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Small-angle multiple scattering of circularly polarized waves in disordered systems composed of
large (larger than the light wavelengtispherical particles is discussed. The equation for

Stokes’s fourth paramet&f — the difference between the intensities of the left- and right-hand
polarized light — is shown to have the form similar to that of the scalar transport equation

for intensity |, the only difference being the presence of an additional “non-small-angle” term
responsible for depolarization. In the case of small-angle scattering, depolarizing collisions

are relatively rare and, in contrast to the scalar case, the problem contains an additional spatial
scale, namely the depolarization depth. The polarization degree and helicity of the scattered

light are calculated for the case of purely elastic scattering and in the presence of absorption in the
medium. For strong absorption, depolarization is shown to follow the transition to the
asymptotic regime of wave propagation. The features appearing in sinongBorr) single

scattering are also discussed. 1®99 American Institute of Physid$§1063-776(199)00103-1

1. INTRODUCTION scattering, which appear beyond the Born approximation for
single scattering by an isolated inhomogeneity.

In recent times, a lot of attention has been focused on It follows from our results that, alongside measurements
polarization properties of light multiply scattered in a me-of the angular distribution of light, the polarization degree
dium with large-scale inhomogeneiti&s. This interest is  allows one to determine further characteristic parameters of a
stimulated, in particular, by various applications to the diffu-medium and can be employed in optical studies of inhomo-
sion spectroscopy of scattering medguspensions, colloid geneous media.
solutions, etd>® and diagnostics of biological tissué.

Experiments* and computer simulatiofsletected a number > GENERAL RELATIONS
of new features in propagation of polarized light through . ) ) i o
disordered media. The theoretical analysis of some aspects of L€t @ wide beam of circularly polarized light be incident

this problem, however, has remained incomplete. As wa&long t.he normal to a.layer of a medium compo.sed.of large
noted in our earlier publicatichthere is no theory of light (of radiusa>\) spherical scatterers. The refraction index

depolarization in small-angle multiple scattering. of an isolated scqtterer is assumed to be close to u_hity (
This paper considers multiple scattering of circularly po-_ 1|<1)1’3 an_d single s_cattermg occurs predommgntly

larized waves with a view to extending our earlier stud§ foryvard. Owing to thg azimuthal sym,metry of the configu-

polarization effects in propagation of unpolarized light. We ation, 'the four equations fqr Stokes's parameters of sc;at-

assume that the medium consists of large-séalger than tered Ilghlt3 are decoupled into two independent equation

the light wavelengthspherical particles. The Stokes param- systems™™:

eters of scattered light are calculated for both purely elasti 9 (z,1)

scattering and in the presence of absorption in the mediuri.ﬂﬁ*”oatot] ( Q(z M))

The difference between the intensities of the left-hand an ’

right-hand polarized light, or Stokes’s fourth paramaters ) a, b, cosp

shown to be governed by an equation similar to the scalar ”OJ dn b,cosB’ a,cosBcosB’ —a sinﬁsinﬁ’)

transport equation for intensity;, but taking into account ! ! 2

both conventional and “depolarizing” scattering events. We (z,n")

have found that, in small-angle scattering, the depolarization X Q(z,u"))’ (1)
length |4, is larger than the transport length of elastic

scattering. Therefore, in the presence of strong absorption ¢ U(z,un)

(1.<ly, wherel, is the absorption lengthwhen the distri- | # 3z " 070 { vz, 41)

bution of multiply scattered light remains highly anisotropic ) ]

at all penetration depths'®*the polarization is lost at very o f iy apcospcosp’ —assinBsing’  —b, COSB')
large depthg, where an asymptotic regime of light propaga- ~ ° b, cosg a,

tion is established-'! Thus, unlike the scalar case, the prob- ,

lem contains another characteristic length, namely, the depo- x ( U(z,n') @)
larization depth. We also discuss features of strong Viz,u'))’
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whereng is the number of scatterers per unit voluneg,, It follows from the latter equation and boundary condition
=0+ g, is the total cross section of light attenuatienand  (3) that Stokes’s third parametdd is identically zero,
o, are the scattering and absorption cross sections, resped=0, therefore equation syste(@) is reduced to a single

tively, equation:
1 2 2 * J ’ A4
a1=§(|AH| +AL]%), a,=ReAAT , Ma"’noo’tot V(z,u)=ng | dn’[A (n-n")|

1 X(n-n")V(iz,u'). (6)
b1:§(|AH|2_|AJ_|2)a b,=ImAAT,

According to Eq.(5), the differential scattering cross
A and A, are the single scattering amplitudes for wavessections in the equations for the intensity and Stokes’s fourth
polarized in the scattering plane and normally to this planeparameter in the range of small angles are identical for terms
2 N . .
2(1— u?)(1—cod ) of orders up toy“ (a;~a,). Therefore, an equation derived

cosB=1— , from Eq. (6) after the conventional small-angle expansion
1—-cos ¢ (i.e., when only terms of order af’ and ¢'? are retained)
e 2T (12— ' 1 s cos¢)sm¢ ¥(\;I:| IEZ:dentlcal to the small-angle scalar transport equation
1-cos ¢ Our analysis has demonstrated that this approximation is
cosé= ' + (1= pd) (1= ) cos, grzcéequate. If we assume thdt=1.,, the polarization de-

u=cosf, u'=cosh’, yP=p—0¢'. p= WZF 0 )
Quantities co®’ and sin@’ are obtained from co8
and sinB by replacingu and ¢ with u’ and ¢’. The unit
vectors n’'={sinf#'cose’, siné'sing’, cosd’} and n
={sinfcosep, sindsing, cosd} define the directions of

may be larger than unity, which is absurd.
In order to avoid this error, one should take account of
the difference betweevi andl ..,. Let us write Eq(6) in the

photon propagation before and after scattering. form
The boundary condition for Eq¢l) and(2) for the unit d

flux density of incident light has the form {M P +nofftot] V(z,p)= noj dn’a;(n-n")V(z,u')

I 1 N

n-n
Q ol , —nofd ’ “e‘( — IV u).
U ol Y S ()
1 ®

=0u>0 . . . .
2mom= Equation(8) is identical to the scalar transport equation for

wheren, is the vector of the interior normal to the medium intensity of light in the presence of two types of scattering in

surface. a medium, namely, the conventional scattering with the dif-
Within the small-angle approximation, a solution of EQ. fgrential cross section

(1) was studied in detail previousfyln this work we focus

our attention on the second pair of equatid®s As in our do
earlier study’ it seems interesting to analyze separately the dn
cases of single scattering in the Born approximatiain
—1|<\) and in the approximation of strongnon-Born
scattering &/n—1|>\). In both these cases, functioas dgdep

andb; (i=1,2) are known and given in monograpfig? an |AL(n n)[*(1-n-n’)? ©

1 |2 2
8= |AL(n-0) A 1+ (n-n')?]

and the “depolarizing” scattering with the cross section

The cross section given by E(P) is proportional to that of
transformation between the left-hand and right-hand polar-

3. BORN SCATTERERS —1|<n . : . ) .
(aln=1l=<r) ized light. One can easily check out this statement using the

In the Born approximation, the scattering amplitudesdefinitionsi =1, +1_andV=1,—1_, wherel . are the in-
Ay(cosy) andA, (cosy) are related by the equatibit? tensities of left- and right-hand polarized light, and deriving
equations foll . by combining the equations férandV. In
Aj(cosy)=A_(cosy)cosy. (4 the equations fot .. the scattering differential cross section
Therefore, the following formulas apply & andb;: is do—(1/2)dogep, and that of transformation between the
1+ cod left- and right-hand polarized light is (1/@¥ yep.
a1=|AL|2—7, a,|A, |2cosy, The form factor|A, |? for weakly scattering spheres
2 (aln—1|<\) averaged over the angular scaley>\/a
2cos°'y— 1 drops in the range of small angles following the power'faw
by=|A,| —% — b=0. (5 A, 2 1/9%. (10)
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A 22/0 3.1. Weakly absorbing medium

L

10! Let us analyze transmission through a layer of a weakly
absorbing mediunl,<l,=(ngo,) "*]. In this case, the

0 multiple scattering angle is small as long as the layer thick-
10 ness is limited by the conditioh<l,,.
Treating the last term on the right-hand side of EB).as

107 an inhomogeneous term, let us rewrite E).in the integral
form

107 . , - ~

o 40 80 1200 160y V(Z,p) = scal Z, 1)

FIG. 1. Form factofA, |2 for transparent scatterers. The solid curve shows _ Zd g ’E; o ,
calculations with the Mie formulasn-1=0.01, a=10\/27), the dashed Mo | dz [ dn (z=2'|n,n")
line is the approximation given by E¢l1) (y,=0.1).

,dogedn’-n’) -
<[ an —dej - Yz, (15)
n

Therefore one can descritha, | by the model functiot?

where
2 ~
9% V(z,u) =expingoaz)V(z, 1),

2__
|A| (cosy)|?= T 2(1—cosy 2" (11

Tsca(ZiM):eanogaz)lsca(zvﬂv)'
whereo=(2m)3%a%n—1|%/A? (Ref. 13 andy,=\/27a are = " ,
the cross section and characteristic angle of a single scatter- §(z|n,n ) faxp(noaaz)G(zln,n ) _
ing event, respectivel}). Direct comparison(Fig. 1) clearly  !scaiS the solution of the scalar transport equatiee., Eq.
shows that functior(11) adequately describes the behavior (8) at o4ey=0) for a normally incident light beam, ar@ is

of the form factor calculated by Mie formufdsover the the Green’s function of the same equation.

entire range of scattering ang|es_ As follows from Eq(15), in CalCUlating Stokes’s fourth
By substituting expressiofi.1) in Eq. (9), we obtain the ~ParameteV, one must above all know the intenslty, and
depolarization cross section the Green’s function of the scalar transport equation. One
cannot, however, calculate these quantities in the general
dogep 0'7(2)(1—0083/)2 case even in the small-angle approximation, so we have to
dn  2a] yé+2(1—c05y)]2' (12 use results that apply only under certain conditions.

As concerns small-angle scattering in a relatively thin
In the most interesting case of multiple scattering, the scatlayer of a weakly absorbing medium. €I,<l,), we can
tering angled is larger than the characteristic angle of singleneglect photon path-length fluctuations due to multiple scat-
scattering,0> vy,. Under these conditions, the depolarizationtering and use the standard version of the small-angle
cross section is independent of the angular variables: approximatior?** In this approximation, the intensitye.,

and Green’s functiot of the scalar transport equation are

14,17

2
dogep 00 Oy (13 well known:

dn 8w 8wIn(2/y,)’

- 1 (=
where o= oy5In(2/y,) is the transport cross section of lscal2.0)= 5 fo wdwdo(wb)

elastic scattering.As a result, we have for the mean free

path 4, with respect to a depolarizing collision xXexd —noo(1-x(w))z], (16)
o 4 G(zln,n")~G(z|6-0)= ! fx dwJ
Idep:(no dUdep) :Itr|n7, (14 ' 27 Jo wdwJo
0

X(w|0— 0 |)exp|—ngo[1— z},
wherel = (ngoy,) ! is the transport mean free path. Accord- (o Dexp~nool1=x(w)12}

ing to Eqs.(12)—(14), the depolarization length due to small- 17
angle scattering is inversely proportional to the fourth powemvhere @ is the component of vectar parallel to the inter-
of the single-scattering angldadep~ll<y4> (I=(ngo) "t is  face,Jy(x) is the zero-order Bessel functidhand

the mean free pajhand is greater than the transport mean 2 [

free pathl dep>ltr~ll<72>. This means that depolarizing col- x(w)=— f 0d6 Jo(wB)ay(0)

lisions are relatively rare, and the second term on the right- g Jo

hand side of Eq(8) can be treated as a small correction, in 1 1

comparison with the other terms in this equation. This cir- ~1-— E(wyo)zln—. (18
cumstance allows one to solve E®) by an iterative tech- @Yo

nique, treating the solution of the conventional scalar trans!n the limiting cases of relatively small and large angles, the
port equation as an initial approximation. intensity T ¢c5 in Eq. (16) is>1°
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TeealZ,0) transformation of the circularly polarized component to un-
polarized light due to multiple scattering. The relative con-
L IN(2/0) 0< o tribution of the linearly polarized component, which is gen-
wzIn(z/)’ z erated in scattering of the depolarized comporieRy,,, is
= negligible. At 9> 6, the angular distribution is determined
z 1+ 8z In — 0>0,, by light waves that undergo multiple scattering through
w0 In(2/y,) 62, In(2ly,)  Yo]' small (<#6,) angles and a single deviation through a large

(19 angle (> 6,).° In the angular range in question, the drop in
the helicity in the first order in the small ratig,/6<1,
where 6,=y,(z/)In(z/l) is the characteristic scattering S~1— ¢%/8, as in the case of single scattering, is offset by
angle in a layer of thickness>|. the linearly polarized component generated by depolarized
By substituting expressiord3) and (16)—-(18) into Eq.  radiation,P ,~ — 6%/2. The difference betweeR and unity
(15 and performing one iteration in Eq15), we obtain at §>4, is determined by corrections of higher orders in
Stokes's fourth parametéf: 6,16 and is proportional ta@?6?.

\7( 2,0) stca(Zv 0)—

+ ... (20
4l dep . ) . .
3.2. Medium with high absorption

The applicability of Eq(20) is governed by the condition of
small-angle scatteringf<1).

Expression(7) for the polarization degree can be conve-
niently transformed to

Now consider propagation of circularly polarized light in
a medium with high absorptionl {<I), when the small-
angle approximation holds at all penetration depths.The
evolution of the angular distribution with the increaseziim
P=\S*+P5, (21)  such a medium proceeds as folloWs.

— At relatively small depthslz<l,) the effect of ab-
whereS=V/T is the photon helicitf’**andP,,=Q/I is the  sorption on the intensity distribution is negligible, and the
polarization degree of the initially unpolarized light beam-intensity is described by Eq(19). With increasingz (z
Our analysis indicates that, in calculatiRgone can neglect >1,) owing to the absorption of photons scattered through
polarization corrections to the intensity and $etls,. In |arge angles, the “Rutherford” law for the intensity
this approximationpP ,, is given by the expression decrease = 6~* [Eq. (19)], is replaced in the region

62 6> \1,/z by a faster function'*
S aIn(z/l)’ b= 6z,
Pun= (22 Teeal2,0) = 20,E(2) (1+E<02)Z+ . (25)
R 82 0 T moain(2lyg) 6° o ’
#lIn(2lyo) Yo whereE(z) = exp@l)E(2) and{#?), are the “reduced” flux

Now, by substituting(19), (20), and (22) into Eq. (21), we ~ and mean square of multiple scattering angle at range-
find that in the lowest order in the small parameltefl 4, spectively.

<1, the polarization degree around the peak:@,) of the ~  Prior to the transition to the asymptotic propagation re-
angular distribution is constant withand determined by the gime (z<lq, wherel is the length over which the “re-
expression duced” flux decayy the dependendg(z) can be neglected,
4 andE(z)~1. Quantity( 6%), in the region ofz under consid-
—1— z eration is given b
P=1- ginal 23) given by
whereas in the wingsée 6,) of the distribution <02>z:~27T fx03d 0T of(2,0)~ 2zIn(Vl4/2/6,;)
(6 v0) E(z) Jo ly  In(2/y0)
1 p242 Yo (26)
P=1-6%6; iz - (24

) o At depthsz>1, the “Rutherford” region in the angular

It follows from Egs. (23) and (24) that, in transmission istribution vanishes and the intensity is
through a relatively thin layerz<l,), the depolarization is
low and the polarization degree is close to unigPE1 . z
— P<1). The depolarization is the greatest at relatively large scal Z: 9)”9)('{ - E)
(6>6,) scattering angles:SP(6< 6,)/ SP(6> 6,) = 62/ 6
<1. 2 6>

The process of light depolarization can be described (67 1- (6
qualitatively as follows. At a small deptle€l), where the * *
dominant process is single scattering, the polarization degree 2 5
is unity 1* With increasingz (z>1), P drops. In the region of A0 Yo (1+5<0 >°°> o> \(67)..,
small anglesg< 6, the drop inP is fully determined by the 70 ,0%IN(2/y,) 2 )’

+ ) 0<\/<02>w,
(27
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where(6?).,=2l,/14 is the mean square multiple scattering and substitute Eq(31) into (8). As a result, we obtain for
angle in the asymptotic regime. According to earliery(z, u) an equation which, unlike Eq8), can be treated in

calculations) the lengthl 4 is given by the small-angle approximatiofwhereas in Eq(8) this can-
not be done owing to the last term on the right-hand side,
4= \/Zlaltrln(ZIyO)/In\/Zla/lyé. (28)  which is constant in angle Using the conventional small-
- - angle expansion in the equation fofz,u), i.e., setting 1
It follows from the equation relatiny to I sy [Eq.(15]and  — ,~ ¢2/2 and retaining nonvanishing terms of the lowest

from the above statements concernihg, that Stokes's orders®! we obtain
fourth parameter in a highly absorbing medium at a depth
z<lq at relatively small angleg< \/I,/z should be the same
as in a weakly absorbing mediun,&l,,), and therefore it
should be described by Eq®3) and (24).

The effect of absorption oV begins to show up at xf d0'a(|6—0'))(7(2,6')—~7(2,6))—n,
z>1, in the region of angles> \,/z [Eq. (25)]. At largerz
the absorption radically changes the angular dependence of
Stokes's fourth parameté.

At large scattering anglesé¢ \/,/z for z<l4 and
0> \/(6?)., for z>14), the correction toV due to the last X
term on the right-hand side of E¢B) drops following the
law 6Veoc1/6? [compare with Eq(20)]. This follows directly
from Eq. (8).

By transferringngoV from the left to right-hand side

and estimating separately the contributions of the elastidhe boundary condition for Eq32) has the form
scattering integrdland the term responsible for depolariza-

J 6?) ~
E+noaa7 v(z,0)=nq

Ngo z
xf d0’a1(|0—0’|)04—77depf dZEV(2)
0

exp{ B noaa(zzz’)e’z) fexp< B nooa(zzz’wz”' (32)

tion at relatively large angles, we obtain f6¥(z, u) 7(2=0,0)=5(0)/2m0
\V Oa'dep z ’ . . . .
oV(z,p)~— Amp OdZ Now, using the power expansion in terms of reciprocal
6, which was developed earlier for the intendity,, *'°we
% exp( B Nooa(Z—2 )(1_M))~E(V)(z’) can calculate an asymptotic expansion ¢, §) (see Appen-
M dix A).
In the approximation of the lowest order in the small
_ _ Tdep EV)(2), (200 Parametero g/ oy <1, Stokes’s fourth parameter is deter-
2770'a02 mined in the “wings” of the angular distribution by the
expression
where
- - V(z,0)~EV(2)
EV(z)= f dnV(z,u). (30) _
Odep < 92>Z I'scal Z, 0)
. . . . . X| = 1+ —+ |+ =
Consequently, like the intensity in our previous 210,62 0 E(z)
calculations)*®, §V at large# can be expressed in terms of )
the integral ofV over angles, i.e., in terms of the spatial —EW)(z)| - Odep <1+ (0 >z+”_
“density” of EM). 270 ,0° 0
The correctionsV is the component oV that most 5
lowl i 40gep (69,
slowly decreases witld. 14524, (33
Separating out the contribution given by Eg9) from o, 6° 0

V(z,1), one can develop an iterative procedure for calculat-
ing V(z,u) at relatively large angleg. With this end in  where Ty,(z,6) is the intensity (25). Using the earlier

view, let us expres¥ in the form (u>0) result$'® for
~ NoO dep fz 2 2
V(z,p)=— dz 4 (6%
(Z.p) 47 Jo z Pur~— ?( —4 62 : ) (34
Nooa(z—2")(1—pu)
xXexp — “w we can derive from Eqg25) and (33) the polarization de-

5 5 gree of circularly polarized light in the region of relatively
XEM(z')+v(z,1) (31) large scattering angles:
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\/( ot )(E(V)(Z))Z 94< <02>Z) Within the same accuracy as in E(8), function V(6)
P~ 1-8

-+ 6%(6%),|| —= 72 around the peak of the angular distributiof<(\(#6)..) is
E(2) (35 determined by the following expressi¢aee Eqs(27) and

(B5)]:
The first summand under the radical sign in E85) de-
scribes the drop in the helicity of circularly polarized light, V(0)=Teeal 0)+ SV (0)~ 2 + T dep
the second one is due to the linear polarization generated in T(0)ee T 0)e
scattering of depolarized light. At relatively small depths, it foliows from Eq.(39) that at6< \{6?).. the contributions
whenE")(2)~E(2)~1, we derive from Eq(35) of 3V(6) to the helicity S and “density” E)(z) can be
1 neglected in the first approximation 2l ;>1. As a result,
P~1- 592< %) (36 the polarization degree in this angular region is given by the
expression

+_
4

In2. (39

The comparison between EJ86) and (24) shows that ab- >
sorption leads to slowing down of the polarization degree . \/ex;{— 2( |ap) } (InZ |a7f2>92)

decay. The cause is the drop in the number of the “most [ 2 (40)

2 (672

depolarized” photons scattered through relatively large (69

angles. In deriving Eg. (400 we have taken into account the
Now let us analyze the polarization degree in therelatior’*®

asymptotic £>1,) regime, when the effect of absorption on

lg\lge

2 n2
light propagation is significant throughout the entire range of Pu=— In_2 l""y_oa, o< /< 6%)... (41)
scattering angles. In this case, the solution of @Byshould 2 (672
have the forrf? A formula similar to Eq.(40) can be obtained for the
Y/(Z'M):V(M)exp(_gng), (37) “wings” of the angular distribution. With this end in view,
we should use the formulad®
where
Y V) V) 0| 46 5
V()= (=1 (1), Pun=—7]1- 2| 0> (6% (42)

and ) (w) ande{" are the first eigenfunction and the first ~
eigenvalue of the spectral problem corresponding to(8g.  and the expression fdt()(z) at large penetration depths:
The angular functioV(x) and damping constant)” N B 11,
can be easily calculated by the perturbation theory on the E(V)(Z)NE(Z)GXF{— |—<|—p>2 .
basis of our earlier resuftsoncerning the intensity at large dlide
depths(Appendix B. In the approximation of the first order The accuracy of this result is the same as that of (EQ).

(43

in small parameter g,/ 0,<1, we obtainsee Eq(B3)] Substituting Eqs(42) and (43) into expressior(35) for
the polarization degree of circularly polarized light in the
egw:i + ‘Tdep)_ (39) “wings” of the angular distribution, we finally obtain in the
lq T4 asymptotic regimez>1,)

Vi)

+ % —260%6%).,. (44)

P~ \/(1—%4+02(02>w)exp{—%<lld—;)z

It follows from Egs.(40) and (44) that the length of polar- in the “wings” of the angular distribution, the depolarization

ization decay of the circular component is partially compensated by gen-
eration of linearly polarized light, and the polarization degree
leire=dl dep/l a (45) is determined by the following expression:

is much larger than the depth, at which a transition to the
asymptotic regime occurs. 4% } 2, 2
According to Eqs(40) and(44), around the angular dis- P=1 leire 2 %07 @7
tribution peak forz~l,., the process transforming the cir-
cularly polarized component to unpolarized light is domi-
nant. The polarization degree drops to As z increases £>1,), the circularly polarized component

vanishes, and the polarization degree coincides with that for
P~1—2/l . (46)  an initially unpolarized beanRP~P,,.
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4, STRONG SCATTERERS (a|n—1|>\) Ligptr
Consider multiple scattering of circularly polarized light 8t
in a medium containing transparerd Ifn n<\) spheres of
large radius &(n—1)>\). Such a configuration can be eas- 6f
ily realized in an experimerit}#3-2° o
In the region of angles larger than the diffraction angle
(y>\/a), the differential cross sectiong;(cosy) and 2t
b;(cosy) can be expressed as expansions in terms of the 0 o
number of ray collisions with a scatterer surfate 2 4 6 8 10 12 14
N 3 2xan/A
a,(cosy)= > 21 [|Aﬁj)(COS'y)|2+ |A(lj>(COS'y)|2], (48 FIG. 2. Curve ofl 4/l as a function of scatterer radidsitex particles in
=

water,n—1=0.2, \ is the wavelength of light in vacuum

1o _
by(cosy) =73 2, [1A[(cosy)[*~|A{(cosy)[?],

3 ) ) is the transport cross section in the case of strong scatt%ring.
ax(cosy)= ReZl AV (cosy)A{* (cosy) The mean free path with respect to a depolarizing collision,
= as in the case of the Born approximatidty. (14)], is greater
13 i " , than the transport mean free patlygy/l,~In[1/(n— 1)3]
=a,(cosy)— > 12'1 |Ah (cosy)—A(cosy)|?, >1.

As an illustration, Fig. 2 plots calculations of the ratio
(49 l4ep/l @s @ function of the scatterer radius based on the exact

3 Mie formulas®® These calculations were performed for par-
b,(cosy)=Im 2 Aﬁ”(cos;z)A(”*(cosw. (50) ticles of latex in water. This is a disordered medium exten-
=1 | + sively used in experiments on multiple light scatterfrf§.

As concerns the cross sectibg defined by Eq(50), it
is knowrf that forj = 2,3 the following equality holds in the
absence of absorption:

These expansion@8)—(50) are derived under the assump-

tion that interference between rays that have undergone di

ferent numbers of reflections can be neglected.
AmplitudesAﬁfi characterize rays deviating as a result ImAZIARS 0 55

of specular reflectionj=1), those passing through a scat- | L '

terer (=2), and those which are additionally reflected

within a scattererj(=3). At scattering angles<\n—1,the ~ whereas the contribution of IMNA(M* | which corre-

dominant terms iray, a,, andb, are the terms with =2, gponds to specularly reflected rdy€’ can be expressed as
whereas aty=2+2(n—1) these terms are identically zero.

Terms with j=1, 3 are important when y> vy, a2
=24y2(n—1). The expressions foa; andb, in these re- Im A l)A(f)*:ZSin( §—95.), (56)

gions of angles are given in Ref. 9. The depolarization cross
section[compare with Eq(9)] is determined in the general

case by the formula where ), are phase shifts of light waves with polarization
d 1 vectors parallel and perpendicular to the incidence plane in
gde": §|AH_AL|2 (51)  the Fresnel reflection from a particle surface. In the absence
n

of absorption, the phase differenég— g is zero if the op-

and, with due account of Eqe8)—(50), can be expressed as tical density of scatterers is highenX® 1) than that of am-
bient medium. Therefore the cross sectlmnalso turns to

dogep, o(n—1)%|1, y<in-1, zero in this casep,=0.
dn 167 2, y> h—1 (52 Let us consider propagation of light through a disordered

medium containing transparent scatterers immersed in a
The latter case in Eq52) applies to the angleg=<. Using  highly absorbing materiall {<I,). Suppose thah>1. In
Eq. (52), we calculate the total depolarization cross sectiorthese conditions, Stokes’s third parameter, as in the case of
O gep: the Born approximation, is identically zerd=0. Parameter
o V is governed by Eq(8) with a depolarization cross section
Udep:—“, (53  given by Eq.(52). The routine for solving Eq(8) remains
3In[1A(n—-1)] the samesee the previous sectipriThe details of the mul-
where tiple scattering process, however, are more complicated.
In the range of angles where absorption does not affect
the shape of the angular distributiod<¢ \1,/z)° the first

3 1
— 12 |0 ——
7r=70(n=1)%n (54) iteration in Eq.(15) yields

2 n—1
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~ ~ Z ~
V(z,,u)~lsca(z,,u)—n0f dz’f dn’G(z—2'|n,n")
0

XJ’ dn”

At z<l/(n—1)In[1/(n—1)] the characteristic angle of
multiple scattering,

6,=(z/1)(n—1)?In(z/1),

dogedn’-n")

" IscalZ", ") (57)
dn

(58)

is less than the anglg,, of total internal reflections, <y,
=2./2(n—1) .2’ Taking into account the characteristic range
of angles in which integration ovar’ andn” is performed
being of order off, and using Eq(52), we obtain the fol-

lowing formula forV:

- Teealz,0)—2(n—1)%/1671, O0<yq,
V(z,0)=1 .
lecalZ,0)—2(n—1)%87l,  yua<6<il,lz
(59
The functionl ¢,(z, 6) in Eq. (59 is given by
Tscal 2, 0)
( |
2mz(n—1)ZIn(Z) "’ 0< 0z,
2z(n—1) L 8z(n—1)2I 62
T (YA Moz 0
z(n—1)? 4z(n—1)2 62 \/E
| o {“ @A o3 Y=<\
(60)

In the casez>I/(n—1)In[1/(n—1)], we have the ex-
pression for6,°
z 1
I'n-1)

0,= \/IE(n—l)zln

In this case, the characteristic range of angleg~6,,

(61)

which makes the main contribution to the integrals with re-

spect ton’ andn” in Eq. (57), extends beyond the critical

Gorodnichev et al.

In calculating the polarization degré2l), let us use our
earlier resultdfor the polarization degree of an initially un-
polarized beamP,,. At relatively small depthsz<I/(n
—1)In[1/(n—1)]

( 02
6<6,,
8In(z/1)’ z
6? 8z(n—1)2 62
T i e e T (A A
6? . 4z(n—1)2I 62 \/E
2T M3 Ye=f0<N7

' (64)

At larger penetration deptte(z>1/(n—1)In[1/(n—1)]) the
polarization degre®,,, around the angular distribution peak
(#< 6,) become$

62

Pun==72 I (z/)/(n—1)]"

(65

In the “wings” (6> 6,) P, is given by the last line of Eqg.
(64).

Given these results, we find that a change in the light
polarization in the region of very small angleg<4,) is
controlled, as in the case of the Born approximation, by the
depolarization of the circularly polarized componérd., by
the decay of helicity For 6< 6, we have

63 |
= ) - DinU(n—1)]"

B 6 |
oM @i=-1 - DinUin—1]

(66)

In the approximation of the lowest order in small parameter
6,16, the angular dependence of Stokes's parameters in the
“wings” ( >6,) of the angular distribution of scattered
light coincides with the law of single scatterihtjBy retain-

angley,,. Therefore we can use instead of the cross sectiofhg terms of higher orders in the reciprocal scattering angle

dogep/dn its asymptotic expression for large % y.,) angles
[see Eq(52)]. As a result, we obtain

- ~ z(n—1)?

V(z,0)=1g(2,0)— BTy (62
where
Tocal 2,60)

|

mz(n—1)2n[(z/1)/(n—1)]" 66
) zZ(n—1)2]  4z(n—1)? 6? \/E

el g Mo n3) =< \N7

(63

in expansions of Stokes’s parameters, we find that the polar-
ization degree in the range of anglés 6, drops following
the law

z(n—1) , 0
_ 0<Ver,
1 o0 0 Inn—l’ Yer
P~ 6
L Z(n—1)202| (92 \/E ( 7)
ol n(n_l)g, Ver< 0< ;

The effect of absorption oX at relatively large scatter-
ing angles,6>+/l,/z, can be conveniently analyzed using
the same method as in the case of Born scatterers. Let us

expressV in the form similar to Eq(31):
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V(z,p) n"jzd' p(
Z, = - — Z ex
K ©Jo

d n-n’. -
XJ' dn,%,)V(Z,,ILL,)'FU(Z,M).
n

_ Nooal(z=2)(1- p)
M

(68)

Substituting expressiof68) in Eq. (8) and taking into ac-
count the fact that in the “wings” §> I ,/z> vy,,) [see also
Eq. (52)]

d n-n) .
f dn’L,) V(Z,

o(n—1)?
dn - 8w

w') EY(2), (69
we consider the resulting equation fo¢z,«) in the small-
angle approximatiof. As a result, we obtain for the function
v(z,6) an equation identical to E432) but with the substi-
tution yo=n—1 in its coefficients. Therefore Eq&33) and
(35) for V(z,6) andP(z, 6) still hold in the approximation of
the lowest order in small parametetn—1)%/o,<1.

At small penetration depth<<ly, where in the case of

strong scatterers
-1
(n— 1)2 la
4= n\/—— | ,
21| l(n—1)*%
we haveE)(z)~E(z)~1 and the polarization degree drops

with z following Eg. (36), where the mean square multiple
scattering anglé #%), must be set to

(70

(%)= 27 (n—1)?

')’cr\/m |
In 2 - Dinn-D7’
X (71
NE |
== - Dnn-D]

The characteristic angle, in Eq. (71) is given by Eqs(58)
and(61).

At large penetration depthg¥14) and if the condition
I <I,<ly holds, the width of the radiation angular distribu-
tion is always larger thany,,. Therefore, qualitatively, the
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lar to the scalar transport equation for the light intensity. The
only difference is the presence of an additional term respon-
sible for depolarization.

The presence of the depolarization term in the equation
for V, on the one hand, results in the faster decay of param-
eterV than that of the intensity, and on the other, it modifies
the shape ofV as a function of scattering angle. Since
Stokes’s parametér decays withz faster than the intensity,
circularly polarized light loses its polarization. In the case of
small-angle light scattering in disordered media with large
particles (larger than the light wavelengththe additional
term is small, so the light depolarization should be very
slow. Under conditions of high absorption, when multiple
scattering at alk occurs through small angles, the depolar-
ization occurs at anomalously large penetration depths (
~lreS1aly) When the asymptotic regime of propagation is
already set.

All said is in agreement with the recent discovery of the
effect of circular polarization “conservation” in diffusion of
light in media with large-scale inhomogeneitfe$ A degree
of circular polarization can persist even after isotropization
of the intensity angular distribution. The depolarization rate
depends only on how smooth are the trajectories of wave
propagation, and in the case of scattering by large-scale in-
homogeneities it is proportional to the fourth power of the
single scattering angl@inlike the second power of the angle
in the isotropization rate lf). Therefore, measurements of
the depolarization of circularly polarized light can yield ad-
ditional information on the medium, different from that de-
rived from measurements of an angular distribution of light
intensity.

In accordance with the results of this paper, the polariza-
tion degree of multiply scattered light is governed, on the
one hand, by depolarization of circularly polarized light, and
on the other, by the appearance of a linearly polarized com-
ponent generated in scattering of previously depolarized
light. In an single scattering, these two processes fully com-
pensate for one another, therefore the polarization degree
remains unity P=1). A drop inP can occur only as a result
of multiple scattering.

As long as the circularly polarized component persists
(z<lgro), the contribution of the linear component in the
region of small anglesd4< 6,) is small andP is fully deter-
mined by the drop in the polarization helicitgee Eqs(23),

evolution of polarization parameters of multiply scattered(46), and(66)]. In the “wings” of the angular distribution

light at these depths is not sensitive to the singularity in thd 6> 6,), the contribution of linearly polarized light is, on the
single scattering cross section &t= 1y, and remains the contrary, quite significant. In this range of angles the differ-
same as in the Born approximation. In particular, the polarence betweer and unity is due to the difference between

ization degree is still determined by Ed40) and(42). All
changes affect only the parametégEq. (70)] and{ 6?).,
=2l,/14, which contain additional contributions from rays
twice crossing the boundaries of an isolated scatterer.

5. CONCLUSIONS

Let us summarize the results of our work.

As was shown above, the propagation of circularly po-

the polarization degree of the initially unpolarized light,,,
and its value in the single scattering approximaticﬁ’rﬁf,?
= — 6?/2 [see Eqs(24), (36), (47), and(67)].

The circularly polarized component decays with(z
>lq), and the polarization degrde becomes identical to
P.n throughout the entire range of angles.

If light propagates through a medium with sufficiently
large particlesif—1>\/a), effects due to the “non-Born”
single scattering turn up. These effects are most significant at

larized light in a disordered medium can be reduced to amelatively small depths, where the angular distribution width

equation for Stokes's parametér which has the form simi-

is still within the critical angle of single scatterinigy.,
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=2+2(n—1)]. The angular scalg,, in this case affects the

Gorodnichev et al.

After substituting Eqs(A3) and (A4) in (A1) and equating

angular dependence of both intensity and polarization decoefficients of equal powers ab, we can calculate the in-

gree.

teresting parameters;. In particular, the coefficients,,,

The effects discussed in this paper may be interesting fofs+2, @ndc,. g of nonanalytic powers oé, which con-
optical research of structural inhomogeneities in multiplytribute to the power expansion of in terms of reciprocal

scattering media.

scattering angle, can be expressed as

This work was supported by the Russian Fund for Fun-

damental ReseardiGrant 96-02-17518

APPENDIX A: Appendix A

For the function

v(p,w)=2m7 f:dzexq— pz) f: 6d6Jo(w6)v(z,6)

one can easily derive from E32) the equation

v(p,w)

e 2p \-
ilﬂMUu—meK{w\A%SJEW%m,

(A1)

1
p+neo(l—x(w))— EnanAw

=1+

whereJo(x) andKy(x) are the Bessel and modified Bessel

functions of order zerd® and y(w) is determined by Eq.
(18),

19 Jd

w0’ o’

w

EW%m=J:wq—pa@Wu»

We are interested in values of functiotfx, §) at rela-

tively large angles. The “wings” of the angular dependence

v(z,6) are governed by the behavior of functiolip, ») at
small .%%In this region, the second line of E(L8) applies
to x(w), whereasKy(w+2p/o,) can be described by the
approximate formuf®

NINCINNIN:

The analysis shows that, in calculating functiofp, ) in

(A2)

22

“ g0 (a—4)

Oty

2 1n(2/,)

__ OuOdep E(V)(p)
oaln(2/v0) 3(p,w=0)(B-2)

OO0 dep E(V)( p)
Cgio=— = )
P2 52In(2ly,) v(p.0=0)(B—2)(4—a)(B+2)?

(A5)

c _ 040 dep
P2 52 1n(21y,)

y EV(p)

v(p,0=0)(B—2)(4—a)(a+B—2)?

Yo a—4 2p Bl2—1
T

Using the resulting equatiofA5), performing the inverse
Bessel transform in EqA4), and then taking the limit as
a—4 and B—2, we obtain the following expression for

v(p,6):

~ ZUIF ~ _0 1
U(p,9)~m v(p,w=0) 56""“
2
_ Tdepz ) | L (0_‘/n00'a
. EY(p) agln v 2p +

(A6)

This result is an expansion in powers obldnd o e/ o5 -
In the approximation of the lowest order, one can neglect

the region of smalw, it is convenient to express the loga- N Ed. (A6) terms containing the additional small parameter

rithms in Egs.(18) and (A2) in the form of the following
limits of power series:

(0y0)?
2(0;’)/_04) [1_((1)70)&74]1

2p 1 2p \#72
o e 572l [ Vi

for a—4 andB— 2, respectively. Then the value of function

Z(p,w) at smallo can be sought in the form of the follow-
ing power expansion i (Ref. 19:

x(w)~1—

(A3)

Z(p,w)=Z(p,w=0)(1+Czw2+caw“+c4w4

+CB+2(U'B+2+ Ca+B72wa+B72+ .- ) (A4)

0 gepl Ta. In this approximation, the equalitE")(p)
=7(p,w=0) also holdgthe contribution from the first term
on the right-hand side of E¢31) to the integral with respect
to directions is of ordetrgey/0,). As a result, we have for
v(z,6) the expression

EV(2).

v(z,0)~ lscalZ,0), (A7)

E(2)

whereTl o.(z,6) is determined by expansid@5).

To calculateV(z, 6), note that the first term on the right-
hand side of Eq(31) in the small-angle approximation for
6> \1,/z can be transformed to
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n z Nooa(z—2') 6%\ - >
_Ldepf dz'ex _ Nooa(2=27) 67 EV(z) %V)(M)”lﬂo(M)JFJ dZJ dn'J dn”
4 0 2 0
- noadeJE(V)(z){ L L2 dEV X exp(202)[G(2)n,n') = o ) o 1)
2 EW)
271-0 0 nOO-aE (Z) dz Xexq_ Z)]dO'de[)(n"n”) l// ( !/) (BS)
+ ... (A8) €o dn’ ol ).
The second term on the right-hand side of E&8) can be  Calculations by Eqs(B3) and (B5) can be performed using
transformed using the equalty our earlier resultsfor ¢4, o, andG obtained in the self-
consistent small-angle diffusion approximation, assuming
5 2 dEV)(2) that the angular dependence of the cross secligp,/dn is
(6%),=— : (A9)  isotropic. In this approximatich

neo, eV (z) dz

2
Substituting Eqs(A7) and(A8) into Eqg.(31), we obtain Eq. ol 6)= /Lzexp( _ 6; ) (B6)
(33. w{(6°)., Ca
Appendix B
ppenaix J d0'G(Z|0,0’)%—
Stokes’s fourth parameter in the asymptotic regime ( cosh(&oz)

>14) can be calculated in the following manner. 92
Neglecting backscatteringhis approach is justified un- ><exr< - <—artanh(soz)), (B7)

der conditions of high absorptioh,<I;<lgep, a solution of *

Eq. (6) [or (8)] that satisfies boundary conditid) can be ande, is determined by Eq€28) and(70). In particular, in

expanded in terms of eigenfunctiomé]v) of the spectral the intervall ;<z<ly, it follows from Eq.(B7) that

problem corresponding to E): 2

0o,z
J d0’G(z|0,0’)~ex;{ - ) l,<z<lq. (BS8)
Equation (B8) provides an explicit illustration of how the
angular distribution narrows in an absorbing medium.zAt
wheresgv) are the corresponding eigenvalues. At lazgthe  >1,, only photons propagating along lines directed at small
sum contains only the one term with the smallest dampingngles with respect to theaxis contribute to the intensity

Vi) =2 ¢V (p=1)y (wexg—eYz), (B

factor: due to an isotropic sourcéB8), and most of the angular
_ distribution is concentrated in the regiehs< 1 ,/z.
V(z,pw)= 9" (n=1) 9" (m)exp(—("2). (B2) After substituting Eqs(B6) and (B7) in (B5), we have

Egs.(38) and(39).

Under conditions of rare depolarizing collisions, when length The angular dependence Bz, ) in the asymptotic

'deg IS (tvf;e maX|mubm ch?ralcteréjst;)c ler'?gth' thet\)/al.uesz%? regime in the region of relatively large scattering anglés (
and ¢ "(w) can be calculated by the perturbation theory, . g2y s easier to calculate without using E@S) [or

assuming that the intensity is known in this spectral problerrtB4)], but directly from the expansion of E33) in recip-
and the last term of E(8) can be treated as a perturbation. rocal powers off

The formulas fore{") and ¢{"(u) in the first order of
the perturbation theory should have the f6fm
*)E-mail: gorod@theor.mephi.msk.su

do '{n_ n') DA formula similar to Eq(11) is widely used in describing elastic scattering

eM~g.+ | dn dn'de—w (1) olp) of fast electrons by aton$.
0 0 o\)Wol ), 2) . . .
dn The error due to the inaccuracy of approximate equat@® is of order
(B3)  valb<l.
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We examine the kinetics of atoms with their ground and excited states being degenerate in the
projection of angular momentum. The atoms are located in a standing wave with uniform
elliptical polarization. Using thg,=1/2— j.=1/2 transition as an example, we show that the
friction and diffusion of atoms strongly depend on the ellipticity of the field. For instance,

in the low saturation limit the frictional force contains, in addition to the ordinary Doppler friction
term, a term that can be interpreted as Sisyphean friction. Under certain conditions, the
contributions reflecting the degeneracy of the ground state are dominant, with the result that the
values of the friction and diffusion coefficientand hence the rate of kinetic procegses

may differ from the values predicted by the two-level atomic model by several orders of
magnitude. ©1999 American Institute of Physids$$1063-776(199)00203-4

1. INTRODUCTION bution function in phase spafeThe equation is of the
Fokker—Planck type and contains not only the average force

The kinetics of atoms in resonant light fields is beingbut also diffusion. The equivalence of the two approaches to
intensively studied in atomic physics. The achievements ircalculating the frictional force and diffusion in the general
the field of laser cooling and atom trapping have beercase of arbitrary angular momenta of the ground and excited
marked by the 1997 Nobel Prize in physiSteven Chu, states was demonstrated by Dalibard and Cohen-TanABudii
Claude Cohen-Tannoudji, and William C. Philllpghe ex- and Agarwal and Mglmer Furthermore, Dalibard and
perimental and theoretical progress in this area of research iDohen-Tannoudj? showed that the coefficient of frictiafas
the period from 1970 to 1989 is thoroughly described in thewell as the diffusion coefficientan be expressed in terms of
monographs in Refs. 1 and 2. Special issues of journals hawe two-time correlator of the force operator.
been devoted to the achievements after that perfotihe The third approacitalso equivalent to the first two ap-
current state of research is discussed in the Nobel Lectures pfoachesis based on the relationships between the moments
the laureate3.Here we will only mention the important pa- of the Wigner matrix density and the force and diffusién.
pers directly related to the topic of our paper. Despite the existence of a general formafi$hi*that

The first proposals to use resonant light pressure to trapnables ondgat least in principlg to study the kinetics of
and cool atoms in optical potential wéllstimulated the de- atoms with arbitrary level structure in a field of arbitrary
velopment of the theory of atomic motion in the field of configuration, the fundamental problem of the motion of an
resonant light in conditions of steady-state interaction. Hisatom with degenerate ground and excited states in the uni-
torically, the first approach was the semiclassical Ghe. formly polarized field of a standing wave has not been dis-
Within it the translational motion of an atom is described incussed before. This probably explains why researchers fo-
classical termgi.e., the atom is assumed to have a definitecused on effects of sub-Doppler coolifigjwhich emerge in
position and definite velocily while the dynamics of the fields with a polarization gradient. At the same time, the
internal degrees of freedom is described by an optical Blockanalytic form of the steady-state atomic density matrix in the
equation for the density matrix with allowance for radiative zeroth approximation in the recoil paramétet’ points very
damping. The force on the atom is calculated as the mathdefinitely to the existence of polarization features in the ki-
ematical expectation of the force operator, and the diffusiometics of atoms in a field with spatially uniform polarization.
coefficient is found from the two-time correlator of the force The study of such features is the goal of the present paper.
operator. For a two-level atom in the field of a standing  We examine the motion of atoms with resonant optical
wave, Gordon and Ashkinderived analytic expressions for transitions of the typgg=j—je=j+1 andjg=j —je=]’
the frictional force and the coefficients of spontaneous andherej’ is a half-integey, wherej, andj, are the total an-
induced diffusion at arbitrary intensity and detuning. gular momenta of the ground and excited atomic levels, in

The second approach to the kinetics of atoms in lasethe field of a monochromatic wave. We employ the semiclas-
fields is based on a full quantum description of the internakical approach to derive general expressions for the gradient
and translational degrees of freedom of an atom in terms diorce, the force of friction, and diffusion, which provide a
the density matrix in the Wigner representation. By using thesuitable basis for describing the kinetics of slow atoms. We
semiclassical expansion in powers of photon momentum théhen analyze these expressions in detail for atoms with the
initial transport equation can be reduced the kinetic stage optical transitionj,=1/2—j.—1/2 in the field of a uni-
of the evolution to a single equation for the Wigner distri- formly polarized standing wave of arbitrary elliptical polar-

1063-7761/99/88(3)/8/$15.00 433 © 1999 American Institute of Physics



434 JETP 88 (3), March 1999 Prudnikov et al.

ization and intensity. We find that the frictional force and relaxation, which means that we completely ignore all effects
diffusion strongly depend on the ellipticity of the light and of interatomic interaction and assume that the atomic number
contain entirely new contributions, totally ignored in the density is low. In this approximation the transport equation

two-level model. In particular, the frictional force in the for the one-particle density matrix of the atoms has the form

weak-field limit is found to contain, in addition to the ordi- i

nary term due to the Doppler effect, a term that, depending — = — _[ﬂo,;,]_ [V(z) pl— P+pHe)

on the ellipticity and detuning, may be dominant and at

emerges because of the spatial modulation of the probability 1 L

of transitions between different adiabatic potentials, similar +Y(2jt 1)2 J Tgexr(—iksz)p

to the well-known Sisyphean effett*® For the j,=1/2 a /-1

—]je=1/2 transition this additional contribution disappears xexﬁiksE)TqKq(s) ds (6)

when the field is linearly polarized. However, for transitions o o _ . o
with larger values of the orbital angular momentggthis ~ Where the quantization axis is tfzeaxis, y is the radiative
term is nonvanishing even if the field is linearly polarized, relaxation rate, and is the operator of an atom'’s center-of-
which is demonstrated by the example of atoms Wjfr1 ~ mass coordinate. The last two terms on the right-hand side of
—Je=2 andj,=3/2— j.=3/2 transitions. Eq. (6) describe radiative relaxation. The first of these two
terms gives the decay of the density matrix of the excited
state,p®®, and of the off-diagonal elemen§9 and p%. The
second describes the arrival of atoms from the excited state
We assume that the atoms, with total angular momentg the ground state with allowance for recoil in spontaneous
jg in the ground state angl, in the excited state, are in photon emission. The type of the function§. = (1
one-dimensional motion along theaxis in the field of a  +s?)3/8 andK,=(1—s?)3/4 is determined by the probabil-
resonant plane wave: ity of emission of a photon with polarizatiaqp= = 1,0 in the
E(z,t)=E(z)e(z)exp —iwt)+c.c., giv_en directionn in rglation to the quqntization axighe z
axig): n-e,=s. In relation to the translational degrees of free-
dom, Eq.(6) has an invariant form. Assuming that the vari-
dz)zq:;’ﬂ el(2)ey, (1) ance of the atomic momentum is much greater than the recoil
) ) ) ] momentum fik/dp<<1, below we describe the translational
whereE(2) is the local field amplitude, ane(z) is the local  4tion of the atoms semiclassically in the Wigner represen-
unit polarization vector, witted the components of this vec- t4tion. Then the transport equatié®) can be expressed by a

tor in the cyclic basife,=e;, €.,=* (g iiey_)/\/z};. series expansion in powers of the small paramétefsp
The total Hamiltonian of an atom in a rotating ba@is., <1

rotating in the energy pseudospin spads H=Hy+V,

2. SEMICLASSICAL DESCRIPTION OF ATOMIC KINETICS

whereHy is the free-atom Hamiltonian: (i I\ljl ;Z)p(z p)= ﬂ(O){,B(z,p)}+hk%f_(1){f)(z, p)}
"2
H0=2p—M—ﬁAHe. (2 2
+(hk)2_2|-(2){p(zvp)}+! (7)
Here A= w— w, is the detuning from the atomic transition ap
frequencyo,, and the projection operator where ,p) are the coordinates of a point in phase space. In
R the zeroth approximation in the recoil effects, the evolution
M=, liertte){jer el (3)  of the density matrix is determined by the operator
Me

~ O ~ _ . - ~ . ~ 2
is constructed out ofj.,u.), the wave functions of the LOph=—[(¥/2 =iM)TTep+(y/2 +iA)pIle]

Zeeman sublevels of the excited states. In the dipole and i o
resonance approximations, the operator representing the in- — g[V(Z),p]-‘r y(2j et 1)2 Tngq. (8
teraction with the field1) can be written 4
The first-order terms
V(2)=tQ(2) X T.e%2)+H.c, (4)
o=t LOp}=— —(f(z>p+pf(z>> ©)

where ) =dE/# is the Rabi frequency, witll the reduced
matrix element. The operatdy, can be expressed in terms of can be expressed in terms of the force operator
3jm-symbols:

f(g=- 2 10
A . . j 1 ] . == dz
Tq: 2 |]eu“e>(_1)]e Iue(_e ° <Jgu“‘g|- (5)
Ke kg Me 0 Mg The second-order terms include both induced terms, propor-

In addition to having a coherent component, the dynamics ofional to the second derivative af(z) with respect to the
the atomic ensemble is determined by relaxation processesoordinate, and a term reflecting the recoil effect in sponta-
To describe such processes we restrict attention to radiativeeous emission:
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52 Thus, the gradient force is determined by the expectation
() — Yy ~ ; 10 5 .
L p}= ) (&ZZV(Z)) P |+ y(2)et 1)§q‘, CqTgp Ty, value of the force Aoperatc(rl).
(11 fo(2)=Tr{f(2)o(2)}, (15
whereCy=1/10, andC. ;= 1/5. where the density matrix/(z) is the solution of the equa-

The presence of the small paramefet/5p makes it  tions
possible to separate the rapid processes related to ordering
over the internal degrees of freedom from the slow processes I:(O){c}}=0, Tr{fr}= 1 (16)
related to translational motion. The kinetic stage of evolutio
in this problem corresponds to times> r,=max
{y L(y9™Y, whereS=|Q(2)|? (y*4+ A%) 1 is the satura-
tion parameter. At this stage a quasi-steady-state distributio
over the internal degrees of freedom sets in and the dynami
of the atomic ensemble is determined by the slow process :
of variation of the distribution function over the translational 10NS Were fOL_m_d n Ref_s. .16_.18' . .
degrees of freedom. In the kinetic stage, the density matrix is The co?fflment of friction is proportional to the spatial
a linear functional of the distribution function7(z,p)  9radient ofo(2):
=Tr{p(z,p)} (Refs. 1 and 2 For.7(z,p) we can obtain a 9o
closed equation, which to within the second-order term inthe  §(z)=— ﬁkTr{ (PE] . 17
recoil parametefik/ 5p is the Fokker—Planck equation:

Mand describes the steady-state distribution of atoms over
magnetic sublevels in the zeroth approximation in the recoil
arameter and atomic velocity. Here and in what follows the
mbol T{- - -} stands for the trace over internal variables.

ote that analytic expressions fox(z) for all dipole transi-

) The diffusion coefficient can be written as a sum of two

).7= - %f(z,p)y’ﬂr ﬁ—ZD(z,p).f», (12 terms:
o D(2)=Dgf2) + Ding(2). (18)
w_here_f(z, P) i§ _the force on the atom, anid(z,p) is the g firgt term on the right-hand side of E{S8),
diffusion coefficient at £,p).
Note that Eqs(8)—(11) are of a general nature and can  Dy(z)=(#k)>Tr{L®{o}}
be used to analyze the kinetics of atoms in an arbitrary plane

monochromatic wave. = (hK)2y(2] o+ 1)Tr[ > Cq?;&?q] , (19
q

g p 4
(5+M5

is due to the recoil effect in spontaneous emission. The sec-
3. KINETIC COEFFICIENTS IN THE SLOW-ATOM ond term,
APPROXIMATION

. =_ 2 ol W5 — 00 [ D5
Finding the kinetic coefficients in analytic form is a very Din(2) (k) [Tr{ch {o}t=Tlea} THL ™ )

complicated problem involving tedious calculations. In this

paper we restrict attention to slow atoms, which become dis- _ @Tr{&((}- St+ st (})}, (20)
placed over distances much smaller than the wavelength in 2

characteristic times of ordering over the internal degrees of getermined by the fluctuation operator for the foft6):
freedom, i.e.p 7g<<\, which with allowance for the defini-

tion of 7, yields the inequality st(2)=1(2)—14(2). (22)

In Egs. (17) and (20) we introduced an auxiliary matrixp,
which makes it possible to write the expression for the fric-
tion and diffusion coefficients in a unified manner. The ma-

trix fp is a solution of the inhomogeneous linear equation

kp
V<y' vS. (13

When we are dealing with transitions of the typg=j—je
=j+1 andjg=]j'—]je=]  (with j" a half-integey and con-

dition (13) is met, to take dissipation processes into account Y o \Nan [y \aa i ..
correctly we need only restrict attention to the linear approxi- 5 HiA lep+| 5 =14 Jolle = 2 [V(2).¢]
mation in velocity in the expression for the force:
< oaay Of
— i T—
f(Z,p)~fg(Z)+§(Z)%, (14) 7’(2Je+1)% TaeTy= 7K’ (22

wheref,(z) is the gradient force ané(z) is the coefficient Where the sourcéthe right-hand sideis the fluctuation of
9 ; e . the force operato(Eq. (21)). Note that the system of equa-
of friction, while for the diffusion coefficient we keep only * op g. : . YS -qua-
the zeroth-order termD(z,p)~D(z). Then, finding the tions (22) is linearly dependent. This can easily be verified if
trace of Eq.(7) and allowing for the corresponding terms in We multiply the right- and left-hand sides by the matoix
the series expansion in the recoil paramétierop, we ob-  [Ed. (16)] and calculate the traces, which vanish simulta-
tain expressions faiy(2), £(z), andD(2) that can writtenin  neously since the left-hand side reduces—ar{L(O{o}e
invariant form. and vanishes by virtue @fl6), and the right-hand side is of
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that e=0 corresponds to linear polarization ane * /4 to
circular polarization. Then the nonvanishing elements of the

matrix o have the form

0% 25 12= BSoCOS Kz,
g

0912+ 112= B(3a 2%+ Spcod k),

e iaZ1BOcoskz
OX12+127 7 7 5, 4 A !
o 7 V3 (y/2-iA)
“ge_(~eqyT
FIG. 1. Spontaneouévavy lines and light-induced(solid straight lines o’ _(U g) ! (25)
transitions forj,=1/2—j.=1/2. Relative amplitudes of the light-induced \yhere
transitions are proportional to the circular componemtsand «_ of the
field [see Eq.(24)], and the numbers labeling the wavy and straight lines dEo |QO|2
indicate the relative spontaneous-decay probabilities. Qo=——, Sozﬁ (26)
f velA+ A

are the Rabi frequency and the saturation parameter, and

order T{o- 5f} and vanishes by virtue of15), (16), and o2 a?
(21). This means that the solution of the system of equations 8= 20k2) o2 o2
(22) is not unique, i.e., the matriy can be determined to 3+45cos(kz) aya”
within an arbitrary solution of a homogeneous equation, ds the normalization constant. The nonvanishing elements of
solution which in the case in questiond$, wherel is the  the matrixe have the form
identity matrix. However, Eqg16), (17), and(20) show that ) )
this arbitrariness in defining has no effect on the kinetic ce _ ARty

- . e . _ Pr1pz1o= T3 >——tankz,
coefficients. Thus, the induced diffusion coefficiddy,q is Y aZal
quadratic inéf, which corresponds to the standard definition A ) )
of diffusion in terms of the two—tlr.ne. correlator of th_e force ‘nguzﬂ/z:—ﬂ( 85,c02kz7 9 a’ m)tan Kz,
operator(see, e.g., Ref. J0What is important here is that ’ Y a? ai
the induced diffusiorD;,q and the coefficient of frictior¢

can be written in terms of the same matgix This can be eq _azQqcoskz| AB
considered a fluctuation—dissipation relationship linking mo- ~ #¥1/2+122 (y2+iA)3| 7Y
mentum fluctuationgdiffusion) to momentum dissipation
(friction). Hence the above relationships are important from a’® —a?
the general physical standpoint. X | 8Spcoskz=6 2 o2 +1jtankz,

-Gy

0= (9", (27)

4. THE jg=1/2—,=1/2 TRANSITION IN AN ELLIPTICALLY Substituting(25)—(27) into (8)—(11), we obtain expressions

POLARIZED STANDING WAVE for the gradient force, the coefficient of friction, and the dif-

In this section we discuss the kinetics of atoms in thefusion coefficient for arbitrary ellipticity and field intensity.
uniformly polarized field of a standing wave for thg 4.1. Gradient force
=1/2—j.=1/2 transition(Fig. 1). In contrast to a two-level

atom, this simple model of real atomic transitions makes it For the given optical transition, Eqsl5) and (25

possible to establish and analyze a number of important pd€adily yield
Iari;a_ttion features of the kinetics of atoms for Wh_ich Zeemap #kA  S,sin 2kz
splitting of both the ground state and the excited state is fg= 5 . (28
responsible. In the case being discussed, the resonant field 1+S,coskz
(1) has the form The corresponding potential is

E(z,t)=Eycogkz) e exp(—iwt)+c.C., (23 AA

_ o _ _ _ U= —In(1+S,coskz). (29

where the unit polarization vectaris spatially uniform. In 2

particular, if the quanti;ation axis is parallel to t.he Wave nNote that Eqs(28) and (29) coincide with the well-known
vectork, and thex axis is parallel to the semimajor axis of ragit in the two-level modéithe only difference being that
the polarization ellipse, we can write in our case the effective saturation parameter depends on the

e=—a.,e ta_e,, a,=cods¥mld), (24)  ellipticity of the field:

wheree is the ellipticity (Jtare| is the ratio of the semiminor 250003228

axis of the polarization ellipse to the semimajor axRecall ® 3 (30
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569 D(2)
r’ vhi¢
14
12+ b FIG. 2. Spatial dependence of the kinetic co-
| efficients for various values of ellipticity:
-5¢ 10 £=0, solid heavy curvesz=/8, solid thin
-10f 8r curves; ance=/6, dotted curves. The value
—15¢ 6t of the saturation paramet&,=15, and the
~20t 4t P S s detuningA=1y. @ Coefficient of friction; b
! K diffusion coefficient.
=25 2f
=30t 0
-3 -2 -1 0 1 2 3
kz
4.2. Frictional force
0 ! ! 33
s . e ~ + =4 alcco .
Substituting the expressions for the matrieesand ¢ -2 1+4|Q|2cof(kz) % 13A2 33

into (17), we obtain a formula for the coefficient of friction:
States labeled with a plugninus are produced when the
Zeeman sublevels interacting with the rigtheft) circular
1-8,coskz component of the field mix. When the field is zdeng., at a
node, the mixing angles vanish and the dressed states, la-
beledn (a), become the wave functions of the Zeeman sub-
(3D levels of the groundexcited state. Hence, following Ref. 2,
we call the|n*) states normal and the=) states anoma-
lous. Eigenvalues corresponding to the sté8% are called
adiabatic potentials. To within an unimportant constant, the
potentials of normal states can be written

yhk?AS,sirfkz
§2)=—F5—— 3 X
(A?+ v?/4)(1+ S,coskz)

(A2+ 72) 28§co§kz+ ( A2t 'yz) 6sirf2e

4 52 4 2

We see that the coefficient of frictioi31) strongly depends
on the ellipticity of the field(see Fig. 2a In fact, the first
three terms in square brackets coincide with the coefficien
of friction in the two-level modef. Two physical mecha- > >
nisms are known to correspond to this case. The first is the _hA N 4|Q|*cog (k2) ot
Doppler effect, which leads to a difference in the forces ex- nee2 3A2

erted by light on a moving atom from counterpropagating

waves. This mechanism leads to friction at negative detunand the potentials of anomalous states have the opposite
ings and corresponds to the first term, which for low saturasign: U,.=—U,. . In the secular approximation®-+?

tion, S,<1, is the main mechanism in the two-level model. > ?, the off-diagonal elements of the density matrix in the
The second is lag effects, which lead to what is known as &ressed-state basis are negligible, so that we can restrict at-
Sisyphean force. This contribution is described by the thirdention to populations that satisfy the appropriate rate
term; its sign is opposite that of Doppler friction, and it pro- €quations® Transitions between the adiabatic sta&® oc-
vides the dominant contribution in strong fiel@®&>1. The  cur because of spontaneous relaxafisince Landau—Zener
last term in square brackets emerges because we take irfi@nsitions in the limit of low velocities considered here are
account the polarization features of atom—light interactionunimportant. Lag effects (hysteresis which lead to Si-

Since this is a new term, there is considerable interest igyphean friction, result from the fact that the rates of direct
elucidating the corresponding physical mechanism. and reverse transitions have different spatial localization. For

It turns out that the term we are interested in, as well adhstance, near a node in the field the rate of the transition
the third term, can be interpreted by using the concept ofrom the normal stat¢n—) to the anomalous stata—) is
probabilities(or rates of transitions between dressed statesClose to zero, while the reverse transition has a rat&/3)y.
of an atom. Note that we call eigenstates of the Hamiltoniarfit @ crest of a strong field, wher¢_~ /4, the rates of the
of an atom in a resonant field, without allowance for trans-direct and reverse transition become almost e@ta¥3). As

lational motion, dressedadiabati¢ states. For a two-level a result, some of the moving atoms transfer near a crest of
atom there can be only two dressed stdthe normal state the field from the normal state to the anomalous state, and

and the anomalous state; see Ref. & our case of the return to the initial state near a node, which leads, as is well

jg=1/2—]o=1/2 transition, there are four adiabatic states: known?*°to a retardatiorfaccelerationbuildup for positive
(negative detunings due to the different spatial dependence

, (39)

In*)=cog6-) |jq,*1/2)+sin(0-) |jo,+1/2), of the normal and anomalous potentials.
lax)=—sin(6.)|jy, 71/ +cod 6.) |je, £ 1/2). (32) In contrast to the model of a two-level atom, in our case
we have additional degrees of freedom associated, for in-
Each of these states is a superposition of the wave functiorstance, with transitions between thet" and “ —" states.

of the Zeeman sublevels of the ground and excited stateAllowing for such transitions is the reason for the last term
with spatially nonuniform coefficients. The anglés deter- on the right-hand side of Eq31). Since we are interested
mine the mixing of bare states of the atom: only in a qualitative interpretation, we examine the low satu-
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a n <) amount to several orders of magnitude if the detuning is
08 —mm— large.
0‘6’_ Summarizing, we can say that the difference of the ki-
i netic of atoms with degenerate energy levels from the results
04F of the two-level model stems primarily from the fact there
- [n +) are numerous adiabatimormal and anomalolistates and
02f ——— T possible transitions between them. For instance, there are
] la +) transitions among various normal states, while for a two-
0 la -) level atom there can only be transitions between normal and

anomalous states. Here, as E2fl) clearly shows, the differ-
ence between our model and the two-level model is impor-
tant because of the different dependence on the intensity and

b
U
W frequency of the field. Thus, there is a range of parameters,
(y/A)2<S§<35ir1223, for which even the direction of a

U, kinetic processcooling or heatingis opposite that predicted
U- by the two-level model.
: z Us :
4.3. Diffusion coefficient
&z The diffusion coefficient defined in Eq&18)—(20) con-
hi tains a contributiorD, from spontaneous transitions and a

contributionD,,q from induced transitions. Using Eq&L8)
and(25), we find the spontaneous diffusion coefficient,

=047 yh?k? S,coskz

12 1+s,cokz’

which coincides, to within a constant factor, in form with the
expression for the spontaneous diffusion coefficient obtained
in the two-level atomic moddkee Ref. 2 It is proportional

to the population of atoms in the excited stated and in our
FIG. 3. Sisyphean. meghanism _of friction f&<1. @ ngulations of  case of thq'g= 1/2— = 1/2 transition strongly depends on
dressed states.) \diabatic potentials. The heavy curve with wavy arrows the eIIipticity of the field, in accordance Wit¢30). We can

depicts the most probable path of the ator Coefficient of friction: the . . . . = : .
solid curve represents the additional contribufitre last term on the right-  SPlit the induced diffusion coefficierfas we did the coeffi-

hand side of Eq(31)], and the dashed curve represents the Doppler contri-cient of friction) into two terms:

bution to friction. All diagrams correspond te=/10, S,=0.8 (S,
=0.17), andA=—3y. Dind(2)=D1(2) +Dx(2). (36)

The first term is the well-known resalfor a two-level atom
with a new saturation parametsy :

Def2)= (35

ration limit (Sy<<1). In this case the populations of the
anomalous states are low everywhere and the entire effect is ﬁzkzysgsinzkz{
due to the transitions between normal stdtesa weak field D;(z)= 7

these are the Zeeman sublevels of the ground )st&iar

instance, fora® <a? , most atoms at a node are in the

2 2 202 2y-1
[n—) state, while at a crest the populations of the " and XA_ S.c08(k2) (S;codkz— y*(y*/4+A%) )1_
“ —” states equalize somewhé&ee Fig. 3a In the limit in y? (1+S,cogkz)®
guestion the adiabatic potentidls,.. have the same spatial (37)

dependencex{cogk?) but different amplitude$Fig. 3b). By
analogy with the aforesaid, some of the moving atoms trans! "€ second term,

fer near a cre;t of the field from a state with a lower potential %12k2S, sir2¢ sirPkz SycoLkz | 2

into a state with a higher potential, and return to their former  D,= 2+ —(— + Az)
state near a node, which obviously leads to a systematic re- y(1+S,co8k2)°® 3 4
tardation (acceleratioh for negative(positive) values ofA.

Thus, in its physical mechanism, the last term on the right- X(1+ S,cokz)?|, (39

hand side of Eq(31) represents Sisyphean friction but, in
contrast to ordinary Sisyphean friction, has the opposite sigis entirely new. It describes the contribution of diffusion pro-
and depends differently on the field intensity, detuning, andesses generated by the Zeeman degeneracy of the energy
ellipticity. In the weak-field approximatios,<1, this con- levels. The diffusion coefficieras well as the coefficient of
tribution competes with the Doppler contributidsee Fig. friction) strongly depends on the ellipticity of the fie(Hig.

30), and the ratio of the two is &(/vy)?sirf2e, which can  2b).
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As noted earlier, there is a direct relationship between=1/2 andj,= 1/2— ] .= 3/2 transitions for linearly polarized
friction and diffusion. Hence, by analogy with the abovelight, and allj,=j—je.=]+1 transitions for circularly po-
analysis of the frictional force, the additional contribution, larized light.

Eq. (38), can be considered the result of force fluctuation that

appears in the transitions between different adiabatic .stateg_. CONCLUSION

In particular, for small saturation paramete&,<1, this

term is the consequence of transitions between the normal In this paper we have used the semiclassical approach to
statesin+) and|n—) of (32) (see Fig. 3 The ratio of this analyze the kinetics of atoms in a uniformly polarized stand-
contribution to the ordinary contribution(37) is ing wave with allowance for the Zeeman degeneracy of the
12(A/y)? sird(2¢), which shows that for polarizations that energy levels. For the atomic transitipg= 1/2— j = 1/2 we

are not linear and large detunings this term can be the domhave obtained analytic expressions for the gradient force, the
nant one and exceed the values obtained in the two-levdtiction and diffusion coefficient, which describe the kinetics
model of the atom by several orders of magnitude. of slow atoms, for arbitrary ellipticity, intensity, and detun-
ing. We have shown that allowance for the Zeeman structure
of the levels and optical pumping effects leads, first, to a
dependence of the effective saturation of the transitaomd
hence the forces on an atpnon the ellipticity S,

Recall that the need to allow for the Zeeman degeneracy Soc0s(2)/3 of the light. We have also found that the fric-
of energy levels in the description of the motion of atoms intion and diffusion coefficients contain additional terms,
fields with nonuniform polarization was convincingly dem- Which are absent in the theory of a two-level atom and have
onstrated in Refs. 3 and 4. Our results show that the Zeemdt been discussed before. In the limit of low saturations and
structure must be taken into account even when the polarizd@rge detunings these terms are dominant and lead to much
tion is uniform. The results of Secs. 4.2 and 4.3 suggest thd@rger friction and diffusion in comparison to the results pre-

the frictional force and diffusion contain additional contribu- dicted by the two-level model. We have also given a quan-
tions that do not exist in the two-level model. When thelitative interpretation in terms of dressed states,. We have

polarization is lineate=0), for the j ;= 1/2— j = 1/2 transi- shown that the additional contribution to friction is due to the

tion considered here these contributions vanish, since by vitransitions between the adiabatic potentials corresponding to
tue of the symmetry of the induced transitions the prob|emdifferent magnetic sublevels of the ground state, i.e., is of the
effectively reduces to the two-level one. However, it is ob-Sisyphean origin.

vious that in the general case there is no such symmetry and Note that the analytic method developed in this paper
the additional terms in the friction and diffusion emerge everlSe€ Eqs(15)—(22)] for finding the kinetic coefficients of the
when the field polarization is linear. For instance, for theFokker—Planck equations for the transitiong=j—je=]
jg=3/2—j.=3/2 andj,=1—j.=2 transition, in the case of 1 andjq=] '—Je=]" (" is a half-integer can be used in
linear polarization the additional contributions to the friction the general case of a field of arbitrary nonuniform polariza-

are nonvanishing and at low saturatior+1) have the tion. _ .
form This work was supported by a grant from the Russian
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We have experimentally investigated the interaction of high-power neodymium laser pulses in
the intensity range 28— 10'*W/cn? with flat low-density(0.5-10 mg/cr) agar-agar

targets under conditions of interest for problems of inertial nuclear fusion. Optical and x-ray
methods with high temporal and spatial resolution were used to examine the dependence of
absorption and scattering of the incident beam on the initial mean density and thickness of

the irradiated samples. We show that when a porous target is irradiated, a bulk absorption layer
of high-temperature plasma is produced inside the target whose dimensions are determined

by the initial density of the material. The time dependence and spectral composition of the
harmonics 2, and 3wy/2 observed in the plasma-scattered radiation are measured. A
theoretical model is developed that describes the interaction of high-power laser pulses with a
porous medium. Predictions of the model, based on the hypothesis of two stages of
homogenization of the target material—a fast sté€@&—0.3 ng and a slow stag€l—-3ng, are in

good agreement with the experimental data. 1899 American Institute of Physics.
[S1063-776(19900303-7

1. INTRODUCTION orders of magnitude the characteristic time of collisions be-
tween the plasma fluxes from neighboring elements of the
The interaction of high-intensity laser radiation 40  medium(which is of the same order of magnitude as the time
10" W/cn?) with porous media whose mean densities varyit takes an ion, on average, to traverse the distance between
over a wide range—from 10 mg/cn? to 1 mg/cn?—is  neighboring elements of the structure—the mean transit
an extraordinarily active area of study, due primarily to thetime), and can reach several nanosecohd@$wus, the non-
capability it offers of investigating fundamental physical equilibrium state of the laser plasma produced in a porous
phenomena taking place in a nonequilibrium laser plasmamedium can be characterized by long-wavelength density os-
When porous material is heated by a laser pulse, a plasma llations, the excitation and collisions of shock waves, and
produced that is spatially homogeneous in density, temperawydrothermal dissipation processes taking place during under
ture, and pressure. The production and interaction of plasmgnese conditions. These phenomena, without a doubt, must
fluxes propagating from the heated elements of the porousave a substantial effect on laser absorption processes and
material leads to a plasma nonequilibrium state: the temperanergy transport in the porous material, and also on the form
ture of the electron component of the ejected plasma fluxf the equation of state of the nascent plasma.
exceeds the ion temperature whereas during hydrothermal Practical interest in the interaction of laser radiation with
dissipation incident to a collision of fluxes a plasma is pro-porous media and, in general, bulk-structured media of re-
duced whose ion temperature can significantly exceed the@uced density is motivated by their use as multipurpose ele-
electron temperature. ments in laser nuclear fusid.NF) targets. Above all, this
According to the ideas developed in Refs. 1-4, absorphas to do with the ability to equalize heating inhomogeneities
tion of laser radiation inside a porous material occurs along and ensure target stability under compression. It has been
length determined by the geometrical transparency, whiclsuggested that porous media consisting of light elements be
decreases with increasing dimensions of the regions filled bysed, for example, in “laser greenhouse” targets to imple-
plasma with density exceeding some critical value. It can benent distributed bulk absorption of the laser beam energy,
expected that the production of an absorbing region is by nthermal-conduction mediated equalization of heating inho-
means over during the first collisions of plasma fluxes insidamogeneities, and spatiotemporal profiling of the ablation
the pores. At laser intensities of (6-10') W/cn? the  pressuré. The properties of porous media with distributed
complete homogenization time of a porous material withheavy-element impurities have been actively investigated
density 10 * g/cn?—10"2 g/cn? during decay of the macro- from the standpoint of controlling the spectral composition
oscillations of the plasma density can exceed by one to twof x radiation from the nascent plasrha.

1063-7761/99/88(3)/8/$15.00 441 © 1999 American Institute of Physics
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Novel capabilities for producing nonequilibrium, nonsta- jrradiated target reached *®W/cn?. Flat agar-agar
tionary plasma emerge from the irradiation of regularly[clelsog)n] targets 106- 1000.m in thickness, with den-
structured material. As an example, we may cite the SUggesity in the range 0.5—10 mg/drwere mounted in the inter-
tion voiced in Ref. 8 of creating a relatively long-lived gction vacuum chambe(Eor agar samples of mean density
plasma with ion temperature several times the electron teny mg/cn? the electron density corresponds to the critical
perature, and achieving on this basis an intense source gk e N, for
thermonuclear neutrons with a yield in the range''10 \ =1 054um) Multilayer targets were also used in which
—10* neutrons per joule of laser energy when a laser pulsgjuminum layers of thickness-16 um were deposited onto
acts on a medium consisting of either a system of planeme jrradiated surface, back surface, or both surfaces of the
parallel films or thin shells containing thermonuclear fuel. low-density material. The agar used in the experiments is a

Physical processes played out in low-density bulk-ragndom structure of solid filaments of diameter2 um
structured targets when they are irradiated by intense lasgyith an interfilament spacing of 1050 um. Figure 1 shows
pulses have recently attracted the attention of numerous rejectron micrographs of the structure of agar samples with a
searchers working in the LNF field. Thus, the authors of Refdensity of 1 mg/cri and 10 mg/cri
4, working at the TRINITIMishen’ (Targey facility, ob- The experiments mainly used optical and x-ray diagnos-
tained an overall picture of laser energy absorption processggs. X-ray diagnostics allowed time-integrated calorimetric
taking place in a porous medium, the transformation angneasurements in the wavelength range 0.5—1.5 nm, the con-
transport of energy in targets of finite thickness, and the acstyyction of plasma images by camera-obscura with assorted
celeration of thin metallic foils situated on the back surfacef”tersy recording of the x-ray emission of the plasma by
of such targets, and suggested a theoretical model for dgucyum diodes with temporal resolution0.5 ns, measure-
scribing energy absorption and transport processes. Th@ents of x-ray spectra of the plasma in the spectral range
present work continues studies initiated in Ref. 4, and i) 52 nm. The optical methods included multiframe shadow-
dedicated to a detailed study of absorption and scattering f{jraphs of the nascent plasrtexposure time of an individual
high-power laser radiation in low-density porous targets. Ofrgme ~0.3's, wavelength of the probing radiation
the basis of measurements of the scattered radiation and the- 0.527um, spatial resolution~30um); electro-optical
radiation transmitted by the target, we have obtained data ofecording with an Agat-SF camera of the time dependence of
the efficiency of absorption of laser energy in a porous methe Juminescence of the back surface of the irradiated target
dium at both sub- and supercritical mean density. We havg, the wavelength range 400—700 nm with spatial resolution
experimentally established the density dependence of the 309 ,m and temporal resolution 50 ps; measurements of the
longitudinal diameter of the laser absorption region over geflected, scattered, and transmitted laser radiation; both
wide range, from %10 “g/cn to 10 > g/en?. The results  time-integrated and time-resolved spectral measurements of
are discussed from the standpoint of the properties of thghe radiation scattered by the plasma into the aperture of the
nonequilibrium laser plasma produced in the porous Mefocusing lens in the vicinity of the frequenciesng and

dium. In particular, we have developed a theory of two-stagey,, /2. The diagnostic setup is shown in Fig. 2.
homogenization of a porous medium subject to a high-power

laser pulse. Of special interest are studies, completed in the
present work, on plasma emissions observed in experimen?s EXPERIMENTAL RESULTS

with porous targets at harmonics of the laser frequency. Earlier, in Ref. 4 it was shown that absorption of laser
These studies are of special interest by virtue of the fact thafadiation during interaction with a porous medium is a bulk
the development of different kinds of anomalous processeghenomenon. As a result of energy absorption and transport
(Mandel'shtam—Brillouin scattering, Raman scattering, parainside the porous target, a layer of high-temperature plasma
metric decay instabilitigsis known to lead to consequences js produced. Figure 3 displays typical obscurogra@sd
that are undesirable for LNFa decrease in the absorption results of their processingobtained with a beryllium filter
coefficient, generation of fast superthermal particles, reducof thickness 5um observed perpendicular to the direction
tion of the conversion coefficient of laser radiation into of the laser beam in the irradiation experiments with agar
x radiatior). Porous low-density media can only be appliedtargets of thickness 500m with different mean densities.
to LNF target designs on the basis of detailed studies of lasgror comparison, this same figure shows the x-ray intensity
interactions with the materials in question. distribution of the plasma for irradiation of a thick Lavsan
(Mylar) film. It can be seen from the figure that upon irra-
diation of a porous target, plasma formation inside the target
is highly extended in the direction of propagation of the laser
The interaction of intense laser radiation with low- beam.
density structured targets was studied experimentally at the Figure 4 depicts the dependence of the longitudinal di-
Mishen’ facility® under the following conditions of irradia- ameter of the plasma layer on the initial density of the agar
tion: wavelengthx =1.054um, laser pulse energy up to target. For a target with initial density 1 mg/8rthis length
150 J for pulse duratior- 2.5 ns with a 0.3-ns leading edge; amounts to 306 400um, and for a target with initial den-
energy contrast no worse than®l@adiation focused on the sity 10 mg/cri it decreases to 160150.m. In the direction
target by an 1:10 lens. For a focal-spot diameter ofperpendicular to the laser beam, the diameter of the hot
~250um the mean light flux density at the surface of the plasma region inside the porous target essentially coincides

2. EXPERIMENTAL CONDITIONS AND DIAGNOSTICS
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FIG. 1. Electron micrographs of the structure of agar samples with
mean density 1 mg/cin(a) and 10 mg/crh (b).

with the diameter of the focal spot and depends weakly omonstationary character associated with evaporation along
the density of the agar target. Thus, for irradiation of an agathe extent of the laser pulse of solid elements of the structure,
target with density 1 mg/cfrthis length is approximately 1.2 with interaction of plasma fluxes from separate elements, and
times that of a target with density 10 mg/&nThe duration  with variations in the dimensions of the radiation-absorbing
of the x-ray pulse recorded by the vacuum diodes is 3—4 nglasma layer and a displacement toward greater depths in the
i.e., it essentially coincides with the duration of the lasertarget of the zone of maximum energy liberation.

pulse. The electron temperature of the plasma was deter- Important information about the interaction of laser ra-
mined by the method of filters and for porous targets of alldiation with the extended plasma produced in a porous me-
types was 0.8—1keV, decreasing somewhat with depth intdium is provided by measurements of the scattered and trans-
the target. For a target with density 1mgfkniT,~0.6  mitted radiation. Results of measurements of the energy of
—0.7keV at a distance-300um from the irradiated sur- the laser radiation scattered by the plasma into the aperture
face. It should be borne in mind that the displayed data aref the focusing lens are plotted in Fig. 5. Data obtained for
the result of processing time-integrated measurementsradiation of thin Lavsan films are also plotted for compari-
whereas processes in the nascent absorbing layer can havean. As can be seen from Fig. 5, the energy of the radiation
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Initial position of target surface

-—— | aser radiation

FIG. 3. Typical obscurograms) for
irradiation of agar targets with mean
density 1 mg/cr (1) and 4 mg/crh
(2) and Lavsan targets with density
1.4 g/lend, and results of processing
of these obscurogranib).

Initial position of target surface Laser radiation

a b

scattered from low-density targets is similar to the corre<tance during the laser pulse did not exceed 0.1%. In the case
sponding values for the solid targets over the entire range ajf a low-density porous targdtensity ~0.5 mg/cni), as
intensities of the focused laser beam. Figure 6 shows a chaone goes to target thicknesses of 2@D0um (less than
acteristic directionality diagram for the plasma-scattered laL*) an abruptby as much as-2%,) growth in the transmit-
ser radiation, constructed from calorimetric data. tance is observed. This supports the conclusion of more ef-
Measurements of the target-transmitted laser radiatioficient absorption of the heating laser radiation in the nascent
(collection angle corresponded approximately to the angle ofiigh-temperature plasma layer. As the time-resolved mea-
approach of the laser beam to the targdd°)—both time-  surements of the transmitted light intensity show, in these
integrated and time-resolved—show that for all porous tarcases the transmittance grows up to the end of the heating
gets with thickness>500um (i.e., exceeding the character-
istic dimensionL* of the high-temperature plasma region
and densities from 0.5 mg/éto 10 mg/cni the transmit-
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FIG. 4. Calculated dependence on the agar mean density of the character- Intensity, 103 W/cm2

istic length of geometrical transparency of the medium in the initial stage of

irradiation (a) and after the first stage of homogenizati@n, and of the FIG. 5. Dependence of the energy of the radiation scattered by the plasma
characteristic length of the inverse bremsstrahlung radigtiprirhe points into the aperture of the focusing lens, on the power density of the heating

plot experimental data on the longitudinal diameter of the bulk-absorbingadiation in experiments on irradiation of an agar target with mean density

plasma layer. 1 mg/ent (¢) and 10 mg/crd () and a Lavsan fim@).
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| density targets harmonic generation takes place even when
3., the mean electron density turns out to be subcritical for
2E N =1.054um, even though the targets are fully ionized. Also
gé o1t noteworthy is the weak dependence of the spectral structure
°5" and time dependence of the harmonioy® on the condi-
gg tions of the experiment, specifically the time dependence of
- %_01 the laser radiation intensity, the intensity of the heating beam
focused on the target surface, and the initial density of the

0 20 40 60 80 target(see Figs. 8 and 20The spectral structure of thevg

Scattering angle, degrees harmonic radiatior(Fig. 9) also shows only a weak depen-
FIG. 6. Directionality diagram of the plasma-scattered laser radiation. zerdlence on the target density and at a density of 10 mgitm
angle corresponds to scattering in the direction opposite the laser bearjs essentially identical to the corresponding spectrum for the
The measarements wers Eiiifyo?m”;%’iﬂiwaﬁ!”eﬁL’S‘ﬁi};’i‘elfﬂlfrvﬁéﬁ'.fﬁ;netergo“d Lavsan targets. When the flux density of the light inci-

ent on the target is reduced to'W/cn?, the intensity of

the “red wing” of the spectral distribution falls abruptly
while the intensity of the primary maximum decreases only

pulse(see Fig. 7. This fact can be explained on the basis Ofnegligibly. Also note the “redshift” of the primary maxi-

ideas about “clearing” of the absorbing layer prior to termi- . . .
nation of the laser puléand also by assuming that the zone mum in t_he spe(_:trum of the_second harmonic, which for
of maximum energy liberation is shifted deeper into the ab_targets with density 0.5 mg/chis ~0.5 nm.
sorbing layer at later stages of target irradiation.
To obtain additional information about the dynamics of 4 THEORETICAL MODEL AND DISCUSSION OF
. : EXPERIMENTAL RESULTS
processes in an extended plasma in porous targets, we per-
formed time-integrated and time-resolved measurements of The basic distinguishing property of porous materials is
the radiation scattered into the aperture of the focusing lentheir inhomogeneity. In such bulk-structured media absorp-
in the vicinity of the frequencies @, and 3wy/2. Figure 8 tion of laser radiation, energy transport mechanisms, and hy-
plots processed time scans of the luminescence at the hatrodynamic processes can be of a very specific nature. Fol-
monics 2w, and 3wy/2 recorded from irradiated agar lowing the ideas developed in Refs. 3 and 4, we may,
samples with mean densities of 0.5 mgfcM mg/cn?, and  nevertheless, expect that the structural distinctiveness of any
10 mg/cni. For comparison, this same figure plots time given medium(fibrous, foamy, finely dispersed media, gtc.
scans obtained with a Lavsan target. Figures 9 and 10 showill show up only upon formation of a bulk-absorbing layer
density plots of time-integrated spectra of the harmonigg 2 of plasma, i.e., in the initial stage of homogenization of the
and 3wg/2, respectively. The spectra of both harmonics havdarget material.
a two-component structure with pronounced asymmetry in  Let us consider homogenization of porous material irra-
the case of the harmonice®. Note that in each experiment diated by a focused laser beam. Homogenization of porous
the frequency-doubled component of the incident laser radiamaterial acted upon by a powerful laser pulse takes place in
tion also went through the entrance slit of the recording spectwo stages. The first, or fast, stage of partial homogenization
trometer. Considering all of the data obtained in the spectrak the result of evaporation of solid elements of the porous
measurements, we first note that in the irradiation of low-material and subsequent collisions between the nascent
plasma fluxes. This stage culminates in the formation of an
inhomogeneous plasma in which the dimensions of the dense
regions of material are significantly greater, and the density
in them is substantially less, than in the original elements of
a the porous material. Final equalization of the density takes
place in the second—slower—stage of homogenization. The
basic processes in this stage are collisions and dissipation of
shock waves excited in the plasma filling the space between
the regions of material with increased density. The duration
0 1 ns of the first stage is of the same order of magnitude as the
time it takes the evaporated material to traverse the distance
b between neighboring elements:

2/3 1/3,,5/3
& 2/3 Ps bo
Pl EP

3777/2

2[3(y—1)1"

lo

Ueft

2 GHz

Hereby is the radius of the solid element=bg(ps/p,)*?

W is the mean distance between elemepi{sandp, are respec-

tively the density of the solid material and the mean density
FIG. 7. Laser pulses — incident on targe — after passing through an  Of the porous materiaks, is the power of the laser beam,
agar target with mean density 1 mgftand thickness 25am. andveff IS given by
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For the densities 10° g/cnt and 10 2 g/cn? the quantitL,  (where T, is measured in keV anc, in g/cn?) for

is equal to 450@um and 45Qum, respectively. Targets thin- T,=800eV andp,=1 mg/cnt. The experimental data are in
ner than the indicated values are partially transparent to lasgood agreement over the entire density range with the theo-
radiation during the initial stage of homogenization, as isretical dependence corresponding to the plasma state after
observed experimentalfy. the first stage of homogenization.

A calculation based on the picture of isothermal ejection  In the second stage of homogenization the diameter of
of dense cylindrical elements and adiabatic compression dhe dense region increases by roughly the ion—ion collision
colliding plasma fluxes with conversion of hydrodynamic en-length during each traversal by a shock wave of the distance
ergy into heat in a plasma layer of thickness equal to théetween neighboring elements:
ion—ion collision length gives the following expression for

the ratio of the diameter of the nascent dense plasma region @% ﬁ
to the initial thickness of the solid elemént dt 7
by 2by \YOU[[1o—n;\[a| ¥ A0 D Here\;=v/vj, vj=r, p,/T¥?is the ion—ion collision fre-
o =T -z * b—} (20 quency (it is assumed that T=T.=T,), v,~14
0 0 i 0 0

X 10" (keV)*?(glcn?) - s, andr~I4/v is the shock transit

Here \; is the ion—ion collision length and is the fraction time at velocityv between dense regions. Solving this equa-
of energy contained in the thermal component for isothermalion yields an estimate for the duration of the second stage,
ejection of the particle.

2
According to the self-similar solutiof?, the value ofa (o (|o—bl)2~ o lopa
for particles of differing flight geometry is 2 \jv T5/2°
a— 2 wheret,, |y, pa, andT, are measured respectively in ns,
C243(y—-1)(B+1)’ um, glent, and keV. Estimates using this formula give the

h B for ol indrical herical values 5ns and 3ns for the duration of the slow stage for
where8=0,1,2 for planar, cylindrical, and spherical geom-+_1 o\ for material with density 1mg/cand 10
etry, respectively. Under conditions in which a particle 'Smg/cm°’ respectively

ejected to distances significantly greater than its dimensions The' brief duratio.n of the first stage corresponds to the

(Io>bo), we must choose a value faintermediate between e interval at commencement of irradiation, during which

the cases of planar and cylindrical ejectian=0.42. _ partial transparency of the target is observed. In the second
Formula(2) is valid for Aj<l, when the hydrodynamic (15 stage, whose duration under the conditions of our ex-
description of the colliding plasma fluxes is applicable, andye iment exceeds the duration of the laser pulse, the model
as\; tends tol, from below it gives the valid limib; —~lo  yescribes the dynamics of the plasma in the nascent extended
corresponding t°,9°mplete homogem;anon of the plasm‘i’ayer inside the target. In this stage the influence of the spe-
fluxes l_,mder conditions in V,Vh'd“i =lo. S'nce,)‘i<|0’b0 and cific structural properties of the target material is manifested
bo<lo in our case, Eq(1) yields the approximate result 1, 5 jesser extent. The agreement between the measured val-
by~alr= Dl ~|,/3. ues of the time-integrated length of the absorption region
(corresponding to the entire duration of the laser puése
Thus, as a result of the first stage of homogenization ahe theoretical dependence of the geometrical transparency
plasma is produced in which the dimensions of the densgngth after the firs(fast stage of partial homogenization
regions are equal to roughly half the original distance bequ, (3)]is indirect proof of the presence of a secdstbw)
tween the solid elements, and the density in them is severakage of complete homogenization.
times the mean density of the porous material. In this case, Note that the existence of an extended stage of complete
enlargement of the dense regions is accompanied by a deomogenization of porous material leads to the existence,

crease in the geometrical transparency length: over the course of the entire laser pulse, of an inhomoge-
5 5 12 neous plasma with regions having density both above and
m ps| Po w Ps iti
L= _bo<_ 0 0(_) _ 3) below critical. Such a state of the plasma allows the laser
2 "Plpa) by 23D Tl py radiation to penetrate the porous material to the bottom the

bulk-absorbing layer.
The above model of homogenization, which is in good
agreement with the experimental data, leads to the conclu-
ion that under the conditions of our experiments, during the
greater extent of the laser pulse, the radiation interacts with

diation (using (1) with bg=1 um), b — after the first stage th t | | in which tial it la-
of homogenization(using (3) with by=1 um). This same tioeilsezzr;?ed plasma layer in which spatial density modula

figure plots the density dependence of the characteristic in- In light of the above discussion, let us analyze the ex-

verse bremsstrahlung absorption lengthgiven by perimental data obtained from measurements of the harmon-
5 2% 10’4T§’2 ics, generated in the porous-target plasma, of the heating
Ly~ —————mum radiation. The time dependence of the luminescence intensity

Pa of the 3wy/2 harmonic and its spectral structure for porous

Now, for material with densityp,=10"3g/cn? the geo-
metrical transparency length 1s300um. Figure 4 plots the
calculated dependence of the geometrical transparency
the density of the mediumma — in theinitial stage of irra-
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targets of different densities differs only slightly from the In the porous-target plasmas, generation of thg 2and
dependence observed for a Lavsan tarfgee Figs. 8 and 3wy/2 harmonics { is the frequency of the heating radia-
10). For each of the investigated porous targets with densition) was observed over the full range of mean denéitym
ties in the range 0.5—10 mg/énthe luminescence intensity 3n., down to 0.2,), and the time dependence of emission
of the 3wy/2 harmonic grows rapidly in the leading edge of at these frequencies was investigated as a function of the
the laser pulse and remains essentially unchanged up to tharget density and conditions of irradiation.
end of the pulse. Generation of thewg2 harmonic is a A theoretical model has been developed which, taking
consequence of Raman scattering of the laser radiation bgccount of the specifics of the structure of the porous mate-
plasma waves with frequeneyy/2, excited as a result of the rial, describes the formation in the thickness of the irradiated
development of a resonant parametric instability of two-target of a bulk-absorbing layer of plasma. The model is
plasmon decay in a plasma whose electron density is ondsased on the concept of two stages of homogenization of the
fourth the critical value. Thus, the experimentally observedarget material: a fast stag®.1-0.3n$ and a slow stage
dependences indicate that by the earlier stages of irradiatiofil—3 ng. The structural details of each porous material are
regions with plasma density n.,/4 are produced inside the most important in the fast stage, i.e., the early stage of irra-
target and exist for quite a long time. This is in good agree-diation.
ment with the foregoing theoretical model of homogeniza-  The predictions of the theoretical model are found to be
tion. As for the harmonic @,, for which the denser regions in good quantitative agreement with x-ray and calorimetric
of the plasma with electron densityn,, , in agreement with measurements. Spectroscopic and time-resolved measure-
the theoretical model a plasma with dengity n., exists in  ments of the intensity of theaZ; and 3wy/2 harmonics are
the form of macroscopic density oscillations with a spatialconsistent with the theoretical picture.
scale of 3-10um for an extended time-2—3 ns. A de- We are indebted to S. F. Medovshchikov and V. A.
crease in the intensity of theu) harmonic before the end of Barsuk for preparation and testing of the porous targets, to B.
the laser pulse might be expected either in the case of strorfg Vasil’ev, V. V. Kryzhko, B. N. Mironov, V. G. Nikolae-
enough decay of such oscillations or by using sufficientlyvskii, and A. S. Skryabin for assistance with the experi-
thin low-density targets. Under the conditions of our experi-ments, and O. L. Dedova and M. Yu. Sadkov for their part in
ments for target thicknesses exceeding B0® and laser the processing of the experimental data.
pulse duration 2.5 ns, no decrease in the intensity of the har- This work was carried out with the financial support of
monic before the end of the laser pulse was observed. Exthe Russian Fund for Fundamental Resed@&tants No. 97-
tended duration of plasma regions with densityn,, can  02-19157, 98-02-16660, and 98-02-16562
also be facilitated by the effect of motion of the plasma pro-
duced by one-sided laser irradiation of the fibers of the po-
rous material into the inner region of the porous medium,, . _ o

. . - . E-mail: vvgavril@fly.triniti.troitsk.ru
(along the direction of propagation of the laser bgafihis 1 .. goltsov@fly. triniti.troitsk.ru
effect can also explain the redshift of the spectrum @} 2 HE-mail: pergam@fly.triniti.troitsk.ru
recorded in experiments on porous targets with subcritical
mean density(see Fig. 9. The magnitude of the shift
(~0.5nm corresponds to a directed velocity of
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An effective potential is proposed for the interaction between dust particles in a gas-discharge
plasma which takes account of the following physical factors: the spatial dependence of

the particle charges on the floating potential of the plasma, anisotropy of the interaction, resulting
from focusing of the negatively charged particles of the drift ion current, and aspects of
screening of the dust particles by plasma electrons and ions which interact strongly with them
and recombine faster in their vicinity and on their surface. Monte Carlo calculations

explain the formation of threadlike structures of dispersed patrticles, and also “transverse
crystallization” of these “threads” in a stratified gas-discharge plasma.19®9 American

Institute of Physicg.S1063-776099)00403-3

1. INTRODUCTION and collective effects in a highly nonideal dusty plasma.
These questions are discussed in recently published reviews
Growing interest in the properties of dusty plasma stemsgRefs. 19-21
to a significant extent from the recent discovery of the for-  Dust particles in a trap with an hf discharge plasma form
mation of ordered structures of charged macroparticles im flat crystal consisting of several horizontal layers, each
various types of laboratory plasma: in the near-cathode rehexagonally structured. Thus, an important property of this
gion of a high-frequency gas discharge! in thermal structure is the fact that in the vertical direction, along the
plasmai>'* and in the standing strata of a glow discharge axis, the dust particles are stacked one directly
discharge”®~® Dust crystals possess a number of uniqueabove another. A similar property in the arrangement of dust
properties: they are optically transparent, ranging in sizeparticles is observed in the plasma of a stationary
from 1 to 100um, and the interstitial distance in the crystal glow-dischargé®!” where ordered structures are formed
is 100-1000xm, which allows one to examine their prop- that have a hexagonal-like lattice in the horizontal plane and
erties in the visible with the unaided eye. Characteristic rea similar vertical ordering along the discharge axis. More-
laxation times are fractions of a second, which neatly distin-over, in a gas-discharge plasma, even isolated, randomly
guishes plasma crystals from colloidal crystals, in whichspaced threadlike structures are formed.
these times reach several days. The parameters of the quasi- To understand the physical mechanisms leading to the
crystalline structures can be varied by simply varying the gagmergence of ordered structures, an analysis of the interac-
pressure, current, or discharge power. Thanks to this, dugion forces between dust particles and estimates of their
crystals are an effective instrument for studying the propercharges are needed. The following expression is customarily
ties of strongly nonideal plasma, the fundamental propertiessed in the literatufé?!to estimate the charge:
of cry;stals, and the properties of gas d_|scharges. Interestlng Q(r)=Z(r)e=Cey(r), C~4meR,
experimental results have been obtained on polymorphic
phase transitions between various crystal structures, on thehereC is a quantity of the order of the capacitance of the
melting of dust crystals, and on the propagation of soundgarticle,R is its radius, andb(r) is a floating potential gov-
waves in plasma crystals. Theoretical studies are beingrned by the difference in the electron and ion fluxes incident
actively pursued on dust-particle charging processes , paupon the dust particle, which depends substantially on the
ticle interactions with one another and with external fields,high-energy asymptotic behavior of the electron distribution

1063-7761/99/88(3)/11/$15.00 449 © 1999 American Institute of Physics
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function. It is well known that in an hf gas discharge and inand from electrical forces associated with the existence of
a glow-discharge the asymptotic limits of the electron distri-stationary regions with enhanced ion density. These regions
bution function depend substantially on the spatial inhomo-are situated near dust particles along the axis of the cathode
geneity of the electric fields accelerating the electrons, anglasma discharg& 2% Taking mechanical forces into ac-
on atomic ionization processes induced by thosecountis important for very small particles when these forces
electronst®=2! This circumstance is the reason why the exceed the weight of the particles and interaction forces with
charge on a dust particle should depend on its location in theeutral gas atoms. Electric potential forces are important for
stratum, i.e., on its coordinate@=Q(r). According to the both small and large dust particles, and their existence leads
above estimates, both in an hf discharge plasma and in t@ attraction between the particles, which is the physical rea-
glow-discharge plasma, particle char@ds) range from 16  son for their vertical ordering. Reference 26 also shows that
to 10° (Refs. 19-21 Below we takeZ~10> as a typical a region with enhanced ion density can be replaced by an
value. Consequently, one of the main components of the inequivalent positive charge at a distance on the order of the
teraction of dust particles in a plasma is, in one way or anDebye radius from the dust particle, where the charge and
other, the screened Coulomb repulsion. the distance are functions of the neutral gas pressure and
Besides the electrostatic forces associated with the neg&ther characteristics of the gas discharge. The introduction of
tive charge of dust particles, a number of other physicaRn equivalent charge has made it possible to formulate an
mechanisms influencing their arrangement are under invest@nalytic model explaining the emergence of oscillations of
gation, as an examination of the literature will show. Mostthe dust particles as the pressure is reduced, resulting in
notable here are the anisotropic forces associated with ioAnomalous heating and melting of the crystal structure.

fluxes drifting toward the electrodes of the gas-discharge The main content of the present paper consists in the
device?>26 The huge negative charge of the dust particlesormulation of a model in which the effective interaction

interacts with plasma ions and, as a result, in the vicinity ofPotential of dust particles with one another takes into account
a dust particle regions are formed with elevated or reducethe main physical phenomena discovered in Refs. 22-26,
ion density, which polarizes the background plasma. The poand a Monte Carlo calculation of the ordered structures aris-
larization of a dusty plasma is of great interest, as the resultng in a dusty plasma. The model possesses certain excellent
ing forces can induce capture of other dust particles if theifeatures. It introduces the position dependence of the charge
mean kinetic energy is not too large. Laboratory experiment§f the dispersed particles in the glow-dischargestratum, and
conducted by a number of authors have confirmed the exigonsiders potential interaction forces between the dispersed
tence of anisotropic interaction forces between dusparticles. It is shown that energy is exchanged between the
particlesh*?"~31The anisotropy of the interaction is consid- Power supply feeding the discharge and the dispersed par-
ered at present to be the physical reason for the vertical oficles due to a change in their charge, and also due to an
dering in the crystal-like and linear structures formed by dustnteraction with the electric field of the stratum, which coun-
particles. Numerical calculations based on the quasiparticléeracts the weight of the dispersed particles and levitates
method*?° within the framework of a simple two- them.Inhomogeneities in the spatial distribution of charge in
dimensional model, in which the plasma is treated as a liquidhe background plasma of the stratum are taken into account;
and the dust particles are treated as delocalized objects chahese result from interaction of the huge negative charge of a
acterized by narrow Gaussian distributions, have demordispersed particle with the ion flux of the discharge. The
strated the possibility of there being many ordered equilib-action of the negative charge of the dispersed particles on the
rium configurations, with energies that depend on both thdons flying from the anode to the cathode is the physical
charge-to-mass ratio of the dust particles and on the numbégason for their focusing, the emergence of zones with en-
of levitating particles in the supporting potential field of the hanced ion density, and the emergence of a spatial dipole
discharge. As the number of levitating particles in the trapmoment in the interaction of the dispersed particles. Emer-
increases, vertical ordering becomes more likely. gent anisotropy of the interaction between dispersed particles

Limitations of the modéf*?® have, to a significant de- leads to a certain amount of mutual attraction in the direction
gree, been overcome by a more realistic three-dimension&f the discharge axis in the cylindrical tube and repulsion in
model?® which considers a two-layer crystal of dust particlesthe perpendicular direction.
in a trap with hf discharge plasma. The possibility of insta-  Monte Carlo calculations explain the experimentally ob-
bilities leading to horizontal oscillations of the dust particlesserved formation of threadlike structures of dispersed par-
when the neutral gas pressure is reduced has been invedikles in a stratum, and “transverse crystallization” of these
gated: such oscillations then result in anomalous heating andhreads” under the conditions of the experiment.’
melting of the crystal structures. The given model considers
ion fluxes, and collisions and charge exchange between ions ANALYSIS OF PHYSICAL CONDITIONS OF A GAS
with atoms of the neutral gas are taken into account. As &’
result of the strong attractign not only can ions be captureélSCHARGE’ AND CONSTRUCTION OF A GENERIC DUST-

! ' : ) ARTICLE INTERACTION POTENTIAL

by the potential wells of dust particles, but uncaptured ions
can be focused, leading to the emergence of regions of en- In general, to find the forces acting on a particle and the
hanced positive charge density. Under these conditions, meffective interaction potential, it is necessary to solve the
chanical forces result from changes in the momenta an&oisson equation with allowance for the external source and
trajectories of ions flying past and impacting dust particlesjocal charges: electrons, ions, and solid particles whose
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charge itself depends on the total local potential. Finding thavalls along the length of the stratuth)eads primarily to a
self-consistent electric potential and knowing the charge oheight dependence of the charge on the particles. As a result,
the particle, it is possible to determine the force acting on thehe dust particles do not comprise a closed subsystem, and
particle by the remaining particles. However, such a selfthey can exchange charge and energy with the gas-discharge
consistent task is hard to fulfill. Therefore it is convenient toplasma. Below, in constructing the model, we assume that
separate out from the total interaction the force due to théhe charge of a dust particle is a prescribed function of its
interaction between the dust particles, considering thepatial coordinateQ(r), which requires some modification
plasma as a background against which this interaction unef traditional electrostatics.
folds. Separating out the interaction forces and construction ~ As is well known?* it follows from Maxwell’'s equations
of an effective potential must be done in such a way as téhat the electromagnetic static and time-independent fields
satisfy the equations of electrostatics following from Max- are described by two pairs of independent equations:
well's equations. Here it is necessary to recall that the ques-
tion of the form of the effective potential has still not been  divE=p/ey, curlE=0 1)
solved.

To solve the given problem, we consider the physicalgnd
conditions necessary for the emergence of strata in a gas-
discha_rge plasma,_ and we also discuss_the char_actc_aristics ofa oyl B=j/0280, divB=0. )
potential trap holding charged dust particles, which is created

by the electrostatic fields of the stratum and the walls of theI'he first pair of equations describes the electric fields, and

discharge tube. The strata in a Iow—Egressure d|_s_c harge hayge second, the magnetic fields. Despite the fact that motion
been well examined experimentaf§>® In a positive dis-

h | der th diti £ he | g:‘the particles can lead to local variation of the electric and
charge column under the conditions of interest, the loss 0 agnetic fields, if the conditions

energy by the electrons in elastic collisions is negligibly
small and the electron distribution function is formed under
the action of the electric field and the inelastic collisions.
This can lead to the emergence of strata, i.e., spatial period- o ) .
icity of the plasma parameters with characteristic scale o€ satisfied, the mutual influence of the electric and mag-
the order of a few centimeters. The electron density, the eled1€tic fields can be neglected. It is just this case that is real-
tron energy distribution, and the electric field are highly in-1z€d under the conditions of our experiment. In what follows,
homogeneous along the length of a stratum. The electric fiel¢’® Will be interested in the electric fields that emerge in a
is relatively large at the head of the stratufmaximum dusf[y glow-_d|scharge plasma, a_nd the equations of electro-
around 10—15 W/cir—the region occupying 25—-30% of the statics(1) will be used as a con5|ste_ncy che_ck on the model.
length of the stratum, and smé&#round 1 W/cmoutside this As was already noted, the spatial variation of the charge
region. The maximum in the electron density is shifted relaQ(r) in the plasma can be described, assuming that
tive to the maximum of the field strength toward the andte.
The electron energy distribution is strongly bimodfaind at Q(r)=Cg(r), ©)
the head of the stratum a second maximum dominates,
whose center lies near the excitation potentiabf the neu-  whereC=4meR, is a coefficient that has the order of mag-
tral gas atoms. Due to the high floating potential of the wallsnitude of the capacitance of the dust partid®, (s the radius
of the discharge tube, the potential relief of the stratum has af the particle and ¢.(r) is the position-dependent floating
strongly two-dimensional character: the center-to-wall potenpotential of the plasma. Despite the fact that form{#ais
tial difference at the head of the stratum reaches 20-30 \butwardly similar to the familiar electrostatic relation, it is
Thus, at the head of each stratum there is an electrostatimportant to note an important difference in content.
trap, which in the case of vertical orientation is capable ofWhereas in electrostatics the analogous relation establishes a
keeping particles with high enough charge and low enougliinear relationship between an electric charge and the electric
mass from falling to the bottom, while the strong radial field potential created by it, for a plasma with condensed particles
prevents them from reaching the walls of the discharge tubehis formula establishes a relationship between the electric
For the purpose of theoretical estimates, according to theharge of a particle and the electric potential produced, in the
viewpoint adopted in the literatuf@;?! it may be assumed final analysis, by external sources, e.g., electrode systems or
that the charge of the dust particles is proportional to theother charges in the plasma. One can imagine a capacitor
floating potential of the plasma, which in turn is determinedfilled with particles whose charge is proportional to the elec-
by the balance of electron and ion fluxes incident upon theric potential at a given point. It is easy to show that the
dust particle. The electron fluxes depend on the asymptoticapacitance of such a capacitor, defined as the ratio of the
behavior of the electron distribution function at high ener-total electric charge between the plates to the potential dif-
gies. The specific form of the functid@(r) is determined by ference of the plates will differ from the capacitance of a
the design of the gas-discharge setup, the arrangement of teapacitor filled with particles whose electric charge does not
electrodes, choice of neutral gas, conditions of the gas disdepend on the electric potential at a given point.
charge, etc. The variation of the floating potential, which  The work required to move dust particles with position-
follows from the observed variation of the potential of the dependent charge is given by the expression

|AE|/At<jleq, |AB|IAt<|AE|| AT
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Q(0) (~2(r2) é(fl) a_stati(_)n_ary gas-discharge pla_sma can move into rggions
1= — T - T (4) ywth minimal energy of repulsion. Thus, tha_nks to time-

2 1 independent charge and energy exchange with the plasma,
whose validity is postulated in the present work in line with the open subsystem of dust particles tends to seek configu-
the viewpoint adopted in the literatdPe?' that the electrical rations with minimal energy of repulsion corresponding to
forces describing the interaction between the dust particlethe equilibrium state at a certain effective temperature of the
are potential forces. Let us consider the physical meaning adust particles. The latter can result from the influx of energy
expression4). The quantityW,, is equal to the work per- from the power supply via the aforementioned processes, and
formed by the charg@(r) as it is moved from the point, the efflux of energy from the dust particles as a result of

to the pointr,, where this charge has the val@€0) at the coIIisBion§ with the gel;]tral rg];as re]\toms. - datth
origin. Let the pointsr; andr,=r;+ és lie infinitesimally earing in mind that the charg(ro) is located at the

A pointrgy, and also that
close to each other and be separated by the distpsste

4aeg

Then to within linear terms ifds| the work W;, can be E(r1,ro)==Ve(rs,ro),
represented in the form we find from Eq.(7) that the electric potential of the field
—  Q(0) [(Q(r2)—Q(ry)) created by a charge that depends on particle position is
SWyo=(F,69)= —
2= (F 0 s Ir2| L QUrolL+iné(r)/di(roll |
o(r,rg)= onst.
- ( 1 1 ” 4meg Ir—=ro|
Q( 1) |r2| |r1| ( )

If the magnitudes of the charges do not depend on the spatial
Q(O Q(r1 variables, then expressi¢8) automatically goes over to the
(T Ir 1|> j familiar expression of electrostatics. Recall that the work and
the difference in potential energies in this case are deter-
VIn(|Q(r)| 5s) mined by relation(4), and that the transformation to relation
T , ®  (4)from expressiori8) through the electric field strength and
the interaction potential must be performed in reverse order.

47780

whereV is the gradient operator. We now check whether Maxwell’s equation$) still
As a result, the force due to the char@€0) acting on  hold in the proposed model. Obviously, the second equation
the chargeQ(r,) in the plasma has the form curlE=0 is satisfied. It is not hard to show that the diver-

gence of the electric fiel& satisfies the equation

Q<0>6<rl>[ o VInQery)|
Iraf®

F(ry)= . 1 Q) 1
4 = — = —
TEQ [r] divE \l/lino v SgsE do \I/|Lno Amog V 47rfv5(r)drl
Q(0)Q(ry)| ry
= - Vi
Armeg [|F1|3 V[1+|n|¢t(r1)/¢t(0)|]|r1|l- " Swlrﬂz sinfdade |,

6

© where 5(r,) is the Dirac delta function|r,|?sin6déde is
Accordingly, we define the electric field Strength as the ratiqhe surface elememof the Surfacé), andn is the normal to
of the force acting on a charge to the magnitude of thathe surfaceS To reduce this to differential form, we let the

charge volumeV containing the origin tend to zero, assuming for the
= estimates that the volume is a sphere of radiughen for
E(ry)= Q(0) _ Vin|Q(ry)| small k we have
Ameo| |ry|® 4 Q( )
VE=,—[4m+
Q) vintnlgigN] o W E dre A Ol
4meg |r1|3 14l where O{k} is a small quantity of ordekx and Av is an

The first term in expressiof6) and the first term in expres- infinitesimal volume. In the limitc—0 we obtain

sion (7) correspond to the usual Coulomb force calculated p

for constant charges. The second term in each of those ex- divE= —

pressions corresponds to the component of the force due to £o

the dependence of the charges of the dust particles on thweherep=Q(0)/Av is the charge density. In the above treat-
size and type of dust particle, and are completely determinethent the origin can be chosen at any point in space; conse-
by the gradient of the logarithmic derivative of the floating quently, the first of the equations of electrostatitsis ful-
potential of the particle in the plasma. For like charges thidilled.

component of the force acts in the direction of regions with ~ Thus, the treatment based on the postuldteshows that

the smallest chargén magnitude, and for unlike charges it in a model taking into account the dependence of the charges
acts in the opposite direction. As a result, the dust particles inf the dust particles on the spatial variables, the generic pair-
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wise potential energies of the interaction of the particles im3. EFFECTIVE INTERACTION POTENTIAL BETWEEN DUST
the plasma can be described by a function of the form PARTICLES

1 Q(r)Q(ry) At present several physical mechanisms are being dis-
(9 cussed in the literature that influence both the balance of
gravitational and electrical forces of the levitating dust par-
The potential energy of the interaction of two identically ticles and the interaction between them. From our point of
oriented dipoles with moment ardy in which the negative view, along with the partial screening of the charge of the
charge is greater than the positive charge, can be written idust particles by the electrons and ions of the plasma that

Virare)= Ameg 1=y

the form interact strongly with them, the emergence of regions with
~ -~~~ enhanced free ion density as a consequence of the focusing
Vd(flyfz)Zf f Pd(rl'rl)fd(ri'rZ)drler' action of the large negative charge of the dust particles on
vJv [ro—r4q] the ion current of the plasma discharge is very important.

As has already been mentioned, the existence of zones
with enhanced ion density along the path of the ion current
behind the dust particles was proved in Ref. 26, where the
Poisson equation was also solved and charge exchange pro-

where

p(ry,11)=38(r;—r)Q_(ry)

+8(F1—(ry+de))Q. (Ty), cesses and collisions of ions with atoms were taken into ac-

count by a Monte Carlo calculation. In this same reference,

p(ra,r2)=08(r,—1,)Q_(T5) characteristics of the positive point charge equivalent to the
5 _ ion clouds were calculated and the distance from it to the
+8(r,—(ry+de;y))Q.(ry) dust particle was found. In Ref. 26 it was also shown that the

magnitude of the equivalent positive charge can reach one-

third of the charge on the dust particle, and its distadce

ande, is the unit radius vector extending from the negativefrom the particle is at mo§t of _the order .Of the Debye radius

charg+e of the dipole to the positive charge ro. Usqally, for dust particles in a gag—dlsgharge plasma the
' mean distance between the dust parti¢igsis greater than

If the moment armd of the dipole is less than the dis- : . .
tance between dipoles, then invoking the smallness of th;[ahe Debye radius, and consequently according to Ref. 26, it

ratiod/|r,—r4|, we can perform a multipole expansion. As a 'S also greater than the dista
2 1b T P P >XP ' Plasma screening of the dust particles and the effect on
result, the potential/4(r,,r,) can be written in the form

them of the electron and ion currents were taken into ac-
QiQi PlQﬁ— PZQi count, for example, in Ref. 9, where it was shown that the

pairwise interaction potentiah(r,r,) at distances less than

are the spatial charge densitiér) is the Dirac delta func-
tion, Q_ is the negative charg&) ., is the positive charge,

Vy(ry,ry)=

r 2 . . .
" LE¥ the mean distance between the particles is screened by the
1424 241 1p24 Al A2 42 Debye exponential factor, and at distances of the order of a
+ - 3PP+ d '
7 Qs+ oQs - QQ% o few Debye radii it converges to its asymptotic limit, which is
|7 12] proportional to the inverse square of the distance between the

(10)  particles.
Thus, introducing the effective positive point cha@e
wherer,=r,—r, is the radius vector extending from the g account for regions with enhanced ion density and return-
negative charge of the first dipole to the negative charge Oifng to the question of the effective pairwise interaction po-

the second dipole, tential between dust particleg(r;;) located a distance;;
o from each other, we can adopt the following approximation,
Q= QS(r|)=f p(r,r)dri=Q_(r)+Q,(r,+de,) based on the results of numerical calculatidf$:2®
\

is the excess negative charge of the dipole, U(ri,rj)=

1 Qs(ri)Qs(rj) '{ |ri_rj|)
exp —
dmey  |ri—ry o

P'=P(r)= JV|F1|P("| ,F1)cose dr, + L(l_D(h—._rAD)
il

ri—rjl?
=dQ, (r;+de,)cosby o o
PIQI-PIQ,  _
is the dipole moment{ is the angle between the vectaks + 5 (1-D(|ri—ri])
ande,), and [ri=rl
| ~ - o' QL+ oIQy—3P'PI+ Q1 Q% d?
a'=a(r)=| [r?(3 cog—1)/2)p(r,,ry)dr, + e
\% i~
=d?Q.(r;+de,)(3c0$ 03— 1)/2 x(1-D(r-ry)), (1D)

is the quadrupole moment. wherer; andr; are the radius vectors of thigh and jth



454 JETP 88 (3), March 1999 Belotserkovskil et al.

particle qrij|:|ri_rj|)a 5(|fij|) and D(|fij|) are matching In the calculations it is convenient to choose as the unit
functions, which range from 1 to 2 under our conditions atof length to be the Debye radius, which in the given model

distances of 1 and 2 Debye radii, respectively, ani$ the ~ can be taken to be independent of the spatial variables. We
matching constant. then have

dcog O)[Z(ri)/Zs(ri) = Z.(r))IZ(r})]

|rij|2

Be® Zy(r)Z(r)) | exp(—|ri;])

1-D(|r;;
4meg ) |rij| |rij|2 ( (| IJ|))

BU(r;,ry)= (1-D(|rj)+

N d[Z (r)Z4 (rDIZ(r) Z(r)INZ(r)IZ () + Z(r))I1Z,.(r}))(3co$(6) — 1)/2]
|3
J

" (1=D(lryln- (12

Here g=1KkT,, kT, is the energy temperature of the dust It follows from the form of the effective potential that if the
particles,Z(r;) is the charge on a dust particle expressed indust particles are arranged verticalbfacked one above an-
units of the electron charge&(r;)=2Z(r;)e, and distances other (along the dischargez] axi9), i.e., r~r?), then the

are reduced to dimensionless form by scaling to the Debyéhird term in the potential becomes negative, which corre-
radiusrp, which for simple estimates can be chosen in thesponds to the emergence of attraction between the particles.
form r2D=kTg/47-re2(ne+ ni) (Tq is the gas temperature If the particles are arranged in a horizontal plame-(?),

We simplify the given potential by taking, e, , and the  then this term is positive, which implies that the particles
ratiosZ',/Z; andZ' /Z', to be equal for all the dust particles repel. The matching functiod also allows for destruction of
(i=1,... N). Then the second term of the ordercin the  jon clouds when dust particles approach to within distances
effective potential(12), which describes an interaction of gn the order of the Debye radius.

charge—dipole type, vanishes. We finally obtain Equation(13) for the interaction potential of two dust
_ i particles in the plasma can be verified experimentally. Mea-
o )=T(r: 1 expl |r”|) _ y surements of the forces between two dust particles must be
BU(ri,ry)=I(r;,ry) 5(1=D([ry])) )
|rij| |rij| performed under the same conditions as the dust crystal

preparation experiments. In such an experiment it will be

possible to determine the parameters entering into(Eg):

Iri; E X, the ratio of the effective screening charge of the iohi

— ’ ) existg to the particle charge, ardj the dipole moment. Such

Here E=d”|x|/(1+x%) (x=(Z-(r)/Z,(r})) is the mean o, 0riments themselves on the interaction of two dust par-

ratio of charges in the pair ticles, apart from their stated purpose to measure the param-

Be? Zs(ri)zs(r_j) Zf,ez eters u;ed to_ model .the dgst crystal, are fundamentally im-
~ portant in their own right, since they enable one to choose a

faithful model from among existing candidates for the forces

is the interaction parameter, which can also be represented that act on a dust particle in a plasma.

ri. 2—3 I’iz<)2 ~
+EM(1—D(|H]|)) : (13

F(ri,rj):47780 I’D :47TSOkTprD

the form To conclude this section we note that the mechanical
7ol forces associated with variation of the momenta and trajec-
r="27 tories of the ions flying into the field of a dust particle can be

o taken into account with the help of an inhomogeneous cor-

where yp=Zf,e2/4vrsokTp(r) is the nonideality parameter, rection to the gravitational component of the forces on the
Z, is the mean particle charge, a(‘nj=(477np/3)‘1’3 isthe dust particle. This correction should be proportional to the
mean distance between macroparticles. It follows from th(_spatial distribution of the ion current in the discharge and can
results obtained in Ref. 26 that the quantiyunder gas- bPe prescribea priori or found by a self-consistent approach.
discharge conditions satisfies the inequajity — 3.

Note again that the potentiél3) allows for a number of
physical factors that influence the interaction of dust par4 NUMERICAL RESULTS
ticles in the plasma. First, it allows for the spatial depen-
dence of particle charge on the floating potential. Second, the Numerical modeling of plasma with a dispersed phase
first term in brackets, describing the spherically symmetriowas performed by the standard Monte Carlo metffaghich
part of the interaction, takes account of the screening of dustonsiders a finite number of particlés distributed over a
particles by plasma electrons and ions, which interactell of extentL. In the present calculations, considering the
strongly with them. The third term describes the anisotropicspeed of presently available computers and a reasonable cal-
part of the interaction of the dust particles resulting fromculation time(one point per day we decided to limit the
focusing of the ion current by highly charged dust particlesnumber of particles tt\=3000. The cell siz&., which it is
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FIG. 1. Logarithm of the ratio of the interparticle interaction potential to the FIG. 2. Probability distribution of the charge on the dust particks, in

Coulomb potentiall — Debye potential2 — Debye potential going over . ) _
units of 10e in the upper and lower strata & =0.05 and|y|~22.
to the asymptotic dependence?. 3,4 — upper and lower boundaries of PP & I

the potential(13) for £=0.1 and|x|~12.

focusing beyond the dust particle. According to the calcula-

. . . . tions of Ref. 26, the variation of the absolute value of the
also convenient to express in units of the Debye radius, was .
arameter y over the given range corresponds to gas-

chosen such that two strata could be situated in it. Thid: o i
N discharge conditions and variation of the pressure over the
length turns out to b& =700 .

I range 20-200 Pa.
The parameters of the electric fields of the stratum were "2 o 1o’ o Monte Carlo calculations presented below

chosen to be close to the experimentally measured vafues. . . . ) . .
The walls of the cylindrical tube, of radi&=15mm, ex- were obtained with a model in which the interaction of dust

erted a force on the dust particles, whose potential can b%artmles IS desc_nbed b.y the potentidl3). Figure 1 com-
expressed in the form pares the pc_Jtentla(tLS) with the Cquloml'). and Debye poterj—
tials, and with the Debye potential trailing off at large dis-
du=D(rIR)%?,  r2=x2+y? tances to its asymptotic limit~2. For convenience, the ratio
of the given potentials to the Coulomb potential is plotted on
¢1=10+20(1+((2~20)/dw)?) a logarithmic scale in the figure. Thus, the ordinate of the
(potential in volts at the walls of the tupezy=0.8 mm, and Coulomb potential in Fig. 1 is identically equal to zero, the
d,,=4 mm. The interaction potential of the dust particles wasDebye potential is represented by the linear dependénce
given by Eq.(13) with Debye radiug ,=0.1 mm. Along the the Debye potential with asymptotic limit ? corresponds to
z axis the force of gravity and the supporting electric fieldcurve 2, and curves3 and 4 are the potentia(13) for par-
with potential ¢,= 14/(1+(z/d,)?), whered,=1 mm, acted ticles located respectively in a horizontal plane and vertically
on the dust particles. In the course of the calculations th@ne above the other. All of the represented repulsion poten-
guantitiesI" and L were fixed while the parametéf was tials are much softer than the Coulomb potential.
varied from 0.05 to 0.4, which corresponds fbe1 to the Let us consider the results of the Monte Carlo calcula-
range of valuegx|=|Q_/Q,| from 22 to 4. The physical tions. For the given axially symmetric problem, Fig. 2 de-
meaning of an increase in the absolute value of the parameteicts the probability distribution of the dust particles over
x depends on how the neutral gas pressure in the dischargharge for two strata located one above the otfxge=(.05
plasma is varied. For example, increasing neutral gas presnd|y|~22). The height of the particle in the discharge tube
sure reduces the mean free path of the ions and hinders thédr plotted along the vertical axis, and the magnitude of the

Z, arb. units Z, arb. units
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L r R [ . s .
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0.5¢ 0.5¢ FIG. 3. Thin vertical cross sectiorsf finite thickness
in the upper and lower strata f& =0.05 and| x| ~22
(@ andE=0.2 and|x|~7 (b).
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chargeZ, is plotted along the horizontal axis in units of dust clouds is shown in Fig. &ipper stratury) where the
10%e. The particle distribution in the upper stratum is morescales of the vertical and horizontal axes are equal. No ap-
extended. However, the spread in charge does not excegueciable difference in the structure of the dust particles in
17% since the dust particles are mainly located in that part othe upper and lower strata emerges in the given model. Gen-
the stratum where the magnitude of the floating potential ierally speaking, it must be borne in mind that varying the gas
less and varies quite smoothly. Varying the pressure fopressure alters the characteristics of the strata, since the elec-
E=0.2 and|x|~7 has hardly any effect on the distribution. tric field in a gas discharge depends on the product of the
These data confirm our earlier conclusion about the preferregressure and the radius of the discharge tube.
location of particles in that part of the stratum where the  Figures 4 and 5 show vertical and horizontal axial thin
potential energy of repulsion between particles is lower. ltcross sections, of finite thickness, of typical structures of dust
appears that the formation of very long, isolated threadlikeparticles in a stratum fo£=0.05 (x|~22) and=E=0.2
structures is also possible. This can be energetically morf x|~7), respectively. Distances are given in units of the
favorable, not only thanks to the additional attraction in theMonte Carlo cellL. Figure 4 plots distance along the diam-
vertical direction, but also thanks to the presence of the noreter of the discharge tube along the horizontal axis, with the
Coulomb correction to the Coulomb forces discussed aboveyoint 0.5 corresponding to the charge axis; each division
which is directed opposite the gradient of the dependencé.01) corresponds to roughly rg or 700um. Distance
Q(r) (in the given case, from the cathode to the anode along thez axis is plotted along the vertical axis. From an
Questions of the possible existence of such structures arghalysis of the figures we may conclude that for high neutral
conditions for their emergence require further study. gas pressures the dust particles for the most part are arranged
Figure 3 shows vertical axial cross sections of finiterandomly, while at lower pressures the dust particles form a
thickness, of two dust clouds filling out strata located onehexagonal crystal lattice of threadlike structures of arbitrary
above the other. The vertical distance between strata iength in the transverse direction. The threadlike structures
roughly 50 7r~3.5 cm, which approximately corresponds can be vertically displaced relative to one another along the
to the conditions of our experiment. In the given figure thedischarge axis. The given configuration of threadlike struc-
structure of the dust clouds in the strata is distorted since theures is reminiscent of structures resulting from the emer-
scale of the vertical axis is 10 times larger than the horizongence of an ordered phase in liquid crystals.
tal. A properly scaled picture of the vertical structure of the  The two-point correlation functions corresponding to the

Y, arb. units Y, arb. units
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given cross sections fd€ =0.05 and= =0.2 are plotted in  emerges. This phenomenon is noticeable in Figs. 4, 5, and 6.
Figs. 6a and 6b. The correlation functions were calculatedn the displayed cross sections it is possible to discern an
for the interior particles of the depicted cross sections. Foincrease in the horizontal mean distance between the dust
= =0.05 the two-point correlation functions of the vertical particles as the pressure is reduced. The particles in rectilin-
and horizontal cross sections are essentially identical. Thear threadlike structures become essentially completely or-
only significant difference, associated with attraction of thedered in the vertical direction.

dust particles in the vertical direction, leads to an additional For a gas discharge, typical configurations of dust par-
peak at small distances. Decreasing the presstre @.2) ticles in a stratum are shown in Figs. 7 andB=0.5 and
leads to substantial differences in the pairwise correlatio®.2 Torr, 1=0.4 and 0.7 mA, dimensions of the frame
functions of the vertical and horizontal cross sectiffig.  6X 7 mm).}” Comparison of Figs. 4, 5, and 6 and Figs. 7 and
6(b)]. The two-point correlation functions of the vertical 8 reveals good agreement between the numerical and experi-
cross section have pronounced peaks corresponding to timeental results. In the horizontal cross section, the emergence
emergence of ordered structures. The peaks increase at smallhexagonal ordered structures is observed. In the vertical
distances as a consequence of attraction between particlesdross sections the emergence of threadlike structures can be
the vertical direction. The correlation function of the hori- distinctly made out. The mean distance between particles in
zontal cross section has a form characteristic of crystal-likdooth the horizontal and vertical cross sections is roughly
structures. 280um.

As noted above, the physical reasons for the emergence Note that in Ref. 17 the formation of extended threadlike
of these structures when the neutral gas pressure is reducstiuctures several centimeters in length was also observed
are an increase in the mean free path of the ions and, asupon the coalescence of several strata, which, as noted
consequence of the focusing action of the negatively chargeabove, is possibly related to the non-Coulomb force directed
dust particles on the ion current, the formation of clouds withopposite the gradient of the dependefi@g) (upwards, to-
enhanced ion density between them. As a result, in the diward the anode This force should contribute to the balance
rection of the discharge axis, against the background of thbetween the gravitational force and the supporting electrical
spherically symmetric part of the effective potential, an ad-force that causes the dust particles to levitate.
ditional attraction emerges between the dust particles, while  The resultant threadlike structutésre distinctly differ-
in the horizontal plane an additional positive repulsionent from the formations observed in erosion discharges,

Y n - 10°, ym2
4
3t
[ ! I FIG. 7. Thin horizontal cross sectiofof finite
S0 2t thicknes$ of the dust structure in the stratum and
. St the corresponding two-point correlation function
RN - (Ref. 17.

0 200 400 600 800 1000
X r, ym



458 JETP 88 (3), March 1999 Belotserkovskil et al.

FIG. 8. Thin vertical cross sectioff finite thickness of
the dust structure in the stratum and the corresponding two-
point correlation functior(Ref. 17.

0 300 400 600 800 1000 1200
X r, pm

where rapid coagulation of submicron aerosols leads to théJ. H. Chu and I. Lin, Phys. Rev. Leff2, 4009(1994.

emergence of threadlike three-dimensional structiites. 2H. Thomas, G. E. Morfill, V. Demmett al, Phys. Rev. Lett73, 652
(1994).
SA. Melzer, T. Trottenberg, and A. Piel, Phys. Lett.181, 301(1994.
5. CONCLUSION 4J. B. Pieper and J. Goree, Phys. Rev. LER. 3137(1996.

: : [ . SA. Melzer, A. Homann, and A. Piel, Phys. Rev.5B, 2757(1996.
A model has been formulated in which the pairwise in- Ny ' ' '
P 6M. D. Kilgore, J. E. Daugherty, R. K. Porteous, and D. B. Graves, J. Appl.

teraqtion potential of dust partigles takes into account the Phys.73, 7195(1993.
spatial dependence of the particle charges on the floating;. perrin, p. Molinas Mata, and P. Belenguer, J. Phy27[2499(1994).
potential, and screening of the dust particles by plasma electJ. P. Boeuf, Phys. Rev. A6, 7910(1992.
trons and ions that interact strongly with thefand them- 9J. E. Daugherty, M. D. Kilgore, R. K. Porteous, and D. B. Graves, J. Appl.
selves undergo vigorous recombinatiofihe pairwise inter- mghgs-éﬁofzi‘(“(bggf-Kushner 3. Apol. PhyS, 33511954
a_ctlon po_tentlal at distances less than the mean mterpartchey_ Hayashi and K. Tachibana, Jpn. J. Appl. Phys., P&8.2.804 (1994,
distance is screened by the Debye exponential factor, and &, £ rortov, A. P. Nefedov, O. F. Petrov, A. A. Samarian, A. V. Cherny-
distances on the order of a few Debye radii the interaction schev, and A. M. Lipaev, JETP Le#3, 187 (1996.
potential trails off to its asymptotic limit, proportional to the V. E. Fortov, A. P. Nefedov, O. F. Petrov, A. A. Samarian, and A. V.
inverse square of the interparticle distance. We have showpChermyschev, Phys. Lett. 19 89 (1996.
that the spatial dependence of the particle charges leads to/- E- Fortov. V. S; Filinov, A. P. Nefedov, O. F. Petrov, A. A. Samaryan,
. A. M. Lipaev, Zh. Eksp. Teor. Fiz111, 889(1997 [JETP84, 489(1997)].

t_he emergence of a nonfCoqumt.) Co,mp‘?”e”t of the Ir,]teraqsv. E. Fortov, A. P. Nefedov, V. M. TorchinskiV. |I. Molotkov, A. G.
tion forces between particles, which is directed opposite the knrapak, 0. F. Petrov, K. F. Volykhin, JETP Le@4, 92 (1996.
gradient of the logarithmic derivative of the floating potential 1ev. E. Fortov, A. P. Nefedov, V. M. Torchinsky, V. I. Molotkov, O. F.
of the plasma. As a result, the open subsystem of dust par-Petrov, A. A. Samarian, A. M. Lipaev, and A. G. Khrapak, Phys. Lett. A
ticles, thanks to steady-state charge and energy exchan%§29M31;(tge?/7)~v | Molotcor. A P. Nefedov. O, F. Petrov. V. M
with the plasma,_ tends to seek _conflguratlons .Wlth minimal TorchinsEy, V. E. Fortov, A. G. Khrapak, and S. A. Khrapak, Zlksﬁ_
energy of repulsion, corresponding to the equilibrium state. 1, 112, 2030(1997 [JETP85, 1110(1997).
The model also takes into account focusing of the ion bean®y, v. zhakovski, V. I. Molotkov, A. P. Nefedov, V. M. Torchinski
by large-radius dust particles, leading to polarization of the A. G. Khrapak, and V. E. Fortov, JETP Le@6, 419(1997.
background plasma and the emergence of anisotropy in paf:H- M. Thomas and G. E. Morfill, Natur.ondon 379, 806 (1996.
ticle interactions. ziv N. Tsytovich, Usp. Fiz. Nauk67, 57 (1997. .

We have performed a Monte Carlo study of ordered A. P. Nefedov, O. F. Petrov, and V. E. Fortov, Usp. Fiz. Naék, 1215
structures that emerge in a dusty plasma. These calculatiorss v/ \jadimirov and M. Nambu, Phys. Rev. &2, 2172(1995.
explain the formation of threadlike structures of dispersed3m. Nambu, S. V. Viadimirov, and P. K. Shukla, Phys. Lett.283 40
particles in a stratum, and the “transverse crystallization” of (1995.
these “threads” under the conditions of our experimént, ~ *'F. Melandso and J. Goree, Phys. Re\5%; 5312 (1995
We obtained the probability distribution of charges on the, " Melandso and J. Goree, J. Vac. Sci. Technol4\511 (1996.

dust particles levitating in a stratum. The results of our Ca|-26v' A. Schweigert, I. V. Schweigert, A. Melzer, A. Homann, and A. Piel,
ust parti vitatng | um. u u Phys. Rev. 54, 4155(1996.

. . . —17
culations agree with the experimental d&ta: _ 276, Praburam and J. Goree, Astrophys44l, 830 (1997.

We are deeply grateful to Yu.E. Lozovik, A.G. H. M. Thomas, G. E. Morfill, V. Demmel, J. Goree, B. Feuerbacher, and
Khrapak, V.I. Molotkov, V.M. Torchinski and V.V. D. Mohlmann, Phys. Rev. LetZ2, 4009(1994.

Zhakovski for helpful discussions and valuable remarks.zgg-lgB-(lF;gegeﬁ J. Goreeand, and R. A. Quinn, J. Vac. Sci. Techndh, A
This \_Nork was carried out with the financial Support of the3°G. E. Morf.ill and H. M. Thomas, J. Vac. Sci. Technol.14, 490(1996.
Russian Fund for Fundamental Resea@hants Nos. 97-02- a1y Hayashi and K. Tachibana, J. Vac. Sci. Technol1& 506 (1996.
16572, 97-02-17565, 97-1-00931, and 96-15-9646%1 IN- 32yu. P. Razer, Physics of Gas Discharggn Russian, Nauka, Moscow

TAS (Grant No. 95-133pb (1987.



JETP 88 (3), March 1999 Belotserkovskil et al. 459

33Yu. B. Golubovski and S. U. Nisimov, zZh. Tekh. Fiz66, 20 (1996 35V, Ya. Aleksandrov, I. N. Borodin, E. V. Kichenket al, Zh. Tekh. Fiz.

[Tech. Phys41, 645(1996]. 52, 818(1982 [Sov. Phys. Tech. Phy&7, 527 (1982].
34y. M. Zamalin, G. E Norman, V. S. Filinov;The Monte Carlo Method in
Statistical Thermodynamidén Russiary, Nauka, Moscow(1977). Translated by Paul F. Schippnick



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS VOLUME 88, NUMBER 3 MARCH 1999

Dynamics of formation of ordered structures in a thermal plasma with macroparticles
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The molecular dynamics method is used to model the formation of ordered structures of charged
macroparticles in a thermal plasma at atmospheric pressure. The results of the numerical
calculations are compared with the experimental data. It is shown that the ordered structure of
macroparticles detected experimentally is far from steady state, since the existence time

of the plasma in the experiment is less than the characteristic time of formation of the structure.
© 1999 American Institute of Physids$1063-776199)00503-X

1. INTRODUCTION nally, in contrast to gas-discharge experiments the system in
question is nonstationary by design. The point here is that the
One of the main reasons for the significant interest manitwo-point correlation function is measured 35 mm above the
fested recently in the physics of a dusty plastaaplasma torch nozzle. Taking into account the velocity of the plasma
with macroparticlesis the recently discovered formation of jet (=5 m/9, we obtain for the plasma existence time
ordered structures of macroparticles in such a plasmiiis  t,~7 ms. Thus, it would be wrong to compare the experi-
customary to explain this ordering by the existence of amental data with calculations for stationary conditigasy.,
strong electrical interaction between the charged macropawith Monte Carlo calculations It is necessary to model the
ticles. Most experiments on the formation of ordered strucvery process of formation of the ordered structure. The
tures of macroparticles have been performed in a highpresent work investigates the temporal evolution of the two-
frequency(hf) plasma dischargk:* Ordered structures have point correlation function. The calculations are based on the
also been obtained in the laminar jet of an atmosphericmolecular dynamics method. The calculated results are com-
pressure thermal plasma at a temperature around 1760 K, pared with the results of experiment. Questions of the charg-
in a stratified constant-current glow-dischafdeand in a  ing and dynamical behavior of the system of macroparticles
double electric layef. are also discussed.
The present work examines the dynamics of formation
of ordered structures of macroparticles in experiments with
thermal plasma. The experimental setup used in these expes- \iopEeL
ments was described in detail in Ref. 6. It includes a plasma
generatoftwo-flame propane—air torch of Mekker typee- In order to ensure that the numerical model is correct, it
ating a laminar plasma jet with uniform distribution of its is necessary to analyze the main physical processes influenc-
parametergtemperature, electron and ion densiti@s the  ing the dynamics of the formation of the ordered structures
region of the inner flame, a macroparticle feed system, andf macroparticles. Under the conditions of the experiment
an extensive system of diagnostics allowing one to measurée randomly arranged neutral particles incident upon the
the electrom, and ionn; densities, plasma temperatUfg, plasma region are heated to the temperature of the ambient
and macroparticle radiuBy and densityny. In addition, a gas, acquire an electric charge, and begin to interact. A
photon correlation method was devised to allow detailecsimple estimate of the thermalization time givisee also

study of the dynamical characteristics of the system of macRef. 6
roparticles. To measure the spatial arrangement of the mac- 8T. 2m.]° !
2 [9'g Mg
TRINg\| —— —| (1)
’7ng My

roparticles, we used a time-of-flight counter, which allowed
us to obtain the two-point correlation function.

The conditions of the described experiment differ sig-wheremy is the macroparticle mass, ang andmy are the
nificantly from those of experiments in a gas dischargedensity and mass of the neutral component. For the condi-
which gives reason to hope for new insights into the selftions of the experimenfsee Table)lthe thermalization time
organization of macroparticles in a plasma. First, thanks tds of the order ofr,,~5x 10 %s. This is significantly less
thermal-electron emission the macroparticles acquire a posthan the existence time of the plasma. Consequently, it may
tive charge. The second important feature characterizing thike assumed that heating of the macroparticles is essentially
system of thermal plasma plus macropatrticles is the relativenstantaneous.
simplicity of achieving uniform conditions in the plasma and Under the conditions of our experiment the macropar-
the application of a wide array of diagnostic tools to deter-ticle charge is determined by the absorption of electrons and
mine the parameters of the plasma and macroparticles. Fiens of the plasma, and by emission of electrons from the

Tth=
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TABLE |. Parameters used in the simulation. Dd’ 10'7cm2- s
T,=1700 K P=1 atm Z4=500
6.
ne=7x10°cm 3 nj=4x10°cm3 ng=5x10" cm 3
=17 um Ng=11lpum Ry=0.4um
my=1.6x1012g v, =9.6x10" 571 r.=150 o i 2
y=30 N=200 Ts=0.3us s
2l T - 1
surface of the macroparticle via thermal-electron emission.
The charging dynamics are governed by the equation o . . . L .
1600 1800 2000 2200
dzy Temperature, K
- + + ’
W:|e+li —|e, (2)

FIG. 1. Temperature dependence of the diffusion coefficient of the charged
macroparticledDy. Curves are the results of theoretical calculatitn—

wherel ; is the emitted electron flux, arld andl are th
eréle 1S the e ed electron flux, a d andl, are the téydrodynamic regime2 — free-molecule regime

fluxes of the absorbed ions and electrons, respectively. W
utilize expressions for the fluxes in the case of thermal-
emissive charging, given in Ref. 10:
2 exceed the neutral gas temperature by a factor of a thousand,
|+ = ngne 9 despite the high efficiency of energy dissipation via friction
€ Mg

RaTq with the neutral component in a weakly ionized plasma. Pro-
2 cesses leading up to such a nonequilibrium condition are
X 5 8Tg Zg4e :
IF=mRini\/— exg — , ©) presently unknown. Therefore it has become necessary to
mm; RaTyg examine the dynamical characteristics of the system of mac-
312 2 roparticles with regard to the conditions of our experiment
_ o MeTy 8Ty Zg4e . . ;
|, =27Rj : 1+ with thermal plasma. Toward this end, a photon correlation
27h mMe RaTyg method was devised on the basis of the “Malvern” serial
W 7 .e2 correlator** The essence of the method consists in examin-
Xex;{ __*® ex;{ _ ) (4) ing the autocorrelation function of the laser radiation scat-
Tq RaTg tered by the system of macroparticles. Under certain
whereng;, andm; are the density and mass of the elec-conditionst*1°an analysis of the autocorrelation function of
trons (ions), Z, is the charge of a macroparticle, aid, is  the scattered radiation yields information about the magni-
the work function of the electron. It is easy to see from Egstude of the diffusion coefficient of the macroparticles, and

(3) that consequently about their kinetic temperature.
N The scheme of the photon correlation method is de-
li; \/E>1 scribed in detail in Ref. 16. Here we will dwell only briefly
I m, on the main results of the measurements. Measurements

] ) o were performed over a wide range of plasma parameters
so ion absorption can be neglected. The eqthrlum_ chargfion, electron, and macroparticle densiliesid revealed the
of the macroparticles in this case is givenlRy=1 , which ek influence of these parameters on the dynamical char-
for the conditions of oo 3exper|ment T{=1700K,  acteristics of the system of macroparticles. Figure 1 plots the
Ry=0.4um, ne=7X 101_ cm®, We=2.1eV) gives {ependence of the macroparticle diffusion coefficient on the
Z4=550. Equatior(2) can in principle be solved numerically (emperature. For comparison, the two theoretically calcu-
to determine the time characterizing the charging of the macieq curves are also plotted in the same figure. Curve
roparticles. To estimate the characteristic charging time, W&orresponds to the hydrodynamic regimg <Ry (\p is the

. - _ + . . N K
use the simple expressiap=Z4/l. , which givestcy~4  mean free path of the air moleculemnd was calculated ac-
x 10 ®s. This time is more than three orders of mag”'tUdecording to the formula

less than the existence time of the plasma. By virtue of this

fact, we may assume that the charging is essentially instan- _ Tq
taneous. Moreover, this estimate shows that the charge on d 6myRy’
the macroparticles “tracks” their temperature, since

TC“jT‘héh o . ¢ modeling of . ;1o the inverse free-molecule regimk(>R) and was cal-
nother problem ol correct modeling of a system ot ¢ ;04 according to the formulaee, e.g., Ref. 16
macroparticles in a plasma consists in the recently discov-

ered experimental fact of a significant departure of the mac- 3T3’2
roparticle temperature corresponding to their random motion Ddzz—l,z-

13 8PR§(27my,)
from the temperature of the neutral compongnt? It has 9
been shown that under certain conditions the kinetic temwhere P is the gas pressure. Under the conditions of our
perature of the macroparticles in a gas-discharge plasma caxperiment \¢,~0.8—1.1um, i.e., A;p,~Ry and, conse-

wherey is the viscosity of the medium. CunZcorresponds
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qguently, a regime intermediate between the hydrodynamicadius did not exceed sevetathe given number of particles
regime and the free-molecule regime is realized. Neverthewas completely sufficient to obtain reliable results.
less, Fig. 1 shows that cun (the free-molecule regime The parameter values used in the simulation are listed in
provides a better description of the experimental resultsTable |I. They correspond to the conditions of an actual
Thus, the experiment shows that under the conditions of thexperiment® and also to the parameters used in Monte Carlo
experiment, an ensemble of charged macroparticles behavealculations of the given systefiThe Coulomb interaction
like an ordinary collection of Brownian particles with diffu- parameted’, and the interaction parameter with screening
sion coefficient calculated in the free-molecule approximataken into account]’y, were calculated as follows:
tion.

Z3e? Z5e? F< I

=5 Te=Texg — . W
<7, IT, N

3. MODELING RESULTS
. Note that because of the significant concentration and rela-

hod di he KARAT daah ﬁvely large charge of the macroparticles, the ion and electron
met 0d programme |n.tot c . computer codd.ne o ngities turn out to be substantially different. The problem
two-dimensional equation of motion was solved for each

ticl ith all for the int tion betw of determining the screening radius for such a system re-
macroparticie with afiowance for the interaction be eenquires a special analysis, which lies beyond the scope of the

macroparticles, the frictional force exerted by the neutralpresent paper. In our calculations, it was set equal to the

component, and a random force arising from collisions with . :
: ; electron Debye radiusy= \/Tg/47re2ne, so that screening by
molecules of the ambient gdthe Brownian forcg ions could be neglected.

d?r re—r: dr We go on now to the main results of the numerical simu-
k k i k . . .
My—— = 2 D(r) T~ Mgvs— T Fyr. lation. They show that after relaxation the system arrives at a
dt j#k |rk_ r]| dt . . . . .
state which we can nominally call liquid-like. This result is
) in agreement with the values of the nonideality parameters

Here vy, is the friction frequency, calculated in accordancel c andI'q. Figures 2a—2d show the temporal evolution of
with Sec. 2 with the formula that is valid for the free- the two-point correlation functioR(r), which we calculated

r=[re=rl

molecule regime: from the positions of the particles at a certain moment of
, time. Figure 2e was obtained by averagiRfr) over time,
, _8PRy [2mmg which is possible since in the time interval 4041ts< 70 ms

T 3my Ty the system reaches the equilibrium state and the two-point

correlation function becomes essentially constant. In the con-
struction of the two-point correlation function the steprin
was chosen equal to 0.1For comparison, Fig. 2 also plots
r the correlation function obtained directly in the experiment
exp( ) (6)  (dashed curve

Analysis of Fig. 2 Initially, closely spaced particles dis-
under the assumption that the interaction potential betweeperse, as a result of which a region is formed where the
the macroparticles has the Debye form; heris the screen-  two-point correlation function vanishgBigs. 2a) and 2b)].
ing length. At the initial moment the charged macroparticlesThis process concludes rapidly, since the repulsive force be-
(charging is essentially instantanepase randomly disposed tween particles increases abruptly with decreasing distance
in the calculation region, consisting of a square with sidebetween them. Next, the first maximum increases with the
length Ly. To model an infinite system, we used periodic passage of time, and simultaneously higher-order peaks be-
boundary conditions, which make it possible to avoid edgagin to form [Fig. 2d]. The steady-state correlation function
effects and determine the macroparticle density. The twofFig. 2¢ is characterized by several pronounced maxima,
dimensional macroparticle density was chosen such that thehich is characteristic of systems with close-range order. It
mean interparticle distanck coincided with its value ob- was in this sense that we called the final state of the system
tained in a real three-dimensional experimentliquid-like.
| =(47ny/3)" . The interaction between macroparticles, The determination of the formation time of the ordered
described by the screened Coulomb poteriéalwas cut off  structure remains, to a certain degree, arbitrary. Obviously, it
at very small distances in order to avoid too small a time steplepends on which spatial scale of the correlations is of inter-
in the initial stage of the calculations; thus we sk(r) est. The greater the distance at which the two-point correla-
=®(ly) for r<ly (1p=0.3). In the calculations the time tion function approaches its final form, the longer the time
step was set equal te,=0.03/v, . For these assignments, needed for this to happen. Thus, for example, in our case we
250,000 time steps were calculated per run. Therefore, wean say that the first three peaks form i35 ms. One can
were forced to use two-dimensional geometry with a rela-also introduce the formation time of the first maximum of the
tively small number of particlesN=200). A larger number two-point correlation functiort,. In essence, this is the time
of particles would have required too much calculation time.needed for the emergence of any close-range order in the
Nevertheless, since we were calculating a system with a nosystem. Numerical calculations shows that under our condi-
too-large nonideality paramet€r,, such that the correlation tionst;~5 ms.

(see also Ref. 16 Fy, is the random Brownian force, and
®(r) can be written in the form

Iy Z%e?
CD(I’)Z _ZdGWZ r_z

1 r
+ —
A

N
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R(P t=0.7ms R(n) t=7ms
3 3

FIG. 2. Temporal evolution of the two-point corre-
lation function. Solid curve — simulation, dashed
curve — experiment. Formation tinte=0.7 (a), 2
(b), 5(c), 7 (d), >40 ms(e).

R t=5ms
3

As noted in the Introduction, one peculiarity of the shows that fot=7 ms the first maximum is already close to
present experiment is the finite existence time of the plasmats final shape while the higher-order peaks are only begin-
beingt;;~7 ms. According to the numerical simulation this ning to form. Thus, the existence of just one peak is ex-
implies that the structure being diagnosed in the experimentlained by the fact that during the existence time of the
is still being formed, and consequently the two-point corre-plasma the ordering process does not have time to play out
lation function that has been measured is not the two-pointompletely. Second, the first maximum of the experimental
correlation function corresponding to the steady state. Neveorrelation function is significantly broadéoy almost five-
ertheless, the existence time of the plasma turns out to bield) than the calculated function. One of the possible rea-
completely sufficient for the emergence in the system ofons for this broadening, associated with peculiarities of the
close-range order. use of a laser time-of-flight counter, is discussed in Ref. 18.

Figures 2a—2e enable us to compare the shape of thenother reason for this broadening could, in principle, be
experimental two-point correlation function with that of the stochastic fluctuations of the macroparticle chargdsow-
calculated function. We make two remarks here. First, theever, as numerical estimates show, the frequency of these
experimental correlation function has only one peak, in comfluctuations ~ 7, is large while their amplitudesZ4/Z4
plete agreement with the modeling results. Indeed, Rid. 2 ~10 2 is so small that they probably cannot explain the
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We study the kinetic model of the formation of the energy spectrum of nonthermal electrons
near the front of a quasilongitudinal, supercritical, collisionless shock wave. Nonresonant
interactions of the electrons and the fluctuations generated by kinetic instabilities of the ions in
the transition region inside the shock front play the main role in the heating and
preacceleration of electrons. We calculate the electron energy spectrum in the vicinity of the
shock wave and show that the heating and preacceleration of electrons occur on a scale of the order
of several hundred ion inertial lengths in the vicinity of the viscous discontinuity. Although

the electron distribution function is significantly nonequilibrium near the shock front, its low-
energy part can be approximated by a Maxwellian distribution. The effective electron
temperaturéTs" behind the front, obtained in this manner, increases with the Mach number of

the shock wave slower than it would if it followed the Hugoniot adiabat. We determine

the condition under which the electron heating is ineffective but the electrons are effectively
accelerated to high energies. The high-energy asymptotic behavior of the distribution function is
that of a power law, with the exponent determined by the total compression ratio of the

plasma, as in the case of acceleration by the first-order Fermi mechanism. The model is used to
describe the cas@mportant for applicationsof acceleration of electrons by shock waves

with large total Mach numbers, with the structure of these waves modified by the nonlinear
interaction of nonthermal ions and consisting of an extended prefront with a smooth

variation of the macroscopic parameters and a viscous discontinuity in speed with a moderate
value of the Mach number. €999 American Institute of Physid§1063-776(99)00603-4

1. INTRODUCTION ture of the front and other manifestations differ substantially
for quasilongitudinal and quasitransverse waves. The theory
The physical processes of relaxation of highly nonequi-of quasitransverse, collisionless shock waves and the meth-
librium perturbations of plasma, responsible for the forma-ods used in observing such waves are described, e.g., in
tion and structure of collisionless shock waves, are of fundaRefs. 13—16. Here we examine only quasilongitudinal shock
mental importance in modeling various objects with a highwaves.
energy release in cosmic plasha. Collisionless shock The front of a quasilongitudinal, supercritical shock
waves in rarefied plasma serve as a universal source of nowave is an extremely extended transition region occupied by
thermal charged particles and the observed radiatfoim magnetic-field fluctuations with amplitudesB/B~1 and
the case of strong shock wavesith Alfvén Mach numbers characteristic frequencies below the ion gyrofrequéhcy
M exceeding several unjtshe dissipation due to the anoma- (Fig. 1). The generation of fluctuations is due to instabilities
lous resistance of electrons proves to be insufficient and thia the interpenetrating multicurrent ion movemehtsThe
structure of the shock front is determined by kinetic insta-width A of the front(the transition regionof a quasilongi-
bilities of the ions. Such collisionless shock waves are calledudinal shock wave reaches several dozen ion inertial lengths
supercritical’ Here, to avoid any misunderstanding, we mustl; =c/wp; .
bear in mind that the concept of a supercritical, collision  Computer simulation that uses hybrid codes has made it
shock wave in radiative gas dynamics is defined differéhtly. possible to arrive at a very important result, i.e., the fact that
In this paper we deal only with collisionless, supercriticala group of reflected nonthermal ions detaches itself in the
shock waves. Modeling collisionless shock waves in laboraprocess of relaxation of fluctuations within the front of a
tory conditions is extremely difficult, but there is a vast body supercritical, quasilongitudinal shock wat’eThe reflected
of observational data on the structure of shock waves in th®ns with a gyroradius exceeding the width of the shock front
interplanetary medium® Computer simulations of the are then accelerated very efficiently, via the Fermi mecha-
structure of collisionless shock waves that use hybrid codesiism, by converging plasma fluxes carrying MHD
which interpret protons as particles and electrons as a liquidjuctuations-1"8# Electrons with gyroradiuses larger than
have made it possible to describe the main features of supethe front width are also efficiently accelerated by the first-
critical, quasilongitudinal shock wavesith the angle be- order Fermi mechanism in the vicinity of a quasilongitudinal
tween the normal to the front and the local magnetic fieldshock wave?® However, a nonrelativistic electron must have
smaller thanm/4) (see Refs. 11 and 12Note that the struc- an energy that isn,/m, times higher than that of the respec-
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B/B gy numbers~100 and largefsee Sec. b In this case, due to
nonlinear effects of the interaction of the accelerated par-
ticles with the incoming flow of ions there is effective
4 \ 110 smoothing of the ion speed profile by the pressure of the fact

accelerated particles, which penetrate the region of “undis-
turbed” flow before the shock frort? The characteristic
scale of the region of smooth deceleration of the incoming
2 {05 :
l flow, known as the prefront, ig,:~(v;/u)\;, wherex; and
i1y v; are the transport mean free path and the speed of the
A accelerated nonthermal ions, which carry a significant por-
0 ' 0 tion of the flux energy thermalized in the shock wave, and
is the speed of the shock front. A detailed computer simula-
" tion of the large-scale structure of such a shock wave that
uses standard hybrid codes with a spatial resolution of order
l; is difficult sincel,s>1;. Such a shock wave can be suc-
cessfully modeled by the Monte Carlo mettHot.has also
been shown that the front of a strong collisionless shock
wave consists of an extended prefront and a viscous discon-
4k - tinuity in speed, corresponding to the local Mach numider
which is smaller than the total Mach number of the shock
! NI wavel*2!Here the compression of matter at the discontinu-
0 500 1000 . 1500 ity (on the scale of several hundréd can be much lower
than the total compression of the medium in the shock wave
F_IG. 1.‘ Pr_ofile of a_fluctuating magnetic field in the _vicini_ty of a viscous \yith allowance for compression in the prefront.
dlsco_ntl_nmty(accordlng to_the data_ of Bennett qu Elli$drwith _the char- A remark is in order here. Long before the first results
acteristic flow speed profile superimposed onzti§ measured in units of o T .
clup). describing the structure of a collisionless shock wave modi-
fied by the pressure of nonthermal particles were obtained,
physical models of collision shock waves were being used in
tive proton to be injected into the Fermi acceleration mechamany-liquid radiative gas dynami€$??*These models pre-
nism. Thus, the problem of electron injection actually re-dicted the structure of strong shock waves with a prefront.
duces to forming a nonthermal electron distribution inFurthermore, the conditions needed for the realization of dis-
energy up to energies of ordem(/mg) T4, whereT, is the  continuous solutions for shock waves with an isoelectron-
temperature of the plasma in the undisturbed redfddere  thermal discontinuity and of continuous flows as functions of
and in what follows we use labels 1 and 3 to indicate quanthe strength of the wave and the radiation pressure before the
tities that refer, respectively, to the incomiritpward the  front were determine®®

front) and outgoing(away from the front flows of plasma. We allow for the interaction of electrons with the pre-
The label 2 indicates quantities that refer to the transitiorfront (on scales of ordelr,¢) in the adiabatic approximation,
region. but study the problem of nonadiabatic heating and accelera-

There is no way in which the hybrid-code description oftion of electrons at the density discontinuity with a Mach
electrons as a liquid can provide information about nonthernumber smaller thaM , by employing the model developed
mal electrons. However, since magnetic-field fluctuations irbelow. If the local Alfven Mach number of the incoming
the transition region of a supercritical shock wave are deterflow in a strong shock wave exceelik, , the thermal elec-
mined by kinetic instabilities of the ions, which carry a sig- tron distribution becomes highly anisotropic and mode gen-
nificant portion of the energy dissipated in the shock wavegeration effects of the whistler type become important.
we can study the effect of magnetic-field fluctuations on the_evinsorf*?°did a detailed study of electron acceleration in
kinetics of the electrons, interpreting the latter as test parstrong quasilongitudinal shock waves wikte= M, . Earlier,
ticles. In such an approach the electrons do not dynamicallgargill and Papadopoul#&modeled nonadiabatic electron
affect the fluctuations. However, the effect of the electronheating in a quasitransverse shock wave With: M, by the
liquid on the dispersion properties of the waves is taken intdiybrid-code method. The calculations showed the heating to
account in computer simulation based of hybrid codes. Oube highly efficient. As noted earlier, nonthermal electron dis-
model relies on this fact. It allows calculating the electrontributions could not be studied directly by the hybrid code
energy spectrum near a fast quasilongitudinal shock wavemethod.
with a local Alfven Mach number of the viscous discontinu- Note that we have limited our discussion to nonrelativ-
ity, M, smaller than M <M*E(,8mp/me)1’2, where B istic shock waves, in which flow dynamics is determined by
=4P/B?, with P the plasma pressure. Moreover, the modelthe ion component. The modeling of relativistic shock waves
can be used for computer simulations of electron kinetics inn an electron—positron plasma is discussed, e.g., in Refs. 27
the vicinity of extended, collisionless shock waves with largeand 28. In Sec. 2 we discuss the kinetic model for describing
Mach numbers i >M ) propagating in a turbulent plasma, the electron spectrum in the vicinity of a collisionless shock
in particular, of shock waves of supernova shells with Machwave. In Sec. 3 we examine the effective electron tempera-
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ture. Applications of the theory to direct observations ofdoes not allow the electrons to acquire an energy of order
electrons in interplanetary shock waves are studied in Sec. 4m,/m)T;.
Finally, in Sec. 5 we give a brief description of the applica-  To describe the heating and acceleration of a magnetized
tions of our model to galactic sources of hard electromagelectron in the shock wave transition region by a vortex elec-
netic radiation. tric field, we use the drift transport equation. More precisely,
we employ the method developed by Chandrasekhait 3!
for obtaining a transport equation averaged over rapid rota-
tions of the electron, which is then averaged over the en-
semble of short-correlated fluctuations of magnetic and
We consider a collisionless shock wave propagating in dience vortex electric fields. Here, following the approach
plasma with~1. If the Alfvéen Mach number of the shock developed by Toptygif’ we arrive at a transport equation
wave meets the conditiokl <M, , the velocity of thermal for the isotropic part of the electron distribution function. In
electrons exceeds that of the shock front. Here the anguldhe reference frame in which the front is at rest, the isotropic
distribution of the electrons is almost isotropic. part of the quasi-steady-state electron momentum distribu-
We assume that the front of a supercritical shock wave igion function N(z,p) normalized to the phase volume ele-
the transition region of finite width (between the incoming ment satisfies the following equation in the transition region:
and outgoing plasma flowswithin which are strong

2. DESCRIPTION OF MODEL

magnetic-field fluctuations and a vortex electric field. In this K, (p) *N(z,p) —u(z) IN(z.p) + p N au(2)

work we limit ourselves to a shock wave with a flat front, 22P 972 Jz 3dp 9z

i.e., front curvature is ignored. The characteristic correlation

lengthl ;. of fluctuations is comparable to the gyroradii of the 19 N

jons i - i + =5 5-P?D(p) =0 )
ions in the plasma and is much longer than the gyroradii of p2 p p

the electrons whose energy is close to thermal. What is im-

portant is that such fluctuations can be directly observed invhere
guasilongitudinal shock waves and are clearly manifest

themselves in computer simulatioffsSince the distribution D(p)wng(ﬁ
of fluctuations in the transition region is probably close to

isotropicl® on scales larger thah the electron motion can

be interpreted as spatial diffusion. The transport mean fre
path of the magnetized electrons,, in this case is approxi-
mately equal to the correlation length of strong magnetic
field fluctuations, A,~I., for electrons with gyroradii
smaller thanl, and is almost energy independent far

2

2( Va 2
v
gereu(z) is the mean velocity of the ion component of the
ux averaged over fluctuations of scales of orerWithin
this model, allowance for the effect of slow cyclic front ref-

ormation, studied by Scholéf,can be described by a slow
time dependence of the quantities averaged over the rapid

<T,(my/m,) if the spectrum of magnetic-field fluctuations fluctuations in the tra}ngition region. Here, however, we limit
is close to a single-scale one or decreases with increasir%'rselves to the statistically steady-state problem. The factor
wave number according to ac~ “-law with v=2. G depends on the index of the distribution of the power-law
The longitudinal microscopic diffusion coefficient for SPectrum and the polarization of the magnetic-field
electrons whose gyroradii are smaller tHaris k,,~vA/3, fluctuations® For power-law spectral distributions of fluc-
wherev is the electron velocity, and theaxis is directed tuations with an index=2 and for a Gaissian distribution
along the normal to the shock front. The magnetic-field fluc-of unpolarized magnetic-field fluctuatior$,~0.1. Here the
tuations are assumed uniformly distributed over the fronimean-square magnetic-field fluctuatiawg(éB/Bo)z. The
width and are characterized by the mean-square quaatity distributions of magnetic-field fluctuations and of the ion-
=(6B/B)?. In the highly turbulent plasma of the transition component velocity depend on the Mach number of the
region of the shock front, the transport of particles with mod-shock wave”’ A detailed procedure of finding these distribu-
erately epithermal energies can be due to transport by stdions based, say, on hybrid simulations, is also needed for a
chastic vortices with scaldslying in the intervall .=1=A. precise description of the low-energy asymptotic behavior of
We use the methods of describing of highly turbulent plasD(p). The results discussed in Ref. 30 show that in the re-
mas discussed in Ref. 30. Here the macroscopic coefficiemgion of moderate epithermal momenta(p) exhibits an
of turbulent electron diffusiofaveraged over vortex move- asymptotic behavior of the typB(p)~ p?G,u;A 1, which
ments in the scale interval mentioned eajlier the low-  differs from (2) (the latter holds in the high-momentum re-
energy limit is independent of particle velocity. gion). The numerical facto, and the related momentum
The fluctuation vortex electric fields induced by chaoticlimit p,, at which the expressiof2) is matched with the
ion flows in the transition region determine the statisticallow-energy asymptotic formula fdd(p), depend on the de-
acceleration of electrons. For a strong, quasilongitudinal, sutails of the distribution of vortices over sca®sWhen cal-
percritical shock wave the effect of electron acceleration by aulating the models, we parametrized this quantity and stud-
potential electric field in the transition region can be ignored,ed the dependence of the resulting electron distributions on
since the potential discontinuity at the front is smaller thanthe parametep,. As we will show shortly, the choice of the
0.0Empuf for M~5 and decreases with increasiMy (see value of the parameter for matching the two regimes ofihe
the review in Ref. 10 A potential field of such magnitude vs. p behavior has a strong influence on the effective elec-
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tron temperature behind the shock frgate Sec. Bbut has  boundaryz=0, we find that the problem reduces to solving
very little influence on the fluxes of highly epithermal elec- the equation to the right of the boundary 0 with the fol-
trons accelerated by the shock wave. Note that the electrdiowing conditions at that boundary:
acceleration, which in our model is described by the coeffi- K. ON
cientD(p), is an analog of the well-known betatron effect. N = —Z=N,, (7

In some cases, outside the transition region we can ig- Uy 9z
nore the statistical acceleration effect, which is described inhereu, is the speed of the incoming flow, and the subscript
the equation by a second-order differential operdthifu-  “2” corresponds to the transition region. Reasoning along
sion in momentum due to inelastic electron scattering bysimilar lines, we can impose the conditions at the viscous
magnetic-field fluctuationsThis is the case in interplanetary discontinuity in speed inside the transition regiorzatz, ,
shock waves, for example, where the boundary of free par-
ticle escapésee conditior(10) below) is at a distance of the N2-(P)=Nz+(p), J2-(P)=J2+(P), )
order of severalA from the transition region of the shock and at the boundary between the outgoing flow and the tran-
front. Here the derivativéu/ oz is usually also small, since sition region atz=A,
the smoothed flow speed changes little outside the transition _ _
region. Then in the incoming and outgoing flows the isotro- N2(p)=Ns(p), J2(p)=Js(p)- C)
pic part of the electron distribution function satisfies the  This one-dimensional model with diffusion propagation

—

equation of the particles in the spatially unrestricted outgoing-flow
5 region does not allow for the finiteness of the shock front and
_‘9_Ni_u.‘7_Ni:O =13 3) the related restrictions on the acceleration efficiency. In par-
' 972 ' 9z ' o ticular, one must bear in mind that most electrons that have

) . _ . moved away from the front in the outgoing-flow region to

wherei=1 correqunds to the incoming flow,=3 COME-  distances of the order of the transverse size of the shock
sponds to the outgoing flow, ari=k;,. This equation has 5.6 |eave the system, due to diffusion and the drag by
a simple analytic solution, which makes it possible to sim-jarge-scale flow, and do not participate in further accelera-
plify and speed up calculations of the model. Numerically, ittion. We allow for this effect by imposing an additional

is more convenient to solve the boundary value problem witthoundary condition in the outgoing-flow region at a distance
an equation obtained frorft) for the functionp®N(z,p), 7 of the order of the transverse dimensions of the front. The
since for this function the boundary conditiops=0 andp  condition is that of free escape of the electrons that have

= have the simple fornp®N(z,p)=0. The calculation passed this boundanz€z.) and are freely moving in the
procedure and the diagrams were set up for this function, biight half-plane:

here it is more convenient to discuss the functidfz,p).

At the boundaryz=— the N;(p)=N_..(p) electron N3-(pP)=N3z4(p), J3-(p)=J3+(p),
distribution function was taken in form of the thermal Max-
wellian distribution with a temperaturg, and a power-law J3+(p)=f >0VF dQ,, (10
Pz

correction, the latter describing the background nonthermal
electron flux in the incoming flow far from the shock wave with F the electron distribution function, which in the diffu-
(this additional term contains contributions of previous shocksion approximatiotf has the form

waves.

At the boundary between the incoming flow and the F(r,p,t):i
transition region we impose the matching conditions for the am
distribution functions and the fluxes. We also place the ori-
gin at this boundary Z=0). Then atz=0 we have the
boundary conditions

N(r,p,t)+ %vJ(r,p,t) . (11
U

Equation(2) in the outgoing-flow region has an analytic
solution that is similar to that in the incoming-flow region:

us(z—A)
Ni(P)=Na(p),  J1(P)=3a(p), @ Ns=Ca(p)exp-—j—+Ca(p), (12
i i 3
where the flux) is given by the formula whereC4(p) and C,(p) are arbitrary functions determined
IN; p IN; by the boundary conditions. Using the explicit form of the
iz Ui 30p° (3 solution and the conditions at the boundariesA and z

) . o =Z;, We find that the problem reduces to solving EL.in
The first term describes the diffusion flux and the second, thg e transition region with a condition at the boundaryA

convection flux(related to the motion of mediumin the

Ji:_k

incoming-flow region, Eq(2) has an analytic solution satis-  _, Mo, P 9 [ Ko No ko Np
fying the condition at—oe: 2 9z 33 9p\ % ug 9z ug a9z
U,z 1% k2 (9N2 k2 (7N2
N,=C exp—+N_., 6 =_ L Lcy e c
1=Ci(p)exp K (6) Z(Nz w9z T U, oz fl (13

whereC,(p) is an arbitrary function found from the bound- wheref=exp{[us(z.—A)]/ks}, and a condition at the bound-
ary conditions. Using this solution and the condition at theary z=0,
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k, N, Figures 2 and 3 depict the results of calculating the elec-
=No. (14 tron distribution function at the transition-region boundaries:
the two solid curves in each figure correspond to the spectra
It is now conver~1ient to go over to the dimensionlessy; ihe point&=0 andz=1. The modeling was done for a
variablesz=z/A andp=p/pr and the dimensionless speed pare distributionN_..(p) equal to the Maxwellian distribu-
u(z) =u(z)/uy, wherepr=y2mekT is the thermal momen- tion of electrons with a temperatufig and of unit concen-
tum. Then the problem can be characterized in a natural wayation. The dotted curves in Figs. 2 and 3 represent the ap-
by two dimensionless quantities, the parameteand the  proximations of the low-energy part of the electron
paramete’ =u;A/vA calculated for electrons witp=1.  distribution by Maxwellian functions; also indicated are the
The parameteF depends on the strength of the shock waveeffective temperatures measured in unitsTaf (for more
and is linked to the Alfva Mach number through the rela- details see Sec.)3The calculations were done for two dif-
tionshipFocM(me/,Bmp)”z(A/IC). Generally speaking, the ferent values of the shock parameters. Figure 2 depicts the
width A of the transition region depends on the Mach num-results of calculations for a boundary condition at paint
ber of the shock wav& Recall that the applicability of the =1 corresponding to the diffusion propagation of electrons
adopted model is limited by the condition imposed on thein the outgoing flow. The results of calculations of the elec-
local Mach number of the viscous discontinuity in speed:tron distribution function for a shock wave with electron
M(me/Bmy)?<1. The parameter, introduced above, transport in the transition region due to scattering by
characterizes the amplitude and spectral distribution ofagnetic-field fluctuationsp,,~p) are shown in Figs. 2a

N_,+——
U, dz

magnetic-field fluctuations in the shock wave. and 2b. The model with turbulent low-energy electron trans-
After we have found the distribution function, we can port (p,>p;) in the transition region of the shock wave
determine the electron flux registered by the detector: leads to the distributions depicted in Figs. 2c and 2d. Note
dp the substantial difference between the effective temperatures
J(E)=vp2N(p(E))E. (15 under relatively small variations in the high-energy

asymptotic behavior for these two cases.

For typical magnetic-field fluctuation spectra, the elec-  The electron spectra for finite-sized systems in which the
tron mean free patth(p) increases with momentufi.The  particles freely leave the plare=1 are depicted in Fig. 3.
exact shape of this dependence is determined by the spegigures 3a and 3b correspond to the case whgrep, and
trum of magnetic inhomogeneities and the large-scale motiofigs. 3c and 3d to the case whayg>p+. The differences

of the medium. o ~ between systems with different conditions of particle escape
In our calculatpns of the electron distribution function from the acceleration region become especially evident when
we used the following dependence: one analyzes high-energy asymptotic behavior. For systems
~ ~ with diffusion particle propagation in the outgoing-flow re-
e =Py ion there f toti law distribution of
Axp)=1 _ _ o gion there forms an asymptotic power-law distribution o
l(p/py )%, pP=p, . high-energy electrons with an exponent determined by the

) - shock-wave compression rafibig. 2). This distribution cor-
According 1/;‘0 the results of Sec. 2, we hawe, (egponds to standard first-order Fermi acceleration of test
=(m,/me) *%. The exponent depends on the spectrum of paricles! For systems with free escape, the asymptotic dis-

magnetic fluctuations on scales larger than the proton gyrGipytion of high-energy particles drops off exponentially
radius. Under typical conditions,<0/<1. Whatis important  (gee Fig. 3

is that if '>1, epithermal electron transport in the transition

region and in region 3 is determined by turbulent vortex3- EFFECTIVE ELECTRON TEMPERATURE

fluctuations of the plasma macroscopic speed. Then, in the A specific feature of all shock waves, both collisional
low-energy region, both the transport electron mean free patand collisionless, is the possibility of strong nonadiabatic
and the spatial diffusion coefficient are energy-independeriteating of the medium after the passage of the shock
and are determined by the properties of the turbuléfdée  front®3*In standard single-liquid collision shock waves, the
value of the turbulent diffusion coefficient is estimated atheating of the medium behind the front is determined via the
ko,~u,A, for electron with momentp<p,. HereA, isthe  Hugoniot shock adiabat, which for strong shock waves yields
mixing length, which is much smaller than Measurements the T;'/TlocM2 law. In a multicomponent system, the quan-
from observations or numerical modeling of the polarizationtity T? calculated via the shock adiabat is no more the tem-
and the correlation function of fluctuations in the macro-perature of the separate component even for a collision shock
scopic speed would make it possible to use, instead of estivave and determines an average quasiequilibrium tempera-
mates, the detailed theory of calculations of transport coeffiture. For a collisionless shock wave, a substantial portion of
cients in highly turbulent plasma described in Ref. 30. Wethe energy of the incoming flow is transferred to nonthermal
know of no measurements of these fluctuation parameterparticles and vibrational modes. The assumption that there is
Hence in this paper we study two cases: that of electroiocal thermodynamic equilibrium behind the front, which is
transport within the transformation region of a shock waveused to obtain the Hugoniot shock adiabat, may be violated
due to scattering by magnetic-field fluctuations,{ pt), very significantly.

and that of low-energy electron transport via turbulent diffu-  The spectrum of the electrons behind the front of a col-
sion (p.>p1). lisionless shock wave is highly nonthermal, but in some
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FIG. 2. Electron distribution function in the vicinity of a shock
wave withI" =5 for a diffusion boundary condition. The dotted
curves represent the approximations of the peak in the distri-
bution by Maxwellian functions with effective temperatures:
(a) and (b), calculations forp,~p+; (c) and(d), calculations

for p,>pr. Herea=0.4 ((a and (c)), and «=0.1 ((b) and
(d)).

FIG. 3. The same as in Fig. 2 but for the case in which the
electrons freely leave the surfage 1.
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102 L 1 L FIG. 4. Dependence of the effective temperature of ac-
2 3 ] celerated electrons on paramelffeat «=0.5. Curvesdl,
3 1 2, 3, and4 have been calculated fpr,~ p;, and curves
4 3 5 have been calculated fer,>p. For curvesl and5,
4 the length of the electron path was assumed to be
momentum-independent. For curvas3, and4 the ex-
10! 3 3 ponent in the momentum dependence of the length of
[ E the electron path is 0.3, 0.5, and 1, respectively.
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cases in the low-energy region near the peak in the distribut in Fig. 48 and in condition of free escafeurvel in Fig.

tion it can be approximated adequately by the Maxwelliandb). This result coincides with the dependence that holds for

distribution with an effective temperatuﬂ'@ﬁ, which distri-  strong shock waves in a medium with collisions, which en-

bution then smoothly transforms into a power-law distribu-sure local equilibrium in the outgoing-flow region. Nonadia-

tion for the accelerated particl¢see Fig. 2 The problem of batic heating in a collisionless shock wave with-10 is

the ratio of the effective temperature of the particles behingpredominant up to mean-square field amplitudes0.01.

the front of the collisionless shock wave to the temperature In collisionless shock waves, for models with different

T, obtained via the Hugoniot adiabat is of interest both fromelectron scattering laws in the transition region of the front

the viewpoint of understanding the transport energy-the functionT¢(T") differs dramatically. In our model, the

relaxation processes in a shock wave and from the viewpoirgcattering of electrons with an energy lower tham, (m,) T,

of numerous applications. In collisionless shock waves, thés nonresonant. To formulate observational tests for verifying

temperatureT’, is not an observable, but the rafig"/T;  the model, we also modeled tHE*(I') functions that

may serve as a measure of effectiveness of electron heatingmerge if the conditions for nonresonant scattering are vio-

The effective temperature can be observed. In shock wavdated.

in the interplanetary medium, this temperature is determined When the transition region contains small-scatel)

by direct measurements of spectral electron flife8bser-  resonant fluctuations, the transport electron mean free path

vations of soft x-rays emitted by collisionless shock wavesdepends on electron momentum. This changes the function

make it possible to estimate the effective temperaT@Fbof TeM(I"). Curves?2, 3, and 4 in Fig. 4, corresponding td

the electrons behind the fronts of such waves in supernove 0.3, 0.5, and 1, respectively, illustrate this fact. For in-

remnants(see the review in Ref. 34and in the vicinity of  stance, for an electron mean free path proportional to the

high-speed clouds, where a large nonthermal excess @fiectron gyroradiusg{=1), which corresponds to Bohm dif-

x-rays is also observetl.The above model makes it possible fusion, we haver®/T;«M?2 with a~1. The curvegt in Fig.

to explain the observed excess of x-rayphotons as the bremg-represent the functiofi®™(T") in this model.

strahlung from the high-energy part of the nonthermal elec- Whenp > p+, turbulent electron transport by developed

tron distribution. vortex turbulence in the shock wave transition region is pre-
We have numerically modeled the effective electrondominant. In this case, effective electron heating can be sup-

temperature as a function of the Mach number. Calculationpressed even for strong shock waves, which is illustrated by

in the modeling process involved calculatiiﬁ@ff as a func- curves5 in Fig. 4.

tion of I" for various values of the parametes. Recall that The difference in the models discussed makes it possible

the parametep, characterizes the role of turbulent electronto formulate observational tests. Indeed, fluxes of observed

transport by vortices inside the transformation regiomJf  soft x-rays from the shock waves from supernovas are sen-

~pr, the role of turbulent transport is minor, and transportsitive to the value off®". Hence there is the possibility of

occurs only due to scattering by magnetic-field fluctuationsstatistically analyzing the residues with the measupéd
Remaining within the model of collisionless heating andoptical lines speeds of shock waves and the effective tem-

accelerating of electrons in the shock wave transition regioperaturegdetermined through x-ray measuremeérgs as to

by magnetic-field fluctuations with a coherence lenfith verify the dependence of the effective electron temperature

~l;, we can approximate the effective heating by theon the front speed and hence to fiiéf"(I'). Another pos-

Tef/T,=I"' law (curvesl in Fig. 4). Here the quadratic law sible test is related to the fact that efficient electron heating

holds approximately for both a diffusion boundary conditionin a shock wave with developed vortex turbulence is ex-

at the boundary of the extended outgoing-flow redgicurve  tremely weak in the transition regidigreater by a factor of
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approximately 2.5 even fdf =10), while T is at least ten In the region of the incoming flow before the shock
times higher if electron transport due to scattering byfront, the electrons freely leave the acceleration region in
magnetic-field fluctuations is the predominant mechanisnyiew of the large value of\... This corresponds to the con-
(Fig. 4). Since the high-energy electron fluxes accelerated bylition for free escape a=0. The electron spectrum and the
the shock wave are of the same order for these two cases, vieme dependence of the fluxes measured by the ISEE-3 sat-
can select the correct electron-transport mechanism by anallite can be obtained via calculations if one assumes that the
lyzing the ratio of the fluxes of radiation from the shock electron mean free path near the shock wave behind the

wave in the x-rayandy-ray windows. front, Ag, is roughly 18 cm, which agrees with estimates
made on the basis of the model. Within the model, this leads

4. ACCELERATION OF ELECTRONS BY SHOCK WAVES to the condition for free escape at the boundary300.

IN THE INTERPLANETARY MEDIUM Electrons that have reached this boundary leave the accelera-
tion region.

Modeling the effects of generation of nonthermal elec- According to the observational data provided by the

trons by collisionless shock waves in a laboratory is exygeg 3 sateliite, the electron spectrum in the interplanetary
tremely difficult. Information about the spectra of electrons .. \m far from shock waves has a highly nonthermal na-

accelerated by shock waves outside the heliosphere can lﬁ?re and can be described by the sum of the Maxwellian
extracted only indirectly, i.e., either by analyzing the Ob'thermal spectrum and a nonthermal power-law background.

;i;veirilri(:r?amggrnEtlCs{aglagontrféofrga?bigﬁg V;?:\t/r? of According to observationsthe nonthermal background un-
9 y y studying u P dergoes strong temporal and spatial variations. Our model

cosmic electrons and p_osnrons observed near Fhe Eath.S. 0rréquires specifying a bare electron distribution function in
bit. At present, measuring the electron spectra in the vicinity, . . .
of shock waves in the interplanetary medium with spac the incoming flow at—<«. Hence, to describe the accelera-
robes is the only direct metﬁod of iri/vesti atin suchp hee—[ion in the entire energy range, we must know the electron
b y gating P temperature and concentration before the shock wave and the
nomena. Such measurements have been carried out for sev-

eral decade¥*® The results of observing 37 shock waves byparameters of the nonthermal background. The background

the ISEE-3 in the interplanetary medium have been summeﬁux of nonthermal electrons in the “undisturbed” interplan-

up in the review in Ref. 9. The detectors on board ISEE_3etary medium in the course of observing the shock wave was
@]so measured by the same detector on board the ISEE-3

several typical classes of events related to the passage thelllte. T_he caIc_uIauo_ns fixed the |n|t|a! distribution of the
ectrons in the incoming flowz(— —«) in the form of a

shock waves. The nature of these events differs for proton§

and electrons and strongly differs for longitudinal and trans_superposi'[ion of the thermal Maxwellian distribution charac-

verse shock waves. We modeled the spectra of nonthermiifized by two parameters, the temperaflind the concen-

electrons in the vicinity of quasilongitudinal shock waves ontration N, and a nonthermal background flux in the undis-

the basis of the theory discussed above, with allowance fo"P€d medium far from the shock front. ,

the features of collisionless shock waves in interplanetary | 1€ results of calculations of the electron flux in our

plasma. model wth the parameterafo.g andr~5 and a'typ|cal
Usually, shock waves in the interplanetary medium ardfor th?alnterplanetary mediumincoming flow with N,

not strong enough to form a prefront but are strong enough tg" 3 ¢M ~ and T,=10°K are depicted in Fig. 5 along with

ensure a compression ratio of about four at the viscous didhe results from ISEE-3 observations of a quasiperiodic

continuity. The region of the incoming flux, the region of the SN0Ck wave in the interplanetary medidrithe speed of the

outgoing flow, and the transition regidthe discontinuity ~ SNOck front amounted to 422 km and the angle of incli-

are clearly visible in the speed profile of the ion componentnation the field to the front was 22°. The parameterndl’
In the transition region, the electron distribution function Were determined via magnetic field observatioasd the

obeys Eq.(1). For shock waves in the interplanetary me- resu!ts of calgulat?ons _of the shock front structure based on
dium, at distances of about 1 AU from the S(ire., at the ~hybrid codes; which yieldeda~0.2 andl'~5. The most
Earth’s orbit, where many satellites measurements are capignificant uncertainty in determining is related to the as-
ried oud, the characteristic front width is probably 18 cm sumption about the nature of the polarization and about the
and the characteristic transverse dimensions do not excedg@gnetic-field fluctuation spectrum in the transition region,
103cm. The typical value of the electron mean free path inwhich affectsG. Our model makes it possible to quantita-
the interplanetary mediurfar from the shock front A, is  tively describe the typical observable features of electron
roughly 13?cm at energies of about 100 keV, but the meanevents in supercritical shock waves: a sh@gveralfold in-

free path is much shorter in the vicinity of the shock wavecrease in the intensity of the electron fluxes in the vicinity of
transition region because of the sharp increase in th#ée transition region and the subsequent slow decrease of the
magnetic-field fluctuation amplitude. Since the electronintensity of the flux of nonthermal electrons over times of
mean free path is comparable to the size of the shock wavepout one houfsee Fig. 5. Moreover, the observed electron
we must allow for the fact that the problem is not one-flux exhibits intense short bursts about ten minutes long
dimensional. This is effectively taken into account by our(“spikes”). Two such spikes are clearly visible in Fig. 5.
model by introducing a boundary for the free escape of thé@'he duration of the spikes corresponds to the characteristic
accelerated particles. time it takes the electrons to be accelerated to energies of
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10°F
: 2-29 keV x 10

; 1%k FIG. 5. Calculation of the time evolution of the electron
2 3 flux (thin lines in the vicinity of an interplanetary
T 29-45keV x3 shock wavethe speed of the shock front is 422 kmts
,;” and the field's inclination angle is 22°) for three energy
& intervals. Electron flux measurements obtained by the
3 10°¢ ISEE-3 satellitd are depicted by heavy lines. The ob-
- b 4.5-9.1 keV servation time in hours labels the horizontal axis.

10°

20 22 0 2 4
t, hours

order 1keV at the shock front. Hence, in our model, theradiation indicated that there are large surpluses of such ra-
origin of the spikes can be explained by the passage of nadiation, which probably formed in the regions where the
row fluctuations of the electron densitwith a duration of  high-speed clouds interact with the GalakyOne can as-
less than 1 mi) registered in the flow before the shock front, sume that the soft x-rays and the hayaadiation have the
through the shock frontsee Fig. . Figure 5 clearly shows same nature and origin. Then the sources of such radiation
that the model provides a satisfactory description of the obare the nonthermal particles, mostly electrons, accelerated by
served evolution of the nonthermal electron flux in the vicin-shock waves formed as a result of interaction of the cloud
ity of the shock wave. and the matter of the halo and disk of the Galaxy. Taking the
The study of electron spectra in the solar wind was one/alues ~1 uG and ~3x10 3cm 3 as estimates of the
of the goals of the ACE space laboratory launched by NASAmagnetic field strength and the plasma density in the halo of
in 1997. In particular, the SWEPAM monitor analyzes thethe Galaxy, we find that the magnetoacoustic Mach number
energy spectra of low-energy electrorffom 1eV to  of the shock wave is roughly 3. This is quite sufficient for the
1240eV. Two spectrometers of the EPAM device with a wave to be supercritical, although the wave is not strong
geometric factor of 0.48 cfrsr each are intended for observ- enough to form a prefront and is even not strong enough to
ing fluxes of electrons with an energy higher than 30keV.ensure the maximum possible compression ratio equal to 4.
Along with observations of electron fluxes, observations ofysing this model yields results that are fully consistent with
magnetic-field fluctuationéby the MAG magnetometgand  he observed spectifor more details see Ref. 35
other parameters of the solar wind can be conducted. Obser- gynernova remnants are among the brightest nonthermal
vations of nonthermal electrons done by the ACE laboratongq rces, emitting radiation over a broad range, from radio
will make it possible to thoroughly compare the data and thg,4\es to hardy rays36-°A sizable fraction of the enormous
results obtained in our model at lofup to 1.25keV and at amount of energy released in the explosion of a star

high energies. (~10°%erg) goes into the shell in the form of kinetic energy;
the shell expands at supersonic velocity into the ambient

5. ACCELERATION OF ELECTRONS BY EXTENDED SHOCK medium. This expansion leads to formation of a strong col-

WAVES IN A TURBULENT MEDIUM lisionless shock wave with a Mach number reaching several

The theory of generation of nonthermal electrons byhundreds(see, e.g., Refs. 1 and.3An important role in the
shock waves described in Secs. 1-3 can also be used farmation of the observed spectrum of nonthermal electro-
modeling distant galactic and extragalactic objects. Direcfnagnetic radiation emitted by supernova remnants is played
measurements of electron distributions outside the solar sy&y the emission from electrons accelerated by shock waves
tem are impossible, so that the model must describe the geat the shell boundary. At present there is clear observational
eration of electromagnetic radiation, both thermal and nonevidence of electron acceleration in the supernova remnant
thermal, by electrons accelerated by shock waves. Here wBN1006 up to energies of order 'f@V (Ref. 36. Let us
briefly touch on two classes of objects. discuss the possibility of applying our model of generation of

The high-speed clouds falling onto the galactic planenonthermal electrons to shock waves from supernovas.
actively interact with the matter of the disk. The velocities of  In extended shock waves with large Mach numbers that
these extended objects occupying an appreciable fraction giropagate in a turbulent medium there is effective transfor-
the celestial sphere above the Galaxy are determined fromnation of the kinetic energy of the incoming flow into non-
radio observations of neutral hydrogen Hl in the 21-cm line thermal particles and waves. Here, due to the interaction be-
The typical values of these velocities are150kms?t.  tween nonthermal ions penetrating the incoming flow to a
Since the velocities of the clouds exceed the phase velocitiedistance of ordek,; and slowing it down, the speed profile is
of magnetoacoustic and Alfweperturbations in the galactic the region of adiabatic decrease of the speed, known as the
medium, the interaction of the clouds and the matter of therefront. The prefront is followed by the viscous discontinu-
halo and disk of the Galaxy must be accompanied by shocky in speed. The characteristic prefront size is usually sev-
wave formation. Observations of the hard electromagnetieral orders of magnitude greater than the characteristic size
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™ Ty

Ny FIG. 6. (a) Calculated electron flux in the vicin-
%100_- ity of the shock wave from a supernova shell,
2 F and (b) the expected spectrum of the electro-
- magnetic radiation for the electron distribution
& in Fig. 6a.
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of the transition region and the viscous discontinuity. Theradiation and escape of particles from the acceleration re-
viscous discontinuity in speed has a much smaller amplitudgion.
than the discontinuity in a shock wave with the same com-  Such a shape of the electron spectrum makes it possible
pression ratio but without a prefront. to match the spectra of radio waves and x-rays observed in

In this problem one must distinguish between the totalsome supernova remnants. The results of calculating the
Mach number of a shock-wave with a prefront and the locaklectrons of the electromagnetic radiation emitted by elec-
Mach number of the viscous discontinuity in speed, which istrons that are accelerated by shock waves are depicted in Fig.
much smaller than the total Mach number. A description of6éb. The emission spectrum is calculated with allowance for
the large-scale 1) structure of the front of a strong shock the synchrotron radiation emitted by electrons in the mag-
wave can be found in Ref. 19, where it is shown that thenetic fields of a supernova remnant and the bremsstrahlung
local Mach numbeiM at a viscous discontinuity does not from high-energy electrons in the surrounding plasma. A
exceedM, . For this reason we used the model in calculat-contribution to radiation with an energy higher than
ing the absolute electron fluxes in the vicinity of the strong100 MeV (not shown in Fig. Bwill also be provided by the
shock wave of a supernova remnant propagating in a mezompton scattering of low-energyadio and optical pho-
dium with typical parameters, a temperattfe3X10°K  tons by relativistic electronghe inverse Compton effectA
and a concentration=1 cm™ 3. The electron transport mean detailed quantitative comparison of the calculated spectra
free path in the external medium ahead of the shock fronand the observed radiation from supernova remnants lies out-
depends on the spectrum of magnetic inhomogeneities in theide the scope of the present work, whose main goal was to
undisturbed interstellar mediums;(p)~p (see Ref. B develop a theory of generation of electrons by collisionless
The magnetic field strength inside a remnant iS4G. The  shock waves.
total compression ratio in the shock wave amounted to 50, The authors would like to express their deep gratitude to
while the compression ratio at the viscous discontinuityLee Bennett and Donald C. Ellison for making available the
amounted to roughly 2. The results of the calculations areesults of hybrid simulations of shock wave structures. The
illustrated by Fig. 6. Figure 6a depicts the calculated electropresent work was partially supported by the Russian Fund
spectrum for a strong shock wave modified by the accelerfor Fundamental Resear¢@rant No. 98-02-17711and IN-
ated particles. Here the nonthermal electron spectrum exhibFAS (Grant No. 96-039D
its three characteristic sections, whose origin is due to the
structure of the strong shock wave modified by the accelertE-mail: byk@astro.ioffe.rssi.ru
ated particles. The low-energy part of the spectrum corre”E-mail: uv@astro.ioffe.rssi.ru
sponds to electron heating in a narrow transition region of
the shock wave in the vicinity of a viscous discontinuity. ,R- Blandford and E. Eichler, Phys. Refb4 2 (1987. .
Note that here we modeled the case in whigh- p1. As the C' IA '276 ﬂﬁe&' _mslp ace Researciin Russia (Itogi Nauki 1 Tekhnik), i

ol. 27, nion Institute of Scientific and Technical Information, Mos
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As a result of an investigation of the real collision integral for paramagnetic atoms, we have
obtained a criterion for propagation of spin waves in a spin-polarized Boltzmann gas. The main
condition for propagation of weakly damped spin waves is a high anisotropy of the atomic
scattering amplitude with predominance of the forward scattering. This condition is different from
those suggested in earlier publications. Our results indicate that the range of paramagnetic
gases where weakly damped spin waves can propagate at the room temperature is considerably
wider than it was assumed previously. One example is vapors of alkali nist@|<Cs,

and Rb, where the degree of electron spin polarization can be very high19@9 American

Institute of Physicg.S1063-776199)00703-9

1. INTRODUCTION This paper suggests a criterion for propagation of spin
In gases described by the Boltzmann statistics in the ap/aves in a spin-polarized Boltzmann gas based on a detailed

sence of applied electric and magnetic fields, the only propa|_nvestigation of the collision integral. It turns out that the

gating collective mode is an acoustic wave. A possibility Ofmal|tn parameter that Ct(') ntrols pr_op;ﬁganorr of tsp;r;hwa;ves |r:j
collective spin oscillations in a paramagnetic gas was firsF;0 Zmann paramagnetic gases IS the real part ot the torwar

suggested by Silih.In 1977 Arono? analyzed spin-wave exchange scattering amplitude. Moreover, in conventional

oscillations in semiconductors. Intense interest in propagagases’ where scattering of atoms is semiclassical in nature

tion of spin waves in gases, however, was generated by th%nd highly anisotropic, the situation is more favorable than

publication by Bashkin in the 1988sThat paper predicted '™ ‘quantum” gases, where scattering is almost isotropic

the existence of weakly damped spin waves in spin-poIarize&s'Wave scattering® This criterion differs from those given

. . . -6
Boltzmann gases and determined conditions for their propef11 previous publication$:® As a result, the range of para-

gation. The criterion for the existence of a new collective'T“";gnett'tC gasestwhere ;vea;l;lr)]/ dampe? spin w?ves_can tp rogaé
mode in a spin-polarized gas was formulated in terms of itP ez erl?lpegl ures at oku € room Iempera urefls"((axl_en f
squantum” property: the average de Broglie wavelength considerably. One can take as examples vapors of alkali met-

should be considerably larger than the range of interactioﬁlS(Na’ ;S’ and Rh where the degree of spin polarization
between atomsg,. can be higf.

Although the number of publications dedicated to the
dynamics and kinetics of spin-polarized gases has been quite
considerablésee Ref. 4 and references thejgthe criterion 2. COLLISION INTEGRAL IN BOLTZMANN SPIN-POLARIZED
for the existence of spin waves remained unchanged, irre-
spective of the fact that it was based on purely qualitative  This paper considers a collision integral calculated
reasons. An important point is that this criterion led to a previously’® The spin sublevels in question are degenerate
very severe limitation on the gas temperature, so that mosf the absence of magnetic field. In such cases, the collision
gases should condense at temperatures higher than those pigegral! is identical to the Waldmann—Snider integtl.
scribed by this criterion. For this reason, the only remainingNonetheless, since our previous publicatiocontains mis-
candidates were the spin-polarized hydrogeh, &hd®Hef.  prints, here we give first a general expression for the colli-

The existence of spin waves in these two gases was CORion integral St for arbitrary, not necessarily degenerate, sys-
firmed by experiments, although the detected waves were n@gms:

weakly damped:” Note that it is the nuclear spin that is ) .
considered in this specific case. Sty (P)==i[laar (P) =17,/ (P)];

P—P1 PP - Zarngol - -
lmxp):(zw)W[fdpﬂm( 5 1)exp(| - )f,,apl)fga,(pwfdp dpidp; 8(p+pi—p’ ~p))
t

fTsTl(pl)fT4Tz(p:,|.)

p( E ey ) Tonrgr((P=P/2(p" =PDI2TL, . ((P=P1)/2(p" = P1)/2)
xXexp | 7

(p—py)?/4m—(p’ —p)?/4m+ 2, . o\ —i0

1063-7761/99/88(3)/6/$15.00 476 © 1999 American Institute of Physics
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Here p is the momentumm is the mass, the subscripts are . pP—p, P—P1
quantum numbers of internal particle statdég¢p) is the _C)\UTa’)\HU( 2 ' o )%o(p)
Wigner matrix, T is the scattering-matrix, and, finally,
. +(277)4ﬁ2fdp’dp’dp S(p+p,—p’
Capyo=EatEg—E,—E; 1=H 1
(E, andE, are the energies of internal particle states . [(p—p)? (p'—pp)?
This paper considers the case of full degeneracy of the P T T T am
internal(spin) states of particles?,z,5=0. In this case, the
collision integral has the formicompare with Ref. 1 pP—p1 P'—P1
. reomp D xf<°)<p>f<°><pl>TWST4(T, . )
. P—P1 P—P1
Staa'(p):_l(z'ﬂ)sﬁzf dpl Ta)x()rr A _ ' _n!
2 2 XT* p pl p pl C ,
a'\7y7, 2 2 [ 747-2(,07.371([) )

* P—=P1 P—P1
Xfﬂ(pl)fﬂa'<p)‘Ta'm( 2 2 ) +Crpryryry (P 3
In the latter equation we use the relafitri®(p)f(®(p,)
=fO(p")fO(p]) for equilibrium distribution functions.
Summation over repeated subscripts is assumed in this case.
ey i In what follows, we consider a polarized gas with spin

X | dp’dp;dp; 6(p+

f P'dpadpy 6(p+Py=p"—P1) 1/2. Presently such gases are well known and have been

Xf)xo’(pl)faa(p) +(27T)4ﬁ2

(p=p)? (p'—p))? actively investigated both theoretically and

w5l PP 1 )Ta)\q' . experimentally’>’3 In the case of identical particles with
4m 4m o spin 1/2, theT-matrix has the form
% p_zpl,p ;pl) . T apun(PP)=ALL(P,P)8,,85,+ (PP )0 ,05,]
a 7'17'2
oy p—p! =t(P,P")8,,03,—t(=P,P")8,,64,

M1 — M1 ’ ’ f

X% )fwl(p )P (1) +6(P,P")o,,0p,
_0(_P7P,)0-avo-ﬁ,u,r (4)

Here the Hermitian property of the Wigner matrix is taken
into account. whereP and P’ are the relative momenta of colliding par-
In studying small perturbations, we will use a linearizedticles (associated with the reduced masg2), A denotes
collision integral, in which the Wigner matrix has the form antisymmetrization with respect to partide exchamgmj-
1 dent and scattergdand the product of Pauli matrices is the
faa (P)=5FO(P)[Coar + @aa(P)]- (2)  scalar product o) and¢}). The factorst and ¢ should
2 satisfy the following symmetry properties related to the iden-
tity of particles and time-reversal invariance of their interac-

Here f(O(p) is the equilibrium Maxwell distribution func- tion:

tion over particle momenta; - is a constant ¢a')-tenso
r, and ¢,./(p) is a small perturbation of the Wigner func- t(P,P)=t(—P,—P')=t(P’,P),

tion. In the absence of additional conservation laws, the equi- (5)
librium function is diagonal in internal quantum numbers, o(P,P")=06(—P,—P")=0(P',P).

i.e., C,q= 90,4 - But this is not the case if such conserva- __ . . . . : .
tion laws hold, if only to a reasonably good approximationThIS no’gatl_on means that we conS|der_ CO||.ISIOI’.IS |n_wh|ch the
total spin is conserved. This approximation is fairly good,

(in this specific case, we are dealing with the total spin of the : . )
systen. especially in the case of the nuclear spin.

The linearized collision operatdfl) takes the form TensorC for a polarized gas has the form

C=1+MoorC,, =64t Maaqe (6)
_ 332 (0) (0)
I ¢aar) H(2m) % f dp, () T (Pa) M characterizes the constafibduced spin polarization of
0—p, p—p the gas. It is convenient to expand the small perturbation of
M — M i HYaE .
x{ Cﬁa’TaM%'(T! 5 )%A(pl) the Wigner matrix into scalap and vectory parts:
1

P—P1 P—P1 ¢aa’(p):Ef(O)(p)[(P(p)b‘aa’+/U*(p)0-aa’]- (7)

- CaGTz/)\(gg( 2 ' 2 ) QD)\(r(pl)}
By substituting Egs(7) and (12) in Eq. (3), we obtain
the following expression for the linearized collision operator

describing the polarized gas:

P—=P1 P—P1

+ CO’)\TC()\90'<T7 2 )(P(}a’(p)
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H@8aqrtu'al,)

=327T4ﬁ2f dp’dp,dp;W(p,ps|p’,p1)

X{8narPole(P")+ e(p1)—@(p)—¢(p1)]
+ 0 par [ AL u(P)+ A u(p’)— Az u(pr) — Ao (p)]
+ 8o AM (p') + p(py) — m(p) — (p1)]

T. L. Andreeva and P. L. Rubin
—lop.(p)+ikou.(p)

1
= STH(0" %10 ()} = (o), (10

wherev =p/m, J.. are the corresponding components of the
collision integral. This equation is expressed in terms of time
and space Fourier components of the Wigner matrix:
u=u(w,k),  andk are the frequency and wave vector,

respectively.

+Uia,|M|[A1 e(p')+A; e(p1)—Ag @(pP1)— Az 0(p)] The collision integrall.(x«-) now has the form

_A4[[/"(pi)!M vo—aa’]_[:u’(p’)iM !Uaa’]]}

P—P1 P—P1
2 ' 2

Jt(ut)=32w“ﬁ2f dp’dp,dp;W(p,ps/p’.p1)

ty

X{[Arp+(p1) + A+ (p") —Azp+(P1)
— Ao+ (P)1£2IM[A4[ - (p1) — ()1}

+167° hZJ’ dp.f@(p)fO(p,)Re

P~P1 PP
Tl

”[[u(pl),l\/l,aaar]
:16i||v||w3h2f dp.f(py)
—[u(p),M, 04411 (8)

Here
W(p,pilp’.p1)=f(p;)8(p+p1—p’ —p1)
X 8((p—p1)?4m—(p’ = py)?/4m);
the coefficientsA,, are

Ao= (|t 2+ [ty 2+ [ty — to]H)/2=|t; |2+ [t5| >~ Re(tyt3),

XRe

([P p—pl)_t P—P1 P—Ps
W2 2 22 02

X[p+(p) = p=(p)]. 11
Operators).. can be expressed in the form of a sum, i.e.,
J.=Qr=i[M|Q,Fi[M]L,. (12

Here Qg and Q, are integral operators quadratic in the
T-matrix (scattering amplitude whose structure is similar to
that of the corresponding parameters in the familiar Boltz-
mann equation. There is good reason to suppose that the
eigenvalues 0 andQ, in the case of electron spin are of
the same order of magnitude;=nv o, whereo is the gas-
kinetic collision cross section and is the average thermal
velocity of atoms. For example, the exchange cross section
of the cesium atom is of the same order as the gas-kinetic
cross section, hence all factofsare of the same order of
magnitude.

The structure of operatdr, is notably different:

Ai=[ti|>—~Re(tit3), A,=Re(tt}),

9
Ao=(Ita2— [t2= [t~ to2)2=Re(tst) — |tz ©
A4: Im (tlt;),

where parameter;, andt, are related to th@-matrix ele-
ments as followgsee Eq.(4)]:

ty(P,P")=t(P,P")~t(—P,P’)
+0(P,P")—6(—P,P"),
t,(P,P")=t(P,P")~ 6(P,P’)—26(—P,P’),

P=(p—py)/2, andP’=(p’ —p;)/2. Bracketed expressions
of the form[a,b,c] denote the scalar triple product of three | (,,  )=1673 ﬁzf dp.f@(p,)
vectors.

In deriving Eq.(8), we have used the optical theoréfn. P—py P—P1
Note that the last integral on the right of E®) is linear in X Re{ TeX(T, 5
the forward scattering amplitude, whereas the rest of the
terms are quadratic in the scattering amplitude. (13

)[M+(p)_ﬂ+(p1)] .

Here T,, is the T-matrix of spin-exchange scattering |(
—17):

Tex(P,P")=t,(P,P") —t,(P,P")

3. KINETIC EQUATION FOR THE TRANSVERSE
MAGNETIZATION COMPONENT IN SPIN-POLARIZED GAS

Let us first consider the transveréaith respect to the
z-axis) component of magnetization in a spin-polarized gas.
It is more convenient to use the following combinations of P andP’ are relative momenta of colliding particles associ-

=26(P,P')+6(—P,P")—t(—P,P'),

ty and ated with the reduced mas#2.
o It follows from the symmetry properties of thiematrix
Poe = Hx =y - (5) that all three operator®g, Q,, andL,, are Hermitian
The kinetic equation fo. can be derived from the full in the Hilbert space of functions of momentumwith the
equation(8): conventional scalar product for the kinetic gas theSry:
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1 ©) . To order of magnitudeD ~v?/3vs. Hereuv is the average
(talpo)= ﬁf fP(p)p1(p)pa(p) dp, thermal velocity of atoms and i is a typical eigenvalue of
operatongl. In this case, as one can easily see from Egs.
(8) and(13), the diffusion coefficienDg is, generally speak-

v check that the f - kes th ing, different from the usual diffusion coefficient, since the
One can easily check that the functipr=1 makes the ., eqnonding collision frequencies are different.

collision integral(11) vanish, thus being its eigenfunction 5 1ojarized gas the situation is significantly different.
with eigenvalue 0. Physically, this is a consequence of tota{_et IM|~1 (the condition that the density operator be posi-
spin conservation, which derives from the specific form Oftive definite leads to &|M|<1, and in the case of optical
the T-matrix (4). Similarly, and for the same reason, function spin polarization in a gas a value [¥l| close to unity is

uz=1 makes the scalar component of the total collision in-, hiaved in a natural wayNow the operatord.. essentially

tegral(8) vanish, as will be discussed in detail below. O_wing reduce to the third term on the right of E42), whereas the
to the fact that the operatods. andJ_ are mutually conju- first two can be treated as small corrections.

gate, the functiou=1 is at the same time the left and right |, 51 der to prove this, let us estimate the real part of the
glgenfunctlon of bpth these operat_ors. Thus,_thg eigen proéxchange forward scattering amplitude[Rg(0)]. It fol-
jector corresponding to the zero eigenvalue is |dgnt|(?al foliows from the general formula for the-matrix'4 that the
both operators, orthogonal, and takes the faimDirac's 1 3in contribution to the forward scattering operator for fast-
notation) moving atoms is due to the Born component, since in this
P=|1)(1]. (14 component oscillations due to the factor ekg) describing
the incident wave completely cancét=tp/# is the atom
wave vectoy. At room temperaturéand in fact even at lower
temperaturesthe condition|k|ay>1 is easily satisfied for
the electron spin exchangea( is the effective interaction
?ange. The latter inequality is the hallmark of fast atomic

wheren= [{(9(p) dp is the particle density in space. Thus,
operators], andJ_ are Hermitian conjugate.

Here|1) is the function identically equal to unity.
Function|1) should be the only eigenfunction with a

vanishing eigenvalue of operatals andJ_, which signi-

fies the absence of alternative conservation laws in th

u-subspace. The latter statement does not conflict with thﬁwotion. Thus, the characteristic eigenvalygof operator,

applicability of qther conservation Iawsz. It will be shown is proportional to the Born forward scatteringy(is the ef-
below that functiong (py, py, P,) andp</4m, along with oo .

; Y : fective interaction range
the constant, are eigenfunctions of the diagonal components

of the collision integral(8) with vanishing eigenvalues, m m
which is a consequence of the conservation of momentum, A(0)=— > f U d3x=— 2|U|a§,
energy, and number of particles. 4mh mh
whereU is the exchange interaction potential.
4. DYNAMICS OF TRANSVERSE SPIN POLARIZATION Now we can easily estimate the ratig,/vs:
Equation(10) is a mathematical expression of the prob- Vex |U|ag
lem of eigenvalues of operatods. —ikv, wherev denotes — -~ M| e (17)

multiplication by the velocity treated as an operator. At small

k (|kv|<wv, wherev is of order of the kinetic collision fre- Note that the right-hand side of this relation is the so-called
quency the eigenvalue problerfil) can be solved with the “Born parameter® multiplied by|M|, which is usually large
help of perturbation theory in the operatidt, i.e., in the in classicalnonquantumgases. The Born parameter for ce-
hydrodynamic approximatiot?. In the present case, as noted sium atoms will be estimated below for illustration.

above, the existence of only one eigenfunctios 1 of op- Thus, in the first approximation with respect to tfre-
eratorJ with eigenvalue 0 is assumed. It follows from Egs. ciproca) Born parameter, Eq10) can be expressed as

(10) and (11) that the correction of the first order iko is

zero. (kv—w)ui(p)=116|M|773ﬁ2f dp.f(py)
The second-order correction in this case can be ex-

pressed as XReTe(0)[ = (P)—p=(p1)]. (18
—iw.=k3(1]0Jd:0|1). (15  This equation can again be treated using the perturbation

theory, as was done previously. In this case, however, we
will use another estimation method. Suppose for simplicity
that T,= const, i.e., it is constant with energy. Then

HereJ. ! denotes the operator inverseXbf in the subspace
(1—-P)L (in the original spacé operator].. does not have
an inverse because one of its eigenvalues is)zero

First consider an unpolarized gas wil=0. In this 1
casel, =J_=Qg. The eigenvalues @@ andQx* are real (kv—w)p-(p)=+ Vex{lh(p) -5
and the frequency is purely imaginary. Thus, we have in this
case simple spin diffusion. As usuéljn this situation one
| ing diffusi icient X | dpaf Py (py)
can only estimate the corresponding diffusion coefficient: 1 D H=P1

Ds=(1/vQr™0|1). (16)  (this time ve,= 16)M| 72 #2NReT,,).
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In the hydrodynamic approximation |k(U_/Vex|<1a lines in the atomic spectra of alkali metals in detecting spin
|w/ve] <1), we have the dispersion relation waves. In the presence of spin waves, the spectrum of fluc-
. tuations in the electron magnetization should have the form
k?v? of a wellresolved doublet with narrow spectral
w==* . (19 20
3Vex components:

This equation describes a magnetization wave of constamt pyNAMICS OF LONGITUDINAL SPIN POLARIZATION
amplitude. The diffusion damping of this wave characterized

by parametel” is the effect of the next order in the recipro-
cal Born parametewg/ve. The damping parametdr is
estimated by the expression

In contrast to the transverse spin polarizatign , the
longitudinal polarizationu, in a polarized gas cannot be
treated independently and is related to the scalar component
of the Wigner functionp (gas density The collision integral
kZy2 Vs in this case is determined by the first four terms in the gen-
” V—<w- (20 eral collision integral8). The parameters invariant with re-

e e spect to collisions in this case include the longitudinal spin
Thus, weakly damped spin waves whose frequency andomponent in addition to the usual five parameters, namely,
damping parameter are estimated by E4S) and(20) can  the number of particles, three momentum components, and
propagate in a spin-polarized paramagnetic gas. Note that tlemergy. These invariants correspond to six eigenfunctions of
diffusion damping factol” of the spin wave in a polarized the collision integral with vanishing eigenvalues. The corre-
gas given by Eq(20) is a factor of (5/ve,)? smaller than in  sponding functional space consists of paired-off coefficients
an unpolarized gakEq. (16)]. of the unit matrix and the Pau-matrix. A calculation of

By way of example, consider the parameters of spincorrect zeroth-order functiorigliagonalization of the opera-
waves in a vapor of spin-polarized cesium atoms, whose paor ik{;) is described in the Appendix.
rameters have been measured experimentally. First, the elec- Among the six modes listed above, the only propagating
tron spin magnetization in cesium vapor is conserved to hig%ode(first-order perturbation theory in the operatkp) is
accuracy'® the spin nonconserving collision cross section iSthe acoustic mode propagating at the sound veloaity
about 1% of the spin-conserving cross section. The effective J5T/3m independent of gas polarization. Note that the

. . H — 7 15,17 H . . . H
interaction range is~10""cm. ™" Let us estimate the ,|5rization-dependent correction to the sound velocity turns
amplitude|U| by assuming that it is twice the binding energy up only in third-order perturbation theory k. Here we

NI 18
of the Cg molecule:|U|~1 eV.“Then the Born parameter have in mind a classical gas with no virial correctiérghe

at the thermal velocity =2x 10* cm/s of cesium atoms is of eigenfunctions of transvergsheay modes are independent

order 16. Such a large value of the Born parameter iSuf the gas polarization degree, whereas the others, namely,
closely related to the clear-cut anisotropy of the scatteringnose of the acoustic, thermal conductivity, and spin-wave

amplitude angular dependence for fast-moving parti%les.modes’ depend on the gas polarization degree.
Note that the temperature dependence of this parameter is  a this point, our aim is not to calculate accurate second-
largely controlled by the dependence:\T. Therefore the  order corrections, which determine damping of these modes,
Born parameter is close to unity only at temperatures belowince this would require specific data concerning interaction
10™%-10°3 K. _ _ between particles. We merely note some features of second-
The ratio between the spin wave frequency and itSyrger corrections iiko. In contrast to the case of transverse
damping parameter, according to E¢9) and(20), is modes, here all these correctiopgare of the same order of
wlT~10°% M. magnitudg. At smalM we havey~ yo+ y;M2. Here y, is
the damping in unpolarized gas, and both paramejgrand
Hence it follows, in particular, that the resonance line shouldy,, are of the order of the gas-kinetic collision frequency. An
narrow as|M| increases. Note that this estimate, generallyimportant point is that this situation is significantly different
speaking, may need revision with a view to taking into ac-from the case of a transverse spin-wave mode, for which the
count actual spin nonconservation. damping in polarized gas is considerably weaker than in an
Thus, propagation of spin waves in a polarized Boltz-unpolarized gagsee Egs.(17)—(20)]. This circumstance
mann gas is determined by two factors: spin conservation omakes propagation of a weakly damped spin wave possible.
to be exact, its slow decay due to collisions, and the high  This work was supported by the Russian Fund for Fun-
anisotropy of the scattering amplitude at room temperaturedamental ReseardiGrant 96-02-17312a
It is known that in this case atoms mostly undergo small-
angle scattering in the angular rangék|@,) !, where APPENDIX
|k|=muv/ #. For cesium, the corresponding angular range at  Here results of diagonalization of operatid in the
the room temperature is=10 3. Note that, in accordance basis of zero eigenfunctions of the collision operg®&rare
with the previously adopted criterioh/r>1 (see above  given. This analysis ignores off-diagonétansversg ele-
lightly-damped spin waves should not propagate in cesiunments of the Wigner matrix, since we can independently ana-
vapor at room temperature, sindgr,~ 103, lyze the dynamics of the transverse and longitudinal spin
In addition to magnetic resonance techniqtiisjs also  components.
possible to use Rayleigh light scattering near the resobant The collision operator is Hermitian in the scalar product:

T~
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([a(p),b(p)1|[c(p),d(p)]) £ =[p,/mT,0],
=(27mT)~*2| (a(p)c(p)+b(p)d(p)) _ ! 2. 024 02
f mT\/2(2M2+5)(1+M2)[p2+px+py+pz >mT
2
><exp< - anT) d®p. —2M2mT,M(p,+pi+ps+ps—3mT)],

fn=[—M/\(1+M?) 1].

Here the initial linear space is composed of pairs The first two modes,f{") and f{"), describe sound
[a(p),b(p)] of diagonal elements of the Wigner matrix. propagation in a monoatomic gas. Modgs’ andf§*) de-
These are coefficients of the unit matrix and the Pauliscripe viscous damping of transverse velocity and are inde-
z-matrix. The weighting factor is the normalized equilibrium pendent of the gas polarization. Motledescribes heat trans-
momentum distribution function. fer in polarized gas and, generally speaking, depends on the

The initial, zeroth-order subspace consists of six orthoyas polarization degree. Finallfj, describes the transverse
normal pairs of functions corresponding to the following magnetic polarization.

conservation laws:
*)E-mail: rubin@sci.lebedev.ru

f1=[1,0] (number of particles

v. P. Silin, zh. 'Eksp. Teor. Fiz33, 945(1957 [Sov. Phys. JETB, 726
fo=[p/VmT,0], (1958].
fsz[py/‘/mT,O], (momentun)l 2A. G. Aronov, Zh. Esp. Teor. Fiz73, 577 (1977 [Sov. Phys. JETR6,
_ ! 301(1977)].
fa=[pz,Mpl/N(1+MHmT SE. P. Bashkin, JETP Let83, 8 (1981).
4A. E. Meyerovich, S. Stepaniants, and F. Lalé¥ys. Rev. B52, 6808
(1995.
fs=[p%Mp?]/mTy3(1+M?) (energy, SE. P.al]i’:ashkin, Usp. Fiz. Nauk48 433(1986 [Sov. Phys. Usp29, 238
(1986)].

6B. R. Johnson, J. S. Den’ker, N. Bigelaw al, Phys. Rev. Lett52, 1508;
53, 302(1984).

N. Bigelow, P. J. Nacher, and M. Leduc, J. de Phy<2,12159(1992.

8L. D. Landau and E. M. LifshitzQuantum Mechanics (Nonrelativistic

fe=[0,1] (z—component of the sp)n

Diagonalization of the perturbation matri;k{;=_ik[3/_m in Theory) Pergamon Press New Yo(k977.
this basis leads to the following correct functions in zeroth °R. J. Knize, Phys. Rev. 40, 6219(1989.
order: 10R. F. Snider, J. Chem. Phy32, 1051(1960.

1T, L. Andreeva and P. L. Rubin, Zh.kBp. Teor. Fiz.111, 831 (1997
[JETP84, 457 (1977)].
12E. M. Lifshitz and L. P. PitaevskiiPhysical Kinetics Pergamon Press,

f(+): 1 P, New York (1981).
S /2(1+ MZ) 'm BA. E. Meyerovich, J. H. Naish, J. R. Owers-Braley, and S. Stepaniants,

Fiz. Nizk. Temp23, 553 (1997 [Low Temp. Phys23, 411(1997].

2, 12, 12 2, 12, 12 M. L. Goldberger and K. M. WatsorGollision Theory Wiley, New York
N 1 pytpytp; M pit+py+p;+p,V15mT (1964).
15 mT " /15 mT ’ N. D. Bhaskar, J. Pietras, J. Campabal. Phys. Rev. Lett44, 930
(1980.

18R. BalescuEquilibrium and Nonequlibrium Statistical Mechanitiley,
New York (1975; O. Resibois and M. de Leene€lassical Kinetic

f(_) 1 P Theory of Fluids Wiley, New York (1977.
= — 17 . . .
s > [ A. A. Radtsig and B. M. SmirnoviHandbook of Atomic and Molecular
2(1+ M%) m Physics[in Russian, Atomizdat, Moscow(1980.

18W. Happer, Rev. Mod. Phyg4, 169 (1972.
2 2 2 2 2 2 ' g
1 pytpy+p; M pit+py+p;—pV15mT 191 -J. Wey, N. Kalenchofsky, and D. Candela, Phys. Rev. L2tt.879
* J15 mT " J15 mT ' (1993. .
20T, L. Andreeva, P. L. Rubin, and E. A. Yukov, Zhk&p. Teor. Fiz107,
1160(1995 [JETP80, 645 (1995].

() — /
fv - [px/ mT,0], Translation provided by the Russian Editorial office.



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS VOLUME 88, NUMBER 3 MARCH 1999

Structure of a micropatrticle crystal in a radio-frequency discharge plasma
V. A. Schweigert and V. M. Bedanov

Institute of Theoretical and Applied Mechanics, Siberian Branch, Russian Academy of Sciences, 630090
Novosibirsk, Russia

l. V. Schweigert*)

Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk,
Russia

A. Melzer, A. Homann, and A. Piel

Institut fir Experimentalphysik, ChristianAlbrechts-Universita Kiel, 24098 Kiel, Germany
(Submitted 22 January 1998
Zh. Eksp. Teor. Fiz115 877-893(March 1999

By employing the particle-in-cell method we study the distributions of the electric field strength
and of the electron and ion concentrations in the micropatrticle crystal in the electrode

sheath in a radio-frequency discharge in helium. The coordinates and charges of the microparticles
are found from the balance condition for the forces acting on the particles and the balance

of electron and ion fluxes to the particles. With periodic boundary conditions introduced, we
investigate the three-dimensional problem for the unit cell of the microparticle crystal.

We examine the dependence on gas pressure and discharge voltage of the main crystal parameters:
the critical particle separatiofat which a phase transition from a monolayer crystal to a
double-layer crystal occuysthe particle potentials, and the distances between the layers in the
double-layer crystal. We obtain the critical values of the friction coefficient for the particles

in the gas, i.e., values below which the crystal becomes unstable against the development of
particle oscillations in the transverse direction, and compare the experimental data on

crystal structure and stability with the theoretical results. Finally, we set up an approximate

model that makes it possible to calculate the main parameters of the microparticle crystal.
© 1999 American Institute of Physids$$1063-776(99)00803-3

1. INTRODUCTION pending on the distance between the layerhere the par-
A collection of charged microparticles in a plasma con-ticles in adjacent levels are shifted in relation to each other.

stitutes a unique macroscopic object for the physics of non--rhe experiments reported in Refs. 4,5,7,8, and 13 reveal an-

ideal plasmas, an object that makes possible an experiment‘g\tlher type of packing, Wherg the particles in diffelrent layers
observation of the crystal—liquid—gas transition in Coulomb2'® One above another, while in a plane the particles form a

systems. The possibility of forming a microparticle crystal in"€gular hexagonal lattice. Note that sometimes a close-
a plasma was predicted by IkéziSuch crystals were de- packed crystallgtlructure is glso observiate-centeretiand _
tected in magnetron-discharge experiménfsin a radio-  ody-centeretf*9. According to the results of the experi-
frequency discharge between plane-parallel electrodes, ments conducted by Hayashi and Tachib&hte transition
and in standing striations of a stationary glow discharge. from a bcc lattice to a loosely packed hexagonal lattice oc-
microparticle crystal in a radio-frequency discharge consist§Urs as the particle radius increasesRe-1 um. On the
of several layers, each of which contains about ten thousargsis of studies done with the collisionless model of ion
particles occupying the sheath of the lower electrode, wherg0tion, Melandsg and Gor€eand Vladimirovet al.*® sug-
the force of gravity acting on the particles is balanced by theJested that the reason for the observed loose packing lies in
electric field. In the transverse directi¢im the plane of the the formation, due to the focusing of the ion paths by the
electrodg, the crystal is usually limited by the edge of the particle field, of regions of enhanced ion number density
electrode or by protrusions specially manufactured on théehind particles. However, in typical experimental condi-
electrodes. Longitudinal confinement of mutually repulsivetions, the ion mean free path is much shorter than the particle
negatively charged particles is achieved by the positive spacgeparation, with the result that the collisionless model breaks
charge in the layer. down. Depending on the mean free path of the ions, regions
The results of experimental observations of the structur@f enhanced or reduced ion concentration form behind a
of a microparticle crystal cannot be described by the classicaarticle”*® Monte Carlo calculations of the ion motion with
theory of Coulomb systems. According to the calculationsallowance for scattering in the double-layer crystal of
done in Refs. 10-12, the structure of multilayer Coulombcharged microparticles in the electrode sh&atfhave made
crystals corresponds to different types of close packdes it possible to find the forces acting on the particles and cor-

1063-7761/99/88(3)/10/$15.00 482 © 1999 American Institute of Physics
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roborated the assumption of Melandsg and GGremd tion in the collision of two metastable helium atofsAs for
Vladimirov et al 1 for the experimental conditions described ions, we allowed only for their scattering in the gas consist-
in Refs. 7,8, and 19. However, mutual repulsion of the ionsjng of these ions, i.e., for resonant charge exchange, with a
which impedes the formation of ion clouds behind the par-constant cross section of %30 ®cn? (Ref. 31). Without
ticles, was not taken into account in Refs. 17 and 18. Thusgoing into the details of the analysis of an rf discharge, we
in Refs. 15-18 an explanation was given of the loose packexamine only the effect of variations of gas pressure and
ing of the microparticle crystal, but no quantitative analysisdischarge voltage on the characteristics of interest. For the
was done of the crystal's structure, an analysis that woulghressure and discharge-voltage ranges involved (
make it possible to determine the particle charges, the dis=40—-120Pa andU,;=40-80V), the discharge current
tance between the layers, and other lattice parameters.  densityj=(0.5-1.3)x 10 >Acm™ 2 and the ion flux to the
We know of no self-consistent calculations of the micro-cathode j;=(0.5-2.2)x 10" cm 2s ! are weakly depen-
particle charges in the electrode sheath, charges measureddant on the gas pressure and increase with the discharge
the experiments described in Refs. 7,8, and 19. Theoreticaloltage. The average electron energy increases only slightly
studies of the charging of particf@522and of the interaction (by 15—20% as we move from the electrode to the boundary
between the particlé$have been done only for quasineutral of the electrode sheath and is somewhat highgr~20%)
plasma conditions. In Ref. 24 the charging of a single parthan the average electron eneldy at the discharge center,
ticle by ions in the electrode sheath of an rf discharge was value that is almost independent of the discharge voltage
examined by a non-self-consistent approach. In their selfand decreases almost linearly with increasing presduige:
consistent calculations of the structure of a microparticle=4.5-3 eV for P=40-120 Pa, which agrees with the ex-
crystal in a layer, Melandsg and Gofeéased the collision- perimental data listed in Refs. 32 and 33.
less hydrodynamic description of ion motion and modeled According to the measurements carried out by Godyak
the particles by infinitely long cylinders. A one-dimensional et al,®? which are corroborated by the results of our calcula-
crystal in which the microparticles are replaced by infinitetions, the electron distribution in the volume of the rf dis-
charged planes was examined by Otani and Bhattachrjeecharge in helium is close to the Maxwellian. We are inter-
who used the kinetic approach for the ions. A more realisticested in the behavior of the electron distribution function in
case of spherical particles was studied by Melarfdsgow-  electrode sheaths and, in particular, the rate at which the
ever, the error introduced by the use of the hydrodynamienicroparticles are charged. The characteristic mean free path
approach and the linear response approximation for calculatf the electrons is much longer than the microparticle radius,
ing the particle interaction forces in Ref. 27 is unknown.which means that the charging of the particles can be studied
Note that the researchers whose papers we have just cited usethe orbital motion approximatioif. The electron distribu-
models in their statement of the problem and do not compart@on over the velocity directions is close to isotropic, and the
the results of crystal structure calculations with the knownelectron flux densityj. at the microparticle surface whose
experimental data. Thus, a quantitative theory of the micropotential isU is given by the formul®
particle crystal in a plasma has yet to be developed. The
present paper describes the results of a self-consistent mod- ieZEfm
eling of the structure of a microparticle crystal in the elec- 4
trode sheath for an rf discharge in helium in conditions co- o . .
inciding with those of the experiments described in Refs. 7,8\,Nhe,re the eolcectron energy distribution functiye) is nor-
and 109. malized asf,fe(€) de=1, andn,, v=+2e/m,, andm, are
the electron number density, velocity, and mass. With the
Maxwellian  electron  distribution  function fg(e)

u
1—:)01‘9(6) de, (1)

2. MODEL OF A MICROPARTICLE CRYSTAL =2\elmT,exp(-€eTy) T, ' we have
In the experiments discussed in Refs. 7,8, and 19, micro- Nevt 8T,
particles of radiusR=4.7um and densityo=1.5I'/cm 3 Je=—exl(—UlTe), ve=\_——, (2
e

levitate in helium. The characteristic microparticle separa-
tions amount to hundreds of micrometers. The discharge frewhere T,=2U./3 is the electron temperature, with, the
quencyf is 13.56 MHz, the electrode separation is 6 cm,average electron energy. A comparison of the results of cal-
the gas pressure is varied from 40 to 120 Pa, and the am- culations of the electron flux density to the particle surface in
plitude of the radio-frequency component of the voltagethe electrode sheath with allowance for E¢B. and (2) is
across the electrodel,;, is varied from 40 to 80 V. Below illustrated by Fig. 1 for different particle potentials. Since the
we show that the presence of microparticles has a small efverage electron energy changes little in the electrode sheath,
fect on the discharge characteristitise distributions of the the rapid decrease of the charging rate in the direction to the
electron temperature in the electrode sheath, of the dischargdectrode is due primarily to the decrease in the electron
current density, and of the ion flux to an electrpdehich  number density.

are needed in setting up a self-consistent model of a micro- Crystals used in experiments are always finite, but each
particle crystal. Hence first a one-dimensional rf discharge idayer contains a very large number; 100X 100, of unit
helium without microparticles was modeled by the particle-cells. Hence we consider an ideal crystalline structure, for
in-cell method® with the set of electron scattering cross which all the characteristics of the system are strictly peri-
sections taken from Ref. 29 and with allowance for ioniza-odic, f(p+1)=f(p), in the electrode planp=xy, where
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gion near the particle with a size of several particle radii.
1 Then ng(z,p)~n(z)(1+ep,/Te), where ng(z)=ng
20k X expedo/Te). The Fourier transformgy can be found by
solving Poisson’s equation
- 15k 2 & o
& > :47Te(nd,g=0+ne_ni,g=o)a (5)
= 0z
(&) P
© 3 .-
—_o_ 1.0+ ,,/’ 2¢g ) 4We2ne
\; ”,/‘ ?_|g| ¢g— Te ¢g:4ﬂe(nd’g_ni’g), (6)
L
0.5 4 whereny 4 andn; 4 are the Fourier transforms of the micro-
particle charge density and the ion number dengiig latter
was found by modeling the ion motion by the Monte Carlo
0 02 04 06 08 method.

z,cm In the entire range of the discharge parameters we have

2 2 . .
FIG. 1. Period average of the electron flux to a particle in the electrode‘%l >47Le nﬁ/Tel’ and th? I?epye.:creenrg of the particle
sheath for various particle surface potentidls The gas pressuré charge by the electrons Is insignificant. : t ga_s pres_sEPres
—80Pa, and the discharge voltae=60 V. The solid curves represent =40—120 Pa, the mean free path of ions in helium,
the results of calculations that use an electron distribution function obtained= 100—300um, is much shorter than the thickness of the
by the Monte Carlo method, and the dashed curves represent the results @factrode sheath. and the characteristic time of flight of ions
calculations that use a Maxwellian electron distribution function. Cdsve h h th h ’h . hi h he disch iod
U=2V; curve2, U=3V; curve3, U=4V; and curve4, U=5V. through the s _eat IS muc ongert an the _ISC arge period.
On the whole, ions are produced in the quasineutral plasma,
and the ion flux density; in the electrode sheath can be
_ _ _ _ assumed constant. When we solved the transport equation for
I=1,21+1,a,, with a; anda, the two-dimensional basis vec- the ions, we assumed that the velocity distribution function
tors of the lattice. Then the calculation can be restricted tdor the ions is fixed at the upper limit of the calculation
one unit cell in thexy plane. The characteristic time in the interval and that the electrode and microparticles are ideal
course of which the rf discharge becomes time-periodic isibsorbers. To solve E¢5) with an electron number density
determined by the ambipolar diffusion of the ions through(3), one must impose a boundary condition for the potential
the discharge gap and is much longer than the time it takest the electrode surface and determine the paranmgtém
the electrode sheath to forfthe latter time is determined by (3). The electron number density at the upper limit of the
the time of flight of an ion through the sheattidence, to  calculation interval,ny, was fixed by the quasineutrality
speed up calculations we consider only the electrode sheatfondition No=n; ,—q- The electric field strength at the elec-

that contains the microparticle crystal. The lower limit of the trode, E,= — d¢,/9z, was found from the law of total cur-
calculation interval corresponds to the lower electrode, angent conservation:

the upper is in the quasineutral plasma near the boundary of

the electrode sheath. Since the electron flux to the particlesin =~ 1 7B« ji— . expe¢o(2=0,t) _j sinwt
much smaller than the electron flux to an electrode, the pres- 4w dt VR Te '
ence of microparticles affects the electron distribution in the (7)

sheath qnly weakly, and this distribution may be assumegvhere the amplitud¢ of the discharge current density was
Maxwellian (see abov)_e T_hen_ the electron number density taken from calculations of an rf discharge without particles,
ne has a Boltzmann distribution: and w=27f;. The number of ions in the particle-in-cell
Ne=ngexp(ep/T,), (3) method was chosen between 32000 and 64 000. A decrease

in the statistical calculation error depicted in some of the
figures was achieved by averaging over hundreds of rf-
discharge periods. In calculating the three-dimensional elec-
tric field potential we used the fast Fourier transfdfhhe

whered is the electric field potentiah, is the density of the
guasineutral plasma at the upper limit d of the calculation
interval, with ¢(z=d) =0, and the spatial distribution of the

e!ectron temperatgréje(z), is taken from the results of rf- model of the electrode sheath in an rf discharge described in
discharge calculations. . i
e the present paper is in good agreement with the results of
To calculate the potential distribution, we used the Fou- : . . .
fier transform self-consistent calculations of rf discharges by the particle-
in-cell method.
B _ . The chargeZ and the potential =eZ/R of the particle
é=po(2)+ d1(z,p)= ¢o+g’§¢0 by(2)expig-p), (4 gyrface were found from the balance of the electron and ion
fluxes to the particle, #R?j,=J;, where the electron cur-

where g=n;b,+n,b,, with by and b, the basis vectors (et densityj,, is given by(2). The ion flux to the particle,

of the reciprocal lattice. The part of the potential that
depends on the transverse coordinatks, is much smaller 3= [ nivi-den) ®)
than the electron temperature everywhere except a small re- ~'" i(Vi-day),
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X, ym
200
FIG. 2. lon concentration distributions, measured in units
of 10 cm™3, in thexz crosssection for the electrode sheath
100 with a monolayer microparticle crystal. The coordinates are
measured from the poinxE 0, z=0) where a particle is
ok situated. The gas pressuPe=80 Pa, the discharge voltage
Us=60V, and the particle separaticm=519um. The
heavy curves in the inset indicate the following: cutke
~100F the boundary of the potential well surrounding the particle
(within these boundaries ions are in finite motioand
curve2, the boundary of the region from which zero-energy
200 ions land on the patrticle.
-600
and the force mean free path of the ion&,=100-300xm, which allows
making analytical estimates of the rate at which the ions
F= f m;v;n;(v;-dao;) (9  charge the particles.

The total ion flux to the particlel;=J; 1+ J; , consists of
acting on the particle as a result of ion momentum transfethe flux of high-energy ions with an ordered-motion charac-
were found by modeling the ion motion. Here integration isteristic energye;=eE,\ = (0.5-1.5) eV and the flux of ions
carried out over the particle surfageis a unit vector normal involved in a charge exchange near the particle. Sigce
to the surface, and, andm; are the ion velocity and mass. >eE,R,, Ty and A\>R,,, in estimating the flux of high-
The particle is also subjected to the force of gravily  energy ions); ;, we can use the collisionless approximation,
=(0,0,-Mg) and the electric-field force~=eZdg/dr,  ignore the effect of fieldE, near the particle, and employ the
whereg=980cms ? is the acceleration of free fall, ald  following expression for the distribution function of the ions
=6.73x 10 99 is the particle mass. impinging on the particl&®

.y mil)§
Fi(v,0,20) = jigrg 8(vy) dvy)exd — ez,
p

3. RESULTS AND DISCUSSION P

3.1. Charging of microparticles by ions Fi(v,v,<0)=0, (13)

The role that the friction forc€9) plays in the balance of which is valid for a strong uniform field. According to clas-
forces is insignificant for micrometer-sized particles. Thesical mechanicg! the particle’s capture cross section for an
levitation of particles in a layer is determined primarily by ion with energye=miv§/2 is crc=7-er,(1+ U/€), and with
the equilibrium between the force of gravity and the forceallowance for(11) the high-energy ion flux can be written
exerted by the electric field, which makes it possible to esti- x

: : : i U (e *dx
mate the strengt_rEp of the field acting on a partlcle at Ji’l:f ow,Fi(v) dv= Wszi(lJr_f )
Mg/eZ For a typical valueU~3V of the potential at the €i X
surface of a particle of radiuR~5 um, the characteristic U
field strengthE,, is approximately 50 V cm'. The positive ~7TR2ji( 1+ —InA), (12
ionic space charge concentrated near the particle is small €i
compared to the particle charge, and the distribution of thgvhere A = ¢ RfV/UR2> 1. Here integration with respect to

potential energyJ; of the ions is the impact parameter was truncated at the characteristic size
0?7 of the potential well, and the terms small compared t& In
Uj=— . eE,r cosd, (10 were dropped.

Near a particle, the kinetic energy of the ions after
wherer is the distance to the particle, arlis the angle charge exchange is much lower than the potential energy
between the radius vector and tkeaxis. For a potential U;(R,)~eURR,~0.3eV. Hence in analyzing the flu ,
energy given by(10) there exists a region of finite motion, of the ions to the particle that have undergone resonant scat-
r<R;(#), and a region of infinite motiomr,>R;(6), where tering near the particle we can use the cold-ion approxima-
R; is the boundary of the first region, tion. We must determine the volumg, of the region sur-

—_— rounding the particle from which zero-energy ions pass to
Ri=Ry1-v1-cosp/cost, Ry=veZ/E,, the particle surface. Note that this region is larger than the
depicted in Fig. 2 by the curvk In conditions of the experi- potential well since some of the ions whose motion is infinite
ment described in Ref. 19, the characteristic size of the poalso go over to the particle. Dimensional analysis suggests
tential well for ions,R,~50uxm, is much smaller than the thatV,,=C,R>, with the value of the coefficient,, de-

W1
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pending only onR,/R. We found this coefficient numeri- 13F 2

cally. To this end, for certain fixed initial coordinates of the 12'_

ion, we solved the equations of motion of an ion in the po- -

tential (10) with a zero initial ion velocity. If at a certain .q; 1

moment in time the ion lands on the patrticle, the initial co- = 1or

ordinates belong to the region involved, whose cross section N oof

is depicted in Fig. Zthe outline of the cross-sectional area is sk

curve 2). For typical experimental condition®R(, /R~ 10), 5L

the valueC,~3.3 is weakly dependent dr,,/R. A varia-

tion in R, /R by a factor of two leads only to a 10% variation L T
in C,,. Sincex>R,, and the probability of ions being scat- 200k b i
tered near the particle is low, i ;

-V RS ~600r 5

. . g I e A e -
SinceR,>\R?, we haveJ; ;> J; ;, and the rate at which the ] - e
particle is charged is determined primarily by cold ions. 2000 ) . N :
Knowing the velocityv;s~+/2U/m of initially cold ions at 40 60 80 IOOP Pa12°
the particle surface, we can estimate the number density of ’
these ions at the particle surface: FIG. 3. Gas-pressure dependence of the particle chajgend the critical

particle separatiorib) at which the monolayer crystal transforms into a
Jio Rfv R\ 172 double-layer crystal, for various discharge voltagds;;=40V(A),
n; s~ ’2 ~C,; Sl (14 60 V(®), and 80 V@). The curves represent the results obtained by using
47Rvig 47R2\ TN an approximate crystal model, the black symbols represent the results of

. . . o self-consistent calculations, and the open symbols represent the experimen-
wheren;=j;/vq is the average ion number density in the tal data obtained dv,,=40 V(A) and~50 V(O).

layer; here we have used the expressigrr V2eNE,/mm;
for the drift velocity of ions in a strong fieltf For a pressure

of P=80Pa, the estimatel4) yields njs/ni~3, which is  nymber density in the electrode sheath is equal to the ion
roughly equal to the results of numerical calculatigRrgy. number density. Equation@), (12), (13), and (15 make it
2). According to the estimatél4) and the results of numeri- yossible to find the positions of particles and their charges in
cal calculations, the total ionic charge concentrated in the monolayer crystal after a solution of a system of ordinary
potential well around the particle is much smaller than theaquations has been found. The results of numerical calcula-
charge of the particle proper, which justifies the use of thgjons of particle charges are in good agreement with the ap-
expression(10) for the ion potential energy. proximate model discused earli¢Fig. 38, in which the

To estimate the particle charge we must determine th@jectron temperature in the electrode sheath is assumed con-
electron concentration distribution in the electrode sheathgiant The particle charge is relatively weakly dependent on
With the rf discharge considered here, the following condi-the discharge voltage and increases with decreasing gas pres-
tions are metj>j;, U >Te, andw>d, /vy, whereUyand  gyre, i.e., it behaves in the same way as the average electron
d are the voltage drop across the electrode sheath and th@ergy. The difference between the experimental data and

sheath thickness. Then the standard model of the electrogfe resuits of numerical calculations is about 30% and lies
sheatfi® and the linear-profile approximation of the period- ithin experimental error.

averaged field strengtB=E.(1—2/d,) (Ref. 35 make it

possible to obtain analytic expressions for the electron and

ion concentration distributions in strong fields, wherg  3.2. Transition from a monolayer crystal to a double-layer
o \E: crystal

As the particle number density increases, the formation

ni:L, Ne= nif, of a double-layer crystal is observed in the experiments. Be-
V1=2/d m low we give the main results of Dubin's theoretical
(15 analysig? of the structure of a Wigner crystal consisting of
coso=1— 2Eo(1-v1-2/d,)—En particles with chargeZthat are immersed in a uniform com-
¢ . . . . .
Ee—Em pensating background with an ion number dengityand

Here E.=E,+4mj/o and ny =] /vy(E.) are the field interact via the Coulomb law. When the particle number den-
strengtﬁ aer ion concentlr;tioh gt ethe electrodt; sity is low, they form a monolayer crystal with a hexagonal
—EJdmen,; E,~(8menTdn(wd2\2m0)) 2 is the lattice in which the particle separation & As this density

e 1K 1 m e

minimum field strength at the electrode, which can be found"creases. the monolayer Coylombl crystal becomes Fhsad-
from the balance of electron and ion fluswith v, vantageous from the energy viewpoint and transforms into a

— (2T/2m, the thermal velocity of the electrons; agd triple-layer crystal with hexagonal close packing when
is the fraction of the rf-field period in which the electron (0/2)YPa<a, a=~1.02. (16)
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A microparticle crystal in a plasma is an open Hamil-
tonian system, so that there is no way in which the concept
of potential energy can be introduc¥d® Hence we exam-
ined the stability of a monolayer crystal against stratification
by initiating a small longitudinal displacement of particles
from their equilibrium position. In a double-layer crystal
with a rectangular unit cella;=a(1,0) anda,=a(0,/3),
containing two particles the distanée between the particles
was fixed, while the positiorz, of the crystal's center of

mass was found from the balance of all forces acting on the _200+ Ox =130 ym
two particles. Note that afz=0 the crystal forms a mono- 3000 3200 3400 3600
layer hexagonal lattice. By varying the particle separation in z, ym

a layer we found the differencéF,=F, ;—F, , of the forces o o .
actina on the hiaher and lower articies Siratification of th FIG. 4. lon concentration distributions, measured in units &fcto 3, in
g g . p ’ ethexy sectionfor the electrode sheath with a double-layer microparticle crys-

crystal occurs at the critical vale=ac,, whendF,=0. FOr 4 at zero,6x=0 (a), and finite, 5x=130.m (b), shifts of the lower layer

a<ag, the repulsion of the particles of the upper and lowerin relation to the upper layer along theaxis. The regions corresponding to

layers is balanced by the attraction of the ionic space Charg“éondensation” of ion concentration coincide with the positions of par-
. icles. The gas pressukeis 80 Pa, the discharge voltagk; is 60 V, and the

concentrated between the layers, which leads to the forma- = L .

] . . . article separatiom in a layer is 519um.

tion of a double-layer crystal. A microparticle crystal differs

from a Coulomb crystal placed ‘inside” a uniform back-

ground primarily in the dependence of the charges on their_ 540um within statistical calculation error. A further in-

coordinates. Since the electron number density decreases g$se in the gas pressure leads to a rapid increase dine
we move closer to the electrode, the charge of the particleg, the increase in the difference between the charges of the

belonging to the lower layer is smaller than the charge of th§q,yer and upper particles. The experimental data on critical
particles belonging to the upper layer, which facilitates strati-

A _ X article separation obtained fof;=40V andU =50V lie
fication of the crystal. Suppose that the lower layer is shlftecBetWeen the calculated data obtained tty=40V andU
in relation to the upper by the distanéz. The conditions '

- : =60V. Note that the experimenter observes not the phase
for equilibrium of the two layers can be writtek,Z,

3 3 transition of a monolayer crystal into a double-layer crystal
=EiZ)=Mg, wherekE,, E,=E,+4mn(¢—a’Z,/a")6zand the formation of a second layer of particlesaat a,, .

Zy, Z;=Z,— oz dZ|dz are the field strengths and the chargesyyhen a>a,,, the addition of new particles leads to a de-
of the particles in the upper and lower layers, respecuvely'Crease in the particle separation, andata,, there appears

@ =ni(zy) ~ne(2p) is the electron and ion space charge den-, secong layer, which gets filled as the number of particles
sity; ande=1.02 is a dimensionless coefficiefiaken from increases.

Dubin’s theory?) that determines the strength of the field
generated by the upper layer of charged particles. Then the

critical particle separation in the dust crystal is given by the3-3- Structure of a double-layer crystal

formula Immediately after stratification of the monolayer crystal
7 13 the particle separation amounts\l’é a. . A further increase
acr:a(m) , (17 in the particle number density leads first to a decrease in the

particle separation, and fa<a,, , there is a transition to a
E. 4lnuU triple-layer structure. Probably, ,~a.,, but we did not ex-

P amine this transition quantitatively. We calculated the
double-crystal parameters for two limits in particle separa-

B 470 Iz

Te [1 J1- z,/dy (1+Ep/Ey) tion, 2 a,, anda,, . Qualitatively, the spatial distributions of
= 3T.+U §+ o sing ) (18)  the electric field potential, the electron number density, and
e

the ion number density are the same for different gas pres-
where the particle chargé and the phase» are taken at sures and discharge voltages. In the longitudinal plane they
point z,. Depending on the discharge parameters, we havare almost axisymmetric. In view of the focusing of the ion
6=0.1-0.5, so that the difference of the charges of thepaths by the particle field, an elongated ion cloud is formed
lower and upper layers provides a sizable contributioa.fo = downstream of the particle@~ig. 43. The maximum ion

In Fig. 3b we compare the results of calculations with thoseconcentration in the cloud exceeds severalfold the average
provided by the analytic formulél?7). As the gas pressure ion number density at the points occupied by a particle. Ex-
grows, the microparticle charge decreases and the ion nuneess ionic charges near a particle are small compared to the
ber density increases. The two effects lead to a decrease particle charges proper. For instance, for the case depicted in
the critical particle separation & =60 and 80V, which Fig. 4, the excess ionic charges in a region with a radius of
agrees with the experimental data. Bt=40V the statist- 50 um near the particles are>510° e, while the particle

cal calculation error is several times larger than Uat charges are approximately{®) X 10° e. Since a fraction of
=60V. ForUs=40V andP<100 Pa, the critical particle the ion flux lands on the particles, in the region between the
separation varies only slightly with pressure and amounts telectrode and the crystal the ion number density is somewhat
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FIG. 5. Cross-section and discharge-period averages of the distributions of 4‘0 6'0 8'0 100 120
the ion concentrationn(), electron concentrationn¢), and electric-field ) P, Pa

strength E) in the electrode sheath at a gas pres$te80 Pa and a dis-

charge voltagdJ ;=60 V. The solid curves were obtained for a layer con- FIG. 6. Dependence of gas pressure on the distance between the layers in a

taining a two-layer crystal with a particle separatian-519um in the  double-layer microparticle crystal for a discharge voltagg=60V and

Iayer, and the dotted curves were obtained for a layer without microparyarious particle separations in a layar=a,, (1) anda= \/Eacr (2). The

ticles. curves represent the results obtained by using an approximate crystal model,
@ and B represent the calculated data, andrepresent the experimental
data atU~40V anda=a,.

lower than in a layer without particles. The presence of par-
ticles in a layer only weakly affects all layer characteristics
except the layer thicknegfig. 5. Hence separate modeling atU =40V were carried out, since a large statistical error is
of an rf discharge without particles and for the electrodeinvolved in determining the transition from a monolayer
sheath with particles is justified. In equilibrium, the mutual crystal to a double-layer crystdFig. 3b. The experimental
repulsion of two charged layer is balanced by the attractiomlata on layer distances obtained willy=40V agree fairly
to the space charge between the layers. If we take into asvell with the results of calculations fod =60V and a
count the particle charge, the crystal can be considered aa. (Fig. 6). As noted earlier, in experiments the particle
guasineutral region. Hence the increase in the characteristgeparation in a layer must be equal to the critical valye
thickness of the electrode sheath is approximately equal to
the distance between the outmost planes of the crystal, a fagly staility of double-layer crystals
corroborated by specific calculations of a triple-layer crystal. -

Since the electron number density decreases as we move 10 analyze the stability of a loosely packed hexagonal
closer to the electrode, the lower particles have a smallg@ttice, we calculated the forcégig. 7) acting on the par-

charge than the upper. A transition from a monolayer crystaﬁides when the lower layer is sh_ifted asa \_Nhol_e in relation to
to a double-layer crystal and a further variation of in particlet® upper layer along thecoordinate(the direction of thex

separation in a layer have a small effect on the partid@xiscoincides yvith theldirec_tion to the negrest particle in the
charge. As the pressure increases, the average electron digxagonal lattice In this series of calculations we examined
ergy decreases, and so does the potential at the particle s@-nexagonal unit cell containing two particles with fixed
face, with the potential difference between the upper an&ransverse coordinates, Whl|e the longitudinal coordlnates'of
lower particles remaining essentially unchanged. For a cladhe particles were determined by the balance of forces acting
sical Coulomb double-layer crystal, the distankebetween on the particles. Under a transverse shift of the lower layer,
the layers can be estimated from the condition for the equi-
librium between the repulsion of two uniformly charged
planes and the attraction of the planes to the background
chargep in the space between the planés=227//3 paZ.

For a microparticle crystal in a layer, the difference of par-
ticle chargesgZz=2,—2,, of the upper Z,) and lower ¢,)
layers plays an important role. Here the equilibrium condi-
tion can be approximately written -2r

E.10°evem?

leﬂiu( 1 d 27 . 6ZM 19
ni—ng) dz= —— + - Mg.
2 1 e \/§ az Z g

Since Z/+/3a%?<Mg, a slight difference in particle charges
leads to an appreciable increase in the distance between the

i

layers, which decreases as the separation of particles belong- 0 50 100 1'50
ing to a single layer increasdfig. 6). When we used the ox, Um
expression(19) to estimate the distance between the layers

(the solid curves in Fig. Y% we took the ion and electron FIG. 7. Forces acting on the particles of the up(grand lower(2) layers

. . when the lower layer is shifted in relation to the upper layerdayat U ;
concentrations fronfl5). We also allowed for a reduction of Z -0 V., P—80 Pa, anda519.m. The curves represent the results ob-

e|eCtr0!" Concentration_ near a chgrged layer due to DebYgined by using the approximatid@0), and® and A represent the resuits
screening. No calculations of the distance between the layers self-consistent calculations.
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140 7 maximum value at distances of 100—206 behind the par-
120F N, l6 ticle, and then decreases due to the Coulomb repulsion of
- ions. Note that the total ionic charge in the cloud,
100F 15
€ sof 4§ Ntzef N;(z) dz=(2—3)x 10%e,
< gol = | | |
13 remains several times smaller than the particle charge. Hence
40k ion clouds below lower particles have almost no effect on the
: 12 upper particles. Nevertheless, the attraction of the lower par-
207 i ticles to ion clouds above the upper particles is stronger than
0 » : . the Coulomb repulsion from the upper particles, since on the
~400 =200 m 0 average the ions are closer to the lower particles.

To analyze the motion of particles in the crystal we must
FIG. 8. Effective radius; of the ion cloud and the ion number densMy ~ know the interparticle forces, whose self-consistent calcula-
in the cloud generated by a particle in a monolayer crystdl @60V,  tion in the general case, where the crystal loses its symmetry,
0Pf=ﬂ?é) E;tiilrg.iFSIQ;Lm. The coordinate= 0 corresponds to the position is alr_nost impos_sible_. Igno_ri_ng the momentum transferred
from ions to particles in collisions and using form29) for

the ion concentration distribution in the cloud, we can reduce
the many-body problem to finding the two-body forces be-
Rfeen the particles. To do this, in addition to accounting for
Coulomb repulsion, we must allow for the attractive force

the distance between the layers decreases, which is es
cially evident am= \2 a, (Fig. 4. The forces, , acting on
the particles of the upper layer in the directioare negative,
i.e., the Coulomb repulsion between the lower and upper P nig(r' =)

particles tend to disrupt the equilibrium in which the par- F|(r)=eZa— E f,—dr’ (21
ticles of the lower layer are under the particles of the upper a [r"=r]|

layer. However, the attraction of the lower particles to thebetween the lower particles and the ion clouds that can be

. . Eonsidered being rigidly coupled to the upper particles that
Coulomb repulsion between the particles. Hence the forceaive rise to thent® Summation in(21) is done over the upper
F, acting on the particles in the lower level are also nega-

tive ie. the lower particles tend t ‘tions und lparticles with coordinates;. The results obtained in this
€, 1.e., the lower particles tend 1o occupy posiions UNGel,,» ner for the shift of the lower layer in relation to the upper
the upper particles. Sindé,|>|F,|, as shown in Ref. 18,

o . . layer (a problem considered earl)emgrees, within statistical
such crystal packing is stable against a shift of the IOW_ererror, with a complete calculation of the forcégig. 7),

layer as a whole in relation to the upper layer. As noted i hich hat thi h , inaful i
Ref. 18 and suggested by Fig. 4, a shift of the lower particle%olrce czlrjrgsliitzithﬁotnsls approach remains meaningful in

has a relatively small influence on the ion concentration dis- As shown in Ref. 18, a decrease in the gas pressure

tribut.ion in the clouq above the upper parti_cles. Thi; makes iF‘nakes a double-layer crystal unstable against the develop-
possible to approximately determine the interparticle force%ent of short-wavelength perturbations. In Ref. 18, non-self-

S%i ah kncr>]vxt/)n :connc;ogcer;]tr?tlzc;;] i;}st”rzu?]o? n rlop clpuds, consistent calculations of ion motion were carried out, while
ch can be Tou y analyzing the monolayer cry&fid. he ion concentration distribution in the cloud was replaced

2). The results of calculations reveal that with an accuracy o y a point charge positioned at a certain distance down-

" o T . . T
1 3A)| the spatltall dlStrIEuthﬂ of 1o nst b;zkl;lnctiha ?artlclle "N Astream of the upper particles. Using the expressii for
monolayer crystal can be approximated by the formuia the forceF, of interaction between the lower particles and

n;(z,p)=Nio(2) +n;1(z,p), the ion cloud together with the approximati¢®0) for the
2 ion concentration distribution, we study the stability of the
N ol i i i .
Ny (z,p)= —exp — — |, (20) crystal more thoroughly. Following the line of reasoning de
TR Ri2 veloped in Ref. 18, we examine the motion of particles only

in the transverse plare=xy, with allowance for the friction

of the particles in the gas with a coefficiemt the Coulomb
repulsion between particles, and the attraction of the lower
articles to the ion clouds above the upper particles. Then the
quations of motion of the uppeipy,) and lower @)
particles can be written

where N; is the ion number density per unit length in the
cloud, andR,; is the effective cloud radiughoth depend on
the distance to the particle; Fig).8T'he minimum in the ion
cloud radius is attained near particles and is approximatelg
equal to the characteristic radiRg, of the potential well. As
the distancdz| from the generating particle down the flux

increases, the effective cloud radius increases approximately 42 d 0272 .
according to the square-root law Peu_  GPku u Pru” Piu
dt? dt M9 |pk u— Pi u|3
Ri=VRAn+ 4D, |z|/vg ' '
2
due to the transverse ion diffusion with a diffusion coeffi- n &ZuZ, Pu™ Pi 22)

cientD, . The ion number density; in the cloud reaches its M T pu—pi+ed|®
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TABLE I. crystal in a plasma: the particle potentials, the critical par-
ticle separation in a layer at which, due to the Coulomb
repulsion of particles, the monolayer crystal transforms into
60 1 17 59 73 a double-layer crystal, and the distance between layers in a
60 V2 18 49 43 double-layer crystal. We have proposed a model for calcu-
80 V2 24 61 45 lating interparticle forces. This model has been used to de-
termine the main characteristics of instability of a double-
layer crystal against the development of transverse particle
42 d 0272 o oscillations: the critical friction coefficient for the particles in
Pl __ SP ! Pe1—Pii the gas, the oscillation frequency, and the phase shift in the
dt? dt M 5 |pk,|—pi,||3 oscillations of the lower and higher particles. The discrep-
) ancy between our results and the experimental data on the
e°ZyZ, Px,| " Piu n iF various lattice parameters amounts to 25—40%, which is of
M T g —puted® M kil the order of the experimental error. We have also built an
23 approximate model of a microparticle crystal in the electrode
sheath, a model that makes it possible to find all the crystal
wheree, is the unit vector along the axis, with the lower characteristics to a high accuracy.
index indicating the equilibrium position of the particle in a This work was supported by the Russian Fund for Fun-
layer. The forces acting on a particle are nonpotential due tdamental Researci{Grant No. 96-02-19134)a RFFI—
the interaction of the lower particles and the ion clouds,NNIO(Grant No. 96-02-00241JG and INTAS (Grant No.
which in the final analysis leads to the development of par96-0235.
ticle oscillations as the coefficient of friction of particles in
the gas decreases. To analyze crystal stability, we examine

Uy, V alag v,,s ! 1

@y, S ¢, , deg
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The interaction of vortex filaments in an ideal incompressible fluid with the free surface of the
latter is investigated in the canonical formalism. A Hamiltonian formulation of the

equations of motion is given in terms of both canonical and noncanonical Poisson brackets. The
relationship between these two approaches is analyzed. The Lagrangian of the system and

the Poisson brackets are obtained in terms of vortex lines, making it possible to study the dynamics
of thin vortex filaments with allowance for finite thickness of the filaments. For two-

dimensional flows exact equations of motion describing the interaction of point vortices and
surface waves are derived by transformation to conformal variables. Asymptotic steady-state
solutions are found for a vortex moving at a velocity lower than the minimum phase

velocity of surface waves. It is found that discrete coupled states of surface waves above a
vortex are possible by virtue of the inhomogeneous Doppler effect. At velocities higher than the
minimum phase velocity the buoyant rise of a vortex as a result of Cherenkov radiation is
described in the semiclassical limit. The instability of a vortex filament against three-dimensional
kink perturbations due to interaction with the “image” vortex is demonstrated.1999

American Institute of Physic§S1063-776(99)00903-§

1. INTRODUCTION crux of which could well be the problem of the interaction of
It is generally knowr(see, e.g., Ref.)lthat fluid flow in  nonpotential flows, i.e., rotationgvortex flows with a free
the presence of oscillations of the surface of water under theurface.
influence of the forces of gravity and capillary tension can be  Probably the first theoretical treatment of this problem
treated very accurately as potential flows=V®. The small  was published by Keldysh and Lavrent®and a section of
nonpotential component of the velocity field is attributable tog |ater book! is also devoted to it. Novikov has subsequently
fluid viscosity. The system becomes Hamiltonian in the zeranvestigated the probledf.In all these publications the au-
viscosity limit. The actual profile of the surface  thors have calculated the losses of a two-dimensional point
=n(x,y,t) and the value of the potential on the surfaceyortex in steady-state motion as a result of the excitation of
#(x,y,t) emerge as canonical variables, whereupon thgurface waves. In Novikov’s wotkthis process is analyzed
equations of motion are written in the form in the linear approximation with respect to the surface wave
gn OH i SH ampl_itude on the assumption that the vortex is situated at
i 5—(/) S 5—77 1 cons_lderable_ depth from the free surfacg. In the _zerot_h ap-
proximation in this case the vortex combines with its mirror
where the Hamiltoniatd coincides with the total energy of image to form a dipole pair, which moves at a constant ve-
the fluid. locity along the surface. The generated flow away from the
A Hamiltonian formulation(1) of the equations of mo- vortex is inhomogeneous along the surface. In a coordinate
tion for potential flows of a fluid with a free surface was frame where the vortex is at rest, the flow is homogeneous at
published by Zakharov at the end of the 1968*Since then large distances from the vortex. As we approach the vortex,
the Hamiltonian approach has been used successfully in thiiee flow velocity on the surface changes sign at some point,
investigation of a great many phenomena: the modulatioso that the flow velocity above the vortex has the opposite
instability of surface wavesthe nonlinear stage of develop- sign and three times the magnitude of the velocity at infinity.
ment of Kelvin—Helmholtz instability the formation of hex- It is clear from this situation that the generated wave
agonal relief on the surface of liquid dielectrics in the pres-experiences an inhomogeneous Doppler effect by virtue of
ence of an external electric fieldand the formation of the Cherenkov process. It should be recalled that Cherenkov
singularities on the surface of ideal fluiiTwo important  radiation occurs when a vortex propagates at a velocity
contributions to research on surface wave turbulence argreater than the minimum phase velocity of surface waves. It
Refs. 3 and 8, in which the first systematic theory of Kol-is shown in the cited paper that when the Cherenkov wave-
mogorov spectra—flux-type power-law distributions—is for- length\ is much shorter than the distance from the vortex to
mulated. the surface, i.e., the vortex depgththe Cherenkov radiation
Nowadays the theory of surface wave turbulence is onean be described semiclassically. Surface waves are known
of the most advanced of alsee, e.g., the survey in Ref).9 to be localized within a surface layer having a thickness of
All the same, the theory has lingering unsolved problems, th¢he order of the wavelength, the fluid velocity decreasing

1063-7761/99/88(3)/14/$15.00 492 © 1999 American Institute of Physics
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exponentially at greater distances. Rogh, therefore, the filaments. We show that the interaction of the vortex with its
back influence of radiation on the vortex is exponentiallyown image renders a vortex filament unstable against kink
small, so that perturbation theory can be used to good advamperturbations, where the parts of the filament closest to the
tage. free surface accelerate toward it, while more distant parts
In the present article we investigate the nonlinear intermove in the opposite direction, away from the surface. This
action of vortices with a free surface. We are concerned priinstability is analogous to the Crow instabififyof two anti-
marily with the Cherenkov radiation of surface waves by aparallel vortex filaments. Without a free surface the develop-
moving point vortex. Our work differs fundamentally from ment of this instability leads to reconnection of the vortex
previous studies in that the inhomogeneous Doppler effect iines and the formation of vortex rings. In this situation we
taken into account. Its influence is significant not only forcan expect a vortex line to “reconnect” with its own mirror
Cherenkov radiation, but also in the subcritical regime,image, inevitably producing a large set of vortex half-rings
where the vortex propagation velocity is smaller than thethat begin and end at the surface of the fluid. The “recon-
minimum phase velocity of the waves. The entrainment ofection” process must be accompanied by the Cherenkov
surface waves is possible in this case, along with the formaradiation of surface waves in this case.
tion of steady-state bound states involving the vortex and the
waves propagating with it. It is possible for waves to be
entrained by the vortex _vv_hen the propagatiqn velocttiese 5 pagic EQUATIONS; HAMILTONIAN FORMALISM
much lower than the minimum phase velocity,,. For ex-
ample, whem <h, the velocityv at which entrainment sets We consider an incompressible ideal fluid of constant
in attains a value of the order &f,;/3. densityp (we assume from now on that=1) in the pres-
We use the Hamiltonian approach to describe the interence of a constant gravitational fiegdantiparallel to thez
action of vortices with a free surface. In the canorfitdl  axis. Let the profile of the free surface be described by the
formulation the fluid velocity is represented in terms of Cleb-equationz= 7(x,y,t).
sch variables. Even though this kind of parametrization of = The equations of motion of the fluid are the Euler equa-
the velocity describes a special type of flow, the canonications
Poisson bracketexpressed in terms of Clebsch variables
admits conversion to a noncanonical bracket, which is ex-
pressed at once in terms of the velocity, the potential on the
surface, and the surface profile itself; most important, it carsubject to the boundary conditions} éxtinction of the ve-

be used to describe flows having an arbitrary topology. Howiocity (v—0) at a large deptla— —o; 2) the dynamic con-
ever, the noncanonical bracket is found to be degeneratgition at the free boundary

owing to the existence of a special symmetry, which forms

an entire group—the group of relabeling transformations of o \E/

Lagrangian markers(the details are given in a recent p|z=,,—0 div W ' ®)
survey?). This symmetry generates all known vorticity con- _ _ -

servation laws. The principal law is the freezing-in of vortex @nd the kinematic condition

lines in the fluid. It corresponds to a local Lagrangian g4

invariant—the Cauchy invariant. In a previous pdpawe 2t - vaVIH(Vp)T=0,— (Vi V) 7. (4)
propose a technique for removing the degeneracy for an in-

compressible ideal fluid without a free boundary by introduc-Here p is the pressure, and is the coefficient of surface
ing new variables called Lagrangian markers, which enumertension.

ate each vortex line. It will be shown in Sec. 2 that this ~ The system of equation®)—(4) is classified as Hamil-
approach can be extended to ideal hydrodynamics with a fre@nian. For pure potential flows=V®, Eq. (2) with the
surface. In particular, the transition to a vortex-line represenboundary conditiong3) and(4) can be written in the canoni-
tation provides the means for writing a variational principle cal form(1). For nonpotential flows that can be parametrized
and a simple way to achieve a self-consistent Hamiltoniarih terms of Clebsch variables, we have

description of a system of thin vortex filaments interactin -

with aF:‘ree surfacg. Y v=Pavuive, ®)

In Sec. 3 we use the variational principle and conformaland the canonical equatiord) are augmented with two
mapping into the half-plangéby analogy with Ref. 16to  equations in the variables and u (see, e.g., Refs. 14 and
derive the equations of motion of point vortices and a freel8):
surface for a two-dimensional geometry. In the next section

i X : : N SH om SH
we find steady-state solutions of these equations in the form  — = — = —(vW)\, —=— —=—(vWV)pu. (6)
of an asymptotic expansion in powers of the Froude param- gt bu at 2
eterF. In Sec. 5 we discuss bound surface wave states. Ipjere the Hamiltoniat is identical to the total energy of the
Sec. 6, assuming that>\, we determine the law governing flyig:
the buoyant rise of a point vortex as a result of Cherenkov 5
radiation. In the last section we investigate the influence oh:f v dr+J dr,
three-dimensional perturbations on the dynamics of vortex z<7p

E+(vV)v>=—Vp, divv=0 2

2
ol TV P11, ()
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and the velocity can be expressed in terms fand u by SF BF
means of Eq(5). In Eq. (5) P,p=03,5— VA 'V, is the 3% :(”ﬁ) . (12)
transverse projector. The operatbr ! is interpreted every- ¢ Aun z=9

where in this section as the inverse operator for the Dirichlefn the meantime, the variational derivative with respecto

problemAf =g with vanishing boundary conditions remains unchanged:
fl,-,=0 andf—0 asz——=. SE SE
- == (13
For this choice the symbab in Egs.(1) retains its definition on b o7,

as the value ofb at the free surface, and the potentiil

itself is a harmonic function: Next, substituting relationg10), (12), and (13) into the

bracket(9), we arrive at an expression for the noncanonical

AD=0, D|,_,=¢. (8)  Poisson brackét
It is important to note that hera and x are completely SF  5G
unconstrained at the free surface. The vortex lines, which are {F.G}= curlv SV XE dr

specified by the intersection of the surfades const and
m=const, can have arbitrary orientation at the surface
=y(r, 1), i.e., they can either be tangent to the free surface +

or run into it.
The substitution(5) is known (see, e.g., Ref. 190 de- The first part of this bracket takes bulk variables into ac-

scribe a special type of flow; in particular, it does not de-count, and without a free boundary it goes over to a bracket

scribe knotted flows. Nonetheless, despite the special chafXPression first published in terms of the curl of the velocity

acter of this substitution, it can be used to obtain af?=curlvin Ref. 19:

Hamiltonian description for flows having an arbitrary topol-

ogy in terms of so-called noncanonical Poisson bracKets. {F,G}:f (Q
This fact was first demonstrated for flows without a free

boundary** We now show that it is also valid for flows with When the vortex lines do not run into the free surface, the
a free surface. We convert the canonical Poisson brackegecond part of the bracket can be expressed in terms of the
specified in terms of bulk variabled («) and surface vari- variables¢ and 7:

ables @, 7), f (JF G 6G oF

{F,G}:f (iﬁ_ﬁf)dr _____

on

on

5F( ?se) 5G( EF>)
HE nE dr, . (14

oF

| |5G
cur mcur m

)dr. (15

dr, (16)

on 6¢ 6n 6¢

and coincides with the canonical Zakharov bracket.
SFE G 8G SF Accordingly, the equations of motiof2) and(4) can be
L[ EE o . ) .
J (577 56 on 5¢)du ) 9 written by virtue of the bracketl4) in the form
to a bracket expressed in terms of the veloaityand the vi={v.H}, - m={nH)
surface profile. These calculations are based on a recalcula- In the investigation of thin vortices it is more convenient

tion of the variational derivatives. to use a third Hamiltonian formulation, in terms of vortex
Invoking the definition(5) and the self-adjointness of the lines. We have shown previoushthat for ideal incompress-
operatorP, we have ible hydrodynamics without a free boundary the transforma-
5 5 tion to vortex lines as new variables removes the degeneracy
oF oF oF oF of the Poisson brackets and makes it possible to write a
Y = V:“-E ' @Aw: Y 10 yariational principle. It should also be noted that the limit of
i infinitely thin vortex filaments of finite vorticity in the pres-
Here ence of a free boundary has been analyzed previéadipe
- formulation set forth below gives a Hamiltonian description
oF |55_F of distributed vortices interacting with a free surface. Our
EYRRE N proofs are simpler and, most importantly, they can be used to
. check the limiting transition to infinitely thin vortices.
so that divgF/4v) =0. o o We represent a vortex tube of finite thickness by a con-
Next we calculate the variational derivative ¢f tinuous distribution of vortex filaments, each of which we
SE SF _ Sep(r) label with the coordinate. We assume that the coordinate
- = | =Vo—7——=dr. (1)  belongs to a certain fixed two-dimensional domain. For ex-
o N7 oV Se(ry) ample, v can be interpreted as the initial coordinates of a

Making use of the relatiot 5®(r)/ 56(r,)=0, we replace vortex filament in a cross section of the vortex tube.
¢ (N/o¢(r.) P We specify the position of each vortex filament by the

the variational derivativeSF/8v by SF/4v in the integral function
(11). Then, transforming the integral to a surface integral, we
obtain r=R(v,s,t), a7
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wheres is a parameter that varies along the filament. For and
closed vortex line the functioR(»,s,t) is periodic with a
period that depends o v=curl

R(v,s,t)=R(v,s+1(v),t).

ST
o0’
the first of which is valid only for functionals that depend on
We shall assume below for simplicity that the vortex Q, ¢, and 7, i.e., gauge-invariant functionals that are inde-
lines do not reach the surface anywhere and are closed. Th@ndent of the choice of the parametsiand v.
scalar velocity potential is therefore well defined at the  The equation of motion foR (19) deduced from(20)
boundary.(Note that its valuep(r, ) contains, in addition to acquires the Hamiltonian form
the wave potential, a contribution from vortices situated in ,
; 74
the depth of the fluid. p()[Ry(7,8) X Ry(7,S)]|= —=———
Let the velocity circulation around the vortex tube, SR(v,8) |,
which rests on an area elemetty in the vicinity of the
point v, be equal tgp(v)d?v. By the conservation of circu-
lation, p(v) is independent of the time.
In this case the curl of the veloci®(r,t) can be written

(22

and the equations fap and # retain their canonical forrfi).
Making use of the propert§21), by rewriting the bracket

(14) we can obtain the Poisson brackbetween two gauge-

invariant functionals expressed in terms of vortex lines:

in the form
d?vds oF
JR(v,8,1) E f (R {_
. — 2 V,S
AUGRISON = [ dup(r) [ as 20 e ) R 2 R
X 8(r—R(v,s,1)). (18) %G )+f(5j§_§5j)d

We see at once that the choice of the paranmeieiEqs.(17) OR(v.9) om 04 om 54
and (18) is nonunique, up to the replacement:s(s,t). Ir- (23)
respective of the choice of the vectordR(v,s,t)/ds is al- It is evident from this expression that the new bradias)
ways tangent to the vortex line with the given does not contain variational derivatives with respecipto

We have shown previousfythat the equation of motion althoughp could have been assumed to be invariant in the
for a vortex liner=R(v,s,t), given calculations. This result indicates thais a Casimir

[RX (R—V(R,t)]=0, (19) variable in relation to the original bracket, permitting us to

introduce the variational principl€0). The variablesp and
governs only the “transverse” dynamics relative to the vor- » now remain canonically conjugate.
tex line. The equation of motioflL9) follows directly from The canonical formulatiorf20) also benefits us in the
the Euler equation for the curl of the veloci€}=curlv. As  ease with which the limiting transition is made to a finite
should be the case, the longitudinal “variation” does notnumber of very thin vortex filamentR,(s,t) having finite

affect the deformation of the curve, leaving Efj9) invari-  vorticities y,:
ant under all smooth substitutioss-s(s,t). 20
The description of the vortex lines by Eqd.7), (18), Ef? > 7”J ds(R,d Ry XRp])
n

and(19) is a hybrid Lagrangian—Eulerian description. Here
the parameter has a transparent Lagrangian origin, whereas

the coordinates remains Eulerian. For planar flows the co- +j ¢mdr . — 7[Ry, ¢, 7m]. (24)
ordinates is naturally identified with the coordinate per-
pendicular to the corresponding plane. All that is required is to take accurate account of the fact that

It can be checked by direct substitution that the equathe “self-energy” gained by the filament in the immediate
tions of motion(4) and (19) for the variablesR and  and  Vicinity of its axis increases logarithmically as its thickness

also fory follow from the variational principle for the action tends to zero. In three-dimensional space finite-thickness ef-
S=[ vdt: fects often play an important role, because the stretching of a

certain part of a filament is accompanied by a decrease in its
6S=0, thickness and, as a result, an increase in the self-energy den-
where the Lagrangiar is given by sity per unit length. In principle, this property of the system
can be incorporated into the discussion by retaining addi-
tional degrees of freedom other th&{s) in our crude de-
scription, specifically the filament cross sectidifs) and,
canonically conjugate to it, the angi¥s) of rotation of the
+f dndr, — 7R, b, 7). (20)  cross section as a whole about the axis of the filament.
This problem never arises in the investigation of planar
The key factor in this check is embodied in the two relationsflows. The vortex has a constant area, which is associated
only with the additive constant in the expression for the
R XCurIE}:i 21) Hamiltonian. In this case the variational principle for the
action in the Lagrangiaf20) leads to the well-known con-

1
=§fd21/p(v)f ([Ry(v,8)XR(»,5)]R«(7,5))ds

p(v)

6Q] OR
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clusion(see Ref. 1Bthat the coordinates of each point vor- |R| —|K|. (30)
tex, X,(t) and Y,(t), are canonically conjugate variables,
and the Lagrangian assumes the form When the projector®(*) act on an arbitrary function, ren-
dering its Fourier components with negative or positive wave
z=> 2q-rynxn(t)\'(n(t)+f dndx numbersk equal to zero, from the given function they sepa-
n rate out functions analytically continuable into the upper or
— Xy Y b, 7]. (25) lower complex half-plane of the argument, respectively.
These operators can be expressed in terms of the Hilbert
transform

3. DYNAMICAL EQUATIONS IN CONFORMAL VARIABLES

- » f(x")dx’
In this section we address planar flows, assuming point Hf(X)= V. P f —
vortices. Our primary concern being the interaction of vorti- XX
ces with a free surface, we confine the discussion to a singlgy means of the equation
vortex (any generalization t&\ vortices is more or less ob-
vious). For two-dimensional flows it is helpful to follow Ref.
16 and map the fluid-filled domaib:{y=< 5(x,t)} into the
lower half-plane of the complex variable=u+iv. We as-
sume that the conformal mapping is specified by the analyti®\ccordingly, the operatdrfd can be written in terms dfl in

P<i>=%(1:iﬁ). (31)

function the form
zZ(w)=x+iy=w+A(w), (26) A 9
which takes the boundary of the fluyd= 7(x,t) into the real k| =~ Hox:

axisv =0, with the functionA(w) tending to zero at infinity.
To describe the fluid flow, we introduce the Comp|ex We now write the kinematic condition on the surface, along

velocity potential with the Bernoulli equation in conformal variables. We use
) the relation
[I=®+i0O,
ay.x) 1

where® is the hydrodynamic potential used above, &his =
the stream function. In the presence of vortices the potential Ca(tx)
IT is not unique: the potential acquires a nonzero increment
when it skirts the vortex. Consequently, wherever necessar
in the ensuing discussion, we assume that the potditiasl X v x =|R|¢/ 32)
specified in the(lower) half-plane with a cut that extends YT Yok '

from the pointw=W=U +iV where the vortex is located to Following Ref. 16, we can solve this equation for the time

= X_u(ytxu_ YuXe)

transform the kinematic condition to

W= —ioo. derivatives:
Rectification of the free surface by means of the confor-
mal transformatiore=z(w) permits the vortex component Z 5 2i|R|¢
and vortex image to be exactly separated out of the complex Z_u = W (33
potential: u

W In no way does this equation reflect the presence of the vor-
H(W)zHo(w)JrlIf(w):inn( — ) +¥(w). (27 tex, owing to the representation of the velocity potential in
W- the special form(27). The right-hand side of Eq32) (|k|)
This componen{the first term in(27)] has the important represents the normal velocity component, which has does
property that it makes no contribution to the velocity com-not have any vortex contribution.
ponent normal to the surface. The other termlincan be In the transformation of the dynamical boundary condi-
interpreted as the surface wave potential. tion, i.e., the Bernoulli equation at the free boundaryO,
We assume everywhere that>0, and accordingly that the term §¥®)? can be written in the form
the vortex rotates clockwise.

Foruv=0 (i.e., at the free surfagehe real potential is (V)2 _ _ 1 D24+D?)| =i(¢2+¢2)
u- T 2 T g2
¢(u):d>o(u)+z//(u):2yarctar{ my +(u). (28 S
and the derivative is
We introduce the projector®*) and the operato}k|, - ~
which will be needed below and which have the Fourier 7% — b= b f Hou) _ (H)™
representation ai,_, T 2 |2,|?

Hence, simple transformations reduce the Bernoulli equation

1
(£)==
P 2(1tsgr(k)), (29 for ¢ in conformal variables to the form
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[ Higy| Ay =(4y)? 1
$i— pH| — | - ————=——+ay +5In(Z' (W) Z' (W) | (39)
|z 2|z,
1 a(y The terms in the second row of this equation are responsible
———— _(_“> = (34)  for surface waves. In the limit of small wave amplitudes and
1+ |kly du || no vortex, the Lagrangian is quadratic in the variabjesnd

In the absence of a vortek= ¢, in which case the equation 7
describes surface waves proper together with their nonlin- 1 .
earities, so that the entire wave—vortex interaction is embod- VS=J dugy,—5 J du(ylk|g+gy*+oy?).
ied in the difference between the potentidisand ¢.
We have yet to write the vortex equation of motion. We The corresponding linear equations of motion give the sur-
know that the velocity can be obtained from the total flow face wave dispersion law
velocity field by subtracting the centrosymmetric field of the N sy
vortex itself and passing to the limit— X, y—Y: 0= Vgkt ok 39
~ _ a surface wave with the wave vectors localized in a layer
Xi=vx(X, Y1), Y=oy (XY 1) having a thickness of the order of the wavelengthk('1).
The logarithmic terms in the Lagrangi&B8) correspond

or to the interaction of a vortex with its mirror image and take
1 | | into account the change in size of the vortex under the con-
Zi=vy— ivy:E . formal transformation[Az|~|Z'(W)||Aw]|. It will be shown
z=Z in the Appendix that the last term i(88) causes the term
Upon transformation to conformal variables, the latter equali ¥/2)Z"(W)/Z'(W) to appear in Eq(35), and likewise
tion can be rewritten as gives the Bernoulli equatior(34) a term characterizing

o vortex—wave interaction.

! dz ~!
Z'(W) o =1 fw=w-

To complete this set of equations, we must now determiné- STEADY-STATE MOTION

the potentiaill. From Eq.(27), We consider the steady-state solutions of Eg3), (34),
and (35) describing the propagation of a vortex along the
~ w—W . . . .
H=|yln< — + W (W) —iyIn(z(w)—Z(W)). axis at a constant velocity, and the surface deformations
wW- associated with it. In this case
Differentiating this equation with respectwoand passing to U=W-=c,
the limit w— W, we finally have
o and
dz —i iyZ'(W
2w 32 1Y 2 W, (35) J J
dt  w-w 2 z/(w) S

Equations(33), (34), and (39) in conjunction with the  ag 5 result, the kinematic condition in the forf82) can be

equations integrated simply:
x—u=—Hy, (36) x(u')—u’=cy, (40)
i z(u)—u)du which by virtue of the analyticity of yields
Z(W)—W=— f u (37)
2m u-w AW )=cV. (42)
form a closed system describing the interaction of a poinfyerey’=y—ct andw’ =w—ct (from now on we drop the
vortex with the free surface in conformal variables. primes fromu andw).
We close this section with an expression for the La-  The Bernoulli equatiori34) can also be simplified con-
grangian in conformal variables: siderably in the steady state. In a coordinate frame with the
e 77 —77 vortex at rest the flow moves from right to left with the
Looni=ITYZ—— + f (Do(U)+ ) M) du velocity c. At the boundaryby virtue of the steady statéhe
dt 2i stream function is constant=0), and the velocity therefore

has only one tangential component:

plkly g (222 z,+2,
- d‘”if 2 g iy (W—W)
_ Vu)=-ct+ ———o—. (42
(W—W) lu=Ww|
In :

—o-f (\/Zu?u—l)du— my?

As a result, Eq(34) can now be written in the form
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V2 1 gy c2 Cherenkov radiation still does not fully guarantee steady-
S toy—o—=— (9_<ﬁ) =5 (43 state motion of the vortex and the surface waves bound to it
2|z, 1+ |kly duilzy (see below in this regayd
In the steady state with E¢41) taken into account, the We now turn to the solution of Eqd43) and (44).
vortex equation of motion(35) gives the velocityc as a Above all, we note that these solutions are stationary points
function of the derivatives of(w) at the pointw=W: of the Hamiltonian7 for a fixed x component of the mo-
mentumZ”.
_ly W (44 S(H+c)=65.=0 48
c= —— . T+ cP)=86S,=0,
W-W 22 (W) ( 7)) =05, (48)
. . . where
Equations(44) and (43) form a closed system, in whict
plays the role of an eigenvalue.
We now consider the asymptotic behavior of E4p) for P==-2myY+ f P ndx,
largeu, assuming that the deviatigr(u) is small. Lineariz-
ing, we have and the action for the steady-state soluti®as the form
~ ZC’yh iCZ . __
Ly(u)= o (45 Sc=f — 4 AN+ o(V(1+A)(1+A)-1)
Here the operatok, which is given by the expression g[A-A 2 A+A
r 1Rl \2 2 2 1 +§ 2i 1+ 2 TuPA
L:|k|(vph_C )! Vph:g|k|7 +0'|k|!

. . . ~o _ — W-WwW
detgr.mlnes.the gsymptotlc behawor)ofThg operatot is +,u,P()A)du—7T'yCi(W—W)+7T’yZ In( _ )
positive definite if the square of the velocitys less than the =1
square of the minimum phase velociy,= w(k)/k of linear 1
waves: + E|n(1+A'(W))(1+K'(v_v)) : (49)

c?<min V= 2gk,,
Here we have made use of relatid@d€), which can be used
to eliminate the potential’, and we have introduced the
relationP()A=P(")A=0, which guarantees the analyticity

of A andK(,u and; are the corresponding Lagrange mul-
c¢?>min V3, tipliers).

“ ] ] ) ) Now the variation ofS; with respect toV gives an equa-
the operatot is not invertible, and the solution of the linear o5 for the vortex depthV, which coincides with(44). It

equation (45) therefore contains an oscillating asymptotic fg|iows at once from this equation that for a small deforma-
form with wave number that are roots of the equation  jon, of the free surfacén which case the second term on the
glk| =1+ o|k|=c2. (46) right-hand side of Eq(44) can be disregardédhe vortex

) o o N ~velocity is inversely proportional to the distanclk #om the
This equation is the Cherenkov radiation condition, which isimage vortex:

satisfied by two values d; ,:

Y
c? C~Cp==_.
k1,2=%[1i V1= (Vininpn/€)* 1. (47) 0 2h

Examining the variation with respect fg we obtain the
steady-state Bernoulli equation in a form that differs from
(43), but is more practical for the ensuing analysis

, d 1+A _
ic?A’ + 20— — | +g(AA’ —AA' —A)
du V\1+A’

wherew(k) is given by Eq.(39), andky=+/g/o. In this case
the operatorl is invertible, and accordingly Eq43) can
have localized solutions. If

Here k; lies in the capillary region of the spectrunk,(
>kp) andk, lies in the gravity regionK,<ky). The group
velocity atk=k, is greater tharc, and for gravity waves
with k=k,, in contrast, it is less than. Consequently, for
c’> minVﬁh an oscillating capillary wave front is produced p-)
in front of the vortex, and a gravity wave front is produced

behind it(see Sec. 6 for more details on this subject

Thus, the localized solutions differ from nonlocalized N iy® 1 -0 (50)
;olutions prima.ril_y in the relation between the vor.tex velpc— 1+ A (W) (u—W)2 e
ity ¢ and the minimum surface wave phase velocity. An im-
portant consideration is the fact that foeminV,, the lo- The solutions of Eqs(44) and (50) depend on two di-

calized object—the bound states of the vortex and thenensionless parameters: the Froude nunibery?/gh® and
waves—cannot be a steady-state formation; it will necessaff = o/gh?, which represent the ratio «rﬁ and the character-
ily radiate surface waves on account of the Cherenkov effecistic velocity of capillary waveswith wavelength~h) to the
losing energy in the process. In general, however, a lack ofharacteristic velocity of gravity waves.
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Let a vortex be situated at the poit= —ih in a coor-
dinate frame moving at the velocity. Introducing the di-
mensionless variables

é=ulh, a(&F,T)=A/h, c=c.C,
we can rewrite Eqsi44) and(50) in the form
~ a’(—i
c=1—i(—)., (51
1+a’(—i)
a=pP) 'Fﬁéza’JrZTd \/ 1+ +aa’ —aa’
= IF— S —_— —
4 dé 1+a’
s iF 1 52
1+a’(—i) (¢+i)?)

For small flow velocities the solution of the systéfi), (52)

can be represented by an asymptotic expansion in powers

the parameteF.
The expansion of the velocitg as a function of the
depth is given by the expression

<, 3. A, (2439 15 )

C=1T8" " 16 256 8
52620 213 | _, s
512 8 0T (53
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the surface is attributable to the fact that the velotit{42)
above the vortex is greater in absolute value than the value of
V at infinity, so that by virtue of Bernoulli's equation the
pressure above the vortex is lower than the pressure at infin-
ity.

We used the Maple V software package to compute the
leading terms of the expansidop to fourth order inF) in
Egs. (53) and (54). It is important to note that the leading
coefficients of the expansia(¢) decrease more slowly than
a,(¢) at large¢. The existence of a finite coefficient of sur-
face tension in this case is a fundamental prerequisite for the
existence of a stationary solution. As we have seen above,
only under this condition is it impossible to have Cherenkov
radiation over a certain velocity range. However, the expan-
sion (53), (54) can be obtained even @t=0, implying that
in reality these series if¥ diverge, and their use must be
restricted to a finite number of terms and snfallAnother
8pvious condition for their applicability is smallness of the
velocity in comparison withV i, o, SO that localized steady-
state solutions no longer exist for>V i, on. The necessary
conditions for the asymptotic expansi¢®4) can therefore
be written in the form

’)’2

gh?

<1, %<(ag)ll4. (58)

The surface profile can be determined parametricallyr" SURFACE WAVE BOUND STATES

from the relations
A(u)=h(ay (¢, T)F+ay({, T)F?+ag({, T)F3+ ...),

(54)
where
i
alzga (55)
2 1 (34 38
a2=—E+E+ §2 —?, (56)
14 106 11/2 i(6T—9/20 17/4
BT T Tp
(123/32i 39/16
2 - (57)
(Heref=¢&—1i.)

The first-order terms irF can be determined directly
from the equations. In this order the surface profile can b
determined in explicit form. The following equation is ob-

tained to within higher-order terms from E5):

X2_h2
3
(x?+h?)2’

At x=0 (strictly above the vortexthe surface has a mini-
mum with a negative value of (dip), and atx?>h? the

y=Fh

surface rises above its average level, consistent with the re-

sults of numerical integratiotf. The occurrence of a dip in

A number of structural transformation®ifurcations
take place as the velocityincreases in the stationary solu-
tion discussed above. To understand the reason for these
transformations, as in the preceding section, we consider the
case of large depths (koh>1), in which the interaction of
surfaces with the vortex can be regarded as weak, and the
vortex moves at the constant velocitg~cy=vy/2h
X (<Vinpn - In this approximation the surface is almost flat
and, accordingly, the difference between the conformal depth
and the ordinary depth is small.

We transform to a reference frame comoving with the
vortex. In this frame the interaction between the freestream
flow with velocity ¢ and the dipole paifthe vortex and its
image results in the formation along the surface of a time-
invariant, highly inhomogeneous flow moving with the ve-
locity (42):

3h2—x2

V(X):Com. (59)

his flow has velocity— ¢, at infinity and 3, at the center

(at x=0), which is three times the freestream velodity .

Inasmuch ag/(x) varies slowly in comparison with the
characteristic surface wavelength k, 1), we are justified in
writing the semiclassical equation of motion for a surface
wave packet having the carrier wave numlieand center
coordinate at the point:

C dw(k,X)
k=—— ", (60)




500 JETP 88 (3), March 1999 E. A. Kuznetsov and V. P. Ruban

dw(K,X) vary with time, and the vortex rises. The radiated waves are

X= Tk (61 situated in different parts of the spectrum, one for gravity
waves and one for capillary waves. A capillary wave is ra-

Here diated in the forward direction, and a gravity wave moves in
o(k,x)=kV(x)+\[K[(g+ ok?) (62) the backward direction. Without radiation, despite the attrac-

tion of the vortex to its image, the distance from the vortex to

is the wave frequency, which undergoes an inhomogeneouge surface remains constant on the average. We recall that
Doppler shift because of the dependence of the flow velocityor two-dimensional flows without a free boundary, a dipole
on x. During the motion of the packeiy(k,x) remains time-  pajr of point vortices executes stable motion at constant ve-
Invariant. locity in a direction perpendicular to the dipole.

Closed level lineso(k,x) =const in the phase plane cor-  The existence of Cherenkov radiation has the effect of
respond to finite periodic motion of the wave packet. Suchyeducing the distance from the surface by virtue of energy
motion is quantized according to the well-known Bohr—conservation, i.e., the radiated waves carry off positive en-

Sommerfeld rule: ergy, reducing the interaction energy of the vortex with its
image (at the same time increasing its absolute value
jg o kdx=2m(n+a,), (63 Consequently, the vortex exhibits unsteady dynamics in
X)=wp

the given situation. However, under two conditions indicated
where n labels the levelsg, is a number of the order of below, the motion can be regarded as quasi-steady, because
unity, andw,, is the eigenfrequency of the level. the amplitudes of the radiated surface waves are exponen-
The specific form ofV(x) leads to the conclusion that tially small in this case, and the ascent of the vortex is slow
bound states with near-zero frequency emerge well befori#n such a regime. This quasi-steady-state property refers to
Vminph iS reached. This is an important consideration fromthe undulating surface zone in a time interval when the wave
the standpoint of the behavior of the steady-state solution afsonts have already moved far away from the vortex. We
the velocity varies. Beginning with the velocite  note that if the vortex were maintained in uniform motion by
Vminpif 3 @ finite phase trajectory exists at zero frequencysome external force, the surface could be stationary relative
for negative values df. Two reflected infinite trajectories at to the vortex in the undulating zone. During slow ascent the
zero frequency for positivk also occur forV,, 3. In  surface profile also changes slowly. From the standpoint of
terms of bound states this means that the frequency of thealculating the Cherenkov wave amplitudes, the two regimes
first level passes through zero at a velocity clos&/ {g, ph- of vortex motion—strictly uniform motion in the presence of
And since the vortex interacts with bound states in spite ofin external force and quasiuniform motion with slow ascent
its exponential weakness, there is a resonant increase in tifier zero external force—differ very little. An appreciable dif-
contribution of the given level to the surface profile, theference shows up only when total energy and momentum
whole effect changing sign after the frequency passesonservation are violated in strictly steady flow.
through zero. Nonlinearity prevents the resonant mode from We now summarize the conditions for radiation from the
increasing without bound, and leads to bifurcation. We arevortex to be considered weak. First of all, it is required that
essentially dealing with two different solutions before andthe Cherenkov wavelength be small in comparison with the
after the zero crossing, as long as we trace only solutions faepthh (semiclassical condition This requirement is satis-
which the surface perturbation has a small amplitude. fied when
With a further increase in the velocity of the vortex, the

> .
frequency of the second bound state passes through zero, and Vimin ph (649
SO on. whereupon
The nonlinear dynamics produced in connection with the koh~4gh®/ y2=4/F>1, (65)

stated problem in the system of discrete levels is still not

entirely clear and requires separate investigation. Various T calculate the Cherenkov radiation, we use the steady-

scenarios for elaborating the behavior as the velocity instate Bernoulli equatiofd3):

creases, for example, the scenario of steady-state motion be- 2 1 ( y ) 2
u

coming unstable and evolving into an unsteady state after the gy—o———— —

emergence of several bound states, may seem entirely prob- 2|z,/? 1+ |kly ou

able, but still needs to be verified. Assuming that surface perturbations are siiayl virtue of
We note that the inhomogeneous Doppler effect culmio smaliness oF) and assuming

nating in such fundamental results drops out of sight in Ref.

12 and in the relevant section of the previously cited btok. |2’ (u)|2P~1+2|kly, c~co=vy/2h, (66)

2] 2

after linearizing(43) we have

6. ASCENT OF A POINT VORTEX 3h2—y2

As stated, it is impossible for a vortex to be in steady- Ly(w=3 (V2(u) cd). V(u)=cohzTuz. (67
state motion under the conditiot™ Vi, on, OWINgG to the
Cherenkov radiation of waves. The back influence of radiaHere, in contrast with Eq(45), the operatorL takes the
tion on the vortex causes the vertical location of the vortex tanhomogeneous Doppler effect into account:



JETP 88 (3), March 1999 E. A. Kuznetsov and V. P. Ruban 501

- . d? 2(q) ¥ Jo*(q) — 4x
L=V2(W kg . polay= DT DR (71

To solve this equation, we make use of the fact that thé\t infinity we have Kg— K2 and kc— K1 These equations
function y(u) represents the imaginary part of the function are valid far from the “turning points,” whereq=«., and
A(u)=ha(u/h)=ha(q), which is analytic in the lower half- the roots in the denominator vanish. In our case there are
plane. An equation foa(q) can be obtained from Eq67) four such points, two of which distinguish the “classically

by applying the projectoP("). In dimensionless variables it forbidden” region near=— /3, while the other two apply
has the form nearq=+\/§. Each of these two wave numbers has an

imaginary part, which gives rise to the exponential behavior
of a;(q) anda,(q). Accordingly, there are three classically
allowed regions, and in a typical situation the wave ampli-
tudes in them differ sharply, so that their ratio in transit
across the forbidden region is exponentially large, and the

A €
—v¥(@a’'+ Fa- ra=f(q,dydy). (68)

Here, by definition,

9?-3 2 4 4 exponent of the exponential function contains only a number
V2—C0v . vig)= > =1- — - —., of the order ofA (¢/V i, pn) - A similar result can be obtained

q-+1 (q=i) (g+i) simply by estimating the integral in the forbidden region:
f(q,d;,d) Vx4—\e 1

_ _ f Im{«x(q)}dgq~ | ————dx~\(\e)" 7
1 d, d, d, d; €
=4 b b ———— ———|, (69
(q-i)? g+t a=1 (g+i)?* (q-i)? ~MC/V in ph) - (72)

whereN=4/F>1 is a large parameter, and=4ho/y?<1 In the vicinity of the “turning points” themselves, of

is a small parameter. It is readily apparent that terms proporcourse, Eqs(70) are invalid, because in fact the homoge-
tional tod,=a’(—i) andd,=a"(—i) remove the singulari- neous solutions do not have any singularities there. Inasmuch
ties of the solution in the lower half-plane. It follows from as we do not use the corresponding asymptotic representa-
the asymptotic expansion of the solutionfrthat the quan- tion, we merely note that they can be expressed approxi-
tities d; andd, are small @,,d,~F) for small F. Conse- mately in terms of the Airy function, as in quantum mechan-
quently, their contribution in the leading approximation mustics. The only difference is that once the first derivative term
be negligible in comparison with the free termfin in Eq. (68) is removed, we obtain the Scliiager equation
After the stated simplifications we have a linear, inho-With a complex potential. The “force” in the vicinity of the
mogeneous, second-order ordinary differential equation witurning point also has an imaginary part, and the Airy func-
asymptotic conditions at infinity that stipulate the absence ofion is therefore written with a complex argument.
a gravity wave in the limitg— + and the absence of a To solve the inhomogeneous equation with the radiation
capillary wave in the limitq— —o (radiation condition ~ conditions at infinity, it is useful to choose the functions
Analyzing the overall picture described at the beginning of21(q) andax(q) in such a way that the solutioey (q) will
the present section, it is easy to see that these asymptog@ntain only a capillary wave far ahead, and the solution
properties of the steady-state solution, along with free un@z(d) will contain only a gravity wave far behind:
Zfz:%\grivte;é ?/roert\g:jat ensure the propagation of wave fronts ay(q)—exp—ikyq), g +oo, (73
To solve the inhomogeneous equation, we first analyze  g,(q)—exp(—ik,q), gq— —c. (74
the properties of the solutions of the homogeneous equation
(Eq (68) without the right-hand Sidesince the desired so- The desired solution can then be written in the form
lution of Eg. (68) can be expressed in terms of the a (x)
homogeneous-case solutions by the method of variation of a(q)= a( q)f 2
constants. When the semiclassical condition is satisfied, the W(X)
homogeneous solutiores;(q) anda,(q) can be found by a

e ) X e al(X)
procedure similar to that used in quantum mechafics +a2(q)f dx (75
q
exp[—if Kg(X)dX] where
a ~Cl? .
1,49)~Cq \/)\_EKZ _ . , e,
W(q)=a,a,—a,a;xex o (x)dx
lzexp[ _'f Ke(X dx] is the Wronskian for the two given solutions. It is obvious
+C¢ = 6K (70 that the surface wave amplitudes are given by the equations
Here the coordinate dependence of the wave numbgie) lag(— )| = ‘_ i_J+wf a;(q) q ‘
and k.(q) is given by the expression W(a)
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i [+ ay(q) Here we have made use of the fact that when conditi6ds
lac(+)|= ‘ - ;j fW(q) dx|. (76) are satisfied, the gravity wave has the following velocity in
o the vortex frame:
We now assume that we are not in the vicinity of a dw c
resonance at a quasi-discrete level of the opeiatdrhis is K —Cex-3n
the second quasi-steady-state condition. The functens k=ky

anda, are then constructed in such a way that the amplitud

@nd accordingly the capillary wave velocity is approximatel
is a maximum for the first function wheg< — /3 and for gy piraty Y 1S app Y

: c/2. When the indicated amplitude variation of the second
the second function whem>+ 3 (resonance would corre- \yaye s taken into account after its conversion to a capillary

spond to the middle partMoreover, forc>VpinpnOnly one  ave we find that the two waves make identical contribu-
of the two waves involved in each of the solutiamsanda,  +ions to the rate of ascent of the vortex.

[see Eq.70)] makes the main contribution to the integrals, The equation for the vortex trajectoh(x) in the inter-

specifically the one that oscillates with the smaller wavey 5| petween neighboring resonant quasilevels finally has the
number after division by the Wronskian. It is readily verified 5,y

that this situation is equivalent to the possibility of determin- _ s
ing the amplitudeay(q) from the solution of the first-order dh h  TZ13 ( gh3)

equation without capillarity: dx ¢ 21 | 342
N 4 3
—v¥(q)a’+—a= ——. _8gh*(5 16w
i (g—i)? X ex 2 3t o3 | (80)

Here the choice of points from which the gravity wave am-  Hence the vortex ascends by virtue of Cherenkov radia-
plitude begins to derive its amplitude is dictated by Ef).  tion. The rate of ascent increases faslecreases, and the
For example, after straightforward calculations the exprespgdiated power increases accordingly. Inasmuchyase-
sion for the backward-radiated wave reduces to the form mains constant in this process, the ascent of the vortex

causes it to accelerate simultaneously in the horizontal direc-

i (-3 .
Iag(—m)|=;f f'(q,O,O)eXF(iRP(q))dq‘, (77)  tion,
- The rate of ascent80) differs from the value given in

where Ref. 12, not only in the factor preceding the exponential, but
also in the exponent itself. The exponents agree only in order
dq 8 q 8 q—3 of magnitude.
P(Q)=f =q+ + n . In the case of resonance at a quasidiscrete level, the
v @) 33-0) 33 \g+\3 0

amplitude of the homogeneous solutions is a maximum in

Next, in the above integr;ﬂ??) we move the contour of the region of Classically finite motion. The amplitudes of the
integration into the upper half-plane and integrate by partsCherenkov waves must now be estimated using the
eliminating the pole at the poiint= +i. We apply the steep- Subbarrier transfer coefficient, which is of the order of
est descent method to the resulting integral. The saddle poi®XH —CiA(C/Vimin pw ]- The result

coincides withg=i. As a result, we have c
ares~ex;1()\(c -C ))
| ( )| i+1/\/§(12>llsr(l) | 9.c 1Vminph 2
A4 — )= —_ —
9 2 A 3 shows that the amplitudes of these waves are not small and,

accordingly, the quasi-steady-state regime, like the condition
Xexp( _)\(§+ 16_77) ) (79) for validity of the linear approximation, fails in the vicinity
3 9\/§ )

of resonance. Investigation of the transition of the system
] ] ) ) ) through a quasilevel requires an analysis of the time-
The gravity wave amplitude immediately to the right of yenendent equations with allowance for nonlinearity and
the point+ /3 is given by an analogous expression with the
limits of integration from+/3 to +. Consequently, after

poses a difficult task at this stage. We speculate that the
X - . ! ' quasisteady ascent regime alternates with short-time, sharp
repeating the calculations we find that its modulus is theenergy spikes as resonances are transited.

same. In the given limit>V i, o, after forward reflection This trend persists at least until

and conversion to a capillary wave, the amplitude of the

given wave changes by the factdh/excz. This result can be y? 04 14

obtained by an approach similar to that used in the derivation ﬁ<l’ H>(Ug) ' (81)

of semiclassical boundary conditions in quantum

mechanic<3 When the depthh is less than or commensurate with the
The rates of ascent of the vortex is determined by energ@ravity wavelength, the interaction of a vortex with the sur-
conservation: face can no longer be calculated in the linear approximation,

. the behavior of the system becomes highly nonlinear, and it
my?hlh=—(c/2)(gy*(—»)+ oy'?(+x)). (79  then becomes extremely difficult to decide whether the vor-
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tex will continue to rise. Most likely the question can be This instability is none other than the long-wavelength limit
answered only by numerically integrating the time- of the Crow instability’ for symmetric perturbations of two
dependent equation83), (34), and(35). antiparallel vortex filaments.

The physical reason for this instability is the time lead of
perturbed parts of the filament close to the surface relative to
more distant parts. As a result, the bend in the vortex fila-
ment as seen from aboyprojected onto the surfagexhib-

In this section we discuss one aspect of the threeits @ pronounced focusing character this sense the given
dimensional dynamics of a vortex filament: its instability instability is similar to the Kadomtsev—Petviashvili
against kink perturbations due to the presence of a surfaceinstability*>*9. This qualitative picture carries through to the

We consider a vortex filament parallel to the surface. Lethonlinear stage, when the filament can no longer be regarded
the relative deformation of the fluid surface be small, so thafis almost straight. As a result of the development of Crow
interaction of the vortex filament with free waves can beinstability, the closest parts of the filament are greatly
disregarded. Accordingly, we ignore the potential energy ofstretched and rapidly approach the surface, where dissipa-
the surface in calculating the Hamiltonian and calculate thdion, which is actually always present because of viscosity
kinetic energy of the fluid according to an equation in whichand because of Cherenkov wave radiation in the presence of
the velocity is expressed in terms of the scalar potentiald free boundary, causes the filament to break and results in
Then, integrating by parts, we reduce the equation to half théhe formation of vortex half-rings that begin and end at the
integral over the surface spanning two filaments. Allowancesurface of the fluid.
must be made for the fact that the scalar potential acquires an

increment 2ry when it skirts any one filament. As a result,
we have 8. CONCLUSION

7. THREE-DIMENSIONAL DYNAMICS

Ty In the paper we have succeeded in clarifying only the
A== f (Vds). (82)  simplest aspects of the dynamics of a vortex—surface system.
S We have left untouched such important problems as the

This integral diverges logarithmically for an infinitely highly nonstationary motion of a point vortex in two dimen-

thin filament. For a filament of finite thicknesg the integral ~ Sions, and the stability of various flow regimes, particularly
can be cut off at a length-&. in three dimensions—for example, the evolution of the sys-

In the long-wavelength limit, where the characteristictem after a filament reaches the surface in three-dimensional
radius of curvaturdR, of the filament is large in comparison space. Some of these problems can be solved by numerical

with Y (Y’2<1), the Hamiltoniar(82) can be approximately modeling, while others require further analytic study.
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T appi= wyzf VI+X2In

z
. dz. (83

y V1+X'?
27y (84)
APPENDIX
_ 7 X'In(Ylzo) ’ 5 Here we show how the dynamical equatidBs), (34),
2 1+ X' ' and (33) can be obtained from the variational principle in

conformal variables. Variation of the LagrangiéB) with
In this approximation the relative error in E@4) is of the respect toy(u) yields the equation
order of Y/R,, and in the equation foy it is of the order of - .
1/In(Y/eo). An important feature here is that the valueXof (V2)(zizy—ziz)) = K| (86)
and the range of relative variations ¥fare not assumed to Multiplying by 1/z,|2
be small, so that Eq$84) and(85) describe arbtirary devia- !
tions of the filament configuration from a straight line, not

and applying the projectoP(™), we
obtain

just small ones. Z . 2i|k|y
For small deviations these equatidiaster linearization 7z - P 12,2 ' (87)
describe instability with a growth rate that depends linearly !
on |K|: which coincides with Eq(33).
Next, varying the Lagrangian with respect\and W,
F(k)=|k|% m_ we can make a substitution therein according to the kine-

matic relation(86). This operation results in the substitution
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ztzu z.Z,
f Po(U) ——%—d —>2777( )

whereupon the vortex equation of moti¢85) is easily ob-
tained by variation with respect W

T (W) — W (W)
2i

Z' (W)(Z' (W))W+Z(W))

_|,y

~ iy Z"(W)
W—-W

2 77w (88)

T’ (W),

We now derive Bernoulli's equation. To prevent the cal-
culations from becoming too cumbersome, for now we ex-
clude surface tension from the discussion. Varying with re-
spect toz(u) and invoking the condition for analyticity of
this function in the upper half-plane, in the first step of the
calculations we have the equation

(z—2) 1 1

Z' (W) (u—W)2

'}’2
P(i) ¢t+g Zu_¢uzt_7

LY (Z' (W)W Z(W)) | _

: = (89

We then use Eqs87) and (88) to eliminate the time
derivativesz,(u) andW from the foregoing equation. At this
point we note that the relatioR(")f=0 is neither more nor
less than a statement of the analyticity fofn the upper
half-plane. It is still valid, therefore, aftdris multiplied by

Zy:

P(7)(fz,)=0
Making use of this property and taking into account the iden-
tities
2z, Z'(W
p)| 2| ZW (90
(uU=W)| (u=w)
z, Z"(W)  Z'(W
p)| 2| ZW)  Z(W) (91)
(U=W)?| (u=W) (u=W)>?
from Eq. (89) we obtain
(z-2) B(-)
¢t+q)0t+gT_(¢u+¢’0u)P
X(2i|R|l/l 22 |
| u|2 ’ 2 (U_V—V)z
1 i
Y ( LAY (W))) 92)
i (u—=w) \w—w

To continue, we must now sum the latter equation with its,

complex conjugate. Second-order termsiinare gathered
into the expression

Y W-wW)?
2 Ju-w* "

E. A. Kuznetsov and V. P. Ruban

and the zeroth-order terms are assumed to coincide with
those obtained previousfyfor purely potential flow:

S Hy) (Hg)?=(9)? )
2 o= H - .

We finally consider first-order terms. We first simplify

the following first-degree equation i

[y, v'(W)
z,|*®o,H H (Do H ) — ( =
2l o (lulz) oY (u-W)
(W)
—(U_W)). (93)
Here, the second term is equal to
B 1 1\ [P (u)-¥'(u)
e[l )
iy [T W) =T (u) | W (u) =W (W)
+cC.C. —? u—W + U—W
RO OIS 1
—C.C.| = 2 ly U_W_U—V_V
. (E'W_V)_\Iﬂ(W))
Y (u—w) U=w)/J"

The last term is canceled by the third term (68), so

that all first-order terms can be written in the form

s
u_W _W |ZU| I‘y
Hy

("”“ (| uf

Adding the foregoing expressions, we finally obtain Ber-
noulli’'s equation(34) in conformal variables.

J’_

2

i -
Y u—W

u—W

*)E-mail: kuznetso@itp.ac.ru
YThe equivalence of this equation and E4Q) is verified by approximately
the same procedure as set forth in the Appendix for(B4).
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We consider advection of a passive scalér,r) by an incompressible large-scale turbulent flow.
In the framework of the Kraichnan model all PDRjsrobability distribution functionsfor

the single-point statistics of and for the passive scalar differenéér,) — 6(r,) (for separations
r,—r, lying in the convective intervalare found. ©1999 American Institute of Physics.
[S1063-776(199/01003-3

INTRODUCTION cases. The assertions are really correct for any temporal sta-
. . i tistics of the velocity field'see Refs. 3 and)4Thus we are
We treat advection of a passive scalar fié{d,r) by an dealing with the logarithmic case which is substantially sim-

incompressible turbulent flow; the role of the scalar can be . . . .
layed by temperature or by pollutant density. The VelocitypIer than cases with power-like correlation functions usually
P ' ncountered in turbulence problerfsge Refs. 57

field is assumed to contain motions from some interval of . : :
scales restricted from below hy, . A steady situation witha . Now about high-order cqrrelatlon functions of thg pas-
permanent random supply of the passive scalar is considered’® scalar. As long as aII_ dlstances_ between the points are
We wish to establish statistics of the passive scaldor much less tha"l' thg 2n-point cor.relat|on functions o_ﬁare
scales that are less than both the staleand the pumping given by the|r.reduC|bIe.par($hat_|s, are expressed via prod-
scaleL, and larger than the diffusion scalg; (for definite- uqts O_f the pair correlatlon_ functigmip to n-~In{Lr), yvhere

r is either the smallest distance between the points,pr

ness we assume thhtL,). Such a convective interval of . s

scales exists if the Peclet number=Rg/r 4 is large enough; depend!ng on Wh"fh IS Iarge(see Ref. % The reason for

we will assume this condition. Since all scales from the conSUch Wick decoupling is simply the fact that reducible parts
contain more logarithmic factor@vhich are considered as

vective interval are assumed to be smaller than we will - :
discuss advection by a large-scale turbulent flow. The probthe large onesthan non-reducible parts do. Consistent cal-
culations of the fourth-order correlation function of the pas-

lem is of physical interest for dimensionalitiels=2,3, but ; g |
formally it can be treated for an arbitrary dimensionatitgf ~ Sive scalar ad=2 (see Ref. Bconfirm the assertion. There-

space. Below we will tread as a parameter. In particular, all fore, €.g., the single-point PDF éfhas a Gaussian cofthat
expressions will be true for a space of high dimensionality describes the first moments with<InP¢ and a non-
Description of the small-scale statistics of a passive scaGaussian tailthat describes moments with>InP¢). The
lar advected by a large-scale solenoidal velocity field is dail appears to be exponentislee Refs. 3 and)4The same
special problem in turbulence theory. This problem wagd$ true of the passive scalar differenced= 6(r)—6(0),
treated consistently from the very beginning and some rigorwhere instead of In Pe we should takerIng;). The tails do
ous results have been obtained, which is quite unusual for 8ot depend on In Pe or on hf(y¢), and contain only coeffi-
turbulence problem. Batcheldsee Ref. 1 examined the cients that depend on the statistics of the advecting velocity.
case of an external velocity field being so slow that it does  Correlation functions of the passive scalar can be written
not change during the time of the spectral transfer of theéds averages of integrals of the pumping along Lagrangian
scalar from the external scale to the diffusion scale. Therrajectories(see, e.g., Ref.)9 For example, the pair correla-
Kraichnan(see Ref. 2 obtained plenty of results in the op- tion function (6(r)#(0)) is proportional to the average time
posite limit of a velocity field delta-correlated in time. The needed for two points moving along Lagrangian trajectories
pair correlation function of the passive scaja(r)6(0)) was to run from the distance to the distance.. Generally, cor-
found to be proportional to the logarithm Lrif), and the pair  relation functions of a passive scalar are determined by spec-
correlation function of the passive scalar differeqfé(r) tral transfer via evolution of Lagrangian separations up to the
—6(0)]?) was found to be proportional to Ity in both  scaleL. For the large-scale velocity field, the Lagrangian

1063-7761/99/88(3)/11/$15.00 506 © 1999 American Institute of Physics
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dynamics is determined by the stretching matux,;  A. Simultaneous statistics
:.V AU a and,lc?nse;quert].tly, thfe tsr,]tat|st|cs.of the rlnatn)'é il The sourceg is believed to possess Gaussian statistics
mmels (t:r? rrela |f(f).n. utncf"t)r? CI) (_Bthpa$SI;/r:% scaiar. cl)rt.ex—and to bed-correlated in time. The statistics is entirely char-
ample, the coetlicient ot the fogarithm in the pair correlation , e ize by the pair correlation function

function of the passive scalar %, /\ (see Refs. 1-4where

P, is the pumping rate of? and X is Lyapunov exponent (B(t1,r1) d(t2,r2))=8(t1—ta) x(|ri—ral), (1.2

that is the average of the largest eigenvalue of the matrix  \here we assume that the pumping is isotropic. The function
The coefficients in the exponential tails are more sensitive t‘3((r) is assumed to have a characteristic stalhich is the

the statistics ofo; specifically, they depend on the dimen- ,,mning length. We will be interested in the statistics of the
sionless parameterr (see Ref. #wherer is the correlation  passive scalar on scales much smaller than

time of 6. The motion of the fluid particles in the random  Simultaneous correlation functions of the passive scalar

velocity field resembles in some respects random walks, bug can be represented as coefficients in the expansionyover
one should remember that correlation lengths of both thef the generating functional

advecting velocity and of the pumping are much larger than

scale; fro_m the conveptlve interval we are interested in. ThL_Js Ay)= < exp{ iyJ dr,B(r)a(O,r)] > ’ 1.3
the situation is opposite to one usually encountered in solid

state physics, where, e.g., random potential is short-ranggnereg s a function of the coordinates and angular brackets
correlated in space. o _ denote averaging over both the statistics of the pumping
~Since In/r) is really not very large, it is of interest to g the statistics of the velocity The generating functional
find all PDF’s for the single-point statistics éfand for the vy contains complete information about the simultaneous
passive scalar differenc®é. It is possible to do this for the giatistics of the passive scalér Specifically, knowingZ(y)
Kraichnan short-correlated case<1 when the statistics of one can reconstruct the simultaneous PDF of the passive sca-
o can be regarded to be Gaussian. An attempt to do this wasr; the problem is discussed in Sec. 3.

made in Refs. 10 and 11 in terms of the statistics of the main  |f characteristic scales ¢8 in (1.7) are much larger than
eigenvalue of the matrig. Unfortunately, the scheme works the diffusion scale 4, then it is possible to neglect diffusion
only for the dimensionalityd=2 where the matrixd has a  when treating the generating functior(al3). Then the left-
single eigenvalue. This was noted in Ref. 12 where also th@and side of Eq(1.1) describes simple advection, and it is

correct coefficient in the exponential tails for an arbitraryreasonable to consider a solution of Eq. in terms of Lagrang-
dimensionality of spacel was found. Here, we develop a jan trajectories (t) introduced by Eq.

scheme enabling one to obtain all PDF’s for arbitrdryrhe

scheme is also interesting from a methodological point of de=Vv(t,Q). (1.4
view. For example, its modification enables one to calculatgye |abel the trajectories with, which are the positions of
the statistics of local dissipatiofsee Ref. 18 the Lagrange particles &&0: o(0r)=r. Next, introducing

The paper is organized as follows. In Sec. 1 we find aé(t,r)= o(t,0), we rewrite Eq(1.1) asd,f= ¢, which leads
path integral representation for the simultaneous statistics %

the passive scalar. In Sec. 2 we analyze the generating func-

tional for correlation functions of the passive scalar in the 0
convective interval of scales. Using different approaches we 0(0r)= f,mdtd’(t’e)'
obtain the functional and establish the applicability condi- ) _
tions of our consideration. In Sec. 3 we find explicit expres-Here we have taken into account thata{0 the functionsy
sions for the single-point PDF and for the PDF of the passiveéind 6 coincide. Starting with{(1.5) and exploiting Gaussian
scalar difference. In the Conclusion we briefly discuss thgpumping statistics, we can average the generating functional

1.9

results obtained. (1.3) explicitly over the statistics. The result is
y? (o
F(y)=| ex —?f dtu|), (1.6
1. GENERAL RELATIONS -
The Qynam|cs of t.he passive scaldradvected by the U:f dr,dr,B(r) B(ro) x(|e1— o)), 1.7)
velocity field v is described by Eq.
8,0+VV 60— kV26=¢b. (1.1  where angular brackets mean averaging over the statistics of

h th th loci . h , ¢ the velocity field only.
Here, the term with the velocity describes the advection o Being interested in the single-point statistics @fwe

the passiv'e'scalar, the next 'term is diffug(veis the diffu- should takeB(r)=&(r). But this is impossible since we
sion coefficient, and ¢ describes a pumping source of the have neglected diffusion. We takg(r)=8,(r) instead,

passive scalar. Both(t,r) and ¢(t,r) are assumed to be hare the functions,(r) tends to zero atAr>1 fast
random functions of andr. We regard the statistics of the enough, and is normalized by the condition

velocity and source to be independent. Therefore, all corre-

lation functions ofé are to be treated as averages over both dréarn=1
statistics. roa(r=1.
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Then the generating functionél.6) will describe the statis- ity statistics is Gaussian and is entirely determined by the
tics of an object pair correlation function, which in the convective interval is
written as

HA:f dr 5 (N (1), @8 (1.1 )v o r2)) = St — o) 7 6Bug— T ap(F1—T2)],

smeared over a spot of size™ L. If rysA<1, then the sta- (1.19
tistics of the object is not sensitive to diffusivity. On the _ ) (d—1)D )

other hand, ifAL> 1, then knowing the correlation functions 7 ag(1) =D(r*8ag=Tal p) + ——5—— dapr ™. (116

of 6, , we can reconstruct single-point statistics due to the . ) )

logarithmic character of the correlation functions. To obtain€r® 7 o is & huger-independent constant aitlis a param-
single-point correlation functions one should substitute sim&ter characterizing the amplitude of the strain fluctuations.
ply A—r ! into the correlation functions of, . The above ~The structure of expressiol.16 is determined by the as-
inequalitiesAr <1 andAL>1 are compatible because of SUmed isotropy and spacial homogeneity, and by the incom-
Pe>1. If we are interested in the statistics of the passivePressibility conditionVv=0. Then the statistics of is
scalar differences in points with a separatiop (where Ga_ussmn and is determined by the pair correlation function,
Fo>T4¢) then instead of, (r) we should take which can be found from Eqg¢$1.15 and(1.16):

B(r)=8,(r—r/2)— Sy (1 +15/2). (1.9 (0ap(11)0,,,(12)) =D[(d+1) 8,4, 65, 641 Op,

Then the generating functionél.6) will describe the statis- —8apbur]o(ti—15). (1.1

tics of an object Note that the correlation functiofl.17) is r-independent, as

AOr=0,(1g/2)— 0, (—To/2). (1.10 it should be. We see frorflL.17) that the parametdd char-
_ ) ) . ) acterizes the amplitude @f fluctuations.
Again, correlation functions Qf the passive scalar differences Averaging over the statistics @ can be replaced by a
can be found from correlation functions d&ff, after the . . A . .
substitutionA —sr & path integral over unimodular matric®¥(t) with a weight
dif - exp(.7). The effective action7=[dt, is determined by
(1.17:

B. Path integral i Lo=

1
=~ 2da+zpLdt 1Tr(6"6)+Tro?]. (118

Below, we treat advection of the passive scalar by a . . .
large-scale velocity field, that is, we assume that the velocityrhen the generating functionél.?) can be rewritten as the
correlation lengtt_, is larger than the scales from the con- following functional integral over unimodular matrices

vective interval. Then for the scales one can expand the dif- 0 y2
ference J(y)=f @Wexp“ dt(i.%—;u”, (1.19
V() =0 () =o,5(1)(rip—rop), O'aﬁzvﬁvrz- )
1.1
sz dr.dr,B(rq)B(ro)x
Hereo,4(t) can be treated as arindependent matrix field. P 2
Then Eq.(1.4) leads to X[\/(rla_rZa)BaB(rlB_rZB)]' (1.20
(010~ 024) = Tup(D)(0157 C2p). (1.12 Here, we should substituté=a,W(W)~* and recall the
A formal solution of Eq.(1.12) is boundary conditiotV=1 att=0.
01a— 020a=Wap(F15—T2p), Some words abqu'g the “potenﬂalp (1.‘0' figuring in
(1.20. The characteristic value of —r, in the integral(1.7)
Al an A o is of order A~ for B(r)=45,(r). Since we assume L
HW=aW, W—.7exp(—ft dt U)’ (113 >1, then for single-point statistict)~P,, where P,

=x(0), if B is not very large. In particular, it is correct at
" _ _ moderate time#|, sinceB=1 att=0. With increasindt| the
detW=1; this property is a consequence ofg+0 and the  5rqument ofy in (1.20 grows andU tends to zero when the
initial conditionW=1 att=0. The Lagrangian difference in argument ofy becomes greater thdn For the passive scalar
(1.7) is now rewritten as difference wherB is determined by1.9) the situation is a bit
A A more complicated. Theb) is a difference of two contribu-
@17 @2l = V(r1a=T20)Bag(rag—rap), B:WT\?Q’ 14 tions. The first contribution behaves as for single-point sta-

tistics. The second contribution contaipsvith the argument
where the subscript denotes a matrix transpose. Note thatdetermined byr;—r,~*r,. Then att=0 the meaning of

where .7 denotes antichronological ordering. Note that

detB=1 since deW=1. the second contribution is determined again By, but it
The generating functiona¥(y) (1.6) can be explicitly  vanishes with increasing earlier than the first contribution.
calculated in the Kraichnan cag¢see Ref. 2 when the sta- The path integral representati¢h.19 indicates that we

tistics of the velocity iss-correlated in time. Then the veloc- reduced our problem to the quantum mechanics wfth 1
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degrees of freedom. Nevertheless to solve the problem we Aijzgij if i>j, Aij:_zji if i<j. (1.2
should perform an additional reduction of the degrees of

freedom. The conventional way to do this is passing to ei- One can easily check that the irreducible pair correlation
genvalues, say, of the matri figuring in (1.20 (see, e.g., function of%;; has the same form as for; [see Eq(1.17]:
Ref. 14 and excluding angular degrees of freedom. Just this _

way was used by Bernard, Gawedzki and Kupiairisee (2ij(t) 2 mn(t2)) = DI(d+1) §imSjn = SinOjm

Ref. 12. Thelj the auth(_)rs using known facts about the quan- — 8 Omn] 8(t1—15). (1.28
tum mechanics associated with the eigenval(s==, e.g.,

Ref. 15 have found the coefficient in the exponential tail of Furthermore, the average value Bfj is nonzero(see Ref.
the single-point PDF of. Unfortunately this way is not very 10):
convenient to find the whole PDF. To do this we will use a

special representation of the mati) in the spirit of the (Si)=—
nonlinear substitution introduced by Kolokologee Ref. N

16). That is the subject of the next subsection.

d(d—2i+1)
—— 0. (1.29

Nonzero averages &fj; are related to Lyapunov exponents
(not only the first ong see Ref. 18for our model see also
Ref. 19. To obtain(1.29 one should take into account that
the matrix R propagates backward in time siné&=1 is

To examine the generating functional(y) we use a fixed at t=0 and we treat negativé. Solving Eq. A
mixed rotational-triangle parametrization =R"4,R for R on a small interval- we get

C. Choice of parametrization

W=RT, BTT, (1.2 . .
R(t— ) ~R(t)

t

1—] dt’A(t’)}.
whereR is an orthogonal matrix anl is a triangular matrix: t-r
Ti;=0 fori>j. The parametrizatiofil.2]) is the direct gen-
eralization of the & substitution suggested in Ref. 17. Note
that defi=1 since de¥W=1. Note aIsoAthat the matri8 i(t—r)%ﬁT(t)&(t—r)ﬁ(t)
introduced by(1.14) does not depend oR, as is seen from
(1.21). That is a motivation to exclude the matrx from
consideration, integrating over the corresponding degrees of
freedom in the path integrél.19. A Jacobian appears in the R
integration. To avoid an explicit calculation of the Jacobian,The average value di arises from the second term on the
which needs a discretization over time and then an analysigght-hand side o0f(1.30. The explicit form of the average
of an infinite matrix (see Ref. 1) we use an alternative can be found using
procedure described below. .

Let us examine th_e dynamics of the matifix It is de- <Eij(t— 7 dt’Emn(t')>

termined by the equation t—r

Then with the same accuracy we get from EQ23

i(t—T),f:_ dt'A(t")|. (1.30

D
3¢ Tij =E“Tij + ; . (Eik+2ki)TkJ , (1.22 = E[(d+1)6im5jn_5in5jm_ 5ij5mn]- (1.39
i <k<]

following from Egs. (1.13 and (1.21). Here we used the Here we utilized Eq(1.28 and replaced the integral
notations

t
S=RT5R. (1.23 ft_r v’ s(t=r-t')
Next introducing the quantities by 1/2. The reason is that the correlation functiorodctu-
_ _ o lly has a finite correlation time, and therefasé) (repre-
Ti=exppi), Ti=explpi)ni, if i<j, 1.2 atly ! . ) .
" Rpi) ! R J (1.29 senting this correlation functionshould be replaced by a
we rewrite Eq.(1.22 as narrow function symmetric unddér— —t. Then we will get
P (1.25 1/2. Expressin(j\ via 2 from (1.27 in (1.30 and calculating
toi= ii s ' its average usingl.31) we get the answe(l.29).
The expression€l.25), (1.26), (1.28), and(1.29 entirely
dmij= (2 +2j)explp;— pi) + > (it ) determine the stochastic dynamicsggfand 7;; . Using the
I<k<] conventional approacksee Refs. 20—34correlation func-
X expl px— pi) M - (1.26  tions of these degrees of freedom can be described in terms

_ _ _ _ of a path integral ovep; , 7;; and over auxiliary fields which
Comparing(1.13 with (1.21), one can find the following we denote bym; and w;, (i<n). This integral should be
expression foA=RT4,R: taken with the weight exp(dt¥%), where the Lagrangian is
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d . d
B d(d—2a+1)| iD 3 d(d+1-2a)
= ma[ﬁtpa-l—Df +?[d2 m2 L= ma[o?tpa-i-Df
a=1 a a=1
2 5 iD 2
_<§ m, +|Ddi§<:j expl 2p; — 2pi) 1 + < dg mg—(é ma) . (2.2)

) Now, to obtain Z(y) one should integrate the exponent in
+2'Ddi§<j Mij ik €XP( 2Pk 2pi) 7k (1.33 (with %,) over p, and m,. To examine(2.1) it is
convenient to pass to new variables,=O,,p, and M,

- =0,,m,, whereO is an orthogonal matrix. We make the
+i2<j wijdymi;+ibd > MimMin Tk ab’"’b 9

i<k<m,n following transformation:
X exp(2px—2p;i)- (1.32 3
| 1=\ grgz=py L@~ Dprt (d=3)pot ...+ (1= d)pg],
Since the matrixB in accordance with{1.21) does not de- 1
pend onR it is enough to know the statistics pf and »;; to Go=..crce, Pg=—=[p1t+pat...+pql. (2.2
determine the averagé.6). Therefore, instead dfl.19 we \/a
get Then the expressiof2.1) will be rewritten as
d d-1
0 2 . _ Dd _
(,7(y)=f DpInormYu exr{J’ dt( i.£— y?U” I:%/r:IaZl Mydypa— > azl m32
(1.33 L Dd [d(d®—1) _ 03
IT Tml. ( )|

HereU is determined by1.20), where the matrix8 is de-
termined by Eqgs(1.21) and(1.24). The Lagrangian2.3) is a sum over different degrees of
Thus we obtained the expression for the generating funcireedom. The dynamics o, is ballistic, whereas the dy-
tional (1.3) in terms of the functionalpath integral whichis  namics of¢, for d>a>1 is purely diffusive. The condition
convenient for the analysis presented in the subsequent segetT=1 meansgy=0, correspondingly the dynamics gf;
tion. determined by the Lagrangia@.3) is trivial: d;¢,=0. We
will see that times determining the main contribution to the
generating functional are large enough tidge> ¢, for the
5 GENERATING FUNCTIONAL relevant region. Therefore, the potentldl (1.20 depends
essentially only onp,, and it is possible to integrate explic-
Here we calculate the generating functioil3) for a  itly over, ¢, andim, for a>1. After that we are left with
single-point statistics of) that is of the object{1.8) corre- only one degree of freedom, which is described by the
sponding toB(r)=8,(r), and also the statistics of the dif- Lagrangian
ference that is of the obje¢tl.10 corresponding td1.9). >
The starting point for the subsequent consideration is the | o —jn ( D_d M) — D_d~ 2
! _ > i Z1=iMq| g+ mi. (2.4
expression(1.33. There are different ways to examine 2 3 2
(y). We will describe two schemes leading to the same  Neglecting allg, for a>1 and inverting transformation
answer but carrying in some sense complementary informa; 2) we obtain
tion. We also believe that consideration of the different

schemes is useful from a methodological point of view. A _[3(d=1) _d-2a+l )
modification of the second scheme is presented in the Ap- P17~ d(d+1) b1 Pa~ d—1 Pr 2.9

endix. . -
P We will see below that the characteristic valuig>1.
A. Saddle-point approach Therefore the characteristic value @t is much larger than

The first way to obtain the answer for the generating®there’s, and we conclude that the potentlaldepends re-

functional (1.3 is by using the saddle-point approximation &lly only onp; . For the case of the single-point St‘f"tiSti&S' the
for the path integral1.33. The inequalities justifying the Ccharacteristic value of the differencg—r, in (1.20 is A ™.

approximation areé\L>1 for the object1.8) andAr>1 for Then it follows from(1.21) and (1.24) that the potentialJ
the object(1.10. decreases frorR, to zero near the poin; =In(LA), which

As we will see, large values of the differences- py is near the pointp, = ¢, , where

(i<k) will be relevant for us. Then fluctuations afand d(d+1)
are suppressed and it is possible to neglect the fluctuations. ¢,= 3(d—1)
Therefore we can omit the integration oweandw in (1.33),
substitutingnz= x=0 into (1.32. After that we obtain a re- For the difference the potential increases from zeroRg at
duced Lagrangian: $1= ¢r, Where

IN(LA). (2.6
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- /d(d+1)|n£
o= 3(d—1) fo’

and then decreases fromP2 to zero near¢,=¢,. The

(2.7

expressiong2.6) and (2.7) determine the characteristic val-

ues of ¢, which are actually large, sindeA>1 or L/rg
>1; this justifies our conclusions.
Now we can employ the saddle-point approximation:
0 y2
Iny(y)wJ' dt i(,,%)l—EU , (2.9

inst
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Note that(2.14) does not depend on the pumping sdalbut
still depends on the cutofh.

The characteristic value of, is determined by the
quantity (2.6) which is much larger than unity. Then it fol-
lows from (2.5 that exp(p;—2p;)<<1, i>], (excluding a
short initial stage of evolutionand we see froni1.32 that
fluctuations of the fieldsy are suppressed in comparison,
say, with p,. This justifies neglecting the fieldg and w
leading to the reduced Lagrangiéhl). Next, the dynamics
of ¢, for a>1 is diffusive, and it follows from2.3) that the
characteristic value ob, can be estimated to béDd[t[. As
follows from (2.3), d;¢p;~Dd>? and we find from(2.6) the

where we should substitute solutions of the extremal condiinstantonic lifetime

tions, which we will call instantonic equations. The instan-
tonic equations, which can be found from extremal condi-

tions fori %, —y?U/2, are

Dd [d(d®*-1) . _
b1t —- T:_'del'

(2.9
. y*au -
ofmy =1 ? Tﬁl ( . ()
Egs. conserve the “energy”
Dd_  [d(d*>-1) Dd_, y2U 01
| 7m1 T'f’ 7m1+ ? . (2.11)

The conservation law is satisfied siric&; —y2U/2 does not
explicitly depend ort. The “energy” (2.11) is equal to zero,

since ast— —« the value offh; should tend to zero. This

property can be treated as the extremal condition when
—y2U/2 is varied over the initial value a,. Equating the
“energy” (2.11) to zero, we can expresh,; via ¢;. Next,
since(2.11) is zero, the saddle-point value gf(y) (2.8) can
be written asifd¢,M;, where the integral ovety; goes
from zero to infinity.
Substituting the expression fd@n, in terms of ¢4 into

i fd¢,M;, we get for the single-point statistics

" d(d+1) 12y°P,

(2.12

Note that the expressiof2.12 has(as a function ofy) two
branch points/= *iyjng, Where

ty=D"1d " 2In(LA), (2.1
which determines times producing nonzero contributions to
the effective action. Att|~t,, the characteristic values of
¢, for a>1 are of orderyIn(LA)/d, and we conclude that

®a 1
b1 dyIn(LA) <t

at times|t| ~t,; . The inequality(2.17) justifies passing to the
Lagrangian(2.4). The same arguments can be applied to the
generating functional for the passive scalar difference; the
only modification is in the substitution Ibh{\)—In(ryA).

There are also additional applicability conditions for the
results (2.12 and (2.14). To establish the conditions, one
should go beyond the main order of the saddle-point approxi-
mation. It will be more convenient for us to develop an al-
ternative scheme, which enables one to find the conditions
more simply. That is the subject of the next subsection.

(2.1

B. Schro dinger equation

Here we present another way to get the answers?
and (2.14). As before, we start with the path integral repre-
sentation(1.33 for the generation functionaf/(y).

Unfortunately it is impossible to get a closed equation
for 7(y). To avoid the difficulty we introduce an auxiliary
quantity

0
2 _Dd*(d*-1) (2.13 ‘I’(t,y,Poﬂlo):f DpInImMIp exﬁ{ f_tdt’
sing 12pP,
2
The same procedure can be done for the passive scalar dif- X| 14— y_U” (2.18
ference, or, more precisely, for the obj¢ttl0. Taking into 2 p(~0)=pg. 7~ =g
account the presence of the jum({@s6) and(2.7) in the po-
tential U, we get an answer slightly different frof2.12): It follows from the definition(2.18 that
In 55} d(d+1) ) /1+ 24y°P, }| (ro)
n Z(y)= - ————|In(rgA), .
Ay 6 Dd%(d2-1)| " ° Z(y)=lim f I dpadn W (t,y,p, 7). (2.19
(214} t—o
2 Dd*(d’~1) Eq. for the function¥ can be obtained from the expression
Ysing=— oup. (2.19 q. o P
24P, (1.32 and the definition2.18:
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UL
w7

52 1( d 5 )2 p’s. If the cloud is inside the region whetd=P,, then
i=1 dp;

d

2 —— 7 evolution of the cloud is not influenced . After a period

=1 dpi d of time t,; (2.16), the cloud reaches a barrier, where the po-
d P tential U decreases fronP, to 0. The subsequent history

D (d=2i+1)—+2D, exp(2pj—2pi) depends on the value gf For moderatey the cloud passes
=1 i IS this barrier and continues to move at the same rate. After
g2 J this, the integral ofl” will not change in time, and its value

X—=+4 E exp(2p—2p;) will determine the generating functiong#(y). Naive esti-

I 1<k I mates yield InZ(y)=—y?t,/2, which reproduces the pair
J correlation function ofé.
X+ 2 > exp2p—2p) Special consideration is needed|¥>ygng, Or if y is
ik F<ksmn close to*iygng, Whereygyg is defined by(2.13. Just this
J 9 y2U region determines the PDF’s and is consequently of special
T ay, e v-—=-". (220 interest. Note thay= *iy g COrresponds to the appearance

of a bound state near the pumping boundampnereU de-
We see that Eq(2.20 for ¥ resembles the Schdinger creases fronP, to zerg. If y>ygp,, then the front of the
equation. The initial condition for the equation can be foundcloud reaches the jump of the potential much earlier than

directly from the definition(2.18: The remainder of the cloudinside the potential wellis
damped due to the term withh and does not contribute to
U (t=0y,p, =11 8(pa)6(m;). 221 ). Ifly[>ysingthen 7(y)>exp(-y*1,/2); the asymptot-

ics of Z(y) is actually exponential in the case. If

The value of 7, in accordance witif2.19; is determined by Y= 1Ysind <Ysing then the cloud stays near the pumping

the integral of¥ over  andp. This integral is equal to unity bou_ndary for a |9ng time, that is the .Shapelbf|ns|de the

att=0, and then varies with increasing timeue toU+#0, regionU=P, varies in time comparatively 'slowly. Further-

since only the term withJ in (2.21) breaks the conservation MOre, & part ofl” percolates out to the region whetk=0,

of the integral. Thus, to fingZ we must establish the evoly- and the integral of¥” grows with increasingt|. Asy ap-

tion of the function? from t=0 to larget. proachesying, this stage lasts longer. One can say that the
Below we concentrate on the single-point statistics. Thd?ack of the cloudV” gives the right answer fog7(y). The

scheme can obviously be generalized for the passive scalfpPortant point is that ify is not very close tdysiyy then
difference. during the timeV¥ leaves the potential, the width oF in

Let us first describe the evolution qualitatively. The ini- terms of diffusive degrees of freedom is much less than

tial condition (2.21) shows that at=0 the functionW is  INLA. This means that the functio® is really narrow,
concentrated at the origin. Then it undergoes spreading in al¥hich justifies our consideration. _

directions, except fop,+...+ py, since the operator on the O a quantitative analysis it is convenient to pass to the
right-hand side 0{2.20 commutes withp, +...+py. This ~ Variablesé; (2.2). Since thes-dependence off is frozen

is a consequence of the condition diet1 (to be satisfie] after the initial evolution, it is possible to obtain an equation

which implies that during evolutiop,+...+py=0. This for the integral ofl aver
means that a solution dR.20 is W« d(pi+...+pg). The ~ B
function¥ is smeared diffusively with time, and also moves V(1. iba-1)= dd’dH doy W, (224

as a whole in some direction, which is determined by theWhere we also included an integration oy to remove the
ith the fi ivative if2.20. Th f ballisti . ;
term with the first derivative if2.20 e rate of ballistic factor 8(py -+ ...+ pg). Eq. for the function(2.24) is

motion is
-1 .2 2 27
d(d—2i+1) ~_bd o [dd -1 4 s yUg
(dpi)=D————. (2.22 W=~ ;1 Py L
] . (2.29
Therefore¥ describes a cloud, the center of which moves - _ )
according to the law where U is function of ¢, only which can be found by
) substituting intoU the “frozen” values of#'s. Qualitatively
pi=D —d(d—22| +1) t. (2.23 U has the same structure @sitself. One can conclude from

(2.25 that the cloud described lﬁf moves ballistically in
Effective diffusion coefficients for thejs decrease with in- the ¢; direction and spreads along other directions. We are
Creasingt, since in accordance W|tm23 the differences going to treat the situation when the cloud remains narrow
pk—pi » figuring in (2.20), are negative and grow in absolute duringthe relevant part of the evolution. Then one can inte-
value. Therefore diffusion oven stops when the character- grateW over all¢;, i>1 in a similar way as in the case with
istic values ofp; — p, becomes greater than unity. Note that #'s, and get a # equation for
the “frozen” values of do not depend ow, sinceU can be d-1
considered L,Jl’llfOI‘m during t_he mmal sta_ge of evolution. Af- ‘I’(¢1)=f H dep .
ter that they's are frozen, diffusion continues only over the 2
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The functionV satisfies Eq.
0 — —
— ¥ —y2U2V.

K [d(d®—1)
ddq 3 by
(2.26

The initial condition for Eq(2.26) is ¥ (t=0)=6(¢;). The
potentialU is obtained fronJ by the substitutions,— 0 for
a>0. In fact, for the directiori2.23 the potentiald depends
only onp,. The barrier is reached when=InLA. Passing
to the variabless; , we conclude that the potentilll dimin-
ishes fromP, at ¢, <¢, to zero atp,>p,, whereep, is
defined by(2.6).

The character of the solution of E(R.26 can be ana-

lyzed semiqualitatively in_terms of the widthof ¥ over ¢,

and its amplituddr. WhenW reaches the pumping boundary,
it stops there for a period of time. Then the widthnd the
amplitudeh are governed by the equations

dl bd Dd dh  Ddh y2P,h

a” P @ T
wherex=/d(d?—1)/12, DdX is the rate of cloud motion
along the¢, direction (whenU =cons}, andDd is the dif-
fusion coefficient for the¢,; direction. One can estimate
from the first equation the width~1/\. Then from the sec-

(2.27)

ond equation the heiglitdecreases or grows in time depend-

ing ony. The characteristig where the regime changes is of
the order|ygnd?~Dd\?/P,. We show this by consistent
calculations.

Equation(2.26 can be solved analytically, e.g., by the
Laplace transform over timee Taking the Laplace transform,

one gets
RSV B L C it} I
PV ()= 8(b1)= 5| 55—\~ 5| 7. V(P
- =
- U(g)¥(p). (2.29
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at ¢,> ¢, and smallp; the behavior can be found from
(2.28. The residue offd¢,;¥(p) at the pole determines
Z(y). To find the residue we must analyze the behavior of

WV (p) at 0< p,;< ¢, . At smallp there are two contributions
to ¥, proportional to

y°P, &

Dd )"

d(d>-1) d(d?>-1)
exp[w L, D,
(2.30

as follows from(2.28 at p=0. Therefore the residue, which
is determined by the integrald¢,V(p) over the region
1>, , is proportional to

d(d’—1) d(d?*—1)
exr{w b, A,

Substituting(2.6) here, we reproducé.12).

Let us now establish the applicability condition for the
above procedure. The expressi@3l) implies that the ex-
ponent with the minus sign i(2.30 makes a negligible con-
tribution to ¥ (p) at ¢,= ¢, . The condition is satisfied if

y2P2
Dd

o)
(2.3

Dd
Y2+ Yind #3> B,
Substituting(2.6) and (2.13 here, we obtain

>(d*In?LA) "L

yiiysing (2 32)

sing

Fory close to*iyg,y One must be careful, since then the
subtle analytic structure ofZ(y) will be relevant. As an
analysis ford=2 shows 7(y) has a system of poles along
the imaginary semiaxis starting fromiyg,4, and the pa-
rameter @*In>LA) ! determines the separation between the
poles. The poles correspond to bound states. The assertion
about the cut made in the previous subsection is related to
the restrictions of the saddle-point approximation which can-
not feel this fine pole structure; it yields the cut, which is a
picture averaged over the interpole distances. This averaged

We are interesting in the bound state described by this equ&icture is acceptable at the conditi@32).

tion. Solutions for¥(p) in the intervals =,0), (0,4,),

Note that the same criteriai2.32) justifies our assump-

(¢, ,) are exponential, and must be matched. The functiofion that the cloud described by is narrow during the rel-

V¥ (p) as a function op has two branch points at
Dd?(d>-1) y?P, Dd?(d?>—1)
24 27 24

p1= p2=

(2.29
coming from the regionsp,<¢, and ¢,>¢,, respec-
tively. When one of these branch points paspes0, ¥

starts to grow exponentially in time. This happens wlyen
passestiying, Moving along the imaginary axis.

The value of the generating functional is determined in

accordance with2.19 by the large-time behavior o¥ (t).

evant part of the evolution. Namely, the duration of the part
is determined by the time,;=p; * [see(2.29]. This is the
time that the cloud stays near the barrier. Foclose to
*iygng, the time can be estimated to bgi~Pa|Ysing |y
Fiysing- Then the diffusive widthyDdte,; of ¥ in the di-
rections¢, for a>1 is much less tham , precisely if(2.32
is satisfied. In principle the diffusive dynamicsdat 2 could
modify the noted fine pole structure g¢f; this problem re-
quires additional investigation.

The same procedure can be done for the passive scalar
differences. The cloud¥ should pass the region

This means that we should be interested in the behavior dt1<IN(L/ro) before it reaches the potential. Then it enters the

W(p) at smallp. The functionfd¢;¥(p) in (2.19 has a
pole atp=0 related to the asymptotic behavior

Fioren| - 2 Vggrmy 4|
Vp)=exp — 54 Vagz—1) %1/

region U=2P, with some finite diffusive width. One can
note, however, that this is irrelevant. The only characteristics
of the potential that are needed are its valbere 2P, in-
stead ofP,) and the length of the path inside [ivhich is
Ap1=In(ryA) instead of InLA)]. The evolution of¥# goes
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in the same way as in the case of single-point statistics. The expressior{3.8) enables one to find the following
Again, we get(2.14 and the criterion analogous {@.32. averages in accordance witB.3):

In this subsection we presented an analysis based on the
dynamical equatior(2.20 for the auxiliary object¥. The
results obtained can be reproduced also in alternative lan-
guage: for this we must introduce another auxiliary object,
the equation for which is stationary. The corresponding
scheme, which might be interesting from a methodological

2= 2P2 A
<9A>—d(d_—1)D n(LA),

4P
(A60)%)= grg—17p M(roA). (3.10

point of view, is sketched in the Appendix.

3. CALCULATION OF PDF

In this section we calculate the PDF% for the objects

The expression&3.10 can also be obtained by direct expan-
sion of Z(y) from (2.12) or (2.14). The universal tai(3.9) is
realized if

9,>(62dIn(LA), A6,>((A0y)2dIn(reA).
(3.11)

(1.8 and (1.10. The most convenient way to do so is by Since both logarithms are assumed to be large, we conclude

using the relation

} dy .

D)= f 5 ORIy D) AY), (3.0
whered is

ﬁzf drB(r)6(0yr). (3.2

Let us recall that knowingZ(), one can also restore the
moments ofd:

(3.3

The generating functional if3.1) is determined by

(91~ [ avloA).

(2.12 or (2.14. Being interested in the main exponential

dependence of the PDF'’s for the objetts8) and(1.10), we
can forget about preexponents. Then

d
AY) = f z—iexﬂ—iywq[l— VYY), (39

where for the single-point statistics and for the statistics ot{)

the passive scalar difference respectively

, _Ddd*-1) , Dd*d’-1) 35

sing 12P2 ' sing 24P2 ) .
d(d+1) d(d+1)

gq= 6 In(LA), i In(roA). (3.6

Since bothg defined by(3.6) are regarded to be much larger
than unity, the integral3.4) can be calculated in the saddle-
point approximation. The saddle-point value is

. ysing
=i ———. 3.
Yo T qlyZ 07 80
Then
2 2
ing
In.%(ﬁ)=q(1— 1+ ys.(;% ) (3.9
This expression leads to the exponential tail
|n?7)(ﬁ):_ysind 19|v (3.9

realized af9|>q/yng. The coefficientynq in (3.9 deter-
mined by(2.13 is in agreement with the result obtained in
Ref. 12.

that there exists a relatively wide region where the statistics
of 9 is approximately Gaussian; the region is determined by
the inequalities inverse t8.11).

Let us discuss the applicability conditions of the expres-
sion (3.9). First, if one calculates the passive scalar PDF by
the saddle point method, then the position of the saddle point
is determined by2.32) if

P
ﬁ<d2\/32|n2(LA).

The applicability domain of the saddle-point method over-
laps the region of validity of2.12) for the generation func-
tion Z(y). The above inequalities are correct fé ; for
A6, one must replace lIh(\) with In(ryA). Second, fluctua-
tions ofy have to be small compared to the distance between
Ysp @ndYging. This gives the same criteria3.12).

Let us stress that though formally our procedure is in-
correct aty=d?\/P,/D In}(LA) the answer will be the same:
the PDF will be determined by the exponential {&8il9). The
oint is that the character of the integi@.1) at such ex-
remely larged will be determined by the position of the
singular point of Z(y) nearest to the real axis. This is just
iYsing: l€ading to(3.9). To conclude, only the character of
the preexponent in A9¥) is changed at ¥
~d?\P,/D In(LA), whereas the principal exponential be-
havior of () remains unchanged there.

(3.12

4. CONCLUSION

The single-point statistics of the passive sc#land the
statistics of its difference\@ are traditional objects which
carry essential information about correlation functions of the
passive scalar in the convective interval. We examined the
passive scalar in the large-scale turbulent flow, where the
correlation functions logarithmically depend on scale. Since
the logarithms are actually not very large, it is useful to have
all the PDF's of@ andA6. That was the main purpose of our
investigation, which was performed in the context of the
Kraichnan model. The single-point PDF for the passive sca-
lar and the PDF for the passive scalar differences can be
obtained from(3.8) if we substitute/\—w(]ifl wherer g4 is the
diffusive length. Though both the advecting velocity and the
pumping force in the Kraichnan model are considered
S-correlated in time, we hope that our results are universal,
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that is, are true in the limit when the size of the convective 9 9 y2U

interval tends to infinity for arbitrary temporal behavior of 2p,)77km77kna77 ¢977 E- WE=O. (A4)
n

the velocity and pumping. The reason is that the spectral

transfer time grows with increasing convective interval, andThe boundary condition for EqA4) follows from the defi-

in the limit is much larger than the correlation times of the nition (A1): for large enougtp;,7; the potentialU=0 at

velocity and pumping. t=0 and also remains zero at finite timesTherefore the
We believe also that the analytic scheme proposed in ouhtegral (A1) must be equal to unity in the case. Thus

work could be extended for other problems related to thez (y,p,#) must tend to unity wherg, 7— .

passive scalar statistics. Note as an example Ref. 13 where a Let us rewrite Eq(A4) in terms of the variable€.2):
modification of the scheme enabled one to find the statistics

of the passive scalar dissipation. It is also useful for investi- (I'y+y(E;+£&)=0, E=E;+¢, (A5)
gating the large-scale statisti¢gen scales larger that the ) — )
pumping length of the passive scalar see Ref. 25. We also & _ J i d(d"-1) i_ ﬂ (A6)
hope that it is possible to go beyond the case of the large- ﬁf d¢, Dd’
scale VeLOF'WRf'?'d gzmgfga perturbation technique of the type d—1 )
proposed in Refs. . = 22 a¢2 +22 XA 20— 2p1) —— —
We are grateful to E. Balkovsky, M. Chertkov, G. Falk- =K ik
ovich, K. Gawedzki and M. Olshanetsky for useful discus- Jd 9
sions. This work was supported in part by the Einstein and +4i<§k:<n eXp(sz—zPi)”knﬁ I
Minerva Centers at the Weizmann Institute, by grants from e
the Minerva Foundation, Germany and the Israel Science J
Foundation, by the Russian Fund for Fundamental Research +2i<k2mn eXp2pi— ZP')”km”knanlm I
(I. K., M. S., Grant 98-02-17814 by Soros FoundatiofM. '
S., Grant a98-674and by INTAS (M. S., Grant 96-045)7 (A7)

within the ICFPM program. Here U as a function of¢; is equal toP, inside a region

restricted by¢, and ¢1 (where ¢, are functions of vari-

ablesg,,...,¢4,7) and tends to zero outside the region. We

solve Eq.(A5) using perturbation theory ovér, £ Then the

zero-order equation is
Here we present an alternative way to obtain the results .

(2.12 and(2.14. We use an auxiliary quantity. I'E,=0.

APPENDIX

(A8)

Equation (A8) can easily be solved ap, <¢,<¢y ; the

=(v.p0.70)= | Zpmormon answer is

p(0)=pgy.,7(0)= g
(A1)

o [ a2

SO

J(Y)=E(y,0,0).

The functionZ can be also defined as

(A2)

=(v.p0.70)=lim [ 1 dputmy Witypm), (A9

t—oo
where V¥ is governed by Eq(2.20 with initial condition
P(t=0y,p,7)=8(p—po) 8(n— 71y). The equation forZ
can be found from Eqg1.32 and(Al):

d 02 d 2 d J
+ d—2i+1)—

R D op e I Ret
2

+22 exp2p;—2p;) 772+4.<E<, exp(2py
1)

J
exp 2
pl)nkjan Er i<k2m’n P(2px

AN

1= > exp{ —(
yP,
N+ )
Dd

—d1)}, (A9)

where = \/d(d?—1)/12Dd\ is the rate of the cloud mo-
tion along thep, direction. The resul{A9) can be obtained
using the inequality\/)\2+y2P2/D InLA>1. The deriva-
tive 95,/d¢,=0 at p,<¢, . However,E,# 1 in this re-
gion. This is due to the following fact: this region corre-
sponds to the evolution oF when its initial position is to the
left of potential U [see (A3)]. During evolution, cloud¥
passes the region df and its integral ovep, n changes.
Then E is not equal to 1. Only when the distance between
the initial position and potential is of order?hA will the
diffusion of the cloud lead to smallness of the partiothat
passes the potentiél, andE becomes closer to unity. Thus,
function E has a long tail from the potential pointing toward
negative¢,, where it is not equal to 1. The procedure of
finding E from Eq. (A8) corresponds to the geometrical op-
tics approximation(taking into account only derivatives in
propagation direction; this allows one to get the fact of
propagatioh This tail of £ in this approximation is none

I

A2+y2P,/Dd—\)
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The interaction between hydrogen bonds and conformational elastic degrees of freedom has been
investigated using the simplest model of a double-strand DNA molecule. The hydrogen

bonds are described in terms of two-level quantum systems. After excluding conformational
degrees of freedom, one has effective interaction among two-level systems. In the ground state of
an ideal double helix, hydrogen bonds in a DNA molecule also have a helical order induced

by conformational degrees of freedom. The pitch of the hydrogen-bond (aeitk even its sign

under certain conditionss different from that of the basic helix pitch and, generally

speaking, is incommensurate with the latter. This effect can, possibly, lead to an inversion of the
sign of the circular dichroism in spectral bands, which was detected in some experiments.

© 1999 American Institute of Physids$1063-776(99)01103-§

1. INTRODUCTION degrees of freedom in the DNA double helix.
One can conclude from the above statements that the

According to Watson and Crick’s classic model, therole of hydrogen bonds in stabilizing the DNA configuration
DNA molecule is a double helix. In the so-called is, in a sense, secondary. This does not mean, however, that
B-conformation of DNA(see the monograph by Alberts et they are inessential in the biological functioning of the DNA
al.' or the review by Vologodskiet al?), this double helixis  molecule. Rather the opposite is true, for it is precisely the
right-handed and formed of two polymer chains, each ofhydrogen bonds that enable realization of the rule of comple-
which has the shape of a right-handed spiral. Nitrous basesentation between bases of different pairs. Therefore, study-
whose sequence encodes the entire genetic information, formg the ordering and other properties of the system of hydro-
the inside content of the double helix, and its surface iggen bonds in the DNA molecule is a biophysical problem of
formed by the glycophosphate frames of the polymer chaingsaramount importance, and it constitutes the main subject of
Each repeated component of the ch@mitrous base plus a this paper.
glycophosphateis called a nucleotide. There is a strict rule Hydrogen bonds have been extensively discussed in the
of complementation between nucleotides of two chainsliterature (see, for example, the review by Marechahd
which is controlled mostly by the steric correspondence bereferences thereinAn important circumstance for our study
tween bases. This structure of the DNA molecule allows onégs that a hydrogen bond has an anisotropic configuration,
to model it in most cases as an anisotropic elastic threaldecause three atoms forming a hydrogen bond are shaped in
associated with the axial line of the double hélfx. a linear asymmetrical structure. Keeping in mind the prob-

An essential fact for the DNA configuration is that bondslem of ordering of hydrogen bonds in the DNA molecule
between neighboring nucleotides are rigid and covalent, wittmentioned above, we can say in other words that, at each site
energy about 60 kcal/mdf? whereas the energy of bonds n of a DNA molecule(a position of bonds between comple-
between polynucleotide chains is at least one order of magnentary pairs there is a certain directioH, which defines
nitude lower. The two chains are bound in the double helixa favorable orientation of a hydrogen bond. In contrast to the
mostly by the interaction between bases belonging to differcase of covalent bonds, however, the inherent energy of a
ent strands, and hydrogen bonds serve, as it were, for “iderdydrogen bond is relatively lowcharacteristic energies of
tification” of nucleotides in complementary pairs. Obvi- hydrogen bonds are usually no more than 3kcal/mol
ously, the variables characterizing one anisotropic elasti@herefore, interaction between hydrogen bonds and other de-
thread are insufficient for modeling the double-strand DNAgrees of freedom in DNAalong with thermal fluctuations
configuration. A minimal complication of the anisotropic can notably modify their propertigfor example, deform the
elastic-thread model suggested in our previous publicationlinear structure of these bondsr even break them. In the
was equipping the elastic line with vector field, which  following section, we will formulate a simple model illustrat-
defined additiona(to those in the anisotropic thread madel ing this phenomenon, namely, interaction between hydrogen

1063-7761/99/88(3)/6/$15.00 517 © 1999 American Institute of Physics
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bonds and conformational degrees of freedom in the DNAenergy of fieldY [expressed in the immobildaboratory

molecule. reference frame in Eq.1)] should include both changes in
This model will be analyzed in Sec. 3. The ground statefield Y with respect to the naturglocal) reference frame

of the system will be described. It turns out that hydrogendefined by vecto€) and changes in the local frame itself.

bonds have a helical order in the ground stéte base pairs In addition to fieldY,, there are hydrogen bonds at each

in the double helical configuration of DNAbut the pitch of  site, whose main function i€as was noted in the previous

this hydrogen-bond helixand, possibly, its signdiffers  section “identification” of complementary pairs of bases.

from that of the double-helix pitctl0 b.p=35 A) and, gen-  In the roughest approximation, a linear hydrogen bond can

erally speaking, these two pitches are incommensurate.  be only in two stategcorresponding to two proton posi-
In the final section, we will discuss feasibility of detect- tions), which will be dubbed in what follows opefthe pro-

ing helical ordering of hydrogen bonds and its biophysicalton is close to one of participating atoms, and the bond is

aspects. effectively brokem and closedthe proton is located between
the two atoms and effectively binds thgnm natural “tool”

2 DNA MODEL TAKING INTO ACCOUNT HYDROGEN for de.scribingl the two-leyel sy§tem modgling the hydrogen

BONDS bond is the triad of Pauli matrices for spin 1/2. This ap-

. _ proach allows us to express the Hamiltonian of the system of
As was mentioned above, the basic component of th@ydrogen bonds in DNA as follows:

DNA model used in our analysis is the conformation of the

DNA axial line, determined by Kirchhoff's “angular veloc-

ity” Q (see Ref. 8, and also 3 andl. Zhe vectorQ (or the Th=¢ En: Hnsh+ ?’En: YnSh- 2
equivalent skew-symmetric matjixs a natural set of vari-

ables describing the conformation of an elastic thréhé  The first term on the right corresponds to the inherent energy
DNA axial ling). Thus, the molecule’s conformatiofie.,  of a hydrogen bond at site(e is the energy needed to break
vector ) is determined by the elastic moduli of the DNA he hydrogen bondH, describes the unperturbed equilib-
moleclue(or, what is the same, by persistent lengths of bendjym alignment of the hydrogen bopdand the second cor-
and twis}. The characteristic values of these elastic mOdU”responds to interaction between hydrogen bonds and Yield
are well knowrt? and correspond to a persistent length of o gisplacements in the DNA double-strand configuration.
order of 1 A. A DNA molecule whose length is of order of The value ofe is well known (it is of order of 3 kcal/mo),
the persistent length is almost rigid, i.€l=const over this g, parametey, which is controlled by interaction between
length. . _ hydrogen bonds and nitrous bases, can be several times
The next element of our model is vector fie¥d that  pigher, but, obviously, lower than the elastic strain energy of
frames the axial line conformation. Introduction of this field fie|d v, which is determined purely by covalent bonds. In

is dictated by the double-strand structure of the DNA mol-what follows, this hierarchy of energy scales will be used

ecule, and this field locally determines the relative locationexpiicitly in determination of the ground state.

of the strands and separation between them. In studying properties of the model formulated above,
This vector field is naturally associated with an energyone can use techniques developed in the theory of

which ‘includes the kinetic energy of relative motion of excitons®*°1t is convenient to switch to Fourier components
strands with respect to one another and the potential energy gqs. (1) and (2):

of the ideal double-helix deformation. In the simplest ap-

proximation of the lowest order, the energy of fiddcan be 1 '
expressed as Yo=—= > ey,
1 K N
o — T P2 o 2
e En: 2p Pn+§n: 2 (VYn)®. @ whereN is the number of sitegbase pairson the section

) . ) ) under consideratiofof order of the persistent lengtiMore-
Here we are using the discrete model of DNA, in which the,yer e assume that the double-helix conformation of the
sitesn are defined as positions of glycophosphate bd3es,  pNA molecule is ideal. i.e.

the generalized momentum corresponding to the relative dis-
placementy , of strands of the double heliy, is the reactive Q=(0,00)=const.
factor, which has the sense of the mass density in this rela-
tive motion, andK is the elastic modulus characterizing elas-  After the Fourier transform, Hamiltoniafl), (2) takes
tic strains in the double-strand structyar field Y). the form
Energy(1) has the standard form of the energy of har-
monic oscillations, the only, but essential, difference from a ) 1 A
conventional one-dimensional oscillator being the presence '%:% [quptﬁ' E(Bq Ba)YqY g
of the covariant derivativ& Y ,=(9Y,/ds) —[ QY ], where
sis the curvilinear coordinate along the conformation of the
axial line.
The emergence of the covariant derivative instead of the
conventional one results from the fact that the deformatiorwith the notation

+eHS o+ quS_q} (©)]
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2isin(g/2) —expiq/2)Q 0 o @
B,=| expia/2Q  —2isin(q/2) 0
0 0 —2i sin(q/2) wy o,
4

(I§’>;r is the Hermitian conjugate matpix

The first two terms on the right of E¢3) express the
elastic energy of the conformation degrees of freedom in a
double-strand DNA molecule. In order to calculate the spec- 9
trum of elastic oscillations, one must diagonalize this Hamil-.,; ;
tonian part. This can be done with the help of the canonical

transformation
S 4B} Bg)S=diag(A;,\»,\3), (5) C 4 it
AT @iy e @& i
where the matrix = ) = .
5 s ! V2ptiw(a) T 2phe(g)
1/v2 ily2 0
_ Equations(11) are written in such a form that phonon cre-
S=|ilN2 12 0 (6)  ation and annihilation operators satisfy the standard commu-
0 0 1 tation relations
satisfies the conditioB"=S"1. [bl, ;b 1=i A8 8qrqr
Equations(5) and (6) y|eld three characteristic eigen- e
modes of the double-strand DNA molecule: with due account of symmetry properties of phonon spectra
(10),
—asid 102 ind oot
M7= 4 sirf 5+ Q240 sing cos;, 01~ =0y(Q),  03(@)=ws(—q).

@)

q The energy of “bare” phonons has the form
)\3: 4 SIFFE 3
. Ho=2 2, hwi(a)by'by, (12
OperatorsS transforms all variables to eigenmodes: q i=1
Y= égq ., Py= S+ g, Sq= ”an ., Hg= éhq , (8  and the interaction Hamiltonian
where, as follows from Eq6), S*=S* (S* is the complex , € 3 N . A
conjugate matrix thus we obtain Hamiltonaif3) in terms =5 % 21 (hg'myt mg ' m) +y 5

of eigenmodes:
3

3 1 i +i s 1 +| i +i i
7K:% I=zl Z(Wq 7Tq+p2wi2(q)§q gq) q i=1 m q 77q q bq) (13)

) ) € . e As was noted above, the characteristic scale of elastic
(6 "t ng )+ 5(hq 'mytna'hg)-|. (9 energy is higher than the energies of hydrogen boejisiid
their interaction with conformational degrees of freedom
where (), therefore we can use the perturbation theory.
_ In order to exclude phonons with an accuracy up to the
i=vK\i/p (10 .
terms of second order, we can use the canonical transforma-
is the spectrum of eigenmodé€$phonons” of the double- tjon
strand DNA. Branches of the spectrum determined by Egs.

(7) and (10) are shown in Fig. 1. There is an “acoustic” T=e" ¢ e,

branch 3) corresponding to oscillations of the separation . - )

between the strandéength of vectorY) and two “optical’” where the anti-Hermitian operatgr is expressed as
modes (v; andw,) associated with deformation in the ideal 3

double helix(with variations in the orientation of field). @ZE Z [A b*' Agi , (14)

Note that there is a minimum of mode, at q=Q, which
can be explained entirely in terms of symmetry propefties and operatorsﬁ\iq can be found in the first order of the per-
turbation theory from the condition

3. HELICAL ORDERING OF HYDROGEN BONDS IN DNA )
_ . Tt [ 70 ¢]1=0. (15
It is convenient to express the eladtiphonon”) part of
Hamiltonian(9) in terms of second quantizatithn Hence, 7= o+ (U2 . F s @]. With the notation
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A=Al(a) 7}, (16) jw de cog(m—n)e]
—n 2T 4 sirf(l2)+ Q2+ 4 sin( ¢/2)cod ¢/2) Q)
H'k(q—Q')=JZ1 h;iq,tij , (17 which can be easily performed by calculating the required

residues. As a result of this simple procedure, we find

ij ;
wheret; are structural constants of pseudospin operators cog (m—n)a]

. 1 _12 __
under transformatios [Eq. (8)]: Ton=Tmn= 021+ 02 (m_n)/2’ (22)

where
(771 = 2t (18)
S (23
. L =cos .
the calculation of operatop [or matrix A%(q)] reduces to “ J1+02

solving the integral equation _ ) o o
The effective exchange interaction is very similar to the so-

y ik e called RKKY (Ruderman, Kittel, Kashuya, and Yoshjda-
AK(q)=— + teraction between spins mediated by conduction-band elec-
V2p (wi(Q))‘?/2 2hwi(9) trons, which is well known in the physics of metals. Like the
RKKY interaction, that between hydrogen bonds oscillates
XE E H'(g—q')A%(q"). (19) with the distance and its amplitude drops following a power

q =1 law (in this sense, the interaction is long-rang&he long-
range nature of this interaction allows one to use the mean-
Note that the kernel of this integral equation is a function offield approximation, which leads to a helical structure in the
both the conformation of hydrogen bondd'() and elastic case of the RKKY interaction. Therefore, on the basis of the
properties of the double-strand DNA structiike;(q) . well-known results for the RKKY interaction, we can sug-
With an arbitrary relation between parametgr&nde,  gest a helical configuration of hydrogen bonds and apply a
Eq. (19) is difficult to solve. Physically, the simplest case is variational technique, which yields an upper limit for the
when the first term of Hamiltonaifl3) is much smaller than ground-state energy. Thus, in order to minimize endagy,
the second. In the zeroth-order approximation, i.e., when  we use the following trial function:
neglected, we have the following effective Hamiltonian of . ) )
hydrogen bonds: Mh=COSy, m=siny,, 7,=0. (24

Substituting function(24) in (20) and taking into account

o= P 2 Tmnnmnn' (20) Egs.(22) and(23), we obtain

2
T ee—= — y— m7n| —
where Tett= = 2% rgn cos™ "a cog(m—n)a]

T3 4 5 cog(m—n)q] 21 X COY m— ). (25)

mnT N 4 Na(q) @D The condition for minimizing the energy of Hamiltoni&25)

by varying ¢, is equivalent to the equation faf,,=mpg

11 72 1 D 1 1

= Tmn = 2 —M( 3 @ cog(m—n)q]. 2 cos™ "l cog (m—n)alsif(m—n)B]=0.  (26)
Note that the “exchange” constant in effective Hamil- If the molecule is sufficiently long, one can neglect the

tonian(20) is independent of the mass densityand, by the  boundary conditions and transform Eg6) to the following
way, of Planck’s constant:i). In our opinion, these two transcendental equation:
properties are quite natural. Indeed, the effective energy of

hydrogen bonds is a thermodynamic characteristic of the sys- sin(a+ )

tem, which should not depend on the purely dynamical pa- [1—2 cosa cog a+ B)+cofa]?

rameterp. The physical cause of this energy is “magneto-

striction,” i.e., interaction between hydrogen bonds and sin(a— B)

phonons, which has a classical nature, although the hydrogen + [1-2 cosa cog a— B) +cof a]? - (27)
bonds have been described in terms of the quantum theory

(two-level systems A solution of Eq.(27) can be found numerically. Figure

For simplicity, let us consider only theX—Y"” con- 2 plots the value 0f7Z given by Eq.(25) as a function of
figuration of pseudospin operators describing hydrogerangle 8. It clearly shows two symmetric and fairly narrow
bonds, i.e., we sey?=0. In the continuous limit, the calcu- minima, wherd 38— «a|<1. Under this condition, we can eas-
lation of T}nﬁ is reduced to the integrals ily find the solution of Eq.(27) analytically:
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Hy Note that the results of the present work can be tested
experimentally. For example, the dynamics of conforma-
la-Al tional degrees of freedom is related to so-called breathing

modes introduced by Mannirld.The softening of one opti-
cal mode demonstrated by our calculations should, undoubt-
edly, affect the stability of various DNA conformations. Ex-
perimental detection of such an effect would be, certainly, of
great interest.

In our opinion, however, attention should be focused on
the predicted helical ordering of hydrogen bonds. In the sim-
plified model investigated in our work, the left- and right-
handed helices are degenerate, but even the slightest modifi-
cation of the mode{such as inclusion of the self-energy of a
hydrogen bond, or taking into account the fact that there are
FIG. 2. two hydrogen bonds in the A—T complementary pair and

three in the G—C palirshould lift this degeneracy. Therefore,
depending on the ratio between the numbers of G-C and
sin(2a)(1—cosa)* A-T pairs, the sign of the pitch of the hydrogen-bond helix

B~a— [1—2 cosa cog2a)+cof al? (28 may dif_fer. Note that such an inversion of the hydrogen-bqnd

helix pitch does not require a restructuring of the entire

Thus, the configuration given by EqR4)—(28) really  double-strand DNA configuration.
corresponds to at least a local minimum in the energy deter-  This result of our study gives rise to two questions that
mined by Hamiltoniar{20). We have also shown that, owing may be significant in the biophysical context:
to the interaction among hydrogen bonds, they have a helical 1. Since the hydrogen bond is only one part of the elec-
ordering given by Eq(24) in the DNA ground state, and the tronic interaction between nitrous bases of DNA, the natural
pitch of this helix is different from{and, generally speaking, question is about the plausibilit y of a helical configuration
is incommensurate wijhthe double-helix pitch. Moreover, characterizing the interaction between these bases.
in the approximation of the lowest order, the energies of the 2. Must the sign of the pitch of the DNA structure coin-
left-hand and right-hand helices of hydrogen bonds areide with that of the helix characterizing the electronic inter-
equal, i.e., the state is degenerate. Therefore, a domain strugetion between bases?
ture of hydrogen bonds is feasible, for example, a right-  These questions demand a more complex model and go
handed DNA helix can contain alternating domains with left-heyond the scope of the reported investigation. Nonetheless,
and right-handed helical ordering of hydrogen bonds. in view of our results concerning hydrogen bonds, affirma-
tive answers to both these questions seem quite plausible. It
seems also that it is necessary to revise observations of so-
called unusual polynucleotidé$jn which a left-handed he-

Let us summarize the main results of this paper. lix can transform to a right-handed offeand which demon-

1. The spectrum of conformational modes in the doublestrated a tendency of forming in DNA segments either the
strand DNA structure with one acoustic and two opticalA-conformation(left-handed in optical measurementghen
modes(one of which is softened at a finite wave vegtbas the double helix is rich in G—C pairs, or the optically right-
been calculated. The presence of the two optical modes is llandedB-conformation in a DNA molecule rich in A-T
direct consequence of the molecular structure with two helipairs®
ces. All these phenomena are largely associated with obser-

2. The interaction between hydrogen bonds and conforvations of circular dichroism inversion in optical spectra of
mational degrees of freedom results in an effective longDNA solutions. Effects of this sort have been interpreted in
range interaction between hydrogen bonds. The latter ordeterms of geometricalor, more exactly, stereochemitatod-
the hydrogen bondsdescribed in terms of two-level sys- els that described transformations of the entire DNA confor-
temg so that their axes of anisotropy form a helical configu-mation from the right- to left-handed helix, given a certain
ration. quantity of defects, namely kinks, but without breaking the

3. We have calculated the pitch of the hydrogen bondcomplementation rule.
helix as a function of the model parameters which determine  Our results, however, indicate that there may be an al-
the energies of interaction between hydrogen bonds and coternative physical mechanism on which an interpretation of
formational degrees of freedom and of elastic deformationshe circular dichroism inversion in optical spectra can be
in the double-strand DNA structure. In the limiting case,based. This mechanism does not require a restructuring of
when the self-energy of a hydrogen bond determined by pahe entire double helix. It is knowhthat circular dichroism
rametere can be neglected, the pitch of the hydrogen-bondspectra are determined by the electronic structure of the
helix depends only on Kirchhoff's “angular velocity(}, DNA interior. Assuming that electronic states may have
i.e., there is a universal dependence on the double-helix pitcproperties similar to those of hydrogen bonds described in
[Eq. (28)]. this paper and form helical configurations, we can suggest a

4. CONCLUSIONS
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A constant magnetic field is found to have a substantial effect on the macroplasticity of NaCl
crystals when they are being actively strained at a constant rat®nst during magnetic
treatment. We have measured the dependence of the yield @pioh the magnetic induction
B=0-0.48 T and the strain rate=1.4x10 °—1.4x 103 s~ 1. It is shown that this

magnetic effect has a threshold character and is observed onB>f@,, whereB, grows with
increasinge as \/; The lower the strain rate, the larger the relative decrease in the

yield pointoy(B)/o(0) at fixed fieldB>B.. At small enough strain rates the threshold field
B, ceases to depend anand goes constant. A theoretical model is proposed which is in
good agreement with the observed regularities. The model is based on the competition between
thermally activated and magnetically stimulated depinning of dislocations from
paramagnetic impurity centers. @99 American Institute of Physid$1063-776099)01203-2

1. INTRODUCTION exceeding some threshol%£0.3 T), the yield point is
_ . _ _ halved, the extent of all stages on the stress-strain curve is
The magnetoplastic effect was first discovered in NaClappreciably foreshortened, and the work-hardening coeffi-

crystals at the microplastic level in the form of dislocation cient in stage Il is decreased while in stage IlI, in contrast, it
shifts in samples located in a constant magnetic field in theyrows.

absence of a mechanical loh8ubsequent studies by a num- In the present paper we present a similar study in NaCl
ber of independent groufis® have made it possible to link crystals. We show that in these crystals the magnetic sensi-
this phenomenon with depinning of dislocations from para+ivity of the o(¢) cures is manifested over a wider range of
magnetic impurities in a magnetic field. The macroscopicstrain rates and for a lower threshddg. This makes it pos-
dislocation shifts of tens and hundreds of microns, arising asible to substantially increase the information content of the
a result of such depinning under the action of long-range&jata on the influence of a magnetic field on the macroplas-
internal stresses, are in essence a manifestation of magneficity of the crystals and suggests a theoretical interpretation.
cally stimulated relaxation of the dislocation structure. Thejt may be remarked that the indicated interpretation has a
exact physical mechanism of the elementary act of depinningkinematic” character and is based on the competition of
of a dislocation from a paramagnetic impurity center is stillthermally activated and magnetically stimulated processes of
not completely clear. It appears that the discussion here igepinning of dislocations from point defects. What is impor-
about spin-dependent transitions in a magnetic field destroytant for us here is not the micromechanism of magnetic de-
ing the energy barriers.'% Processes of this type play a sig- pinning but the very existence of such depinning, convinc-
nificant role in many phenomer&n particular, it is cus- ingly established in numerous experiments on the level of
tomary to link the effect of a magnetic field on the rate ofindividual dislocations together with the empirical depen-
chemical reactions with theM. The hypothesis of spin- dence of the time needed for such depinning on the magnetic
dependent processes in dislocations in a magnetic field arfikld.
the consequences flowing from it are in good agreement with
numerous experimental data and are discussed in detail in the
publications cited abov&X°We will not dwell on this point 2 EXPERIMENTAL TECHNIQUE
here. We note only that the magnetic polarization of disloca- The objects of study were nominally pure NaCl crystals
tion nuclei in NaCl and KCI crystals was experimentally grown at LOMO without any intentional impurities. The to-
discovered long before the magnetoplastic effect. tal impurity content of the crystals did not exceed
One of the important accomplishments of recent yearao—3 wt. %. Two types of samples were investigated: 1
making it possible to put the magnetoplastic effect to practiunannealed samples, cleaved along the cleavage plane from
cal use was the discovery of its macroplastic manifestationsroom-temperature aged crystals, andahnealed samples,
It turns out that in alkali-halide crystals a magnetic field cleaved fromy-irradiated crystals. Typical dimensions of the
substantially alters the work-hardening coefficihtthe samples were roughly 2:62.5x 8 mnt.
yield point>*®and even the microhardne¥sThus, for ex- Mechanical compression tests were performed on the
ample, according to Ref. 15, in LiF crystals strained at a lowsgme setup as in Ref. 15, with corundum @) anvils. A
enough rate §<5x10"° s™1) in a constant magnetic field magnetic field was created by placing a permanent magnet

1063-7761/99/88(3)/4/$15.00 523 © 1999 American Institute of Physics



524 JETP 88 (3), March 1999 Al'shits et al.

o, MPa 3

7+ a

6r 1 FIG. 1. Stress—strain curves of anneal@ and
1 unannealedb) crystals of NaCl, obtained by com-

5 pression in magnetic field8=0 (1), 0.48 T(2), and

4t 0.2T(3); e=5x104s 1.

3 L

2k 2

1+

4] 2 4 6 8 5% 0 H 2 3 4 & %

with movable poles over the sample. The maximum maggerous” (from the foregoing standpointinannealed crystals,
netic induction was 0.48T. The shape of the stress—strairach measurement of the stress—strain cut(«€) was re-
curveso(e) was studied, as well as the dependence of theeated on several samples for fixed values of the parameters
yield pointoy on the magnetic inductioB in the field inter- ¢ andB. The corresponding spread in the values of the yield
val 0—0.48T for strain rates from 1.4x10 °s ' to 1.4  point oy, reflected in Fig. @) in the form of experimental
x 103 s71. The stress—strain curves of NaCl crystals areerror bars, is appreciably less than the observed magnetic
characterized by a vague. For this reason, the yield pgjnt effects even for the unannealed crystals.
was estimated to be the stress at which the cur{®) de-
parts from its initial rectilinear dependence. 3. EXPERIMENTAL RESULTS

Of course, each stress—strain curve was recorded on a
separate sample and reflects not only the general properties, Figure 1 shows stress—strain curves for compression at
but also individual properties of the tested crystal. For thisthe strain rates=5x10"% s ! of annealed(a and unan-
reason, a certain spread in the values of the yield pejnt nealed(b) samples in the absence of a magnetic flelarves
measured on a series of samples under identical conditions I3 and in a magnetic fiel@=0.48 T (curves?2). Figure 1a)
inevitable. Usually, this spread is significantly less whenalso shows curvegcurves 3) measured on two different
working with annealed samples characterized by a more hasamples foB=0.2 T, demonstrating the good reproducibil-
mogeneous and stabilized initial dislocation struct(see ity of the o(¢) curves for the annealed samples. As can be
curves3 in Fig. 1(a)). Unfortunately, because of the paucity seen from Fig. (b), the latter is significantly poorer for the
of annealed samples at our disposal, we were not able tonannealed samples. As expected, the annealed samples are
duplicate all the unannealed measurements in them undeofter, i.e., their initial(at B=0) yield point is almost half
identical conditions. To make up for this, on the more “dan-that of unannealed samples. The former are accordingly

g, MPa
3 b

6 FIG. 2. Dependence of the yield point on mag-

netic induction for annealed(a, =5
x10 % s 1) and unannealedb) crystals of

NaCl compressed at strain rates-1.4x10°°

. MPa 5 (1), 2X10°5 (2), 3X10°5 (3), 7.3¢10°5 (4),
s 1.75x10°* (5), 5x107* (6), 1.4x10 %s?t
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more sensitive to a magnetic field than the latter. As the B.,T
inductionB is increased from 0 to 0.48 T, the yield point of
the annealed samples falls by roughly a factor of two,
whereas for the unannealed samples at this strain rate it falls
by only 20—25%. In addition, all stages of plastic flow of the
annealed samples in a magnetic field are appreciably fore-
shortened in the stress as well as the strain, i.e., a magnetic
field hastens the changeover of strain stages in these crystals.
On the other hand, as can be seen from Fidp),lin the
deformation of unannealed samples in a magnetic field the
foreshortening of the stages in the stress—strain curves is
clear-cut only on the stress scdla particular, in terms of
the decrease in the yield pojnt

Figure 2 shows the behavior of the yield point as a func- ‘ ) L
tion of magnetic field for anneale@) and unannealeb) 0 1 2 VE 10272
crystals. In annealed crystals this dependence has a clear-cut
three-stage character. In the first stage,Bdess than some FIG. 3. Comparison of the theoretical dependeBggs ) (solid line) and
threshold valueB, the yield pointo, remains constant and the experimental points according to the data of Fi).2
exhibits no sensitivity to the magnetic field. In the second
stage, within a very narrow range above threshoRl (
=B,), an abrupt decrease in the yield point is observed. And
finally, in the third stage, foB>B_, within the limits of Teh=To exr{m
error of the experiment, the yield poiwt, remains essen- kT
tially constant, although it does tend to dec_rease s!owly. _from the same obstacle under the stressc, determined

In unannealed crystals, the decrease in the yield pomlgy the strain rate
with increasingB for B>B,. is smoother. The three-stage
character of the dependence of the yield point on the field, - - [{ U(o)

i i ; e=¢gpgXP — —V—=—

a,(B), is clear-cut only at low straificompressioh rates. kT

Studies in these crystals at different strain rates in the range . .
y gIn formulas(2) and(3) T is the temperaturé is Boltzmann’s

from 1.4x10 ° s ' to 1.4x 10 3 57! revealed a substantial ) o .
increase in the magnetic effect on the yield point at |owerconstant, andJ(o) is the activation energy for overcoming

strain rates. It follows from Fig. (®) that in this case a sig- the magnetically sensitive impurity centers under the stress

nificant decrease in both the magnetic thresti&ldroughly g Thug, the kip.et.ics of deformation di‘?t‘?“es t.he threshold qf

sixfold) and the ratio o (B,)/ov(0) is observed B, magnetlc sen5|t|V|Fy of the .macroplastlc'lty, since the cqndl-

~0.48 T). y y tion 7g<7y, taking relations (1)—(3) into account, is
equivalent to

2

: ()

4. DISCUSSION

a .
B2>——¢. (4)
As we have already noted, independent data based on To€o
studies of the microplasticity of the same crystals indicatqn other words, a pronounced magnetic influence on the

that the role of a magnetic field in their plastification reducessiress—strain curves(e) in the model should be observed
to depinning of dislocations from point defects. Let us con-gnly atB>B,, where

sider the active deformation of a crystal with strain rate
e=const in a magnetic fiel® in terms of a simple model, B.=maxBY ,k\/;}, k=Val7eg. (5

assuming that the yield point, for B=0 is limited by the . -
. Sy : 7 .. Another more convenient way of writing out the dependence
same magnetically sensitive impurity centers coexisting with i . . .
f the threshold fieldB. on the strain rate, equivalent to

less plentiful obstacles not affected by a magnetic field. For 8 ,
prescribed magnetic fiel& the depinning timerg of the  formula(®), is
dislocations from obstacles of the first kind as a result of B

. > AIES . =, Y e<epn,
spin-dependent transitions is proportionalBo~ (Ref. 18, B.=1 . o (6)
i.e., kel £>em,
75=aB "2, (1) where £,=(B/k)2. Figure 3 compares the function

According to Ref. 18, such transitions, and correspondingl;Bc(\/;) that follows from the given model with the experi-
such depinning, are possible only in magnetic fields exceednental points obtained by processing the measutg8) at

ing some threshoIngo). On the other hand, even at a series of strain rates of unannealed sampl¢&ig. 2(b)].

B> Bgo), magnetic depinning of dislocations is in no way The good agreement of the predicted type of dependéce
manifested in the macroplasticity #i; (1) substantially ex- (6) with experiment favors the physical scheme proposed
ceeds the thermally activated dislocation detachment time above.
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BV @ the regionAB in which the main falloff of the yield poing,
A ve occurs correlates qualitatively with the proposed model.
I :‘! @ We note in passing that the width of the step in the

dependencer,(B) can of course be limited by other factors
not taken into account by the present simple scheme. One of
these factors is the presence of several kinds of magnetically
I sensitive barriers. Note that even in that case, when the im-

2© purity composition of these obstacles is homogeneous, a
¢ \‘\E \\\ spread in the dimensions of the complexes and/or dislocation
NN \\\ segment lengths between complexes is sufficient to produce
vE, VE, VE a dispersion in the threshold fields and activation parameters.

It is clear from general considerations that the indicated
spread is smaller in annealed crystals. This possibly also ex-
plains the difference in the corresponding widths of region I
in the experimental curves of,(B) shown in Figs. 2a) and
2(b).

FIG. 4. The dependenc& (=) andB.(¢), and the zones I, II, and Il of

the physical paramete{B,é} corresponding to the three stages of variation
of the yield point with increasing magnetic induction.

According to the latter, when the magnetic field exceeds
the threshold valué3., pinning of the dislocations at ob- ACKNOWLEDGMENTS
stacles of the first type, in accordance with form(g falls
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This paper studies the interaction of electrons and acoustic phonons in a quasi-two-dimensional
system with an asymmetric quantizing potential in a magnetic field that is parallel to the
structure’s plane. It is demonstrated that the electron—phonon interaction in such a system
generates an emf when there is a standing acoustic wave, as well as when the structure

is heated uniformly. These phenomena are macroscopic manifestations of a universal quantum
effect, which amounts to an emf being generated by any isotropic perturbation of any

electron system in which the energy depends asymmetrically on the velqdity.,

e(v)#e(—v). © 1999 American Institute of Physids$51063-776(99)01303-1

1. INTRODUCTION provided that ¢o/1)*<1, whered,= (3%27?/16meE,)3

is the thickness of the 2D laydthe average distance from
g ) ) ) ) the boundaryz=0 to the electron at Hy=0, and Iy
tem in{x,y,z} coordinates, with the axis perpendicular to :(ﬁC/eHy)lIZ the magnetic length. In this case the solution

the plane of the 2D layer. We direct theaxis along the ot £q (3) with potential(4) for the lower electron subband
magnetic field, so thati=(0,H,,0), and choose the vector 5¢ the forrmh

potential to be in the forrh=(H,z,0,0). Then the electron
Hamiltonian is

We consider a quasi-two-dimensior{dD) electron sys-

21" 97 freHk,\ |?®  7%k;

P | PR PSS #=om| |8 1®F Tme /] tomr ©®

]K:% PxT c +py+pz +U(2), (D)
wherem is the effective electron mass,the absolute value Kk

.. . @(Ky,2)
of the electron charge, arld(z) the quantizing potential of
the 2D system, and the electron wave function is 3
B _ _ _ [|2meE,  2eHk, &(ky) —#2k2/2m =0

= Co(Kky,z)explikx+ikyy)exp(—igt/f), (2 _ Ai e e - eE,+hieH k/ma) | =0,
whereC=(L>(L),f°fm|<,c>(kx,z)|2dz)‘_1’2 is the normalization 0, 2<0.
constant. Heré., andL, are the dimensions of the 2D sys- (6)

tem along thex andy axesk is the electron wave vector, and
g, Iis the electron energy. Substituting?) into the

N here Ai(¢) is the Airy function. Equatiori5) implies that at
Schralinger equation with Hamiltonia(i) yields N @ Ty TUnCt quations) impli

H,#0 an asymmetric electron energy spectrum emerges,

12 Pe(kz) [HhKE  heHkz (eHz)? ie.,
2m g2 om T me om
e(vy)#Fe(—vy), @)
roE@Te el 870 ® wherev, = (1/1)[ de(k,)/ k] is the electron velocity along

the x axis.
where the energy (k,) = s, —fi%ky/2m. To analyze the ef- What is the physical reason for such asymmdtgyj.
fects qf interest, we use the model of a triangular quant|2|nq7)]? A magnetic field parallel to the plane of the 2D system
potential, cannot make the electron travel along a cyclotron orbit; at
©, z<0, most it can slightly alter the wave function. As the electron
U(Z):[eE ;720 (4)  travels at a velocity,, a Lorentz force acts on it in the
2o ST direction (—x), with the result that the maximum of the
employed in calculations of the energy spectrum of electronglectron wave function is shifted in the directipr z). If the
in inversion layers on semiconductor surfaces, wheyes  electron velocity changes tev,, the Lorentz force reverses
the absolute value of the electric field at the surface. Waealirection and the maximum of the electron wave function
examine the electron system in the quantum limit, where thehifts in the directior(z). Hence in an asymmetric potential
electrons fill the states only in the lower electron subbandU(z) # U(—2) the electron energy(vy) #e(—v,). Due to

1063-7761/99/88(3)/6/$15.00 527 © 1999 American Institute of Physics
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£ which E is the deformation potential constant. Then the
probability of electrons absorbing a phonon with the wave

vectorq=(0dy,dy,d,) is
1 ~
Wa(@)=n(a) ) kE P CUI

Xf(e[1-f(ew)], ®

wheref(g)) is the Fermi—Dirac distribution functiom(q)
is the phonon occupation number, and

_ ﬁq 1/2

U(q)=<m> E explig,x+iqyy+iq.2) exp(—iv,qt),
9

&, whereV is the crystal volumep the crystal density, and,

the longitudinal speed of sound. If ii8) we go from sum-
mation over electronic states to integration over the wave

FIG. 1. Change in electron state initiated by a fofgg(1— 2 transitiorn) and

by a force—F, (13 transition. vector, we obtain an expression for the probability per unit
time of absorbing a photon per unit surface area of the 2D
system:

the asymmetry(7), the dynamic properties of the electron =2qn(q)

system differ in the directionéx) and(—x). W,(Q) =
We show that this is the case by discussing a specific

example. Suppose that initially the electron had a velocity % -1

v,1=0 and was in statd, which corresponds to the mini- XJ |<P(k>'<12)|2d2) [1—f(ew)]f(ek

mum of the energy subban@) depicted in Fig. 1. Under a o

2 21,1 < 2
Varpo, d kJ d“k (J’w|(p(kx,2)| dz

2

force F, the electron is transferred, in timeinto state2, o ) ,

while under—F, it is transferred(in the same time) into X ﬁx‘P(kx'Z)eXp('qu)‘P(kx'Z) dz (e — e
state3, so thatk,,—ky; =K. —k3=F,t/A. Since the elec-

tron energy spectrurma(k,) is asymmetric with respect to the —hv)q) 8(ky—ky—dy) 8(ky—ky,—0qy), (10

d|rec_t|ons<k?<) and(—_l@, f[he velocity acquired by Fhe e_Iec- where integration with respect to and k' is carried out
tron in the first transition is not equal to that acquired in the

d + h the i N t ‘ dwithin the first Brillouin zone. The subsequent analysis is
SECONT,vy 7 Uya. 1NUS, € lineéar momentum transterred ., o ot for the energy spectrum and wave function of the
from the external force to the electron, equal to the produ

. ) Electron, which are given bip) and(6). Expanding(10) in a
of the electron mass an.d the velocity, proves to be .d'f' power series in the magnetic field and keeping only the lin-
ferent for forces in the directiorx) and(—x). This implies

- Lo ear term in the expansion, we find that far,d,)?><1 for-
that when an external agent that is isotropic with respect t?nula(lO) becomes
the directiongx) and(—x) acts on the electron system, the
linear momenta transferred to the electron system differ in ~ Wa(d) =Wao(Q) +Wan(d), (11)
these directions, and this leads to an electron drift along thgnere
x axis! In other words, any isotropic perturbation of any =2gn(q)
electron system with an asymmetric eIectr.on spectrum, Wao(Q)= aniq dzkf d2k’5(k;—kx—qx)
e(vy) #e(—vy), generates an emf along theaxis. The ef- Varpy,
fect of anisotropic momentum transfer to an electron system
subjected to an external isotropic fotces of a universal
nature and exists irrespective of the way in which the elec- X[1—f(ewo)]f(eko) (12

tron system is perturbed. The goal of the present work is ttlns the probability(10) in the absence of a magnetic field,

study this effect for the case in which the interaction of elec-

trons and acoustic phonons constitutes the perturbation of the B E2qn(q) fiH, q Zf dzkf &K’
Vapo, | | 18meg;) (9200

X 5(k>’<_ kx_ qx) 5(k;/_ ky_ qy)(kx+ k;()

X 8(ky—ky—0y) 8(exo—exo—hv(Qq)

electron system. Wan(0)=

2. SPATIAL ASYMMETRY OF THE ELECTRON—PHONON
INTERACTION X 8(exo— e~ hvQ)[1—f(ero)]f(eko)

We treat a crystal as a three-dimensional elastic con- (13
tinuum and describe the interaction of electrons and acoustiic the term linear in the magnetic field, ang, is the electron
phonons by the deformation potential method, where thenergye, in the absence of a magnetic field. EquatiGhb—
electron energy shifAe under an arbitrary deformatioum; (13) imply that for (do/l)*<1 and @,do)%<1 the differ-
of the crystal is given by the expressidte=E3;u;;, in  ence in probabilities is
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¢ o(ke1,2) # ¢(Ky2,2) and o(kjy,2)# o(k},,2). Hence the
absolute value of the matrix element of the electron—phonon
interaction potentia(9),

elB@lndl| | el 2exaio) ek, 2 0z,

turns out to differ for the absorption of phonons with wave
vector componentg, and —q, . Accordingly, forq,#0 the
probabilities of the interaction of electrons and phonons with
g and —q are different. This qualitative analysis is fairly
general and suggests that there is a difference between the
interactions of an electron system with an asymmetric energy
spectrum and any elementary quasiparti¢fg®tons, acous-
tic phonons, etg.moving in the directiongx) and({—x) (see
Refs. 1 and 2

We see that the spatial asymmetry of the electron—
FIG. 2. Structure of electron transitions with absorption of photons whosgphonon interaction is a purely quantum phenomenon. Below
wave vectors arg and —q. we examine specific physical situations in which this quan-
tum phenomenon leads to macroscopic effects.

Wa(Q) —Wa( —q) = 2Wan(Q). (14 3. EMF GENERATION IN A STANDING ACOUSTIC WAVE

The situation in whichlg,=0 warrants a separate discus- Since both absorption and emission of phonons are ac-
sion. Here all linear terms in the expansion of the probabilitycompanied by a change in the momentum of the electron
(10) in powers of the magnetic field vanish, so that we aresystem, different probabilities of the interaction of electrons
forced to include higher-order terms in our discussion. Al-and phonons withg and —q lead to different momentum
lowing for terms in this expansion that are cubic in the mag-transfer to the electrons from acoustic waves propagating in
netic field, we find that fog=(2kg,0,0) and @o/l4)*<1 at opposite directions. This leads directly to an anomaly in the
absolute zero T=0) and low electron concentratiorfthe  acoustoelectric effect, with the emf of phonon drag of elec-
Fermi velocityvr~v, and (edy)?<1) the probability dif-  trons differing for waves with oppositely directed wave vec-

ference is tors. In particular, an emf of phonon drag of electrons is
2\260,(2d\ 4 H generated in the presence of a standing_acoustic wave, which
Wa(—Q)—Wa(Q)=<—> T(T) (E—y) Wo0(Q), is a superposmon of acoustic waves ywth equal ampl_|tudes
™ H z and oppositely directed wave vectdr$his phenomenon is a

(19 special case of the effect of anisotropic momentum transfer
wherekg is the length of the Fermi wave vector of the elec-to electrons under an external isotropic perturbation dis-
tron. But at high electron concentrations&>v|) we have  cussed earlier in Ref. 1, where the standing wave is the per-

22 2d\4(H turbation isotropic with respect to two opposite directions
VF 0 y
Wa(_q)_Wa(Q):(—) (—) (—) (—) Wa0(Q). that acts on the electron system.
m c/\3ly E, A traveling acoustic wave can be generated in a crystal
by applying a periodic force to the crystal’'s boundary. The
The relations for the phonon emission probability(q) can  wave decays upon leaving the boundary, as it imparts energy
be obtained from Eqs10)—(16) by formally replacing the to electrons. The intensity(r) of a wave propagating in the
subscripta with e, the wave vectok’ with k, the wave direction of vector r therefore takes the formi(r)
vectork with k', and the phonon occupation numb®ig)  =1(0) exp(—ar), wherea is the wave absorption coefficient.
with n(q) + 1. Hence, two traveling waves propagating in opposite direc-
The fact that(14)—(16) fail to vanish immediately sug- tions form a standing wave only if absorption is low, i.e., if
gests that the electron—phonon interaction is asymmetriche amplitudes of the traveling waves can be assumed con-
identical phonons with oppositely directed wave vectors in-stant (for all practical purposés which corresponds to the
teract differently with electrons. But what is the physical condition
reason for such asymmetry? When an electron absorbs a
photon, it goes from one state of the subbdBdinto an- al<1, 17
other. Here the initial electron stakg and the final electron wherelL is the size of the 2D structure in the direction of
statek, both conserve energy and the length of the wavevave propagation.
vector, as indicated in Fig. 2. Since the electron subbands Suppose that conditiofil7) is met and that there is a
e(k,) are asymmetric in the direction&,) and(—k,), the  standing acoustic wave in the system, a wave that is a super-
wave functionse(k,,z) of the initial and final electronic position of longitudinal acoustic waves with amplitudes
states change when the sign of the compongmtf the wave and wave vectorg and —q. If electron transitions initiated
vector changes. From Eqg5) and (6) it follows that by the electron—wave interaction occur within the first Bril-
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louin zone and the temperature is ze=0), the phonon
drag emf’s of electrons generated in thandy directions in
the standing wavey, and £, , are given bg

Xq)(

heating. We consider low temperatures, where electron—
phonon transfer processes outside the first Brillouin zone can
be ignored. This means that the exchange of momentum be-
tween the electron and phonon systems generates an emf

L= along thex axis given by

[Wa( q)—Wa(a)],

o yqy (24

“"—%E B
Ly=——[Wa(—a)—wy(a)], “en 4 Ox[ We( ) —Wa(Q) ].

(18
whereng is the electron concentration per unit surface are tt_emperatures much Iower_ tham, /.de.O the main contri-
of the 2D system. Whe#0, the presence of a standing ution to electron—phonon interaction is prowde_d by Izong—
wave leads not only to absorption but also to stimulated’v"’“’e“ength phonons, whose wave vectors satisfydd)

. o . <1. In this case, for magnetic fields that satisty, (I ,)*
f ph by elect , f which Ed$) . 0\'H
Egzig] of phonons by electrons, in view of which & <1 we can use the expansi@hl), whereupor(24) takes the

form
5 =M[w (= @)~ Wa(0) + Wel(0) ~We(— )] pE2L,
X ens a a e e ’ gX: e E (QZdO)Zf d kf Zk de
q (19) 8m*pujens 1ome
o Lyay
7= )~ @) ) el — )] X (ky+ ki) A 1= F(ek00) 1 (sr0)[N(0) + 1]
If the wave vectorq=(qx, 4., Egs. (13, (14), and (19) —[1—f(ex0) I (£10)N(A)) Sk}, — Ky +0)
yield ,
Xﬁ(ky—ky—i—qy) 5(8kr0_8k0+ﬁv|q), (25)
=(qd 0) ol q y(’(xo(Q) £y=0, (200  where integration with respect tg k', andq is carried out
15c qy E, ) e ) . o
over the first Brillouin zone. We examine the situation in
where which the phonon energy distribution is given by the Bose—
- AL G Weo 0) — Wao(Q) ] Einstein function
Zro(Q) = on (20 -1

ower 1)
n(q)= eXp——l :
is the ordinary emf of phonon drag of electrons in a traveling
acoustic wave with a wave vectay in the absence of a whereT is the temperature of the phonon system, and the
magnetic field. For a wave vectg= (2kg,0,0) at absolute electron energy distribution is given by the Fermi—Dirac

zero T=0 and low electron concentrations {~v,), Egs.
(12), (15), and(19) yield

2 60| 2dg y
(’[X: - T c 3| E KXO(q) éyZO, (22)
where the emf21) in explicit form is
, 2Eugm)\?2L
Zxo(@)= = v |(2vg—vy) T) e_ﬁx’ ve=v)/2.

In the same case but at high electron concentrations

(ve>v)), Egs.(12), (16), and(19) yield

o 2 VE 2d0 4H o
{’(X:_(_) <3|H) E Fol@, 4=0,

v

(23

where the emf21) in explicit form is
4Eu0m)22LX

(C[XO(q) =- \m( A et

Equation(23) implies that for 2D inversion layers on a sili-

con surface Wlthj0~5>< 10~ "cm andH ~105G we have
| £l Zo(@) |~ 1073,

4. EMF GENERATION VIA SPATIALLY UNIFORM HEATING
OF THE 2D SYSTEM

function
-1

k
kgTe

whereT,=T+ AT is the temperature of the electron system.
For |AT/T|<1, 2mv?<kgT<#v,/do, and a nondegenerate
electron gas, Eq25) becomes

. _(kBT)5 25d,)°

For|AT/T|>1 atT=0, 2mv?<kgAT<%v,/dy, and a non-
degenerate electron gas, Eg5) becomes

kBAT)5 2Ed,\’
v 7e
From (26) and (27) it follows that for negativeAT we have
#4<0, for positive AT we have#,>0, and atAT=0 we
have#,=0. In physical terms, wheAT is negative, energy

is transferred from the phonon system to the electron system,
and this is accompanied by phonon absorption by the elec-
trons. Since the phonon absorption probabilityl) is such
thatw,(q)>w,(—q) for positiveq,, such energy transfer is
accompanied by momentum transfer to the electron system
in the direction(x), by virtue of which#,<0. WhenAT is

—I—l

f(e)= (exp

mL, AT H,
mpce T E,’

(26)

mL, H,
5wpce E,’

(27)

,/)X

We now discuss the interaction of electron and phonorpositive, energy is transferred from the electron system to the
systems that are in a nonequilibrium state because of uniforphonon system, and this is accompanied by phonon emis-
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sion. Since the phonon emission probability is such thathat a photoinduced emf appears. Thus, the generation of an
We(q) >we(—Qq) for positiveq,, such energy transfer is ac- emf in the event of spatially uniform heating of a 2D system
companied by momentum transfer to the electron system iteads to new kinetic effects that differ from a phenomeno-
the direction(—x), by virtue of which#,>0. Finally, at logical standpoint, but are of the same microscopic origin.
AT=0 the electron and phonon systems are in thermody- For 2D inversion layers at the surface of the silicon,
namic equilibrium and, in accordance with detailed balanceAT~10K atE||~1Och*1 (see Ref. 4 Hence an estimate
the emission and absorption probabilities are equal for evergf (27) at E”~1Och‘1, dp=~5%x10"cm, and Hy
phonon, so that there is no momentum transfer from one-10*G yields 4, /L,~10 2Vcm 1.
system to the other and,=0. Thus, an increase in the pho-
non temperaturd (e.g., due to uniform heating of the crys-
tal) or an increase in the electron temperaflgée.g., due to
heating of the electron gas by an electric fiaj@nerates an

emf of phonon drag of electrofisThis phenomenon is a In a quasi-two-dimensional system with an asymmetric
special case of the effect of anisotropic momentum transfeguantizing potentialu(z)#U(—z) located in a magnetic
to electrons under an external isotropic perturbation disfield H=(0H,,0) parallel to the plane of the system there
cussed in Ref. 1, where spatially uniform heating acts as aBmerges an asymmetric electron energy specte(m,)
isotropic perturbation of the electron system. #&(—v,), wherev, is the electron velocity in the direc-
When the crystal lattice is heated T<0), the tempera-  tion. Because of this asymmetry an anomaly emerges in the
turesT and T, become equal in a time interval equal to the electron—phonon interactions, i.e., the probabilities of inter-
characteristic time of energy relaxation in the electron—action of electrons with identical phonons whose wave vec-
phonon system due to phonon absorption by electrons, wittors q and — q point in opposite directions turn out to differ
the result that the emf disappears. Hence the drift of elecwhenq,#0. This feature of the electron—phonon interaction
trons (an effect that is described Hg6) whenAT<O0) that s purely a quantum phenomenon, which leads to a situation
emerges when the crystal lattice is uniformly heated is an which the momenta transferred from the phonon system to
time-dependent effect and can be detected if the lattice temhe electron system prove to be different for the two opposite
perature changes rapidly enough. directions. As a result, new macroscopic effects emerge,
The situation is different when the electron gas is heateduych as the generation of an emf in a standing acoustic wave
(AT>0) by an electric fieldg = \/EX2+ Eyz, which ensures and the generation of an emf when the quasi-two-
that an electric current flows in the plane of the 2D systemdimensional system is heated uniformly in space. These phe-
since in this case the emf's specified (86) and (27) are  nomena are particular manifestations of the universal effect
time-independent at fixed values ®fandE;. This feature of the anisotropic momentum transfer to the electrons in a
(the fact that the emf is time-independeoan be explained system that is under an isotropic perturbatiam effect that
by the fact that the energy transferred from the electron sygeads to the emergence of an emf under any isotropic pertur-
tem to the crystal lattice during photon emissidoule heat  bation of any electron system with an asymmetric energy
is completely absorbed by the heat bath that ensures the cogpectrum.
stancy of the temperatufe of the crystal lattice, so that the
temperature differencAT does not vary with time.
We now discuss in greater detail the effects that emerge
when the electron gas is heated by an electric field. Xhe APPENDIX

5. CONCLUSION

axis is directed along the electric field, so tEgt=|E,|. The In calculating the integrals of Airy functions we use the
electric current flowing in thex direction is following supplemental relationships:
ix=a(Ey+ &,JLy), (28

fAizmd§=§Ai2(§>—Ai’2(z>,

where ¢ is the conductivity in the plane of the 2D system.

The scalar quantitAT depends only on the absolute value 1

of the electric field|E,|, so a change in field direction does f CAIZ(Q) di= = [L2AIX(0) — ¢A3(0)

not alter the emf's specified by26) and (27), and thus 3

AW(E)=&(—E)). Hence Eq.(28) implies that j,(E,) +AI(OAI'(D)],

#j(—Ey), and the electric current is therefore anisotropic. .

Suppose that the external electric field is directed alongthe 2pi2 T BAi2 e 2802

axis, so thag|=|E,|. In this case the electron gas is heated f CAT(Q) d¢ 5[§ AE(D) = AT

by the current flowing in the direction, and the emf gener- . ., .

ated by heatings,, is perpendicular to the external electric T2LAIDAI ()~ A,

field, so that a transverse emf emerges. whose validity can be verified via direct differentiation, with
The electron system can be heated not only by a constamaflowance for the fact that the Airy function Aj} is the

electric field but also by an alternating electric field. In par-solution of the differential equation AjZ) = ZAi({). Using

ticular, the electron gas becomes heated and an#mis  these relationships, we find that forg,f,)?<1 and

detected when a plane electromagnetic wave propagating iftly/l;)*<1 the integrals of the Airy function if10) as-

the z direction is incident on the 2D structure, with the resultsume the form



532 JETP 88 (3), March 1999

2

F e(ky,z)expiq,z) ¢(ky,z) dz

X

J_w|¢(kx,2)|2dZJ_w|¢(k§ ,Z)Izdz)

1 ) ﬁHy ) ,
=1- g(CIzdo) + m(%do) (kxtky)

)

+0[(q,de)*]+ 0
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The transport propertiediall coefficient, thermopower, and resistivityf high-quality single-
crystal samples of the classical mixed-valent compound a8 investigated over a

broad temperature range (£800 K) in magnetic fields up to 45 T for the first time following
the quasioptical measurements in the-0465 meV frequency rangB. Gorshunov, N.
Sluchanko, A. Volkowet al, submitted to Phys. Rev. BL998]. Measurements in the intrinsic
conduction region permit determination of the gap wiB~20 meV and evaluation of

the behavior of the mobility and concentration of light and heavy charge carriers, as well as the
temperature dependence of the carrier relaxation time, in samarium hexaboride. The
results of experimental investigations in the “impurity” conduction regiéi & 3.5 meV) are
discussed within the Kikoin—Mishchenko exciton—polaron model of charge fluctuations.
Arguments supporting the formation of a metallic state with an electron—hole liquid iny SinB
liquid-helium temperatures are presented. 1€99 American Institute of Physics.
[S1063-776(199)01403-1

1. INTRODUCTION due, according to Ref. 1, to the existence of an additional
narrow band of impurity(donop states 3.5meV below the
Although the first detailed investigation of samarium bottom of the conduction band.
hexaboride was performed almost 30 years®aged more In such a situation, in our opinion, important information
than 100 studies devoted to this very interesting materiabn the origin and structure of the gap states can be provided
have been published, we are still lacking a widely acceptedpy detailed precision measurements of the Hall coefficient
fully consistent physical framework that accounts for the un-R,,(H,T), the resistivityp(T), and the thermopowes(T)
usual properties of this intermediate-valent compound of Snperformed on the same single crystal as the quasioptical
(v(Sm)~2.6). It is especially difficult to interpret low- measurements in Ref. 1. Note that despite the considerable
temperature anomalies in the physical parameters of SmB number of studies of these parameters in gm&ported in
which include not only dependence of the characteristics ofhe literature(see, for example, Refs. 2 and 7-10, as far as
the object of investigation on the method used to prepare th&e know there has not hitherto been a comparison of experi-
surface of the sampfebut also on its histors. mental data orRy(H,T), p(T), and S(T) obtained on a
The investigations of SmBperformed by different in-  single, high-purity RRR>10000) single-crystal sample of
vestigatorgsee, for example, the review in Ref. &nable us samarium hexaboride.
to classify this compound as a narrow-gap semiconductor. Thus, the purpose of the present study was to obtain
The width of the gap in the spectrum of elementary excitadetailed experimental information on the behavior of
tions of SmB found by various experimental methods Ry(H,T), p(T), andS(T) at low temperature and to analyze

ranges from 3-5 to 10- 15meV>® it within the phenomenological semiconductor and other ap-
Recent direct measurements of the low-temperature dyproaches.
namic conductivityo(w) and the dielectric constaa{w) in Single-crystal samples from the same ingot as in Ref. 1

the energy range 0-64.5 meV performed in Ref. 1 permit- were used in the investigation. Special attention was focused
ted establishment of the gap widBy~19+2meV in the on the preparation of the sample surfaaad the contacts for

spectrum of electron states. In addition, within the simpleperforming the resistance measurements. The procedure for
phenomenological semiconductor approach, the properties tfie thermopower measurements was similar to the method
samarium hexaboride at liquid-helium temperatures may bemployed in Refs. 11 and 12, and the procedure for the gal-

1063-7761/99/88(3)/5/$15.00 533 © 1999 American Institute of Physics
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vanomagnetic measurements was similar to the method dectivation value is observed below 70K, and between 6 and
scribed in Ref. 13. In addition, an automated experimentai4 K the experimental data can be approximated by the ex-
apparatus of our own original design, which permits controlpression p~exp(To/T) with To~44—46 K for different

of the rotation of the sample in a constant magnetic fieldsamples of Smp

using a stepper motor, was used to investigate the Hall coef- \1easurements of the Hall coefficieRt,(Ho, T) carried

ficient. out in the range of magnetic field$,<8 T are presented in
Fig. 2. Three characteristic segments of jygT) curve can
2. EXPERIMENTAL RESULTS be identified in the range below liquid-nitrogen temperature
The temperature dependence of the resistivity of one ofl =!Il in Fig. 2). The plots of the temperature dependence of

the three SmB samples investigated in the present work isthe Hall coefficient(Fig. 2) in the ranges 1450 K (I) and
presented in Fig. 1 and conforms, on the whole, to the result§— 14 K (Il), which closely conform to the activation depen-
in Refs. 5 and 14. An increase in resistivity close to thedence

T,K
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1 ] 1 i 1 i
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10'E 120 3 102!
E 3 FIG. 2. Temperature dependence of the
r ] Hall coefficient(1) and Rye) ! (2) (see
r 41.15 ] ® the tex): ® — measurements carried out
O 100 3 9 3 1090 € in the present work in magnetic fields up
o E mE S 3 : to 1 T; @ — measurements performed at
§ C 5 11.10 o % H=5T; V, A — data from Refs. 7 and
= " k’: =] 19 ‘§, 10, respectively. The inset shows field de-
=107t 3 & 4107 = pendences of the Hall coefficiert.— T
c 105 1 =4.2 K, 2 — T=2K (in constant fields
- ‘ upto 7T),3— T=4.2 K(in pulsed fields
- up to 45T7.
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-200

-400
X FIG. 3. Temperature dependence of the
g_ thermopower for two SmBsamples ob-
o tained by different methods. Inset —
-600 plot of S(T) at liquid-helium tempera-
tures.
-300
-1000

|Ry|~exp(To/T), (1)  temperature. The values @hg and Tjs estimated from the
results in Fig. 3 are 115 and 40K, respectively. The rapid

provide the estimate3~120 K andTj~45 K. We note i th : ion 11l with d ing t
that the absolute value and behavior of the Hall coefﬁcienfjmp_In ermopower in region 1 with decreasing tempera-
ture is accompanied by a transition to a power-law depen-

Ry(T) obtained in the present work are consistent with the : . .
results in Refs. 7,8, and X8ee Fig. 2 The most appreciable dence ofS(T) with fairly _IOW absolute ValL.JeTC’ in the range
differences are observed at liquid-helium temperatures SS%'Z“V/K.:kBle’ which are characteristic of a system
gion Il in Fig. 2). The spread of values ®Ry (T<5K) of the metallic type.

obtained by different investigators is probably due to the

appreciable difference between the quality of the gmB

single crystals that we investigateBR RR=10000) and the 3. DISCUSSION OF RESULTS

samples measured in Refs. 7,8, and 10. In addition, along . . .
with the determination of the activation parameters from the N accordance with the generally accepted interpretation
Hall measurements performed on the Spsingle crystals, (S€e also Refs. 15 and jiéihe spectrum of elementary exci-
the use of the apparatus with rotation of the sample in thé@tions of SmB contains an indirect gap due to hybridization
magnetic field revealed the nonlinear cours®q{H) in the ~ Of thef andd states, which is responsible for the appearance
vicinity of liquid-helium temperaturésee the inset in Fig.)2 of low-temperature anomalies in the physical characteristics
The degree of nonlinearity of the Hall coefficient was lessOf samarium hexaboride. Let us dwell in detail on an analysis
than 5% in magnetic fields up to 7 T. The nonlinearity of of the experimental results in Figs. 1-3 in each of the tem-
Ry(H) is not observed at temperatures in the vicinity of 2 K Perature ranges I-lIl.

(curve2in the inset in Fig. 2 At the same time, systematic 5 |ntrinsic conduction region  T=14 K (1)

limitations measurements of the field dependence of the Hall . B ) )
voltage arise in temperature ranges Il and 11l of the exponen-  Following Ref. 1, we utilize the phenomenological semi-
tial variation ofRy(T), due to the influence on measurementconductor approach to interpret the experimental results in

accuracy of temperature instabilities that amount to less tha!9S: 1=3 in the intrinsic conduction regigh. The intrinsic

0.05K. thermopower of a semiconductor can be described using the
The temperature dependence of the thermopower for tw§XPression

S.mBG samples, obt_ained at t.emperatures _below 100 K by ke (b—1 E, 3 m,

different methods? is shown in Fig. 3. As in the case of S= — +—In— 3

p(T) andRy(T) (Figs. 1 and 2, three characteristic ranges e (b1 2kgT 47 my

of the thermopower can be identified on tB€T) curves  whereb=pu,/up; iy, My, up, andm, are the electron and

(I-1ll'in Fig. 3): activation segments that are nearly linear inhole mobilities and effective masses, respectivklyis the
the coordinates and for which Boltzmann constant; ané is the charge of the electron.
ST, /T @ SinceTys and E, are related by

(I-I) and a low-temperature regidil ), which corresponds | :E b—1 4
to a rapid drop in the absolute value ${T) with decreasing 0572 b+1’
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and the value found from the Hall measuremeng,  tration, the idea of an exciton semiconductor has provided a
=E4/2=120 K, enables us to estimate the mobility ratio framework for proposing an explanation for the additional
= un/mp=50. As a result, because of the fairly small rela-local modes in the vibrational spectrum of Sg??as well
tive value ofu,, it is possible to evaluate the behavior of the as for performing a detailed analysis of the collective low-
temperature dependence of the electron mobility from thdrequency excitations in the vicinity chE~14 meV?2 In
data in Figs. 1 and 2 using the simplest model that allows fodeveloping the approach in Ref. 18 for application to the
one group of carriers: analysis of the experimental data in Figs. 1-3, we must as-
—R./ ) sume that the states Bt,~3.5 meV correspond to the for-
Bn=THIp- mation of excitons of small radiusag,~2—4 A) in the vi-
The temperature dependence of the electron Hall mobility irtinity of Sm centers as a consequence of fast valence
the conduction bangk, has a significantly nonmonotonic fluctuations of electrons in the samariurh gubshell. Simple
charactef(see the inset in Fig.)1In the intrinsic conduction estimates of the Bohr radius of an excitom,,

region (I) there is a power-law dependence of the faun  ~2emgag/m* (ag is the Bohr radiusand its energyE.,
~T~27, which probably corresponds to a combination of the~m*e*/4¢2%2 with consideration of the valuesn*
contributions from scattering on acoustip(~T %% and  ~100m, ande~600 (Ref. 1) lead to similar values of the

optical lattice modes. We note that a similar dependencgarametersa.,<6 A andE,=2 meV.
un~T %8 is observed in electronic silicon in the tempera-
ture range 300K T=<400 K.»’ c. Temperature range T<6 K (lll)

Next, let us utilize the results in Refs. 5 and 1 to estimate

the carrier relaxation time in region I. Let us also take intoth's temperature ranae and the tendency for saturation of the
account that the value; = my,~ 1000+ 500m, found in Ref. IS temperature rang y aturat
IéﬁSIStIVIty p(T) (Figs. 1-3 can be analyzed within the ap-

5 characterizes the plasma resonance of the carriers right L .
]rOX|mat|on of several groups of charge carriers. However,

Sm centers and is thus an estimate of the effective mass % ) . .
} ; o~ i e nonlinearity of the field dependence @&y(H,T
the valence-band carriers. The val = my100mo, ob =4.2K) in fields up to 7 Ticurvelin the inset in Fig. 2can

tained in the Drude model from an analysis of quasioptical ! . .
spectra, corresponds, in turn, to thermally excited carriers,F.)rObably be explained only as a manifestation of the weak-
i.e., conduction electrons. Substituting the set of values oFeId (unH<1) asymptote

the parameters=u,/u,, un, My, andm, into the expres- 1 2012

sion u=e(7)/m, we find (7,)~(1/5)r,). We emphasize RH“n_e(l_alr“n"' ) @
that in the presence of fagt-10" 4 s (Ref. 5] charge fluc- _

tuations, significantly heavier charge carriers, i.¢.,holes ~and the strong-field,H>1) asymptote

The emergence of a maximum Ry(T) and S(T) in

(m,/m,~10), are characterized by considerably smaller a,
values of(7,) than are the conduction electrons. We also Ry~ — > 5] (8
note that the temperature dependenceRyfd) ~* in region | ne pnH

corresponds to the variation of the concentration of intrinsiqn, this case, reducing the temperature to 2K is accompanied
carriers to within the multiplier (£ b)/(1+b)=0.95(curve by an appreciable decrease in the mobility (curvel in the
2in Fig. 2. inset in Fig. 3, which in turn significantly reduces the qua-
dratic term in(7) and shifts the strong-field asymptot8)
outside the experimental rangé<8 T. As a result, the
value of Ry(H,T=2K) is constant to within the measure-
Activation behavior of all the parameteR,(H,T), ment error(curve2 in the inset in Fig. 2
p(T), andS(T) with similar values of the activation energy To detect the contribution of heavy carriers to the Hall
Ee=Th=40+5K~3.5 meV is observed in this temperature coefficientR,(H,T), measurements were also carried out in
range(Figs. 1-3, obviously due to the exponential decreasethis study in pulsed fields up to 45T at liquid-helium tem-
in the concentration of conduction electroms=ngexp  perature. We note that the variations Bf;(H,T=4.2K)
(—Eex/kgT) (curve 2 in Fig. 2). Estimates of the mobility (curve 3 in the inset in Fig. 2 observed aH=20 T corre-
and relaxation time of “light” carriers in the approximation spond to the contribution gf-type heavy carriers, but con-
(5) lead to the conclusion that there is a transition to impuritysideration of only the light carriers is fully justified in fields
scattering in region I(see the inset in Fig.)2in accordance upto 8T.

b. Temperature range 6 —14 K (ll)

with the results of Ref. 1. Using the valueg~100m, and Analyzing the results in region Il in Figs. 1-3, we also
E«~~3.5 meV, we estimate the localization radius of the im-note that the thermal expansion coefficient vanihesd
purity states: that appreciable variation of the elastic moduldg;, * a
hange in the NMR spin-lattice relaxation regifie maxi-
a* =/ 2m Eom3A ©) change in the spin-lattice relaxation regifie ma

mum of the quadratic negative magnetoresist&ficand
Such a small value ai* probably suggests leaning toward other effects are observed in the vicinity Bf,~5 K. Such
interpreting the low-temperature properties of SyBterms  significant changes in the thermodynamic and kinetic char-
of the Kikoin—Mishchenko exciton—polaron mod&We  acteristics of SmBare probably evidence of a phase transi-
note that unlike the approach in Refs. 19-21, which treatsion in the electronic subsystem witf),~5 K. In our opin-
SmB; as a metallic Kondo system with low carrier concen-ion, one of the possible reasons for such a transition may be
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A systematic “mean-field” treatment of the thermodynamic equilibrium formation of an infinite
cluster of bonds in a system of identical monomers capable of forming ffrefd to n>2

reversible chemical bonds with one another is proposed within the Cayley-tree approximation. For
this purpose the difference between the symmetry of the monomers appearing in “point-to-
point” and closed bond paths, respectively, is taken into account on the basis of an analysis of the
structure of the infinite cluster. Minimization with respect to the distribution of such

monomers yields a nontrivial solution corresponding to a lower free energy than the classical
solution, which does not allow for the symmetry difference indicated. In addition, it is

shown that the classical solution corresponds to the free-energy maximum when the infinite
cluster is formed and that the formation of the infinite cluster is a first-order phase transition. The
possible form of the phase diagrams of the systems considered is analyzd®930

American Institute of Physic§S1063-776(99)01503-9

1. INTRODUCTION interpreted as violation of the identity of the particles appear-
ing in elements of different topology in the infinite cluster,
First-order phase transitions with the coexistence of dinaturally entails corresponding thermodynamic features. In
lute and condensed phases are known to occur as a result gédrticular, in the approximation proposed in Ref. 8 for ana-
both the attractior(a negative potential energy of the pair lyzing these features near the sol-gel transition, the latter was
interaction and associatiorithe formation of thermally re- a second-order phase transition.
versible bonds between specific chemical groupsmol- In the present work the analysis in Ref. 8 of the features
ecules of the substance. Another characteristic and firmlpf the thermodynamics of a simple system of associating
established property of some associating systems is the sparticles, which can bind to form an infinite cluster, is gen-
called sol-gel transition, upon which an infinite cluster of eralized to include arbitrary extents of conversion. This per-
bonded particlesthe gel fraction appears on a background mits significant refinement of the description of the character
of a large number of finite cluster particles joined by labile of both the sol-gel transition itself and the phase diagrams of
bonds(the sol fraction. (Such systems, among which silicate weak gels. The ensuing presentation is organized in the fol-
melts and water are especially interesting, are also callefbwing manner. In Sec. 2 we present a systematic “mean-
weak gels) Until recently, however, there has been a debatdield” derivation of an expression for the contribution of the
as to whether the sol-gel transition, like the percolation tranformation of labile bonds between associating particles to
sition, is a purely geometric phenomenon, which can be obtheir free energy. A detailed analysis of the features of the
served only in a computer experiment and in the dynamichermodynamic behavior of weak gels associated with the
behavior of weak gels, or whether observable thermodyformation of an infinite cluster of labile bonds and a com-
namic features of the latter are also associated with it. parison with the results of the more approximate treatment
In several publications devoted to the thermodynamicperformed in Ref. 8 are presented in Sec. 3. Section 4 dis-
of weak gels;”’ association was analyzed within the mean-cusses the features of phase diagrams typical of weak gels in
field approximation, according to which the extent of con-both the absence and presence of the infinite cluster.
version, i.e., the fraction of the chemical groups participating
in the formation of labile saturated bonds, depends only on
the total density of these groups. In such a treatment th
sol-gel transition is a purely geometric phenomenon, which
does not lead to thermodynamic singularities of the system. To fix ideas, we consider a system Mfmonomers A
However, as was shown in Ref. 8, the formation of an infi-confined to a volumé&/, each containing identical chemical
nite cluster of bondgeven labile bondsleads to the appear- groups A, which are capable of forming A—A bonds in the
ance of a new order parameter, which, as will be described ireversible chemical reaction-AA=A,. The structure of the
detail below, describes the nontrivial internal structure of theclusters appearing in such a system can be described in an
infinite cluster rather than its bond concentration. The apobvious wa§1° by means of graphs with vertices of order
pearance of this new order parameter and the spontaneolssn, which correspond to monomers witlieacting groups
violation of the symmetry associated with it, which can beA. For n<3 the densitiep, and p; of the groups which

. STRUCTURE OF THE THERMODYNAMICS OF AN
QUILIBRIUM INFINITE CLUSTER AND ITS FREE ENERGY

1063-7761/99/88(3)/7/$15.00 538 © 1999 American Institute of Physics
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FIG. 1. Typical structure of the blocks appearing in equi-
librium polymer systems of trifunctional monomers:ia-
dividual monomerg*bare” vertices); b, ¢) simple cyclic
blocks; d, @ a cyclic block of complex structure and a
fragment of it that appears tree-like within a small window.
The inclusion of the latter in a system of closed bond paths
is intimated only by the presence of local colorirg
double line corresponds to a green bond, and a single line
corresponds to a red bond

have reacted and have not reacted during this reaction, re- .
spectively, are determined by the equilibrium constaap- F ({P(r)},T):f [T(1=(r))
pearing in the law of mass actidh:

, . dV
5 XIn(1=¢(r))—2¢(r)] > 3
p2=Kp1. )
where the temperature and free energy are measured in units
For n>2 this law remains valid only in the absence of anOf T¢ (T, is the critical temperature of the lattice liqujcnd
infinite cluster of bonds. When an infinite cluster is present? and$=uvp are the excluded volume and the volume frac-
the correlation between the bonds, which is unavoidable i#ion of the monomers, respectively. Thus, our task is to cal-
this case, leads to significant modification of the relatipn ~ CulateF . _ . o _
The generally accepted starting assumption of the theory _The starting point for our analysis is the seemingly
of polymer systems with an assigned temperalugad dis- trivial fact that an !nflnltg clustfar. without cyclda Cay!ey'
tribution of the monomer density(r) (which is, generally tree or a Bethe lattigeunlike a finite cluster, cannot exist in

speaking, nonuniform and nonequilibriliis the representa- finite-dimensional space. In other words, although the struc-
tion of their free energy in the form of the stft3 ture of the infinite cluster can be represented in the form of a

Cayley tree at large enough scales, it must include not only
- “bare” vertices of order kI|=<n, but also “effective” ver-
Flp(N}, T)=F*{p(N},T) +Falip(N}T), 2 tices of arbitrary order and complexity, which have the form

of the 1-irreducible blocks depicted in Fig. 1.
where F;, is the entropic structural contribution associated  Such a description of the structure of the infinite
with a) the arrangement of the monomers in space, arbieo  clustef® is similar to the droplet model of the infinite
formation and distribution of labile bonds between thecluster'®>!®but, unlike the latter, we focus our attention not
monomers, an@* is the energy contribution of the “system on the self-similar structure of the 1-irreducible blocks, but
of unconnected monomer units” that would exist in the ab-on the possibility of distinguishing between “internal”
sence of bonds. The latter term is often specified by théonds, from which these blocks are constructed, and “exter-
phenomenological expression corresponding to the descrimral” bonds, which join blocks in an effective Cayley tree. A
tion of a system of unconnected monomer units as a latticaeontrivial procedure that enables us to realize this possibility
liquid:** can be described as follo&Ve choose a finite window and
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color all the chemical groups A within that window. If a tional groups. This change in combinatorial behavior at the
bond between them belongs to at least one closed path tével of the proposed “mean-field” description can also be
bonds lying completely within the window, we color them taken into account by including verticémonomers with
green; if not(or if a group has not reactgave color it red.  different colors in the treatment and appropriately altering
As the size of the window is increased, at large enoughhe symmetry index. In this case we should first calculate the
scalesL some of the initially red groups appear in a closedforegoing contributions to the free energy for an arbitrary
path and should be recolored green. Thud, axreases, the distribution of the densitieg; of monomers with green and
fraction of green groups grows and reaches a certain limitingn—i red chemical groups within the window, and then de-
value in the limitL—oo, where all the “internal” bonds are termine the thermodynamic equilibrium values of these den-
colored green and the “external” bonds are colored red. sities by minimizing the total free energy. Therefore, the de-
The coloring procedure just described does not alter thaeired “mean-field” expression foF, takes the form
statistical weights and symmetry indices of the various dia- _
gram realizations of the structure of the infinite cluster, but it Faulip} T)=V min F({pi}.I"), ®)
is very important for finding the correct procedure for anwhere the expression for the free energy per unit volume of
approximate “mean-field” calculation followed by summa- the system with assigned values of the densities and of the
tion of the contributions of these diagrams to the entropidractionT’, of red groups that have reacted is
structural terng,, which is similar in many respects to the
calculation of the contributions of high-order diagrams to the ~ F({pi},I'r) €
G ion i g = et In T,
ell-Mann—Low function in Ref. 17. T 71 it(n—i)!pA3
In fact® when ~ ~
+(1_Fr)|n(1_rr)]_S(pg)_S(PrFr)-

wherenp is the total density of chemical groups in the sys- ] ) o ©
tem anda is the characteristic scaléength of a chemical Here, the first term, in which is _the_thermgl wavelength of
bond formed as a result of the reaction of two such groupstn€ monomers and the summation is carried out over all per-
the typical blocks determining the structure of the infinite Missible values of, describes the entropic contribution of
cluster include “bare” verticegFig. 13 and very complex the arrangement of the monomers of an assigned color in
blocks (Fig. 1d gives a some idea of the structure of suchSPace with consideration of their symmetry index. The sec-
complex blocks The contribution of comparatively simple ©nd term in(6) describes the entropy of selecting tNel',
blocks(see Figs. 1b and 1can be neglected in the lim). red groups that have reacted from their total numRer
Therefore, when a certain finite volume of a system (The extent of conversion of the red grouPs will also be
“window” ) that is large compared to the bond lengtlis calle_d the extent pf e_xternal conver_s&)rEinaIIy, the en-
considered, those bonds that belong to such a large block afgPPic energy contributions of all possible arrangemeitsf a
that are located in that window can look like an ordinarythe internal bonds between green groups andfithe exter-
Cayley tree(see Fig. 18 Nevertheless, the true nature of nal bond_s between red groups that h:?\ve reacted are described
such a quasi-Cayley tre@e., its inclusion in the system of by the third and fourt~h terms, respectively, where the expres-
closed bond pathss intimated by the presence of local col- sion for the functionS(p) obtained in Ref. 8 has the form
oring, which indicates the numbeof green groups belong- $(p) = (p/2)In(kple).
ing to each monomer in an assigned realization of the infinite  The expressior{6) naturally generalizes both the tradi-
cluster { runs through all integer values in the range tional approach, which follows from it under the assumption
O=i=n with the exception of =1, since a monomer cannot that the fraction of bonds belonging to closed paths is strictly
be included in a closed path consisting of only one group thagqual to zero in the mean-field approximation,
has reacted i
The next step is to postulate that a fairly faithful descrip- _]Po 1=0, —hpe=n -0 @
tion of the thermodynamics of the systems under consider- ' | 0, i=2, Fr—Po—"F Po=
ation can be obtained, if the calculation of the total structural . . .
: ! . I (here and in the followingo is the mean total monomer
free energyF, is confined to a calculation of contributions . o : .
to the free energy that correspond to the formation and aﬁiensny_, anq the approxmanon prpposed m_Ref. 8. In this
) o NP approximation only the first nontrivial density i(6), p,
possible recombinations of the bonds within windows thatWhich plays the role of a new order parameter, is retained
are not too large, followed by summation of these contribu- . S '
tions. Of course, within such a “mean-field” description of and derived by minimization:
the infinite cluster we ignore effects resulting from the cor- po, 1=0,
relation of the structure of neighboring windowise., the _
hierarchical structure of the blocksut, on the other hand, pi= )
we can take into account effects due to the difference be- 0, i>2
tween “internal” and “external” bonds described above. —npg+(n—2) _o )
Indeed, just the fact that a path might be closed, even Pr~ 'F0 P2, Pg=<P2:
somewhere far beyond the window under consideration, al- Minimization of the free energy6) in the classical so-
ters the combinatorial behavior of the corresponding funciution (7) leads to the following expression fér,:

npa>1, 4

P2, 1=2, prt+po=p,
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where the dependence of the extent of converiam p is
specified by the law of mass actiéh), rewritten in the form

p=kp=T/(1-T)2 (10

A detailed analysis of the approximatidB8) was per-

formed in Ref. 8, and we do not dwell on it here. The extre-

mum of the free energy6) is attained without additional
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where
Zz=kz/\3, (20)
and the quantity
5=/, (22)

which is positive by definition, provides the desired param-
etrization.

In fact, equating the expressions for the raijdp, ob-
tained from formulag15), (16), and(17), on the one hand,
and(18) and(19), on the other, we obtain an explicit expres-
sion for the external extent of conversibp as a function of
0.

assumptions and with consideration only of the conservation

laws
% Mpm=pPg (1D
% (n—m)pn=pr, (12
2 pm=p (13)

in the following thermodynamic equilibrium distribution of
the monomers according to color:

q)n—i \I,i

3_
PIN= 2 T

V=exp\, P=expv, z=expu,

14

where\, v, and u are the Lagrange multiplierchemical
potential$ corresponding to the conservation lai4), (12),
and (13), respectively. Here both the parameters of the dis
tribution of the monomers according to colgr®, and¥

and the structural characteristics of the infinite cluster are
amenable to a comparatively simple one-parameter represen-

tation.

_(1+ O"—-(n—-1)6

[(1+8)" 1-1]/8
The substitution of22) into (16) and(21) specifies the func-
tions ®(5) and ¥ (), and subsequent consideration of for-
mulas(15)—(17) and(21) leads to an explicit expression for
the dependence of the reduced total dengityn &

T.(8)+
[1-T.(8]>

The function(23) parametrically assigns any of the structural
characteristics whose dependencesaran be obtained using
the expressions presented above as a functign of

In particular, the dependence of the total extent of con-
versionI” (the fraction of all the chemical groups that have
reacted and participate in the formation of either external or

internal bonds on p in the system under consideration is
specified jointly by(23) and the expression

(6) (22

r

2

P(8)=p;+pg=D(P—1)+¥?= (23

T'%(8)+ 6

F((s)_rr(a)mz'

(24)

Equations(22)—(24) comprise the desired eneralization

In order to obtain this representation we note that mini-of the law of mass actiorf10) with consideration of the

mization of the structural free energ¥) with respect td’,

alteration of the symmetry of the monomers included in

leads to the law of mass action for the equilibrium reactionclosed(and thereby correlatedond paths belonging to the

leading to the formation of “external” bonds between red
functional groups:

pr=kp, =T /(1-T,)2 (15)

The minimization ofFg, with respect top, (with consider-
ation of the preceding expressjoand p gives the relations

1U(1-T,) =, (16)

7

Plugging the expressiofil4) for p; into Egs.(11) and
(12) and performing the required summation, we obtain th
expressions fop, andp, in the following form:

Fo=kpg=2,

n

— Zq) n
=9 (=18, (18

~ 70"
Pg—mﬂ(

1+6)"1-1], (19

infinite cluster.

It is also useful to present the expression for the value of
the structural free energy achieved in the thermodynamic
equilibrium distribution(14):

pA3n!

I:str_

vT =P In =g +nef(9),
(25
7(5)=¥+In[1—rr(5)]_w,

n

where the function§’,(5) andI'(8) are defined by formulas

e(22) and(24), respectively.

3. THERMODYNAMIC FEATURES OF THE FORMATION OF
AN INFINITE CLUSTER OF LABILE BONDS

Thus, we have shown in the preceding section that con-
sideration of the presence of highly cyclized blocks in the
infinite cluster, which was first done in Ref. 8 in a prelimi-
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1.0f

FIG. 2. Dependence of the distribution parameteand the extent of con-

versionT" (curves1 and 2, respectively on the reduced densify for tri- FG. 3. D d f the structural part of the f ¢ .
functional monomers. In the family of curv@she solid line corresponds to - 5. Dependence of the structural part ot the ree energy or a system on

the solution(7) at p<7p, and the solutior(14), and the dashed and dotted the reduced density for trifunctional monomers. The solid, dashed, and

lines show the values of the extent of conversion for the classical approxigOtted lines have the same meanings as for CuB/@s Fig. 2. Inset —

. L ~_~ values of the free energies calculated relative to the classical dependence
mation (7) and the approximatiofB) at p>p.. . corresponding to the solutiofd).

; ; ; : -~ ~ n—1 1
nary study and in the present work in a systematic mean-field pe=pc(0)= — (26)

’ F 1
approximation, does, in fact, lead to the appearance of a new (n—2)2 ¢ n-1
order parameter and, thereby, to significant modification of

. . which correspond to the classical condition for the sol-gel
the law of mass action and the thermodynamics of weak gel%ransition established back in Refs. 18 and 19

We first analyze the chargct(_er qf the emerging features for As for the values of the reduced density and the extent of
the dependences of the distribution paramétand the ex- . :
conversion on the boundary for the existence of the non-

tent of conversionl” on the reduced density, which are sl solution (14), a numerical calculation shows that the

defined by(23) and (24). . . . ratio pmin/pe depends weakly om and is roughly equal to

As is shown in Fig. 2, physically meaningful solutions of 0.9
&(p) exist only forp>ppin, Whereppi, is the minimum of Let us now examine the dependences of the values of the
the function (23). In the interval pmin, pJ), Where p.  structural free energy of the system corresponding to the so-
=p(0), bothT'(p) and &(p) are double-valued functions. In utions (7), (8), and(14) on the reduced densiy (Fig. 3. It
other words, in this interval the structural free ene@&) of  can be seen that §¢>7)C the largest value of the structural
the system has two extrema, the free-energy maximum COftee energy corresponds to the classical solution and the
responding to small values df and the minimum corre-  gmgjiest value corresponds to the solutidd) obtained in
sponding to large values. An additional minimum of the . present work. Moreover, the solutiéhd) already be-
structural free energy, which exists in this interval, lies oN.omes thermodynamically advantageous at the IOBBQI

the boundary of its domain of definitioA=0, i.e., on the ~ ,
classical solution(7). Thus, both the classical solution and _<pC' at which the structural free energy curves correspond-

the solution(14), which corresponds to a cyclized infinite " 0 the solutions7) and (14) intersect. This point would

. . ~ ~ be the sol-gel transition point if this transition occurred with-
cluster, exist in the intervalp(,in, pc), but one of these so- . :
. . out altering the value of the monomer density.
lutions is metastable.

The two extrema corresponding to the solutigiv)
merge aip=pm, and vanish ap decreases further. There- 4. ANALYSIS OF PHASE DIAGRAMS

fore, atp<pmin a single minimum of the functior25) is The analysis performed in the preceding section is some-
achieved only by the classical soluti¢i). Conversely, at what oversimplified. The fact is that, as we show forthwith,
p>p. the maximum of the functiori25) merges with the the sol-gel transition is always accompanied by a separation
classical solution, so that the classical solution ceases to exigito two phases of different density. To analyze the phase
even as a metastable solution in this region. diagrams of the system under consideration we take advan-
As follows from (22), (23), and (10), the values of the tage of the generally known fact that the conditions for equi-
reduced density and the extent of conversion on the boundibrium between two one-component phases at an assigned
ary for the existence of the classical soluti@hare specified temperatureT, i.e., the equality between their pressuies
by the expressions and chemical potentiala, can be represented in the form
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FIG. 4. Typical phase diagrams of trifunctional
monomers ifT vs. ¢ coordinates, wher€ is the
temperature of the system amdis the volume
fraction of the polymer. The dotted lines are dia-
grams corresponding to the classical approxima-
tion. The dashed and dot-dashed lines are the
sol-gel transition lines in our approximation and
the classical approximation, respectively) a
phase diagram with a triple pointg¢=—1,
E=-1.4); b phase diagram without a triple
point (go=—0.5, E=—2).

0 0.2 0.6 1.0 0 0.2 0.4 0.6 0.8 1.0
# ¢
of of (25) for the structural part of the free energy, and in the
% :% . classical Flory approximatiofi7), which ignores this struc-
p=P1 p=p2 ture and leads to the expressi@@). This figure also shows
27 curves corresponding to the sol-gel transition in the new and
F(T.py) = (T )+ﬂ (pr—p1) classica! approximations. Oqe characteri;tic feature of the
P2 P1 ap p=p P21 phase diagrams constructed in the approximation that we de-
P11

veloped is the presence of a phase-separation “corridor” in
for the presence of a common tangent to the specific fregne vicinity of the sol-gel transition. In som@ut not al)
energy. cases there may be a triple poififig. 49, at which three
f(T,p)=F(V,T,N)/V. (28) phases With differing 'density coexist, an infinite cluster of
bonds being present in the densest of these ph@sede-
In (27) p; andp, are used to denote the particle densitieshavior of the free energy of the system above the triple point
in the coexisting phases, which are equal to the abscissas gf shown in Fig. 5.
the points of contact of the plot a28) with the common If the bond energyE >0 (such a situation can be realized
tangent. in a description of the competitive inhibition of chemical
The critical points on the phase diagram correspond tonds between the polyfunctional, Anonomers under con-
the vanishing of the common tangent sideration due to the formation of bonds between the latter
and monofunctional Bmonomers in an A+ B, system?),
the phase diagrams of such a system become more diverse.
Scrutinizing them, however, is beyond the scope of the

9°f B

°f
2 0 3

=0, (29
ap <9p3

and the number of critical points determines the topology of"€sent work.
the phase diagram of the system. However, in this paper we

do not dwell on a detailed investigatigsee, for example, 5. CONCLUSION
Ref. 19 of the topology of the phase diagrams and a com- Thus, we have shown that the classical theory of the

parison of the phase portraits for the system under consideg, g transition in thermally reversible weak gels based on
ation, but merely present several typical diagrams for it.

For simplicity, we assume that the temperature depen-

dence of the chemical equilibrium constaq((T) is deter- f
mined by an ordinary activation mechanism: 0.02f
k=koexp(—E/T), (30
0.01}

wherek, is the normalization factor, which has the dimen-
sions of volume, an& <0 is the bond energy, which, like all
guantities with the dimensions of energy, can be measured in or
units of the critical temperatur€; of the system of uncon-
nected monomer units. Thus, the system under consideration
is characterized by two dimensionless parameters, viz.,
go=Kko/v andE, whose variation leads to different types of
phase diagrams. O 07 os o5 o3 1o

Typical phase diagrams constructed numerically in the
approximation(14) proposed above are shown in Fig. 4, FIG. 5. Typical dependence of the free energy of the system on the volume

which tak(_as into .aC.CC.)U”t the presence of a complex CyC”Z.egaction of the polymer at a temperature above the triple point on the phase
structure in the infinite cluster and leads to the expressiodiagram shown in Fig. 4aT(=1.68).

-0.01r
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Data on the NMR line shifts, the spin—lattice relaxation rat€*@fu and*’O nuclei, and the
spin—spin relaxation rate 6fCu are obtained for FBa,CaCyOg_ 5 (T.=112 K) in the normal
and superconducting states. The hyperfine constants at the copper and oxygen atoms in a
CuG, plane are estimated from an analysis of the temperature dependence of the Knight shift.
The temperature-dependent behavior of the long- and short-wavelength parts of the

dynamic spin susceptibility is discussed by modeling an antiferromagnetic Fermi liquid. The
possible relation between the characteristics of the spin-fluctuation spectrum and the
superconducting transition temperature is analyzed for the oxide investigateti99® American
Institute of Physics.S1063-776(99)01603-0

1. INTRODUCTION of antiferromagnetic paramagnons was discussed in Refs.
7-9 under the assumption that charge carriers experience
Studies of hight. superconductivity carried out during attraction near the Fermi surface, which is effective in a layer
the past 10 years have revealed some special features of thgying a thickness proportional to the characteristic spin-
electronic properties of higfiz superconducting cuprates g,c(ation energyo, . In this case the preexponential fac-
that are not observed in low-temperature superconductors. |t . A .
was established that the superconducting transition temper}alQr in the BCS formulazfoﬂ'c can be represehted in the form
ture is achieved when there is a certain optimal hole concerPl the product I'g, £5(1—ny), where £ is the spin-
tration n™" in the CuQ layers! An analysis of the electric fluctuation correlation length and, is the hole concentration
field gradient at the Cu and O atoms in copper layers perin the CuQ layer.
formed for metal oxid€s® revealed a close relationship be- Estimates of spin-fluctuation parameters based on data
tweenT. and both the total hole concentration in the copperfrom NMR experiments have been obtained mainly by mod-
planes and the relative populations of the valence orbitals afling an almost antiferromagnetic Fermi liquid. Measure-
the Cu (3,2-y2) and O (D,) atoms. A decrease in the ments of the spin—lattice relaxation raf€;(*) on %Cu and
populationnggy, . of the 3,22 orbital with a simulta- 170 nyclei and the contribution of the indirect spin—spin in-
neous increase in,, is accompanied by an increase in the teraction to the damping of the transverse nuclear magneti-
critical temperature for lightly doped cuprates with a carrierzation of®3Cu (°°T,4) make it possible to study the behavior
concentration less thanf™. The estimates of the single- of the dynamic spin susceptibility at low frequencies. In
particle density of states obtained from data v NMR Refs. 3 and 4 it was established from an analysis of data for
Ime shiftd does not provide a reasonable explanatlon_ for theril in YBa,Cl;Ogg (Tc=94 K) and ThBa,CaCu;0;
high values off . in the context of the phonon mechanism of (1 _ 115 k) that the increase in the superconducting transi-
Cooper pairing. _ , _ tjon temperature is accompanied by displacement of the
InglasUc.neutron spatterlng experiments ."’?”d studies 0gpin—ﬂuctuation spectrum toward higher energies, attesting to
the spin—lattice relaxation 6fCu and'’O nuclei in the me- ) . o
tallic phase of highF, superconducting oxides revealed thethe spln—fluctuatlon nature of the superconductivity in these
existence of strong  antiferromagnetic q=Qar metal oxides. i i
—{mla,m/a}) spin correlations between nearly localized  'he pre.:;ant work is ;j?evoted to an analysis of data on the
electrons in the 8,2_,2 orbitals of neighboring copper at- NMR of ™Cu and “O nuclei in a sample of
oms. Consideration of the features of the spectrum of spirl 12B&CaCuyOs_ 5 (T,=112 K) oriented by a magnetic field
fluctuations in a layer is important in describing the groundfor the purpose of obtaining information on the variation of
state of the conduction band and in analyzing possible northe characteristic energy, the correlation length, and other
phonon channels of superconducting pairing. The possibilitparameters of the spectrum of spin fluctuations in this com-
of carrier pairing in a Cu@layer due to the virtual exchange pound with temperature.

1063-7761/99/88(3)/7/$15.00 545 © 1999 American Institute of Physics
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2. EXPERIMENTAL METHOD S o "k %

NMR measurements were performed on a single-phase 1.2F e® 8000 o o
ceramic sample of }BaCaCyOg_s with T,=112 K,
which will be abbreviated as TI2212 below. A detailed de- K k.
scription of the procedure for the synthesis af@—°0 iso- 0.8}
topic substitution was given in Ref. 10. & ]

The temperature of the transition to the superconducting I & 6
state was determined by observing the appearance of a dia- ° Kes 4o
magnetic response when the ac magnetic susceptibility was an®" ‘
measured. For TI2212 the validg=112 K corresponds to L O 7 4 .
the maximum on thd;(n,) phase diagram with the optimal
carrier concentratiom™ in a CuQ, layer. The polycrystal- 0 100 200 300
line sample was mixed with an epoxy resin and oriented in a T, K
9-T magnetic field. FIG. 1. Temperature dependence of magnetic shidi®,c — principal

The NMR investigations were carried out with a pulsed Crys'ta”'ograpﬁic axds P g ’ P
NMR spectrometer in the temperature range 10—300 K. The
measurements fé°Cu nuclei were carried out in a magnetic
field Bo=9 T, and the measurements f&0 nuclei were In the normal state region the components of the NMR
carried out aB,=8 T. The method for recording the NMR  shifts decrease monotonically as the temperature is reduced.
spectra consisted of excitation of the solid-echo signal fol-There is a stronger temperature dependencé¢g, than
lowed by complex Fourier transformation of the second halffor 63K .. The transition to the superconducting state is ac-
of the echo. To eliminate distortions of the spectra due taompanied by a sharp decrease in the magnitude of the shift.
transients in the resonant circuit, a sequence that alternateslich behavior of the shift on Cu nuclei is typical of all
(0—180°) the phase of the first rf pulse was employed.superconducting oxides studied, and results from elimination
When spectra with a width exceeding the frequency banaf the spin contributior(the Knight shify, which is propor-
excited by the rf pulse were recorded, we summed the arrayjonal to the homogeneous spin susceptibility.
of Fourier signals accumulated at a set of uniformly spaced  An additional diamagnetic contributidfg, to the NMR
spectrometer frequencies. TR&Eu NQR spectra were ob-  shift appears at temperatures be®wdue to the distribution
tained in a similar manner. The quadrupole frequemgy of the magnetic fields within the sample created by the vor-
was determined from the peak of the NQR line. tex structure of the magnetic field. According to our esti-

The component&,,, of the magnetic shift tensor of the mates for a 9-T magnetic field at 10 K, 4iz<0.005%,
®3Cu and'’O NMR lines were determined from the position which is less than the measurement error in the magnitude of
of the peaks of the NMR lines for the=1/2— —1/2 tran-  the shift. When the spin contributidf,, s to the NMR line
sition with consideration of the quadrupole corrections . shifts was determined, we assumed tKap, ;=0 at T=10
to the resonant frequency shift in second-order perturbatioR. It follows from this assumption, in accordance with Fig.
theory. 1, that the orbital contributiorK,p op,=0.1%. Its value is

The line shifts were determined relative to the positionassumed to remain unchanged over the entire temperature
vy of the NMR lines of ®*Cu in metallic copper range of the normal and superconducting states. In this case
[®3 (Cuime) =0.23%] and of 1’0 in H,0. the differenceK ,p(T=Tc)—Kap(T=10K) determines the

spin contributionK ,, <.

3. EXPERIMENTAL RESULTS AND DISCUSSION

17, 0 ;.
3.1. NMR line shifts, hyperfine fields at ~ %3Cu and 70O nuclei, 3.1.2. 7’0 NMR line shift

and homogeneous contribution of the spin susceptibility Figure 2 presents th€O (1=5/2) NMR spectra of an
Xs (q=0) oriented sample of TI2212 recorded over a broad frequency
range, which includes the NMR lines of all transitions. The
spectra were obtained at 120 K for the case where thrds

The temperature dependence of the magnetic §#ft o the crystallites is oriented parallé) and perpendicularly
(Fig. 1), which includes the orbital shiffK ., and the spin () to B,. They are similar in form to the spectra presented
contribution®*(T), was obtained from the total shift of the for magnetically oriented powders of thallium ceramics
%Cu (1=3/2) NMR line after subtraction of the quadrupole (T12201) with one CuQ plane!? We retained the same no-
corrections calculated for the case of axial symmetry of theation for the oxygen satellite lines corresponding to different

3.1.1. 53Cu NMR line shift

electric field gradient tensd: sites as in the preceding paper on TI22Eef. 10. Our
3] 2 subsequent discussion of th&® NMR spectra pertains to
Vab=7g I(1+1)— 2 V—Q, v.=0. (1) lines that exhibit a strongly temperature-dependent positive
0

shift and are assigned to oxygen atoms in Gu&yers(O1
To within the measurement error, the quadrupole frequencygites.

vq=17.35(20) MHz did not depend on temperature over the  To determine the quadrupole frequencigg and the
entire temperature range 10—-300 K. asymmetry parametej of the electric field gradient tensor,
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a b
A-01
B-02 4 & G
s 1 B, B |4 FIG. 2. Y70 NMR spectra af = 120 K for B| ¢ (a) and
’ﬁu Bol ¢ (b).
G A1a ?2
a5 46 47 v, MHz 25 46 47 v, MHz

we used the positions of the features of the satellite lines 08.1.3. Magnetic hyperfine coupling constants and orbital
the = 3/2— +1/2 transitions for various orientations of the shift

external magnetic fiel@, relative to thec axis of the crys-
tallites. For example, wheB||c, peakA; of a site for which
the principal axis of the electric field gradient tensor lies in
theab plane should correspond to the frequemgywhich is
specified by the expressitih

The hyperfine coupling constants at copper and oxygen
atoms were determined from plots of the parametric func-
tions 3K (53K ,,) and*"K (53K ,p), which were constructed
using data for the normal state above 100 K in order to
eliminate the influence of the diamagnetic contribution,
5 1 which begins to increase significantly at temperatures below
1+ =7+ _,72}_ T.. In accordance with the Mila—Rice Hamiltoni&hwhich

3 9 was proposed to describe the magnetic hyperfine interactions

@ of atoms in a Cu@ layer, the Knight shift at copper and
oxygen atoms is proportional to the homogeneous spin
susceptibility xs(q=0)= x, of the layer:

Vo SVé
v1=vo(1+Ky)— 7(1+ n)+ _161/0

When By L ¢, peak A, appears for crystallites with a
principal axis of the electric field gradient tensor perpendicu

lar to B, at the frequency 6K, = (Aup o+ 4B)xg ®)
ab,c ab,c '

1—§7y+§772 , YK .=2Cxo- (7)

® The anisotropy constart,, takes into account the total
and peakA,, appears for crystallites with a principal axis of contribution of the magnetic hyperfine interaction of the spin
the electric field gradient tensor parallel Bg at of the ®3Cu nucleus with the nearly localized electron spin of
the 3d,2_,2 orbital. The contribution of the indirect
51/(23 Cu—O-Cuinteraction from the four nearest neighbors of
v3=vo(1+Kz) —vot 360 7. (4 each Cu atom is taken into account by the hyperfine constant
0 B, which was assumed to be an isotropic quantity in Ref. 13.
It was assumed in the analysis of the NMR line skt Finally, the covalency of the Gy, . and Q, orbitals is
that the symmetry of the tensor is nearly axidfK, taken into account by the consta®f whose value depends
=17K,. For the compound investigated we obtain€d,  on the direction of the magnetic field relative to the crystal-
=1.09 MHz andn=0.33, which do not depend on tempera- lographic axes. For the ensuing analysis we assume that the
ture. The parameters of the electric field gradient tensor arealues ofA_, in the compound investigated are the same as
close to those given for the sites of O atoms in Y123,in YBa,Cu;0; (Ref. 13, and equalA,,=37 kOejug and
TI2201, and TI2212. The components of the magnetic lineA.= — 165 kOejug. The valuesB=71 kOejug and C,
shift tensor!’K were determined from the position of the =73 kOejug were obtained from the slopes of the
peak of the NMR line of the 142 — 1/2 transition with al- %3k (5% ,,) and 'K (5% ,,) curves in accordance witf6)
lowance for the quadrupole correctiog to the shift of the and (7). The estimates of the hyperfine constants coincide
resonant frequency, (Ref. 11 of oxygen atoms in Cu— with the dat4 for Tl,Ba,CaCu;0;q (TI2223 below and
O-Cu chains along the axis of the crystal: somewhat exceed the values given for the isostructural com-
pound Bi2212 in Ref. 14.
Taking into account that®*K,p, ,,=0.1%, we find
3K ¢ orp="1.08% and"’K ;. o= —0.02% from the parametric
dependences. The magnitude of the orbital Sty orp, is
Figure 1 presents the temperature dependence of thaetermined by the van Vleck susceptibility of the Cu atoms.
component’K . of the magnetic NMR line shift tensor cor- The decrease if*K,p, o1, COMpared to the value for Y123,
responding to the O1 site, which decreases monotonically &K .y, o= 1.25%, might suggest an additional downward
the temperature is reduced with an increase in the rate afisplacement of the energies of the filldg,, d,,, andd,,
variation of the shift ag .. is approached. orbitals relative toEr in Tl,Ba,CaCyOg_ 5.

ks 505 2 1
vo=vo(1+ x)+?( _77)+Fvo

2

2
(3+7) iy 5
Vo

144

v=

3
I(1+1)- 5
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3.1.4. Principal value of the electric field gradient tensor for When T, was measured fof*Cu, the variation of the
83Cu and 70O; population of the orbitals of the  Cu and O total intensity of the NMR spectrung(t) measured within
atoms in TI2212 the linewidth was recorded. The experimental file was

The quadrupole frequencies, for oxygen and copper in treated by the least-squares method using the formula

the compound under investigatidiyo=17.3(2) MHz and y(t)=A+Bexp —t/T,)+C,exp(—6t/Ty), (8
y9=1.09(5) MHz, are close to the values for TI222B,(
=115 K), ®yo=17.3 MHz and '"vy=1.15 MHz,
respectively’

It was shown in Ref. 15 that the electric field gradient
V,, at the copper and oxygen atoms in Gu@yers is pro- : )

. . . ' . =5/2) was measured using a method that equalizes the

duced mainly by electrons in partially filled orbitals of atoms

) . : epopulations of energy levels with different values of the
having aspherical symmetry. In this case the quadrupole fre- . . .
magnetic quantum number. A sample immersed in a mag-

whereA, B, C, andT, are variable parameters.

The temperature dependence$¥%T,T) 2 for By|c and
Bl c have a characteristic maximum &t 150 K.

The spin—lattice relaxation tim&; of 'O nuclei (

quency netic field is subjected to a series of radio-frequency pulses,
63 3e’Q whose filling frequency varies within the total width of the
Q7o) (21-1) Vee spectrum according to a definite periodic law, and the ampli-

tude of the spin echo is measured after a tim# follows

i ! from the solution of the system of relaxation equations for
bital, and the change in the quadrupole frequency of tie o populations of the levels that when the populations of
nuclei is determined by the population increment of thg O \hequidistant energy levels are equalized, the magnetiza-
orbital: Avg~An,, . Zhenget al” analyzed the charge dis- tion M (t) obeys a simple exponential function of time. This
tribution in several superconducting cuprates within thismethod significantly reduced the error in the determination
scheme. They found that an increase in the superconducting ''T,. To separate the contributions to the resultant echo
transition temperature is accompanied by a decrease in theignal of 1’O atoms in different layers whef; was mea-
population of the copperdézfy2 orbital and an increase in sured, the variation of the intensity of the absorption signal
nzp - The experimental values of, obtained for TI2212  corresponding to the NMR line of the O1 sites in the GuO
confirm this empirical rule: the equal values of the quadrul@yers was recorded. The experimental results were pro-
pole frequency63vQ in TI2212 and TI2223 correspond to cess_ed using Edq8). The coefficientC of the “slow’_’ expo-
similar values ofT, and the larger value afq for oxygen n_entlal function _reached_ a value of 0.8, suggesting a negrly
in TI2223 (or the larger hole concentrationzp”) corre-  Single-exponential functional dependence of the magnetiza-

: . : ; tion restoration function.
sponds to a higher value @f, . An increase in the population 1 1
of the oxygen orbitals may signify an increase in the weight The temperature dependence’d(T;T) * for By|c de-

of the less localized § states in the wave function describ- creases mo_notonlcally in the nprmal ;tate with 3 further
ing the state of the conduction-band hole carriers along thgharp drop in the superconducting region. To elucidate the

. ) nisotropy of the spin—lattice relaxation rate, measurements
Y123-TI2212—TI2223 series. Py b

were carried out witlBy L c. It was found that the anisotropy
constantt’r = (T;) .p/(T1)c=1.3.

is proportional to the population of the copped,3_2 or-

3.2. Magnetic relaxation of %3Cu and 'O nuclei and
characteristics of the spin-fluctuation spectrum in a CuO 2 3.2.2. Spin—spin relaxation rate of copper nuclei

layer Figure 4 presents the temperature dependencéTgf

for Byl c.
When T,4 was measured fof°Cu, the variation of the
Figure 3 presents the temperature dependence dfitensity of the NMR line was also recorded. The experimen-
83T, T) "t and/(T,T) ! for the orientations of the external tal array was processed with the least-squares method using
magnetic fieldBg|c andBgyL c. the formula

3.2.1. Spin—lattice relaxation rate of Cu and 'O nuclei
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y(t)= Aexp{ S(T ) T } 9
20 2L The temperature-independent behaviofbfmay attest
wheret is the time between the first pulse and the spin-echdo the applicability of the approximation of large values of
signal and the correlation lengtlg.

As was shown in Ref. 20, the Gaussian component
VT =3(UTy)e+ (UT1)ap- (10 63T, of the spin—spin relaxation rate at copper Bc
The Gaussian contnbuuoﬂizg to the spin—spin relax- contams information on the wave-vector-dependent real part
ation rate forBg||c increases slowly with decreasing tempera-of the spin susceptibility. Fogé>a the contribution of the
ture, peaks al =160 K, and then decreases. The temperafluctuations forq=Qur to Tz’gl is dominant'®

ture resulting dependence is similar to the one presented for 2 69 N4/ A~ 4 2
TI2223 (T,= 115 K) in Ref. 4. 1) 008 Tym (A 4B) ) o £ (14
ng 32777]'(5 0 a
3.2.3. Estimates of the parameters of the spin-fluctuation (y is the gyromagnetic ratjolt is convenient to writé14) in
spectrum in the model of an antiferromagnetic Fermi a different form:
liquid 112 0.69% )2 Ac—4B)?
Millis, Monien, and Pine¥ proposed a phenomenologi- 7] = 167 7K
cal model of an antiferromagnetic Fermi liquid to describe 29 B
the spin correlations in a CyQayer. In this model the val- 2 1
ues of the dynamic spin susceptibilitys(q,0) at the Xl & Xomlo. (15
(TlT)ab (TlT)c

Brillouin-zone center §=0) and on its boundary o
=Q,r) are related to one another. This allowed us to discuss  Using (15) and the values of the homogeneous spin sus-
NMR data for different atoms within a single spin degree ofceptibility o, we obtain estimates of the characteristic spin-
freedom. The corresponding imaginary part of the susceptifluctuation energynI'o(T), which significantly exceeds the
bility in the low-frequency limit can be written in the form  value nI"y=1.2 eV for YBgCuz;O; (Ref. 21 and is compa-
14 B(&la)t rable to the data for T12223 at temperature above 180 K. The
(00— 0)= TXo® B(¢la) _ (11)  Quantity 7'y remains roughly constant over a broad tem-
Fo [14&%(q—Qap)?1? perature range A['(=2.91 e\). Similar temperature-

independent behavior was observed for ¥BaO,. Unlike
the latter compound, TI2223 exhibited a significant decrease
in 1"y with temperature in the normal-state region. The sig-
nificant increase il attests to displacement of the fluc-
tuation spectrum toward higher frequencies in TI2212, which
has a higher value of . compared with Y123.

Determination of the correlation length using EG4)

Here ¢ is the magnetic correlation lengthy is the charac-
teristic spin-fluctuation energy far=0, a is the lattice pa-
rameter, andB is a parameter that takes into account the
increase in fluctuation intensity fay= Qar={m, 7} relative

to the value at the Brillouin-zone center. The expressidn
was obtained using the following coupling conditions for the

va_lues _Of the spin-fluctuation parameters fgr=0 and requires knowledge o8, which takes into account the in-
A=Qar: crease in the fluctuation intensity for= Qap={m, 7} rela-
Xo=xsBYA &la)?, (12) tive to its value at the Brillouin-zone center. In particular, in
the previous studieg was assumed to be equal #6~ 10,
I'o=(To/BY)(éla)%m. (13 mainly for YBaCuO. The valugg=60 was given in Refs. 3
We obtained the anisotropy constant of the spin—latticeand 4. In the present work we togk= 0, which correspond
relaxation rate for the compound in question:to the value for TJBaCaCuO;q_4, Which is structurally
6% =63(1/T1) 1 /%%(1/T;)... This ratio is approximately con- closely related and has similar superconducting properties.
stant over the entire temperature range and equals The values of the correlation length of the antiferromag-
% =2.65(0.3). The value obtained is greater than the valuaetic spin fluctuations are presented in Fig. 5 in units,of
8% ~1.8 for TI2223(Refs. 3 and ¥and less than the value which is equal to the distance between neighboring Cu at-
6% =3.7 for Y123(Refs. 17 and 18 In the limit é&>a, ® is  oms. The temperature dependencéfaf for TI2212 is very
determined by a combination of hyperfine fietds. close to the analogous dependence for YBa0,.?! Inter-
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estingly enough, the value gfa for TI,Ba,CaCu;0;, near 1K 9955021 T = const.

T. approximates the value obtained for,Bh,CaCyOg in

This result enables us to conclude that it is better to
the present work.

. . - analyze electron excitations in the copper layers of
Monthoux and Pinésshowed that if Cooper pairing oc- TI,Ba,CaCuyOg_ 5 in a model that allows for the presence of

curs as a result of the virtual exchange of antiferromagneti%trong spin correlations between copper atoms in the,CuO
paramagnons, the interaction between the electrons in a pap“anes

will be proportional to the spin-fluctuation energy. In this
case the following expression was proposed for the super-
conducting transition temperature:
r 1
0 O.7q1—nh)exr< — _)_ (16) 3Cu and’O NMR data for the normal and supercon-
05 A ducting states of the oriented cuprate,Bd,CaCyOg_s

Here\ is the dimensionless coupling constdfdr the sys- have been presented in this paper. Information on charge
tem under consideration 0.4 <0.48), andny, is the hole redistribution in the copper planes in comparison to other
concentration in a layer. The factby /= 3%° preceding the high-T. superconducting oxides have been obtained from an
exponential in(16) for the compound investigated is 1.5 analysis of the®*Cu and*’O quadrupole frequencies. The
times the analogous value for YBau;0, at T= 220 K. This data confirm the correlation detected between the increase in
is fully consistent with the higher value &f, for TI2212  Superconducting transition temperature in highsupercon-
when the possible differences in the other quantitiesagd ~ ductors and enhancement of the covalent copper—oxygen
n,) are taken into account. In our opinion, the estimates oPonding.
the parameters of the resulting spin-fluctuation spectrum sup- An analysis of the spin—spin and spin—lattice relaxation
port the nonphonon superconductivity mechanism discussedtes in the model proposed by Millis, Monien, and Pines has
for YBaCuO in Ref. 8. revealed a significant increase in the characteristic spin-
In metals with a broad conduction band the relaxationfluctuation energy in comparison to Y123, while the mag-
rate is proportional to the temperature. This is because in thetic correlation length does not vary significantly as the
limit of short electron-motion correlation timeg,re<1, superconducting transition temperature increases. Thus, ac-
the density of states of the spin excitations at the NMR fre€ording to the NMR data, the increase iffi; in
quenciesw, is constant, and their number is proportional to T12B&CaCuy0g_ 5 is accompanied by an increase in the
the temperature. The spatial dispersions of the spin suscep§Pin-fluctuation energy, which is a compelling argument fa-
bility x(q) and the quasiparticle dampiiig, are weak. Their voring a supercqndugtlwty mechanism associated directly
values are completely determined by the density of states &ith spin fluctuations in the copper layers.

4. CONCLUSION

T.=

the Fermi leveN(Eg). In the paramagnetic staé (g, »)/ This research was carried out under the auspices of State
exhibits a Lorentzian frequency dependence: Programs of the Russian Federation for basic research in the
_ 5 area of the physics of the condensed s(Stgerconductivity
x(@)=x(a=0)=xo=2ugN(Ef), Subdivision, Project No. 961222nd for supporting leading
[q~T*N"Y(Ep). scientific schoolgProject No. 96-15-96515
In this case the expression for the relaxation rate takes the
form *)E-mail: Gerashenko@ifm.ural.ru
n ,w
W= 2 ks TC? >, %‘)) ~y?kgTC?
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The results of experimental investigations and computer modeling of the magneto-oscillations of
the capacitance of surface layers with a two-dimensional gas in the narrow-gap
semiconductor HgCdTe with direct and inverted band structure are compared. The structure of
the Landau levels is calculated by a model that has a clear physical interpretation and is

based on the reduction of matrix equations to Sdimger-like equations with an effective potential

in which the terms responsible for nonparabolic and spinor-type effects are easily separable.

An analytic approach is developed for describing magneto-oscillation phenomena in the two-
dimensional gas of materials with a quasirelativistic spectrum, and the emergence is noted

of new theoretical parametefsompared to the parameters of materials with parabolic hands
Finally, the parameters of level broadening in spin—orbit split subsubbands are determined

and the dominant scattering mechanisms are discussed.99® American Institute of Physics.
[S1063-776(199)01703-3

1. INTRODUCTION magneto-oscillation phenomena in the two-dimensional elec-
tron gas of semiconductors with a quasirelativistic spectrum.
The lifting of the spin degeneracy of the spectrum of aThe faithfulness of the approaches often used in the study of
two-dimensional gas by the electrostatic potential of asymsuch materials, approaches actually based on the parabolic
metric quantum wells due to spin—orbit coupling is a much-approximation, at least requires substantiation.
discussed problerti*? This effect, which is actually a rela- This paper reports on studies of the spin—orbit coupling-
tivistic effect, is the largest in narrow-gap semiconductorsrelated features of the energy spectrum in a magnetic field
The most reliable experimental data on the splitting paramand of the magneto-oscillation effects in surface quantum
eters have been obtained by studying magneto-oscillation efvells in Kane semiconductors, and the manifestations of
fects, with the analysis usually based on measurements of theese features in materials with direct and inverted band
populations of spin-split subsubbands taken from oscillatiorstructure. In addition to the experimental studies of inverted
periods or their Fourier spectra. In this approach all data oand enriched HgCdTe layers done by the magneto-oscillation
the position and amplitude of individual oscillations are ig- capacitive spectroscopy method, a theory for calculating the
nored, which means, however, that the information about theandau levels and describing capacitance magneto-
exact energy position and broadening of Landau levels igscillation effects is developefthis theory takes into ac-
lost. Here the commonly used assumption about the semeount spinor-type effectsin light of the computer simula-
classical nature of the magnetic quantization of the two dition problem solved in this study, one more advantage of
mensional spectra does not correspond to the Hamiltonian @fapacitive methods comes to the fore, in addition to the fact
a system with strong spin—orbit coupling and does not agreghat such methods are not limited by the magnitude and size
with the experimental data, which, in particular, is an indi-of the gap. Being actually the measure of the density of
cation that for small Landau-level numbers there is an appreswo-dimensional states, the differential capacitance makes it
ciable nonperiodicity of the oscillations in the reciprocal possible, by measuring its absolute value, to extract informa-
magnetic field. Along with the ambiguity in determining the tion not only about the structure of Landau levels but also
Fourier frequenciegthese strongly and nonmonotonically about the level-smearing parameters and hence about the
depend on the range of field strengths being analy#leid  dominant scattering mechanisms, including the features of
leads to sizable errors in determining the splitting paramsuch mechanisms in systems with strong spin—orbit cou-
eters, thus reducing confidence in the faithfulness of theling. This is all the more important because the standard
models used. methods of determining the broadening parameters for
Methods based on computer simulations of magnetonarrow-gap materials are often inapplicable due to the irregu-
oscillation effects are more productive. This approach, howiar nature of the oscillations.
ever, is fraught with difficulties when one deals with mate-
rials W|tk_1 a Kane spec_trum, dlfflcultl_es associated with th_ez BASIC EXPERIMENTAL RESULTS
complexity of self-consistent calculations of the spectrum in
a magnetic field that systematically allow for spinor-type ef-  We measured the magneto-oscillations of the capaci-
fects and with the insufficient development of the theory oftance of Hg_,Cd, Te-based MOS structures with a positive

1063-7761/99/88(3)/9/$15.00 552 © 1999 American Institute of Physics
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FIG. 1. Experimental{l) and computer-simulate(®) capacitance magneto-
oscillations for the sample S1 afy=2V (Ng=3.1x10"2cm™?). The
capacitance of the oxide in the metal oxide semiconductor strucygge,

is 148 pF, and the areis 9x 10~ cn?. For the sake of clarity, curvéis
shifted upward. The following values df, were used in the calculations:
13.5K fori=0, 10K fori=1, and 9K fori =2.

(sample S1E,=+80meV,N,—Np=1.8x10"**cm™3) and
negative (sample P1l, E;=-50meV, Np—Np=3
X 10*5cm™3) Kane gapE, with a 700—1000-A thick anodic

V. F. Radantsev 553
While for low surface concentrationd the values of the
intensities!;” andl; are close [; >1; for excited subbands
near their edgesasN increases the ratit /1;" decreases
significantly, especially for the ground subbaind,0. At ex-
tremely high subband concentrations,N;>(2-3)

X 10?cm™2, only one Fourier line exists, and this line cor-
responds, as the analysis of th&" vs. Vy dependence
shows, not to the average subband concentratibid (
+N;)/2 (which for regions ofN; with clearly detectable
spin—orbit splitting can be determined from the Fourier
transform in the range of fields between beat npdes to
the concentration in the upper spin subsubbaud,

For HgCdTe withE,>0, spin—orbit splitting in the
ground subband does not manifest itself at low concentra-
tions N; either. However, in this range of concentrations,
double-frequency Fourier lines are detectable. This phenom-
enon is due to the resolution in the oscillations of individual
spin components for small Landau-level numbens<@3)
and manifests itself in the oscillations of tlevs. V, depen-
dence(Fig. 2b. In samples wittE4<<0, there is not a single
regime in which individual spin components manifest them-
selves in theC vs. V, andC vs. B oscillations, even for the
ground Landau level.

The subband and subsubband concentrations agree,

oxide acting as the gate dielectric, as functions of the magWithin experimental error, with the values of the Fermi

netic field strengttB and the voltage/, on the field elec-
trode. All measurements were madeTat 4.2 K. Examples
of the magnetic-field dependence of the oscillation€ @ind
dC/dVy are shown in Figs. 1 and 2a, while ti@vs. V,

quasimomenta calculated by the method used in Ref. 8. As
N, increases, the relative splitting&N;/N;=(N;" —N;")
X(N;"+N;) ! tend, within experimental error<{20%), to
their “ultrarelativistic” limits of approximately 0.1 for

dependence aB=4T is depicted in Fig. 2b. Beats are HgCdTe withE;>0 and about 0.18 for HgCdTe with in-
clearly visible in the oscillations, while the splitting of sub- verted bandgfor different subbands these limits are essen-
band lines into doublets is visible in the Fourier spectratially the samg®
which points to the splitting of subband Fermi surfaces due
to spin—orbit coupling.

Despite the fact that the splitting and especially the ratio
|7 /1;" of the intensities of the Fourier lines corresponding to
the lower and upper spin subbandsig the number of the 3. THEORETICAL MODEL
two-dimensional subbandstrongly depend on the range of
field strengths being usdtbr instance, it is clear that a Fou- The modeling of capacitance magneto-oscillations re-
rier analysis will reveal no splitting for the range betweenquires solving three relatively independent probleifis: a
beat nodes several characteristic features can be detectedtalculation of the energy position of Landau levels in a self--

dctdv,, pFV ¢, pF
1
4t a F b
190F FIG. 2. Experimentall) and computer-simulated
2 (2) (@ magneto-oscillations ofdC/dV, at V4
i =8V (with N;=1.65<10%cm 2 and N,=4.9
2F ] 180k x 10" cm~?) and(b) the C vs V4 curves for a mag-

netic fieldB=4 T for the sample P1. The capaci-
tance of the oxideC,iqe, is 195 pF, and the are&
2 is 12X 10™* cn?. The following values ofl, were

or 170r used in the calculations: 9K for=1 andTp=6 K
fori=2. The experimental vs. V, curve is shifted
upward by 20 pF.

1601
2t
0 2 4 6 0 1 2 3
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consistent surface quantum weR) a calculation of the den- fg—l(z)
sity of states based on a model of magnetic-level broadening, n—2
and (3) a calculation of the differential capacitance of the f3 *(2)
space charge region with the spectrum quantized by electric ’Hn H s fa(2)
and magnetic fields. Hy Hyp £3(2) '
3.1. Spectrum in a magnetic field f?fl(Z)

The complexity of a theoretical description of the sub- fa '(2)
band spectra in the surface layers of Kane semiconductors is
due not only to the matrix nature of the Hamiltonian and the 0 0 sk,
fact that the boundary conditions imposed on the spinor com-
ponents are ambiguotis-* but also to the complexity of the Hip=| O 0 0|, 1)
self-consistency procedure in view of the dependence of the syik, O 0
wave functions describing the electron-density distribution in
the direction of confinement on the two-dimensional momen- YT
tum, the number of the subband, the spin, and interband tun- —-E_ 3(n-1) Eg ﬁEB
nel mixing. In the presence of a vector potential, direct self- 2 2
consistent calculations of the density of states are impossible 3(n—1)
in view of their computational complexit§to say nothing of Hii= 2 Es —E. 0 1
trying to model capacitance oscillations as a functiorBof
and especially the depth of the potential well ﬁE 0 -E,

We believe it is justified to carry out the calculations 2 ®
of the spectrum within an approach developed in Refs. 15
and 16 for describing vacuum condensate of Dirac electrons J3(n+1) Jn
near supercharged nuclei and used in Refs. 8 and 17 for —E_ 5 b8 _TEB
analyzing surface quantum wells in Kane and Dirac semicon-
ductors in the absence of a magnetic field.Bx0 the re- Hoe 3(n+1) E _E 0
sults obtained by this approach agree fairly wédicluding 2 2 B " ’
spinor-type effectswith the experimental data and with di- Jn
rect numerical calculatior’s(As noted in Ref. 9, the differ- - —Eg 0 =
ence between the approach of Minkeval® and our ap- 2

proach developed in Ref. 8 concerns a unique case of vacant
states near the bottom of a subband for a narrow and shallowhere E. =E—V*Ey/2, s,=|Eg|/2m, and m, are the
unfilled quantum well in HgCdTe with an exceptionally high Kane velocity and mass, anis the number of the Landau
level of doping,>10cm™?; in standard conditions, includ- level. ~ The  “magnetic  energy” Eg=y2mySyfiwy
ing those in which the samples and regimes were studied iff V2Sp/i/\ (fiw,=%eB/myc is the cyclotron energyand
this research, the two approaches lead to essentially identictiie magnetic length = \cA/eB are actually independent of
results) the band parameters, since the valusfor all Kane semi-
When the applied magnetic field is parallel to the direc-conductors is essentially the same. Reasoning along the same
tion of the confinement potentiaf(z), the motion in the lines as in Ref. 8, i.e., “squaring” the system with respect to
two-dimensional plane can be quantized, which means thahe components] ™! and f} for electron layers in materials
within the six-band modelvalid for small values ofy) the  with E4>0 (we call the electrons in such layes®lectrong
problem of calculating the spectrui(B) clearly reduces to or fg andfg~* in materials withE <0 (p-electrong, we can
solving the following matrix equatiothere we will not write  write the subband equations in a form that is the same-for
the gauge-dependent standard expressions that describe @il p-electrons, i.e., in the form of a system of two
behavior of the wave functions in the plane perpendicular téSchralinger-like  equations for the envelopesp} s

the magnetic fielg =f54VH, and ] t=f1sYVH,,
#2k? , .
om ~(Eer—Uo=Ug —Ug)  ~1Uso=Coks "
b P25
%22 ( ¢Tel) -0 @
iUgo+Cyk, £ —(Ee—Uo—Ug —Ug) '

2m,
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with an effective energyEqs=(E2—mZsp)/2m,s: and an  andR, =H;/H, . In the above expressions we must gut
energy-dependent potential containing a Klein—Gordon term=—1, L-=3E3(n+1)/4E%, and H =E_—L E, for
Uo=(V2—2EV)/2m,s? and three spinor-type potentials: the p-electrons andg=+1, L;=0, and H, =E, (here R
“magnetic” potential =1) for n-electrons(the dimensionless parametef and

the second term in the expression tb emerge because of
the contribution of the heavy-hole bandClearly, an equa-
2mys? ' tion for Kanes-electrons but witlg=+ 2 also describes the
subband Landau levels in the case of a Dirac spectrum. Due
to the spin—orbit termJ _, (and forp—electrons, also due to

. 2nR*+3(n+1
ngEég (n+1)

the potential responsible for interband tunnel mixing

Loosm? (3142 L7 the terms linear irk,), the system of equations does ot
U§:2 2|2 = Tz contrast to the case witB=0; see Ref. 8 separate into
myS; H, H EL . : Lo .
independent equations for individual spin components.
dvi2 1+L7 d?v Below, in calculating the self-consistent potentig]z)
X E) + TEpEYE and in quantizing the spectrum in the effective potential, we
n employ, as we did in Ref. 8, the semiclassical approach
and the spin—orbit term (clearly, if we were to apply the semiclassical approach di-
. B rectly to Eq.(1), we would lose spinor-type effects, and this
Uz - SpfiEp JnRE 1+Ly N 1+L, is equivalent to employing Klein—Gordon approximation
s0=0 4mys? n HE 2H that takes into account only nonparabolic effecBy intro-
ducing the substitution
N dv
X(Ry =D g7 | (pimICimeX[{if k,(z) dz
where and ignoring the terms proportionalittz dk,/dz+k,)? (i.e.,
_ SbhEB\/ﬁ by ignoring higher-order terms in the expansion of the action
ngcg\/R_g(Rﬁ—l), Cg=0——, in powers off), we reduce the systef2) to an expression
4mgS;, for k, :

z Sbﬁ

2+

- mesb(A_ \/A2 2

Z_(Eeﬁ_Uo_Ug_UE)(Eeﬁ_Uo_UQ_U§)+U;0U;0. , ()

where For Dirac electrons, this can be considered a generaliza-
tion of the results of Artimovich and Ritifsthat allows for
spin effects and magnetic quantization. In the case of Kane
s-electrons we arrive at the results of Ohkawa and Uertiura.

A=2(Eet—Uo)— (U + U +Ug +Ug)

2
_ [ 2MeSs C2(R! ~1)(R; — 1), Clearly, asn—o, both Egyn=1 andEgyn—syhk, (K, is
Sﬁﬁz the two-dimensional quasimomentumnd Egs.(3) and (4)

describe the subband specEz (k) in the absence of a
magnetic field(they become the respective formulas of Ref.
8), while atV = const, Eq(3) describes the Landau subbands
%ni(B,kZ) in the bulk of a KandDirac) semiconductor. Note
that for p-electrons the terms ir{3) proportional toC,

3 (which originate from the terms if2) linear in RZ) do not,
'+Z) (4) generally speaking, produce a contribution appreciable in
comparison tougo_. However, ignoring these terms in cal-
determine the magnetic leveli, (i,B) in the quantum well  culations that do not account for spin—orbit coupling leads to
V(2). As in the case of a zero magnetic field, the term 3/4 forsignificant errors and, in some cases, changes the order in
the phase factor i) corresponds to an infinitely high po- which the spin levels are arranged.
tential barrier fors- and p-electrons at the semiconductor— In the ultrarelativistic limitEg=0 in undoped quantum
insulator interface, i.e., to vanishing boundary conditions forwells, the spectra are scale-invariant with respect to the well
the corresponding spinor componefitse other components depthug (as they are in a vanishing magnetic fieldigure 3
do not vanish, while the boundary conditions from the bulk depicts these spectra fos-electrons E4=+0) and
side of the structure are dictated by the presence of an inp-electrons Eg=—0) in dimensionless coordinates/ u
penetrable potential barrier in the effective poteritiar. 8 and B/Bg=(Eg/us)?(Bs=cu’/l2esh). Spin—orbit cou-

which along with the Bohr—Sommerfeld quantization rule
(here it is convenient to pass to integration oVesince for
self-consistent potentials the Poisson equation directly yield
dV/dz as a function o¥V)

V(k,=0) dv| 1!
J kK (E,V)| ==| dV==
V(z=0) dz
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FIG. 3. The Landau levels of the ground subband for
0.1 (@ s and(b) p-electrons in the quasi-ultrarelativistic
limit Eq=0. Energies are measured from the Fermi
0 level Eg .
-0.1
-0.2
—‘03 i -s T T el " " "‘03
0 002 004 006 008 0.10 0
B/B; 2
pling and interband resonant mixing lead to a transformation ES(K)= \/(Siiﬁk)er[mé(Sii)z]z—mgi(sii)z, 6)

of the spectrum so dramatic that the introduction gffactor . .

(which is largely a nonrelativistic paramet¢o describe the With the subsubband Kane masseg and velocitiess;” de-

spin splitting of a two-dimensional spectrum in a magneticPending on the surface chemical potenjial (these masses
field loses all meaning even for small-number Landau levelsand velocities can be found for the calculated subband con-
The magnitudes of the effects fsr and p-electrons differ ~ centrations and effective masses at the Fermi fevelsing
substantially both in the low-energy regi¢see the insets in an analytic description of the semiclassical spectrum in a
Fig. 3 and for the states tested in oscillation effects close tdnagnetic field, a description that corresponds to such a rep-
the Fermi level, where the contribution of the spin—orbitresentatior{to make the notation simpler we will drop atf

term for p-electrons is almost twice as large. For Dirac elec-labels,

trons, in view of the larger value of the parameterfor

p-electrons ¢=2), the spin—orbit splitting at all energies is Eni = VEgi(ni + )+ migs; —mios; @)
twice as large as it is fog-electrons §=1) and at the Fermi  (E;,=/2 5%/)\), instead of solving Eq(4) with k, from (3)
level is close to the splitting fop-electrons. In all three numerically cannot greatly affect the density of states and the
cases, the spectra cannot be described by the Bychkovgscillation amplitudegin calculating the energy positions of
Rashba formula with a quasimomentum-independent Spinthe levels one must use the “exact”’ solutions based:e)n
orbit coupling parametes (see Ref. 1 and(4)]. Plugging(7) into (5) and using the Poisson summa-
tion formula, we arrive, via direct calculations under the as-
sumption thatl';<E+ mOisi2 (which is justified even for
states near the bottom of subbands a “harmonic” repre-

The density of states, whose singularities are responsiblgantation for the density of statésonvenient for describing
for the magneto-oscillations of kinetic and thermodynamicqggillation effects

characteristics, is determined by the positions of the Landau
levels and the level-broadening parameters. The calculation E+ mOisi2 T
of collision broadening of magnetic levels is a complicatedDi(E): W 2
problem even in the one-band approximati8A* We study i

3.2. Density of states

this problem under the assumption of independent subsub- o (—1)i(2-6,0)
band Landau levels of Gaussian shap& X > —————,(COSO+ my;sin )
. ) 120 (1+) my7)
prE-— 2 S Lexiz -S| | 7Ty (B4 mgs?) |
T(B)=——= 2 ——exg2| —————| |, 2 (E+mg;s:
| chy2m =0 T’ I Xexpg — —— 2 Aal 2 ost) . (8
1+j%am%y, Esi

with the broadening parametefs not depending explicitly

on n but depending o (and energy-dependent for the non- where
parabolic system considered herdo describe magneto-
oscillation effects analytically, which is preferable from the
viewpoint of obtaining greater physical clarity of the results
and establishing the specific features of oscillation phenom- 1
ena in two-dimensional systems with quasirelativistic spectra 6= - arctanj wy?) +j 7y?

in comparison to the case of standard baffdse use ana- 2

lytic approximations that are in good agreement with the 2(E+mg;s2)2 mg-s-4+5i Eé-
numerical results for the subsubband dispersion laws in the i
form of dispersion relations of the relativistic type, Fi(1+jomy)) I’

J’i—E—Bi,
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with §jo the Kronecker delta. Within the Born approxima- C;(B) _ ji2m\ (=
tion, the broadening parametdrsare linked to the momen- W=1—22 (—1)'exp — o JO dy
tum relaxation timesr; in zero magnetic field through the !

ciTi

relationship T'2= \2/w #i? w.(E)/7; (see Ref. 20 where x{cog2mjn;) [cog 2mjc3y?)
w¢i(E)=eBlcmg(E), with m(E)=mq+E/s?, and Eq. _ _ _ o
(8) becomes simpletassuming the broadening is not too —(jcsi+criytan(jbiy))sin(27jcgy?)]
large, oryi<1): —sin(2min;) [sin2mic3y?) + (jc,
, =D. —1)l cog jb;
Di(E.B)=D(E0) 1+22, (-1 + ey tartibyy))cos 2micdy?) oYL
2cosi(y/2)
Xe p(—jz—w>co 2@jn,(E)) (9 (12
X wci(E)T s2mni( ’
where
where D;(E,0)=mgi(E)/27# %= (W+ my;s?)/27s?h? is the
density of states aB=0 (note that in the two-dimensional E— wri 27kT
case the effective mass of the density of stateg, coin- Y= 77 wei= og(uri), b= frog,
cides with the cyclotron mass;). The Landau-level num-
ber n;, which in (9) is considered an arbitrary numbe@rot kT h
necessarily an integgris determined at a given energy by Cri=Kpmi M_ Cri=Knmi ﬁ
Egs.(3) and(4) or, in the simplest approximation, by EJ). i R
The corresponding cyclotron energies can also be determined KT KT\
from (4) asfiw(E)=E(n+0.5)— E(n—0.5), but the results Cgi==—=——,
differ little from those provided by analytic approximations Esi V2 sift
for w.;. Clearly, in the nonrelativistic limis;— o, Eq.(9) at s s 211
j=1 becomes the Ando formufa. K _:{lJr d(mois;) MoiSi d(mo;s;)
Direct comparison of calculations based @) and (8) m dug WE] dur

suggests that the approximations employed in deriy®)g

are meaningful for essentially all regimes and parameters e?dN; dugr;  €uf mOisi2
important from the experimental viewpoint, i.e., regimes and Ci(0)= dur dus = 2 S22 .
parameters corresponding to a sinusoidal shape obtks. '
E dependencéhigh Dingle temperatureby =#/2kgw7) and d(moisiz) due;
to a “nonsinusoidal” shape of the dependerit@v Dingle due | =€?| Di(uri,0)
temperatures HFi Fs
pei d(mos?) | due;
27s?h? dur | dups

3.3. Capacitance magneto-oscillations
For systems with a multiband spectrum, the differentiaiNote that the equivalence between the capacitance in zero

capacitance of the space charge region with a twoMmagnetic  field, Ci(0), ~and  the quantity
dimensional gas, D(ur,0)e?dur/dus (actually, the density of states at the
Fermi leve), which occurs in the parabolic approximation, is
c =e2st=e2 d 2 N :2 C. (10) violated for the system with a relativistic spectrum consid-
ST dug dus fo "7 fa 7' ered here. In comparison to the case of a parabolic spectrum,

hereN. . is th ; tration in th b h the expression(12) for capacitance magneto-oscillations
Wherell;, IS the surtace concentration In the spin brach ., ,iqing new parameters of the theasy; c,, andcg. The

of the _subband, is defined as _the sum of partial SUbsu_bbandfirst two parameters reflect the energy dependence of the
capacitancesas before, we discard the subsubband indiceg ¢ e mass of the density of statesy;, and the cyclo-
[

o==*): tron massmg; in the Dingle exponential factor. Here two
e?dN;, e2dN; dug; effects are important: the fact that the subband spectra are
T dps dupe dpus nonparabolig¢for a fixed well depth a+nd the variation of the
parameters of the subband spectrg;(us), under modula-
e dug tions of the well depth. The third parameteg (Vshivtsev
- 722 dus dug f Di(E)f(E-pri) dE, (1D and Klimenkd* suggested that such a parameter must exist
in the theory; they, however, examined the case of Dirac
where f(E— u;) is the Fermi—Dirac distribution function, electrons in a weakly relativistic systeme<ms’, and ig-
andug; is the subband Fermi energy. Usif® and ignoring  nored collision broadeningis actually determined only by
the integrals of odd functions, which is justified at low tem- the ratioT/\/B and is independent of band and subband pa-
peratures KT<ur ), we arrive at an expression for the ca- rameters, since the subsubband Kane velociigs,) dif-
pacitance in a magnetic field: fer little from the universal quantitg, .

2
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In strong magnetic fields, the phasej2c§y2 is station-  substantial increase witlag of the surface density of the
ary in the range of values of that provides the leading hole-uncompensated acceptor charge in the depletion layer
contribution to the integral, with the result that the integral in(this increase is important for narrow-gapsemiconductors

(12) can be evaluated: and especially for gapless semiconductors because the thick-
C.(B) jmb, i2a ness of the inversion layer in such materials is close to the
— —~1-2>, (—1)J+ex;< — —) overall thickness of the space charge regiddsually the
Gi(0) j sinh(j 7b;) WeiTi calculated values of the capacitances for the case of zero
X[cog2mjn;)—jc.; sin(2mjn;)]. (13) magnetic field are in good agreement with the experimental

values.

Note the quadratic dependence in the two-dimensional case a|though the structure of the oscillations modeled with
of the arguments of the Dingle exponentials on the harmoni@,my one adjustable parameter, the Dingle temperature, is
numberj in the expressiong9), (12), and(13) for magneto-  ¢lose to the structures detected in experiments for the same
oscillations. In the nonrelativistic limit—c) we have  two-dimensional concentration, the exact positions of the
Cri=C,=Cpi=0 (when crj=cg=0, the transition from neaks in the oscillations and the beat nodes differ. This
(12)to (13) is exac}, and afj = 1 Eq.(13) becomes the Ando  shoyid come as no surprise since in the six-band model used
expression for magneto-oscillations in materials with parayere the contribution of distant bands to the bglfactor is
bolic bands’®?? We see that the parabolic approximation is ignored, with the position of the spin components of the
sufficient in describing oscillations in materials with a non- | 51dau levels being very sensitive to the value of this factor.
parabolic spectrunfwith the rest mass in the amplitude fac- ag for the beat periods, comparison of the modeled and mea-
tor replaced by the cyclotron mass at the Fermi lpoely if  g;req oscillation curves points to a substaritigl to 20% for
strong magnetic fields are involvelflg;> (5-10)kT, and the 16 ground subband and approximately 10% for excited sub-
smearing of the '?Ve|5_ is not too grgm,;izﬁ/?ri; . . bands theoretical underestimation of the size of spin—orbit

When there is spin—orbit splitting, the individual spin gyjitting in materials with a positive gap, while an analysis
branches differ in both density of states and cyclotron enpaseq on subsubband populations reveals no discrepancies
ergy, and the partial oscillations of capacitance for the spifqye o the large experimental error, as pointed out in Sec.
subsubbands differ not only in periodshich leads to ex- ) The differences may be related to the contribution of the
perimentally observable beatbut also in amplitudes, in- interface region to spin—orbit splittify (this contribution
cluding the case in which all relaxation times are the sameygnnot be consistently calculated in the effective mass
Here, although the density of states and hence the partighethog. In both cases, within the Rashba mechanism the
capacitance for the low-energy branch of the spectrum &lqyections are proportional to the electric field strength and
B=0 are larger, the oscillation amplitude for this subsub-c;n pe taken into account phenomenologically by introduc-

band may be lower due to the large cyclotron-mass values iy 4 factor into the spin—orbit term of the effective Hamil-
the parameteb and in the Dingle exponential factor, €spe- iqnian. Indeed, the discrepancies are removed by introducing
cially for p-electrons. Thus, the experimentally observed dif-5 tactor of roughly 1.2 intdJ, and a correctionwhich
ference in the amplitudes of different spin components of the,, 4els the contribution of distant bands to théacton to
oscillations (probably Refs. 25 and 5 were the first papersihe phase of the oscillatiorioth the factor and the correc-
where this difference was pointed pig natural for systems i are the same for all concentrations, subband numbers,
with strong spin—orbit coupling and does not require USiNGemperatures, and broadening parameters
ideas about spin-dependent scattering for its explanation. Tne computer-modeled magneto-oscillations depicted in
Clearly., the amplitude rati.o depends both on the surface COrkjgs. 1 and 2 are in good agreement with the experimental
centration (through effective subband massemd on the a4 regarding both the position of the oscillations and beat
magnetic field, temperature, and broadening parameters. hqqes and the absolute values of capacitance. As noted ear-
lier, in our calculations we used two adjustable parameters
for p-electrons Tp and a correction to the oscillation phase
and three adjustable parameters feelectrons(the addi-
tional parameters being the factordf , mentioned earligr
When calculating the capacitance of MOS structures|n all regimes and for all magnetic-field and temperature
C(B) =CyiteCs.c(B) [ Coxicet Csc(B)] ™1, we used the val- ranges in which capacitance magneto-oscillations were ob-
ues of the geometric capacitance of the oxidg,q., found  served in the experiments with the specified materials, cal-
from the experimental values of capacitance in the region o€ulations based ofl2) differ very little from those obtained
large negative band bending, which corresponds to a strong the approximation(13). Usually the contribution of the
enrichment in holegthe capacitance—voltage characteristicssinusoidal term in(13) is also insignificant. The absolute
of the structures being studied, including those vtj»>0, values of the capacitance oscillation amplitudes and their
up to frequencies-1 MHz of the low-frequency type The  magnetic-field dependence are described satisfactorily by the
subband capacitances in zero magnetic field and the voltagéiseory on the assumption that the values of the relaxation-
Vg across the structuréseeded in calculations afC/dV,) time adjustable parametersin spin-split subsubbands used
were calculated from the dependence of the subsubband coimthe modeling process are roughly the same. In some cases
centrations on the surface potential within the approach dewhere up to three beat nodes are observed in experiments,
veloped in Ref. 8. For inversion layers we allowed for thedigital filtering and the inverse Fourier transform make it

4. RESULTS OF COMPUTER SIMULATION AND
DISCUSSION
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7. K increase in intersubband energies. Calculating such scatter-
ing consistently is a separate problem, whose complexity is
due not only to the complexity of the spectrum but also to
the need to allow for screening and multielectron effects,
since in the systems considered the Fermi wavelengths in all
regimes prove to be, as it can be demonstrated on the basis of
the results reported in Ref. 8, quantities of the same order of
magnitude as the Thomas—Fermi screening lengths and the
size of the wave functions in the direction of confinement.
While in the modeled oscillations of structures based on
materials withEy>0 the individual spin components can
easily be resolved for small Landau-level humbers, in struc-
5 B! . . N— tures with Eq<<0, where the spin—orbit splitting is much
0 2 4 6 larger and, correspondingly, the difference in the cyclotron
N,, 10%cm?2 o C . ' X §
5 splitting for distinct spin subbands is greater, such resolution
FIG. 4. The Dingle temperature as a function of the two-dimensional conCannot be achieved no matter how realistic the values of the
centration for the sample S1. The solid curves represent the results of cabroadening parameters are or how low the temperature is
culations for the scattering off “bumps” on the surfacelat 110 A and (this fact is fully corroborated by experimehtslote that the
A=20A. deterioration of the resolution of spin splitting with increas-
ing temperature and broadening of levels in oscillations of
structures withE,>0 is due not only to the increase in the
possible to reliably separate the “partial” oscillations be- smearing of the Fermi stefihe “spectral gap’} but also,
longing to individual subsubbands. The relaxation timesprimarily for small values oB and high values of, to a
found from such oscillations for different spin subsubbandsmuch more rapid decrease in the oscillation amplitude for the
coincide, within experimental error, but the amplitudés  low-energy branch of the spectrum.
and |~ may differ substantiallyseveralfold. Note that in In conclusion we will briefly summarize the results. A
such cases the values gf found for the magnetic-field de- relatively simple model that allows for a clear physical inter-
pendence of oscillation amplitudes are close to those obpretation has been proposed. The model is used to calculate
tained by fitting the calculated absolute values of the oscilthe energy spectrum of a two-dimensional electron gas in a
lation amplitudes to the experimental values. magnetic field in the surface quantum wells of semiconduc-
The curves representing tAg, vs. N; dependence with tors with Kane and Dirac spectra and is based on reducing
a minimum atN¢~2Xx10?cm™? (for the sample S1 such the initial matrix equations to a Schiimger-like equation
curves are depicted in Fig.,) 4re similar in shape to such with an effective potential in which the terms responsible for
curves for silicon inversion layers. In contrast to the latter,the nonparabolic features, the spin—orbit coupling, and the
however, the declining section is not related to the screeninmterband tunnel mixing are easily distinguishable. The
of Coulomb scattering, since the valuesTgf predicted by  model also reveals the specific features of Kane semiconduc-
the theory and corresponding to scattering off the chargéors with direct and inverted band structure and with a Dirac
built into the oxide and off ionized impurities are lower than spectrum. An analytic approach has been developed in order
the measured values for the studied structures by a factor & describe the magneto-oscillation effects in a two-
at least ten. A further increase in concentration drivgaup,  dimensional gas of materials with a quasirelativistic spec-
which is characteristic of scattering off “bumps” on the sur- trum. The emergence is noted of new theoretical parameters
face, but theTy vs. Ng dependence is far from being qua- (compared to the parameters of materials with a quadratic
dratic. What is more, the dependence is sublinear, whiclspectrum. Comparison of the modeled and measured capaci-
suggests that the effectiveness of this mechanism is supance magneto-oscillations in HgCdTe-based MOS structures
pressed substantially as the Fermi de Broglie wavelength desuggests that probably there is a small20%) contribution
creases(this is possible at large values of the correlationof the interface region to the spin—orbit splitting of the spec-
length L). The best agreement between the valuesTgf trum. As has been discovered in experiments and substanti-
calculated according to the approach developed in Ref. 26ted in the theory, the oscillation amplitudes referring to two
and the experimental values for the structures under investspin—orbit split ladders of Landau levels differ substantially
gation is achieved for an average fluctuatidém-20-25A  while their collision-broadening parameters are equal. The
and a correlation length~100-120 A, which is almost ten established average displacements of interfaces and the cor-
times the corresponding values for silicon. The value& of relation lengths characterizing the scattering off the
are also almost twice the values for binary semicondudfors, “bumps” on the surface exceed many times over their val-
which should come as no surprise in view of the many dewes in silicon and binary semiconductors in view of the many
fects at the interfaces of the ternary compounds and theidefects at the interfaces of the ternary compounds and their
oxides. The strong broadening of levels near the subbandxides. The short relaxation times near the edges of the two-
edges suggests that there is an additional reaction channdimensional subbands and their increase with the two-
and can be related to the interbafintersubbangscattering, dimensional concentratidi, in the region of small values of
whose effectiveness decreasesNagsincreases, due to the Ng can be related to intersubband scattering.

15
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This paper is a study of the relationship between diffusion and conductivity when the random
walks of particles occur via vy hops. It shows that because of the unusual nature of

Lévy hops the particle mobility is a nonlinear function of the electric field in arbitrarily weak
fields. The crossover to ordinary diffusion by introduction of a finite displacement in

each step is also discussed. 199 American Institute of Physid$$1063-776(99)01803-X]

1. INTRODUCTION The degree of nonlinearity is described by the critical index
) . . . o . w of Levy hops. In other words, Ohm’s ladlinear response

Classical diffusion, in which diffusing particles only t, the fielg is a consequence of the ordinary nature of dif-
wander to nearest neighbors, has been thoroughly studie,cion so that for other diffusion e.g., g hops, Ohm’s

and many methods related to the investigation of this phep,, js not satisfied. This becomes especially evident when in
nomenon have been developed. Random walks, in whicQqgition to L'y hops there is ordinary diffusion, i.e., par-
Brownian particles diffuse not just to nearest neighbors, havg|es giffuse in the usual way. Then, in accordance with the
been less well-studied, however. To this class of diffusionq jimits on the behavior of particles in random walks, the
problems belongs the problem of random walks of particlesyaricle velocity has two asymptotic regimes, linear and the
via Levy hops. What makes g hops so special is that in opjinear. We also interpret the results from the standpoint

each step a particle can travel arbitrarily far, so that the rmg; scaling. The results of this research were previously pub-
displacement per unit time can be infintt&lumerical mod- lished in a brief communicatioh.

eling of diffusion via Lery hops has shown that the points The nonlinearity of the function if2) can be explained

visited by a diffusing particle fo_rm _spatially well-separated , the following way. If we combine Eq1) and the ordinary
clusters. A more thorough examination shows that each clussypression for the field current, we readily obtain an equa-
ter is in turn a collection of clusters. Thus, we obtain a hier+;n for diffusion along self-similar clusters in an electric

archy of self-similar clusters.In this way Levy diffusion field in the form of a continuity equation:

constitutes a random walk among self-similar clusters. The

probability distribution function in the Fourier representation [/t + (A[K|#+ikV)IN(k,t)=0. @)
has the form

P(k,t)=exg — AlK|“t), (1) _HereN(k,t)_ is the number_ density of the diffusing par_ticleg
in the Fourier representation, and the current has a diffusion
where A and u are positive quantities, and<lu<2. Such  component and a field component, with the latter being of
distributions are known as kg distributions. A detailed de- the ordinary formJ=NV.
scription of Levy f[ights can also be found in Ref. 3. Next we use the well-known ideas developed by Ein-
The study of Ley diffusion is a problem in its own right  stein. In equilibrium, the diffusion curred, is balanced by
as a microscopic model with unusual diffusion, but it is alsothe field currentd; and the distribution function is of the
of interest in connection with possible applications to prob-Boltzmann form:
lems of hopping conductivity in disordered mefiiahen the
hop probability and the hop length are uncorrelated. Jg+J¢=0, N=exp — U/KT), 4)
The goal of the present work is to study the relationship
between diffusion and conductivity when there isviedif-  whereU is the potential energy.
fusion in the system. When there is ordinary diffusion and  Using the series definition of a derivative of fractional
the response is line@®hm’s law), the relationship is known order®
as the Einstein formula. However, in the general case it is not

known what this relationship is. In this paper we generalize * A\D
to the case where in the event of wediffusion the drift K|“=lim (A2+e)#= >, Cﬁ(g) , (5)
velocity proves to be a nonlinear function of the electric &0 n=0
field:
we obtain the general expression for the drift velocity:

Vo EA L 2)
Note that the nonlinearity occurs in arbitrarily weak fields V:exp(i) lim (A2+s)(“‘2)’4Vexy{ - i) (6)
and is a consequence of the unusual nature of the diffusion. KT/ .o kT
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For a uniform electric fieldJ=—gEx, and we obtain the b
result(2). V(a)= aV(a’b)-l-COth «. (14
2. DISCRETE DISTRIBUTION OF LEVY HOPS Hence, in arbitrarily weak fields, the velocity is a power law

in the electric field with exponentt—1. To calculate this

Let us consider the one-dimensional analog ofte dependence exactly, we use the Poisson sum formula:

hops! We denote the probability of finding a particle at the

Ith site aftem steps byP,(1), and the hop probability distri- * 1 % *
bution in length byf(l): > f(n)=5f(0) +f f(t)dt+2 >, f(t)cog2mmt).
n=0 0 m=1
Pria(D= 2> f(I—=m)P,(m). (7)  In the present casé(t)=(b/a)'tanhab'.
m=-= Introducing the variables'=t In b andz=exp t’, we
For f(I) we take obtainf(z) =z #tanhaz. Hence
o “ (=tanh atanh
f(1)=2 a (8 _pn+ 8 pn), 8 V(a):z+aﬂ_l > z dz+j Zdzl,
n=0 2 m=-o J1 ZYm 0 ZzZ'm
where 8, , is the Kronecker delta. Then the structure func- (15

tion for such a random walk is where y,, = u+ 2mmi/in b.

* Clearly, the second term in brackets is small param-
)\(k)zf f(expikl) dl= 2 a "coskb". (9 eter ) compared to the first. Thus, in arbitrarily weak elec-
n=0 tric fields, we obtain for the velocity the nonlinear depen-
Note that the structure functiox(k) satisfies the functional dence (2) on the electric field. We also note that the
equation nonanalytic behavior of the structure functionlas:0 and
A(K) = an (kb) + cosk. (10 the nonlinear dependence of the velocity on the electric field

in arbitrarily weak fields are asymptotic.
Hence, aK—0, the structure function is a power law with
exponentu=In a/ln b. Nonanalytic behavior of the type
|k|* as k—0 can be obtained with exponept by taking
Mellin transforms or using the Poisson sum formysee

Ref. 1 for detaily _ _ We now consider the continuous hop-length distribution
Next we introduce anisotropy into a random walk alongand find the particle velocity in an electric field for this case.

sglf—similar clusters. By virtue of the specific features of|n the continuum limit of Ley hops, the distribution in hop
Levy hops, a particle can travel any distarigkin one step, length is a power law,

so that a small anisotropyHa with a=qESKT over a
small displacemens can turn out to be exponentially large f(L)ec 1/LAFL, (16
over large distances”. Since in each step the diffusing par-
ticle leaves a site, the sum of probabilities of moving along
the field, W, , and against the field)/_, must equal unity,
i.e., W, +W_=1. This leads to an expression for the prob-

3. CONTINUUM LIMIT OF LEVY HOPS

and the probability of finding a particle at poirtafter n
steps is determined by the integral equation

abilities of moving along and against the field: Py LX) = f‘” Pa(y) a+y1' a7
_ azo " | bl
= (1+a)b”+(1_ a)b”' Simple transformations lead to
Hence, if diffusion in an electric field occurs via\nehops, o ay
the structure function is Pnii(x)= fo [Pn(x+y)+ Pn(X—y)]W- (18
2N (k;E)= % a "[coskb"+i sin(kb") (W, —W_)]. (12 Now we introduce anisotropy into random walks with a
n=0

power-law hop-length distribution function by analogy with
As in ordinary diffusion, the second term contains the driftthe discrete caséll) by substituting|x—y| for b". Using
velocity ask—0: (11) in the continuum limit and18), we can easily derive an

equation for the particle number density in an electric field:

MK E) “ b\ (14 @)= (1—a)®"
=i o= 2 |5 n n #[(1+ a)'Py(x+y)+(1—a)'Py(x—y)]d
it =0 \a) (1+a)”+(1—a)® Pn+1(><)=f0[( C[Y()1+L)t+y()1—(a)t]o|l>)<—y(|ﬂ+1y)] y
s (b (19
NZO 3 tanh ab”. (13

ExpandingP,(x*y) in Taylor series and separating even
Clearly, the drift velocity satisfies the functional equation and odd powers of, we obtain
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I n+1(X)
f =
0 0

+Jm S PMIPL(x) Y™ (1) - (1-a)'] gy
0om=0 gx2m+l [(1+a)t+(1—a)t]|x—y|’”1.
(20)

P*"Py(x) y*"dy

|x—y[#*t

The first term on the right-hand side of E§O) corresponds

V. E. Arkhincheev 563
Ak, & a)=> a "[cogkb"+k&)+i
n=0
X sin(kb"+ké&) (W, —W_)]. (25
Accordingly, for the velocity we have
IN(K;E o b+
V=i ( )|M= > ¢ tanh ab"+ aé).  (26)
ot n=0 an

To calculate the sum on the right-hand side of Etf) we
employ the Poisson method. Clearly, the velocity turns out to
be nonlinear in the fieldEq. (2)) in arbitrarily weak fields

to the diffusion contribution, while the second term contains(qE&/kT<1) and linear in strong fieldsqE£/kT>1):

the field-current contribution. Accordingly, the expression

for the field current is

JocFZ
0 m=0

Introducing the variable= ay and reducing Eq(21) to di-

9*MP(X)

P (21

y2™ Atani ay) dy.

mensionless form, we obtai{2), which represents the non-
linear current—field dependence in arbitrarily weak fields

(a—0).

4. TRANSITION FROM ORDINARY DIFFUSION TO LE VY
DIFFUSION

In this section, in addition to lwy hops, we allow for

Vo EE2H, (27

Thus, the particle velocity in an electric field has two
asymptotic limits in accordance with two diffusion regimes:
Levy hops and ordinary diffusion.

For the particle mobilityp we can write the above result
in scaling form:

7o €27 HE(QEEIKT), (28)
where the scaling functiof(x) has the asymptotic behavior

1, x<<1,
Fog= XHT2 x> 1. (29

On small scales, where ordinary diffusion dominatésg (
<¢), particle mobility depends only on the homogeneity
length & while on large scales, where e hops dominate

ordinary diffusion and consider the transition to linear de-(| _> ¢), mobility ceases to depend on the homogeneity
pendence of the velocity on the electric field due to ordinaryength and becomes a function of the extent of the flaid

diffusion. The SimpleSt way to do this is to introduce a f|n|tew|th the same exponent_ In other Wordsy in such fields the
hOp |ength§ at each Step. What we obtain is a random Walkm0b|||ty “forgets” the homogeneity scale and becomes a

in which ordinary diffusion alternates with kg hops. How-

nonlinear function of the electric field.

ever, due to the superlinear time dependence of the rms dis-

placement for Ley diffusion, on small scalegtimes the

main contribution to the random walk is provided by ordi-

nary diffusion, while over long time intervals it is the e

hops that contribute most to the random walk. Accordingly,

the hop-length distribution function has the form

f(l):nzo a "[& — iyt I s g)- (22

Hence the structure function is

x(k,§)=n§=)0 a~"cogkb"+K¢). (23)

In the limit of small lengths §—0), this formula turns into
the expression corresponding to ordinary diffusion:

lim\(k, &)= a?_' coské. (24)

b—0

Anisotropy can be introduced into random walks by the

method described earlier: we replace the hop lehdtivith

the quantityb"+ £. Thus, the structure function in an electric

field for finite hop lengths is

5. CONCLUSION

Nonlinear properties of inhomogeneous materials have
attracted much attention from both theoreticians and
experimentalisté-12 Theoreticians usually expand the cur-
rent in powers of the electric field out to a cubic nonlinearity:

J=0E+ x|E]’E+- - -. (30)

Our results differ substantially from those obtained by such a
method. In the microscopic model of e diffusion, we
show that in the event of vy hops the current proves to be
a highly nonlinear function of the electric field because of
the unusual regime of diffusion in space, i.e., there is no
linear term in the field expansion of the current, E2f). We
examine the transition from ordinary diffusion to\yehops

by introducing a finite displacement lengthat each step.
We show that the problem acquires a new parameter
gE&/KT, that determines whether the particle mobility be-
haves linearly or nonlinearly. In other words, a new length
Le governed by the electric field emerges in such diffusion
problemst?

Le=kT/qE. (32)
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To appreciate the significance of this quantity, we con-of the dependenc@) was recently corroborated by computer

sider an ordinary random walk in an external electric field.modeling of particle drift in the presence of\yediffusion®

Let us imagine that the medium is partitioned into blocks of  As for experimental results, many researchers have ob-
sizeLg. We then study the behavior of a particle within a served the nonlinear power dependence of the current in in-
single block. With a probability of order unity the particles homogeneous materials with exponents close to the
leaves such a block when it moves along the field but doeanomalous-diffusion index and have provided various expla-
not leave the block when it moves against the field. In othenations of this phenomendisee, e.g., Refs. 11 and )12n
words, within a block whose linear size is of ordgs, or-  our opinon, nonlinear behavior can indeed be observed, and
dered motion prevails over diffusion. This makes it possiblethere is a universal explanation for nonlinear behavior as
to estimate the particle velocity to be stemming from the anomalous nature of random walks in
inhomogeneous media. Comparisons of experimental and

V=Lelte, (32) theoretical results require further study, however.
wheretg is the diffusion time for displacemeitz . For or- This work was initiated by numerous interesting discus-
dinary diffusion te=L2/D, and we have the well-known sions with E G. Batyev and EN. Baskin. The author is also
Einstein formula grateful to A. A. Snarskifor kindly supplying offprints of
V=2DE/KT. (33) various papers.

Whep Lery hops fjom.inat(_a, t.he same estimates.yield Eq*>E_ma": varkhin@bsc.buriatia.ru
(2), and in the two diffusion limits we have29). Earlief a
dependence of typ@9) was predicted by a phenomenologi- T—— _

s . . - B. D. Hughes, M. F. Shlesinger, and E. W. Montroll, Proc. Natl. Acad.
cal description of anomalous diffusion along percolation ¢ i";sp7s 3287(1981)
clusters in the effective-medium approximation. The correla-2g, Mandelbrot, Fractals: Form, Chance and Dimensioffreeman, San
tion length of the percolation clusters was taken as the ho- Francisco(1977.
g p o ok .
mogeneity length. We also note that in contrast tonte gélz('gg;” and J. Klafter, Physica 86, 436 (1993; Phys. Rev. 47,
hOpS_, anomalous d|ffu5|o_n aI(_)ng percolation clusters is of B, |. Shklovski and A. L. Hros, Electronic Properties of Doped Semi-
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The magnetic susceptibility, electrical resistance, specific heat, and thermal expansion coefficient
of SmB;, Sm, B, and Sm_,La,Bg (x=0.1 and 0.2 are measured in the temperature
rangeT=4-—300 K. The dispersion curves of the acoustic phonon branches in lanthanum-doped
samples are studied. A combined analysis of the results confirms the existence of an

activation gap in the electron density of states in both nonstoichiometric and lanthanum-doped
compounds. The anomalies in the electronic component of the thermal expansion

coefficient are associated to a considerable degree with the temperature variation of the valence
and, like the magnetic susceptibility, reflect features offtekectron excitation spectrum.

It is found that lanthanum doping does not lead to significant changes in the anomalies in the
phonon spectrum of SmBIt is established that the homogeneous intermediate-valent

state of the samarium ion is fairly stable and is maintained when the perfection of the Sm sublattice
is violated. © 1999 American Institute of Physids$$1063-776(199)01903-4

1. INTRODUCTION =2.55+0.0314"1° |t is generally assumed that the valence
instability of RE ions is characterized by the presence of
Samarium hexaboride (SrgBis known as the first of charge and spin fluctuations with a characteristic time
the valence-instable compounds to be discovered. Its proper-10~?—10** s. Charge fluctuations should influence the
ties have been actively investigated since the 1970's, afattice excitation spectrum under certain conditions, and spin
samples of increasingly higher quality were obtained. Thidfluctuations should be manifested in the magnetic excitation
compound evoked heightened attention because of two chagpectrum. In fact, the results of the measurements of the
acteristic features. First, an unusually narrow gagb(meV) phonon dispersion curves of Smi Ref. 17 reveal overall
was discovered in the electron density of states of §rifBe  softening of the acoustic and low-lying optical phonons in
existence of the gap has been confirmed by numerous expedgemparison to isostructural LgB In addition, distinct
ments on the resistivity, Hall effect, and specific hedtas  anomalies in the longitudinal-acoustic branches along the
well as optical measuremems’. The nature of the gap in [110] and[111] directions and an additional mode, which is
SmB; has been discussed from various standpoints. It halbcated in the energy gap between the acoustic and optical
been interpreted as a hybridization §agnd as a conse- branches, were discovered. Some important results were also
quence of Wigner crystallization in the métak the forma-  obtained when the magnetic excitation spectrum of $mB
tion of an exciton state in an intermediate-valent pHide. was investigated in Ref. 18 and 19. In particular, a narrow
has been theorized that the gap in the electron density dbw-energy excitation with unusual properties was discov-
states vanishes when Sgis doped with other rare-earth ered at low temperature§ €40 K) in the magnetic compo-
(RE) ions' or when pressure is appliédHowever, in Ref.  nent of the inelastic neutron scattering spectrum along with
13, where the influence of doping on the hybridization gapsome broad structural peaks associated with intermultiplet
was investigated by measuring the electrical resistance, ttansitions. An explanation for the specific features of both
was discovered that the gap is maintained in all compoundthe phonon and magnetic excitation spectra based on an ex-
based on SmBhaving a state with an intermediate valence.citonic model, where the key factor is the formation of a
Thus, there is no unequivocal answer to the question ofnixed quantum-mechanical state for each Sm ion, was re-
whether the gap vanishes or whether the Fermi level is diseently proposed®?! An alternative model, which accounts
placed relative to the gap. for the electron density of states and the magnetic excitation
The second feature of this compound is that the saspectrum of SmB was developed in Ref. 22. It is based on
marium ions in SmBare in an intermediate-valent state. The the concept of a mixed-valefinhomogeneoysstate for the
valence of the samarium ion at room temperature estimate8m ions in SmB. However, neither of these models is free
from the lattice constant, the magnetic susceptibility,lthe  of certain difficulties in substantiating the original approxi-
absorption edge, and the ‘Mgbauer effect is mations. Both the variation of the mean valence and the con-

1063-7761/99/88(3)/9/$15.00 565 © 1999 American Institute of Physics
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centration of free carriers are quite critical for both models.boron atoms were taken from the literatt/ré® and were not
For this reason it would be interesting to examine the transvaried during fitting. The neutron-diffraction data were
formation of the properties of SmBas the valence state of treated with allowance for absorption by the RE ions and
the samarium ions varies. boron atoms. The full-profile analysis showed that violation
The valence of the samarium ions in Sgdan be varied of the stoichiometry leads to a decrease in the lattice period
by replacing Sm by di- and trivalent ions of other elements(a=4.1344+0.0003 A for SmB, a=4.1278-0.0003 A for
When Sm ions in the RE sublattice of Sgare replaced by Smy Bg, a=4.1563+0.0003 A for LaB, and a=4.1555
La®" ions, the valence of the samarium ion decred3@he  +0.0003 A for La ¢Bs), while the positional parameter of
kinetic and magnetic properties of a series of samples witlthe boron atoms remained essentially unchanged. The analy-
the general formula Sm,La,Bg have been studied in some sis also confirmed that the ratio between the populations of
detail’® Another method for altering the valence of the Smthe sites of the RE and boron atoms is consistent with the
ions in SmB, but without inserting foreign atoms into the structural formulas. The values of the lattice period at
RE sublattice, is to create a deficiency of samarium iondf=300 K for Smy g a;.Bs and Sngd.a,Bg were 4.1449
(SmBg). In this case the crystal structure remains stable+0.0003 A and 4.13660.0004 A, respectively.
over a very broad range of samarium concentrations. Ac- Measurements of the temperature dependence of the lat-
cording to the results of the magnetic susceptibility measuretice period aff = 10— 300 K were performed on polycrystal-
ments, the lattice period, and tle, absorption edge, the line samples using x-ray diffractiofCu K, radiation on a
valence of the samarium ion in §By (x=0.7—0.9) re- DRON-3 diffractometer in the range of angle®2120
mains appreciably different from an integer value and shifts— 160° with a closed-cycle helium refrigerator. The tempera-
toward 3" [v(300K)=2.63+0.03].24~% The current list of ture dependence of the thermal expansion coefficient
experimental studies of the physical properties of nonsto-
o X . A e . 1 da
ichiometric samarium hexaboride is very limited. It includes a=——, (1)
measurements of the lattice period and the magnetic suscep- adT

tibility at relatively high temperaturesT(>80 K), whereas as obtained by differentiating the temperature dependences

the features of the intermediate-valent state are displayegk the lattice periods after preliminary smoothing by cubic
most clearly at lower temperatures. It is noteworthy that theyolynomials.

nonstoichiometric compound $B itself merits special at- Measurements of the temperature dependences of the
tention be_cause of its stability when there is a large numbegpecific heaC(T) in the temperature range from 2 to 45 K
of vacanciegup to 30%. were performed in an adiabatic calorimeter.

The purpose of the present work was to study and jointly  The possible influence of the defect density in the lattice
analyze magnetic, kineti@lectrical resistangeand thermo-  on the specific heat and the thermal expansion coefficient
dynamic (specific heat and thermal expansion coeffidient was evaluated on the basis of a comparison of the data ob-
properties of the same samples of the stoichiometric comtained for the lanthanum compounds,Bg (x=0.8 and ).
pound SmB, the Sm-deficient compound g@Bs, and the  The lattice contribution to the thermal expansion was taken
lanthanum-doped compounds 3ra; ,Bg (x=0.8 and 0.9 into account by subtracting the corresponding dependences
over the broad temperature range 4-300 K(2<45 K in  for SmBs and LgBs (x=0.8 and 1}, since the latter are
the case of the specific hgaas well as to study the influence structural analogs, in which, however, the La ions have an
of doping on the features of the phonon spectrum of §mB emptyf shell.

The resistance measurements were performed by the
four-probe technique at temperatures between 4 and 300 K.

The magnetic susceptibility was measured on a magne-

Powdered samples were obtained by the hightometer with a magnetic field strength equal to 50 Oe. The
temperature reduction of Si@5 by boron with variation of temperature range for these measurements was 1.5-300 K
the ratio between the amounts of the oxide and boron in théor SmB; and 5-300 K for SmgBe.

Institute of Problems in Materials Science of the Ukrainian  The dispersion curves of the acoustic phonons were ob-
National Academy of SciencéKiev). The single-phase state tained using single-crystal, doubly isotopic samples of
of all the samples and their correspondence to the cubi?:r"‘Sml_XLailBe (x=0.1 and 0.22 having volumes of 0.25
structure of CaB were established by x-ray diffraction cm® (x=0.22) and 0.1 crm(x=0.1), which were cut from
analysis. rods obtained from the polycrystalline material by the cru-

To refine the structural parameters of @pand LgBg  cibleless float-zone technique in the Institute of Problems in
(x=0.8 and }, a full-profile Rietveld analysis was per- Materials Science of the Ukrainian National Academy of
formed using x-ray and neutron diffraction at room tempera-Sciences. The measurements were performed on a 2T1 tri-
ture in the range of anglesg220—160°. The following axial crystal spectrometefLaboratoire Len Brillouin,
parameters were varied during the refinement of the strucSaclay, France which provides the high flux of monochro-
ture: the scale factor, the parameters of the background, theatic neutrons onto the samples needed in experiments with
shape of the peaks, the lattice period, the parametric positiosuch small samples, which absorb neutrons fairly strongly
of the boron atom, and the populations of the sites of the Sntby virtue of the residual admixtures of strongly absorbing
and boron atoms. Because of the small range of variation d8m and boron isotopgsThe measurements were performed,
the momentum transfer, the thermal factors of the RE andor the most part, in a regime with constant momentum trans-

2. SAMPLES AND METHOD
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FIG. 1. Temperature dependence of the magnetic susceptibility of samples UT, K

of SmB; (), Smy ¢Bg (O), and Sy 7say .86 (A, Ref. 15. Dashed lines
— calculated curves for free $hand Sni* ions; dotted line — calculated
curve for Sng ;da, .88 under the assumption of an inhomogeneous state of(®) and polycrystal .[(])]’ SydBs (©), and Srg7d-2.2886 (4, Ref. 13.
the Sm ions(see text [xe=0.56y(SM?")+0.44¢(Sn7)]; dot-dashed M€ — approximation given byp) (see text

curve — calculated curve for SmgBy o= 0.4x (S ") +0.6x(Snt™)] un-

der the same assumption; solid curve — calculation fory 8 [xca . .
=0.3y(Sn?")+0.7x(SnP")] under the same assumption. The temperature curves have linear segments, which are

characteristic of a thermally activated type of conduction:

o ) R=Roexp — E,/2ksT). )
fer and fixed final energyE;=13.7 meV k;=2.66 A1) g
and, in a few cases, in a regime wih= const. Pyrographite The segment for the single crystal lies in the temperature
(the 002 reflectionserved as the monochromator and anafange 6<T<20 K, and the segment for the polycrystal ex-
lyzer, and the higher orders of the reflections were suptends over a somewhat smaller range<(B<20 K). The

pressed by a pyrographite filter. The temperature was stabvidth of the activation gap in the electron density of states
lized by a closed-cycle helium refrigerator. obtained from measurements of the resistance on the single

crystal isEy/2=E,~50 K. At T>35 K, as well as aT <5 K

for the single crystal and@<8 K for the polycrystal, the
temperature dependence of the resistance deviates from a
Magnetic susceptibility straight line.

The thermally activated type of electrical resistance is
ntained as a whole for ygBs. A linear segment of the
resistance curve is observed in the temperature range

: . . 15<T<30 K. The width of the gap in the electron density of
curve for SmB agrees well with the results obtained in Refs.States was found to bE,~20 K. Unlike the samples with

30 and 31. For all compounds the experimental dependen%ﬁe stoichiometric composition, the material wihk 0.8 ex-

of the magnetic sus_cept_lbnlty differs from+the calculated hibits an additional linear segment at low temperaturgés (
curve for free samarium ions (S and Smi*). It can be  _ )

seen from the figure that the temperature dependences of the The temperature dependence of the electrical resistance

magnetic susceptibility for the samples with an imperfect Sr‘r} SR
: ! . - orS has a complex course and is similar on the
sublattice vary in accordance with the variation of the va- Mh.79-80 2586 P

) . ) . whole to the dependence for a metal.
lence relative to samarium hexaboride and approximate the
curves for the corresponding ions with integer valence. Thes ific heat
x(T) curves undergo quantitative changes in the temperaturepeC' Ic hea
range 2 T<100 K. The characteristic maximum for SgpB Figure 3a presents the data from measuring the tempera-
at T=50 K on the x(T) curve vanishes or shifts toward ture dependence of the specific h&(T) for La,Bs and
lower temperatures in response to violation of the stoichiomSm:Bg (x=0.8 and }, as well as for SgglLag Bs. The re-
etry and shifts toward somewhat higher temperatures in theults for SmB agree well with the data in Ref. 3. As can be
case of the lanthanum-doped compound. seen, violation of the stoichiometry in the valence-unstable
samarium hexaboride SBg leads to appreciable changes in
the specific heat, while the temperature dependences for the
analogous lanthanum-based compoundsBkainset in Fig.

Figure 2 shows the temperature dependence for single8a) essentially coincide.

crystal and polycrystalline SmBand nonstoichiometric The electronic contribution to the specific he@t, (Fig.
Smy ¢Bs, as well as the results for SmLag »Bg from Ref.  3b), was determined as the difference between the total spe-
13. Both the single crystal and polycrystal of Sgrékhibita  cific heat and its lattice component;, solid line in Fig.
sharp increase in resistance as the temperature is reduc&d). The lattice component was calculated from the phonon

FIG. 2. Temperature dependence of the resistance fors$siBgle crystal

3. RESULTS

Figure 1 presents the temperature dependence of ﬂ}%ai
magnetic susceptibilityy(T) for the samples of SmBof
Smy ¢Bs, as well as for Spyday B (Ref. 15. The x(T)

Electrical resistance
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24r L Y'Y a 20 A b
o s a « o F'I_G. 3. Temperature depend_ences qf th_e total spe-
20h= K a® IO-_‘-J N %o cific heat(a) and the electronic contribution to the
g » o° £ Py specific heat(b) for SmBs (0), SmyeBs (O),
16h o W8 |x el WS eetfe Smyelao Bs (4), LaBs (©), LayeBs (#), and
x 7Y a8 B o® LaB, (dashed line, Ref.)3 Solid line — lattice
<_'> [} 6r 0 30 i e component of the specific heat of SgBalculated
£ 12 § LK © from the phonon density of statésee text Inset:
= - o a) temperature dependence of the specific heat of
< 8 ° 4t a a8 La,Bg (x=0.8 and J; b) electronic contribution to
00080000000g80, the specific heat for samples of SgBand
4 2t °o° o a2 Smyglay B after subtraction of the contribution
°o° o AAAA associated with thd-electron excitation spectrum
: . seaphneesss™ . (see text
0 10 20 30 40 T.K 6 10 20 30 40 T,K

density of states for SmBwhich was obtained from model Thermal expansion
calculations with consideration of the contribution of the
exciton-phonon interactidf on the basis of experimentally
measured dispersion curvEsThe electronic contribution to
the specific heat of SmBhas a maximum at=~40 K. The
behavior of Cy(T) for SmygBg in the temperature range
above 10 K is similar to that for SmBthere is a maximum  ayhibits a minimum af ~50 K, which is well known from
atT~25 K, but its amplitude is smalléFig. 3b). In contrast  ine Jiteraturé®® For the lanthanum compounds By (x

to nonstoichiometric samarium hexaboride, the specific-heat g gng 1 violation of the stoichiometry leads to variation
maximum for Srggl.ag B is probably at a higher tempera- f only the absolute value of the lattice parameter and does
ture (T>40 K) than is the specific-heat maximum for SPB ot influence the smooth temperature course of the thermal
The electronic component of the specific heat of the sagypansion coefficient. Violation of the perfection of the Sm

. . . 2 2 .
marium compounds is plotted iB¢/T vs. T5(T%) coordi- g pjattice in samarium hexaboride does not eliminate the
nates in Fig. 4. At low temperatures §gBs exhibits quali-  minimum in theay(T) curve but leads to variation of both

tatively different behavior in the temperature dependence ofs position and the area under tag(T) curve (Fig. 5). In
Ce/T in comparison to Smg there is a sharp increase in the the case of the nonstoichiometric compoundyg8g the po-
specific heat with decreasing temperature, which is usuallition of the minimum shifts toward lower temperaturds (
observed for heavy-fermion materials. The estimated value. 55 K), and the width of the temperature range where the

of the Sommerfeld coefficient af=2 K is y=~450  gnomaly exists decreases<T <65 K). The replacement of
mJ/motK?, which is almost two orders of magnitude greatergn, by La leads to displacement of the minimum of the

~ 2 ichi i . :
than the valuey~6_mJ/molK for stoichiometric SmB. anomaly toward higher temperaturég~ 120 K) and an in-
The value ofy also increases somewhat for the lanthanum<yease in the area under thg(T) curve.

doped sample ¥~60 mJ/molK? at T=4 K), but the char-
acter of the temperature dependence displayed bysSBB  phonon spectra

The temperature dependence of the electronic compo-
nentea, of the thermal expansion coefficient, which was ob-
tained by subtracting the value of(T) for LaBg from the
total thermal expansion coefficient for the Sm-containing
samples, is presented in Fig. 5. The plotaQf(T) for SmB;

maintained. . ) . -
Figure 6 shows dispersion curves for the longitudinal-
acoustic and some transverse-acoustic branchgs- 800 K
6 -1
[0} a,; 10%, K
0.4 1
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FIG. 4. Temperature dependence of the electronic contribution to the spe-
cific heat inCg /T vs. T?(T?) coordinates for SmB([J), Sm, B¢ (O), and FIG. 5. Temperature dependence of the electronic component of the thermal
Smyglag ,Bg (A). expansion coefficient for SmB(1), Sm, ¢Bg (2), and Sng oLa; 1Bg (3).
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FIG. 6. Dispersion curves for the longitudinal-acoustié) and transverse-acousti€A) branches in Sm ,La,Bg (x=0.1, 0.2, as well as in LaB and
SmB; (Ref. 17 at T=300 K. LA phonons in SmB(®), Smyd.ay1Bs (O), and Srg;d-ag B¢ (); TA phonons in SmB (+), SmyLayBg (X), and

Sm, 7da,8¢ (¢ ). Dashed line — LaBg

for Sm_,La,Bg (x=0.1 and 0.22 as well as LaB and cant deviation fromy.,(T) increases with increasing valence
SmB; (Ref. 17 along the three principal symmetry direc- of the Sm ions(among the samples measured, this range is
tions. All the Sm-doped compounds exhibit general softenbroadest for SgBs).
ing of the acoustic phonons in comparison to kaBut the The results of the direct measurements xdfT) for
changes in their phonon frequencies in comparison to SMBSmMB; are qualitatively consistent with a calculation of the
are negligible and amount to about 5% on the average. Theagnetic susceptibility using the Kramers—Kronig relation
anomalies in the longitudinal-acoustic branches along thérom magnetic inelastic neutron scattering spetir this
[££0] and[£&¢] directions for a value of the reduced wave case the absolute values¢fT) obtained from integration of
vector equal tag/gma=0.25 in SmB are also observed in the neutron spectra are less than the magnetometric values.
Sm;_,La,Bg (x=0.1 and 0.2¢, but they become less pro- The disparities between the absolute values are probably due
nounced as the La concentration is increased. to the strong anisotropy and unusual form factor of the low-
Temperature measurements were performed for severahergy excitatiot® The change in the course qf(T) for
phonon frequencies at individual points of the Brillouin zonesm(La)Bg may be caused by reorganization of its magnetic
(Fig. 7). As can be seen from the figure, when the temperagycitation spectrum in comparison to SgiB for which the
ture is reduced by 250 K, most of the wave vectors are Chartemperature dependence of the spectral function has been
acterized by changes as large as 0.1 THz in the frequencieg,died in detail. In particular, for SmBhe redistribution of
of tr_\e lattice vibrations. The greatest frequency changes 0gGpe intensity from the region of the inelastic peak with an
cur in the range 2 T<100 K. energy of 14 meV ar <20 K into the region of quasielastic
scattering af > 100 K is responsible for the observed depen-
4. DISCUSSION dence ofy(T). The growth of the energy of this excitation
' and the smoothing of its temperature dependence with in-

An analysis of the magnetic susceptibility measurement§reasingx in the alloys Sm_,Las (Ref. 33 account for the
supports the hypothesis that an intermediate-valent state efendency observed in the behavior pfT) for these com-
ists both in the case of doping and in the case of violation opounds. Asx<— 1, the curves tend to the plot g{T) for the
the stoichiometry. In fact, the decreasejnin Sm,gBg in  divalent Sm ion. Thus, a simple “mechanical mixture” of
comparison to SmBover the entire temperature range inves-heterovalent Sm ions is not observed in any of the com-
tigated attests to an increase in the valence of the samariuppunds investigated, in contrast to, for example, the inhomo-
ions, in agreement with the data in Ref. 23. On the othegeneous mixed-valent system $e,.>* The observed dif-
hand, a decrease in the valence of Sm and an increage inferences between the(T) curves of the imperfect samples
are observed in Sgpd-a, ,Bs. None of the measured curves can occur mainly because of changes in the mean valence,
coincides with they(T) curves calculated for integer-valent but with conservation of a homogeneous intermediate-valent
Sm ions(see Fig. 1 In addition, the temperature depen- state.
dence ofy(T) does not coincide with thg.,(T) curve ob- Let us consider the results of the resistance measure-
tained under the assumption of an algebraic sum of the corments(see Fig. 2. The temperature dependence of the resis-
tributions x (Snt™) and y(Sn?*) in a ratio corresponding to  tanceR(T) is known to be determined mainly by the behav-
the mean valence. The temperature range of the most signifier of the band electrons, their interaction with localized
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curve of Smg 74-ay »5Bg can be attributed either to disappear-
0.1 (£t0l ance of the gap or the appearance of additional electrons
C”M - upon doping with LA".
N T - - T L If there is a gap in the electron density of states, the
= 0l (5501 thermal excitation of electrons through the gap should lead to
£ the appearance of a contribution to the specific heat resem-
§ 0 bling a Schottky anomaly. The latter can be observed in the
33“_0‘1’ electronic contribution to the specific heat of Sgnéhd, in
o its time, was one of the pieces of evidence for the existence
T 01 of a gap. Apart from the contribution of the gap @(T),
! there should also be a contribution associated with the state
< 0 of the localizedf electrons in the Sm ions, which was not
analyzed in previous studies. In intermediate-valent sa-
-0.1 marium hexaboride thd electrons have a ground state,

0 56 100 150 200 T.K which is a singlet, and a first excited state, which is a
FIG. 7. Temperature dependence of the frequency difference oiriplet.ﬂ It follows from magnetic inelastic neutron Scattering
longitudinal-acoustic phonons in grLay Bs in the [£00], [££0], and  measurements that the characteristic energy of the low-
[££¢] directions foré=0.35 (O), 0.45 (1), and 0.25 (1); the curves were  energy excitation corresponding to the transition between
drawn by eye. these states is approximately 14 mB\Such an excitation
spectrum makes a contribution to the specific heat with a
maximum atT~55 K. After this contribution is taken into

moments, the presence of impurity levels, etc. As was notedccount, a component of the specific heat associated only
above, samarium hexaboride has a narrow g&® K. The  with excitation through the gap remain€}(T) in the inset
nonlinear portion of the plots of [R(T)/R(290K)]=f(1/T) in Fig. 3b. Thus, the results of the specific heat measure-
at T>35 K is most probably due to the temperature depenments convincingly confirm the presence of a gap in the
dence of the carrier mobility. The deviation of the tempera-electron density of states. Its width can be roughly estimated
ture dependence from a straight li(feig. 2) at low tempera- using a simple two-level model, and is approximately 60 K.
tures (T<6 K) is due to a change in the type of conduction. This value is consistent with the width of the gap in the
Hopping conduction probably becomes decisive at theselectron density of states obtained from the resistance mea-
temperatures. In a polycrystal hopping conduction begins tgsurements.
play an appreciable role at higher temperatures, probably be- The situation in SggLay ,Bg is more complicated: the
cause of the lower degree of purity and the imperfect naturspecific heat data are qualitatively similar to the results for
of the crystal, as was recently convincingly demonstrated irBmB;, and in this respect they differ from the resistance
Ref. 35. To account for the deviation B{T) from an expo- data. It follows from the magnetic inelastic neutron scatter-
nential law atT<3 K, Batko et al*® proposed a model ing measurements that the characteristic scale of the low-
based on the appearance of a fine structure in the hybridiz&nergy excitation associated with the new state of the Sm ion
tion gap, which is associated with the presence of a donor ds roughly 25 meV in SmglagBs.>® The corresponding
acceptor impurity and lattice defects in the sample. state makes a contribution to the specific heat at about 110

The character of the temperature behavior of the resisK, which is significantly higher than the temperatures
tance of nonstoichiometric SygBg over the entire tempera- reached in our experiments. After the contribution from the
ture range investigate@ linear segmentsee Fig. 2 at low  excited state of thé electrons is subtracted fro@.(T), a
temperatures and a sharp decrease in resistance when ttantribution to the specific heat which is probably due
temperature is increasgi similar to the behavior of a typi- mainly to the gap remainsee the inset in Fig. 3blt would
cal extrinsic semiconductor. There are two segments correseem that despite the course of the temperature dependence
sponding to different types of conduction: intrinsic conduc-of the resistance characteristic of metals, the gap is main-
tion with E;~20 K and impurity conduction due to the high tained in the doped sample of $gha, -Bg. In addition, the
concentration of defectsamarium vacancigswhich intro-  lack of any evidence for a gap in the temperature dependence
duce additional states located several deg(@ed K) above of the resistance may be related to the presence of additional
the upper edge of the filled band. These states also speciBlectrons introduced by the La ions, which “shunt” the gap
the type of conduction at low temperatures, specifically thean the kinetic measurements. The additional states are mani-
hopping type of conduction. The activation gap in the elecfested by a change in the type of conduction, by the presence
tron density of states is still observed in the samples obf an additional contribution to the specific heaffat 15 K,
Smy, gBs, but its magnitude is reduced in comparison to theand by an appreciable increase in the value ¢éee Fig. 4.
gap in stoichiometric SmB The anomaly is also maintained in the plot@(T) for

The introduction of 25% lanthanum into SmBwhich  the nonstoichiometric samplsee Fig. 3h The lack of in-
produces a number of defects close to the number imlastic neutron scattering data for $g8¢ precludes evalua-
Smy B, is sufficient to cause the radical change from ation of the specific heat component associated with excita-
semiconductor type of resistance to a metallic type. It isions of f electrons. However, an investigation of the
noteworthy that the change in the character of R@) magnetic excitations in SymBa;sBg disclosed the dis-
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appearance of the peak characteristic of gnaB 14 meV  the extremum corresponds to the temperature at which the
and the appearance of a low-temperature feature of the matprgest change in the valence related to the effective tempera-
netic type at about 9 meV, which vanishes when the temture of the valence fluctuatiofisoccurs, i.e.
perature is raised slightlfat T=12 K).®” Since nonstoichi- - dn
ometry with respect to the samarium ions leads to an s:f zconst —yT= const Av, (4)
increase in the valence of Sm, as does their replacement by T dT
Ba ions @(SmysBaysBg)~2.7), it would seem that in S=KA
T 6/ L . =kAv, (5)
Smy B a similar excitation, which is responsible for the
intermediate-valent state of the Sm ion, appears at an energyherek is a proportionality factor. The valulke=0.39 was
appreciably smaller than 14 meV and produces a contribuebtained on the basis of measurements of the valence of the
tion to the electronic component of the specific heat only aSm ion in SmB at T=295 and 12 K by x-ray absorption
T<25 K. In this case the compone@{,(T) for SmygBg at  spectroscop¥ (Av=0.08). Knowing the area under the
T=30-35 K is mostly likely associated with the gap. Thus, anomaly ofa(T) and assuming thatvaries only slightly in
the result obtained is consistent with the conclusion follow-response to doping, we can calculate the temperature varia-
ing from the resistance measurements. The additional chargmn of the valence of the Sm ion in SBg and
carriers that appear in the case of doping by trivalent La ionsm, ol a, 1Bg. The calculation of the corresponding tempera-
are not present in S§RBg, and “shunting” of the gap does ture variations of the valence for 3pba,.Bg gives
not occur: the gap in the electron density of states is alsav(300-4K)=~0.1 (the increase inAv(300-4K) in the
maintained when there is a 20% samarium deficiency. lanthanum-doped sample is consistent with the result in Ref.
Despite the sharp rise observed in the plot T  14), and when the stoichiometry is violaté8m, ;Bg), the
=f(T?) asT—O0 (see Fig. 4 for Smy ¢Bg, this compound valence decreases iy (300—4K)~0.04.
should probably not be classified as a heavy-fermion mate- In accordance with the Gneisen relation, the thermal
rial. In fact, the value of the magnetic susceptibiliiyhich is  expansion coefficient is proportional to the specific heat.
an order of magnitude smaller in 3gBg than in heavy- This relationship can be generalized not only to lattice exci-
fermion compoundsand the temperature dependence of thetations, but also to electron and other excitations. Then, if
resistance do not correspond to the behavior of heavy€.(T) contains a contribution associated with the presence
fermion systems. The rise observed can be attributed eithef a gap, it should also be manifesteddag(T). At the same
to the presence of a low-energy excitation of the samariuntime, the anomalies in the thermal expansion coefficient and
ion or to the appearance of additional electron states causede specific heat probably cannot be attributed to the pres-
by vacancies in the samarium sublattice iny3By. These ence of a gap in the electron density of states alone, as was
vacancy-related states can be responsible for the appeararmggested in Ref. 42, since the contribution associated with
of a segment with a linear dependence of the resistance #tef-electron excitation spectrum must be taken into account
T<10 K (see Fig. 2 However, it should be noted that an when the electronic components are considered. In addition,
alternative interpretation is possible in principle. More spe-the spectrum of lattice excitations of valence-unstable sys-
cifically, the possibility of the formation of a heavy-fermion tems may differ from the spectra for the isostructural com-
state due to the partial delocalization foélectrons in com- pounds devoid of electrons,’ which are usually used to
pounds with a small number of free electrons was advancethke into account the lattice component of the specific heat
in Ref. 38 in connection with the results of investigations ofand the thermal expansion coefficient. Different components
mixed-valent compounds of the type $a, which are also  of certain properties can be manifested to different degrees.
characterized by a large value ¢fin the absence of free In fact, an examination of the results for all the compounds
carriers. investigated reveals that, despite the qualitative similarity be-
Let us examine the results of the thermal-expansiortween the temperature dependeniths existence of extrema
measurementssee Fig. 5. It is usually assumed that the and their displacement toward lower temperatures in the
anomaly in the electronic componem(T) of intermediate- nonstoichiometric sample and toward higher temperatures
valent systems is caused by variation of the valence of thevhen samarium is replaced by lanthanum, see Figs. 3b and
RE ion, which is a function of temperatut¥.** Under such  5), the temperature at the maximum of the electronic com-
an assumption, in the case of a linear relation between thponent of the specific heat and the temperature at the mini-
variation of the valence and the variation of the lattice con-mum of a(T) for the same compound differ significantly.
stant, we can write Therefore,aq(T) is determined not just by the contribution
from the gap in the systems under consideration. The
dina dina dn dn anomaly in the electronic co_mponezmg,(T) shoulq also re-
——=————=const —, (3) flect features of the magnetic spectrum of the intermediate-
dT dne dT dT valence compound, primarily changes in the state offthe
subshell. In this context we must point out the existence of a
wherea is the lattice constant an is the population of the correlation between the temperature behavior of the elec-
f subshell of the Sm ion. In this case the afeander the tronic contribution to the thermal expansion coefficient and
anomaly of the electronic component of the thermal expanthe magnetic component of the inelastic scattering spectrum
sion coefficient specifies the change in valence as a functioof Sm, _,La,Bg. First, the position of thexy(T) anomaly
of the change in temperatufdv (AT)], and the position of coincides with the temperature at which the low-energy ex-
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citation discovered in the magnetic component of the scattefscopic properties of compounds based on gniBthis case
ing for SmB; and Sng dLay 1Bg (Ref. 33 is significantly sup-  the homogeneous intermediate-valent state of the Sm ion is
pressed. Second, both the minimumaj(T) and the low-  maintained as a whole in all the compounds investigated,
energy excitation of SmBare shifted very sharply toward although the mean valence of the Sm ion and the width of
higher energies when only 10% of the Sm atoms are replaceghe energy gap in the electron density of states vary some-
by La. The latter finding is probably attributable to disrup- what. It has been shown in this work that consideration of
tion of the coherency in the Sm sublattice, which plays ahe reorganization of thEelectron excitation spectrum upon
definite role in shaping the magnetic excitation spectféim. variation of the valence is important for understanding the
The significant role of the coherency of the RE sublatticetransformation of the physical properties of the compounds
was also noted when the thermal expansion of the cominvestigated.
pounds Ce_,(Y,La);Ni was investigated. For example, the We express our sincerest thanks to A. S. Mishchenko for
position and height of the maximum of the temperature defruitful stimulating discussions of this work, J.-M. Mignot
pendence of the electronic component of the thermal exparand M. Braden for their substantial support of this work, and
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We propose an approach to describing the density of fluctuation states in a disordered solid
solution with a strong perturbation introduced by isoelectronic substitution in the range of
attraction-center concentrations below the threshold of percolation along the sites of a

disordered sublattice. To estimate the number of localized states we use the results of lattice
percolation theory. We describe a method for distinguishing, within the continuum percolation
theory, among the various “radiating” states of the fluctuation-induced tail, states that form

the luminescence band at weak excitation. We also establish the position of the band of radiating
states in relation to the absorption band of the excitonic ground state and the mobility edge

of the system. The approach is used to describe the optical spectra of the solid solution
ZnSgq _.Te;, which at low Te concentrations can be interpreted as a system with strong
scattering. We take into account the exciton—phonon interaction and show that the calculated and
observed luminescence spectra of localized excitons are in good agreement with each other.

© 1999 American Institute of Physids$1063-776(99)02003-X

1. INTRODUCTION noisé?~19. This, however, does not correspond to the physi-
cal nature of solid solution’s. Some aspects of tail fluctua-
Wide-gap solid solutions of the II-VI groups are being tion states with the atoms of two species distributed at ran-
actively used in manufacturing heterostructures. It is welljom over the lattice sites have been examined in Refs. 16
known that the changes in the optical characteristics of gng 17.
solid solution in relation to those of the compounds forming | this paper we develop a systematic approach to cal-
that solution is determined chiefly by two effects: the con-¢ating the density of fluctuation states of disordered solid
centration variation of the band gap and the smearing of the|sions to describe the optical absorption and luminescence
gap edge due to the formation of a fluctuation-induced tail Ofpectra of such solutions for the case in which the perturba-
localized states. . tion of electronic states introduced by the substituting atoms
In the absence of Iong-range order, the de;cnptyon of th%annot be considered small and a localization state can be
spectrum of the electronic states of a crystal is an |mportar1ft0rmed by a few substituting atorshe strong scattering

pro_blem_ of the physics of disordered s_ystems anq has rEfi'mit). The case of weak scattering was examined in Refs. 18
mained in the fore for many years. Reviews of earlier Workand 19

h ver the main directions of r rch in this fiel n ) . . .
that cover the main directions of researc this field can be In Sec. 2 we find the density of localized states by using

found in Refs. 1-4. A separate case is that of very low con- . . :
centrations of impurity atoms<1, where the perturbation a three-dimensional two-component model described by the

at a lattice site exceeds a critical value and leads to formatiofN€-Pand Hamiltonian with diagonal disorder. This type of
of split-off states. This problem is examined by Koster anddisorder emerges as a result of random occupation of the
SlateP (see also the results of more recent work in Refs. e5ites Of a crystal lattice by atoms of two species, éAgand

and 7 for electronic states and by Lifshftfor the oscillation B. We also use the continuum variant of this model. Here we
problem. For finite concentrations, attempts to solve for thdimit ourselves to the region of low concentrations Af
spectrum of impurity states were made in the coherent podtoms, which are attraction centecsyp., wherep, is the
tential approximation by Elliotet al® and by using more critical concentration in the problem of percolation along the
complex approachéd:*! Disordered solid solutions of crys- sites of the sublattice of the substituting atoms. When there is
tals form a group of systems for which allowance of thestrong scattering in solid solutions with diagonal disorder,
statistics of lattice-site occupation is critical to the under-fluctuation states may be formed by individual substituting
standing of the localization-energy distributions of what isatoms and by relatively small clusters of such atoms, which
known as the tail fluctuation states. In this connection, conform when the atoms are randomly distributed.

siderable attention has been paid to random-potential studies In Sec. 3 we calculate the contour of the phononless
(a potential whose statistics is that of Gaussian whitduminescence band. Within the given problem, the possibility

1063-7761/99/88(3)/12/$15.00 574 © 1999 American Institute of Physics
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of optical recombination is limited by the exciton lifetime in py E . =E, or E,=Eg. In the plane wave representation, the

relation to the transitiongtunneling into low-lying states matrix element of the Hamiltonian in this case becomes
belonging to the tail of fluctuation states, with the transitionng:8q+ E, . Wherea is eitherA or B, and

accompanied by phonon emission. To describe luminescence

we must find the energy distribution of isolated states, i.e., eq=Wo=W,q @
states for which the channels of such relaxation are eithe the dispersion of the electron band.

closed or barely exist. The restriction here is due to the fi-

niteness of the tunneling radius. Of the total number of tail i . .

states only those are isolated for which the distance to neigk?—'l' The Green's function representation

boring states is greater than this radius. Generally, the prob- The Green’s function of a perfect crystalor B is

lem of finding the energy distribution of spatially isolated 1 i0-(R—R

states belongs to the quantum percolation théoty?-*°Iso- Gt (€)={el—H == explia-(Rn m)}, 3)
lated states in lattice models were studied in Refs. 30—36. If " " NG €e—eq~E,q

the finiteness of the tunneling radius is taken into accountyhereR, is the radius vector of the lattice site When the
one can employ the continuum theory of percolation ovefattice sites are occupied at random by atoms of two species,

overlapping sphere®*°Using the results of this theory, we the Green's function for each realization depends on the
can divide fluctuation states into states of sin@ieninter- composition and arrangement of the atoms:

acting clusters, states of superclustétemplexes consisting

of interacting clustejs and percolation cluster states. We  Gnm(@)={wl —H"*~ A} T, (4)
assume all along that the states of single clusters and thgnere| is the identity matrix, and the matricé4’¢ and A
ground states of superclusters are spatially isolated. are

Knowing the distribution of states among superclusters
makes it possible to establish the position of the phononless  Ham=Wn-m=(Wo—=Eg)ndnm, A=Andnm, 5

luminescence band in relation to the peak in the phononlesgiih £, the edge of the band considered.
absorption band of the excitonic ground state and the mobil-  The position of the bottom of the band of the solid so-
ity edge. lution in the virtual crystal approximation is related to the
In Sec. 4 we describe the effect of the interaction ofgyerage value oF,, at the site:
excitons and acoustic and optical phonons on the absorption
and luminescence spectra of localized excitons. In the con- (E)e=CEa+(1-C)Es. (6)
centration range of interest to us, we assume that an electron The energyw is also measured from the band bottom
interacts with the hole density distribution averaged over tth, with  positive for localized states. The diagonal matrix
fluctuation-induced well. The preliminary results of allowing glements of the potential can be written
for the exciton—phonon interaction can be found in Ref. 37.
Section 5 discusses the results of numerical calculations 2n=En—Ec. @)
of the absorption and luminescence spectra for the solid savhere the value of\, also depends on the concentration of
lution ZnSg_.Te. atc=0.15, which at such a concentration the solid solution.
may serve as a good model of systems with strong scattering. The solution of the eigenvalue problem for the crystal
There we also compare the contours of the calculated andamiltonian when the atoms of the two species occupy fixed
observed luminescence bands. but disordered positions can be obtained by diagonalizing a
matrix of rankN, each row in which has the form

A A _
2. SPECTRUM OF FLUCTUATION STATES wAQDA(n)'i”% (Hom= Andnm) @4 (m)=0. (8)

In the model developed in this paper we assume that thghe spectrum of the disordered system can be found as a
macroscopic volume of the solid solution consistdNaérys-  result of averaging, i.e., by summing the spectra correspond-
tal lattice sites occupied at random by two species of atomsng to different realizations with weight factors equal to the
AandB. The average numbers &fandB atoms are, respec- probabilities of each realization. Of interest from the stand-
tively, No=cN andNg=(1—c)N, wherec is the concentra- point of physics here is the imaginary part of the Green’s
tion of A atoms. The one-band Hamiltonian of this systemfunction averaged over all possible variants of occupation of

can be written the sites by atoms.
The expression for the density of states for a fixed set of
H=—S o W (¥, — W)+ E P2 1 values ofA, and fixed values of quantum numbers, which
% nWan( W =) ; nen @ we denote byA, has the form

whereW,, is assumed real. The diagonal eleménttakes _ ifx Ary(2
the valueE, if the site is occupied by am atom and the pan(®) 2 wdTA; [ex(m
value Eg in the opposite case. In the limits=0 andc=1

the Hamiltonian(1) reduces to the Hamiltonian of a perfect
crystal consisting oB or A atoms. Here alE,, are replaced where

X exp{—i[wl —H — Al A7}, 9
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wheren andm run through the values corresponding to the

[wl —HUC—A]AA:%1 A (M[@8um+His, coordinates of the sites occupied by clusters, gifdw) is
’ the fragment of the Green’s function matrix limited to the
—An5nm]goﬁ(m). (10 region that is occupied by the cluster. Using the approach

developed in the theory of impurity lattice dynami€sye
Hhd the eigenvalues and eigenfunctions of the matrix
[0°°(w)A] with rank equal to the cluster size, i.e., we solve
the equation

_ 1 * A
plo)=52 f% Pa2s d7y 2 [eR(0)? S [¢%(0) Al n®7(M,0) =\ (0)D(N,0), (14

me Zst,x

The total average density of states can be written as a su
over all A and all realizations oA with allowance for their
weight factorsP, :

Xexp[—i[wl +H" = A \a7r}- (12) where the sum is over sites occupied by clusters. The result-
Consequently, we must consider all possible variants of lating eigenfunctions constitute a complete orthonormal set:
tice occupation and for each variant find the eigenvalues and
eigenfunctions. Integration with respect#g@ in (11) can be E (M, w)P7(N,0)= Sy (15)
carried out in general form, which yields an expression for o

p(w): Using these eigenfunctions and eigenvalues, we can write the
matrix {I + g"°(w)A} "1 in the form
p(0)=2 Ps2 2 er(M)8(w—w}). (12
A A D(n,w)P’(M,w)
1-\(w)

{140 (@) A} n =2 (16)

Here we denote the eigenvalue of Ef) for a fixed set of
A, by w} . For bound states the functiogg can always be
normalized to unity.

The above formula is a rigorous definition of the density
of states of the disordered system described by Hamiltonian =\ (w0)=1. (17)
(1), i.e., a two-component solid solutidh.B; .

In the given approximation a localized state splits off if at
least ones has a positive value = w,.>0 at which

The state with the nodeless wave function always splits off
first; such a state has the deepest value of the localization

2.2 Fluctuation states of clusters. Sum rules energy and provides the greatest contribution to optical pro-
cesses.

In t.h's pfaper we gxialmlne s S|tuhat|on_ n \INh'cl:h t?e Cr?n' The wave functions of the split-off localized states nor-
centration ofA atoms is lower than the critical value for the . -a4 to unity are, respectively,

problem of percolation along the sites of the anion sublattice:
c<p:~0.2. Under this condition, tha atoms can form only oy ve -
finite clusters. If the perturbation introduced by a cluster con- ¢7(n)= mEEZm Cnm(@)Pm(@)
sisting of n atoms of the specie& exceeds a critical value ' 1
and splits off a state from the bottom of the virtual-crystal o 10C o

: : . ) X d7G P , 18
band, all higher-order clusters will also split off localized n,mezz nGnm(@)®Pm (18
states from the bottom.

rvc — vC H H
For the zeroth approximation we assume that the wav&/N€r€ Gnm(®)=JGym(w)/dw, and the sum is over sites

functions of individual clusters do not overlap and examingccupied by clusters. - »
Suppose that the probability that a cluster consisting of

the resulting spectrum of the split-off states. Within this ap- i X :
proach the medium outside a cluster is described by the vidl0Ms Of speciesk and having a perimeter df atoms of
tual crystal approximation. In this approximation the spec-SpeC'eSB appears I

trum of the_density of_stqte_s is a set of delta-function peaks g cS(1-c)!, (19
corresponding to the individual clusters. Next we allow for ] ]

composition fluctuations in lowest-order perturbation theory Wheregs; is the number of clusters having the same number
Finally, we apply a variation procedure to determine theCf atoms of specied and the same number of atoms of
most-probable fluctuations. As a result the individual peak$PeciesB at the perimeter, but different spatial configura-
become smeared and the structure in the spectrum of tHoNS. Allowing only for nodeless states, instead of the ex-
density of states is smoothed out. At the same time, the strud€ssion(11) for the total average density of states we can
tural features of the spectrum can be observed at very loW/te

concentrations. st

g
p(w>=§ >

k=1

stk

> | PSH2eS(1— ) 8(w— wikk). (20)
2.2.1. Isolated cluster approximation n
For any cluster in the approximation we can write theHere we have numbered the eigenfunctions and eigenvalues
equation of motion as according to their membership in the cluster. The overall
density of the states that have split off from bottom of the
{1+ 0°%(w) Al yme (M) =0, (13)  pand of the virtual crystal per site is
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i E, . . where the angle brackets indicate averaging over all possible
A0)= jo p(w) dw:;{ gstC>(1-c) :25 ns(c), realizations of occupation of the entire lattice except for a
’ single specified cluster, and summation in the exponent of
(21) . 0 o ;
S ] the exponential function is over the lattice sites that lie out-
i.e., it coincides with the total number of clusters per Sfte. sjge the cluster. When the occupation of the states is a ran-
To calculate the number of states whose localization energysm process, each is occupied byAatom with probability
exceedso, we must replace the lower limit of integration in ¢ ang aB atom with probability - c. Bearing in mind that
(21) with this quantity and begin summation on the right- he exponential being averaged becomes a product of indi-

hand side of this expression with cluster sizabat lead to  jqual exponentials, each of which is averaged indepen-
the emergence of a state with a localization energy equal tEIentIy we find that

. The maximum number of split-off states of all types can-

not exceed the.number of attraction centers, i.e., cannot e “exDl —i 2 A 65427
ceed the quantity UERZNP
o0 N
Np= NSEl ng(c)s. (22) = I {cexp(—iApSt*27)
= ns %S[,K
This estimate works in the strong scattering limit. +(1—c)exp( —iAg|¢St<|27)) (26)
n 1

Sums of typg21) rapidly converge over the entire range
of concentrations. Since the functiong(c) are known for ~Where

many lattices, at least for several small valuess,othe re- Ar=Er—En=—(1—C)A

. . AT EATEG (1-0)A,

sulting sum rulg(21) can be used to estimate the number of

states that have split off the bottom of the exciton band of the Ag=Eg—Eg=cA, (27)

crystal. For instance, for an fcc lattice, de Geneesal 2> e

found that A=Ep=Ea>0.
n(c)=c(1-c)2 ny(c)=12c3(1—c)™ ;I(’;\e averaged expression for the density of states can be writ-
na(c)=c3[24(1—c)®+1261—c)?. (23 Ot

Our estimates of the probability of the emergence of a clustep(®) = 5— ledTg ;1 2 |5 %c(1—c)"
consisting of four atoms yield

ny(c)~10%c*(1-c¢)*. (24) ><exp|'i(w— 0+ > In[Ry(7]!, (28)
These functions can be used along with the sum 2d¢ to © st
estimate the number of states that form below the bottom ohere
the l.)and.of a virtual crystal. All further information can be Rn(T):CeXF[iA(l_C)'¢rS1I,K|2T]
obtained if we know, at least approximately, the dependence
of the localization energy on the number Afatoms in the +(1-c)exd —iAc|¢2t¥|?7]. (29
cluster. This makes it possible to evaluate the value and bes . . ' I

Confining ourselves to the first nonvanishing cumulant, we

havior of the total density of states and the nature of varia- rive at an exoression for the density of stat
tion of the density of states. arfive at an expression for the density of states,

1 o Ost
p@=5 [ 073 3 3 g

2.2.2. Effect of fluctuations on cluster states. Perturbation

2 2
theory X ex4 i(0— W) r— Yst,ZKT | 30
Up to this point we have assumed that the clusters are
surrounded by a homogeneous medium, or a virtual crystalvhere
To assess the role of fluctuations, we plug the solutid@8s
into the expressioii11) and find the first nonvanishing cor- Yi= 2 c(1—c)AZ[|$5" 217,
rection to the density of states for which the deviation from BUENZ
the virtu.al crystal approximation is responsible. As a resuliyith the sum in the last expression being taken over the
we obtain lattice sites outside the given cluster. Evaluating the integral
1 (= Ost with respect tor, we obtain
plo)=5— f drX 2 2 |45 %e(1-o)" 9o
T ) - s k=1 n

1
— St,k|2AS/1 _ AL
ple)=2 2 X |4 e ) G

Xexp{—i(w— wfot(’:") 7}

_stky2
><<ex S An|q§ﬁt”‘|27]>, 25) Xexp{—%]. 31)

ns ((S[,K
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This expression differs fronR0) in that the localization en- IINR(—i6g )

. . ey . n Stk
ergy of each cluster is determined to within, . If the  — g
localization energies ang; , prove to be of the same order, 90st, | by’
the total number of states that have split off the bottom of the expl— A By | 65012)
band of the virtual crystal is smaller than when fluctuations  — _ (1 _¢)A| 1 W st P _
were ignoredEq. (21)], i.e., c+(1—c)exp —Abg ] date|?)

‘. (36
A1(0)= fo p(w) dngS ns(c). (32 Thus, the variational procedure yields the most probable con-

figuration of fluctuations outside the cluster. Note that the
self-consistent solutions of the equations for the bound states
I¥ie|d the functionsp>t* and, at the same time, fix the values

of the free parameters of the Laplace transfofiy,.. By

This result is limited to the range of applicability of the
perturbation theory, i.e., the lower the cluster concentratio

and the higher the localization energy of the cluster Stategxpanding iR (7—i6.,.)] in (33) in a power series inr
Stk

that provide the leading contribution to the density of statesand keeping the terms up to the second order ine can

the better the result of using perturbation theory teChmqueSr'educe the integral ii33) to a Gaussian integral. We then

integrate and transform the resulting expression via the equa-
tion of motion(34). What we obtain is an expression for the
2.2.3. Effect of fluctuations on cluster states. Variational density of states,

approach
Ost

. . : B 1
We now conS|de_r t_he problem of calculating the d_ensﬁ_yp(w):E 21 2 | pot |205(1—c)‘\/2?
of states by the variational method. A new element in this S k=4 TYstx(@)

problem is the great diversity of clusters that split off states c+p(n)

from the band bottom. This means we cannot select a varia- X eXp[ > |In )

tional wave function in a unique manner. For further calcu- ne st c+p(n)

lations it is convenient to pass from the Fourier inted84) 1-¢ 1—c—p(n)

to the density of states expressed in terns of the Laplace X Tp(n)) ] (37
transform:

wherep(n)=—Uyg (n)/A,
Ist

1 o
plw)=5— Lod@ 2 2 g Pe-o

my

om
S I

Vo) = (39)

xexp[ —i( > ¢§"“[Hz°m+w6nm]¢fn“)

m,=A2>) [|¢3“21[c+p(n)][1-c—p(n)], (39
X(T—ibg,)+ > In[Rnu—iast,K)]}. (33) n

ns V‘st,x

with A=|Eg—E,|. The local values of concentration of at-

The variational problem in the independent-cluster approxi—oms that are centers of attraction and repulsion are described

mation reduces to a set of independent nonlinear equations %b?gelt;e expressiongc+p(n)] and [1=c—p(n)], respec-
motion for bound states of clusters, each of which has the ' .
form For each value of, the above formula for the density of
states describes a setgf, bands whose shape near the peak
is close to Gaussian. As we move away from the peak, each
> [HYE + @ Sym] P+ Uy o(N) gSH%=0. (34 band acquires the Urbach shape. In the limit of low
nm attraction-center concentrations the expresg®n for the
density of states describes structural features that are due to
For each cluster the potential energy within the cluster camhe minimum-size clusters.
be specified uniquely and does not vary. The most probable
configuration corresponds to the case in which the potential

energyUg; .(n) of the clusterst, « is taken in the form _ -
' 2.2.4. Approximate description of the  p vs. o dependence

A, ne Cstu» To describe the behavior of @) near the mobility edge
_ . and below, we assume that in the zeroth approximation all
UseM=13 _ M S Cotrr (39 states with localization energy; exceeding a certain value
905t | D |2 wo can be assumed localized and reasonably independent.

The valuew, measured fronEg must be chosen in such a
where the matrix elemek, has the valu¢ —(1—c)A] at  way that the total number of states whose energy exceeds
sitess and the valueA at sitest, and this value,
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EL
./’l/'(wo)=f p(w) dow,

@0

(40)

with E; the Lifshits limit for the solid solutions, meets the

condition

N (wg)ad<1. (41)
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can be found by solving the equation
ﬁZ
—mVZer—Utr(r) eu(r)=0. (48

To estimate the absolute value of the density of states,
we find the proportionality factor it42) by calculating the
total density of states and matching the valuaatwg with

Herea~ % “/2M wy is the characteristic length of exponen- the total density of states found by employing the sum rule

tial decay of the wave function of an isolated well outside the(32) and EqS.(ZB) and(24) The resu'ting density of states is
well. In what follows, the valuev acts as the limit of the  gjven in Sec. 5.

applicability range of the theory and constitutes an important

parameter that can be used in varyj(g) near the mobility
edge.

To calculatep(w), we use the effective mass approxi-
mation and the Halperin—Lax proposal concerning the pos-
sibility of using an average wave function to describe local-
ized stated?13We examine fluctuation wells whose strength
exceeds that of a compact cluster needed to form a localiz

3. PHONONLESS ABSORPTION AND LUMINESCENCE
BANDS

To describe a phononless absorption band we employ
the method developed in Ref. 18. Optical absorption near the

eé*ound state of an exciton in a perfect crystal is described by

state of depthw,. Using the approach developed in Refs. ihe spectral density of the state for a zero wave vector:

16-18, we obtain

1 d3r c c+p(r)
) ) exPUv_o n c+p<r>)
1—c \1-c=p()
Al ) “
where
m;
Yz(w)Zdrﬁ: (43
J‘U_‘P'ﬁ'(r)}
0
d3
m2=A2fv—r¢§<r)[c+p(r)][l—c—p(r)]. (44
0

Uo .
als(w):?|(/fls(0)|2|m Goo(w—E5—1i9), (49
where
1
Gu(w—Ej)=

w—h2K2M—E —i 6

HereE,s andy,4(r =0) are, respectively, the eigenvalue and
eigenfunction of the exciton’s ground state. As before, the
origin of energy coincides with the bottom of the band of the
1s state of the excitonkg, so thatE,_,,=0.

The imaginary part of the one-particle Green'’s function
is the diagonal matrix element obtained as a result of per-
forming a double Fourier transform and averaging over the
configurations of the imaginary part of the Green’s function

and vo=V/N is the volume per atom in the lattice, with (4). Generally, the result can be written

A=|Eg—Ex|. The local values of the concentration of at-
oms that are attraction and repulsion centers are described by
the expressiongc+p(r)] and[1—c—p(r)]. Here we use

the quantityp(r), which is the measure of deviation of the

Tk (@)
0—H2k22M = A (@) 2+ (@)
(50)

(ImG(w))= 0

attraction center concentration from the average value. In

this case the self-consistent potential welj(r) can be de-
scribed by the formula

Up(r)=—Ap(r), (45)
where
1_C, I’$R0,
_ .2
p(r)= (1_0)[1_ onteid) | g
ct(l—c)exp —togA)
(46)
and
—
Ro= N ZM[(1=0)A — wo]
X 7T—arctan\/m (47
wo

where 7y (w) and Ay (w) are related through a dispersion
law, which ensures correct normalization of the expression
for the spectral density. In the region of localized states,
where condition(41) is met, these two functions are the
imaginary and real parts of the configuration average of the
scattering matriX>*2If only one localized state is formed in
each fluctuation well, the relationship betwegf(w) and

p(w) is

GUO Ecr 3/2
Tik(@) = ?AZ w/w/A(I) [11(k)|?p(),

wherep(w) is given by(42) with allowance for the propor-
tionality factor found by using the sum ru{82), and

(51)

2'Mw 312

hZ

1
(2m)®

11(k)=

fdsrexmkr)got,(r), (52)

where atk=0 we have
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A and that the two terms display different concentration-
J d°r @y(r) = P J dr @u(r)p(r), (53)  dependent behavior. The larger of the two is the symmetric
part of the bowing, which is described by the formula
sincep(r) describes the configuration of the fluctuation well AZ;(c)=b,c(1—c). The peak value of this term is about
and is related tap,(r) through Eqs(45) and(48). Equation 0.25eV atc=0.5, which is comparable to the difference of
(51) makes it possible to find the imaginary part of the scatthe band gaps of ZnSe and ZnTe cryst@$82 and 2.39 eV,
tering matrix 7 () in the region of interest. respectively’). The componena #,(c), which is asymmet-
Finding the functiomA  (w) is more complicated since ric with respect tac=0.5, reaches its peak value of approxi-
we must knowr, (w) over a broad section of the spectrum. mately 0.1 eV at~0.15.
Knowing 74 (w), we can calculate\ ,, (w) via the disper- Both the absorption and luminescence of the solid solu-
sion relation. In contrast te, (w), which for w>wq varies  tion ZnSe_.Te. (see Refs. 37, 40, 50, and 525 5mwint to
exponentially, the real part of the scattering mattiy, (w), the formation of fluctuation-induced tails of localized states
decreases slowlgby a power law with increasingw, tend-  of excitons, tails that decrease exponentially with increasing
ing in the limit of largew to zero as kb. Hence, to approxi- depth of the band gap;exp(—w/ey). The Urbach parameter
mately describe the spectral density within a relative narrowe; reaches its peak value of approximately 0.025eV at
energy range near its peak, we can replaggw) with the  ¢~0.15, and its variation with concentration almost coin-

constant value\, . As a result, ak~0 we have cides, over a broad range, with the asymmetric part of the
bowing functior® This points to AZ,(c) and the
Tool @) fluctuation-induced tail beingn of similar origin and makes it

(54) possible to link these two characteristics with the composi-

tion fluctuation responsible for the splitting off of localized
whereAY, is chosen is such a way that the calculated posistates.
tion of the peak in the 4-stateband in the absorption spec-  The large value of the bowing and the substantial smear-
trum coincides with the experimental value. ing of the band edge by the fluctuation-induced tails suggest
that the solid solution ZnSe.Te; is a system in which the
perturbation of the electronic states of the valence band
where Te is substituted for Se is strong at least in the range
To compare our results with the experimental data Weyf Te concentrationg<0.30. This is corroborated by the

selected the solid solution ZnSgTe; . The perturbation in-  fact that the tail of the fluctuation states in the low-
troduced by Te atoms is strong enough for a localized statggncentration region c~0.01 has structural

to form on a cluster consisting of two or more Te atdths.  featyred’40.5052-55that are due to the localized states of

The experimentally measured concentration dependencgngji-sized clusters consisting of two or three Te atoms. As
of the band gap of the solid solution, the Te concentration increases and the average level of the
o oA B " potential decreases, the size of the perturbation introduced by
“o(C)=clt(1-c)Z 6= A%g(C), (59 each Te atom also decreases systematically.
can be characterized by the bowing g(c), i.e., the deflec- Another feature of the solid solution ZnSeTe., which
tion from a simple linear interpolation between the liniit§ ~ SEts it apart from other compounds of the given type, is the
and ?52. The development of the electronic theory of solid s_trong exciton—phonon _mteractlop, which in the concentra-
solutions is closely related to studying the nonlinear depent/on rangec=<0.30 5295 in the luminescence spectra to struc-
dence of the band gap on concentratiihe bowing tureless band$°°°2*3with a halfwidth of _appro_xmately
effect.**-*8While in the earlier work devoted to explaining Q.l eV.. The larger valu.e of the constant of Kich interac-
the bowing the observed effect was related to the effectivdlon with LO phonons in the solid solution as compared to
averaging of the parameters of the electron Hamiltoniarfh® values of that constant in the original ZnSe and ZnTe
and/or the scattering off single-site fluctuations, recent stud¢"yStals corroborates the fact that in the given concentration
ies in this field®*8show that the nature of the perturbation "ange electron localization is fairly strong, as a result of
of the electronic states introduced by isoelectronic substituvhich electron—vibrational transitions In_volvmg pho_nong
tion is more complicated, and that to explain the observedvhose wave vector_s occupy a sizable portion of the Brillouin
effect one must allow for structural changes in the lattice thaZOn€ become possible.
are due to the variation in the length of bonds between the Both A andA/E become the parameters whose values
substituting anion and the neighboring cations. According tgiétermine the Urhach energy, . To find the values of these
the data in Refs. 4649, band gap variations result from ®arameters we used the experimental values of the Urbach
self-consistent transformation of the electronic states initieNergies obt5a2|ned from  absorption  coefficient
ated by the chemical and structural perturbations introducefneasurementf:>* The values wereA~1eV and A/E
by isoelectronic substitution. ~0.38

i o) N+ )

3.1. Basic characteristics of the solid solution ZnSe 1-cTec
and estimates of the parameters of the problem

A detailed analysis of this dependef®¥® for the The values of these parameters of the Hamiltonian can
ZnSe_Te. system shows that the bowirg?g(c) consists also be estimated by examining the concentration depen-
of two terms, dence of the shift of the peak of the exciton ground statg

(55)). In the one-band model, the nonlinear contribution
AZg(c)=AZ(Cc)+AZ,(C), (56) AE;(c) is the first correction to the position of the bottom of
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the valence band due to scattering of single-site fluctuations.2. Phononless luminescence band
and can be expressed in terms of the same parameters as the

Urbach energye,, . We know that in general such an esti- ool \wells, which lead to exciton localization, are clus-
mate does not guarantee good agreement between theore‘u%}lS of atoms of the narrow-band component of the solid

Zr/]g ex?fglmentgl Idgta. .:?ovyever, i ﬂ:e fagaimetkggnd th solution, with diagonal disorder being responsible for pro-
or OF IN€ MOdE! Hamiftonian are selected to achieve educing fluctuation states in the given model. When the atoms
best agreement with the observable values of Urbach ene

. . . 5t two species are distributed at random, the fluctuation-
gies, th_e mter_nal consistency of the model suggests that ﬂ]ﬁduced potential wells are also distributed at random over
fluctuation shift of the band edge, equal to the crystal volume. This, however, is true only for states
whose localization energy is high enough. As we approach
the mobility edge, an ever greater fraction of states belongs
not to a separate cluster but to complexes of clusters, or
superclusters. In this section we develop an approach to the
luminescence problem that is based on the analogy between
percolation along fluctuation states and the classical theory
of percolation along overlapping spheres.

The above reasoning assumes that fluctuation-induced

AE;(c)=A2GE(0)c(1—0), (57)

satisfies the inequalithE, <A #7, whereA Z;(c) is the ex-
perimental value of the band-gap bowing. The validity of
this inequality follows from the fact that the calculated shift
AE; pertains to the valence band, due to which the tail
emerges, while the observed value % also contains a
conduction-band contribution, which usually has the oppo-

site sign and increases the bowing. In the lattice variant 0B.2.1. Classification of localized states
the model, the critical value of the single-site perturbation
potential is linked to the electron Green’s function through
the relationship

Enclosing each potential well in which there is a state
with an energy o>wy in a sphere of radiusR;,
> h/2M wy whose value is a parameter of the problem, we
1 use the theory of percolation along overlapping spheres to
Gﬁﬁ(0)=E—. (58)  calculate such characteristics of tail states as the average
cr number of complexessuperclusteps (ng), consisting ofs
verlapping spheres. We assume that the state belonging to a
jven potential well is isolated in space if the volume
wRﬁn/3 of the sphere contains no other potential wells with

Thus, we see that the symmetric part of the shift can b
expressed in terms of the same parameters as the Urbag

energy. a localization energy higher that the energy of localization in

The quantityAE;(c) is not directly related to the forma- : . . .
. : ; . . .the given well. Concerning the problem in question, we can
tion of localized states, which means that in all calculations it

is convenient to carry out an additional renormalization oY that(n,) is the number of isolated localizing potential

the energy origin, eliminating this quantity from calculations \;Vr?gséénozz is the number of clusters consisting of pair wells,
of localization energies. In the effective mass approximation ' .
If we use the well-known expression fon;) (see Refs.

the shift of the band bottom, which is due to single-site ﬂuc—30_35 We arrive at
tuations, also needs to be renormalizéd. :
With allowance for renormalization, the asymmetric part (nl(w)>%exp(—[Rim/r(_w)]s)zexp[— 2A w)}, (81
of the bowing,A #5(c), can be found from the experimental h
data to be the position of the peak of the observed absorptioW ere
band with respect to the bottom of the band of the virtual —— [ 3 1 |8
crystal (Eq. (56)) after the symmetric part of the bowing, r(w):(ﬂm)
A#;(c), has been subtracted. Separation of the concentration ] ) ]
shift of the band-gap edgd,#, into AZ;(c) andA#Z,(c)  and (ni(w))=(ni(/(@))). The concentration/ () of
makes it possible to accurately establish only the maximurotential wells with a localization energy limited on the one
value of A#;(c). On the other hand, when only one band is side byw and on the other by the L!fSth[S I|m_|t is determ_lned
responsible for the formation of a density-of-states €@l  PY @ formula of type(40). The function7{w) is the density
our case we assume that this is the valence hahd value of localized exqtons in units of the first \_/|_r|al coefficient.
of AZ,(c) obtained from experiments and the value of The data of various researchers on the critical value of den-

AE,(c) found from calculations in the one-band model co-Sity for percolation along spheres are collected in Ref. 34.

(62

incide to high accuracy: Such values lie in the range 1277%<1.40. Equation$61)
and (62) show that in our case the critical valug(wyg)
AE,(c)=A%,(c). (590  depends on the paramefy, introduced earlier and the total

density at the percolation threshold; {wyg)-
SinceAE,(c) is related to the same fluctuations that lead to ~ The dependence ¢h) on the concentration of spheres
the formation of localized states, the concentration deperfor s=2—5 was obtained in Ref. 34 as a power series in the

denceAE,(c) has the form concentration. To be able to use these functions near the
percolation threshold, we derived the following extrapola-
A(1—c)[A(1—c)\%? tions of the series obtained in Ref. 34 for2,3,4:
AEx(c)~ey~ (60)
In(1/c) Eq (ny(w))=Aw)exp —3.073A w)},
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— =02 _ / -
(n3(w))=1.375"(w)exy —4.097 w)}, (63) e ngsecl)Trad 5
(na(w))=2.184273(w)exp —5.0844 w)}. e+ Trag
A series expansion of these expressions in powers(@)  Where the superscrips(-1) indicates the number of decay

leads to results that to high accuracy coincide with the serieghannels and(;; ) denotes the lifetime against transitions to

found in Ref. 34. Moreover, it is possible to estimate thethe lower states of the supercluster. By analogy w@H),
accuracy of the extrapolation for the functiémy(w)) if one  the number of states withdecay channels is

uses the results of the numerical calculations of the function o

P3(pnorm) done in Ref. 30. The functio®3(Pporm) 1S the. Ms(w):< E nk(w)>. (67)
probability of a potential well selected at random belonging k=s+1

to a supercluster whose sige>3, with P3(pnom linked to

: - To a first approximation,,q can be written
(ny(w)) by the relationshipPs(pnom) =1—(n)—2(n,),

and to ppom linked to A w) by the relationshippnom Mrad™={N1(@) +Na(@) + - ) =exp{— 2/ w)}

=/ w)/8. A comparison ofP3(Pnom) With calculations + A w)exp—3.073A w)} + - - -, (69)
done in Ref. 30 showed good agreement in the most impor-

tant region, 0.3-p,om=>0.1, i.e., near the mobility edge. and for the fraction of states with only one relaxation chan-

p1~{Ny(w)+Ng(w)+ - Y=A w)exp —3.0734 )}
3.2.2. Lifetimes of localized states o 375%2(w)exp{—4 — o

Let us examine the simplest situation in which a local- high accuracy, the suni64) and (67) are determined by
ized state can either recombine and emit a phonon or go tgeir lower limitZ® i.e. by a small number of leading terms

another state with a lower energy, transferring severa\INhiCh are given in(68) and (69). They are well-defined at
phonons to the lattice. Here we ignore the interaction beiy,, concentrations. in the critical region 8./ ()|

tween two or more excited excitons, assuming all along tha%|1—(/1/'(w)/</f'/'(wME)|<1 and at concentrations exceed-

the occupation of the states is close to zero due to the wealtyy he critical, although in the latter two regions they are
ness of excitation. Using the classification of localized State%xponentially small. The approach described in Ref. 36

according to their membership in superclusters of differentyayes it possible, in the critical region, to represent the sin-
sizes, we claim that states belonging to single wells can Onlljular parts of the sumé64) and (67) as |8/ (w)|*P+1
recombine. The states belonging to pair superclusters (yhereD is the dimensionality of the system, andis the
=2) are of two types: onéthe lowe) at absolute zero can yitical index of the order parameter, withdepending om.

also only recombine, while the secoftle uppercan goto At p =3 we haver~0.87, which leads to negligible singular
to the lower and emit phonons in the process. Obviously, th‘foarts of these sums in the critical region.

total concentration of states that can only recombine is

- 3.3. Contour of the phononless luminescence band
2 ny() ), (64)

Mo(w)EMrad(w)=< . .
s=1 The steady-state concentration of occupied states for a

f continuous and relatively weak band-to-band excitation is

potential wells with a localization energy » per well, and proportional to the densitylof states for a given energy and

the angle brackets indicate averaging over all possible reall€time of the states. Allowing for the fact that the contribu-

izations of a supercluster of the given size. tlo_n o_f each_occupled stgte fco the spectral density of radiation
In the adopted models . @) is the fraction of states for coincides with the contribution of theslstate to the absorp-

which the total lifetime is equal to the radiative time: tion coefficient, we can represent the phononless lumines-
cence band in the form

Igs(w)wags(w)P(w)Tradv (70
we assume that this quantity is independent of the localiza-
, . . “where
tion energy. The other supercluster states have lifetimes lim-
ited by decay processes involving phonon emission. For in- * ()Y 2
stance, the upper states of pair clusters and the second states P(®)= Z %E 2 P Y(w) (71)
of clusters of larger siz€supercluster states are numbered s rad =t
according to their decreasing localization enérggve only  Yields the total relative occupancy of the statesth the
one feasible decay channel. The number of decay channelgcalization energys) belonging to superclusters of different
involving phonon emission increases with the number of thesizes. Allowance for the first two terms iR(w), which
state in a supercluster. To simplify matters, we assume thdneans that only isolated clusters and ground states of super-
the lifetime of a state depends only on the number of decaglusters withs=2 are taken into account, yields
channels for the given state and is independent of the super- 0, \ _ 0 Yy
cluster configuration. Then to a state with numberl the (@)~ ai(@) rad X0~ 271 0)}
corresponding total lifetime is + A w)exp[—3.073/ w)}], (72

whereng(w) is the number of superclusters consistingso

0= Trad> (65)
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which is independent of nonradiative relaxation times.
Higher-order terms that are also independent of the nonradi-
ative relaxation rate emerge due to the ground states of su-
perclusters of larger sizes. Moreover, all superclusters begin-
ning with s=2 provide contributions that depend on
nonradiative relaxation times. For instance, the first correc-
tion for which the second state of the supercluster with
s=2 is responsible can be written

aly( @) PV () Trag

~ady(0)(ny(w)) 7V =ad(w) A w)

X expl — 3.073/( w)}—2edred (73 @ eV
Tdect Trad FIG. 1. Results of calculations: cundethe density of states(w); curve2,

This expression shows that the role played by the correctiofe total density of states {w); curves, the density of “radiating” states

depends on the ratio Qfdec and Trad- " "(w); and curve4, the total density of radiating states®(w) of the

. . . fluctuation tail of the solid solution Znge.Te. atc=0.15. The® denotes
|_n all casgs the mlnlmym-5|zeq SuDerdUSters prOWde_th%stimates of the total density of states by the sum rule. The zero in energy
leading contributions, while the higher-order terms providecorresponds to the position of the bottom of the band of the virtual crystal
only small corrections both in the low concentration regionwith allowance for the symmetric paitE,(c) of the bowing. The vertical
N (w)l) (oye)<1, because the number of such CorreC_dotted line indicates the position of the mobility edgge (see the tejt

tions is proportional to the degree of concentratigfw),

Wh'Ch increases with supercluster §?2&and near the mobil- where¢,(R) describes the state of a particle localized by the

|ty edge, because of the more rapid exponential decrease Bndom potential of the solid solution, ant(£) is the

higher-order terms. wave function of the ground state in the Coulomb potential.
The argumentR of ¢, represents in this case the radius
vector of the holeR=r},, while the argumeng of ¢, rep-

4. ELECTRON-PHONON INTERACTION resents the radius vector of the electrén; x. .

) ] . We write the exciton—phonon interaction Hamiltonian as
The electron—phonon interaction has an additional effeq_|(q)= H.o(q)+H.a(q), whereq labels the wave vectors

on the shape of the absorption and luminescence spectra Bgrine phonons, and each term is the sum of the electron and
cause absorption and luminescence is accompanied by emisse HamiltoniansH, o a(q) = HC  A(q) + HEo A(Q). The

sion of both _""COl‘r']St'? and optical phonons. matrix elements of the exciton—phonon Hamiltonian can be
To describe the interaction between excitons and LO an xpressed as followas:57

LA phonons, we can use our previous restfts’ The ab- _ _
sorption coefficient and the luminescence intensity at abso- Hge(d) =[.7¢ (€XPi(q-Te) +. 75 (€Xpi(d-rp)los

lute zero with allowance for interaction with phonons can be (78)
written where the labek indicates the interaction mechanism. Since
x each exponential function ifY8) depends only on one argu-
as(w)= fo dzafy(w+2)F(2) (74 ment, we have
and H%q>(q):'77gq[expi(Q're)]lsls
0 + 7ol €XPI(a-Th) g, o, )
|1s(w)=J dz y(w—2)F(2), (75 . .
—o The functions”¢ , and.7} , can be found, for example, in
. Ref. 56.
respectively. Here
P y In calculating the spectra; () andl s(w) we allowed
1 (= _ [Hoo(0)|? for the Frdnlich interaction with LO phonons and for the
Flow)= > f_wdtex 'wt"'% 2 deformation and piezoelectric interactions with LA phonons.
q The main parameters of the solid solution needed in calcula-

tions (the effective electron and hole masses and the con-
(76) stants of the deformation potential and of the piezoelectric
and Franlich interactiong were obtained via linear interpola-
yields the density of electron—vibrational states of the wingltion between their values for ZnSe and ZnBee Ref. 58
When the scattering is strong, a localized exciton con-
sists of a hole localized in the random potential of the solids. RESULTS OF CALCULATIONS AND DISCUSSION
solution and an electron bound to the hole by Coulomb in-
teraction. Corresponding to this model is the wave function

X (exp(—iQ4t)— 1)

Calculated values of the density of fluctuation states,
p(w), and the total density of stated;(w), are depicted in
D= p(R) 15 €), (77) Fig. 1. The total density of states is the total number of states
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FIG. 2. Results of calculations: curvg the contour of the phononless
absorption banda‘fs(w); curve 2, the relative total density of states
N (w)l 1V (wye); curve3, the fractionP(w) of radiative states; cun4 the
phononless Iumlnescenge batf@(w), and curvess and®, the apsorpﬂon b,=0.3 eV; curve2, the maximum possible value of the symmetric part of
banda;¢(w) and the luminescence bahﬂ(w) of the 1s state with allow- 2 . ) ) . S )
ance for the interaction with phonons. The dot—dash curves represent tﬁge bowing,A #4(c) " curves, t,he asymmetric part of the bowing,”3(c);
components of the contour of the luminescence band responsible for th@nd curved, the estimate oA £y(c) made by Eq(57).
interaction with LO phonons, and thie represents the luminescence spec-
trum of ZnSg_.Te, atc=0.15 andT=2 K.

FIG. 3. Experimental data on concentration bowing of the band gap,
A#g(c) (M). Curvel, the approximation oA #(c) by Eg.(80), which is
a combination of the functiong57) and (60), at b;=1.0eV and

the absorption peak toward the red part of the spectrum even

when the interaction with lattice vibrations is ignored, which
with energies exceeding, calculated on the basis of ») is reasonably consistent with the existing experimental data
via Egs.(42)—(48). The proportionality factor if42) and the  on disordered systems. The interaction with phonons leads to
parameterw, must be selected in such a way that the totaladditional Stokes shifts of the absorption and emission bands
density determined via the sum rul@2) coincides with the in opposite directions. Figure 2 depicts the results of allow-
value calculated fronp(w) at w=w,. The valuew, was ing for the effect of the exciton—phonon interaction on the
found to be 0.0980.005 eV, which places it in the range position and shape of the luminescence band and the experi-
between the values of the localization energy for clustergnental spectrum of the solid solution ZnSgTe, at
with the number of Te atoms equalimg3 ands=4. The ¢=0.15. In our calculations we assumed the localized-
localization energy for the clusters were estimated in the apexciton wave function to be the product of the wave function
proximation of effective mass and spherical potential well ofof a localized hole and the electron Coulomb wave function.
appropriate sizes. The total density of states for clusters, déince in this concentration range the excitonic binding en-
noted by® in Fig. 1, was calculated by the sum ru@2).  ergy Eg,(c) is much lower than the localization energy for
The procedure yields values of the density of states, depictedfe radiating states, the electron has not enough time to adia-
in Fig. 1, in the region where@= w, and makes it possible to batically follow the motion of the hole and, therefore, inter-
extrapolate this function into the region whebes w,. Fig- acts with the hole distribution averaged over the fluctuation-
ure 1 also depicts the density of “radiating” statesS(w) induced well. Satisfactory agreement with the experimental
=p(w)P(w), with P(w) defined in(71), and the total den- curve is achieved when one allows for ten LO repetitions;
sity of states/ "S(w) as functions of the localization energy the decomposition of the contour of the luminescence band
. into components is also shown in Fig. 2.

Figure 2 depicts the results of calculations of the contour ~ Figure 3 presents the experimental data on the concen-
of the phononless absorption and luminescence bands of tfiation dependence of the band-gap bowidg/s(c), the
excitonic ground state for the solid solution ZpSgTe, at ~ separation of the experimentally measured shift of the peak,
c=0.15. The position of the mobility edgéne dotted verti- A Zg(c), into AZ3(c) andA#,(c) according to the formula
cal line in Fig. 2 and the theoretical parametBy,; (intro- (1-c)5?2
duced in Sec. 3.B)lwere selected in such a way that the Aé{G(c)=b1c(1—c)+b2W, (80)
shift of the peak in the luminescence band in relation to the
peak in the absorption band corresponds to the observeshd the estimate cAE;(c) by (57) with the values of the
quantity. In our calculations we used(wye)=1.4, which  parameters listed in this paper. Clearly, the resulting value of
corresponds to the value obtained by Haan and Zwahzig AE;(c) obeys the earlier discussed inequalltf, <A #;.
for the critical concentration in the classical problem of over-Here the position of the peak in the absorption band, calcu-
lapping spheres. lated atc=0.15 with allowance for the interaction with

The contour of the phononless luminescence band iphonons, is approximately 0.1 eV and is also in good agree-
Fig. 2 shows that only a relatively small number of fluctua-ment with the observed value &f#5(c).
tion states, lying in the region of small absorption-coefficient  In conclusion we note that the proposed approach to de-
values, determines the luminescence process. The peak in theribing the spectrum of fluctuation states of a disordered
distribution of these radiating states is shifted in relation tosolid solution with diagonal disorder and a narrow-gap com-
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A molecular-dynamics model of the behavior of a vacancy in the chain of an equilibrium
polymer crystal(the “collective atom” approximation for polyethylehés developed for the first
time. It is shown that a defect of this type in a polymer crystal has a soliton mobility, as
opposed to vacancies in crystals of low-molecular substancesl99® American Institute of
Physics[S1063-776(199)02103-4

1. INTRODUCTION lution has been obtained for the problem of the propagation
of near-sonic solitons in a polyethylene chain surrounded by
In order to predict the relaxation, plastic, and durabilityimmobile neighboring chainsOnly one papércontains a
characteristics and the melting temperature of crystals it isnolecular-dynamics study of the behavior of point twist de-
necessary to consider localized mobile defects or deviationfects in polyethylene crystalsvith mobile molecules in the
from the ideal structure. Point structural defe(gsch as va- first coordination sphejdor a “collective atom” model(the
cancies or inclusionsare responsible for the relaxation prop- CH,-groups are replaced by point partiglebnfortunately,
erties of solids. Their inability to undergo directed motion isthe use of an initially nonequilibrium sample crystal struc-
why relaxation processes are slow in low-molecular crystalsture led, as will be shown below, to unjustified conclusions
Because the properties of polymer crystals are highly anisaregarding the nonsoliton nature of the mobility of this defect
tropic (the atoms in a polymer chain are bonded to one anin the crystal.
other by chemically covalent bonds, while the intermolecular ~ The purpose of this paper is to study the type of mobility
interaction is through weak van der Waals foj¢escancies of point structural defects in the framework of a molecular-
with breaking of interchain covalent bonds are essentiallyjdynamics model for a polymer crystal with chains of the
immobile. However, these crystals can contain other, specifisimplest type(plane trans-zigzag in the collective atom ap-
cally polymer, point defects, which are not caused by breakproximation, Fig. 1a The equilibrium configuration of a
ing of intrachain bonds, but by a deformation of a chaincrystal of this type is found in advand&igs. 1b and 1c
which is localized in a small portion of the chain. Here we limit ourselves to analyzing vacanc{efgy. 29, the
The idea of such defects arose in polymer crystal physicsimplest defects which can exist in a polymer crystal chain.
after the observation of anomalously rapid dielectric relax-We also study the dependence of the defect behavior on the
ation of oxidized polyethylenEAn analysis of a number of crystal structure.
possible molecular mechanisms for this proées®mwed that
the most probable mechanism was the propagation of local-
ized regions of twisting(by 1809 along the chains with 2 NUMERICAL MODEL OF POLYMER CRYSTALS
stretching(over a half period of the chairextending on the
order of a few tens of periods in the absence of conforma- We have taken the following model for a polymer
tional changes. A quasi-one dimensional approximation fofrystaf (polyethylene with collective atoms; see Fig):lthe
immobile neighboring chaingsee Ginzburget al® and the chains consist of plane trans-zigzags; the bonds between the
references cited ther&an be used to describe this kind of atoms (point particles of massn) are absolutely rigid of
defect as a soliton-type topological excitatibhe., a local-  1engthlo; the deformation energies of the valendag)(and
ized nonlinear wave propagating at a constant near-songonformational () angles are given by
speed along the chain Whlch changesf its state after it passes y,(g,)=1K,(6,— 60)%
and can, thereby, cause rapid relaxation in the crystal.
An approximate analytic description of static point de- ~ Ua(¢n)=a+ B cos¢,+ycos 3pn;

fects in polyethylene has been propdsadd they have been and, atoms separated by more than two neighbors or belong-

studied numericalfyusing the techniques of molecular me- jng to different chains interact through the potential
chanics. However, these papers do not touch on the question
_JUL(nN=U,(R), r=R,

of the mobility of the defects and, therefore, their contribu- (1=
tion to relaxation in these crystals. Recently a numerical so- 0, r>R,

1063-7761/99/88(3)/4/$15.00 586 © 1999 American Institute of Physics
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TABLE |. Parameters of the model crystal.

o~

Parameter Value Ref.  Parameter Value Ref.
m 14 a.m.u. - B 1.675 kJ/mole 10
lo 153 A 10 % 6.695 kJ/mole 10

¢ 6 113° 10 & 0.4937 kJ/mole 11
K, 331.37 kd/mole 10 o 38A 11
a 8.370 kJ/mole 10 R=2rg 8.531 A -

a
a grid were chosen to have the shape of a rectangular parallel-
! ' ' t t epiped. The corresponding classical first order Lagrange
equations were solved numerically using a Berle leap-frog
pttt algorithm? taking note of the limitations imposed by the
—_— igid bonds!?
t ottt ngi
t t t The periodic boundary conditions make it possible to
! follow the soliton dynamics in the direction along the axis of
2 R 1 the molecules for an unlimited time and to avoid introducing
Y \.;v"" /"' unphysical boundary conditions such as a rigidly attached
> "\\ \‘k\ /_/1 3 second coordination sphere in the plane of the transverse
% ﬁ\ i e cross section. In order to keep a soliton from interacting with
\\“\r//P itself, the number of molecules in the grid cell was chosen so
o "~ A that the image of each molecule lies no closer than its fourth
c : A coordination sphere, while the length of the molecule for a

soliton extending on the order of 35 chain period$ (vas

FIG. 1. Model of a polymer crystdpolyethylene with collective atons(a) assumed to be 2@0(two CH, groups fall within a single
chain parameters and local atomic coordinai®s;two types of mutual

locations of neighboring chains in a crysttiie lengths of the dashed lines pe”oo)'
are slightly less than the equilibrium distance for a van der Waals potential

and(c) the possible equilibrium configurations for packing of plane zigzags:3_ EQU|L|BR|UM CRYSTAL CONFIGURATION OF A

(1) stable and2) unstable(shown here is the plane of a transverse cross POLYETHYLENE CRYSTAL IN THE COLLECTIVE ATOM
section of the molecules; the arrows denote the direction from the nearemODEL

atoms of the molecule under the plane to the nearest above the plane; t

thick lines represent the bonds between molecules of hyipé and the thin . . . -
lines, those of type in b). When the chains are packed irfraechanically equilib-

rium configuration, they can have two kinds of mutual posi-
tions (Fig. 1b). The first is stabl€1) and is roughly a factor
where U 5(r)=4e[(o/r)¥?—(o/r)®] is the Lennard-Jones of two more favorable energetically than the seca@yl
potential with a minimum at ,=2Y%s. The numerical val- which is unstabléa saddle point Since the projected length
ues of the constants employed here are listed in Table I. of a molecule on its perpendicular cross sectional plane is
We have taken periodic boundary conditions for thel, =0.843 A and the van der Waals radiug=4.265A
crystal in all three directions. The cells of the computational~5I | , the packing of the molecules in the crystal will be
close to cylindrical. Two differentmechanically equilib-
rium configurations are conceivab{Eig. 1¢. Both have a

monoclinic cell and similar energigeach atom has six van
> 2.5 der Waals bonds with atoms of other chainhe second,
z.0r however, is unstable and stratifies into two domains, both of
1.5} which correspond to the first configuration. The parameters
1.0t andb of the stable structure depend on the cutoff radius
o5t Table Il lists some theoretical estimates of these constants
0 (the length of the dotted lines in Fig. 1b equals the van der
" Waals radiusand data relating to the relaxation of samples
< °
-0.006 . .
0

100 200 300 400 TABLE II. The parametersi andb (A) for the equilibrium crystalline con-

a b Atom number figuration with different cutoff radiR.
FIG. 2. A vacancy in a polymer crystal chaif@ the shape of the defect pgrameter R=r, (est.) R=1.8, R=2r,
(the dotted box represents the defect repiand (b) the longitudinal dis-
placements of atoms from the equilibrium positidk) in molecules witha — a 4.265 3.998 3.980
defect(upper curvgand in molecules in the first coordination sphéoever b 8.618 7.994 7.966

curve.




588 JETP 88 (3), March 1999 Zubova et al.

with differentR. The period along the molecular axis is al- Lof 7

ways equal toc=2.554 A. The density of the sample is 038

p=1.155 g/cm. ‘ 3
Molecular-dynamics modelling of a polyethylene crystal 0.6 5 ’

in the collective atom approximation has shown that there is
no local minimum in the potential energy for an orthorhom-

0.« VIR

bic structure for any such cell parameters. The numerical 0.2 7
simulation yields a minimum of this sort only for a model of w
polyethylene in which the Cfgroup is modelled by three 0 100 200 300 400
spatially separated force centers. Thus, an orthorhombic Time, ps

structure in polyethylene can exist only because of the pres-

ence of lateral groups, and not of the shape of the ChaiﬁlG' 3. Vacancy dynamics in an equiliprium crystal: cur_\leandZ illus-
skeleton 9 P P trate the conservation of low and mediui1 and 0.45 times the sound

speed velocities of defects in a chain surrounded by mobile neighbors;
curve 3, the slowing down of fast0.9 times the sound speedefects with
a transition to stationary soliton motion at a lower velocityQ.6 times the

4. THEORETICALLY EXPECTED CHARACTER OF THE sound speed

VACANCY DYNAMICS IN A POLYMER CRYSTAL CHAIN

We shall show that the simplest description of the dy-  Therefore, a vacancywithout breaking of covalent
namics of a vacancy in a chain of a polymer crystal in thePonds, Fig. 2acan move along the chain with a near sonic
approximation of immobile neighbors can be reduced to &€locity, maintaining its localization and without disrupting
sine-Gordon equation for the transverse displacemieat  the crystal structure outside the region of the defect. This
the atoms in the chairSee Fig. 1a. means that at velocities not too close to that of sound, the

In fact, the effective potential of the matrix is obtained vacancy dynamics should be those of a solit¢when
by calculating the crystal energy with all the molecules fixedv —Us it is no longer possible to neglect either the discrete-
but one, which moves along the axis. In the stable equilib€Ss or the intramolecular nonlinearity; solitons are nagrow.

rium configuration of the crystal it can be approximated toThis conclusion, however, is based on a quasi-one dimen-
within two percent by two harmonics: sional approximation for the immobile neighboring chains.

) Now our goal is to study the vacancy dynamics in a crystal
o
1- cos{ — u)

c

1) where all the chains are mobile.
with A=0.274 kd/mole. 5. RESULTS OF A MOLECULAR-DYNAMIC SIMULATION OF
The condition of rigid bonds determines the relationshipTHE BEHAVIOR OF VACANCIES IN A POLYMER
among the longitudinal and transverse displacemengs)d  CRYSTAL

V(u)=A

v, of the atoms(See Fig. 14.Going to the continuum ap- This system is characterized by the following time
proximation in the system lagrangidjustified by the rela-  gcajes: the transit time for sound over one chain period
tive weakness of the intermolecular interactiamd neglect- _q 7,192 ps, the soliton width=1.22 ps, and the period

ing the dispersion and nonlinearity owing 1o the of the oscillations of the atoms in a chain in the potential of
intramolecular interactionga more accurate continuum de- neighboring chains=1.39 ps.

scription can be found elsewhéfe we obtain a sine-Gordon In the molecular-dynamics simulation, for one of the
equation withK =K (2tan(6o/2))* for the longitudinal dis-  ojecules in a crystal that had relaxed and cooled to a tem-
placemeni(z,t): perature of 0.1 K we specified atomic displacements and
27\2 (2 velocities in accordance with the approximate analytic for-
MU — Kuz,+ A(?> sin(?u =0. mula (2) and followed the evolution of the defect for a long

time (on the order of hundreds of picosecondsimost in-

Here K is the rigidity parameter of the chain, so that the stantly the soliton acquired a shape exactly consistent with
sound speeds= yK/m, while A characterizes the height of the crystalline environment. In a sample with mobile neigh-
the barrier between two neighboring positions of the atom$ors, the presence of a vacancy in one chain causes nonuni-

in the matrix potential(1). formities to appear in all the chains within the first coordi-
The sine-Gordon equation has well known soliton solu-nation sphere, i.e., “shadows’(see Fig. 2b which
tions corresponding to vacancies: accompany the defect even when it moves. In the numerical

simulation we tracked the velocity,, of the center of mass
, (2) of a chain with a defect, which rescales to the vacancy ve-
locity vyae= — (N/2)v ¢, (WhereN is the number of atoms in
where v is the soliton velocity ¢<vg), L the chain. “Imbedding” a defect in a crystal excite§or
=LO\/1—(v/vs)2, andL0=(c/2w)\/m is the half width of  both mobile and immobile neighbgrthermal vibrations of
a motionless defect, which is larger the more rigid the chairthe atomgup to a sample temperature of severa) o0 rapid
is relative to the matrix. For our values of the constantsoscillations are superimposed on the true vacancy velocity
(Table ), we havev ~14.76 km/s and.y~ 35(c/2). which have nothing to do with itFig. 3).

z—vut
L

c
u(z,t)= 54 arctan exé
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We now describe the results of simulating the evolutioncovered about 100 chain periods. The onset of this kind of
of vacancies with initial velocities of 0.9, 0.45, and 0.1 timesslowing down was apparently observed in Ref. 8 and served
that of sound13.2, 6.6, and 1.5 kmysn a stably equilibrium  as the basis for the unjustified claim that the twisting defect
crystal (Fig. 1c, framel). If the neighboring molecules are dynamics did not exhibit soliton behavior. In a molecule at
fixed, defects with all three of these velocities movethe boundary between two domains in a relaxed stratifying
smoothly along the chain with their velocities essentially un-sample (Fig. 1c, frame?2), point defects are also slowed
changed for at least 100 ps. Over this time, they can covedown and change the structure of the boundary between the
5186, 2593, and 576 chain periods, respectively. When allomains.
the molecules are mobile, the dynamics of the two slowest Therefore, in an equilibrium polymer crystal, vacancies
defects is the sam@ig. 3). Only for the fastest defect does caused by localized tensile deformation of the chain have a
the velocity fall off slowly, decreasing te=0.6 times the soliton-type mobility.
sound spee® km/9g over 400 ps. Therefore, the mobility of This work was supported by the Russian Fund for Fun-
the surrounding chains does not affect the behavior of vacardamental Research(Grants 98-03-33366a and 97-02-
cies moving at low and medium velocities, but slows down17825a.
the faster defects to medium velocities without changing
their S(_)Iiton-ty_pe dynami_cs. o LR. H. Boyd, Polymei26, 323 (1985.

This slowing down is not caused by the radiation of 2r. H, Boyd, Polyme26, 1123(1985.
energy by the defect into the chain along which it moves?®V. V. Ginzburg, L. I. Manevich, and N. G. Ryvkina, Mekanika kompozit-
owing to effects of the discreteness which show up at higher,ykh materialov, No. 2, 249199). _
defect velocities?® for v =0.9 the half widthL of the soli- . (1arg o0 o et Edsolions in Actionicademic Press, New
tons is still quite largel~15(c/2) [Eq. (2)]. Evidently, the  5v. v. Ginzburg and L. I. Manevich, Fiz. Tverd. Tel2, 2414 (1990
reason for the slowing down of fast defects in a crystal isG[SOV- Phys. Solid Stat82, 1401(1990].
their more intense interaction with the mobile molecules of ,P- M- Reneker and J. Mazur, Polym2s, 3 (1988. .

. . . . L. I. Manevich and A. V. Savin, Vysokomolekulyarnye soedineniya A
neighboring chains. This effect has not been observed before; 4 7g5(1993.
and requires separate theoretical and numerical study. 8D. W. Noid, B. G. Sumpter, and B. Wunderlich, Macromoleclds4148

Note that the configuration of the crystalline environ- 9(1991)- ’ _
ment has no effect on the character of the dynamics of a';'i'szﬁ;'qa%age‘gﬁ'lgé;e”de' man, M. A. Mazo, and L. I. Manevich, Zh.
defect in a chain if the neighboring chains are immobile, butop . Noid, B. G. Sumpter, and B. Wunderlich, Macromolecu28s664
changes it fundamentally when the neighboring chains are (1990.
mobile. Specifically, in nonequilibrium or unstable structuresilD- Rigby and R. J. Roe, Macromolecul2g, 2259(1989.

(e.g., a nonequilibrium orthorhombic structure in the collec- dMO' n%é":g” gg?&é%"dege)comp“ter Simulation of Liquid€laren-
tive atom model of polyethylefleor an unstable monoclinic =p g Khalatur, N. K. Balabaev, and A. S. Pavlov, Mol. Ph§s, 753
structure; Fig. 1c, fram@) which require rotation of chains  (1986.
for relaxation, a vacancy will be slowed down rapidly. For L. - Manevitch and A. V. Savin, Phys. Rev. 55, 4713(1997).
. . A M. Peyrard and M. D. Kruskal, Physica D4, 88 (1984).
example, in the latter case a vacancy with an initial speed of

4.6 km/s is stopped over a time on the order of 10 ps, havingranslated by D. H. McNeill
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Mossbauer spectroscopy is used to study the hyperfine magnetic fields-8tinions

introduced as an isomorphic impurity in the lattices of the orthoferrites RFEl@ large reduction

in the fieldHT (4.2 K) observed when R is changed from La to Lu correlates with the drop

in the Neel point and indicates that the exchange interactions are decreasing over this series. A
crystal chemical analysis of the structural series with the general formula; ABOQws that

the ideal structure of cubic perovskite can be converted to a rhombohedral hematite-corundum
structure by simple rotation of tHBOg] octahedra if the B—O interionic distances remain
unchanged. The rhombic distortions are associated with a reduction B-t@e-B bond angle

from #=180° in perovskite to~132° in hematite. The rare earth orthoferrites REeO

follow the same mechanism for structural transformations and the LaHa@eG, series

occupies an intermediate positioh57°>6>142° between the extreme members of the series
mentioned above. A reduction in the bond angle leads to weakening okth®+-e

exchange interaction, which shows up as a drop in thel Menperature and in the hyperfine
magnetic field at the nucleus. An analysis of theoretical models shows that for a suitable

choice of the exchange and transfer parameters, the angular variation in the parameters of the
exchange interaction is described fairly well by the Moskvin theory over a rather wide

range of angle®. The contributions to the fieldd ! andH}¢ from thet,,- and eg-orbitals of
neighboring paramagnetic ions in the orthoferrites and orthochromites are examined.

© 1999 American Institute of Physids$1063-776099)02203-9

1. INTRODUCTION In this paper we perform a crystal chemical analysis of
the structural series ABQwhich includes cubic perovskite,
The rare earth orthoferrites RFgQR is a rare earth the rhombic orthoferrites, and rhombohedral hemalite-
element have a distorted perovskite crystal structtirgll  rundum). It is shown that the structural transformations in
the Fé* ions are crystallographically equivalent and lie in this series can be described in terms of a unified mechanism
an octahedral oxygen environment. Each iron ion is surand, for fixed B—O interionic distances, are determined ex-
rounded by six F&" ions and the E-O—Febond angle is clusively by the change in the angeof the B—O—Bchemi-
close to 180% This results in a strong negative indirect cal bond. Mssbauer spectroscopy at=4.2 K is used to
Fe’*—O-Fé* exchange interaction, which causes the for-measure the hyperfine magnetic field at tirf Sions (HED
mation of two magnetic sublattices whose moments are akmplanted as measurement probes in the iron sublattice of the
most antiparallel. The small angle between the moments akFeQ, orthoferrites. These observations are used to explain
these sublattices produces a small ferromagnetic motfent.the unusual magnetic properties of the rare earth orthofer-
The rare earth elements become magnetically ordered only @tes. Theoretical models for the angular dependence of the
very low temperatures, and far>10 K they have no effect exchange interaction in the RFg@rthoferrites and RCrQ
on the basic magnetic properties of the orthoferrites. orthochromites are examined. An attempt is made to apply
Unusual behavior of the N temperaturely has been  the theory to a wider range of anglésbased on the experi-
observed in the RFeseries from R=La to R=Lu:® Ty falls mental data.
by almost 120 K, even though the dimensions of the unit cell
decrease so thee-O—Feexchange bond length should also
decrease. Usually this leads to a strengthening of the ex& CRYSTAL CHEMICAL ANALYSIS OF THE STRUCTURAL
change interaction and, therefore, to a riséljp. Note, for SERIES CUBIC PEROVSKITE-RHOMBIC
X : : : RTHOFERRITES-RHOMBOHEDRAL HEMATITE
example, that in the series of rare earth ferrites with a garne( ORUNDUM)
R3;Fe0;45 structure, Ty is independent of the atomic number
of the rare earth element and is almost constant for all the The rhombic orthoferrites RFeQispace groupPbnm)
rare earth elemenfé A diminution in the exchange interac- are usually attributed to the perovskite-like structures ob-
tions as R is varied from La to Lu has also been observed itained as a result of all the possible distortions of the cubic
Mossbauer studies of the rare earth orthoferrite series RFeQCaTiO; perovskite latticgspace groul Pm3m) on replac-
doped with the tin isotop&'®sn® ing the Ca cations by R and Ti by Fe. These distortions can

1063-7761/99/88(3)/8/$15.00 590 © 1999 American Institute of Physics
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change the crystal symmetry. A transition from the cubic
perovskite structure to a rhombic structure in the rare eartl
orthoferrites has been established experiment&fyRMO,
compounds with M=Cr, Sc, V, Ga, and Al also have this
type of structuré?® |t is interesting to note that the defor-
mation which develops for the rhombic distortions has al- X
most no effect on the oxygen octahedron surrounding the —K o
iron ions, while the coordination polyhedron of thé'Rcat- i
ions is significantly distorted. The average interatomic Fe—-C ;
and O-O distances are essentially constant for the entirera /__\___ / Y [0 ol W
earth series RFeQat 2.011 and 2.844 A, respectivefyAs \/ B {-’7/180° \/ W&

R is changed, only the mutual positions of the oxygen octa ‘ @ X A ‘,\ S
hedra change and this leads to a change in the angle of tt /' \\ AR ,/ ‘\ ,/ ‘\ V4 ‘\
Fe—O—Fevalence bond. The deviation from cubic symmetry 4 g 4 g f
increases as the®R ionic radius decreases; it is smallest in \/ \/ \/ \/ \/
LaFeQ, and greatest in LuFeQ

Based on the available crystal chemical data, we ma
assume that there is a single mechanism for the structur:
changes in the series cubic perovskite-rhombic orthoferrites
rhombohedral hematite-corundufgeneral formula AB@).
Here we shall show by purely geometric arguments, tha
there is an analogy in the structural models for cubic perov:
skite and rhombohedral hematitgorundum and one phase
can be transformed into the other only through a certain ro
tation of the[BOg] octahedra about one another. During
these rotations, the most important distortions take place il
the {111} planes for the cubic model and in the basis plane
for the hexagonalrhombohedral model. Figure 1 shows
structural diagrams of the extreme phases in this series, pe
ovskite(Fig. 18 and hematitéFig. 1b), constructed for ideal
[BOg] octahedra. A atoms, shown here in only one placeri. 1. Two dimensional lattices of the densest oxygen packing in a cubic
occupy all the empty spaces. The patterns of the structuneerovskite structuréa) and in a rhombohedral hematite-corundum structure
which are formed by the upper facets of {t&0g] octahedra (b). The structural schemes of the final pha;es constructed from[ig€g|

octahedra are shown here. The octahedra illustrate the pattern of the struc-
of the lower layer and the IO\.Ne.r fac.ets Of.mﬁ] octahe- ture and lie above and below the lattice lay@ee texy.
dra of the upper layer are distinguished in Figs. 1la and 1b.
Each of the two “stages” of the octahedral layer is repre-
sented by three isolated octahedra, while both “stages” form
a six-member ring in the infinite layer of octahedra. Thewhich form common boundaries withFeQ;] are filled,
spheres shown in Figs. 1a and (b the lefy illustrate the  while the second is enantiomorphia mirror reflection to
dense packing of the large A ions in the plane grids. the first.

Ideal perovskite AB@ can be represented as the densest  The transition of perovskite into hematite and the result-
packing of O and A atomgIn the ideal case ©A with the  ing distortions can be imagined by comparing Figs. 1a and
general formula B@.) In the case @A, shown on the left 1b. The perovskite cubic skeleton can be regarded as the
of Fig. 1a, dense packing occurs with a packing index ofresult of a symmetrizing of the skeleton of thBOg] octa-
0.7405 (packing or filling coefficient q=[2(Va)il/Q, hedra during densest oxygen packing of rhombohedral hema-
where (Vat)i=(4/3)77fi3 is the volume of a single atom and tite. Since the rhombic distortions of the unit cells of
Q is the cell volume. For the densest packige; 74.05%. B perovskite-like structures are assumed to be negligible and
atoms occupy 1/4 of the octahedral voids the right of Fig. the B—O distances hardly change, it seems, at first glance,
1a), while the remaining octa- and tetrahedral voids remairthat the changes in tH8—O—-B bond anglef should also be
unoccupied. Thg BOgz] octahedra with common vertices small. However, an elementary geometrical analysise
form the simplest octahedral skeleton with A atoms in itsFigs. 1la and 1bthat this is not so#=180° for ideal perov-
voids. skite (i.e., when the ratio of the ionic radij /ro=1). At the

Figure 1b shows the other extreme end of the seriesyther extreme of the serighematite, in the ideal case of
rhombohedral hematite.-Fe,O5 (corundum A}O;). Here  dense packindi.e., for ra/ro=0.414 andrg/ry=1) this
the customary densest packing of oxygen atoms is realize@ngle is 2arcsig5/6=13141. This estimate coincides with
with 1/3 of the octahedral voids occupies by iron atoms.the experimental value of~132° in hematité’ Note that
There are two possible ways to fill the remaining octahedrathe transition from a hematite-corundum structural type to a
voids with A atomg(in this case iron atoms, sinces"B=Fe  perovskite structure has been observed experimentally in
for hematitg. In the first, that third of the octahedral voids InGaQ; under high pressurg.

/
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8 L;;j;ilvskite orthoferrites RFeO,
180°

N V/ /

c | ~,
170 \\\\
S FIG. 2. TheB-O-B valence bond angle in the structural series
160° + S ABOg; as function of the ratio, /1 o of the ion radii. The points are
R=1La experimental values. The dashed line lies between the extreme
150° | members of the series, perovskite and hematite. The intermediate
region which applies to the rare earth orthoferrite series RRgO
/ shaded. The ion radii are taken from Belov and Bokiya.
140° + / 7 R\= Lu
% \\\ hematite
1309 L) H / L % T \» T
1.0 0.9 0.8 0.7 0.6 0.5 04
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According to the proposed mechanism, for the interme-the indirect e—O—Feexchange interaction and the fiehg!

diate members of the rare earth orthoferrite serfeshould s referred to as the supertransferred hyperfine magnetic
lie somewhere between 180° and 13&ee Fig. 2. Unfor-  fie|d?>2° or the indirect hyperfine interaction fietd>" .28
tunately, a geometric analysis cannot be used to determine A calculation of the hyperfine interaction showed that
how 6 varies with the ionic radius, . However, assuming a over all the compositions there are no quadrupole shifts to
linear variation6="f(r/ro), it is easy to make an approxi- within the limits of error. The isomeric chemical shifts rela-
mate estimate of the ranges of variation dnfor the rare  tjve to the source are zerdor equal temperatures of the
earth orthoferrites(See Fig. 2 We found that from lantha-  source and absorbemo special studies of the temperature
num orthoferrite {../ro~0.765) to lutecium orthoferrite  shifts were made. The magnitude of the magnetic tfflat
(ru/ro~0.588) the angleg) varies from~158° to ~140°. 3 tin nucleus in the RFeQlattice depends strongly on the
This estimate for the extreme members of the series is ipgre earth element. At=4.2 K it has a maximum of 2571
good agreement with the experimental values of thesgoe for R=La and falls to 16% 1 kOe for R=Lu. The

0 .. . .

angles Mossbauer spectra remain well resolved over the entire tem-
perature range up to the Blepoint Ty. Ty was defined by

3. EXPERIMENT the magnetic field’s going to zero at the tin nucleus. Figure 3

shows the variation iffy andH:7 in the series from LaFeQ
We prepared a series of semicrystalline samples of they | uFeG,. The clear analogy between these curves is con-
rare earth orthoferrites (R,Ca)[Fe - ,Sn,]O3 with R=La,  firmation of a direct relationship between the exchange inter-
Pr, Nd, Sm, Gd, Tb, Ho, Er, Yb, Lu, and Y, in which the action and spin density transfer from a magnetic to a diamag-

Fe’" iron ions were partially £=0.05) replaced by Sfi netic atom and indicates a correlation of the quantifigs
ions. Here in order to maintain the neutrality of the mol-

ecules, rare earth®R ions were replaced by the doubly va-

lent C&" ion. In order to increase the accuracy of théddo $n

bauer studies, the tin was enriched in the isotol¥&n to Hyr (4.2 K), kOe I,K
95%. X-ray analysis showed that all the samples are in a 700
single phase, have a distorted perovskite-type structure
(space grougPbnm), and are isostructural with the orthof- Rpe03(5%1‘95n)
errite GdFeQ.!

The Massbauer absorption spectra of thHéSn nuclei
were taken on an electrodynamic system in a constant accel-
eration regime. The G&"Sn0, gamma-ray source was kept —
at room temperature. The measurements were done at tem-
peratures ranging from 4.2 K to the 8lgpoint. Several con-
trol measurements of the Msbauer spectra ofFe were Y
also made.

At low temperatures magnetic hyperfine splitting is ob-
served in the Mesbauer spectra of'%n owing to the
Zeeman interaction of the tin nuclei with the effective mag- 150/ Ce _Nd Sm Gd Dy Er Yb '550
netic fieldH}7. This field develops because of the transfer of La Pr Pm Eu Tb Ho Tm Lu
spin density from the paramagnetic®Fdons to the diamag- R
netl_c Sl'f ion.? 22_T_he t_ranSfer O_CCUI’S a"?”g thasFO—_Sn FIG. 3. The Nel temperaturd and the hyperfine magnetic fightfsr at the
chain with the participation of an intermediate oxygen ion. IN¢n nuclei atT=4.2 K as functions of the atomic number of the rare earth
terms of its physical nature, this interaction is analogous t@lements in the orthoferrites §RCa oo)[ F&.9:SM 0s] Os.

250 1650
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a FIG. 4. lllustrating the overlapping of the atomic orbitals of
a diamagnetic cation, anion, and paramagnetic catian:
Sn Y Fe for a bond angle#=180°, so the interaction through the
e €,— p,-orbitals predominates;(b) for a bond angle
g 0<180°; besides the-bonds, ther-bonds also participate
in the exchange interaction. The dotted curves represent the
s P by unfilled e;-orbital of the CF* ion.
andH; with the Fe—O—F¢Sn) exchange bond angle. (Fig. 4a. Extending Eq(1) to the case of an impurity tin ion

with an outer $-shell in the orthoferrite matrix, we can, by

analogy with Ref. 27, write
4. ANGULAR DEPENDENCE OF Hp; AND Ty IN THE RARE

EARTH ORTHOFERRITES 4 2

A number of authors have attempted to obtain an ana- Hif=525N%| — X, S,pns(0) +as¢ss(0)
lytic expression for the angular dependence of the super- =t
transferred fieldH,; in crystals with various structures. x{(Ai_Ai)cogaJrAfT}_ 2)
Zavadski, et al?>?" were among the first to obtain this de-

pendence for a spinel and orthoferrite structure based on thgere ¢, (0) are theswave functions of tin, an®,s andas
molecular orbital technique including only bonding orbits. It are the overlap and transfer parameters, respectively, for
was assumed that in a pufendoped by diamagnetic ions o2-_gf+. The covalence parametef$ and A2 are gen-
crystal, the fieldHy, develops as a result of the transfer of grally independent of the Be—C?~ interionic separation. In
spin density to a central Pé (1) ion from surrounding F€'  the RFeQ orthoferrites, however, this distance is essentially
2p-orbitals of oxygen are polarized as a result of chargestryctural dat¥? and is also confirmed by the constancy of
transfer to unoccupieddBorbitals of FE* (|) and overlap  the isomeric shift in this series, as found by $8bauer stud-
leads to the transfer offelectrons into the emptysdshell  pe3+_ 2~ distances do not change for small amounts of
of F€*" (1) ions and overlap of the polarizeprbits with  sypstitution of iron by tin(This is confirmed by our data on
the inners-shells of the core of this ion. The following ex- the isomeric shifts for thé!°Sn and®’Fe nuclei) Thus, we

pression forH[f at a central iron ion was obtainéd: shall assume thalt? andA? are constant and the same as the
3 2 corresponding quantities for the pure orthoferrites.
HEe=528N*k| — >, Shs@ns(0)+a4045(0) Unfortunately, the difficulty of theoretically estimating
n=1 the parameters of the®0—Srf* interaction makes it impos-
X {(A2—A2)coL+ A2}, (1) sible to perform any sort of accurate calculation of the abso-

~lute magnitudes of the fielt =" However, based on experi-
Here S, are the overlap parameters of the oxygen orbitalsnental data, we can attempt to estimate the ratiapand
with the inners-shells of iron for the & —F€* (1) pair,as A2 . Since the first cofactor in Eq2) can be regarded as

is the transfer integral for ajelectron of oxygen into the constant for fixed Sn—O distances, E) can be written in
outer 4s-shell of iron, ¢,,{(0) are the wave functions of the the form

Fe" ion, A2 and A2 are the covalence parameters of the
Fe—O bond, which characterize the number of unpaired spins Sn_ 2_p2 2

(the fraction of unpaired spin densitin the 2p-shell of &~ Hif=K{(A;—A7)cos 0+ AL}, ®
formed as a result of transfer ofp2electrons of & into
empty 3-orbitals of FE*(]) ions (A, .=(Bys »+Ss.m),
whereB, . and S, . are, respectively, the O—-Fe*(]))
transfer and overlap parametekss the number of iron ions
surrounding a central cation, amdis a normalization con-
stant. Therefore, the cofactor in curly brackets characterizes

the transfer of p-electrons of the ligand into empty . -
3d-shells of the surrounding ions, while the cofactor in then it is easy to see thal /A% =ao/(ag+a,). A computer

. Sn_ .
square brackets characterizes the transfer of unpaired spff@!ysis of thE}‘|hf__f(‘:05‘2 6) curve for the orthoferritetsee
density into the outes-shell of the central ion and the over- F19: 5, curvel) yields the valuesy,=—102 anda, =421.

2/p2.
lap of unpaired p-electrons with innens-electrons of the Thus, AZ/AG=—0.32. , .
central cation. On the other hand, the MEtemperaturely is deter-

H 7
The above mechanism for the interaction of two para-Mined by the same set of covalence parameter$’and

magnetic E—O—Feions can also be applied to the interac- yim s ) )
tion between paramagnetic and diamagnetie-©—Snions Tn~AH{2A% + (A%~ 2A%)coS 6} 4

Then the ratioA?/A2 can be calculated by plotting the ex-
perimentalHﬁP=f(co§0) curve(Fig. 5. If we write Eq.(3)
in the form

HP'=ay+a;x, where x=cog¥6,
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FIG. 5. Plots ofH:"=f(cogd) for the orthoferritegdata from this paper

and orthochromitesfield values from Ref. 338 Also shown is the field for FISC?‘. 7. Calculatedcurves and experimentapoints variation in the field
Cr,0, from Ref. 30. Hpf (at T=4.2 K) with the cosine of the exchange bond angle. The calcu-

lated curves arél) our data for the orthoferrites, including hematite, &2d
our calculation for the orthochromites, including,Os.

Thus the experimental = f(cos’6) curve can be used to

make an independent estimate of the rafgA?Z if we write The values ofA2/A?Z for the pure orthoferrites obtained
Eq. (4) in the form Ty=by+b;x, where x=cos# and by various authors from experimental data differ by several
A%/A2=by/2(bg+by,). times, ranging fromA2/A2~0.16% to A%/A2~0.38%°

Figure 6 shows a plot of y=f(cos¢) which we have Therefore, our result from data 6fy lies well within the
constructed for values ofy obtained from the temperature range of published data. However, our value Af/AZ
dependence of the fieldd>P for our tin-doped orthoferrite = —0.32 obtained from data on the fielblg; at tin nuclei is
samplegcurve?). As a comparison, the same dependence isiegative, which conflicts with reality, sincd2>0 and
shown for pure rare earth orthoferritgsurve 1). An analy-  A2>0. In addition, the fieldHyf in the orthoferrites should
sis of these data shows thaf/A%2=0.19+0.01 for the pure be positive over the entire range of angtesxamined here,
orthoferrites, in accordance with the value obtained in Refsince A2>AZ . In addition, in describing the experimental
27, andA%/A%2=0.20+0.01 for the doped samples. There- dependence of the field with Eq3), we obtain HyY
fore, to within the experimental error the valuesA}/A%2  =—102 kOe for§=90°.
are the same for the pure and doped samples. This confirms Moskvin, et al?® have explained this conflict. They
our assumption that for low dopind? andA? are constant, showed that including only the bindingrorbits of oxygen,
althoughTy changes significantly. as done in Ref. 27, may lead to an inaccurate result. In gen-
eral, the contributions from thes2orbits of oxygen must be
included along with the g-orbitals. Here the contribution of
the 2s-electrons, alone, to the field>} is independent of the
exchange coupling anglé, while the contribution of the
2p-electrons remains proportional to éégor a o-bond and
to sirfe for a mw-bond. However, there are overlapping
sp-terms which make a contribution proportional to @s
only in a o-bond. Then the angular dependence of the field
Hﬁ? is more precisely given 5§

HP'= o+ B cosf+ y cosd. (5)

Here the sign of the field should be positive over the entire
range of anglesd, since the contributions tHp from
s—d-exchange and from overlappirgp-terms are positive
and increase ag—180°. However, the resulting fieldi >}
should pass through a minimum within the interval €@°
<180° when co®=—/2y.
Our experimentaHﬁ’sz(cose) curve for the orthofer-
. rites is shown in Fig. 7, along with the curves calculated
0.5 0.6 0.7 08 0.9 . . .
cosd using Eq.(5). The experimental data on the orthoferrites are

very well fit by the theoretical curvé& for 140°<6#<160°
FIG. 6. Plots of Ty=f(cogd) for the orthoferrites and orthochromites. \ith the following parameters:
Curvel is Ty for the pure orthoferrite Curve2 is our data for tin-doped
orthoferrites. Curves is Ty for the orthochromited? a=+949k0Oe, B=+2487k0Oe, andy=+1889kOe.
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This curve passes through a minimum at ées-0.658  tance by about 10% reduces, $y80%, the covalence effects
(6~1329). The field at the minimum isl>f~ + 130 kOe, i.e., responsible for inducing the field:. These estimates are in
throughout the entire range of anglbh‘:'? is positive. The good agreement with similar estimates for a spinel
curve with parametersr=+8 kOe, f=+241.5 kOe, and structuré? and indicate that the above theoretical ideas are
y=+551 kOe obtained in Ref. 26 provides an inferior ap-applicable to a wide range of angles.
proximation to the experimental data. Our analysis has
shown that this curve should also have a minimum atécos
=-0.2191, shifted toward smaller angles. However, at the
minimum point, the fieldH! becomes negative, atpr
=—18.45 kOe. This contradicts the conditittff>0 and 6. THE ANGULAR DEPENDENCE OF Hj: AND Ty IN THE
appears to indicate that the fit to the experimental data if*ARE EARTH ORTHOCHROMITES

Ref. 26 is not sufficiently accurate. o . ]
A similar analysis of the angular dependence of the field

5. EXTENDING THE RANGE OF ANGLES TO 6=132° AND HS! can be carried out for the rare earth orthochromites
0=180° RCrO; by drawing on the experimental data of Moskvin,

The range of angleg corresponding to the series of rare et al. ** When R is changed from La to Lu in the ortho-
earth orthoferrites can be extended by invoking data on thehromites, rhombic distortions analogous to those in the
rhombic hematitex-Fe,0O5. As shown in Sec. 2, the charac- orthoferrites take place, with a change in the-O—Crbond
ter of the distortions in hematite and the orthoferrites is idenangle. SinceA?>AZ, it is to be expected that the fietd};
tical and the Fe—O distances are essentially the sdn@8  should have a maximum fof=90° and decrease with in-
and 2.01 A, respectively hence, the transfer and overlap creasingé. Transfer of oxygen @-electrons into unfilled
parameters can be assumed to be close. For the theoretigtorbitals of chromium can occur for both spin orientations
analysis we have used the valuesH§? for hematite ob- (1) and (1), so that hereA’ represents the difference
tained by Fabrichiyi® It tumns out that the experimental (As1)°—(A,1)2% However, transfer ofp-electrons with
point for a-Fe,0;, with astonishing accuracy, lies at the (T) spin predominates because of the intraatomic polariza-
minimum of the parabola corresponding to the curvetion by the “Hund” interaction with thet,4-electrons of the
HS"= f(cos6) according to Eq(5) for the orthoferrites with  Cr° " ion, which have a {) spin. This leads to a negative
the parameters, 8, and y given above(Fig. 7, curvel). (relative to the direction of the magnetic moment of thé'Cr
Therefore, the theory of Moskviret al?® give a fully satis- 10N spin density on the 2,-orbitals of oxygen. Thus, the
factory description of the experimental data over a widef€sulting value oA> should be negative and for angles close
range of angles¥ when the parametera, 3, and y are 10 180°, where theo-bond plays a fundamental role, we
properly selected. should expect the sign CHIE? to change.

An attempt can be made to extend the range of ang|es to Besides the eXperimental data for the rare earth ortho-
6—180° by invoking data on the fie|d-$ﬁ?in the compound chromites, Fig. 7 includes the fie}dﬁ'? for chromium oxide
MnO:119n 3! The antiferromagnetic material MnO has a Cr203.% As for a-Fe,03, the oxide C3O; has a corundum-
face centered cubic NaCl structure where the-\D—Mn  hematite crystal structure and, according to our ideology, can
angles are 180 °. In a doped sample the magnetic momenk$ regarded as an extreme member of the series
of the 12 M#™" cations nearest to the Shion (with 90-°ree  RCrO;—Cr,O3. A computer analysis shows that all the ex-
Mn—O—-Snbonds are completely compensated. Thus the to-perimental data can be fit satisfactorily to Eg). (Curve?2 of
tal contribution to the fieldH! from the straight Mn-Sn, Fig. 7) with the parameters
indirect 90-°ree M—O—-Sn, andlipole interactions is equal
to zero here. The fiel# ! is created by six Mfi" ions with
identically directed spins through the 180-°nMO—-Sn ex- a=+250kOe, B=-17kOe, y=-244kOe.
change interaction. However, although the electron shell of
Mn?* (3d°—t3,ef) is the same as that of the Feion, and
the angle#=180° is more favorable for transfer of the spin Therefore, in the orthochromites the contribution propor-
density througte,— p,-bonds, the fieldH 3 in MnO equal®®  tional to cosfis negligibly small, since here the-bonds are
230 kOe and does not exceed that in LageThis is evi- dominant. Thus, the experimental data give a satisfactory fit
dently related to an increase in the interionic distances ifo the straight IineHﬁPz ap+a;x, wherex=cos4é (Fig. 5,
manganese oxidéMn—0=2.222 A compared to those in curve 2). These data yieldedi,=240+4 kOe anda;
the orthoferritedFe—0=2.010 A), which correlates with an =—254+4 kOe. Therefore, for the chromites we have
increase in the radius of the paramagnetic [oMn2*)  AZ/A2=—22+10. Since A% is positive, A2=(A,])?
=0.80A, r(Fe")=0.64A]. The °ree of covalency of the —(A,1)? is negative, as is to be expected. Extrapolation to
bond and the exchange interactions are reduced as the catiofi=180 indicates a sign shift in the fiel] at 6~167° (see
anion distance is increased, and this also reduces spin densfig. 5 and givesH ;7 (#=180%9=—10+4 kOe.
transfer to the diamagnetic cation. The fiéld} extrapolated Using the values of the fieldd7(180°)= — 10+ 4 kOe
to 6=180° according to the data on the orthoferritEgy. 5 andHﬁ?(90°)= 240+ 5 kOe obtained from this analysis, we
should be~350 kOe, which is roughly 30% greater than thathave tried to estimate the absolute magnitude%f,oandAf,.
in MnO. This indicates that increasing the cation-anion dis-Equation(2) gives
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4 2
Hﬁ?( 180°) = 525\]4"[ - nzl Snsns(0) + aS‘PSs(O)} A(Zry

4

2
HR(90°) = 525N%k —ngl snscpns<0>+asso55(0>} AZ.

Settingk=6 and using the values @, S, and ¢,

given in Refs. 28 and 34, on comparing the computational

and experimental data, we found?=+6.5+0.5% and
A%2=-0.3+0.1%.
The published absolute values &f. andA? for the or-

Lyubutin et al.

field H3ny created by the combineg,- andeg-orbitals of the
paramagnetic cation with the participation of the oxygen
and p ,-orbitals of

(AHSM/A6)=+1.07 kOedeg *.
For the orthochromites RCeQwe have
Af=6(La)— 6(Lu)~+13°,

(6)

AH3" = —8.33kOe.

red

The CP™ ion has at3 €] electron configuration. Thus,
the angular variation in the field created by a single paramag-

thochromites, as well as their ratio, differ greatly among thenetic cation owing to the,4- and p,-orbitals is given by

different papers. For exampleA2=2.7+0.6% and A2
=—2.2+0.6% (A2/A2~—1) in Ref. 28, whileA2=4%
andA%=—0.7% (A’w/A2~—6) according to Ref. 34. For

(AHZ/AG)=—0.64 kOedeg . @)

Then, assuming that the Fe—O and Cj-i6terionic dis-

the orthochromites with an iron impurity it was found that tances are close, from Eq$) and(7) we obtain the angular

A2=9.6% andA2=—3.8% (A2/A2=—2.5)3® Therefore,
our value ofAZ is somewhat high and that &2 is low

compared to the published data. This may be because in Eq.

(2) we have neglected the contribution of thelectrons, as
well as that of the exchange- d-interaction.

We have also tried to determine the rafig/A?Z for the
orthochromites using tHEy = f(cos’d) curve(see Fig. 6. By

variation in the field owing to the,- and p ,-orbitals,

(AHE/AG)=+1.71 kOedeg . €)

As noted above, a supertransferred magnetic figldis
present at the nuclei of the iron ionBI{%), as well as at the
nuclei of the diamagnetic atoms, and in the series of rare
earth orthoferrites and orthochromites its magnitude varies in

analogy with Ref. 27, for the orthochromites we can writemanner analogous to the fieli>f. Thus, in RFeQ the ab-

Tn~AZ{2A%+ (A2 —2A?)cog6}). Rewriting this expression
in the form Ty=by+b;x, where x=cog6, we obtain
A%2/A2=2(bo+b,)/by. An analysis of theTy=f(coS6)
curve constructed from the experimental data of Refisg®
Fig. 6, curved) yieldsA2/A2= —2.4+0.5. This value agrees
better with the published d&** than the value obtained

solute magnitude of the field} at the iron nuclei decreases
from R=La to R=Lu by roughly 15 kOgfrom 565.9 kOe in
LaFeQ to 550.5 kOe in LuFeg}), while in iron-doped
RCrQ;, it increases by 9 kO&rom 510 to 519 kO&). This
behavior of the field at the nucleus of the paramagneti¢ Fe
ion is also explained by a change in the contribution to the

from HEP. This evidently means that the simplified theory of field from the indirect hyperfine interactiond}§, as the
Ref. 27 does not describe correctly the mechanism by whiclFe—O—Feexchange bond angle is reducdd® The angular
the fieldH,; is induced, a point that shows up especially for dependence of the field[? is adequately described by Egs.
diamagnetic ions, at whose nuclei the magnetic field is en¢1). An estimate of the angular variation of the partial con-
tirely determined by covalence effects and is not “screenedtributions from thet,4- andeg-orbitals to the fielcH[S in the

by a strong field from the moments of its own electron shellsame range of angles as fdg} yields

(as happens, for example, in the iron )on

7. PARTIAL CONTRIBUTIONS TO THE FIELD H3? FROM
THE T,4,- AND e,—ORBITALS

Based on the experimental data and our earlier stiflies,
we have calculated the field:] induced by a single nearest

Sn

(AHJ/A9)=+0.33kOedeg * for the eg-orbitals,
(AHYA )= —0.115kOedeg * for the t,g-orbitals,
(AHZYAG)=+0.21kOedeg ! for the (ty

+eg)-orbitals.

These estimates may be useful, for example, in planning

paramagnetic cationH;.) and constructed the dependenceexperiments on exchange interactions at high pressures.

of this field on the exchange angle In a crude approxima-

tion for the orthoferrites and orthochromites, this curve is
linear for angles 14062 #<160°. Thus, we can try to estimate 8- CONCLUSION

the angular variation in the partial contributions to the field
Hon, from thet,4- andey-orbitals of the paramagnetic cation ¢,

in the following way.
For the orthoferrites RFe{sn):

A6=6(R=La)— 6(R=Lu)~+15°,
AHSY =HS" (La)— HS"(Lu)= + 16 kOe.

The Fé* ion has atd.e?

2¢€g €lectron configuration. A

A crystal chemical analysis of the structural series with
general formula AB@has shown that the ideal cubic
perovskite structure can undergo a transformation into a
rhombohedral hematite-corundum structure by simple rota-
tion of the[ BOg] octahedra if the B—O distances are fixed.
The rhombic distortions are associated with a reduction in
the B—O—Bbond angle fromp=180° in perovskite to-132°

in hematite. The rare earth orthoferrites REe@e subject to

the same structural transformation mechanism and the series

change in# by one degree, produces an increment in thd.aFeQ,—LuFeQ, occupies an intermediate positi¢h57> 0
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This paper describes the design and experimental testing of a high-sensitivity hot-electron
bolometer based a film of normal metal, exploiting the Andreev reflection from superconductor
boundaries, and cooled with the help of a superconductor—insulator—normal metal junction.

At the measured thermal conductivii@~6x 10" >W/K, and a time constant of=0.2us, and

a temperature of 300 mK, the estimated noise-equivalent power=NEPLO™ 1B W/HZ2,

assuming that temperature fluctuations are the major source of noise. At a temperature of 100 mK,
the thermal conductivity drops 6~ 7x 10" * W/K, which yields NER=2x 10~ W/HZz'?

at a time constant of=5 us. The microbolometer has been designed to serve as a detector of
millimeter and FIR waves in space-based radio telescopes19€9 American Institute of
Physics[S1063-776(99)02303-3

1. INTRODUCTION FIR detectors is space-based radio astronomy, NHEB detec-
tors operated at a temperature of 300 mK, which can be ob-
A normal-metal hot-electron bolometéNHEB) using  tained in relatively simple and smafHe cryostats, show
the Andreev reflection from superconductor boundaries waguch promise. Conditions imposed by the European Space
first described by Nahuret all? It demonstrated a very high Agency on bolometric detectors for future IR and FIR space-
voltage responsivity at operating temperatures of about 10Based astronomical facilities were listed in the tender an-
mK. The bolometer was based on a normal-metal film connouncementRef. 3. The required detector should operate at
nected to two superconducting electrodes. A current induced temperature of 300 mK and have a noise-equivalent power
by a microwave signal was transmitted via the electrodes tlNEP<1x 10~ " W/HZ2 at a time constant<1 ms.
the film and increased the electron gas temperature in the There are three sources of noise contributing to the bo-
normal metal. An important point is that electrons cannotiometer NEP:
impart their thermal energy to the electrodes owing to the
Andreev reflection at the superconductor—normal metal in-
terface. Electrons can give up their energy to the lattice, but, NEP=
at temperatures below 1K, electron—phonon coupling is in-
efficient, so the heat transfer from heated electrons to the
lattice is very low. This weak coupling is characterized bywhere T, is the electron temperature in the absorb@r,
thermal conductivityG and results in a considerable increase=dP/dT is the heat sink thermal conductivity under operat-
in energy engendered by low incident power, i.e., the elecing conditions S=dV/dP=(dV/dT) G~ ! is the detector re-
tron heating effect is fairly large. Changes in the electronsponse,V; characteriz es voltage fluctuations in the SIN
temperature  are detected using an additionajunction, andV, is the measure of voltage noise in the am-
superconductor—insulator—-normal met&BIN) junction, plifier. The first term on the right describes temperature fluc-
where the normal metal is the heated normal-metal ffig.  tuations in the absorbing material and determines the funda-
1). The shape of the current—voltage characteristic of a SINnental noise minimum in the device at a given temperature.
junction depends on the electron temperature in the normalFhis equation clearly shows th& leads to a low value of
metal film. A dc bias current is fed to the junction, and NEP in such a bolometer.
changes in the voltage are measured, i.e., an output signal We have suggested a technique for decreasing NEP us-
AV(T), which is linear over a wide range of incident power. ing a well-known methotiof decreasing the electron tem-
One important feature of such a bolometer is the equalityeratureT, in the bolometer absorbing material with essen-
between the thermal time constantand the timer._,, of  tially no change in the actual lattice temperature of 3007nK.
electron—phonon relaxation. The typical values10us at  In this device, the balance between electron heating by
100 mK andr=0.4us at 300 mK are much shorter than the phonons and cooling due to the tunnel junction is controlled
time constant required for most practical applicatibis. by tuning the bias voltage to the energy gap, which allows
Since the main application domain of high-sensitivity one to get rid of electrons with higher energi€sg. 2).
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FIG. 1. Microbolometer structure. SIN is the junction biased by a low dc v, uv

voltage. The voltage across the junction depends on how the current— o o
voltage characteristic is flattened by thermal noise, which is a measure of thelG. 3. Current—voltage characteristics of the SIN junction measured at
temperature in the normal-metal absorbetaded region various temperatures and zero signal current, and at two signal currents and

an ambient temperature of 30 mK.

According to preliminary estimatésthe full thermal _ o .
conductivity G cannot be reduced by electron cooling, be-lithography and subsequent etching. Tihesitu ion etching
cause another channel of heat supply is added. The electrdior to film deposition was used to remove oxides and con-
cooling can upgrade the NHEB parameters by decreaging taminants on the interfaces between normal-metal and super-
in the first term on the right of Eq(1) and increasing the conducting films.

temperature respongiv/d T, which yields higherS in the The current—voltage characteristics of the detector SIN
second and third terms of NEP. junction were measured at various temperatures and incident

powers (Fig. 3). The resistance of the shorter device (
=6um) was 12). The voltageV as a function of signal
currentl s in the absorber at a constant bias current was
We have developed and manufactured several versionseasured at a constant temperature in two devices of lengths
of NHEB, including those with additional SIN junctions for differing by a factor of two. The curves &f(l) for the two
cooling. First we built a microbolometer with a single tunnel devices are very similaFig. 4). The derivativedV/d| s is
junction for measuring the electron temperature in the abeirectly associated with the curve shape and can be ex-
sorbing materiaf. The absorber and superconducting elec-pressed in terms of the temperature response, reciprocal ther-
trodes were fabricated using direct electron-beam lithogramal conductivity, and derivativd P/d| s
phy and the shadow evaporgtlon technique at dlffergnt dv  dVv dp dV(dP -1 4p
angles. Superconducting aluminum electrodes 40 nm thick - | =
were fabricated first and oxidized in an atmosphere of oxy- dlgps dPdlgps dTVdT/  dlaps
gen at a pressure 0P410 2 mbar for two minutes to form a  One can derive from Joule’s formula
tunnel barrier. Then we deposited 3nm of chromium and
35 nm of silver to fabricate an absorbing filmuén long and
0.25um wide. Then two superconducting lead electrodes
with a thickness of 120 nm were fabricated using additional

2. POWER DETECTION

2 dpP
P=Pjue= spR— digp = 2Rl ps.
abs

i Yoo UV
Signal source (antenna) 200
| ! Ibias= 03 nv

160

(ST 7 /i S) S
120r

0.1nV
80\
2

- 0.05 nV !
' 2

40t

Ci

-

i i i i
FIG. 2. Configuration of a microbolometer with electron cooling. The two 0 100 200 300 400 500
low-resistance SIN junction€C1 and C2 are biased by a dc voltage and labs~ nA
reduce the effective electron temperature in the absorber normal-metal film
(shaded area The two high-resistance SIN junctiofM1l and M2 are FIG. 4. Voltage across a SIN junction at a constant bias cutigptas a
biased by a low dc current and used in measurements of the electron terfunction of the current across the absorber for two devices with lengths of 6
perature. um (curvesl) and 12um (curves2) at an ambient temperature of 30 mK.
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P, pW tion V(I 4,9 Was used in calculating(P). The highest slope
3.0 of the power—voltage characteristic at the optimal bias cur-
2.5 rentl piae= 0.3 NA is Sy = |[dV/dP|=3x 10" V/W. By com-
bining the characteristicg(l yizs, T) andV(l yizs, P), ONE can
201 calculateP(T,) (Fig. 5).
15t By comparing experimental data with calculations by
Eqg. (2), one can determine the material parameiet 3
1.0t X 10" °nW-K 5. um~3, whence follows the thermal con-
ductivity G=6x 10"*W/K at 300 mK. This parameter is half
0.57 that derived from the data reported by Nahum and Marfinis.
. ) N This difference is due to the smaller absorber volume in our
0 0.005 0.010 0.0155 (5).022 case. The temperature fluctuation component in NE&.
T"-T. K (1)] derived from our measurements @ is about 5

X 10" W/HZz2, which is considerably lower than the pa-
temperature derived from measurements/ef. .. T) andTy=30 mK is rameter of future bolometers for space-based telescopes re-
bias» ph— H _
the substrate temperature, assumed to equal that of the substrate holder. 'I%J'red by the European Space Ageﬁo@{t 100 mK the ther

straight line described by the equatidh=1.55< 10" *°(T°~Tp;) corre- mal conductivity decreases appreciably, to
sponds to Eq(2). G~7x10 ¥WI/K. This value ofG contributes a tempera-

ture fluctuation component to NEP o210~ *°*W/HZ2.

) o ) The thermal time constant can be calculated by the for-
The reciprocal thermal conductivity can be derived from they,1a -= C/G. whereC is the electron specific heat. At the

expression for the heat exchange in the case of electron hegtsjye of 3 measured in our experiments, we obtain

FIG. 5. Absorbed power as a function T)?—Tgh, whereT is the electron

Ing: ~5T 3 ns. At T=300 mK the time constant~0.2us, and
- dp atT=100mK it is 7~5 us, which is much better than usual
Pepn=2U(Tg=Tpn)— ﬁ=5EUT4, (2 requirements.

At ambient temperatures of 100mK and below, the
whereZ is the characteristic parameter of the material, andNHEB sensitivity did not improve significantly. The reason
supposing that the equilibrium condition holds, we haveis the quality of the detector tunnel junction, whose current—
PJoule= Pe_ph- After substituting the latter expression, we yoltage characteristic shape changes with temperature above
have 300 mK. This property might be due to the thermal process-

dav  dv( 214R ) R ing during the second lithographic process.

= o —. 3
dlabs dT 52T4U ()

U
The coincidence of thev curves of the different devices 3 g EcTRON COOLING

indicates that the increase in the dissipated pd®vewing to

the higher resistancR is almost completely offset by the Using the same technology, we have fabricated an
increase in the thermal conductivity due to the larger volumeNHEB with four tunnel junctiongsee Fig. 2, and Figs. 6 and
U, i.e., there is no significant thermal flux through the 7). In this case, the absorber is a copper film 40 nm thick,
superconductor—normal metal interface. This provides diredd.25um wide, and 7um long. In order to cool electrons
evidence in favor of the Andreev reflection. Then the func-efficiently, the resistance of each cooling junction should be

FIG. 6. Electron micrograph of a microbolometer

with an electron microrefrigerator fabricated by the

shadow evaporation technique at different angles.
The upper horizontal strip is made of copper and
acts as an absorber. The darker layer is aluminum,
the two larger and two smaller junctions are fabri-

cated where the absorber strip overlaps oxidized
aluminum electrodes fabricated in a separate litho-
graphic process.
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FIG. 7. View of a device with a planar log-periodic
antenna designed for a frequency band of 100 to
1000 GHz.

of order 1 K). At the same time, the resistances of detectorcurrent conducted between the tunnel junctions. In order to
junctions should be much higher than ¥@kin order to  check out this assumption, we fabricated large junctions
minimize the bias current. These two conditions were satisseparated by only 06m, but this modification had little
fied by fabricating junctions of very different are@2um?®  affect on device characteristics.
for the large and 0.0&am? for the small junctions As a
result, the ratio between the normal resistances of the junc-
tions is more than 20, although the latter parameter can be
affected by edge oxidation, which has more impact on small
junctions than on large. 4. CONCLUSIONS

In order to demonstrate the effect of electron cooling, we
have measured voltage variation across the detector junction We have developed, manufactured, and tested bolom-
at a constant bias current as a function of the voltage acros

. ; . . Sers using hot electrons in small normal-metal films, ex-
the large junctions. Then the resulting values were callbrateg g

for different temperatures in the cryostat, where the Iargé) Igmng the Andreev refk;cuon from supt:rcq?fductor Ib oung-
junctions were not connected to a dc bias source. aries. Experiments with absorbers of different lengths

The resulting curves measured at various initial temperaconfirmed that the thermal conductivity is largely determined
turesT,,= T, atV=0 are plotted in Fig. 8. Both the cooling by electron—phonon coupling, and there is no thermal con-
effect and its unexpected suppression at temperatures beldgjuctivity through the interface between superconductors and
400 mK and 250 mK, respectively, have been detected. Oneormal metals. The measured thermal conductivity in the
reason for this behavior might be the trivial heating by themicrobolometer with the short absorber isx &0~ 12W/K

and 7x10 ¥W/K at 300mK and 100mK, respectively.
.. mK These values correspond to time constant.2us andr
200 g : =5us and noise-equivalent powers NEBx10 18
600 : ] W/HZ"? and NER=2x 10" *W/HZz'? if temperature fluc-
500 tuations are considered to be the major source of noise.
These characteristics, especially the time constants, are con-
400 siderably better than those of conventional superconducting

300 bolometers. Our experiments support the concept of elec-
200 _4‘00 6 4(‘)0 tron cooling in such bolometers using additional SIN junc-
v, uv tions, which enables one to reduce the noise-equivalent
FIG. 8. Electron temperatufE, in the absorber as a function of the voltage POWEr and use a less complicated cooling system.
applied to the two large SIN junction®Rf*+ RS?=6250 +645Q) at vari- This work was supported by the Ministry of Science and

ous initial temperatures. Parameleris derived from measurements of the Technology of the Russian Federation. the Russian Fund for

voltage variations across the two small junctionB¥t+RN?=62 k) .
+116 K)) biased by a small dc current using a calibration curve obtained in':undarm:"ntal Research, INTAS, and the Swedish Academy
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We consider a two-dimensional system of particles localized on randomly distributed sites of a
square lattice with anisotropic transition matrix elements between localized sites. The

diagram and replica methods are used. The conductivity of a system in different limits of local
sites and particles densities is calculated. The model is relevant to the problem of strong
nonmagnetic impurities in superconductors with_,> symmetry of the order parameter. €999
American Institute of Physic§S1063-776(199)02403-§

1. INTRODUCTION The plan of this article is as follows. In Sec. 2 we con-

sider the case of low impurity density. In Sec. 3 we calculate

We examine a system of randomly distributed impuritiesy,e conductivity in the case of high impurity density. Results
at a sites of a two-dimensional square lattice. An impurity, o discussed in the Conclusion.

potential generates a localized state with a strongly aniso-
tropic (cross-shapedvave function. The conductivity is pro-
duced by due to hopping of particles between local states ofr FOW DENSITY

realized in two-dimensionatl,>_,2-wave superconductors, (c<1). In an external electromagnetic field we substitute in
where local bound quasiparticle states can arise in the pre 1)

ence of unitary impuritieS. The wave functions of the local
states are strongly anisotropic, with exponential decay in all t(f'—f-)ﬂt(r-—r-)exp{ief”A(r t)dr}
i j i j ' .
fi

directions excepb,=(2n+1)w/4, where the wave function
is proportional tor™ . The electric current is defined as usual with the Hamiltonian

A similar anisotropy has a wave function of bound states(l) by varving over a oauge-invariant vector potential
in the vortex core ind-wave superconductofsThe wave y varying gaug P
function in the vicinity of gap nodes at large distances has .
the form ja<t>=—|ei2j (=1t Vi (O V(D pip;

||| o — pnlexp( — 2| o= @y r/£), XexpieA(t)(ri—rj)), ()

wheret;;=t(r;—r;). Since we will calculatg(w), we as-

. h . | 2 . . . _
with a maximum valug | &/2r in the directionse = ¢y sume that the potenti#@ depends only on timé Using the

= ¢/2r 0. . .
We will consider the following tight-binding Hamil- equation for the Green functioB(ty,ry,t.r)
tonian: d G . T[N,(l)\lf* 2
a (t,ra,to,rp)=—i oty (2)
H=i2’j trj=r) g  (r)e(rpp(rp(ry, &) —i8(r,— 1) 8(t;—1,), (4)

N + . L we obtain after Fourier transformation in the lingarap-
where " (r;)," (rj) are creation and annihilation opera- proximation

tors, p(r;) is the density of impurities, equal to 1 at the )
impurity sites, and to 0 otherwise. The transition matrix ele-; _& N e
ment has a cross-shaped configuration Jal@)= .ZJ G r)a(ri =) pAs(w)

2

= dQ . e
t(r)=(x,0t 6y (1), (2) xf—G(Q,rj,ri)e'ﬂa——
2w c
with
a\” Xi2k| ti it (=1 o(re=11) gAg( @)
f(r)y=J T expl— «r), JK,
xfﬁe(mﬂ ri,r)G(Q,r,r)e'ee (5
anda is the lattice constant. 27 otk AR :

1063-7761/99/88(3)/7/$15.00 603 © 1999 American Institute of Physics
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The summation in Eq(5) is taken over impurity sites, where(...), denotes the average over possible impurity con-
anda— +0. In order to evaluaté) in the lowest order with  figurations. We assume that the concentratiefil.
respect to the concentration, we examine the case of two The one-particle Green function for the arbitrary impu-
randomly located sites. The Green function is found easily:rity distribution is usually defined in terms of a functional

integral as
G(w r: r.): uH——,u 1
U (0t )ty G(E,r,r")=[E=tjp(rip(r)];
t T et f
Glw,r;,rj)= ﬁ (6) i fD:le//f(r)zp(r )exp(|S)’ (16)
h SDyDyexpiS)
where u is the chemical potential. Substitutiri§) into (5),
we obtain in the case when the sites are located on the sanf§'ere
horizontal chain S=S+S, (17
. - 2 , w2 B
@)= 50 a2t o g Ade) 1So=1 20 Y(nEY(r), (18
=Q(w)Ay(w). (7

iSy=—12 ¢(rt(ry—ro)p(ry)p(ra)g(ry). (19

A similar equation can be derived for the case of nonzero orA

temperature. The result differs only by the Fermi filling fac-
tor. After averaging over impurity sites we obtain for the
conductivity o(w) =1Q(w)/w

Introducing an additional integration over new fermion fields
X, x in order to eliminate the second order terms we get

a'(w)=7TTezc2Lf X2t(X)[Ne(w— ) eXFIisl):f DYDXeXl{iZ X(rt 1 (ri—rp)x(r2)
~ (= o) 150 =2t(x))dx —icS (XD #() + H(N)x(1)]
7€ o XtOONE(0—p)—Ne(—0—p)] '
=— - , — 1
8 [t (%o)] —iX 5p<r>[y<r>w<r>+w<r)x<r>]jz,
) ’
where ng is the Fermi distribution function, andt@) (20)
=w. where

Substitutingt(x) from (2) we get
Z:f DYDXQXD[i > Y(rl)tl(rl_rz))((rz)]: (21

®  exp—kXg)

R e —— rq,r
2J x3 ' © o
-1 — 1 E -1 k ikr 292
me? Xg[np(w—,u)—np(—w—,u)] t (r)_v - e (k)e', (22
o(w)=—2¢c’L . (10
8 ’)’+KXO
L ; ikr 2 k@
In the limit of low frequency we have the following e(k)=>, t(r)e'=—JIn|| k2+4 sm27
asymptotic behavior: '
1. k=0, xg=(2J/ )" k.a
L X K2+4sir?L”. (23)
0>T, o(w)xw 7, (11 2
0<T, o(w)xw 3+ (12) The Green function in terms of the new two-component
field ¢,
2. k#0, kX~ l0g(2) w): ¢
r)y=(r), r)=x(r),
0T, o(w)=log(23/w), 13 ®a(r) i( )y @a(r)=x(r)
w<-|-' 0'((1))“(1)'0@]2(2\]/(,0). (14) QDl(r):lp(r): QDz(r):X(r), (24)
reads
3. HIGH DENSITY - o R
G(ry,r2)=—i(a(r))®¢(ry)), (25

3.1. Green function n _ _ .
whered(r)=[¢1(r),®,(r)], and angle brackets are defined

In case of high density of impurities we assume that theyg
distribution function of impurities is a Gaussian with vari- o -
anceg: _ JDyDyYDYDx(...)exp(iSes)

p(r)=c+op(ry), (Sp(r)dp(r),=g?8;,  (19) " IDyDYDYDx expliSen)

(26)
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with
E —c—dp(r)

iSEff:iEr: é(n) —c—3p(r) t7i(ry—ry)

)@(r)- (27)
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whereGR andG* are the retarded and advanced Green func-
tions.

The equation for the Green function after averaging oveR.2. Drude formula

impurities in the Born approximation reads

G(k)=G6(k)+Go(k)S (k)G (K), (28
with the bare Green function

T 29
—c ¢ (k)

and the self—energi obtained by summing diagrams with-
out intersections

i(k)=gzazf (201:;2 *G(ky) ™. (30
The solution of Egs(28) and(30) is
A
2(k>=<c B), @Y
. 1
G = e (0ORIE=A) = (c+iC)%(K)
1+e(k)B  —i(c+iC)e(k)
| Zitc+iC)ek)  s(K)(E-A) |’ 32
where
dk E—A)e(k
A:gzazf(277)2[1+s(k)B]((E—A))—((()H-iC)zs(k)’
Be — ga? dk2 1-e(kB -
(2m2[1+e(k)BJ(E—A)—(c+iC)2%e(K)
o gia? dk (c+iC)e(k)

(2m)? [1+&(k)B](E—A)—(c+iC)?%e(k) "
In the limit g?<1, we obtain

% c?

. . Y . Cvy
RAZ- +j 2 RA_ i = RA_ +j— L
A _|2, B IE > C _|E2’
(33
, ,E? [E
y=2mga U a2) (34

where 1(g) is the density of states of the pure modef 1,
g=0):

3 dk
V(s)—fwé[s—g(k)]. (35

Taking into account thaA<E, BE<1, C<c, we find for
the Green function in the limig?<1

1
E—c?e(k)*xiy[1+3(c?/E)e(k)]/2
ce(k)
e(k)E

GRAK) =

, (36)

( 1
*\ ca(k)

The conductivity in our case is defined as in Sec. 1 in
terms of the four-particle correlation function

e? dk, dk,
0e(0)= 5= |yt perv k(KoK
X(klvkz;kzykl)y

(2m)? (2m)*
(37)
whereE is taken at the Fermi level,

Keo(K1,KzKz,Ky)

expliky(x—y))expliky(z— 1))

N Vxyzt
R w A w
X{ pupypzpiGry| ¥,2.E+ 5 |Gy tX,E= = (38)
p
and
de (k)
va(k)= = (39

Inserting the solutiori36) into (37), we find in the low-
est approximation

2

e dk
oE<w>=Evai<k>Gﬁ(k,E+§
A _eZC6<J 2A(E)
XGu(kE-wl2)=5—|3 BE)" (40)
where
_ Al o _ e
A(E)_ fs(k)—E/cz U(k) Ux(k)a B(E)_ e(k)=E/c2 U(k)('41)

v(k)= \/vxz(k)+vy2(k), anddl, is the element of length of

the Fermi surface.
The conductivity can be expressed in terms of a particle
density defined by

mla mla E
no(E)zazf dkxf dk, 6| = —e(k) |. (42)
—mla —xla c
We obtain in the low and high density limits
e’c® n
—2—02, for no<1,
g° 32wlog 2
4
" efc® _1-n for 1—ny<1 “
9% 4x%log? k' o=

The asymptotic behavior in the intermediate rangeng
<1lis

e?ct 1

9% (1-ng)?log[1/(1—ng)]’

(44)

o=27"
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—— > Pt > > >
K(D) = + K(D) FIG. 1. Diffusion vertex.
< < RSN NN -5 < %
with maximum value 40—5
b=1+-—(iw—Dk?, D= , (51)
1 4y 4y
Tmax™ Blog « (45
reached at + ng~ «*3 and
3.3. Perturbation corrections P ( exp(6) 1 ) (52)
To go beyond the quasiclassical approximation we in- ! X~ 0)
clude contributions to the conductivity from “diffusion- h —dE
ladder” and “crossed-ladder” or “cooperon” vertices where expQ)=c/E. . .
The additional term is We seek a solution of50) in the form
et [ dk;  dk,
doe(w)= 752 (2m)? (ZW)ZU“(kl)v“(kZ) KiSha= 922 TabTedK””, (53
R (k1) Gy (ko) Gy(ko) Gl (k1) o
whereu,ve{0X,y,z}, andK*” satisfies
X Kac;bd(kl :kz), (46)
where for the “diffusion” vertex contribution we obtaifsee K blok) S AL KM= 1 . (54)
Fig. D w, NI mKY=3 gL’
K(cbd 9° TacTbd .
with
2 —2'0'X K P G Doy 4.
J j (2m)" 24 alcl( ) °1° bby 1d1( 74,0 cosH 6 coshd 0 sinhgcoshé
(47) X 1 coshé 1 0 sinhé
The solution of this equation does not dependkgrand T2 0 0 0 0
k,. Therefore the contribution of the “diffusion” vertex to —sinhfcoshd —sinhg O —sint? o
the conductivity is equal to zero because (55)
dk, R A
(ZT)Zva(kl)Gla(kl)Gdl(kl)zo- (48) and
Now we consider the “cooperon” vertex contribution. 100 0
The vertexK(©) obeys the equatiotsee Fig. 2 610 o
dl Jc= (56)
K(Cc)bd(Q) g Uac"bd+92f WU;eUEQGeRal(I)GSb 1001 0
0 0 0 -1

X (A= DKL p o), (49

whereq=Kk,+ k. A solution of (54) can be found in terms of matrices

Using the Green function fror86) we can rewrite this UB:
equation: Y 1
L K#=U  mBLn(U ™ Ny (57)
Ky Zb(w,k)UgeaﬁgrealfgblK(a?g;bldz 9205 Tt where
(50)
where (U_l)M,u,A/.LVU N~ ZMm 5MN’ (58)

K = + + ‘ + ... FIG. 2. Crossed-ladder vertex.
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andN is the number of replicas.
BMN:m(U_l)M#gMVU N - (59 The quadratic ternpp can be transformed with the help
’ of the additional Grassmann field$ , v
The eigenvalueg,, and matrixU are

2N
zo=1, z;=0, z,=0, z3=0, (60) exp{—irZr nzl t(rl—rz)p(rl)p(rz)xﬁ(rl)Kn(rz)]
1.2 =
1 1 isinhe O 2N
—coshé —coshg —1IsIn _j % . -1 *
= | Dv*Dvexp i t S (rq—r r
V2 V2 v-v p{rgzzl (ry—ry)v*(ry)
1 1 0 0 2N
0= V2 V2 . Xu(rp) =i 2 p(r)
0 0 0 1

* T+ i* Dv*D
B 1 sinhg  — 1 sinhg  icoshd O ><[Vn(r)Kn(r) Kn(r)vn(r)]]{J’ v-ov
V2 V2

61 2N -1
(61 xexp{iz Ztlm—rz)v*(rl)v(rz)H :

We see from(51) and (60) that the eigenmode with rpfrz n=1
N=1 only has singular behavior fan,k— 0. Substituting (68)
solutions(60), (59), (57), (54), and(53) into (46) we obtain

a logarithmically divergent correction to the conductivity: It is convenient to define spinotg, :

2 4 Kh — [~k
b=y | 4 @ Ty, Kn>’ v ( <} ) ©9
_ We_ consider Fhe problem in _deta_il in the next se(_:tion 3 n:(an _ V:)' f2ﬂ=( _i’n), (70)
using field-theoretic methods for diffusion mode interactions. Xn2 Vn Vn
or
— -1
3.4. Field-theoretic description ¥=(C¥)", y=(Cy)", C= 5”1“(2 0/ (72)

Quantum corrections to the conductivity can be de- . . . _ .
scribed in terms of a diffusion modes interactions. To derivévhereC is the charge conjugation matrix. The same relations
an effective Lagrangian we make use of a replica methodhold between the original and Fourier components

Conductivity properties are determined by the density- —

density correlation function Vai(p)=Cij¥ni(=p),  Yni(p)=C;¥y(=p), (72
K(0)=(GR, o(r1,12)GA_ . (r1.12)), (63) Xni(P)=Cijxni(=P)s  Xni(P)=Cjixni(—P), (73
where where
-~ . _ 1 ) 1 )
GRAB)=[Exia—tijp(r)p(r)] ", ®)  wyn=3 T V(e Xni(N=2 e
and angle brackets denote impurity averaging. P P (74)

Integrating over anticommuting Grassmann variables

«* ,k We can write The action(66) takes the form

GE 4w 11:72)GE— yaF1:12) iS:i{E \E(r) E+ %Hﬁ A}\P(r)
_ JDK*Drry(r)ky(rp) knga(ry) ks 1(r2)expiS)
/Dx*DrcexpliS) ’ + 2 Xt (ri—ry)x(rp)
(65 rra
h B _

e -3 [X(r)‘l’(r)+‘1’(r)x(r)]]. (75

iS:irEr nzl kh (M{[E+(0+i0)Nn]ly, o, where A is a diagonal matrix consisting of elements.

12 Introducing new bispinors
_trl,rzp(rl)P(rz)}Kn(rz)v (66) W (r) -
1. n<N, ¢(r):<x(r))’ o(r)=(w(r)x(r))
A= (67)

—1, n>N, we can rewrite the action as
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iS=i Y, 9(ry)Gol(ry,ro)e(ry)

r1.ro

—iZ Sp(Ne(r)a®e(r), (76)
where
w
. E+|=+id|A —-c
G0 (rlvr2)= 2 (77)
—c t 3(ry—r,)

is the bare Green function.
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o YAV Y

(ueo +§Q) ~ 527 Qo*=0. (84)
The solution of this equation to lowest orderga is

Qsp=A(coshd—a*sinhd+ o™)expé, (85

E/c=exp¥, (86)
with the Green function

1 1 E/c
G= E+Aw/2—c?s(p)—2iyA (E/c Ezlcz)' &7

Expanding near the saddle point and using the symmetry

Performing the average over a Gaussian distribution fobf the tensoiQ, we find

the randomness we obtain

<exmsim>>=<ex{—i2 Sp(t)@(r)a*e(r)

|

2
=exp| -53 [ar)a&o(r)]z}. 79

The order parameter in the localization theory is a trace-

less tensor proportional t@l’\?}. Taking into account only
long-wavelength fluctuations we can rewr{#) as

. (79

(exp(iSin)) = exp{ 922 Tap0cdPdal(r)Phe(r)

where

P‘“’r=£2" ol(p+a)exp —igr v={n,i}.
be(r) L& eh(P)ec(p+a)exp—iqr), {n,i}

Spinorse ande are related by charge conjugati¢fl). This
imposes symmetry conditions
[PE(N]*=Peh(r), or PT=P,

P=CP'C'.

(80
(81)

Introducing a Gaussian integration over tiaumber matrix
field Q, we obtain

> e(ry)

r1,ro

expiSes) = J DQ ex

X

iGal(rlirZ)"'Irlrng(rl)}ﬁo(rz)
-3 ;Tr(anQoX)”f DQ

I

After integration over the bispinor fielg we obtain

(82

x exp[ Y ZaTr(QUXQoX)

iSe=TrlIn

iGy L+ gq} —Z ;Tr(QaXan). 83)

In the saddle-point approximation we use the equation
8S/6Q=0,

or

’)’2

iseﬁzTrln(ieolJr%aQ) - T6?

XZ TH{[Q+6Q(1)]o*[Q+6Q(N)]10*}. (89

Taking Fourier transforms, E¢88) reads

's

_r1
169° L 5

i 6Sef= {Tr[ 8Q(q)a*6Q(—q) o]

d
0| 2 TGP SAAG(P+ A
iwy(1 O
T(O 0)5Q(Q)

Due to the symmetry of th® we can write the variatiodq
as

X8Q(—q)]+Tr ’ (89

8Quc= Qa0 To o (90)

where all matriceQQ, are real. Inserting the relatiof®0)
into (89), we find, taking into account only low-energy trans-
verse QoQ+ 6QQ=0) modes,

2
b
0Sef= — _822 2,3 Oap— goTr( P rao*r)

XQaQB+QaTav (91)
where
by=1 DK —040_)2( =cosh Zsinh X
0= _4_y' =4y T=coshf+ o“sinh6+ o7,
T—TiwA10>“x 92
=T 5 0 0/ (92
After diagonalization we obtain
1 yDK?
i Seff IEKD TF(—3—292<J1(‘<)Q1(—|<)
-5 3 Tatg(-k)]
8971554 ! !
iwy
+rcngUa|Q|(k) : 93

where
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Q,=U_q, (94) (Sec. 2 and high densitiegSec. 3 of local states. Since
perturbation theory leads to divergent terft€ooperon”
i B i 0 0 vertices we used the field theoretic description in terms of a
V3 V3 diffusion mode interaction. Introducing an additional integra-
tion over fermion field and performing the average over im-
purities with the help of a replica trick, we obtained the
action of the nonlinearr model. Renormalization group
_ _ equations for this model determine the behavior of the diffu-
_ I—sinha _ I—sinha —coshd 0O sion constant and the conductivity. _\Ne_ have shown thgt this
V2 V2 type of disorder leads to weak localization phenomena in the
high density limit, as in the usual two-dimensional clse.
0 0 0 1 . . : - :
(95) As _menyoned |_n_the Introduction, a similar picture can
be realized in nontrivial superconductors. A strong scattering
We see that the actidi®3) consists of only one diffusion  impurity potential produces a resonant or marginally bound
type mode (=1). Taking into account only these modes andstate inside the gap in dwave superconductor. The wave
neglecting interactions with other higher-energy modes, Weynction of the impurity bound state is highly anisotropic,

1 1 .
—coshé —cosh® —isinhe O
U V2 V2

al ™

obtain the well-known action of the nonlinearmodel, with 1/ decay along the nodes of the gap, and, an exponen-
1 tial, angle-dependent decay range otherwise. A finite concen-
S= ?f dr[Tr(VQ)2—& Tr(AQ)], (96) tration of impurities leads to an formation of the narrow qua-
siparticle band. If we simplify a picture and take into account
where scattering processes of quasiparticles inside this band only,
y o 1 y we obtain our model. We note that our consideration is ap-

W= 62D’ T = @ZD' plicable only in the case of strong unitary impurities produc-
ing local bound states. Opposite cases of weak impurity scat-
The renormalization group equations for this case were studering with different types of disorder were studied in Refs. 7
ied in Ref. 5. In the limitN— 0, we see that in lowest order and 8.

dt f 97 This work was supported by the Russian Fund for Fun-
dink 8’ damental Research under Grant No. 960217791.
dinw

- =0. (98) IA. V. Balatsky and M. T. Salkola, Phys. Rev. Left6, 2386 (1996,
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Since the conductivityr is proportional to the diffusion con- 2N, B. Kopnin and G. E. Volovik, JETP Let64, 690 (1996.

stantD, equationg97) and(98) determine the frequency and °L. P. Gorkov, A. I. Larkin, and D. E. Khmelnitskii, JETP Let80, 228
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Changes in the magnetic moment of crystalline FgB@®en an antiferromagnetic resonance is
excited in it are studied. This done using a SQUID magnetometer in combination with a
microwave spectrometer. At temperatuiies 15 K a reduction in the total magnetic moment of

the sample is observed when an antiferromagnetic resonance is excited in it. At liquid

helium temperatures, an induced rise in the sample magnetic moment was observed. This type of
magnetization of the sample can be explained qualitatively if it is assumed that under
antiferromagnetic resonance excitation conditions, magnetoelastic modes with high wave numbers
are excited along with magnons. Efficient excitation of magnetoelastic modes under
antiferromagnetic resonance conditions is confirmed by the experimental observation of a size
effect in thin, high quality single crystal slabs of FeRO © 1999 American Institute of
Physics[S1063-776199)02503-3

1. INTRODUCTION siphonon branch acquires a dependence on the magnitude of
the static magnetic field. The calculated spectra of the low
The electron spin resonance of antiferromagnetic FeBOfrequency branch of the quasimagnons, )l and of the
is studied in this paper. In these experiments simultaneougcoustic branch of the quasiphonoiy,J for a infinite crys-
measurements were made of the microwave power absorbeal (which makes it possible to restrict the analysis to the
by the sample and the accompanying change in the totahagnetoelastic coupling of magnons and phonons with equal

magnetic moment of the sample. wave vectorsare given b§10
The change in the sample magnetic moment is a result of
all the nonequilibrium perturbations of the sample caused o= y[H(H+HD)+H§+(ak)2]1’2, 1)

directly by the microwave pumping, as well as by “second-

ary” quasiparticles created through relaxation of the prima-

ries. A simultaneous analysis of the microwave power ab- Q= Cek-[1—(yH &l w})?]"2, 2
sorbed by the sample and the corresponding chaifgen

the sample magnetic moment yields information on the nawhereH is a static magnetic field directed in the easy plane
ture of the quasiparticles that are excited and on their relaxof the crystal;y=gug/f=17.8x10° s 'kOe ! is the gy-
ation mechanism. romagnetic ratioHp=100 kOe is the Dzyaloshinskii field;

Since the measuredM is an integral quantity, this +yH, is the magnetoacoustic gap in the spin wave spectrum
analysis is effective for materials with a known excitation (H,~=1.9 kOe); and,a=0.8x10 ° kOe-cm is a phenom-
spectrum. For magnetically ordered substances measurenological exchange constant that is proportional to the ex-
ments have been made for compounds with well studied exchange fieldHg=2.6x 10° Oe. The sound speex} and the
citation spectra, such as nickel ferfitand iron yitrium  coefficient &, which describes the efficiency of the linear
garnet as well as antiferromagnetic materials with an easy-interaction between the magnons and phonons, depend on
plane magnetic anisotropy (CoGOFeBQ;, and MnCQ), the direction of the wave vector and the polarization of the
in which magnons, nuclear magnons, and magnetoelastic oguasiphonons. The values of the constants are specified for
cillations are excited’ low temperatures, far frory .

The properties of FeBO (Ty=348 K), an antiferro- Figure la shows spectra of quasimagnons and qua-
magnetic material with a easy-plane magnetic anisotropysiphonons with wave vectors directed along Mg axis of
have been well studied and are, to a great extent, determinede crystal and with the polarization of the quasipho-
by a magnetoelastic interaction. The magnetoelastic interactons parallel to H. For such quasiphononsg.=4.8
tion causes coupling of magnetic and elastic excitationsx10° cms ! and H,é=2 kOe. (The values of all elastic
Thus, the normal mode&uasimagnons and quasiphonpns and magnetoelastic constants E¢BO; can be found, for
contain elastic, as well as magnetic components. The quaséxample, in Ref. 111 In Fig. 1b we have plotted, as a func-
magnon spectrum includes an additional gap, while the quaion of the wave vector, the amount by which the magnetic

1063-7761/99/88(3)/5/$15.00 610 © 1999 American Institute of Physics
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60 30]
N a b FIG. 1. (a) Spectra of guasimagnons and
(% quasiphonons with wave vectors directed
W 40 - along theC; axis of a crystal and with the
Q X quasiphonons polarized parallel ta. (b)
q {e The magnitudes of the changes in the
(.'3 20t i sample magnetic moment during excitation
3 : of a single quasimagnon and quasiphonon as
apl2 functions of the wave vector. The curves

) ; were obtained using Eqél)—(3) for a mag-
0 1 2 0 | 2 netic fieldH=200 Oe.

k, 10° cm k, 10° cm™!

moment of the sample is reduced by excitation of a singlehowever, depends on the frequency and it is difficult to de-

guasimagnonw, or quasiphonor},, as obtained fron{l)  termine its magnitude in this experimental setup.

and(2) using the formula IN order to obtain quantitative results, a set of resonators

was used. By measuring the power passing through the cav-

=~ deil oM, @ ity and reflected from it, as well as its parameters, one can
where g =% w /27 for the quasimagnons a,=%Q /27  determine the microwave power absorbed by the sample and
for the quasiphonons?(is Planck’s constant. estimate the magnitude of the microwave magnetic field at
the sample.
2. SAMPLES AND TECHNIQUE In all the experiments the microwave field and the

static field H were mutually perpendicular and lay in the

The excitation spectrum of FeBAs sensitive to the R
easy magnetization plane of the crystal.

internal stresses of the crystaThus, the samples, grown in
the form of thin slab$20-150um thick), were examined by
x-ray diffraction topographyithe Lang methodat a wave-
length corresponding to the M, line. The samples which Figure 3 shows the results of measuriayl when a
yielded a uniform image without block segments and dislo-microwave magnetic field produced by a loop load on a co-
cations were selected. These samples were placed in envexial line is applied to a sample. The abscissa is a voltage
lopes of cigarette paper and attached to them at twqroportional to the frequency of the microwave generator
“points.” The samples prepared in this fashion were fas-operating with frequency wobble. It is clear that the mag-
tened by the end of the envelope to the loop of a coaxial lineetic moment of the sample is sensitive to the microwave
or in a cavity. This method of attaching the samples wasnteraction at low frequencies and in the range 7-10 GHz.
used in order to avoid the deformations caused by gluinghe existence of a large number of peaks in this curve is
them directly. The thick samples were glued at the end of theelated to the excitation of resonances in the waveguide line.
crystal. It is natural to relate the low frequency respoiiBey. 39 to

An apparatus consisting of a combination of a SQUIDthe excitation of magnetoelastic modes. The high frequency
magnetometer and a microwave spectroniétavas con-  peak (Fig. 3b is close to the antiferromagnetic resonance
structed for measuring the chang®#\{) in the magnetic mo-
ment of the sample when it was acted on by the microwave
magnetic field. Figure 2 is a sketch of the apparatus. An
outer vessel filled with liquid helium contained the SQUID
magnetometer cell, a differential flux transformer, and a su-
perconducting solenoid operated in short circuit. The sample
and a system for delivering the microwave power were lo-
cated inside an inner Dewar flask. The inner Dewar flask was
metallic in order to prevent the microwaves’ acting directly
on the SQUID magnetometer cell. The inner Dewar flask
was filled with helium as a heat exchanger gas or with liquid
nitrogen or helium. The working range of fields in the appa-
ratus was 0-450 Oe. The apparatus made it possible to mea-
sure changes in the magnetic moment of a sample with an {
accuracy of 510 Oe-cnr.

A microwave magnetic field was created at the sample
either by a loop which served as the load of a coaxial line or
in coaxial (at frequencies of 7-10 GHzr helical (0.5-1.2
GHz2) cavities.

Using a coaxial line loaded with a loop makes it possible
to excite microwaves over a wide range of frequencies in a
single experiment. The amplitude of the field at the sampleFiG. 2. A sketch of the apparatus.

3. EXPERIMENTAL RESULTS

SQUID signal

Microwave power

-

~
o
<

1.6 250 K

\
!
{

————
4




612 JETP 88 (3), March 1999 L. E. Svistov and H. Benner

—-8M, arb. units ~JM, arb. units
20 FIG. 3. The changéM in the sample mag-
a b netic moment when a microwave magnetic
20+ field produced by a loop attached to a co-
axial line is applied to it. The abscissa is a
voltage proportional to the frequency of the
microwave generator. The sample magnetic
1or moment is sensitive to microwave pumping
10r at low frequencies(a) and at frequencies
of 7-10 GHz (b). The oscillatory character
J h of these curves is caused by the excitation
of resonances in the waveguide line.
R . N A H=200 Oe andr=77 K.
¢ 1 2 vwGHZ 0O 8 10 v, GHZ
frequency given by Eq(l). Curves of this sort were mea- Figure 5 showssM as a function of temperature when
sured for different values of the magnetic fidldand tem-  microwave fields with frequencies of 730 MHz and 8.5 GHz
peratureT. act on the sampledM changes sign ai=8-10 K.
Figure 4 shows plots o6M as a function of the static Figure 6 shows the field dependence of the microwave
magnetic field for various frequencies at temperatures of 13power transmitted through a coaxial cavity tuned to 7.8 GHz.
and 4.2 K. A sample in the form of a thin slab of thickness 1 was

At “high” temperatures the magnetic moment of the placed at an antinode of the microwave magnetic field. A
sample decreases when it is acted on by a microwave magumber of resonance features can be seen in the plot of the
netic field (Fig. 49. The plot of SM as a function of the microwave power transmitted through the cavity.
magnetic field has a resonant feature, which shifts to higher
flglds as the frequency is ra!sed. This be_haV|or is con&ste% DISCUSSION
with the spectrum of the antiferromagnetic resonance calcu-
lated using Eq(1). When the temperature is reduced, the  The variation in the magnetic moment of a sample when
resonance shifts to lower fields. quasielastic vibrations with frequencies of 0.1-2 GHz are ex-

An unexpected result was obtained near the temperaturgited in it was studied in an previous papeQuasielastic
of liquid helium (Fig. 4b. The magnetic moment of the excitations were created in the sample by three different
sample increased when a microwave magnetic field was apnethodsi(1) by contact, using a piezoelectric transducgy,
plied to it, both at the low frequencies corresponding to ef-a variable microwave field at the magnetoelastic resonance
fective excitation of magnetoelastic modes and at frequenfrequencies of the crystal, arfd) parametrically, by parallel
cies near the antiferromagnetic resonance. d¢H) curve  pumping. All three methods yielded the same field depen-
was independent of frequency at low temperattesvithin ~ dences for the variation in the magnetic moment of the
the accuracy of the experimer(Fig. 4b). sample when quasielastic modes were excited in it. Near the

We should point out, at once, that the temperature detemperature of liquid nitrogen, the total magnetic moment of
pendence of the sample magnetic moment was investigatede sample decreased when nonequilibrium quasielastic vi-
experimentally. Over the entire range of fields we examinedbrations were excited in it. The measured magnitudédf
the sample magnetic moment decreased as the temperatwras the same as the estimated value obtained assuming that
was raised. Thus, trivial overheating of the crystal cannothe secondary quasiparticles do not make a significant con-
explain the observed effect. tribution to the change in the total magnetic moment or, in

The fractional change in the total magnetic moment ofother words, that relaxation of the nonequilibrium packet to a
the sample in all these experiments was less thani® *. thermal level is a one-step process. Near the temperature of
With such weak interactions§M was proportional to the liquid helium, magnetization of the sample was observed
microwave power applied to the sample for the fields andvhen quasielastic waves were excited in it. This sort of

temperatures studied here. stimulation of magnetization in a crystal by phonon pumping

~oM, arb. units fg’ arb. units FIG. 4. The change’M in the magnetic mo-

107 ment of a sample when a microwave magnetic
field is applied to it as a function of the magni-
tude H of the static field for different frequen-
cies and temperaturesia) T=135K, v
=8.00 GHz (hollow circles, 9.23 GHz (solid

St st squarel 10.28 GHz (triangleg; T=32 K, v
=8.00 GHz (solid circles; (b) T=4.2K, v
=8.00 GHz (hollow circleg, 9.00 GHz (tri-
angles, 11.00 GHz (hollow squares 12.24
GHz (solid squares and 1.00 GHz (solid

s . - . circles. At “low” temperaturesSM is positive,

0 100 200 300 400 0

H. Oe at “high” temperatures it is negative.
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In our experiments the calculated reduction in the
sample magnetic moment associated with thermally equilib-
rium excitations was at least 20 times the observed increase
in the sample magnetic moment when microwave power was
applied to it. The increased efficiency with which the sample
was magnetized at low temperatures:3 K (Fig. 5 is ap-
parently a consequence of a drop in the number of thermal
magnons(i.e., of the fact that the efficiency of the three-

v
: /' particle magnon-phonon interaction decreases with
ae-9 , . temperatur).
1 2 3 T K 5 Although the increase in the sample magnetic moment
' when magnetoelastic modes are excited in it can be ex-
FIG. 5. 6M as a function of temperature when microwave magnetic fieldsplained, it is not possible to explain the increase in the
with freq_uencies of 730 MHzsolid squaresand 8.5 GHzhollow squares sample magnetic moment when magnetic oscillations are ex-
are applied to the sample. cited in it
Apparently, for low fields\where the magnetoelastic in-
teraction is most efficientnear the antiferromagnetic reso-
in antiferromagnetic materials with a Strong magnetoelasti%ance frequency it is not the magnon branch which is most
interaction had been predicted theoretically befdr@his  efficiently excited, but magnetoelastic modes with large
effect is related to the fact that at low temperatures the reyayve vectors. In Fig. 1 we have indicated with an arrow the
laxation of a nonequilibrium packet of phonons is a multistepquasiphonons which we believe are efficiently excited when
process. a microwave magnetic field acts on the sample at a frequency
It has been shown experimentdflythat three-body w, close to the antiferromagnetic resonance frequency.
magnon-phonon interactiorisiagnon-phonon=magnon in The efficiency with which magnetoelastic modes are lin-
FeBQ; are the most effective at low temperatures. The Charearly excited in the Samp|e Shou'd’ on one hand, decrease
acteristic feature of this process is that it does not Change thﬁnh increasing wave number and increase resonanﬂy When
total number of magnons. In the equilibrium state the poputhe frequencies of the magnon and elastic modes coincide.
lations have a Bose-Einstein distribution. When phononrhys, we may expect efficient linear excitation of magneto-
pumping and efficient three-body magnon-phonon interacg|astic modes both at low frequencies and near the antiferro-
tions are present, the populations of the excitations shoulghagnetic resonance frequency.
relax at different rates. Thus, phonon pumping will cause  The linear excitation of magnetoelastic modes in ferro-
thermal magnons to be transferred from the bottom of thenagnetic materials with finite dimensions under ferromag-
band to higher frequency regions. As can be seen in Fig. Ipetic resonance conditions has been studied theoreticatly.
the magnetic moment corresponding to excitation of a singlgs a complicated matter to distinguish experimentally the ab-
magnon decreases with its frequency, so this kind of redissorption of microwave power owing to the excitation of
tribution leads to an increase in the total magnetic moment Oéuasimagnon and quasie|astic modeS, so this effect has ap-
a sample. Of course, this increase should be less than t%renﬂy not been studied experimentally before.
reduction in the magnetic moment of the sample owing to  An experimental confirmation of this hypothesis is the
the presence of thermal magnons. presence of resonance features in the absorption line mea-
sured for samples in the form of a thin sléBig. 6). For a
sample of this shape, the eigenfrequencies of the magneto-
P. arb. units elastic vibrations are nonuniformly distributed in frequency.
1.00 Their density is greatest near the frequencies corresponding
to standing magnetoelastic waves in an infinite slab. The
calculated values of the static fields for which the pump fre-
guency coincides with the frequency of a standing magneto-
0.95 elastic wave in an infinite slab of this thickness are indicated
by arrows in Fig. 6. The calculations were based on &§.
for the magnetoelastic waves most strongly coupled to the
microwave magnetic field. Note that the situation is much
f95fo4 H93 fo2  foi more complicated for a finite crystal and the excitation of
0 100 200 300 400 magnetoelastic modes with other polarizations may be no
H, Ce less efficient.
FIG. 6. The field dependence of the microwave power transmitted througha ~ Nevertheless, the calculated and measured separations
coaxial cavity. The sample is in the shape of a thin slab with dimensiondetween the resonances are in satisfactory agreement. The
1x1.5x0.114 mmi. The arrows denote the static fields for which a pump resonance fields shown in F|g 6 were obtained through fit-
frequency ofy=7.8 GHz coincigles with the frequency of a standing mag- ting of the slab thickness within a range of one percent. Here
netoelastic wave calculated using Eg). The numbers next to the arrows .
are the numbers of half waves across the sample thickness under the redfl€ calculated mode number for each of the resonances is
determined with an accuracy of+ 3.

nance conditions.
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rium. To do this we have measured the absolute magnitudes We thank L. A. Prozorova, A. I. Smirnov, I. L.
of the microwave power absorbed by the sample and th&mol'skii, and Yu. S. Kivshar for useful discussions. This
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Analytic approaches are developed for integrating the nondiagonalizable Whitham equations for
the generation and propagation of nonlinear modulated finite-amplitude waves in
dissipationless dispersive media. Natural matching conditions for these equations are stated in a
general form analogous to the Gurevich-Pitaevskii conditions for the averaged Korteweg-

de Vries equations. Exact relationships between the hydrodynamic quantities on different sides of
a dissipationless shock wave, an analog of the shock adiabat in ordinary dissipative
hydrodynamics and first proposed on the basis of physical considerations by Gurevich and
Meshcherkirf, are obtained. The boundaries of a self similar, dissipationless shock wave are
determined analytically as a function of the density jump. Some specific examples are
considered. ©1999 American Institute of Physid$1063-776(99)02603-7

1. INTRODUCTION
=B—p. 3

29, EaxB
It is well known that the applicability of exact analytic p
methods in the theory of nonlinear dispersive waves is lim-
ited to fully integrable small amplitude approximations to the
general, “unintegrable” systems of equation$hese “un-

integrable” equations arise naturally in plasma physics, th
g d ynp phy All these systems of equations are of fourth order with

hydrodynamics of waves on liquid surfaces, magnetohydro-
dynamics, etc. Many of them have a number of general proprespect to the spatial derivatives and have at least four inde-
erties which are independent of the physical nature of thgendent conservation lawsiVhen the dispersion parameter

phenomena being described and have an highly characteristic 9°€S to zero, the systent)—~(3) transform to the Euler
structure. Here are some examples: equations of ideal hydrodynamics with different Poisson

(a) Gravitational waves on the surface of a shallow""d""‘b"’ltiC indicesy: y=2 in the case of Eq$l) and(3) and

Hereu and p are the plasma velocity and densi®,is the
magnetic field strength, ang=c/w,, wherew,, is the elec-
dron plasma frequency.

2 v=1 in the case of Eq92). Systems of equations of this
liquid: . : .
type are usually referred to as dispersion-hydrodynamic.
dth+a,(hu)=0, Another common feature of these systems of equations
)3 (1)—(3) is that they lack complete integrability properties. As
du+udeu+dgh+e°d5, h=0. (1) aconsequence, one of the few exact results in this area up to

now has been just the existence of travelling single phase
solutionsf(kx— wt) of bounded amplitude. If the wave am-
plitude exceeds a certain critical valag,, a solution in the
form of a travelling wave ceases to existhen the very
description by a single-stream, dispersion hydrodynamics of
the type(1)—(3) also ceases to be valid. In this paper we only

Hereh is the depth of the liquidy is the horizontal compo-
nent of the velocity, an@ is a small dispersion parameter
(equilibrium depth.

(b) lon-acoustic waves in a two temperature.$T;),
collisionless plasma:®

dyp+ dy(pu)=0, study single-stream flows with<<a,, .
Physically interesting nonlinear solutions of dispersion-
U+ Ud U+ dyp=0, hydrodynamic equations arise in problems concerning the
evolution of smooth perturbationd=ig. 139. In the initial
82[?2 —ef— (2) . . . .
xx® p- stage of the evolution of such perturbations, nonlinearity

Herep andu are the ion density and velocity, is the elec- pIay; a dommgnt rqle, Iea_dmg _by some ftimet to a in-
version (breaking singularity with an infinite derivative

tric potential, ance is the Debye radius. X 0 . . .
(c) Magnetosonic waves in a cold plasma moving trans_(gra(jlent catastrophe® Because of'dlspelrsmn, 'nonllneagos-
verse to a magnetic fier? C|Ilat|on§ are generated near the'lnv'ersmn pomtt'fetc.
The oscillating region expands with time, occupying an ever
dp+dy(pu)=0, larger region of spacéFig. 1b. Since the oscillating zone
arises in situations such that a shock wave would develop in
SU+ U+ Ea B=0 ordinary Qissipative hydrodyna}mi.cs, _ the re;u!ting wave
< op X ’ structure is usually called a dissipationle@®llisionless
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o a the initial disperison-hydrodynamic equations reduce to the
] Korteweg-de VriegKdV) equation. More general solutions
of the KdV-Whitham equation have been construc¢fed®A
key point in these papers is the construction of exact analytic
solutions is the diagonalizability of the Whitham equations
for the case of the KdV equations, i.e., the existence of Rie-
mann invariant§:2°?2Similar studies have been done on the
nonlinear Schrdinger equation with defocussifg.>’
ob b The Gurevich-Pitaevskii stability regimes for the KdV
equations have been analyzed numeric&lfhe effect of
M small dissipative corrections on the structure of the solution
to the KdV-Whitham equation has been studied
analytically?%:3°
The existence of a Riemann structure in the Whitham
+ equations is a consequence of the exact integrability of the
initial system of equations. We note that, although small dis-
sipative corrections do not destroy the Riemann structure of
the modulation systed?;** including them leads to new
terms on the right which make the system unintegrdlle
x (1) x*(0) the sense of the existence of a general local solutiorthis
1 paper we study nonintegrable systems without dissipation.
For nonintegrable systems of the ty{ig—(3) the modulation
equations can be written by formal use of Whitham’s recipe,
averaging the required number of conservation laws over the
x, X period of the single-phase travelling solutibfkx— wt). The
desired equations describe the slow variation in the local
F‘IG.‘ 1._Inversion(breaking of ia‘smooth profilg and Fhe formation of a integrals of motion(The number of such equations equals
dissipationless shock wavea) initial data at the inversion time=t, (b) ¢ ifferential order of the system with respect to the spatial
oscillatory structure of the shock for-t., (c) the xt plane for the dissipa- L . L.
tionless shock problem. derivatives) Slow variation means that the characteristic
length of the oscillations is small compared to the size of the
oscillatory region. Whitham’s recipe has been applied to the
shock wave. Exact analytic resulté*3for completely inte-  systems of Eqs(2) and (3) in a study of the asymptotic
grable systems, as well as numerical calculations for noninregimes of a self-similar dissipationless shock wave near its
tegrable systenf§suggest some plausible general ideas reboundaries, the lineax (t) and solitonx™(t) fronts (see
garding the structure of the solutions describingFig. 10, whose positions are assumed known.
dissipationless shock waves. In this paper we develop analytic approaches to integrat-
1. The solution of the dispersion-hydrodynamic equa-ing the nondiagonalizable Whitham modulation equations.
tions in the neighborhood of a dissipationless shock wav&he principal method for these studies is the method of char-
can be represented in the form of a modulated single phasacteristics, whose applicability does not depend on the diago-
travelling wave. nalizability properties. Since the problem under study is non-
2. In one of the fronts of a dissipationless shock wavelinear, the behavior of the characteristics is determined by
the wave amplitude goes to zdthe linear frontx " (t)] and  the specific solution being studied, as well as by the structure
in the opposite, the wave numbjghe soliton frontx™* (t)]. of the coefficients in the system of equations. In Section 4
This last condition allows us, in Section 3 of this paper,we shall show that in the family of solutions for the problem
to formulate natural matching conditions for the solution ofof generating a dissipationless shock wawe shall call it
the modulation equations in the neighborhood of a dissipathe inversion problemnalong some curves in thet plane
tionless shock with the solutions of the Euler equations ofithe fronts of this shodk the general Whitham equations
ideal hydrodynamics on the outside. The assumption that theecome degenerate, so that the modulation system acquires a
oscillations are quasistationary in the region of the dissipalocal Riemann structure. In addition, it turns out that here the
tive shock makes it possible to construct a solution usingocal Riemann invariants transform to solutions of the inver-
Whitham’s method;!* a generalization of the WKB method sion problem along the characteristics through the
to the theory of nonlinear partial differential equations. This“Whitham” zone, just as happens with the ordinary Rie-
method was first applied to dissipationless shocks by Gurevnann variables in the diagonalizable case. This property
ich and Pitaevskit? who constructed an exact solution of makes it possible to:
Whitham’s equation that ensured continuous matching of the (1) obtain a relationship between the hydrodynamic vari-
central flow in the oscillatory regiofregion Il in Fig. 1H to  ables on both sides of a dissipationless shock, the analog of
the smooth external flow outside the dissipationless shocthe shock adiabat in ordinary dissipative hydrodynamics,
wave (regions | and Il in Fig. 1p They made an analytic (2) formulate and prove a general theorem about a con-
study*® of the case of small initial step perturbations, wheretact flow in dissipationless dispersive hydrodynamics, and

o~
=

o m———
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(3) obtain exact analytic expressions for the boundarie€2dn/dx in the energy transport equation for the nonlinear
of a self-similar dissipationless shock wave in the form of awaves characterize the effect of changes in the hydrody-
function of the density jump at its boundari€®ection 5. namic flow parameters on the oscillations.

The general construction of a study of the nondiagonal- We now consider some formal limiting cases.
izable Whitham equations on a family of solutions to the
inversion problem is illustrated with concrete examples, in-
cluding: a KdV modulation system in hydrodynamic form,
which does not use the diagonalizability of the KdV-

Whitham equationéSection 6, and a modulation system for 2.1. Zero amplitude waves, A?=0

nonlinear ion-acoustic waves corresponding to E2js(Sec-

tion 7). Exact analytic expressions are found for the bound-
aries of a self-similar ion-acoustic dissipationless shock.
These formulas are in complete agreement with the results of
direct numerical calculatiorfs.

The analysis given in Ref. 5 shows that #+0,
E2xA2, V—dwgldk, U—wy/k. (6)

Herew= wq(k,n,v) is the usual linear dispersion relation, in
which, however, the constantg andug, relative to which

2. HYDRODYNAMIC FORM OF THE MODULATION the linearization
EQUATIONS

pzpo_kplei(kxfwt), u=u0+ulei(kxfwt)

It has been shownthat it is convenient to present the
averaged equations Wh'Ch.do not have Rlemgnn nvariants '8 carried out, are replaced by the slowly varying parameters
the form of a hydrodynamic system of equations for the pa, v of the average flow. The quantitiésandU, therefore
rameters of_the system motion and excit_ed waves: the aveg’re converted into the 6rdinary linear group ,and phasé ve-
age density=n, the average flow velocity=uv, the energy ocjties, which now depend on the hydrodynamic varialles
density in the oscillationpu—p u=A?, and the density of andy, as well as ork. Equations(4)—(6) imply that the
the waves(of the wave numberk. Averaging is done on a system of Egs(4) has the exact reduction
family of single-phase travelling solutions of the forfx

—Ut), whereU is the phase velocity:

- an - d(nv)
an  d(nv) aA2_0 AT=0 Gt 70
gt ax o oax
2 v dv 1 dP(n ok dwe(k,n,v
v v 1R B Wy LR A dedlenn) g g
2 2
ﬁJr I(VA') +A25_U+ Ezﬂ_nzo The first two equations of the system of E(jg). are the
at IxX IX ax equations of Euler hydrodynamics and can be obtained from
the initial system, which contains high order spatial deriva-

dk  d(kU) : : . . .

4 =0. (4)  tives, by letting the dispersion parameter approach zero di-

at 24 rectly. The third equation is the conservation equation for the
Here number of waves; in the present case a zero amplitude is

2 E2(1y K A2 _ K A2 purely formal. Nevertheless, this equation contains important
E*=E*(n.k,A%), V=0v+W(nkA%, information on the asymptotic behavior of the characteristics

U=0v+U;(n,k,A2) (5)  of the system of Eqd4).

is a function whose specific form is determined by averaging

the conservation laws for the initial equations of dispersive

hydrodynamics over the fast oscillationgor details, see

Ref. 5) In the following, only a few general properties of , , Solitons, k=0

these functions, which determine the asymptotic properties ) o )
of the system of Eqs4), will be important. We stipulate at once that in this paper by “solitons” we

The nonstationary flow described by E¢4) can be di- mean the formal solutions of the equations of dispersive hy-
vided arbitrarily into two parts: a slow hydrodynamic motion drodynamics in the form of solitary waves. Of course, in the
characterized by the variablesandv (P(n) is the ordinary ~ 9eneral case these solutions do not have many properties in
hydrodynamic pressureand quasistationary nonlinear oscil- common with the real solitons in integrable systems, in par-
lations with an energy densi#? and wave numbek. These ticular, a collision of “nonintegrable” solitons is not elastic
equations, of course, are not independent. The teidgox ~ and is accompanied by radiatidh.As k—0 we have the
and JE%/dx in the first two equations describe the effect of following asymptotes:
the oscillations on the density and velocity of the hydrody-
namic flow. On the other hand, the term€dv/dx and E2xcA2xck, V-—Uxk.
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é’:AZ/k:O(l) has the significance of the average en-3. NATURAL MATCHING CONDITIONS FOR THE
ergy of a single vibration and remains finite laapproaches CHARACTERISTICS IN THE INVERSION PROBLEM

zero. The equation faf, which follows from Eq.(4), has the
form

E+Ua_x+§ T ( ,n,Z)a—X +ﬁé'_x[ {(V-U)]=0,
(8)
where

f(k,n,0)=E?%A’=0(1).

Thus, the system of Eq&4) has yet another exact reduc-

tion:

k=0 J =0

— Y, (9t +&(nv)_ 1]

8v+ (9v+1ﬁP(n)_0

9t Vox Tnax

oy Xl rono o 9

s S(n’v'g)a_x é’& ( ,n[)&—x =0, 9
where

Us(n,v,{)=lim U. (10)

k—0

Let the solution of the Euler equations with inverted
monotonic initial conditions on the righFig. 13,

p(X,0)=po(X), U(X,0)=Ug(X), (15
have the form
p=pe(Xt), U=UX1). (16)

Then, fort>ty, wherety is the time of inversionwithout
limiting the generality, we assunig=0), in thext plane of

the solutions of the complete system including the dispersion
terms, the oscillatory region is divided by a dissipationless
shock(Fig. 1b and 1rand bounded by the curves (t), its
trailing edge, ana* (1) its leading edge. The behavior of the
averaged quantities in this region is governed by the
Whitham equation$4). Outside the region of the dissipation-
less shock the Euler equations for the variahlesndu are
valid, as before, and have the same Riemann form as Eq.
(11:

9ir + + W dy,r =0, a7
where
r«=J=(p,u), W.=V.(p,u). (18

It should be noted that, as opposed to the complete system of N

Egs.(4), which is of fourth order, the reduced system of Eqs.We now formulate. the poundary conditions for the modula-
(7) and (9) consists of three equations. This is evidently ation system(4) which will allow us to match the average
consequence of the merger of two families of characteristic§0W in the Whitham region to the smooth flo@®) at the

in the linear and soliton limits. In the first case, a multiple (Previously unknowhboundariesc(t). We note, first of all,

velocity coincides with the group velocitywy/dk and in the

that the number of characteristics in the outer and inner re-

second, to the soliton spe&tl. We emphasize that the sys- 9ions is different, so matching can take place only at points
tem of Egs.(7) and(9) has at least two Riemann invariants; Where pairs of families of the characteristics of the Whitham

these are the invariants of ideal Euler hydrodynarffics,

0d++V.d,J.=0, (11

where
cs(n

Jt(n,v)Zvif o )dn (12)
are the Riemann invariants,

c2(n)=dP(n)/dn, (13
wherecg is the sound speed, and

V.(nu)=v*cs (14)

are the characteristic velocities. Settidg or J_ constant

[J.=const is the exact solution of the system of Ed4)],

system merge, i.e., foA?=0 [Eq. (7)] and fork=0 [Eq.
(9)]. From the beginning we limit ourselves to the case of
negative dispersion, where waves are generatéd+0) at
the trailing edge and solitons are creat&d+0) at the lead-
ing edge.(See Refs. 15, 4, and.5

The x™*(t) curves separating the two analytically differ-
ent regimes are characteristia our case the envelops of
multiple characteristics, i.e., caustiam the family of solu-
tions under study, in accordance with the properties of qua-
silinear hyperbolic system€.Let us examine the behavior of
the characteristics in the Whitham region in more detail. The
characteristic equations of the modulation syst@nhave
the form

dx_

. 2
dt _V|(n,U,k,A )1

i=1,2,3,4, (19

it is always possible to diagonalize the remaining system ofvhere theV; are the characteristi@roup velocities or ei-
two equations. It is important that these properties do nogenvalues of the matrix of the coefficients of the modulation
depend on the diagonalizability of the complete modulatiorsystem(4). We restrict ourselves to the case of real and,
system. The fact that the Euler equations “split off” in the generally speaking, different;, which is the hyperbolicity
system of Eqs(4) for A>=0 andk=0 means that it can be condition. Let V;=V,=V;=V,. Then the continuous
described using a dissipationless shock wave which joins thmatching conditions for the characteristics on the caustic sur-

two Euler regimes.

faces take the following fornisee Fig. 2
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Ve

x x* X

FIG. 2. The behavior of the characteristic velocities in a dissipationless
shock.

dx
V2(nav)|X7:V3(n!v)|X7: Wv
Vi(no)|[x-=W,(p~,u"),
V4(n,U)|X7:W,(p7,U7) (20)

for x=x"(t); and

dx* c
V2(n,v)|x+=vl(n,v)|x+: Wv

Va(n,o) |+ =W, (p*,u"),

Va(no)|x+=W_(p™,u™) (21)
for x=x"(t), where

pT=pe(XT 1), UT=U(X",1).

We shall refer to the problem stated in E@4), (20), and

(21) as theinversion problemNote that the inversion prob- x

lem IS. hot posed for the initial system, but for its Whitham FIG. 3. The behavior of the characteristics in a dissipationless skadkie

equations. families dx/dt=V, anddx/dt=V,, (b) the familiesdx/dt=V; and dx/dt
It is impossible not to notice the similarity between the =v,, and(c) the family dx/dt=V,.

gualitative behavior of the characteristic velocities in the in-

version problem(Fig. 2) and the behavior of the Riemann

invariants in the solution of the Gurevich—Pitaevskii problem

for fully integrable system$2>2"The qualitative variation of A?=0, Jil-=Tilr Ife-=r_|x. (22
the characteristics in thet plane corresponding to the con- Forx=x"(t)
ditions (20) and (21) is shown in Fig. 3.

We now introduce yet another form of the matching con- k=0, Jilxr=riler, J-fr=r_|x. (23

ditions (20) and(21). The analysis of this section shows that \We emphasize once again tdat=J. (n,v) are the “inner”
for A2=0 and fork=0 the modulation system is degenerate(Whitham variables, whiler.=r.(p,u) are the “outer”

and the Riemann invariants. (n,v) appear for it. For the (Eulep variables.
problem under consideration, this structure has a lonahe Finally, using Egs(12) and(18), we introduce the con-
(x,t) plane character, since the corresponding couplingscept of the condition§22) and(23) in terms of a continuous

among the quantities are realized in the solution only alongnatching of the average flow density and velocity.
the boundaries of the dissipationless shock. Thus, we shall  Forx=x"(t)

refer to the Riemann variablek. (n,v) as local Riemann

invariants. A?2=0, n(x",t)=p, v(x ,t)=u". (24)
Conditions(20) and(21) can then be rewritten as match- For x=x"(t)

ing conditions for the local Riemann invariants of a modula- B o 4 I

tion system with the invariants of the outer Eulerian hydro- =0 N(X7.0=p", v(x",H)=u". (25

dynamicsr.=J.(p,u) at the fronts of the dissipationless In conclusion, we note that satisfying the matching con-

shock. ditions for the average hydrodynamic flow does not guaran-

Forx=x"(t) tee continuity of the shock wave parameters and their deriva-
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tives at the fronts. This latter point does not contradict thecients of the Euler system corresponding to the veldéity
physical statement of the problem; mathematically the exis¢14). Thus, the functiorf(I") in this limit coincides with the
tence of such discontinuities was possible because the equeharacteristic form for Euler hydrodynamics and is the total
tions are hyperbolié? Discontinuities develop at the bound- derivativeD, independently of the curvE .32 A similar
ariesx™:> the derivatives’)A?/9x anddk/dx go to infinity  statement holds fok=0. Thus,

at the soliton front (this is the so-called singular
discontinuity®) while k, itself (at this point the conservation Ralaz-o=R(n,v)=J_(nv)+C, (30

of the number of waves is violatgdand, in general, the Rylk—o=R(n,v)=J_(n,v)+C? (3
derivative 9A%/dx have a discontinuity at the generation ) ) .

point. It should also be kept in mind that the existence of2'® the integrals of Eq27) on the family of solutions of
singularities in the solution for the modulation equations is dnterest to us. It is important that the integré®) and (31)
consequence of the asymptotic character of the WhitharA"®: themselves, local and their values are independent of the

method; in the exact solutiofif it exists), there are no sin- global properties of the solution. Thus, the relationship be-
gularities. tween the constants of integrati@t andC? is easily estab-

lished using the natural requirement that the local integrals
(30) and (31) coincide as the width of the dissipationless

4, TRANSPORT OF THE LOCAL RIEMANN INVARIANTS shock approaches zero. In this case, it is evident @t
THROUGH THE WHITHAM ZONE. JUMP CONDITIONS =C2=C and Eq.(28) implies thatC=0. Note that a situa-
ACROSS A DISSIPATIONLESS SHOCK WAVE AND tion will arise below in which the relationship between the

A THEOREM ON CONTACT FLOW constants of integration is not so trivial. Thig=R(I') is a

Let us consider the family of characteristics correspond£ontinuous function of the curve and takes the values
ingl to .the velocityV, (Fig. 39. We sellecF a pharacteristic R,(M)=J_(M) andR,(N)=J_(N) (32)
which intersects the boundary of the dissipationless shock at

the pointsM andN. Then, as we shall show, the condition &t its ends. . _
Now let the curvd™ be the characteristic determined by
J_(M)=J_(N) (26)

the equationdx/dt=V, on the solution of this problem.
is satisfied for this characteristic; that is, in the solutions tolhen the expression on the right hand side of @q) is the
the inversion problem, the local Riemann invariant is carriedsame as the characteristic fofli**of the modulation sys-
through the dissipationless shock wave region along “jtstem (4) corresponding to the velocity,, so that

own” characteristic. For diagonal systems the condi{i2) R,=0 (33)
is an obvious consequence of the constancy of the corre- e

sponding Riemann invariant along the characteristics. Iwhere

generalthe nondiagonalizable cgs¢his relationship is non-

o A J J
trivial and must be justified. Dy=— +Va(X,t)—.
Let us consider some quantiB/determined by an ordi- Jt 24
nary differential equation along an arbitrary smooth curye Now Eq. (26) follows immediately from Eq(32). We
x=Xr(t), joining the pointsM andN: emphasize that, despite the external similarity of &§) to
DrR,=f(T) (27) t_he Riemann form of t_he equ_atlons for dlagonaylylza_ble quasi-
_ N linear systemsRR,(x,t) is not, in general, a “real” Riemann
with the boundary conditions invariant, sinceD,, is a linear differential operator specified
Ry(M)=J_(M). (28)  on the solution of the inversion problem. Of course, for di-

agonalizable systems the dependence on the solution van-
ishes andR, becomes a local function of the dependent vari-
4 ables u;, i.e., is transformed into an ordinary Riemann
f(l“)=2 1#(y)|rDru (290  invariant. The consequence of E@6) and the matching
=1 conditions(22) and (23) is a substantial restriction imposed
is specified alond’ in the solution of the inversion problem, on the invariants of the outer hydrodynamic flow adjacent to
yi(x,t), which we shall regard as solved here. The operatothe dissipationless shock, specifically,
D denotes differentiation alonB; | is the left eigenvec- f(M)=r_(N) (34
tor of the matrix of coefficients of the modulation equations - o
(1) corresponding to the velocity,, y=(n,v,k,A?). We  Note that in the above discussion it has been assumed that
emphasize that the characteristitgdt=V, on both fronts the integrating factor ensuring the existence of the total de-
are matched with the Euler characteristics from one and thavative D on the right hand side of Eq28) is equal to
same familydx/dt=W_ [See Eqs(20) and(21)]. unity. This is true for Euler hydrodynamics and, therefore, is
It is easy to see that foh?=0, Eq.(27) has a general satisfied near the boundaries of the dissipationless shock for
integral that does not depend on the cufvand this integral the Whitham characteristidx/dt=V, which joins the two
is nothing other than the Riemann invariant(n,v).1>32In  Euler regimes. Furthermore, it is easy to show that this state-
fact, for A2=0, because of the reductidi), the vector® ment about the transfer of a local Riemann invariant along a
transforms into the left eigenvector of the matrix of coeffi- characteristiqthrough the Whitham zonecan also be gen-

The function
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FIG. 4. Typical decay patterns for a discontinuity in
—-_-\_ dispersive hydrodynamicga) rarefaction wave on the
P — ——m - —_— left, dissipationless shock on the rigkib) two dissipa-

tionless shocks travelling in opposite directions.

eralized to the case of an integrating factor that differs fromplateau region in which the flow is constant develops be-
unity in one or several regions where a local invariant existstween these wave"%.Figure 4 shows typical pictures of the
As a result, the rule about the transfer of a local invariant isbreakup of a discontinuity. The fact that an arbitrary discon-
valid, not only for the characteristicb/dt=V,, but also for tinuity, parametrized by the four constant$ andu®, can-
characteristics from any other family on which a local Rie-not be “matched” in the case of a single dissipationless
mann structure exists in several regionxtfThis is used in  shock wave follows from the existence of the additional re-
the next section, where the transfer of data along the charaation (35), which reduces the number of parameters to three.
teristicsdx/dt=V,; anddx/dt=V; is exploited. Recall that The desired matching is achieved by introducing two waves
the condition(34) applies to an arbitrarily chosen character-travelling in opposite directions. The hydrodynamic quanti-
istic from the family that is being studied. If, however, the ties on both sides of the wave travelling to the right are
flow to the right or left of the dissipationless shock wave is arelated by Eq.(35). For the leftward travelling wave, as
simple wave or constant, then the invariant is constant noted above, we have the analogous relation

throughout this entire region and, therefore, along the bound-

ary. Then, Eq(34) yields an equation relating the hydrody- re(p ,u7)=ry(p=,u"). (36)
namic variables along both sides of such a dissipationless ) i i
shock: Note that one of Eq¥35) or (36) is automatically satis-

fied even if one of the waves that develops is a rarefaction
r(p-,u7)=r_(p*,u"). (39  wave; in this case it is a consequence of the constancy of the

Therefore, the value of the Riemann invariant for ideal hy_corresponding Riemann invariant of the equations of ideal

drodynamics is transferred through the Whitham zone, evefydrodynamics. The time evolution of a dissipationless

though the Whitham equations, themselves, have no Rieshock obeys the self-similarr& x/t) solutions of the corre-
mann invariants. sponding modulation system. We shall limit ourselves to

Condition (35) plays the same role in dispersive hydro- considering dissipationless shoclfs travelling to the right. It is
dynamics as the shock adiabat in ordinary dissipativel0t Necessary to be interested in the exact structure of the
hydrodynamic£® Note that Eq.(35) applies to waves trav- solution m_the region of the o!|55|pat|on_less shpck, Im_ntmg
elling to the right. Analogous results can be obtained foron€Self 10 just the Euler equations, but introducing a discon-
leftward propagating waves; in that case the invarignwill ~ tinuity into them that occupies a finite region in the self-
be conserved on passing through the dissipationless shockMilar variables fromr~ to 77." 7~ and 7" have been

Equation(35) was first proposetion the basis of physical determinei as functions of the density jump at a discontinu-
considerations. ity for an ion-acoustic dissipationless shock. For an analytic

Equation(35) can also be used to formulate a genera|solution of this problem, it turns out that it is enough to know

theorem on contact flow&323%n dispersive hydrodynamics. the local Riemann structure and the asymptotic behavior of
If the flow along one side of a dissipationless shock is conihe characteristics of the modulation system near the fronts

stant p=pg, U=Uo), then the flow along the other side is a of the dissipationless shock. Let, as before, the constant den-

: . + +
simple wave. In fact, one of the families of characteristicsSity and velocity in front of the shock bg™ andu™ and
carries the value of “its own” Riemann invariant through bfh'”d it,p~ andu". Without loss of generality, we take
the dissipationless shock, and this means that the flow on tHé =0, which corresponds to transforming to the moving

other side is a simple waver as a special case, is consjant coordinate system. First of all, we note that a self-similar
dissipationless shock is described by solutions of the modu-

lation equations in the form of centered simple waves. This
means that the family of characteristics corresponding to the
velocity V, forms a fan of straight lines with its center at the
point (0,0) and the boundaries of the dissipationless shock,
We now turn to one of the most important nonlinearthe straight linesx=7"t and x=7"t, represent multiple
problems of hydrodynamics, the decay of an initial disconti-characteristicgFig. 5).
nuity. The decay of a discontinuity produces two waves on  The rectilinear characteristics of the outer flow, which
both sides of it, a dissipative shock and a rarefaction wave, igorrespond to the velocity, , “punch through” the front
different combinations depending on the initial datd.A of the dissipationless shock. Then they curve and at the op-

5. DETERMINATION OF THE COORDINATES OF THE
FRONTS OF THE DISSIPATIONLESS SHOCK IN THE SELF-
SIMILAR SOLUTIONS OF THE WHITHAM EQUATIONS
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FIG. 5. Characteristics in a centered simple dissipationless
shock: (a) the familiesdx/dt=V, anddx/dt=V3, (b) the
familiesdx/dt=V, anddx/dt=V;.

posite front they merge with the characteristics from the cend, (n)=J,(n,v(n)), has already been pointed out, while the
tered family. An important difference between this specialsecond necessarily exists and can be found in the fiym
case of simple wave and the general situation described i Jo(k,n). This invariant, according to Section 4, is trans-
Section 2, where the boundaries are not characteristics bpbrted through the Whitham zone along the characteristic
are envelopes with a multiple characteristic direction at everyix/dt=V; (see Fig. 53 i.e.,

point. (See Figs. 3a and 3bFigure 5 does not show the - b+

previously described family of characteristids/dt=V,, Jo(ko,p ) =1 (UT=0,p7). (40
since there are no fundamental changes from the general caggquation(40) yields the desired functioRy(p™,p~). Note
(Fig. 39. (Of course, the characteristics in the outer regionthat the Riemann invariant is an arbitrary functitd,), so

become rectilineay. in order to determine a specific dependedgék,n) in Eq.
For concreteness, we now examine the trailing edge of40), it is necessary to impose the natural condition
the shock,x™ =7"t, at which the amplitude goes to zero Jo(k=0,)=1J, (n) (41)

(A%2=0) and the matching conditior(24) are satisfied«~
=u~, n"=p ). As shown in Section 2, the multiple char- 0nJo, Which ensures that these invariants are equal when the
acteristic velocity in this case coincides with the linear groupwidth of the dissipationless shock goes to zeRecall that
velocity of the generated wave, i.e., k=0 at the leading edge, whilk, is calculated at the trailing
, _ _ edge, so examining the limiy(k—0) is equivalent to cal-

wo(ko, U™, p7)=7", (37 culatingJ, for a dissipationless shock of infinitely small in-
wherek, is the wave number from which nonlinear genera-tensity.
tion takes place at the trailing edg&herefore, the problem The coordinater™ of the leading edge can be calculated
of determining the coordinate_ reduces to finding the func- in completely analogous fashion. To do this it is necessary to
tion ko(u~,p ,p"). In order to findk, it is necessary to determine the Riemann invariants of the system of E@s.
determine the local Riemann invariant corresponding to thavith the integral(38), and then to equate the local invariant
multiple characteristic velocity foA?=0, and then equate it Js(n,¢), corresponding to the velocitys, to the outer in-
to the outer invariant . arriving with the Euler characteris- variantr . (u™,p~). (Transport takes place along the charac-
tics at the leading edge of the dissipationless shock. We noigristicdx/dt=V;.) The condition analogous to E¢#1) for
describe this process in more detail. a dissipationless shock of zero intensity has the form

The+ jump conditior_1(35) t.akes the forll”n[_(p*,u*) J(n,£=0)=J,(n). (42)
=r . (p",0) and makes it possible to determime as a func-
tion of p* andp~. As a result, we have only two nontrivial AS a result, we obtain the dependence
parameterp* and,.f characterizing the self-simi[ar prob- =ip .ph), (43)
lem. We now consider the system of E@8), in which we ) ) N
set the hydrodynamic invariamt_(n,v) constant[this in- WhereZsis the value of at the soliton frontr.

variant is matched withr _(p*,p") in the dissipationless The self-similar coordinate of the soliton frofgee Eq.
shock (see Eq(16)], i.e. (21)] is determined by the multiple characteristic of the ve-
L locity for k=0, which coincides with the soliton velocity
J_(n,v)=r_(p~,p~)=const. (38 [Eq.(10) (recall thatv(r*=u*=0)]:
Thfe. condition (38) automatically ensures matching atthe =y (p*,0L9)=Ugp .p"). (44)
trailing edge and determines the functiofv) in the system )
of Egs. (7). The system, itself, then takes the form We now proceed to consider some concrete examples.
3 J+(nN)+V,(n)dJd.(n)=0,

6. THE KORTEWEG-DE VRIES EQUATION
ak+ d,wg(k,n)=0. (39)

Since EQ.(39) is a second order hyperbolic system, it can 5
always be diagonalizetf. One of its Riemann invariants, U+ udyu+ ds, u=0. (45)

We shall consider the KdV equation in the form
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The modulation system for the KdV equation has a Riemanihe values ofr~ found here correspond to the results of
invariant®?° The corresponding problem of the decay of theRef. 15.

discontinuity
u(0x)=0, u(ox)=1, (46)

has been fully studietP We shall calculate the coordinates

x>0, x=0,

7. NONLINEAR ION-ACOUSTIC WAVES

Let us consider the system of Eq&) describing a non-

of the fronts of the dissipationless shocks, using the generaihear flow in a nonisothermal plasma. The modulation sys-

technique described in this sectigie., without using the
Riemann form for the complete modulation sysjerfihe
matching conditions analogous to the conditiq24) and
(25) for the averagdéaveraged over the oscillationguantity

n=u take the following form:

A?=0, 7=1 (47)
for =77, and
k=0, #=0 (48)

for r=7". Equation(35) can be regarded as automatically

tem of Eqs(2) has been found in Ref. 5. As noted above, the
absence of Riemann invariants for this system means that it
is impossible to construct an exact solution of the inversion
problem by known methods. Nevertheless, the existence of a
local Riemann structure, which ensures generation of a dis-
sipationless shock wave, makes it possible to calculate ana-
Iytically the coordinates of the fronts of the dissipationless
shock.

7.1 Trailing edge of an ion-acoustic dissipationless shock

In order to determine the trailing edge of a dissipation-

satisfied, since the outer flow in the KdV hydrodynamics isless shock wave it is sufficient to know only the linear dis-
necessarily a simple wave. Let us write down the dispersiof€rsion relation, which in this case has the fdrm

relation for the nonlinear KdV waves against the evolving

hydrodynamic backgroung(x,t):

wo(k,n)=k77—k3. (49

Equation(49) makes it possible to obtain a reduction of the
modulation system for the linear front that is analogous to

Eq. (7) at once:

A?=0, n+nin=0, oak+a(kp—k3=0. (50

It is easy to find the desired local Riemann invariant from

Eq. (50):
Jo(k, )= n—3K?/2. (51)

The role of the hydrodynamic invariadt, is played by the
variable 7, itself.[See Eq(39)]. Note that the conditio41)
is satisfied, sincely(0,7)=7. Then,we have the equation
Jo(ko,1)=0 for ko, which givesk3=2/3. [See Eq.(40)].
From this we find at once thasee Eq(37)]

__ dug

W(\@l)l

For the leadingsoliton) front we have the following reduc-
tion of the KdV modulation syster:
k=0, {+Ug(1,0) 95+ L{dyn=0,
(53

T (52
dym+ ndxn=0,

where

Us(7,0)=n+27273.

We find the local Riemann invariant that is constant

along the soliton front from Eq53):

() =n+ " (54)
Equation(42) is satisfied, sincd¢(7,0)= ». Transport of the

local Riemann invariant along the family of characteristics

dx/dt=V; yields the equatiords(0,{s)=1, which implies
that {s=1. Then[see Eq(44)],

7 =U4(0,s)=2/3. (55)

wo(k,v,n)=k(v+y?), (56)
where
1
Y= rem (57)

Then we have a system of three equations whAés0 for
determining the local Riemann invariant:

9. +V.aJd. =0,

aik+a,(k(v+yY?))=0, (58)
where

Ji(nv)=v*Ilnn, V.=v*xl (59
The conditiong22) and(35) fix the invariant_ :

v—Inn=u"—Inp =—Inp*. (60)
Equation(60) implies that

u =InA, wv=In(n/p™), (61)
where

A=p~lp” (62

is the density jump, which is now the only parameter of the
problem.

Given Eq.(61), the system of Eq958) now takes the
form

3, +[In(n/p*)+1]dJ, =0,
ak+a, [ k(In(n/pt)+y*?]=0,

where

(63

J.(n)=2Inn—Inp™.

Diagonalizing the systent63) leads to the following
Riemann invariants:

J;=J.(n), J,=Inn+In y~|—1 (64)

+ ,yl/2'
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FIG. 6. Self-similar boundaries of an ion-acoustic dissipationless shock,
and 7", as functions of the density jump=p /p*.

The local Riemann invarianty(k,n)=f[J,(k,n)] is found
using the conditiori41), which in this case takes the form

f(J32(0,n))=J.(n). (65)
Equations(64) and (65) imply that
f(x)=2(x—1)—Inp* (66)
Then
2
Jo(k,n)=2 Inn+|ny+:LJr—yl/z—l)—lnp+ (67)

The quantityy,=1/(1+k3/p~) is determined from condi-
tion (40) for the transport of the local Riemann invarialt
along the characteristiax/dt=V;:

—InpT=Inp* (68)

2(|I’]p_+|n Yot m—l

0

As a result, for the coordinate of the trailing edge,
3/2

T_:(ﬁwolﬂk”n:pzw:yo InNA+yg (69
we have the equation
(7_;)1/3_1
In[A-(7,)2®]= ———, 70
[A-(7,)%?] ST (70

wherer, =7~ —InA. The functionr™ (A) is shown in Fig. 6
and is fully consistent with the results of a numerical
calculation?

7.2. Leading front of an ion-acoustic dissipationless shock

Finding the coordinates of the leading front of a self-

A. V. Tyurina and G. A. Er

7. z—1 3a_z—a,z '+2a’ z*+2a
InA=J dz,
1 Z a_7’+a_zta,z '-2a_—a,
(71
where
W(2)
a+(2)=—zl’4J (z=y)*?
—~2212
exfg (22—y?)/2]—1) ~1?
¥(2)
37(2)2271/4f (Z y)l/2
exd (Z2—y?)/2]—1) Y2
sl =gy S Z_yy)] ] dy. (72

The upper limit of integrations(z) is specified by the alge-
braic equation

expy+272%12)—1
AR

. (73

(—2y)t2-z
A plot of 7+(A) constructed using Eq$71)—(73) is shown
in Fig. 6; this is also in agreement with the numerical
calculations'
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We analyze the stability of a system which contains a harmonic oscillator nonlinearly coupled to
its second harmonic, in the presence of a driving force. It is found that there always exists

a critical amplitude of the driving force above which a loss of stability appears. The dependence
of the critical input power on the physical parameters is analyzed. For a driving force of

greater amplitude, chaotic behavior is observed. The generalization to interactions which include
higher modes is discussed. €99 American Institute of Physid§1063-776(99)02703-1

1. INTRODUCTION

H=2 wpaha,+ 2 Ak 1mak@amtc.c), (2
n=1 k+1—m=0 Y

In a series of experiments, the motion of the surface of a Fme
hL,m=

superfluid liquid in a cylindrical vessel was studied. This
motion was induced by standing waves of second soundhere c.c. stands for complex conjugate, ang.,
propagating in the bulk of the liquid. Above a critical value =X\, ..
of the input power, the motion lost stability. We now couple an external driving force to one of the
To account for this loss of stability we analyzed a modelmodes. Note that in order to describe a physical problem,
that explained this phenomenBiand found it to be in good attenuation must be added as well. Modes which are not
agreement with the experimental results. The model is gerstrongly coupled to the excited mode will decay. Again, we
eral enough to account for the loss of stability in other waveassume that to describe the onset of instability, a minimal
systems. number of modes is needed. We therefore take the excited
mode and the mode with frequency closest to twice the fre-
quency of the first. With a harmonic driving force, the

2 MODEL Hamiltonian takes the form

The model consists of two nonlinearly coupled harmonic 1= wqa g+ w2q85482q+ (AaGas,+c.c)

oscillato_rs, of Which_ one is coupled to an external_driving +(feletat +c.c), 3)
force. First, we justify the use of two oscillators, with fre-

guencies close t@ and 2o, for describing the physics of wherew is the frequency of the driving force, which should
systems such as the one abdweis the frequency of the be close towy in order to establish resonance.

driving force. We assume that in the linear approximation We use

the free, nondissipativéclassical theory is given by the

Hamiltonian . _oH
ia4=——, (4)
aq
H= wnaka,, (1) Hamilton’s equations in the amplitude formalidry derive
n=1 the equations of motion:

. . A = it
wherea,, is the(compley amplitude of then" mode anca* 1ag=wqag+2N*aga+fe', ®
is its complex conjugate. Dissipation and the driving force =~
are added subsequently. The modes are the eigenfunctions of '&2d~
the wave eq“‘?‘?"’” with the approprlate_ Sturm—Llouv_|II(_aThe equations are invarant under the transformation
boundary conditions. We neglect terms higher than cubic in
the Hamiltonian, as well as terms which are far from reso-  a,—a.e'®*?,  a,y—ayue'??,
nance and therefore have small coupling constarftae _ _
Hamiltonian becomes A=Al (78730 f_fel(¢T0) (7)

dea2d+)\ag. (6)

1063-7761/99/88(3)/6/$15.00 626 © 1999 American Institute of Physics
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It is therefore pos_sible to eliminate two independent (AZd_iVZd)a2d+)\a§:0- (13
phases from the equations, so we can choosedf to be o ) ) )
real. We eliminatea,4 from the second equation, and substitute in

We now add dissipative terms to the equation in theth€ first one to obtain
usual mannet.The equations become (Ag—iya) (Ayg—i7yaq)ag—2\2ag|ag|?

iag=(wg—iyg)agt2ragay+fe', tS) =—(Apg—i7yaq)f. (14)

i850=(wq—1Yaq)8q+ N3, (9)  The equation for{=2\?|ay|?/|yqyq—AgAzg then be-

wherey are the dissipation constants. comes

The final stage before analyzing the equations is to in-  (({*1)2+ B)¢=h, (15
troduce “slow variables” to eliminate the time dependence.

Under the transformation where , ,
ag—age ', apyg—ayge 2t hEZ(YZd—AZd))\ng (16)
. |'vaY2a— AgAodl
the equations become )
A ) . . 10 is the scaled force, and
|ad:( d_i’}/d ad+2)\ada2d+ , 10
N ' ) B= Ag¥aatDrgvd)? 17
IaZdZ(AZd_IYZd)a2d+)\adl (11) o ’yd’)/Zd_AdAzd '
where Ay=wy— @ and Ayy=w,q— 2w are the frequency The sign in equatiorf15) coincides with the sign ofy4yq
offsets with respect to the driving force. — Al yy.
We note that in deriving the Hamiltonia(8) we have This equation has either one or three solutions. For a

neglected one nonlinear term of the same order with respegfiven value o, the equation will have three solutions if and
to a4 as the one that we have kept, namelggas’. For  only if

systems in whichk<\?/w, this term is small, but it turns

out that even fok much larger the importance of this term is YaY2d~ AdA24<0, (18)
not crucial. Note thatv is absent from the equations. From 1
dimensional considerations; can appear in the equations 0<p<gz, (19

only askA or ky; this is the term that has to be of orde.

Hereafter we analyze three aspects of the model: station2 3 2 3
ary solutions, stability, and numerical calculations. For sta37L1+ 98— (1=38)" ]<h=Z[1+98+(1-35)™].
tionary solutions it is easy to verify that the effect ofis (20)
merely to renormalizé\,4 and y,q4. This is the well-known
effect of shifting the resonanéeWe have seen that is not
of great importance in the stability analysis or in our numeri-
cal calculations, even fok>\2/A,q, N/ y5q4. We will not
include this term in what follows.

Although the model we use is a very simplified one, it
still contains five parameters in addition to the driving force Ya\% [ vaa  v4)? 1
amplitudef. Not all the parameters are important. The am- (A_d> (A_2d+ A_d <§-
plitudef of the driving force is an effective expression which ) , ,
is in fact a function ofA4; moreover, the driving force But this suggests thatyy<Ag, which contradicts our
couples to all other modes as well, and we may neglect a@ssumpthns. In this region of parameters our model is
other couplings only when the one that we are left with is the"aPPropriate.
dominant one. For this to be the case, we must have
=wq, that is,Ay must be small compared to all other pa-
rameters with dimensions of frequency. The valueAgf, 4. STABILITY
will be dictated by geometry. Both our analytic and our nu- . )
merical results depend on this assumption. In most physical 10 check whether the stationary solutions are stable we

In the following it will be illustrated that when three
solutions are present, the middle one is unstable, as expected.

We note that the situation of three solutions is, in a
sense, nonphysical. Botpy, andy,4 are positive, so we can
use(17)—(19) to deduce that

(21)

systems there is a relation betweeg and y,4. We shall linearize the equations around these solutions, and check
assume that these two parameters are of the same order pether small perturbations grow or decay. To simplify the
magnitude. calculations, we recall the symmetfy) and use it with

¢+ 36=0 to redefine the stationary value of the first mode,
a{”), to be real, without altering. The change irf is not
3. STATIONARY SOLUTIONS important, sincef will be absent from the linearized equa-

We begin our analysis by finding the fixed points of thetions. We substitute in the linearized equations:

equations, i.e., solving the equations )\an0>2

(0) _
(Ad—iyd)ad+2)\a§a2d+f=0, (12) (22)

Apg=——.
Aog—iv24
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Stability is now determined ba&o’. Also, to simplify the The condition(30) is trivial for a physical problem. The
. . s 2

notation, we us@y,ayq rather thansay, da,q for deviations  condition (31) is a quadratic equation ia{®", and is easily

from the stationary solution. solved to give

The linearized equations are

£ al0? ago)2< 7%11;\?% 4t \/ 7§+A2§+4Zd72d (34
idg=(Ag—ivq)ag+2\| ay’az— A = a Yo A
24~ 1724 (23) The third condition(32), is again a quadratic equation in
al®”, but with a positive rather then negative coefficient of
i820= (A24—1 v20) 80+ 2\ ag; 24  af

It is easily seen that for a negativeto occur in the

multiplying by —i and separating into real and imaginar
pwing by P v ginary physical regiorago)2>0, we need to have

parts, we obtain the differential equation:

Re(ay) YdY2d™>AgA2q - (39
d | Im(ay) When this condition is fulfilled, an unstable region appears
dt| Re(ayq) when
Im(azq)
<=.
—Yd—PY2d AgtPpAzg 0 23510))\ i 3 (39
—Ag+pAyy —YatPyaa —2aPA 0 Direct solution of the quadratic equation then shows that the
= 0 2a§j°)>\ — Yad Aug central region of solutions coincides exactly with this un-
© stable region(20). As mentioned above, this region is not
—2a4’\ 0 —A  ~72d physically important.
Re(ay) We combine(26)—(29) and (33), and define
Im(ay) —25(0)2
Re(ayq) @9 . _ _
Im(a,q) to obtain the last inequality:

wherep=2a®"\2/(y2,+A2y). aoz'+a12°+ 2,2+ agz+a,>0, (39

To ensure stability, we require that the real part of allwhere
eigenvalues of this matrix be negative. We find the coeffi-

cients of the characteristic polynomiaf+au®+bu?+cu _ 64v4729
ap=-> v (39
+d to be (v2qTA%)
a=2(yg+ v2q), (26) 64(Ya+ ¥24)?
Q=TT (40)
4\4 (0 2 (0)2 Yaqt A
b=————-2a? +8\%a
Yoa+ B3y ° ¢ 32v4%2d ., .o )
sy o az_m(Azd_Ad_(7d+ Yo2d) ) (41)
+(yatAgt vaat AT 4vavad), (27) 2d = =2d
8\ %y , , a3=16( v+ yoa) [ (va+ v20)°+ (Ag+A29)3)], (42
_ (0) 2 (0)
C=———3384 T8\ + a
Yaqt A5 ° (vat 72002 a3=4vg¥adl (Yat yoa) 2+ (Ag+Azg)?]
+2[(Ya+AD Yaa+ (Vaa+A%e) val, (28 X[(ya+ v2a)?+ (Ag—Azg)?)]. (43

o 4 (0) ) (0)2 It is seen that for any parameter value there exists an
d=12\"ay" +8\"(v4Y20~AgA2a)ay open neighborhood of zero in which the stationary solution is
+(Y2+ A% (Y24 A2y, (290  Stable. Itis very tedlpus to solve the inequality for. the gen-
eral case. We solve it for two special cases: one-dimensional
To ensure that all roots of this polynomial have a negativegeometry, and a cylindrical wave with a lar@efactor, both

real part, we use the Routh—Hurwitz criteridf: with reflecting boundary conditions.
Recall the assumptiod 4<<7y4. It is natural to assume
a>0, B0 that vq and y,q are of the same order of magnitude. In a
7 2
b>0, (31) wide class of casesxw~, and therefore
Y2d4=47q- (44)
d>0, (32 i

We shall consider this case for both geometries. The value of
abc>c?+a?d. (33) A, is dictated by geometry.
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For one-dimensional geometry, thd™™ mode is
cos@dmx/L), whereL is the length of the vessel. This depen-
dence vyields

A2d=w2d—2w=2Ad—(2wd—de)=2Ad—C(2kd

—Kyg)=2A4—c(2md/L—72d/L)=2A4. (45

We therefore have for the one-dimensional case

Ag,A2q<v4, 7Yod- (46)
We define
x=21v}, (47)
S=Y2d/v4- (48)
We use(46) to derive the inequality
1 1

x*—s(1+s)°x3— 552(1+s)2x2+ Zs3(1+s)4x

+ is“(1+s)“>0 (49

16 '

The solution of this inequality combined witB4) yields
the final result,

1
x<z(s+ s?), (50)
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Azg= w2g—20=2A03— (204~ w3q)
c
:ZAd_C(de_kzd)ZZAd_ﬁ(sz_de)
—oay— < 2| dr+ Z) = 2dmt T
—2Aq- | 2| dmt g || 2dmt g
Y PRANPy S 55
T~ S T R (55

Sincewy=2Qyy, the higher i, the higher the values
of d for which the inequality

Arg> 4 (56)
holds.

We solve now equatiof38) for the case

Ag<vd, Y2a<<Ayqg- (57)

We defines as before, but now

x=2IA%,, (58)
and we obtain

(1+s)? 1 (1+s)?
4__ 27 77 U3, T2 o

X S X 5 P X+ 16>0. (59

When this condition is combined witt84), we have
1
X<Z(v+\/2uv), (60)

from which one easily finds an expression for the Cr't'calwhereu=(1+s)2/s andv =u— Ju?—4. We usg44) to ob-

input power:

Ydt Yad
2

:37d+ Yod

fe N

Yad (52

or, using(44),

22

fo= 374 (52

We now substitutey,= aw? to obtain

(53

tain x<0.59. For other values o$ there are only small
changes in the result. In all cases the critical value is in the
range 0.5:x;<<0.65. The maximum is attained s+ 1, and

the minima are atx=0 and x—o (note that xy(s)
=Xo(1/s)). The critical input powerf. can now be calcu-
lated:

203,x5°
i 0.56W.
A full description of the loss of stability in this geometry

can be obtained if we take into account the dependenae of
andc on the relevant physical parameters.

C2

= (61)

C

A full description of the loss of stability for the specific 5 geyoND NUMERICAL CALCULATIONS
problem can be obtained if we take into account the depen-
dence ofa and \ on the relevant physical parameters, for ~ Some questions arise. Does the system always reach a
example, the temperature. stationary solution in the stable region? What happens above
For a cylindrical vessel of radiug, the modes are given the stable region? In what way would the theory be modified
by J,(kr)cosfd), whereld,, is then'" Bessel function, and if we include the full Hamiltonian(2)?
k=wl/c, wherec is the wave velocity. The boundary condi- ~ We solved the equation numerically with parameters

tions impose the relatiok, nR= xn m Wherey, n is themt"
zero of J;(x). For simplicity we consider here only thly
modes.

The value of A,y is dictated by the Bessel function

asymptotic behavior,
Xm=Xom=Nm+ 7l4, (549

whereupon

suitable to describe the cylindrical geometry:
Ad:O, A2d215001
¥4=30, v29=120,

A =5400, (62)
with initial conditions
ag(t=0)=0, ayy(t=0)=0. (63)
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la, 1 la, 1
a1 924
0.005}F 0.250
0.004} \ 0.020
0.003t 0.015¢
0.002¢ 0.010
0.001} 0.005¢
0.01 0.02 ) 0.03
lai

FIG. 1. The system approaches the fixed pointffel50; the position of the  FIG. 3. Forf=500. One of the limit cycles which bifurcates towards chaos.
fixed point is indicated.

o eral, trajectories which are very different from the original
Results for other parameter values may be very similar dugas  vet we argue that the main conclusion does not

to the scaling properties of the equation discussed above. change. Indeed, if we examine the original set of equations

For small enough values df the system reaches the (10) and (11), we note that the transformation
stationary solution after wandering in phase spdsdg. 1).

For f=0.3f, with the initial conditions above, the system
escapes the basin of attraction of the fixed point, and instead

approaches a limit cycléFig. 2). The basin of attraction of S o . . .
. ) . . ... . which i neralization df7), leaves th ions invari-
the stationary solution shrinks to zero as the instability is ch is a generalization df7), leaves the equations inva

o . . . .ant. We could then deduce thitec1/A. From dimensional
apprpgghed. Th.'TQ’ limit cycle IS T‘Ot unique. By choosing Van'considerationsf should be proportional te?,A?. It is seen
ous |n|t|_al condmc_)ns, other limit _cyc_les can be approa(_:hedthat for the one-dimensional case, the leading behavior is
In the higherf regime, the behavior is harder to determine. f oc+2, while for the highQ casef .o A2

It is easy to prove that the motion of the system is © Y 9 ¢ —ad

bounded in phase space. and that the volume in phase space All our calculations were in fact needed just to illustrate
phase space, P Pa&4t there is only one transition from stability to instability
decays exponentially with decay factor2t y,q).

. . i.e., no unstable windowsto validate the assumption that
A necessary condition for chaos to evolve is that the( s P

svstem be locally unstable. Our analvsis shows that the hathe largest constant with frequency dimensions is not absent
Y > localy 3 1alysis PRAtm the expression fof., and to calculate;. When we
of aq,a,4 is irrelevant to this question. Given the parameters

the potentially chaotic regions are defined in the,add new modt_as, new const.ants are added to the system.
(lagl?,|asgl® plane. Our calculations show that the region From (54), we find that for alljAjec/R, S0 these constants

di»18zq") plane. 9 do not cause a problem. The same is true for the one-
EN RSN (64)  dimensional case as for the nevis if they scale in some
way, e.g., if

1
ag—ady, ayy—adyy, f—af, )\—>Z)\, (65)

is always locally unstable. The numerical calculations sho
that whenf is increased the system enters this region, bifur- m
cations appear, as in the usual route to chaos. For large )‘k,l;m:f(T-R’---)h(E'?) kY, (66)
enoughf, chaos will evolve. ] ] )
In Fig. 3 we see bifurcations &t=500. Chaos evolves at Wheref(T,R,...) is anyfunction of all physical parameters
=506, as we see in Fig. 4. but the wavelengthh(l/k,m/k) are constants, and is an
When more modes are added to the system, the behavi§XPOnent, then the symmetry still holds, and then given that
changes. The projection of, say, the 3-mode system in ththe general picture remains the same, all that we need to

(four-dimensional phase space of two modes yields, in gen-change is the value of. This necessary modification m,
plus the shrinking of basin of attraction, which effectively

la, 1
a4
0.020¢

0.015
0.010

0.005 22

0.01 002 0.03 0.04 0.05 0.06 e . - N\
la, I 001 002 003 004 0.5
Iadl

FIG. 2. The system approaches a limit cycle fer100, which is below the
critical value. FIG. 4. Forf=507, the system is chaotic.
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lowers xqy, suggests that this part of our calculations is not*E-mail: mikroyt@post.tau.ac.il

accurate. Nevertheless, the dependence of the critical input____
1

power on all physical parameters remains the same even fOI’V' S. L'vov, Wave Turbulence Under Parametric Excitatipi@pringer-
Verlag, Berlin(1994).

the full Hamiltonian(2). There are values afi,h(I/k,m/k) 2L. D. Landau and E. M. LifshitzMechanics Pergamon Press, New York
for which other predictions, such as the distribution of the ,1976. _ o _ _

. . .°E. A. Guillemin, The Mathematics of Circuit AnalysiSohn Wiley and
chaotic regions of the 2-mode system, would not be dramati- sons Inc., New York1965.
cally changed as well. More extensive investigation of this :J- V. UspenskyTheory of EquationsMcGraw-Hill, New York (1948.

is theref hiahly desirabl J. L. Olsen, J. Low Temp. Phy81, 17 (1985.
system Is theretore highly desirable. 5pP. W. Egolf, J. L. Olsen, B. Roehricht, and D. A. Weiss, Physich6B,
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