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We study the cooperative two-photon spontaneous decay of an excited atomic system in a
microcavity whose size is of the order of several wavelengths of atomic radiation. We show that

a thermalized electromagnetic field in the microcavity strongly affects the two-photon

cooperative spontaneous emission of radiation. The increase in the rate of spontaneous cooperative
decay is due to the presence of a small number of thermalized photons in a microcavity

mode. At low temperatures, the two-photon absorption probability is found to be a linear function

of the two-photon flux, and photon superbunching is observed19@9 American Institute

of Physics[S1063-776(99)00104-3

1. INTRODUCTION sion for the time dependence of the half-difference of level
populations is derived.

As is known, an excited atom decays spontaneously |t is well known that the rate of spontaneous decay of
when an emitter interacts with the vacuum modes of theRydberg atoms in microcavities is much higher than in free
electromagnetic field. The spontaneous decay of a Siﬂg|§pacel_o_13 Since in a microcavity the rate of two-photon
atom in a microcavity differs substantially from decay in free decay in a three-level cascade system increases substantially,
space. Since the microcavity is smétb dimensions exceed it is of interest to study in such a setting the cooperative
the wavelength of the radiation only severalfpldpontane- emission of radiation by Rydberg atoms in microcavities. In
ous decay is facilitated substantially when there is resonanage present paper we study the cooperative decay of an en-
between the atomic transition and a microcavity mode and isemble of such atoms with a cascade pattern of the levels,
hindered appreciably when the atomic transition frequencyhere at a finite temperature the intermediate level is arbi-
differs from the resonant frequenty.Such behavior of an trarily offset from resonance with a microcavity mode. In
atom in a microcavity can be explained by the fact that neathis case the intermediate level is essentially vacant, and the
the transition frequency the rate of spontaneous decay is prdact that it lies between the excited and ground states leads to
portional to the electromagnetic field mode density. a sizable increase in the two-photon cooperative transition

The study of two-photon light generation has attractedcamplitude’> We derive exact equations for two atoms sepa-
much attention. The various aspects of experimental obserated by a distance,; in the microcavity and participating in
vation and theoretical treatment of spontaneous decay wittwo-photon cooperative decay. We also study the temporal
respect to the dipole-forbidden transitid@S)—|1S) in  behavior of these emitters. The cooperative behavior of the
hydrogen-like and helium-like atoms are discussed, e.g., ikoncentrated ensemble of emitters in a two-photon decay
Ref. 3. The first report of an experimental observation ofprocess is investigated with the quantum fluctuations of the
two-photon coherent light generation in which excited Li number of excited atoms ignored. We show that a small
atoms were used was made by Nikolaesal® Recent number of thermalized photons in the microcavity modes
experiments involving Rydberg atoms have demonstratedincreases the cooperative spontaneous decay rate. Since the
the real possibility of building a two-photon micromaser. two-photon absorption probability is proportional to the
Also of interest are the observations of spontaneous and thesecond-order correlation functiome(a'a’aa), the func-
mally stimulated two-photon transitions in the microwavetion is proportional to the two-photon fluor the number of
range of the emission spectrum of the Rb atom in resonanagenerated pairs of photond/oreover, in the cooperative
fluorescencé.A theoretical description of cooperative gen- two-photon spontaneous decay process, the second-order
eration of a light pulse in the two-photon spontaneous decagorrelation function remains greater than the square of the
of atoms via dipole-forbidden transitions can be found infirst-order correlation function, which means that pairs of
Ref. 7, where it is shown that the two-photon superradianc@hotons are highly correlated. In other words, the generated
pulse demonstrates interesting quantum behavior in the alphotons experience superbunching. As the temperature
sorption process. In Refs. 8, attention is also drawn to thgrows, superbunching disappears, and only bunching of the
properties of superradiance of the two photons generated iftux of thermalized photons remains.
the spontaneous decay of two atoms. Two-photon emission The plan of the paper is as follows. In Sec. 2 we derive
and absorption in the presence of a thermalized electromaghe master equation for an arbitrary operator of the atomic
netic field in free space is studied in Ref. 9, where an expressubsystem. For one- and two-atom systems, we obtain exact

1063-7761/99/88(4)/9/$15.00 633 © 1999 American Institute of Physics



634 JETP 88 (4), April 1999 N. A. Enaki and M. A. MakoveT

2 ' * :
| o (U5 UL, 1= [ U}, — Saar UT1,
[a,a5]1= 6, [b,,b),]1=8(w—w’).

y Below we study the temporal behavior of an operator of

| the atomic subsysten®(t), in the process of spontaneous

l decay inside the microcavity. Using the Hamiltonidy, we

4 derive the Heisenberg equation for the average value of the
1) operatorO(t):

FIG. 1. Diagram of one-photon and two-photon transitions. Solid and bro-  g(Q(t)) i 3 N
ken vertical lines designate one-photon cascade and dipole-forbidden tran- =— 2 z a([UJa O(t)]>
sitions, respectively. dt h 1=

N 2
35
equations that allow for quantum fluctuations of the inver- Ek: Z Z [<ak[UlB(t)
sion operator. In Sec. 3 we present the solutions for these _
differential equations, which make it possible to assess elec- +US(1), O Yexp{ —ik-r}+Hecl. (2

tromagnetic field fluctuations. The formal solutions for the operatoag and al inside the

cavity can be obtained from the Heisenberg equations for
operators inside and outside the microcaygge the Appen-
dix):

2. INTERACTION OF A THREE-LEVEL EXCITED ATOMIC
SYSTEM AND A THERMALIZED ELECTROMAGNETIC FIELD

IN A MICROCAVITY

_Af toey— t
We examine an inverted three-level cascade configura- a()=At) +ag(t), a(t)=[a(t)]", ©)

tion interacting with the modes of an electromagnetic field inpare
a microcavity(see Fig. 1L Since the microcavity is slightly

open, the Hamiltonian of such a system has the form AL(t)zak(O)exp[—i[wk—iF(wk)]t}
3 N -
H=, hwkalakva dohoblb,+ > X fiw,Ul, +f dw k(w)b,(0)
K - a=1j=1 —oo
o exp[—iwt}—exp{—i[w—iT(wy)]t}
i t_ ot
+|ﬁ2k f_mdw k(w)[b,al—ab!] X T (o) (or—a) , @
. g
+|E 21 le (dag-gi)( akexp[—| Kerj} ag(t) :2 2 3B kexp[—lk ri}
J =1 B=
— t
H. C)(U +UJB) @ Xf drexp{—i[wy—il'(wy)]7}
Hereiw, (a=1,2,3) is the energy of levet, ds; is the 0
dipole moment of the transition between levi8s and|3) ><[Uj35(t—7)+U333(t— 1.

(B= 1,2),al (ay) is the Bose creatiotannihilation operator
for the electromagnetic field inside the microcavhyfz), (b,) Clearly, after(3) and(4) have been substituted into E@),
is the creation(annihilation operator outside the cavity, the right-hand side of this equation acquires a dependence
o= 27w, /Ve, , with g, the polarization vector of a pho- (via AL) on the free operators of the electromagnetic field
ton (\=1,2) of frequencyw, andV the cavity volumex(w) inside and outside the cavity. We examine the decay of an
is the coupling constant between the external modes and theverted subsystem of Rydberg atoms at finite temperature,
internal modes of the microcavitw is the number of atoms so that the modes inside the cavity and those outside it are
in the microcavity, andu? B—cjgc g is the corresponding partially occupied by thermalized photons. Hence, in study-
transition operator between Ieve||3> and |B) of the jth  ing the dynamics of an inverted atomic subsystem, we can
atom. Herecl; and Cjp are Fermi operators. eliminate the free operators of the electromagnetic field in-

In Eq. (1) the first and second terms describe the elecside and outside the cavity by the Bogolyubov metfibd:
tromagnetic field inside the cavity, and the third term is the 3
Hamiltonian of a free atomic system. The fourth term ac- d(O(t)) =i E
counts for the interaction of the field inside the cavity with S dt & i=
the external field and depends on the reflection coefficient of
the cavity walls. Since the atoms are inside the cavity, the
fourth term corresponds to the interaction of emitters and
microcavity modes.

The operators of the atomic subsystem and electromag- «
netic field obey the commutation relations

N
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xexp{i[ wg+iT (w)]7H(N(k) + 11U (t—7)
+UN(t= 1)U + U1, Ot ])—n(k)
X([U35(1)+U(1), O(1)1(UP (t—7)+ Ut

—7))))+H.c.|. (5
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+0)exp{—iky-rif—H.cJU/(t— 7+ 6)+H.c.

X[UFa(t) +ULy(), O(t)]> - n(k1)< [U3,(1)

+UB(), O(t)]{ forde exp—iws,0)

Allowing for the Heisenberg equations for the atomic opera-

tors, we can write the solution of the equation for the opera-

tor U|3y(t— 7) with respect tor in the form
2 g d
. kY3
Uf‘y(t—T):Uf’y(t)exp[—lwgyf}—i-Ek 7721 . n

X deeexp(—iwgye)(al(t— 7+ 6)
0

xexp{—ik-rt—H.c)U/(t—7+6). (6)
Inserting this solution into E(5), we obtain

N 3
d<(3(t)> =i2 2 0l{[Uf1),0])
t =1 a=1

1
72

- exp{—ik-(rj—rp}[1+n(k)]

3

j,I=1

I'(wy) +i[ ox— 3]
I'2(wy) +[ 0~ w31]?

X (U (D[ U5(1), O(1)])

X

(gk'd31)2

F(o +i(og—w3) |,
T2( ) + (0= wg3) (Uis®

+(g¢-dsp)?

X[U?Z(t)' O(U])) —n(k)exp{—ik-(r;

F(wk)+i(wk—w3l)
l_‘2(0‘)k)+ (wg— (1)31)2
X([U]5(1), O()TUF (1))

I'(wy) +i(w— wz3)

_rl)}((gk'dsl)z

+(gk-d32)2F2(wk)+(wk_w23)2

><<[U132(t), O(t)JUZ(1)) | +H.c.[+1, @
where
(4= _kg(z “%1 H:nl (gkl-daﬁ)(gk233y)(gk2.d3n)

t
X exp{—ikl-(rj—r|)}fodrexp{i[wk1+iF(wkl)]r}

X

[1+ n(kl)]<{ f;dﬁexp{—iwgﬂ} [aﬂzz(t— T

x[af (t= 7+ 6)exp{—iky-ri}—H.c]

+H.c.

X U(’y(t— T+ 0)+ H.c.] > . (8)

The second term on the right-hand side(@f accounts for
one-photon transitions of tyg@)— |3) or |3)—|1), and the
third term accounts for higher-order transitions.

Since we are only interested in two-photon transitions,
we ignore one-photon emission by proper selection of the
offset of the intermediate level from resonance. More pre-
cisely, the offsetA=|w—w,g (A=|w—wg|) Mmust be
much greater than the damping facltik) of the microcav-
ity. Hence the only mechanism by which the system can go
into the ground state is two-photon decay. Clearly, in this
case the level3) is almost vacant, and we can eliminate it
from Eq. (8). As an example, we eliminate it from the first
term on the right-hand side of E(). The result is

(G, d3p) (9, -d3,) (G, d3)

K1 Ky i1=1 7,4, 7=1 %3

xexq—ik1~(rj—r,)}f;dr exp[i[wk1

+i F(a)kl)]T} [1+n(kq)] fOTdB exp[—i wg.},a}(akz(t

— 7+ 0)expliky 11} Ul (t— 7+ 0)[US4(1), O(1)]).
(9)

_Since UjSB(t) =.c§j(t)c]-,,3(t), usipg the solution of the
Heisenberg equation for the Fermi operatéil(t),

cl(t)=cli(0)expliwat}

2 d3§‘9k3 t )
+2 2 - fdrlexp[lwy'l}
G -1 0

X [ay,(t—r)exp{ik-ri} —H.clcl(t— 1),

we can eliminate it from(9). Inserting this solution int@9)
and bearing in mind tha(t3|c;r3(0)=0 andc;3(0)[3)=0, we
immediately obtain
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N 2
1{9=
ky.ko kg [,1,=1 B,y,7,¢=1
(Gk, "d3p) (Gk, *d3,) (G, d3) (G- dae)
X

h4

t
><exp{—ikl-(rj—n)}fodrexp{i[wkl

T t
+ir(wkl)]7} [1+ n(kl)]fo dé’exp[—ia):;yé’}JodTl
xexpli wgpri}expliky 1 —ika r i} (a,(t— 7+ O)a (t

— 1)U (t= 7+ 6)[Uf4(t—71), O(D)]). (10

We now ignore terms of order higher than the fourth with

respect to the parametaggds, /A andg,ds,/f and write the
correlation function as follows:

(A, (t= T+ 0)af (t—71) =~ S [ 1+N(ko)]
Xexpliwy, (71— 60— 1)}

xexp{—I'(wy,)|7— 60—}

Next we use an integral representation of the exponentials:

expfi oy (7— 60— 71)texp{ - F(wk2)| T— 60— 71|}
1 o
p fﬁmdw

, : 1 (=
exp{l[wkl-kll—‘(kl)]T}:;f do"

—o0

F(wkz)exp[i o' (1—0—71)}

(w,_wk2)2+rz(wk2)

I'(wy )explio” 7}

(0" = o )2+ T (@)

Then Eq.(10) becomes

N 2
[(4)~
1 .
ki.ko j,I=1 B,y,n,é=1

(Ok, - d3p) (Gk, - d3,) (Gk, " d3,) (Gk," dag)
% mht

xXexp{—i(ky+ka)- (rj=r)}[1+n(ky)]

o o]

do' do”

—owJ —x

X[1+n(k,)]

1ﬂ(wkz) F(wkl)

Fz(ﬁ)kz) R Cliy wk2)2 I‘Z(Wkl) i wkl)z

X(UI(D[US4(1), O DI (0", ")

13

Here the function (o’ ,®") can be expressed in terms of
temporal integrals, and for long time intervals; «, we can
write

N. A. Enaki and M. A. Makovel
t . T
(o o")= Jodrexp{l(w’-l-a)”—wm,)r}fo dé

t
XeXp[—i(w'+w3,7)9}J dry
0

Xexp[i(w3§— (1),)’7'1}

’ "__
_ 780 +o"-w,,)

(w3t o)z~ 0") .

After integration over time, the integrals with respectad
andw” in Eq. (11) can easily be evaluated:

1 o o
”__ ! "y’ ’ n
Il——wzf_mf_mdw do" (0", 0")

I'(w,) I(wy,)

X
I (0 )+ (0" o )? T o)+ (0’ — o)

1 2r

(w31 wi, ) (wzaF o ) (@y,+ o, — 01)?+(2I)? '

In final form the expression fak* is

N (g, -O2) (G, 03 (G -dan) (G, - Oso)

KKy jil=1

[ (4~
1 4
7 (w31~ ok ) (w32~ wy,)

X exp{—i(ky+ky)-(r;=r)}[1+n(ky)]
X[1+n(ky) {UZ(D[U]5(1), O(1)])

y 2r
(@, + o, — 0)?+(2)?

(12)

In deriving Eq.(12) we used the rotating wave approxima-
tion and assumed thdf(wkl)wl“(wkz)ﬂ“, w31~ wk1>l“,
and ws,+ wk1>1“. Reasoning in the same manner, we can

derive an equation describing the behavior of atoms interact-
ing with a thermalized electromagnetic field in a microcav-

ity:

d(Oo(t N
%ﬂwn}: ([R;;,0(1)])
=1
1 N (Gk, *d31) (Ok,-d32)
- g ki.kp j,I=1 W23™ Wy,
(O, -d32) (Gk, " d31) 2 L (k)4 ik
roverma IERL VL)

x| exp{—i(ky+Ky)-(rj—rp)}

(RIIR; ,0(0])
i(wkl+ Wy, w1t 2iT)

+exp{i(k,
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(R, OMIR") d(R,(1)) 11
+kz)'(rj_r')}i(wkl+wk2—w21—2if)) dt ?@(R R~ m R, 9
+n<k1>n<k2>(exp{—i<k1+kz>-<r,-—r.>} where

B 1 4g*d Lis _ 8g*dgn® Lo
<RI [R] ,O(t)]> +exp{i(k1+k2)-(rj 7_E)b)_ FA2ﬁ4( n), 7.(b)_ T A2344 ( n.

i(wkl-i- (.L)kz_(l)21+ 2|F)

(IR, O(IR) )

With the initial condition{R,(t=0))=1/2 we have

—rp)}- - , 13
')}'Wkl*wkz—wzrz'm w9 (Rz(t))=% 2 1—exp|—a:—;})l, (16)
T

where the operator® =U?, R =U},, and R,;=(U% °
—ufl)/z satisfy the commutation ~relations for “spin Where
operators. o) ,

To study the time dependence of the operators of the __, 70 _ 2n .
atomic subsystem, we write the following system of equa- 7 1+2n
tions:

In the case of two atoms separated by a distange

d(R,;) 2 N _ =|r,—r,|, the system of equatior(¢4) leads to a complete
at e k2k 2 Yert(K1, Ko)exp{ —i(ky+Kp) (1] set of equations for the variablesZ(t)=(R,(t))
el +(Rpp(1)),  Y()=(Rz ()R (1))+(Ry ()Rz (1)), and
—r)}H[1+n(ky) +n(k) KR (DR; (1) X(t)=(Ra(t)Rx(1)):
4 Z(7) —a —cosé 0
T2 k1§:‘<2 Yeil(K1, k2)N(K)N(k)(Ryj(1)), (14 di Y(7) |=| cosé -1 4 cosh
! T
X(7) —05 0.mcosd —2a
d(RF (DR (1) 2 N
W:—‘l 2 2 ke ko)| [1+n(ky) Zn) -l
h? Kk, =1 |y |+| o | 17
. X(7) 0
+n(ky) ]| expli(ky+ka)-(rp—r))}
wherer=t/7{®) , andf=k,-r,;. The characteristic equation
(RY (R, (DR (1)) of this new system of equations is
1 zZm!
I(wg, T oy, 0= 2i1) A3+ (3a+1)\%+(3a+2a%—2acos 6+ co H)\
—exp{—i(ki+kp)-(ri—r))} +2a?—2 cog —2a?cos 9+ 2acog #=0.
(R (DRL(HR, (1)) Note that this equation can easily be solved by Cramer's
(0 + o, —wyyt+2i0) ]|’ method, but in view of the awkwardness of that method we
! 2 limit ourselves to the approximatiow~1, which corre-

sponds to a small number of thermalized photons in the mi-

where
crocavity mode. Allowing for the initial conditiong(t=0)
. (gkl'd31)(gk2'd32) (gkl'd32)(gk2'd31) 2 =1, _Y(t=p)=0, andX(tzO)zQ.ZS, we obtain in this ap-
Yeii(K1,Ko) = - , proximation the following solution of the system of equa-
@23~ @iy @31~ @k, tions (17):
(ks ko) = 424K ko) = 2()=— 22 exgi—27)+ - Lexy—(1-p))
Ko)= , . T)=— exp[—27}+ ——exg{—(1—-p)7

Veitl K1,K2) = Ver K1, Kz (2F)2+(wkl+wk2—w21)2 1-p? 1+p p
Next.weilimit ourselves to one microcavity mode.. We study + ﬂexp[_(lJr p)7t—1,
the kinetics of one, two, or more atoms and take into account 1-p

the quantum fluctuations in the case of one or two atoms and

. . . . 2
ignore these fluctuations if the number of atoms is greater _ 4p o L-p 4
than two. Y(7) 1_p29Xp{ 27} —1+pexp{ (1-p)7}
We begin with one atom in the microcavity. Equations
: . . : > 14
(14) yield an equation for the population of the atomic sub n pexp{—(1+ o)1), 18)

system: 1-p
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2 Markov approximation in second-order perturbation theory,

1 1-
X(7)= Sexp{— 27}~ 2(1—+p)exp{— (1-p)7} I'>N/7, we obtain the following lower and upper bounds
1-p P on the photon loss rate:
—H—pexp[—(1+p)r}+o 25 4g*daN
2(1-p) o Az—f;(H 2n)<T2<A2, (20)

wherep=cosé.

When the number of atoms is large, the process of co- Our model can be experimentally implemented for the
operative two-photon decay becomes appreciably stronger. |’ S)—|(n’ —1)S) transition with an intermediate level
we ignore fluctuations in the number of particles when thd(n’—1)P) and with allowance fof20). Since we wish to
number of atoms is largeN>1), we can easily obtain for account for the effect of the heat bath on two-photon spon-

the atomic inversion operator taneous decay, we examine the experimental model of exci-
tation for Rb atoms witn’ =40 (Ref. 5. The average num-
d{R,(1)) 1 1 5 ber n of thermalized photons in the microcavity mode at
Tdt o Ry) _E(J(J+1)_<Rz> +(Ry)), T=4K is of ordern~0.79. In the notation of Ref. 5, the
O -y
(19 conditions(20) become
wherej=N/2. The solution of this equation is 4QfN(1+2n) [2<p?
A2 '
Rt——1+q Ct hltt
(R(1))= 2 2N 2_7',( o] Then, with the values of the matrix elemefit; and the

by _ ) offset A obtained in Ref. 5, we easily establish that
wherer, = g )/c is the time of cooperative spontaneous de-

cay of the ensemble of atoms, 1.6xX10'N(1+2%0.79<I'?<1.5x 10'°,
N—(1+g—c) i.e., the inequalities if20) hold. Note that in this case the
to=rIn (1+q+c)—N rate of collective two-photon spontaneous decay is 2.6 times

the rate of two-photon decay in the absence of thermalized
is the time lag of the pulse of collective emission of a pair ofphotons in the cavity modé.e., atT=0).
photons in the microcavity, q=7/7®, and c
=V(1+q)*+4j(j+1).
The Dicke equationi19) describing two-photon coopera- 3. DEPENDENCE OF ELECTROMAGNETIC FIELD

tive spontaneous decay implies that a thermalized field afy| ;cTUATIONS ON ATOMIC INVERSION DYNAMICS
fects not only the Einstein coefficientA? corresponding to

stimulated decay but also the rate of two-photon spontaneous In the absence of atoms inside the microcavity, we can
decay, 1#” . Clearly, a thermalized field facilitates the pro- calculate the fluctuations of the electromagnetic field opera-
cess of cooperative two-photon dedage the expression for tors:

1/780) after Eq.(15)]. This constitutes one of the main dif-

ferences between two-photon dipole-forbidden emission and so=(a" %% —(a'a)?=n.

one-photon cascade cooperative spontaneous emission. Ob-

viously, two-photon cooperative spontaneous emission preI_t would be interesting to find the fluctuations in the number
vails over stimulated thermalized transition only Kf(1 of photons of the electromagnetic field that are generated by

+2n)>n2. These estimates suggest that wher 1, the the excited atomic system in the process of two-photon emis-
term 1/7(13)' which corresponds to induced decay ’is negli_sion in the microcavity. To do this we introduce a function
gible in co;nparison to the term 71}") which corresp,onds to that accounts for fluctuations of the electromagnetic field in

spontaneous decay. Indeediat 0.3 we have relation to thermalized fluctuations:

52=62— 5% 21
1 8g*d; 2 1 4g*dj r ’ @D
70 Tazpe O TE Tzl 203 where 5= (a'?(t)a?(t)) —(a'(t)a(t))?.

Since experimenters often monitor the dynamics of the

To conclude this section, we note that with properly se-population difference of the atomic subsystem in the
lected (by experiments Rydberg atoms and microcavity microcavity®in this section we express the electromagnetic
mode, the one-photon cascade process can be neglectedfield fluctuationséf in terms of the kinetics of atomic popu-
comparison to two-photon spontaneous decay. To quench thation inversion. To simplify this problem, we can eliminate
one-photon cascade transition, the rate of loss of photonthe virtual Ievelsc;rs(t) andc;z(t) from the Hamiltonian(1),
from the microcavity,I', must be smaller than the offset since as noted in Sec. 2, these levels are almost vacant. After
from resonance,A=|w,— w,q(A=|w,—wg|), so that this is done, we obtain a formula for the effective Hamil-
I'><A? (herew, is the microcavity mode frequencyBear-  tonian describing the interaction of the atomic subsystem and
ing in mind the condition for applicability of the Born— a single microcavity mode &&+0:
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He = wyR, + fiard,+ 2% (IR +R* I~ da’
21z cVz X( ) _:4ich+—4FJ++8ixR+Jz
. dt

+f dofoblb,+if

+f°c dw k(w)b!(0)a’(t)expli wt}, (27)

x| f—ab! 22
ffxdw «(w)(b,a’—ab,), 22 and inserting it into Eq(26) in the Born—Markov approxi-

mation dG?)(t)/dt<I'G)(t), we find that G (t) and
where x=2g?d3,d3,/A%2. The operators)*=a'%2, 3=  G@)(1) are linked through the relationship
=a?/2, andJ,= (a'a+1/2)/2 belong to the SU(1,1) algebra

. : ; 4i
and satisfy the commutation relations G@(t)= TX[<R+JZJ_>—(R_J+Jz>]+2nG(1)(t)-

(3", 07 ]1=-23,, [J,,07]==J". (29
Let GW(t)=(a'(t)a(t)). Then Now, weakening the correlation functions
dcW(t) d(a'(t)a(t)) (RTIFT =R, (RTITI)~(RTIN)
dt dt for a large number of excited atoms and noting that
da'(t) da(t) 1 1] 1 1 1 d(Ry(1))
= U =_|cg® == R z
< T a(t)y+a'(t) ai /- (23 (3(1)) 5|G (t)+2 IR e P
Inserting the Heisenberg equation of the operators of tha&ve can express the second-order correlation function in
cavity’s electromagnetic field into E¢23), we obtain terms of the atomic subsystem inversion operator:
deW(t) YIS 111 d(Ry(1))  [1 d(Ry(1))]?
S = 4X(RT(DIT ()37 (DR (1) R 1 N T A T
(29
—2F(a*(t)a(t))+f dw k(w) Note that since the two-photon absorption probability

wx(a2a?y=G@)(t), at low-temperatures it is proportional
to the two-photon fluxd:

wer d(R,(1)) xd
x(af(t)b,,(0)expl —iwt}. (24) dt

o : . We note that the probability also depends on the square of
El|m|n_at|ng the hgat-bath operators, we obt_am the fO”OW'ngthe two-photon fIEx but tlr‘ﬂls depenZence is ignorgd in our
equation for the first-order correlation function: approximation. Note that for one-photon superradiance, the

X(bL(O)a(t))exp{iwt}+foc dw k(w)

dGA(t) function G is proportional to the square of the one-photon
5 =—2I'GW(t) +4i x(RT (1) (1) flux, or ®2. This occurs because’~R" for one-photon
emission, while for two-photon emission we ha/e’~R™.
—JF (R (D)) +2Tn. Hence
o 2
In the Born—Markov approximatiod G} (t)/dt<I"G)(t), wee(R* 2R 2>oc< {dRZ >
we can express the functidd®(t) in terms of the atomic dt

inversion operator: .
P for one-photon superradiance, and

1 d(R,(t))
)4y — z d(R
G =n-F —5— @9 woe(RTR™ e <dtz>
Reasoning along the same lines, we find the second-ordesr two-photon superradiance.
correlation functionG(?)(t)=(a'(t)a’(t)): Now we can easily derive a formula for the relative fluc-
5 12008 2 tuations of the electromagnetic field inside the microcavity:
dGA(t) d(a'(t)a?(t))
= 1) 1 d(Ry(t
dt dt 5?:_(n+_ 1 d(R.(1)) 30
2 5 2)T  dt
B da'(t) ) ‘2 da“(t)
- dt a“(t)+a’(t) dt /- (26) This implies that in each decay event, photons are gen-

erated in pairs and the emission intensity becomes propor-
Taking into account the Heisenberg equation for the operataional to N?, while the second-order correlation function for
a'(t), the photons remains much greater than the square of the
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3ﬁ
FIG. 2. Dependence o8?/ 85 ont/7, at N=1500, A/27r=39 MHz, '=2 +z 2 exp{ —ik-rj{[U; 3(t)+U (D]
j=1 B=

X1 s, w/2mr=68.4 GHz, and)=7X10P s 1,
(A3)

If we ignore the contribution of adjacent modes to the redis-
first-order correlation function. In this case, at low tempera+ribution of frequencies and to microcavity losses, we obtain
tures and for large numbers of atoms, we can speak of pho-

. . . o 2
ton superbunching, i.e%%/ 85> 1 (Fig. 2). = Pf do |:(“’;|  T(wg) =7 )]
- k

In this approximation, the formal solution for the operators
4. CONCLUSION of the microcavity’s electromagnetic field is

_ The main object of this paper was to stu_dy the coopera- g, (t)=Al(t)+ai(t), al(t)=[a(t)]". (A4)
tive two-photon spontaneous decay of excited Rydberg at-
oms in a microcavity in the presence of a thermalized fieldere
We have found that a thermalized electromagnetic field
boosts two-photon spontaneous emission and that this em|é\1< ak(O)eXp{—i[wk—iF(wk)]t}+f dw x(w)b,(0)
sion prevails over stimulated emission. Moreover, we have -

studied electromagnetic field fluctuations generated by the exp|—iwt}—exp{—i[ w—iT (w)]t}

excited atomic subsystem in relation to fluctuations of the X T+ (o) ,
thermalized field in the microcavity. Finally, we have estab-

lished, in the Born—Markov approximation, that these fluc- N2 35 Ok t

tuations are linear functions of the generated two-photon aﬁ(t)=12 2 exq_ik'rj}fodTqu_i[wk
flux. o

[

—iT (w7} [Us(t— )+ Uf(t—7)],

where we have introduced the notatiop= wy .
Note that the solution§A4) take into account all corol-
We show how to eliminate the operators of the thermaldaries of the quantum regression theorem. Indeed, for the free
ized electromagnetic field and the electromagnetic field oparts of the operators,(t) and al(t—r) we can derive the
the microcavity so as to obtain E(p). We start by writing  expressions
the Heisenberg equations for the operators of the electromag-

APPENDIX

netic field, <ALT(t—T)A|f((t)>:f_ do|k(w)|?
day(t) . ®
at =—|wkak(t)+f do k(w)b,(1) <bz)(0)bw(0)>
o xXexp{—iwrt— >
N 2 g IN'(wy) +(0—wy)
k-O3p . .
+J_Zl le exp{—ik-r;} =n(k)exp{ —iw7—T|7|},
3 B where n(k) is the average number of photons in tkih
X LU0+ VW], (AD) mode of the microcavity.
and of the thermalized electromagnetic field, Now, mserting (A4) into Eqg. (2), we can eliminate
b, (t)=b,(0)exp(—i wt} AlT(t) andAl(t) (by employing the Bogolyubov lemni.
Since
t
—; deTeXp{—in}ak(t—T)K(w). (A2) <ak(0)B (1)) =n(w){[B(t), ak(O)]>

b (0)B(1))= B(1),bl(0)]),
Substituting(A2) into (A1), we obtain the Markov approxi- (bu(0)B(D)=n(w)([B(V,b,(0)])
mations of the equations for the operators of the electromagwve can express the correlation functiQAE(t)B(t)) in
netic field of the microcavity: terms ofakT(t)
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This paper uses an integrable model to study an asymptotic solution describing the transformation
of energy occurring in stimulated Raman scattering. The model allows for motion of
populations and for the nonlinear Stark effect. Initial conditions leading to a radiative solution
are discussed. The boundary conditions reflect the injection into the medium of high-

power pulses of constant-amplitude pump and Stokes fields. It is shown that the radiative
asymptotic behavior of this problem in the limit of weak medium excitation and in the limit of
rapidly varying intense fields is determined by the kernels of Marchenko equations that

are proportional to functions depending only on a self-similar variable. Analytic solutions are
found for these cases. Detailed numerical calculations carried out for weak fields
corroborate the analytic results. The role of the soliton part of the continuous spectrum of the
problem is also studied. It is found that a high-power soliton of the Stokes field can be
generated at the leading edge of a wave packet.1999 American Institute of Physics.
[S1063-776(199)00204-9

1. INTRODUCTION Mikhailov, Novokshenov, and Zakharov, the inverse scatter-
ing method is used to find related self-similar asymptotes of
Stimulated Raman scatteringRS of light has been the SRS modéf and the Maxwell-Bloch equations for me-
studied for a long timésee, e.g., Ref.)1but the interest in  dia with nondegeneraté® and degenerat® one-particle
the problem is unflagging, which is due to the universalitytransitions. Gabitoet al® studied the mixed boundary-value
and relative simplicity of realizing this phenomenon in ex- problem for the Maxwell-Bloch equations in a two-level
periments. When high-power pump and Stokes fields are inmedium for a one-particle transition.
jected into the medium, packets of pulses are generated in Mathematically, the Chu—Scott modélwhich was used
the SRS process. The study of the nature and characteristits Refs. 8, 13, and 14 to describe SRS, is equivalent to the
of such pulses is important for practical reasons. Maxwell-Bloch equations for a two-level single-particle la-
An analysis of the SRS model often encounters analytiser amplifier®> The boundary conditions for the Chu—Scott
cal difficulties, which emerge when one wishes to describenodel, corresponding to injection into the medium of pump
the behavior of dense packets of pulses with many degrees ahd Stokes fields with constant amplitudes, were studied by
freedom. Some of these difficulties can be overcome by usKaup and Menyuk>!*However, in these papers no analytic
ing models that are exactly solvable or are close to intesolutions describing the asymptotic behavior were found.
grable. The most detailed information about the evolution of  The present paper is a study of SRS in a two-level me-
fields in nonlinear media can be extracted by the inverselium. A totally integrable model is adopted. The model de-
scattering metho@SM).? As is known, the Maxwell-Bloch  scribes changes in level populations, pump depletion, and the
equations that describe SRS in one-dimensional media aronlinear Stark effect. We examine the boundary conditions
integrable by ISM* for physical initial and boundary condi- corresponding to injection into a sample end of wave packets
tions. The evolution equations of the SRS model are similaof the pump and Stokes fields with arbitraftyut constant
to those of other physical models, for instance, the model oamplitudes, and the physical initial conditions for the density
four-wave mixing in a medium with a Kerr nonlinearity, matrix of the medium that lead to a contribution of the real
which in turn formally coincides with the “uniaxial” chiral spectrum into the asymptotic behavior. We also establish, for
model on theO3 group, and the lik&.In view of this, the the general case, the Marchenko equations and the approxi-
analysis and the methods of solution used in the SRS modehate asymptotic expression for the kernel corresponding to
are also interesting from a theoretical standpoint. radiative asymptotic behavior. The explicit form of the radia-
In models with strong nonlinearities, such as thetive solution of the Marchenko equations will be found for
Maxwell-Bloch equations of one-particle interaction of athe limit of weak medium excitation and for the limit of
field and a two-level medium and the SRS mode, the radiarapid energy exchange between strong fields and the me-
tive part of the solution can provide the main contribution todium. Computer simulation, done in the limit of weak me-
the interaction dynamics. The radiative solution describesdium excitation, is used to test the analytic results.
for instance, the quasi-self-similar asymptotic behavior of a  The analytic solutions found for the above boundary
long laser amplifief. In the work of Gabitov, Manakov, conditions and describing radiative asymptotic behavior is

1063-7761/99/88(4)/16/$15.00 642 © 1999 American Institute of Physics
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also new for the Chu—Scott modghnd hence for the math- In the slow-envelope approximation, the Maxwell—
ematically identical model of a laser ampliffeiThe pro-  Bloch equations describing stimulated Raman scattering are
posed method of finding the radiative asymptotic behavio(see, e.g., Ref. 320
and the analytic results can applied to other models of non-
linear physics, such as the chiral field model and the model
of the interaction of two polarized waves propagating in a
two-level medium with a Kerr nonlinearify'®

Generally, when high-power pulses of the Stokes and
pump fields are injected into the medium, in addition to ac-
counting for the real spectrum one must account for the aIRZZi(b1|El|2+ b2|Ez|2)R+iKoE1E§N3,
“soliton” part of the spectrum. We find that for an infinitely
long steplike pulse, a part of the continuous spectrum may diNs=ixoE;E; R+c.c. (1)

emerge in the “soliton” region of the spectral plane. For tpe phase velocities are equal;=v,=v. Here v,=c/n;
physical applications it is often important to establish the_ w, /k;, with ¢ the speed of lightb;, b,, and x, are the

conditions required for the formation of a pulse with a high-cqefficients of cubic nonlinear susceptibility in the two-level
power leading edge. An analysis of the dependence of thg,eqium expressed in terms of the physical constants of the
dynamics of a soliton packet on the initial conditions gener-,qdium. which can be found. for example, in RefNg is

ated in such a problem makes it possible to find the condigye population difference of the levels involved in the tran-
tions under which a soliton with the largest amplitude a”dsitions;NO is the number of atom®, is the polarizability of

the shortest duration forms at the leading edge of the packefj,o medium; anc andt are the space and time coordinates,
The plan of the paper is as follows. Section 2 is deVOtedrespectiver.

to the statement of the problem. In Sec. 3 we discuss the ISM "Now we write the system of equatiof) in the form
equations and find an approximate asymptotic expression for

the kernel of the Marchenko equations. In Sec. 4 we use the TR+ =i[gR,F3+RsF ]—-2ivR,,

inverse scattering method to study the case of weak excita- i

tion of the medium. We find a radiative solution describing  9;R;= —aZngi[R+F_— R_F,],

asymptotic solutions for arbitrary values of the pump- and

Stokes-field amplitudes and the boundary of the sample. The 5 F_ =i[gF,R;+F3R,]. 2)
analytic results are then compared with numerical calcula-

tions. Section 5 is devoted to the case of rapidly varying €€

fields. We find the explicit form of the analytic solution de- b,—b, X

scribing radiative asymptotic behavior. In Sec. 6 we use the 9= P z= fo koNo(s) ds,

analytic results to explain the anomalies in the shape of

Stokes-field pulses, anomalies observable in real experi- ) ) ) T

ments. In Sec. 7 we study the dynamics of a soliton packet No(X)=N3+[R[?, T=K0Jo|1(Y) dy,

that may be generated in the system. Finally, in the Appen-
dix we establish the dependence of the constant-amplitude
pump- and Stokes-fields on time and on slowly varying ini-
tial data.

1
&X-i- v—&t) Ej_: _ibl(Ng_No)E1+iKOR* E2,
1

1
{9X+ U_at> E2: _ibl(Ng_No)E2+iKOREl,
2

z
r=t—, L(T)=[Esf?+[Ea?,

EPIEP N
No'

Fs I

] R3

2. BASIC EQUATIONS

R ) T
. . , R+:N_eXF{|(b1+b2)f Il(y)dy}
We assume that the pump field and the Stokes field with 0 0

amplitudesg; and E,, respectively, propagate in a semi- T
infinite one-dimensional medium positioned along xhexis F,=2 exp{i(bﬁ bz)f l,(s)ds
with a frequency-independent refractive indefw;) =n; : -

E.E3

I’

F =F%, R_=R%.
The systems of equatior{g) has the integrals

IR,|?+R3=1, |F,|?+F3=1. 3

1/2
ﬁwj
chj

E(x,t)=>, (
1,2
X[ gE;(x,t)expi(kjx—wjt)}+c.c],
The initial conditions that should be considered are those
where g is the polarization vector, and; andk; are the leading to the appearance of a contribution of the real spec-
carrier frequency and the wave vector, respectively. The cortrum to the asymptotic behavior. It is assumed that the initial
dition for resonance in a two-level medium with a transition excitation of the medium is described by the slowly varying
frequencywg has the formw,— w,= wqy+ vy, Wherevy is  functions of coordinateR;(z,0) andR, (z,0). The boundary
the frequency offset. Throughout this paper, with the excepeonditions are fixed in the following way. Wave packéi$
tion of Sec. 7, it is assumed thag=0. the pump field and the Stokes fighdith constant amplitudes
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E,(0,7)=E4(0,0) andE,(0,7) =E5(0,0) are introduced into —b*

the nonlinear medium at=0. Numerical analysis conducted X =x"7(\1), ,‘/’=(b o ) dety=1. (9
for |g|<1 has shown that the radiative solution for this

model describes the transition of the system to the steadyhe second column of the Jost matrix

ground state. This state corresponds to the values of the L —

fields and the medium polarizations at infinitg—¢ «): . ( 2% ¢1'+>

X = o —
Rs(z,T)=-1, R.(zT)=0, o gy

Fs(z,T)=—-1, F,.(z,T)=0. 4 is analytic in the upper half-plane af. The functionsa(\)

In Sec. 7 we study infinitely long pulses of the Stokes andtNdP()) are analytic in the upper half-plane, aath) has

pump fields and partial uniform excitation of the medium atZ€r0SA; there, which are the eigenvalues of the spectral
the initial moment. problem(28). From (8) and (9) it follows that

T+ ¥ b* +
U2 :?4‘?1//1 ) (10
3. INVERSE SCATTERING METHOD
The inverse scattering method is basically used in the —, ¢, b* |
present investigation to study the radiative asymptotic behav- Y2 Ta + a 2 - (12)
ior of the model(2) with the initial and boundary conditions N )
specified above. The soliton and finite-band solutions ofVe represents”(z,\) in the form
model (2) were built in Refs. 17, 5, and 18. The radiative %
asymptotic behavior of this model was studied in Ref. 19, in¢+(z,)\)=<Do(z,)\)+f ds
which the special case &(0,7) =0 and of an exponentially z

small initial polarization, ( AK1(z,8) (N ¢>+)K2(z,s))

—(N+¢_)K3(z,8) AKI(2,9)

Inf R, (20)|dz>1,
0

X Dg(s,\). (12
was examined.

At v,=0 the system of equatior(®) can be written as ~. :
the compatibility condition for the following two systems of with the weights

Substituting(12) into (10), allowing for (8), and integrating

linear equations:* f exp(—iNs) (A + ¢*) fw exp—ins)
. A, ——5—0d\,
—i({=9/2R; ({+¢+)Ry e 2m(Nt+ ) e 2m
0P=LO=| e aRe P ©)
({+e- )R- 1({=0/2)Ry we obtain the Marchenko equations
i(2{g—1)F 2(¢+ F . .
,gTq):Aq,:i( I(20g=DF5  2({tg.) ) | 3K A2y~ ¢ Koz,y)+iF(z+y)
AL\ -2(L+ ¢ )F - i(2£9—1)Fs .
©6) +f oyF(y+9)Ky(z,5) ds=0, (13
where( is a spectral parameteb, is a two-component func- z
tion, ande, = —g/2+ (i/2)(1—g?) 2 .
We write the spectral problerf®) in the form aZK’l‘(z,y)+f K3 (z,)[d,F(y+s)
z
. —An —(AN P )u ® ; ]
9P =i O+ é)m n : (7 —i¢,F(y+s)]ds=0, (14
. — . where
wheren=R;, u=iR,, u=—IR_, \={—0/2, ¢.=0
+9/2, and\={—g/2. b* exp{—i\z}
Now we consider the case in whigf<1. Under this F(zT)= . a  2m dA. (15)

condition the system tends to the ground stdjeas z— .
The solutions of the system that correspond to the boundarote that p=(b*/a)(\,T) is the scattering coefficient,
conditionz=0 and the asymptotic statd) have the form which contains all information needed to find the radiative
Xo' " =exp(=iNo32), with z=0 andz— =, respectively. Let solution. The contou#” consists of the real axis and passes
Xo'~ be the fundamental matrices of the Jost solutionsabove the poles in the upper complex half-plane. The soliton
(x "T—xo' " asz—0 andz— o, respectively. The spectral ~ contribution is studied in Sec. 7. Up to that section we limit
problem(7) meets the involution condition, i.e., ourselves to studying only the radiative part of the spectrum,
_ i.e., integration in(15) is carried out along the real axis.
P\ =MP(\*,2)* M, ®) The relationships that link the diagonal parts of the ker-
where M=(_9 1). We define the scattering matrix” as nelsK; Az,z,T) and the “potentials’n(z,T) andr(z,T) can
follows: be found from(6) and (12):
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in(z, K3 (2,2, T)=[1+iK(z,zT)][n(z,T)—1],
(16)

[1+iK4(z,z,T)]pn*(z,T)=—i[1+n(z,T)]K5(z,2T).

(17
This yields
2iK (2,2, T)U(z,T)
T)= 18
wT) Uz, D)2+ [Kx(z,2,T)[? (49
2_ 2
n(Z,T)_ |U(Z!T)| |K2(Z,Z,T)| (19)

U@+ KAz 2T
whereU(z,T)=1+iK(z,z,T).

Solving the Marchenko equations requires calculating
the kernel(15) with allowance for the time dependence of

the scattering datél05 found in the Appendix. In this sec-
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point method, we can show that the main contributiof2@

is provided by the neighborhood of the pom;~\/f. For
large values ol we have the expansion

aq 2
)\‘ 1
where  Q,=(1/2)J(1-g°)|F.(0,0)°+g%, e==1,
a=—g/4Q,, anda, is a constant of order unity. For physi-
cal media,g can be either positive or negative. To be defi-
nite, we assume thaf is positive. In this section we ignore
the last term on the right-hand side of Eg2). Note that in
the limits discussed belowy;=0.

The dependence gf, on \ is also found in the Appen-
dix, where we show that
1+0 !
x

Q\,)~e +0 (22)

Qo+ =
07\

_A—i¢® R,(00)
PO N 5+ R4(0,0

tion we take into account only the contribution of the realso, 5imost all slowly varying initial conditions. It can also be

continuous spectrurtt; , which determines the radiative part

of the solution of the problem. We replasewith A —g/2. If
we use the expressiofl05), the kernel(15) assumes the
form

1 o
F(z+y,T)= py. f_ di

xex;{i g

rexpg—2iQT)+p
cexp(—2iQT)+d’
(20)

5\

(z+y)

Here

1 1
‘“”Ziz\/(ﬁ‘

r(N)=Apt+po(iQd—Aqy),

2
+(1-9?|F% (0,0,

C(N)=poAsy+iQ+Aq,
P(N)=—Ap+ po(iQ+Aq),
d(N)=—poAyt+iQ—Aq,

shown that in general, fok large, the dependence of the
coefficient of the exponentials on the right-hand side of Eq.
(15) on the spectral parameter has the form

r=ro+0O

1 _ o 1
x|+ P=Pot O+
= (@] ! d=dy+0 !
C=Cp+ X , =dg+ X .

Now we find the kerneF(z,T) with the \-dependence of
these coefficients ignored, i.e., we calculate the integral

F(Z+y,T)=%f dxexp[i g—x)
X(z+Yy)|H(\,T), (23
where
HOLT) = Potroexp —2iQT)

Let F5(0,T)=F3(0,0)=cosBy=¢|cosfy|. We call the inter-

with A;; being the values of the components of the matrixaction mode corresponding to the boundary conditiet

|All on the right-hand side of Eq6) at z=0.
The denominator on the right-hand side of E2() van-
ishes at the points

1
n+ -

_ 1 d
2 +|K()\n), K()\n)—ih']g()\n).

(21)

The sign of) is selected so that within the limits, (z
=0,T)=0 andF3(z=0,T)=*1sgnQ coincides with the
sign of F3(z,T)=F3(0,T), since within these limits the time
dependence can easily be found and has the simple form

Lt
2

We find the asymptotic expression for the kerRé€g, T)

—TQ\y) =

T
p()\,T):po exf{| J;) Fs(O,T) dT

for large values ofT. Estimating the integral by the saddle-

=B,>0 the I-mode, and the mode corresponding to the
boundary conditionsr> B8¢> /2 theJ-mode. We show that
the kernels corresponding to these interaction modes are pro-
portional to the Bessel functiong andJ, (k=0,1), respec-
tively.

Calculating the residues on the right-hand sidé& ¢Eq.
(23)] at the poleq21),

—eaT

3 1 dg
o+ wl2—ike+teQoT’ Co

=In—,
2 ¢

An Ko=

we obtain a series im. Multiplying the nth term of this
series by the exponential with the exponent
2ieaT(mn+w2—ik+eQgT) eaT
—im—2Kko—2ieQqT,

we obtain
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z
R, =exp{*i#}sinv, Rz=cosv, y=f92005vdz,
0

rodo—poCo 1 F{ i(z+59)
F(z+tsT)=—-i———— 75— exg —
( ) dg 2mi En: On

6,=4d,0, y—0, z=0; v,0,—0, z—oo.

+i2aTq,+i g(z—i—y)—ZisQOT , (249

The transformatiori27) reduces the spectral proble®) to
where q,=¢e(mn+ m/2—ik)/aT+Qqy/a. For largeT, the

interval b_e_tweerqn and On+1 gets smalle_r, which justifies N EV
the transition from summation ovey, to integration with _ 2
respect toq. For sgre=+1, which corresponds to the 9V = 1 _ v, (28)
I-mode, the kernel is - EV* IN
w [* i(z+
F(z+y,T)=—§—W exp[ ( y)+2iaTq where
. V(z,T)=[(iV1—g?— 6,)sinv+iv,le". (29)
. e q
Xex;{ —2iTQp+i §(Z+ y) ? For 1>g?, the corresponding Marchenko equations have the
form?
4|a|T
= V8le|(z+y)T)

o Btz

xexp{ —2iTQp+i g(z+y)

z
KM(zy)+FO(z+y)+ f FO(y+s)K(z,5) ds=0,
0

30
: (25 %0

z
W (5 [ k@ (D(y+s) ds=
wherel; is a Bessel function, ang..= (r odo— PoCo)/d3. K™ (2y) fo Ki™(z9FH(y+s) ds=0, 3D

In the J-mode, the solution foF , (z,T) asymptotically
(z—) tends to zero. We select sg — 1, so that the so- (1) b* exp(—i\z)
lution matches the asymptotic solution in the linear limit, ~F (2= | = ——F5 ——d\. (32
since a zero asymptote fét, (z,T) corresponds td 3|, ... /

= —1. Replacing the signs ef andq in the above formulas, The relationship between the “potentiaV and the kernels

we obtain a kernel that corresponds to theode: Ky, has the forrh
4 a|T —ak (D)
F(z+y,T)=gm—|(;| Iy n)exp[zimoﬂ g(z+y)}, V(zT)=4Ki"(z,2,T), (33
26 z
29 J IV(y,T)|?dy=—4K(z,2,T). (34)
0

whereJ;(7) is a Bessel function, ang= y8|a|(z+y)T.
Note that the asymptotic behavior of the kerkrél, T)

for large values ofT and arbitrary (but constant fields
E; (z=0,T)=const is linearly dependent on the Bessel
functions, as in the limiting caseb3(0,T)~*1.

The time dependengg T) can be bound by replacing matrix
| All with matrix||Al|4 obtained from|Al| via the gauge trans-
formation (27). For F3.(0,T)=F3.(0,0) and R3_(z,0)
=R;3.(0,0) (i.e., constants the corresponding components

The next step consists in solving the Marchenko equa :
. i . of |Al|; are independent afandT, and the dependence pf
tions (13) and (14) with the kernelF(z+y,T). The solution on”)\ |<'|;lgnd timeT ips given by the general exprepssidr:m5) if:
can be found by iterations that use a series expansion iﬁl\e Appendix

powers of 1 for 7 large. The solution foF . (z,T) consists We can find the general form of the solution of the sys-

of a series of spikes V\{lth an amplitude decreasmgaso: tem of Marchenko equation@®0) and (31) by following the
We show that solving the problem amounts to solving g 5 ¢ developed by Gabitov and ManaRbHere it is pos-

flrstk;?rder(glfferzntlal eciuat;_)]n. ItzlskEr‘OWn g}f‘téhte specttralfsible to expres¥/(z,T)/T in terms of a function depending
probiem reduces 1o the cakharov—shabal Spec rasoIer on a self-similar variable. Then, to reconstruct the

problem? The corresponding gauge transformation has the,

form? potential” R, (z,T), we must solve Eq€29) and(33), but
there is no way in which this can be done analytically. At the
V.=D b same time, Eq9.30) and(31) also emerge in the physically
z ’ interesting limit of weak medium excitation, a limit in which
D=[I cos(y/2) +iassin(y/2)][1 cos(v/2) (29) becomes trivial and corresponds to the formal equalities
+ioqysin(v/2)][1 cos(8/2) +iogsin(6/2)], (27) V(z,T)=R,(2,T), R3(z,T)=-1. (35

whereo; are the Pauli matrices, and we have introduced thén this limit, the gauge transformatiq@7) becomes an iden-
notation tity transformation.
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4. WEAK-FIELD LIMIT

The Chu—Scott mod¥ can be obtained from Eqg2) in
the weak-field limit (\|<|¢-|). If we ignore excitatiorsee

Eqg. (35] and the Stark effectg=0), we obtain the Chu—

Scott model:
drV=F,,
9,F . =F3V, (36)
0,F3=—HFXV+F,V*). (37)

The functions and the variables are the same a)inThe

Chu-Scott model can be represented by the compatibilit

condition for the linear system&8) and the system
1 ( iFs —iF+)
. ()
—iF3

mP=a0l ZiE
The Marchenko equations coincide witB0) and (31). The

(39)

time dependence of the scattering coefficient is given by the

general expressio(L05 in the Appendix, wherdlA| is the
matrix on the right-hand side of E¢38) at z=0. For the
Chu—Scott model we have the exact relationships

e F4(0,0) 1

4\’ (39

a1=0.

The coefficients on the right-hand side of E2Q) are of
the form

ron) ——[lp“’(e—F3<o,0>)+F+<o,0>]

1+0 ! I’E)l)
X Nty

4N’ 40

p(n)= —[|p<l><s+ F3(0,0)—F.(0,0]

>< p— _
1+0 N

1\] p§”
N }~ (4

c<1>(x>——[|<s+F3(o 0)—pSF_(0,0]

-

dD(\)= —[I(s+ F3(0,0)+pSYF_(0,0)]

1 d(l)

-
We ignore the tern©(1/\) in square brackets, i.e., {#0)—
43) p, r, ptt, ¢V, andd{? are independent of.

Allowing for (39), we find that the kerneF M (x+y,T) is
given by Eqgs(25) and(26). For theJ-mode we have

c§H

x| 1+ —
1+0 4\’

(42

1+0 (43

g(l)

V2(z+

FO(z+y,T)=

1(V2(Z+Y) ),

(44
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whereg® = (r{Pd{M— pPeM)/(d{M)?, andJ; is a Bessel
function. For thel-mode the kernel differs fron44) in that
J, is replaced by;. WhenR, (z,0)=0, we can easily show
that pg(A) =0, with

g o= 2|sin B
900" (1+|cosBo|)?

To find the radiative solution of the Marchenko equa-
tions(30) and(31), we use the Gegenbauer addition formula,
following the ideas developed in Ref. 11. Examining the
J-mode, we introduce the variablgs= \2zT and {=+2yT
and write the functionF®(z+y,T) in the form F()(z
% (1)

Ly, T)=T.7 U2+ %). Next we expand the function
T D(JE+ £2) in Bessel functions:

(1)
FONE+ P )= — J— IL(VE+)
—g&” Z( 1) %(2k—1)

X Ik 1(D)Iok-1(8).

Here we have used the properties of the Gegenbauer polyno-
mial Cf (see, e.g., Ref. 21

(45

(kD)
I k!

We introducez{)(z,y) =T K{})(z,y,T) and expand these
functions in the Bessel functiorlyy_1:

c10)=0, C¥0)=(-1)

gl 2IE I 1(0),
(46)

2
H DY) =2 D= 57

oo

2
T Mzy) =M (¢,0)= I gl ZIE) Iz 1(0).
47)

We take advantage of the biorthogonality of the Bessel func-
tions and Neumann’s Bessel functio¥ig,

f(/‘]m(g)Yk(g)dg:akékmv

=2qi, k>0, (48)

where the integral is taken along a contotithat encloses
the center of the complex plane. Multiplying the Marchenko
equations byy,,_; and integrating along, we find that

ak:Wi,

28 =2, oP7W(e)+ 78, (49)
n=1
7MW =- oWrW(g), (50)
n=1
where

FM=(—1)*12gP(2k— 1)1 (&),
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oP=(-1k lagBk-1) 7P,

7 {P(s)= f T s(@) I 1(0) o L do (51)

For thel-mode we have a similar algebraic system of

equations in which the Bessel functiodg are replaced by

I,. The integrals in(51) reduce to tabulated integrals, e.g.,

fIZk—l(X)|2j—1(X)X_1dX
:21—2j—2kx—2+2j+2k|:[(j_|_k_17j+k
—1/2), (2j,2k,2k+2j— 1), x?]/
[(G+k=D)I'(2))T(2k)],

whereF is the hypergeometric function addis the gamma

function. We find the solution to the algebraic system of

equationg49) and(50) using Cramer’s formula

def M|

7)(1):—,
def M|

K (52

where
|||\/|(1)|| — 5 + 0 (1)(('&);

M| differs from||M®)] in that thekth column is replaced
by the vector7 (Y. We have

1 d 1 -
—Indet|M®)| = ———— > det|{MP)| I, .
4§ dg ﬂ || deﬂM(l)” kzl ¢| k || 2k—1
(53

Comparing(52) with (53) and using the rule of differentia-

tion of determinants, we find the formal solution fgr'$")
[Eq. (47)]:

o0

3 A (H=T ()

1
Y ag'“der Sa+o®Ye®*]).
(54)

To find .7 {M(¢,¢), we write (49) and (50) in vector
form, bearing in mind thaff> ()| is a real matrix:

(14l M)2).20 =71, (55)

We write the solution of Eq(55) also in vector form:
,, 1 o
D=z [0 +ilePh 7™
+(1=illo®@)H~t7 ™7, (56)
The final result is
g defl+i]|oW|]
FASHIE — (57

n .
4E 08 defl—if~ W]
Instead of(33) and (34) we have

A. A. Zabolotskit

V(LT =412 1L, 0), (58)

[
fo IV(9)|2dn=—4TZ (L, 0). (59)

Equation(58) implies that the field/(z, 7) is proportional to

a function that depends solely on the self-similar variaple
=./2zT. The solution that describes the dynamics of the
field V(£,T) has the form

T o defl+i ||/'<1>||]

VD=2 56" Ger

(60)

Note that forg?<1 the solution of Eq(29) with the
left-hand side(60) makes it possible to find the radiative
asymptotic behavior for the general case of arbitrary excita-
tion of the medium and with the Stark effect taken into ac-
count. Obviously, in this case the solution is not self-similar,
although it is determined by the self-similar function
H1(L:0).

The radiative part of the solution of the system of equa-
tions (2) for w/2> B,>0 consists of two parts: an increasing
part, proportional(for small T) to the Bessel function,
anddamped oscillationgsee Figs. 1 and )2 For 7>,
>/2, the solution consists of damped oscillatidfég. 3).

The corresponding kerne¥(Y)(#) is proportional to the
Bessel functionl,( 7).

In Refs. 6 and 9, where the Marchenko equations were
studied for a one-particle laser amplifier, it is shown that for
an initially almost totally inverted medium the solution of the
equations also exhibits a similar dependence on a self-similar
variable. In these papers, the researchers used initial condi-
tions that correspond to a small deviation from total inver-
sion of the medium and to field fluctuations. A more general
solution is found in the present paper for a situation corre-
sponding, in the case of a laser amplifier, to an arbitrary
degree of inversion of the medium.

We assume that

—log[|Bo| "11>1, —logl|po| ']1>1. (62)

In a laser amplifier, these conditiofigg. (61)] correspond to
almost total initial inversion. The small Bloch angy de-
scribes quantum fluctuations of the polarizability of the
medium? If B,=0, conversion of the medium occurs @

#0 (see Ref. B Similarly, for the adopted model with,

=0, an initial Stokes field,(0,7) is required to initiate the
energy conversion process, and the shape of this field deter-
mines the leading edge of the asymptotic solution. Strictly
speaking, the classical model is inapplicable wigys=pq

=0, since it does not allow for quantum fluctuations of
vacuum and medium. However, when the number of photons
is large, the classical model provides a satisfactory descrip-
tion of the dynamics of the fields.
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G
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3
P

-15

FIG. 3. TheJ-mode of interaction. The same as in Fig. 1 f8y=0.75x.
The graph for the linear solutiogyJ.(7) is also shown. It lies below the
graph of the numerical solution.

FIG. 1. The I-mode of interaction. The dependence @&(7)
=(5/4T)V(7,T) (see Eq.(36)) on the self-similar variable;= 4z T de-
picted in this figure was found numerically f@l,=10"* and p,=0. The
graph of the linear solution found for smdl i.e., the functiorgyl (%), is
also shown. It lies above the graph of the numerical solution of(&2).

sin do
F(z+s,T)=— 850 f —
For real initial values of the fields and zero frequency a4
offset, the self-similar solution of the Chu—Scott model is i _
described by the equation xXexpg — (—T(Z+ s)+2iTo
1
D on(m+ — 2 () =sin (), (62) T
" n 7 =gV 1, (VP + &) =TT,
gO \/22_’_—52 1( g g ) 0
where
(64)
aT _ _
V(z,T)=7.%’,}(n), n=+\4zT. where (=+2Tz, £€=+2Ts, |, is a Bessel function, and

giM=|sinB,|. The solution for thel-mode can be found from
In the Marchenko equatior{¢3) and(14) we can ignore  (64) by replacingl, with J;.
the integrals for small values of. When 7 is large, the The other linear limit corresponds to tdemode and to
nonlinear terms can be ignored only for small enough coefsmall|g..|, i.e., #— By< 7. The corresponding kernel has the
ficients|g..| in the J-mode. In the first case the linear solu- form [see(26)]

tion of the Marchenko equations describes the leading edge e
of the solution corresponding to tHe and J-modes. We FO(z4v T)= =] = 2(z4+W)T.
examine the integrdll5) in the limit of smallT such that the (z+y.T) n SN (z+y)

denominator on the right- hand side of E@O) does not  thg sojution(26) describes damped oscillations of the field
vanish. ForT ando =1/ small, the factor exp(®)T) in the V(z,T) about the stable statd).

denominator can be replaced by 1. We w(2) in the form In the first linear limit(small T and 7), the solution of
do the Marchenko equationd.3) and (14) is obvious:

FO(245,T)= - 2o f —[1-exp2iTo)]
0 ! Ar s o2 HPEH0=7FND),
p[ i(z+s) V(z,T)=4KP(£,0,T)=4TgD.7§P(0)
Xexpg — .
Integrating alongZ in (63) in the positive sense about the - 7 l1(7), (65

singularity =0, we obtain where =2 {=/4zT. Accordingly, for theJ-mode we
must replacé, with J,. Whenz is small, the solutiori65) is
valid for all B, (see Figs. 1-8 In the second linear limit, the
G solution can be found by introducing the formal substitutions

I,—J; andg§"'—g® into (65). The Marchenko equations
1.op do not specify the sign of the field, so we find it by matching
0.5F the resulting solution and the linear solution.

/\ /\ /\ Figure 4 compares the numerical investigation of the

\/ \ self-similar asymptotic solution of the Chu—Scott model and
g \/ \/ the solution(65) expressed in terms of () [see Eq.(32)].
0 5 10 IIS l J

(63

o]

Numerical analysis has shown that g§=0.97 the maxi-

20 . 25 mum deviation of the numerical solution from the analytic

one at the first vertex is less than 1%. F@¢=0.87 the
FIG. 2. The same as in Fig. 1, but fp=0.25r. deviation is no larger than 3%. Angly= 0.7+ the deviation
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G The Marchenko equations can be derived by integraiity

g‘; with the weight

0.2F .
“jAAAAANA [
s YVVYYE

0 10 20 30 40 7 50

The final result is

. . . . KP(z,y)+FO(z+y)
FIG. 4. Comparison of the numerical results with the analytic results of the
Chu-Scott model in the Jmode. The dependence ofG(7%) z
= (7/4T)V(,T) on the self-similar variabley= 4z T depicted in this fig- + f FO(y+s)K(z,5) ds=0, (68)
ure was found numerically fg8,= 0.8 andp,=0. The graph of the linear 0
solution g..J;(#7), which has a smaller amplitude of oscillations, is also
shown.

z

KP*(z,y)— Jo K{®*(z,5)FO(y+s)ds=0, (69
is no larger than 8%. If we continue to reduBg, the error
gets larger and the linear approximation breaks down. where

The numerical results show that the analytic solution

found in the second linear approximation can provide a sat- FO)( 7 _J p(\,2) . 1 PN
isfactory description of the radiative solution fro8g= 7 to (z+y)= v 2T\ exp ! 2 (z+y) '
Bo~0.75m, with g.. varying from 0 to roughly 1.1. (70)

Computer simulation of the nonlinear region shows that
the theory correctly describes the radiative solution at large Thep vs. T dependence is also given by EG05) in the

and smallT. The amplitude of oscillations of the radiative Appendix. The kerne(70) is calculated in the same way as

part of t_he_ solution depends B, while the general form of in Sec. 3, with the following exact relationships employed in
the radiative part of the solution remains the same for al{he calculations:

anglespB,, which corroborates the self-similar nature of the
asymptotic behavior of SRS for the initial and boundary con-

ditions specified in this section. 9= . F3(0,0

1

T F00]" 0T 2

5. LIMIT OF RAPIDLY VARYING HIGH-POWER FIELDS 1
a=—, g=1 (71
Modern laser technology makes it possible to use high- 4
power laser fields in studies of nonlinear processes. If the
number of photons of the pump and Stokes fields passingvVe can show(as we did earlierthat the coefficients of the
through unit volume element of the medium is larger thanexponents on the right-hand side of E@0) allows an ex-

the active atoms in this element, there is rapid energy expansionr =ry+O(1/\)+ - - -, wherer is independent ok.
change between fields and medium. When the fields ar8ubstituting the expression fpg found in the Appendix and
strong, thez-derivative of the kernek, , is proportional tax repeating the procedure discussed in Sec. 3, we find the ker-
and can reach values greater than unity. In real physical meaiel corresponding to themode:

dia, |¢.| varies between 0.15-1.5. We assume thdt

>|¢ .| in the strong-field limit. In this limit we can use the (0) —aO) (BT

inverse scattering method, eliminating. from the equa- Pty D=6 (Va2 ty)T)

tions of Sec. 3. For instance, the solutions of the simplified i i

spectral problemd=1) are related by xXexp 5 (z+y)—iT)|. (72)
— b |
h=g T3z (66)  For the kernel corresponding to tdemode we have

The solution of the reduced spectral problem can be written
) peetarp FO(z+y,T)=g36(\2(z+y)T)
x (zZN)=Dy(z,\) i
. )\K(lo)(z,s) )\K(zo)(Z,S) Xexp{z(z+y)+iT
- J -AKP(z,5) AK(z,5)

. (73

z
Here for g, we have(with allowance for the relationship

X®q(S,\). (67 py=iR.(0,0)] 5+ R4(0,0)] found in the Appendix
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4g[sin By (8+ cosvy)?—cosBysifvo+isinBy (5+ COSUO)]

(0)_
9 (6+cosvg)(e+cosBy) —sinBy sinvg

5=sgnR;(0,0), R3(0,00=cosvy, R(0,0=sinv,.

Next we limit ourselves to thel-mode. We expand
FO(z+y,T) of (73) in Bessel functions:

FONE+2,2)=gD30(JE+ )

X ex ii(§2+§2)+iT
aT

= gffgo (—1)%2k I (£) Ioi(6)

(79

o1 .
xex;{l E(§2+ ) +iT|,

where {=2zT, and é&=2yT. Then we expand{®)
=Tk in Bessel functions:

Zzy, T)=72&LT)

E

<°><§)32k<§>exp[ T (EFD T,
(76)

X2y D=2 LT

-3 A

Jkaexp[u T (E- DT

(77

Using the biorthogonality propert{48) and repeating the
procedure described in Sec. 3, we obtain fr@®8) and(69)
the algebraic equations

©

26 =2 R & +7 (%), (79)
n=1
7{0(&)= E D2 P(8), (79
where
oP=g0(-1)k2k7"Q,
Z (&) =00(=1)*2k Iy (£).
The integrals
S
7= [3ai)3a010 00 (80)

have been tabulated:

(74)

j L ok(X) 1 2(x)x dx

= 27 1A AP AL KE[ (4 K+ 1/2,14+ | +K, 1+ ]
+Kk), (2j+ 1,2+ +k,1+ 2k, 1+ 2j + 2Kk), x2]/

[(j+k+1)I'(2j+1)'(2k+1)], (81

f J2k(X)J2;(X)x dx

= 27172 AP AL E (4 K+ 1/2,1+ ) + K, 1+ ]
+K), (2j +1,2+ ] +k,14+ 2k, 1+ 2j + 2k), —x?]/
[(j+k+D)T(2j+1)I'(2k+1)],

whereF is the hypergeometric function addis the gamma
function. Equationg78) and(79) can be solved in the same
way as in Sec. 4. Using Cramer’s formul&2), where
MO =8+ Q9 (IMP] differs from||M(°)|| in that
the kth column is replaced by vectcﬁfk ) we find

HO(&,6)= L

(0) (0)*
ﬁgagmde(akl"'”/ =)

(82

We can find the kernelZ (9)(¢,¢) in the same way as
we did earlier, using78) and(79) for the real matrix| ' (©)||.
Writing (78) and(79) in vector form,

(1+[|29)2).22 @ = O, (83
we have
1 9| defl+ill@9|]
O, =5z ag{ o
xexp(zi—ngJriT). (84)
We introduce the functions
Q(O)—E—In det(1 =il| @) (85)
& 0¢
and write the above solution in the form
HNE,6)= %(@‘BH A, (86)
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1 i U
A = (0 _ ~0) —£24
Using (18) and (19), we find the solution: 105_
R.(2,T) :
0.5
2 ReO1+i Im 2O exp{(i/2T) &2 +iT}] i
- ; , ok f :
1+ (12 [ 0%+ 9% = 2 Im A Dsinf (1/2T) 2+ T} 0 10 20 30 40 50
(88)
FIG. 5. The U(%)=|(7/4T)V(7,T)|? vs. »=\4zT dependence. The
R3(Z,T) anomalies in the shape of the Stokes pulse resulting from the mixing of the
contributions of spontaneous and stimulated Raman scattering depicted in
1- 0292 1mAOsin{(i/2T) 2+ T} this figure were found foB,=0.017r and p,=10"*. The finiteness of the

= . “transverse” relaxation timé, was taken into account. In the units used in

1+(12)[ 0%+ 92— 2 Im 2 Osinf(1/2T) £2+ T} Egs. (2), T,=3. The contributions of spontaneous and stimulated Raman
scattering to the shape of the Stokes field were calculated individually. The
(89) figure depicts the superposition of the fields.

6. APPLYING THE RESULTS

was initiated by fluctuations in the field and medium. After
fepeating this experiment many times, Rautal 22 found

Hat the shape of the generated Stokes pulse varies consider-
ably from one experiment to the next. For instance, the am-
plitude of the first spike in the generated packet can be either
greater or less than the amplitude of the next spike. In ap-
proximately one trial out of ten, a high-power pulse was
observed at the trailingdecaying edge of the Stokes field.

We show that our results can be used to explain th
anomalies in the shape of the Stokes field observed in Ram
scattering experimerfiswithin the context of the Chu—Scott
model. The fields at the medium’s boundary 0 and the
initial polarization of the medium{R, (z,0),R5(z,0)} con-
tribute to the kerneFM. When p, is small, the scattering
coefficient can be written in the form of a sum:

A i ) To the author’s knowledge, no meaningful description of this

p(NT)= o5 [exp(—21QT) — 1]+ po exp(— 2102 T) phenomenon exists in the literature.
Figures 5 and 6 depict the results of numerical calcula-
+0(p§.A%;,p0A1). (90)  tions using the Chu—Scott model for various values of the

Here the first term on the right-hand side is associated witi2i0 F+(0.T)/R..(2,0). The numerical results show that the

stimulated Raman scattering, and the second with spontangleory Qevgloped in the present paper can explain these
ous Raman scattering. anomalies in the shape of the Stokes field.

In the Chu-Scott modek (0,0)=sinBy~p,, so that

we have
~iB, iTs iR. (0,0 7. SOLITON ASYMPTOTIC BEHAVIOR
p(N,T)= exp— 5|15 : . .
2e 2\ 2\6 We study soliton generation at the leading edge of the
. Stokes field, considered to be an infinitely long step. We use
iTe .
Xexp{ B (91)  the symmetry of the system of equatioi@ under the per-
2\ mutations
HereR, (0,0) describes the quantum fluctuations of the me- Fy—R;, F.oR., zoT. (92)

dium and initiates spontaneous Raman scattering. Equation
(91) implies that spontaneous and stimulated Raman scattelVith allowance for frequency offset an@®2), the spectral
ings are described by different types of kerfé}). Indeed, problem assumes the form

the results of Sec. 4 suggest that the first and second terms on
the right-hand side of Eq91) lead to expressions for the
kernel that are proportional to the Bessel functibn®r J;

and |, or Jo, respectively. When the ratio zl_]o

|F,(0,T)/R,(z,0)| is much greater or much less than unity,

the shape of the Stokes pulse differs substantially from that L5p

found, e.g., in Refs. 7 and 14 and depicted in Figs. 1-3. 1of

It appears that formulé®1) makes it possible to explain

for the first time the anomalies in the shape of the Stokes- 0.5¢

field pulse that are observed in cooperative Raman scattering ok ) e i
in hydrogen vapof? In these experiments, a high-power 0 10 20 30 40 _ 50

pump-field pulse was injected into the medium, and then the 7

shape of the Stokes field was investigated. The Stokes pul$aG. 6. The same as in Fig. 5, but f@g=10"2 7 and py=0.01.
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where ¢ ==+ (1/2)y1—g?. All results remain valid, but % /}
their physical interpretation changes. To study the dynamics
of a soliton packet we mugg) find the solution of the spec-

tral problem(93) for a long steplike Stokes-field pulse propa-
gating against the background of an infinitely long pump-FIG. 7. The continuous spectrum associated with an infinitely long rectan-

field pulse, ie., gular pulseTy—«. The spectrum incorporates the entire real &kjsand
7z s= 7 oU 77, the “soliton part” of the continuous spectrum, wherg is
h ighborh f th . 2
F.(0T)=0, T=T,, the neig bor_ood o) _t_e vertex,. Here p IS the pfart of th_e spectrum
associated with the finite-band wave, anglis the point of this spectrum
F.(0T)=Ag#0, T<T,, (94 with the maximum imaginary part.

and(b) find the dependence of the scattering coefficienzon

by using the linear system axig), F, (the integral along the part 6f; lying in the upper
half plane with the exception of the vertay), andF (the
integral around the vertgx

F(T+T',2)=F(T+T',2)+F(T+T',2)

1 [i(2\g—14g%)R;  2(A+ 4R,

TAN+29| —2(A+d)R_  i(2Ag—1+g?)Rs .
(99

9,

- . . . . +Fo(T+T,2).
We assume that initially the medium is partially inverted, of )

R, (z,0)=R, (0,0)#0. The z-dependence of the scattering We examine the phas®=i[—(A—g)(T+T')+Qz] in

data is given by formulas in the Appendix with allowance for (15), where{)(\) is determined by the values &; (T,2)

(92). There we also show that if th@-dependence of =Rs3.(T,0) atT=0. The group velocityY of the soliton
F.(0,T) is represented by an infinitely long step, the part ofpacket can be found by assuming that@ne 0. In terms of
the continuum that lies in the upper half-plane may emergethe physical variablex and t we have Y =c/n(w1)y(1

This spectrum is associated with generation of a solitor ¥) %, wherey=Im Q/Im\>0 (ImQ(\)>0).

packet. Analysis of the phas@(z,T) and the group velocity’

The effect of solitons on the asymptotic behavior in theshows that the a faster soliton, propagating against the back-
case in whictE; A0,T) are of finite length can be ignored if ground of the ground state, has a smaller amplitude if
long time intervals are considered. This is due to the differF +(0,T) is a rectangular pulsgEq. (94)]. We show that if
ence that exists between the group velocities of the radiativéhe medium is not initially in the ground state, quite a differ-
and soliton solutions. Indeed, suppose that the filgs  ent soliton generation regime is possible.
cross within some finite time interv&D,T,]. The radiative We analyze® (\) for N e Z in the neighborhood of the
solution describes the evolution of the system toward a stabléertex Ao. Since the highest and narrowest soliton corre-
state. If the initial conditiorF ., (z,0) leads to the emergence Sponds to the verteX, of the soliton spectrum, it would be
of a pole in the upper half of the complex plane, a solitoninteresting to establish the conditions under which this soli-
solution will emerge and propagate against the backgrountPn has the highest group velocity. For an arbitrary paiir
of the ground state. The time of soliton existence is limitedthe spectrum, on a monotonic continuous curve in the soliton
by the soliton lifetime in the intervdl0,T,]. For the case of part of the spectrum, this condition is
stimulatezzgl Raman scattering this fact was noted by d Imo®)

Menyuk:

The study of soliton asymptotic behavior has practical
meaning only for large values df,. For physical applica- Actually, this condition means that a soliton associated with
tions it is important to establish the conditions under whicha pointA such that Im\ = n<<7g=Im\, has a group veloc-
the Stokes-field soliton, which has the highest amplitudeity that is lower than that of the soliton associated with the
possesses the largest group velocity and propagates agaipstint \ .
the background of the stable ground state. Under these con- If the Stokes and pump fields at=0 are finite-band
ditions, a packet of solitons forms with the highest-energysolutions of the problem, the associated spectrum may con-
soliton at the leading edge. sist of a finite set of arcs that are symmetric about the real

We now find the conditions for establishing such a re-axis. We select the arc,, with its vertex at the point, with
gime in the model2) of stimulated Raman scattering. Im- the largest imaginary patsee Fig. J. We can show that for
portant information about the soliton characteristics can behe soliton associated with this vertex to have the maximum
extracted from(15). We examine the spectrum associatedgroup velocity, the radius of curvature of the arc must be less
with an infinitely long stedsee Fig. J. Contributions to the than the distance from the origin of the complex plane to the
integral (15) are provided byF. (the integral along the real arc’s vertex.
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ImQ/Im A This result can be expanded to the entire “soliton” part
3.5E of the spectrumyZ. We show that wheri96) is satisfied,
3.0F the contribution of the entire soliton part to the leading soli-
2.5F ton decreases with increasiag
2.0F We find the contribution of the part of the soliton spec-
1.5¢ trum 7 not incorporating the neighborhodd, of the ver-
L.Og tex Ao (see Fig. 7 by estimating the integraf,, which is
0-(5)’ calculated alongZ; in the upper half-plane:

0 05 1.0 15 20 25 30

ImA

1
Fi(T+T',2)= E J h(\)
FIG. 8. IM(\)/Im\ vs. Im\ for g=0.5 andZo=—0.3. &
Xexg —INT+T")+i2Qz]dn.  (98)

To estimate the integral i(08), we write the imaginary part
The condition(96) is not satisfied when we are dealing of the phase factor in the form
with a steplike pulse of the fields and the initial state of the

medium is the ground state. At the same time, this condition IM[O (2, T, M) 1= yyz, 7= yz=ZIM[O(N)]
may be valid for a steplike pulse if initially the medium was A M Qo)

partially inverted, i.e., if the medium was not initially in the =2zIml—————2 —Q(\)

ground state. Figure 8 depicts the dependence @k () on 7o

Im\ for N e s, which dependence is possible, for example,where A € 7. Replacing integration ovex by integration

for the following values of the parameters of the problem:over@()\) and integrating by parts, we find that
g>—0.4 and voF,(0,0)<0. For such a dependence the

condition (96) is satisfied. Fi(T+T,2)

We show that if the inequalities if06) are valid, the ) ~ o~
Stokes-field soliton with the highest amplitude splits off _hvoexizReB (ho) ]~ h(Lo)ex 126 (Zo)]
from the wave packet. To prove this, we make the substitu- iz®'(Lp)
tions T=vyyz+ 9 and T' = yyz+ o. Now we introduce the
small parameter e= n(yo—7) int'o (9(_5)', \(vith Yo %1+ 0 E) ' (99)
=Im Q(Ng)/Im(\y). The parameter is positive if condition z
(96) is satisfied. Expanding in powers ef we find that where {,=Re\,. The estimatg99) implies that the contri-
Fo(T+T',2) bution of the spectrunz’; to the shape of the leading soliton

decreases with increasing distance in proportion m ilé.,
the distance from the leading soliton to the remaining part of
the packet increases as Ing

In the present paper we have established that in the event
of stimulated Raman scattering, the adopted initial and
boundary conditiongsee the end of Sec) Bad to formation
of radiative and soliton packets of pulses. When the condi-
tions (96) and(99) are satisfied, a soliton with the maximum

— 1 0 . , .
_EL h(Mexd —i(7—g)(T+T")+i20z]dy

1 70 .
=5 f,] h(N)exp—i(Lo—9)(9+o+2vy2)

+i2RO(Ng)z+ 7o(d+ o) —e[(pr—empt---)

X (+0)+z(1+im)]}dy, (97) amplitude and group velocity appears at the leading edge of
_ ) the soliton packet.
with No={o+1 7o. The results of this section are also of interest in substan-

_The specific form oh()) is unimportant for subsequent tiating the utility of Whitham's heuristic methdd.This
estimates and we omit it here. (87) we used the expansion method is used to describe the development of modulation

dQ(\) instability in nonlinear media. Using the single-phase solu-
n=noten—e’npt---, m= Rev. tion is the most common approach to describing the transfor-

mation of a steplike pulse into a soliton packet. According to
It can be shown that the expansionitfz) in powers ofe  this method, the slow variation of the parameters of a peri-
has the form odic wave describes the transformation of a plane wave into
_ 2 a soliton packet. Since the development of modulation insta-
h(7)=Ve (Not+ehyta?hyt o). bility is due to long-wavelength excitations, the trailing edge
The expansion(97) implies that the soliton associated with of the packet should is by a quasiharmonic wave, while at
the point\q splits off from the wave packet. The overlap of the leading edge there is a maximum-amplitude soliton. For
the soliton and the remaining part of the wave packet dethe SRS model discussed in this paper, this condition is met
creases with increasing since ;>0 andez>0. If condi-  when initially there is partial inversiorR,(z,0)~0O(1). At
tion (96) is satisfied, the distance from the leading soliton tothe same time, initial inversion leads to a radiative solution,
the remaining part of the wave packet can be shown to inand this solution cannot be described by the Whitham ap-
crease as log proach.



JETP 88 (4), April 1999 A. A. Zabolotskil 655

Note that an initial solution in the form of a steplike V=x"dT=y"d", (100
pulse also leads to the formation of a similar spectrum, i.e., a
spectrum consisting of the real axis and a straight segmentherey™ are Jost functions. These functions are solutions of
lying in the soliton part, in models that allow for a Lax the system(5) but do not satisfy(6). The functionsd ~ and
representation of the Ablowitz—Kruskal-Newell-Segur®* [solutions of(6) at z=0 andz=L;, respectively are
type? In particular, the condition(96) is satisfied for a such that
(modified Korteweg—de Vries equation. For such equations,
a rectangular pulse splits into a soliton packet and a 9P =AD", (101
maximum-amplitude soliton at the leading edge. For a
(modified Schralinger equation, the inequalities {86) be-  Comparing Egs(9) and (100, we find that the matrix/”
come equalities. The conditid@6) is satisfied under special satisfies the equation
initial conditions, in which the soliton spectruf is in the

region Re\<0, and the distance from the point in the spec- +.7(2)=—.YA(z=0)+A(z—L¢).”. (102
trum to the imaginary axis decreases monotonically with de-
creasing Im\ >0 (Ref. 24. The component#\;;, A,,, andA,; of the matrix|A| at z

An analysis of several integrable models with strong=L; do not contribute to th&-dependence of the scattering
nonlinearities, such as the Maxwell-Bloch equations for alata. The contribution of the componeky, atz=L can be
two-level mediunt* and the four-wave mixing modé:®  ignored. This was demonstrated by Kaup and Meritik,
has shown that initial and boundary conditions leading to thevho found that the values of the mati@(z=L;,T)| de-
formation of a high-power soliton at the leading edge of thetermine the dynamics outside the “physical” region, i.e., for
wave packet are also possible. This requires conditions simz>L;. The interested reader is referred to those papers. For
lar to partial initial inversion. Under this condition one must an infinite interval ;=< the system reaches the ground state
take into account the contribution of the radiative solution,asz—«. Here A;,—o in the problem considered, i.e., the
which can dictate the type of asymptotic solution. The resultdields at infinity do not contribute to the-dependence of the
and approaches of the present investigation can be used fepectral parameter. To find the time dependence of the scat-
such nonlinear optics models. tering data it is enough to restrict attention to the values of

This work was supported by grants from the Russiarthe matrix ||A| at z=0. The solution(102) for the coeffi-
Fund for Fundamental Researf@rant No. 98-02-17904 cientsa andb, to within a common factor, takes the form
and Deutsche Forschungsgemeinsch@fiant No. 426 RUS
113/89/GR,9)]. a=[(iQ+A;) e T+(iQ—A) 0]

APPENDIX: TIME DEPENDENCE OF THE SCATTERING Xap=bg Az (61T —d"), (103
DATA

* —iQT QT * ; —iQT
We begin with a finite intervaze [0L{]. We assume b™="a0An(e €7 b [(10-Aw) e
thatF 3, (0,T) is constant and thd, (L¢,T) is an arbitrary +(iQ+Ay) €27]. (104
function of T. The dependence of the scattering datd @an
be found by solving the linear syste(@). To find this de- Here the components dfA| at z=0 are such thatA;;

pendence, we write the solutions of both systetBs,and = —A,, andQ%=—AZ —AA,;.
(6), in the form Thus, the scattering coefficiepthas the form
|
b* Alz(e—iQT_eiQT)_po[(iQ_All)e—illT+(iQ+All)e—iS)T]
p(T)=—=—— T ot —ioT_goT, (109
a (iQ+A)e +(IQ—A1DE" —poAyy(e —-*h)
|
where : N+,
fi(z)=F1(0)e”"™+ N
bs zR4(u0) —ix(Z-V)
: N+
— INZ __
We wish to find the scattering coefficiepy under the f2(2)=12(0)e A

assumption that the scale of variation of the functions
R, 5(z,0) is much less than. The solution of the spectral % JZ R-_(u,0 £L(U)eMZ-U) gy, (107
problem(5) has the form o Rs(u,0)
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where Stokes field we find the associated spectrum of the problem.
, " We investigate the case of a semi-infinite medium occupying
Z=J Rs(u,0) du, U=J Rs(u,0) du. the half-interval[0,+«) into which the finite rectangular
0 0 pulse(94) is injected.

When A, is constant, the solution ab) can easily be
found. For physical applications it is of interest to study the
initial conditions corresponding to a finite frequency offset,
f1(2)=11(0)exp(—iNdz), fo(2)=f,(0)exp(i\éz), since allowance for the frequency offsey#0 results in
substantial modifications of the spectrum of the problem.

Following a well-known proceduresee, e.g., Ref.)2we

We solve the systenil06) and (107) iteratively, assuming
that in the lowest order the solution is

where §= = 1=sgnR;(0,0). Integration by parts yields

. N+, | R.(0,0 : can find the solution of28) for the “potential” (94). The
— —iNZ —iNZ
f(2)=1f1(0)e™ = ——| —— Rs(o’o)fz(O)e " coefficienta, has the form
. 2\
_ R.(z0 <2 _)\-il—(b_,_ ap=e2To| cog2{To) + —sin(2{Ty) |, (113
5+ R4(2,0) i ¢
szi Mf (u)e—i)\u where
0du|d+Rs(u,0) 2 {=N (= v 1= A2)?+ H(1- g%+ 4v2) A2 .
x @ IMZ=U=au) qyy (108  The zerosay({,)=0, which specify the spectrum of the
problem, can be found from the equality
fo(z)="f,(0)e*? Moo RO9 (0)e~™? { 7
2802 ~ N | 6+Ry(00 ¢t —— : =
3(0,0 2{,To=—arctan,-+nm+ . (114
R_(z,0 ANt . - .
_ ﬂ (z }_ _¢ An analysis of(114) shows that forT finite there is a
Rs(2,0) 2i\ finite set of isolated poles; the poles in the upper half of the
z complex\ plane are associated with soliton solutions. The
J | _R-(u0 iU | QiN(Z—U- 8
Xf | wrm fa(u)et e Y'du.  number of poles increases witfy, while the distance be-
o du| 6+ R3(u,0)

tween poles decreases in proportion tdyl/In the limit T,
(109 —oo, the zerog, fill the entire real axis. For 1>gz—4v§, a

Continuing to integrate by parts, we find the asymptotic exPar of th.e specf[rum may'lle ona I!ne parallel to the imagi-
pansion in powers ok ~!. Here it is assumed th&. (u)/ nary axis. This part is described by the segment

[5+Rs(u)], and that all its derivatives exist. This condition [0~ 170.{o+1 ’70]2' where  {o=woy1—Ag, and 7,
is satisfied for all physically justified initial conditions. Using :(1/2_)|A0| V1—g“+4w; (see Fig. J. The half of this seg-
the asymptotic expansion, we can find the appropriate expaf’€nt in the upper half plane is associated with the soliton
sion for the scattering data required by the given problemPart of the spectrum, since it is obtained as a result of the
Since the main contribution to the radiative solution is pro-merger of an infinite number of poles lying in that part of the
vided by largen (see Sec. 3 we can limit consideration to plane.
the first terms in the expansion. Assuming ttig0)=1,
f,(0)=0, andR, (z,0)=0, z>1,, we find that

Ao Ri(lp,0

*)E-mail: Zabolotskii@iae.nsk.su
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The tight-binding method is used to analyze the ionization of a hydrogenlike atom by an intense
monochromatic laser field. The orthogonal and normalized basis in which the solution of

the time-dependent Schiimger equation is expanded contains unperturbed wave functions of the
discrete spectrum and generalized Coulomb wave functions of the continuum. In the

solution of the coupled equations we make use of the fact that the bound—free and free—free
transitions are efficient in different regions of complex time. Simplified equations are constructed
and investigated. Results of calculations for ionization of a hydrogen atom from its ground

state and of the energy distribution of the electrons in strong and superstrong linearly polarized
fields are presented. It is shown that in this case the ground state decays completely, and
free—free transitions play a defining role in the dynamics of the process. It is established that the
total probability of population of the upper Rydberg states abutting the continuum does not
exceed 0.05. The range of applicability of the approach is discussed. A comparison with numerical
results obtained by other authors is given. 1®99 American Institute of Physics.
[S1063-776(199/00304-2

1. INTRODUCTION data on ionization of atom$and neutralization of negative
ionst! by multiply-charged ions. Another important element
In an analysis of the ionization of atoms by an intenseof this approach is replacement of the generalized plane
electromagnetic field or by ion impact, the influence of awaved by the Coulomb wave functions of the continuum,
time-dependent external potentiglomparable to the intra- \hich take account of the Coulomb potential of the atomic
atomic potential or greatemust be taken into account even ¢qre and the additional momentum acquired by the electrons
in the zeroth-order theory, i.e., in the wave functions of they, external, time-varying fielt2®These effects are impor-
continuum in the final reaction channel. The efficacy of suchgt i single-electrdd and two-electron  ionization
an approach follows from the ground-breaking work of ,.,c0qqe4415 An analysis of the methods developed in the
Keldystt and also from the subsequent development of theshysics of atomic collisions shows that an important crite-

theo_ry of ioniza_ltion of atoms in a strong Iaser_ fié’r&.A . rion for the applicability of the theory is that it be con-
detailed analysis of a great deal of work on this subject is

) . . . r in h a w h matrix is unitar I
given by the review in Ref. 8, which shows under whatSt ucted in such a ay that tH matrix is unitary at a
stages of the calculations.

physical conditions a theoretical description can be con- .
i . . . The present work addresses the influence of quantum
structed with the help of various formulations of perturbation .. ) ) L
transitions in the continuum on the ionization of atoms by a

theory in combination with classical and semiclassical mod- L .
els. Thus, the Coulomb potential of the atomic drepar- strong electromagnetic field. Free—free transitions have been

ticular, which is not reflected in the basis wave functions, isSeParately studied by many authors in weak monochromatic
taken into accourttIn fields comparable to or exceeding the fi€lds on the basis of perturbation theolsee, e.g., Refs.
atomic fields, the application of perturbation theory is not16—18. The influence of such transitions on ionization is
well-founded, but a direct comparison of any calculationt@ken into account to some degree in the results of numerical

with the experimental data is hindered by the specifics of thén€thods of solving the time-dependent S'(gfimger equation
experiment for a negative ioff and a hydrogen atofi;?* as well as in

In the physics of ion—atom collisions a comparison ofhumerical calculations based on tRematrix theory of mul-
theory with experiment is achievable with quantitative accu-iphoton processes.A consistent theory should incorporate
racy suitable for detailed checking of the theoretical result@n analysis of direct and inverse processes. In this regard, the
and methods. The intrinsic criteria of the theory developed ifeview in Ref. 23 is of interest, which considers radiation-
this way can also be used in the problem of the ionization oftimulated recombination as the process inverse to multipho-
atoms in strong electromagnetic fields. We note above allon ionization. Perturbation-theory methods, mainly those
that a generalization of the Keldysh thebtg the ionization ~ discussed in Ref. 23, which take the specifics of such pro-
of atoms by multiply-charged iofSwhich goes beyond per- cesses into account, nevertheless rather quite a complete de-
turbation theory turns out to be very promising. One result ofscription of the physical picture of the interrelated processes.
this effort is a quantitative description of the experimental  Below we utilize the method of tight binding of reaction

1063-7761/99/88(4)/8/$15.00 658 © 1999 American Institute of Physics
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channels, which is based on an expansion of the solution of *

the time-dependent Schiimger equation in orthonormal W(r,t)= 2 a(t)pg(r)exp(—iEgt)

functions of the discrete and continuous spectra of the atom. =0

Section 2 discusses the adopted basis and derives the tight-

binding equations based on it. Section 3 shows that bound— +f a () Q) (w,p(t),r) dk, 6)
free and free—free transitions are efficient on different inter-

vals of the time axigthe t axis). On this basis a physical \yheresis the set of quantum numbers of the discrete states,
model is constructed which leads to simplified tight-binding\e obtain a Hermitian system of differential equations for

equations. Methods for solving the simplified equations argpe amplitudess anda, satisfying the normalization condi-
discussed in Sec. 4. Results of calculations for ionization ofjg, (unitarity of theS matrix)

a hydrogen atom from the ground state in strong and super-

strong linearly polarized fields are presented in Sec. 5. The =

population of the higher Rydberg states is discussed, where 2 |as(t)|2+f |ak(t)|2 dk=1. (6)
Coulomb crowding of the discrete spectrum is treated as an =9

analytic continuation of the continuum. It is shown that in-

duced transitions within the continuum lead to total decay of ~ Note that the original equatiof®) can also be written in

the ground state, but the probability of population of thethe length gauge, and Eqg)—(6) retain the same form. The
Rydberg states does not exceed 5%. transformation from one representation to the other is real-

ized simply by a phase factor. In an exact solution of the
problem, the two representations lead to the same results.
The use of approximations presupposes a choice of one of
these gauges. To analyze free—free transitions, which play an
_important role in the present problem, the optimal choice is
(}he velocity gaugé3).

Before discussing methods of solving the system of

the solution of the time-dependent Satiirger equation over equations for the amplitudes, we first indicate the underlying
1approximations adopted in the present work. First, in the sum

the full set of orthogonal and normalized basis functions o . . .
g ver discrete states on the right-hand side of &y, we

the discrete and continuous spectra. The generalized Coﬁ?—t ) v th d state£ 0 d the Coulomb q
lomb waved* are orthogonal to the unperturbed functions offétain only the ground sta ¢ 0) and the Coulomb crowd-

the discrete spectrum and have the form ing (the upper Rydberg stateslirectly abutting the con-
tinuum, i.e., the sum frons=s,,>1 to s—«. Second, we

A P, neglect transitions from the ground state to these highly ex-
Wi(r,)=Q"(v,p(t),r)exp — 5 jop (nd7ri. (D cited bound states and consider their coupling only with the
continuum. The first approximation leads to the neglect of
Here Q(*) is the Coulomb function, containing in its quantum transitions by way of intermediate levels, and is
asymptotic limit a converging wave and corresponding tooften used in various approach&§.The second corresponds
motion of an electron in the field of a nucleus with chaiye to the preferential population of the higher Rydberg states
and generalized momentum via the continuunt*? We consider these states to be an
L _ analytic continuation of the continuum, and we do not write
PO=K=A®M), v=2/p(V), @ the sum over the Coulomb crowding separately in the formu-
where A(t) is the vector potential and is the “unper- las of this section, denoting it together with the integral over
turbed” momentum. It is easy to see that #+0 the func-  the continuum by a single integral sign.
tions (1) coincide with the generalized Gordon—Volkov— The Hermitian system of equations for the amplitudes
Keldysh plane waves,and for A(t)=0 they go over to that follows from substituting the functional dependefige
ordinary Coulomb wave functions of the continuum. The ba-in Eg. (3) takes the form
sis we use contains unperturbed wave functions in the dis-

2. STATEMENT OF THE PROBLEM

We solve the problem of the ionization of a hydrogen
like atom in a classical monochromatic electromagnetic fiel
with the help of the tight-binding method, i.e., by expanding

crete spectrum and generalized Coulomb waidgsin the .

continuum. 800 = A( [ (0 Ugy(1) dk
The time-dependent Schiimger equation in the velocity

gauge iak(t)=A(t){ S‘k(t)ao(t)—kj U k() ay (1) dk’].
avrt) [ 1z ()
| at = —EA—F'FIA(U-V w(r,t), (3

The matrix elements are
should be solved with the standard initial condition

V(1,0 = golr)exp —Egt), @ uo,km:exp{ -5 [[w+ 2l dr]
0

where () is the unperturbed wave function of the initial

state with binding ener . Representing the solution of _
Eq. (3) in the forn% OFo- rep ? Xf @o(NVQ ) (w,p(t),r) dr, (8
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. . .
Uk,k'(t):exp[—%fo(p’z(r)—pz(r))dr i, =A(t)Ug(t)ay,

iap=A(t) f Ugaydk. (14)

(—)* (=)
XJ QT (P, VRTI(p'(1),r) dr, In the regions of maximum efficiency of the free—free tran-
(9) sitions the system of equations has the form

Uk (D=U}, (D). (10 iék:A(t)f Uk kraxrdk’. (15)

The difference from th&matrix joining method’ is that Eq.
(15) leads to a change not only in the phases but also in the
absolute values of the amplitudes on the intervals between
the regions of bound—free transitions .
We call system(14) and (15) the system of simplified
a(t)=1, a.(t)=0. (11)  equations. The approximations employed to obtain it are
consistent with unitarity of th& matrix:
In what follows we restrict attention to linearly polarized
monochromatic fields with constant field strength |ao(t)|2+f lay(t)|2dk=1. (16)

The integrals in expressiort8) and(9), namely the integral
of the bound—freg8) and free—freg9) dipole transitions,
can be expressed in analytic foffiThe initial condition(4)
reads

) The initial values ofa, anda, on each interval follow in a
A(t)=- 5 Shot. (120 natural way from their final values in the preceding interval.

3. PHYSICAL MODEL AND SIMPLIFIED EQUATIONS
We analyze the properties of the solutions of syst@m 4 SOLUTION OF THE SIMPLIFIED EQUATIONS
in the generalized momentupp(t) ] representatioii2). The
selection rules for bound—free transitiot@ are the same as
in the original theory: the ground state of a hydrogenlike
atom with orbital angular momentuin=0 and projection

Solution of the simplified equations divides into two
parts. First of all, we must solve proble(@4) in order to
describe the behavior of the system in the region of the nona-

—0int ts with all states of th i With 1 and diabatic transition. It is convenient to carry out an approxi-
m="~ nteracts with af states of the continuum and  mate integration over the continuum already in system of
m=0. The latter rule is a rigorous consequence of the linea|

Equations(14) thereby reducing it to two ordinary differen-
polarization of the field12). Transitions to states of the con- quations(14) y ucing | inary d

i th1=1 take ol | ; tial equations.
inuum wi ake place only as a consequence of an — \y. ok the substitution

interaction within the continuum itself. Transitions to states
of the continuum witH =1 from the ground state take place _ 2L 2
for complex values of the timé), defined by the condition (1) =c(1)b(1), f |ax(t)]*dk=[b(t)|*,
that the derivative of the phase in expressi@nvanish,
. c(t)[?dk=1. (17
pA(th) +2|Eo|=0, j=0,12... N, (13 f e
Let us determine the form of the coefficients of the desired

where the value of}, (ldgpl)oends on the.value of the “unper- system whose solution optimally approximates the value of
turbed” momentumk.™""In the terminology of the quan- 4, following from system(14). Writing

tum theory of nonadiabatic transitions, this corresponds to : .

promotion of the tern{energy level of the ground state to (D) = su(t exp{iJ' q +2if q ] 18
the continuum. States of the continuum wita 1 are popu- (=8t ad7) d7 A(m)dry, (18
lated efficiently in the immediate vicinity of the poirti(k).  {he desired system becomes

Between the points), andt)**, separated on the reabxis

by a half-period of oscillation of the monochromatic field iéoz—BaO+Wb,
(12), the probabilities of bound—free transitions are small in .
comparison with the probability of transitions within the  ib=p8b+W"a,, (19

continuum. The above arguments lead to a model similar tQ,nere
one widely used in the physics of atomic collisidis.

We partition the realt axis intg intervals .of Iength W(t)=(f Uko(t)c’k‘dk)
Reth— At<t<Ret)+At, corresponding to maximum effi- ‘
ciency of the bound—free transitions, and intervals between ¢
these regions, R+ At<t<Reth"*— At, corresponding to ><exp{ij dr
efficient transitions within the continuurtiree—free transi-
tiong). In the regions of maximum efficiency of the bound— and the coefficien can be calculated by solving the qua-
free transitions we solve the system of equations dratic equation

| awmsiimak ] 20



JETP 88 (4), April 1999 A. D. Kondorskil and L. P. Presnyakov 661

d t -
J |Uox(t)2dk=|W|?+ aargv\/* B+ B, (21 a|,p=exp{—ikJ’A(r)dr]a,,p. (28
0
A A? , ) If we now transform in the independent variable to the en-
B=—5+ TJFJ |Uoxl “dk—[W|?, (220 ergy E=p%2 and invoke the propertp~A, then we can
rewrite the system of tight-binding equations in the form
t
A(r)dr=ar . 23 : o0
fo ( ) g/v* ( ) ia|’E:2 W|‘|/(E_E,,t)a|/'E/dE,,
I’ —Ep
Analysis shows that foc, we must use the normalized con-
tribution of the singular point of the matrix element to the W,,,,(E—E’,t)=M,,(E’—E,t), (29
integral of this matrix element over time. This gives the fol-
lowing expressions fos,(t) and a,(t): , 3272 w?|Ey|
Wi z1(E-E" )= ———

BIET %sinfwt
=\ ——— p{—L—]ék (24
Sk( ) 2 /(2|E0|)3 ex 2F ( ”) ( ) y \/

|+1i%)(2| +1)(21+1x2)

k2 FZ
ay(t)=| =—Ep+ —— | t. (25 i(E—E'
k( ( 2 " 8u2E, xexgi(E—E"t]
The coefficientg follows from formula(22). % iHi(i)(X:)—i sign
Note that the integral IX
| 1axwlak= [ Uyt dp (26 ><<E—E'>H§9<x¢)>, (30
is propom(_)nal to the sum of ospl!latorzs_trengths over the |E—E'|0®V2[Ey]
entire continuum. When the coefficieiw/|* in formula (22) = -
is close to or equal to the quantity {@6), 3=0 and system Fisinwt
(19) coincides with the system introduced phenomenologi- E—E'|o?
H - w
cally in Ref. 28. _ _ _ c=i—— = 12)(1+1=172). (3D)
Analysis shows that even in the simple case of a linearly F2sirfwt

polarized field(12), the behavior of the solution of the initial

system(14) and of the solution of the approximate system i X ) )
(19) in the vicinity of the singular points leads to the impos- of the_atom to k_)e a contmuaﬂo_n of the continuum to n_egatlve
sibility of using the well-known methods of reference equa_energ|es. By virtue of the rapid convergence of the integral

tions and other analytic models. In what follows, we inves-(zg), at its lower limit, the \{alue OE,” can tend to— . Th.e
tigate systen(19) numerically rapid convergence of the integral is related to population of

The second step in the solution an analysis of the equdn® Coulomb crowdindthe upper Rydberg statesom the
tions for the interactions within the continuu(s). The sys- continuum and to the abrupt falloff in the population of these

tem of tight-binding equations, upon expansion over eigenStat€s with decreasing principal quantum number.

values of the angular momentuingin the p representation The equations written in this form can be solved by
has the form quadratures. We define  the column vector

As noted earlier, we are considering highly excited states

(agg.a1g, ---)'=ag and the matrix W, (E—E’,t)
S =W(E—E’,t). Then, according to the rules of matrix mul-
ia) = U ki krdyr dk. 2 A
L ,2 LTIk @) tiplication,
Since the wave functions in our basis depengerk—A, it - o = ,
is convenient to transform from the variablego the vari- lag= fﬁmW(E_ E'.0) ag dE'. (32)

ablesp. Since|p?—p’?|<p? under the assumptions of the

model considered here, the matrix elements of the free—fre@/e introduce the generating function in the form of a col-
transitions(the so-called Sommerfeld—Nordsieck integrals umn vector:

can be approximately expressed in terms of Hankel .

functions?® In this case we have 'made direct use of t'he Som-  G(gp,t)= f Eé(t)e“‘f"dgo. (33
merfeld method, based on the integral representation of the —o

hypergeometric functions. It is well knowhthat at large
values of the orbital angular momentum the Sommerfel
method® yields the semiclassical results. However, in our .
work, small and intermediate valueslofor which the semi- iG=
classical approach is not justified, play an important role. We

make the subsitution of variables which has a solution in the form of a matrix exponential

O,t satisfies the equation

— o0

foo ei‘*’x\N(x,t)dx) G, (34)
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— lal

_ t ©
G(qo,t)=exp(—i f drf e 'W(x,7)dx | G(¢,0). 1.0
0 —
35
(35 e Hm ! 17,4
The column-vector solution follows from the generating . ‘
function by the inverse Fourier transformation 0.6
)= o f G(o,t)e'“'de (36) 0.4*{ P l
E 27 ) ' ' i l
As the region of nonadiabaticity in the vicinity of the 02 l' |
point t;=j in the continuum is traversed, the coefficients
a, g undergo the following changes: 0 T 4‘T T

a g(ti+0)=a, g(t;—0)+ 4, 16b;a;(E), 3
1t +0)=2ye(t; = 0)+ 6,00;05(E) @7 6. 1. Numerical solution 0f19) for F/o>1 (F=0.3 a.u.0=0.1a.).
- ) _ o ; _ The figure shows the probability of finding an electron in the ground state as
Where.ébj b(t.' +O) b(t;—0). Here b(t) IS the corre a function of time T is the period of the external field
sponding coefficient of systefd9) ando;(E) is the normal-
ized distribution with which the transition t@nd from) the

ground state takes place. The initial conditions for system X (—utix)jf2

(19) at each point;=j have the form a 23 (V1-TI1%) cos' 1o
a(tj—0)=a(t; -1 +0)e'", (38) x{(1+g)!(i sing+g cose)— (1—g)!
o X (i sing—gcose)},
b(tj—0)=J by£(t;—0) o (E)AE, (39 (sing—g cose)}
° 1 X+iw
. . . . - g=\/1-———— o=2z— ) (43
where 7; is the adiabatic phase shift of the coefficienon (1-11%)coge 2

the segment;_,,t;, and L
g 1= The presence of the quantigy in this formula and the fact

= that the quantityy is complex reflect the influence of free—
oi(E)= /Lexp{ — ﬂ free transitions on states with high energies &#d..
2V(2|Eq])® F
- F2 5. RESULTS AND DISCUSSION
i 5( E-Eot 8w?|Ey| ] ' (40 In the present section we present some results of a nu-

merical study of the solution of the simplified equations de-

Results of numerical calculations following this schemescribed above. Above all, note that the solution of the sim-
are given below. The results can be represented in anothelified Hermitian system without allowance for interactions
form. Consider the column vectorgjz(a(tj—O),b(tj within the continuum(19) does not describe total ionization

—0))T. Then the column vectors corresponding to diffejent Of an atom for arbitrary values of the parametgisie, field

are related by the equation strength, frequency of the fieldFree—free transitions, de-
scribed by Eqgs(27), lead to population of states with= 1
gj:Njggjfl, (41  and, accordingly, to a drain of probability from states that

interact indirectly with the ground state. It is specifically as a
Where’S is the matrix Of the nonadiabatic transition a’ﬁp|s result of quantum transitions within the continuum that total
a matrix describing the variation cd(t) on the interval '0”'?“0” Olf tr:etattc;]m tls pozsmle.d - \ation of
(tj-1,t). If we assume thaﬁlj depends weakly on (as \gure & plots the ime dependence of the popuation o

confirmed by calculation then by writing the matrices in the the ground state of a hydrogen.atom, calculated taking into
form account free—free transitions witf/ w>1. As can be seen

from the figure, interaction between levels occurs in a small
neighborhood of the point§==j, j=0,1,2 ... N, which
confirms the applicability of the present approximation in
this case. Thus, in the given case the ground state does not
decay. If interactions within the continuum are taken into
account, the picture changes. Figure 2 plots the time depen-
dence of the population of the ground state of the same atom
taking into account transitions within the continuum.
wherell, z, u, X, andy are real quantities, it is possible to It can be seen by comparing the figures that free—free
obtain a common approximate expressiondor transitions lead to total decay of the ground state. A charac-

J1—TI2¢€2 i1l
iT1 J1-T12e 12

1 0

0 ef/./ﬂrix

AS: ‘

N=eg'X , (42)
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FIG. 2. Population of the ground state as a function of tifiés(the period FIG. 4. Dependence of the probability of ionization during 25fs on the
of the external fieliffor v=0.1a.u..1 —F=0.2a.u.,2 —F=0.4a.u. The intensity of the external field fon=2 eV. Filled squares — as calculated in
points were calculated using Eqd.7)—(40), the solid curves represent the Ref. 21, solid line — calculated in the present work.

approximat ion(43) with the matrixN averaged over several initial points.

teristic graph of the distribution ovéris shown in Fig. 3. In fqr bound-free trans_itions _a_n(_JI frge—free_ transitions. Analy-
addition, the probability that an electron will return to the sis shows that the given division is appllcaple for Va'“?s of
ground state can decrease if its energy is too high. This eﬁeépeblpafram(/ateFIwZL Adltho;Jgh sli/s]}elré(lg) IS alsho applll— f
can be characterized by the ratio of the population of thé:ﬁ1 e forF “’<1k' a study of weak fields Is not the goal o
upper level of a two-level system to the total probability that'"® Present work. )
the electron will be found in states of the continuum wlith Calc.ulatlor? .for large va!lues of the external field shows
=1. The value of this parameter turns out to depend weakly. at at |nt'en.5|t|e'sl >3x10%went (F>0.1awu), essen-
on the field, and is roughly 75%. ially total ionization occurs by the end of the second period
Figure 4 plots the dependence we obtaitealid line) of of the external field. Figure 5 plots the dependence of the

the ionization probability of the ground state of a hydrogent(r:tal populaltic(_)r} dOf thehco_ntinuu_m afft?]r the first Tzfi_lf-lgeriod of
atom during 25fs on the intensity of the external field for the external field on the intensity of the external field. As can

w=2 eV, along with the resulisquaresof direct numerical be seen, the population oscillates about a constant value.
calculation?! The given approach allows one to find the time Knowing the properties of theAsqution of the equations for
dependence of the population of the states of an atom fdfee—free transitionghe matrixN) and employing Eq(43),
fields comparable to or exceeding the atomic field. The reit iS possible to describe the ionization probability per unit
sults correspond to parameter values corresponding to tutime for external fields many times stronger than the atomic
neling ionization and above-threshold ionization. The dis-field. The latter also oscillates about a constant value as the
crepancy in the results at low intensitieB/@<1) results field intensity increases.

from dividing the time intervals, in deriving the simplified

equations(14), (15), into intervals of maximum efficiency

1 - la(r2)|?
0.8f

W,
03,
IRY; 0.6
2
G
0.2"“ Y
3 0.4
0.1 0.2
; 1 1 i } 1 i
g 0 10 2 30 40 50
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i
FIG. 5. Dependence of the total population of the continuum after the first

FIG. 3. Distributions oved in the continuum at various timesd — t half-period of the external field as a function of external field strength (
=T/2,2—t=T,3 —t=3T/2. The casev=0.1a.u.,F=0.2 a.u. =0.1a.u).



664 JETP 88 (4), April 1999 A. D. Kondorskil and L. P. Presnyakov

to solve the time-dependent ScHiger equation by the
tight-binding method. Wave functions similar in their mean-
ing to the unperturbed wave functions of the discrete spec-
trum (1) are also proposed in Refs. 12 and 13; however, they
6 are not orthogonal to the wave functions of the discrete spec-
trum, which hinders their use in the tight-binding method.
Indeed, a set of non-orthogonal basis functions complicates
the resulting tight-binding equations due to the appearance of
the non-orthogonality matrix on the left-hand side of the
equations.

Using this method it is easy to see that quantum transi-
tions between states of the continuum play a decisive role in
0 the ionization of atoms in a strong field. The principal con-

=05 0 0.5 1.0 . 15 tribution to this process comes from transitions between con-
P tinuum states with orbital angular momentlim1 and other
FIG. 6. Energy distribution in the continuumt=3T/2, F=0.5a.u., states of the continuum. Neglecting such transitions leads to
=0.lau. oscillations in the population of the ground state of the atom
as a function of the physical parameters of the problem, even
In addition, we found the energy distributions of the ?n _superstrong fields_. Stiictly speaking, the atom does_not
electrons in the continuum and in the Coulomb crowding af(omze completely, since levels of.the C°“'°”f'b crowding
higher Rydberg statgslirectly abutting the continuum turn

various times. Flgure_6 .d|splays a typical d.IS.tI’IbutIOH for agut to be populated. However, their total probability of oc-
hydrogen atom, consisting of a set of equidistantly space .
Cupancy is at most 5%.
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Sub-Poissonian radiation of a one-atom two-level laser with incoherent pumping
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The quantum statistical properties of the radiation of a one-atom two-level laser with incoherent
pumping are analyzed. Solution of the Liouville equation for the density operator in the

basis of Fock states shows that stationary radiation from a single-mode laser with incoherent
pumping can be in a squeezéslib-Poissonignstationary state if the rate of spontaneous decay is
lower than the rate of cavity losses and the pump rate. Inside the cavity the Fano factor
reached-=0.85(15% squeezing Multiple squeezing F=0.19) is possible in the transient lasing
regime. Significant squeezing obtains at the cavity output; the spectral Fano factor at zero
frequency is 0.36 under optimal conditions. 199 American Institute of Physics.
[S1063-776(19900404-1

1. INTRODUCTION eled with the help of the corresponding reservoirs interacting
with the atom and the radiation field. Note that our studies of

Microscopic laser systems consisting of an ion or atomaser dynamics and the statistical properties of laser radiation

held in a trap inside a high-Q resonator are presently thelo not make any small-fluctuation assumptions, in which it is

object of intense study. Recent detailed analfySeshow  customary to adopt a linear approximation in the fluctua-

that radiation in a resonant mode of such an elementary lasébns.

system exhibits a number of nonclassical properties such as

sub-Poissonian  statisti¢s}, photon antibunching, multi-

LASER MODEL
peaked Mollow fluorescence spectra for mcoherent

pumping® thresholdless lasing® and the corresponding The Hamiltonian of the ator field + reservoir system
photon antibunching and broadening of the spectral line inncludes energy operators of the electromagnetic field)(
the many-level case. the atom H,), the interaction of the field with the atom

In the present paper we investigate one particular aspe€Va_r), the energy of the reservoir of the continuous spec-
of a one-atom laser, namely the sub-Poissonian statistics #fum of thermal modes of the electromagneti c figttermo-
the photon number of the radiation in the single-mode casstad (Rg), the interaction operator of the atom with the ther-
for incoherent pumping. Recently, several techniques havenostat reservoir \{(4_g), the interaction operator of the
been found for creating states of the electromagnetic fiel@¢avity field with the thermostat\{z_g), and the energy of
with fluctuations of the photon number below the shot-noiséhe pump reservoirRp) and its interaction with the atom
limit (sub-Poissonian light Toward this end, Refs. 8-10 (Va-p):
suggest the use of a single-mode laser with regularizeg| 1
pumping. References 11 and 12 use atomic coherence of the=(Hg+Hp+Va_ g+ Re+Va_gr+Ve_gr+Rp+Va_ p)
active medium to obtain squeezed light. Multilevel scheme
of an ordinary single-mode laser, as shown in Refs. 13-19, *
can also be a source of squeezed light in the case of incoher-=w.a*a+ 7024- glato +oTa)+ 2 wjbj*bj
ent as well as coherent pumping. References 20 and 21 point
out the possibility of generating sub-Poissonian light with o
the aid of a multimode laser. The conditions for creating a +z gj(bfa*+bjo*)+z k,-(a*bj+bj+a)
transient squeezed state of the generated radiation were =1 =1
found in Ref. 22 for a single-mode two-level laser with in-
coherent pumping. In the single-mode two-level lasers con-  + 2 o JI7 T+ > w (Il o~ + o II,). 1)
sidered in Refs. 2, 5-7, 19, 22, and 23, considerable squeez- . .
ing under steady-state conditions is absent for one-atordlerea (a*) are the annihilatioricreatior) operators of the
lasers as well as for multiatom lasem (,,=>1).>~’ electromagnetic field of a discrete cavity mode with fre-
In the present paper we analyze the dynamics of theuencyw.; the operatord; (bf’) are the annihilatioricre-
quantum statistical properties of laser radiation with the hel@tion operators of the reservoir of the continuous spectrum
of the reduced density operator of the atenfield system in  of thermal modes of the electromagnetic field present inside
the basis of Fock states of the field. This analysis is valid fothe cavity as a consequence of partial transparency of the
all possible relative values of the parameters characterizingnirrors. The indicated operators obey the commutation rela-
the processes of incoherent pumping and dissipation, modions for Bose particles:

1063-7761/99/88(4)/6/$15.00 666 © 1999 American Institute of Physics
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[a,at]=1, [a',a"]=[a,a]=0, In the interaction representation and in the Born—
. . Markov approximatiorf*?° the reduced density operator of
[bj,by ]=6jk, [bj by ]1=[bj,b]=0. (2 the atom+ field system(9) interacting with a reservoir sat-

The operatordl, (II,) correspond to the field of the pump isfies the Liouville equation

reservoir, which in general is not in thermodynamic equilib-
rium and consists of particles obeying Fermi statistieg)., E:TrR(UR@S): —iA
electrons of the discrete or continuous energy spegtrand

obey the commutation relations

{IL I =8, {1107} ={11,,I1;} =0, ©)

where{ ...} is the anticommutator.

The term{b;} in Eq. (1), which represents the interaction
of the laser radiation field with the reservoir modes. is re-
sponsible for setting up thermodynamic equilibrium of the

z

O- .
?;P} —|g[(a+0'7+0'+a),p]

+ %(I’]T-i- 1)(2apa™—a*ap—pata)

r
+ %nT(2a+pa—aa+p—paa+)+ E(NT+ 1)

X(20 pot—oto p—poto)

cavity mode with the reservoir—thermostat field entering r L .
through the mirrors and having mean photon number in the + ENT(ZU po —0 o p—po o)
mode&*?®
— P
nr=n(w=w.,T)=[expio/kT)—1]" 1. 4 +5(1—p)(20_p0'+—0+0'_p—p0'+0_)
The atomic operators of polarization and population inver- =
sion of a two-level atom|() and|7) are respectively the + Ep(z(ﬁpa—_g—(ﬁp_pa—(ﬁ)l (10)

upper and lower energy states of the active elegtron

o =M1, o =111l o*=|TN1]-|I1)|| (5  Wwhere the offset of the cavity frequency from the atomic
frequency iSA=wp— w.. The quantitiesy, I', and P are

satisfy the relations respectively the rate of field loss in the mirrors, the sponta-
2070t =(1T0%), olo?=1, (6)  heous emission rate, and the incoherent pump rate. The in-
_ _ . _ dicated dissipation constants can be expressed in terms of

and the commutation relations for Fermi particles: correlation functions of the corresponding reservoir opera-

(o0 =IDAI+IN] =1, {o",0"}={oc",0c }=0. tors{b;} and{Il} (see, for ex_am_ple, Refs. 24 an_d)25 _
The mean number of excitations of the atomic reservoir
) ) ) ) Ny in Eqg. (10) in the case in which the reservdib;} is in
The term representing the interaction of the atomic eleCtro@hermodynamic equilibrium at temperatufeis (see, e.g.,
with the field of harmonic oscillators of the thermostat}  Ret. 25

ensures the establishment of thermal equilibrium of the

guantum-averaged atomic operators with temperaluiiéhe NTEN(Q,: wp,T)= (bf bj>|w,:w

interaction term of the atomic polarization operators with the A

pump field{II,} leads the system to deviate from equilib- =[expiwalkT)—1]". (11)
rium.

The interaction of an atom with the pump reservflif,}
leads to a deviation from thermal equilibrium, and the degree
of excitation of the atom by the pump is determined by the
mean number of Fermi quanta of the pump reservoir at the
atomic transition frequency(w = w,) in Eq.(10), for which

2Twp we have
g=dy, VA (8)

p=(I )] p,=0, O=<p=L. (12

The interaction of the radiation field with the polariza-
tion of the atom is proportional to the coupling constgnt
determined by the transition dipole momeht and the vol-
ume of the cavityy

Similarly we define the coupling constargsof the elec- . ) )
tromagnetic field of the thermostat with an atomic electron. ~ 1he €quation of motion for the averages of the atomic
The parameterk; and w, are respectively the coupling con- OPerators can be found from E(LO) with the help of the
stants of the laser mode of the cavity field with the thermo-€auation
stat and the coupling constants of the atom with the pump o) dp
reservoir. = (— Z)

We analyze the quantum stochastic dynamics of a two-
level one-atom laser with the help of the reduced densityence it follows that the mean population inversion of an
operator of the atomt single-mode field system in the basis atom interacting with the reservdib;} responsible for spon-
of Fock states taneous decay obeys the equation

p()= 2, Prizm i (D[ [M(mI(]]. 9) A spone_
=0 at

iLj={1.1} nm

(13

ot at 7

_(ZNT+1)F<UZ>spont_F- (14)
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The interaction with the pump reservdifl,}, leading to a 3. FLUCTUATIONS OF THE PHOTON NUMBER INSIDE THE
deviation from thermodynamic equilibrium, is described by CAVITY

the equation The mean photon number, mean inversion, fluctuations
, (variance of the photons, and the mean field, obtained by
o >pump: — P(0%) pume- (2p— 1) P. (15) grouping matrix elements of a system of the fo(hi8), are
ot pum given by
The solution of Eq(14) under steady-stateS@ conditions oo
has the form (n(t))=Tr(p(t)a+a)=nzo Np1nn(t),
1

SS

() spont= — N1 (16)

(DOY=Tr(p(D)o?)= 3 pan (),

i.e., spontaneous decay of an excited state of an atom leads n=0

to a BoltzmannFermi distribution of the populations if we P

set the thermal number of excitations equal My Var(n(t))={(An(t))?)= > (n—(n(t)))%p1nn(t),

=[expfos/kT)—1] L. n=0 '
The steady-state solution of E(L5) shows that the ac-

tion of the pump leads to steady-state inversion: at(t))= S h+1 t
s < ( )> nZO Pln,n+1( )
(o >spont_2p_1- (17)
The parametep thus characterizes the degree of steady-state B -
excitation of the atomic states supported by the given pump <a(t)>_n21 ‘/ﬁplnvnfl(t)’ (20

in the absence of interaction with the fields@=<1. ) ]
Using Eq. (1) and the orthonormality of the basis of The variances of the conjugate quadratuXeg(t)=[a"(t)

Fock states, as well as Eq®), (5—(7), and(10), we finda  +a(t)]/2 andX_(t_)=[a+(t)—a(t)]/2| can be expressed in

system of coupled differential equations for the elements oferms of the matrix elements of the density operator:

the density matrix having the following foraS:

) 1
P10 =(T1pnml 1)+ (Ll ol L), ((AX2)%)=71 2 (20+D)p1nn(t)

n=0
PZn,m(t)E<T|pn,m|T>_<l|Pn,m|l>v

p3n,m(t)E<T |Pn,m| l)y P4n,m(t)E<l |pn,m|T>' (18)

The system of equations for the matrix componéh8 with

dimension 4X (Npat 1) X (Nnaxt 1) given in Appendix A + Z V(N+1)(N+2)p1nnto(t)
was solved numerically. At the initial instant of time the field n=0

oo

in; n(n=1)pynn_o(t)

is in general in an arbitrary mixed state, and the atom is in a o
superposition of the upper and lower states. Thus, the density :{ > Jn+ 1pgnn+a(t)
matrix of the atom and field, not interacting at the tine n=0
=0, is ® 2
+
p(0)=p,®ps, _n§=:1 \/ﬁpln,nl(t)} ] . (21)

As the initial state of the field at=0 we used both the
coherent vacuum state and a random thermal state with mean
photon number corresponding to the optical rangg
cosfﬁl +sin fe““’(“}, ~10"s ! at T~300 K. A numerical study of systenta3)—

2 2 (A6) in the representatiofl8) for various values of the laser

P parameters showed that steady-state laser radiation possesses

pi= > cock|n)(ml. (19)  sub-Poissonian statistics of the photon number if the rate of

n,m=0 spontaneous emission satisfies the conditieng, y. Maxi-
mum squeezing of the fluctuations of the photon number
occurs for'<g,y for T=0 and amounts to 15%see Fig.
1). With increasingl’— v, the degree of squeezing de-
creases, and fof'>y the radiation goes into the super-

s ain 2 aie
pa=| cos5|1) +singe|)

X

In particular, if the field at the initial time is in the coherent
state|a), then the relation for the coefficients of the expan-
sion over Fock states

. a*"a™ 5 Poissonian state. The value of the pump parameteas a
ChCm= WEXD(—W ). substantial influence on the steady-state statistics of the ra-

diation; the greatest squeezing occursgderl and decreases
If the initial state is a pure Fock staf®), thencic, for p<1. The existence of a frequency offset£0) also
=8,m. In the thermal state we have)c,=[n7/(1 has a negative effect on the degree of squeezing. The optimal
+nT)“*1]5n,m. value of the rate of cavity losseg and of the pump rat®
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FIG. 1. @ Mean photon numbefn(t)) (1), fluctuations(variance of the FIG. 2. The same as in Fig. 1, but for=0.1g, 'y, P=2g, p=1, A
photon number Van(t) (2), mean inversionD(t)) (3), and fluctuations =0, andT=0.

(variance of the field quadratures Vat..(t) (4) of the laser for the initial
state of the field in the coherent vacuum and of the atom in the lower level,

for y=14g, I'<y, P=14g, p=1, A=0, andT=0. b) Fano factorF |aser cavity are sources of fluctuations in the frequency spec-
=Var ()/(n). trum of the radiation exiting through the resonator mirror.
The field outside the cavity can be represented as a sum of

relative to the coupling constamf are y=P~1.4g for p
=1, A=0; here the Fano factoF(=Var(n)/{n)) is F=0.85
at temperature$ <100 K andw,= 10"

As can be seen from Fig. 2, as steady-state lasing builds
up, the laser radiation remains in a state with nonclassical
sub-Poissonian photon statistics. Reducing the rate of cavity
losses relative to the pump rate makes it possible to dramati-
cally reduce the Fano factor. Figure 2 depicts the dynamics
of the Fano factor fory=0.1g, P=2g for the case of laser
generation from the coherent vacuum state of the field with
the atom in its lower level. In this case, the minimum value
of the Fano factofF,;, is 0.54 for(n)=1.43. Thus, in the
transient lasing regime, intense squeezed radiation can be
generated. The degree of squeezing in the transient regime
depends on the initial state. Maximum squeezing and inten-
sity of the radiation are achieved if the atom is in the upper
state and the field in the coherent vacuum state. In this case,
for example, for y=0.1g, P=0.53 fivefold squeezing
(Fmin=0.19) is achieved fogt=1.8 and(n)=1.2 (Fig. 3).

Quadrature squeezing (Mar<1/4 or VaX_<1/4) is
absent for all of the laser parameter values we considered.

4. FLUCTUATIONS OF THE PHOTON NUMBER AT THE
CAVITY OUTPUT

We assume that inside the laser cavity the electromag-
netic field is in a state with discrete values of the frequencies
(photon energigs whereas outside it the field has a continu-

3.0

2.5¢
2.0r
1.5
1.01
0.5¢
ot
-0.51

141
L.2r

1.0

0.8
0.6}
041
0.2r

the laser radiation field exiting through the mirror and the
noise field of the reservoir—thermostat incident upon the mir-
ror, i.e.,a®9(t)=bM(t)+ 'y a(t), where

0 10 20 30 40 50
gt

ous spectrum. As a consequence, it must be assumed thag. 3. The same as in Fig. 1, but for=0.1g, <y, P=0.5, p=1, A
temporal fluctuations of the electromagnetic field inside the=0, andT=0, and the atom in the upper level at the initial tie0.
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- F,
b('”)(t)“; Vo, exp(—iwjt) by 10
(Refs. 27—29 The Heisenberg operataf®V* (t) a(®(t) is o0sh
the photon number operator of photons exiting through the
mirror per unit time. One quantity characterizing the statis- 06l
tics of the laser radiation passing through the output mirror is
the steady-state fluctuation spectfdm A
. * ] ) , y ‘ ‘ /
V(O () = lim 2f dr cosw] (N0 (t+ )0 (1)) 0o 1 2 3 45 ook
toe J0O FIG. 4. Spectral Fano factor of laser radiation outside the cavity for pump
—<a(°”t)*(t+ T)a(OUt)(t)>2]. 22) parameter®=1.4, p=1, and lossey=2>T (in units ofg).

Since the two-time correlators under steady-state conditions N o .

are even functions of, we have used the Fourier cosine Under steady-state conditions it is not hard to obtain an
transform in Eq.(22). The commutation relations for the expression for the correlation functions of the field operators
field operators constituting the continuous spectrum outsidéside the cavity from the quantum regression theofsee,
the cavity have the for{-? e.g., Ref. 25

[a®(t+ 7),aC0* (t)]=8(7). (23 (a*(va'(t+na(t+ T)a(t»SS:Tr(aJra;’(T))' (29

where the operatop(7)=p(t+7) satisfies the Liouville

Hence we find that the two-time correlation function of pho'equation(lO) with initial condition (7= 0)

ton number operators is

~ — FTDeED |
<n(0ut)(t+7_) n(out)(t)> Pn,m(o) (n+1)(m+1) Pn+1,m+1(tSS) (30)

. . . Calculation shows that outside the cavity the squeezing of

=(a*(t+7)a(t+ra’(t) at)” laser radiation is even more significant: for optimal values of

the pump parametersPE1.4, p=1) and loss parameter
(v=2), the spectral Fano factor is below the shot-noise limit

X (t+7) a(t))euw, (24 by almost a factor of three and is 0.3567 at zero frequency

(Fig. 4). The positions of optimal sqeezing outside and inside

i.e., the SpeCtrUm of fluctuations of the photon number of thqhe Cavity do not coincide: the |argest Squeezing occurs out-
field at the CaVity OUtpUt consists of terms in the shot nOiS%ide the Cavity at a h|gher loss rate. As a consequence, the
and the chronologically and normal-ordered fluctuation specmean photon number of the radiation in this case is reduced:
trum: (n)=0.29.

VO ()= (n(tgg)+:V O (w):. (25)

=(a*(t+7) a(t))°s(r)+(at(t)at(t+7)a

) . 5. CONCLUSION
In the case of one transparent mirror, the field correlators of

the discrete mode inside the cavity are related to the field We have analyzed the dynamics of the quantum-
correlators of the continuous spectrum outside the cavity, astatistical properties of the radiation of a one-atom laser. A

shown in Refs. 27—-29: significant deviation of the magnitude of the fluctuations of
the photon number outside the cavity from the shot-noise
(a*(t)a(t)) W= ya’(t)a(t)), (26)  limit (by up to 15% is found to obtain under steady-state
conditions, when the pump rate and the loss rate through the
(a*(ha*(t+na(t+a(t)) mirror are many times larger than the spontaneous decay rate

27) and are comparable in magnitude to the coupling constant of
an atomic electron with a cavity mode. We have shown that

Substituting Eqs(26) and (27) into Eq. (21), we finally ob-  under special conditions, multiple squeezing is present in the

=y¥a*(t)a*(t+ ra(t+ ra(t)).

tain the following formula for the spectral Fano factor: transient dynamic regime. The squeezing of radiation exiting
through the resonator mirror is significantly greater than its
V(U ( ) value inside the cavity: the Fano factor at zero frequency

Flo)= = reaches 0.36.

(ouy)
(m) The case we have considered, in which the coupling con-

2y - stant is much less than the spontaneous emission rate and is
+lim f dr[{a(t)a*(t+17) comparable in magnitude to the cavity loss and pump rates,

- (" (t)a(t)) Jo is atypical of most known lasers. The indicated requirements
are best satisfied by a laser that uses transitions between
highly excited states of Rydberg atoms, where the coupling
x{a*(t)a(t))]coswr. (28)  constant can reach~10°s 1.

xa(t+ra(t))—(a" (t+na(t+17))
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In the present work we have shown that a one-atom twowhere the term common to all four of these equations, due to
level laser with incoherent pumping is a potential source ofcavity losses through the mirror, can be written

nonclassical radiation with fluctuations of the photon number

significantly lower than the shot-noise limit.

APPENDIX A:

Using the relations for the creation and annihilation op-

erators in the Fock basis

alny=yn|n-1), a*|n)=yn+1|n+1),

(njla=yn+1(n+1|, (njla*=n(n—1], (A1)
Egs.(2), (5)—(7), and the equalities
olct=0", oTo*=—0c", o o*=0, (A2)

we directly obtain from the Liouville equatiofil0) the equa-
tions of motion for the elements of the density mai(® in
the form(18). As a result

bl,n,m: ig( vm+ 193,n,m+1_ \/ﬁp3,n71,m+ \/mp4,n,mfl
Y
—VN+1pgni1m)t ELPL (A3)
.p2,n,m: |g( vm+ 1p3,n,m+l+ \/HPS,n—l,m_ \/mp4,n,m—1
Y
—VN+1pgniim+ ELPZ+[P(2p_ 1)

_F]pl,n,m_[F(ZNT+1)+P]Pz,n,mv (A4)

. . .9
pS,n,mzlAp3,n,m+| E(\/Epl,n,mfl_ vn+ lpl,n+1,m

Y
+ \/apz,n,mfl'l' yn+ 1P2,n+l,m) + ELPS

T(2N;+1)+P

2 P3n,m: (A5)

. . .9
p4,n,m:|Ap4,n,m+| E( ym+ 1p1,n,m+1_ \/ﬁpl,n—l,m

Y
—VM+1ponme1— \/ﬁpz,n—l,m)+ ELP4

I(2N;+1)+P

2 Panm> (AB)

ij=(nT+ H[2V(n+1)(m+ 1)Pj,n+l,m+l

- (m+ n)pj,n,m] + nT[2 VAMPj n—1m-1

—pjnm(N+mM+2)]. (A7)
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We use the quasipotential method to calculate the total correction of chf)Pmﬁlm# in the
energy spectrum of the 3S; states of muonium. The numerical value of the muonium-
fine-structure interval 3S,—13S; amounts to 0.19 MHz. ©1999 American Institute of Physics.
[S1063-776(199)00504-1

1. INTRODUCTION In QED there are many approaches to describing the
i ) _ relativistic energy spectra of two-particle bound
. The study of the fine strgqture of muonium aqd posnrc_)—statesz_,s,13,18-zo-|-he approaches differ in the way in which
nium is a check on the validity of electrodynamics that iSyhe caiculations are organized, i.e., the type of equation used
sensitive to high-order radiative corrections an(Ref. . iy gescribing the two-particle system, the way in which the
Calculations of various contributions to the fine structure Ofparticle interaction operator is set up, and the complexity of
the energy levels of a hydrogen-like system have been cajjgtermining the corrections of required accuracy in the en-
ried out by many researchefsee, e.g., Refs. 23@nd inter- g4y jevels. However, all methods of describing the energy
est in this problem is still very higf® Recent progress in spectra yield equivalent results in a fixed perturba-
calculating logarithmic contributions of théflna type in the tion-theory order in the small parametersand m, /m, .

. - . . 3
p033|tron|3um. fine-structure  intervals  (8,-1°S; and Our calculations are based on a local quasipotential
2°S,—2°P;; see Refs. 10-)2does not mean, however, equation of the Schitnger typé

that there is no need to calculate high-order corrections

O(a®) (Ref. 13. Corrections of orderZ«)®m3/m, to thes 0

levels of the hydrogen atom were studied in Ref. 6-8 by _ _ _> ,J,M(p):f

various approaches to the bound-state problem, but as noted 2uR  2uR

by Yelkhovsky® there are still discrepancies among calcu-

lated corrections of the required order in the fine structure ofvhere b?=E3—mi=E5—m3, ug=E,E,/M is the relativ-

a hydrogen-like atom. The development of experimentalstic reduced massM=E;+E, is the mass of the bound

methods based on Doppler-free two-photon spectroscopy ha&tate, andn; andm;, are the electron and muon masses. For

made it possible to measure the “large” structure intervalsthe initial approximation of the quasipotent\{p,q,M) for

in muonium and positroniur{:~1° the bound systeme( u*) we take the ordinary Coulomb
potential. In Ref. 22, using Ed3) as the staring point, the

1233607 218.210.7 MHz, 1) researchers determined the relativistic correctiong in the

1233607 216.4 3.2 MHz, fine structure of the positronium spectrum that are introduced

expl o 3 3 by the one-photon interaction with allowance for the vertex
AEMUYZ $;—1°S,)=2455527 936 120+ 140 MHz.  (2) corrections and corrections in the photon propagator, the

The frequency of the Doppler-free two-photon transitiontyvo—photon exchange interaction, and second-prder_ perturba-
1S-2S in the hydrogen atontas well as the hyperfine split- tion theory. The foremost among such corrections is
ting of the ground state of the hydrogen ajoisia quantity
that has been measured to high accurdcgince ot 5mi(Za)®
=137.0359979(32), the muon-to-electron mass ratjo/ ABy=————
m,=206.768 259 (62), and for muonium the order
(Za)smglmM contribution may reach values of order 1 MHz. |\ vih is of order Za)®m, /m, and emerges because of the

Hence the reduction to several megahertz of the experimental,qition for quantization of the energy levels in the Cou-
error in upcoming measuremehtsf the fine structure of lomb interaction

muonium (and positronium makes calculations of the cor-

V(p.a.M)g(a), (3

(2m)°

AEEP(238,-1%))=

4

2m,n®

rection of the required order ia andm,/m,, highly desir- 2 2

able. In the present paper we study nuclear recoil corrections —_ — _ ll (5)
of order @a)®m, /m, in the fine structure of muonium. Bod- wi o n?’

win et al’ calculated similar contributions to the hyperfine

splitting of muonium. transformed for the binding enerdy of this system.

1063-7761/99/88(4)/9/$15.00 672 © 1999 American Institute of Physics
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2. CONTRIBUTION OF THE ONE-PHOTON INTERACTION Now we turn to calculations of ordeZ¢)® corrections
TO THE FINE STRUCTURE that originate in the terms iAV,. We note that some terms
in AV, lead to divergent integrals in the energy spectrum.

. One-photon interaction provides the prl_nC|paI contnbu—The reason for this divergence lies in the power series ex-
tion to the energy spectrum of the two-particle bound state

i . ) ansion in|p|/my , used in setting upAV,. A typical diver-
The mgthoq of setting up a quas[potennal.for one—photorgem integral isfp? dp ¥,s(p). The relativistic order® cor-
interaction in a system of two spinor particles was thor-

e o rection in this case is determined by the residue of the
oughly studied in Refs. 22 and 23. Note that here it is Con’mtegrand at the pole of the wave functigng(p) (Ref. 18.
venient to use the relativistic projection operator on stat

®The calculation of this integral for an arbitrary value of the

3
St principal quantum numbar yields
=1 (prtmy)(1+yp)e(—patmy)
= , (6) dp p? [3+2(n—1)(n+1)]
23 Nerrmy Ve m, | o tndm=
T) MR

where p; and p, are the 4-momenta of the electron and
muon in the initial state, ang# is the muonium polarization X a®pg(r=0). (10
vector. Expanding all relativistic factors in powers of the two ] ] o
small parametertp|/m, , (|p|~Z« is the momentum of the l_Jsmg (lO)_ln averaging ofAV,, we calculated th_e relatlyls-
relative motion of the particlesaindm, /m, (the electron-to- tic corrections qf the proper order for levels with arbitrary
muon mass ratjoso as to isolate the contribution of sixth values of the principal quantum number

order in Za and first order inm;/m,, we can write the

expression for the particle interaction operator in the coordi- o _Mi(Za)®( 139 172 731 431
nate representation in the form 8 m, 72n3 12 3 725 966
Za pr(Za)? 2my Za 17 1
ViD= e (Y | Y Pl ElC v 1), -
2
X 1+4m1>_ mZa o Zab wherey(z)=d In['(2)/dz, andC=0.577 215668 . . . is Eu-
my ) 3mym; myMar ler's constant.
=V(r)+AV,(r). (7

Note that the pari\V, of the quasipotentia{7), com-
bined with quantization conditiof5), correctly reproduces
the known energy spectrum of tt&states of muonium to
within O(a®) (Refs. 13 and 212.) In our approach, the erms  yjo in the muonium energy spectrum is determined by the
in AV, also p.rov[de ordeO(a®) corrections to the energy  sum of two term<
spectrum, which is due to the dependence of the relativistic

3. SECOND-ORDER PERTURBATION THEORY

In our case the second-order perturbation-theory correc-

reduced masgg and ofb? on a. Averaging(7) over Cou- IAV,
lomb wave function® and extracting the required terms, we ~ AB@={yC|AV | 4C) (4] B I/9)
find that
3IMA(Za)®( 2 , s (wAvilvavil) -
ABZ:_TZnS<5+ ﬁ)' )] k=Tk#n B;— By

The one-photon interaction quasipotential also containd he quasipotential7) depends explicitly on the binding en-
other terms that lead to ordeZ &)° corrections in the energy €rgy B (factorsb? and ug). Bearing in mind thatb?/9B
spectrum. These terms are obtained by settingVup to =2u to the required accuracy, we can write the contribution
within |p|?/m?, and|g|*/m? ,, and take the form of the first term on the right-hand side @2) to the energy

' ' spectrum as follows:

AVy(p.gq,M) IAV m? 1
ABy=(UEAVL R (W —g Ui = o (Za)® .
2 n

AnZa| b? 2m;\ p*+q
T e 4| °7 + 4 (13
k? | 16m] mz | 96m]
my\  (p?+92)(p-q) 13m, The sgcond term on the rlght—ha.nd. side @f2) is ,
X| 3+ —|— 2 6 determined by the reduced nonrelativistic Coulomb Green'’s
m; 96m; m; function!®25-3lwhose partial expansion is
(p*+g?)b*(  my) (p-q)b?( _ 7m, _ _
T oemt 3w Tzt 3Tl @ Cor".B)= Gnlr 1 B Yin(mYin(n'). (14
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TABLE |. Second-order perturbation-theory contributions determined by the RCGF and the quasip@igfitiatnits of Qa)smflmz).

AV, | Zab? | (ZePug( 2 Za(r-V) (L 4my By
Mmymyr 2r°mé m, 4mar m; 3m,m,
_ Zab? _ 2-n 2n2-5n+1 _
mym,r o an®
(Za)z,lLR(1+ 2m1) 2-n 2n+3 n2+3n—1 4n+9
2mzr? m, n® 2n* 4n® 6n*
Za(r-V)(1+ 4m1) 2n?>-5n+1 n®+3n-1 n(n—1)(n+1) n?-6n+8
amars m, 4n® 4n® 24n 12n°
Tl 2_
Sy - _anso _rense ]
3m;m, 6n4 12n5

The radial functiorﬁm(r,r’,B) was derived in Ref. 31
as a Sturm expansion in Laguerre polynomials. For $he
state this function is

EﬂO(r!r,an)
o 1 1 ’
_ 4Zap? . LL L0LL L(x)
n m=1m#n m(m-—n)
1[5 J Jd
4+ —| =4+ Xx—+ ' 7(X+X’)/2L1 Ll '
nz(z X(?X X ax,)e nfl(x) nfl(X) ’

(19

wherex=2uZar/n, andL; are the ordinary Laguerre poly-
nomials, defined by

n

(e *xn*tm), (16)

m ex "M d
Ln(x)= n' ldx

The reduced Coulomb Green’s functidRCGH (15) de-
pends on two variables,andr’, but in calculating the cor-
rections in(12) of a delta-function potential we must know
the RCGF ar=0. An expression for the RCGF in this case

can be obtained via the Hostler representation for the Cou-

lomb Green'’s functior(see Ref. 3Rby subtracting the pole
term:

B ) Za'/.L2 » n—1 (_X)nfs n!
Gn(r,O,Bn)——n—T,X 2S:0 st [(n—9)1]?
X{(n=s)| ¢p(n+1)—2¢(n—s+1)

+Inx

o

on 17

In contrast to Ref. 32, this formula does not contain the free

two-particle Green’s functionG'(r)= — uge™ ?**r"[27r,

which determines the iterative part of the quasipotential. The

contribution of this function will be obtained separately.

As an example, we calculate the energy corrections in
second-order perturbation theory that are determined by the
delta-function potential and the terfV, o 1/r2. This contri-
bution can be written

Xf xX<"le XL (x) dx{ k| ¢(n+1)
0
2k+3—
—2¢(k+1)— on +inx|+1;. (19

The expression(18) contains integrals of two types, with
power-law and logarithmic functions, respectively. Evaluat-
ing the first integral with respect to the variabde

® Ke1—x _(k=D!'T'(n+1-k)
l= Jo X< le XLy 1 (x) dx= =Dk
(19

we see that only the term witht= 1 remains in the sum. The
second integral ir{18),

o]
l,= f X Unxe *LE_,(x) dx
0

2—K),_T(K
B 4 g0 pin s 1101,

(n—=1)!
(20)
leads to a sum of the type
S W2-K)(2-Koy -1
_ 1)k _
kzl( b (n—k)! k! T Th +C, (21)
where

C=Iim

n—oo

n
1
—Inn+ >, —}=0.5772156...
m:lm

is Euler’s constant. If we now allow for the fact that
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p=(E. P (E| + ky ) 9=1{E, 0
. ,Jf”f
k- pT l k-g r© FIG. 1. Direct and crossed diagrams of two-photon exchange in-
teraction.
p2= (EZ' -p) (EZ - ko, -K) q2= ('EZ’ —-q)
I'(n—k) mi(Za)®( 1 2In2 2
lim =(—1)" Yn-1)1, 22 S b (et B
g DT R I~ R
we finally obtain an expression for the correctid®): 2
y P s —F<—1>“[c+w<n>—1]>. 2

2
mj 61
oB=- 6m2(za) F(4n+9)' 23 4. TWO-PHOTON EXCHANGE INTERACTION

R . | imilar i lculate th The two-photon exchange interaction amplitude is repre-
__easoning ajong simriar finés, we can calcuiate the congq 0 g by the two diagrams in Fig. 1. The particle interaction
tributions of the other terms in the quasipotent{@ in

second-order perturbation theory \ia2), (15), and (17). operators corresponding to these diagrams are
The results of such calculations are listed in Table I. The first i(Za)?

column and the first row contain the various terms\i; . VE(p,q)= —

The value of the second integral {42), with the various &

terms in AVl_ express_,ed in units on(a)Gmilmz, can be f,(k,my ,m,) d*k
found at the intersection of the appropriate row and column. X J > > , (28
The total contribution of the RCGF to the energy spectrum [(k=p)*+ie][(k—q)°+i€e]De(k)D ,(—k)
(without G') is f1(k,my,my) =m,(4m, + 2ko) — 2m; ko — 2k3+ 2k2,
25 3 49 3 m%(za)ﬁ DM(—k)=k2—2E2k0+b2+i€%—2m2ko+i€, (28
ABg=| ————— +—|—. (24
24 n 24n% 2n%/ myn® i(Za)?

V& (p,a) -

We now examine the contribution of the free two-
particle propagator to the correctidrB(? [this contribution
was ignored in the RCGF given 17)]. It is convenient to

do this in the momentum representation. Bearing in mind

Xf f,(k,m;,m,) d*k
[(k—p)?+i€l[(k—q)>+i€]De(K)D,(p—q—k) '

that f,(k,my,my,) = m,(4m; + 2kg) — 2m; ko — 6k3
f (2m)%8(p—0q) + L.k + gk + 10%2,
G'(paM)=————"— (25) L i
b*/2pr =P 20 D, (p—q—k)=k?+2Eko+2k-(p+q)— (p+q)
+b%+ie~2mko+ie. (29)

and that the delta-function term in the quasipoterfralal-
ready contains the muon mass in the denominator, we can The principal contribution 0¥/, to the energy spectrum

write the required iterative correction as is proportional toa®. Order Za)® corrections can also ap-
pear in the energy levels if we allow, e.g., for the contribu-
2u(Za)2m2 .4 0) dp tion of photon poles, whereupd~ «, |p|~«, |g|~«, and
ABg= 3 3 ¥ns(P) |k| ~ «. To separate these terms, we transform the product of
3mymy (2m) the electron and muon denominators in the direct two-photon

dq diagram as follows:

(2m)3(q?+W?)’

(26) 1 —2midky) 1

De(kD,.(—K) ~ —2E(k*—b?) 2E

1
(kot+i€)De(k)

whereW?= p4(Za)?/n?. The divergence of this integral is
the same as if10). Using Feynman’s parametrization and 4 1
formula (10) in calculating(26), we find that (—kotie)D, (—k) |’

(30)
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where the first termi~ 8(ky) ] on the right-hand side and the the required numerical accuracy is already ensured. Then the
iterative term of the quasipotential cancel out. The first termamplitude representing the first diagram in Fig. 2 is
in the square brackets has the same structure in the leading
order in 1, as the crossed amplitude. As a result, the two- (Za)®
2 4 4.7
e EY

FIG. 2. Feynman diagrams of three-photon exchange interaction in
the & u™*) system.

photon interaction quasipotential, which leads to the required T1"=
correction of orderZa)‘Smf/mz, is

Va,(p,q) « (Y2(Q1—p’ +my) yy(p1—p+my) ¥4)
(p?—w2+ie)(p'2—w?+ie)[(p—p')?+ie]

4

 2i(Za)?
 3q2 X(?”z’“(f32+E3+m2)75(612+f3'+m2)7§>' 33
A%k [4K2+ 5K (p-+ ) — 6k2] De(P)De(p)D (= P)D L (—P")
f[(k—p)2+ie][(k—q)2+iE]De(k)(2m2k0+i€)‘ V#}Zif‘?rgség)ats:g the denominators of the electron and
(31
The contribution oy, to the energy spectrum was cal- ~ D(*p)= p>-w?x2mp’+ie, w?=-—b? (34)

culated separately fon=1 andn=2 using Mathematica and the angle brackets indicate averaging over the Dirac bis-
(Ref. 33 (the feynpar.m packageand the results of these pinors; p, andp, are the 4-momenta of the particles in the

calculations are initial state andq, andq., in the final state. As usual, the
m2 factor Za emphasizes the exchange nature of the photon in-
1 . .
- 2—(Za)6, n=1, teraction of the particles.
m; The propagators of the exchange photons were chosen in
AB,, 2 (32 ) -
31mj 5 _5 the covariant Feynman gauge. As is known, the Coulomb
N 16m2(2a) , N=e gauge is the most natural one for exchange photons, since the

Coulomb interaction is predominant in the (u™) system.
Nevertheless, Bodwin et &l.demonstrated that the Coulomb
5 THREE-PHOTON EXCHANGE INTERACTION and Feyn_man gauges are equivglent in callcula'Fions of three-
photon diagrams in the scattering approximation. To con-
There are six diagrams, depicted in Fig. 2, that determinstruct the quasipotential from the amplitu@@” describing
the amplitude of three-photon exchange interaction in muothe interaction in thed u*) system withL=0 andJ=1,
nium. we introduce in the initial and final states the projection op-
In the first diagram, the corresponding amplitude con-erator(6) and assume, in addition, that=q=0. The use of
tains the factora®, which emerges due to the electromag- (6) makes it possible to avoid cumbersome matrix multipli-
netic interaction vertices and the Coulomb wave functionscation in bispinor contractions and to proceed immediately
Hence, in the first stage of calculations we ignore the mowith the calculation of the general trace {@3). As a result,
mentum vectors due to the relative motion of the electrorthe quasipotential of the first exchange diagram can be writ-
and muon in the initial and final states, bearing in mind thaten

Z 3
ver=— 29 fd“pf d*p’
™

Fi(p,p") .
% , D (p)=p>—w?+ie, (35)
D,(PD,(p")D,(p—p')Do(P)Do(p' 1D, (—P)D,(—p) 7T T ‘
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where which makes subsequent analytic integration over the spatial
E Nt N2 i momentap and p’ highly problematic. We have therefore
1(P.p") =T1p,p" ) M3+ 5f 1My, taken a different approach to integration(88), transform-

f=pp’ —4m§—2m1po—2m1p6— 2poph, ing Fhe_ denomlnators of the muon propagator.s with an eye to
achieving the required numerical accuracynm/m,. As-

f12(p,p’)=2myp’' 2+ pop’%+10m,pp’ +2pepp’ suming that the spatial momentujp| of the muon in the

) 5 ) intermediate state is less tham,, we find that

+2pgpp’ +2myp*+ pop“+6mipg

p2+W2

D,(p)=p*~w?+ 2mzpo“2mz( Po— Z—rr12+i€

+6m2pg+4m; pg+4m; pj?—4m;pop;.
(36)

The only terms that we kept i(B6) were those propor-
tional to m3 and m,, since we had in mind obtaining the
contribution to the muonium fine structure only in the lead-Where the second approximate equality means that we have
ing order in the parameten, /m,. Below we find that we ignored the muon kinetic energy in the intermediate state.
cannot limit ourselves ifF(p,p’) to terms proportional to Here we assume that the path of integration with respect to
m2. The quasipotentials of the other five amplitudes can bd iS closed in the lower half-plane. If in the numerators of
set up in a similar way. They differ from each other in the the six amplitudes we examine terms proportionatothe
dependence on the momentum arguments in the muon déinctionsf;x(p,p’)], we see that we must transform the sum
nominators and in the type of functioh, (i=1,...,6). Of terms with muon denominators (80). If we then use the
The terms inF;(p,p’) proportional tom2 are the same in all Second approximate equality {#2), we find that

six amplitudes. Note that i is replaced byys in the pro-

jection operatof6) (the 'S, state, we obtain the same func- 1 N 1

tion f1,(p,p’) as for the®S, state of muonium. This means D(—p)D .(-p') D (—p)D (b —
that the hyperfine splitting in muonium emerges as a higher- w(=PIDL(=PY) w(=PIDL(P"=P)

~2my(potie), (42

order effect inm;/m,. The functionsf;; are given by the 1 1
following formulas: - —+ -
J D,(~P')D.(p—P') D,(P)D,(P-P')
f1=—10myp’? —5pop’?+10m;pp’ +4popp’ L L

—4pgpp’ +2m;p?+4pgp?+ 12pomi — 6mip, - : o '
6 1 0 oMy 1Po D,(p")D(p"=p) D,(p")D,(p)

2 ’_ 12 12
+4m;pg+8myPpoPo—8mypy°+4pgPg, 37 ~(~2mi)(po) (—2mi)5(py) s
fa1=2mip’? +4pop’? +10m;pp’ —4popp’ +4popp’ 2m, 2m,
_ 2_ r2_ 2 2.1 2
10myp®—=5pop”—6mipo+ 12mip,—8mypg In the energy spectrum these terms lead to ordfecor-
+8mypopg+4mypy2+4pepy?, (3g)  rections, which cancel similar terms from the iterative terms
in the quasipotential. Hence to calculate the ora®icontri-
fa=2myp’'2 +pop’? —2mypp’ +4pepp’ +2psPp’ butions of interest, we must use the first approximate equal-

) _ ) 5, ) ity in (42). Now we take the difference
—10m,p“—8pop”— 12mipo+ 6mipy+4m; Py

— 4m; popo-+4m; Py’ ~ 8pgpg, (39 1 o
2m,(po— (P?+W?)12my+ie)  2Ma(Potie)

fsy=—10m;p’'2 —8pgp’2 —2m;pp’ +2pepp’

’ ’ ' ' 2 2
+4popp’ +2myp?+ pyp?+6mip,— 12mip) P tw

~ amEpot 07 (49
’ ’ ’ €
+4mypg— 4mpopg+4mypo”—8pg°Po, (40) 2(Po
fe1=—10myp’2 —5pop’? —2mypp’ —4pepp’ and write 1D ,(p) in the form
—4pgpp’ —10m; p?—5psp?—6mips—8my P
PoPP 1P 2 PoP 1Po 1Po 1 1 N D2+ w2 s
—4mypoPo—8m;pg”. (42) D.(p) 2My(potie)  ami(py+ie)?’

The integrand in(33) has simple poles in variablgs,
and p} in the electron, muon, and photon propagators.The second term on the right-hand sidg4f) is of a higher
Hence, the most natural way to integrate(®i) is to evalu-  order inm; /m, than the first, but provides a correction of the
ate the integrals with respect to the energiggindpg in the  required order inx. Using the representatidd5), from (43)
initial state via residue theory. Nevertheless, this methodve extract the terms of the required orderain These terms
leads to extremely complicated intermediate expressionsre
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TABLE Il. Two-loop integralsK; of the type(48) in the three-photon exchange integrals emerging in calculations of muonium fine structure.

p*(p-p’) (p-p')? p’2(p-p) w?(p-p’)
1 1 1
K _ _Z _ 0
1 2In2 > 2In2 > 2In2 >
pX(p'?~p-p") p-p’(p’2=p-p’) wA(p’2 —p-p’) w?p?
1 m 1 1 m 13 5 2
Ky e Shhe—— = -
2w 32 4w 32 32 3
p/2 pp, pz WZ
K _ lI m 1 1I m 1 1
8 2w 2 2w 8 8
K 1I m 1 1I m 1 _ 1
4 2"ow 8 2"ow 2 8
1
Ks In2 In2_§ In2 0

2

12 2 H 1 . r_ . 3
™" +w”| 2mi &(po) _ 2mi 8(Po— Po) _ 21 5(po) ~ 2i[—277i S(po) +2mi 8(po—pPg)]
8m | (potie)?  (potie)?  (potie)? Mz
12
| PPrw?| —2mi8(pg)  2mi 5(py— Po) + oy L= 21 8(pG) + 271 8(po = pp)]
8m3 | (potie)?  (potie)? 6op
21 8(Po) (p_pr)2+W2 2. 5(p6) - —2m2 [—27i 6(pg) — 27i 5(p6)+277i o(po— pé)]
+ —
(Potie)? 8m; (Potie)? &7

27 8(po—Po) 27 S(pg) The other terms ird;;(p,p’) can be transformed in a similar
+ S ITRCIE (46)  manner. The next stage in the calculations amounts to inte-
(po+ie) (Potie) grating expressions lik&46) or (47). A typical two-loop in-
The explicit form of the three-photon interaction amplitudestegral emerging in the process has the struéfure
of type (33) suggests that the terms {46) yield corrections e a ) ’
of the required order inx in the energy spectrum. Correc- K-=(47-r)2f d*pd*p’  Gi(Pg.Po.M1)P(p,p’,W)
tions of the same order im,/m, as in(46) originate in the ! —(2m)8 (p'2—w2+ie)[(p—p')2+ie€]
quasipotential terms that contain the functidpgp,p’) if
for the muon denominators one uses the second approximate « 1
equality |n(_42). To draw some conclusion about the orQer of (p2—W2+i€)Do(p’)De(p) '
the corrections in the energy spectrum that are determined by
these quasipotential terms, it is useful to subject the terms tahere G;(pg,Po.M;) necessarily contains a delta function,
certain transformations. For the sake of definiteness, in thand P(p’,p,w) a polynomial. In calculatind48), we used
functionsf;;(p,p’) we examine the massless terms propor-Feynman’s parametrization to combine the denominators of

(48)

tional top?, p'?, andpp’: the particle propagators, along with the symmetry of the in-
tegral under the interchange—p’. In this paper we have
3p2 1 + 1 _ 1 _ 1 l the following set of functionss;(pg,po,M1):
Du(p)  Du(=p) D.(p=p') Dn(p'—p)

27mi 8(po— Pg)2My 2mi 8(pg)2my

1 3p2 r ot 1 ! (Potie)? 2 (Ph+ie)?
Du(=p") Du(p’) Du(p'—p) _ _
G3=—2mi8(pg)2my, Gu=—2mi8(pg)2my,
1 1 1
_ -6 ! + — _ . N
—DM(D—D')l pp D.(—p)  D,(p) Gs=—27i 8(po— Pg)2M; . (49
The calculation of integrals liké48) with different G;
Lot ot o ! and P functions was done by Bodwiet al*” The results of
D.(—=p) Du(p) D.(p'—p) D,(p—p") calculations of the basis integral$8) are listed in Table II.
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Then the contributions determined by expressi8®—(41)
and (46) are, respectively,

2
my

B3 =— 1(zoz)6 (50)
! 2 m,’

oBd'=(z )Gﬁ 6|n2—1—1 (52)
2 “m, 48"

The “infrared” logarithms Irw, which contain the pho-
ton masgsee the integralk; in Table 1) introduced in(48)

and emerge in the intermediate calculations, cancel out in the

correctionséB3” and 6B3” .

We now examine the quasipotential terms containing the
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91
12

545 17 37

N2 122" 0 3

187

AP " oene

mi(Za)®

g (58)
2

+éen,

where

_23m"11(za)6
12m, '

_3Jm§(za)6
128m, '

The numerical value of58) for the “large” muonium

En=

2.

momenta of relative motion of the particles in the initial andfine-structure interval S,—13S; is 0.19 MHz. Earlier cal-

final states, which we denote by andr,. Allowing for

culations of recoil corrections of ordeZ &)®m2/mj for theS

these terms leads to the following corrections to the funcieyels of the hydrogen atom were done in Refs. 6-9. The

tions f;q:
Afy=10myp'r,+5pep’ro+mpry+3pgprs, (52
Afgz=—myp'r;—3pep’ry—10mypr;—5pgpry, (53

Af=my(7p'r{+5p'r,+10pr,+5pr,)+6pep’r,
+5pop’r,+8popri+5pgpra, (59

Afs;=my(=5p'r;—10p'r,—5pr;—7pry) —5pep’ry

—8pop'r,—5popri—6pgpra, (55)
Afgi=my(—11p’'r,—11p’'r,—11pr,—11pr,)
—8pop'r1—8pop'r,—8ppri—8popra.  (56)

Allowing for the symmetry of the resulting integrals under
simultaneous interchanggs—p’ andr,«<r,, we find that
the integrals of the expressiofs2)—(56) cancel. Hence the

contribution of the relative motion of the particles to the fine

structure in the required order im; /m, vanishes. Thus, the
total value of the orderZa)ﬁmflmz correction originating
in the three-photon exchange diagrams for $h&tates of a
hydrogen-like system is the sum &0) and (51):

1 3
ABg=6B3"+ 6B3"= (za)ﬁF

6|235
n—4—8.

(57)

mym;

6. DISCUSSION

In this paper, using the diagrammatic quasipotential apwith n=1 and n=2. These values are,

total contribution of the required order to the energy spec-
trum of the S states obtained by Eides and Grdtslia the
Braun formula is

1 3 1 1 \(Za)m?
AEow=|gtar " St o3| — 3
8 8n n2 2n% mynd
7\(Za)®m?
+4In2-5|——— (59
2] m,n

The first term on the right-hand side, which contains a non-
trivial dependence on the principal quantum number, was
obtained by different authors taking different approachés.

In the approach based on Braun’s formula, this contribution
is singled out, and is governed by one-photon Coulomb ex-
change. In our approach, which uses the local quasipotential
equation(3), corrections of this type originate in both the
one-photon exchange quasipotential and the two-photon ex-
change quasipotential, as well as in second-order perturba-
tion theory. Comparind58) and (59), we see that the ana-
Iytic expression(58) for the contribution differs somewhat
from (59). The quasipotential of th& states of a hydrogen-
like atom has the structure

V(r)=Vi(r)+ (o o) Vy(r).

In our calculations we allowed for both the contribution of
the first term inV(r) to the energy spectrum and the second
(spin-dependeit part of V(r). Eides and Grot¢h and
Yelkhovsky studied only the contribution 0f,(r), so that

the difference betweefb8) and(59) is perfectly understand-
able, and our results are consistent with those of Refs. 8 and
9. To a certain extent, it is useful to compare the numerical
values of the correctionb8) and (59) for muonium levels
respectively,

proach, we calculated all possible corrections of order—0.212 MHz and—0.065MHz forn=1 and —0.021 MHz

(Z@)®m3/m, to then 3S, levels of a hydrogen-like system;

and —0.006 MHz forn=2. The contribution of the correc-

these were required for a comparison with the experimentallyion (58) to the hydrogen atom intervalS2- 1S is 21.5 kHz,

measured 3S,—-13S, interval[see Eq(2)]. Note that these

and the values of the corresponding contributions obtained in

corrections differ from the corrections of the correspondingRefs. 8 and 9 are 6.6 kHRef. 8 and 14.5 kHz(Ref. 9.

order in the Lamb shift for the hydrogen atdfOur final
result, given by the sum of thaB; terms in(4), (8), (11),
(13), (24), (27), (32), and(57), is
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A guasiresonant laser field initiates the decay of an initially occupied atomic level into the
continuum. If the amplitude of the external field is sufficiently high, other atomic levels, not
meeting the condition for exact resonance, begin to participate in the atomic dynamics.

This phenomenon leads to the stabilization of the atom.1999 American Institute of Physics.
[S1063-776(19900604-9

1. INTRODUCTION ternal field increaseésee the level diagram in Fig.).1The

) ) dynamics of such a system is described by the Stihger
During recent years extensive research has been CoRGuation

ducted in the field of the dynamics of an atom in intense and

superintense laser light. A nontrivial effect in this field of . Jd¥(t)

guantum physics is the stabilization of the atom. Suppose ih ot =[HotxF(O]¥ (D), @)
that an atom is placed in a laser field whose frequency sat- i

isfies the resonance condition, i.e., the field is in resonancith the external field=(t) =R cosQt. Let |0}, |1), and|E)
with the transition from the occupied atomic level to the P® the wave functions of the initially occupied level, the
continuum. From a “naive” standpoint, the greater the am-additional level, and the states in the continuubeK
plitude of the external field, the faster the initially occupied =LEc,*]- We expand the wave function of the atom in this
atomic level will decay into the continuum. The analysis of aS€t Of states:

decay of an atom into the continuum initiated by a resonant

laser leads to the relationshipxr?, wherex is the corre- ‘I’(t)=A0(t)|0>+A1(t)|1>+J B(E,t)|E) dE. (2
sponding relaxation constant, ands the amplitude of the K

external field in appropriate unitsee, e.g., Ref.)1 How- If we substitute this expansion into E(), we obtain a

ever, a careful study shows that the dependence of the relaxet of equations

ation constant on the external-field amplitude may be ex-

tremely compleX™ Various physical phenomena leading to  11Ag(t) =EoAg(t) + Rcog Q1)
a nontrivial behavior of¢(r), such as resonant stabilization,

adiabatic stabilization, and interference stabilization, have X
been described in the literatufa discussion of this aspect
and the literature can be found in Ref. Zhis paper dis-
cusses one more physical phenomenon that effectively leads

91A1(t)+fKB(E,t)9(E)dE],

iiAL(1) = E1A1(t) + Rcog Ot) g1An(t),

to stabilization of the atom. _ _ i%B’(E,t)=EB(E,t)+Rcog Qt) g(E)Aq(t),
Let us take an initially occupied atomic level. An exter-
nal laser field initiates the decay of the level into the con- , JC(t)

tinuum. We assume that there is also a set of atomic levels €' (1) at

out of exact resonance with the specified level and the con-

tinuum. However, the very notion of exact resonance origi-whereg; andg(E) are the corresponding elements of the
nates in perturbation theory. As the amplitude of the externa®tomic dipole-moment operator. We assume that the fre-
field increases, the levellom the perturbation-theory view- quency() of the external fieldthe field that transfers state
poin that were not in exact resonance with the occupied®) into the continuumis much higher than all other fre-
level begin to effectively interact with that level. We will see duency parameters. This assumption makes it possible to em-

that this interaction can significantly alter the ionization of POy the rotating wave approximatio(RWA). Using the
the atom. substitutions

B(E,t)=exp{—i(Q+ Ey/f)t}b(E, 1),
2. DYNAMICS OF THE PHYSICAL SYSTEM Aolt) =exp{— iEqt/h} ao(t),

. . . . . A(t)= —i(Eg/h —Q)t t
We study the simplest situation by assuming that there is 1(D=exp~i(By Jthay(t)

only one “additional” level, which can begin to interact and introducing the variablevia E=(s+ Q)% +Ej, we can
with the initially occupied level as the amplitude of the ex- eliminate the optical frequency:

1063-7761/99/88(4)/4/$15.00 681 © 1999 American Institute of Physics
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qly)= JK v?(s)exd —iyDs] ds.

Under our assumptions(y) is the “fast” (or rapidly vary-
ing) function. The second term on the right-hand side of Eq.
0 (10) is the integral of the product of the “fast” and “slow”
functions. To obtain an asymptotic expansiam the small
parameter max@,|,|A,)/D)] of such an integral, it suffices
. — to integrate by part§ After the first step has been completed,
! instead of(10) we have
Fie. 4 ag(t) = —irga,(t) —rag([iS+ mg*(0)], (11)
where

2
v (S)ds

iag(t)=r|g;a,(t)+ ng<z>b<g,t>d§} (3 S=V.P. le
s is the corresponding Stark shift of the edge of the continuum.
121(1)=A184(1) +rg120(D), “ Note that we derived Eq11) by assuming thaf)>D
ib(s,t)={b(Lt) +rg({ag(t), (5 >max(rgi]JAq)). This means that we set up the leading term
) in the expansion of the solution of the initial problem in the
wherer=R/2A, and A,=(E;—Eo)/fi+ () is the offset of  gma|| parameter®/Q and g;,|A,|)/D. But Eq. (11) is
the laser-light frequency from the frequency of the transitiongjig even ifD>Q>rg,, |A,|. In this case to derive the
between the discrete level§-or objects related to we Use  aquation we must reverse the order of operations: we first
the same notation as for objects related to the vari@hle expand the analog of E4L0) in the small paramete®/D,

Here we are interested in the solution of the system of equagnq then, employing RWAi.e., eliminating the optical pa-

tions (3)—(5) with the initial conditions rametey, set up the leading term in the expansion of the
ap(0)=1, ()  solution in the small parameterd ,_|_Al|)/Q. Here the pos-

sibility of using RWA can be justified by standard means.

a;(0)=0, (7)  We leave out the mathematical details, since it is are similar

to the approach discussed in Ref. 8.

b(s,0=0. ®) We write the system of equatiord) and (11) in the
Using the initial conditior(8) and integrating Eq5), we ~ form
find that A,(t):AA(t), (12)
t . .
b(g,t)=—irg(g)f exdi £(x—1)] ap(x) dx. (9) ~(ao(t) [ —riis+ag*(0)] —irg;
° “lan)r T —irg, —iA, )’
Substituting this into Eq(3) yields 1
t A(O)z( ) (13
ay(=—irg,ai(0 -1 a(0Qt-0d (10 0
0 The eigenvalues of the matrix can easily be calcu-
Q)= [ gwext-iyeldz ared
= exd —i .
=8 Y Ni=— mr2g2(0)/2 — i[A,+r2S]/2
Equation(10), Eq. (4), and the initial condition$6) and +[(mr2g?2(0)+i(r?s—A,))%—r2g?]1"2, (14)

(7) constitute a complete system of equations for finding the

functionsag(t) anda,(t). This system of equations can by Np=— wr?g?(0)/2 — i[A;+r?S]/2

solved by the Laplace transform method. However, we will 2 2 - 2 2 2.1

use a different approach, applicable also in the case of non- ~L(mrgHO) +i(rS=Ay))"~rfgr ™ (15

trivial modulation of the external field. More precisely, we Let ¢, and ¢, be the corresponding eigenvectdrge

resort to certain asymptotic considerations. will not write the expressions for these eigenvectors, which
Let us examine the structure of the functiQfy). We  are states of the atom “dressed” by the fielélVe wish to

assume thag(¢{) changes significantly only under variations note, however, thag,=A(0) atr=0.

of its argumentiwe denote the corresponding parameter by  Figures 2 and 3 depict typical plots of the functions

D) that are much larger than other energy parametatsn k1(r)=—Ren(r) and k,(r)=—Re\,(r) of the corre-

corresponding units of measurement, frequency parametersponding relaxation constants. Figure 4 depicts the ratios

of the problem. Thusg({)=v(¢/D), with v’ (y) andv”(y) K,/ k1 as functions of. As noted in Ref. 9, the real values of

being of the same order agy) fory=0(1). Lets=Dsand the parameterg(0) andg, are poorly known. For this rea-

Q(y)=Dq(y), where son we used estimateg(0)=0.2,9;=1.5,S=1,A,;=-8
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FIG. 4.
(for curvesA), A;=—4 (for curvesB), A;=0 (for curves In light of these results, let us discuss the dependence of

C), A;=4 (for curvesD), andA,=8 (for curvesE). Note the ionization of our model atom on the amplitude of the
that the curves representing(r) for our values ofA; are  external field. The solution of the initial problem specified by
essentially identical. These diagrams suggest that as the art2) and(13) can be written

plitude r of the external field increases, the values of the _

relaxation constants begin to differ appreciably. When the A =exp\at) pryy+expiiat) paye, (16
effective Rabi parametey,; becomes of orded ;, which is ~ where p; and p, are the coefficients of the expansion of
the offset of the additional level from resonance, the relaxA(0) in the basis),,¢,. As noted earlier, for small ampli-
ation constants differ already by an order of magnitudetudes of the external fielgh, is close to unity ang, is close
Within a broad range of the parameters, the ratio of thes&o zero. Howeverp, increases withr, and whenrg, be-
quantities assumes values of order 10%6t0Q0 ! (see Fig. comes of orded\;, p; becomes comparable to unity. Then,
4). Although the choice of the values of the parametgi), as Eq.(16) implies, the rate of decay of the population of the
01, andSis random(to a certain extemtand hence the prob- atom into the continuum is determined by both relaxation
lem is actually a model, similar behavior of these curves caronstants. Here the part of the population referring to the
be observed within a broad range of valueg(®), g,, and  “dressed” statey; decays much slower than the part corre-
S. Note that disparate physical processes can be examined Bponding to the “dressed” staté,. This phenomenon can
this model, such as the ionization of Rydberg atoms, photobe interpreted as stabilization of the atom in a strong laser
ejection of an electron from an ion, and ionization of “atom- field.

like” quantum well systems. Of course, the parameters of

the model in these cases may be quite different. 3. CONCLUSION

We have discussed one more physical mechanism for the
stabilization of an atom in a strong laser field that differs

= from those discussed earliésee, e.g., Ref. )2 We have
i found that the existence of a group of levels “close” to
60r resonance with an initially occupied level can lead to trap-
| ping of the population of the atom and substantial alteration
S0+ Lo . . . .
of the ionization process. Formally this manifests itself in the
system being characterized by several relaxation constants
40F . o .
] that differ substantially in order of magnitud&lote that the
30k largest relaxation constant for such a system is close to the
] relaxation constant for the level—continuum system calcu-
2ok lated by ordinary perturbation theomy= mr2g?(0); seeRef.
1). Of course, the case we have examined is only a model,
10k but a more general physical system exhibits similar proper-
ties (e.g., a system with several “additional” levels or a
oF system in which some of these levels interact with the con-
' : s ' L . tinuum). In real situations the stabilization of an atom may

occur for various reasons or even a group of reasons. Note
FIG. 3. that our range of parametersg; <D <)) differs from that
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discussed in Ref. 600<rg,;<Q) and Ref. 7 D,Q<r, atom and¥;) strongly depends on the amplitude of the ex-

wherer o is a parameter interpreted as the effective Rabfernal field (which tends to zero as decreasgs while its

parameter in the case of ultrastrong figlds analog in the case of ‘.‘mterference” stabilization does not
After this paper had been prepared for publication, theréindergo such substantial changes.

appeared Pollkov and Fedorov’s pap¥tin which “inter-

ference” stabilization was discussed far and V systems. *'E-mail: akaz@phsc2 stu.neva.ru

Formally, the problem discussed in Ref. (&hd in the ear-

lier paper in Ref 9 is close to the one discussed in the 1v. M. Akulin and N. V. Karlov, Intense Resonant Interactions in Quan-
tum ElectrodynamicsSpringer-Verlag, Berli(1991).

presgnt paper. Both are based on the Sam(:i fact: a S,t,rong Ia‘S;eguper—lntense LaseAtom Physics, Proc. NATO Adv. Res. Workshap IV
field induces states of the atom that are “dressed” by the H. G. Muller and M. V. Fedoroveds), Kluwer Academic Publishers,
field (we denote these states #%) and have a small decay Dordrecht(1996. _ o
rate. In “interference” stabilization. such states emerge be-3M' V. Fedorov,Atomic and Free Electrons in a Strong Light FieWorld

) . ot . . Scientific, River Edge, N.J1997.
cause pf the mterference of transitions from different atomicsy “gymett, v. C. Reed, and P. L. Knight, J. Phys2B, 561 (1993.
levels into the continuum and play an important role at all °N. B. Delone and V. P. KrainovMultiphoton Processes in Atoms
values of the external-field amplitudes. In our case, when the Springer-Verlag, New York1994.
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A phase diagram for a 2D metal with variable carrier density has been derived. It consists of a
normal phase, where the order parameter is absent: a so-called “abnormal normal” phase

where this parameter is also absent but the mean number of composite lBosond pairs

exceeds the mean number of free fermions; a pseudogap phase where the absolute value

of the order parameter gradually increases but its phase is a random value, and finally a
superconductinghere Berezinski-Kosterlitz—Thoulegsphase. The characteristic

transition temperatures between these phases are found. The chemical potential and paramagnetic
susceptibility behavior as functions of the fermion density and the temperature are also

studied. An attempt is made to qualitatively compare the resulting phase diagram with the features
of underdoped high, superconducting compounds above their critical temperature.

© 1999 American Institute of PhysidsS1063-776199)00704-(

1. INTRODUCTION 2+1-theory** and the crossover from superconductivity to
superfluidity has been consideteds a function of the car-
The study of the crossover region between supercondugier densityn; (see also Ref. 16 However, the method em-
tivity of Cooper pairs and superfluidity of composite bosonsp|oyed in Ref. 15 to obtain the temperatiiigcr has several
is attracting much attention due to its close relationship tQjrawbacks. Most importantly, the equation Ty was ob-
the problem of describing high-temperature superconductorigined without considering the existence of a neutraa)

(HTSO) (see, e.g., Refs. 133At present this region is Un- orqer parametep, whose appearance at finie does not
derstood for 3D systems, both at zero and finite\gate the CMWH theorem.

temperature$?® The crossover in quasi-2D systems has also As we show belowp defines the modulus of a multival-
been studied,albeit only partially, whereas for 2D systems ued complex order paramet@rfor a 2D system. As a result

only the case of =0 has been studied thorougHfty This is of allowing for a neutral order parameter, a region where

related to the fact that fluctuations of the charged complex . .
; r Il zer rs in the ph iagram of th
order parameter in 2D systems are so large that they destr decays gradually to zero appears in the phase diagram of the

Q . : .
long-range order at any finite temperatut€oleman— s¥/stem.Th|s region separates the standard normal phase with

Mermin—Wagner—Hohenber¢CMWH) theorend). In this p=0 from the BKT phase, where the correlations exhibit

case the appearance of an inhomogeneous condensate WitR%Wer'Ei.W decay. pesplfte the exponintlal deca)(/j of correla-
powerlaw decay for the correlationsthe so-called tions, this new region of states may be expected to possess

Berezinski—Kosterlitz—Thoules$BKT) phasg is possible. Unusual properties, singeplays the same role as the energy

However an adequate mathematical description for BKTgapA)i” the theory of ordinary superconductors in many
phase formation is still lacking. cases) The possible existence of such a phase, which in

Most previous analys&s! of the behavior of 2D sys- SOMe sense is also normal, may shed light on the anomalous
tems atT#0 have been based on the Noee—Schmitt— Pehavior of the normal state of HTSGee, for example, the
Rink approach? This approach is simply a Gaussian ap-'eviews in Refs. 1, 2, and 18In particular, the temperature
proximation to the functional integral, and this perhapsdependencies of the spin susceptibility, resistivity, specific
explains the difficulties faced in these calculations. On thdeat, photoemission spectra, and other quarttitiesan be
one hand, Gaussian fluctuations destroy long-range order #xplained by the formation of either a pseudogap or a spin
2D and if one searches for tA&® at which the order sets in, 9ap in the region>T.
one should obtain zero in accordance with the aforemen- Using a very simple continuum 2D model, this approach
tioned theorem8.0n the other hand, taking Gaussian fluc-was first attempted in a brief notéwhere we calculated
tuations into account is completely inadequate to describdgkr andT, (T, is the temperature defined by the condition
the BKT transition3 p=0) self-consistently as functions of;, and established

Nonetheless, there has been some progress. For exampllee boundaries of this nepseudogapegion, which lies be-
the BKT transition has been studied in relativistic tweenTgyr andT,.

1063-7761/99/88(4)/11/$15.00 685 © 1999 American Institute of Physics
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The purpose of this article is to develop this approachvalued under 2 rotations fixes the parametrization. This was
further. Using the static paramagnetic susceptibility as amot taken into account in Ref. 20, where a different param-
example, we demonstrate that the pseudogap opens belmtrization was used.

T,. Furthermore, we analyze the difference between the As a result, one obtains
commonly usedsee Refs. 3 and)4pairing temperaturd,
and the tempergtur‘éP int.roduced he're. These Femperaturesz(v,M,T):f pZpZ0exd — BA(v,w,T,p(x),d6(x))],
turn out to be different if the chemical potentiakc0. We
) S (2.2

also introduce here aabnormal normalphase, which lies
betweenT, and T,, where performed bosons exist. This where
$ore detailed study helps to clarify the_physmal import of BO(v, 1, T,p(x),30(x))

,» as well as the nature of the transition Bf. It was
believed in the related modélthat this is a second-order
phase transition. We argue however, that fluctuations in the
phase of the order parameter can transform the transition to a _ _ _
crossover, as observed experimentally. is the one-loop effective action, which depends on the

In Sec. 2 we present the model and the relevant formalmodulus-phase variables. The acti@3) can be expressed
ism. The equations foFgr, p, T,, and the chemical poten- i terms of 'Fhe Green func_tlon of the initicdharged fermi-
tials u(Tgr) and u(T,) are derived in Sec. 3. Since the ONs, which in the new variables has the operator form

1 A 2 1 -1
:VJ drf drp“(X)—TrinG™*+TrinG, ~ (2.3
0

technique employed to obtain the equation Tt is not . v2 i9.6(7,r)
widely used, we consider it useful to present a detailed deriG = —19,+ 75 >m +u|+1p(7,r)— 73 —
vation of this equation(The details of the calculation of the

effective potential and useful series are given in Appendix (Vo(r,r)?] [ivee(rr) ivVe(rrnV

A.) The systems of equations fakyr, p(Texr), #(Texr) R }H am T T om } 2.9

andT,, u(T,) are analyzed in Sec. 4. The difference be- _ _ _

tween pairing temperaturk, and the temperaturg, is dis- ~ The free fermion Green functioBo=Gl|, , s-o provides a
cussed in Sec. 5. Also discussed is the physical impdf,of f:onvenlent regularlzatlon in the process of calculation. It is
Using the example of the static spin susceptibility, it isimportant that neither the smallness nor slowness of the
shown in Sec. 6 that the resulting pseudogap phase can yariation of the phase of the order parameter is assumed
fact be used to explain the aforementioned anomalous propd obtaining expressiof2.3). In other words, it is formally

erties of HTSC. exact.
Since the low-energy dynamics of phases for whiet0

is governed mainly by long-wavelength fluctuationsg¢x),
only the lowest-order derivatives of the phase need be re-

2. THEORETICAL FRAMEWORK tained in the expansion & (v,u,T,p(X),d6(X)):

The simplest model Hamiltonian density for fermions (v, u,p(x),30(X))=Qin(v,x,T,p,d0(X))

confined to a 2D volume is*"*°
+ Qpolv. 1, Top), (2.9

V2
H= ¢Z<x)( ~ 5 ) Yo(X) = VIO PP (X) (%),
(2.9

where
oo

1
Quin(v, 1, T,p,30(x)) =T Trn§=‘,l ﬁ(5}2)“ (2.6)

p=const

where x=r,7;¥,(x) is a fermion field,m is the effective
fermion massy is the chemical potential, and is an effec- and
tive local attraction constant; we take=kg=1. Qo0 T,p)
The Hubbard—Stratonovich method, which is standard "
for these problem$ can be applied to write the partition
functionZ(v,u,T) as a functional integral over Fermi fields
(Nambu spinorsand the auxiliary fieldb=Vy . In con-
trast to the usual method for calculatidgin ®, ®* vari- 27
ables, the parametrizatiof(x) =p(x)exd—if(x)] is more  The kineticQ;, and potential,; parts can be expressed in
appropriate for presenting the corresponding integral in twaerms of the Green function of the neutral fermions, which
dimension# (see also Refs. 23 and R4Vhen this replace- satisfies the equation
ment by modulus-phase variables is implemented, it is evi-
dent that one must also replage.(x) = x,(x)exdifx)/2]. —+pu
Physically, this amounts to replacing the charged fermion 2m
¥s(X) with a neutral fermiony,(x) and spinless charged .4 the operator
bosone'?®’2 Note that while one may formally use any
self-consistent definition of the new variables, the physica
condition that the macroscopic variabtb(x) be single-

- 1 2 o1 -1
=y drps=T Trin & *+T TrinG,

p=const

VZ

~19,+ 14 +rp| A )=8(7)8(r), (2.9

5((90)57'3

i(970+ (Va)z} _A[iv%b ive(r,rVv

2 8m 4m 2m } @9
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The representatiof2.5) enables one to obtain the full set valuedness of the phageThus, fluctuations of the phase are
of equations necessary to fifigkr, p(Tgkr), andu(Tgkr) taken into account in a higher approximation than Gaussian.
at giveneg (or, for examplep(T) andu(T) at givenT and  The XY-model was assumed to be adequate for a qualitative
€r). While the equation foff gt will be written using the  description of the underdoped cuprafesee also Ref. 28
kinetic part(2.6) of the effective action, the equations for and the relevance of the BKT transition to Bose- and BCS-
p(Takr) and w(Tgkr) [or p(T) and w(T)] can be obtained like superconductors was recently discussed in Ref. 16.
using the mean field potenti@R.7): It turns out that at a To expand(),;, up to ~(V 6)?, it is sufficient to restrict
phase for whiclp#0, the mean-field approximation for the ourselves to terms with=1,2 in the expansioti2.6). The
modulus variable describes the system quite well. This igalculation is similar to that employed in Ref. 29, where only
mainly related to the nonperturbative character of thehigh densitiesn; were considered af=0. Thus, to obtain
Hubbard—Stratonovich method, i.e., most effects carry ovethe kinetic part, one should directly calculate the first two
for a nonzero value op. terms of the serie42.6), which can be formally written

It is clear that the CMWH theorem does not precludeQ{H=TTr(<3) and Q@)= (1/2)TTr(¥3%3). We note

nonzero(p) and, as a consequence, an energy gap for fefthat s, has the structur& = 730,+10,, whereO, and O,
mion , since no continuous symmetry is broken when suchyre differential operatorksee(2.9)]. One can see, however,

a gap appears. Despite strong phase fluctuations in the Wesat the part ofs, proportional to the unit matri does not
dimensional case, the energy gap in the spectrum of the news niribute toQ (L)

: . el in - Hence,
tral fermion y can still persist in the spectrum of the charged
fermion ,2% even well above the critical temperatiftane »
believe that the pseudogap widely discussed in HAigltu- Q(k'l):Tfﬁde erz E dk T “(iw,,K)7s]
prates might be attributable to the energy gap of a neutral " 0 (2m)"n

fermion introduced in the way described above, so that the : 2

pseudogap itself can be considered a remnant of the super- X(Iafa (Vo) ) (3.3
conducting gap. The condensate of neutral fermions has 2 8m

nothing to do with the superconducting transition; the latter

is only possible when the superfluid density of bosons bewhere

comes large enough to stiffen the phage). The tempera-

ture T, at which nonzerdp) develops should be identified in L iyl + 736(K)—71p

this approach with the pseudogap onset temperattir€he Aoy k)= w§+ £4(k) + p2 3.4

strategy of treating charge and spin degrees of freedom as

independent seems to be quite useful, and at the same tim§&he Green function of neutral fermions in the frequency-
very general feature of two-dimensional systems. momentum representation, with(k) =g (k) — x« and &(k)

=k?/2m.
3. DERIVATION OF SELF-CONSISTENT EQUATIONS The summation over the Matsubara frequencies
FOR Tgkr, NEUTRAL ORDER PARAMETER, =m(2n+1)T and integration ovek in (3.3 can be easily
AND CHEMICAL POTENTIAL performed using the surfA7); thus one obtains

If the model under consideration is reduced to some 5 9.0 (V)2
known model describing the BKT phase transition, one can quln):-rf de dan(M.T,p)< T ) (3.5
easily write the equation foF gkt , which in the present ap- 0 2 8m
proach can be identified with the superconducting transition
temperaturd .. Indeed, in the lowest orders the kinetic term where
(2.6) coincides with the classical spXY-model?®2®which
has the continuum Hamiltonian m

] el Top(p,T)]= 54 N+ p*+ ut 2T
%=—J dr[Vé(r)]2. (3.2
’ xin| 1+ exg - YA TF° (3.6
HereJ is some coefficientin the original classical discrete X T ' '

XY-model it is the stiffness of the relatively small spin rota-
tions) and @ is the anglgphasg of the two-component vector This has the form of a Fermi quasiparticle dengftyr p=0

in the plane. the expressiort3.6) is simply the density of free fermions
The temperature of the BKT transition is, in fact, known  For the caseT=0,2>?° in which real timet replaces
for this model: imaginary timer, one can argue from Galilean invariance
- that the coefficient of, 6 is rigorously related to the coeffi-
Toxr=-J: (3.2  cient of (V)2 It therefore does not appear d{2). We

wish, however, to stress that these arguments cannot be used
Despite the very simple forthof Eq. (3.2), it was derived to eliminate the term Y 6)? from Q{2) when T+#0, so we
(see, e.g., Refs. 25 and )26sing the renormalization group must calculate it explicitly.
technique, which takes into account the non-single- TheO; terminX yields
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) B T characterizes the phase stiffness and governs the spatial
Q450 = > fo de dr— 27 variation of the phasé(r). One can see that our value of the

phase stiffnesd(T=0) coincides with the nonrenormalized

* stiffness used in Ref. 27.
X _2 dk T Al wn k) 7351 0y ,K) 73] The quantityJ(u,T,p) vanishes ap=0, which means
n=o that aboveT, the modulus-phase variables are meaningless;
ig.0 (V6)?\? to study the model in this region one must use the old vari-
2 am 3.7 ables® and®*. NearT, one can obtain front3.13) in the
high-density limit(see below
Using (All) to compute the sum over the Matsubara fre- (3) p? 5
uencies, we find that 74(3) p p
q o, Ju=er T=T,,p—0)= ¢ 5 726r=0.016 5 ¢r.
T (8 A\ p P
agion--3 [ar| der,T,p)(iaTH %) , (314
0
(3.9 Direct comparison 0f3.12 with the Hamiltonian of the
XY-model(3.1) makes it possible to write E@3.2) for Tk
where directly:
KL Top(, T ]= o | 14— tanh 2P m
LA R P W2+ p2 2T [ o Im Tekr p (1 Tokr) I = Texr - (3.19
(3.9

. - Although mathematically this reduces to a well-known prob-
Obviously, theO, term does not affect the coefficient of lem, the analogy is incomplete. Indeed, in the standéyd

,(VH)Z: Further, it is _eas3(’2;[°_ make sure that the cross termy,, e (as well as the nonlineas-mode) the vector(spin)
involving O, and O, in Qi is absent. Finally, calculations g hiect to ordering is assumed to be a unit vector with no

of the O, contribution toQ{3) yield? dependence ofi.”’ In our case this is definitely not the case,
8 T * and a self-consistent calculation Bkt as a function oh;
Qﬁizrf(oz):Tf drf dr —— > | dkKk2Tr requires additional equations far and u, which together
0 (2m)"n==e with (3.15 form a complete set.
(V6)? Using the definition(2.7), one can derive the effective

X[ Liwy KT Ao, k)] Tomz: (310 potentialQpo(v,u,T,p) (see Appendix A Then the desired
missing equations are the conditiof ,,{(p)/dp=0 that the
Thus, summing over the Matsubara frequendisse Eq. potential (A10) be minimized, and the equality

(A12)], one obtains vflé’ont/o’J,u:—nf, which fixesn;. These are, respec-
1 tively
(o )=—fﬁd7f ar ———

iin( Oz 0 12872m? 1 dk 1N (3.16

K2 Vo) @m 2 g +p? 2T
dek (Vo)2. (3.1 _
g2(k)+p2 nF(Iu'lTrp)_nf ’ (317)
costt—— ——— whereng(u,T.p) is defined by(3.16

Equations(3.16 and (3.17) comprise a self-consistent

As expected, this term vanishes whEn-0, but at finiteT it system for determining the modulpf the order parameter

is comparable with3.5). and the chemical potential in the mean-field approximation
Combining(3.5), (3.11), and(3.8) we finally obtain for fixed T andn;.

T (8 While Egs.(3.16 and(3.17) seem to yield a reasonable

Qkinzif drf dr[ng(w, T,p)id,.0+I(w,T,p)(V6)? approximation at high densitia® , since they include con-

0 densed boson pairs in a nonperturbative way via nonggero

+K(u,T,p)(d,60)7], (3.12  they must certainly be corrected in the strong coupling re-
gime (low densitiesn;) to take into account the contribution
where of noncondensed bosotithis appears to be important also
1 for Eq. (3.195, which determine§ gx7). The extent to which
Ju,Tp(u,T)]= mnF(,u,T,p) this alters the present results is not completely clear. Previ-

ously, the best way to incorporate noncondensed pairs

T o X+ /2T seems to have been the self-consisteidtmatrix

- approximation>°=*2which allows one to account for the
dx pp
A J—pior p? feedback of pairs on the self-energy of fermions. However,
cosit \/ x>+ ye the T-matrix approach, at least in its standard fofri®-32

fails to describe the BKT phase transition, for which one
(3.13 must consider the equation for the vertex. On the other hand,
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in our approach the BKT phase transition is realized by the T.Ng)l

condition(3.2), while an analog of th@-matrix approxima- 6

tion in terms of propagators of theparticle and the neutral

fermion y has yet to be elaborated. a0 e P
The energy of two-particle bound states in vacuum | 7

47
Ep= —ZWGXF< - m

[
T

(3.18 Toxr
7 BKT
(see Refs. 4, 7, and B3 more convenient to use than the 0 5 0 15 70
four-fermion constantvV (here W is the conduction band- er/ig)
width). For example, one can easily take the limité—
and V—0 in Eq. (3.16, which after this renormalization

FIG. 1. Tgxr and T, versus the noninteracting fermion density. Dots repre-
sent the functionp(eg) at T=Tgkr. The regions of normal phas@lP)

becomes pseudogap phag@®P), and BKT phase are indicated.
|2 -
In \/ﬁ =2 B /Tdu below T,. At higher temperatures, only these pair fluctua-
potpTT R . tions exist; their influence was studied in Ref. 35.
1
X . 4. NUMERICAL RESULTS
2 2
uZ+ P exp\/u2+| =] +1 A numerical investigation of the systeni3.19, (3.17),
(3.19, and(3.20), (3.2)) yields the following results, which

(3.19 are displayed graphically as the phase diagram of the system.

a) For low carrier densities, the pseudogap phase area
Thus, in practice, we solve Egé3.19, (3.17, and(3.19  (see Fig. 1is comparable with the BKT area. For high car-
numerically to studyTgir as function ofn¢ (or equivalently,  rier densities &-=10%e,|), one easily funds that the

of the Fermi energyer=mn¢/m, as it should be for 2D pseudogap region shrinks asymptotically as
metals with the simplest quadratic dispersion )law

It is easy to show that at=0, the systen{3.17), (3.19 Tp— Tekr — ﬂ' 4.1)
transforms into a previously studied systésee Ref. 4 and T, €r
references  therejn Its solution is p=y2|epler and  Thig pehavior qualitatively restores the BCS limit observed
w=—|ep|/2+ eg . This will be useful in studying the con- ;, overdoped samples.
centration dependencies oAZTgyr and 2A/T,,, whereA is b) For ep<(10-15)e,|, the functionTggr(er) is lin-

the zero-temperature gap in the quasiparticle excitation speggy a5 also confirmed by the analytic solution of the system
trum. It should be borne in mind that in the local pair regime(3.1@, (3.17), and(3.19, which yieldsT g = €-/8. Remark-
(1=<0), the gapA equalsyu+p® rather thanp (@sinthe  aply such a behavior 6F(eq) is observed for all families
caseu=>0). _ o of HTSC cuprates in their underdoped regioi, though
Settingp=0 in EQs.(3.16 and(3.17), we obtain(in the  yith a smaller coefficient of proportionalig.01-0.1. This
same approximatigrthe equations for the critical tempera- jngicates the importance of including a contribution due to

ture T, and the corresponding value pf noncondensed pairs in E(8.15, which definesTgxr .
|lew| ¥ w2T,  tanhu _Ithas been shown that for an optimal doping, the dimen-
InT—;= - u—; (y=1.78)), (3.20  sionless raticer /|| ~3X10°—1C.3° Thus it is quite natu-
p

ral to suppose that in the underdoped region one has
“ € /|ep| ~10—1G, where we find linear behavior.

1+ex;{ T—) =e€g. (3.22 We note that in this limit, the temperatufe of forma-
p tion of a homogeneous order parameter for the quasi-2D

Note that these equations coincide with the system that denodef® can easily be written in the form

T, In

termines the mean-field temperatufg’®"(=T,) and 4T

w(TEPMFY 7 evidently as a result of the mean-field approxi- ~ Te~ —— -, (4.2
mation for the variable used here. There is, however, an In(erlep|/4t)

important difference between the temperatuTé@ andT,,. wheret, is the interplane hoppingcoherent tunnelingcon-

Specifically, if one takes fluctuations into accouﬁi!3 goes stant. This shows that whem . <Tgky, the weak three-

to zero, while the value off, remains finite. The crucial dimensionalization can preseryi@ any case, at lomy) the
point is that the perturbation theory in the variabteand ¢  regions of the pseudogap and BKT phases, which, for ex-
does not contain any infrared singularitfés’in contrast to  ample, happens in the relativistic quasi-2D motfeAt the

the perturbation theory i, &*; thus the fluctuations do not same time, as the three-dimensionalization parantetier
reduceT, to zero. This is why the temperatuf, has its  creases, wheld;>Tgkr the BKT phase can vanish, pro-
own physical meaning: incohereibcal or Cooper pairs  vided, however, that the anomalous phase region and both
begin to form(at least at high enough; [see Sec. § just  temperature§, and T,=n;/m are preserved.
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1.0 \ HTSC*°Note that the divergence ofM Tgr and 2A/T,
wie BKT, at eg—0 is directly related to the definition & at u<0.
r 6
0.5 5 5. PAIRING TEMPERATURE T, VERSUS CARRIER DENSITY
4 There is no disagreement concerning the asymptotic be-
N NP havior of Tgkt (or T.) ~eg in the region of low carrier

PPy

\

densities. In contrast, the behavior of the temperaiyye
below which pairs are formed, cannot be considered to be
generally accepted. For example, in Refs. 3 and, 27 based on
qualitative arguments, this temperature is taken to be the
temperatureT , of local uncorrelated pairing, which in con-

3 trast toT , increases with decreasimg .9 Randeriasee Ref.
4 and references thergjrto define the pairing temperature
T,, uses the system of equations for the mean-field transi-
Z'_G(-) é.’ SM_(P gifzf'a?fiogs(":’g'r“ei (;Jf;; (/j|€b<|10 Eoc'ﬂiinzi;?z&;&f@;s tion temperature and the corresponding chemical potential,
50a|e.d’t06|: a’nd\ab], res;;ectivellgb.The th/it:k lines delimit regFi)ons of BKT, which I_S essentla”y identical to the SySte(m'ZQ’ (3.21.
pseudogagPP), and normalNP) phases. Thus hisT,—0 asn;—0.
It is also well know#>®that in the low-density limit, it
is vital to include quantum fluctuations, at least in the num-
] . ) ber equatiort? in the calculation of the critical temperature
¢) Figure 2 shows the values of for which x differs ¢ which a long-range order forms in 3D. In 2D these fluc-
substantially fromeg, or in other words, the Landau Fermi- ¢ ations in fact reduce the critical temperature to Zé1@er-
liquid theory becomes inapplicable to metediso called bad  (4inly quantum fluctuations are also important in the calcu-
metalg with |QW or intermediate_carrier density. As eX- |ation of T, in the limit n;—0 and, in particular, in the
pected, the kinkw at T=T,, which has been observed nymper equation. However, as already stressed in Sec. 3,
experimentally” and interpreted for the 1-2-3 cupra?é@e- these corrections are quite different from what we obtain
comes less and less pronouncedepsncreases. But in the using the variablesb, ®*, since perturbation theory in the
present case it is interesting that in the hydrodynamic apygriaples p and 6 does not contain any infrared
proximation employed here, it happens at the normalsingylarities’>*and the fluctuations do not yief,=0. In
pseudogap phase boundary or before superconductivity r¢act even including quantum fluctuatioris, must exceed
ally appears. It would therefore be of great interest to-|—BKT (p(Takr) #0), so that the pseudogap phase is always
perform experiments that might reveal the temperature depresent.
pendenceu(T), especially for strongly anisotropic and rela- In our opinion, the temperatuf®, has its own physical
tively weakly doped cuprates. interpretation: this is the temperature of a smooth transition
d) It follows from curve3 in Fig. 2 that the crossover g the state in which the neutral order paramgté0, and
(sign change in) from local to Cooper pairs is possible not pejow which one can observe pseudogap manifestations.
only ase increases, which is more or less obvious, but alsorhere is also a very interesting and important question about
(for someny) asT increases. . the character of the transition. Certainly in the simplest Lan-
€) Finally the calculations showetsee Fig. 3that the  gay theory one appears to have a second-order phase transi-
ratio 2A/Tggr is greater than 4.7 in the region under study.tjon, sincep takes a nonzero value only beldly,.** How-
The value 2/T,(=2A/T¢'7) is, however, somewhat lower eyer this kind of transition is only possible for neutral
and reaches the BCS theory limit of 3.52 only féf  fermions. Fluctuations of thé-phase will transform the pole
>[ep|. It is interesting that this concentration behavior isin the Green function of the neutral fermions into a branch
consistent with numerous measurements of this ratio iyt in the Green function for charged particles in the BKT
phase. Indeed, the CMWH theorem concerning the absence
of spontaneous breaking of a continuous symmetry means
/T, that symmetry-violating Green functions must vanish. How-
ever, it says nothing about the gap in the spectrum of exci-
tations, as is sometimes incorrectly stated.
15t /T The correct explanation is that if the symmetry is unbro-
ken, and the fermion excitation appears as a pole ingthe

<

O ______/
ad 2 \\\
!
-0.5 N
1
TIT

P

107 two-point function, then the fermion must be gapless. If the
sk 28T, fermion does not have the same quantum numbers (ke
- our fermion ) and so does not appear in thjetwo-point
. . . , function as a one-patrticle state, then the symmetry does not
0 : ? 46,.-/|£bl tell whether the fermiorfy) will be gapless or not.

This very general arguméftsuggests the following

FIG. 3. 2A/Tgyr and 2A/T,, versus the non-interacting fermion density. ~ plausible scenario. At low temperaturds<{ Tggt), X, p, and
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0 should be treated as physical quasiparti¢hesp having a T/ig)
gap andé being a gapless excitatipnwhile a straightfor- L i
ward computation of thes two-point functiorf? reveals its Lo0de o NP .
branch-cut structure. °o°P ....
On the other hand, at temperatures abdwgr, we 0.75r %

. o ) : ANP 0 T
should considery and® true quasiparticles, sinCegky is a 0.50+ p
phase transition point and the spectrum of physical excita- 0251 “-._‘PP
tions changes precisely at this point. Té@wo-point func- - ':_.
tion at T> Tyt should be studied separately due to the pre- e & e

h . 0 0.25 0.50 0.75 1

sense of vortices which change the form of the correlator /1,

(exfdi6(x)]exdi6(0)]) aboveTgkr. In this temperature re-

gion thedl tWO_point function loses its branch-cut structure; FIG. 4. Phase diagram of the 2D-metal at low concentrations. The dotted

instead, it acquires the form Suggested in Refs. 30 and 3I1;e corresponds ta=0, and the temper_a_tuf'iq3 separates al_JnormaI normal
ase ANP from normal phase. The critical temperaligg is not shown.

with a pseudogap originating from the superconducting gaﬁ
below Tgkt, Which preserves “BCS-like” structure as well
as the diagonal component of the single-particle Green func-

tion. In this picture the Fermi-liquid description breaks 1 dk £2(k)

down, evidently belowT,, due to the formation of non- Fgl(w,O): =+2 >

zerop. g Vv (2m)* (k) + p?
We note, however, that the decisive confirmation of this tanhVE2(K) + pZ2T

picture demands further detailed study probably based on a
different approach, for example the self-consistémhatrix

(see Ref. 30 and references thejewhich enables one to
directly obtain the full fermion Green function. From the explicit expressiofs.3) for I'r(w,0), this function

To define the temperatuf®, properly, one should study obviously has a branch cut at frequencies
the spectrum 0:; bound states either by solving the Bethe—

Salpeter equatidnor by analyzing the corresponding Green 2p, n=0,
functions as we do here. It turns out that there is no differ-  |@|=2 miny&*(k)+ p*= 22+ p2  u<0 (5.4
ence betwee, and T, in the Cooper pair regimgu>0), pemp '
while in the local pair regiorfu<0) these temperatures ex-
hibit different behavior.

Indeed, let us study the spectrum of bound states in bo%e
the normal(p=0) and pseudogafp+0) phases. We are es-
pecially interested in determining the conditions under whic
real bound state@with zero total momenturk =0) become
unstable. For this purpose one can look at the propagator
the p-particle in the pseudogap phase:

PR E ©3

Thus, bound states can exist below this cut.

Real bound states decay into two-fermion states when
energy of the former reaches the branch point
miny&2(k) + p. Sincel“;el is a monotonously decreasing
unction of w?, it has the unique solutigz,(T)|=2p(T), at
hich Eq. (5.3 coincides exactly with the mean-field equa-

tion (3.16 for p(T). It also becomes clear that far<0 we

have real bound states with energy(T) below the two-
particle scattering continuum ab=2./u?+p?, while at

1 1 ,8529(0,/L,T,p(T,l‘),c?ﬁ(T,l’))‘ u=0 there are no stable bound states. The lin@,ef)
I (T,r)=§ 5p(7,1)p(0,0) I =0 in the T— e plane atp#0 separates the negatiye
P"’min‘con(sg n region where local pairs exist from that in which only Coo-

per pairs exis{positive u). This line (see Fig. 4 begins at
the pointT=(e”/m)|e,|~0.6¢p|,er~0.39¢,| and ends at
where i, is defined by the minimum conditio(8.16 [or ~ T=0, er=|ey|/2. (The latter follows directly from the solu-
(3.19] of the potential par(A10) of the effective action tion atT=0, u=—|ey|/2+ e*")

(2.3. In the momentum representation, the spectrum of To find a similar line in the normal phase witk=0, we

bound states is usually determined by the condition consider the corresponding equation for the bound states.
The propagator of these stai@s imaginary time formalism

is defined to be

'z (w,K)=0, (5.2)
AT B&ZQ(U,M,T,d)(r,r),@*(r,r))|
T,r)= .
whereI'r(w,K) is the retarded Green function obtained di- od* (7,r)69(0,0 | ook =0
rectly from the temperature Green functibfi(},,,K) using (5.5

the analytic continuation{},,— w+i0. Recall that such an

analytic continuation must be performed after evaluating th¢ln the normal phase, where=0, we must again use the
sum over the Matsubara frequencies. In case of vanishinmitial auxiliary fields® and®* (see Secs. 2 angdBThen in
total momentumK =0, one arrives at the energy spectrumthe momentum representati¢after summing over the Mat-
equation subara frequencigsve have
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_ 1 1 dk behavior. Moreover, aff<T, one can speak of a real
I 10, .K)= v EJ 27 pseudogap in the one-particle spectrum, while in the region
T,<T<T, only strongly developed pair fluctuatiotisome
tanh&, (k,K)/2T +tanhé_(k,K)/2T number of pairk exist, though they probably suffice to re-
(KK +E(KK)—iQ, duce the spectral quasi-particle weight, and to produce other
observed manifestations that mask pseuddgam gap; see
Ref. 35 formation.

2
M (56)

1 K
X €&, (k,K)= %(kig

to the Hamiltonian(2.1) where ug=e€e#/2mc is the Bohr
magneton. Note that, using the isotropy in the problem, we
chose the direction of field to be perpendicular to the plane
containing the vectors.

Adding the corresponding term to E@.8) for the neu-
tral fermion Green function, it is easy to show that in the
tt%omentum representatignompare with(3.4)]

wherek is the relative momentum of the pair. The spectrum
of bound states is given again by E§.2). Using the energy 6. PARAMAGNETIC SUSCEPTIBILITY OF THE SYSTEM
ep [see Eq(3.18] of the bound state at=0, for K=0 we . .
obtain the following equation for the energies of these states It would be very interesting to study how a nonzero
in the normal phase: value qf the neutral order parameter gffects the observable
properties of the 2D system. Does this really resemble the
o 1 tanh(x—u)/2T gap opening in the traditional superconductors, except that it
fo dx Xlepll2 x—p—wl2 }:0 (57 happens in the normal phase? Or, in other words, does the
pseudogap open?
Such states can exist providetu —|ep|<w<—2u. The We shall demonstrate this phenomenon, taking the para-
left-hand side of Eq(5.7) is positive atw=—2u—|ep| and  magnetic susceptibility of the system as the simplest case in
tends to+oo(u>0) or —oo(u<<0) whenw——2u. This equa- point. To study the system in the magnetic fieldbne must
tion always has a solution @t<0, so bound states with zero add the paramagnetic term
total momentum exist for negative. . .
For x>0, analytic analysis becomes more complicated, Zpm=—msHL (1) ¢ (1) =4 (r) ¢ (r)] (6.1
and requires numerical study. One can easily find f(6ri)
that at T=0, stable bound states exist up to<|s;|/8. In
fact, numerical study folf=T, shows that the trajectory
u(T,ex)=0 [or T=¢€g/In2, see(3.21)] approximately di-
vides the normal phase into two qualitatively different re-
gions: with (u<0) and without (u>0) stable (long-lived
pairs. This also holds for other phases, which enables one
draw the whole lineu(T,e) =0 (Fig. 4).

Knowing the two-particle binding energy, it is natural to (i wn+MBH)i+ 72E(K) — 71p
define pairing temperatur&, as Tp%|8b[Tp,,u,(Tp,eF)]. ‘Aiw, ,k,H)=— 2= 20052 - (6.2
This equation can be easily analyzed in the regign (fon+ ugH)"=¢(k)=p
<|ep|, for which we directly obtairT ,~|e|, which clearly The static paramagnetic susceptibility can be expressed
coincides with the standard estimde. This means in turn  in terms of the magnetization,
that the curveT,(eg) starting atT,(0)~|e,| will be re-
duced, up to the poinT,(0.3%¢)~0.6¢y,|, which lies on _IM(u,T,p,H)
the line T ,(&r) (see Fig. 4. It is important that this line is X(p,Top)= 9H : 6.3

not the phase transition curve; it merely divides the fermion H=0

system diagram into temperature regions with a prevailingvhich in the mean-field approximation can be derived from
mean number of local pairsT¢&T,) or unbound carriers  the effective potential:

(T=T,). This is the region of the abnormal normal phase

where one has preformed boson pairs. It is widely accepted, _ E o0, 1, T,p,H)

however, that this case is only of theoretical interest, since v dH

there is no Fermi surfadg.<0) in the phase. The phase area
or the differencel (ex) — T,(eg) is an increasing function

Thus from(6.4) one obtains

as ee—0, which corresponds to the behavior usually % dk

assumed:”” M(,TpH) = paT 2 f 2 TS w0n K, H)T].
When u>0 there are no stable bound states,({) n== J (2m)

=2p(T)=0) for the normal phase, where they are short- (6.9

lived. Formally, usingp(T) =0 in Eq.(5.3), we immediately  Then using the definitio6.3) one arrives at
obtain (3.20 or, in other words, her&,=T,. Such a con-

clusion is in accordance with the generally accepted defini- ) dk * (k) + p?— w?
tion of T, in the BCS casé! x(w,T,p)= g 2m2T _Zx (w2t (k) 1+ p? 2"
Thus the phase diagram of a 2D metal abdyecquires - n P 6.6

the form shown in Fig. 4. It is interesting that if the line
To(er) cannot be defined exactly, the temperaflijéer) is ~ The sum in(6.6) can easily be calculated with the help of Eq.
the line below which pairs reveal some signs of collective(A11); thus, we obtain the final result
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X2 nomena caused by doping and to describe new phenomena,;
1.00 for example, pseudogap phase formation as a new thermody-
namically equilibrium normal state of low-dimensional con-
0.75 ducting electronic systems.
Evidently there are a number of important open ques-
0.50 tions. They may be divided into two classes: the first con-
0.25 cerns the problem of a better and more complete treatment of
the models themselves. The second class relates to the extent
to which this model is applicable to HTSC compounds, and
0 T what the necessary ingredients are for a more realistic de-
BKT scription.
FIG. 5. x(T) for various values of /|e,|: 1—0.6; 2—1; 3—5; 4—10; Regarding the microscopic Hamiltonian as a given
5—30. model, our treatment is obviously still incomplete. In par-

ticular, there exists an unconfirmed numerical réSudased
on a fully self-consistent determination of a phase transition
1 fw dx to a superconducting state in a conserving approximation,
—ul2T

X(MyTaP):XPauIiE > (6.7 which states that the superconducting transition is neither the
cosk /x2+p— simple mean-field transition nor the BKT transitiorSee,

T? however, the discussion preceding E8.18] Besides, it
would be very interesting to obtain the spectrum of both the
anomalous normal and pseudogap phases. It is important also
to take into consideration the effects of noncondensed
bosons, which might help to obtain a smaller slope in the
dependence Of gkt ON e .

As for the extent to which the models considered are
really applicable to HTSC, most of the complexity of these
1 systems is obviously neglected here. For example, we did not
X(MyTaP:O):XPauIiW’ (6.8 take into account the indirect nature of attraction between the
fermions,d-wave pairing, inter-layer tunneling, etc. Never-
theless, one may hope that the present simple model can
explain the essential features of pseudogap formation.
x(ee, T, p=0)= xpaui[1—exp( — € /T)], (6.9 We thank Drs. E. V. Gorbar, |I. A. Shovkovy,
O. Tchernyshyov, and V. M. Turkowski for fruitful discus-
. sions, which helped to clarify some deep questions about
The resuits of a numerical _stuc_iy of the syste@iv), low-dimensional phase transitions. We especially thank Prof.
(3'19.’ and (3.17) are presentedlln Fig. 5. One can see thatR. M. Quick for many thoughtful comments on an earlier
the kink in y occurs afT=T, as in the dependence pfon

version of this manuscript. One of (S. G. S) is grateful to
T B?IOW_TP the vaIue_ofX(T) de_creases, although _the Y5 the members of the Department of Physics of the University
tem is still normal. This can be interpreted as a spin-gap

q i The si £ 1h d ion d of Pretoria, especially Prof. R. M. Quick and Dr. N. J.
pseudogapopening. The siz€ ot ihe pseudogap region e'Davidson, for very useful points and hospitality. S. G. S. also
pends strongly on the dopingg/|ey|), as observed for real

. S acknowledges the financial support of the Foundation for
HTSC281%For small values ok /|| this region is very g PP

. o Research Development, Pretoria.
large (T,>6Tgkr), While for large er/|ep|~5-30 it is P
slightly larger than the region corresponding to the BKT
phase.

whereXPau”E,uém/Tr is the Pauli paramagnetic susceptibil-
ity for the 2D system.

To studyy as a function oflT andn; (or €g), Eq. (6.7)
should be used together with Eq8.17) and(3.19.

For the case of the normal phage=0) one can investi-
gate the system analytically. Th(8.7) takes the form

where u is determined by3.21). This system has the solu-
tion

which is identical to a solution known from the literatdfe.

APPENDIX A
7. CONCLUSION Calculation of the effective potential

To summarize, we have discussed the crossover in the Here we sketch the derivation of the effective pOtential.
superconducting transition between BCS- and Bose-like bel 0 obtain it one must write Eq2.7) in the momentum rep-
havior for the simplest 2D model, witgwave nonretarded resentation:
attractive interaction. . Qo0 Top)

While there is still no generally accepted microscopic
theory of HTSC compounds and their basic featyeslud-
ing the pairing mechanismit seems that this approach, al- -v
though in a sense phenomenological, is of great interest since
it is able to cover the whole range of carrier concentrations = dk . ,

(and thus the whole range of coupling constamtsd tem- +Tn2_m I(ZT)zTr[ln Go “(iwn k)e'?n7e]
peratures. As we tried to demonstrate, it enables one to pro- -
pose both a reasonable interpretation for the observed phe- 6— +0, (A1)

p2 + % dk
v = it idwnT
VT2 | TN en K0
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where

¢ Hiw,, k)= 36(K) + 71p,

Go Hiwn K) =% Hiwn,K)| =0

iw,l —

(A2)

Gusynin et al.

Wy, 2132 o
'nﬁ

1 1
wit+a’+x o i+b+x)’

(A6)

0

and then

are the inverse Green functions. The exponential factor

e'%n7s js added tq/Al) to provide the correct regularization
which is necessary to perform the calculation with the Green

functions?* For instance, one obtains
+ oo

lim > Trin 2 Yiw, k)e 73]

s—+0 N=—

= lim

+ e
[ > TIn % Yiw,,k)]cosdw,
5—+0

n=—o

+i Y, sindw,Tr(In ¢ Yiw, k)

wy>0

e Y-iw, ,k))73]]

+ oo

= 2 Tiling Yo, k)]- g() (A3)
nf—OO
where
T Hiwg k) —1E(K)+1ip
n . = - s wWp— X
lw, lwp
and
sindow, 1 fwd sinéx 1 5
wp>0 (O _27TT 0 X X _4TS|gn .

To calculate the sum ifA3), one must first use the
identity TrInA=In detA, so that(Al) takes the form

2 o

——T 2

n=-—wx

Qpov, 1, T,p)=v

dk
(2m)?

dets Yiw, k)
" detG, Wiwy k)

dk
—f(zT)z[—E(kHS(k)]]- (A4)

Calculating the determinants of the Green functigA®),
one obtains

p2
ont(U,M,T,p):U[V_T

n=o f(Z )2

dk
—f(ZT)z[—S(kHS(k)]], (A5)

ot 0+
21+ £2(k)

where the role of5(i w,,k) in the regularization of), is
now evident. The summation {\5) can be done if one uses
the representation

©

> ! Ty hWC A7
& 2kt 12+ 2 e (A7)
We find

wﬁ-l— a2
wﬁ-i— b?

In

i

-,
tanh

2\/a + X

a“+Xx
) (A8)

Integrating(A8) overx, one thus obtains

= dk

T2 f 2m)?
dk

=2Tf (ZW)ZIn

Finally, substituting(A9) into (A5),

wopt £(K)+p?
wﬁ-ﬁ—sz(k)

cosh[ V&%(k)+ p2/2T]

cosh[e(k)/2T]

(A9)

pot(U/LTP { f(z ) 2TIn

" cosh[ V&%(k)+ p?/2T]

cosh[e(k)/2T]

—[§(k)—8(k)]”- (A10)

It is easy to show that &t=0, the expressiofA10) reduces
to that obtained in Ref. 7.

Finally, we give formulas for the summation over the
Matsubara frequencies used in Secs. 3 and 6:

o

T Y T Ao, K) 34w, k) 7s]

n=-—w

S O R A
T2 [w2+ £2(k)+ p?]?

IO
K 1 "
2T[E(K)+ 7] AL

o Ve k) +p?

2T

Ccos
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[

T T iw,.K)iiw,.k)i]

n=-—o

[

_ &(k)+p°— wf
=T 2 [T @0 T

1 Ve +p?|
=— E(cosﬁ 5T : (A12)

where the Green functioff(i w,,k) is given by(3.4). Both
formulas can easily be calculated using E47) and its de-
rivative with respect ta.
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The magnetic field dependence of the average spin of a localized electron coupled to conduction
electrons with an antiferromangetic exchange interaction is found for the ground state. In

the magnetic field ranggH~0.5T; (T, is the Kondo temperaturehere is an inflection point,

and in the strong magnetic field rangdi>T_, the correction to the average spin is

proportional to T./xH)?. In zero magnetic field, the interaction with conduction electrons also
leads to the splitting of doubly degenerate spin impurity states1989 American

Institute of Physicg.S1063-776(99)00804-3

1. INTRODUCTION Below we consider in detail the second conjecture and
confirm it. In the low-temperature regioT & T.), the aver-

In the low-temperature and weak magnetic field regionage spin of magnetic impurities is found for an arbitrary
even a weak interaction of magnetic impurities with a degenvalue of the external magnetic field. States for both signs of
erate electron gas becomes stréﬁbln this region, pertur- interaction constant are investigated. The strong coupled
bation theory is violated. Two scenarios are possible in sucktate arises in both cases, but the magnetic field dependence
a situation. First, an assumption can be made that in thef the average value of spin is substantially different. The
low-temperature region, an increase in the magnetic fieldefinition of Kondo temperaturg, is also slightly different
takes the system out of a strongly coupled state and into thir different signs of the interaction constant.
region of applicability of perturbation theory. This nonobvi-
ous conjecture was used in Bethe's ansatz method in the
problem under consideration. As the result, in a strong mag-
netic field uH>T, (T, is the Kondo temperatuyethe cor-
rection to the mean spin impurity value has logarithmic2. THE MODEL
behavior®

We will suppose that the interaction of magnetic impu-
rity with the Fermi sea of electrons has an exchange nature.

(S)= 1 1- 1 Then the HamiltoniarH of the system under consideration
-2 2In(uH/T,) )" can be taken in the form

Such spin dependence of the magnetic field value is too |:|=|:|o+f d3rd3r,V(r—ry)
slow, and is inconsistent with the experimental datehich

yields power-like behavior. The level of spin saturation in + + puH

the magnetic field in Ref. &Fig. 8) can be reached according XXa (1) @p(r2)Xp(r2) @alry) = —-

to the expression given above only at the magnetic field

valueH~50T instead of the experimental value of 6 T. > (‘P?—(rl)‘PT(rl)_@f—(rl)Ql(rl))dsrl- (1)

The second scenario is connected with the assumption
that an increase only in the magnetic field value does not
move the system from a strongly coupled state to a weakly In Eq. (1), operatorsp; ,X., are creation operators of an
perturbed state. The second conjecture is supported by thedectron in a localized state on a magnetic impurity and in
fact that the correction to the wave function of a systemthe continuum spectrum respectively. For simplicity, we con-
consisting of magnetic impurity plus degenerate Fermi gassider the case with one unpaired electron in the localized
in some state with low energy, contains corrections of twostate(spin 1/2. The first term in Eq(1) describes the degen-
types obtained with the help of perturbation theory. Theerate electron gas in some external field that leads to creation
norm of one of them decreases in an increasing magnetiaf one localized state. The spin interaction of electrons in the
field, whereas the norm of the other is divergent in the limitcontinuum spectrum with magnetic field leads only to small
T—0 for a finite magnetic field. Consideration of the norm renormalization of the magnetic moment of a localized elec-
of states in the problem involved is very useful, because itron, and a small shift in the kinetic energy of electrons with
contains direct information about the average value of magspin up and down in such a way that they have the same
netic spin. value of chemical potentigino gap for transfer of electron

1063-7761/99/88(4)/14/$15.00 696 © 1999 American Institute of Physics
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with spin flip over the Fermi levgl For this reason we omit
this term in Hamiltoniar(1). The last term gives the interac-
tion energy of a localized electron with the magnetic field.

Consider now the limiting case a&—0 andH finite.
We search for the lowest-energy eigenfunctighof Hamil-
tonian (1) in Fock space in the form

2K 2L—-1
|$)=110;11;11;.)+ >, CZY01;1Q 10)

K-12L-1 2K 2L
+3 c2ot0, 01; 10)+ S, C10;1001

2K 2k 2L1 20-1

+ 2 Cyl o 'N|01;10,10,01; 10)
Ki<K

2K;3—1 2K 2L3 211

2L4;2L-1
+2 ot N10; 0110,01; 10)

2K3 2k-12L1—1 21 -1
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E=Ey,— uH/2— 5E,
SE=2 (5D Chi—(5 H*Cik™, @

whereE, is the energy of the ground state without interac-
tion. For convenience, we leave the magnetic energy of the
localized state out of the correction tedi. The quantities

I in EqQ. (4) are the transition matrix elements. As an ex-
ample, we have

15 1= Jd?’rld Xt (r) @t (r) e (r)x (ra)V(ri—ry).
(5)

The Hamiltonian(1) possesses deep symmetry proper-
ties. To see some of these, we will keep indexes orthat
indicate energy and spin in the initial and final states. The
next three equations for the quantiti€s: are

2L 1 2L-1,2Kg 2L-1 2K1—-1
151+ 2 Co Mot -2 Co talog

+ 3, ChaA% Wioti10,00 107 10)

+ ciri- bz mi10; ZKcl)il 2511 2L11c_)1'2L1E>1>
W B SSF e ’

4 c2tiiat N|1o-2;(1)- i}z)-i)Lll-(z)Llﬂ... 2
Ko<kl <L 2KuiK R

In Eq. (2), all single-particle stategsolutions of Eq.(1) for
one particleé are ordered and numbered. IndexgsL label
states under and over the Fermi surface. Each box has two
places. The first one means a state with spin up, and the
2K 2L

second with spin down. As an example, the state010
means that the statek2(spin dowr) under the Fermi surface
is empty and the statel 2(spin up over the Fermi surface is
filled. The first cell is always reserved for an electron in a
localized state. The first term in EqR) gives the ground
state of Hamiltoniar{1) without interaction ¥/(r)=0). The
number of uppefor lower) indexes inC:*. gives the number
of excited pairs. FOP excited pairs, there areP2+ 1 differ-
ent symbolsC. OperatorN is the ordering operator, and
each rearrangement of two neighboring filled states gives a
factor(—1). In Eq.(2) in each box below Fermi surface, only
one place can be empty and above the Fermi surface in each
box, only one place can be filled.

The equation for the wave functidg) is

[Hy)=E[y), &)

whereE is the energy of the state.

Inserting expressioii2) for the wave function ) into
Eq. (3), we obtain a set of linear equations for the quantities
C:-. Due to the structure of Hamiltoniail), each quantity
Cc- W|th index P is coupled only with quantitie€ " with
indexesP, P=1. From the first equation of this system we
obtain the energy of the state,

-> CZL1I2L Lt (uH+e —eg— SE)CA 1

C2Lii2b-1 2Ky
2Ki2K, 2Ly

+ >

K1<K

_ 2Ly;2L-1 2K -1
2 CZKl 1;2K 2L1 =0,

2Ly;2L-1,2K
Cot 124>
R S

|2L-1 2Ky ~2L-1 2L-1 | 2K;-1

ok -1~ - 152 1C2k, + Cok,~1lok=1
21

ex—0E)C5¢_1

N 2L ~2l-1 _
> 150, 71Co =1 T (&L

2L,—-152L— 12K
+ 2 Cull !
Li=L 2K;2K-1 2L -1

-3 c2L-Li2ly—1 2K,

VS, KK T2t

n 2L;-12L-1 2K -1
Kl el KL 12—

B C2Li-1i2l-1 2Ky -1
Ko<l <L 2 LK-12L -1

_ cL-1i2li-1 2Ki-1
Ll Shek, 2K-Li2K —1203-1

2L-1;2L,—1,2K,—1

+ Cox “tiok-1l20-1=0,

Ki<K;L<Lq 1= 1

2L,—1
=2 151Gyt T+ (e sk~ SE)Ci

2L;2Ly—1 2Ky

+ >

2L;2L,—1,2K
Coxak, o™ 2

Kok, 2GRy 2Ll e YAk 2K T2l -1
22y -1 2Ky -1
+2 CZK -1;2K 2L1 1=0. ©)
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In Egs. (6), the quantitiese|  are the energies of single 3. WAVE FUNCTION OF THE GROUND STATE

states. As mentioned above, indexneans a state above the ] )

Fermi level and indes means a state below the Fermi level. ~ N€ average electron spit$,) in a bound state at zero
The equations foC: are given in Appendix A. Since the te.mperature can be found by differentiating the enefgy
equations foiC' have a special structure, each quan@ty ~ With respect touH

with index P is coupled only with quantitie€ - with in-
1 J96E

dexes,P, Px1, it is possible to leave quantiti€s - with (Sy==———. (10)
indexesP=2 out of Egs.(6). As the result, we obtain three 2 JpH
equations for the quantitie83; 1, C3k_3 andC3;. They _ . _
have the following form(see Appendlx A In accordance with quantum mechanical rules, the quantity
(S,) in the ground state is also given by an expression con-
taining only norms of the states in expansi@
2K 2K, -1
S5 S BN B
1
=_{1+ C2L:1 2+ C2|. 2__ CZL—l 2
_E C2L1|2|_ l+(MH+8L_8K_5E <Sz> 2{ | 2K 1| | 2K| | 2K
2Lq;2L—1 2L,—1;2L—-1 2L¢;2L
_ + 1 2+ 1= 2+ 11 2
5 )CA 1A (CB L cZktic |Co, T “H1Co i1l H 1o k]
_12kg2l-12 | ~2L3-1520-1 24 1
A S a1 2K |C2K1;2K | |C2K1;2K—1 12+ . H
l2k-1~ Cax |2K 1t Cok —1|2K 1 2L-1(2 2 2L-112 2L3;2L—-12
+|Co 13+ |CkI 3+ |Cok P+ [Cot Tl
2L3-12L-1
—ZC Y Olsr S+ (g —ex—OE 2L,-1;2L-1 2 2L4:2L 2 2Lq;2L—12
2K-1 72t LK +|C 1ok Al +|CZK11;2K| +|C2K11;2K |
C2L 1 =A C2L 1. C2L—1;CZL ' 2L,-1:2L—1 B
—2k.L) 2 2k-1:Cak +|CZK11;2K—1 24371, (11)
2L,-1
- |z|_ G T (e —ex— B3k 1))Chk Below we use both Eq$10) and(11). To solve Eqgs(7)
and(9), we consideiA as a parameter. Then the right-hand
=Ag(Cax hcakoi;cah). (7)  sides of Egs(7) can be taken into account in perturbation

theory. In the leading approximation we obtain
The linear operators, , 3 do not contain terms proportional

to the quantitiesCZ; *,C2k~—1,C2 without integral over

2L 1 2L— l 2K1 2L-1 2K1 1
one of variable&K, L with some funct|0n oK, L. These terms 15 +2 Cok E CZKl 115k
form the 380\, .Sk 1) terms in Eq.(7). All off-diagonal
elements of such a form are equal to zero. The linear opera-
tors A, , 3 also do not contain terms proportional to the con-
volution of quantitiesC: with |- over one of variable, L
without of denominator with the same variable. In Appendix

=2 CoH3t H (uH+e — s+ A)CH =0,

2L-1,2K 2L-1 2K 1
C, we give the expressions for quantitig, ,,S . in the -2 Ck Lot 2 Cor—1lakts
fourth order of perturbation theory. Quantities
2L-1 ~2L-1 2L :
Cok _,CZK__l,CZK in the t_hwd or_der can be found fr_om -> C;:;l 11|§t—_11+(8L ex+A)C1=0,
equations given in Appendix B. It is easy to check that in the 1
fourth order of perturbation theory,
2L,-1
_5E_E(K,L)| e = =0. (8) _2 I2L 71C Kl +(8L_8K+A)C§k:0' (12)

EK EL SF

This equality holds in all the orders of perturbation theory.

Below we make the usual assumptions about the energy-
Below, we put

independent value of the density of states near the Fermi
_ surface, and that the characteristic energy in transition matrix
—0E-X K L)|s =g =¢ =A (9) s ;
KTEL™®F elementd - is also the Fermi energy: . As a result, we can

In Eq. (9), A=A(H) is some function of the magnetic field PUl

that must be determined from self-consistency. This equation . N

is given below. Very important properties follow from the D |'2'|'<(---)H9f Fdx(...), D |2LH9J de(._.)'
normalization of states defined by Eqg) and (7). To sim- K 0 C 0

plify the investigation of Eqs(7), we give also the expres-

sion for operatorsA, , 3 in the lowest order of perturbation gL~ EF=Y, €p—&x=X. (13
theory in Appendix D. All statements made above are inde-
pendent of the exact form of spectrum ,&, and potential In Egs. (13), g is the dimensionless coupling constant.

V(r). The potentialV(r) in Hamiltonian (1) is in natural units,
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hence the smallness of the coupling constaig connected

only to the small radius of bound state.
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Equationg(16) are valid for both signs of the interaction
constantg. But their solutions are substantially different for

Due to the energy independence of the transition matrixg<0 andg>0. Consider first the casg<0 (attractive in-

elementd ",

Egs.(12) can be substantially simplified. To do teraction in the Kondo problemin such a case, the quanti-

this, we define new quantities that are convolutions of functies Z, ,Y, are large in comparison witdx and Yy . To

tions C:- with overlap integral -
orL, that is

2K1~2L-1 _ 2L 2L,-1

ZL_E 15 Cok, ZK—E 120,-1C%
1

2K1 1~2L-1

2 I, Cok,~1

— 2L-1 ~2L1-1
YK_LE I2Lflczl< 1
1

XLZE

S G XD RO
1

Inserting Eqs(14) into Eqgs.(12), we obtain

2L-1_ —
Cax "= F++y+x+A{| Zut Yt Xk,
c§k111=—y+x+A{—|+zL—YL+YK},

1

2L

CZK_—y+x+A Zy (15

wherel is the value of the transition matrix element for
states near the Fermi surface. Now from Eds<l) and (15)

we can obtain a complete set of equations for the quantities
Zx L, Yk L Xk, only. In addition, the quantitieXy are
very simply related t&y | ,Yg | . Eliminating them, we ob-

tain a set of equations for just the quantitigs, ,Yy | :

€F
uH+Yy+A

Z | 1+gln =Y. gln

€F
uH+y+A

—1gin —
O Hy+A

, J‘e,:dXZK IN[Aeg/(X+A)]
0 puH+y+x+A 7

ASF
puH+X+A

Ae Ae
ZK(1—92 In——In F =Ig In

X+A " pH+x+A

JAEF dy(Z = Y0)
o mH+y+x+A’

Y, [1+gl —Zgln—F —_1gIn—F
drram 55 ) -zom S =i
EF dXYK
"9y yixTa
v 1-gin 2EE| g n 20F
K279 5FA) = 9N A
Aee dy(Z, — Y
f rdy(Z —Y,) (16)
0 y+Xx+A

over only one variableK

obtain this, we introduce a formal definition of “Kondo”
temperaturel

neE_l 1
|glIn T." 2 (17
Now we also put

T(Y)=Z, =Y. (18)

Eliminating termsZy , Y« from (16); we obtain one equation
the quantityT, :

1
T(y)= 1+glinfeg/(y+A)]+gln[ep/(uH+y+A)]
EF EF
X['g Ny TN LRy A

1
,uH+y+x+A y+x+A

g ),
[ 92 IN[Aep/(x+A)JIN[Aep /(uH+Xx+A)]

1—g?In[Aep/(x+A)]IN[Aee/(uH+Xx+A)]

gIn[Aeg/(X+A)] }
1-gIn[Aeg/(Xx+A)]

gf 1
,uH+y+x+A y+x+A
o gIn[Aeg/(X+A)]
1-g?In[Aep/(x+A)]IN[Aee/(uH+Xx+A)]
fAsF dy;Ti(y1)
1 AngleL(yl) 19
1 gIn[Aec/(x+A)] yi+x+A ||

It can be shown that the last term in E4.9) can be
omitted, because it is small in the parametg|l6(1/g|).
We then obtain from Eqg17) and(19)

1
)= [qlin(y+ &) (H+y+ 5)/T2]
1/2 t2 t
X —|—|f0 dt(m—ﬁ) . (20

And finally
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T(y)= —15
L) = alin(y+ &) (pH +y+ A)T2
_ 1 3
,B—EIn3+In 7 (21)

Inserting Eqgs.(18) and (21) into Egs.(15), we obtain the

expressions for coefficiena: *,C3k~1:
TL(y) To(y)
2L-1_ _ L 2L-1__ 'L
Cox = pHHYy+x+A" 721y x b AT 22

Now we can determine the value &f Equations(10) and
(112) should give the same value for average sf8). This
condition, with the help of Eq94) and (22), gives

o

dy

0 (MH+Y+A)|n2[(Y+A)(,uH+y+A)/T§]/
ﬁZ

1+ In[A(,uH+A)/T§])

A 1

~ JuH In[A(uH+A)/T?]

X

- d
+fo (uH+y+A>In2[<y+yA><uH+y+A>/T§]'
(23
We seek a solution of Eq23) in the form
A(uH+A)=T3(1+y), 0<y<l. (24)

Terms proportional toy~! cancel on the right-hand side of
Eq. (23). This condition yields

a8 + TE =0 25
duH ~ (uH+A)(uH+2A) (25
The solution of this equation is
A(uH+A)=T2, (26)
H H 2 1/2
A=— MT-F MT +T§ , (26@

and confirms our conjectuf@4) about it. Of course, Eq24)
has two solutions foA. One is given by Eq(26a (ground
statg, and the other is

2 1/2

+T§) :

{

Solution (26b) corresponds to the excited state. In the limit

uH

2

H
A HH_

> (26b)

uH>T,, this state transforms to a state with spin orientation
along the magnetic field. The excited state is separated from

the ground state by a “gap” 2(H/2)?+ T2 The gap

results in the independence of the position of the maximum

of impurity heat capacity from the magnetic field in the
rangeuH < T (Schottky anomaly Such a residual Schottky
anomaly is always presented in experiments.Sec. 4 we
will show that renormalization of the terpaH in (7) leads to

Yu. N. Ovchinnikov and A. M. Dyugaev

a change fromuH in Eq. (27) to xH defined by Eq(43). As
a result, we obtain the mean sgig,) as an implicit function
of the magnetic fielguH.

An attempt to obtain such an equation at nonzero tem-
perature was made in Ref. 6. But the mean field approxima-
tion used there is incorrect for the problem considered.

In Appendix D we show that the right-hand side (@j
leads to renormalization of the coefficients in Egs. 16, but
does not alter the main result of the paper, EGS) and
(43). Of course, renormalization changes Ef?) for the
Kondo temperature. The quantitycan be found only from
correction terms to Eq920) and (22). Fortunately, we do
not need these correction terms, because in the leading ap-
proximation,y also drops out of Eq11) for the spin value.
With the help of Eqs(11), (22), and(24), we obtain

-5, & /
(S90="5 ) G D)y + A+ A)(y+ y(aH T 2A)T2)2

1 B uH

¥ AT (R @

Equation(27) is in good agreement with the experimental
data of Ref. 4.

4. FERROMAGNETIC CASE (g>0)

As mentioned above, Eq§l6) are valid for both signs
of the «interaction» constar. In the caseg>0, we can
define the characteristic energy of the problem from the re-
lation

ASF
T.

gln 1 (28

for Kondo temperatureT.. For g>0, the quantities
Zk Yk , Xk are large in comparison with, ,Y, ,X, . We can
eliminateZ, ,Y, from Eqgs.(16). As a result, we have

2| 1-g2in 25F g A ) A
KA N SFA " wArx+a) 9" A XA
fAEF dy
9 0 ,LLH+y+X+A
1

T giner/(y+ A) ]+ gIMer/(gH+y+A)]

oF

XM A (AT y+A)

IgIn

i ZJSF XmzK(X1)|n[A8F/(X1+A)]
9 0 ,u,H+y+Xl+A
er dX; Yk (X1)

_gfo y+Xx;+A
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ASF
Ykl 1—gln A
_ | | ASF IAEF dy
AT 0o Y+x+A
« 1
1+ginfeg/(y+A)]+In[eg/(uH+Y+A)]
X|Igl Sé
n
9N Y+ D) (uH+y+4)
4 2JSF XmzK(Xl)m[AsF/(Xl-I-A)]
9 0 /.LH+y+X1+A
er A% Yk (Xg)
N fo y+Xl+A ’ (29)

In the rangex<ep, EQgs.(29) yield the following values
for Y ,Z«:

~ ID
V=" gIn[(x+A)/T.]’

~ ID

Zc= gIn[(x+A)(uH+x+A)/TZ]’

(30

whereD is a number of order unity. Inserting Eq80) into
Egs.(15), we obtain

o1 1 ID
K uH+y+x+A gIn[(x+A)(uH+x+A)/TZ]’
ot 1 ID

K17 Ty X+ A gIn[(x+A)/T]”

a1 ID
K y+x+A gIn[(x+A)(uH+x+A)/T2]

(31

In the same way as in the cage<0, with the help of
Egs.(10), (11), and(31), we obtain

aA 1 . 1
uH | IN(A/Te)  IN[A(uH+A)/TZ]
DZ
= — 1—

1+D?

1
In(A/Ty + In[A(MH+A)/T§])

” dx
- fo (X+ A+ uH)IN[(x+A) (uH+x+A)/TZ] (32

The solution of this equation is
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A=T,. (33

Relation (33) means that in the leading approximation, the
spin value in the magnetic field is saturated,

1
(S)=75- (34)

Correction terms to Eq.34) come only from an energy
rangee of orderesxer exp(—1/g%). Note that a similar en-
ergy scale also arises in the problem considered by Nozieres
and Dominicis” Our conjecture is that in temperature range

T2ep<T<T,, (35)

the leading correction to the average spin arises from the
cutoff of integrals with respect to energy in express{t)
over an energy range of orddt If such an assumption is
true, then the average spin in the magnetic figld>T is

1 7T
<Sz>=§—-|-—c

® dx
X fo X+ 1+ gHIT)IN (LX) (Xx+ 1+ gHITo)]
10T

T2 4T,

Xfm dz 36
s o[ 2+ (U2 1= (aRITge A" 0

In the limiting cases of weakyH<T.) and strong ftH
>T,.) magnetic fields, the average spin is

1 T

1 T
( (37)

(S2=3 1‘m)' HH>T.

5. SELF-ENERGY TERMS X{¥ ), %) IN PERTURBATION
THEORY

As mentioned in the Sec. 1, there are two self-energy
terms in the problem under considerati&if ) ands. () -
In second-order perturbation theory, they coincide. They
start to differ in third-order in the coupling constant. In third-
order perturbation theory, we obtain from Appendix C
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1)
EEKL)_E(K,L)

|2K1 2Ly 2L,
2L, 2L, 2K,

1
X
(,LLH+8L+8L1_8K_8K1)(,LLH+8L+ SLQ_SK_SK;L)

1
- . 38
(8L+8L1_SK_SKl)(8L+8L2_8K_8K1)) 39
A simple calculation of sums in E¢38) leads to
EPL-Sk0) = — uHgIn? £ (39)
(K.L) ™ =(K,L)) e, =s=ef ©Hg o)’

wheree. is the cutoff energy. In Appendix C, we obtain the
following term in expansior{39) for the self-energy:

(E&)J_)_E(K,L))

EKZSL:&‘F

&€
= - uHg? |n2(8—F) +2uHg* I3
Cc

(40)

€F
e

c

Comparison with the expression féE obtained in pertur-
bation theory shows that

52:(2&),L)_2(K,L))

SKZSLZSF
EE JOE /.LH 1
o] |- S5 5]

(41)

To obtain Eq.(41) we used Eqs(17), (10), and an assump-
tion thate .~ T,.

Equation (41) means that some corrections should be

made in the first of Eqg12). Specifically,uH in the first of
Egs.(12) should be corrected byZ.:

uH— uH— 83 =puH. (42)

The main result of this correction is a decrease in the initia
slope of the magnetic field dependence of the average spin
value by 3/4. This phenomenon was probably found in thé®

experimental Ref. 4Figs. 8 and @ The average spifsS,) is
given by Eq.(27) with the substitution

:

This equation determinds,) as an implicit function ofuH.
From Egs.(27) and (43), we find tha(S,) as a function of
pH has an a inflection point aiH/2T.=0.2426. Such an

) 3

wH— uH=pH-

Yu. N. Ovchinnikov and A. M. Dyugaev

inflection point was obtained in Ref. 4.

6. CONCLUSION

Thus, we show that at zero temperature and finite
magnetic fielduH <eg, a singularity exists in the convolu-
tion of amplitudesC3; * and C3¢ *; over energysy,
with amplitudelgil. As a result, in the high magnetic field
region,uH>T_, the correction to the spin impurity value is
proportional to T./uH)? instead of 1/IngH/T,), as pre-
dicted in Refs. 1-3. We also find that renormalization of the
magnetic field discussed in Sec. 4 leads to an inflection point
in the dependence of spin impurity on the magnetic field.
The initial slope is a function of, which enters into the
definition of the Kondo temperatufsee Appendix [ Our
consideration shows that the interaction of the spin of an
impurity with an electron gas does not lead to the ap pear-
ance of the localized state, as assumed in Refs. 8—10. The
Kondo temperaturd ;. is given by Eq.(D7), wherez is the
root of the equation

f(2)=0. (44)

We find here three terms in the expansionfah Taylor
series[Eq. (D8)]. This equation was also studied in Refs. 8
and 11. Our result for the first two terms in E¢4) coincide
with the result of Ref. 11, because this is also the result of
parquet approximation. But, our consideratidty. (44)] is
conceptually closer to the Ref. 8. The difference even in the
second term is probably related to the assumption of Ref. 8
that in the problem under consideration there is a localized
state with spin 1/2.

In fact, such a localized state does not exist. Without
interaction there are two states associated with impurity spin
1/2. In zero magnetic field, these two states are degenerate.
Interaction removes such a degeneracy and the splitting en-
ergy is ZT.. Of course, interaction does not change the num-
ber of states, as in our consideration, and is not fulfilled in
Ref. 8. Note also that the driving term is missing in Refs.

-10.
P Nevertheless, the average value of spin of impuf&y)
s a function of magnetic field found in Refs. 9 and 10 co-
incides with our result except for the effect of renormaliza-
tion of the magnetic fieldSec. 4 and the expression for the
Kondo temperature.
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APPENDIX A

The wave function of a system consisting of one localized electron plus degenerate electron gas can be taken in the form

2K 2L—-1 2K—-1 2L-1 2K 2L
|y)=]10;11;11.)+ >, C27101;1Q 10 )+ >, c2~1j10; 01; 10 )+ >, C2[10;1Q01)

2Ky 2K 2L3 21-1 2K3—1 2k 2L; 211

+ 3 oA TN(01;10,10,01; 10 )+ 3 CRMP7ER(10; 01 ;10,01; 10)
Ki<K

P12l 1 2Ky 2k—1 211211 P11 2K3=1 k-1 231 211
+ Ct N(O1;10; 01 ; 10 ; 10 )+ Co.t N(10; 01 ; 01; 10 ; 10
L12<L 2K, ;2K—1 | ) K1<K2;L1<L 2K, —1;2K—1 | )

2Ky 2k 2L3 2L 2Kz 2Kg 2K 2Lp2L3 21 -1

2L ;2L 2Lq1;2L4;2L—1¢
+ b ]10; 10;10; 01;01) + Col ot N|01; 10; 10;10; 0101; 10
K1<KE:L1<L 2 il ) K1<K1;<;L2<Ll 2Kpi2Ky 2K | )

2Ky—1 2Ky 2ok 2Lo2L7 21 -1
+Kl<§2<Ll Cok T xNI10; 01 :10;10;0101; 10)
2Kp=1 2Ky pK—1 2Lp2L1=1 21 -1
B CoiL M2 LRI10; 01 ;10; 01; 0101 ; 10)
2Ky 2Ky ok —1 2Lp2L3—1 21 —1
+ 3 cpia X 'N|01;10,10; 01 ; 01 10; 10)
Ky<Kq;L;<L 2"
2Ky 2Ky—1 oK1 2L,—12L4—1 9| _1
+K1<K;§<L1<L C;tzl 21K2L11 21K2L1 "Nj01;10; 01 ; 01; 10 10 ; 10)
2Kp—1 2Kq—1 oK1 2Lp—121-1 5 _q
+K2<K1<;L2<L1<L CS:ZZZ::;-"’ZZLKE:JI'ZZLK:]-]-N|10’ 01 , 01 ; 01’ 10 10 ; 1O>
2Kp,—1 2Kq—1 ok—1 2Lp2L; 2

2L5:2L4:2L &
+ Co.2 o7  N|10; 10 ; 10 ; 10 ;0101;01)+... "
K2<K1<;L2<L1<L 2K5:2K4 ;2K | > ( )

The notations here are the same as in the text. As we note above, ther@aré ) &ifferent symbol<C - of orderP. Inserting
Eqg. (A1) into Eq. (3) for the wave function, some simple but tedions calculations yield a set of equations for the coefficients
C:. The five equations for th€ - are

2L—-1;2L4 2L—-1y2L1 2L1 2|_ 1 2L1 2|_ 1 _ _ _ 2L,;2L 1 2Lq;2L-1 2K2
Cok M5k~ Cok, Mo — Coll Bk, T+ Col ik T (uH e e, —ex— sk, ~ SE)C 2 o T+ Z C

2K ;2K 2|<1

2L1;2L—1,2K 2L1;2L—1,2K 2Lq;2L— 1 2K 2Lo;2L— 1 2L
— D CoLE TR+ D Cote k= X Cotia | -2 Co L
KSk, 2Kk 2Ky Kk, 2Ku2Ky 2K 2Ky, 2K1 2K, ;2K 2L2
2L,;2Lq,2L-1 2L1:2L, 201 2Ly;2L -1 2K;—1 2Ly;2L—1  2K;-1
| 2 CRLME, T 2GR, -l X C -2c
LS, KK 2L, LE, KK 2L, 2K,—1; okl 2K, 2K,—1; 2|<l 2K
_ 2Lg:2Ly;2L-112Kp | 2Lgi2Ly;2L-112Kp 2Lp;2Ly;2L~1) 2Ky

KK ,at, 2KuiZKi2Ky T2y Ty o B TRKG2KGI2K 2Ly e T 2Ki2K 2K 2L,

+ 2L1;2L,:20 -1 2K, _ 2L1;2L,12L -1, 2K, 2L1;2L,:2L -1, 2K,
2K;:2K;2K, 2L, 2K;;2K5:2K 2L, 2K,;2K ;2K 2L,

Ki<K<KpiL;<L, Ki<K,<KiLi<L, Ko<K;<KiLi<L,

" 2Lp2Ly;2L—1 2Kp=1 2Ly:2Lp;2L -1, 2Ko=1_
2K,—1;2K, ;2K 2L, 2K,—1;2K ;2K 2L, '

Ly<Lp:Ky<K Li<L5Kq<K
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2Ly -1, ~2ly2-1 2Ly;2L-1 2K, 2Lq;2L—1, 2K, o 2L1 2L-1
|2K1 Cok "+ Colak, "1 KE<K C2K2 12K 2K .t 2 C2K;2K2 I2|<1—1+(8L+“3L1 ex ek, OB)Co Tk
2
2Ly;2L -1 2K,-1 2Ly:2L,— 121 -1 2L,—1;2L—1,2L, 2L-1;2L,—1,2L,
+> Ccoot DI S +> C | -> |
_ _ _ 2L,—1 oK, — - oK. — -
2K, 12! 2K, —1 2K, -1;2K 2L, 2 KK S T2m1T KK -1 2Lyl
4 2L172Lp-12L-1 2Ky _ 2L1:2L,- 112l -1, 2K, -3 C2Lii2l-12L,-1 2K,
L<lTak, 2K22K—1 T2l,m1T S T2Kpi2Ki2K, -1 2L2 1 2K;2K,:2K,—1 '2L,-1
N 2Ly;2L-1:2Lp-1 2K, C2l1i2lp- 12l -1 2Kp=1 C2L1i2lp-1i2l-1 2Ky 1
L Sk 2GR T 2pm1T B K LK 2Kym 1 2,1 A 2Ky — 12Ki2K, — 1 2L,
n 2L1;2L-1:2L5-1 2Kp—1 _ 2Lyi2L-1;2,-1 2Ky~ 1_
_a. . _ _ 1. . _ _ ’
D AP et P e P I e e e i P
2l-1,2L1-1  ~2L;—120—1 2Lpi2L-1 21,1 2L,:2L,—1,2L—1 o
Cok-1lo "~ Coiqilak +E CoZ 12|<1 2L, E CoZ 1,2K, 15 +(,uH+s,_+s|_1 EKT &K,
_ 2L,-1;20-1 2L;-1;2L-1 2K, 2L,-1;2L-1 2Kp—1 2L,-1;2L—1,2K,—1
5E)C2K1;2K—1 +2 CZK 2K -1 2K1+K<2K CzK—l;sz—llzKl 2|<2—1;2|<—1|2K:L

+ > C

2Lp;2Ly - 1120 =1 2Ky
2K ;2K5;2K—1

2L, 2K,;2K; ;2K —

1

2Lp;2L1—1;2L—1 2Ky

2|_2

Ko<K

D C2l2i2ly~1i2L-1 2K,y 1
2K—1;2K ;2K —1' 2L,

K1<Kj Ko<Ky K<Ky
2L5;2L-1;2L-1 | 2Kp—1
+ Col ik ala? 7=0
K22<K 2K,—1;2K, ;2K -1 2L, '
2Lg;2L0 2L;2L, -1 2L 2Lg;2L,-1 2L4;2L;20,-1, 2K
e te —ex—e SE)C. L C i e Corio2 ek b ko 152
(e L7 KT 8K T ) 2K, ok T E 2K, ;2K 2|_2—1 E 2K ;2K 12Lp-17 K SRk, 2K1i2Ki2Ky T2Lp-1
2L4;2L;2L,-1 2K 2L1;2L;2L,-1 2K 2193213201 2Ky~ 1
+ vi2bizly=1 2Ky 15 2~ 2+2C1',’2,|2=O
K Rp<k  2K1i2Kpi2K T2Lp=1 A T2Kgi2Kp 2K 2|_ 2K,—1;2K ;2K 2L,—1 7 &1
2L1—-1 21— 1 2L 2L,-1 2L,—-1,2L 2L,—-1,2L— 1 _ 2L,-12L-1
|2K C +C I2K 1+C2K 1| 2K, ,1 C2K I +(8L+8|_ EK— 8K 5E)C 1—Li2k-1
2L3-1;2L-1, 2K 2L;-1;2L-1, 2K 2L3-1;2L-1 2Kp—1 2L3-1;2L-1 [ 2Kp—1
2 Codont o= 2 Cold 1]+ 2 Colt i il P b
2K,;2K—1 "2K;—1 2K,;2K,—1 '2K-1 Kk TMpmLK-12K -1 T2Kp— 12K 112K -1
_ 2 21 1i2b-1 2Ky-1 2 2L;-12-1 | 2Kp-1) 2Lp-1;2L-1 2Ly -1
Kk, AK-L2Kpm12K -1 T2K - 12K, - 112K -1 2L 2K iK1 2L,
_ c2t2-Lizly - ll%t 11 z c2Ll-Lli2lp-1)2Ly-1 C2L1—1;2L2—1|§t_11
LS, 2K LiK-1T2, VS, 2KmhiK-12,-1 o) T2K LK1 2L,
_ 2Lp-1;2L; - 1i2L~ 1 2K, 2L3-1;2Lp-1i2L -1 2Ky 2Ly -1;2L-1:2L, -1 2Ky
LSl 2Ki2K—LiK-1 T2lp-1 0 A T2Kpi2KymLiK-1 T2l,-1 o A Y2Kg 2K m1LiK-1 T2l,-l
n 2Lp-1;2L-1;2L-1  2Kp—1 2Lp-1;2Ly~1;2L~1 | 2Kp -1
<l Slik<k, 2KimLiK-L2Kp-102L,-1 o S o 2Ky~ Li2Kp-1i2K-172L,-1
n 2Lp-1i2Ly 152l -1 | 2Kp-1 2L;-1;2Lp-1;2L-1 [ 2Kp—1
Kp<KiTlp<l, 2K 12K —1Li2K-172Lp=1 o 420 o 72K~ 1i2K-1i2Kp— 172051
4 2L3-1;2Lp-1;2L-1  2Kp—1 2Ly -1;2L,-1;2L -1 2Kp—1
Ky<Kpy<RiLj<lp<l 2Ki~1iZKp-LiK-172Lp-1 o oy ) | 72K~ Li2K —12K-1721,-1
n 2L9-1;2L-1;2L,-1 (2Kp—1 2Ly-1;2L-1:2L,-1 | 2K -1
Ki<kSRKyiL<l, 2K1—L2K-1i2Kp—172Lp-1 ) o) ok 2K 12Ky~ 1i2K-172L,-1
2L3-1;2L-1;2L,-1  2K,—1
+ ! w1152 1=0.

Ko<Kp;L<L,

2K,—1;2K;—1;2K—1'2L,—1

()
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U L2A-12A-1

g
/({M’_ R
i
1
L= (M B2 2=
/«21(-‘!5”(" :ZK,:ZK.-I;ZK-I
]
] 1
2 - (2121 LS TR Y |
(.:21(-1 ?2K,: w1 T2 Clzx,- 12K, 2K~ 1
1 ] H
] ]
/(’:ZL-l ézL‘;ZLﬂ C',ZL,: 2L-12A-1
. ’2K><I2K‘-!:2K =2K,:2K.:2K-1
) 1
i ] 1
3 1 1 . .
2 22 -1 220,20 - 1
Coyx — k. 2k C;zK,»l; %K, 2K
i
] ]
IR 2La2Lg2L-1
ki 2Ky 2K,: 2K
]
'ZL,; 2L;2
2K,; 2K,; 2K

Equations(A2) are exact.

APPENDIX B

Our purpose is to obtain an expression for the self-
energy termss & ) and S in fourth-order perturbation
theory. To do this we should obtain equations on the quan-
tities C in the «leading» approximation. Really, we need
only six equations in the six quantities entering into Egs.
(A2). The required system can be obtained from Egsand
(Al). These equations are

o 20,20 5201
(,uH+s|_+s|_l+s|_2 ek ek, 8K2)C2K2;2K1:2K
_ 2L332L-120, 204520 -12L, | ~2L4;2L—1 2L,
{CZK1;2K |2|<2 C2K2;2K I2|<1+C:2|<2;2K1 15K

o212y, (21,2l -12L;  ~2Lpi2L-1)2Ly
2K 2K 12K 2K,2K 12Ky “Y2K,i2K, 2K

_ 2Lp;2Lg 2L-1_ ~2Lp;2Lg,2L—-1 2Lp;2Lg j2L—1y _
{Cal ok 12k, —Cod a2k, +Co ok 12k 1=0,

_ _ _ 2L5;2L1;2L—1
(8|_+8|_l+8|_2 €k 8K1 SKZ)CZKz—l;ZKl;ZK

2L5;2L1,2L-1 2Lq;2L-1,2L,
+C2K1;2K|2K2*1+{C2K1;2K I2K2*1

_2Lp2L-121 -1 4 _
C2K1;2K |2K271}_0'

o 2Lp;2L,-1;2L-1
(uH+e e Te,~ ek ek, ~8k,)Cox) ok, k-1
2Lpi2L-1 2L -1

_ (2lp2L-1,2L-1
{C I CZK—1;2K2 2K,

2K—1;2K, ' 2K,

_ 2l 2Ly:2L1—1,2L—1
C2K—1;2K1 |2K2 +C2K—1;2|<2 |2Kl

2L1—-12L-1

_{C 1 |

2Ly ~2Lg-1;2L-1, 20y _
2K;;2K-1 12621 =0,

2K, Y2K,i2K-1 2K

o 2,20, -1;2L—1
(eLter, e, —ex—ek,~ ek Cod "1k k-1
2Lpi2L-1 2L -1

2Lp2L-1 2Ly-1
2K—1;2K, 2K,—1

+C 2Ky—1;2K, 2K—1

-C

2L,:20L,-1

2L—-1 2L;2L3-1,2L-1
K152k, 12K,-1TC '

-C _ -
2K,—1;2K, 2K-1

Yu. N. Ovchinnikov and A. M. Dyugaev 705

FIG. 1. Relation between various terr@s:. Dashed lines represent
scattering process.

2L;-1;2L-1, 2L,

_ g2t lil-y2l,
2K, ;2K—-1 '2K,—1

+C 2K, 12K, 1 k-1 =0,

(/.LH+8|_+8L1+8|_2_8K_8K1

2L,-1;2L,-1;2L—1

_{C2L1—1;2L—1 |21
2K,;2K,—1;2K—1

~ek,)C 2K, ~1;2K—1' 2K,
 ~2L,-120-1 201, ~2Lp-12Ly—1 2L 1y _
Cod-tax-1la, TCx 112k, =0,

2L,—1;2L,-1;2L—1

(8L+8L1+8L2_8K_8K1_SKZ)CzKZ—l;zKl—l;zK—l
2L,—1;2L—1,2L,—1

+{C 1 | 2 _

2L;-1;2L-1 2L,-1
2K;—1;2K-1'2K,—1

2K,—1;2K-1' 2K, 1

2L;-1;2L-1 | 2L,-1

2Lp-1;2L-1 2L,-1
2K,—1;2K,—1'2K—1

+C 2K;—1;2K—1'2K,—1

-C
po2e i1 2l -1 ~2lp- 12—l 2Ly
2K,—1;2K—1'2K; -1 “2K;—1;2K;—1'2K—1

2Lp=1;2Ly -1 2L -1

et B TP T
2K, —1;2K—112K,—1

+C 2Ky 1:2K—1 12K, 1
2L,-1;2L,—1 -
+Co2 o sk T =0.

2K,—1;2K,—1'2K~1 (B1)

EquationgB1) can easily be supplemented by scattering

terms, and Eq47), (A1), and(B1) will still form a complete
set. The structure of interaction Hamiltoniél) is such that
scattering leads to connection of the given term only with
itself and with two(or one neighboring terms. These terms
can be obtained from the given one by a change of parity of
one of the upper or lower indexes. The relationships among
the various term€  are presented in Fig. 1.

APPENDIX C

We are now able to obtain the self-energy pﬁfé),u
and Xk ) in fourth-order perturbation theory. Straightfor-
ward elimination of terms irC* with P=2 from Eqgs.(6)
using Egs(A2) and (B1) gives
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|2K1
1 _ 2L,
K,L) ™ 2L 2L
(KL pH+ea(L Ly KK = (152 [ eq— 158 (uH +s6) — OE
|2K2 |2K3|2L1 |2L1|2L2
% |2Ll_ 2Ky ( 2, 2K, 2K4 N 2L, 2K,
2Ky /*LH+84(L!L11K!K1) 2Ky ,LLH+84(L,L1,K,K3) /‘LH+£4(L!L2!K;K2)
|2K3—1|2L1 |2L1 |2K2|2L2 |2L2|2L3
B 2K, 2Kz—-1 B 2L, B 2L2+ 2K, 2K, _ 2L, 2K4
84(L,L1,K,K3) ,U.H+84(L,L2,K,K1) 2Kl /.LH+S4(L,L2,K,K2) ,LLH+84(L,L3,K,K1)
|2K2—l|2L2 |2K2—1 IZKl |2L1 |2K3—1|2L1
n 2K, 2K,—1 )_ 2K, ( 2L, B 2K,—1" 2K, B 2K,—1 2K5—-1 )
e4(L,L,,K,Ky) e4(L,L1,K,Ky) \ 2K71 yH+e,(L,Lq,Kg,K)  g4(L,Lq,K,K3)
|2K2 |2L1 2L, |2L1|2L1 IZLl 2L,
2L, 2K, 2K, 2K, 2K, 2K, 2K,
J— + —
ILLH+86 /.LH+84(L,L2,K,K1) ILLH+84(L1,L,K,K2) MH+84(L,L2,K,K2))
|2K271 2L, I2L2 } |2K171
2L, 2K,—1" 2K, 4 2L,
- 2K 2K,—1
eg(uH+eg(L,Ly,K,Ky)) 84(L,L1,K,K1)—||2L22_1|2/(,LH+86)—||2L22_1 2|gq— OE
|2K2 |2K3|2L1 |2L1|2L2 |2K371|2L1
% |2Ll _ 2K, -1 ( 2, 2K, 2K3 . 2L, 2K, _ 2K3 2K3—-1
K71 MH+84(L1L11K1K2) 2Ky ,LLH+84(L,L1,K,K3) IU’H+84(L1L21K1K2) 84(L1L11K1K3)
|2K2—l I2K3 |2L1 |2K3—1|2L1
B 2K, -1 |2L1 B 2K,—1" 2K 2K,—1"2K5-1
84(L,L1,K,K2) 2K2_1 ,LLH+84(L,L1,K,K3) 84(L,L1,K,K3)
2L—1 ;2L3—1,2L3 2Ko—1,2L,—-1,2L4
|2|—2*1|2L3 |2K171 |2L271|2K171 ZKZl]
+ , (C)
(uH+e4(L, LK, Ky))ea(L,Lg, K, Ky)  egeq(L,L1,KKp)

121 122
s _ 2L,-1 [ 2,1 2K,
(L ,uH+s4(L,L1,K,K1)—5E—|I§k2271 2/86—||§;22|2/(MH+86) 2K uH4e,(L,L,K Ky
2Kg 2Ly-1 |2K3=12L; -1 |2K-1
21 2K, 2K, 2K, '2Kz-1 2K,
X i — —
2Ky /.LH+84(L,L1,K,K3) 84(L1L11K1K3) 84(L1L1!K1K2)
|2Ks 2Ll |2Li-1 20,1 |2Ka=12L1 -1 [2Li-1j2l,  |2Ls-1
2Ly 2K,~1' 2K 2L,~1' 2K, 1 2K,~1'2Kg-1 2L, latg-1'2k,
X —~ + —~
2Kom1 uH+e4(L,L1,KKg)  ea(L,Ly, KKy  £4(L,Ly,KKg) ) ea(l, Ly, KKy (uH+e4(L,L3,K,Ky))
| 2Kz 2Ls 2Ly~ 1 ] |2K1-1
2L, 2K, 2K, . 2L,-1
- 7K 2K,—1
(,LLH+86)(MH+84(L,L1,K,K2)) 84(L,L1,K,Kl)_||2|—2271 2/(IU“H+86)_||2|_2271 2/86_5E
12K |2K3 2Ls—1 |2Ka—1jLi—1
2,1 2K -1 2,1 2K, 2K 2K, 2Kg-1
2K-1" wHte4(L,L1, K, Ko)| ' 2K2  aH+ea(L,L1,K,Kg) ea(L,L1,K,Kg)
|2K—1 [2Ks |2Li-1 |21 21 |2Ka=1 2L3-1
~ 2K,—1 2,1 2K,—1' 2K, N 2L,-12Kp-1  12Kp-1 2Kyl
84(L,L1,K,K2) 2K271 /.LH+84(L,L1,K,K3) 84(L,L2,K,K2) 84(L,L1,K,K3)
|21 2Ky, 2L,-1 |2Lo-1 21 2Ky—1,2Ly—1
. 2,1 2,1 2K;-1' 2K, . 2lg-12K-1 2K -1 2Kl
84(L,L2,K,K1) 2K171 ,LLH+84(L,L2,K,K2) 84(L,L3,K,K1) 84(L,L2,K,K2)
|2K-1 ) |21 2,1 |21 21 |2lo-12Li-1 [2K2 |2Li-1j2L,-1
2L,-1 2Ky 12Ky 1 2K,—1' 2Ky~ 1 2Ky —1' 2K, 1 2L,-1'2K, '2K,-1 -
eo oLl K Ky oall, L, KKy 4Ll K Ky (uH+egeal L KKy 2
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From Egs(6) and(A2), the quantitieC3; * andC3;_1  EQq.(C3) holds in all orders of perturbation theory, and hence
can easily be obtained in the third order of perturbationwe can put
theory. We do not give these expressions here because only
one statement is essential for us: direct comparison of the

quantities 6E [Eq. (4)] and self-energy2y | [Eq. (C2)] 5E+2K"—|€k:8L:€F:_A’ (€4
shows that whereA is exponentially small and can be considered as an
order parameter. We also obtain from E¢€1) and (C2)
SE+3y ]y s 0 =0, (cy that self-energieg(}) andZy, coincide only in the second

order of perturbation theory. They start to be different in the
Equation(C3) is valid for arbitrary spectrunay ,e, and ar-  third order of perturbation theory. In the fourth order of per-
bitrary transition matrix elements. Our conjecture is that turbation theory, we obtain from Eq&C1) and(C2)

1 1
2(1) _E = 2K1| ZL]_I 2L,y _
(K.L) (L) 2Ll 2L2 2Kl (MH+84(L1L11K1K1)(MH+84(L1L21K1K1)) 84('—1'—11K1K1)84(L1L21K1Kl)

| 2Kz 2Ky 2Ly 2L,
2K, 2L, 2L, 2K,

1 1
(MH+84<L,L1,K,K1>+s4(L.L1,K.K1>)

1 1
X
((MH+84(L,L2K,Kz))(MH+84(L,L1,K,K2)) 84(L,L1,K,K2)84(L,L2,K,K2)>

1 1 1
i uH+s4<L,L2,K,Kz>+s4<L,L2,K,Kz>)((uH+s4(L,L2,K,K1)><uH+e4(L,L1.K,K1>>
1 ) 1 1 )
gq4(L,Ls,K,Kp)ea(L,Lq,K,Ky) uH+e4(L,L,,K,Ky) gL, Ly, K,Ky)
1 1
. (,U«H+84(L,|—3,KaK1))(MH+84(|—,|—11KaK1)+84(|—,|—3,K,K1)84(|—a|—1:K,K1))
1 1
i SGWH+s4<L,L2.K,Kl>>(MH+s4<L.L1.K.Kl>>‘wH+ee>e4<L,L2,K,Kl)s4<L,L1.K,K1>)
1 1 1

i (uH+es><MH+s4<L,L1,K,Kl>) pH+e4(L,Ly KKy uH+s4<L,L2,K,Kz>)

1 1 1
_<84<L,L2,K,Kl>_84(L,L2,K,Kz>)ses4<L,L1,K,Kl> ’ €9

where APPENDIX D

In this Appendix we consider the role of the right-hand
side of Eqs(7) for a negative value of the coupling constant,

84(L,L1,K,K1)58L+8|_1—8K—8K1, g<O0. In the first order of perturbation theory, we obtain from
(A2)
8658L+8L1+8|_2_8K_8K1_8K2. (C6) C2L1;2L71: 1
2K, ;2K ~
! uH+e,4(L,Ly K Ky)+A
Straightforward calculation of the integrals in EG.5) leads X[Cgkfllgkl—Cgkfllgk”C;kll%k*l

to Egs.(40) and(41). Both Egs.(40) and(41) are proved in
two orders of perturbation theory. Our conjecture is that Eq.

2L 2L-1
(41) is exact. Coryl2k 71,
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T R Ry U ok
2K —1;2K ea(L L K.K)+A 1~ b e4(L,L,K\Ky)+A
_ ~2L-1 2,1 2L1 1,2L-1
X[IZL]' C2L 1_ 2|_:|_|§|IZ E_l] CZK _1|2K 1 +C I2K—1
2L1-12L-1
—Cot 5 4] D1
c2li-ti2-1_ 1 2K—1 12K ~1 (DI)
2Ky2k-1 T~
MH+84(L,L1,K,K1)+A
2L 1 2L,—-1 . . .
X[CzKl 1| 2L ! C%k 112@ 1, Inserting(D1) into (6), we obtain
1oL A(Cok, Mo+ ColtBk, = Coltiok ot 5K o
A(CHhCHLCl= -3 -
uH+e,(L,L K,K)+A e4(L,L1,K,K)+A
| 2Kl s2L-1 2Ly -1 2L,-1,2L-1 2L-1,2L—-1
o0 1(Cok, =1l T = Cod “alak-1+ Col g 1ok, 71
Ax(CoR HiCRLICRI= — X
84(L,L1,K,K1)+A
2Ky 2L-1R2L1-1
I2|_1—1|2K1 Cox™1
uH+e,(L, L1 KK +A
2K 2L1—-1 2|_ 2L1—-1,2L 2L1—-1 2K;—1,2L 2L—-1
2L-1.c2L-1 & 2L11 1(C L kGl 2k, ~ C2K1 2 ) '2L1171 2k, -1
As(Co HCRILCR=2 -3 (D2)

MH+84(L1L11K1K1)+A

ea(L,Ly,K,K)+A

The quantities 4,4 here are the same as in HG.6).

g Iy P
. L2 1
Furtﬁzrg]e;(r)ée, only convolutionZ, ,Y, are large forg<O. 2 \ ginfee /(uR+y+A)] g IN[er/(y+4)] }
|ZL+ YU ~gPZ - Y. (D3)
=Ig| In ot +In °F
,u.ﬁ +y+A y+A
As the result, Eqs(7) can be reduced to just one equation: X Y
K K
+gfdx = , (D4)
uH+y+x+A YTx+A
€F
(Z,=Y)|1+gln +gin —
uH+y+A where
| f dx dy dx
1= - — — )
(uH+Yy+x+A)(upH+y+ X+ A)(uH+y+x+y +X+A)
dxdyd
Izzf y A . (D5)
(Y+X+A)(Y+ X+ A)(Y+X+Y+X+A)
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A simple calculation of the integral®5) gives

1
|1:_ |n3 ~8—F) ’
3 \uH+y+A
1 EF
i P
=3 In°| 75 ) (D6)
Now we can define the Kondo temperatdreto be
EE .
|g||nT_c_Z! (D7)
wherez is a root of the quadratic equation
ZZ
1-2z+5=0, z=3- \6~0.5505. (D8)
From Eq.(D4) we obtain
3
ZL_YL: — ﬁ 3
|9l(1=2/3)In((uH +y+A)(y+A4)/TE)
(D9)

wherefa’ is a number of order 1. Instead of E¢41) and(42)
we have now

,LLHZMH—(SE; 52:_/-LHZ(_1/2+<SZ>)'

As before, the average sp(8,) is given by Eq(27) with the
replacemenH— uH:

(D10)

(sy=—H

= — : (D11)
4T+ (uHI2)2)Y2
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s,
0.8F
0.6f .
0.4F
0.2p
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HHI2T,

FIG. 2. Magnetic field dependence of the average ¢Bifr. Dots are ex-
perimental of Ref. 4.

The magnetic field dependence of the average &pip
[Egs.(D10) and(D11)] is given in Fig. 2. Dots are the ex-
perimental results of Ref. 4.

LA. A. Abrikosov and A. A. Migdal, J. Low Temp. Phy8, 519 (1970.

2A. M. Tsvelick and P. B. Wigmann, Adv. Phy82, 453(1983.

3N. Andrei, K. Furuya, and J. H. Lowenstein, Rev. Mod. PH§5, 331
(1983.

4W. Felsch, Z. Phys. B9, 212(1978.

5S. D. Bader, N. E. Phillips, M. B. Haple, and C. A. Luengo, Solid State
Commun.16, 1263(1975.

5Yu. N. Ovchinnikov, A. M. Dyugaev, P. Fulde, and V. Z. Kresin, JETP
Lett. 66, 184 (1997).

’P. Nozieres and T. C. de Dominicis, Phys. R&V8 1097 (1969.

8K. Yosida, Phys. Revl47, 223(1966.

9Hiroumi Ishii, Prog. Theor. Phy<10, 201 (1968.

OHiroumi Ishii, Prog. Theor. Phyl3, 578(1970.

1IM. Fowler and A. Zawadowskii, Solid State Comm®.471 (1971).

Published in English in the original Russian journal. Reproduced here with
stylistic changes by the Translation Editor.



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS VOLUME 88, NUMBER 4 APRIL 1999

Random walk on hierarchical comb structures
V. E. Arkhincheev*)

Buryat Science Center, Siberian Branch of the Russian Academy of Sciences, 670047 Ulan-Ude, Russia
(Submitted 2 June 1998
Zh. Eksp. Teor. Fiz115 1285-1296April 1999)

This paper examines random walks on an exactly solvable comb model of percolation clusters.
The study shows that diffusion along the structure’s axis is anomalous. Generalized

diffusion equations with fractional-order time derivatives are derived, and a generalization to the
multidimensional case is carried out. The relationship between this problem and that of

diffusion in a medium with traps is examined, and equations that describe diffusion in a medium
with traps are derived. The paper also discusses the transition to ordinary diffusion due to

the introduction of comb teeth of finite length, and analyzes the caSet@éth of different length.

It is shown that the solution of this problem leads to the emergence bferannel

diffusion equation. Finally, equations describing the diffusion of interacting electrons are derived.
© 1999 American Institute of Physid$51063-776199)00904-X

1. INTRODUCTION diffusion. Therefore, further investigations into random
) o ] walks along a comb structure are of interedthe author
_ Interest in random walks in highly inhomogeneous me-qnes that the results of such an investigation will reflect the
dia and along fractals can be explained both by the numeroug,eia| features of diffusion processes in real media of the

applications of diffusion problems, e.g., the problem of con-ye(cqation type. The present paper studies the various hier-
ductivity in highly inhomogeneous media, and by the un-zichical structures in the given model and generalizes the

usual anomalous nature of random walks along fractals. Thg.g it to the multidimensional case. It also studies the tran-
anomalous nature manifests itself in the power-function degition to ordinary diffusion when the teeth of the comb struc-
pendence of the mean-square displacement on ‘time: ture are of finite length. An equation is derived that describes
(Xz(t))octz’(z“’), 6=0. 1) a random walk on a comb str.ucture _with teet.h of finitg
length. It appears that the most interesting case involves dif-
The law (1) was established by the renormalization- fusion on a comb structure in which tieteeth are of vari-
group method for regular fractals of the Sierpinski tiling ous lengths. Here the random walk largely depends on which
typet? and by computer simulation for percolation clusters,teeth the particle visited and on the length of each of these
or statistical fractals:* There are at least two reasons for theteeth. The solution of this problems leads an
change in the nature of diffusion: the marked sinuosity ofN-channeldiffusion equation, which connects all teeth.
percolation paths on all scales, and the existence of deadisymptotic solutions of this equation are obtained. Another
ends in the current-carrying paths. Weiss and Hawiiro-  problem studied in the paper is that of diffusion in media
posed a model that allows for the existence of dead ends iwith traps (continuous-time random walk A system of
percolation systems, a comb struct(ég. 1). They used the equations for this problem is derived. Finally, equations that
generating-function technique to demonstrate that the timdescribe the diffusion of interacting electrons are set up, and
dependence of the mean-square displacement along tiselutions of these equations are found. The results are dis-
structure’s axis is of the anomalous ty(® and that§=2.  cussed in the Conclusion.
However, they did not derive an equation and proposed an
incorrect extrapolation expression of the Gaussian type for
the Green’s function. In Refs. 6 drY a rigorous description
of diffusion on such a structure was given and a diffusion
equation describing random walks along the structure’s axis Let us briefly recall the results of Ref. 6. A specific
was derived. This equation differs from a continuity equationfeature of diffusion in the adopted model is that a displace-
in that instead of a first-order time derivative it contains ament in thex direction is only possible along the structure’s
fractional derivative of order 1/2(The expression for the axis aty=0. In other words, the diffusion coefficieit,, is
diffusion currentJ is the ordinary ong.Attention in these nonzero only ay=0:
apers was focused on demonstrating the effect of an electric
Eel% on diffusion and on establishin% the relationship be- ~ Dxx=D18(Y) (Jx==D15(y) 3*plox?), 2
tween diffusion and conductivity for the anomalous case. wherep is the number density of the diffusing particles. Dif-
The comb structure model is one of the few exactly solv-fusion along the teeth is assumed to be ordin@ry,=D,.
able models with unusual diffusion properties. The modelThus, a random walk on a comb structure is described by the
explicitly allows for the effect of dead ends on the nature ofdiffusion tensor

2. DIFFUSION ON A COMB STRUCTURE

1063-7761/99/88(4)/6/$15.00 710 © 1999 American Institute of Physics
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where the operator of fractional differentiation with respect
to time is

V3¢ _j“’ Jf(r) dr
gti2 ). ar |t—7-|1’2'

The fact that the diffusion equatiof10) is of an integro-
differential type is a corollary of random disappearance and
subsequent emergence of particld® departure of particles
FIG. 1. Comb structure: infinitely long “teeth” are attached to a conducting from the aXIS_ and their retu}m.ls they wander alqng _the
axis (y=0). structure’s axis. Our goal here is a further generalization of
these results.

. (D06 0
D_( 10y) ) 3 3. MULTIDIMENSIONAL CASE

0 D,/’

Accordingly, we obtain the following diffusion equation: Let us first examine a three-dlmen.smnal c.o_mb structure.
Such a structure is formed by attaching additional teeth to
the existing comb structure that point in the direction parallel
to the z axis. Hence in the three-dimensional case displace-
G(x,y,t)=4(x) &(y) o(t), (4) ments in thex-direction are possible only along the intersec-
tion of the planeyy=0 andz=0. In other words, the diffu-

where G(x,y,t) is the Green’s function of the diffusion sion coefficientD,, is finite only if y=0 andz=0, i.e.,
problem. Using the Laplace transform with respect to timeD,,=D,8(y) 6(z). Accordingly, a displacement in the
and the Fourier transform with respect to position, we obtairy-direction is possible only iz=0, and displacement along

d 5.5 32 Da2
e 1()0@ 2a—y2

a mixed §,k,y)-representation of this equation: the z axis is ordinary. Thus, we obtain the diffusion tensor
(s+D1k?8(y)— D, #°1dy*)G(s,k,y) = 8(Y). (5)
The solution of Eq(5) is D,4(y) o(2) 0 0

lwh
Il

0 D,6(z) O (11

exp(—s/D, |yl) ©) 0 o b
2\sD,+D;k? 8

so that the corresponding diffusion equation with coefficient
(1) in the mixed §,k,y,z)-representation is

G(s,ky)=

We study diffusion along the structure’s axis, i.e., at
y=0. The corresponding Green’s function is

) [Byrdr
(7) (12

In deriving (7) we used the identitf exp(—a7) dr=1/a. The  We seek a solution of Eq12) in the form

total number of particles on the structure’s axis decreases

with time: (G)=/G(x,0f) dx=1/(2D,t). Thus, the p(s.k.y,2)=g(s.k) exp(—Aa|y|—N\s|z]). (13
Green'’s functiorG(x,0t) describes diffusion with a noncon-

served number of particles, because the particles leave f
teeth of infinite length. Allowing for this fact, we calculate

X2 Dyr? * P
2 s—D1k?3(y) 5<z>—D26<z>a—y2—Dgg p(s,k,y,z)=0.

1 )
G(x,01 =—f ex (————
xO0= S bl ¥\ T, &

Substituting(13) into Eqg. (12) yields the following formulas
96r the parameters, and\; and the functiorg(s,k):

the displacement along the structure’s axis: , S , 2\3D3  2(sDy)'2
7\32—, 2= = ) (14)
) <X2G> t D3 Dz D2
Xe(t))= =D;\/=—. 8
Let us discuss the equation f@&(x,0t). From (6) it 9(s,k)= 2)\2D2+D1k2' (15

follows that in the §,k)-representation the equation is
[2(5D,) Y2+ D k%] p(s,k) =0. 9) For the mean-square displacement alongxthedy axes we

then have
Using the definition of fractional-order time derivati¥eye
obtain a diffusion equation for the particle number density on ~ (X?(t))st", (16)
the structure’s axis: (Y2(1)) ot 2 17)
(?1/2 Dl (?2 . . . . . .
—+ _1/2_2]9(’("):0' (100  Hence in theN-dimensional case the diffusion tensor is de-
a2 D3 ax scribed by the matrix




712 JETP 88 (4), April 1999 V. E. Arkhincheev

D18(Xp)- - - 8(Xy) 0 . 0 0
0 D,8(X3)- - 0(Xyn) - 0 0
D= : : : : : (18
0 0 -+ Dn-16(xy) O
0 0 . 0 Dy
|
Accordingly, we seek a solution of thié-dimensional diffu- ap #p Pp
sion problem in the form ——Dy,—=D8(y) —, (25)
ot ay? ax?
S, K, X5, X3, ... X .
p(s.kXa,Xs v and the boundary conditions
=0g(s,k) expl—No|Xo| = Ng|X3|— - - = ApnIXn)). (19
9(s,k) expl — Na|xa| = Ng|xs| nIXn)) ) y=+1)=0. 26

Here the parameteps, are linked through the formulas , ) )
The Green’s function of Eq25) with the boundary condi-

tions (26) is well known:
2)\N:i A2 _2MDy o )\2:2)\3[)3 (20) 26
DN, Nil DN_l ! ! 2 D2 ! ee]

—D,t

mzwz) mary

2 cosT. (27)

and the functiorg(s,k) is defined in(15). The expressions Gly.n)= L mE:O exp
(19) and(20) comprise the complete solution of the problem.

For instance, we can easily calculate the mean-square dighus we obtain an integral equation for the concentration:

placement along the main axis of the structure: 5

’ ’ ’ J p(X,y',t') ’ ’

(XZ(1)) e tV2N-1), 21) P(X,y,t)=f G(y—y' t=t")D;o(y") —————dy'dt’.

Now, the mean-square displacement for the next lateral tootfthis  equation has the simplest form in  the
(this tooth and the attached teeth comprise ans k,y)-representation:
(N—1)-dimensional structujds

D,k? cogmmy/L
(XR- 1 (1)t V2072, (22 plsky)=— o0y SAMTL) o 28
L s+m?m?/L2
etc. On the penultimate axis, from which only teeth of infi- . i
nite length emerge, we have At y=0 we obtain a closed-form equation fp(s,k,0):
(X¥(1))ectl2 23) K(s,L)p(s,k)=—D1k?p(s,k). (29
Thus, a random walk on a multidimensional comb structureHere the inverse operator is
is of a hierarchical nature, anq there are many variants of 1 cotHL(sDy¥?
behavior of the mean-square displacement along the axes of K 1=§+ — (30
the structure. Here the equations describing a random walk 2(sDy)

along themth axis of anN-dimensionalstructure can be rep- When the teeth are of infinite length &), we have
resented in the form of a system of equations in which thg,. \vell-known formulak (s,%) =2 (sD,) 2 For,long time

fi_rst-_order time derivat_ive is replaced with a fractional de-;,:arvals we have the ordinary asymptotic equation for dif-
rivative of the appropriate order: fusion with the diffusion coefficient depending on tooth

(s*+ 9%19x2) p(s,x) =0, (24 length:

2 _
where a=1/2(N—m). [s+constX D k“/L]p(s,k)=0. (3D

The structure that we have studied had teeth of equal
length L. Now we assume that thhl teeth have various
4. COMB STRUCTURE WITH TEETH OF EINITE LENGTH lengths,L,,L,, ... ,Ly, and that this pattern repeats peri-
odically. The distance between the sites on the structure’s
Up to this point we examined comb structures with infi- axis isa. To understand how a random walk on such a struc-
nitely long teeth. Now we turn to the case of diffusion alongture can be described, we analyze the case of two lengths,
a two-dimensional structure with teeth of finite lengittand  andL,. We write the second derivative with respect to the
reflecting boundaries. The following method will be used tocoordinatex in the finite-difference form and introduce the
solve this problem. notation K(s,L=L;)=K; and K(s,L=L,)=K,. We also
We write Eqg.(4) in the form of an ordinary diffusion denote the particle concentration at the point on the axis to
equation with an inhomogeneous right-hand side, which a tooth of length.; is attached by, (F, is intro-
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duced in a similar way Then the following system of equa- Setting the determinant of this equation to zero, we can find
tions describing the behavior of the particles on the axis cathe relationship between the parameteendk, or in other
be written: words, the analog of the diffusion equation in the

(s,k)-representation:
Fo(x+a)+Fy(x—a)—2F(x)

KiF1(x)=D;4 2 )
a T1(S)Ty(s)—C? cos ka=0, (34)
Fi(x+a)+F(x—a)—2F,(x)
K2F2(X)=Dy 5 (32 whereT(s)=K(s)—C, andC= 2D, /a. From Eq.(34) with
a equal tooth lengths and as—0 we obtain Eq(9), as ex-
or, in thek-representation, pected.
Thus, to describe random walks dhteeth of differing
Kl(s)—ZE 2D, coska length, we must set up a §yst§m Nf equations. Such a
F1(k) system emerges because diffusion strongly depends on what
o. |y =0. (33 teeth(and of what lengthare involved in the random walk
2D, coska K,(s)— o1 2 of a particle. The above analysis suggests that in the case of
a? a comb structure witlN teeth, the determinant takes the form
T explika) 0 0 0 expy —ika)
exp —ika) T, expika) 0 0 0
0 exg —ika) T3 expika) 0 0
. =0. (35
0 0 exp —ika) Ty
expika) 0 0 e <.+ exp—ika) Ty

Thus, instead of the ordinary diffusion equation we have amwalk). What makes the two problems different is that in dif-

N-channeldiffusion equation, i.e., instead of a fairly simplefusion in a medium with traps the particles do not disappear
dispersion laws=Kk?, valid for ordinary diffusion, we have but, with a certain probability, stay at each site. The total
anNth order equation wittN solutions. Moreover, according number of diffusing particles is conservet For a comb

to (30), the type of operatoK depends on the relationship structure, the statement of the problem with a continuous
between the parameter and the diffusion timeti:D/Li2 distribution over the time lags in the two-dimensional case

along a tooth. amounts to studying the quantity

Let us analyze the solutions of Eq85) by qualitative
reasoning. Suppose the tooth lengths differ substantially. Bix t :f Gix.v.t)d 36
Then the problem acquires a hierarchy of times related to (x.t) (x.y,t) dy. (36

diffusion along these teetl; <t,<t;<. . - <ty. Over short
times, shorter than any characteristic times of the problenf\ccording to (5), the functionG(x,t) is described by the
diffusion is anomalous, as it is in a comb structure with€duation

infinitely long teeth. As time increases, anomalous diffusion
is replaced by ordinary diffusion with a diffusion coefficient
depending on the length of the particular tooth. Over times
ty<t<t,, D~D;/L; over times t,<t<ts;, D~D;/Ly;

lk231/2

D, G=1. (37)

S+

Hence, in the case of a medium with traps, the diffusion

etc.: equation has the form of the continuity equation for a me-
(X3(1))=tl2, t<ty < - <ty dium with temporal dispersion:
(X?(1))* Dyt/Ly,  tp<t<tg,q. It A -

A more detailed solution of this system merits a separate ot ox

investigation.

where

5. CONTINUOUS-TIME RANDOM WALK ; D,  (dp(x,7) dr 2

The above problem of a random walk on an ~ 2D, dx It |t—7 Y2 (39

N-dimensional comb structure is related to the problem of
diffusion in a medium with trapgcontinuous-time random Diffusion is still anomalous with the same expon#ri2.
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G(s,k,y,a) averaged over thg andz axes, i.e., the function

We now turn to the three-dimensional case and examine {
G(s,k)=JG(s,k,y,z) dy dz According to (13), for this

9? 9?
s+D.k28(y) — Dp—s || —k2+ —
1kea(y) Zayz ( &y2>

function we have the equation 52
2_ —
45D 3 _ +4mo,8(y)k 4770'2(9y2] ¢=0. (48
sD,+D;k D G=1. (40
2

To find the general form of the solution of E@8), we first
Hence the diffusion equation has the form of the continuityexamine a pure diffusion problems(=o,=0) and then

equation with a diffusion current find the potential for this case. Such an approach also sug-
gests a way of solving Eq48) in the general case. Accord-
d dp(X,7) Ir ing to (6), the number density of diffusing particles on the
J(X,t)e— — : (41) e
X It |t— 7|34 structure is given by
Now we study the Green’s function averaged over one coor-  P(S,K,y)=p(s,K)exp(—\[y|), (49)
dinate,z

i.e., in the §,k,y)-representation we have
G(k,y,t)=exp (—\o|y[)/A3(2\,D,+D k%) . (42

Accordingly, motion along thg=0 axis is described by the P(S,k,y)zp(s,k)f exp(—\|y|+iqy) dy

equation
q 2\

[s¥4+ AsY%?]G,(s,k)=0, A=const. (43 =p(sk) Nt (50)

The number of particles on the=0 axis is not conserved, Thys according to Poisson’s equation, the electric potential
since they leave for the dead ends alongyhke0 axis. The ¢ is given by

diffusion current also contains a time derivative of order 1/2.

Clearly, in theN-dimensional case the equation for the A(s,K)
. ~ . S,k, = ' . (51)
function G,, averaged over the coordinates has the form e(s,k,q) 2 (L)
(sP+5"k?)G(s,k) =0, (44)

If we again transform to the mixeds(k,y)-representation,
where 8= (N—m-+1)/4, andv=(N—m—1)/4. we find that

exp(—k|y|) N exp(—Aly|)
K )

e(s,ky)=d(s,k)

}. (52

6. DIFFUSION ON A COMB STRUCTURE OF INTERACTING

ELECTRONS Note that after differentiating this expression twice with re-
spect toy, the singular parts cancel. Hence, we seek a solu-

Generally, the current has a diffusion component and %on of Eq. (48) in a similar form:

field component:

. expl— exp—\
j=—DVp+oE, (45 e(s,k,y)=(s,k) i M“|y|)+ i . D] (53)
where the diffusion coefficienD and the conductivityo o
have the tensor forrt8), and the electric field satisfies Pois- ~ The parameterg and\ can be found by substituting the
son’s equation solution (53) into Eq. (48):
div E=4mp. (46) , Sta4mo+Dk*~[(s+4mo+Dok?)?+4D,sk]"?
M =

Hence the distribution of electric potential over the comb 2D,

sf[ructure is de_s_cribed by the equation for the 4-potential with s+4mo+Dk2+[(s+amo+ D2k2)2+4D23k2]1’2(
singular coefficients: 2

54)

2D,
9 52 52 g2 92 ) . . "
——D18(y) — —Dy—|| — + — | —,8(y) The signs in(54) are determined by the condition that at
ot 10ly)— Do > > 10y ) :
IX ay“ |\ ax= gy o,=0,=0 the solution(53) becomeg52), i.e.,
X ” + ” 0 (47) fim x2=k2,  lim A%=— 55
—+t—|1¢=0. im u”=k%  lim £\ =—.
(9X2 ﬂyz crl~>OM o1—0 D2 ( )
op,—0 op—0

Using the Laplace transform with respect to time and the
Fourier transform with respect t§ we obtain an equation Accordingly, we have an expression for the function
for the potential in the mixeds(k,y)-representation: @(s,k):
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(2uDy+ D k%) (2 —k?) — o k? disappear but, with a certain probability, stay at each site.

o(s,k)= P The total number of diffusing particles is conserved. Hence
we have the law of mass conservation, expressed by a con-

(2AD,+D1k*)(N?—k?) = o1K?| * tinuity equation. However, the anomalous nature of diffu-
B N - (56 sion, due to the capture of particles by the traps, leads to an

Formulas(53)—(56) provide a complete solution of the unusual expression for the diffusion currd¢see Eq.(39)].
problem of diffusion in interacting particles in a comb struc- Note that mathematically Eqs$24) and (38) with current
ture. Heretofore, the diffusion of interacting particles in in- (39) are different. Despite the fact that in both problems
homogeneous media has been studied only by computgliffusion is anomalous, has the same exporten®, and the
simulation. solutions of the respective equations are almost the same,

How does the general solutidB6) of the problem be- these equations describe different physical situations. First,
come the solution of the relaxation problemiy=D,=0? in diffusion along the axis of a comb structure the number of
To answer this question, we note that in this passage to thgarticles is not conserved. Second, the diffusion fluxes are
limit the quantities that remain constant are different.

The equations with fractional-order time derivative simi-

lim p2=k2—0—, lar to those discussed in the present paper appear in the de-

D, 0 stamo, scription of diffusion on Cantor setd.In their review!?

(57) Olemskd and Flat discuss these results and interpret
fractional-order time derivatives. According to Ref. 12, the
fractional order of the time derivative corresponds to the

and the parametex tends to infinity as D32, With allow-  relative fraction of mechanicateversible in timg and dis-

ance for this fact, we can easily ug&3)—(56) to derive an  sipative diffusion(irreversiblé processes. They do not really
expression for the electric potential in the problem of thedistinguish between Eq$24) and (38) with allowance for
spreading of electric charge in a comb structure: (39), i.e., between fractional-order time derivatives proper
and the expression for the current in terms of fractional-order

S

lim D,(\2—k?)=s+4m0,,
D,—0

exp{—Kly|[s/(s+4ma,)]}

o(s,k,y)= ) (58) derivatives. However, as the example of a comb structure
2K[s(s+47a,) Y2+ Ao k2 shows, fractional-order time derivatives can only arise in the

study of dissipative diffusion processes, and the different

7. CONCLUSION equations describe different physical situations. The exis-

tence of dead ends alters the order of the time derivative,

We have studied random walks in the comb-structurgyije the capture of particles by traps changes in the final
model and found that the existence of dead ends in th@malysis the expression for the diffusion current.

current-carrying paths, teeth in the comb structure, leads to ] .
the anomalous nature of the random walk. We have estab- 1he author is grateful to Prof. D. E. Khmel'nitskior
lished that for diffusion problems in which the number of SUpPOrt of this work.
particles is not conserved the generalized diffusion equation
must be of the integro-differential type: instead of having a
first time derivative, the equation must contain a fractional-
order derivativgsee Eq(24)]. Fractional-order time deriva-
tives emerge because of the random disappearance and re&js=mail: varkhin@bsc.buriatia.ru
pearance of diffusing particleéhe departure of particles
from the axis and their retuyn
In the case of teeth of finite length, over long times
anomalous diffusion is replaced by ordinary diffusion, but 'y Gefen. A AR ¢ al, Phys. Rev. Lettd7, 1771(1981
; ; i ; i . Gefen, A. Aharonyet al, Phys. Rev. Lett47, .

o o . Al i, s L. 4 62 s

” ’ ) ] . B. Pandey and D. Stauffer, Phys. Rev. LBtt, 527 (1983.
sional comb structures with a variety of tooth lengths is of a4y. Gefen, A. Aharony, and S. Alexander, Phys. Rev. L&, 77 (1983.
hierarchical nature and that different power functions repre->G. Weiss and S. Havlin, Physica 84, 474 (1986.
senting the time dependence of the mean-square displaceGE/S- E. Aprﬁhi”CJhEeﬁégnfe?\"iggas]ki”vZh~ Esp. Teor. Fiz100 292(1991)
ment are pgssible. Thus, .tO eXp”CitI.y §.||OW for the effect Of_ 7V.OI\E/: Arlzsi.ncheev,vAMS(E Piés: Modeling, Measurement and Control
dead ends in the percolation paths in inhomogeneous mediaag, 11 (1993.
one must use generalized equations with fractional-ordefM. M. Dzhrbashyan ntegral Transformations and Representations of
time derivatives. Functions in the Complex Plarien Russiar, Nauka, Moscow(1966.
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ends. The difference lies in the fact that the particles do notranslated by Eugene Yankovsky
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This paper is a theoretical study of the properties of the low-temperature phase of a Peierls
system when nonequilibrium electron—hole pairs are excited in the phase. A microscopic theory is
developed to show that at low temperatures a spatially nonuniform periodic structure with a
modulated band gap forms in the thermodynamically nonequilibrium system considered. The
critical temperature of formation of such a superstructure, the critical electron—hole pair
concentration, the spatial period, and the percentage modulation are calculaté899G\merican
Institute of Physicg.S1063-776(99)01004-3

1. INTRODUCTION duced phase transitions in systems with Peierls’s
instability*>*® and by data from experiments in which vana-
At low temperatures, a one-dimensional chain of equi-dium dioxide films were irradiated by high-power laser
distantly positioned atoms each of which contains one outepulsest’°
electron is known to become unstable against crystal-lattice  Berggren and Huberm&hused the phenomenological
period doubling: The corresponding phase transition, char-Ginzburg—Landau expansion of the free energy in powers of
acterized by structural distortions and by formation of a bandhe order parameter of the phase transition to show that the
gap in the electron spectrum, is known as the Peierls transisniform semiconducting phase of a Peierls system at low
tion, and the system where such a transition occurs a Peietemperatures and high concentrations of nonequilibrium
system. (e.g., photoinducedelectron—hole pairs is unstable against
Theoretical results obtained from the Peierls model aré¢he formation of a periodic superstructure with a spatially
used to describe the experimentally observed properties ahodulated band gap. The instability is due to the strong de-
many quasi-one-dimensional materiai§.Among the best- pendence of the electron spectrum on the electron concentra-
studied materials is vanadium dioxide, whose onedion in the conduction bant?.|t is known that an instability
dimensional electron conduction band forms because of thef a similar type can also be caused by a strong dependence
overlap of the 8-wave functions of the vanadium atoms, of the band gap on temperature or deformation of the crystal
which appear as chains parallel to the crystallographic@xis lattice?° or by variations in the dielectric constant generated
(Ref. 4. Below 340 K, vanadium atoms in a chain convergeby band-gap variations. The phenomenological diffusion—
pairwise and a forbidden band forms in the electron spectrurdeformation—drift models of instability discussed in Refs.
at the Fermi level, so that the low-temperature phase of VO14, 15, and 20 describe the time-dependent regime in the
can be assumed to be a one-dimensioaliasi-one- initial stages of superstructure formation.
dimensional Peierls semiconductér. Note that spatially and temporally nonuniform solutions
Assuming that the Peierls mechanism is the driving forcevere analyzed by Mamfh and Kopae\et al,? who pointed
behind the metal-semiconductor phase transition at 340 K inut the possibility of emergence of moving superstructures
vanadium dioxide and that Hubbard repulsion among thend soliton$' and of time-periodic variations in the band gap
electrons at a single site is negligible, a group ofin the electron spectrum of a system with Peierls’s
researchefs®® theoretically investigated and interpreted ainstability 2
large body of experimental data related to studies of the ef-  This paper develops a microscopic theory of steady-state
fect on this transition of various external factors, such adi.e., already formedsuperstructure. The theory is based on
uniaxial and hydrostatic uniaxial pressdralloying by sub- a generalization, to the case of nonequilibrium systems, of
stitutional impuritie$ ! the interaction of a vanadium diox- the mechanism of low-temperature instability of a crystal
ide film and the substrafé,and adsorption® lattice against static distortions with a wave veajgmwhen
It is of interest to study the behavior of the low- the electron spectrum(k) satisfies the nesting conditith
temperature phase of a Peierls system when nonequilibrium _
electron—hole pairs are excited in the phase. To the author’'s e()=—s(k+q) @D
knowledge, this problem was first examined by Berggren andor all vectorsk near the Fermi surface and for a fixed vector
Huberman'* who used numerical analysis to show that, dueq lying on the Fermi surface.
to strong electron—phonon coupling, a rise in the electron— In the semiconducting phase of the Peierls system and at
hole pair concentration leads to a narrowing of the band hafhigh levels of excitation of nonequilibrium electron—hole
and the process may be sudden for high levels of excitatiorpairs, the Fermi quasilevels of the valence and conduction
This result has been corroborated by the theory of photoinbands lie in the respective allowed bands of the electron

1063-7761/99/88(4)/10/$15.00 716 © 1999 American Institute of Physics
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spectrum. In view of the one-dimensional nature of the sys- g
tem and the symmetry of(k), the condition(1.1) is met

near each quasilevel, which results in a transformation of //\m
crystal lattice at low temperatures. Here secondary forbidden i
bands form near the Fermi quasilevels, which in the case at - sy k. k. 1 &
hand is equivalent to spatial modulation of the order param- ; {
eter of the metal-semiconductor phase transition of the _/ \
closely related band gap in the electron spectrum of the sys-
tem.

FIG. 1. Sketch of thd&-dependence of the electron spectrap{Egs.(4.4)

and(4.5)] of the Hamiltonian specified b§2.5) and(2.4) of the superstruc-

ture in the Peierls system with pairwise convergence of afdtgs(2.3)].
Let us examine a chain of atoms each of which has one

outer electron. The Hamiltonian of the electron subsystem in

2. SYSTEM HAMILTONIAN

the tight binding approximation can be written' as forbidden band, the given transformation of the electron
spectrum reduces the free energy of the electron subsystem
H= 2 Bun ms1(87ams 1+ a5 18m), (2.1) and under certa_in con_d_itiqns may correspond to a new stable

m ' state of dynamic equilibriunisee the emergence of stable

nontrivial solutionsé#0, ¢(#0 in Egs.(5.4 and(5.5]. The
term 1/2 in the cosine if2.3) has no effect on the final result
and has been introduced to simpli®.4) and all subsequent

wherem is the number of the atom in the chaBy, 11 IS
the overlap integral of the wave functions of neighboring
electrons, and,,, anda,, are the operators of electron cre-
ation and annihilation at theth atom. formul'as.

For narrow-gap systems, e.g., for the Peierls model, the With aIIowancg for the fact. tha'tm’m+1=.xm+l—xm,
separation of adjacent atoms, 1, €xceeds the effective Egs.(2.2 and(2.3) in the approximatiori<1 yield
radiusR of the atomic wave function of an electron several-g . = BM+B@=b exd (—1)™¢]

fold. In this case the overlap integ}, 1 is given by the
expressioff’ +b&{ cos(mm) cos(kym) cos Ky/2), (2.9

Fome whereb is the overlap integral in the metallic phase £=0).
Brmm+1% exp( - ’R ) (2.2 With the Hamiltonian of the electron subsystem written in

the form(2.1), the phases of the wave functions are selected
We write the coordinate of thenth site in the chain with so thatb in (2.4) is a real quantity.

spatially modulated pairwise convergence of atoms as fol-  Substituting(2.4) into (2.1), we finally obtain
lows:

2
H=2 Hi, Hi=2 BR(anam 1t an.iam. (29

R¢
Xm=Mmrqo+ 7cos{ rm)

1+¢ coz{ko ] (2.3

1
m— E)
) ) o . ) Note that in view of the approximatiofi<1, adopted in the
wherer is the atomic separation in the metallic phadés  yerivation of(2.4), H,<H; in the Hamiltonian(2.5).
the period-doubling parameter for a one-dimensional crystal,

which characterizes the pairwise convergence of attihes
order parameter of the metal-semiconductor phase trans3- ELECTRON SPECTRUM OF THE SPATIALLY UNIFORM
tion); ¢ is the parameter of modulation @f with a wave SYSTEM

vector k0=27-rt/_1,| W'th jdthfetrr:umber Otf at?ms in the chain We begin with a spatially uniform Peierls systéii=0).
over one spatial period of the Superstructure. In (2.5 we haveH=H,. To diagonalize the Hamiltonian

At (=0, formula(2.3) describes spatially uniform pair- 25 we employ Bogolyubov's method of canonical
wise convergence of atoms, which characterizes the Chané?ansformation:? We introduce the collective second-

in the structure of the lattice under a metal-semiconducto i ; + .
phase transition in the Peierls systtmlhen ;#0, there is E]uantlzatlon Fermi operatocy andcy as follows:
spatial modulation of the structural distortions of the one- 1 i«

dimensional crystal, which leads to similar modulation of the amz\/—N 2 ¢ "™, (3.1
band gap in the semiconducting phase of the Peierls system.

Formula(2.3) is written in such a way that in the Fourier where N is the number of atoms in the chaik=0,
spectrum of the static displacements of the atoms from the-2#«/N, ... ,*=m, andc,,,=C. In the new operator rep-
equidistant positions of equilibrium there are three modesesentation the Hamiltoniaf2.5) becomes
with the wave numbergi==, q=(7w—ky), and q=(=
+ko). This leads, as we will shortly sé€ecs. 3 and4to  H,= >, 2b(cy ¢, cosh¢ cosk+icy ¢y, sinh & sink).

the formation in the electron spectrum of the Hamiltonian K
(2.1) of forbidden bands at points where the electron quasi- (3.2
wave number ik==* /2, k=*(7m—kp)/2, andk= = (= In (3.2) we apply another canonical transformation to the

+ko)/2 (see Fig. L If the Fermi level(or quasilevelis ina  operatorse, and «; :
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c _atioay 33 " ’ Eb(1— okei+k,) Sin (k+ko/2)
K— T mL 2 . g=K+Kotm, Hy= ,
V1+ o (140D (1+ o)
The functiongy in (3.3) is selected in such a way that the (4.9
resulting Hamiltonian is diagonal in the new variables  and Ey is the electron spectrum of the unperturbed system

and oy : (3.6. For values of the quasiwave numbeke
[ = m,0]U[ #/2,7], the spectrung, can be found from4.4)
lez Erayl . (3.4) and (4.5 with allowance for parity and symmgtry, i.ea_k
K =g_, andgy=—¢gy, .. A sketch ofe as a function ok is

depicted in Fig. 1.

We see that the pairwise convergence of atoms leads to
the formation of forbidden bands in the electron spectrum at
pointsk¥ /2 (see Eq(3.6)), while spatial modulatior2.3)

Substituting (3.3) into (3.2 and zeroing out the off-
diagonal elements, we obtain an expression ¢gQrand a
dispersion law folE, :

cosh¢ cosk—sgr(cosk) \ co k+sinl? & of this pairwise convergence leads to the formation of sec-
o= sinh £ sink , ondary forbidden bands at poinks= Kk, ,*k,, wherek,
3.5 =(m¥ko)/2.
Let us study more thoroughly thedependence aof, for
Ex=2b sgr(cosk) ycos k-+sintf &. (3.69  ke[0,m/2]. Bearing in mind that the electron spectriind)

) differs substantially from(3.6) only in the region @< /2
We see that fo£#0 the spectrunk, has two bands, with the  _ <y <1, if we use(3.5) in (4.5) for H,, we can write the

lower band in the ground state completely occupied and thgpproximate expressions
upper band vacar(the semiconducting phaseAt £=0 the b K P~k 2
spectrum(3.6) consists of one half-filled bandhe metallic - &4, s(m 0.7/2),
phasg. K“lo,  ke[0,m2—K,].
Substituting(4.6) into (4.4) and keeping only the quadratic
approximation forgE, near the bottom of the conduction

(4.6

4. ELECTRON SPECTRUM OF THE SPATIALLY band, we finally obtain
NONUNIFORM SYSTEM '
We now turn to the case whete=0 in (2.3—(2.5). To b(k—k;)?
calculate the electron spectrum of the Hamiltonjars), we it “ginng  PSIrk—ky)
use the perturbation-theory appro&tearing in mind that 5
H,<H;. The matrix elements of the perturbation operator ~) \/ kO(.k_kl)} +(&0)? ke[m/2—kg,ml2),
H, [Egs.(2.5) and(2.4)] in the representation of the second- sinh ¢ ’
guantization Fermi operatocg, [Eq. (3.1)] have the form Ey, ke [0,7/2—K,].
(H2) pk=dkSp k+kg+ =+ NkSp k—ky+ 7+ 4.7 4.7
Thus, as Eqsi4.7) imply, when there is spatial modula-
where tion (2.3) at pointk=k; = (7—k)/2 there forms a forbidden
ikg Ko Ko band, or gapAe =2bé{. _
dy=ibé&¢ exp( - 7) sin (k+ 5) cos—, Note that the form of(4.3) suggests that a forbidden
band forms also ak=kgy/2. Here,e, neark=Kky/2 has the
ik, Ko Ko (42 form (4.4), where nowg=k—kg and
h,=ib&l exp(7 sin(k—f cos?. Ko\ 2
Hk:b(k— > &7 tanh é. (4.8

When we pass to the Fermi operatarg of (3.3), the
matrix elementg4.1) of the HamiltoniarH , of (2.5 become

(Hp)sq=[(1+2)(1+¢5)] 12

Equation(4.8) shows, however, thatly ,=0, and hence at
k=Kko/2 no forbidden bands form in the electron spectrum.

5. EQUILIBRIUM EQUATIONS

X[(dg6s,q+ky+ =T Ngds g—ky+ =) (1= @q@s) Let us examine the behavior of the low-temperature
) phase of a Peierls system when nonequilibrium electron—
_'(dqﬁs’q+ko+hQ‘SS,q—ko)(‘PqJ’ ¢s)]. (4.3 hole pairs are excited in the phase. We assume that the pro-

£ess is due to stimulated transitions of electrons from the
valence band to the conduction band that occur, for instance,
because of the dipole electron—photon interaction with the
incident radiation. As is known, the characteristic intraband
&= Ext Eq+SNE—Eq) (Ex—Eq)2+4[H,J?], (4.4 relaxation time of electronsre~ 10" s, is much shorter
than the interband relaxation time-10"'s (see Ref. 2Y.
where Hence, when a light field with a constant amplitude irradiates

Bearing this in mind, we can find an approximate expressio
for the electron spectrung, of the Hamiltonian(2.5 in
second-order perturbation theory foe [0,7/2]:




JETP 88 (4), April 1999 A. L. Semenov 719

the system, we can approximately asséfhtieat within each A
electron band there is thermodynamic equilibrium between Fc=Fo+ §§2
the electrons, with a Fermi quasilevel corresponding to each
band. Violation of the thermodynamic equilibrium betweenWhereA=yNR?.
the bands caused by external light manifests itself in the For a thermodynamically nonequilibrium system to be in
difference between the various Fermi quasilevels the steady state of dynamic equilibrium, the generalized
The above approach to describing a thermodynamicall}OfCESfl andf, corresponding to the generalized coordinates
nonequilibrium system consisting of a set of thermodynami-£ and{ must vanish:

1
143 % cod

Ko
E) } (5.3

cally equilibrium subsystems can be generalized to the case IF 4 IF, JIF
where the incident radiation has an adiabatically slowly- f1=_((9_§ —(a—g) —(&—5) =0, (5.9
varying amplitudeA (the variationA A of the amplitude over T.N; T.Np T
a time interval 7,~10" s is much smaller thawW). The

o L aF, aF, IF ¢
reason for this is that the electron subsystem within each fo=—|—= | == —|—| =o0. (5.5
band has time to closely follow the field variations, so that at 9 T.N; 9 T.N, 9 )y

each moment the subsystem is in thermodynamic equilib- . . . ,
rium. To a certain extent this situation is similar to the onelf we combine these equations wi(B.1) and (5.3), we find

usually encountered in the description of thermodynamicall;}hat

equilibrium systems when the external parameters vary adia-

batically slowly. fi=—Ag 1+ 5 % cog (7)

Below we limit ourselves to building a theory for this
specific case. Transient processes that takel0 1*s when dek tanh ( Sk—M) —0 5.6
a steep leading or trailing edge of the light pulse passes |kgw,2 o€ 2kgT ) ’

through the system will not be discussed.
The free energy; of the electron subsystem of théh fy=— EAgzg coL (ﬁ) 4o de h<8k—M) —0
2 2 |k’;’ﬁ .

— tanh| ———
band (=1,2) is specified by 1 d¢ 2kgT
(5.7
Fi=mN; —ksT> In 1+exp(L8k , (5.1) The express.ion&').G) and(5.7) are the e_quations of eguilib—
K kgT rium of a Peierls system. They determine the behavior of the

] ) ] parameterg and ¢ when nonequilibrium electron—hole pairs
whereu; andN; are, respectively, the Fermi quasilevel and gre excited.

the number of electrons of thjéh band. Summation ovérin Physically, it is convenient to adopt the total concentra-
(5.1) is done within the limits of thgth band specified by tjon n of electron—hole pairgwhich includes equilibrium
(4.4 (|k|<m/2 atj=1 andm/2<|k|<m atj=2). and nonequilibrium excitationsas the external control pa-

As is known, the characteristic relaxation time of the rameter characterizing the effect of light on the system. To
phonon subsystem i~ 10" **s (see Ref. 2. Hence atthe (g this, we must write, in addition t66.6) and (5.7), an
moments when the amplitude of the pulse of incident radiagqyation that reflects the electroneutrality of the systiis
tion changes insignificantly during,,~10 **s (adiabati- equation linksn and the Fermi quasilevel):
cally slow variation of the external parametethe phonon

subsystem has time to relax to its dynamically equilibrium _ E_ anhsk_'u 5.9
state, which depends on the instantaneous amplitude of the 2 |kgw/2 2kgT * '
pulse.

. . Thus, Eqs(5.6), (5.7), and(5.8) form a complete set of
In this case the expression for free energy of the crysta(la uations for determining the parametérand 7 of struc-
lattice with allowance for structural distortion&g. (2.3)] d 9 P

) . . S . tural distortions of the latticEq. (2.3)] at a given tempera-
can be written in the harmonic approximation as follows: ; ; .
ture T and a given electron—hole pair concentration

Y
Fe=Fot 5 2 (Tmm1=T0)’, (5.2
6. FORMATION OF A PERIODIC SUPERSTRUCTURE AT

whereF is the free energyit characterizes the dynamics of ABSOLUTE ZERO T=0
the latticg, and vy is the stiffness of the lattice under static
displacement$2.3) of the atoms. This formula is written in
the molecular field approximatichin which it is assumed
that the phonon paft, does not depend on the parametgérs
and ¢, which are responsible for static distortions. From a
physical standpoint the given approximation means that there 4bN T—t@n? &) si
iS no interaction between dynami®+0) and static(w=0) - T( K(V1-tanif £) sinh£—2¢ In
phonon modes.

If we combine (2.3) and the fact that , m+1=Xm+1
— X, with (5.2), we obtain

We begin our analysis of Eq$5.6)—(5.8) with the case
T=0 under the assumption that the superstructure modula-
tion parameter is much smaller than unity. Then E@.6)
yields

X

(6.9

Ko/2+ (ko/2)%+ &2 ) o
§ - i)
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FIG. 2. Sketch of the dependence of the order paranetérthe metal—
semiconductor phase transition on the total concentratiofelectron—hole
pairs. AtT=0 the quantities; andn; are given by(6.6), while for T#0
[with allowance for the conditiofi7.2)] they are given by7.5).

where K(x) is the complete normal elliptic integral of the
first kind.

A. L. Semenov

Combing Eq.(5.7) with (4.7) and (5.8), we obtain an
expression for the superstructure modulation paranetdr
T=0:

_ k2 i1 wAky coS(Ky/2)
2¢sinh & 16bN sinh &
Taking (6.4) into account and assuming thigg= wn/N<1,
we see that6.7) yields the approximate formula

_ 8bn

g_ Ag .

Thus, atT=0 a superstructure in a Peierls system exists
in the entire semiconducting phase foe (0,n;). Here the

modulation parametef given by (6.8) monotonically in-
creases witn from the value/(n=0)=0 to the value/l:

16bN

' 6.7

(6.8

Equation(6.1) describes the relationship between the pa-while the spatial period of the system,

rameter ¢ and the concentratiom of the nonequilibrium

electron—hole pairs in a Peierls system. If we allow for the

fact that in real physical systems the concentratiomof
electron—hole pairs is much lower théhand that the order

parameteré¢ of the metal-semiconductor phase transition

does not exceed 0.see Refs. 16 Eq. (6.1) yields the
approximate relationship

N \/E
n="_ (=8¢

where

B (z)
go—zex sin 2

(6.2

A
- m] (6.3

={(n=ny)=—F—7, 6.9
{1={(n=ny) DA (6.9
27Tro 2I’0N
A= Ky~ (6.10
monotonically decreases fron{n=0)=» to
3V3nr
hlz)\(n=n1)=%. (61],)
0

Here are some numerical estimates. To calculate the
stiffness coefficienA of the crystal lattice of the Peierls sys-
tem, we use the formutd

A 4bN | b
- "\ 2ksT,

a
whereT, is the critical temperature of a thermodynamically

: (6.12

J+1

is order parameter of the metal—semiconductor phase trangQuilibrium metal—semiconductor transition in the Peierls

tion atn=0.
In deriving Eqs.(6.2) and (6.3 we also used the equa-
tion

(6.9

which is valid atT=0. A rough sketch of th& vs. n depen-

dence with allowance for the condition of stability under

spatially uniform fluctuations of the order paramegef the
metal—-semiconductor phase transition,

an
_<0,

Py (6.9

is depicted in Fig. 2. We see that as the electron—hole pair

concentratiom increases to the value, the order parameter

system.

If we use typical numerical values of the physical quan-
tities for VO, (see Refs. 4 and)7 i.e., b~0.3eV, T,
~340K, ro~3 A, N~10%cm 3, and £,~0.5, then Egs.
(6.12, (6.6, (6.9, and (6.11) suggest that A
~10%eV/ent, ny~6x 10 cm 3, £;~0.9, and\ ;~100 A.

7. FORMATION OF A PERIODIC SUPERSTRUCTURE AT
T+0

We analyze Eqs(5.6)—(5.8) with T#0 under the as-
sumption that the Peierls system is a nondegenerate or
weakly degenerate semiconductor:

—2b sinh é<2kgT. 7.0

£ of the metal-semiconductor phase transition smoothly deThis relationship, which imposes a restriction on the size of

creases t@&;, where

n=2Nbo
1 3\/5771 1 3"

At point n; the value of¢ suddenly drops fron#; to zero
(the phase transition to the metallic state.

(6.9

the region within which the Fermi quasilevelmay vary, is
equivalent, if we allow for Eq(5.8), to an approximate in-
equality, an upper bound on the concentratiorof the

electron—hole pairs:

_ _8N [KaT sinh ¢
n nz—ﬁ —b .

(7.2
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Combining(5.6) and(5.8) and assuming that the super- If we now use Eqgs(7.7)—(7.10, we can find a formula
structure modulation parametéis much smaller than unity, for the critical concentration, of electron—hole pairs above
we obtain an approximate equation for the order parangeter which (n>n;) the semiconducting phase of the Peierls sys-

of the metal-semiconductor phase transition: tem contains a photoinduced superstructure:
N i 213
Aé—4b|—K(VI—tanié) sinhé—n coshé|=0, (7.3 2N, [2KeT sinhé KeT [7A (7.10
m ¢ 37 b 3263 sinh¢| N

where K(x) is the complete normal elliptic integral of the Combining Eqs(7.9) and (7.10, we obtain an expres-

first kind: . . . . sion for the spatial period of the superstructure:

Bearing in mind that in real physical systems the
electron—hole pair concentrationgN and that the order pa- _ 2t
rameter¢ of the metal—-semiconductor phase transition does ko
not exceed 0.5see Refs. 196 from (7.3) we obtain the
approximate equation 7y

NE & V(3mkgTn sinh &/Nb)?°—2kgT sinh &/b
n= T In &’ (7.4 In particular, Eqs(7.11) and(7.12) imply that at the critical

point n., at the moment when the superstructure is formed,

with & determined by(6.3). the value of the period .=\ (n;) is given by

Figure 2 is a rough sketch of that segmentgf) given

by (7.4 where the stability conditiori6.5) is satisfied. We 4b?Nr,
see that the behavior @f(n) is similar to that in a system Ne= AkgT (7.13
with T=0, but now the sudden transition to the metallic ] N
phase takes place at To observe the superstructure, the following conditions
Ng : must be met:
n1=w—e°, 1230' (7.5 ne<n<n,. (7.14

which imply, in particular, thah <n;. If we combine this

. : . ! act with (7.5 and (7.11), we obtain an approximate equa-
semiconducting phase of the Peierls system against a meta[ﬁn for the critical temperatur&,; above which there can be

semlcor_u_juctor phase transition. Now_we study _th|s system, superstructure, no matter what the valuen ds:
for stability under a transition to a spatially nonuniform state

The inequality(6.5) is the criterion of stability for the

with a periodic spatial modulation order paramefesf the 8kgT, ek T, [ 7A\? 3

metal—semiconductor phase transiti@gs0). Bearing in that 9bé + 3003 N =1. (7.19

at the moment at which the solution loses its stability0, 0 €o
Jf Let us now give the results of numerical estimates. If we
22 =0, (7.6) use typical numerical values of the physical quantities for
I 11 20 VO, (Refs. 4 and ¥ ie., b~03eV, ro~3A, N

~10%cm 3, ¢,~0.5, A~10?%eVcnt, andT~100K, then

Egs. (7.2, (7.5, (7.1, (7.13, and (7.15 suggest than,
2b2NK, ~10%cm3, n;~6x10Fcm 3, n~5x10Fcm 3 A,

=k cod k2’ (7.7 ~130A, andT.~200K. Note that here the numerical value
B 0 of n, coincides, in order of magnitude, with the value esti-

When a photoinduced superstructure with a wave nummated from the experimental data,~10°*cm 2 (see Ref.

berkg is formed, the forbidden band in the electron spectruml8).

E(k) [see Eq.(3.6)]] emerges at the point where the Fermi

guasilevelu is located:

from Eq. (5.7) we obtain

7—K, 8. DIPOLE-MOMENT OPERATOR
E 5 =u. (7.8
From now on we will assume that the nonequilibrium

This yields the approximate expression Equatidr®) concentration of the electron—hole pairs in the system con-
5 sidered is created thanks to the electric dipole electron—
_ ; ko photon interaction with the incident radiation. To describe

u=2b sinh é+ ———. (7.9 o . s )
4sinh ¢ this interaction, we first calculate the dipole-moment opera-

tor of a spatially uniform({=0) Peierls system. In the tight

According to Eq(5.8), when the Fermi quasileved is in the binding approximation, this dipole-moment operator is

conduction band, the concentratiarof electron—hole pairs
is given by the approximate expression

d=§ (dn,n+1a:an+1+dﬁ,n+1ar:r+1an)a (8.1

N \/ sinh ¢ .
n (u+2kgT—2n sinh &3, (7.10

- 3mkgT b where the dependence df ,., on & is similar to(2.4):
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dypeg=(d;+idy)exp((—1)"é) larized along the crystal's axfS.As a result, all the spectral
' componentE,, are statistically independefit>°
=—eJ i (D Py a(r) dr. 8.2 (Ew-Ewl>=G(w)5(w+w1). 9.2

Here () is the atomic wave function of the electron at the HereG(w) is the spectral density of the light field, which for

nth site, ance is the electron charge. By selecting the phases, quasimonochromatic signal can be writtef’as
of the wave functiong,,(r) so that the overlap integré2.4)

is real we ensure that boty, andd, in (8.2 are uniquely G(w)=19(|o|— ), (9.3
defined.

Substituting(3.2) into (8.1) and allowing for(8.2) and
the identity exp(—1)"¢]=cosh&+(—1)"sinh &, we obtain

wherew is the carrier frequency, arg{x) is a nonnegative
bell-shaped function, with its maximum &t 0, satisfying
the normalization/g(x) dx=1. The widthAw of the spec-
trum G(w) satisfies the inequalith w<wy. The quantityl

d=22k [coshé (dycosk—dasin k) ci = [G(w)dw/2 is the intensity of the light fieldin the
Gaussian system of units, to within a factow/27, wherec
+i sinh & (d;sin k+d,cosk)c, ¢y 1. (8.3 is the speed of light, andis the medium’s refractive index

Introducing the Fermi operators, and «;, into (8.3 and Using Liouville's equatio®

allowing for (3.3) and (3.5 we finally obtain ap
ih—=[H+V,p], 9.9
4= d,E,  2d, L o?) coshe sink at
K b 1+ <pﬁ [(1=¢i) coshé sin and allowing for Eqs(9.1) and(9.2), we obtain an equation

for the diagonal elements,, of the density matrixp of the

2d electron subsystem in second-order perturbation theory:
+2¢, sinh & cosk]la;akﬂ 1+—22 [(1—¢?) sinh ¢ y P y

Pk Iprk

27T 2 ES_ Ek
a ﬁ 25 |dks| G(T)(Pss_Pkk)u (9.9
X cosk— 2@y coshé sin k]a;akﬁ] . (8.9
whered, is the matrix element of the dipole moment opera-
Note the formal similarity of the operatof@.1) and(8.1) at  tor (8.4). In the special case of a monochromatic fieltt)
d,=0. Hence the operatof8.4) and(8.4) are also formally = Eo COS(gt+¢) with a uniformly distributed random phase
similar. ¢, the spectral density is
Suppose that without an external electric field the total
dipole moment of the system is zero. Then E4) and
(3.6) imply thatd;=0. Thus, the fact that we have chosen Then Eq.(9.5) becomes Fermi's Golden Rule for the prob-
the phases of the wave functiogig(r) so that the overlap ability of stimulated transition&®
integral B, .1 in (2.1 is real ensures, in the present case, 5
that the interstitial dipole-moment matrix elemehyt, ., in Prk—m _ T 2 _
(8.1) is imaginary. The case af;#0 can probably be ob- ot 2% |Eo- Ok al" (2B~ frawo). 9.6
served in systems exhibiting ferroelectric properties, but w
will not consider such systems here. As+0, as Eq.(3.5
indicates, ¢,—0 for all k# *w/2, with the result that
dy k- -—0 in (8.4) and all dipole transitions are forbidden. If
£+0, thend, . #0 in (8.4), and the corresponding dipole
transitions are allowed. Since in this case the intekal

G(w)=3EG[ 80— w) + 8w+ wp)].

Ei—|ere (9.6) we assumed that the lower levglith the quasi-
wave numbek— 1) is completely occupied and the upper
level (with the quasiwave numbdg is vacant.

If we combine(8.4) and(3.6) with (9.5), we obtain

d 2 2 —
(—w/2,m/2] is the first Brillouin zone, the given transitions %‘: —ZdﬁG(% tanh%;(k—?, 9.7
in the spectrum(3.6) are vertical band-to-band transitions. h B
where
9. INTERACTION WITH RADIATION od
2

The interaction between the system and the light field ilk= |(1—@f) sinh & cosk —2¢y cosh¢ sink|.

2
described by an operatdf, which in the dipole approxima- 1ok 9.9
tion can be written as '
In deriving Eqg.(9.7) we assumed that the spectral density
V= —d-E(t)sz E, e '“do, 9.7 G(w) of the light field is localized near the frequencieg

=2¢,/# at which the electron spectrum, of a spatially
wheree, andw are the amplitude and frequency of a spectralnonuniform Peierls systefisee Eq(4.7)] coincides with the
component of the light field. spectrumE, of a spatially uniform Peierls systefsee Eq.
We assume the incident radiati®ft) to be a quasimo- (3.6)], i.e., there is excitation of electron—hole pairs into the
nochromatic time-independent random process linearly podepth of the allowed band.
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Combining Egs.(3.6) and (9.7), we obtain a transport
equation for the concentratiom=2%,<.-pkk of the
electron—hole pairs:

p )_

3, ot an| 5% of

wheren, is the electron—hole pair concentration in the ab-
sence of a light field, i.eng=n(w=0). The last term on the
right-hand side of Eq(9.9) allows for band-to-band relax-
ation with a relaxation time. Equation(9.9) shows that the
variation inn is due to the interaction of the electron sub-
system and the spectral components of the light field wit
frequenciesw,=2¢g /#.

Taking (9.3) into account, from Eq(9.9) in the steady-
state regime {n/dt=0) we finally obtain

_ wo)

d
(9.10

Equations(5.8), (5.6), and (9.10 constitute a complete
set of equations with respect to the internal parameiers
and¢ of a spatially uniform({=0) Peierls system with given
external parameter§, |, wg, etc.

on 4
It m2 |

28k n—

h

No

9.9

I_(n_no)ﬁ2 -t

4ot

28k
h

EkT M

2kgT

P dZ tanh
=1

10. EXCITATION BY A MONOCHROMATIC LIGHT FIELD

For a monochromatic light field, we analyze E§.10
with allowance for(7.4), which holds afT, where the form
factor g(x) = 48(x). In (9.10 we replace the sum by an inte-
gral overdE, bearing in mind that the density of electron
statesv (E) corresponding to the spectru(B.6) takes the
form

2NE

E —
M) = b7 cosl - E2) (E2- 402 Sn7 &)

(10.1

and that, according t(0.8), (3.5), and(3.6), the matrix ele-
ment of the dipole-moment operatat,, ate,=E is given

by

4bd, coshé sinh ¢

d(E)=di(ex=E)= E

(10.2

Then at tanf(iwg/2— 1)/2kgT]=1 we have the followind
vs. ¢ dependence:

1=1(¢)

_ hPwol € In (£o/&)—mng/IN]
~ 51277b%d2 cosk ¢ sinl? &

X [ 16b%costté— (fw) ][ (i wy)?— 16b%sinkPE].
(10.3

Similar calculations withT =0, as Eqs(9.10, (6.2), (10.1),
and (10.2 imply, lead to the expression
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1=1(§)

_ ﬁzﬂ)o(fo‘ﬁ)\/f/go
512w 7b%d3 cosk ¢ sintf &

X \[16b? costt &é— (hwe)?][(hwo)?— 1607 sink? £].

(10.9

Thus, whenT=0, we have(10.4 for 1(£), (6.2 for
n(¢), (6.8 for ¢(n), and(6.10 for A(n). These formulas
indirectly specify(in parametric formthe electron—hole pair
concentratiom, the modulation parametér and the period

of the superstructure as functions of the light-field intensity

WhenT is finite, we haveg10.3 for I (&), (7.4) for n(¢),
and (7.12 for A(n,¢&), which implicitly specify n(l) and
NOF

Here are some numerical estimates. We use typical nu-
merical values of the physical quantities for YO
b~0.3eV, N=~103cm 3, and £,~0.5 (Refs. 4 and ¥
7~10 s (Ref. 27; andd,~10 ®esu(Refs. 30 and 32
Then from(10.3 and (10.4 with allowance for(7.5 and
(6.6) it follows that at the photoinduced semiconductor—
metal phase transition point);(T=0)~1,(T=100K)
~ 1P esu. This corresponds to a light-field intendiyg/27
~10%esu~10° W/cn?. A photoinduced superstructure can
be observed wher e(l.,l1), with I(T=0)=0. When
T=100K, Egs. (7.1, (7.4), and (10.3 yield |,—I.~2
X 10° esu, which corresponds to a light-field intensitgl ,
—1)2m~2%x 10" esu=2x 10" W/cn?.

11. DISCUSSION

The high values of the critical intensities, namely
I c/2ar=~1.cl2mr~10"—10° W/cn?, obtained via the theory
elaborated in this paper, appear to be determined by the fact
that observing photoinduced effects of formation of a super-
structure and the semiconductor—metal phase transition re-
quires high nonequilibrium electron—hole pair concentra-
tions,n.~n;~0.05N\ (see the results of numerical estimates
at the end of Sec.)7 The value ofn; (and hence of ;) can
be reduced by lowering the temperatysee Eq.(7.11)].
However, numerical estimates show that evefiatl K the
values of the critical concentration, and critical intensityt .
remain very large: n,.~5x10%°cm 2 and |.c/2m~7
X 10° Wien?.

To observe the predicted phenomena in experiments, one
should use very thifdown to atomic dimensigrfilamentary
(one-dimension or film (two-dimensionagl samples placed
inside a material that is transparent to radiation at the laser
frequency and acts as a good heat dis&y, superfluid he-
lium).

Another possible way to prevent overheating of the sys-
tem is to use high-power short-pulse laser light. In this case
the formulas of Sec. 7, in particular, the expressions for the
concentrationsn; [Eq. (7.5] and n. [Eq. (7.11)] remain
valid if the laser pulse length exceeds severalfold the char-
acteristic relaxation times,,~10"**s and 7,~10"**s of
the phonon and interband electron subsystems, respectively.
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In view of what has just been said, the experiment conphotons of the incident radiation, we have derived expres-
ducted by Bugaeet al® can be cited as an example. The sions for the value of the light-field intensityat which ob-
researchers irradiated a vanadium dioxide film by picosecondervation of the photoinduced superstructure is possible, and
laser pulses with an intensity=5x10°W/cn? and ob- made numerical estimatésee Sec. 10 We have found that
served a photoinduced semiconductor—metal phase tranghe photoinduced superstructure forms at intensitles
tion. Here, as the numerical estimates of the present paper(l.,l;), wherel ,(T=0)=0, and monotonically grows as
show, the critical concentration of the nonequilibrium carri-the intensity increases to.(T=T.)=1,. The value ofl,
ers at the phase transition poimt, /N, was roughly 102, changes little under temperature variation$,;(T=0)
and the variation in the sample temperatutd;, did not =I1,(T=T.)).
exceed 10K. In conclusion it must be noted that the photoinduced

An experiment similar to the one described in Ref. 18superlattice of alternating metallic and superconducting
but conducted at low temperatureE<(T.) would probably  phases in a vanadium dioxide film on a substrate, the super-
make it possible to observe photoinduced superstructurefattice observed so far in experiments, constitutes an irrevers-
The temperaturd of the sample should be maintained asible structure, with a period~1um, left after the light
low as possible, since according ¢.11) this reduces the pulse has passed through the systémnd probably cannot
threshold value of the critical nonequilibrium electron—holebe interpreted by the theory developed in this paper. Experi-
pair concentratiom. above which a superstructure of the ments that would detect a thermodynamically nonequilib-
type described in the present paper appears in a Peierls semiim superstructure that disappears after irradiation has
conductor. ceased have yet to be conducted.

12. CONCLUSION *)E-mail: semenov@gquant.univ.simbirsk.su
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The effect of the inner structure of domain walls on the time-independent parameters of an
isolated stripe domain in a thin ferromagnetic film is studied. The adopted variant of the
perturbation theory makes it possible to account, within a unified approach, for the
contributions of the magnetostatic and exchange interactions19€® American Institute of
Physics[S1063-776099)01104-X

The physical theory of magnetic domain walls has beerexchange-interaction and uniaxial-anisotropy constamjs,
thoroughly studied™ The current interest can be explained, =H,/M, is the reduced magnetic field parallel to the easy-
on the one hand, by the broad promise of using materialsmagnetization axis and orthogonal to the plane of the film,
containing domains in microelectronics and, on the other, by, is the intrinsic magnetostatic field of the ferromagnet, and
the development of the nonlinear theory of magnetism. L is the film thickness.

The classical theory of ferromagnetism is based on the In our domain-structure studies we will assume that the
dynamical Landau-Lifshitz equations, which make it pos-plane of the domain walls limiting the isolated stripe domain
sible to extract exhaustive information about the state of thés orthogonal to thex axis. It has proved convenient to study
magnetic system. However, if we use models that are closthe magnetization states in terms of the angular variables
to reality, the equations become very complicated and mangnd ¢, which are the polar and azimuthal angles in a system
simplifying assumptions have to be introduced into the cal-of coordinates whose polar axis is thexis. Here the rela-
culations. tionship between the components of the magnetization vector

For instance, in a model widely used in studies of prop-and the new variables is
erties of magnetic domains, the domain walls are interpreted
as infinitely thin geometric boundaries with their own sur-
face energy:®~8 This model provides a good description of As is known, the magnetostatic field of the sample induced
the state of the system in low magnetizing fields but cannoby magnetic inhomogeneities is given by the forniula
be used in fields with large amplitudes, when the domain
width becomes comparable to the thickness of the domain |, :Vf dr’
walls. In such a situation the inner structure of the domain "

walls h trong effect on the properti f the magneti : . .
atls nas a strong efiect on the properties of the magnetic Mathematically, magnetic domain walls are represented

domains. . . . )
I . by the soliton solutions of the Landau-Lifshitz equations.
The present study uses the Landau-Lifshitz equations t(?)r/wese equations for the angular variables in ?he time-

investigate an isolated stripe domain localized in a thin fer—inde endent case can be derived by varving the enerav func-
romagnetic film and the dependence of the domain properties P y varying oy

on the inner structure of the domain wall. The limits of thetIonal (1) in the variablesy and ¢,

m=(cos @, sin @ sin ¢, sin # cos¢). 2

1
m(r')i) @

X/ jr—r'|’

results will also be investigated. The method of regularizing  dw aw oW W

perturbations of the nonlinear equations developed in this a_g_v_ava Y 99 Vave =0, 4
paper in general form can be used to study other physical i » ]

problems. with the following boundary conditions at the film surface:

The characteristics of the system investigated in theyg(z=0) 96(z=L) de(z=0) de(z=L)
present paper are determined by the energy functional with 0z a9 0z 97 =0
the following structure:

®)

When studying the domain structures in film materials,

_ f f JL one must allow for the effect of the magnetostatic fields gen-
E= dxdy| dzwm), : Lo .2

0 erated by the surface inhomogeneities in the magnetization

distribution. The presence of such inhomogeneities distorts

2 B 5 1 the inner structure of the domain walls. However, as shown

+5(1=mz)—h;m=smhy, (D in Ref. 1, for thin-film materials whose thickneds~A

=\ aldm, these distortions are effectively suppressed by in-

wherem=M/Mj is the unit magnetization vectdy], is the  tensive exchange interaction. Hence in the zeroth approxima-

saturation magnetizationpg and B are, respectively, the tion the structure of the domain walls can be assumed to be

5| afom
W(m)=M0 E W

1063-7761/99/88(4)/6/$15.00 726 © 1999 American Institute of Physics
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of the Bloch type. The assumption is especially true when  jp(z=0) de(z=L) Jp(X— + )
one deals with ultrathin magnetic filthgthe technology 9z 9z =0, X =
needed to fabricate such films is being actively develpped

In our notation, this case corresponds @e /2. We will The variations inp along thez axis are caused by small
assume that deviations from the Bloch configuration can b@erturbations proportional te, so that we will assume that
described by small correctiorg(r), such thai#,|<1. The these variations are small. The right-hand side of(Bdl) is
limits of the approximations are examined in the Appendix.considered a perturbation.

0.

Thus, if we assume that Ordinary perturbation theory can be used if a perturba-

tion leads to small quantitative corrections. Hence, when

_r studying a nonlinear problem, we must ensure that the per-
6(r)= =+ 64(r) (6) . : . o

2 turbation we ignored in the zeroth approximation does not

and that the distribution of magnetization is uniform alonglntroduce variations of the qualitative nature into the system.

thex axis parallel to the plane of the domain walls, we obtain For instance, in a zero magnetic fiehq, one of the

equations that describe the state of the domain structure gou nd states_of _the system mvolv_ed s a solitary 180° do-
. : ; . main wall, while in a finite magnetic field the steady-state
within terms of first order ing.(r):

solution describing this structure is unstable, and a ground

2 52 state is, for example, an isolated stripe domain magnetized in
—I2<—2 — et sin g cosp+e the direction opposite to that of the external magnetic field.
ox= 9z In this sense the perturbation described by the expression on
X (h,4h"(x,z,¢)) sin =0, (7.1) the right—hand side of E(8.1) is of a singular nature and
dramatically transforms the state of the system.
. 520 To apply the methods of perturbation theory we must
L(<p)01—I2—2+shQ“(x,z,<p)=0, (7.2 regularize the perturbation.
9z One variant of regularization can be represented in gen-
P eral form for an arbitrary equations that has soliton solutions.
M o B ) Let us consider a boundary value problem for the non-
( ;;) __ f dx’f dz' cose linear equation
h: R 0 2 52
Z —|2{9—f+|:O(go)=|2—f—sh(x,z,(p), )
Ix 0z

z—7'

X(x—x’)2+(z—z’)2'

(7.3 whereL(¢) andh(x,z,¢) are nonlinear operators=<1 is a
small parameter whose modulations along 2texis are due

where to a perturbation and are assumed small.
, ) For the sake of definiteness we assume that the boundary
. d d conditions are
L(@)=—|2—2+COS2 (,D—|2((?—i)
ax dp(X— )
. m — =0, (10.3
is a linear operatott);" are the components of the magneto- X

static field,| = o/ 8 is the domain-wall thickness parameter,
ande=1/B<1 is a small parameter. Terms proportional to Je(z=0L) =0
€61 have been dropped from E.2). dz '
Obviously, the magnetization inhomogeneities on the
surface of the film, generated by the domain walls, lead tchat
the emergence in Eq.7.1) of a small nonlinear operator
ehl'(x,z,¢), which is explicitly coordinate-dependent. The
variants of the theory for studying the effect of adiabatic
temporal perturbations are discussed in Ref. 10. Here w
generalize the results of Ref. 10 to the case of slow spatial

(10.2

We also assume that the perturbation is of a singular
ure and cannot be take into account by standard
perturbation-theory methods. We will attempt to single out
the specific feature of this perturbation by specifying a sim-
ler operatoeL 1(H,¢), whereH is an undefined parameter,
hich generally depends on the variabkle

We introduce this operator into E¢(P), which becomes

modulations.
Sinced, is assumed small, in the leading approximation Po . R
the state of the magnetization field is determined by the _|2_2+L0((P)+8L1(H;(P)
boundary value problem 28
i 1272 iz~ Li(Hoe) (11
2 H - 0 14 - ] .
—1 E+smcpcos<p 972 1
5 We performed this transformation in order to select an
=2 a_¢_8(hz+ hJ(X,z,9)) sin ¢ (8.1  effective operatol,(H,¢) that affects the structure of the

Fria solution in the same as the initial perturbatiofx,z, ¢).
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Thus, assuming that the right-hand side of Bd) isthe  They determine a system of differential equations that to-
regularized perturbation, we write the solution @f1) as gether with the boundary conditions

follows: Po(2=0L) _dH(z=0L) 6
#(X)= go(x—Xo,H) T e@1(X—Xo,H)+ -+, (12) iz (18
where ¢o(X—Xg,H) is the two-parameter solution of the make it possible to find the effective parameters.
boundary value problem Since it is known thaty,(X) is a solution of the homo-
geneous equation ifl6), we may formally assume that;
_|2’924’0+L (¢0)+ &L 1(H,00) =0 (13  has been determinéd.
2 0L¥o renTo ' The application of this approach simplifies substantially
if we wish to find the solution of the equation in the one-
dpo(X— ) _ dimensional case. Herpg andH are constants whose values

X 0. are determined by the conditior{47). In this case we an

il tablish th t f th t tion.
Since Eq(13) does not depend explicitly on the variable easily establish the nature of the perturbation

X, its solution can be obtained in general form at least as
integrals. The solution is translation invariant. o deg
The value of the correction is determined by the inho- _mdeh(x,cpo);&O

mogeneous boundary value problem _ .
for all values of the parametep, whereo, is the solution of

Go(@o.H)e1=1(X,X0,2,H), @1(x=%x2,H)=0, (14  the unperturbed problem

7o @y dpg(X— £ )
f1(X,X0,2,Ho) = (L1(®0,Ho) =N(X+X0,Z,¢0)) + & —-, —12—L 4 Lo(pg)=0, —————=0,
Jz IX IX
Pog  Paog|d%\2  deg 37X Peoo dxe IH the solution cannot be approximated by a one-parameter so-
= 2 - = 00T lution and the perturbation is of a singular nature, which
9z>  ox?\ JzZ X 972 T xdH 9z dz

requires allowing for its singularity.
PonldH\2 g0 2?H The success of this method depends on how we select
%o <_) %01 the effective operatol;(¢,H). Since there is always a cer-

gH? \ 9z dH 522" tain ambiguity in selecting this operator, a simple form of the
operator is preferable.

Following the theory, we select the effective operator in
the formL(¢,H)= = Hsine.

Then the leading approximation to the solution of Egs.

whereX=X—Xo. (7.9, (8.1) and(8.2) is determined by the simpler boundary
For the right-hand side not to contain secular terms, we,g|ye problem

must correctly determine the paramet&gsand H. This is
achieved by ensuring that the inhomogeneous equétién 2 7*¢o
meets the solvability conditions, and this requires knowing 2

#?  dlo(go,H) dL1(@o,H)
Go(po,H)=—1>—+ +e
ol #o.H) PG I@o I@g

(19

+ sin ¢g cos = eH sin =0,

the solutions of the corresponding homogeneous equation. x
These conditions can easily be found by differentiating Eq. deo(Ee,H)
(13) with respect to the parametdrsandx,. Here we have aX =0. (19
Go(@g,H)¥1(X)=0, WhenH is positive, depending on the sign in front of it
9 the solution of(19) is
Golpo.H)12(X)= —eH —=La(go.H), 19 xH)
where /
T+ 2arctar{ e sinh \/1+sH§ , +H,
(9@0 !9<Po _ l+8H I
wl(x)_ﬁy ¢2(X)_Hm eH X
_ . . m—2arcta 1-eH cosh( 1—8H|—> , —H.
Thus, 1(x) has a zero eigenvalue, is a solution of the
homogeneous equation corresponding1d), and is local- (20
ized near the solution. Clearly, in the leading approximation  From the physical viewpoint, the solutions (&0) cor-
in e these features are also inherentfis(x). respond to bound states of two unipolar and heteropolar
The solvability conditions for Eq14) have the form Bloch walls. The polarity is determined by the sense of ro-
tation of the magnetization vector in the plane of the domain
fw dx( ¢1(X)) f1(X,Xo,Hg) =0. 17) walls. The parametéet in this case is an effective superpo-
— Pa(X) sition of the external magnetic field and the intrinsic magne-
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tostatic field. Clearly? the value ofH is linked to the width HldaM,
parameted of the stripe domain through the relationship

H(z)=48 exp(— d(2)/1). (21

The corrections to the leading approximation are deter-
mined by the boundary value problefi¥), where 0.5}

H,/4:rMO
9? ‘
G0(¢O,H)=—|2y+ cos 2pp*+eH coS ¢q, (22
fl(X121X01H): sin (pO(iH_hZ_han

o dlt
X(X+X0,Z,QDO))+Q .
Fri FIG. 1.

In what follows, a plus sign denotes an isolated stripe

domain limited by unipolar domain walls and a minus sign

denotes an isolated stripe domain limited by heteropolar do-

main walls. Thus, on the basis of Eq$21) and (23)—(25) and the
In the leading approximation, the solutiogtg andy, of  conditions(17) we obtain

the homogeneous equation are

e . Xg € d d
= — = — m m

#1(X) ax ' (X)) = sin gg+0O(e). (23 |F—§(hz(xo—§,2)—hz Xo+ E,Z)), (26.1

In our case, instead of deriving an equation for the pa-
rameterH, it is convenient to usél?7) and derive an equation 24 d q
for the width parameter of an isolated stripe domai(z), | _:8( +88 exp ( — _) —2hz—hzm<xo— —,z)
via the unambiguous relationshigl). 972 | 2

To obtain the equations for the parameteygndd from
the conditiong17), it is advisable to use the properties of the —h7 xo+ 5.2 ) ] (26.2
function ¢o(X,H), which make it possible to evaluate the 2

improper integrals via asymptotic methods to high accuracy.  Clearly,x,=const is an exact solution of E(6.1) cor-
Clearly, the following conditions hold for an arbitrary responding to the boundary conditiofis). Equation(26.2

smooth functionF (x/L): is a nonlinear integrodifferential equation and cannot be
. solved exactly. However, since its right-hand side contains a
f dx@ sin <P0F(i> small parameter and is actually a perturbation, the solution
—w  OX L (in accordance with the boundary conditiorsl(0)/9z
_ =dd(L)/9z=0 can be written d(z)=dy+d(2)+---,
~ (F( d/2+Xo — d/2txo (I_) whered, is a constant whose value has yet to be found.
L L L From Eq.(26.2 it follows that the equation for the cor-
= dx X rections in the approximation linear iis
f—wT sir? ®o F(E)
d/ d/ | AT P Y| _g
ol gl Z 2+ Xo LF 2+ Xo ol L E—s —2h, =83 exp 7
L L L)’
- X « | arctan 2% + arctan-® 2
f dx(1— cos<p0)F(E) arctany—, rarctan_-J (- @7

X 40 | 24 By integrating Eq(27) over the interva] 0<z<L] with
—di2+x, L L) @4 allowance for the boundary conditions we obtain a relation-

Using these properties, we can write the components ofhip the links the width of an isolated stripe domain to the
the magnetostatic field in t,he form strength of the external magnetic field:

d/2+xq
~2f dx F

J (L d(z")/24+x—xo(Z’'
h"(x,z)=2— | dZ arctan( ) o(z)
' X Jo

L
hZ=4[ TR exp(— do/I)+2arctand—
0

L 2

z—7'

d(z')/2—x+xq(Z’'
+arctan( ) - ol )>, i=X,z. (25)
z—z

do

I_In
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Hi4aM, problem. The method has made it possible to transcend the
geometric domain-wall model and investigate the state of a
magnetic domain over a range of field strengths in which the
inner structure of the domain walls determirjesyether with

the magnetostatic interactipthe property of the system.

| am grateful to V. G. Bar'yakhtar and Yu. |. Gorobets
for useful discussions of the material contained in this paper.

APPENDIX

dln In this appendix we discuss the use of the Bloch-wall
approximation. The obvious criterion of validity of the
adopted assumptions is thiat | <1, where ofd; is the so-
lution of the boundary value problem obtained by substitut-

The first term on the right-hand side corresponds to thd"d ®(X)= ¢o(x,H) into (7.2) and performing the necessary
exchange interaction due to allowance for the inner structur&ansformations:
of the stripe domain. It is dominant over a narrow stripe 220
domain and is negligible in weak magnetic fields, wi28) Go(@g,H) 6,12 21 =—-gh}(x,2), (A1)
asymptotically tends to the limit obtained in the model of 0z
geometric domain boundariésFigures 1 and 2 depict, for 2 2 2 5
films of different thicknesses, the dependence of the width of  pm(y )~ _ | (L=2)"+ (x=di2)7z"+ (x+di2) ,
a stripe domain in the model of geometric domain walls X (L—2)2+ (x+d/2)%2%+ (x—d/2)?
(curvel) and of a domain limited by unipolar and heteropo- 20,(z=0L) i

FIG. 2.

lar domain walls(curves2 and 3, respectively.
The results obtained in this paper make it possible to Iz

establish the value of the critical magnetic field above whichere we have dropped terms proportionalstd, and used

there can be no bound state of heteropolar Bloch walls. Obte conditionl 2(9¢,/9x)2= sirfey+O(e).

viously, the critical field is defined as the extremum of the  gjnce the eigenfunction&3) of the discrete low-lying

function (28) for heteropolar domain walls, whose plots are eyels of the operato&(¢,,H) are known, we can expand
depicted in Figs. 1 and 2. The dependence of the critical fiely, (x, z) in these functions:

on the film thickness for materials with different values of 5
anisotropy is depicted in Fig. 3. 0:(x.2)=C(2 |ﬂ+c 2) sin A2

The solution of Eq(27) can easily be expressed in terms 1(x.2) 1(2) X 2(2) %o (A2)
of elementary functions. The width of the domain is the Plugging(A2) into Eq. (A1) and finding the scalar prod-
greatest at the center of the magnetic f||m. However, accordjqg of the result and the corresponding eigenfunctions of the
ing to estimates for materials with an anisotrgpy100 and g yete spectrum, we obtain equations for the expansion co-

a thicknesd. ~10, the correciiord, i_s very s_m_all and_ does efficientsC;(z), which for an isolated stripe domain limited
exceed 0.lL Calculations show that in examining an isolated by unipolar domain walls obey the relationship

stripe domain one can ignore the distortions in its structure
over the thickness for a broad class of films. #C, 1 z 1 d3+ 22
Thus, the proposed method of regularizing perturbations > =z [—7z 2N 5
. : . . 2A dg+(L—-2)
has proved extremely useful in studies of an applied physical
and for an isolated stripe domain limited by heteropolar do-
main walls, the relationship

] (A3)

Hi4aM,
0.4F #C, 1 z 1 d3+2°
- =i

97> 2A L=z 2 d2+(L-27?

where A = a/4 is the characteristic magnetic length.

The first term in the braces describes the effect of the
intrinsic magnetostatic field on the magnetization distribu-
tion in the domain walls limiting the isolated stripe domain.
The second term describes the influence of an adjacent do-
main wall on the magnetization state and moderates some-
what the magnetization twisting effects in the domain walls
0 5 10 (analysis shows that the contribution of this term is insignifi-
can). Hence in estimating the perturbation we ignore the
FIG. 3. second term, which only strengthens the criterion.

} (A4

0.2r
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The value of the angl®,(x,z) specified by Eqs(A3)
and (A4) and the relationshigA2) has the form

Y(z) sin @o(X),

do(X)

(A5)
y(2)l o

01(X,2)~

with the upper value corresponding to a bound state of the
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Electron paramagnetic resonan&PR spectra of samples of the systems; B&,BiO5 and

BaPRBi, ,O; are investigated over wide ranges of composition and temperature. Two

main lines in the EPR spectrum with fact@yg~2.1 andg,~4.2 are found for all compositions.

It is shown that the observed EPR line widh~4.2 is due to oxygen ions. This probably

indicates the presence of oxygen ions with different effective charges, i.e., the existence of charge
density waves in the oxygen-ion sublattice in addition to charge density waves in the

bismuth sublattice. ©1999 American Institute of Physids$$1063-776(99)01204-4

1. INTRODUCTION these directions can also not be explained simply by ordering
in the copper-ion sublattice for cuprate HTSC’s or in the
Compounds based on bismuth—BgaK,BiO; (BKBO) bismuth-ion sublattice in BKBO since, as already noted, the
and BaPpBi, ,O; (BPBO—with perovskite structure are symmetric directions for all orderings are the directions
similar in their crystalline structure and in a number of [110].1?
physical properties to cuprate high-temperature supercon- Taking these and other experimental facts into account,
ductors(HTSO). The relatively high critical temperaturds  we conjecturetf"!*that in HTSC systems, besides the order-
of these compounds, despite the lack of copper ions and thiags with symmetry in thg110] directions, there exists a
magnetic moments associated with them, make these sysharge ordering in the oxygen-ion sublattice, i.e., a charge
tems a very interesting object for checking various hypoth-density wave in this sublattice with symmetry directions
eses about the nature of HTSC’s. The anomalous behavior 100]. In particular, for BKBO(Ref. 13, besides the charge
some of the physical properties of BKBO and BPBO sys-density wave in th¢110] direction in the bismuth-ion sub-
tems, and the nature of the metal—insulator concentratiofattice, it is probably also necessary to allow for a charge
transition and superconductivity in these compounds, haveensity wave in the oxygen-ion sublattice in {i€0] direc-
yet to be thoroughly explained. tion. In the approximation of the tight-binding method this
A number of unusual properties of BKBO and BPBO, means that oxygen ions with different effective charges
and also of cuprate HTSC's, have been linked to structuralshould exist in the system, whose ordering is important for
charge, or magnetic ordering in the Bi or Cu sublattice.the formation of the electron band structure and the Fermi
However, the observed anomalous softening of longitudinasurface.
optical phonon frequencies in th&00] direction for the me- A preliminary series of experiments carried out by us,
tallic phases in BKBO(Ref. 1) and in the cuprate HTSC’s and in particular measurements of EPR spetushow that
La, _,Sr,CuQ, (LSCO) and YBgCu;O;_ 5 (YBCO) (Ref. 2 in BKBO ordering of oxygen ions with different effective
cannot be explained by charge ordering in the bismuth-iortharges possibly exists. For a more detailed elucidation of
sublattice or by spin ordering in the copper-ion sublatticethe nature of the observed EPR signals and the role of oxy-
Ordering of this kind should lead to anomalies in the phonorgen, in the present work we carried out integrated studies of
spectrum in thd110] directions, which are not observed in BKBO and BPBO systems. The measurements were carried
experiment-2 out on samples of varied composition, where the concentra-
In all of these compounds an anomaldnegative ther-  tions of all the cationgBa, Bi, K, Ph and oxygen varied
mal expansion is observed at low temperatdreas well as  over a wide range. Special attention was given to the quality
an anomalous temperature dependence of the upper criticahd certification of the samples.
magnetic fieldH., (Refs. 5 and $along with other anoma-
lies. In BKBO, Ng,_,Ce,Cu(Q,, YBCO, the bismuth cuprate
HTSC's BLSKLCuG;, 5, and BpSrL,CaCyOg, 5, the cross
section of the Fermi surface is almost a sqfiarewith flat Samples of the system Ba K,BiO; (0=x=0.50) were
segments parallel to tHa00] directions. The singling out of prepared by nitrate technolod§ Stoichiometric quantities of

2. SAMPLES

1063-7761/99/88(4)/6/$15.00 732 © 1999 American Institute of Physics
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KNO;, BaNO3),, and Bi,O; powders were mixed and tanceR(T) and magnetic susceptibility(T). For y<0.65
heated in a nitrogen atmosphere at 965K for 1 h, and then &fe samples had a semiconductor dependend®(®j, and
988K for 30 min. The mixture was cooled to 720K, the ni- for y>0.65 they exhibited metallic properties, where the
trogen atmosphere was replaced by an oxygen atmosphef@aximum superconducting transition temperatug,
and the mixture was kept in it for 30 min. The temperature~12.5K obtained for the composition BafBig 2505 .

was then dropped to 420K and the mixture was taken out Analysis of the samples using a LAMMA-1000 laser
of the oven. A similar cycle of “grinding—synthesis— Mmicroprobe mass-spectrometer with a sensitivity threshold of
annealing” was carried out five times for each composition.10""cm™2 did not reveal even a trace of copper or any mag-
Afterwards the samples were pressed into pellets which werBetic impurities.

held at 988K for 1 h in a nitrogen atmosphere, and then at

720K for 30min in an oxygen atmosphere, then sIowa3 RESULTS

(10h) cooled to 420K and taken out of the oven. '

X-ray diffraction revealed a single-phase character of the EPR spectra were measured with a Bruker ESP-300
samples withk<<0.50 and a lack of splittings of reflections in spectrometer at 9.45 GHz in the temperature range 3—300K.
the diffraction patterns. The pseudocubic lattice parametefhe first derivative of the absorption signal in the magnetic
“a"” had a dependence on the compositioof the forma  field was measured. We used an ESR-900 flow-through he-
=4.3548-0.174% (in A) in agreement with Ref. 16. To lium cryostat with an Oxford Instruments ITC-4 temperature
characterize the samples, we measured the temperature degulator, for which the measurement error of the tempera-
pendence of their electrical resistanR€T) and magnetic ture in the rangd <30 K was at mostt 0.2 K.
susceptibility x(T). For x<0.3 the samples had a semicon- We examined samples with the following compositions:
ductor dependence &(T), in the range 0.8 x=<0.50 they the insulator BaBi@, the “parent” compound of both sys-
manifested metallic properties: in this case the maximuntems, BKBO and BPBO; samples of the BgK,BiO; sys-
superconducting transition temperatufe~30K was ob- tem with x=0.13—an insulatorx=0.30—a composition
tained for the BggKyBiO; sample. An indication of the near the insulator—metal transitioxn= 0.35—Iightly doped
high quality of the samples is provided by the large fraction(T.~20K), x=0.40—optimally doped T.=30K), x
of the Meissner phasgnore than 50%measured in a mag- =0.45 andx=0.50—heavily doped superconductdfsr x
netic field of 4 Oe. =0.50 T,<15K); samples of the BaRFBi, ,O; system

Samples of the system BafBi, ,O; were also pre- with y=0.20 andy=0.50—insulatorsy =0.65—a composi-
pared by nitrate technology, but in substantially differenttion near the edge of the insulator—metal transition,
thermal regimes. A stoichiometric mixture of (RD3),, y=0.75 (T,=12.5K), y=0.90 (T,=8K) and y=1.00—
Ba(NOg),, and B,O; powders was heated in an oxygen metals. In addition, we prepared samples of the systems
atmosphere to 950 K and kept at that temperature for 1 h. ThBKBO and BPBO, specially annealed in argon to create oxy-
temperature was then raised to 990K, and the mixture wagen vacancies.
held there for 4h. The powders were then ground and To eliminate the “sample degradation” effect on the
pressed into pellets which were kept for 4 h in an oxygermeasurement results noted in Refs. 19 and 20, all of the basic
atmosphere at 1100K. The pellets were ground up agairEPR measurements were made on freshly prepared materials,
pressed, and kept in an oxygen atmosphere for 4 h at 1200 Kvhich were ground into powder immediately after final heat
After this, the samples were cooled to 1073 K and taken outreatment and poured together with pure mineral oil directly
of the oven. This procedure was repeated two more timesnto the EPR cells. Subsequent studies were carried out in
but at a synthesis temperature of 1300 K, the first time fothese cells. Such “hermetization” of the samples made it
4 h, and the second time for 50 h. The last anneal was carrigobssible not only to eliminate the dependence of the results
out at 1073 K for 12 h, after which the samples were coolecn the time elapsed since sample preparation, but also to
outside the oven in an oxygen atmosphere. Note that sampletiminate the possibility of partial orientation of the powder
with y=0.5 were prepared in the indicated regime; forin the magnetic field. In the control samples, which were
samples with smaller values gf the maximum synthesis intentionally left in powder form and not mixed with mineral
temperature was reduced to 1100 Kyasas reduced to zero. oil, we observed considerable degradation of the EPR sig-
All remaining conditions of synthesis were identical for all nals, especially the EPR line in the “half-field’see below,
compositions. only a few days after grinding the pellets. This effect indi-

As shown in Refs. 17 and 18, annealing of samples otates a possible reason for the irreproducibility of results
BaPRBi;_,O5_5 in an oxygen flux at 1073K for 12h en- noted in a number of published works. As our preliminary
sures complete oxygen stoichiometr§=0.00+0.01). measurements have showit® one of the principal reasons

According to x-ray diffraction results, all prepared for sample degradation is loss of oxygen. Note also that the
samples were single-phase. The samples witt0.5 had a  EPR signal of high-purity mineral oil was very low in com-
monoclinc structuréfor BaBiO; we havea=0.6187 nm,b parison with the sample signal, although a weak narrow line
=0.6138 nm,c=0.8670 nm,3=90.165°). For the samples with g~2.0 was also detected.
with y>0.5 an orthorhombic structure was observgor Above all, note that the presence of two prominent lines
BaPh ;Big»0; we havea=0.6079 nm,b=0.6061 nm,c in the EPR sample was typical of all samples. One of the
=0.8554 nm,3=90°). To characterize the samples we mea-ines was observed in a fieB,~0.34T (g,~2.1), the sec-
sured the temperature dependence of their electrical resisnd was observed in the “half-field"By~0.17T (9,
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g, =42 g =21 to indicate the presence of triplet states in the system, i.e., of
pairs of states with triplet ordering of the magnetic moments.
1 The most probable source of this EPR signal in the investi-
gated samples is triplet excited states of localized hole pairs
with spin S=1 (Ref. 15. It follows from the estimated in-
tensity of the lines withg,~4.2 that the number of such
pairs in the samples amounts to £0- 102 of the number

3 of Bi(Pb ions. This estimate is consistent with magnetic
susceptibility measuremerfts.
The intensities of the two lines fall off rapidly with in-

creasing temperature. Figure 2 shows the temperature depen-
dence of the inverse intensit)gl of the EPR lines withy,
~4.2 for several samples of the BPBO and BKBO systems
(herel, is the peak-to-peak amplitude of the EPR Jink

can be seen that the results for all sample3at30—40K

are well described by the dependenicg'e yzog, where
XEPlR: C/(T+®), with a common value oP for samples of
different composition in Ba, K, Bi, and Pb, but the same
stoichiometric oxygen content. Thus, the nature and intensity
of the interaction between localized pairs, defined by the
FIG. 1. Examples of EPR lines witi, ~2.1 andg,~4.2 for samples of the ~ paramete®, depend weakly on the potassium and lead dop-

BaPRBi; -, 0; and Bg_,K,BIiO; systems in a magnetic fieBup to 0.5T:  jng |evels of the systems considered. The mean value of the
1—y=0,T=35K 2y=05,T=35K 3—y=075T=135K 4=y oramete — 4+ K.

=1,T=3.5K,5—x=0.13,T=3.5 K (T is the measurement temperature of . T
the samples Since there are several possibilities in BPBO and BKBO

systems for the formation of localized triplet pairs, we car-

ried out a series of measurements on the effect of doping and
~4.2). By way of example, Fig. 1 displays spectra for four heat treatment on the observed EPR signals. We observed an
samples of the BaRBi; ,O; system ¢=0,0.5,0.75,1.0) EPR signal in the half-field in the parent material BaBjO
and the BggXK.1BiO3 sample. As a rule, the total intensity consequently, we know that this is signal is not due to po-
of the “high-field” line (g;) is significan tly greater than tassium or lead ions. On the other hand, it follows from the
that of the “low-field” line (g,), but in some samples their bismuth substitution experiments carried out in this study
intensities are comparable. It is possible that this depends dhat these signals are not due to bismuth ions either. For
the conditions of the anneal or on subtle features of the effeqtartial replacement of barium by potassitup to 50% the
itself. Figure 1 shows the intensities of both lines for all EPR signal varied only slightly. Taking into account here
samples, expressed on the same scale and referenced #pat the EPR signals varied strondlgs will be made clear

1, arb. units

W

001 0203 04 05

proximately to a common origin. below) only when the oxygen content was varied, it is natu-
The intensity(amplitude of the g, line of the samples ral to assume that these signals are due to oxygen ions.
depended on the temperatufe however, the width of this To clarify the role of oxgyen in the formation of the

line and its position did not. For thg, line we observed a observed signals, we carried out an additional series of ex-
definite dependence of the position and width ©in the  periments. High-quality BKBO and BPBO samples were an-
high temperature regionif(>100K). Its shape was also ob- nealed in argon af=1070K for 1 h and then quenched. The
served to evolve with increasing lead content in the BPBOmeasurements showed that the amplitude of the signal with
samples. g,~4.2 decreased roughly tenfold with some difference in
In the present work we discuss the behavior of only thethe magnitude of decrease for different compositions. Next,
low-field line with g,~4.2, which is of greatest interest. The the BPBO samples were annealed again, this time in an oxy-
EPR absorption line at half the field strength is well knétvn gen atmosphere &t=1070K for 1 h, and then quenched. In

{p"'. arb. units [p']_ arb. units
30 - = |1000f ;c% FIG. 2. Temperature dependence of the inverse
a . :’A/f intensityl ,* of the EPR line withg,~4.2 for the
25 ¥ o * BaPhBi,_,O; systems and Ba,K,BiO; sys-
» tems:y=1 (O), y=0.75 (X), y=05 (O), y
20; —_~G r =0.2(¢), x=0.4 (+) (the BKBO sample an-
15 500F nealed in argonT.<4 K). The solid line shows
£ the dependenck, *(T)=(T+®)/C. a The de-
IOE pendencdgl(T) up to T=100K; b) the depen-
5{'_ dencel;l(T) in the lower temperature region
r (T<30K).

20 40 60 8 TK 0 10 20 T. K
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this case the amplitude of the EPR signals increased seveBPBO systems, the insulating state results from charge den-
alfold. The incomplete recovery of the EPR signal to itssity waves in the sublattice of oxygen and bismuth ions. For
original value is due to insufficient duration of the oxygenthe sake of illustration, we can describe the same scheme in
anneal. Complete recovery of the oxygen stoichiometryterms of different effective charges in the bismuth-ion sub-
would require a 12-hour anneldt*®However, such a lengthy lattice and different effective charges in the oxygen-ion sub-
high-temperature anneal would lead to other changes in thiattice. This corresponds to the emergence of ionic—covalent
samples associated with their preparation. A correspondinBi—O bonds with different degree of covalency. In other
anneal in argon for samples of the BKBO system was carriesvords, ionic—covalent Bi—0™° bonds with a higher fraction
out atT~700K for 1 h with subsequent cooling in argon to of covalency exist in the sample, along with the usual
T=420K followed by quenching. In this case, a decrease irBi—-O~ 2 bonds. A justification of the magnitudes of the ef-
the intensity of the EPR signal was also observed, whichective charges of the Bi and O ions is given in Ref. 26. The
again rose after an additional anneal in oxygen. Thus, theserdering of such ionic—covalent bonds (Bi=&) is super-
experiments show that the EPR signal in the half-field destructural, and leads to the formation of a dielectric gap. Due
creases as oxygen leaves the sample, resulting in the eme¢- overlap of the wave functions and the ordering of these
gence of oxygen vacancies. To observe these signals, it isonds, a filled valence band without localized magnetic mo-
necessary to have high-quality samples with full oxygen stoments is formed.
ichiometry. Loss of oxygen is pobably the reason for sample  Above we spoke of ideal, i.e., defect-free ordering of the
degradation and the disappearance of EPR signals under sub- 0~ %5 ionic—covalent bonds. This is diagrammed in Fig.
optimal handling of the samples. 3a for a single Bi—O plane. In this case, as can be seen from
We also carried out other experiments on the effect othe figure, the superstructural ordering of the Bi-%O
heat treatmenttemperature and duration of anneal, quenchhonds leads to a doubling of the lattice period. The energy
rate, etc.. Experiments on potassium and lead doping and gap 3, in the vicinity of the point ¢r/a)(1/2,1/2,/12) of the
study of the effect of the argon and oxygen anneals, as weBrillouin zone is shown in Fig. 3itherea is the distance
as other conditions of preparation, demonstrate convincinglpetween bismuth ionsin real samples, breaches arise in the
that the EPR signals with,~4.2 are related to oxygen and jdeal ordering of the Bi—O°® ionic—covalent bonds. One
are observed only in high-quality samples. The authors ouch breach is shown in Fig. 3c, where this breach, that is to
Refs. 19, 23-25 who studied $@uQ, and Lg_,SKCuO,;  say, ordering defect is encircled by a dashed line for clarity.
samples, also concluded that it is necessary to have hight creates an acceptor impurity level in the band gap, denoted
quality samples without oxygen vacancies to observe EPRy the arrow in Fig. 3d.

signals. However, it is more complicated to observe EPR  This defect, which results from a breach in the ordering
signals in the LSCO system in the half-field due to the strongf the 0 °° ions, has a localized magnetic moment. For a
ger signal of the Ct? ions. In addition, there are specific sufficient concentration of such impurity centers, their mag-
requirements on the local symmetry of the lattice when obnetic moment can be detected by EPR. When a bound pair of
serving such EPR signalS. such impurity centers forms, a singlet ground-state level and
a triplet impurity excited level arise in the band gap in the
vicinity of the neighboring bismuth ions. Such a bound pair
of impurity centers is depicted in Fig. 3e and, for clarity, is
The line withg,~4.2, present in the EPR spectra of all also encircled by a dashed line. The energy spectrum of a
the samples, is a distinguishing feature of the so-calledrystal with such defects is shown in Fig. 3f. The single and
“ AM¢= =2 forbidden” transition between levels of the sys- triplet levels in the figure are represented by a corresponding
tem with spinS=1 (Ref. 21, where My is the magnetic pair of arrows.
guantum number. Doping and the emergence of free carriers at the top of
The first observation of triplet EPR signals in HTSC the valence band has a definite effect on the intensity of the
materials and their interpretation belong to Thomahal!®  EPR lines due to screening. However, the fact that EPR sig-
In La,_,Sr,CuQ, samples without oxygen vacancies they nals have been observed in the metallic phase of BKBO and
were able to observe the corresponding pair of EPR signal8PBO suggests that their metallic state is indeed a state of a
From the temperature dependence of the signal githd degenerate semiconductor. This conclusion is consistent with
they were able to conclude that the interaction between theptical studie$’~3° The conductivity and superconductivity
magnetic centers is ferromagnetic and that the ground stata such a degenerate semiconductor are due to free carriers
of this system is a triplet while its excited state is a singlet.arising upon doping.
Note that the presence of a Cu subsystem in the samples As is well known®® states at the top of the valence band
made it much harder to interpret the results. The authors ddre derived mainly from @ oxygen states. The contribution
Ref. 19 could therefore not draw any definitive conclusionsof the bismuth states amounts to 3—5% and decreases with
regarding the nature of the observed pairs. Nevertheless, th@ptassium dopingBKBO) or lead dopingdBPBO). The con-
took localization of additionaldoped holes as the most tribution of potassium and lead to these states is essentially
probable reason for them. zero. Therefore, the state of the oxygen “defect” levels in
In our opinion, such EPR signals can be understood omhe band gap near the top of the valence band depends
the basis of the model of “ordered ionic—covalent weakly on the potassium or lead concentration. When Bi is
bonds.’**26 |n this model it is shown that in BKBO and replaced by Plithe replacement can be completi—O°-°

4. DISCUSSION
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xil, L'_l_\ k FIG. 3. Diagram of local violations of ideal ordering of
a (2 22y the ionic—covalent bonds, also showing “impurity”
levels in the band gap in the vicinity of the wave vector

\/ k=mla(1/2,1/2,1/2); Y—Bi ions; ®—0O? ions;
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bonds are supplanted by corresponding ionic/covalentvhereld, is the exchange coupling constant inside the pair of

Pb—0O °5bonds. This is the reason for the weak dependenckocalized magnetic moment€) is the paramagnetic Curie

of the EPR signals on the lead doping level. temperature characterizing the interaction in the system of
The strong dependence of the EPR signals on the presriplet pairs, andC is a constant. Analysis of the dependence

ence of oxygen vacancies is related to the fact that these af&) for the samples investigated showed thgt=0. For ex-

donor vacancie$*!"*®*Compensation of acceptor levels thus ample, for BaBiQ we have J,=0.9+0.5K, and for

arises, which leads to disappearance of the EPR signals. Bg K 4BiO; we obtainJ,=3.9=0.5K. Similar values are
Reference 20 reported the observation of EPR signalalso observed for other compositions. Taking into account

with g;~2.1 andg,~4.2 in some specimens of the BKBO the smallness ad,, we can replace formulél) by the sim-

system. The authors of Ref. 20 were able to observe sucplified dependence

signals only in insulating samples witk=0.13 and x

=0.25, whereas no EPR signals were observed in the parent

compound BaBi@ or in superconducting samples with C

=0.40 andx=0.50. They therefore concluded that localized Iy~ ¢ )

hole pairs, being an EPR signal source, result exclusively

from potassium doping. Since we were able to consistently

observe EPR signals in undoped BaBjChis conclusion ) i o

must be characterized as erroneous. The lack of EPR signafdlich does not 'nCIU‘j‘f the activation factor exg/T).

in some samples in Ref. 20 may be linked to “aging effects” 1€ dependenck, *(T) is plotted in Fig. 2, where the

(the authors themselves noted this effect in their work solid line corresponds to formul@). Least-squares fitting of
We now consider the temperature dependence of the ofi’® €xperimental data plotted in Fig. 2 yiels=4+2 K for

served EPR signal witlg,~4.2 in more detail. Since the the investigated samples, i.e., the quan@ity-0, which in-

position, shape, and width of this EPR line did not changéj'cat_es an Qntlfer_romagnenc |nt_eract|0n between the _trlplet

with temperature over the range investigated, the temperéocal'zed pairs. It is clear from Fig. 2 that samples of differ-

ture dependence of the intensity of the EPR siggatan be N9 composition have very similar values ©f. a1
analyzed using the formdh From the above estimate 8§>0, it follows?*3! that the

ground state of a localized pair is a singlet, and the excited
| — C exd — ‘]_p 1) state is a triplet, as shown in Fig. 3f for acceptor impurity
' levels.
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We study the energy spectrum of the impurity states in tunnel-coupled double quantum wells for
Coulomb and short-range donor potentials. We calculate the impurity contribution and the
density of states and detect the transformation of a localized donor state into a resonant state when
the binding energy of the donor in an isolated quantum well is less than the separation of

the energy levels of the double quantum wells. In the opposite case, where the binding energy is
greater than the level separation, there is tunneling repulsion between adjacent impurity

levels, with the degree of degeneracy of the levels changing when there is tunneling mixing of
the ground and excited impurity states from different wells. Resonant states emerge in an
asymmetric double quantum well, while in a symmetric double quantum well the impurity level

at the barrier's center proves to be localized even against the background of the continuum.

The calculations are based on a general expression for the impurity contribution to the density of
states in terms of a 2-by-2 matrix Green'’s function, i.e., only a pair of tunnel-coupled levels

of the double quantum wells is taken into account. For an impurity with a short-range potential, we
derive a matrix generalization of the Koster—Slater solution, while the impurity with a

Coulomb potential is analyzed by using the approximation of a narrow resonance and close
arrangement of the repulsive levels. 99 American Institute of Physics.
[S1063-776(199)01304-9

1. INTRODUCTION Resonant donor states are studied in this paper for the
cases of short-range defects and Coulomb impurities. These
The transport and optical properties of double quantumwo types of impurity have different energy spectra even
wells change significantlysee Refs. 1-7 and the literature when there is only one quantum well: a point defect pro-
cited therein due to tunneling mixing of the electronic states duces a single bound state, while a Coulomb impurity pro-
of the left- () and right-hand ) quantum wells. The struc- duces a series of levelsvhich leads to the possibility of
ture of the donor states in double quantum wells can also behanging the degree of degeneracy by level mixing; see Fig.
significantly altered in comparison to ordinary bulend  1b). When the impurity is at the center of the barrier of a
two-dimensiondl states. This modification of the donor symmetric double quantum well, the impurity potentials in
states is reflected in qualitative featufese Fig. 1when the thel andr quantum wells coincide, with the result that lon-
binding energy is comparable to the level separation in thejitudinal electron localization and the tunneling mixing of
double quantum wellsA+, whose value is determined by size-quantized states prove to be independent. In this case, a
the height and width of the barri¢the upper band diagrams localized, i.e., nonresonant, state emerges against the back-
in Fig. 1 correspond to weak interwell tunneling, while the ground of the continuum.
lower diagrams demonstrate the tunneling mixing ejfeft The foregoing modification of the impurity energy spec-
the binding energy of a Coulomb impurity in thejuantum  trum has a powerful effect on electron transport and the op-
well is higher than the energy level separatiap in the tical properties of a double quantum well at moderate dop-
absence of tunneling, at certain valuesdothe ground-state ing, but thus far only heavily doped and pure double
level in thel quantum well may coincide with the ground or quantum wells have been thoroughly studiédTunneling
excited state in the quantum well(see the upper band dia- mixing of the ground and excited donor states in a double
grams in Figs. 1a and 1bDue to tunneling mixing, these quantum well was detected by Ranganatteral,’® who
levels repel each other near their crossing pg¢the anti- used the method of far-infrared radiation magnetotransmis-
crossing effedt as shown in the lower band diagrams in sion(Dzyubenko and Yablonsk also examined the mixing
Figs. 1a and 1b. When the ground level mixes with an exof the ground and excited magnetoexcitonic stat&bese
cited degenerate statEig. 1b), the degree of degeneracy of results were discussed on the basis of variational calculations
the emerging state is lower. But if the energy of the electrorof donor binding energy, while the resonant states and the
of the donor state in thequantum well shows up against the features of the spectrum of excited states we have just dis-
background of the continuum of the quantum well(see cussed cannot be obtained by the standard variational ap-
upper diagram in Fig. 3¢then due to tunneling mixing this proach. We also note that the special features of the excitonic
state becomes resonarfdee the lower band diagram in energy spectrum are similar to those of a Coulomb impurity.
Fig. 10. Although the ground state of excitons in a double quantum

1063-7761/99/88(4)/9/$15.00 738 © 1999 American Institute of Physics
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well has been thoroughly studig¢see Ref. 12 and the litera- whereHpq,y is the double-quantum-well Hamiltonian in the
ture cited thereip the appreciable broadening of excitonic absence of impurities. The potential energy of the Coulomb
lines due to tunneling is discussed only by Feball® and  center in(2) is given by

Oberli et al'* The presence of such features in excitonic et

absorption spectra is corroborated by the numerical calcula-  v/(p z)= me exp{ - M) 3
tions of Glutschet al!® Crossing of localized levels was Kp h

studied only for magnetoexcitonic statés. in which the dielectric constank is homogeneous in the

In this paper we calculate the impurity contribution to'direction perpendicular to the double quantum well; the Cou-
the density of states by employing the one-electron Green'gymp center is at (0,8y). For a point defecti.e., a substi-
function’ in the 2-by-2 matrix representation, which allows tutional impurity),

only for a pair of the lowest tunnel-coupled levels in the
and r quantum wells. We obtain an exact solution of the  V(P,2)=U,d(z—2p),

Koster—Slater type for a short-range potential, while the,pere the delta function is localized on a scale of the order
Coulomb potential is analyzed by using the approximationgy¢ she |attice constars, and the potentiall, is constant for

of al naSrrowzreson(je\npe and close tgnnefl—co::plgd levels. <pp, and small forp>p,, (here the maximum momentum
n Sec. 2 we derive an expression for the impurity con-; "ot orderi/a).

tripution to' the dens_ity of states. In Secs. 3 apd 4 we apP'y Shallow impurity states, for which the binding energy is
this formalism to point defects and Coulomb impurities. Fi-¢,., compared to the distance between the levels in the

nally, in Sec. 5 we discuss the results and draw conclusionauamum well, can be described by allowing for only the

lowest tunnel-coupled double-quantum-well states. For such
states the Green’s function can be expanded in the orbitals of
thel andr quantum wells, the latter being denoted gy z)

We begin with the formalism describing the impurity and ¢,(2):
contribution to the density of state$¢E) of the double quan-
tum wells. This contnbghon can be expressed in terms of the  G_(pz,p'z’)= 2 @;(2)G(pi.p'j") e (2Z). (4)
retarded Green'’s functio®, in the usual way: i’

2. BASIC EQUATIONS

' 2 The expansion coefficients, (pj,p’j’) for a 2-by-2 matrix
p(E)= I'glo Im — J dz}p: G.(pz,p2). (D) Green’s functior$s,(p,p’), which in such an “isospin” rep-
emE resentation is determined by the equation
Here we have used thg z-representationp is the 2D mo-

mentum of the electron, the axis is perpendicular to the (ep+h—2)G.(p,p")

plane of the 2D layer, and the normalization area is taken to A A

be unity. The Green’s function satisfies the equation — > V(lp—pi))G.(p1.p")= Spp’ » (5
P1

(Hpoow—2)G4(pz,p'2") A - -
whereg ,= p2/2m is the kinetic energyh=(A/2)o,+ To, is
—> V(|p—pi].2)G.(p1z,p'Z ) = S 8(2—2"), (2 the Hamiltonian matrix describing transverse motion, éhe
[ are the Pauli matrices, anfl is the distance between the
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lowest levels in the isolatedandr quantum wells. The ex- Here the suniEF’,1 is calculated fotp,|<P,,, and the poten-

pressions foA and the tunneling matrix elememtare given tial matrix V is determined by the componer®, which are
in Ref. 18 for the flat-band model. We assume that the 'eveb—independent. If we ignore small subbarrier penetration,

separationA and the binding energy of an electron on a . . . . . ~
donor are small compared to the distance to the higher Ieve@enAfOr an |mQur|ty IocAallzed " tpgzth We! we haveVv
of the double quantum wells. In this case, the tunneling— ViPi, whereP=(1+0,)/2 and P,=(1-0,)/2 are the
Hamiltonian approximation accounts exactly for the inter-Projéction operators on the orbitals of thandr quantum
mingling of the pair of lowest states in the double quantumellS, andV; has been defined ify). .

wells, with only the contributions of the higher levels ig- 10 Solve Eq.(10), we do the summation ovep and
nored. Only the diagonal elements of the impurity-potentialVfite the sum as follows:

matrix V(p) in Eq. (5) are importantthe off-diagonal ele- / -1

ments are small comparedTa,). These elements are given >, G, (p,p’)=|1-2, 9.(p)V| g.(p’). (11)
by p p
2me?h (42 Z—Zp; Substituting this into the right-hand side of E&0) yields
Vo=t [ dw?(z)exp( Pzl g ° ’ oy
Kp —d;/2 ! h ’ -1
where thez-coordinate is measured from the center offtie ~ Ge(P.P")=0.:(P){ Spp +V 1_2,) gs(p)V} ge(p,)] :
quantum well ¢;), zpj=(zp—z;), andd; is the width of the (12)

jth quantum well. For a point defect localized in thih

quantum well we use/j(p)=up<pj2(zD), ignoring the expo- where the second term describes the perturbation introduced
nentially small off-diagonal matrix elements by the impurity. Inserting12) into (8), we obtain an expres-
Up¢1(Zp) ¢ (zp). An expression similar to that faf;(p) can  sion for the impurity contribution to the density of states:
also be written for a potential generated by a small-scale

inhomogeneity of the heteroboundaries of double quantum ) 2Nimp . N
wells (such a potential was described in Ref. 19 in connec9Pimp(E)= lim Im —==Tr % 9.(PV

tion with the problem of scattering by nonideal heterobound- e—EFi0
aries. In this case, a R
2me: £b2 X 1—p2 g.(POV|  0.(p). (13)
1
Vi(p) = —4—. (7)

! The introduction of the impurity concentrationy,, into (13)
whereg; is the level energy in th¢th quantum well, and  presupposes that the electronic states at different impurities
andb are the height and longitudinal size of the inhomoge-do not overlap(i.e., the distance between impurities in the

neity. plane of a double quantum well does not exceed the radii of
The density of stategl) in the “isospin” representation the states localized at the impurities
can be transformed to Summation ovep;, in Eq. (13) yields the matrix
_ 2 : A . AL 2T, .
p(B)= fim Im Tr % G(p.p), (8) x(s):’%’ VI, (s)+ A—TUZ+A—T0X)V|(8) (14
where Tr denotes the trace, the sum of the diagonal matri here
elements. Thus, to describe both localized and resonant im-
purity states we must solve the matrix integral equati®n &2
and do the summation i8). Below we carry out these cal- I (g)=In m ,
culations analytically for point defects described by the ma- (2+Ar/2)(e=A7/2)
trix form of the Koster—Slater equation; for Coulomb donors
" S e+A4/2
we use additional approximations. I _(e)=In el (15)
T

Here pop=m/mh?, &n=p3/2m, andAr=JAZ+4T? is the
3. POINT DEFECTS distance between the tunnel-coupled levéise energies
+ A+/2 determine the positions of the extrema of the tunnel-

By introducing the retarded Green'’s function in the ab'coupled subbandisUsing (14), we can write

sence of impuritiesg, (p) 8,y , Where
o (e B . 2Nimp <, dh(e)
9.(p)=(epth—e)"7, €) Spimp(E)=lim  Im TH{1-X\(e)] ™t

. e—E+i0 ™ de
we can write Eq(5) as (16)

és(p,p')ZQS(p)5ppr+§Jg(p)\72 G, (p1.p). (100  After calculating the trace, we obtain the final analytic ex-
P1 pression,



JETP 88 (4), April 1999 F. T. Vas'ko and V. I. Pipa 741

10r

0 : i .
0.25 0.50 0.75 1.00 £ 1.25

0

-0.2 0 0.2 04 0.6 £ 08
FIG. 3. Same as in Fig. 2 fdr=1 meV and various level separations: curve

FIG. 2. Contribution of a short-range defect to the density of stBtds) 1, A=2meV; curve2, A=3 meV; curve3, A=4 meV; curve 4, A

= 6pimp(E)/2njym, for double quantum wells withh=2 meV for various =5 meV.

values ofT: T=0.5 meV (solid curve$, andT=0.25 meV(dashed curves

The energ)E is measured in meV, arld(E) is measured in in meV. The

donor level in an isolated quantum well(at T=0) is fixed atE,=0 meV

() andE(=0.5 meV(b). creases, the peak decreases, broadens, and is shifted toward

higher energies. For the limit of uncoupled quantum wells
(T=0), we have a delta-function peak at enekgy Com-
) 2Ny, d p20Vj parison of the values afpin,(E) obtained for various values
Spimp(E)=— "I;n_ Im T Eln 1- T‘](s) : of Eq shows that the deeper the level, the more effective its
emErIo transformation into a resonant stafee., the level width
17 .

) proves to be greater, all other parameters being ¢quhé
whereJ(e)=1,(e)*(A/A7)I (&), and the plus and minus shape of the peak ifpimp(E) calculated for various values
signs refer to impurities localized in theand r quantum 4 A s depicted in Fig. 3. Clearly, as the level separation
wells, respectively. o . increases, the peak is shifted toward lower energies, with its

~ Suppose that the impurity is in thewell. Direct calcu-  ampjitude varying nonmonotonically. AS decreases, i.e., a
lation of (17) for E<—A+/2 yields pimp(E)=2nimpd(E  symmetric double quantum well is realized, the peak is
—E.), where the energf, of the localized state can be ghjfted toward the edge of the continuum of the upper sub-
found by solving the equation bands and broadens.Af T< (7 —2)/\w— 1 [this inequality

A E+Aq/2 A E—A/2 follows from (17)], the impurity contribution to the density
(1— A; nm +{ 1+ A_T>In m‘ =0, (18)  of states monotonically increases with energy, i.e., there is

no resonant state.
where E is the energy of a localized state in an isolated
well. In a symmetric DQW, i.e.A=0, the energyE, is
—JEZ+T2, and agA| increases, the energy approaches the;, TUNNELING MODIFICATION OF COULOMB STATES

edge of the continuum. _ _
To describe a Coulomb donor, we use the representation

But if the solution of Eq.(18) is found for |E|<A+/2, donor, U >!
then due to tunneling mixing of the localized level and theof the diagonal Hamiltoniars™ 'HS, where S=exp(yoy),

states of the continuum, a resonant state is formed. First weith the angley determined by tan@=2T/A+ (such a de-

give the simple analytic expressions for weak tunnel couscription of electrons in a double quantum well was intro-

pling, T/A?<1, assuming that the levé, is far from the duced in Ref. 18 The integral equation for the Green’s

band edge, i.e., T/A)?In[(A/2+Eg)/(A/2—Eg)]<1. We function in such a representation, <,(p,p’)

denote the solution of Eq18) for this case byEg. Forthe  =5-1G (p,p’)S, can be written

impurity contribution to the density of states nésy (where

|E—Egrl<|ER=A/2|) we have

2Njmp r , (19
T (E—Eg)?+1I?

Ar. . . .
gpt 71—0'2_8) -?/g(p,p’)—g, 7(p—p1)) Ze(p1,p")
1

(20

= 5ppr .

where the energy = m(T/A)2(A/2— ) is the level's half-  Here7(p)=5""V(p)S, where the diagonal matri(p) is
width. Equation(19) is valid for a narrow resonance, with defined by its component$). At this point in our discourse
small compared t&g. The results of calculating the impu- it is convenient to introduce an auxiliary Green’s function

rity contribution Sp;yy(E) to the density of stateiuising the 9.(p.p’) satisfying Eq.(20), which takes into account only
general expressiofi7)] are depicted in Figs. 2 and 3. Figure the diagonal part of the matrix”. The matrixg,.(p,p’) is
2 demonstrates that as the interwell tunnel coupling indiagonal, and its components are

5Pimp(E):
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. o5 (P& (p')*
o, (pp)=2 =, (21)
A E,—¢
where the wave functiong,” and the eigenvalues, can be
found by solving the equation

Ar

(Spi > EZ>¢I(p)—§, V. (Ip—piD ¢5 (p) =0,

(22

A
2Vi(p)=[V|(p)+Vr(p)]iA—T[V|(p>—Vr(p)]-

F. T. Vas’ko and V. I. Pipa

contains independent contributions from the “plus” and
“minus” states. In this case only localized states emerge.

In an asymmetric double quantum well or when the im-
purity is not at the barrier’s center, the off-diagonal elements
of 7(p) are finite and the “plus” states mix with the “mi-
nus” states. In this case, depending on the relationship be-
tweenA+ and the binding energy of the donor, two transfor-
mations of the bare “plus” or “minus” donor states are
possible: transformation of a localized state to a resonant
state if the former emerges against the background of the
continuum, or discrete-level repulsion near the point of level
crossing. Below we examine the contribution of these modi-
fications of the spectrum t8p;,,(E) atE close to the energy

The * states correspond to localized donor states related tg

the upper {+) or lower (—) subbands of the double quantum ggrﬁ?reizbu?ilc?nss Soo?ﬁé %?;:gssﬁfétiv\/hf ? on,I)y ;?]il;;s%r;am
wells without allowance for Coulomb mixing. The off- 9. (P.P

diagonal elements of the potential mattix are given by
w(p)o,, where

T

w(p)= 1~ [Vi(p) = V:i(P)]. (23)
T

Using the diagonal matrig,(p,p’), we rewrite Eq.(20):

9g(p,p’)=ég(p,p’)—p2p 9.(P,P)W(|p1—P2|)

X 0y Zs(Pa,p’). (24)

Eliminating the off-diagonal components &f,(p,p’)
from the system of integral equatiori24), we obtain two

independent integral equations for the diagonal componen

taken into account. This approximation can be used when the
tunnel coupling between the “plus” and “minus” states is
weak; according td23), such coupling can emerge when
T/A¢ is small (weak tunnel coupling between theand r
guantum wells or when the difference/,(p)—V,(p) is
small (slightly asymmetric double quantum welin the lat-

ter case,T/A; may be of order unity, i.e., the results of this
approximation can be used even when the interwell tunnel
coupling is strong. Allowing only for the contribution of the
ground state to the expansi¢Bl), for the “plus” state we
have

_5(Peg(p)*

28
Eg—s 28

g. (p.p")

Rhere ¢o(p) andE, are the eigenfunction and energy of

%' and v, which describe donor states related to theihe ground donor state, and the terms in the suf@n with
upper and lower subbands, respectively. We write thesg .q have been discarded. As a result, from E26) for

equations for the Green's function&; (A\,\') in the

< F(\,\) it immediately follows that

\-representation, which is introduced by the following rela-

tionship:
7 (pp)=2 S5 (PZ(NN)BL(P)*. (25
NN
The system of equations fof  (\,\") has the form
(Ex —&)<(N\)
=t 2 WD Z 200\, (26)
1
where the kerneW, is given by
WA= X 65 (p)*w(lp1—py))
P1.P1 P2.P)
X9, (P1,P)W(Ip;— P2 By (P2).  (27)

Note that Eqs(26) and(27) are exact if one uses the exact

eigenfunctions determined by E@®2).

7 (0,0=[Eg ~W, (0,0~&]"* (29
The kernelW, in the integral equatiori26) for &, is de-
generate and is specified by

W)= EVEO
o €

EON=2 &y (P*w(p—p')bg (p). (30)

p.p’
Using (3), we obtain a closed expression fagr_ (A,\'):

E(NEN)”

CoNN)=(Ey —&) Y S+

A

[E()?

-1
X Eg—s—z — .
A E)\l_S

(31)

In the simplest case of a symmetric double quantum wellThus, the donor contribution to the density of states can be
with an impurity at the barrier's center, Eq6) yields expressed in terms of the sum
V(p)=V,(p), so thatw(p)=0. As a result, even when the
tunnel coupling of thel and r quantum wells is strong,

- CTONN)+Z (NN,
dpimp(E) can be expressed in terms Bf,.¢ [ (\,\), and ; (e () - (WM)]
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and to calculate this sum we require the variational solutions T/4R
of (22) and the integrals iii29). 0.015

4.a. Resonant donor state

Here we examine the case where the donor state energy
Eg » Which can be found from Eq22) for the “plus” state,
is greater than-A/2, i.e., the leveE; emerges against the
background of the continuum formed by “minus” states. In
this case \(p)#0), donor “plus” states mix with “minus”
states of the subband, with the result that the discrete level is
transformed into a resonant level. If this resonance is far
from the edge of the continuum of the “minus” states, in

o.010r

calculatingW;_ (0,0) in (27) we can use the free Green's 0 N : -
i 0 02 04 06 08 10 12 14
function N
-1
9o (p p’)= S & — ﬁ —e (32) FIG. 4. Broadening of a resonant state as a function of level separation
g\ N Ul S} for a 100/40/120-RAAIGa)As double-quantum-well structure. The distance

from the impurity to the left heteroboundary of the double quantum wells is
(i.e., the Green’s function that ignores Coulomb correcfions 0A (curve1), 50 A (curve2), 100 A (curve3), and 120 A(curve4). Ener-

Using W_(O 0) from (27), we find that gies are normalized to the binding energR 4f the 2D Coulomb center.
e ’ The vertical dashed lines indicate the energies at which a resonant state is
d(p) transformed into a localized state.

W, (00=2 Xy
2
) (33)  where the impurity is assumed to be in thgquantum well,
the positionzy, is reckoned from the middle of tHewell, and

The impurity contributiondp;,(E) to the density of states d is the barrier width. If the impurity is inside the barrier,

for a narrow resonance is again given (). The shift of ~ (36) must be replaced bYF(ZD)fZW(B/E)Z[ZD+(d|
the peak energfr in relation toE; and the peak’s half- —d;)/4]%, but if the impurity is outside the wellF(zp)

<I>(p>=‘p2 w(|p—pi|) &g (p1)
1

width I" are given by =8m(1+d/d)?. In the adopted approximation, the principal
contribution to the level shift is provided by large momenta,
(I) .
ErEr=rS) (p) , and we have the estimate
p Sp_AT/2_ EO 1—\ P
m
A Egr—Eg=—In|———, (37
F=m, d)(p)&(ap— %—EJ), (34) T | A2+ Eg
P _
- o _ wheree,,=(7h/d)?/2m is the cutoff energy. Thus, in thin

where7’ signifies the principal value of the integral. double quantum wells the shift of the narrow resonance is

We first calculatd™ with (34) for narrow quantum wells  small.

in which the widthd of a double quantum well is much less The results of calculating the dependence of broadening
than the Bohr radiusig. Estimating the characteristic mo- on the level separatioA for the case where the quantum-
mentump at #/ag, we expand the matrix elements up to well width is comparable to the Bohr radius is depicted in
first-order terms irpd/%, whenw(p) proves to be indepen- Fig. 4 (the level separatiod can be varied by applying a
dent ofp. If we now use the ground-state wave functions oftransverse electric field to the double quantum welhe

the two-dimensional Coulomb problem to calculabép), energyE, was calculated by the variational method with a
we find that trial function ¢, (p) = \/8/77302 exp(—2play), wherea, is the
variational parameter. The calculations were done for the
AlGaAs/GaAs structure with quantum-well widths of 100
and 120 A and a barrier width of 40 A. For such a structure,

M2 | . in the absence of an external transverse electric fieR
whereR=me"/2«"4" is the effective Rydberg constari ( =0.05 andA/4R=0.7 (4R is the binding energy of a two-

=5.8meV for the parameters of Gaidhe functionF(zp)  gimensional Coulomb donprFigure 4 shows that the di-
for a double quantum well with flat bands, which is deter-,qosijonless broadening/4R monotonically decreases as
mined by the position of the impurity, is given by the level moves away from the edge of the continuum of the
z{ ( ZZD) 2 lower subband, which is shown by a vertical dotted linear

1

E 2
T=R<——) F(zp), (35
ag A7

— the edge of the continuum the broadening is large and the
d narrow-resonance approximation becomes inyakdirther-
2(d+a) 4 L 2]2 more, broadening largely depends on the positigrof the
Tip
d (?) °°5<d_|) 1 '

F( 27 d_'
Z p— P—
o) d

(36) impurity: T increases severalfold if the impurity is shifted
away from the outer boundary of the double quantum well
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(curvel, zp= —d,/2) toward the center of the quantum well
(curve 2, z=0). A further shift of the impurity in the di-
rection of the quantum-well-barrier interfacggurve 3,
zp=d,/2) and toward the center of the barri@urve 4, z,
=(d+d,)/2) leads to a rapid decrease in level broadening.
At zp=(d+d,)/2 this broadening is due to the small differ-

ey

ence in the quantum-well widths, with the result that a nar- (2)
row peak emerges. This type of broadening is consistent with

the results obtained for a point defect in Sec. 3. I’

-

4

B

4.b. Anticrossing of localized levels 4

We next consider a small level separatitvq for which 0.6 el
the donor ground staté] turns out to lie below the bottom -03-02-01 0 01 02 03 04 95

of the lowest subband, i.eE§ <—A¢/2. We examine the
features of the energy spectrum that emerge when the levEIG. 5. Dependence d.. defined by(40) on A. For the same positions of
E' is close to the energy of the excited or ground Stateéhelmpurlty as in Fig. 4E . andE_ are given by the curveb—4 and1’'-4’,
0 respectively. Curvé corresponds to the edge of the continuumi /2.

related to the lower subband. To calcul@ig,(E) near the
crossing of the ground states, (2i7) we use the unperturbed
Green's functiorg, (p,p’) in the same approximations as in that the segments of curvds-4 above the edge of the con-
g, (p,p’) in (28). This substitution yields ; (0,0) inaform  tinuum (curve 0) correspond to the energy of the resonant
similar to (29) with the kernel states.

2 The E. vs. A dependence becomes more complicated

E<(0) . L
_ (39) when the impurity is inside a quantum well or at the outer

Eqs —¢ heteroboundarycurves2, 2’ and1, 1’ in Fig. 5. The solu-
tions Eg of Eq. (22) obtained without accounting for the
repulsion energye(0) are found to cross twice a8 in-
creases, as shown in Fig.(he pairs of dashed and dotted

W, (0,0=

Using these solutions for; , we obtain an expression for
the impurity contribution to the density of states:

2Nimp Eo + Eg—28 curves in the lower panelTheE.. vs. A dependence for an

Opimp(E) = lim Im— - 5 impurity localized at the center of the quantum weth (
e—E+io (Bg—e)(Eg —2)~E0) =0) and that for an impurity localized at a distance;/a

=2nm S(E-—E)+ 8(E4 —E)], (39)  from the outer heteroboundary{=d,/4) are depicted in

Fig. 6 by solid curves. What is important here is that accord-

where E.t are the energy levels modjfied due to tunnelinging to (23) and(30) the characteristic repulsion energy0)
and defined as the poles of the fraction(89). The energy . (40) resonantly increases as—0 (this dependence is

E_ corresponds to the ground state and the en&rgyo the  ygpjcted in the upper panel of Figh. @hus, for large values
first excited state of the donor in the double quantum well: ¢ ‘A \where E(0) varies monotonically, we have ordinary

Ed+Eg \/(Eg —Eg)? anticrossing, while for small values af, where the crossing
= + +E*(0)
2 4 ’

(40 of the Eg takes place simultaneously with a resonant in-

+

whereE, are the eigenvalues determined by E2p), and
the energyE(0) of level repulsion can be calculated using
(30).

Let us study the dependence®f on the level separa-
tion A (see Figs. 5 and)Bor a double quantum well with the
same parameters as in Sec. 4a. In our calculations we use the
same variational solutions as in calculatiigThe functions
E-(A) vary significantly, depending on whether the impu-
rity is in the interwell barrier or in a quantum well. If the
impurity is inside the barrier, th&. vs. A curves demon-
strate ordinary “anticrossing’(see the pairs of curveg 4’
and3, 3' in Fig. 5, where curved and 3 correspond to the
E. level and curvest’ and 3’ to the E_ level). Figure 5 o
shows that theE. vs. A dependence differs only slightly Ol ; PR e
from the behavior of the edge of the continuumA /2 (cf. 02 -01 00 01 02 03 0'2/42'5
curves3’ and4’ and curve0, which corresponds to the edge ) o )

L . . FIG. 6. A-dependence dE.. for an impurity withz, =50 A (solid curves2
of tth spectrum,— AT/Z)' Similar nonmonommc behavior of and2') and withzp =75 A (solid curves2a and2a’). The dashed and dotted
the binding energy of a donor and exciton was detected b¥,nes in the lower panel correspond to ener@igs and the curves in the
Galbraith and Duggdfl and Bayer and Timofeei. Note  upper panel represent the repulsion energi¢s).
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crease inE(0), therepulsion of the level&.. increases, so 5. CONCLUSION
that a singularity of the anticrossing type disappears.

Reasoning along similar lines, we can calculate the an- In this paper we have discussed the special features of
ticrossing of levels in the case where the ground-state energfie impurity contribution to the density of states of double
Eg is close to the energf, of the lowest excited states. quantum wells, features that originate in the tunneling mix-
Here g, (p,p’) is given by(28) and the excited states are ing of states of thé andr quantum wells. We found two
described only by the- and p-contributionstog, (p,p’): qualitative changes in the impurity energy spectrum: the

emergence of resonant states and the repulsion of the levels
du(pP)dy(p)* corresponding to the ground states or the ground and excited

Ej—e ' states. Earlier studies of donors dealt with the binding energy
of the donor bound states as functions of the double-
wherel=s,p; E,, is the energy of the twofold degenerate quantum-well parameters, with the energy found by standard
p-state; andE; is the energy of the excitesistate(note that  variational calculation$®?22*Below we discuss the possibil-
in the approximation of a narrow quantum wé{,=E,;, ity of these features showing up in experiments involving the
I.e., we have a threefold degenerate excited state, as shownaptical and transport characteristics of the double quantum
Fig. 1b. Substituting these Green’s functions i) and  wells, and indicate the adopted approximations.

(31), we obtain Note that the nonoverlapping of resonant states and the
EAs)?  2lE(1p)? 1 antiqros;ing of chalized states discussed in this paper can be
27(0,0=|Ef —e— _ P (42 studied in experiments only for d(&lble-qiantum-well doping

g;(|c>,p'>=2I (41)

(Eis—e)  (Egp—e) levels that satisfy the conditiammpr2<1 (r is the effective
, size of the donor, of the order of several Bohr radilue to
- E(1l - the moderate electron concentrations, the sensitivity of sub-
Fo (1) =(Ej o)ty 1 Y

(Ei_s)z"s( 0. millimeter spectral measurements will be low. It would
therefore be interesting to study the fundamental band-to-
Note that in this case two characteristic repulsion energieband transitiongby the photoluminescence or photolumines-
then emerge|E(1s)| and|E(1p)|, which are given by Eq. cence excitation speciran asymmetric double quantum
(30). Using (42) and transformings } (0,0)+=,%, (11,11),  wells. In such structures only the electronic states are tunnel-
we obtain coupled, while the upper hole states are localized in one
quantum well, since the separation of the hole extrema ex-

2n; d
8pimp(E)=—2"1im Im[(Elp—s)l——In[(El—s) ceedsAr. .
e—E+i0 de Variations in At (controlled by a transverse electric
field) can have a dramatic effect on the optical spectra of
X(E-—&)(Eae such structures due to the transformation of localized states
(Ex—e)(Es—e)] . . .
into resonant states or, at a certain valué\gf to the anti-
crossing effect. As noted in Sec. 1, excitonic peak broaden-
=2Nmp SE,—E)+ > S(E—E)|, (43)  ing was detected by Fogt al!® and Oberliet al,'* but a
=123 detailed study of this effect has yet to be done. To our

where theE; are the solutions of the equation knowledge, the study of resonant states in Coulomb donors
or structural defectgsubstitutional impurities or geometric
(Erp—E)NZ—E)(Z_—E)-2] E(1p)|2(Es—E)=0. faults in the heteroboundariebas also yet to be conducted
(44) in double quantum wells. In such structures with nonideal
heteroboundaries, the band-to-band transition edge broadens
(this phenomenon was studied in Ref)1®ith the shape of
(Eg +EL) (Eg —EL)? the spectrum being highly dependent on the asymmetry of
= * 2 +|E(1s)[*. (49  the scattering. For short-range defects, the shape of the opti-
cal spectrum also strongly depends on the defect localization
The value of the parametd  lies betweens, and &_, in one or the other quantum well, since the hole states of
i.e., the cubic equatiod4) has three roots. Thus, we have only one quantum well participate in the transitions. The
found that anticrossing appears for both crossings of the leveontribution of a narrow resonant state can also affect the
els, while there are no values of the parameters yielding onkngitudinal conductivity(or other transport coefficientsn
real and two complex-valued parameters. The study of a&electively doped double quantum wells containingtlayer
more complicated dependence of the solutiondofsimilar ~ of doping impurities with a concentration of about
to those depicted in Fig. 6 for close-lying ground stateses 10 cm™2. Under a transverse voltage applied to the sample,
not alter these conclusions, although the anticrossing pattethe special features become evident when the energy of the
is more complicated. We do not list the results of our calcu+esonant state coincides with the Fermi energy.
lations here, since the observation of anticrossing of the ex- We now list the principal approximations adopted in the
cited and ground states is fairly complicated in doped doublealculations. In describing impurity states we used the reso-
quantum wells due to the low splitting energies. This effecthant tunneling approximatioh and allowed for tunneling
however, might be of interest for low-density excitons. mixing of only the lowest pair of electronic levels in the

Here we have introduced the notation

172

o+ — 2
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An investigation is reported of stimulated two-photon emission by Bose-condensed excitons
accompanied by a coherent two-exciton recombination, i.e., by simultaneous recombination of two
excitons with opposite momenta leaving unchanged the occupation numbers of exciton

states with momentp# 0. Raman light scatterin@RLS) accompanied by a similar two-exciton
recombination(or production of two excitonsis also analyzed. The processes under

consideration can occur only if a system contains Bose condensate, so their detection can be
used as a new method to reveal Bose condensation of excitons. The recoil momentum, which
corresponds to a change in the momentum of the electromagnetic field in the processes, is
transferred to phonons or impurities. If the recoil momentum is transmitted to optical phonons with
frequencywg, whose occupation numbers are negligible, and the incident light frequency
satisfieso<2Q _, whereQ) = — wj is the difference frequency arfd is the light frequency
corresponding to the recombination of an exciton with zero momentum, stimulated two-

photon emission and RLS with coherent two-exciton recombination give rise to a lin@ at 2

—w and an anti-Stokes componentaat- 2() _ , respectively. Fow>2()_ the RLS

spectrum contains Stokes and anti-Stokes components at frequencQ _ , whereas stimulated
two-photon emission is impossible. Formulas for the cross sections at finite temperatures are
obtained for the processes under consideration. Our estimates indicate that a spectral{ine at 2

— w, corresponding to the stimulated two-photon emission accompanied by coherent optical
phonon-assisted two-exciton recombination can be experimentally detected,@h C& 1999
American Institute of Physic§S1063-776(99)01404-3

1. INTRODUCTION Equation(1) clearly shows that, as a result of the recom-
bination (production of an exciton with zero momentum, a

The most interesting collective effects in systems of ex'system of Bose-condensed excitons goes over to the ground

citons are the anticipated exciton Bose condensation and SUtate, which differs from the initial one in the average num-
perfluidity (see Refs. 1-7 and references thexeecently & oy of excitons with momenturp=0. The recombination of
number of publications reported on the detection of Bos& itons with zero momentum is responsible for a péhk
condensation and superfluidity of excitons in;Oubased on ¢, alled condensate péak the exciton luminescence spec-
observations of changes in exciton luminescence sﬁé’ctratrum at frequency) =[Eo(N) — Eo(N—1)]/%, whereEq(N)

and ball_lstlc transport o_flfxcnor?s, _Whlch have been_dls- is the energy of the ground state of the exciton system.
cussed in the literaturé-1* Observations of condensation of If the exciton—exciton interaction is nonvanishing, then

indirect_ ex_citons in coupled quantum wells under strong, ~qdition to the mean values defined by EY), products of
magnetic fields have also been reportede Ref. 15, a the- 14 annihilation(creation operators of excitons with oppo-
oretical discussion in Refs. 16-18, and references thereingijia momenta averaged over the ground state of the Bose-

In this connection, the detailed investigation of coherent eXtondensed exciton systefthe so-called anomalous aver-
citon properties, whose detection could be used to reveaé{ges are also nonvanishing:

exciton Bose condensation, seems to be important.
If a system of excitons is in a Bose condensed state, the  (N_2/Q__Q_[N)#0, (N+2|Q QF|N}#0. (2
mean values of the annihilatioftreation operator of the ( 1Q-pQplN)#0. Q%5 Qe IN)

exciton with zero momentum in the ground state are nonva- | this paper we consider the unusual optical properties

nishing: inherent in Bose-condensed state of interacting excitons due
to the nonvanishing anomalous averages. It will be
(N—1|QqIN)y=(N+1]|Qg IN)=No. (1)  shown that coherent recombination or production, i.e., simul-

taneous annihilation or creation of two excitons with oppo-
Here|N) is the ground state of the exciton system with thesite momenta, corresponding to the anomalous aver@yes
average number of excitol$ Qg is the annihilation opera- is possible due to interaction with the electromagnetic field.
tor of an exciton with zero momentum, ahg is the number In such processes, the occupation numbers of excitons with
of excitons in the condensate. p#0 are unchanged, and the final state of the excitons dif-

1063-7761/99/88(4)/14/$15.00 747 © 1999 American Institute of Physics
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fers from the initial one only in the average number of exci-the growth of temperature and can become even higher than

tons with zero momentum. In particular, after the two-itis at T=0. The causes of this unusual temperature depen-

exciton recombination, the average number of condensatgence are investigated.

excitons is reduced by two. Section 3 is dedicated to RLS accompanied by coherent
Coherent two-exciton recombination can contribute, forprocesses of two-exciton recombination or production. In

example, to the stimulated two-photon emission or to Rama®ec. 4 the possibility of experimental observation of the lines

light scattering(RLS) by Bose-condensed excitons. RLS canat frequenciesw =2 | corresponding to stimulated two-

also be accompanied by coherent production of two excitonghoton emission and RLS is analyzed. Our numerical esti-

In these processes, the momentum of the exciton—photomates for excitons in GO indicate that a spectral line at

system is not conserved: the recoil momentum, equal to tha{)_—w corresponding to the stimulated optical phonon-

change in the momentum of the electromagnetic field, isassisted two-exciton recombination can be detected and, so

transferred to phonons or impuriti&&?° In this paper we can be used to reveal exciton Bose condensation.

consider the processes in which the recoil momentum is

transferred to two optical phonons. The prospects for such. STIMULATED TWO-PHOTON EMISSION ACCOMPANIED

processes are probably best in the exciton system yOCu BY COHERENT TWO-EXCITON RECOMBINATION

crystal, which is one Of. most interesting crygtals in view of The effective Hamiltonian describing phonon-assisted

the_observatmn .Of e_xcnon Bose c_:ondensauon. In fac_t, th? diative recombinatioigproduction of excitons can be ex-

rad|at|ve'recomb|nat|on accompamed by the trf'ansm!55|on Oﬁarlessed as followssee Ref. 20 and Appendix)A

the recoil momentum to one optical phonon is typical for

excitons in CyO.” Using the energy and momentum conser-

vation laws, one can prove that, in a defect-free crystal, co-

herent recombination of two excitons is possible only if the

HL=§ [Lyee " MQu(t)cy (H)by o)

. . —iQ
recoil momentum is transferred to two phonons. +L§qe ' tQp(t)cg(t)bqfp(t)
At low temperatures, the occupation numbers of optical T +
o ) +L' e t)cq(t)b t
phonons are small, so it is most probable that the recoil mo- Pa Qp(1)Cq(UDp (1)
mentum is transferred to two phonons produced in the pro- +L’,fqe*‘me(t)cq(t)b_p_q(t)+H.c.], 3

cess. If the phonon dispersion is negligible and the incident h
light frequency satisfie®<<2()_, a line in the spectrum of where

the stimulated two-phonon emission d22 — w and an anti- L,?q(<)= i «/27-rwqe* .f;q(<) ,
Stokes component in the RLS spectrumwat 2() _ should (5 _ (5
appear. Her€) =) — »j and wj is the optical phonon fre- L'pg '=—iN2mwqe-f' 5™,

quency. Both these lines correspond to coherent two-excitop s the frequency corresponding to the recombination of an
repombmaﬂon: the energy of tlhe initial state of the System iy citon with zero momentum. The Hamiltonié) is written
higher than the energy of its final state bﬁ!z_, Whereﬂ IS in the Heisenberg representation. Her@,(t) =Q,

the frequency corresponding to the recombination of an exs, exfl —ie(p)t] andb,(t) =b,exp(—iwSy) are the annihilation
citon with zero momentum. b>2() _ holds, the RLS spec- operators of an exciton and a phonon with momentm

trum should contain the anti-Stokes component @t yegpectively, andq(t) =c,exp(—iwg) is the annihilation op-
+.ZQ." which corresponds to coherent two-exciton recoM-arator of a photon with momentum (wq and e are the
bination, and the Stokes componentag:t 20 due tp co- hoton frequency and its polarization unit vegtdrhe exci-

herent production of two excitons. Stimulated emission ofion energy is measured with respect to the bottom of the

two photons is impossible in this case. The lines at frequenéxciton band:(0)=0. The effective matrix elemenf§(<)
cies |w*=2Q _| can appear only if the excitons are in the .

: - h andf’,fq(q are responsible for the recombination of an exci-
Bose-conder_lsed state, a’Fd after a transition to the norm%n with momentump, which includes, in addition to the
state these lines should disappear.

emission(absorption of a photon with momentung, the

_ The paper is organized as follows. In Sec. 2 we conside;y, \raneous emission or absorption of a phoHdgee Ref.
stimulated two-photon emission with coherent two-exciton, g 44 Appendix A

recombination accompanied by the transmission of the recoll
momentum to phonons. The diagram technique is used to
obtain the cross sections of two-photon processes involving
coherent two-exciton recombinatidar production at finite

temperatures. This approach allows one to express the appro-

priate elements of th&matrix in a natural manner in terms N powers ofH, and retaining terms up to second order, we
of anomalous Green'’s functions of Bose-condensed exciton§Ptain an expression for the elements of Swnatrix corre-
The cross section of stimulated two-photon emission witrSPonding to phonon-assisted two-photon processes:
coherent phonon-assisted two-exciton recombination is ob- (—i)2 o R R

tained, and its temperature dependence is studied. This de- S“'”:T f f (N'|THL(HH () |[n)dt' dt”, (4)
pendence can be nonmonotonic under certain conditions. ' o

Namely, in a certain temperature range beldwthe cross wheren andn’ label the initial and final states of the system
section of stimulated two-photon emission can increase witltomposed of excitons and phonotiselectromagnetic field.

By expanding the evolution operator

~ t ~
S(t)=T, exp[ —if H,_(t’)dt’}
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Let us consider the two-photon emission by excitons in
the Bose-condensed state due to coherent two-exciton r
combination, i.e., a transition of the exciton system from| |
state |NYeye=|N,N)eye t0 the state|m)ee=|n,N—2)c, k k
which differs from the initial state in the average number of*\’V\' AN -
excitons with momenturp=0. In this process, the change in
the electromagnetic field momentumké+k, wherek and Y [-p+q
k' are the momenta of emitted photons. The recoil momen
tum sk=—(k'+k") is entirely transferred to phonons, since

. ) ) A A o A
the momentum of the exciton system is zero in both the] —P P-4q P
initial and final states.

For the element of th&matrix corresponding to coher- T\’V\k’,
ent phonon-assisted two-exciton recombination, we have I

|—P"k' I
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1 . FIG. 1. Diagrams corresponding to two-photon emission accompanied by
(Sp)mn=— > dt’'dt"exd —iQ(t" +t")] coherent phonon-assisted two-exciton recombinatibe notation is ex-
plained in the text

XAk~ e (M T Qp(t) Q- p(t") [N exc

X (F|Teby_(t)b " (1)) phon

+Lgpib g (MITQqp(t)Qp4(t") [ Mexc
X (F|Teb " ()b ()] Yphonl
X<f|TtC;(t/)C;r(t”)|i>phot

L e Lo MITQ (1) Qp(t") [N exc
X(F|T | (8B (1)) phon

Lo qioLgpadMI TeQp—g(t) Qq—p(t") N exe

X (f|Tibp_i(t )07 (") Ypnond

(sp)ﬂ=—% JJdt’dt”exp{—iQ(t’+t”)]

X{[L L~ i (No(T) 8, +iG _ (1" = t"))
X(FTebg_i(t)b” | ()] Yphon
+Lgpilpque(No(T) 85— qHiGp ot —t")
X(HTbT o (1) ()1 phorl

X(FITie (1) e ()| phort L~ i LpiNo(T) 8

+HiGp(t —t")(FITDT | (1) (t")]1) phon

X(FTecy (t) e ()] pnot (5) - .
+Lp_q'k, a-p.k(No(T) 6pqTiGq_p(t' —t"))
’ + YK + e
where gq=k—k'. Here |[i)pno=|0)phot and |[f)pnot X(f| Ty (t )b i ()] pnor FITeCy (1)
=1,,1 are the initial and final states of the electromag- o
| Lo Jer ) g X Ci (1")]1)pnog» )

netic field, respectively. Assuming that the phonons are op-
tical and the lattice temperaturg,, which is, generally where 8,=1 at p=0 and §,=0 for p#0. Here ép(t’
speaking, different from the exciton temperatliieis suffi-  —t”) is the causal Green’s function of Bose-condensed ex-
ciently small (T;<wy, Wherewg is the characteristic en- citons at temperaturé:
ergy of optical phonons we take i) pnoi=|0)pnon @nd |f)
=11k 1= p—k')phon- . S . Gyt —t")=—=i(1-6,) > exf(F—Ey(N)+uN)/T]
By averaging over the Gibbs distribution for the exciton n
system, we obtain the element of tBenatrix responsible for _ , "
the two-photon emission that transforms the system from its X(NN=2ITQ-p(t) Qp(t) M. N)ee, (8)
state of thermodynamic equilibrium|i)e.=S.exd(F  and the functiomy(T) is the density of excitons in the con-
—En(N)+ uN)/T]|n,N)eyc to the state f) e, = QS|i)/N0: densate at this temperature.
The resulting elemer(7) of the Smatrix is expressed by
the sum of diagrams shown in Fig. 1. The lines with oppo-
sitely directed arrows denote the causal anomalous Green'’s
(Sp)ti= ; exd (F—En(N)+ uN)/T](Sp)mn- ®)  function of excitons in the Bose-condensed stateTfoiO [if
the momenta next to this line vanish, it corresponds to the
function ng(T)]. The wavy lines correspond to photon cre-
Expressing thessmatrix element(6) in terms of the anoma- ation operators, and the dashed lines indicate phonon cre-
lous Green’s function of the excitons, we obtain ation operators. The vertices on these diagrams correspond to



750 JETP 88 (4), April 1999 Yu. E. Lozovik and A. V. Pushnov

matrix eIementsL;k, wherep andk are the momenta of the herent phonon-assisted two-exciton recombination at

exciton and photon lines originating at the vertex. #Q_ can take place only in a nonideal gas of Bose-

Integration ovett’ —t” andt” yields condensed excitons. -
Assuming that the conditiom# () _ holds, we express

(Sp)fi=27TiTkrk(p)[(\/§— 1)8(p—q/2)+1] cross sectiorf11) as follows:
XS0 +wtod +o° ., —20), 9 w(20_—w)®[1 ,
( Pk Pk ) ( ) dot= 2 E 2 |(Sp)nme :e}an
(o} p#q/2
where
Tiok(P) =Lk~ o [2700(T) 8y8( 0+ )y — Q) +2|(Sqr2)nm€’ neml?|dO’, (13
+iGp(0+wp — Q)] where
> > s R R
Ly pilp-qrl27No(T) Sy g+ w” (Sp)nmzGp(w_Q_)(fipk/)n(f;k)m+Gp_q(w—Q_)
—0)+iG,_4(o+ ws_p_k,_Q)]} (10 X(fipkf)n(f;k)m (14)

is the matrix element of the two-photon emission due tois the tensor of the two-photon emission corresponding to
coherent phonon-assisted two-exciton recombination, whicBoherent phonon-assisted two-exciton recombination.
is similar to the scattering amplitude in the collision The causal Green'’s functi(ﬁgp(w) is related to the ad-

problem?? In deriving this equation, we have taken into ac-yanced and retarded Green's functions by the following
count the fact that the anomalous Green’s function is an evegymula23

function of frequency and does not depend on the momen-

tum direction. The sum in the brackets in E§) takes into A 1 CAPY
account the fact that the momenta of emitted phonons are Gplw)= 2 1+C0thﬁ)Gp(w)
equal atp=q/2.
Let us limit our discussion to stimulated phonon-assisted + E( 1—coth ﬂ) GA(w). (15)
two-photon emission with negligible phonon dispersion 2 2T) P

S_ .S .
(wgq= o). .It follows .fror.n Eq. 9) _that stlmulated two- By using Eq.(15) we arrive on the following
photon emission of this kind gives rise to a line at frequency

2Q_—w, where Q_=0Q—wj and o is the incident light Aw) .
frequency? 0 (Sp)nm=§ 1+ cothﬁ GE(Aw)
The differential cross section of stimulated two-photon
emission corresponding to coherent phonon-assisted two- n 1—cothA—w> MM |(F7,)n(F2)
exciton recombination is given by 2T )P —pk//ntTpk/m

271 Aw) AR
L2 = ) 2 +|| 1+coth—=|Gy_,(Aw)
dot="15 2 [Tew(p) 2T | -
20— w)? _ Aw| . a
+2|Tk,k(q/2)|2}—( " dor, (1D | 1= cothor |Gy q(Aw)
(2mc)®
where X(f:qykr)n(f(?p,k)m]y (16)
Tir(P) =H{L gL~ e [27N0(T) 8,8(0—Q ) whereAw=w—Q_ |
A - - Using this expression, we calculate the sum opédn
HiGp (0= Q)]+ Lg pulpqul27No(T) Eq. (13) for the cross section of stimulated two-photon emis-
A sion:
X8y -0 )+i6y (0-Q ). (12
The factor 1/2 in front of the sum ovey in Eq. (11) is p;q/z |(Sp)nme,:e:1|2

introduced because the sum over all possipliacludes the
emission of two phonons with momenga-k and —p—k’ 1
twice: Ty (p) =Tik(—p+0). =3 > {2

A
. : p¥a/2 2
It is clear that foro#Q_ the terms proportional to

w ~
1+c0tl’?—T)|G§(Aw)|2

no(T) do not contribute to the cross sectidrl). In this case, r?Aw ~R .
it is proportional to the anomalous Green’s functions, which | L-cottf o |REG(Aw) 7| [(e7-12)
are determined, as is well known, not only by the presence of
Bose condensate, but also by the interparticle interaction. x £>1(2 Aw)| .o

. o . X (e*-f +|| 1+ coth—= Aw)+ |1
Thus, stimulated two-photon emission corresponding to co- (€ pk)' oo Gp(Aw)
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Ao\ Aq functions on the real axis ab: Gj(w)=G* (w).
1+00thﬁ)Gp*q(Aw) Further calculation of stimulated two-photon emission
cross section(13) requires an expression for the retarded
> . o anomalous Green’s function of excitons at a finite
—pk’)(e Tow) temperature. It can be obtained by analytically
continuing the anomalous Green’'s function in the
X(e’-f;fq k')(e'f;;kp k)]_ 17) Matsubara representation to the upper half-plane
' ' of w.
The anomalous Green'’s function of a Bose system in the
In deriving this formula, we have taken into account theMatsubara representation is given by the following
relation between the advanced and retarded Green'sxpressiorf®

Aw A~ Rx
—COthﬁ Gp q(Aw)

+ (e/*.f

Aw| .5
1—C0thﬁ Gp_q(Aw)

(1-8)3%,

(iws—eo(P)+p =35l (lwst eo(p)—p+3Y, ) +3I0SCE

Gplws)=— (18)

wherew,=27sT ands is integer. Heresy(p) =p?/2m and By substituting Eq(21) in (17), one can easily find that

u is the system chemical potential defined by the formulathe main contribution to the cross section of stimulated two-

p=[2 =2l u=p=0- photon emissior(13) at |[Aw|>T, is due to the terms in
For T~T,, whereT_ is the Bose condensation tempera- Which e,~|Aw|. Therefore, matrix elemenlfsfpk, and fg,

ture of an ideal Bose gas, the self-energy parts of a dilut€an be replaced by their values corresponding to the momen-

Bose system with interparticle interaction can be expressetim p, that satisfies the conditioa(p, )=Aw and carried

as follows?* out of the integrand. Moreover, if the conditiqn >q is
8 4 fulfilled, one can seg=0 in the sum ovep in Eq. (17).
1 _°7 20 _s02 _ T Thus, we have
250~ - na, 2op=20p= —No(Ta, (19

wheren is the total density of particles,is the amplitude for > |(Sp)nm€ 1 €f12=2
their scattering by one another, ang(T) is the total density P
of particles in the Bose condensate, which can be approxi-

Aw n
R 2
1+cotr?—2T) Ep, |Gp(Aw)|

A R
mately calculated by the formulay(T)=n[1—(T/To)%?. + 1—cothz—w)2 R GH(Aw)]?
Thus, the anomalous Green’s function for a dilute exci- 2T )%
ton gas can be expressed as X|f (@) fm(w )" * X2, (22)
R T
Gp(ws)=(1—5p)—i( )2, (200  where
wst e,
1
where 2 f(wL)=Eff>(pL,k)d0pL,
p
=G, =5+, L
flw))=— | (p_,k")d
o . (@)= 2= | (b Kk)doy,
{(M)=wu(0)|1- T—) v w0)=——, , o
c are the matrix elements averaged over the directions of vec-
m is the exciton mass. The paramejef0) is the chemical Or p..
potential of the excitons ak=0. Replacing the summation in E¢22) by the integration

Analytical continuation ofG,(w¢) to the upper half- ©VETP. W€ obtain

plane yields an expression for the retarded anomalous . )
Green’s function: S 168 (Aw)|2= fx d°p £o(T) .
£(T) P 0 (2m)* |[(Aw+iT y/2)2— €52
(0—eptiTp2)(w+ e, +iTp2)°
(21

(23

Gp(@)=—(1-3p)
This (23) integral diverges a$',—0. Representing it as a
sum of two integrals each of which converged'gt-0 and
Herel',= 7;1 and 7, is the lifetime of a quasiparticle with replacing the integration ovep by the integration ovet
momentump in the exciton system. =¢,14(T) yields
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R V2m3/¢(T)
GRA 2_
e oy
Xf dt\/t— = dtyt—1
1 tz—B_
(24)
where
A
BL=(a xiy)?+1, CYL:%:
"y e

Thus, in calculating the integrals on the right-hand side of

the resulting equation, one can gt =B%*i4. As a result,
we obtain

Vamie(T)(VaZ+

477a|_FL\/aE+ 1

The second sum ovey in EqQ. (22) converges even as
I',—0. Therefore, if Aw|>T", holds we can sef ,=0+ in
this sum. In this case, we have

V2m3/¢(T)

167
y Ve +1-1(Val+1+2)
a,_\/(af+1)3 .

-

> 1GRAw)|?= (25)
p

Re2, [Gp(Aw)]*=-
p

(26)

It is clear that for|Aw|>T, the following relation takes
place:

> REGH(Aw) Y <2 |GR(Aw)|2.
p p

Thus,

sz% T)(Vaf+1-1)
27Ta|_r|_\/a/|_+ 1

Aw
1+ cothf —
2T

E | Sp)nme,* *

X|fn(wll_)fm((*’L)(':‘,:cne:qc |2-

(27)

By substituting this expression in the formula for the differ-
ential cross sectiol3), we obtain

0(20_—w)® \/2m3§(T)(\/aE+ 1-1)
aLFL \ af-l—l

Aw
1+c0chE [fo(w])fm(w)e’ Fel|?do’.

do-=
47c?

(28)

Yu. E. Lozovik and A. V. Pushnov

If the exciton—phonon system is isotropic and the inci-
dent light is monochromatic and linearly polarized, one has
le¥ fm(wL)|?=F?(w,)/3. Summing over the polarizations of
photonw’ and integrating over the directions of its momen-
tum (note that in the case of stimulated two-photon emission
the photonw is identical to the incident ongwe obtain the
total cross section of stimulated two-photon emission corre-
sponding to the coherent phonon-assisted two-exciton re-
combination:

0(2Q0_—w)® \/8m3§(T)(\/aE+ 1-1)
9a|_F|_ \Y, C(E"’l

x| 1+ cotl? )fZ(wL)fZ(wL)

L _
o (w,T)= ”

(29

Note that, if the conditiondA w<Q _, u(0)<Q, and
r-=const are fulfilled, then at a given ratio between the
exciton chemical potential(0) at zero temperature and
twice the temperature of their Bose condensation,
=u(0)/2T, the parametew(Aw,T)/o-(0,0) is uniquely
determined by two quantities=A w/2T. andy=T/T,:

O'L(Aa),T) 2NV +22—z
a-(0,0) |x|\/27(x +2?)

wherez=y(1-y%?).

The dependence of the cross sect{@f) on frequency
(strictly speaking, on the difference between the incident
light frequencyw and()_) is shown in Fig. 2a for different
temperatures of the exciton subsystem. This cross section as
a function of temperature at different fixed values of the
differenceAw=w—Q _ is shown in Fig. 2b. All the curves
in Fig. 2 correspond toy=0.3, and it is assumed that
=const. It is clear that fofAw|<T, and T<T, there is a
temperature range where the cross sect&® of stimulated
two-photon emission is a nonmonotonic function of tempera-
ture: o~ increases with the growth of temperature and can
even become larger than it is at=0.

The reason for this unusual temperature dependence is
the following. The cross sectiof29) of stimulated two-
photon emission is determined by two quantities that depend
on the temperature differently, namely, throug(fT), which
is proportional to the number of excitons in the condensate,
and through the occupation numbers of quasiparticle levels
of the exciton system with the quasiparticle enedy, )
=|Aw|. Specifically, the density of the condensate and
hence(T) decrease as the temperature increases. This, in
turn, reduces the cross secti@®). On the other hand, using
Bogoliubov'su—v transforms, one can easily show that co-
herent two-exciton recombination, which is a second-order
process with respect to the HamiltoniéB), proceeds via
intermediate states of the exciton system containing one par-
ticle more(lesg than the state of thermodynamic equilibrium
(see also Refs. 19 and R0The cross section of stimulated
two-photon emission corresponding to coherent two-exciton
recombination is proportional to

(30

1+ cothf— )
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FIG. 2. Cross section of stimulated two-photon emission accompanied by coherent optical phonon-assisted two-exciton recofabasagidanction of the
differenceA w= w— ) _ between the incident light frequenayand() _ at various temperaturéof the exciton system(1) T/T.=0.01;(2) 0.10;(3) 0.60;
(4) 0.90;(5) 0.99;(b) as a function of the exciton system temperafliag variousA »: (1) |Aw|/2T.=0.2;(2) 0.3;(3) 0.9. The curves were plotted using Eq.
(30). For all curvesu(0)/2T,=0.3, and7" is assumed to be constant.

Aw the review by Kopae¥/ and references thergirBut we are

1+00thzﬁ>, discussing the case of a low density of electrons and holes
(exciton gas Moreover, it is essential for the case of RLS
wheren,, =[exp(e, /T)—1]"" is the occupation number of under consideration that the electron—hole system not be in
the quasiparticle state with energyp,)=|Aw| in the exci-  equilibrium, because this is the situation when coherent two-
ton system. As the temperature increases,also rises, exciton recombinationproduction can cause the exciton
which increases the cross secti@9). If this tendency domi-  system to undergo a transition to a state with a lotheghen
nates, the cross section of stimulated two-photon emissioanergy. In the case of such RLS with the transfer of the
corresponding to coherent two-exciton recombination shouldecoil momentum to the two optical phonons energy conser-
increase with the temperature. In fact, the tendency to devation is described by the formula
crease the cross section should dominate sooner or later as
T—T,, since it must vanish af=T,. wt20 =o' (32
Note that the temperature dependence of the cross sec-

tion (29) of the stimulated two-photon emission accompa-The case considered here corresponds to the appearance of
nied by coherent two-exciton recombination has been calcuan anti-Stokes component at frequensy defined by this
lated in the approximatiofi19), which is correct only in a formula.
narrow temperature interval about the Bose condensation [n addition, an RLS process with coherent two-exciton
temperaturd ., which is assumed to equal the Bose conden{roduction is also possible, and energy conservation in this
sation temperature in an ideal Bose gas. Although this apcase is described by the equafion
proximation allows one to reproduce formally our resifits
for T=0, in the intermediate temperature range the curve of 0—20_=o'. (32
the cross sectiow'(Aw,T) versus temperature should be _ .
different from that plotted in Fig. 2. Nonetheless, the conclu-11iS formula determines the frequenay’ of the Stokes
sion about the nonmonotonic temperature dependence of tfx@mponent corresponding to this Raman scattering. Itis clear

cross section of stimulated two-photon emission is valid. Fofat RLS with coherent phonon-assisted two-exciton produc-
example, atAw/2T,=0.2 we haves'(Aw,T)> o (Aw,0) tion is possible only fore>2( . Stimulated two-photon

even forT,— T<T, (Fig. 2b), where the approximatiofL9) emission corresponding to the coherent phonon-assisted two-
is correct.c ¢ ’ exciton recombination is impossible in this case.

The analysis of RLS accompanied by coherent two-
exciton recombinatiorfor production is similar to that of
stimulated two-photon emission with coherent two-exciton

Coherent two-exciton recombination can accompany notecombination. Since the formulas for the cross section of
only in the stimulated two-photon emission but also the RaRLS with coherent two-exciton recombination or production
man light scatteringRLS). Abrikosov and Falkovsiy ana-  are lengthy, here we only indicate how these formulas can be
lyzed RLS in a superconductor, whose analogue in a semderived from Eq.(29) using appropriate substitutions.
conductor was RLS by a dense electron—hole plasma with 1. The cross section of RLS accompanied by coherent
coupling between electrons and holesphase transition in phonon-assisted two-exciton recombination is obtained by
this system was studied by Keldysh and Kop&&see also replacing some variables in E(R9):

1
2

2 2 _
(an+ 1) +an—

3. RAMAN LIGHT SCATTERING
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flo)—f(0), flo)—f(v]), o—-o,

A(,()—>(1)+Q,, CYL—>Z¥|_, FL_>T‘L'

Herea, =(Q_+ )/{(T), T is the reciprocal lifetime of a
quasiparticle with energy(p,)=Q_ + w in the exciton sys-
tem,

-1 -
f’(wL)=4—ff'>(pL,k)d%L,

™

~ 1 ~
flw))= . f = (pL,k")dop, .

Yu. E. Lozovik and A. V. Pushnov

28). These quasiparticles disappear in a time of order-of

The disappearance of some of these quasiparticles is accom-
panied by the stimulated recombination of excitons and the
induced emission of light at frequency. Thus, for w

>()_ the intensityl “(w’) is given by the relation
L
~ T
No')=—l5(o),
TI‘

(39

where rrL is the lifetime of the quasiparticle with energy

e(p.) with respect to its recombination accompanied by
stimulated emission at frequenay, provided that the exci-
ton system contains one quasiparticle with momenfym

2. The cross section of RLS due to coherent phononmore than it does in the state of thermodynamic equilibrium.

assisted two-exciton productiom 2 ) is derived from
Eq. (29) by substituting

flo)—f"(w), 20 —-—w—0—-20_,

where

1
f’(u)L): E J’ f,>(p|_ ,k)dODL

4. POSSIBILITY OF EXPERIMENTAL DETECTION OF
TWO-PHOTON PROCESSES ACCOMPANIED BY COHERENT
TWO-EXCITON RECOMBINATION

Let us analyze the possibility of experimentally detect-
ing stimulated two-photon emission and RLS accompanied
by coherent phonon-assisted two-exciton recombination;

First we consider stimulated two-photon emission.
The light intensityl“(»’) at frequencyw’=2Q_—w

resulting from stimulated two-photon emission with transfer
of the recoil momentum to the optical phonons is given by

the expression
w!
IL(w’)=?(rL(w)|(w), (33
whereo'(w) is the cross section of this procddsq. (29)]
and I (w) is the intensity(in W/cn?) of incident light of
frequencyw.

The intensity(33) can be expressed as a sum of two

terms:

Yo )=AlY0")+T @), (34

The timea-rL can be easily calculated using Fermi’s “golden
rule™

1 (2m? )

T_Ir‘: 3c f(wL)upL(an-l-l)I(w),

,  1[Vai+1 1

upL_ E o + ! an_ eAa)/T_ 1 ! (36)

WhereupL is Bogoliubov's coefficient anailpL is the distri-
bution function of quasiparticles with energyp,)=Aw at
temperaturer.

If the incident light frequency satisfiem<<{)_ and
hencew’>Q _, the situation is similar to that discussed
above. In this case, the spontaneous emission at frequency
@' is due to the recombination of an exciton accompanied by
the disappearance of one Bogoliubov quasiparticle with en-
ergy e(p.) = — Aw in the exciton system. Fap' > _, the
number of quasiparticles of energ{p, )= — Aw which dis-
appear per unit time as a result of spontaneous recombination
of excitons islé(w’)/w’. In a time of order ofr-, the miss-
ing quasiparticles are replaced by new ones, some of which
are accompanied by stimulated emission at frequesacy
Thus, foro<_ we have

’TL
T L
()= 15w,
TC

(37)
where 75 is the lifetime of an exciton with momentum,
with respect to stimulated recombination, which results in
both stimulated emission at frequeneyand production of a

whereT"(w’) is the intensity of the two-photon emission quasiparticle of energy(p,)=—Aw, provided that the ex-
resulting from two consecutive processes: the spontaneowsdton system contains one quasiparticle with momenpym
emission at frequencys’=2Q_—w and the subsequent less than it does in the state of thermodynamic equilibrium.
stimulated emission at frequenay, each of which satisfies Using Fermi’'s “golden rule,” we obtain the following ex-

the energy conservation law.
If the incident light frequency satisfiee>()_, then

o'<Q_ holds. In this case, the spontaneous emission at
frequencyw’ =20 _— w<()_ is due to exciton recombina-
tion with production of a Bogoliubov quasiparticle with mo-

mentump, that satisfies the conditioa(p,) =Aw (see Ap-

pendix B,Aw=—Aw'). The spontaneous recombination of

excitons produces in the exciton systénfe’)/ o’ quasipar-
ticles with energye(p,) = A w per unit time, whereg(w’) is

the luminescence intensit{p7) (see Appendix B and Ref.

H L.
pression forr; :

1 (2m)? )

A 3c fz(“’L)vanPLl(“’)'

C

5 1 \/azl_-l—l

p2 == -1]. (38
pL 2 C!L

Using Egs.(35—(38) and(57) from Appendix B, we obtain
the intensityl “(w’) in the general case:
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exciton radius i=7 A, and the photon energy correspond-

~ — T W~
M20_-w)= TU"(!D)' (w), ing to the recombination of an exciton with zero momentum
is #Q)=2 eV. The optical recombination of an exciton in
_ 33 3 [2 4_ Cu, O is typically assisted by production of an optical pho-
o w)=7" (20~ o) \/Zm (DN +171) non of energyh wj=10 meV with a negligible dispersion.
ct 18a  al+1 Let us estimate the exciton chemical potentialTat0
by the formula
[Awl]?
sz(wL)fz(w(_) Sigr(Aw)-l-COth? . 4h?2
m(0)= o na
(39

The spectral line at frequenay’ =20 — o due to the Wheren'is the exciton density. Assuming that- 10¥%cm3

stimulated two-photon emission accompanied by coherer{thiS density was achieved in some expgrim@ht@e obtaign
phonon-assisted two-exciton recombination will be superﬂ(q)fz-5 meV. An ideal gas of excitons with=10"
posed on the luminescence spectrum of Bose-condensed X1 ~ should transform to the Bose-condensed statd cat

citons. It clearly follows from Eq¥35) and(37) thatT"(w") ~50 K, for which 1.(0)/2T=0.3.

. . OV . In the experimenitexcitons were produced by powerful
determines a fraction of the spontaneous emission intensit
L, ) . o anosecond laser pulses at a waveleng#b00 nm focused
Is(w"). Thus, the total intensity of the emission at frequency:. .
) i into the spot of diametedl=30 wm on the sample surface.
o' can be expressed as follows:

The volume of the exciton system interacting with the inci-
ItLot(w’)zAlL(w’)JrI;(w’), (40 dent light stimulating the two-photon emission can be esti-
mated as/=d?l, wherel=1 um is the penetration depth of

L ' . . . .
wherel;(w') is the luminescence intensity at frequenay radiation with wavelength 500 nm.

. . . . L 12 .
in the absence_ of |r.10|den.t light of frequeney Al-(w ) is As w—Q_ (a,—0), the cross section" increases. We
the observed light intensity at frequenay due to stimu- . _ .
e . . write (Q_ — w)=w(0). In this case
lated two-photon emission with coherent two-exciton recom-
bination. By substituting the cross secti@®) in Eqg. (33) , 1 N
and using Eqs(34) and (39), we obtain the observed light flo)=fw))=F, F= ype J F~(pL.k)do, ,
intensity Al (w'):
where F is the matrix element of the radiative phonon-

AlY2Q_—w)= m‘—_wAgL(wN(w), assisted recombination of an isolated excitdihis matrix
w element can be estimated by the formula
(20— w)® BT (Val +1-1) 1 40°
Aot (w)=7" —= F?, (43
ct 9o Val+1 Texe  3¢%h
) . o 1 where 7., is the lifetime of an isolated exciton due to its
X ) (o)) 1+C°chE— 2 spontaneous recombination with the emission of a photon of

energy7()_ and an optical phonon with enerdywg. The
lifetime of paraexcitons in GO IS 74~ 100us (Ref. 7).
(41) The relaxation timer" in the system of Bose-condensed
excitons is a subject of further investigation. Even for zero
One can easily prove that ¥A o' (w)/o (w)<1. In par-  temperature, it can be considerably shorter than the radiative
ticular, atT=0 we haveAo'(w)=0c"(») at w<Q_ and lifetime of excitonsr,,. because a quasiparticle can disap-
Aot (w)=0"(w)/2 atw>_. pear, for example, due to the emission of one or several
Using Eq.(29), we can estimate the cross sectishof  acoustic phonons. Assuming that the tindeis within the
stimulated two-photon emission. In CGS units this expresinterval 10 1*-10 ° s (the lower bound is defined by the

X

ign(A h|Aw| 2
s +coth——
ignAw) T

sion has the form conditionT", =10 1e(p,), the upper bound is 10 74,J, we
. \/ 3 > obtain an estimate for the cross section of stimulated two-
Lo,T) va(ZQ— —w)* N8mMY(T)(VaL+1-1) photon emission by Bose-condensed paraexcitons jOGu
o (w,T)=171

-0 ~L_10-16_ 10 oy
9cth? JaZ+ T=0: 0==10 =-10 "~ cnr. o
o Ne+1 The radiative lifetime of orthoexcitons in QO is 74,

Aw ~300 ns. Assuming the relaxation timé& in a system of
1+00tth) (o) (o)), (420 orthoexcitons in the Bose-condensed state to be within
10" 1-109 s(in this case the upper bound is determined by
whereV is the volume of excitons interacting with incident the time of transition between the orthoexciton and paraex-
light and o, =%|Aw|/Z(T). citon state} yields o-=10"11-10"°% cn? at T=0. Thus,
We shall consider as an example a system of Bosestimulated two-photon emission accompanied by coherent
condensed excitons in GO at zero temperature. The exciton two-exciton recombination can be experimentally detected in
effective mass in this crystal im=2.7m,, the characteristic Cu,0.

X
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The cross section of RLS with coherent two-exciton re-  If the incident light frequency satisfie®@<<2()_ with
combination accompanied by the production of two optical) =0 — wj (Q is the frequency of light due to the recom-
phonons is determined by the squared product of two matribination of an exciton with zero momentum ang is the

elements optical phonon frequengy stimulated two-photon emission
1 and RLS accompanied by coherent phonon-assisted two-
f'(Z)L)=4_ f f'>(f,L,k)doBL, exciton recombination give rise to a spectral line at fre-
r

quency Z)_—w and the anti-Stokes component at

1 - +2Q _, respectively. Fow>2() _ the RLS spectrum con-
f(Z;,’_)= In f = (p, ,k’)do;,L, tains both the anti-Stokes and Stokes components at frequen-
ciesw*2() _ . The anti-Stokes line corresponds due to co-
where'p, is determined by the conditioa(p,)=w+Q_ herent two-exciton recombination, whereas the Stokes

(see Sec. B The band gap in GO is wide (0 _~10°w),  component is due to coherent phonon-assisted two-exciton
s0 e(p.)>wS. Using the approach suggested in AppendixProduction. In this case, stimulated two-photon emission is

. . ~, ~ i ible.
A, one can prove that in this caséw/) and f'(w ) are IMposst L )
negligible in comparison with the matrix elemeffs, ) and i Using the approxmgtlomlg), we have derived EXpres-
f(w!) in EqQ. (42) at |Q_— |~ u(0). Moreover, the cross sions for the cross sections of the processes under consider-
L . - : '

section of the RLS under consideration is proportional to theftion at finite temperatures. In the '"_‘1“"‘94@0 (TC IS
e o . ~ the temperature of Bose condensa}jahe cross section of
lifetime of a quasiparticle with energ¥(p )=w+Q_,

hich is much shorter than the relaxation timtein the cross stimulated two-photon emission is a nonmonotonic function
whichis mu on i _ of temperature. It increases in a certain temperature range
section (42) for |Q_ —w|~ w(0). Thus, unlike stimulated

i hot Y hardly detect RLS belowT. and can even be larger than it isTat 0. The cause
wo-pnoton emission, one can hardly detect t accompag¢ this nonmonotonic behavior is that the cross section of the
nied by coherent two-exciton recombination in,Qu The

situation is similar in the case of RLS with coherent two- stimulatgd two-ph_oton .emission s determinc_ad not only by

exciton production the density of exqtons in the condgnsate, which decreases as
: the temperature increases and vanish@s=at ., but also by

the occupation numbers of quasiparticles with energies

—Q_| in the exciton system, which increases as the tem-

In this paper, we have demonstrated that coherent twaPerature grows.

exciton recombination, i.e., the simultaneous recombination ~Our estimates indicate that fow—Q _|~ «(0), where

of two excitons with opposite momenta, which corresponds«(0) is the exciton chemical potential measured with respect

to the existence of nondiagonal long-range order in the syd0 the exciton band bottom, a spectral line & 2— » due to

tem expressed by nonvanishing anomalous averages of tfiee stimulated two-photon emission accompanied by coher-

form <N—2|Q,pr|N>, is possible in a Bose-condensed ex-€ent optical phonon-assisted two-exciton recombination can

citon system interacting with the electromagnetic field. Simi-be experimentally observed in g.

larly, coherent two-exciton production corresponding to  The work was supported by grants from INTAS, Russian

anomalous averages IiKN—2|prQ;|N) is also possible. Fund for Fundamental Research, and Physics of Solid-State

In these processes, the exciton occupation numbers are ubanostructures program.

changed, and the final state of the exciton system differs

from the initial one only in the average number of excitons,ppenDIx

with zero momentum. Coherent two-exciton recombination

may also cause Raman light scattering by excitons in Bose=ective matrix elements of exciton recombination

condensed statRLS can also be accompanied by coherent '€ objective of this Appendix is to prove that the two-

two-exciton production The recoil momentum correspond- Photon emission and RLS accompanied by coherent two-

ing to the change in the momentum of electromagnetic fieldXCiton recombination can be analyzed from first principles,

is transferred to phonons or impurities. Both the stimulatedVithout using the effective Hamiltonia(8). Taking as an

two-photon emission and RLS with coherent two-exciton re-6xample two-photon emission, we will determine the condi-

combination(production can occur only in the presence of t|on_s unde_r which the analy_s_ls based on the effective Hamil-

Bose condensate in a system of interacting excitons, so trfgnian (3) is correct. In addition, we will show that the ef-

observation of these effects can be used as a strong expeﬁ’-Ctive matrix elements of exciton recombination used in this
mental evidence for the existence of Bose condensation jR@Per do not depend on temperature and are equal to those
exciton systems. calculated previously fol =0 (Ref. 20.

Using diagram methods, we have developed a technique The Hamiltonian describing the interaction between ex-
for calculating the cross sections of stimulated two-photorftoNs, phonons, and electromagnetic field can be written as
emiss.ion.and RLS accqmpanied by cohgrent two-exciton re- V() =W(t)+D(t),
combination(or production at T>0. In this approach, the
elements of the scattering matrix corresponding to the pro-
cesses in question are expressed in a natural manner in terms
of Green’s functions of Bose-condensed excitpsse Egs. . N
(9), (10), and also(49)]. +W;5Qq (1 Qp()by_o(1)],

5. CONCLUSIONS

\7v<t>=§ [WqpQq (1) Qp(t)bg_p(t)
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6(':):% [qu_iQth(t)Ca—(t) +W(t1)D(t2)D(t3)W(t4)
i +D(t))W(t)D(t3)W(ty)
+Dge ™MQ_g(t)cg(t) +H.cl, (44) .
R +D(t1)D(t) W(t3)W(t,)]li)dty .. .dt,. (45
where the HamiltoniaW(t) describes the scattering of ex-
citons by phononsD(t) is responsible for the interaction
between excitons and electromagnetic fieldD, Here (f| .. .]i) =2 exd (F—E(N)+uN)/TKm| . . .|n),
=iV2mwqe" - dg, Dg=—iV2mwqe dg. where  |[n)=[n,N)e,di)phordi)pnot ~ @nd — [m)=|n,N

It is clear that the two-photon emission accompanied by— 2>exc|f>phorlf>phota and the other notation is given in

coherent phonon-assisted two-exciton recombination iSec, 2.

fourth-order in the HamiltonialV(t). For the element of the By changing the time variables in each summand of Eq.

Smatrix of the two-photon emission due to coherent two-(45) we can transform it to

exciton recombination and production of two optical

phonons with momentp—k and —p—k’ averaged with the

Gibbs distribution, we have 1 [ ) )
(_i)4 o R R ) R (Sp)fi:ZJ’_DO s f <f|TtW(t1)W(t2)

(Sp)fi:Tf e f (FITLW(t1)W(t2)D(t3)D(t,)
S X D(t3)D(ty)]i)dt, .. .dt,, (46)

+W(ty)D(t2)W(t3)D(ts)

+D(t)W(t,)W(t3)D(ty) where

(FITW(t)W(to)D(t3)D(ty)]i)
= Dka’eXF[ - iQ(t3+t4)]p2p Wpl,p1+p+k’Wp2,p2—p+k
1P2

XAUTQp, 4 pr i (1) Qp, (1) Qp, - p1t2) Qp, (12) Qulta) Que (ta)) X (FI Ty (t1)B](2)]1) phon
+(TQp, - p+i(t1) Qp,(t)Qp 1 o (12) Qp, (1) Qul(ta) Qi (ta) ) FI Tk (t)D” . (t2) i) phord
X(FTG (1) Gy (1) D phort [{TeQp 4 p (1) Qp, (1) Q- k(12) R, (12) Qur(t2) Qi L))
X(FITDT o (t)by (1)1 prort (TeQp,— p (1) Qp, (1) Qp s 510 (£2) Qp (£2) Qe (t3) Qulta))

x<f|Ttb;7k(t1)birp7kr(t2)|i>phor;|<f|TtC|:rf(t3)Cl:r(t4)|i>phot}- (47

Here( ...)=3.,exgd(F—E,(N)+uN)/TKN,N=2] ... |n,N)gyc
In the most interesting cade~ k', we have

> w W}

Py+p+k’ Py, py—ptk
P1P2 P1.:P1 P 2:P2

(TiQp, + p 1 (1) Qp, (1) Qg5 (1) Qp, (1) Qu(ta)

X Qyr(ty))= pE Wﬁlpl[Wt k'k<TtQ;1(tl)Qpl(t1)><Tth-:(tZ)Qk(t3)><TtQ—k’(tZ)Qk’(t4)> + Mkk'<TtQ;1(tl)Qpl(tl)>
1

><<TtQ;,(tz)Qk/<t4>><Tthk(tz>Qk<t3>>]5<p+kf)+§ Wi o, LW TiQ T (£1) Qta) X TQ - (1) Qe (L))

X<TtQp2(t2)Q;2(tz)> + Mkkr<TtQ|:(tl)Qk’(t4)><TtQ—k(tl)Qk(tS)><TtQ;2(t2)Qp2(t2)>] 8(p—k)
+WE ,_qWE k',q7p<TtQ;7q(tl)Q(J]r— p(12) X Tt Q k(1) Qu(ta)  TiQ i (t2) Qi (t4))
+WE WE _(TiQp (1) QY (1) X TiQ e (t1) Quer (1) ) TrQ - (t2) Qulta) ) + W _ o Wi 1o {TiQy (t2) Qilta))
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X<Tth—p(t1)
+WE oo

Qp—q(t2){TiQy (t2) Qe (t) ) +W* [ WET,Qy (t1) Qi (1) TeQ— p(t1) Qp(t2) W Ti Qi (t2) Qu(ts))
W;—q,k'<TtQ;—q(tl)Qp—q(t2)><TtQ—k(tl)Qk(t3)><TtQ|:—/(t2)Qk’(t4)> +Wik/pVVSk<Tth(t1)Qp(t2)>
X(TiQ -k (t1) Qur (ta) X TeQy (t2) Qilta)) + Wi, W* kr’q_p<TtQ:(tl)Qk(t3)><Tth—p(tl)Q;— o(t2))

X(TQ ke (t2) Qi (ta)) + W™ L W (T Qi (t1) Qi (1) X TiQ (1) QL (1) X TiQ i (t2) Qu(ta))- (48)

Similar expressions can be derived from the rest of the sum-
mands in Eq(47).

In the general case, E49) cannot be reduced to the
corresponding expressiofl2) derived from the effective

By substituting Eq(48) in (46) and performing integra-
tion over time variables, we obtain fgr+k’#0 andp—k
#0 (the phonons are assumed to be opfical

Hamiltonian (3). Below we will determine the conditions
under which this is possible and derive an expression for
Lo,.

pq

By analyzing stimulated two-photon emission under the

(Sp)ri=2mi T (P)L(V2— 1) 8(p—0/2) + 1] condition|w—Q _|<w$, we obtain

X80 +0—20 ),

Tirk(P) = DD [ Wy 5 Wy _ g 1 Gil( — 05) G
Trk(P) =DiD i [Wy 5, Wy _ 1 G0 — Q)G N
~ X(_wg)Gp—q(w_Q—)
X(Q,—w—wS)Gp,q(w—Q,) _
3 _ WAy oW o Gk
+\N*kp q k’,q—pG*k(“’_Q)Gk’ ~ ~
X (= §) Gy (@) Gy p(w— Q)

x(w—Q_+wg)é;_p(w—Q_) ~
Wi o W - pOk(— 03) Gir(05) Gg pl @

V\/*k,q p k(w_Q)ékr

—Q)+WE WG (- 03) G
x(w—Q,+wo)Gq,p(w—Q,) ) kp-aWh_q10 O—k(— @) Gy
wx X (= @3)Gp (-~ w) +W* | WGy
W oWy g G-k = Q)G (D~ o (- @g)Gpq(Q-—w) * Gy

X(—@d)Gp(—0)G_,(0—Q_)
—03)Gp (-~ ) +W* | WhGp (O G~ )G,

WS W G~ 03) G (03) Gy (@

—0-03)Go—Q)G_(0—Q_)
- - —Q ) +W, WG —wd)G (wd)G
FWE L WE B (- )Gy (00 )+WZ, WEGK( = @3) G (05) Gp(w
- -Q_)+W* JWE
0B (0 Q)+ W, WG (@ ) FW i

X(—wS)G,p(Q,—w)].

oG k(— 0} Gy

~ (52)
Q)G (0—Q_+ wy)Gp(w—Q_)
Under the conditions of approximati¢f9), we have for

+W- W* G- the retarded Green'’s functions

pk’ -p k((U_Q)Gkr(Q,—w

~03)G (2~ w)], (49 - , s

3 ~ Gp(w)=—=2miny(T)6,6(w) + G, (w),
whereGy(w), G;(w), andGy(w) are Fourier transforms of
the anomalous and normal Green’s functions of excitons in

the Bose-condensed state, which are defined as follows:
Gp(t—t")=—i(TQp()Q, (")),
G (t—t)=-i(T QYL (t)).

Thus, we have derived the expression for the element o
the S'matrix responsible for the two-photon emission due to
coherent recombination directly from the Hamiltonian of the(®» and Egs. (15 and (21)] by the formula Gp(w)
interaction between excitons and electromagnetic field and —2ming(T) 3,8(w) +Gp(w).
the Hamiltonian of the exciton—phonon interacti@#). El- By comparmgthe normal and anomalous Green's func-
ements of theS-matrix corresponding to the RLS accompa-tions at o=}, we obtain G(wd)/G(wi)<1 for ]
nied by coherent two-exciton recombinatit@r production >¢£,. In this case the eleme(®1) of the scattering matrix is
can be derived similarly. determined by the expression

w+§p
(0—€ptilp2)(w+ ey +ilp/2)°
(52)

G'Rw)=(1-5y)

from which an expression foG,(w) can be obtained. The
anomalous Green’s functlc@p(w) which is defined by Eq.
{50) is related to the Green'’s functid p(w) [see definition

(50
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Tirk(P) = DDy [W_ (W

p—q.k’

X (— wg)ép_q(w—ﬂ_)+\/vipk,\/v;kek,

Gy(— w3)Gyr

X(— w5)G(—wp) G p(w—0 )], (53

WherEGkr(wS) = Gk(wg) = 1/(1)8 .
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—coth(Aw'|/2T)—1. Thus, the expression that determines
the luminescence spectrum of Bose-condensed excitons at an
arbitrary frequencyw’ # ) _ has the form

"\ 2m3 (T (Ve 2+ 1— 1)f(w])

672c3V a2+ 1[ Ve 2+ 1—signAw') ] ]

15(w')=

The comparison between the latter expression and Eq.

(12) in Sec. 2 yieIdsL[fG| for the effective Hamiltonian of
exciton recombination:

> .
=—1

DqW;q
Pq '

(59

S
o

The expressions for the other matrix elements of the exciton

recombination in the effective Hamiltoniai3) can be de-
rived similarly.

|Aw’|
X|sign—Aw')+coth o |

(57)

3E-mail: lozovik@isan.troitsk.ru

YIn the general case, the radiative recombination of an exciton can result in
emission(absorption of an arbitrary number of phonons. When using the
Hamiltonian(3), we limit our analysis for simplicity to the case of exciton
recombination with emissiotabsorption of one phonon.

dCalculations involving the two-photon emission and RLS under discussion

Thus, the two-photon emission accompanied by coherentcould be performed using Keldysh’s elegant diagram technigee, e.g.,

two-exciton recombination can be analyzed with the aid of

the effective Hamiltonian(3) with L;q determined by Eq.
(54) if the incident light satisfies the conditions—Q_|
<wp and§<wy . In this case, the matrix elemefB4) does
not depend on temperature af(@,) is identical to the ef-
fective matrix elemenE responsible for the phonon-assisted
recombination of an isolated excitéh.

APPENDIX B

Luminescence intensity of Bose-condensed excitons

Ref. 21, which is devoted to a problem that requires a similar techpique
In our opinion, however, our approach used in this specific case is more
transparent.
9In the general case, the number of phonons involved in the process can be
arbitrary. Moreover, the recoil momentufthe whole or a fraction of jt
can be transferred to impurities. Thus, stimulated two-photon emission can
result in the appearance of the spectral lines at frequenci@s-2(wg)
— w, wheren is an arbitrary integer.
YIn the general case, RLS, like the two-photon emission, can involve an
arbitrary number of phonons. Moreover, the recoil momentum can be
transferredentirely or partially to impurities. Thus, RLS accompanied by
coherent two-exciton production or recombination can give rise to anti-
Stokes and Stokes components at frequencieS(2Q) —nwi) =o' and
o—(20—nwy)=w’, respectively, where is an arbitrary integelsee

The luminescence of Bose-condensed excitons for fre-also Ref. 20.

guencyw’' < _ is due to the optical phonon-assisted exci-
ton recombination accompanied by the production of a Bo
goliubov quasiparticle with energg(p;)=Q_—w' in the

exciton system. The matrix element of this recombination is_4, 2032(1963].

, Ne*+l-af

r— ]

Up ANy +1, v
p/ k¥ PL P ! p ’
L L ZaL

w51

whereAw' =0’ —Q_ anda| =|Aw’|/{(T).

Using the Fermi “golden rule,” we obtain the optical
phonon-assisted luminescence intensli@(w’) of Bose-
condensed excitons at frequencies<()_ :

o' 2mP (T (Va 2+ 1- 1)P(w))
6723V a2+ 1(\ea 2+ 1+ al)

>

L=L

[Aw'| 55
T (59

an:

I L

s(o’

|Aw'|

X| 1+ coth—} . (56)
2T

The luminescence of Bose-condensed excitons for a fr
quencyw’'>€ _ is due to the optical phonon-assisted exci-
ton recombination accompanied by the disappearance of
quasiparticle with energy(p;) =’ —Q _ . The matrix ele-
ment of this recombination is derived from E&5) by sub-

stituting Up! npl/_+1*>,/1+l)p; Ny - The luminescence
L

intensity at frequency’>Q _ is derived from Eq(56) by

substituting o ——q| and coth(Aw’|/2T) +1
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Induction and magnetic methods are used to study the effect of drifting Bloch lines on the wall
velocity in a single crystal sample of yttrium iron garnet cut in the form of a long prism

with only one 180-degree domain wall. A sharp increase in the velocity and in resonance bending
vibrations of the wall are observed when Bloch line drift is initiated. The character of the

wall motion is investigated under these conditions. An analysis of the experimental data shows
that the effective reduction in the influence of drifting Bloch lines on the characteristics

of the wall motion may be related to a magnetic aftereffect phenomenorl999 American

Institute of Physicg.S1063-776199)01504-9

1. INTRODUCTION walls with drifting Bloch lines in yttrium iron garnet show,
however, that when Bloch line drift is excited, the effect of

It is well known that in the overwhelming majority of the lines on the velocity of a vibrating wall is sharply
ferromagnetic crystals, the BlodiNeel) lines that develop reduced Here we describe the results of a comprehensive
under statit and dynamié conditions under the influence of study of this unusual behavior in domain walls with drifting
the magnetostatic stray fields that exist at the sample surfac@och lines.
are an obligatory structural element of the domain walls.

They separate regions with opposite directions of the spin in. EXPERIMENTAL TECHNIQUE

the domain wall, and are therefore characterized by a vortical
spin distributiof and distinctive properties that change the
character of the motion of a monopolar domain wall signifi-
cantly. In particular, Bloch lines greatly reduce the mobflity
and amplitude of the bending eigenmote$ a monopolar
wall, and also increase its effective m&ss.

Direct experimental studies of the behavior of Bloch
lines in moving domain walls in single crystal yttrium iron
garnef have made it possible to study the motion of Bloch
lines affected by gyrotropic forces, to determine their dy-
namic characteristic§mobility and the longitudinal and
transverse components of the effective maasd their be- .

) . : e radius of 6 mm.
havior as a function of the amplitude of the exciting field. It

has been shown that onlv in a relatively weak variable m The motion of the domain wall was recorded by a small
as been sho atonly In a refatively weax variable ag'compensated coil wound directly on the sample. The induc-
netic field that excites wall vibrations do the Bloch lines

oscillate near their equilibrium positions. When the field ex tion signal from this coil was fed to an SK4-59 spectrum
ceeds a critical valuéq the epntire S s.tem of Bloch lines analyzer(to record the spectra of the vibrationsn S8-9

. . F.(C’)’ € Sy storage oscilloscopéto record single pulsgsor a V3-39

in a wall drifts along it at a velocity of several meters per

. ) millivoltmeter r rd the ampli f th illations in
second The character of the motion of the wall itself oltmeter (to record the amplitude of the oscillations

. . ) . the wall velocity. Motion of the Bloch lines along the wall
changes when Bloch line drift sets in. In particular, the free y g

damped oscillations of the wall initiated by magnetic field was studied by a magnetooptical method using a polarizing

_— . microscope equipped with a photomultiplfelThe signals
pulses and by the pscﬂla‘uqns of the lines themselves A ere recorded and processed, and control of the measure-
replaced by aperiodic dampirig.

. o . . . . . ment instruments was coordinated and synchronized by a
Line drift in yttrium iron garnet is accompanied by in- Y y

: o2 . .personal computer.

tense creation and annihilation of lines, and therefore |P P
would seem that it should affect the velocity of a domain

. . . 3. EXPERIMENTAL RESULTS
wall in the same way as observed during dynamic transfor=
mations of the domain wall structure in highly anisotropic Figure 1 shows flexural vibration spectra of the 180°
garnet film$g in which Bloch lines are created, move, and domain wall for various amplitudesH(,) of the driving
vanish. The first, recent studies of bending vibrations ofsinusoidal fieldH, . In a weak exciting field, the spectrum of

These studies were conducted on a single crystal sample
of yttrium iron garnet cut in the form of a 320.7x0.03
mm® rectangular prism. It contained a single 180° domain
wall that separated domains magnetized along(ftid) di-
rections in thg112) plane of the wafer. In the initial state the
wall contained vertical Bloch lines. As necessary, a monopo-
lar state of the wall was created using a sinusoidal fielg) (
parallel to the magnetization in the domains, and which ini-
tiated drift of the Bloch lines in the presence of an additional
constant field H,) perpendicular to the plane of the wafer.
The magnetic field was produced by Helmholtz coils with a
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FIG. 2. Magnetooptic imaging of a 180° domain wall in a polarization
microscope with an isolated cross section for a photometric measuréanent
and single oscilloscope tracéls—e characterizing the variation in the in-
FIG. 1. The induction signal\(;), proportional to the amplitude of the ten;i_ty of the Iight_ transmitted through the photometric cross section with
oscillations in the displacement velocity of a demagnetized 180° domairfXciting field amplitudes, =15 mOe(b), 28 (c), 45 (d), and 75(e). The
wall, as a function of the frequenayof the sinusoidal fieldH, for various  frequency of the field is'= 1.8 MHz. The change in the intensity of the light

field amplitudesH o= 12 mOe(1), 22.5(2,3), 30 (4), and 45(5). is determined by the movement along the wall of “dark” and “light”
subdomains and of nonlinear perturbation s in the spin system in these

subdomains.
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the flexural oscillations of the wall is essentially invisible in

the frequency dependence of the induction signal, which is

proportional to the amplitude of the velocity oscillations of cilloscope traces of Fig. 2c records the passage of several
the wall (Vo= wyo=2mvy,, Wherev is the frequency of the subdomains through the photometrically observed segment.
field andy, is the amplitude of the wall vibrationgcurvel).  The number of subdomains was different in successive mea-
As H,q approaches the critical valud., isolated peaks surements. Unstable peaks showed up inMper) curve at
show up in theVy(v) curves(curve 2), which reflect the this field level, which initiates unstable drift of the Bloch
excitation of flexural vibrations in the wall with wave vectors lines. They emerged only at the onset of line drift, and at
perpendicular to the domain magnetizations. These peakbose frequencies where that drift occurred. Stable drift of
could disappear and reappear at the same or different resBloch lines was observed only in the trace of Fig. 2d, which
nance frequencies in successive measurem@nis/e 3). was recorded at a field amplitude for which flexural oscilla-
When the field reacheld,, distinct and stable peaks show tions of the wall showed up clearly in thé(») curve (Fig.

up in theVy(v) curves at low frequencigsurve4), suggest- 1, curveb). Further increases iH,, were accompanied by a
ing the excitation of flexural oscillations in the demagnetizedreduction in the average period of the magnetooptical signal
wall. High-frequency resonance peaks have not yet formedFig. 26 owing to the increased drift velocity of the Bloch

in curve 4; these are stabilized ds,, is increased further
(curveb). In addition, a comparison of curvdsand5 shows

lines.
Thus, a comparison of the data in Figs. 1 and 2 shows

that asH,q is increased, the resulting resonances shift tahat when Bloch line drift is excited, there is a large increase

lower frequencies.

in the displacement velocity and amplitude of flexural oscil-

Figure 2a shows a magnetooptical image of a 180° dofations of the domain wall.

main wall in the polarization microscope with slightly un-

Figure 3 shows the amplitud¢, of the oscillations in

crossed polarizers. The white and black sections of the wathe velocity of the wall as a function of the amplitubg, of

are characterized by opposite directions of the spin turn, anthe exciting field measured at a resonant frequency of
are separated by vertical Bloch lines. Figures 2b—2d show.8 MHz. The behavior of the Bloch lines in the wall ob-
single oscilloscope traces of the time variation in the intenserved during the time this curve was recorded corresponds
sity of the light, measured with a photomultiplier, in the local to the traces of Fig. 2. The relationship between the wall
part of the crystal indicated by a square in Fig. 2a. Thesaisplacement velocity and the behavior of the Bloch lines in
were recorded in the intervals between successive increastie wall shows up more clearly in this curve. Just when line
in H,q at a frequency of 1.8 MHz, corresponding to one ofdrift is excited, there is a sharp rise in the displacement ve-
the resonance peaks in Fig. 1. At low field amplitudes thdocity of the wall. Furthermore, this curve manifests “hys-
oscilloscope traces only contained a noise sighay. 2b).  teresis” in the discontinuity in the wall velocity as the field
The oscillations of the lines along the oscillating wall pro- amplitude is raised or lowered. Figure 3 also shows frag-
duced by gyrotropic forcésdo not show up in the single ments of single magnetooptical oscilloscope traces recorded
scope traces. As the field amplitude approached critical, atefore and after the velocity jump during forward and re-
first single narrow peaks associated with the excitation oerse scans. These show that the velocity jumps took place
solitary nonlinear waves in the domain wall appeared thaturing forward or reverse scans @f(H,o), when the drift
were similar to those observed in monopolar wilEhe os-  of the Bloch lines either set in or ended, respectively, and as
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FIG. 3. AmplitudeV, of the velocity of wall oscillations as a function of the
amplitudeH,, of an exciting field atv=1.8 MHz, and fragments of single-
sweep oscilloscope traces of the magnetooptical signal similar to those 100 ms
shown in Fig. 2.

FIG. 5. Single-sweep oscilloscope traces of the induction signal, propor-
tional to the amplitude of the oscillations in the displacement velocity of the
dNa“’ which represent the wall oscillations in real timevat 1 MHz for field

can be seen in Fig. 3, when the field amplitude is reduce limplitudesH, = 15 mOe(a), 27 (b0, 28.5(d), 30 (&).

line drift is observed in the wall at substantially lower fields
than when the field,q is increased.

A comparison ofVy(H,p) curves measured with rising over a narrower range dfl,, probably suggests that line
field amplitude at the resonant frequenciEsy. 4, curvesl  drift depends directly on the dynamical state of the wall, but
and?2) shows that the critical fieltH, at which the velocity not on the magnitude dfl,q.
jump occurs lies in the range 27—32mOe and changes little  The single-sweep oscilloscope traces of Fig. 5 reflect the
in successive measurements. When these curves were plottaahplitude(or velocity V) of wall vibrations in near-critical
with decreasingH,o, this range extended to lower fields fields at a frequency of 1 MHz. They show that in a weak
(22mOg as a result of the hysteresis . At arbitrary frequen-field, the amplitudey, of wall vibrations does not vary in
cies(Fig. 4, curves3-5), the displacement velocity of a wall time (Fig. 59. As the field amplitude approaches the critical
does not increase so rapidly. This is because during forcedalue, the oscilloscope traces contain a time interval in
oscillations of a wall, stable drift of Bloch lines is initiated which the wall vibrates with a higher amplitudef. Figs. 5b
more gradually a#d,, increases: it first occurs in isolated and 5g¢; they increase in Fig. 5c. Intervals with wall vibra-
segments of the wall, and then over the entire wall. In theions of even greater amplitude are visible in Fig. 5d, which
experiment, a tendency was observed for this transition ifncrease asl,q rises further, and finally the wall undergoes a
the field to widen as the frequency decreased. The fact thatansition to high-velocity motioriFig. 58. At the resonant
when the wall oscillates resonantly, stable line drift occursfrequencies this transition from “slow” to “fast” wall
movement takes place over a narrower rangélgf. Thus,
these data show that at field amplitudes closédtp, wall
motion is manifestly nonstationary, owing to unstable Bloch
line drift processes. Wall motion stabilizes somewhat at
higherH,g, but it is still not harmonic. The latter may to a
large extent be due to the nonuniform character of the Bloch
line drift.

Curvesl and2 in Fig. 6 represent the measurég(H,,)
curves for a wall in an initially monopolar state at a nonreso-
nant frequency of 0.8 MHz for the exciting field, . They
were recorded in the presence of additional constant fields of
H,=46 and 40 Oe, respectively, perpendicular to the plane
of the wafer, which maintained the monopolar state of the
wall. These curves are qualitatively consistent with similar
curves from Ref. 10, but they do differ slightly, since they
were measured at different and H,. A comparison of
curvesl and2, in particular, reveals how the auxiliary field
. . L H, affects theVy(H,p) curve. Clearly, a$d, decreases, the
0 40 80 o knee inVo(H,o), Which characterizes the onset of nonlinear

0’ excitations in the walf, moves to lower amplitudes of the

FIG. 4. Vo(H,o) curves for resonarit,2) and arbitrary(3-5) frequencies of ~ €XCiting ﬁeld-_ _ o
the exciting fieldH,: »= 1.8 MHz (1), 3 (2), 1 (3), 2.3(4), and 3.8(5). Curve 3 in Fig. 6 was recorded for walls containing
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FIG. 6. Vo(H,o) at 0.8 MHz for domain walls in monopoldd,2) and de-
magnetized(3-5) initial states in the presence of an additional fiéld 10 ms
=46 Oe(1), 40(2), 20(5), 16 (4), and 0(3).

FIG. 7. Single-sweep oscilloscope traces of the induction signal represent-
ing wall oscillations in real time under the conditions of cusvef Fig. 6 in

Bloch lines.Vy(H,o) for a demagnetized wall clearly falls the region wherd is falling: H,o =39 mOe(a), 42 (b), 43.5(c), 48(d), and
below curvesl and?2, and it has essentially no sharp rise in &7-5(®: Hz=16 0e,v=08 MHz.
V, owing to the excitation of line drift, since it was recorded
at a low, nonresonant frequency &f,. If the crystal is .
placed in an additional low fieléh =16 Oe , therVo(H,o) V, drops. Thesg shgw a gradual transition frqm “fast” to
for the demagnetized wall takes the form of cuta Fig. 6. slow” wall motion, in complete agreement with curvé
Direct observations of the behavior of the Bloch lines and(Fig- 6. In addition, these traces reveal the nonstationary
measurements of single magnetooptical oscilloscope tracd@ture of the wall motion associated with the unstable exci-
similar to those presented above showed that the sudden riédion of nonlinear processes in a monopolar wall, which
in the wall velocity in curvet nearH ,,= 20 mOe was caused leads to the formation of drifting Bloch lines in this wall.
by excitation of Bloch lines in the wall, which in the pres-
ence of the fielH, led to formation of a monopolar state in
the wall. Curve4 therefore coincided with curvek and 2.
However, when the amplitude of the exciting field is in- The data presented here show that the excitation of
creased further, a nonmonotonic reduction/inis observed Bloch line drift leads to a rise in the velocity of a domain
in curve4 owing to the excitation of nonlinear perturbations wall containing Bloch lines, with the greatest enhancement
in the wall that disrupt the monopolar state, and ultimatelyin the wall velocity being observed at resonant frequencies.
lead to the appearance of drifting lines in the wall. The wallThis sort of behavior of the domain wall is most likely re-
velocity therefore decreases to a minimum, after which itlated to a magnetic aftereffett.In our case, this phenom-
rises slightly. enon is determined by the interaction of Bloch lines and
It is typical that in this range oH,q, curve 4, which  domain walls with point defects of the crystal lattice, whose
characterizes the velocity of a wall with drifting lines, is not state depends on the direction of the spins in them. Accord-
coincident with curve3. This is because the flexural vibra- ing to the theory of this phenomenon, when either domain
tions of a demagnetized walturve 3) are weaker than the walls'® or Bloch lines* interact with point defects they cre-
vibrations of a “magnetized” wallcurve 4).!! As the field ate a potential surface for themselves, and the greater the
H, increased, a monopolar state developed in the wall for amplitude of their vibrations and their velocity, the lower the
weaker fieldH, and was maintained over a wider range of its height of the relief. When they drift, the Bloch lines, first of
amplitude, so that the drop N, took place at a higher all, cannot create a potential surface for their motion, so their
exciting field (curve 5). We note that similar behavior of influence on the motion of the domain wall should be weak-
vibrating walls has also been observed when an additionaned. In addition, every displacement of a Bloch line along a
constant field K,) is applied perpendicular to the plane of domain wall reverses the sense of spin precession in the wall,
the wall. It enhanced the drift of Bloch lin¥sand therefore and thereby reduces the relief produced by the spins in the
stimulated the formation of a monopolar state in the wallwall itself.
over a certain range dfi,, that depends ohl, . This has been partially confirmed in Ref. 9, where it is
Figure 7 shows single oscilloscope traces representinghown that wall flexural vibrations are enhanced when an
oscillations of the wall over time under the conditions for additional magnetic field that induces low-frequency oscilla-
curve4 of Fig. 6 in the neighborhood of the field, where tions of Bloch lines along the wall is applied to a crystal.

4. DISCUSSION
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It is shown that two possible magnetic structures in the exchange doublet of the exchange-
noncollinear antiferromagnetic material p&UO, that are distinguished by their chirality have
certain differences in their optical and acoustic properties. These differences make it
possible to identify these structures experimentally. 1899 American Institute of Physics.
[S1063-776(19901604-2

Among the cuprates, which were the basis for the dis- | _=M;—M,—M;+M,. 4
covery of widely studied HTSC compountine of the . . . .
most interesting is N«CuQ,. Indeed, it displays noncol- It is important for the following discussion to knpw how
linear, rectangular-crosswise magnetic exchange structurg,]ffe vectors transform under the symmetry operations of the

with a number of magnetic and other properties associated 4h group. Beca_use the chemical and magnetic unit gells
with ferromagnetism. AT < T, =246 K the crystal chemical coincide, translations can be regarded as the symmetry iden-

symmetry of this cuprate is described by thaiﬁ t@ty element and we may consider only rota_tions and reflec-
(P4,/mnm) group, and the magnetic €t ions occupy a tions _Co_rrespondllng to the generators of this group. F‘_)r the
fourfold 4f position. Figure 1a shows the projection of the latter it is convgnlent to t_ake tm%”Z helical symmetry axis,
crystallographic unit cell on th€001) plane, with the cell the ZXYM“'O] diagonal binary axis, and the center of sym-

being chosen in two ways. It is denoted by dashed lines ifnetry 1 lying at the points of intersection of, with the
accordance with Ref. 2, and solid lines in accordance wittPlanesz=0 andz=1/2, where the copper ions are located,
Refs. 3 and 4 when the coordinate axis is shifted alongthe @s Well as at other points separated from these by half the
axis by — 1/2. The copper ions are shown, while the neody_lattice period in any direction. Above all, it is necessary to
mium magnetic moments, which are ordered only at liquidfind those permutations of the ion numbers that produce
helium temperatures, are not discussed further. The positiort§ese symmetry elements, and then easily construct Table I,
of several elements of symmetry are also indicated. Thavhich lists additional transformations of the vect¢ts—(4)
magnetic cell coincides with the crystal chemical cell. TwoOoWing to these permutations.
different magnetic exchange structuésnd 1l) are shown For purposes of precision, it is desirable to elaborate
to the right in Fig. 1b. They have the same exchange energyPon the significance of this table. It shows what additional
(the “exchange doublet); and correspond to two different actions on the vectots,, Ly, andL. produce the elements
orientations of the state®{ ando,), whose energies differ 1, 4,, and2,, as elements of the space group as a result of
only as a result of relativistiémagnetically anisotropjcin-  permutations of the atoms beyond the action of the point
teractions. group. It is evident from the table that this permutation can
That these magnetic exchange structures in the magnetiead to permutation of the indices b, andc, as well as an
doublet are different is also indicated by the fact that, inde-additional change in sign of several components of the vec-
pendent of their orientational states, they have different magtorsL,, (the permutations have no effect bh). In determin-
netic symmetries.In fact, for example, thd, symmetry axis ing the resulting transformation of the components of these
is retained for structure | of the magnetic group, while it isvectors, it is necessary, of course, to include both the “point
converted into the “dashed4;,=4,-1’ axis(where 1 isthe effect” of the symmetry elementSotations and reflections
time reversal operatpfor structure Il. and their additional permutational effect, which is illustrated
To describe the magnetic exchange structure and progchematically in the table. As an exampgL =L, (in-
erties of NgCuQ,, it is convenient introduce the ferromag- stead of4L,=—L, for the point permutation of).

netism and antiferromagnetism basis vectstsandL,, (n It follows from Table | that the vectoL. in (4) only
=a,b,c) instead of the four sublattice magnetizatiods,  transforms into itself and therefore forms a one-dimensional
(v=1,2,3,4): vector representation corresponding to a collinear magnetic
exchange structure witM ;T TM4T | M,TTM3. Matters are
M=M1+Mz+Ms+M,, (1) different with L, andL,,, which transform into one another

(for the operations}, and 2,,), to form a two-dimensional

La=M1+Mz=Ms—My, @) vector representation. These correspond to the noncollinear
Ly=M;—M,+Ms— My, 3) magnetic_ e.xcha}nge structures illustrated in Fi@p).l_
To distinguish between structures | and Il in the ex-
and change doublet, the so-called chirality vector is introduted:

1063-7761/99/88(4)/4/$15.00 766 © 1999 American Institute of Physics
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9 FIG. 1. Projection of the unit cell of N€uO, (group
Dit=P4,/mnm). a Two choices: with center 1dashed
lines) or with center 4 (smooth lineg The 4f sites occu-
pied by Cd* ions are shown, along with the locations of

the symmetry elements: inversion fourth-order helical
axis 4,, and binary axes g and 2;;. b) Possible magnetic

structures for chiralityQ,=+1 (I) and Q=-1 (ll) and
different orientational states, ando,, which differ by a
/2 rotation about the daxis.

2;,\ °: #04 »2 b4 ‘42 ‘b4
| lO I 1@ I IO‘ 3" IO‘ ”3
| o2 O ’
I, I— ) O':
20-,’/ _C)n-z=0 .‘2 ’04 x .‘ o
@ =12 1 d :. :O \3‘

Q=(2M) "A([MM;]+[M,M3]+[M3M4]+[MsM4])
=(1/2)(2Mg) L4l ], (5
whereM?2=M32. With this condition(equal magnitudgsit

is easy to find thaQ,=Q,=0 for the magnetic exchange

structures | and 1l shown in the figure, witQ,=+1 for
structure | andQ,= —1 for structure Il. This holds for both

orientational states; ando,. Therefore, the magnetic ex-
change states | and Il differ in the sign of their chirality, and

in the following we refer to them as th®(+1) and Q
(—=1) structures.

Heree,, ande,, include exchange terrhgroportional toLg
and Lg, besides a term witlQ,. But for the equilibrium
magnetic exchange structures shown in the figuf,Et, Lﬁ
(=8M§ in the equal magnitude modeko that these terms
yield the same renormalization of the constant Retaining

the previous notation for the renormalization constant, in-

stead of Eq(7) we can write

©)

Note that all three constants in Eq8) and(9) (e, , «, and
B) generally depend on the frequenay Furthermore,8

exx=eyy=¢& TaQ,=eq.

It is then easy to show, with the aid of the above table ofvanishes agsv— 0.
permutation transformations, that the project@pis an in- In &,, it might be possible to include a symmetric ex-
variant of theD1* group, i.e., of the transformations #,,  change term const,L,.” However, for the structures
and2,,. Since this table only includes the permutation pro-shown in the figureand by virtue of the equal magnitude
duced by these symmetry elements, in accordance with theondition), for which
above remarks their “point effect” must be taken into ac- _ _

. . L.=L,L,=0,
count separately. Here, for example, the sign change in Eq.
(5) associated with the permutation afand b for 2,, is  this term goes to zero. This also applies to the relativistic
cancelled by a sign change caused by this element for th@rmsL ,,Lx+ LayL,= —Lasl b2, Which are isotropic in the

z-projection of the vectoQ. In other words, xy plane?
1Q,=0Q,, 40Q,=0Q,, 2,yQ,=Q,. (6) Maxwell’'s equations for the wave fields witj|z must
therefore include the tenses; defined by Eqs(8) and(9).

, Rroceedlng t(_) the optical properties, we write QUI th, he results are circularly polarized waves with refractive in-
invariant expressions for those components of the dlelectrltaiCes

permittivity tensore;; that depend oi®,, which are needed

(10

to discuss wave vectolg|z:® Ni,=eq™ ey (1)
ex=€, T aQ,+ y1L2+ y,LE, and amplitude ratiogpolarizationy
o=+ aQut yiLit L2, " | (E) oy B
and SRRl -
Exy=Eyx=1BQH,. (8 ForH,=0,
ni=ni=e, +aQ,=nj, (13)

TABLE |. Additional transformations of the vectot&)—(4).

while there is a degeneracy in the polarization, i.e., the phase

M La Ly L, velocity vg=c/ng is the same for both modes and does not
I v L L L depend on the direction d& in the xy plane. But it does
4, M Lba _Lb Y depend on the sign d,. For the two domains with differ-
2, M L, L, L ent chirality Q,=+1 or —1), the velocities are different,

with
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c o show up as a change in the optical properties determined by
Vi1=—F— ( 112—). (14  Egs. (11)—(15). For H,=0 the velocity of light should
\/; &1 change at the phase transition point, andHqgr: 0 the sign

WhenH,#0, according to Eqs(11) and (12) a field of of the Faraday rotation_ angle should chgnge aslweII. o
this sort leads to the Faraday effect, whose sign also depends Analogous apoustlc effects ass.oc'lated. with chirality
on the sign ofQ,. According to Eq.(12), when the sign of prqbably glso exist. Ir) any case, th|s.|s of |mportanqe for
Q, changes, a right circularly polarized wave becomes lef hiral antiferromagnetic materials, which are not optically
circularly polarized, andiice versa Here the Faraday rota- ransparent.

. . : ; Let us again consider an elastic wave wktfz. With Eq.
&?IT t?engli(\a/ewnf(t));/a linearly polarized wavéper unit length (6) and the table it is easy to show that the invariant expres-

sions for the elastic modulC;,; that determine this sound

w| BHY can be written in the form
= i—z , (15 B B B
Chg Cxzx= Cyzyz_ CataQ,= CQ ) (16)
where the sign is the same as that of the pro@@@tH, . and
It is scarcely necessargbeing so obviousto explain .
how this all changes if we include ig,, (8), and therefore Cyxzy7= ~ Cyzx7~1BQH,. 17)

on the right-hand side of Eq12), a diamagnetic term pro-
portional simply toH, (and thus independent @,). We
have assumed above that this is small compared to the an
ferromagnetigchiral) contribution.

Thus far we have been dealing with “domain chirality,’
having in mind thaQ(+ 1) andQ(—1) domains can coex-

Here exchanggisotropig terms of the type.2 and L2 are
{P_troduced througiC,,, as fore,, andey, [cf. Eq.(7)].
The solutions of the dynamic equations for elastic sys-
, tems, allowing for Eqs(16) and(17), are circularly polarized
transverse waves whose wave numbers and polarizations are

ist, as they have the same exchange ener@fesexchange given by
double}. In this case, the effects considered above might o[ |BH, "
make it possible to observe a chiral domain structure of this K12~ % +T44 , vo=(Cq/p)™, (19

type.

In fact, however, it has been found experimentdfige and
Scanthakumaet al® and references thergimnd explained
theoretically by Blinkinet al® and Vitebskiiet al that the (U_) _<ﬂ) _io, P 19
exchange degeneracy in t +1) andQ(—1) doublet is Uy Uy/, 18l
removed by a magnetic anisotropy, so that these structures )
develop over different temperature ranges. As the tempera- N the absence of a field{,=0), the normal modes are
ture decreases following the transition into the antiferromagd€generate with respect to the wave numbers and polariza-
netic region at a temperature ®f; =246 K, the magnetic tons, so that their speag, =v,=v and is independent of
copper ions form the)(+1) magnetic exchange structure the dlrgctlon o'f the elastic dlsplacemgmtgsn the xy pla}ng.
lo, in the figure. This is referred to as phase | in Ref. 8 andBUt this velocity depends on the chiralifQ, since it is
phaser, in Refs. 3 and 4. Then dfy,=75 K there is a  different for theQ(+1) andQ(—1) phases.
sudden transition to §(—1) magnetic exchange structure ~ WhenH;#0, this degeneracy is removed, so that even

(structure b, in the figure, which is referred to as phase Il for the same chiralitQ, the velocitiesv; ,= w/k , are dif-
in Ref. 8 or phaser in Refs. 3 and 4. ferent according to Eq(13). In addition, according to Eq.

As can be seen from the figure, the transition betweel9): the sign of the acoustic Faraday rotation depends on the
the Q(+1) andQ(—1) phases can proceed, for example,Si9n 0fQ;, which changes during@(+1)~Q(—1) phase
through a simultaneous reversal of the magnetic moments gansiton.. , _ o
and 3(i.e., in thez=1/2 laye) while moments 1 and 4 are In conclusmn, we briefly recall the possible origin of the
unchangedi.e., in thez=0 layej. As a result, there is a €nergy difference between tg(+1) andQ(—1) phases.
phase transition from a phase with chiral@y=(+1) to one  According to Eq.(6), the point is that the thermodynamic
with Q=(—1) (or vice versa. This is probably a first-order POtential contains a term of the form
phase transition, since a change in chirality through a con- constQ (20)

. . . . .. Z

tinuous in-phase rotation of the magnetic moments is impos-

sible: theQ(+1) andQ(—1) phases are topologically dis- which, in particular, can also produce this energy difference.
tinct. Finally, at T=Ty3;=30 K there is a reverse phase As it is isotropic in thexy plane[according to Eq(20)], this
transitionQ(—1)—Q(+1). Subsequently, at liquid helium term is highly reminiscent of antisymmetric Dzyaloshiriski
temperatures, where the magnetic Nd ions already play Rloriya exchange, and like the latter, is probably a semirela-
significant role, the magnetic structure of the copper iongivistic semi-exchange term. The ter(20) of the thermody-
becomes collineafand forT=1.5 K the magnetic moments namic potential is contained implicitly in the equations of
of the Nd ions become ordered Refs. 3 and 4. It can be obtained from the magnetic anisot-

It might be hoped that the phase transitions describedopy energy if terms isotropic in they basis plane are sepa-
above, with aQ(+ 1)< Q(—1) change in chirality, would rated out.

1
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As noted above, this discussion of certain features of th&m), which have analogous noncollinear magnetic exchange
optical and acoustic properties of MO, is based on the structure’
results of Refs. 3 and 4, which provide a fairly convincing The author thanks M. I. Kurkin, V. V. Men’shenin, V. E.
(from symmetry considerationslescription of thed, and  Naish, and V. V. Ustinov for useful discussions and valuable
Ilo; magnetic structuresee Fig. 1 and the phase transitions comments. This work was supported by the Russian Fund for
between them observed in neutron diffraction measureFundamental Resear¢Brant No. 96-02-16489
ments® However, there are a great many other experiments
devoted to magnetic structure and phase transitions ifThe author is sincerely grateful to Yu. G. Pashkevich, who kindly fur-
Nd,CuQy, including some that appeared later. These do notnished a clarification of Ref. 7.
always agree with one another or with Ref. 8. The discussion____
seems to have been summarized in an aftitlat actually ~ ‘W. E. Picket, Rev. Mod. Phy&1, 433 (1989.
confirms the results of Ref. 8, and therefore the existence of Intémational Tables for CrystallographyBirmingham (1952, 1965,
type | and Il structures with differing chiral structures and sy, A. Blinkin, 1. M. Vitebskii, O. D. Kolotii et al, Zh. Eksp. Teor. Fiz.
phase transitions between thefito avoid possible confu-  9s 2098(1990 [Sov. Phys. JETRL, 1179(1990)].
sion in comparing our Fig. 1 with the corresponding figures“:\-/l'\/tl- Vg7eb25|gi31 i\lg-gM- Lavrinenko, and V. L. Sobolev, J. Magn. Magn.
in Ref. 9, note that the latter correspond to a crystal struc.tgr%H'alfgwaaqura ;nd g" Miyashima, 3. Phys. Soc. H54138(1684.
that exists at temperatures above the structural transitiong A Turov, Kinetic, Optical, and Acoustic Properties of Antiferromag-
point, T,~300 K.) netic Materials[in Russian, Uro AN SSSR(Urals Branch, Russian Acad-
These remarks again confirm the appropriateness of in-émy of Sciences Sverdiovsk(1990. _ _
troducing chirality, which makes it possible to identify chiral '1'7'\4'1%';9(23'32) A. V. Yeremenko, Yu. G. Pashkevictt al, Physica C
magnetic structures by means of optical and acoustic meass. scanthakumar, H. Zhang, T. W. Clinten al, Physica C160, 124
surements. (1989.
We note, finally, that the above effects of chirality on the °R- Sachidanandum, T. Yildirum, A. B. Hari al, Phys. Rev. B56, 260
properties of NgCuQ, should also show up in other cuprates (1999
of the form RCuQ, (in particular, when R denotes Pr or Translated by D. H. McNeill
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Based on the idea of a strong interaction within the same unit cell, the possible existence of a
ferromagnetic instability in a system with jumps from transition element cations to non-
transition element anions and vice versa is established. A phase diagram is constructed for the
ferromagnetic ordering as a function of the degree of filimgandngy, of the pb- and

d'%shells of non-transition and transition elements, respectively.1989 American Institute of
Physics[S1063-776019901704-7

1. STATEMENT OF THE PROBLEM AND GENERAL For a given location of the lowest states of the atomic
EQUATIONS multiplets, the collectivization of the transitions between the

- +1)- i i -
In this paper we study the electronic properties of theN and N+ 1)-states is determined by the poles of the one

implest metallic bi ds with a CsCl-t t particle Green function. To calculate it, we write the expan-
simplest metaric binary compounds with a L5LIype StUCjon of the creation and annihilation operators for all possible
ture (see Fig. 1 beloyw

: . C transitions between states of the lowest multiplets:
The magnetic properties are studied in terms of a gener-

alized Hubbard model in which the isolated atom states de- - . R .
termined by Hund’s rule are used as a zeroth approximation. &x.(1N=2 ga(@.)XE, P (=2 g,(ko)¥?.
The interaction energy of the electrons within a given b 0 )
atom (the so-called Hubbard energis assumed to be the
largest energy parameter and is assumed to be infinite frofdere 8 and v are the numbers of the one-partioke or
the start. p-transitions andy; and g, are the so-called genealogical
In the metallic phase, the long range part of the Coulomkzoefficients, which we find for each specific type of transi-
and exchange interactions are substantially screened, so thain.
in the following we only include the interaction between In the end, it is necessary to calculate the average occu-
nearest neighbors owing to overlap of their wave functions:pation number of each component of the multiplet as a func-
tion of the magnitude of the applied magnetic fiéld
A =E Va,k(r,r/){éz (NPro(r)+H.C} In the foIIowing we use th(=T zero-loop approximation or
,r 7 ’ Hubbard | approximatiof,in which each self-energy part of
the one-particle Green function is replaced by the so-called
+> (ee—oH)&! (N8, /(1) end factorf ; or f,, which equals the sum of the occupation
ro ' ' numbers of the initial and final states responsible for a given
transitionB or v.
+> (ep— H)PE (NP o(1). (1) In this approximation the complete Green function
ro D,(q) is the product of the virtual Green functids’ “(q)

Here the indicesy take two values corresponding to the two gnd the end factof, . The virtual Green function itself sat-

degenerate statesy3(x—y?) and ?—r2, of the iSiies a Dyson-type equation:
eg-electrons of a transition cation, and the indidesake
three values corresponding to the three degenerate states,

?:p’ft’. b=py, andc=p,, of the p-electrons of a NON- 1,0 slaments of the matrl/ are determined from the coef-
ransition anion. ficients in the expansio(®) for the creation and annihilation

. The energy d|ﬁgrence:ep— €e IS assumec_i to be a operators after they are substituted in the Hamiltoriign
given parameter, while the sum of the one-patrticle energies

can be expressed in terms of the chemical potential

= (ep—eQ)/2. W (@)=T(g 2 ga(@) 2V (a)g,(K). @
After transforming to a Fourier representation, the over- ’

lap integral matrixV*(q) is easily calculated for a given All possible N+ 1-particle occupation numbers correspond-

crystal structuré. ing to the transitione(N,,(N+1)s) at a specified tempera-

DAY () =G (Qf(v), G U)=(GY) -W. (3)

1063-7761/99/88(4)/10/$15.00 770 © 1999 American Institute of Physics
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2 2
Crak _ \/§(X -y )
VER) =52 2

Px Py Pz
X \/§V;V;V; —\/§VQ—Vy_V;— 0
— vy V; v, —vy vy v, 2vy V;— v,
(6)

where the matrix elements depend on the quasimomenta

Qy,y,z through the functions, =1+ exp(qy)-

FIG. 1. CsCl-type cubic lattice. 2. CALCULATING THE PHASE DIAGRAM

Low concentrationsn, .<1. In the limiting case of in-
finite Hubbard energy, the creation and annihilation opera-
tors can be conveniently expressed in term& pthe transi-

ture T and chemical potential are calculated from the diagotion operators between vacaf@) and one-particlelo,\)
nal matrix elements of the one-particle Green function withstates:
the aid of the following general formula: 5 Qoo o (02700
ro,m r ’ ro,m r ’
Nnen(9)=T, expid)DE (). 5) Pro =Y, B, =YY @
4 After this expansion is substituted in the initial Hamiltonian
(1) we obtain an explicit expression for the inverse Green

Here é is a positive infinitesimal quantityy=(2n+1)#T, function:

and the symbot-« labels the transition that is the inverse of
a. €s Ps

The right-hand side of Eq5) can be found using Egs. G g =€, [(io—€)dap —f Vo) ) . (8)
(3) and (4) in terms of the end factors that appear in the ¢ PRV ’ o e S
matrix elements for the Green function and its inverse. Pk pV () (10— €p)dics

The average occupation numbers can be expressed here thee, . are the energies of the one-partigle and
terms of the end factors, so that in the approximation useé-states,f, . are the end factors given by the sum of the
here it is possible to obtain a closed system of equations fosccupation numbers of the initial and final staté$;3(q) is
the variations in all the end factors as a function of the apthe energy matrix6) for the transition, and/*#(q) is the
plied magnetic field. Hermitian conjugate matrix.

Ultimately, it is possible to obtain an equation for the To find the average occupation numbaf,g‘g we use the
magnetic permeability as a function of temperature and thgimplest approximatiof,in which the excitation energy is
average number afe- andn,-electrons belonging to a single determined by the average self-energy part, which can be

unit cell. expressed in terms of the so-called end factors, which, in this
The ferromagnetic instability is defined by an infinite case, equal the sum of the average number of vacant and
spin magnetic susceptibility. one-particle states,

The method proposed here explains the ferromagnetism
of compounds of type FeAl, with a Curie temperature
T=623K andn*~1ug, and MnSi with a Curie tempera- Gijven that these are independent of the numbaf the

ture T,;=34K andn*~0.4ug. Assuming that the,g-shell  one-particle state and, we obtain the following equations
of the transition element and thes-3hell of the non- of state:

transition element are completely filled, then the total num-

ber ng+n,=3-nq, WhereT ng is the average number of no=> nfffizzf(eo) D ag‘”np(éé,"'“), (10)
4s-electrons of the transition element, which we take to be @ pA=+

an arbitrary parameter.

f;;fk)zno+n§?‘k>, i) =ng+n{?). 9)

For this reason, in the following we examine the simul- ()3 p@_ (@ (e )42 > gl (§<<m>)}_
taneous filling of theey- and Jp-shells in detail for all inte- P R D= Fop
ger ranges oh, andn,. (10"

The matrix of the transition integrals between neares{ere n-(¢) is the Fermi distribution and the two doubly
ions _is proportional to the overlap integral degenerate branches of the spectrum are
(16/\/5)7'(111))(’)(2_),2, which is assumed equal to unity be-
low. The remaining matrix elements are calculated according
to thefcc unit cell structure shown in Fig. 1:

2

gre)=x +EP M- oH -,
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1 T n
() — _ (—=N) (N — e
a, '==|1t— — 1, (11 Ke= a, *’'n )= ,
P 2{ gé &)_gé ) )} © pA==* p F(gp 4—-3n,
where £ =2 (112 + ff oto— i, 17
th=sicico+sicoci+socics,  sp=4sirf(py/2), and
2_ n
ci=4 cog(py/2). _= n M (g0 = P
Kp 3 nF(ep) 2p,}\=i ap nF(ép ) 6_5np (18)

The equations of statél0) can be expressed in terms of
integrals of the single variablg, so it makes sense to intro- These functions all depend only bpf o5, which is invariant

duce the density of states function under the cubic symmetry transformatipdefined in Eq.
®)].
ple)= S Se—t?) The coefficientd, . in the equation that determine the
Px Py Pz P limits for ferromagnetic ordering are defined in terms of the

which can be used to write all the sums over the momentumqerlvatlves of the right-hand side of the equations of state:

Given the cubic symmetry, the end factd® can be L Kpe 2 )
expressed in terms of the average occupation humbers of the Lpe=b ob ' where b=gpgefpfet”. (19
one-particle states,

In this case the coefficiengf) =1 and
3,2 )

(0) — (o) 4—3n 6—5n
n) = ny’. e P
be= 2, NS e (20
Since In this range, the electronic states are resonant between the
vacant and one-particle states. Thus, for a small number of
No+ >, n”=1, excitations, no ferromagnetic state develdmsit the system
.7 has elevated magnetic susceptibility.

Concentrations p<<1, 1<n,<2. Let us examine the
situation in whiche,-electrons resonate between one- and
two-particle states, while, as before, the number of
p-electrons is less than onef<1).

(12) The one-particle states ,|0) ande; ,|0) have spin 1/2.
The lowest energy two-particle statés, have spinS=1:

we obtain

2 1
fl=1-n(""— §n§,"), f{=1-n{- Ené").

From this we find the variation in the end factors in terms of
the variation in the average occupation numbers, which are éigé£0|o> (S,=0),
determined by the variation in the external magnetic field: it an
81,8, T8 8, 0)

1 1
onge=—on e, Sf=gzany, f=5 o, 2

(S,=0). (21)

(13 The higher energyE and!A; states are neglected.
. . For a finite external magnetic field, the variation in the
Thee?]er:;m::g?s' f_zllI(()jngc;\;vrl]thb;hese;%u?élon?té)fasn(aé@ fgtr'c?n forend factors depends on the variation in both the one-particle
%I\s/t the vgriatilonlin t’he ond fagtors: wh quati (n,) and two-particle ;) occupa_ltion numbers. Given the
J symmetry of the system under interchange of &ie-37°
fo —r? ande; =v3(x?>—y?) states, we find the variation in the
St =[Ke+Le]6FY)+ ﬂl—db‘fp_ feReaoH, end factors to be

=@ +n@, 5= onl+ sn(®),

(
f I}
(o) — (o), _P _
oty =[Ky+Ly]of )"+ feLpéfe fpRpo6H. (14 f(gg)Znho)‘l”nf_U), 5f(2”)=5nf“’)=—5nf"). (22)

This yields the magnetic susceptibility Therefore, in contrast to the previous “one-particle” case,
here it is necessary to have two independent equations for
the variations in the one- and two-partidestates.

In order to obtain these equations, we multiply the real
part of the expansion of the annihilation operator,

ong ong _ofg _off
=50 o0 2 3

(19

We obtain the possibility of a ferromagnetic instability as the

condition for a singularity in the magnetic susceptibility: ém:gl)“(goﬂl("”ung(goff’\”fﬂ, (23
1—-(Kgt+Ly), —fele/fp whereg,; =1 andg,=1/#2, by an arbitrary linear combina-
€ —flp/fe,  1—(Kp+Lp) =0. (18 tion of the conjugateX-operators,

. . / _ (0,00, (o,—o|0,—
Here we have introduced the functions ¥r=pBX\ol0n 4 g (= al0o),
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Averaging the individualT-products over the states with

given temperature and chemical potential, we find an equa- 1\;\ 9aYa™

tion relating the two particle occupation numberg, the

Fourier components of the virtual one-particle Green funcwe find an equation that is independent of the applied exter-

tion G,(p), and the end factor§ (o), wherek=1,2, and Nal field,

fo(). _ (P (1—Ko) — 2K oon(” = 8117 (1—- K,)
We now calculate th&-products in terms of the zero
loop Hubbard | approximation: + 51‘(2" (1+Kg)=0. (28
_<f(ér (1), Y, (7+ 0))) Here the electron density lies within the intervakh.<2
v and the coefficients are calculated for a vanishing external
= (91 Y )(X & 71879)) + (g, y,)(X(&70IS=0)) magnetic field:
=(@uyn”+(@yIn=T X g,Gi" Ke= 2 ap Vne(é)=25"—
w.peB pA=+ 2+ Ne’

' - . & == > +g2ff tp “, (29

Here 6=0+ is a small positive correction and tlig are the

end factorg22). and

The matrix elements of the one-particle Green function
can be expressed in terms of the inverse matrix, where now _2tne . 675My 5 a2 3 (30
each row and column corresponding to thstates has twice € 12 P 6 ' 9e=0179: 2°

the number of components. The corresponding matrix el
ments are given by the genealogical coefficiegfsin the
expansion28). Thus, for the selected opera®@y, , the first
two rows of the inverse Green function can be written

e\_/\/hengaz v, We obtain an equation for the susceptibilities:

oniy=ofy” + o7 =[Ket Lel 2, gZof”

((0,0)—(0,0)); ,fe
o P (0, 0) (0~ 0); +G5 - Ledlo—GETReroH, (3D
B=1 B=2 s=3,4 where the coefficient  is given by the general equation
a=1 lw— € 0 —f101p2 9 S
=bh—K.= 2 (My4(=N)
a=2 0 iw—€s —f,000" | . Le=b db Ke p,)\EZi tpé‘?p[n':(gp )& s
k=34.. \ —vkor —vhg, s (25) )
_ = 2 ay ne(g),
Hereg,=1, g,=1A2, and the end factors are given by Eq. p.x==*
(22).
Using the explicit form of the inverse matrix elements, it (t)zl

r
T 32
is possible to calculate the sums on the right-hand side of Eq. P 2 Jr 2+4ng f t ] (32
(25). Noting that the energies of the transitions accompany-

ing the creation of the sam-state are the same, we obtain An equation for the variation in the one-partigiestates can
be found from the equation for the occupation numimgran

) detry a way fully analogous to Eq10):
2 9657 (P)=gglio—eo) Goa=T, (26)
. . . . Ny =157 ne(ep) +2 2 apne(¢7) . (33
Taking the sum on both sides of this equation over the

momenta and frequencies, we find a result proportional tQue find the relationship between the variation in the occu-
the genealogical coefficients; : pation numbers and that of the end factéf® using the
general relation(14):

> 2 gaG”(p) 95Ke(H).

w,p a=1

(U)_ (o)
st 2 gaﬁf +[Kp+Lpl6f,

p 2
As a result, we have an equation for arbitrary: gefe“
—f,Ry06H. (34
917’1”nSZ +9272 n(sz Ke(H)B:212987BfB' 27 The coefficientsK, and L, are calculated using Eq$18)
' and (19) with the excnanon energfp given by Eq.(29).
By varying the magnetic field in Eq27), we obtain two Therefore, a system of three equatidi28), (31), and
equations. (34) determines the change in the three end factors, which

When determine the changes in all three occupation numbers.
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g O =n(@4n(® | (7= ni")+ onl”,
] | ""'mnnmm;mg .
i ‘ f=n@+n(®, 5= sn("=—sn(", (38)

3' which are actually the same as those in the two- and one-

particle d-states.
From this we conclude at once that the general E2f3),
which are independent of the magnetic field variation, are

2 i unchanged:
N\ onfi(1—-Kp) —2K,on|” = 8f{7(1-K,)
Sy T
I L +6t57(1+K)=0. (39
1! i The equation for the susceptibility, expressed in terms of the
|
R ii?i“ .H! NV e variations in the end factors, contains twice the number of
0 ! 2 3 n 4 terms on the left and right. Thus, the final equation contains

(4

an extra factor of 1/2 multiplying the variatioéif, of the

FIG. 2. Magnetic phase diagram B 0. Ferromagnetic regions are shaded. One-particlee-states:
Straight lines correspond to the equations of electrical neutrality, with the
upper for MnSi and the lower for FeAl.

anif)= 517+ o =[Ky+ Lol 35 ggof|”

The solubility of the corresponding homogeneous sys- fp
tem of equations determines whether ferromagnetic instabil- +0% 5 > |— p0fe—g5f Ry SH. (40)
ity will develop. As a result, the condition for a phase tran-
sition into the ferromagnetic state has the following simple  The difference shows up only when calculating the num-
form: ber of identical transitions, which is twice as great. The sum
(1=K ) [Ke( 1~ Ke) — Lo( 1/3+ Kg) ]~ L pKo(1— K ) =O0. 81; tgle .sqzu_ares of the genealogical coefficients is also
(35 ~doubled:gy-3. | |

By analogy with Eq.(14) we find an equation for the

Here variation inf with a coefficient that is twice as large for the
_(ne—1) _on, variationséf ,:
o Ene T eeny SH=[K ot LoJOF 42 4L > gror
2K +4 6K, ¢ g5fp %2
ek, ™ 118K, (39 —fReorH. (41)

This equation establishes a relationship between the e
ergiese, and .. Eliminating them using the equations of
state (12) and (17) in zero field, we obtain the magnetic

'Mere all the coefficients are determined fér=0 using the
same formulas, but with different equations #g andKe.

/ . ) : We have

phase diagram in the variables andn,, (see Fig. 2

Concentrations p<1, 1<n,<2. We now examine the n,—1 Ne
situation in which the stateg,=a, py=b, andp,=c reso- Kp= 4—n.’ Ke:—(4_3ne),
nate among one- and two-particle states, while the number of P
d-electrons in thee;-shell remains below unityng<<1). B (2Kp+1) 4K, 47

The one-particle stated, |0), b’ |0), and&;|0) have M=o Kp) Ne= (173K, 42
spin 1/2. The lowest energy two-particle st have spin
szl. 9y P ates P The condition for a ferromagnetic instability has the same

' form (35), but with transposed indiceps+ €:

. afb/ +a/b;y
a:b110) (S=0), lfz L0y (§,=0). (1= Ke)[Kp(1=Kp) = Lp(1/3+Kp) ]~ LeKp(1-Kp) =0
(37) for ne<1, 1<n,<2. (43

We find the six remaining two-particle states via the cyclicThe common property of Eq$36) and (43), which distin-
permutationa—b—c—a. The higher-energy statég and  guishes them from Eq16), is the factorK, and, therefore,

1A, are neglected. Kp, Which reflects the possible onset of ferromagnetism for
For a finite external magnetic field, the variations in thea small number of excitations when—1<1 orn,—1<1.
end factors depend on the variations in both the engdnd Concentrationd <n <2, 1<n,<2. We now obtain the

two-particle ;) occupation numbers. Given the symmetry equations appropriate to the ranged, .<2 by generaliz-
of the system under permutation of the b-, andc-states, ing the results of the preceding two sections. Equati@8ss
we find the variations in the end factors to be (38), and(39) remain unchanged.
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We find two other equations for the two-particle occu-

pation numbers; . by analogy with Eqs(31) and (40):

o= o1+ N =[Ket L) 3] 2ot

f
+2g§—2fiLeZ 928y ,—92feReodH,  (44)
gp p k=12

and

on(?) =

()= ot5n+ ot {5 =K+ Lp]k;2 gz ot

f
2 p 2 o 2
05 5g2r o 2 01470~ GpfpRpo SH.

a=1,

(49)

Here gf,=3, g§=3/2, Ke=4(ne—1)/(2+n), and K,
=2(np—1)/(4—ny).

The equation for the ferromagnetic instability boundary

is symmetric under the interchange-e:
KpKe(1=Kp) (1= Kg) =L pKe(1—Kg)(1/3+K))
+LeKp(1-Kp)(1/3+Ko).

(46)
Here
n,—1 n.—1
p:24p , e:4( e ),
—ng 2+ng
(2Kp+1) Ket+2
=200k 0 T2k, @)

For positiveL, .~1 and a small number of perturbations
Ny e—1<1, the left-hand side of Eq46) is small compared

R. O. Zaitsev and Yu. V. Mikhailova
2

a _ (00,0302
ara_x(r 0.3 )+ \[5

We obtain the expansion of the two other annihilation opera-
torsb= py, and€=p, from Eq. (49) by cyclic permutation.

In the absence of a field, all the average occupation num-
bers and end factors can be expressed in terms, ofthe
average number of electrons per cell. Given the order of the
degeneracy, we have

775

K(Ayzx2)|0f2) . L K(00.0l0l2)
r ‘/?—) r
(49

_5np—6

3n||+4n|||:1, 36

181||+12n|||:np, f

p
(50)

Summing over the spin index, we obtain the equation of
state

np=2-+4f K

ptpe

1

Kp=§

{nF(epHp aﬁnp(fé”)].

A==

2
r 2
\/ > +2fpfetp—,u.

To find the equation of state fét # 0, we write the occupa-
tion number of the three-particle states in terms of the one
particle Green function at the same points.

The equations for the variations in the three-particle oc-
cupation numbersin{®”? and 6n{7"?= — snf; “? can be
' obtained from the general equation for the aver&geoduct

of the annihilation operata@9) and a linear combination of

-+

(51)

() —
gp -

to the right, which reflects the possible onset of ferromagine three conjugate operators with arbitrary coefficients

netism.

Concentrations g<1, 2<n,<3. We now examine the
most complicated case, in which tpeslectrons resonate be-
tween two- and three-particle states. We assume that 2
<3, while the occupation numberg, are less than unity.

The lowest three-particle state has 3/2 and a fourfold
degeneracy with respect to the projection of the spin:

a‘brer|o), s,=30/2,
(48)
5 (85D, 8;10)+a,b5e, |00+, b, 2;10)),
_O'
S=5-

The three lowest triplet states with spin 1 are constructed
from three different pairwise products of creation operators

[see the definitiorf21)].

The expansion ifX-operators of the transition between
the lowest energy two- and three-particle states is determined

by the three genealogical coefficiengs {=p,):

3012 12 —ol2
91 y1Ni 72 + 9o 2P + gz yanfy 7

kg@i;“(p)ynfnexmwé). (52

1<k,n<3 o,p,

The matrix elements of the one-particle Green function can
be expressed in terms of the inverse matrix, where now each
row and column, reflecting thp-states, has three times as
many components. The corresponding matrix elements are
determined by the genealogical coefficiegtsin the expan-
sion (49). Thus, for the selected operatér p,,,, the three
first rows of the inverse Green function can be written

2z

1 3
SO0— 50

2 2

6o =] 20 50):

@ 2 2°)
[2r2)
—EO'—>—§0';
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s=1 s=2 s=3 s=45,... 5f1—5n,3/2 +8n,, 5f2:5n§|}/2):
k=1 iw—€p 0 0 —f101p%
k=2 0 iw—e O  —fygmpP 8ta=anfy ¥¥—any. (58)
— i) — — pl-
ki;:; B :k)gl B v(:'§gz I_wvggéz f:f:ps Jlj]sir?g the additic.)nallconditiorﬁnf,f Y2)= — n(t’?, we find
’ e inverse relations:
(53

onZ2= st + 6f ,+ 5f5,  on(V2=5f,;
Hereg,=1, g,=+/2/3, andg;=+1/3, while the end factors . ' 2 s . 2

are determined by the sum of the occupation numbers for the
two and three-particle states: ony=—of,— ofs. (59)

(30/2) (ol2)

_ 0
fi=ny”?+ny,  f3=n"+ny,

The variation of the virtual Green functia®K ,(H) contains
hr f terms:

f7= (-2 o three types of terms

Using the explicit form of the elements of the inverse matrix,g2 sn(27? + g2 sn{7 + g3 sn(; ’?

it is possible to calculate the sums on the right-hand side of

Eq. (53). Since the energies of the transitions accompanying

the creation of the samp,-state are the same, i.&;=¢,

=e€3=¢€,, We have

f

=[Kp+Lp] > gﬁ&ff(")+ng—eLeéfe—ngpRp(réH,
k=1,2,3 p

(60)

3
2 ka S(p)=gu(iw— €) j;té"”; (54 where the coefficientd ; . are determined by the general

formula (8)

Summing over momentum and frequency on both sides

of this equation, we obtain a result proportional to the genea- _tl N7 &V
logical coefficientsys: Rp=3 nF(ep)+2M=i A Ne(&p ),
3
TE‘;) 2 9G4 (P)=geKp(H). aét)zl 1¢;2]_ 61)
’ 21 r+agif fyr
As a result we have an equation for arbitrary:
_ Thus, we obtain the same equations as Ef§S)—(17), but
(3012) (=al2)
917anfi ¥ + g2 72Nl + gayaniy with different definitions of the parameters:
=K,(H fs. 55
p( )5:2,2,3 OsVYsl's (59 , ) 2_2 2_1 ~ np_2
g°=2, 91_1, 92_5! g3_§’ Kp_95n —6"
If we assume that the vecteris orthogonal to the vector P (62)
g, i.e.,
The equation for the variation in, is analogous in form to
P 9k k=0, Egs.(22) and(23):
then it is possible to obtain two equations that do not depend fo
explicitly on the magnetic field variation. ony=26f0" =L, an 2 gk St + Kot L] 6fe
X . . " g
We find the first equation for the conditiog;y,
=0373, 9272= —20171! —fyRqo 6H. (63
nfl?/z 35”|(|}/2) : (56) Al coefficients are calculated for zero magnetic field:

If, on the other hand, we set,=0 andgs;ys= —J;7y:, then

we have the second equation: n ,
q Ke=r—e—, Re= > alni(&l). (64)
4 3ne p’)\:j

(1—-Kp)(onf§?+ onfi?) — 2K ,6n,, = 0. (57)

The variations in the end factors can be expressed in terms of Thus, we have a system of four equations from which
the variations in the occupation number: we can find the condition for the onset of ferromagnetism:
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1-g%(Kp+Ly) 4/3—g5(Kp+Ly) 1-05(Kp+Ly)

g -1 +2 -1
€ l—Kp 2 l-i—Kp
_gifeLe/ngp _ggfel-p/ngp _ggfe/ngp

Calculating the determinant yields the following condition:
(1=K )[Kp(1=Kp) = Lp(2/3+Kp) ] - LKp(1-Kp)=0

for ne<1, 1<n,<2. (66)
Here
:g(np—Z) __Ne
P 5n,—6" ¢ 4-3n,’
n,=6 37K ne=4 Ke (64)
9-5K, 1+3K,

A comparison of Eqs(66) and (43) shows that upon going

from a resonance between one- and two-particle states to a

resonance between two- and three-particle states, there

simply an increase in the intensity of the effective scattering[
amplitude, since in the latter case the dimensionless ampli-

tudelL, is multiplied by 2/3, twice the value of 1/3 obtained
in the former case.

Concentrations 1<n,<2, 2<n,<3. The matching
equations(41), when written for the variations in the three

particle p-states, acquire an additional term associated Witq

the possible variation in the one- and two-partielstates:

(3012)

2 2 o (012) | 2 o (—al2
gionii"?+ggon|y )+935an| 2

f
=[K,+L 25f D +g2 - L
[ p p]k=§1;2,39k k gp ggfe d

X 212 892 of 7 e 95f pRyoSH. (67)
Equations(37) and (38) for the coupling between the
variations in the three and two-particiestates are un-
changed.
The equation of the typ€31) for the variation in the
two-particled-states acquires three new terms on the right:

ani) = 8f %)+ 6f 1% =[Ke+Le] :21 ) 925t}

f
2 '€ o 2
+ge—gsprek§2’3 8t ,—gafcReooH. (69

Equation (28), which relates the variations in the one-and

two-particlep-states, is unchanged.

We obtain the condition a condition that is fully analo-
gous to Eq(46), but with a doubling of the coefficient of the
dimensionless amplitude,, :

KpKe(l_ Kp)(l_ Ke)
=L pKo(1=Ke)(2/3+Kp) + LK (1 - Kp) (1/3+Ky),
(69)

R. O. Zaitsev and Yu. V. Mikhailova 777
—g?f L,/ fe
0 0 65
o |=° (65)
1-Ke—Le
[
with
n,—2 1-n
(g M2 (-0
(5n,—6) (2+ng)
5 3—Kp 2Ke—|—2 20
=29 5Kk, T 4K, (79

Concentrations 2<n,<4, 0<n,<3, and 0<n.<4,
3<n,<6. For the transition into the region<.<4, 0
<n,<2 we can use the equation from the preceding sections
with a particle-hole symmetry transformation for the
gg-electronsng— (4—ne), Ke—(1-Kg), Le— —Le.

The first two transformations correspond to a transfor-
ﬁréation from particles to holes for the fourfold degenerate
€g-shell. The last transformation corresponds to a change in
he sign of thee-e scattering amplitude upon going from
particles to holes, which leads to a major change in the mag-
netic phase diagram.

The remaining part of the phase diagram fer0,<4,
n,<6 can be obtained from the formulas of the preced-
ing sections using the general particle-hole symmetry trans-
ormationsng—4—ny andny,—6—n,.

3<

3. POWER-LAW DENSITY OF STATES MODEL

Let us calculate the integral@7) and (18) for a model
with a density of statep(e)=(2/3)\ef(e) O(1—€). In the
case of a filled lower subband, for which the chemical po-
tential changes in the negative region frenir/2|\1+s to
—|r/2, wheres=12g7g5ff,t?/r2, for T=0 we have

1 3 sign(r)
_T a3 2>
Kp 3[1 z 5 W(S.Z)],
1 3 sign(r
Kezz[ 1-27%2+ ﬂW(s,z)J . (71
Henceforth we make use of the function
1+s—+z(1+sz
Wiz YIFS=VZI+52
S
1 | Js+1+s -
——In| —m—————|.
svs |\ Vzsti/l+sz

Instead of a negative chemical potentiahere we have in-
troduced the notation- u=+1+sz

For this power-law dependence of the density states, the
functionsL, . are given in terms oK, . by

1 signr) 3 3 3signr) 3
=5~ ——=-5K,, Le=5+—=—35K,.
2 2J1+s 2 4 4J1+s 2

(73
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TABLE I.

Ranges fo Kp efs Sing) Ringj+1 Ty SS
0<ny<1 (6—5n,)/6 n,/(6—5np) 1 0 6 0 tog
1<n,<2 (4-n;)/18 2(n,—1)/(4—n,) 3 1/2 9 1/3 t5
2<n,<3 (5n,—6)/36 9(,—2)/(5n,—6) 2 1 4 2/3 t3
3<n,<4 (24-5n,)/36 4(n,—3)/(24-5n}) 2 32 9 —-5/3 3,
4<n,<5 (n,—2)/18 3(,—4)/(n,—2) 3 1 6 —4/3 5,
5<n,<6 (5n,—24)/6 6(n,—5)/(5n,—24) 1 1/2 1 -1 5,
Ranges fo Ke g2 Sing] Ring+1 T, S
0<n.<1 (4—3ng)/4 Ne/(4—3ng) 1 1/2 4 0 €y
1<ne<2 (2+ng)/12 4(ne—1)/(2+n,) 3/2 1/2 3 1/3 e
2<n.<3 (6—ng)/12 3(ne—2)/(6—n,) 3/2 1 4 —4/3 e
3<n.<4 (3n.—8)/4 4(n.—3)/(3n.—8) 1 1/2 4 -1 €

Heres>0 and the parametervaries from zero to one. The right-hand side of Eq(76) becomes smaller, while the left

amplitudesL , . remain positive for als andz remains unchanged, since it is invariant under particle-hole
In a filled upper subband, for which the chemical poten-transformations fop- and e-electrons individually.
tial varies over the positive range fro/2| to |r/2|\1+s, For this reason, hybridization of states from the lower
we have Hubbard subbands,<3 with states from the upper half of
; the e-subband 2n, does not lead to ferromagnetisfaee
1 3 3 sign(r) .
Kp—§(2+z - TW(s,z)], Fig. 2. o _
The figure shows that for the chosen initial density of
1 3 sign(r) states, ferromagnetic instability does not occur at loyy
Ke:§{1+23/2+ (s, )] (74) <1 either. With a negative chemical potential, the entire

system is spread out over a large number of vagammag-
and netic states and a small number of one-particle states with
signr) 3 spin 1/2_. Thus, in this region_ a gaseous paramagnetic state
p=1-——=—-5K,, does exist, analogous to that in the classical Hubbard nfodel.
2\1+s 2 In the other regions where, for exampig,>1, the sys-
tem is a mixture of magnetic states. The existence of a finite
3 3signtr) 3 _ (75  hegative scattering amplitude for excitations with the same
e 4\/1+ 2°°° sign of the projection of the spifor a positive amplitude for
scattering of excitations with opposite spirisads to ferro-
magnetic instability even when the number of excited states
HS small. A similar result has been obtained elsewfiere.

numbers @<n,<2 and 0<n,<2, ferromagnetic regions can This sort of situation arises during hybridization and si-

ist only f i | f the chemical potent multaneous filling of the lower Hubban and e-subbands.
EE]S 2§)n y for negative values of the chemical potentsle If, on the other hand, the upper subband for éstates

and the lower subband for thestates are filled simulta-

neously, then the physical situation becomes more compli-
4, GENERAL RESULTS AND CONCLUSIONS cated.

tion with constant coefficients, each of which has a certairized subbantﬂnegatlve chemical potentjais filled, we see a

Here also, the parametervaries from zero to one, but the
dimensionless amplitude, . remains negative.
Hence, we conclude that within the range of occupatio

tering amphtude for excitations with opposite spins. When
Kp(1=Kp)Ke(1—Ke) the upper half of the hybridized subband is fillgabsitive
=Le(Te+ Ke)Kp(1—Kp) +LoKe(1—Ko) (T ptKop). chemical potentig) the situation is the opposite: we see a

positive e—e scattering amplitude and a negatipep scat-
(76) tering amplitude for excitations with opposite spins.
All coefficients are defined in Table I. The mutual influence of these interactions is what deter-
The results in the table show that changing the sign ofmines the possible onset of ferromagnetism. The calculations
the e-e scattering amplitude within the range<h,<4 fora  done in this paper indicate that the amplitudes largely cancel
fixed sign of thep-p scattering amplitude in the range for arbitrary concentrations, andn, of the stategsee the
0<n,<3 causes them largely to cancel. As a result, theight half of Fig. 2.
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For comparison with experiments on the ferromagnetidnteraction constant changes sign at some critical volume of
fcc compounds FeAl and MnSi, we note that in this casethe unit cell®
because of electrical neutrality, the total number of electrons  There is yet another possibility, in which the electrical
in unfilled shells in nineng+n,+ns=9. Hereny is the total  neutrality line intersects the line corresponding to integer
number ofd-electrons per cell, which differs from oag, by  values ofn,=[n,], as happens in our case. It can be shown,
6, the total number of electrons in the filleg)-cell. however, that the regiom(—[n,])<|t|/U, within which a

In fact, ng is a fit parameter. According to band transition to localized moments takes place, abuts this line.
calculations), it is 0.84 and 0.82, respectively, for iron and The assumption in this paper of infinite Hubbard enety

manganese. makes it impossible to examine this region, and physical
Substituting these numbers into the condition for electri-phenomena within this narrow rangen,&[n])<|t|/U,

cal neutrality, we find warrant special treatment.
Ne+np,=2.16 for FeAl, ne+n,=2.18 for MnSi. This work was supported by the Russian Fund for Fun-

(77 damental ReseardiGrant No. 98-02-17388

In the figure these lines essentially overlap, with the
electrical neutrality line for FeAl lying slightly below that for , G ) , .

. . . *)E-mail: zaitsev@mbslab.kiae.ru; zam@niitp.mainet.msk.s
MnSi. Both of these lines cross the two shaded regions of I zaitsev@ laeIu; zam@niitp.mal !
ferromagnetic ordering obtained in our model.

Suppose that the average charge of the anions is low: fogj- E t?tl)at%r e;)nd G.R F. Kgsteré;gyzséSR(:@Lg,63498(1954)-

~ N~ ~ ; . Hubbard, Proc. Roy. Soc. .
Al np~1 and.for Sing~2. Then n?‘ 1 fqr EeAI, while 3R. O. Zatsev, Zh. Kksp. Teor. Fiz70, 1100(1976 [Sov. Phys. JETR3,
ne<1 for MnSi. Therefore, we obtain qualitative agreement 574 (197¢).
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The superdiffusion equation with a fractional Laplaci&f{? in N-dimensional space describes
the asymptotic {— ) behavior of a generalized Poisson process with the range
(discontinuity distribution density~|x| =~ . The solutions of this equation belong to a class of
spherically symmetric stable distributions. The main properties of these solutions are given
together with their representations in the form of integrals and series and the results of numerical
calculations. It is shown that allowance for the finite velocity of free particle motiorfor

>1 merely amounts to a reduction in the diffusion coefficient with the form of the distribution
remaining stable. For<<1 the situation changes radically: the expansion velocity of the
diffusion packet exceeds the velocity of free particle motion and the superdiffusion equation
becomes physically meaningless. 1®99 American Institute of Physics.
[S1063-776(19901804-1

1. INTRODUCTION together with

In view of the increasing interest being shown in anoma- BV, =kan(k.t 2
lous diffusion processées’ there has recently been intensive P p(k.b), @
discussion of the possibility of generalizing the diffusion where
equation

ap(r,t) ﬁfsz=fe‘k'ff<r>dk

o =DAp(rb), p(r)=4(r) (1)

_ _ _ o _ indicates the Fourier transform of the functibéfr) and the
by replacing the ordinary differentiation operators with Cor-exponenta is extended to the entire intervé,2). However,

responding fractional-order operators. From the physicajye note that fora—2 formula(2) does not yield the result
point of view, the substitutiond/dt— (d/dt)?, B<1 is

caused by the influences of traps distributed in a medium in  FV2p=—k?p,
which the random time- of particle residence is character-

ized by the probability density valid for normal diffusion and fora=1 the operatoWv?! ,

L differs from the vector operatdf which makes it difficult to
qt)=t A7l toe interpret the fractional differentiation operator as the frac-

with an infinite mean, and the introduction of the fractional ional exponent of the differential operator. o
LaplacianA®? is associated with an anomalously broad dis- ~ 1hese problems are easily surmounted by determining
tribution of particle ranges the Riesz fractional derivative by a standard method, in

a1 terms of the Laplacian, as in Ref. 10, which incidentally is
p(r)eer , . also quoted by CompteThe superdiffusion equation then

This first regime is called subdiffusidfthe diffusion packet has the form
spreads more slowly with time than in cases of ordinary dif-
fusion and the second is called superdiffusiomhere the —p:—D(—A)“’ZP(r,t), ®)
packet spreads more rapigli7® We shall confine our analy- at
sis to the second anomalous diffusion regime, having noteginere the operator-{A)*? is given by
that an equation with a fractional-order Laplacian=(1/3)
was first proposed by Monirsee also Ref.)8in a descrip- (—A)p=F"1k|*Fp. (4)
tion of diffusion in a turbulent medium.

Compté proposed a generalization of EJ) to the case
of superdiffusion in the form

The definition(4) remains valid for arbitrary dimensions
N of the space, whose vectors will be denotedkiandk and
for which the scalar produdt;x;+ ... +kyxy Will be de-
9_P:Dva (r.1) noted bykx, so that the Fourier transform of the function
ot P f(x), xe RN is written as

1063-7761/99/88(4)/8/$15.00 780 © 1999 American Institute of Physics
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p(@(k,t)=e DIk (10)

The constraintv<2 is imposed because far>2 the func-
The fractional Laplacian is expressed explicitly in the formtion (9) loses the properties of a characteristic function, i.e.,

“fzf(k)=f e'**f (x) dx.

of the hypersingular integral its inverse Fourier transform ceases to be a probability den-
1 (AM)(x) sity (it becomes indefinite
(—A)*2f= y , The Fourier transfornil0) satisfies the differential equa-
dnn(@) JrN |y|Nte tion
where ap(®

— _DIKle5@
0 D[k[*p'®,

n n
A (x)= —1”‘( )fx—m
(4yH00 mZ:O =1 m ( Y) which, in accordance with aN-dimensional analog of for-

mula (4), as a result of an inverse transformation, yields an
equation for the probability density

ap' a2 (a
dN’n(a):fR (1—expixy)"|x| " N"«dx. - D(=4) 2pl(x,t), p(x,)=8(x), (11

are noncentrosymmetric differencesis any integer greater
than «, and the normalization factaty ,(«) is given by

which generalizes E(23) to the N-dimensional case. In the
one-dimensional case, the operaterX)*? becomes a Mar-
chaux derivativé? Following Montroll and West? we shall
ocfall this process a lwy process. Fo=2 it is converted

The Riesz theory of differentiation is expounded in detail in
Ref. 10, which is a unique encyclopedia of fractional analy-
sis.

In the present paper we discuss the physical meaning ;
Eq. (3), its solutions, and range of validity. Bearing in mind Into a Wiener process.

the independent importance of one-dimensional and twoé (Ia? dfafgcsgdnalce ;\tl!ghm fgs(gél_o(rllo)’t;hz SC?:JSZOZ? gtfr'tcrzle
dimensional diffusion problems, we shall consider ?pbl ILS' ~qu Ild' tributi H§%4 tl Iy
N-dimensional diffusion. stable N-dimensional distributio or, more accurately,

form a subset of spherically symmetric distributions in this

class which include the multidimensional Gaussian distribu-

tion («=2). The most important characteristic of stable non-
Superdiffusion can easily be described formally in termsGaussian distributions is that the absolute moments

of a generalization of the Wiener process. For this purpose it

is sufficient to write the Kolmogorov—Chapman equation for <|X|u>zf g (x)|x|* dx

a steady-state Markovian process with independent incre-

2. LEVY PROCESS

ments are infinite for u=«. Infinite dispersion implies that a dif-
ferent measure must be used for the width characteristic of
p(X,t)zf p(X" t")p(x—x",t—t")dx’, (5) the diffusion packet, for which it is convenient to take the

radiusR,(t) of a sphere containing the fixed probabilgy
xx'eRN, tt'eRl, o<t'<t, p(x,00=8(x),

(a) =
and analyze the class of its self-similar solutions L<Rp(t) P 1) dx=p.

p(x,t)=(Dt)"Meg®(x(Dt)"¥), D>0, a>0. (6)  Substituting Eq(6) and changing the variable of integration,

A Fourier transformation converts Eq&) and (6) to the ~ We obtain
form j "
R R - g'“(x) dx=p.
p(k,t)=pl(k,t")p(k,t—t"), x| <Rp(t)(Dt) e
which implies that

Ry(t)oct,  t—oo.

p(k)=g(k(DH), keRMN.
Introducing the notation Bt)Y*=x\, (Dt')¥Y*=X,;, and

(D(t—t"))Y*=\,, we can see thaj(*)(k) satisfies For =2 we have a normal rate of expansion of a diffusion
. ~ . packet, whereas for<<2 its width increases more rapidly
In g‘(Ak)=In g (\ k) +In g (A k) (7)  than in the normal case.
for
A= NI, (8 3 SPHERICALLY SYMMETRIC STABLE DISTRIBUTIONS

One-dimensional stable laws were analyzed in detail in
Refs. 13 and 15. We shall discuss in greater detail some
properties of theN-dimensional stable densities

For spherically symmetric distributiong(®)(k) only de-
pends onk| and then the solution of Eq7) is (see Ref. 11

gk)=e X  o0<a=2, (9)

and in consequence g(Na)(X):(zTr)fo exp{ —ikx—[k|*} dk, (12)
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in terms of which the solutions of the superdiffusion equa-is a series form of formul&14). Unlike formula (13), this
tions are expressed iN-dimensional space. For the first representation does not contain oscillating functions in the
three dimensions, allowing for the spherical symmetry of thentegrand and is thus more convenient for numerical calcu-
characteristic functions, formuld2) has the following form: lations (for =1 such a formula is not required, since the
. densities are expressed in an elementary form given below
g(l")(x): W—lf e‘S"cos(s|x|) ds, The densme:g )(x) are only expressed in terms of el-
0 ementary or special functions in exceptional cases:
2 _ 2
070 =(2m)* | “e aq(slx)s ds g0 = (4m) "N
° — Gauss law(with a dispersion of 2

gl (x) = (2m2|x|) 2 fo ~s"sin(s|x|)s ds g’ )=T((N+1)/2)[ m(1+x?)]~ N+ 172

) ) ) — Cauchy law
For arbitrary dimensiortd we have

V3 T(N/2+ 1/3)T(N/2+2/3)
62 T (5/6)T(7/6)

. (2/3) () =
g (x)=(2m)"~ N’Zfo ~S I a(slx)) N (x)

_ 2
x(s|x|)L-N2sN-1 s (13) X |x| “NeZZPIW _ 1, 1/ 41(27%2)),

The functionsf (r) which determine the dependence of the Where
spherically symmetric densities on the vector magnitade 2ve22

=|x] Wl =T =5 1)
n(IxD) =g ) :x:
—t +v+1U2iu—v—1/2
are related by the differential equation X fo e (1+tz)* t dt
dfy/dr=—27rfy,a(r). (14 is a Whittaker function. The densigk2(x) for odd dimen-
In addition to the integral representati¢td), represen- SIONSN=2n+1 may be expressed in the form
tations of the stable densities in the form of two series are 1 1\ (N=1)12
also useful for computational and analytical purposes: g(l’z)(x)— 7 f tNTIL\(t]x])sint dt,
0
g’ (0 = —(|X| Jm) N where
0 dn
«S (- 1)n_1f((na+ N)/2)T (na/2+1) La(Vs)=—(s+1/4) %2 s>0.
=1 I(n+1) ds

X sin anm/2)(|x|/2) " For instance, we have

2 (1/2) - 3/
g,(\,“)(x)zz(z\/;)*’“ (X) J (t|x]+1/4)~*sint dt,

 T((2la)n+Nia)
XE( D TN T+ 1)

The first series converges fare (0,1) and is asymptotic for and so on. We note however, that the formulas given above

ae(1,2), while the second converges in the range for g§{’? contain an alternating-sign function in the integrand

€[1,2] and is asymptotic for e (0,1). and consequently have no particular advantages over the for-
Another integral representation for odd dimensions carimulas of the inverse Fourier transformati®) and (13).

be obtained from the symmetric one-dimensional density ~We shall discuss another distribution which describes a
written in the fornt® random electric or gravitational field intensity created by a

Poisson ensemble of point sourdétltsmark distribution

2n 3 °e)
M) . |o\%1’2)(x)=@|x|lj0 (t|x|+1/4)~ ¥ sint dt,

(@) @ Va-1) [
01700 =g [

1
g2 (x) = P |3f exp{— (z/|x|)¥3zsinz dz

xexp{—|x|**" DU (@)} de, (15
where 3
Y [3|X|3U3/2((P) 2U ()]
U oy [Sae)| e Yoot (a-1g) 2w
ol@)= cose cosp = T XeXp{—|X|3U3/z(<p)}d<p,
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2 2
f||> a$¥d(x) dx=— fo (143U @)r3)e Ysdo’ dg. [dpo(x,t)]+=fdx’p(x’),upo(x—x’,t—|X’|/v)dt.
X|=>r

The distribution of peculiar velocities of galaxies in the uni- AS & result we obtain the following equation fpg(x,t):

verse is associated with this distribution which can then be 5, x|
used to estimate the most important cosmological parameter, —-—= —MP0+MJ dx'p(x")po| X=X, t— T) 17
viz., the average density of mattér.

Values of the densitieg§”’(x) and their graphical rep- Having noted thap(x)dx is the probability that a par-
resentation can be found in Refs. 17 and 18. ticle leaving the origin will undergo the first collision in the

volume elementdx=dSdx|, we denote byP(x)dS the
probability that the particle intersects the elementary diga
of a sphere of radiulx| without interacting over the patx|.
The contribution to the densityp, of this particle is

It was noted in Sec. 2 that the width of a diffusion packet(1/) P(x) 8(t— [X|/v). Replacingx by x" and applying this
described by a Ly process increases &%, For a<1 it rgs_ult to all partlcles Igavmg the traps and reaching the vi-
increases more rapidly than in the ballistic regithe., free ~ CiNity Of the pointx at timet, we obtain
motion of particles with a bounded maximum velogityhis 1 [x'|
clearly nonphysical result is attributable to the self-similarity Po(%) = J dx'j dt'P(X,)‘S(t,’ T) MPo(X—X",t—t")
of the Levy process, in which the concept of the velocity of
free particle motion has no place. This situation is not con- 1
fined toa<<1, but the effect is observed more clearly in this
limit. For a>1 as far as the limiting value=2, the self- In three-dimensional space with an exponential range
similarity effect is manifested in the way a distribution distribution the system of equatioii$7) and (18) describes
p(x,t) at a time arbitrarily close to the initial on@hen the  the nonsteady-state transport of neutrons allowing for a delay
particle was located at the origis nonzero throughout all  and, apart from a few detailshe absence of absorption and
space(this “defect” was noted by Einstein in the theory of scattering processes, and constant velpcigequately de-
normal diffusior). scribes Egs(1.13 and (1.14) from Ref. 19. Foru—0 this

This defect can be eliminated by converting from thesystem yields the time-dependent single-velocity transport
Wiener model to the random walk model of a particle with aequation with isotropic scattering widely used in neutron

4. TRANSPORT EQUATIONS

= f dx'P(X") upo(x—x",t—t"). (18

finite velocity of free motiorv. physics'®? In view of this we shall describe Eqél8) and
We shall consider the following model. At zero tinhe (19) as transport equations.
=0 the particle is located at the origis=0 and resides there In the limit v =2, only one term is retained in the sum

for a random timer,, after which it is displaced by a random (16):
vector ¢, at velocityv and again resides in a rest state for a _
random timer;, and the process then repeats. All random p(X,1)=po(X,1),

variablesry, 71, &, 72, &, ... are mutually independent which satisfies the Kolmogorov equation
and the timesr; have the same exponential probability den-
sity a—f=—,u,p+,uJ dx'p(x")p(x—x",t), (19

(=pe *, u>0. - . .
q _ a _ a o o describing a generalized Poisson process.
The N-dimensional vectorsg; are also distributed similarly. Returning to a probabilistic interpretation of these equa-

Instead of a single particle, it is convenient to consider &jons, we shall consider a common initial condition for them:
set of independent trajectories and talk of the dengs{ty;t)

as the particle number density. p(%,0) = po(x,0) = &(x).
Hence in this particular case the particle dengify,t)
consists of two componentg(x,t) andp,(x,t), which refer

to particles in the rest state and in motion, respectively: 5. RELATION BETWEEN SOLUTIONS OF THE
KOLMOGOROV EQUATION AND THE SUPERDIFFUSION

p(X,t) = po(X,1) + p, (X,1). (16)  EQUATION
t(r31ver the ti;nedt the density of particles in traps changes by We shall transform the Kolmogorov equatidt9) to
€ amoun give an equation for the characteristic functjefk,t) of the
dpo(X,t) = po(X,t+dt) — pg(X,t), distribution p(x,t):

which consists of two components. The first, negative, com- 5, . . .
ponent is attributed to particles leaving the traps ot = #I=p(]pckt),  pk0)=1, (20)

[dpo(X,0)]-= = mpo(x,)dt, wherep(k) is the Fourier component of the probability den-
while the second, positive, component describes the entranasity of the transitionp(x). The solution of Eq(20) has the
of moving particles into traps: form
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p(k,t)=exp{—[1—p(k)]ut}, (21)
and its asymptotic behavior far—o is determined by the

behavior ofp(k) for small|K].
If the second moment of the distributigr{x) is

f P(x)x2 dx=£2<0, (22)

then
1-p(k)~ (£22)k?,

and the characteristic functid21) for larget has the form

[k|—0,

p(K,t)~padk,t)=exp{— (ut&?2)k?}. (23)
Since
Ipadkt)  p&

z9t 2 kzi)aikvt)a

Zolotarev et al.

The result(25) can also be obtained more simply on the
basis of the properties of stable laws. In the same way that,
provided that the second momei@R) is finite, the normal-
ized sum

sn=(Bn>*l’221 &, B=&

of n independent random vector§ for n—o has an
N-dimensional Gaussian distributidoentral limit theorem
if condition (24) is satisfied the normalized sum

n
Si=(Bn)7M X &, B=B(aA), (26)
=

for largen is described by a stable distribution with the ex-
ponenta (generalized limit theorem The distribution of the
number of terms over timeis given by the Poisson law with
the average= ut and the relative fluctuationsut) ~*2 In
view of this, for ut—oo in formula (26), n may be replaced

the density corresponding to this asymptotic form satisfieby ut. Bearing in mind that as a result of this substitution

the ordinary diffusion equation

IPas
ot

=DApadX,t)

with the diffusion coefficient
D=ué?/2

and the initial condition
padX,0)=5(x).

31, & yields the random vectdf(t) of the particle position
at timet, we obtain

&t)=(DH)Y*¢, D=Bup, (27)

where{ is a random vector with a symmetric stable density
g¥(x), from which formula(25) follows.

6. EFFECT OF FINITE VELOCITY

In order to allow for the influence of the finite velocity
of free motion of a wandering particle on the asymptotic

We have focused on this generally trivial fact ip order toform of the distributionp(x,t), we need to return to Egs.
emphasize that the asymptotic form of the solution of Eq(17) and (18) and make an analysis similar to that made in

(19 subject to the conditiofi22) is an exact solution of the
ordinary diffusion equation. When conditig@2) is not sat-
isfied but the following condition is,
J p(x) dx~AR™ %, R—®, (24
[x|>R

the asymptotic form of the solution of E(L9) is the same as

the exact solution of the superdiffusion equation, which is

easily confirmed bearing in mind that
1-p(k)~A'lk|]%, k=0,
and deriving instead of Eq23)
p(K, 1)~ pad k,t) =expf — wtA’[k|*},
In accordance with Eq¢6) and (10), we have
pad k) =p@(x,t)=(Dt) Mgl (x(Dt) "),
where

D=puA’".

t—o0,

(25

In other words, the superdiffusion equati¢hl) describes

Sec. 5 for the Kolmogorov equation. We performed such an
analysis, but because of the involved nature of the math-
ematical calculations we shall confine ourselves here to an
elementary derivation which yields the same result as a more
rigorous analysis.

For a finite velocityv the vector sum

sn=<Bn>*1’“i§l &,

corresponds to the random time

n
g.
0:2 (’Ti+ u .
=1 v
In the casea>1 the mathematical expectatidg;| is
finite, and forn—o, since the numbers are large, we can
assume

O~t=n(l/u+alv), a=|§|. (28
Then by findingn

n=(1+ualv) ‘ut

the asymptotic behavior of the distribution density of a par-and introducing the notation

ticle wandering at infinite velocity in a medium containing
traps for which the residence timehas an exponential dis-

t,=(1+pualv) i,

tribution and the rangdjump) distribution density has a we arrive at the same result as in Sec. 5, except that

power tail of the formr ~ ¢~ 1,

appears instead af
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padx,H)=(Dt,) Naog@(x(Dt,)"Y?), a>1. (29 P

Physically, this result is quite understandable: the presence
of a finite velocity of free motion slows the expansion of a 1=20
diffusion packet compared with the case=e. Replacingt
by the shorter time¢, immediately allows for this slowingn
the asymptotic senge

Since the diffusion coefficient and the time appear as a — ‘ t=10
product in the asymptotic density, the res(@9) may be \\\ /3‘
rewritten in a different form: % *

padX,1)=(D,t) Vg @(x(D,t) 1), a>1,
where -160 -80 0 80 160 x

D,= (1+ ,u,a/v)le. FIG. 1. The distributiorp(x,t) in cases of one-dimensional superdiffusion
. . ) ) ) ) for «=3/2, n=1. The histograms give the results of Monte Carlo simula-
This allows us to write a fractional differential equation for tions (1¢ trajectories,u=10), which give the solution of the transport
the asymptotic density of a particle diffusing with a finite equation€17) and(18). The solid curves give the solutions of the hyperdif-
velocity of free motion: fusion equation(11) usingD, instead ofD.

dp
&taS: —D,(— A)alzpas(xvt)-

R=vt. Hence fora>1 the influence of the lagkinematig
Thus, allowance for a finite velocity merely altgreduceg  constraint becomes weaker with time because the packet ra-
the diffusion coefficient in the equation with a fractional La- dius increases more slowly th&~uvt. However, fora<1
placian, which preserves the form of the asymptotic distributhe distribution given by the diffusion equatiéhl) spreads

tion described by a spherically symmetric stable law. How-more rapidly thanR=uvt and the kinematic constraint be-
ever, this conclusion only holds far>1, which was used comes a dominant factor in the formation of the asymptotic
for the substitutior{28). For «<<1 the situation is completely distribution. Being compressed by a sphere of raiesut,
different: in cases of finite velocity the asymptotic distribu- this distribution is completely different to the stable distribu-
tion cannot be reduced to a solution with-c by any linear tion. This probably means that E(l.2) with a Laplacian of

transformation. degreea/2, wherea<1, cannot generally be applied to de-
This last factor is easily understood through the follow- scribe real diffusion processes.
ing reasoning. It was noted in Sec. 2 that the widtha- The results of a Monte Carlo simulation of the one-

dius”) of a diffusion packet increases with time proportion- dimensional random walk of a particle compared with the
ately ast¥®. The presence of a finite velocity causes thesolutions of the superdiffusion equation plotted in Figs. 1-3
distribution density to vanish outside a sphere of radiusonfirm the conclusions reached above: it can be seen that

P
0.004—
FIG. 2. Effect of finite velocity ¢=3/2, n=1, andt=10°.
The histogram gives the results of a Monte Carlo simulation
0.002— (2% 10 trajectories,u=5) of the solution of the transport
e equation; the dashed curve gives the solution of @d) with
the diffusion coefficienD (v==), the solid curve gives the
solution with the coefficienD,, .
A
A}
i \\
T N
Al N
] — | Slmmmlmm..;‘.....
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A
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X t=100
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n_ o i A FIG. 3. The distribution p(x,t) for one-
s e dimensional superdiffusion fax=1/2 andu=1.
The histograms give the results of the Monte
Carlo simulation (16 trajectories,v=10), the
| solid curves give the solution of E¢L1).
HHHE T t=50
t=20
1 1
-1200 1200

for a=3/2 replacingD by D, ensures asymptotic agreement This last observation may be a sufficient basis for con-

between the solutions of the superdiffusion and transporéluding that the superdiffusion equation cannot be used to
equations, whereas far=1/2 the solutions of these equa- describe real physical processes for characteristic exponents

tions are completely different. a<l.
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Space—time nonlocal electrodynamic equations are derived for nonlinear vortex states of a
Josephson junction in a film of thickness much smaller than the London penetration depth. The
spectrum and damping of generalized Swihart waves propagating in such a junction are
analyzed. The radiation damping constant associated with the possible emission of electromagnetic
radiation is determined in the range of Swihart wave phase velocities exceeding the speed

of light. The emission of radiation from nonlinear states having dimensions greater than the
distance traversed by light in vacuum during the characteristic time of variation of the

phase difference is investigated. It is shown that the flux density of radiation emitted by such
states is localized in a plane orthogonal to the axis of the tunnel junction and depends

weakly on the angle of observation in this plane. 1©99 American Institute of Physics.
[S1063-776(19901904-9

1. INTRODUCTION Bearing these special features in mind, in Sec. 2 we de-
rive an equation for the phase difference, taking into account

The radiative properties of Josephson junctions has aboth the spatially nonlocal coupling effect and the possibility
tracted the attention of specialists for many ye@ee, e.g., of emitting electromagnetic waves. We obtain a
Refs. 1-3. Many theoretical and experimental papésse new space—time nonlocal integrodifferential equation for
the survey in Barone and Paterh&ec. 11.4 have been the phase difference, which goes over to the standard
devoted to the investigation of microwave radiation fromequatiot?>~**when time dispersion is disregarded. Using this
Josephson junctions having dimensions much smaller thatype of nonlocal equation for the phase difference, in Sec. 3
the wavelength of the radiation itself. Another avenue ofwe find a dispersion law for generalized Swihart waves. We
research is directed toward the properties of long Josephs@how that in the range of phase velocities lower than the
junctions, along which it is possible for both Swihart wavesspeed of light the dispersion law differs from the previously
and solitons to propagate. Long junctions afford the possibilestablished law when interaction between a surface electro-
ity of studying such phenomena as the interaction of a Swimagnetic wave and a Swihart wave is significant.
hart wave with a surface electromagnetic wawmd the The difference is even more pronounced in the limit of
emission of electromagnetic waves by moving vortit€s.  superluminous phase velocity, when not only is the real part

Another property of long junctions is the possibility of of the Swihart wave frequency renormalized, but additional
the emission of Swihart waves and the existence of nonlineatamping is also induced by the emission of waves. The ra-
vortex states. A quantitative description of the emission ofdiative damping constant is determined, and it is shown that
radiation from a waveguide sandwich has been descfibedin a low-conductivity tunnel junction it can exceed the damp-
on the basis of a systematic analysis of electromagnetic fieldsig constant associated with Ohmic losses.
in superconducting electrodes and vacuum. According to In Sec. 4 we determine the directivity pattern of the ra-
Ref. 10, the emission of electromagnetic waves leads to furdiation emitted by the Swihart wave. If the ratie= w/ck, of
ther damping of the Swihart waves, whose phase velocitiethe Swihart phase velocity to the speed of light is close to
are higher than the speed of light. The emission phenomenamity, 0<v?—1<1, waves are emitted along the tunnel
is most conspicuous when the thickness of the sandwicfunction. But in the limitv>1 the radiation fluxS is mainly
electrodes is smaller than the London penetration depth, artbncentrated in a plane orthogonal to the axis of the junction.
the electromagnetic field easily penetrates from the Joseph- We find the explicit dependence of the flux density on
son junction into vacuum. the angle of observation in this same plane.

The emission of electromagnetic waves can be expected Section 5 is devoted to the emission of large-scale non-
to be even simpler for a Josephson junction in a thin filmlinear distributions of the phase difference with characteristic
whose thicknesB is much smaller than the London depth ~ dimensions much smaller than the distances traversed by
Another feature of Josephson thin-film electrodynamics idight in vacuum during the characteristic time of variation of
the large penetration depth of the field into the film,the phase difference. Such distributions are described in the
Ae=A2/D>\ (Ref. 11, which makes it critical to utilize the first approximation by the same functions as the nonlinear
nonlocal coupling of the magnetic field with the phase dif-oscillations of a mathematical pendulum. We show that the
ference of the wave functions on opposite sides of a tunnaiadiation flux emitted by large-scale nonlinear structures is
junction!? concentrated mainly in a plane orthogonal to the axis of the

1063-7761/99/88(4)/12/$15.00 788 © 1999 American Institute of Physics
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tunnel junction and is constant over a wide range of angles of

observation in this plane. The spectral composition of the  V(y=0r,t)=
radiation depends on which solution of the mathematical

pendulum problem describes the nonlinear state. The spe&guations(2.1)—(2.6) can be used to relate the electromag-
trum of the radiation contains odd harmonics of the funda-netic potential to the phase difference at the junction:
mental for the solution corresponding to finite-amplitude os-

cillations, and it contains even harmonics for the solution P(z,1)=21(0.2, 1) = P2(0,2,1). 2.7
corresponding to a rotating pendulum. If the nonlinear state |t is evident from the symmetry of the problem and Egs.
is described by a solution of then2kink type, a continuous  (2.1)—(2.4) that the potential,(r,t), A,(r.t), andV(r,t)
spectrum of frequencies lower than or of the same order agre even, and\(r,t) is an odd function of the argumentlt

e (9t¢)(r” 1. (2.6)

the Josephson frequency is radiated. is therefore sufficient to find a solution of EqR.1)—(2.4)
for y=0 and to use the boundary conditions
2. BASIC EQUATIONS bo 9
r,t t
We consider a Josephson junction in a superconducting é’y Al )|y o~ 2)\ 2m :9r o

thin film symmetrical about the plang=0. We assume that
the thickness of the filnD along they axis is much smaller +A(y=0r ,t)}, (2.9
than the London penetration depth We also assume that
the tunneling of Cooper pairs takes place through a nonsu-
perconducting layer of thicknesdd2riented symmetrically
about the axix=y=0. To characterize the electrodynamics where the vecto”\| has only the component, and A, .
of this junction, we use the equations for the vector potentiaEquation(2.8) follows from Eq.(2.2) when the continuity of
A(r,t) and the scalar potenti&(r,t) in the form the potentialsA(r,t) andV(r,t) aty=0 and the oddness of
. _ the derivatives)A | /dy is taken into account. Conditiai2.9)
divA(r)=0, @1 follows from the H(:ontinuity and oddness of the functiap
) 19 and implies that the current does not have a compopgent
VEA(r, 1) — 22 72 A -2 —gradV(r 0 given by(2.4) normal to the surface of the film. We write the
solution of Egs.(2.1)—(2.4) in the domainy=0, subject to

Ay(y=0,rH,t)=0, (2.9

2

_ 4w . the boundary condition$2.8) and (2.9), in the form (see
== dWDj(r.b), 2.2 Appendix A
VaV(r,t)=0, (2.3 A(r,t)
where ¢ is the speed of lights(y) is the delta function, V(r,t) (27-; f d“’j dkf dt’
j(r,t) is the current density in the filnry=(x,0,2),
. c | ¢o wa dz' o(z',t")exdiow(t' —1)
j(rH,t)Z——4ﬂ_)\2 Egrad(l)(r,t)+A(y:O,r||,t)}, Cw H
(2.9 (9
¢o=mticl|e| is the quantum of magnetic fluk, is Planck’s +ik-r—ik2' 1= g |- (2.10
constantg is the electron charge, G|
O(ry,t)=n(=x)P1(r),t) + n(X)Pa(ry,t), (2.9  In Eg.(2.10 we have introduced the functions
7(x)=1 (x>0) andn(x)=0 (x<0) denotes the Heaviside K2 G+ 2\ K2
unit step function, ane4(r,t) and®,(r,t) are the phases gxz?xexr(—ky)— T}\exexp(— wy), (2.1)
of the wave functions of Cooper pairs on opposite sides of o
fche tunneI_Junctlo_n. The dlsplacement_current, Wh_|ch is small gy =ik,[exp —ky) —exp( — py)], (2.12
in comparison with the superconducting current in the film,
is omitted in Eq.(2.4). Moreover, Eq.(2.5 disregards the kK, e
finite thickness of the tunnel junction, and the expression for ~ 9z= =, —| XA —Ky)— mexp(— gy)|, (213
the superconducting current density in the fijlsee Egs.
(2.2) and (2.4)] is written in the form of the delta function o Ky
8(y). Equations(2.2), (2.4), and(2.5) are therefore suitable 9 =7 1 EXR—ky), (2.14

for describing electromagnetic structures having spatial _ .
scales that exceed both the width of the tunnel junctidn 2 andG and ¢ are given by the expressions
and the thickness of the filrD. o 2, 2

Owing to the gauge invariance of the theory, the scalar G=y=2hew™/c, (219
potentialV(y=0,,t) in the sup_erconducting film is related = \/m 7(c?k2— w?)
to the phase of the wave function by the equatisee, e.g.,

Ref. 1 w?lc?— Kk p(w?— )Sghw. A
f. 15 —iJwcZ—K2 9( c?k?) (2.16
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Augmented with the notatio(2.11)—(2.16), Eq.(2.10 estab- P he 92

lishes coupling, nonlocal in time and space, between the 7— 7 Ex(x=0y=02zt)= 75— T6xleld predatay (2.20
electromagnetic potentials and the phase difference of the

wave functionse(z,t). The integrand in2.10 has a singu- wherej . is the critical Josephson current density, andnd

larity at G=0, where e are the conductivity and dielectric permittivity of the tun-
5 1 nel junction, respectively.

w- Thus, the sum of the current.18—(2.20 must be set

= = (J1+ 160 2K? —1)<1. 2.1 :

c°k 8)\ek2( e ) .19 equal to thex-component of the currern®.4) atx=0, so that
Equation (2.17) describes the dispersion law of a surface . B 9 1 4 B jx(x=0,z,1)
electromagnetic wave for which the components of the vecSIN¢(z.t) + Wt ezt + o’ ez = i
tor potentialA, andA, are even, and, is an odd function of (2.22)

the variabley. The singularity atG= O is correctly bypassed
if the energy losses of the surface electromagnetic wave i
the superconducting film are taken into account.

The above solution of Eq$2.1)—(2.6) with the bound-
ary conditions(2.8) and(2.9) enables us to relate the vector

where g=4mals, and wj=4m(dcj./e $o)® is the Joseph-
son frequency. Using the explicit expression fpg(x
=0,z,t), we arrive at an integrodifferential equation for the
phase difference:

and scalar potentials in vacuum and in the superconducting B 9 1 9?2

film to the phase jump between superconductors separated Sine(zt)+ 7 FeZH+ — W(P(Z,t)

by a contact, whose physical properties have not yet been “]

taken into account. The solutiof2.10—(2.17) is obtained > ) o , ,

from Eqgs.(2.1)—(2.4), (2.6), which are applicable outside the :_4”‘4_%‘12 f_xdt ¢(z',1)Q(z—2",t—t"),
contact, but this solution, in turn, gives the form of the solu-

tion only as a result of the presence of the phase jump in (2.22
transition across the contaatee Eqs(2.5-(2.7)]. where 1=\/N, \j=(Cho/Njo)"¥4m is the Josephson

This problem has to be solved in order to obtain an equawavelength, and the kern€l(z,t) of the space—time nonlo-
tion for the phase difference at the film-separating transi- cal coupling has the form
tion layer, which corresponds to the phase jump of the su-

perponductor wave functions. Such an equation can be Qzt)= f exp(lkzz o) Q(K,,®),
derived by the approach of Refs. 12 and 13, according to 27 .2
which Egs. (2.10—(2.17 are used to calculate the (2.23
x-component of the supercurrent density at the corftefct dk. 1 e W22
(2.9] _ % z X
Qe )= 5 2| T 2gne Y2 2nge?
: C | %o .
x(x=0,2,t) == 7—=5 )\2{2 =2 lx=o0 =Q'(K,,0)+iQ"(K,,w). (2.29

Of course, there is an alternative approdske, e.g.,

+A,(x=0,y=0, 2, t) Ref. 1) utilizing the Maxwell equation at the contact

T & JdE
in terms of the phase difference at the contact. Here, accord- curlH= —j + = —

ing to Egs.(2.6) and(2.10), we have cdt’
c & . . . where the magnetic field determined by the potential$0
j\(x=0zt)=—— _04J de dkf dt’j dz' is used for the left-hand side of this equation. It can be con-
Am\® (2m)" ) - —o —o firmed that the equation obtained for the phase difference in
L . N , this case is the same as the one obtained by our approach,
Xe(z' U)exdik,(z=2") —lo(t=1')] which is taken from Refs. 12 and 13 and is based on the
1 G+2)\ek§ condition of continuity of the current.
XE m Using the functiony (2.16), we can write the imaginary
e part of the Fourier component of the kergl(k, ,w) in the
On the other hand, according to Refs. 12 and 13, thdorm
supercurrent through the Josephson contact is equal to the
sum—3 of the Josephson current

ayalw?+ w?—c?k:

1
Q"(kpw)Z{m

2
the conduction current c’k; o] w
ho 4 Valw?+ w?—a2c?k? 2¢2
oE(x=0,y=0,zt)= —o(z,1) (2.19
X 4le|d at X p(w?—c?k2), (2.29

and the displacement current where
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a=2\ wl/c. (2.26  where|po|<1. Replacing sip by the argumenty, we then
obtain a dispersion relation describing the relationship be-

The expression for the real part of the Fourier component of aen the frequency and the component of the wave vec-
the kernelQ’ (k,, ) is more cumbersom@ee Appendix B ., k,:

but it has comparatively simple asymptotic representations in

important limiting cases. In particular, fdw|<c|k,| and - , 4 .
a<1 we obtain the following from EqgB1) and (B6): o™ +ipo—wj=4-5c Q' (k;,0) +iQ"(kz, ) ].
2 w2 (3.2
’ _ z
Q'(k; w)= ?Q(Z)‘J ko)~ ﬁln dlk,|’ (227 \We now examine the consequences of &2 in the most

interesting case, when
where the functiorQ(x) has the forni* J

1 |w|<c/2\g=cDI2\2. (3.3

2 X—=1

Q(x)= arctan - (2.28 If the typical values of the London depth axe-10 °cm
-1 1+x yp p

and the thickness of the superconducting fil~3
In the low-frequency limit, when the second term in Eq.X10 "cm, inequality (3.3 is satisfied for |w|<5
(2.27) can be disregarded, the Fourier component of the kerx 10'*s™*. Besides this condition, as usual, the following
nel Q(k,,w) (2.24, (2.27) goes over to the well-known re- inequality is also assumed to hold:
sult of Ref. 14. In the general case, in contrast with Ref. 14,
Q(k,,w) depends on the frequency. Frequency dispersion |l <AlR (3.4
sets in as a result of the sequential description of the electrqA is the width of the superconducting gapvhich gives
magnetic potentials in vacuum and can be exploited, in party|<1.4x 10%s ! for A~100K.
ticular, to investigate the influence of the vacuum field onthe  we first discuss the consequences of E}2) in the
dispersion properties of a Josephson junction. Frequency difmit of Swihart wave phase velocities much lower than the

persion is especially conspicuous in the lirnif>c|k,|. speed of light,
In this limit, but for «<<1, we obtain the following from
Egs.(B1) and (B7): |w/k,|<c. (3.5
k2 c w2 c In this limit we haveQ”(k,,w)=0 [Eg. (2.25], and the real
Q'(kz,w)=—IN—F—=———In7——. (229  part of the Fourier component of the kerr@l (k,,w) is
T A|o| wct dow|

described by Eq92.27) and(2.28. Substituting Eq(2.27)
We note that Eqs(2.27 and (2.29 are well matched for into (3.2 and assuming that=w’ —iy=w’, which is valid
|w|~c|k,|. This means that fon<1 Egs.(2.27 and(2.29  for small 8, we obtain a relation between the real part of the
are sufficient for describing the whole range of the parameteitequencyw’ and the component of the wave vecigr.
|w/ck,|.
In closing this section, we emphasize that EB.22 1+ik2”\ Q(2)k,)
takes into account Ohmic losses of the current flowing across R e
the Josephson junction in accordance with Ejj19. This @ = Ak, '
property is consistent with the model of Refs. 16 and 17 and
its elaboration in Ref. 18. The equation does not take intgvhere the functionA (k) exhibits a logarithmically weak
account Ohmic losses in superconductors due to the presengeépendence ok, :
of normal electrons, whose inclusion in Ref. 19 makes it 4 d 1
possible to broaden the nonlocal description of dissipationin = A(k,)=1+ — —In(— ) (3.7
Josephson junctions with a high critical current density. Our 7 eD ldk,
disregard for he contribution of normal electrons in super-pe dispersion law (3.6 differs from the standard
conductors is admissible, first, at sufficiently low tempera-,grsiori4 20 by the functionA(k,) in the denominator; its
tures, when the fraction of normal electrons is small, andpyresence can be interpreted as a consequence of the influence
second, when the states in question are found to have suffst the surface electromagnetic way217 on the Swihart
ciently long wavelengths, as is true in the problems of wave, 5ve. For typical Josephson junctions in a thin filt 2nd
emission from a Josephson junction discussed below. D are of the same order amd-2, so that 41/ meD~0.3. On
the other hand, the characteristic scales of variation of the
phase difference along theaxis are of the order of,, i.e.,

3. SWIHART WAVES In(1/dk;) ~In(\o/d)~7. We ultimately obtain\ ~ 3. The sur-
face electromagnetic wave also influences the damping of

We use the temporally and spatially nonlocal equationshe Swihart wave due to Ohmic energy losses in the tunnel
(2.22—(2.24 to analyze waves traveling along the junction junction. Invoking the dispersion laB.6), from (3.2) we
and having the form obtain the following inequality for the corresponding damp-
ing constanty:

(3.6

1 . .
¢o(z,0)= 5 poexplikz—iwt)+cc, k>0, (3.9 v=BI2A(k,) < BI2. (3.9
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We now analyze Eq(3.2) in the opposite limit from  which is equivalent to the inequalitg<(2d/eD)w; . If we
(3.5, when the phase velocity of the Swihart wave is muchset 21~D ande~ 10, the condition3<0.1lw; must be sat-
greater than that of light: isfied. We note that Eq3.14) has been obtained in the limit
v<w'. Comparing relation$3.11) and (3.14), for o’>ck,

|w/ky|>c. (3.9 and B<2w’d/eD we infer thaty<e' holds if
Bearln,g relationg2.25 ar_1d (2.29 in _mmd and assuming d<zDA(w'/c)=eDA(v;/c). (3.17
that '> v, we then obtain an equation for the relation be-
tweenw’ andk,: Consequently, this behavior of the spectrum of Swihart

waves occurs in films having thicknesses in the interval
A>D>d/eA(wj/c).

12

C
)\ew,—?—MJ . (31@

c

4 d
12__ 2 2) 2
=wi+——=c%k;In
@ U5 z

Inasmuch as the frequeney is close to the Josephson fre-
guency in the range of relativistic phase velocities, we obtairf: EMISSION FROM LINEAR WAVES

the following from Eq.(3.10 to logarithmic accuracy: Here we discuss the characteristics of radiation from a
c long Josephson junction when a linear phase-difference wave
o of the form (3.1) propagates along it. We assume that the

w'?= o ot (3.1 phase velocity of the wave is much greater than the speed of

A(w;/c) light, w/k,>c. According to Egs.(2.10—(2.16), the only
We note that fore’ ~ck,, by virtue of condition(3.3), the Fourier components of the potential that are emitted are
dispersion law(3.11) goes over to the la8.6), which holds ~ those for which
for low Swihart wave phase veloc?ties. K2< w?/c?—k2, 4.1

We calculate the small damping constant by means of

Eq. (2.25, which under the conditions of inequalitg.3 and ~ and the function) (2.16 is purely imaginary. The contribu-
tion of the scalar potential2.14 can now be disregarded,

wz—c2k§>a2w2 (3.12 because it does not produce any radiative energy losses and
is negligible far from the film. Invoking Eqg2.10—(2.16),
we can then find the components of the vector potential in

4 2
1+ —KZXln

has the form
2

o vacuum:
Q"(kz,0)= 5|k~ =z |sgne. (3.13 .
__ Yo% [* 2
Then for y<w’ the following can be obtained from Eq. AdrD==5"2 Jo dky cogxk){[Zo+ kK,
(3.2:
5 q X (1—a®—Z;)]cosa— 2\ g\ k2> — k2
A 12 _ ~2),2 ' -
2t ps O . X[Z,+K2(1—a%) Jsina}(Z,Z,) 4.2
" A(w'lc) , (319 $oPo

Ay(r,t)=— 52 f dk.k, sin(xk,)
where the frequency’ is described by Eq3.11). mJo

If the opposite condition holds instead &.12), i.e., if ®
X {a—cosa+\k2—k:si - :
202> w2 cAC=0, (3.19 [aCCOSa Kk“—K; sma]z2 , 4.3
then the imaginary pa®”(k,,w) (2.25 is half the value boPo

given by Eq.(3.13. This means that for phase velocities A1) =— 2 )‘ekao dkky
close to the speed of light the term withq8tin (3.14 must
be reduced by one half. i xk ) 2

According to Eq.(3.14), for Swihart waves with phase xsin(xk) 2he
velocities above the speed of light the damping constant con-
tains two additive contributions. The first contributiomjtas ; 2\ [ 2 -1

. . . . Xsina—(1—a“)+ —Kk2cosa | (Z,Z , (4.4

proportional to8, exists forw’<ck,, and is attributable to a—( INK X a}( 122) @4
Ohmic energy losses in the tunnel junction. The second co
tribution to y contains the factow’?— c?k?, exists only for ,
high phase velocities, and describing the damping of Swihart K’=w?/c?— K,
waves due to energy losses in the emission of electromag-
netic waves into vacuum. In the long-wavelength range, ¢~ V¥ —kytkz-ot, (4.5
wherek,<w;/c, the second contribution is the main term if Zi=1+M2(k2—KD), Z,=k?—K2+ a?w¥c?.  (4.6)
the conductivity of the tunnel junction is sufficiently low,

wz
Z,+ ?(1—a2)

MWhere the following notation has been introduced:

Equations(4.2)—(4.4) can be used to find the contribution to
d the electromagnetic field componerisandH from the ra-
<5z, (3.16 i . )
27D diation of waves into vacuum:



JETP 88 (4), April 1999

1 9A
cat’

H=curlA.

(4.7

In the equation foE (4.7), as in the derivation of Eq$4.2)—

(4.4), the term representing the contribution of the scalar

potential, —gradV, has been omitted. Using the radiation-
descriptive parts of the fields andH, we can find the elec-

tromagnetic radiation flux density averaged over the period

of the field:
s= 2 [ gt 1| cuna?2 48
= o tE cur rak (4.8

Substituting Eqs(4.2—(4.4) into (4.8) and evaluating the
integrals with respect to the varialitg by a procedure simi-
lar to that described in Appendix C, we find

S= SyR cosé, (4.9

S,=SRsiné, (4.10
R

S,= f’;’_ T (4.1

where é=arctany/x) varies in the interval from 0 to 2. In

Eq. (4.9 S, characterizes the order of magnitude of the flux

at the distance, = \/x?+y? from the Josephson junction:

2w

I

bopow
8¢

SOE( (4.12

the functionR depends on the anglg and the ratio of the
Swihart wave phase velocity to the speed of light,
azvz

v=wl/ck,:
-1
(v2—1)sir? g} '
(4.13

From Eqs(4.9-(4.11) we obtain an equation for the ratio of

L a’-1
t T a2 DsirP £

R= 1+

the component of the flux density along the Josephson junc-
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25° 50 75 1007 125° 150“5175°

FIG. 1. Radiation flux density in a half-space over a film as a function of the
angle of observatiorg for various values of the parametdf) (w/ck,)?
=100; (2) 40; (3) 2; (4) 1.5;(5) 1.1;(6) 1.01.

It is evident from this result that for 3% |sing>av/\Jv?—1
the energy flux densitys is essentially independent of the

angle¢. But for |sing<av/\v2—1
2 Sint ¢

vé—
a21}2

(v2—1+a?)

So
varies as a function of sfg.

These functional relations are illustrated in Fig. 1, which
shows the dependence of the functi®ts, on the anglet.
The curves have been plotted on the assumption that
a=2\w|/c=0.1. The graphs o®/S; are given for six val-
ues of the parameter?. It is evident in Fig. 1 how the
angular range in which the radiation flux density is constant
broadens as the phase velocity increases. The dependence of
S/Sy on the ratio ofw/k, to the speed of light is shown in
Fig. 2. The curves in this figure correspond to five different
angles of observatiog. According to Fig. 2, the smaller
|sing, the smaller is the radiation flux density. The flux den-
sity S/S, tends monotonically to zero as/ck, approaches
unity.
Equations (4.9 —(4.11) can also be used to find the

(4.17

tion, S,, to the flux density in the plane normal to the axis of Qamping constant of waves traveling along the Josephson

the tunnel junctionS, = \/§x2+_8y2 =SyR:
S, 1
S_L B -1

According to Eq(4.14), S,>S, for 1>v2—1>0, and elec-

(4.14)

tromagnetic energy is emitted in the direction of propagation

of the Swihart wave. On the other hand, for 1, when the

junction due to radiative energy losses. In fact, the energy
losses per unit length of the tunnel junction are given by the
integral

2

phase velocity is much greater than the speed of light,

S, >S,, and the radiation is localized mainly in a plane or-
thogonal to the axis of the tunnel junction. From E@s9)—

(4.17) we can obtain expressions for the total flux density of

the radiation at an anglé relative to the plane of the film:

v
S=/SE+S2 =R =

Bearing in mind the smallness of the parameteirom Egs.
(4.13 and (4.15 we have
} -1

(4.19

aZy?
Y s

S v?-1+a’

%Z v\v°—1

(4.16

2w 2w 44rC
rL 0 dgn'S:rLSO 0 ng:_ (1)2 rLSOQH(kZ!w)!
(4.18

IS, )
1.0 3
0.8 3
0.6

4
0.4
0.2 5

20 40 60 80 100
a’sz

FIG. 2. Dependence of the functidS, on w/ck, for various angles of
observation(1) 90°; (2) 45°; (3) 10°; (4) 5°; (6) 2°.
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wheren is the unit vector normal to the cylindrical surface of Under the conditions defined by inequaliti&s1)—(5.3), tak-
radiusr, = Jx?+y?, and the imaginary parQ”(k,,») is ing Egs.(2.24, (2.25, and(2.29 into account, we can write

described by Eq(2.25. Eq. (2.22 in the form

On the other hand, the radiative energy losses can be 2

i in the form 2y, W, wherey, is the radiative dampin i B 1

written in t _ W\ Y mping sing(z,t)+ — E(p(z,t)+ — ng(z,t)
constant, andV is the period-average energy per unit length wj wj
of the Josephson junction. To calculaéfor waves with a 2 P2 (=
phase velocity greater than the speed of light and under the = ——)\el—zJ dt’ sgn(t’—t)

.. ™ 0z ) —»
condition

d ¢ | cinl t|” i (z,t")

— In—=< nf—|t'— — (2,

lendw,-<l’ (4.19 v ik
when the difference of the wave frequeney from the 2 Jd (= dt’ 4 ,
Josephson frequenay; can be ignored, it is sufficient to _;)‘95 Lttt W‘P(Z't ). (5.4

take into account the energy of the electric field in the junc-

tion and the energy of the Josephson current. We then haythereC=0.577 is the Euler constant. Unlike §@.22, Eq.
rate Bi (5.4) does not contain spatially nonlocal coupling. When the
w Tl w JC
W f dtm D

2
_ 1 (ﬂga) characteristic time of variation of the phase difference is de-
2w Jo 2w,—2 at termined by the reciprocal Josephson frequency, the argu-

ment of the logarithm on the right-hand side(6f4) can be

+1—cose|= QSOW_U_ (4.20 approximately replaced bg/\.w;. Equation(5.4) now as-
d ® sumes the form
Setting 2y, W equal to the radiative energy los4dsl8), we ) 9 52
obtain wjsing(z)+B— e(z)+ —2 e(z1)
2d c? 2
Ye=——=—Q'(k;,w), (4.2 _4d L, c )
eD w ) c’In Now] P ¢(z,t)

which is consistent with Eq$3.13 and(3.14). 2 d 9 (* dtt 9 ,
D) . v—tar e (59
5. EMISSION OF LARGE-SCALE NONLINEAR STATES We note that comparatively small terms occur on the right-
) ) ) o ~ hand sides of Egs(5.4) and (5.5 by virtue of the stated
In this section we discuss the emission of_waves '”toassumptions(5.2) and (5.3. However, these terms govern
vacuum from nonlinear states when the amplitude of thgysih the radiative energy losses and the slow spatial variation
phase difference of the wave functions is not small in com+¢ the phase difference. In particular, these terms character-
parison with unity. We assume that the variation of the phasge the dispersion and radiation damping of Swihart waves
difference has a long characteristic time: (see Sec. I)l. We now use Eq(5.4) [or (5.5)] to analyze the
J )W emission of waves by large-scale distributions of the phase
TEa_tIn @(Z,t)’ >— (5.1))  difference. Taking inequalitie€5.2) and (5.3) into account,
we disregard the influence of the small terms on the right-
We assume that the space scale of variation of the phaseand side of5.4) in the first approximation.
differencel is much greater than the distance traversed by We also assume that the dissipation associated with
the electromagnetic wave in vacuum during the characteristiohmic losses is small3<w;. Under these conditions Eq.

time of variation of the phase difference: (5.4) reduces to the mathematical pendulum equation
— & 2 0"2
L=|--Ine(z)|>cT. (5.2 o] sing(z,t)+ —5 ¢(z,t) =0, (5.6

Inequalities(5.1) and (5.2 are compatible if the inhomoge- \whose solutions are well knowgsee, e.g., Refs. 3 and 1
neity scaleL is much greater than twice the effective pen- The radiative energy losses by nonlinear states described by
etration depth of the field into the filnb,>2\.. We referto  the solutions of Eq(5.6) have been investigated in a brief
states with space scalds that satisfy inequality(5.2) as  communicatiorf* We emphasize that even though the de-
large-scale states. In addition to conditioidsl) and (5.2,  rivative of the phase difference with respect to the coordinate

we assume that for such states is equal to zero, the electromagnetic field on
d cT the surface of the superconducting film is not equal to zero.
5'”?<1' (5.3)  The presence of this field induces a radiation flux that trans-

ports energy away from the junction into vacuysee Ap-
Inequality (5.3) permits the influence of a surface electro- pendix D. We now discuss the specific characteristics of the
magnetic wave on a large-scale nonlinear state to be ignoredmission of waves by large-scale nonlinear states in greater
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detail. Since the distribution of the phase difference of such #2032 g+t

.. . R ' K 0
states is independent of the coordinate in the first approxi- S, n= 2n+1)2(2n+ 1). (5.19
mation, the Fourier componemrt(k,,w) is proportional to
the delta functions(k,). Invoking Egs.(2.10—(2.16), disre- According to Eqs(5.11) and(5.14), radiation is emitted
garding the contribution of the scalar potential, and retainingn odd harmonics of the fundamentfd, (5.12, which is
only the emitted Fourier components of the potentials, wesmaller than the Josephson frequency. ketl the fre-

mc?r, (1+q

find quency(), is close tow; , and the radiative energy losses are
governed mainly by emission from the fundamemtal0. As
(rt)=— ﬂgfw dwfw dt’ exdiw(t’—t)]e(t’) k increases, the radiation spectrum becomes more abundant
- —o in higher harmonics, and the interval between the harmonics

decreases. Whéhnis close to unity(), tends logarithmically

|w|lc
Xf dk, cogxky)exg —y¢(w,ky)] to zero:
0 -1
Po,ky) Q~zw(lnL) (5.16
T v 2 i M2 . .
><t,//(a),kx)—aa)/c' (6.9 1=K
with the emission of a broad spectrum of closely spaced
Ay(r,t)= J d“’f dt’ frequencies (B+1)(),. We note, in accordance with the
conditions (5.1) and (5.2 underlying the validity of the
ll/c theory, that the emitted frequencies must lie in the interval
xexiot’ —0)]e(t )fo dhodkc sin(xky) 2mc/L<(2n+1)Q,<mC/\,. (5.17)

1 Equation(5.14 can be used to express the directionality of
oK) —awic’ (5.8)  the emission of harmonics. According to H§.14), the ra-
nx diation flux from large-scale nonlinear states is localized in a

Xexd —yy(w,ky)]

where ¢(t) is the solution of Eq(5.6), plane orthogonal to the axis of the Josephson junction and is
directed along the radius vector . Since the parameter
(k) =~k sgno. (5.9 2)(2n+1)Q, /c, by virtue of the right inequality5.17), is

In this approximation we hava,(r,t)=0 much smaller than unity over a wide range of angles, when
z 1 .

We first discuss the emission of waves for the nonlinear  |ging|>2(2n+1)A 0, /c (5.18
state described by the solutions of £§.6) corresponding to
finite-amplitude oscillations of the phase difference, when the absolute value of the flux density at the frequency (2
+1)Q, does not depend on the angle of observation and is
¢o(t)=2arcsik snw;t,k)], (510 equal toS, ,. Outside the interval5.18, as when the angles
of observation are tight against the plane of the film, the
intensity of emission of the harmonics decays|sisé de-
creases, in proportion to i Integrating the fluxs (5.14

wherek is the modulus of the elliptic sine sn. We expand the
derivative of the functionp, into a Fourier series:

d -~ n+1/2 over the surface of a cylinder of radius and taking into
&%(UISQUHZO WCOS{Q“JFDQJ], (5.1 account the smallness of the parameter 2{A)\ 0, /c,
we obtain Eq.11) in Ref. 21 for the energy flux from unit
where the frequenc§), and the parametay depend on the length of the tunnel junction.
modulusk: Next we consider the emission of radiation from the
nonlinear state described by the solution of the rotating pen-

TO; dulum equation(5.6), when

Q“:2K(k)' (5.12
o (1)=2 an{ it k) 20 t+42 —2—qn sinf 2nQ, t],
_ m nee Kk 1 n(1+9°")
=exg — ——K(J1-Kk?)|, 51
and K(k) is a complete elliptic integral of the first kind. where am denotes the Jacobi amplitude, and
Now, using the expressions for the components of the vector
potential (5.7) and (5.8) and the expansiof5.11), we can 7 _ (5.20

find the radiation flux density averaged over the period r_2|<K(|<)w

27/ Q, [cf. (4.8 In this case the radiation flux density averaged over the pe-

S, o SI? ¢ riod 27/(}, has the form
Si? é+[2\¢(2n+1)Q, /c]*’ = S, S &
(5.14 S= (excos§+eysm§)2 ST ET (Anro 7o)
where we have introduced the notation (5.21)

S=(eg, cos§+eysm§)z
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¢(2)Qr3 2ng® in practical applications of point contacts correspond to the

"= A% (14 P2 (5.22  satisfaction of inequality(6.2). Indeed, assuming, for ex-
ample, that we havd=4.2K, B=5x10s"1, and A/e

Equations(5.21) and (5.22 describe the radiation flux at =3x108cm, we see that conditiof6.2) is satisfied for
even frequenciesr®}, . If kis close to unity, the frequency point contacts having an area greater thatOum?. In ap-
Q, (5.20 is much lower than the Josephson frequency, anglication to our case of a contact in a fil®,,,;=DL;, where
the radiation spectrum contains many even harmonics of thg, is the width of the film, conditior{6.2) is satisfied when
fundamental. The frequenc@), becomes lower a& in-  the width of the film is not too small. For example, adopting
creases. k<1, we have(),=w;/k>w;. The intensity of the same tunnel junction parameters as above, along with
the radiation at higher harmonics is significantly reducedd~3x 10 7 cm, we find that inequality6.2) is satisfied for
sinceq<1. The radiation pattern of the even harmonics isL;>3 mm. Consequently, it is clearly admissible to neglect
the same as for odd harmonics. The radiation flux is localthe influence of fluctuation dissipation in comparison with
ized in a plane orthogonal to the axis of the tunnel junctionordinary Ohmic dissipation.

If [sing>4n\gQ, /c, the flux density at the frequencyn®, Finally, it must be emphasized that our emission of ra-
does not depend on the angle of observation and is equal Hlation associated with Swihart waves is possible at frequen-
Si,n (5.22. Another solution of Eq(5.6) is the 2m kink cies comparable with the Josephson frequeagy When

(5.23 condition(6.2) is satisfied in this case, emission can be effi-

cient under the condition
The radiation pattern from ther2kink has the same features

as for nonlinear periodic solutions. Now a continuous spec-
trum of frequencies lower than, or of the same order as theondition (6.3 is satisfied for the typical parametets,
Josephson frequency is emitted. At high frequencies the-10'2s 1 and 8~5x 101%s ! (see, e.g., Ref. 33

spectral density of the radiation is exponentially srall. However, for a film of sufficiently small width, such that
condition(6.2) is violated, fluctuations can in fact dictate the
emission linewidth. In this limit, according to Ref. 22, the
emission linewidth is given by the expression

To summarize the foregoing discussion, the space—time 8le| —d
nonlocal electrodynamics describing transient states in a Jo- I'= —— corr
sephson contact in a superconducting thin film has enabled h &Scon
us to obtain comparatively simple and transparent equationis is clear that the emission is adequately efficient if
that provide a picture of electromagnetic radiation penetrat-
ing from the surface of the film into vacuum. This possibility % W_d-r <w
has been afforded both by the formulation of a nonlinear h eSeon "
integrodifferential equation describing the distribution of theThjs inequality, like inequality6.2), imposes restrictions on
phase difference in the junction and by the systematic detne width of the film. For the Josephson junction parameters
scription of the electromagnetic field in vacuum. adopted above, it is satisfiedlif;>10um.

However, the above treatment ignores dissipation asso-  The latter result indicates that our above discussion of
ciated with thermal fluctuations. We are grateful to the rehe conditions for inequalitys.2) to hold is of methodologi-
viewer who called our attention to Ref. 22, in which the ¢4 significance only, which, of course, is important in un-

tions at the contact on the width of the emission line froma |, symmary, our investigation has established laws gov-

Josephson point contact to which a constant voltdges  erning the emission of electromagnetic radiation from the
applied. An equation for the width of the emission line at theg,(face of a film containing a Josephson junction.

o(t)=4 arctarge®i') — .

6. CONCLUSION

(6.9

frequency 2V, /% can be deduced from Ref. 22: This work has been performed as part of Project 96-02-
4mc\2 2od 17303 of the Russian Fund for Fundamental Research with
=<T) W cons (6.1 support from the Scientific Council on High-Temperature
0 con

_ _ SuperconductorgProject “AD” 95008) and state support
where T, is the temperature, an8,, is the area of the for leading scientific school€Project 96-15-96750
point contact. Equatiof6.1) is valid when

r<g, (6.2  APPENDIX A:

and the external circuit has a high resistance. To construct a solution of Eq$2.1)—(2.4), we go over
It is useful to ascertain the conditions under which theto Fourier transforms in the variablegandt:

influence of fluctuations can be disregarded. According to -

Eqg. (2.22), the contribution of radiation to the linewidth is F(y,k,w)EJ dtJ dryexpliot—ik-r)F(y,r,t),

determined additively by the teri; hence, our analysis is -

appropriate when inequalit§6.2) is satisfied. (A1)
It should be noted here, in accordance with Ref. 1wherek=(k,,0k,). We can then obtain a system of equa-

p. 114, and Ref. 2, p. 72, that the most significant conditiongions for the Fourier components of the potentials:
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a/Ay(y,k,w)+ik-A”(y,k,w)=o, (A2)

d? w?
d—yzA(y,k,w)— ( k2— ?)A(y,k,w)

d
+i%(ik+ey®)V(y,k,w)=O, y>0,  (A3)

d2
WV(y,k,w)—kZV(y,k,w)zo. (A4)

Here the boundary conditior{2.8) and(2.9) for the compo-
nents of the vector potential have the form

x(y K,0)ly=+0= T {d)o[qo(kz,w)ﬂk O(k,0)]
+Ax(y=0,k,w)], (A5)
z(y K,0)|y= 0= e {% ik, P (K, w)

+Az(y=0,k,w)} (AB)

A,(y=0k,»)=0, (A7)

wheree, ande, are unit vectors along theandy axes, and

Malishevskil et al. 797

where the functiony is described by Eg2.16). The sign of

the imaginary part of the functiog is chosen so that for
w?>c?k? the vector potentialA describes the emission of
electromagnetic waves into vacuum. We also assume that the
scalar potentialand forw?< c?k? the vector potentialtends

to zero far from the film. Substituting the solutiofs11)—
(A14) into the boundary condition@\5)—(A7), we find

¢0 @(kZ!w) 2)\ 2
5 2m Trang| 1T G (419
$o ¢(kz, @) 2\
U= m Trovgg 6 Mo (A16)
e
Bk, 0)=i ok, o)k, /kG, (A17)

where G is defined by Eq(2.15. Equations(A11)—(Al17)
express the coupling of the electromagnetic potentials with
the phase difference at the tunnel junctjeee Eqs(2.10-

(2.13].

APPENDIX B:

In general the real part of the Fourier component of the
kernelQ’ (k,,w) is equal to the sum of four integralg (n
=1,2,3,4):

Q’(kz,w)=|1+|2+|3+|4, (Bl)

which have the form

the Fourier components of the phase and the phase difference 1 (= k2 K2— 02/c2

are described by the relations

d(k,w)= ﬂ) dxd(X,k,,w)exp —ikyx)

+£c AXD,(X,K, , w)exp —ikyX), (A8)

¢(kz,0)=P1(0k;,0) = P3(0k;, ). (A9)

It is evident from Eq(2.6), in turn, that the Fourier compo-
nent of the scalar potential on the surface of the film is re-

lated to® (k,w) by the equation
$o
V(y=0Kk,w)= —Iw—q)(k ). (A10)

Taking relationgA2) and (A10) into account, we can write
the solution of the differential equatio(a3) and(A4) in the
regiony=0 in the form

Ay ko) =a,exi—gy)+ —kV(y ko), (ALD
_ ik-a . C

Ay k,w)= Texp(—dxy)ﬂ ;kV(y,k,w), (A12)

A= (y ko) =a,exp— ) + KNy k), (ALY

V(y,k,w):—iijOCCD(k,w)exq—kzp), (A14)

l,=— dk, — , B2
Vo eed x|<21+2>\e\/k2—w2/c2 (B2)
1/2d 1
f X ’ (BB)
n<K2> k 2)\ew2/C — k2= w?/c?

’ —2)\k cdk,  wlc2-K?
= heken(e) | K 1+4NZ(w? - K2)’

(B4)

PR I -
= e 1) | AKga T e
(85)

where k?= w?/c?—kZ. Having assumed in the initial equa-
tions that the scale of the field variation is large in compari-
son with the thickness of the tunnel junctiom,2we can
eliminate the logarithmic divergence in E@®3) by setting

the upper limit of integration equal to M2 The integrals can

be evaluated in quadratures, but the results are fairly in-
volved. We confine the analysis to limiting values of the
integrals, which are needed to set forth the basic material
underlying the discussion of conditions whereby the param-
eter 2\ ¢ w|/c is smaller than unity. The integralg have a
particularly simple form in the limitw|<c|k,|, when

2 w? 1
y4
Ilng(Z)\e|kZ|)v |2: 2|nd|k2| |3:|4:01
(B6)
where the functiomQ(x) is described by Eq(2.28. In the
opposite, high-frequency limjtw|>c|k,| we can obtain the
following relations from Eqs(B2)—(B5):
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T T L

Ya  NJel” 7 wc? dle|’
2 w2 2

I32;)\e|kz|ggarcta Cz—kg—l,

|42—)\e| 3|,3In ¢ —l3. (B7)
™ c e|| 3

Equations(B6) and (B7) are sufficiently accurate for basic
calculations.

APPENDIX C:

To compute integrals of the form

=dekf(k)exti(k)], (C1)
0

where the functiori- (k) is described by the expression

F(k)=xk+yvVk*—k?, (C2
we use the steepest descent methody/K=tané>0, the
function F(k) has a maximum at

Km= K COSE. (C3

The following expansion is valid in the vicinity of the maxi-
mum;

F(k)=Krl—ﬁ—§(k—Kcos§)2+ (C4)

wherer | = VX% +y? is the distance from the Josephson junc-
tion to the observation point. Under the conditions
tan(&/2)>\2/kr,, tané<<ykr, /2, (Ch

which hold at sufficiently large distances, the limits of inte-
gration in Eq.(C1) can be set equal t&r. Assuming then
that the functionf (k) varies only slightly in the narrow in-
terval

K COSE— \/ sm§<ks;<cos§+\/ smg (Co)

from Egs.(C1) and(C4) we obtain

TK
| ~ \/r—f(K cosé)sinéexplikr )(1—i).
1

For taré<0 the functionF (k) reaches a maximum with re-
spect tok at the boundaries of the domain of integration. The
main contribution to the integrdl in this case is from the

(C7)

edge of the domain of integration, and the value of the inte-

gral itself decreases1/r, . Corrections of this order are

Malishevskil et al.

pends only on time, from the expressions for the potentials
(2.10—(2.14 we can obtain the field on the surface of the
film at |x|=d:

Hxy=+0.)=~ ¢)°3C O,,tfdwdk dt’ele’ 0
de(t") 1
X cog xky) at J—2ne?ic €, (D1)
Ex(x,y=0,t)=—(2i;3cf dodt’dke eV
do(t’) 1 G+2xk2
X cog xky) Ty 1+2)\8¢X, (D2
e
¢o ' ot —t)
Ey(x,y=+0,t)=— m dwdt’dk,e
: de(t") k
XSIr(X X) dt/ w_z)\wa/CZ (D3)
e

where the functiony is given by Eq.(2.16), in which it is
now required to sek,=0. The magnetic field at the bound-
ary of the tunnel junction with vacuum is determined from
Eqg. (D1) at x=0, and the electric field in the junction is
determined from the Josephson equation

¢o de(t)

EOGy=0.9=72"cd ~at_

(D4)

For the nonlinear state.10 and (5.19, when the time
derivative of the phase difference has the form

do(t) <
i )—2 a, cos(t,
dt n=0
where Q,=(2n+1)Q, for the solution (5.10, and Q,

=2nQ, for the solution(5.19, from Egs.(D1)—(D3) we
obtain equations for the field outside the nonsuperconducting
layer:

( Y= +0t) (Lzzan Jdkx

el Ont
}ez,

X oy 022
cog xk,)Im R TS (D5)

Ea‘n

Ex(x,y=0t)= &

(2m )2

et G+ 2\ K2

G, 1+2\t, (D6)

}

X cog XKy )Re{

insignificant in regard to the radiation field at large distances.

APPENDIX D:

We now show how radiation flows from the surface of

the superconductor into vacuum in the case of homogeneous

E (x,y=+0,t)=— &;O anf dky
iQnt
(D7)

X Sj - O
sin(xky) Ky Re{ lﬂn—Zkeﬂﬁ/Cz

large-scale states. Assuming that the phase difference dethere
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b= IS (27
+iQ2c2— K2 (02— ck3),

Gn=thn— 2\ e02/C%.
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An investigation is made of the magnetic response of nanostructures with cylindrical symmetry
located in a longitudinal magnetic field. Analytic expressions are obtained for the magnetic
moment of the nanostructures, cylinders and bracelets. It is shown that the magnetic moment
describes Aharonov—Bohm oscillations. The profile of the oscillations and the position of

the oscillation maxima are studied. In the limit=0 the curves of the magnetic response as a
function of the magnetic field flux contain “beak”-shaped kinks, and the positions of the

points at which these kinks occur are determined. The temperature dependence of the magnetic
response is studied and the influence of the spin—magnetic interaction on the magnetic
response of the nanostructures is examined. It is shown that this interaction destroys the periodicity
of the magnetic response with respect to flux and gives rise to a monotonic term in the
response. ©1999 American Institute of PhysidsS1063-776(99)02004-1

1. INTRODUCTION for the case where the magnetic fi@ds parallel to the tube
o axis. Lin and Shurfginvestigated the magnetic response of a
Over the last few years, the equilibrium and transportyanotube for the same field orientation using the strong-
properties of electrons in mesoscopic samples have been thg,,ling approximation but allowing for spin—magnetic in-
focus of intensive experimental and theoretical St“a'-é_t“s teraction. The latter gives rise to a crescent-shaped singular-
is because modern technologies can be used to fabricate p?& (cusp on the curve giving the magnetizatil as a
fect nanostructures of various geometriggiantum wells ¢\ chion of the magnetic field flu near integer values of
and dots, channels, wires, and rings in heterostructuresy, . quantum fluxby=e/ch. In Ref. 2 it was noted that the

Each O.f these naryostructlu_reg has its own unique phySIC%sults for the strong-coupling model are similar to those
properties. Interesting equilibrium effects occur when a Magy i ained in the effective-ma ss approximatin

. . . . _11
netic field is applied to a sampfe. . . . Ovchinnikov et al!® reported a detailed theoretical
Note that studies of the magnetic response in various . . i
) . . g . . analysis of the average magnetic response of various meso-
guasi-one-dimensional and quasi-two-dimensional systems "~ . : : . .
S . . scopic systems, including a bracelatcylinder with height
can give important information on the parameters of the elec=

tron energy spectrum and the lateral confinement potential%f order the Fermi wavglengthhe magnetic f!eld was di-

in these structures;:° Moreover, a magnetic field applied to rected normal to the side surface of the cylinder. For the
the nanostructure can provide additional scope for studyin%verag'ng' these auth_ors as_surr_1ed _thgt the che_mlcal p_otentlal
its parameters. This is because a magnetic field can create 8¢S @ random correction which is distributed uniformly in an
enhance the existing lateral confinement in the nanostructuf8terval on the order of the interlevel spacing. As a result of
and can also produce hybrid coupling between motion paralt-h's averaging, both the de Haas—van Alphen oscillations and

lel and perpendicular to the field when the field is directed afn® dimensional fluctuations are smeared out. Consequently
an angle to the symmetry axis of the systéfn. for T>%w, Ovchinnicov et al.™® obtained expressions for

The equilibrium properties of an electron gas in nano-the magnetic susceptibility of these mesoscopic systems
structures are mainly determined by the electron energyhich are an analog of the Landau formula for the diamag-
spectrum, which is itself determined by the geometry of theetic susceptibility.
system. In addition to the nanostructures described above, In view of this reasoning, it is quite important to derive
which are fabricated in a planar two-dimensional electrorgnalytic expressions for the magnetic moment in nonplanar
system, investigations of nanosystems in curved layers ha#o-dimensional nanosystems and to study Aharonov—Bohm
also started recentfi} 18 Special proceduregsuch as lift-  oscillations of the magnetic response, as well as determining
off) have recently allowed us to investigate a curved layer othe temperature dependence of the profile of these oscilla-
electron gas experimentally. The geometry of a cylinder is tions. The main purpose of the present study is to obtain
the closest to the experimental situafiband in particular, convenient formulas for analytic and numerical investiga-
the geometry of a carbon nanotube is close to that of a cyltions, which describe the oscillations of the magnetic re-
inder. The magnetic response of a nanotub&at0 was sponse of a two-dimensional degenerate electron gas folded
investigated numerically by Ajiki and Andt.The effective-  into a cylinder(quantum cylindey, including a cylinder with
mass approximation was used to find the electron spectrura short generatrix whose lendthis of the order of the Fermi

1063-7761/99/88(4)/7/$15.00 800 © 1999 American Institute of Physics
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wavelength of an electroxg (quantum bracelgtThe topical ~ wherem, is the free electron mass apg; is the Bohr mag-
case of a magnetic field directed along the symmetry axis ofeton.

the system is studieta static homogeneous fiel and a For the following analysis it is convenient to expand the
field generated by an infinitely thin Aharonov—Bohm sole-magnetic moment of the cylinder as a Fourier series using a
noid are both considergdAn analysis is made of the influ- Poisson summation formula. After some simple but fairly
ence of the electron spin on the profile of the oscillationlengthy transformations, we obtain

curve. As will be shown subsequently, the nontrivial curva- o

ture of these two-dimensional systems leads to an interesting _ M _ E C (T)sin( ani
new effect: in the limitT—0 beak-shaped kinks appear on N = @,
the oscillation curve. The nature of these kinks is similar to . -

that responsible for the kinks on the curve of the undampe&vhere the Fourier coefficienG,(T) have the form
current in a quantum magnetic rifg. Lm foo

: ®

Finally, we note that the magnetic response is investi- Cn(T)=———| dzzsin(nz)
gated using both a Gibbs canonical distributi@onstant mhme S0

-1

number of electronsand a large Gibbs canonical distribution w 1( 22 p2
(constant chemical potential of the gas(B)=const). For xj dpi 1+ex Tl = "
most situations the results obtained using these distributions 0 4 2m

differ very little. This is because the oscillating component (6)

of u(B) for a constant number of electrons is very smalll. _ i

For a degenerate electron gas, however, it is more convenient V& *mtroduce the new var|ab|es<:z_\/§/27r, y

to use the large canonical distribution for the calculations.= P/ V2m”, and convertin Eq6) to polar coordinatesr(4)
the xy plane. ForC,(T) we then obtain

Thus, we shall subsequently adopt this approach, i.e., wh!

shall assume that = const. In addition, we shall exclusively AL2m*m, (= P2 -1
consider a noninteracting el - 0 2 it
g electron gas. Cn(T) drre 1+ex
m* e 0 T
w2 [ 27Nr COSyY
2. MAGNETIC RESPONSE OF A QUANTUM CYLINDER X , SN —JE cosy di. )
In the effective-mass approximation the Hamiltonidn Using an integral representation for the Bessel function

of the single-electron spin-zero states for the vector potentiay, (Ref. 22,
A, taken in the formA=(By/2,—Bx/2,0), is written in cy-

lindrical coordinates as @2 [ 27rNr COSyY T [ 2@nr
f sm( —) cosydy= E‘Jl( ) , (8)
d> ko, d  mrel , p? 0 Ve Ve
H__Sd_(Pz_ > de 8 P o @D we obtain
wherew.=eB/m*c is the cyclotron frequencyp is the po- 2L\V2m*emg (= X2 (2mnx)dx
lar angle,m* is the effective electron mass,s the momen- Cn(T)= Am* fo 1+exd (ex2— u)/T] ' ©
tum in the direction of the cylinder axis, aBa=#%2/2m* p? is K
the dimensional confinement energy. It is deduced from Eqsg) and(5) that the magnetic moment
The spectrum of the Hamiltonian has the form of the quantum cylinder is an oscillating function of the flux
with a period equal to a flux quantum.
®\2  p? For a quantitative analysis of the nature of the oscilla-
Emp= €| M+ c}TO) + om* @ tions we consider the cage=0. Then
Here the magnetic quantum number has the valuesn _2Ly2m*emg (Vule
=0, %1, 2, ..., andd=mp?B is the flux of the fieldB Co(0)= — fo x23;(2mnx)dx. (10)
through the cross section of the cylinder. Using the standard
expression for the thermodynamic potenfiai(Ref. 23, we  Using the formul&
obtain in our case 1
oL fo x"*1J (ax)dx=a"1J,.,(a), (11)
* M~ Emp
=" o m;w _dapin 1+exp< T ) IS we obtain
wherelL is the cylinder length. From expressi¢8) we find Lur2m*mg Jo(2mnyule)
the magnetic moment using the formwa= — (9Q/dB) /1 Cn(0)= — N . (12

and then

In real situations we havg>¢. Using the asymptotic
4) form of the Bessel functio,(x) for large values of the
o 1+exd(emp—w)/T]’ argumerft? we obtain the following estimate from E¢12)

M Lmy fw (m+d/Py) dp

MB  ahm* m=—o=
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1/2
Luy2m*mq 1 M(¢,7)
Ch(0)= 2 o 1 e ara, =L U2E+ = U(=120—8), 7>&
m2hm* e N\ 72 TR
(17b
% cod 2am \/E_ Sm ‘o Ve 13 whereL mg/272%\m* (u3/e) V4= A.
m e 4 27 Expression(17) indicates that the critical point of the
graph of M(§) on the interval B<¢<1/2 is até=»n. We
Equation(13) then yields an estimate fdvl (T=0) shall analyze the behavior of the graph near this point using
the shift formula for the generalizeftfunctior?®
M(T=0) _ y2Lmg (£> S {(s)=L(s,1H%) X 18)
<~ 312
“B ahJm* \ & n=1n Expression(17b) is then written as
- Hom M(&,7)
X sin anao cos(an \/;— Z)' (14 ImAp, == 1R2&+ ) —(— 12,1+ 7)
Formula(14) yields an important statement for the following —\n—§& n>E& (19

analysis: because of the periodicity of the functions appeartyo functions¢(— 1/2x) are continuous, as is deduced from

ing in the Fpurier series the magnetic momer_lt depends Onlﬁqs. (15) and (16) since the corresponding Fourier series
on the fractional component @/®, and /e in EqQ. (14). converge uniformly. However, a comparison of E¢73

We shall denote these b§ and », respectively (&%, & and (19) shows that at the poing= ¢ the graph ofM (¢, 7)
<1). Then we have has a kink caused by the presence of the third term in for-
mula (19). Moreover, this term may give an additional zero

— 3\ 1/4 *
M(T=0) _ \/ELmo (M_) i of the functionM (&, ) in the range 8£<<1/2. In this case,
“B mhym* \ €] AZ1n32 two extrema(a maximum and a minimujrare observed at
half the period of the function.

(15) Figure 1 shows graphs plotted using form(&). These
' graphs are consistent with the analytic results presented
) o o o above on the behavior of the magnetic moment.
Expression(15) indicates that it is sufficient to study the For T#0 the kinks on the graphs are smoothed, but the

oscillations of the moment in the regionsg<1, 0=7<1  general oscillation pattern is still retainégig. 2).
since, asb/®d varies further, the pattern is repeated for each

separate segment of variation. The sum of the series in Eq.
(15 may be expressed in terms of generaliZeflinctions, 3. MAGNETIC RESPONSE OF A QUANTUM BRACELET
using the Hurwitz formul®

a
X sin(27-rn§)cos( 2mnny— 7

We shall consider a cylinder with a short generatrix, i.e.,
a quantum bracelet. When the cylinder length is comparable
— with the Fermi wavelength of an electron, we must take into
n=1 n%?2 | cog2mnx) account the quantization of the particle motion along zhe
axis. We shall take the model of an infinitely deep potential
=2a[{(=12X) = {(=1/2,1=X)], (18 \ell as a model of the confinement potential along this axis.
The electron spectrum for this case is then written in the

o]

1 (sin(2mnx)

where 0<x<1.

We first note the symmetry properties of the graph ofform
M(D/®d). Expression(15) indicates thaM (&, 7)=—M(1 Enm=&mten, m=0,x1,+*2, ..., n=12,...,
—¢&,n) holds for any Gs »<1. Thus, the graph is antisym- (20)

metric rglative to the axis. passing throggh the p@intl/2 wheres=a(27m+27®/®,) and e,=b(27n)2 The di-
perpendicular to the ordinate. In addition we haVH¢ | ensional confinement energies are #2/8m* m2p2 andb
+1/2,7=1/12)=M(¢, 7). Consequently the case H#H<1  _z2/gm*| 2 The bracelet length ik and its radiup.
is reduced ton<<1/2 by shifting the graph oM(®/®o)  ysing the thermodynamic potential of the electron gas in
along the abscissa by half a flux quantum. On account of thig,q bracelet,
#“—Enm
1+exp( T )

symmetry, we shall only consider the regiény<1/2, i.e.,
half the period of the functioM (®/d,). We immediately 0= —TE n

we obtain the following expression for the magnetic re-
sponse of the bracelet

: (21)

note that for integer values afu/¢ this half period has only am
one extremum (maximum or minimum depending on
whether <1/2 or > 1/2). For »<1/2 formulas(15) and

(16) give
M M <« m+®/d,
- =" . 22
M(g’m=£(—1/2,§+77)—£(—1/2,1—§+71), &=, Mg m* mzz—wnzllJFeXFI(Enm—M)/T] 22
47Aug

(179 Expression22) can be conveniently rewritten as
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FIG. 1. Magnetic response of a quantum cylin-
der as a function of the magnetic field flux. The
curve numbeN corresponds ta;=0,N, where

N has valuesN=0, 1, ..., 9(for examplen
=0,0,1, ....
M 1m, <& m+®/®, where the Fourier coefficients are given by
Cwe 2mt micox 1tex (Eyn—p)/T] 4mg (= xsin(2wnx)dx
Co(M=— f ; : (25
1m, < m+®/d, m* Jo 1+exd (ex“—u)/T]

(23

2 m* mSe 1texd(Egm—p)/T]" In the low-temperature limitT—0) Eq.(25) gives

The second sum in expressi@B) is half the magnetic mo- my| 1 _ \/ﬁ
ment of the quantum rin§! ing/ g - Ch(0)=—| 753 SIn( 27n ;)
Cheunget al? studied an undamped currehtn an iso- m= LN
lated quantum ring. This current was calculated using the \/; 2 “
free energyF, i.e., assuming that the number of particles is —\/—— cos{ 27mn \ﬁ) } (26)
constant. The value af is proportional to the magnetic mo- e mn €
ment of the ring. Since the expression dr;,, appears in The serieg24) may be summed using E(6). Denot-

the formula for the magnetic moment of the bracélehich  ng the integer part of /e by N, we obtain foré+ <1
is assumed to be the constant component of a large system,

for instance, the bracelet is located in the quasi-one- Ming Mo | (2N+1)E, &<, @
d_|men3|onal layer of a heterostructyreve give the expres- us  m* | 2N(E=1/2), 7<&, 7)
sion for M ;4 for completeness.

Assuming that the chemical potentialis constant, we and foré+ n=1
obtain the following expression for the expansiorbf,y as
a Fourier series _ Miing_ Mo (2N+2)(§-1/2), &<, 28)

oc re  m* [((2N+1)(§-1), 7<¢&
_ M_ 2 C.sin 2 3 (24)
ug =1 nSIN 27N Dy’ Expressions(27) and (28) indicate that the magnetic re-

sponse of the ring describes sawtooth oscillation3a0.
The amplitude of these oscillations is proportionahkfa/e
107 Miy, and except for the casg=1/2, two sawtooth maxima of

different height are obtained per period. The width of one of
8r these is1— 27| and the other is +|1—27)|.
na A one-dimensional quantum ring is a limiting case of
H /0, two-dimensional structures, i.e., a cylinder or a bracelet.
0 I 02 04 N06 08 We now write expressiof23) in the form
4}
! M _ Mg
-3¢ MB MB
FIG. 2. Temperature smoothing of the magnetic response curve of a quan- 1 mg “ 2m(m+ q)/q)o)
tum cylinder. The fine line corresponds T=0 and the heavy line corre- + - — . (29
sponds toT=10K, 7=0.6, p=3.58x 10"°, andL=4.37x 10" *. 4\ m* | ma=—« 1+exd (Eym—u)/T]
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We then expand the magnetic moment of the bracelet as ahereM,,, is the magnetic response of a cylindé®) ob-
Fourier series, for which we again use the Poisson formulatained in Sec. 2.
Plots of formulas(31) and (33) are shown in Fig. 2. It
2 @(an+t)— 2 ellt ” e(x)e ™ dx. can be seen thal (T) goes to zero at points whede/® is
n=—w —o a half-integer(as for a cylinder and a quantum rinddence
(300 M(T) is a periodic function of the magnetic field flux with a

After some fairly lengthy but simple transformations we ob-P€riod equal to the flux quantum.
tain

M Miing - ) 4. TEMPERATURE DEPENDENCE OF THE MAGNETIC
——=—"24 3 C(T)sin2mké), (3D  RESPONSE
MB MB k=1
where the Fourier coefficients are We shall now consider the temperature corrections to the
magnetic response, confining our analysis to the case of a
highly degenerate gas in the limit/ T>1. In this case, the
Cu(T)= ___* |~ f dxcogIx) integral in the expression for the magnetic response of a
cylinder (9) and a bracelet33) may be estimated. We first
foc y sin(ky)dy 32 expressP(T), which satisfies
0 1+exd (bx2+ay?—u)/T]

P(T)—fw x2J;1(ax)dx
Introducing the polar coordinates using the formubas 0 1+exd (x2—u)/T]’

=(r/b)cose and y=(r/a)sine, we then obtain from Eq.

(32) in the form
1 (= of
cm:—i@ k g 1 P(T)=§f qo(X)(—&)dx, (37
X 472 m* Jba® 157 JK2a+12/b here
me 2y (rVkYa+1%/b) dr (33 () =2xJp(a ), F(x)=1+exd (x—w)/T] L.
0 1+exd(r?—u)/T]

Now P(T) can easily be estimated using the forntfila
We shall next analyze thE=0 case. The integral in Eq.

. . 0 (91: 2T2
(33) is easily calculated af=0: f o(X)| — 5) dx=p(u)+ o"(). (39
m k= |
f Merl(r \/§+ 5 dr Equation(38) gives the estimate
’ am?T?
M ( iz 2 ) P(T)=P(0)+ — Jo(ap). (39)
== St g (34
k“/a+1b a b Using Eq.(39) we can find the Fourier coefficien&,(T) of

Using the asymptotic form of the Bessel functions for largeth® magnetic response of a cylinder

arguments g/a, u/b>1), we obtain LT 2m em
, C.(T)=C,(0)+ 0 (2wn \/;)

1/4 = J i
1 my [2[ud 1 1 \ﬁ 35 m* 2 e
O e N7l b2) a9 Vb (40)
" The magnetic moment is then given by
T k cod Vu(k?/a+1%/b)— /4] .
B Z ﬁ I:E]. (k2/a+I2/b)5’4 ' MCYI(T) - Mcy|(T:O) + mLT V2m*8m0
(35 MB MB 3fim* g2
" . . ) *© o
Subsntutmg Eq(35) into Eq._(31) we then obtain the follow % E sin( 2 — Jo( omn \/E) (41)
ing formula for the magnetic response of the bracelet n=1 Dy €
M(T=0) B Miing(T= O) Mei(T=0) The Fourier coefficients for a bracelet have the form
MB 2up 2up C(T)1=C(0 mo m2T2n
oo = + =
.\ 4 my| ud 1/42 s (2 ‘ ) o()=Cnl0) 4872 m* Ja%b
— sin —
2m2m* | ath?| & ™o, © I
- X J —11, 42
cod Vu(k?/a+1?%/b)— 7/4] |—2-w ( b “2)
» ., (36 . . o
=1 (K?/a+12/b)>4 and its magnetic moment is written as



JETP 88 (4), April 1999 Geller et al. 805

Miy, a variation can only take place in such a way that the magnetic
1000 field flux across the area occupied by the projection of the
500, /\/‘\,“ trajectory changes by an whole number of flux quabta
0 N . ) ) n With some modifications, the pattern of the de Haas—van
500 02 04/ 06 ¢/¢0-3 \V4 Alphen effect described above is also observed for various
0 low-dimension systems:® However, the results obtained in
-1000 Secs. 2—4 suggest that in nanostructures exhibiting cylindri-
cal symmetry(quantum ring, bracelet, quantum cylinger
Mip, b the situation is completely different and although, as before,
1000 the amplitudes of the oscillation maxima on the culéB)
500‘ /\/\.\ will depend on the chemical potential, the positions of these
0 . maxima are determined by the relationships betwg&emd
04/ 06 08 @/ 7. Moreover, the period of the oscillations does not depend
~500 .
on u and is equal to the flux quantu@haronov—Bohm
-1000 oscillations. This can be attributed to the purely geometric

fact that for any electron energy the projection of its quasi-
classical trajectory on the plane perpendicular to the mag-
netic field is fixed and coincides with the circumference of
the cylinder base.

In all the nanostructures considered in the present study
the Fourier coefficients do not depend on the magnetic field
which distinguishes nanostructures with cylindrical symme-
try from ordinary three-dimensional samptesr nanostruc-
tures possessing no such symmétyWe further note that
FIG. 3. Magnetic response of a quantum bracelet as a function of the madD @ll cases, the curve of the magnetic response as a function
netic field flux atT=1K, u=1.6x10 ?erg: a —p=2x10"6cm,L=2 of the field flux® has kinks. Exceptions for a cylinder are
X107°cm; b —p=7x10"%cm,L=8X10""cm, c —p=4.7x10 "cm,  the casegy=0 and alsop=1/2 when no kinks are observed.
L=4.61x10"° cm. The singularities of the curve for a bracelet incorporate all

the singularities of a cylinder and a quantum ring, as is de-
duced from Eq(36).
MpadT)  MpadT=0) 1 my T2 It is interesting to note that the incorporation of an
e - P + 48 m* /2% Aharonov—Bohm flux® 55 (a magnetic field flux created by
a thin, ideally infinitely long solenoid positioned along the
symmetry axis of the nanostructiiggreserves the oscillation
pattern for all the cases studied. This flux merely causes a
general shift of the magnetic response cudgd) by @ 5.
(43)  This behavior of the magnetic response occurs because the

The temperature corrections to formulgkl) and (43) Fourier coefficients do not depend on the magnetic field.
smooth the kinks on the curves g|v|ng the magnetic moment We also note that for all the nanostructures considered

of a cylinder and a bracelet as a function of the magneti¢he magnetic response has no monotonic component.
field flux (Figs. 2 and R These results neglect the electron spin. As a result of

allowing for the spin, the term (1/2pgugB is added to the
electron spectrum, where==*1 and g is the electron
g-factor. Calculations similar to those made in Secs. 2—4

As is well known, the magnetic moment of a degenerate/ield for a quantum ring
electron gas in a quantizing magnetic field describes oscilla-
tions as the magnetic field variéde Haas—van Alphen ef- Ming= X (MIO"+ M2,
fect). The physical principle of this effect is well-known: the o=x1
density of electronic states changes apruptly whenever thene monotonic component of the ring respog°" has the
levels of the electron energy spectrum intersect the level ofy
the chemical potentiakk of the gas as the magnetic field
varies. Moreover, the amplitude of the oscillation maxima M?O”_ g Jx [1

MB 2 )

(e ] @ o]
x> ksin(27rk—) >
k=1 Dy 1=

ke 1
“a'h

5. DISCUSSION OF RESULTS

and their position on the curvd (B) also depend om.

Note that the set of possible projections of the quasiclas-
sical electron trajectories on the plane perpendicular to the +eXF{S[X2+ Ug(m*/mo)(‘D/@o)]—MH_ldX
magnetic field is determined by the Fermi energy Ter0 T ’
and each energy level has its own projection of this trajec-
tory. The energy levels and consequently the trajectories de-
pend on the value dB and vary asB varies. However, this and the oscillating component of the response is described by

(44)
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o0

M os¢ D+ Dy above generally exhibit oscillations of the magnetic response

- =2, ay,sin 2mk————|, (45  as a function of the flux. These are Aharonov—Bohm oscil-

MB k=1 ®, . . P . .
lations, i.e., they are periodic with respect to the magnetic

where the Fourier coefficients are field flux if the electron spin is neglected. We also note that
® for carbon nanotubes which do not possess complete cylin-

Ay T,a) drical symmetry, flux periodicity also occutg? In view of
0

this observation, the cylinder model analyzed in Sec. 2 is
4mOJoc (x+m* go/2mg)sin( 2k x) dx clearly a reasonable approximation to describe the magnetic
= . f carbon nanotubes neglecting spin. If the electron
0 1+ex X2+ ag(m* /mg)(®/Dg)]— u)/T response o
el 9( o)( o]~ 1) }(46) spin is taken into account, the cylinder model does not give a

i o ) crescent-shaped singularity on thH ®) curves, in contrast
Equations(44)—(46) indicate that in the general case to the results obtained in Ref. 2.

where there is an Aharonov—Bohm flux, allowance for the This work was supported by Grants from the Russian
spin causes the following changes in the pattern of the effechnd for Fundamental Research, the Russian Ministry for
the magnetic response has a monotonic component that de- ) C . y )
pends nonlinearly on the flu® and does not depend on the Ge_neral_ _and Professional Education, and the “Russian
Aharonov—Bohm fluxb ., and the Fourier coefficients,, ~ Universities—Fundamental Research” Program.

become nonlinearly dependent on the fibxout also do not

depend ond 5. Thus, as in the case where the spin is ne-
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the response, where the monotonic component depends nofib. ShoenbergMagnetic Oscillations in Metal§Cambridge University
Iinearly on the fluxd®d. Press, Cambridge, 198fRuss. transl., Mir, Moscow, 1986

To sum up, we can affirm that in all the nanostructures L D Landau and E. M. Lifs.hitzSt.atisticaI PhysigsPart 1, 3rd ed., Per-
studied allowance for the spin—magnetic interaction destroy,_,s:gAa”;O”';rSg:i’ligjgsg [iui;r'j:hig\?";\:]zu'g’ IM(I\)/ISaCr(i)gZﬁ]égrals and
the periodicity of the magnetlc response as a function of the Series Vols. 1-3 (Gordon and Breach, New York, 1986, 1986, 1989
flux because the Fourier coefficients depend on the #ld  [ryss. original, Vols. 1-3, Nauka, Moscow, 1981, 1983, 1986
and a monotonic component appears in the response. ZHigher Transcendental Functions (Bateman Manuscript Projaét). 1,

Since in real structures we firth/m* >1, the spin_ edited by A. Erdlyi (McGraw-Hill, New York, 1953 [Russ. transl., later
ms-g?]etri]c interaCtir?n Wi||| be i;nporta-?-t in narllojtrucmres f0r24id"l Nzlrigylnl”\l/loli?gzi,uiggﬁ to Semiconductor Theor§Prentice Hall
which the carrier has a larggfactor. To conclude, we note s . :
that for a bracelet the grapqhi depend strongly on the ratio of Englewood Cliffs, N.J., 198]Russ. transl., Nauka, Moscow, 1978
p to L (Fig. 3). The cylindrical nanostructures considered Translated by R. M. Durham

MB  m*h m=—c
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The behavior of a solvated electron in an electrolyte is investigated. The formalism of the theory
is based on variational estimation of path integrals. It reduces the problem to the investigation

of the self-consistent mean field produced by the ions and the electron. Mayer cluster expansions
make it possible to take account of the short-range interactions and to find expressions for

the effective potential of the electron and the electron—ion and electron—neutral atom correlation
functions as a function of the macro- and microscopic parameters of electrolytes. In the

limit of high ion densities the behavior of the electron is determined solely by the Coulomb
interaction, which results in the formation of a polaron state. This state of the electron is virtually
independent of the thermodynamic parameters of the electrolyte. In the opposite limit of

low ion densities the electron forms a cavity state. The presence of ions results in additional
localization of the electron and is manifested experimentally as a shift of the absorption

band in the direction of high energies. The estimated shift for a hydrated electron agrees with the
experimental data. €999 American Institute of Physid$1063-776(99)02104-§

1. INTRODUCTION and energy characteristics of a solvated electron depend
on the macro- and microscopic parameters of the ligdéh-
Solvated electrons—excess electron in liquid or gaseousity, temperature, pressure, size and charge of molecules, and
media that do not form chemical bonds—are objects of botlso o).
intense theoretical investigations and numerical simulation The formalism of the method is presented in Sec. 2. In
(see the reviews Refs. 1}x5Such a mixed quantum- this method the problem is reduced to the investigation of the
classical system is convenient for demonstrating the posspartition function of the grand canonical ensemble of the
bilities of various numerical methodguantum molecular system. This partition function is given in terms of a path
dynamics, path integrals, various combined schenieshe  integral over the electric field induced by the charges in the
last few years there have appeared a large number diquid. In Sec. 3 this integral is evaluated in the mean-field
work€~ 12 (see also the reviews Refs. 14 and Where the approximation, which makes it possible to find the effective
solvated-electron problem is studied on the basis of a statigotential for a solvated electron and the electron—ion and
tical theory. electron—neutral atom binary functions as a function of the
Experimental methods have now been developed and state of the electrolyte. Two limiting cases—low and high
great deal of experimental data on the behavior of a solvate®n densities in the electrolyte—are studied in Secs. 4 and 5,
electron in various media have been accumuldiet: The  respectively. Various approximations for the binary correla-
behavior of an electron in liquid electrolytes stands out estion functions, such as the random-phase approximation, the
pecially among the diverse experimental facts. In liquid elechyperchain approximation, or the Percus—Yevick approxi-
trolytes two kinds of interactions compete: the long-rangemation, make it possible to find the behavior of the electron
Coulomb attraction and the short-range repulsion betweeli these two limiting cases and to establish a relation be-
the electron and the particles of the liquid. This competitiontween the state of the electron and the thermodynamic pa-
causes a solvated electron in an electrolyte to depentmeters of the electrolyte. Section 6 is devoted to a discus-
strongly on the ion density and is fundamentally different forsion of the results obtained. A derivation of the expression
strong and weak electrolytes. for the partition function of the grand canonical ensemble in
The present paper is devoted to the statistical theory of &rms of a path integral over the electric field is presented in
solvated electron in an electrolyte. The formalism of thisthe Appendix.
theory, based on the method of path integrals, makes it pos-
sible_to reduce th(_—} problem to the investigation of the se_lf—z_ FORMALISM OF THE METHOD
consistent mean field produced by the electron, after which
the statistical approaches developed in the theory of liquids Let us consider a solvated electron in a classical liquid.
can be applied. Variational estimations of the path integraldhe atoms of the liquid with which this electron interacts
makes it possible to determine the physics of the behavior otreate a complicated potential field for the electron. The de-
the electron at the microscopic level and to obtain “almosttailed analysis of this field is an extremely difficult problem.
analytically” how the structural However, the existence of a large paraméerthe number

1063-7761/99/88(4)/8/$15.00 807 © 1999 American Institute of Physics
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of interacting atoms of the liquid—makes it possible to as-  ¢(r)=(2a/w)%?exd — «?r?]. 3
sume this potential field to be random, to perform self-

averaging of this field, and to find the behavior of the sol-We note that for a solvated electrafw<1 because of the
vated electron as a function of the average parameters of tH¥10rt range of the interaction.

liquid. In this statistical approach the problem reduces to  Note that we haveN™'=pa~3<1, since the solvated
calculating the partition function of the grand canonical en-electron interacts with a large number of particles of the
semble. For a solvated electron in a classical liquid the pariquid. In the opposite case the state of the electron must
tition function Z of the grand canonical ensemble can bebe calculated not by statistical but by gquantum-chemical
expressed in terms of a configurational integral, which deimethods.

pends on the configuration of the classical particles The first step in decreasing the dimension of the integral

R;,R,,...=R™ and a path integral over the electron co- (1) is to switch from a path integral over the electron coor-
ordinatesr (7): dinatesr(7) to averaging over the electron distribution. The
o M|~ 32 result is
E=Z NiQun 25|75 exwBwV,

Qn+1= f driN! ex;{ — BU(RIN)— BT,

QN+l=f D[r(T)]f dR{N} ex[{ _BUSS CZN (1_EC)N
_ﬂ 4 Uet(Riq)_ﬂ 4 UO(RiO) ’ (4)
—jﬁdr
0

Here U (RN is the interaction potential between the par-

ticles of the liquid,u(r —R;) is the pair interaction potential U (R.)= +f 2 -1
+(Rig)== Nir—R, dr,

between an electron and a particle of the liquid, &jchre e+ (Ria) al J

the coordinates of theth classical particle. In the relation

] . D whereT, is the kinetic energy of the electron akt.. and
U, are defined as

1 N
ST+ 2 u(r(n)=Ry)

presenteckg T=1/B is the temperaturéwve employ the sys- Uo(Rio)=f d2(Nug(|r —Rio))dr=4mVo¢p?(Rig)d%/3,
tem of units withA=1, m=1, ande=1), V is the volume of 5
the system, ang. andM are the chemical potential and the ®)
mass of the particles. and the choice of sign it... depends on the ion charge.

The problem of determining the state of a solvated elecThe last two terms in Eq4) can be regarded as the long-
tron reduces to calculating the integ(d). The dimension of range part (o= (Ue, —U,_)/2) and the short-range part
this integral is very large. Therefore the main problem of the(U,) of an external field acting on the electrolyte. Thus, the
theoretical analysis is to decrease this dimension in a reasoproblem reduces to finding the partition function for an elec-
able manner while preserving all interesting physical propertrolyte in an external fieldJ .+ U,.
ties of the system under study. To calculateE we perform a transformatiofsee Appen-

We shall assume that the liquid in which the electron isdix) and express the partition function of the grand canonical

solvated is an electrolyte with densify This electrolyte ensemble in terms of a path integral over the electric fieid

contains both particles with chargel, whose relative num-

ber isc, and neutral atoms, whose density and coordinates —_ — _

are (1-c)p andr,q, respectively. The interaction potential - HOJ DIV Iexd — O, ¢}, ©

Uy includes a short-range repulsive paft of the hard- 1

sphere-potential type and a long-range Com_JIomb mteracﬂon Q=T+ —(‘I’—Ue)*Ual*(‘l’—Ue)—ﬂ_l5N(‘I’,Uo),

U.q=*Uy=*1|Riq—Rjq| for charged particles with the 2

coordinatesR;, and Rj, and charges+1. To simplify the @)

calculations we assume the permittivity of the solvent to be c2p?

go=1. The influence of a permittivitg,#1 can be taken SN(W,Ug)=cpfq+ ——fgrhes fq+(1—c)p*fs

into account by renormalizing the chargedfs—q2e, *. 2!
In the present paper we shall confine our attention to (1—c)?p?

only two types of electron—atom interactions: a short-range o

repulsive potentiall, between the electron and a neutral par-

ticle and a Coulomb interaction.. between the electron 2¢(1—c)p?

and a charged particle: — 5 forhetfs. ®)

Up(r<d)=Vo>0, uo(r>d)=0, In these relation&, is a normalization constanf) is the
. . 71_ . .
Ues (F—Riq)= = |r —Rig| % (2)  thermodynamic potentialj, “= —A(r) is the inverse of the

) operatorug(r), and the symbot denotes a convolution
We shall characterize the state of the solvated electron

by a wave functions(r). For simple estimates we shall em- _ _
ploy a Gaussian wave function y*x= | X(ry)y(r=ry)dry.

ferhgx fg
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In the relation(8) hy(r) is the complete density—density cor- dIN Qi1 -
relation function for a hard-sphere liquid, afigand 5 are Je=(r)=— (wT=eXp(i,8‘I’)
Mayer functions &

1 X(1+Phs*fq+(1_c)l)hs*fs),
fqzz[exp(eﬁ\If)Jrexp(—eﬂ\If)—2],

3N Q-1
Je0= — TJZGXP(—,BUo)
fs=exp(—pBUq) — 1. ©) 0
In the relation(7) the quantitySN is the change in the dis- X[1+(1-c)phs*fs+cphgxfy]. (13

tribution of the particles as a result of the presence of the e relation(12) can be rewritten as
external field. The second term in EJ) can be rewritten as

(‘I’—Ue)*ugl*(‘I’—Ue) V=Ug—pq*ug, (14

B2(r) $2(r) where we have introduced the charge densijty(r)

:j (V\P)zdwj Ir—rq] dry+dr =CpUeq(r)/2=Cp(ge+ (1) —ge—(r))/2. The equation(14)
-

determines the mean fieﬁa(r) in terms of the external field
) U., which depends on the electron density distribution
+J W(r)g=(r)dr. (100 ¢2(r) and the correlation functiong. (r) and ge_(r),

In this form the physical meaning of these contributions isWhiCh are related to the mean field(r) by the relation(13).

quite clear. The first term in Eq10) corresponds to the Ihe integral equatioril4) is the analog of the Ornstein—
internal energy of the electric field produced by all charges if-c™"ike relation. To solve it, additional closure of E#3) is

the electrolyte. The second term is the energy of the eIectroFFqu'red' Va_lrlous modifications ‘?f this closgre ?X'St in sta-
in the field produced by the electron itself. The last term int'St'C"JlI physics: the Percus—Yevick approximation, the hy-

the energy of the excess charge with den r) in the perchain approximation, and so on.
field ‘P(r)g.y g #(r) The condition for a minimum of the variation of the

At first glance it appears that we have complicated thethermodynamlc potential as a function of the electron density

problem, having written the partition function of the grand E10)

canonical ensemble in the form of an infinite-dimensional %ZO (15
path integral. However, in contrast to the path integral in Eq. ) o )

(1), the integral(6) specifies the dependence of the partitionYi€lds a nonlinear Schdinger equation for the electron
function on the classical electric fiel. This field is essen- Wave functione(r)

tially a collective variable. To calculate the expresdiénwe 1

can employ estimates of multidimensional integrals, specifi- | — §A+Veﬁ(ra{¢})+ E|¢(r)=0, (16)
cally, the method of steepest descent.

whereE is the electron energy and.(r,{#}) is the effective
3. THE MEAN-FIELD APPROXIMATION potential for the electron,

The excess electron induces in the electrolyte a mean
Veff(rv{d’}):_Pq* uq+(1_C)Pge0* Uop. (17)

electric field?, whose Fourier components are related to the
external field U, via the permittivity e, i.e., W(k) 1he relationsd13—(14) and(16)—(17) form a closed system

= e 1(k)Uy(K). Since Eq.(5) implies U a, the argument of eq_uauons for finding the eI_ectron wave functigfr) as a

of the exponential in Eq(6) contains the parameteBa, function of the thermodynamm and structural para_mete_rs of
which in our case is largeg8a> 1. For this reason we shall the electrolyte: density, temperature, charge density, size of

estimate(6) by the method of steepest descent, which yielddhe atoms, structure factor, and so on. _
the mean field¥’ so that The general case can be investigated only numerically.

We shall investigate two limiting cases: weak<1) and
Q) strong €=1) electrolytes.
e (11) ge=1) y
=y
Then we obtain from Eqg7) and(8) a nonlinear Poisson—

Boltzmann differential equation 4. STRONG ELECTROLYTE

In this case we have=1, and the effect of the un-

L~ cp ~ ~
Ug ™ (W —Ug)= - (exd —pY]—exd pV]) charged particles of the liquid can be neglected. This state
corresponds to melts of the salts KCI, NaCl, and so on. The

X (1+cphgt fy+(1—c)phgrfy). subsequent investigation depends on the type of approxima-

(12) tion for closure of Eq(13).

We shall find the binary correlation functiong.,(r), 4.1 Random-phase approximation

Oe_(r), andgeg(r), which describe the probability of find- In this case the linear approximation
ing a corresponding ion or neutral atom at a distané®m

the center of localization of the electron: get:(1+phs)(1iﬂqf), (18
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is used instead of Eq13). This yields the solution for the TABLE I. Kinectic T, potential P,, and totalE energies of a solvated
. ~ electron in KCI melt, together with the absorption band maxini,.
Fourier component (k)

47T¢2(k) Te, a.u. Pe, a.u. E, au.  Epx au.
v(k)= ,
(k) k2+ k5[ 1+ phy(k)] Theory
Random-phase 0.106 —0.424 —0.318 0.131
1+ ohu(k 2(K) K2 approximation
p :[ 5 P 25( 1470 D, (19 RISM-polaror 0.120 —0.450 -0.330  0.16%
a k“+ xkp[1+phg(k)] Simulatior?® 0.09+0.026 —0.41+0.064 -0.314  0.125%
. : 0.13%%
where ¢?(k) is a Fourier component of the electron wave Experimert® 0.098

function andkp=(47pB)Y? is the reciprocal of the Debye
radius. For the simplest estimates the approximation 1
+ phg(k) =cos(k), whereo is the size of the particles of the

liquid, can be used. We also note that in most liquids theh f th ited 0187 Table |
characteristic radius of a solvated electron ds1~o the energy of the excited state b5 =—0. a.u. fable

~3A, while at temperatures ~300—1500K andpo? also gives the characteristics of an electron obtained by cal-

~0.9 we have okp=230-150>1, ie., the strong culating the integrals over the fiefkdsiumerically and in the
. D— y .C., = . . .

electrolyte approximation corresponds to the strong-RISM (refer_ence |nt_eract|0n site moole_ polaror_1 modef.
screening approximation, for which The absorption maximum was also estimated in Ref. 24 by

analytic continuation for the generalized susceptibility using

ﬁr(kéo)z4ﬂ¢2(o),(52, pq(kﬁo)z¢2(o), the results of the RISM—polaron model and data obtained
] ] from a direct calculation of the path integrdfsTable | also
Correspondingly, for—0 we obtain gives an estimate obtained for the absorption maximum by
Oe=(N)=1x¢%(r)p %, solving the time-dependent Schiinger equation

numerically?®> As one can see from the table, our theory
agrees very well with the numerical-simulation data both
with respect to energy and the potential maximum. However,
the experimental value of the absorption maximifins

somewhat lower than the values obtained from the theory
and the simulation. We note that the calculations
presenteti>> employed a potentiali,. (r) that is different

\T'(r):477¢2(r)x52. from Eq. (2), specifically,

Ues (F<R)=R¢", Ues(r=R))=r"".

veﬁ<r>:—f G2t —r4] ~drs.

The behavior of the mean fieﬁl‘(r) depends on the ratio of
the size of the particles of the liquid and the solvated elec
tron. For the casea<1

For the more realistic situation whetaw=1, ﬁ"(r) can be

estimated according to the theory of residues as The virial relation(21) for the energies has been ob-
~ ) 2 21 served in a direct calculation of the path integrals for an
W(r)esin(wr/2o)(kpor) "+, excess electron in KCl meff. Relations(21) were satisfied

i.e., the field is an oscillating function with periodo 2. to better than the computational error in the quantities them-
Using the Gaussian approximatié8) for the wave func-  Selves. The numerical deviations from the valde

tion ¢(r), from the relation(15) we obtain a condition for: ~ =(3/2)a>=0.106 a.u. lie within the same limits and are re-

L lated to the deviations of the electron—ion interactign as

Baap=m ", (200 y .0 from the Coulomb law.

wherea, is the Bohr radius, which gives=0.355A"* and
T.=(3/2)a?=0.106 a.u. It can be shown that in this limit the

kinetic energyT,, potential energyP., and total energ¥ 4 > Hyperchain approximation
of the electron satisfy the virial relation,

In this approximation Eq(13) is modified to the form
|T|:|E|:|TT¢|=1:3:4. (22)

~ STap 2

Using the relations presented above, we calculated the Ge-=ex = B¥]=exf = f(Uephssr 4™ Ce)]. (22)
indicated energy characteristic3 (,P,E) for a solvated This relation follows from Eq(14) if the approximation
electron in KCI melt atT=1000K (see Table ). We note )
that the variational estimate & differs by only 2% from the pa=phsst ¢,
estimate E= —0.324 a.u. obtained by solving the Schro s ysed, where
dinger equation numericalf?. To estimate the absorption
band maximunE,,.=E;—E we employed the data of Ref. pheg(k)=—[1+ phy(K) kB! (K?*+ k5[ 1+ phy(k)])
22’ according _to which for the Schifinger equation(16) is the total correlation function of the electrolyte. Then
with the potential

Pq* uquhss* Zx Ce,

~_ 2 _ -1
Verlr)= f‘ﬁ (N)fr=ra| " dry wherec, is the direct electron—ion correlation function.
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To determim—ﬁ'(r), in this case, Eqg14) and(22) must ing. In this caseAN<0 holds, i.e., the repulsive forces pre-

be solved numerically. This requires a separate investigatior‘i’.omi”ateland the electron forms a cavity with characteristic

Here we shall consider the cabg=0. Then we find from radiusa™".

Eq. (22 The correlation functionge, andge, are found from the
) conditions

Jex=exd = ¢=(r)p—1]. (23 ~ ~
Other nonlinear corrections can be taken into account in this ~ 9eq™ (eXABY) —exp(— BV))[1+ phg*f,],
. . . -~ _1 .
limit. Since N™ <1 holds, we obtain from Eq13) Geo=EXH — BU)[ 1+ pher ],

1 ~
ge::exp[i wz(r)p‘l—§¢6(r)p‘3+--- } (29 W(r)=Ug+...=min(a,r 1. (28
The relationg23) and (24) only change the behavior of The estimate of the behavior of the solvated electron

the correlation functiong... (r—0). They do not affect the depends on the type of closure chosen. For the random-phase
energy characteristics and the virial relati¢) or the av-  a@pproximation, where the approximatioh8) can be used,
erage radius of the electron distribution. we obtain
We note one other important aspect. A quantitative mea- 2
) ; : .~ )
sure expressing whether repulsion or attraction effects domi- ¥ (k)= ————,
nate is the changAN in the average number of molecules K™+ &y

bound on the electron as compared with a uniform liquid: Kr2=47rpﬂ(1+ hy(K) Fo(K))=4mpB[ 1+ hy(0)f(0)],

29
AN= [ [0p(Ge: 400 ~2)+(1-C)p(geo—1)Tdr. 2 29
@9 Geq(r —0)= TBexq—Krr],

For the hyperchain approximation in the case of a strong
electrolyteAN>0 holds, i.e., the attractive forces dominates. A
Then the state of the electron is similar to a polaron state,  Ver(r)= ?Vopd3geo(f)- (30
except that instead of a phonon “coat” the electron is bound
with ions forming a cluster. The corrections associated with the presence of charged

The short-range repulsion between particles of the ligparticles will modify the radius of the solvated electron,
uid, just like the short-range interaction between ions and thevhich will be found from the relation
electron, which is not studied in the present paper, will in- 5
fluence the behavior of a solvated electron, but this influence _47mCop CK; 47CoCp
will be small for the energy characteristics because of the 04T T 4A * 2Jma?  Ba”
short range of the interaction. The effect of the nonpolar
particles or particles with a dipolar charge will also be weaklt is easy to see that the last term is small compared with the
if their density is low. second term, and their ratio is (Ba) 2<1 for ordinary

In summary, the behavior of a solvated electron in atemperatures. Thus, the introduction of charged particles de-
strong electrolyte is universal and is determined by the Coucreases the radius of a solvated electron, i.e., it results in
lomb interaction. Its characteristic size isa~!  additional localization and increases the kinetic energy of the
=(3yJm) ta,=3 A, and the energy characteristics satisfy €lectron. This should be observed experimentally as a shift
the virial relation(21) and are virtually independent of the of the absorption band in the short-wavelength direction.

. (3D

temperature, density, and other parameters of the liquid. In the hyperchain approximatiorge. =exp(*£Ue),
which givesg.. (r—0)=4(r), i.e., localization of the elec-
5 WEAK ELECTROLYTE tron in a positive field and appearance of a chemical bond

) ) ) _ occur. This result is a consequence of neglecting the short-
In this case the interaction of the electron with un-range interaction forces between the electron and the ions.
charged particles plays the main role. In the limi-0 we  The existence of even a weak repulsive potential will cause

obtain from Eq.(7) smearing of the electronic density. Strictly speaking, the
1 problem of an electron—ion complex should be studied
Q=Te=p*fs— 57 fsrp?he fs. (26)  quantum-chemically.

On the whole, the calculation of the absorption spectrum

Using the estimaté¢5) for uy, we find the condition for the of an excess electron in a weak electrolyte requires taking

radius of the solvated electron into account in detail the contributions of short-range forces,

Debye screening, electronic polarization, dipole interactions

T (27) and so on. In the numerical simulation of a hydrated
Ba electrorf® a correlation was noted between the enekgy,,
where Cy~1 is a numerical parameter. At room tempera-of the absorption maximum and the hydration radiysof
tures andpo®=0.9 we haveaK51>1 for c>1, i.e,, the the electron. We approximate this correlation[:‘a,%xocrgl.
weak-electrolyte approximation corresponds to weak screenFaking account of this fact and the relati@i) we find that

47Cpp

3a=
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AEpg, V- 100 electrolyte, in the limit of high ion densities, this behavior is
determined only by the Coulomb interaction, which causes
clustering of positive ions on the electron and the formation
101 P of a polaron localized state. This state of the electron is vir-
+ > tually independent of temperature, ion density, and other pa-
7 rameters of the liquid. The variational estimates made of the
1 + electron energy at the absorption band maximum agree well
st y . : ) .
with the data from numerical simulation of a solvated elec-
tron in KCI melt?® but there is a discrepancy between these
# data and experiment. Moreover, experimentally, the absorp-
tion band maximum is observed to vary in the series of
alkaline-halide solutions: It decreases from 2.2 @\Cl) to
FIG. 1. Experimental data on the shift of the absorption maximum of al.07 eV/(CsC)).?® This fact can hardly be explained using the
hydrated electron in agueous solutions of Li®1), MgCl, (O), and LiICIO,  simple model considered here. In our view, the discrepancy
(D) as func?ions of the solution concentrat_i%?n‘l’_he solid line _corresp_onds is due primarily to the approximation used to calculate the
to a linear fit of the data and the dashed line is the theoretical estimate. . . . .
effects associated with the electronic polarization of the me-
dium and to deviation of the electron—ion interaction poten-

the relative shifAE,,, of the absorption maximum depends tial from a Coulomb potential.

on ratio of the Debye radius and the hydration radius of the _In the OPPOS'te limit of low electron conc_entr-atlons a
cavity state is formed, where the characteristic size of the

electron L ; 150-1/5 Thi
cavity is determined by the parametex p~°B~ ~~. This be-
AE ax 2 > 5 8\/; ) havior is typical for an electron in disordered systems with a
E CKDIh=ge. CPP h: (32 short-range potentidP. The introduction of a small number
max 9\/; €0 - e L
of charged particles causes additional electron localization
Here we took account of the fact that and should be manifested experimentally as a shift of the
absorption band in the direction of high energies. This shift
rﬁ= j r2¢?(r)dr =3/4a? of the absorption band was investigated theoretically in Refs.

31 and 32, and it has been observed experimentally in
and the permittivity of the solvent ig# 1. Using for water  water® with increasing ion concentration. Our estimate of
the experimental valug,,~=1.72eV and the hydration ra- the relative shift of the absorption maximum for a hydrated
dius r,=2.05=0.1A obtained by numerical simulatiéf, electron agrees well quantitatively with these experimental

we find that at room temperature data.
E The mathematical basis of the method developed is con-
T — (4.950.5 X 10 2eV/M. version of the partition function of the grand canonical en-

semble into a path integral over the electric field induced by
Figure 1 shows the experimental valugsymbolg for the the charges and the electrolyte. Such a transformation was
shift of the absorption maximum of a hydrated electron inprobably first performed in Ref. 34. It was used in Ref. 35 to
aqueous solutions of LiCl, Mggl and LiCIQ, as a function  find the thermodynamic and structural parameters of a clas-
of the solution concentratiéh for c<2.1 M. Fitting these sical system in a long-range field. The Mayer cluster expan-

data by a linear relation we obtain sion method makes it possible to include a short-range inter-
action in the analysis and to obtain relations for the effective
Emax — 2 H
=(4.6+1.7)X10 2eVIM potential and the free energy of the solvated electron and the

electron—ion and electron—neutral atom binary functions.
(in the figure this dependence is shown by the solid)]ine The formalism for separating the short- and long-range inter-
which is in very good agreement with the theoretical esti-actions in the transformation performed has been investi-
mate(dashed ling Therefore at low ion densities the relative gated in detail in Ref. 36 by a diagrammatic technique.
shift of the absorption maximum for a hydrated electron is  In Sec. 2 we switched immediately to a description of
determined completely by the Debye screening in accorthe electron in terms of the electron density distribution func-
dance with Eq.(32). At higher concentrations we have tion, after which we performed the indicated transformation.
akp'~1 and additional terms in E¢31) must be taken into  Strictly speaking, we should have proceeded the other way
account. In experiments at concentratioss2.1 M (Ref. 29 around: performing the transformation first and then estimat-
this gives rise to a nonmonotonic dependend®, ,(c), as- ing the path integral over the electron coordinates. If we had
sociated with structural rearrangemerispolar liquid is a  limited ourselves only to the quadratic term in the field, i.e.,

concentrated electrolyt@round the electron. if we had employed the random functions approximation,
then the path integral over the field could have been calcu-

lated analytically and the chemical potential of the electron

could have been found explicitly. This method served as the
Using a statistical approach we studied the behavior of dasis for the RISM-polaron theofyThis theory has been

solvated electron in an electrolyte. In the case of a strongised to calculate the behavior of a solvated electron in KCI

6. DISCUSSION
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melt” The latter means that on averaging we actually con- N cN
sider only the diagonal elements of the density matrix 1(¥,Ug)= >, de{N} exg — > =BY(Ry)
o(r,r)x¢?(r) and neglect the off-diagonal elements. For N=0 T !

this reason, the order of the transformations is of no signifi- (1-¢)N
cance. If the short-range attraction predominatgs<0), it Z BU |0)_:8Us} (A4)
is important to take into account the off-diagonal disorder.

In our view, the proposed statistical method is a power-  The latter relation becomes
ful tool for calculating at the microscopic level the structural AN CN
and thermodynamic parameters of a solvated quantum par- | = J dR{N}_ IT exg= BY ]
ticle in a classical liquid. It makes it possible to find the N>0 k
behavior of the quantum patrticle self-consistently as a func- (1-c)N
tion of the molecular structure and the thermodynamic state % H ex] — BU olexd — BU]. (A5)
of the medium.
APPENDIX We now introduce tha-particle correlation functions of

_ N _ the electrolytep{)(r, . .. r,) which characterize the prob-

Transformatlon of the partition function of the grand ablllty of flndlng ions at the pOint$1, ol for a ||qU|d
canonical ensemble consisting of hard spherés:

To simplify the calculations we shall assume that the ZN-n

masses and chemical potentials of the atoms and ions are p{"(r,... ) 2 N f exd — BUGJdRIN-™,
identical. We introduce the generalize d charge densjty) o

and the neutral-atom densipy(r): (AB)
Similarly we can find the correlation functions
) e My r,) for the neutral atoms, and so on. Using the
po(=2 =Ry, po(n)= 2 8(r=Rip). O ’ '

Mayer cluster expansions the relatigh5) can be put into
(A1)  the form

Then the partition functiorE of the grand canonical en-

(1) - (2)
semble can be represented as 1=1+1q* pg +hsepp 2! f *pq *fq

N
E:NZO; JdR{N}eXF{_B(Te_"Ue)*Pq +%fs*p(2) * f +_fs qu f +...
Ug 1
+pg* 5 *pg+ Uo* pot Us (A2) + o farpg * fq xfota (A7)
In this relation We take account of the fact that
dRMN =dR{SVAR{E N pg’=cp, po’=(1-c)p,
and the short-range potentidl, depends on both the con- p (1) =c?p?[1+hy(r)],

figuration RIS of the ions and the configuratidR{{!~ 9N
: . B el pe?(1)=(1=¢)?p’[1+hy(1)],
of the neutral particles. For the potentia{r) belonging to

the class of functions,, we can perform a Fourier trans- Pl (1) =(1—c)cp?[1+hy(r)],

form for the exponential of a quadratic forfh: where hy(r) is the total distribution function for a hard-

1 sphere liquid. The relatiofA7) can be written in the expo-
exp 5 Pq* Axpq|= f D[V¥] nential form
xexp{—E\If*A‘l*\Ifﬂlf DLY] I=exr{cp*fq+(1—c)p*fS
2
C2p2 (1_0)2p2
Xexﬁ{_qu*Al*\P‘f’p *‘P} (A3) +—2' fq*hs*fq+ —ZI fs*hs*fs
2 q
_ 2
The Coulomb potentlauq(r) belongs to this class of +Mf5* hs*fq+a(h(s3),...) _ (A8)
functions, and for it the inverse operatog Yry=-A(r) 2!
exists. Then we obtain from E¢A2) In this relation the terma(h{®, . ..) includes convolutions
1 of third- and higher-order irreducible correlation functions
EzEOJ D[\P]ex;{—ﬁTe— Eﬁ(q’—Ue)*Ual* for a hard-sphere liquid. Neglecting these irreducible corre-
lations, we obtain Eq(7).
X (¥ — Ue)} [(¥,Up), This work was supported in part by the Russian Fund for

Fundamental Researc¢Brant No. 98-01-01154
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Influence of spin—orbit interaction of two-dimensional electrons on the magnetization
of nanotubes

L. I. Magarill and A. V. Chaplik*

Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences, 630090
Novosibirsk

(Submitted 28 October 1998

Zh. Eksp. Teor. Fiz115 1478-1483April 1999)

Calculations are made of the magnetization of a nanotube in a longitudinal magnetic field. It is
shown that the spin—orbit interaction of two-dimensional electrons located at the surface

of the nanotube causes a qualitative change in the magnetization. Depending on the parameters
of the system, either diamagnetism or paramagnetism can occur and the dynamic
susceptibility is characterized by anomalous dispersion at low frequencie499® American

Institute of Physicg.S1063-776199)02204-0

1. INTRODUCTION at the surface of a circular cylinder in a magnetic field di-
rected along the cylinder ajishe Hamiltonian has the form
(we assume that the cylinder radiBsis much greater than
the lattice constant and we use cylindrical coordinates with
the z axis directed along the axis of the cylinger

A two-dimensional electron gas at the surface of a cir-
cular cylinder is encountered in various experimental sce
narios. For instance, the Aharanov—Bohm effertder con-
ditions of weak localizatiohis associated with such a gas.

The magnetic properties of a thin-walled metal cylindier P2+ (p,+ DIR)? )
particular, superconductingwere investigated by Kulik Fo=—2 ¢ +a[(}z(ﬁ¢)+cp/R)—2f)Z)],
back in 1970. On the mesoscopic level particular mention 2m 5
should be made of carbon nanotubes in which two- 2
dimensional conductivity can also occur. Most recently, 0 je~ie

Prinz et al* developed an original method of “folding” 3= _ie® 0 3)

strained GaAs/InAs layers to form cylinders and rolls with a
radius of curvature of order a few tens or hundreds of angHere p, is the longitudinal momentum operator,

strom. E)q,: —i(1R)dldp, ® is the magnetic flux across the cross
In the present paper we investigate the magnetic propekection of the cylinder in units of the flux quantum

ties of nanotubes in a field parallel to the axis of the cylinderg =2 #c/e, andeis the absolute electron charge; we shall

Itis found that the spin—orbit interaction of2electrons at  take# equal to unity.

the surface of the cylinder is responsible for the qualitative  The Schidinger equation with the Hamiltoniai2) can

behavior of the magnetization in static and variable externahe solved exactly. The energy spectrum is given by
magnetic fields, even at very low frequencies. This last factor

is important for experiments which use a modulation method E. (K)=B| K2+ \2+ 1-2A
to measure the magnetic susceptibility. The physical reason —# ) 4
for these characteristics is associated with the cros&ng
guasicrossingof single-electron terms as a function of the
magnetic flux.

whereD;= \\7(A—1)?+k?A2, B=1/2mR?, k=p,R, j is

the projection of the total momentum on the cylinder axis
(half-integey, \j=j+®, A=2maR, andu=*1 is a quan-

2 MAGNETIC MOMENT OF A NANOTUBE IN A STATIC tqm nur_nber which labels the tvvp branches of_the spin-split
FIELD dispersion law of each subbarjd The normalized wave

] o . . functions have the forml( is the cylinder length
We shall allow for the spin—orbit interaction using the

Rashba model.The corresponding Hamiltonian for a planar explip,2) [ exp{i(j—1/2)¢} ¢
2D system is written as (0) = JL \expli(j+12¢) ¢@)’ ®)
\750: a[a—vﬁ]n! (1) where

where o; and p are the Pauli matrices and the two-
dimensional momentum operator, respectivalys the nor-
mal to the surface, and is the effective spin—orbit interac-

. ’ Ai=|Ak|/\47wD;C;, Ci=D;+\;(A—1), 6
tion constant. The constanri does not go to zero for an i =|AK// 47D, =Dt ) ©
oriented surface on which two directiomsare nonequiva- The spectrum and wave functions for the cdse 0 were
lent. It follows from Eq.(1) that in this systentelectron gas obtained previously by Magaritt al®

P V=g =IAiCiIAK, PV=yP=p,

1063-7761/99/88(4)/4/$15.00 815 © 1999 American Institute of Physics
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FIG. 1. Energy versus longitudinal momentum near half-integer value of the
flux: & =0.4995,A =0.046(GaAs forR=100 A). Curve a:j = — 1/2, curve
b: j=-1/2, u=+1. The gap disappears @t=1/2. —0.04r
-0.05+

The magnetic moment is proportional to the equilibrium

Current(persistent Curremtwhich is definec(per unit |ength FIG. 2. Behavior of the equilibrium current for weak magnetic fluxgs:
of the cylinder by =eB/mR, N;=2.3x10° cm™2, and the other parameters are the same as in

Fig. 1.
e_ . .
J=- L Tr{Vf(Hp)}, (7)
where 6(x) is the Heaviside step function. The limits of
where integration with respect td in formulas (9) and (10) are
. 9 a. determined by the form of the dispersion curvég,(k)
VZZB( — %ntd)) + ROz (8 which may either have a minimum fé&=0 or a maximum

at this point and two side minima. This last situation arises

is the angular velocity operator, af@H) is the equilibrium ~ for #=—1 branches where\?/2>|(A—1)x;|. Although
density matrix §(¢) is the Fermi function Using Egs.(5)  the integrals in formulag9) and(10) are expressible in terms

and (6), we can easily find the diagonal matrix elements ofof €lementary functions, the resulting formulas are extremely
cumbersome. Therefore we shall give the resigee Fig. 2

of the numerical calculations of the equilibrium current as a
function of the magnetic flux for the case when fbr=0
(A—1)? only the j=*1/2, u=—1 states are occupied, which re-
2+MT})‘Jf(EJ,M(k))- quires that the condition ng<4(A2+|1—A]) (ng
. 9  =2Ng(7R)? be satisfied.
If the spin—orbit coupling is neglected, the linear suscep-
Quite clearly the current depends periodically on the fluxtipility, defined asl/®, is —2eNs/mR, which corresponds
with a period of one. It can also be seen that the current gogg diamagnetism. We draw attention to the change in the sign
to zero for all integer and half-integer values®f In fact,  of the linear susceptibility fo ~0 caused by the spin—orbit
since the current is an odd function®f J should go to zero  interaction(dia—para transition We confirmed that this tran-
for =0 (and thus for all integer values @b). Then, re-  sijtion occurs if the constant is greater than some positive
placingj with —(j +1) in the sum(9), we can see thatalso A, or smaller than some negative_ which depend on the
goes to zero for half-integer values ®f. The level crossing concentration. The curves, (ng) andA _(n) are plotted in
noted above also occurs for half-integer valuesbofor k  Fig. 3. The mechanism responsible for this transition be-
=0: at this point the energies of the two spin-split branchegomes clear from an analysis of the partial contributions of
of the spectrum are the sanfeee Fig. 1 the various terms. In the absence of spin—orbit coupling and
We shall consider the situation of a given two- iy the presence of a weak magnetic flux, the lower level of
dimensional electron concentratidfy. We shall calculate the system is the twofold spin-degenerate O state, where
the current at zero temperature for which we need to expres s the azimuthal moment. In the presence of the spin—orbit

the operatoV required to calculate the current using formula
(7), whereupon we have

eB
Jz—m% dk

the Fermi energyEg in formula (8) in terms ofNs and®,  interaction this level is splitfor finite ®) into j=—1/2,
using =—1 andj=1/2, u=—1 terms, with the lowest term being
1 j=-—1/2 (for ®>0). The contributions of these sublevels
Ng=——— E dkO(Eg—E; ,(K)), (10) correspond to diamagnetisnj =£1/2) and paramagnetism

47°R? T (j=—1/2) and the populations differ slightl§in the pres-
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FIG. 3. Curves ofA . (ng) defining regions of diamagnetism and paramag-

netism in the linear susceptibility. FIG. 5. Real(solid curve and imaginary(dashed curveparts of the dy-
namic susceptibility as a function of® (O=d—1/2), w/B=10"%,
wl/v="5.

ence of a weak flux In addition, electrons with the sanke
but differentj make different contributions to the current.
For A=A . the contributions to the susceptibility made by
states with differenf =+ 1/2 cancel out.

As the flux increases, the population of thg=(1/2,
u=—1) level tends to zero, whereas the contribution of the
(j=—21/2,u=-1) level to the current decreases and at
some valueb . changes sign. This is indicated by the behav-
ior of the function in the integrand in EQ). This behavior
also explains whyd(®) goes to zero again in Fig. 2. For
& >d . the dependencd(d) is almost the same as that in
the absence of the spin—orbit interaction. ) o '~

In addition, near®=1/2 the curveJ(®) has kinks tonian of the system has an additional tefit):
which are attributed to an abrupt change in the limits of
integration with respect t& (a transition from the case of A=F,+F(), (11)
two lateral minima inE_,,, _;(k) to one central one; see
Fig. 4).

3. DISPERSION OF THE MAGNETIC SUSCEPTIBILITY
OF A NANOTUBE

In this section we shall examine the response of elec-
trons situated at the surface of a cylinder to a varying mag-
netic flux. We shall assume that in addition to a constant flux
® passing through the cylinder, there is also a small variable
flux ¢(t). We are interested in the response of the system in
the linear approximation with respect t(t). The Hamil-

where F(t)=¢(t)V. For the dynamic susceptibility
x(®) (3,=x(w)¢,, whered, and ¢, are the Fourier
components of the variable components of the current and
the magnetic fluxwe can easily obtain the Kubo formula

g

g

X(w):F f dtexp{(6—iw)t} Tr{V exp(iHt)

JIJ,(x100)
b
S

2

o - 2e _ .
X[V,f]exq—iHOt)}—TTr(f). (12

00
0.00010

(=]
-

| i
~0.00010 . .
We shall calculate the trace in formuld2) using the wave

001 function basig5) and (6). For off-diagonal(with respect to

w) matrix elements of the velocity operatgrwe have
—4001

i WAk
o Visuinr=B(1-A) o 13

J

800+

FIG. 4. Current versu® near®=1/2, (w=—p). As a result fory(w) we find
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ieB?A%(1—A)2 is replaced by paramagnetic but nda# 1/2 kinks appear on
x(w)= T 2.R the curveJ(®) at zero temperature. Crossing of levels at
®=1/2 gives rise to anomalies in the behavior of the dy-
E k2 1 namic susceptibility at very low frequencies<B.
X dk— i i i i
& Djz b HI(E; 2(—E, (K)— ) This work was supported financially by the Russian

Fund for Fundamental Resear@Project No. 96-02-19058
e by the program “Physics of Solid-State Nanostructures,”
b JE dk f((Ej .(k)). (14 and also by the INTAS foundatiofGrant No. 95-065)
2

Here we have replaced the infinitely smallfrom formula
(12) with the phenomenological relaxation frequency *)E-mail: chaplik@isp.nsc.ru
Figure 5 gives results of numerical calculations of the
real and Imaginary parts of the susceptibility near the POINt, 5 vy, Sharvin and Yu. V. Sharvin JETP LeB4, 272(1981).
®=1/2. Quite clearly anomalies of the magnetic susceptibil-25 | “aptshuler, A. G. Aronov, and B. Z. Spivak, JETP LeB3, 94
ity should be observed in this range as a result of level cross- (1981).
ing at low frequencieso (however, the usual condition for j{/ OYaKlijlirl?h;EJPALe;t;elyzr]ng(\1/910-Samoylov and A, K. Grutakovsky
e sppesrance of ecuency dspern » Should earl aroarn S o155, Yo T . Srn s
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Thermally activated conductivity and current—voltage characteristic of dielectric phase
in granular metals
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Models of thermally activated linear and high-field nonlinear conductivity of a dielectric phase in
granular metal§nanocompositgsi.e., aggregates of small metallic grains in a dielectric

matrix, have been suggested. Given a sufficiently large spread of grain sizes, the temperature
dependence of the nanocomposite conductivity should be described by a universal
“power-1/2" law: Goexf —(T,/T)¥2]. An analytical expression foF, has been obtained. It is
found that there are two regimes of nonlinear conductivity in a high electric field, namely,

a low-field regime, when both the number and mobility of carriers change with the field strength,
and a high-field regime, when only the mobility of carriers is variable. Analytical expressions

for the nonlinear conductance in both regimes have been obtained99® American Institute of
Physics[S1063-776199)02304-3

1. INTRODUCTION tween the hopping length and effective grain sizesnano-
composites composed of grains with different sjzegh a

Granular metals(metal—insulator nanocomposiieare  view to deriving the power-1/2 law from a modified model.
structures composed of sméllith sizesa=1-100 nmme-  All these selection rules, however, seem rather far-fetched
tallic particles embedded in dielectric matrices. They have and have raised serious doubts.
number of unique properties controlled by the volume frac-  The power-1/2 law has been known in the theory of
tion x of the conducting phase?® There is a certain critical hopping conductivity in semiconductors for a long time. It is
point X such that forx>x. the material has metallic prop- usually interpreted in terms of the Coulomb gap in the den-
erties, whereas far<x. it behaves like an insulator, i.e., its sity of states of electrons localized at impurities, when the
conductivity is thermally activated. From both physical anddensity of states goes to zero near the Fermi I&gefbllow-
practical viewpoints, the most interesting properties of suchng the lawg(E)«(E— Eg)2. This issue has been discussed
materials are features of the metal—insulator transitior at in numerous publications investigating, on the one hand, the
=X, and various effects in nanocomposites in the dielectrimature of the Coulomb gap in the electron density of states in
phase x<x.). nanocomposite granulésnd on the other hand, the effect of

This paper considers features of two such effects thaguch a gap on the temperature dependence of conduétiity.
have been extensively discussed in the literature, namely, the is clear that, even if the gap scenario were realized, it
thermally activated hopping conductivity and strongly non-would apply only to the range of low temperatures, where
linear current—voltage characteristics of dielectric nanocomthe gap is not smeared by thermally generated excitations
posites. Although the character and magnitude of these efeality, below T<(1-10 K). At higher temperatures the Cou-
fects are essentially controlled by material structures, theyomb gap cannot play an important role, and the problem of
are inherent in almost all nanocomposites. the thermally activated conductivity in granular metals re-

It is a well established fact that the conductivity mecha-mained unresolved. This paper is dedicated to this problem
nism in such systems is associated with tunneling of chargand shows that the power-1/2 law does not need any artifi-
carriers between grains, and in this context it is similar to thecially introduced selection rules for tunneling transitions be-
hopping impurity conductivity in doped semiconductdrs. tween grains, but is a direct consequence of the large spread
Moreover, since the distances between grains vary over @f grain sizes typical of real nanocomposites. Moreover, the
wide range, it is natural to expect that their conductivity suggested simple model allows us to interpret the nonlinear
should be described b&(T)xexg—(To/T)*], the well-  conductivity of such materials in high electric fields.
known Mott formula for the variable-range hopping
conductivity? Numerous experiments performed on nano-

. . - 2. THERMALLY ACTIVATED HOPPING CONDUCTIVITY:

composites of various compositions have revealed that tthWER_l/2 AW
conductivity G(T) of such systems is described by the uni-
versal “power-1/2" law, G(T)xexf —(To/T)*?], whereT, At zero temperatureT(=0) and in the absence of an
is a temperature parameter which strongly dependsamd  external electric field E=0), all metallic grains in the di-
tends to zero agx—Xx.. Attempts were therefore made to electric phase of a nanocomposite are neutral, since the elec-
modify the Mott model by postulating some selection rulestrostatic energywV of any configuration of charged grains is
for allowed hops(for example, introducing a relation be- positive® At finite temperatures, however, a thermodynamic

1063-7761/99/88(4)/7/$15.00 819 © 1999 American Institute of Physics
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equilibrium of a different sort is established owing to tunnel-contains mostly grains of one siagsee below, it is natural
ing transitions of electrons between grains, so that a fractioto setL=L . (Ref. 8§ and express the electrostatic energy by
of grains acquire positive electric charend an equal frac- the formula

tion of grains are charged negativehAs a result, conditions 2 13

. . . e X
are created for tunneling conductivity due to tunneling tran-  _~ —_|1— (_ } (1
sitions (hop9 from charged metallic grains to neutral par- €a X¢

ticles. Since the number of charged grains increases with |t 5| grains were of the same size the concentration of

temperature, a rise in the conductivity should be also eXtharged grains with both charge sigftkeir charges being
pected. Thus, the conductivity of dielectric nanocomposites, e) would be N.,=Nexpw,/KkT), where N

is related to the thermal activation of carriers, and the prob— x/(4ma3/3) is the number of grains per unit volum&or

lem i_s reduced.tp calculation of the temperature dependengg, <N such a system is similar to a weakly compensated
of this conductivity. o system of donors and acceptors in a semiconductor at zero
~ Ifthe fraction of charged grains is small, the chamgg  temperaturd. The role of charged donors and acceptors in
in the system energy caused by an electronic transition bgne system in question is played by negatively and positively
tween two initially neutral grains is a function of the sizes  cnarged graingin this case, the resistance of the material is

andb of these grains and separatigh,, between them: ‘
1 2{/) w, 2(/) Wy
ocex — | xex PRk (2)

Wap=€%/2C(a,b,/ 4p), R NP T
where Here (/) is the mean separation between grains,
~#%/(mW) Y2 is the electron wavelength in the insulator, and
- W is the tunneling barrier heigkitvhich is close to half the
C c,.c-C% dielectric band gap
The resulting temperature dependep¢&) is markedly

Ca>0 andC,>0 are the capacitance coefficients of grans jfferent from the power-1/2 law because the assumption of
andb, andC,,<0 is their electrostatic induction factéin  zn equal size for all grains is unrealistic. In fact, with the

1 Cat+2C4p+Cp

the limit /35>a,b technique used in fabrication of nanocomposites the sizes of
b metallic grains vary over a fairly wide range. Charge transfer
Ca”ﬁ 1+ % ~¢gal2, between grains of different sizéom a charged grain of
2 e sizea to a neutral grain of sizb) requires a certain amount
of energy:
b ab ab
Cb%8§<1+7)%8b/2, —Cabws/—<Ca,Cb, Ne_Z E_l B i s
/ab ~ab Wan= Tl T a xs) |’
wheree is the dielectric constant of the material. Thus, thewhich can be offset by absorbing a phontn the other
electrostatic energy satisfies hand, a transition from a small grain to a larger one may
21 1 generate a phongnGiven the wide spread of grain sizes, it
Wap~ ==+ — is natural to expect a large spread of activation enengigs
2¢la b of different hops.

This model is very similar to the percolation model of
variable-range hopping conductivity in the theory of semi-

W,p~(€%/ea). conductors, one of whose tenets is the large spread of ener-

gies of the states participating in electronic transitibds-

However, the latter relation applies only under the con-cording to this model, there is an optiméemperature-
dition that the host material containing the metallic grains isgependent hopping length/,, between grainsa and b,
insulating and does not screen their electrostatic fields. Ijynich is determined by the interplay between the tunneling
reality, the system in question is conducting owing to thepropapility proportional to expf2/,,/\) and the probabil-

tunneling transitions of electrons or holes from charged tqty of thermal activation over the barriev,,, which is pro-
neutral grains and can be characterized by a finite screeningyional to expf-w.,/KT).

and in the limita<b it is described by a simple formula

lengthL. Hence If the distribution functionf(a) of grain sizes is known
e2/1 1 (for example, the exponential distribution functidifa)
Wap~ —| = — — ) =(1/ag)exp(—alap) is quite commo), the concentration of
ela L charged grains with sizes close dds
The mean thickness of the tunneling barrier for such transi- w(a)
tions depends on the mean grain size and goes to zero when NaOCf(a)exr{ kT 3

the latter reaches the so-called percolation radigs at
which the grains would form an infinite clusteand whichis  Then the fraction of the system resistance due to charged
related to the volume fractiom of metallic grains by the grains with size a is? R,,*(1/N,)pap. Where p,p
simple formula (./a)3=x./x. If the percolation cluster o<exgd2/ ,p/\+Wga,/kT]. Thus,
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approximations cannot be applied, the temperature depen-
dence of the resistance should be different. For example, in
systems with uniform distributions of grain siz¢$(a)
=const forap,<a<amal, f'(a)=0, and optimal hops are

' 4) those between the smallest grains. In this case we pave
xexpW/kT), wherew=e?/ean,[ 1— (x/x;) 3.

Thus, we have shown that the power-1/2 law applies to
thermally activated conductivity of nanocomposites under
the following conditions:

(1) a(T) is a weak function of temperature;

(2) the relative spread of relevant grain sizes is not too
large;

(3) the distribution function of grain sizes is such that
f'(agp) <O, i.e., the number of grains is a dropping function

2/ b w,+wW b
Rabmexr{Ta—lnf(a)wL%

Wp
kT

2/
ocexp{ )\ab—lnf(a)+

The hopping length’’,, equals the separation between
grainsa and b. For f'(a)<0 the optimal hops are those
between grains with close sizés this specific casa). In
fact, hops to more widespread smaller graihs<@) would
require a higher activation energy(b)>w(a), and hops to
less common grains of larger sizés;a, would be consid-
erably longer. Both would give rise to a higher resistivity.
Hence we seb=a in Eq. (4). Then/y,=a(T)[f(a)] *?,
where« is independent o&. Thus,

of their size.
s B Whereas the latter condition is usually satisfied under
Rap<exp a(T)[f(a)] —Inf(a)+ﬁ , (®)  real fabrication conditions, the applicability of the former
two must be tested. With this end in view and in order to
where = (e?/ek)[1— (x/xc)*°]. estimate the parametdr, of the suggested model, let us

The resistance of a separate current path connecting tw,
opposite faces of a sample is determined by the product o(?
the resistivityp,, corresponding to one hop times the num-
ber of such hops along this path, which is inversely propor
tional to the hopping lengtif,, . The total sample resistance
R is inversely proportional to the number of current paths

arify the meaning ofx in Eq. (6).

As follows from the derivation of Eq5), this parameter
is related to the concentration of grains with the optimal size
Q- Itis clear that such grains are those whose sizes belong
to a certain intervab,y,—Aa<a<agyt+Aa, and the width
R ! X , 'of this interval is determined by the condition that grains
which is, in turn, inversely proportional 6. Thus, the with sizes outside this interval make a small contribution to

total resistance sati;fid%oc Rab apd i.S controlled by hp PS the conductivity. Let us transform E@6) to pxexd &a)],
between optimal grains, whose size is calculated by minimiz- h a1 —Ty d i h .
ing the argument of the exponential function in E&) where {(a)=aa+1/ar, 7=T/f, and(in a rough approxi-

through variation ofa. If the spread of actual grain sizes is Mation « is independent of temperature. The minimal resis-
small, the functiong f(a)]~¥® and Inf(a) can be approxi- tivity (which controls the total sample conductivifg due to
mated by linear expressions around the optimal ajgefun-  the grains with sizea=aqp= (/a7 Y2 and is p(agp)
less the distribution functiofi(a) has a peculiar shape % @Xpéopr, Where &qp= g(aop9=2(a/r)1’2. Note that, as in
all percolation modelgspecifically, in the hopping conduc-

~1/3 ~ /
[f(a)] constt ya, Inf(a)~const-y'a, tivity model’), éop2> 1. Since the resistivity is an exponential

where function of ¢, we assume that the optimal grains are those
1 £ (g0 Whos;_eg is within unity from. the optimal valuefo_pt. Thg
y=—=[fap] P (agy), ¥ =— 2=, function £(a) can be approximated near the optimal size
3h o P f(aop) =g as
Then f(a)"w‘gopt+(1/Tagpt)(a_aopt)2-

R(a)ocex;{"c}a+ ﬁ) (6) By getting g(a.)—.g(aqpt)= 1, we obtain (&a)z_—agptr
atT =2a%/&op. This implies Qalagy?=2/&,<1, ie., the
relative spread of optimal grain sizes is really small.
, ~ Further, for definiteness let us analyze a system with an
Let (aop‘).<0 and the temperat_ure depend_encez_dﬁe exponential distribution function of grain sizesi(a)
so weak that it could~be neglectéthis assumption will be = (Llag)exp(~a/ag), Ref. 9. Let the total number of grains of
justified below. Thena>0 and minimization of the expo- g sizes per unit volume b. Obviously?
nent in Eq.(5) by varying a yields the optimal grain size
Ao T2 e, X X

N
Rox ex;{

T\ 12 B s
_) } @ J (4mi3)a*f(a)da
T
whereT, is the temperature parameter that controls the sy:

tem resistance. This is the power-1/2 law, which is often

mentioned in publications dedicated to nanocomposite prop- 1
erties. Nop=Nf(a)-2Aa=2N(a3,m) 1’2a—exp( — Aopi Qo).

Note that Eq.(7) was derived using linear approxima- 0
tions of functiond f(a)]~*® and Inf(a). In cases when these The average separation between them is

wherea=ya+7y'.

87Ta8 .

S]’hen the density of efficient grains with sizes within the
range defined above is
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Qopt

1
o =/ 0] 52
ab 4Néﬁ 0 3a0

where

1/3

2h)
3 \—1/6, T1/12
( Taopt) oc T34,

N

1
/0:§

In what follows we will neglect the weak temperature depen-
dence of/y and foragy=a, take /5~ const+ 7 ap, Where

(in the linear approximation/ y,= (/4/3a0) Qopt- In this ap-
proximation Inf(a)~const-a,,/a,. In the derivivation of
the optimal grain size from Eq®6), only the temperature
dependent terms/2,,/\ and agpi/ag are important, whose [
sum (27o/3\ + 1) (agpi/ @) is included in the definition ofr )
given above.

Under the conditions of tunneling conductivity/o/x
>1 holds, soa~2/,/3\a,. Using the expression {o:: P
derived in the rough approximatigne., neglecting the tem-
perature dependence @fT)], we obtain in the next approxi-
mation

0.1 02 03 04
FIG. 1. Temperature paramet&p(x) as a function of metal content for
nanocomposites fabricated from different materials. Experimental data were
taken from the literature as followgl) W-AI,O; (Ref. 2; (2) Fe-SiQ

(Ref. 12; (3) Ni-SiO, (Ref. 12; (4) Ni-SiO, (Ref. 5. The solid curve
plots calculations by Eq9) with parameters given in the text. Average sizes

of metallic grains are given.

'5[ ~(\N 1/3) - 4/37_1/9/2ag/9oc T1/9’

i.e., although this parameter is a function of temperature, thi§ange 6 K<T<500 K. But this range narrows and shifts to
dependence is very weak and cannot notably change tHewer temperatures as—X.. This means that at higher tem-

power-1/2 law. At the same time, the explicit expression forPeraturesq,= amax holds everywhere. It is natural to expect
@ yields both the optimal grain size, , and the temperature a transition to the conductivity behavior typical of nanocom-

parameteiT, in Eq. (7). To this end, it suffices to insert the
more accurate expression farin the approximate expres-
SioNs agp= (L) and &= (2a/7)*% As a result, the
power-1/2 law is slightly modified and takes the form

TO 4/9
where
e2 a 3/2 X 1/3
~| |20 I V7. IR
et )% 0. womc o (2]"]
9
Thus, the optimal grain size is
X 1/2 Y TO 5/9
Aopt=ao| 7 a ?> (10

posites with grains of equal sizes a@dcexp(—T,/T). Such

a change in behavior was observed in experiments with
Al-Ge granular film& as x varied over the interval 0.3
<x<0.45.

By applying the same technique to systems with other
distribution functions, one can obtain similar results.

In comparing the results deriving from E@®) to experi-
mental data, one should keep in mind two complications.
The first is the poor accuracy of the metal fractonn a
nanocomposite measured in experiments, which is important
for x close tox.. The second is the correlation between the
average grain size, and the volume fraction of a metal
determined by technological conditions. In realigg in-
creases with (so, in Ni-SiQ system3we havea,= 15, 25,
and 40 A atx=0.08, 0.24, and 0.44, respectivelyor this
reason, one can expect good agreement between experimen-
tal data and calculations only in the overall shape of the

i.e., it grows with decreasing temperature and drops as th@mperature dependence of conductivitye power-1/2 law
temperature rises. This defines natural bounds for the appliss concerns the absolute value Bf and its dependence on

cability of the model: it is valid as long asyin<agp
<@max 1-€., in the temperature range

Toin<T<Tmax:
2 3/2
e dp
- 9/10
T~ as| A
A 3/10 X 1/3
x| 3 x‘ws[l—(x—) } (11
(min] c

For typical values\=2-10"8 cm,a,=10"" cm, =5, and
x.= 0.5, we find that, for example, a¥x.=0.3, the model
(hence the power-1/2 Iagwis valid in a wide temperature

the metal contentTy(x), the theory could be deemed suc-
cessful if it predictedl correctly within one order of mag-
nitude and the overall shape of tiig(x) curve. As for the
temperature dependence of the resistivity, it was shown in
dozens of experiments performed with different nhanocom-
posite systems in a wide temperature raffyem room to
liquid-helium temperaturesthat it follows the law p(T)
«exf (To/T)¥?] (see, for example, the reviews. Figure 1
plots experimental data by different authors for the function
To(Xx) in nanocomposites manufactured from different mate-
rials (the large spread of experimental data is caused by the
complications mentioned aboveThis graph also shows a
theoretical curve ofTy(x) calculated by Eq(9) with the
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e tween these numerical calculations of the temperature depen-
dence of the conductivity and the result of our analysis pro-
vides evidence in favor of the suggested approach.

3.0

2.5

3. CURRENT-VOLTAGE CHARACTERISTIC

20
According to the model described in the previous sec-
tion, the conductivity in the weak-field limit is connected
with tunneling transitions of chargéslectrons or holgsbe-
tween charged and neutral grains of a quite defigimal)
size a=aoy, which is considerably larger than the size of
the smallest close-set grains. Although the probability of tun-
300 K neling between the latter is higher than between more
0 ol 02 03 o4 05 wuidely spaced grains of the optimal size, the number of
x charges on small grains is limited by their high ionization

energy, so their contribution to the conductivity is small. In
FIG. 2. Optimal size of metallic grains in a nanocomposite that make the 9y y

major contribution to the conductivity. The calculations were performedSUfﬁCiently high electric fields, transitions between Iarge

using Eq.(10) with parameters given in the text. charged grains and smaller neutral grains, whose probability
is low in weak electric fields, become possible, so the con-
ductivity is effected via more probable transitions involving

following parametersh =2x10 8 cm,a,=10""cm,e=5, closely set small grains. Both the number of carri@wsing

and x.=0.5. The agreement between the experimental datto the change in the optimal siz of donor graing and

and calculations is satisfactory. their mobility (owing to the change in the optimal sibg of

1.5
1.0

0.5

2 1 1

b a/’

It was noted above that the temperature dependence @bnducting grainsvary with the electric field.
the optimal grain size is approximately described by the In accordance with this reasoning, let us assume that an
simple formulaaoptocT‘l/z. Its dependence on the metal frac- electric field of strengtlE offsets the activation energy,,
tion, a,p(X), is also easily understandable. The mean sepaef the transition from a grain of siza to a grain of sizeb
ration between grains decreases with increagjrand small <a, i.e.,
grains (characterized by high activation energiedso con- s
tribute to the conductivity. This should yield a smalégy. eE/ . =W _& 1_(1) (12)
Calculations plotted in Fig. 2 indicate that the optimal grain “abmTabT, Xe
size is smaller than their average size in a wide regior of ) . .
and T. For nanocomposites with/x,=0.9 this conditon W& ignore the fact that such transitions can be driven by
(a0p=3y) is satisfied over the range down to the liquid- thermgl activation, i.e., at_)sorpnon of phonons. Th|s can be
helium temperature. done if the temperature is .m.oderateT<wab (qqahtatwg
To conclude this section, note that the power-1/2 lanestimates of the effect of finite temperature will be given
was derived by Shenet al® under the assumption that there P€IOW- _
is a structural relation between the grain sizand separa- Then we can set,,=0 in Eq.(4) and assume that the
tion / between themz/a=const. Adkin€ however, cor- conductivity in these conditions is due to tunnelifigrough
rectly noted that the assumption had not been supported Ky distance~/";)) between grains of size. Therefore the
structural analysis data. It follows from our analysis that thelrSt term of the exponent in E¢4) equals 2'p, /), whereas
power-1/2 law should be valid under a less restrictive condiil€ term related to the number of carriers is still determined
tion 9//9a= const neaB=a,y (the condition//a=const is by ionization energyw, of grains with sizea, but now
a very special case of our conditioNote also that some of Should be expressed with due account of B@) relatinga
the sophisticated methods used by different authors to justiffndP:

the power-1/2 law can be boiled dowalthough it is not 13
. . X . . W, 1 /aE e X
obvious sometime@do linearizing the actual portion of func- T b , Q=—1-|— .

tion [f(a)]~ Y. For example, Sherdinearized the distribu- T T Qr & Xe

tion functipn ¢(Wij) of the activation energy in the region of gjnce we have>b, we can equate the average separation
low energiegin fact, he seth(w;j) <w;; for wi;<wo), thena  , “henween graing and b to the smaller distance’p,.
numerical calculation led to the power-1/2 law. This resu“’Finally, as previously, we can neglect the term proportional

however, was valid only in the temperature rakdeswy. It ¢ Inf(a). As a result, the exponettakes the form
is not surprising becaus@given wj;=1/a) the postulated

function ¢(w;;) corresponded to the distribution function of 1 ~ \NE

grain sizesf(a) = [ w;;(a)](dw;; /da) ~*ec1/a®, which im- §=agbt+ ., aE=a( 1- 207)" (13
pliesf~Y3(a)xa, the condition mentioned abovmoreover,

it is the functionf(a)«1/a® that satisfies the conditiori/a  i.e., it is similar to the case of linear conductivity discussed

=const discussed aboveNonetheless, the coincidence be- in the previous sectiofEq. (6)].
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As is usual, the resistand®xexp(f) is determined by low-field regime and negative”(E)<0) in the high-field
the minimal value ofé, which is equal in this case tég regime. This can be used as a criterion for distinguishing
=2§0m(1—)\E/2Qr)1’2. Thus the total conductance of the between the two regimes. The fact tt@&(E) curves of the

sampleG=1/R is given by’ first type were recorded neither in fieléis~10°—10° V/icm
(Ref. 5 nor for E~10°-10* V/cm (Ref. 13 indicates that
G(E)xexd —2£op( VI-AE/2Q7—1)]. 14 the boundary between these two regimes is in the range of
The optimal grain sizes and b increase with the electric fieldsE< 10° V/cm. Preliminary resultd of detailed studies
field strength: in these and lower fields are in agreement with the present
model*
-1
be=(agr) =a '(1_ AE ) 12 In conclusion, let us briefly discuss the effect of finite
E E op 207 ' temperature on our results. In this case, transiteonsh are
b driven not only by electric field, but also by phonons of
aE:—E energy~KkT, which is equivalent, according to E¢L2), to
1-E/bpbe/Q the replacemerf—E— Er, whereE;=kT/e/,,. Then we
~ . \E |12 Bopt’ bbE -1 s have instead of Eq14)
“%nt|1T2Q7) T Q ! 19 &)
but in all fieldsbe<ag . G(0)
This analysis is, naturally, valid untiig<a,a. In 1, E<E;,

higher electric fields, the size of donor grains is fixedat o )
=an. and the size of conducting grains decreadas: exH — 2éop(V1-M(E~En)/2Q7-1)], E>ET(18)

= amax/ (1+ama bpE/Q). Further increase in the electric

field strength does not affect the number of carriers suppliehich means that there is a region of linear conductivity in
by grains of the maximal size, but their mobility increaseslow electric fields with the upper boundaByT.

owing to hops to smaller grains separated by smaller dis- At higher temperatures we haweg,e< T~ 2~ ap,, and

tances. In this case we havzg=abE and the conductance an electric field is no longer necessary for driving currents
; ' through small grains. This does not mean, however, that it

S has no effect on the conductivity. In this case, we should
Eo reconsider the nonlinearity mechanism suggested edrlier,
G(E)xexg — m ' (16) namely, the effect of electric field on the tunneling probabil-
@ama) Eo ity between grains.
where EOZZVQ//beC[l_(X/Xc)Ug]- Since ({@amg) "t Thus, on the basis of this simple model it is possible to
~[ (Amax/ @op) gopt]*1<1, it follows from Eq.(16) that even  Offer a qualitative interpretation of various features of ther-
in fields E<E, mally activated conductivity of granular metals, including its
nonlinearity in high electric fields.
G(E)cmxr{—ﬁ) 17 The author is indebted to B. A. Aronzon and V. V.
E)’ Ryl'kov for helpful discussions and information about ex-

perimental results prior to publication. The work was sup-
ported by the Russian Fund for Fundamental Research
(Grants 96-02-18429-a and 98-02-17432aad by the joint
program of Center National de Recherche Scientifique of
France and Russian Fund for Fundamental Rese@&cint

which is formally equivalent to the result obtained by Sheng
et al® for a specific distribution functiorf(a) and under
different assumptions.

The characteristic field strengty, can be estimated by

the relation 98-02-22037
e | 13
Eo~ g_a(z) 1— X_c , *)E-mail: meilikhov@imp.kiae.ru

YHere we neglect the fact that a fraction of grains in the ground sfte (

which yields Eq~10° V/cm for ap~3x107 cm, x~0.2, 2)10) affte charged in th‘; DfeSTnEe of Lhe Coulombfgap. " _
andx.~0.5. This estimate is in agreement with the experi- Hereafter we assume that only hops between nearest neighbors are impor-
i tant. Although the hopping length varies with the temperatureaccor-

mental datd measured forT~1 K: Eo=(3.5, 1.0, 0.23) dance with the change in the optimal grain sizhese are always hops
-10° V/cm for systems withx=0.08, 0.24, and 0.44, respec- between nearest neighbors. This is a fundamental departure from the Mot
tively. After settingx,=0.5, we find that, in accordance with  picture of the variable-range hopping conductivity and is refated o tne
the expression foE, given above, the proportion among PU'¢Y 9eometical consideration thal for .42 grains of optimal $izes

. L. . are shielded by their neare@tr second neargsheighbors from their far-
these_f'elds should be 21.0.19, which is fairly close to the ther neighbors. This makes impossible tunneling transitions between far-
experlmental data. ther neighbors, which would otherwise require a smaller energy.

As for the low-field regime of nonlinear conductivity, it n Ithe calculation oNr:he integratié)n should bhe performeld over tr_le_ int(lar-

should be noted that this model predicts qualitative differ- & 8min=a<8max Wherean, and an, are the maximal and minima

betw f duct lectric fiel rain size, respectively. .= 3a, anda,<ay, the result differs from
ences pe - een curves 0 conauc gnce Vversus eilectric fe hat given in the text by only several percent.
measured in the two regimes mentioned above: the curve 6frhis means, in particular, that the term proportional té(&) in Eqgs. (4)

G(E) should have a positive curvatur&((E)>0) in the and(5) can be neglected.
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The paper considers the problem of spreading of a localized distribution due to diffusion in the
presence of nonlinear sources and sinks modeling annihilation and creation of material in
chemical reactions. The evolution of the parameters characterizing the problem, namely, the
amplitude and radius of the distribution, has been investigated under the assumption that

the distribution is self-similar. These parameters have been calculated using the renormalization-
group method with renormalization of the diffusion coefficient and the total amount of

material. As a result, it is possible to classify various regimes of the asymptotic behavior of the
system at long times according to the sign of nonlinear interaction constant and the spatial
dimensionality. In particular, the conditions under which the regime of asymptotic freedom and
the peaking regime are realized have been found. The renormalization group method not

only allows us to calculate the exponents of functions with power-law behavior, but also to track
the transition to the asymptotic regime and calculate numerical coefficientd93®

American Institute of Physic§S1063-776099)02404-X]

1. INTRODUCTION system with an infinite number of essential degrees of free-
dom is an application of quantum field theory methods. Ac-

The problem of transport in the presence of nonlinearCPrding to the Martin—Siggia—Rose formalism of “field

sources and sinks has long been long been at the forefront

: AR oubling,”? a classical system described by Ed.1) is
research l?ecause t.h'S phenomenon has implications for phygduivalent to a certain quantum system in the sense that they
ics, chemistry, engineering, biology, ecology, and other sci-

. -~ have identical characteristic functiondfsinctional Fourier
ences. The theoretical description of these phenomena |S . o o .

. . . ransforms of the probability density identified with the con-
based on a quasilinear parabolic equation of the form

centration expressed in the form of path integrals for two
fields presented by creation and annihilation operators of
particles involved in a reactioh.

| ticular, Eq.(1.1) : deli ¢ The technique of renormalized perturbation theory bor-
N particuar, £g.(1.1) 0Ccurs In modeling processes ol ., e from the guantum field theory was employed in inves-
chemical kinetics, coagulation of aerosol particles, filtering

R ; 4 43
in porous media, heat transfer with due account of losses arf?atmg equation systerfil.1) by Doi." Pelit” showed that

heating due to radiation, etc. To be more specific, in wha or blnary rea_ctlonsr(:Z, 6=1/2) one can sum up the per-
follows we will relate our analysis to chemical kineticso urbation series, calculate exact renormalizations of the
the quantityC(r,t) will be called the concentration of a sub- propagator and vertex, and determine the exponent in the

stanceD the molecular diffusion coefficienbh=1+ 26 the power function of t.ime, which appears to be. valid for all
order of the chemical reaction, andthe reaction rate con- orders of perturbation theory. The idea of using the renor-

stant. The casa>0 corresponds to annihilation of a sub- Malization groupRG) method in summing the infinite per-
stance in the course of the reaction, and0 to creation. turbation series was suggested and exploited by Ohtstdéi.

Studyies of the long-time asymptotics of the solution revealnvestigated the problem of the evolution of a given initial
that there is a critical spatial dimensidg= 1/5 for absorp- distribution for d<d. and, under the assumption that the
tion reactions above which diffusion processes should be ur@Symptotic form is independent of the initial distribution,
important, the solution as a function of time depends on th@btained damping with exponent-d/2. Like Peliti?

order of the chemical reaction &(r,t)oc(\t) Y% and ap- Ohtsuk? analyzed only the renormalization of reaction rates
pears to be independent of the initial substance concentratidivertices, and no renormalization of field amplitudes was

in agreement with the results of the mean-field approximaneeded. The application of the RG technique allowed them
tion. to determine not only the exponents but also the numerical

However, for dimensions below the critical value a spe-coefficients of the power functions, and describe the transi-
cific nonlinear regime is observed and the concentration detion to the asymptotic regime as well. L%egeneralized this
cays asymptotically with time a€(r,t)=t~%2 which im-  analysis to the case of a reaction of arbitrary or@erlike
plies that spatial fluctuations dominate in the concentrationthe case of binary reactions analyzed previoysind in ad-

A convenient technique for investigating fluctuations in adition, he calculated numerical amplitude coefficients.

d
5~ Do C(r,t)+NC**2%(r t)=0. (1.2

1063-7761/99/88(4)/7/$15.00 826 © 1999 American Institute of Physics



JETP 88 (4), April 1999 E. V. Teodorovich 827

This paper suggests a slightly different method based oithe numerical analysis of the soluti@rindicates that, for a
the RG technique for investigating the asymptotic distribu-large set of different initial distributions and at least in the
tion function, which allows one to perform an analytic con-case of an absorption reactiom\¥0), an asymptotic
tinuation with respect to the order of the chemical reaction asolution is well described by the Gaussian fo{x?)
well as the spatial dimension. This is rather difficult in the =exp{—x?}. In this case we have,=7%? andb,/b,=d/2.
field approach, since the reaction order governs the topologi- Let us take the initial distribution in the form
cal structure of the Feynman diagrams. Moreover, if the
quantum field theory formalism is not used when the La-  C(r,0)=Qod(r). (2.4
grangian structures for creation and annihilation reactions are ) ) ) B
different, these processes are described similarly in our agi®Wever, in some cases, using a generalized fundtis:

proach, and the only difference is in the sign of the reactiorifibution) as an initial condition can yield an incorrect result,
constanih . since the functions"(r) is ill-defined, and then one should

use a regularized distribution of the form

C(r,0)=Cqexp —r?/13), (2.4)
2. PROBLEM STATEMENT AND CONSTRUCTION
OF A RENORMALIZED PERTURBATION THEORY which can be treated as resulting from linear evolution of the

) ) i distribution (2.4) defined att= —t,, so thatty=13/4D, and
The goal of the present work is to investigate asymptot-QO_ (wl2)d2c,
= (w3 .

ics of solutions of the Cauchy problem for a localized initial The use the RG method in its quantum-field version is

distribution function. The solution is assumed to be self- o4 on the arbotrariness of a partition of the full Hamil-

S|hm|Iar, _"e'h the functlor;al f?rm of ths sollut|r?n (:]oes noF tonian of a system into unperturbed and perturbed parts when
change in the process of evolution, and only the ¢ aracterl? renormalized perturbation scheme is developedormal-

tiﬁ sggle;bof.the p()jroblerg, namely, the ra]\mplitude ?ndr\:vi(jth I(I) zation invariancg and this arbitrariness is used to improve
the 'St”, utpnz depend on time. In the case of spherically, perturbation theory by summing an infinite subset of the
;ymmetrlcal initial conditions, the self-similarity property . perturbation serig's.Although our version of the theory
implies does not contain a Hamiltonian, and the perturbation theory

C(r,t)=C(t)F(r?/1%(1)), (2.2 is developed by iterating an integral equation equivalent to

. . .. . Egs.(1.) and (2.4), the selection of the initial distribution

and one can describe the evolution of the distribution Norovides a degree of freedom which corresponds to the
terms of the function€(t) andl?(t). [It is worth noting that

" - ’ > W renormalization invariance in the quantum field theory.
pzrewous studie<? of this problem were limited to the.case of Following the RG method, we renormalize the diffusion
I (t)=4DOt.]'The author prewousﬂ/suggesteq using the oofficient in Eq.(L.D) by replacingDo—>D=Zl’1D0 and
RG method m_qrder to calculate thege functlc_ms _and a”aédding a compensating term to the right-hand side:
lyzed the specific case of an absorption reaction in a low-
dimensional space. In the present paper this approach is gen- [ 4
eralized to the case of a space of arbitrary dimension and E—DA}C(HH?\Clﬂ‘s(f,t):(zl—1)DAC(M)-
arbitrary sign of\, which allows one to investigate, using the 2.5
same technique, processes involving reactions with material
generation and so-called blow-up regimes, which commonIsting the Green’s function method, let us go over from a
occur in such reactiorfs. differential to an integral equation, incorporating the initial

In what follows, we will use the total amount of material condition (2.4) in the explicit form
q(t) and time-dependent diffusion coefficiebt defined by
the formulal2(t)=4D(t)t instead of the function@(?) and C(r,t)=QOG(r,t)—ftdt'f dr'G(r—r’ t—t)

I2(t). These two parameters can be expressed in terms of 0
C(t) andl?(t) and allow us to write the solution in the form

X[NCY29(r" t")—(Z;—1)DAC(r',t')] (2.6)
2

C(r,t)y=——= aty) ~r , blzf dx F(x?), [note that the Green'’s function in E.6) incorporates the
[4D(t]¥%b, | 4D(t)t renormalized diffusion coefficienD rather then its bare
2.2 value Dol
where Let us renormalize the initial condition by substituting
Q0—>Q=Z§1Q0 and adding a second compensating term to
J dr C(r,t)=q(t), the right-hand side:

t
J drrZC(r,t)=4q(t)f)(t)t(%>, C(r,t)=QG(r,t)—f0dt fdr G(r—r’t—t)
2

X[NCYF29(r" t")—(Z,—1)DAC(r’,t")]

b2=f dx x2F(x?). (2.3 +(Z,—1)QG(r,t). 2.7
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After sequential iterations of Eq2.7) with the first term in  in Eq. (2.12 because the integral diverges at negatyéut
the right-hand side used as a zero-order approximation, wie can be extrapolated to the regi@er<0 using well-known
obtain the solution in the form of a perturbation series inrecurrence relations. This approach corresponds to the

powers of the nonlinearity parameter method of dimensional regularization in quantum field
In the first approximation of the perturbation theory, thetheory?**
calculation yield$ Similarly we determine the renormalization constant for
o AQ20 ¢t the diffusion coefficient:
CH(r,t)=Q|G(r.) — Far A O(t,)HG P )\QZ‘SA 28 1ff dt’
U= B ATT25 7 Jot)
X\{r,t— 1+25t’ +(Z,—1)G(r,t) 1 oaA . ~ S B(1l,1+e)
=1-2gAaB(le), a= 550y
+(Zl—1)DtAG(r.t)}, (2.13
e=1-45d, A= 1 . 117 _ (2.8) 3. RENORMALIZATION INVARIANCE AND
(1+20)% (4m)~"¢ RENORMALIZATION GROUP METHOD

In getting Eqg.(2.8), we have used the so-called semi-

; oo Let us express the unknown functiogé) andD(t) in
group property of the Green'’s function of the diffusion equa-

terms of dimensionless functions of dimensionless param-

tion, namely, eters:
f dr/'G(r—r’,t—t")G(r',t’ —to) q(t)=Q fy(t/7,g), D(t)=D fy(t/7,9), (3.
, which should obey the relatiorfg(1,g)=1 andf,(1,g)=1
=G(r,t—tg) (t>t">1p), (29 according to the normalization conditid@.12). The renor-
and it is easy to show that malization invariance requirement means that calculations of
q(t) and D(t) should not depend on the set of numerical
A t ; - . !
G291 t)= <Gl r, ) (2.10 Pparameters determined by a specific selection of normaliza-
(Dt) 1+24 tion point 7, i.e., under the RG transformations—r;, Q

Equation(2.9) clearly shows that, at least at<0, the =~ —Qi, andD—D; the following relation should hold:

main contribution to the integral over comes from the t t t t

region of smallt’, which allows us to omit’ in the argu- sz(—,g) =Q1f2(—gl , Df; —,g) =D1f1(—,gl),
ment of the Green'’s function in the integrand. As a result, we 7 71 T &

see that in the lowest order of the perturbation theory i 1/ )\Qfﬁ

the spatial distribution of the concentration is described byd1= W‘Ti- (3.2
the Green'’s function of the linear problem. This confirms our .

assumption(2.1) about the self-similar form of the distribu- From the normalization conditions it follows that

tion function, because the same arguments are valid for - -
higher order terms of the perturbation theory constructed by leQf2<—l, ) D,=Df, —1,g),
iteration. Note also that in the case of sm@llin accordance 4 T
with Eq. (2.8), one can also omit’ in the argument of the which yields functional RG equations

Green'’s function and obtain the spatial distribution typical of ¢ , t
the linear problem. fi<_,g>_fl 29 fi<_,gl) (i=1,2). (3.3
Up to this point, we stress that the renormalization con- T T 71

stantsZ; andZ, have been arbitrary. We will specify these  To solve Eq.(3.3), let us introduce a new dimensionless
constants with the normalization condition, which says thafunction
the amount of material and the effective diffusion coefficient
at timet= 7 coincide with the renormalized values AgP(te ot t) € sl t ~[t
=ad o 7917 f1 797979 (3.4

- Dot 2
a(n=Q. B(r=D. (2.10 ®
. . This function is an actual time-dependent expansion param-
The use c.)f Egs(2.3), (2.8, and (.2'1]) yields in the eter of the perturbation theory invariant under the RG trans-
lowest approximation of the perturbation theory the follow-

. o . formation. It satisfies the functional RG equation
ing renormalization constant for the total amount of material:

\Q2 [+ dt’ 9(x,9)=9(/@,9(a,9)), 9(19)=g (35
Zo(n=1+ D A o(t’)l‘f:1+gAB(1’6)’ (212 and the differential RG equation following from it:

where g=(\Q?%/D%) ¢, B(&,7) is the beta-functior(the
Euler integral of the first kind The beta-function is included

d J |~ _
—X5+B(g)£} 9(x,9)=0,
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B From the conditiorg(t)=0, D(t)=0 it follows that the
€<0 €>0 sign of g is determined by the sign aof only. Hence it
follows that in the case of an absorption reactian~0) and
/9 g\ 9 €>0 (d<d,) a specific stable nonlinear regime develops as

t—oo and it evolves from the initial condition of asymptotic
§=0 freedom ag—0. Fore<0 (d>d.), an asymptotically free
regime may occur as—o, but it evolves from “unphysi-
cal” boundary conditions defined &0 and corresponding
to g<O0.

For A<O0 (the case when a substance is prodycat]

€>0, a regime stable d@s—~ corresponds to the unphysical
) (3.6) value g—g* >0, so the regiort— should be excluded
x=1 from the analysis. But foe<<O the regime of asymptotic
freedom in the limit —o° evolves from an initial state that is
stable fort—0 and corresponding t9<0.

FIG. 1. Possible forms o8(g).

_79(x.9)

Blo)=—

In reality, Eq.(3.6) can be treated as an equation only in
the case of a given RG functi , Which is determined . .
g unctigh(g), which | I The condition of asymptotic freedom means an absence

by the behavior of functiog(x,g) near the normalization of renormalization of the diffusion coefficient and a constant

pointx=1. The RG method is based on th? suggestion t.haémount of material. These requirements can be treated as
B(9) should be calculated by the renormalized perturbat'orboundary conditions that allow one to eliminatein Eq.

theory. If 8 is calculated by the perturbation theory, substi-(3_8) and expres© andD in terms of the initial parameters.

tuted in Eq.(3.6), and this equation is solved, this procedureIn accordance with the above arguments, this procedure is

corresponds to summation of the perturbation series or aN ried out in a different manner depending on the signs of
infinite subsequence of it. nde

Using Egs.(2.12 and(2.13), one can evaluate the func- a
tions f;(x,9) in the lowest order of perturbation theory: 4. DIFFERENT REGIMES OF SYSTEM BEHAVIOR
~ (a) An absorption reaction at space dimension below the
F1(%,9)=D(1)/D=Zy(7)/Z4(1) critical value, A>0, €>0 (binary reactions in a one-
~1+2gAaB(1e)(xc—1), dimensional spa<)~eUsing the condition of asymptotic free-
dom, q(0)=Qq, D(0)=D,, we get from Egs.(3.4) and
f2(%,0)=a(1)/Q=Z5(1)/Zy(1)~1-gAB(Le)(x~1). (3.9

(3.7
=0go[1+(9o/0*)17 % go=AQZ°T/D", 4.1
After finding 8(g) from Eq.(3.7) and solving Eq(3.6) .g 90[ (80/9%)] o go. Qo 0 “-1
. - AQ3° 1 |4 1[t\€]a
a(x,g): gx ’ D(t)ZDO 1+DW——*1:€ =Dy 1+—* ? ,
1+(9/g*)(x°—1) o 9 9
26 {5 €¢
. = * ) (yw€— 1)14i 0 1/t 2
fi(x,g)={1+(g/g") (X~ 1)}, 4= 1+D—a@fg—*tf} o, Hg_*(?) } |
fi=ald(1+ad), ¢p=—1/28(1+ad), ° 4.2
g* = e/26A(1+ad). (3.9 76_)\Q(2)5
The remaining step is to express the solution in terms of Dg
initial (nonrenormalized parameters of the problem by From Eq.(4.2) we obtain expressions for the amplitude

eliminating =, D, and Q. To this end, let us consider the C(t) and radiud (t) of the diffusion spot:
general form of the RG function. Depending on the sig,of

three situations illustrated by Fig. 1 can occur. The asymp- C(t)= E(—t)

totics is determined by positions of stationdfixed) points [47D(t)t]9?

g; determined by the conditio@(g;)=0. The requirement 1—1/25

that the fixed point should be stabletas is equivalent to — Qo 2[1+ i l) } '

the conditior[ 93(g)/ 9]¢, <0, and the stability condition [47Dt]" g*\T

for a fixed point ast—0 is [aﬁ(g)/ag]g:gi>0. Figure 1 _ 1 /1t) €]

shows that in the lowest approximation of perturbation |(t)=V4D(t)t=4D, 1+g_*($) } t 4.3

theory there are two fixed points: one is trivigk= 0, which
corresponds to the absence of nonlinear interactionét larget Egs.(4.3) transforms to
(asymptotic freedom and the other is nontrivialg=g* — 125 I
#0, whose position is determined by the signeofin the Ct)— ——am| = =c(At)~ M,
_ _ . (4m)"°\g
marginal case=0 the stable and unstable fixed points are
merged. [(t)— ADo(g*) 422121/ T) 02, (4.4
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defined by the generalized functidifr): the functions"(r)
appearing in Eq(1.1) is ill-defined. In order to get circum-
vent this difficulty, one should take an initial condition with

a finite distribution radiu$Eq. (2.4)] 1= V4D (to)t, andt,

‘Q‘Q

|

|

|

o £

//
LU

t ~
! t ’ ! i in the region of positiveg. Thus, the initial conditions are
g { by b \ given by the relations
N\ \,
PIRAN | e o e Qo=d(to), lo=I(to). @59
\ =) f 0 — . Having selected the normalization point &tt, and taken
* { . ~ .
g "‘\\x‘l * o fo Hilo %o into accountD(t,) =D, we obtain
[ \ (2)5 rz
t)=Qq| 1+ — (5t |,
. c 5 q(t)=Qo W(—g*)(o )
L (A>0) 1 25
\\ \\ D - 0 :|§1
) Q . 0 D(t)=D| 1+ — (15—t | . 4.6
g N ) ~_ (t) o (—g*)( o~ t9) (4.9
N !, t ~
\\x‘1 * *o o ' 0 From conditionD () =D, we derive an equation ex-
’ N pressingt, in terms of the initial conditionsCy=C(ty) and
3 d q D lo, and the parameteds andD of the problem:
Q D
\ ; 0 od &a
; 4
. Mo % | b 4Dgto=13 1+( )* C2°\t, 4.7
g i _
g o x x T oxT ! T T t ( 9 )
For the amplitude and radius of the distribution given by Eq.
(2.1, we find
: c(=c (t>_d/2{1+ (4m* can
D= =Lo| — < Lo Al
4 D //— to (—g%)

1/2 sd €]) {172
I(t)=|0(%) ‘HEL‘L)*C%&MO[LP)H |

FIG. 2. Typical curves oﬁ(x,g), q(t), andﬁ(t) for variouse and\ [see -g*)
text, casega) to (e)]. (4.9

and for the asymptotic amount of material

In accordance with Eq4.4), the asymptotic form of the q(%)=Qqu(4Dgto/15) 2. (4.9
amplitude proves to be independent of the initial distribution
parameterQ, and corresponds to self-similar solutions dis-
cussed in earlier publicatiodgdowever, the evolution of the
diffusion spot radiug(t) depends on the selection of initial
conditions(parameteRy), i.e., a regime of incomplete self-
similar condition is realizedself-similarity of the second
kind),}* whenl (t) <t¥2* ¢, The incomplete self-similarity ex-
ponenta is determined only by the reaction order and spatial

Typical curves forg(x), q(t), and D(t) are shown in
Fig. 2b.

(c) The marginal case of the critical dimensiosns0
(takes place in binary reactions in a two-dimensional space
An important point is that at=0 we havel,;=0, in accor-
dance with Eq.(2.13), and the diffusion coefficient is not
renormalized. Then, using the formula gt from Eq.(3.8),

dimensionality: we obtain
1-5d a A1) =Qu{1+26Agn(t/} ¥, B(H)=Dy. (4.10
725 1tad By seztting the initial conditions at the renormalization
The corresponding curves are plotted in Fig. 2a. f;:]m 7=13/4Do and measuring time from this point we ob-

(b) Absorption reaction in a space of dimension above

the critical value,e<0, A\>0. The asymptotic freedom re- 1 AQYM (1]

gime realized as—o corresponds to the conditior3() A(0=Qo 1+ m(d+2) D nf ’

=Dy and g(e°) =const. However, in the limit—0, it is

found thatg— g* <0, which corresponds to unphysical ini- 1(t)=VIg+4Dot. (4.17)

tial conditions since, according to E¢3.3), the relationg From Eq.(4.1)) it follows that in the case of an absorption
=0 should hold. The reason is that the initial condition isreaction § >0) the amount of material in the long-time limit
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slowly decays as a power of a logarithm and the asymptotiexistence condition for the solutiory is g/g* <1. If the
form is independent of the initial quantit®,. However, in initial conditions are chosen so thgt=g*, the solutions
the case of the production reaction<€0) the amount of have the form
material increases and tends to infinity during a certain finite

€y €l1+1/2
time interval depending on the problem parameterd,, 9(x,9)=g*, q(t):QO(ti) , |(t):|0(t_) ,
Qo, andly. 0 0
(d) A creation reaction at a dimension below the critical _q1-126
; Lo ; ; 1+254d-1 ~1/25 ~1/25
value, >0, A<0 (a binary reaction in a one-dimensional Ct)= 5 1tad (—At) =c(—At) .
spacé. After eliminating the renormalized parameter with 4.13
the help of the condition of asymptotic freedom fes 0, we ) ] ' )
obtain formulas of the formiEg. (4.2)] Thus, the amplitude in the degenerate case under consider-
ation is independent of the initial conditions, whereas the
_nQ20 1 |4 amount of materialg(t) and diffusion spot diametel(t)
f)(t):Do{l— (_&,QL — e} , contain functions of time that correspond to the incomplete
Do g self-similarity condition. It follows from the last line in Eq.
(4.13 thatty can be derived from the initial amplitudg,
(-N)Q2 1 % and, after substituting in the expression @t) andI(t), one
q(t)=Qo[1— —Dﬁdig—*tf} (4.12  can calculate the numerical coefficients in the functions of
0 time.

With due account of the conditiordg>0 and{,<0, we find 5. DISCUSSION

that q(t) drows with time and has a singularity a The paper suggests a new version of the RG technique

:[(_)\)Q(Z)ﬁlg*ng]_l/E (Fig. 29 It also follows from Eq. applied to chemical reactions controlled by diffusion. Unlike
(4.12 that at first an initially localized distribution of a finite the traditional RG technigue, which renormalizes the charac-

amount of material spreads in accordance with the lineay ~ . .
SR eristic parameters of a system such as masses and charges in
theory, but then the distribution narrows as the amount of. - . e
ield theory or similar parameters in other problems, in this

material increases further, and a collapse takes place in g o " . .
N . : : paper the initial conditions, namely, the amplitude and radius
finite timet,, which corresponds to the peaking regifnén o . ) .

: S . . of the distribution function, have been renormalized. In this
investigation of the behavior of the system near the singular- : L : . . .
: . . : connection, the renormalization invariance manifests itself in
ity point probably requires that the functiofigx,g) be cal- the explicit form as a system behavior independence of given
culated in higher orders of the perturbation theory, but the P Y P 9

present analysis probably allows one to describe the behavic')rglt'aI (boundary conditions, which is dubbed the functional

. : : . elf-similarity® Although in most cases the functional self-
and evolution rates of parameters in the peaking regime, at_.._ . o . .
L . Similarity leads to trivial results in the sense that RG differ-
least in its earlier stages.

: . . . . ential equations prove to be identical to initial equations, in
(e) A reaction producing material at a dimension above . : . j
. the example discussed in the paper the RG technique yields
the critical value,e<0, A<0. It follows from the general o . . . AR
: : o nontrivial solutions. Previously the functional self-similarity
equations(3.8) with due account of conditiong;<0 and : X ) .

) _ ~ property was used in solving the problem of nonlinear diffu-
¢><0 that the solutions of RG equations fft) andD(t)  gjon when asymptotic solutions of equations of a special type
te_nd to zero as—0, vyhmh_ means th.at.the Cauchy problem \qre investigated®’
with the initial 5-function distribution is ill-posed. Therefore, The method used in this work has yielded results that are
one should proceed as in ca#g, when the initial time was  gometimes different from previously known solutions. In
chosen at=t, and the normalization conditions were deter-

! - : ] ) S " particular, in the case of an absorption reaction, the
mined at this point. Analysis of the solutions indicates that iNasymptotic amplitude decays according to a power law with

this case 'two Qiﬁerent regimes are 'possible, corresponding t@xponent— 1/(n—1) [Eq. (4.4)] for spatial dimensions be-
the situations illustrated by the solig/g* <1) and dashed |4 the critical value, whereas, according to the conventional
(9/g*>1) curves in Fig. 2e. Itis clear that fo/g* >1 the \je\ynoint, this law should apply only to dimensions above
regionx>x; is unphysical sincg>0 atA <0. the critical value’® The reason for this disagreement is that

In accordance with the normalization conditions, Ed.earlier workers operated assumed the mean-field approxima-
(4.5 and the condition of asymptotic freedoB()=D,  tion, according to which field inhomogeneities due to fluc-
must be treated as boundary conditions and used in expressrations are small and the dominant role is played by nonlin-
ing integration constanty, D, andr=t, of RG equations, in ear damping processes. But in this paper we have analyzed
terms of the initial parameters that determine the totathe evolution of an initially localized distribution instead of
amount of materiaQ, and distribution widtHy, or the initial ~ fluctuations in a spatially homogeneous distribution, where
amplitude Cy=Qy/7%AJ and I,. The condition of the distribution does not spread with time and the distribu-
asymptotic freedom can be used onlygdg* <1 since the tion amplitude follows the same law as the total amount of
region of asymptotic behavior is unphysicalgdg*>1 and  material.
the problem is ill-posed. The existence of self-similar solutions of the fofth4)

By eliminating the intermediate parametgrsQ, andD  for the amplitude was proven on the basis of different
we obtain equations of the forr¢.6) and (4.7), and the argument5Swhen self-similar asymptotic forms of solutions
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of a quasilinear parabolic equation independent of initialconditions does not disappear in the long-time limit. The RG
conditions (“eigenfunctions” were found. On these as- method has not yet been applied to problems with material
sumptions, the amplitude decay exponent followed from theyeneration.

dimensions of physical quantitigs-1/(n—1)], and it was The analysis of solutions of RG equations not only
proven that a distribution decaying faster than a power lawnakes it possible to get the exponents of power functions in
as time tends to infinity can exist only if the spatial dimen-the asymptotic long-time limit, it also allows us to track the
sion is below the critical valupcase(a)]. On the contrary, if  transition to the asymptotic regime and calculate the numeri-
the dimension is higher than the critical one and the nonlincal coefficients:®

earity degree is high, the amplitude decays rapidly on the The work was supported by the Russian Fund for Fun-
initial stage, and as a result, the nonlinear term is unimpordamental ResearalGrant 96-01-00748

tant and the system evolves in the regime of asymptotic free-

dom with diffusive spreading in accordance with the linear«g_mai: teodor@ipmnet.ru

theory and conservation of the total amount of material. It
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It is shown that stable, skyrmion-type, dynamic solitons can be constructed for a wide class of two-
dimensional models of anisotropic ferromagnets. These solitons are stabilized as a result of

the conservation of various integrals of motion: thprojection of the total spirs, or the orbital
angular momentunh, of the magnetization field. A class of two-parameter solitons with

quite complicatedalmost periodif magnetization-field dynamics exists for a purely uniaxial
model(in the sense of both spin and spatial rotatjowith maximum symmetry. Stable

solitons with periodic magnetization dynamics exist for ferromagnets with lower symituetiy

S, or L, or the total angular momentut=L,+S, is conserved © 1999 American

Institute of Physicg.S1063-776(99)02504-4

1. INTRODUCTION ropy constant, and theaxis is chosen along the easy mag-
netization axis of the ferromagnet. Exact Belavin—Polyakov

Nonlinear excitations—topological magnetic solitons solutions® for the model(1) exist only in the isotropic state

(see Ref. }—play an important role in the physics of low- (K=0). We note that the modell) with anisotropy K

dimensional magnets Specifically, it is well known that #0) is fundamentally different from the isotropic cad¢ (

magnetic vortices contribute to the physical properties of=0). In the isotropic model the problem is scale-invariant. It

two-dimensional magnets with continuous degeneracy of thg described by a self-duality equation and is exactly inte-

ground state(Refs. 4-6; see also Refs. 2 anyl ¥ortex grable in the static cas8.

solutions are impossible in two-dimensional magnets with  |ts simplest solution describes a soliton with topological

discrete degeneracy of the ground state, i.e., in magnets witthargev. In angular variables for the magnetization vector

easy-axis anisotropyor orthorhombic magneksFor these [m,=cosd, m,+im,=sinfexp(¢)] it has the form?

magnets it is important to take into account stafieite

long-lived), localized, two-dimensional solitods. Accord- 0 (R

v

tan=z = . ¢=vx+oq, (2

ing to experimenté? they determine the relaxation of mag- 2
netic excitations and can give rise to peaks in the response ) i
functions® Such topologicalnontrivial homotopy groupr,) wherer andy are polar goordlnates in the plane of the mag-
statistical solitons have been constructed by Belavin an§€l @ndRande, are arbitrary constants. The energy of such
Polyakov for two-dimensional isotropic magn&¥sthey are & Soliton in the exchange approximation is given by the for-
characterized by nontrivial topological properties relative tomula

the mapping of thexy plane of a two-dimensional magnet (0)

) . E,'=Eg|v|, Ey=4wA. 3
onto the spher&?: m?=1, wherem is the normalized mag- n = Eolvl, Eo=4m &
netization of the ferromagnésee Refs. 1-3. In recent years The fact that the energy is independenfis a result of the
interest in such states has increased even more in connectigBale invariance of the modél) with K=0. When anisot-
with tﬂeir application for describing the Hall quantum ropy [Specifica”y, of the type in Eq(]_)] and the Zeeman
effect: _ o . . energywy~(1—cosf)H in an external fieldH=He, are

The basic problem arising in the soliton physics of two-taken into account, the expression for the soliton energy ac-
dimensional magnets is related to the stability of the localquires a term proportional t&?. The energy has no mini-
ized solitons. According to the Hobart—Derrick theorBm, mum for anyR=0. This signifies the absence of static soli-
for models of nonlinear fields whose energy depends on thgon solutions. Sometimes this fact is referred to as an
components of the field and is quadratic in the gradients ofnstability of the soliton against collapse.
the field componentésee Eq(1) below stable, static, non- However, stable, stationary, dynamic solitons can exist
one-dimensional solitons with finite energy and finite radiusfor a number of model¢ésee Refs. 1, 2, and 12Their exis-
do not exist(the solitons are unstable against colldpSpe-  tence is due ultimately to the presence of an integral of mo-
cifically, this is true for a uniaxial two-dimensional ferro- tion whose value does not vanish in the static litnit12

magnet characterized by an energy of the form Specifically, for the uniaxial ferromagnét) the existence of
1 such solitons could be due to the conservation ofzipeo-
w=3 J d2{A(V-m)2+K(mi+m))}, (1)  jection S, of the total spihi~® or the z projectionL, of the

orbital angular momentum of the magnetization figtd?
whereA is the exchange interaction constaftis the anisot-  SincelL, is negative in a soliton with>0 (see Refs. 1 and

1063-7761/99/88(4)/11/$15.00 833 © 1999 American Institute of Physics
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2), it is convenient to use the quantib=—L,. In units of
the Planck constant (below we takei=1) the quantities a
S=S, and L can be expressed by the formulesee Refs.

1-3 @

S
L=-L,=— f d?x(1—cosb)[r-Vel,,
a

t

_ S 42—
S= " f d?x(1—cosé), (4)

wheres is the atomic spin and is the lattice constant.
Another natural integral of motion—the momentum
P—can stabilize three-dimensional solitons with nonzero
Hopf index!® two-dimensional topological solitons in
antiferromagnets® and nontopological two-dimensional
skyrmion—antiskyrmion pair solitons in an isotrofiand
easy-plane ferromagnet. However, the conservatiorP of
does not stabilize two-dimensional topological solitons in a
ferromagnet. For this reason, we shall consider the stabiliza-
tion of solitons only as a result of the conservation of the
angular momentuni). c
We shall consider the modél) with the maximum ad-
missable symmetribothL andSare conservedas well as a
model with a lower symmetry, for example, a model de-
scribed by an energy of the form

1
W:f dZX{EAikVim'Vkm+Wa(mX,my) . (1,)

Here the form of the exchange constants tesgrand of

the anisotropy energy, are determined by the symmetry of FIG. 1. Magnetization distributiofishown schematicallyat the timest

the magnet. Depending on the form/qu( andW, eithersS (if =0,t=T/8,t=T/4 (T=2w/w) for solitons in various modela — preces-

W.=W.(8 L (if Avocd b a d. We shall sion solitons,S=const,L # const b — rotation solitons in the model with
a— _a( )) or L (i ik ik) can be conserved. We sha L= const,S#const ¢ — oscillation solitons in the model with=L,+ S,

also discuss a model with# const and5# const but where = const;L+const,S#const. The arrows show the magnetization directions

the z projectionJ=L,+S,=S—L of the total angular mo- on the lined==/2, the symbol+ denotes the center of the soliton where

mentum is conserved. Analysis showed that for all cased="

enumerated above with at least one integral of moltip6,

or J stable dynamical solitons do exist, and for the highest-

¢ del1) solit ith almost periodi i wherey=2|ug|/#f, ug is the Bohr magneton, arid, is the
Symmetry mo el ).50|ons with aimost periodic magneti- o4 ration magnetization. For the mod&) we haveW,
zation dynamics exist.

=K sir? 6, which does not depend ap (A 5y).

We shall now discuss the possible form of the dynamical
stationary solutions of Eq$5). The character of the magne-
2. FORM OF THE DYNAMICAL SOLITON SOLUTIONS FOR tization distribution in such a soliton and its time dependence
VARIOUS MODELS OF FERROMAGNETS can be indicated without solving the dynamical equations for

) i , the magnetization, but rather proceeding only from the sym-

Solitons are determined by localize@(0, V6—0 as  \noqy of the problem; see Fig. 1. First, we note that the
|r|—<0) solutions of the Landau-Lifshitz equation. In angu- symmetry group of the energil) includes rotations of the
lar variables for the magnetization vector it has the form of aspins around the axis and, independently, a rotation of the
system of two time-dependent partial differenti al equations,, qinate axes andy. The existence of a continuous sym-
for the functionso=6(x,y.t), ¢=¢(x.y,t). For the model ey results in the appearance of a corresponding integral of
(1) motion. Specifically, the possibility of spin rotations exists

) IW, for all magnets withW,=W,4(6). This symmetry implies

Al ViVid=sing coso(Vie)(Vip) - —3 conservation ofs. If W,=W,(6), Egs.(5) do not containg

and precession solitons can exist. The latter have thelfdrm

M d
_— 7" smaa—‘f, 6=06(xy), ¢=wpt+P(x.y). 6)
Here 6(x,y) and ¢(X,y) satisfy equations with no time de-

W, Mo 90 rivatives, as a result of which a soliton of the for(®) is

=, sinoo ® dynamic but stationary. The invariance of the problem under

AiVi(sirf oV p) — P 5 o




JETP 88 (4), April 1999 A. A. Zhmudskil and B. A. Ivanov 835

a rotation of the coordinate axes wigg,=Ad; in Egs.(1') =vxy+te¢g Wherev==x1, +2, ... is the topological charge
and (5) implies conservation of the projectionL of the  and ¢y=const. In this case the expressias and (8) are
orbital angular momentum and can give rise to rotation soli-actually identical, Eq(10), which containsSW/ 8¢, becomes
tons (Fig. 1b.131*Such a soliton corresponds to a dynamican identity, and the functiofiy(r) is determined by an ordi-
but stationary solution in the rotating coordinate system  nary differential equatioiisee Refs. 153

X=xcoso,t—ysinwt, y=xsine,t+ycosw;t (7 d?6, 1dé, 2
(O3 y Wy y Wy y Wy ( ) 2O - d_O 1+ _2) sin 00 COS@O
of the Landau—Lifshitz equation, of the form dxs X OX X
0=0(x,y), ¢o=uv(xy). (8) =(Q,+Q,)sindy, (11)

Only one-parameter solitons of the for®) or (8) have =~ where x=r/A, Qp=wp/w_o, O, =w,/wy, A=_ \/A/K and
been discussed previously. However, it is obvious that fowo=27K/M, are, respectively, the characteristic length and
the model(1) with the maximum admissable symmetry a frequency of the natural ferromagnetic resonance in an an-

two-parameter solution of the form isotropy fieldH, =2K/M,, andMy, is the saturation magne-
. s tization. For a centrosymmetric soliton the difference be-
0=0(x,y), ¢=owpt+i(Xy), (9)  tween precession and rotation solitons vanishes. For this

B : _ _ _n1-3
where o, and o, are two independent parameters, can pesoliton with »=1 we haveS=L andJ=0,""and only the

considered. In this case forw, # mw,, wheren andm are sumlfofhthe f_requenc||e@p and oy err:te:sflnthéll_)._

integers, the magnetization is an almost periodic function of t e_ams_otropy( qst term on the left-hand sijlés sup-

time. pressgd in this equation e_xr(mpv_,=0, _then thg self-duality
It is easy to see that with the substitutiof@—(9) the equationd 8y /dx= — (v/x)sinf, is easily obtained. The so-

nonstationary Landau—Lifshitz equation with a definite sym—lunog Of. the rllatt?r I:aquanon ng1VTIS a B(_ecljavm—IPoli/]akovllsoh—
metry of the energy can become stationéry the rotating to.n (2) (in w ‘_"‘t ollows we shall consider only the soliton
coordinate svsterx. v Definina the polar coordinateés with v=1, which has the lowest energyraking account of
Inate sy ' 31); ining ] P ! anisotropy effects, Eq11) can be easily integrated by the
=Vx?+y?, x=tan *(y/x) and taking account of the fact ghooting method.

thatdy/dt= w,, the right-hand sides of Eqé) can be eas- In summary, the structure of a centrosymmetric soliton
ily written as can be easily investigated; see Refs. 1 and 2. However, we
shall show that solitons without central symmetry are of
‘?_szw w ‘9_"" a_azw 07_0 (10) greatest interest. Only such solitons exist for magnets with
ot Pt ' (9} anisotropy in the basal plane. Moreover, such nonsymmetric

. . . . solitons are realized even for the most symmetric moétel
Analysis of Egs.(8)-(10) makes it possible to explain It is much more difficult to investigate soliton solutions

Cfraglystﬁogcg:'z?'?éﬁg;sgn%;';y gagf.?ézlsupr?tmg'orgofgélwhich do not possess central symmetry. The structure of a
variou g - opecifically, | oliton is determined by the two nonlinear partial differential

(1) the energy density of the ferromagnet is independent og . : :
. . guations(5), taking account of Eq99), for the functions
the angular variable (see Eq.(16) below) and the coordi- 6(r.x) and y(r.x). There is no general method for analyz-

natey (sinceA. diy). It is obvious that in this case a sub- ing the localized solutions of such equations and their stabil-
stitution of the general forn®) yields a stationary equation - Soliton solutions can be constructed numerically by
for the functions6(x,y) and¢(x,y). If the invariance of the  molecular-dynamics methods, but this requires a great deal
system under spin rotations is destroyed, i.e., the energy def computer time? Direct variational methods have turned

pends explicitly ong (L=const butS#cons}, then only  out to be very effective for analyzing soliton structure and
rotation solitons(8) with w,=0 are possible. For a magnet stability }#

with L#const butS=const (for example, W,=W(#) but

Axx# Ayy) the energy depends explicitly op In this case

only precession soliton&) with ,=0 are admissable. 3. METHOD OF ANALYSIS AND SOLITON STABILITY
If the model is such that only simultaneous rotation in CONDITION

spin and coordinate space is possible, then only the total The equations fos(r, y) ande(r,x) can be obtained by

angular momentumJ=S—L is conserved. Solitons in & yequiring that the auxiliary functionalZ{6,¢}=W-o,L
physically nontrivial model of a magnet, whe®etconst and  _ ,S be an extremum, wheld is the energy of the ferro-
L+# const butJ=S—L =const, were studied in Ref. 18 by magnet. We start from the expression

direct numerical simulation. In polar coordinates the energy L
of such a magnet contains terms that dependvery. It is - _ 2 2 2
obvious that i?w this case it is natural to upse thgz(ubstitution “é{a@}_J' d X( §A[(V0) +i 6(Ve)?]
(10) with w,= w, , which yields a soliton of the type shown 1 M
in Fig. 1c. For this case the quantify— x is not explicitly + =K sir? 6+ AW(6,¢) __O(l_cosg)
time-dependent in a rotating coordinate system. 2 Y
It is important to note that for the modgl) there always
exists a simple centrosymmetric solutiéh 6,(r) and ¢ X[wp+ w,(aqo/&)()]]. 12
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Here the first two terms are the ener@y in angular vari- motion, is negative or zero. We take the Lyapunov functional
ables and the last term specifies the dynamic part. The terin the form of a combination of integrals of motion
AW(0,¢) is a correction to the energy of a ferromagnet that 1

lowers the dynamical symmetry of the magnet and describes A= '+ ZB,(L—L,)2

the breakdown of a certain integral of motion. 2
We note that when the expressiof@, (9), or (10) are 1
taken into account, the functional’ becomes identical to the +By(S—Sy)(L—Lg)+ > B3(S—Sp)2 (14

Lagrangian of a ferromagnet. Therefore the solutions of the

form (6)—(9) to the Landau—Lifshitz equation are also extre-wherelL, andS, are the values df andSfor the soliton and

mals of the functionalZ. On the other hand, it follows from B,, B,, andB3 are constants. Then the conditiontlds in

Eq. (12) that a soliton corresponds to a conditional extremumhe formdA/dt=0. The Lyapunov functiona\ in the form

of the energy for fixed. andS The quantitieso, andw, are  of a bilinear combination of integrals of motion has been

Lagrange multipliers. chosen previously for analyzing the stability of nontopologi-
Therefore the analysis of the structure of a soliton re<al magnetic solitorlS and one-parameter rotation solitons

duces to searching for the extremals of the functionain orthorhombic ferromagneté.lt was found that ifA <0

{6, ¢}. For simplicity we shall assume th&t depends not holds somehwere, then the soliton is unstable. We have

on the continuous function&(r, x) and¢(r, x) but rather on  shown that this condition of instability also holds in the

a large but finite number of discrete parametars i=1, present caséhe Chetaev functional describing instability is

2,....n. This simplication is not essential. Actually, we chosen in the same form as in Ref.)1%herefore solitons

shall seek the extremum d¥ on a class of trial functions are stable forA>0, and violation of this condition implies

that depend on an arbitrary number of parametgrsa,, that they are unstable.

...,,, but for the general analysis performed in the To analyze the stability conditiof) we shall investigate

present section the origin of the paramet&rss not impor- A for small deviations of the parametexsfrom ai(o). Intro-

tant. Specifically, such a situation arises when analyzing disducing o;=a;,—a{® we write the value of the functional in

crete models on a large but finite lattice. Moreover, for athe quadratic approximation in; as

system of finite size th@; can be treated as coefficients in 1 1 2

the expansion of the solutlons_ in terms of a complete set of A — 2 Lt _Bl( E Liai)

functions. Since far from a soliton the solutions decay expo- 2 7% 2 [

nentially, the parameters with largei are unimportant. 1 2
If the state of the magnet is described rh);pararr}eters +B, E L 2 Sa;|+ EBS(Z siai) ,

a;, thens= “(a;,a,, ... ,a,,0p,0,) and the condition of i [ i

an extremum has the form of a systemrmoélgebraic equa- (15)

tions 9.#/9a;=0. Once the the solutioa(® is found, the

integrals of motiork, S, andL characterizing a soliton with

fixed o, and w, can be calculated. Eliminating the param-

etersw, and wy, it is possible to construct the functida

=E(L,S). It is easy to show that the relations

where %, =d*%lda;oa,, Li=dlLlda;, and S;=0S/da;.

We reduce the matrixZj, to the diagonal form%; = diag
(N1,...,\p). The eigenvalueg; of the quadratic formA

are given by the determinant of the system of linear equa-
tions for «; :
JE(L,S) JE(L,S)

oL T and —s 9 (13 (ei—N\)a;+

hold.

We note that the problem here is to search for an extre-
mum, but not necessarily a minimum. Of course, a stable o .
soliton should correspond to a minimum of the energy for” rémultiplying these equations Hy /(X —e;) and S;/(x;
fixed values of the integrals of motidnandS. However, in i) @nd summing over, we can write the equation far,
our method of Lagrange multipliers the auxiliary functional I the form of the condition for solvability of a system of two
(Lagrangian % may not have a minimum. Indeed, we shall linear equations for¥;L;a;) and €;S;«;). Ir;gvgpat follows
verify below that dynamical solitons in ferromagnétoth W€ shall need to consider large valugs-1."""To lowest
stable and unstableorrespond to a saddle point of the func- order in 1B this condition can be represented in the form

=0. (16)

+(32Li+B33)(§j) Sia;

tional %4. Thus, the question of the stability of solitons is |2 |_i2
very nontrivial. Fortunately, it can be analyzed in a general F(s)=(z (s~—>\)) ( 2 (s~—>\))
I i | |

form, and the stability condition can be expressed in terms of

the integral characteristics of solitons. LS \?2
We employ Lyapunov’s direct methodee Ref. 19to —<2 (8__)\)) =0.

analyze the stability. In this method a soliton is stable if there ' !

exists a Lyapunov functional{ 4, ¢} such that 1the func- The form of the functior (&) is virtually identical to that in

tional is positive-definite near the soliton solution andt&  the case of a single integral of motibh'®2° specifically,

time derivative, found taking account of the equations ofF(¢)— +0 ase— —o0, and for values ot close to\; (the

(17
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\; are eigenvalues of the matrix;,) F(e) possesses poles large lattice, and to choose the angtgsand ¢y for the spin

of the formF=A/(e —\;), A>0. Therefore the eigenvalues Sk k=1,... N, as the trial parameters. This approach for
of A(e;) lie between\; and\;, ;. Hence if the matrix%;, moving nontopological solitons was implemented in Ref. 17
possesses two or more negative eigenvalues, one of the valith N=249x249. However, calculations with a large num-
ues satisfiez: <0 and the first condition of the Lyapunoy Per of parametera=2N require quite powerful computers,
theorem does not hold. In this case it is possible to constru@nd in addition there arises an uncontrollable effect due to
the Chetaev function¥l which means that the soliton is un- the discreteness. Specifically, the conservatioh oértainly
stable. However, if only one eigenvalg is negative, then Preaks down for discrete modefsee below.

the stability is determined by the sign &{0): for F(0) In the present model additional complexities arise be-
>0 one value satisfies<0, while for F(0)<0 all values ~cause the desired extremum &f is not a minimum. Ordi-
satisfy e are positive and the soliton is stal{leee Fig. 1 of narily, the standard minization programs seek an absolute
Ref. 14. We note that if all\;=0, then alle>0 and the minimum, so that they are inapplicable in the present case.
soliton is stabldbut in our case it turned out that at least one Therefore to search for an extremum it is necessary to solve

eigenvalue satisfie;<0; see below (as a rule, by iteration methoda system oin=2N nonlin-
The quantity ear transcendental equation¥/da; =0.
) 5 5 On the other hand, as we showed above, the condition of
Fo)= > L_I) ( D i) _ ( D ﬁ) stability of a topological soliton can be written in terms of its
TN T\ T\ global characteristics—the character of the dependence of

the integrals of motion on the parametersand w,. Thus,
there is hope that even quite simple trial functions will give
good results provided that the trial function chosen admits a
sufficiently wide class of disturbances that can be “danger-
ous” from the standpoint of soliton stability. These are, first
' and foremost, the change in the dimensions of a soliton and
) the elliptic deformation of its shape and the distribution of
whereF=SorL anda=r, p. Then the sums i (0) can be  {he magnetization vector in they plane for fixedd(r, y).

can be written in terms of the derivativel./dw, and
dSldwy, . Indeed, differentiating the relatianZ/da; =0 with
respect tow, and o, one easily finds

oF S

Jw,

dF

0a;

aai

Jw,

easily expressed in terms 6t/dw, and 9S/dw,, and the For specific calculations we chose a trial function of the
stability condition becomes form
aLS L iS sS AL s ) R r
Hogor) ~ Gy Gy~ 7 g~ (8 tan§=?exp<—6)(1+clcoszx),
We note that general relations of the same structure as Eq. ]
(18) arise in the problem of the stability of a moving soliton =X+ C25IN2x+ ¢o, (19

in a uniaxial antiferromagn@t (the integrals of motion arg which depends on five trial paramet@sb, C,, C,, ande,
andP, dL/dw;— dP;/dv;, andv is the velocity of the soli-  anq gives a good approximation of the structure of a
ton) as well as for two-parameter optical solitdfisAppar-  soliton?? Indeed, the functiord(r) (19) gives a description
ently, the relatlor(llg) is of the same general character as theys ihe Belavin—Polyakov limit, adequate fR<A, and also
well-known c_ond|t|on of stability dS/dw<0 for one- exponential decay ob(r) for r>A, whereA=JA/K is a
parameter solitons; see Refs. 12, 14, and 19. We note thgharacteristic lengtiisee Refs. 13 Therefore the function
after simple algebraic transformations the condittBidw (19 describes well the form of the functiaf(r); see below.
<0 is obtained from Eq(18) in the case of one-paramete I The angular dependences agree with those obtained analyti-
centrosymmetric solutions, whef- L. o cally in the limiting casesR>A and R<A or small asym-
Therefore. time-periodic(or a!most pe_nodlc for the metry of the solitonC; ,<1.22 The paramete€, controls
model (1) of highest symmetrysoliton solutions are stable he anisotropy of the functiod(r, x), i.e., elliptic distortions

provided that one eigenvalue satisfies<0 and the condi- 4t ggjiton shape, an€, controls the anisotropy of the angu-
tion (18) holds (as well as in the case whekg>0, but this |5, dependence( ).

case does not occur for the solitons considered in the present ag noted above. the soliton stability criterida8) is

papej. Stability outside the class of periodic solutions re-\yritten in terms of the integral characteristics of the soliton.
quires a special analysis, which falls outside the scope of theperefore there is hope that analysis of this criterion using
present paper, especially since in the works known to Us Ofyore accurate functions than HA49 would produce only a
dynamic so_lito_ns the_authors confine their attention to th%mall(to the extent that the deviations BL) or E(S) from
case of periodic solutions; see Refs. 1-3, 12, and 21. their true values are smalbisplacement of the points of
instability found using Eq(19) and will not change the pic-
ture of the bifurcations of the solutions.
The system of equations.#/da;=0 was solved by
The choice of a trial function is the decisive factor in any Newton’s iteration method. The initial values of the param-
variational calculation. For the soliton problem a good deci-etersa; were set manually. The two-dimensional integrals
sion would be to replace the ener@l) by its discrete ana- were calculated by a subroutine based on the recursive algo-
log, consideringN classical spins occupying sites of a quite rithm of the QUADREC subroutin® Using the values

4. CHOICE OF A TRIAL FUNCTION
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FIG. 2. w(L) for a rotation soliton. The squares correspond 0.5 and

the circles tos = 10-5. FIG. 3. d(4) andd,_, versus frequency for a rotation soliton in a ferromag-

net with e =0.5 (circles ande=10"° (squares

found for a® we calculated the values @&, L, and S and ,

constructed the function&(L,S) or E(S), E(L), andE(J) No=2ms(A/a)". (D)
(see below. The eigenvaluesk; of the matrix i  As w—wgy/1+e, this energy approaches the vallg

= 9* Z19a;da were calculated at the same time. It turned=47A, equal to the energy of a Belavin—Polyakov soliton.
out that at least one eigenvalie is less than zero, i..e. a The values of the asymmetry parametérs and C, for L
soliton always corresponds to a saddle point4fTo ana- <N, remained small even far~1 (C, andC,<10 2 for
lyze stability in the case of two-parameter solitons the quang =0.5 andw>0.8w,, which corresponds tb<0.03N,).

tity d(L,S)/d(w, ,w,) was also calculated. As the frequency decreases, the value€aind L in-
crease, i.e.dw/dL<0; see Fig. 2. For a ferromagnet with

5. ANALYSIS OF PERIODIC SOLITONS IN MODELS WITH £#0 the parameter@l and CZ likewise increase. For small

ONE INTEGRAL OF MOTION e these parameters depend nonlinearlysgn.e., for some

o o ) value ofw/wq (or L/Ng) the asymmetry of the soliton grows
A specific mvgstlgatlon of solitons was performed both rapidly (see Fig. 3. Here and below we describe the asym-
;or The model(l)twlth thde lrnax;]m‘;]”t‘ pllossmle sytmrfne;ré/.tgnd metry of the distribution of the magnetizatiomin a soliton
or less symmetric models which take account of additional . i
terms that lower the symmetry of the probldime., they bsmg the tv_vo parametexlb(f) and d-(_)' which corrgspond
we i ! g to the maximum and minimum sizes of the region where
destroy certain integrals of motio@)]. It is convenient to 0,= /2. The relation of these parameters with the param-

begin the description of the results with the cases of lesgigrs of the trial functiorf19) for = 6(r,y) is given by
symmetric models where only the orbital angular momentum ’

L or the total spinS or the total angular momentud=S d.=R(1=Cy)exp(—d./b).

—L is conserved. Two-parameter solitons for the mdde! For smalle (e=10 %—10"5) there arises an interesting
of highest symmetry will be examined in the next section. effect that is helpful for understanding the properties of a
5.1. L=const, S#const. Let conservation of break  spliton in the isotropic modefl). Specifically, fors<1 and
down because of the presence of magnetic anisotropy in thg| <, almost centrosymmetric solitons witd;, C,
basal plane. For a specific analysis we choose an orthorhomk 1 are easily found. These solutions satitfyw)=|L,)|

bic anisotropy of the form ~S(w). Then the functiorE(S) is identical, to within quan-
1 1 tities of ordere, to the function obtained previously by inte-
Alez.eKmizstsin2 sirfe. (200 grating the equation foW,.1® This demonstrates the ad-
equacy of the method and the trial functigid).
In this caseL remains an integral of motion and rotation It turned out that the solution need not be single-valued.
solitons of the form(8) are possible. The program found a particular solution as a function of the

Taking account of the additional ter(20), the lowest choice of the initial values; . Specifically, for smalk (just
magnon frequency i&gy1+e. This value of the frequency as fore=0) andw=0.4180,, together with centrosymmet-
is the maximum possible value in a soliton, i.e., rotationric solitons, asymmetric solutions with strongly different
solitons exist only forw,<wo\1+e. In the present subsec- d,, andd_, were also found. We note that for a soliton
tion we shall drop the index when describing rotation soli- with & not small the difference . ,—d_, depended con-

tons. tinuously on w, whereas for smalk the transition to an
A calculation showed that solitons exist for all values asymmetric soliton looks like a bifurcatigisee Fig. 3.
O<w<wgyl+e (see Fig. 2 When the condition It is important that for asymmetric solutions the value of

woV1l+e—w,<w, is satisfied for any values of, the ra- |L(w)| increased with decreasing much more rapidly than
dius of the soliton is smallR<A, andL is much less than S(w). Therefore the functionk(S) and S(L) differed fun-
the characteristic quantity (Ny>1 for A>a), damentally. If solitons with a fixed value &are considered,
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For a square-lattice magnet the corresponding term de-

However, ifL is fixed, then the asymmetric solitons have thestroying the conservation df contains an additional small

lowest energy.
For all solitons considered, the derivatich /dw<0,

parameter &/ A)?. Since the effect of discreteness on soliton
structure is small even fak=1.5a,2% in real weakly isotro-

which is necessary for the solitons to be stable. The seconpic magnets with a square lattice the effects due to noncon-

condition—only one eigenvalue of the matrix;, can be

servation of the orbital angular momentum wiBli=const

negative—was satisfied only for a soliton whose energy ishould be weak.

minimum for fixed L. Specifically, fore=0 and a cen-

5.3. L#const, S#const, J=const. This case must be

trosymmetric soliton in a ferromagnet the second eigenvalugiewed as the most physical in relation to continuum theo-

\, is positive only foro=0.418vq. For w=<0.4180,, when

ries. However, its advantages for real models of two-

an asymmetric solution appears, the signgfchanges and dimensional magnets are not obvious. One of the physically
the centrosymmetric soliton becomes unstable. Then for amteresting interactions possessing such symmetry is the
asymmetric soliton only one eigenvalue is negative, and suclong-range part of the magnetic dipole interaction, which

a soliton is stable in its entire region of existence. Thereforeloes not reduce to renormalization of the magnetic anisot-
the symmetry of rotation solitons can be lower than the symfopy. Another example is the magnetoelastic interaction,

metry of the model. This effect was discussed in the briefwhich is described by terms of the forkm;m,(du;/dx,),
communicatiof* in terms of spontaneous breaking of the wheredu; /dx, is the distortion tensor.

symmetry of a centrosymmetric soliton under elliptic defor-

mations and formation of a stable asymmetric soliton.

Dynamic solitons with topological charge=2, taking
account of an additional term of the fora{V - m)2, model-

5.2. L# const,S= const. This case corresponds to aing the long-range part of the magnetic-dipole interaction, to
ferromagnet in which there is no magnetic anisotropy in thehe interaction energyl), have been studied numerically in

basal plane \W,=W,(8) and does not depend ap), but

symmetry under spatial rotations is absent. Specifically, this

Ref. 18.
To analyze the effects of such a breaking of symmetry

situation always arises when switching from lattice modelswve chose a correction to the enerd@y of the form

to continuum models. For example, for a square lattice,
which is often used in numerical simulation, the nonconser-

vation ofL is due to invariants of the formp¢m/axay)?. For
an orthorhombic ferromagnet nonconservationLotould
arise if the difference of the exchange interaction alongxthe
andy axes is taken into account. Then terms of the form

(Axx—Ayy) (dm/ 9x)?

36\? dp\?
:(Axx_Ayy) {(5) +Sin2 0((9—? CO§X
1[{06\% ap\?]
= (ﬂ) +sir? a(a smzx] (22

Ssirtosirt(e—x). (24)

A term proportional to sif(¢—y) arises when ¥-m)? is
written in polar coordinates. This choice admits a direct
comparison of effects due to an interaction of the fqg)
with the previously considered interactions of the foi20)
and(23). We shall discuss the results of an analysis of these
models in greater detalil.

First of all, it is obvious that solitons in the moddl),
taking account of the correctiq@4), correspond to solutions
of the form(9) with w,=|w,|=w. The superposition of two
types of dynamics(precessional and rotationaith o,
=|wp| can be described as a rotation of a “rigid” soliton
(see Fig. 1xand as an oscillation of its form. Motion of this
type (rotation of a “rigid” soliton pair has been observed in

appear in the energy. The addition of a term with a simplemumerical experiment$.

structure

AJsir? 9sirfy (23

It is clear from analysis of Fig. 1c that in contrast to
rotation solitons {,#0, w,=0) or precession solitonsw(
=0, w,#0), global dynamicgof the magnetization preces-
sion type is absent in this case at a given point of the mag-

to the energy of the magnet also gives the same effect. Faret. In other words, at a given point the magnetization un-

the energy(1), taking account of the correctio(22), the

dergoes only small oscillations around a definite average

problem can be solved exactly by introducing the new varidirection without a complete turn even fér= /2. For this

ablesx’ =x/\/A,x andy’ =y/\/A,. Then, in the polar coor-
dinates introduced for the Cartesian coordinatesy’ (r’
=X'Z+y’2 y'=tan }(y’/x")) a solution of the problem
is 0= 6(r') andp=rvy'+ wt. It is obvious that this solution
is asymmetric in the initial physical coordinatesndy, the

reason, such solitons can be appropriately called oscillation
solitons.

The difference of the properties of oscillation solitons
and the rotational and precession solitons considered above
is most clearly shown by analyzing the limiting case of a

asymmetry being due strictly to the value of the parametecentrosymmetric soliton. For an oscillation soliton with
(Axx—Ayy) (At Ayy). Therefore, in contrast to the case of =|w,|, there is no dynamics at all in this case and the solu-
a rotation soliton considered above, the soliton asymmetryion degenerates into a static solution, while the centrosym-

parameterd ,)—d ) increases continuously withA{,

metric rotation and precession solitons are dynamic. It is

—A,,)/A and spontaneous symmetry breaking does nobbvious that solitons in the modéES,+L,=S—L =const
arise. Our numerical analysis showed that the same situaticend L, S#const cannot be centrosymmetric and are always

also obtains for a model with a correction of the fo(#®).

characterized by a finite shape asymmetry.
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1IN, 20 FIG. 5. Maximum size of the region of an oscillation solitdp, ), where
0 0=m/2, and the ratia ., /d_, versus the frequency of magnetization os-
cillations in the soliton.

magnons have a finite gapy but > wy. Such relaxation
effects were also negligibly small in the study of soliton
dynamics in an easy-plane ferromagnet with an amplitude
that is not smalf®

As the soliton frequency decreases to values belgw
the energy of thesoliton grows to values of the order of sev-
eral Ey. The difference of the quantitie ) andd ) also
increasegsee Fig. b, i.e., for o< wg a soliton in the model
; . . . (1) and(24) is an excited state with a quite high energy and

0 5 10 15 UUN. 20 sharply asymmetric magnetization distribution, far from cen-
0 trosymmetric. Forw<0.3w, the value of the parametés,
FIG. 4. »(J) (@) andE(J) (b) for an oscillation soliton withs=0.5. rises abover/2 and, by virtue of Eq(19), the functione(x)

becomes nonmonotonic. In this case the second value of
changes sign and the soliton becomes unstable.

. . . In summary, solitons in ferromagnetic models with
Numerical analysis showed that in the present mode| 7 .
. . : = const orJ=const demonstrate two different types of
there arises a new property that is absent for precessional and

: . L .__beéhavior. Rotation solitonsL(=cons} can be almost cen-
rotation solitons, specifically, the frequency of the soliton : :
; trosymmetric and they can also be characterized by shape
w=|wy|=w, can be much higher than the lowest magnon

) : ; asymmetry that is not small. They always correspond to slow
frequency oy (wg=wg); see Fig. 4a. Frequencias> wg o2 . .
. magnetization dynamicéthe frequencyw, lies below the
correspond to very small solitond,,, d_y<A, and en-

ergy close tE,. The dependence of their energy |[dih (see gap in the magnon spectrym

Fig. 48 is similar to the corresponding dependefidé ) for Oscﬂlatlon_solltons.ln a ferromagnet with#const and
rotation solitond? S+#const but)=const with the same values of the energy are

. . . mor mmetric than rotation solitons. Th n harac-
As noted above, small-radius solitons in the modé)s ore asymmetric than rotation solitons. They can be charac

and(24) correspond to very high frequencies> wy, which terized b_y q_wte_rapld variations of the magnetization
L ; > wg, Which in this case can be clearly represented as small
lie in the continous magnonspectrum. Helggy andd,_y do

: . . . shape oscillations of the soliton. Such solitons can also exist
not differ very strongly. However, in contrast to rotation soli-

- I < i H
tons the ratiad ., /d._, does not decrease below 1.175, even\allzrIogsfrﬁ]%st?;y;ﬂ'tﬁgjg(a “’S?t'e Irrlliwr?lggecrase they are
for w="75wg; see Fig. 5. y asy q g y-

A soliton with w>wq and d.,~d, corresponds to nam-li—cf;se f:jolfr];?rerr;izsss?cf)rfgforC)rs(;(t;glt?ct)lr?;Iatlj L?;FI)’LI:C(SD ra)l di:ar for
small shape oscillations with small amplitude but quite high P Y bp

frequency. It is obvious that the existence of a soliton Withtwo—parameter solitons in the modg) with the maximum

0> wy is due to the fact, noted above, that the magnetizatiorﬁ)OSSIbIe symmetry, for which =const andS=const.
dynamics in an oscillation soliton is not global. In principle,
such oscillations should give rise to magnon radiation in th
continuous spectrum, which is responsible for relaxation o
the soliton. However, direct computer simulation of the mo-  As noted above, for the modél) solitons with a com-
tion of vortex pairs in an easy-axis ferromadghetth a gap-  plicated, generally speaking, almost periodic magnetization
less magnon dispersion lawwg=0) has demonstrated that dynamics are possible. For them, the variation of the magne-
relaxation of solitons due to magnon emission is slow. Suchization in a stationary coordinate system is characterized by
relaxation effects should be small in our model also, whergwo independent frequencies, and w,, .

. TWO-PARAMETER SOLITONS IN A MODEL WITH TWO
%NTEGRALS OF MOTION
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FIG. 6. Energy of a soliton versus the values of the integrals of mati@&  FIG. 7. Anisotropy parameteid,, andd_, of a soliton forA w=0.1w,.
(in units of Ng) for a soliton withAw=0.1w,. The filled circles represent
E(S), and the open circles represent two branches of the fun&id).

metry of the soliton starts to decrease rapidly, and its average

The model (1) admits centrosymmetric solitons for size increases. This fact has a quite obvious explanation. In
which only the sum of frequencieSw=w,+ w, is mean- this region the term related ®in the dynamical part of the
ingful; see Eq(11). In the general case, however, a soliton is Lagrangian¥ starts to dominate, and the soliton behaves as
not centrosymmetric. We shall consider the properties oft Precession soliton in the model wigh= const andL#
solitons with the frequencies, and w, varying so that ~CONst. Fore,<|wp|=Aw the central symmetry of the soli-
Aw=w,+ w,= const. Analysis of such one-parameter fami-{on is restored abruptijsee Fig. 7. For v,=Aw only cen-
lies of solutions clearly demonstrates that the properties offoSymmetric solitons are observed. It is obvious that the
solitons solitons change when the frequencigsand w, magnetization dynamics in them does not dependpand

change. o, , and their parameters and structure depend only on the
We note first that soliton solutions exist only faro ~ Value ofAw. o
< wq. This is understandable, sindav determines the glo- Over the entire range of variation of the parametegs

bal dynamics of the magnetization in a soliton, i%ew plays and w, the solitons described aboyboth asymmetric and

the same role a®, for a precession soliton ow, for a  Centrosymmetric, arising for smas,) are stable in accor-

rotation soliton. For small valuesw< wy, there exist soliton ~dance with the criteria qbtalned above. _Specmcally, for all of

solutions with large sizes(,,, d._,>A), and forAw close ~ them only —one eigenvalue satisfies\;<0 and

to w, only centrosymmetric solitons are observed. J(L,S)/d(w;,wp)<0. Besides these soliton states, cen-
Just as for oscillation solitons, the frequenciesand  trosymmetric solitons are al_so present in the region of exis-

|wp| can be quite highiwe observed solutions Wit5=(wr tence of the asymmetric solitons. However they are unstable

a — (for them two eigenvalues of the matrix;, are negative
<wp;/{‘2heuprct)oeit?east)(gf. anoorIitlggg:rev\?ilrutﬁzllOf?r: d(ebuetn?jg)nt OfTherefore, here the situation is the same as for rotation soli-
A woand t%e psame as for an oscillation ysolitog with tons with e<<1: if an asymmetric soliton exists, then it is

© L ) stable. For the modéll) this can be described as spontane-
=|wp|>wy: the energy of the soliton is close Ky, the size

of the soliton is small, anfl,| =L=S<N,. In this range the ous breaking of the symmetry of the soliton.

T As w, increases further, asymmetric solitons reappear.
p )
values ofd(,) andd,-, are close. This is understandable This soliton branch corresponds to large values of the param-

from the analysis in the preceding section: to>Aw the etersC;, C,=1. They have\;, \,<0, and they are un-
quantity » plays the same role as the frequeneyor oscil-  stable. It is interesting to note that for these unstable solitons
lation solitons, and it describes small rapid oscillations of thethe functionE(S) is the same as for stable solitons, so that
shape of the soliton. But for two-parameter solitons thesehese two branches coincide in the plottbt E(S); see Fig.
oscillations are superposed on a slow spin precession with, The main qualitative difference between these two
the frequencyA w. branches, which are separated by a region where stable cen-
Decreasing the frequencies and|w,| so thatAw re-  trosymmetric solitons exist, consists in the ratioloand S
mains constant, we observe an increase in the energy of tf&able solitons havél_,|>S, while for unstable soliton$
soliton and the values df and S see Fig. 6. At the same >|L,| (see Fig. 8 We note that for stable rotation solitons it
time, the soliton becomes more asymmetfor Aw  was always found thdt,| is greater than the average value
=0.1w, the maximum value satisfied,)/d_y=2.05 for  of S). The difference between the branches of stable and
w;=0.709, w,=—0.6wp). However the ratiod.y/d-y  unstable asymmetric solitons is not seen in the function
grows more slowly than the size of the soliton; see Fig. 7. Ind, (w) (see inset in Fig. 7 but it is clearly manifested in the
the region |, o, <w, the characteristic values df.yand  function E(L). Two branches of this curve with a character-
d(- vary by one order of magnitude. istic bifurcation point at E=10.00E€, and |L|=S
When the value ofv becomes equal tAw, the asym- =99.819\, are clearly seen in the functida(L) (see Fig.
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LIN, solitons, and the possible manifestations of these solitons in
3001 ; the properties of various quasi-two-dimensional ordered sys-
I o tems.

3f /2 S Stable stationary topological2 solitons exist for a wide

. A L=S class of models. The necessary condition is the existence of
2001 at least one angular momentum integral of motitn$, or

[ ~ J). In models with one integral of motion a soliton corre-

S sponds to periodic magnetization dynamics.

- 1 7 In the most highly symmetric model of a ferromagnet
100+ Y where bothL andSare conserved two-parameter solitons are
I e possible, the parameters being the precession frequepcy
N 4y and the rotation frequenay, of the soliton. In these solitons
the magnetization dynamics in a stationary coordinate sys-
o 0 200 300 tem such thatjw,# pw, (p andq are integersis described

SN, by an almost periodic function of time.

Solitons in models with one integral of motion can mani-
fest quite diverse properties. The shape asymmetry of pre-
cession solitons in models witB=const is dictated by the
intensity of the interaction that destroys the conservation of
L. In an almost isotropic model such solitons are close to
centrosymmetric. For them, just as for rotation solitons in
models withL=const andS+#const only a low-frequency
magnetization dynamics is characteristio,, o <wg,
here wq is the lowest magnon frequency in the linear
eory.

The shape asymmetry for rotation solitons is not related
he intensity of the interactions that destroy the symmetry
he model. However, for a very small magnetic anisotropy
in the basal plane close to centrosymmetric solitons do exist

. . and they are stable for energies>2.3E,. Even for a ver
creases td\ w. For all Aw>0 there exists a maximum pos- y g 0 y

ible E(Aw) that ds t ¢ i lit small anisotropy in the basal plane, solitons with shape
sible E(A w) that corresponds to a centrosymmetric soli on_'asymmetry that is not small are stable.

Obviously, this value equals the energy of a centrosymmetric Oscillation solitons in models where theprojection of

E)hrecessllon S_Olt't?n it freqfuenc?]o_;h?gé Fo(rj tS#ChA“’ the total angular momenturd is conservedprovided that
ere d"?‘ SO e)l('lts requencuisblor whi an e corre- | ~const andS#cons) differ from precessional and rotation
sponding sofitons are unstable. solitons primarily through having the magnetization dynam-

_ The jituatic!n eihanlgesAfor lsuffict:iently largeo (b?wt ics that can be high-frequencw wo). The shape asymme-
= o) and negativéd . ForAw close tow, we were able to try of these solitons is large for the low-frequency case (

find only centrosymmetric solutions. Since the correspondin%w ), but it is not very small even at high frequencies
solutions are stable, it can be concluded that asymmetriﬁlheore’w>w and J<N '
0 0-

solitons are absent in this case. Actually, in this ranga of The same high-frequency dynamics also appears for
the solutions are one -parameter solutions and to each Vallf\?/o-parameter solitons in the most highly symmetric model
of Aw there corresponds only one v_alue 8f|L /=S _and with L= const andS= const. We note that this circumstance
en_ergyE. In the (L'.S) pl_ane these sqhtqns are de.scnbe-:d bycould be important for analyzing the contribution of solitons
points on the straight liné.= S that lie in the region with regarded as nonlinear thermal excitations to the thermody-
smallL, S.<N°' . namics and the response function of quasi-two-dimensional
Solutlpns W'thAw:wr+w.P<o are never cgntrosym- uniaxial magnets. At low temperature§<J~A) mostly
metric, since centrosymmetric precession solitons in th%mall solitons withd, ,,~d,_,<A and E~E, are excited.

model (1) exist only for 0<w < wo; see R'efs_ 1-3. Fate For this reason, solitons with rapid oscillations should exist
<0 th_e shap_e asymmetry of the soliton is always larger thaﬂ] a soliton gas, and these solitofiis contrast to those stud-
for SOl'ton.S with the same energyandd w>0. In the (,S) ied previously in Refs. 8 and)$hould make a specific con-
plane sQI|tons with f'X(?dA“KO corre_spond to an open tribution to the response function of the ferromagnet through
curve Iymg qbove the liné. =S (see Fig. § and nowhere high-frequency peaks. A detailed analysis of this problem
Intersecting It. falls outside the scope of the present paper.

Analysis of the most highly symmetric model with a
purely isotropic basal plan@vith respect to both the spatial
and spin rotationsshowed that the two-parameter solitons in

We shall discuss the general mechanisms responsible fohis model can be asymmetric. As a rule, solitons with low
two-dimensional topological solitons, the properties of theenergy,E=E,, are characterized by the presence of rapid

FIG. 8. L versusS for solitons with different values oA = Aw/w,. The
curvel corresponds tda =0.1,2 — A=0.01, and3 — A=-0.1.

6). This point corresponds to a centrosymmetric soliton
whose structure depends only e+ w, . At this point the
energyE of the soliton and the projection of the spirs are
maximum for a given value dA w.

The soliton properties described above were discusseﬁ
for a particular one-parameter family of solitons withw
=0.1wg. Our analysis showed, however, that the qualitr:xtivetot
behavior remains the same for other not very large positiv%ft
values ofAw. Specifically, forA w=0.50, a transition oc-
curs from asymmetric to centrosymmetric solitonswgsde-

7. CONCLUSIONS
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