nonlinear dyna
cal system

ẋ52y2VzP, ẏ5x2VzE, ż5V~xP1yE!, ~2!

Ė5vP2Vy, Ṗ52vE2Vx

for three atomic variables,

x5
1

N K (
j 51

N

sx
j L , y5

1

N K (
j 51

N

sy
j L ,

z5
1

N K (
j 51

N

sz
j L , ~3!

and two field variables,

E5
1

AN
^a1a†&, P5

i

AN
^a†2a&. ~4!

The dot in ~2! indicates the derivative with respect to th
dimensionless timet5vat, and the control parameters a
the dimensionless collective vacuum Rabi frequency

V5
V0AN

va
~5!
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and the dimensionless variable detuning from resona
which for the sake of definiteness has been chosen in
form

v5v0~11a sindt!, ~6!

where v05v f /va , d5vm /va is the dimensionless
harmonic-modulation frequency of the field mode, anda is
the degree of modulation.

To be sure, the simple factorization of the correlato
means that we project the motion of observables in
infinite-dimensional space of a completely quantum mo
on the five-dimensional space of the variables~3! and~4! of
the semiclassical model. The presence of natural constan
motion,

x21y21z251, E21P212z5W, ~7!

which reflect the unitarity of atomic evolution and the co
servation of the total energy, limits the motion of the d
namical system~2! to three-dimensional space. By introdu
ing new complex-valued variables,

h5x1 iy , j5P1 iE, ~8!

we can reduce the system of five nonlinear equation t
single second-order complex-valued equation with varia
coefficients,

j̈2 i ~v11!j̇2S v1 i v̇1
1

2
V2WD j1

1

2
V2juju250.

~9!

This is a complex Duffing oscillator with parametric excit
tion, which in our case describes the semiclassical Ham
tonian dynamics of the interaction of two-level atoms an
single-mode frequency-modulated field. It is natural to s
pose that such an oscillator may be chaotic, despite the
right-hand side of its equation of motion~9!.

3. EXACT SOLUTION OF AN INTEGRABLE SYSTEM

In the absence of modulation (a50), the initial system
~2! acquires an additional constant of motion,

V~xE2yP!2~v021!z5C, ~10!

which reflects the conservation of the energy of interact
of the atoms and the field in the rotating wave approxim
tion. By virtue of this constant of motion, the system
equations~2! yields a closed equation for atomic inversion

ż56VA~W22z!~12z2!2FC1~v021!z

V G2

. ~11!

This equation has an exact solution in terms of Jacobi’s
liptic functions:

z5z11~z22z1!sn2FAz32z1

2
V~t2t0!;

z22z1

z32z1
G , ~12!

where

t05
1

A2 V
E

z0

z1 dz

A~z2z1!~z2z2!~z2z3!
, ~13!

andz1,z2,z3 are the roots of the characteristic equation
e,
he

s
n
l

of

a
le

il-
a
-
ro

n
-

l-

z32FW

2
1

~v021!2

2V2 Gz22F11
C~v021!

2V2 Gz

1FW

2
2

C2

2V2G50. ~14!

We seek the solution for the unknowns of the integra
version of the initial system~2! at a50 in the form

x5
s

v
sin~v0t1u!2u cos~v0t1u!,

y52
s

v
cos~v0t1u!2u sin~v0t1u!,

E5v sin~v0t1u!, P5v cos~v0t1u!. ~15!

Using the constants of motion, we can easily show that
the new variablesu, s, u, andv are functions of only one
~old! variablez:

s5
C1~v021!z

V
, v56AW22z ,

u56A12z22S s

v D 2

, u5E
0

t C1~v021!z

W22z
dt8.

~16!

Thus, in the absence of modulation the motion is limit
to a two-dimensional surface and is fully characterized
the above general solution~12!–~16! describing the periodic
exchange of energy between the atoms and the field ge
ated by the atoms.

In terms of the new variables, the integrable version
~2! is

v̇5Vu, u̇5
1

2
Vv~W2v2!1V

s2

v3
1~v021!

s

v
,

u̇5V
s

v2
, ṡ5~12v0!uv. ~17!

At exact resonance,v051, for C50 andW.0, the system
of equation reduces to the equation of motion of the f
Duffing oscillator, whose phase plane (u,v) contains a pair
of homoclinic trajectories that converge at the singular po
S1 : (u050, v050). In terms of the old variables, this sin
gular point has the coordinatesx05y050, z051, and E0

5P050. The point is always unstable at exact resona
and corresponds to the situation with fully inverted atoms
a cavity with the vacuum field. The solution on the separa
(W52) can be found from Eqs.~15! and ~16! and has the
following form:

xs562 sinh~Vt!tanh~Vt!cos~t1u0!,

ys562 sinh~Vt!tanh~Vt!sin~t1u0!,

zs5122 sinh2Vt, ~18!

Ps562 sinh~Vt!cos~t1u0!,
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Es562 sinh~Vt!sin~t1u0!,

whereu0 is an arbitrary angle. Here and in what follows,
write the solution correctly, we select in the expressions w
double signs either only the upper signs or only the low
signs.

4. TRAPPING OF THE POPULATION OF ATOMIC LEVELS

The general exact solution~15! of the integrable system
contains an interesting particular solution that describes
coherent effect of trapping of the population of two-lev
atoms and trapping of the number of photons in the cavity
direct check readily shows that a solution of the form

xtr56A12z0
2 cosS v011

2
t1w D ,

ytr56A12z0
2 sinS v011

2
t1w D ,

z05S v021

2V D 2

,

Etr57
2V

v021
A12z0

2 cosS v011

2
t1w D ,

Ptr56
2V

v021
A12z0

2 sinS v011

2
t1w D , ~19!

with w an arbitrary phase, describes an interaction proces
which the inversion densityz and the photon density
n5(E21P2)/4 remain unchanged. If in~19! we put t50,
we arrive at the initial conditions that lead to population a
radiation trapping. This phenomenon occurs when the at
are prepared in a superposition state with a certain phase
the field is prepared in a coherent state with the same ph
Note that the initial inversionz0 can take any value from th
upper Bloch hemisphere, 0<z0<1. The solutions~19! are
valid for arbitrary detuning from the resonance between
mode frequency and the atomic transition frequency.

The limit z050 is realized at exact resonance,
v051. This corresponds to the initial atomic superpositi
ux05cosw, y05sinw, z050& and the initial field with an in-
finite number of photons, which can be interpreted as
phase state of the field. The other limit,z051, corresponds
to the initial stateux05y05E05P050, z051&, which is
the equilibrium pointS1 in the semiclassical approximation
since in this approximation all sources of spontaneous em
sion are discarded. Allowance for interatomic quantu
correlations9 results in a situation in which the state wi
completely excited atoms decays in the vacuum, leadin
the strong atom–field coupling regime to Rabi vacuum
cillations.

It is well known14 that population trapping is possible i
the Jaynes–Cummings model,3 which in the rotating wave
approximation describes the interaction of a two-level at
and a single mode of the quantized field in the case of z
detuning. Then the population inversion can be expres
analytically by a series in the occupation numbers, wh
numerical integration shows14 that when the phase of th
h
r

e
l
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e
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initial states of the atoms is equal to the phase of the fie
the amplitude of the oscillations ofz is extremely small. The
reason for population trapping is the destructive interfere
of the atomic dipoles and the field mode. In the semiclass
limit, one can find the explicit expressions for the corr
sponding initial conditions forN identical atoms and the
field, which in the case of exact resonance,v051, lead to
population and radiation trapping:

x056A12z0
2 cosc,

y056A12z0
2 sinc, z052b2, ~20!

E057Az02z0
21 cosc, P056Az02z0

21 sinc,

whereb is an arbitrary number from the interval 0<b2<1,
andc is an arbitrary phase. Obviously, trapping is possi
at resonance if the initial Bloch vector is in the lower Bloc
hemisphere. The limitz0521 corresponds to the initial stat
ux05y05E05P050, z0521&, which is the trivial equilib-
rium point S2 of system~2!.

5. PARAMETRIC RESONANCES AND HAMILTONIAN
CHAOS: NUMERICAL RESULTS

Let us now go back to the system~2! with modulation of
the frequency detuning~6!. In Sec. 3 we established that th
integrable version of this system has special homoclinic
jectories~18!. On the phase portraits of the integrable sy
tem, these trajectories constitute a family of two-dimensio
homoclinic tori converging to the saddle pointS1 and pa-
rametrized by the value of the total energyW. Each torus is
the location of states of the atom–field system with co
pletely excited atoms that emit and absorb light for an in
nitely long time in the cavity with initial vacuum. It is to be
expected that when a perturbation is introduced into the s
tem ~in our case the perturbation is the frequency modu
tion!, the steady and unsteady manifolds of the saddle m
tion begin to cross transversely, thus generating cha
oscillations of the atom–field system.

An illustration of the destruction of invariant manifold
and the onset of chaos is provided by Poincare´ sections. Fig-
ure 1 depicts the results of successively mapping the state
the system in the plane of the field variablesE and P for
different degrees of modulationa and fixed values of the
other control parameters (v05d51 andV50.5). The initial
state of the system,ux05y050, z051, E05P050.1&, cor-
responding to the valuesW052.02 andC50 of the con-
stants of motion is near the singular pointS1 . The trajecto-
ries of motion of the integrable system (a50) corresponds
to a regular Poincare´ section~Fig. 1a!. When modulation is
switched on~even if the modulation is very low!, a stochastic
layer appears near the separatrix. As the modulationa in-
creases, the stochastic layer widens, and this manifests
in the corresponding sections~Figs. 1b and 1c!. Finally,
when a gets large enough, the trajectory fills the ent
energy-permissible part of the (E,P) plane ~Fig. 1d!. All
these figures depict Poincare´ sections for a single trajectory
Clearly, for the selected initial value of the total energ



410 JETP 88 (2), February 1999 S. V. Prants and L. E. Kon’kov
FIG. 1. Poincare´ sections in the plane of the
field variables E and P at d5v051,
V50.5, W052.02, andC50: ~a! a50, ~b!
a50.01, ~c! a50.07, and~d! a50.2.
io
-

st
f

am
-
u

s
rs

i-
th

b

a
y
d
y

s

f

t-

ance

ter
the

rreso-
tion
ula-
ion
om
tio

f

the
icts
in
f
ll
W52.02, the points of the mapping cannot land in the reg
near the centerE05P050 because of the restrictions im
posed by the conservation laws~7!.

Lyapunov indices serve as a quantitative characteri
of chaos, since they are the measure of local instability o
dynamical system. For systems with several control par
eters, topographicl-maps6,7 usually provide a graphic pic
ture of chaos. In these maps the values of the maxim
Lyapunov indexl are depicted~usually by different shade
of gray! in the form of a function of two control paramete
at fixed values of the other parameters.

The results of calculating the maximum Lyapunov ind
ces as functions of two characteristic frequencies of
atom–field system, the modulation frequencyd ~on the log-
linear scale! and the collective Rabi frequencyV, are de-
picted in Figs. 2 and 3 ata51 and different values of the
detuning amplitude,v050.9 ~Fig. 2! and v051 ~Fig. 3!.
The strength of Hamiltonian chaos is characterized byl,
whose scale is depicted in the right part of the figures
shades of gray. For the initial state we tookux05y050,
z051, E05P051& with completely excited atoms and
photon number densityn51/2. Areas of chaos are clearl
visible on these maps, and the number of these areas an
chaos strength in them increase as the carrier frequencv f

of the mode approaches the atomic transition frequencyva ,
i.e., asv0→1. Under the same conditions the calculated~but
not shown here! l-map forv050.1 suggests that the chao
is extremely weak~in the calculation range 0,V<5, the
maximum Lyapunov index is 0.006!, its strength monotoni-
n

ic
a
-

m

e

y

the

cally increases withV and is almost entirely independent o
d.

With moderate detuning from resonance,v50.9, there
are two areas of chaos~Fig. 2!, whose centers in the (d,V)
plane correspond to a frequency ratiod/2V.1. HereV is
simply the frequencyV0 /AN of natural oscillations of the
unperturbed atom–field system divided byva @see Eq.~5!#.
Thus,d/2V.1 is the condition for the fundamental parame
ric resonance. At exact atom–mode resonance,v051, new
areas of chaos corresponding to the fundamental reson
and the first subresonance withd/2V;1/2 appear~Fig. 3!.
The 3 in Figs. 2–4 indicate the contours of the parame
d/2V, while the number in the parentheses indicates
value of this ratio, (1/2),(1), and (2),corresponding to a
subresonance, the fundamental resonance, and a supe
nance, respectively. It is quite natural that the stochastiza
of the atom–field system is the strongest when the mod
tion frequency and the Rabi frequency satisfy the condit
for the fundamental parametric resonance. However, fr
the entire parametric instability area specified by the ra
d/2V.1 we select values ofd that are integral multiples o
the other characteristic frequencies of the system,va and
v f .

As expected, a decrease in the modulation narrows
areas of parametric instability of the system. Figure 4 dep
the l-map in the (d,V) plane for the same conditions as
Fig. 3 but for a lower modulation,a50.2. The broad area o
chaos ata51 ~Fig. 3! disintegrates into a chain of sma
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FIG. 2. Topographic map of maximum
Lyapunov indicesl as functions of the
modulation frequencyd ~on the log-linear
scale! and the Rabi oscillation frequencyV
at a51 andv050.9.
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–

‘‘islets’’ of chaos ata50.2 ~Fig. 4!. The chaos in these islet
is much weaker than the chaos in the area: the correspon
maximum Lyapunov index is less than 0.01 in the islets.

As is well known,15 Lyapunov indices are the measu
of the rate of deformation of the phase volume along diff
ent directions. Anm-dimensional system hasm Lyapunov
indices (l i , i 51,2, . . . ,m) ordered according to their val
ues,l1<l2<•••<lm[l, and generally depending on th
ing

-

initial conditions. If l j.0 (l j,0), the volume element in-
creases~decreases! in the respective direction as the syste
evolves. In a Hamiltonian system~which our semiclassica
atom–field model is!, the phase volume in an invariant me
sure, so that( i 51

m l i50.
Positive Lyapunov indices determine the Krylov

Kolmogorov–Sina� metric entropyh5( j 51
n,ml j

(1) ~see Ref.
FIG. 3. The same as in Fig. 2 forv051 and
a51.
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FIG. 4. The same as in Fig. 2 forv051 and
a50.2.
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16!. According to the algorithmic theory of dynamica
systems,17,18 the entropyh is formally equivalent to the al-
gorithmic complexityK of a trajectory, a quantity that is th
measure of the randomness of the sequence generated b
trajectory. On the other hand, the purely dynamical char
teristic l of the system is related to a statistical characte
tic, the reciprocal correlation-decoupling time 1/tc , which is
present in the expression for the correlation functionC(t)
5C0exp(2t/tc). As a result, the maximum Lyapunov inde
l, the metric entropyh, the algorithmic complexityK, and
the reciprocal correlation-decoupling time 1/tc are quantities
of the same order. Thus, statistical laws can emerge as r
of local instability in the chaotic dynamics.19,20

6. CONCLUSION

We have studied the nonlinear dynamics of the inter
tion of an ensemble of identical two-level atoms and a
lected cavity mode. In the rotating wave approximation,
semiclassical approximation, and the strong-coupling lim
we have derived explicitly the general exact solution of
respective Heisenberg equations for the expectation value
the atomic and field observables for an arbitrary detun
from resonance. Using this solution, we detected the co
ent effect of trapping of the population of atomic levels a
of trapping of the radiation in the cavity, an effect that aris
because of destructive interferences of the atomic dip
prepared in a superposition state with a certain phase an
field mode prepared in a coherent state with the same ph

By using Poincare´ sections we have found that th
modulation of the frequency of the selected mode leads, e
in the rotating wave approximation, to the formation of
stochastic layer near the separatrix of the integrable mo
and the width of the layer increases with the modulation. T
results of the numerical investigation of Hamiltonian cha
this
c-
-

ult

-
-

e
t,
e
of
g
r-

s
es
the
se.

en

el,
e
s

in the atom–field system are represented by topograp
l-maps in which the areas of equal values of the maxim
Lyapunov index of the systeml are depicted~by different
shades of gray! as functions of the values of two contro
parameters. The stochastization of the system is the stron
in the vicinity of the fundamental parametric resonan
(d/2V.1), when the modulation frequency is approx
mately two times higher than the frequency with which t
atoms and the mode exchange energy. Parametric instab
increases as the detuning from the resonance between
atomic and field frequencies decreases (v→1), and at exact
resonance new areas of chaos corresponding to mul
parametric resonances arise. As the modulationa decreases,
the system becomes more stable, which manifests itse
the disintegration of the broad area of chaos in the (d,V)
plane ata51 ~Fig. 3! into a chain of small ‘‘islets’’ of chaos
at a50.2 ~Fig. 4! and in a sharp decrease in the values ofl.

Thus, in the semiclassical Jaynes–Cummings mo
with parametric modulation, Hamiltonian chaos appears e
in the rotating wave approximation. While in a system wit
out the rotating wave approximation chaos is a thresh
effect, appearing forV>0.5–1 ~see Refs. 4 and 6!, in the
parametric model, as shown by our numerical experime
measurable chaos appears at much smaller values of the
frequency,V.0.05. This means that the dynamics of Ry
berg atoms with a typical active transition frequen
va.1011rad s21 that interact with frequency-modulated m
crowave radiation in the millimeter range becomes pa
metrically unstable, provided thatV0AN>1010. Obviously,
this must be reflected in the broadening of the Rabi osci
tion spectrum. Thus, chaos appears at typical~in the strong-
coupling limit! values of the one-photon vacuum Rabi fr
quency of Rydberg atoms,V0.105 rad s21 ~see Ref. 1!,
when the number of these atoms is relatively sm
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N.1010. For such values ofN, the rotating wave approxi
mation, the semiclassical approximation, the approxima
of noninteracting atoms, and the assumption that the lin
dimensions of the atomic sample are small may be con
ered adequate.

What are the prospect for studying quantum–class
correspondence using Hamiltonian chaos in atom–field
tems in cavities as an example? The Heisenberg appr
makes it possible to take the quantum correlations and fl
tuations into account~see the Appendix and the Refs. 8,
21, and 22 cited therein!. In a recent paper of ours,8 we
derive a closed systemoequations that describes in the rota
ing wave approximation the dynamics of the interaction
two- level atoms and a cavity mode with allowance for t
field, interatomic, and first-order atom–field quantum co
elators.

In a future publication we plan to obtain the exact so
tion of the integrable version of thissemiquantum system,
study the onset of chaos in such a system in the presenc
parametric modulation, and compare the results of the se
quantum and semiclassical analyses.

This work was supported by the Russian Fund for F
damental Research~Projects 96-02-19827 and 96-02-1874!

APPENDIX

We introduce new operators normalized to the numbeN
of atoms by the formulas

A5
1

AN
a, A†5

1

AN
a†,

Sx5
1

N K (
j 51

N

sx
j L , Sy5

1

N K (
j 51

N

sy
j L , ~21!

Sz5
1

N K (
j 51

N

sz
j L .

The commutators of these operators are

@A,A†#5
1

N
, @Si ,Sj #5

2i

N
ei jkSk ,

i , j ,k5x,y,z. ~22!

In terms of the new operators and the collective vacu
Rabi frequencyVN , the Heisenberg equations are

dSx

dt
52vaSy2VNSzi ~A†2A!,

dSy

dt
5vaSx2VNSz~A†1A!,

dSz

dt
5 iVNSx~A†2A!1VNSy~A†1A!, ~23!

dA

dt
52 iv fA2

i

2
VN~Sx2 iSy!,
n
ar
d-

al
s-
ch
c-

f

-

-

of
i-

-

dA†

dt
5 iv fA

†1
i

2
VN~Sx1 iSy!.

In the semiclassical limit, the equations of motion for t
corresponding expectation values of the operators,

X 5^Sx&, Y5^Sy&, Z5^Sz&,

E5^A†1A&, P 5 i ^A†2A&, ~24!

in terms of the dimensionless timet5vat have the form

Ẋ 52Y2VZP , Ẏ5X 2VZE ,

Ż5V~X P 1YE !, Ė5vP 2VY ,

Ṗ 52vE2VX . ~25!

The commutators of the normalized operators van
when N is large. Obviously, in this limit the semiclassic
approximation is valid. ForN finite, the relative error
amounts to a quantity of order 1/N. The equation of motion
for these operators and the expectation values are inde
dent ofN. Using the normalization~21! and the semiclassica
dynamical system, we can derive a hierarchy of dynam
systems in which the quantum corrections due to quan
correlations and fluctuations are taken into account exp
itly. Indeed, when the commutators~22! do not vanish, the
dependence on the small parameter 1/N manifests itself only
in the quantum correlators. The quantum corrections can
taken into account by the 1/N-expansion method by intro
ducing cumulants of order (1/N)n ~a description of how to
use this approach in the Jaynes–Cummings model can
found in Ref. 21!, a method based on averaging the operat
over generalized coherent states at the initial moment~see
Ref. 22 for a description of the Dicke model in an extern
coherent field!, or by other methods9 ~see Ref. 8 for a de-
scription of the Dicke model with moving atoms!.
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Superfluidity of 3He in aerogel at T50 in a magnetic field
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The transition of liquid3He to the superfluidB phase in aerogel atT50 is considered. It is
shown that in a magnetic field, the quantum phase transition with respect to pressure is split in two.
The amount of splittingdP is estimated. The components of the superfluid density tensor
are calculated near the critical pressures. ©1999 American Institute of Physics.
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1. The behavior of superfluid3He in a silica aeroge
environment is a subject of recent experimen
investigations.1–4 The scattering of quasiparticles on a ra
dom network of SiO2 strands affects superfluid correlation
thus considerably modifying the phase diagram of liquid3He
in the millikelvin temperature range. Interestin
observations4 were made concerning the behavior of3He at
T.0 where, in contrast to bulk liquid3He, superfluidity
shows up only above some critical densityrc ~at pressures
P.Pc!.

The situation atT50 for 3He in aerogel was recentl
considered theoretically.5 It is shown that according to a
simple model with scattering effects characterized by
quasiparticle mean free pathl 5vFt, the critical pressurePc

is given by the equation

Tc0~Pc!5gE /pt, ln gE5C.0.577, ~1!

whereTc0(P) is theP-dependent critical temperature of th
transition of bulk3He to the superfluid state. NearPc the gap
function ~the order parameter! is

D2~P!5
3

t2 u~P2Pc!ln
Tc0~P!

Tc0~Pc!
. ~2!

The investigation carried out in Ref. 5 is based on
assumption that the superfluid state atP.Pc is of the
B-phase type. It should be remembered that the appear
of a B-phase-like state in aerogel at low pressures is expe
when the magnetic contribution to quasiparticle scatter
events is suppressed by4He layers covering the silica
strands.3 In what follows we extend the results of Ref. 5
theB phase in a magnetic field. Our obvious motivation is
explore an expected magnetic splitting of quantum ph
transition atT50. The behavior of magnetically distorte
3He-B in aerogel atT.Tc has been considered by us
Ref. 6.

2. In what follows we use quasiclassical Green’s fun
tions ~the j-integrated Gorkov functions! in the Matsubara
representation:

ĝv~ k̂!5
1

ip E Ĝv~ k̂,j!dj5gv l̂1gvŝ,
4151063-7761/99/88(2)/5/$15.00
l

e

e

ce
ed
g

e

-

f̂ v~ k̂!5
1

p E F̂v~ k̂,j!dj5~ f v l̂1fvŝ!i ŝy , ~3!

where the unit vectork̂ specifies the location on the norm
state Fermi sphere.

In an external magnetic fieldH5H0ĥ, the functionsĝv

and f̂ v satisfy a set of equations~v05v0ĥ, v05gH0!:

gvDt1gvDs1vfv2
i

2
v0f v50,

gvDs1gvDt1v f v2
i

2
v0fv50. ~4!

Here pin-singlet and spin-triplet order parametersDs and
D t , respectively, are the components of the matrix

D̂~ k̂!5~Dsl̂1Dtŝ!i ŝy , ~5!

which is found according to the self-consistency equation

D̂~ k̂!5pT(
v

^V~ k̂,k̂8! f̂ v~ k̂8!&, ~6!

whereV( k̂,k̂8) is the Cooper pairing interaction and ang
brackets denote averaging across the Fermi surface.

The set of equations~4! should be supplemented by th
«boundary» conditions

gv
2 1gv

2 1 f v
2 1fv

2 51, gvgv1 f vfv50. ~7!

The structure of Eqs.~4! and ~7! implies that

f v5avgv , fv5avgv , gv52avavgv , ~8!

and the solution is easily obtained:

gv52
signv

A11av
2A11av

2
,

av5
i

2

2iDs1v0av

v2D tav
, av5

i

2

2iD t1v0av

v2Dsav
. ~9!

This is our starting point when considering the propert
of the magnetizedB phase. In order to take into account th
quasiparticles scattering on aerogel spatial irregulari
(1/tÞ0), the ‘‘impurity’’-induced renormalization of the
© 1999 American Institute of Physics



y

b
w

io

l-
et
u

w

-
-

(
n

in

n
e

n

l

416 JETP 88 (2), February 1999 G. Baramidze and G. Kharadze
frequenciesv andv0 and of the order parameterD̂ is to be
performed according to a standard prescription:

v→ṽ5v1 iM ṽ , v0→ṽ05v022ĥM ṽ ,

D~ k̂!→D̂ṽ5D̂~ k̂!1m̂ṽ , ~10!

where the ‘‘impurity’’-generated self-energies are given b

M̂v5Mv l̂1Mvŝ5
i

2t
^ĝv~ k̂!&,

m̂v5~mv l̂1mvŝ!i ŝy5
1

2t
^ f̂ v~ k̂!&. ~11!

Before proceeding, an important comment should
made. Since we are going to consider a superfluid state
p-wave Cooper pairing for whichV( k̂,k̂8)53g( k̂k̂8), from
Eq. ~6! it is certainly clear thatDs[0 andDt satisfies the
equation

Dt~ k̂!5gpT(
v

^3k̂k̂8fṽ~ k̂8!&. ~12!

The does not mean, however, that in our starting express
for av andav we have to forget about the presence ofDs .
The point is that when considering the ‘‘impurity’’ renorma
ization m̂v , the contribution stemming from the spin-singl
partmv must be taken into account. This involves the calc
lation of the superfluid density tensorr i j

(s) , which is a re-
sponse of the system to the superfluid velocity fieldvs and is
contained in the expression for the supercurrent

j s52p ikFNFT(
v

^k̂gṽ1 iq~ k̂!&. ~13!

Here vs is absorbed inq( k̂)5kF( k̂vs) and NF denotes
the quasiparticle density of states at the Fermi level. As
noted in Ref. 6, to first order inq, the spin-singlet partmṽ1 iq

is proportional to (1/t)v0q and contributes tor i j
(s) in the

magnetizedB phase in the aerogel environment.
3. Now we turn to the calculation of equilibrium prop

erties of magnetized3He-B in a quasiparticle scattering me
dium. Noticing that in the absence of superflowq
50)D̂( k̂) is not renormalized in nonmagnetic scattering, a
addressing Eqs.~9!, it can be shown that to lowest order
the magnetic field strength,

fṽ~ k̂!5
1

Aṽ21D2~ k̂!

3FD2
1
4S Di2

3

2

Di
2

ṽ21D2
DD ṽ0

2

ṽ21D2G . ~14!

In this expression the longitudinal component ofD
5D i1D' is given by

Di~ k̂!5~ ĥD~ k̂!!ĥ5D i~P,T!~ l̂ k̂!ĥ, ~15!

where the magnetic-field induced orbital anisotropy axisl̂ is
defined asl̂ i5ĥmRm i with Rm i being the components of a
orthogonal matrix of 3D relative spin-orbit rotations. W
note also that
e
ith

ns

-

e

d

D2~ k̂!5D i
2~P,T!~ l̂ k̂!21D'

2 ~P,T!~ l̂3 k̂!2, ~16!

and in zero magnetic fieldD i5D'5D.
Using Eqs.~12! and ~14!, and taking into account that

ṽ5v2
1

2t
^gv̄~ k̂!& ~17!

with

gṽ.2
ṽ

Aṽ21D2 F11
3

8

ṽ0
2

ṽ21D2

Di
2

ṽ21D2G , ~18!

equations for amplitudesD i(P,T) and D'(P,T) can be
readily derived.

Let us consider first the planar phase (D i50). Near the
transition to the normal state forD'( k̂) we obtain

F ln
T

Tc0
1cS 1

2
1wD2cS 1

2D GD'~ k̂!

5
3

4

c~2!~1/21w!

~2pT!2 ^k̂k̂8uD'~ k̂8!u2D'~ k̂8!&

1
w

12

c~3!~1/21w!

~2pT!2 ^D'
2 &D'~ k̂!, ~19!

wherew(T)51/4pTt. After simple averaging we obtain a
equation forD'(P,T):

D'H ln
Tc0

T
1cS 1

2D2cS 1

2
1wD1F1

5
c~2!S 1

2
1wD

1
v

18
c~3!S 1

2
1wD G S D'

2pTD 2J 50. ~20!

In the limit T→0(w→`), it is found that for the planar
phase

D'
2 ~P!5

15

16
D2~P!, ~21!

where D2(P) is given by the Mineev solution~at v050!,
Eq. ~2!. The coefficient 15/16 in Eq.~21! is due to the aver-
aging atD i50 ~which gives an answer analogous to theA
phase!.

As will be seen below, the solution~21! extends up to
the pressureP5Pi whereD i first appears. The new critica
pressurePi is given by

ln
Tc0~Pi!

Tc0~Pc!
5

4

9
~v0t!2. ~22!

To show this we turn back to Eqs.~12! and ~14! and,
after simple calculations, a set of equations forD' andD i is
obtained~again in the limitT50!:

D'FD'
2 1

1

15
~D'

2 2D i
2!2D2G50,

D iFD i
21

2

15
~D i

22D'
2 !2D21

3

2
v0

2G50. ~23!

The solution of Eqs.~23! for D iÞ0, D'Þ0 is (P>Pi)
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D i
2~P!5D22

4

3
v0

25
3

t2 ln
Tc0~P!

Tc0~Pi!
,

D'
2 ~P!5D i

2~P!1
5

4
v0

2. ~24!

It can be verified thatD'
2 (Pi) matches the solution~24!

Finally we conclude that atP,Pc the normal state is
realized; in the pressure rangePc,P,Pi the planar phase is
stabilized; and atP.Pi a magnetically distortedB phase
appears.

At Pi a discontinuity of the magnetic susceptibility tak
place~similar to a discontinuity of the compressibility atPc!.
In order to demonstrate this property the superfluid contri
tion FS to the thermodynamic potential density is to be co
structed. In the Ginzburg–Landau region~which we con-
sider!

FS5
2

3
NFH 2 ln

Tc0~P!

Tc0~Pc!
D'

2 2
1

2 F ln
Tc0~P!

Tc0~Pc!
2

1

2
~v0t!2GD i

2

1
t2

6 FD'
4 1

1

2
D i

41
1

15
~D'

2 2D i
2!2G J . ~25!

It is easily verified that the solutions of Eqs.~23! realize the
minima of FS .

At zero magnetic field (v050)D'5D i5D, and in this
case~see Ref. 5!

FS5FS05NFF2 ln
Tc0~P!

Tc0~Pc!
D21

t2

6
D4G . ~26!

It can be shown that in equilibrium the magnetic fie
contributionFSM5FS2FS0 is

FSM
~equ!5

1

t2 NF

3H 9

16
ln2

Tc0~P!

Tc0~Pc!
, Pc<P<Pi ,

1

2 F ln
Tc0~P!

Tc0~Pc!
2

2

9
~v0t!2G~v0t!2, P>Pi .

~27!

This expression is certainly continuous atP5Pi . On the
other hand,

]2FSM
~equ!

]H0
2 5H 0, P5Pi

2 ,

2
4

9
g2NF~v0t!2, P5Pi

1 ,
~28!

which signals the discontinuity of magnetic susceptibil
at Pi .

Now we shall estimate the value ofdP5Pi2Pc , which
characterizes the magnetic splitting of the superfluid ph
transition of3He in aerogel atT50. According to Eq.~22!,

1

Tc0~Pc!
S ]Tc0

]P D
Pc

dP.
4

9
~v0t!2, ~29!

so thatdP5aH0
2, where
-
-

e

a5S 2gE

3p D 2 ~\g/kB!2

Tc0~Pc!~]Tc0 /]P!Pc

. ~30!

Using experimental data onTc0(P), we find that atPc

57 bar the coefficienta.2•1022 bar/~kG!2 and increases
gradually toa.2.8•1022 bar/~kG!2 at Pc510 bar.

4. Now we turn to the calculation of the superfluid de
sity tensor

r i j
~s!5r i

~s! l̂ i l̂ j1r'
~s!~d i j 2 l̂ i l̂ j !. ~31!

For this purpose Eq.~13! is to be used andgṽ1 iq should be
constructed. Returning to Eqs.~9! and performing ‘‘impu-
rity’’ renormalizations according to Eqs.~10!, it can be
shown that

gṽ1 iq
~1! 52 i H D2q1 i ṽ~Dmṽ

~1!!

~ ṽ21D2!3/2
2

3

2

ṽ0
2

~ṽ21D2!5/2

3S 12
5

4

D2

ṽ21D2D D i
2q2

3

4

i ṽṽ0
2

~ṽ21D2!5/2

3FDimv̄
~1!2

5

2

Di
2

ṽ21D2
~Dmṽ

~1!!G
2

ṽ0

~ṽ21D2!3/2 S 12
3

2

D2

ṽ21D2D ~ ĥD!mṽ
~1!J . ~32!

As will be seen shortly,mṽ
(1) andmṽ

(1) are proportional tovs .
The renormalized frequenciesṽ and ṽ0 obey

v5v1
ṽ

2t K 1

~ṽ21D2!1/2
1

3

8

ṽ0
2Di

2

~ṽ21D2!5/2L , ~33!

ṽ05v01
ṽ0

2t K Di
2

~ṽ21D2!3/2L . ~34!

In order to construct equations formṽ
(1) and mṽ

(1) we
have to address the expressions forf ṽ1 iq and fṽ1 iq . In the
lowest order inv0 andDs

f v5
i

2

vv0~ ĥD!22iv2Ds

~v21D2!3/2 , ~35!

f ṽ
~1!.

ṽ2

~ṽ21D2!3/2 H mṽ
~1!1

ṽ0

ṽ
F S 12

3

2

D2

ṽ21D2D ~ ĥD!
q

ṽ

1
i

2
S ĥmṽ

~1!23
~ ĥD!~Dmṽ

~1!!

ṽ21D2 D G J . ~36!

Now, according to Eq.~11! and using Eq.~33! for the
renormalized frequencyṽ, we easily obtain the following
equations formṽ

(1) :
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S v1
ṽ

2t

D2

~ṽ21D2!3/2Dmṽ
~1!

5
1

2t

ṽ0ṽ2

~ṽ21D2!3/2F i

2

ṽ2

ṽ21D2 ĥmṽ
~1!

1S 12
3

2

D2

ṽ21D2D Q

ṽ G , ~37!

whereQ5^( k̂D)q&5(1/3)kFD i l̂vs .
A little more algebra is needed to construct an equat

for mṽ
(1) :

S vmṽ
~1!1

ṽ

2t K ~Dmṽ
~1!!D

~ṽ21D2!3/2L D
5

ṽ

2t
H 2 i K ṽDq

~ṽ21D2!3/2L
1

3

4

ṽ0
2

~ṽ21D2!3/2F S i ṽQ

ṽ21D22
1

3
ĥmṽ

~1!D ĥ

1K ĥD
~ ĥmṽ

~1!!D1~Dmṽ
~1!!ĥ

ṽ21D2 L
2

5

2
K ~ ĥD!2~ i ṽq1Dmṽ

~1!!

~ ṽ21D2!2 DL G
1

i

2

ṽ0ṽ3

~ṽ21D2!5/2mṽ
~1!ĥJ . ~38!

It is evident thatĥmṽ
(1) , which appears in Eq.~37!, must

be calculated atv050. Addressing Eq.~38!, we readily find
that in this caseĥmṽ

(1) is given by

S v1
ṽ

2t

D2

~ṽ21D2!3/2D ĥmṽ
~1!52

i

2t

ṽ2

~ṽ21D2!3/2Q.

~39!

Since in what follows we consider the Ginzburg–Land
region ~nearTc or nearPc at T50!, a set of equations is to
be used:

mṽ
~1!.

ṽ0

ṽ

~ i /2!ĥmṽ
~1!1Q/ṽ

2tuvu1D2/ṽ2 ,

ĥmṽ
~1!.2

3iQ/ṽ

6tuvu1D2/ṽ2 . ~40!

In the denominators of these expressions the termD2/ṽ2 is
retained. When considering the vicinity ofTc , it is to be
dropped as a higher-order correction. On the other hand
T50 this term must be preserved, as well shall see sho
in order to avoid unphysical divergences stemming from
vicinity of v50.

The appearance ofmṽ
(1)Þ0 is due to a mixing of state

with Ss50 of spin-singlet (S50) and spin-triplet (S51)
configurations in the presence of three factors: quasipar
scattering (1/tÞ0), magnetic field (v0Þ0), and supercur-
rent (QÞ0).
n

at
y,
e

le

According to the definition ofQ, the spin-singlet part
mṽ

(1) is absent from the planar phase (D i50). We begin our
consideration ofr i j

(s) with just this simple case, for which in
the Ginzburg–Landau regime,

gṽ
~1!.2

i

uṽu3 @D'
2 q1 i ṽD'mṽ

~1!#, ~41!

D'mṽ
~1!.2

i

ṽ

3^D'q&D'

6tuvu1D'
2 /ṽ2 . ~42!

Now, using Eq.~13! for the supercurrent, it can be easi
shown that for the planar phase

r i
~s!

r
5pT(

v

2

5

D'
2

uṽu3 ,

r'
~s!

r
5pT(

v

D'
2

uṽu3 F4

5
1

1

6tuvu1D'
2 /ṽ2G ~43!

with ṽ5v1(1/2t)signv.
Considering the limitT50, we convert thev-summation

to integration and, using the frequency renormalization eq
tion

12
1

2t K 1

@ṽ21D'
2 ~ k̂!#1/2L 5

v

ṽ
, ~44!

pass to a new variablez(v)52tṽ(v). For e'52tD'!1,

2tv.z211
1

3

e'
2

z2 1..., ~45!

so that atT50

pT(
v

~ ...!.
1

2t E12e'
2 /3

`

dzS 12
2

3

e'
2

z3 D ~ ...!. ~46!

Now, from Eqs.~43! it is readily obtained that atT50
andPc,P,Pi

r i
~s!

r
.

1

5
e'

2 ,
r'

~s!

r
.

2

5
e'

2 S 11
5

6
ln

3

e'
2 D . ~47!

The case withD'Þ0 andD iÞ0 needs much more ef
fort. Here bothmṽ

(1) andmṽ
(1) contribute to the supercurren

Starting from the general expression~13!, linearizing with
respect toq and using Eq.~32!, after quite lengthy calcula-
tions the following answers forr'

(s) andr i
(s) are obtained at

T50 near the critical pressurePi(e i52tD i):

r'
~s!

r
5

1

2 S 4

5
e'

2 1
1

5
e i

2D1
1

3
e'

2 ln
3

e'
2 , ~48!

r i
~s!

r
5

1

2 S 2

5
e'

2 1
3

5
e i

2D1
1

3
e i

2 ln
3

e'
2

1
1

6
e i

2
v0

2

D22
3

16
~22 ln 3!

D i
2

D2

v0
2

D2 . ~49!

The last term inr i
(s) is a contribution of the spin-single cor

relations described bymṽ
(1) .
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In zero magnetic field (v050), from Eqs.~48! and~49!
we immediately obtain that

r i
~s!

r
5

r'
~s!

r
5

1

2
e2S 11

2

3
ln

3

e2D . ~50!

As a final remark we point out that the results found
Ref. 5 can be readily transcribed to the case ofT50 prop-
erties of nonmagnetic impurity-containing HTSC. In th
situation, the transition temperature to the superconduc
stateTc0 for a pure sample depends on the level of the h
doping x so that the critical concentration of holesxc at
which a quantum phase transition should occur atT50 is
given by Eq.~1! with the pressureP being substituted by the
hole concentrationx. The superconducting order parame
D(x) nearxc is given by

D2~x!.
a

t2 ln
Tc0~x!

Tc0~xc!
H Q~x2xc!,

Q~xc2x!,

~]Tc0 /]x!xc
.0,

~]Tc0 /]x!xc
,0. ~51!

Here we have used a simpled-wave pairing model,
where in the weak coupling approximation the coefficiena
56/5. The two possibilities in Eq.~51! take into account tha
g
e

r

in generalTc0(x) is a nonmonotonic function ofx. For in-
stance, in La22xSrxCuO4, Tc0(x) is bell-shaped with a maxi-
mum at an optimal dopingxopt.
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