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Propagation of circularly polarized light in media with large-scale inhomogeneities
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Small-angle multiple scattering of circularly polarized waves in disordered systems composed of
large ~larger than the light wavelength! spherical particles is discussed. The equation for
Stokes’s fourth parameterV — the difference between the intensities of the left- and right-hand
polarized light — is shown to have the form similar to that of the scalar transport equation
for intensity I, the only difference being the presence of an additional ‘‘non-small-angle’’ term
responsible for depolarization. In the case of small-angle scattering, depolarizing collisions
are relatively rare and, in contrast to the scalar case, the problem contains an additional spatial
scale, namely the depolarization depth. The polarization degree and helicity of the scattered
light are calculated for the case of purely elastic scattering and in the presence of absorption in the
medium. For strong absorption, depolarization is shown to follow the transition to the
asymptotic regime of wave propagation. The features appearing in strong~non-Born! single
scattering are also discussed. ©1999 American Institute of Physics.@S1063-7761~99!00103-1#
o
e-

fu

r
gh
ts
a

o

e

st
um
an

al

e
tio

tio

ic

a-
b-
p
n

for

nts
ee
of a
o-

nt
rge

(
tly
-

cat-
ion
1. INTRODUCTION

In recent times, a lot of attention has been focused
polarization properties of light multiply scattered in a m
dium with large-scale inhomogeneities.1–4 This interest is
stimulated, in particular, by various applications to the dif
sion spectroscopy of scattering media~suspensions, colloid
solutions, etc.!5,6 and diagnostics of biological tissues.7,8

Experiments1,4 and computer simulations4 detected a numbe
of new features in propagation of polarized light throu
disordered media. The theoretical analysis of some aspec
this problem, however, has remained incomplete. As w
noted in our earlier publication,9 there is no theory of light
depolarization in small-angle multiple scattering.

This paper considers multiple scattering of circularly p
larized waves with a view to extending our earlier study9 of
polarization effects in propagation of unpolarized light. W
assume that the medium consists of large-scale~larger than
the light wavelength! spherical particles. The Stokes param
eters of scattered light are calculated for both purely ela
scattering and in the presence of absorption in the medi
The difference between the intensities of the left-hand
right-hand polarized light, or Stokes’s fourth parameterV, is
shown to be governed by an equation similar to the sc
transport equation for intensityI, but taking into account
both conventional and ‘‘depolarizing’’ scattering events. W
have found that, in small-angle scattering, the depolariza
length l dep is larger than the transport lengthl tr of elastic
scattering. Therefore, in the presence of strong absorp
( l a, l tr , wherel a is the absorption length!, when the distri-
bution of multiply scattered light remains highly anisotrop
at all penetration depthsz,10,11 the polarization is lost at very
large depthsz, where an asymptotic regime of light propag
tion is established.9–11 Thus, unlike the scalar case, the pro
lem contains another characteristic length, namely, the de
larization depth. We also discuss features of stro
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scattering, which appear beyond the Born approximation
single scattering by an isolated inhomogeneity.

It follows from our results that, alongside measureme
of the angular distribution of light, the polarization degr
allows one to determine further characteristic parameters
medium and can be employed in optical studies of inhom
geneous media.

2. GENERAL RELATIONS

Let a wide beam of circularly polarized light be incide
along the normal to a layer of a medium composed of la
~of radiusa@l) spherical scatterers. The refraction indexn
of an isolated scatterer is assumed to be close to unityun
21u!1), and single scattering occurs predominan
forward.13 Owing to the azimuthal symmetry of the configu
ration, the four equations for Stokes’s parameters of s
tered light are decoupled into two independent equat
systems12,13:

H m
]

]z
1n0s totJ S I ~z,m!

Q~z,m!
D

5n0E dn8S a1 b1 cosb

b1 cosb8 a1 cosb cosb82a2 sinb sinb8
D

3S I ~z,m8!

Q~z,m8!
D , ~1!

H m
]

]z
1n0s totJ S U~z,m!

V~z,m!
D

5n0E dn8S a2 cosb cosb82a1 sinb sinb8 2b2 cosb8

b2 cosb a2
D

3S U~z,m8!

V~z,m8!
D , ~2!
© 1999 American Institute of Physics
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wheren0 is the number of scatterers per unit volume,s tot

5s1sa is the total cross section of light attenuation,s and
sa are the scattering and absorption cross sections, res
tively,

a15
1

2
~ uAiu21uA'u2!, a25ReAiA'

* ,

b15
1

2
~ uAiu22uA'u2!, b25Im AiA'

* ,

Ai and A' are the single scattering amplitudes for wav
polarized in the scattering plane and normally to this pla

cosb512
2~12m2!~12cos2 c!

12cos2 j
,

sinb5
2A12m2~mA12m822m8A12m2 cosc!sinc

12cos2 j
,

cosj5mm81A~12m2!~12m82!cosc,

m5cosu, m85cosu8, c5w2w8.

Quantities cosb8 and sinb8 are obtained from cosb
and sinb by replacingm and w with m8 and w8. The unit
vectors n85$sinu8cosw8, sinu8sinw8, cosu8% and n
5$sinu cosw, sinu sinw, cosu% define the directions o
photon propagation before and after scattering.

The boundary condition for Eqs.~1! and~2! for the unit
flux density of incident light has the form

S I

Q

U

V

DU
z50,m.0

5S 1

0

0

1

D d~12n•n0!, ~3!

wheren0 is the vector of the interior normal to the mediu
surface.

Within the small-angle approximation, a solution of E
~1! was studied in detail previously.9 In this work we focus
our attention on the second pair of equations~2!. As in our
earlier study,9 it seems interesting to analyze separately
cases of single scattering in the Born approximation (aun
21u!l) and in the approximation of strong~non-Born!
scattering (aun21u.l). In both these cases, functionsai

andbi ( i 51,2) are known and given in monographs.13,14

3. BORN SCATTERERS „azn 21z!l…

In the Born approximation, the scattering amplitud
Ai(cosg) andA'(cosg) are related by the equation13,14

Ai~cosg!5A'~cosg!cosg. ~4!

Therefore, the following formulas apply toai andbi :

a15uA'u2
11cos2g

2
, a2uA'u2cosg,

b15uA'u2
cos2g21

2
, b250. ~5!
ec-

s
,

e

s

It follows from the latter equation and boundary conditio
~3! that Stokes’s third parameterU is identically zero,
U[0, therefore equation system~2! is reduced to a single
equation:

H m
]

]z
1n0s totJ V~z,m!5n0E dn8uA'~n•n8!u2

3~n•n8!V~z,m8!. ~6!

According to Eq.~5!, the differential scattering cros
sections in the equations for the intensity and Stokes’s fou
parameter in the range of small angles are identical for te
of orders up tog2 (a1'a2). Therefore, an equation derive
from Eq. ~6! after the conventional small-angle expansi
~i.e., when only terms of order ofu2 andu82 are retained9!
will be identical to the small-angle scalar transport equat
for I scal.

Our analysis has demonstrated that this approximatio
inadequate. If we assume thatV'I scal, the polarization de-
gree

P5AV21Q2/I ~7!

may be larger than unity, which is absurd.
In order to avoid this error, one should take account

the difference betweenV andI scal. Let us write Eq.~6! in the
form

H m
]

]z
1n0s totJ V~z,m!5n0E dn8a1~n•n8!V~z,m8!

2n0E dn8
dsdep~n•n8!

dn8
V~z,m8!.

~8!

Equation~8! is identical to the scalar transport equation f
intensity of light in the presence of two types of scattering
a medium, namely, the conventional scattering with the d
ferential cross section

ds

dn
5a15

1

2
uA'~n•n8!u2@11~n•n8!2#

and the ‘‘depolarizing’’ scattering with the cross section

dsdep

dn
5

1

2
uA'~n•n8!u2~12n•n8!2. ~9!

The cross section given by Eq.~9! is proportional to that of
transformation between the left-hand and right-hand po
ized light. One can easily check out this statement using
definitionsI 5I 11I 2 andV5I 12I 2 , whereI 6 are the in-
tensities of left- and right-hand polarized light, and derivi
equations forI 6 by combining the equations forI andV. In
the equations forI 6 the scattering differential cross sectio
is ds2(1/2)dsdep, and that of transformation between th
left- and right-hand polarized light is (1/2)dsdep.

The form factor uA'u2 for weakly scattering sphere
(aun21u!l) averaged over the angular scaleDg.l/a
drops in the range of small angles following the power law13

uA'u2}1/g4. ~10!
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Therefore one can describeuA'u2 by the model function15

uA'~cosg!u25
sg0

2

p@g0
212~12cosg!#2 , ~11!

wheres5(2p)3a4un21u2/l2 ~Ref. 13! andg05l/2pa are
the cross section and characteristic angle of a single sca
ing event, respectively.1! Direct comparison~Fig. 1! clearly
shows that function~11! adequately describes the behav
of the form factor calculated by Mie formulas13 over the
entire range of scattering angles.

By substituting expression~11! in Eq. ~9!, we obtain the
depolarization cross section

dsdep

dn
5

sg0
2~12cosg!2

2p@g0
212~12cosg!#2 . ~12!

In the most interesting case of multiple scattering, the s
tering angleu is larger than the characteristic angle of sing
scattering,u.g0. Under these conditions, the depolarizati
cross section is independent of the angular variables:

dsdep

dn
'

sg0
2

8p
5

s tr

8p ln~2/g0!
, ~13!

where s tr5sg0
2 ln(2/g0) is the transport cross section o

elastic scattering.9 As a result, we have for the mean fre
path l dep with respect to a depolarizing collision

l dep5S n0 E dsdepD 21

5 l trln
4

g0
2 , ~14!

wherel tr5(n0s tr)
21 is the transport mean free path. Accor

ing to Eqs.~12!–~14!, the depolarization length due to sma
angle scattering is inversely proportional to the fourth pow
of the single-scattering angle,l dep; l /^g4& ( l 5(n0s)21 is
the mean free path! and is greater than the transport me
free path:l dep. l tr; l /^g2&. This means that depolarizing co
lisions are relatively rare, and the second term on the rig
hand side of Eq.~8! can be treated as a small correction,
comparison with the other terms in this equation. This c
cumstance allows one to solve Eq.~8! by an iterative tech-
nique, treating the solution of the conventional scalar tra
port equation as an initial approximation.

FIG. 1. Form factoruA'u2 for transparent scatterers. The solid curve sho
calculations with the Mie formulas (n2150.01, a510l/2p), the dashed
line is the approximation given by Eq.~11! (g050.1).
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3.1. Weakly absorbing medium

Let us analyze transmission through a layer of a wea
absorbing medium@ l tr, l a5(n0sa)21#. In this case, the
multiple scattering angle is small as long as the layer thi
ness is limited by the conditionL, l tr .

Treating the last term on the right-hand side of Eq.~8! as
an inhomogeneous term, let us rewrite Eq.~8! in the integral
form

Ṽ~z,m!5 Ĩ scal~z,m!

2n0E
0

z

dz8E dn8G̃~z2z8un,n8!

3E dn9
dsdep~n8•n9!

dn9
Ṽ~z8,m9!, ~15!

where

Ṽ~z,m!5exp~n0saz!V~z,m!,

Ĩ scal~z,m!5exp~n0saz!I scal~z,m!,

G̃~zun,n8!5exp~n0saz!G~zun,n8!,

I scal is the solution of the scalar transport equation~i.e., Eq.
~8! at sdep50) for a normally incident light beam, andG is
the Green’s function of the same equation.

As follows from Eq.~15!, in calculating Stokes’s fourth
parameterV, one must above all know the intensityI scal and
the Green’s function of the scalar transport equation. O
cannot, however, calculate these quantities in the gen
case even in the small-angle approximation, so we hav
use results that apply only under certain conditions.

As concerns small-angle scattering in a relatively th
layer of a weakly absorbing medium (L, l tr, l a), we can
neglect photon path-length fluctuations due to multiple sc
tering and use the standard version of the small-an
approximation.9,14 In this approximation, the intensityĨ scal

and Green’s functionG̃ of the scalar transport equation a
well known:14,17

Ĩ scal~z,u!5
1

2p E
0

`

vdvJ0~vu!

3exp@2n0s~12x~v!!z#, ~16!

G̃~zun,n8!'G̃~zuu2u8!5
1

2p E
0

`

vdvJ0

3~vuu2u8u!exp$2n0s@12x~v!#z%,

~17!

whereu is the component of vectorn parallel to the inter-
face,J0(x) is the zero-order Bessel function,18 and

x~v!5
2p

s E
0

`

udu J0~vu!a1~u!

'12
1

2
~vg0!2 ln

1

vg0
. ~18!

In the limiting cases of relatively small and large angles,
intensity Ĩ scal in Eq. ~16! is9,19
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Ĩ scal~z,u!

55
l tr ln~2/g0!

pz ln~z/ l !
, u,uz ,

z

pu4l trln~2/g0!
S 11

8z

u2l trln~2/g0!
ln

u

g0
D , u.uz ,

~19!

where uz5g0A(z/ l )ln(z/l) is the characteristic scatterin
angle in a layer of thicknessz@ l .

By substituting expressions~13! and ~16!–~18! into Eq.
~15! and performing one iteration in Eq.~15!, we obtain
Stokes’s fourth parameterṼ:

Ṽ~z,u!' Ĩ scal~z,u!2
z

4p l dep
1 . . . ~20!

The applicability of Eq.~20! is governed by the condition o
small-angle scattering (u,1).

Expression~7! for the polarization degree can be conv
niently transformed to

P5AS21Pun
2 , ~21!

whereS5Ṽ/ Ĩ is the photon helicity20,21 andPun5Q/I is the
polarization degree of the initially unpolarized light bea
Our analysis indicates that, in calculatingP, one can neglec
polarization corrections to the intensity and setI'I scal. In
this approximation,Pun is given by the expression9

Pun55
2

u2

4 ln~z/ l !
, u,uz ,

2
u2

2 S 12
8z

u2l trln~2/g0!
ln

u

g0
D , u.uz .

~22!

Now, by substituting~19!, ~20!, and ~22! into Eq. ~21!, we
find that in the lowest order in the small parameterl tr / l dep

!1, the polarization degree around the peak (u,uz) of the
angular distribution is constant withu and determined by the
expression

P512
uz

4

8 ln~z/ l !
, ~23!

whereas in the wings (u@uz) of the distribution

P512u2uz
2 ln~u/g0!

ln~z/ l !
. ~24!

It follows from Eqs. ~23! and ~24! that, in transmission
through a relatively thin layer (z, l tr), the depolarization is
low and the polarization degree is close to unity (dP51
2P!1). The depolarization is the greatest at relatively la
(u.uz) scattering angles:dP(u,uz)/dP(u.uz)}uz

2/u2

!1.
The process of light depolarization can be describ

qualitatively as follows. At a small depth (z, l ), where the
dominant process is single scattering, the polarization de
is unity.13 With increasingz (z. l ), P drops. In the region of
small angles,u,uz , the drop inP is fully determined by the
.

e

d

ee

transformation of the circularly polarized component to u
polarized light due to multiple scattering. The relative co
tribution of the linearly polarized component, which is ge
erated in scattering of the depolarized component,9 Pun, is
negligible. At u.uz the angular distribution is determine
by light waves that undergo multiple scattering throu
small (u!uz) angles and a single deviation through a lar
angle (u.uz).

9 In the angular range in question, the drop
the helicity in the first order in the small ratiouz /u!1,
S'12u4/8, as in the case of single scattering, is offset
the linearly polarized component generated by depolari
radiation,Pun'2u2/2. The difference betweenP and unity
at u.uz is determined by corrections of higher orders
uz /u and is proportional tou2uz

2 .

3.2. Medium with high absorption

Now consider propagation of circularly polarized light
a medium with high absorption (l a, l tr), when the small-
angle approximation holds at all penetration depths.10,11 The
evolution of the angular distribution with the increase inz in
such a medium proceeds as follows.9,19

At relatively small depths (l ,z, l a) the effect of ab-
sorption on the intensity distribution is negligible, and t
intensity is described by Eq.~19!. With increasingz (z
. l a) owing to the absorption of photons scattered throu
large angles, the ‘‘Rutherford’’ law for the intensit
decrease,Ĩ }u24 @Eq. ~19!#, is replaced in the region
u.Al a /z by a faster function9,19:

Ĩ scal~z,u!5
2s trẼ~z!

psa ln~2/g0!u6 S 115
^u2&z

u2 1••• D , ~25!

whereẼ(z)5exp(z/la)E(z) and^u2&z are the ‘‘reduced’’ flux
and mean square of multiple scattering angle at rangez, re-
spectively.

Prior to the transition to the asymptotic propagation
gime (z, l d , where l d is the length over which the ‘‘re-
duced’’ flux decays!, the dependenceẼ(z) can be neglected
andẼ(z)'1. Quantity^u2&z in the region ofz under consid-
eration is given by

^u2&z5
2p

Ẽ~z!
E

0

`

u3du Ĩ scal~z,u!'
2z

l tr

ln~Al a /z/uz!

ln~2/g0!
,

~26!

At depthsz. l d the ‘‘Rutherford’’ region in the angular
distribution vanishes and the intensity is9

Ĩ scal~z,u!'expS 2
z

l d
D

35
2

p^u2&`
S 12

u2

^u2&`

1••• D , u,A^u2&`,

4s trg0
2

psau6ln~2/g0!
S 115

^u2&`

u2 D , u.A^u2&`,

~27!
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where^u2&`52l a / l d is the mean square multiple scatterin
angle in the asymptotic regime. According to earl
calculations,9 the lengthl d is given by

l d5A2l al trln~2/g0!/ lnA2l a / lg0
2. ~28!

It follows from the equation relatingṼ to Ĩ scal @Eq. ~15!# and
from the above statements concerningĨ scal that Stokes’s
fourth parameter in a highly absorbing medium at a de
z, l d at relatively small anglesu,Al a /z should be the same
as in a weakly absorbing medium (l a, l tr), and therefore it
should be described by Eqs.~23! and ~24!.

The effect of absorption onṼ begins to show up a
z. l a in the region of anglesu.Al a /z @Eq. ~25!#. At largerz
the absorption radically changes the angular dependenc
Stokes’s fourth parameterṼ.

At large scattering angles (u.Al a /z for z, l d and
u.A^u2&` for z. l d), the correction toṼ due to the last
term on the right-hand side of Eq.~8! drops following the
law dṼ}1/u2 @compare with Eq.~20!#. This follows directly
from Eq. ~8!.

By transferringn0sV from the left to right-hand side
and estimating separately the contributions of the ela
scattering integral9 and the term responsible for depolariz
tion at relatively large angles, we obtain fordṼ(z,m)

dṼ~z,m!'2
n0sdep

4pm E
0

z

dz8

3expS 2
n0sa~z2z8!~12m!

m D Ẽ~V!~z8!

'2
sdep

2psau2
Ẽ~V!~z!, ~29!

where

Ẽ~V!~z!5E dnṼ~z,m!. ~30!

Consequently, like the intensity in our previou
calculations,9,19, dṼ at largeu can be expressed in terms
the integral ofṼ over angles, i.e., in terms of the spati
‘‘density’’ of Ẽ(V).

The correctiondṼ is the component ofṼ that most
slowly decreases withu.

Separating out the contribution given by Eq.~29! from
Ṽ(z,m), one can develop an iterative procedure for calcu
ing Ṽ(z,m) at relatively large anglesu. With this end in
view, let us expressṼ in the form (m.0)

Ṽ~z,m!52
n0sdep

4pm E
0

z

dz8

3expS 2
n0sa~z2z8!~12m!

m D
3Ẽ~V!~z8!1 ṽ~z,m! ~31!
r

h

of

ic

t-

and substitute Eq.~31! into ~8!. As a result, we obtain for

ṽ(z,m) an equation which, unlike Eq.~8!, can be treated in
the small-angle approximation~whereas in Eq.~8! this can-
not be done owing to the last term on the right-hand si
which is constant in angle!. Using the conventional small
angle expansion in the equation forṽ(z,m), i.e., setting 1
2m'u2/2 and retaining nonvanishing terms of the lowe
orders,9,11 we obtain

H ]

]z
1n0sa

u2

2 J ṽ~z,u!5n0

3E du8a1~ uu2u8u!~ ṽ~z,u8!2 ṽ~z,u!!2n0

3E du8a1~ uu2u8u!
n0sdep

4p E
0

z

dz8Ẽ~V!~z8!

3FexpS 2
n0sa~z2z8!u82

2 D2expS 2
n0sa~z2z8!u2

2 D G . ~32!

The boundary condition for Eq.~32! has the form

ṽ~z50,u!5d~u!/2pu.

Now, using the power expansion in terms of reciproc
u, which was developed earlier for the intensityĨ scal,

9,19 we
can calculate an asymptotic expansion ofṽ(z,u) ~see Appen-
dix A!.

In the approximation of the lowest order in the sm
parameters dep/sa!1, Stokes’s fourth parameter is dete
mined in the ‘‘wings’’ of the angular distribution by the
expression

Ṽ~z,u!'Ẽ~V!~z!

3F2
sdep

2psau2 S 11
^u2&z

u2 1••• D1
Ĩ scal~z,u!

Ẽ~z!
G

5Ẽ~V!~z!F2
sdep

2psau2 S 11
^u2&z

u2 1••• D
1

4sdep

psau6 S 115
^u2&z

u2 1••• D G , ~33!

where Ĩ scal(z,u) is the intensity ~25!. Using the earlier
results9,19 for

Pun'2
u2

2 S 124
^u2&z

u2 D , ~34!

we can derive from Eqs.~25! and ~33! the polarization de-
gree of circularly polarized light in the region of relative
large scattering angles:
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P'AS 12
u4

4
1u2^u2&zD S Ẽ~V!~z!

Ẽ~z!
D 2

1
u4

4 S 128
^u2&z

u2 D .

~35!

The first summand under the radical sign in Eq.~35! de-
scribes the drop in the helicity of circularly polarized ligh
the second one is due to the linear polarization generate
scattering of depolarized light. At relatively small depth
when Ẽ(V)(z)'Ẽ(z)'1, we derive from Eq.~35!

P'12
1

2
u2^u2&z . ~36!

The comparison between Eqs.~36! and ~24! shows that ab-
sorption leads to slowing down of the polarization deg
decay. The cause is the drop in the number of the ‘‘m
depolarized’’ photons scattered through relatively lar
angles.

Now let us analyze the polarization degree in t
asymptotic (z. l d) regime, when the effect of absorption o
light propagation is significant throughout the entire range
scattering angles. In this case, the solution of Eq.~8! should
have the form22

Ṽ~z,m!5Ṽ~m!exp~2«0
~V!z!, ~37!

where

Ṽ~m!5c0
~V!~m51!c0

~V!~m!,

andc0
(V)(m) and«0

(V) are the first eigenfunction and the fir
eigenvalue of the spectral problem corresponding to Eq.~8!.

The angular functionṼ(m) and damping constant«0
(V)

can be easily calculated by the perturbation theory on
basis of our earlier results9 concerning the intensity at larg
depths~Appendix B!. In the approximation of the first orde
in small parameters dep/sa!1, we obtain@see Eq.~B3!#

«0
~V!5

1

l d
S 11

sdep

sa
D . ~38!
-
r-
i-
in
,

e
t

e

f

e

Within the same accuracy as in Eq.~38!, function Ṽ(u)
around the peak of the angular distribution (u,A^u&`) is
determined by the following expression@see Eqs.~27! and
~B5!#:

Ṽ~u!5 Ĩ scal~u!1dṼ~u!'
2

p^u&`
1

sdep

psa^u&`
ln 2. ~39!

It follows from Eq. ~39! that atu,A^u2&` the contributions
of d̃V(u) to the helicity S and ‘‘density’’ Ẽ(V)(z) can be
neglected in the first approximation atz/ l d.1. As a result,
the polarization degree in this angular region is given by
expression

P'AexpF2
2

l d
S l a

l dep
D zG1S ln 2

2

l ag0
2u2

l ^u2&`
2 D 2

. ~40!

In deriving Eq. ~40! we have taken into account th
relation9,19

Pun52
ln 2

2

l ag0
2u2

l ^u2&`
2

, u,A^u2&`. ~41!

A formula similar to Eq.~40! can be obtained for the
‘‘wings’’ of the angular distribution. With this end in view
we should use the formula9,19

Pun52
u2

2 F12
4^u2&`

u2 G , u.A^u2&` ~42!

and the expression forẼ(V)(z) at large penetration depths:

Ẽ~V!~z!'Ẽ~z!expF2
1

l d
S l a

l dep
D zG . ~43!

The accuracy of this result is the same as that of Eq.~40!.
Substituting Eqs.~42! and ~43! into expression~35! for

the polarization degree of circularly polarized light in th
‘‘wings’’ of the angular distribution, we finally obtain in the
asymptotic regime (z. l d)
P'AS 12
u4

4
1u2^u2&`DexpF2

2

l d
S l a

l dep
D zG1

u4

4
22u2^u2&` . ~44!
n
en-
ee

t
for
It follows from Eqs.~40! and ~44! that the length of polar-
ization decay

l circ5 l dl dep/ l a ~45!

is much larger than the depthl d , at which a transition to the
asymptotic regime occurs.

According to Eqs.~40! and~44!, around the angular dis
tribution peak forz' l circ , the process transforming the ci
cularly polarized component to unpolarized light is dom
nant. The polarization degree drops to

P'12z/ l circ . ~46!
in the ‘‘wings’’ of the angular distribution, the depolarizatio
of the circular component is partially compensated by g
eration of linearly polarized light, and the polarization degr
is determined by the following expression:

P'12
z

l circ
2

1

2
u2^u2&` . ~47!

As z increases (z. l circ), the circularly polarized componen
vanishes, and the polarization degree coincides with that
an initially unpolarized beam,P'Pun.
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4. STRONG SCATTERERS „azn 21z>l…

Consider multiple scattering of circularly polarized lig
in a medium containing transparent (a Im n!l) spheres of
large radius (a(n21).l). Such a configuration can be ea
ily realized in an experiment.3,4,23–25

In the region of angles larger than the diffraction ang
(g@l/a), the differential cross sectionsai(cosg) and
bi(cosg) can be expressed as expansions in terms of
number of ray collisions with a scatterer surface13:

a1~cosg!5
1

2 (
j 51

3

@ uAi
~ j !~cosg!u21uA'

~ j !~cosg!u2#, ~48!

b1~cosg!5
1

2 (
j 51

3

@ uAi
~ j !~cosg!u22uA'

~ j !~cosg!u2#,

a2~cosg!5Re(
j 51

3

Ai
~ j !~cosg!A'

~ j !* ~cosg!

5a1~cosg!2
1

2 (
j 51

3

uAi
~ j !~cosg!2A'

~ j !~cosg!u2,

~49!

b2~cosg!5Im (
j 51

3

Ai
~ j !~cosg!A'

~ j !* ~cosg!. ~50!

These expansions~48!–~50! are derived under the assum
tion that interference between rays that have undergone
ferent numbers of reflections can be neglected.

AmplitudesAi ,'
( j ) characterize rays deviating as a res

of specular reflection (j 51), those passing through a sca
terer (j 52), and those which are additionally reflecte
within a scatterer (j 53). At scattering anglesg!An21, the
dominant terms ina1 , a2, andb1 are the terms withj 52,
whereas atg>2A2(n21) these terms are identically zer
Terms with j51, 3 are important when g.gcr

52A2(n21). The expressions fora1 and b2 in these re-
gions of angles are given in Ref. 9. The depolarization cr
section@compare with Eq.~9!# is determined in the genera
case by the formula

dsdep

dn
5

1

2
uAi2A'u2 ~51!

and, with due account of Eqs.~48!–~50!, can be expressed a

dsdep

dn
5

s~n21!2

16p H 1, g,An21,

2, g.An21.
~52!

The latter case in Eq.~52! applies to the anglesg<p. Using
Eq. ~52!, we calculate the total depolarization cross sect
sdep:

sdep5
s tr

3 ln@1/~n21!#
, ~53!

where

s tr5
3

2
s~n21!2 ln

1

n21
~54!
e

if-

t

s

n

is the transport cross section in the case of strong scatter9

The mean free path with respect to a depolarizing collisi
as in the case of the Born approximation@Eq. ~14!#, is greater
than the transport mean free path:l dep/ l tr; ln@1/(n21)3#
@1.

As an illustration, Fig. 2 plots calculations of the rat
l dep/ l tr as a function of the scatterer radius based on the e
Mie formulas.13 These calculations were performed for pa
ticles of latex in water. This is a disordered medium exte
sively used in experiments on multiple light scattering.4,26

As concerns the cross sectionb2 defined by Eq.~50!, it
is known27 that for j 52,3 the following equality holds in the
absence of absorption:

Im Ai
~2,3!A'

~2,3!* 50, ~55!

whereas the contribution of ImAi
(1)A'

(1)* , which corre-

sponds to specularly reflected rays,13,27 can be expressed a

Im Ai
~1!A'

~1!* 5
a2

4
sin~d i2d'!, ~56!

whered i ,' are phase shifts of light waves with polarizatio
vectors parallel and perpendicular to the incidence plane
the Fresnel reflection from a particle surface. In the abse
of absorption, the phase differenced'2d i is zero if the op-
tical density of scatterers is higher (n.1) than that of am-
bient medium. Therefore the cross sectionb2 also turns to
zero in this case,b250.

Let us consider propagation of light through a disorde
medium containing transparent scatterers immersed i
highly absorbing material (l a, l tr). Suppose thatn.1. In
these conditions, Stokes’s third parameter, as in the cas
the Born approximation, is identically zero,U[0. Parameter
V is governed by Eq.~8! with a depolarization cross sectio
given by Eq.~52!. The routine for solving Eq.~8! remains
the same~see the previous section!. The details of the mul-
tiple scattering process, however, are more complicated.

In the range of angles where absorption does not af
the shape of the angular distribution (u,Al a /z)9 the first
iteration in Eq.~15! yields

FIG. 2. Curve ofl dep/ l tr as a function of scatterer radius~latex particles in
water,n2150.2, l is the wavelength of light in vacuum!.
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Ṽ~z,m!' Ĩ scal~z,m!2n0E
0

z

dz8E dn8G̃~z2z8un,n8!

3E dn9
dsdep~n8•n9!

dn9
Ĩ scal~z8,m9!. ~57!

At z, l /(n21)ln@1/(n21)# the characteristic angle o
multiple scattering,

uz5A~z/ l !~n21!2 ln~z/ l !, ~58!

is less than the anglegcr of total internal reflection:uz,gcr

52A2(n21).27 Taking into account the characteristic ran
of angles in which integration overn8 and n9 is performed
being of order ofuz and using Eq.~52!, we obtain the fol-
lowing formula for Ṽ:

Ṽ~z,u!5H Ĩ scal~z,u!2z~n21!2/16p l , u,gcr ,

Ĩ scal~z,u!2z~n21!2/8p l , gcr,u,Al a /z.
~59!

The functionĨ scal(z,u) in Eq. ~59! is given by9

Ĩ scal~z,u!

55
l

2pz~n21!2 ln~z/ l !
, u,uz ,

2z~n21!2

pu4l F11
8z~n21!2

u2l
ln

u2

~n21!2G , uz,u,gcr ,

z~n21!2

pu4l F11
4z~n21!2

u2l
ln

u2

~n21!3G , gcr,u,Al a

z
.

~60!

In the casez. l /(n21)ln@1/(n21)#, we have the ex-
pression foruz

9

uz5Az

l
~n21!2lnS z

l

1

n21D . ~61!

In this case, the characteristic range of anglesDu;uz ,
which makes the main contribution to the integrals with
spect ton8 and n9 in Eq. ~57!, extends beyond the critica
anglegcr . Therefore we can use instead of the cross sec
dsdep/dn its asymptotic expression for large (g.gcr) angles
@see Eq.~52!#. As a result, we obtain

Ṽ~z,u!5 Ĩ scal~z,u!2
z~n21!2

8p l
, ~62!

where

Ĩ scal~z,u!

55
l

pz~n21!2ln@~z/ l !/~n21!#
, u,uz,

z~n21!2

pu4l F11
4z~n21!2

u2l
ln

u2

~n21!3G , uz,u,Al a

z
.

~63!
-

n

In calculating the polarization degree~21!, let us use our
earlier results9 for the polarization degree of an initially un
polarized beam,Pun. At relatively small depths,z, l /(n
21)ln@1/(n21)#

Pun55
u2

8 ln~z/ l !
, u,uz ,

u2

4 F12
8z~n21!2

u2l
ln

u2

~n21!2G , uz,u,gcr ,

2
u2

2 F12
4z~n21!2

u2l
ln

u2

~n21!3G , gcr,u,Al a

z
.

~64!

At larger penetration depthsz (z. l /(n21)ln@1/(n21)#) the
polarization degreePun around the angular distribution pea
(u,uz) becomes9

Pun52
u2

4 ln@~z/ l !/~n21!#
. ~65!

In the ‘‘wings’’ ( u.uz) Pun is given by the last line of Eq.
~64!.

Given these results, we find that a change in the li
polarization in the region of very small angles (u,uz) is
controlled, as in the case of the Born approximation, by
depolarization of the circularly polarized component~i.e., by
the decay of helicity!. For u,uz we have

P55 12
uz

4

2 ln~z/ l !
, z,

l

~n21!ln@1/~n21!#
,

12
uz

4

2 ln@~z/ l !/~n21!#
, z.

l

~n21!ln@1/~n21!#
.

~66!

In the approximation of the lowest order in small parame
uz /u, the angular dependence of Stokes’s parameters in
‘‘wings’’ ( u.uz) of the angular distribution of scattere
light coincides with the law of single scattering.13 By retain-
ing terms of higher orders in the reciprocal scattering an
in expansions of Stokes’s parameters, we find that the po
ization degree in the range of anglesu.uz drops following
the law

P'H 12
z~n21!

2l
u2 ln

u

n21
, u,gcr,

12
z~n21!2

2l
u2 ln

u2

~n21!3 , gcr,u,Al a

z
.

~67!

The effect of absorption onṼ at relatively large scatter
ing angles,u.Al a /z, can be conveniently analyzed usin
the same method as in the case of Born scatterers. Le
expressṼ in the form similar to Eq.~31!:
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Ṽ~z,m!52
n0

m E
0

z

dz8expS 2
n0sa~z2z8!~12m!

m D
3E dn8

dsdep~n•n8!

dn8
Ṽ~z8,m8!1 ṽ~z,m!.

~68!

Substituting expression~68! in Eq. ~8! and taking into ac-
count the fact that in the ‘‘wings’’ (u.Al a /z.gcr) @see also
Eq. ~52!#

E dn8
dsdep~n•n8!

dn8
Ṽ~z,m8!'

s~n21!2

8p
Ẽ~V!~z!, ~69!

we consider the resulting equation forṽ(z,m) in the small-
angle approximation.2! As a result, we obtain for the functio

ṽ(z,u) an equation identical to Eq.~32! but with the substi-
tution g05n21 in its coefficients. Therefore Eqs.~33! and
~35! for Ṽ(z,u) andP(z,u) still hold in the approximation of
the lowest order in small parameters(n21)2/sa!1.

At small penetration depthz, l d , where in the case o
strong scatterers

l d5SA~n21!2

2l al
lnA l a

l ~n21!4
D 21

, ~70!

we haveẼ(V)(z)'Ẽ(z)'1 and the polarization degree drop
with z following Eq. ~36!, where the mean square multip
scattering anglêu2&z must be set to

^u2&z52
z

l
~n21!2

35 ln
gcrAl a /z

uz
2

, z,
l

~n21!ln@1/~n21!#
,

ln
Al a /z

uz
, z.

l

~n21!ln@1/~n21!#
.

~71!

The characteristic angleuz in Eq. ~71! is given by Eqs.~58!
and ~61!.

At large penetration depths (z. l d) and if the condition
l , l a, l tr holds, the width of the radiation angular distrib
tion is always larger thangcr . Therefore, qualitatively, the
evolution of polarization parameters of multiply scatter
light at these depths is not sensitive to the singularity in
single scattering cross section atg5gcr and remains the
same as in the Born approximation. In particular, the po
ization degree is still determined by Eqs.~40! and ~42!. All
changes affect only the parametersl d @Eq. ~70!# and ^u2&`

52l a / l d , which contain additional contributions from ray
twice crossing the boundaries of an isolated scatterer.

5. CONCLUSIONS

Let us summarize the results of our work.
As was shown above, the propagation of circularly p

larized light in a disordered medium can be reduced to
equation for Stokes’s parameterV, which has the form simi-
e

r-

-
n

lar to the scalar transport equation for the light intensity. T
only difference is the presence of an additional term resp
sible for depolarization.

The presence of the depolarization term in the equa
for V, on the one hand, results in the faster decay of par
eterV than that of the intensity, and on the other, it modifi
the shape ofV as a function of scattering angle. Sinc
Stokes’s parameterV decays withz faster than the intensity
circularly polarized light loses its polarization. In the case
small-angle light scattering in disordered media with lar
particles ~larger than the light wavelength!, the additional
term is small, so the light depolarization should be ve
slow. Under conditions of high absorption, when multip
scattering at allz occurs through small angles, the depola
ization occurs at anomalously large penetration depthsz
; l circ@ l a,l tr) when the asymptotic regime of propagation
already set.

All said is in agreement with the recent discovery of t
effect of circular polarization ‘‘conservation’’ in diffusion o
light in media with large-scale inhomogeneities.4,28 A degree
of circular polarization can persist even after isotropizat
of the intensity angular distribution. The depolarization ra
depends only on how smooth are the trajectories of w
propagation, and in the case of scattering by large-scale
homogeneities it is proportional to the fourth power of t
single scattering angle~unlike the second power of the ang
in the isotropization rate 1/l tr). Therefore, measurements o
the depolarization of circularly polarized light can yield a
ditional information on the medium, different from that d
rived from measurements of an angular distribution of lig
intensity.

In accordance with the results of this paper, the polari
tion degree of multiply scattered light is governed, on t
one hand, by depolarization of circularly polarized light, a
on the other, by the appearance of a linearly polarized co
ponent generated in scattering of previously depolari
light. In an single scattering, these two processes fully co
pensate for one another, therefore the polarization deg
remains unity (P51). A drop inP can occur only as a resu
of multiple scattering.

As long as the circularly polarized component persi
(z, l circ), the contribution of the linear component in th
region of small angles (u,uz) is small andP is fully deter-
mined by the drop in the polarization helicity@see Eqs.~23!,
~46!, and ~66!#. In the ‘‘wings’’ of the angular distribution
(u.uz), the contribution of linearly polarized light is, on th
contrary, quite significant. In this range of angles the diff
ence betweenP and unity is due to the difference betwee
the polarization degree of the initially unpolarized light,Pun,
and its value in the single scattering approximation,Pun

(s)

52u2/2 @see Eqs.~24!, ~36!, ~47!, and~67!#.
The circularly polarized component decays withz (z

. l circ), and the polarization degreeP becomes identical to
Pun throughout the entire range of angles.

If light propagates through a medium with sufficient
large particles (n21.l/a), effects due to the ‘‘non-Born’’
single scattering turn up. These effects are most significan
relatively small depths, where the angular distribution wid
is still within the critical angle of single scattering@gcr
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52A2(n21)#. The angular scalegcr in this case affects the
angular dependence of both intensity and polarization
gree.

The effects discussed in this paper may be interesting
optical research of structural inhomogeneities in multip
scattering media.

This work was supported by the Russian Fund for F
damental Research~Grant 96-02-17518!.

APPENDIX A: Appendix A

For the function

ṽ~p,v!52p E
0

`

dzexp~2pz!E
0

`

uduJ0~vu!ṽ~z,u!

one can easily derive from Eq.~32! the equation

Fp1n0s~12x~v!!2
1

2
n0saDvG ṽ~p,v!

511S sdep

sa
Dn0s~12x~v!!K0S vA 2p

n0sa
D Ẽ~V!~p!,

~A1!

whereJ0(x) andK0(x) are the Bessel and modified Bess
functions of order zero,18 and x(v) is determined by Eq.
~18!,

Dv5
1

v

]

]v
v

]

]v
,

Ẽ~V!~p!5E
0

`

exp~2pz!Ẽ~V!~z!.

We are interested in values of functionṽ(x,u) at rela-
tively large angles. The ‘‘wings’’ of the angular dependen

ṽ(z,u) are governed by the behavior of functionṽ(p,v) at
smallv.9,19 In this region, the second line of Eq.~18! applies
to x(v), whereasK0(vA2p/sa) can be described by th
approximate formula18

K0S vA 2p

n0sa
D'2 lnS vA 2p

n0sa
D . ~A2!

The analysis shows that, in calculating functionṽ(p,v) in
the region of smallv, it is convenient to express the loga
rithms in Eqs.~18! and ~A2! in the form of the following
limits of power series:

x~v!'12
~vg0!2

2~a24!
@12~vg0!a24#,

K0S vA 2p

n0sa
D'

1

b22 F12S vA 2p

n0sa
D b22G ~A3!

for a→4 andb→2, respectively. Then the value of functio

ṽ(p,v) at smallv can be sought in the form of the follow
ing power expansion inv ~Ref. 19!:

ṽ~p,v!5 ṽ~p,v50!~11c2v21cava1c4v4

1cb12vb121ca1b22va1b221••• !. ~A4!
e-

or

-

l

After substituting Eqs.~A3! and ~A4! in ~A1! and equating
coefficients of equal powers ofv, we can calculate the in
teresting parametersci . In particular, the coefficientsca ,
cb12, andca1b22 of nonanalytic powers ofv, which con-
tribute to the power expansion ofṽ in terms of reciprocal
scattering angle, can be expressed as

ca5
2~g0/2!a24

saa2~a24!
F s tr

2 ln~2/g0!

2
s trsdep

sa ln~2/g0!

Ẽ~V!~p!

ṽ~p,v50!~b22!
G ,

cb1252
s trsdep

sa
2ln~2/g0!

Ẽ~V!~p!

ṽ~p,v50!~b22!~42a!~b12!2
,

~A5!

ca1b225
s trsdep

sa
2 ln~2/g0!

3
Ẽ~V!~p!

ṽ~p,v50!~b22!~42a!~a1b22!2

3S g0

2 D a24S 2p

n0sa
D b/221

.

Using the resulting equation~A5!, performing the inverse
Bessel transform in Eq.~A4!, and then taking the limit as
a→4 and b→2, we obtain the following expression fo

ṽ(p,u):

ṽ~p,u!'
2s tr

psa ln~2/g0! F ṽ~p,v50!S 1

u6 1••• D G
2

sdep

sa
Ẽ~V!~p!F 1

u6 lnS u2

g0
An0sa

2p D 1•••G .
~A6!

This result is an expansion in powers of 1/u ands dep/sa .
In the approximation of the lowest order, one can negl

in Eq. ~A6! terms containing the additional small parame
s dep/sa . In this approximation, the equalityẼ(V)(p)
5 ṽ(p,v50) also holds~the contribution from the first term
on the right-hand side of Eq.~31! to the integral with respec
to directions is of ordersdep/sa). As a result, we have for

ṽ(z,u) the expression

ṽ~z,u!'
Ẽ~V!~z!

Ẽ~z!
Ĩ scal~z,u!, ~A7!

where Ĩ scal(z,u) is determined by expansion~25!.
To calculateṼ(z,u), note that the first term on the right

hand side of Eq.~31! in the small-angle approximation fo
u.Al a /z can be transformed to
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2
n0sdep

4p E
0

z

dz8expS 2
n0sa~z2z8!u2

2 D Ẽ~V!~z8!

'2
n0sdepẼ

~V!~z!

2pu2 F12
1

u2

2

n0saẼ~V!~z!

dẼ~V!~z!

dz G
1••• ~A8!

The second term on the right-hand side of Eq.~A8! can be
transformed using the equality19

^u2&z52
2

n0saẼ~V!~z!

dẼ~V!~z!

dz
. ~A9!

Substituting Eqs.~A7! and~A8! into Eq.~31!, we obtain Eq.
~33!.

Appendix B

Stokes’s fourth parameter in the asymptotic regimez
. l d) can be calculated in the following manner.

Neglecting backscattering~this approach is justified un
der conditions of high absorption,l a, l tr, l dep), a solution of
Eq. ~6! @or ~8!# that satisfies boundary condition~3! can be
expanded in terms of eigenfunctionscn

(V) of the spectral
problem corresponding to Eq.~6!:

Ṽ~z,m!5(
n

`

cn
~V!~m51!cn

~V!~m!exp~2«n
~V!z!, ~B1!

where«n
(V) are the corresponding eigenvalues. At largez, the

sum contains only the one term with the smallest damp
factor:

Ṽ~z,m!5c0
~V!~m51!c0

~V!~m!exp~2«0
~V!z!. ~B2!

Under conditions of rare depolarizing collisions, when leng
l dep is the maximum characteristic length, the values of«0

(V)

and c0
(V)(m) can be calculated by the perturbation theo

assuming that the intensity is known in this spectral probl
and the last term of Eq.~8! can be treated as a perturbatio

The formulas for«0
(V) and c0

(V)(m) in the first order of
the perturbation theory should have the form29

«0
~V!'«01E dnE dn8

dsdep~n•n8!

dn
c0~m!c0~m8!,

~B3!

c0
~V!~m!'c0~m!1 (

n51

`
cn~m!

«02«n
E dn8

3E dn9
dsdep~n8•n9!

dn8
c0~m8!cn~m9!, ~B4!

where«n andcn(m) are the eigenvalues and eigenfunctio
of the scalar transport equation for the intensity~i.e., Eq.~8!
without the last term!. The smallest eigenvalue determin
l d («05 l d

21).
Equation~B4! can be written in a more compact form

using the Green’s function of the scalar transport equatio
g

h

,

.

:

c0
~V!~m!'c0~m!1E

0

`

dzE dn8E dn9

3exp~«0z!@G̃~zun,n8!2c0~m!c0~m8!

3exp~2«0z!#
dsdep~n8•n9!

dn8
c0~m9!. ~B5!

Calculations by Eqs.~B3! and ~B5! can be performed using
our earlier results9 for «0 , c0, and G obtained in the self-
consistent small-angle diffusion approximation, assum
that the angular dependence of the cross sectiondsdep/dn is
isotropic. In this approximation9

c0~u!5A 2

p^u2&`

expS 2
u2

^u2&`
D , ~B6!

E du8G~zuu,u8!'
1

cosh~«0z!

3expS 2
u2

^u2&`
tanh~«0z! D , ~B7!

and«0 is determined by Eqs.~28! and~70!. In particular, in
the intervall a,z, l d , it follows from Eq. ~B7! that

E du8G~zuu,u8!'expS 2
u2saz

2 D , l a,z, l d . ~B8!

Equation ~B8! provides an explicit illustration of how the
angular distribution narrows in an absorbing medium. Az
. l a , only photons propagating along lines directed at sm
angles with respect to thez-axis contribute to the intensity
due to an isotropic source~B8!, and most of the angula
distribution is concentrated in the regionu,Al a /z.

After substituting Eqs.~B6! and ~B7! in ~B5!, we have
Eqs.~38! and ~39!.

The angular dependence ofṼ(z,m) in the asymptotic
regime in the region of relatively large scattering anglesu
.A^u2&`) is easier to calculate without using Eq.~B5! @or
~B4!#, but directly from the expansion of Eq.~33! in recip-
rocal powers ofu.

* !E-mail: gorod@theor.mephi.msk.su
1!A formula similar to Eq.~11! is widely used in describing elastic scatterin

of fast electrons by atoms.16

2!The error due to the inaccuracy of approximate equation~69! is of order
gcr /u!1.
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Kinetics of atoms in an elliptically polarized standing wave
O. N. Prudnikov,* ) A. V. Ta chenachev, A. M. Tuma kin, and V. I. Yudin
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We examine the kinetics of atoms with their ground and excited states being degenerate in the
projection of angular momentum. The atoms are located in a standing wave with uniform
elliptical polarization. Using thej g51/2→ j e51/2 transition as an example, we show that the
friction and diffusion of atoms strongly depend on the ellipticity of the field. For instance,
in the low saturation limit the frictional force contains, in addition to the ordinary Doppler friction
term, a term that can be interpreted as Sisyphean friction. Under certain conditions, the
contributions reflecting the degeneracy of the ground state are dominant, with the result that the
values of the friction and diffusion coefficients~and hence the rate of kinetic processes!
may differ from the values predicted by the two-level atomic model by several orders of
magnitude. ©1999 American Institute of Physics.@S1063-7761~99!00203-6#
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1. INTRODUCTION

The kinetics of atoms in resonant light fields is bei
intensively studied in atomic physics. The achievements
the field of laser cooling and atom trapping have be
marked by the 1997 Nobel Prize in physics~Steven Chu,
Claude Cohen-Tannoudji, and William C. Phillips!. The ex-
perimental and theoretical progress in this area of researc
the period from 1970 to 1989 is thoroughly described in
monographs in Refs. 1 and 2. Special issues of journals h
been devoted to the achievements after that period.3,4 The
current state of research is discussed in the Nobel Lecture
the laureates.5 Here we will only mention the important pa
pers directly related to the topic of our paper.

The first proposals to use resonant light pressure to
and cool atoms in optical potential wells6 stimulated the de-
velopment of the theory of atomic motion in the field
resonant light in conditions of steady-state interaction. H
torically, the first approach was the semiclassical one7,8

Within it the translational motion of an atom is described
classical terms~i.e., the atom is assumed to have a defin
position and definite velocity!, while the dynamics of the
internal degrees of freedom is described by an optical Bl
equation for the density matrix with allowance for radiati
damping. The force on the atom is calculated as the m
ematical expectation of the force operator, and the diffus
coefficient is found from the two-time correlator of the for
operator. For a two-level atom in the field of a standi
wave, Gordon and Ashkin8 derived analytic expressions fo
the frictional force and the coefficients of spontaneous
induced diffusion at arbitrary intensity and detuning.

The second approach to the kinetics of atoms in la
fields is based on a full quantum description of the inter
and translational degrees of freedom of an atom in term
the density matrix in the Wigner representation. By using
semiclassical expansion in powers of photon momentum
initial transport equation can be reduced~at the kinetic stage
of the evolution! to a single equation for the Wigner distr
4331063-7761/99/88(3)/8/$15.00
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bution function in phase space.9 The equation is of the
Fokker–Planck type and contains not only the average fo
but also diffusion. The equivalence of the two approache
calculating the frictional force and diffusion in the gener
case of arbitrary angular momenta of the ground and exc
states was demonstrated by Dalibard and Cohen-Tannou10

and Agarwal and Mølmer.11 Furthermore, Dalibard and
Cohen-Tannoudji10 showed that the coefficient of friction~as
well as the diffusion coefficient! can be expressed in terms o
the two-time correlator of the force operator.

The third approach~also equivalent to the first two ap
proaches! is based on the relationships between the mome
of the Wigner matrix density and the force and diffusion.12

Despite the existence of a general formalism10,13,14 that
enables one~at least in principle! to study the kinetics of
atoms with arbitrary level structure in a field of arbitra
configuration, the fundamental problem of the motion of
atom with degenerate ground and excited states in the
formly polarized field of a standing wave has not been d
cussed before. This probably explains why researchers
cused on effects of sub-Doppler cooling,3,4 which emerge in
fields with a polarization gradient. At the same time, t
analytic form of the steady-state atomic density matrix in
zeroth approximation in the recoil parameter15–17points very
definitely to the existence of polarization features in the
netics of atoms in a field with spatially uniform polarizatio
The study of such features is the goal of the present pap

We examine the motion of atoms with resonant opti
transitions of the typej g5 j→ j e5 j 11 and j g5 j 8→ j e5 j 8
~here j 8 is a half-integer!, where j g and j e are the total an-
gular momenta of the ground and excited atomic levels
the field of a monochromatic wave. We employ the semicl
sical approach to derive general expressions for the grad
force, the force of friction, and diffusion, which provide
suitable basis for describing the kinetics of slow atoms. W
then analyze these expressions in detail for atoms with
optical transition j g51/2→ j e→1/2 in the field of a uni-
formly polarized standing wave of arbitrary elliptical pola
© 1999 American Institute of Physics
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ization and intensity. We find that the frictional force an
diffusion strongly depend on the ellipticity of the light an
contain entirely new contributions, totally ignored in th
two-level model. In particular, the frictional force in th
weak-field limit is found to contain, in addition to the ord
nary term due to the Doppler effect, a term that, depend
on the ellipticity and detuning, may be dominant a
emerges because of the spatial modulation of the probab
of transitions between different adiabatic potentials, sim
to the well-known Sisyphean effect.2–4,15 For the j g51/2
→ j e51/2 transition this additional contribution disappea
when the field is linearly polarized. However, for transitio
with larger values of the orbital angular momentumj g this
term is nonvanishing even if the field is linearly polarize
which is demonstrated by the example of atoms withj g51
→ j e52 and j g53/2→ j e53/2 transitions.

2. SEMICLASSICAL DESCRIPTION OF ATOMIC KINETICS

We assume that the atoms, with total angular mome
j g in the ground state andj e in the excited state, are in
one-dimensional motion along thez axis in the field of a
resonant plane wave:

E~z,t !5E~z!e~z!exp~2 ivt !1c.c.,

e~z!5 (
q50,61

eq~z!eq , ~1!

whereE(z) is the local field amplitude, ande(z) is the local
unit polarization vector, witheq the components of this vec
tor in the cyclic basis$e05ez , e6156(ex16 iey)/A2 %.

The total Hamiltonian of an atom in a rotating basis~i.e.,
rotating in the energy pseudospin space! is Ĥ5Ĥ01V̂,
whereH0 is the free-atom Hamiltonian:

Ĥ05
p̂2

2M
2\DP̂e . ~2!

Here D5v2v0 is the detuning from the atomic transitio
frequencyo0, and the projection operator

P̂e5(
me

u j e ,me&^ j e ,meu ~3!

is constructed out ofu j e ,me&, the wave functions of the
Zeeman sublevels of the excited states. In the dipole
resonance approximations, the operator representing th
teraction with the field~1! can be written

V̂~z!5\V~z! (
q50,61

T̂qeq~z!1H.c., ~4!

whereV5dE/\ is the Rabi frequency, withd the reduced
matrix element. The operatorT̂q can be expressed in terms
3 jm-symbols:

T̂q5 (
me ,mg

u j e ,me&~21! j e2meS j e 1 j g

2me q mg
D ^ j g ,mgu. ~5!

In addition to having a coherent component, the dynamic
the atomic ensemble is determined by relaxation proces
To describe such processes we restrict attention to radia
g

ty
r

,

ta

d
in-

of
es.
ve

relaxation, which means that we completely ignore all effe
of interatomic interaction and assume that the atomic num
density is low. In this approximation the transport equati
for the one-particle density matrix of the atoms has the fo

]

]t
r̂52

i

\
@Ĥ0 ,r̂ #2

i

\
@V̂~ ẑ!,r̂ #2

g

2
~P̂er̂1 r̂P̂e!

1g~2 j e11!(
q
E

21

1

T̂q
†exp~2 iksẑ!r̂

3exp~ iksẑ!T̂qKq~s! ds, ~6!

where the quantization axis is thez axis, g is the radiative
relaxation rate, andẑ is the operator of an atom’s center-o
mass coordinate. The last two terms on the right-hand sid
Eq. ~6! describe radiative relaxation. The first of these tw
terms gives the decay of the density matrix of the exci
state,r̂ee, and of the off-diagonal elementsr̂eg and r̂ge. The
second describes the arrival of atoms from the excited s
to the ground state with allowance for recoil in spontaneo
photon emission. The type of the functionsK615(1
1s2)3/8 andK05(12s2)3/4 is determined by the probabi
ity of emission of a photon with polarizationq561,0 in the
given directionn in relation to the quantization axis~the z
axis!: n–ez5s. In relation to the translational degrees of fre
dom, Eq.~6! has an invariant form. Assuming that the va
ance of the atomic momentum is much greater than the re
momentum,\k/dp!1, below we describe the translation
motion of the atoms semiclassically in the Wigner repres
tation. Then the transport equation~6! can be expressed by
series expansion in powers of the small parameter\k/dp
!1:

S ]

]t
1

p

M

]

]zD r̂~z,p!5L̂ (0)$r̂~z,p!%1\k
]

]p
L̂ (1)$r̂~z,p!%

1~\k!2
]2

]p2
L̂ (2)$r̂~z,p!%1•••, ~7!

where (z,p) are the coordinates of a point in phase space
the zeroth approximation in the recoil effects, the evoluti
of the density matrix is determined by the operator

L̂ (0)$r̂%52@~g/2 2 iD!P̂er̂1~g/2 1 iD!r̂P̂e#

2
i

\
@V̂~z!,r̂ #1g~2 j e11!(

q
T̂q

†r̂T̂q . ~8!

The first-order terms

L̂ (1)$r̂%52
1

2\k
~ f̂ ~z!r̂1 r̂ f̂ ~z!! ~9!

can be expressed in terms of the force operator

f̂ ~z!52
]V̂~z!

]z
. ~10!

The second-order terms include both induced terms, pro
tional to the second derivative ofV̂(z) with respect to the
coordinate, and a term reflecting the recoil effect in spon
neous emission:
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L̂ (2)$r̂%5
i

8\k2 F S ]2

]z2
V̂~z!D , r̂G1g~2 j e11!(

q
CqT̂q

†r̂T̂q ,

~11!

whereC051/10, andC6151/5.
The presence of the small parameter\k/dp makes it

possible to separate the rapid processes related to ord
over the internal degrees of freedom from the slow proces
related to translational motion. The kinetic stage of evolut
in this problem corresponds to timest@t05max
$g21,(gS)21%, whereS5uV(z)u2 (g2/41D2)21 is the satura-
tion parameter. At this stage a quasi-steady-state distribu
over the internal degrees of freedom sets in and the dyna
of the atomic ensemble is determined by the slow proce
of variation of the distribution function over the translation
degrees of freedom. In the kinetic stage, the density matr
a linear functional of the distribution function,F (z,p)
5Tr$r̂(z,p)% ~Refs. 1 and 2!. For F (z,p) we can obtain a
closed equation, which to within the second-order term in
recoil parameter\k/dp is the Fokker–Planck equation:

S ]

]t
1

p

M

]

]zD F 52
]

]p
f ~z,p!F 1

]2

]p2
D~z,p!F , ~12!

where f (z,p) is the force on the atom, andD(z,p) is the
diffusion coefficient at (z,p).

Note that Eqs.~8!–~11! are of a general nature and ca
be used to analyze the kinetics of atoms in an arbitrary pl
monochromatic wave.

3. KINETIC COEFFICIENTS IN THE SLOW-ATOM
APPROXIMATION

Finding the kinetic coefficients in analytic form is a ve
complicated problem involving tedious calculations. In th
paper we restrict attention to slow atoms, which become
placed over distances much smaller than the wavelengt
characteristic times of ordering over the internal degrees
freedom, i.e.,vt0!l, which with allowance for the defini-
tion of t0 yields the inequality

kp

M
!g, gS. ~13!

When we are dealing with transitions of the typej g5 j→ j e

5 j 11 and j g5 j 8→ j e5 j 8 ~with j 8 a half-integer! and con-
dition ~13! is met, to take dissipation processes into acco
correctly we need only restrict attention to the linear appro
mation in velocity in the expression for the force:

f ~z,p!' f g~z!1j~z!
p

M
, ~14!

where f g(z) is the gradient force andj(z) is the coefficient
of friction, while for the diffusion coefficient we keep onl
the zeroth-order term:D(z,p)'D(z). Then, finding the
trace of Eq.~7! and allowing for the corresponding terms
the series expansion in the recoil parameter\k/dp, we ob-
tain expressions forf g(z), j(z), andD(z) that can written in
invariant form.
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Thus, the gradient force is determined by the expecta
value of the force operator~1!:

f g~z!5Tr$ f̂ ~z!ŝ~z!%, ~15!

where the density matrixŝ(z) is the solution of the equa
tions

L̂ (0)$ŝ%50, Tr$ŝ%51 ~16!

and describes the steady-state distribution of atoms o
magnetic sublevels in the zeroth approximation in the rec
parameter and atomic velocity. Here and in what follows
symbol Tr$•••% stands for the trace over internal variable
Note that analytic expressions forŝ(z) for all dipole transi-
tions were found in Refs. 16–18.

The coefficient of friction is proportional to the spati
gradient ofŝ(z):

j~z!52\kTrH ŵ
]ŝ

]z J . ~17!

The diffusion coefficient can be written as a sum of tw
terms:

D~z!5Dsp~z!1D ind~z!. ~18!

The first term on the right-hand side of Eq.~18!,

Dsp~z!5~\k!2Tr$L̂ (2)$ŝ%%

5~\k!2g~2 j e11!TrH(
q

CqT̂q
†ŝT̂qJ , ~19!

is due to the recoil effect in spontaneous emission. The s
ond term,

D ind~z!52~\k!2 FTr$ŵL̂ (1)$ŝ%%2Tr$ŵŝ%Tr$L̂ (1)$ŝ%%

5
\k

2
Tr$ŵ~ ŝ•d f̂ 1d f̂ •ŝ !%, ~20!

is determined by the fluctuation operator for the force~10!:

d f̂ ~z!5 f̂ ~z!2 f g~z!. ~21!

In Eqs. ~17! and ~20! we introduced an auxiliary matrixŵ,
which makes it possible to write the expression for the fr
tion and diffusion coefficients in a unified manner. The m
trix ŵ is a solution of the inhomogeneous linear equation

F S g

2
1 iD D P̂eŵ1S g

2
2 iD D ŵP̂eG2

i

\
@V̂~z!,ŵ#

2g~2 j e11!(
q

T̂qŵT̂q
†5

d f̂

\k
, ~22!

where the source~the right-hand side! is the fluctuation of
the force operator~Eq. ~21!!. Note that the system of equa
tions ~22! is linearly dependent. This can easily be verified
we multiply the right- and left-hand sides by the matrixŝ
@Eq. ~16!# and calculate the traces, which vanish simul
neously since the left-hand side reduces to2Tr$L̂ (0)$ŝ%ŵ
and vanishes by virtue of~16!, and the right-hand side is o
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order Tr$ŝ•d f̂ % and vanishes by virtue of~15!, ~16!, and
~21!. This means that the solution of the system of equati
~22! is not unique, i.e., the matrixŵ can be determined to
within an arbitrary solution of a homogeneous equation
solution which in the case in question iscÎ, where Î is the
identity matrix. However, Eqs.~16!, ~17!, and~20! show that
this arbitrariness in definingŵ has no effect on the kinetic
coefficients. Thus, the induced diffusion coefficientD ind is
quadratic ind f̂ , which corresponds to the standard definiti
of diffusion in terms of the two-time correlator of the forc
operator~see, e.g., Ref. 10!. What is important here is tha
the induced diffusionD ind and the coefficient of frictionj
can be written in terms of the same matrixŵ. This can be
considered a fluctuation–dissipation relationship linking m
mentum fluctuations~diffusion! to momentum dissipation
~friction!. Hence the above relationships are important fr
the general physical standpoint.

4. THE j g51/2˜ j e51/2 TRANSITION IN AN ELLIPTICALLY
POLARIZED STANDING WAVE

In this section we discuss the kinetics of atoms in
uniformly polarized field of a standing wave for thej g

51/2→ j e51/2 transition~Fig. 1!. In contrast to a two-leve
atom, this simple model of real atomic transitions make
possible to establish and analyze a number of important
larization features of the kinetics of atoms for which Zeem
splitting of both the ground state and the excited state
responsible. In the case being discussed, the resonant
~1! has the form

E~z,t !5E0cos~kz! e exp~2 ivt !1c.c., ~23!

where the unit polarization vectore is spatially uniform. In
particular, if the quantization axisz is parallel to the wave
vectork, and thex axis is parallel to the semimajor axis o
the polarization ellipse, we can write

e52a1e111a2e21 , a65cos~«7p/4!, ~24!

where« is the ellipticity ~utan«u is the ratio of the semimino
axis of the polarization ellipse to the semimajor axis!. Recall

FIG. 1. Spontaneous~wavy lines! and light-induced~solid straight lines!
transitions for j g51/2→ j e51/2. Relative amplitudes of the light-induce
transitions are proportional to the circular componentsa1 and a2 of the
field @see Eq.~24!#, and the numbers labeling the wavy and straight lin
indicate the relative spontaneous-decay probabilities.
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that «50 corresponds to linear polarization and«56p/4 to
circular polarization. Then the nonvanishing elements of
matrix ŝ have the form

s71/2,71/2
ee 5bS0cos2 kz,

s71/2,71/2
gg 5b~3a6

221S0cos2 kz!,

s71/2,61/2
eg 52

ia7
21bV0coskz

A3 ~g/22 iD!
,

ŝge5~ ŝeg!†, ~25!

where

V05
dE0

\
, S05

uV0u2

g2/41D2
~26!

are the Rabi frequency and the saturation parameter, an

b5
a1

2 a2
2

314S0cos2~kz! a1
2 a2

2

is the normalization constant. The nonvanishing element
the matrixŵ have the form

w71/2,71/2
ee 563

Db

g

a2
2 2a1

2

a2
2 a1

2
tan kz,

w71/2,71/2
gg 5

Db

g S 8S0cos2kz79
a2

2 2a1
2

a2
2 a1

2 D tan kz,

w71/2,61/2
eg 5

a7V0coskz

~g/21 iD!A3
F i

Db

g

3S 8S0cos2kz66
a2

2 2a1
2

a2
2 a1

2 D 11G tan kz,

ŵge5~ ŵeg!†. ~27!

Substituting~25!–~27! into ~8!–~11!, we obtain expressions
for the gradient force, the coefficient of friction, and the d
fusion coefficient for arbitrary ellipticity and field intensity

4.1. Gradient force

For the given optical transition, Eqs.~15! and ~25!
readily yield

f g5
\kD

2

S«sin 2kz

11S«cos2kz
. ~28!

The corresponding potential is

U5
\D

2
ln~11S«cos2kz!. ~29!

Note that Eqs.~28! and ~29! coincide with the well-known
result in the two-level model,2 the only difference being tha
in our case the effective saturation parameter depends on
ellipticity of the field:

S«5
S0cos22«

3
. ~30!
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FIG. 2. Spatial dependence of the kinetic c
efficients for various values of ellipticity:
«50, solid heavy curves;«5p/8, solid thin
curves; and«5p/6, dotted curves. The value
of the saturation parameterS0515, and the
detuningD5g. a! Coefficient of friction; b!
diffusion coefficient.
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4.2. Frictional force

Substituting the expressions for the matricesŝ and ŵ
into ~17!, we obtain a formula for the coefficient of friction

j~z!5
g\k2DS«sin2kz

~D21g2/4!~11S«cos2kz!3
3F12S«cos2kz

2S D21
g2

4 D2S«
2cos4kz

g2
1S D21

g2

4 D6sin22«

g2 G . ~31!

We see that the coefficient of friction~31! strongly depends
on the ellipticity of the field~see Fig. 2a!. In fact, the first
three terms in square brackets coincide with the coeffic
of friction in the two-level model.2 Two physical mecha-
nisms are known to correspond to this case. The first is
Doppler effect, which leads to a difference in the forces
erted by light on a moving atom from counterpropagat
waves. This mechanism leads to friction at negative det
ings and corresponds to the first term, which for low satu
tion, S«!1, is the main mechanism in the two-level mod
The second is lag effects, which lead to what is known a
Sisyphean force. This contribution is described by the th
term; its sign is opposite that of Doppler friction, and it pr
vides the dominant contribution in strong fields,S«@1. The
last term in square brackets emerges because we take
account the polarization features of atom–light interacti
Since this is a new term, there is considerable interes
elucidating the corresponding physical mechanism.

It turns out that the term we are interested in, as wel
the third term, can be interpreted by using the concep
probabilities~or rates! of transitions between dressed sta
of an atom. Note that we call eigenstates of the Hamilton
of an atom in a resonant field, without allowance for tran
lational motion, dressed~adiabatic! states. For a two-leve
atom there can be only two dressed states~the normal state
and the anomalous state; see Ref. 2!. In our case of the
j g51/2→ j e51/2 transition, there are four adiabatic state

un6&5cos~u6! u j g ,71/2&1sin~u6! u j e ,61/2&,

ua6&52sin~u6! u j g ,71/2&1cos~u6! u j e ,61/2&. ~32!

Each of these states is a superposition of the wave funct
of the Zeeman sublevels of the ground and excited st
with spatially nonuniform coefficients. The anglesu6 deter-
mine the mixing of bare states of the atom:
nt

e
-

n-
-

.
a
d

nto
.

in

s
f

s
n
-

ns
es

u65
1

2
arccosA 1

114uV0u2cos2~kz! a6
2 /3D2

. ~33!

States labeled with a plus~minus! are produced when the
Zeeman sublevels interacting with the right~left! circular
component of the field mix. When the field is zero~e.g., at a
node!, the mixing angles vanish and the dressed states
beledn ~a!, become the wave functions of the Zeeman su
levels of the ground~excited! state. Hence, following Ref. 2
we call theun6& states normal and theua6& states anoma-
lous. Eigenvalues corresponding to the states~32! are called
adiabatic potentials. To within an unimportant constant,
potentials of normal states can be written

Un65
\D

2
A11

4uV0u2cos2~kz! a6
2

3D2
, ~34!

and the potentials of anomalous states have the oppo
sign: Ua652Un6 . In the secular approximationD21V2

@g2, the off-diagonal elements of the density matrix in t
dressed-state basis are negligible, so that we can restric
tention to populations that satisfy the appropriate r
equations.15 Transitions between the adiabatic states~32! oc-
cur because of spontaneous relaxation~since Landau–Zene
transitions in the limit of low velocities considered here a
unimportant!. Lag effects ~hysteresis!, which lead to Si-
syphean friction, result from the fact that the rates of dir
and reverse transitions have different spatial localization.
instance, near a node in the field the rate of the transi
from the normal stateun2& to the anomalous stateua2& is
close to zero, while the reverse transition has a rate;~2/3!g.
At a crest of a strong field, whereu2;p/4, the rates of the
direct and reverse transition become almost equal~;g/3!. As
a result, some of the moving atoms transfer near a cres
the field from the normal state to the anomalous state,
return to the initial state near a node, which leads, as is w
known,2,15 to a retardation~acceleration! buildup for positive
~negative! detunings due to the different spatial dependen
of the normal and anomalous potentials.

In contrast to the model of a two-level atom, in our ca
we have additional degrees of freedom associated, for
stance, with transitions between the ‘‘1’’ and ‘‘ 2’’ states.
Allowing for such transitions is the reason for the last te
on the right-hand side of Eq.~31!. Since we are intereste
only in a qualitative interpretation, we examine the low sa
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ration limit (S0,1). In this case the populations of th
anomalous states are low everywhere and the entire effe
due to the transitions between normal states~in a weak field
these are the Zeeman sublevels of the ground state!. For
instance, fora2

2 ,a1
2 , most atoms at a node are in th

un2& state, while at a crest the populations of the ‘‘1’’ and
‘‘ 2’’ states equalize somewhat~see Fig. 3a!. In the limit in
question the adiabatic potentialsUn6 have the same spatia
dependence (}cos2kz) but different amplitudes~Fig. 3b!. By
analogy with the aforesaid, some of the moving atoms tra
fer near a crest of the field from a state with a lower poten
into a state with a higher potential, and return to their form
state near a node, which obviously leads to a systematic
tardation~acceleration! for negative~positive! values ofD.
Thus, in its physical mechanism, the last term on the rig
hand side of Eq.~31! represents Sisyphean friction but,
contrast to ordinary Sisyphean friction, has the opposite s
and depends differently on the field intensity, detuning, a
ellipticity. In the weak-field approximationS«!1, this con-
tribution competes with the Doppler contribution~see Fig.
3c!, and the ratio of the two is 6(D/g)2sin22«, which can

FIG. 3. Sisyphean mechanism of friction forS0,1. a! Populations of
dressed states. b! Adiabatic potentials. The heavy curve with wavy arrow
depicts the most probable path of the atom. c! Coefficient of friction: the
solid curve represents the additional contribution@the last term on the right-
hand side of Eq.~31!#, and the dashed curve represents the Doppler con
bution to friction. All diagrams correspond to«5p/10, S050.8 (S«

50.17), andD523g.
is

s-
l
r
e-

t-

n
d

amount to several orders of magnitude if the detuning
large.

Summarizing, we can say that the difference of the
netic of atoms with degenerate energy levels from the res
of the two-level model stems primarily from the fact the
are numerous adiabatic~normal and anomalous! states and
possible transitions between them. For instance, there
transitions among various normal states, while for a tw
level atom there can only be transitions between normal
anomalous states. Here, as Eq.~31! clearly shows, the differ-
ence between our model and the two-level model is imp
tant because of the different dependence on the intensity
frequency of the field. Thus, there is a range of paramet
(g/D)2!S«

2,3sin22«, for which even the direction of a
kinetic process~cooling or heating! is opposite that predicted
by the two-level model.

4.3. Diffusion coefficient

The diffusion coefficient defined in Eqs.~18!–~20! con-
tains a contributionDsp from spontaneous transitions and
contributionD ind from induced transitions. Using Eqs.~18!
and ~25!, we find the spontaneous diffusion coefficient,

Dsp~z!5
g\2k2

12

S«cos2kz

11S«cos2kz
, ~35!

which coincides, to within a constant factor, in form with th
expression for the spontaneous diffusion coefficient obtai
in the two-level atomic model~see Ref. 2!. It is proportional
to the population of atoms in the excited stated and in
case of thej g51/2→ j e51/2 transition strongly depends o
the ellipticity of the field, in accordance with~30!. We can
split the induced diffusion coefficient~as we did the coeffi-
cient of friction! into two terms:

D ind~z!5D1~z!1D2~z!. ~36!

The first term is the well-known result2 for a two-level atom
with a new saturation parameterS« :

D1~z!5
\2k2gS«sin2kz

4 F114

3
D2

g2

S«cos2~kz! ~S«
2cos4kz2g2~g2/41D2!21!

~11S«cos2kz!3 G .

~37!

The second term,

D25
\2k2S«sin22«sin2kz

g~11S«cos2kz!3 F3D21
S0cos2kz

3 S g2

4
1D2D

3~11S«cos2kz!2G , ~38!

is entirely new. It describes the contribution of diffusion pr
cesses generated by the Zeeman degeneracy of the e
levels. The diffusion coefficient~as well as the coefficient o
friction! strongly depends on the ellipticity of the field~Fig.
2b!.

i-
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As noted earlier, there is a direct relationship betwe
friction and diffusion. Hence, by analogy with the abo
analysis of the frictional force, the additional contributio
Eq. ~38!, can be considered the result of force fluctuation t
appears in the transitions between different adiabatic sta
In particular, for small saturation parameters,S0!1, this
term is the consequence of transitions between the no
statesun1& and un2& of ~32! ~see Fig. 3!. The ratio of this
contribution to the ordinary contribution ~37! is
12(D/g)2 sin2(2«), which shows that for polarizations tha
are not linear and large detunings this term can be the do
nant one and exceed the values obtained in the two-l
model of the atom by several orders of magnitude.

5. LIMITS OF THE TWO-LEVEL MODEL

Recall that the need to allow for the Zeeman degener
of energy levels in the description of the motion of atoms
fields with nonuniform polarization was convincingly dem
onstrated in Refs. 3 and 4. Our results show that the Zee
structure must be taken into account even when the pola
tion is uniform. The results of Secs. 4.2 and 4.3 suggest
the frictional force and diffusion contain additional contrib
tions that do not exist in the two-level model. When t
polarization is linear~«50!, for the j g51/2→ j e51/2 transi-
tion considered here these contributions vanish, since by
tue of the symmetry of the induced transitions the probl
effectively reduces to the two-level one. However, it is o
vious that in the general case there is no such symmetry
the additional terms in the friction and diffusion emerge ev
when the field polarization is linear. For instance, for t
j g53/2→ j e53/2 andj g51→ j e52 transition, in the case o
linear polarization the additional contributions to the frictio
are nonvanishing and at low saturations (S0!1) have the
form

j3/2→3/25
24

125

\k2D

g
S0sin2kz,

j1→25
576

24 565

\k2D

g
S0sin2kz. ~39!

As the additional term in~31! for the j g51/2→ j e51/2 tran-
sition in a weak field, these contributions emerge becaus
transitions between the Zeeman sublevels of the ground
u j g ,m&, whose adiabatic potentials

Um5\DS0S j e 1 j g

2m 0 m D 2

cos2kz ~40!

have the same spatial dependence but different amplitu
by virtue of the difference of the probabilities of the induc
transitions between the respective magnetic sublevels.

Thus, we can say that in essentially all cases, the kine
of slow atoms in fields with uniform polarization differs su
stantially from the kinetics predicted by the two-level mod
The problem reduces to the two-level model only in the f
lowing exceptional cases: thej g50→ j e51 transition for
light of arbitrary elliptical polarization, thej g51/2→ j e
n

t
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51/2 andj g51/2→ j e53/2 transitions for linearly polarized
light, and all j g5 j→ j e5 j 11 transitions for circularly po-
larized light.

6. CONCLUSION

In this paper we have used the semiclassical approac
analyze the kinetics of atoms in a uniformly polarized stan
ing wave with allowance for the Zeeman degeneracy of
energy levels. For the atomic transitionj g51/2→ j e51/2 we
have obtained analytic expressions for the gradient force,
friction and diffusion coefficient, which describe the kineti
of slow atoms, for arbitrary ellipticity, intensity, and detun
ing. We have shown that allowance for the Zeeman struc
of the levels and optical pumping effects leads, first, to
dependence of the effective saturation of the transition~and
hence the forces on an atom! on the ellipticity S«

5S0cos(2«)/3 of the light. We have also found that the fric
tion and diffusion coefficients contain additional term
which are absent in the theory of a two-level atom and h
not been discussed before. In the limit of low saturations a
large detunings these terms are dominant and lead to m
larger friction and diffusion in comparison to the results p
dicted by the two-level model. We have also given a qu
titative interpretation in terms of dressed states,. We h
shown that the additional contribution to friction is due to t
transitions between the adiabatic potentials correspondin
different magnetic sublevels of the ground state, i.e., is of
Sisyphean origin.

Note that the analytic method developed in this pa
@see Eqs.~15!–~22!# for finding the kinetic coefficients of the
Fokker–Planck equations for the transitionsj g5 j→ j e5 j
11 and j g5 j 8→ j e5 j 8 ( j 8 is a half-integer! can be used in
the general case of a field of arbitrary nonuniform polariz
tion.
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Absorption and scattering of high-power laser radiation in low-density porous media
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We have experimentally investigated the interaction of high-power neodymium laser pulses in
the intensity range 101321014W/cm2 with flat low-density~0.5–10 mg/cm3) agar-agar
targets under conditions of interest for problems of inertial nuclear fusion. Optical and x-ray
methods with high temporal and spatial resolution were used to examine the dependence of
absorption and scattering of the incident beam on the initial mean density and thickness of
the irradiated samples. We show that when a porous target is irradiated, a bulk absorption layer
of high-temperature plasma is produced inside the target whose dimensions are determined
by the initial density of the material. The time dependence and spectral composition of the
harmonics 2v0 and 3v0/2 observed in the plasma-scattered radiation are measured. A
theoretical model is developed that describes the interaction of high-power laser pulses with a
porous medium. Predictions of the model, based on the hypothesis of two stages of
homogenization of the target material—a fast stage~0.1–0.3 ns! and a slow stage~1–3 ns!, are in
good agreement with the experimental data. ©1999 American Institute of Physics.
@S1063-7761~99!00303-0#
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1. INTRODUCTION

The interaction of high-intensity laser radiation (1012–
1014 W/cm2) with porous media whose mean densities va
over a wide range—from 1021 mg/cm3 to 102 mg/cm3—is
an extraordinarily active area of study, due primarily to t
capability it offers of investigating fundamental physic
phenomena taking place in a nonequilibrium laser plas
When porous material is heated by a laser pulse, a plasm
produced that is spatially homogeneous in density, temp
ture, and pressure. The production and interaction of pla
fluxes propagating from the heated elements of the por
material leads to a plasma nonequilibrium state: the temp
ture of the electron component of the ejected plasma
exceeds the ion temperature whereas during hydrothe
dissipation incident to a collision of fluxes a plasma is p
duced whose ion temperature can significantly exceed
electron temperature.1

According to the ideas developed in Refs. 1–4, abso
tion of laser radiation inside a porous material occurs alon
length determined by the geometrical transparency, wh
decreases with increasing dimensions of the regions filled
plasma with density exceeding some critical value. It can
expected that the production of an absorbing region is by
means over during the first collisions of plasma fluxes ins
the pores. At laser intensities of (101321014) W/cm2 the
complete homogenization time of a porous material w
density 1021 g/cm3–1023 g/cm3 during decay of the macro
oscillations of the plasma density can exceed by one to
4411063-7761/99/88(3)/8/$15.00
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orders of magnitude the characteristic time of collisions
tween the plasma fluxes from neighboring elements of
medium~which is of the same order of magnitude as the tim
it takes an ion, on average, to traverse the distance betw
neighboring elements of the structure—the mean tra
time!, and can reach several nanoseconds.3 Thus, the non-
equilibrium state of the laser plasma produced in a por
medium can be characterized by long-wavelength density
cillations, the excitation and collisions of shock waves, a
hydrothermal dissipation processes taking place during un
these conditions. These phenomena, without a doubt, m
have a substantial effect on laser absorption processes
energy transport in the porous material, and also on the f
of the equation of state of the nascent plasma.

Practical interest in the interaction of laser radiation w
porous media and, in general, bulk-structured media of
duced density is motivated by their use as multipurpose
ments in laser nuclear fusion~LNF! targets. Above all, this
has to do with the ability to equalize heating inhomogeneit
and ensure target stability under compression. It has b
suggested that porous media consisting of light element
used, for example, in ‘‘laser greenhouse’’ targets to imp
ment distributed bulk absorption of the laser beam ener
thermal-conduction mediated equalization of heating in
mogeneities, and spatiotemporal profiling of the ablat
pressure.6 The properties of porous media with distribute
heavy-element impurities have been actively investiga
from the standpoint of controlling the spectral compositi
of x radiation from the nascent plasma.7
© 1999 American Institute of Physics
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Novel capabilities for producing nonequilibrium, nonst
tionary plasma emerge from the irradiation of regula
structured material. As an example, we may cite the sug
tion voiced in Ref. 8 of creating a relatively long-live
plasma with ion temperature several times the electron t
perature, and achieving on this basis an intense sourc
thermonuclear neutrons with a yield in the range 111

21012 neutrons per joule of laser energy when a laser pu
acts on a medium consisting of either a system of pla
parallel films or thin shells containing thermonuclear fuel

Physical processes played out in low-density bu
structured targets when they are irradiated by intense l
pulses have recently attracted the attention of numerous
searchers working in the LNF field. Thus, the authors of R
4, working at the TRINITIMishen’ ~Target! facility, ob-
tained an overall picture of laser energy absorption proce
taking place in a porous medium, the transformation a
transport of energy in targets of finite thickness, and the
celeration of thin metallic foils situated on the back surfa
of such targets, and suggested a theoretical model for
scribing energy absorption and transport processes.
present work continues studies initiated in Ref. 4, and
dedicated to a detailed study of absorption and scatterin
high-power laser radiation in low-density porous targets.
the basis of measurements of the scattered radiation an
radiation transmitted by the target, we have obtained data
the efficiency of absorption of laser energy in a porous m
dium at both sub- and supercritical mean density. We h
experimentally established the density dependence of
longitudinal diameter of the laser absorption region ove
wide range, from 531024 g/cm3 to 1022 g/cm3. The results
are discussed from the standpoint of the properties of
nonequilibrium laser plasma produced in the porous m
dium. In particular, we have developed a theory of two-sta
homogenization of a porous medium subject to a high-po
laser pulse. Of special interest are studies, completed in
present work, on plasma emissions observed in experim
with porous targets at harmonics of the laser frequen
These studies are of special interest by virtue of the fact
the development of different kinds of anomalous proces
~Mandel’shtam–Brillouin scattering, Raman scattering, pa
metric decay instabilities! is known to lead to consequence
that are undesirable for LNF~a decrease in the absorptio
coefficient, generation of fast superthermal particles, red
tion of the conversion coefficient of laser radiation in
x radiation!. Porous low-density media can only be appli
to LNF target designs on the basis of detailed studies of la
interactions with the materials in question.

2. EXPERIMENTAL CONDITIONS AND DIAGNOSTICS

The interaction of intense laser radiation with low
density structured targets was studied experimentally at
Mishen’ facility9 under the following conditions of irradia
tion: wavelengthl51.054mm, laser pulse energy up t
150 J for pulse duration;2.5 ns with a 0.3-ns leading edg
energy contrast no worse than 106, radiation focused on the
target by an 1:10 lens. For a focal-spot diameter
;250mm the mean light flux density at the surface of t
s-
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irradiated target reached 1014W/cm2. Flat agar-agar
@C12H18O9)n] targets 10021000mm in thickness, with den-
sity in the range 0.5–10 mg/cm3, were mounted in the inter
action vacuum chamber.~For agar samples of mean densi
3 mg/cm3 the electron density corresponds to the critic
value ncr for
l51.054mm.! Multilayer targets were also used in whic
aluminum layers of thickness 126 mm were deposited onto
the irradiated surface, back surface, or both surfaces of
low-density material. The agar used in the experiments
random structure of solid filaments of diameter 122 mm
with an interfilament spacing of 10250mm. Figure 1 shows
electron micrographs of the structure of agar samples wi
density of 1 mg/cm3 and 10 mg/cm3.

The experiments mainly used optical and x-ray diagn
tics. X-ray diagnostics allowed time-integrated calorimet
measurements in the wavelength range 0.5–1.5 nm, the
struction of plasma images by camera-obscura with asso
filters, recording of the x-ray emission of the plasma
vacuum diodes with temporal resolution;0.5 ns, measure
ments of x-ray spectra of the plasma in the spectral ra
0.5–2 nm. The optical methods included multiframe shado
graphs of the nascent plasma~exposure time of an individua
frame ;0.3 s, wavelength of the probing radiatio
l50.527mm, spatial resolution;30mm!; electro-optical
recording with an Agat-SF camera of the time dependenc
the luminescence of the back surface of the irradiated ta
in the wavelength range 400–700 nm with spatial resolut
;30mm and temporal resolution 50 ps; measurements of
reflected, scattered, and transmitted laser radiation; b
time-integrated and time-resolved spectral measuremen
the radiation scattered by the plasma into the aperture of
focusing lens in the vicinity of the frequencies 2v0 and
3v0/2. The diagnostic setup is shown in Fig. 2.

3. EXPERIMENTAL RESULTS

Earlier, in Ref. 4 it was shown that absorption of las
radiation during interaction with a porous medium is a bu
phenomenon. As a result of energy absorption and trans
inside the porous target, a layer of high-temperature plas
is produced. Figure 3 displays typical obscurograms~and
results of their processing!, obtained with a beryllium filter
of thickness 50mm observed perpendicular to the directio
of the laser beam in the irradiation experiments with a
targets of thickness 500mm with different mean densities
For comparison, this same figure shows the x-ray inten
distribution of the plasma for irradiation of a thick Lavsa
~Mylar! film. It can be seen from the figure that upon irr
diation of a porous target, plasma formation inside the tar
is highly extended in the direction of propagation of the la
beam.

Figure 4 depicts the dependence of the longitudinal
ameter of the plasma layer on the initial density of the a
target. For a target with initial density 1 mg/cm3 this length
amounts to 3002400mm, and for a target with initial den-
sity 10 mg/cm3 it decreases to 1002150mm. In the direction
perpendicular to the laser beam, the diameter of the
plasma region inside the porous target essentially coinc
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FIG. 1. Electron micrographs of the structure of agar samples w
mean density 1 mg/cm3 ~a! and 10 mg/cm3 ~b!.
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with the diameter of the focal spot and depends weakly
the density of the agar target. Thus, for irradiation of an a
target with density 1 mg/cm3 this length is approximately 1.2
times that of a target with density 10 mg/cm3. The duration
of the x-ray pulse recorded by the vacuum diodes is 3–4
i.e., it essentially coincides with the duration of the las
pulse. The electron temperature of the plasma was de
mined by the method of filters and for porous targets of
types was 0.8–1 keV, decreasing somewhat with depth
the target. For a target with density 1 mg/cm3, Te'0.6
20.7 keV at a distance;300mm from the irradiated sur-
face. It should be borne in mind that the displayed data
the result of processing time-integrated measurem
whereas processes in the nascent absorbing layer can h
n
r
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r
r-

ll
to
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e a

nonstationary character associated with evaporation a
the extent of the laser pulse of solid elements of the struct
with interaction of plasma fluxes from separate elements,
with variations in the dimensions of the radiation-absorb
plasma layer and a displacement toward greater depths in
target of the zone of maximum energy liberation.

Important information about the interaction of laser r
diation with the extended plasma produced in a porous
dium is provided by measurements of the scattered and tr
mitted radiation. Results of measurements of the energy
the laser radiation scattered by the plasma into the aper
of the focusing lens are plotted in Fig. 5. Data obtained
irradiation of thin Lavsan films are also plotted for compa
son. As can be seen from Fig. 5, the energy of the radia
-
-

FIG. 2. Setup of the diagnostic sys
tem in the interaction vacuum cham
ber.
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FIG. 3. Typical obscurograms~a! for
irradiation of agar targets with mean
density 1 mg/cm3 ~1! and 4 mg/cm3

~2! and Lavsan targets with densit
1.4 g/cm3, and results of processing
of these obscurograms~b!.
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scattered from low-density targets is similar to the cor
sponding values for the solid targets over the entire rang
intensities of the focused laser beam. Figure 6 shows a c
acteristic directionality diagram for the plasma-scattered
ser radiation, constructed from calorimetric data.

Measurements of the target-transmitted laser radia
~collection angle corresponded approximately to the angl
approach of the laser beam to the target'6°)—both time-
integrated and time-resolved—show that for all porous
gets with thickness.500mm ~i.e., exceeding the characte
istic dimensionL* of the high-temperature plasma regio!
and densities from 0.5 mg/cm3 to 10 mg/cm3 the transmit-

FIG. 4. Calculated dependence on the agar mean density of the char
istic length of geometrical transparency of the medium in the initial stag
irradiation ~a! and after the first stage of homogenization~b!, and of the
characteristic length of the inverse bremsstrahlung radiation~c!. The points
plot experimental data on the longitudinal diameter of the bulk-absorb
plasma layer.
-
of
ar-
-

n
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tance during the laser pulse did not exceed 0.1%. In the c
of a low-density porous target~density ;0.5 mg/cm3), as
one goes to target thicknesses of 2002300mm ~less than
L* ) an abrupt~by as much as;2%! growth in the transmit-
tance is observed. This supports the conclusion of more
ficient absorption of the heating laser radiation in the nasc
high-temperature plasma layer. As the time-resolved m
surements of the transmitted light intensity show, in the
cases the transmittance grows up to the end of the hea

ter-
f

g

FIG. 5. Dependence of the energy of the radiation scattered by the pla
into the aperture of the focusing lens, on the power density of the hea
radiation in experiments on irradiation of an agar target with mean den
1 mg/cm3 (L) and 10 mg/cm3 (h) and a Lavsan film (d).
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pulse~see Fig. 7!. This fact can be explained on the basis
ideas about ‘‘clearing’’ of the absorbing layer prior to term
nation of the laser pulse4 and also by assuming that the zo
of maximum energy liberation is shifted deeper into the
sorbing layer at later stages of target irradiation.

To obtain additional information about the dynamics
processes in an extended plasma in porous targets, we
formed time-integrated and time-resolved measurement
the radiation scattered into the aperture of the focusing
in the vicinity of the frequencies 2v0 and 3v0/2. Figure 8
plots processed time scans of the luminescence at the
monics 2v0 and 3v0/2 recorded from irradiated aga
samples with mean densities of 0.5 mg/cm3, 4 mg/cm3, and
10 mg/cm3. For comparison, this same figure plots tim
scans obtained with a Lavsan target. Figures 9 and 10 s
density plots of time-integrated spectra of the harmonics 2v0

and 3v0/2, respectively. The spectra of both harmonics ha
a two-component structure with pronounced asymmetry
the case of the harmonic 2v0. Note that in each experimen
the frequency-doubled component of the incident laser ra
tion also went through the entrance slit of the recording sp
trometer. Considering all of the data obtained in the spec
measurements, we first note that in the irradiation of lo

FIG. 6. Directionality diagram of the plasma-scattered laser radiation. Z
angle corresponds to scattering in the direction opposite the laser b
Agar target with mean density 1 mg/cm3, light flux density 531013 W/cm2.
The measurements were performed simultaneously by the four calorime

FIG. 7. Laser pulses: a — incident on target, b — after passing through an
agar target with mean density 1 mg/cm3 and thickness 250mm.
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density targets harmonic generation takes place even w
the mean electron density turns out to be subcritical
l51.054mm, even though the targets are fully ionized. Al
noteworthy is the weak dependence of the spectral struc
and time dependence of the harmonic 3v0/2 on the condi-
tions of the experiment, specifically the time dependence
the laser radiation intensity, the intensity of the heating be
focused on the target surface, and the initial density of
target~see Figs. 8 and 10!. The spectral structure of the 2v0

harmonic radiation~Fig. 9! also shows only a weak depen
dence on the target density and at a density of 10 mg/cm3 it
is essentially identical to the corresponding spectrum for
solid Lavsan targets. When the flux density of the light in
dent on the target is reduced to 1013W/cm2, the intensity of
the ‘‘red wing’’ of the spectral distribution falls abruptly
while the intensity of the primary maximum decreases o
negligibly. Also note the ‘‘redshift’’ of the primary maxi-
mum in the spectrum of the second harmonic, which
targets with density 0.5 mg/cm3 is ;0.5 nm.

4. THEORETICAL MODEL AND DISCUSSION OF
EXPERIMENTAL RESULTS

The basic distinguishing property of porous materials
their inhomogeneity. In such bulk-structured media abso
tion of laser radiation, energy transport mechanisms, and
drodynamic processes can be of a very specific nature.
lowing the ideas developed in Refs. 3 and 4, we m
nevertheless, expect that the structural distinctiveness of
given medium~fibrous, foamy, finely dispersed media, etc!
will show up only upon formation of a bulk-absorbing lay
of plasma, i.e., in the initial stage of homogenization of t
target material.

Let us consider homogenization of porous material ir
diated by a focused laser beam. Homogenization of por
material acted upon by a powerful laser pulse takes plac
two stages. The first, or fast, stage of partial homogeniza
is the result of evaporation of solid elements of the poro
material and subsequent collisions between the nas
plasma fluxes. This stage culminates in the formation of
inhomogeneous plasma in which the dimensions of the de
regions of material are significantly greater, and the den
in them is substantially less, than in the original elements
the porous material. Final equalization of the density ta
place in the second—slower—stage of homogenization.
basic processes in this stage are collisions and dissipatio
shock waves excited in the plasma filling the space betw
the regions of material with increased density. The durat
of the first stage is of the same order of magnitude as
time it takes the evaporated material to traverse the dista
between neighboring elements:

t15
l 0

veff
'F 3p7/2

2@3~g21!#1/2G 2/3S rs

ra
D 2/3rs

1/3b0
5/3

ĖL
1/3

.

Hereb0 is the radius of the solid element,l 05b0(rs /ra)1/2

is the mean distance between elements,rs andra are respec-
tively the density of the solid material and the mean dens
of the porous material,ĖL is the power of the laser beam
andveff is given by

ro
m.

rs.
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FIG. 8. Laser pulse~a! and intensities of luminescence o
the 3v0/2 harmonic~b! and the 2v0 harmonic ~c! for
irradiation of Lavsan targets~dotted curves! and agar tar-
gets with mean density 0.5 mg/cm3 ~dashed curve!,
4 mg/cm3 ~dash–dot curves!, and 10 mg/cm3 ~solid
curve!.
ial
on

to a

cy
veff5F ~g21!ĖL

3p2pL0
2ra

G 1/3S rs

ra
D 1/6

.

This velocity is the effective ejection velocity of the mater
under conditions of a shrinking absorption region and, c
sequently, increasing plasma temperature.

FIG. 9. Density plots of time-integrated spectra of the harmonic 2v0, re-
corded in irradiation experiments with Lavsan targets~dotted curve! and
agar targets with mean density 0.5 mg/cm3 ~dashed curve! and 10 mg/cm3

~solid curve!. The thin line indicates the spectral position of the frequen
doubled laser radiation.
-

For the laser pulse powerĖL'1.631010W the duration
of the first stage t1'230 ps for ra51023 g/cm3 and
t1'70 ps forra51022 g/cm3. During this initial interaction
phase, laser radiation penetrates the porous material
depth corresponding to the initial transparency depth1:

L0'
p2

2

rs

ra
b0 . ~1!

-

FIG. 10. Density plots of time-integrated spectra of the harmonic 3v0/2,
recorded in irradiation experiments with Lavsan targets~dotted curve! and
agar targets with mean density 0.5 mg/cm3 ~dashed curve! and 10 mg/cm3

~solid curve!.
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For the densities 1023 g/cm3 and 1022 g/cm3 the quantityL0

is equal to 4500mm and 450mm, respectively. Targets thin
ner than the indicated values are partially transparent to l
radiation during the initial stage of homogenization, as
observed experimentally.4

A calculation based on the picture of isothermal eject
of dense cylindrical elements and adiabatic compressio
colliding plasma fluxes with conversion of hydrodynamic e
ergy into heat in a plasma layer of thickness equal to
ion–ion collision length gives the following expression f
the ratio of the diameter of the nascent dense plasma re
to the initial thickness of the solid element3:

b1

b0
5S 2b0

l 01l i
D 1/~g21!F S l 02l i

b0
D S a

2D 1/g

1
l i

b0
Gg/~g21!

. ~2!

Herel i is the ion–ion collision length anda is the fraction
of energy contained in the thermal component for isother
ejection of the particle.

According to the self-similar solution,10 the value ofa
for particles of differing flight geometry is

a5
2

213~g21!~b11!
,

whereb50,1,2 for planar, cylindrical, and spherical geom
etry, respectively. Under conditions in which a particle
ejected to distances significantly greater than its dimens
( l 0@b0), we must choose a value fora intermediate between
the cases of planar and cylindrical ejection:a'0.42.

Formula~2! is valid for l i< l 0 when the hydrodynamic
description of the colliding plasma fluxes is applicable, a
asl i tends tol 0 from below it gives the valid limitb1→ l 0

corresponding to complete homogenization of the plas
fluxes under conditions in whichl i5 l 0. Sincel i! l 0 ,b0 and
b0! l 0 in our case, Eq.~1! yields the approximate result

b1'a1/~g21!l 0' l 0/3.

Thus, as a result of the first stage of homogenizatio
plasma is produced in which the dimensions of the de
regions are equal to roughly half the original distance
tween the solid elements, and the density in them is sev
times the mean density of the porous material. In this ca
enlargement of the dense regions is accompanied by a
crease in the geometrical transparency length:

L1.
p2

2
b0S rs

ra
D b0

b1
'

p2

2a1/~g21!
b0S rs

ra
D 1/2

. ~3!

Now, for material with densityra51023 g/cm3 the geo-
metrical transparency length is;300mm. Figure 4 plots the
calculated dependence of the geometrical transparenc
the density of the medium: a — in theinitial stage of irra-
diation ~using ~1! with b051 mm!, b — after the first stage
of homogenization~using ~3! with b051 mm!. This same
figure plots the density dependence of the characteristic
verse bremsstrahlung absorption length~c! given by1

Lb'
5.231024Te

3/2

ra
2

mm
er
s

n
of
-
e

on

al

ns

d

a

a
e
-

ral
e,
e-

on

n-

~where Te is measured in keV andra in g/cm3) for
Te5800 eV andra51 mg/cm3. The experimental data are i
good agreement over the entire density range with the th
retical dependence corresponding to the plasma state
the first stage of homogenization.

In the second stage of homogenization the diamete
the dense region increases by roughly the ion–ion collis
length during each traversal by a shock wave of the dista
between neighboring elements:

db

dt
'

l i

t
.

Herel i5v/n i i , n i i 5n* ra /T3/2 is the ion–ion collision fre-
quency ~it is assumed that T5Te5Ti), n* '1.4
31014(keV)3/2/(g/cm3)•s, andt' l 0 /v is the shock transit
time at velocityv between dense regions. Solving this equ
tion yields an estimate for the duration of the second sta

t2'
~ l 02b1!2

l iv
'1029

l 0
2ra

T5/2
,

where t2 , l 0 , ra , and T, are measured respectively in n
mm, g/cm3, and keV. Estimates using this formula give th
values 5 ns and 3 ns for the duration of the slow stage
T51 keV for material with density 1 mg/cm3 and 10
mg/cm3, respectively.

The brief duration of the first stage corresponds to
time interval at commencement of irradiation, during whi
partial transparency of the target is observed. In the sec
~slow! stage, whose duration under the conditions of our
periment exceeds the duration of the laser pulse, the m
describes the dynamics of the plasma in the nascent exte
layer inside the target. In this stage the influence of the s
cific structural properties of the target material is manifes
to a lesser extent. The agreement between the measured
ues of the time-integrated length of the absorption reg
~corresponding to the entire duration of the laser pulse! and
the theoretical dependence of the geometrical transpare
length after the first~fast! stage of partial homogenizatio
@Eq. ~3!# is indirect proof of the presence of a second~slow!
stage of complete homogenization.

Note that the existence of an extended stage of comp
homogenization of porous material leads to the existen
over the course of the entire laser pulse, of an inhomo
neous plasma with regions having density both above
below critical. Such a state of the plasma allows the la
radiation to penetrate the porous material to the bottom
bulk-absorbing layer.

The above model of homogenization, which is in go
agreement with the experimental data, leads to the con
sion that under the conditions of our experiments, during
greater extent of the laser pulse, the radiation interacts w
the extended plasma layer in which spatial density modu
tions exist.

In light of the above discussion, let us analyze the e
perimental data obtained from measurements of the harm
ics, generated in the porous-target plasma, of the hea
radiation. The time dependence of the luminescence inten
of the 3v0/2 harmonic and its spectral structure for poro
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targets of different densities differs only slightly from th
dependence observed for a Lavsan target~see Figs. 8 and
10!. For each of the investigated porous targets with de
ties in the range 0.5–10 mg/cm3 the luminescence intensit
of the 3v0/2 harmonic grows rapidly in the leading edge
the laser pulse and remains essentially unchanged up to
end of the pulse. Generation of the 3v0/2 harmonic is a
consequence of Raman scattering of the laser radiation
plasma waves with frequencyv0/2, excited as a result of th
development of a resonant parametric instability of tw
plasmon decay in a plasma whose electron density is o
fourth the critical value. Thus, the experimentally observ
dependences indicate that by the earlier stages of irradia
regions with plasma density;ncr/4 are produced inside th
target and exist for quite a long time. This is in good agr
ment with the foregoing theoretical model of homogeniz
tion. As for the harmonic 2v0, for which the denser region
of the plasma with electron density;ncr , in agreement with
the theoretical model a plasma with densityn.ncr exists in
the form of macroscopic density oscillations with a spa
scale of 3210mm for an extended time;223 ns. A de-
crease in the intensity of the 2v0 harmonic before the end o
the laser pulse might be expected either in the case of st
enough decay of such oscillations or by using sufficien
thin low-density targets. Under the conditions of our expe
ments for target thicknesses exceeding 500mm and laser
pulse duration 2.5 ns, no decrease in the intensity of the
monic before the end of the laser pulse was observed.
tended duration of plasma regions with densityn.ncr can
also be facilitated by the effect of motion of the plasma p
duced by one-sided laser irradiation of the fibers of the
rous material into the inner region of the porous medi
~along the direction of propagation of the laser beam!. This
effect can also explain the redshift of the spectrum at 2v0

recorded in experiments on porous targets with subcrit
mean density~see Fig. 9!. The magnitude of the shift
(;0.5 nm! corresponds to a directed velocity o
33107 cm/s.

5. CONCLUSION

We have studied absorption and scattering of intense
ser radiation (l51.054mm, t52.5 ns,I 5531013W/cm2),
both theoretically and experimentally, by irradiating fla
low-density targets (0.5210 mg/cm3).

We have shown that when a porous target is irradiate
bulk-absorbing layer of high-temperature plasma is produ
in it. We have also derived the dependence of the dimens
of this layer on the initial mean density of the target.

We have established that the levels of absorption
scattering in porous targets and in thin films of a solid m
terial with analogous elemental composition differ on
slightly, one from another.
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In the porous-target plasmas, generation of the 2v0 and
3v0/2 harmonics (v0 is the frequency of the heating radia
tion! was observed over the full range of mean density~from
3ncr down to 0.2ncr), and the time dependence of emissi
at these frequencies was investigated as a function of
target density and conditions of irradiation.

A theoretical model has been developed which, tak
account of the specifics of the structure of the porous m
rial, describes the formation in the thickness of the irradia
target of a bulk-absorbing layer of plasma. The model
based on the concept of two stages of homogenization of
target material: a fast stage~0.1–0.3 ns! and a slow stage
~1–3 ns!. The structural details of each porous material a
most important in the fast stage, i.e., the early stage of i
diation.

The predictions of the theoretical model are found to
in good quantitative agreement with x-ray and calorimet
measurements. Spectroscopic and time-resolved mea
ments of the intensity of the 2v0 and 3v0/2 harmonics are
consistent with the theoretical picture.
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the processing of the experimental data.
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An effective potential is proposed for the interaction between dust particles in a gas-discharge
plasma which takes account of the following physical factors: the spatial dependence of
the particle charges on the floating potential of the plasma, anisotropy of the interaction, resulting
from focusing of the negatively charged particles of the drift ion current, and aspects of
screening of the dust particles by plasma electrons and ions which interact strongly with them
and recombine faster in their vicinity and on their surface. Monte Carlo calculations
explain the formation of threadlike structures of dispersed particles, and also ‘‘transverse
crystallization’’ of these ‘‘threads’’ in a stratified gas-discharge plasma. ©1999 American
Institute of Physics.@S1063-7761~99!00403-5#
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1. INTRODUCTION

Growing interest in the properties of dusty plasma ste
to a significant extent from the recent discovery of the f
mation of ordered structures of charged macroparticles
various types of laboratory plasma: in the near-cathode
gion of a high-frequency gas discharge,1–11 in thermal
plasma,12–14 and in the standing strata of a glo
discharge.15–18 Dust crystals possess a number of uniq
properties: they are optically transparent, ranging in s
from 1 to 100mm, and the interstitial distance in the cryst
is 10021000mm, which allows one to examine their prop
erties in the visible with the unaided eye. Characteristic
laxation times are fractions of a second, which neatly dis
guishes plasma crystals from colloidal crystals, in wh
these times reach several days. The parameters of the q
crystalline structures can be varied by simply varying the
pressure, current, or discharge power. Thanks to this,
crystals are an effective instrument for studying the prop
ties of strongly nonideal plasma, the fundamental proper
of crystals, and the properties of gas discharges. Interes
experimental results have been obtained on polymorp
phase transitions between various crystal structures, on
melting of dust crystals, and on the propagation of sou
waves in plasma crystals. Theoretical studies are be
actively pursued on dust-particle charging processes ,
ticle interactions with one another and with external fiel
4491063-7761/99/88(3)/11/$15.00
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and collective effects in a highly nonideal dusty plasm
These questions are discussed in recently published rev
~Refs. 19–21!.

Dust particles in a trap with an hf discharge plasma fo
a flat crystal consisting of several horizontal layers, ea
hexagonally structured. Thus, an important property of t
structure is the fact that in the vertical direction, along t
discharge axis, the dust particles are stacked one dire
above another. A similar property in the arrangement of d
particles is observed in the plasma of a station
glow-discharge,15–17 where ordered structures are forme
that have a hexagonal-like lattice in the horizontal plane a
a similar vertical ordering along the discharge axis. Mo
over, in a gas-discharge plasma, even isolated, rando
spaced threadlike structures are formed.

To understand the physical mechanisms leading to
emergence of ordered structures, an analysis of the inte
tion forces between dust particles and estimates of t
charges are needed. The following expression is customa
used in the literature19–21 to estimate the charge:

Q~r !5Z~r !e5Cf t~r !, C'4pe0R,

whereC is a quantity of the order of the capacitance of t
particle,R is its radius, andf t(r ) is a floating potential gov-
erned by the difference in the electron and ion fluxes incid
upon the dust particle, which depends substantially on
high-energy asymptotic behavior of the electron distribut
© 1999 American Institute of Physics
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function. It is well known that in an hf gas discharge and
a glow-discharge the asymptotic limits of the electron dis
bution function depend substantially on the spatial inhom
geneity of the electric fields accelerating the electrons,
on atomic ionization processes induced by tho
electrons.19–21 This circumstance is the reason why t
charge on a dust particle should depend on its location in
stratum, i.e., on its coordinates:Q5Q(r ). According to the
above estimates, both in an hf discharge plasma and
glow-discharge plasma, particle chargesZ(r ) range from 104

to 106 ~Refs. 19–21!. Below we takeZ'105 as a typical
value. Consequently, one of the main components of the
teraction of dust particles in a plasma is, in one way or
other, the screened Coulomb repulsion.

Besides the electrostatic forces associated with the n
tive charge of dust particles, a number of other physi
mechanisms influencing their arrangement are under inv
gation, as an examination of the literature will show. Mo
notable here are the anisotropic forces associated with
fluxes drifting toward the electrodes of the gas-discha
device.22–26 The huge negative charge of the dust partic
interacts with plasma ions and, as a result, in the vicinity
a dust particle regions are formed with elevated or redu
ion density, which polarizes the background plasma. The
larization of a dusty plasma is of great interest, as the res
ing forces can induce capture of other dust particles if th
mean kinetic energy is not too large. Laboratory experime
conducted by a number of authors have confirmed the e
tence of anisotropic interaction forces between d
particles.1,11,27–31The anisotropy of the interaction is consi
ered at present to be the physical reason for the vertica
dering in the crystal-like and linear structures formed by d
particles. Numerical calculations based on the quasipar
method24,25 within the framework of a simple two
dimensional model, in which the plasma is treated as a liq
and the dust particles are treated as delocalized objects
acterized by narrow Gaussian distributions, have dem
strated the possibility of there being many ordered equi
rium configurations, with energies that depend on both
charge-to-mass ratio of the dust particles and on the num
of levitating particles in the supporting potential field of th
discharge. As the number of levitating particles in the tr
increases, vertical ordering becomes more likely.

Limitations of the model24,25 have, to a significant de
gree, been overcome by a more realistic three-dimensi
model,26 which considers a two-layer crystal of dust particl
in a trap with hf discharge plasma. The possibility of ins
bilities leading to horizontal oscillations of the dust particl
when the neutral gas pressure is reduced has been inv
gated; such oscillations then result in anomalous heating
melting of the crystal structures. The given model consid
ion fluxes, and collisions and charge exchange between
with atoms of the neutral gas are taken into account. A
result of the strong attraction, not only can ions be captu
by the potential wells of dust particles, but uncaptured io
can be focused, leading to the emergence of regions of
hanced positive charge density. Under these conditions,
chanical forces result from changes in the momenta
trajectories of ions flying past and impacting dust particl
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and from electrical forces associated with the existence
stationary regions with enhanced ion density. These reg
are situated near dust particles along the axis of the cath
plasma discharge.24–26 Taking mechanical forces into ac
count is important for very small particles when these forc
exceed the weight of the particles and interaction forces w
neutral gas atoms. Electric potential forces are important
both small and large dust particles, and their existence le
to attraction between the particles, which is the physical r
son for their vertical ordering. Reference 26 also shows t
a region with enhanced ion density can be replaced by
equivalent positive charge at a distance on the order of
Debye radius from the dust particle, where the charge
the distance are functions of the neutral gas pressure
other characteristics of the gas discharge. The introductio
an equivalent charge has made it possible to formulate
analytic model explaining the emergence of oscillations
the dust particles as the pressure is reduced, resultin
anomalous heating and melting of the crystal structure.

The main content of the present paper consists in
formulation of a model in which the effective interactio
potential of dust particles with one another takes into acco
the main physical phenomena discovered in Refs. 22–
and a Monte Carlo calculation of the ordered structures a
ing in a dusty plasma. The model possesses certain exce
features. It introduces the position dependence of the ch
of the dispersed particles in the glow-dischargestratum,
considers potential interaction forces between the dispe
particles. It is shown that energy is exchanged between
power supply feeding the discharge and the dispersed
ticles due to a change in their charge, and also due to
interaction with the electric field of the stratum, which cou
teracts the weight of the dispersed particles and levita
them. Inhomogeneities in the spatial distribution of charge
the background plasma of the stratum are taken into acco
these result from interaction of the huge negative charge
dispersed particle with the ion flux of the discharge. T
action of the negative charge of the dispersed particles on
ions flying from the anode to the cathode is the physi
reason for their focusing, the emergence of zones with
hanced ion density, and the emergence of a spatial dip
moment in the interaction of the dispersed particles. Em
gent anisotropy of the interaction between dispersed parti
leads to a certain amount of mutual attraction in the direct
of the discharge axis in the cylindrical tube and repulsion
the perpendicular direction.

Monte Carlo calculations explain the experimentally o
served formation of threadlike structures of dispersed p
ticles in a stratum, and ‘‘transverse crystallization’’ of the
‘‘threads’’ under the conditions of the experiment.15–17

2. ANALYSIS OF PHYSICAL CONDITIONS OF A GAS
DISCHARGE, AND CONSTRUCTION OF A GENERIC DUST-
PARTICLE INTERACTION POTENTIAL

In general, to find the forces acting on a particle and
effective interaction potential, it is necessary to solve
Poisson equation with allowance for the external source
local charges: electrons, ions, and solid particles wh
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charge itself depends on the total local potential. Finding
self-consistent electric potential and knowing the charge
the particle, it is possible to determine the force acting on
particle by the remaining particles. However, such a s
consistent task is hard to fulfill. Therefore it is convenient
separate out from the total interaction the force due to
interaction between the dust particles, considering
plasma as a background against which this interaction
folds. Separating out the interaction forces and construc
of an effective potential must be done in such a way as
satisfy the equations of electrostatics following from Ma
well’s equations. Here it is necessary to recall that the qu
tion of the form of the effective potential has still not be
solved.

To solve the given problem, we consider the physi
conditions necessary for the emergence of strata in a
discharge plasma, and we also discuss the characteristics
potential trap holding charged dust particles, which is crea
by the electrostatic fields of the stratum and the walls of
discharge tube. The strata in a low-pressure discharge
been well examined experimentally.32,33 In a positive dis-
charge column under the conditions of interest, the loss
energy by the electrons in elastic collisions is negligib
small and the electron distribution function is formed und
the action of the electric field and the inelastic collision
This can lead to the emergence of strata, i.e., spatial per
icity of the plasma parameters with characteristic scale
the order of a few centimeters. The electron density, the e
tron energy distribution, and the electric field are highly
homogeneous along the length of a stratum. The electric fi
is relatively large at the head of the stratum~maximum
around 10–15 W/cm!—the region occupying 25–30% of th
length of the stratum, and small~around 1 W/cm! outside this
region. The maximum in the electron density is shifted re
tive to the maximum of the field strength toward the anode33

The electron energy distribution is strongly bimodal,33 and at
the head of the stratum a second maximum domina
whose center lies near the excitation potential«1 of the neu-
tral gas atoms. Due to the high floating potential of the wa
of the discharge tube, the potential relief of the stratum ha
strongly two-dimensional character: the center-to-wall pot
tial difference at the head of the stratum reaches 20–3
Thus, at the head of each stratum there is an electros
trap, which in the case of vertical orientation is capable
keeping particles with high enough charge and low eno
mass from falling to the bottom, while the strong radial fie
prevents them from reaching the walls of the discharge tu

For the purpose of theoretical estimates, according to
viewpoint adopted in the literature,19–21 it may be assumed
that the charge of the dust particles is proportional to
floating potential of the plasma, which in turn is determin
by the balance of electron and ion fluxes incident upon
dust particle. The electron fluxes depend on the asympt
behavior of the electron distribution function at high en
gies. The specific form of the functionQ(r ) is determined by
the design of the gas-discharge setup, the arrangement o
electrodes, choice of neutral gas, conditions of the gas
charge, etc. The variation of the floating potential, whi
follows from the observed variation of the potential of t
e
f
e
f-

e
e
n-
n
o

s-

l
s-
f a
d
e
ve

of

r
.
d-
n
c-
-
ld

-

s,

s
a
-

V.
tic
f
h

e.
e

e

e
tic
-

the
s-

walls along the length of the stratum,33 leads primarily to a
height dependence of the charge on the particles. As a re
the dust particles do not comprise a closed subsystem,
they can exchange charge and energy with the gas-disch
plasma. Below, in constructing the model, we assume
the charge of a dust particle is a prescribed function of
spatial coordinates,Q(r ), which requires some modificatio
of traditional electrostatics.

As is well known,34 it follows from Maxwell’s equations
that the electromagnetic static and time-independent fie
are described by two pairs of independent equations:

div E5r/«0 , curlE50 ~1!

and

curlB5 j /c2«0 , div B50. ~2!

The first pair of equations describes the electric fields, a
the second, the magnetic fields. Despite the fact that mo
of the particles can lead to local variation of the electric a
magnetic fields, if the conditions

unEu/nt! j /«0 , unBu/nt!unEu/unr u

are satisfied, the mutual influence of the electric and m
netic fields can be neglected. It is just this case that is r
ized under the conditions of our experiment. In what follow
we will be interested in the electric fields that emerge in
dusty glow-discharge plasma, and the equations of elec
statics~1! will be used as a consistency check on the mod

As was already noted, the spatial variation of the cha
Q(r ) in the plasma can be described, assuming that

Q~r !5Cf t~r !, ~3!

whereC.4p«0Rp is a coefficient that has the order of ma
nitude of the capacitance of the dust particle (Rp is the radius
of the particle! andf t(r ) is the position-dependent floatin
potential of the plasma. Despite the fact that formula~3! is
outwardly similar to the familiar electrostatic relation, it
important to note an important difference in conte
Whereas in electrostatics the analogous relation establish
linear relationship between an electric charge and the ele
potential created by it, for a plasma with condensed partic
this formula establishes a relationship between the elec
charge of a particle and the electric potential produced, in
final analysis, by external sources, e.g., electrode system
other charges in the plasma. One can imagine a capa
filled with particles whose charge is proportional to the ele
tric potential at a given point. It is easy to show that t
capacitance of such a capacitor, defined as the ratio of
total electric charge between the plates to the potential
ference of the plates will differ from the capacitance of
capacitor filled with particles whose electric charge does
depend on the electric potential at a given point.

The work required to move dust particles with positio
dependent charge is given by the expression
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W1252
Q~0!

4p«0
S Q̃~r2!

ur2u
2

Q̃~r1!

ur1u D , ~4!

whose validity is postulated in the present work in line w
the viewpoint adopted in the literature19–21that the electrical
forces describing the interaction between the dust parti
are potential forces. Let us consider the physical meanin
expression~4!. The quantityW12 is equal to the work per-
formed by the chargeQ̃(r ) as it is moved from the pointr1

to the pointr2, where this charge has the valueQ̃(0) at the
origin. Let the pointsr1 and r25r11d s̄ lie infinitesimally
close to each other and be separated by the distanceud s̄u.
Then to within linear terms inud s̄u the work W12 can be
represented in the form

dW125~F,d s̄!52
Q~0!

4p«0
F ~Q~r2!2Q~r1!!

ur2u

2Q̃~r1!S 1

ur2u
2

1

ur1u D G
.2

Q~0!Q̃~r1!

4p«0
F S ¹̄S 1

ur1u D ,d s̄D
1

¹̄ ln~ uQ̃~r !u,d s̄!

ur1u G , ~5!

where¹̄ is the gradient operator.
As a result, the force due to the chargeQ(0) acting on

the chargeQ̃(r1) in the plasma has the form

F~r1!5
Q~0!Q̃~r1!

4p«0
F r1

ur1u3
2

¹ lnuQ̃~r1!u
ur1u G

5
Q~0!Q̃~r1!

4p«0
F r1

ur1u3
2¹@11 lnuf t~r1!/f t~0!u#ur1uG .

~6!

Accordingly, we define the electric field strength as the ra
of the force acting on a charge to the magnitude of t
charge

E~r1!5
Q~0!

4p«0
F r1

ur1u3
2

¹ lnuQ̃~r1!u
ur1u G

5
Q~0!

4p«0
F r1

ur1u3
2

¹@11 lnuf t~r1!/f t~0!u#
ur1u G . ~7!

The first term in expression~6! and the first term in expres
sion ~7! correspond to the usual Coulomb force calcula
for constant charges. The second term in each of those
pressions corresponds to the component of the force du
the dependence of the charges of the dust particles on
size and type of dust particle, and are completely determi
by the gradient of the logarithmic derivative of the floatin
potential of the particle in the plasma. For like charges t
component of the force acts in the direction of regions w
the smallest charge~in magnitude!, and for unlike charges i
acts in the opposite direction. As a result, the dust particle
s
of

o
t

d
x-
to
he
d

s

in

a stationary gas-discharge plasma can move into reg
with minimal energy of repulsion. Thus, thanks to tim
independent charge and energy exchange with the plas
the open subsystem of dust particles tends to seek con
rations with minimal energy of repulsion corresponding
the equilibrium state at a certain effective temperature of
dust particles. The latter can result from the influx of ener
from the power supply via the aforementioned processes,
the efflux of energy from the dust particles as a result
collisions with the neutral gas atoms.

Bearing in mind that the chargeQ(r0) is located at the
point r0, and also that

E~r1 ,r0!52¹w~r1 ,r0!,

we find from Eq.~7! that the electric potential of the field
created by a charge that depends on particle position is

w~r ,r0!5
1

4p«0

Q~r0!@11 lnuf t~r !/f t~r0!u#
ur2r0u

1const.

~8!

If the magnitudes of the charges do not depend on the sp
variables, then expression~8! automatically goes over to th
familiar expression of electrostatics. Recall that the work a
the difference in potential energies in this case are de
mined by relation~4!, and that the transformation to relatio
~4! from expression~8! through the electric field strength an
the interaction potential must be performed in reverse ord

We now check whether Maxwell’s equations~1! still
hold in the proposed model. Obviously, the second equa
curlE50 is satisfied. It is not hard to show that the dive
gence of the electric fieldE satisfies the equation

div E5 lim
V→0

1

V R
S
E ds5 lim

V→0

Q~0!

4p«0

1

V F4pE
V
d~r !dr1

1 R
S

~¹ lnuQ~r !u,n!

ur1u
ur1u2 sinududwG ,

whered(r1) is the Dirac delta function,ur1u2sinu du dw is
the surface element~of the surfaceS), andn is the normal to
the surfaceS. To reduce this to differential form, we let th
volumeV containing the origin tend to zero, assuming for t
estimates that the volume is a sphere of radiusk. Then for
small k we have

div E5
Q~0!

4p«0
@4p1O$k%#

1

Dv
,

where O$k% is a small quantity of orderk and Dv is an
infinitesimal volume. In the limitk→0 we obtain

div E5
r

«0
,

wherer5Q(0)/nv is the charge density. In the above trea
ment the origin can be chosen at any point in space; co
quently, the first of the equations of electrostatics~1! is ful-
filled.

Thus, the treatment based on the postulate~4! shows that
in a model taking into account the dependence of the cha
of the dust particles on the spatial variables, the generic p
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wise potential energies of the interaction of the particles
the plasma can be described by a function of the form

V~r1 ,r2!5
1

4p«0

Q~r1!Q~r2!

ur12r2u
. ~9!

The potential energy of the interaction of two identica
oriented dipoles with moment armd, in which the negative
charge is greater than the positive charge, can be writte
the form

Vd~r1 ,r2!5E
V
E

V

rd~r1 , r̃1!rd~r2 , r̃2!dr̃1dr̃2

u r̃22 r̃1u
,

where

r~r1 , r̃1!5d~ r̃12r1!Q2~ r̃1!

1d~ r̃12~r11de1!!Q1~ r̃1!,

r~r2 , r̃2!5d~ r̃22r2!Q2~ r̃2!

1d~ r̃22~r21de1!!Q1~ r̃2!

are the spatial charge densities,d(r ) is the Dirac delta func-
tion, Q2 is the negative charge,Q1 is the positive charge
ande1 is the unit radius vector extending from the negat
charge of the dipole to the positive charge.

If the moment armd of the dipole is less than the dis
tance between dipoles, then invoking the smallness of
ratio d/ur22r1u, we can perform a multipole expansion. As
result, the potentialVd(r1 ,r2) can be written in the form

Vd~r1 ,r2!5
Qs

1Qs
2

ur12u
1

P1Qs
22P2Qs

1

ur12u2

1
s1Qs

21s2Qs
123P1P21Q1

1 Q1
2 d2

ur12u3
1 . . . ,

~10!

where r125r22r1 is the radius vector extending from th
negative charge of the first dipole to the negative charge
the second dipole,

Qs
l 5Qs~r l !5E

V
r~r l , r̃1!dr̃15Q2~r l !1Q1~r l1de1!

is the excess negative charge of the dipole,

Pl5P~r l !5E
V
u r̃1ur~r l , r̃1!cosu dr̃1

5dQ1~r l1de1!cosud

is the dipole moment (u is the angle between the vectorsr12

ande1), and

s l5s~r l !5E
V
u r̃1u2~~3 cos2u21!/2!r~r l , r̃1!dr̃1

5d2Q1~r l1de1!~3cos2ud21!/2

is the quadrupole moment.
n

in

e

of

3. EFFECTIVE INTERACTION POTENTIAL BETWEEN DUST
PARTICLES

At present several physical mechanisms are being
cussed in the literature that influence both the balance
gravitational and electrical forces of the levitating dust p
ticles and the interaction between them. From our point
view, along with the partial screening of the charge of t
dust particles by the electrons and ions of the plasma
interact strongly with them, the emergence of regions w
enhanced free ion density as a consequence of the focu
action of the large negative charge of the dust particles
the ion current of the plasma discharge is very important

As has already been mentioned, the existence of zo
with enhanced ion density along the path of the ion curr
behind the dust particles was proved in Ref. 26, where
Poisson equation was also solved and charge exchange
cesses and collisions of ions with atoms were taken into
count by a Monte Carlo calculation. In this same referen
characteristics of the positive point charge equivalent to
ion clouds were calculated and the distance from it to
dust particle was found. In Ref. 26 it was also shown that
magnitude of the equivalent positive charge can reach o
third of the charge on the dust particle, and its distancd
from the particle is at most of the order of the Debye rad
r D . Usually, for dust particles in a gas-discharge plasma
mean distance between the dust particles^r & is greater than
the Debye radius, and consequently according to Ref. 2
is also greater than the distanced.

Plasma screening of the dust particles and the effec
them of the electron and ion currents were taken into
count, for example, in Ref. 9, where it was shown that
pairwise interaction potentialw̃(r1 ,r2) at distances less tha
the mean distance between the particles is screened by
Debye exponential factor, and at distances of the order
few Debye radii it converges to its asymptotic limit, which
proportional to the inverse square of the distance between
particles.

Thus, introducing the effective positive point chargeQ1

to account for regions with enhanced ion density and retu
ing to the question of the effective pairwise interaction p
tential between dust particlesV(r i j ) located a distancer i j

from each other, we can adopt the following approximatio
based on the results of numerical calculations:9,24–26

U~r i ,r j !5
1

4p«0

Qs~r i !Qs~r j !

ur i2r j u
expS 2

ur i2r j u
r D

D
1

Ã

ur i2r j u2
~12D~ ur i2r j u!!

1
PiQs

j 2PjQs
i

ur i2r j u2
~12D̃~ ur i2r j u!!

1
s iQs

j 1s jQs
i 23Pi Pj1Q1

1 Q1
2 d2

ur i2r j u3

3~12D̃~ ur i2r j u!!, ~11!

where r i and r j are the radius vectors of thei th and j th
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particle (ur i j u5ur i2r j u), D̃(ur i j u) and D(ur i j u) are matching
functions, which range from 1 to 2 under our conditions
distances of 1 and 2 Debye radii, respectively, andÃ is the
matching constant.
st
i

by
th

s

f

d

,

th
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tri
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pi
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t
In the calculations it is convenient to choose as the u

of length to be the Debye radius, which in the given mod
can be taken to be independent of the spatial variables.
then have
bU~r i ,r j !5
be2

4p«0

Zs~r i !Zs~r j !

r D
H exp~2ur i j u!

ur i j u
1

A

ur i j u2
~12D~ ur i j u!!1

d cos~u!@Z1~r i !/Zs~r i !2Z1~r j !/Zs~r j !#

ur i j u2
~12D̃~ ur i j u!!

1
d2@Z1~r i !Z1~r j !/Zs~r i !Zs~r j !#@~Z2~r i !/Z1~r i !1Z2~r j !/Z1~r j !!~3cos2~u!21!/2#

ur i j u3
~12D̃~ ur i j u!!J . ~12!
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Here b51/kTp , kTp is the energy temperature of the du
particles,Z(r i) is the charge on a dust particle expressed
units of the electron charge,Q(r i)5Z(r i)e, and distances
are reduced to dimensionless form by scaling to the De
radiusr D , which for simple estimates can be chosen in
form r D

2 5kTg/4pe2(ne1ni) (Tg is the gas temperature!.
We simplify the given potential by takingd, e1 , and the

ratiosZ1
i /Zs

i andZ2
i /Z1

i to be equal for all the dust particle
( i 51, . . . ,N). Then the second term of the order ofd in the
effective potential~12!, which describes an interaction o
charge–dipole type, vanishes. We finally obtain

bU~r i ,r j !5G~r i ,r j !H exp~2ur i j u!
ur i j u

1
Ã

ur i j u2
~12D~ ur i j u!!

1J
@ ur i j u223~r i j

z !2#

ur i j u5
~12D̃~ ur i j u!!J . ~13!

Here J5d2uxu/(11x2) (x5^Z2(r i)/Z1(r i)& is the mean
ratio of charges in the pair!,

G~r i ,r j !5
be2

4p«0

Zs~r i !Zs~ r̄ j !

r D
'G5

Zp
2e2

4p«0kTpr D

is the interaction parameter, which can also be represente
the form

G5
gp^r &

r D
,

where gp5Zp
2e2/4p«0kTp^r & is the nonideality parameter

Zp is the mean particle charge, and^r &5(4pnp/3)21/3 is the
mean distance between macroparticles. It follows from
results obtained in Ref. 26 that the quantityx under gas-
discharge conditions satisfies the inequalityx,23.

Note again that the potential~13! allows for a number of
physical factors that influence the interaction of dust p
ticles in the plasma. First, it allows for the spatial depe
dence of particle charge on the floating potential. Second,
first term in brackets, describing the spherically symme
part of the interaction, takes account of the screening of d
particles by plasma electrons and ions, which inter
strongly with them. The third term describes the anisotro
part of the interaction of the dust particles resulting fro
focusing of the ion current by highly charged dust particl
n

e
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-
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It follows from the form of the effective potential that if th
dust particles are arranged vertically~stacked! one above an-
other ~along the discharge (z) axis!, i.e., r'r z), then the
third term in the potential becomes negative, which cor
sponds to the emergence of attraction between the parti
If the particles are arranged in a horizontal plane (r @r z),
then this term is positive, which implies that the particl
repel. The matching functionD̃ also allows for destruction o
ion clouds when dust particles approach to within distan
on the order of the Debye radius.

Equation~13! for the interaction potential of two dus
particles in the plasma can be verified experimentally. M
surements of the forces between two dust particles mus
performed under the same conditions as the dust cry
preparation experiments. In such an experiment it will
possible to determine the parameters entering into Eq.~13!:
x, the ratio of the effective screening charge of the ions~if it
exists! to the particle charge, andd, the dipole moment. Such
experiments themselves on the interaction of two dust p
ticles, apart from their stated purpose to measure the par
eters used to model the dust crystal, are fundamentally
portant in their own right, since they enable one to choos
faithful model from among existing candidates for the forc
that act on a dust particle in a plasma.

To conclude this section we note that the mechan
forces associated with variation of the momenta and tra
tories of the ions flying into the field of a dust particle can
taken into account with the help of an inhomogeneous c
rection to the gravitational component of the forces on
dust particle. This correction should be proportional to t
spatial distribution of the ion current in the discharge and c
be prescribeda priori or found by a self-consistent approac

4. NUMERICAL RESULTS

Numerical modeling of plasma with a dispersed pha
was performed by the standard Monte Carlo method,35 which
considers a finite number of particlesN distributed over a
cell of extentL. In the present calculations, considering t
speed of presently available computers and a reasonable
culation time~one point per day!, we decided to limit the
number of particles toN53000. The cell sizeL, which it is
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also convenient to express in units of the Debye radius,
chosen such that two strata could be situated in it. T
length turns out to beL5700r D .

The parameters of the electric fields of the stratum w
chosen to be close to the experimentally measured valu33

The walls of the cylindrical tube, of radiusRt515 mm, ex-
erted a force on the dust particles, whose potential can
expressed in the form

fw5f t~r /Rt!
3/2, r 25x21y2,

f t510120/~11~~z2z0!/dw!2!

~potential in volts at the walls of the tube!, z050.8 mm, and
dw54 mm. The interaction potential of the dust particles w
given by Eq.~13! with Debye radiusr D50.1 mm. Along the
z axis the force of gravity and the supporting electric fie
with potentialfz514/(11(z/dz)

2), wheredz51 mm, acted
on the dust particles. In the course of the calculations
quantitiesG and L were fixed while the parameterJ was
varied from 0.05 to 0.4, which corresponds ford'1 to the
range of valuesuxu5uQ2 /Q1u from 22 to 4. The physica
meaning of an increase in the absolute value of the param
x depends on how the neutral gas pressure in the disch
plasma is varied. For example, increasing neutral gas p
sure reduces the mean free path of the ions and hinders

FIG. 1. Logarithm of the ratio of the interparticle interaction potential to
Coulomb potential:1 — Debye potential,2 — Debye potential going over
to the asymptotic dependencer 22. 3, 4 — upper and lower boundaries o
the potential~13! for J50.1 anduxu'12.
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focusing beyond the dust particle. According to the calcu
tions of Ref. 26, the variation of the absolute value of t
parameterx over the given range corresponds to ga
discharge conditions and variation of the pressure over
range 20–200 Pa.

The results of Monte Carlo calculations presented be
were obtained with a model in which the interaction of du
particles is described by the potential~13!. Figure 1 com-
pares the potential~13! with the Coulomb and Debye poten
tials, and with the Debye potential trailing off at large di
tances to its asymptotic limitr 22. For convenience, the ratio
of the given potentials to the Coulomb potential is plotted
a logarithmic scale in the figure. Thus, the ordinate of
Coulomb potential in Fig. 1 is identically equal to zero, t
Debye potential is represented by the linear dependenc1,
the Debye potential with asymptotic limitr 22 corresponds to
curve 2, and curves3 and 4 are the potential~13! for par-
ticles located respectively in a horizontal plane and vertica
one above the other. All of the represented repulsion po
tials are much softer than the Coulomb potential.

Let us consider the results of the Monte Carlo calcu
tions. For the given axially symmetric problem, Fig. 2 d
picts the probability distribution of the dust particles ov
charge for two strata located one above the other (J50.05
anduxu'22). The height of the particle in the discharge tu
is plotted along the vertical axis, and the magnitude of

FIG. 2. Probability distribution of the charge on the dust particles,Zp , in
units of 105e in the upper and lower strata forJ50.05 anduxu'22.
FIG. 3. Thin vertical cross sections~of finite thickness!
in the upper and lower strata forJ50.05 anduxu'22
~a! andJ50.2 anduxu'7 ~b!.
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FIG. 4. Thin vertical cross sections~of finite thick-
ness! of dust structures in the strata withJ50.05
and uxu'22 ~a! andJ50.2 anduxu'7 ~b!.
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chargeZp is plotted along the horizontal axis in units o
105e. The particle distribution in the upper stratum is mo
extended. However, the spread in charge does not ex
17% since the dust particles are mainly located in that par
the stratum where the magnitude of the floating potentia
less and varies quite smoothly. Varying the pressure
J50.2 anduxu'7 has hardly any effect on the distributio
These data confirm our earlier conclusion about the prefe
location of particles in that part of the stratum where t
potential energy of repulsion between particles is lower
appears that the formation of very long, isolated thread
structures is also possible. This can be energetically m
favorable, not only thanks to the additional attraction in t
vertical direction, but also thanks to the presence of the n
Coulomb correction to the Coulomb forces discussed abo
which is directed opposite the gradient of the depende
Q(r ) ~in the given case, from the cathode to the anod!.
Questions of the possible existence of such structures
conditions for their emergence require further study.

Figure 3 shows vertical axial cross sections of fin
thickness, of two dust clouds filling out strata located o
above the other. The vertical distance between strat
roughly 50•7r D'3.5 cm, which approximately correspond
to the conditions of our experiment. In the given figure t
structure of the dust clouds in the strata is distorted since
scale of the vertical axis is 10 times larger than the horiz
tal. A properly scaled picture of the vertical structure of t
ed
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dust clouds is shown in Fig. 4~upper stratum!, where the
scales of the vertical and horizontal axes are equal. No
preciable difference in the structure of the dust particles
the upper and lower strata emerges in the given model. G
erally speaking, it must be borne in mind that varying the g
pressure alters the characteristics of the strata, since the
tric field in a gas discharge depends on the product of
pressure and the radius of the discharge tube.

Figures 4 and 5 show vertical and horizontal axial th
cross sections, of finite thickness, of typical structures of d
particles in a stratum forJ50.05 (uxu'22) and J50.2
(uxu'7), respectively. Distances are given in units of t
Monte Carlo cellL. Figure 4 plots distance along the diam
eter of the discharge tube along the horizontal axis, with
point 0.5 corresponding to the charge axis; each divis
~0.01! corresponds to roughly 7r D or 700mm. Distance
along thez axis is plotted along the vertical axis. From a
analysis of the figures we may conclude that for high neu
gas pressures the dust particles for the most part are arra
randomly, while at lower pressures the dust particles form
hexagonal crystal lattice of threadlike structures of arbitr
length in the transverse direction. The threadlike structu
can be vertically displaced relative to one another along
discharge axis. The given configuration of threadlike str
tures is reminiscent of structures resulting from the em
gence of an ordered phase in liquid crystals.

The two-point correlation functions corresponding to t
FIG. 5. Thin horizontal cross sections~of finite
thickness! of dust structures in the strata with
J50.05 anduxu'22 ~a! and J50.2 and uxu'7
~b!.
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FIG. 6. Two-point correlation functions of the hori
zontal ~curves1! and vertical~curves2! cross sec-
tions of the dust structures depicted in Figs. 5 and
respectively.
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given cross sections forJ50.05 andJ50.2 are plotted in
Figs. 6a and 6b. The correlation functions were calcula
for the interior particles of the depicted cross sections.
J50.05 the two-point correlation functions of the vertic
and horizontal cross sections are essentially identical.
only significant difference, associated with attraction of t
dust particles in the vertical direction, leads to an additio
peak at small distances. Decreasing the pressure (J50.2)
leads to substantial differences in the pairwise correla
functions of the vertical and horizontal cross sections@Fig.
6~b!#. The two-point correlation functions of the vertic
cross section have pronounced peaks corresponding to
emergence of ordered structures. The peaks increase at
distances as a consequence of attraction between particl
the vertical direction. The correlation function of the ho
zontal cross section has a form characteristic of crystal-
structures.

As noted above, the physical reasons for the emerge
of these structures when the neutral gas pressure is red
are an increase in the mean free path of the ions and,
consequence of the focusing action of the negatively char
dust particles on the ion current, the formation of clouds w
enhanced ion density between them. As a result, in the
rection of the discharge axis, against the background of
spherically symmetric part of the effective potential, an a
ditional attraction emerges between the dust particles, w
in the horizontal plane an additional positive repulsi
d
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emerges. This phenomenon is noticeable in Figs. 4, 5, an
In the displayed cross sections it is possible to discern
increase in the horizontal mean distance between the
particles as the pressure is reduced. The particles in rect
ear threadlike structures become essentially completely
dered in the vertical direction.

For a gas discharge, typical configurations of dust p
ticles in a stratum are shown in Figs. 7 and 8 (p50.5 and
0.2 Torr, I 50.4 and 0.7 mA, dimensions of the fram
637 mm!.17 Comparison of Figs. 4, 5, and 6 and Figs. 7 a
8 reveals good agreement between the numerical and ex
mental results. In the horizontal cross section, the emerge
of hexagonal ordered structures is observed. In the vert
cross sections the emergence of threadlike structures ca
distinctly made out. The mean distance between particle
both the horizontal and vertical cross sections is roug
280mm.

Note that in Ref. 17 the formation of extended threadli
structures several centimeters in length was also obse
upon the coalescence of several strata, which, as n
above, is possibly related to the non-Coulomb force direc
opposite the gradient of the dependenceQ(r ) ~upwards, to-
ward the anode!. This force should contribute to the balanc
between the gravitational force and the supporting electr
force that causes the dust particles to levitate.

The resultant threadlike structures17 are distinctly differ-
ent from the formations observed in erosion discharg
d
n

FIG. 7. Thin horizontal cross section~of finite
thickness! of the dust structure in the stratum an
the corresponding two-point correlation functio
~Ref. 17!.
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FIG. 8. Thin vertical cross section~of finite thickness! of
the dust structure in the stratum and the corresponding t
point correlation function~Ref. 17!.
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where rapid coagulation of submicron aerosols leads to
emergence of threadlike three-dimensional structures.35

5. CONCLUSION

A model has been formulated in which the pairwise
teraction potential of dust particles takes into account
spatial dependence of the particle charges on the floa
potential, and screening of the dust particles by plasma e
trons and ions that interact strongly with them~and them-
selves undergo vigorous recombination!. The pairwise inter-
action potential at distances less than the mean interpar
distance is screened by the Debye exponential factor, an
distances on the order of a few Debye radii the interact
potential trails off to its asymptotic limit, proportional to th
inverse square of the interparticle distance. We have sh
that the spatial dependence of the particle charges lead
the emergence of a non-Coulomb component of the inte
tion forces between particles, which is directed opposite
gradient of the logarithmic derivative of the floating potent
of the plasma. As a result, the open subsystem of dust
ticles, thanks to steady-state charge and energy exch
with the plasma, tends to seek configurations with minim
energy of repulsion, corresponding to the equilibrium sta
The model also takes into account focusing of the ion be
by large-radius dust particles, leading to polarization of
background plasma and the emergence of anisotropy in
ticle interactions.

We have performed a Monte Carlo study of order
structures that emerge in a dusty plasma. These calcula
explain the formation of threadlike structures of dispers
particles in a stratum, and the ‘‘transverse crystallization’’
these ‘‘threads’’ under the conditions of our experiment.15–17

We obtained the probability distribution of charges on t
dust particles levitating in a stratum. The results of our c
culations agree with the experimental data.15–17

We are deeply grateful to Yu. E. Lozovik, A. G
Khrapak, V. I. Molotkov, V. M. Torchinski�, and V. V.
Zhakovski� for helpful discussions and valuable remark
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Dynamics of formation of ordered structures in a thermal plasma with macroparticles
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The molecular dynamics method is used to model the formation of ordered structures of charged
macroparticles in a thermal plasma at atmospheric pressure. The results of the numerical
calculations are compared with the experimental data. It is shown that the ordered structure of
macroparticles detected experimentally is far from steady state, since the existence time
of the plasma in the experiment is less than the characteristic time of formation of the structure.
© 1999 American Institute of Physics.@S1063-7761~99!00503-X#
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1. INTRODUCTION

One of the main reasons for the significant interest ma
fested recently in the physics of a dusty plasma~a plasma
with macroparticles! is the recently discovered formation o
ordered structures of macroparticles in such a plasma.1–9 It is
customary to explain this ordering by the existence o
strong electrical interaction between the charged macro
ticles. Most experiments on the formation of ordered str
tures of macroparticles have been performed in a hi
frequency~hf! plasma discharge.1–4 Ordered structures hav
also been obtained in the laminar jet of an atmosphe
pressure thermal plasma at a temperature around 17005,6

in a stratified constant-current glow-discharge,8,9 and in a
double electric layer.7

The present work examines the dynamics of format
of ordered structures of macroparticles in experiments w
thermal plasma. The experimental setup used in these ex
ments was described in detail in Ref. 6. It includes a plas
generator~two-flame propane–air torch of Mekker type! cre-
ating a laminar plasma jet with uniform distribution of i
parameters~temperature, electron and ion densities! in the
region of the inner flame, a macroparticle feed system,
an extensive system of diagnostics allowing one to mea
the electronne and ionni densities, plasma temperatureTg ,
and macroparticle radiusRd and densitynd . In addition, a
photon correlation method was devised to allow detai
study of the dynamical characteristics of the system of m
roparticles. To measure the spatial arrangement of the m
roparticles, we used a time-of-flight counter, which allow
us to obtain the two-point correlation function.

The conditions of the described experiment differ s
nificantly from those of experiments in a gas dischar
which gives reason to hope for new insights into the s
organization of macroparticles in a plasma. First, thanks
thermal-electron emission the macroparticles acquire a p
tive charge. The second important feature characterizing
system of thermal plasma plus macroparticles is the rela
simplicity of achieving uniform conditions in the plasma a
the application of a wide array of diagnostic tools to det
mine the parameters of the plasma and macroparticles
4601063-7761/99/88(3)/5/$15.00
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nally, in contrast to gas-discharge experiments the system
question is nonstationary by design. The point here is that
two-point correlation function is measured 35 mm above
torch nozzle. Taking into account the velocity of the plasm
jet ('5 m/s!, we obtain for the plasma existence tim
t f t'7 ms. Thus, it would be wrong to compare the expe
mental data with calculations for stationary conditions~e.g.,
with Monte Carlo calculations!. It is necessary to model th
very process of formation of the ordered structure. T
present work investigates the temporal evolution of the tw
point correlation function. The calculations are based on
molecular dynamics method. The calculated results are c
pared with the results of experiment. Questions of the cha
ing and dynamical behavior of the system of macropartic
are also discussed.

2. MODEL

In order to ensure that the numerical model is correc
is necessary to analyze the main physical processes influ
ing the dynamics of the formation of the ordered structu
of macroparticles. Under the conditions of the experim
the randomly arranged neutral particles incident upon
plasma region are heated to the temperature of the amb
gas, acquire an electric charge, and begin to interact
simple estimate of the thermalization time gives~see also
Ref. 6!

t th5FpRd
2ngA 8Tg

pmg

2mg

md
G21

, ~1!

wheremd is the macroparticle mass, andng andmg are the
density and mass of the neutral component. For the co
tions of the experiment~see Table I! the thermalization time
is of the order oft th'531026 s. This is significantly less
than the existence time of the plasma. Consequently, it m
be assumed that heating of the macroparticles is essen
instantaneous.

Under the conditions of our experiment the macrop
ticle charge is determined by the absorption of electrons
ions of the plasma, and by emission of electrons from
© 1999 American Institute of Physics
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surface of the macroparticle via thermal-electron emiss
The charging dynamics are governed by the equation

dZd

dt
5I e

21I i
12I e

1 , ~2!

whereI e
2 is the emitted electron flux, andI i

1 and I e
1 are the

fluxes of the absorbed ions and electrons, respectively.
utilize expressions for the fluxes in the case of therm
emissive charging, given in Ref. 10:

I e
15pRd

2neA8Tg

pme
F11

Zde2

RdTg
G ,

I i
15pRd

2niA8Tg

pmi
expS 2

Zde2

RdTg
D , ~3!

I e
252pRd

2S meTg

2p\2 D 3/2

A8Tg

pme
F11

Zde2

RdTg
G

3expS 2
We

Tg
DexpS 2

Zde2

RdTg
D , ~4!

wherene( i ) and me( i ) are the density and mass of the ele
trons ~ions!, Zd is the charge of a macroparticle, andWe is
the work function of the electron. It is easy to see from E
~3! that

I e
1

I i
2

>Ami

me
@1,

so ion absorption can be neglected. The equilibrium cha
of the macroparticles in this case is given byI e

25I e
1 , which

for the conditions of our experiment (Tg51700 K,
Rd50.4mm, ne5731010cm23, We52.1 eV! gives
Zd'550. Equation~2! can in principle be solved numericall
to determine the time characterizing the charging of the m
roparticles. To estimate the characteristic charging time,
use the simple expressiontch5Zd /I e

1 , which givestch'4
31029 s. This time is more than three orders of magnitu
less than the existence time of the plasma. By virtue of
fact, we may assume that the charging is essentially ins
taneous. Moreover, this estimate shows that the charge
the macroparticles ‘‘tracks’’ their temperature, sin
tch!t th .

Another problem of correct modeling of a system
macroparticles in a plasma consists in the recently disc
ered experimental fact of a significant departure of the m
roparticle temperature corresponding to their random mo
from the temperature of the neutral component.11–13 It has
been shown that under certain conditions the kinetic te
perature of the macroparticles in a gas-discharge plasma

TABLE I. Parameters used in the simulation.

Tg51700 K P51 atm Zd5500

ne5731010 cm23 ni5431010 cm23 nd553107 cm23

l 517mm ld511mm Rd50.4mm
md51.6310212 g n f r59.63104 s21 Gc5150
Gd530 N5200 ts50.3ms
n.

e
l-

-

.

e

c-
e

e
is
n-
on

v-
c-
n

-
an

exceed the neutral gas temperature by a factor of a thous
despite the high efficiency of energy dissipation via fricti
with the neutral component in a weakly ionized plasma. P
cesses leading up to such a nonequilibrium condition
presently unknown. Therefore it has become necessar
examine the dynamical characteristics of the system of m
roparticles with regard to the conditions of our experime
with thermal plasma. Toward this end, a photon correlat
method was devised on the basis of the ‘‘Malvern’’ ser
correlator.14 The essence of the method consists in exam
ing the autocorrelation function of the laser radiation sc
tered by the system of macroparticles. Under cert
conditions,14,15 an analysis of the autocorrelation function
the scattered radiation yields information about the mag
tude of the diffusion coefficient of the macroparticles, a
consequently about their kinetic temperature.

The scheme of the photon correlation method is
scribed in detail in Ref. 16. Here we will dwell only briefl
on the main results of the measurements. Measurem
were performed over a wide range of plasma parame
~ion, electron, and macroparticle densities! and revealed the
weak influence of these parameters on the dynamical c
acteristics of the system of macroparticles. Figure 1 plots
dependence of the macroparticle diffusion coefficient on
temperature. For comparison, the two theoretically cal
lated curves are also plotted in the same figure. Curv1
corresponds to the hydrodynamic regimel f p!Rd (l f p is the
mean free path of the air molecules! and was calculated ac
cording to the formula

Dd5
Tg

6phRd
,

whereh is the viscosity of the medium. Curve2 corresponds
to the inverse free-molecule regime (l f p@Rd) and was cal-
culated according to the formula~see, e.g., Ref. 16!

Dd5
3Tg

3/2

8PRd
2~2pmg!1/2

,

where P is the gas pressure. Under the conditions of o
experiment l f p'0.8– 1.1mm, i.e., l f p;Rd and, conse-

FIG. 1. Temperature dependence of the diffusion coefficient of the cha
macroparticlesDd . Curves are the results of theoretical calculation~1 —
hydrodynamic regime,2 — free-molecule regime!.
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quently, a regime intermediate between the hydrodyna
regime and the free-molecule regime is realized. Never
less, Fig. 1 shows that curve2 ~the free-molecule regime!
provides a better description of the experimental resu
Thus, the experiment shows that under the conditions of
experiment, an ensemble of charged macroparticles beh
like an ordinary collection of Brownian particles with diffu
sion coefficient calculated in the free-molecule approxim
tion.

3. MODELING RESULTS

The system was modeled using the molecular dynam
method programmed into the KARAT computer code.17 The
two-dimensional equation of motion was solved for ea
macroparticle with allowance for the interaction betwe
macroparticles, the frictional force exerted by the neu
component, and a random force arising from collisions w
molecules of the ambient gas~the Brownian force!:

md

d2r k

dt2
5(

j Þk
F~r !U

r 5urk2r j u

r k2r j

ur k2r j u
2mdn f r

dr k

dt
1Fbr .

~5!

Here n f r is the friction frequency, calculated in accordan
with Sec. 2 with the formula that is valid for the free
molecule regime:

n f r5
8PRd

2

3md
A2pmg

Tg

~see also Ref. 16!, Fbr is the random Brownian force, an
F(r ) can be written in the form

F~r !52Zde
]fd

]r
5

Zd
2e2

r 2 F11
r

lGexpS 2
r

l D ~6!

under the assumption that the interaction potential betw
the macroparticles has the Debye form; herel is the screen-
ing length. At the initial moment the charged macropartic
~charging is essentially instantaneous! are randomly disposed
in the calculation region, consisting of a square with s
length L0. To model an infinite system, we used period
boundary conditions, which make it possible to avoid ed
effects and determine the macroparticle density. The t
dimensional macroparticle density was chosen such tha
mean interparticle distancel coincided with its value ob-
tained in a real three-dimensional experime
l 5(4pnd/3)21/3. The interaction between macroparticle
described by the screened Coulomb potential~6!, was cut off
at very small distances in order to avoid too small a time s
in the initial stage of the calculations; thus we setF(r )
5F( l 0) for r , l 0 ( l 050.3l ). In the calculations the time
step was set equal tots50.03/n f r . For these assignment
250,000 time steps were calculated per run. Therefore,
were forced to use two-dimensional geometry with a re
tively small number of particles (N5200). A larger number
of particles would have required too much calculation tim
Nevertheless, since we were calculating a system with a
too-large nonideality parameterGc , such that the correlation
ic
e-

s.
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h
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e
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e
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radius did not exceed severall, the given number of particles
was completely sufficient to obtain reliable results.

The parameter values used in the simulation are liste
Table I. They correspond to the conditions of an act
experiment5,6 and also to the parameters used in Monte Ca
calculations of the given system.18 The Coulomb interaction
parameterGc and the interaction parameter with screeni
taken into account,Gd , were calculated as follows:

Gc5
Zd

2e2

lTg
, Gd5

Zd
2e2

lTg
expS 2

l

l D . ~7!

Note that because of the significant concentration and r
tively large charge of the macroparticles, the ion and elect
densities turn out to be substantially different. The probl
of determining the screening radius for such a system
quires a special analysis, which lies beyond the scope of
present paper. In our calculations, it was set equal to
electron Debye radiusld5ATg/4pe2ne, so that screening by
ions could be neglected.

We go on now to the main results of the numerical sim
lation. They show that after relaxation the system arrives
state which we can nominally call liquid-like. This result
in agreement with the values of the nonideality parame
Gc and Gd . Figures 2a–2d show the temporal evolution
the two-point correlation functionR(r ), which we calculated
from the positions of the particles at a certain moment
time. Figure 2e was obtained by averagingR(r ) over time,
which is possible since in the time interval 40 ms,t,70 ms
the system reaches the equilibrium state and the two-p
correlation function becomes essentially constant. In the c
struction of the two-point correlation function the step inr
was chosen equal to 0.1l . For comparison, Fig. 2 also plot
the correlation function obtained directly in the experime
~dashed curve!.

Analysis of Fig. 2 Initially, closely spaced particles di
perse, as a result of which a region is formed where
two-point correlation function vanishes@Figs. 2~a! and 2~b!#.
This process concludes rapidly, since the repulsive force
tween particles increases abruptly with decreasing dista
between them. Next, the first maximum increases with
passage of time, and simultaneously higher-order peaks
gin to form @Fig. 2d#. The steady-state correlation functio
@Fig. 2e# is characterized by several pronounced maxim
which is characteristic of systems with close-range order
was in this sense that we called the final state of the sys
liquid-like.

The determination of the formation time of the order
structure remains, to a certain degree, arbitrary. Obviousl
depends on which spatial scale of the correlations is of in
est. The greater the distance at which the two-point corr
tion function approaches its final form, the longer the tim
needed for this to happen. Thus, for example, in our case
can say that the first three peaks form int f'35 ms. One can
also introduce the formation time of the first maximum of t
two-point correlation function,t1. In essence, this is the tim
needed for the emergence of any close-range order in
system. Numerical calculations shows that under our con
tions t1'5 ms.
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FIG. 2. Temporal evolution of the two-point corre
lation function. Solid curve — simulation, dashe
curve — experiment. Formation timet50.7 ~a!, 2
~b!, 5 ~c!, 7 ~d!, .40 ms~e!.
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As noted in the Introduction, one peculiarity of th
present experiment is the finite existence time of the plas
being t f t'7 ms. According to the numerical simulation th
implies that the structure being diagnosed in the experim
is still being formed, and consequently the two-point cor
lation function that has been measured is not the two-p
correlation function corresponding to the steady state. N
ertheless, the existence time of the plasma turns out to
completely sufficient for the emergence in the system
close-range order.

Figures 2a–2e enable us to compare the shape of
experimental two-point correlation function with that of th
calculated function. We make two remarks here. First,
experimental correlation function has only one peak, in co
plete agreement with the modeling results. Indeed, Fig. 2~d!
a,

nt
-
nt
v-
be
f

he

e
-

shows that fort57 ms the first maximum is already close
its final shape while the higher-order peaks are only beg
ning to form. Thus, the existence of just one peak is
plained by the fact that during the existence time of t
plasma the ordering process does not have time to play
completely. Second, the first maximum of the experimen
correlation function is significantly broader~by almost five-
fold! than the calculated function. One of the possible r
sons for this broadening, associated with peculiarities of
use of a laser time-of-flight counter, is discussed in Ref.
Another reason for this broadening could, in principle,
stochastic fluctuations of the macroparticle charges.19 How-
ever, as numerical estimates show, the frequency of th
fluctuations;tch

21 is large while their amplitudedZd /Zd

;1022 is so small that they probably cannot explain t



f
he
bl
on
e

an
th
a
s
ic
h
d
e
r
tio
th
e

d

rt

464 JETP 88 (3), March 1999 Nefedov et al.
observed effect. A definitive assessment of the reasons
this broadening of the autocorrelation peak requires furt
study. The numerical calculation presented here only ena
us to claim that it is in no way associated with the formati
of ordered structures due to electrostatic interaction betw
macroparticles.

4. CONCLUSION

Modeling the ordering of charged macroparticles in
atmospheric-pressure thermal plasma in application to
conditions of our experiments5,6 has required us to consider
number of processes. We have shown that macroparticle
charged very rapidly~in comparison with other characterist
times! when they are injected into the plasma region. T
photon correlation method has been used to examine the
namic behavior of the macroparticles. The numerical mod
ing results presented here show that the formation of orde
structures can be explained by the electrostatic interac
between macroparticles. The finite existence time of
plasma explains the presence of only one peak in the exp
mental correlation function, since the structure is observe
the process of formation.

This work was carried out with partial financial suppo
from the Russian Fund for Fundamental Research~Project
No. 98-02-16825! and INTAS–RFBR~Project No. 95-1335!.
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We study the kinetic model of the formation of the energy spectrum of nonthermal electrons
near the front of a quasilongitudinal, supercritical, collisionless shock wave. Nonresonant
interactions of the electrons and the fluctuations generated by kinetic instabilities of the ions in
the transition region inside the shock front play the main role in the heating and
preacceleration of electrons. We calculate the electron energy spectrum in the vicinity of the
shock wave and show that the heating and preacceleration of electrons occur on a scale of the order
of several hundred ion inertial lengths in the vicinity of the viscous discontinuity. Although
the electron distribution function is significantly nonequilibrium near the shock front, its low-
energy part can be approximated by a Maxwellian distribution. The effective electron
temperatureT2

eff behind the front, obtained in this manner, increases with the Mach number of
the shock wave slower than it would if it followed the Hugoniot adiabat. We determine
the condition under which the electron heating is ineffective but the electrons are effectively
accelerated to high energies. The high-energy asymptotic behavior of the distribution function is
that of a power law, with the exponent determined by the total compression ratio of the
plasma, as in the case of acceleration by the first-order Fermi mechanism. The model is used to
describe the case~important for applications! of acceleration of electrons by shock waves
with large total Mach numbers, with the structure of these waves modified by the nonlinear
interaction of nonthermal ions and consisting of an extended prefront with a smooth
variation of the macroscopic parameters and a viscous discontinuity in speed with a moderate
value of the Mach number. ©1999 American Institute of Physics.@S1063-7761~99!00603-4#
u
a
da
igh

no

a-
th

ta
lle
s

on
ly
a
ra
dy
th

e
ui
p

el

lly
ory
eth-
., in
ock

k
by

y
es

gths

e it
hat
the
a

nt
ha-
D
n
st-
al
e

c-
1. INTRODUCTION

The physical processes of relaxation of highly noneq
librium perturbations of plasma, responsible for the form
tion and structure of collisionless shock waves, are of fun
mental importance in modeling various objects with a h
energy release in cosmic plasma.1–5 Collisionless shock
waves in rarefied plasma serve as a universal source of
thermal charged particles and the observed radiation.1,6 In
the case of strong shock waves~with Alfvén Mach numbers
M exceeding several units!, the dissipation due to the anom
lous resistance of electrons proves to be insufficient and
structure of the shock front is determined by kinetic ins
bilities of the ions. Such collisionless shock waves are ca
supercritical.7 Here, to avoid any misunderstanding, we mu
bear in mind that the concept of a supercritical, collisi
shock wave in radiative gas dynamics is defined different8

In this paper we deal only with collisionless, supercritic
shock waves. Modeling collisionless shock waves in labo
tory conditions is extremely difficult, but there is a vast bo
of observational data on the structure of shock waves in
interplanetary medium.9,10 Computer simulations of the
structure of collisionless shock waves that use hybrid cod
which interpret protons as particles and electrons as a liq
have made it possible to describe the main features of su
critical, quasilongitudinal shock waves~with the angle be-
tween the normal to the front and the local magnetic fi
smaller thanp/4) ~see Refs. 11 and 12!. Note that the struc-
4651063-7761/99/88(3)/11/$15.00
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ture of the front and other manifestations differ substantia
for quasilongitudinal and quasitransverse waves. The the
of quasitransverse, collisionless shock waves and the m
ods used in observing such waves are described, e.g
Refs. 13–16. Here we examine only quasilongitudinal sh
waves.

The front of a quasilongitudinal, supercritical shoc
wave is an extremely extended transition region occupied
magnetic-field fluctuations with amplitudesdB/B;1 and
characteristic frequencies below the ion gyrofrequenc10

~Fig. 1!. The generation of fluctuations is due to instabiliti
in the interpenetrating multicurrent ion movements.11 The
width D of the front ~the transition region! of a quasilongi-
tudinal shock wave reaches several dozen ion inertial len
l i5c/vpi .

Computer simulation that uses hybrid codes has mad
possible to arrive at a very important result, i.e., the fact t
a group of reflected nonthermal ions detaches itself in
process of relaxation of fluctuations within the front of
supercritical, quasilongitudinal shock wave.11 The reflected
ions with a gyroradius exceeding the width of the shock fro
are then accelerated very efficiently, via the Fermi mec
nism, by converging plasma fluxes carrying MH
fluctuations.1,17,18,4 Electrons with gyroradiuses larger tha
the front width are also efficiently accelerated by the fir
order Fermi mechanism in the vicinity of a quasilongitudin
shock wave.19 However, a nonrelativistic electron must hav
an energy that ismp /me times higher than that of the respe
© 1999 American Institute of Physics
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tive proton to be injected into the Fermi acceleration mec
nism. Thus, the problem of electron injection actually
duces to forming a nonthermal electron distribution
energy up to energies of order (mp /me)T1, whereT1 is the
temperature of the plasma in the undisturbed region.20 Here
and in what follows we use labels 1 and 3 to indicate qu
tities that refer, respectively, to the incoming~toward the
front! and outgoing~away from the front! flows of plasma.
The label 2 indicates quantities that refer to the transit
region.

There is no way in which the hybrid-code description
electrons as a liquid can provide information about nonth
mal electrons. However, since magnetic-field fluctuations
the transition region of a supercritical shock wave are de
mined by kinetic instabilities of the ions, which carry a si
nificant portion of the energy dissipated in the shock wa
we can study the effect of magnetic-field fluctuations on
kinetics of the electrons, interpreting the latter as test p
ticles. In such an approach the electrons do not dynamic
affect the fluctuations. However, the effect of the electr
liquid on the dispersion properties of the waves is taken i
account in computer simulation based of hybrid codes. O
model relies on this fact. It allows calculating the electr
energy spectrum near a fast quasilongitudinal shock w
with a local Alfvén Mach number of the viscous discontin
ity, M, smaller than M,M* [(bmp /me)

1/2, where b
54pP/B2, with P the plasma pressure. Moreover, the mo
can be used for computer simulations of electron kinetics
the vicinity of extended, collisionless shock waves with lar
Mach numbers (M.M* ) propagating in a turbulent plasma
in particular, of shock waves of supernova shells with Ma

FIG. 1. Profile of a fluctuating magnetic field in the vicinity of a visco
discontinuity~according to the data of Bennett and Ellison12! with the char-
acteristic flow speed profile superimposed on it (z is measured in units of
c/vpi).
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numbers;100 and larger~see Sec. 5!. In this case, due to
nonlinear effects of the interaction of the accelerated p
ticles with the incoming flow of ions there is effectiv
smoothing of the ion speed profile by the pressure of the
accelerated particles, which penetrate the region of ‘‘und
turbed’’ flow before the shock front.1,4 The characteristic
scale of the region of smooth deceleration of the incom
flow, known as the prefront, isl p f;(v i /u)l i , wherel i and
v i are the transport mean free path and the speed of
accelerated nonthermal ions, which carry a significant p
tion of the flux energy thermalized in the shock wave, anu
is the speed of the shock front. A detailed computer simu
tion of the large-scale structure of such a shock wave
uses standard hybrid codes with a spatial resolution of o
l i is difficult since l p f@ l i . Such a shock wave can be su
cessfully modeled by the Monte Carlo method.4 It has also
been shown that the front of a strong collisionless sho
wave consists of an extended prefront and a viscous dis
tinuity in speed, corresponding to the local Mach numberM,
which is smaller than the total Mach number of the sho
wave.1,4,21Here the compression of matter at the discontin
ity ~on the scale of several hundredl i) can be much lower
than the total compression of the medium in the shock w
with allowance for compression in the prefront.

A remark is in order here. Long before the first resu
describing the structure of a collisionless shock wave mo
fied by the pressure of nonthermal particles were obtain
physical models of collision shock waves were being used
many-liquid radiative gas dynamics.8,22,23These models pre
dicted the structure of strong shock waves with a prefro
Furthermore, the conditions needed for the realization of d
continuous solutions for shock waves with an isoelectr
thermal discontinuity and of continuous flows as functions
the strength of the wave and the radiation pressure before
front were determined.23

We allow for the interaction of electrons with the pr
front ~on scales of orderl p f) in the adiabatic approximation
but study the problem of nonadiabatic heating and accel
tion of electrons at the density discontinuity with a Ma
number smaller thanM* by employing the model develope
below. If the local Alfvén Mach number of the incoming
flow in a strong shock wave exceedsM* , the thermal elec-
tron distribution becomes highly anisotropic and mode g
eration effects of the whistler type become importa
Levinson24,25 did a detailed study of electron acceleration
strong quasilongitudinal shock waves withM>M* . Earlier,
Cargill and Papadopoulos26 modeled nonadiabatic electro
heating in a quasitransverse shock wave withM>M* by the
hybrid-code method. The calculations showed the heatin
be highly efficient. As noted earlier, nonthermal electron d
tributions could not be studied directly by the hybrid co
method.

Note that we have limited our discussion to nonrelat
istic shock waves, in which flow dynamics is determined
the ion component. The modeling of relativistic shock wav
in an electron–positron plasma is discussed, e.g., in Refs
and 28. In Sec. 2 we discuss the kinetic model for describ
the electron spectrum in the vicinity of a collisionless sho
wave. In Sec. 3 we examine the effective electron tempe
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ture. Applications of the theory to direct observations
electrons in interplanetary shock waves are studied in Se
Finally, in Sec. 5 we give a brief description of the applic
tions of our model to galactic sources of hard electrom
netic radiation.

2. DESCRIPTION OF MODEL

We consider a collisionless shock wave propagating
plasma withb;1. If the Alfvén Mach number of the shoc
wave meets the conditionM,M* , the velocity of thermal
electrons exceeds that of the shock front. Here the ang
distribution of the electrons is almost isotropic.

We assume that the front of a supercritical shock wav
the transition region of finite widthD ~between the incoming
and outgoing plasma flows! within which are strong
magnetic-field fluctuations and a vortex electric field. In th
work we limit ourselves to a shock wave with a flat fron
i.e., front curvature is ignored. The characteristic correlat
lengthl c of fluctuations is comparable to the gyroradii of th
ions in the plasma and is much longer than the gyroradi
the electrons whose energy is close to thermal. What is
portant is that such fluctuations can be directly observed
quasilongitudinal shock waves and are clearly manif
themselves in computer simulations.29 Since the distribution
of fluctuations in the transition region is probably close
isotropic,10 on scales larger thanl c the electron motion can
be interpreted as spatial diffusion. The transport mean
path of the magnetized electrons,L2, in this case is approxi-
mately equal to the correlation length of strong magne
field fluctuations, L2; l c , for electrons with gyroradii
smaller thanl c and is almost energy independent forE
<T1(mp /me) if the spectrum of magnetic-field fluctuation
is close to a single-scale one or decreases with increa
wave numberk according to ak2n-law with n>2.

The longitudinal microscopic diffusion coefficient fo
electrons whose gyroradii are smaller thanl c is kzz'vL/3,
wherev is the electron velocity, and thez axis is directed
along the normal to the shock front. The magnetic-field flu
tuations are assumed uniformly distributed over the fr
width and are characterized by the mean-square quantia
5(dB/B)2. In the highly turbulent plasma of the transitio
region of the shock front, the transport of particles with mo
erately epithermal energies can be due to transport by
chastic vortices with scalesl lying in the intervall c> l>D.
We use the methods of describing of highly turbulent pl
mas discussed in Ref. 30. Here the macroscopic coeffic
of turbulent electron diffusion~averaged over vortex move
ments in the scale interval mentioned earlier! in the low-
energy limit is independent of particle velocity.

The fluctuation vortex electric fields induced by chao
ion flows in the transition region determine the statisti
acceleration of electrons. For a strong, quasilongitudinal,
percritical shock wave the effect of electron acceleration b
potential electric field in the transition region can be ignor
since the potential discontinuity at the front is smaller th
0.05mpu1

2 for M;5 and decreases with increasingM ~see
the review in Ref. 10!. A potential field of such magnitude
f
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does not allow the electrons to acquire an energy of or
(mp /me)T1.

To describe the heating and acceleration of a magnet
electron in the shock wave transition region by a vortex el
tric field, we use the drift transport equation. More precise
we employ the method developed by Chandrasekharet al.31

for obtaining a transport equation averaged over rapid ro
tions of the electron, which is then averaged over the
semble of short-correlated fluctuations of magnetic a
hence vortex electric fields. Here, following the approa
developed by Toptygin,32 we arrive at a transport equatio
for the isotropic part of the electron distribution function.
the reference frame in which the front is at rest, the isotro
part of the quasi-steady-state electron momentum distr
tion function N(z,p) normalized to the phase volume el
ment satisfies the following equation in the transition regio

kzz~p!
]2N~z,p!

]z2
2u~z!

]N~z,p!

]z
1

p

3

]N

]p

]u~z!

]z

1
1

p2

]

]p
p2D~p!

]N

]p
50, ~1!

where

D~p!'p2ḠS dB

B0
D 2S va

v D 2 v
l c

. ~2!

Hereu(z) is the mean velocity of the ion component of th
flux averaged over fluctuations of scales of orderl c . Within
this model, allowance for the effect of slow cyclic front re
ormation, studied by Scholer,33 can be described by a slow
time dependence of the quantities averaged over the r
fluctuations in the transition region. Here, however, we lim
ourselves to the statistically steady-state problem. The fa
Ḡ depends on the index of the distribution of the power-l
spectrum and the polarization of the magnetic-fie
fluctuations.32 For power-law spectral distributions of fluc
tuations with an indexn>2 and for a Gaussian distributio
of unpolarized magnetic-field fluctuations,Ḡ;0.1. Here the
mean-square magnetic-field fluctuationa'Ḡ(dB/B0)2. The
distributions of magnetic-field fluctuations and of the io
component velocity depend on the Mach number of
shock wave.10 A detailed procedure of finding these distrib
tions based, say, on hybrid simulations, is also needed f
precise description of the low-energy asymptotic behavio
D(p). The results discussed in Ref. 30 show that in the
gion of moderate epithermal momenta,D(p) exhibits an
asymptotic behavior of the typeD(p);p2G1u1D21, which
differs from ~2! ~the latter holds in the high-momentum re
gion!. The numerical factorG1 and the related momentum
limit pa , at which the expression~2! is matched with the
low-energy asymptotic formula forD(p), depend on the de
tails of the distribution of vortices over scales.30 When cal-
culating the models, we parametrized this quantity and st
ied the dependence of the resulting electron distributions
the parameterpa . As we will show shortly, the choice of the
value of the parameter for matching the two regimes of theD
vs. p behavior has a strong influence on the effective el
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tron temperature behind the shock front~see Sec. 3! but has
very little influence on the fluxes of highly epithermal ele
trons accelerated by the shock wave. Note that the elec
acceleration, which in our model is described by the coe
cient D(p), is an analog of the well-known betatron effec

In some cases, outside the transition region we can
nore the statistical acceleration effect, which is described
the equation by a second-order differential operator~diffu-
sion in momentum due to inelastic electron scattering
magnetic-field fluctuations!. This is the case in interplanetar
shock waves, for example, where the boundary of free p
ticle escape~see condition~10! below! is at a distance of the
order of severalD from the transition region of the shoc
front. Here the derivative]u/]z is usually also small, since
the smoothed flow speed changes little outside the trans
region. Then in the incoming and outgoing flows the isot
pic part of the electron distribution function satisfies t
equation

ki

]2Ni

]z2
2ui

]Ni

]z
50, i 51,3, ~3!

where i 51 corresponds to the incoming flow,i 53 corre-
sponds to the outgoing flow, andki5kzzi

. This equation has
a simple analytic solution, which makes it possible to si
plify and speed up calculations of the model. Numerically
is more convenient to solve the boundary value problem w
an equation obtained from~1! for the function p2N(z,p),
since for this function the boundary conditionsp50 andp
5` have the simple formp2N(z,p)50. The calculation
procedure and the diagrams were set up for this function,
here it is more convenient to discuss the functionN(z,p).

At the boundaryz52` the N1(p)5N2`(p) electron
distribution function was taken in form of the thermal Ma
wellian distribution with a temperatureT1 and a power-law
correction, the latter describing the background nonther
electron flux in the incoming flow far from the shock wav
~this additional term contains contributions of previous sho
waves!.

At the boundary between the incoming flow and t
transition region we impose the matching conditions for
distribution functions and the fluxes. We also place the o
gin at this boundary (z50). Then atz50 we have the
boundary conditions

N1~p!5N2~p!, J1~p!5J2~p!, ~4!

where the fluxJ is given by the formula

Ji52ki

]Ni

]z
2ui

p

3

]Ni

]p
. ~5!

The first term describes the diffusion flux and the second,
convection flux~related to the motion of medium!. In the
incoming-flow region, Eq.~2! has an analytic solution satis
fying the condition at2`:

N15C1~p!exp
u1z

k1
1N2` , ~6!

whereC1(p) is an arbitrary function found from the bound
ary conditions. Using this solution and the condition at t
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boundaryz50, we find that the problem reduces to solvin
the equation to the right of the boundaryz50 with the fol-
lowing conditions at that boundary:

N2`1
k2

u1

]N2

]z
5N2 , ~7!

whereu1 is the speed of the incoming flow, and the subscr
‘‘2’’ corresponds to the transition region. Reasoning alo
similar lines, we can impose the conditions at the visco
discontinuity in speed inside the transition region atz5zt ,

N22~p!5N21~p!, J22~p!5J21~p!, ~8!

and at the boundary between the outgoing flow and the t
sition region atz5D,

N2~p!5N3~p!, J2~p!5J3~p!. ~9!

This one-dimensional model with diffusion propagatio
of the particles in the spatially unrestricted outgoing-flo
region does not allow for the finiteness of the shock front a
the related restrictions on the acceleration efficiency. In p
ticular, one must bear in mind that most electrons that h
moved away from the front in the outgoing-flow region
distances of the order of the transverse size of the sh
wave leave the system, due to diffusion and the drag
large-scale flow, and do not participate in further accele
tion. We allow for this effect by imposing an additiona
boundary condition in the outgoing-flow region at a distan
zf e of the order of the transverse dimensions of the front. T
condition is that of free escape of the electrons that h
passed this boundary (z5zf e) and are freely moving in the
right half-plane:

N32~p!5N31~p!, J32~p!5J31~p!,

J31~p!5E
pz.0

vF dVp , ~10!

with F the electron distribution function, which in the diffu
sion approximation32 has the form

F~r ,p,t !5
1

4p S N~r ,p,t !1
3

v2
v–J~r ,p,t !D . ~11!

Equation~2! in the outgoing-flow region has an analyt
solution that is similar to that in the incoming-flow region

N35C2~p!exp
u3~z2D!

k3
1C1~p!, ~12!

whereC1(p) and C2(p) are arbitrary functions determine
by the boundary conditions. Using the explicit form of th
solution and the conditions at the boundariesz5D and z
5zf e , we find that the problem reduces to solving Eq.~1! in
the transition region with a condition at the boundaryz5D,

2k2

]N2

]z
f 2u3

p

3

]

]p S N22
k2

u3

]N2

]z
1

k2

u3

]N2

]z D
5

v
2 S N22

k2

u3

]N2

]z
1

k2

u3

]N2

]z
f D , ~13!

where f 5exp$@u3(zfe2D)#/k3%, and a condition at the bound
ary z50,
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N2`1
k2

u1

]N2

]z
5N2 . ~14!

It is now convenient to go over to the dimensionle
variablesz̃5z/D and p̃5p/pT and the dimensionless spee
u(z)5u(z)/u1, wherepT5A2mekT is the thermal momen
tum. Then the problem can be characterized in a natural
by two dimensionless quantities, the parametera and the
parameterG5u1D/vL calculated for electrons withp̃51.
The parameterG depends on the strength of the shock wa
and is linked to the Alfve´n Mach number through the rela
tionship G}M (me /bmp)1/2(D/ l c) . Generally speaking, the
width D of the transition region depends on the Mach nu
ber of the shock wave.10 Recall that the applicability of the
adopted model is limited by the condition imposed on
local Mach number of the viscous discontinuity in spee
M (me /bmp)1/2<1. The parametera, introduced above
characterizes the amplitude and spectral distribution
magnetic-field fluctuations in the shock wave.

After we have found the distribution function, we ca
determine the electron flux registered by the detector:

J~E!5vp2N~p~E!!
dp

dE
. ~15!

For typical magnetic-field fluctuation spectra, the ele
tron mean free pathL(p) increases with momentum.32 The
exact shape of this dependence is determined by the s
trum of magnetic inhomogeneities and the large-scale mo
of the medium.

In our calculations of the electron distribution functio
we used the following dependence:

L2~p!5H l c , p̃< p̃* ,

l c~ p̃/ p̃* !z, p̃> p̃* .

According to the results of Sec. 2, we havep̃*
5(mp /me)

1/2. The exponentz depends on the spectrum o
magnetic fluctuations on scales larger than the proton g
radius. Under typical conditions, 0<z<1. What is important
is that if G@1, epithermal electron transport in the transiti
region and in region 3 is determined by turbulent vort
fluctuations of the plasma macroscopic speed. Then, in
low-energy region, both the transport electron mean free p
and the spatial diffusion coefficient are energy-independ
and are determined by the properties of the turbulence.30 The
value of the turbulent diffusion coefficient is estimated
k2'u2D* for electron with momentap<pa . HereD* is the
mixing length, which is much smaller thanD. Measurements
from observations or numerical modeling of the polarizat
and the correlation function of fluctuations in the mac
scopic speed would make it possible to use, instead of e
mates, the detailed theory of calculations of transport coe
cients in highly turbulent plasma described in Ref. 30. W
know of no measurements of these fluctuation parame
Hence in this paper we study two cases: that of elect
transport within the transformation region of a shock wa
due to scattering by magnetic-field fluctuations (pa;pT),
and that of low-energy electron transport via turbulent dif
sion (pa@pT).
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Figures 2 and 3 depict the results of calculating the el
tron distribution function at the transition-region boundarie
the two solid curves in each figure correspond to the spe
at the pointsz̃50 and z̃51. The modeling was done for
bare distributionN2`(p) equal to the Maxwellian distribu-
tion of electrons with a temperatureT1 and of unit concen-
tration. The dotted curves in Figs. 2 and 3 represent the
proximations of the low-energy part of the electro
distribution by Maxwellian functions; also indicated are t
effective temperatures measured in units ofT1 ~for more
details see Sec. 3!. The calculations were done for two dif
ferent values of the shock parameters. Figure 2 depicts
results of calculations for a boundary condition at pointz̃
51 corresponding to the diffusion propagation of electro
in the outgoing flow. The results of calculations of the ele
tron distribution function for a shock wave with electro
transport in the transition region due to scattering
magnetic-field fluctuations (pa;pT) are shown in Figs. 2a
and 2b. The model with turbulent low-energy electron tra
port (pa@pT) in the transition region of the shock wav
leads to the distributions depicted in Figs. 2c and 2d. N
the substantial difference between the effective temperat
under relatively small variations in the high-energ
asymptotic behavior for these two cases.

The electron spectra for finite-sized systems in which
particles freely leave the planez̃51 are depicted in Fig. 3
Figures 3a and 3b correspond to the case wherepa;pT , and
Figs. 3c and 3d to the case wherepa@pT . The differences
between systems with different conditions of particle esc
from the acceleration region become especially evident w
one analyzes high-energy asymptotic behavior. For syst
with diffusion particle propagation in the outgoing-flow re
gion there forms an asymptotic power-law distribution
high-energy electrons with an exponent determined by
shock-wave compression ratio~Fig. 2!. This distribution cor-
responds to standard first-order Fermi acceleration of
particles.1 For systems with free escape, the asymptotic d
tribution of high-energy particles drops off exponentia
~see Fig. 3!.

3. EFFECTIVE ELECTRON TEMPERATURE

A specific feature of all shock waves, both collision
and collisionless, is the possibility of strong nonadiaba
heating of the medium after the passage of the sh
front.8,34 In standard single-liquid collision shock waves, th
heating of the medium behind the front is determined via
Hugoniot shock adiabat, which for strong shock waves yie
the T2

H/T1}M2 law. In a multicomponent system, the qua
tity T2

H calculated via the shock adiabat is no more the te
perature of the separate component even for a collision sh
wave and determines an average quasiequilibrium temp
ture. For a collisionless shock wave, a substantial portion
the energy of the incoming flow is transferred to nontherm
particles and vibrational modes. The assumption that ther
local thermodynamic equilibrium behind the front, which
used to obtain the Hugoniot shock adiabat, may be viola
very significantly.

The spectrum of the electrons behind the front of a c
lisionless shock wave is highly nonthermal, but in som
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FIG. 2. Electron distribution function in the vicinity of a shoc
wave withG55 for a diffusion boundary condition. The dotte
curves represent the approximations of the peak in the dis
bution by Maxwellian functions with effective temperature
~a! and ~b!, calculations forpa;pT ; ~c! and ~d!, calculations
for pa@pT . Here a50.4 ~~a! and ~c!!, and a50.1 ~~b! and
~d!!.

FIG. 3. The same as in Fig. 2 but for the case in which t

electrons freely leave the surfacez̃51.
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FIG. 4. Dependence of the effective temperature of a
celerated electrons on parameterG at a50.5. Curves1,
2, 3, and4 have been calculated forpa;pT , and curves
5 have been calculated forpa@pT . For curves1 and5,
the length of the electron path was assumed to
momentum-independent. For curves2, 3, and4 the ex-
ponent in the momentum dependence of the length
the electron path is 0.3, 0.5, and 1, respectively.
ib
ia

u

in
ur
m

gy
oi
th

ti
v

ne

e

o

le
m

ec

on
on

on

or
ns
nd
io

he

on

for
n-
a-

nt
nt

ing

vio-

path
tion

in-
the
-

d
re-
up-
by

ible
ved
en-
f

m-

ture

ing
x-
cases in the low-energy region near the peak in the distr
tion it can be approximated adequately by the Maxwell
distribution with an effective temperatureT2

eff , which distri-
bution then smoothly transforms into a power-law distrib
tion for the accelerated particles~see Fig. 2!. The problem of
the ratio of the effective temperature of the particles beh
the front of the collisionless shock wave to the temperat
T2 obtained via the Hugoniot adiabat is of interest both fro
the viewpoint of understanding the transport ener
relaxation processes in a shock wave and from the viewp
of numerous applications. In collisionless shock waves,
temperatureT2

H is not an observable, but the ratioT2
eff/T2

H

may serve as a measure of effectiveness of electron hea
The effective temperature can be observed. In shock wa
in the interplanetary medium, this temperature is determi
by direct measurements of spectral electron fluxes.10 Obser-
vations of soft x-rays emitted by collisionless shock wav
make it possible to estimate the effective temperatureT2

eff of
the electrons behind the fronts of such waves in supern
remnants~see the review in Ref. 34! and in the vicinity of
high-speed clouds, where a large nonthermal excess
x-rays is also observed.35 The above model makes it possib
to explain the observed excess of x-rayphotons as the bre
strahlung from the high-energy part of the nonthermal el
tron distribution.

We have numerically modeled the effective electr
temperature as a function of the Mach number. Calculati
in the modeling process involved calculatingT2

eff as a func-
tion of G for various values of the parameterpa . Recall that
the parameterpa characterizes the role of turbulent electr
transport by vortices inside the transformation region. Ifpa

;pT , the role of turbulent transport is minor, and transp
occurs only due to scattering by magnetic-field fluctuatio

Remaining within the model of collisionless heating a
accelerating of electrons in the shock wave transition reg
by magnetic-field fluctuations with a coherence lengthl c

; l i , we can approximate the effective heating by t
Teff/T1}Ga law ~curves1 in Fig. 4!. Here the quadratic law
holds approximately for both a diffusion boundary conditi
at the boundary of the extended outgoing-flow region~curve
u-
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1 in Fig. 4a! and in condition of free escape~curve1 in Fig.
4b!. This result coincides with the dependence that holds
strong shock waves in a medium with collisions, which e
sure local equilibrium in the outgoing-flow region. Nonadi
batic heating in a collisionless shock wave withG;10 is
predominant up to mean-square field amplitudesa<0.01.

In collisionless shock waves, for models with differe
electron scattering laws in the transition region of the fro
the functionTeff(G) differs dramatically. In our model, the
scattering of electrons with an energy lower than (mp /me)T1

is nonresonant. To formulate observational tests for verify
the model, we also modeled theTeff(G) functions that
emerge if the conditions for nonresonant scattering are
lated.

When the transition region contains small-scale (, l i)
resonant fluctuations, the transport electron mean free
depends on electron momentum. This changes the func
Teff(G). Curves2, 3, and 4 in Fig. 4, corresponding toz
50.3, 0.5, and 1, respectively, illustrate this fact. For
stance, for an electron mean free path proportional to
electron gyroradius (z51), which corresponds to Bohm dif
fusion, we haveTeff/T1}Ma with a'1. The curves4 in Fig.
4 represent the functionGeff(G) in this model.

Whenpa@pT , turbulent electron transport by develope
vortex turbulence in the shock wave transition region is p
dominant. In this case, effective electron heating can be s
pressed even for strong shock waves, which is illustrated
curves5 in Fig. 4.

The difference in the models discussed makes it poss
to formulate observational tests. Indeed, fluxes of obser
soft x-rays from the shock waves from supernovas are s
sitive to the value ofTeff. Hence there is the possibility o
statistically analyzing the residues with the measured~via
optical lines! speeds of shock waves and the effective te
peratures~determined through x-ray measurements! so as to
verify the dependence of the effective electron tempera
on the front speed and hence to findTeff(G). Another pos-
sible test is related to the fact that efficient electron heat
in a shock wave with developed vortex turbulence is e
tremely weak in the transition region~greater by a factor of



b
ism

b
,

an
ck

c
ex
ns
n
b

of
s
it
c

he
s

by
e
-

ce
e
o
ns
rm
on
f

ar

ar
h
di
e

n
n

e-

ca

ce
i

a
ve
th
o
av
e
u
th

k
in

-

e
sat-
the
the
s
ads

lera-

he
ary
na-
ian
nd.
-
del
in

a-
ron

the
und
-

was
E-3

e

c-

is-

ur

dic

on

the
n,

a-
ron

of
f the
of
n
ng
.

istic
s of

472 JETP 88 (3), March 1999 A. M. Bykov and Yu. A. Uvarov
approximately 2.5 even forG>10), whileTeff is at least ten
times higher if electron transport due to scattering
magnetic-field fluctuations is the predominant mechan
~Fig. 4!. Since the high-energy electron fluxes accelerated
the shock wave are of the same order for these two cases
can select the correct electron-transport mechanism by
lyzing the ratio of the fluxes of radiation from the sho
wave in the x-rayandg-ray windows.

4. ACCELERATION OF ELECTRONS BY SHOCK WAVES
IN THE INTERPLANETARY MEDIUM

Modeling the effects of generation of nonthermal ele
trons by collisionless shock waves in a laboratory is
tremely difficult. Information about the spectra of electro
accelerated by shock waves outside the heliosphere ca
extracted only indirectly, i.e., either by analyzing the o
served electromagnetic radiation from objects~radio waves
and gamma rays! or by studying the features of spectra
cosmic electrons and positrons observed near the Earth’
bit. At present, measuring the electron spectra in the vicin
of shock waves in the interplanetary medium with spa
probes is the only direct method of investigating such p
nomena. Such measurements have been carried out for
eral decades.13,9 The results of observing 37 shock waves
the ISEE-3 in the interplanetary medium have been summ
up in the review in Ref. 9. The detectors on board ISEE
and several other satellites have established the existen
several typical classes of events related to the passag
shock waves. The nature of these events differs for prot
and electrons and strongly differs for longitudinal and tra
verse shock waves. We modeled the spectra of nonthe
electrons in the vicinity of quasilongitudinal shock waves
the basis of the theory discussed above, with allowance
the features of collisionless shock waves in interplanet
plasma.

Usually, shock waves in the interplanetary medium
not strong enough to form a prefront but are strong enoug
ensure a compression ratio of about four at the viscous
continuity. The region of the incoming flux, the region of th
outgoing flow, and the transition region~the discontinuity!
are clearly visible in the speed profile of the ion compone
In the transition region, the electron distribution functio
obeys Eq.~1!. For shock waves in the interplanetary m
dium, at distances of about 1 AU from the Sun~i.e., at the
Earth’s orbit, where many satellites measurements are
ried out!, the characteristic front widthD is probably 109 cm
and the characteristic transverse dimensions do not ex
1013cm. The typical value of the electron mean free path
the interplanetary medium~far from the shock front!, L` , is
roughly 1012cm at energies of about 100 keV, but the me
free path is much shorter in the vicinity of the shock wa
transition region because of the sharp increase in
magnetic-field fluctuation amplitude. Since the electr
mean free path is comparable to the size of the shock w
we must allow for the fact that the problem is not on
dimensional. This is effectively taken into account by o
model by introducing a boundary for the free escape of
accelerated particles.
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In the region of the incoming flow before the shoc
front, the electrons freely leave the acceleration region
view of the large value ofL` . This corresponds to the con

dition for free escape atz̃50. The electron spectrum and th
time dependence of the fluxes measured by the ISEE-3
ellite can be obtained via calculations if one assumes that
electron mean free path near the shock wave behind
front, L3, is roughly 109 cm, which agrees with estimate
made on the basis of the model. Within the model, this le

to the condition for free escape at the boundaryz̃5300.
Electrons that have reached this boundary leave the acce
tion region.

According to the observational data provided by t
ISEE-3 satellite, the electron spectrum in the interplanet
medium far from shock waves has a highly nonthermal
ture and can be described by the sum of the Maxwell
thermal spectrum and a nonthermal power-law backgrou
According to observations,9 the nonthermal background un
dergoes strong temporal and spatial variations. Our mo
requires specifying a bare electron distribution function
the incoming flow at2`. Hence, to describe the acceler
tion in the entire energy range, we must know the elect
temperature and concentration before the shock wave and
parameters of the nonthermal background. The backgro
flux of nonthermal electrons in the ‘‘undisturbed’’ interplan
etary medium in the course of observing the shock wave
also measured by the same detector on board the ISE
satellite.9 The calculations fixed the initial distribution of th
electrons in the incoming flow (z→2`) in the form of a
superposition of the thermal Maxwellian distribution chara
terized by two parameters, the temperatureT and the concen-
tration N, and a nonthermal background flux in the und
turbed medium far from the shock front.

The results of calculations of the electron flux in o
model with the parametersa50.2 andG'5 and a typical
~for the interplanetary medium! incoming flow with Ne

53 cm23 and T15105 K are depicted in Fig. 5 along with
the results from ISEE-3 observations of a quasiperio
shock wave in the interplanetary medium.9 The speed of the
shock front amounted to 422 km s21, and the angle of incli-
nation the field to the front was 22°. The parametersa andG
were determined via magnetic field observations9 and the
results of calculations of the shock front structure based
hybrid codes,12 which yieldeda'0.2 andG'5. The most
significant uncertainty in determininga is related to the as-
sumption about the nature of the polarization and about
magnetic-field fluctuation spectrum in the transition regio

which affectsḠ. Our model makes it possible to quantit
tively describe the typical observable features of elect
events in supercritical shock waves: a sharp~severalfold! in-
crease in the intensity of the electron fluxes in the vicinity
the transition region and the subsequent slow decrease o
intensity of the flux of nonthermal electrons over times
about one hour~see Fig. 5!. Moreover, the observed electro
flux exhibits intense short bursts about ten minutes lo
~‘‘spikes’’ !. Two such spikes are clearly visible in Fig. 5
The duration of the spikes corresponds to the character
time it takes the electrons to be accelerated to energie
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FIG. 5. Calculation of the time evolution of the electro
flux ~thin lines! in the vicinity of an interplanetary
shock wave~the speed of the shock front is 422 km s21,
and the field’s inclination angle is 22°) for three energ
intervals. Electron flux measurements obtained by
ISEE-3 satellite9 are depicted by heavy lines. The ob
servation time in hours labels the horizontal axis.
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order 1 keV at the shock front. Hence, in our model, t
origin of the spikes can be explained by the passage of
row fluctuations of the electron density~with a duration of
less than 1 min!, registered in the flow before the shock fron
through the shock front~see Fig. 5!. Figure 5 clearly shows
that the model provides a satisfactory description of the
served evolution of the nonthermal electron flux in the vic
ity of the shock wave.

The study of electron spectra in the solar wind was o
of the goals of the ACE space laboratory launched by NA
in 1997. In particular, the SWEPAM monitor analyzes t
energy spectra of low-energy electrons~from 1 eV to
1240 eV!. Two spectrometers of the EPAM device with
geometric factor of 0.48 cm2 sr each are intended for obser
ing fluxes of electrons with an energy higher than 30 ke
Along with observations of electron fluxes, observations
magnetic-field fluctuations~by the MAG magnetometer! and
other parameters of the solar wind can be conducted. Ob
vations of nonthermal electrons done by the ACE laborat
will make it possible to thoroughly compare the data and
results obtained in our model at low~up to 1.25 keV! and at
high energies.

5. ACCELERATION OF ELECTRONS BY EXTENDED SHOCK
WAVES IN A TURBULENT MEDIUM

The theory of generation of nonthermal electrons
shock waves described in Secs. 1–3 can also be use
modeling distant galactic and extragalactic objects. Dir
measurements of electron distributions outside the solar
tem are impossible, so that the model must describe the
eration of electromagnetic radiation, both thermal and n
thermal, by electrons accelerated by shock waves. Here
briefly touch on two classes of objects.

The high-speed clouds falling onto the galactic pla
actively interact with the matter of the disk. The velocities
these extended objects occupying an appreciable fractio
the celestial sphere above the Galaxy are determined f
radio observations of neutral hydrogen HI in the 21-cm lin
The typical values of these velocities are;150 km s21.
Since the velocities of the clouds exceed the phase veloc
of magnetoacoustic and Alfve´n perturbations in the galacti
medium, the interaction of the clouds and the matter of
halo and disk of the Galaxy must be accompanied by sh
wave formation. Observations of the hard electromagn
e
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radiation indicated that there are large surpluses of such
diation, which probably formed in the regions where t
high-speed clouds interact with the Galaxy.35 One can as-
sume that the soft x-rays and the hardg-radiation have the
same nature and origin. Then the sources of such radia
are the nonthermal particles, mostly electrons, accelerate
shock waves formed as a result of interaction of the clo
and the matter of the halo and disk of the Galaxy. Taking
values ;1 mG and ;331023 cm23 as estimates of the
magnetic field strength and the plasma density in the halo
the Galaxy, we find that the magnetoacoustic Mach num
of the shock wave is roughly 3. This is quite sufficient for t
wave to be supercritical, although the wave is not stro
enough to form a prefront and is even not strong enough
ensure the maximum possible compression ratio equal t
Using this model yields results that are fully consistent w
the observed spectra~for more details see Ref. 35!.

Supernova remnants are among the brightest nonthe
sources, emitting radiation over a broad range, from ra
waves to hardg rays.36–40A sizable fraction of the enormou
amount of energy released in the explosion of a st
(;1051erg) goes into the shell in the form of kinetic energ
the shell expands at supersonic velocity into the amb
medium. This expansion leads to formation of a strong c
lisionless shock wave with a Mach number reaching sev
hundreds~see, e.g., Refs. 1 and 3!. An important role in the
formation of the observed spectrum of nonthermal elec
magnetic radiation emitted by supernova remnants is pla
by the emission from electrons accelerated by shock wa
at the shell boundary. At present there is clear observatio
evidence of electron acceleration in the supernova remn
SN1006 up to energies of order 1014eV ~Ref. 36!. Let us
discuss the possibility of applying our model of generation
nonthermal electrons to shock waves from supernovas.

In extended shock waves with large Mach numbers t
propagate in a turbulent medium there is effective trans
mation of the kinetic energy of the incoming flow into no
thermal particles and waves. Here, due to the interaction
tween nonthermal ions penetrating the incoming flow to
distance of orderl p f and slowing it down, the speed profile
the region of adiabatic decrease of the speed, known as
prefront. The prefront is followed by the viscous discontin
ity in speed. The characteristic prefront size is usually s
eral orders of magnitude greater than the characteristic
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FIG. 6. ~a! Calculated electron flux in the vicin-
ity of the shock wave from a supernova she
and ~b! the expected spectrum of the electro
magnetic radiation for the electron distributio
in Fig. 6a.
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of the transition region and the viscous discontinuity. T
viscous discontinuity in speed has a much smaller amplit
than the discontinuity in a shock wave with the same co
pression ratio but without a prefront.

In this problem one must distinguish between the to
Mach number of a shock-wave with a prefront and the lo
Mach number of the viscous discontinuity in speed, which
much smaller than the total Mach number. A description
the large-scale (; l p f) structure of the front of a strong shoc
wave can be found in Ref. 19, where it is shown that
local Mach numberM at a viscous discontinuity does no
exceedM* . For this reason we used the model in calcul
ing the absolute electron fluxes in the vicinity of the stro
shock wave of a supernova remnant propagating in a
dium with typical parameters, a temperatureT533105 K
and a concentrationn51 cm23. The electron transport mea
free path in the external medium ahead of the shock fr
depends on the spectrum of magnetic inhomogeneities in
undisturbed interstellar medium:L1(p);Ap ~see Ref. 3!.
The magnetic field strength inside a remnant is 1024 G. The
total compression ratio in the shock wave amounted to
while the compression ratio at the viscous discontinu
amounted to roughly 2. The results of the calculations
illustrated by Fig. 6. Figure 6a depicts the calculated elect
spectrum for a strong shock wave modified by the acce
ated particles. Here the nonthermal electron spectrum ex
its three characteristic sections, whose origin is due to
structure of the strong shock wave modified by the acce
ated particles. The low-energy part of the spectrum co
sponds to electron heating in a narrow transition region
the shock wave in the vicinity of a viscous discontinuit
Note that here we modeled the case in whichpa;pT . As the
energy of the accelerated electrons increases, so does
mean free path in the prefront, and with the increasing m
free path the electrons effectively ‘‘feel’’ the increasing com
pression ratio in the shock wave, with the result that
electrons are accelerated by the Fermi mechanism more
ficiently ~see also Refs. 19 and 24!. This leads to a situation
in which, as the energy increases, the spectrum first beco
less steep and then, at high energies, again becomes st
due to energy losses by relativistic electrons to synchro
e
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radiation and escape of particles from the acceleration
gion.

Such a shape of the electron spectrum makes it poss
to match the spectra of radio waves and x-rays observe
some supernova remnants. The results of calculating
electrons of the electromagnetic radiation emitted by el
trons that are accelerated by shock waves are depicted in
6b. The emission spectrum is calculated with allowance
the synchrotron radiation emitted by electrons in the m
netic fields of a supernova remnant and the bremsstrah
from high-energy electrons in the surrounding plasma.
contribution to radiation with an energy higher tha
100 MeV ~not shown in Fig. 6! will also be provided by the
Compton scattering of low-energy~radio and optical! pho-
tons by relativistic electrons~the inverse Compton effect!. A
detailed quantitative comparison of the calculated spe
and the observed radiation from supernova remnants lies
side the scope of the present work, whose main goal wa
develop a theory of generation of electrons by collisionle
shock waves.
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21I. N. Toptygin, Zh. Éksp. Teor. Fiz.112, 1584 ~1997! @JETP 85, 862

~1997!#.
22V. D. Shafranov, Zh. E´ ksp. Teor. Fiz.32, 1453~1957! @Sov. Phys. JETP

5, 1183~1957!#.
23V. S. Imshennik, Zh. E´ ksp. Teor. Fiz.42, 236 ~1962! @sic#.
24A. Levinson, Astrophys. J.401, 73 ~1992!; 426, 327 ~1994!.
25A. Levinson, Mon. Not. R. Astron. Soc.278, 1018~1996!.
26P. J. Cargill and K. Papadopoulos, Astrophys. J.329, L29 ~1988!.
27P. Schneider and J. G. Kirk, Astron. Astrophys.217, 344 ~1989!.
28Y. A. Gallant and J. Arons, Astrophys. J.435, 230 ~1994!.
29D. Krauss-Varban, Adv. Space Res.15, 271 ~1995!.
30A. M. Bykov and I. N. Toptygin, Usp. Fiz. Nauk163~11!, 19 ~1993!

@Phys. Usp.36, 1020~1993!#.
31S. Chandrasekhar, A. N. Kaufman, and K. M. Watson, Ann. Phys.5, 1

~1958!.
32I. N. Toptygin, Cosmic Rays in Interplanetary Magnetic Fields@in Rus-

sian#, Nauka, Moscow~1983!.
33M. Scholer, J. Geophys. Res.98, 47 ~1993!.
34B. T. Draine and C. F. McKee, Annu. Rev. Astron. Astrophys.31, 373

~1993!.
35J. J. Blom, H. Bloemen, A. M. Bykovet al., Astron. Astrophys.321, 288

~1997!.
36K. Koyama, R. Petre, E. V. Gotthelfet al., Nature ~London! 378, 255

~1995!.
37R. A. Chevalier, Astrophys. J.258, 790 ~1982!.
38A. I. Asvarov, O. H. Guseinov, F. K. Kasimov, and V. A. Dogiel, Astro

Astrophys.229, 196 ~1990!.
39S. P. Reynolds, Astrophys. J.493, 375 ~1998!.
40T. K. Gaisser, R. J. Protheroe, and T. Stanev, Astrophys. J.492, 219

~1998!.

Translated by Eugene Yankovsky



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS VOLUME 88, NUMBER 3 MARCH 1999
Collective effects in spin-polarized Boltzmann gases
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As a result of an investigation of the real collision integral for paramagnetic atoms, we have
obtained a criterion for propagation of spin waves in a spin-polarized Boltzmann gas. The main
condition for propagation of weakly damped spin waves is a high anisotropy of the atomic
scattering amplitude with predominance of the forward scattering. This condition is different from
those suggested in earlier publications. Our results indicate that the range of paramagnetic
gases where weakly damped spin waves can propagate at the room temperature is considerably
wider than it was assumed previously. One example is vapors of alkali metals~Na, Cs,
and Rb!, where the degree of electron spin polarization can be very high. ©1999 American
Institute of Physics.@S1063-7761~99!00703-9#
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1. INTRODUCTION

In gases described by the Boltzmann statistics in the
sence of applied electric and magnetic fields, the only pro
gating collective mode is an acoustic wave. A possibility
collective spin oscillations in a paramagnetic gas was fi
suggested by Silin.1 In 1977 Aronov2 analyzed spin-wave
oscillations in semiconductors. Intense interest in propa
tion of spin waves in gases, however, was generated by
publication by Bashkin in the 1980s.3 That paper predicted
the existence of weakly damped spin waves in spin-polari
Boltzmann gases and determined conditions for their pro
gation. The criterion for the existence of a new collecti
mode in a spin-polarized gas was formulated in terms of
‘‘quantum’’ property: the average de Broglie wavelengthL
should be considerably larger than the range of interac
between atoms,r 0.

Although the number of publications dedicated to t
dynamics and kinetics of spin-polarized gases has been q
considerable~see Ref. 4 and references therein!, the criterion
for the existence of spin waves remained unchanged,
spective of the fact that it was based on purely qualitat
reasons.5 An important point is that this criterion led to
very severe limitation on the gas temperature, so that m
gases should condense at temperatures higher than thos
scribed by this criterion. For this reason, the only remain
candidates were the spin-polarized hydrogen, H↑, and3He↑.
The existence of spin waves in these two gases was
firmed by experiments, although the detected waves were
weakly damped.6,7 Note that it is the nuclear spin that
considered in this specific case.
4761063-7761/99/88(3)/6/$15.00
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This paper suggests a criterion for propagation of s
waves in a spin-polarized Boltzmann gas based on a deta
investigation of the collision integral. It turns out that th
main parameter that controls propagation of spin waves
Boltzmann paramagnetic gases is the real part of the forw
exchange scattering amplitude. Moreover, in conventio
gases, where scattering of atoms is semiclassical in na
and highly anisotropic, the situation is more favorable th
in ‘‘quantum’’ gases, where scattering is almost isotrop
(s-wave scattering!.8 This criterion differs from those given
in previous publications.3–6 As a result, the range of para
magnetic gases where weakly damped spin waves can pr
gate at temperatures about the room temperature is exte
considerably. One can take as examples vapors of alkali m
als ~Na, Cs, and Rb!, where the degree of spin polarizatio
can be high.9

2. COLLISION INTEGRAL IN BOLTZMANN SPIN-POLARIZED
GAS

This paper considers a collision integral calculat
previously.10,11The spin sublevels in question are degener
in the absence of magnetic field. In such cases, the collis
integral11 is identical to the Waldmann–Snider integral.10

Nonetheless, since our previous publication11 contains mis-
prints, here we give first a general expression for the co
sion integral St for arbitrary, not necessarily degenerate,
tems:

Staa8~p!52 i @ I aa8~p!2I a8a
* ~p!#;
I aa8~p!5~2p!3 \2H E dp1 TalusS p2p1

2
,
p2p1

2 DexpS i
Ea8lust

\ D f sl~p1! f ua8~p!1E dp8dp18dp1 d~p1p12p82p18!

3expS i
Et1t2t3t4

t

\
DTalt3t4

~~p2p1!/2,~p82p18!/2!Ta8lt1t2
* ~~p2p1!/2,~p82p18!/2!

~p2p1!2/4m2~p82p18!2/4m1Et1t2a8l2 i0
f t3t1

~p8! f t4t2
~p18!J .
© 1999 American Institute of Physics
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Here p is the momentum,m is the mass, the subscripts a
quantum numbers of internal particle states,f̂ (p) is the
Wigner matrix,T̂ is the scatteringT-matrix, and, finally,

Eabgd5Ea1Eb2Eg2Ed

(Ea andEb are the energies of internal particle states!.
This paper considers the case of full degeneracy of

internal~spin! states of particles:Eabgd50. In this case, the
collision integral has the form~compare with Ref. 10!

Staa8~p!52 i ~2p!3 \2E dp1 FTalusS p2p1

2
,
p2p1

2 D
3 f sl~p1! f ua8~p!2Ta8lus

* S p2p1

2
,
p2p1

2 D
3 f ls~p1! f au~p!G1~2p!4 \2

3E dp8dp18dp1 d~p1p12p82p18!

3dS ~p2p1!2

4m
2

~p82p18!2

4m DTalt3t4

3S p2p1

2
,
p82p18

2 DTa8lt1t2
*

3S p2p1

2
,
p82p18

2 D f t3t1
~p8! f t4t2

~p18!. ~1!

Here the Hermitian property of the Wigner matrix is tak
into account.

In studying small perturbations, we will use a lineariz
collision integral, in which the Wigner matrix has the form

f aa8~p!5
1

2
f ~0!~p!@Caa81waa8~p!#. ~2!

Here f (0)(p) is the equilibrium Maxwell distribution func-
tion over particle momenta,Caa8 is a constant (aa8)-tenso
r, andwaa8(p) is a small perturbation of the Wigner func
tion. In the absence of additional conservation laws, the e
librium function is diagonal in internal quantum numbe
i.e., Caa85daa8 . But this is not the case if such conserv
tion laws hold, if only to a reasonably good approximati
~in this specific case, we are dealing with the total spin of
system!.

The linearized collision operator~1! takes the form

J~waa8!52 i ~2p!3 \2E dp1f ~0!~p! f ~0!~p1!

3H FCua8TalusS p2p1

2
,
p2p1

2 Dwsl~p1!

2CauTa8lus
* S p2p1

2
,
p2p1

2 Dwls~p1!G
1FCslTalusS p2p1

2
,
p2p1

2 Dwua8~p!
e

i-
,

e

2ClsTa8lus
* S p2p1

2
,
p2p1

2 Dwau~p!G J
1~2p!4 \2E dp8dp18dp1 d~p1p12p8

2p18!dS ~p2p1!2

4m
2

~p82p18!2

4m D
3 f ~0!~p! f ~0!~p1!Talt3t4

S p2p1

2
,
p82p18

2 D
3Ta8lt1t2

* S p2p1

2
,
p82p18

2 D @Ct4t2
wt3t1

~p8!

1Ct3t1
wt4t2

~p18!#. ~3!

In the latter equation we use the relation12 f (0)(p) f (0)(p1)
5 f (0)(p8) f (0)(p18) for equilibrium distribution functions.
Summation over repeated subscripts is assumed in this c

In what follows, we consider a polarized gas with sp
1/2. Presently such gases are well known and have b
actively investigated both theoretically an
experimentally.6,7,13 In the case of identical particles wit
spin 1/2, theT-matrix has the form

Tabmn~P,P8!5Â@ t~P,P8!damdbn1u~P,P8!samsbn#

5t~P,P8!damdbn2t~2P,P8!dandbm

1u~P,P8!samsbn

2u~2P,P8!sansbm , ~4!

whereP and P8 are the relative momenta of colliding pa
ticles ~associated with the reduced massm/2), Â denotes
antisymmetrization with respect to particle exchange~inci-
dent and scattered!, and the product of Pauli matrices is th
scalar product ofsam

( j ) and sbn
( j ) . The factorst and u should

satisfy the following symmetry properties related to the ide
tity of particles and time-reversal invariance of their intera
tion:

t~P,P8!5t~2P,2P8!5t~P8,P!,
~5!

u~P,P8!5u~2P,2P8!5u~P8,P!.

This notation means that we consider collisions in which
total spin is conserved. This approximation is fairly goo
especially in the case of the nuclear spin.

TensorC for a polarized gas has the form

C511Ms or Caa85daa81Msaa8 , ~6!

M characterizes the constant~induced! spin polarization of
the gas. It is convenient to expand the small perturbation
the Wigner matrix into scalarw and vectorm parts:

faa8~p!5
1

2
f ~0!~p!@w~p!daa81m~p!saa8#. ~7!

By substituting Eqs.~7! and ~12! in Eq. ~3!, we obtain
the following expression for the linearized collision opera
describing the polarized gas:
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J~wdaa81m lsaa8
l

!

532p4 \2E dp8dp1dp18W~p,p1up8,p18!

3$daa8A0 @w~p8!1w~p18!2w~p!2w~p1!#

1saa8@A1 m~p18!1A2 m~p8!2A3 m~p1!2A0 m~p!#

1daa8A3M @m~p8!1m~p18!2m~p!2m~p1!#

1saa8
3 uM u@A1 w~p8!1A2 w~p18!2A0 w~p1!2A3 w~p!#

2A4@@m~p18!,M ,saa8#2@m~p8!,M ,saa8##%

116p3 \2E dp1f ~0!~p! f ~0!~p1!ReF t1S p2p1

2
,
p2p1

2 D
2t2S p2p1

2
,
p2p1

2 D G@@m~p1!,M ,saa8#

2@m~p!,M ,saa8##. ~8!

Here

W~p,p1up8,p18!5 f ~0!~p1!d~p1p12p82p18!

3d~~p2p1!2/4m2~p82p18!2/4m!;

the coefficientsAn are

A05~ ut1u21ut2u21ut12t2u2!/25ut1u21ut2u22Re~ t1t2* !,

A15ut1u22Re~ t1t2* !, A25Re~ t1t2* !,
~9!

A35~ ut1u22ut2u22ut12t2u2!/25Re~ t1t2* !2ut2u2,

A45Im ~ t1t2* !,

where parameterst1 and t2 are related to theT-matrix ele-
ments as follows@see Eq.~4!#:

t1~P,P8!5t~P,P8!2t~2P,P8!

1u~P,P8!2u~2P,P8!,

t2~P,P8!5t~P,P8!2u~P,P8!22u~2P,P8!,

P5(p2p1)/2, andP85(p82p18)/2. Bracketed expression
of the form@a,b,c# denote the scalar triple product of thre
vectors.

In deriving Eq.~8!, we have used the optical theorem14

Note that the last integral on the right of Eq.~8! is linear in
the forward scattering amplitude, whereas the rest of
terms are quadratic in the scattering amplitude.

3. KINETIC EQUATION FOR THE TRANSVERSE
MAGNETIZATION COMPONENT IN SPIN-POLARIZED GAS

Let us first consider the transverse~with respect to the
z-axis! component of magnetization in a spin-polarized g
It is more convenient to use the following combinations
mx andmy :

m65mx6 imy .

The kinetic equation form6 can be derived from the ful
equation~8!:
e

.
f

2 ivm6~p!1 ikvm6~p!

5
1

2
Tr$~sx6 isy!J~p!%5J6~m6!, ~10!

wherev5p/m, J6 are the corresponding components of t
collision integral. This equation is expressed in terms of ti
and space Fourier components of the Wigner mat
m5m(v,k), v and k are the frequency and wave vecto
respectively.

The collision integralJ6(m6) now has the form

J6~m6!532p4 \2E dp8dp1dp18W~p,p1up8,p18!

3$@A1m6~p18!1A2m6~p8!2A3m6~p1!

2A0m6~p!#62i uM uA4@m6~p18!2m6~p8!#%

716i uM up3 \2E dp1f ~0!~p1!

3ReF t1S p2p1

2
,
p2p1

2 D2t2S p2p1

2
,
p2p1

2 D G
3@m6~p!2m6~p1!#. ~11!

OperatorsJ6 can be expressed in the form of a sum, i.e.

J65QR6 i uM uQI7 i uM uLI . ~12!

Here QR and QI are integral operators quadratic in th
T-matrix ~scattering amplitude!, whose structure is similar to
that of the corresponding parameters in the familiar Bo
mann equation. There is good reason to suppose that
eigenvalues ofQR andQI in the case of electron spin are o
the same order of magnitude:ns.nv̄s, wheres is the gas-
kinetic collision cross section andv̄ is the average therma
velocity of atoms. For example, the exchange cross sec
of the cesium atom is of the same order as the gas-kin
cross section, hence all factorsA are of the same order o
magnitude.

The structure of operatorLI is notably different:

LI~m6!516p3 \2E dp1f ~0!~p1!

3ReH TexS p2p1

2
,
p2p1

2 D @m6~p!2m6~p1!#J .

~13!

Here Tex is the T-matrix of spin-exchange scattering (↑↓
→↓↑):

Tex~P,P8!5t1~P,P8!2t2~P,P8!

52u~P,P8!1u~2P,P8!2t~2P,P8!,

P andP8 are relative momenta of colliding particles asso
ated with the reduced massm/2.

It follows from the symmetry properties of theT-matrix
~5! that all three operators,QR , QI , andLI , are Hermitian
in the Hilbert space of functions of momentump with the
conventional scalar product for the kinetic gas theory:16
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^m1um2&5
1

n E f ~0!~p!m1* ~p!m2~p! dp,

wheren5* f (0)(p) dp is the particle density in space. Thu
operatorsJ1 andJ2 are Hermitian conjugate.

One can easily check that the functionm[1 makes the
collision integral ~11! vanish, thus being its eigenfunctio
with eigenvalue 0. Physically, this is a consequence of t
spin conservation, which derives from the specific form
theT-matrix ~4!. Similarly, and for the same reason, functio
mz[1 makes the scalar component of the total collision
tegral~8! vanish, as will be discussed in detail below. Owi
to the fact that the operatorsJ1 andJ2 are mutually conju-
gate, the functionm[1 is at the same time the left and rig
eigenfunction of both these operators. Thus, the eigen
jector corresponding to the zero eigenvalue is identical
both operators, orthogonal, and takes the form~in Dirac’s
notation!

P5u1&^1u. ~14!

Here u1& is the function identically equal to unity.
Function u1& should be the only eigenfunction with

vanishing eigenvalue of operatorsJ1 andJ2 , which signi-
fies the absence of alternative conservation laws in
m-subspace. The latter statement does not conflict with
applicability of other conservation laws. It will be show
below that functionsp (px , py , pz) and p2/4m, along with
the constant, are eigenfunctions of the diagonal compon
of the collision integral ~8! with vanishing eigenvalues
which is a consequence of the conservation of moment
energy, and number of particles.

4. DYNAMICS OF TRANSVERSE SPIN POLARIZATION

Equation~10! is a mathematical expression of the pro
lem of eigenvalues of operatorsJ62 ik v̂, where v̂ denotes
multiplication by the velocity treated as an operator. At sm
k (ukvu!n, wheren is of order of the kinetic collision fre-
quency! the eigenvalue problem~11! can be solved with the
help of perturbation theory in the operatorik v̂, i.e., in the
hydrodynamic approximation.16 In the present case, as note
above, the existence of only one eigenfunctionm51 of op-
eratorJ with eigenvalue 0 is assumed. It follows from Eq
~10! and ~11! that the correction of the first order inik v̂ is
zero.

The second-order correction in this case can be
pressed as

2 iv65k2^1uv̂J6
21v̂u1&. ~15!

HereJ6
21 denotes the operator inverse ofJ6 in the subspace

(12P)L ~in the original spaceL operatorJ6 does not have
an inverse because one of its eigenvalues is zero!.

First consider an unpolarized gas withM50. In this
caseJ15J25QR . The eigenvalues ofQR andQR

21 are real
and the frequency is purely imaginary. Thus, we have in
case simple spin diffusion. As usual,16 in this situation one
can only estimate the corresponding diffusion coefficient

Ds5^1uv̂QR
21v̂u1&. ~16!
al
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To order of magnitude,Ds; v̄2/3ns . Here v̄ is the average
thermal velocity of atoms and 1/ns is a typical eigenvalue of
operatorQR

21 . In this case, as one can easily see from E
~8! and~13!, the diffusion coefficientDs is, generally speak-
ing, different from the usual diffusion coefficient, since th
corresponding collision frequencies are different.

In a polarized gas the situation is significantly differen
Let uM u;1 ~the condition that the density operator be po
tive definite leads to 0<uM u<1, and in the case of optica
spin polarization in a gas a value ofuM u close to unity is
achieved in a natural way!. Now the operatorsJ6 essentially
reduce to the third term on the right of Eq.~12!, whereas the
first two can be treated as small corrections.

In order to prove this, let us estimate the real part of
exchange forward scattering amplitude Re@Tex(0)#. It fol-
lows from the general formula for theT-matrix14 that the
main contribution to the forward scattering operator for fa
moving atoms is due to the Born component, since in t
component oscillations due to the factor exp(ikx) describing
the incident wave completely cancel (k5p/ \ is the atom
wave vector!. At room temperature~and in fact even at lower
temperatures! the conditionukua0@1 is easily satisfied for
the electron spin exchange (a0 is the effective interaction
range!. The latter inequality is the hallmark of fast atom
motion. Thus, the characteristic eigenvaluenex of operatorLI

is proportional to the Born forward scattering (a0 is the ef-
fective interaction range!:

A~0!52
m

4p \2 E U d3x.2
m

4p \2
uUua0

3 ,

whereU is the exchange interaction potential.
Now we can easily estimate the rationex/ns :

nex

ns
;uM u

uUua0

\ v̄
. ~17!

Note that the right-hand side of this relation is the so-cal
‘‘Born parameter’’8 multiplied byuM u, which is usually large
in classical~nonquantum! gases. The Born parameter for c
sium atoms will be estimated below for illustration.

Thus, in the first approximation with respect to the~re-
ciprocal! Born parameter, Eq.~10! can be expressed as

~kv2v!m6~p!5716uM up3 \2E dp1f ~0!~p1!

3ReTex~0!@m6~p!2m6~p1!#. ~18!

This equation can again be treated using the perturba
theory, as was done previously. In this case, however,
will use another estimation method. Suppose for simplic
that Tex5const, i.e., it is constant with energy. Then

~kv2v!m6~p!57nexFm6~p!2
1

n

3E dp1f ~0!~p1!m6~p1!G
~this timenex516uM up3 \2nReTex).
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In the hydrodynamic approximation (ukv̄/nexu!1,
uv/nexu!1), we have the dispersion relation

v56
k2v̄2

3nex
. ~19!

This equation describes a magnetization wave of cons
amplitude. The diffusion damping of this wave characteriz
by parameterG is the effect of the next order in the recipro
cal Born parameterns /nex. The damping parameterG is
estimated by the expression

G;
k2v̄2

nex

ns

nex
!v. ~20!

Thus, weakly damped spin waves whose frequency
damping parameter are estimated by Eqs.~19! and ~20! can
propagate in a spin-polarized paramagnetic gas. Note tha
diffusion damping factorG of the spin wave in a polarized
gas given by Eq.~20! is a factor of (ns /nex)

2 smaller than in
an unpolarized gas@Eq. ~16!#.

By way of example, consider the parameters of s
waves in a vapor of spin-polarized cesium atoms, whose
rameters have been measured experimentally. First, the
tron spin magnetization in cesium vapor is conserved to h
accuracy:15 the spin nonconserving collision cross section
about 1% of the spin-conserving cross section. The effec
interaction range isa0;1027 cm.15,17 Let us estimate the
amplitudeuUu by assuming that it is twice the binding energ
of the Cs2 molecule:uUu;1 eV.18 Then the Born paramete
at the thermal velocityv̄523104 cm/s of cesium atoms is o
order 103. Such a large value of the Born parameter
closely related to the clear-cut anisotropy of the scatter
amplitude angular dependence for fast-moving particle8

Note that the temperature dependence of this paramet
largely controlled by the dependencev̄}AT. Therefore the
Born parameter is close to unity only at temperatures be
1024–1023 K.

The ratio between the spin wave frequency and
damping parameter, according to Eqs.~19! and ~20!, is

v/G;103uM u.

Hence it follows, in particular, that the resonance line sho
narrow asuM u increases. Note that this estimate, genera
speaking, may need revision with a view to taking into a
count actual spin nonconservation.

Thus, propagation of spin waves in a polarized Bol
mann gas is determined by two factors: spin conservation
to be exact, its slow decay due to collisions, and the h
anisotropy of the scattering amplitude at room temperat
It is known that in this case atoms mostly undergo sm
angle scattering in the angular range (ukua0)21, where
uku5mv̄/ \. For cesium, the corresponding angular range
the room temperature is.1023. Note that, in accordanc
with the previously adopted criterionL/r 0@1 ~see above!,
lightly-damped spin waves should not propagate in ces
vapor at room temperature, sinceL/r 0;1023.

In addition to magnetic resonance techniques,19 it is also
possible to use Rayleigh light scattering near the resonaD
nt
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lines in the atomic spectra of alkali metals in detecting s
waves. In the presence of spin waves, the spectrum of fl
tuations in the electron magnetization should have the fo
of a well-resolved doublet with narrow spectr
components.20

5. DYNAMICS OF LONGITUDINAL SPIN POLARIZATION

In contrast to the transverse spin polarizationm6 , the
longitudinal polarizationmz in a polarized gas cannot b
treated independently and is related to the scalar compo
of the Wigner functionw ~gas density!. The collision integral
in this case is determined by the first four terms in the g
eral collision integral~8!. The parameters invariant with re
spect to collisions in this case include the longitudinal s
component in addition to the usual five parameters, nam
the number of particles, three momentum components,
energy. These invariants correspond to six eigenfunction
the collision integral with vanishing eigenvalues. The cor
sponding functional space consists of paired-off coefficie
of the unit matrix and the Pauliz-matrix. A calculation of
correct zeroth-order functions~diagonalization of the opera
tor ik v̂) is described in the Appendix.

Among the six modes listed above, the only propagat
mode~first-order perturbation theory in the operatorik v̂) is
the acoustic mode propagating at the sound velocityus

5A5T/3m independent of gas polarization. Note that t
polarization-dependent correction to the sound velocity tu
up only in third-order perturbation theory inik v̂. Here we
have in mind a classical gas with no virial corrections.5 The
eigenfunctions of transverse~shear! modes are independen
of the gas polarization degree, whereas the others, nam
those of the acoustic, thermal conductivity, and spin-wa
modes, depend on the gas polarization degree.

At this point, our aim is not to calculate accurate secon
order corrections, which determine damping of these mod
since this would require specific data concerning interact
between particles. We merely note some features of sec
order corrections inik v̂. In contrast to the case of transver
modes, here all these correctionsg are of the same order o
magnitude. At smallM we haveg;g01g1M2. Hereg0 is
the damping in unpolarized gas, and both parameters,g0 and
g1, are of the order of the gas-kinetic collision frequency. A
important point is that this situation is significantly differe
from the case of a transverse spin-wave mode, for which
damping in polarized gas is considerably weaker than in
unpolarized gas@see Eqs.~17!–~20!#. This circumstance
makes propagation of a weakly damped spin wave poss

This work was supported by the Russian Fund for Fu
damental Research~Grant 96-02-17312a!.

APPENDIX

Here results of diagonalization of operatorik v̂ in the
basis of zero eigenfunctions of the collision operator~8! are
given. This analysis ignores off-diagonal~transverse! ele-
ments of the Wigner matrix, since we can independently a
lyze the dynamics of the transverse and longitudinal s
components.

The collision operator is Hermitian in the scalar produ
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^@a~p!,b~p!#u@c~p!,d~p!#&

5~2pmT!23/2E ~a~p!c~p!1b~p!d~p!!

3expS 2
p2

2mTD d3p.

Here the initial linear space is composed of pa
@a(p),b(p)# of diagonal elements of the Wigner matri
These are coefficients of the unit matrix and the Pa
z-matrix. The weighting factor is the normalized equilibriu
momentum distribution function.

The initial, zeroth-order subspace consists of six ort
normal pairs of functions corresponding to the followin
conservation laws:

f 15@1,0# ~number of particles!,

f 25@px /AmT,0#,

f 35@py /AmT,0#,

f 45@pz ,Mpz#/A~11M2!mT
J ~momentum!,

f 55@p2,Mp2#/mTA3~11M2! ~energy!,

f 65@0,1# ~z2component of the spin!.

Diagonalization of the perturbation matrixik v̂5 ik p̂/m in
this basis leads to the following correct functions in zero
order:

f s
~1 !5

1

A2~11M2!
F pz

AmT

1
1

A15

px
21py

21pz
2

mT
,

M

A15

px
21py

21pz
21pzA15mT

mT G ,

f s
~2 !5

1

A2~11M2!
F2

pz

AmT

1
1

A15

px
21py

21pz
2

mT
,

M

A15

px
21py

21pz
22pzA15mT

mT G ,

f v
~x!5@px /AmT,0#,
li

-

f v
~y!5@py /AmT,0#,

f t5
1

mTA2~2M215!~11M2!
@pz1px

21py
21pz

225mT

22M2mT,M ~pz1px
21py

21pz
223mT!#,

f m5@2M /A~11M2!,1#.

The first two modes,f s
(1) and f s

(2) , describe sound
propagation in a monoatomic gas. Modesf x

(2) and f y
(2) de-

scribe viscous damping of transverse velocity and are in
pendent of the gas polarization. Modef t describes heat trans
fer in polarized gas and, generally speaking, depends on
gas polarization degree. Finally,f m describes the transvers
magnetic polarization.

* !E-mail: rubin@sci.lebedev.ru
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Structure of a microparticle crystal in a radio-frequency discharge plasma
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By employing the particle-in-cell method we study the distributions of the electric field strength
and of the electron and ion concentrations in the microparticle crystal in the electrode
sheath in a radio-frequency discharge in helium. The coordinates and charges of the microparticles
are found from the balance condition for the forces acting on the particles and the balance
of electron and ion fluxes to the particles. With periodic boundary conditions introduced, we
investigate the three-dimensional problem for the unit cell of the microparticle crystal.
We examine the dependence on gas pressure and discharge voltage of the main crystal parameters:
the critical particle separation~at which a phase transition from a monolayer crystal to a
double-layer crystal occurs!, the particle potentials, and the distances between the layers in the
double-layer crystal. We obtain the critical values of the friction coefficient for the particles
in the gas, i.e., values below which the crystal becomes unstable against the development of
particle oscillations in the transverse direction, and compare the experimental data on
crystal structure and stability with the theoretical results. Finally, we set up an approximate
model that makes it possible to calculate the main parameters of the microparticle crystal.
© 1999 American Institute of Physics.@S1063-7761~99!00803-3#
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1. INTRODUCTION

A collection of charged microparticles in a plasma co
stitutes a unique macroscopic object for the physics of n
ideal plasmas, an object that makes possible an experim
observation of the crystal–liquid–gas transition in Coulom
systems. The possibility of forming a microparticle crystal
a plasma was predicted by Ikezi.1 Such crystals were de
tected in magnetron-discharge experiments,2–4 in a radio-
frequency discharge between plane-parallel electrode5–8

and in standing striations of a stationary glow discharge.9 A
microparticle crystal in a radio-frequency discharge cons
of several layers, each of which contains about ten thous
particles occupying the sheath of the lower electrode, wh
the force of gravity acting on the particles is balanced by
electric field. In the transverse direction~in the plane of the
electrode!, the crystal is usually limited by the edge of th
electrode or by protrusions specially manufactured on
electrodes. Longitudinal confinement of mutually repuls
negatively charged particles is achieved by the positive sp
charge in the layer.

The results of experimental observations of the struct
of a microparticle crystal cannot be described by the class
theory of Coulomb systems. According to the calculatio
done in Refs. 10–12, the structure of multilayer Coulom
crystals corresponds to different types of close packing~de-
4821063-7761/99/88(3)/10/$15.00
-
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pending on the distance between the layers!, where the par-
ticles in adjacent levels are shifted in relation to each oth
The experiments reported in Refs. 4,5,7,8, and 13 reveal
other type of packing, where the particles in different laye
are one above another, while in a plane the particles for
regular hexagonal lattice. Note that sometimes a clo
packed crystal structure is also observed~face-centered3 and
body-centered3,13,14!. According to the results of the exper
ments conducted by Hayashi and Tachibana,13 the transition
from a bcc lattice to a loosely packed hexagonal lattice
curs as the particle radius increases toR;1 mm. On the
basis of studies done with the collisionless model of i
motion, Melandsø and Goree15 and Vladimirovet al.16 sug-
gested that the reason for the observed loose packing lie
the formation, due to the focusing of the ion paths by t
particle field, of regions of enhanced ion number dens
behind particles. However, in typical experimental con
tions, the ion mean free path is much shorter than the par
separation, with the result that the collisionless model bre
down. Depending on the mean free path of the ions, regi
of enhanced or reduced ion concentration form behind
particle.17,18Monte Carlo calculations of the ion motion wit
allowance for scattering in the double-layer crystal
charged microparticles in the electrode sheath17,18have made
it possible to find the forces acting on the particles and c
© 1999 American Institute of Physics
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roborated the assumption of Melandsø and Goree15 and
Vladimirov et al.16 for the experimental conditions describe
in Refs. 7,8, and 19. However, mutual repulsion of the io
which impedes the formation of ion clouds behind the p
ticles, was not taken into account in Refs. 17 and 18. Th
in Refs. 15–18 an explanation was given of the loose pa
ing of the microparticle crystal, but no quantitative analy
was done of the crystal’s structure, an analysis that wo
make it possible to determine the particle charges, the
tance between the layers, and other lattice parameters.

We know of no self-consistent calculations of the micr
particle charges in the electrode sheath, charges measur
the experiments described in Refs. 7,8, and 19. Theore
studies of the charging of particles20–22and of the interaction
between the particles23 have been done only for quasineutr
plasma conditions. In Ref. 24 the charging of a single p
ticle by ions in the electrode sheath of an rf discharge w
examined by a non-self-consistent approach. In their s
consistent calculations of the structure of a microparti
crystal in a layer, Melandsø and Goree25 used the collision-
less hydrodynamic description of ion motion and mode
the particles by infinitely long cylinders. A one-dimension
crystal in which the microparticles are replaced by infin
charged planes was examined by Otani and Bhattacharj26

who used the kinetic approach for the ions. A more realis
case of spherical particles was studied by Melandsø.27 How-
ever, the error introduced by the use of the hydrodyna
approach and the linear response approximation for calcu
ing the particle interaction forces in Ref. 27 is unknow
Note that the researchers whose papers we have just cite
models in their statement of the problem and do not comp
the results of crystal structure calculations with the kno
experimental data. Thus, a quantitative theory of the mic
particle crystal in a plasma has yet to be developed.
present paper describes the results of a self-consistent m
eling of the structure of a microparticle crystal in the ele
trode sheath for an rf discharge in helium in conditions
inciding with those of the experiments described in Refs. 7
and 19.

2. MODEL OF A MICROPARTICLE CRYSTAL

In the experiments discussed in Refs. 7,8, and 19, mi
particles of radiusR54.7mm and density%51.5G/cm23

levitate in helium. The characteristic microparticle sepa
tions amount to hundreds of micrometers. The discharge
quency f rf is 13.56 MHz, the electrode separation is 6 c
the gas pressureP is varied from 40 to 120 Pa, and the am
plitude of the radio-frequency component of the volta
across the electrodes,U rf , is varied from 40 to 80 V. Below
we show that the presence of microparticles has a smal
fect on the discharge characteristics~the distributions of the
electron temperature in the electrode sheath, of the disch
current density, and of the ion flux to an electrode!, which
are needed in setting up a self-consistent model of a mi
particle crystal. Hence first a one-dimensional rf discharge
helium without microparticles was modeled by the partic
in-cell method,28 with the set of electron scattering cro
sections taken from Ref. 29 and with allowance for ioniz
,
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tion in the collision of two metastable helium atoms.30 As for
ions, we allowed only for their scattering in the gas cons
ing of these ions, i.e., for resonant charge exchange, wi
constant cross section of 3.5310215cm2 ~Ref. 31!. Without
going into the details of the analysis of an rf discharge,
examine only the effect of variations of gas pressure a
discharge voltage on the characteristics of interest. For
pressure and discharge-voltage ranges involvedP
5402120 Pa andU rf540280 V), the discharge curren
density j 5(0.521.3)31023 A cm22 and the ion flux to the
cathode j i5(0.522.2)31014cm22 s21 are weakly depen-
dent on the gas pressure and increase with the disch
voltage. The average electron energy increases only slig
~by 15–20%! as we move from the electrode to the bounda
of the electrode sheath and is somewhat higher~by ;20%)
than the average electron energyUe at the discharge center
a value that is almost independent of the discharge volt
and decreases almost linearly with increasing pressure:Ue

54.523 eV for P5402120 Pa, which agrees with the ex
perimental data listed in Refs. 32 and 33.

According to the measurements carried out by Gody
et al.,32 which are corroborated by the results of our calcu
tions, the electron distribution in the volume of the rf di
charge in helium is close to the Maxwellian. We are inte
ested in the behavior of the electron distribution function
electrode sheaths and, in particular, the rate at which
microparticles are charged. The characteristic mean free
of the electrons is much longer than the microparticle rad
which means that the charging of the particles can be stu
in the orbital motion approximation.34 The electron distribu-
tion over the velocity directions is close to isotropic, and t
electron flux densityj e at the microparticle surface whos
potential isU is given by the formula35

j e5
ne

4 EU

`S 12
U

e D v f e~e! de, ~1!

where the electron energy distribution functionf e(e) is nor-
malized as*0

` f e(e) de51, andne , v5A2e/me, andme are
the electron number density, velocity, and mass. With
Maxwellian electron distribution function f e(e)
52Ae/pTe exp(2e/Te) Te

21 we have

j e5
nev t

4
exp~2 U/Te!, v t5A 8Te

pme
, ~2!

where Te52Ue/3 is the electron temperature, withUe the
average electron energy. A comparison of the results of
culations of the electron flux density to the particle surface
the electrode sheath with allowance for Eqs.~1! and ~2! is
illustrated by Fig. 1 for different particle potentials. Since t
average electron energy changes little in the electrode she
the rapid decrease of the charging rate in the direction to
electrode is due primarily to the decrease in the elect
number density.

Crystals used in experiments are always finite, but e
layer contains a very large number,;1003100, of unit
cells. Hence we consider an ideal crystalline structure,
which all the characteristics of the system are strictly pe
odic, f (r1 l)5 f (r), in the electrode planer5xy, where
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l5 l 1a11 l 2a2 , with a1 anda2 the two-dimensional basis vec
tors of the lattice. Then the calculation can be restricted
one unit cell in thexy plane. The characteristic time in th
course of which the rf discharge becomes time-periodic
determined by the ambipolar diffusion of the ions throu
the discharge gap and is much longer than the time it ta
the electrode sheath to form~the latter time is determined b
the time of flight of an ion through the sheath!. Hence, to
speed up calculations we consider only the electrode sh
that contains the microparticle crystal. The lower limit of t
calculation interval corresponds to the lower electrode,
the upper is in the quasineutral plasma near the boundar
the electrode sheath. Since the electron flux to the particle
much smaller than the electron flux to an electrode, the p
ence of microparticles affects the electron distribution in
sheath only weakly, and this distribution may be assum
Maxwellian ~see above!. Then the electron number densi
ne has a Boltzmann distribution:

ne5n0 exp~ef/Te! , ~3!

wheref is the electric field potential,n0 is the density of the
quasineutral plasma at the upper limitz5d of the calculation
interval, withf(z5d)50, and the spatial distribution of th
electron temperature,Te(z), is taken from the results of rf
discharge calculations.

To calculate the potential distribution, we used the Fo
rier transform

f5f0~z!1f1~z,r!5f01 (
g,uguÞ0

fg~z!exp~ ig–r!, ~4!

where g5n1b11n2b2 , with b1 and b2 the basis vectors
of the reciprocal lattice. The part of the potential th
depends on the transverse coordinates,f1 , is much smaller
than the electron temperature everywhere except a sma

FIG. 1. Period average of the electron flux to a particle in the electr
sheath for various particle surface potentialsU. The gas pressureP
580 Pa, and the discharge voltageU rf560 V. The solid curves represen
the results of calculations that use an electron distribution function obta
by the Monte Carlo method, and the dashed curves represent the resu
calculations that use a Maxwellian electron distribution function. Curve1,
U52 V; curve2, U53 V; curve3, U54 V; and curve4, U55 V.
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gion near the particle with a size of several particle rad
Then ne(z,r)'ne(z)(11ef1 /Te), where ne(z)5n0

3exp(ef0 /Te). The Fourier transformsfg can be found by
solving Poisson’s equation

]2f0

]z2
54pe~nd,g501ne2ni ,g50!, ~5!

]2fg

]z2
2ugu2fg2

4pe2ne

Te
fg54pe~nd,g2ni ,g!, ~6!

wherend,g andni ,g are the Fourier transforms of the micro
particle charge density and the ion number density~the latter
was found by modeling the ion motion by the Monte Ca
method!.

In the entire range of the discharge parameters we h
ugu2@4pe2ne /Te , and the Debye screening of the partic
charge by the electrons is insignificant. At gas pressureP
5402120 Pa, the mean free path of ions in helium,l
51002300mm, is much shorter than the thickness of t
electrode sheath, and the characteristic time of flight of io
through the sheath is much longer than the discharge pe
On the whole, ions are produced in the quasineutral plas
and the ion flux densityj i in the electrode sheath can b
assumed constant. When we solved the transport equatio
the ions, we assumed that the velocity distribution funct
for the ions is fixed at the upper limit of the calculatio
interval and that the electrode and microparticles are id
absorbers. To solve Eq.~5! with an electron number densit
~3!, one must impose a boundary condition for the poten
at the electrode surface and determine the parametern0 in
~3!. The electron number density at the upper limit of t
calculation interval,n0 , was fixed by the quasineutralit
conditionn05ni ,z5d . The electric field strength at the elec
trode,Ek52]f0 /]z, was found from the law of total cur
rent conservation:

1

4p

]Ek

]t
1eS j i2

1

4
v tn0 exp

ef0~z50,t !

Te
D5 j sinvt,

~7!

where the amplitudej of the discharge current density wa
taken from calculations of an rf discharge without particle
and v52p f rf . The number of ions in the particle-in-ce
method was chosen between 32 000 and 64 000. A decr
in the statistical calculation error depicted in some of t
figures was achieved by averaging over hundreds of
discharge periods. In calculating the three-dimensional e
tric field potential we used the fast Fourier transform.28 The
model of the electrode sheath in an rf discharge describe
the present paper is in good agreement with the result
self-consistent calculations of rf discharges by the partic
in-cell method.

The chargeZ and the potentialU5eZ/R of the particle
surface were found from the balance of the electron and
fluxes to the particle, 4pR2 j e5Ji , where the electron cur
rent densityj e is given by~2!. The ion flux to the particle,

Ji5E ni~vi–dsi !, ~8!
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FIG. 2. Ion concentration distributions, measured in un
of 108 cm23, in thexzcrosssection for the electrode shea
with a monolayer microparticle crystal. The coordinates a
measured from the point (x50, z50) where a particle is
situated. The gas pressureP580 Pa, the discharge voltag
U rf560 V, and the particle separationa5519mm. The
heavy curves in the inset indicate the following: curve1,
the boundary of the potential well surrounding the partic
~within these boundaries ions are in finite motion!; and
curve2, the boundary of the region from which zero-energ
ions land on the particle.
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F5E mivini~vi–dsi ! ~9!

acting on the particle as a result of ion momentum trans
were found by modeling the ion motion. Here integration
carried out over the particle surface,n is a unit vector normal
to the surface, andvi andmi are the ion velocity and mass
The particle is also subjected to the force of gravityFg

5(0,0,2Mg) and the electric-field forceFk5eZ]f/]r ,
whereg5980 cm s22 is the acceleration of free fall, andM
56.73310210g is the particle mass.

3. RESULTS AND DISCUSSION

3.1. Charging of microparticles by ions

The role that the friction force~9! plays in the balance o
forces is insignificant for micrometer-sized particles. T
levitation of particles in a layer is determined primarily b
the equilibrium between the force of gravity and the for
exerted by the electric field, which makes it possible to e
mate the strengthEp of the field acting on a particle a
Mg/eZ. For a typical valueU'3 V of the potential at the
surface of a particle of radiusR'5 mm, the characteristic
field strengthEp is approximately 50 V cm21. The positive
ionic space charge concentrated near the particle is s
compared to the particle charge, and the distribution of
potential energyUi of the ions is

Ui52
e2Z

r
2eEpr cosu, ~10!

where r is the distance to the particle, andu is the angle
between the radius vector and thez axis. For a potential
energy given by~10! there exists a region of finite motion
r ,Rf(u), and a region of infinite motion,r .Rf(u), where
Rf is the boundary of the first region,

Rf5Rw12A12cosu/cosu , Rw5AeZ/Ep ,

depicted in Fig. 2 by the curve1. In conditions of the experi-
ment described in Ref. 19, the characteristic size of the
tential well for ions,Rw'50mm, is much smaller than the
r

i-

all
e

o-

mean free path of the ions,l51002300mm, which allows
making analytical estimates of the rate at which the io
charge the particles.

The total ion flux to the particle,Ji5Ji ,11Ji ,2 consists of
the flux of high-energy ions with an ordered-motion chara
teristic energye i5eEpl5~0.521.5! eV and the flux of ions
involved in a charge exchange near the particle. Sincee i

@eEpRw ,Tg and l@Rw , in estimating the flux of high-
energy ions,Ji ,1 , we can use the collisionless approximatio
ignore the effect of fieldEp near the particle, and employ th
following expression for the distribution function of the ion
impinging on the particle:36

Fi~v,vz>0!5 j i

mi

elEp
d~vx! d~vy!expS 2

mivz
2

elEp
D ,

Fi~v,vz,0!50, ~11!

which is valid for a strong uniform field. According to clas
sical mechanics,37 the particle’s capture cross section for a
ion with energye5mivz

2/2 is sc5pRp
2(11U/e), and with

allowance for~11! the high-energy ion flux can be written

Ji ,15E scvzFi~v! dv5pR2 j i S 11
U

e i
E e2x dx

x D
'pR2 j i S 11

U

e i
lnL D , ~12!

where L5e iRw
2 /UR2@1. Here integration with respect t

the impact parameter was truncated at the characteristic
of the potential well, and the terms small compared to lL
were dropped.

Near a particle, the kinetic energy of the ions aft
charge exchange is much lower than the potential ene
Ui(Rw);eUR/Rw'0.3 eV. Hence in analyzing the fluxJi ,2

of the ions to the particle that have undergone resonant s
tering near the particle we can use the cold-ion approxim
tion. We must determine the volumeVw of the region sur-
rounding the particle from which zero-energy ions pass
the particle surface. Note that this region is larger than
potential well since some of the ions whose motion is infin
also go over to the particle. Dimensional analysis sugge
that Vw5CwRw

3 , with the value of the coefficientCw de-
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pending only onRw /R. We found this coefficient numeri
cally. To this end, for certain fixed initial coordinates of th
ion, we solved the equations of motion of an ion in the p
tential ~10! with a zero initial ion velocity. If at a certain
moment in time the ion lands on the particle, the initial c
ordinates belong to the region involved, whose cross sec
is depicted in Fig. 2~the outline of the cross-sectional area
curve 2!. For typical experimental conditions (Rw /R;10),
the valueCw'3.3 is weakly dependent onRw /R. A varia-
tion in Rw /R by a factor of two leads only to a 10% variatio
in Cw . Sincel@Rw and the probability of ions being sca
tered near the particle is low,

Ji ,2' j i

Vw

l
'3.3j i

Rw
3

l
. ~13!

SinceRw@lR2, we haveJi ,2@Ji ,1 , and the rate at which the
particle is charged is determined primarily by cold ion
Knowing the velocityv is'A2U/m of initially cold ions at
the particle surface, we can estimate the number densit
these ions at the particle surface:

ni s'
Ji ,2

4pR2v is

'Cwni

Rw
2

4pR2 S R

pl D 1/2

, ~14!

where ni5 j i /vd is the average ion number density in th
layer; here we have used the expressionvd5A2elEp /pmi

for the drift velocity of ions in a strong field.31 For a pressure
of P580 Pa, the estimate~14! yields nis /ni;3, which is
roughly equal to the results of numerical calculations~Fig.
2!. According to the estimate~14! and the results of numeri
cal calculations, the total ionic charge concentrated in
potential well around the particle is much smaller than
charge of the particle proper, which justifies the use of
expression~10! for the ion potential energy.

To estimate the particle charge we must determine
electron concentration distribution in the electrode she
With the rf discharge considered here, the following con
tions are met:j @ j i , Uk@Te , andv@dk /vd , whereUk and
dk are the voltage drop across the electrode sheath and
sheath thickness. Then the standard model of the elect
sheath38 and the linear-profile approximation of the perio
averaged field strengthĒ5Ēe(12z/dk) ~Ref. 35! make it
possible to obtain analytic expressions for the electron
ion concentration distributions in strong fields, wherevd

}AE:

ni5
nik

A12z/dk

, ne5ni

w

p
,

~15!

cosw512
2Ee~12A12z/dk !2Em

Ee2Em
.

Here Ee5Em14p j /v and nik5 j i /vd(Ee) are the field
strength and ion concentration at the electrode;dk

5Ee/4penik ; Em'(8penikTeln(ve/2A2p vd))1/2 is the
minimum field strength at the electrode, which can be fou
from the balance of electron and ion fluxes,39 with ve

5A2T/2pme the thermal velocity of the electrons; andw/p
is the fraction of the rf-field period in which the electro
-
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number density in the electrode sheath is equal to the
number density. Equations~2!, ~12!, ~13!, and ~15! make it
possible to find the positions of particles and their charge
a monolayer crystal after a solution of a system of ordin
equations has been found. The results of numerical calc
tions of particle charges are in good agreement with the
proximate model discused earlier~Fig. 3a!, in which the
electron temperature in the electrode sheath is assumed
stant. The particle charge is relatively weakly dependent
the discharge voltage and increases with decreasing gas
sure, i.e., it behaves in the same way as the average ele
energy. The difference between the experimental data
the results of numerical calculations is about 30% and
within experimental error.

3.2. Transition from a monolayer crystal to a double-layer
crystal

As the particle number density increases, the format
of a double-layer crystal is observed in the experiments.
low we give the main results of Dubin’s theoretic
analysis10 of the structure of a Wigner crystal consisting
particles with chargeeZ that are immersed in a uniform com
pensating background with an ion number density% and
interact via the Coulomb law. When the particle number d
sity is low, they form a monolayer crystal with a hexagon
lattice in which the particle separation isa. As this density
increases, the monolayer Coulomb crystal becomes di
vantageous from the energy viewpoint and transforms int
triple-layer crystal with hexagonal close packing when

~%/Z!1/3a<a, a'1.02. ~16!

FIG. 3. Gas-pressure dependence of the particle charge~a! and the critical
particle separation~b! at which the monolayer crystal transforms into
double-layer crystal, for various discharge voltages:U rf540 V(m),
60 V(d), and 80 V(j). The curves represent the results obtained by us
an approximate crystal model, the black symbols represent the resul
self-consistent calculations, and the open symbols represent the exper
tal data obtained atU rf540 V(n) and'50 V(s).
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A microparticle crystal in a plasma is an open Ham
tonian system, so that there is no way in which the conc
of potential energy can be introduced.17,18 Hence we exam-
ined the stability of a monolayer crystal against stratificat
by initiating a small longitudinal displacement of particl
from their equilibrium position. In a double-layer cryst
with a rectangular unit cell,a15a(1,0) anda25a(0,A3 ),
containing two particles the distancedz between the particles
was fixed, while the positionzp of the crystal’s center of
mass was found from the balance of all forces acting on
two particles. Note that atdz50 the crystal forms a mono
layer hexagonal lattice. By varying the particle separation
a layer we found the differencedFz5Fz,12Fz,2 of the forces
acting on the higher and lower particles. Stratification of
crystal occurs at the critical valuea5acr , whendFz50. For
a,acr , the repulsion of the particles of the upper and low
layers is balanced by the attraction of the ionic space cha
concentrated between the layers, which leads to the for
tion of a double-layer crystal. A microparticle crystal diffe
from a Coulomb crystal placed ‘inside’’ a uniform bac
ground primarily in the dependence of the charges on t
coordinates. Since the electron number density decreas
we move closer to the electrode, the charge of the parti
belonging to the lower layer is smaller than the charge of
particles belonging to the upper layer, which facilitates str
fication of the crystal. Suppose that the lower layer is shif
in relation to the upper by the distancedz. The conditions
for equilibrium of the two layers can be writtenEuZu

5ElZl5Mg, whereEu , El5Eu14p(%2a3Zu /a3)dz and
Zu , Zl5Zu2dz ]Z/]z are the field strengths and the charg
of the particles in the upper and lower layers, respective
%5ni(zp)2ne(zp) is the electron and ion space charge de
sity; anda51.02 is a dimensionless coefficient~taken from
Dubin’s theory10! that determines the strength of the fie
generated by the upper layer of charged particles. Then
critical particle separation in the dust crystal is given by
formula

acr5aS Z

%~12d! D
1/3

, ~17!

d5
Ep

4p%

] ln U

]z

5
Te

3Te1U S 1

2
1

A12zp /dk ~11Em /Ee!

w sinw D , ~18!

where the particle chargeZ and the phasew are taken at
point zp . Depending on the discharge parameters, we h
d50.120.5, so that the difference of the charges of t
lower and upper layers provides a sizable contribution toacr .
In Fig. 3b we compare the results of calculations with tho
provided by the analytic formula~17!. As the gas pressur
grows, the microparticle charge decreases and the ion n
ber density increases. The two effects lead to a decreas
the critical particle separation atU rf560 and 80 V, which
agrees with the experimental data. AtU rf540 V the statisti-
cal calculation error is several times larger than atU rf

560 V. For U rf540 V and P<100 Pa, the critical particle
separation varies only slightly with pressure and amount
pt
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;540mm within statistical calculation error. A further in
crease in the gas pressure leads to a rapid increase inacr due
to the increase in the difference between the charges of
lower and upper particles. The experimental data on crit
particle separation obtained forU rf540 V andU rf550 V lie
between the calculated data obtained forU rf540 V andU rf

560 V. Note that the experimenter observes not the ph
transition of a monolayer crystal into a double-layer crys
but the formation of a second layer of particles ata5acr .
When a.acr , the addition of new particles leads to a d
crease in the particle separation, and ata5acr there appears
a second layer, which gets filled as the number of partic
increases.

3.3. Structure of a double-layer crystal

Immediately after stratification of the monolayer crys
the particle separation amounts toA2 acr . A further increase
in the particle number density leads first to a decrease in
particle separation, and fora,acr,2 there is a transition to a
triple-layer structure. Probablyacr,2;acr , but we did not ex-
amine this transition quantitatively. We calculated t
double-crystal parameters for two limits in particle sepa
tion, A2 acr andacr . Qualitatively, the spatial distributions o
the electric field potential, the electron number density, a
the ion number density are the same for different gas p
sures and discharge voltages. In the longitudinal plane t
are almost axisymmetric. In view of the focusing of the io
paths by the particle field, an elongated ion cloud is form
downstream of the particles~Fig. 4a!. The maximum ion
concentration in the cloud exceeds severalfold the aver
ion number density at the points occupied by a particle. E
cess ionic charges near a particle are small compared to
particle charges proper. For instance, for the case depicte
Fig. 4, the excess ionic charges in a region with a radius
50 mm near the particles are 53102 e, while the particle
charges are approximately (829)3103 e. Since a fraction of
the ion flux lands on the particles, in the region between
electrode and the crystal the ion number density is somew

FIG. 4. Ion concentration distributions, measured in units of 108 cm23, in
thexy sectionfor the electrode sheath with a double-layer microparticle c
tal at zero,dx50 ~a!, and finite,dx5130mm ~b!, shifts of the lower layer
in relation to the upper layer along thex axis. The regions corresponding t
‘‘condensation’’ of ion concentration coincide with the positions of pa
ticles. The gas pressureP is 80 Pa, the discharge voltageU rf is 60 V, and the
particle separationa in a layer is 519mm.
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lower than in a layer without particles. The presence of p
ticles in a layer only weakly affects all layer characterist
except the layer thickness~Fig. 5!. Hence separate modelin
of an rf discharge without particles and for the electro
sheath with particles is justified. In equilibrium, the mutu
repulsion of two charged layer is balanced by the attrac
to the space charge between the layers. If we take into
count the particle charge, the crystal can be considere
quasineutral region. Hence the increase in the character
thickness of the electrode sheath is approximately equa
the distance between the outmost planes of the crystal, a
corroborated by specific calculations of a triple-layer crys

Since the electron number density decreases as we m
closer to the electrode, the lower particles have a sma
charge than the upper. A transition from a monolayer cry
to a double-layer crystal and a further variation of in parti
separation in a layer have a small effect on the part
charge. As the pressure increases, the average electro
ergy decreases, and so does the potential at the particle
face, with the potential difference between the upper a
lower particles remaining essentially unchanged. For a c
sical Coulomb double-layer crystal, the distancedl between
the layers can be estimated from the condition for the eq
librium between the repulsion of two uniformly charge
planes and the attraction of the planes to the backgro
charge% in the space between the planes:dl52Z/A3 %a2.
For a microparticle crystal in a layer, the difference of p
ticle charges,dZ5Zu2Zl , of the upper (Zu) and lower (Zl)
layers plays an important role. Here the equilibrium con
tion can be approximately written

E
z1

z11dl
~ni2ne! dz5

2Z

A3 a2
1

dZ

Z
Mg. ~19!

Since 2Z/A3 a2!Mg, a slight difference in particle charge
leads to an appreciable increase in the distance betwee
layers, which decreases as the separation of particles be
ing to a single layer increases~Fig. 6!. When we used the
expression~19! to estimate the distance between the lay
~the solid curves in Fig. 6!, we took the ion and electron
concentrations from~15!. We also allowed for a reduction o
electron concentration near a charged layer due to De
screening. No calculations of the distance between the la

FIG. 5. Cross-section and discharge-period averages of the distributio
the ion concentration (ni), electron concentration (ne), and electric-field
strength (E) in the electrode sheath at a gas pressureP580 Pa and a dis-
charge voltageU rf560 V. The solid curves were obtained for a layer co
taining a two-layer crystal with a particle separationa5519mm in the
layer, and the dotted curves were obtained for a layer without micro
ticles.
r-

e
l
n
c-
a

tic
to
ct

l.
ve

er
al

e
en-
ur-
d
s-

i-

nd

-

-

the
ng-

s

ye
rs

at U rf540 V were carried out, since a large statistical error
involved in determining the transition from a monolay
crystal to a double-layer crystal~Fig. 3b!. The experimental
data on layer distances obtained withU rf540 V agree fairly
well with the results of calculations forU rf560 V and a
5acr ~Fig. 6!. As noted earlier, in experiments the partic
separation in a layer must be equal to the critical valueacr .

3.4. Stability of double-layer crystals

To analyze the stability of a loosely packed hexago
lattice, we calculated the forces~Fig. 7! acting on the par-
ticles when the lower layer is shifted as a whole in relation
the upper layer along thex coordinate~the direction of thex
axiscoincides with the direction to the nearest particle in
hexagonal lattice!. In this series of calculations we examine
a hexagonal unit cell containing two particles with fixe
transverse coordinates, while the longitudinal coordinates
the particles were determined by the balance of forces ac
on the particles. Under a transverse shift of the lower lay

of

r-

FIG. 6. Dependence of gas pressure on the distance between the laye
double-layer microparticle crystal for a discharge voltageU rf560 V and
various particle separations in a layer:a5acr ~1! and a5A2 acr ~2!. The
curves represent the results obtained by using an approximate crystal m
d and j represent the calculated data, ands represent the experimenta
data atU rf'40 V anda5acr .

FIG. 7. Forces acting on the particles of the upper~1! and lower~2! layers
when the lower layer is shifted in relation to the upper layer bydx at U rf

560 V, P580 Pa, anda5519mm. The curves represent the results o
tained by using the approximation~20!, andd andm represent the results
of self-consistent calculations.
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the distance between the layers decreases, which is e
cially evident ata5A2 acr ~Fig. 4!. The forcesFx,u acting on
the particles of the upper layer in the directionx are negative,
i.e., the Coulomb repulsion between the lower and up
particles tend to disrupt the equilibrium in which the pa
ticles of the lower layer are under the particles of the up
layer. However, the attraction of the lower particles to t
ion clouds that are below the upper particles exceeds
Coulomb repulsion between the particles. Hence the for
Fx,l acting on the particles in the lower level are also ne
tive, i.e., the lower particles tend to occupy positions un
the upper particles. SinceuFl u.uFuu, as shown in Ref. 18
such crystal packing is stable against a shift of the low
layer as a whole in relation to the upper layer. As noted
Ref. 18 and suggested by Fig. 4, a shift of the lower partic
has a relatively small influence on the ion concentration d
tribution in the cloud above the upper particles. This make
possible to approximately determine the interparticle for
for a known ion concentration distribution in ion cloud
which can be found by analyzing the monolayer crystal~Fig.
2!. The results of calculations reveal that with an accuracy
1–3% the spatial distribution of ions behind a particle in
monolayer crystal can be approximated by the formula

ni~z,r!5ni0~z!1ni1~z,r!,

ni1~z,r!5
Ni

pRi
expS 2

uru2

Ri
2 D , ~20!

where Ni is the ion number density per unit length in th
cloud, andRi is the effective cloud radius~both depend on
the distance to the particle; Fig. 8!. The minimum in the ion
cloud radius is attained near particles and is approxima
equal to the characteristic radiusRw of the potential well. As
the distanceuzu from the generating particle down the flu
increases, the effective cloud radius increases approxima
according to the square-root law

Ri5ARmin
2 1 4D'uzu/vd

due to the transverse ion diffusion with a diffusion coef
cientD' . The ion number densityNi in the cloud reaches its

FIG. 8. Effective radiusRi of the ion cloud and the ion number densityNi

in the cloud generated by a particle in a monolayer crystal atU rf560 V,
P580 Pa, anda5519mm. The coordinatez50 corresponds to the position
of the particle.
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maximum value at distances of 100–200mm behind the par-
ticle, and then decreases due to the Coulomb repulsion
ions. Note that the total ionic charge in the cloud,

Nt5eE Ni~z! dz'~223!3103 e,

remains several times smaller than the particle charge. He
ion clouds below lower particles have almost no effect on
upper particles. Nevertheless, the attraction of the lower p
ticles to ion clouds above the upper particles is stronger t
the Coulomb repulsion from the upper particles, since on
average the ions are closer to the lower particles.

To analyze the motion of particles in the crystal we mu
know the interparticle forces, whose self-consistent calcu
tion in the general case, where the crystal loses its symme
is almost impossible. Ignoring the momentum transfer
from ions to particles in collisions and using formula~20! for
the ion concentration distribution in the cloud, we can redu
the many-body problem to finding the two-body forces b
tween the particles. To do this, in addition to accounting
Coulomb repulsion, we must allow for the attractive force

Fl~r !5eZ
]

]r (
i
E ni1~r 82r i !

ur 82r u
dr 8 ~21!

between the lower particles and the ion clouds that can
considered being rigidly coupled to the upper particles t
give rise to them.18 Summation in~21! is done over the uppe
particles with coordinatesr i . The results obtained in this
manner for the shift of the lower layer in relation to the upp
layer ~a problem considered earlier! agrees, within statistica
error, with a complete calculation of the forces~Fig. 7!,
which suggests that this approach remains meaningfu
more complex situations.

As shown in Ref. 18, a decrease in the gas press
makes a double-layer crystal unstable against the deve
ment of short-wavelength perturbations. In Ref. 18, non-s
consistent calculations of ion motion were carried out, wh
the ion concentration distribution in the cloud was replac
by a point charge positioned at a certain distance do
stream of the upper particles. Using the expression~21! for
the forceFl of interaction between the lower particles an
the ion cloud together with the approximation~20! for the
ion concentration distribution, we study the stability of th
crystal more thoroughly. Following the line of reasoning d
veloped in Ref. 18, we examine the motion of particles o
in the transverse planer5xy, with allowance for the friction
of the particles in the gas with a coefficientn, the Coulomb
repulsion between particles, and the attraction of the low
particles to the ion clouds above the upper particles. Then
equations of motion of the upper (rk,u) and lower (rk,l)
particles can be written

d2rk,u

dt2
52n

drk,u

dt
1

e2Zu
2

M (
i

rk,u2ri ,u

urk,u2ri ,uu3

1
e2ZuZl

M (
i

rk,u2ri ,l

urk,u2ri ,l1ezdl u3
, ~22!
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d2rk,l

dt2
52n

drk,l

dt
1

e2Zl
2

M (
i

rk,l2ri ,l

urk,l2ri ,l u3

1
e2ZuZl

M (
i

rk,l2ri ,u

urk,l2ri ,u1ezdl u3
1

1

M
Fk,l ,

~23!

whereez is the unit vector along thez axis, with the lower
index indicating the equilibrium position of the particle in
layer. The forces acting on a particle are nonpotential du
the interaction of the lower particles and the ion clou
which in the final analysis leads to the development of p
ticle oscillations as the coefficient of friction of particles
the gas decreases. To analyze crystal stability, we exam
the perturbations

drk,u5ju exp~ iq–rk,u
0 1l i t !,

drk,l5j l exp~ iq–rk,l
0 1l i t !

of the coordinates of the particles with respect to the eq
librium particle positionsrk,u

0 and rk,l
0 in the crystal lattice,

linearize Eqs.~22! and~23! in the small quantitiesdrk,u and
drk,l , and find the eigenvaluesl i for various wave vectors
q. The statement of the problem differs from that in Ref.
only by the fact that here we specify the particle charges
the forceFl self-consistently. Hence, without going into th
cumbersome calculations, which can be found in Ref. 18,
write only the results for the main physical characteristics
instability: the critical friction coefficientn* for the particles
in the gas~below this value instability begins to develop!, the
corresponding oscillation frequencyv* , and phase shift in
the oscillations of the lower and upper particles, sinw*
5Im(ju /j l)(uju /j l u)21 ~see Table I!. In accordance with the
experimental data listed in Refs. 5 and 19, the critical va
of the friction coefficient of the particles in the gas increas
with the discharge power or, in other words, the critical g
pressure~the pressure at which the crystal becomes unsta
against the development of particle oscillation! increases
with the discharge power. As the particle separation in
layer decreases, the value ifn* changes only slightly, and
the oscillation frequencyv* and phase shiftw* increase.
Experiments conducted atU rf'40 V and a5acr yield n*
'28 s21, v* 572 s21, and w* 540°. The difference be-
tween the experimental and theoretical data may possibl
due to the defects existing in real crystals.

4. CONCLUSION

As a result of our calculations for various gas pressu
and discharge voltages, we have obtained~in a self-
consistent manner! the main parameters of a micropartic

TABLE I.

U rf , V a/acr n* , s21 v* , s21 w* , deg

60 1 17 59 73
60 A2 18 49 43
80 A2 24 61 45
to
,
r-
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crystal in a plasma: the particle potentials, the critical p
ticle separation in a layer at which, due to the Coulom
repulsion of particles, the monolayer crystal transforms i
a double-layer crystal, and the distance between layers
double-layer crystal. We have proposed a model for cal
lating interparticle forces. This model has been used to
termine the main characteristics of instability of a doub
layer crystal against the development of transverse par
oscillations: the critical friction coefficient for the particles
the gas, the oscillation frequency, and the phase shift in
oscillations of the lower and higher particles. The discre
ancy between our results and the experimental data on
various lattice parameters amounts to 25–40%, which is
the order of the experimental error. We have also built
approximate model of a microparticle crystal in the electro
sheath, a model that makes it possible to find all the cry
characteristics to a high accuracy.
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D. Möhlmann, Phys. Rev. Lett.73, 652 ~1994!.

6Y. Hayashi and K. Tachibana, Jpn. J. Appl. Phys., Part 233, L804 ~1994!.
7A. Melzer, T. Trottenberg, and A. Piel, Phys. Lett. A191, 301 ~1994!.
8T. Trottenberg, A. Melzer, and A. Piel, Plasma Sources Sci. Techno4,
450 ~1995!.

9V. E. Fortov, A. P. Nefedov, V. M. Torchinski�, V. N. Molotkov, A. G.
Khrapak, O. F. Petrov, and K. F. Volykhin, JETP Lett.64, 92 ~1996!.

10D. H. E. Dubin, Phys. Rev. Lett.71, 2753~1993!.
11V. A. Shve�gert and M. S. Obrekht, Pis’ma Zh. Tekh. Fiz.21~10!, 57

~1995! @Tech. Phys. Lett.21, 377 ~1996!#.
12G. Goldoni, V. A. Schweigert, and F. M. Peeters, Surf. Sci.361/362, 163

~1996!.
13Y. Hayashi and K. Tachibana, J. Vac. Sci. Technol. A14, 506 ~1996!.
14J. Pieper, J. Goree, and R. Quinn, J. Vac. Sci. Technol. A14, 519~1996!;

Phys. Rev. E54, 5636~1996!.
15F. Melandsø and J. Goree, Phys. Rev. E52, 5312~1995!.
16S. V. Vladimirov and M. Nambu, Phys. Rev. E52, 2172 ~1995!; S. V.

Vladimirov and O. Ishihara, Phys. Plasmas3, 444~1996!; O. Ishihara and
S. V. Vladimirov, Phys. Plasmas4, 1 ~1997!.

17A. Melzer, V. A. Schweigert, I. V. Schweigert, A. Homann, S. Peters, a
A. Piel, Phys. Rev. E54, R46 ~1996!.

18V. A. Schweigert, I. V. Schweigert, A. Melzer, A. Homann, and A. Pie
Phys. Rev. E54, 4155~1996!.

19A. Melzer, A. Homann, and A. Piel, Phys. Rev. E53, 2757~1996!.
20J. Goree, Phys. Rev. Lett.69, 277 ~1992!.
21S. J. Choi and M. J. Kushner, J. Appl. Phys.75, 3352~1994!.
22G. Lapenta, Phys. Rev. Lett.75, 4409~1995!.
23Ya. K. Khodataev, R. Bingham, V. P. Tarakanov, and V. N. Tsytovic

Fiz. Plazmy22, 1028~1996! @Plasma Phys. Rep.22, 932 ~1996!#.
24V. A. Shve�gert, Pis’ma Zh. Tekh. Fiz.21~12!, 69 ~1995! @Tech. Phys.

Lett. 21, 476 ~1995!#.
25F. Melandsø and J. Goree, J. Vac. Sci. Technol. A14, 511 ~1996!.
26N. Otani and A. Bhattacharjee, Phys. Rev. Lett.78, 1468~1997!.
27F. Melandsø, Phys. Rev. E55, 7495~1997!.
28R. Hockney and J. Eastwood,Computer Simulation Using Particles,

Adam Hilger, Philadelphia~1988!.
29R. Lagushenko and J. Maya, J. Appl. Phys.59, 3293~1984!.



ys

e

tt.

,

n-
irsk

491JETP 88 (3), March 1999 Schweigert et al.
30M. E. Riley, K. E. Greenberg, G. A. Hebner, and P. Drallos, J. Appl. Ph
75, 2789~1994!.

31E. W. McDaniel and E. A. Mason,The Mobility and Diffusion of Ions in
Gases, Wiley, New York ~1973!.

32V. A. Godyak, R. B. Piejak, and B. M. Alexandrovich, Plasma Sourc
Sci. Technol.1, 36 ~1992!.

33V. A. Godyak, R. B. Piejak, and B. M. Alexandrovich, Phys. Rev. Le
68, 40 ~1992!.

34B. V. Alekseev and V. A. Kotel’nikov,The Probe Method in Plasma
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Cherenkov interaction of vortices with a free surface
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Zh. Éksp. Teor. Fiz.115, 894–919~March 1999!

The interaction of vortex filaments in an ideal incompressible fluid with the free surface of the
latter is investigated in the canonical formalism. A Hamiltonian formulation of the
equations of motion is given in terms of both canonical and noncanonical Poisson brackets. The
relationship between these two approaches is analyzed. The Lagrangian of the system and
the Poisson brackets are obtained in terms of vortex lines, making it possible to study the dynamics
of thin vortex filaments with allowance for finite thickness of the filaments. For two-
dimensional flows exact equations of motion describing the interaction of point vortices and
surface waves are derived by transformation to conformal variables. Asymptotic steady-state
solutions are found for a vortex moving at a velocity lower than the minimum phase
velocity of surface waves. It is found that discrete coupled states of surface waves above a
vortex are possible by virtue of the inhomogeneous Doppler effect. At velocities higher than the
minimum phase velocity the buoyant rise of a vortex as a result of Cherenkov radiation is
described in the semiclassical limit. The instability of a vortex filament against three-dimensional
kink perturbations due to interaction with the ‘‘image’’ vortex is demonstrated. ©1999
American Institute of Physics.@S1063-7761~99!00903-8#
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1. INTRODUCTION
It is generally known~see, e.g., Ref. 1! that fluid flow in

the presence of oscillations of the surface of water under
influence of the forces of gravity and capillary tension can
treated very accurately as potential flow:v5¹F. The small
nonpotential component of the velocity field is attributable
fluid viscosity. The system becomes Hamiltonian in the z
viscosity limit. The actual profile of the surfacez
5h(x,y,t) and the value of the potential on the surfa
f(x,y,t) emerge as canonical variables, whereupon
equations of motion are written in the form

]h

]t
5

dH

df
,

]f

]t
52

dH

dh
, ~1!

where the HamiltonianH coincides with the total energy o
the fluid.

A Hamiltonian formulation~1! of the equations of mo-
tion for potential flows of a fluid with a free surface wa
published by Zakharov at the end of the 1960’s.2,3 Since then
the Hamiltonian approach has been used successfully in
investigation of a great many phenomena: the modula
instability of surface waves,2 the nonlinear stage of develop
ment of Kelvin–Helmholtz instability,4 the formation of hex-
agonal relief on the surface of liquid dielectrics in the pre
ence of an external electric field,5 and the formation of
singularities on the surface of ideal fluids.6,7 Two important
contributions to research on surface wave turbulence
Refs. 3 and 8, in which the first systematic theory of K
mogorov spectra—flux-type power-law distributions—is fo
mulated.

Nowadays the theory of surface wave turbulence is
of the most advanced of all~see, e.g., the survey in Ref. 9!.
All the same, the theory has lingering unsolved problems,
4921063-7761/99/88(3)/14/$15.00
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crux of which could well be the problem of the interaction
nonpotential flows, i.e., rotational~vortex! flows with a free
surface.

Probably the first theoretical treatment of this proble
was published by Keldysh and Lavrent’ev,10 and a section of
a later book11 is also devoted to it. Novikov has subsequen
investigated the problem.12 In all these publications the au
thors have calculated the losses of a two-dimensional p
vortex in steady-state motion as a result of the excitation
surface waves. In Novikov’s work12 this process is analyze
in the linear approximation with respect to the surface wa
amplitude on the assumption that the vortex is situated
considerable depth from the free surface. In the zeroth
proximation in this case the vortex combines with its mirr
image to form a dipole pair, which moves at a constant
locity along the surface. The generated flow away from
vortex is inhomogeneous along the surface. In a coordin
frame where the vortex is at rest, the flow is homogeneou
large distances from the vortex. As we approach the vor
the flow velocity on the surface changes sign at some po
so that the flow velocity above the vortex has the oppo
sign and three times the magnitude of the velocity at infin

It is clear from this situation that the generated wa
experiences an inhomogeneous Doppler effect by virtue
the Cherenkov process. It should be recalled that Cheren
radiation occurs when a vortex propagates at a velo
greater than the minimum phase velocity of surface wave
is shown in the cited paper that when the Cherenkov wa
lengthl is much shorter than the distance from the vortex
the surface, i.e., the vortex depthh, the Cherenkov radiation
can be described semiclassically. Surface waves are kn
to be localized within a surface layer having a thickness
the order of the wavelength, the fluid velocity decreas
© 1999 American Institute of Physics
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exponentially at greater distances. Forl!h, therefore, the
back influence of radiation on the vortex is exponentia
small, so that perturbation theory can be used to good ad
tage.

In the present article we investigate the nonlinear int
action of vortices with a free surface. We are concerned
marily with the Cherenkov radiation of surface waves by
moving point vortex. Our work differs fundamentally from
previous studies in that the inhomogeneous Doppler effe
taken into account. Its influence is significant not only f
Cherenkov radiation, but also in the subcritical regim
where the vortex propagation velocity is smaller than
minimum phase velocity of the waves. The entrainment
surface waves is possible in this case, along with the for
tion of steady-state bound states involving the vortex and
waves propagating with it. It is possible for waves to
entrained by the vortex when the propagation velocitiesv are
much lower than the minimum phase velocityVmin . For ex-
ample, whenl!h, the velocityv at which entrainment set
in attains a value of the order ofVmin/3.

We use the Hamiltonian approach to describe the in
action of vortices with a free surface. In the canonical13,14

formulation the fluid velocity is represented in terms of Cle
sch variables. Even though this kind of parametrization
the velocity describes a special type of flow, the canon
Poisson bracket~expressed in terms of Clebsch variable!
admits conversion to a noncanonical bracket, which is
pressed at once in terms of the velocity, the potential on
surface, and the surface profile itself; most important, it c
be used to describe flows having an arbitrary topology. Ho
ever, the noncanonical bracket is found to be degene
owing to the existence of a special symmetry, which for
an entire group—the group of relabeling transformations
Lagrangian markers~the details are given in a recen
survey14!. This symmetry generates all known vorticity co
servation laws. The principal law is the freezing-in of vort
lines in the fluid. It corresponds to a local Lagrangi
invariant—the Cauchy invariant. In a previous paper15 we
propose a technique for removing the degeneracy for an
compressible ideal fluid without a free boundary by introdu
ing new variables called Lagrangian markers, which enum
ate each vortex line. It will be shown in Sec. 2 that th
approach can be extended to ideal hydrodynamics with a
surface. In particular, the transition to a vortex-line repres
tation provides the means for writing a variational princip
and a simple way to achieve a self-consistent Hamilton
description of a system of thin vortex filaments interacti
with a free surface.

In Sec. 3 we use the variational principle and conform
mapping into the half-plane~by analogy with Ref. 16! to
derive the equations of motion of point vortices and a f
surface for a two-dimensional geometry. In the next sect
we find steady-state solutions of these equations in the f
of an asymptotic expansion in powers of the Froude par
eter F. In Sec. 5 we discuss bound surface wave states
Sec. 6, assuming thath@l, we determine the law governin
the buoyant rise of a point vortex as a result of Cheren
radiation. In the last section we investigate the influence
three-dimensional perturbations on the dynamics of vor
n-

-
i-

is
r
,
e
f
a-
e

r-

-
f
l

-
e
n
-

te,
s
f

n-
-
r-

ee
-

n

l

e
n
m
-

In

v
f
x

filaments. We show that the interaction of the vortex with
own image renders a vortex filament unstable against k
perturbations, where the parts of the filament closest to
free surface accelerate toward it, while more distant pa
move in the opposite direction, away from the surface. T
instability is analogous to the Crow instability17 of two anti-
parallel vortex filaments. Without a free surface the devel
ment of this instability leads to reconnection of the vort
lines and the formation of vortex rings. In this situation w
can expect a vortex line to ‘‘reconnect’’ with its own mirro
image, inevitably producing a large set of vortex half-rin
that begin and end at the surface of the fluid. The ‘‘reco
nection’’ process must be accompanied by the Cheren
radiation of surface waves in this case.

2. BASIC EQUATIONS; HAMILTONIAN FORMALISM

We consider an incompressible ideal fluid of consta
densityr ~we assume from now on thatr51) in the pres-
ence of a constant gravitational fieldg antiparallel to thez
axis. Let the profile of the free surface be described by
equationz5h(x,y,t).

The equations of motion of the fluid are the Euler equ
tions

rS ]v

]t
1~v¹!vD52¹p, div v50 ~2!

subject to the boundary conditions: 1! extinction of the ve-
locity (v→0) at a large depthz→2`; 2! the dynamic con-
dition at the free boundary

puz5h5s div
¹h

A11~¹h!2
, ~3!

and the kinematic condition

]h

]t
5vnA11~¹h!25vz2~v'¹!h. ~4!

Here p is the pressure, ands is the coefficient of surface
tension.

The system of equations~2!–~4! is classified as Hamil-
tonian. For pure potential flowsv5¹F, Eq. ~2! with the
boundary conditions~3! and~4! can be written in the canoni
cal form ~1!. For nonpotential flows that can be parametriz
in terms of Clebsch variables, we have

v5P̂l¹m1¹F, ~5!

and the canonical equations~1! are augmented with two
equations in the variablesl and m ~see, e.g., Refs. 14 an
18!:

]l

]t
5

dH

dm
52~v¹!l,

]m

]t
52

dH

dl
52~v¹!m. ~6!

Here the HamiltonianH is identical to the total energy of th
fluid:

H5E
z<h

v2

2
dr1E dr'H gh2

2
1s@A11~¹h!221#J , ~7!
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and the velocityv can be expressed in terms ofl andm by
means of Eq.~5!. In Eq. ~5! Pab5dab2¹aD21¹b is the
transverse projector. The operatorD21 is interpreted every-
where in this section as the inverse operator for the Dirich
problemD f 5g with vanishing boundary conditions

f uz5h50 and f→0 asz→2`.

For this choice the symbolf in Eqs.~1! retains its definition
as the value ofF at the free surface, and the potentialF
itself is a harmonic function:

DF50, Fuz5h5f. ~8!

It is important to note that herel and m are completely
unconstrained at the free surface. The vortex lines, which
specified by the intersection of the surfacesl5const and
m5const, can have arbitrary orientation at the surfacez
5h(r' ,t), i.e., they can either be tangent to the free surf
or run into it.

The substitution~5! is known ~see, e.g., Ref. 19! to de-
scribe a special type of flow; in particular, it does not d
scribe knotted flows. Nonetheless, despite the special c
acter of this substitution, it can be used to obtain
Hamiltonian description for flows having an arbitrary topo
ogy in terms of so-called noncanonical Poisson bracke20

This fact was first demonstrated for flows without a fr
boundary.14 We now show that it is also valid for flows with
a free surface. We convert the canonical Poisson brac
specified in terms of bulk variables (l,m) and surface vari-
ables (f,h),

$F,G%5E S dF

dl

dG

dm
2

dG

dl

dF

dm Ddr

1E S dF

dh

dG

df
2

dG

dh

dF

df Ddr' , ~9!

to a bracket expressed in terms of the velocityv and the
surface profile. These calculations are based on a recal
tion of the variational derivatives.

Invoking the definition~5! and the self-adjointness of th
operatorP̂, we have

dF

dl U
mhc

5S ¹m,
d̃F

dv D ,
dF

dmlhc5S ¹l,
d̃F

dv D . ~10!

Here

d̃F

dv
5 P̂

dF

dv
,

so that div(d̃F/dv)50.
Next we calculate the variational derivative off:

dF

df U
lmh

5E dF

dv
¹

df~r !

df~r'!
dr . ~11!

Making use of the relationDdF(r )/df(r')50, we replace
the variational derivativedF/dv by d̃F/dv in the integral
~11!. Then, transforming the integral to a surface integral,
obtain
t

re

e

-
r-

a

et,

la-

e

dF

df U
lmh

5S n
d̃F

dv D
z5h

. ~12!

In the meantime, the variational derivative with respect toh
remains unchanged:

dF

dh U
lmf

5
dF

dhU
v

. ~13!

Next, substituting relations~10!, ~12!, and ~13! into the
bracket~9!, we arrive at an expression for the noncanoni
Poisson bracket21:

$F,G%5E S curlvF d̃F

dv
3

d̃G

dv G D dr

1E S dF

dh
S n

d̃G

dv D 2
dG

dh
S n

d̃F

dv D D dr' . ~14!

The first part of this bracket takes bulk variables into a
count, and without a free boundary it goes over to a brac
expression first published in terms of the curl of the veloc
V5curlv in Ref. 19:

$F,G%5E S VFcurl
dF

dV
curl

dG

dVG Ddr . ~15!

When the vortex lines do not run into the free surface,
second part of the bracket can be expressed in terms o
variablesf andh:

E S dF

dh

dG

df
2

dG

dh

dF

df Ddr' ~16!

and coincides with the canonical Zakharov bracket.
Accordingly, the equations of motion~2! and~4! can be

written by virtue of the bracket~14! in the form

vt5$v,H%, h t5$h,H%.

In the investigation of thin vortices it is more convenie
to use a third Hamiltonian formulation, in terms of vorte
lines. We have shown previously15 that for ideal incompress
ible hydrodynamics without a free boundary the transform
tion to vortex lines as new variables removes the degene
of the Poisson brackets and makes it possible to writ
variational principle. It should also be noted that the limit
infinitely thin vortex filaments of finite vorticity in the pres
ence of a free boundary has been analyzed previously.22 The
formulation set forth below gives a Hamiltonian descripti
of distributed vortices interacting with a free surface. O
proofs are simpler and, most importantly, they can be use
check the limiting transition to infinitely thin vortices.

We represent a vortex tube of finite thickness by a c
tinuous distribution of vortex filaments, each of which w
label with the coordinaten. We assume that the coordinaten
belongs to a certain fixed two-dimensional domain. For
ample,n can be interpreted as the initial coordinates o
vortex filament in a cross section of the vortex tube.

We specify the position of each vortex filament by t
function

r5R~n,s,t !, ~17!
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wheres is a parameter that varies along the filament. Fo
closed vortex line the functionR(n,s,t) is periodic with a
period that depends onn:

R~n,s,t !5R~n,s1 l ~n!,t !.

We shall assume below for simplicity that the vort
lines do not reach the surface anywhere and are closed.
scalar velocity potential is therefore well defined at t
boundary.~Note that its valuef(r') contains, in addition to
the wave potential, a contribution from vortices situated
the depth of the fluid.!

Let the velocity circulation around the vortex tub
which rests on an area elementd2n in the vicinity of the
point n, be equal tor(n)d2n. By the conservation of circu
lation, r(n) is independent of the time.

In this case the curl of the velocityV(r ,t) can be written
in the form

V~r ;$R~n,s,t !%!5E d2nr~n!E ds
]R~n,s,t !

]s

3d~r2R~n,s,t !!. ~18!

We see at once that the choice of the parameters in Eqs.~17!

and ~18! is nonunique, up to the replacements→ s̃(s,t). Ir-
respective of the choice ofs, the vector]R(n,s,t)/]s is al-
ways tangent to the vortex line with the givenn.

We have shown previously15 that the equation of motion
for a vortex liner5R(n,s,t),

@Rs3~Rt2v~R,t !#50, ~19!

governs only the ‘‘transverse’’ dynamics relative to the vo
tex line. The equation of motion~19! follows directly from
the Euler equation for the curl of the velocityV5curlv. As
should be the case, the longitudinal ‘‘variation’’ does n
affect the deformation of the curve, leaving Eq.~19! invari-
ant under all smooth substitutionss→ s̃(s,t).

The description of the vortex lines by Eqs.~17!, ~18!,
and ~19! is a hybrid Lagrangian–Eulerian description. He
the parametern has a transparent Lagrangian origin, where
the coordinates remains Eulerian. For planar flows the c
ordinates is naturally identified with the coordinatez per-
pendicular to the corresponding plane.

It can be checked by direct substitution that the eq
tions of motion~4! and ~19! for the variablesR and h and
also forc follow from the variational principle for the action
S5*Ldt:

dS50,

where the LagrangianL is given by

L5
1

3 E d2nr~n!E ~@Rt~n,s!3R~n,s!#Rs~n,s!!ds

1E fh tdr'2H@R,f,h#. ~20!

The key factor in this check is embodied in the two relatio

r~n!FRs3curl
dF

dVG5
dF

dR
~21!
a

he

-

t

s

-

s

and

v5curl
dH

dV
,

the first of which is valid only for functionals that depend o
V, f, andh, i.e., gauge-invariant functionals that are ind
pendent of the choice of the parameterss andn.

The equation of motion forR ~19! deduced from~20!
acquires the Hamiltonian form

r~n!@Rs~n,s!3Rt~n,s!#5
dH

dR~n,s!
U

f,h

, ~22!

and the equations forf andh retain their canonical form~1!.
Making use of the property~21!, by rewriting the bracket

~14! we can obtain the Poisson bracket~between two gauge
invariant functionals! expressed in terms of vortex lines:

$F,G%5E d2nds

r~n!uRs~n,s!u2 S Rs~n,s!F dF

dR~n,s!

3
dG

dR~n,s!G D1E S dF

dh

dG

df
2

dG

dh

dF

df Ddr' .

~23!

It is evident from this expression that the new bracket~23!
does not contain variational derivatives with respect tor,
althoughr could have been assumed to be invariant in
given calculations. This result indicates thatr is a Casimir
variable in relation to the original bracket, permitting us
introduce the variational principle~20!. The variablesf and
h now remain canonically conjugate.

The canonical formulation~20! also benefits us in the
ease with which the limiting transition is made to a fini
number of very thin vortex filamentsRn(s,t) having finite
vorticities gn :

Le5
2p

3 (
n

gn E ds~Rns@Rn3Rnt# !

1E fh tdr'2H@Rn ,f,h#. ~24!

All that is required is to take accurate account of the fact t
the ‘‘self-energy’’ gained by the filament in the immedia
vicinity of its axis increases logarithmically as its thickne
tends to zero. In three-dimensional space finite-thickness
fects often play an important role, because the stretching
certain part of a filament is accompanied by a decrease i
thickness and, as a result, an increase in the self-energy
sity per unit length. In principle, this property of the syste
can be incorporated into the discussion by retaining ad
tional degrees of freedom other thanR(s) in our crude de-
scription, specifically the filament cross sectionS(s) and,
canonically conjugate to it, the angleu(s) of rotation of the
cross section as a whole about the axis of the filament.

This problem never arises in the investigation of plan
flows. The vortex has a constant area, which is associ
only with the additive constant in the expression for t
Hamiltonian. In this case the variational principle for th
action in the Lagrangian~20! leads to the well-known con
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clusion ~see Ref. 13! that the coordinates of each point vo
tex, Xn(t) and Yn(t), are canonically conjugate variable
and the Lagrangian assumes the form

L5(
n

2pgnXn~ t !Ẏn~ t !1E fh tdx

2H@Xn ,Yn ,f,h#. ~25!

3. DYNAMICAL EQUATIONS IN CONFORMAL VARIABLES

In this section we address planar flows, assuming p
vortices. Our primary concern being the interaction of vo
ces with a free surface, we confine the discussion to a si
vortex ~any generalization toN vortices is more or less ob
vious!. For two-dimensional flows it is helpful to follow Ref
16 and map the fluid-filled domainD:$y<h(x,t)% into the
lower half-plane of the complex variablew5u1 iv. We as-
sume that the conformal mapping is specified by the anal
function

z~w!5x1 iy5w1A~w!, ~26!

which takes the boundary of the fluidy5h(x,t) into the real
axisv50, with the functionA(w) tending to zero at infinity.

To describe the fluid flow, we introduce the compl
velocity potential

P5F1 iQ,

whereF is the hydrodynamic potential used above, andQ is
the stream function. In the presence of vortices the poten
P is not unique: the potential acquires a nonzero increm
when it skirts the vortex. Consequently, wherever neces
in the ensuing discussion, we assume that the potentialP is
specified in the~lower! half-plane with a cut that extend
from the pointw5W5U1 iV where the vortex is located t
w52 i`.

Rectification of the free surface by means of the conf
mal transformationz5z(w) permits the vortex componen
and vortex image to be exactly separated out of the com
potential:

P~w!5P0~w!1C~w!5 ig lnS w2W

W̄2w
D 1C~w!. ~27!

This component@the first term in~27!# has the important
property that it makes no contribution to the velocity co
ponent normal to the surface. The other term inP can be
interpreted as the surface wave potential.

We assume everywhere thatg.0, and accordingly tha
the vortex rotates clockwise.

For v50 ~i.e., at the free surface! the real potential is

f~u!5F0~u!1c~u!52g arctanS u2U

2V D1c~u!. ~28!

We introduce the projectorsP(6) and the operatoruk̂u,
which will be needed below and which have the Four
representation

P~6 !5
1

2
~16sgn~k!!, ~29!
nt
-
le

ic

al
nt
ry

-

x

-

r

uk̂u5uku. ~30!

When the projectorsP(6) act on an arbitrary function, ren
dering its Fourier components with negative or positive wa
numbersk equal to zero, from the given function they sep
rate out functions analytically continuable into the upper
lower complex half-plane of the argument, respective
These operators can be expressed in terms of the Hil
transform

Ĥ f ~x!5
1

p
V. P. E

2`

` f ~x8!dx8

x82x

by means of the equation

P~6 !5
1

2
~17 iĤ !. ~31!

Accordingly, the operatoruk̂u can be written in terms ofĤ in
the form

uk̂u52Ĥ
]

]x
.

We now write the kinematic condition on the surface, alo
with the Bernoulli equation in conformal variables. We u
the relation

h t5
]~y,x!

]~ t,x!
5

1

xu
~ytxu2yuxt!

to transform the kinematic condition to

ytxu2yuxt5uk̂uc. ~32!

Following Ref. 16, we can solve this equation for the tim
derivatives:

zt

zu
5P~2 !S 2i uk̂uc

uzuu2 D . ~33!

In no way does this equation reflect the presence of the
tex, owing to the representation of the velocity potential
the special form~27!. The right-hand side of Eq.~32! (uk̂uc)
represents the normal velocity component, which has d
not have any vortex contribution.

In the transformation of the dynamical boundary con
tion, i.e., the Bernoulli equation at the free boundaryv50,
the term (¹F)2 can be written in the form

~¹F!2uy5h5
1

uzuu2
~Fu

21Fv
2!uv505

1

uzuu2
~fu

21cv
2!,

and the derivative is

]F

]t U
y5h

5f t2fuĤS Ĥcu

uzuu2
D 2

~Ĥcu!2

uzuu2
.

Hence, simple transformations reduce the Bernoulli equa
for f in conformal variables to the form
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f t2fuĤS Ĥcu

uzuu2D 2
~Ĥcu!22~fu!2

2uzuu2
1gy

2s
1

11uk̂uy

]

]u S yu

uzuu D50. ~34!

In the absence of a vortexf5c, in which case the equatio
describes surface waves proper together with their non
earities, so that the entire wave–vortex interaction is emb
ied in the difference between the potentialsf andc.

We have yet to write the vortex equation of motion. W
know that the velocityṽ can be obtained from the total flow
velocity field by subtracting the centrosymmetric field of t
vortex itself and passing to the limitx→X, y→Y:

Xt5 ṽx~X,Y,t !, Yt5 ṽy~X,Y,t !

or

Z̄t5 ṽx2 i ṽy5
]P̃

]z
U

z5Z

.

Upon transformation to conformal variables, the latter eq
tion can be rewritten as

Z8~W!
dZ̄

dt
5P̃8uw5W .

To complete this set of equations, we must now determ
the potentialP̃. From Eq.~27!,

P̃5 ig lnS w2W

W̄2w
D 1C~w!2 ig ln~z~w!2Z~W!!.

Differentiating this equation with respect tow and passing to
the limit w→W, we finally have

Z8~W!
dZ̄

dt
5

2 ig

W2W̄
2

ig

2

Z9~W!

Z8~W!
1C8~W!. ~35!

Equations~33!, ~34!, and ~35! in conjunction with the
equations

x2u52Ĥy, ~36!

Z~W!2W5
i

2p E ~z~u!2u!du

u2W
~37!

form a closed system describing the interaction of a po
vortex with the free surface in conformal variables.

We close this section with an expression for the L
grangian in conformal variables:

Lcon f5 ipgZ
dZ̄

dt
1E ~F0~u!1c!S ztz̄u2 z̄tzu

2i
D du

2E cuk̂uc
2

du1
g

2E ~z2 z̄!2

4

zu1 z̄u

2
du

2sE ~Azuz̄u21!du2pg2S lnS W̄2W

i
D

-
d-

-

e

t

-

1
1

2
ln~Z8~W! Z̄8~W̄!! D . ~38!

The terms in the second row of this equation are respons
for surface waves. In the limit of small wave amplitudes a
no vortex, the Lagrangian is quadratic in the variablesc and
h:

Ls5E duc yt2
1

2 E du~cuk̂uc1gy21syu
2!.

The corresponding linear equations of motion give the s
face wave dispersion law

v5Agk1sk3 ; ~39!

a surface wave with the wave vectork is localized in a layer
having a thickness of the order of the wavelength (;k21).

The logarithmic terms in the Lagrangian~38! correspond
to the interaction of a vortex with its mirror image and ta
into account the change in size of the vortex under the c
formal transformation:uDzu'uZ8(W)uuDwu. It will be shown
in the Appendix that the last term in~38! causes the term
( ig/2)Z9(W)/Z8(W) to appear in Eq.~35!, and likewise
gives the Bernoulli equation~34! a term characterizing
vortex–wave interaction.

4. STEADY-STATE MOTION

We consider the steady-state solutions of Eqs.~33!, ~34!,
and ~35! describing the propagation of a vortex along thex
axis at a constant velocityc, and the surface deformation
associated with it. In this case

U̇[Ẇ5c,

and

]

]t
52c

]

]u
.

As a result, the kinematic condition in the form~32! can be
integrated simply:

x~u8!2u85cc, ~40!

which by virtue of the analyticity ofA yields

A~w8!5cC. ~41!

Hereu85u2ct andw85w2ct ~from now on we drop the
primes fromu andw).

The Bernoulli equation~34! can also be simplified con
siderably in the steady state. In a coordinate frame with
vortex at rest the flow moves from right to left with th
velocity c. At the boundary~by virtue of the steady state! the
stream function is constant (50), and the velocity therefore
has only one tangential component:

V~u!52c1
ig~W2W̄!

uu2Wu2
. ~42!

As a result, Eq.~34! can now be written in the form
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V2

2uzuu2
1gy2s

1

11uk̂uy

]

]u S yu

uzuu D5
c2

2
. ~43!

In the steady state with Eq.~41! taken into account, the
vortex equation of motion~35! gives the velocityc as a
function of the derivatives ofz(w) at the pointw5W:

c5
2 ig

W2W̄
2

ig

2

Z9~W!

Z8~W!
. ~44!

Equations~44! and ~43! form a closed system, in whichc
plays the role of an eigenvalue.

We now consider the asymptotic behavior of Eq.~43! for
largeu, assuming that the deviationy(u) is small. Lineariz-
ing, we have

L̂y~u!5
2cgh

u2
. ~45!

Here the operatorL̂, which is given by the expression

L̂5uk̂u~Vph
2 2c2!, Vph

2 5guku211suku,

determines the asymptotic behavior ofy. The operatorL̂ is
positive definite if the square of the velocityc is less than the
square of the minimum phase velocityVph5v(k)/k of linear
waves:

c2,min Vph
2 52gk0 ,

wherev(k) is given by Eq.~39!, andk05Ag/s. In this case
the operatorL̂ is invertible, and accordingly Eq.~43! can
have localized solutions. If

c2.min Vph
2 ,

the operatorL̂ is not invertible, and the solution of the linea
equation ~45! therefore contains an oscillating asympto
form with wave numbersk that are roots of the equation

guku211suku5c2. ~46!

This equation is the Cherenkov radiation condition, which
satisfied by two values ofk1,2:

k1,25
c2

2s
@16A12~Vmin ph/c!4 #. ~47!

Here k1 lies in the capillary region of the spectrum (k1

.k0) andk2 lies in the gravity region (k2,k0). The group
velocity at k5k1 is greater thanc, and for gravity waves
with k5k2, in contrast, it is less thanc. Consequently, for
c2.minVph

2 an oscillating capillary wave front is produce
in front of the vortex, and a gravity wave front is produc
behind it ~see Sec. 6 for more details on this subject!.

Thus, the localized solutions differ from nonlocalize
solutions primarily in the relation between the vortex velo
ity c and the minimum surface wave phase velocity. An i
portant consideration is the fact that forc>minVph the lo-
calized object—the bound states of the vortex and
waves—cannot be a steady-state formation; it will neces
ily radiate surface waves on account of the Cherenkov eff
losing energy in the process. In general, however, a lac
s

-
-

e
r-
t,

of

Cherenkov radiation still does not fully guarantee stea
state motion of the vortex and the surface waves bound
~see below in this regard!.

We now turn to the solution of Eqs.~43! and ~44!.
Above all, we note that these solutions are stationary po
of the HamiltonianH for a fixed x component of the mo-
mentumP :

d~H1cP !5dSc50, ~48!

where

P 522pgY1E fhxdx,

and the action for the steady-state solutionsSc has the form

Sc5E S 2
ic2

4
ĀA81s~A~11A8!~11Ā8!21!

1
g

2
S A2Ā

2i
D 2S 11

A81Ā8

2
D 1m̄P~1 !A

1mP~2 !ĀD du2pgci~W2W̄!1pg2F lnS W2W̄

2 i
D

1
1

2
ln~11A8~W!!~11Ā8~W̄!!G . ~49!

Here we have made use of relations~40!, which can be used
to eliminate the potentialC, and we have introduced th
relationP(1)A5P(2)Ā50, which guarantees the analyticit
of A and Ā (m and m̄ are the corresponding Lagrange mu
tipliers!.

Now the variation ofSc with respect toW gives an equa-
tion for the vortex depthW, which coincides with~44!. It
follows at once from this equation that for a small deform
tion of the free surface~in which case the second term on th
right-hand side of Eq.~44! can be disregarded! the vortex
velocity is inversely proportional to the distance 2h from the
image vortex:

c'c05
g

2h
.

Examining the variation with respect toA, we obtain the
steady-state Bernoulli equation in a form that differs fro
~43!, but is more practical for the ensuing analysis1!:

P~2 !S ic2A812s
d

du
AS 11A8

11Ā8
D 1g~ĀA82AA82A!

1
ig2

11Ā8~W̄!

1

~u2W̄!2D 50. ~50!

The solutions of Eqs.~44! and ~50! depend on two di-
mensionless parameters: the Froude numberF5g2/gh3 and
T5s/gh2, which represent the ratio ofc0

2 and the character
istic velocity of capillary waves~with wavelength;h) to the
characteristic velocity of gravity waves.
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Let a vortex be situated at the pointW52 ih in a coor-
dinate frame moving at the velocityc. Introducing the di-
mensionless variables

j5u/h, a~j,F,T!5A/h, c5c0c̃,

we can rewrite Eqs.~44! and ~50! in the form

c̃512 i
a9~2 i !

11a8~2 i !
, ~51!

a5P~2 !S iF
c̃2

4
a812T

d

dj
AS 11a8

11ā8
D 1āa82aa8

1
iF

11ā8~2 i !

1

~j1 i !2D . ~52!

For small flow velocities the solution of the system~51!, ~52!
can be represented by an asymptotic expansion in powe
the parameterF.

The expansion of the velocityc as a function of the
depth is given by the expression

c̃511
3

8
F1

21

16
F21S 2439

256
2

15

8
TDF3

1S 52629

512
2

213

8
TDF41 . . . . ~53!

The surface profile can be determined parametric
from the relations

A~u!5h~a1~z,T!F1a2~z,T!F21a3~z,T!F31 . . . !,
~54!

where

a15
i

z2
, ~55!

a252
2

z5
1

1

z3
1

~3/4!i

z2
2

3/8

z
, ~56!

a352
14i

z8
1

10i

z6
2

11/2

z5
1

i ~6T29/2!

z4
1

17/4

z3

1
~123/32!i

z2
2

39/16

z
. ~57!

~Herez5j2 i .!
The first-order terms inF can be determined directl

from the equations. In this order the surface profile can
determined in explicit form. The following equation is ob
tained to within higher-order terms from Eq.~55!:

y5Fh3
x22h2

~x21h2!2
.

At x50 ~strictly above the vortex! the surface has a mini
mum with a negative value ofy ~dip!, and atx2.h2 the
surface rises above its average level, consistent with the
sults of numerical integration.12 The occurrence of a dip in
of

y

e

e-

the surface is attributable to the fact that the velocityV ~42!
above the vortex is greater in absolute value than the valu
V at infinity, so that by virtue of Bernoulli’s equation th
pressure above the vortex is lower than the pressure at in
ity.

We used the Maple V software package to compute
leading terms of the expansion~up to fourth order inF) in
Eqs. ~53! and ~54!. It is important to note that the leadin
coefficients of the expansiona(j) decrease more slowly tha
a1(j) at largej. The existence of a finite coefficient of su
face tension in this case is a fundamental prerequisite for
existence of a stationary solution. As we have seen ab
only under this condition is it impossible to have Cherenk
radiation over a certain velocity range. However, the exp
sion ~53!, ~54! can be obtained even atT50, implying that
in reality these series inF diverge, and their use must b
restricted to a finite number of terms and smallF. Another
obvious condition for their applicability is smallness of th
velocity in comparison withVmin ph, so that localized steady
state solutions no longer exist forc.Vmin ph. The necessary
conditions for the asymptotic expansion~54! can therefore
be written in the form

g2

gh3
!1,

g

h
!~sg!1/4. ~58!

5. SURFACE WAVE BOUND STATES

A number of structural transformations~bifurcations!
take place as the velocityc increases in the stationary solu
tion discussed above. To understand the reason for th
transformations, as in the preceding section, we consider
case of large depthsh (k0h@1), in which the interaction of
surfaces with the vortex can be regarded as weak, and
vortex moves at the constant velocityc'c05g/2h
3(,Vmin ph). In this approximation the surface is almost fl
and, accordingly, the difference between the conformal de
and the ordinary depth is small.

We transform to a reference frame comoving with t
vortex. In this frame the interaction between the freestre
flow with velocity c and the dipole pair~the vortex and its
image! results in the formation along the surface of a tim
invariant, highly inhomogeneous flow moving with the v
locity ~42!:

V~x!5c0

3h22x2

h21x2
. ~59!

This flow has velocity2c0 at infinity and 3c0 at the center
~at x50), which is three times the freestream velocityV` .

Inasmuch asV(x) varies slowly in comparison with the
characteristic surface wavelength (;k0

21), we are justified in
writing the semiclassical equation of motion for a surfa
wave packet having the carrier wave numberk and center
coordinate at the pointx:

k̇52
]v~k,x!

]x
, ~60!
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ẋ5
]v~k,x!

]k
. ~61!

Here

v~k,x!5kV~x!1Auku~g1sk2! ~62!

is the wave frequency, which undergoes an inhomogene
Doppler shift because of the dependence of the flow velo
on x. During the motion of the packet,v(k,x) remains time-
invariant.

Closed level linesv(k,x)5const in the phase plane co
respond to finite periodic motion of the wave packet. Su
motion is quantized according to the well-known Boh
Sommerfeld rule:

R
v~k,x!5vn

k dx52p~n1an!, ~63!

where n labels the levels,an is a number of the order o
unity, andvn is the eigenfrequency of the level.

The specific form ofV(x) leads to the conclusion tha
bound states with near-zero frequency emerge well be
Vmin ph is reached. This is an important consideration fro
the standpoint of the behavior of the steady-state solutio
the velocity varies. Beginning with the velocityc
5Vmin ph/3, a finite phase trajectory exists at zero frequen
for negative values ofk. Two reflected infinite trajectories a
zero frequency for positivek also occur forVmin ph/3. In
terms of bound states this means that the frequency of
first level passes through zero at a velocity close toVmin ph.
And since the vortex interacts with bound states in spite
its exponential weakness, there is a resonant increase in
contribution of the given level to the surface profile, t
whole effect changing sign after the frequency pas
through zero. Nonlinearity prevents the resonant mode fr
increasing without bound, and leads to bifurcation. We
essentially dealing with two different solutions before a
after the zero crossing, as long as we trace only solutions
which the surface perturbation has a small amplitude.

With a further increase in the velocity of the vortex, th
frequency of the second bound state passes through zero
so on.

The nonlinear dynamics produced in connection with
stated problem in the system of discrete levels is still
entirely clear and requires separate investigation. Vari
scenarios for elaborating the behavior as the velocity
creases, for example, the scenario of steady-state motion
coming unstable and evolving into an unsteady state after
emergence of several bound states, may seem entirely p
able, but still needs to be verified.

We note that the inhomogeneous Doppler effect cul
nating in such fundamental results drops out of sight in R
12 and in the relevant section of the previously cited boo11

6. ASCENT OF A POINT VORTEX

As stated, it is impossible for a vortex to be in stead
state motion under the conditionc.Vmin ph, owing to the
Cherenkov radiation of waves. The back influence of rad
tion on the vortex causes the vertical location of the vortex
us
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vary with time, and the vortex rises. The radiated waves
situated in different parts of the spectrum, one for grav
waves and one for capillary waves. A capillary wave is
diated in the forward direction, and a gravity wave moves
the backward direction. Without radiation, despite the attr
tion of the vortex to its image, the distance from the vortex
the surface remains constant on the average. We recall
for two-dimensional flows without a free boundary, a dipo
pair of point vortices executes stable motion at constant
locity in a direction perpendicular to the dipole.

The existence of Cherenkov radiation has the effect
reducing the distance from the surface by virtue of ene
conservation, i.e., the radiated waves carry off positive
ergy, reducing the interaction energy of the vortex with
image~at the same time increasing its absolute value!.

Consequently, the vortex exhibits unsteady dynamics
the given situation. However, under two conditions indica
below, the motion can be regarded as quasi-steady, bec
the amplitudes of the radiated surface waves are expo
tially small in this case, and the ascent of the vortex is sl
in such a regime. This quasi-steady-state property refer
the undulating surface zone in a time interval when the w
fronts have already moved far away from the vortex. W
note that if the vortex were maintained in uniform motion
some external force, the surface could be stationary rela
to the vortex in the undulating zone. During slow ascent
surface profile also changes slowly. From the standpoin
calculating the Cherenkov wave amplitudes, the two regim
of vortex motion—strictly uniform motion in the presence
an external force and quasiuniform motion with slow asc
for zero external force—differ very little. An appreciable di
ference shows up only when total energy and momen
conservation are violated in strictly steady flow.

We now summarize the conditions for radiation from t
vortex to be considered weak. First of all, it is required th
the Cherenkov wavelength be small in comparison with
depthh ~semiclassical condition!. This requirement is satis
fied when

c@Vmin ph, ~64!

whereupon

k2h'4gh3/g254/F@1. ~65!

To calculate the Cherenkov radiation, we use the stea
state Bernoulli equation~43!:

V2

2uzuu2
1gy2s

1

11uk̂uy

]

]u S yu

uzuu D5
c2

2
.

Assuming that surface perturbations are small~by virtue of
the smallness ofF) and assuming

uz8~u!u2'112uk̂uy, c'c05g/2h, ~66!

after linearizing~43! we have

L̂y~u!5
1

2
~V2~u!2c0

2!, V~u!5c0

3h22u2

h21u2
. ~67!

Here, in contrast with Eq.~45!, the operatorL̂ takes the
inhomogeneous Doppler effect into account:
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L̂5V2~u!uk̂u2g1s
d2

du2
.

To solve this equation, we make use of the fact that
function y(u) represents the imaginary part of the functi
A(u)5ha(u/h)5ha(q), which is analytic in the lower half-
plane. An equation fora(q) can be obtained from Eq.~67!
by applying the projectorP(2). In dimensionless variables
has the form

2v2~q!a81
l

i
a2

e

i
a95 f ~q,d1 ,d2!. ~68!

Here, by definition,

V25c0
2v2, v2~q!5S q223

q211
D 2

512
4

~q2 i !2
2

4

~q1 i !2
,

f ~q,d1 ,d2!

54F 1

~q2 i !2
1

d2

q1 i
2

d̄2

q2 i
1

d1

~q1 i !2
2

d̄1

~q2 i !2G , ~69!

wherel54/F@1 is a large parameter, ande54hs/g2!1
is a small parameter. It is readily apparent that terms prop
tional tod15a8(2 i ) andd25a9(2 i ) remove the singulari-
ties of the solution in the lower half-plane. It follows from
the asymptotic expansion of the solution inF that the quan-
tities d1 and d2 are small (d1 ,d2;F) for small F. Conse-
quently, their contribution in the leading approximation mu
be negligible in comparison with the free term inf.

After the stated simplifications we have a linear, inh
mogeneous, second-order ordinary differential equation w
asymptotic conditions at infinity that stipulate the absence
a gravity wave in the limitq→1` and the absence of
capillary wave in the limitq→2` ~radiation condition!.
Analyzing the overall picture described at the beginning
the present section, it is easy to see that these asymp
properties of the steady-state solution, along with free
steady waves, are what ensure the propagation of wave fr
away from the vortex.

To solve the inhomogeneous equation, we first anal
the properties of the solutions of the homogeneous equa
~Eq. ~68! without the right-hand side!, since the desired so
lution of Eq. ~68! can be expressed in terms of th
homogeneous-case solutions by the method of variation
constants. When the semiclassical condition is satisfied,
homogeneous solutionsa1(q) anda2(q) can be found by a
procedure similar to that used in quantum mechanics23:

a1,2~q!'Cg
1,2

expH 2 i Eq

kg~x!dxJ
Al2ekg

2

1Cc
1,2

expH 2 i Eq

kc~x!dxJ
Al2ekc

2
. ~70!

Here the coordinate dependence of the wave numberskg(q)
andkc(q) is given by the expression
e
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kg,c~q!5
v2~q!7Av4~q!24le

2e
. ~71!

At infinity we have kg→k2 and kc→k1. These equations
are valid far from the ‘‘turning points,’’ wherekg5kc , and
the roots in the denominator vanish. In our case there
four such points, two of which distinguish the ‘‘classical
forbidden’’ region nearq52A3, while the other two apply
near q51A3. Each of these two wave numbers has
imaginary part, which gives rise to the exponential behav
of a1(q) anda2(q). Accordingly, there are three classical
allowed regions, and in a typical situation the wave amp
tudes in them differ sharply, so that their ratio in tran
across the forbidden region is exponentially large, and
exponent of the exponential function contains only a num
of the order ofl(c/Vmin ph). A similar result can be obtained
simply by estimating the integral in the forbidden region:

E Im$k~q!%dq;E Ax42le

e
dx;l~le!2

1
4

;l~c/Vmin ph!. ~72!

In the vicinity of the ‘‘turning points’’ themselves, o
course, Eqs.~70! are invalid, because in fact the homog
neous solutions do not have any singularities there. Inasm
as we do not use the corresponding asymptotic represe
tion, we merely note that they can be expressed appr
mately in terms of the Airy function, as in quantum mecha
ics. The only difference is that once the first derivative te
in Eq. ~68! is removed, we obtain the Schro¨dinger equation
with a complex potential. The ‘‘force’’ in the vicinity of the
turning point also has an imaginary part, and the Airy fun
tion is therefore written with a complex argument.

To solve the inhomogeneous equation with the radiat
conditions at infinity, it is useful to choose the function
a1(q) anda2(q) in such a way that the solutiona1(q) will
contain only a capillary wave far ahead, and the solut
a2(q) will contain only a gravity wave far behind:

a1~q!→exp~2 ik1q!, q→1`, ~73!

a2~q!→exp~2 ik2q!, q→2`. ~74!

The desired solution can then be written in the form

a~q!52
i

e S a1~q!E
2`

q

f
a2~x!

W~x!
dx

1a2~q!E
q

1`

f
a1~x!

W~x!
dxD , ~75!

where

W~q!5a1a282a2a18}expS 2
i

eE
q

v2~x!dxD
is the Wronskian for the two given solutions. It is obviou
that the surface wave amplitudes are given by the equat

uag~2`!u5U2 i

eE2`

1`

f
a1~q!

W~q!
dxU,
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uac~1`!u5U2 i

eE2`

1`

f
a2~q!

W~q!
dxU. ~76!

We now assume that we are not in the vicinity of
resonance at a quasi-discrete level of the operatorL̂. This is
the second quasi-steady-state condition. The functionsa1

anda2 are then constructed in such a way that the amplit
is a maximum for the first function whenq,2A3 and for
the second function whenq.1A3 ~resonance would corre
spond to the middle part!. Moreover, forc@Vmin ph only one
of the two waves involved in each of the solutionsa1 anda2

@see Eq.~70!# makes the main contribution to the integra
specifically the one that oscillates with the smaller wa
number after division by the Wronskian. It is readily verifie
that this situation is equivalent to the possibility of determ
ing the amplitudeag(q) from the solution of the first-orde
equation without capillarity:

2v2~q!a81
l

i
a5

4

~q2 i !2
.

Here the choice of points from which the gravity wave a
plitude begins to derive its amplitude is dictated by Eq.~76!.
For example, after straightforward calculations the expr
sion for the backward-radiated wave reduces to the form

uag~2`!u5U i

l E
2`

2A3
f 8~q,0,0!exp~ ilP~q!!dqU, ~77!

where

P~q!5E dq

v2~q!
5q1

8

3

q

~32q2!
1

8

3A3
lnS q2A3

q1A3
D .

Next, in the above integral~77! we move the contour o
integration into the upper half-plane and integrate by pa
eliminating the pole at the pointq51 i . We apply the steep
est descent method to the resulting integral. The saddle p
coincides withq5 i . As a result, we have

uag~2`!u'U i 11/A3

2
US 12

l D 1/3

GS 1

3D
3expS 2lS 5

3
1

16p

9A3
D D . ~78!

The gravity wave amplitude immediately to the right
the point1A3 is given by an analogous expression with t
limits of integration fromA3 to 1`. Consequently, afte
repeating the calculations we find that its modulus is
same. In the given limitc@Vmin ph, after forward reflection
and conversion to a capillary wave, the amplitude of
given wave changes by the factorAl/ekc

2. This result can be
obtained by an approach similar to that used in the deriva
of semiclassical boundary conditions in quantu
mechanics.23

The rates of ascent of the vortex is determined by ene
conservation:

pg2ḣ/h'2~c/2!~gy2~2`!1sy82~1`!!. ~79!
e

,
e

-

-

s-

s,

int

e

e

n

y

Here we have made use of the fact that when conditions~64!
are satisfied, the gravity wave has the following velocity
the vortex frame:

]v

]k U
k5k1

2c'2
c

2
,

and accordingly the capillary wave velocity is approximate
c/2. When the indicated amplitude variation of the seco
wave is taken into account after its conversion to a capill
wave, we find that the two waves make identical contrib
tions to the rate of ascent of the vortex.

The equation for the vortex trajectoryh(x) in the inter-
val between neighboring resonant quasilevels finally has
form

dh

dx
5

ḣ

c
52

G2~1/3!

2p S gh3

3g2D 1/3

3expS 2
8gh3

g2 S 5

3
1

16p

9A3
D D . ~80!

Hence the vortex ascends by virtue of Cherenkov rad
tion. The rate of ascent increases ash decreases, and th
radiated power increases accordingly. Inasmuch asg re-
mains constant in this process, the ascent of the vo
causes it to accelerate simultaneously in the horizontal di
tion.

The rate of ascent~80! differs from the value given in
Ref. 12, not only in the factor preceding the exponential,
also in the exponent itself. The exponents agree only in or
of magnitude.

In the case of resonance at a quasidiscrete level,
amplitude of the homogeneous solutions is a maximum
the region of classically finite motion. The amplitudes of t
Cherenkov waves must now be estimated using
subbarrier transfer coefficient, which is of the order
exp@2C1l(c/Vmin ph)#. The result

uag,c
resu;expS lS C1

c

Vmin ph
2C2D D

shows that the amplitudes of these waves are not small
accordingly, the quasi-steady-state regime, like the condi
for validity of the linear approximation, fails in the vicinity
of resonance. Investigation of the transition of the syst
through a quasilevel requires an analysis of the tim
dependent equations with allowance for nonlinearity a
poses a difficult task at this stage. We speculate that
quasisteady ascent regime alternates with short-time, s
energy spikes as resonances are transited.

This trend persists at least until

g2

gh3
,1,

g

h
.~sg!1/4. ~81!

When the depthh is less than or commensurate with th
gravity wavelength, the interaction of a vortex with the su
face can no longer be calculated in the linear approximat
the behavior of the system becomes highly nonlinear, an
then becomes extremely difficult to decide whether the v
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tex will continue to rise. Most likely the question can b
answered only by numerically integrating the tim
dependent equations~33!, ~34!, and~35!.

7. THREE-DIMENSIONAL DYNAMICS

In this section we discuss one aspect of the thr
dimensional dynamics of a vortex filament: its instabil
against kink perturbations due to the presence of a surfa

We consider a vortex filament parallel to the surface.
the relative deformation of the fluid surface be small, so t
interaction of the vortex filament with free waves can
disregarded. Accordingly, we ignore the potential energy
the surface in calculating the Hamiltonian and calculate
kinetic energy of the fluid according to an equation in whi
the velocity is expressed in terms of the scalar poten
Then, integrating by parts, we reduce the equation to half
integral over the surface spanning two filaments. Allowan
must be made for the fact that the scalar potential acquire
increment 2pg when it skirts any one filament. As a resu
we have

K 5
pg

2 E
S
~V dS!. ~82!

This integral diverges logarithmically for an infinitel
thin filament. For a filament of finite thickness«0 the integral
can be cut off at a length;«0.

In the long-wavelength limit, where the characteris
radius of curvatureR0 of the filament is large in compariso
with Y (Y82!1), the Hamiltonian~82! can be approximately
written in the form

Happr5pg2E A11X82 lnS Y

«0
Ddz. ~83!

The equations for the vortex coordinatesX(z,t) and
Y(z,t) can be obtained with the aid of~22! by varying the
Hamiltonian~83!:

Ẋ5
g

2

A11X82

Y
, ~84!

Ẏ5
g

2 S X8ln~Y/«0!

A11X82 D 8
. ~85!

In this approximation the relative error in Eq.~84! is of the
order ofY/R0, and in the equation forY it is of the order of
1/ln(Y/«0). An important feature here is that the values ofX82

and the range of relative variations ofY are not assumed to
be small, so that Eqs.~84! and~85! describe arbtirary devia
tions of the filament configuration from a straight line, n
just small ones.

For small deviations these equations~after linearization!
describe instability with a growth rate that depends linea
on uku:

G~k!5uku
g

2Y0
Aln~Y0 /«0!.
-

e.
t
t

f
e

l.
e
e
an

t

y

This instability is none other than the long-wavelength lim
of the Crow instability17 for symmetric perturbations of two
antiparallel vortex filaments.

The physical reason for this instability is the time lead
perturbed parts of the filament close to the surface relativ
more distant parts. As a result, the bend in the vortex fi
ment as seen from above~projected onto the surface! exhib-
its a pronounced focusing character~in this sense the given
instability is similar to the Kadomtsev–Petviashv
instability24,25!. This qualitative picture carries through to th
nonlinear stage, when the filament can no longer be rega
as almost straight. As a result of the development of Cr
instability, the closest parts of the filament are grea
stretched and rapidly approach the surface, where diss
tion, which is actually always present because of viscos
and because of Cherenkov wave radiation in the presenc
a free boundary, causes the filament to break and resul
the formation of vortex half-rings that begin and end at t
surface of the fluid.

8. CONCLUSION

In the paper we have succeeded in clarifying only t
simplest aspects of the dynamics of a vortex–surface sys
We have left untouched such important problems as
highly nonstationary motion of a point vortex in two dime
sions, and the stability of various flow regimes, particula
in three dimensions—for example, the evolution of the s
tem after a filament reaches the surface in three-dimensi
space. Some of these problems can be solved by nume
modeling, while others require further analytic study.
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APPENDIX

Here we show how the dynamical equations~35!, ~34!,
and ~33! can be obtained from the variational principle
conformal variables. Variation of the Lagrangian~38! with
respect toc(u) yields the equation

~1/2i !~ztz̄u2 z̄tzu!5uk̂uc. ~86!

Multiplying by 1/uzuu2 and applying the projectorP̂(2), we
obtain

zt

zu
5 P̂~2 !S 2i uk̂uc

uzuu2 D , ~87!

which coincides with Eq.~33!.
Next, varying the Lagrangian with respect toW andW̄,

we can make a substitution therein according to the ki
matic relation~86!. This operation results in the substitutio
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E F0~u!
ztz̄u2 z̄tzu

2i
du→2pgS C~W!2C̄~W̄!

2i
D ,

whereupon the vortex equation of motion~35! is easily ob-
tained by variation with respect toW:

Z8~W!~ Z̄8~W̄!!WG 1Z̄t~W̄!)

5
2 ig

W2W̄
2

ig

2

Z9~W!

Z8~W!
1C8~W!. ~88!

We now derive Bernoulli’s equation. To prevent the c
culations from becoming too cumbersome, for now we
clude surface tension from the discussion. Varying with
spect toz̄(u) and invoking the condition for analyticity o
this function in the upper half-plane, in the first step of t
calculations we have the equation

P~2 !F S f t1g
~z2 z̄!

2i
D zu2fuzt2

g2

2

1

Z̄8~W̄!

1

~u2W̄!2

1
g

i

~Z8~W!Ẇ1Zt~W!!

~u2W̄!
G50. ~89!

We then use Eqs.~87! and ~88! to eliminate the time
derivativeszt(u) andẆ from the foregoing equation. At this
point we note that the relationP(2) f 50 is neither more nor
less than a statement of the analyticity off in the upper
half-plane. It is still valid, therefore, afterf is multiplied by
z̄u :

P~2 !~ f z̄u!50.

Making use of this property and taking into account the id
tities

P~2 !F z̄u

~u2W̄!
G5

Z̄8~W̄!

~u2W̄!
, ~90!

P~2 !F z̄u

~u2W̄!2G5
Z̄9~W̄!

~u2W̄!
1

Z̄8~W̄!

~u2W̄!2
~91!

from Eq. ~89! we obtain

P~2 !S S c t1F0t1g
~z2 z̄!

2i
2~cu1F0u!P̂~2 !

3S 2i uk̂uc

uzuu2 D D uzuu22
g2

2

1

~u2W̄!2

1
g

i

1

~u2W̄!
S ig

W̄2W
1C̄8~W̄!D D 50. ~92!

To continue, we must now sum the latter equation with
complex conjugate. Second-order terms ing are gathered
into the expression

2
g2

2

~W2W̄!2

uu2Wu4
,

-
-
-

-

s

and the zeroth-order terms are assumed to coincide
those obtained previously16 for purely potential flow:

uzuu2S c t2cuĤS Ĥcu

uzuu2
D 2

~Ĥcu!22~cu!2

2uzuu2
1gyD .

We finally consider first-order terms. We first simplif
the following first-degree equation ing:

2uzuu2F0uĤS Ĥcu

uzuu2
D 2Ĥ~F0uĤcu!2 igS C̄8~W̄!

~u2W̄!

2
C8~W!

~u2W!D . ~93!

Here, the second term is equal to

2gS P~2 !S S 1

u2W
2

1

u2W̄
D S C8~u!2C̄8~u!

2i D D
1c.c.D 5

ig

2 S C̄8~W̄!2Cu~u!

u2W̄
1

Cu~u!2C8~W!

u2W

2c.c.D 5
C̄u~u!1Cu~u!

2
igS 1

u2W
2

1

u2W̄
D

1 igS C̄8~W̄!

~u2W̄!
2

C8~W!

~u2W!D .

The last term is canceled by the third term of~93!, so
that all first-order terms can be written in the form

igS 2Ẇ

u2W
1

WG

u2W̄
D uzuu21 igS 1

u2W
2

1

u2W̄
D

3S cu2UzuU2ĤS Ĥcu

uzuu2
D D .

Adding the foregoing expressions, we finally obtain Be
noulli’s equation~34! in conformal variables.

* !E-mail: kuznetso@itp.ac.ru
1!The equivalence of this equation and Eq.~43! is verified by approximately

the same procedure as set forth in the Appendix for Eq.~34!.
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Zh. Éksp. Teor. Fiz.115, 920–939~March 1999!

We consider advection of a passive scalaru(t,r ) by an incompressible large-scale turbulent flow.
In the framework of the Kraichnan model all PDF’s~probability distribution functions! for
the single-point statistics ofu and for the passive scalar differenceu(r1)2u(r2) ~for separations
r12r2 lying in the convective interval! are found. ©1999 American Institute of Physics.
@S1063-7761~99!01003-3#
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INTRODUCTION

We treat advection of a passive scalar fieldu(t,r ) by an
incompressible turbulent flow; the role of the scalar can
played by temperature or by pollutant density. The veloc
field is assumed to contain motions from some interval
scales restricted from below byLv . A steady situation with a
permanent random supply of the passive scalar is conside
We wish to establish statistics of the passive scalaru for
scales that are less than both the scaleLv and the pumping
scaleL, and larger than the diffusion scaler dif ~for definite-
ness we assume thatL,Lv!. Such a convective interval o
scales exists if the Peclet number Pe5L/r dif is large enough;
we will assume this condition. Since all scales from the c
vective interval are assumed to be smaller thanLv , we will
discuss advection by a large-scale turbulent flow. The pr
lem is of physical interest for dimensionalitiesd52,3, but
formally it can be treated for an arbitrary dimensionalityd of
space. Below we will treatd as a parameter. In particular, a
expressions will be true for a space of high dimensionalityd.

Description of the small-scale statistics of a passive s
lar advected by a large-scale solenoidal velocity field i
special problem in turbulence theory. This problem w
treated consistently from the very beginning and some rig
ous results have been obtained, which is quite unusual f
turbulence problem. Batchelor~see Ref. 1! examined the
case of an external velocity field being so slow that it do
not change during the time of the spectral transfer of
scalar from the external scale to the diffusion scale. Th
Kraichnan~see Ref. 2! obtained plenty of results in the op
posite limit of a velocity field delta-correlated in time. Th
pair correlation function of the passive scalar^u~r !u~0!& was
found to be proportional to the logarithm ln(L/r), and the pair
correlation function of the passive scalar difference^@u(r )
2u(0)#2& was found to be proportional to ln(r/rdif) in both
5061063-7761/99/88(3)/11/$15.00
e
y
f

ed.

-

b-

a-
a
s
r-
a

s
e
n

cases. The assertions are really correct for any temporal
tistics of the velocity field~see Refs. 3 and 4!. Thus we are
dealing with the logarithmic case which is substantially si
pler than cases with power-like correlation functions usua
encountered in turbulence problems~see Refs. 5–7!.

Now about high-order correlation functions of the pa
sive scalar. As long as all distances between the points
much less thanL, the 2n-point correlation functions ofu are
given by their reducible parts~that is, are expressed via prod
ucts of the pair correlation function! up ton; ln(L/r), where
r is either the smallest distance between the points orr dif

depending on which is larger~see Ref. 4!. The reason for
such Wick decoupling is simply the fact that reducible pa
contain more logarithmic factors~which are considered a
the large ones! than non-reducible parts do. Consistent c
culations of the fourth-order correlation function of the pa
sive scalar atd52 ~see Ref. 8! confirm the assertion. There
fore, e.g., the single-point PDF ofu has a Gaussian core~that
describes the first moments withn, ln Pe! and a non-
Gaussian tail~that describes moments withn. ln Pe!. The
tail appears to be exponential~see Refs. 3 and 4!. The same
is true of the passive scalar differenceDu5u(r )2u(0),
where instead of ln Pe we should take ln(r/rdif). The tails do
not depend on ln Pe or on ln(r/rdif), and contain only coeffi-
cients that depend on the statistics of the advecting veloc

Correlation functions of the passive scalar can be writ
as averages of integrals of the pumping along Lagrang
trajectories~see, e.g., Ref. 9!. For example, the pair correla
tion function ^u~r !u~0!& is proportional to the average tim
needed for two points moving along Lagrangian trajector
to run from the distancer to the distanceL. Generally, cor-
relation functions of a passive scalar are determined by s
tral transfer via evolution of Lagrangian separations up to
scale L. For the large-scale velocity field, the Lagrangi
© 1999 American Institute of Physics
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dynamics is determined by the stretching matrixsab

5¹bva and, consequently, the statistics of the matrix de
mines correlation function of the passive scalar. For
ample, the coefficient of the logarithm in the pair correlati
function of the passive scalar isP2 /l ~see Refs. 1–4! where
P2 is the pumping rate ofu2 and l̃ is Lyapunov exponen
that is the average of the largest eigenvalue of the matrixŝ.
The coefficients in the exponential tails are more sensitiv
the statistics ofŝ; specifically, they depend on the dime
sionless parameterl̃t ~see Ref. 4! wheret is the correlation
time of ŝ. The motion of the fluid particles in the rando
velocity field resembles in some respects random walks,
one should remember that correlation lengths of both
advecting velocity and of the pumping are much larger th
scales from the convective interval we are interested in. T
the situation is opposite to one usually encountered in s
state physics, where, e.g., random potential is short-ra
correlated in space.

Since ln(L/r) is really not very large, it is of interest to
find all PDF’s for the single-point statistics ofu and for the
passive scalar differenceDu. It is possible to do this for the
Kraichnan short-correlated casel̃t!1 when the statistics o
ŝ can be regarded to be Gaussian. An attempt to do this
made in Refs. 10 and 11 in terms of the statistics of the m
eigenvalue of the matrixŝ. Unfortunately, the scheme work
only for the dimensionalityd52 where the matrixŝ has a
single eigenvalue. This was noted in Ref. 12 where also
correct coefficient in the exponential tails for an arbitra
dimensionality of spaced was found. Here, we develop
scheme enabling one to obtain all PDF’s for arbitraryd. The
scheme is also interesting from a methodological point
view. For example, its modification enables one to calcu
the statistics of local dissipation~see Ref. 13!.

The paper is organized as follows. In Sec. 1 we find
path integral representation for the simultaneous statistic
the passive scalar. In Sec. 2 we analyze the generating f
tional for correlation functions of the passive scalar in t
convective interval of scales. Using different approaches
obtain the functional and establish the applicability con
tions of our consideration. In Sec. 3 we find explicit expre
sions for the single-point PDF and for the PDF of the pass
scalar difference. In the Conclusion we briefly discuss
results obtained.

1. GENERAL RELATIONS

The dynamics of the passive scalaru advected by the
velocity field v is described by Eq.

] tu1v¹u2k¹2u5f. ~1.1!

Here, the term with the velocityv describes the advection o
the passive scalar, the next term is diffusive~k is the diffu-
sion coefficient!, and f describes a pumping source of th
passive scalar. Bothv(t,r ) and f(t,r ) are assumed to b
random functions oft and r . We regard the statistics of th
velocity and source to be independent. Therefore, all co
lation functions ofu are to be treated as averages over b
statistics.
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A. Simultaneous statistics

The sourcef is believed to possess Gaussian statis
and to bed-correlated in time. The statistics is entirely cha
acterized by the pair correlation function

^f~ t1 ,r1!f~ t2 ,r2!&5d~ t12t2!x~ ur12r2u!, ~1.2!

where we assume that the pumping is isotropic. The func
x(r ) is assumed to have a characteristic scaleL, which is the
pumping length. We will be interested in the statistics of t
passive scalar on scales much smaller thanL.

Simultaneous correlation functions of the passive sca
u can be represented as coefficients in the expansion ovy
of the generating functional

J ~y!5 K expH iyE drb~r !u~0,r !J L , ~1.3!

whereb is a function of the coordinates and angular brack
denote averaging over both the statistics of the pumpinf
and the statistics of the velocityv. The generating functiona
J (y) contains complete information about the simultaneo
statistics of the passive scalarq. Specifically, knowingJ (y)
one can reconstruct the simultaneous PDF of the passive
lar; the problem is discussed in Sec. 3.

If characteristic scales ofb in ~1.7! are much larger than
the diffusion scaler dif , then it is possible to neglect diffusio
when treating the generating functional~1.3!. Then the left-
hand side of Eq.~1.1! describes simple advection, and it
reasonable to consider a solution of Eq. in terms of Lagra
ian trajectories%(t) introduced by Eq.

] t%5v~ t,% !. ~1.4!

We label the trajectories withr , which are the positions o
the Lagrange particles att50: %(0,r )5r . Next, introducing
ũ(t,r )5u(t,%), we rewrite Eq.~1.1! as] tũ5f, which leads
to

u~0,r !5E
2`

0

dtf~ t,% !. ~1.5!

Here we have taken into account that att50 the functionsu
and ũ coincide. Starting with~1.5! and exploiting Gaussian
pumping statistics, we can average the generating functio
~1.3! explicitly over the statistics. The result is

J ~y!5K expF2
y2

2 E
2`

0

dt UG L , ~1.6!

U5E dr1dr2b~r1!b~r2!x~ u%12%2u!, ~1.7!

where angular brackets mean averaging over the statistic
the velocity field only.

Being interested in the single-point statistics ofu we
should takeb(r )5d(r ). But this is impossible since we
have neglected diffusion. We takeb(r )5dL(r ) instead,
where the functiondL(r ) tends to zero atLr .1 fast
enough, and is normalized by the condition

E drdL~r !51.
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Then the generating functional~1.6! will describe the statis-
tics of an object

uL5E drdL~r !u~r !, ~1.8!

smeared over a spot of sizeL21. If r difL!1, then the sta-
tistics of the object is not sensitive to diffusivity. On th
other hand, ifLL@1, then knowing the correlation function
of uL , we can reconstruct single-point statistics due to
logarithmic character of the correlation functions. To obta
single-point correlation functions one should substitute s
ply L→r dif

21 into the correlation functions ofuL . The above
inequalitiesLr dif!1 andLL@1 are compatible because o
Pe@1. If we are interested in the statistics of the pass
scalar differences in points with a separationr0 ~where
r 0@r dif! then instead ofdL(r ) we should take

b~r !5dL~r2r0/2!2dL~r1r0/2!. ~1.9!

Then the generating functional~1.6! will describe the statis-
tics of an object

DuL5uL~r0/2!2uL~2r0/2!. ~1.10!

Again, correlation functions of the passive scalar differen
can be found from correlation functions ofDuL after the
substitutionL→r dif

21.

B. Path integral

Below, we treat advection of the passive scalar by
large-scale velocity field, that is, we assume that the velo
correlation lengthLv is larger than the scales from the co
vective interval. Then for the scales one can expand the
ference

va~r1!2va~r2!5sab~ t !~r 1b2r 2b!, sab5¹bva .
~1.11!

Heresab(t) can be treated as anr -independent matrix field
Then Eq.~1.4! leads to

] t~%1,a2%2,a!5sab~ t !~%1,b2%2,b!. ~1.12!

A formal solution of Eq.~1.12! is

%1,a2%2,a5Wab~r 1,b2r 2,b!,

] tŴ5ŝŴ, Ŵ5I expS 2E
t

0

dt ŝ D , ~1.13!

where I denotes antichronological ordering. Note th
detŴ51; this property is a consequence of Trŝ50 and the
initial conditionŴ51 at t50. The Lagrangian difference in
~1.7! is now rewritten as

u%12%2u5A~r 1a2r 2a!Bab~r 1b2r 2b!, B̂5ŴTŴ,
~1.14!

where the subscriptT denotes a matrix transpose. Note th
detB̂51 since detŴ51.

The generating functionalT (y) ~1.6! can be explicitly
calculated in the Kraichnan case~see Ref. 2! when the sta-
tistics of the velocity isd-correlated in time. Then the veloc
e
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e

s

a
ty

if-

t

t

ity statistics is Gaussian and is entirely determined by
pair correlation function, which in the convective interval
written as

^va~ t1 ,r1!vb~ t2 ,r2!&5d~ t12t2!@V 0dab2K ab~r12r2!#,

~1.15!

K ab~r !5D~r 2dab2r ar b!1
~d21!D

2
dabr 2. ~1.16!

HereV 0 is a huger-independent constant andD is a param-
eter characterizing the amplitude of the strain fluctuatio
The structure of expression~1.16! is determined by the as
sumed isotropy and spacial homogeneity, and by the inc
pressibility condition¹v50. Then the statistics ofŝ is
Gaussian and is determined by the pair correlation funct
which can be found from Eqs.~1.15! and ~1.16!:

^sab~ t1!smn~ t2!&5D@~d11!damdbn2dandbm

2dabdmn#d~ t12t2!. ~1.17!

Note that the correlation function~1.17! is r -independent, as
it should be. We see from~1.17! that the parameterD char-
acterizes the amplitude ofŝ fluctuations.

Averaging over the statistics ofŝ can be replaced by a
path integral over unimodular matricesŴ(t) with a weight
exp(iI ). The effective actionI 5*dtL0 is determined by
~1.17!:

i L052
1

2d~d12!D
@~d11!Tr~ ŝTŝ !1Tr ŝ2#. ~1.18!

Then the generating functional~1.7! can be rewritten as the
following functional integral over unimodular matrices

J ~y!5E DŴ expF E
2`

0

dtS i L02
y2

2
U D G , ~1.19!

U5E dr1dr2b~r1!b~r2!x

3@A~r 1a2r 2a!Bab~r 1b2r 2b!#. ~1.20!

Here, we should substituteŝ5] tŴ(Ŵ)21 and recall the
boundary conditionŴ51 at t50.

Some words about the ‘‘potential’’U ~1.7! figuring in
~1.20!. The characteristic value ofr12r2 in the integral~1.7!
is of order L21 for b(r )5dL(r ). Since we assumeLL
@1, then for single-point statisticsU'P2 , where P2

5x(0), if B is not very large. In particular, it is correct a
moderate timesutu, sinceB̂51̂ at t50. With increasingutu the
argument ofx in ~1.20! grows andU tends to zero when the
argument ofx becomes greater thanL. For the passive scala
difference whenb is determined by~1.9! the situation is a bit
more complicated. ThenU is a difference of two contribu-
tions. The first contribution behaves as for single-point s
tistics. The second contribution containsx with the argument
determined byr12r2'6r0 . Then att50 the meaning of
the second contribution is determined again byP2 , but it
vanishes with increasingutu earlier than the first contribution

The path integral representation~1.19! indicates that we
reduced our problem to the quantum mechanics withd221
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degrees of freedom. Nevertheless to solve the problem
should perform an additional reduction of the degrees
freedom. The conventional way to do this is passing to
genvalues, say, of the matrixB̂ figuring in ~1.20! ~see, e.g.,
Ref. 14! and excluding angular degrees of freedom. Just
way was used by Bernard, Gawedzki and Kupiainen~see
Ref. 12!. Then the authors using known facts about the qu
tum mechanics associated with the eigenvalues~see, e.g.,
Ref. 15! have found the coefficient in the exponential tail
the single-point PDF ofu. Unfortunately this way is not very
convenient to find the whole PDF. To do this we will use
special representation of the matrixŴ in the spirit of the
nonlinear substitution introduced by Kolokolov~see Ref.
16!. That is the subject of the next subsection.

C. Choice of parametrization

To examine the generating functionalT (y) we use a
mixed rotational-triangle parametrization

Ŵ5R̂T̂, B̂T̂TT̂, ~1.21!

whereR̂ is an orthogonal matrix andT̂ is a triangular matrix:
Ti j 50 for i . j . The parametrization~1.21! is the direct gen-
eralization of the 2d substitution suggested in Ref. 17. No
that detT̂51 since detŴ51. Note also that the matrixB̂
introduced by~1.14! does not depend onR̂, as is seen from
~1.21!. That is a motivation to exclude the matrixR̂ from
consideration, integrating over the corresponding degree
freedom in the path integral~1.19!. A Jacobian appears in th
integration. To avoid an explicit calculation of the Jacobia
which needs a discretization over time and then an anal
of an infinite matrix ~see Ref. 10!, we use an alternative
procedure described below.

Let us examine the dynamics of the matrixT̂. It is de-
termined by the equation

] tTi j 5S i i Ti j 1 (
i ,k< j

~S ik1Ski!Tk j , ~1.22!

following from Eqs. ~1.13! and ~1.21!. Here we used the
notations

Ŝ5R̂TŝR̂. ~1.23!

Next introducing the quantities

Tii 5exp~r i !, Ti j 5exp~r i !h i j , if i , j , ~1.24!

we rewrite Eq.~1.22! as

] tr i5S i i , ~1.25!

] th i j 5~S i j 1S j i !exp~r j2r i !1 (
i ,k, j

~S ik1Ski!

3exp~rk2r i !hk j . ~1.26!

Comparing~1.13! with ~1.21!, one can find the following
expression forÂ5R̂T] tR̂:
e
f

i-

is

-

of

,
is

Ai j 5S i j if i . j , Ai j 52S j i if i , j . ~1.27!

One can easily check that the irreducible pair correlat
function ofS i j has the same form as fors i j @see Eq.~1.17!#:

^S i j ~ t1!Smn~ t2!&5D@~d11!d imd jn2d ind jm

2d i j dmn#d~ t12t2!. ~1.28!

Furthermore, the average value ofS i j is nonzero~see Ref.
10!:

^S i j &52D
d~d22i 11!

2
d i j . ~1.29!

Nonzero averages ofS i j are related to Lyapunov exponen
~not only the first one!, see Ref. 18~for our model see also
Ref. 19!. To obtain~1.29! one should take into account tha
the matrix R̂ propagates backward in time sinceR̂51 is
fixed at t50 and we treat negativet. Solving Eq. Â

5R̂T] tR̂ for R̂ on a small intervalt we get

R̂~ t2t!'R̂~ t !F12E
t2t

t

dt8Â~ t8!G .
Then with the same accuracy we get from Eq.~1.23!

Ŝ~ t2t!'R̂T~ t !ŝ~ t2t!R̂~ t !

2F Ŝ~ t2t!,E
t2t

t

dt8Â~ t8!G . ~1.30!

The average value ofŜ arises from the second term on th
right-hand side of~1.30!. The explicit form of the average
can be found using

K S i j ~ t2t!E
t2t

t

dt8Smn~ t8!L
5

D

2
@~d11!d imd jn2d ind jm2d i j dmn#. ~1.31!

Here we utilized Eq.~1.28! and replaced the integral

E
t2t

t

dt8d~ t2t2t8!

by 1/2. The reason is that the correlation function ofŝ actu-
ally has a finite correlation time, and therefored(t) ~repre-
senting this correlation function! should be replaced by a
narrow function symmetric undert→2t. Then we will get

1/2. ExpressingÂ via Ŝ from ~1.27! in ~1.30! and calculating
its average using~1.31! we get the answer~1.29!.

The expressions~1.25!, ~1.26!, ~1.28!, and~1.29! entirely
determine the stochastic dynamics ofr i andh i j . Using the
conventional approach~see Refs. 20–24! correlation func-
tions of these degrees of freedom can be described in te
of a path integral overr i ,h i j and over auxiliary fields which
we denote bymi and m in ( i ,n). This integral should be
taken with the weight exp(i*dtL), where the Lagrangian is
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L5 (
a51

d

maF] tra1D
d~d22a11!

2 G1
iD

2 Fd(
a

ma
2

2S (
a

maD 2G1 iDd(
i , j

exp~2r j22r i !m i j
2

12iDd (
i ,k, j

m i j m ik exp~2rk22r i !hk j

1(
i , j

m i j ] th i j 1 iDd (
i ,k,m,n

m imm inhkmhkn

3exp~2rk22r i !. ~1.32!

Since the matrixB̂ in accordance with~1.21! does not de-
pend onR̂ it is enough to know the statistics ofra andh i j to
determine the average~1.6!. Therefore, instead of~1.19! we
get

J ~y!5E DrDhDmDm expF E
2`

0

dtS i L2
y2

2
U D G .

~1.33!

Here U is determined by~1.20!, where the matrixB̂ is de-
termined by Eqs.~1.21! and ~1.24!.

Thus we obtained the expression for the generating fu
tional ~1.3! in terms of the functional~path! integral which is
convenient for the analysis presented in the subsequent
tion.

2. GENERATING FUNCTIONAL

Here we calculate the generating functional~1.3! for a
single-point statistics ofu that is of the object~1.8! corre-
sponding tob(r )5dL(r ), and also the statistics of the di
ference that is of the object~1.10! corresponding to~1.9!.
The starting point for the subsequent consideration is
expression~1.33!. There are different ways to examin
J (y). We will describe two schemes leading to the sa
answer but carrying in some sense complementary infor
tion. We also believe that consideration of the differe
schemes is useful from a methodological point of view.
modification of the second scheme is presented in the
pendix.

A. Saddle-point approach

The first way to obtain the answer for the generat
functional ~1.3! is by using the saddle-point approximatio
for the path integral~1.33!. The inequalities justifying the
approximation areLL@1 for the object~1.8! andLr @1 for
the object~1.10!.

As we will see, large values of the differencesr i2rk

( i ,k) will be relevant for us. Then fluctuations ofh andm
are suppressed and it is possible to neglect the fluctuati
Therefore we can omit the integration overh andm in ~1.33!,
substitutingh5m50 into ~1.32!. After that we obtain a re-
duced Lagrangian:
c-

ec-

e

e
a-
t

p-

s.

L r5 (
a51

d

maF] tra1D
d~d1122a!

2 G
1

iD

2 Fd(
a

ma
22S (

a
maD 2G . ~2.1!

Now, to obtainJ (y) one should integrate the exponent
~1.33! ~with L r! over ra and ma . To examine~2.1! it is
convenient to pass to new variablesfa5Oabrb and m̃a

5Oabmb , whereÔ is an orthogonal matrix. We make th
following transformation:

f15A 3

d~d221!
@~d21!r11~d23!r21...1~12d!rd#,

f25...,..., fd5
1

Ad
@r11r21...1rd#. ~2.2!

Then the expression~2.1! will be rewritten as

i L r5 i (
a51

d

m̃a] tfa2
Dd

2 (
a51

d21

m̃a
2

1 i
Dd

2
Ad~d221!

3
m̃1 . ~2.3!

The Lagrangian~2.3! is a sum over different degrees o
freedom. The dynamics off1 is ballistic, whereas the dy
namics offa for d.a.1 is purely diffusive. The condition
detT̂51 meansfd50, correspondingly the dynamics offd

determined by the Lagrangian~2.3! is trivial: ] tf t50. We
will see that times determining the main contribution to t
generating functional are large enough thatf1@fa for the
relevant region. Therefore, the potentialU ~1.20! depends
essentially only onf1 , and it is possible to integrate explic
itly over, fa and m̃a for a.1. After that we are left with
only one degree of freedom, which is described by
Lagrangian

i L15 im̃1S ] tf11
Dd

2
Ad~d221!

3 D 2
Dd

2
m̃1

2. ~2.4!

Neglecting allfa for a.1 and inverting transformation
~2.2! we obtain

r1'A3~d21!

d~d11!
f1 , ra'

d22a11

d21
r1 . ~2.5!

We will see below that the characteristic valuef1@1.
Therefore the characteristic value ofer1 is much larger than
otherera, and we conclude that the potentialU depends re-
ally only onr1 . For the case of the single-point statistics, t
characteristic value of the differencer12r2 in ~1.20! is L21.
Then it follows from ~1.21! and ~1.24! that the potentialU
decreases fromP2 to zero near the pointr15 ln(LL), which
is near the pointf15fL , where

fL5Ad~d11!

3~d21!
ln~LL!. ~2.6!

For the difference the potential increases from zero to 2P2 at
f15fR , where



l-

d
n
d

r d

-

n,

to
f

the
the

he
e
oxi-
l-

ons

e-

on
y

n

511JETP 88 (3), March 1999 Kolokolov et al.
fR5Ad~d11!

3~d21!
ln

L

r 0
, ~2.7!

and then decreases from 2P2 to zero nearf15fL . The
expressions~2.6! and ~2.7! determine the characteristic va
ues off1 , which are actually large, sinceLL@1 or L/r 0

@1; this justifies our conclusions.
Now we can employ the saddle-point approximation:

ln J ~y!'E
2`

0

dtS i L12
y2

2
U DU

inst

, ~2.8!

where we should substitute solutions of the extremal con
tions, which we will call instantonic equations. The insta
tonic equations, which can be found from extremal con
tions for i L12y2U/2, are

] tf11
Dd

2
Ad~d221!

3
52 iDdm̃1 , ~2.9!

] tm̃15 i
y2

2

]U

]f1
. ~2.10!

Eqs. conserve the ‘‘energy’’

2 i
Dd

2
m̃1Ad~d221!

3
1

Dd

2
m̃1

21
y2

2
U. ~2.11!

The conservation law is satisfied sincei L12y2U/2 does not
explicitly depend ont. The ‘‘energy’’ ~2.11! is equal to zero,
since ast→2` the value ofm̃1 should tend to zero. This
property can be treated as the extremal condition wheni Lr

2y2U/2 is varied over the initial value off1 . Equating the
‘‘energy’’ ~2.11! to zero, we can expressm̃1 via f1 . Next,
since~2.11! is zero, the saddle-point value ofJ (y) ~2.8! can
be written asi *df1m̃1 , where the integral overf1 goes
from zero to infinity.

Substituting the expression form̃1 in terms off1 into
i *df1m̃1 , we get for the single-point statistics

ln J ~y!.
d~d11!

6 F12A11
12y2P2

Dd2~d221!
G ln~LL!.

~2.12!

Note that the expression~2.12! has~as a function ofy! two
branch pointsy56 iysing, where

ysing
2 5

Dd2~d221!

12P2
. ~2.13!

The same procedure can be done for the passive scala
ference, or, more precisely, for the object~1.10!. Taking into
account the presence of the jumps~2.6! and ~2.7! in the po-
tential U, we get an answer slightly different from~2.12!:

ln J ~y!.
d~d11!

6 F12A11
24y2P2

Dd2~d221!
G ln~r 0L!,

~2.14!

ysing
2 5

Dd2~d221!

24P2
. ~2.15!
i-
-
i-

if-

Note that~2.14! does not depend on the pumping scaleL, but
still depends on the cutoffL.

The characteristic value off1 is determined by the
quantity ~2.6! which is much larger than unity. Then it fol
lows from ~2.5! that exp(2rj22ri)!1, i . j , ~excluding a
short initial stage of evolution! and we see from~1.32! that
fluctuations of the fieldsh are suppressed in compariso
say, with ra . This justifies neglecting the fieldsh and m
leading to the reduced Lagrangian~2.1!. Next, the dynamics
of fa for a.1 is diffusive, and it follows from~2.3! that the
characteristic value offa can be estimated to beADdutu. As
follows from ~2.3!, ] tf1;Dd5/2, and we find from~2.6! the
instantonic lifetime

t lt5D21d22 ln~LL!, ~2.16!

which determines times producing nonzero contributions
the effective action. Atutu;t lt , the characteristic values o
fa for a.1 are of orderAln(LL)/d, and we conclude that

fa

f1
;

1

dAln~LD!
!1 ~2.17!

at timesutu;t lt . The inequality~2.17! justifies passing to the
Lagrangian~2.4!. The same arguments can be applied to
generating functional for the passive scalar difference;
only modification is in the substitution ln(LL)→ln(r0L).

There are also additional applicability conditions for t
results ~2.12! and ~2.14!. To establish the conditions, on
should go beyond the main order of the saddle-point appr
mation. It will be more convenient for us to develop an a
ternative scheme, which enables one to find the conditi
more simply. That is the subject of the next subsection.

B. Schrö dinger equation

Here we present another way to get the answers~2.12!
and ~2.14!. As before, we start with the path integral repr
sentation~1.33! for the generation functionalJ (y).

Unfortunately it is impossible to get a closed equati
for J (y). To avoid the difficulty we introduce an auxiliar
quantity

C~ t,y,r0 ,h0!5E DrDhDmDm expF E
2t

0

dt8

3S i L2
y2

2
U D GU

r~2t !5r0 ,h~2t !5h0

. ~2.18!

It follows from the definition~2.18! that

J ~y!5 lim
t→`

E ) dradh i j C~ t,y,r,h!. ~2.19!

Eq. for the functionC can be obtained from the expressio
~1.32! and the definition~2.18!:
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] tC5
Dd

2 F(
i 51

d
]2

]r i
22

1

d S (
i 51

d
]

]r i
D 2

2(
i 51

d

~d22i 11!
]

]r i
12(

i , j
exp~2r j22r i !

3
]2

]h i j
2 14 (

i ,k, j
exp~2rk22r i !

]

]h i j

3
]

]h ik
hk j12 (

i ,k,m,n
exp~2rk22r i !

3
]

]h im

]

]h in
hkmhknGC2

y2U

2
C. ~2.20!

We see that Eq.~2.20! for C resembles the Schro¨dinger
equation. The initial condition for the equation can be fou
directly from the definition~2.18!:

C~ t50,y,r,h!5) d~ra!d~h i j !. ~2.21!

The value ofJ , in accordance with~2.19!; is determined by
the integral ofC overh andr. This integral is equal to unity
at t50, and then varies with increasing timet due toUÞ0,
since only the term withU in ~2.21! breaks the conservatio
of the integral. Thus, to findJ we must establish the evolu
tion of the functionC from t50 to larget.

Below we concentrate on the single-point statistics. T
scheme can obviously be generalized for the passive sc
difference.

Let us first describe the evolution qualitatively. The in
tial condition ~2.21! shows that att50 the functionC is
concentrated at the origin. Then it undergoes spreading in
directions, except forr11...1rd , since the operator on th
right-hand side of~2.20! commutes withr11...1rd . This
is a consequence of the condition detT̂51 ~to be satisfied!,
which implies that during evolutionr11...1rd50. This
means that a solution of~2.20! is C}d(r11...1rd). The
functionC is smeared diffusively with time, and also mov
as a whole in some direction, which is determined by
term with the first derivative in~2.20!. The rate of ballistic
motion is

^] tr i&5D
d~d22i 11!

2
. ~2.22!

ThereforeC describes a cloud, the center of which mov
according to the law

r i5D
d~d22i 11!

2
t. ~2.23!

Effective diffusion coefficients for theh’s decrease with in-
creasingt, since in accordance with~2.23! the differences
rk2r i , figuring in ~2.20!, are negative and grow in absolu
value. Therefore diffusion overh stops when the characte
istic values ofr i2rk becomes greater than unity. Note th
the ‘‘frozen’’ values ofh do not depend ony, sinceU can be
considered uniform during the initial stage of evolution. A
ter that theh’s are frozen, diffusion continues only over th
d

e
lar

all

e

s

t

r’s. If the cloud is inside the region whereU.P2 , then
evolution of the cloud is not influenced byU. After a period
of time t lt ~2.16!, the cloud reaches a barrier, where the p
tential U decreases fromP2 to 0. The subsequent histor
depends on the value ofy. For moderatey the cloud passes
this barrier and continues to move at the same rate. A
this, the integral ofC will not change in time, and its value
will determine the generating functionalJ (y). Naive esti-
mates yield lnJ (y)52y2 t lt /2, which reproduces the pai
correlation function ofu.

Special consideration is needed ifuyu@ysing, or if y is
close to6 iysing, whereysing is defined by~2.13!. Just this
region determines the PDF’s and is consequently of spe
interest. Note thaty56 iysing corresponds to the appearan
of a bound state near the pumping boundary~whereU de-
creases fromP2 to zero!. If y@ysing, then the front of the
cloud reaches the jump of the potential much earlier thant lt .
The remainder of the cloud~inside the potential well! is
damped due to the term withy, and does not contribute to
J (y). If uyu@ysing thenJ (y)@exp(2y2 tlt/2); the asymptot-
ics of J (y) is actually exponential in the case.
uy6 iysingu!ysing then the cloud stays near the pumpin
boundary for a long time, that is the shape ofC inside the
regionU.P2 varies in time comparatively slowly. Further
more, a part ofC percolates out to the region whereU.0,
and the integral ofC grows with increasingutu. As y ap-
proachesiysing, this stage lasts longer. One can say that
back of the cloudC gives the right answer forJ (y). The
important point is that ify is not very close toiysing then
during the timeC leaves the potential, the width ofC in
terms of diffusive degrees of freedom is much less th
ln LL. This means that the functionC is really narrow,
which justifies our consideration.

For a quantitative analysis it is convenient to pass to
variablesf i ~2.2!. Since theh-dependence ofC is frozen
after the initial evolution, it is possible to obtain an equati
for the integral ofC over h:

C̃~f1 ,...,fd21!5E dfd) dh i j C, ~2.24!

where we also included an integration overfd to remove the
factor d(r11...1rd). Eq. for the function~2.24! is

] tC̃5
Dd

2 F (
i 51

d21
]2

]f i
22Ad~d221!

3

]

]f1
GC̃2

y2Ũ

2
C̃,

~2.25!

where Ũ is function of fa only which can be found by
substituting intoU the ‘‘frozen’’ values ofh’s. Qualitatively
Ũ has the same structure asU itself. One can conclude from

~2.25! that the cloud described byC̃ moves ballistically in
the f1 direction and spreads along other directions. We
going to treat the situation when the cloud remains narr
during the relevant part of the evolution. Then one can in

grateC̃ over allf i , i .1 in a similar way as in the case wit
h’s, and get a 1d equation for

C̄~f1!5E )
2

d21

df iC̃.
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The functionC satisfies Eq.

] tC̄5
Dd

2 F ]

]f1
2Ad~d221!

3
G ]

]f1
C̄2 y2U2 C̄.

~2.26!

The initial condition for Eq.~2.26! is C̄(t50)5d(f1). The
potentialŪ is obtained fromŨ by the substitutionfa→0 for
a.0. In fact, for the direction~2.23! the potentialŪ depends
only on r1 . The barrier is reached whenr1. ln LL. Passing
to the variablesf i , we conclude that the potentialŨ dimin-
ishes fromP2 at f1,fL to zero atf1.fL , wherefL is
defined by~2.6!.

The character of the solution of Eq.~2.26! can be ana-

lyzed semiqualitatively in terms of the widthl of C̄ overf1

and its amplitudeh. WhenC̄ reaches the pumping boundar
it stops there for a period of time. Then the widthl and the
amplitudeh are governed by the equations

dl

dt
52Ddl1

Dd

l
,

dh

dt
52

Ddh

l 2 2
y2P2h

2
, ~2.27!

wherel5Ad(d221)/12, Ddl is the rate of cloud motion
along thef1 direction ~whenU5const!, andDd is the dif-
fusion coefficient for thef1 direction. One can estimat
from the first equation the widthl;1/l. Then from the sec-
ond equation the heighth decreases or grows in time depen
ing ony. The characteristicy where the regime changes is
the order uysingu2;Ddl2/P2 . We show this by consisten
calculations.

Equation~2.26! can be solved analytically, e.g., by th
Laplace transform over timet. Taking the Laplace transform
one gets

pC̄~p!2d~f1!5
Dd

2 F ]

]f1
2Ad~d221!

3
G ]

]f1
C̄~p!

2
y2

2
Ū~f1!C̄~p!. ~2.28!

We are interesting in the bound state described by this e
tion. Solutions forC(p) in the intervals (2`,0), (0,fL),
(fL ,`) are exponential, and must be matched. The func
C(p) as a function ofp has two branch points at

p152
Dd2~d221!

24
2

y2P2

2
, p252

Dd2~d221!

24
,

~2.29!

coming from the regionsf1,fL and f1.fL , respec-
tively. When one of these branch points passesp50, C
starts to grow exponentially in time. This happens whey
passes6 iysing, moving along the imaginary axis.

The value of the generating functional is determined
accordance with~2.19! by the large-time behavior ofC(t).
This means that we should be interested in the behavio
C(p) at smallp. The function*df1C(p) in ~2.19! has a
pole atp50 related to the asymptotic behavior

C̄~p!}expS 2
2p

Dd
A 3

d~d221!
f1D ,
a-

n

of

at f1.fL and smallp; the behavior can be found from
~2.28!. The residue of*df1C(p) at the pole determines
J (y). To find the residue we must analyze the behavior
C(p) at 0,f1,fL . At small p there are two contributions
to C, proportional to

expH SAd~d221!

12
6Ad~d221!

12
1

y2P2

Dd Df1J ,

~2.30!

as follows from~2.28! at p50. Therefore the residue, whic
is determined by the integral*df1C(p) over the region
f1.fL , is proportional to

expH SAd~d221!

12
1Ad~d221!

12
1

y2P2

Dd DfLJ .

~2.31!

Substituting~2.6! here, we reproduce~2.12!.
Let us now establish the applicability condition for th

above procedure. The expression~2.31! implies that the ex-
ponent with the minus sign in~2.30! makes a negligible con
tribution to C(p) at f15fL . The condition is satisfied if

uy21ysing
2 ufL

2 @
Dd

P2
.

Substituting~2.6! and ~2.13! here, we obtain

Uy6 iysing

ysing
U@~d4 ln2 LL!21. ~2.32!

For y close to6 iysing one must be careful, since then th
subtle analytic structure ofJ (y) will be relevant. As an
analysis ford52 showsJ (y) has a system of poles alon
the imaginary semiaxis starting from6 iysing, and the pa-
rameter (d4 ln2 LL)21 determines the separation between t
poles. The poles correspond to bound states. The asse
about the cut made in the previous subsection is relate
the restrictions of the saddle-point approximation which c
not feel this fine pole structure; it yields the cut, which is
picture averaged over the interpole distances. This avera
picture is acceptable at the condition~2.32!.

Note that the same criterion~2.32! justifies our assump-
tion that the cloud described byC is narrow during the rel-
evant part of the evolution. Namely, the duration of the p
is determined by the timetexit5p1

21 @see~2.29!#. This is the
time that the cloud stays near the barrier. Fory close to
6 iysing, the time can be estimated to betexit

21;P2uysinguuy
7 iysingu. Then the diffusive widthADdtexit of C in the di-
rectionsfa for a.1 is much less thanfL precisely if~2.32!
is satisfied. In principle the diffusive dynamics atd.2 could
modify the noted fine pole structure ofJ ; this problem re-
quires additional investigation.

The same procedure can be done for the passive sc
differences. The cloud C should pass the region
r1, ln(L/r0) before it reaches the potential. Then it enters
region Ū52P2 with some finite diffusive width. One can
note, however, that this is irrelevant. The only characteris
of the potential that are needed are its value~here 2P2 in-
stead ofP2! and the length of the path inside it@which is
Dr15 ln(r0 L) instead of ln(LL)#. The evolution ofC goes
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in the same way as in the case of single-point statist
Again, we get~2.14! and the criterion analogous to~2.32!.

In this subsection we presented an analysis based on
dynamical equation~2.20! for the auxiliary objectC. The
results obtained can be reproduced also in alternative
guage: for this we must introduce another auxiliary obje
the equation for which is stationary. The correspond
scheme, which might be interesting from a methodologi
point of view, is sketched in the Appendix.

3. CALCULATION OF PDF

In this section we calculate the PDF’sP for the objects
~1.8! and ~1.10!. The most convenient way to do so is b
using the relation

P ~q!5E dy

2p
exp~2 iyq!J ~y!, ~3.1!

whereq is

q5E drb~r !u~0,r !. ~3.2!

Let us recall that knowingP ~q!, one can also restore th
moments ofq:

^uqun&5E dququnP ~q!. ~3.3!

The generating functional in~3.1! is determined by
~2.12! or ~2.14!. Being interested in the main exponenti
dependence of the PDF’s for the objects~1.8! and~1.10!, we
can forget about preexponents. Then

P ~q!5E dy

2p
exp~2 iyq1q@12A11y2/ysing

2 # !, ~3.4!

where for the single-point statistics and for the statistics
the passive scalar difference respectively

ysing
2 5

Dd2~d221!

12P2
, ysing

2 5
Dd2~d221!

24P2
, ~3.5!

q5
d~d11!

6
ln~LL!, q5

d~d11!

6
ln~r 0L!. ~3.6!

Since bothq defined by~3.6! are regarded to be much larg
than unity, the integral~3.4! can be calculated in the saddl
point approximation. The saddle-point value is

ysp5 i
ysing

11q2/ysing
2 q2 . ~3.7!

Then

ln P ~q!.qS 12A11
ysing

2 q2

q2 D . ~3.8!

This expression leads to the exponential tail

ln P ~q!.2ysinguqu, ~3.9!

realized atuqu@q/ysing. The coefficientysing in ~3.9! deter-
mined by~2.13! is in agreement with the result obtained
Ref. 12.
s.

he

n-
t,
g
l

f

The expression~3.8! enables one to find the following
averages in accordance with~3.3!:

^uL
2 &5

2P2

d~d21!D
ln~LL!,

^~DuL!2&5
4P2

d~d21!D
ln~r 0L!. ~3.10!

The expressions~3.10! can also be obtained by direct expa
sion ofJ (y) from ~2.12! or ~2.14!. The universal tail~3.9! is
realized if

uL@A^uA
2&d ln~LL!, DuL@A^~DuL!2&d ln~r 0L!.

~3.11!

Since both logarithms are assumed to be large, we conc
that there exists a relatively wide region where the statis
of q is approximately Gaussian; the region is determined
the inequalities inverse to~3.11!.

Let us discuss the applicability conditions of the expre
sion ~3.8!. First, if one calculates the passive scalar PDF
the saddle point method, then the position of the saddle p
is determined by~2.32! if

q!d2AP2

D
ln2~LL!. ~3.12!

The applicability domain of the saddle-point method ov
laps the region of validity of~2.12! for the generation func-
tion J (y). The above inequalities are correct foruL ; for
DuL one must replace ln(LL) with ln(r0 L). Second, fluctua-
tions ofy have to be small compared to the distance betw
ysp andysing. This gives the same criterion~3.12!.

Let us stress that though formally our procedure is
correct atq*d2AP2 /D ln2(LL) the answer will be the same
the PDF will be determined by the exponential tail~3.9!. The
point is that the character of the integral~3.1! at such ex-
tremely largeq will be determined by the position of th
singular point ofJ (y) nearest to the real axis. This is ju
iysing, leading to~3.9!. To conclude, only the character o
the preexponent in P ~q! is changed at q
;d2AP2 /D ln2(LL), whereas the principal exponential b
havior of P ~q! remains unchanged there.

4. CONCLUSION

The single-point statistics of the passive scalaru and the
statistics of its differenceDu are traditional objects which
carry essential information about correlation functions of
passive scalar in the convective interval. We examined
passive scalar in the large-scale turbulent flow, where
correlation functions logarithmically depend on scale. Sin
the logarithms are actually not very large, it is useful to ha
all the PDF’s ofu andDu. That was the main purpose of ou
investigation, which was performed in the context of t
Kraichnan model. The single-point PDF for the passive s
lar and the PDF for the passive scalar differences can
obtained from~3.8! if we substituteL→r dif

21 wherer dif is the
diffusive length. Though both the advecting velocity and t
pumping force in the Kraichnan model are consider
d-correlated in time, we hope that our results are univer
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that is, are true in the limit when the size of the convect
interval tends to infinity for arbitrary temporal behavior
the velocity and pumping. The reason is that the spec
transfer time grows with increasing convective interval, a
in the limit is much larger than the correlation times of t
velocity and pumping.

We believe also that the analytic scheme proposed in
work could be extended for other problems related to
passive scalar statistics. Note as an example Ref. 13 wh
modification of the scheme enabled one to find the statis
of the passive scalar dissipation. It is also useful for inve
gating the large-scale statistics~on scales larger that th
pumping length! of the passive scalar see Ref. 25. We a
hope that it is possible to go beyond the case of the la
scale velocity field using a perturbation technique of the ty
proposed in Refs. 26–28.

We are grateful to E. Balkovsky, M. Chertkov, G. Fal
ovich, K. Gawedzki and M. Olshanetsky for useful discu
sions. This work was supported in part by the Einstein a
Minerva Centers at the Weizmann Institute, by grants fr
the Minerva Foundation, Germany and the Israel Scie
Foundation, by the Russian Fund for Fundamental Rese
~I. K., M. S., Grant 98-02-17814!, by Soros Foundation~M.
S., Grant a98-674! and by INTAS ~M. S., Grant 96-0457!
within the ICFPM program.

APPENDIX

Here we present an alternative way to obtain the res
~2.12! and ~2.14!. We use an auxiliary quantity.

J~y,r0 ,h0!5E DrDhDmDm

3expF E
2`

0

dtS i L2
y2

2
U D GU

r~0!5r0 ,h~0!5h0

,

~A1!

so

J ~y!5J~y,0,0!. ~A2!

The functionJ can be also defined as

J~y,r0 ,h0!5 lim
t→`

E ) dradh i j C~ t,y,r,h!, ~A3!

where C is governed by Eq.~2.20! with initial condition
C(t50,y,r,h)5d(r2r0)d(h2h0). The equation forJ
can be found from Eqs.~1.32! and ~A1!:

F(
i 51

d
]2

]r i
2 2

1

d S (
i 51

d
]

]r i
D 2

1(
i 51

d

~d22i 11!
]

]r i

12(
i , j

exp~2r j22r i !
]2

]h i j
2 14 (

i ,k, j
exp~2rk

22r i !hk j

]

]h i j

]

]h ik
12 (

i ,k,m,n
exp~2rk
e

al
d

ur
e
e a
s

i-

o
e-
e

-
d

e
ch

ts

22r i !hkmhkn

]

]h im

]

]h in
GJ2

y2U

Dd
J50. ~A4!

The boundary condition for Eq.~A4! follows from the defi-
nition ~A1!: for large enoughr i ,h i the potentialU50 at
t50 and also remains zero at finite timest. Therefore the
integral ~A1! must be equal to unity in the case. Thu
J(y,r,h) must tend to unity wherer,h→`.

Let us rewrite Eq.~A4! in terms of the variables~2.2!:

~ Ĝ11g~J11j!50, J5J11j, ~A5!

Ĝ15
]2

]f1
2 1Ad~d221!

3

]

]f1
2

y2U

Dd
, ~A6!

ĝ5 (
i 52

d21
]2

]f i
2 12(

i ,k
exp~2rk22r i !

]2

]h ik
2

14 (
i ,k,n

exp~2rk22r i !hkn

]

]h in

]

]h ik

12 (
i ,k,m,n

exp~2rk22r i !hkmhkn

]

]h im

]

]h in
.

~A7!

Here U as a function off1 is equal toP2 inside a region
restricted byfL

2 and fL
1 ~wherefL

6 are functions of vari-
ablesf2 ,...,fd ,h! and tends to zero outside the region. W
solve Eq.~A5! using perturbation theory overĝ, j. Then the
zero-order equation is

Ĝ1J150. ~A8!

Equation ~A8! can easily be solved atfL
2,f1,fL

1 ; the
answer is

J1.
2l

Al21
y2P2

Dd
1l

exp$2~Al21y2P2 /Dd2l!

3~fL
12f1!%, ~A9!

wherel5Ad(d221)/12,Ddl is the rate of the cloud mo
tion along thew1 direction. The result~A9! can be obtained
using the inequalityAl21y2P2 /Dd ln LL@1. The deriva-
tive ]J1 /]f150 at f1,fL

2 . However,J1Þ1 in this re-
gion. This is due to the following fact: this region corre
sponds to the evolution ofC when its initial position is to the
left of potential U @see ~A3!#. During evolution, cloudC
passes the region ofU and its integral overr, h changes.
Then J is not equal to 1. Only when the distance betwe
the initial position and potential is of order ln2 LL will the
diffusion of the cloud lead to smallness of the part ofC that
passes the potentialU, andJ becomes closer to unity. Thus
functionJ has a long tail from the potential pointing towar
negativef1 , where it is not equal to 1. The procedure
finding J from Eq. ~A8! corresponds to the geometrical o
tics approximation~taking into account only derivatives in
propagation direction; this allows one to get the fact
propagation!. This tail of J in this approximation is none
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other than the shadow of potentialU. Higher orders of per-
turbation theory over the transverse derivatives correspon
diffraction corrections.

Now let us consider the correctionj. Eq. for it looks like
(G11ĝj52ĝJ1 . Again let us neglectĝ on the left-hand
side and solve the equation.J1 is some exponential function
with scale of the order 1. ThenĝJ1;J1 . Note thatĝJ1 is
almost equal to zero atf1.fL

1 . To estimatej one must
construct the Green functionG(f1uf0) for operatorG1 :

G~0uf0!.
1

2l
expS 2SAl21

y2P2

Dd
2l Df0D

3S 12C expS 22Al21
y2P2

Dd
~fL

12f0! D D ,

~A10!

where

C5~Al21y2P2 /Dd2l!/~Al21y2P2 /Dd1l!.

The unity in the parentheses in~A10! gives the correction for
J, which has the same exponential factor asJ1 . Thus j
does not change the answer, to logarithmic accuracy.
second term in the parentheses gains whilef0 is close to
fL

1 . This is due to the nonzero width of the cloudJ and to
the dependence oft lt on other variables. Again, it does no
change the exponent.

To get J from J we in accordance with~A2! have to
substitute zero values ofr and h into J. Then f150 and
fL

15fL wherefL is defined by~2.6!. Substituting the val-
ues into~A9! we reproduce~2.12!. The case of the passiv
scalar differences can be considered in a similar way.
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The interaction between hydrogen bonds and conformational elastic degrees of freedom has been
investigated using the simplest model of a double-strand DNA molecule. The hydrogen
bonds are described in terms of two-level quantum systems. After excluding conformational
degrees of freedom, one has effective interaction among two-level systems. In the ground state of
an ideal double helix, hydrogen bonds in a DNA molecule also have a helical order induced
by conformational degrees of freedom. The pitch of the hydrogen-bond helix~and even its sign
under certain conditions! is different from that of the basic helix pitch and, generally
speaking, is incommensurate with the latter. This effect can, possibly, lead to an inversion of the
sign of the circular dichroism in spectral bands, which was detected in some experiments.
© 1999 American Institute of Physics.@S1063-7761~99!01103-8#
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1. INTRODUCTION

According to Watson and Crick’s classic model, t
DNA molecule is a double helix. In the so-calle
B-conformation of DNA~see the monograph by Alberts
al.1 or the review by Vologodskiiet al.2!, this double helix is
right-handed and formed of two polymer chains, each
which has the shape of a right-handed spiral. Nitrous ba
whose sequence encodes the entire genetic information,
the inside content of the double helix, and its surface
formed by the glycophosphate frames of the polymer cha
Each repeated component of the chain~a nitrous base plus a
glycophosphate! is called a nucleotide. There is a strict ru
of complementation between nucleotides of two chai
which is controlled mostly by the steric correspondence
tween bases. This structure of the DNA molecule allows o
to model it in most cases as an anisotropic elastic thr
associated with the axial line of the double helix.3,4

An essential fact for the DNA configuration is that bon
between neighboring nucleotides are rigid and covalent, w
energy about 60 kcal/mol,1,2 whereas the energy of bond
between polynucleotide chains is at least one order of m
nitude lower. The two chains are bound in the double he
mostly by the interaction between bases belonging to dif
ent strands, and hydrogen bonds serve, as it were, for ‘‘id
tification’’ of nucleotides in complementary pairs. Obv
ously, the variables characterizing one anisotropic ela
thread are insufficient for modeling the double-strand DN
configuration. A minimal complication of the anisotrop
elastic-thread model suggested in our previous publicat5

was equipping the elastic line with vector fieldY, which
defined additional~to those in the anisotropic thread mode!
5171063-7761/99/88(3)/6/$15.00
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degrees of freedom in the DNA double helix.
One can conclude from the above statements that

role of hydrogen bonds in stabilizing the DNA configuratio
is, in a sense, secondary. This does not mean, however,
they are inessential in the biological functioning of the DN
molecule. Rather the opposite is true, for it is precisely
hydrogen bonds that enable realization of the rule of comp
mentation between bases of different pairs. Therefore, stu
ing the ordering and other properties of the system of hyd
gen bonds in the DNA molecule is a biophysical problem
paramount importance, and it constitutes the main subjec
this paper.

Hydrogen bonds have been extensively discussed in
literature ~see, for example, the review by Marechal6 and
references therein!. An important circumstance for our stud
is that a hydrogen bond has an anisotropic configurat
because three atoms forming a hydrogen bond are shap
a linear asymmetrical structure. Keeping in mind the pro
lem of ordering of hydrogen bonds in the DNA molecu
mentioned above, we can say in other words that, at each
n of a DNA molecule~a position of bonds between comple
mentary pairs!, there is a certain directionHn which defines
a favorable orientation of a hydrogen bond. In contrast to
case of covalent bonds, however, the inherent energy
hydrogen bond is relatively low~characteristic energies o
hydrogen bonds7 are usually no more than 3 kcal/mol!.
Therefore, interaction between hydrogen bonds and other
grees of freedom in DNA~along with thermal fluctuations!
can notably modify their properties~for example, deform the
linear structure of these bonds! or even break them. In the
following section, we will formulate a simple model illustra
ing this phenomenon, namely, interaction between hydro
© 1999 American Institute of Physics
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bonds and conformational degrees of freedom in the D
molecule.

This model will be analyzed in Sec. 3. The ground st
of the system will be described. It turns out that hydrog
bonds have a helical order in the ground state~like base pairs
in the double helical configuration of DNA!, but the pitch of
this hydrogen-bond helix~and, possibly, its sign! differs
from that of the double-helix pitch~10 b.p.[35 Å! and, gen-
erally speaking, these two pitches are incommensurate.

In the final section, we will discuss feasibility of detec
ing helical ordering of hydrogen bonds and its biophysi
aspects.

2. DNA MODEL TAKING INTO ACCOUNT HYDROGEN
BONDS

As was mentioned above, the basic component of
DNA model used in our analysis is the conformation of t
DNA axial line, determined by Kirchhoff’s ‘‘angular veloc
ity’’ V ~see Ref. 8, and also 3 and 4!. The vectorV ~or the
equivalent skew-symmetric matrix! is a natural set of vari-
ables describing the conformation of an elastic thread~the
DNA axial line!. Thus, the molecule’s conformation~i.e.,
vector V) is determined by the elastic moduli of the DN
moleclue~or, what is the same, by persistent lengths of be
and twist!. The characteristic values of these elastic mod
are well known1,2 and correspond to a persistent length
order of 103 Å. A DNA molecule whose length is of order o
the persistent length is almost rigid, i.e.,V5const over this
length.

The next element of our model is vector fieldY that
frames the axial line conformation. Introduction of this fie
is dictated by the double-strand structure of the DNA m
ecule, and this field locally determines the relative locat
of the strands and separation between them.

This vector field is naturally associated with an ener
which includes the kinetic energy of relative motion
strands with respect to one another and the potential en
of the ideal double-helix deformation. In the simplest a
proximation of the lowest order, the energy of fieldY can be
expressed as

Hel5(
n

1

2r
Pn

21(
n

K

2
~¹Yn!2. ~1!

Here we are using the discrete model of DNA, in which t
sitesn are defined as positions of glycophosphate bases,Pn is
the generalized momentum corresponding to the relative
placementYn of strands of the double helix,r is the reactive
factor, which has the sense of the mass density in this r
tive motion, andK is the elastic modulus characterizing ela
tic strains in the double-strand structure~or field Y).

Energy~1! has the standard form of the energy of ha
monic oscillations, the only, but essential, difference from
conventional one-dimensional oscillator being the prese
of the covariant derivative¹Yn5(]Yn /]s)2@VYn#, where
s is the curvilinear coordinate along the conformation of t
axial line.

The emergence of the covariant derivative instead of
conventional one results from the fact that the deformat
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energy of fieldY @expressed in the immobile~laboratory!
reference frame in Eq.~1!# should include both changes i
field Y with respect to the natural~local! reference frame
defined by vectorV and changes in the local frame itself.

In addition to fieldYn , there are hydrogen bonds at ea
site, whose main function is~as was noted in the previou
section! ‘‘identification’’ of complementary pairs of bases
In the roughest approximation, a linear hydrogen bond
be only in two states~corresponding to two proton pos
tions!, which will be dubbed in what follows open~the pro-
ton is close to one of participating atoms, and the bond
effectively broken! and closed~the proton is located betwee
the two atoms and effectively binds them!. A natural ‘‘tool’’
for describing the two-level system modeling the hydrog
bond is the triad of Pauli matricessn for spin 1/2. This ap-
proach allows us to express the Hamiltonian of the system
hydrogen bonds in DNA as follows:

Hh5« (
n

Hnsn1g (
n

Ynsn . ~2!

The first term on the right corresponds to the inherent ene
of a hydrogen bond at siten (« is the energy needed to brea
the hydrogen bond,Hn describes the unperturbed equilib
rium alignment of the hydrogen bond!, and the second cor
responds to interaction between hydrogen bonds and fieY
of displacements in the DNA double-strand configuratio
The value of« is well known ~it is of order of 3 kcal/mol!,
and parameterg, which is controlled by interaction betwee
hydrogen bonds and nitrous bases, can be several t
higher, but, obviously, lower than the elastic strain energy
field Y, which is determined purely by covalent bonds.
what follows, this hierarchy of energy scales will be us
explicitly in determination of the ground state.

In studying properties of the model formulated abov
one can use techniques developed in the theory
excitons.9,10 It is convenient to switch to Fourier componen
in Eqs.~1! and ~2!:

Yq5
1

AN
(

n
einqYn ,

whereN is the number of sites~base pairs! on the section
under consideration~of order of the persistent length!. More-
over, we assume that the double-helix conformation of
DNA molecule is ideal, i.e.

V[~0,0,V!5const.

After the Fourier transform, Hamiltonian~1!, ~2! takes
the form

H5(
q

F 1

2r
PqP2q1

K

2
~B̂q

1B̂q!YqY2q

1«HqS2q1gYqS2qG ~3!

with the notation
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B̂q5F 2i sin~q/2! 2exp~ iq/2!V 0

exp~ iq/2!V 22i sin~q/2! 0

0 0 22i sin~q/2!
G

~4!

(B̂q
1 is the Hermitian conjugate matrix!.

The first two terms on the right of Eq.~3! express the
elastic energy of the conformation degrees of freedom i
double-strand DNA molecule. In order to calculate the sp
trum of elastic oscillations, one must diagonalize this Ham
tonian part. This can be done with the help of the canon
transformation

S21~B̂q
1B̂q!S[diag~l1 ,l2 ,l3!, ~5!

where the matrix

S5F 1/A2 i /A2 0

i /A2 1/A2 0

0 0 1
G ~6!

satisfies the conditionS15S21.
Equations~5! and ~6! yield three characteristic eigen

modes of the double-strand DNA molecule:

l1,254 sin2
q

2
1V264V sin

q

2
cos

q

2
,

~7!

l354 sin2
q

2
.

OperatorŜ transforms all variables to eigenmodes:

Yq5Ŝjq , Pq5Ŝ* pq , Sq5Ŝhq , Hq5Ŝhq , ~8!

where, as follows from Eq.~6!, S* 5S1 (S* is the complex
conjugate matrix!, thus we obtain Hamiltonain~3! in terms
of eigenmodes:

H5(
q

(
i 51

3 F 1

2r
~pq

1 ipq
i 1r2v i

2~q!jq
1 ijq

i !

1
g

2
~jq

1 ihq
i 1hq

1 ijq
i !1

e

2
~hq

1 ihq
i 1hq

1 ihq
i !.G , ~9!

where

v i5AKl i /r ~10!

is the spectrum of eigenmodes~‘‘phonons’’ of the double-
strand DNA!. Branches of the spectrum determined by E
~7! and ~10! are shown in Fig. 1. There is an ‘‘acoustic
branch (v3) corresponding to oscillations of the separati
between the strands~length of vectorY) and two ‘‘optical’’
modes (v1 andv2) associated with deformation in the ide
double helix~with variations in the orientation of fieldY).
Note that there is a minimum of modev2 at q5Q, which
can be explained entirely in terms of symmetry propertie1!.

3. HELICAL ORDERING OF HYDROGEN BONDS IN DNA

It is convenient to express the elastic~‘‘phonon’’ ! part of
Hamiltonian~9! in terms of second quantization12:
a
-

-
al

.

bq
i 5

rv i~q!jq
i 1 ipq

1 i

A2r \v i~q!
, bq

i 15
rv i~q!jq

i 12 ipq
i

A2r \v i~q!
. ~11!

Equations~11! are written in such a form that phonon cr
ation and annihilation operators satisfy the standard com
tation relations

@bq8
i ;bq9

1 j
#5 i \d i j dq8q9

with due account of symmetry properties of phonon spec
~10!,

v1~2q!5v2~q!, v3~q!5v3~2q!.

The energy of ‘‘bare’’ phonons has the form

H05(
q

(
i 51

3

\v i~q!bq
1 ibq

i , ~12!

and the interaction Hamiltonian

H int5
e

2 (
q

(
i 51

3

~hq
1 ihq

i 1hq
1 ihq

i !1gA \

2r

3(
q

(
i 51

3
1

Av i~q!
~bq

1 ihq
i 1hq

1 ibq
i !. ~13!

As was noted above, the characteristic scale of ela
energy is higher than the energies of hydrogen bonds (e) and
their interaction with conformational degrees of freedo
(g), therefore we can use the perturbation theory.

In order to exclude phonons with an accuracy up to
terms of second order, we can use the canonical transfor
tion

H̃5e2wHew,

where the anti-Hermitian operatorw is expressed as

w5(
q

(
i 51

3

@Aq
i bq

1 i2bq
i Aq

1 i #, ~14!

and operatorsAq
i can be found in the first order of the pe

turbation theory from the condition

H int1@H0 ;w#50. ~15!

Hence,H̃5H01(1/2)@H int ;w#. With the notation

FIG. 1.
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Aq
i [Ai j ~q!hq

j , ~16!

Hlk~q2q8!5(
j 51

3

hq2q8
1 j tk

i j , ~17!

where tk
i j are structural constants of pseudospin opera

under transformationŜ @Eq. ~8!#:

@hq8
i ;hq2q8

j
#5(

k
tk
i j hq

k , ~18!

the calculation of operatorw @or matrix Aik(q)# reduces to
solving the integral equation

Aik~q!52
g

A2r

d ik

~v i~q!!3/2
1

e

2 \v i~q!

3(
q8

(
l 51

3

Hlk~q2q8!Aie~q8!. ~19!

Note that the kernel of this integral equation is a function
both the conformation of hydrogen bonds (Hlk) and elastic
properties of the double-strand DNA structure@v i(q)#.

With an arbitrary relation between parametersg and e,
Eq. ~19! is difficult to solve. Physically, the simplest case
when the first term of Hamiltonain~13! is much smaller than
the second. In the zeroth-order approximation, i.e., whene is
neglected, we have the following effective Hamiltonian
hydrogen bonds:

Heff52
g2

4K (
mn

Tmn
i hm

i hn
i , ~20!

where

Tmn
3 52

4

N (
q

cos@~m2n!q#

l3~q!
, ~21!

Tmn
1 5Tmn

2 5
1

N (
q

S 1

l1~q!
1

1

l2~q! D cos@~m2n!q#.

Note that the ‘‘exchange’’ constant in effective Ham
tonian~20! is independent of the mass densityr ~and, by the
way, of Planck’s constant\). In our opinion, these two
properties are quite natural. Indeed, the effective energ
hydrogen bonds is a thermodynamic characteristic of the
tem, which should not depend on the purely dynamical
rameterr. The physical cause of this energy is ‘‘magnet
striction,’’ i.e., interaction between hydrogen bonds a
phonons, which has a classical nature, although the hydro
bonds have been described in terms of the quantum th
~two-level systems!.

For simplicity, let us consider only the ‘‘X2Y’’ con-
figuration of pseudospin operators describing hydrog
bonds, i.e., we sethz[0. In the continuous limit, the calcu
lation of Tmn

1,2 is reduced to the integrals
rs

f

f

of
s-
-

-

en
ry

n

E
2p

p dw

2p

cos@~m2n!w#

4 sin2~w/2!1V264 sin~w/2!cos~w/2!V
,

which can be easily performed by calculating the requi
residues. As a result of this simple procedure, we find

Tmn
1 5Tmn

2 52
cos@~m2n!a#

V2~11V2!~m2n!/2
, ~22!

where

a5cos21
1

A11V2
. ~23!

The effective exchange interaction is very similar to the
called RKKY ~Ruderman, Kittel, Kashuya, and Yoshida! in-
teraction between spins mediated by conduction-band e
trons, which is well known in the physics of metals. Like th
RKKY interaction, that between hydrogen bonds oscilla
with the distance and its amplitude drops following a pow
law ~in this sense, the interaction is long-range!. The long-
range nature of this interaction allows one to use the me
field approximation, which leads to a helical structure in t
case of the RKKY interaction. Therefore, on the basis of
well-known results for the RKKY interaction, we can su
gest a helical configuration of hydrogen bonds and appl
variational technique, which yields an upper limit for th
ground-state energy. Thus, in order to minimize energy~20!,
we use the following trial function:

hn
x5coscn , hn

y5sincn , hn
z[0. ~24!

Substituting function~24! in ~20! and taking into accoun
Eqs.~22! and ~23!, we obtain

Heff52
g2

4K (
mÞn

cosum2nua cos@~m2n!a#

3cos~cm2cn!. ~25!

The condition for minimizing the energy of Hamiltonian~25!
by varyingcm is equivalent to the equation forcm[mb

(
n

cosum2nua cos@~m2n!a#sin@~m2n!b#50. ~26!

If the molecule is sufficiently long, one can neglect t
boundary conditions and transform Eq.~26! to the following
transcendental equation:

2
sin~a1b!

@122 cosa cos~a1b!1cos2a#2

1
sin~a2b!

@122 cosa cos~a2b!1cos2 a#2
50. ~27!

A solution of Eq.~27! can be found numerically. Figure
2 plots the value ofHeff given by Eq.~25! as a function of
angleb. It clearly shows two symmetric and fairly narrow
minima, whereub2au!1. Under this condition, we can eas
ily find the solution of Eq.~27! analytically:
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b'a2
sin~2a!~12cosa!4

@122 cosa cos~2a!1cos2 a#2
. ~28!

Thus, the configuration given by Eqs.~24!–~28! really
corresponds to at least a local minimum in the energy de
mined by Hamiltonian~20!. We have also shown that, owin
to the interaction among hydrogen bonds, they have a he
ordering given by Eq.~24! in the DNA ground state, and th
pitch of this helix is different from~and, generally speaking
is incommensurate with! the double-helix pitch. Moreover
in the approximation of the lowest order, the energies of
left-hand and right-hand helices of hydrogen bonds
equal, i.e., the state is degenerate. Therefore, a domain s
ture of hydrogen bonds is feasible, for example, a rig
handed DNA helix can contain alternating domains with le
and right-handed helical ordering of hydrogen bonds.

4. CONCLUSIONS

Let us summarize the main results of this paper.
1. The spectrum of conformational modes in the doub

strand DNA structure with one acoustic and two optic
modes~one of which is softened at a finite wave vector! has
been calculated. The presence of the two optical modes
direct consequence of the molecular structure with two h
ces.

2. The interaction between hydrogen bonds and con
mational degrees of freedom results in an effective lo
range interaction between hydrogen bonds. The latter or
the hydrogen bonds~described in terms of two-level sys
tems! so that their axes of anisotropy form a helical config
ration.

3. We have calculated the pitch of the hydrogen bo
helix as a function of the model parameters which determ
the energies of interaction between hydrogen bonds and
formational degrees of freedom and of elastic deformati
in the double-strand DNA structure. In the limiting cas
when the self-energy of a hydrogen bond determined by
rametere can be neglected, the pitch of the hydrogen-bo
helix depends only on Kirchhoff’s ‘‘angular velocity’’V,
i.e., there is a universal dependence on the double-helix p
@Eq. ~28!#.

FIG. 2.
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Note that the results of the present work can be tes
experimentally. For example, the dynamics of conform
tional degrees of freedom is related to so-called breath
modes introduced by Manning.13 The softening of one opti-
cal mode demonstrated by our calculations should, undo
edly, affect the stability of various DNA conformations. E
perimental detection of such an effect would be, certainly
great interest.

In our opinion, however, attention should be focused
the predicted helical ordering of hydrogen bonds. In the s
plified model investigated in our work, the left- and righ
handed helices are degenerate, but even the slightest mo
cation of the model~such as inclusion of the self-energy of
hydrogen bond, or taking into account the fact that there
two hydrogen bonds in the A–T complementary pair a
three in the G–C pair! should lift this degeneracy. Therefore
depending on the ratio between the numbers of G–C
A–T pairs, the sign of the pitch of the hydrogen-bond he
may differ. Note that such an inversion of the hydrogen-bo
helix pitch does not require a restructuring of the ent
double-strand DNA configuration.

This result of our study gives rise to two questions th
may be significant in the biophysical context:

1. Since the hydrogen bond is only one part of the el
tronic interaction between nitrous bases of DNA, the natu
question is about the plausibilit y of a helical configurati
characterizing the interaction between these bases.

2. Must the sign of the pitch of the DNA structure coin
cide with that of the helix characterizing the electronic inte
action between bases?

These questions demand a more complex model and
beyond the scope of the reported investigation. Nonethel
in view of our results concerning hydrogen bonds, affirm
tive answers to both these questions seem quite plausib
seems also that it is necessary to revise observations o
called unusual polynucleotides,14 in which a left-handed he-
lix can transform to a right-handed one,15 and which demon-
strated a tendency of forming in DNA segments either
A-conformation~left-handed in optical measurements! when
the double helix is rich in G–C pairs, or the optically righ
handedB-conformation in a DNA molecule rich in A–T
pairs.16

All these phenomena are largely associated with ob
vations of circular dichroism inversion in optical spectra
DNA solutions. Effects of this sort have been interpreted
terms of geometrical~or, more exactly, stereochemical! mod-
els that described transformations of the entire DNA conf
mation from the right- to left-handed helix, given a certa
quantity of defects, namely kinks, but without breaking t
complementation rule.

Our results, however, indicate that there may be an
ternative physical mechanism on which an interpretation
the circular dichroism inversion in optical spectra can
based. This mechanism does not require a restructurin
the entire double helix. It is known17 that circular dichroism
spectra are determined by the electronic structure of
DNA interior. Assuming that electronic states may ha
properties similar to those of hydrogen bonds described
this paper and form helical configurations, we can sugge
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tentative interpretation of the circular dichroism inversi
detected in experiments. The detailed study of these p
lems is beyond the scope of this paper and requires a
siderable modification of our simplified model.

Interaction between these orbitals and conformatio
degrees of freedom may be described in terms of a mo
similar to that suggested in Sec. 2 for hydrogen bonds
conformity with the results of Sec. 3, the ground state
electronic orbitals should have a helical ordering of th
anisotropy axes. Moreover, neither the pitch nor the sign
this helix should necessarily coincide with those of the DN
double-strand configuration.

A direct experimental confirmation~or disproof! of the
above statements, like the conclusions of this work based
our model, would be of great interest from the viewpoint
both a fundamental understanding of the structure and p
erties of DNA molecules, and their biophysical functions
different physico-chemical conditions. A simple test of o
theory would be, for example, an observation of an altern
ing circular dichroism sign in optical bands depending on
hydrogenation degree17 of DNA or synthetic polypeptides
~since hydrogenation has direct effect on hydrogen bon
thus it modifies the generalized fieldHn in our model!.
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Effect of a magnetic field on the yield point of NaCl crystals
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A constant magnetic field is found to have a substantial effect on the macroplasticity of NaCl
crystals when they are being actively strained at a constant rate«̇5const during magnetic
treatment. We have measured the dependence of the yield pointsy on the magnetic induction
B5020.48 T and the strain rate«̇51.43102521.431023 s21. It is shown that this
magnetic effect has a threshold character and is observed only forB.Bc , whereBc grows with

increasing«̇ asA«̇. The lower the strain rate«̇, the larger the relative decrease in the
yield point sy(B)/sy(0) at fixed fieldB.Bc . At small enough strain rates«̇ the threshold field
Bc ceases to depend on«̇ and goes constant. A theoretical model is proposed which is in
good agreement with the observed regularities. The model is based on the competition between
thermally activated and magnetically stimulated depinning of dislocations from
paramagnetic impurity centers. ©1999 American Institute of Physics.@S1063-7761~99!01203-2#
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1. INTRODUCTION

The magnetoplastic effect was first discovered in Na
crystals at the microplastic level in the form of dislocati
shifts in samples located in a constant magnetic field in
absence of a mechanical load.1 Subsequent studies by a num
ber of independent groups2–10 have made it possible to link
this phenomenon with depinning of dislocations from pa
magnetic impurities in a magnetic field. The macrosco
dislocation shifts of tens and hundreds of microns, arising
a result of such depinning under the action of long-ran
internal stresses, are in essence a manifestation of mag
cally stimulated relaxation of the dislocation structure. T
exact physical mechanism of the elementary act of depinn
of a dislocation from a paramagnetic impurity center is s
not completely clear. It appears that the discussion her
about spin-dependent transitions in a magnetic field dest
ing the energy barriers.2–10 Processes of this type play a si
nificant role in many phenomena.11 In particular, it is cus-
tomary to link the effect of a magnetic field on the rate
chemical reactions with them.12 The hypothesis of spin
dependent processes in dislocations in a magnetic field
the consequences flowing from it are in good agreement w
numerous experimental data and are discussed in detail in
publications cited above.2–10 We will not dwell on this point
here. We note only that the magnetic polarization of dislo
tion nuclei in NaCl and KCl crystals was experimenta
discovered13 long before the magnetoplastic effect.

One of the important accomplishments of recent ye
making it possible to put the magnetoplastic effect to pra
cal use was the discovery of its macroplastic manifestatio
It turns out that in alkali–halide crystals a magnetic fie
substantially alters the work-hardening coefficient,14 the
yield point,15,16 and even the microhardness.17 Thus, for ex-
ample, according to Ref. 15, in LiF crystals strained at a l
enough rate («̇<531025 s21) in a constant magnetic field
5231063-7761/99/88(3)/4/$15.00
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exceeding some threshold (B>0.3 T), the yield point is
halved, the extent of all stages on the stress-strain curv
appreciably foreshortened, and the work-hardening coe
cient in stage II is decreased while in stage III, in contrast
grows.

In the present paper we present a similar study in N
crystals. We show that in these crystals the magnetic se
tivity of the s(«) cures is manifested over a wider range
strain rates and for a lower thresholdBc . This makes it pos-
sible to substantially increase the information content of
data on the influence of a magnetic field on the macrop
ticity of the crystals and suggests a theoretical interpretat
It may be remarked that the indicated interpretation ha
‘‘kinematic’’ character and is based on the competition
thermally activated and magnetically stimulated processe
depinning of dislocations from point defects. What is impo
tant for us here is not the micromechanism of magnetic
pinning but the very existence of such depinning, convin
ingly established in numerous experiments on the leve
individual dislocations together with the empirical depe
dence of the time needed for such depinning on the magn
field.

2. EXPERIMENTAL TECHNIQUE

The objects of study were nominally pure NaCl crysta
grown at LOMO without any intentional impurities. The to
tal impurity content of the crystals did not excee
1023 wt. %. Two types of samples were investigated:!
unannealed samples, cleaved along the cleavage plane
room-temperature aged crystals, and 2! annealed samples
cleaved fromg-irradiated crystals. Typical dimensions of th
samples were roughly 2.532.538 mm3.

Mechanical compression tests were performed on
same setup as in Ref. 15, with corundum (Al2O3) anvils. A
magnetic field was created by placing a permanent mag
© 1999 American Institute of Physics
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FIG. 1. Stress–strain curves of annealed~a! and
unannealed~b! crystals of NaCl, obtained by com
pression in magnetic fieldsB50 ~1!, 0.48 T ~2!, and

0.2 T ~3!; «̇5531024 s21.
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with movable poles over the sample. The maximum m
netic induction was 0.48 T. The shape of the stress–st
curvess(«) was studied, as well as the dependence of
yield pointsy on the magnetic inductionB in the field inter-
val 0–0.48 T for strain rates«̇ from 1.431025 s21 to 1.4
31023 s21. The stress–strain curves of NaCl crystals a
characterized by a vague. For this reason, the yield poinsy

was estimated to be the stress at which the curves(«) de-
parts from its initial rectilinear dependence.

Of course, each stress–strain curve was recorded
separate sample and reflects not only the general prope
but also individual properties of the tested crystal. For t
reason, a certain spread in the values of the yield pointsy

measured on a series of samples under identical conditio
inevitable. Usually, this spread is significantly less wh
working with annealed samples characterized by a more
mogeneous and stabilized initial dislocation structure~see
curves3 in Fig. 1~a!!. Unfortunately, because of the pauci
of annealed samples at our disposal, we were not abl
duplicate all the unannealed measurements in them u
identical conditions. To make up for this, on the more ‘‘da
-
in
e

e

a
es,
s
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o-
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-

gerous’’~from the foregoing standpoint! unannealed crystals
each measurement of the stress–strain curves(«) was re-
peated on several samples for fixed values of the parame
«̇ andB. The corresponding spread in the values of the yi
point sy , reflected in Fig. 2~b! in the form of experimental
error bars, is appreciably less than the observed magn
effects even for the unannealed crystals.

3. EXPERIMENTAL RESULTS

Figure 1 shows stress–strain curves for compressio
the strain rate«̇5531024 s21 of annealed~a! and unan-
nealed~b! samples in the absence of a magnetic field~curves
1! and in a magnetic fieldB50.48 T ~curves2!. Figure 1~a!
also shows curves~curves 3! measured on two differen
samples forB50.2 T, demonstrating the good reproducib
ity of the s(«) curves for the annealed samples. As can
seen from Fig. 1~b!, the latter is significantly poorer for the
unannealed samples. As expected, the annealed sample
softer, i.e., their initial~at B50) yield point is almost half
that of unannealed samples. The former are accordin
-
FIG. 2. Dependence of the yield point on mag

netic induction for annealed ~a, «̇55
31024 s21) and unannealed~b! crystals of

NaCl compressed at strain rates«̇51.431025

~1!, 231025 ~2!, 331025 ~3!, 7.331025 ~4!,
1.7531024 ~5!, 531024 ~6!, 1.431023 s21

~7!.
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more sensitive to a magnetic field than the latter. As
inductionB is increased from 0 to 0.48 T, the yield point
the annealed samples falls by roughly a factor of tw
whereas for the unannealed samples at this strain rate it
by only 20–25%. In addition, all stages of plastic flow of t
annealed samples in a magnetic field are appreciably f
shortened in the stress as well as the strain, i.e., a mag
field hastens the changeover of strain stages in these cry
On the other hand, as can be seen from Fig. 1~b!, in the
deformation of unannealed samples in a magnetic field
foreshortening of the stages in the stress–strain curve
clear-cut only on the stress scale~in particular, in terms of
the decrease in the yield point!.

Figure 2 shows the behavior of the yield point as a fu
tion of magnetic field for annealed~a! and unannealed~b!
crystals. In annealed crystals this dependence has a clea
three-stage character. In the first stage, forB less than some
threshold valueBc the yield pointsy remains constant an
exhibits no sensitivity to the magnetic field. In the seco
stage, within a very narrow range above thresholdB
>Bc), an abrupt decrease in the yield point is observed. A
finally, in the third stage, forB.Bc8 , within the limits of
error of the experiment, the yield pointsy remains essen
tially constant, although it does tend to decrease slowly.

In unannealed crystals, the decrease in the yield p
with increasingB for B.Bc is smoother. The three-stag
character of the dependence of the yield point on the fi
sy(B), is clear-cut only at low strain~compression! rates.
Studies in these crystals at different strain rates in the ra
from 1.431025 s21 to 1.431023 s21 revealed a substantia
increase in the magnetic effect on the yield point at low
strain rates. It follows from Fig. 2~b! that in this case a sig
nificant decrease in both the magnetic thresholdBc ~roughly
sixfold! and the ratio sy(Bm)/sy(0) is observed (Bm

50.48 T).

4. DISCUSSION

As we have already noted, independent data based
studies of the microplasticity of the same crystals indic
that the role of a magnetic field in their plastification reduc
to depinning of dislocations from point defects. Let us co
sider the active deformation of a crystal with strain ra
«̇5const in a magnetic fieldB in terms of a simple model
assuming that the yield pointsy for B50 is limited by the
same magnetically sensitive impurity centers coexisting w
less plentiful obstacles not affected by a magnetic field. F
prescribed magnetic fieldB the depinning timetB of the
dislocations from obstacles of the first kind as a result
spin-dependent transitions is proportional toB22 ~Ref. 18!,
i.e.,

tB5aB22. ~1!

According to Ref. 18, such transitions, and correspondin
such depinning, are possible only in magnetic fields exce
ing some thresholdBc

(0) . On the other hand, even a
B.Bc

(0) , magnetic depinning of dislocations is in no wa
manifested in the macroplasticity iftB ~1! substantially ex-
ceeds the thermally activated dislocation detachment tim
e
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t th5t0 expFU~s!

kT G ~2!

from the same obstacle under the stresss5sy determined
by the strain rate

«̇5 «̇0 expF2
U~s!

kT G . ~3!

In formulas~2! and~3! T is the temperature,k is Boltzmann’s
constant, andU(s) is the activation energy for overcomin
the magnetically sensitive impurity centers under the str
s. Thus, the kinetics of deformation dictates the threshold
magnetic sensitivity of the macroplasticity, since the con
tion tB,t th , taking relations ~1!–~3! into account, is
equivalent to

B2.
a

t0«̇0

«̇. ~4!

In other words, a pronounced magnetic influence on
stress–strain curvess(«) in the model should be observe
only at B.Bc , where

Bc5max$Bc
~0! ,kA«̇ %, k5Aa/t0«̇0 . ~5!

Another more convenient way of writing out the dependen
of the threshold fieldBc on the strain rate«̇, equivalent to
formula ~5!, is

Bc5H Bc
~0! , «̇, «̇m ,

k«̇1/2, «̇. «̇m ,
~6!

where «̇m5(Bc
(0)/k)2. Figure 3 compares the functio

Bc(A«̇) that follows from the given model with the exper
mental points obtained by processing the measuredsy(B) at
a series of strain rates«̇ of unannealed samples@Fig. 2~b!#.
The good agreement of the predicted type of dependence~5!,
~6! with experiment favors the physical scheme propos
above.

FIG. 3. Comparison of the theoretical dependenceBc(A«̇ ) ~solid line! and
the experimental points according to the data of Fig. 2~b!.
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According to the latter, when the magnetic field excee
the threshold valueBc , pinning of the dislocations at ob
stacles of the first type, in accordance with formula~1!, falls
rapidly with increasingB, and in a high enough field th
crystal begins to behave as if it were purged of this type
impurity and the resistance to motion on the part of the d
locations were the result only of the less plentiful magne
cally insensitive defects. This happens when the magn
induction is taken through the second thresholdB5Bc8 ,
which corresponds totB5t th8 , where

t th8 5t08 expFU8~s!

kT G ~7!

is the thermally activated dislocation detachment time fr
obstacles of the second type. The quantityBc8 is given by
expressions analogous to~5! and ~6! with the replacements

k→k85Aa/t08«̇08, «̇m→ «̇m8 5~Bc
~0!/k8!2.

Figure 4 shows the corresponding dependencesBc( «̇) and
Bc8( «̇), as well as the three stages of variation in the yi
point with increasing magnetic inductionB ~see Fig. 2!. In
the first stage, in region I (B,Bc), thermally activated de-
tachment from all defect types dominates. In the third sta
in region III (B.Bc8) the yield point is limited by thermally
activated detachment only from obstacles of the second t
which are insensitive to a magnetic field. Here the dislo
tions ‘‘do not notice’’ the first type of impurity, as it were
An actual dependence of the yield pointsy on the magnetic
field in this model should be observed only in the interm
diate region II, in the second stage. As follows from Fig.
the width of that magnetic field range should remain minim
and independent of the strain rate as long as«̇, «̇m8

5(Bc /k8)2. For strain rates«̇ in the range«̇m8 , «̇, «̇m

5(Bc /k)2 the width of region II increases with increasin
strain rate«̇. In that case, the lower left-hand edge of t
range remains unchanged, while the position of the rig

hand edge varies asA«̇. Finally, at the largest strain rate
«̇. «̇m , the positions of both edges of the intermediate

gion vary asA«̇, and its width can be estimated asDB

.(k82k)A«̇. The expansion with increasing strain rate«̇ of

FIG. 4. The dependencesBc( «̇) andBc8( «̇), and the zones I, II, and III of

the physical parameters$B,«̇% corresponding to the three stages of variati
of the yield point with increasing magnetic induction.
s
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-

the regionDB in which the main falloff of the yield pointsy

occurs correlates qualitatively with the proposed model.
We note in passing that the width of the step in t

dependencesy(B) can of course be limited by other facto
not taken into account by the present simple scheme. On
these factors is the presence of several kinds of magnetic
sensitive barriers. Note that even in that case, when the
purity composition of these obstacles is homogeneous
spread in the dimensions of the complexes and/or disloca
segment lengths between complexes is sufficient to prod
a dispersion in the threshold fields and activation paramet
It is clear from general considerations that the indica
spread is smaller in annealed crystals. This possibly also
plains the difference in the corresponding widths of region
in the experimental curves ofsy(B) shown in Figs. 2~a! and
2~b!.
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This paper studies the interaction of electrons and acoustic phonons in a quasi-two-dimensional
system with an asymmetric quantizing potential in a magnetic field that is parallel to the
structure’s plane. It is demonstrated that the electron–phonon interaction in such a system
generates an emf when there is a standing acoustic wave, as well as when the structure
is heated uniformly. These phenomena are macroscopic manifestations of a universal quantum
effect, which amounts to an emf being generated by any isotropic perturbation of any
electron system in which the energy depends asymmetrically on the velocityv, i.e.,
«(v)Þ«(2v). © 1999 American Institute of Physics.@S1063-7761~99!01303-7#
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1. INTRODUCTION

We consider a quasi-two-dimensional~2D! electron sys-
tem in $x,y,z% coordinates, with thex axis perpendicular to
the plane of the 2D layer. We direct they axis along the
magnetic field, so thatH5(0,Hy,0), and choose the vecto
potential to be in the formA5(Hyz,0,0). Then the electron
Hamiltonian is

Ĥ5
1

2m F S p̂x1
eHyz

c D 2

1 p̂y
21 p̂z

2G1U~z!, ~1!

wherem is the effective electron mass,e the absolute value
of the electron charge, andU(z) the quantizing potential o
the 2D system, and the electron wave function is

ck5Cw~kx ,z!exp~ ikxx1 ikyy!exp~2 i«kt/\!, ~2!

whereC5(LxLy*2`
` uw(kx ,z)u2dz)21/2 is the normalization

constant. HereLx andLy are the dimensions of the 2D sy
tem along thex andy axes,k is the electron wave vector, an
«k is the electron energy. Substituting~2! into the
Schrödinger equation with Hamiltonian~1! yields

2
\2

2m

]2w~kx ,z!

]z2
1F\2kx

2

2m
1

\eHykxz

mc
1

~eHyz!2

2mc2

1U~z!2«~kx!Gw~kx ,z!50, ~3!

where the energy«(kx)5«k2\2ky
2/2m. To analyze the ef-

fects of interest, we use the model of a triangular quantiz
potential,

U~z!5H `, z,0,

eEzz, z>0,
~4!

employed in calculations of the energy spectrum of electr
in inversion layers on semiconductor surfaces, whereEz is
the absolute value of the electric field at the surface.
examine the electron system in the quantum limit, where
electrons fill the states only in the lower electron subba
5271063-7761/99/88(3)/6/$15.00
g

s

e
e
,

provided that (d0 / l H)4!1, whered05(3\2p2/16meEz)
1/3

is the thickness of the 2D layer~the average distance from
the boundaryz50 to the electron! at Hy50, and l H

5(\c/eHy)
1/2 the magnetic length. In this case the soluti

of Eq. ~3! with potential~4! for the lower electron subban
has the form1

«~kx!5F \2

2mG1/3F9p

8 S eEz1
\eHykx

mc D G2/3

1
\2kx

2

2m
, ~5!

w~kx ,z!

5H Ai S F2meEz

\2
1

2eHykx

\c G 1/3Fz2
«~kx!2\2kx

2/2m

eEz1\eHykx /mcG D , z>0,

0, z,0,
~6!

where Ai(z) is the Airy function. Equation~5! implies that at
HyÞ0 an asymmetric electron energy spectrum emerg
i.e.,

«~vx!Þ«~2vx!, ~7!

wherevx5(1/\)@]«(kx)/]kx# is the electron velocity along
the x axis.

What is the physical reason for such asymmetry@Eq.
~7!#? A magnetic field parallel to the plane of the 2D syste
cannot make the electron travel along a cyclotron orbit;
most it can slightly alter the wave function. As the electr
travels at a velocityvx , a Lorentz force acts on it in the
direction ^2x&, with the result that the maximum of th
electron wave function is shifted in the direction^2z&. If the
electron velocity changes to2vx , the Lorentz force reverse
direction and the maximum of the electron wave functi
shifts in the direction̂ z&. Hence in an asymmetric potentia
U(z)ÞU(2z) the electron energy«(vx)Þ«(2vx). Due to
© 1999 American Institute of Physics
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the asymmetry~7!, the dynamic properties of the electro
system differ in the directionŝx& and ^2x&.

We show that this is the case by discussing a spec
example. Suppose that initially the electron had a veloc
vx150 and was in state1, which corresponds to the mini
mum of the energy subband~5! depicted in Fig. 1. Under a
force Fx the electron is transferred, in timet, into state2,
while under2Fx it is transferred~in the same timet! into
state3, so thatkx22kx15kx12kx35Fxt/\. Since the elec-
tron energy spectrum«(kx) is asymmetric with respect to th
directions^kx& and^2kx&, the velocity acquired by the elec
tron in the first transition is not equal to that acquired in t
second,vx2Þvx3. Thus, the linear momentum transferre
from the external force to the electron, equal to the prod
of the electron mass and the velocityvx , proves to be dif-
ferent for forces in the directionŝx& and^2x&. This implies
that when an external agent that is isotropic with respec
the directionŝ x& and^2x& acts on the electron system, th
linear momenta transferred to the electron system diffe
these directions, and this leads to an electron drift along
x axis.1 In other words, any isotropic perturbation of an
electron system with an asymmetric electron spectru
«(vx)Þ«(2vx), generates an emf along thex axis. The ef-
fect of anisotropic momentum transfer to an electron sys
subjected to an external isotropic force1 is of a universal
nature and exists irrespective of the way in which the el
tron system is perturbed. The goal of the present work is
study this effect for the case in which the interaction of el
trons and acoustic phonons constitutes the perturbation o
electron system.

2. SPATIAL ASYMMETRY OF THE ELECTRON–PHONON
INTERACTION

We treat a crystal as a three-dimensional elastic c
tinuum and describe the interaction of electrons and acou
phonons by the deformation potential method, where
electron energy shiftD« under an arbitrary deformationui j

of the crystal is given by the expressionD«5J( iuii , in

FIG. 1. Change in electron state initiated by a forceFx (1→2 transition! and
by a force2Fx (1→3 transition!.
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which J is the deformation potential constant. Then t
probability of electrons absorbing a phonon with the wa
vectorq5(qx ,qy ,qz) is

Wa~q!5n~q!(
k

(
k8

1

\2
u^ck8uŨ~q!uck&u2

3 f ~«k!@12 f ~«k8!#, ~8!

where f («k) is the Fermi–Dirac distribution function,n(q)
is the phonon occupation number, and

Ũ~q!5S \q

2Vrv l
D 1/2

J exp~ iqxx1 iqyy1 iqzz! exp~2 iv lqt!,

~9!

whereV is the crystal volume,r the crystal density, andv l

the longitudinal speed of sound. If in~8! we go from sum-
mation over electronic states to integration over the wa
vector, we obtain an expression for the probability per u
time of absorbing a photon per unit surface area of the
system:

wa~q!5
J2qn~q!

Vprv l
E d2kE d2k8 S E

2`

`

uw~kx ,z!u2dz

3E
2`

`

uw~kx8 ,z!u2dz D 21

@12 f ~«k8!# f («kU
3E

2`

`

w~kx ,z!exp~ iqzz!w~kx8 ,z! dzU2

d~«k82«k

2\v lq! d~kx82kx2qx! d~ky82ky2qy!, ~10!

where integration with respect tok and k8 is carried out
within the first Brillouin zone. The subsequent analysis
carried out for the energy spectrum and wave function of
electron, which are given by~5! and~6!. Expanding~10! in a
power series in the magnetic field and keeping only the
ear term in the expansion, we find that for (qzd0)2!1 for-
mula ~10! becomes

wa~q!5wa0~q!1waH~q!, ~11!

where

wa0~q!5
J2qn~q!

Vprv l
E d2kE d2k8d~kx82kx2qx!

3d~ky82ky2qy!d~«k802«k02\v lq!

3@12 f ~«k80!# f ~«k0! ~12!

is the probability~10! in the absence of a magnetic field,

waH~q!5 S J2qn~q!

Vprv l
D S \Hy

15mcEz
D ~qzd0!2E d2kE d2k8

3d~kx82kx2qx!d~ky82ky2qy!~kx1kx8!

3d~«k802«k02\v lq!@12 f ~«k80!# f ~«k0!

~13!

is the term linear in the magnetic field, and«k0 is the electron
energy«k in the absence of a magnetic field. Equations~11!–
~13! imply that for (d0 / l H)4!1 and (qzd0)2!1 the differ-
ence in probabilities is
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wa~q!2wa~2q!52waH~q!. ~14!

The situation in whichqz50 warrants a separate discu
sion. Here all linear terms in the expansion of the probabi
~10! in powers of the magnetic field vanish, so that we a
forced to include higher-order terms in our discussion.
lowing for terms in this expansion that are cubic in the ma
netic field, we find that forq5(2kF,0,0) and (d0 / l H)4!1 at
absolute zero (T50) and low electron concentrations~the
Fermi velocityvF'v l and (kFd0)2!1) the probability dif-
ference is

wa~2q!2wa~q!5S 2

p D 2 6v l

c S 2d0

3l H
D 4 S Hy

Ez
D wa0~q!,

~15!

wherekF is the length of the Fermi wave vector of the ele
tron. But at high electron concentrations (vF@v l) we have

wa~2q!2wa~q!5S 2

p D 2 S vF

c D S 2d0

3l H
D 4 S Hy

Ez
D wa0~q!.

~16!

The relations for the phonon emission probabilitywe(q) can
be obtained from Eqs.~10!–~16! by formally replacing the
subscripta with e, the wave vectork8 with k, the wave
vector k with k8, and the phonon occupation numbern(q)
with n(q)11.

The fact that~14!–~16! fail to vanish immediately sug
gests that the electron–phonon interaction is asymme
identical phonons with oppositely directed wave vectors
teract differently with electrons. But what is the physic
reason for such asymmetry? When an electron absor
photon, it goes from one state of the subband~5! into an-
other. Here the initial electron statekx and the final electron
statekx8 both conserve energy and the length of the wa
vector, as indicated in Fig. 2. Since the electron subba
«(kx) are asymmetric in the directions^kx& and ^2kx&, the
wave functionsw(kx ,z) of the initial and final electronic
states change when the sign of the componentqx of the wave
vector changes. From Eqs.~5! and ~6! it follows that

FIG. 2. Structure of electron transitions with absorption of photons wh
wave vectors areq and2q.
y
e
-
-

c:
-
l

a

e
ds

w(kx1 ,z)Þw(kx2 ,z) and w(kx18 ,z)Þw(kx28 ,z). Hence the
absolute value of the matrix element of the electron–pho
interaction potential~9!,

u^ck8uŨ~q!uck&u}U E
2`

`

w~kx8 ,z!exp~ iqzz! w~kx ,z! dzU,
turns out to differ for the absorption of phonons with wa
vector componentsqx and2qx . Accordingly, forqxÞ0 the
probabilities of the interaction of electrons and phonons w
q and 2q are different. This qualitative analysis is fairl
general and suggests that there is a difference between
interactions of an electron system with an asymmetric ene
spectrum and any elementary quasiparticles~photons, acous-
tic phonons, etc.! moving in the directionŝx& and^2x& ~see
Refs. 1 and 2!.

We see that the spatial asymmetry of the electro
phonon interaction is a purely quantum phenomenon. Be
we examine specific physical situations in which this qua
tum phenomenon leads to macroscopic effects.

3. EMF GENERATION IN A STANDING ACOUSTIC WAVE

Since both absorption and emission of phonons are
companied by a change in the momentum of the elect
system, different probabilities of the interaction of electro
and phonons withq and 2q lead to different momentum
transfer to the electrons from acoustic waves propagatin
opposite directions. This leads directly to an anomaly in
acoustoelectric effect, with the emf of phonon drag of ele
trons differing for waves with oppositely directed wave ve
tors. In particular, an emf of phonon drag of electrons
generated in the presence of a standing acoustic wave, w
is a superposition of acoustic waves with equal amplitu
and oppositely directed wave vectors.2 This phenomenon is a
special case of the effect of anisotropic momentum tran
to electrons under an external isotropic perturbation d
cussed earlier in Ref. 1, where the standing wave is the
turbation isotropic with respect to two opposite directio
that acts on the electron system.

A traveling acoustic wave can be generated in a cry
by applying a periodic force to the crystal’s boundary. T
wave decays upon leaving the boundary, as it imparts ene
to electrons. The intensityI (r ) of a wave propagating in the
direction of vector r therefore takes the formI (r )
5I (0) exp(2ar), wherea is the wave absorption coefficien
Hence, two traveling waves propagating in opposite dir
tions form a standing wave only if absorption is low, i.e.,
the amplitudes of the traveling waves can be assumed
stant ~for all practical purposes!, which corresponds to the
condition

aL!1, ~17!

whereL is the size of the 2D structure in the direction
wave propagation.

Suppose that condition~17! is met and that there is a
standing acoustic wave in the system, a wave that is a su
position of longitudinal acoustic waves with amplitudesu0

and wave vectorsq and2q. If electron transitions initiated
by the electron–wave interaction occur within the first Br

e
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louin zone and the temperature is zero (T50), the phonon
drag emf’s of electrons generated in thex andy directions in
the standing wave,Ex andEy , are given by2

Ex5
\Lxqx

ens
@wa~2q!2wa~q!#,

Ey5
\Lyqy

ens
@wa~2q!2wa~q!#, ~18!

wherens is the electron concentration per unit surface a
of the 2D system. WhenTÞ0, the presence of a standin
wave leads not only to absorption but also to stimula
emission of phonons by electrons, in view of which Eqs.~18!
become

Ex5
\Lxqx

ens
@wa~2q!2wa~q!1we~q!2we~2q!#,

~19!

Ey5
\Lyqy

ens
@wa~2q!2wa~q!1we~q!2we~2q!#.

If the wave vectorq5(qx,0,qz), Eqs. ~13!, ~14!, and ~19!
yield

Ex5~qzd0!2
4v l

15c

q

qx

Hy

Ez
Ex0~q!, Ey50, ~20!

where

Ex0~q!5
\Lxqx@we0~q!2wa0~q!#

ens
~21!

is the ordinary emf of phonon drag of electrons in a travel
acoustic wave with a wave vectorq in the absence of a
magnetic field. For a wave vectorq5(2kF,0,0) at absolute
zero T50 and low electron concentrations (vF'v l), Eqs.
~12!, ~15!, and~19! yield

Ex52S 2

p D 2 6v l

c S 2d0

3l H
D 4 Hy

Ez
Ex0~q!, Ey50, ~22!

where the emf~21! in explicit form is

Ex0~q!52Av l~2vF2v l !S 2Ju0m

\ D 2 2Lx

e\
, vF>v l /2.

In the same case but at high electron concentrati
(vF@v l), Eqs.~12!, ~16!, and~19! yield

Ex52S 2

p D 2 vF

c S 2d0

3l H
D 4 Hy

Ez
Ex0~q!, Ey50, ~23!

where the emf~21! in explicit form is

Ex0~q!52A2v lvFS 4Ju0m

\ D 2 2Lx

e\
.

Equation~23! implies that for 2D inversion layers on a sil
con surface withd0'531027 cm andHy;105 G we have
uEx /Ex0(q)u;1023.

4. EMF GENERATION VIA SPATIALLY UNIFORM HEATING
OF THE 2D SYSTEM

We now discuss the interaction of electron and phon
systems that are in a nonequilibrium state because of unif
a

d

g

s

n
m

heating. We consider low temperatures, where electro
phonon transfer processes outside the first Brillouin zone
be ignored. This means that the exchange of momentum
tween the electron and phonon systems generates an
along thex axis given by3

Ex5
\Lx

ens
(

q
qx@we~q!2wa~q!#. ~24!

At temperatures much lower than\v l /kBd0 the main contri-
bution to electron–phonon interaction is provided by lon
wavelength phonons, whose wave vectors satisfy (qzd0)2

!1. In this case, for magnetic fields that satisfy (d0 / l H)4

!1 we can use the expansion~11!, whereupon~24! takes the
form

Ex5
\J2Lx

8p4rv lens

\Hy

15mcEz
~qzd0!2E d2kE d2k8E d3q

3~kx1kx8!qxq~@12 f ~«k80!# f ~«k0!@n~q!11#

2@12 f ~«k0!# f ~«k80!n~q!!d~kx82kx1qx!

3d~ky82ky1qy! d~«k802«k01\v lq!, ~25!

where integration with respect tok, k8, andq is carried out
over the first Brillouin zone. We examine the situation
which the phonon energy distribution is given by the Bos
Einstein function

n~q!5S exp
\v lq

kBT
21D 21

,

whereT is the temperature of the phonon system, and
electron energy distribution is given by the Fermi–Dir
function

f ~«k!5S exp
«k2«F

kBTe
11D 21

,

whereTe5T1DT is the temperature of the electron syste
For uDT/Tu!1, 2mv l

2!kBT!\v l /d0, and a nondegenerat
electron gas, Eq.~25! becomes

Ex5S kBT

v l
D 5S 2Jd0

\3 D 2
mLx

prce

DT

T

Hy

Ez
. ~26!

For uDT/Tu@1 at T50, 2mv l
2!kBDT!\v l /d0, and a non-

degenerate electron gas, Eq.~25! becomes

Ex5S kBDT

v l
D 5S 2Jd0

\3 D 2
mLx

5prce

Hy

Ez
. ~27!

From ~26! and ~27! it follows that for negativeDT we have
Ex,0, for positiveDT we haveEx.0, and atDT50 we
haveEx50. In physical terms, whenDT is negative, energy
is transferred from the phonon system to the electron syst
and this is accompanied by phonon absorption by the e
trons. Since the phonon absorption probability~11! is such
thatwa(q).wa(2q) for positiveqx , such energy transfer is
accompanied by momentum transfer to the electron sys
in the direction^x&, by virtue of whichEx,0. WhenDT is
positive, energy is transferred from the electron system to
phonon system, and this is accompanied by phonon em
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sion. Since the phonon emission probability is such t
we(q).we(2q) for positiveqx , such energy transfer is ac
companied by momentum transfer to the electron system
the direction^2x&, by virtue of which Ex.0. Finally, at
DT50 the electron and phonon systems are in thermo
namic equilibrium and, in accordance with detailed balan
the emission and absorption probabilities are equal for ev
phonon, so that there is no momentum transfer from
system to the other andEx50. Thus, an increase in the pho
non temperatureT ~e.g., due to uniform heating of the crys
tal! or an increase in the electron temperatureTe ~e.g., due to
heating of the electron gas by an electric field! generates an
emf of phonon drag of electrons.3 This phenomenon is a
special case of the effect of anisotropic momentum tran
to electrons under an external isotropic perturbation d
cussed in Ref. 1, where spatially uniform heating acts as
isotropic perturbation of the electron system.

When the crystal lattice is heated (DT,0), the tempera-
turesT andTe become equal in a time interval equal to t
characteristic time of energy relaxation in the electro
phonon system due to phonon absorption by electrons,
the result that the emf disappears. Hence the drift of e
trons ~an effect that is described by~26! whenDT,0) that
emerges when the crystal lattice is uniformly heated i
time-dependent effect and can be detected if the lattice t
perature changes rapidly enough.

The situation is different when the electron gas is hea
(DT.0) by an electric fieldEi5AEx

21Ey
2 , which ensures

that an electric current flows in the plane of the 2D syste
since in this case the emf’s specified by~26! and ~27! are
time-independent at fixed values ofT and Ei . This feature
~the fact that the emf is time-independent! can be explained
by the fact that the energy transferred from the electron s
tem to the crystal lattice during photon emission~Joule heat!
is completely absorbed by the heat bath that ensures the
stancy of the temperatureT of the crystal lattice, so that th
temperature differenceDT does not vary with time.

We now discuss in greater detail the effects that eme
when the electron gas is heated by an electric field. Thx
axis is directed along the electric field, so thatEi5uExu. The
electric current flowing in thex direction is

j x5s~Ex1 Ex/Lx!, ~28!

wheres is the conductivity in the plane of the 2D system
The scalar quantityDT depends only on the absolute valu
of the electric field,uExu, so a change in field direction doe
not alter the emf’s specified by~26! and ~27!, and thus
Ex(Ex)5Ex(2Ex). Hence Eq. ~28! implies that j x(Ex)
Þ j x(2Ex), and the electric current is therefore anisotrop
Suppose that the external electric field is directed along thy
axis, so thatEi5uEyu. In this case the electron gas is heat
by the current flowing in they direction, and the emf gener
ated by heating,Ex , is perpendicular to the external electr
field, so that a transverse emf emerges.

The electron system can be heated not only by a cons
electric field but also by an alternating electric field. In pa
ticular, the electron gas becomes heated and an emfEx is
detected when a plane electromagnetic wave propagatin
thez direction is incident on the 2D structure, with the res
t
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that a photoinduced emf appears. Thus, the generation o
emf in the event of spatially uniform heating of a 2D syste
leads to new kinetic effects that differ from a phenomen
logical standpoint, but are of the same microscopic origin

For 2D inversion layers at the surface of the silico
DT;10 K atEi;10 V cm21 ~see Ref. 4!. Hence an estimate
of ~27! at Ei;10 V cm21, d0'531027 cm, and Hy

;104 G yieldsEx /Lx;1022 V cm21.

5. CONCLUSION

In a quasi-two-dimensional system with an asymme
quantizing potentialU(z)ÞU(2z) located in a magnetic
field H5(0,Hy,0) parallel to the plane of the system the
emerges an asymmetric electron energy spectrum«(vx)
Þ«(2vx), wherevx is the electron velocity in thex direc-
tion. Because of this asymmetry an anomaly emerges in
electron–phonon interactions, i.e., the probabilities of int
action of electrons with identical phonons whose wave v
tors q and2q point in opposite directions turn out to diffe
whenqxÞ0. This feature of the electron–phonon interacti
is purely a quantum phenomenon, which leads to a situa
in which the momenta transferred from the phonon system
the electron system prove to be different for the two oppo
directions. As a result, new macroscopic effects emer
such as the generation of an emf in a standing acoustic w
and the generation of an emf when the quasi-tw
dimensional system is heated uniformly in space. These p
nomena are particular manifestations of the universal ef
of the anisotropic momentum transfer to the electrons i
system that is under an isotropic perturbation,1 an effect that
leads to the emergence of an emf under any isotropic pe
bation of any electron system with an asymmetric ene
spectrum.

APPENDIX

In calculating the integrals of Airy functions we use th
following supplemental relationships:

E Ai2~z! dz5zAi2~z!2Ai 82~z!,

E zAi2~z! dz5
1

3
@z2Ai2~z!2zAi 82~z!

1Ai ~z!Ai 8~z!#,

E z2Ai2~z! dz5
1

5
@z3Ai2~z!2z2Ai 82~z!

12zAi ~z!Ai 8~z!2Ai2~z!#,

whose validity can be verified via direct differentiation, wi
allowance for the fact that the Airy function Ai(z) is the
solution of the differential equation Ai9(z)5zAi( z). Using
these relationships, we find that for (qzd0)2!1 and
(d0 / l H)4!1 the integrals of the Airy function in~10! as-
sume the form
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U E
2`

`

w~kx ,z!exp~ iqzz! w~kx8 ,z! dzU2

3S E
2`

`

uw~kx ,z!u2dzE
2`

`

uw~kx8 ,z!u2dzD 21

512
1

5
~qzd0!21

\Hy

15mcEz
~qzd0!2~kx1kx8!

1O@~qzd0!4#1OF S d0

l H
D 4G .
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Nature of the low-temperature anomalies in the physical properties of the intermediate-
valent compound SmB 6
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The transport properties~Hall coefficient, thermopower, and resistivity! of high-quality single-
crystal samples of the classical mixed-valent compound SmB6 are investigated over a
broad temperature range (1.62300 K) in magnetic fields up to 45 T for the first time following
the quasioptical measurements in the 0.624.5 meV frequency range@B. Gorshunov, N.
Sluchanko, A. Volkovet al., submitted to Phys. Rev. B~1998!#. Measurements in the intrinsic
conduction region permit determination of the gap widthEg'20 meV and evaluation of
the behavior of the mobility and concentration of light and heavy charge carriers, as well as the
temperature dependence of the carrier relaxation time, in samarium hexaboride. The
results of experimental investigations in the ‘‘impurity’’ conduction region (Eex'3.5 meV) are
discussed within the Kikoin–Mishchenko exciton–polaron model of charge fluctuations.
Arguments supporting the formation of a metallic state with an electron–hole liquid in SmB6 at
liquid-helium temperatures are presented. ©1999 American Institute of Physics.
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1. INTRODUCTION

Although the first detailed investigation of samariu
hexaboride was performed almost 30 years ago2 and more
than 100 studies devoted to this very interesting mate
have been published, we are still lacking a widely accep
fully consistent physical framework that accounts for the u
usual properties of this intermediate-valent compound of
(v(Sm)'2.6). It is especially difficult to interpret low
temperature anomalies in the physical parameters of Sm6,
which include not only dependence of the characteristics
the object of investigation on the method used to prepare
surface of the sample,3 but also on its history.4

The investigations of SmB6 performed by different in-
vestigators~see, for example, the review in Ref. 5! enable us
to classify this compound as a narrow-gap semiconduc
The width of the gap in the spectrum of elementary exc
tions of SmB6 found by various experimental method
ranges from 325 to 10215 meV.5,6

Recent direct measurements of the low-temperature
namic conductivitys(v) and the dielectric constant«(v) in
the energy range 0.624.5 meV performed in Ref. 1 permit
ted establishment of the gap widthEg'1962 meV in the
spectrum of electron states. In addition, within the sim
phenomenological semiconductor approach, the propertie
samarium hexaboride at liquid-helium temperatures may
5331063-7761/99/88(3)/5/$15.00
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due, according to Ref. 1, to the existence of an additio
narrow band of impurity~donor! states 3.5 meV below the
bottom of the conduction band.

In such a situation, in our opinion, important informatio
on the origin and structure of the gap states can be prov
by detailed precision measurements of the Hall coeffici
RH(H,T), the resistivityr(T), and the thermopowerS(T)
performed on the same single crystal as the quasiop
measurements in Ref. 1. Note that despite the consider
number of studies of these parameters in SmB6 reported in
the literature~see, for example, Refs. 2 and 7–10, as far
we know there has not hitherto been a comparison of exp
mental data onRH(H,T), r(T), and S(T) obtained on a
single, high-purity (RRR.10 000) single-crystal sample o
samarium hexaboride.

Thus, the purpose of the present study was to ob
detailed experimental information on the behavior
RH(H,T), r(T), andS(T) at low temperature and to analyz
it within the phenomenological semiconductor and other
proaches.

Single-crystal samples from the same ingot as in Re
were used in the investigation. Special attention was focu
on the preparation of the sample surface3 and the contacts for
performing the resistance measurements. The procedur
the thermopower measurements was similar to the met
employed in Refs. 11 and 12, and the procedure for the
© 1999 American Institute of Physics
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FIG. 1. Temperature dependence of the r
sistivity of one of the SmB6 samples. Inset
— temperature dependence of the mobili
and relaxation time~see the text! of light and
heavy charge carriers.
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vanomagnetic measurements was similar to the method
scribed in Ref. 13. In addition, an automated experimen
apparatus of our own original design, which permits cont
of the rotation of the sample in a constant magnetic fi
using a stepper motor, was used to investigate the Hall c
ficient.

2. EXPERIMENTAL RESULTS

The temperature dependence of the resistivity of one
the three SmB6 samples investigated in the present work
presented in Fig. 1 and conforms, on the whole, to the res
in Refs. 5 and 14. An increase in resistivity close to t
e-
al
l
d
f-

of

lts

activation value is observed below 70 K, and between 6
14 K the experimental data can be approximated by the
pression r;exp(T0 /T) with T0'44246 K for different
samples of SmB6.

Measurements of the Hall coefficientRH(H0 ,T) carried
out in the range of magnetic fieldsH0<8 T are presented in
Fig. 2. Three characteristic segments of theRH(T) curve can
be identified in the range below liquid-nitrogen temperatu
~I–III in Fig. 2!. The plots of the temperature dependence
the Hall coefficient~Fig. 2! in the ranges 14250 K ~I! and
6214 K ~II !, which closely conform to the activation depe
dence
e

t
p
t

-

FIG. 2. Temperature dependence of th
Hall coefficient~1! and (RHe)21 ~2! ~see
the text!: d — measurements carried ou
in the present work in magnetic fields u
to 1 T; j — measurements performed a
H55 T; ,, n — data from Refs. 7 and
10, respectively. The inset shows field de
pendences of the Hall coefficient:1 — T
54.2 K, 2 — T52 K ~in constant fields
up to 7 T!, 3 — T54.2 K ~in pulsed fields
up to 45 T!.
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FIG. 3. Temperature dependence of th
thermopower for two SmB6 samples ob-
tained by different methods. Inset —
plot of S(T) at liquid-helium tempera-
tures.
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uRHu;exp~T0 /T!, ~1!

provide the estimatesT0
I '120 K andT0

II'45 K. We note
that the absolute value and behavior of the Hall coeffici
RH(T) obtained in the present work are consistent with
results in Refs. 7,8, and 10~see Fig. 2!. The most appreciable
differences are observed at liquid-helium temperatures~re-
gion III in Fig. 2!. The spread of values ofRH (T<5 K)
obtained by different investigators is probably due to
appreciable difference between the quality of the Sm6

single crystals that we investigated (RRR>10 000) and the
samples measured in Refs. 7,8, and 10. In addition, al
with the determination of the activation parameters from
Hall measurements performed on the SmB6 single crystals,
the use of the apparatus with rotation of the sample in
magnetic field revealed the nonlinear course ofRH(H) in the
vicinity of liquid-helium temperature~see the inset in Fig. 2!.
The degree of nonlinearity of the Hall coefficient was le
than 5% in magnetic fields up to 7 T. The nonlinearity
RH(H) is not observed at temperatures in the vicinity of 2
~curve2 in the inset in Fig. 2!. At the same time, systemati
limitations measurements of the field dependence of the
voltage arise in temperature ranges II and III of the expon
tial variation ofRH(T), due to the influence on measureme
accuracy of temperature instabilities that amount to less t
0.05 K.

The temperature dependence of the thermopower for
SmB6 samples, obtained at temperatures below 100 K
different methods,11 is shown in Fig. 3. As in the case o
r(T) andRH(T) ~Figs. 1 and 2!, three characteristic range
of the thermopower can be identified on theS(T) curves
~I–III in Fig. 3!: activation segments that are nearly linear
the coordinates and for which

S;T0 /T ~2!

~I–II ! and a low-temperature region~III !, which corresponds
to a rapid drop in the absolute value ofS(T) with decreasing
t
e

e

g
e

e

s
f

ll
-

t
n

o
y

temperature. The values ofT0S
I and T0S

II estimated from the
results in Fig. 3 are 115 and 40 K, respectively. The ra
drop in thermopower in region III with decreasing tempe
ture is accompanied by a transition to a power-law dep
dence ofS(T) with fairly low absolute values in the rang
S<86.2mV/K5kB /e, which are characteristic of a syste
of the metallic type.

3. DISCUSSION OF RESULTS

In accordance with the generally accepted interpretati5

~see also Refs. 15 and 16!, the spectrum of elementary exc
tations of SmB6 contains an indirect gap due to hybridizatio
of the f andd states, which is responsible for the appearan
of low-temperature anomalies in the physical characteris
of samarium hexaboride. Let us dwell in detail on an analy
of the experimental results in Figs. 1–3 in each of the te
perature ranges I–III.

a. Intrinsic conduction region T>14 K „I…

Following Ref. 1, we utilize the phenomenological sem
conductor approach to interpret the experimental results
Figs. 1–3 in the intrinsic conduction region~I!. The intrinsic
thermopower of a semiconductor can be described using
expression

S5
kB

e H b21

b11

Eg

2kBT
1

3

4
ln

mn

mp
J , ~3!

whereb5mn /mp ; mn , mn , mp , andmp are the electron and
hole mobilities and effective masses, respectively;kB is the
Boltzmann constant; ande is the charge of the electron
SinceT0S

I andEg are related by

T0S
I 5

Eg

2

b21

b11
, ~4!
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and the value found from the Hall measurements,T0H
I

5Eg/25120 K, enables us to estimate the mobility ratiob
5mn /mp'50. As a result, because of the fairly small re
tive value ofmp it is possible to evaluate the behavior of th
temperature dependence of the electron mobility from
data in Figs. 1 and 2 using the simplest model that allows
one group of carriers:

mn5RH /r. ~5!

The temperature dependence of the electron Hall mobilit
the conduction bandmn has a significantly nonmonotoni
character~see the inset in Fig. 1!. In the intrinsic conduction
region ~I! there is a power-law dependence of the formmn

;T22.7, which probably corresponds to a combination of t
contributions from scattering on acoustic (mn;T23/2) and
optical lattice modes. We note that a similar depende
mn;T22.6 is observed in electronic silicon in the temper
ture range 300K,T<400 K.17

Next, let us utilize the results in Refs. 5 and 1 to estim
the carrier relaxation time in region I. Let us also take in
account that the valuemf5mp'10006500m0 found in Ref.
5 characterizes the plasma resonance of the carriers rig
Sm centers and is thus an estimate of the effective mas
the valence-band carriers. The valuem* 5mn'100m0 , ob-
tained in the Drude model from an analysis of quasiopti
spectra,1 corresponds, in turn, to thermally excited carrie
i.e., conduction electrons. Substituting the set of values
the parametersb5mn /mp , mn , mn , andmp into the expres-
sion m5e^t&/m, we find ^tp&'(1/5)^tn&. We emphasize
that in the presence of fast@;10214 s ~Ref. 5!# charge fluc-
tuations, significantly heavier charge carriers, i.e., 4f holes
(mp /mn'10), are characterized by considerably sma
values of^tp& than are the conduction electrons. We a
note that the temperature dependence of (RHe)21 in region I
corresponds to the variation of the concentration of intrin
carriers to within the multiplier (12b)/(11b)50.95~curve
2 in Fig. 2!.

b. Temperature range 6 214 K „II…

Activation behavior of all the parametersRH(H,T),
r(T), andS(T) with similar values of the activation energ
Eex5T0

II54065K'3.5 meV is observed in this temperatu
range~Figs. 1–3!, obviously due to the exponential decrea
in the concentration of conduction electronsn5n0exp
(2Eex/kBT) ~curve 2 in Fig. 2!. Estimates of the mobility
and relaxation time of ‘‘light’’ carriers in the approximatio
~5! lead to the conclusion that there is a transition to impu
scattering in region II~see the inset in Fig. 2!, in accordance
with the results of Ref. 1. Using the valuesmn'100m0 and
Eex'3.5 meV, we estimate the localization radius of the i
purity states:

a* 5\/A2m* Eex'3Å . ~6!

Such a small value ofa* probably suggests leaning towa
interpreting the low-temperature properties of SmB6 in terms
of the Kikoin–Mishchenko exciton–polaron model.18 We
note that unlike the approach in Refs. 19–21, which tre
SmB6 as a metallic Kondo system with low carrier conce
e
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tration, the idea of an exciton semiconductor has provide
framework for proposing an explanation for the addition
local modes in the vibrational spectrum of SmB6,18,22as well
as for performing a detailed analysis of the collective lo
frequency excitations in the vicinity ofDE'14 meV.23 In
developing the approach in Ref. 18 for application to t
analysis of the experimental data in Figs. 1–3, we must
sume that the states atEex'3.5 meV correspond to the for
mation of excitons of small radius (aex'224 Å) in the vi-
cinity of Sm centers as a consequence of fast vale
fluctuations of electrons in the samarium 4f subshell. Simple
estimates of the Bohr radius of an excitonaex

'2«m0aB /m* (aB is the Bohr radius! and its energyEex

'm* e4/4«2\2 with consideration of the valuesm*
'100m0 and «'600 ~Ref. 1! lead to similar values of the
parameters:aex<6 Å andEex>2 meV.

c. Temperature range T<6 K „III…

The emergence of a maximum inRH(T) and S(T) in
this temperature range and the tendency for saturation of
resistivity r(T) ~Figs. 1–3! can be analyzed within the ap
proximation of several groups of charge carriers. Howev
the nonlinearity of the field dependence ofRH(H,T
54.2 K) in fields up to 7 T~curve1 in the inset in Fig. 2! can
probably be explained only as a manifestation of the we
field (mnH!1) asymptote

RH;
1

ne
~12a1mn

2H2! ~7!

and the strong-field (mnH@1) asymptote

RH;
1

neS 11
a2

mn
2H2D . ~8!

In this case, reducing the temperature to 2 K is accompan
by an appreciable decrease in the mobilitymn ~curve1 in the
inset in Fig. 1!, which in turn significantly reduces the qua
dratic term in~7! and shifts the strong-field asymptote~8!
outside the experimental rangeH<8 T. As a result, the
value of RH(H,T52K) is constant to within the measure
ment error~curve2 in the inset in Fig. 2!.

To detect the contribution of heavy carriers to the H
coefficientRH(H,T), measurements were also carried out
this study in pulsed fields up to 45 T at liquid-helium tem
perature. We note that the variations ofRH(H,T54.2K)
~curve 3 in the inset in Fig. 2! observed atH>20 T corre-
spond to the contribution ofp-type heavy carriers, but con
sideration of only the light carriers is fully justified in field
up to 8 T.

Analyzing the results in region III in Figs. 1–3, we als
note that the thermal expansion coefficient vanishes24 and
that appreciable variation of the elastic modulusC11, 4 a
change in the NMR spin-lattice relaxation regime,25 a maxi-
mum of the quadratic negative magnetoresistance,26 and
other effects are observed in the vicinity ofTm'5 K. Such
significant changes in the thermodynamic and kinetic ch
acteristics of SmB6 are probably evidence of a phase tran
tion in the electronic subsystem withTm'5 K. In our opin-
ion, one of the possible reasons for such a transition may
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the condensation of excitons with the formation of electro
hole droplets of submicron radius in SmB6. Let us briefly
recount plausible arguments favoring the proposed inter
tation.

Unlike classical semiconductors with electron–ho
droplets, in which the charge carriers and excitons are g
erated as a result of photoexcitation, in SmB6 the fast charge
fluctuations at each Sm center are sources of carriers in
conduction band and at exciton levels near liquid-heli
temperatures. Polaron effects18 significantly facilitate the
passage of excitons into the condensed phase. In add
because intrinsic defects and impurities in SmB6 distort the
crystal lattice in the immediate vicinity of impurity center
they should probably have a decisive effect on the forma
of electron–hole droplets. Consequently, the doping le
and the character of the distribution of impurities in s
marium hexaboride crystals are the main factors govern
the emergence of anomalies in the low-temperature pro
ties of SmB6.

Returning to the results in Figs. 1–3, we note that
maximum of the Hall coefficientRH(T) can be interpreted
within Shklovski�’s model27 for an inhomogeneous medium
i.e., a dielectric matrix containing metallic inclusions. Und
the assumption of a dynamically inhomogeneous med
containing electron–hole droplets moving along voltage a
temperature gradients28 we can obtain a qualitative explana
tion for the plots ofr(T) in Fig. 1 and of the thermopower in
Fig. 3.29

Finally, based on the arguments in Ref. 28, we pres
order-of-magnitude estimates of the principal parameter
the condensed phase and the region for its existence.
example, for the critical concentration and binding energy
the particles in the condensed phase we havenc;aex

23'3.5
31022 cm23 and E1;Eex;10kBT'325 meV. These esti-
mates agree quite well with the underlying assumptions.
also note that to within the accuracy of the experiment a
the current estimates of the binding energyE1 , the collective
low-frequency excitations in SmB6 with DE'14 meV de-
tected in inelastic neutron scattering23 and Raman
scattering30 experiments can be associated with the form
tion of electron–hole droplets in the dielectric matrix at lo
temperatures. At the same time, we stress once again
additional research is needed to confirm the hypotheses
vanced regarding the existence of electron–hole droplet
the low-temperature phase of SmB6 within the approach de
veloped in Ref. 28.
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Statistical thermodynamics of the formation of an infinite cluster of thermally reversible
chemical bonds
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A systematic ‘‘mean-field’’ treatment of the thermodynamic equilibrium formation of an infinite
cluster of bonds in a system of identical monomers capable of forming fromn50 to n.2
reversible chemical bonds with one another is proposed within the Cayley-tree approximation. For
this purpose the difference between the symmetry of the monomers appearing in ‘‘point-to-
point’’ and closed bond paths, respectively, is taken into account on the basis of an analysis of the
structure of the infinite cluster. Minimization with respect to the distribution of such
monomers yields a nontrivial solution corresponding to a lower free energy than the classical
solution, which does not allow for the symmetry difference indicated. In addition, it is
shown that the classical solution corresponds to the free-energy maximum when the infinite
cluster is formed and that the formation of the infinite cluster is a first-order phase transition. The
possible form of the phase diagrams of the systems considered is analyzed. ©1999
American Institute of Physics.@S1063-7761~99!01503-6#
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1. INTRODUCTION

First-order phase transitions with the coexistence of
lute and condensed phases are known to occur as a res
both the attraction~a negative potential energy of the pa
interaction! and association~the formation of thermally re-
versible bonds between specific chemical groups! of mol-
ecules of the substance. Another characteristic and fir
established property of some associating systems is the
called sol-gel transition, upon which an infinite cluster
bonded particles~the gel fraction! appears on a backgroun
of a large number of finite cluster particles joined by lab
bonds~the sol fraction!. ~Such systems, among which silica
melts and water are especially interesting, are also ca
weak gels.1! Until recently, however, there has been a deb
as to whether the sol-gel transition, like the percolation tr
sition, is a purely geometric phenomenon, which can be
served only in a computer experiment and in the dyna
behavior of weak gels, or whether observable thermo
namic features of the latter are also associated with it.

In several publications devoted to the thermodynam
of weak gels,2–7 association was analyzed within the mea
field approximation, according to which the extent of co
version, i.e., the fraction of the chemical groups participat
in the formation of labile saturated bonds, depends only
the total density of these groups. In such a treatment
sol-gel transition is a purely geometric phenomenon, wh
does not lead to thermodynamic singularities of the syst
However, as was shown in Ref. 8, the formation of an in
nite cluster of bonds~even labile bonds! leads to the appear
ance of a new order parameter, which, as will be describe
detail below, describes the nontrivial internal structure of
infinite cluster rather than its bond concentration. The
pearance of this new order parameter and the spontan
violation of the symmetry associated with it, which can
5381063-7761/99/88(3)/7/$15.00
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interpreted as violation of the identity of the particles appe
ing in elements of different topology in the infinite cluste
naturally entails corresponding thermodynamic features
particular, in the approximation proposed in Ref. 8 for an
lyzing these features near the sol-gel transition, the latter
a second-order phase transition.

In the present work the analysis in Ref. 8 of the featu
of the thermodynamics of a simple system of associat
particles, which can bind to form an infinite cluster, is ge
eralized to include arbitrary extents of conversion. This p
mits significant refinement of the description of the charac
of both the sol-gel transition itself and the phase diagram
weak gels. The ensuing presentation is organized in the
lowing manner. In Sec. 2 we present a systematic ‘‘me
field’’ derivation of an expression for the contribution of th
formation of labile bonds between associating particles
their free energy. A detailed analysis of the features of
thermodynamic behavior of weak gels associated with
formation of an infinite cluster of labile bonds and a com
parison with the results of the more approximate treatm
performed in Ref. 8 are presented in Sec. 3. Section 4
cusses the features of phase diagrams typical of weak ge
both the absence and presence of the infinite cluster.

2. STRUCTURE OF THE THERMODYNAMICS OF AN
EQUILIBRIUM INFINITE CLUSTER AND ITS FREE ENERGY

To fix ideas, we consider a system ofN monomers An
confined to a volumeV, each containingn identical chemical
groups A, which are capable of forming A–A bonds in th
reversible chemical reaction A1A5A2. The structure of the
clusters appearing in such a system can be described i
obvious way8–10 by means of graphs with vertices of ord
l<n, which correspond to monomers withl reacting groups
A. For n,3 the densitiesr2 and r1 of the groups which
© 1999 American Institute of Physics
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FIG. 1. Typical structure of the blocks appearing in equ
librium polymer systems of trifunctional monomers: a! in-
dividual monomers~‘‘bare’’ vertices!; b, c! simple cyclic
blocks; d, e! a cyclic block of complex structure and
fragment of it that appears tree-like within a small window
The inclusion of the latter in a system of closed bond pa
is intimated only by the presence of local coloring~a
double line corresponds to a green bond, and a single
corresponds to a red bond!.
,
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have reacted and have not reacted during this reaction
spectively, are determined by the equilibrium constantk ap-
pearing in the law of mass action:11

r25kr1
2 . ~1!

For n.2 this law remains valid only in the absence of
infinite cluster of bonds. When an infinite cluster is prese
the correlation between the bonds, which is unavoidable
this case, leads to significant modification of the relation~1!.

The generally accepted starting assumption of the the
of polymer systems with an assigned temperatureT and dis-
tribution of the monomer densityr(r ) ~which is, generally
speaking, nonuniform and nonequilibrium! is the representa
tion of their free energy in the form of the sum12,13

F~$r~r !%,T!5F* ~$r~r !%,T!1Fstr~$r~r !%,T!, ~2!

whereFstr is the entropic structural contribution associat
with a! the arrangement of the monomers in space, and b! the
formation and distribution of labile bonds between t
monomers, andF* is the energy contribution of the ‘‘system
of unconnected monomer units’’ that would exist in the a
sence of bonds. The latter term is often specified by
phenomenological expression corresponding to the des
tion of a system of unconnected monomer units as a lat
liquid:14
re-

t,
in

ry

-
e
ip-
e

F* ~$r~r !%,T!5E @T~12f~r !!

3 ln~12f~r !!22f2~r !#
dV

v
, ~3!

where the temperature and free energy are measured in
of Tc (Tc is the critical temperature of the lattice liquid!, and
v andf5vr are the excluded volume and the volume fra
tion of the monomers, respectively. Thus, our task is to c
culateFstr.

The starting point for our analysis is the seeming
trivial fact that an infinite cluster without cycles~a Cayley
tree or a Bethe lattice!, unlike a finite cluster, cannot exist i
finite-dimensional space. In other words, although the str
ture of the infinite cluster can be represented in the form o
Cayley tree at large enough scales, it must include not o
‘‘bare’’ vertices of order 1< l<n, but also ‘‘effective’’ ver-
tices of arbitrary order and complexity, which have the fo
of the 1-irreducible blocks depicted in Fig. 1.

Such a description of the structure of the infini
cluster8,9 is similar to the droplet model of the infinite
cluster,15,16 but, unlike the latter, we focus our attention n
on the self-similar structure of the 1-irreducible blocks, b
on the possibility of distinguishing between ‘‘internal
bonds, from which these blocks are constructed, and ‘‘ex
nal’’ bonds, which join blocks in an effective Cayley tree.
nontrivial procedure that enables us to realize this possib
can be described as follows.8 We choose a finite window and
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color all the chemical groups A within that window. If
bond between them belongs to at least one closed pat
bonds lying completely within the window, we color the
green; if not~or if a group has not reacted! we color it red.
As the size of the window is increased, at large enou
scalesL some of the initially red groups appear in a clos
path and should be recolored green. Thus, asL increases, the
fraction of green groups grows and reaches a certain limi
value in the limitL→`, where all the ‘‘internal’’ bonds are
colored green and the ‘‘external’’ bonds are colored red.

The coloring procedure just described does not alter
statistical weights and symmetry indices of the various d
gram realizations of the structure of the infinite cluster, bu
is very important for finding the correct procedure for
approximate ‘‘mean-field’’ calculation followed by summa
tion of the contributions of these diagrams to the entro
structural termFstr, which is similar in many respects to th
calculation of the contributions of high-order diagrams to
Gell-Mann–Low function in Ref. 17.

In fact,8 when

nra3@1, ~4!

wherenr is the total density of chemical groups in the sy
tem anda is the characteristic scale~length! of a chemical
bond formed as a result of the reaction of two such grou
the typical blocks determining the structure of the infin
cluster include ‘‘bare’’ vertices~Fig. 1a! and very complex
blocks ~Fig. 1d gives a some idea of the structure of su
complex blocks!. The contribution of comparatively simpl
blocks~see Figs. 1b and 1c! can be neglected in the limit~4!.

Therefore, when a certain finite volume of a system~a
‘‘window’’ ! that is large compared to the bond lengtha is
considered, those bonds that belong to such a large block
that are located in that window can look like an ordina
Cayley tree~see Fig. 1d!. Nevertheless, the true nature
such a quasi-Cayley tree~i.e., its inclusion in the system o
closed bond paths! is intimated by the presence of local co
oring, which indicates the numberi of green groups belong
ing to each monomer in an assigned realization of the infi
cluster (i runs through all integer values in the ran
0< i<n with the exception ofi 51, since a monomer canno
be included in a closed path consisting of only one group
has reacted!.

The next step is to postulate that a fairly faithful descr
tion of the thermodynamics of the systems under consid
ation can be obtained, if the calculation of the total structu
free energyFstr is confined to a calculation of contribution
to the free energy that correspond to the formation and
possible recombinations of the bonds within windows t
are not too large, followed by summation of these contrib
tions. Of course, within such a ‘‘mean-field’’ description
the infinite cluster we ignore effects resulting from the c
relation of the structure of neighboring windows~i.e., the
hierarchical structure of the blocks!, but, on the other hand
we can take into account effects due to the difference
tween ‘‘internal’’ and ‘‘external’’ bonds described above.

Indeed, just the fact that a path might be closed, e
somewhere far beyond the window under consideration,
ters the combinatorial behavior of the corresponding fu
of
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tional groups. This change in combinatorial behavior at
level of the proposed ‘‘mean-field’’ description can also
taken into account by including vertices~monomers! with
different colors in the treatment and appropriately alter
the symmetry index. In this case we should first calculate
foregoing contributions to the free energy for an arbitra
distribution of the densitiesr i of monomers withi green and
n2 i red chemical groups within the window, and then d
termine the thermodynamic equilibrium values of these d
sities by minimizing the total free energy. Therefore, the d
sired ‘‘mean-field’’ expression forFstr takes the form

Fstr~$r%,T!5V min F~$r i%,G r !, ~5!

where the expression for the free energy per unit volume
the system with assigned values of the densities and of
fraction G r of red groups that have reacted is

F~$r i%,G r !

T
52(

iÞ1
r i ln

e

i ! ~n2 i !!r il
3

1r r@G r ln G r

1~12G r !ln~12G r !#2S̃~rg!2S̃~r rG r !.

~6!

Here, the first term, in whichl is the thermal wavelength o
the monomers and the summation is carried out over all p
missible values ofi, describes the entropic contribution o
the arrangement of the monomers of an assigned colo
space with consideration of their symmetry index. The s
ond term in~6! describes the entropy of selecting theNrG r

red groups that have reacted from their total numberNr .
~The extent of conversion of the red groupsG r will also be
called the extent of external conversion.! Finally, the en-
tropic energy contributions of all possible arrangements a! of
the internal bonds between green groups and b! of the exter-
nal bonds between red groups that have reacted are desc
by the third and fourth terms, respectively, where the expr
sion for the functionS̃(r) obtained in Ref. 8 has the form
S̃(r)5(r/2)ln(kr/e).

The expression~6! naturally generalizes both the trad
tional approach, which follows from it under the assumpti
that the fraction of bonds belonging to closed paths is stric
equal to zero in the mean-field approximation,

r i[H r0 , i 50,

0, i>2,
r r[nr0[nr, rg[0 ~7!

~here and in the followingr is the mean total monome
density!, and the approximation proposed in Ref. 8. In th
approximation only the first nontrivial density in~6!, r2,
which plays the role of a new order parameter, is retain
and derived by minimization:

r i5H r0 , i 50,

r2 , i 52,

0, i .2,

r21r05r,

r r5nr01~n22!r2 , rg52r2 . ~8!

Minimization of the free energy~6! in the classical so-
lution ~7! leads to the following expression forFstr:
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Fstr
Flory

VT
5r ln

rl3n!

e
1nr f Flory~G!,

f Flory~G!5
G

2
1 ln~12G!, ~9!

where the dependence of the extent of conversionG on r is
specified by the law of mass action~1!, rewritten in the form

r̃5kr5G/~12G!2. ~10!

A detailed analysis of the approximation~8! was per-
formed in Ref. 8, and we do not dwell on it here. The ext
mum of the free energy~6! is attained without additiona
assumptions and with consideration only of the conserva
laws

(
m

mrm5rg , ~11!

(
m

~n2m!rm5r r , ~12!

(
m

rm5r ~13!

in the following thermodynamic equilibrium distribution o
the monomers according to color:

r il
35z

Fn2 i C i

i ! ~ n2 i !!
, C5expl, F5expn, z5expm,

~14!

wherel, n, and m are the Lagrange multipliers~chemical
potentials! corresponding to the conservation laws~11!, ~12!,
and ~13!, respectively. Here both the parameters of the d
tribution of the monomers according to colorz, F, and C
and the structural characteristics of the infinite cluster
amenable to a comparatively simple one-parameter repre
tation.

In order to obtain this representation we note that m
mization of the structural free energy~4! with respect toG r

leads to the law of mass action for the equilibrium react
leading to the formation of ‘‘external’’ bonds between re
functional groups:

r̃ r5kr r5G r /~12G r !
2. ~15!

The minimization ofFstr with respect tor r ~with consider-
ation of the preceding expression! andrg gives the relations

1/~12G r !5F, ~16!

r̃g5krg5C2. ~17!

Plugging the expression~14! for r i into Eqs. ~11! and
~12! and performing the required summation, we obtain
expressions forr̃ r and r̃g in the following form:

r̃ r5
z̃F

n

~n21!!
@~11d!n2~n21!d#, ~18!

r̃g5
z̃F

n

~n21!!
d @~11d!n2121#, ~19!
-

n

-

e
en-

-

n

e

where

z̃5kz/l3, ~20!

and the quantity

d5C/F, ~21!

which is positive by definition, provides the desired para
etrization.

In fact, equating the expressions for the ratior r /rg ob-
tained from formulas~15!, ~16!, and ~17!, on the one hand
and~18! and~19!, on the other, we obtain an explicit expre
sion for the external extent of conversionG r as a function of
d:

G r~d!5
~11d!n2~n21!d

@~11d!n2121#/d
. ~22!

The substitution of~22! into ~16! and~21! specifies the func-
tions F(d) andC(d), and subsequent consideration of fo
mulas~15!–~17! and~21! leads to an explicit expression fo
the dependence of the reduced total densityr̃ on d:

r̃~d!5 r̃ r1 r̃g5F~F21!1C25
G r~d!1d2

@12G r~d!#2
. ~23!

The function~23! parametrically assigns any of the structur
characteristics whose dependence ond can be obtained using
the expressions presented above as a function ofr̃.

In particular, the dependence of the total extent of co
versionG ~the fraction of all the chemical groups that ha
reacted and participate in the formation of either externa
internal bonds! on r̃ in the system under consideration
specified jointly by~23! and the expression

G~d!5
G r

2~d!1d2

G r~d!1d2
. ~24!

Equations~22!–~24! comprise the desired eneralizatio
of the law of mass action~10! with consideration of the
alteration of the symmetry of the monomers included
closed~and thereby correlated! bond paths belonging to th
infinite cluster.

It is also useful to present the expression for the value
the structural free energy achieved in the thermodyna
equilibrium distribution~14!:

Fstr

VT
5r ln

rl3n!

e
1nr f̃ ~d!,

~25!

f̃ ~d!5
G~d!

2
1 ln@12G r~d!#2

ln@~11d!n2nd#

n
,

where the functionsG r(d) andG(d) are defined by formulas
~22! and ~24!, respectively.

3. THERMODYNAMIC FEATURES OF THE FORMATION OF
AN INFINITE CLUSTER OF LABILE BONDS

Thus, we have shown in the preceding section that c
sideration of the presence of highly cyclized blocks in t
infinite cluster, which was first done in Ref. 8 in a prelim
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nary study and in the present work in a systematic mean-fi
approximation, does, in fact, lead to the appearance of a
order parameter and, thereby, to significant modification
the law of mass action and the thermodynamics of weak g
We first analyze the character of the emerging features
the dependences of the distribution parameterd and the ex-
tent of conversionG on the reduced densityr̃, which are
defined by~23! and ~24!.

As is shown in Fig. 2, physically meaningful solutions
d( r̃) exist only for r̃. r̃min , wherer̃min is the minimum of
the function ~23!. In the interval (r̃min , r̃c), where r̃c

5 r̃(0), bothG( r̃) andd( r̃) are double-valued functions. I
other words, in this interval the structural free energy~25! of
the system has two extrema, the free-energy maximum
responding to small values ofG and the minimum corre-
sponding to large values. An additional minimum of t
structural free energy, which exists in this interval, lies
the boundary of its domain of definitiond50, i.e., on the
classical solution~7!. Thus, both the classical solution an
the solution~14!, which corresponds to a cyclized infinit
cluster, exist in the interval (r̃min , r̃c), but one of these so
lutions is metastable.

The two extrema corresponding to the solution~14!

merge atr̃5 r̃min and vanish asr̃ decreases further. There
fore, at r̃, r̃min a single minimum of the function~25! is
achieved only by the classical solution~7!. Conversely, at
r̃. r̃c the maximum of the function~25! merges with the
classical solution, so that the classical solution ceases to
even as a metastable solution in this region.

As follows from ~22!, ~23!, and ~10!, the values of the
reduced density and the extent of conversion on the bou
ary for the existence of the classical solution~7! are specified
by the expressions

FIG. 2. Dependence of the distribution parameterd and the extent of con-

versionG ~curves1 and 2, respectively! on the reduced densityr̃ for tri-
functional monomers. In the family of curves2 the solid line corresponds to

the solution~7! at r̃, r̃c and the solution~14!, and the dashed and dotte
lines show the values of the extent of conversion for the classical app

mation ~7! and the approximation~8! at r̃. r̃c .
ld
w
f

ls.
or

r-

ist

d-

r̃c5 r̃c~0!5
n21

~n22!2
, Gc5

1

n21
, ~26!

which correspond to the classical condition for the sol-
transition established back in Refs. 18 and 19.

As for the values of the reduced density and the exten
conversion on the boundary for the existence of the n
trivial solution ~14!, a numerical calculation shows that th
ratio r̃min /r̃c depends weakly onn and is roughly equal to
0.9.

Let us now examine the dependences of the values of
structural free energy of the system corresponding to the
lutions ~7!, ~8!, and~14! on the reduced densityr̃ ~Fig. 3!. It
can be seen that atr̃. r̃c the largest value of the structura
free energy corresponds to the classical solution and
smallest value corresponds to the solution~14! obtained in
the present work. Moreover, the solution~14! already be-
comes thermodynamically advantageous at the pointr̃gel

, r̃c , at which the structural free energy curves correspo
ing to the solutions~7! and ~14! intersect. This point would
be the sol-gel transition point if this transition occurred wit
out altering the value of the monomer density.

4. ANALYSIS OF PHASE DIAGRAMS

The analysis performed in the preceding section is so
what oversimplified. The fact is that, as we show forthwi
the sol-gel transition is always accompanied by a separa
into two phases of different density. To analyze the ph
diagrams of the system under consideration we take ad
tage of the generally known fact that the conditions for eq
librium between two one-component phases at an assig
temperatureT, i.e., the equality between their pressuresP
and chemical potentialsm, can be represented in the form

i-

FIG. 3. Dependence of the structural part of the free energy of a system

the reduced densityr̃ for trifunctional monomers. The solid, dashed, an
dotted lines have the same meanings as for curves2 in Fig. 2. Inset —
values of the free energies calculated relative to the classical depend
corresponding to the solution~7!.
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FIG. 4. Typical phase diagrams of trifunctiona
monomers inT vs.f coordinates, whereT is the
temperature of the system andf is the volume
fraction of the polymer. The dotted lines are dia
grams corresponding to the classical approxim
tion. The dashed and dot-dashed lines are
sol-gel transition lines in our approximation an
the classical approximation, respectively:!
phase diagram with a triple point (g0521,
E521.4); b! phase diagram without a triple
point (g0520.5, E522).
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] f

]r U
r5r1

5
] f

]rU
r5r2

,

~27!

f ~T,r2!5 f ~T,r1!1
] f

]r U
r5r1

~r22r1!

for the presence of a common tangent to the specific
energy.

f ~T,r!5F~V,T,N!/V. ~28!

In ~27! r1 andr2 are used to denote the particle densit
in the coexisting phases, which are equal to the abscissa
the points of contact of the plot of~28! with the common
tangent.

The critical points on the phase diagram correspond
the vanishing of the common tangent

]2f

]r2
50,

]3f

]r3
50, ~29!

and the number of critical points determines the topology
the phase diagram of the system. However, in this paper
do not dwell on a detailed investigation~see, for example
Ref. 14! of the topology of the phase diagrams and a co
parison of the phase portraits for the system under consi
ation, but merely present several typical diagrams for it.

For simplicity, we assume that the temperature dep
dence of the chemical equilibrium constantk(T) is deter-
mined by an ordinary activation mechanism:

k5k0exp~2E/T!, ~30!

wherek0 is the normalization factor, which has the dime
sions of volume, andE,0 is the bond energy, which, like a
quantities with the dimensions of energy, can be measure
units of the critical temperatureTc of the system of uncon
nected monomer units. Thus, the system under considera
is characterized by two dimensionless parameters, v
g05k0 /v andE, whose variation leads to different types
phase diagrams.

Typical phase diagrams constructed numerically in
approximation~14! proposed above are shown in Fig.
which takes into account the presence of a complex cycli
structure in the infinite cluster and leads to the express
e

s
of

o

f
e

-
r-

n-

in

on
.,

e

d
n

~25! for the structural part of the free energy, and in t
classical Flory approximation~7!, which ignores this struc-
ture and leads to the expression~9!. This figure also shows
curves corresponding to the sol-gel transition in the new
classical approximations. One characteristic feature of
phase diagrams constructed in the approximation that we
veloped is the presence of a phase-separation ‘‘corridor’
the vicinity of the sol-gel transition. In some~but not all!
cases there may be a triple point~Fig. 4a!, at which three
phases with differing density coexist, an infinite cluster
bonds being present in the densest of these phases~the be-
havior of the free energy of the system above the triple po
is shown in Fig. 5!.

If the bond energyE.0 ~such a situation can be realize
in a description of the competitive inhibition of chemic
bonds between the polyfunctional An monomers under con
sideration due to the formation of bonds between the la
and monofunctional B1 monomers in an An1B1 system14!,
the phase diagrams of such a system become more div
Scrutinizing them, however, is beyond the scope of
present work.

5. CONCLUSION

Thus, we have shown that the classical theory of
sol-gel transition in thermally reversible weak gels based

FIG. 5. Typical dependence of the free energy of the system on the vol
fraction of the polymer at a temperature above the triple point on the ph
diagram shown in Fig. 4a (T51.68).
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the Cayley-tree approximation remains valid only in the
region, i.e, in the absence of an infinite cluster of therma
reversible bonds. When such a cluster~a gel fraction! is
present, only the description developed above, which allo
for the presence of a complex cyclized structure in the i
nite cluster, is correct. Moreover, the formation of the in
nite cluster, which is described in our formalism as the tr
sition from the classical solution~7! to the solution~14! with
spontaneous violation of the identity of the monomers, i
first-order transition, which is always accompanied by
separation into two phases.

This work was financially supported by INTAS and th
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Features of the spin fluctuations and superconductivity of Tl 2Ba2CaCu2O82d according
to 63Cu and 17O NMR data
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Data on the NMR line shifts, the spin–lattice relaxation rate of63Cu and17O nuclei, and the
spin–spin relaxation rate of63Cu are obtained for Tl2Ba2CaCu2O82d (Tc5112 K! in the normal
and superconducting states. The hyperfine constants at the copper and oxygen atoms in a
CuO2 plane are estimated from an analysis of the temperature dependence of the Knight shift.
The temperature-dependent behavior of the long- and short-wavelength parts of the
dynamic spin susceptibility is discussed by modeling an antiferromagnetic Fermi liquid. The
possible relation between the characteristics of the spin-fluctuation spectrum and the
superconducting transition temperature is analyzed for the oxide investigated. ©1999 American
Institute of Physics.@S1063-7761~99!01603-0#
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1. INTRODUCTION

Studies of high-Tc superconductivity carried out durin
the past 10 years have revealed some special features o
electronic properties of high-Tc superconducting cuprate
that are not observed in low-temperature superconductor
was established that the superconducting transition temp
ture is achieved when there is a certain optimal hole conc
tration nh

opt in the CuO2 layers.1 An analysis of the electric
field gradient at the Cu and O atoms in copper layers p
formed for metal oxides2–5 revealed a close relationship b
tweenTc and both the total hole concentration in the copp
planes and the relative populations of the valence orbital
the Cu (3dx22y2) and O (2ps) atoms. A decrease in th
populationn3dx22y2 of the 3dx22y2 orbital with a simulta-

neous increase inn2ps
is accompanied by an increase in t

critical temperature for lightly doped cuprates with a carr
concentration less thannh

opt. The estimates of the single
particle density of states obtained from data on89Y NMR
line shifts6 does not provide a reasonable explanation for
high values ofTc in the context of the phonon mechanism
Cooper pairing.

Inelastic neutron scattering experiments and studies
the spin–lattice relaxation of63Cu and17O nuclei in the me-
tallic phase of high-Tc superconducting oxides revealed t
existence of strong antiferromagnetic (q5QAF

5$p/a,p/a%) spin correlations between nearly localize
electrons in the 3dx22y2 orbitals of neighboring copper at
oms. Consideration of the features of the spectrum of s
fluctuations in a layer is important in describing the grou
state of the conduction band and in analyzing possible n
phonon channels of superconducting pairing. The possib
of carrier pairing in a CuO2 layer due to the virtual exchang
5451063-7761/99/88(3)/7/$15.00
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of antiferromagnetic paramagnons was discussed in R
7–9 under the assumption that charge carriers experie
attraction near the Fermi surface, which is effective in a la
having a thickness proportional to the characteristic sp
fluctuation energyGQAF

. In this case the preexponential fa

tor in the BCS formula forTc can be represented in the form
of the product GQAF

j2(12nh), where j is the spin-

fluctuation correlation length andnh is the hole concentration
in the CuO2 layer.

Estimates of spin-fluctuation parameters based on d
from NMR experiments have been obtained mainly by mo
eling an almost antiferromagnetic Fermi liquid. Measu
ments of the spin–lattice relaxation rate (T1

21) on 63Cu and
17O nuclei and the contribution of the indirect spin–spin i
teraction to the damping of the transverse nuclear magn
zation of63Cu (63T2g) make it possible to study the behavio
of the dynamic spin susceptibility at low frequencies.
Refs. 3 and 4 it was established from an analysis of data
T1

21 in YBa2Cu3O6.9 (Tc594 K! and Tl2Ba2Ca2Cu3O10

(Tc5115 K! that the increase in the superconducting tran
tion temperature is accompanied by displacement of
spin-fluctuation spectrum toward higher energies, attestin
the spin-fluctuation nature of the superconductivity in the
metal oxides.

The present work is devoted to an analysis of data on
NMR of 63Cu and 17O nuclei in a sample of
Tl2Ba2CaCu2O82d (Tc5112 K! oriented by a magnetic field
for the purpose of obtaining information on the variation
the characteristic energy, the correlation length, and o
parameters of the spectrum of spin fluctuations in this co
pound with temperature.
© 1999 American Institute of Physics
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2. EXPERIMENTAL METHOD

NMR measurements were performed on a single-ph
ceramic sample of Tl2Ba2CaCu2O82d with Tc5112 K,
which will be abbreviated as Tl2212 below. A detailed d
scription of the procedure for the synthesis and17O–16O iso-
topic substitution was given in Ref. 10.

The temperature of the transition to the superconduc
state was determined by observing the appearance of a
magnetic response when the ac magnetic susceptibility
measured. For Tl2212 the valueTc5112 K corresponds to
the maximum on theTc(nh) phase diagram with the optima
carrier concentrationnh

opt in a CuO2 layer. The polycrystal-
line sample was mixed with an epoxy resin and oriented
9-T magnetic field.

The NMR investigations were carried out with a puls
NMR spectrometer in the temperature range 10–300 K.
measurements for63Cu nuclei were carried out in a magnet
field B059 T, and the measurements for17O nuclei were
carried out atB058 T. The method for recording the NMR
spectra consisted of excitation of the solid-echo signal
lowed by complex Fourier transformation of the second h
of the echo. To eliminate distortions of the spectra due
transients in the resonant circuit, a sequence that altern
(02180°) the phase of the first rf pulse was employe
When spectra with a width exceeding the frequency b
excited by the rf pulse were recorded, we summed the a
of Fourier signals accumulated at a set of uniformly spa
spectrometer frequencies. The63Cu NQR spectra were ob
tained in a similar manner. The quadrupole frequencynQ

was determined from the peak of the NQR line.
The componentsKaa of the magnetic shift tensor of th

63Cu and17O NMR lines were determined from the positio
of the peaks of the NMR lines for them51/2→21/2 tran-
sition with consideration of the quadrupole correctionsnab,c

to the resonant frequency shift in second-order perturba
theory.

The line shifts were determined relative to the positi
n0 of the NMR lines of 63Cu in metallic copper
@63K(Cumet)50.23%# and of17O in H2O.

3. EXPERIMENTAL RESULTS AND DISCUSSION

3.1. NMR line shifts, hyperfine fields at 63Cu and 17O nuclei,
and homogeneous contribution of the spin susceptibility
xs „q 50…

3.1.1. 63Cu NMR line shift

The temperature dependence of the magnetic shift63K
~Fig. 1!, which includes the orbital shift63Korb and the spin
contribution63Ks(T), was obtained from the total shift of th
63Cu (I 53/2) NMR line after subtraction of the quadrupo
corrections calculated for the case of axial symmetry of
electric field gradient tensor:11

nab5
1

16F I ~ I 11!2
3

4G nQ
2

n0
, nc50. ~1!

To within the measurement error, the quadrupole freque
nQ517.35(20) MHz did not depend on temperature over
entire temperature range 10–300 K.
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In the normal state region the components of the NM
shifts decrease monotonically as the temperature is redu
There is a stronger temperature dependence for63Kab than
for 63Kc . The transition to the superconducting state is
companied by a sharp decrease in the magnitude of the s
Such behavior of the shift on Cu nuclei is typical of a
superconducting oxides studied, and results from elimina
of the spin contribution~the Knight shift!, which is propor-
tional to the homogeneous spin susceptibility.

An additional diamagnetic contributionKdia to the NMR
shift appears at temperatures belowTc due to the distribution
of the magnetic fields within the sample created by the v
tex structure of the magnetic field. According to our es
mates for a 9-T magnetic field at 10 K,Kab,dia,0.005%,
which is less than the measurement error in the magnitud
the shift. When the spin contributionKab,s to the NMR line
shifts was determined, we assumed thatKab,s50 at T510
K. It follows from this assumption, in accordance with Fi
1, that the orbital contributionKab,orb50.1%. Its value is
assumed to remain unchanged over the entire tempera
range of the normal and superconducting states. In this c
the differenceKab(T5Tc)2Kab(T510K) determines the
spin contributionKab,s .

3.1.2. 17O NMR line shift

Figure 2 presents the17O (I 55/2) NMR spectra of an
oriented sample of Tl2212 recorded over a broad freque
range, which includes the NMR lines of all transitions. T
spectra were obtained at 120 K for the case where thec axis
of the crystallites is oriented parallel~a! and perpendicularly
~b! to B0. They are similar in form to the spectra present
for magnetically oriented powders of thallium cerami
~Tl2201! with one CuO2 plane.12 We retained the same no
tation for the oxygen satellite lines corresponding to differe
sites as in the preceding paper on Tl2212~Ref. 10!. Our
subsequent discussion of the17O NMR spectra pertains to
lines that exhibit a strongly temperature-dependent posi
shift and are assigned to oxygen atoms in CuO2 layers~O1
sites!.

To determine the quadrupole frequenciesnQ and the
asymmetry parameterh of the electric field gradient tensor

FIG. 1. Temperature dependence of magnetic shifts (a,b,c — principal
crystallographic axes!.
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FIG. 2. 17O NMR spectra atT5120 K for B0ic ~a! and
B0'c ~b!.
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we used the positions of the features of the satellite line
the 63/2↔61/2 transitions for various orientations of th
external magnetic fieldB0 relative to thec axis of the crys-
tallites. For example, whenB0ic, peakA1 of a site for which
the principal axis of the electric field gradient tensor lies
theab plane should correspond to the frequencyn1, which is
specified by the expression11

n15n0~11Ky!2
nQ

2
~11h!1

5nQ
2

16n0
F11

2

3
h1

1

9
h2G .

~2!

When B0'c, peak A1b appears for crystallites with a
principal axis of the electric field gradient tensor perpendi
lar to B0 at the frequency

n25n0~11Kx!1
nQ

2
~12h!1

5nQ
2

16n0
F12

2

3
h1

1

9
h2G ,

~3!

and peakA1a appears for crystallites with a principal axis
the electric field gradient tensor parallel toB0 at

n35n0~11Kz!2nQ1
5nQ

2

36n0
h2. ~4!

It was assumed in the analysis of the NMR line shift17K
that the symmetry of the tensor is nearly axial:17Kx

517Ky . For the compound investigated we obtained17nQ

51.09 MHz andh50.33, which do not depend on temper
ture. The parameters of the electric field gradient tensor
close to those given for the sites of O atoms in Y12
Tl2201, and Tl2212. The components of the magnetic l
shift tensor17K were determined from the position of th
peak of the NMR line of the 1/2↔21/2 transition with al-
lowance for the quadrupole correctionnc to the shift of the
resonant frequencyn0 ~Ref. 11! of oxygen atoms in Cu–
O–Cu chains along thec axis of the crystal:

n5
~31h!2

144 F I ~ I 11!2
3

4G nQ
2

n0
. ~5!

Figure 1 presents the temperature dependence of
component17Kc of the magnetic NMR line shift tensor cor
responding to the O1 site, which decreases monotonicall
the temperature is reduced with an increase in the rat
variation of the shift asTc is approached.
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3.1.3. Magnetic hyperfine coupling constants and orbital
shift

The hyperfine coupling constants at copper and oxy
atoms were determined from plots of the parametric fu
tions 63Kc(

63Kab) and 17Kc(
63Kab), which were constructed

using data for the normal state above 100 K in order
eliminate the influence of the diamagnetic contributio
which begins to increase significantly at temperatures be
Tc . In accordance with the Mila–Rice Hamiltonian,13 which
was proposed to describe the magnetic hyperfine interact
of atoms in a CuO2 layer, the Knight shift at copper an
oxygen atoms is proportional to the homogeneous s
susceptibilityxs(q50)[x0 of the layer:

63Kab,c5~Aab,c14B!x0 , ~6!

17Kc52Ccx0 . ~7!

The anisotropy constantAaa takes into account the tota
contribution of the magnetic hyperfine interaction of the sp
of the63Cu nucleus with the nearly localized electron spin
the 3dx22y2 orbital. The contribution of the indirec
Cu–O–Cuinteraction from the four nearest neighbors
each Cu atom is taken into account by the hyperfine cons
B, which was assumed to be an isotropic quantity in Ref.
Finally, the covalency of the Cu3dx22y2 and O2ps

orbitals is
taken into account by the constantC, whose value depend
on the direction of the magnetic field relative to the cryst
lographic axes. For the ensuing analysis we assume tha
values ofAaa in the compound investigated are the same
in YBa2Cu3O7 ~Ref. 13!, and equalAab537 kOe/mB and
Ac52165 kOe/mB . The values B571 kOe/mB and Cc

573 kOe/mB were obtained from the slopes of th
63Kc(

63Kab) and 17Kc(
63Kab) curves in accordance with~6!

and ~7!. The estimates of the hyperfine constants coinc
with the data4 for Tl2Ba2Ca2Cu3O10 ~Tl2223 below! and
somewhat exceed the values given for the isostructural c
pound Bi2212 in Ref. 14.

Taking into account that63Kab,orb50.1%, we find
63Kc,orb51.08% and17Kc,orb520.02% from the parametric
dependences. The magnitude of the orbital shift63Kab,orb is
determined by the van Vleck susceptibility of the Cu atom
The decrease in63Kab,orb compared to the value for Y123
63Kab,orb51.25%, might suggest an additional downwa
displacement of the energies of the filleddxy , dxz , anddyz

orbitals relative toEF in Tl2Ba2CaCu2O82d .
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FIG. 3. Temperature dependence of63(T1T)21 ~a! and
17(T1T)21 ~b! for B0'c ~squares! andB0ic ~circles!.
n

s
fr

-
hi
ti
t

ru
o

gh
-
th

l

as

the
he
-
es,
e
pli-

for
of

tiza-
is
ion
ho

nal
O
ro-

arly
iza-

er
the
nts

y

n-
sing
3.1.4. Principal value of the electric field gradient tensor for
63Cu and 17O; population of the orbitals of the Cu and O
atoms in Tl2212

The quadrupole frequenciesnQ for oxygen and copper in
the compound under investigation,63nQ517.3(2) MHz and
17nQ51.09(5) MHz, are close to the values for Tl2223 (Tc

5115 K!, 63nQ517.3 MHz and 17nQ51.15 MHz,
respectively.2

It was shown in Ref. 15 that the electric field gradie
Vaa at the copper and oxygen atoms in CuO2 layers is pro-
duced mainly by electrons in partially filled orbitals of atom
having aspherical symmetry. In this case the quadrupole
quency

63nQ5
3e2Q

2I ~2I 21!
Vcc

is proportional to the population of the copper 3dx22y2 or-
bital, and the change in the quadrupole frequency of the17O
nuclei is determined by the population increment of the O2ps

orbital: DnQ;Dn2ps
. Zhenget al.2 analyzed the charge dis

tribution in several superconducting cuprates within t
scheme. They found that an increase in the superconduc
transition temperature is accompanied by a decrease in
population of the copper 3dx22y2 orbital and an increase in
n2ps

. The experimental values ofnQ obtained for Tl2212
confirm this empirical rule: the equal values of the quad
pole frequency63nQ in Tl2212 and Tl2223 correspond t
similar values ofTc , and the larger value ofnQ for oxygen
in Tl2223 ~or the larger hole concentrationn2ps

) corre-
sponds to a higher value ofTc . An increase in the population
of the oxygen orbitals may signify an increase in the wei
of the less localized O2ps

states in the wave function describ
ing the state of the conduction-band hole carriers along
Y123–Tl2212–Tl2223 series.

3.2. Magnetic relaxation of 63Cu and 17O nuclei and
characteristics of the spin-fluctuation spectrum in a CuO 2

layer

3.2.1. Spin –lattice relaxation rate of 63Cu and 17O nuclei

Figure 3 presents the temperature dependence
63(T1T)21 and17(T1T)21 for the orientations of the externa
magnetic fieldB0ic andB0'c.
t

e-

s
ng
he

-

t

e

of

When T1 was measured for63Cu, the variation of the
total intensity of the NMR spectrumy(t) measured within
the linewidth was recorded. The experimental file w
treated by the least-squares method using the formula

y~ t !5A1B exp~2t/T1!1C2 exp~26t/T1!, ~8!

whereA, B, C, andT1 are variable parameters.
The temperature dependences of63(T1T)21 for B0ic and

B'c have a characteristic maximum atT5150 K.
The spin–lattice relaxation timeT1 of 17O nuclei (I

55/2) was measured using a method that equalizes
populations of energy levels with different values of t
magnetic quantum numberm. A sample immersed in a mag
netic field is subjected to a series of radio-frequency puls
whose filling frequency varies within the total width of th
spectrum according to a definite periodic law, and the am
tude of the spin echo is measured after a timet. It follows
from the solution of the system of relaxation equations
the populations of the levels that when the populations
nonequidistant energy levels are equalized, the magne
tion Mz(t) obeys a simple exponential function of time. Th
method significantly reduced the error in the determinat
of 17T1. To separate the contributions to the resultant ec
signal of 17O atoms in different layers whenT1 was mea-
sured, the variation of the intensity of the absorption sig
corresponding to the NMR line of the O1 sites in the Cu2

layers was recorded. The experimental results were p
cessed using Eq.~8!. The coefficientC of the ‘‘slow’’ expo-
nential function reached a value of 0.8, suggesting a ne
single-exponential functional dependence of the magnet
tion restoration function.

The temperature dependence of17(T1T)21 for B0ic de-
creases monotonically in the normal state with a furth
sharp drop in the superconducting region. To elucidate
anisotropy of the spin–lattice relaxation rate, measureme
were carried out withB0'c. It was found that the anisotrop
constant17r 5(T1)ab /(T1)c51.3.

3.2.2. Spin –spin relaxation rate of copper nuclei

Figure 4 presents the temperature dependence of63T2g
21

for B0ic.
When T2g was measured for63Cu, the variation of the

intensity of the NMR line was also recorded. The experime
tal array was processed with the least-squares method u
the formula
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y~ t !5A expH 20.5S t

T2g
D 2

2
t

T2L
J , ~9!

wheret is the time between the first pulse and the spin-e
signal and

1/T2L53~1/T1!c1~1/T1!ab . ~10!

The Gaussian contributionT2g
21 to the spin–spin relax-

ation rate forB0ic increases slowly with decreasing tempe
ture, peaks atT5160 K, and then decreases. The tempe
ture resulting dependence is similar to the one presented
Tl2223 (Tc5115 K! in Ref. 4.

3.2.3. Estimates of the parameters of the spin-fluctuation
spectrum in the model of an antiferromagnetic Fermi
liquid

Millis, Monien, and Pines16 proposed a phenomenolog
cal model of an antiferromagnetic Fermi liquid to descri
the spin correlations in a CuO2 layer. In this model the val-
ues of the dynamic spin susceptibilityxs(q,v) at the
Brillouin-zone center (q50) and on its boundary (q
5QAF) are related to one another. This allowed us to disc
NMR data for different atoms within a single spin degree
freedom. The corresponding imaginary part of the susce
bility in the low-frequency limit can be written in the form

x9~q,v→0!5
px0v

G0

11b~j/a!4

@11j2~q2QAF!2#2
. ~11!

Herej is the magnetic correlation length,G0 is the charac-
teristic spin-fluctuation energy forq50, a is the lattice pa-
rameter, andb is a parameter that takes into account t
increase in fluctuation intensity forq5QAF5$p,p% relative
to the value at the Brillouin-zone center. The expression~11!
was obtained using the following coupling conditions for t
values of the spin-fluctuation parameters forq50 and
q5QAF :

xQ5xsb
1/2~j/a!2, ~12!

GQ5~G0 /b1/2!~j/a!2p. ~13!

We obtained the anisotropy constant of the spin–lat
relaxation rate for the compound in questio
63r 563(1/T1)ab /63(1/T1)c . This ratio is approximately con
stant over the entire temperature range and eq
63r 52.65(0.3). The value obtained is greater than the va
63r'1.8 for Tl2223~Refs. 3 and 4! and less than the valu
63r 53.7 for Y123~Refs. 17 and 18!. In the limit j@a, 63r is
determined by a combination of hyperfine fields.19

FIG. 4. Temperature dependence of63T2g
21 for B0ic.
o

-
-

for

s
f
ti-

e

ls
e

The temperature-independent behavior of63r may attest
to the applicability of the approximation of large values
the correlation lengthj.

As was shown in Ref. 20, the Gaussian compon
63T2g

21 of the spin–spin relaxation rate at copper forB0ic
contains information on the wave-vector-dependent real
of the spin susceptibility. Forj.a the contribution of the
fluctuations forq5QAF to T2g

21 is dominant:19

S 1

T2g
D 2

5
0.69~69gh!4~Ac24B!4

32phkB
bx0

2S j

aD 2

~14!

(g is the gyromagnetic ratio!. It is convenient to write~14! in
a different form:

S 1

T2g
D 2

5
0.69~69gh!2~Ac24B!2

16phkB

3F 2
63~T1T!ab

2
1

63~T1T!c
Gx0hG0 . ~15!

Using ~15! and the values of the homogeneous spin s
ceptibility x0, we obtain estimates of the characteristic sp
fluctuation energyhG0(T), which significantly exceeds the
valuehG051.2 eV for YBa2Cu3O7 ~Ref. 21! and is compa-
rable to the data for Tl2223 at temperature above 180 K. T
quantity hG0 remains roughly constant over a broad te
perature range (hG052.91 eV!. Similar temperature-
independent behavior was observed for YBa2Cu3O7. Unlike
the latter compound, Tl2223 exhibited a significant decre
in hG0 with temperature in the normal-state region. The s
nificant increase inhG0 attests to displacement of the fluc
tuation spectrum toward higher frequencies in Tl2212, wh
has a higher value ofTc compared with Y123.

Determination of the correlation length using Eq.~14!
requires knowledge ofb, which takes into account the in
crease in the fluctuation intensity forq5QAF5$p,p% rela-
tive to its value at the Brillouin-zone center. In particular,
the previous studiesb was assumed to be equal top2'10,
mainly for YBaCuO. The valueb560 was given in Refs. 3
and 4. In the present work we tookb50, which correspond
to the value for Tl2Ba2Ca2Cu3O102d , which is structurally
closely related and has similar superconducting propertie

The values of the correlation length of the antiferroma
netic spin fluctuations are presented in Fig. 5 in units ofa,
which is equal to the distance between neighboring Cu
oms. The temperature dependence ofj/a for Tl2212 is very
close to the analogous dependence for YBa2Cu3O7.21 Inter-

FIG. 5. Temperature dependence ofj/a for Tl2212 ~circles!, Tl2223
~squares!, and Y123~dashed line!.
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estingly enough, the value ofj/a for Tl2Ba2Ca2Cu3O10 near
Tc approximates the value obtained for Tl2Ba2CaCu2O8 in
the present work.

Monthoux and Pines8 showed that if Cooper pairing oc
curs as a result of the virtual exchange of antiferromagn
paramagnons, the interaction between the electrons in a
will be proportional to the spin-fluctuation energy. In th
case the following expression was proposed for the su
conducting transition temperature:

Tc5
G0

pb0.5
0.79~12nh!expS 2

1

l D . ~16!

Here l is the dimensionless coupling constant~for the sys-
tem under consideration 0.42,l,0.48), andnh is the hole
concentration in a layer. The factorG0 /pb0.5 preceding the
exponential in~16! for the compound investigated is 1.
times the analogous value for YBa2Cu3O7 at T5220 K. This
is fully consistent with the higher value ofTc for Tl2212
when the possible differences in the other quantities (l and
nh) are taken into account. In our opinion, the estimates
the parameters of the resulting spin-fluctuation spectrum s
port the nonphonon superconductivity mechanism discus
for YBaCuO in Ref. 8.

In metals with a broad conduction band the relaxat
rate is proportional to the temperature. This is because in
limit of short electron-motion correlation times,v0te!1,
the density of states of the spin excitations at the NMR f
quenciesv0 is constant, and their number is proportional
the temperature. The spatial dispersions of the spin susc
bility x(q) and the quasiparticle dampingGq are weak. Their
values are completely determined by the density of state
the Fermi levelN(EF). In the paramagnetic statex9(q,v)/v
exhibits a Lorentzian frequency dependence:

x~q!'x~q50![x052mB
2N~EF!,

Gq'G}N21~EF!.

In this case the expression for the relaxation rate takes
form

17W5g2hkBTC2 (
q

x9~q,v0!

v0
'g2kBTC2

3(
q

px~q!

Gq
'2g2\kBTC2N2~EF!. ~17!

When relaxation processes are analyzed in normal m
als,Ks is usually estimated using the Korringa relation:

Ks
2TT15

4pmB
2

\g2kB

[const. ~18!

The phenomenological model of a nearly antiferromagn
Fermi liquid leads to a relation between the spin–lattice
laxation timeT1 and the Knight shiftKs that differs from the
Korringa law:

KsT1T5const. ~19!

The experimental data on the Knight shift and the sp
lattice relaxation rate are closely approximated by the re
tion
ic
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17Ks
0.9560.2TT15const.

This result enables us to conclude that it is better
analyze electron excitations in the copper layers
Tl2Ba2CaCu2O82d in a model that allows for the presence
strong spin correlations between copper atoms in the C2
planes.

4. CONCLUSION

63Cu and17O NMR data for the normal and superco
ducting states of the oriented cuprate Tl2Ba2CaCu2O82d

have been presented in this paper. Information on cha
redistribution in the copper planes in comparison to ot
high-Tc superconducting oxides have been obtained from
analysis of the63Cu and 17O quadrupole frequencies. Th
data confirm the correlation detected between the increas
superconducting transition temperature in high-Tc supercon-
ductors and enhancement of the covalent copper–oxy
bonding.

An analysis of the spin–spin and spin–lattice relaxat
rates in the model proposed by Millis, Monien, and Pines
revealed a significant increase in the characteristic s
fluctuation energy in comparison to Y123, while the ma
netic correlation length does not vary significantly as t
superconducting transition temperature increases. Thus
cording to the NMR data, the increase inTc in
Tl2Ba2CaCu2O82d is accompanied by an increase in th
spin-fluctuation energy, which is a compelling argument
voring a superconductivity mechanism associated dire
with spin fluctuations in the copper layers.

This research was carried out under the auspices of S
Programs of the Russian Federation for basic research in
area of the physics of the condensed state~Superconductivity
Subdivision, Project No. 961223! and for supporting leading
scientific schools~Project No. 96-15-96515!.
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Spin effects in the magneto-oscillations of the capacitance of a two-dimensional gas
of semiconductors with Kane and Dirac spectra

V. F. Radantsev* )

Ural State University, 620083 Ekaterinburg, Russia
~Submitted 1 June 1998!
Zh. Éksp. Teor. Fiz.115, 1002–1015~March 1999!

The results of experimental investigations and computer modeling of the magneto-oscillations of
the capacitance of surface layers with a two-dimensional gas in the narrow-gap
semiconductor HgCdTe with direct and inverted band structure are compared. The structure of
the Landau levels is calculated by a model that has a clear physical interpretation and is
based on the reduction of matrix equations to Schro¨dinger-like equations with an effective potential
in which the terms responsible for nonparabolic and spinor-type effects are easily separable.
An analytic approach is developed for describing magneto-oscillation phenomena in the two-
dimensional gas of materials with a quasirelativistic spectrum, and the emergence is noted
of new theoretical parameters~compared to the parameters of materials with parabolic bands!.
Finally, the parameters of level broadening in spin–orbit split subsubbands are determined
and the dominant scattering mechanisms are discussed. ©1999 American Institute of Physics.
@S1063-7761~99!01703-5#
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1. INTRODUCTION

The lifting of the spin degeneracy of the spectrum o
two-dimensional gas by the electrostatic potential of asy
metric quantum wells due to spin–orbit coupling is a muc
discussed problem.1–12 This effect, which is actually a rela
tivistic effect, is the largest in narrow-gap semiconducto
The most reliable experimental data on the splitting para
eters have been obtained by studying magneto-oscillation
fects, with the analysis usually based on measurements o
populations of spin-split subsubbands taken from oscillat
periods or their Fourier spectra. In this approach all data
the position and amplitude of individual oscillations are
nored, which means, however, that the information about
exact energy position and broadening of Landau levels
lost. Here the commonly used assumption about the se
classical nature of the magnetic quantization of the two
mensional spectra does not correspond to the Hamiltonia
a system with strong spin–orbit coupling and does not ag
with the experimental data, which, in particular, is an in
cation that for small Landau-level numbers there is an ap
ciable nonperiodicity of the oscillations in the reciproc
magnetic field. Along with the ambiguity in determining th
Fourier frequencies~these strongly and nonmonotonical
depend on the range of field strengths being analyzed! this
leads to sizable errors in determining the splitting para
eters, thus reducing confidence in the faithfulness of
models used.

Methods based on computer simulations of magne
oscillation effects are more productive. This approach, ho
ever, is fraught with difficulties when one deals with ma
rials with a Kane spectrum, difficulties associated with t
complexity of self-consistent calculations of the spectrum
a magnetic field that systematically allow for spinor-type
fects and with the insufficient development of the theory
5521063-7761/99/88(3)/9/$15.00
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magneto-oscillation phenomena in the two-dimensional e
tron gas of semiconductors with a quasirelativistic spectru
The faithfulness of the approaches often used in the stud
such materials, approaches actually based on the para
approximation, at least requires substantiation.

This paper reports on studies of the spin–orbit couplin
related features of the energy spectrum in a magnetic fi
and of the magneto-oscillation effects in surface quant
wells in Kane semiconductors, and the manifestations
these features in materials with direct and inverted ba
structure. In addition to the experimental studies of inver
and enriched HgCdTe layers done by the magneto-oscilla
capacitive spectroscopy method, a theory for calculating
Landau levels and describing capacitance magn
oscillation effects is developed~this theory takes into ac
count spinor-type effects!. In light of the computer simula-
tion problem solved in this study, one more advantage
capacitive methods comes to the fore, in addition to the f
that such methods are not limited by the magnitude and
of the gap. Being actually the measure of the density
two-dimensional states, the differential capacitance make
possible, by measuring its absolute value, to extract inform
tion not only about the structure of Landau levels but a
about the level-smearing parameters and hence abou
dominant scattering mechanisms, including the features
such mechanisms in systems with strong spin–orbit c
pling. This is all the more important because the stand
methods of determining the broadening parameters
narrow-gap materials are often inapplicable due to the irre
lar nature of the oscillations.

2. BASIC EXPERIMENTAL RESULTS

We measured the magneto-oscillations of the cap
tance of Hg12xCdxTe-based MOS structures with a positiv
© 1999 American Institute of Physics
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~sample S1,Eg5180 meV,NA2ND51.831016cm23) and
negative ~sample P1, Eg5250 meV, NA2ND53
31015cm23) Kane gapEg with a 700–1000-Å thick anodic
oxide acting as the gate dielectric, as functions of the m
netic field strengthB and the voltageVg on the field elec-
trode. All measurements were made atT54.2 K. Examples
of the magnetic-field dependence of the oscillations ofC and
dC/dVg are shown in Figs. 1 and 2a, while theC vs. Vg

dependence atB54 T is depicted in Fig. 2b. Beats ar
clearly visible in the oscillations, while the splitting of sub
band lines into doublets is visible in the Fourier spect
which points to the splitting of subband Fermi surfaces d
to spin–orbit coupling.

Despite the fact that the splitting and especially the ra
I i

2/I i
1 of the intensities of the Fourier lines corresponding

the lower and upper spin subbands (i is the number of the
two-dimensional subband! strongly depend on the range o
field strengths being used~for instance, it is clear that a Fou
rier analysis will reveal no splitting for the range betwe
beat nodes!, several characteristic features can be detec

FIG. 1. Experimental~1! and computer-simulated~2! capacitance magneto
oscillations for the sample S1 atVg52 V (Ns53.131012 cm22). The
capacitance of the oxide in the metal oxide semiconductor structure,Coxide,
is 148 pF, and the areaS is 931024 cm2. For the sake of clarity, curve1 is
shifted upward. The following values ofTD were used in the calculations
13.5 K for i 50, 10 K for i 51, and 9 K fori 52.
g-

,
e

o

d.

While for low surface concentrationsNs the values of the
intensitiesI i

1 andI i
2 are close (I i

1.I i
2 for excited subbands

near their edges!, asNs increases the ratioI i
2/I i

1 decreases
significantly, especially for the ground subband,i 50. At ex-
tremely high subband concentrations,Ni.(2–3)
31012cm22, only one Fourier line exists, and this line co
responds, as the analysis of theNi

6 vs. Vg dependence
shows, not to the average subband concentration (Ni

1

1Ni
2)/2 ~which for regions ofNi with clearly detectable

spin–orbit splitting can be determined from the Four
transform in the range of fields between beat nodes! but to
the concentration in the upper spin subsubband,Ni

1 .
For HgCdTe with Eg.0, spin–orbit splitting in the

ground subband does not manifest itself at low concen
tions Ni either. However, in this range of concentration
double-frequency Fourier lines are detectable. This phen
enon is due to the resolution in the oscillations of individu
spin components for small Landau-level numbers (n<3)
and manifests itself in the oscillations of theC vs. Vg depen-
dence~Fig. 2b!. In samples withEg,0, there is not a single
regime in which individual spin components manifest the
selves in theC vs. Vg andC vs. B oscillations, even for the
ground Landau level.

The subband and subsubband concentrations ag
within experimental error, with the values of the Ferm
quasimomenta calculated by the method used in Ref. 8.
Ns increases, the relative splittingsDNi /Ni5(Ni

22Ni
1)

3(Ni
11Ni

2)21 tend, within experimental error ('20%!, to
their ‘‘ultrarelativistic’’ limits of approximately 0.1 for
HgCdTe with Eg.0 and about 0.18 for HgCdTe with in
verted bands~for different subbands these limits are esse
tially the same!.8

3. THEORETICAL MODEL

The modeling of capacitance magneto-oscillations
quires solving three relatively independent problems:~1! a
calculation of the energy position of Landau levels in a se
i-
FIG. 2. Experimental~1! and computer-simulated
~2! ~a! magneto-oscillations ofdC/dVg at Vg

58 V ~with N151.6531012 cm22 and N254.9
31011 cm22) and~b! theC vs Vg curves for a mag-
netic field B54 T for the sample P1. The capac
tance of the oxide,Coxide, is 195 pF, and the areaS
is 1231024 cm2. The following values ofTD were
used in the calculations: 9 K fori 51 andTD56 K
for i 52. The experimentalC vs.Vg curve is shifted
upward by 20 pF.
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consistent surface quantum well,~2! a calculation of the den
sity of states based on a model of magnetic-level broaden
and ~3! a calculation of the differential capacitance of t
space charge region with the spectrum quantized by ele
and magnetic fields.

3.1. Spectrum in a magnetic field

The complexity of a theoretical description of the su
band spectra in the surface layers of Kane semiconducto
due not only to the matrix nature of the Hamiltonian and
fact that the boundary conditions imposed on the spinor c
ponents are ambiguous13,14 but also to the complexity of the
self-consistency procedure in view of the dependence of
wave functions describing the electron-density distribution
the direction of confinement on the two-dimensional mom
tum, the number of the subband, the spin, and interband
nel mixing. In the presence of a vector potential, direct s
consistent calculations of the density of states are imposs
in view of their computational complexity~to say nothing of
trying to model capacitance oscillations as a function oB
and especially the depth of the potential well!.

We believe it is justified to carry out the calculation
of the spectrum within an approach developed in Refs.
and 16 for describing vacuum condensate of Dirac electr
near supercharged nuclei and used in Refs. 8 and 17
analyzing surface quantum wells in Kane and Dirac semic
ductors in the absence of a magnetic field. AtB50 the re-
sults obtained by this approach agree fairly well~including
spinor-type effects! with the experimental data and with d
rect numerical calculations.9 ~As noted in Ref. 9, the differ-
ence between the approach of Minkovet al.9 and our ap-
proach developed in Ref. 8 concerns a unique case of va
states near the bottom of a subband for a narrow and sha
unfilled quantum well in HgCdTe with an exceptionally hig
level of doping,.1019cm22; in standard conditions, includ
ing those in which the samples and regimes were studie
this research, the two approaches lead to essentially iden
results.!

When the applied magnetic field is parallel to the dire
tion of the confinement potentialV(z), the motion in the
two-dimensional plane can be quantized, which means
within the six-band model~valid for small values ofEg) the
problem of calculating the spectrumE(B) clearly reduces to
solving the following matrix equation~here we will not write
the gauge-dependent standard expressions that describ
behavior of the wave functions in the plane perpendicula
the magnetic field!:
g,

ric

-
is

e
-

e
n
-
n-
-
le

5
s

or
n-

nt
w

in
cal

-

at

the
o

UH11 H12

H12 H22
US f 1

n21~z!

f 3
n22~z!

f 5
n~z!

f 2
n~z!

f 4
n21~z!

f 6
n21~z!

D 50,

H125U 0 0 sb\ k̂z

0 0 0

sb\ k̂z 0 0
U , ~1!

H115U 2E2

A3~n21!

2
EB

An

2
EB

A3~n21!

2
EB 2E1 0

An

2
EB 0 2E1

U ,

H225U 2E2

A3~n11!

2
EB 2

An

2
EB

A3~n11!

2
EB 2E1 0

2
An

2
EB 0 2E1

U ,

where E65E2V6Eg/2, sb5AuEgu/2mb and mb are the
Kane velocity and mass, andn is the number of the Landau
level. The ‘‘magnetic energy’’ EB5A2mbsb

2\vb

5A2sb\/l (\vb5\eB/mbc is the cyclotron energy! and
the magnetic lengthl5Ac\/eB are actually independent o
the band parameters, since the value ofsb for all Kane semi-
conductors is essentially the same. Reasoning along the s
lines as in Ref. 8, i.e., ‘‘squaring’’ the system with respect
the componentsf 1

n21 and f 2
n for electron layers in materials

with Eg.0 ~we call the electrons in such layerss-electrons!
or f 5

n and f 6
n21 in materials withEg,0 (p-electrons!, we can

write the subband equations in a form that is the same fos-
and p-electrons, i.e., in the form of a system of tw
Schrödinger-like equations for the envelopesw2.5

n

5 f 2.5
n /AHn

1 andw1.6
n215 f 1.6

n21/AHn
2,
U\2k̂z
2

2mb
2~Eeff2U02UB

12UR
1! 2 iU s.o.

1 2Cg
1k̂z

iU s.o.
2 1Cg

2k̂z
\2k̂z

2

2mb
2~Eeff2U02UB

22UR
2!
U S w2.5

n

w1.6
n21D 50, ~2!
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with an effective energyEeff5(E22mb
2sb

4)/2mbsb
2 and an

energy-dependent potential containing a Klein–Gordon te
U05(V222EV)/2mbsb

2 and three spinor-type potentials: th
‘‘magnetic’’ potential

UB
65EB

2 g2nR613~n61!

2mbsb
2

,

the potential responsible for interband tunnel mixing

UR
65

sb
2\2

2mbsb
2 H F3

4 S 11Ln
6

Hn
6 D 2

1
Ln

6

Hn
6E1

G
3S dV

dzD 2

1
11Ln

6

Hn
6

d2V

dz2 J ,

and the spin–orbit term

Us.o.
6 5g

sb\EB

4mbsb
2
AnRn

7F S 11Ln
6

Hn
6

1
11Ln

7

2Hn
7

3~Rn
621!D dV

dzG ,

where

Cg
65CgARn

7 ~Rn
621!, Cg5g

sb\EBAn

4mbsb
2

,

le

ld

fo
-
–
fo
s
lk
im
m
andRn

65Hn
6/Hn

7 . In the above expressions we must putg
521, Ln

653EB
2(n61)/4E1

2 , and Hn
65E22Ln

6E1 for
p-electrons andg511, Ln

650, and Hn
65E1 ~here Rn

6

51) for n-electrons~the dimensionless parameterLn
6 and

the second term in the expression forUB
6 emerge because o

the contribution of the heavy-hole band!. Clearly, an equa-
tion for Kanes-electrons but withg512 also describes the
subband Landau levels in the case of a Dirac spectrum.
to the spin–orbit termUs.o.

6 ~and forp–electrons, also due to
the terms linear ink̂z), the system of equations does not~in
contrast to the case withB50; see Ref. 8! separate into
independent equations for individual spin components.

Below, in calculating the self-consistent potentialV(z)
and in quantizing the spectrum in the effective potential,
employ, as we did in Ref. 8, the semiclassical approa
~clearly, if we were to apply the semiclassical approach
rectly to Eq.~1!, we would lose spinor-type effects, and th
is equivalent to employing Klein–Gordon approximatio
that takes into account only nonparabolic effects!. By intro-
ducing the substitution

w i
m5Ci

mexpF i E kz~z! dzG
and ignoring the terms proportional toi (z dkz /dz1kz)

2 ~i.e.,
by ignoring higher-order terms in the expansion of the act
in powers of\), we reduce the system~2! to an expression
for kz :
kz
65

A2mbsb
2

sb\ S A

2
7AA2

4
2~Eeff2U02UB

12UR
1!~Eeff2U02UB

22UR
2!1Us.o.

1 Us.o.
2 D 1/2

, ~3!
iza-

ane
a.

ef.
ds

in
l-
to
r in

ell
where

A52~Eeff2U0!2~UB
11UR

11UB
21UR

2!

2 S 2mbsb
2

sb
2\2 D Cg

2~Rn
121!~Rn

221!,

which along with the Bohr–Sommerfeld quantization ru
~here it is convenient to pass to integration overV since for
self-consistent potentials the Poisson equation directly yie
dV/dz as a function ofV)

E
V(z50)

V(kz50)

kz~E,V!S dV

dzD 21

dV5pS i 1
3

4D ~4!

determine the magnetic levelsEn
6( i ,B) in the quantum well

V(z). As in the case of a zero magnetic field, the term 3/4
the phase factor in~4! corresponds to an infinitely high po
tential barrier fors- and p-electrons at the semiconductor
insulator interface, i.e., to vanishing boundary conditions
the corresponding spinor components~the other component
do not vanish!, while the boundary conditions from the bu
side of the structure are dictated by the presence of an
penetrable potential barrier in the effective potential.8,15–18
s

r

r

-

For Dirac electrons, this can be considered a general
tion of the results of Artimovich and Ritus18 that allows for
spin effects and magnetic quantization. In the case of K
s-electrons we arrive at the results of Ohkawa and Uemur19

Clearly, asn→`, both EBAn61 andEBAn→sb\kz (kz is
the two-dimensional quasimomentum! and Eqs.~3! and ~4!
describe the subband spectraEi

6(ks) in the absence of a
magnetic field~they become the respective formulas of R
8!, while atV5const, Eq.~3! describes the Landau subban
En

6(B,kz) in the bulk of a Kane~Dirac! semiconductor. Note
that for p-electrons the terms in~3! proportional to Cg

~which originate from the terms in~2! linear in k̂z) do not,
generally speaking, produce a contribution appreciable
comparison toUs.o.

6 . However, ignoring these terms in ca
culations that do not account for spin–orbit coupling leads
significant errors and, in some cases, changes the orde
which the spin levels are arranged.

In the ultrarelativistic limitEg50 in undoped quantum
wells, the spectra are scale-invariant with respect to the w
depthms ~as they are in a vanishing magnetic field!. Figure 3
depicts these spectra fors-electrons (Eg510) and
p-electrons (Eg520) in dimensionless coordinatesE/ms

and B/Bs5(EB /ms)
2 (Bs5cms

2/2esb
2\). Spin–orbit cou-
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FIG. 3. The Landau levels of the ground subband f
~a! s- and ~b! p-electrons in the quasi-ultrarelativistic
limit Eg50. Energies are measured from the Fer
level EF .
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pling and interband resonant mixing lead to a transforma
of the spectrum so dramatic that the introduction of ag factor
~which is largely a nonrelativistic parameter! to describe the
spin splitting of a two-dimensional spectrum in a magne
field loses all meaning even for small-number Landau lev
The magnitudes of the effects fors- and p-electrons differ
substantially both in the low-energy region~see the insets in
Fig. 3! and for the states tested in oscillation effects close
the Fermi level, where the contribution of the spin–or
term forp-electrons is almost twice as large. For Dirac ele
trons, in view of the larger value of the parameterg for
p-electrons (g52), the spin–orbit splitting at all energies
twice as large as it is fors-electrons (g51) and at the Ferm
level is close to the splitting forp-electrons. In all three
cases, the spectra cannot be described by the Bychk
Rashba formula with a quasimomentum-independent sp
orbit coupling parametera ~see Ref. 1!.

3.2. Density of states

The density of states, whose singularities are respons
for the magneto-oscillations of kinetic and thermodynam
characteristics, is determined by the positions of the Lan
levels and the level-broadening parameters. The calcula
of collision broadening of magnetic levels is a complicat
problem even in the one-band approximation.20,21 We study
this problem under the assumption of independent sub
band Landau levels of Gaussian shape,22,23

Di
6~E!5

eB

c\A2p3 (
n50

`
1

G i
6

expF2S 2
E2Eni

6

G i
6 D 2G , ~5!

with the broadening parametersG i
6 not depending explicitly

on n but depending onB ~and energy-dependent for the no
parabolic system considered here!. To describe magneto
oscillation effects analytically, which is preferable from th
viewpoint of obtaining greater physical clarity of the resu
and establishing the specific features of oscillation phen
ena in two-dimensional systems with quasirelativistic spe
in comparison to the case of standard bands,22 we use ana-
lytic approximations that are in good agreement with
numerical results for the subsubband dispersion laws in
form of dispersion relations of the relativistic type,
n

c
s.

o
t
-

v–
–

le
c
u

on

b-

-
a

e
e

Ei
6~k!5A~si

6\k!21@m0i
6~si

6!2#22m0i
6~si

6!2, ~6!

with the subsubband Kane massesm0i
6 and velocitiessi

6 de-
pending on the surface chemical potentialms ~these masses
and velocities can be found for the calculated subband c
centrations and effective masses at the Fermi level8!. Using
an analytic description of the semiclassical spectrum in
magnetic field, a description that corresponds to such a
resentation~to make the notation simpler we will drop all6
labels!,

Eni5AEBi
2 ~ni1d i !1mi0

2 si
42mi0si

2 ~7!

(EBi5A2 si\/l), instead of solving Eq.~4! with kz from ~3!
numerically cannot greatly affect the density of states and
oscillation amplitudes@in calculating the energy positions o
the levels one must use the ‘‘exact’’ solutions based on~3!
and~4!#. Plugging~7! into ~5! and using the Poisson summ
tion formula, we arrive, via direct calculations under the a
sumption thatG i!E1m0isi

2 ~which is justified even for
states near the bottom of subbands!, at a ‘‘harmonic’’ repre-
sentation for the density of states~convenient for describing
oscillation effects!:

Di~E!5
E1m0isi

2

2psi
2\2

Ap

2

3(
j 50

`
~21! j~22d j 0!

~11 j 2p2g i
4!5/4

~cosu1 j pg isinu!

3expF2
2

11 j 2p2g i
4 S j pG i~E1m0isi

2!

EBi
2 D 2G , ~8!

where

g i5
G i

EBi
,

u5
1

2
arctan~ j pg i

2!1 j pg i
2

3F 2~E1m0isi
2!2

G i
2~11 j 2p2g i

4!2
2

m0i
2 si

41d iEBi
2

G i
2 G ,



a-
-
e

o

l

y

in

s

te
n

tia
o

n
ce

,

-
a-

zero

e
is
id-
rum,
s

the

o
are

xist
rac

pa-

557JETP 88 (3), March 1999 V. F. Radantsev
with d j 0 the Kronecker delta. Within the Born approxim
tion, the broadening parametersG i are linked to the momen
tum relaxation timest i in zero magnetic field through th
relationship G i

25A2/p \2 vci(E)/t i ~see Ref. 20!, where
vci(E)5eB/cmci(E), with mci(E)5m0i1E/si

2 , and Eq.
~8! becomes simpler~assuming the broadening is not to
large, org i

2!1):

Di~E,B!5Di~E,0!F112(
j 51

`

~21! j

3expS 2
j 2p

vci~E!t i
D cos~2p jni~E!!G , ~9!

whereDi(E,0)5mdi(E)/2p\25(W1m0isi
2)/2psi

2\2 is the
density of states atB50 ~note that in the two-dimensiona
case the effective mass of the density of states,mdi , coin-
cides with the cyclotron massmci). The Landau-level num-
ber ni , which in ~9! is considered an arbitrary number~not
necessarily an integer!, is determined at a given energy b
Eqs.~3! and~4! or, in the simplest approximation, by Eq.~7!.
The corresponding cyclotron energies can also be determ
from ~4! as\vc(E)5E(n10.5)2E(n20.5), but the results
differ little from those provided by analytic approximation
for vci . Clearly, in the nonrelativistic limitsi→`, Eq. ~9! at
j 51 becomes the Ando formula.22

Direct comparison of calculations based on~5! and ~8!
suggests that the approximations employed in deriving~9!
are meaningful for essentially all regimes and parame
important from the experimental viewpoint, i.e., regimes a
parameters corresponding to a sinusoidal shape of theD vs.
E dependence~high Dingle temperaturesTD5\/2kBpt) and
to a ‘‘nonsinusoidal’’ shape of the dependence~low Dingle
temperatures!.

3.3. Capacitance magneto-oscillations

For systems with a multiband spectrum, the differen
capacitance of the space charge region with a tw
dimensional gas,

Cs.c.5e2
dNs

dms
5e2

d

dms
(
i ,s

Nis5(
i ,s

Cis , ~10!

whereNis is the surface concentration in the spin branchs
of the subbandi, is defined as the sum of partial subsubba
capacitances~as before, we discard the subsubband indi
s56):

Ci5
e2dNi

dms
5

e2dNi

dmFi

dmFi

dms

5
e2

ps2\2

dmFi

dms

d

dmFi
E Di~E! f ~E2mFi ! dE, ~11!

where f (E2mFi) is the Fermi–Dirac distribution function
andmFi is the subband Fermi energy. Using~9! and ignoring
the integrals of odd functions, which is justified at low tem
peratures (kT!mFi

), we arrive at an expression for the c
pacitance in a magnetic field:
ed

rs
d

l
-

d
s

Ci~B!

Ci~0!
5122(

j
~21! jexpS 2

j 2p

vcit i
D E

0

`

dy

3$cos~2p jni ! @cos~2p jcBi
2 y2!

2~ jct i1cTiy tan~ jbiy!!sin~2p jcBi
2 y2!#

2sin~2p jni ! @sin~2p jcBi
2 y2!1~ jct i

1cTiy tan~ jbiy!!cos~2p jcBi
2 y2!#%

cos~ jbiy!

2cosh2~y/2!
,

~12!

where

y5
E2mFi

kT
, vci5vci~mFi !, bi5

2pkT

\vci
,

cTi5Kmi

kT

mFi
, ct i5Kmi

\

2t imFi
,

cBi5
kT

EBi
5

kTl

A2 si\
,

Kmi5F11
d~m0isi

2!

dmFi
GF11

m0isi
2

mFi
1

d~m0isi
2!

dmFi
G21

,

Ci~0!5
e2dNi

dmFi

dmFi

dms
5

e2mFi

2psi
2\2 F11

m0isi
2

mFi

1
d~m0isi

2!

dmFi
G dmFi

dms
5e2FDi~mFi ,0!

1
mFi

2psi
2\2

d~m0isi
2!

dmFi
G dmFi

dms
.

Note that the equivalence between the capacitance in
magnetic field, Ci(0), and the quantity
D(mF,0) e2 dmF /dms ~actually, the density of states at th
Fermi level!, which occurs in the parabolic approximation,
violated for the system with a relativistic spectrum cons
ered here. In comparison to the case of a parabolic spect
the expression~12! for capacitance magneto-oscillation
contains new parameters of the theory:cT , ct , andcB . The
first two parameters reflect the energy dependence of
effective mass of the density of states,mdi , and the cyclo-
tron massmci in the Dingle exponential factor. Here tw
effects are important: the fact that the subband spectra
nonparabolic~for a fixed well depth!, and the variation of the
parameters of the subband spectra,m0i

6(ms), under modula-
tions of the well depth. The third parameter,cB ~Vshivtsev
and Klimenko24 suggested that such a parameter must e
in the theory; they, however, examined the case of Di
electrons in a weakly relativistic system,mF<ms2, and ig-
nored collision broadening!, is actually determined only by
the ratioT/AB and is independent of band and subband
rameters, since the subsubband Kane velocitiessi

6(ms) dif-
fer little from the universal quantitysb .
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In strong magnetic fields, the phase 2p j cB
2y2 is station-

ary in the range of values ofy that provides the leading
contribution to the integral, with the result that the integral
~12! can be evaluated:

Ci~B!

Ci~0!
'122(

j
~21! j

j pbi

sinh~ j pbi !
expS 2

j 2p

vcit i
D

3@cos~2p jni !2 jct i sin~2p jni !#. ~13!

Note the quadratic dependence in the two-dimensional c
of the arguments of the Dingle exponentials on the harmo
numberj in the expressions~9!, ~12!, and~13! for magneto-
oscillations. In the nonrelativistic limit (si→`) we have
cTi5ct i5cBi50 ~when cTi5cBi50, the transition from
~12! to ~13! is exact!, and atj 51 Eq.~13! becomes the Ando
expression for magneto-oscillations in materials with pa
bolic bands.20,22 We see that the parabolic approximation
sufficient in describing oscillations in materials with a no
parabolic spectrum~with the rest mass in the amplitude fa
tor replaced by the cyclotron mass at the Fermi level! only if
strong magnetic fields are involved,EBi.(5–10)kT, and the
smearing of the levels is not too great,mFi>\/2t i .

When there is spin–orbit splitting, the individual sp
branches differ in both density of states and cyclotron
ergy, and the partial oscillations of capacitance for the s
subsubbands differ not only in periods~which leads to ex-
perimentally observable beats! but also in amplitudes, in-
cluding the case in which all relaxation times are the sa
Here, although the density of states and hence the pa
capacitance for the low-energy branch of the spectrum
B50 are larger, the oscillation amplitude for this subsu
band may be lower due to the large cyclotron-mass value
the parameterb and in the Dingle exponential factor, esp
cially for p-electrons. Thus, the experimentally observed d
ference in the amplitudes of different spin components of
oscillations~probably Refs. 25 and 5 were the first pape
where this difference was pointed out! is natural for systems
with strong spin–orbit coupling and does not require us
ideas about spin-dependent scattering for its explanat
Clearly, the amplitude ratio depends both on the surface c
centration ~through effective subband masses! and on the
magnetic field, temperature, and broadening parameters

4. RESULTS OF COMPUTER SIMULATION AND
DISCUSSION

When calculating the capacitance of MOS structur
C(B)5CoxideCs.c.(B) @Coxide1Cs.c.(B)#21, we used the val-
ues of the geometric capacitance of the oxide,Coxide, found
from the experimental values of capacitance in the region
large negative band bending, which corresponds to a str
enrichment in holes~the capacitance–voltage characterist
of the structures being studied, including those withEg.0,
up to frequencies;1 MHz of the low-frequency type!. The
subband capacitances in zero magnetic field and the volt
Vg across the structures~needed in calculations ofdC/dVg)
were calculated from the dependence of the subsubband
centrations on the surface potential within the approach
veloped in Ref. 8. For inversion layers we allowed for t
se
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substantial increase withms of the surface density of the
hole-uncompensated acceptor charge in the depletion l
~this increase is important for narrow-gapsemiconduct
and especially for gapless semiconductors because the t
ness of the inversion layer in such materials is close to
overall thickness of the space charge region!. Usually the
calculated values of the capacitances for the case of
magnetic field are in good agreement with the experime
values.

Although the structure of the oscillations modeled w
only one adjustable parameter, the Dingle temperature
close to the structures detected in experiments for the s
two-dimensional concentration, the exact positions of
peaks in the oscillations and the beat nodes differ. T
should come as no surprise since in the six-band model u
here the contribution of distant bands to the bulkg factor is
ignored, with the position of the spin components of t
Landau levels being very sensitive to the value of this fac
As for the beat periods, comparison of the modeled and m
sured oscillation curves points to a substantial~up to 20% for
the ground subband and approximately 10% for excited s
bands! theoretical underestimation of the size of spin–or
splitting in materials with a positive gap, while an analys
based on subsubband populations reveals no discrepa
~due to the large experimental error, as pointed out in S
2!. The differences may be related to the contribution of
interface region to spin–orbit splitting11 ~this contribution
cannot be consistently calculated in the effective m
method!. In both cases, within the Rashba mechanism
corrections are proportional to the electric field strength a
can be taken into account phenomenologically by introd
ing a factor into the spin–orbit term of the effective Ham
tonian. Indeed, the discrepancies are removed by introdu
a factor of roughly 1.2 intoUs.o. and a correction~which
models the contribution of distant bands to theg factor! to
the phase of the oscillations~both the factor and the correc
tion are the same for all concentrations, subband numb
temperatures, and broadening parameters!.

The computer-modeled magneto-oscillations depicted
Figs. 1 and 2 are in good agreement with the experime
data regarding both the position of the oscillations and b
nodes and the absolute values of capacitance. As noted
lier, in our calculations we used two adjustable parame
for p-electrons (TD and a correction to the oscillation phas!
and three adjustable parameters fors-electrons~the addi-
tional parameters being the factor ofUs.o. mentioned earlier!.
In all regimes and for all magnetic-field and temperatu
ranges in which capacitance magneto-oscillations were
served in the experiments with the specified materials,
culations based on~12! differ very little from those obtained
in the approximation~13!. Usually the contribution of the
sinusoidal term in~13! is also insignificant. The absolut
values of the capacitance oscillation amplitudes and th
magnetic-field dependence are described satisfactorily by
theory on the assumption that the values of the relaxat
time adjustable parameterst i in spin-split subsubbands use
in the modeling process are roughly the same. In some c
where up to three beat nodes are observed in experime
digital filtering and the inverse Fourier transform make



e-
e
d

-
o
ci

h
er
in

rg
n
r

r-
a-
ic

su
d

on

. 2
s

f
s,
de
he
a
n

e

tter-
y is
to
ts,
all

is of
r of
the

t.
on
n
uc-
h
on
ion
the

e is

s-
of

e

the

A
r-
late

in a
uc-
ing

for
the
he
duc-
rac
rder
o-
ec-
ters
atic
aci-
res

c-
anti-
wo
lly
he
cor-

he
al-
ny
heir
wo-
o-

f

on
f c

559JETP 88 (3), March 1999 V. F. Radantsev
possible to reliably separate the ‘‘partial’’ oscillations b
longing to individual subsubbands. The relaxation tim
found from such oscillations for different spin subsubban
coincide, within experimental error, but the amplitudesI 1

and I 2 may differ substantially~severalfold!. Note that in
such cases the values oft i found for the magnetic-field de
pendence of oscillation amplitudes are close to those
tained by fitting the calculated absolute values of the os
lation amplitudes to the experimental values.

The curves representing theTD vs. Ns dependence with
a minimum atNs'231012cm22 ~for the sample S1 such
curves are depicted in Fig. 4! are similar in shape to suc
curves for silicon inversion layers. In contrast to the latt
however, the declining section is not related to the screen
of Coulomb scattering, since the values ofTD predicted by
the theory and corresponding to scattering off the cha
built into the oxide and off ionized impurities are lower tha
the measured values for the studied structures by a facto
at least ten. A further increase in concentration drivesTD up,
which is characteristic of scattering off ‘‘bumps’’ on the su
face, but theTD vs. Ns dependence is far from being qu
dratic. What is more, the dependence is sublinear, wh
suggests that the effectiveness of this mechanism is
pressed substantially as the Fermi de Broglie wavelength
creases~this is possible at large values of the correlati
length L). The best agreement between the values ofTD

calculated according to the approach developed in Ref
and the experimental values for the structures under inve
gation is achieved for an average fluctuationD520–25 Å
and a correlation lengthL'100–120 Å, which is almost ten
times the corresponding values for silicon. The values oL
are also almost twice the values for binary semiconductor26

which should come as no surprise in view of the many
fects at the interfaces of the ternary compounds and t
oxides. The strong broadening of levels near the subb
edges suggests that there is an additional reaction cha
and can be related to the interband~intersubband! scattering,
whose effectiveness decreases asNs increases, due to th

FIG. 4. The Dingle temperature as a function of the two-dimensional c
centration for the sample S1. The solid curves represent the results o
culations for the scattering off ‘‘bumps’’ on the surface atL5110 Å and
D520 Å.
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increase in intersubband energies. Calculating such sca
ing consistently is a separate problem, whose complexit
due not only to the complexity of the spectrum but also
the need to allow for screening and multielectron effec
since in the systems considered the Fermi wavelengths in
regimes prove to be, as it can be demonstrated on the bas
the results reported in Ref. 8, quantities of the same orde
magnitude as the Thomas–Fermi screening lengths and
size of the wave functions in the direction of confinemen

While in the modeled oscillations of structures based
materials withEg.0 the individual spin components ca
easily be resolved for small Landau-level numbers, in str
tures with Eg,0, where the spin–orbit splitting is muc
larger and, correspondingly, the difference in the cyclotr
splitting for distinct spin subbands is greater, such resolut
cannot be achieved no matter how realistic the values of
broadening parameters are or how low the temperatur
~this fact is fully corroborated by experiments!. Note that the
deterioration of the resolution of spin splitting with increa
ing temperature and broadening of levels in oscillations
structures withEg.0 is due not only to the increase in th
smearing of the Fermi step~the ‘‘spectral gap’’! but also,
primarily for small values ofB and high values ofT, to a
much more rapid decrease in the oscillation amplitude for
low-energy branch of the spectrum.

In conclusion we will briefly summarize the results.
relatively simple model that allows for a clear physical inte
pretation has been proposed. The model is used to calcu
the energy spectrum of a two-dimensional electron gas
magnetic field in the surface quantum wells of semicond
tors with Kane and Dirac spectra and is based on reduc
the initial matrix equations to a Schro¨dinger-like equation
with an effective potential in which the terms responsible
the nonparabolic features, the spin–orbit coupling, and
interband tunnel mixing are easily distinguishable. T
model also reveals the specific features of Kane semicon
tors with direct and inverted band structure and with a Di
spectrum. An analytic approach has been developed in o
to describe the magneto-oscillation effects in a tw
dimensional gas of materials with a quasirelativistic sp
trum. The emergence is noted of new theoretical parame
~compared to the parameters of materials with a quadr
spectrum!. Comparison of the modeled and measured cap
tance magneto-oscillations in HgCdTe-based MOS structu
suggests that probably there is a small (,20%! contribution
of the interface region to the spin–orbit splitting of the spe
trum. As has been discovered in experiments and subst
ated in the theory, the oscillation amplitudes referring to t
spin–orbit split ladders of Landau levels differ substantia
while their collision-broadening parameters are equal. T
established average displacements of interfaces and the
relation lengths characterizing the scattering off t
‘‘bumps’’ on the surface exceed many times over their v
ues in silicon and binary semiconductors in view of the ma
defects at the interfaces of the ternary compounds and t
oxides. The short relaxation times near the edges of the t
dimensional subbands and their increase with the tw
dimensional concentrationNs in the region of small values o
Ns can be related to intersubband scattering.
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72, 834~1977! @Sov. Phys. JETP45, 436~1977!#; A. B. Migdal, Fermions
and Bosons in Strong Fields@in Russian#, Nauka, Moscow~1978!.

17V. F. Radantsev, Semicond. Sci. Technol.8, 394 ~1993!.
18G. I. Artimovich and V. I. Ritus, Zh. E´ ksp. Teor. Fiz.104, 2912 ~1993!

@JETP77, 348 ~1993!#.
19F. Ohkawa and Y. Uemura, J. Phys. Soc. Jpn.37, 1325~1974!.
20T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys.54, 437 ~1982!.
21L. Spies, W. Apel, and B. Kramer, Phys. Rev. B55, 4057~1997!.
22T. Ando, J. Phys. Soc. Jpn.27, 1233~1974!.
23R. Gerhardts, Z. Phys. B21, 275 ~1975!.
24A. S. Vshivtsev and K. G. Klimenko, Zh. E´ ksp. Teor. Fiz.109, 954~1996!

@JETP82, 514 ~1996!#.
25V. F. Radantsev, T. I. Deryabina, L. P. Zverev, G. I. Kulaev, and S.

Khomutova, Zh. E´ ksp. Teor. Fiz.88, 2088 ~1985! @Sov. Phys. JETP61,
1234 ~1985!#.

26V. F. Radantsev, T. I. Deryabina, L. P. Zverev, G. I. Kulaev, and S.
Khomutova, Zh. E´ ksp. Teor. Fiz.91, 1016 ~1986! @Sov. Phys. JETP64,
598 ~1986!#.

Translated by Eugene Yankovsky



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS VOLUME 88, NUMBER 3 MARCH 1999
Drift in a random walk along self-similar clusters
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This paper is a study of the relationship between diffusion and conductivity when the random
walks of particles occur via Le´vy hops. It shows that because of the unusual nature of
Lévy hops the particle mobility is a nonlinear function of the electric field in arbitrarily weak
fields. The crossover to ordinary diffusion by introduction of a finite displacement in
each step is also discussed. ©1999 American Institute of Physics.@S1063-7761~99!01803-X#
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1. INTRODUCTION

Classical diffusion, in which diffusing particles onl
wander to nearest neighbors, has been thoroughly stud
and many methods related to the investigation of this p
nomenon have been developed. Random walks, in wh
Brownian particles diffuse not just to nearest neighbors, h
been less well-studied, however. To this class of diffus
problems belongs the problem of random walks of partic
via Lévy hops. What makes Le´vy hops so special is that in
each step a particle can travel arbitrarily far, so that the
displacement per unit time can be infinite.1 Numerical mod-
eling of diffusion via Lévy hops has shown that the poin
visited by a diffusing particle form spatially well-separat
clusters. A more thorough examination shows that each c
ter is in turn a collection of clusters. Thus, we obtain a hi
archy of self-similar clusters.2 In this way Lévy diffusion
constitutes a random walk among self-similar clusters. T
probability distribution function in the Fourier representati
has the form

P~k,t !5exp~2Aukumt !, ~1!

where A and m are positive quantities, and 1,m,2. Such
distributions are known as Le´vy distributions. A detailed de-
scription of Lévy flights can also be found in Ref. 3.

The study of Le´vy diffusion is a problem in its own righ
as a microscopic model with unusual diffusion, but it is a
of interest in connection with possible applications to pro
lems of hopping conductivity in disordered media,4 when the
hop probability and the hop length are uncorrelated.

The goal of the present work is to study the relations
between diffusion and conductivity when there is Le´vy dif-
fusion in the system. When there is ordinary diffusion a
the response is linear~Ohm’s law!, the relationship is known
as the Einstein formula. However, in the general case it is
known what this relationship is. In this paper we general
to the case where in the event of Le´vy diffusion the drift
velocity proves to be a nonlinear function of the elect
field:

V}Em21. ~2!

Note that the nonlinearity occurs in arbitrarily weak fiel
and is a consequence of the unusual nature of the diffus
5611063-7761/99/88(3)/4/$15.00
d,
e-
h
e

n
s

s

s-
-

e

-

p

d

ot
e

n.

The degree of nonlinearity is described by the critical ind
m of Lévy hops. In other words, Ohm’s law~linear response
to the field! is a consequence of the ordinary nature of d
fusion, so that for other diffusion, e.g., Le´vy hops, Ohm’s
law is not satisfied. This becomes especially evident whe
addition to Lévy hops there is ordinary diffusion, i.e., pa
ticles diffuse in the usual way. Then, in accordance with
two limits on the behavior of particles in random walks, t
particle velocity has two asymptotic regimes, linear and
nonlinear. We also interpret the results from the standpo
of scaling. The results of this research were previously p
lished in a brief communication.5

The nonlinearity of the function in~2! can be explained
in the following way. If we combine Eq.~1! and the ordinary
expression for the field current, we readily obtain an eq
tion for diffusion along self-similar clusters in an electr
field in the form of a continuity equation:

@]/]t 1~Aukum1 ikV!#N~k,t !50. ~3!

HereN(k,t) is the number density of the diffusing particle
in the Fourier representation, and the current has a diffus
component and a field component, with the latter being
the ordinary formJ5NV.

Next we use the well-known ideas developed by E
stein. In equilibrium, the diffusion currentJd is balanced by
the field currentJf and the distribution function is of the
Boltzmann form:

Jd1Jf50, N5exp~2 U/kT!, ~4!

whereU is the potential energy.
Using the series definition of a derivative of fraction

order,6

ukum5 lim
«→0

~D21«!m5 (
n50

`

Cn
mS D

« D n

, ~5!

we obtain the general expression for the drift velocity:

V5exp S U

kTD lim
«→0

~D21«!(m22)/4¹expS 2
U

kTD . ~6!
© 1999 American Institute of Physics
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For a uniform electric fieldU52qEx, and we obtain the
result ~2!.

2. DISCRETE DISTRIBUTION OF LÉVY HOPS

Let us consider the one-dimensional analog of Le´vy
hops.1 We denote the probability of finding a particle at th
l th site aftern steps byPn( l ), and the hop probability distri-
bution in length byf ( l ):

Pn11~ l !5 (
m52`

`

f ~ l 2m!Pn~m!. ~7!

For f ( l ) we take

f ~ l !5 (
n50

`

a2n~d l ,2bn1d l ,bn!, ~8!

wheredn,m is the Kronecker delta. Then the structure fun
tion for such a random walk is

l~k!5E f ~ l !exp~ ikl ! dl5 (
n50

`

a2ncoskbn. ~9!

Note that the structure functionl(k) satisfies the functiona
equation

l~k!5al~kb!1cosk. ~10!

Hence, asK→0, the structure function is a power law wit
exponentm5 ln a/ln b. Nonanalytic behavior of the type
ukum as k→0 can be obtained with exponentm by taking
Mellin transforms or using the Poisson sum formula~see
Ref. 1 for details!.

Next we introduce anisotropy into a random walk alo
self-similar clusters. By virtue of the specific features
Lévy hops, a particle can travel any distancebn in one step,
so that a small anisotropy 11a with a5qEs/kT over a
small displacements can turn out to be exponentially larg
over large distancesbn. Since in each step the diffusing pa
ticle leaves a site, the sum of probabilities of moving alo
the field,W1 , and against the field,W2 , must equal unity,
i.e., W11W251. This leads to an expression for the pro
abilities of moving along and against the field:

W65
~16a!bn

~11a!bn
1~12a!bn . ~11!

Hence, if diffusion in an electric field occurs via Le´vy hops,
the structure function is

2l~k;E!5 (
n50

`

a2n@coskbn1 i sin~kbn! ~W12W2!#. ~12!

As in ordinary diffusion, the second term contains the d
velocity ask→0:

V5 i
]l~k;E!

]t
uk→05 (

n50

` S b

aD n ~11a!bn
2~12a!bn

~11a!bn
1~12a!bn

' (
n50

` S b

aD n

tanhabn. ~13!

Clearly, the drift velocity satisfies the functional equation
-

f

g

-

t

V~a!5
b

a
V~ab!1coth a. ~14!

Hence, in arbitrarily weak fields, the velocity is a power la
in the electric field with exponentm21. To calculate this
dependence exactly, we use the Poisson sum formula:

(
n50

`

f ~n!5
1

2
f ~0! 1E

0

`

f ~ t ! dt12 (
m51

`

f ~ t !cos~2pmt!.

In the present case,f (t)5(b/a) ttanhabt.
Introducing the variablest85t ln b andz5exp t8, we

obtain f (z)5z2mtanhaz. Hence

V~a!5
a

2
1am21F (

m52`

` E
1

` tanhz

zgm
dz1E

0

a tanhz

zgm
dzG ,

~15!

wheregm5m12pmi/ ln b.
Clearly, the second term in brackets is small~in param-

etera! compared to the first. Thus, in arbitrarily weak ele
tric fields, we obtain for the velocity the nonlinear depe
dence ~2! on the electric field. We also note that th
nonanalytic behavior of the structure function ask→0 and
the nonlinear dependence of the velocity on the electric fi
in arbitrarily weak fields are asymptotic.

3. CONTINUUM LIMIT OF LÉVY HOPS

We now consider the continuous hop-length distributi
and find the particle velocity in an electric field for this cas
In the continuum limit of Le´vy hops, the distribution in hop
length is a power law,

f ~L !} 1/Lm11 , ~16!

and the probability of finding a particle at pointx after n
steps is determined by the integral equation

Pn11~x!5E
2`

` Pn~y! ]y

ux2yum11
. ~17!

Simple transformations lead to

Pn11~x!5E
0

`

@Pn~x1y!1Pn~x2y!#
]y

ux2yum11
. ~18!

Now we introduce anisotropy into random walks with
power-law hop-length distribution function by analogy wi
the discrete case~11! by substitutingux2yu for bn. Using
~11! in the continuum limit and~18!, we can easily derive an
equation for the particle number density in an electric fie

Pn11~x!5E
0

`@~11a! tPn~x1y!1~12a! tPn~x2y!# dy

@~11a! t1~12a! t#ux2yum11
.

~19!

ExpandingPn(x6y) in Taylor series and separating eve
and odd powers oft, we obtain
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Pn11~x!

5E
0

`

(
m50

`
]2mPn~x!

]x2m

y2m dy

ux2yum11

1E
0

`

(
m50

`
]2m11Pn~x!

]x2m11

y2m11@~11a! t2~12a! t# ]y

@~11a! t1~12a! t#ux2yum11
.

~20!

The first term on the right-hand side of Eq.~20! corresponds
to the diffusion contribution, while the second term conta
the field-current contribution. Accordingly, the expressi
for the field current is

J}E
0

`

(
m50

`
]2mPn~x!

]x2m
y2m2mtanh~ay! ]y. ~21!

Introducing the variablez5ay and reducing Eq.~21! to di-
mensionless form, we obtain~2!, which represents the non
linear current–field dependence in arbitrarily weak fie
(a→0).

4. TRANSITION FROM ORDINARY DIFFUSION TO LÉ VY
DIFFUSION

In this section, in addition to Le´vy hops, we allow for
ordinary diffusion and consider the transition to linear d
pendence of the velocity on the electric field due to ordin
diffusion. The simplest way to do this is to introduce a fin
hop lengthj at each step. What we obtain is a random w
in which ordinary diffusion alternates with Le´vy hops. How-
ever, due to the superlinear time dependence of the rms
placement for Le´vy diffusion, on small scales~times! the
main contribution to the random walk is provided by ord
nary diffusion, while over long time intervals it is the Le´vy
hops that contribute most to the random walk. According
the hop-length distribution function has the form

f ~ l !5 (
n50

`

a2n@d l ,2(bn1j)1d l ,(bn1j)#. ~22!

Hence the structure function is

l~k,j!5 (
n50

`

a2ncos~kbn1kj!. ~23!

In the limit of small lengths (b→0), this formula turns into
the expression corresponding to ordinary diffusion:

lim
b→0

l~k,j!5
a2 l

a
coskj. ~24!

Anisotropy can be introduced into random walks by t
method described earlier: we replace the hop lengthbn with
the quantitybn1j. Thus, the structure function in an electr
field for finite hop lengths is
s

s

-
y

k

is-

,

l~k,j,a!5 (
n50

`

a2n@cos~kbn1kj!1 i

3sin~kbn1kj! ~W12W2!#. ~25!

Accordingly, for the velocity we have

V5 i
]l~k;E!

]t
uk→05 (

n50

`
bn1j

an
tanh~abn1aj!. ~26!

To calculate the sum on the right-hand side of Eq.~26! we
employ the Poisson method. Clearly, the velocity turns ou
be nonlinear in the field~Eq. ~2!! in arbitrarily weak fields
(qEj/kT!1) and linear in strong fields (qEj/kT@1):

V}Ej22m. ~27!

Thus, the particle velocity in an electric field has tw
asymptotic limits in accordance with two diffusion regime
Lévy hops and ordinary diffusion.

For the particle mobilityh we can write the above resu
in scaling form:

h}j22m f ~qEj/kT!, ~28!

where the scaling functionf (x) has the asymptotic behavio

f ~x!5H 1, x!1,

xm22, x@1.
~29!

On small scales, where ordinary diffusion dominates (LE

!j), particle mobility depends only on the homogene
length j, while on large scales, where Le´vy hops dominate
(LE@j), mobility ceases to depend on the homogene
length and becomes a function of the extent of the fieldLE

with the same exponent. In other words, in such fields
mobility ‘‘forgets’’ the homogeneity scale and becomes
nonlinear function of the electric field.

5. CONCLUSION

Nonlinear properties of inhomogeneous materials h
attracted much attention from both theoreticians a
experimentalists.7–12 Theoreticians usually expand the cu
rent in powers of the electric field out to a cubic nonlineari

J5sE1xuEu2E1•••. ~30!

Our results differ substantially from those obtained by suc
method. In the microscopic model of Le´vy diffusion, we
show that in the event of Le´vy hops the current proves to b
a highly nonlinear function of the electric field because
the unusual regime of diffusion in space, i.e., there is
linear term in the field expansion of the current, Eq.~30!. We
examine the transition from ordinary diffusion to Le´vy hops
by introducing a finite displacement lengthj at each step.
We show that the problem acquires a new parame
qEj/kT, that determines whether the particle mobility b
haves linearly or nonlinearly. In other words, a new leng
LE governed by the electric field emerges in such diffus
problems:13

LE5kT/qE . ~31!
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To appreciate the significance of this quantity, we co
sider an ordinary random walk in an external electric fie
Let us imagine that the medium is partitioned into blocks
size LE . We then study the behavior of a particle within
single block. With a probability of order unity the particle
leaves such a block when it moves along the field but d
not leave the block when it moves against the field. In ot
words, within a block whose linear size is of orderLE , or-
dered motion prevails over diffusion. This makes it possi
to estimate the particle velocity to be

V5LE/tE , ~32!

wheretE is the diffusion time for displacementLE . For or-
dinary diffusion tE5LE

2/D, and we have the well-known
Einstein formula

V5q2DE/kT . ~33!

When Lévy hops dominate, the same estimates yield
~2!, and in the two diffusion limits we have~29!. Earlier6 a
dependence of type~29! was predicted by a phenomenolog
cal description of anomalous diffusion along percolati
clusters in the effective-medium approximation. The corre
tion length of the percolation clusters was taken as the
mogeneity length. We also note that in contrast to Le´vy
hops, anomalous diffusion along percolation clusters is o
sublinear nature, so that in mixed random walks~anomalous
diffusion plus ordinary diffusion! the main contribution over
short time intervals is provided by anomalous diffusio
while over long time intervals the main contribution is pr
vided by ordinary diffusion. An attempt to detect the nonli
earity by computer modeling of drift along clusters did n
succeed,14 since over the desired range of fields, the elec
field in inhomogeneous media induces traps. Such traps
sections of the current paths directed against the ele
field. Hence the question of the nonlinear dependence of
velocity on the electric field due to anomalous nature of
diffusion remained unresolved.

The present paper establishes for the first time the n
linear dependence of the velocity on the electric field for
model of diffusion via Le´vy hops. Moreover, the deduce
nonlinear behavior of the velocity due to the unusual nat
-
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of the dependence~2! was recently corroborated by comput
modeling of particle drift in the presence of Le´vy diffusion.15

As for experimental results, many researchers have
served the nonlinear power dependence of the current in
homogeneous materials with exponents close to
anomalous-diffusion index and have provided various exp
nations of this phenomenon~see, e.g., Refs. 11 and 12!. In
our opinon, nonlinear behavior can indeed be observed,
there is a universal explanation for nonlinear behavior
stemming from the anomalous nature of random walks
inhomogeneous media. Comparisons of experimental
theoretical results require further study, however.

This work was initiated by numerous interesting discu
sions with É. G. Batyev and E´ . N. Baskin. The author is also
grateful to A. A. Snarski� for kindly supplying offprints of
various papers.
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Imperfection of the Sm sublattice and valence instability in compounds based on SmB 6
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The magnetic susceptibility, electrical resistance, specific heat, and thermal expansion coefficient
of SmB6, Sm0.8B6, and Sm12xLaxB6 (x50.1 and 0.2! are measured in the temperature
rangeT542300 K. The dispersion curves of the acoustic phonon branches in lanthanum-doped
samples are studied. A combined analysis of the results confirms the existence of an
activation gap in the electron density of states in both nonstoichiometric and lanthanum-doped
compounds. The anomalies in the electronic component of the thermal expansion
coefficient are associated to a considerable degree with the temperature variation of the valence
and, like the magnetic susceptibility, reflect features of thef-electron excitation spectrum.
It is found that lanthanum doping does not lead to significant changes in the anomalies in the
phonon spectrum of SmB6. It is established that the homogeneous intermediate-valent
state of the samarium ion is fairly stable and is maintained when the perfection of the Sm sublattice
is violated. © 1999 American Institute of Physics.@S1063-7761~99!01903-4#
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1. INTRODUCTION

Samarium hexaboride (SmB6) is known as the first of
the valence-instable compounds to be discovered. Its pro
ties have been actively investigated since the 1970’s
samples of increasingly higher quality were obtained. T
compound evoked heightened attention because of two c
acteristic features. First, an unusually narrow gap (;5 meV!
was discovered in the electron density of states of SmB6. The
existence of the gap has been confirmed by numerous ex
ments on the resistivity, Hall effect, and specific heat,1–4 as
well as optical measurements.5–7 The nature of the gap in
SmB6 has been discussed from various standpoints. It
been interpreted as a hybridization gap8 and as a conse
quence of Wigner crystallization in the metal9 or the forma-
tion of an exciton state in an intermediate-valent phase.10 It
has been theorized that the gap in the electron densit
states vanishes when SmB6 is doped with other rare-eart
~RE! ions11 or when pressure is applied.12 However, in Ref.
13, where the influence of doping on the hybridization g
was investigated by measuring the electrical resistanc
was discovered that the gap is maintained in all compou
based on SmB6 having a state with an intermediate valenc
Thus, there is no unequivocal answer to the question
whether the gap vanishes or whether the Fermi level is
placed relative to the gap.

The second feature of this compound is that the
marium ions in SmB6 are in an intermediate-valent state. T
valence of the samarium ion at room temperature estim
from the lattice constant, the magnetic susceptibility, theL III

absorption edge, and the Mo¨ssbauer effect is
5651063-7761/99/88(3)/9/$15.00
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.2.5560.03.14–16 It is generally assumed that the valen
instability of RE ions is characterized by the presence
charge and spin fluctuations with a characteristic timet
;10212210213 s. Charge fluctuations should influence t
lattice excitation spectrum under certain conditions, and s
fluctuations should be manifested in the magnetic excita
spectrum. In fact, the results of the measurements of
phonon dispersion curves of SmB6 in Ref. 17 reveal overall
softening of the acoustic and low-lying optical phonons
comparison to isostructural LaB6. In addition, distinct
anomalies in the longitudinal-acoustic branches along
@110# and@111# directions and an additional mode, which
located in the energy gap between the acoustic and op
branches, were discovered. Some important results were
obtained when the magnetic excitation spectrum of Sm6

was investigated in Ref. 18 and 19. In particular, a narr
low-energy excitation with unusual properties was disco
ered at low temperatures (T,40 K! in the magnetic compo-
nent of the inelastic neutron scattering spectrum along w
some broad structural peaks associated with intermulti
transitions. An explanation for the specific features of bo
the phonon and magnetic excitation spectra based on an
citonic model, where the key factor is the formation of
mixed quantum-mechanical state for each Sm ion, was
cently proposed.20,21 An alternative model, which account
for the electron density of states and the magnetic excita
spectrum of SmB6, was developed in Ref. 22. It is based o
the concept of a mixed-valent~inhomogeneous! state for the
Sm ions in SmB6. However, neither of these models is fre
of certain difficulties in substantiating the original approx
mations. Both the variation of the mean valence and the c
© 1999 American Institute of Physics
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566 JETP 88 (3), March 1999 Nefedova et al.
centration of free carriers are quite critical for both mode
For this reason it would be interesting to examine the tra
formation of the properties of SmB6 as the valence state o
the samarium ions varies.

The valence of the samarium ions in SmB6 can be varied
by replacing Sm by di- and trivalent ions of other elemen
When Sm ions in the RE sublattice of SmB6 are replaced by
La31 ions, the valence of the samarium ion decreases.23 The
kinetic and magnetic properties of a series of samples w
the general formula Sm12xLaxB6 have been studied in som
detail.15 Another method for altering the valence of the S
ions in SmB6, but without inserting foreign atoms into th
RE sublattice, is to create a deficiency of samarium io
(SmxB6). In this case the crystal structure remains sta
over a very broad range of samarium concentrations.
cording to the results of the magnetic susceptibility measu
ments, the lattice period, and theL III absorption edge, the
valence of the samarium ion in SmxB6 (x50.720.9) re-
mains appreciably different from an integer value and sh
toward 31 @v(300K).2.6360.03#.24–26 The current list of
experimental studies of the physical properties of nons
ichiometric samarium hexaboride is very limited. It includ
measurements of the lattice period and the magnetic sus
tibility at relatively high temperatures (T.80 K!, whereas
the features of the intermediate-valent state are displa
most clearly at lower temperatures. It is noteworthy that
nonstoichiometric compound SmxB6 itself merits special at-
tention because of its stability when there is a large num
of vacancies~up to 30%!.

The purpose of the present work was to study and join
analyze magnetic, kinetic~electrical resistance!, and thermo-
dynamic ~specific heat and thermal expansion coefficie!
properties of the same samples of the stoichiometric c
pound SmB6, the Sm-deficient compound Sm0.8B6, and the
lanthanum-doped compounds SmxLa12xB6 (x50.8 and 0.9!
over the broad temperature range 4–300 K (2,T,45 K in
the case of the specific heat!, as well as to study the influenc
of doping on the features of the phonon spectrum of Sm6.

2. SAMPLES AND METHOD

Powdered samples were obtained by the hi
temperature reduction of Sm2O3 by boron with variation of
the ratio between the amounts of the oxide and boron in
Institute of Problems in Materials Science of the Ukraini
National Academy of Sciences~Kiev!. The single-phase stat
of all the samples and their correspondence to the cu
structure of CaB6 were established by x-ray diffractio
analysis.

To refine the structural parameters of SmxB6 and LaxB6

(x50.8 and 1!, a full-profile Rietveld analysis was per
formed using x-ray and neutron diffraction at room tempe
ture in the range of angles 2u5202160°. The following
parameters were varied during the refinement of the st
ture: the scale factor, the parameters of the background
shape of the peaks, the lattice period, the parametric pos
of the boron atom, and the populations of the sites of the
and boron atoms. Because of the small range of variatio
the momentum transfer, the thermal factors of the RE
.
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boron atoms were taken from the literature27,28 and were not
varied during fitting. The neutron-diffraction data we
treated with allowance for absorption by the RE ions a
boron atoms. The full-profile analysis showed that violati
of the stoichiometry leads to a decrease in the lattice pe
(a54.134460.0003 Å for SmB6, a54.127860.0003 Å for
Sm0.8B6 , a54.156360.0003 Å for LaB6, and a54.1555
60.0003 Å for La0.8B6), while the positional parameter o
the boron atoms remained essentially unchanged. The an
sis also confirmed that the ratio between the populations
the sites of the RE and boron atoms is consistent with
structural formulas. The values of the lattice period
T5300 K for Sm0.8La0.2B6 and Sm0.9La0.1B6 were 4.1449
60.0003 Å and 4.136660.0004 Å, respectively.

Measurements of the temperature dependence of the
tice period atT5102300 K were performed on polycrysta
line samples using x-ray diffraction~Cu Ka radiation! on a
DRON-3 diffractometer in the range of angles 2u5120
2160° with a closed-cycle helium refrigerator. The tempe
ture dependence of the thermal expansion coefficienta,

a5
1

a

da

dT
, ~1!

was obtained by differentiating the temperature dependen
of the lattice periods after preliminary smoothing by cub
polynomials.

Measurements of the temperature dependences of
specific heatC(T) in the temperature range from 2 to 45
were performed in an adiabatic calorimeter.29

The possible influence of the defect density in the latt
on the specific heat and the thermal expansion coeffic
was evaluated on the basis of a comparison of the data
tained for the lanthanum compounds LaxB6 (x50.8 and 1!.
The lattice contribution to the thermal expansion was tak
into account by subtracting the corresponding dependen
for SmxB6 and LaxB6 (x50.8 and 1!, since the latter are
structural analogs, in which, however, the La ions have
empty f shell.

The resistance measurements were performed by
four-probe technique at temperatures between 4 and 300

The magnetic susceptibility was measured on a mag
tometer with a magnetic field strength equal to 50 Oe. T
temperature range for these measurements was 1.5–3
for SmB6 and 5–300 K for Sm0.8B6.

The dispersion curves of the acoustic phonons were
tained using single-crystal, doubly isotopic samples
154Sm12xLax

11B6 (x50.1 and 0.22! having volumes of 0.25
cm3 (x50.22) and 0.1 cm3 (x50.1), which were cut from
rods obtained from the polycrystalline material by the c
cibleless float-zone technique in the Institute of Problems
Materials Science of the Ukrainian National Academy
Sciences. The measurements were performed on a 2T1
axial crystal spectrometer~Laboratoire Le´on Brillouin,
Saclay, France!, which provides the high flux of monochro
matic neutrons onto the samples needed in experiments
such small samples, which absorb neutrons fairly stron
~by virtue of the residual admixtures of strongly absorbi
Sm and boron isotopes!. The measurements were performe
for the most part, in a regime with constant momentum tra
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567JETP 88 (3), March 1999 Nefedova et al.
fer and fixed final energyEf513.7 meV (kf52.66 Å21)
and, in a few cases, in a regime withE5const. Pyrographite
~the 002 reflection! served as the monochromator and an
lyzer, and the higher orders of the reflections were s
pressed by a pyrographite filter. The temperature was st
lized by a closed-cycle helium refrigerator.

3. RESULTS

Magnetic susceptibility

Figure 1 presents the temperature dependence of
magnetic susceptibilityx(T) for the samples of SmB6 of
Sm0.8B6, as well as for Sm0.75La0.25B6 ~Ref. 15!. The x(T)
curve for SmB6 agrees well with the results obtained in Re
30 and 31. For all compounds the experimental depende
of the magnetic susceptibility differs from the calculat
curve for free samarium ions (Sm21 and Sm31). It can be
seen from the figure that the temperature dependences o
magnetic susceptibility for the samples with an imperfect
sublattice vary in accordance with the variation of the v
lence relative to samarium hexaboride and approximate
curves for the corresponding ions with integer valence. T
x(T) curves undergo quantitative changes in the tempera
range 2,T,100 K. The characteristic maximum for SmB6

at T.50 K on the x(T) curve vanishes or shifts towar
lower temperatures in response to violation of the stoichio
etry and shifts toward somewhat higher temperatures in
case of the lanthanum-doped compound.

Electrical resistance

Figure 2 shows the temperature dependence for sin
crystal and polycrystalline SmB6 and nonstoichiometric
Sm0.8B6, as well as the results for Sm0.75La0.25B6 from Ref.
13. Both the single crystal and polycrystal of SmB6 exhibit a
sharp increase in resistance as the temperature is red

FIG. 1. Temperature dependence of the magnetic susceptibility of sam
of SmB6 (h), Sm0.8B6 (s), and Sm0.75La0.25B6 (n, Ref. 15!. Dashed lines
— calculated curves for free Sm21 and Sm31 ions; dotted line — calculated
curve for Sm0.75La0.25B6 under the assumption of an inhomogeneous stat
the Sm ions~see text! @xcal50.56x(Sm21)10.44x(Sm31)#; dot-dashed
curve — calculated curve for SmB6 @xcal50.4x(Sm21)10.6x(Sm31)# un-
der the same assumption; solid curve — calculation for Sm0.8B6 @xcal

50.3x(Sm21)10.7x(Sm31)# under the same assumption.
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The temperature curves have linear segments, which
characteristic of a thermally activated type of conduction

R5R0exp~2Eg/2kBT!. ~2!

The segment for the single crystal lies in the temperat
range 6,T,20 K, and the segment for the polycrystal e
tends over a somewhat smaller range (8,T,20 K!. The
width of the activation gap in the electron density of sta
obtained from measurements of the resistance on the si
crystal isEg/25Ea'50 K. At T.35 K, as well as atT,5 K
for the single crystal andT,8 K for the polycrystal, the
temperature dependence of the resistance deviates fro
straight line.

The thermally activated type of electrical resistance
maintained as a whole for Sm0.8B6. A linear segment of the
resistance curve is observed in the temperature ra
15,T,30 K. The width of the gap in the electron density
states was found to beEa'20 K. Unlike the samples with
the stoichiometric composition, the material withx50.8 ex-
hibits an additional linear segment at low temperaturesT
<14 K!.

The temperature dependence of the electrical resista
for Sm0.75La0.25B6 has a complex course and is similar on t
whole to the dependence for a metal.

Specific heat

Figure 3a presents the data from measuring the temp
ture dependence of the specific heatC(T) for LaxB6 and
SmxB6 (x50.8 and 1!, as well as for Sm0.8La0.2B6. The re-
sults for SmB6 agree well with the data in Ref. 3. As can b
seen, violation of the stoichiometry in the valence-unsta
samarium hexaboride SmxB6 leads to appreciable changes
the specific heat, while the temperature dependences fo
analogous lanthanum-based compounds (LaxB6, inset in Fig.
3a! essentially coincide.

The electronic contribution to the specific heat,Cel ~Fig.
3b!, was determined as the difference between the total s
cific heat and its lattice component (Clat , solid line in Fig.
3a!. The lattice component was calculated from the phon

les

f

FIG. 2. Temperature dependence of the resistance for SmB6 @single crystal
(j) and polycrystal (h)#, Sm0.8B6 (s), and Sm0.75La0.25B6 (n, Ref. 13!.
Lines — approximation given by~2! ~see text!.
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FIG. 3. Temperature dependences of the total s
cific heat~a! and the electronic contribution to the
specific heat~b! for SmB6 (h), Sm0.8B6 (s),
Sm0.8La0.2B6 (n), LaB6 (L), La0.8B6 (l), and
LaB6 ~dashed line, Ref. 3!. Solid line — lattice
component of the specific heat of SmB6 calculated
from the phonon density of states~see text!. Inset:
a! temperature dependence of the specific heat
LaxB6 (x50.8 and 1!; b! electronic contribution to
the specific heat for samples of SmB6 and
Sm0.8La0.2B6 after subtraction of the contribution
associated with thef-electron excitation spectrum
~see text!.
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density of states for SmB6, which was obtained from mode
calculations with consideration of the contribution of t
exciton-phonon interaction20 on the basis of experimentall
measured dispersion curves.17 The electronic contribution to
the specific heat of SmB6 has a maximum atT'40 K. The
behavior of Cel(T) for Sm0.8B6 in the temperature rang
above 10 K is similar to that for SmB6; there is a maximum
at T'25 K, but its amplitude is smaller~Fig. 3b!. In contrast
to nonstoichiometric samarium hexaboride, the specific-h
maximum for Sm0.8La0.2B6 is probably at a higher tempera
ture (T.40 K! than is the specific-heat maximum for SmB6.
The electronic component of the specific heat of the
marium compounds is plotted inCel /T vs. T2(T2) coordi-
nates in Fig. 4. At low temperatures Sm0.8B6 exhibits quali-
tatively different behavior in the temperature dependence
Cel /T in comparison to SmB6: there is a sharp increase in th
specific heat with decreasing temperature, which is usu
observed for heavy-fermion materials. The estimated va
of the Sommerfeld coefficient atT52 K is g'450
mJ/mol•K2, which is almost two orders of magnitude grea
than the valueg'6 mJ/mol•K2 for stoichiometric SmB6.
The value ofg also increases somewhat for the lanthanu
doped sample (g'60 mJ/mol•K2 at T54 K!, but the char-
acter of the temperature dependence displayed by SmB6 is
maintained.

FIG. 4. Temperature dependence of the electronic contribution to the
cific heat inCel /T vs.T2(T2) coordinates for SmB6 (h), Sm0.8B6 (s), and
Sm0.8La0.2B6 (n).
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Thermal expansion

The temperature dependence of the electronic com
nentael of the thermal expansion coefficient, which was o
tained by subtracting the value ofa(T) for LaB6 from the
total thermal expansion coefficient for the Sm-containi
samples, is presented in Fig. 5. The plot ofael(T) for SmB6

exhibits a minimum atT'50 K, which is well known from
the literature.32 For the lanthanum compounds LaxB6 (x
50.8 and 1! violation of the stoichiometry leads to variatio
of only the absolute value of the lattice parameter and d
not influence the smooth temperature course of the ther
expansion coefficient. Violation of the perfection of the S
sublattice in samarium hexaboride does not eliminate
minimum in theael(T) curve but leads to variation of bot
its position and the area under theael(T) curve ~Fig. 5!. In
the case of the nonstoichiometric compound Sm0.8B6 the po-
sition of the minimum shifts toward lower temperaturesT
'25 K!, and the width of the temperature range where
anomaly exists decreases (0,T,65 K!. The replacement of
Sm by La leads to displacement of the minimum of t
anomaly toward higher temperatures (T'120 K! and an in-
crease in the area under theael(T) curve.

Phonon spectra

Figure 6 shows dispersion curves for the longitudin
acoustic and some transverse-acoustic branches atT5300 K

e-
FIG. 5. Temperature dependence of the electronic component of the the
expansion coefficient for SmB6 ~1!, Sm0.8B6 ~2!, and Sm0.9La0.1B6 ~3!.
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FIG. 6. Dispersion curves for the longitudinal-acoustic~LA ! and transverse-acoustic~TA! branches in Sm12xLaxB6 (x50.1, 0.22!, as well as in LaB6 and
SmB6 ~Ref. 17! at T5300 K. LA phonons in SmB6 (d), Sm0.9La0.1B6 (s), and Sm0.78La0.22B6 (h); TA phonons in SmB6 (1), Sm0.9La0.1B6 (3), and
Sm0.78La0.22B6 (L). Dashed line — LaB6.
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for Sm12xLaxB6 (x50.1 and 0.22!, as well as LaB6 and
SmB6 ~Ref. 17! along the three principal symmetry dire
tions. All the Sm-doped compounds exhibit general soft
ing of the acoustic phonons in comparison to LaB6, but the
changes in their phonon frequencies in comparison to Sm6

are negligible and amount to about 5% on the average.
anomalies in the longitudinal-acoustic branches along
@jj0# and@jjj# directions for a value of the reduced wav
vector equal toq/qmax50.25 in SmB6 are also observed in
Sm12xLaxB6 (x50.1 and 0.22!, but they become less pro
nounced as the La concentration is increased.

Temperature measurements were performed for sev
phonon frequencies at individual points of the Brillouin zo
~Fig. 7!. As can be seen from the figure, when the tempe
ture is reduced by 250 K, most of the wave vectors are ch
acterized by changes as large as 0.1 THz in the frequen
of the lattice vibrations. The greatest frequency changes
cur in the range 2,T,100 K.

4. DISCUSSION

An analysis of the magnetic susceptibility measureme
supports the hypothesis that an intermediate-valent state
ists both in the case of doping and in the case of violation
the stoichiometry. In fact, the decrease inx in Sm0.8B6 in
comparison to SmB6 over the entire temperature range inve
tigated attests to an increase in the valence of the sama
ions, in agreement with the data in Ref. 23. On the ot
hand, a decrease in the valence of Sm and an increasex
are observed in Sm0.75La0.25B6. None of the measured curve
coincides with thex(T) curves calculated for integer-valen
Sm ions ~see Fig. 1!. In addition, the temperature depe
dence ofx(T) does not coincide with thexcal(T) curve ob-
tained under the assumption of an algebraic sum of the c
tributionsx~Sm31) andx~Sm21) in a ratio corresponding to
the mean valence. The temperature range of the most sig
-
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cant deviation fromxcal(T) increases with increasing valenc
of the Sm ions~among the samples measured, this range
broadest for Sm0.8B6).

The results of the direct measurements ofx(T) for
SmB6 are qualitatively consistent with a calculation of th
magnetic susceptibility using the Kramers–Kronig relati
from magnetic inelastic neutron scattering spectra.19 In this
case the absolute values ofx(T) obtained from integration of
the neutron spectra are less than the magnetometric va
The disparities between the absolute values are probably
to the strong anisotropy and unusual form factor of the lo
energy excitation.19 The change in the course ofx(T) for
Sm~La!B6 may be caused by reorganization of its magne
excitation spectrum in comparison to SmB6,33 for which the
temperature dependence of the spectral function has b
studied in detail. In particular, for SmB6 the redistribution of
the intensity from the region of the inelastic peak with
energy of 14 meV atT,20 K into the region of quasielasti
scattering atT.100 K is responsible for the observed depe
dence ofx(T). The growth of the energy of this excitatio
and the smoothing of its temperature dependence with
creasingx in the alloys Sm12xLax6 ~Ref. 33! account for the
tendency observed in the behavior ofx(T) for these com-
pounds. Asx→1, the curves tend to the plot ofx(T) for the
divalent Sm ion. Thus, a simple ‘‘mechanical mixture’’ o
heterovalent Sm ions is not observed in any of the co
pounds investigated, in contrast to, for example, the inhom
geneous mixed-valent system Sm3Te4.34 The observed dif-
ferences between thex(T) curves of the imperfect sample
can occur mainly because of changes in the mean vale
but with conservation of a homogeneous intermediate-va
state.

Let us consider the results of the resistance meas
ments~see Fig. 2!. The temperature dependence of the res
tanceR(T) is known to be determined mainly by the beha
ior of the band electrons, their interaction with localize
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moments, the presence of impurity levels, etc. As was no
above, samarium hexaboride has a narrow gap'50 K. The
nonlinear portion of the plots of ln@R(T)/R(290K)#5 f (1/T)
at T.35 K is most probably due to the temperature dep
dence of the carrier mobility. The deviation of the tempe
ture dependence from a straight line~Fig. 2! at low tempera-
tures (T,6 K! is due to a change in the type of conductio
Hopping conduction probably becomes decisive at th
temperatures. In a polycrystal hopping conduction begin
play an appreciable role at higher temperatures, probably
cause of the lower degree of purity and the imperfect na
of the crystal, as was recently convincingly demonstrated
Ref. 35. To account for the deviation ofR(T) from an expo-
nential law atT,3 K, Bat’ko et al.36 proposed a mode
based on the appearance of a fine structure in the hybrid
tion gap, which is associated with the presence of a dono
acceptor impurity and lattice defects in the sample.

The character of the temperature behavior of the re
tance of nonstoichiometric Sm0.8B6 over the entire tempera
ture range investigated~a linear segment~see Fig. 2! at low
temperatures and a sharp decrease in resistance whe
temperature is increased! is similar to the behavior of a typi
cal extrinsic semiconductor. There are two segments co
sponding to different types of conduction: intrinsic condu
tion with Ea'20 K and impurity conduction due to the hig
concentration of defects~samarium vacancies!, which intro-
duce additional states located several degrees~2–4 K! above
the upper edge of the filled band. These states also spe
the type of conduction at low temperatures, specifically
hopping type of conduction. The activation gap in the el
tron density of states is still observed in the samples
Sm0.8B6, but its magnitude is reduced in comparison to t
gap in stoichiometric SmB6.

The introduction of 25% lanthanum into SmB6, which
produces a number of defects close to the number
Sm0.8B6, is sufficient to cause the radical change from
semiconductor type of resistance to a metallic type. It
noteworthy that the change in the character of theR(T)

FIG. 7. Temperature dependence of the frequency difference
longitudinal-acoustic phonons in Sm0.9La0.1B6 in the @j00#, @jj0#, and
@jjj# directions forj50.35 (s), 0.45 (h), and 0.25 (n); the curves were
drawn by eye.
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curve of Sm0.75La0.25B6 can be attributed either to disappea
ance of the gap or the appearance of additional electr
upon doping with La31.

If there is a gap in the electron density of states,
thermal excitation of electrons through the gap should lea
the appearance of a contribution to the specific heat res
bling a Schottky anomaly. The latter can be observed in
electronic contribution to the specific heat of SmB6 and, in
its time, was one of the pieces of evidence for the existe
of a gap. Apart from the contribution of the gap toCel(T),
there should also be a contribution associated with the s
of the localizedf electrons in the Sm ions, which was n
analyzed in previous studies. In intermediate-valent
marium hexaboride thef electrons have a ground stat
which is a singlet, and a first excited state, which is
triplet.21 It follows from magnetic inelastic neutron scatterin
measurements that the characteristic energy of the l
energy excitation corresponding to the transition betwe
these states is approximately 14 meV.19 Such an excitation
spectrum makes a contribution to the specific heat wit
maximum atT'55 K. After this contribution is taken into
account, a component of the specific heat associated
with excitation through the gap remains (Cel* (T) in the inset
in Fig. 3b!. Thus, the results of the specific heat measu
ments convincingly confirm the presence of a gap in
electron density of states. Its width can be roughly estima
using a simple two-level model, and is approximately 60
This value is consistent with the width of the gap in t
electron density of states obtained from the resistance m
surements.

The situation in Sm0.8La0.2B6 is more complicated: the
specific heat data are qualitatively similar to the results
SmB6, and in this respect they differ from the resistan
data. It follows from the magnetic inelastic neutron scatt
ing measurements that the characteristic scale of the l
energy excitation associated with the new state of the Sm
is roughly 25 meV in Sm0.8La0.2B6.33 The corresponding
state makes a contribution to the specific heat at about
K, which is significantly higher than the temperatur
reached in our experiments. After the contribution from t
excited state of thef electrons is subtracted fromCel(T), a
contribution to the specific heat which is probably d
mainly to the gap remains~see the inset in Fig. 3b!. It would
seem that despite the course of the temperature depend
of the resistance characteristic of metals, the gap is m
tained in the doped sample of Sm0.8La0.2B6. In addition, the
lack of any evidence for a gap in the temperature depende
of the resistance may be related to the presence of additi
electrons introduced by the La ions, which ‘‘shunt’’ the ga
in the kinetic measurements. The additional states are m
fested by a change in the type of conduction, by the prese
of an additional contribution to the specific heat atT,15 K,
and by an appreciable increase in the value ofg ~see Fig. 4!.

The anomaly is also maintained in the plot ofCel(T) for
the nonstoichiometric sample~see Fig. 3b!. The lack of in-
elastic neutron scattering data for Sm0.8B6 precludes evalua-
tion of the specific heat component associated with exc
tions of f electrons. However, an investigation of th
magnetic excitations in Sm0.5Ba0.5B6 disclosed the dis-
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appearance of the peak characteristic of SmB6 at 14 meV
and the appearance of a low-temperature feature of the m
netic type at about 9 meV, which vanishes when the te
perature is raised slightly~at T512 K!.37 Since nonstoichi-
ometry with respect to the samarium ions leads to
increase in the valence of Sm, as does their replacemen
Ba ions (v(Sm0.5Ba0.5B6)'2.7), it would seem that in
Sm0.8B6 a similar excitation, which is responsible for th
intermediate-valent state of the Sm ion, appears at an en
appreciably smaller than 14 meV and produces a contr
tion to the electronic component of the specific heat only
T,25 K. In this case the componentCel(T) for Sm0.8B6 at
T530235 K is mostly likely associated with the gap. Thu
the result obtained is consistent with the conclusion follo
ing from the resistance measurements. The additional ch
carriers that appear in the case of doping by trivalent La i
are not present in Sm0.8B6, and ‘‘shunting’’ of the gap does
not occur: the gap in the electron density of states is a
maintained when there is a 20% samarium deficiency.

Despite the sharp rise observed in the plot ofC/T
5 f (T2) as T→0 ~see Fig. 4! for Sm0.8B6, this compound
should probably not be classified as a heavy-fermion m
rial. In fact, the value of the magnetic susceptibility~which is
an order of magnitude smaller in Sm0.8B6 than in heavy-
fermion compounds! and the temperature dependence of
resistance do not correspond to the behavior of hea
fermion systems. The rise observed can be attributed e
to the presence of a low-energy excitation of the samar
ion or to the appearance of additional electron states ca
by vacancies in the samarium sublattice in Sm0.8B6. These
vacancy-related states can be responsible for the appea
of a segment with a linear dependence of the resistanc
T,10 K ~see Fig. 2!. However, it should be noted that a
alternative interpretation is possible in principle. More sp
cifically, the possibility of the formation of a heavy-fermio
state due to the partial delocalization off electrons in com-
pounds with a small number of free electrons was advan
in Ref. 38 in connection with the results of investigations
mixed-valent compounds of the type Sm3X4, which are also
characterized by a large value ofg in the absence of free
carriers.

Let us examine the results of the thermal-expans
measurements~see Fig. 5!. It is usually assumed that th
anomaly in the electronic componentael(T) of intermediate-
valent systems is caused by variation of the valence of
RE ion, which is a function of temperature.39–41 Under such
an assumption, in the case of a linear relation between
variation of the valence and the variation of the lattice co
stant, we can write

d ln a

dT
5

d ln a

dnf

dnf

dT
5const•

dnf

dT
, ~3!

wherea is the lattice constant andnf is the population of the
f subshell of the Sm ion. In this case the areaS under the
anomaly of the electronic component of the thermal exp
sion coefficient specifies the change in valence as a func
of the change in temperature@Dv(DT)#, and the position of
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the extremum corresponds to the temperature at which
largest change in the valence related to the effective temp
ture of the valence fluctuations39 occurs, i.e.

S5E
T1

T2
const•

dnf

dT
dT5const•Dv, ~4!

S5kDv, ~5!

wherek is a proportionality factor. The valuek50.39 was
obtained on the basis of measurements of the valence o
Sm ion in SmB6 at T5295 and 12 K by x-ray absorption
spectroscopy14 (Dv50.08). Knowing the area under th
anomaly ofael(T) and assuming thatk varies only slightly in
response to doping, we can calculate the temperature v
tion of the valence of the Sm ion in Sm0.8B6 and
Sm0.9La0.1B6. The calculation of the corresponding temper
ture variations of the valence for Sm0.9La0.1B6 gives
Dv(30024K)'0.1 ~the increase inDv(30024K) in the
lanthanum-doped sample is consistent with the result in R
14!, and when the stoichiometry is violated~Sm0.8B6), the
valence decreases byDv(30024K)'0.04.

In accordance with the Gru¨neisen relation, the therma
expansion coefficient is proportional to the specific he
This relationship can be generalized not only to lattice ex
tations, but also to electron and other excitations. Then
Cel(T) contains a contribution associated with the prese
of a gap, it should also be manifested inael(T). At the same
time, the anomalies in the thermal expansion coefficient
the specific heat probably cannot be attributed to the p
ence of a gap in the electron density of states alone, as
suggested in Ref. 42, since the contribution associated
the f-electron excitation spectrum must be taken into acco
when the electronic components are considered. In addit
the spectrum of lattice excitations of valence-unstable s
tems may differ from the spectra for the isostructural co
pounds devoid off electrons,17 which are usually used to
take into account the lattice component of the specific h
and the thermal expansion coefficient. Different compone
of certain properties can be manifested to different degre
In fact, an examination of the results for all the compoun
investigated reveals that, despite the qualitative similarity
tween the temperature dependences~the existence of extrema
and their displacement toward lower temperatures in
nonstoichiometric sample and toward higher temperatu
when samarium is replaced by lanthanum, see Figs. 3b
5!, the temperature at the maximum of the electronic co
ponent of the specific heat and the temperature at the m
mum of ael(T) for the same compound differ significantly
Therefore,ael(T) is determined not just by the contributio
from the gap in the systems under consideration. T
anomaly in the electronic componentael(T) should also re-
flect features of the magnetic spectrum of the intermedia
valence compound, primarily changes in the state of thf
subshell. In this context we must point out the existence o
correlation between the temperature behavior of the e
tronic contribution to the thermal expansion coefficient a
the magnetic component of the inelastic scattering spect
of Sm12xLaxB6. First, the position of theael(T) anomaly
coincides with the temperature at which the low-energy
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citation discovered in the magnetic component of the sca
ing for SmB6 and Sm0.9La0.1B6 ~Ref. 33! is significantly sup-
pressed. Second, both the minimum ofael(T) and the low-
energy excitation of SmB6 are shifted very sharply towar
higher energies when only 10% of the Sm atoms are repla
by La. The latter finding is probably attributable to disru
tion of the coherency in the Sm sublattice, which plays
definite role in shaping the magnetic excitation spectrum33

The significant role of the coherency of the RE sublatt
was also noted when the thermal expansion of the c
pounds Ce12x~Y,La!xNi was investigated. For example, th
position and height of the maximum of the temperature
pendence of the electronic component of the thermal exp
sion coefficient for CeNi deviated from the systematic d
pendence on concentration. This deviation was associ
with the additional contribution to the electronic compone
of the thermal expansion coefficient due to the Ce–Ce in
action, which is suppressed as a result of doping~when the
RE sublattice is disordered.43

Thus, the results obtained suggest that the electro
component of the thermal expansion coefficient
intermediate-valence systems is governed not only by
change in valence, which depends on temperature,39 but also
by the spectral characteristics of the ground state of thf
subshell.

As a final step, let us discuss the measurements of
phonon spectra of Sm12xLaxB6. As was noted above, lantha
num doping did not lead to significant changes in the pho
spectrum of SmB6 and the features of the dispersion curv
~see Fig. 6!. Therefore, it can be stated that the exciton
model17 proposed for the spectra of lattice vibrations
SmB6 is probably valid as a whole for diluted systems.
must be emphasized that the exciton state of the sama
ion is extremely stable and does not vanish even after c
siderable violation of the perfection of the lattice.

The increase in the phonon frequencies with decrea
temperature~see Fig. 7! can be caused either by the presen
of a gap in the electron density of states or by variation of
valence of the Sm ion with temperature. The latter ca
seems more likely to us. On the one hand, the tempera
ranges for variation of the frequencies of the acous
branches and the existence of anomalies in the macrosc
properties associated with the intermediate-valent state o
samarium ions coincide (2,T,100 K!. On the other hand
lanthanum doping causes an increase in the lattice cons
which should have led to some softening of the phonon sp
trum. As follows from the measurements of samples
Sm12xLaxB6 at room temperature, doping led to an increa
in the frequencies of the acoustic phonons~see Fig. 6!.
Therefore, the observed changes in the phonon spec
may be associated with a decrease in valence. In partic
on the basis of this study the increase in the phonon en
with decreasing temperature~Fig. 7! is most probably attrib-
utable to the decrease in valence detected in measurem
of the L III absorption edge.14

5. CONCLUSION

Violation of the perfection of the Sm sublattice leads
significant transformation of the microscopic and mac
r-
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scopic properties of compounds based on SmB6. In this case
the homogeneous intermediate-valent state of the Sm io
maintained as a whole in all the compounds investigat
although the mean valence of the Sm ion and the width
the energy gap in the electron density of states vary so
what. It has been shown in this work that consideration
the reorganization of thef-electron excitation spectrum upo
variation of the valence is important for understanding
transformation of the physical properties of the compoun
investigated.
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Fluctuation states and optical spectra of solid solutions with a strong isoelectronic
perturbation
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We propose an approach to describing the density of fluctuation states in a disordered solid
solution with a strong perturbation introduced by isoelectronic substitution in the range of
attraction-center concentrations below the threshold of percolation along the sites of a
disordered sublattice. To estimate the number of localized states we use the results of lattice
percolation theory. We describe a method for distinguishing, within the continuum percolation
theory, among the various ‘‘radiating’’ states of the fluctuation-induced tail, states that form
the luminescence band at weak excitation. We also establish the position of the band of radiating
states in relation to the absorption band of the excitonic ground state and the mobility edge
of the system. The approach is used to describe the optical spectra of the solid solution
ZnSe12cTec , which at low Te concentrations can be interpreted as a system with strong
scattering. We take into account the exciton–phonon interaction and show that the calculated and
observed luminescence spectra of localized excitons are in good agreement with each other.
© 1999 American Institute of Physics.@S1063-7761~99!02003-X#
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1. INTRODUCTION

Wide-gap solid solutions of the II–VI groups are bein
actively used in manufacturing heterostructures. It is w
known that the changes in the optical characteristics o
solid solution in relation to those of the compounds formi
that solution is determined chiefly by two effects: the co
centration variation of the band gap and the smearing of
gap edge due to the formation of a fluctuation-induced tai
localized states.

In the absence of long-range order, the description of
spectrum of the electronic states of a crystal is an impor
problem of the physics of disordered systems and has
mained in the fore for many years. Reviews of earlier wo
that cover the main directions of research in this field can
found in Refs. 1–4. A separate case is that of very low c
centrations of impurity atoms,c!1, where the perturbation
at a lattice site exceeds a critical value and leads to forma
of split-off states. This problem is examined by Koster a
Slater5 ~see also the results of more recent work in Refs
and 7! for electronic states and by Lifshitz8 for the oscillation
problem. For finite concentrations, attempts to solve for
spectrum of impurity states were made in the coherent
tential approximation by Elliottet al.9 and by using more
complex approaches.10,11 Disordered solid solutions of crys
tals form a group of systems for which allowance of t
statistics of lattice-site occupation is critical to the und
standing of the localization-energy distributions of what
known as the tail fluctuation states. In this connection, c
siderable attention has been paid to random-potential stu
~a potential whose statistics is that of Gaussian wh
5741063-7761/99/88(3)/12/$15.00
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noise12–14!. This, however, does not correspond to the phy
cal nature of solid solutions.15 Some aspects of tail fluctua
tion states with the atoms of two species distributed at r
dom over the lattice sites have been examined in Refs
and 17.

In this paper we develop a systematic approach to
culating the density of fluctuation states of disordered so
solutions to describe the optical absorption and luminesce
spectra of such solutions for the case in which the pertur
tion of electronic states introduced by the substituting ato
cannot be considered small and a localization state can
formed by a few substituting atoms~the strong scattering
limit !. The case of weak scattering was examined in Refs
and 19.

In Sec. 2 we find the density of localized states by us
a three-dimensional two-component model described by
one-band Hamiltonian with diagonal disorder. This type
disorder emerges as a result of random occupation of
sites of a crystal lattice by atoms of two species, e.g.,A and
B. We also use the continuum variant of this model. Here
limit ourselves to the region of low concentrations ofA
atoms, which are attraction centers,c,pc , wherepc is the
critical concentration in the problem of percolation along t
sites of the sublattice of the substituting atoms. When ther
strong scattering in solid solutions with diagonal disord
fluctuation states may be formed by individual substituti
atoms and by relatively small clusters of such atoms, wh
form when the atoms are randomly distributed.

In Sec. 3 we calculate the contour of the phononle
luminescence band. Within the given problem, the possibi
© 1999 American Institute of Physics
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of optical recombination is limited by the exciton lifetime
relation to the transitions~tunneling! into low-lying states
belonging to the tail of fluctuation states, with the transitio
accompanied by phonon emission. To describe luminesce
we must find the energy distribution of isolated states, i
states for which the channels of such relaxation are ei
closed or barely exist. The restriction here is due to the
niteness of the tunneling radius. Of the total number of
states only those are isolated for which the distance to ne
boring states is greater than this radius. Generally, the p
lem of finding the energy distribution of spatially isolate
states belongs to the quantum percolation theory.2–4,20–29Iso-
lated states in lattice models were studied in Refs. 30–36
the finiteness of the tunneling radius is taken into accou
one can employ the continuum theory of percolation o
overlapping spheres.30–36Using the results of this theory, w
can divide fluctuation states into states of single~noninter-
acting! clusters, states of superclusters~complexes consisting
of interacting clusters!, and percolation cluster states. W
assume all along that the states of single clusters and
ground states of superclusters are spatially isolated.

Knowing the distribution of states among superclust
makes it possible to establish the position of the phonon
luminescence band in relation to the peak in the phonon
absorption band of the excitonic ground state and the mo
ity edge.

In Sec. 4 we describe the effect of the interaction
excitons and acoustic and optical phonons on the absorp
and luminescence spectra of localized excitons. In the c
centration range of interest to us, we assume that an elec
interacts with the hole density distribution averaged over
fluctuation-induced well. The preliminary results of allowin
for the exciton–phonon interaction can be found in Ref.

Section 5 discusses the results of numerical calculat
of the absorption and luminescence spectra for the solid
lution ZnSe12cTec at c50.15, which at such a concentratio
may serve as a good model of systems with strong scatte
There we also compare the contours of the calculated
observed luminescence bands.

2. SPECTRUM OF FLUCTUATION STATES

In the model developed in this paper we assume that
macroscopic volume of the solid solution consists ofN crys-
tal lattice sites occupied at random by two species of ato
A andB. The average numbers ofA andB atoms are, respec
tively, NA5cN andNB5(12c)N, wherec is the concentra-
tion of A atoms. The one-band Hamiltonian of this syste
can be written

H52(
n,m

CnWm~Cn1m2Cn!1(
n

EnCn
2 , ~1!

whereCn is assumed real. The diagonal elementEn takes
the valueEA if the site is occupied by anA atom and the
value EB in the opposite case. In the limitsc50 andc51
the Hamiltonian~1! reduces to the Hamiltonian of a perfe
crystal consisting ofB or A atoms. Here allEn are replaced
s
ce
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by En5EA or En5EB . In the plane wave representation, th
matrix element of the Hamiltonian in this case becom
Hq

a5«q1Ea , wherea is eitherA or B, and

«q5W02Wq ~2!

is the dispersion of the electron band.

2.1. The Green’s function representation

The Green’s function of a perfect crystalA or B is

Gnm
a ~e!5$eI2Ha%nm

215
1

N (
q

exp$ iq–~Rn2Rm!%

e2«q2Ea
, ~3!

whereRn is the radius vector of the lattice siten. When the
lattice sites are occupied at random by atoms of two spec
the Green’s function for each realization depends on
composition and arrangement of the atoms:

Gnm~v!5$vI2Hvc2D%nm
21 , ~4!

where I is the identity matrix, and the matricesHvc and D
are

Hnm
vc 5Wn2m2~W02EG!ndnm , D5Dndnm , ~5!

with EG the edge of the band considered.
The position of the bottom of the band of the solid s

lution in the virtual crystal approximation is related to th
average value ofEn at the site:

^E&G5cEA1~12c!EB . ~6!

The energyv is also measured from the band botto
EG , with v positive for localized states. The diagonal matr
elements of the potentialD can be written

Dn5En2EG , ~7!

where the value ofDn also depends on the concentration
the solid solution.

The solution of the eigenvalue problem for the crys
Hamiltonian when the atoms of the two species occupy fix
but disordered positions can be obtained by diagonalizin
matrix of rankN, each row in which has the form

vLwL
D~n!1(

m
~Hnm

vc 2Dndnm!wL
D~m!50. ~8!

The spectrum of the disordered system can be found a
result of averaging, i.e., by summing the spectra correspo
ing to different realizations with weight factors equal to t
probabilities of each realization. Of interest from the stan
point of physics here is the imaginary part of the Gree
function averaged over all possible variants of occupation
the sites by atoms.

The expression for the density of states for a fixed se
values ofDn and fixed values of quantum numbers, whi
we denote byL, has the form

rD,L~v!5
1

2pE2`

`

dtL(
n

uwL
D~n!u2

3exp$2 i @vI2Hvc2D#LLtl%, ~9!

where
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@vI2Hvc2D#LL5(
n,m

wL
D~n!@vdnm1Hnm

vc

2Dndnm#wL
D~m!. ~10!

The total average density of states can be written as a
over all L and all realizations ofD with allowance for their
weight factorsPD :

r~v!5
1

2p E
2`

`

(
D

PD(
L

dtL(
n

uwL
D~n!u2

3exp$2 i @vI1Hvc2D#LLtL%. ~11!

Consequently, we must consider all possible variants of
tice occupation and for each variant find the eigenvalues
eigenfunctions. Integration with respect totL in ~11! can be
carried out in general form, which yields an expression
r(v):

r~v!5(
D

PD(
L

(
n

uwL
D~n!u2d~v2vL

D!. ~12!

Here we denote the eigenvalue of Eq.~8! for a fixed set of
Ln by vL

D . For bound states the functionswL
D can always be

normalized to unity.
The above formula is a rigorous definition of the dens

of states of the disordered system described by Hamilton
~1!, i.e., a two-component solid solutionAcB12c .

2.2. Fluctuation states of clusters. Sum rules

In this paper we examine a situation in which the co
centration ofA atoms is lower than the critical value for th
problem of percolation along the sites of the anion sublatt
c,pc'0.2. Under this condition, theA atoms can form only
finite clusters. If the perturbation introduced by a cluster c
sisting of n atoms of the speciesA exceeds a critical value
and splits off a state from the bottom of the virtual-crys
band, all higher-order clusters will also split off localize
states from the bottom.

For the zeroth approximation we assume that the w
functions of individual clusters do not overlap and exam
the resulting spectrum of the split-off states. Within this a
proach the medium outside a cluster is described by the
tual crystal approximation. In this approximation the spe
trum of the density of states is a set of delta-function pe
corresponding to the individual clusters. Next we allow f
composition fluctuations in lowest-order perturbation theo
Finally, we apply a variation procedure to determine t
most-probable fluctuations. As a result the individual pe
become smeared and the structure in the spectrum of
density of states is smoothed out. At the same time, the st
tural features of the spectrum can be observed at very
concentrations.

2.2.1. Isolated cluster approximation

For any cluster in the approximation we can write t
equation of motion as

$I1gvc~v!D%nmwL
D~m!50, ~13!
m
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wheren andm run through the values corresponding to t
coordinates of the sites occupied by clusters, andgvc(v) is
the fragment of the Green’s function matrix limited to th
region that is occupied by the cluster. Using the appro
developed in the theory of impurity lattice dynamics,38 we
find the eigenvalues and eigenfunctions of the ma
@gvc(v)D# with rank equal to the cluster size, i.e., we sol
the equation

(
mPC st,k

@gvc~v!D#n,mFs~m,v!5ls~v!Fs~n,v!, ~14!

where the sum is over sites occupied by clusters. The res
ing eigenfunctions constitute a complete orthonormal set

(
s

Fs~m,v!Fs~n,v!5dnm . ~15!

Using these eigenfunctions and eigenvalues, we can write
matrix $I1gvc(v)D%21 in the form

$I1gvc~v!D%nm
215(

s

Fs~n,v!Fs~m,v!

12ls~v!
. ~16!

In the given approximation a localized state splits off if
least ones has a positive valuev5v loc.0 at which

ls~v loc!51. ~17!

The state with the nodeless wave function always splits
first; such a state has the deepest value of the localiza
energy and provides the greatest contribution to optical p
cesses.

The wave functions of the split-off localized states no
malized to unity are, respectively,

fs~n!5 (
mPC st,k

Gn,m
vc ~v!Fm

s ~v!

3U (
n,mPC st,k

Fn
sGn,m8vc~v!Fm

sU21/2

, ~18!

where Gn,m8vc(v)5]Gn,m
vc (v)/]v, and the sum is over site

occupied by clusters.
Suppose that the probability that a cluster consisting os

atoms of speciesA and having a perimeter oft atoms of
speciesB appears is

gst c
s~12c! t, ~19!

wheregst is the number of clusters having the same num
of atoms of speciesA and the same number of atoms
speciesB at the perimeter, but different spatial configur
tions. Allowing only for nodeless states, instead of the e
pression~11! for the total average density of states we c
write

r~v!5(
s

(
k51

gst

(
n

uFn
st,ku2cs~12c! td~v2v loc

st,k!. ~20!

Here we have numbered the eigenfunctions and eigenva
according to their membership in the cluster. The ove
density of the states that have split off from bottom of t
band of the virtual crystal per site is
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N ~0!5E
0

EL
r~v! dv5(

st,k
gst c

s~12c! t5(
s

ns~c!,

~21!

i.e., it coincides with the total number of clusters per site39

To calculate the number of states whose localization ene
exceedsv, we must replace the lower limit of integration i
~21! with this quantity and begin summation on the righ
hand side of this expression with cluster sizess that lead to
the emergence of a state with a localization energy equa
v. The maximum number of split-off states of all types ca
not exceed the number of attraction centers, i.e., cannot
ceed the quantity

NA5N(
s51

`

ns~c!s. ~22!

This estimate works in the strong scattering limit.
Sums of type~21! rapidly converge over the entire rang

of concentrations. Since the functionsns(c) are known for
many lattices, at least for several small values ofs, the re-
sulting sum rule~21! can be used to estimate the number
states that have split off the bottom of the exciton band of
crystal. For instance, for an fcc lattice, de Genneset al.20,21

found that

n1~c!5c~12c!12, n2~c!512c2~12c!18,

n3~c!5c3@24~12c!231126~12c!24#. ~23!

Our estimates of the probability of the emergence of a clu
consisting of four atoms yield

n4~c!'103c4~12c!30. ~24!

These functions can be used along with the sum rule~21! to
estimate the number of states that form below the bottom
the band of a virtual crystal. All further information can b
obtained if we know, at least approximately, the depende
of the localization energy on the number ofA atoms in the
cluster. This makes it possible to evaluate the value and
havior of the total density of states and the nature of va
tion of the density of states.

2.2.2. Effect of fluctuations on cluster states. Perturbation
theory

Up to this point we have assumed that the clusters
surrounded by a homogeneous medium, or a virtual crys
To assess the role of fluctuations, we plug the solutions~18!
into the expression~11! and find the first nonvanishing cor
rection to the density of states for which the deviation fro
the virtual crystal approximation is responsible. As a res
we obtain

r~v!5
1

2p E
2`

`

dt(
s

(
k51

gst

(
n

ufn
st,ku2cs~12c! t

3exp$2 i ~v2v loc
st,k!t%

3K expH 2 i (
n{C st,k

Dnufn
st,ku2tJ L , ~25!
y

to
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x-

f
e

er
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e
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-
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where the angle brackets indicate averaging over all poss
realizations of occupation of the entire lattice except fo
single specified cluster, and summation in the exponen
the exponential function is over the lattice sites that lie o
side the cluster. When the occupation of the states is a
dom process, each is occupied by anA atom with probability
c and aB atom with probability 12c. Bearing in mind that
the exponential being averaged becomes a product of i
vidual exponentials, each of which is averaged indep
dently, we find that

K expH 2 i (
n{C st,k

Dnufn
st,ku2tJ L

5 )
n{C st,k

N

$c exp~2 iDAufn
st,ku2t!

1~12c!exp~2 iDBufn
st,ku2t!%, ~26!

where

DA5EA2EG52~12c!D,

DB5EB2EG5cD, ~27!

D5EB2EA.0.

The averaged expression for the density of states can be
ten

r~v!5
1

2p E
2`

`

dt(
s

(
k51

gst

(
n

ufn
st,ku2cs~12c! t

3expH i ~v2v loc
st,k!t1 (

nPC st,k

ln@Rn~t!#J , ~28!

where

Rn~t!5c exp@ iD~12c!ufn
st,ku2t#

1~12c!exp@2 iDcufn
st,ku2t#. ~29!

Confining ourselves to the first nonvanishing cumulant,
arrive at an expression for the density of states,

r~v!5
1

2p E
2`

`

dt(
s

(
k51

gst

(
n

ufn
st,ku2cs~12c! t

3expH i ~v2v loc
st,k!t2

gst,k
2 t2

2 J , ~30!

where

gst,k
2 5 (

n{C st,k

c~12c!D2@ ufn
st,ku2#2,

with the sum in the last expression being taken over
lattice sites outside the given cluster. Evaluating the integ
with respect tot, we obtain

r~v!5(
s

(
k51

gst

(
n

ufn
st,ku2cs~12c! t

1

A2pgst,k
2

3expH 2
~v2v loc

st,k!2

2gst,k
2 J . ~31!
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This expression differs from~20! in that the localization en-
ergy of each cluster is determined to withingst,k . If the
localization energies andgst,k prove to be of the same orde
the total number of states that have split off the bottom of
band of the virtual crystal is smaller than when fluctuatio
were ignored@Eq. ~21!#, i.e.,

N ~0!5E
0

EL
r~v! dv<(

s
ns~c!. ~32!

This result is limited to the range of applicability of th
perturbation theory, i.e., the lower the cluster concentra
and the higher the localization energy of the cluster sta
that provide the leading contribution to the density of stat
the better the result of using perturbation theory techniqu

2.2.3. Effect of fluctuations on cluster states. Variational
approach

We now consider the problem of calculating the dens
of states by the variational method. A new element in t
problem is the great diversity of clusters that split off sta
from the band bottom. This means we cannot select a va
tional wave function in a unique manner. For further calc
lations it is convenient to pass from the Fourier integral~30!
to the density of states expressed in terns of the Lap
transform:

r~v!5
1

2pE2`

`

dt(
s

(
k51

gst

(
n

ufn
st,ku2cs~12c! t

3expH 2 i S (
nm

fn
st,k@Hnm

vc 1vdnm#fm
st,kD

3~t2 iust,k!1 (
n{C st,k

ln@Rn~t2 iust,k!#J . ~33!

The variational problem in the independent-cluster appro
mation reduces to a set of independent nonlinear equation
motion for bound states of clusters, each of which has
form

(
nm

@Hnm
vc 1vdnm#fm

st,k1Ust,k~n!fn
st,k50. ~34!

For each cluster the potential energy within the cluster
be specified uniquely and does not vary. The most proba
configuration corresponds to the case in which the poten
energyUst,k(n) of the clusterst,k is taken in the form

Ust,k~n!5H Dn , nPC st,k ,

2
] lnRn~2 iust,k!

]ust,kufn
st,ku2

, n{C st,k ,
~35!

where the matrix elementDn has the value@2(12c)D# at
sitess and the valuecD at sitest, and
e
s

n
s

s,
s.

y
s
s
a-
-

ce

i-
of
e

n
le
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2
] ln Rn~2 iust,k!

]ust,kufn
st,ku2

52~12c!DF12
exp~2Dust,kufn

st,ku2!

c1~12c!exp~2Dust,kufn
st,ku2!

G .

~36!

Thus, the variational procedure yields the most probable c
figuration of fluctuations outside the cluster. Note that t
self-consistent solutions of the equations for the bound st
yield the functionsfn

st,k and, at the same time, fix the value
of the free parameters of the Laplace transform,ust,k . By
expanding ln@Rn(t2 iust,k)# in ~33! in a power series int
and keeping the terms up to the second order int we can
reduce the integral in~33! to a Gaussian integral. We the
integrate and transform the resulting expression via the eq
tion of motion~34!. What we obtain is an expression for th
density of states,

r~v!5(
s

(
k51

gst

(
n

ufn
st,ku2cs~12c! t

1

A2pgst,k
2 ~v!

3expH (
nPC st,k

F lnS c

c1p~n! D
c1p~n!

3S 12c

12c2p~n! D
12c2p~n!G J , ~37!

wherep(n)52Ust,k(n)/D,

gst,k
2 ~v!5

m2

F (
n

ufn
st,ku2G2 , ~38!

m25D2(
n

@ ufn
st,ku2#2@c1p~n!#@12c2p~n!#, ~39!

with D5uEB2EAu. The local values of concentration of a
oms that are centers of attraction and repulsion are descr
by the expressions@c1p(n)# and @12c2p(n)#, respec-
tively.

For each value ofs, the above formula for the density o
states describes a set ofgst bands whose shape near the pe
is close to Gaussian. As we move away from the peak, e
band acquires the Urbach shape. In the limit of lo
attraction-center concentrations the expression~37! for the
density of states describes structural features that are du
the minimum-size clusters.

2.2.4. Approximate description of the r vs. v dependence

To describe the behavior ofr(v) near the mobility edge
and below, we assume that in the zeroth approximation
states with localization energyv j exceeding a certain valu
v0 can be assumed localized and reasonably independ
The valuev0 measured fromEG must be chosen in such
way that the total number of states whose energy exce
this value,
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N ~v0!5E
v0

EL
r~v! dv, ~40!

with EL the Lifshits limit for the solid solutions, meets th
condition

N ~v0!a3!1. ~41!

Herea'A\2/2Mv0 is the characteristic length of expone
tial decay of the wave function of an isolated well outside
well. In what follows, the valuev0 acts as the limit of the
applicability range of the theory and constitutes an import
parameter that can be used in varyingr(v) near the mobility
edge.

To calculater(v), we use the effective mass approx
mation and the Halperin–Lax proposal concerning the p
sibility of using an average wave function to describe loc
ized states.12,13We examine fluctuation wells whose streng
exceeds that of a compact cluster needed to form a local
state of depthv0. Using the approach developed in Re
16–18, we obtain

r~v!;
1

v0A2pg2~v!
expH E d3r

v0
F lnS c

c1p~r ! D
c1p~r !

3S 12c

12c2p~r ! D
12c2p~r !G J , ~42!

where

g2~v!5
m2

F E d3r

v0
w tr

2~r !G2 , ~43!

m25D2E d3r

v0
w tr

4~r !@c1p~r !#@12c2p~r !#, ~44!

and v05V/N is the volume per atom in the lattice, wit
D5uEB2EA u. The local values of the concentration of a
oms that are attraction and repulsion centers are describe
the expressions@c1p(r )# and @12c2p(r )#. Here we use
the quantityp(r ), which is the measure of deviation of th
attraction center concentration from the average value
this case the self-consistent potential wellU tr(r ) can be de-
scribed by the formula

U tr~r !52Dp~r !, ~45!

where

p~r !5H 12c, r<R0 ,

~12c!F12
exp~2tw tr

2D!

c1~12c!exp~2tw tr
2D!

G , r .R0 ,

~46!

and

R05A \2

2M @~12c!D2v0#

3Fp2arctanA~12c!D2v0

v0
G ~47!
e

t

s-
l-

ed
.

by

In

can be found by solving the equation

H 2
\2

2M
¹21v2U tr~r !J w tr~r !50. ~48!

To estimate the absolute value of the density of sta
we find the proportionality factor in~42! by calculating the
total density of states and matching the value atv'v0 with
the total density of states found by employing the sum r
~32! and Eqs.~23! and~24!. The resulting density of states i
given in Sec. 5.

3. PHONONLESS ABSORPTION AND LUMINESCENCE
BANDS

To describe a phononless absorption band we emp
the method developed in Ref. 18. Optical absorption near
ground state of an exciton in a perfect crystal is described
the spectral density of the state for a zero wave vector:

a1s~v!5
v0

p
uc1s~0!u2Im G00~v2E1s2 id!, ~49!

where

Gkk~v2E1s!5
1

v2\2k2/2M2E1s2 id
.

HereE1s andc1s(r 50) are, respectively, the eigenvalue a
eigenfunction of the exciton’s ground state. As before,
origin of energy coincides with the bottom of the band of t
1s state of the exciton,EG , so thatEL51s50.

The imaginary part of the one-particle Green’s functi
is the diagonal matrix element obtained as a result of p
forming a double Fourier transform and averaging over
configurations of the imaginary part of the Green’s functi
~4!. Generally, the result can be written

^Im Gkk~v!&5
tkk~v!

@v2\2k2/2M2Dkk~v!#21tkk
2 ~v!

,

~50!

wheretkk(v) and Dkk(v) are related through a dispersio
law, which ensures correct normalization of the express
for the spectral density. In the region of localized stat
where condition~41! is met, these two functions are th
imaginary and real parts of the configuration average of
scattering matrix.41,42 If only one localized state is formed in
each fluctuation well, the relationship betweentkk(v) and
r(v) is

tkk~v!5
6v0

p3
D2 Av/DS Ecr

D D 3/2

uI 1~k!u2r~v!, ~51!

wherer(v) is given by~42! with allowance for the propor-
tionality factor found by using the sum rule~32!, and

I 1~k!5S 2Mv

\2 D 3/2
1

~2p!3 E d3r exp~ ikr !w tr~r !, ~52!

where atk50 we have
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E d3r w tr~r !5
D

v E d3r w tr~r !p~r !, ~53!

sincep(r ) describes the configuration of the fluctuation w
and is related tow tr(r ) through Eqs.~45! and~48!. Equation
~51! makes it possible to find the imaginary part of the sc
tering matrixtkk(v) in the region of interest.

Finding the functionDkk(v) is more complicated since
we must knowtkk(v) over a broad section of the spectrum
Knowing tkk(v), we can calculateDkk(v) via the disper-
sion relation. In contrast totkk(v), which for v.v0 varies
exponentially, the real part of the scattering matrix,Dkk(v),
decreases slowly~by a power law! with increasingv, tend-
ing in the limit of largev to zero as 1/v. Hence, to approxi-
mately describe the spectral density within a relative narr
energy range near its peak, we can replaceDkk(v) with the
constant valueDkk

0 . As a result, atk'0 we have

^Im G00~v!&'
t00~v!

@v2D00
0 #21t00

2 ~v!
, ~54!

whereD00
0 is chosen is such a way that the calculated po

tion of the peak in the 1s-stateband in the absorption spe
trum coincides with the experimental value.

3.1. Basic characteristics of the solid solution ZnSe 12cTec

and estimates of the parameters of the problem

To compare our results with the experimental data
selected the solid solution ZnSe12cTec . The perturbation in-
troduced by Te atoms is strong enough for a localized s
to form on a cluster consisting of two or more Te atoms.40

The experimentally measured concentration depende
of the band gap of the solid solution,

EG~c!5cE G
A1~12c!E G

B2DEG~c!, ~55!

can be characterized by the bowingDEG(c), i.e., the deflec-
tion from a simple linear interpolation between the limitsE G

A

and E G
B . The development of the electronic theory of so

solutions is closely related to studying the nonlinear dep
dence of the band gap on concentration~the bowing
effect!.43–48 While in the earlier work devoted to explainin
the bowing the observed effect was related to the effec
averaging of the parameters of the electron Hamilton
and/or the scattering off single-site fluctuations, recent st
ies in this field46–48 show that the nature of the perturbatio
of the electronic states introduced by isoelectronic subs
tion is more complicated, and that to explain the obser
effect one must allow for structural changes in the lattice t
are due to the variation in the length of bonds between
substituting anion and the neighboring cations. According
the data in Refs. 46–49, band gap variations result from
self-consistent transformation of the electronic states in
ated by the chemical and structural perturbations introdu
by isoelectronic substitution.

A detailed analysis of this dependence40,50 for the
ZnSe12cTec system shows that the bowingDEG(c) consists
of two terms,

DEG~c!5DE1~c!1DE2~c!, ~56!
l
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and that the two terms display different concentratio
dependent behavior. The larger of the two is the symme
part of the bowing, which is described by the formu
DE1(c)5b1c(12c). The peak value of this term is abou
0.25 eV atc50.5, which is comparable to the difference
the band gaps of ZnSe and ZnTe crystals~2.82 and 2.39 eV,
respectively51!. The componentDE2(c), which is asymmet-
ric with respect toc50.5, reaches its peak value of approx
mately 0.1 eV atc'0.15.

Both the absorption and luminescence of the solid so
tion ZnSe12cTec ~see Refs. 37, 40, 50, and 52–55! point to
the formation of fluctuation-induced tails of localized stat
of excitons, tails that decrease exponentially with increas
depth of the band gap,}exp(2v/«U). The Urbach paramete
«U reaches its peak value of approximately 0.025 eV
c'0.15, and its variation with concentration almost co
cides, over a broad range, with the asymmetric part of
bowing function.50 This points to DE2(c) and the
fluctuation-induced tail beingn of similar origin and makes
possible to link these two characteristics with the compo
tion fluctuation responsible for the splitting off of localize
states.

The large value of the bowing and the substantial sme
ing of the band edge by the fluctuation-induced tails sugg
that the solid solution ZnSe12cTec is a system in which the
perturbation of the electronic states of the valence b
where Te is substituted for Se is strong at least in the ra
of Te concentrationsc<0.30. This is corroborated by th
fact that the tail of the fluctuation states in the low
concentration region c'0.01 has structura
features37,40,50,52–55that are due to the localized states
small-sized clusters consisting of two or three Te atoms.
the Te concentration increases and the average level o
potential decreases, the size of the perturbation introduce
each Te atom also decreases systematically.

Another feature of the solid solution ZnSe12cTec , which
sets it apart from other compounds of the given type, is
strong exciton–phonon interaction, which in the concent
tion rangec<0.30 leads in the luminescence spectra to str
tureless bands40,50,52,53 with a halfwidth of approximately
0.1 eV. The larger value of the constant of Fro¨hlich interac-
tion with LO phonons in the solid solution as compared
the values of that constant in the original ZnSe and Zn
crystals corroborates the fact that in the given concentra
range electron localization is fairly strong, as a result
which electron–vibrational transitions involving phono
whose wave vectors occupy a sizable portion of the Brillo
zone become possible.

Both D andD/Ecr become the parameters whose valu
determine the Urhach energy«U . To find the values of these
parameters we used the experimental values of the Urb
energies obtained from absorption coefficie
measurements.40,52 The values wereD'1 eV and D/Ecr

'0.8.
The values of these parameters of the Hamiltonian

also be estimated by examining the concentration dep
dence of the shift of the peak of the exciton ground state~Eq.
~55!!. In the one-band model, the nonlinear contributi
DE1(c) is the first correction to the position of the bottom



n
s

ti-
et

th
n
t t

o
ift
ta

po
t o
io
gh

b
ba

-
s
o

ns
io
c

ar
al
ti

ua
,
ti

u
is

o
o

to
e

ced
s-
lid

ro-
ms

on-
ver
es
ach
ngs
, or
the
een
ory

te

we
to

rage

to a
e
ith
in
an

al
ls,

ne
d

t.
en-
34.

l

s
the
the

la-

581JETP 88 (3), March 1999 Klochikhin et al.
the valence band due to scattering of single-site fluctuatio
and can be expressed in terms of the same parameters a
Urbach energy«U . We know that in general such an es
mate does not guarantee good agreement between theor
and experimental data. However, if the parametersD and
D/Ecr of the model Hamiltonian are selected to achieve
best agreement with the observable values of Urbach e
gies, the internal consistency of the model suggests tha
fluctuation shift of the band edge, equal to

DE1~c!5D2Gnn
vc~0!c~12c!, ~57!

satisfies the inequalityDE1<DE1, whereDE1(c) is the ex-
perimental value of the band-gap bowing. The validity
this inequality follows from the fact that the calculated sh
DE1 pertains to the valence band, due to which the
emerges, while the observed value ofDE1 also contains a
conduction-band contribution, which usually has the op
site sign and increases the bowing. In the lattice varian
the model, the critical value of the single-site perturbat
potential is linked to the electron Green’s function throu
the relationship

Gnn
vc~0!5

1

Ecr
. ~58!

Thus, we see that the symmetric part of the shift can
expressed in terms of the same parameters as the Ur
energy.

The quantityDE1(c) is not directly related to the forma
tion of localized states, which means that in all calculation
is convenient to carry out an additional renormalization
the energy origin, eliminating this quantity from calculatio
of localization energies. In the effective mass approximat
the shift of the band bottom, which is due to single-site flu
tuations, also needs to be renormalized.14

With allowance for renormalization, the asymmetric p
of the bowing,DE2(c), can be found from the experiment
data to be the position of the peak of the observed absorp
band with respect to the bottom of the band of the virt
crystal ~Eq. ~56!! after the symmetric part of the bowing
DE1(c), has been subtracted. Separation of the concentra
shift of the band-gap edge,DEG , into DE1(c) andDE2(c)
makes it possible to accurately establish only the maxim
value ofDE1(c). On the other hand, when only one band
responsible for the formation of a density-of-states tail~in
our case we assume that this is the valence band!, the value
of DE2(c) obtained from experiments and the value
DE2(c) found from calculations in the one-band model c
incide to high accuracy:

DE2~c!5DE2~c!. ~59!

SinceDE2(c) is related to the same fluctuations that lead
the formation of localized states, the concentration dep
denceDE2(c) has the form

DE2~c!;«U;
D~12c!

ln~1/c! S D~12c!

Ecr
D 3/2

. ~60!
s,
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3.2. Phononless luminescence band

The above reasoning assumes that fluctuation-indu
potential wells, which lead to exciton localization, are clu
ters of atoms of the narrow-band component of the so
solution, with diagonal disorder being responsible for p
ducing fluctuation states in the given model. When the ato
of two species are distributed at random, the fluctuati
induced potential wells are also distributed at random o
the crystal volume. This, however, is true only for stat
whose localization energy is high enough. As we appro
the mobility edge, an ever greater fraction of states belo
not to a separate cluster but to complexes of clusters
superclusters. In this section we develop an approach to
luminescence problem that is based on the analogy betw
percolation along fluctuation states and the classical the
of percolation along overlapping spheres.

3.2.1. Classification of localized states

Enclosing each potential well in which there is a sta
with an energy v.v0 in a sphere of radiusRint

.A\2/2Mv0 whose value is a parameter of the problem,
use the theory of percolation along overlapping spheres
calculate such characteristics of tail states as the ave
number of complexes~superclusters!, ^ns&, consisting ofs
overlapping spheres. We assume that the state belonging
given potential well is isolated in space if the volum
4pRint

3 /3 of the sphere contains no other potential wells w
a localization energy higher that the energy of localization
the given well. Concerning the problem in question, we c
say that^n1& is the number of isolated localizing potenti
wells, ^n2& is the number of clusters consisting of pair wel
and so on.

If we use the well-known expression for^n1& ~see Refs.
30–35!, we arrive at

^n1~v!&'exp~2@Rint/r ~v!#3![exp$22P ~v!%, ~61!

where

r ~v!5S 3

4p

1

N ~v! D
1/3

~62!

and ^n1(v)&[^n1(N (v))&. The concentrationN (v) of
potential wells with a localization energy limited on the o
side byv and on the other by the Lifshits limit is determine
by a formula of type~40!. The functionP (v) is the density
of localized excitons in units of the first virial coefficien
The data of various researchers on the critical value of d
sity for percolation along spheres are collected in Ref.
Such values lie in the range 1.17>P cr

cl<1.40. Equations~61!
and ~62! show that in our case the critical valueP (vME)
depends on the parameterRint introduced earlier and the tota
density at the percolation threshold,N (vME).

The dependence of^ns& on the concentration of sphere
for s5225 was obtained in Ref. 34 as a power series in
concentration. To be able to use these functions near
percolation threshold, we derived the following extrapo
tions of the series obtained in Ref. 34 fors52,3,4:

^n2~v!&5P ~v!exp$23.073P ~v!%,



rie
he

tio

ing

o

al
o
r

be
h
ea
te
en
n

th

f

ea

r

iz
lim
in

sta
ed

n
th
th
ca
p

y
to

n-

s,
t

d-
re
36
in-

r

r a
is
nd

u-
tion
-
es-

t

per-

582 JETP 88 (3), March 1999 Klochikhin et al.
^n3~v!&51.375P 2~v!exp$24.09P ~v!%, ~63!

^n4~v!&52.1842P 3~v!exp$25.084P ~v!%.

A series expansion of these expressions in powers ofP (v)
leads to results that to high accuracy coincide with the se
found in Ref. 34. Moreover, it is possible to estimate t
accuracy of the extrapolation for the function^n2(v)& if one
uses the results of the numerical calculations of the func
P3(pnorm) done in Ref. 30. The functionP3(pnorm) is the
probability of a potential well selected at random belong
to a supercluster whose sizes.3, with P3(pnorm) linked to
^n2(v)& by the relationshipP3(pnorm)512^n1&22^n2&,
and to pnorm linked to P (v) by the relationshippnorm

5P (v)/8. A comparison ofP3(pnorm) with calculations
done in Ref. 30 showed good agreement in the most imp
tant region, 0.3.pnorm.0.1, i.e., near the mobility edge.

3.2.2. Lifetimes of localized states

Let us examine the simplest situation in which a loc
ized state can either recombine and emit a phonon or g
another state with a lower energy, transferring seve
phonons to the lattice. Here we ignore the interaction
tween two or more excited excitons, assuming all along t
the occupation of the states is close to zero due to the w
ness of excitation. Using the classification of localized sta
according to their membership in superclusters of differ
sizes, we claim that states belonging to single wells can o
recombine. The states belonging to pair superclusterss
52) are of two types: one~the lower! at absolute zero can
also only recombine, while the second~the upper! can go to
to the lower and emit phonons in the process. Obviously,
total concentration of states that can only recombine is

m0~v![m rad~v!5K (
s51

`

ns~v!L , ~64!

wherens(v) is the number of superclusters consisting os
potential wells with a localization energy>v per well, and
the angle brackets indicate averaging over all possible r
izations of a supercluster of the given size.

In the adopted model,m rad(v) is the fraction of states fo
which the total lifetime is equal to the radiative time:

t~0![t rad; ~65!

we assume that this quantity is independent of the local
tion energy. The other supercluster states have lifetimes
ited by decay processes involving phonon emission. For
stance, the upper states of pair clusters and the second
of clusters of larger size~supercluster states are number
according to their decreasing localization energy! have only
one feasible decay channel. The number of decay chan
involving phonon emission increases with the number of
state in a supercluster. To simplify matters, we assume
the lifetime of a state depends only on the number of de
channels for the given state and is independent of the su
cluster configuration. Then to a state with numbers>1 the
corresponding total lifetime is
s

n
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t~s21!5
tdec

~s21!t rad

tdec
~s21!1t rad

, ~66!

where the superscript (s21) indicates the number of deca
channels andtdec

(s21) denotes the lifetime against transitions
the lower states of the supercluster. By analogy with~64!,
the number of states withs decay channels is

ms~v!5K (
k5s11

`

nk~v!L . ~67!

To a first approximation,m rad can be written

m rad'^n1~v!1n2~v!1•••&5exp$22P ~v!%

1P ~v!exp$23.073P ~v!%1•••, ~68!

and for the fraction of states with only one relaxation cha
nel, m1, we have

m1'^n2~v!1n3~v!1•••&5P ~v!exp$23.073P ~v!%

11.375P 2~v!exp$24.09P ~v!%1•••. ~69!

To high accuracy, the sums~64! and~67! are determined by
their lower limit,36 i.e., by a small number of leading term
which are given in~68! and ~69!. They are well-defined a
low concentrations, in the critical regionudN (v)u
[u12N (v)/N (vME)u!1, and at concentrations excee
ing the critical, although in the latter two regions they a
exponentially small. The approach described in Ref.
makes it possible, in the critical region, to represent the s
gular parts of the sums~64! and ~67! as udN (v)un D11,
whereD is the dimensionality of the system, andn is the
critical index of the order parameter, withn depending onD.
At D53 we haven'0.87, which leads to negligible singula
parts of these sums in the critical region.

3.3. Contour of the phononless luminescence band

The steady-state concentration of occupied states fo
continuous and relatively weak band-to-band excitation
proportional to the density of states for a given energy a
lifetime of the states. Allowing for the fact that the contrib
tion of each occupied state to the spectral density of radia
coincides with the contribution of the 1s state to the absorp
tion coefficient, we can represent the phononless lumin
cence band in the form

I 1s
0 ~v!;a1s

0 ~v!P~v!t rad, ~70!

where

P~v!5(
s51

`
m~s21!~v!t~s21!

t rad
[(

s51

`

P~s21!~v! ~71!

yields the total relative occupancy of the states~with the
localization energyv) belonging to superclusters of differen
sizes. Allowance for the first two terms inP(v), which
means that only isolated clusters and ground states of su
clusters withs52 are taken into account, yields

I 0~v!;a1s
0 ~v!t rad@exp$22P ~v!%

1P ~v!exp$23.073P ~v!%#, ~72!
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which is independent of nonradiative relaxation time
Higher-order terms that are also independent of the nonr
ative relaxation rate emerge due to the ground states of
perclusters of larger sizes. Moreover, all superclusters be
ning with s52 provide contributions that depend o
nonradiative relaxation times. For instance, the first corr
tion for which the second state of the supercluster w
s52 is responsible can be written

a1s
0 ~v!P~1!~v!t rad

'a1s
0 ~v!^n2~v!&t~1!5a1s

0 ~v!P ~v!

3exp$23.073P ~v!%
tdect rad

tdec1t rad
. ~73!

This expression shows that the role played by the correc
depends on the ratio oftdec andt rad.

In all cases the minimum-sized superclusters provide
leading contributions, while the higher-order terms prov
only small corrections both in the low concentration regi
N (v)/N (vME)!1, because the number of such corre
tions is proportional to the degree of concentrationP (v),
which increases with supercluster size,34 and near the mobil-
ity edge, because of the more rapid exponential decreas
higher-order terms.

4. ELECTRON–PHONON INTERACTION

The electron–phonon interaction has an additional ef
on the shape of the absorption and luminescence spectr
cause absorption and luminescence is accompanied by e
sion of both acoustic and optical phonons.

To describe the interaction between excitons and LO
LA phonons, we can use our previous results.18,19 The ab-
sorption coefficient and the luminescence intensity at ab
lute zero with allowance for interaction with phonons can
written

a1s~v!5E
0

`

dza1s
0 ~v1z!F~z! ~74!

and

I 1s~v!5E
2`

0

dz I1s
0 ~v2z!F~z!, ~75!

respectively. Here

F~v!5
1

2p E
2`

`

dt expF ivt1(
q

uHFF~q!u2

Vq
2

3~exp~2 iVqt !21!G ~76!

yields the density of electron–vibrational states of the wi
When the scattering is strong, a localized exciton c

sists of a hole localized in the random potential of the so
solution and an electron bound to the hole by Coulomb
teraction. Corresponding to this model is the wave functi

F5f tr~R!c1s~j!, ~77!
.
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wheref tr(R) describes the state of a particle localized by t
random potential of the solid solution, andc1s(j) is the
wave function of the ground state in the Coulomb potent
The argumentR of f tr represents in this case the radi
vector of the hole,R5rh , while the argumentj of c1s rep-
resents the radius vector of the electron,j5xe .

We write the exciton–phonon interaction Hamiltonian
H(q)5HLO(q)1HLA(q), whereq labels the wave vectors
of the phonons, and each term is the sum of the electron
hole Hamiltonians:HLO,LA(q)5HLO,LA

e (q)1HLO,LA
h (q). The

matrix elements of the exciton–phonon Hamiltonian can
expressed as follows:56,57

HFF
a ~q!5@F e,q

a expi ~q•r e!1F h,q
a expi ~q•r h!#FF ,

~78!

where the labela indicates the interaction mechanism. Sin
each exponential function in~78! depends only on one argu
ment, we have

HFF
a ~q!5F e,q

a @expi ~q•re!#1s1s

1F h,q
a @expi ~q•rh!#f trf tr

. ~79!

The functionsF e,q
a andF h,q

a can be found, for example, in
Ref. 56.

In calculating the spectraa1s(v) andI 1s(v) we allowed
for the Fröhlich interaction with LO phonons and for th
deformation and piezoelectric interactions with LA phonon
The main parameters of the solid solution needed in calc
tions ~the effective electron and hole masses and the c
stants of the deformation potential and of the piezoelec
and Fröhlich interactions! were obtained via linear interpola
tion between their values for ZnSe and ZnTe~see Ref. 58!.

5. RESULTS OF CALCULATIONS AND DISCUSSION

Calculated values of the density of fluctuation stat
r(v), and the total density of states,N (v), are depicted in
Fig. 1. The total density of states is the total number of sta

FIG. 1. Results of calculations: curve1, the density of statesr(v); curve2,
the total density of statesN (v); curve3, the density of ‘‘radiating’’ states
N rs(v); and curve4, the total density of radiating statesr rs(v) of the
fluctuation tail of the solid solution ZnSe12cTec at c50.15. Thed denotes
estimates of the total density of states by the sum rule. The zero in en
corresponds to the position of the bottom of the band of the virtual cry
with allowance for the symmetric partDE1(c) of the bowing. The vertical
dotted line indicates the position of the mobility edgevME ~see the text!.
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with energies exceedingv, calculated on the basis ofr(v)
via Eqs.~42!–~48!. The proportionality factor in~42! and the
parameterv0 must be selected in such a way that the to
density determined via the sum rule~32! coincides with the
value calculated fromr(v) at v5v0. The valuev0 was
found to be 0.09860.005 eV, which places it in the rang
between the values of the localization energy for clust
with the number of Te atoms equalings53 ands54. The
localization energy for the clusters were estimated in the
proximation of effective mass and spherical potential well
appropriate sizes. The total density of states for clusters,
noted byd in Fig. 1, was calculated by the sum rule~32!.
The procedure yields values of the density of states, depi
in Fig. 1, in the region wherev>v0 and makes it possible to
extrapolate this function into the region wherev<v0. Fig-
ure 1 also depicts the density of ‘‘radiating’’ states,r rs(v)
5r(v)P(v), with P(v) defined in~71!, and the total den-
sity of statesN rs(v) as functions of the localization energ
v.

Figure 2 depicts the results of calculations of the cont
of the phononless absorption and luminescence bands o
excitonic ground state for the solid solution ZnSe12cTec at
c50.15. The position of the mobility edge~the dotted verti-
cal line in Fig. 2! and the theoretical parameterRint ~intro-
duced in Sec. 3.B.1! were selected in such a way that th
shift of the peak in the luminescence band in relation to
peak in the absorption band corresponds to the obse
quantity. In our calculations we usedP (vME)51.4, which
corresponds to the value obtained by Haan and Zwanz34

for the critical concentration in the classical problem of ov
lapping spheres.

The contour of the phononless luminescence band
Fig. 2 shows that only a relatively small number of fluctu
tion states, lying in the region of small absorption-coefficie
values, determines the luminescence process. The peak i
distribution of these radiating states is shifted in relation

FIG. 2. Results of calculations: curve1, the contour of the phononles
absorption banda1s

0 (v); curve 2, the relative total density of state
N (v)/N (vME); curve3, the fractionP(v) of radiative states; curve4, the
phononless luminescence bandI 1s

0 (v); and curves5 and 6, the absorption
banda1s(v) and the luminescence bandI 1s

0 (v) of the 1s state with allow-
ance for the interaction with phonons. The dot–dash curves represen
components of the contour of the luminescence band responsible fo
interaction with LO phonons, and thes represents the luminescence spe
trum of ZnSe12cTec at c50.15 andT52 K.
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the absorption peak toward the red part of the spectrum e
when the interaction with lattice vibrations is ignored, whi
is reasonably consistent with the existing experimental d
on disordered systems. The interaction with phonons lead
additional Stokes shifts of the absorption and emission ba
in opposite directions. Figure 2 depicts the results of allo
ing for the effect of the exciton–phonon interaction on t
position and shape of the luminescence band and the ex
mental spectrum of the solid solution ZnSe12cTec at
c50.15. In our calculations we assumed the localize
exciton wave function to be the product of the wave functi
of a localized hole and the electron Coulomb wave functi
Since in this concentration range the excitonic binding
ergy Eex(c) is much lower than the localization energy fo
the radiating states, the electron has not enough time to a
batically follow the motion of the hole and, therefore, inte
acts with the hole distribution averaged over the fluctuati
induced well. Satisfactory agreement with the experimen
curve is achieved when one allows for ten LO repetitio
the decomposition of the contour of the luminescence b
into components is also shown in Fig. 2.

Figure 3 presents the experimental data on the conc
tration dependence of the band-gap bowing,DEG(c), the
separation of the experimentally measured shift of the pe
DEG(c), into DE1(c) andDE2(c) according to the formula

DEG~c!5b1c~12c!1b2

~12c!5/2

ln~1/c!
, ~80!

and the estimate ofDE1(c) by ~57! with the values of the
parameters listed in this paper. Clearly, the resulting value
DE1(c) obeys the earlier discussed inequalityDE1<DE1.
Here the position of the peak in the absorption band, ca
lated at c50.15 with allowance for the interaction with
phonons, is approximately 0.1 eV and is also in good agr
ment with the observed value ofDE2(c).

In conclusion we note that the proposed approach to
scribing the spectrum of fluctuation states of a disorde
solid solution with diagonal disorder and a narrow-gap co

the
he

FIG. 3. Experimental data on concentration bowing of the band g
DEG(c) (j). Curve1, the approximation ofDEG(c) by Eq.~80!, which is
a combination of the functions~57! and ~60!, at b151.0 eV and
b250.3 eV; curve2, the maximum possible value of the symmetric part
the bowing,DE1(c); curve3, the asymmetric part of the bowing,DE2(c);
and curve4, the estimate ofDE1(c) made by Eq.~57!.
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ponent concentration below the percolation threshold fo
disordered sublattice can be generalized to two-dimensi
systems and to other types of percolation.

The classification of localized states according to th
membership in superclusters may also prove useful for
ordered systems in which the density of fluctuation state
three-dimensional while the statistics of the supercluster
two-dimensional. Such a situation may occur, say, in
case of quantum wells formed by a solid solution if the we
are wide enough to accommodate three-dimensional fluc
tion clusters but not wide enough to accommodate thr
dimensional superclusters.

The present work was made possible by grants fr
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Vacancy mobility in polymer crystals
E. A. Zubova and L. I. Manevich

N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 117977 Moscow, Russia

N. K. Balabaev

Institute of Mathematical Problems in Biology, Russian Academy of Sciences, 142292 Pushchino, Moscow
Region, Russia
~Submitted 14 July 1998!
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A molecular-dynamics model of the behavior of a vacancy in the chain of an equilibrium
polymer crystal~the ‘‘collective atom’’ approximation for polyethylene! is developed for the first
time. It is shown that a defect of this type in a polymer crystal has a soliton mobility, as
opposed to vacancies in crystals of low-molecular substances. ©1999 American Institute of
Physics.@S1063-7761~99!02103-4#
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1. INTRODUCTION

In order to predict the relaxation, plastic, and durabil
characteristics and the melting temperature of crystals
necessary to consider localized mobile defects or deviat
from the ideal structure. Point structural defects~such as va-
cancies or inclusions! are responsible for the relaxation pro
erties of solids. Their inability to undergo directed motion
why relaxation processes are slow in low-molecular cryst
Because the properties of polymer crystals are highly an
tropic ~the atoms in a polymer chain are bonded to one
other by chemically covalent bonds, while the intermolecu
interaction is through weak van der Waals forces!, vacancies
with breaking of interchain covalent bonds are essenti
immobile. However, these crystals can contain other, spe
cally polymer, point defects, which are not caused by bre
ing of intrachain bonds, but by a deformation of a cha
which is localized in a small portion of the chain.

The idea of such defects arose in polymer crystal phy
after the observation of anomalously rapid dielectric rel
ation of oxidized polyethylene.1 An analysis of a number o
possible molecular mechanisms for this process2 showed that
the most probable mechanism was the propagation of lo
ized regions of twisting~by 180°! along the chains with
stretching~over a half period of the chain! extending on the
order of a few tens of periods in the absence of conform
tional changes. A quasi-one dimensional approximation
immobile neighboring chains~see Ginzburget al.3 and the
references cited there! can be used to describe this kind
defect as a soliton-type topological excitation,4 i.e., a local-
ized nonlinear wave propagating at a constant near-s
speed along the chain which changes its state after it pa
and can, thereby, cause rapid relaxation in the crystal.

An approximate analytic description of static point d
fects in polyethylene has been proposed5 and they have been
studied numerically6 using the techniques of molecular m
chanics. However, these papers do not touch on the que
of the mobility of the defects and, therefore, their contrib
tion to relaxation in these crystals. Recently a numerical
5861063-7761/99/88(3)/4/$15.00
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lution has been obtained for the problem of the propaga
of near-sonic solitons in a polyethylene chain surrounded
immobile neighboring chains.7 Only one paper8 contains a
molecular-dynamics study of the behavior of point twist d
fects in polyethylene crystals~with mobile molecules in the
first coordination sphere! for a ‘‘collective atom’’ model~the
CH2-groups are replaced by point particles!. Unfortunately,
the use of an initially nonequilibrium sample crystal stru
ture led, as will be shown below, to unjustified conclusio
regarding the nonsoliton nature of the mobility of this defe
in the crystal.

The purpose of this paper is to study the type of mobil
of point structural defects in the framework of a molecula
dynamics model for a polymer crystal with chains of t
simplest type~plane trans-zigzag in the collective atom a
proximation, Fig. 1a!. The equilibrium configuration of a
crystal of this type is found in advance~Figs. 1b and 1c!.
Here we limit ourselves to analyzing vacancies~Fig. 2a!, the
simplest defects which can exist in a polymer crystal cha
We also study the dependence of the defect behavior on
crystal structure.

2. NUMERICAL MODEL OF POLYMER CRYSTALS

We have taken the following model for a polyme
crystal9 ~polyethylene with collective atoms; see Fig. 1a!: the
chains consist of plane trans-zigzags; the bonds between
atoms ~point particles of massm) are absolutely rigid of
length l 0 ; the deformation energies of the valence (un) and
conformational (fn) angles are given by

U3~un!5 1
2 Ku~un2u0!2,

U4~fn!5a1b cosfn1g cos 3fn ;

and, atoms separated by more than two neighbors or bel
ing to different chains interact through the potential

U~r !5H ULJ~r !2ULJ~R!, r<R,

0, r .R,
© 1999 American Institute of Physics
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where ULJ(r )54«@(s/r )122(s/r )6# is the Lennard-Jone
potential with a minimum atr 0521/6s. The numerical val-
ues of the constants employed here are listed in Table I

We have taken periodic boundary conditions for t
crystal in all three directions. The cells of the computatio

FIG. 1. Model of a polymer crystal~polyethylene with collective atoms!: ~a!
chain parameters and local atomic coordinates;~b! two types of mutual
locations of neighboring chains in a crystal~the lengths of the dashed line
are slightly less than the equilibrium distance for a van der Waals poten!,
and~c! the possible equilibrium configurations for packing of plane zigza
~1! stable and~2! unstable~shown here is the plane of a transverse cro
section of the molecules; the arrows denote the direction from the ne
atoms of the molecule under the plane to the nearest above the plan
thick lines represent the bonds between molecules of type1 in b and the thin
lines, those of type2 in b!.

FIG. 2. A vacancy in a polymer crystal chain:~a! the shape of the defec
~the dotted box represents the defect region! and ~b! the longitudinal dis-
placements of atoms from the equilibrium position~Å! in molecules with a
defect~upper curve! and in molecules in the first coordination sphere~lower
curve!.
l

grid were chosen to have the shape of a rectangular para
epiped. The corresponding classical first order Lagra
equations were solved numerically using a Berle leap-f
algorithm12 taking note of the limitations imposed by th
rigid bonds.13

The periodic boundary conditions make it possible
follow the soliton dynamics in the direction along the axis
the molecules for an unlimited time and to avoid introduci
unphysical boundary conditions such as a rigidly attach
second coordination sphere in the plane of the transv
cross section. In order to keep a soliton from interacting w
itself, the number of molecules in the grid cell was chosen
that the image of each molecule lies no closer than its fou
coordination sphere, while the length of the molecule fo
soliton extending on the order of 35 chain periods (c) was
assumed to be 200c ~two CH2 groups fall within a single
period!.

3. EQUILIBRIUM CRYSTAL CONFIGURATION OF A
POLYETHYLENE CRYSTAL IN THE COLLECTIVE ATOM
MODEL

When the chains are packed in a~mechanically! equilib-
rium configuration, they can have two kinds of mutual po
tions ~Fig. 1b!. The first is stable~1! and is roughly a factor
of two more favorable energetically than the second~2!,
which is unstable~a saddle point!. Since the projected length
of a molecule on its perpendicular cross sectional plane
l'50.843 Å and the van der Waals radiusr 054.265Å
'5l' , the packing of the molecules in the crystal will b
close to cylindrical. Two different~mechanically! equilib-
rium configurations are conceivable~Fig. 1c!. Both have a
monoclinic cell and similar energies~each atom has six van
der Waals bonds with atoms of other chains!. The second,
however, is unstable and stratifies into two domains, both
which correspond to the first configuration. The parametea
andb of the stable structure depend on the cutoff radiusR.
Table II lists some theoretical estimates of these const
~the length of the dotted lines in Fig. 1b equals the van
Waals radius! and data relating to the relaxation of sampl

l
:
s
st

the

TABLE I. Parameters of the model crystal.

Parameter Value Ref. Parameter Value R

m 14 a.m.u. 2 b 1.675 kJ/mole 10
l 0 1.53 Å 10 g 6.695 kJ/mole 10
u0 113° 10 « 0.4937 kJ/mole 11
Ku 331.37 kJ/mole 10 s 3.8 Å 11
a 8.370 kJ/mole 10 R52r 0 8.531 Å 2

TABLE II. The parametersa andb ~Å! for the equilibrium crystalline con-
figuration with different cutoff radiiR.

Parameter R5r 0 (est.) R51.8r 0 R52r 0

a 4.265 3.998 3.980
b 8.618 7.994 7.966
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with different R. The period along the molecular axis is a
ways equal toc52.554 Å. The density of the sample
r51.155 g/cm3.

Molecular-dynamics modelling of a polyethylene crys
in the collective atom approximation has shown that ther
no local minimum in the potential energy for an orthorho
bic structure for any such cell parameters. The numer
simulation yields a minimum of this sort only for a model
polyethylene in which the CH2 group is modelled by three
spatially separated force centers. Thus, an orthorhom
structure in polyethylene can exist only because of the p
ence of lateral groups, and not of the shape of the ch
skeleton.

4. THEORETICALLY EXPECTED CHARACTER OF THE
VACANCY DYNAMICS IN A POLYMER CRYSTAL CHAIN

We shall show that the simplest description of the d
namics of a vacancy in a chain of a polymer crystal in
approximation of immobile neighbors can be reduced t
sine-Gordon equation for the transverse displacementu of
the atoms in the chain.~See Fig. 1a.!

In fact, the effective potential of the matrix is obtaine
by calculating the crystal energy with all the molecules fix
but one, which moves along the axis. In the stable equi
rium configuration of the crystal it can be approximated
within two percent by two harmonics:

V~u!5AF12cosS 2p

c
uD G ~1!

with A50.274 kJ/mole.
The condition of rigid bonds determines the relations

among the longitudinal and transverse displacements,u and
v, of the atoms.~See Fig. 1a.! Going to the continuum ap
proximation in the system lagrangian~justified by the rela-
tive weakness of the intermolecular interaction! and neglect-
ing the dispersion and nonlinearity owing to th
intramolecular interactions~a more accurate continuum de
scription can be found elsewhere14!, we obtain a sine-Gordon
equation withK5Ku(2tan(u0/2))2 for the longitudinal dis-
placementu(z,t):

mutt2Kuzz1AS 2p

c D 2

sinS 2p

c
uD50.

Here K is the rigidity parameter of the chain, so that t
sound speedvs5AK/m, while A characterizes the height o
the barrier between two neighboring positions of the ato
in the matrix potential~1!.

The sine-Gordon equation has well known soliton so
tions corresponding to vacancies:

u~z,t !5
c

2p
4 arctan expS z2vt

L D , ~2!

where v is the soliton velocity (v,vs), L
5L0A12(v/vs)

2, andL05(c/2p)AK/A is the half width of
a motionless defect, which is larger the more rigid the ch
is relative to the matrix. For our values of the consta
~Table I!, we havevs'14.76 km/s andL0'35(c/2).
l
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Therefore, a vacancy~without breaking of covalent
bonds, Fig. 2a! can move along the chain with a near son
velocity, maintaining its localization and without disruptin
the crystal structure outside the region of the defect. T
means that at velocities not too close to that of sound,
vacancy dynamics should be those of a soliton.~When
v→vs it is no longer possible to neglect either the discre
ness or the intramolecular nonlinearity; solitons are narro!
This conclusion, however, is based on a quasi-one dim
sional approximation for the immobile neighboring chain
Now our goal is to study the vacancy dynamics in a crys
where all the chains are mobile.

5. RESULTS OF A MOLECULAR-DYNAMIC SIMULATION OF
THE BEHAVIOR OF VACANCIES IN A POLYMER
CRYSTAL

This system is characterized by the following tim
scales: the transit time for sound over one chain per
'1.7•1022 ps, the soliton width'1.22 ps, and the period
of the oscillations of the atoms in a chain in the potential
neighboring chains'1.39 ps.

In the molecular-dynamics simulation, for one of th
molecules in a crystal that had relaxed and cooled to a t
perature of 0.1 K we specified atomic displacements a
velocities in accordance with the approximate analytic f
mula ~2! and followed the evolution of the defect for a lon
time ~on the order of hundreds of picoseconds!. Almost in-
stantly the soliton acquired a shape exactly consistent w
the crystalline environment. In a sample with mobile neig
bors, the presence of a vacancy in one chain causes non
formities to appear in all the chains within the first coord
nation sphere, i.e., ‘‘shadows’’~see Fig. 2b! which
accompany the defect even when it moves. In the numer
simulation we tracked the velocityvm of the center of mass
of a chain with a defect, which rescales to the vacancy
locity vvac52(N/2)vcm ~whereN is the number of atoms in
the chain!. ‘‘Imbedding’’ a defect in a crystal excites~for
both mobile and immobile neighbors! thermal vibrations of
the atoms~up to a sample temperature of several K!, so rapid
oscillations are superimposed on the true vacancy velo
which have nothing to do with it~Fig. 3!.

FIG. 3. Vacancy dynamics in an equilibrium crystal: curves1 and2 illus-
trate the conservation of low and medium~0.1 and 0.45 times the soun
speed! velocities of defects in a chain surrounded by mobile neighbo
curve3, the slowing down of fast~0.9 times the sound speed! defects with
a transition to stationary soliton motion at a lower velocity (;0.6 times the
sound speed!.
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We now describe the results of simulating the evolut
of vacancies with initial velocities of 0.9, 0.45, and 0.1 tim
that of sound~13.2, 6.6, and 1.5 km/s! in a stably equilibrium
crystal ~Fig. 1c, frame1!. If the neighboring molecules ar
fixed, defects with all three of these velocities mo
smoothly along the chain with their velocities essentially u
changed for at least 100 ps. Over this time, they can co
5186, 2593, and 576 chain periods, respectively. When
the molecules are mobile, the dynamics of the two slow
defects is the same~Fig. 3!. Only for the fastest defect doe
the velocity fall off slowly, decreasing to'0.6 times the
sound speed~9 km/s! over 400 ps. Therefore, the mobility o
the surrounding chains does not affect the behavior of vac
cies moving at low and medium velocities, but slows do
the faster defects to medium velocities without chang
their soliton-type dynamics.

This slowing down is not caused by the radiation
energy by the defect into the chain along which it mov
owing to effects of the discreteness which show up at hig
defect velocities:15 for v50.9vs the half widthL of the soli-
tons is still quite largeL'15(c/2) @Eq. ~2!#. Evidently, the
reason for the slowing down of fast defects in a crysta
their more intense interaction with the mobile molecules
neighboring chains. This effect has not been observed be
and requires separate theoretical and numerical study.

Note that the configuration of the crystalline enviro
ment has no effect on the character of the dynamics o
defect in a chain if the neighboring chains are immobile,
changes it fundamentally when the neighboring chains
mobile. Specifically, in nonequilibrium or unstable structur
~e.g., a nonequilibrium orthorhombic structure in the colle
tive atom model of polyethylene8 or an unstable monoclinic
structure; Fig. 1c, frame2! which require rotation of chains
for relaxation, a vacancy will be slowed down rapidly. F
example, in the latter case a vacancy with an initial spee
4.6 km/s is stopped over a time on the order of 10 ps, hav
-
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covered about 100 chain periods. The onset of this kind
slowing down was apparently observed in Ref. 8 and ser
as the basis for the unjustified claim that the twisting def
dynamics did not exhibit soliton behavior. In a molecule
the boundary between two domains in a relaxed stratify
sample ~Fig. 1c, frame2!, point defects are also slowe
down and change the structure of the boundary between
domains.

Therefore, in an equilibrium polymer crystal, vacanci
caused by localized tensile deformation of the chain hav
soliton-type mobility.
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Dependence of exchange interactions on chemical bond angle in a structural series:
cubic perovskite–rhombic orthoferrite–rhombohedral hematite
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Mössbauer spectroscopy is used to study the hyperfine magnetic fields at tin119Sn ions
introduced as an isomorphic impurity in the lattices of the orthoferrites RFeO3. The large reduction
in the fieldHh f

Sn ~4.2 K! observed when R is changed from La to Lu correlates with the drop
in the Néel point and indicates that the exchange interactions are decreasing over this series. A
crystal chemical analysis of the structural series with the general formula ABO3 shows that
the ideal structure of cubic perovskite can be converted to a rhombohedral hematite-corundum
structure by simple rotation of the@BO6# octahedra if the B–O interionic distances remain
unchanged. The rhombic distortions are associated with a reduction in theB–O–B bond angle
from u5180° in perovskite to;132° in hematite. The rare earth orthoferrites RFeO3

follow the same mechanism for structural transformations and the LaFeO3– LuFeO3 series
occupies an intermediate position~157°.u.142°! between the extreme members of the series
mentioned above. A reduction in the bond angle leads to weakening of the Fe–O–Fe
exchange interaction, which shows up as a drop in the Ne´el temperature and in the hyperfine
magnetic field at the nucleus. An analysis of theoretical models shows that for a suitable
choice of the exchange and transfer parameters, the angular variation in the parameters of the
exchange interaction is described fairly well by the Moskvin theory over a rather wide
range of anglesu. The contributions to the fieldsHh f

Sn andHh f
Fe from the t2g- andeg-orbitals of

neighboring paramagnetic ions in the orthoferrites and orthochromites are examined.
© 1999 American Institute of Physics.@S1063-7761~99!02203-9#
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1. INTRODUCTION

The rare earth orthoferrites RFeO3 ~R is a rare earth
element! have a distorted perovskite crystal structure.1 All
the Fe31 ions are crystallographically equivalent and lie
an octahedral oxygen environment. Each iron ion is s
rounded by six Fe31 ions and the Fe–O–Febond angle is
close to 180°.2 This results in a strong negative indire
Fe31 –O–Fe31 exchange interaction, which causes the f
mation of two magnetic sublattices whose moments are
most antiparallel. The small angle between the moment
these sublattices produces a small ferromagnetic mome3,4

The rare earth elements become magnetically ordered on
very low temperatures, and forT.10 K they have no effec
on the basic magnetic properties of the orthoferrites.

Unusual behavior of the Ne´el temperatureTN has been
observed in the RFeO3 series from R5La to R5Lu:5 TN falls
by almost 120 K, even though the dimensions of the unit c
decrease so the Fe–O–Feexchange bond length should als
decrease. Usually this leads to a strengthening of the
change interaction and, therefore, to a rise inTN . Note, for
example, that in the series of rare earth ferrites with a ga
R3Fe5O12 structure,TN is independent of the atomic numb
of the rare earth element and is almost constant for all
rare earth elements.6-8 A diminution in the exchange interac
tions as R is varied from La to Lu has also been observe
Mössbauer studies of the rare earth orthoferrite series RF3

doped with the tin isotope119Sn.9
5901063-7761/99/88(3)/8/$15.00
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In this paper we perform a crystal chemical analysis
the structural series ABO3, which includes cubic perovskite
the rhombic orthoferrites, and rhombohedral hematite~co-
rundum!. It is shown that the structural transformations
this series can be described in terms of a unified mechan
and, for fixed B–O interionic distances, are determined
clusively by the change in the angleu of the B–O–Bchemi-
cal bond. Mössbauer spectroscopy atT54.2 K is used to
measure the hyperfine magnetic field at tin Sn41 ions (Hh f

Sn)
implanted as measurement probes in the iron sublattice o
RFeO3 orthoferrites. These observations are used to exp
the unusual magnetic properties of the rare earth ortho
rites. Theoretical models for the angular dependence of
exchange interaction in the RFeO3 orthoferrites and RCrO3
orthochromites are examined. An attempt is made to ap
the theory to a wider range of anglesu based on the experi
mental data.

2. CRYSTAL CHEMICAL ANALYSIS OF THE STRUCTURAL
SERIES CUBIC PEROVSKITE-RHOMBIC
ORTHOFERRITES-RHOMBOHEDRAL HEMATITE
„CORUNDUM…

The rhombic orthoferrites RFeO3 ~space group1 Pbnm)
are usually attributed to the perovskite-like structures
tained as a result of all the possible distortions of the cu
CaTiO3 perovskite lattice~space group10 Pm3m) on replac-
ing the Ca cations by R and Ti by Fe. These distortions
© 1999 American Institute of Physics
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change the crystal symmetry. A transition from the cu
perovskite structure to a rhombic structure in the rare e
orthoferrites has been established experimentally.10,11 RMO3

compounds with M5Cr, Sc, V, Ga, and Al also have thi
type of structure.12-16 It is interesting to note that the defo
mation which develops for the rhombic distortions has
most no effect on the oxygen octahedron surrounding
iron ions, while the coordination polyhedron of the R31 cat-
ions is significantly distorted. The average interatomic Fe
and O–O distances are essentially constant for the entire
earth series RFeO3, at 2.011 and 2.844 Å, respectively.10 As
R is changed, only the mutual positions of the oxygen oc
hedra change and this leads to a change in the angle o
Fe–O–Fevalence bond. The deviation from cubic symme
increases as the R31 ionic radius decreases; it is smallest
LaFeO3 and greatest in LuFeO3.

Based on the available crystal chemical data, we m
assume that there is a single mechanism for the struc
changes in the series cubic perovskite-rhombic orthoferri
rhombohedral hematite-corundum~general formula ABO3).
Here we shall show by purely geometric arguments, t
there is an analogy in the structural models for cubic per
skite and rhombohedral hematite~corundum! and one phase
can be transformed into the other only through a certain
tation of the @BO6# octahedra about one another. Durin
these rotations, the most important distortions take plac
the $111% planes for the cubic model and in the basis pla
for the hexagonal~rhombohedral! model. Figure 1 shows
structural diagrams of the extreme phases in this series,
ovskite~Fig. 1a! and hematite~Fig. 1b!, constructed for idea
@BO6# octahedra. A atoms, shown here in only one pla
occupy all the empty spaces. The patterns of the struc
which are formed by the upper facets of the@BO6# octahedra
of the lower layer and the lower facets of the@BO6# octahe-
dra of the upper layer are distinguished in Figs. 1a and
Each of the two ‘‘stages’’ of the octahedral layer is rep
sented by three isolated octahedra, while both ‘‘stages’’ fo
a six-member ring in the infinite layer of octahedra. T
spheres shown in Figs. 1a and 1b~to the left! illustrate the
dense packing of the large A ions in the plane grids.

Ideal perovskite ABO3 can be represented as the dens
packing of O and A atoms.~In the ideal case O5A with the
general formula BO4.) In the case O5A, shown on the left
of Fig. 1a, dense packing occurs with a packing index
0.7405 ~packing or filling coefficient!: q5@S(Vat) i #/V,
where (Vat) i5(4/3)pr i

3 is the volume of a single atom an
V is the cell volume. For the densest packing,q574.05%. B
atoms occupy 1/4 of the octahedral voids~on the right of Fig.
1a!, while the remaining octa- and tetrahedral voids rem
unoccupied. The@BO6# octahedra with common vertice
form the simplest octahedral skeleton with A atoms in
voids.

Figure 1b shows the other extreme end of the ser
rhombohedral hematitea-Fe2O3 ~corundum Al2O3). Here
the customary densest packing of oxygen atoms is reali
with 1/3 of the octahedral voids occupies by iron atom
There are two possible ways to fill the remaining octahed
voids with A atoms~in this case iron atoms, since A5B5Fe
for hematite!. In the first, that third of the octahedral void
c
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which form common boundaries with@FeO6# are filled,
while the second is enantiomorphic~a mirror reflection! to
the first.

The transition of perovskite into hematite and the resu
ing distortions can be imagined by comparing Figs. 1a a
1b. The perovskite cubic skeleton can be regarded as
result of a symmetrizing of the skeleton of the@BO6# octa-
hedra during densest oxygen packing of rhombohedral he
tite. Since the rhombic distortions of the unit cells
perovskite-like structures are assumed to be negligible
the B–O distances hardly change, it seems, at first gla
that the changes in theB–O–Bbond angleu should also be
small. However, an elementary geometrical analysis~see
Figs. 1a and 1b! that this is not so.u5180° for ideal perov-
skite ~i.e., when the ratio of the ionic radiir A /r O51). At the
other extreme of the series~hematite!, in the ideal case of
dense packing~i.e., for r A /r O50.414 andr B /r A51) this
angle is 2arcsinA5/65131418. This estimate coincides with
the experimental value ofu'132° in hematite.17 Note that
the transition from a hematite-corundum structural type t
perovskite structure has been observed experimentally
InGaO3 under high pressure.18

FIG. 1. Two dimensional lattices of the densest oxygen packing in a cu
perovskite structure~a! and in a rhombohedral hematite-corundum structu
~b!. The structural schemes of the final phases constructed from ideal@BO6#
octahedra are shown here. The octahedra illustrate the pattern of the
ture and lie above and below the lattice layer.~See text.!
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FIG. 2. TheB–O–B valence bond angle in the structural seri
ABO3 as function of the ratior A /r O of the ion radii. The points are
experimental values. The dashed line lies between the extr
members of the series, perovskite and hematite. The intermed
region which applies to the rare earth orthoferrite series RFeO3 is
shaded. The ion radii are taken from Belov and Bokiya.
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According to the proposed mechanism, for the interm
diate members of the rare earth orthoferrite series,u should
lie somewhere between 180° and 132°.~See Fig. 2.! Unfor-
tunately, a geometric analysis cannot be used to determ
how u varies with the ionic radiusr A . However, assuming a
linear variationu5 f (r A /r O), it is easy to make an approx
mate estimate of the ranges of variation inu for the rare
earth orthoferrites.~See Fig. 2!. We found that from lantha-
num orthoferrite (r La /r O'0.765) to lutecium orthoferrite
(r Lu /r O'0.588) the angleu varies from;158° to ;140°.
This estimate for the extreme members of the series i
good agreement with the experimental values of th
angles.10

3. EXPERIMENT

We prepared a series of semicrystalline samples of
rare earth orthoferrites (R12zCaz)@Fe12zSnz#O3 with R5La,
Pr, Nd, Sm, Gd, Tb, Ho, Er, Yb, Lu, and Y, in which th
Fe31 iron ions were partially (z50.05) replaced by Sn41

ions. Here in order to maintain the neutrality of the mo
ecules, rare earth R31 ions were replaced by the doubly va
lent Ca21 ion. In order to increase the accuracy of the Mo¨ss-
bauer studies, the tin was enriched in the isotope119Sn to
95%. X-ray analysis showed that all the samples are i
single phase, have a distorted perovskite-type struc
~space groupPbnm), and are isostructural with the ortho
errite GdFeO3.1

The Mössbauer absorption spectra of the119Sn nuclei
were taken on an electrodynamic system in a constant ac
eration regime. The Ca119mSnO3 gamma-ray source was kep
at room temperature. The measurements were done at
peratures ranging from 4.2 K to the Ne´el point. Several con-
trol measurements of the Mo´ssbauer spectra of57Fe were
also made.

At low temperatures magnetic hyperfine splitting is o
served in the Mo¨ssbauer spectra of119Sn owing to the
Zeeman interaction of the tin nuclei with the effective ma
netic fieldHh f

Sn. This field develops because of the transfer
spin density from the paramagnetic Fe31 ions to the diamag-
netic Sn41 ion.19-22 The transfer occurs along the Fe–O–Sn
chain with the participation of an intermediate oxygen ion.
terms of its physical nature, this interaction is analogous
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the indirect Fe–O–Feexchange interaction and the fieldHh f
Sn

is referred to as the supertransferred hyperfine magn
field23-25 or the indirect hyperfine interaction fieldHh f

Sn.26

A calculation of the hyperfine interaction showed th
over all the compositions there are no quadrupole shifts
within the limits of error. The isomeric chemical shifts rel
tive to the source are zero~for equal temperatures of th
source and absorber!. No special studies of the temperatu
shifts were made. The magnitude of the magnetic fieldHh f

Sn at
a tin nucleus in the RFeO3 lattice depends strongly on th
rare earth element. AtT54.2 K it has a maximum of 25761
kOe for R5La and falls to 16161 kOe for R5Lu. The
Mössbauer spectra remain well resolved over the entire t
perature range up to the Ne´el point TN . TN was defined by
the magnetic field’s going to zero at the tin nucleus. Figur
shows the variation inTN andHh f

Sn in the series from LaFeO3
to LuFeO3. The clear analogy between these curves is c
firmation of a direct relationship between the exchange in
action and spin density transfer from a magnetic to a diam
netic atom and indicates a correlation of the quantitiesTN

FIG. 3. The Ne´el temperatureTN and the hyperfine magnetic fieldHh f
Sn at the

tin nuclei atT54.2 K as functions of the atomic number of the rare ea
elements in the orthoferrites (R0.95Ca0.05)@Fe0.95Sn0.05#O3.
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FIG. 4. Illustrating the overlapping of the atomic orbitals o
a diamagnetic cation, anion, and paramagnetic cation:~a!
for a bond angleu5180°, so the interaction through th
eg2ps-orbitals predominates;~b! for a bond angle
u,180°; besides thes-bonds, thep-bonds also participate
in the exchange interaction. The dotted curves represent
unfilled eg-orbital of the Cr31 ion.
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andHh f
Sn with the Fe–O–Fe~Sn! exchange bond angle.

4. ANGULAR DEPENDENCE OF Hhf AND TN IN THE RARE
EARTH ORTHOFERRITES

A number of authors have attempted to obtain an a
lytic expression for the angular dependence of the su
transferred fieldHh f in crystals with various structures
Zavadski�, et al.25,27 were among the first to obtain this de
pendence for a spinel and orthoferrite structure based on
molecular orbital technique including only bonding orbits.
was assumed that in a pure~undoped by diamagnetic ions!
crystal, the fieldHh f develops as a result of the transfer
spin density to a central Fe31 (↑) ion from surrounding Fe31

(↓) ions. This takes place through the following mechanis
2p-orbitals of oxygen are polarized as a result of cha
transfer to unoccupied 3d-orbitals of Fe31 (↓) and overlap
with occupied 3d-orbitals of these ions~Fig. 4!. This, in turn,
leads to the transfer of 2p-electrons into the empty 4s-shell
of Fe31 (↑) ions and overlap of the polarized 2p-orbits with
the inners-shells of the core of this ion. The following ex
pression forHh f

Fe at a central iron ion was obtained:27

Hh f
Fe5525N4kF2 (

n51

3

Snswns~0!1a4w4s~0!G2

3$~As
22Ap

2 !cos2u1Ap
2 %. ~1!

Here Sns are the overlap parameters of the oxygen orbit
with the inners-shells of iron for the O22 – Fe31(↑) pair, a4

is the transfer integral for a 2p-electron of oxygen into the
outer 4s-shell of iron,wns(0) are the wave functions of th
Fe31 ion, As

2 and Ap
2 are the covalence parameters of t

Fe–O bond, which characterize the number of unpaired s
~the fraction of unpaired spin density! in the 2p-shell of O22

formed as a result of transfer of 2p-electrons of O22 into
empty 3d-orbitals of Fe31(↓) ions (As,p5(Bs,p1Ss,p),
whereBs,p and Ss,p are, respectively, the O22 – Fe31(↓)!
transfer and overlap parameters,k is the number of iron ions
surrounding a central cation, andN is a normalization con-
stant. Therefore, the cofactor in curly brackets character
the transfer of 2p-electrons of the ligand into empt
3d-shells of the surrounding ions, while the cofactor
square brackets characterizes the transfer of unpaired
density into the outers-shell of the central ion and the ove
lap of unpaired 2p-electrons with innerns-electrons of the
central cation.

The above mechanism for the interaction of two pa
magnetic Fe–O–Feions can also be applied to the intera
tion between paramagnetic and diamagnetic Fe–O–Snions
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~Fig. 4a!. Extending Eq.~1! to the case of an impurity tin ion
with an outer 5s-shell in the orthoferrite matrix, we can, b
analogy with Ref. 27, write

Hh f
Sn5525N4kF2 (

n51

4

Snswns~0!1a5w5s~0!G2

3$~As
22Ap

2 !cos2u1Ap
2 %. ~2!

Herewns(0) are thes-wave functions of tin, andSns anda5

are the overlap and transfer parameters, respectively,
O22 – Sn41. The covalence parametersAs

2 and Ap
2 are gen-

erally independent of the Fe31 – O22 interionic separation. In
the RFeO3 orthoferrites, however, this distance is essentia
unchanged whenR goes from La to Lu. This follows from
structural data10 and is also confirmed by the constancy
the isomeric shift in this series, as found by Mo¨ssbauer stud-
ies on 57Fe nuclei.27 It may also be assumed that th
Fe31 – O22 distances do not change for small amounts
substitution of iron by tin.~This is confirmed by our data on
the isomeric shifts for the119Sn and57Fe nuclei.! Thus, we
shall assume thatAs

2 andAp
2 are constant and the same as t

corresponding quantities for the pure orthoferrites.
Unfortunately, the difficulty of theoretically estimatin

the parameters of the O22 – Sn41 interaction makes it impos
sible to perform any sort of accurate calculation of the ab
lute magnitudes of the fieldHh f

Sn. However, based on exper
mental data, we can attempt to estimate the ratio ofAs

2 and
Ap

2 . Since the first cofactor in Eq.~2! can be regarded a
constant for fixed Sn–O distances, Eq.~2! can be written in
the form

Hh f
Sn5K$~As

22Ap
2 !cos2u1Ap

2 %. ~3!

Then the ratioAp
2 /As

2 can be calculated by plotting the ex
perimentalHh f

Sn5 f (cos2u) curve~Fig. 5!. If we write Eq.~3!
in the form

Hh f
Sn5a01a1x, where x5cos2u,

then it is easy to see thatAp
2 /As

25a0 /(a01a1). A computer
analysis of theHh f

Sn5 f (cos2u) curve for the orthoferrites~see
Fig. 5, curve1! yields the valuesa052102 anda15421.
Thus,Ap

2 /As
2.20.32.

On the other hand, the Ne´el temperatureTN is deter-
mined by the same set of covalence parameters and27

TN;As
2$2Ap

2 1~As
222Ap

2 !cos2u%. ~4!
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Thus the experimentalTN5 f (cos2u) curve can be used to
make an independent estimate of the ratioAp

2 /As
2 if we write

Eq. ~4! in the form TN5b01b1x, where x5cos2u and
Ap

2 /As
25b0/2(b01b1).

Figure 6 shows a plot ofTN5 f (cos2u) which we have
constructed for values ofTN obtained from the temperatur
dependence of the fieldsHh f

Sn for our tin-doped orthoferrite
samples~curve2!. As a comparison, the same dependenc
shown for pure rare earth orthoferrites5 ~curve1!. An analy-
sis of these data shows thatAp

2 /As
250.1960.01 for the pure

orthoferrites, in accordance with the value obtained in R
27, andAp

2 /As
250.2060.01 for the doped samples. Ther

fore, to within the experimental error the values ofAp
2 /As

2

are the same for the pure and doped samples. This confi
our assumption that for low dopingAs

2 andAp
2 are constant,

althoughTN changes significantly.

FIG. 5. Plots ofHh f
Sn5 f (cos2u) for the orthoferrites~data from this paper!

and orthochromites~field values from Ref. 33!. Also shown is the field for
Cr2O3 from Ref. 30.

FIG. 6. Plots ofTN5 f (cos2u) for the orthoferrites and orthochromites
Curve1 is TN for the pure orthoferrites.5 Curve2 is our data for tin-doped
orthoferrites. Curve3 is TN for the orthochromites.13
is

f.

ms

The values ofAp
2 /As

2 for the pure orthoferrites obtaine
by various authors from experimental data differ by seve
times, ranging from Ap

2 /As
2'0.1628 to Ap

2 /As
2'0.38.29

Therefore, our result from data onTN lies well within the
range of published data. However, our value ofAp

2 /As
2

.20.32 obtained from data on the fieldsHh f
Sn at tin nuclei is

negative, which conflicts with reality, sinceAs
2.0 and

Ap
2 .0. In addition, the fieldHh f

Sn in the orthoferrites should
be positive over the entire range of anglesu examined here,
since As

2.Ap
2 . In addition, in describing the experiment

dependence of the field with Eq.~3!, we obtain Hh f
Sn

52102 kOe foru590°.
Moskvin, et al.26 have explained this conflict. The

showed that including only the bindingp-orbits of oxygen,
as done in Ref. 27, may lead to an inaccurate result. In g
eral, the contributions from the 2s-orbits of oxygen must be
included along with the 2p-orbitals. Here the contribution o
the 2s-electrons, alone, to the fieldHh f

Sn is independent of the
exchange coupling angleu, while the contribution of the
2p-electrons remains proportional to cos2u for a s-bond and
to sin2u for a p-bond. However, there are overlappin
sp-terms which make a contribution proportional to cosu,
only in a s-bond. Then the angular dependence of the fi
Hh f

Sn is more precisely given by26

Hh f
Sn5a1b cosu1g cos2u. ~5!

Here the sign of the field should be positive over the en
range of anglesu, since the contributions toHh f

Sn from
s2d-exchange and from overlappingsp-terms are positive
and increase asu→180°. However, the resulting fieldHh f

Sn

should pass through a minimum within the interval 90°,u
,180° when cosu52b/2g.

Our experimentalHh f
Sn5 f (cosu) curve for the orthofer-

rites is shown in Fig. 7, along with the curves calculat
using Eq.~5!. The experimental data on the orthoferrites a
very well fit by the theoretical curve1 for 140°,u,160°
with the following parameters:

a51949 kOe, b512487 kOe, andg511889 kOe.

FIG. 7. Calculated~curves! and experimental~points! variation in the field
Hh f

Sn ~at T54.2 K! with the cosine of the exchange bond angle. The cal
lated curves are~1! our data for the orthoferrites, including hematite, and~2!
our calculation for the orthochromites, including Cr2O3.
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This curve passes through a minimum at cosu520.658
~u'132°!. The field at the minimum isHh f

Sn'1130 kOe, i.e.,
throughout the entire range of anglesHh f

Sn is positive. The
curve with parametersa518 kOe, b51241.5 kOe, and
g51551 kOe obtained in Ref. 26 provides an inferior a
proximation to the experimental data. Our analysis h
shown that this curve should also have a minimum at cou
520.2191, shifted toward smaller angles. However, at
minimum point, the fieldHh f

Sn becomes negative, atHh f
Sn

5218.45 kOe. This contradicts the conditionHh f
Sn.0 and

appears to indicate that the fit to the experimental data
Ref. 26 is not sufficiently accurate.

5. EXTENDING THE RANGE OF ANGLES TO u5132° AND
u5180°

The range of anglesu corresponding to the series of ra
earth orthoferrites can be extended by invoking data on
rhombic hematitea-Fe2O3. As shown in Sec. 2, the charac
ter of the distortions in hematite and the orthoferrites is id
tical and the Fe–O distances are essentially the same~1.98
and 2.01 Å, respectively!; hence, the transfer and overla
parameters can be assumed to be close. For the theor
analysis we have used the values ofHh f

Sn for hematite ob-
tained by Fabrichnyı˘.30 It turns out that the experimenta
point for a-Fe2O3, with astonishing accuracy, lies at th
minimum of the parabola corresponding to the cur
Hh f

Sn5 f (cosu) according to Eq.~5! for the orthoferrites with
the parametersa, b, and g given above~Fig. 7, curve1!.
Therefore, the theory of Moskvin,et al.26 give a fully satis-
factory description of the experimental data over a w
range of anglesu when the parametersa, b, and g are
properly selected.

An attempt can be made to extend the range of angle
u→180° by invoking data on the fieldsHh f

Sn in the compound
MnO:119Sn.31 The antiferromagnetic material MnO has
face centered cubic NaCl structure where the Mn–O–Mn
angles are 180 °. In a doped sample the magnetic mom
of the 12 Mn21 cations nearest to the Sn41 ion ~with 90-°ree
Mn–O–Snbonds! are completely compensated. Thus the
tal contribution to the fieldHh f

Sn from the straight Mn-Sn,
indirect 90-°ree Mn–O–Sn, anddipole interactions is equa
to zero here. The fieldHh f

Sn is created by six Mn21 ions with
identically directed spins through the 180-° Mn–O–Sn ex-
change interaction. However, although the electron shel
Mn21 (3d52t2g

3 eg
2) is the same as that of the Fe31 ion, and

the angleu5180° is more favorable for transfer of the sp
density througheg2ps-bonds, the fieldHh f

Sn in MnO equals30

230 kOe and does not exceed that in LaFeO3. This is evi-
dently related to an increase in the interionic distances
manganese oxide~Mn–O52.222 Å! compared to those in
the orthoferrites~Fe–O52.010 Å!, which correlates with an
increase in the radius of the paramagnetic ion@r (Mn21)
50.80 Å, r (Fe31)50.64 Å]. The °ree of covalency of th
bond and the exchange interactions are reduced as the ca
anion distance is increased, and this also reduces spin de
transfer to the diamagnetic cation. The fieldHh f

Sn extrapolated
to u5180° according to the data on the orthoferrites~Fig. 5!
should be;350 kOe, which is roughly 30% greater than th
in MnO. This indicates that increasing the cation-anion d
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tance by about 10% reduces, by;30%, the covalence effect
responsible for inducing the fieldHh f

Sn. These estimates are i
good agreement with similar estimates for a spin
structure32 and indicate that the above theoretical ideas
applicable to a wide range of angles.

6. THE ANGULAR DEPENDENCE OF Hhf AND TN IN THE
RARE EARTH ORTHOCHROMITES

A similar analysis of the angular dependence of the fi
Hh f

Sn can be carried out for the rare earth orthochromi
RCrO3 by drawing on the experimental data of Moskvi
et al. 33 When R is changed from La to Lu in the ortho
chromites, rhombic distortions analogous to those in
orthoferrites take place, with a change in the Cr–O–Crbond
angle. SinceAp

2 .As
2 , it is to be expected that the fieldHh f

Sn

should have a maximum foru590° and decrease with in
creasingu. Transfer of oxygen 2p-electrons into unfilled
eg-orbitals of chromium can occur for both spin orientatio
(↓) and (↑), so that hereAs

2 represents the differenc
(As↓)22(As↑)2.33 However, transfer ofp-electrons with
(↑) spin predominates because of the intraatomic polar
tion by the ‘‘Hund’’ interaction with thet2g-electrons of the
Cr31 ion, which have a (↑) spin. This leads to a negativ
~relative to the direction of the magnetic moment of the Cr31

ion! spin density on the 2ps-orbitals of oxygen. Thus, the
resulting value ofAs

2 should be negative and for angles clo
to 180°, where thes-bond plays a fundamental role, w
should expect the sign ofHh f

Sn to change.
Besides the experimental data for the rare earth ort

chromites, Fig. 7 includes the fieldHh f
Sn for chromium oxide

Cr2O3.30 As for a-Fe2O3, the oxide Cr2O3 has a corundum-
hematite crystal structure and, according to our ideology,
be regarded as an extreme member of the se
RCrO3– Cr2O3. A computer analysis shows that all the e
perimental data can be fit satisfactorily to Eq.~5! ~Curve2 of
Fig. 7! with the parameters

a51250 kOe, b5217 kOe, g52244 kOe.

Therefore, in the orthochromites the contribution prop
tional to cosu is negligibly small, since here thep-bonds are
dominant. Thus, the experimental data give a satisfactor
to the straight lineHh f

Sn5a01a1x, wherex5cos2u ~Fig. 5,
curve 2!. These data yieldeda0524064 kOe and a1

5225464 kOe. Therefore, for the chromites we ha
Ap

2 /As
25222610. Since Ap

2 is positive, As
25(As↓)2

2(As↑)2 is negative, as is to be expected. Extrapolation
u5180 indicates a sign shift in the fieldHh f

Sn at u;167° ~see
Fig. 5! and givesHh f

Sn~u5180°!521064 kOe.
Using the values of the fieldsHh f

Sn(180°)521064 kOe
andHh f

Sn(90°)524065 kOe obtained from this analysis, w
have tried to estimate the absolute magnitudes ofAp

2 andAs
2 .

Equation~2! gives
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Hh f
Sn~180°!5525N4kF2 (

n51

4

Snswns~0!1a5w5s~0!G2

As
2 ,

Hh f
Sn~90°!5525N4kF2 (

n51

4

Snswns~0!1a5w5s~0!G2

Ap
2 .

Settingk56 and using the values ofa5 , Sns , andwns

given in Refs. 28 and 34, on comparing the computatio
and experimental data, we foundAp

2 516.560.5% and
As

2520.360.1%.
The published absolute values ofAp

2 andAs
2 for the or-

thochromites, as well as their ratio, differ greatly among
different papers. For example,Ap

2 52.760.6% and As
2

522.260.6% (Ap
2 /As

2'21) in Ref. 28, whileAp
2 54%

andAs
2520.7% (A2p/As

2'26) according to Ref. 34. Fo
the orthochromites with an iron impurity it was found th
Ap

2 59.6% andAs
2523.8% (Ap

2 /As
2522.5).33 Therefore,

our value ofAs
2 is somewhat high and that ofAp

2 is low
compared to the published data. This may be because in
~2! we have neglected the contribution of thes-electrons, as
well as that of the exchanges2d-interaction.

We have also tried to determine the ratioAp
2 /As

2 for the
orthochromites using theTN5 f (cos2u) curve~see Fig. 6!. By
analogy with Ref. 27, for the orthochromites we can wr
TN;Ap

2 $2As
21(Ap

2 22As
2)cos2u%. Rewriting this expression

in the form TN5b01b1x, where x5cos2u, we obtain
Ap

2 /As
252(b01b1)/b0. An analysis of theTN5 f (cos2u)

curve constructed from the experimental data of Ref. 35~see
Fig. 6, curve3! yieldsAp

2 /As
2522.460.5. This value agree

better with the published data29,34 than the value obtained
from Hh f

Sn. This evidently means that the simplified theory
Ref. 27 does not describe correctly the mechanism by wh
the fieldHh f is induced, a point that shows up especially f
diamagnetic ions, at whose nuclei the magnetic field is
tirely determined by covalence effects and is not ‘‘screene
by a strong field from the moments of its own electron sh
~as happens, for example, in the iron ion!.

7. PARTIAL CONTRIBUTIONS TO THE FIELD Hhf
Sn FROM

THE T2g- AND eg –ORBITALS

Based on the experimental data and our earlier studie36

we have calculated the fieldHh f
Sn induced by a single neares

paramagnetic cation (Hred
Sn ) and constructed the dependen

of this field on the exchange angleu. In a crude approxima-
tion for the orthoferrites and orthochromites, this curve
linear for angles 140°,u,160°. Thus, we can try to estimat
the angular variation in the partial contributions to the fie
Hred

Sn from thet2g- andeg-orbitals of the paramagnetic catio
in the following way.

For the orthoferrites RFeO3~Sn!:

Du5u~R5La!2u~R5Lu!'115°,

DHred
Sn 5Hred

Sn ~La!2Hred
Sn ~Lu!5116 kOe.

The Fe31 ion has a t2g
3 eg

2 electron configuration. A
change inu by one degree, produces an increment in
l

e

q.

h
r
-

’’
ll

,

s

e

field Hred
Sn created by the combinedt2g- andeg-orbitals of the

paramagnetic cation with the participation of the oxygenps-
andpp-orbitals of

~DHred
Sn /Du!511.07 kOe•deg21. ~6!

For the orthochromites RCrO3, we have

Du5u~La!2u~Lu!'113°,

DHred
Sn 528.33 kOe.

The Cr31 ion has at2g
3 eg

0 electron configuration. Thus
the angular variation in the field created by a single param
netic cation owing to thet2g- andpp-orbitals is given by

~DHred
Sn /Du!520.64 kOe•deg21. ~7!

Then, assuming that the Fe–O and Cr–O! interionic dis-
tances are close, from Eqs.~6! and~7! we obtain the angular
variation in the field owing to theeg- andps-orbitals,

~DHred
Sn /Du!511.71 kOe•deg21. ~8!

As noted above, a supertransferred magnetic fieldHh f is
present at the nuclei of the iron ions (Hh f

Fe), as well as at the
nuclei of the diamagnetic atoms, and in the series of r
earth orthoferrites and orthochromites its magnitude varie
manner analogous to the fieldHh f

Sn. Thus, in RFeO3 the ab-
solute magnitude of the fieldHh f

Fe at the iron nuclei decrease
from R5La to R5Lu by roughly 15 kOe~from 565.9 kOe in
LaFeO3 to 550.5 kOe in LuFeO3

5!, while in iron-doped
RCrO3, it increases by 9 kOe~from 510 to 519 kOe33!. This
behavior of the field at the nucleus of the paramagnetic F31

ion is also explained by a change in the contribution to
field from the indirect hyperfine interaction,Hh f

Fe, as the
Fe–O–Feexchange bond angle is reduced.27,33 The angular
dependence of the fieldHh f

Fe is adequately described by Eq
~1!. An estimate of the angular variation of the partial co
tributions from thet2g- andeg-orbitals to the fieldHh f

Fe in the
same range of angles as forHh f

Sn yields

~DHred
Sn /Du!510.33 kOe•deg21 for the eg-orbitals,

~DHred
Sn /Du!520.115 kOe•deg21 for the t2g-orbitals,

~DHred
Sn /Du!510.21 kOe•deg21 for the ~ t2g

1eg!-orbitals.

These estimates may be useful, for example, in plann
experiments on exchange interactions at high pressures.

8. CONCLUSION

A crystal chemical analysis of the structural series w
the general formula ABO3 has shown that the ideal cubi
perovskite structure can undergo a transformation into
rhombohedral hematite-corundum structure by simple ro
tion of the @BO6# octahedra if the B–O distances are fixe
The rhombic distortions are associated with a reduction
the B–O–Bbond angle fromu5180° in perovskite to;132°
in hematite. The rare earth orthoferrites RFeO3 are subject to
the same structural transformation mechanism and the s
LaFeO3– LuFeO3 occupies an intermediate position~157.u
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.142°! between the extreme members of the series. A
duction in the bond angleu leads to a weakening of th
Fe–O–Feexchange interaction, which shows up as a drop
the Néel temperature and in the magnitude of the hyperfi
magnetic field at the nucleus.

Paramagnetic ions have an intrinsic magnetic mom
which usually induces a strong field at their nuclei. Th
subtle effects involving spin density transfer to a given i
from its neighbors are ‘‘screened’’ by the field from the i
trinsic electron cloud. This difficulty is absent in the case
diamagnetic ions. Probe nuclei of diamagnetic tin ions h
a greater sensitivity to the geometry of the exchange bo
and serve as a useful instrument for studying spin den
delocalization and transfer. In addition, it turns out that in
oxide systems the absolute magnitudes of the supertr
ferred fieldsHh f for tin ions are several times those for iro
ions. This large difference in the fieldsHh f at the nuclei of
iron and tin appears to be related to the greater covalenc
the Sn–O bonds compared to the Fe–O bonds.

An analysis of the theoretical models has shown th
with a suitable choice of the exchange and transfer par
eters, Moskvin’s model26 provides a fairly good description
of the variation in the exchange interaction parameters ov
wide range of anglesu.

This work was supported by the Russian Fund for F
damental Research~Project 98-02-17197a!. The authors
thank the American Physical Society~the Sloan Foundation
Grant of the American Physical Society! for partial support
of this work.

* !E-mail: root@magnet.crystal.msk.su

1S. Geller, J. Chem. Phys.24, 1236~1956!.
2W. C. Koehler and E. O. Wollan, J. Phys. Chem. Solids2, 100 ~1957!.
3V. E. Naı̆sh and E. A. Turov, Fiz. Met. Metalloved.11, 161, 321~1961!.
4V. E. Naı̆sh and E. A. Turov, Fiz. Met. Metalloved.9, 10 ~1960!.
5M. Eibschutz, S. Shtrikman, and D. Treves, Phys. Rev.156, 562 ~1967!.
6S. Geller, J. P. Remeika, R. C. Sherwood, H. G. Williams, and G
Espinoza, Phys. Rev. A137, 1034~1965!.
-

n
e

nt
,

f
e
ds
ty
e
s-

of

t,
-

a

-

.

7S. Geller, H. J. Williams, and R. C. Sherwood, Phys. Rev.123, 1692
~1961!.

8E. F. Bertaut and R. Pauthenet, Proc. IEE, Suppl. B104, 261 ~1957!.
9I. S. Lyubutin and Yu. S. Vishnhakov, Zh. E´ ksp. Teor. Fiz.61, 1962
~1971! @Sov. Phys. JETP34, 1045~1971!#.

10M. Marezio, J. P. Remeika, and P. D. Dernier, Acta Crystallogr., Sect
Struct. Crystallogr. Cryst. Chem.26, 2008~1970!.

11P. Coppens and V. Eibschutz, Acta Crystallogr.19, 524 ~1965!.
12S. Geller and E. A. Wood, Acta Crystallogr.9, 563 ~1956!.
13S. Geller and V. B. Bala, Acta Crystallogr.9, 1019~1956!.
14S. Geller, Acta Crystallogr.10, 243 ~1957!.
15S. Geller, Acta Crystallogr.10, 248 ~1957!.
16M. A. Gilleo, Acta Crystallogr.10, 161 ~1957!.
17Y. Ishikawa and S. Akimoto, J. Phys. Soc. Jpn.12, 1083~1957!.
18M. Marezio, Trans. Am. Crystallogr. Assoc. No. 5~1969!, p. 29.
19K. P. Belov and I. S. Lyubutin, Zh. E´ ksp. Teor. Fiz.49, 747 ~1965! @Sov.

Phys. JETP22, 518 ~1965!#.
20S. L. Ruby, B. E. Evans, and S. S. Hafner, Solid State Commun.6, 277

~1968!.
21B. J. Evans and L. J. Swartzendruber, Phys. Rev. B6, 233 ~1972!.
22P. B. Fabrichnyı˘, ZhVKhO 30, 143 ~1985!.
23N. L. Huang, R. Orbach, E. Simanec, J. Owen, and D. R. Taylor, Ph

Rev.156, 383 ~1967!.
24G. A. Savatzky and F. Van der Woude, J. Phys.35, N C6, 47~1974!.
25F. Van der Woude and G. A. Sawatsky, Phys. Rev. B4, 3159~1971!.
26A. S. Moskvin, N. S. Ovanesyan, and V. A. Trukhtanov, Hyperfine Int

act.3, 429;5, 13 ~1977!.
27C. Boekema, F. Van der Woude, and G. A. Sawatzky, Int. J. Magn.3, 341

~1972!.
28P. Freund, J. Owen, and B. F. Hahn, J. Phys. C: Solid State Physic6,

L139 ~1973!.
29D. C. Tofield and B. E. F. Fender, J. Phys. Chem. Solids31, 2741~1970!.
30P. B. Fabrichnyı˘, Izv. Akad. Nauk SSSR Ser. Fiz.50, 2310~1986!.
31P. B. Fabrichnyı˘, E. V. Lamykin, A. M. Babeshkin, and A. N.

Nesmeyanov, Fiz. Tverd. Tela13, 3417~1971! @Sov. Phys. Solid State13,
2874 ~1971!#.

32Y. Miyahara and S. Iida, J. Phys. Soc. Jpn.37, 1248~1974!.
33A. S. Moskvin, N. S. Ovanesyan, and V. A. Trukhtanov, Hyperfine Int

act.1, 265 ~1975!.
34J. K. Lees and P. A. Flinn, J. Chem. Phys.48, 882 ~1968!.
35K. Motida and S. Miyahara, J. Phys. Soc. Jpn.28, 1188~1970!.
36I. S. Lyubutin and Yu. S. Visnyakov, Kristallografiya17, 960 ~1972!

@Sov. Phys. Crystall.17, 847 ~1972!#.

Translated by D. H. McNeill



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS VOLUME 88, NUMBER 3 MARCH 1999
Normal-metal hot-electron bolometer with Andreev reflection from superconductor
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This paper describes the design and experimental testing of a high-sensitivity hot-electron
bolometer based a film of normal metal, exploiting the Andreev reflection from superconductor
boundaries, and cooled with the help of a superconductor–insulator–normal metal junction.
At the measured thermal conductivity,G'6310212W/K, and a time constant oft50.2ms, and
a temperature of 300 mK, the estimated noise-equivalent power NEP55310218W/Hz1/2,
assuming that temperature fluctuations are the major source of noise. At a temperature of 100 mK,
the thermal conductivity drops toG'7310214 W/K, which yields NEP52310219W/Hz1/2

at a time constant oft55 ms. The microbolometer has been designed to serve as a detector of
millimeter and FIR waves in space-based radio telescopes. ©1999 American Institute of
Physics.@S1063-7761~99!02303-3#
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1. INTRODUCTION

A normal-metal hot-electron bolometer~NHEB! using
the Andreev reflection from superconductor boundaries
first described by Nahumet al.1,2 It demonstrated a very high
voltage responsivity at operating temperatures of about
mK. The bolometer was based on a normal-metal film c
nected to two superconducting electrodes. A current indu
by a microwave signal was transmitted via the electrode
the film and increased the electron gas temperature in
normal metal. An important point is that electrons cann
impart their thermal energy to the electrodes owing to
Andreev reflection at the superconductor–normal metal
terface. Electrons can give up their energy to the lattice,
at temperatures below 1 K, electron–phonon coupling is
efficient, so the heat transfer from heated electrons to
lattice is very low. This weak coupling is characterized
thermal conductivityG and results in a considerable increa
in energy engendered by low incident power, i.e., the e
tron heating effect is fairly large. Changes in the electr
temperature are detected using an additio
superconductor–insulator–normal metal~SIN! junction,
where the normal metal is the heated normal-metal film~Fig.
1!. The shape of the current–voltage characteristic of a S
junction depends on the electron temperature in the norm
metal film. A dc bias current is fed to the junction, an
changes in the voltage are measured, i.e., an output s
DV(T), which is linear over a wide range of incident powe
One important feature of such a bolometer is the equa
between the thermal time constantt and the timete–ph of
electron–phonon relaxation. The typical valuest510ms at
100 mK andt50.4ms at 300 mK are much shorter than th
time constant required for most practical applications.1,3

Since the main application domain of high-sensitiv
5981063-7761/99/88(3)/5/$15.00
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FIR detectors is space-based radio astronomy, NHEB de
tors operated at a temperature of 300 mK, which can be
tained in relatively simple and small3He cryostats, show
much promise. Conditions imposed by the European Sp
Agency on bolometric detectors for future IR and FIR spa
based astronomical facilities were listed in the tender
nouncement~Ref. 3!. The required detector should operate
a temperature of 300 mK and have a noise-equivalent po
NEP,1310217W/Hz1/2 at a time constantt,1 ms.

There are three sources of noise contributing to the
lometer NEP:

NEP5F4kBTe
2G1

Vj
2

S2
1

Vn
2

S2G 1/2

, ~1!

where Te is the electron temperature in the absorber,G
5dP/dT is the heat sink thermal conductivity under oper
ing conditions,S5dV/dP5(dV/dT) G21 is the detector re-
sponse,Vj characteriz es voltage fluctuations in the S
junction, andVn is the measure of voltage noise in the am
plifier. The first term on the right describes temperature fl
tuations in the absorbing material and determines the fun
mental noise minimum in the device at a given temperatu
This equation clearly shows thatG leads to a low value of
NEP in such a bolometer.

We have suggested a technique for decreasing NEP
ing a well-known method4 of decreasing the electron tem
peratureTe in the bolometer absorbing material with esse
tially no change in the actual lattice temperature of 300 m5

In this device, the balance between electron heating
phonons and cooling due to the tunnel junction is control
by tuning the bias voltage to the energy gap, which allo
one to get rid of electrons with higher energies~Fig. 2!.
© 1999 American Institute of Physics
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According to preliminary estimates,5 the full thermal
conductivity G cannot be reduced by electron cooling, b
cause another channel of heat supply is added. The elec
cooling can upgrade the NHEB parameters by decreasinTe

in the first term on the right of Eq.~1! and increasing the
temperature responsedV/dT, which yields higherS in the
second and third terms of NEP.5

2. POWER DETECTION

We have developed and manufactured several vers
of NHEB, including those with additional SIN junctions fo
cooling. First we built a microbolometer with a single tunn
junction for measuring the electron temperature in the
sorbing material.6 The absorber and superconducting ele
trodes were fabricated using direct electron-beam lithog
phy and the shadow evaporation technique at differ
angles. Superconducting aluminum electrodes 40 nm th
were fabricated first and oxidized in an atmosphere of o
gen at a pressure of 431022 mbar for two minutes to form a
tunnel barrier. Then we deposited 3 nm of chromium a
35 nm of silver to fabricate an absorbing film 6mm long and
0.25mm wide. Then two superconducting lead electrod
with a thickness of 120 nm were fabricated using additio

FIG. 1. Microbolometer structure. SIN is the junction biased by a low
voltage. The voltage across the junction depends on how the curr
voltage characteristic is flattened by thermal noise, which is a measure o
temperature in the normal-metal absorber~shaded region!.

FIG. 2. Configuration of a microbolometer with electron cooling. The t
low-resistance SIN junctions~C1 and C2! are biased by a dc voltage an
reduce the effective electron temperature in the absorber normal-meta
~shaded area!. The two high-resistance SIN junctions~M1 and M2! are
biased by a low dc current and used in measurements of the electron
perature.
-
on

ns

l
-

-
-
t
k
-

d

s
l

lithography and subsequent etching. Thein situ ion etching
prior to film deposition was used to remove oxides and c
taminants on the interfaces between normal-metal and su
conducting films.

The current–voltage characteristics of the detector S
junction were measured at various temperatures and inci
powers ~Fig. 3!. The resistance of the shorter devicel
56mm! was 12V. The voltageV as a function of signal
current I abs in the absorber at a constant bias current w
measured at a constant temperature in two devices of len
differing by a factor of two. The curves ofV(I ) for the two
devices are very similar~Fig. 4!. The derivativedV/dIabs is
directly associated with the curve shape and can be
pressed in terms of the temperature response, reciprocal
mal conductivity, and derivativedP/dIabs:

dV

dIabs
5

dV

dP

dP

dIabs
5

dV

dT S dP

dTD 21 dP

dIabs
.

One can derive from Joule’s formula

P5PJoule5I abs
2 R→

dP

dIabs
52RIabs.

t–
he

lm

m-

FIG. 3. Current–voltage characteristics of the SIN junction measure
various temperatures and zero signal current, and at two signal current
an ambient temperature of 30 mK.

FIG. 4. Voltage across a SIN junction at a constant bias currentI bias as a
function of the current across the absorber for two devices with lengths
mm ~curves1! and 12mm ~curves2! at an ambient temperature of 30 mK
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The reciprocal thermal conductivity can be derived from
expression for the heat exchange in the case of electron h
ing:

Pe→ph5SU~Te
52Tph

5 !→
dP

dT
55SUT4, ~2!

whereS is the characteristic parameter of the material, a
supposing that the equilibrium condition holds, we ha
PJoule5Pe–ph. After substituting the latter expression, w
have

dV

dIabs
5

dV

dT S 2I absR

5ST4U
D }

R

U
. ~3!

The coincidence of theIV curves of the different device
indicates that the increase in the dissipated powerP owing to
the higher resistanceR is almost completely offset by th
increase in the thermal conductivity due to the larger volu
U, i.e., there is no significant thermal flux through t
superconductor–normal metal interface. This provides di
evidence in favor of the Andreev reflection. Then the fun

FIG. 5. Absorbed power as a function ofT52Tph
5 , whereT is the electron

temperature derived from measurements ofV(I bias,T) and Tph530 mK is
the substrate temperature, assumed to equal that of the substrate holde
straight line described by the equationP51.55310210 (T52Tph

5 ) corre-
sponds to Eq.~2!.
e
at-

,
e

e

ct
-

tion V(I abs) was used in calculatingV(P). The highest slope
of the power–voltage characteristic at the optimal bias c
rent I bias50.3 nA isSmax5udV/dPu533107 V/W. By com-
bining the characteristicsV(I bias,T) andV(I bias,P), one can
calculateP(Te) ~Fig. 5!.

By comparing experimental data with calculations
Eq. ~2!, one can determine the material parameterS'3
31029 nW•K25

•mm23, whence follows the thermal con
ductivity G'631012W/K at 300 mK. This parameter is hal
that derived from the data reported by Nahum and Martin2

This difference is due to the smaller absorber volume in
case. The temperature fluctuation component in NEP@Eq.
~1!# derived from our measurements ofG is about 5
310218W/Hz1/2, which is considerably lower than the pa
rameter of future bolometers for space-based telescope
quired by the European Space Agency.3 At 100 mK the ther-
mal conductivity decreases appreciably,
G'7310214W/K. This value ofG contributes a tempera
ture fluctuation component to NEP of 2310219W/Hz1/2.

The thermal time constant can be calculated by the
mula t5C/G, whereC is the electron specific heat. At th
value of S measured in our experiments, we obtaint
'5T23 ns. At T5300 mK the time constantt'0.2ms, and
at T5100 mK it ist'5 ms, which is much better than usua
requirements.

At ambient temperatures of 100 mK and below, t
NHEB sensitivity did not improve significantly. The reaso
is the quality of the detector tunnel junction, whose curren
voltage characteristic shape changes with temperature a
300 mK. This property might be due to the thermal proce
ing during the second lithographic process.

3. ELECTRON COOLING

Using the same technology, we have fabricated
NHEB with four tunnel junctions~see Fig. 2, and Figs. 6 an
7!. In this case, the absorber is a copper film 40 nm thi
0.25mm wide, and 7mm long. In order to cool electrons
efficiently, the resistance of each cooling junction should

The
r
e

es.
d
m,
i-
ed
o-
FIG. 6. Electron micrograph of a microbolomete
with an electron microrefrigerator fabricated by th
shadow evaporation technique at different angl
The upper horizontal strip is made of copper an
acts as an absorber. The darker layer is aluminu
the two larger and two smaller junctions are fabr
cated where the absorber strip overlaps oxidiz
aluminum electrodes fabricated in a separate lith
graphic process.
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FIG. 7. View of a device with a planar log-periodi
antenna designed for a frequency band of 100
1000 GHz.
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of order 1 kV. At the same time, the resistances of detec
junctions should be much higher than 10 kV in order to
minimize the bias current. These two conditions were sa
fied by fabricating junctions of very different areas~0.2mm2

for the large and 0.01mm2 for the small junctions!. As a
result, the ratio between the normal resistances of the ju
tions is more than 20, although the latter parameter can
affected by edge oxidation, which has more impact on sm
junctions than on large.

In order to demonstrate the effect of electron cooling,
have measured voltage variation across the detector junc
at a constant bias current as a function of the voltage ac
the large junctions. Then the resulting values were calibra
for different temperatures in the cryostat, where the la
junctions were not connected to a dc bias source.

The resulting curves measured at various initial tempe
turesTph5Te at V50 are plotted in Fig. 8. Both the coolin
effect and its unexpected suppression at temperatures b
400 mK and 250 mK, respectively, have been detected.
reason for this behavior might be the trivial heating by t

FIG. 8. Electron temperatureTe in the absorber as a function of the voltag
applied to the two large SIN junctions (Rn

C11Rn
C25625V1645V) at vari-

ous initial temperatures. ParameterTe is derived from measurements of th
voltage variations across the two small junctions (Rn

M11Rn
M2562 kV

1116 kV) biased by a small dc current using a calibration curve obtaine
a dedicated experiment.
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c-
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current conducted between the tunnel junctions. In orde
check out this assumption, we fabricated large junctio
separated by only 0.5mm, but this modification had little
effect on device characteristics.

4. CONCLUSIONS

We have developed, manufactured, and tested bol
eters using hot electrons in small normal-metal films, e
ploiting the Andreev reflection from superconductor boun
aries. Experiments with absorbers of different leng
confirmed that the thermal conductivity is largely determin
by electron–phonon coupling, and there is no thermal c
ductivity through the interface between superconductors
normal metals. The measured thermal conductivity in
microbolometer with the short absorber is 6310212W/K
and 7310214W/K at 300 mK and 100 mK, respectively
These values correspond to time constantst50.2ms andt
55 ms and noise-equivalent powers NEP55310218

W/Hz1/2 and NEP52310219W/Hz1/2, if temperature fluc-
tuations are considered to be the major source of no
These characteristics, especially the time constants, are
siderably better than those of conventional superconduc
bolometers.7 Our experiments support the concept of ele
tron cooling in such bolometers using additional SIN jun
tions, which enables one to reduce the noise-equiva
power and use a less complicated cooling system.
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Conductivity in a two-dimensional disordered model with anisotropic long-range
hopping
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We consider a two-dimensional system of particles localized on randomly distributed sites of a
square lattice with anisotropic transition matrix elements between localized sites. The
diagram and replica methods are used. The conductivity of a system in different limits of local
sites and particles densities is calculated. The model is relevant to the problem of strong
nonmagnetic impurities in superconductors withdx22y2 symmetry of the order parameter. ©1999
American Institute of Physics.@S1063-7761~99!02403-8#
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1. INTRODUCTION

We examine a system of randomly distributed impurit
at a sites of a two-dimensional square lattice. An impur
potential generates a localized state with a strongly an
tropic ~cross-shaped! wave function. The conductivity is pro
duced by due to hopping of particles between local states
the same vertical or horizontal lines. This picture can
realized in two-dimensionaldx22y2-wave superconductors
where local bound quasiparticle states can arise in the p
ence of unitary impurities.1 The wave functions of the loca
states are strongly anisotropic, with exponential decay in
directions exceptwn5(2n11)p/4, where the wave function
is proportional tor 21.

A similar anisotropy has a wave function of bound sta
in the vortex core ind-wave superconductors.2 The wave
function in the vicinity of gap nodes at large distances h
the form

uCu2}uw2wnuexp~22uw2wnur /j!,

with a maximum valueuCu2}j/2r in the directionsw2wn

.j/2r→0.
We will consider the following tight-binding Hamil-

tonian:

H5(
i , j

t~r j2r i !c
1~r i !c~r j !r~r i !r~r j !, ~1!

where c1(r i),c
1(r j ) are creation and annihilation oper

tors, r(r i) is the density of impurities, equal to 1 at th
impurity sites, and to 0 otherwise. The transition matrix e
ment has a cross-shaped configuration

t~r !5~dx,01dy,0! f ~r !, ~2!

with

f ~r !5JS a

r D g

exp~2kr !,

anda is the lattice constant.
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The plan of this article is as follows. In Sec. 2 we co
sider the case of low impurity density. In Sec. 3 we calcul
the conductivity in the case of high impurity density. Resu
are discussed in the Conclusion.

2. LOW DENSITY

We consider now the limit of low impurity concentratio
(c!1). In an external electromagnetic field we substitute
~1!

t~r i2r j !→t~r i2r j !expF ieE
r i

r j
A~r ,t !dr G .

The electric current is defined as usual with the Hamilton
~1! by varying over a gauge-invariant vector potentialA

j a~ t !52 ie(
i , j

~r i2r j !at i j C i
1~ t !C j~ t !r ir j

3exp~ ieA~ t !~r i2r j !!, ~3!

where t i j 5t(r i2r j ). Since we will calculatej (v), we as-
sume that the potentialA depends only on timet. Using the
equation for the Green functionG(t1 ,r1 ,t2 ,r2)

]

]t1
G~ t1 ,r1 ,t2 ,r2!52 i K T

]C~1!

]t1
C1~2!L

2 id~r12r2!d~ t12t2!, ~4!

we obtain after Fourier transformation in the linearA ap-
proximation

j a~v!5
e2

c (
i , j

t i , j~r i2r j !a~r i2r j !bAb~v!

3E dV

2p
G~V,r j ,r i !e

iVa2
e2

c

3 (
i , j ,k,l

t i , j tk,l~r i2r j !a~r k2r l !bAb~v!

3E dV

2p
G~v1V,r j ,r k!G~V,r l ,r i !e

iVa. ~5!
© 1999 American Institute of Physics
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The summation in Eq.~5! is taken over impurity sites
anda→10. In order to evaluate~5! in the lowest order with
respect to the concentration, we examine the case of
randomly located sites. The Green function is found eas

G~v,r i ,r i !5
v1m

~v1m!22t i , j
2 ,

G~v,r i ,r j !5
t1,2

~v1m!22t i , j
2 , ~6!

wherem is the chemical potential. Substituting~6! into ~5!,
we obtain in the case when the sites are located on the s
horizontal chain

j x~v!5
e2

2c
~x12x2!2t1,2

v2

~v1 ia!224t1,2
2 Ax~v!

5Q~v!Ax~v!. ~7!

A similar equation can be derived for the case of nonz
temperature. The result differs only by the Fermi filling fa
tor. After averaging over impurity sites we obtain for th
conductivitys(v)5 iQ(v)/v

s~v!5
pe2

4
c2LE x2t~x!@nF~v2m!

2nF~2v2m!#d~v22t~x!!dx

5
pe2

8
c2L

x0
2t~x0!@nF~v2m!2nF~2v2m!#

ut8~x0!u
,

~8!

where nF is the Fermi distribution function, and 2t(x0)
5v.

Substitutingt(x) from ~2! we get

v

2J
5

exp~2kx0!

x0
g , ~9!

s~v!5
pe2

8
c2L

x0
3@nF~v2m!2nF~2v2m!#

g1kx0
. ~10!

In the limit of low frequency we have the following
asymptotic behavior:

1. k50, x05(2J/v)1/g:

v@T, s~v!}v23/g, ~11!

v!T, s~v!}v23/g11; ~12!

2. kÞ0, kx0; log(2J/v):

v@T, s~v!} log2~2J/v!, ~13!

v!T, s~v!}v log2~2J/v!. ~14!

3. HIGH DENSITY

3.1. Green function

In case of high density of impurities we assume that
distribution function of impurities is a Gaussian with va
anceg:

r~r i !5c1dr~r i !, ^dr~r i !dr~r j !&r5g2d i j , ~15!
o
:

me

o

e

where^...&r denotes the average over possible impurity co
figurations. We assume that the concentrationc<1.

The one-particle Green function for the arbitrary imp
rity distribution is usually defined in terms of a function
integral as

G~E,r ,r 8!5@E2t i j r~r i !r~r j !# r ,r8
21

5 i
*Dc̄Dcc~r !c̄~r 8!exp~ iS!

*Dc̄Dc exp~ iS!
, ~16!

where

S5S01S1 , ~17!

iS05 i(
r

c̄~r !Ec~r !, ~18!

iS152 i (
r1r2

c̄~r1!t~r12r2!r~r1!r~r2!c~r2!. ~19!

Introducing an additional integration over new fermion fiel
x,x̄ in order to eliminate the second order termsrr, we get

exp~ iS1!5E Dx̄Dx expH i( x̄~r1!t21~r12r2!x~r2!

2 ic(
r

@ x̄~r !c~r !1c̄~r !x~r !#

2 i(
r

dr~r !@ x̄~r !c~r !1c̄~r !x~r !#J 1

Z
,

~20!

where

Z5E Dx̄Dx expH i (
r1 ,r2

x̄~r1!t21~r12r2!x~r2!J , ~21!

t21~r !5
1

V (
k

«21~k!eikr , ~22!

«~k!5(
r

t~r !eikr 52J lnF S k214 sin2
kxa

2 D
3S k214 sin2

kya

2 D G . ~23!

The Green function in terms of the new two-compone
field w,

w1~r !5c~r !, w2~r !5x~r !,

w̄1~r !5c̄~r !, w̄2~r !5x̄~r !, ~24!

reads

Ĝ~r1 ,r2!52 i ^ŵ~r1! ^ wC ~r2!&, ~25!

wherewC (r )5@w̄1(r ),w̄2(r )#, and angle brackets are define
as

^...&5
*Dc̄DcDx̄Dx~ ...!exp~ iSeff!

*Dc̄DcDx̄Dx exp~ iSeff!
~26!



ve

-

nc-

in

f

icle

605JETP 88 (3), March 1999 E. A. Dorofeev and S. I. Matveenko
with

iSeff5 i(
r

wC ~r !S E 2c2dr~r !

2c2dr~r ! t21~r12r2!
D ŵ~r !. ~27!

The equation for the Green function after averaging o
impurities in the Born approximation reads

Ĝ~k!5Ĝ0~k!1Ĝ0~k!Ŝ~k!Ĝ~k!, ~28!

with the bare Green function

@Ĝ0~k!#215FE 2c

2c «21~k!
G ~29!

and the self-energyŜ obtained by summing diagrams with
out intersections

Ŝ~k!5g2a2E dk1

~2p!2 sxĜ~k1!sx. ~30!

The solution of Eqs.~28! and ~30! is

S~k!5S A C

C BD , ~31!

Ĝ~k!5
1

@11«~k!R#~E2A!2~c1 iC !2«~k!

3F 11«~k!B 2 i ~c1 iC !«~k!

2 i ~c1 iC !«~k! «~k!~E2A!
G , ~32!

where

A5g2a2E dk

~2p!2

~E2A!«~k!

@11«~k!B#~E2A!2~c1 iC !2«~k!
,

B52g2a2E dk

~2p!2

12«~k!B

@11«~k!B#~E2A!2~c1 iC !2«~k!
,

iC5g2a2E dk

~2p!2

~c1 iC !«~k!

@11«~k!B#~E2A!2~c1 iC !2«~k!
.

In the limit g2!1, we obtain

AR,A56 i
g

2
, BR,A57 i

c2

E2

g

2
, CR,A56 i

c

E

g

2
,

~33!

g52pg2a2
E2

c4 nS E

c2D , ~34!

wheren~«! is the density of states of the pure model~c51,
g50!:

n~«!5E dk

~2p!2 d@«2«~k!#. ~35!

Taking into account thatA!E, BE!1, C!c, we find for
the Green function in the limitg2!1

ĜR,A~k!5
1

E2c2«~k!6 ig@113~c2/E!«~k!#/2

3S 1 c«~k!

c«~k! «~k!E
D , ~36!
r

whereGR andGA are the retarded and advanced Green fu
tions.

3.2. Drude formula

The conductivity in our case is defined as in Sec. 1
terms of the four-particle correlation function

sE~v!5
e2

2p E dk1

~2p!2

dk2

~2p!2 va~k1!va~k2!KEv

3~k1 ,k2 ;k2 ,k1!, ~37!

whereE is taken at the Fermi level,

KEv~k1 ,k2 ;k2 ,k1!

5
1

V (
x,y,z,t

exp~ ik1~x2y!!exp~ ik2~z2t!!

3 K rxryrzr tG11
R S y,z,E1

v

2 DG11
A S t,x,E2

v

2 D L
r

~38!

and

va~k!5
]«~k!

]ka
. ~39!

Inserting the solution~36! into ~37!, we find in the low-
est approximation

sE~v!5
e2

2p E dk

~2p!2 va
2~k!G11

R S k,E1
v

2 D
3G11

A ~k,E2v/2!5
e2c6

2p S J

BD 2 A~E!

B~E!
, ~40!

where

A~E!5E
«~k!5E/c2

dlk
v~k!

vx
2~k!, B~E!5E

«~k!5E/c2

dlk
v~k!

,

~41!

v(k)5Avx
2(k)1vy

2(k), anddlk is the element of length o
the Fermi surface.

The conductivity can be expressed in terms of a part
density defined by

n0~E!5a2E
2p/a

p/a

dkxE
2p/a

p/a

dkyuS E

c2 2«~k! D . ~42!

We obtain in the low and high density limits

s5H e2c6

g2

n0

32p log2 2
, for n0!1,

e2c6

g2

12n0

4k4 log2 k
, for 12n0!1.

~43!

The asymptotic behavior in the intermediate range 0,n0

,1 is

s52p4
e2c6

g2

1

~12n0!2 log@1/~12n0!#
, ~44!
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FIG. 1. Diffusion vertex.
in
-
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s

with maximum value

smax;
1

k8/3 logk
~45!

reached at 12n0;k4/3.

3.3. Perturbation corrections

To go beyond the quasiclassical approximation we
clude contributions to the conductivity from ‘‘diffusion
ladder’’ and ‘‘crossed-ladder’’ or ‘‘cooperon’’ vertices.3,4

The additional term is

dsE~v!5
e2c4

2p E dk1

~2p!2

dk2

~2p!2 va~k1!va~k2!

3G1a
R ~k1!Gc1

R ~k2!G1b
A ~k2!Gd1

A ~k1!

3Kac;bd~k1 ,k2!, ~46!

where for the ‘‘diffusion’’ vertex contribution we obtain~see
Fig. 1!

Kac;bd
~D ! 5g2sac

x sbd
x

1g2E dl

~2p!2 saa1

x Ga1c1

R ~ l!Kc1c;bb1

~D ! Gb1d1

A ~ l!sd1d
x .

~47!

The solution of this equation does not depend onk1 and
k2 . Therefore the contribution of the ‘‘diffusion’’ vertex to
the conductivity is equal to zero because

E dk1

~2p!2 va~k1!G1a
R ~k1!Gd1

A ~k1!50. ~48!

Now we consider the ‘‘cooperon’’ vertex contribution
The vertexK (C) obeys the equation~see Fig. 2!

Kac;bd
~C! ~q!5g2sac

x sbd
x 1g2E dl

~2p!2 sae
x sbg

x Gea1

R ~ l!Ggb1

A

3~q2 l!Ka1c;b1d
~C! ~q!, ~49!

whereq5k11k2 .
Using the Green function from~36! we can rewrite this

equation:

Kac;bd
~C! 2

1

4
b~v,k!sae

x sbg
x tea1

tgb1
Ka1c;b1d

~C! 5g2sac
x sbd

x ,

~50!

where
-

b511
1

4g
~ iv2Dk2!, D5

c4v̄x
2

4g
, ~51!

and

t̂5S exp~u! 1

1 exp~2u!
D , ~52!

where exp(u)5c/E.
We seek a solution of~50! in the form

Kac;bd
~C! 5g2(

mn
sab

m scd
n Kmn, ~53!

wherem,nP$0,x,y,z%, andKmn satisfies

Kmn2b~v,k! (
l50,x,y,z

LmlKln5
1

2
gc

mn , ~54!

with

L̂5
1

2 S cosh2 u coshu 0 sinhu coshu

coshu 1 0 sinhu

0 0 0 0

2sinhu coshu 2sinhu 0 2sinh2 u

D
~55!

and

ĝc5S 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 21

D . ~56!

A solution of ~54! can be found in terms of matrice
U,B:

Kmn5UmMBLN~U21!Nn , ~57!

where

~U21!MmLmnUnN5zMdMN , ~58!
FIG. 2. Crossed-ladder vertex.
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BMN5
1

12b~v,k!zM
~U21!MmgmnUnN . ~59!

The eigenvalueszM and matrixU are

z051, z150, z250, z350, ~60!

Û5S 1

&
coshu

1

&
coshu 2 i sinhu 0

1

&
2

1

&
0 0

0 0 0 1

2
1

&
sinhu 2

1

&
sinhu i coshu 0

D .

~61!

We see from~51! and ~60! that the eigenmode with
N51 only has singular behavior forv,k→0. Substituting
solutions~60!, ~59!, ~57!, ~54!, and~53! into ~46! we obtain
a logarithmically divergent correction to the conductivity:

ds52
e2

2p2 E dq

q
. ~62!

We consider the problem in detail in the next secti
using field-theoretic methods for diffusion mode interactio

3.4. Field-theoretic description

Quantum corrections to the conductivity can be d
scribed in terms of a diffusion modes interactions. To der
an effective Lagrangian we make use of a replica meth
Conductivity properties are determined by the dens
density correlation function

K~v!5^GE1v/2
R ~r1 ,r2!GE2v/2

A ~r1 ,r2!&, ~63!

where

Ĝ~R,A!~E!5@E6 id2t i j r~r i !r~r j !#
21, ~64!

and angle brackets denote impurity averaging.
Integrating over anticommuting Grassmann variab

k* ,k we can write

GE1v/2
R ~r1 ,r2!GE2v/2

A ~r1 ,r2!

52
*Dk* Dkk1~r1!k1* ~r2!kN11~r1!kN11* ~r2!exp~ iS!

*Dk* Dk exp~ iS!
,

~65!

where

iS5 i (
r1 ,r2

(
n51

2N

kn* ~r1!$@E1~v1 id!ln#I r1 ,r2

2t r1 ,r2
r~r1!r~r2!%kn~r2!, ~66!

ln5H 1, n<N,

21, n.N,
~67!
.

-
e
d.
-

s

andN is the number of replicas.
The quadratic termrr can be transformed with the hel

of the additional Grassmann fieldsn* ,n

expH 2 i (
r1 ,r2

(
n51

2N

t~r12r2!r~r1!r~r2!kn* ~r1!kn~r2!J
5E Dn* Dn expH i (

r1 ,r2
(
n51

2N

t21~r12r2!n* ~r1!

3n~r2!2 i(
r

(
n51

2N

r~r !

3@nn* ~r !kn~r !1kn* ~r !nn~r !#J F E Dn* Dn

3expH i (
r1 ,r2

(
n51

2N

t21~r12r2!n* ~r1!n~r2!J G21

.

~68!

It is convenient to define spinorsC, x:

&Cn5S Cn1

Cn2
D5S kn*

kn
D , &C̄n5S 2kn

kn*
D , ~69!

&xn5S xn1

xn2
D5S nn*

nn
D , &x̄n5S 2nn

nn*
D , ~70!

or

C̄5~CC!T, x̄5~Cx!T, C5dmnS 0 21

1 0 D , ~71!

whereC is the charge conjugation matrix. The same relatio
hold between the original and Fourier components

C̄ni~p!5Ci j Cni~2p!, Cni~p!5Cji C̄ni~2p!, ~72!

x̄ni~p!5Ci j xni~2p!, xni~p!5Cji x̄ni~2p!, ~73!

where

Cni~r !5(
p

1

AN
Cni~p!eipr, xni~r !5(

p

1

AN
xni~p!eipr.

~74!

The action~66! takes the form

iS5 i H(
r

C̄~r !FE1S v

2
1 id DLGC~r !

1 (
r1 ,r2

x̄~r1!t21~r12r2!x~r2!

2(
r

@ x̄~r !C~r !1C̄~r !x~r !#J , ~75!

where L is a diagonal matrix consisting of elementsln .
Introducing new bispinors

w~r !5S C~r !

x~r ! D , w̄~r !5~C̄~r !x̄~r !!

we can rewrite the action as
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iS5 i (
r1 ,r2

w̄~r1!G0
21~r1 ,r2!w~r2!

2 i(
r

dr~r !w̄~r !sxw~r !, ~76!

where

G0
21~r1 ,r2!5S E1S v

2
1 id DL 2c

2c t21~r12r2!
D ~77!

is the bare Green function.
Performing the average over a Gaussian distribution

the randomness we obtain

^exp~ iSint!&5K expF2 i(
r

dr~r !w̄~r !sxw~r !G L
5expH 2

g2

2 (
r

@w̄~r !sxw~r !#2J . ~78!

The order parameter in the localization theory is a tra

less tensor proportional tôCC̄&. Taking into account only
long-wavelength fluctuations we can rewrite~78! as

^exp~ iSint!&5expFg2(
r

sab
x scd

x Pda
nm~r !Pbc

mn~r !G , ~79!

where

Pbc
mn~r !5

1

L (
p,q

wb
m~p!w̄c

n~p1q!exp~2 iqr !, n5$n,i %.

Spinorsw andw̄ are related by charge conjugation~71!. This
imposes symmetry conditions

@Pbc
mn~r !#* 5Pcb

nm~r !, or P15P, ~80!

P5CPTCT. ~81!

Introducing a Gaussian integration over thec-number matrix
field Q, we obtain

exp~ iSeff!5E DQ expH (
r1 ,r2

w̄~r1!

3F iG0
21~r1 ,r2!1I r1 r2

b

4
Q~r1!Gw~r2!

2(
r

a

4
Tr~QsxQsx!J H E DQ

3expF2(
r

a

4
Tr~QsxQsx!G J 21

. ~82!

After integration over the bispinor fieldw we obtain

iSeff5Tr lnF iG0
211

b

4
QG2(

r

a

4
Tr~QsxQsx!. ~83!

In the saddle-point approximation we use the equatio

dS/dQ50,

or
r

-

S iG0
211

g

2
QD 21

2
g

2g2 sxQsx50. ~84!

The solution of this equation to lowest order ing2 is

Qsp5L~coshu2sz sinhu1sx!expu, ~85!

E/c5expu, ~86!

with the Green function

G5
1

E1Lv/22c2«~p!22igL S 1 E/c

E/c E2/c2D . ~87!

Expanding near the saddle point and using the symm
of the tensorQ, we find

iSeff5Tr lnS iG0
211

g

2
dQD2

g2

16g2

3(
r

Tr$@Q1dQ~r !#sx@Q1dQ~r !#sx%. ~88!

Taking Fourier transforms, Eq.~88! reads

idSeff52
g2

16g2

1

L (
q

H Tr@dQ~q!sxdQ~2q!sx#

2g2E dp

~2p!2 Tr@G~p!dQ~q!G~p1q!

3dQ~2q!#1TrF ivg

4 S 1 0

0 0D dQ~q!G J . ~89!

Due to the symmetry of theQ we can write the variationdq
as

dQbc5Qasbc1

a sc1c
x , ~90!

where all matricesQa are real. Inserting the relation~90!
into ~89!, we find, taking into account only low-energy tran
verse (QdQ1dQQ50) modes,

dSeff52
g2

8g2 (
a,b

Fdab2
b0

8
Tr~sbsxtsasxt!G

3QaQb1QaTa , ~91!

where

b0512
Dk2

4g
, D5

c4v̄x
2

4g
, t5coshu1sz sinhu1sx,

Ta5TrF iv

2
LS 1 0

0 0DsasxG . ~92!

After diagonalization we obtain

iSeff5
1

L (
k

TrH 2
gDk2

32g2 q1~k!q1~2k!

2
g

8g2 (
l 52,3,4

Tr@ql~k!ql~2k!#

1
ivg

16g2 LUa lql~k!J , ~93!

where
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Qa5Ua lql , ~94!

Ua l5S 1

&
2

1

&
0 0

1

&
coshu

1

&
coshu 2 i sinhu 0

2
i

&
sinhu 2

i

&
sinhu 2coshu 0

0 0 0 1

D .

~95!

We see that the action~93! consists of only one diffusion
type mode (l 51). Taking into account only these modes a
neglecting interactions with other higher-energy modes,
obtain the well-known action of the nonlinears model,

S5
1

t E dr @Tr~¹Q!22ṽ Tr~LQ!#, ~96!

where

ṽ5
g

16g2

v

D
,

1

t
5

g

16g2 D.

The renormalization group equations for this case were s
ied in Ref. 5. In the limitN→0, we see that in lowest orde

dt

d ln k
5

t2

8
, ~97!

d ln ṽ

d ln k
50. ~98!

Since the conductivitys is proportional to the diffusion con
stantD, equations~97! and~98! determine the frequency an
system length dependence of the conductivity. In particu
we have from~98! that s(v)}D}v for small v.

4. CONCLUSIONS

We have investigated a two-dimensional model with
new type of disorder due to a random distribution of loc
states with strongly anisotropic overlaps of wave functio
This type of disorder, described by a quadratic impurity d
sity Hamiltonian ~1!, was not considered previously. Th
conductivity of the system was calculated in the limits of lo
e

d-

r,

l
.
-

~Sec. 2! and high densities~Sec. 3! of local states. Since
perturbation theory leads to divergent terms~‘‘Cooperon’’
vertices! we used the field theoretic description in terms o
diffusion mode interaction. Introducing an additional integr
tion over fermion field and performing the average over i
purities with the help of a replica trick, we obtained th
action of the nonlinears model. Renormalization group
equations for this model determine the behavior of the dif
sion constant and the conductivity. We have shown that
type of disorder leads to weak localization phenomena in
high density limit, as in the usual two-dimensional case.6

As mentioned in the Introduction, a similar picture ca
be realized in nontrivial superconductors. A strong scatter
impurity potential produces a resonant or marginally bou
state inside the gap in ad-wave superconductor. The wav
function of the impurity bound state is highly anisotropi
with 1/r decay along the nodes of the gap, and, an expon
tial, angle-dependent decay range otherwise. A finite conc
tration of impurities leads to an formation of the narrow qu
siparticle band. If we simplify a picture and take into accou
scattering processes of quasiparticles inside this band o
we obtain our model. We note that our consideration is
plicable only in the case of strong unitary impurities produ
ing local bound states. Opposite cases of weak impurity s
tering with different types of disorder were studied in Refs
and 8.
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Changes in the magnetic moment of crystalline FeBO3 when an antiferromagnetic resonance is
excited in it are studied. This done using a SQUID magnetometer in combination with a
microwave spectrometer. At temperaturesT.15 K a reduction in the total magnetic moment of
the sample is observed when an antiferromagnetic resonance is excited in it. At liquid
helium temperatures, an induced rise in the sample magnetic moment was observed. This type of
magnetization of the sample can be explained qualitatively if it is assumed that under
antiferromagnetic resonance excitation conditions, magnetoelastic modes with high wave numbers
are excited along with magnons. Efficient excitation of magnetoelastic modes under
antiferromagnetic resonance conditions is confirmed by the experimental observation of a size
effect in thin, high quality single crystal slabs of FeBO3. © 1999 American Institute of
Physics.@S1063-7761~99!02503-2#
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1. INTRODUCTION

The electron spin resonance of antiferromagnetic FeB3

is studied in this paper. In these experiments simultane
measurements were made of the microwave power abso
by the sample and the accompanying change in the t
magnetic moment of the sample.

The change in the sample magnetic moment is a resu
all the nonequilibrium perturbations of the sample cau
directly by the microwave pumping, as well as by ‘‘secon
ary’’ quasiparticles created through relaxation of the prim
ries. A simultaneous analysis of the microwave power
sorbed by the sample and the corresponding changedM in
the sample magnetic moment yields information on the
ture of the quasiparticles that are excited and on their re
ation mechanism.

Since the measureddM is an integral quantity, this
analysis is effective for materials with a known excitati
spectrum. For magnetically ordered substances meas
ments have been made for compounds with well studied
citation spectra, such as nickel ferrite1 and iron yttrium
garnet,2 as well as antiferromagnetic materials with an ea
plane magnetic anisotropy (CoCO3, FeBO3, and MnCO3),
in which magnons, nuclear magnons, and magnetoelastic
cillations are excited.3–7

The properties of FeBO3 (TN5348 K), an antiferro-
magnetic material with a easy-plane magnetic anisotro
have been well studied and are, to a great extent, determ
by a magnetoelastic interaction. The magnetoelastic inte
tion causes coupling of magnetic and elastic excitatio
Thus, the normal modes~quasimagnons and quasiphonon!
contain elastic, as well as magnetic components. The qu
magnon spectrum includes an additional gap, while the q
6101063-7761/99/88(3)/5/$15.00
us
ed
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siphonon branch acquires a dependence on the magnitud
the static magnetic field. The calculated spectra of the
frequency branch of the quasimagnons (vk) and of the
acoustic branch of the quasiphonons (Vk) for a infinite crys-
tal ~which makes it possible to restrict the analysis to t
magnetoelastic coupling of magnons and phonons with eq
wave vectors! are given by8–10

vk5g@H~H1HD!1HD
2 1~ak!2#1/2, ~1!

Vk5cek•@12~gHDj/vk!
2#1/2, ~2!

whereH is a static magnetic field directed in the easy pla
of the crystal;g5gmB /\517.83109 s21kOe21 is the gy-
romagnetic ratio;HD.100 kOe is the Dzyaloshinskii field
gHD is the magnetoacoustic gap in the spin wave spect
(HD.1.9 kOe); and,a.0.831025 kOe•cm is a phenom-
enological exchange constant that is proportional to the
change fieldHE52.63106 Oe. The sound speedce and the
coefficient j, which describes the efficiency of the linea
interaction between the magnons and phonons, depen
the direction of the wave vector and the polarization of t
quasiphonons. The values of the constants are specified
low temperatures, far fromTN .

Figure 1a shows spectra of quasimagnons and q
siphonons with wave vectors directed along theC3 axis of
the crystal and with the polarization of the quasiph
nons parallel to H. For such quasiphonons,ce.4.8
3105 cm s21 and HDj.2 kOe. ~The values of all elastic
and magnetoelastic constants ofFeBO3 can be found, for
example, in Ref. 11!. In Fig. 1b we have plotted, as a func
tion of the wave vector, the amount by which the magne
© 1999 American Institute of Physics
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FIG. 1. ~a! Spectra of quasimagnons an
quasiphonons with wave vectors directe
along theC3 axis of a crystal and with the
quasiphonons polarized parallel toH. ~b!
The magnitudes of the changes in th
sample magnetic moment during excitatio
of a single quasimagnon and quasiphonon
functions of the wave vector. The curve
were obtained using Eqs.~1!–~3! for a mag-
netic fieldH5200 Oe.
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moment of the sample is reduced by excitation of a sin
quasimagnonvk or quasiphononVk , as obtained from~1!
and ~2! using the formula

mk52]«k /]H, ~3!

where «k5\vk/2p for the quasimagnons or«k5\Vk/2p
for the quasiphonons. (\ is Planck’s constant.!

2. SAMPLES AND TECHNIQUE

The excitation spectrum of FeBO3 is sensitive to the
internal stresses of the crystal.12 Thus, the samples, grown i
the form of thin slabs~20-150mm thick!, were examined by
x-ray diffraction topography~the Lang method! at a wave-
length corresponding to the MoKa1 line. The samples which
yielded a uniform image without block segments and dis
cations were selected. These samples were placed in e
lopes of cigarette paper and attached to them at
‘‘points.’’ The samples prepared in this fashion were fa
tened by the end of the envelope to the loop of a coaxial
or in a cavity. This method of attaching the samples w
used in order to avoid the deformations caused by glu
them directly. The thick samples were glued at the end of
crystal.

An apparatus consisting of a combination of a SQU
magnetometer and a microwave spectrometer6,7 was con-
structed for measuring the change (dM ) in the magnetic mo-
ment of the sample when it was acted on by the microw
magnetic field. Figure 2 is a sketch of the apparatus.
outer vessel filled with liquid helium contained the SQU
magnetometer cell, a differential flux transformer, and a
perconducting solenoid operated in short circuit. The sam
and a system for delivering the microwave power were
cated inside an inner Dewar flask. The inner Dewar flask w
metallic in order to prevent the microwaves’ acting direc
on the SQUID magnetometer cell. The inner Dewar fla
was filled with helium as a heat exchanger gas or with liq
nitrogen or helium. The working range of fields in the app
ratus was 0-450 Oe. The apparatus made it possible to m
sure changes in the magnetic moment of a sample with
accuracy of 531027 Oe•cm3.

A microwave magnetic field was created at the sam
either by a loop which served as the load of a coaxial line
in coaxial ~at frequencies of 7-10 GHz! or helical ~0.5-1.2
GHz! cavities.

Using a coaxial line loaded with a loop makes it possi
to excite microwaves over a wide range of frequencies i
single experiment. The amplitude of the field at the sam
e

-
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however, depends on the frequency and it is difficult to d
termine its magnitude in this experimental setup.

IN order to obtain quantitative results, a set of resonat
was used. By measuring the power passing through the
ity and reflected from it, as well as its parameters, one
determine the microwave power absorbed by the sample
estimate the magnitude of the microwave magnetic field
the sample.

In all the experiments the microwave fieldh and the
static field H were mutually perpendicular and lay in th
easy magnetization plane of the crystal.

3. EXPERIMENTAL RESULTS

Figure 3 shows the results of measuringdM when a
microwave magnetic field produced by a loop load on a
axial line is applied to a sample. The abscissa is a volt
proportional to the frequency of the microwave genera
operating with frequency wobble. It is clear that the ma
netic moment of the sample is sensitive to the microwa
interaction at low frequencies and in the range 7-10 GH
The existence of a large number of peaks in this curve
related to the excitation of resonances in the waveguide l
It is natural to relate the low frequency response~Fig. 3a! to
the excitation of magnetoelastic modes. The high freque
peak ~Fig. 3b! is close to the antiferromagnetic resonan

FIG. 2. A sketch of the apparatus.
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FIG. 3. The changedM in the sample mag-
netic moment when a microwave magnet
field produced by a loop attached to a co
axial line is applied to it. The abscissa is
voltage proportional to the frequency of th
microwave generator. The sample magne
moment is sensitive to microwave pumpin
at low frequencies~a! and at frequencies
of 7-10 GHz ~b!. The oscillatory character
of these curves is caused by the excitatio
of resonances in the waveguide line
H5200 Oe andT577 K.
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frequency given by Eq.~1!. Curves of this sort were mea
sured for different values of the magnetic fieldH and tem-
peratureT.

Figure 4 shows plots ofdM as a function of the static
magnetic field for various frequencies at temperatures of
and 4.2 K.

At ‘‘high’’ temperatures the magnetic moment of th
sample decreases when it is acted on by a microwave m
netic field ~Fig. 4a!. The plot of dM as a function of the
magnetic field has a resonant feature, which shifts to hig
fields as the frequency is raised. This behavior is consis
with the spectrum of the antiferromagnetic resonance ca
lated using Eq.~1!. When the temperature is reduced, t
resonance shifts to lower fields.

An unexpected result was obtained near the tempera
of liquid helium ~Fig. 4b!. The magnetic moment of th
sample increased when a microwave magnetic field was
plied to it, both at the low frequencies corresponding to
fective excitation of magnetoelastic modes and at frequ
cies near the antiferromagnetic resonance. ThedM (H) curve
was independent of frequency at low temperatures~to within
the accuracy of the experiment! ~Fig. 4b!.

We should point out, at once, that the temperature
pendence of the sample magnetic moment was investig
experimentally. Over the entire range of fields we examin
the sample magnetic moment decreased as the temper
was raised. Thus, trivial overheating of the crystal can
explain the observed effect.

The fractional change in the total magnetic moment
the sample in all these experiments was less than 531024.
With such weak interactions,dM was proportional to the
microwave power applied to the sample for the fields a
temperatures studied here.
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Figure 5 showsdM as a function of temperature whe
microwave fields with frequencies of 730 MHz and 8.5 GH
act on the sample.dM changes sign atT.8210 K.

Figure 6 shows the field dependence of the microwa
power transmitted through a coaxial cavity tuned to 7.8 GH
A sample in the form of a thin slab of thickness 114mm was
placed at an antinode of the microwave magnetic field.
number of resonance features can be seen in the plot o
microwave power transmitted through the cavity.

4. DISCUSSION

The variation in the magnetic moment of a sample wh
quasielastic vibrations with frequencies of 0.1-2 GHz are
cited in it was studied in an previous paper.7 Quasielastic
excitations were created in the sample by three differ
methods:~1! by contact, using a piezoelectric transducer,~2!
a variable microwave field at the magnetoelastic resona
frequencies of the crystal, and~3! parametrically, by parallel
pumping. All three methods yielded the same field dep
dences for the variation in the magnetic moment of
sample when quasielastic modes were excited in it. Near
temperature of liquid nitrogen, the total magnetic moment
the sample decreased when nonequilibrium quasielastic
brations were excited in it. The measured magnitude ofdM
was the same as the estimated value obtained assuming
the secondary quasiparticles do not make a significant c
tribution to the change in the total magnetic moment or,
other words, that relaxation of the nonequilibrium packet t
thermal level is a one-step process. Near the temperatur
liquid helium, magnetization of the sample was observ
when quasielastic waves were excited in it. This sort
stimulation of magnetization in a crystal by phonon pumpi
tic
i-
FIG. 4. The changedM in the magnetic mo-
ment of a sample when a microwave magne
field is applied to it as a function of the magn
tude H of the static field for different frequen-
cies and temperatures:~a! T5135 K, n
58.00 GHz ~hollow circles!, 9.23 GHz ~solid
squares!, 10.28 GHz ~triangles!; T532 K, n
58.00 GHz ~solid circles!; ~b! T54.2 K, n
58.00 GHz ~hollow circles!, 9.00 GHz ~tri-
angles!, 11.00 GHz ~hollow squares!, 12.24
GHz ~solid squares!, and 1.00 GHz ~solid
circles!. At ‘‘low’’ temperaturesdM is positive,
at ‘‘high’’ temperatures it is negative.
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in antiferromagnetic materials with a strong magnetoela
interaction had been predicted theoretically before.13 This
effect is related to the fact that at low temperatures the
laxation of a nonequilibrium packet of phonons is a multis
process.

It has been shown experimentally14 that three-body
magnon-phonon interactions~magnon1phonon5magnon! in
FeBO3 are the most effective at low temperatures. The ch
acteristic feature of this process is that it does not change
total number of magnons. In the equilibrium state the po
lations have a Bose-Einstein distribution. When phon
pumping and efficient three-body magnon-phonon inter
tions are present, the populations of the excitations sho
relax at different rates. Thus, phonon pumping will cau
thermal magnons to be transferred from the bottom of
band to higher frequency regions. As can be seen in Fig
the magnetic moment corresponding to excitation of a sin
magnon decreases with its frequency, so this kind of re
tribution leads to an increase in the total magnetic momen
a sample. Of course, this increase should be less than
reduction in the magnetic moment of the sample owing
the presence of thermal magnons.

FIG. 5. dM as a function of temperature when microwave magnetic fie
with frequencies of 730 MHz~solid squares! and 8.5 GHz~hollow squares!
are applied to the sample.

FIG. 6. The field dependence of the microwave power transmitted throu
coaxial cavity. The sample is in the shape of a thin slab with dimens
131.530.114 mm3. The arrows denote the static fields for which a pum
frequency ofn57.8 GHz coincides with the frequency of a standing ma
netoelastic wave calculated using Eq.~2!. The numbers next to the arrow
are the numbers of half waves across the sample thickness under the
nance conditions.
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In our experiments the calculated reduction in t
sample magnetic moment associated with thermally equ
rium excitations was at least 20 times the observed incre
in the sample magnetic moment when microwave power w
applied to it. The increased efficiency with which the sam
was magnetized at low temperaturesT,3 K ~Fig. 5! is ap-
parently a consequence of a drop in the number of ther
magnons~i.e., of the fact that the efficiency of the three
particle magnon-phonon interaction decreases w
temperature14!.

Although the increase in the sample magnetic mom
when magnetoelastic modes are excited in it can be
plained, it is not possible to explain the increase in t
sample magnetic moment when magnetic oscillations are
cited in it.

Apparently, for low fields~where the magnetoelastic in
teraction is most efficient! near the antiferromagnetic reso
nance frequency it is not the magnon branch which is m
efficiently excited, but magnetoelastic modes with lar
wave vectors. In Fig. 1 we have indicated with an arrow
quasiphonons which we believe are efficiently excited wh
a microwave magnetic field acts on the sample at a freque
vp close to the antiferromagnetic resonance frequency.

The efficiency with which magnetoelastic modes are l
early excited in the sample should, on one hand, decre
with increasing wave number and increase resonantly w
the frequencies of the magnon and elastic modes coinc
Thus, we may expect efficient linear excitation of magne
elastic modes both at low frequencies and near the antife
magnetic resonance frequency.

The linear excitation of magnetoelastic modes in fer
magnetic materials with finite dimensions under ferroma
netic resonance conditions has been studied theoretically15 It
is a complicated matter to distinguish experimentally the
sorption of microwave power owing to the excitation
quasimagnon and quasielastic modes, so this effect has
parently not been studied experimentally before.

An experimental confirmation of this hypothesis is t
presence of resonance features in the absorption line m
sured for samples in the form of a thin slab~Fig. 6!. For a
sample of this shape, the eigenfrequencies of the magn
elastic vibrations are nonuniformly distributed in frequenc
Their density is greatest near the frequencies correspon
to standing magnetoelastic waves in an infinite slab. T
calculated values of the static fields for which the pump f
quency coincides with the frequency of a standing magne
elastic wave in an infinite slab of this thickness are indica
by arrows in Fig. 6. The calculations were based on Eq.~2!
for the magnetoelastic waves most strongly coupled to
microwave magnetic field. Note that the situation is mu
more complicated for a finite crystal and the excitation
magnetoelastic modes with other polarizations may be
less efficient.

Nevertheless, the calculated and measured separa
between the resonances are in satisfactory agreement.
resonance fields shown in Fig. 6 were obtained through
ting of the slab thickness within a range of one percent. H
the calculated mode number for each of the resonance
determined with an accuracy ofN63.
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614 JETP 88 (3), March 1999 L. E. Svistov and H. Benner
The hypothesis proposed here can be used to ma
lower bound estimate of the time for relaxation of the no
equilibrium magnon distribution to thermodynamic equili
rium. To do this we have measured the absolute magnitu
of the microwave power absorbed by the sample and
corresponding change in the magnetic moment. Thus,
temperature of 4.2 K, when the sample absorbed a mi
wave power ofPa530mW at a frequency of 8 GHz, the
magnetic moment of the sample was observed to increas
7.531027 G•cm3.

The characteristic relaxation time for the nonequilibriu
magnon distribution to a thermodynamic equilibrium sta
can be estimated using the formula

t5
dM

m

hn

Pa
,

wherem is the characteristic increase in the magnetic m
ment of the sample when a magnon with frequencyn is
transferred to higher frequencies:n18 GHz. As can be seen
from Fig. 1, each act of transferring a magnon with fr
quencyn to higher frequenciesn18 GHz leads to an in-
crease in the sample magnetic moment by up to five B
magnetons. The powerPa absorbed by the sample divide
by the energyhn of a single excitation is an estimate of th
number of transfers per unit time. Substituting the expe
mental values ofdM and Pa , we obtaint.3ms. This is a
lower bound estimate and is only valid when the three-bo
magnon-phonon process is most efficient.

It is possible that this redistribution of thermal magno
is the reason for the observed ‘‘rigidity’’ of parametric ma
non excitation in FeBO3.16 This is supported by the fact tha
the rigidity phenomenon can undergo saturation with furt
application of microwave pumping to the sample (h'H)
near the antiferromagentic resonance frequency.16 It is inter-
esting that the ‘‘rigid’’ character of the parametric excitatio
of magnons is recovered roughly 100ms after the additiona
a
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a
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-
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pumping ceases.16 This time is apparently determined by th
relaxation time of the magnon system discussed earlier7 and
in this paper.
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Hydrodynamics of modulated finite-amplitude waves in dispersive media
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Analytic approaches are developed for integrating the nondiagonalizable Whitham equations for
the generation and propagation of nonlinear modulated finite-amplitude waves in
dissipationless dispersive media. Natural matching conditions for these equations are stated in a
general form analogous to the Gurevich-Pitaevskii conditions for the averaged Korteweg-
de Vries equations. Exact relationships between the hydrodynamic quantities on different sides of
a dissipationless shock wave, an analog of the shock adiabat in ordinary dissipative
hydrodynamics and first proposed on the basis of physical considerations by Gurevich and
Meshcherkin,4 are obtained. The boundaries of a self similar, dissipationless shock wave are
determined analytically as a function of the density jump. Some specific examples are
considered. ©1999 American Institute of Physics.@S1063-7761~99!02603-7#
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1. INTRODUCTION

It is well known that the applicability of exact analyti
methods in the theory of nonlinear dispersive waves is l
ited to fully integrable small amplitude approximations to t
general, ‘‘unintegrable’’ systems of equations.1 These ‘‘un-
integrable’’ equations arise naturally in plasma physics,
hydrodynamics of waves on liquid surfaces, magnetohyd
dynamics, etc. Many of them have a number of general pr
erties which are independent of the physical nature of
phenomena being described and have an highly characte
structure. Here are some examples:

~a! Gravitational waves on the surface of a shallo
liquid:2

] th1]x~hu!50,

] tu1u]xu1]xh1«2]xxx
3 h50. ~1!

Hereh is the depth of the liquid,u is the horizontal compo-
nent of the velocity, and« is a small dispersion paramete
~equilibrium depth!.

~b! Ion-acoustic waves in a two temperature (Te@Ti),
collisionless plasma:3–5

] tr1]x~ru!50,

] tu1u]xu1]xw50,

«2]xx
2 w5ew2r. ~2!

Herer andu are the ion density and velocity,w is the elec-
tric potential, and« is the Debye radius.

~c! Magnetosonic waves in a cold plasma moving tra
verse to a magnetic field:6–8

] tr1]x~ru!50,

] tu1u]xu1
B

r
]xB50,
6151063-7761/99/88(3)/11/$15.00
-
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«2]xS 1

r
]xBD5B2r. ~3!

Here u and r are the plasma velocity and density,B is the
magnetic field strength, and«5c/vp , wherevp is the elec-
tron plasma frequency.

All these systems of equations are of fourth order w
respect to the spatial derivatives and have at least four in
pendent conservation laws.5 When the dispersion paramete
« goes to zero, the systems~1!–~3! transform to the Euler
equations of ideal hydrodynamics with different Poiss
adiabatic indicesg: g52 in the case of Eqs.~1! and~3! and
g51 in the case of Eqs.~2!. Systems of equations of thi
type are usually referred to as dispersion-hydrodynamic.

Another common feature of these systems of equati
~1!–~3! is that they lack complete integrability properties. A
a consequence, one of the few exact results in this area u
now has been just the existence of travelling single ph
solutionsf (kx2vt) of bounded amplitude. If the wave am
plitude exceeds a certain critical valueacr , a solution in the
form of a travelling wave ceases to exist;9 then the very
description by a single-stream, dispersion hydrodynamics
the type~1!–~3! also ceases to be valid. In this paper we on
study single-stream flows witha,acr .

Physically interesting nonlinear solutions of dispersio
hydrodynamic equations arise in problems concerning
evolution of smooth perturbations~Fig. 1a!. In the initial
stage of the evolution of such perturbations, nonlinea
plays a dominant role, leading by some timet5tc to a in-
version ~breaking! singularity with an infinite derivative
~gradient catastrophe!.10 Because of dispersion, nonlinear o
cillations are generated near the inversion point fort.tc . 5

The oscillating region expands with time, occupying an e
larger region of space~Fig. 1b!. Since the oscillating zone
arises in situations such that a shock wave would develo
ordinary dissipative hydrodynamics, the resulting wa
structure is usually called a dissipationless~collisionless!
© 1999 American Institute of Physics
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616 JETP 88 (3), March 1999 A. V. Tyurina and G. A. Él’
shock wave.9 Exact analytic results11–13 for completely inte-
grable systems, as well as numerical calculations for no
tegrable systems,4 suggest some plausible general ideas
garding the structure of the solutions describi
dissipationless shock waves.

1. The solution of the dispersion-hydrodynamic equ
tions in the neighborhood of a dissipationless shock w
can be represented in the form of a modulated single ph
travelling wave.

2. In one of the fronts of a dissipationless shock wa
the wave amplitude goes to zero@the linear frontx2(t)] and
in the opposite, the wave number@the soliton frontx1(t)].

This last condition allows us, in Section 3 of this pap
to formulate natural matching conditions for the solution
the modulation equations in the neighborhood of a diss
tionless shock with the solutions of the Euler equations
ideal hydrodynamics on the outside. The assumption that
oscillations are quasistationary in the region of the dissi
tive shock makes it possible to construct a solution us
Whitham’s method,6,14 a generalization of the WKB metho
to the theory of nonlinear partial differential equations. Th
method was first applied to dissipationless shocks by Gu
ich and Pitaevskii,15 who constructed an exact solution
Whitham’s equation that ensured continuous matching of
central flow in the oscillatory region~region II in Fig. 1b! to
the smooth external flow outside the dissipationless sh
wave ~regions I and III in Fig. 1b!. They made an analytic
study15 of the case of small initial step perturbations, whe

FIG. 1. Inversion~breaking! of a smooth profile and the formation of
dissipationless shock wave:~a! initial data at the inversion timet5tc , ~b!
oscillatory structure of the shock fort.tc , ~c! the xt plane for the dissipa-
tionless shock problem.
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the initial disperison-hydrodynamic equations reduce to
Korteweg-de Vries~KdV! equation. More general solution
of the KdV-Whitham equation have been constructed.16–19A
key point in these papers is the construction of exact anal
solutions is the diagonalizability of the Whitham equatio
for the case of the KdV equations, i.e., the existence of R
mann invariants.6,20,22Similar studies have been done on t
nonlinear Schro¨dinger equation with defocussing.23–27

The Gurevich-Pitaevskii stability regimes for the Kd
equations have been analyzed numerically.28 The effect of
small dissipative corrections on the structure of the solut
to the KdV-Whitham equation has been studi
analytically.29,30

The existence of a Riemann structure in the Whith
equations is a consequence of the exact integrability of
initial system of equations. We note that, although small d
sipative corrections do not destroy the Riemann structure
the modulation system,29,30 including them leads to new
terms on the right which make the system unintegrable~in
the sense of the existence of a general local solution!. In this
paper we study nonintegrable systems without dissipat
For nonintegrable systems of the type~1!–~3! the modulation
equations can be written by formal use of Whitham’s reci
averaging the required number of conservation laws over
period of the single-phase travelling solutionf (kx2vt). The
desired equations describe the slow variation in the lo
integrals of motion.~The number of such equations equa
the differential order of the system with respect to the spa
derivatives.! Slow variation means that the characteris
length of the oscillations is small compared to the size of
oscillatory region. Whitham’s recipe has been applied to
systems of Eqs.~2! and ~3! in a study5 of the asymptotic
regimes of a self-similar dissipationless shock wave nea
boundaries, the linearx2(t) and solitonx1(t) fronts ~see
Fig. 1c!, whose positions are assumed known.

In this paper we develop analytic approaches to integ
ing the nondiagonalizable Whitham modulation equatio
The principal method for these studies is the method of ch
acteristics, whose applicability does not depend on the dia
nalizability properties. Since the problem under study is n
linear, the behavior of the characteristics is determined
the specific solution being studied, as well as by the struc
of the coefficients in the system of equations. In Section
we shall show that in the family of solutions for the proble
of generating a dissipationless shock wave~we shall call it
the inversion problem! along some curves in thext plane
~the fronts of this shock!, the general Whitham equation
become degenerate, so that the modulation system acqui
local Riemann structure. In addition, it turns out that here
local Riemann invariants transform to solutions of the inv
sion problem along the characteristics through
‘‘Whitham’’ zone, just as happens with the ordinary Ri
mann variables in the diagonalizable case. This prope
makes it possible to:

~1! obtain a relationship between the hydrodynamic va
ables on both sides of a dissipationless shock, the analo
the shock adiabat in ordinary dissipative hydrodynamics,

~2! formulate and prove a general theorem about a c
tact flow in dissipationless dispersive hydrodynamics, an
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~3! obtain exact analytic expressions for the bounda
of a self-similar dissipationless shock wave in the form o
function of the density jump at its boundaries~Section 5!.

The general construction of a study of the nondiagon
izable Whitham equations on a family of solutions to t
inversion problem is illustrated with concrete examples,
cluding: a KdV modulation system in hydrodynamic form
which does not use the diagonalizability of the KdV
Whitham equations~Section 6!, and a modulation system fo
nonlinear ion-acoustic waves corresponding to Eqs.~2! ~Sec-
tion 7!. Exact analytic expressions are found for the bou
aries of a self-similar ion-acoustic dissipationless sho
These formulas are in complete agreement with the resul
direct numerical calculations.4

2. HYDRODYNAMIC FORM OF THE MODULATION
EQUATIONS

It has been shown5 that it is convenient to present th
averaged equations which do not have Riemann invarian
the form of a hydrodynamic system of equations for the
rameters of the system motion and excited waves: the a
age densityr̄[n, the average flow velocityū[v, the energy
density in the oscillationsru2 r̄ ū5A2, and the density of
the waves~of the wave number! k. Averaging is done on a
family of single-phase travelling solutions of the formf (x
2Ut), whereU is the phase velocity:

]n

]t
1

]~nv !

]x
1

]A2

]x
50,

]v
]t

1v
]v
]x

1
1

n

]P~n!

]x
1

]E2

]x
50,

]A2

]t
1

]~VA2!

]x
1A2

]v
]x

1E2
]n

]x
50,

]k

]t
1

]~kU!

]x
50. ~4!

Here

E25E2~n,k,A2!, V5v1W~n,k,A2!,

U5v1U1~n,k,A2! ~5!

is a function whose specific form is determined by averag
the conservation laws for the initial equations of dispers
hydrodynamics over the fast oscillations.~For details, see
Ref. 5.! In the following, only a few general properties o
these functions, which determine the asymptotic proper
of the system of Eqs.~4!, will be important.

The nonstationary flow described by Eqs.~4! can be di-
vided arbitrarily into two parts: a slow hydrodynamic motio
characterized by the variablesn andv (P(n) is the ordinary
hydrodynamic pressure!, and quasistationary nonlinear osc
lations with an energy densityA2 and wave numberk. These
equations, of course, are not independent. The terms]A2/]x
and ]E2/]x in the first two equations describe the effect
the oscillations on the density and velocity of the hydrod
namic flow. On the other hand, the termsA2]v/]x and
s
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.
of
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-
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E2]n/]x in the energy transport equation for the nonline
waves characterize the effect of changes in the hydro
namic flow parameters on the oscillations.

We now consider some formal limiting cases.

2.1. Zero amplitude waves, A 250

The analysis given in Ref. 5 shows that forA→0,

E2}A2, V→]v0 /]k, U→v0 /k. ~6!

Herev5v0(k,n,v) is the usual linear dispersion relation,
which, however, the constantsr0 and u0, relative to which
the linearization

r5r01r1ei ~kx2vt !, u5u01u1ei ~kx2vt !

is carried out, are replaced by the slowly varying parame
n,v of the average flow. The quantitiesV andU, therefore,
are converted into the ordinary linear group and phase
locities, which now depend on the hydrodynamic variablen
and v, as well as onk. Equations~4!–~6! imply that the
system of Eqs.~4! has the exact reduction

A250,
]n

]t
1

]~nv !

]x
50,

]v
]t

1v
]v
]x

1
1

n

]P~n!

]x
50,

]k

]t
1

]v0~k,n,v !

]x
50. ~7!

The first two equations of the system of Eqs.~7! are the
equations of Euler hydrodynamics and can be obtained f
the initial system, which contains high order spatial deriv
tives, by letting the dispersion parameter approach zero
rectly. The third equation is the conservation equation for
number of waves; in the present case a zero amplitud
purely formal. Nevertheless, this equation contains import
information on the asymptotic behavior of the characteris
of the system of Eqs.~4!.

2.2. Solitons, k 50

We stipulate at once that in this paper by ‘‘solitons’’ w
mean the formal solutions of the equations of dispersive
drodynamics in the form of solitary waves. Of course, in t
general case these solutions do not have many propertie
common with the real solitons in integrable systems, in p
ticular, a collision of ‘‘nonintegrable’’ solitons is not elasti
and is accompanied by radiation.31. As k→0 we have the
following asymptotes:5

E2}A2}k, V2U}k.
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z5A2/k5O(1) has the significance of the average e
ergy of a single vibration and remains finite ask approaches
zero. The equation forz, which follows from Eq.~4!, has the
form

]z

]t
1U

]z

]x
1zF]v

]x
1 f ~k,n,z!

]n

]xG1
1

n

]

]x
@kz~V2U !#50,

~8!

where

f ~k,n,z!5E2/A25O~1!.

Thus, the system of Eqs.~4! has yet another exact redu
tion:

k50,
]n

]t
1

]

]x
~nv !50,

]v
]t

1v
]v
]x

1
1

n

]P~n!

]x
50,

]z

]t
1Us~n,v,z!

]z

]x
1zF]v

]x
1 f ~0,n,z!

]n

]xG50, ~9!

where

Us~n,v,z!5 lim
k→0

U. ~10!

It should be noted that, as opposed to the complete syste
Eqs.~4!, which is of fourth order, the reduced system of Eq
~7! and ~9! consists of three equations. This is evidently
consequence of the merger of two families of characteris
in the linear and soliton limits. In the first case, a multip
velocity coincides with the group velocity]v0 /]k and in the
second, to the soliton speedUs . We emphasize that the sys
tem of Eqs.~7! and~9! has at least two Riemann invariant
these are the invariants of ideal Euler hydrodynamics,10

] tJ61V6]xJ650, ~11!

where

J6~n,v !5v6E cs~n!

n
dn ~12!

are the Riemann invariants,

cs
2~n!5dP~n!/dn, ~13!

wherecs is the sound speed, and

V6~n,v !5v6cs ~14!

are the characteristic velocities. SettingJ1 or J2 constant
@J65const is the exact solution of the system of Eqs.~11!#,
it is always possible to diagonalize the remaining system
two equations. It is important that these properties do
depend on the diagonalizability of the complete modulat
system. The fact that the Euler equations ‘‘split off’’ in th
system of Eqs.~4! for A250 andk50 means that it can be
described using a dissipationless shock wave which joins
two Euler regimes.
-

of
.

s

f
t

n

e

3. NATURAL MATCHING CONDITIONS FOR THE
CHARACTERISTICS IN THE INVERSION PROBLEM

Let the solution of the Euler equations with inverte
monotonic initial conditions on the right~Fig. 1a!,

r~x,0!5r0~x!, u~x,0!5u0~x!, ~15!

have the form

r5re~x,t !, u5ue~x,t !. ~16!

Then, for t.t0, where t0 is the time of inversion~without
limiting the generality, we assumet050), in thext plane of
the solutions of the complete system including the dispers
terms, the oscillatory region is divided by a dissipationle
shock~Fig. 1b and 1c! and bounded by the curvesx2(t), its
trailing edge, andx1(t) its leading edge. The behavior of th
averaged quantities in this region is governed by
Whitham equations~4!. Outside the region of the dissipation
less shock the Euler equations for the variablesr andu are
valid, as before, and have the same Riemann form as
~11!:

] tr 61W6]xr 650, ~17!

where

r 65J6~r,u!, W65V6~r,u!. ~18!

We now formulate the boundary conditions for the modu
tion system~4! which will allow us to match the averag
flow in the Whitham region to the smooth flow~9! at the
~previously unknown! boundariesx6(t). We note, first of all,
that the number of characteristics in the outer and inner
gions is different, so matching can take place only at poi
where pairs of families of the characteristics of the Whitha
system merge, i.e., forA250 @Eq. ~7!# and for k50 @Eq.
~9!#. From the beginning we limit ourselves to the case
negative dispersion, where waves are generated (A2→0) at
the trailing edge and solitons are created (k→0) at the lead-
ing edge.~See Refs. 15, 4, and 5!.

The x6(t) curves separating the two analytically diffe
ent regimes are characteristics~in our case the envelops o
multiple characteristics, i.e., caustics! on the family of solu-
tions under study, in accordance with the properties of q
silinear hyperbolic systems.32 Let us examine the behavior o
the characteristics in the Whitham region in more detail. T
characteristic equations of the modulation system~4! have
the form

dx

dt
5Vi~n,v,k,A2!, i 51,2,3,4, ~19!

where theVi are the characteristic~group! velocities or ei-
genvalues of the matrix of the coefficients of the modulat
system~4!. We restrict ourselves to the case of real an
generally speaking, differentVi , which is the hyperbolicity
condition. Let V1>V2>V3>V4. Then the continuous
matching conditions for the characteristics on the caustic
faces take the following form~see Fig. 2!:
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V2~n,v !ux25V3~n,v !ux25
dx2

dt
,

V1~n,v !ux25W1~r2,u2!,

V4~n,v !ux25W2~r2,u2! ~20!

for x5x2(t); and

V2~n,v !ux15V1~n,v !ux15
dx1

dt
,

V3~n,v !ux15W1~r1,u1!,

V4~n,v !ux15W2~r1,u1! ~21!

for x5x1(t), where

r6[re~x6,t !, u6[ue~x6,t !.

We shall refer to the problem stated in Eqs.~4!, ~20!, and
~21! as theinversion problem. Note that the inversion prob
lem is not posed for the initial system, but for its Whitha
equations.

It is impossible not to notice the similarity between t
qualitative behavior of the characteristic velocities in the
version problem~Fig. 2! and the behavior of the Rieman
invariants in the solution of the Gurevich–Pitaevskii proble
for fully integrable systems.4,25,27The qualitative variation of
the characteristics in thext plane corresponding to the con
ditions ~20! and ~21! is shown in Fig. 3.

We now introduce yet another form of the matching co
ditions ~20! and~21!. The analysis of this section shows th
for A250 and fork50 the modulation system is degenera
and the Riemann invariantsJ6(n,v) appear for it. For the
problem under consideration, this structure has a local~in the
(x,t) plane! character, since the corresponding couplin
among the quantities are realized in the solution only alo
the boundaries of the dissipationless shock. Thus, we s
refer to the Riemann variablesJ6(n,v) as local Riemann
invariants.

Conditions~20! and~21! can then be rewritten as match
ing conditions for the local Riemann invariants of a modu
tion system with the invariants of the outer Eulerian hyd
dynamicsr 6[J6(r,u) at the fronts of the dissipationles
shock.

For x5x2(t)

FIG. 2. The behavior of the characteristic velocities in a dissipation
shock.
-

-

s
g
all

-
-

A250, J1ux25r 1ux2, J2ux25r 2ux2. ~22!

For x5x1(t)

k50, J1ux15r 1ux1, J2ux15r 2ux1. ~23!

We emphasize once again thatJ65J6(n,v) are the ‘‘inner’’
~Whitham! variables, whiler 65r 6(r,u) are the ‘‘outer’’
~Euler! variables.

Finally, using Eqs.~12! and ~18!, we introduce the con-
cept of the conditions~22! and~23! in terms of a continuous
matching of the average flow density and velocity.

For x5x2(t)

A250, n~x2,t !5r2, v~x2,t !5u2. ~24!

For x5x1(t)

k50, n~x1,t !5r1, v~x1,t !5u1. ~25!

In conclusion, we note that satisfying the matching co
ditions for the average hydrodynamic flow does not guar
tee continuity of the shock wave parameters and their der

s

FIG. 3. The behavior of the characteristics in a dissipationless shock:~a! the
families dx/dt5V1 anddx/dt5V2, ~b! the familiesdx/dt5V3 anddx/dt
5V2, and~c! the family dx/dt5V4.
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tives at the fronts. This latter point does not contradict
physical statement of the problem; mathematically the e
tence of such discontinuities was possible because the e
tions are hyperbolic.32 Discontinuities develop at the bound
ariesx6:5,15 the derivatives]A2/]x and]k/]x go to infinity
at the soliton front ~this is the so-called singula
discontinuity15! while k, itself ~at this point the conservatio
of the number of waves is violated!, and, in general, the
derivative ]A2/]x have a discontinuity at the generatio
point. It should also be kept in mind that the existence
singularities in the solution for the modulation equations i
consequence of the asymptotic character of the Whith
method; in the exact solution~if it exists!, there are no sin-
gularities.

4. TRANSPORT OF THE LOCAL RIEMANN INVARIANTS
THROUGH THE WHITHAM ZONE. JUMP CONDITIONS
ACROSS A DISSIPATIONLESS SHOCK WAVE AND
A THEOREM ON CONTACT FLOW

Let us consider the family of characteristics correspo
ing to the velocityV4 ~Fig. 3c!. We select a characteristi
which intersects the boundary of the dissipationless shoc
the pointsM andN. Then, as we shall show, the condition

J2~M !5J2~N! ~26!

is satisfied for this characteristic; that is, in the solutions
the inversion problem, the local Riemann invariant is carr
through the dissipationless shock wave region along ‘
own’’ characteristic. For diagonal systems the condition~26!
is an obvious consequence of the constancy of the co
sponding Riemann invariant along the characteristics.
general~the nondiagonalizable case!, this relationship is non-
trivial and must be justified.

Let us consider some quantityR determined by an ordi-
nary differential equation along an arbitrary smooth curveG,
x5xG(t), joining the pointsM andN:

DGR45 f ~G! ~27!

with the boundary conditions

R4~M !5J2~M !. ~28!

The function

f ~G!5(
i 51

4

l i
4~y!uGDGui ~29!

is specified alongG in the solution of the inversion problem
yi(x,t), which we shall regard as solved here. The opera
DG denotes differentiation alongG; l(4) is the left eigenvec-
tor of the matrix of coefficients of the modulation equatio
~1! corresponding to the velocityV4 , y5(n,v,k,A2). We
emphasize that the characteristicsdx/dt5V4 on both fronts
are matched with the Euler characteristics from one and
same familydx/dt5W2 @See Eqs.~20! and ~21!#.

It is easy to see that forA250, Eq. ~27! has a genera
integral that does not depend on the curveG and this integral
is nothing other than the Riemann invariantJ2(n,v).10,32 In
fact, for A250, because of the reduction~7!, the vectorl(4)

transforms into the left eigenvector of the matrix of coef
e
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cients of the Euler system corresponding to the velocityW2

~14!. Thus, the functionf (G) in this limit coincides with the
characteristic form for Euler hydrodynamics and is the to
derivativeDG , independently of the curveG.32,33 A similar
statement holds fork50. Thus,

R4uA2505R~n,v !5J2~n,v !1C1, ~30!

R4uk505R~n,v !5J2~n,v !1C2 ~31!

are the integrals of Eq.~27! on the family of solutions of
interest to us. It is important that the integrals~30! and ~31!
are, themselves, local and their values are independent o
global properties of the solution. Thus, the relationship
tween the constants of integrationC1 andC2 is easily estab-
lished using the natural requirement that the local integ
~30! and ~31! coincide as the width of the dissipationle
shock approaches zero. In this case, it is evident thatC1

5C2[C and Eq.~28! implies thatC50. Note that a situa-
tion will arise below in which the relationship between th
constants of integration is not so trivial. Thus,R5R(G) is a
continuous function of the curveG and takes the values

R4~M !5J2~M ! andR4~N!5J2~N! ~32!

at its ends.
Now let the curveG be the characteristic determined b

the equationdx/dt5V4 on the solution of this problem
Then the expression on the right hand side of Eq.~27! is the
same as the characteristic form14,32,33of the modulation sys-
tem ~4! corresponding to the velocityV4, so that

D4R450, ~33!

where

D45
]

]t
1V4~x,t !

]

]x
.

Now Eq. ~26! follows immediately from Eq.~32!. We
emphasize that, despite the external similarity of Eq.~33! to
the Riemann form of the equations for diagonalizable qua
linear systems,R4(x,t) is not, in general, a ‘‘real’’ Riemann
invariant, sinceD4 is a linear differential operator specifie
on the solution of the inversion problem. Of course, for
agonalizable systems the dependence on the solution
ishes andR4 becomes a local function of the dependent va
ables ui , i.e., is transformed into an ordinary Rieman
invariant. The consequence of Eq.~26! and the matching
conditions~22! and ~23! is a substantial restriction impose
on the invariants of the outer hydrodynamic flow adjacent
the dissipationless shock, specifically,

r 2~M !5r 2~N!. ~34!

Note that in the above discussion it has been assumed
the integrating factor ensuring the existence of the total
rivative DG on the right hand side of Eq.~28! is equal to
unity. This is true for Euler hydrodynamics and, therefore
satisfied near the boundaries of the dissipationless shock
the Whitham characteristicdx/dt5V4 which joins the two
Euler regimes. Furthermore, it is easy to show that this st
ment about the transfer of a local Riemann invariant alon
characteristic~through the Whitham zone! can also be gen-
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FIG. 4. Typical decay patterns for a discontinuity i
dispersive hydrodynamics:~a! rarefaction wave on the
left, dissipationless shock on the right,~b! two dissipa-
tionless shocks travelling in opposite directions.
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eralized to the case of an integrating factor that differs fr
unity in one or several regions where a local invariant exi
As a result, the rule about the transfer of a local invarian
valid, not only for the characteristicsdx/dt5V4, but also for
characteristics from any other family on which a local R
mann structure exists in several regions ofxt. This is used in
the next section, where the transfer of data along the cha
teristicsdx/dt5V1 anddx/dt5V3 is exploited. Recall that
the condition~34! applies to an arbitrarily chosen characte
istic from the family that is being studied. If, however, th
flow to the right or left of the dissipationless shock wave i
simple wave or constant, then the invariantr 2 is constant
throughout this entire region and, therefore, along the bou
ary. Then, Eq.~34! yields an equation relating the hydrod
namic variables along both sides of such a dissipation
shock:

r 2~r2,u2!5r 2~r1,u1!. ~35!

Therefore, the value of the Riemann invariant for ideal h
drodynamics is transferred through the Whitham zone, e
though the Whitham equations, themselves, have no
mann invariants.

Condition ~35! plays the same role in dispersive hydr
dynamics as the shock adiabat in ordinary dissipa
hydrodynamics.10 Note that Eq.~35! applies to waves trav
elling to the right. Analogous results can be obtained
leftward propagating waves; in that case the invariantr 1 will
be conserved on passing through the dissipationless sh
Equation~35! was first proposed4 on the basis of physica
considerations.

Equation~35! can also be used to formulate a gene
theorem on contact flows10,32,34in dispersive hydrodynamics
If the flow along one side of a dissipationless shock is c
stant (r5r0 , u5u0), then the flow along the other side is
simple wave. In fact, one of the families of characterist
carries the value of ‘‘its own’’ Riemann invariant throug
the dissipationless shock, and this means that the flow on
other side is a simple wave~or as a special case, is constan!.

5. DETERMINATION OF THE COORDINATES OF THE
FRONTS OF THE DISSIPATIONLESS SHOCK IN THE SELF-
SIMILAR SOLUTIONS OF THE WHITHAM EQUATIONS

We now turn to one of the most important nonline
problems of hydrodynamics, the decay of an initial discon
nuity. The decay of a discontinuity produces two waves
both sides of it, a dissipative shock and a rarefaction wave
different combinations depending on the initial data.4,26 A
s.
s
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plateau region in which the flow is constant develops
tween these waves.1! Figure 4 shows typical pictures of th
breakup of a discontinuity. The fact that an arbitrary disco
tinuity, parametrized by the four constantsr6 andu6, can-
not be ‘‘matched’’ in the case of a single dissipationle
shock wave follows from the existence of the additional
lation ~35!, which reduces the number of parameters to thr
The desired matching is achieved by introducing two wa
travelling in opposite directions. The hydrodynamic quan
ties on both sides of the wave travelling to the right a
related by Eq.~35!. For the leftward travelling wave, a
noted above, we have the analogous relation

r 1~r2,u2!5r 1~r1,u1!. ~36!

Note that one of Eqs.~35! or ~36! is automatically satis-
fied even if one of the waves that develops is a rarefac
wave; in this case it is a consequence of the constancy o
corresponding Riemann invariant of the equations of id
hydrodynamics. The time evolution of a dissipationle
shock obeys the self-similar (t5x/t) solutions of the corre-
sponding modulation system. We shall limit ourselves
considering dissipationless shocks travelling to the right. I
not necessary to be interested in the exact structure of
solution in the region of the dissipationless shock, limiti
oneself to just the Euler equations, but introducing a disc
tinuity into them that occupies a finite region in the se
similar variables fromt2 to t1.4 t2 and t1 have been
determined4 as functions of the density jump at a discontin
ity for an ion-acoustic dissipationless shock. For an analy
solution of this problem, it turns out that it is enough to kno
the local Riemann structure and the asymptotic behavio
the characteristics of the modulation system near the fro
of the dissipationless shock. Let, as before, the constant
sity and velocity in front of the shock ber1 and u1 and
behind it, r2 and u2. Without loss of generality, we take
u150, which corresponds to transforming to the movi
coordinate system. First of all, we note that a self-simi
dissipationless shock is described by solutions of the mo
lation equations in the form of centered simple waves. T
means that the family of characteristics corresponding to
velocity V2 forms a fan of straight lines with its center at th
point ~0,0! and the boundaries of the dissipationless sho
the straight linesx5t2t and x5t1t, represent multiple
characteristics~Fig. 5!.

The rectilinear characteristics of the outer flow, whi
correspond to the velocityV1 , ‘‘punch through’’ the front
of the dissipationless shock. Then they curve and at the



ess

622 JETP 88 (3), March 1999 A. V. Tyurina and G. A. Él’
FIG. 5. Characteristics in a centered simple dissipationl
shock:~a! the familiesdx/dt5V2 and dx/dt5V3, ~b! the
families dx/dt5V2 anddx/dt5V1.
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posite front they merge with the characteristics from the c
tered family. An important difference between this spec
case of simple wave and the general situation describe
Section 2, where the boundaries are not characteristics
are envelopes with a multiple characteristic direction at ev
point. ~See Figs. 3a and 3b.! Figure 5 does not show th
previously described family of characteristicsdx/dt5V4,
since there are no fundamental changes from the general
~Fig. 3c!. ~Of course, the characteristics in the outer reg
become rectilinear.!

For concreteness, we now examine the trailing edge
the shock,x25t2t, at which the amplitude goes to zer
(A250) and the matching conditions~24! are satisfied (v2

5u2, n25r2). As shown in Section 2, the multiple cha
acteristic velocity in this case coincides with the linear gro
velocity of the generated wave, i.e.,

v08~k0 ,u2,r2!5t2, ~37!

wherek0 is the wave number from which nonlinear gene
tion takes place at the trailing edge.5 Therefore, the problem
of determining the coordinatet2 reduces to finding the func
tion k0(u2,r2,r1). In order to findk0 it is necessary to
determine the local Riemann invariant corresponding to
multiple characteristic velocity forA250, and then equate i
to the outer invariantr 1 arriving with the Euler characteris
tics at the leading edge of the dissipationless shock. We
describe this process in more detail.

The jump condition~35! takes the formr 2(r2,u2)
5r 1(r1,0) and makes it possible to determineu2 as a func-
tion of r1 andr2. As a result, we have only two nontrivia
parametersr1 and r2 characterizing the self-similar prob
lem. We now consider the system of Eqs.~7!, in which we
set the hydrodynamic invariantJ2(n,v) constant@this in-
variant is matched withr 2(r1,r2) in the dissipationless
shock! ~see Eq.~16!#, i.e.,

J2~n,v !5r 2~r1,r2!5const. ~38!

The condition ~38! automatically ensures matching at th
trailing edge and determines the functionn(v) in the system
of Eqs.~7!. The system, itself, then takes the form

] tJ1~n!1V1~n!]xJ1~n!50,

] tk1]xv0~k,n!50. ~39!

Since Eq.~39! is a second order hyperbolic system, it c
always be diagonalized.32 One of its Riemann invariants
-
l
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of
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e

w

J1(n)[J1(n,v(n)), has already been pointed out, while th
second necessarily exists and can be found in the formJ0

5J0(k,n). This invariant, according to Section 4, is tran
ported through the Whitham zone along the characteri
dx/dt5V3 ~see Fig. 5a!, i.e.,

J0~k0 ,r2!5r 1~u150,r1!. ~40!

Equation~40! yields the desired functionk0(r1,r2). Note
that the Riemann invariant is an arbitrary functionf (J0), so
in order to determine a specific dependenceJ0(k,n) in Eq.
~40!, it is necessary to impose the natural condition

J0~k50,n!5J1~n! ~41!

on J0, which ensures that these invariants are equal when
width of the dissipationless shock goes to zero.~Recall that
k50 at the leading edge, whileJ0 is calculated at the trailing
edge, so examining the limitJ0(k→0) is equivalent to cal-
culatingJ0 for a dissipationless shock of infinitely small in
tensity!.

The coordinatet1 of the leading edge can be calculate
in completely analogous fashion. To do this it is necessar
determine the Riemann invariants of the system of Eqs.~9!
with the integral~38!, and then to equate the local invaria
Js(n,z), corresponding to the velocityUs , to the outer in-
variantr 1(u2,r2). ~Transport takes place along the chara
teristic dx/dt5V1.! The condition analogous to Eq.~41! for
a dissipationless shock of zero intensity has the form

Js~n,z50!5J1~n!. ~42!

As a result, we obtain the dependence

zs5zs~r2,r1!, ~43!

wherezs is the value ofz at the soliton frontt1.
The self-similar coordinate of the soliton front@see Eq.

~21!# is determined by the multiple characteristic of the v
locity for k50, which coincides with the soliton velocityUs

@Eq. ~10! ~recall thatv(t15u150)]:

t15Us~r1,0,zs![Us~r2,r1!. ~44!

We now proceed to consider some concrete examples.

6. THE KORTEWEG-DE VRIES EQUATION

We shall consider the KdV equation in the form

] tu1u]xu1]xxx
3 u50. ~45!
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The modulation system for the KdV equation has a Riem
invariant.6,20 The corresponding problem of the decay of t
discontinuity

u~0,x!50, x.0, u~0,x!51, x<0, ~46!

has been fully studied.15 We shall calculate the coordinate
of the fronts of the dissipationless shocks, using the gen
technique described in this section~i.e., without using the
Riemann form for the complete modulation system!. The
matching conditions analogous to the conditions~24! and
~25! for the average~averaged over the oscillations! quantity
h[ū take the following form:

A250, h51 ~47!

for t5t2, and

k50, h50 ~48!

for t5t1. Equation~35! can be regarded as automatica
satisfied, since the outer flow in the KdV hydrodynamics
necessarily a simple wave. Let us write down the dispers
relation for the nonlinear KdV waves against the evolvi
hydrodynamic backgroundh(x,t):

v0~k,h!5kh2k3. ~49!

Equation~49! makes it possible to obtain a reduction of t
modulation system for the linear front that is analogous
Eq. ~7! at once:

A250, ] th1h]xh50, ] tk1]x~kh2k3!50. ~50!

It is easy to find the desired local Riemann invariant fro
Eq. ~50!:

J0~k,h!5h23k2/2. ~51!

The role of the hydrodynamic invariantJ1 is played by the
variableh, itself. @See Eq.~39!#. Note that the condition~41!
is satisfied, sinceJ0(0,h)5h. Then,we have the equatio
J0(k0,1)50 for k0, which givesk0

252/3. @See Eq.~40!#.
From this we find at once that@see Eq.~37!#

t25
]v0

]k SA2

3
, 1D 521. ~52!

For the leading~soliton! front we have the following reduc
tion of the KdV modulation system:5

k50, ] th1h]xh50, ] tz1Us~h,z!]xz1z]xh50,

~53!
where

Us~h,z!5h12z2/3/3.

We find the local Riemann invariant that is consta
along the soliton front from Eq.~53!:

Js~h,z!5h1z2/3. ~54!

Equation~42! is satisfied, sinceJs(h,0)5h. Transport of the
local Riemann invariant along the family of characterist
dx/dt5V1 yields the equationJs(0,zs)51, which implies
that zs51. Then@see Eq.~44!#,

t15Us~0,zs!52/3. ~55!
n

al

s
n

o

t

The values oft6 found here correspond to the results
Ref. 15.

7. NONLINEAR ION-ACOUSTIC WAVES

Let us consider the system of Eqs.~2! describing a non-
linear flow in a nonisothermal plasma. The modulation s
tem of Eqs.~2! has been found in Ref. 5. As noted above, t
absence of Riemann invariants for this system means th
is impossible to construct an exact solution of the invers
problem by known methods. Nevertheless, the existence
local Riemann structure, which ensures generation of a
sipationless shock wave, makes it possible to calculate a
lytically the coordinates of the fronts of the dissipationle
shock.

7.1 Trailing edge of an ion-acoustic dissipationless shock

In order to determine the trailing edge of a dissipatio
less shock wave it is sufficient to know only the linear d
persion relation, which in this case has the form5

v0~k,v,n!5k~v1g1/2!, ~56!

where

g5
1

11k2/n
. ~57!

Then we have a system of three equations whenA250 for
determining the local Riemann invariant:

] tJ61V6]xJ650,

] tk1]x~k~v1g1/2!!50, ~58!

where

J6~n,v !5v6 ln n, V65v61. ~59!

The conditions~22! and ~35! fix the invariantJ2 :

v2 ln n5u22 ln r252 ln r1. ~60!

Equation~60! implies that

u25 ln D, v5 ln~n/r1!, ~61!

where

D5r2/r1 ~62!

is the density jump, which is now the only parameter of t
problem.

Given Eq.~61!, the system of Eqs.~58! now takes the
form

] tJ11@ ln~n/r1!11#]xJ150,

] tk1]x@k~ ln~n/r1!1g1/2!#50, ~63!

where

J1~n!52 lnn2 ln r1.

Diagonalizing the system~63! leads to the following
Riemann invariants:

J15J1~n!, J25 ln n1 ln g1
2

11g1/2
. ~64!
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The local Riemann invariantJ0(k,n)5 f @J2(k,n)# is found
using the condition~41!, which in this case takes the form

f ~J2~0,n!!5J1~n!. ~65!

Equations~64! and ~65! imply that

f ~x!52~x21!2 ln r1. ~66!

Then

J0~k,n!52S ln n1 ln g1
2

11g1/2
21D 2 ln r1. ~67!

The quantityg051/(11k0
2/r2) is determined from condi-

tion ~40! for the transport of the local Riemann invariantJ0

along the characteristicsdx/dt5V3:

2S ln r21 ln g01
2

11g0
1/2

21D 2 ln r15 ln r1. ~68!

As a result, for the coordinate of the trailing edge,

t25~]v0 /]k!un5r2 ,g5g0
5 ln D1g0

3/2 ~69!

we have the equation

ln@D•~t
*
2!2/3#5

~t
*
2!1/321

~t
*
2!1/311

, ~70!

wheret
*
25t22 lnD. The functiont2(D) is shown in Fig. 6

and is fully consistent with the results of a numeric
calculation.4

7.2. Leading front of an ion-acoustic dissipationless shock

Finding the coordinates of the leading front of a se
similar ion-acoustic dissipationless shock is ideologically
same as the previous calculations for the trailing edge,
involves some cumbersome calculations. This is becaus
the complexity of the coefficients of the modulation syste
~4! for nonlinear ion-acoustic waves in the soliton limit.~See
Ref. 5.! Here we present only the final result. The implic
dependence of the coordinatet1 of the leading front on the
density jumpD at the boundaries of the dissipationless sho
is given by

FIG. 6. Self-similar boundaries of an ion-acoustic dissipationless shockt2

andt1, as functions of the density jumpD5r2/r1.
l

e
ut
of

k

ln D5E
1

t1 z21

z

3a2z2a1z2112a28 z212a18

a2z21a2z1a1z2122a22a1

dz,

~71!

where

a1~z!52z1/4E
2z2/2

c~z!

~z2y!1/2

3H 2z1
exp@~z22y2!/2#21

z2y J 21/2

y dy,

a2~z!5z21/4E
2z2/2

c~z!

~z2y!1/2

3H 2z1
exp@~z22y2!/2#21

z2y J 21/2

dy. ~72!

The upper limit of integrationc(z) is specified by the alge
braic equation

~22c!1/22z1
exp~c1z2/2!21

z
50. ~73!

A plot of t1(D) constructed using Eqs.~71!–~73! is shown
in Fig. 6; this is also in agreement with the numeric
calculations.4
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We analyze the stability of a system which contains a harmonic oscillator nonlinearly coupled to
its second harmonic, in the presence of a driving force. It is found that there always exists
a critical amplitude of the driving force above which a loss of stability appears. The dependence
of the critical input power on the physical parameters is analyzed. For a driving force of
greater amplitude, chaotic behavior is observed. The generalization to interactions which include
higher modes is discussed. ©1999 American Institute of Physics.@S1063-7761~99!02703-1#
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1. INTRODUCTION

In a series of experiments, the motion of the surface o
superfluid liquid in a cylindrical vessel was studied. Th
motion was induced by standing waves of second so
propagating in the bulk of the liquid. Above a critical valu
of the input power, the motion lost stability.5,6

To account for this loss of stability we analyzed a mod
that explained this phenomenon,8 and found it to be in good
agreement with the experimental results. The model is g
eral enough to account for the loss of stability in other wa
systems.

2. MODEL

The model consists of two nonlinearly coupled harmo
oscillators, of which one is coupled to an external drivi
force. First, we justify the use of two oscillators, with fre
quencies close tov and 2v, for describing the physics o
systems such as the one above~v is the frequency of the
driving force!. We assume that in the linear approximati
the free, nondissipative~classical! theory is given by the
Hamiltonian

H5 (
n51

`

vnan* an , ~1!

wherean is the~complex! amplitude of thenth mode andan*
is its complex conjugate. Dissipation and the driving for
are added subsequently. The modes are the eigenfunctio
the wave equation with the appropriate Sturm–Liouvi
boundary conditions. We neglect terms higher than cubic
the Hamiltonian, as well as terms which are far from re
nance and therefore have small coupling constants.1 The
Hamiltonian becomes
6261063-7761/99/88(3)/6/$15.00
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H5 (
n51

`

vnan* an1 (
k1 l 2m.0

k,l ,m51

`

~lk,l ;makalam* 1c.c.!, ~2!

where c.c. stands for complex conjugate, andlk,l ;m

5l l ,k;m .
We now couple an external driving force to one of t

modes. Note that in order to describe a physical proble
attenuation must be added as well. Modes which are
strongly coupled to the excited mode will decay. Again, w
assume that to describe the onset of instability, a minim
number of modes is needed. We therefore take the exc
mode and the mode with frequency closest to twice the
quency of the first. With a harmonic driving force, th
Hamiltonian takes the form

H5vdad* ad1v2da2d* a2d1~lad
2a2d* 1c.c.!

1~ f eivtad* 1c.c.!, ~3!

wherev is the frequency of the driving force, which shou
be close tovd in order to establish resonance.

We use

i ȧd5
]H

]ad*
, ~4!

Hamilton’s equations in the amplitude formalism,1 to derive
the equations of motion:

i ȧd5vdad12l* ad* a2d1 f eivt, ~5!

i ȧ2d5v2da2d1lad
2. ~6!

The equations are invarant under the transformation

ad→adei ~f1u!, a2d→a2dei ~f2u!,

l→lei ~2f23u!, f→ f ei ~f1u!. ~7!
© 1999 American Institute of Physics
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It is therefore possible to eliminate two independe
phases from the equations, so we can choosel and f to be
real.

We now add dissipative terms to the equation in
usual manner.1 The equations become

i ȧd5~vd2 igd!ad12lad* a2d1 f eivt, ~8!

i ȧ2d5~v2d2 ig2d!a2d1lad
2, ~9!

whereg are the dissipation constants.
The final stage before analyzing the equations is to

troduce ‘‘slow variables’’ to eliminate the time dependenc
Under the transformation

ad→ade2 ivt, a2d→a2de22ivt

the equations become

i ȧd5~Dd2 igd!ad12lad* a2d1 f , ~10!

i ȧ2d5~D2d2 ig2d!a2d1lad
2, ~11!

where Dd[vd2v and D2d[v2d22v are the frequency
offsets with respect to the driving force.

We note that in deriving the Hamiltonian~3! we have
neglected one nonlinear term of the same order with res
to ad as the one that we have kept, namelykad

2ad*
2. For

systems in whichk!l2/v, this term is small, but it turns
out that even fork much larger the importance of this term
not crucial. Note thatv is absent from the equations. Fro
dimensional considerations,k can appear in the equation
only askD or kg ; this is the term that has to be of orderl2.

Hereafter we analyze three aspects of the model: stat
ary solutions, stability, and numerical calculations. For s
tionary solutions it is easy to verify that the effect ofk is
merely to renormalizeD2d andg2d . This is the well-known
effect of shifting the resonance.2 We have seen thatk is not
of great importance in the stability analysis or in our nume
cal calculations, even fork.l2/D2d ,l2/g2d . We will not
include this term in what follows.

Although the model we use is a very simplified one,
still contains five parameters in addition to the driving for
amplitudef. Not all the parameters are important. The a
plitude f of the driving force is an effective expression whic
is in fact a function ofDd ; moreover, the driving force
couples to all other modes as well, and we may neglec
other couplings only when the one that we are left with is
dominant one. For this to be the case, we must havev
.vd , that is,Dd must be small compared to all other p
rameters with dimensions of frequency. The value ofD2d

will be dictated by geometry. Both our analytic and our n
merical results depend on this assumption. In most phys
systems there is a relation betweengd and g2d . We shall
assume that these two parameters are of the same ord
magnitude.

3. STATIONARY SOLUTIONS

We begin our analysis by finding the fixed points of t
equations, i.e., solving the equations

~Dd2 igd!ad12lad* a2d1 f 50, ~12!
t

e

-
.

ct

n-
-

-

t

-

ll
e

-
al

of

~D2d2 ig2d!a2d1lad
250. ~13!

We eliminatea2d from the second equation, and substitute
the first one to obtain

~Dd2 igd!~D2d2 ig2d!ad22l2aduadu2

52~D2d2 ig2d! f . ~14!

The equation forz[2l2uadu2/ugdg2d2DdD2du then be-
comes

~~z61!21b!z5h, ~15!

where

h[
2~g2d

2 1D2d
2 !l2

ugdg2d2DdD2du3 f 2 ~16!

is the scaled force, and

b[S Ddg2d1D2dgd

gdg2d2DdD2d
D 2

. ~17!

The sign in equation~15! coincides with the sign ofgdg2d

2DdD2d .
This equation has either one or three solutions. Fo

given value ofh, the equation will have three solutions if an
only if

gdg2d2DdD2d,0, ~18!

0<b,
1

3
, ~19!

2

27
@119b2~123b!3/2#<h<

2

27
@119b1~123b!3/2#.

~20!

In the following it will be illustrated that when three
solutions are present, the middle one is unstable, as expe

We note that the situation of three solutions is, in
sense, nonphysical. Bothgd andg2d are positive, so we can
use~17!–~19! to deduce that

S gd

Dd
D 2

,S g2d

D2d
1

gd

Dd
D 2

,
1

3
. ~21!

But this suggests thatgd,Dd , which contradicts our
assumptions. In this region of parameters our model
inappropriate.

4. STABILITY

To check whether the stationary solutions are stable
linearize the equations around these solutions, and ch
whether small perturbations grow or decay. To simplify t
calculations, we recall the symmetry~7! and use it with
f13u50 to redefine the stationary value of the first mod
ad

(0) , to be real, without alteringl. The change inf is not
important, sincef will be absent from the linearized equa
tions. We substitute in the linearized equations:

a2d
~0!52

lad
~0!2

D2d2 ig2d
. ~22!
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Stability is now determined byad
(0) . Also, to simplify the

notation, we usead ,a2d rather thandad ,da2d for deviations
from the stationary solution.

The linearized equations are

i ȧd5~Dd2 igd!ad12lS ad
~0!a2d2

lad
~0!2

D2d2 ig2d
ad* D ,

~23!

i ȧ2d5~D2d2 ig2d!a2d12lad
~0!ad; ~24!

multiplying by 2 i and separating into real and imagina
parts, we obtain the differential equation:

d

dt S Re~ad!

Im~ad!

Re~a2d!

Im~a2d!

D
5S 2gd2pg2d Dd1pD2d 0 2ad

~0!l

2Dd1pD2d 2gd1pg2d 22ad
~0!l 0

0 2ad
~0!l 2g2d D2d

22ad
~0!l 0 2D2d 2g2d

D
3S Re~ad!

Im~ad!

Re~a2d!

Im~a2d!

D , ~25!

wherep52ad
(0)2l2/(g2d

2 1D2d
2 ).

To ensure stability, we require that the real part of
eigenvalues of this matrix be negative. We find the coe
cients of the characteristic polynomialu41au31bu21cu
1d to be

a52~gd1g2d!, ~26!

b52
4l4

g2d
2 1D2d

2 ad
~0!4

18l2ad
~0!2

1~gd
21Dd

21g2d
2 1D2d

2 14gdg2d!, ~27!

c52
8l4g2d

g2d
2 1D2d

2 ad
~0!4

18l2~gd1g2d!ad
~0!2

12@~gd
21Dd

2!g2d1~g2d
2 1D2d

2 !gd#, ~28!

d512l4ad
~0!4

18l2~gdg2d2DdD2d!ad
~0!2

1~gd
21Dd

2!~g2d
2 1D2d

2 !. ~29!

To ensure that all roots of this polynomial have a negat
real part, we use the Routh–Hurwitz criterion:3,4

a.0, ~30!

b.0, ~31!

d.0, ~32!

abc.c21a2d. ~33!
l
-

e

The condition~30! is trivial for a physical problem. The

condition ~31! is a quadratic equation inad
(0)2, and is easily

solved to give

ad
~0!2

,
g2d

2 1D2d
2

4l2 S 41A51
gd

21Dd
214gdg2d

g2d
2 1D2d

2 D . ~34!

The third condition,~32!, is again a quadratic equation i

ad
(0)2, but with a positive rather then negative coefficient

ad
4.

It is easily seen that for a negatived to occur in the

physical regionad
(0)2.0, we need to have

gdg2d.DdD2d . ~35!

When this condition is fulfilled, an unstable region appe
when

b,
1

3
. ~36!

Direct solution of the quadratic equation then shows that
central region of solutions coincides exactly with this u
stable region~20!. As mentioned above, this region is n
physically important.

We combine~26!–~29! and ~33!, and define

z5l2ad
~0!2

~37!

to obtain the last inequality:

a0z41a1z31a2z21a3z1a4.0, ~38!

where

a05
64gdg2d

~g2d
2 1D2d

2 !2 , ~39!

a152
64~gd1g2d!2

g2d
2 1D2d

2 , ~40!

a25
32gdg2d

g2d
2 1D2d

2 ~D2d
2 2Dd

22~gd1g2d!2!, ~41!

a3516~gd1g2d!2@~gd1g2d!21~Dd1D2d!2!], ~42!

a454gdg2d@~gd1g2d!21~Dd1D2d!2#

3@~gd1g2d!21~Dd2D2d!2!]. ~43!

It is seen that for any parameter value there exists
open neighborhood of zero in which the stationary solution
stable. It is very tedious to solve the inequality for the ge
eral case. We solve it for two special cases: one-dimensio
geometry, and a cylindrical wave with a largeQ-factor, both
with reflecting boundary conditions.

Recall the assumptionDd!gd . It is natural to assume
that gd and g2d are of the same order of magnitude. In
wide class of casesg}v2, and therefore

g2d.4gd . ~44!

We shall consider this case for both geometries. The valu
D2d is dictated by geometry.
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For one-dimensional geometry, thedth mode is
cos(dpx/L), whereL is the length of the vessel. This depe
dence yields

D2d5v2d22v52Dd2~2vd2v2d!52Dd2c~2kd

2k2d!52Dd2c~2pd/L2p2d/L !52Dd . ~45!

We therefore have for the one-dimensional case

Dd ,D2d!gd , g2d . ~46!

We define

x5z/gd
2, ~47!

s5g2d /gd . ~48!

We use~46! to derive the inequality

x42s~11s!2x32
1

2
s2~11s!2x21

1

4
s3~11s!4x

1
1

16
s4~11s!4.0. ~49!

The solution of this inequality combined with~34! yields
the final result,

x,
1

2
~s1s2!, ~50!

from which one easily finds an expression for the critic
input power:

f c5
3gd1g2d

l
Ag2d

gd1g2d

2
~51!

or, using~44!,

f c.
22

l
gd

2. ~52!

We now substitutegd5av2 to obtain

f c.
22a2

l
v4. ~53!

A full description of the loss of stability for the specifi
problem can be obtained if we take into account the dep
dence ofa and l on the relevant physical parameters, f
example, the temperature.

For a cylindrical vessel of radiusR, the modes are given
by Jn(kr)cos(nu), whereJn is the nth Bessel function, and
k5v/c, wherec is the wave velocity. The boundary cond
tions impose the relationkn,mR5xn,m wherexn,m is themth

zero of Jn8(x). For simplicity we consider here only theJ0

modes.
The value ofD2d is dictated by the Bessel functio

asymptotic behavior,

xm[x0,m.np1p/4, ~54!

whereupon
l

n-

D2d5v2d22v52Dd2~2vd2v2d!

52Dd2c~2kd2k2d!.2Dd2
c

R
~2xd2x2d!

52Dd2
c

R S 2S dp1
p

4 D2S 2dp1
p

4 D D
52Dd2

pc

4R
.2Dd2

vd

4d11
. ~55!

Sincevd52Qgd , the higher isQ, the higher the values
of d for which the inequality

D2d@gd ~56!

holds.
We solve now equation~38! for the case

Dd!gd , g2d!D2d . ~57!

We defines as before, but now

x5z/D2d
2 , ~58!

and we obtain

x42
~11s!2

s
x31

1

2
x21

~11s!2

4s
x1

1

16
.0. ~59!

When this condition is combined with~34!, we have

x,
1

4
~v1A2uv !, ~60!

whereu5(11s)2/s andv5u2Au224. We use~44! to ob-
tain x,0.59. For other values ofs there are only small
changes in the result. In all cases the critical value is in
range 0.5,x0,0.65. The maximum is attained ats51, and
the minima are atx50 and x→` ~note that x0(s)
5x0(1/s)). The critical input powerf c can now be calcu-
lated:

f c5
2D2d

2 x0
1.5

l
.0.56

c2

lR2 . ~61!

A full description of the loss of stability in this geometr
can be obtained if we take into account the dependencel
andc on the relevant physical parameters.

5. BEYOND NUMERICAL CALCULATIONS

Some questions arise. Does the system always rea
stationary solution in the stable region? What happens ab
the stable region? In what way would the theory be modifi
if we include the full Hamiltonian~2!?

We solved the equation numerically with paramete
suitable to describe the cylindrical geometry:

Dd50, D2d51500,

gd530, g2d5120,

l55400, ~62!

with initial conditions

ad~ t50!50, a2d~ t50!50. ~63!
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Results for other parameter values may be very similar
to the scaling properties of the equation discussed abov

For small enough values off, the system reaches th
stationary solution after wandering in phase space~Fig. 1!.
For f .0.3f c with the initial conditions above, the syste
escapes the basin of attraction of the fixed point, and ins
approaches a limit cycle~Fig. 2!. The basin of attraction o
the stationary solution shrinks to zero as the instability
approached. This limit cycle is not unique. By choosing va
ous initial conditions, other limit cycles can be approach
In the higherf regime, the behavior is harder to determin

It is easy to prove that the motion of the system
bounded in phase space, and that the volume in phase s
decays exponentially with decay factor 2(gd1g2d).

A necessary condition for chaos to evolve is that
system be locally unstable. Our analysis shows that the p
of ad ,a2d is irrelevant to this question. Given the paramete
the potentially chaotic regions are defined in t
(uadu2,ua2du2) plane. Our calculations show that the regio

ua2du2l2@g2,D2 ~64!

is always locally unstable. The numerical calculations sh
that whenf is increased the system enters this region, bif
cations appear, as in the usual route to chaos. For l
enoughf, chaos will evolve.

In Fig. 3 we see bifurcations atf 5500. Chaos evolves a
f .506, as we see in Fig. 4.

When more modes are added to the system, the beha
changes. The projection of, say, the 3-mode system in
~four-dimensional! phase space of two modes yields, in ge

FIG. 1. The system approaches the fixed point forf 550; the position of the
fixed point is indicated.

FIG. 2. The system approaches a limit cycle forf 5100, which is below the
critical value.
e

ad

s
-
.

ace

e
se
,

w
-
ge
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e

-

eral, trajectories which are very different from the origin
ones. Yet we argue that the main conclusion does
change. Indeed, if we examine the original set of equati
~10! and ~11!, we note that the transformation

ad→aad , a2d→aa2d , f→a f , l→
1

a
l, ~65!

which is a generalization of~7!, leaves the equations invar
ant. We could then deduce thatf c}1/l. From dimensional
considerations,f should be proportional tog2,D2. It is seen
that for the one-dimensional case, the leading behavio
f c}g2, while for the high-Q casef c}D2d

2 .
All our calculations were in fact needed just to illustra

that there is only one transition from stability to instabili
~i.e., no unstable windows!, to validate the assumption tha
the largest constant with frequency dimensions is not ab
from the expression forf c , and to calculatex0 . When we
add new modes, new constants are added to the sys
From ~54!, we find that for allj D j}c/R, so these constant
do not cause a problem. The same is true for the o
dimensional case as for the newl’s if they scale in some
way, e.g., if

lk,l ;m5 f ~T,R,...!hS l

k
,
m

k D ku, ~66!

where f (T,R,...) is anyfunction of all physical parameter
but the wavelength,h( l /k,m/k) are constants, andu is an
exponent, then the symmetry still holds, and then given t
the general picture remains the same, all that we nee
change is the value ofx0 . This necessary modification ofx0 ,
plus the shrinking of basin of attraction, which effective

FIG. 3. Forf 5500. One of the limit cycles which bifurcates towards chao

FIG. 4. For f 5507, the system is chaotic.
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lowers x0 , suggests that this part of our calculations is n
accurate. Nevertheless, the dependence of the critical i
power on all physical parameters remains the same even
the full Hamiltonian~2!. There are values ofu,h( l /k,m/k)
for which other predictions, such as the distribution of t
chaotic regions of the 2-mode system, would not be dram
cally changed as well. More extensive investigation of t
system is therefore highly desirable.
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