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Two-photon cooperative decay in a cavity in the presence of a thermalized
electromagnetic field
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We study the cooperative two-photon spontaneous decay of an excited atomic system in a
microcavity whose size is of the order of several wavelengths of atomic radiation. We show that
a thermalized electromagnetic field in the microcavity strongly affects the two-photon
cooperative spontaneous emission of radiation. The increase in the rate of spontaneous cooperative
decay is due to the presence of a small number of thermalized photons in a microcavity
mode. At low temperatures, the two-photon absorption probability is found to be a linear function
of the two-photon flux, and photon superbunching is observed. ©1999 American Institute
of Physics.@S1063-7761~99!00104-3#
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1. INTRODUCTION

As is known, an excited atom decays spontaneou
when an emitter interacts with the vacuum modes of
electromagnetic field. The spontaneous decay of a sin
atom in a microcavity differs substantially from decay in fr
space. Since the microcavity is small~its dimensions exceed
the wavelength of the radiation only severalfold!, spontane-
ous decay is facilitated substantially when there is resona
between the atomic transition and a microcavity mode an
hindered appreciably when the atomic transition freque
differs from the resonant frequency.1,2 Such behavior of an
atom in a microcavity can be explained by the fact that n
the transition frequency the rate of spontaneous decay is
portional to the electromagnetic field mode density.

The study of two-photon light generation has attrac
much attention. The various aspects of experimental ob
vation and theoretical treatment of spontaneous decay
respect to the dipole-forbidden transitionu2S&→u1S& in
hydrogen-like and helium-like atoms are discussed, e.g
Ref. 3. The first report of an experimental observation
two-photon coherent light generation in which excited
atoms were used was made by Nikolauset al.4 Recent
experiments5 involving Rydberg atoms have demonstrat
the real possibility of building a two-photon micromase
Also of interest are the observations of spontaneous and
mally stimulated two-photon transitions in the microwa
range of the emission spectrum of the Rb atom in resona
fluorescence.6 A theoretical description of cooperative ge
eration of a light pulse in the two-photon spontaneous de
of atoms via dipole-forbidden transitions can be found
Ref. 7, where it is shown that the two-photon superradia
pulse demonstrates interesting quantum behavior in the
sorption process. In Refs. 8, attention is also drawn to
properties of superradiance of the two photons generate
the spontaneous decay of two atoms. Two-photon emis
and absorption in the presence of a thermalized electrom
netic field in free space is studied in Ref. 9, where an exp
6331063-7761/99/88(4)/9/$15.00
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sion for the time dependence of the half-difference of le
populations is derived.

It is well known that the rate of spontaneous decay
Rydberg atoms in microcavities is much higher than in fr
space.10–13 Since in a microcavity the rate of two-photo
decay in a three-level cascade system increases substan
it is of interest to study in such a setting the cooperat
emission of radiation by Rydberg atoms in microcavities.
the present paper we study the cooperative decay of an
semble of such atoms with a cascade pattern of the lev
where at a finite temperature the intermediate level is a
trarily offset from resonance with a microcavity mode.
this case the intermediate level is essentially vacant, and
fact that it lies between the excited and ground states lead
a sizable increase in the two-photon cooperative transi
amplitude.5 We derive exact equations for two atoms sep
rated by a distancer 21 in the microcavity and participating in
two-photon cooperative decay. We also study the temp
behavior of these emitters. The cooperative behavior of
concentrated ensemble of emitters in a two-photon de
process is investigated with the quantum fluctuations of
number of excited atoms ignored. We show that a sm
number of thermalized photons in the microcavity mod
increases the cooperative spontaneous decay rate. Sinc
two-photon absorption probability is proportional to th
second-order correlation function,w}^a†a†aa&, the func-
tion is proportional to the two-photon flux~or the number of
generated pairs of photons! Moreover, in the cooperative
two-photon spontaneous decay process, the second-o
correlation function remains greater than the square of
first-order correlation function, which means that pairs
photons are highly correlated. In other words, the genera
photons experience superbunching. As the tempera
grows, superbunching disappears, and only bunching of
flux of thermalized photons remains.

The plan of the paper is as follows. In Sec. 2 we der
the master equation for an arbitrary operator of the ato
subsystem. For one- and two-atom systems, we obtain e
© 1999 American Institute of Physics
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equations that allow for quantum fluctuations of the inv
sion operator. In Sec. 3 we present the solutions for th
differential equations, which make it possible to assess e
tromagnetic field fluctuations.

2. INTERACTION OF A THREE-LEVEL EXCITED ATOMIC
SYSTEM AND A THERMALIZED ELECTROMAGNETIC FIELD
IN A MICROCAVITY

We examine an inverted three-level cascade config
tion interacting with the modes of an electromagnetic field
a microcavity~see Fig. 1!. Since the microcavity is slightly
open, the Hamiltonian of such a system has the form

H5(
k

\vkak
†ak1E

2`

`

dv \vbv
† bv1 (

a51

3

(
j 51

N

\vaU j a
a

1 i\(
k
E

2`

`

dv k~v!@bvak
†2akbv

† #

1 i(
k

(
j 51

N

(
b51

2

~d3b–gk!~ak
†exp$2 i k–r j%

2H.c.! ~U j 3
b 1U j b

3 !. ~1!

Here \va (a51,2,3) is the energy of levela, d3b is the
dipole moment of the transition between levelsu3& and ub&
(b51,2),ak

† (ak) is the Bose creation~annihilation! operator
for the electromagnetic field inside the microcavity,bv

† (bv)
is the creation~annihilation! operator outside the cavity
gk5A2p\vk /Vel , with el the polarization vector of a pho
ton (l51,2) of frequencyvk andV the cavity volume,k(v)
is the coupling constant between the external modes and
internal modes of the microcavity,N is the number of atoms
in the microcavity, andU j b

3 5cj 3
† cj b is the corresponding

transition operator between levelsu3& and ub& of the j th
atom. Herecj 3

† andcj b are Fermi operators.
In Eq. ~1!, the first and second terms describe the el

tromagnetic field inside the cavity, and the third term is t
Hamiltonian of a free atomic system. The fourth term a
counts for the interaction of the field inside the cavity w
the external field and depends on the reflection coefficien
the cavity walls. Since the atoms are inside the cavity,
fourth term corresponds to the interaction of emitters a
microcavity modes.

The operators of the atomic subsystem and electrom
netic field obey the commutation relations

FIG. 1. Diagram of one-photon and two-photon transitions. Solid and b
ken vertical lines designate one-photon cascade and dipole-forbidden
sitions, respectively.
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@U j b
a ,Ula8

b8 #5d j l @dbb8U j a8
a

2daa8U j b
b8#,

@ak ,ak8
†

#5dkk8 , @bv ,bv8
†

#5d~v2v8!.

Below we study the temporal behavior of an operator
the atomic subsystem,O(t), in the process of spontaneou
decay inside the microcavity. Using the Hamiltonian~1!, we
derive the Heisenberg equation for the average value of
operatorO(t):

d^O~ t !&
dt

5
i

\ (
a51

3

(
j 51

N

\va^@U j a
a ~ t !,O~ t !#&

2(
k

(
j 51

N

(
b51

2 gk–d3b

\
@^ak

†@U j b
3 ~ t !

1U j 3
b ~ t !, O~ t !#&exp$2 ik–r j%1H.c.#. ~2!

The formal solutions for the operatorsak and ak
† inside the

cavity can be obtained from the Heisenberg equations
operators inside and outside the microcavity~see the Appen-
dix!:

ak~ t !5Ak
f ~ t !1ak

s~ t !, ak
†~ t !5@ak~ t !#†, ~3!

where

Ak
f ~ t !5ak~0!exp$2 i @vk2 iG~vk!#t%

1E
2`

`

dv k~v!bv~0!

3
exp$2 ivt%2exp$2 i @vk2 iG~vk!#t%

G~vk!1 i ~vk2v!
, ~4!

ak
s~ t !5(

j 51

N

(
b51

2 d3b–gk

\
exp$2 ik–r j%

3E
0

t

dtexp$2 i @vk2 iG~vk!#t%

3@U j b
3 ~ t2t!1U j 3

b ~ t2t!#.

Clearly, after~3! and ~4! have been substituted into Eq.~2!,
the right-hand side of this equation acquires a depende
~via Ak

f ) on the free operators of the electromagnetic fie
inside and outside the cavity. We examine the decay of
inverted subsystem of Rydberg atoms at finite temperat
so that the modes inside the cavity and those outside it
partially occupied by thermalized photons. Hence, in stu
ing the dynamics of an inverted atomic subsystem, we
eliminate the free operators of the electromagnetic field
side and outside the cavity by the Bogolyubov method:14

d^O~ t !&
dt

5 i (
a51

3

(
j 51

N

va^@U j a
a ~ t !, O~ t !#&

2(
k

(
j ,l 51

N

(
b,g51

2
~gk–d3b!~gk–d3g!

\2

3Fexp$2 ik–~r j2r l !%E
0

t

dt

-
n-
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3exp$ i @vk1 iG~vk!#t%~@n~k!11#^~Ulg
3 ~ t2t!

1Ul3
g ~ t2t!!@U j b

3 ~ t !1U j 3
b ~ t !, O~ t !#&2n~k!

3^@U j b
3 ~ t !1U j 3

b ~ t !, O~ t !#~Ulg
3 ~ t2t!1Ul3

g ~ t

2t!!&!1H.c.G . ~5!

Allowing for the Heisenberg equations for the atomic ope
tors, we can write the solution of the equation for the ope
tor Ulg

3 (t2t) with respect tot in the form

Ulg
3 ~ t2t!5Ulg

3 ~ t !exp$2 iv3gt%1(
k

(
h51

2 gk–d3h

\

3E
0

t

du exp~2 iv3gu!~ak
†~ t2t1u!

3exp$2 ik–r l%2H.c.!Ulg
h ~ t2t1u!. ~6!

Inserting this solution into Eq.~5!, we obtain

d^O~ t !&
dt

5 i (
j 51

N

(
a51

3

va^@U j a
a ~ t !, O~ t !#&

2
1

\2 (
k

(
j ,l 51

N Fexp$2 ik–~r j2r l !% @11n~k!#

3S ~gk–d31!
2

G~vk!1 i @vk2v31#

G2~vk!1@vk2v31#
2

3^Ul1
3 ~ t !@U j 3

1 ~ t !, O~ t !#&

1~gk–d32!
2

G~vk!1 i ~vk2v23!

G2~vk!1~vk2v23!
2

^Ul3
2 ~ t !

3@U j 2
3 ~ t !, O~ t !#& D 2n~k!exp$2 ik–~r j

2r l !% S ~gk–d31!
2

G~vk!1 i ~vk2v31!

G2~vk!1~vk2v31!
2

3^@U j 3
1 ~ t !, O~ t !#Ul1

3 ~ t !&

1~gk–d32!
2

G~vk!1 i ~vk2v23!

G2~vk!1~vk2v23!
2

3^@U j 2
3 ~ t !, O~ t !#Ul3

2 ~ t !& D 1H.c.G1I (4), ~7!

where

I ~4!52 (
k1 ,k2

(
j ,l 51

N

(
g,b,h51

2 ~gk1
–d3b!~gk1

–d3g!~gk2
–d3h!

\3

3Fexp$2 ik1–~r j2r l !%E
0

t

dt exp$ i @vk1
1 iG~vk1

!#t%

3S @11n~k1!#K H E
0

t

du exp$2 iv3gu% @ak2

† ~ t2t
-
-

1u!exp$2 ik2–r1%2H.c.#Ulg
h ~ t2t1u!1H.c.J

3@U j b
3 ~ t !1U j 3

b ~ t !, O~ t !#L 2n~k1!K @U j b
3 ~ t !

1U j 3
b ~ t !, O~ t !#H E

0

t

du exp$2 iv3gu%

3@ak2

† ~ t2t1u!exp$2 ik2–r1%2H.c.#

3Ulg
h ~ t2t1u!1H.c.J L D 1H.c.G . ~8!

The second term on the right-hand side of~7! accounts for
one-photon transitions of typeu2&→u3& or u3&→u1&, and the
third term accounts for higher-order transitions.

Since we are only interested in two-photon transitio
we ignore one-photon emission by proper selection of
offset of the intermediate level from resonance. More p
cisely, the offsetD5uvk2v23u (D5uvk2v31u) must be
much greater than the damping factorG(k) of the microcav-
ity. Hence the only mechanism by which the system can
into the ground state is two-photon decay. Clearly, in t
case the levelu3& is almost vacant, and we can eliminate
from Eq. ~8!. As an example, we eliminate it from the firs
term on the right-hand side of Eq.~8!. The result is

I 1
(4)5 (

k1 ,k2
(

j ,l 51

N

(
g,b,h51

2 ~gk1
–d3b!~gk1

–d3g!~gk2
–d3h!

\3

3exp$2 ik1–~r j2r l !%E
0

t

dt exp$ i @vk1

1 iG~vk1
!#t% @11n~k1!#E

0

t

du exp$2 iv3gu%^ak2
~ t

2t1u!exp$ ik2–r1% Ulg
h ~ t2t1u!@U j b

3 ~ t !, O~ t !#&.

~9!

Since U j b
3 (t)5c3 j

† (t)cj b(t), using the solution of the
Heisenberg equation for the Fermi operatorc3 j

† (t),

c3 j
† ~ t !5c3 j

† ~0!exp$ iv3t%

1(
k3

(
j51

2 d3j–gk3

\ E
0

t

dt1 exp$ iv3t1%

3@ak3
~ t2t1!exp$ ik–r j%2H.c.#cj j

† ~ t2t1!,

we can eliminate it from~9!. Inserting this solution into~9!
and bearing in mind that^3ucj 3

† (0)50 andcj 3(0)u3&50, we
immediately obtain
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I 1
(4)5 (

k1 ,k2 ,k3
(

j ,l ,51

N

(
b,g,h,j51

2

3
~gk1

–d3b!~gk1
–d3g!~gk2

–d3h!~gk3
–d3j!

\4

3exp$2 ik1–~r j2r l !%E
0

t

dt exp$ i @vk1

1 iG~vk1
!#t% @11n~k1!#E

0

t

du exp$2 iv3gu%E
0

t

dt1

3exp$ iv3bt1%exp$ ik2–r l2 ik3–r j% ^ak2
~ t2t1u!ak3

† ~ t

2t1!Ulg
h ~ t2t1u!@U j b

j ~ t2t1!, O~ t !#&. ~10!

We now ignore terms of order higher than the fourth w
respect to the parametersgkd31/\ andgkd32/\ and write the
correlation function as follows:

^ak2
~ t2t1u!ak3

† ~ t2t1!&'dk2k3
@11n~k2!#

3exp$ ivk2
~t2u2t1!%

3exp$2G~vk2
!ut2u2t1u%.

Next we use an integral representation of the exponentia

exp$ ivk2
~t2u2t1!%exp$2G~vk2

!ut2u2t1u%

5
1

p E
2`

`

dv8
G~vk2

!exp$ iv8~t2u2t1!%

~v82vk2
!21G2~vk2

!
,

exp$ i @vk1
1 iG~k1!#t%5

1

p E
2`

`

dv9
G~vk1

!exp$ iv9t%

~v92vk1
!21G2~vk1

!
.

Then Eq.~10! becomes

I 1
(4)' (

k1 ,k2
(

j ,l 51

N

(
b,g,h,j51

2

3
~gk1

•d3b!~gk1
•d3g!~gk2

•d3h!~gk2
•d3j!

p2\4

3exp$2 i ~k11k2!•~r j2r l !% @11n~k1!#

3@11n~k2!#E
2`

` E
2`

`

dv8 dv9

3
G~vk2

!

G2~vk2
!1~v82vk2

!2

G~vk1
!

G2~vk1
!1~v92vk1

!2

3^Ulg
h ~ t !@U j b

j ~ t !, O~ t !#&I 18~v8,v9!. ~11!

Here the functionI 18(v8,v9) can be expressed in terms
temporal integrals, and for long time intervals,t→`, we can
write
:

I 18~v8,v9!5E
0

t

dt exp$ i ~v81v92vhg!t%E
0

t

du

3exp$2 i ~v81v3h!u%E
0

t

dt1

3exp$ i ~v3j2v8!t1%

'
pd~v81v92vhg!

~v3h1v8!~v3j2v8!
.

After integration over time, the integrals with respect tov8
andv9 in Eq. ~11! can easily be evaluated:

I 195
1

p2E2`

` E
2`

`

dv8 dv9 I 18~v8,v9!

3
G~vk1

!

G2~vk1
!1~v92vk1

!2

G~vk2
!

G2~vk2
!1~v82vk2

!2

'
1

~v312vk1
!~v321vk1

!

2G

~vk1
1vk2

2v21!
21~2G!2

.

In final form the expression forI 1
(4) is

I 1
(4)' (

k1 ,k2
(

j ,l 51

N ~gk1
–d31!~gk1

–d32!~gk2
–d31!~gk2

–d32!

\4~v312vk1
!~v322vk2

!

3exp$2 i ~k11k2!–~r j2r l !% @11n~k1!#

3@11n~k2!#^Ul1
2 ~ t !@U j 2

1 ~ t !, O~ t !#&

3
2G

~vk1
1vk2

2v21!
21~2G!2

. ~12!

In deriving Eq.~12! we used the rotating wave approxim
tion and assumed thatG(vk1

)'G(vk2
)5G, v312vk1

@G,
and v321vk1

@G. Reasoning in the same manner, we c
derive an equation describing the behavior of atoms inter
ing with a thermalized electromagnetic field in a microca
ity:

d^O~ t !&
dt

5 iv21 (
j 51

N

^@Rz j ,O~ t !#&

1
1

\4 (
k1 ,k2

(
j ,l 51

N F ~gk1
–d31!~gk2

–d32!

v232vk2

2
~gk1

–d32!~gk2
–d31!

v312vk2

G 2F @11n~k1!1n~k2!#

3S exp$2 i ~k11k2!–~r j2r l !%

3
^Rl

1@Rj
2 ,O~ t !#&

i ~vk1
1vk2

2v2112iG!
1exp$ i ~k1
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1k2!–~r j2r l !%
^@Rj

1 ,O~ t !#Rl
2&

i ~vk1
1vk2

2v2122iG!D
1n~k1!n~k2!S exp$2 i ~k11k2!–~r j2r l !%

3
^Rl

1@Rj
2 ,O~ t !#&

i ~vk1
1vk2

2v2112iG!
1exp$ i ~k11k2!–~r j

2r l !%
^@Rj

1 ,O~ t !#Rl
2&

i ~vk1
1vk2

2v2122iG!D G , ~13!

where the operatorsRj
15U j 1

2 , Rj
25U j 2

1 , and Rz j5(U j 2
2

2U j 1
2 )/2 satisfy the commutation relations for sp

operators.7

To study the time dependence of the operators of
atomic subsystem, we write the following system of equ
tions:

d^Rz j&
dt

52
2

\4 (
k1 ,k2

(
j ,l 51

N

geff~k1 ,k2!exp$2 i ~k11k2!–~r j

2r l !% @11n~k1!1n~k2!#^Rl
1~ t !Rj

2~ t !&

2
4

\2 (
k1 ,k2

geff~k1 ,k2!n~k1!n~k2!^Rz j~ t !&, ~14!

d^Ri
1~ t !Rm

2~ t !&
dt

5
2

\4 (
k1 ,k2

(
l 51

N

geff
0 ~k1 ,k2!F @11n~k1!

1n~k2!#S exp$ i ~k11k2!–~rm2r l !%

3
^Ri

1~ t !Rzm~ t !Rl
2~ t !&

i ~vk1
1vk2

2v2122iG!

2exp$2 i ~k11k2!–~r i2r l !%

3
^Rl

1~ t !Rzi~ t !Rm
2~ t !&

i ~vk1
1vk2

2v2112iG!D G ,

where

geff
0 ~k1 ,k2!5F ~gk1

–d31!~gk2
–d32!

v232vk2

2
~gk1

–d32!~gk2
–d31!

v312vk2

G 2

,

geff~k1 ,k2!5geff
0 ~k1 ,k2!

2G

~2G!21~vk1
1vk2

2v21!
2

.

Next we limit ourselves to one microcavity mode. We stu
the kinetics of one, two, or more atoms and take into acco
the quantum fluctuations in the case of one or two atoms
ignore these fluctuations if the number of atoms is grea
than two.

We begin with one atom in the microcavity. Equatio
~14! yield an equation for the population of the atomic su
system:
e
-

nt
d
r

-

d^Rz~ t !&
dt

52
1

t0
(b) ^R1R2&2

1

t (b)
^Rz&, ~15!

where

1

t0
(b)

5
4g4d0

4

GD2\4
~112n!,

1

t (b)
5

8g4d0
4n2

GD2\4
~112n!.

With the initial condition^Rz(t50)&51/2 we have

^Rz~ t !&5
1

2 F12
a11

a S 12expH 2
at

t0
(b)J D G , ~16!

where

a511
t0

(b)

t (b)
511

2n2

112n
.

In the case of two atoms separated by a distancer 21

5ur22r1u, the system of equations~14! leads to a complete
set of equations for the variablesZ(t)5^Rz1(t)&
1^Rz2(t)&, Y(t)5^R2

1(t)R1
2(t)&1^R1

1(t)R2
2(t)&, and

X(t)5^Rz1(t)Rz2(t)&:

d

dt F Z~t!

Y~t!

X~t!
G5F 2a 2cosu 0

cosu 21 4 cosu

20.5 0.5a cosu 22a
G

3F Z~t!

Y~t!

X~t!
G1F 21

0

0
G , ~17!

wheret5t/t0
(b) , andu5k0–r21. The characteristic equatio

of this new system of equations is

l31~3a11!l21~3a12a222a cos2 u1cos2 u!l

12a222 cos2 u22a2 cos2 u12a cos2 u50.

Note that this equation can easily be solved by Crame
method, but in view of the awkwardness of that method
limit ourselves to the approximationa'1, which corre-
sponds to a small number of thermalized photons in the
crocavity mode. Allowing for the initial conditionsZ(t50)
51, Y(t50)50, andX(t50)50.25, we obtain in this ap-
proximation the following solution of the system of equ
tions ~17!:

Z~t!52
4p2

12p2
exp$22t%1

12p

11p
exp$2~12p!t%

1
11p

12p
exp$2~11p!t%21,

Y~t!52
4p2

12p2
exp$22t%2

12p

11p
exp$2~12p!t%

1
11p

12p
exp$2~11p!t%, ~18!
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X~t!5
11p2

12p2
exp$22t%2

12p

2~11p!
exp$2~12p!t%

2
11p

2~12p!
exp$2~11p!t%10.25,

wherep5cosu.
When the number of atoms is large, the process of

operative two-photon decay becomes appreciably stronge
we ignore fluctuations in the number of particles when
number of atoms is large (N@1), we can easily obtain fo
the atomic inversion operator

d^Rz~ t !&
dt

52
1

t~b!
^Rz& 2

1

t0
~b!

~ j ~ j 11!2^Rz&
21^Rz&! ,

~19!

where j 5N/2. The solution of this equation is

^Rz~ t !&5
11q

2
2

c

2
tanhF 1

2t r
~ t2t0!G ,

wheret r5t0
(b)/c is the time of cooperative spontaneous d

cay of the ensemble of atoms,

t05t r ln
N2~11q2c!

~11q1c!2N

is the time lag of the pulse of collective emission of a pair
photons in the microcavity, q5t0

(b)/t (b), and c
5A(11q)214 j ( j 11) .

The Dicke equation~19! describing two-photon coopera
tive spontaneous decay implies that a thermalized field
fects not only the Einstein coefficient 1/t (b) corresponding to
stimulated decay but also the rate of two-photon spontane
decay, 1/t0

(b) . Clearly, a thermalized field facilitates the pr
cess of cooperative two-photon decay@see the expression fo
1/t0

(b) after Eq.~15!#. This constitutes one of the main di
ferences between two-photon dipole-forbidden emission
one-photon cascade cooperative spontaneous emission
viously, two-photon cooperative spontaneous emission
vails over stimulated thermalized transition only ifN(1
12n).n2. These estimates suggest that whenn,1, the
term 1/t (b), which corresponds to induced decay, is neg
gible in comparison to the term 1/t0

(b) , which corresponds to
spontaneous decay. Indeed, atn50.3 we have

1

t (b)
5

8g4d0
4

GD2\4
30.32!

1

t0
(b)

5
4g4d0

4

GD2\4
@11230.3#.

To conclude this section, we note that with properly s
lected ~by experiments!. Rydberg atoms and microcavit
mode, the one-photon cascade process can be neglect
comparison to two-photon spontaneous decay. To quench
one-photon cascade transition, the rate of loss of pho
from the microcavity,G, must be smaller than the offse
from resonance,D5uvc2v23u(D5uvc2v31u), so that
G2!D2 ~herevc is the microcavity mode frequency!. Bear-
ing in mind the condition for applicability of the Born–
-
If
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-
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f-

us

d
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e-

-

-
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he
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Markov approximation in second-order perturbation theo
G.N/t0

(b) , we obtain the following lower and upper bound
on the photon loss rate:

4g4d0
4N

D2\4
~112n!,G2!D2. ~20!

Our model can be experimentally implemented for t
un8S&→u(n821)S& transition with an intermediate leve
u(n821)P& and with allowance for~20!. Since we wish to
account for the effect of the heat bath on two-photon sp
taneous decay, we examine the experimental model of e
tation for Rb atoms withn8540 ~Ref. 5!. The average num-
ber n of thermalized photons in the microcavity mode
T54 K is of order n'0.79. In the notation of Ref. 5, the
conditions~20! become

4V i f
4 N~112n!

D2
,G2!D2.

Then, with the values of the matrix elementV i f and the
offset D obtained in Ref. 5, we easily establish that

1.63107N~11230.79!,G2!1.531015,

i.e., the inequalities in~20! hold. Note that in this case th
rate of collective two-photon spontaneous decay is 2.6 tim
the rate of two-photon decay in the absence of thermali
photons in the cavity mode~i.e., atT50).

3. DEPENDENCE OF ELECTROMAGNETIC FIELD
FLUCTUATIONS ON ATOMIC INVERSION DYNAMICS

In the absence of atoms inside the microcavity, we c
calculate the fluctuations of the electromagnetic field ope
tors:

d0
25^a† 2a2&2^a†a&25n2.

It would be interesting to find the fluctuations in the numb
of photons of the electromagnetic field that are generated
the excited atomic system in the process of two-photon em
sion in the microcavity. To do this we introduce a functio
that accounts for fluctuations of the electromagnetic field
relation to thermalized fluctuations:

d r
25d22d0

2 , ~21!

whered25^a†2(t)a2(t)&2^a†(t)a(t)&2.
Since experimenters often monitor the dynamics of

population difference of the atomic subsystem in t
microcavity,10 in this section we express the electromagne
field fluctuationsd r

2 in terms of the kinetics of atomic popu
lation inversion. To simplify this problem, we can elimina
the virtual levelscj 3

† (t) andcj 3(t) from the Hamiltonian~1!,
since as noted in Sec. 2, these levels are almost vacant. A
this is done, we obtain a formula for the effective Ham
tonian describing the interaction of the atomic subsystem
a single microcavity mode atTÞ0:
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Heff5\v21Rz1\vcJz12\x~J1R21R1J2!

1E
2`

`

dv \vbv
† bv1 i\

3E
2`

`

dv k~v!~bva†2abv
† !, ~22!

where x52g2d31d32/D\2. The operatorsJ15a† 2/2, J2

5a2/2, andJz5(a†a11/2)/2 belong to the SU(1,1) algebr
and satisfy the commutation relations

@J1,J2#522Jz , @Jz ,J6#56J6.

Let G(1)(t)5^a†(t)a(t)&. Then

dG(1)~ t !

dt
5

d^a†~ t !a~ t !&
dt

5 K da†~ t !

dt
a~ t !1a†~ t !

da~ t !

dt L . ~23!

Inserting the Heisenberg equation of the operators of
cavity’s electromagnetic field into Eq.~23!, we obtain

dG(1)~ t !

dt
54ix^R1~ t !J2~ t !2J1~ t !R2~ t !&

22G^a†~ t !a~ t !&1E
2`

`

dv k~v!

3^bv
† ~0!a~ t !&exp$ ivt%1E

2`

`

dv k~v!

3^a†~ t !bv~0!exp$2 ivt%. ~24!

Eliminating the heat-bath operators, we obtain the follow
equation for the first-order correlation function:

dG(1)~ t !

dt
522GG(1)~ t !14ix^R1~ t !J2~ t !

2J1~ t !R2~ t !&12Gn.

In the Born–Markov approximationdG(1)(t)/dt!GG(1)(t),
we can express the functionG(1)(t) in terms of the atomic
inversion operator:

G(1)~ t !5n2
1

G

d^Rz~ t !&
dt

. ~25!

Reasoning along the same lines, we find the second-o
correlation functionG(2)(t)5^a†2(t)a2(t)&:

dG(2)~ t !

dt
5

d^a†2~ t !a2~ t !&
dt

5 K da†2~ t !

dt
a2~ t !1a†2~ t !

da2~ t !

dt L . ~26!

Taking into account the Heisenberg equation for the oper
a†2(t),
e

g

er

or

da†2

dt
54ivcJ

124GJ118ixR1Jz

1E
2`

`

dv k~v!bv
† ~0!a†~ t !exp$ ivt%, ~27!

and inserting it into Eq.~26! in the Born–Markov approxi-
mation dG(2)(t)/dt!GG(2)(t), we find that G(2)(t) and
G(1)(t) are linked through the relationship

G(2)~ t !5
4ix

G
@^R1JzJ

2&2^R2J1Jz&#12nG(1)~ t !.

~28!

Now, weakening the correlation functions

^R1JzJ
2&'^R1J2&^Jz&, ^R2J1Jz&'^R2J1&^Jz&

for a large number of excited atoms and noting that

^Jz~ t !&5
1

2 FG(1)~ t !1
1

2G5
1

2 Fn1
1

2
2

1

G

d^Rz~ t !&
dt G ,

we can express the second-order correlation function
terms of the atomic subsystem inversion operator:

G(2)~ t !52n22F3n1
1

2G 1

G

d^Rz~ t !&
dt

1F 1

G

d^Rz~ t !&
dt G2

.

~29!

Note that since the two-photon absorption probabil
w}^a†2a2&5G(2)(t), at low-temperatures it is proportiona
to the two-photon fluxF0:

w}
d^Rz~ t !&

dt
}F.

We note that the probabilityw also depends on the square
the two-photon flux, but this dependence is ignored in o
approximation. Note that for one-photon superradiance,
functionG(2) is proportional to the square of the one-phot
flux, or F2. This occurs becausea†;R1 for one-photon
emission, while for two-photon emission we havea† 2;R1.
Hence

w}^R1 2R2 2&} K FdRz

dt G2L
for one-photon superradiance, and

w}^R1R2&}
d^Rz&

dt

for two-photon superradiance.
Now we can easily derive a formula for the relative flu

tuations of the electromagnetic field inside the microcavi

d r
252S n1

1

2D 1

G

d^Rz~ t !&
dt

. ~30!

This implies that in each decay event, photons are g
erated in pairs and the emission intensity becomes pro
tional to N2, while the second-order correlation function fo
the photons remains much greater than the square of
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first-order correlation function. In this case, at low tempe
tures and for large numbers of atoms, we can speak of p
ton superbunching, i.e.d r

2/d0
2@1 ~Fig. 2!.

4. CONCLUSION

The main object of this paper was to study the coope
tive two-photon spontaneous decay of excited Rydberg
oms in a microcavity in the presence of a thermalized fie
We have found that a thermalized electromagnetic fi
boosts two-photon spontaneous emission and that this e
sion prevails over stimulated emission. Moreover, we h
studied electromagnetic field fluctuations generated by
excited atomic subsystem in relation to fluctuations of
thermalized field in the microcavity. Finally, we have esta
lished, in the Born–Markov approximation, that these flu
tuations are linear functions of the generated two-pho
flux.

APPENDIX

We show how to eliminate the operators of the therm
ized electromagnetic field and the electromagnetic field
the microcavity so as to obtain Eq.~5!. We start by writing
the Heisenberg equations for the operators of the electrom
netic field,

dak~ t !

dt
52 ivkak~ t !1E

2`

`

dv k~v!bv~ t !

1(
j 51

N

(
b51

2 gk–d3b

\
exp$2 ik–r j%

3@U j b
3 ~ t !1U j 3

b ~ t !#, ~A1!

and of the thermalized electromagnetic field,

bv~ t !5bv~0!exp$2 ivt%

2(
k
E

0

t

dt exp$2 ivt%ak~ t2t!k~v!. ~A2!

Substituting~A2! into ~A1!, we obtain the Markov approxi
mations of the equations for the operators of the electrom
netic field of the microcavity:

FIG. 2. Dependence ofd r
2/d0

2 on t/t r at N51500, D/2p539 MHz, G52
3106 s21, vc/2p568.4 GHz, andV573105 s21.
-
o-

-
t-
.
d
is-
e
e

e
-
-
n

l-
f

g-

g-

dak~ t !

dt
52(

k8
S ivk8dkk8

1E
0

`

dv k2~v!
«1 i ~vk82v!

«21~vk82v!2D ak8~ t !

1E
2`

`

dv k~v!bv~0!exp$2 ivt%

1(
j 51

N

(
b51

2 gk–d3b

\
exp$2 ik–r j%@U j b

3 ~ t !1U j 3
b ~ t !#.

~A3!

If we ignore the contribution of adjacent modes to the red
tribution of frequencies and to microcavity losses, we obt

ṽk5vk2PE
2`

`

dv
uk~v!u2

v2vk
, G~vk!5puk~vk!u2.

In this approximation, the formal solution for the operato
of the microcavity’s electromagnetic field is

ak~ t !5Ak
f ~ t !1ak

s ~ t !, ak
†~ t !5@ak~ t !#†. ~A4!

Here

Ak
f ~ t !5ak~0!exp$2 i @vk2 iG~vk!#t%1E

2`

`

dv k~v!bv~0!

3
exp$2 ivt%2exp$2 i @vk2 iG~vk!#t%

G~vk!1 i ~vk2v!
,

ak
s~ t !5(

j 51

N

(
b51

2 d3b–gk

\
exp$2 ik–r j%E

0

t

dt exp$2 i @vk

2 iG~vk!#t% @U j b
3 ~ t2t!1U j 3

b ~ t2t!#,

where we have introduced the notationṽk5vk .
Note that the solutions~A4! take into account all corol-

laries of the quantum regression theorem. Indeed, for the
parts of the operatorsak(t) andak

†(t2t) we can derive the
expressions

^Ak
f †~ t2t!Ak

f ~ t !&5E
2`

`

dv uk~v!u2

3exp$2 ivt%
^bv

† ~0!bv~0!&

G2~vk!1~v2vk!
2

5n~k!exp$2 ivkt2Gutu%,

where n(k) is the average number of photons in thekth
mode of the microcavity.

Now, inserting ~A4! into Eq. ~2!, we can eliminate
Ak

f †(t) andAk
f (t) ~by employing the Bogolyubov lemma14!.

Since

^ak
†~0!B~ t !&5n~vk!^@B~ t !,ak

†~0!#&,

^bv
† ~0!B~ t !&5n~v!^@B~ t !,bv

† ~0!#&,

we can express the correlation function^Ak
f †(t)B(t)& in

terms ofak
s†(t):



,
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^Ak
f †~ t !B~ t !&5n~vk!^@ak

s†~ t !,B~ t !#&,

where we have putn(v)'n(vk).
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7N. A. Enaki, Zh. Éksp. Teor. Fiz.94~10!, 135~1988! @Sov. Phys. JETP67,
2033 ~1988!#.

8Zh. Chen and H. Freedhoff, Phys. Rev. A44, 546~1991!; N. A. Enaki and
M. A. Macovei, Phys. Rev. A56, 3274~1997!.

9N. A. Enaki and O. B. Perepelitsa, Opt. Spektrosk.69, 617 ~1990! @Opt.
Spectrosc.69, 367 ~1990!#.

10I. M. Beterov and P. B. Lerner, Usp. Fiz. Nauk159, 665 ~1989! @Sov.
Phys. Usp.32, 1084~1989!#.

11D. Meschede, H. Walther, and G. Mu¨ller, Phys. Rev. Lett.54, 551~1985!.
12G. Rempe, H. Walther, and N. Klein, Phys. Rev. Lett.58, 353 ~1987!.
13W. Lange and H. Walther, Phys. Rev. A48, 4551~1993!; G. S. Agarwal,

W. Lange, and H. Walther, Phys. Rev. A48, 4555~1993!.
14N. N. Bogolyubov and N. N. Bogolyubov, Jr., Fiz. E´ lem. Chastits At.

Yadra11, 245 ~1980! @Sov. J. Part. Nucl.11, 93 ~1980!#.

Translated by Eugene Yankovsky



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS VOLUME 88, NUMBER 4 APRIL 1999
Radiative asymptotic behavior of stimulated Raman scattering
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This paper uses an integrable model to study an asymptotic solution describing the transformation
of energy occurring in stimulated Raman scattering. The model allows for motion of
populations and for the nonlinear Stark effect. Initial conditions leading to a radiative solution
are discussed. The boundary conditions reflect the injection into the medium of high-
power pulses of constant-amplitude pump and Stokes fields. It is shown that the radiative
asymptotic behavior of this problem in the limit of weak medium excitation and in the limit of
rapidly varying intense fields is determined by the kernels of Marchenko equations that
are proportional to functions depending only on a self-similar variable. Analytic solutions are
found for these cases. Detailed numerical calculations carried out for weak fields
corroborate the analytic results. The role of the soliton part of the continuous spectrum of the
problem is also studied. It is found that a high-power soliton of the Stokes field can be
generated at the leading edge of a wave packet. ©1999 American Institute of Physics.
@S1063-7761~99!00204-8#
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1. INTRODUCTION

Stimulated Raman scattering~SRS! of light has been
studied for a long time~see, e.g., Ref. 1!, but the interest in
the problem is unflagging, which is due to the universa
and relative simplicity of realizing this phenomenon in e
periments. When high-power pump and Stokes fields are
jected into the medium, packets of pulses are generate
the SRS process. The study of the nature and character
of such pulses is important for practical reasons.

An analysis of the SRS model often encounters anal
cal difficulties, which emerge when one wishes to descr
the behavior of dense packets of pulses with many degree
freedom. Some of these difficulties can be overcome by
ing models that are exactly solvable or are close to in
grable. The most detailed information about the evolution
fields in nonlinear media can be extracted by the inve
scattering method~ISM!.2 As is known, the Maxwell–Bloch
equations that describe SRS in one-dimensional media
integrable by ISM3,4 for physical initial and boundary condi
tions. The evolution equations of the SRS model are sim
to those of other physical models, for instance, the mode
four-wave mixing in a medium with a Kerr nonlinearity
which in turn formally coincides with the ‘‘uniaxial’’ chiral
model on theO3 group, and the like.5 In view of this, the
analysis and the methods of solution used in the SRS m
are also interesting from a theoretical standpoint.

In models with strong nonlinearities, such as t
Maxwell–Bloch equations of one-particle interaction of
field and a two-level medium and the SRS mode, the ra
tive part of the solution can provide the main contribution
the interaction dynamics. The radiative solution describ
for instance, the quasi-self-similar asymptotic behavior o
long laser amplifier.6 In the work of Gabitov, Manakov
6421063-7761/99/88(4)/16/$15.00
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Mikha�lov, Novokshenov, and Zakharov, the inverse scatt
ing method is used to find related self-similar asymptotes
the SRS model7,8 and the Maxwell–Bloch equations for me
dia with nondegenerate9,10 and degenerate11 one-particle
transitions. Gabitovet al.9 studied the mixed boundary-valu
problem for the Maxwell–Bloch equations in a two-lev
medium for a one-particle transition.

Mathematically, the Chu–Scott model,12 which was used
in Refs. 8, 13, and 14 to describe SRS, is equivalent to
Maxwell–Bloch equations for a two-level single-particle l
ser amplifier.15 The boundary conditions for the Chu–Sco
model, corresponding to injection into the medium of pum
and Stokes fields with constant amplitudes, were studied
Kaup and Menyuk.13,14However, in these papers no analyt
solutions describing the asymptotic behavior were found

The present paper is a study of SRS in a two-level m
dium. A totally integrable model is adopted. The model d
scribes changes in level populations, pump depletion, and
nonlinear Stark effect. We examine the boundary conditio
corresponding to injection into a sample end of wave pack
of the pump and Stokes fields with arbitrary~but constant!
amplitudes, and the physical initial conditions for the dens
matrix of the medium that lead to a contribution of the re
spectrum into the asymptotic behavior. We also establish,
the general case, the Marchenko equations and the app
mate asymptotic expression for the kernel corresponding
radiative asymptotic behavior. The explicit form of the rad
tive solution of the Marchenko equations will be found f
the limit of weak medium excitation and for the limit o
rapid energy exchange between strong fields and the
dium. Computer simulation, done in the limit of weak m
dium excitation, is used to test the analytic results.

The analytic solutions found for the above bounda
conditions and describing radiative asymptotic behavior
© 1999 American Institute of Physics
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also new for the Chu–Scott model13 and hence for the math
ematically identical model of a laser amplifier.6 The pro-
posed method of finding the radiative asymptotic behav
and the analytic results can applied to other models of n
linear physics, such as the chiral field model and the mo
of the interaction of two polarized waves propagating in
two-level medium with a Kerr nonlinearity.5,16

Generally, when high-power pulses of the Stokes a
pump fields are injected into the medium, in addition to a
counting for the real spectrum one must account for
‘‘soliton’’ part of the spectrum. We find that for an infinitel
long steplike pulse, a part of the continuous spectrum m
emerge in the ‘‘soliton’’ region of the spectral plane. F
physical applications it is often important to establish t
conditions required for the formation of a pulse with a hig
power leading edge. An analysis of the dependence of
dynamics of a soliton packet on the initial conditions gen
ated in such a problem makes it possible to find the con
tions under which a soliton with the largest amplitude a
the shortest duration forms at the leading edge of the pac

The plan of the paper is as follows. Section 2 is devo
to the statement of the problem. In Sec. 3 we discuss the
equations and find an approximate asymptotic expression
the kernel of the Marchenko equations. In Sec. 4 we use
inverse scattering method to study the case of weak ex
tion of the medium. We find a radiative solution describi
asymptotic solutions for arbitrary values of the pump- a
Stokes-field amplitudes and the boundary of the sample.
analytic results are then compared with numerical calcu
tions. Section 5 is devoted to the case of rapidly vary
fields. We find the explicit form of the analytic solution d
scribing radiative asymptotic behavior. In Sec. 6 we use
analytic results to explain the anomalies in the shape
Stokes-field pulses, anomalies observable in real exp
ments. In Sec. 7 we study the dynamics of a soliton pac
that may be generated in the system. Finally, in the App
dix we establish the dependence of the constant-ampli
pump- and Stokes-fields on time and on slowly varying i
tial data.

2. BASIC EQUATIONS

We assume that the pump field and the Stokes field w
amplitudesE1 and E2, respectively, propagate in a sem
infinite one-dimensional medium positioned along thex axis
with a frequency-independent refractive indexn(v j )5nj :

E~x,t !5(
1,2

S \v j

2cnj
D 1/2

3@ejEj~x,t !exp$ i ~kjx2v j t !%1c.c.#,

where ej is the polarization vector, andv j and kj are the
carrier frequency and the wave vector, respectively. The c
dition for resonance in a two-level medium with a transiti
frequencyv0 has the formv12v25v01n0, wheren0 is
the frequency offset. Throughout this paper, with the exc
tion of Sec. 7, it is assumed thatn050.
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In the slow-envelope approximation, the Maxwel
Bloch equations describing stimulated Raman scattering
~see, e.g., Ref. 20!

S ]x1
1

v1
] tDE152 ib1~N32N0!E11 ik0R* E2 ,

S ]x1
1

v2
] tDE252 ib1~N32N0!E21 ik0RE1 ,

] tR52i ~b1uE1u21b2uE2u2!R1 ik0E1E2* N3 ,

] tN35 ik0E1E2* R1c.c. ~1!

The phase velocities are equal:v15v25v. Here v i5c/ni

5v i /ki , with c the speed of light;b1 , b2, andk0 are the
coefficients of cubic nonlinear susceptibility in the two-lev
medium expressed in terms of the physical constants of
medium, which can be found, for example, in Ref. 4;N3 is
the population difference of the levels involved in the tra
sitions;N0 is the number of atoms;R0 is the polarizability of
the medium; andx and t are the space and time coordinate
respectively.

Now we write the system of equations~1! in the form

]TR15 i @gR1F31R3F1#22in0R1 ,

]TR352]zF35
i

2
@R1F22R2F1#,

]zF15 i @gF1R31F3R1#. ~2!

Here

g5
b12b2

k0
, z5E

0

x

k0N0~s! ds,

N0
2~x!5N3

21uRu2, T5k0E
0

t

I 1~y! dy,

t5t2
z

c
, I 1~T!5uE1u21uE2u2,

F35
uE1u22uE2u2

I 1
, R35

N3

N0
,

R15
R

N0
expF i ~b11b2!E

0

t

I 1~y! dyG ,
F152 expF i ~b11b2!E

2`

t

I 1~s! dsG E1E2*

I 1
,

F25F1* , R25R1* .

The systems of equations~2! has the integrals

uR1u21R3
251, uF1u21F3

251. ~3!

The initial conditions that should be considered are th
leading to the appearance of a contribution of the real sp
trum to the asymptotic behavior. It is assumed that the ini
excitation of the medium is described by the slowly varyi
functions of coordinatesR3(z,0) andR1(z,0). The boundary
conditions are fixed in the following way. Wave packets~of
the pump field and the Stokes field! with constant amplitudes
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E1(0,t)5E1(0,0) andE2(0,t)5E2(0,0) are introduced into
the nonlinear medium atz50. Numerical analysis conducte
for ugu,1 has shown that the radiative solution for th
model describes the transition of the system to the ste
ground state. This state corresponds to the values of
fields and the medium polarizations at infinity (z→`):

R3~z,T!521, R1~z,T!50,

F3~z,T!521, F1~z,T!50. ~4!

In Sec. 7 we study infinitely long pulses of the Stokes a
pump fields and partial uniform excitation of the medium
the initial moment.

3. INVERSE SCATTERING METHOD

The inverse scattering method is basically used in
present investigation to study the radiative asymptotic beh
ior of the model~2! with the initial and boundary condition
specified above. The soliton and finite-band solutions
model ~2! were built in Refs. 17, 5, and 18. The radiativ
asymptotic behavior of this model was studied in Ref. 19
which the special case ofE2(0,t)50 and of an exponentially
small initial polarization,

U lnE
0

`

uR1~z,0!u dzU@1,

was examined.
At n050 the system of equations~2! can be written as

the compatibility condition for the following two systems o
linear equations:3,4

]zF5LF5S 2 i ~z2g/2!R3 ~z1w1!R1

2~z1w2!R2 i ~z2g/2!R3
DF, ~5!

]TF5AF5
1

4z S i ~2zg21!F3 2~z1w1!F1

22~z1w2!F2 i ~2zg21!F3
DF,

~6!

wherez is a spectral parameter,F is a two-component func
tion, andw152g/26( i /2)(12g2)1/2.

We write the spectral problem~5! in the form

]zF5 i S 2ln 2~l1f1!m

2~l1f2!m̄ ln D F, ~7!

where n5R3 , m5 iR1 , m̄52 iR2 , l5z2g/2, f65w6

1g/2, andl5z2g/2.
Now we consider the case in whichg2,1. Under this

condition the system tends to the ground state~4! asz→`.
The solutions of the system that correspond to the bound
condition z50 and the asymptotic state~4! have the form
x0

2,15exp(2ils3z), with z50 andz→`, respectively. Let
x0

2,1 be the fundamental matrices of the Jost solutio
(x2,1→x0

2,1 asz→0 andz→`, respectively!. The spectral
problem~7! meets the involution condition, i.e.,

F~l,z!5MF~l* ,z!* M 21, ~8!

where M5(21
0

0
1). We define the scattering matrixS as

follows:
dy
he

d
t

e
v-

f

n

ry

s

x25x1S ~l,t !, S 5S a 2b*

b a* D , detS 51. ~9!

The second column of the Jost matrix

x2,15S c1
2,1 c̄1

2,1

c2
2,1 c̄2

2,1D
is analytic in the upper half-plane ofl. The functionsa(l)
and b̄(l) are analytic in the upper half-plane, anda(l) has
zeros l j there, which are the eigenvalues of the spec
problem~28!. From ~8! and ~9! it follows that

c̄1
15

c̄1
2

a
1

b*

a
c1

1 , ~10!

c̄2
15

c̄2
2

a
1

b*

a
c2

1 . ~11!

We representc1(z,l) in the form

c1~z,l!5F0~z,l!1E
z

`

ds

3S lK1~z,s! ~l1f1!K2~z,s!

2~l1f2!K2* ~z,s! lK1* ~z,s!
D

3F0~s,l!. ~12!

Substituting~12! into ~10!, allowing for ~8!, and integrating
with the weights

E
2`

` exp~2 ils! ~l1f2* !

2p~l1f1!
dl, E

2`

` exp~2 ils!

2p
dl,

we obtain the Marchenko equations

]zK2~z,y!2 if2K2~z,y!1 iF ~z1y!

1E
z

`

]yF~y1s!K1~z,s! ds50, ~13!

]zK1* ~z,y!1E
z

`

K2* ~z,s!@]yF~y1s!

2 if1F~y1s!# ds50, ~14!

where

F~z,T!5E
C

b*

a

exp$2 ilz%

2p
dl. ~15!

Note that r5(b* /a)(l,T) is the scattering coefficient
which contains all information needed to find the radiati
solution. The contourC consists of the real axis and pass
above the poles in the upper complex half-plane. The sol
contribution is studied in Sec. 7. Up to that section we lim
ourselves to studying only the radiative part of the spectru
i.e., integration in~15! is carried out along the real axis.

The relationships that link the diagonal parts of the k
nelsK1,2(z,z,T) and the ‘‘potentials’’n(z,T) andr (z,T) can
be found from~6! and ~12!:



in
of
-
a
rt

rix

-

i-
fi-

e
e
q.

he

pro-

645JETP 88 (4), April 1999 A. A. Zabolotski 
im~z,T!K2* ~z,z,T!5@11 iK 1~z,z,T!#@n~z,T!21#,
~16!

@11 iK 1~z,z,T!#m* ~z,T!52 i @11n~z,T!#K2* ~z,z,T!.
~17!

This yields

m~z,T!5
2iK 2~z,z,T!U~z,T!

uU~z,T!u21uK2~z,z,T!u2
, ~18!

n~z,T!5
uU~z,T!u22uK2~z,z,T!u2

uU~z,T!u21uK2~z,z,T!u2
, ~19!

whereU(z,T)511 iK 1(z,z,T).
Solving the Marchenko equations requires calculat

the kernel~15! with allowance for the time dependence
the scattering data~105! found in the Appendix. In this sec
tion we take into account only the contribution of the re
continuous spectrumC r , which determines the radiative pa
of the solution of the problem. We replacel with l2g/2. If
we use the expression~105!, the kernel~15! assumes the
form

F~z1y,T!5
1

2p E
2`

`

dl

3expF i S g

2
2l D ~z1y!G r exp~22iVT!1p

c exp~22iVT!1d
.

~20!

Here

V~l!56
1

2
AS 1

2l
2qD 2

1~12g2!uF1
2 ~0,0!u,

r ~l!5A121r0~ iV2A11!,

c~l!5r0A211 iV1A11,

p~l!52A121r0~ iV1A11!,

d~l!52r0A211 iV2A11,

with Ai j being the values of the components of the mat
iAi on the right-hand side of Eq.~6! at z50.

The denominator on the right-hand side of Eq.~20! van-
ishes at the points

2TV~ln!5pS n1
1

2D1 ik~ln!, k~ln!5
1

2
ln

d

c
~ln!.

~21!

The sign ofV is selected so that within the limitsF1(z
50,T)50 and F3(z50,T)561 sgnV coincides with the
sign ofF3(z,T)[F3(0,T), since within these limits the time
dependence can easily be found and has the simple form

r~l,T!5r0 expF i E
0

T

F3~0,T! dT S 12
1

2l D G .
We find the asymptotic expression for the kernelF(z,T)

for large values ofT. Estimating the integral by the saddle
g

l

point method, we can show that the main contribution to~20!
is provided by the neighborhood of the pointls;AT . For
large values ofl we have the expansion

V~ln!'«S V01
a

l D1OS a1

l D 2

, ~22!

where V05(1/2)A(12g2)uF1(0,0)u21g2 , «561,
a52g/4V0, anda1 is a constant of order unity. For phys
cal media,g can be either positive or negative. To be de
nite, we assume thatg is positive. In this section we ignore
the last term on the right-hand side of Eq.~22!. Note that in
the limits discussed below,a150.

The dependence ofr0 on l is also found in the Appen-
dix, where we show that

r05
l2 if2*

l

R1~0,0!

d1R3~0,0! F11OS 1

l D G
for almost all slowly varying initial conditions. It can also b
shown that in general, forl large, the dependence of th
coefficient of the exponentials on the right-hand side of E
~15! on the spectral parameter has the form

r 5r 01OS 1

l D , p5p01OS 1

l D ,

c5c01OS 1

l D , d5d01OS 1

l D .

Now we find the kernelF(z,T) with the l-dependence of
these coefficients ignored, i.e., we calculate the integral

F~z1y,T!5
1

2p E
2`

`

dl expF i S g

2
2l D

3~z1y!G H~l,T!, ~23!

where

H~l,T!5
p01r 0 exp~22iVT!

d01c0 exp~22iVT!
.

Let F3(0,T)[F3(0,0)5cosb05«ucosb0u. We call the inter-
action mode corresponding to the boundary conditionsp/2
>b0.0 the I-mode, and the mode corresponding to t
boundary conditionsp.b0.p/2 theJ-mode. We show that
the kernels corresponding to these interaction modes are
portional to the Bessel functionsI k andJk (k50,1), respec-
tively.

Calculating the residues on the right-hand side ofF @Eq.
~23!# at the poles~21!,

ln5
2«aT

pn1p/22 ik01«V0T
, k05

1

2
ln

d0

c0
,

we obtain a series inn. Multiplying the nth term of this
series by the exponential with the exponent

2i«aT~pn1p/22 ik1«V0T!/«aT

2 ip22k022i«V0T,

we obtain
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F~z1s,T!52 i
r 0d02p0c0

d0
2

1

2p i (
n

expF2
i ~z1s!

qn

1 i2aTqn1 i
g

2
~z1y!22i«V0TG , ~24!

where qn5«(pn1p/22 ik)/aT1V0 /a. For largeT, the
interval betweenqn and qn11 gets smaller, which justifies
the transition from summation overqn to integration with
respect toq. For sgn«511, which corresponds to th
I-mode, the kernel is

F~z1y,T!52
g`

2p E
2`

`

expF i ~z1y!

q
12iaTqG

3expF22iTV01 i
g

2
~z1y!G dq

q2

5g`

4uauT

A8uau~z1y!T
I 1~A8uau~z1y!T !

3expF22iTV01 i
g

2
~z1y!G , ~25!

whereI 1 is a Bessel function, andg`5(r 0d02p0c0)/d0
2.

In the J-mode, the solution forF1(z,T) asymptotically
(z→`) tends to zero. We select sgn«521, so that the so-
lution matches the asymptotic solution in the linear lim
since a zero asymptote forF1(z,T) corresponds toF3uz→`

521. Replacing the signs of« andq in the above formulas
we obtain a kernel that corresponds to theJ-mode:

F~z1y,T!5g`

4uauT
h

J1~h!expF2iTV01 i
g

2
~z1y!G ,

~26!

whereJ1(h) is a Bessel function, andh5A8uau(z1y)T .
Note that the asymptotic behavior of the kernelF(z,T)

for large values ofT and arbitrary ~but constant! fields
E1,2(z50,T)5const is linearly dependent on the Bess
functions, as in the limiting cases:F3(0,T)'61.

The next step consists in solving the Marchenko eq
tions ~13! and ~14! with the kernelF(z1y,T). The solution
can be found by iterations that use a series expansio
powers of 1/h for h large. The solution forF1(z,T) consists
of a series of spikes with an amplitude decreasing asz→`.

We show that solving the problem amounts to solving
first-order differential equation. It is known that the spect
problem ~5! reduces to the Zakharov–Shabat spec
problem.2 The corresponding gauge transformation has
form3

Cz5D21F,

D5@ I cos~g/2! 1 is3 sin~g/2!#@ I cos~v/2!

1 is1 sin~v/2!#@ I cos~u/2! 1 is3 sin~u/2!#, ~27!

wheres i are the Pauli matrices, and we have introduced
notation
,

l

-

in

a
l
l
e

e

R15exp$6 iu% sinv, R35cosv, g5E
0

z

uz cosv dz,

uz5]zu, g→0, z50; v, uz→0, z→`.

The transformation~27! reduces the spectral problem~5! to

]zC5S 2 il
1

2
V

2
1

2
V* il

D C, ~28!

where

V~z,T!5@~ iA12g22uz!sinv1 ivz#e
ig. ~29!

For 1.g2, the corresponding Marchenko equations have
form2

K1
(1)~z,y!1F (1)~z1y!1E

0

z

F (1)~y1s!K2
(1)~z,s! ds50,

~30!

K2
(1)* ~z,y!2E

0

z

K1
(1)* ~z,s!F (1)~y1s! ds50, ~31!

F (1)~z!5E
C

b*

a

exp~2 ilz!

2p
dl. ~32!

The relationship between the ‘‘potential’’V and the kernels
K1,2 has the form2

V~z,T!54K1
(1)~z,z,T!, ~33!

E
0

z

uV~y,T!u2 dy524K2
(1)~z,z,T!. ~34!

The time dependencer(T) can be bound by replacing matri
iAi with matrix iAig obtained fromiAi via the gauge trans
formation ~27!. For F3,1(0,T)[F3,1(0,0) and R3,1(z,0)
[R3,1(0,0) ~i.e., constants!, the corresponding componen
of iAig are independent ofz andT, and the dependence ofr
on l and timeT is given by the general expressions~105! in
the Appendix.

We can find the general form of the solution of the sy
tem of Marchenko equations~30! and ~31! by following the
ideas developed by Gabitov and Manakov.11 Here it is pos-
sible to expressV(z,T)/T in terms of a function depending
solely on a self-similar variable. Then, to reconstruct t
‘‘potential’’ R1(z,T), we must solve Eqs.~29! and~33!, but
there is no way in which this can be done analytically. At t
same time, Eqs.~30! and ~31! also emerge in the physicall
interesting limit of weak medium excitation, a limit in whic
~29! becomes trivial and corresponds to the formal equali

V~z,T![R1~z,T!, R3~z,T![21. ~35!

In this limit, the gauge transformation~27! becomes an iden
tity transformation.
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4. WEAK-FIELD LIMIT

The Chu–Scott model12 can be obtained from Eqs.~2! in
the weak-field limit (ulu!uf6u). If we ignore excitation@see
Eq. ~35!# and the Stark effect (g50), we obtain the Chu–
Scott model:

]TV5F1 ,

]zF15F3V, ~36!

]zF352 1
2~F1* V1F1V* !. ~37!

The functions and the variables are the same as in~2!. The
Chu–Scott model can be represented by the compatib
condition for the linear systems~28! and the system

]TF5
1

4l S iF 3 2 iF 1

2 iF 2 2 iF 3
DF. ~38!

The Marchenko equations coincide with~30! and ~31!. The
time dependence of the scattering coefficient is given by
general expression~105! in the Appendix, whereiAi is the
matrix on the right-hand side of Eq.~38! at z50. For the
Chu–Scott model we have the exact relationships

V5
«

4l
, «5

F3~0,0!

uF3~0,0!u
, a5

1

4
, a150. ~39!

The coefficients on the right-hand side of Eq.~20! are of
the form

r (1)~l!5
1

4l
@ ir0

(1)~«2F3~0,0!!1F1~0,0!#

3F11OS 1

l D G' r 0
(1)

4l
, ~40!

p(1)~l!5
1

4l
@ ir0

(1)~«1F3~0,0!!2F1~0,0!#

3F11OS 1

l D G' p0
(1)

4l
, ~41!

c(1)~l!5
1

4l
@ i ~«1F3~0,0!!2r0

(1)F2~0,0!#

3F11OS 1

l D G' c0
(1)

4l
, ~42!

d(1)~l!5
1

4l
@ i ~«1F3~0,0!!1r0

~1!F2~0,0!#

3F11OS 1

l D G' d0
(1)

4l
. ~43!

We ignore the termO(1/l) in square brackets, i.e., in~40!–
~43! r0

(1) , r 0
(1) , p0

(1) , c0
(1) , and d0

(1) are independent ofl.
Allowing for ~39!, we find that the kernelF (1)(x1y,T) is
given by Eqs.~25! and ~26!. For theJ-mode we have

F (1)~z1y,T!5
g`

(1)

A2~z1y!T
J1~A2~z1y!T !, ~44!
ty

e

whereg`
(1)5(r 0

(1)d0
(1)2p0

(1)c0
(1))/(d0

(1))2, andJ1 is a Bessel
function. For theI-mode the kernel differs from~44! in that
J1 is replaced byI 1. WhenR1(z,0)50, we can easily show
that r0(l)50, with

g`
(1)ur0505

2usinb0u

~11ucosb0u!2
.

To find the radiative solution of the Marchenko equ
tions~30! and~31!, we use the Gegenbauer addition formu
following the ideas developed in Ref. 11. Examining t
J-mode, we introduce the variablesj5A2zT andz5A2yT
and write the functionF (1)(z1y,T) in the form F (1)(z
1y,T)5TF (1)(Aj21z2 ). Next we expand the function
F (1)(Aj21z2 ) in Bessel functions:

F (1)~Aj21z2 !5
g`

(1)

Aj21z2
J1~ Aj21z2!

5g`
(1) 2

zj (
k51

`

~21!k21~2k21!

3J2k21~z!J2k21~j!. ~45!

Here we have used the properties of the Gegenbauer pol
mial Cl

k ~see, e.g., Ref. 21!:

Cl
2k21~0!50, Cl

2k~0!5~21!k
~k1 l !!

l ! k!
.

We introduceK 1,2
(1)(z,y)5T21K1,2

(1)(z,y,T) and expand these
functions in the Bessel functionsJ2k21:

K 1
(1)~z,y!5K 1

(1)~j,z!5
2

jz (
k51

`

R k
(1)~j!J2k21~z!,

~46!

K 2
(1)~z,y!5K 2

(1)~j,z!5
2

jz (
k51

`

P k
(1)~j!J2k21~z!.

~47!

We take advantage of the biorthogonality of the Bessel fu
tions and Neumann’s Bessel functionsYk ,

E
C

Jm~z!Yk~z!dz5akdkm ,

a052p i , ak5p i , k.0, ~48!

where the integral is taken along a contourC that encloses
the center of the complex plane. Multiplying the Marchen
equations byY2k21 and integrating alongC , we find that

R l
(1)~j!5 (

n51

`

O ln
(1)

P n
(1)~j!1F k

(1)~j!, ~49!

P l
(1)~j!52 (

n51

`

O ln
(1)

R n
(1)~j!, ~50!

where

F k
(1)5~21!k212g`

(1)~2k21!J2k21~j!,



o

.,

o

-

he

e
ita-
c-

ar,
n

a-
g

ere
for
e
ilar
ndi-

er-
ral
re-
ary

he

ter-
tly

of
ons
rip-

648 JETP 88 (4), April 1999 A. A. Zabolotski 
O kl
(1)5~21!k214g`

(1)~2k21!W kl
(1) ,

W kl
(1)~s!5E

0

s

J2k21~s!J2l 21~s!s21 ds. ~51!

For the I-mode we have a similar algebraic system
equations in which the Bessel functionsJk are replaced by
I k . The integrals in~51! reduce to tabulated integrals, e.g

E I 2k21~x!I 2 j 21~x!x21 dx

52122 j 22kx2212 j 12kF@~ j 1k21,j 1k

21/2!, ~2 j ,2k,2k12 j 21!, x2#/

@~ j 1k21!G~2 j !G~2k!# ,

whereF is the hypergeometric function andG is the gamma
function. We find the solution to the algebraic system
equations~49! and ~50! using Cramer’s formula

P k
(1)5

detiMk
(1)i

detiM (1)i
, ~52!

where

iM (1)i5d i j 1O ik
(1)

O k j
(1) ;

iMk
(1)i differs from iM (1)i in that thekth column is replaced

by the vectorF k
(1) . We have

1

4j

d

dj
ln detiM (1)i 5

1

detiM (1)i
(
k51

`

detiMk
(1)iJ2k21 .

~53!

Comparing~52! with ~53! and using the rule of differentia
tion of determinants, we find the formal solution forK 2

(1)

@Eq. ~47!#:

(
n51

`

P k
(1)~j!J2k21~j!5K 2

(1)~j,z!

5
1

4j

]

]j
ln det~dkl1iO ~1!iiO ~1!* i ! .

~54!

To find K 1
(1)(j,z), we write ~49! and ~50! in vector

form, bearing in mind thatiO (1)i is a real matrix:

~ I 1iO (1)i2!R (1)5F (1). ~55!

We write the solution of Eq.~55! also in vector form:

R ~1!5
1

2i
@~ I 1 i iQ ~1!i !21F ~1!

1~ I 2 i iQ (1)i !21F ~1!# . ~56!

The final result is

K 1
(1)~j,z!5

1

4j

]

]j
ln

det@ I 1 i iO (1)i #

det@ I 2 i iO (1)i #
. ~57!

Instead of~33! and ~34! we have
f

f

V~z,T!54TK 1
(1)~z,z!, ~58!

E
0

z

uV~h!u2 dh524TK 2
(1)~z,z!. ~59!

Equation~58! implies that the fieldV(z,t) is proportional to
a function that depends solely on the self-similar variablez
5A2zT . The solution that describes the dynamics of t
field V(z,T) has the form

V~z,T!5
T

j

]

]j
ln

det@ I 1 i iO (1)i #

det@ I 2 i iO (1)i #
. ~60!

Note that forg2,1 the solution of Eq.~29! with the
left-hand side~60! makes it possible to find the radiativ
asymptotic behavior for the general case of arbitrary exc
tion of the medium and with the Stark effect taken into a
count. Obviously, in this case the solution is not self-simil
although it is determined by the self-similar functio
K 1(z,z).

The radiative part of the solution of the system of equ
tions ~2! for p/2.b0.0 consists of two parts: an increasin
part, proportional~for small T) to the Bessel functionI 1,
anddamped oscillations~see Figs. 1 and 2!. For p.b0

.p/2, the solution consists of damped oscillations~Fig. 3!.
The corresponding kernelF (1)(h) is proportional to the
Bessel functionJ1(h).

In Refs. 6 and 9, where the Marchenko equations w
studied for a one-particle laser amplifier, it is shown that
an initially almost totally inverted medium the solution of th
equations also exhibits a similar dependence on a self-sim
variable. In these papers, the researchers used initial co
tions that correspond to a small deviation from total inv
sion of the medium and to field fluctuations. A more gene
solution is found in the present paper for a situation cor
sponding, in the case of a laser amplifier, to an arbitr
degree of inversion of the medium.

We assume that

2 log@ ub0u21#@1, 2 log@ ur0u21#@1. ~61!

In a laser amplifier, these conditions@Eq. ~61!# correspond to
almost total initial inversion. The small Bloch angleb0 de-
scribes quantum fluctuations of the polarizability of t
medium.9 If b050, conversion of the medium occurs atr0

Þ0 ~see Ref. 6!. Similarly, for the adopted model withr0

50, an initial Stokes fieldE2(0,t) is required to initiate the
energy conversion process, and the shape of this field de
mines the leading edge of the asymptotic solution. Stric
speaking, the classical model is inapplicable whenb05r0

50, since it does not allow for quantum fluctuations
vacuum and medium. However, when the number of phot
is large, the classical model provides a satisfactory desc
tion of the dynamics of the fields.
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For real initial values of the fields and zero frequen
offset, the self-similar solution of the Chu–Scott model
described by the equation

B hh9 ~h!1
1

h
Bh8 ~h!5sinB~h!, ~62!

where

V~z,T!5
4T

h
B h8 ~h!, h5A4zT .

In the Marchenko equations~13! and~14! we can ignore
the integrals for small values ofh. When h is large, the
nonlinear terms can be ignored only for small enough co
ficients ug`u in the J-mode. In the first case the linear sol
tion of the Marchenko equations describes the leading e
of the solution corresponding to theI- and J-modes. We
examine the integral~15! in the limit of smallT such that the
denominator on the right- hand side of Eq.~20! does not
vanish. ForT ands51/l small, the factor exp(2iVT) in the
denominator can be replaced by 1. We write~20! in the form

F0
(1)~z1s,T!52

sinb0

4p E
C

ds

s2
@12exp~2iTs!#

3expF2
i ~z1s!

s G . ~63!

Integrating alongC in ~63! in the positive sense about th
singularitys50, we obtain

FIG. 1. The I-mode of interaction. The dependence ofG(h)
5(h/4T)V(h,T) ~see Eq.~36!! on the self-similar variableh5A4zT de-
picted in this figure was found numerically forb051024 and r050. The
graph of the linear solution found for smallT, i.e., the functiong0I 1(h), is
also shown. It lies above the graph of the numerical solution of Eq.~62!.

FIG. 2. The same as in Fig. 1, but forb050.25p.
f-

ge

F0
(1)~z1s,T!52

sinb0

8p E
C 1

ds

s2

3expF2
i

s
~z1s!12iTs G

5g0
(1) T

Az21j2
I 1~Az21j2 !5TF 0

(1) ,

~64!

where z5A2Tz , j5A2Ts , I 1 is a Bessel function, and
g0

(1)5usinb0u. The solution for theJ-mode can be found from
~64! by replacingI 1 with J1.

The other linear limit corresponds to theJ-mode and to
small ug`u, i.e.,p2b0!p. The corresponding kernel has th
form @see~26!#

F (1)~z1y,T!5
g`

(1)T

h
J1~h!, h5A2~z1y!T .

The solution~26! describes damped oscillations of the fie
V(z,T) about the stable state~4!.

In the first linear limit~small T and h), the solution of
the Marchenko equations~13! and ~14! is obvious:

K 1
(1)~z,z!5F 0

(1)~z!,

V~z,T!54K1
(1)~z,z,T!54Tg0

(1)
F 0

(1)~z!

5
4Tg0

(1)

h
I 1~h!, ~65!

where h5A2 z5A4zT . Accordingly, for theJ-mode we
must replaceI 1 with J1. Whenh is small, the solution~65! is
valid for all b0 ~see Figs. 1–3!. In the second linear limit, the
solution can be found by introducing the formal substitutio
I 1→J1 and g0

(1)→g`
(1) into ~65!. The Marchenko equation

do not specify the sign of the field, so we find it by matchi
the resulting solution and the linear solution.

Figure 4 compares the numerical investigation of t
self-similar asymptotic solution of the Chu–Scott model a
the solution~65! expressed in terms ofF (1) @see Eq.~32!#.
Numerical analysis has shown that atb050.9p the maxi-
mum deviation of the numerical solution from the analy
one at the first vertex is less than 1%. Forb050.8p the
deviation is no larger than 3%. Andb050.7p the deviation

FIG. 3. TheJ-mode of interaction. The same as in Fig. 1 forb050.75p.
The graph for the linear solutiong0J1(h) is also shown. It lies below the
graph of the numerical solution.
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is no larger than 8%. If we continue to reduceb0, the error
gets larger and the linear approximation breaks down.

The numerical results show that the analytic solut
found in the second linear approximation can provide a
isfactory description of the radiative solution fromb05p to
b0'0.75p, with g` varying from 0 to roughly 1.1.

Computer simulation of the nonlinear region shows t
the theory correctly describes the radiative solution at la
and smallT. The amplitude of oscillations of the radiativ
part of the solution depends onb0, while the general form of
the radiative part of the solution remains the same for
anglesb0, which corroborates the self-similar nature of t
asymptotic behavior of SRS for the initial and boundary co
ditions specified in this section.

5. LIMIT OF RAPIDLY VARYING HIGH-POWER FIELDS

Modern laser technology makes it possible to use hi
power laser fields in studies of nonlinear processes. If
number of photons of the pump and Stokes fields pas
through unit volume element of the medium is larger th
the active atoms in this element, there is rapid energy
change between fields and medium. When the fields
strong, thez-derivative of the kernelK1,2 is proportional tol
and can reach values greater than unity. In real physical
dia, uf1u varies between 0.15–1.5. We assume thatulu
@uf1u in the strong-field limit. In this limit we can use th
inverse scattering method, eliminatingf6 from the equa-
tions of Sec. 3. For instance, the solutions of the simplifi
spectral problem (g51) are related by

c̄1
15

c̄1
2

a
1

b*

a
c1

1 . ~66!

The solution of the reduced spectral problem can be wri

x1~z,l!5F0
1~z,l!

2E
z

`

dsS lK1
(0)~z,s! lK2

(0)~z,s!

2lK̄2
(0)~z,s! lK̄1

(0)~z,s!
D

3F0
1~s,l!. ~67!

FIG. 4. Comparison of the numerical results with the analytic results of
Chu–Scott model in the J-mode. The dependence ofG(h)
5(h/4T)V(h,T) on the self-similar variableh5A4zT depicted in this fig-
ure was found numerically forb050.8p andr050. The graph of the linear
solution g`J1(h), which has a smaller amplitude of oscillations, is al
shown.
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The Marchenko equations can be derived by integrating~66!
with the weight

E
2`

` exp~2 ils!

2pl
dl.

The final result is

K1
(0)~z,y!1F (0)~z1y!

1E
0

z

F (0)~y1s!K2
(0)~z,s! ds50, ~68!

K2
(0)* ~z,y!2E

0

z

K1
(0)* ~z,s!F (0)~y1s! ds50, ~69!

where

F (0)~z1y!5E
C

r~l,z!

2pl
expF2 i S l2

1

2D ~z1y!G dl.

~70!

Ther vs.T dependence is also given by Eq.~105! in the
Appendix. The kernel~70! is calculated in the same way a
in Sec. 3, with the following exact relationships employed
the calculations:

V5
«

4l
, «5

F3~0,0!

uF3~0,0!u
, V052

1

2
,

a5
1

4
, g51. ~71!

We can show~as we did earlier! that the coefficients of the
exponents on the right-hand side of Eq.~70! allows an ex-
pansionr 5r 01O(1/l)1•••, wherer 0 is independent ofl.
Substituting the expression forr0 found in the Appendix and
repeating the procedure discussed in Sec. 3, we find the
nel corresponding to theI-mode:

F (0)~z1y,T!5q`
(0)I 0~A2~z1y!T !

3expF i

2
~z1y!2 iT G . ~72!

For the kernel corresponding to theJ-mode we have

F (0)~z1y,T!5g`
(0)J0~A2~z1y!T !

3expF i

2
~z1y!1 iT G . ~73!

Here for g` we have~with allowance for the relationship
r05 iR1(0,0)/@d1R3(0,0)# found in the Appendix!

e
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g`
(0)5

4«@sinb0 ~d1cosv0!22cosb0 sin2 v01 i sinb0 ~d1cosv0!#

~d1cosv0!~«1cosb0!2sinb0 sinv0
, ~74!
e

d5sgnR3~0,0!, R3~0,0!5cosv0 , R1~0,0!5sinv0 .

Next we limit ourselves to theJ-mode. We expand
F (0)(z1y,T) of ~73! in Bessel functions:

F (0)~Aj21z2 ,z!5g`
(0)J0~Aj21z2 !

3expF i
1

4T
~j21z2!1 iT G

5g`
(0)(

k50

`

~21!k2kJ2k~z!J2k~j!

3expF i
1

4T
~j21z2!1 iT G , ~75!

where z5A2zT , and j5A2yT . Then we expandK 1,2
(0)

5T21K1,2
(0) in Bessel functions:

K 1
(0)~z,y,T!5K 1

(0)~j,z,T!

5 (
k51

`

R k
(0)~j!J2k~z!expF i

1

4T
~j21z2!1 iT G ,

~76!

K 2
(0)~z,y,T!5K 2

(0)~j,z,T!

5 (
k51

`

P k
(0)~j!J2k~z!expF i

1

4T
~j22z2!1 iT G .

~77!

Using the biorthogonality property~48! and repeating the
procedure described in Sec. 3, we obtain from~68! and~69!
the algebraic equations

R l
(0)~j!5 (

n51

`

O ln
(0)

P n
(0)~j!1G l

(0)~j!, ~78!

P l
(0)~j!52 (

n51

`

O ln
(0)

R n
(0)~j!, ~79!

where

O kl
(0)5g`

(0)~21!k2kW kl
(0) ,

G k
(0)~j!5g`

(0)~21!k2kJ2k~j!.

The integrals

W kl
(0)~s!5E

0

s

J2k~s!J2l~s!s ds ~80!

have been tabulated:
E I 2k~x!I 2 j~x!x dx

5 22122 j 22kx212 j 12kF@~ j 1k11/2,11 j 1k,11 j

1k!, ~2 j 11,21 j 1k,112k,112 j 12k!, x2#/

@~ j 1k11!G~2 j 11!G~2k11!# , ~81!

E J2k~x!J2 j~x!x dx

5 22122 j 22kx212 j 12kF@~ j 1k11/2,11 j 1k,11 j

1k!, ~2 j 11,21 j 1k,112k,112 j 12k!, 2x2#/

@~ j 1k11!G~2 j 11!G~2k11!# ,

whereF is the hypergeometric function andG is the gamma
function. Equations~78! and~79! can be solved in the sam
way as in Sec. 4. Using Cramer’s formula~52!, where
iM (0)i5d i j 1O ik

(0)
O k j

(0) (iMk
(0)i differs from iM (0)i in that

the kth column is replaced by vectorG k
(0)), we find

K 2
(0)~j,j!5

1

]j

]

]j
ln det~dkl1iO (0)iiO (0)* i ! . ~82!

We can find the kernelK 1
(0)(j,j) in the same way as

we did earlier, using~78! and~79! for the real matrixiO (0)i .
Writing ~78! and ~79! in vector form,

~ I 1iO ~0!i2!R (0)5G (0), ~83!

we have

K 1
(0)~j,j!5

1

2i j

]

]j H ln
det@ I 1 i iO (0)i #

det@ I 2 i iO (0)i #
J

3expS i

2T
j21 iT D . ~84!

We introduce the functions

Q 6
(0)5

1

j

]

]j
ln det~ I 6 i iO (0)i ! ~85!

and write the above solution in the form

K 2
(0)~j,j!5

1

2
~Q 1

(0)1Q 2
(0)!, ~86!
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K 1
~0!~j,j!5

1

2i
~Q 1

(0)2Q 2
(0)!expS i

2T
j21 iT D . ~87!

Using ~18! and ~19!, we find the solution:

R1~z,T!

5
2 ReQ 1

(0)@11 i Im Q 1
(0) exp$~ i /2T!j21 iT%#

11~1/2!@Q 1
(0)21Q 2

(0)2#22 ImQ 1
(0)sin$~1/2T!j21T%

,

~88!

R3~z,T!

5
12Q 1

(0)
Q 2

(0)22 ImQ 1
(0)sin$~ i /2T!j21T%

11~1/2!@Q 1
(0)21Q 2

(0)2#22 ImQ 1
(0)sin$~1/2T!j21T%

.

~89!

6. APPLYING THE RESULTS

We show that our results can be used to explain
anomalies in the shape of the Stokes field observed in Ra
scattering experiments22 within the context of the Chu–Sco
model. The fields at the medium’s boundaryz50 and the
initial polarization of the medium$R1(z,0),R3(z,0)% con-
tribute to the kernelF (1). When r0 is small, the scattering
coefficient can be written in the form of a sum:

r~l,T!.
A12

2iV
@exp~22iVT!21#1r0 exp~22iVT!

1O~r0
2 ,A12

2 ,r0A12!. ~90!

Here the first term on the right-hand side is associated w
stimulated Raman scattering, and the second with spont
ous Raman scattering.

In the Chu–Scott model,F1(0,0)5sinb0'b0, so that
we have

r~l,T!.
2 ib0

2« FexpF2
iT«

2l G21G2
iR1~0,0!

2ld

3expF2
iT«

2l G . ~91!

HereR1(0,0) describes the quantum fluctuations of the m
dium and initiates spontaneous Raman scattering. Equa
~91! implies that spontaneous and stimulated Raman sca
ings are described by different types of kernelF (1). Indeed,
the results of Sec. 4 suggest that the first and second term
the right-hand side of Eq.~91! lead to expressions for th
kernel that are proportional to the Bessel functionsI 1 or J1

and I 0 or J0, respectively. When the ratio
uF1(0,T)/R1(z,0)u is much greater or much less than unit
the shape of the Stokes pulse differs substantially from
found, e.g., in Refs. 7 and 14 and depicted in Figs. 1–3.

It appears that formula~91! makes it possible to explain
for the first time the anomalies in the shape of the Stok
field pulse that are observed in cooperative Raman scatte
in hydrogen vapor.22 In these experiments, a high-pow
pump-field pulse was injected into the medium, and then
shape of the Stokes field was investigated. The Stokes p
e
an

th
e-

-
on
r-

on

at

s-
ng

e
lse

was initiated by fluctuations in the field and medium. Aft
repeating this experiment many times, Rautianet al.22 found
that the shape of the generated Stokes pulse varies cons
ably from one experiment to the next. For instance, the a
plitude of the first spike in the generated packet can be ei
greater or less than the amplitude of the next spike. In
proximately one trial out of ten, a high-power pulse w
observed at the trailing~decaying! edge of the Stokes field
To the author’s knowledge, no meaningful description of t
phenomenon exists in the literature.

Figures 5 and 6 depict the results of numerical calcu
tions using the Chu–Scott model for various values of
ratio F1(0,T)/R1(z,0). The numerical results show that th
theory developed in the present paper can explain th
anomalies in the shape of the Stokes field.

7. SOLITON ASYMPTOTIC BEHAVIOR

We study soliton generation at the leading edge of
Stokes field, considered to be an infinitely long step. We
the symmetry of the system of equations~2! under the per-
mutations

F3↔R3 , F6↔R6 , z↔T. ~92!

With allowance for frequency offset and~92!, the spectral
problem assumes the form

FIG. 5. The U(h)5u(h/4T)V(h,T)u2 vs. h5A4zT dependence. The
anomalies in the shape of the Stokes pulse resulting from the mixing o
contributions of spontaneous and stimulated Raman scattering depict
this figure were found forb050.01p and r051024. The finiteness of the
‘‘transverse’’ relaxation timeT2 was taken into account. In the units used
Eqs. ~2!, T253. The contributions of spontaneous and stimulated Ram
scattering to the shape of the Stokes field were calculated individually.
figure depicts the superposition of the fields.

FIG. 6. The same as in Fig. 5, but forb051023 p andr050.01.
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]TF5S 2 ilF3 ~l1f1!F1

2~l1f2!F2 ilF3
D

3F1S iv0 0

0 2 iv0
DF, ~93!

where f656(1/2)A12g2 . All results remain valid, but
their physical interpretation changes. To study the dynam
of a soliton packet we must~a! find the solution of the spec
tral problem~93! for a long steplike Stokes-field pulse prop
gating against the background of an infinitely long pum
field pulse, i.e.,

F1~0,T!50, T>T0 ,

F1~0,T!5A0Þ0, T,T0 , ~94!

and~b! find the dependence of the scattering coefficient oz
by using the linear system

]zF5
1

4l12g S i ~2lg211g2!R3 2~l1f1!R1

22~l1f2!R2 i ~2lg211g2!R3
DF.

~95!

We assume that initially the medium is partially inverte
R1(z,0)5R1(0,0)Þ0. The z-dependence of the scatterin
data is given by formulas in the Appendix with allowance f
~92!. There we also show that if theT-dependence o
F1(0,T) is represented by an infinitely long step, the part
the continuum that lies in the upper half-plane may emer
This spectrum is associated with generation of a soli
packet.

The effect of solitons on the asymptotic behavior in t
case in whichE1,2(0,T) are of finite length can be ignored
long time intervals are considered. This is due to the diff
ence that exists between the group velocities of the radia
and soliton solutions. Indeed, suppose that the fieldsE1,2

cross within some finite time interval@0,T0#. The radiative
solution describes the evolution of the system toward a st
state. If the initial conditionF1(z,0) leads to the emergenc
of a pole in the upper half of the complex plane, a solit
solution will emerge and propagate against the backgro
of the ground state. The time of soliton existence is limit
by the soliton lifetime in the interval@0,T0#. For the case of
stimulated Raman scattering this fact was noted
Menyuk.23

The study of soliton asymptotic behavior has practi
meaning only for large values ofT0. For physical applica-
tions it is important to establish the conditions under wh
the Stokes-field soliton, which has the highest amplitu
possesses the largest group velocity and propagates ag
the background of the stable ground state. Under these
ditions, a packet of solitons forms with the highest-ene
soliton at the leading edge.

We now find the conditions for establishing such a
gime in the model~2! of stimulated Raman scattering. Im
portant information about the soliton characteristics can
extracted from~15!. We examine the spectrum associat
with an infinitely long step~see Fig. 7!. Contributions to the
integral ~15! are provided byFc ~the integral along the rea
s

-

,

f
e.
n

-
e

le

d
d

y

l

,
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axis!, F1 ~the integral along the part ofC 1 lying in the upper
half plane with the exception of the vertexl0), andF0 ~the
integral around the vertex!:

F~T1T8,z!5Fc~T1T8,z!1F1~T1T8,z!

1F0~T1T8,z!.

We examine the phaseQ5 i @2(l2g)(T1T8)1Vz# in
~15!, whereV(l) is determined by the values ofR3,1(T,z)
[R3,1(T,0) at T50. The group velocityY of the soliton
packet can be found by assuming that ImQ50. In terms of
the physical variablesx and t we have Y5c/n(v1)g(1
1g)21, whereg5Im V/Im l.0 (ImV(l).0).

Analysis of the phaseQ(z,T) and the group velocityY
shows that the a faster soliton, propagating against the b
ground of the ground state, has a smaller amplitude
F1(0,T) is a rectangular pulse@Eq. ~94!#. We show that if
the medium is not initially in the ground state, quite a diffe
ent soliton generation regime is possible.

We analyzeQ(l) for lPC s in the neighborhood of the
vertex l0. Since the highest and narrowest soliton cor
sponds to the vertexl0 of the soliton spectrum, it would be
interesting to establish the conditions under which this s
ton has the highest group velocity. For an arbitrary pointl in
the spectrum, on a monotonic continuous curve in the sol
part of the spectrum, this condition is

d

d Im l

Im V~l!

Im l
,0, ImV~l!.0. ~96!

Actually, this condition means that a soliton associated w
a pointl such that Iml5h,h05Im l0 has a group veloc-
ity that is lower than that of the soliton associated with t
point l0.

If the Stokes and pump fields atz50 are finite-band
solutions of the problem, the associated spectrum may c
sist of a finite set of arcs that are symmetric about the r
axis. We select the arcC p with its vertex at the pointhp with
the largest imaginary part~see Fig. 7!. We can show that for
the soliton associated with this vertex to have the maxim
group velocity, the radius of curvature of the arc must be l
than the distance from the origin of the complex plane to
arc’s vertex.

FIG. 7. The continuous spectrum associated with an infinitely long rec
gular pulseT0→`. The spectrum incorporates the entire real axisC r and
C s5C 0øC 1, the ‘‘soliton part’’ of the continuous spectrum, whereC 0 is
the neighborhood of the vertexl0. Here C p is the part of the spectrum
associated with the finite-band wave, andhp is the point of this spectrum
with the maximum imaginary part.
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The condition~96! is not satisfied when we are dealin
with a steplike pulse of the fields and the initial state of t
medium is the ground state. At the same time, this condi
may be valid for a steplike pulse if initially the medium wa
partially inverted, i.e., if the medium was not initially in th
ground state. Figure 8 depicts the dependence of ImV(l) on
Iml for lPC s , which dependence is possible, for examp
for the following values of the parameters of the proble
g.20.4 and n0F1(0,0),0. For such a dependence th
condition ~96! is satisfied.

We show that if the inequalities in~96! are valid, the
Stokes-field soliton with the highest amplitude splits o
from the wave packet. To prove this, we make the subst
tions T5g0z1q and T85g0z1s. Now we introduce the
small parameter «5h(g02g) into ~96!, with g0

5Im V(l0)/Im(l0). The parameter is positive if conditio
~96! is satisfied. Expanding in powers of«, we find that

F0~T1T8,z!

5
1

2p E
h

h0
h~l!exp@2 i ~h2g!~T1T8!1 i2Qz# dh

5
1

2p E
h

h0
h~l!exp$2 i ~z02g!~q1s12g0z!

1 i2ReQ~l0!z1h0~q1s!2«@~h12«h21••• !

3~q1s!1z~11 im!#% dh, ~97!

with l05z01 ih0.
The specific form ofh(l) is unimportant for subsequen

estimates and we omit it here. In~97! we used the expansio

h5h01«h12«2h21•••, m5Re
dV~l!

dh
.

It can be shown that the expansion ofh(h) in powers of«
has the form

h~h!5A« ~h01«h11«2h11••• !.

The expansion~97! implies that the soliton associated wi
the pointl0 splits off from the wave packet. The overlap
the soliton and the remaining part of the wave packet
creases with increasingz, sinceh1.0 and«z.0. If condi-
tion ~96! is satisfied, the distance from the leading soliton
the remaining part of the wave packet can be shown to
crease as logz.

FIG. 8. ImV(l)/Iml vs. Iml for g50.5 andz0520.3.
n

,
:

-

-

-

This result can be expanded to the entire ‘‘soliton’’ pa
of the spectrum,C s . We show that when~96! is satisfied,
the contribution of the entire soliton part to the leading so
ton decreases with increasingz.

We find the contribution of the part of the soliton spe
trum C 1 not incorporating the neighborhoodC 0 of the ver-
tex l0 ~see Fig. 7! by estimating the integralF1, which is
calculated alongC 1 in the upper half-plane:

F1~T1T8,z!5
1

2p E
C 1

h~l!

3exp@2 il~T1T8!1 i2Vz# dl. ~98!

To estimate the integral in~98!, we write the imaginary part
of the phase factor in the form

Im@Q~z,T,l!#uT5g0z, T85g0z5z Im@Q̃~l!#

52z ImFl Im V~l0!

h0
2V~l!G

where lPC 1. Replacing integration overl by integration

over Q̃(l) and integrating by parts, we find that

F1~T1T8,z!

5
h~l0!exp@ iz ReQ̃~l0!#2h~z0!exp@ izQ̃~z0!#

izQ̃8~z0!

3F11OS 1

zD G , ~99!

wherez05Rel0. The estimate~99! implies that the contri-
bution of the spectrumC 1 to the shape of the leading solito
decreases with increasing distance in proportion to 1/z, i.e.,
the distance from the leading soliton to the remaining par
the packet increases as logz.

In the present paper we have established that in the e
of stimulated Raman scattering, the adopted initial a
boundary conditions~see the end of Sec. 2! lead to formation
of radiative and soliton packets of pulses. When the con
tions ~96! and~99! are satisfied, a soliton with the maximum
amplitude and group velocity appears at the leading edg
the soliton packet.

The results of this section are also of interest in subst
tiating the utility of Whitham’s heuristic method.2 This
method is used to describe the development of modula
instability in nonlinear media. Using the single-phase so
tion is the most common approach to describing the trans
mation of a steplike pulse into a soliton packet. According
this method, the slow variation of the parameters of a p
odic wave describes the transformation of a plane wave
a soliton packet. Since the development of modulation ins
bility is due to long-wavelength excitations, the trailing ed
of the packet should is by a quasiharmonic wave, while
the leading edge there is a maximum-amplitude soliton.
the SRS model discussed in this paper, this condition is
when initially there is partial inversion,R1(z,0);O(1). At
the same time, initial inversion leads to a radiative soluti
and this solution cannot be described by the Whitham
proach.
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Note that an initial solution in the form of a steplik
pulse also leads to the formation of a similar spectrum, i.e
spectrum consisting of the real axis and a straight segm
lying in the soliton part, in models that allow for a La
representation of the Ablowitz–Kruskal–Newell–Seg
type.2 In particular, the condition~96! is satisfied for a
~modified! Korteweg–de Vries equation. For such equatio
a rectangular pulse splits into a soliton packet and
maximum-amplitude soliton at the leading edge. For
~modified! Schrödinger equation, the inequalities in~96! be-
come equalities. The condition~96! is satisfied under specia
initial conditions, in which the soliton spectrumC s is in the
region Rel,0, and the distance from the point in the spe
trum to the imaginary axis decreases monotonically with
creasing Iml.0 ~Ref. 24!.

An analysis of several integrable models with stro
nonlinearities, such as the Maxwell–Bloch equations fo
two-level medium,3,4 and the four-wave mixing model,5,16

has shown that initial and boundary conditions leading to
formation of a high-power soliton at the leading edge of
wave packet are also possible. This requires conditions s
lar to partial initial inversion. Under this condition one mu
take into account the contribution of the radiative solutio
which can dictate the type of asymptotic solution. The res
and approaches of the present investigation can be use
such nonlinear optics models.

This work was supported by grants from the Russ
Fund for Fundamental Research@Grant No. 98-02-17904!
and Deutsche Forschungsgemeinschaft~Grant No. 426 RUS
113/89/0~R,S!#.

APPENDIX: TIME DEPENDENCE OF THE SCATTERING
DATA

We begin with a finite intervalzP@0,L f #. We assume
that F3,1(0,T) is constant and thatF1(L f ,T) is an arbitrary
function ofT. The dependence of the scattering data onT can
be found by solving the linear system~6!. To find this de-
pendence, we write the solutions of both systems,~5! and
~6!, in the form
n
l

a
nt

r

,
a
a

-
-

a

e
e
i-

,
ts
for

n

C5x1F15x2F2, ~100!

wherex6 are Jost functions. These functions are solutions
the system~5! but do not satisfy~6!. The functionsF2 and
F1 @solutions of~6! at z50 and z5L f , respectively# are
such that

]TF75AF7. ~101!

Comparing Eqs.~9! and ~100!, we find that the matrixS
satisfies the equation

]TS ~z!52S A~z50!1A~z2L f !S . ~102!

The componentsA11, A22, andA21 of the matrix iAi at z
5L f do not contribute to theT-dependence of the scatterin
data. The contribution of the componentA12 at z5L f can be
ignored. This was demonstrated by Kaup and Menyuk,3,13

who found that the values of the matrixiA(z5L f ,T)i de-
termine the dynamics outside the ‘‘physical’’ region, i.e., f
z.L f . The interested reader is referred to those papers.
an infinite intervalL f5` the system reaches the ground sta
as z→`. HereA12→` in the problem considered, i.e., th
fields at infinity do not contribute to theT-dependence of the
spectral parameter. To find the time dependence of the s
tering data it is enough to restrict attention to the values
the matrix iAi at z50. The solution~102! for the coeffi-
cientsa andb, to within a common factor, takes the form

a5@~ iV1A11! e2 iVT1~ iV2A11! eiVT#

3a02b0* A21~e2 iVT2eiVT!, ~103!

b* 52a0A12~e2 iVT2eiVT!1b0* @~ iV2A11! e2 iVT

1~ iV1A11! eiVT#. ~104!

Here the components ofiAi at z50 are such thatA11

52A22 andV252A11
2 2A12A21.

Thus, the scattering coefficientr has the form
r~T!5
b*

a
52

A12~e2 iVT2eiVT!2r0@~ iV2A11!e
2 iVT1~ iV1A11!e

2 iVT#

~ iV1A11!e
2 iVT1~ iV2A11!e

iVT2r0A21~e2 iVT2eiVT!
, ~105!
where

r05r~z50,l!5
b0*

a0
~l!.

We wish to find the scattering coefficientr0 under the
assumption that the scale of variation of the functio
R1,3(z,0) is much less thanl. The solution of the spectra
problem~5! has the form
s

f 1~z!5 f 1~0!e2 ilZ1
l1f1

l

3E
0

z R1~u,0!

R3~u,0!
f 2~u!e2 il(Z2U) du, ~106!

f 2~z!5 f 2~0!eilZ2
l1f2

l

3E
0

z R2~u,0!

R3~u,0!
f 1~u!eil(Z2U) du, ~107!
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where

Z5E
0

z

R3~u,0! du, U5E
0

u

R3~u,0! du.

We solve the system~106! and ~107! iteratively, assuming
that in the lowest order the solution is

f 1~z!. f 1~0!exp~2 ildz!, f 2~z!. f 2~0!exp~ ildz!,

whered5615sgnR3(0,0). Integration by parts yields

f 1~z!5 f 1~0!e2 ilZ2
l1f1

il F R1~0,0!

d1R3~0,0!
f 2~0!e2 ilZ

2
R1~z,0!

d1R3~z,0!
f 2~z!G2

l1f1

il

3E
0

z ]

]u F R1~u,0!

d1R3~u,0!
f 2~u!e2 ilUG

3e2 il(Z2U2du) du, ~108!

f 2~z!5 f 2~0!eilZ2
l1f2

il F R2~0,0!

d1R3~0,0!
f 1~0!e2 ilZ

2
R2~z,0!

R3~z,0!
f 1~z!G2

l1f2

2il

3E
0

z ]

]u F R2~u,0!

d1R3~u,0!
f 1~u!eilUGeil(Z2U2du) du.

~109!

Continuing to integrate by parts, we find the asymptotic
pansion in powers ofl21. Here it is assumed thatR1(u)/
@d1R3(u)#, and that all its derivatives exist. This conditio
is satisfied for all physically justified initial conditions. Usin
the asymptotic expansion, we can find the appropriate exp
sion for the scattering data required by the given proble
Since the main contribution to the radiative solution is p
vided by largel ~see Sec. 3!, we can limit consideration to
the first terms in the expansion. Assuming thatf 1(0)51,
f 2(0)50, andR1(z,0)50, z. l 0, we find that

a0.11
l1f1

il

R1~ l 0,0!

d1R3~ l 0,0!
f 2~ l 0!e2 il l 0d.1, ~110!

b0.2
l1f2

il

R2~0,0!

d1R3~0,0!

1
l1f2

il

R2~ l 0,0!

dR3~ l 0,0!
f 1~Z0!e2 il l 0d

.2
l1f2

il

R2~0,0!

d1R3~0,0!
. ~111!

Similarly, assuming thatf 1(0)50 and f 2(0)51, we find
that for the second column of theS matrix,

a0.1, b0* .1 i
l1f2*

l

R1~0,0!

d1R3~0,0!
. ~112!

We now examine the boundary and initial conditio
studied in Sec. 7. For an infinitely long step pulse of t
-

n-
.

-

Stokes field we find the associated spectrum of the probl
We investigate the case of a semi-infinite medium occupy
the half-interval@0,1`) into which the finite rectangula
pulse~94! is injected.

When A0 is constant, the solution of~5! can easily be
found. For physical applications it is of interest to study t
initial conditions corresponding to a finite frequency offs
since allowance for the frequency offsetn0Þ0 results in
substantial modifications of the spectrum of the problem.

Following a well-known procedure~see, e.g., Ref. 2!, we
can find the solution of~28! for the ‘‘potential’’ ~94!. The
coefficienta0 has the form

a05e2i zT0 Fcos~2zT0!1
2l

z
sin~2zT0!G , ~113!

where

z5A~l2n0A12A0
2 !21 1

4~12g214n0
2!uA0

2u .

The zerosa0(zn)50, which specify the spectrum of th
problem, can be found from the equality

2znT052arctan
zn

2l
1np1

p

2
. ~114!

An analysis of~114! shows that forT0 finite there is a
finite set of isolated poles; the poles in the upper half of
complexl plane are associated with soliton solutions. T
number of poles increases withT0, while the distance be-
tween poles decreases in proportion to 1/T0. In the limit T0

→`, the zeroszn fill the entire real axis. For 1.g224n0
2, a

part of the spectrum may lie on a line parallel to the ima
nary axis. This part is described by the segme
@z02 ih0 ,z01 ih0#, where z05n0A12A0

2 , and h0

5(1/2)uA0uA12g214n0
2 ~see Fig. 7!. The half of this seg-

ment in the upper half plane is associated with the soli
part of the spectrum, since it is obtained as a result of
merger of an infinite number of poles lying in that part of t
plane.
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Influence of quantum transitions in the continuum on ionization of atoms in strong
fields
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The tight-binding method is used to analyze the ionization of a hydrogenlike atom by an intense
monochromatic laser field. The orthogonal and normalized basis in which the solution of
the time-dependent Schro¨dinger equation is expanded contains unperturbed wave functions of the
discrete spectrum and generalized Coulomb wave functions of the continuum. In the
solution of the coupled equations we make use of the fact that the bound–free and free–free
transitions are efficient in different regions of complex time. Simplified equations are constructed
and investigated. Results of calculations for ionization of a hydrogen atom from its ground
state and of the energy distribution of the electrons in strong and superstrong linearly polarized
fields are presented. It is shown that in this case the ground state decays completely, and
free–free transitions play a defining role in the dynamics of the process. It is established that the
total probability of population of the upper Rydberg states abutting the continuum does not
exceed 0.05. The range of applicability of the approach is discussed. A comparison with numerical
results obtained by other authors is given. ©1999 American Institute of Physics.
@S1063-7761~99!00304-2#
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1. INTRODUCTION

In an analysis of the ionization of atoms by an inten
electromagnetic field or by ion impact, the influence of
time-dependent external potential~comparable to the intra
atomic potential or greater! must be taken into account eve
in the zeroth-order theory, i.e., in the wave functions of
continuum in the final reaction channel. The efficacy of su
an approach follows from the ground-breaking work
Keldysh1 and also from the subsequent development of
theory of ionization of atoms in a strong laser field.2–8 A
detailed analysis of a great deal of work on this subjec
given by the review in Ref. 8, which shows under wh
physical conditions a theoretical description can be c
structed with the help of various formulations of perturbati
theory in combination with classical and semiclassical m
els. Thus, the Coulomb potential of the atomic core9 in par-
ticular, which is not reflected in the basis wave functions
taken into account.1 In fields comparable to or exceeding th
atomic fields, the application of perturbation theory is n
well-founded, but a direct comparison of any calculati
with the experimental data is hindered by the specifics of
experiment.8

In the physics of ion–atom collisions a comparison
theory with experiment is achievable with quantitative ac
racy suitable for detailed checking of the theoretical res
and methods. The intrinsic criteria of the theory developed
this way can also be used in the problem of the ionization
atoms in strong electromagnetic fields. We note above
that a generalization of the Keldysh theory1 to the ionization
of atoms by multiply-charged ions10 which goes beyond per
turbation theory turns out to be very promising. One resul
this effort is a quantitative description of the experimen
6581063-7761/99/88(4)/8/$15.00
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data on ionization of atoms10 and neutralization of negative
ions11 by multiply-charged ions. Another important eleme
of this approach is replacement of the generalized pl
waves1 by the Coulomb wave functions of the continuum
which take account of the Coulomb potential of the atom
core and the additional momentum acquired by the electr
an external, time-varying field.12–15These effects are impor
tant in single-electron14 and two-electron ionization
processes.14,15 An analysis of the methods developed in t
physics of atomic collisions shows that an important cri
rion for the applicability of the theory is that it be con
structed in such a way that theS matrix is unitary at all
stages of the calculations.

The present work addresses the influence of quan
transitions in the continuum on the ionization of atoms by
strong electromagnetic field. Free–free transitions have b
separately studied by many authors in weak monochrom
fields on the basis of perturbation theory~see, e.g., Refs
16–18!. The influence of such transitions on ionization
taken into account to some degree in the results of nume
methods of solving the time-dependent Schro¨dinger equation
for a negative ion19 and a hydrogen atom,20,21 as well as in
numerical calculations based on theR-matrix theory of mul-
tiphoton processes.22 A consistent theory should incorpora
an analysis of direct and inverse processes. In this regard
review in Ref. 23 is of interest, which considers radiatio
stimulated recombination as the process inverse to multip
ton ionization. Perturbation-theory methods, mainly tho
discussed in Ref. 23, which take the specifics of such p
cesses into account, nevertheless rather quite a complet
scription of the physical picture of the interrelated process

Below we utilize the method of tight binding of reactio
© 1999 American Institute of Physics
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channels, which is based on an expansion of the solutio
the time-dependent Schro¨dinger equation in orthonorma
functions of the discrete and continuous spectra of the at
Section 2 discusses the adopted basis and derives the
binding equations based on it. Section 3 shows that bou
free and free–free transitions are efficient on different int
vals of the time axis~the t axis!. On this basis a physica
model is constructed which leads to simplified tight-bindi
equations. Methods for solving the simplified equations
discussed in Sec. 4. Results of calculations for ionization
a hydrogen atom from the ground state in strong and su
strong linearly polarized fields are presented in Sec. 5.
population of the higher Rydberg states is discussed, wh
Coulomb crowding of the discrete spectrum is treated as
analytic continuation of the continuum. It is shown that i
duced transitions within the continuum lead to total decay
the ground state, but the probability of population of t
Rydberg states does not exceed 5%.

2. STATEMENT OF THE PROBLEM

We solve the problem of the ionization of a hydroge
like atom in a classical monochromatic electromagnetic fi
with the help of the tight-binding method, i.e., by expandi
the solution of the time-dependent Schro¨dinger equation over
the full set of orthogonal and normalized basis functions
the discrete and continuous spectra. The generalized C
lomb waves14 are orthogonal to the unperturbed functions
the discrete spectrum and have the form

Ck~r ,t !5Q(2)~n,p~ t !,r !expH 2
i

2 E
0

t

p2~t! dtJ . ~1!

Here Q(2) is the Coulomb function, containing in it
asymptotic limit a converging wave and corresponding
motion of an electron in the field of a nucleus with chargeZ
and generalized momentum

p~ t !5k2A~ t !, n5Z/p~ t !, ~2!

where A(t) is the vector potential andk is the ‘‘unper-
turbed’’ momentum. It is easy to see that forZ50 the func-
tions ~1! coincide with the generalized Gordon–Volkov
Keldysh plane waves,1 and for A(t)50 they go over to
ordinary Coulomb wave functions of the continuum. The b
sis we use contains unperturbed wave functions in the
crete spectrum and generalized Coulomb waves~1! in the
continuum.

The time-dependent Schro¨dinger equation in the velocity
gauge

i
]C~r ,t !

]t
5F2

1

2
D2

Z

r
1 iA~ t !•¹GC~r ,t !, ~3!

should be solved with the standard initial condition

C~r ,t !5w0~r !exp~2 iE0t i !, ~4!

wherew0(r ) is the unperturbed wave function of the initi
state with binding energyE0. Representing the solution o
Eq. ~3! in the form
of

.
ht-
–

r-

e
f
r-
e
re
n

f

-
d

f
u-

f

o

-
s-

C~r ,t !5(
s50

`

as~ t !ws~r !exp~2 iEst !

1E ak~ t !Q(2)~n,p~ t !,r ! dk, ~5!

wheres is the set of quantum numbers of the discrete sta
we obtain a Hermitian system of differential equations
the amplitudesas andak satisfying the normalization condi
tion ~unitarity of theS matrix!

(
s50

`

uas~ t !u21E uak~ t !u2 dk51. ~6!

Note that the original equation~3! can also be written in
the length gauge, and Eqs.~4!–~6! retain the same form. The
transformation from one representation to the other is re
ized simply by a phase factor. In an exact solution of t
problem, the two representations lead to the same res
The use of approximations presupposes a choice of on
these gauges. To analyze free–free transitions, which pla
important role in the present problem, the optimal choice
the velocity gauge~3!.

Before discussing methods of solving the system
equations for the amplitudes, we first indicate the underly
approximations adopted in the present work. First, in the s
over discrete states on the right-hand side of Eq.~5!, we
retain only the ground state (s50) and the Coulomb crowd
ing ~the upper Rydberg states! directly abutting the con-
tinuum, i.e., the sum froms5sm@1 to s→`. Second, we
neglect transitions from the ground state to these highly
cited bound states and consider their coupling only with
continuum. The first approximation leads to the neglect
quantum transitions by way of intermediate levels, and
often used in various approaches.3–8 The second correspond
to the preferential population of the higher Rydberg sta
via the continuum.24,25 We consider these states to be
analytic continuation of the continuum, and we do not wr
the sum over the Coulomb crowding separately in the form
las of this section, denoting it together with the integral ov
the continuum by a single integral sign.

The Hermitian system of equations for the amplitud
that follows from substituting the functional dependence~5!
in Eq. ~3! takes the form

i ȧ0~ t !5A~ t !E ak~ t !U0,k~ t ! dk,

i ȧk~ t !5A~ t !HU0,k* ~ t !a0~ t !1E Uk,k8~ t !ak8~ t ! dk8J .

~7!

The matrix elements are

U0,k~ t !5expH 2
i

2 E
0

t

~p2~t!12uE0u! dtJ
3E w0~r !¹Q(2)~n,p~ t !,r ! dr , ~8!



d

s
e

ea
-
a
e
e

r-
-

ld
in
e
r

-
ee

–

n-

the
een

are

al.

o

na-
xi-
of

-

red
of

a-

660 JETP 88 (4), April 1999 A. D. Kondorski  and L. P. Presnyakov
Uk,k8~ t !5expH 2
i

2E0

t

~p82~t!2p2~t!! dtJ
3E Q~2 !* ~n,p~ t !,r ! ¹Q(2)~n8,p8~ t !,r ! dr ,

~9!

Uk,k8~ t !5Uk8,k
* ~ t !. ~10!

The integrals in expressions~8! and~9!, namely the integral
of the bound–free~8! and free–free~9! dipole transitions,
can be expressed in analytic form.26 The initial condition~4!
reads

a0~ t i !51, ak~ t i !50. ~11!

In what follows we restrict attention to linearly polarize
monochromatic fields with constant field strengthF:

A~ t !52
F

v
sinvt. ~12!

3. PHYSICAL MODEL AND SIMPLIFIED EQUATIONS
We analyze the properties of the solutions of system~7!

in the generalized momentum@p(t)# representation~2!. The
selection rules for bound–free transitions~8! are the same a
in the original theory:1 the ground state of a hydrogenlik
atom with orbital angular momentuml 50 and projection
m50 interacts with all states of the continuum withl 51 and
m50. The latter rule is a rigorous consequence of the lin
polarization of the field~12!. Transitions to states of the con
tinuum with lÞ1 take place only as a consequence of
interaction within the continuum itself. Transitions to stat
of the continuum withl 51 from the ground state take plac
for complex values of the timet0

j defined by the condition
that the derivative of the phase in expression~8! vanish,

p2~ t0
j !12uE0u50, j 50,1,2, . . . ,N, ~13!

where the value oft0
j depends on the value of the ‘‘unpe

turbed’’ momentumk.1,7,10 In the terminology of the quan
tum theory of nonadiabatic transitions, this corresponds
promotion of the term~energy level! of the ground state to
the continuum. States of the continuum withl 51 are popu-
lated efficiently in the immediate vicinity of the pointst0

j (k).
Between the pointst0

j and t0
j 11, separated on the realt axis

by a half-period of oscillation of the monochromatic fie
~12!, the probabilities of bound–free transitions are small
comparison with the probability of transitions within th
continuum. The above arguments lead to a model simila
one widely used in the physics of atomic collisions.27

We partition the realt axis into intervals of length
Ret0

j 2Dt,t,Ret0
j 1Dt, corresponding to maximum effi

ciency of the bound–free transitions, and intervals betw
these regions, Ret0

j 1Dt,t,Ret0
j 112Dt, corresponding to

efficient transitions within the continuum~free–free transi-
tions!. In the regions of maximum efficiency of the bound
free transitions we solve the system of equations
r

n
s

to

to

n

i ȧk5A~ t !U0,k* ~ t !a0 ,

i ȧ05A~ t !E U0,kakdk. ~14!

In the regions of maximum efficiency of the free–free tra
sitions the system of equations has the form

i ȧk5A~ t !E Uk,k8ak8dk8. ~15!

The difference from theS-matrix joining method27 is that Eq.
~15! leads to a change not only in the phases but also in
absolute values of the amplitudes on the intervals betw
the regions of bound–free transitions .

We call system~14! and ~15! the system of simplified
equations. The approximations employed to obtain it
consistent with unitarity of theS matrix:

ua0~ t !u21E uak~ t !u2 dk51. ~16!

The initial values ofa0 andak on each interval follow in a
natural way from their final values in the preceding interv

4. SOLUTION OF THE SIMPLIFIED EQUATIONS

Solution of the simplified equations divides into tw
parts. First of all, we must solve problem~14! in order to
describe the behavior of the system in the region of the no
diabatic transition. It is convenient to carry out an appro
mate integration over the continuum already in system
equations~14! thereby reducing it to two ordinary differen
tial equations.

We make the substitution

ak~ t !5ck~ t !b~ t !, E uak~ t !u2dk5ub~ t !u2,

E uck~ t !u2dk51. ~17!

Let us determine the form of the coefficients of the desi
system whose solution optimally approximates the value
a0 following from system~14!. Writing

ck~ t !5sk~ t !expH i E t

ak~t! dt12i E t

b~t! dtJ , ~18!

the desired system becomes

i ȧ052ba01Wb,

i ḃ5bb1W* a0 , ~19!

where

W~ t !5S E Uk,0~ t !ck* dk D
3expH i E t

dtF E ak~t!sk
2~t!dkG J , ~20!

and the coefficientb can be calculated by solving the qu
dratic equation
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E uU0,k~ t !u2dk5uWu21S d

dt
argW* Db1b2, ~21!

b52
D

2
1AD2

4
1E uU0,ku2dk2uWu2, ~22!

E
0

t

D~t!dt5argW* . ~23!

Analysis shows that forck we must use the normalized con
tribution of the singular point of the matrix element to th
integral of this matrix element over time. This gives the fo
lowing expressions forsk(t) andak(t):

sk~ t !5A F

2A~2uE0u!3
expH 2

k'A2uE0u
2F J d~ki!, ~24!

ak~ t !5S k2

2
2E01

F2

8v2uE0u
D t. ~25!

The coefficientb follows from formula~22!.
Note that the integral

E uU0,k~ t !u2 dk5E uU0,p~ t !u2 dp ~26!

is proportional to the sum of oscillator strengths over
entire continuum. When the coefficientuWu2 in formula ~22!
is close to or equal to the quantity in~26!, b50 and system
~19! coincides with the system introduced phenomenolo
cally in Ref. 28.

Analysis shows that even in the simple case of a linea
polarized field~12!, the behavior of the solution of the initia
system~14! and of the solution of the approximate syste
~19! in the vicinity of the singular points leads to the impo
sibility of using the well-known methods of reference equ
tions and other analytic models. In what follows, we inve
tigate system~19! numerically.

The second step in the solution an analysis of the eq
tions for the interactions within the continuum~15!. The sys-
tem of tight-binding equations, upon expansion over eig
values of the angular momentuml ~in the p representation!,
has the form

i ȧ l ,k5(
l 8

E Ul ,k,l 8,k8al 8,k8dk. ~27!

Since the wave functions in our basis depend onp5k2A, it
is convenient to transform from the variablesk to the vari-
ablesp. Since up22p82u!p2 under the assumptions of th
model considered here, the matrix elements of the free–
transitions~the so-called Sommerfeld–Nordsieck integra!
can be approximately expressed in terms of Han
functions.29 In this case we have made direct use of the So
merfeld method, based on the integral representation of
hypergeometric functions. It is well known26 that at large
values of the orbital angular momentum the Sommerf
method29 yields the semiclassical results. However, in o
work, small and intermediate values ofl, for which the semi-
classical approach is not justified, play an important role.
make the subsitution of variables
e

i-

y

-
-

a-

-

ee

l
-

he

d
r

e

al ,p5expH 2 ik E
0

t

A~t!dtJ ãl ,p . ~28!

If we now transform in the independent variable to the e
ergy E5p2/2 and invoke the propertyp'A, then we can
rewrite the system of tight-binding equations in the form

i ȧ l ,E5(
l 8

E
2En

`

Wl ,l 8~E2E8,t !al 8,E8dE8,

Wl ,l 8~E2E8,t !5Wl ,l 8
* ~E82E,t !, ~29!

Wl ,l 61~E2E8,t !5
32p2v2uE0u

F2sin2vt

3AS l 116
1

2D ~2l 11!~2l 1162!

3exp@ i ~E2E8!t#

3S ]

]x6
Hin

(1)~x6!2 i sign

3~E2E8!Hin
(1)~x6! D , ~30!

n5
uE2E8uv3A2uE0u

F3sin3vt
,

x65 i
uE2E8uv2

F2 sin2vt
A~ l 61/2!~ l 1161/2!. ~31!

As noted earlier, we are considering highly excited sta
of the atom to be a continuation of the continuum to negat
energies. By virtue of the rapid convergence of the integ
~29! at its lower limit, the value ofEn can tend to2`. The
rapid convergence of the integral is related to population
the Coulomb crowding~the upper Rydberg states! from the
continuum and to the abrupt falloff in the population of the
states with decreasing principal quantum number.

The equations written in this form can be solved
quadratures. We define the column vect
(a0,E ,a1,E , . . . )T5āE and the matrix Wl ,l 8(E2E8,t)
5Ŵ(E2E8,t). Then, according to the rules of matrix mu
tiplication,

i ǡE5E
2`

`

Ŵ~E2E8,t ! āE8 dE8. ~32!

We introduce the generating function in the form of a c
umn vector:

Ḡ~w,t !5E
2`

`

āj~ t !e2 iwtdw. ~33!

It satisfies the equation

i Ġ̄5S E
2`

`

e2 iwxŴ~x,t !dxD Ḡ, ~34!

which has a solution in the form of a matrix exponential
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Ḡ~w,t !5expS 2 i E
0

t

dt E
2`

`

e2 iwxŴ~x,t!dxD Ḡ~w,0!.

~35!

The column-vector solution follows from the generati
function by the inverse Fourier transformation

āE~ t !5
1

2p E
2`

`

Ḡ~w,t !eiwtdw. ~36!

As the region of nonadiabaticity in the vicinity of th
point t j5p j in the continuum is traversed, the coefficien
al ,E undergo the following changes:

al ,E~ t j10!5al ,E~ t j20!1d l ,1dbjs j~E!, ~37!

where dbj5b(t j10)2b(t j20). Here b(t) is the corre-
sponding coefficient of system~19! ands j (E) is the normal-
ized distribution with which the transition to~and from! the
ground state takes place. The initial conditions for syst
~19! at each pointt j5p j have the form

a~ t j20!5a~ t j 2110!eih j , ~38!

b~ t j20!5E
0

`

b1,E~ t j20!s j* ~E!dE, ~39!

whereh j is the adiabatic phase shift of the coefficienta on
the segmentt j 21 ,t j , and

s j~E!5A F

2A~2uE0u!3
expH 2

EA2uE0u
F

1 i
p

v S E2E01
F2

8v2uE0u
D J . ~40!

Results of numerical calculations following this schem
are given below. The results can be represented in ano
form. Consider the column vectorsā j5(a(t j20),b(t j

20))T. Then the column vectors corresponding to differenj
are related by the equation

ā j5N̂j Ŝāj 21 , ~41!

whereŜ is the matrix of the nonadiabatic transition andN̂j is
a matrix describing the variation ofā(t) on the interval
(t j 21 ,t j ). If we assume thatN̂j depends weakly onj ~as
confirmed by calculation!, then by writing the matrices in the
form

Ŝ5IA12P2 eiz iP

iP A12P2 e2 izI ,

N̂5eixI1 0

0 e2m1 ixI , ~42!

whereP, z, m, x, andx are real quantities, it is possible t
obtain a common approximate expression foraj :
er

aj5
exp@~2m1 ix ! j /2#

2g
~A12P2! j cosj 21w

3$~11g! j~ i sinw1g cosw!2~12g! j

3~ i sinw2g cosw!%,

g5A12
1

~12P2!cos2w
, w5z2

x1 im

2
. ~43!

The presence of the quantitym in this formula and the fact
that the quantityw is complex reflect the influence of free
free transitions on states with high energies andlÞ1.

5. RESULTS AND DISCUSSION

In the present section we present some results of a
merical study of the solution of the simplified equations d
scribed above. Above all, note that the solution of the s
plified Hermitian system without allowance for interactio
within the continuum~19! does not describe total ionizatio
of an atom for arbitrary values of the parameters~time, field
strength, frequency of the field!. Free–free transitions, de
scribed by Eqs.~27!, lead to population of states withlÞ1
and, accordingly, to a drain of probability from states th
interact indirectly with the ground state. It is specifically as
result of quantum transitions within the continuum that to
ionization of the atom is possible.

Figure 1 plots the time dependence of the population
the ground state of a hydrogen atom, calculated taking
account free–free transitions withF/v@1. As can be seen
from the figure, interaction between levels occurs in a sm
neighborhood of the pointst j5p j , j 50,1,2, . . . ,N, which
confirms the applicability of the present approximation
this case. Thus, in the given case the ground state does
decay. If interactions within the continuum are taken in
account, the picture changes. Figure 2 plots the time dep
dence of the population of the ground state of the same a
taking into account transitions within the continuum.

It can be seen by comparing the figures that free–f
transitions lead to total decay of the ground state. A char

FIG. 1. Numerical solution of~19! for F/v@1 (F50.3 a.u.,v50.1 a.u.!.
The figure shows the probability of finding an electron in the ground stat
a function of time (T is the period of the external field!.
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teristic graph of the distribution overl is shown in Fig. 3. In
addition, the probability that an electron will return to th
ground state can decrease if its energy is too high. This ef
can be characterized by the ratio of the population of
upper level of a two-level system to the total probability th
the electron will be found in states of the continuum withl
51. The value of this parameter turns out to depend wea
on the field, and is roughly 75%.

Figure 4 plots the dependence we obtained~solid line! of
the ionization probability of the ground state of a hydrog
atom during 25 fs on the intensity of the external field f
v52 eV, along with the result~squares! of direct numerical
calculation.21 The given approach allows one to find the tim
dependence of the population of the states of an atom
fields comparable to or exceeding the atomic field. The
sults correspond to parameter values corresponding to
neling ionization and above-threshold ionization. The d
crepancy in the results at low intensities (F/v!1) results
from dividing the time intervals, in deriving the simplifie
equations~14!, ~15!, into intervals of maximum efficiency

FIG. 2. Population of the ground state as a function of time (T is the period
of the external field! for v50.1 a.u.:1 — F50.2 a.u.,2 — F50.4 a.u. The
points were calculated using Eqs.~17!–~40!, the solid curves represent th

approximat ion~43! with the matrixN̂ averaged over several initial points

FIG. 3. Distributions overl in the continuum at various times:1 — t
5T/2, 2 — t5T, 3 — t53T/2. The casev50.1 a.u.,F50.2 a.u.
ct
e
t

ly

or
-
n-
-

for bound–free transitions and free–free transitions. Ana
sis shows that the given division is applicable for values
the parameterF/v>1. Although system~19! is also appli-
cable forF/v!1, a study of weak fields is not the goal o
the present work.

Calculation for large values of the external field sho
that at intensitiesI .331014W/cm2 (F.0.1 a.u.!, essen-
tially total ionization occurs by the end of the second per
of the external field. Figure 5 plots the dependence of
total population of the continuum after the first half-period
the external field on the intensity of the external field. As c
be seen, the population oscillates about a constant va
Knowing the properties of the solution of the equations
free–free transitions~the matrixN̂) and employing Eq.~43!,
it is possible to describe the ionization probability per u
time for external fields many times stronger than the atom
field. The latter also oscillates about a constant value as
field intensity increases.

FIG. 4. Dependence of the probability of ionization during 25 fs on t
intensity of the external field forv52 eV. Filled squares — as calculated i
Ref. 21, solid line — calculated in the present work.

FIG. 5. Dependence of the total population of the continuum after the
half-period of the external field as a function of external field strengthv
50.1 a.u.!.
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In addition, we found the energy distributions of th
electrons in the continuum and in the Coulomb crowding
various times. Figure 6 displays a typical distribution for
hydrogen atom, consisting of a set of equidistantly spa
peaks, the distance between which is equal tov. This aspect
of the curve is a result of taking a large number of pointst0

j

into account~see Sec. 3!, each of which introduces its ow
phase shift~40!. The above picture agrees with the results
other authors.21

From Fig. 6 it can be seen that the population of t
upper Rydberg states falls off abruptly with distance fro
the edge of the continuum, i.e., with decreasing princi
quantum number. This result confirms the realism of the
sumptions used in the solution of the simplified equatio
~29!, ~32!.

The ratio of the total population of the Rydberg levels
the hydrogen atom to the population of the entire continu
is plotted in Fig. 7 as a function of electric field strength.

6. CONCLUSION

An important element of the above analysis is the use
a basis of generalized Coulomb functions of the continu

FIG. 6. Energy distribution in the continuum (t53T/2, F50.5 a.u.,v
50.1 a.u.!.

FIG. 7. Average ratio of the total population of the Rydberg states to
total population of the continuum versus external field stren
(v50.1 a.u.!.
t

d

f

e

l
s-
s

f

f

to solve the time-dependent Schro¨dinger equation by the
tight-binding method. Wave functions similar in their mea
ing to the unperturbed wave functions of the discrete sp
trum ~1! are also proposed in Refs. 12 and 13; however, t
are not orthogonal to the wave functions of the discrete sp
trum, which hinders their use in the tight-binding metho
Indeed, a set of non-orthogonal basis functions complica
the resulting tight-binding equations due to the appearanc
the non-orthogonality matrix on the left-hand side of t
equations.

Using this method it is easy to see that quantum tran
tions between states of the continuum play a decisive rol
the ionization of atoms in a strong field. The principal co
tribution to this process comes from transitions between c
tinuum states with orbital angular momentuml 51 and other
states of the continuum. Neglecting such transitions lead
oscillations in the population of the ground state of the at
as a function of the physical parameters of the problem, e
in superstrong fields. Strictly speaking, the atom does
ionize completely, since levels of the Coulomb crowdi
~higher Rydberg states! directly abutting the continuum turn
out to be populated. However, their total probability of o
cupancy is at most 5%.

We are grateful to N. B. Delone, S. P. Goreslavski�, D.
F. Zaretski�, V. P. Kra�nov, and M. V. Fedorov for fruitful
discussions. The main results of this work were discusse
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work was partially supported by the Russian Fund for Fu
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~Project No. 94-4698!.
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Sub-Poissonian radiation of a one-atom two-level laser with incoherent pumping
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The quantum statistical properties of the radiation of a one-atom two-level laser with incoherent
pumping are analyzed. Solution of the Liouville equation for the density operator in the
basis of Fock states shows that stationary radiation from a single-mode laser with incoherent
pumping can be in a squeezed~sub-Poissonian! stationary state if the rate of spontaneous decay is
lower than the rate of cavity losses and the pump rate. Inside the cavity the Fano factor
reachesF50.85 ~15% squeezing!. Multiple squeezing (F50.19) is possible in the transient lasing
regime. Significant squeezing obtains at the cavity output; the spectral Fano factor at zero
frequency is 0.36 under optimal conditions. ©1999 American Institute of Physics.
@S1063-7761~99!00404-7#
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1. INTRODUCTION

Microscopic laser systems consisting of an ion or at
held in a trap inside a high-Q resonator are presently
object of intense study. Recent detailed analyses1–7 show
that radiation in a resonant mode of such an elementary l
system exhibits a number of nonclassical properties suc
sub-Poissonian statistics,1–4, photon antibunching,5 multi-
peaked Mollow fluorescence spectra for incoher
pumping,6 thresholdless lasing,3,5 and the corresponding
photon antibunching and broadening of the spectral line
the many-level case.5

In the present paper we investigate one particular as
of a one-atom laser, namely the sub-Poissonian statistic
the photon number of the radiation in the single-mode c
for incoherent pumping. Recently, several techniques h
been found for creating states of the electromagnetic fi
with fluctuations of the photon number below the shot-no
limit ~sub-Poissonian light!. Toward this end, Refs. 8–1
suggest the use of a single-mode laser with regulari
pumping. References 11 and 12 use atomic coherence o
active medium to obtain squeezed light. Multilevel schem
of an ordinary single-mode laser, as shown in Refs. 13–
can also be a source of squeezed light in the case of inco
ent as well as coherent pumping. References 20 and 21 p
out the possibility of generating sub-Poissonian light w
the aid of a multimode laser. The conditions for creating
transient squeezed state of the generated radiation
found in Ref. 22 for a single-mode two-level laser with i
coherent pumping. In the single-mode two-level lasers c
sidered in Refs. 2, 5–7, 19, 22, and 23, considerable squ
ing under steady-state conditions is absent for one-a
lasers as well as for multiatom lasers (Natom@1).5–7

In the present paper we analyze the dynamics of
quantum statistical properties of laser radiation with the h
of the reduced density operator of the atom1 field system in
the basis of Fock states of the field. This analysis is valid
all possible relative values of the parameters characteri
the processes of incoherent pumping and dissipation, m
6661063-7761/99/88(4)/6/$15.00
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eled with the help of the corresponding reservoirs interact
with the atom and the radiation field. Note that our studies
laser dynamics and the statistical properties of laser radia
do not make any small-fluctuation assumptions, in which i
customary to adopt a linear approximation in the fluctu
tions.

2. LASER MODEL

The Hamiltonian of the atom1 field 1 reservoir system
includes energy operators of the electromagnetic field (HF),
the atom (HA), the interaction of the field with the atom
(VA2F), the energy of the reservoir of the continuous sp
trum of thermal modes of the electromagneti c field~thermo-
stat! (RF), the interaction operator of the atom with the the
mostat reservoir (VA2R), the interaction operator of the
cavity field with the thermostat (VF2R), and the energy of
the pump reservoir (RP) and its interaction with the atom
(VA2P):

H

\
5~HF1HA1VA2F1RF1VA2R1VF2R1RP1VA2P!

1

\

5vca
1a1

vA

2
sz1g~a1s21s1a!1(

j 51

`

v jbj
1bj

1(
j 51

`

gj~bj
1s21bjs

1!1(
j 51

`

kj~a1bj1bj
1a!

1(
k

vkPk
1Pk1(

k
mk~Pk

1s21s1Pk!. ~1!

Herea (a1) are the annihilation~creation! operators of the
electromagnetic field of a discrete cavity mode with fr
quencyvc ; the operatorsbj (bj

1) are the annihilation~cre-
ation! operators of the reservoir of the continuous spectr
of thermal modes of the electromagnetic field present ins
the cavity as a consequence of partial transparency of
mirrors. The indicated operators obey the commutation re
tions for Bose particles:
© 1999 American Institute of Physics
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@a,a1#51, @a1,a1#5@a,a#50,

@bj ,bk
1#5d jk , @bj

1 ,bk
1#5@bj ,bk#50. ~2!

The operatorsPk (Pk
1) correspond to the field of the pum

reservoir, which in general is not in thermodynamic equil
rium and consists of particles obeying Fermi statistics~e.g.,
electrons of the discrete or continuous energy spectrum!, and
obey the commutation relations

$Pk ,P l
1%5dkl , $Pk

1,P l
1%5$Pk ,P l%50, ~3!

where$ . . . % is the anticommutator.
The term$bj% in Eq. ~1!, which represents the interactio

of the laser radiation field with the reservoir modes. is
sponsible for setting up thermodynamic equilibrium of t
cavity mode with the reservoir–thermostat field enter
through the mirrors and having mean photon number in
mode24,25

nT[n̄~v5vc ,T!5@exp~\vc /kT!21#21. ~4!

The atomic operators of polarization and population inv
sion of a two-level atom (u↓& and u↑& are respectively the
upper and lower energy states of the active electron!

s25u↓&^↑u, s15u↑&^↓u, sz5u↑&^↑u2u↓&^↓u ~5!

satisfy the relations

2s7s65~17sz!, szsz51, ~6!

and the commutation relations for Fermi particles:

$s1,s2%5u↑&^↑u1u↓&^↓u51, $s1,s1%5$s2,s2%50.
~7!

The term representing the interaction of the atomic elect
with the field of harmonic oscillators of the thermostat$bj%
ensures the establishment of thermal equilibrium of
quantum-averaged atomic operators with temperatureT. The
interaction term of the atomic polarization operators with
pump field $Pk% leads the system to deviate from equili
rium.

The interaction of the radiation field with the polariz
tion of the atom is proportional to the coupling constang
determined by the transition dipole momentd↑↓ and the vol-
ume of the cavityV

g5d↑↓A2pvA

\V
. ~8!

Similarly we define the coupling constantsgj of the elec-
tromagnetic field of the thermostat with an atomic electr
The parameterskj andmk are respectively the coupling con
stants of the laser mode of the cavity field with the therm
stat and the coupling constants of the atom with the pu
reservoir.

We analyze the quantum stochastic dynamics of a t
level one-atom laser with the help of the reduced den
operator of the atom1 single-mode field system in the bas
of Fock states

r~ t !5 (
i , j 5$↑,↓%

(
n,m50

`

rn,i ;m, j~ t !u i &un&^mu^ j u. ~9!
-

-

e

-

n

e

e

.

-
p

-
y

In the interaction representation and in the Born
Markov approximation,24,25 the reduced density operator o
the atom1 field system~9! interacting with a reservoir sat
isfies the Liouville equation

]r

]t
5TrR~sR% S!52 iDFsz

2
,rG2 ig@~a1s21s1a!,r#

1
g

2
~nT11!~2ara12a1ar2ra1a!

1
g

2
nT~2a1ra2aa1r2raa1!1

G

2
~NT11!

3~2s2rs12s1s2r2rs1s2!

1
G

2
NT~2s1rs22s2s1r2rs2s1!

1
P

2
~12p!~2s2rs12s1s2r2rs1s2!

1
P

2
p~2s1rs22s2s1r2rs2s1!, ~10!

where the offset of the cavity frequency from the atom
frequency isD5vA2vc . The quantitiesg, G, and P are
respectively the rate of field loss in the mirrors, the spon
neous emission rate, and the incoherent pump rate. The
dicated dissipation constants can be expressed in term
correlation functions of the corresponding reservoir ope
tors $bj% and$Pk% ~see, for example, Refs. 24 and 25!.

The mean number of excitations of the atomic reserv
NT in Eq. ~10! in the case in which the reservoir$bj% is in
thermodynamic equilibrium at temperatureT is ~see, e.g.,
Ref. 25!

NT[N̄~v5vA ,T!5^bj
1bj&uv j 5vA

5@exp~\vA /kT!21#21. ~11!

The interaction of an atom with the pump reservoir$Pk%
leads to a deviation from thermal equilibrium, and the deg
of excitation of the atom by the pump is determined by t
mean number of Fermi quanta of the pump reservoir at
atomic transition frequencyp(v5vA) in Eq. ~10!, for which
we have

p5^Pk
1Pk&uvk5vA

, 0<p<1. ~12!

The equation of motion for the averages of the atom
operators can be found from Eq.~10! with the help of the
equation

]^sz&
]t

5Tr S ]r

]t
szD . ~13!

Hence it follows that the mean population inversion of
atom interacting with the reservoir$bj% responsible for spon-
taneous decay obeys the equation

]^sz&spont

]t
52~2NT11!G^sz&spont2G. ~14!
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The interaction with the pump reservoir$Pk%, leading to a
deviation from thermodynamic equilibrium, is described
the equation

]^sz&pump

]t
52P^sz&pump1~2p21!P. ~15!

The solution of Eq.~14! under steady-state (SS) conditions
has the form

^sz&spont
SS 52

1

2NT11
, ~16!

i.e., spontaneous decay of an excited state of an atom l
to a Boltzmann~Fermi! distribution of the populations if we
set the thermal number of excitations equal toNT

5@exp(\vA /kT)21#21.
The steady-state solution of Eq.~15! shows that the ac

tion of the pump leads to steady-state inversion:

^sz&spont
SS 52p21. ~17!

The parameterp thus characterizes the degree of steady-s
excitation of the atomic states supported by the given pu
in the absence of interaction with the field, 0<p<1.

Using Eq. ~1! and the orthonormality of the basis o
Fock states, as well as Eqs.~2!, ~5!–~7!, and~10!, we find a
system of coupled differential equations for the elements
the density matrix having the following form:26

r1n,m~ t ![^↑urn,mu↑&1^↓urn,mu↓&,

r2n,m~ t ![^↑urn,mu↑&2^↓urn,mu↓&,

r3n,m~ t ![^↑urn,mu↓&, r4n,m~ t ![^↓urn,mu↑&. ~18!

The system of equations for the matrix components~18! with
dimension 43(nmax11)3(nmax11) given in Appendix A
was solved numerically. At the initial instant of time the fie
is in general in an arbitrary mixed state, and the atom is
superposition of the upper and lower states. Thus, the den
matrix of the atom and field, not interacting at the timet
50, is

r~0!5ra^ r f ,

ra5Fcos
u

2
u↑&1sin

u

2
eiwu↓&G

3Fcos
u

2
^↑u1sin

u

2
e2 iw^↓uG ,

r f5 (
n,m50

`

cncm* un&^mu. ~19!

In particular, if the field at the initial time is in the cohere
stateua&, then the relation for the coefficients of the expa
sion over Fock states

cn* cm5
a* nam

An!m!
exp~2uau2!.

If the initial state is a pure Fock stateun0&, then cn* cm

5dn,m . In the thermal state we havecn* cm5@nT
n/(1

1nT)n11#dn,m .
ds

te
p

f

a
ity

-

3. FLUCTUATIONS OF THE PHOTON NUMBER INSIDE THE
CAVITY

The mean photon number, mean inversion, fluctuati
~variance! of the photons, and the mean field, obtained
grouping matrix elements of a system of the form~18!, are
given by

^n~ t !&5Tr~r~ t !a1a!5 (
n50

`

nr1n,n~ t !,

^D~ t !&5Tr~r~ t !sz!5 (
n50

`

r2n,n~ t !,

Var~n~ t !![^~Dn~ t !!2&5 (
n50

`

~n2^n~ t !&!2r1n,n~ t !,

^a1~ t !&5 (
n50

`

An11r1n,n11~ t !,

^a~ t !&5 (
n51

`

Anr1n,n21~ t !, ~20!

The variances of the conjugate quadraturesX1(t)5@a1(t)
1a(t)#/2 andX2(t)5@a1(t)2a(t)#/2i can be expressed in
terms of the matrix elements of the density operator:

^~DX6!2&5
1

4 H (
n50

`

~2n11!r1n,n~ t !

6 (
n52

`

An~n21!r1n,n22~ t !

6 (
n50

`

A~n11!~n12!r1n,n12~ t !

7F (
n50

`

An11r1n,n11~ t !

6 (
n51

`

Anr1n,n21~ t !G2J . ~21!

As the initial state of the field att50 we used both the
coherent vacuum state and a random thermal state with m
photon number corresponding to the optical rangeva

;1014s21 at T'300 K. A numerical study of systems~A3!–
~A6! in the representation~18! for various values of the lase
parameters showed that steady-state laser radiation poss
sub-Poissonian statistics of the photon number if the rate
spontaneous emission satisfies the conditionG,g,g. Maxi-
mum squeezing of the fluctuations of the photon num
occurs forG!g,g for T50 and amounts to 15%~see Fig.
1!. With increasingG→g, the degree of squeezing de
creases, and forG.g the radiation goes into the supe
Poissonian state. The value of the pump parameterp has a
substantial influence on the steady-state statistics of the
diation; the greatest squeezing occurs forp51 and decrease
for p,1. The existence of a frequency offset (DÞ0) also
has a negative effect on the degree of squeezing. The opt
value of the rate of cavity lossesg and of the pump rateP
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relative to the coupling constantg are g5P'1.4g for p
51, D50; here the Fano factor (F5Var(n)/^n&) is F50.85
at temperaturesT,100 K andvA51014.

As can be seen from Fig. 2, as steady-state lasing bu
up, the laser radiation remains in a state with nonclass
sub-Poissonian photon statistics. Reducing the rate of ca
losses relative to the pump rate makes it possible to dram
cally reduce the Fano factor. Figure 2 depicts the dynam
of the Fano factor forg50.1g, P52g for the case of lase
generation from the coherent vacuum state of the field w
the atom in its lower level. In this case, the minimum val
of the Fano factorFmin is 0.54 for ^n&51.43. Thus, in the
transient lasing regime, intense squeezed radiation ca
generated. The degree of squeezing in the transient reg
depends on the initial state. Maximum squeezing and in
sity of the radiation are achieved if the atom is in the up
state and the field in the coherent vacuum state. In this c
for example, for g50.1g, P50.5g fivefold squeezing
(Fmin50.19) is achieved forgt51.8 and^n&51.2 ~Fig. 3!.

Quadrature squeezing (VarX1,1/4 or VarX2,1/4) is
absent for all of the laser parameter values we considere

4. FLUCTUATIONS OF THE PHOTON NUMBER AT THE
CAVITY OUTPUT

We assume that inside the laser cavity the electrom
netic field is in a state with discrete values of the frequenc
~photon energies!, whereas outside it the field has a contin
ous spectrum. As a consequence, it must be assumed
temporal fluctuations of the electromagnetic field inside

FIG. 1. a! Mean photon number̂n(t)& ~1!, fluctuations~variance! of the
photon number Varn(t) ~2!, mean inversion̂ D(t)& ~3!, and fluctuations
~variance! of the field quadratures VarX6(t) ~4! of the laser for the initial
state of the field in the coherent vacuum and of the atom in the lower le
for g51.4g, G!g, P51.4g, p51, D50, and T50. b! Fano factorF
5Var (n)/^n&.
ds
al
ity
ti-
s

h

be
e

n-
r

se,

.

g-
s

-
hat
e

laser cavity are sources of fluctuations in the frequency sp
trum of the radiation exiting through the resonator mirro
The field outside the cavity can be represented as a sum
the laser radiation field exiting through the mirror and t
noise field of the reservoir–thermostat incident upon the m
ror, i.e.,a(out)(t)5b(in)(t)1Ag a(t), where

l,

FIG. 2. The same as in Fig. 1, but forg50.1g, G!g, P52g, p51, D
50, andT50.

FIG. 3. The same as in Fig. 1, but forg50.1g, G!g, P50.5g, p51, D
50, andT50, and the atom in the upper level at the initial timet50.
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b~ in!~ t !}(
j

Av j exp~2 iv j t ! bj

~Refs. 27–29!. The Heisenberg operatora(out)1(t) a(out)(t) is
the photon number operator of photons exiting through
mirror per unit time. One quantity characterizing the sta
tics of the laser radiation passing through the output mirro
the steady-state fluctuation spectrum12

V~out!~v!5 lim
t→`

2E
0

`

dt cosvt@^n~out!~ t1t!n~out!~ t !&

2^a~out!1~ t1t!a~out!~ t !&2#. ~22!

Since the two-time correlators under steady-state condit
are even functions oft, we have used the Fourier cosin
transform in Eq.~22!. The commutation relations for th
field operators constituting the continuous spectrum outs
the cavity have the form27,28

@a~out!~ t1t!,a~out!1~ t !#5d~t!. ~23!

Hence we find that the two-time correlation function of ph
ton number operators is

^n~out!~ t1t! n~out!~ t !&

[^a1~ t1t! a~ t1t! a1~ t ! a~ t !&~out!

5^a1~ t1t! a~ t !&~out!d~t!1^a1~ t ! a1~ t1t! a

3~ t1t! a~ t !&~out!, ~24!

i.e., the spectrum of fluctuations of the photon number of
field at the cavity output consists of terms in the shot no
and the chronologically and normal-ordered fluctuation sp
trum:

V~out!~v!5^n~out!~ tSS!&1:V~out!~v!:. ~25!

In the case of one transparent mirror, the field correlator
the discrete mode inside the cavity are related to the fi
correlators of the continuous spectrum outside the cavity
shown in Refs. 27–29:

^a1~ t !a~ t !&~out!5g^a1~ t !a~ t !&, ~26!

^a1~ t !a1~ t1t!a~ t1t!a~ t !&~out!

5g2^a1~ t !a1~ t1t!a~ t1t!a~ t !&. ~27!

Substituting Eqs.~26! and ~27! into Eq. ~21!, we finally ob-
tain the following formula for the spectral Fano factor:

F~v![
V~out!~v!

^n&~out!
51

1 lim
t→`

2g

^a1~ t !a~ t !&
E

0

`

dt @^a1~ t !a1~ t1t!

3a~ t1t!a~ t !&2^a1~ t1t!a~ t1t!&

3^a1~ t !a~ t !&#cosvt. ~28!
e
-
is

ns

e

-

e
e
c-

of
ld
as

Under steady-state conditions it is not hard to obtain
expression for the correlation functions of the field operat
inside the cavity from the quantum regression theorem~see,
e.g., Ref. 25!

^a1~ t !a1~ t1t!a~ t1t!a~ t !&SS5Tr~a1ar̃~t!!, ~29!

where the operatorr̃(t)[r̃(t1t) satisfies the Liouville
equation~10! with initial condition (t50)

r̃n,m~0!5A~n11!~m11! rn11,m11~ tSS!. ~30!

Calculation shows that outside the cavity the squeezing
laser radiation is even more significant: for optimal values
the pump parameters (P51.4, p51) and loss paramete
(g52), the spectral Fano factor is below the shot-noise lim
by almost a factor of three and is 0.3567 at zero freque
~Fig. 4!. The positions of optimal sqeezing outside and ins
the cavity do not coincide: the largest squeezing occurs
side the cavity at a higher loss rate. As a consequence
mean photon number of the radiation in this case is reduc
^n&50.29.

5. CONCLUSION

We have analyzed the dynamics of the quantu
statistical properties of the radiation of a one-atom laser
significant deviation of the magnitude of the fluctuations
the photon number outside the cavity from the shot-no
limit ~by up to 15%! is found to obtain under steady-sta
conditions, when the pump rate and the loss rate through
mirror are many times larger than the spontaneous decay
and are comparable in magnitude to the coupling constan
an atomic electron with a cavity mode. We have shown t
under special conditions, multiple squeezing is present in
transient dynamic regime. The squeezing of radiation exit
through the resonator mirror is significantly greater than
value inside the cavity: the Fano factor at zero frequen
reaches 0.36.

The case we have considered, in which the coupling c
stant is much less than the spontaneous emission rate a
comparable in magnitude to the cavity loss and pump ra
is atypical of most known lasers. The indicated requireme
are best satisfied by a laser that uses transitions betw
highly excited states of Rydberg atoms, where the coup
constant can reachg;106 s21.

FIG. 4. Spectral Fano factor of laser radiation outside the cavity for pu
parametersP51.4, p51, and lossesg52@G ~in units of g).
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In the present work we have shown that a one-atom t
level laser with incoherent pumping is a potential source
nonclassical radiation with fluctuations of the photon num
significantly lower than the shot-noise limit.

APPENDIX A:

Using the relations for the creation and annihilation o
erators in the Fock basis

aun&5Anun21&, a1un&5An11un11&,

^nua5An11^n11u, ^nua15An^n21u, ~A1!

Eqs.~2!, ~5!–~7!, and the equalities

szs15s1, s1sz52s1, s2sz5s2, ~A2!

we directly obtain from the Liouville equation~10! the equa-
tions of motion for the elements of the density matrix~9! in
the form ~18!. As a result

ṙ1,n,m5 ig~Am11r3,n,m112Anr3,n21,m1Amr4,n,m21

2An11r4,n11,m!1
g

2
Lr1 , ~A3!

ṙ2,n,m5 ig~Am11r3,n,m111Anr3,n21,m2Amr4,n,m21

2An11r4,n11,m!1
g

2
Lr21@P~2p21!

2G#r1,n,m2@G~2NT11!1P#r2,n,m , ~A4!

ṙ3,n,m5 iDr3,n,m1 i
g

2
~Amr1,n,m212An11r1,n11,m

1Amr2,n,m211An11r2,n11,m!1
g

2
Lr3

2
G~2NT11!1P

2
r3,n,m , ~A5!

ṙ4,n,m5 iDr4,n,m1 i
g

2
~Am11r1,n,m112Anr1,n21,m

2Am11r2,n,m112Anr2,n21,m!1
g

2
Lr4

2
G~2NT11!1P

2
r4,n,m , ~A6!
-
f
r

-

where the term common to all four of these equations, du
cavity losses through the mirror, can be written

Lr j5~nT11!@2A~n11!~m11!r j ,n11,m11

2~m1n!r j,n,m#1nT@2Anmr j ,n21,m21

2r j ,n,m~n1m12!#. ~A7!
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We use the quasipotential method to calculate the total correction of order (Za)6me
2/mm in the

energy spectrum of then 3S1 states of muonium. The numerical value of the muonium-
fine-structure interval 23S1– 1 3S1 amounts to 0.19 MHz. ©1999 American Institute of Physics.
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1. INTRODUCTION

The study of the fine structure of muonium and posit
nium is a check on the validity of electrodynamics that
sensitive to high-order radiative corrections ina ~Ref. 1!.
Calculations of various contributions to the fine structure
the energy levels of a hydrogen-like system have been
ried out by many researchers~see, e.g., Refs. 2–5! and inter-
est in this problem is still very high.6–9 Recent progress in
calculating logarithmic contributions of thea6lna type in the
positronium fine-structure intervals (23S1– 1 3S1 and
2 3S1– 2 3PJ ; see Refs. 10–12! does not mean, howeve
that there is no need to calculate high-order correcti
O(a6) ~Ref. 13!. Corrections of order (Za)6m1

2/m2 to thes
levels of the hydrogen atom were studied in Ref. 6–8
various approaches to the bound-state problem, but as n
by Yelkhovsky,9 there are still discrepancies among calc
lated corrections of the required order in the fine structure
a hydrogen-like atom. The development of experimen
methods based on Doppler-free two-photon spectroscopy
made it possible to measure the ‘‘large’’ structure interv
in muonium and positronium:14–16

DEPs
expt~2 3S121 3S1!5H 1233 607 218.9610.7 MHz,

1233 607 216.463.2 MHz,
~1!

DEMu
expt~2 3S121 3S1!52455 527 93661206140 MHz. ~2!

The frequency of the Doppler-free two-photon transiti
1S– 2S in the hydrogen atom~as well as the hyperfine split
ting of the ground state of the hydrogen atom! is a quantity
that has been measured to high accuracy.13 Since a21

5137.035 9979 (32), the muon-to-electron mass ratiomm /
me5206.768 259 (62), and for muonium the ord
(Za)6me

2/mm contribution may reach values of order 1 MH
Hence the reduction to several megahertz of the experime
error in upcoming measurements1! of the fine structure of
muonium ~and positronium! makes calculations of the cor
rection of the required order ina andme /mm highly desir-
able. In the present paper we study nuclear recoil correct
of order (Za)6m1 /m2 in the fine structure of muonium. Bod
win et al.17 calculated similar contributions to the hyperfin
splitting of muonium.
6721063-7761/99/88(4)/9/$15.00
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In QED there are many approaches to describing
relativistic energy spectra of two-particle boun
states.2,3,13,18–20The approaches differ in the way in whic
the calculations are organized, i.e., the type of equation u
in describing the two-particle system, the way in which t
particle interaction operator is set up, and the complexity
determining the corrections of required accuracy in the
ergy levels. However, all methods of describing the ene
spectra yield equivalent results in a fixed perturb
tion-theory order in the small parametersa andm1 /m2 .

Our calculations are based on a local quasipoten
equation of the Schro¨dinger type21

S b2

2mR
2

p2

2mR
DcM~p!5E dq

~2p!3
V~p,q,M !c~q!, ~3!

whereb25E1
22m1

25E2
22m2

2, mR5E1E2 /M is the relativ-
istic reduced mass,M5E11E2 is the mass of the bound
state, andm1 andm2 are the electron and muon masses. F
the initial approximation of the quasipotentialV(p,q,M ) for
the bound system (e2m1) we take the ordinary Coulomb
potential. In Ref. 22, using Eq.~3! as the staring point, the
researchers determined the relativistic correctionsma6 in the
fine structure of the positronium spectrum that are introdu
by the one-photon interaction with allowance for the vert
corrections and corrections in the photon propagator,
two-photon exchange interaction, and second-order pertu
tion theory. The foremost among such corrections is

DB15
5m1

2~Za!6

2m2n6
, ~4!

which is of order (Za)6m1 /m2 and emerges because of th
condition for quantization of the energy levels in the Co
lomb interaction,

b2

mR
2

52
a2

n2
, ~5!

transformed for the binding energyB of this system.
© 1999 American Institute of Physics
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2. CONTRIBUTION OF THE ONE-PHOTON INTERACTION
TO THE FINE STRUCTURE

One-photon interaction provides the principal contrib
tion to the energy spectrum of the two-particle bound sta
The method of setting up a quasipotential for one-pho
interaction in a system of two spinor particles was th
oughly studied in Refs. 22 and 23. Note that here it is c
venient to use the relativistic projection operator on st
3S1 ,

P̂5
1

2A2

~ p̂11m1!~11g0!«̂~2 p̂21m2!

A«11m1 A«21m2

, ~6!

where p1 and p2 are the 4-momenta of the electron a
muon in the initial state, and«m is the muonium polarization
vector. Expanding all relativistic factors in powers of the tw
small parametersupu/m1,2 (upu;Za is the momentum of the
relative motion of the particles! andm1 /m2 ~the electron-to-
muon mass ratio! so as to isolate the contribution of sixt
order in Za and first order inm1 /m2 , we can write the
expression for the particle interaction operator in the coo
nate representation in the form

V1~r !52
Za

r
2

mR~Za!2

2m1
2r 2 S 11

2m1

m2
D2

Za

4m1
2r 3

~r–“ !

3S 11
4m1

m2
D2

pZa

3m1m2
dr2

Zab2

m1m2r

5Vc~r !1DV1~r !. ~7!

Note that the partDV1 of the quasipotential~7!, com-
bined with quantization condition~5!, correctly reproduces
the known energy spectrum of theS states of muonium to
within O(a4) ~Refs. 13 and 20!. In our approach, the term
in DV1 also provide orderO(a6) corrections to the energ
spectrum, which is due to the dependence of the relativi
reduced massmR and ofb2 on a. Averaging~7! over Cou-
lomb wave functions24 and extracting the required terms, w
find that

DB252
3m1

2~Za!6

4m2n5 S 51
2

nD . ~8!

The one-photon interaction quasipotential also conta
other terms that lead to order (Za)6 corrections in the energy
spectrum. These terms are obtained by setting upV1g to
within upu2/m1,2

4 and uqu4/m1,2
4 , and take the form

DV2~p,q,M !

52
4pZa

k2 H b4

16m1
4 S 32

2m1

m2
D1

p41q4

96m1
4

3S 31
m1

m2
D2

~p21q2!~p–q!

96m1
4 S 61

13m1

m2
D

2
~p21q2!b2

96m1
4 S 32

m1

m2
D2

~p–q!b2

48m1
4 S 31

7m1

m2
D J . ~9!
-
e.
n
-
-
e

i-

ic

s

Now we turn to calculations of order (Za)6 corrections
that originate in the terms inDV2 . We note that some term
in DV2 lead to divergent integrals in the energy spectru
The reason for this divergence lies in the power series
pansion inupu/m1,2 used in setting upDV2 . A typical diver-
gent integral is*p2 dp cnS(p). The relativistic ordera6 cor-
rection in this case is determined by the residue of
integrand at the pole of the wave functioncnS(p) ~Ref. 18!.
The calculation of this integral for an arbitrary value of th
principal quantum numbern yields

E dp

~2p!3

p2

mR
2

cnS~p!52
@312~n21!~n11!#

n2

3a2cnS~r50!. ~10!

Using ~10! in averaging ofDV2 , we calculated the relativis
tic corrections of the proper order for levels with arbitra
values of the principal quantum numbern:

DB35
m1

2~Za!6

m2
S 2

139

72n3
1

17

12

ln2

n3
1

73

72

1

n5
1

43

96

1

n6

1
17

12
~21!n

1

n3
@C1c~n!21# D , ~11!

wherec(z)5d lnG(z)/dz, andC50.577 215 6649 . . . is Eu-
ler’s constant.

3. SECOND-ORDER PERTURBATION THEORY

In our case the second-order perturbation-theory cor
tion in the muonium energy spectrum is determined by
sum of two terms:25

DB(2)5^cn
cuDV1ucn

c&^cn
cu

]DV1

]B
ucn

c&

1 (
k51,kÞn

`
^cn

cuDV1uck
c&^ck

cuDV1uck
c&

Bn
c2Bk

c
. ~12!

The quasipotential~7! depends explicitly on the binding en
ergy B ~factorsb2 and mR). Bearing in mind that]b2/]B
52m to the required accuracy, we can write the contributi
of the first term on the right-hand side of~12! to the energy
spectrum as follows:

DB45^cn
cuDV1ucn

c&^cn
cu

]DV1

]B
ucn

c&5
m1

2

m2
~Za!6

1

n5
.

~13!

The second term on the right-hand side of~12! is
determined by the reduced nonrelativistic Coulomb Gree
function,19,26–31whose partial expansion is

Ḡn~r ,r 8,B!5(
l ,m

ḡnl~r ,r 8,B!Ylm~n!Ylm* ~n8!. ~14!
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TABLE I. Second-order perturbation-theory contributions determined by the RCGF and the quasipotential~7! ~in units of (Za)6m1
2/m2).

DV1
2

Zab2

m1m2r
2

~Za!2mR

2r2m1
2 S11

2m1

m2
D 2

Za~r–“ !

4m1
2r 3 S 11

4m1

m2
D 2

pZa

3m1m2
d~r !

2
Zab2

m1m2r
– 22n

n5

2n225n11

4n6

–

2
~Za!2mR

2m1
2r 2 S 11

2m1

m2
D 22n

n5

2n13

2n4
2

n213n21

4n5
2

4n19

6n4

2
Za~r–“ !

4m1
2r 3 S 11

4m1

m2
D 2n225n11

4n6
2

n213n21

4n5
2

n~n21!~n11!

24n6
2

n226n18

12n5

2
pZa

3m1m2
d~r ! –

2
4n19

6n4
2

n226n18

12n5

–

e

-

w
e
o

re

h

in
the

at-
The radial functionḡnl(r ,r 8,B) was derived in Ref. 31
as a Sturm expansion in Laguerre polynomials. For thS
state this function is

ḡn0~r ,r 8,Bn!

52
4Zam2

n Fe2(x1x8)/2 (
m51,mÞn

` Lm21
1 ~x!Lm21

1 ~x8!

m~m2n!

1
1

n2 S 5

2
1x

]

]x
1x8

]

]x8
D e2(x1x8)/2Ln21

1 ~x!Ln21
1 ~x8!G ,

~15!

wherex52mZar /n, andLn
m are the ordinary Laguerre poly

nomials, defined by

Ln
m~x!5

exx2m

n! S d

dxD
n

~e2xxn1m!. ~16!

The reduced Coulomb Green’s function~RCGF! ~15! de-
pends on two variables,r and r 8, but in calculating the cor-
rections in~12! of a delta-function potential we must kno
the RCGF atr50. An expression for the RCGF in this cas
can be obtained via the Hostler representation for the C
lomb Green’s function~see Ref. 32! by subtracting the pole
term:

Ḡn~r ,0,Bn!52
Zam2

npx
e2x/2(

s50

n21
~2x!n2s

s!

n!

@~n2s!! #2

3H ~n2s!Fc~n11!22c~n2s11!

2
2~n2s!132x

2n
1 ln xG11J . ~17!

In contrast to Ref. 32, this formula does not contain the f
two-particle Green’s functionGf(r )52mRe2ZamRr /2pr ,
which determines the iterative part of the quasipotential. T
contribution of this function will be obtained separately.
u-

e

e

As an example, we calculate the energy corrections
second-order perturbation theory that are determined by
delta-function potential and the termDV1}1/r 2. This contri-
bution can be written

dB52
m5~Za!6

3m1m2n4 (
k51

n

~21!k
n!

~n2k!! ~k! !2

3E
0

`

xk21e2xLn21
1 ~x! dx H kFc~n11!

22c~k11!2
2k132x

2n
1 ln xG11J . ~18!

The expression~18! contains integrals of two types, with
power-law and logarithmic functions, respectively. Evalu
ing the first integral with respect to the variablex,

I 15E
0

`

xk21e2xLn21
1 ~x! dx5

~k21!! G~n112k!

~n21!! G~22k!
,

~19!

we see that only the term withk51 remains in the sum. The
second integral in~18!,

I 25E
0

`

xk21ln xe2xLn21
1 ~x! dx

5
~22k!n21G~k!

~n21!!
@c~k!1c~22k!2c~n112k!#,

~20!

leads to a sum of the type

(
k51

n

~21!k
c~22k!~22k!n21

~n2k!! k!
52

n21

n
1C, ~21!

where

C5 lim
n→`

F2 ln n1 (
m51

n
1

mG50.577 215 66 . . .

is Euler’s constant. If we now allow for the fact that
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FIG. 1. Direct and crossed diagrams of two-photon exchange
teraction.
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k→n

G~n2k!

G~12k!
5~21!n21~n21!!, ~22!

we finally obtain an expression for the correction~18!:

dB52
m1

2

6m2
~Za!6

1

n4
~4n19!. ~23!

Reasoning along similar lines, we can calculate the c
tributions of the other terms in the quasipotential~7! in
second-order perturbation theory via~12!, ~15!, and ~17!.
The results of such calculations are listed in Table I. The fi
column and the first row contain the various terms inDV1 .
The value of the second integral in~12!, with the various
terms in DV1 expressed in units of (Za)6m1

2/m2 , can be
found at the intersection of the appropriate row and colum
The total contribution of the RCGF to the energy spectr
~without Gf) is

DB55S 2
25

24
2

3

n
2

49

24n2
1

3

2n3D m1
2~Za!6

m2n3
. ~24!

We now examine the contribution of the free tw
particle propagator to the correctionDB(2) @this contribution
was ignored in the RCGF given by~17!#. It is convenient to
do this in the momentum representation. Bearing in m
that

Gf~p,q,M !5
~2p!3d~p2q!

b2/2mR2p2/2mR

~25!

and that the delta-function term in the quasipotential~7! al-
ready contains the muon mass in the denominator, we
write the required iterative correction as

DB65
2m~Za!2p2cnS~0!

3m2m1
3 E dp

~2p!3
cnS~p!

3Fp–k

k2
2

p21W2

k2 G dq

~2p!3~q21W2!
, ~26!

whereW25mR
2(Za)2/n2. The divergence of this integral i

the same as in~10!. Using Feynman’s parametrization an
formula ~10! in calculating~26!, we find that
n-

st

n.

d

an

DB652
m1

2~Za!6

12m2
S 1

n3
2

2ln2

n3
2

2

n4

2
2

n3
~21!n @C1c~n!21# D . ~27!

4. TWO-PHOTON EXCHANGE INTERACTION

The two-photon exchange interaction amplitude is rep
sented by the two diagrams in Fig. 1. The particle interact
operators corresponding to these diagrams are

V2g
(a)~p,q!5

i ~Za!2

p2

3E f 1~k,m1 ,m2! d4k

@~k2p!21 i e#@~k2q!21 i e#De~k!Dm~2k!
, ~28!

f 1~k,m1 ,m2!5m2~4m112k0!22m1k022k0
21 2

3k
2,

Dm~2k!5k222E2k01b21 i e'22m2k01 i e, ~28!

V2g
(b)~p,q!5

i ~Za!2

p2

3E f 2~k,m1 ,m2! d4k

@~k2p!21 i e#@~k2q!21 i e#De~k!Dm~p2q2k!
,

f 2~k,m1 ,m2!5m2~4m112k0!22m1k026k0
2

1 10
3 p–k1 10

3 q–k1 10
3 k2,

Dm~p2q2k!5k212E2k012k–~p1q!2~p1q!2

1b21 i e'2m2k01 i e. ~29!

The principal contribution ofV2g to the energy spectrum
is proportional toa5. Order (Za)6 corrections can also ap
pear in the energy levels if we allow, e.g., for the contrib
tion of photon poles, whereuponk0;a, upu;a, uqu;a, and
uku;a. To separate these terms, we transform the produc
the electron and muon denominators in the direct two-pho
diagram as follows:

1

De~k!Dm~2k!
5

22p id~k0!

22E~k22b2!
2

1

2E F 1

~k01 i e!De~k!

1
1

~2k01 i e!Dm~2k!G , ~30!
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FIG. 2. Feynman diagrams of three-photon exchange interactio
the (e2m1) system.
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where the first term@;d(k0)# on the right-hand side and th
iterative term of the quasipotential cancel out. The first te
in the square brackets has the same structure in the lea
order in 1/m2 as the crossed amplitude. As a result, the tw
photon interaction quasipotential, which leads to the requ
correction of order (Za)6m1

2/m2 , is

V2g~p,q!

5
2i ~Za!2

3p2

3E d4k @4k215k–~p1q!26k0
2#

@~k2p!21 i e#@~k2q!21 i e#De~k!~2m2k01 i e!
.

~31!

The contribution ofV2g to the energy spectrum was ca
culated separately forn51 and n52 using Mathematica
~Ref. 33! ~the feynpar.m package!, and the results of thes
calculations are

DB2g55 2
7m1

2

2m2
~Za!6, n51,

2
31m1

2

16m2
~Za!6, n52.

~32!

5. THREE-PHOTON EXCHANGE INTERACTION

There are six diagrams, depicted in Fig. 2, that determ
the amplitude of three-photon exchange interaction in m
nium.

In the first diagram, the corresponding amplitude co
tains the factora6, which emerges due to the electroma
netic interaction vertices and the Coulomb wave functio
Hence, in the first stage of calculations we ignore the m
mentum vectors due to the relative motion of the elect
and muon in the initial and final states, bearing in mind t
ing
-
d

e
-

-
-
.
-
n
t

the required numerical accuracy is already ensured. Then
amplitude representing the first diagram in Fig. 2 is

T1
2g52

~Za!3

4p5 E d4pE d4p8

3
^g1

l~ q̂12 p̂81m1!g1
n~ p̂12 p̂1m1!g1

m&

~p22w21 i e!~p822w21 i e!@~p2p8!21 i e#

3
^g2

m~ p̂21 p̂1m2!g2
n~ q̂21 p̂81m2!g2

l&

De~p!De~p8!Dm~2p!Dm~2p8!
, ~33!

where De,m(p) are the denominators of the electron a
muon propagators,

D~6p!5p22w262mp01 i e, w252b2, ~34!

and the angle brackets indicate averaging over the Dirac
pinors; p1 and p2 are the 4-momenta of the particles in th
initial state andq1 and q2 , in the final state. As usual, th
factor Za emphasizes the exchange nature of the photon
teraction of the particles.

The propagators of the exchange photons were chose
the covariant Feynman gauge. As is known, the Coulo
gauge is the most natural one for exchange photons, sinc
Coulomb interaction is predominant in the (e2m1) system.
Nevertheless, Bodwin et al.17 demonstrated that the Coulom
and Feynman gauges are equivalent in calculations of th
photon diagrams in the scattering approximation. To c
struct the quasipotential from the amplitudeT1

3g describing
the interaction in the (e2m1) system withL50 andJ51,
we introduce in the initial and final states the projection o
erator~6! and assume, in addition, thatp5q50. The use of
~6! makes it possible to avoid cumbersome matrix multip
cation in bispinor contractions and to proceed immediat
with the calculation of the general trace in~33!. As a result,
the quasipotential of the first exchange diagram can be w
ten
V1
3g52

~Za!3

p5 E d4pE d4p8

3
F1~p,p8!

Dg~p!Dg~p8!Dg~p2p8!De~p!De~p8!Dm~2p!Dm~2p8!
, Dg~p!5p22w21 i e, ~35!
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where

F1~p,p8!5 f 12~p,p8!m2
21 1

3 f 11m2 ,

f 125pp824m1
222m1p022m1p0822p0p08 ,

f 11~p,p8!52m1p821p0p82110m1pp812p0pp8

12p08pp812m1p21p08p216m1
2p0

16m1
2p0814m1p0

214m1p08
224m1p0p08 .

~36!

The only terms that we kept in~36! were those propor-
tional to m2

2 and m2 , since we had in mind obtaining th
contribution to the muonium fine structure only in the lea
ing order in the parameterm1 /m2 . Below we find that we
cannot limit ourselves inF(p,p8) to terms proportional to
m2

2. The quasipotentials of the other five amplitudes can
set up in a similar way. They differ from each other in t
dependence on the momentum arguments in the muon
nominators and in the type of functionf i1 ( i 51, . . . ,6).
The terms inFi(p,p8) proportional tom2

2 are the same in al
six amplitudes. Note that if«̂ is replaced byg5 in the pro-
jection operator~6! ~the 1S0 state!, we obtain the same func
tion f 12(p,p8) as for the3S1 state of muonium. This mean
that the hyperfine splitting in muonium emerges as a high
order effect inm1 /m2 . The functionsf i1 are given by the
following formulas:

f 215210m1p82 25p0p82110m1pp814p0pp8

24p08pp812m1p214p08p2112p0m1
226m1

2p08

14m1p0
218m1p0p0828m1p08

214p08p0
2 , ~37!

f 3152m1
2p82 14p0p82 110m1pp824p0pp814p08pp8

210m1p225p08p226m1
2p0112m1

2p0828m1p0
2

18m1p0p0814m1p08
214p0p08

2 , ~38!

f 4152m1p82 1p0p82 22m1pp814p0pp812p08pp8

210m1p228p08p2212m1
2p016m1

2p0814m1p0
2

24m1p0p0814m1p08
228p08p0

2 , ~39!

f 515210m1p82 28p0p82 22m1pp812p0pp8

14p08pp812m1p21p08p216m1
2p0212m1

2p08

14m1p0
224m1p0p0814m1p08

228p08
2p0 , ~40!

f 615210m1p82 25p0p82 22m1pp824p0pp8

24p08pp8210m1p225p08p226m1
2p0828m1p0

2

24m1p0p0828m1p08
2 . ~41!

The integrand in~33! has simple poles in variablesp0

and p08 in the electron, muon, and photon propagato
Hence, the most natural way to integrate in~31! is to evalu-
ate the integrals with respect to the energiesp0 andp08 in the
initial state via residue theory. Nevertheless, this meth
leads to extremely complicated intermediate expressio
-

e

e-

r-

.

d
s,

which makes subsequent analytic integration over the sp
momentap and p8 highly problematic. We have therefor
taken a different approach to integration in~33!, transform-
ing the denominators of the muon propagators with an ey
achieving the required numerical accuracy inm1 /m2 . As-
suming that the spatial momentumupu of the muon in the
intermediate state is less thanm2 , we find that

Dm~p!5p22w212m2p0'2m2S p02
p21w2

2m2
1 i e D

'2m2~p01 i e!, ~42!

where the second approximate equality means that we h
ignored the muon kinetic energy in the intermediate sta
Here we assume that the path of integration with respec
p0 is closed in the lower half-plane. If in the numerators
the six amplitudes we examine terms proportional tom2

2 @the
functionsf 12(p,p8)], we see that we must transform the su
of terms with muon denominators in~30!. If we then use the
second approximate equality in~42!, we find that

1

Dm~2p!Dm~2p8!
1

1

Dm~2p!Dm~p82p!

1
1

Dm~2p8!Dm~p2p8!
1

1

Dm~p!Dm~p2p8!

1
1

Dm~p8!Dm~p82p!
1

1

Dm~p8!Dm~p!

'
~22p i !d~p0!

2m2

~22p i !d~p08!

2m2
. ~43!

In the energy spectrum these terms lead to ordera4 cor-
rections, which cancel similar terms from the iterative ter
in the quasipotential. Hence to calculate the ordera6 contri-
butions of interest, we must use the first approximate eq
ity in ~42!. Now we take the difference

1

2m2~p02~p21w2!/2m21 i e!
2

1

2m2~p01 i e!

'
p21w2

4m2
2~p01 i e!2

, ~44!

and write 1/Dm(p) in the form

1

Dm~p!
'

1

2m2~p01 i e!
1

p21w2

4m2
2~p01 i e!2

. ~45!

The second term on the right-hand side of~41! is of a higher
order inm1 /m2 than the first, but provides a correction of th
required order ina. Using the representation~45!, from ~43!
we extract the terms of the required order ina. These terms
are
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TABLE II. Two-loop integralsKi of the type~48! in the three-photon exchange integrals emerging in calculations of muonium fine structure.

p2~p–p8! ~p–p8!2 p82 ~p–p8! w2~p–p8!

K1 2 ln 22
1

2
2 ln 22

1

2
2 ln 22

1

2
0

p2~p822p–p8! p–p8~p822p–p8! w2~p82 2p–p8! w2p2

K2
1

2
ln

m1

2w
2

1

32

1

4
ln

m1

2w
2

13

32

5

32

2

3

p82 pp8 p2 w2

K3 – 1

4
ln

m1

2w
2

1

4

1

2
ln

m1

2w
2

1

8

1

8

K4
1

2
ln

m1

2w
2

1

8

1

4
ln

m1

2w
2

1

4
– 1

8

K5 ln 2 ln 22
1

2
ln 2 0
e

-

m
o
d
s
t

o

r
nte-

n,

of
in-
p82 1w2

8m2
3 F2p id~p08!

~p01 i e!2
2

2p id~p082p0!

~p01 i e!2
2

2p id~p0!

~p081 i e!2G
1

p21w2

8m2
3 F22p id~p08!

~p01 i e!2
2

2p id~p082p0!

~p01 i e!2

1
2p id~p0!

~p081 i e!2G1
~p2p8!21w2

8m2
3 F2

2p id~p08!

~p01 i e!2

1
2p id~p082p0!

~p01 i e!2
2

2p id~p0!

~p081 i e!2G . ~46!

The explicit form of the three-photon interaction amplitud
of type ~33! suggests that the terms in~46! yield corrections
of the required order ina in the energy spectrum. Correc
tions of the same order inm1 /m2 as in ~46! originate in the
quasipotential terms that contain the functionsf i1(p,p8) if
for the muon denominators one uses the second approxi
equality in~42!. To draw some conclusion about the order
the corrections in the energy spectrum that are determine
these quasipotential terms, it is useful to subject the term
certain transformations. For the sake of definiteness, in
functions f i1(p,p8) we examine the massless terms prop
tional to p2, p82, andpp8:

3p2F 1

Dm~p!
1

1

Dm~2p!
2

1

Dm~p2p8!
2

1

Dm~p82p!
G

13p82F 1

Dm~2p8!
1

1

Dm~p8!
2

1

Dm~p82p!

2
1

Dm~p2p8!
G26pp8F 1

Dm~2p8!
1

1

Dm~p8!

1
1

Dm~2p!
1

1

Dm~p!
2

1

Dm~p82p!
2

1

Dm~p2p8!
G

s

ate
f
by
to

he
r-

'
3p2

2m2
@22p id~p0!12p id~p02p08!#

1
3p82

2m2
@22p id~p08!12p id~p02p08!#

2
6pp8

2m2
@22p id~p0!22p id~p08!12p id~p02p08!#.

~47!

The other terms inf i1(p,p8) can be transformed in a simila
manner. The next stage in the calculations amounts to i
grating expressions like~46! or ~47!. A typical two-loop in-
tegral emerging in the process has the structure17

Ki5~4p!2E d4p d4p8

2~2p!8

Gi~p08 ,p0 ,m1!P~p,p8,w!

~p82 2w21 i e!@~p2p8!21 i e#

3
1

~p22w21 i e!De~p8!De~p!
, ~48!

whereGi(p08 ,p0 ,m1) necessarily contains a delta functio
and P(p8,p,w) a polynomial. In calculating~48!, we used
Feynman’s parametrization to combine the denominators
the particle propagators, along with the symmetry of the
tegral under the interchangep↔p8. In this paper we have
the following set of functionsGi(p08 ,p0 ,m1):

G152
2p id~p02p08!2m1

~p01 i e!2
, G252

2p id~p0!2m1

~p081 i e!2
,

G3522p id~p0!2m1 , G4522p id~p08!2m1 ,

G5522p id~p02p08!2m1 . ~49!

The calculation of integrals like~48! with different Gi

andP functions was done by Bodwinet al.17 The results of
calculations of the basis integrals~48! are listed in Table II.
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Then the contributions determined by expressions~37!–~41!
and ~46! are, respectively,

dB1
3g52

1

2
~Za!6

m1
2

m2
, ~50!

dB2
3g5~Za!6

m1
2

m2
S 6 ln 22

11

48D . ~51!

The ‘‘infrared’’ logarithms lnw, which contain the pho-
ton mass~see the integralsKi in Table II! introduced in~48!
and emerge in the intermediate calculations, cancel out in
correctionsdB1

3g anddB2
3g .

We now examine the quasipotential terms containing
momenta of relative motion of the particles in the initial a
final states, which we denote byr1 and r2 . Allowing for
these terms leads to the following corrections to the fu
tions f i1 :

D f 21510m1p8r 215p0p8r 21m1pr213p08pr2 , ~52!

D f 3152m1p8r 123p0p8r 1210m1pr125p08pr1 , ~53!

D f 415m1~7p8r 115p8r 2110pr115pr2!16p0p8r 1

15p0p8r 218p08pr115p08pr2 , ~54!

D f 515m1~25p8r 1210p8r 225pr127pr2!25p0p8r 1

28p0p8r 225p08pr126p08pr2 , ~55!

D f 615m1~211p8r 1211p8r 2211pr1211pr2!

28p0p8r 128p0p8r 228p08pr128p08pr2 . ~56!

Allowing for the symmetry of the resulting integrals und
simultaneous interchangesp↔p8 and r 1↔r 2 , we find that
the integrals of the expressions~52!–~56! cancel. Hence the
contribution of the relative motion of the particles to the fi
structure in the required order inm1 /m2 vanishes. Thus, the
total value of the order (Za)6m1

2/m2 correction originating
in the three-photon exchange diagrams for theS states of a
hydrogen-like system is the sum of~50! and ~51!:

DB85dB1
3g1dB2

3g5~Za!6
1

n3

m3

m1m2
S 6 ln 22

35

48D .

~57!

6. DISCUSSION

In this paper, using the diagrammatic quasipotential
proach, we calculated all possible corrections of or
(Za)6m1

2/m2 to then 3S1 levels of a hydrogen-like system
these were required for a comparison with the experiment
measured 23S1– 1 3S1 interval @see Eq.~2!#. Note that these
corrections differ from the corrections of the correspond
order in the Lamb shift for the hydrogen atom.13 Our final
result, given by the sum of theDBi terms in~4!, ~8!, ~11!,
~13!, ~24!, ~27!, ~32!, and~57!, is
he

e

-

-
r

ly

g

DBtot5S 91

12
ln 2 2

545

144
2

17

6n
2

37

36n2
1

187

96n3D
3

m1
2~Za!6

m2n3
1«n , ~58!

where

«n55 2
23m1

2~Za!6

12m2
, n51,

2
31m1

2~Za!6

128m2
, n52.

The numerical value of~58! for the ‘‘large’’ muonium
fine-structure interval 23S1– 1 3S1 is 0.19 MHz. Earlier cal-
culations of recoil corrections of order (Za)6m1

2/m2
2 for theS

levels of the hydrogen atom were done in Refs. 6–9. T
total contribution of the required order to the energy sp
trum of theS states obtained by Eides and Grotch8 via the
Braun formula is

DEtot5S 1

8
1

3

8n
2

1

n2
1

1

2n3D ~Za!6m1
2

m2n3

1S 4 ln 22
7

2D ~Za!6m1
2

m2n3
. ~59!

The first term on the right-hand side, which contains a n
trivial dependence on the principal quantum number, w
obtained by different authors taking different approaches6–9

In the approach based on Braun’s formula, this contribut
is singled out, and is governed by one-photon Coulomb
change. In our approach, which uses the local quasipote
equation~3!, corrections of this type originate in both th
one-photon exchange quasipotential and the two-photon
change quasipotential, as well as in second-order pertu
tion theory. Comparing~58! and ~59!, we see that the ana
lytic expression~58! for the contribution differs somewha
from ~59!. The quasipotential of theS states of a hydrogen
like atom has the structure

V~r !5V1~r !1~s1–s2!V2~r !.

In our calculations we allowed for both the contribution
the first term inV(r ) to the energy spectrum and the seco
~spin-dependent! part of V(r ). Eides and Grotch8 and
Yelkhovsky9 studied only the contribution ofV1(r ), so that
the difference between~58! and~59! is perfectly understand
able, and our results are consistent with those of Refs. 8
9. To a certain extent, it is useful to compare the numer
values of the corrections~58! and ~59! for muonium levels
with n51 and n52. These values are, respectivel
20.212 MHz and20.065 MHz for n51 and20.021 MHz
and 20.006 MHz forn52. The contribution of the correc
tion ~58! to the hydrogen atom interval 2S– 1S is 21.5 kHz,
and the values of the corresponding contributions obtaine
Refs. 8 and 9 are 6.6 kHz~Ref. 8! and 14.5 kHz~Ref. 9!.
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Stabilization of an atom in a strong laser field
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A quasiresonant laser field initiates the decay of an initially occupied atomic level into the
continuum. If the amplitude of the external field is sufficiently high, other atomic levels, not
meeting the condition for exact resonance, begin to participate in the atomic dynamics.
This phenomenon leads to the stabilization of the atom. ©1999 American Institute of Physics.
@S1063-7761~99!00604-6#
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1. INTRODUCTION

During recent years extensive research has been
ducted in the field of the dynamics of an atom in intense a
superintense laser light. A nontrivial effect in this field
quantum physics is the stabilization of the atom. Supp
that an atom is placed in a laser field whose frequency
isfies the resonance condition, i.e., the field is in resona
with the transition from the occupied atomic level to t
continuum. From a ‘‘naive’’ standpoint, the greater the a
plitude of the external field, the faster the initially occupi
atomic level will decay into the continuum. The analysis o
decay of an atom into the continuum initiated by a reson
laser leads to the relationshipk}r 2, wherek is the corre-
sponding relaxation constant, andr is the amplitude of the
external field in appropriate units~see, e.g., Ref. 1!. How-
ever, a careful study shows that the dependence of the re
ation constant on the external-field amplitude may be
tremely complex.2–7 Various physical phenomena leading
a nontrivial behavior ofk(r ), such as resonant stabilizatio
adiabatic stabilization, and interference stabilization, h
been described in the literature~a discussion of this aspec
and the literature can be found in Ref. 2!. This paper dis-
cusses one more physical phenomenon that effectively le
to stabilization of the atom.

Let us take an initially occupied atomic level. An exte
nal laser field initiates the decay of the level into the co
tinuum. We assume that there is also a set of atomic le
out of exact resonance with the specified level and the c
tinuum. However, the very notion of exact resonance or
nates in perturbation theory. As the amplitude of the exter
field increases, the levels~from the perturbation-theory view
point! that were not in exact resonance with the occup
level begin to effectively interact with that level. We will se
that this interaction can significantly alter the ionization
the atom.

2. DYNAMICS OF THE PHYSICAL SYSTEM

We study the simplest situation by assuming that ther
only one ‘‘additional’’ level, which can begin to interac
with the initially occupied level as the amplitude of the e
6811063-7761/99/88(4)/4/$15.00
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ternal field increases~see the level diagram in Fig. 1!. The
dynamics of such a system is described by the Schro¨dinger
equation

i\
]C~ t !

]t
5@H01xF~ t !#C~ t !, ~1!

with the external fieldF(t)5R cosVt. Let u0&, u1&, anduE&
be the wave functions of the initially occupied level, th
additional level, and the states in the continuum,EPK
5@Ec ,`#. We expand the wave function of the atom in th
set of states:

C~ t !5A0~ t !u0&1A1~ t !u1&1E
K
B~E,t !uE& dE. ~2!

If we substitute this expansion into Eq.~1!, we obtain a
set of equations

i\A08~ t !5E0A0~ t !1R cos~Vt !

3H g1A1~ t !1E
K
B~E,t !g~E! dEJ ,

i\A18~ t !5E1A1~ t !1R cos~Vt ! g1A0~ t !,

i\B8~E,t !5EB~E,t !1R cos~Vt ! g~E!A0~ t !,

C8~ t ![
]C~ t !

]t
,

where g1 and g(E) are the corresponding elements of t
atomic dipole-moment operator. We assume that the
quencyV of the external field~the field that transfers stat
u0& into the continuum! is much higher than all other fre
quency parameters. This assumption makes it possible to
ploy the rotating wave approximation~RWA!. Using the
substitutions

B~E,t !5exp$2 i ~V1 E0/\!t%b~E,t !,

A0~ t !5exp$2 iE0t/\% a0~ t !,

A1~ t !5exp$2 i ~E0/\ 2V!t% a1~ t !

and introducing the variable§ via E5(§1V)\1E0, we can
eliminate the optical frequency:
© 1999 American Institute of Physics
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ia08~ t !5r Fg1a1~ t !1E
K
g~z!b~z,t ! dzG , ~3!

ia18~ t !5D1a1~ t !1rg1a0~ t !, ~4!

ib8~§,t !5zb~zt !1rg~z!a0~ t !, ~5!

where r 5R/2\, and D15(E12E0)/\1V is the offset of
the laser-light frequency from the frequency of the transit
between the discrete levels.~For objects related to§ we use
the same notation as for objects related to the variableE.!
Here we are interested in the solution of the system of eq
tions ~3!–~5! with the initial conditions

a0~0!51, ~6!

a1~0!50, ~7!

b~§,0!50. ~8!

Using the initial condition~8! and integrating Eq.~5!, we
find that

b~§,t !52 irg ~z!E
0

t

exp@ i z~x2t !# a0~x! dx. ~9!

Substituting this into Eq.~3! yields

a08~ t !52 irg 1a1~ t !2r 2E
0

t

a0~x!Q~ t2x! dx, ~10!

Q~y!5E
K
g2~z!exp@2 iyz# dz.

Equation~10!, Eq. ~4!, and the initial conditions~6! and
~7! constitute a complete system of equations for finding
functionsa0(t) anda1(t). This system of equations can b
solved by the Laplace transform method. However, we w
use a different approach, applicable also in the case of n
trivial modulation of the external field. More precisely, w
resort to certain asymptotic considerations.

Let us examine the structure of the functionQ(y). We
assume thatg(z) changes significantly only under variation
of its argument~we denote the corresponding parameter
D) that are much larger than other energy parameters~or, in
corresponding units of measurement, frequency parame!
of the problem. Thus,g(z)5v(z/D), with v8(y) andv9(y)
being of the same order asv(y) for y5O(1). Let§5Ds and
Q(y)5Dq(y), where

FIG. 1.
n
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q~y!5E
K1

v2~s!exp@2 iyDs# ds.

Under our assumptions,q(y) is the ‘‘fast’’ ~or rapidly vary-
ing! function. The second term on the right-hand side of E
~10! is the integral of the product of the ‘‘fast’’ and ‘‘slow’’
functions. To obtain an asymptotic expansion@in the small
parameter max(urg1u,uD1u)/D)] of such an integral, it suffices
to integrate by parts.8 After the first step has been complete
instead of~10! we have

a08~ t !52 irg 1a1~ t !2r 2a0~ t !@ iS1pg2~0!#, ~11!

where

S5V.P.E
K1

v2~s!

s
ds

is the corresponding Stark shift of the edge of the continuu
Note that we derived Eq.~11! by assuming thatV@D

@max(urg1u,uD1u). This means that we set up the leading te
in the expansion of the solution of the initial problem in th
small parametersD/V and (rg1 ,uD1u)/D. But Eq. ~11! is
valid even if D@V@rg1 , uD1u. In this case to derive the
equation we must reverse the order of operations: we
expand the analog of Eq.~10! in the small parameterV/D,
and then, employing RWA~i.e., eliminating the optical pa-
rameter!, set up the leading term in the expansion of t
solution in the small parameter (rg1 ,uD1u)/V. Here the pos-
sibility of using RWA can be justified by standard mean
We leave out the mathematical details, since it is are sim
to the approach discussed in Ref. 8.

We write the system of equations~4! and ~11! in the
form

A8~ t !5LA~ t !, ~12!

A5S a0~ t !

a1~ t !
D , L5S 2r 2@ iS1pg2~0!# 2 irg 1

2 irg 1 2 iD1
D ,

A~0!5S 1

0D . ~13!

The eigenvalues of the matrixL can easily be calcu-
lated:

l152 pr 2g2~0!/2 2 i @D11r 2S#/2

1@~pr 2g2~0!1 i ~r 2S2D1!!22r 2g1
2#1/2, ~14!

l252 pr 2g2~0!/2 2 i @D11r 2S#/2

2@~pr 2g2~0!1 i ~r 2S2D1!!22r 2g1
2#1/2. ~15!

Let c1 and c2 be the corresponding eigenvectors~we
will not write the expressions for these eigenvectors, wh
are states of the atom ‘‘dressed’’ by the field!. We wish to
note, however, thatc25A(0) at r 50.

Figures 2 and 3 depict typical plots of the functio
k1(r )52Rel1(r ) and k2(r )52Rel2(r ) of the corre-
sponding relaxation constants. Figure 4 depicts the ra
k2 /k1 as functions ofr. As noted in Ref. 9, the real values o
the parametersg(0) andg1 are poorly known. For this rea
son we used estimates:g(0)50.2, g151.5, S51, D1528
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~for curvesA!, D1524 ~for curvesB!, D150 ~for curves
C!, D154 ~for curvesD!, and D158 ~for curvesE!. Note
that the curves representingk2(r ) for our values ofD1 are
essentially identical. These diagrams suggest that as the
plitude r of the external field increases, the values of t
relaxation constants begin to differ appreciably. When
effective Rabi parameterrg1 becomes of orderD1, which is
the offset of the additional level from resonance, the rel
ation constants differ already by an order of magnitu
Within a broad range of the parameters, the ratio of th
quantities assumes values of order 10–102or 1021 ~see Fig.
4!. Although the choice of the values of the parametersg(0),
g1, andS is random~to a certain extent! and hence the prob
lem is actually a model, similar behavior of these curves
be observed within a broad range of values ofg(0), g1, and
S. Note that disparate physical processes can be examine
this model, such as the ionization of Rydberg atoms, pho
ejection of an electron from an ion, and ionization of ‘‘atom
like’’ quantum well systems. Of course, the parameters
the model in these cases may be quite different.

FIG. 2.

FIG. 3.
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In light of these results, let us discuss the dependenc
the ionization of our model atom on the amplitude of t
external field. The solution of the initial problem specified
~12! and ~13! can be written

A~ t !5exp~l1t ! p1c11exp~l2t ! p2c2 , ~16!

where p1 and p2 are the coefficients of the expansion
A(0) in the basisc1 ,c2. As noted earlier, for small ampli
tudes of the external field,p2 is close to unity andp1 is close
to zero. However,p1 increases withr, and whenrg1 be-
comes of orderD1 , p1 becomes comparable to unity. The
as Eq.~16! implies, the rate of decay of the population of th
atom into the continuum is determined by both relaxat
constants. Here the part of the population referring to
‘‘dressed’’ statec1 decays much slower than the part corr
sponding to the ‘‘dressed’’ statec2. This phenomenon can
be interpreted as stabilization of the atom in a strong la
field.

3. CONCLUSION

We have discussed one more physical mechanism for
stabilization of an atom in a strong laser field that diffe
from those discussed earlier~see, e.g., Ref. 2!. We have
found that the existence of a group of levels ‘‘close’’
resonance with an initially occupied level can lead to tra
ping of the population of the atom and substantial alterat
of the ionization process. Formally this manifests itself in t
system being characterized by several relaxation const
that differ substantially in order of magnitude.~Note that the
largest relaxation constant for such a system is close to
relaxation constant for the level–continuum system cal
lated by ordinary perturbation theory,k5pr 2g2(0); seeRef.
1!. Of course, the case we have examined is only a mo
but a more general physical system exhibits similar prop
ties ~e.g., a system with several ‘‘additional’’ levels or
system in which some of these levels interact with the c
tinuum!. In real situations the stabilization of an atom m
occur for various reasons or even a group of reasons. N
that our range of parameters (rg1!D!V) differs from that

FIG. 4.



ab

er

e
la
th
y
be

i
a
th
a

th
ic
e
f

n
o
d

th

x-

ot

-

IV

684 JETP 88 (4), April 1999 A. Ya. Kazakov
discussed in Ref. 6 (D!rg1!V) and Ref. 7 (D,V!r eff ,
where r eff is a parameter interpreted as the effective R
parameter in the case of ultrastrong fields!.

After this paper had been prepared for publication, th
appeared Polue´ktov and Fedorov’s paper10 in which ‘‘inter-
ference’’ stabilization was discussed forL and V systems.
Formally, the problem discussed in Ref. 10~and in the ear-
lier paper in Ref. 9! is close to the one discussed in th
present paper. Both are based on the same fact: a strong
field induces states of the atom that are ‘‘dressed’’ by
field ~we denote these states byC f) and have a small deca
rate. In ‘‘interference’’ stabilization, such states emerge
cause of the interference of transitions from different atom
levels into the continuum and play an important role at
values of the external-field amplitudes. In our case, when
amplitude of the external field is low, these states have
most no effect on the dynamics of the atom; only when
amplitude is large do they begin to determine the dynam
There are two reasons for this. First, in our case the v
structure of theC f-states~the state is a linear combination o
the unperturbed states of the atom! depends more strongly o
the amplitude of the external field than it does in the case
‘‘interference’’ stabilization. Second, within the propose
stabilization mechanism, the coefficientp2 in ~16! ~which
describes the relationship between the initial state of
i

e

ser
e

-
c
ll
e
l-
e
s.
ry

f

e

atom andC f) strongly depends on the amplitude of the e
ternal field ~which tends to zero asr decreases!, while its
analog in the case of ‘‘interference’’ stabilization does n
undergo such substantial changes.
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Pseudogap phase formation in the crossover from Bose–Einstein condensation
to BCS superconductivity

V. P. Gusynin* ) and V. M. Loktev†)
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S. G. Sharapov
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A phase diagram for a 2D metal with variable carrier density has been derived. It consists of a
normal phase, where the order parameter is absent: a so-called ‘‘abnormal normal’’ phase
where this parameter is also absent but the mean number of composite bosons~bound pairs!
exceeds the mean number of free fermions; a pseudogap phase where the absolute value
of the order parameter gradually increases but its phase is a random value, and finally a
superconducting~here Berezinski�–Kosterlitz–Thouless! phase. The characteristic
transition temperatures between these phases are found. The chemical potential and paramagnetic
susceptibility behavior as functions of the fermion density and the temperature are also
studied. An attempt is made to qualitatively compare the resulting phase diagram with the features
of underdoped high-Tc superconducting compounds above their critical temperature.
© 1999 American Institute of Physics.@S1063-7761~99!00704-0#
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1. INTRODUCTION

The study of the crossover region between supercond
tivity of Cooper pairs and superfluidity of composite boso
is attracting much attention due to its close relationship
the problem of describing high-temperature superconduc
~HTSC! ~see, e.g., Refs. 1–3!. At present this region is un
derstood for 3D systems, both at zero and fin
temperatures.4,5 The crossover in quasi-2D systems has a
been studied,6 albeit only partially, whereas for 2D system
only the case ofT50 has been studied thoroughly.4,7 This is
related to the fact that fluctuations of the charged comp
order parameter in 2D systems are so large that they des
long-range order at any finite temperature~Coleman–
Mermin–Wagner–Hohenberg~CMWH! theorem8!. In this
case the appearance of an inhomogeneous condensate
power-law decay for the correlations~the so-called
Berezinski�–Kosterlitz–Thouless~BKT! phase! is possible.
However an adequate mathematical description for B
phase formation is still lacking.

Most previous analyses9–11 of the behavior of 2D sys-
tems atTÞ0 have been based on the Nozie`res–Schmitt–
Rink approach.12 This approach is simply a Gaussian a
proximation to the functional integral, and this perha
explains the difficulties faced in these calculations. On
one hand, Gaussian fluctuations destroy long-range orde
2D and if one searches for theTc

2D at which the order sets in
one should obtain zero in accordance with the aforem
tioned theorems.8 On the other hand, taking Gaussian flu
tuations into account is completely inadequate to desc
the BKT transition.13

Nonetheless, there has been some progress. For exa
the BKT transition has been studied in relativis
6851063-7761/99/88(4)/11/$15.00
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211-theory,14 and the crossover from superconductivity
superfluidity has been considered15 as a function of the car-
rier densitynf ~see also Ref. 16!. However, the method em
ployed in Ref. 15 to obtain the temperatureTBKT has several
drawbacks. Most importantly, the equation forTBKT was ob-
tained without considering the existence of a neutral~real!
order parameterr, whose appearance at finiteT does not
violate the CMWH theorem.

As we show below,r defines the modulus of a multival
ued complex order parameterF for a 2D system. As a resul
of allowing for a neutral order parameter, a region wherer
decays gradually to zero appears in the phase diagram o
system. This region separates the standard normal phase
r50 from the BKT phase, where the correlations exhi
power-law decay. Despite the exponential decay of corre
tions, this new region of states may be expected to pos
unusual properties, sincer plays the same role as the ener
gap D in the theory of ordinary superconductors in ma
cases.1! The possible existence of such a phase, which
some sense is also normal, may shed light on the anoma
behavior of the normal state of HTSC~see, for example, the
reviews in Refs. 1, 2, and 18!. In particular, the temperatur
dependencies of the spin susceptibility, resistivity, spec
heat, photoemission spectra, and other quantities2,19 can be
explained by the formation of either a pseudogap or a s
gap in the regionT.Tc .

Using a very simple continuum 2D model, this approa
was first attempted in a brief note,20 where we calculated
TBKT andTr ~Tr is the temperature defined by the conditio
r50! self-consistently as functions ofnf , and established
the boundaries of this newpseudogapregion, which lies be-
tweenTBKT andTr .
© 1999 American Institute of Physics
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The purpose of this article is to develop this approa
further. Using the static paramagnetic susceptibility as
example, we demonstrate that the pseudogap opens b
Tr . Furthermore, we analyze the difference between
commonly used~see Refs. 3 and 4! pairing temperatureTp

and the temperatureTr introduced here. These temperatur
turn out to be different if the chemical potentialm,0. We
also introduce here anabnormal normalphase, which lies
betweenTp and Tr , where performed bosons exist. Th
more detailed study helps to clarify the physical import
Tr , as well as the nature of the transition atTr . It was
believed in the related model14 that this is a second-orde
phase transition. We argue however, that fluctuations in
phase of the order parameter can transform the transition
crossover, as observed experimentally.

In Sec. 2 we present the model and the relevant form
ism. The equations forTBKT , r, Tr , and the chemical poten
tials m(TBKT) and m(Tr) are derived in Sec. 3. Since th
technique employed to obtain the equation forTBKT is not
widely used, we consider it useful to present a detailed d
vation of this equation.~The details of the calculation of th
effective potential and useful series are given in Appen
A.! The systems of equations forTBKT , r(TBKT), m(TBKT)
and Tr , m(Tr) are analyzed in Sec. 4. The difference b
tween pairing temperatureTp and the temperatureTr is dis-
cussed in Sec. 5. Also discussed is the physical import ofTr .
Using the example of the static spin susceptibility, it
shown in Sec. 6 that the resulting pseudogap phase ca
fact be used to explain the aforementioned anomalous p
erties of HTSC.

2. THEORETICAL FRAMEWORK

The simplest model Hamiltonian density for fermio
confined to a 2D volumev is4,7,9

H5cs
†~x!S 2

¹2

2m
2m Dcs~x!2Vc↑

†~x!c↓
†~x!c↓~x!c↑~x!,

~2.1!

where x[r ,t;cs(x) is a fermion field,m is the effective
fermion mass,m is the chemical potential, andV is an effec-
tive local attraction constant; we take\5kB51.

The Hubbard–Stratonovich method, which is stand
for these problems,21 can be applied to write the partitio
functionZ(v,m,T) as a functional integral over Fermi field
~Nambu spinors! and the auxiliary fieldF5Vc↑

†c↓
† . In con-

trast to the usual method for calculatingZ in F, F* vari-
ables, the parametrizationF(x)5r(x)exp@2iu(x)# is more
appropriate for presenting the corresponding integral in
dimensions22 ~see also Refs. 23 and 24!. When this replace-
ment by modulus-phase variables is implemented, it is e
dent that one must also replacecs(x)5xs(x)exp@iu(x)/2#.
Physically, this amounts to replacing the charged ferm
cs(x) with a neutral fermionxs(x) and spinless charge
bosoneiu(x)/2. Note that while one may formally use an
self-consistent definition of the new variables, the physi
condition that the macroscopic variableF(x) be single-
h
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valued under 2p rotations fixes the parametrization. This w
not taken into account in Ref. 20, where a different para
etrization was used.

As a result, one obtains

Z~v,m,T!5E rDrDu exp@2bV~v,m,T,r~x!,]u~x!!#,

~2.2!

where

bV~v,m,T,r~x!,]u~x!!

5
1

V E
0

b

dtE drr2~x!2Tr ln G211Tr ln G0
21 ~2.3!

is the one-loop effective action, which depends on
modulus-phase variables. The action~2.3! can be expressed
in terms of the Green function of the initial~charged! fermi-
ons, which in the new variables has the operator form

G2152 Î ]t1t3S ¹2

2m
1m D1t1r~t,r !2t3F i ]tu~t,r !

2

1
~¹u~t,r !!2

8m G1 Î F i¹2u~t,r !

4m
1

i¹u~t,r !¹

2m G . ~2.4!

The free fermion Green functionG05Gum,r,u50 provides a
convenient regularization in the process of calculation. I
important that neither the smallness nor slowness of
variation of the phase of the order parameter is assum
in obtaining expression~2.3!. In other words, it is formally
exact.

Since the low-energy dynamics of phases for whichrÞ0
is governed mainly by long-wavelength fluctuations ofu(x),
only the lowest-order derivatives of the phase need be
tained in the expansion ofV(v,m,T,r(x),]u(x)):

V~v,m,r~x!,]u~x!!.Vkin~v,m,T,r,]u~x!!

1Vpot~v,m,T,r!, ~2.5!

where

Vkin~v,m,T,r,]u~x!!5T Tr(
n51

`
1

n
~G S!nU

r5const

~2.6!

and

Vpot~v,m,T,r!

5S 1

V E drr22T Tr ln G 211T Tr ln G0
21D U

r5const

.

~2.7!

The kineticVkin and potentialVpot parts can be expressed
terms of the Green function of the neutral fermions, whi
satisfies the equation

F2 Î ]t1t3S ¹2

2m
1m D1t1rGG ~t,r !5d~t!d~r !, ~2.8!

and the operator

S~]u![t3F i ]tu

2
1

~¹u!2

8m G2 Î F i¹2u

4m
1

i¹u~t,r !¹

2m G . ~2.9!
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The representation~2.5! enables one to obtain the full se
of equations necessary to findTBKT , r(TBKT), andm(TBKT)
at giveneF ~or, for example,r(T) andm(T) at givenT and
eF!. While the equation forTBKT will be written using the
kinetic part ~2.6! of the effective action, the equations fo
r(TBKT) andm(TBKT) @or r(T) andm(T)# can be obtained
using the mean field potential~2.7!: It turns out that at a
phase for whichrÞ0, the mean-field approximation for th
modulus variable describes the system quite well. This
mainly related to the nonperturbative character of
Hubbard–Stratonovich method, i.e., most effects carry o
for a nonzero value ofr.

It is clear that the CMWH theorem does not preclu
nonzero^r& and, as a consequence, an energy gap for
mion x, since no continuous symmetry is broken when su
a gap appears. Despite strong phase fluctuations in the
dimensional case, the energy gap in the spectrum of the
tral fermionx can still persist in the spectrum of the charg
fermion c,22 even well above the critical temperature.2! We
believe that the pseudogap widely discussed in high-Tc cu-
prates might be attributable to the energy gap of a neu
fermion introduced in the way described above, so that
pseudogap itself can be considered a remnant of the su
conducting gap. The condensate of neutral fermions
nothing to do with the superconducting transition; the lat
is only possible when the superfluid density of bosons
comes large enough to stiffen the phaseu(x). The tempera-
tureTr at which nonzerôr& develops should be identified i
this approach with the pseudogap onset temperature.2,19 The
strategy of treating charge and spin degrees of freedom
independent seems to be quite useful, and at the same ti
very general feature of two-dimensional systems.

3. DERIVATION OF SELF-CONSISTENT EQUATIONS
FOR TBKT , NEUTRAL ORDER PARAMETER,
AND CHEMICAL POTENTIAL

If the model under consideration is reduced to so
known model describing the BKT phase transition, one c
easily write the equation forTBKT , which in the present ap
proach can be identified with the superconducting transi
temperatureTc . Indeed, in the lowest orders the kinetic ter
~2.6! coincides with the classical spinXY-model,25,26 which
has the continuum Hamiltonian

H5
J

2 E dr @¹u~r !#2. ~3.1!

Here J is some coefficient~in the original classical discret
XY-model it is the stiffness of the relatively small spin rot
tions! andu is the angle~phase! of the two-component vecto
in the plane.

The temperature of the BKT transition is, in fact, know
for this model:

TBKT5
p

2
J. ~3.2!

Despite the very simple form3! of Eq. ~3.2!, it was derived
~see, e.g., Refs. 25 and 26! using the renormalization grou
technique, which takes into account the non-sing
is
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valuedness of the phaseu. Thus, fluctuations of the phase a
taken into account in a higher approximation than Gauss
The XY-model was assumed to be adequate for a qualita
description of the underdoped cuprates27 ~see also Ref. 28!,
and the relevance of the BKT transition to Bose- and BC
like superconductors was recently discussed in Ref. 16.

To expandVkin up to;(¹u)2, it is sufficient to restrict
ourselves to terms withn51,2 in the expansion~2.6!. The
calculation is similar to that employed in Ref. 29, where on
high densitiesnf were considered atT50. Thus, to obtain
the kinetic part, one should directly calculate the first tw
terms of the series~2.6!, which can be formally written
Vkin

(1)5TTr(G S) and Vkin
(2)5(1/2)TTr(G SG S). We note

that S has the structureS5t3O11 ÎO2 , whereO1 and O2

are differential operators@see~2.9!#. One can see, howeve
that the part ofS proportional to the unit matrixÎ does not
contribute toVkin

(1) . Hence,

Vkin
~1!5TE

0

b

dtE dr
T

~2p!2 (
n52`

` E dk Tr@G ~ ivn ,k!t3#

3S i ]tu

2
1

~¹u!2

8m D , ~3.3!

where

G ~ ivn ,k!52
ivnÎ 1t3j~k!2t1r

vn
21j2~k!1r2 ~3.4!

is the Green function of neutral fermions in the frequenc
momentum representation, withj(k)5«(k)2m and «(k)
5k2/2m.

The summation over the Matsubara frequenciesvn

5p(2n11)T and integration overk in ~3.3! can be easily
performed using the sum~A7!; thus one obtains

Vkin
~1!5TE

0

b

dtE drnF~m,T,r!S i ]tu

2
1

~¹u!2

8m D , ~3.5!

where

nF@m,T,r~m,T!#5
m

2p HAm21r21m12T

3 ln F11expS 2
Am21r2

T D G J . ~3.6!

This has the form of a Fermi quasiparticle density~for r50
the expression~3.6! is simply the density of free fermions!.

For the caseT50,23,29 in which real time t replaces
imaginary timet, one can argue from Galilean invarianc
that the coefficient of] tu is rigorously related to the coeffi
cient of (¹u)2. It therefore does not appear inVkin

(2) . We
wish, however, to stress that these arguments cannot be
to eliminate the term (¹u)2 from Vkin

(2) when TÞ0, so we
must calculate it explicitly.

The O1 term in S yields
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Vkin
~2!~O1!5

T

2 E
0

b

dtE dr2
T

~2p!2

3 (
n52`

` E dk Tr@G ~ ivn ,k!t3G ~ ivn ,k!t3#

3S i ]tu

2
1

~¹u!2

8m D 2

. ~3.7!

Using ~A11! to compute the sum over the Matsubara f
quencies, we find that

Vkin
~2!~O1!52

T

2 E
0

b

dtE drK~m,T,r!S i ]tu1
~¹u!2

4m D 2

,

~3.8!

where

K@m,T,r~m,T!#5
m

8p S 11
m

Am21r2
tanh

Am21r2

2T D .

~3.9!

Obviously, theO1 term does not affect the coefficient o
(¹u)2. Further, it is easy to make sure that the cross te
involving O1 andO2 in Vkin

(2) is absent. Finally, calculation
of the O2 contribution toVkin

(2) yield4!

Vkin
~2!~O2!5TE

0

b

dtE dr
T

~2p!2 (
n52`

` E dk k2Tr

3@G ~ ivn ,k! Î G ~ ivn ,k! Î #
~¹u!2

16m2 . ~3.10!

Thus, summing over the Matsubara frequencies@see Eq.
~A12!#, one obtains

Vkin
~2!~O2!52E

0

b

dtE dr
1

128p2m2

3E dk
k2

cosh2
Aj2~k!1r2

2T

~¹u!2. ~3.11!

As expected, this term vanishes whenT→0, but at finiteT it
is comparable with~3.5!.

Combining~3.5!, ~3.11!, and~3.8! we finally obtain

Vkin5
T

2 E
0

b

dtE dr @nF~m,T,r!i ]tu1J~m,T,r!~¹u!2

1K~m,T,r!~]tu!2#, ~3.12!

where

J@m,T,r~m,T!#5
1

4m
nF~m,T,r!

2
T

4p
E

2m/2T

`

dx
x1m/2T

cosh2Ax21
r2

4T2

~3.13!
-

characterizes the phase stiffness and governs the sp
variation of the phaseu~r !. One can see that our value of th
phase stiffnessJ(T50) coincides with the nonrenormalize
stiffness used in Ref. 27.

The quantityJ(m,T,r) vanishes atr50, which means
that aboveTr the modulus-phase variables are meaningle
to study the model in this region one must use the old v
ablesF andF* . NearTr one can obtain from~3.13! in the
high-density limit~see below!

J~m.eF ,T→Tr ,r→0!5
7z~3!

16p3

r2

Tp
2 «F.0.016

r2

Tr
2 eF .

~3.14!

Direct comparison of~3.12! with the Hamiltonian of the
XY-model~3.1! makes it possible to write Eq.~3.2! for TBKT

directly:

p

2
J@m,TBKT ,r~m,TBKT!#5TBKT . ~3.15!

Although mathematically this reduces to a well-known pro
lem, the analogy is incomplete. Indeed, in the standardXY-
model ~as well as the nonlinears-model! the vector~spin!
subject to ordering is assumed to be a unit vector with
dependence onT.5! In our case this is definitely not the cas
and a self-consistent calculation ofTBKT as a function ofnf

requires additional equations forr and m, which together
with ~3.15! form a complete set.

Using the definition~2.7!, one can derive the effective
potentialVpot(v,m,T,r) ~see Appendix A!. Then the desired
missing equations are the condition]Vpot(r)/]r50 that the
potential ~A10! be minimized, and the equality
v21]Vpot/]m52nf , which fixes nf . These are, respec
tively

1

V
5E dk

~2p!2

1

2Aj2~k!1r2
tanh

Aj2~k!1r2

2T
, ~3.16!

nF~m,T,r!5nf , ~3.17!

wherenF(m,T,r) is defined by~3.16!
Equations~3.16! and ~3.17! comprise a self-consisten

system for determining the modulusr of the order paramete
and the chemical potentialm in the mean-field approximation
for fixed T andnf .

While Eqs.~3.16! and~3.17! seem to yield a reasonabl
approximation at high densitiesnf , since they include con-
densed boson pairs in a nonperturbative way via nonzerr,
they must certainly be corrected in the strong coupling
gime ~low densitiesnf! to take into account the contributio
of noncondensed bosons~this appears to be important als
for Eq. ~3.15!, which determinesTBKT). The extent to which
this alters the present results is not completely clear. Pr
ously, the best way to incorporate noncondensed p
seems to have been the self-consistentT-matrix
approximation,10,30–32 which allows one to account for th
feedback of pairs on the self-energy of fermions. Howev
the T-matrix approach, at least in its standard form,10,30–32

fails to describe the BKT phase transition, for which o
must consider the equation for the vertex. On the other ha
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in our approach the BKT phase transition is realized by
condition ~3.2!, while an analog of theT-matrix approxima-
tion in terms of propagators of ther-particle and the neutra
fermion x has yet to be elaborated.

The energy of two-particle bound states in vacuum

«b522W expS 2
4p

mVD ~3.18!

~see Refs. 4, 7, and 33! is more convenient to use than th
four-fermion constantV ~here W is the conduction band
width!. For example, one can easily take the limitsW→`
and V→0 in Eq. ~3.16!, which after this renormalization
becomes

ln
u«bu

Am21r22m
52E

2m/T

`

du

3
1

Au21S r

T
D 2FexpAu21S r

T
D 2

11G .

~3.19!

Thus, in practice, we solve Eqs.~3.15!, ~3.17!, and ~3.19!
numerically to studyTBKT as function ofnf ~or equivalently,
of the Fermi energyeF5pnf /m, as it should be for 2D
metals with the simplest quadratic dispersion law!.

It is easy to show that atT50, the system~3.17!, ~3.19!
transforms into a previously studied system~see Ref. 4 and
references therein!. Its solution is r5A2u«bueF and
m52u«bu/21eF . This will be useful in studying the con
centration dependencies of 2D/TBKT and 2D/Tr , whereD is
the zero-temperature gap in the quasiparticle excitation s
trum. It should be borne in mind that in the local pair regim
~m,0!, the gapD equalsAm21r2 rather thanr ~as in the
casem.0!.4

Settingr50 in Eqs.~3.16! and~3.17!, we obtain~in the
same approximation! the equations for the critical tempera
ture Tr and the corresponding value ofm:

ln
u«bu
Tr

g

p
52E

0

m/2Tr
du

tanhu

u
~g51.781!, ~3.20!

Tr lnF11expS m

Tr
D G5eF . ~3.21!

Note that these equations coincide with the system that
termines the mean-field temperatureTc

(2D)MF(5Tr) and
m(Tc

(2D)MF),7 evidently as a result of the mean-field appro
mation for the variabler used here. There is, however, a
important difference between the temperaturesTc

2D andTr .
Specifically, if one takes fluctuations into account,Tc

2D goes
to zero, while the value ofTr remains finite. The crucia
point is that the perturbation theory in the variablesr andu
does not contain any infrared singularities,22,34 in contrast to
the perturbation theory inF, F* ; thus the fluctuations do no
reduceTr to zero. This is why the temperatureTr has its
own physical meaning: incoherent~local or Cooper! pairs
begin to form~at least at high enoughnf @see Sec. 5!# just
e

c-

e-

below Tr . At higher temperatures, only these pair fluctu
tions exist; their influence was studied in Ref. 35.

4. NUMERICAL RESULTS

A numerical investigation of the systems~3.15!, ~3.17!,
~3.19!, and~3.20!, ~3.21! yields the following results, which
are displayed graphically as the phase diagram of the sys

a! For low carrier densities, the pseudogap phase a
~see Fig. 1! is comparable with the BKT area. For high ca
rier densities (eF*103u«bu), one easily funds that the
pseudogap region shrinks asymptotically as

Tr2TBKT

Tr
.

4Tr

eF
. ~4.1!

This behavior qualitatively restores the BCS limit observ
in overdoped samples.

b! For eF<(10– 15)u«bu, the functionTBKT(eF) is lin-
ear, as also confirmed by the analytic solution of the sys
~3.15!, ~3.17!, and~3.19!, which yieldsTBKT5eF/8. Remark-
ably, such a behavior ofTc(eF) is observed for all families
of HTSC cuprates in their underdoped region,3,27 though
with a smaller coefficient of proportionality~0.01–0.1!. This
indicates the importance of including a contribution due
noncondensed pairs in Eq.~3.15!, which definesTBKT .

It has been shown that for an optimal doping, the dime
sionless ratioeF /u«bu;33102– 103.36 Thus it is quite natu-
ral to suppose that in the underdoped region one
eF /u«bu;10– 102, where we find linear behavior.

We note that in this limit, the temperatureTc of forma-
tion of a homogeneous order parameter for the quasi
model3,6 can easily be written in the form

Tc'
4TBKT

ln~eFu«bu/4t i
2!

, ~4.2!

wheret i is the interplane hopping~coherent tunneling! con-
stant. This shows that whenTc,TBKT , the weak three-
dimensionalization can preserve~in any case, at lownf! the
regions of the pseudogap and BKT phases, which, for
ample, happens in the relativistic quasi-2D model.34 At the
same time, as the three-dimensionalization parametert i in-
creases, whenTc.TBKT the BKT phase can vanish, pro
vided, however, that the anomalous phase region and
temperaturesTr andTc.nf /m are preserved.

FIG. 1. TBKT andTr versus the noninteracting fermion density. Dots rep
sent the functionr(eF) at T5TBKT . The regions of normal phase~NP!
pseudogap phase~PP!, and BKT phase are indicated.
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c! Figure 2 shows the values ofnf for which m differs
substantially fromeF , or in other words, the Landau Ferm
liquid theory becomes inapplicable to metals~also called bad
metals! with low or intermediate carrier density. As ex
pected, the kinkm at T5Tr , which has been observe
experimentally37 and interpreted for the 1-2-3 cuprates,38 be-
comes less and less pronounced aseF increases. But in the
present case it is interesting that in the hydrodynamic
proximation employed here, it happens at the norm
pseudogap phase boundary or before superconductivity
ally appears. It would therefore be of great interest
perform experiments that might reveal the temperature
pendencem(T), especially for strongly anisotropic and rel
tively weakly doped cuprates.

d! It follows from curve3 in Fig. 2 that the crossove
~sign change inm! from local to Cooper pairs is possible n
only aseF increases, which is more or less obvious, but a
~for somenf! asT increases.

e! Finally the calculations showed~see Fig. 3! that the
ratio 2D/TBKT is greater than 4.7 in the region under stud
The value 2D/Tr(52D/Tc

MF) is, however, somewhat lowe
and reaches the BCS theory limit of 3.52 only foreF

@u«bu. It is interesting that this concentration behavior
consistent with numerous measurements of this ratio

FIG. 2. m(T) for various values ofeF /u«bu: 1—0.05; 2—0.2; 3—0.45;
4—0.6; 5—1; 6—2; 7—5. ~For m.0 andm,0 the chemical potential was
scaled toeF andu«bu, respectively.! The thick lines delimit regions of BKT,
pseudogap~PP!, and normal~NP! phases.

FIG. 3. 2D/TBKT and 2D/Tr versus the non-interacting fermion density.
-
l-
e-

o
e-

o

.

in

HTSC.39,40 Note that the divergence of 2D/TBKT and 2D/Tr

at eF→0 is directly related to the definition ofD at m,0.

5. PAIRING TEMPERATURE Tr VERSUS CARRIER DENSITY

There is no disagreement concerning the asymptotic
havior of TBKT ~or Tc! ;eF in the region of low carrier
densities. In contrast, the behavior of the temperatureTr ,
below which pairs are formed, cannot be considered to
generally accepted. For example, in Refs. 3 and, 27 base
qualitative arguments, this temperature is taken to be
temperatureTp of local uncorrelated pairing, which in con
trast toTr increases with decreasingnf .6! Randeria~see Ref.
4 and references therein!, to define the pairing temperatur
Tp , uses the system of equations for the mean-field tra
tion temperature and the corresponding chemical poten
which is essentially identical to the system~3.20!, ~3.21!.
Thus hisTp→0 asnf→0.

It is also well known4,5,9 that in the low-density limit, it
is vital to include quantum fluctuations, at least in the nu
ber equation,12 in the calculation of the critical temperatur
at which a long-range order forms in 3D. In 2D these flu
tuations in fact reduce the critical temperature to zero.11 Cer-
tainly quantum fluctuations are also important in the cal
lation of Tr in the limit nf→0 and, in particular, in the
number equation. However, as already stressed in Sec
these corrections are quite different from what we obt
using the variablesF, F* , since perturbation theory in th
variables r and u does not contain any infrare
singularities,22,34 and the fluctuations do not yieldTr[0. In
fact, even including quantum fluctuations,Tr must exceed
TBKT (r(TBKT)Þ0), so that the pseudogap phase is alwa
present.

In our opinion, the temperatureTr has its own physical
interpretation: this is the temperature of a smooth transit
to the state in which the neutral order parameterrÞ0, and
below which one can observe pseudogap manifestati
There is also a very interesting and important question ab
the character of the transition. Certainly in the simplest La
dau theory one appears to have a second-order phase tr
tion, sincer takes a nonzero value only belowTr .14 How-
ever this kind of transition is only possible for neutr
fermions. Fluctuations of theu-phase will transform the pole
in the Green function of the neutral fermions into a bran
cut in the Green function for charged particles in the BK
phase. Indeed, the CMWH theorem concerning the abse
of spontaneous breaking of a continuous symmetry me
that symmetry-violating Green functions must vanish. Ho
ever, it says nothing about the gap in the spectrum of e
tations, as is sometimes incorrectly stated.

The correct explanation is that if the symmetry is unb
ken, and the fermion excitation appears as a pole in thc
two-point function, then the fermion must be gapless. If t
fermion does not have the same quantum numbers asc ~like
our fermionx! and so does not appear in thec two-point
function as a one-particle state, then the symmetry does
tell whether the fermion~x! will be gapless or not.

This very general argument22 suggests the following
plausible scenario. At low temperatures (T,TBKT), x, r, and
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u should be treated as physical quasiparticles~x, r having a
gap andu being a gapless excitation!, while a straightfor-
ward computation of thec two-point function22 reveals its
branch-cut structure.

On the other hand, at temperatures aboveTBKT , we
should considerc andF true quasiparticles, sinceTBKT is a
phase transition point and the spectrum of physical exc
tions changes precisely at this point. Thec two-point func-
tion at T.TBKT should be studied separately due to the p
sense of vortices which change the form of the correla
^exp@iu(x)#exp@iu(0)#& aboveTBKT . In this temperature re
gion thec two-point function loses its branch-cut structur
instead, it acquires the form suggested in Refs. 30 and
with a pseudogap originating from the superconducting
below TBKT , which preserves ‘‘BCS-like’’ structure as we
as the diagonal component of the single-particle Green fu
tion. In this picture the Fermi-liquid description brea
down, evidently belowTr , due to the formation of non
zeror.

We note, however, that the decisive confirmation of t
picture demands further detailed study probably based o
different approach, for example the self-consistentT-matrix
~see Ref. 30 and references therein!, which enables one to
directly obtain the full fermion Green function.

To define the temperatureTp properly, one should study
the spectrum of bound states either by solving the Bet
Salpeter equation7 or by analyzing the corresponding Gree
functions as we do here. It turns out that there is no diff
ence betweenTp and Tr in the Cooper pair regime~m.0!,
while in the local pair region~m,0! these temperatures ex
hibit different behavior.

Indeed, let us study the spectrum of bound states in b
the normal~r50! and pseudogap~rÞ0! phases. We are es
pecially interested in determining the conditions under wh
real bound states~with zero total momentumK50! become
unstable. For this purpose one can look at the propagato
the r-particle in the pseudogap phase:

G21~t,r !5
1

2

bd2V~v,m,T,r~t,r !,]u~t,r !!

dr~t,r !dr~0,0!
U

r5rmin5const

,

~5.1!

wherermin is defined by the minimum condition~3.16! @or
~3.19!# of the potential part~A10! of the effective action
~2.3!. In the momentum representation, the spectrum
bound states is usually determined by the condition

GR
21~v,K !50, ~5.2!

whereGR(v,K ) is the retarded Green function obtained d
rectly from the temperature Green functionG( iVn ,K ) using
the analytic continuationiVn→v1 i0. Recall that such an
analytic continuation must be performed after evaluating
sum over the Matsubara frequencies. In case of vanish
total momentumK50, one arrives at the energy spectru
equation
-

-
r

1
p

c-

s
a

–

-

th

h

of

f

e
g

GR
21~v,0!5

1

V
12E dk

~2p!2

j2~k!

Aj2~k!1r2

3
tanhAj2~k!1r2/2T

v224@j2~k!1r2#
50. ~5.3!

From the explicit expression~5.3! for GR(v,0), this function
obviously has a branch cut at frequencies

uvu>2 minAj2~k!1r25H 2r, m>0,

2Am21r2, m,0.
~5.4!

Thus, bound states can exist below this cut.
Real bound states decay into two-fermion states w

the energy of the former reaches the branch po
2 minAj2(k)1r2. SinceGR

21 is a monotonously decreasin
function ofv2, it has the unique solutionu«b(T)u52r(T), at
which Eq.~5.3! coincides exactly with the mean-field equ
tion ~3.16! for r(T). It also becomes clear that form,0 we
have real bound states with energy«b(T) below the two-
particle scattering continuum atv52Am21r2, while at
m>0 there are no stable bound states. The linem(T,eF)
50 in the T2eF plane atrÞ0 separates the negativem
region where local pairs exist from that in which only Co
per pairs exist~positive m!. This line ~see Fig. 4! begins at
the pointT5(eg/p)u«bu'0.6u«bu,eF'0.39u«bu and ends at
T50, eF5u«bu/2. ~The latter follows directly from the solu
tion at T50, m52u«bu/21eF

4,7.!
To find a similar line in the normal phase withr50, we

consider the corresponding equation for the bound sta
The propagator of these states~in imaginary time formalism!
is defined to be

G21~t,r !5
bd2V~v,m,T,F~t,r !,F* ~t,r !!

dF* ~t,r !dF~0,0!
U

F5F* 50

.

~5.5!

@In the normal phase, wherer50, we must again use th
initial auxiliary fieldsF andF* ~see Secs. 2 and 3!#. Then in
the momentum representation~after summing over the Mat
subara frequencies! we have

FIG. 4. Phase diagram of the 2D-metal at low concentrations. The do
line corresponds tom50, and the temperatureTp separates abnormal norma
phase ANP from normal phase. The critical temperatureTBKT is not shown.
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G21~ iVn ,K !5
1

V
2

1

2 E dk

~2p!2

3
tanhj1~k,K !/2T1tanhj2~k,K !/2T

j1~k,K !1j2~k,K !2 iVn

3j6~k,K ![
1

2m S k6
K

2 D 2

2m, ~5.6!

wherek is the relative momentum of the pair. The spectru
of bound states is given again by Eq.~5.2!. Using the energy
«b @see Eq.~3.18!# of the bound state atT50, for K50 we
obtain the following equation for the energies of these sta
in the normal phase:

E
0

`

dxF 1

x1u«bu/2
2

tanh~x2m!/2T

x2m2v/2 G50. ~5.7!

Such states can exist provided22m2u«bu,v,22m. The
left-hand side of Eq.~5.7! is positive atv522m2u«bu and
tends to1`~m.0! or 2`~m,0! whenv→22m. This equa-
tion always has a solution atm,0, so bound states with zer
total momentum exist for negativem.

For m.0, analytic analysis becomes more complicat
and requires numerical study. One can easily find from~5.7!
that at T50, stable bound states exist up tom,u«bu/8. In
fact, numerical study forT>Tr shows that the trajectory
m(T,eF)50 @or T5eF / ln 2, see~3.21!# approximately di-
vides the normal phase into two qualitatively different r
gions: with ~m,0! and without ~m.0! stable ~long-lived!
pairs. This also holds for other phases, which enables on
draw the whole linem(T,eF)50 ~Fig. 4!.

Knowing the two-particle binding energy, it is natural
define pairing temperatureTp as Tp'u«b@Tp ,m(Tp ,eF)#.
This equation can be easily analyzed in the regioneF

!u«bu, for which we directly obtainTp'u«bu, which clearly
coincides with the standard estimate.3,41 This means in turn
that the curveTp(eF) starting atTp(0)'u«bu will be re-
duced, up to the pointTp(0.39eF)'0.6u«bu, which lies on
the line Tr(eF) ~see Fig. 4!. It is important that this line is
not the phase transition curve; it merely divides the ferm
system diagram into temperature regions with a prevai
mean number of local pairs (T&Tp) or unbound carriers
(T*Tp). This is the region of the abnormal normal pha
where one has preformed boson pairs. It is widely accep
however, that this case is only of theoretical interest, si
there is no Fermi surface~m,0! in the phase. The phase are
or the differenceTp(eF)2Tr(eF) is an increasing function
as eF→0, which corresponds to the behavior usua
assumed.3,27

When m.0 there are no stable bound states («b(T)
52r(T)50) for the normal phase, where they are sho
lived. Formally, usingr(T)50 in Eq.~5.3!, we immediately
obtain ~3.20! or, in other words, hereTp5Tr . Such a con-
clusion is in accordance with the generally accepted de
tion of Tp in the BCS case.41

Thus the phase diagram of a 2D metal aboveTc acquires
the form shown in Fig. 4. It is interesting that if the lin
Tp(eF) cannot be defined exactly, the temperatureTr(eF) is
the line below which pairs reveal some signs of collect
s

,

-

to

n
g

d,
e

-

i-

behavior. Moreover, atT,Tr one can speak of a rea
pseudogap in the one-particle spectrum, while in the reg
Tr,T,Tp only strongly developed pair fluctuations~some
number of pairs! exist, though they probably suffice to re
duce the spectral quasi-particle weight, and to produce o
observed manifestations that mask pseudogap~spin gap; see
Ref. 35! formation.

6. PARAMAGNETIC SUSCEPTIBILITY OF THE SYSTEM

It would be very interesting to study how a nonze
value of the neutral order parameter affects the observ
properties of the 2D system. Does this really resemble
gap opening in the traditional superconductors, except th
happens in the normal phase? Or, in other words, does
pseudogap open?

We shall demonstrate this phenomenon, taking the p
magnetic susceptibility of the system as the simplest cas
point. To study the system in the magnetic fieldH one must
add the paramagnetic term

HPM52mBH@c↑
†~r !c↑~r !2c↓

†~r !c↓~r !# ~6.1!

to the Hamiltonian~2.1! where mB5e\/2mc is the Bohr
magneton. Note that, using the isotropy in the problem,
chose the direction of fieldH to be perpendicular to the plan
containing the vectorsr .

Adding the corresponding term to Eq.~2.8! for the neu-
tral fermion Green function, it is easy to show that in t
momentum representation@compare with~3.4!#

G ~ ivn ,k,H !5
~ ivn1mBH ! Î 1t3j~k!2t1r

~ ivn1mBH !22j2~k!2r2 . ~6.2!

The static paramagnetic susceptibility can be expres
in terms of the magnetization,

x~m,T,r!5
]M ~m,T,r,H !

]H U
H50

, ~6.3!

which in the mean-field approximation can be derived fro
the effective potential:

M ~m,T,r,H !52
1

v
]Vpot~v,m,T,r,H !

]H
. ~6.4!

Thus from~6.4! one obtains

M ~m,T,r,H !5mBT (
n52`

` E dk

~2p!2 Tr@G ~ ivn ,k,H ! Î #.

~6.5!

Then using the definition~6.3! one arrives at

x~m,T,r!5mB
2E dk

~2p!2 2T (
n52`

` j2~k!1r22vn
2

@vn
21j2~k!1r2#2 .

~6.6!

The sum in~6.6! can easily be calculated with the help of E
~A11!; thus, we obtain the final result
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x~m,T,r!5xPauli

1

2
E

2m/2T

` dx

cosh2Ax21
r2

4T2

, ~6.7!

wherexPauli[mB
2m/p is the Pauli paramagnetic susceptib

ity for the 2D system.
To studyx as a function ofT andnf ~or eF!, Eq. ~6.7!

should be used together with Eqs.~3.17! and ~3.19!.
For the case of the normal phase~r50! one can investi-

gate the system analytically. Thus~6.7! takes the form

x~m,T,r50!5xPauli

1

11exp~2m/T!
, ~6.8!

wherem is determined by~3.21!. This system has the solu
tion

x~eF ,T,r50!5xPauli @12exp~2eF /T!#, ~6.9!

which is identical to a solution known from the literature.42

The results of a numerical study of the system~6.7!,
~3.19!, and ~3.17! are presented in Fig. 5. One can see t
the kink in x occurs atT5Tr as in the dependence ofm on
T. Below Tr the value ofx(T) decreases, although the sy
tem is still normal. This can be interpreted as a spin-gap~or
pseudogap! opening. The size of the pseudogap region
pends strongly on the doping (eF /u«bu), as observed for rea
HTSC.2,18,19 For small values ofeF /u«bu this region is very
large (Tr.6TBKT), while for large eF /u«bu;5 – 30 it is
slightly larger than the region corresponding to the BK
phase.

7. CONCLUSION

To summarize, we have discussed the crossover in
superconducting transition between BCS- and Bose-like
havior for the simplest 2D model, withs-wave nonretarded
attractive interaction.

While there is still no generally accepted microscop
theory of HTSC compounds and their basic features~includ-
ing the pairing mechanism!, it seems that this approach, a
though in a sense phenomenological, is of great interest s
it is able to cover the whole range of carrier concentratio
~and thus the whole range of coupling constants! and tem-
peratures. As we tried to demonstrate, it enables one to
pose both a reasonable interpretation for the observed

FIG. 5. x(T) for various values ofeF /u«bu: 1—0.6; 2—1; 3—5; 4—10;
5—30.
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nomena caused by doping and to describe new phenom
for example, pseudogap phase formation as a new therm
namically equilibrium normal state of low-dimensional co
ducting electronic systems.

Evidently there are a number of important open qu
tions. They may be divided into two classes: the first co
cerns the problem of a better and more complete treatmen
the models themselves. The second class relates to the e
to which this model is applicable to HTSC compounds, a
what the necessary ingredients are for a more realistic
scription.

Regarding the microscopic Hamiltonian as a giv
model, our treatment is obviously still incomplete. In pa
ticular, there exists an unconfirmed numerical result43 based
on a fully self-consistent determination of a phase transit
to a superconducting state in a conserving approximat
which states that the superconducting transition is neither
simple mean-field transition nor the BKT transition.@See,
however, the discussion preceding Eq.~3.18!# Besides, it
would be very interesting to obtain the spectrum of both
anomalous normal and pseudogap phases. It is important
to take into consideration the effects of nonconden
bosons, which might help to obtain a smaller slope in
dependence ofTBKT on eF .

As for the extent to which the models considered a
really applicable to HTSC, most of the complexity of the
systems is obviously neglected here. For example, we did
take into account the indirect nature of attraction between
fermions,d-wave pairing, inter-layer tunneling, etc. Neve
theless, one may hope that the present simple model
explain the essential features of pseudogap formation.

We thank Drs. E. V. Gorbar, I. A. Shovkovy
O. Tchernyshyov, and V. M. Turkowski for fruitful discus
sions, which helped to clarify some deep questions ab
low-dimensional phase transitions. We especially thank P
R. M. Quick for many thoughtful comments on an earli
version of this manuscript. One of us~S. G. S.! is grateful to
the members of the Department of Physics of the Univer
of Pretoria, especially Prof. R. M. Quick and Dr. N.
Davidson, for very useful points and hospitality. S. G. S. a
acknowledges the financial support of the Foundation
Research Development, Pretoria.

APPENDIX A

Calculation of the effective potential

Here we sketch the derivation of the effective potenti
To obtain it one must write Eq.~2.7! in the momentum rep-
resentation:

Vpot~v,m,T,r!

5vH r2

V
2T (

n52`

1` E dk

~2p!2 Tr@ ln G 21~ ivn ,k!eidvnt3#

1T (
n52`

1` E dk

~2p!2 Tr@ ln G0
21~ ivn ,k!eidvnt3#J ,

d→10, ~A1!
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where

G 21~ ivn ,k!5 ivnÎ 2t3j~k!1t1r,

G0
21~ ivn ,k!5G 21~ ivn ,k!ur5m50 ~A2!

are the inverse Green functions. The exponential fac
eidvnt3 is added to~A1! to provide the correct regularizatio
which is necessary to perform the calculation with the Gre
functions.44 For instance, one obtains

lim
d→10

(
n52`

1`

Tr@ ln G 21~ ivn ,k!eidvnt3#

5 lim
d→10

H (
n52`

1`

Tr@ ln G 21~ ivn ,k!#cosdvn

1 i (
vn.0

sindvnTr@~ ln G 21~ ivn ,k!

2 ln G 21~2 ivn ,k!!t3#J
5 (

n52`

1`

Tr@ ln G 21~ ivn ,k!#2
j~k!

T
, ~A3!

where

ln
G 21~ ivn ,k!

ivn
.

2t3j~k!1t1r

ivn
, vn→`

and

(
vn.0

sindvn

vn
.

1

2pT E
0

`

dx
sindx

x
5

1

4T
signd.

To calculate the sum in~A3!, one must first use the
identity Tr lnÂ5ln detÂ, so that~A1! takes the form

Vpot~v,m,T,r!5vH r2

V
2T (

n52`

1`

3E dk

~2p!2 ln
detG 21~ ivn ,k!

detG0
21~ ivn ,k!

2E dk

~2p!2 @2j~k!1«~k!#J . ~A4!

Calculating the determinants of the Green functions~A2!,
one obtains

Vpot~v,m,T,r!5vH r2

V
2T

3 (
n52`

1` E dk

~2p!2 ln
vn

21j2~k!1r2

vn
21«2~k!

2E dk

~2p!2 @2j~k!1«~k!#J , ~A5!

where the role ofG0( ivn ,k) in the regularization ofVpot is
now evident. The summation in~A5! can be done if one use
the representation
r

n

ln
vn

21a2

vn
21b2 5E

0

`

dxS 1

vn
21a21x

2
1

vn
21b21xD , ~A6!

and then

(
k50

`
1

~2k11!21c2 5
p

4c
tanh

pc

2
. ~A7!

We find

ln
vn

21a2

vn
21b2 5E

0

`

dxS 1

2Ab21x
tanh

Ab21x

2T

2
1

2Aa21x
tanh

Aa21x

2T D . ~A8!

Integrating~A8! over x, one thus obtains

T (
n52`

1` E dk

~2p!2 ln
vn

21j2~k!1r2

vn
21«2~k!

52TE dk

~2p!2 ln
cosh@Aj2~k!1r2/2T#

cosh@«~k!/2T#
. ~A9!

Finally, substituting~A9! into ~A5!,

Vpot~v,m,T,r!5vH r2

V
2E dk

~2p!2 F2T ln

3
cosh@Aj2~k!1r2/2T#

cosh@«~k!/2T#

2@j~k!2«~k!#G J . ~A10!

It is easy to show that atT50, the expression~A10! reduces
to that obtained in Ref. 7.

Finally, we give formulas for the summation over th
Matsubara frequencies used in Secs. 3 and 6:

T (
n52`

`

Tr@G ~ ivn ,k!t3G ~ ivn ,k!t3#

52T (
n52`

` j2~k!2r22vn
2

@vn
21j2~k!1r2#2

52
r2

@j2~k!1r2#3/2 tanh
Aj2~k!1r2

2T

2
j2~k!

2T@j2~k!1r2#

1

cosh2
Aj2~k!1r2

2T

, ~A11!
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T (
n52`

`

Tr@G ~ ivn ,k! Î G ~ ivn ,k! Î #

52T (
n52`

` j2~k!1r22vn
2

@vn
21j2~k!1r2#2

52
1

2T S cosh2
Aj2~k!1r2

2T D 21

, ~A12!

where the Green functionG ( ivn ,k) is given by~3.4!. Both
formulas can easily be calculated using Eq.~A7! and its de-
rivative with respect toc.

* !E-mail: vgusynin@bitp.kiev.ua
†!E-mail: vloktev@bitp.kiev.ua
1!To calculate the observed single-particle spectrum, of course, carrier lo

due to scattering of carriers by fluctuations of the phase of the order
rameter~and in real systems by dopants! must be taken into account; se
Ref. 17.

2!We note that the specific heat experiments2 demonstrated the loss of en
tropy that occurs at temperatures much higher thanTc . This can be con-
sidered indicative of a degenerate normal state, consistent with the
tence of a nonzero order parameter^r&.

3!An exponentially small correction is omitted here.
4!Derivatives higher than (¹u)2 were not computed here.
5!There is no doubt that in certain situations~for example, very highT! it

also can become a thermodynamic variable, i.e., one dependent onT, as
happens in problems of phase transitions between ordered~magnetic! and
disordered~paramagnetic! phases when the spin itself vanishes. Spec
cally, for quasi-2D spin systems it is obvious that as one proceeds f
high-T regions, a spin modulus first forms in 2D clusters of finite size a
only then does global 3D ordering occur. We note, however, that
dependence was neglected in Ref. 27, where the nonrenormalized
stiffnessJ(T50) was used to write Eq.~3.15!.

6!In fact, in Refs. 3 and 27~see also Ref. 5! this temperature was plotted a
an increasing function of coupling constantV, which for 3D systems cor-
responds, to some extent, to the carrier density decreasing. In 2D sys
however, where, as is well known, two-particle bound states are for
without any threshold, similar conclusions about the behavior ofTp(nf)
are questionable, and must be checked independently.
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The magnetic field dependence of the average spin of a localized electron coupled to conduction
electrons with an antiferromangetic exchange interaction is found for the ground state. In
the magnetic field rangemH;0.5Tc ~Tc is the Kondo temperature! there is an inflection point,
and in the strong magnetic field rangemH@Tc , the correction to the average spin is
proportional to (Tc /mH)2. In zero magnetic field, the interaction with conduction electrons also
leads to the splitting of doubly degenerate spin impurity states. ©1999 American
Institute of Physics.@S1063-7761~99!00804-5#
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1. INTRODUCTION

In the low-temperature and weak magnetic field regi
even a weak interaction of magnetic impurities with a deg
erate electron gas becomes strong.1–3 In this region, pertur-
bation theory is violated. Two scenarios are possible in s
a situation. First, an assumption can be made that in
low-temperature region, an increase in the magnetic fi
takes the system out of a strongly coupled state and into
region of applicability of perturbation theory. This nonobv
ous conjecture was used in Bethe’s ansatz method in
problem under consideration. As the result, in a strong m
netic field mH@Tc ~Tc is the Kondo temperature!, the cor-
rection to the mean spin impurity value has logarithm
behavior,3

^Sz&5
1

2 S 12
1

2 ln~mH/Tc!
D .

Such spin dependence of the magnetic field value is
slow, and is inconsistent with the experimental data,4 which
yields power-like behavior. The level of spin saturation
the magnetic field in Ref. 4~Fig. 8! can be reached accordin
to the expression given above only at the magnetic fi
valueH'50 T instead of the experimental value of 6 T.

The second scenario is connected with the assump
that an increase only in the magnetic field value does
move the system from a strongly coupled state to a wea
perturbed state. The second conjecture is supported by
fact that the correction to the wave function of a syst
consisting of magnetic impurity plus degenerate Fermi g
in some state with low energy, contains corrections of t
types obtained with the help of perturbation theory. T
norm of one of them decreases in an increasing magn
field, whereas the norm of the other is divergent in the lim
T→0 for a finite magnetic field. Consideration of the nor
of states in the problem involved is very useful, becaus
contains direct information about the average value of m
netic spin.
6961063-7761/99/88(4)/14/$15.00
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Below we consider in detail the second conjecture a
confirm it. In the low-temperature region (T!Tc), the aver-
age spin of magnetic impurities is found for an arbitra
value of the external magnetic field. States for both signs
interaction constant are investigated. The strong coup
state arises in both cases, but the magnetic field depend
of the average value of spin is substantially different. T
definition of Kondo temperatureTc is also slightly different
for different signs of the interaction constant.

2. THE MODEL

We will suppose that the interaction of magnetic imp
rity with the Fermi sea of electrons has an exchange nat
Then the HamiltonianĤ of the system under consideratio
can be taken in the form

Ĥ5Ĥ01E d3r 1d3r 2V~r 12r 2!

3xa
1~r 1!wb

1~r 2!xb~r 2!wa~r 1!2
mH

2

3E ~w↑
1~r 1!w↑~r 1!2w↓

1~r 1!w↓~r 1!!d3r 1 . ~1!

In Eq. ~1!, operatorswb
1 ,xa

1 are creation operators of a
electron in a localized state on a magnetic impurity and
the continuum spectrum respectively. For simplicity, we co
sider the case with one unpaired electron in the locali
state~spin 1/2!. The first term in Eq.~1! describes the degen
erate electron gas in some external field that leads to crea
of one localized state. The spin interaction of electrons in
continuum spectrum with magnetic field leads only to sm
renormalization of the magnetic moment of a localized el
tron, and a small shift in the kinetic energy of electrons w
spin up and down in such a way that they have the sa
value of chemical potential~no gap for transfer of electron
© 1999 American Institute of Physics



t
-
.

t
t

a

d
s

ly
ea

ie

e

c-
the

x-

er-

he

697JETP 88 (4), April 1999 Yu. N. Ovchinnikov and A. M. Dyugaev
with spin flip over the Fermi level!. For this reason we omi
this term in Hamiltonian~1!. The last term gives the interac
tion energy of a localized electron with the magnetic field

Consider now the limiting case asT→0 and H finite.
We search for the lowest-energy eigenfunctionuc& of Hamil-
tonian ~1! in Fock space in the form

uc&5u10;11;11;..&1( C2K
2L21u01;10

2K

; 10
2L21

&

1( C2K21
2L21 u10; 01

2K21

; 10
2L21

&1( C2K
2L u10;10

2K

;01
2L

&

1 (
K1,K

C2K1 2K
2L1 2L21N̂u01; 10

2K1

;10
2K

; 01
2L1

; 10
2L21

&

1( C2K121;2K
2L1 ;2L21 N̂u10; 01

2K121

;10
2K

; 01
2L1

; 10
2L21

&

1 (
L1,L

C2K1 ;2K21
2L121;2L21N̂u01; 10

2K1

; 01
2K21

; 10
2L121

; 10
2L21

&

1 (
K1,K;L1,L

C2K121;2K21
2L121;2L21 N̂u10; 01

2K121

; 01
2K21

; 10
2L121

; 10
2L21

&

1 (
K1,K;L1,L

C2K1 ;2K
2L1 ;2L N̂u10; 10

2K1

;10
2K

; 01
2L1

;01
2L

&1... ~2!

In Eq. ~2!, all single-particle states~solutions of Eq.~1! for
one particle! are ordered and numbered. IndexesK, L label
states under and over the Fermi surface. Each box has
places. The first one means a state with spin up, and

second with spin down. As an example, the state 10
2K

;01
2L

&
means that the state 2K ~spin down! under the Fermi surface
is empty and the state 2L ~spin up! over the Fermi surface is
filled. The first cell is always reserved for an electron in
localized state. The first term in Eq.~2! gives the ground
state of Hamiltonian~1! without interaction (V(r )50). The
number of upper~or lower! indexes inC...

... . gives the number
of excited pairs. ForP excited pairs, there are 2P11 differ-
ent symbolsC...

... . OperatorN̂ is the ordering operator, an
each rearrangement of two neighboring filled states give
factor~21!. In Eq.~2! in each box below Fermi surface, on
one place can be empty and above the Fermi surface in
box, only one place can be filled.

The equation for the wave functionuc& is

uĤc&5Euc&, ~3!

whereE is the energy of the state.
Inserting expression~2! for the wave functionuc& into

Eq. ~3!, we obtain a set of linear equations for the quantit
C...

... . Due to the structure of Hamiltonian~1!, each quantity
C...

... with index P is coupled only with quantitiesC...
... with

indexesP, P61. From the first equation of this system, w
obtain the energy of the state,
wo
he

a

ch

s

E5E02mH/22dE,

dE5( ~~ I 2K21
2L21 !* C2K21

2L212~ I 2K
2L21!* C2K

2L21!, ~4!

whereE0 is the energy of the ground state without intera
tion. For convenience, we leave the magnetic energy of
localized state out of the correction termdE. The quantities
I ...

... in Eq. ~4! are the transition matrix elements. As an e
ample, we have

I 2K
2L215E d3r 1d3r 2x↑* ~r 1!w↓* ~r 2!w↑~r 1!x↓~r 2!V~r 12r 2!.

~5!

The Hamiltonian~1! possesses deep symmetry prop
ties. To see some of these, we will keep indexes onI ...

... that
indicate energy and spin in the initial and final states. T
next three equations for the quantitiesC...

... are

2I 2K
2L211( C2K1

2L21I 2K
2K12( C2K121

2L21 I 2K
2K121

2( C2K
2L1I 2L1

2L211~mH1«L2«K2dE!C2K
2L21

1 (
K1,K

C2K1 ;2K
2L1 ;2L21I 2L1

2K12 (
K,K1

C2K;2K1

2L1 ;2L21I 2L1

2K1

2( C2K121;2K
2L1 ;2L21 I 2L1

2K121
50,

I 2K21
2L212( I 2K21

2K1 C2K1

2L211( C2K121
2L21 I 2K21

2K121

2( I 2L121
2L21 C2K21

2L121
1~«L2«K2dE!C2K21

2L21

1 (
L1,L

C2K1 ;2K21
2L121;2L21I 2L121

2K1

2 (
L,L1

C2K1 ;2K21
2L21;2L121I 2L121

2K1

1 (
K,K1 ;L1,L

C2K21;2K121
2L121;2L21 I 2L121

2K121

2 (
K1,K;L1,L

C2K121;2K21
2L121;2L21 I 2L121

2K121

2 (
L,L1 ;K,K1

C2K21;2K121
L21;2L121 I 2L121

2K121

1 (
K1,K;L,L1

C2K121;2K21
2L21;2L121 I 2L121

2K121
50,

2( I 2L121
2L C2K

2L121
1~«L2«K2dE!C2K

2L

1 (
K,K1

C2K;2K1

2L;2L121I 2L121
2K1 2 (

K1,K
C2K1 ;2K

2L;2L121I 2L121
2K1

1( C2K121;2K
2L;2L121 I 2L121

2K121
50. ~6!
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In Eqs. ~6!, the quantities«L,K are the energies of singl
states. As mentioned above, indexL means a state above th
Fermi level and indexK means a state below the Fermi leve
The equations forC...

... are given in Appendix A. Since the
equations forC...

... have a special structure, each quantityC...
...

with index P is coupled only with quantitiesC...
... with in-

dexes,P, P61, it is possible to leave quantitiesC...
... with

indexesP>2 out of Eqs.~6!. As the result, we obtain thre
equations for the quantitiesC2K

2L21, C2K21
2L21 and C2K

2L . They
have the following form~see Appendix A!:

2I 2K
2L211( C2K1

2L21I 2K
2K12( C2K121

2L21 I 2K
2K121

2( C2K
2L1I 2L1

2L211~mH1«L2«K2dE

2S~K,L !
~1! !C2K

2L215A1~C2K
2L21;C2K21

2L21;C2K
2L !,

I 2K21
2L212( C2K1

2L21I 2K21
2K1 1( C2K121

2L21 I 2K21
2K121

2( C2K21
2L121I 2L121

2L21 1~«L2«K2dE

2S~K,L !!C2K21
2L215A2~C2K

2L21;C2K21
2L21;C2K

2L !,

2( I 2L121
2L C2K

2L121
1~«L2«K2dE2S~K,L !!C2K

2L

5A3~C2K
2L21;C2K21

2L21;C2K
2L !. ~7!

The linear operatorsA1,2,3 do not contain terms proportiona
to the quantitiesC2K

2L21,C2K21
2L21,C2K

2L without integral over
one of variableK, L with some function ofK, L. These terms
form the S (K,L)

(1) ,S (K,L) terms in Eq.~7!. All off-diagonal
elements of such a form are equal to zero. The linear op
tors A1,2,3 also do not contain terms proportional to the co
volution of quantitiesC...

... with I ...
... over one of variableK, L

without of denominator with the same variable. In Append
C, we give the expressions for quantitiesS (K,L)

(1) ,S (K,L) in the
fourth order of perturbation theory. Quantitie
C2K

2L21,C2K21
2L21,C2K

2L in the third order can be found from
equations given in Appendix B. It is easy to check that in
fourth order of perturbation theory,

2dE2S~K,L !u«K5«L5«F
50. ~8!

This equality holds in all the orders of perturbation theo
Below, we put

2dE2S~K,L !u«K5«L5«F
5D. ~9!

In Eq. ~9!, D[D(H) is some function of the magnetic fiel
that must be determined from self-consistency. This equa
is given below. Very important properties follow from th
normalization of states defined by Eqs.~2! and ~7!. To sim-
plify the investigation of Eqs.~7!, we give also the expres
sion for operatorsA1,2,3 in the lowest order of perturbatio
theory in Appendix D. All statements made above are in
pendent of the exact form of spectrum«K ,«L and potential
V(r ).
a-
-

e

.

n

-

3. WAVE FUNCTION OF THE GROUND STATE

The average electron spin^Sz& in a bound state at zero
temperature can be found by differentiating the energydE
with respect tomH

^Sz&5
1

2
2

]dE

]mH
. ~10!

In accordance with quantum mechanical rules, the quan
^Sz& in the ground state is also given by an expression c
taining only norms of the states in expansion~2!:

^Sz&5
1

2
$11uC2K21

2L21 u21uC2K
2L u22uC2K

2L21u2

1uC2K121;2K
2L1 ;2L21u21uC2K121;2K21

2L121;2L21 u21uC2K1 ;2K
2L1 ;2L u2

2uC2K1 ;2K
2L1 ;2L21u22uC2K1 ;2K21

2L121;2L21u21...%$1

1uC2K21
2L21 u21uC2K

2L u21uC2K
2L21u21uC2K121;2K

2L1 ;2L21u2

1uC2K121;2K21
2L121;2L21 u21uC2K1 ;2K

2L1 ;2L u21uC2K1 ;2K
2L1 ;2L21u2

1uC2K1 ;2K21
2L121;2L21u21...%21. ~11!

Below we use both Eqs.~10! and~11!. To solve Eqs.~7!
and ~9!, we considerD as a parameter. Then the right-han
sides of Eqs.~7! can be taken into account in perturbatio
theory. In the leading approximation we obtain

2I 2K
2L211( C2K1

2L21I 2K
2K12( C2K121

2L21 I 2K
2K121

2( C2K
2L1I 2L1

2L211~mH1«L2«K1D!C2K
2L2150,

I 2K21
2L212( C2K1

2L21I 2K21
2K1 1( C2K121

2L21 I 2K21
2K121

2( C2K21
2L121I 2L121

2L21 1~«L2«K1D!C2K21
2L2150,

2( I 2L121
2L C2K

2L121
1~«L2«K1D!C2K

2L 50. ~12!

Below we make the usual assumptions about the ene
independent value of the density of states near the Fe
surface, and that the characteristic energy in transition ma
elementsI ...

... is also the Fermi energy«F . As a result, we can
put

(
K

I 2K
... ~ ...!→gE

0

«F
dx~ ...!, (

L
I ...

2L→gE
0

A«F
dy~ ...!,

«L2«F5y, «F2«K5x. ~13!

In Eqs. ~13!, g is the dimensionless coupling constan
The potentialV(r ) in Hamiltonian ~1! is in natural units,
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hence the smallness of the coupling constantg is connected
only to the small radius of bound state.

Due to the energy independence of the transition ma
elementsI ...

... , Eqs.~12! can be substantially simplified. To d
this, we define new quantities that are convolutions of fu
tions C...

... with overlap integralI ...
... over only one variable,K

or L, that is

ZL5(
K1

I 2K
2K1C2K1

2L21, ZK5(
L1

I 2L121
2L C2K

2L121,

YL5(
K1

I 2K
2K121C2K121

2L21 , YK5(
L1

I 2L121
2L21 C2K21

2L121,

XL5(
L1

I 2L121
2L C2K

2L1, XK5(
L1

I 2L1

2L21C2K
2L1. ~14!

Inserting Eqs.~14! into Eqs.~12!, we obtain

C2K
2L215

1

mH1y1x1D
$I 2ZL1YL1XK%,

C2K21
2L215

1

y1x1D
$2I 1ZL2YL1YK%,

C2K
2L 5

1

y1x1D
ZK , ~15!

whereI is the value of the transition matrix elementI ...
... for

states near the Fermi surface. Now from Eqs.~14! and ~15!
we can obtain a complete set of equations for the quant
ZK,L ,YK,L ,XK,L only. In addition, the quantitiesXK,L are
very simply related toZK,L ,YK,L . Eliminating them, we ob-
tain a set of equations for just the quantitiesZK,L ,YK,L :

ZLS 11g ln
«F

mH1y1D D2YLg ln
«F

mH1y1D

5Ig ln
«F

mH1y1D

1g2 E
0

«F dxZK ln@A«F /~x1D!#

mH1y1x1D
,

ZKS 12g2 ln
A«F

x1D
ln

A«F

mH1x1D D5Ig ln
A«F

mH1x1D

2gE
0

A«F dy~ZL2YL!

mH1y1x1D
,

YLS 11g ln
«F

y1D D2ZLg ln
«F

y1D
52Ig ln

«F

y1D

1gE
0

«F dxYK

y1x1D
,

YKS 12g ln
A«F

x1D D52Ig ln
A«F

x1D

1gE
0

A«F dy~ZL2YL!

y1x1D
. ~16!
ix

-

s

Equations~16! are valid for both signs of the interactio
constantg. But their solutions are substantially different fo
g,0 andg.0. Consider first the caseg,0 ~attractive in-
teraction in the Kondo problem!. In such a case, the quant
ties ZL ,YL are large in comparison withZK and YK . To
obtain this, we introduce a formal definition of ‘‘Kondo’
temperatureTc ,

ugu ln
«F

Tc
5

1

2
. ~17!

Now we also put

TL~y!5ZL2YL . ~18!

Eliminating termsZK ,YK from ~16!; we obtain one equation
the quantityTL :

TL~y!5
1

11g ln@«F /~y1D!#1g ln@«F /~mH1y1D!#

3H IgS ln
«F

y1D
1 ln

«F

mH1y1D D
1

Ig

2 E
0

«F
dxS 1

mH1y1x1D
1

1

y1x1D D
3F g2 ln@A«F /~x1D!# ln@A«F /~mH1x1D!#

12g2 ln@A«F /~x1D!# ln@A«F /~mH1x1D!#

1
g ln@A«F /~x1D!#

12g ln@A«F /~x1D!#G
2

g2

2 E
0

«F
dxS 1

mH1y1x1D
1

1

y1x1D D
3F g ln@A«F /~x1D!#

12g2 ln@A«F /~x1D!# ln@A«F /~mH1x1D!#

3E
0

A«F dy1TL~y1!

mH1y11x1D

1
1

12g ln@A«F /~x1D!#
E

0

A«F dy1TL~y1!

y11x1D G J . ~19!

It can be shown that the last term in Eq.~19! can be
omitted, because it is small in the parameter (ugu ln(1/ugu).
We then obtain from Eqs.~17! and ~19!

TL~y!5
1

ugu ln@~y1D!~mH1y1D!/Tc
2#

3H 2I 2I E
0

1/2

dtS t2

12t2 2
t

12t D J . ~20!

And finally
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TL~y!5
2Ib

ugu ln@~y1D!~mH1y1D!/Tc
2#

,

b5
1

2
ln 31 ln

3

2
. ~21!

Inserting Eqs.~18! and ~21! into Eqs. ~15!, we obtain the
expressions for coefficientsC2K

2L21,C2K21
2L21:

C2K
2L2152

TL~y!

mH1y1x1D
, C2K21

2L215
TL~y!

y1x1D
. ~22!

Now we can determine the value ofD. Equations~10! and
~11! should give the same value for average spin^Sz&. This
condition, with the help of Eqs.~4! and ~22!, gives

bE
0

` dy

~mH1y1D!ln2@~y1D!~mH1y1D!/Tc
2#
Y

3S 11
b2

ln@D~mH1D!/Tc
2# D

5
]D

]mH

1

ln@D~mH1D!/Tc
2#

1E
0

` dy

~mH1y1D!ln2@~y1D!~mH1y1D!/Tc
2#

.

~23!

We seek a solution of Eq.~23! in the form

D~mH1D!5Tc
2~11g!, 0,g!1. ~24!

Terms proportional tog21 cancel on the right-hand side o
Eq. ~23!. This condition yields

]D

]mH
1

Tc
2

~mH1D!~mH12D!
50. ~25!

The solution of this equation is

D~mH1D!5Tc
2, ~26!

D52
mH

2
1S S mH

2 D 2

1Tc
2D 1/2

, ~26a!

and confirms our conjecture~24! about it. Of course, Eq.~24!
has two solutions forD. One is given by Eq.~26a! ~ground
state!, and the other is

D52
mH

2
2S S mH

2 D 2

1Tc
2D 1/2

. ~26b!

Solution ~26b! corresponds to the excited state. In the lim
mH@Tc , this state transforms to a state with spin orientat
along the magnetic field. The excited state is separated f
the ground state by a ‘‘gap’’ 2((mH/2)21Tc

2)1/2. The gap
results in the independence of the position of the maxim
of impurity heat capacity from the magnetic field in th
rangemH!Tc ~Schottky anomaly!. Such a residual Schottk
anomaly is always presented in experiments.5 In Sec. 4 we
will show that renormalization of the termmH in ~7! leads to
t
n
m

a change frommH in Eq. ~27! to mH̃ defined by Eq.~43!. As
a result, we obtain the mean spin^Sz& as an implicit function
of the magnetic fieldmH.

An attempt to obtain such an equation at nonzero te
perature was made in Ref. 6. But the mean field approxim
tion used there is incorrect for the problem considered.

In Appendix D we show that the right-hand side of~7!
leads to renormalization of the coefficients in Eqs. 16,
does not alter the main result of the paper, Eqs.~27! and
~43!. Of course, renormalization changes Eqs.~17! for the
Kondo temperature. The quantityg can be found only from
correction terms to Eqs.~20! and ~22!. Fortunately, we do
not need these correction terms, because in the leading
proximation,g also drops out of Eq.~11! for the spin value.
With the help of Eqs.~11!, ~22!, and~24!, we obtain

^Sz&5
mH

2 E
0

` dy

~y1D!~y1mH1D!~g1y~mH12D!/Tc
2!2Y

1

g
5

mH

4~Tc
21~mH/2!2!1/2. ~27!

Equation ~27! is in good agreement with the experiment
data of Ref. 4.

4. FERROMAGNETIC CASE „g>0…

As mentioned above, Eqs.~16! are valid for both signs
of the «interaction» constantg. In the caseg.0, we can
define the characteristic energy of the problem from the
lation

g ln
A«F

Tc
51 ~28!

for Kondo temperatureTc . For g.0, the quantities
ZK ,YK ,XK are large in comparison withZL ,YL ,XL . We can
eliminateZL ,YL from Eqs.~16!. As a result, we have

ZKS 12g2 ln
A«F

x1D
ln

A«F

mH1x1D D5Ig ln
A«F

mH1x1D

2gE
0

A«F dy

mH1y1x1D

3
1

11g ln@«F /~y1D!#1g ln@«F /~mH1y1D!#

3F Ig ln
«F

2

~y1D!~mH1y1D!

1g2E
0

«F dx1ZK~x1!ln@A«F /~x11D!#

mH1y1x11D

2gE
0

«F dx1YK~x1!

y1x11D G ,
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YKS 12g ln
A«F

x1D D
52Ig ln

A«F

x1D
1gE

0

A«F dy

y1x1D

3
1

11g ln@«F /~y1D!#1 ln@«F /~mH1y1D!#

3F Ig ln
«F

2

~y1D!~mH1y1D!

1g2E
0

«F dx1ZK~x1!ln@A«F /~x11D!#

mH1y1x11D

2gE
0

«F dx1YK~x1!

y1x11D G . ~29!

In the rangex!«F , Eqs.~29! yield the following values
for YK ,ZK :

YK52
ID

g ln@~x1D!/Tc#
,

ZK5
ID

g ln@~x1D!~mH1x1D!/Tc
2#

, ~30!

whereD is a number of order unity. Inserting Eqs.~30! into
Eqs.~15!, we obtain

C2K
2L215

1

mH1y1x1D

ID

g ln@~x1D!~mH1x1D!/Tc
2#

,

C2K21
2L2152

1

y1x1D

ID

g ln@~x1D!/Tc#
,

C2K
2L 5

1

y1x1D

ID

g ln@~x1D!~mH1x1D!/Tc
2#

. ~31!

In the same way as in the caseg,0, with the help of
Eqs.~10!, ~11!, and~31!, we obtain

]D

]mH F 1

ln~D/Tc!
1

1

ln@D~mH1D!/Tc
2#G

52F 12
D2

11D2S 1

ln~D/Tc!
1

1

ln@D~mH1D!/Tc
2# D G

3E
0

` dx

~x1D1mH !ln2@~x1D!~mH1x1D!/Tc
2#

. ~32!

The solution of this equation is
D[Tc . ~33!

Relation ~33! means that in the leading approximation, t
spin value in the magnetic field is saturated,

^Sz&5
1

2
. ~34!

Correction terms to Eq.~34! come only from an energy
range« of order «}«F exp(21/g2). Note that a similar en-
ergy scale also arises in the problem considered by Nozi
and Dominicis.7 Our conjecture is that in temperature ran

Tc
2/«F!T!Tc , ~35!

the leading correction to the average spin arises from
cutoff of integrals with respect to energy in expression~11!
over an energy range of orderT. If such an assumption is
true, then the average spin in the magnetic fieldmH@T is

^Sz&5
1

2
2

T

Tc

3E
0

` dx

~x111mH/Tc!ln
2@~11x!~x111mH/Tc!#

5
1

2
2

T

4Tc

3E
ln~11mH/Tc!

` dz

@z1~1/2!ln@12~mH/Tc!e
2z##2 . ~36!

In the limiting cases of weak (mH!Tc) and strong (mH
@Tc) magnetic fields, the average spin is

^Sz&5
1

2 S 12
T

mH D , T!mH!Tc ,

^Sz&5
1

2 S 12
T

2Tc ln~mH/Tc!
D , mH@Tc . ~37!

5. SELF-ENERGY TERMS S
„K,L …
„1… ,S

„K,L … IN PERTURBATION
THEORY

As mentioned in the Sec. 1, there are two self-ene
terms in the problem under consideration,S (K,L)

(1) andS (K,L) .
In second-order perturbation theory, they coincide. Th
start to differ in third-order in the coupling constant. In thir
order perturbation theory, we obtain from Appendix
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S~K,L !
~1! 2S~K,L !

5I 2L1

2K1I 2L2

2L1I 2K1

2L2

3S 1

~mH1«L1«L1
2«K2«K1

!~mH1«L1«L2
2«K2«K1

!

2
1

~«L1«L1
2«K2«K1

!~«L1«L2
2«K2«K1

! D . ~38!

A simple calculation of sums in Eq.~38! leads to

~S~K,L !
~1! 2S~K,L !!«L5«K5«F

52mHg3 ln2S «F

«c
D , ~39!

where«c is the cutoff energy. In Appendix C, we obtain th
following term in expansion~39! for the self-energy:

~S~K,L !
~1! 2S~K,L !!«K5«L5«F

52mHg3 ln2S «F

«c
D12mHg4 ln3S «F

«c
D2... ~40!

Comparison with the expression fordE obtained in pertur-
bation theory shows that

dS5~S~K,L !
~1! 2S~K,L !!«K5«L5«F

5mHg lnS «F

«c
D F2

]dE

]mHG52
mH

2 S 2
1

2
1^Sz& D .

~41!

To obtain Eq.~41! we used Eqs.~17!, ~10!, and an assump
tion that«c;Tc .

Equation ~41! means that some corrections should
made in the first of Eqs.~12!. Specifically,mH in the first of
Eqs.~12! should be corrected bydS:

mH→mH2dS5mH̃. ~42!

The main result of this correction is a decrease in the ini
slope of the magnetic field dependence of the average
value by 3/4. This phenomenon was probably found in
experimental Ref. 4~Figs. 8 and 9!. The average spin̂Sz& is
given by Eq.~27! with the substitution

mH→mH̃5mH2
mH

2 S 1

2
2^Sz& D . ~43!

This equation determines^Sz& as an implicit function ofmH.
From Eqs.~27! and ~43!, we find that^Sz& as a function of
mH has an a inflection point atmH/2Tc50.2426. Such an
l
in
e

inflection point was obtained in Ref. 4.

6. CONCLUSION

Thus, we show that at zero temperature and fin
magnetic fieldmH!«F , a singularity exists in the convolu
tion of amplitudesC2K1

2L21 and C2K121
2L21 over energy«K1

with amplitudeI 2K
2K1. As a result, in the high magnetic fiel

region,mH@Tc , the correction to the spin impurity value i
proportional to (Tc /mH)2 instead of 1/ln(mH/Tc), as pre-
dicted in Refs. 1–3. We also find that renormalization of t
magnetic field discussed in Sec. 4 leads to an inflection p
in the dependence of spin impurity on the magnetic fie
The initial slope is a function ofz, which enters into the
definition of the Kondo temperature~see Appendix D!. Our
consideration shows that the interaction of the spin of
impurity with an electron gas does not lead to the ap pe
ance of the localized state, as assumed in Refs. 8–10.
Kondo temperatureTc is given by Eq.~D7!, wherez is the
root of the equation

f ~z!50. ~44!

We find here three terms in the expansion off in Taylor
series@Eq. ~D8!#. This equation was also studied in Refs.
and 11. Our result for the first two terms in Eq.~44! coincide
with the result of Ref. 11, because this is also the resul
parquet approximation. But, our consideration@Eq. ~44!# is
conceptually closer to the Ref. 8. The difference even in
second term is probably related to the assumption of Re
that in the problem under consideration there is a locali
state with spin 1/2.

In fact, such a localized state does not exist. Witho
interaction there are two states associated with impurity s
1/2. In zero magnetic field, these two states are degene
Interaction removes such a degeneracy and the splitting
ergy is 2Tc . Of course, interaction does not change the nu
ber of states, as in our consideration, and is not fulfilled
Ref. 8. Note also that the driving term is missing in Re
8–10.

Nevertheless, the average value of spin of impurity^Sz&
as a function of magnetic field found in Refs. 9 and 10 c
incides with our result except for the effect of renormaliz
tion of the magnetic field~Sec. 4! and the expression for th
Kondo temperature.

The authors thank Prof. P. Fulde and Prof. A. I. Lark
for helpful discussions. We thank Prof. P. Fulde for hos
tality at the Max-Planck-Institute for Complex System
~Dresden!. The research of Yu.N.O. was supported by CRD
~Grant No RP1-194!. The research of A.M.D. is supporte
by INTAS and the Russian Fund for Fundamental Resea
~Grant No 95-553!.
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APPENDIX A

The wave function of a system consisting of one localized electron plus degenerate electron gas can be taken in

uc&5u10;11;11...&1( C2K
2L21u01;10

2K

; 10
2L21

&1( C2K21
2L21 u10; 01

2K21

; 10
2L21

&1( C2K
2L u10;10

2K

;01
2L

&

1 (
K1,K

C2K1 ;2K
2L1 ;2L21N̂u01; 10

2K1

;10
2K

; 01
2L1

; 10
2L21

&1( C2K121;2K
2L1 ;2L21N̂u10; 01

2K121

;10
2K

; 01
2L1

; 10
2L21

&

1 (
L1,L

C2K1 ;2K21
2L121;2L21N̂u01; 10

2K1

; 01
2K21

; 10
2L121

; 10
2L21

&1 (
K1,K;L1,L

C2K121;2K21
2L121;2L21 N̂u10; 01

2K121

; 01
2K21

; 10
2L121

; 10
2L21

&

1 (
K1,K;L1,L

C2K1 ;2K
2L1 ;2L u10; 10

2K1

;10
2K

; 01
2L1

;01
2L

&1 (
K1,K1,K;L2,L1

C2K2 ;2K1 ;2K
2L1 ;2L1 ;2L21N̂u01; 10

2K2

; 10
2K1

;10
2K

; 0101
2L22L1

; 10
2L21

&

1 (
K1,K;L2,L1

C2K221;2K1 ;2K
2L2 ;2L1 ;2L21 N̂u10; 01

2K221

; 10
2K1

;10
2K

; 0101
2L22L1

; 10
2L21

&

1 (
K2,K;L1,L

C2K221;2K1 ;2K21
2L2 ;2L121;2L21 N̂u10; 01

2K221

; 10
2K1

; 01
2K21

; 0101
2L22L121

; 10
2L21

&

1 (
K2,K1 ;L1,L

C2K2 ;2K1 ;2K21
2L2 ;2L121;2L21N̂u01; 10

2K2

; 10
2K1

; 01
2K21

; 01 10
2L22L121

; 10
2L21

&

1 (
K1,K;L2,L1,L

C2K1 ;2K121;2K21
2L221;2L121;2L21N̂u01; 10

2K2

; 01
2K121

; 01
2K21

; 10 10
2L2212L121

; 10
2L21

&

1 (
K2,K1,K;L2,L1,L

C2K221;2K121;2K21
2L221;2L121;2L21 N̂u10; 01

2K221

; 01
2K121

; 01
2K21

; 10 10
2L2212L121

; 10
2L21

&

1 (
K2,K1,K;L2,L1,L

C2K2 ;2K1 ;2K
2L2 ;2L1 ;2L N̂u10; 10

2K221

; 10
2K121

; 10
2K21

; 0101
2L22L1

;01
2L

&1... ~A1!

The notations here are the same as in the text. As we note above, there are (2P11) different symbolsC...
... of orderP. Inserting

Eq. ~A1! into Eq. ~3! for the wave function, some simple but tedions calculations yield a set of equations for the coeffi
C...

... . The five equations for theC...
... are

C2K
2L21I 2K1

2L12C2K1

2L21I 2K
2L12C2K

2L1I 2K1

2L211C2K1

2L1 I 2K
2L211~mH1«L1«L1

2«K2«K1
2dE!C2K1 ;2K

2L1 ;2L21
1S (

K2,K
C2K1 ;2K

2L1 ;2L21I 2K1

2K2

2 (
K,K2

C2K;2K2

2L1 ;2L21I 2K1

2K2D 1S (
K1,K2

C2K1 ;2K2

2L1 ;2L21I 2K
2K22 (

K2,K1

C2K2 ;2K1

2L1 ;2L21I 2K
2K2D 2( C2K1 ;2K

2L2 ;2L21I 2L2

2L1

1S (
L2,L1

C2K1 ;2K
2L2 ;2L1I 2L2

2L212 (
L1,L2

C2K1 ;2K
2L1 ;2L2I 2L2

2L21D 2S ( C2K221;2K
2L1 ;2L21I 2K1

2K221
2( C2K221;2K1

2L1 ;2L21 I 2K
2K221D

2 (
K1,K,K2 ;L2,L1

C2K1 ;2K;2K2

2L2 ;2L1 ;2L21I 2L2

2K21 (
K1,K2,K;L2,L1

C2K1 ;2K2 ;2K
2L2 ;2L1 ;2L21I 2L2

2K22 (
K2,K1 ;L2,L1

C2K2 ;2K1 ;2K
2L2 ;2L1 ;2L21I 2L2

2K1

1 (
K1,K,K2 ;L1,L2

C2K1 ;2K;2K2

2L1 ;2L2 ;2L21I 2L2

2K22 (
K1,K2,K;L1,L2

C2K1 ;2K2 ;2K
2L1 ;2L2 ;2L21I 2L2

2K21 (
K2,K1,K;L1,L2

C2K2 ;2K1 ;2K
2L1 ;2L2 ;2L21I 2L2

2K2

1 (
L2,L1 ;K1,K

C2K221;2K1 ;2K
2L2 ;2L1 ;2L21 I 2L2

2K221
2 (

L1,L2 ;K1,K
C2K221;2K1 ;2K

2L1 ;2L2 ;2L21 I 2L2

2K221
50,
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2I 2K121
2L1 C2K

2L211C2K
2L1I 2K121

2L21 2 (
K2,K

C2K2 ;2K
2L1 ;2L21I 2K121

2K2 1 (
K,K2

C2K;2K2

2L1 ;2L21I 2K121
2K2 1~«L1«L1

2«K2«K1
2dE!C2K121;2K

2L1 ;2L21

1( C2K221;2K
2L1 ;2L21I 2K121

2K221
2( C2K121;2K

2L1 ;2L221I 2L221
2L21 1 (

L2,L
C2K;2K121

2L221;2L21I 2L221
2L1 2 (

L,L2

C2K;2K121
2L21;2L221I 2L221

2L1

1 (
L2,L;K,K2

C2K;2K2 ;2K121
2L1 ;2L221;2L21I 2L221

2K2 2 (
L2,L;K2,K

C2K2 ;2K;2K121
2L1 ;2L221;2L21I 2L221

2K2 2( C2K;2K2 ;2K121
2L1 ;2L21;2L221I 2L221

2K2

1 (
L,L2 ;K2,K

C2K2 ;2K;2K121
2L1 ;2L21;2L221I 2L221

2K2 2 (
L2,L;K1,K2

C2K121;2K;2K221
2L1 ;2L221;2L21 I 2L221

2K221
1 (

L2,L;K2,K1

C2K221;2K;2K121
2L1 ;2L221;2L21 I 2L221

2K221

1 (
L,L2 ;K1,K2

C2K121;2K;2K221
2L1 ;2L21;2L221 I 2L221

2K221
2 (

L,L2 ;K2,K1

C2K221;2K;2K121
2L1 ;2L21;2L221 I 2L221

2K221
50,

C2K21
2L21 I 2K

2L121
2C2K21

2L121I 2K1

2L211( C2K21;2K1

2L2 ;2L21I 2L2

2L121
2( C2K21;2K1

2L2 ;2L121I 2L2

2L211~mH1«L1«L1
2«K2«K1

2dE!C2K1 ;2K21
2L121;2L21

1( C2K2 ;2K21
2L121;2L21I 2K1

2K21 (
K,K2

C2K21;2K221
2L121;2L21 I 2K1

2K221
2 (

K2,K
C2K221;2K21

2L121;2L21 I 2K1

2K221

1 (
K1,K2

C2K1 ;2K2 ;2K21
2L2 ;2L121;2L21I 2L2

2K22 (
K2,K1

C2K2 ;2K1 ;2K21
2L2 ;2L121;2L21I 2L2

2K22 (
K,K2

C2K21;2K1 ;2K121
2L2 ;2L121;2L21 I 2L2

2K221

1 (
K2,K

C2K221;2K1 ;2K21
2L2 ;2L121;2L21 I 2L2

2K221
50,

~«L1«L1
2«K2«K1

2dE!C2K1 ;2K
2L1 ;2L

1( C2K1 ;2K
2L;2L221I 2L221

2L1 2( C2K1 ;2K
2L1 ;2L221I 2L221

2L 2 (
K1,K,K2

C2K1 ;2K;2K2

2L1 ;2L;2L221I 2L221
2K2

1 (
K1,K2,K

C2K1 ;2K2 ;2K
2L1 ;2L;2L221I 2L221

2K2 2 (
K2,K1,K

C2K2 ;2K1 ;2K
2L1 ;2L;2L221I 2L221

2K2 1( C2K221;2K1 ;2K
2L1 ;2L;2L221 I 2L221

2K221
50,

2I 2K121
2L121C2K21

2L211C2K121
2L21 I 2K21

2L121
1C2K21

2L121I 2K121
2L21 2C2K121

2L121 I 2K21
2L211~«L1«L1

2«K2«K1
2dE!C2K121;2K21

2L121;2L21

2S ( C2K2 ;2K21
2L121;2L21I 2K121

2K2 2( C2K2 ;2K121
2L121;2L21I 2K21

2K2 D1S (
K2,K

C2K221;2K21
2L121;2L21 I 2K121

2K221
2 (

K2,K1

C2K221;2K121
2L121;2L21 I 2K21

2K221D
2S (

K,K1

C2K21;2K221
2L121;2L21 I 2K121

2K221
2 (

K1,K2

C2K121;2K221
2L121;2L21 I 2K21

2K221D 2S (
L2,L

C2K121;2K21
2L221;2L21 I 2L221

2L121

2 (
L2,L1

C2K121;2K21
2L221;2L121I 2L221

2L21 D 1S (
L,L2

C2K121;2K21
2L21;2L221 I 2L221

2L121
2 (

L1,L2

C2K121;2K21
2L121;2L221I 2L221

2L21 D
2 (

L2,L1,L
C2K2 ;2K121;2K21

2L221;2L121;2L21I 2L221
2K2 1 (

L1,L2,L
C2K2 ;2K121;2K21

2L121;2L221;2L21I 2L221
2K2 2 (

L1,L,L2

C2K1 ;2K121;2K21
2L121;2L21;2L221I 2L221

2K1

1 (
L2,L1,L;K,K2

C2K121;2K21;2K221
2L221;2L121;2L21 I 2L221

2K221
2 (

K1,K2,K;L2,L1

C2K121;2K221;2K21
2L221;2L121;2L21 I 2L221

2K221

1 (
K2,K1 ;L2,L1

C2K221;2K121;2K21
2L221;2L121;2L21 I 2L221

2K221
2 (

K,K2 ;L1,L2,L
C2K121;2K21;2K221

2L121;2L221;2L21 I 2L221
2K221

1 (
K1,K2,K;L1,L2,L

C2K121;2K221;2K21
2L121;2L221;2L21 I 2L221

2K221
2 (

K2,K1 ;L1,L2,L
C2K221;2K121;2K21

2L121;2L221;2L21 I 2L221
2K221

1 (
K1,K,K2 ;L,L2

C2K121;2K21;2K221
2L121;2L21;2L221 I 2L221

2K221
2 (

L,L2 ;K1,K2,K
C2K121;2K221;2K21

2L121;2L21;2L221 I 2L221
2K221

1 (
K2,K1 ;L,L2

C2K221;2K121;2K21
2L121;2L21;2L221 I 2L221

2K221
50. ~2!
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FIG. 1. Relation between various termsC...
... . Dashed lines represen

scattering process.
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Equations~A2! are exact.

APPENDIX B

Our purpose is to obtain an expression for the s
energy termsS (K,L)

(1) and S (K,L) in fourth-order perturbation
theory. To do this we should obtain equations on the qu
tities C...

... in the «leading» approximation. Really, we ne
only six equations in the six quantities entering into E
~A2!. The required system can be obtained from Eqs.~3! and
~A1!. These equations are

~mH1«L1«L1
1«L2

2«K2«K1
2«K2

!C2K2 ;2K1 ;2K
2L2 ;2L1 ;2L21

2$C2K1 ;2K
2L1 ;2L21I 2K2

2L22C2K2 ;2K
2L1 ;2L21I 2K1

2L21C2K2 ;2K1

2L1 ;2L21I 2K
2L2

2C2K1 ;2K
2L2 ;2L21I 2K2

2L11C2K2 ;2K
2L2 ;2L21I 2K1

2L12C2K2 ;2K1

2L2 ;2L21I 2K
2L1%

2$C2K1 ;2K
2L2 ;2L1I 2K2

2L212C2K2 ;2K
2L2 ;2L1I 2K1

2L211C2K2 ;2K1

2L2 ;2L1 I 2K
2L21%50,

~«L1«L1
1«L2

2«K2«K1
2«K2

!C2K221;2K1 ;2K
2L2 ;2L1 ;2L21

1C2K1 ;2K
2L2 ;2L1I 2K221

2L21 1$C2K1 ;2K
2L1 ;2L21I 2K221

2L2

2C2K1 ;2K
2L2 ;2L21I 2K221

2L21 %50.

~mH1«L1«L1
1«L2

2«K2«K1
2«K2

!C2K2 ;2K1 ;2K21
2L2 ;2L121;2L21

2$C2K21;2K1

2L2 ;2L21I 2K2

2L121
2C2K21;2K2

2L2 ;2L21I 2K1

2L121

2C2K21;2K1

2L2 ;2L121I 2K2

2L211C2K21;2K2

2L2 ;2L121I 2K1

2L21%

2$C2K1 ;2K21
2L121;2L21I 2K2

2L22C2K2 ;2K21
2L121;2L21I 2K1

2L2%50,

~«L1«L1
1«L2

2«K2«K1
2«K2

!C2K221;2K1 ;2K21
2L2 ;2L121;2L21

1$C2K21;2K1

2L2 ;2L21I 2K221
2L121

2C2K221;2K1

2L2 ;2L21 I 2K21
2L121

2C2K21;2K1

2L2 ;2L121I 2K221
2L21 1C2K221;2K1

2L2 ;2L121I 2K21
2L21%
-

n-

.

1$C2K1 ;2K21
2L121;2L21I 2K221

2L2 2C2K1 ;2K221
2L121;2L21I 2K21

2L2 %50,

~mH1«L1«L1
1«L2

2«K2«K1

2«K2
!C2K2 ;2K121;2K21

2L221;2L121;2L21
2$C2K121;2K21

2L121;2L21 I 2K2

2L221

2C2K121;2K21
2L221;2L21 I 2K2

2L121
1C2K121;2K21

2L221;2L121I 2K2

2L21%50,

~«L1«L1
1«L2

2«K2«K1
2«K2

!C2K221;2K121;2K21
2L221;2L121;2L21

1$C2K121;2K21
2L121;2L21 I 2K221

2L221
2C2K221;2K21

2L121;2L21 I 2K121
2L221

1C2K221;2K121
2L121;2L21 I 2K21

2L221
2C2K121;2K21

2L221;2L21 I 2K221
2L221

1C2K221;2K21
2L221;2L21 I 2K121

2L121
2C2K121;2K121

2L221;2L21 I 2K21
2L121

1C2K121;2K21
2L221;2L121I 2K221

2L21 2C2K221;2K21
2L221;2L121I 2K121

2L21

1C2K221;2K121
2L221;2L121 I 2K21

2L21%50. ~B1!

Equations~B1! can easily be supplemented by scatteri
terms, and Eqs.~7!, ~A1!, and~B1! will still form a complete
set. The structure of interaction Hamiltonian~1! is such that
scattering leads to connection of the given term only w
itself and with two~or one! neighboring terms. These term
can be obtained from the given one by a change of parity
one of the upper or lower indexes. The relationships am
the various termsC...

... are presented in Fig. 1.

APPENDIX C

We are now able to obtain the self-energy partsS (K,L)
(1)

and S (K,L) in fourth-order perturbation theory. Straightfo
ward elimination of terms inC...

... with P>2 from Eqs.~6!
using Eqs.~A2! and ~B1! gives
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S~K,L !
~1! 5

I 2L1

2K1

mH1«4~L,L1 ,K,K1!2uI 2K221
2L2 u2/«62uI 2K2

2L2 u2/~mH1«6!2dE

3H I 2K1
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S I 2K1

2L12
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2L1
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2L2
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I 2K2
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2L1
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D 2

I 2L2

2L1
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S 2I 2K1

2L21
I 2K1
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2L2
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2L3
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I 2K1

2K221I 2K221
2L2
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D 2

I 2K1

2K221
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S I 2K221

2L1 2
I 2K221

2K1 I 2K1
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S I 2K2

2L12
I 2K2

2K3I 2K3

2L1

mH1«4~L,L1 ,K,K3!
1

I 2L2

2L1I 2K2

2L2

mH1«4~L,L2 ,K,K2!
2

I 2K3

2K321I 2K321
2L1

«4~L,L1 ,K,K3!
D

2
I 2K121

2K221

«4~L,L1 ,K,K2!
S I 2K221

2L1 2
I 2K221

2K3 I 2K3

2L1

mH1«4~L,L1 ,K,K3!
2

I 2K221
2K321I 2K321

2L1

«4~L,L1 ,K,K3!
D

1
I 2L221

2L21 I 2L3

2L321I 2K121
2L3

~mH1«4~L,L2K,K1!!«4~L,L3 ,K,K1!
2

I 2L221
2K221I 2K121

2L221 I 2K221
2L1

«6«4~L,L1 ,K,K2!
J , ~C1!

S~K,L !5
I 2L121

2K1

mH1«4~L,L1 ,K,K1!2dE2uI 2K221
2L2 u2/«62uI 2K2

2L2 u2/~mH1«6!
H I 2K1

2L121
2

I 2K1

2K2

mH1«4~L,L1 ,K,K2!

3S I 2K2

2L121
2

I 2K2

2K3I 2K3

2L121

mH1«4~L,L1 ,K,K3!
2

I 2K2

2K321I 2K321
2L121

«4~L,L1 ,K,K3!
D 2

I 2K1

2K221

«4~L,L1 ,K,K2!

3S I 2K221
2L121

2
I 2K221

2K3 I 2K3

2L121

mH1«4~L,L1 ,K,K3!
1

I 2L221
2L121I 2K221

2L221

«4~L,L2 ,K,K2!
2

I 2K221
2K321I 2K321

2L121

«4~L,L1 ,K,K3!
D 1

I 2L2

2L121I 2L321
2L2 I 2K1

2L321

«4~L,L2 ,K,K1!~mH1«4~L,L3 ,K,K1!!

2
I 2L2

2K2I 2K1

2L2 I 2K2

2L121

~mH1«6!~mH1«4~L,L1 ,K,K2!!
J 1

I 2L121
2K121

«4~L,L1 ,K,K1!2uI 2L221
2K2 u2/~mH1«6!2uI 2L221

2K221u2/«62dE

3H I 2K121
2L121

2
I 2K121

2K2

mH1«4~L,L1 ,K,K2!
S I 2K2

2L121
2

I 2K2

2K3I 2K3

2L121

mH1«4~L,L1 ,K,K3!
2

I 2K2

2K321I 2K321
L121

«4~L,L1 ,K,K3!
D

2
I 2K121

2K221

«4~L,L1 ,K,K2!
S I 2K221

2L121
2

I 2K221
2K3 I 2K3

2L121

mH1«4~L,L1 ,K,K3!
1

I 2L221
2L121I 2K221

2L221

«4~L,L2 ,K,K2!
2

I 2K221
2K321I 2K321

2L121

«4~L,L1 ,K,K3!
D

1
I 2L221

2L121

«4~L,L2 ,K,K1!
S I 2K121

2L221
2

I 2K121
2K2 I 2K2

2L221

mH1«4~L,L2 ,K,K2!
1

I 2L321
2L221I 2K121

2L321

«4~L,L3 ,K,K1!
2

I 2K121
2K221I 2K221

2L221

«4~L,L2 ,K,K2!
D

1
I 2L221

2K221

«6
S I 2K121

2L121 I 2K221
2L221

«4~L,L2 ,K,K2!
2

I 2K221
2L121 I 2K121

2L221

«4~L,L2 ,K,K1!
2

I 2K121
2L221 I 2K221

2L121

«4~L,L1 ,K,K2!
D 2

I 2L221
2K2 I 2K2

2L121I 2K121
2L221

~mH1«6!«4~L,L2 ,K,K1!
J . ~C2!
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From Eqs.~6! and~A2!, the quantitiesC2K
2L21 andC2K21

2L21

can easily be obtained in the third order of perturbat
theory. We do not give these expressions here because
one statement is essential for us: direct comparison of
quantities dE @Eq. ~4!# and self-energySK,L @Eq. ~C2!#
shows that

dE1SK,Lu«K5«L5«F
50. ~C3!

Equation~C3! is valid for arbitrary spectrum«K ,«L and ar-
bitrary transition matrix elementsI ...

... . Our conjecture is tha
Eq
n
nly
e

Eq. ~C3! holds in all orders of perturbation theory, and hen
we can put

dE1SK,Lu«k5«L5«F
52D, ~C4!

whereD is exponentially small and can be considered as
order parameter. We also obtain from Eqs.~C1! and ~C2!
that self-energiesSKL

(1) andSKL coincide only in the second
order of perturbation theory. They start to be different in t
third order of perturbation theory. In the fourth order of pe
turbation theory, we obtain from Eqs.~C1! and ~C2!
S~K,L !
~1! 2S~K,L !5I 2L1

2K1I 2L2

2L1I 2K1

2L2 S 1

~mH1«4~L,L1 ,K,K1!~mH1«4~L,L2 ,K,K1!!
2

1

«4~L,L1 ,K,K1!«4~L,L2 ,K,K1! D
2I 2K1

2K2I 2L1

2K1I 2L2

2L1I 2K2

2L2 H S 1

mH1«4~L,L1 ,K,K1!
1

1

«4~L,L1 ,K,K1! D
3S 1

~mH1«4~L,L2K,K2!!~mH1«4~L,L1 ,K,K2!!
2

1

«4~L,L1 ,K,K2!«4~L,L2 ,K,K2! D
1S 1

mH1«4~L,L2 ,K,K2!
1

1

«4~L,L2 ,K,K2! D S 1

~mH1«4~L,L2 ,K,K1!!~mH1«4~L,L1 ,K,K1!!

2
1

«4~L,L2 ,K,K1!«4~L,L1 ,K,K1! D2S 1

mH1«4~L,L2 ,K,K1!
2

1

«4~L,L2 ,K,K1! D
3S 1

~mH1«4~L,L3 ,K,K1!!~mH1«4~L,L1 ,K,K1!
1

1

«4~L,L3 ,K,K1!«4~L,L1 ,K,K1! D
1S 1

«6~mH1«4~L,L2 ,K,K1!!~mH1«4~L,L1 ,K,K1!!
2

1

~mH1«6!«4~L,L2 ,K,K1!«4~L,L1 ,K,K1! D
1S 1

~mH1«6!~mH1«4~L,L1 ,K,K1! D S 1

mH1«4~L,L2 ,K,K1!
2

1

mH1«4~L,L2 ,K,K2! D
2S 1

«4~L,L2 ,K,K1!
2

1

«4~L,L2 ,K,K2! D 1

«6«4~L,L1 ,K,K1!J , ~C5!
d
t,
m

where

«4~L,L1 ,K,K1![«L1«L1
2«K2«K1

,

«6[«L1«L1
1«L2

2«K2«K1
2«K2

. ~C6!

Straightforward calculation of the integrals in Eq.~C5! leads
to Eqs.~40! and~41!. Both Eqs.~40! and~41! are proved in
two orders of perturbation theory. Our conjecture is that
~41! is exact.
.

APPENDIX D

In this Appendix we consider the role of the right-han
side of Eqs.~7! for a negative value of the coupling constan
g,0. In the first order of perturbation theory, we obtain fro
~A2!

C2K1 ;2K
2L1 ;2L21

5
1

mH̃1«4~L,L1 ,K,K1!1D

3@C2K1

2L21I 2K
2L12C2K

2L21I 2K1

2L11C2K
2L1I 2K1

2L21

2C2K1

2L1 I 2K
2L21#,
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C2K121;2K
2L1 ;2L21

5
1

«4~L,L1 ,K,K1!1D

3@ I 2K121
2L1 C2K

2L212C2K
2L1I 2K121

2L21 #,

C2K1 ;2K21
2L121;2L21

5
1

mH̃1«4~L,L1 ,K,K1!1D

3@C2K21
2L121I 2K1

2L212C2K21
2L21 I 2K1

2L121
#,
:

C2K121;2K21
2L121;2L21

5
1

«4~L,L1 ,K,K1!1D
@ I 2K121

2L121C2K21
2L21

2C2K121
2L21 I 2K21

2L121
1C2K121

2L121 I 2K21
2L21

2C2K21
2L121I 2K121

2L21 #. ~D1!

Inserting~D1! into ~6!, we obtain
A1~C2K
2L21;C2K21

2L21,C2K
2L !52(

I 2L1

2K1~C2K1

2L21I 2K
2L11C2K

2L1I 2K1

2L212C2K1

2L1 I 2K
2L21!

mH̃1«4~L,L1 ,K,K1!1D
2(

I 2L1

2K121I 2K121
2L21 C2K

2L1

«4~L,L1 ,K,K1!1D
,

A2~C2K
2L21;C2K21

2L21;C2K
2L !52(

I 2L121
2K121

~C2K121
2L21 I 2K21

2L121
2C2K121

2L121 I 2K21
2L211C2K21

2L121I 2K121
2L21 !

«4~L,L1 ,K,K1!1D

2(
I 2L121

2K1 I 2K1

2L21C2K21
2L121

mH̃1«4~L,L1 ,K,K1!1D
,

A3~C2K
2L21;C2K21

2L21,C2K
2L !5(

I 2L121
2K1 ~C2K1

2L121I 2K
2L 2C2K

2L121I 2K1

2L 2C2K1

2L I 2K
2L121

!

mH̃1«4~L,L1 ,K,K1!1D
2(

I 2L121
2K121I 2K121

2L C2K
2L121

«4~L,L1 ,K,K1!1D
. ~D2!
The quantities«4 ,«6 here are the same as in Eq.~C6!.
As before, only convolutionsZL ,YL are large forg,0.

Furthermore,

uZL1YLu;g2uZL2YLu. ~D3!

As the result, Eqs.~7! can be reduced to just one equation

~ZL2YL!F11g ln
«F

y1D
1g ln

«F

mH̃1y1D
1
g3

2 S I 1

g ln@«F /~mH̃1y1D!#
1

I 2

g ln@«F /~y1D!# D G

5IgS ln
« f

mH̃1y1D
1 ln

«F

y1D D
1gE dxS XK

mH̃1y1x1D
2

YK

y1x1D D , ~D4!

where
I 15E dx dy dx1

~mH̃1y1x1D!~mH̃1y1x11D!~mH̃1y1x1y11x11D!
,

I 25E dx dy dx1
~y1x1D!~y1x11D!~y1x1y11x11D!

. ~D5!
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A simple calculation of the integrals~D5! gives

I 15
1

3
ln3S «F

mH̃1y1D
D ,

I 25
1

3
ln3S «F

y1D D . ~D6!

Now we can define the Kondo temperatureTc to be

ugu ln
«F

Tc
5z, ~D7!

wherez is a root of the quadratic equation

122z1
z2

3
50, z532A6'0.5505. ~D8!

From Eq.~D4! we obtain

ZL2YL5
I b̃

ugu~12z/3!ln~~mH̃1y1D!~y1D!/Tc
2!

,

~D9!

whereb̃ is a number of order 1. Instead of Eqs.~41! and~42!
we have now

mH̃5mH2dS; dS52mHz~21/21^Sz&!. ~D10!

As before, the average spin^Sz& is given by Eq.~27! with the
replacementmH→mH̃:

^Sz&5
mH̃

4~Tc
21~mH̃/2!2!1/2

. ~D11!
The magnetic field dependence of the average spin^Sz&
@Eqs. ~D10! and ~D11!# is given in Fig. 2. Dots are the ex
perimental results of Ref. 4.
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This paper examines random walks on an exactly solvable comb model of percolation clusters.
The study shows that diffusion along the structure’s axis is anomalous. Generalized
diffusion equations with fractional-order time derivatives are derived, and a generalization to the
multidimensional case is carried out. The relationship between this problem and that of
diffusion in a medium with traps is examined, and equations that describe diffusion in a medium
with traps are derived. The paper also discusses the transition to ordinary diffusion due to
the introduction of comb teeth of finite length, and analyzes the case ofN teeth of different length.
It is shown that the solution of this problem leads to the emergence of anN-channel
diffusion equation. Finally, equations describing the diffusion of interacting electrons are derived.
© 1999 American Institute of Physics.@S1063-7761~99!00904-X#
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1. INTRODUCTION

Interest in random walks in highly inhomogeneous m
dia and along fractals can be explained both by the nume
applications of diffusion problems, e.g., the problem of co
ductivity in highly inhomogeneous media, and by the u
usual anomalous nature of random walks along fractals.
anomalous nature manifests itself in the power-function
pendence of the mean-square displacement on time:1

^X2~ t !&}t2/(21u), u>0. ~1!

The law ~1! was established by the renormalizatio
group method for regular fractals of the Sierpinski tilin
type1,2 and by computer simulation for percolation cluste
or statistical fractals.3,4 There are at least two reasons for t
change in the nature of diffusion: the marked sinuosity
percolation paths on all scales, and the existence of d
ends in the current-carrying paths. Weiss and Havlin5 pro-
posed a model that allows for the existence of dead end
percolation systems, a comb structure~Fig. 1!. They used the
generating-function technique to demonstrate that the t
dependence of the mean-square displacement along
structure’s axis is of the anomalous type~1! and thatu52.
However, they did not derive an equation and proposed
incorrect extrapolation expression of the Gaussian type
the Green’s function. In Refs. 6 and 7 a rigorous description
of diffusion on such a structure was given and a diffus
equation describing random walks along the structure’s a
was derived. This equation differs from a continuity equat
in that instead of a first-order time derivative it contains
fractional derivative of order 1/2.~The expression for the
diffusion currentJ is the ordinary one.! Attention in these
papers was focused on demonstrating the effect of an ele
field on diffusion and on establishing the relationship b
tween diffusion and conductivity for the anomalous case

The comb structure model is one of the few exactly so
able models with unusual diffusion properties. The mo
explicitly allows for the effect of dead ends on the nature
7101063-7761/99/88(4)/6/$15.00
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diffusion. Therefore, further investigations into rando
walks along a comb structure are of interest.~The author
hopes that the results of such an investigation will reflect
special features of diffusion processes in real media of
percolation type.! The present paper studies the various hi
archical structures in the given model and generalizes
results to the multidimensional case. It also studies the tr
sition to ordinary diffusion when the teeth of the comb stru
ture are of finite length. An equation is derived that describ
a random walk on a comb structure with teeth of fin
length. It appears that the most interesting case involves
fusion on a comb structure in which theN teeth are of vari-
ous lengths. Here the random walk largely depends on wh
teeth the particle visited and on the length of each of th
teeth. The solution of this problems leads
N-channeldiffusion equation, which connects allN teeth.
Asymptotic solutions of this equation are obtained. Anoth
problem studied in the paper is that of diffusion in med
with traps ~continuous-time random walk!. A system of
equations for this problem is derived. Finally, equations t
describe the diffusion of interacting electrons are set up,
solutions of these equations are found. The results are
cussed in the Conclusion.

2. DIFFUSION ON A COMB STRUCTURE

Let us briefly recall the results of Ref. 6. A specifi
feature of diffusion in the adopted model is that a displa
ment in thex direction is only possible along the structure
axis aty50. In other words, the diffusion coefficientDxx is
nonzero only aty50:

Dxx5D1d~y! ~Jx52D1d~y! ]2r/]x2!, ~2!

wherer is the number density of the diffusing particles. Di
fusion along the teeth is assumed to be ordinary:Dyy5D2.
Thus, a random walk on a comb structure is described by
diffusion tensor
© 1999 American Institute of Physics
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D̂5S D1d~y! 0

0 D2
D . ~3!

Accordingly, we obtain the following diffusion equation

S ]

]t
2D1d~y!

]2

]x2
2D2

]2

]y2D G~x,y,t !5d~x! d~y! d~ t !, ~4!

where G(x,y,t) is the Green’s function of the diffusion
problem. Using the Laplace transform with respect to ti
and the Fourier transform with respect to position, we obt
a mixed (s,k,y)-representation of this equation:

~s1D1k2d~y!2D2 ]2/]y2!G~s,k,y!5d~y!. ~5!

The solution of Eq.~5! is

G~s,k,y!5
exp~2As/D2 uyu!

2AsD21D1k2
. ~6!

We study diffusion along the structure’s axis, i.e.,
y50. The corresponding Green’s function is

G~x,0,t !5
1

2pAD1t3E0

`

exp S 2
x2

4D1t
2

D2t2

4t D AD2t dt.

~7!

In deriving ~7! we used the identity*exp(2at) dt51/a. The
total number of particles on the structure’s axis decrea
with time: ^G&5*G(x,0,t) dx51/(2D2t). Thus, the
Green’s functionG(x,0,t) describes diffusion with a noncon
served number of particles, because the particles leave
teeth of infinite length. Allowing for this fact, we calculat
the displacement along the structure’s axis:

^X2~ t !&5
^X2G&

^G&
5D1A t

D2
. ~8!

Let us discuss the equation forG(x,0,t). From ~6! it
follows that in the (s,k)-representation the equation is

@2~sD2!1/21D1k2#r~s,k!50. ~9!

Using the definition of fractional-order time derivative,8 we
obtain a diffusion equation for the particle number density
the structure’s axis:

F ]1/2

]t1/2
1

D1

D2
1/2

]2

]x2Gr~x,t !50, ~10!

FIG. 1. Comb structure: infinitely long ‘‘teeth’’ are attached to a conduct
axis (y50).
e
n

t

es

for

n

where the operator of fractional differentiation with respe
to time is

]1/2f

]t1/2
5E

2`

` ] f ~t!

]t

dt

ut2tu1/2
.

The fact that the diffusion equation~10! is of an integro-
differential type is a corollary of random disappearance a
subsequent emergence of particles~the departure of particles
from the axis and their return! as they wander along th
structure’s axis. Our goal here is a further generalization
these results.

3. MULTIDIMENSIONAL CASE

Let us first examine a three-dimensional comb structu
Such a structure is formed by attaching additional teeth
the existing comb structure that point in the direction para
to thez axis. Hence in the three-dimensional case displa
ments in thex-direction are possible only along the interse
tion of the planesy50 andz50. In other words, the diffu-
sion coefficientDxx is finite only if y50 and z50, i.e.,
Dxx5D1d(y) d(z). Accordingly, a displacement in th
y-direction is possible only ifz50, and displacement alon
the z axis is ordinary. Thus, we obtain the diffusion tenso

D̂5S D1d~y! d~z! 0 0

0 D2d~z! 0

0 0 D3

D , ~11!

so that the corresponding diffusion equation with coefficie
~11! in the mixed (s,k,y,z)-representation is

Fs2D1k2d~y! d~z!2D2d~z!
]2

]y2
2D3

]2

]z2Gr~s,k,y,z!50.

~12!

We seek a solution of Eq.~12! in the form

r~s,k,y,z!5g~s,k! exp ~2l2uyu2l3uzu!. ~13!

Substituting~13! into Eq. ~12! yields the following formulas
for the parametersl2 andl3 and the functiong(s,k):

l3
25

s

D3
, l2

25
2l3D3

D2
5

2~sD3!1/2

D2
, ~14!

g~s,k!5
1

2l2D21D1k2
. ~15!

For the mean-square displacement along thex andy axes we
then have

^X2~ t !&}t1/4, ~16!

^Y2~ t !&}t1/2. ~17!

Hence in theN-dimensional case the diffusion tensor is d
scribed by the matrix
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D̂5S D1d~x2!•••d~xN! 0 ••• 0 0

0 D2d~x3!•••d~xN! ••• 0 0

A A A A A

0 0 ••• DN21d~xN! 0

0 0 ••• 0 DN

D . ~18!
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Accordingly, we seek a solution of theN-dimensional diffu-
sion problem in the form

r~s,k,x2 ,x3 , . . . ,xN!

5g~s,k! exp~2l2ux2u2l3ux3u2•••2lNuxNu!. ~19!

Here the parametersln are linked through the formulas

2lN5
s

DN
, lN21

2 5
2lNDN

DN21
, . . . , l2

25
2l3D3

D2
, ~20!

and the functiong(s,k) is defined in~15!. The expressions
~19! and~20! comprise the complete solution of the proble
For instance, we can easily calculate the mean-square
placement along the main axis of the structure:

^XN
2 ~ t !&}t1/2(N21). ~21!

Now, the mean-square displacement for the next lateral to
~this tooth and the attached teeth comprise
(N21)-dimensional structure! is

^XN21
2 ~ t !&}t1/2(N22), ~22!

etc. On the penultimate axis, from which only teeth of in
nite length emerge, we have

^X2
2~ t !&}t1/2. ~23!

Thus, a random walk on a multidimensional comb struct
is of a hierarchical nature, and there are many variants
behavior of the mean-square displacement along the axe
the structure. Here the equations describing a random w
along themth axis of anN-dimensionalstructure can be re
resented in the form of a system of equations in which
first-order time derivative is replaced with a fractional d
rivative of the appropriate order:

~sa1 ]2/]xm
2 !r~s,x!50, ~24!

wherea51/2(N2m).

4. COMB STRUCTURE WITH TEETH OF FINITE LENGTH

Up to this point we examined comb structures with in
nitely long teeth. Now we turn to the case of diffusion alo
a two-dimensional structure with teeth of finite lengthL and
reflecting boundaries. The following method will be used
solve this problem.

We write Eq. ~4! in the form of an ordinary diffusion
equation with an inhomogeneous right-hand side,
.
is-

th
n

e
of
of
lk

e
-

]r

]t
2D2

]2r

]y2
5D1d~y!

]2r

]x2
, ~25!

and the boundary conditions

J~y56L !50. ~26!

The Green’s function of Eq.~25! with the boundary condi-
tions ~26! is well known:

G~y,t !5
1

L (
m50

`

exp S 2D2t
m2p2

L2 D cos
mpy

L
. ~27!

Thus we obtain an integral equation for the concentration

r~x,y,t !5E G~y2y8,t2t8!D1d~y8!
]2r~x,y8,t8!

]x2
dy8dt8.

This equation has the simplest form in th
(s,k,y)-representation:

r~s,k,y!52
D1k2

L (
cos~mpy/L !

s1m2p2/L2
r~s,k,0!. ~28!

At y50 we obtain a closed-form equation forr(s,k,0):

K~s,L !r~s,k!52D1k2r~s,k!. ~29!

Here the inverse operator is

K215
1

sL
1

coth@L~sD2!1/2#

2~sD2!1/2
. ~30!

When the teeth are of infinite length (L5`), we have
the well-known formulaK(s,`)52(sD2)1/2. For long time
intervals we have the ordinary asymptotic equation for d
fusion with the diffusion coefficient depending on too
length:

@s1const3D1k2/L#r~s,k!50. ~31!

The structure that we have studied had teeth of eq
length L. Now we assume that theN teeth have various
lengths,L1 ,L2 , . . . ,LN , and that this pattern repeats pe
odically. The distance between the sites on the structu
axis isa. To understand how a random walk on such a str
ture can be described, we analyze the case of two lengthsL1

and L2. We write the second derivative with respect to t
coordinatex in the finite-difference form and introduce th
notation K(s,L5L1)5K1 and K(s,L5L2)5K2. We also
denote the particle concentration at the point on the axis
which a tooth of lengthL1 is attached byF1 (F2 is intro-
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duced in a similar way!. Then the following system of equa
tions describing the behavior of the particles on the axis
be written:

K1F1~x!5D1

F2~x1a!1F2~x2a!22F1~x!

a2
,

K2F2~x!5D1

F1~x1a!1F1~x2a!22F2~x!

a2
~32!

or, in thek-representation,

S K1~s!22
D1

a2
2D1 coska

2D1 coska K2~s!22
D1

a2

D S F1~k!

F2~k!
D 50. ~33!
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Setting the determinant of this equation to zero, we can fi
the relationship between the parameterss andk, or in other
words, the analog of the diffusion equation in th
(s,k)-representation:

T1~s!T2~s!2C2 cos2 ka50, ~34!

whereT(s)5K(s)2C, andC52D1 /a2. From Eq.~34! with
equal tooth lengths and asa→0 we obtain Eq.~9!, as ex-
pected.

Thus, to describe random walks onN teeth of differing
length, we must set up a system ofN equations. Such a
system emerges because diffusion strongly depends on
teeth~and of what length! are involved in the random walk
of a particle. The above analysis suggests that in the cas
a comb structure withN teeth, the determinant takes the for
S T1 exp~ ika! 0 0 ••• 0 exp~2 ika!

exp~2 ika! T2 exp~ ika! 0 ••• 0 0

0 exp~2 ika! T3 exp~ ika! ••• 0 0

0 0 exp~2 ika! T4 ••• A A

A A A A A A A

exp~ ika! 0 0 ••• ••• exp~2 ika! TN

D 50. ~35!
if-
ear
tal

us
se

ion
e-
Thus, instead of the ordinary diffusion equation we have
N-channeldiffusion equation, i.e., instead of a fairly simp
dispersion laws5k2, valid for ordinary diffusion, we have
anNth order equation withN solutions. Moreover, accordin
to ~30!, the type of operatorK depends on the relationshi
between the parameters and the diffusion timet i5D/Li

2

along a tooth.
Let us analyze the solutions of Eqs.~35! by qualitative

reasoning. Suppose the tooth lengths differ substantia
Then the problem acquires a hierarchy of times related
diffusion along these teeth:t1!t2!t3!•••!tN . Over short
times, shorter than any characteristic times of the probl
diffusion is anomalous, as it is in a comb structure w
infinitely long teeth. As time increases, anomalous diffus
is replaced by ordinary diffusion with a diffusion coefficie
depending on the length of the particular tooth. Over tim
t1!t!t2, D;D1 /L1; over times t2!t!t3, D;D1 /L2;
etc.:

^X2~ t !&}t1/2, t!t1!•••!tN ,

^X2~ t !&} D1t/Lm , tm!t!tm11 .

A more detailed solution of this system merits a separ
investigation.

5. CONTINUOUS-TIME RANDOM WALK

The above problem of a random walk on a
N-dimensional comb structure is related to the problem
diffusion in a medium with traps~continuous-time random
n

y.
to

,

n

s

te

f

walk!. What makes the two problems different is that in d
fusion in a medium with traps the particles do not disapp
but, with a certain probability, stay at each site. The to
number of diffusing particles is conserved.9,10 For a comb
structure, the statement of the problem with a continuo
distribution over the time lags in the two-dimensional ca
amounts to studying the quantity

G̃~x,t !5E G~x,y,t ! dy. ~36!

According to ~5!, the functionG̃(x,t) is described by the
equation

Fs1
D1k2s1/2

D2
GG̃51. ~37!

Hence, in the case of a medium with traps, the diffus
equation has the form of the continuity equation for a m
dium with temporal dispersion:

]r~x,t !

]t
2

]J

]x
50, ~38!

where

J52
D1

2D2

]

]xE ]r~x,t!

]t

dt

ut2tu1/2
. ~39!

Diffusion is still anomalous with the same exponentu52.
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We now turn to the three-dimensional case and exam
G(s,k,y,a) averaged over they andz axes, i.e., the function
G̃(s,k)5*G(s,k,y,z) dy dz. According to ~13!, for this
function we have the equation

FsD21D1k2S 4sD3

D2
D 3/4GG̃51. ~40!

Hence the diffusion equation has the form of the continu
equation with a diffusion current

J~x,t !}2
]

]xE ]r~x,t!

]t

]t

ut2tu3/4
. ~41!

Now we study the Green’s function averaged over one co
dinate,z:

G̃~k,y,t !5 exp ~2l2uyu!/l3~2l2D21D1k2! . ~42!

Accordingly, motion along they50 axis is described by the
equation

@s3/41As1/2k2#G̃1~s,k!50, A5const. ~43!

The number of particles on they50 axis is not conserved
since they leave for the dead ends along they50 axis. The
diffusion current also contains a time derivative of order 1

Clearly, in theN-dimensional case the equation for th
function G̃m averaged over them coordinates has the form

~sb1snk2!G̃m~s,k!50, ~44!

whereb5(N2m11)/4, andn5(N2m21)/4.

6. DIFFUSION ON A COMB STRUCTURE OF INTERACTING
ELECTRONS

Generally, the current has a diffusion component an
field component:

j52D“r1sE, ~45!

where the diffusion coefficientD and the conductivitys
have the tensor form~3!, and the electric field satisfies Poi
son’s equation

div E54pr. ~46!

Hence the distribution of electric potential over the com
structure is described by the equation for the 4-potential w
singular coefficients:

H F ]

]t
2D1d~y!

]2

]x2
2D2

]2

]y2G S ]2

]x2
1

]2

]y2D 2s1d~y!

3S ]2

]x2
1

]2

]y2D J w50. ~47!

Using the Laplace transform with respect to time and
Fourier transform with respect tox, we obtain an equation
for the potential in the mixed (s,k,y)-representation:
e

y

r-

.

a

h

e

H Fs1D1k2d~y!2D2

]2

]y2G S 2k21
]2

]y2D
14ps1d~y!k224ps2

]2

]y2J w50. ~48!

To find the general form of the solution of Eq.~48!, we first
examine a pure diffusion problem (s15s250) and then
find the potential for this case. Such an approach also s
gests a way of solving Eq.~48! in the general case. Accord
ing to ~6!, the number density of diffusing particles on th
structure is given by

r~s,k,y!5r~s,k!exp~2luyu!, ~49!

i.e., in the (s,k,y)-representation we have

r~s,k,y!5r~s,k!E exp ~2luyu1 iqy! dy

5r~s,k!
2l

l21q2
. ~50!

Thus, according to Poisson’s equation, the electric poten
w is given by

w~s,k,q!5
A~s,k!

~l21q2!~k21q2!
. ~51!

If we again transform to the mixed (s,k,y)-representation,
we find that

w~s,k,y!5f~s,k!Fexp~2kuyu!
k

1
exp~2luyu!

l G . ~52!

Note that after differentiating this expression twice with r
spect toy, the singular parts cancel. Hence, we seek a so
tion of Eq. ~48! in a similar form:

w~s,k,y!5f~s,k!Fexp~2muyu!
m

1
exp~2luyu!

l G . ~53!

The parametersm andl can be found by substituting th
solution ~53! into Eq. ~48!:

m25
s14ps1D2k22@~s14ps1D2k2!214D2sk2#1/2

2D2
,

~54!

l25
s14ps1D2k21@~s14ps1D2k2!214D2sk2#1/2

2D2
.

The signs in~54! are determined by the condition that
s15s250 the solution~53! becomes~52!, i.e.,

lim
s1→0
s2→0

m25k2, lim
s1→0
s2→0

l25
s

D2
. ~55!

Accordingly, we have an expression for the functio
f(s,k):
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f~s,k!5F ~2mD21D1k2!~m22k2!2s1k2

m

2
~2lD21D1k2!~l22k2!2s1k2

l G21

. ~56!

Formulas~53!–~56! provide a complete solution of th
problem of diffusion in interacting particles in a comb stru
ture. Heretofore, the diffusion of interacting particles in i
homogeneous media has been studied only by comp
simulation.

How does the general solution~56! of the problem be-
come the solution of the relaxation problem atD15D250?
To answer this question, we note that in this passage to
limit the quantities that remain constant are

lim
D2→0

m25k2
s

s14ps2
,

~57!
lim

D2→0
D2~l22k2!5s14ps2 ,

and the parameterl tends to infinity as 1/D2
1/2. With allow-

ance for this fact, we can easily use~53!–~56! to derive an
expression for the electric potential in the problem of t
spreading of electric charge in a comb structure:

w~s,k,y!5
exp $2kuyu@s/~s14ps2!#%

2k@s~s14ps2!#1/214ps1k2
. ~58!

7. CONCLUSION

We have studied random walks in the comb-struct
model and found that the existence of dead ends in
current-carrying paths, teeth in the comb structure, lead
the anomalous nature of the random walk. We have es
lished that for diffusion problems in which the number
particles is not conserved the generalized diffusion equa
must be of the integro-differential type: instead of having
first time derivative, the equation must contain a fraction
order derivative@see Eq.~24!#. Fractional-order time deriva
tives emerge because of the random disappearance and
pearance of diffusing particles~the departure of particle
from the axis and their return!.

In the case of teeth of finite length, over long tim
anomalous diffusion is replaced by ordinary diffusion, b
the diffusion coefficient is explicitly dependent on the too
length L. It is shown that a random walk on multidimen
sional comb structures with a variety of tooth lengths is o
hierarchical nature and that different power functions rep
senting the time dependence of the mean-square disp
ment are possible. Thus, to explicitly allow for the effect
dead ends in the percolation paths in inhomogeneous me
one must use generalized equations with fractional-or
time derivatives.

The situation is completely different when we exami
random walks in a medium with a continuous distribution
time lags on traps. As noted earlier, the problem of diffus
in a medium with traps differs from the problem of diffusio
along the axis of a comb structure with departure to d
ends. The difference lies in the fact that the particles do
ter
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disappear but, with a certain probability, stay at each s
The total number of diffusing particles is conserved. Hen
we have the law of mass conservation, expressed by a
tinuity equation. However, the anomalous nature of dif
sion, due to the capture of particles by the traps, leads to
unusual expression for the diffusion current@see Eq.~39!#.
Note that mathematically Eqs.~24! and ~38! with current
~39! are different. Despite the fact that in both problem
diffusion is anomalous, has the same exponentu52, and the
solutions of the respective equations are almost the sa
these equations describe different physical situations. F
in diffusion along the axis of a comb structure the number
particles is not conserved. Second, the diffusion fluxes
different.

The equations with fractional-order time derivative sim
lar to those discussed in the present paper appear in the
scription of diffusion on Cantor sets.11 In their review,12

Olemsko� and Flat discuss these results and interp
fractional-order time derivatives. According to Ref. 12, t
fractional order of the time derivative corresponds to t
relative fraction of mechanical~reversible in time! and dis-
sipative diffusion~irreversible! processes. They do not reall
distinguish between Eqs.~24! and ~38! with allowance for
~39!, i.e., between fractional-order time derivatives prop
and the expression for the current in terms of fractional-or
derivatives. However, as the example of a comb struct
shows, fractional-order time derivatives can only arise in
study of dissipative diffusion processes, and the differ
equations describe different physical situations. The e
tence of dead ends alters the order of the time derivat
while the capture of particles by traps changes in the fi
analysis the expression for the diffusion current.
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Photoinduced superstructure in the low-temperature phase of a Peierls system
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This paper is a theoretical study of the properties of the low-temperature phase of a Peierls
system when nonequilibrium electron–hole pairs are excited in the phase. A microscopic theory is
developed to show that at low temperatures a spatially nonuniform periodic structure with a
modulated band gap forms in the thermodynamically nonequilibrium system considered. The
critical temperature of formation of such a superstructure, the critical electron–hole pair
concentration, the spatial period, and the percentage modulation are calculated. ©1999 American
Institute of Physics.@S1063-7761~99!01004-5#
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1. INTRODUCTION

At low temperatures, a one-dimensional chain of eq
distantly positioned atoms each of which contains one o
electron is known to become unstable against crystal-lat
period doubling.1 The corresponding phase transition, ch
acterized by structural distortions and by formation of a ba
gap in the electron spectrum, is known as the Peierls tra
tion, and the system where such a transition occurs a Pe
system.

Theoretical results obtained from the Peierls model
used to describe the experimentally observed propertie
many quasi-one-dimensional materials.1–6 Among the best-
studied materials is vanadium dioxide, whose on
dimensional electron conduction band forms because of
overlap of the 3d-wave functions of the vanadium atom
which appear as chains parallel to the crystallographic axC
~Ref. 4!. Below 340 K, vanadium atoms in a chain conver
pairwise and a forbidden band forms in the electron spect
at the Fermi level, so that the low-temperature phase of V2

can be assumed to be a one-dimensional~quasi-one-
dimensional! Peierls semiconductor.6

Assuming that the Peierls mechanism is the driving fo
behind the metal–semiconductor phase transition at 340
vanadium dioxide and that Hubbard repulsion among
electrons at a single site is negligible, a group
researchers7–13 theoretically investigated and interpreted
large body of experimental data related to studies of the
fect on this transition of various external factors, such
uniaxial and hydrostatic uniaxial pressure,7 alloying by sub-
stitutional impurities,8–11 the interaction of a vanadium diox
ide film and the substrate,12 and adsorption.13

It is of interest to study the behavior of the low
temperature phase of a Peierls system when nonequilib
electron–hole pairs are excited in the phase. To the auth
knowledge, this problem was first examined by Berggren
Huberman,14 who used numerical analysis to show that, d
to strong electron–phonon coupling, a rise in the electro
hole pair concentration leads to a narrowing of the band h
and the process may be sudden for high levels of excitat
This result has been corroborated by the theory of phot
7161063-7761/99/88(4)/10/$15.00
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duced phase transitions in systems with Peier
instability15,16 and by data from experiments in which van
dium dioxide films were irradiated by high-power las
pulses.17–19

Berggren and Huberman14 used the phenomenologica
Ginzburg–Landau expansion of the free energy in power
the order parameter of the phase transition to show that
uniform semiconducting phase of a Peierls system at
temperatures and high concentrations of nonequilibri
~e.g., photoinduced! electron–hole pairs is unstable again
the formation of a periodic superstructure with a spatia
modulated band gap. The instability is due to the strong
pendence of the electron spectrum on the electron conce
tion in the conduction band.15 It is known that an instability
of a similar type can also be caused by a strong depend
of the band gap on temperature or deformation of the cry
lattice,20 or by variations in the dielectric constant generat
by band-gap variations.15 The phenomenological diffusion–
deformation–drift models of instability discussed in Re
14, 15, and 20 describe the time-dependent regime in
initial stages of superstructure formation.

Note that spatially and temporally nonuniform solutio
were analyzed by Mamin21 and Kopaevet al.,22 who pointed
out the possibility of emergence of moving superstructu
and solitons21 and of time-periodic variations in the band ga
in the electron spectrum of a system with Peierl
instability.22

This paper develops a microscopic theory of steady-s
~i.e., already formed! superstructure. The theory is based
a generalization, to the case of nonequilibrium systems
the mechanism of low-temperature instability of a crys
lattice against static distortions with a wave vectorq, when
the electron spectrum«(k) satisfies the nesting condition23

«~k!52«~k1q! ~1.1!

for all vectorsk near the Fermi surface and for a fixed vect
q lying on the Fermi surface.

In the semiconducting phase of the Peierls system an
high levels of excitation of nonequilibrium electron–ho
pairs, the Fermi quasilevels of the valence and conduc
bands lie in the respective allowed bands of the elect
© 1999 American Institute of Physics
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spectrum. In view of the one-dimensional nature of the s
tem and the symmetry of«(k), the condition~1.1! is met
near each quasilevel, which results in a transformation
crystal lattice at low temperatures. Here secondary forbid
bands form near the Fermi quasilevels, which in the cas
hand is equivalent to spatial modulation of the order para
eter of the metal–semiconductor phase transition of
closely related band gap in the electron spectrum of the
tem.

2. SYSTEM HAMILTONIAN

Let us examine a chain of atoms each of which has
outer electron. The Hamiltonian of the electron subsystem
the tight binding approximation can be written as1

H5(
m

Bm,m11~am
1am111am11

1 am!, ~2.1!

wherem is the number of the atom in the chain,Bm,m11 is
the overlap integral of the wave functions of neighbori
electrons, andam

1 and am are the operators of electron cr
ation and annihilation at themth atom.

For narrow-gap systems, e.g., for the Peierls model,
separation of adjacent atoms,r m,m11, exceeds the effective
radiusR of the atomic wave function of an electron sever
fold. In this case the overlap integralBm,m11 is given by the
expression24

Bm,m11} exp S 2
r m,m11

R D . ~2.2!

We write the coordinate of themth site in the chain with
spatially modulated pairwise convergence of atoms as
lows:

xm5mr01
Rj

2
cos~pm! H 11z cosFk0S m2

1

2D G J , ~2.3!

wherer 0 is the atomic separation in the metallic phase;j is
the period-doubling parameter for a one-dimensional crys
which characterizes the pairwise convergence of atoms~the
order parameter of the metal–semiconductor phase tra
tion!; z is the parameter of modulation ofj with a wave
vector k052p/ j , with j the number of atoms in the chai
over one spatial period of the superstructure.

At z50, formula ~2.3! describes spatially uniform pair
wise convergence of atoms, which characterizes the cha
in the structure of the lattice under a metal–semicondu
phase transition in the Peierls system.1 When zÞ0, there is
spatial modulation of the structural distortions of the on
dimensional crystal, which leads to similar modulation of t
band gap in the semiconducting phase of the Peierls sys

Formula~2.3! is written in such a way that in the Fourie
spectrum of the static displacements of the atoms from
equidistant positions of equilibrium there are three mo
with the wave numbersq5p, q5(p2k0), and q5(p
1k0). This leads, as we will shortly see~Secs. 3 and 4!, to
the formation in the electron spectrum of the Hamiltoni
~2.1! of forbidden bands at points where the electron qua
wave number isk56p/2, k56(p2k0)/2, and k56(p
1k0)/2 ~see Fig. 1!. If the Fermi level~or quasilevel! is in a
-
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forbidden band, the given transformation of the electr
spectrum reduces the free energy of the electron subsy
and under certain conditions may correspond to a new st
state of dynamic equilibrium@see the emergence of stab
nontrivial solutionsjÞ0, zÞ0 in Eqs.~5.4! and ~5.5!#. The
term 1/2 in the cosine in~2.3! has no effect on the final resu
and has been introduced to simplify~2.4! and all subsequen
formulas.

With allowance for the fact thatr m,m115xm112xm ,
Eqs.~2.2! and ~2.3! in the approximationz!1 yield

Bm,m115Bm
(1)1Bm

(2)5b exp@~21!mj#

1bjz cos~pm! cos~k0m! cos (k0/2) , ~2.4!

whereb is the overlap integral in the metallic phase~at j50!.
With the Hamiltonian of the electron subsystem written
the form~2.1!, the phases of the wave functions are selec
so thatb in ~2.4! is a real quantity.

Substituting~2.4! into ~2.1!, we finally obtain

H5(
i 51

2

Hi , Hi5(
m

Bm
( i )~am

1am111am11
1 am!. ~2.5!

Note that in view of the approximationz!1, adopted in the
derivation of~2.4!, H2!H1 in the Hamiltonian~2.5!.

3. ELECTRON SPECTRUM OF THE SPATIALLY UNIFORM
SYSTEM

We begin with a spatially uniform Peierls system~z50!.
In ~2.5! we haveH5H1. To diagonalize the Hamiltonian
~2.5! we employ Bogolyubov’s method of canonic
transformations.25 We introduce the collective second
quantization Fermi operatorsck andck

1 as follows:

am5
1

AN
(

k
ck eikm, ~3.1!

where N is the number of atoms in the chain,k50,
62p/N, . . . ,6p, andck12p5ck . In the new operator rep
resentation the Hamiltonian~2.5! becomes

H15(
k

2b~ck
1ck coshj cosk1 ick

1ck2p sinh j sin k!.

~3.2!

In ~3.2! we apply another canonical transformation to t
operatorsak andak

1 :

FIG. 1. Sketch of thek-dependence of the electron spectrum«k @Eqs.~4.4!
and~4.5!# of the Hamiltonian specified by~2.5! and~2.4! of the superstruc-
ture in the Peierls system with pairwise convergence of atoms@Eq. ~2.3!#.
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ck5
ak1 iwkak2p

A11wk
2

. ~3.3!

The functionwk in ~3.3! is selected in such a way that th
resulting Hamiltonian is diagonal in the new variablesak

andak
1 :

H15(
k

Ekak
1ak . ~3.4!

Substituting ~3.3! into ~3.2! and zeroing out the off-
diagonal elements, we obtain an expression forwk and a
dispersion law forEk :

wk5
coshj cosk2sgn~cosk! A cos2 k1sinh2 j

sinh j sin k
,

~3.5!

Ek52b sgn~cosk! Acos2 k1sinh2 j. ~3.6!

We see that forjÞ0 the spectrumEk has two bands, with the
lower band in the ground state completely occupied and
upper band vacant~the semiconducting phase!. At j50 the
spectrum~3.6! consists of one half-filled band~the metallic
phase!.

4. ELECTRON SPECTRUM OF THE SPATIALLY
NONUNIFORM SYSTEM

We now turn to the case wherez50 in ~2.3!–~2.5!. To
calculate the electron spectrum of the Hamiltonian~2.5!, we
use the perturbation-theory approach,26 bearing in mind that
H2!H1. The matrix elements of the perturbation opera
H2 @Eqs.~2.5! and~2.4!# in the representation of the secon
quantization Fermi operatorsck @Eq. ~3.1!# have the form

~H2!pk5dkdp,k1k01p1hkdp,k2k01p , ~4.1!

where

dk5 ibjz exp S 2
ik0

2 D sin S k1
k0

2 D cos
k0

2
,

~4.2!

hk5 ibjz exp S ik0

2 D sin S k2
k0

2 D cos
k0

2
.

When we pass to the Fermi operatorsak of ~3.3!, the
matrix elements~4.1! of the HamiltonianH2 of ~2.5! become

~H2!sq5@~11ws
2!~11wq

2!#21/2

3@~dqds,q1k01p1hqds,q2k01p!~12wqws!

2 i ~dqds,q1k0
1hqds,q2k0

!~wq1ws!#. ~4.3!

Bearing this in mind, we can find an approximate express
for the electron spectrum«k of the Hamiltonian~2.5! in
second-order perturbation theory forkP@0,p/2#:

«k5 1
2@Ek1Eq1sgn~Ek2Eq!A~Ek2Eq!214uHku2 #, ~4.4!

where
e

r

n

q5k1k01p, Hk5
jzb~12wkwk1k0

! sin ~k1k0/2!

~11wk
2!~11wk1k0

2 !
,

~4.5!

and Ek is the electron spectrum of the unperturbed syst
~3.6!. For values of the quasiwave numberkP
@2p,0#ø@p/2,p#, the spectrum«k can be found from~4.4!
and ~4.5! with allowance for parity and symmetry, i.e.,«k

5«2k and«k52«k1p . A sketch of« as a function ofk is
depicted in Fig. 1.

We see that the pairwise convergence of atoms lead
the formation of forbidden bands in the electron spectrum
pointsk7p/2 ~see Eq.~3.6!!, while spatial modulation~2.3!
of this pairwise convergence leads to the formation of s
ondary forbidden bands at pointsk57k1 ,7k2, wherek1,2

5(p7k0)/2.
Let us study more thoroughly thek-dependence of«k for

kP@0,p/2#. Bearing in mind that the electron spectrum~4.4!
differs substantially from~3.6! only in the region 0<p/2
2k<k0!1, if we use~3.5! in ~4.5! for Hk , we can write the
approximate expressions

Hk.H bjz, kP~p/22k0 ,p/2!,

0, kP@0,p/22k0#.
~4.6!

Substituting~4.6! into ~4.4! and keeping only the quadrati
approximation forEk near the bottom of the conductio
band, we finally obtain

«k

.5
Ek1

1
b~k2k1!2

sinh j
2bsgn~k2k1!

3AFk0~k2k1!

sinh j G2

1~jz!2, kP@p/22k0 ,p/2!,

Ek , kP@0,p/22k0#.

~4.7!
Thus, as Eqs.~4.7! imply, when there is spatial modula

tion ~2.3! at pointk5k15(p2k0)/2 there forms a forbidden
band, or gap,D«g52bjz.

Note that the form of~4.3! suggests that a forbidde
band forms also atk5k0/2. Here,«k neark5k0/2 has the
form ~4.4!, where nowq5k2k0 and

Hk.bS k2
k0

2 D 2

jz tanhj. ~4.8!

Equation~4.8! shows, however, thatHk0/250, and hence at
k5k0/2 no forbidden bands form in the electron spectrum

5. EQUILIBRIUM EQUATIONS

Let us examine the behavior of the low-temperatu
phase of a Peierls system when nonequilibrium electro
hole pairs are excited in the phase. We assume that the
cess is due to stimulated transitions of electrons from
valence band to the conduction band that occur, for insta
because of the dipole electron–photon interaction with
incident radiation. As is known, the characteristic intraba
relaxation time of electrons,te;10214s, is much shorter
than the interband relaxation timet;10211s ~see Ref. 27!.
Hence, when a light field with a constant amplitude irradia



e
ac
en
th

al
m
a
ly

ac
t a
ilib
ne
all
di

is

se

nd

he

ia

m
f t

st

f
ic

s
a
e

in
ed

tes

-
the
s

ra-

-
To

ula-

719JETP 88 (4), April 1999 A. L. Semenov
the system, we can approximately assume28 that within each
electron band there is thermodynamic equilibrium betwe
the electrons, with a Fermi quasilevel corresponding to e
band. Violation of the thermodynamic equilibrium betwe
the bands caused by external light manifests itself in
difference between the various Fermi quasilevels

The above approach to describing a thermodynamic
nonequilibrium system consisting of a set of thermodyna
cally equilibrium subsystems can be generalized to the c
where the incident radiation has an adiabatically slow
varying amplitudeA ~the variationDA of the amplitude over
a time intervalte;10214s is much smaller thanA!. The
reason for this is that the electron subsystem within e
band has time to closely follow the field variations, so tha
each moment the subsystem is in thermodynamic equ
rium. To a certain extent this situation is similar to the o
usually encountered in the description of thermodynamic
equilibrium systems when the external parameters vary a
batically slowly.

Below we limit ourselves to building a theory for th
specific case. Transient processes that takete;10214s when
a steep leading or trailing edge of the light pulse pas
through the system will not be discussed.

The free energyF j of the electron subsystem of thej th
band (j 51,2) is specified by

F j5m jNj2kBT(
k

lnF11expS m j2«k

kBT D G , ~5.1!

wherem j andNj are, respectively, the Fermi quasilevel a
the number of electrons of thej th band. Summation overk in
~5.1! is done within the limits of thej th band specified by
~4.4! (uku,p/2 at j 51 andp/2,uku,p at j 52).

As is known, the characteristic relaxation time of t
phonon subsystem istph;10213s ~see Ref. 27!. Hence at the
moments when the amplitude of the pulse of incident rad
tion changes insignificantly duringtph;10213s ~adiabati-
cally slow variation of the external parameter!, the phonon
subsystem has time to relax to its dynamically equilibriu
state, which depends on the instantaneous amplitude o
pulse.

In this case the expression for free energy of the cry
lattice with allowance for structural distortions@Eq. ~2.3!#
can be written in the harmonic approximation as follows:

Fc5F01
g

2 (
m

~r m,m112r 0!2, ~5.2!

whereF0 is the free energy~it characterizes the dynamics o
the lattice!, andg is the stiffness of the lattice under stat
displacements~2.3! of the atoms. This formula is written in
the molecular field approximation,1 in which it is assumed
that the phonon partF0 does not depend on the parameterj
and z, which are responsible for static distortions. From
physical standpoint the given approximation means that th
is no interaction between dynamic~vÞ0! and static~v50!
phonon modes.

If we combine ~2.3! and the fact thatr m,m115xm11

2xm with ~5.2!, we obtain
n
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Fc5F01
A

2
j2F11

1

2
z2 cos2 S k0

2 D G , ~5.3!

whereA5gNR2.
For a thermodynamically nonequilibrium system to be

the steady state of dynamic equilibrium, the generaliz
forcesf 1 and f 2 corresponding to the generalized coordina
j andz must vanish:

f 1[2S ]F1

]j D
T,N1

2S ]F2

]j D
T,N2

2S ]Fc

]j D
T

50, ~5.4!

f 2[2S ]F1

]z D
T,N1

2S ]F2

]z D
T,N2

2S ]Fc

]z D
T

50. ~5.5!

If we combine these equations with~5.1! and ~5.3!, we find
that

f 152AjF11
1

2
z2 cos2 S k0

2 D G
12 (

uku<p/2

]«k

]j
tanh S «k2m

2kBT D 50, ~5.6!

f 252
1

2
Aj2z cos2 S k0

2 D12 (
uku<p/2

]«k

]z
tanh S «k2m

2kBT D 50.

~5.7!

The expressions~5.6! and~5.7! are the equations of equilib
rium of a Peierls system. They determine the behavior of
parametersj andz when nonequilibrium electron–hole pair
are excited.

Physically, it is convenient to adopt the total concent
tion n of electron–hole pairs~which includes equilibrium
and nonequilibrium excitations! as the external control pa
rameter characterizing the effect of light on the system.
do this, we must write, in addition to~5.6! and ~5.7!, an
equation that reflects the electroneutrality of the system~this
equation linksn and the Fermi quasilevelm!:

n5
N

2
2 (

uku<p/2
tanh

«k2m

2kBT
. ~5.8!

Thus, Eqs.~5.6!, ~5.7!, and~5.8! form a complete set of
equations for determining the parametersj and z of struc-
tural distortions of the lattice@Eq. ~2.3!# at a given tempera-
ture T and a given electron–hole pair concentrationn.

6. FORMATION OF A PERIODIC SUPERSTRUCTURE AT
ABSOLUTE ZERO T50

We begin our analysis of Eqs.~5.6!–~5.8! with the case
T50 under the assumption that the superstructure mod
tion parameterz is much smaller than unity. Then Eq.~5.6!
yields

Aj2
4bN

p S K~A12tanh2 j ! sinh j22j ln

3Uk0/21A~k0/2!21j2

j
U D 50, ~6.1!
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where K(x) is the complete normal elliptic integral of th
first kind.

Equation~6.1! describes the relationship between the p
rameter j and the concentrationn of the nonequilibrium
electron–hole pairs in a Peierls system. If we allow for t
fact that in real physical systems the concentrationn of
electron–hole pairs is much lower thanN and that the order
parameterj of the metal–semiconductor phase transiti
does not exceed 0.5~see Refs. 1–6!, Eq. ~6.1! yields the
approximate relationship

n5
N

p
~j02j!A j

j0
, ~6.2!

where

j05
p

2
expH sin21 S p

4 D 2
Ap

4bNJ ~6.3!

is order parameter of the metal–semiconductor phase tra
tion at n50.

In deriving Eqs.~6.2! and ~6.3! we also used the equa
tion

k05
pn

N
, ~6.4!

which is valid atT50. A rough sketch of thej vs. n depen-
dence with allowance for the condition of stability und
spatially uniform fluctuations of the order parameterj of the
metal–semiconductor phase transition,

]n

]j
,0, ~6.5!

is depicted in Fig. 2. We see that as the electron–hole
concentrationn increases to the valuen1, the order paramete
j of the metal–semiconductor phase transition smoothly
creases toj1, where

n15
2Nj0

3A3 p
, j15

j0

3
. ~6.6!

At point n1 the value ofj suddenly drops fromj1 to zero
~the phase transition to the metallic state.!

FIG. 2. Sketch of the dependence of the order parameterj of the metal–
semiconductor phase transition on the total concentrationn of electron–hole
pairs. At T50 the quantitiesj1 andn1 are given by~6.6!, while for TÞ0
@with allowance for the condition~7.2!# they are given by~7.5!.
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Combing Eq.~5.7! with ~4.7! and ~5.8!, we obtain an
expression for the superstructure modulation parameterj at
T50:

z5
k0

2

2j sinh j
sinh21

pAk0 cos2~k0/2!

16bN sinh j
. ~6.7!

Taking ~6.4! into account and assuming thatk05pn/N!1,
we see that~6.7! yields the approximate formula

z5
8bn

Aj
. ~6.8!

Thus, atT50 a superstructure in a Peierls system exi
in the entire semiconducting phase fornP(0,n1). Here the
modulation parameterz given by ~6.8! monotonically in-
creases withn from the valuez(n50)50 to the valuez1:

z15z~n5n1!5
16bN

pA3A
, ~6.9!

while the spatial period of the system,

l5
2pr 0

k0
5

2r 0N

n
, ~6.10!

monotonically decreases froml(n50)5` to

l15l~n5n1!5
3A3 pr 0

j0
. ~6.11!

Here are some numerical estimates. To calculate
stiffness coefficientA of the crystal lattice of the Peierls sys
tem, we use the formula10

A5
4bN

p F ln S pb

2kBT0
D11G , ~6.12!

whereT0 is the critical temperature of a thermodynamica
equilibrium metal–semiconductor transition in the Peie
system.

If we use typical numerical values of the physical qua
tities for VO2 ~see Refs. 4 and 7!, i.e., b'0.3 eV, T0

'340 K, r 0'3 Å, N'1023cm23, and j0'0.5, then Eqs.
~6.12!, ~6.6!, ~6.9!, and ~6.11! suggest that A
'1023eV/cm3, n1'631021cm23, z1'0.9, andl1'100 Å.

7. FORMATION OF A PERIODIC SUPERSTRUCTURE AT
TÞ0

We analyze Eqs.~5.6!–~5.8! with TÞ0 under the as-
sumption that the Peierls system is a nondegenerate
weakly degenerate semiconductor:

m22b sinh j,2kBT. ~7.1!

This relationship, which imposes a restriction on the size
the region within which the Fermi quasilevelm may vary, is
equivalent, if we allow for Eq.~5.8!, to an approximate in-
equality, an upper bound on the concentrationn of the
electron–hole pairs:

n,n25
8N

3p
AkBT sinh j

b
. ~7.2!
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Combining~5.6! and ~5.8! and assuming that the supe
structure modulation parameterz is much smaller than unity
we obtain an approximate equation for the order parametj
of the metal–semiconductor phase transition:

Aj24bFN

p
K~A12tanh2j ! sinh j2n coshjG50, ~7.3!

where K(x) is the complete normal elliptic integral of th
first kind.

Bearing in mind that in real physical systems t
electron–hole pair concentrationn!N and that the order pa
rameterj of the metal–semiconductor phase transition d
not exceed 0.5~see Refs. 1–6!, from ~7.3! we obtain the
approximate equation

n5
Nj

p
ln

j0

j
, ~7.4!

with j0 determined by~6.3!.
Figure 2 is a rough sketch of that segment ofj~n! given

by ~7.4! where the stability condition~6.5! is satisfied. We
see that the behavior ofj(n) is similar to that in a system
with T50, but now the sudden transition to the metal
phase takes place at

n15
Nj0

pe
, j15

j0

e
. ~7.5!

The inequality~6.5! is the criterion of stability for the
semiconducting phase of the Peierls system against a me
semiconductor phase transition. Now we study this sys
for stability under a transition to a spatially nonuniform sta
with a periodic spatial modulation order parameterj of the
metal–semiconductor phase transition~zÞ0!. Bearing in that
at the moment at which the solution loses its stability,z50,

] f 2

]z U
T,z50

50, ~7.6!

from Eq. ~5.7! we obtain

T5
2b2Nk0

pAkB cos2 ~k0/2!
. ~7.7!

When a photoinduced superstructure with a wave nu
berk0 is formed, the forbidden band in the electron spectr
E(k) @see Eq.~3.6!# emerges at the point where the Fer
quasilevelm is located:

ES p2k0

2 D5m. ~7.8!

This yields the approximate expression Equation~7.9!

m52b sinh j1
bk0

2

4 sinhj
. ~7.9!

According to Eq.~5.8!, when the Fermi quasilevelm is in the
conduction band, the concentrationn of electron–hole pairs
is given by the approximate expression

n5
N

3pkBT
A sinh j

b
~m12kBT22n sinh j!3. ~7.10!
s

l–
m

-

i

If we now use Eqs.~7.7!–~7.10!, we can find a formula
for the critical concentrationnc of electron–hole pairs abov
which (n.nc) the semiconducting phase of the Peierls s
tem contains a photoinduced superstructure:

nc5
2N

3p
A2kBT sinh j

b F11
kBT

32b3 sinh j
S pA

N D 2G 3

. ~7.11!

Combining Eqs.~7.9! and ~7.10!, we obtain an expres
sion for the spatial periodl of the superstructure:

l5
2pr 0

k0

5
pr 0

A~3pkBTn sinh j/Nb!2/322kBT sinh j/b
. ~7.12!

In particular, Eqs.~7.11! and~7.12! imply that at the critical
point nc , at the moment when the superstructure is form
the value of the periodlc5l(nc) is given by

lc5
4b2Nr0

AkBT
. ~7.13!

To observe the superstructure, the following conditio
must be met:

nc,n,n1 . ~7.14!

which imply, in particular, thatnc,n1. If we combine this
fact with ~7.5! and ~7.11!, we obtain an approximate equa
tion for the critical temperatureTc above which there can b
no superstructure, no matter what the value ofn is:

8kBTc

9bj0
F11

ekBTc

32b3j0
S pA

N D 2G 3

51. ~7.15!

Let us now give the results of numerical estimates. If
use typical numerical values of the physical quantities
VO2 ~Refs. 4 and 7!, i.e., b'0.3 eV, r 0'3 Å, N
'1023cm23, j0'0.5, A'1023eV cm3, andT'100 K, then
Eqs. ~7.2!, ~7.5!, ~7.11!, ~7.13!, and ~7.15! suggest thatn2

'1022cm23, n1'631021cm23, nc'531021cm23, lc

'130 Å, andTc'200 K. Note that here the numerical valu
of n1 coincides, in order of magnitude, with the value es
mated from the experimental data,n1'1021cm23 ~see Ref.
18!.

8. DIPOLE-MOMENT OPERATOR

From now on we will assume that the nonequilibriu
concentration of the electron–hole pairs in the system c
sidered is created thanks to the electric dipole electro
photon interaction with the incident radiation. To descri
this interaction, we first calculate the dipole-moment ope
tor of a spatially uniform~z50! Peierls system. In the tigh
binding approximation, this dipole-moment operator is

d5(
n

~dn,n11an
1an111dn,n11* an11

1 an!, ~8.1!

where the dependence ofdn,n11 on j is similar to ~2.4!:
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dn,n115~d11 id2!exp~~21!nj!

52eE cn* ~r !rcn11~r ! dr . ~8.2!

Herecn(r ) is the atomic wave function of the electron at t
nth site, ande is the electron charge. By selecting the pha
of the wave functionscn(r ) so that the overlap integral~2.4!
is real we ensure that bothd1 and d2 in ~8.2! are uniquely
defined.

Substituting~3.1! into ~8.1! and allowing for~8.2! and
the identity exp@(21)nj#5coshj1(21)nsinhj, we obtain

d52(
k

@coshj ~d1cosk2d2sin k!ck
1ck

1 i sinh j ~d1sin k1d2cosk!ck
1ck2p#. ~8.3!

Introducing the Fermi operatorsak and ak
1 into ~8.3! and

allowing for ~3.3! and ~3.5! we finally obtain

d5(
k

H Fd1Ek

b
2

2d2

11wk
2 @~12wk

2! coshj sin k

12wk sinh j cosk#Gak
1ak1 i

2d2

11wk
2 @~12wk

2! sinh j

3cosk22wk coshj sin k#ak
1ak2pJ . ~8.4!

Note the formal similarity of the operators~2.1! and~8.1! at
d250. Hence the operators~3.4! and~8.4! are also formally
similar.

Suppose that without an external electric field the to
dipole moment of the system is zero. Then Eqs.~8.4! and
~3.6! imply that d150. Thus, the fact that we have chos
the phases of the wave functionscn(r ) so that the overlap
integral Bn,n11 in ~2.1! is real ensures, in the present ca
that the interstitial dipole-moment matrix elementdn,n11 in
~8.1! is imaginary. The case ofd1Þ0 can probably be ob
served in systems exhibiting ferroelectric properties, but
will not consider such systems here. Asj→0, as Eq.~3.5!
indicates, wk→0 for all kÞ6p/2, with the result that
dk,k2p→0 in ~8.4! and all dipole transitions are forbidden.
jÞ0, thendk,k2pÞ0 in ~8.4!, and the corresponding dipol
transitions are allowed. Since in this case the intervalkP
(2p/2,p/2# is the first Brillouin zone, the given transition
in the spectrum~3.6! are vertical band-to-band transitions.

9. INTERACTION WITH RADIATION

The interaction between the system and the light field
described by an operatorV, which in the dipole approxima
tion can be written as

V52d–E~ t !5d–E Ev e2 ivtdv, ~9.1!

whereev andv are the amplitude and frequency of a spect
component of the light field.

We assume the incident radiationE(t) to be a quasimo-
nochromatic time-independent random process linearly
s

l

,

e

s

l

o-

larized along the crystal’s axis.29 As a result, all the spectra
componentsEv are statistically independent:29,30

^Ev–Ev1
&5G~v!d~v1v1!. ~9.2!

HereG(v) is the spectral density of the light field, which fo
a quasimonochromatic signal can be written as29

G~v!5Ig~ uvu2v0!, ~9.3!

wherev0 is the carrier frequency, andg(x) is a nonnegative
bell-shaped function, with its maximum atx50, satisfying
the normalization*g(x) dx51. The widthDv of the spec-
trum G(v) satisfies the inequalityDv!v0. The quantityI
5*G(v)dv/2 is the intensity of the light field~in the
Gaussian system of units, to within a factorcn/2p, wherec
is the speed of light, andn is the medium’s refractive index!.

Using Liouville’s equation31

i\
]r

]t
5@H1V, r#, ~9.4!

and allowing for Eqs.~9.1! and~9.2!, we obtain an equation
for the diagonal elementsrkk of the density matrixr of the
electron subsystem in second-order perturbation theory:

]rkk

]t
5

2p

\2 (
s

udksu2GS Es2Ek

\ D ~rss2rkk!, ~9.5!

wheredks is the matrix element of the dipole moment oper
tor ~8.4!. In the special case of a monochromatic fieldE(t)
5E0 cos(v0t1w) with a uniformly distributed random phas
w, the spectral density is

G~v!5 1
4E0

2@d~v2v0!1d~v1v0!#.

Then Eq.~9.5! becomes Fermi’s Golden Rule for the pro
ability of stimulated transitions:30

]rk,k2p

]t
5

p

2\
uE0–dk,k2pu2d~2Ek2\v0!. ~9.6!

Here ~9.6! we assumed that the lower level~with the quasi-
wave numberk2p) is completely occupied and the upp
level ~with the quasiwave numberk! is vacant.

If we combine~8.4! and ~3.6! with ~9.5!, we obtain

]rkk

]t
5

2p

\2
dk

2GS 2«k

\ D tanh
«k2m

2kBT
, ~9.7!

where

dk5
2d2

11wk
2

u~12wk
2! sinh j cosk 22wk coshj sin ku.

~9.8!

In deriving Eq. ~9.7! we assumed that the spectral dens
G(v) of the light field is localized near the frequenciesvk

52«k /\ at which the electron spectrum«k of a spatially
nonuniform Peierls system@see Eq.~4.7!# coincides with the
spectrumEk of a spatially uniform Peierls system@see Eq.
~3.6!#, i.e., there is excitation of electron–hole pairs into t
depth of the allowed band.



t

b

-

b-
it

-
n

ity

nu-

r–

n

ly

fact
er-
re-

ra-
es

one

ser

ys-
ase
the

ar-

vely.

723JETP 88 (4), April 1999 A. L. Semenov
Combining Eqs.~3.6! and ~9.7!, we obtain a transpor
equation for the concentrationn52( uku<p/2rkk of the
electron–hole pairs:

]n

]t
5

4p

\2 (
uku<p/2

dk
2 tanh S «k2m

2kBT D GS 2«k

\ D2
n2n0

t
, ~9.9!

wheren0 is the electron–hole pair concentration in the a
sence of a light field, i.e.,n05n(m50). The last term on the
right-hand side of Eq.~9.9! allows for band-to-band relax
ation with a relaxation timet. Equation~9.9! shows that the
variation in n is due to the interaction of the electron su
system and the spectral components of the light field w
frequenciesvk52«k /\.

Taking ~9.3! into account, from Eq.~9.9! in the steady-
state regime (]n/]t50) we finally obtain

I 5
~n2n0!\2

4pt F (
uku<p/2

dk
2 tanh S «k2m

2kBT D gS 2«k

\
2v0D G21

.

~9.10!

Equations~5.8!, ~5.6!, and ~9.10! constitute a complete
set of equations with respect to the internal parametersm, n,
andj of a spatially uniform~z50! Peierls system with given
external parametersT, I, v0, etc.

10. EXCITATION BY A MONOCHROMATIC LIGHT FIELD

For a monochromatic light field, we analyze Eq.~9.10!
with allowance for~7.4!, which holds atT, where the form
factor g(x)5d(x). In ~9.10! we replace the sum by an inte
gral over dE, bearing in mind that the density of electro
statesn ~E! corresponding to the spectrum~3.6! takes the
form

n~E!5
2NE

pA~4b2 cosh2 j2E2!~E224b2 sinh2 j!
~10.1!

and that, according to~9.8!, ~3.5!, and~3.6!, the matrix ele-
ment of the dipole-moment operator,dk , at «k5E is given
by

d~E![dk~«k5E!5
4bd2 coshj sinh j

E
. ~10.2!

Then at tanh@(\v0/22m)/2kBT#51 we have the followingI
vs. j dependence:

I 5I ~j!

5
\2v0@j ln ~j0 /j!2pn0 /N#

512ptb2d2
2 cosh2 j sinh2 j

3A@16b2cosh2j2~\v0!2#@~\v0!2216b2sinh2j#.

~10.3!

Similar calculations withT50, as Eqs.~9.10!, ~6.2!, ~10.1!,
and ~10.2! imply, lead to the expression
-

h

I 5I ~j!

5
\2v0~j02j!Aj/j0

512ptb2d2
2 cosh2 j sinh2 j

3A@16b2 cosh2 j2~\v0!2#@~\v0!2216b2 sinh2 j#.

~10.4!

Thus, whenT50, we have~10.4! for I (j), ~6.2! for
n(j), ~6.8! for z(n), and ~6.10! for l(n). These formulas
indirectly specify~in parametric form! the electron–hole pair
concentrationn, the modulation parameterz, and the period
l of the superstructure as functions of the light-field intens
I.

WhenT is finite, we have~10.3! for I (j), ~7.4! for n(j),
and ~7.12! for l(n,j), which implicitly specify n(I ) and
l(I ).

Here are some numerical estimates. We use typical
merical values of the physical quantities for VO2:
b'0.3 eV, N'1023cm23, and j0'0.5 ~Refs. 4 and 7!;
t;10211s ~Ref. 27!; and d2;10218esu~Refs. 30 and 32!.
Then from ~10.3! and ~10.4! with allowance for~7.5! and
~6.6! it follows that at the photoinduced semiconducto
metal phase transition point,I 1(T50)'I 1(T5100 K)
;106 esu. This corresponds to a light-field intensityI 1c/2p
;1015esu;108 W/cm2. A photoinduced superstructure ca
be observed whenI P(I c ,I 1), with I c(T50)50. When
T5100 K, Eqs. ~7.11!, ~7.4!, and ~10.3! yield I 12I c'2
3105 esu, which corresponds to a light-field intensityc(I 1

2I c)/2p'231014esu'23107 W/cm2.

11. DISCUSSION

The high values of the critical intensities, name
I 1c/2p'I cc/2p;1072108 W/cm2, obtained via the theory
elaborated in this paper, appear to be determined by the
that observing photoinduced effects of formation of a sup
structure and the semiconductor–metal phase transition
quires high nonequilibrium electron–hole pair concent
tions,nc;n1;0.05N ~see the results of numerical estimat
at the end of Sec. 7!. The value ofnc ~and hence ofI c) can
be reduced by lowering the temperature@see Eq.~7.11!#.
However, numerical estimates show that even atT51 K the
values of the critical concentrationnc and critical intensityI c

remain very large: nc'531020cm23 and I cc/2p'7
3106 W/cm2.

To observe the predicted phenomena in experiments,
should use very thin~down to atomic dimension! filamentary
~one-dimension! or film ~two-dimensional! samples placed
inside a material that is transparent to radiation at the la
frequency and acts as a good heat sink~say, superfluid he-
lium!.

Another possible way to prevent overheating of the s
tem is to use high-power short-pulse laser light. In this c
the formulas of Sec. 7, in particular, the expressions for
concentrationsn1 @Eq. ~7.5!# and nc @Eq. ~7.11!# remain
valid if the laser pulse length exceeds severalfold the ch
acteristic relaxation timestph;10213s andte;10214s of
the phonon and interband electron subsystems, respecti
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In view of what has just been said, the experiment c
ducted by Bugaevet al.18 can be cited as an example. Th
researchers irradiated a vanadium dioxide film by picosec
laser pulses with an intensityI'53108 W/cm2 and ob-
served a photoinduced semiconductor–metal phase tra
tion. Here, as the numerical estimates of the present p
show, the critical concentration of the nonequilibrium car
ers at the phase transition point,n1 /N, was roughly 1022,
and the variation in the sample temperature,DT, did not
exceed 10 K.

An experiment similar to the one described in Ref.
but conducted at low temperatures (T,Tc) would probably
make it possible to observe photoinduced superstructu
The temperatureT of the sample should be maintained
low as possible, since according to~7.11! this reduces the
threshold value of the critical nonequilibrium electron–ho
pair concentrationnc above which a superstructure of th
type described in the present paper appears in a Peierls s
conductor.

12. CONCLUSION

We have studied the behavior of the low-temperat
phase of a Peierls system when nonequilibrium electro
hole pairs are excited in the phase. We have found that a
total concentrationn of the excited electron–hole pairs in
creases~including thermal and light excitations!, the order
parameterj of the metal–semiconductor phase transiti
smoothly decreases to the valuej1 ~Eqs.~7.4! and~7.5! and
Fig. 2!, and at the concentrationn1 given by Eq. ~7.5! a
sudden transition to the metallic phase occurs.

At low temperaturesT,Tc , where Tc is defined in
~7.15!, and at electron–hole concentrationsn such thatnc

,n,n1 @see Eqs.~7.11! and ~7.5!#, a spatially nonuniform
periodic structure forms in the Peierls system. This struct
is the one-dimensional spatial modulation of the band gapEp

in the electron spectrum with a spatial periodl52pr 0 /k0

@see Eq.~7.12!#:

Eg54b sinh H jF11z cos S k0S m2
1

2D D G J , ~12.1!

wherem is the number of the atom in the chain.
At time of formation, i.e., whenn5nc , the periodl of

this heterostructure is given by~7.13!. Then, asn increases,
l decreases according to Eq.~7.12!. After the light pulse has
traveled through the system, when the concentrationn be-
comes lower than the critical value (n,nc), the heterostruc-
ture disappears.

At T50, the photoinduced heterostructure exists in
semiconducting phase of the Peierls system at any con
tration n lower thann1 @Eq. ~6.6!#, since herenc50. As n
increases, the spatial periodl of the heterostructure@Eq.
~6.10!# monotonically decreases froml(n50)5` to l(n
5n)5l1 @Eq. ~6.11!#. Also, asn increases, the parameterz
@Eq. ~6.8!# of modulation of the band gap@Eq. ~12.1!# in-
creases fromz(n50)50 to z(n5n1)5z1 @Eq. ~6.9!#.

Basing our reasoning on the assumption that the ph
excitation of nonequilibrium electron–hole pairs is due to
electric dipole interaction of the electron subsystem and
-
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photons of the incident radiation, we have derived expr
sions for the value of the light-field intensityI at which ob-
servation of the photoinduced superstructure is possible,
made numerical estimates~see Sec. 10!. We have found that
the photoinduced superstructure forms at intensitiesI
P(I c ,I 1), whereI c(T50)50, and monotonically grows a
the intensity increases toI c(T5Tc)5I 1. The value ofI 1

changes little under temperature variations (I 1(T50)
.I 1(T5Tc)).

In conclusion it must be noted that the photoinduc
superlattice of alternating metallic and superconduct
phases in a vanadium dioxide film on a substrate, the su
lattice observed so far in experiments, constitutes an irrev
ible structure, with a periodl;1mm, left after the light
pulse has passed through the system,19 and probably canno
be interpreted by the theory developed in this paper. Exp
ments that would detect a thermodynamically nonequi
rium superstructure that disappears after irradiation
ceased have yet to be conducted.

* !E-mail: semenov@quant.univ.simbirsk.su
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The effect of the inner structure of domain walls on the time-independent parameters of an
isolated stripe domain in a thin ferromagnetic film is studied. The adopted variant of the
perturbation theory makes it possible to account, within a unified approach, for the
contributions of the magnetostatic and exchange interactions. ©1999 American Institute of
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The physical theory of magnetic domain walls has be
thoroughly studied.1–5 The current interest can be explaine
on the one hand, by the broad promise of using mater
containing domains in microelectronics and, on the other
the development of the nonlinear theory of magnetism.

The classical theory of ferromagnetism is based on
dynamical Landau–Lifshitz equations, which make it po
sible to extract exhaustive information about the state of
magnetic system. However, if we use models that are c
to reality, the equations become very complicated and m
simplifying assumptions have to be introduced into the c
culations.

For instance, in a model widely used in studies of pro
erties of magnetic domains, the domain walls are interpre
as infinitely thin geometric boundaries with their own su
face energy.1,6–8 This model provides a good description
the state of the system in low magnetizing fields but can
be used in fields with large amplitudes, when the dom
width becomes comparable to the thickness of the dom
walls. In such a situation the inner structure of the dom
walls has a strong effect on the properties of the magn
domains.

The present study uses the Landau–Lifshitz equation
investigate an isolated stripe domain localized in a thin f
romagnetic film and the dependence of the domain prope
on the inner structure of the domain wall. The limits of t
results will also be investigated. The method of regulariz
perturbations of the nonlinear equations developed in
paper in general form can be used to study other phys
problems.

The characteristics of the system investigated in
present paper are determined by the energy functional
the following structure:

E5E E dx dyE
0

L

dz w~m!,

w~m!5M0
2H a

2 S ]m

]x D 2

1
b

2
~12mz

2!2hzmz2
1

2
mhmJ , ~1!

wherem5M /M0 is the unit magnetization vector,M0 is the
saturation magnetization,a and b are, respectively, the
7261063-7761/99/88(4)/6/$15.00
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exchange-interaction and uniaxial-anisotropy constantshz

5Hz /M0 is the reduced magnetic field parallel to the ea
magnetization axis and orthogonal to the plane of the fi
hm is the intrinsic magnetostatic field of the ferromagnet, a
L is the film thickness.

In our domain-structure studies we will assume that
plane of the domain walls limiting the isolated stripe doma
is orthogonal to thex axis. It has proved convenient to stud
the magnetization states in terms of the angular variableu
andw, which are the polar and azimuthal angles in a syst
of coordinates whose polar axis is thex axis. Here the rela-
tionship between the components of the magnetization ve
and the new variables is

m5~cosu, sin u sin w, sin u cosw!. ~2!

As is known, the magnetostatic field of the sample induc
by magnetic inhomogeneities is given by the formula3

hm5¹E dr 8 S mi~r 8!
]

]xi
D 1

ur2r 8u
. ~3!

Mathematically, magnetic domain walls are represen
by the soliton solutions of the Landau–Lifshitz equation
These equations for the angular variables in the tim
independent case can be derived by varying the energy f
tional ~1! in the variablesu andw,

]w

]u
2¹

]w

]¹u
50,

]w

]w
2¹

]w

]¹w
50, ~4!

with the following boundary conditions at the film surface

]u~z50!

]z
5

]u~z5L !

]z
5

]w~z50!

]z
5

]w~z5L !

]z
50. ~5!

When studying the domain structures in film materia
one must allow for the effect of the magnetostatic fields g
erated by the surface inhomogeneities in the magnetiza
distribution. The presence of such inhomogeneities dist
the inner structure of the domain walls. However, as sho
in Ref. 1, for thin-film materials whose thicknessL'L
5Aa/4p, these distortions are effectively suppressed by
tensive exchange interaction. Hence in the zeroth approxi
tion the structure of the domain walls can be assumed to
© 1999 American Institute of Physics
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of the Bloch type. The assumption is especially true wh
one deals with ultrathin magnetic films9 ~the technology
needed to fabricate such films is being actively develope!.
In our notation, this case corresponds tou5p/2. We will
assume that deviations from the Bloch configuration can
described by small correctionsu1(r ), such thatuu1u!1. The
limits of the approximations are examined in the Append

Thus, if we assume that

u~r !5
p

2
1u1~r ! ~6!

and that the distribution of magnetization is uniform alo
thex axis parallel to the plane of the domain walls, we obta
equations that describe the state of the domain structur
within terms of first order inu1(r ):

2 l 2S ]2

]x2
1

]2

]z2D w1 sin w cosw1«

3~hz1hz
m~x,z,w!! sin w50, ~7.1!

L̂~w!u12 l 2
]2u

]z2
1«hx

m~x,z,w!50, ~7.2!

S hx
m

hz
mD 52S ]

]x

]

]z

D E
2`

`

dx8E
0

L

dz8 cosw

3
z2z8

~x2x8!21~z2z8!2
, ~7.3!

where

L̂~w!52 l 2
]2

]x2
1cos2 w2 l 2S ]w

]x D 2

is a linear operator,hi
m are the components of the magnet

static field,l 5Aa/b is the domain-wall thickness paramete
and«51/b!1 is a small parameter. Terms proportional
«u1 have been dropped from Eq.~7.2!.

Obviously, the magnetization inhomogeneities on
surface of the film, generated by the domain walls, lead
the emergence in Eq.~7.1! of a small nonlinear operato
«hz

m(x,z,w), which is explicitly coordinate-dependent. Th
variants of the theory for studying the effect of adiaba
temporal perturbations are discussed in Ref. 10. Here
generalize the results of Ref. 10 to the case of slow spa
modulations.

Sinceu1 is assumed small, in the leading approximati
the state of the magnetization field is determined by
boundary value problem

2 l 2
]2w

]x2
1sin w cosw

5 l 2
]2w

]z2
2«~hz1hz

m~x,z,w!! sin w, ~8.1!
n

e

.

to

e
o

e
al

e

]w~z50!

]z
5

]w~z5L !

]z
50,

]w~x→6`!

]x
50.

The variations inw along thez axis are caused by sma
perturbations proportional to«, so that we will assume tha
these variations are small. The right-hand side of Eq.~8.1! is
considered a perturbation.

Ordinary perturbation theory can be used if a pertur
tion leads to small quantitative corrections. Hence, wh
studying a nonlinear problem, we must ensure that the p
turbation we ignored in the zeroth approximation does
introduce variations of the qualitative nature into the syste

For instance, in a zero magnetic fieldhz , one of the
ground states of the system involved is a solitary 180°
main wall, while in a finite magnetic field the steady-sta
solution describing this structure is unstable, and a gro
state is, for example, an isolated stripe domain magnetize
the direction opposite to that of the external magnetic fie
In this sense the perturbation described by the expressio
the right-hand side of Eq.~8.1! is of a singular nature and
dramatically transforms the state of the system.

To apply the methods of perturbation theory we mu
regularize the perturbation.

One variant of regularization can be represented in g
eral form for an arbitrary equations that has soliton solutio

Let us consider a boundary value problem for the no
linear equation

2 l 2
]2w

]x2
1L̂0~w!5 l 2

]2w

]z2
2«h~x,z,w!, ~9!

whereL̂0(w) andh(x,z,w) are nonlinear operators,«!1 is a
small parameter whose modulations along thez axis are due
to a perturbation and are assumed small.

For the sake of definiteness we assume that the boun
conditions are

]w~x→6`!

]x
50, ~10.1!

]w~z50,L !

]z
50. ~10.2!

We also assume that the perturbation is of a singu
nature and cannot be take into account by stand
perturbation-theory methods. We will attempt to single o
the specific feature of this perturbation by specifying a si
pler operator«L1(H,w), whereH is an undefined paramete
which generally depends on the variablez.

We introduce this operator into Eq.~9!, which becomes

2 l 2
]2w

]x2
1L̂0~w!1«L̂1~H,w!

5 l 2
]2w

]z2
2«~h~x,z,w!2L̂1~H,w!!. ~11!

We performed this transformation in order to select
effective operatorL1(H,w) that affects the structure of th
solution in the same as the initial perturbationh(x,z,w).
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Thus, assuming that the right-hand side of Eq.~11! is the
regularized perturbation, we write the solution of~11! as
follows:

w~x!5w0~x2x0 ,H !1«w1~x2x0 ,H !1•••, ~12!

where w0(x2x0 ,H) is the two-parameter solution of th
boundary value problem

2 l 2
]2w0

]x2
1L0~w0!1«L1~H,w0!50, ~13!

]w0~x→6`!

]x
50.

Since Eq.~13! does not depend explicitly on the variab
x, its solution can be obtained in general form at least
integrals. The solution is translation invariant.

The value of the correction is determined by the inh
mogeneous boundary value problem

G0~w0 ,H !w15 f 1~X,x0 ,z,H !, w1~x56`,H !50, ~14!

f 1~X,x0 ,z,H0!5~L1~w0 ,H0!2h~X1x0 ,z,w0!!1a
]2w0

]z2
,

]2w0

]z2
5

]2w0

]x2 S ]x0

]z D 2

2
]w0

]x

]2x0

]z2
22

]2w0

]x ]H

]x0

]z

]H

]z

1
]2w0

]H2 S ]H

]z D 2

1
]w0

]H

]2H

]z2
,

G0~w0 ,H !52 l 2
]2

]X2
1

]L0~w0 ,H !

]w0
1«

]L1~w0 ,H !

]w0
, ~15!

whereX5x2x0.
For the right-hand side not to contain secular terms,

must correctly determine the parametersx0 and H. This is
achieved by ensuring that the inhomogeneous equation~14!
meets the solvability conditions, and this requires know
the solutions of the corresponding homogeneous equa
These conditions can easily be found by differentiating E
~13! with respect to the parametersH andx0. Here we have

G0~w0 ,H !c1~X!50,

G0~w0 ,H !c2~X!52«H
]

]H
L1~w0 ,H !, ~16!

where

c1~X!5
]w0

]X
, c2~X!5H

]w0

]H
.

Thus,c1(x) has a zero eigenvalue, is a solution of t
homogeneous equation corresponding to~14!, and is local-
ized near the solution. Clearly, in the leading approximat
in « these features are also inherent inc2(x).

The solvability conditions for Eq.~14! have the form

E
2`

`

dx S c1~X!

c2~X!
D f 1~X,x0 ,H0!50. ~17!
s

-

e

g
n.
.

n

They determine a system of differential equations that
gether with the boundary conditions

]x0~z50,L !

]z
5

]H~z50,L !

]z
50 ~18!

make it possible to find the effective parameters.
Since it is known thatc1(X) is a solution of the homo-

geneous equation in~16!, we may formally assume thatw1

has been determined.11

The application of this approach simplifies substantia
if we wish to find the solution of the equation in the on
dimensional case. Herex0 andH are constants whose value
are determined by the conditions~17!. In this case we an
easily establish the nature of the perturbation.

If

E
2`

`

dx
]w0

]x
h~x,w0!Þ0

for all values of the parameterx0, wherew0 is the solution of
the unperturbed problem

2 l 2
]2w0

]x2
1L0~w0!50,

]w0~x→6`!

]x
50,

the solution cannot be approximated by a one-parameter
lution and the perturbation is of a singular nature, whi
requires allowing for its singularity.

The success of this method depends on how we se
the effective operatorL1(w,H). Since there is always a cer
tain ambiguity in selecting this operator, a simple form of t
operator is preferable.

Following the theory, we select the effective operator
the formL1(w,H)56Hsinw.

Then the leading approximation to the solution of Eq
~7.1!, ~8.1! and ~8.2! is determined by the simpler bounda
value problem

2 l 2
]2w0

]x2
1 sin w0 cosw06«H sin w050,

]w0~6`,H !

]X
50. ~19!

WhenH is positive, depending on the sign in front of
the solution of~19! is

w0~X,H !

55 p12arctanHA «H

11«H
sinh SA11«H

X

l D J , 1H,

p22arctanHA «H

12«H
coshSA12«H

X

l D J , 2H.

~20!
From the physical viewpoint, the solutions in~20! cor-

respond to bound states of two unipolar and heterop
Bloch walls. The polarity is determined by the sense of
tation of the magnetization vector in the plane of the dom
walls. The parameterH in this case is an effective superpo
sition of the external magnetic field and the intrinsic magn



te

ip
gn
d

pa

e
e
c
y

s

be
s a

tion

-

n-
he

729JETP 88 (4), April 1999 Yu. I. Dzhezherya
tostatic field. Clearly,12 the value ofH is linked to the width
parameterd of the stripe domain through the relationship

H~z!54b exp ~2 d~z!/ l !. ~21!

The corrections to the leading approximation are de
mined by the boundary value problem~14!, where

G0~w0 ,H !52 l 2
]2

]X2
1 cos 2w06«H cosw0 , ~22!

f 1~X,z,x0 ,H !5 sin w0~6H2hz2hz
m

3~X1x0 ,z,w0!!1a
]2w0

]z2
.

In what follows, a plus sign denotes an isolated str
domain limited by unipolar domain walls and a minus si
denotes an isolated stripe domain limited by heteropolar
main walls.

In the leading approximation, the solutionsc1 andc2 of
the homogeneous equation are

c1~X!5
]w0

]X
, c2~X!5 sin w01O~«!. ~23!

In our case, instead of deriving an equation for the
rameterH, it is convenient to use~17! and derive an equation
for the width parameter of an isolated stripe domain,d(z),
via the unambiguous relationship~21!.

To obtain the equations for the parametersx0 andd from
the conditions~17!, it is advisable to use the properties of th
function w0(X,H), which make it possible to evaluate th
improper integrals via asymptotic methods to high accura

Clearly, the following conditions hold for an arbitrar
smooth functionF(x/L):

E
2`

`

dx
]w0

]x
sin w0 FS x

L D
'2S FS 2d/21x0

L D2FS d/21x0

L D D1OS l

L D ,

E
2`

` dx

l
sin2 w0 FS x

L D
'2S FS 2d/21x0

L D1FS d/21x0

L D D1OS l

L D ,

E
2`

`

dx ~12 cosw0!FS x

L D
'2E

2d/21x0

d/21x0
dx FS x

L D1OS l

L D . ~24!

Using these properties, we can write the component
the magnetostatic field in the form

hi
m~x,z!52

]

]xi
E

0

L

dz8 S arctan
d~z8!/21x2x0~z8!

z2z8

1arctan
d~z8!/22x1x0~z8!

z2z8
D , i 5x,z. ~25!
r-

e

o-

-

y.

of

Thus, on the basis of Eqs.~21! and ~23!–~25! and the
conditions~17! we obtain

l
]2x0

]z2
5

«

2 S hz
mS x02

d

2
,zD2hz

mS x01
d

2
,zD D , ~26.1!

l
]2d

]z2
5«S 68b exp S 2

d

l D22hz2hz
mS x02

d

2
,zD

2hz
mS x01

d

2
,zD D . ~26.2!

Clearly,x05const is an exact solution of Eq.~26.1! cor-
responding to the boundary conditions~18!. Equation~26.2!
is a nonlinear integrodifferential equation and cannot
solved exactly. However, since its right-hand side contain
small parameter and is actually a perturbation, the solu
~in accordance with the boundary conditions]d(0)/]z
5]d(L)/]z50 can be written d(z)5d01d1(z)1•••,
whered0 is a constant whose value has yet to be found.

From Eq.~26.2! it follows that the equation for the cor
rections in the approximation linear in« is

l
]2d

]z2
5«H 22hz68b exp S 2

d0

l D28

3S arctan
d0

L2z
1arctan

d0

z D J . ~27!

By integrating Eq.~27! over the interval@0,z,L# with
allowance for the boundary conditions we obtain a relatio
ship the links the width of an isolated stripe domain to t
strength of the external magnetic field:

hz54H 6b exp ~2 d0/ l !12arctan
L

d0

2
d0

L
lnS 11S L

d0
D 2D J . ~28!

FIG. 1.
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The first term on the right-hand side corresponds to
exchange interaction due to allowance for the inner struc
of the stripe domain. It is dominant over a narrow stri
domain and is negligible in weak magnetic fields, when~28!
asymptotically tends to the limit obtained in the model
geometric domain boundaries.1 Figures 1 and 2 depict, fo
films of different thicknesses, the dependence of the width
a stripe domain in the model of geometric domain wa
~curve1! and of a domain limited by unipolar and heterop
lar domain walls~curves2 and3, respectively!.

The results obtained in this paper make it possible
establish the value of the critical magnetic field above wh
there can be no bound state of heteropolar Bloch walls.
viously, the critical field is defined as the extremum of t
function ~28! for heteropolar domain walls, whose plots a
depicted in Figs. 1 and 2. The dependence of the critical fi
on the film thickness for materials with different values
anisotropy is depicted in Fig. 3.

The solution of Eq.~27! can easily be expressed in term
of elementary functions. The width of the domain is t
greatest at the center of the magnetic film. However, acc
ing to estimates for materials with an anisotropyb5100 and
a thicknessL'10l , the correctiond1 is very small and does
exceed 0.1l . Calculations show that in examining an isolat
stripe domain one can ignore the distortions in its struct
over the thickness for a broad class of films.

Thus, the proposed method of regularizing perturbati
has proved extremely useful in studies of an applied phys

FIG. 2.

FIG. 3.
e
re

f
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h
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problem. The method has made it possible to transcend
geometric domain-wall model and investigate the state o
magnetic domain over a range of field strengths in which
inner structure of the domain walls determines~together with
the magnetostatic interaction! the property of the system.

I am grateful to V. G. Bar’yakhtar and Yu. I. Gorobe
for useful discussions of the material contained in this pap

APPENDIX

In this appendix we discuss the use of the Bloch-w
approximation. The obvious criterion of validity of th
adopted assumptions is thatuu1u!1, where ofu1 is the so-
lution of the boundary value problem obtained by substit
ing w(x)'w0(x,H) into ~7.2! and performing the necessar
transformations:

G0~w0,H !u12 l 2
]2u1

]z2
52«hx

m~x,z!, ~A1!

hx
m~x,z!52 ln

~L2z!21~x2d/2!2z21~x1d/2!2

~L2z!21~x1d/2!2z21~x2d/2!2
,

]u1~z50,L !

]z
50.

Here we have dropped terms proportional to«u1 and used
the conditionl 2(]w0 /]x)25sin2w01O(«).

Since the eigenfunctions~23! of the discrete low-lying
levels of the operatorG0(w0 ,H) are known, we can expan
u1(x,z) in these functions:

u1~x,z!5C1~z!l
]w0

]x
1C2~z! sin w0 . ~A2!

Plugging~A2! into Eq.~A1! and finding the scalar prod
ucts of the result and the corresponding eigenfunctions of
discrete spectrum, we obtain equations for the expansion
efficientsCi(z), which for an isolated stripe domain limite
by unipolar domain walls obey the relationship

]2C2

]z2
5

1

2L2 H ln
z

L2z
2

1

2
ln

d0
21z2

d0
21~L2z!2J ~A3!

and for an isolated stripe domain limited by heteropolar d
main walls, the relationship

]2C1

]z2
5

1

2L2 H ln
z

L2z
2

1

2
ln

d0
21z2

d0
21~L2z!2J , ~A4!

whereL5Aa/4p is the characteristic magnetic length.
The first term in the braces describes the effect of

intrinsic magnetostatic field on the magnetization distrib
tion in the domain walls limiting the isolated stripe domai
The second term describes the influence of an adjacent
main wall on the magnetization state and moderates so
what the magnetization twisting effects in the domain wa
~analysis shows that the contribution of this term is insign
cant!. Hence in estimating the perturbation we ignore t
second term, which only strengthens the criterion.
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The value of the angleu1(x,z) specified by Eqs.~A3!
and ~A4! and the relationship~A2! has the form

u1~x,z!'H g~z! sin w0~x!,

g~z!l
]w0~x!

]x
,

~A5!

with the upper value corresponding to a bound state of
unipolar domain walls limiting the isolated stripe doma
and the lower value, a bound states of the heteropolar
main walls limiting the isolated stripe domain. The fact
g(z) is given by the formula

g~z!5
1

4 S L

L D 2S S z

L D 2

ln
z

L
2S 12

z

L D 2

ln S 12
z

L D
1

1

4 S 12
2z

L D D .

The value ofu1 is at its maximum at the surface of the film

uu1 maxu5
1

16S L

L D 2

.

Thus, the configuration of the domain walls in thin film
with parameters satisfying the condition (L/L)2!16 may be
considered to be of the Bloch type.
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Electron paramagnetic resonance~EPR! spectra of samples of the systems Ba12xKxBiO3 and
BaPbyBi12yO3 are investigated over wide ranges of composition and temperature. Two
main lines in the EPR spectrum with factorsg1'2.1 andg2'4.2 are found for all compositions.
It is shown that the observed EPR line withg2'4.2 is due to oxygen ions. This probably
indicates the presence of oxygen ions with different effective charges, i.e., the existence of charge
density waves in the oxygen-ion sublattice in addition to charge density waves in the
bismuth sublattice. ©1999 American Institute of Physics.@S1063-7761~99!01204-4#
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1. INTRODUCTION

Compounds based on bismuth—Ba12xKxBiO3 ~BKBO!
and BaPbyBi12yO3 ~BPBO!—with perovskite structure are
similar in their crystalline structure and in a number
physical properties to cuprate high-temperature superc
ductors~HTSC!. The relatively high critical temperaturesTc

of these compounds, despite the lack of copper ions and
magnetic moments associated with them, make these
tems a very interesting object for checking various hypo
eses about the nature of HTSC’s. The anomalous behavi
some of the physical properties of BKBO and BPBO s
tems, and the nature of the metal–insulator concentra
transition and superconductivity in these compounds, h
yet to be thoroughly explained.

A number of unusual properties of BKBO and BPBO
and also of cuprate HTSC’s, have been linked to structu
charge, or magnetic ordering in the Bi or Cu sublatti
However, the observed anomalous softening of longitud
optical phonon frequencies in the@100# direction for the me-
tallic phases in BKBO~Ref. 1! and in the cuprate HTSC’s
La22xSrxCuO4 ~LSCO! and YBa2Cu3O72d ~YBCO! ~Ref. 2!
cannot be explained by charge ordering in the bismuth-
sublattice or by spin ordering in the copper-ion sublatti
Ordering of this kind should lead to anomalies in the phon
spectrum in the@110# directions, which are not observed
experiment.1,2

In all of these compounds an anomalous~negative! ther-
mal expansion is observed at low temperatures,3,4 as well as
an anomalous temperature dependence of the upper cr
magnetic fieldHc2 ~Refs. 5 and 6! along with other anoma
lies. In BKBO, Nd22xCexCuO4, YBCO, the bismuth cuprate
HTSC’s Bi2Sr2CuO61d , and Bi2Sr2CaCu2O81d , the cross
section of the Fermi surface is almost a square7–11 with flat
segments parallel to the@100# directions. The singling out o
7321063-7761/99/88(4)/6/$15.00
n-

he
ys-
-
of
-
n
e

l,
.
al

n
.
n

cal

these directions can also not be explained simply by orde
in the copper-ion sublattice for cuprate HTSC’s or in t
bismuth-ion sublattice in BKBO since, as already noted,
symmetric directions for all orderings are the directio
@110#.12

Taking these and other experimental facts into accou
we conjectured13,14 that in HTSC systems, besides the orde
ings with symmetry in the@110# directions, there exists a
charge ordering in the oxygen-ion sublattice, i.e., a cha
density wave in this sublattice with symmetry directio
@100#. In particular, for BKBO~Ref. 13!, besides the charge
density wave in the@110# direction in the bismuth-ion sub
lattice, it is probably also necessary to allow for a char
density wave in the oxygen-ion sublattice in the@100# direc-
tion. In the approximation of the tight-binding method th
means that oxygen ions with different effective charg
should exist in the system, whose ordering is important
the formation of the electron band structure and the Fe
surface.

A preliminary series of experiments carried out by u
and in particular measurements of EPR spectra,15 show that
in BKBO ordering of oxygen ions with different effectiv
charges possibly exists. For a more detailed elucidation
the nature of the observed EPR signals and the role of o
gen, in the present work we carried out integrated studie
BKBO and BPBO systems. The measurements were car
out on samples of varied composition, where the concen
tions of all the cations~Ba, Bi, K, Pb! and oxygen varied
over a wide range. Special attention was given to the qua
and certification of the samples.

2. SAMPLES

Samples of the system Ba12xKxBiO3 (0<x<0.50) were
prepared by nitrate technology.16 Stoichiometric quantities of
© 1999 American Institute of Physics
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KNO3, Ba~NO3)2 , and Bi2O3 powders were mixed and
heated in a nitrogen atmosphere at 965 K for 1 h, and the
988 K for 30 min. The mixture was cooled to 720 K, the n
trogen atmosphere was replaced by an oxygen atmosp
and the mixture was kept in it for 30 min. The temperatu
was then dropped to 420 K and the mixture was taken
of the oven. A similar cycle of ‘‘grinding–synthesis
annealing’’ was carried out five times for each compositio
Afterwards the samples were pressed into pellets which w
held at 988 K for 1 h in a nitrogen atmosphere, and then
720 K for 30 min in an oxygen atmosphere, then slow
~10 h! cooled to 420 K and taken out of the oven.

X-ray diffraction revealed a single-phase character of
samples withx<0.50 and a lack of splittings of reflections i
the diffraction patterns. The pseudocubic lattice param
‘‘ a’’ had a dependence on the compositionx of the forma
54.354820.1743x ~in Å! in agreement with Ref. 16. To
characterize the samples, we measured the temperatur
pendence of their electrical resistanceR(T) and magnetic
susceptibilityx(T). For x,0.3 the samples had a semico
ductor dependence ofR(T), in the range 0.3,x<0.50 they
manifested metallic properties: in this case the maxim
superconducting transition temperatureTc'30 K was ob-
tained for the Ba0.6K0.4BiO3 sample. An indication of the
high quality of the samples is provided by the large fract
of the Meissner phase~more than 50%! measured in a mag
netic field of 4 Oe.

Samples of the system BaPbyBi12yO3 were also pre-
pared by nitrate technology, but in substantially differe
thermal regimes. A stoichiometric mixture of Pb~NO3)2 ,
Ba~NO3)2 , and Bi2O3 powders was heated in an oxyge
atmosphere to 950 K and kept at that temperature for 1 h.
temperature was then raised to 990 K, and the mixture
held there for 4 h. The powders were then ground a
pressed into pellets which were kept for 4 h in an oxyg
atmosphere at 1100 K. The pellets were ground up ag
pressed, and kept in an oxygen atmosphere for 4 h at 120
After this, the samples were cooled to 1073 K and taken
of the oven. This procedure was repeated two more tim
but at a synthesis temperature of 1300 K, the first time
4 h, and the second time for 50 h. The last anneal was ca
out at 1073 K for 12 h, after which the samples were coo
outside the oven in an oxygen atmosphere. Note that sam
with y>0.5 were prepared in the indicated regime; f
samples with smaller values ofy, the maximum synthesis
temperature was reduced to 1100 K asy was reduced to zero
All remaining conditions of synthesis were identical for a
compositions.

As shown in Refs. 17 and 18, annealing of samples
BaPbyBi12yO32d in an oxygen flux at 1073 K for 12 h en
sures complete oxygen stoichiometry (d50.0060.01).

According to x-ray diffraction results, all prepare
samples were single-phase. The samples withy,0.5 had a
monoclinc structure~for BaBiO3 we havea50.6187 nm,b
50.6138 nm,c50.8670 nm,b590.165°). For the sample
with y.0.5 an orthorhombic structure was observed~for
BaPb0.75Bi0.25O3 we havea50.6079 nm,b50.6061 nm,c
50.8554 nm,b590°). To characterize the samples we me
sured the temperature dependence of their electrical re
at
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tanceR(T) and magnetic susceptibilityx(T). For y,0.65
the samples had a semiconductor dependence ofR(T), and
for y.0.65 they exhibited metallic properties, where t
maximum superconducting transition temperatureTc

'12.5 K obtained for the composition BaPb0.75Bi0.25O3 .
Analysis of the samples using a LAMMA-1000 las

microprobe mass-spectrometer with a sensitivity threshold
1017cm23 did not reveal even a trace of copper or any ma
netic impurities.

3. RESULTS

EPR spectra were measured with a Bruker ESP-
spectrometer at 9.45 GHz in the temperature range 3–30
The first derivative of the absorption signal in the magne
field was measured. We used an ESR-900 flow-through
lium cryostat with an Oxford Instruments ITC-4 temperatu
regulator, for which the measurement error of the tempe
ture in the rangeT,30 K was at most60.2 K.

We examined samples with the following composition
the insulator BaBiO3 , the ‘‘parent’’ compound of both sys
tems, BKBO and BPBO; samples of the Ba12xKxBiO3 sys-
tem with x50.13—an insulator,x50.30—a composition
near the insulator–metal transition,x50.35—lightly doped
(Tc;20 K), x50.40—optimally doped (Tc530 K), x
50.45 andx50.50—heavily doped superconductors~for x
50.50 Tc<15 K); samples of the BaPbyBi12yO3 system
with y50.20 andy50.50—insulators,y50.65—a composi-
tion near the edge of the insulator–metal transitio
y50.75 (Tc512.5 K), y50.90 (Tc58 K) and y51.00—
metals. In addition, we prepared samples of the syste
BKBO and BPBO, specially annealed in argon to create o
gen vacancies.

To eliminate the ‘‘sample degradation’’ effect on th
measurement results noted in Refs. 19 and 20, all of the b
EPR measurements were made on freshly prepared mate
which were ground into powder immediately after final he
treatment and poured together with pure mineral oil direc
into the EPR cells. Subsequent studies were carried ou
these cells. Such ‘‘hermetization’’ of the samples made
possible not only to eliminate the dependence of the res
on the time elapsed since sample preparation, but als
eliminate the possibility of partial orientation of the powd
in the magnetic field. In the control samples, which we
intentionally left in powder form and not mixed with minera
oil, we observed considerable degradation of the EPR
nals, especially the EPR line in the ‘‘half-field’’~see below!,
only a few days after grinding the pellets. This effect ind
cates a possible reason for the irreproducibility of resu
noted in a number of published works. As our prelimina
measurements have shown,13,15 one of the principal reason
for sample degradation is loss of oxygen. Note also that
EPR signal of high-purity mineral oil was very low in com
parison with the sample signal, although a weak narrow l
with g'2.0 was also detected.

Above all, note that the presence of two prominent lin
in the EPR sample was typical of all samples. One of
lines was observed in a fieldB0'0.34 T (g1'2.1), the sec-
ond was observed in the ‘‘half-field’’B0'0.17 T (g2
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'4.2). By way of example, Fig. 1 displays spectra for fo
samples of the BaPbyBi12yO3 system (y50,0.5,0.75,1.0)
and the Ba0.87K0.13BiO3 sample. As a rule, the total intensit
of the ‘‘high-field’’ line (g1) is significan tly greater than
that of the ‘‘low-field’’ line (g2), but in some samples the
intensities are comparable. It is possible that this depend
the conditions of the anneal or on subtle features of the ef
itself. Figure 1 shows the intensities of both lines for
samples, expressed on the same scale and reference
proximately to a common origin.

The intensity~amplitude! of the g2 line of the samples
depended on the temperatureT; however, the width of this
line and its position did not. For theg1 line we observed a
definite dependence of the position and width onT in the
high temperature region (T.100 K). Its shape was also ob
served to evolve with increasing lead content in the BP
samples.

In the present work we discuss the behavior of only
low-field line with g2'4.2, which is of greatest interest. Th
EPR absorption line at half the field strength is well known21

FIG. 1. Examples of EPR lines withg1'2.1 andg2'4.2 for samples of the
BaPbyBi12yO3 and Ba12xKxBiO3 systems in a magnetic fieldB up to 0.5 T:
1—y50, T53.5 K, 2—y50.5, T53.5 K, 3—y50.75, T513.5 K, 4— y
51, T53.5 K, 5—x50.13,T53.5 K (T is the measurement temperature
the samples!.
r

on
ct
l
ap-

e

to indicate the presence of triplet states in the system, i.e
pairs of states with triplet ordering of the magnetic momen
The most probable source of this EPR signal in the inve
gated samples is triplet excited states of localized hole p
with spin S51 ~Ref. 15!. It follows from the estimated in-
tensity of the lines withg2'4.2 that the number of such
pairs in the samples amounts to 102321022 of the number
of Bi~Pb! ions. This estimate is consistent with magne
susceptibility measurements.22

The intensities of the two lines fall off rapidly with in
creasing temperature. Figure 2 shows the temperature de
dence of the inverse intensityI p

21 of the EPR lines withg2

'4.2 for several samples of the BPBO and BKBO syste
~here I p is the peak-to-peak amplitude of the EPR line!. It
can be seen that the results for all samples atT,30240 K
are well described by the dependenceI p

21}xEPR
21 , where

xEPR
21 5C/(T1Q), with a common value ofQ for samples of

different composition in Ba, K, Bi, and Pb, but the sam
stoichiometric oxygen content. Thus, the nature and inten
of the interaction between localized pairs, defined by
parameterQ, depend weakly on the potassium and lead d
ing levels of the systems considered. The mean value of
parameterQ5462 K.

Since there are several possibilities in BPBO and BKB
systems for the formation of localized triplet pairs, we ca
ried out a series of measurements on the effect of doping
heat treatment on the observed EPR signals. We observe
EPR signal in the half-field in the parent material BaBiO3 ;
consequently, we know that this is signal is not due to p
tassium or lead ions. On the other hand, it follows from t
bismuth substitution experiments carried out in this stu
that these signals are not due to bismuth ions either.
partial replacement of barium by potassium~up to 50%! the
EPR signal varied only slightly. Taking into account he
that the EPR signals varied strongly~as will be made clear
below! only when the oxygen content was varied, it is na
ral to assume that these signals are due to oxygen ions.

To clarify the role of oxgyen in the formation of th
observed signals, we carried out an additional series of
periments. High-quality BKBO and BPBO samples were a
nealed in argon atT51070 K for 1 h and then quenched. Th
measurements showed that the amplitude of the signal
g2'4.2 decreased roughly tenfold with some difference
the magnitude of decrease for different compositions. Ne
the BPBO samples were annealed again, this time in an o
gen atmosphere atT51070 K for 1 h, and then quenched. I
se
FIG. 2. Temperature dependence of the inver
intensityI p

21 of the EPR line withg2'4.2 for the
BaPbyBi12yO3 systems and Ba12xKxBiO3 sys-
tems: y51 (s), y50.75 (3), y50.5 (h), y
50.2(L), x50.4 ~1! ~the BKBO sample an-
nealed in argon,Tc,4 K). The solid line shows
the dependenceI p

21(T)5(T1Q)/C. a! The de-
pendenceI p

21(T) up to T5100 K; b! the depen-
dence I p

21(T) in the lower temperature region
(T,30 K).
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this case the amplitude of the EPR signals increased se
alfold. The incomplete recovery of the EPR signal to
original value is due to insufficient duration of the oxyg
anneal. Complete recovery of the oxygen stoichiome
would require a 12-hour anneal.17,18However, such a lengthy
high-temperature anneal would lead to other changes in
samples associated with their preparation. A correspond
anneal in argon for samples of the BKBO system was car
out atT'700 K for 1 h with subsequent cooling in argon
T5420 K followed by quenching. In this case, a decrease
the intensity of the EPR signal was also observed, wh
again rose after an additional anneal in oxygen. Thus, th
experiments show that the EPR signal in the half-field
creases as oxygen leaves the sample, resulting in the e
gence of oxygen vacancies. To observe these signals,
necessary to have high-quality samples with full oxygen s
ichiometry. Loss of oxygen is pobably the reason for sam
degradation and the disappearance of EPR signals under
optimal handling of the samples.

We also carried out other experiments on the effect
heat treatment~temperature and duration of anneal, quen
rate, etc.!. Experiments on potassium and lead doping an
study of the effect of the argon and oxygen anneals, as
as other conditions of preparation, demonstrate convincin
that the EPR signals withg2'4.2 are related to oxygen an
are observed only in high-quality samples. The authors
Refs. 19, 23–25 who studied La2CuO4 and La22xSrxCuO4

samples, also concluded that it is necessary to have h
quality samples without oxygen vacancies to observe E
signals. However, it is more complicated to observe E
signals in the LSCO system in the half-field due to the str
ger signal of the Cu12 ions. In addition, there are specifi
requirements on the local symmetry of the lattice when
serving such EPR signals.19

4. DISCUSSION

The line withg2'4.2, present in the EPR spectra of a
the samples, is a distinguishing feature of the so-ca
‘‘ DMs562 forbidden’’ transition between levels of the sy
tem with spinS51 ~Ref. 21!, where Ms is the magnetic
quantum number.

The first observation of triplet EPR signals in HTS
materials and their interpretation belong to Thomannet al.19

In La22xSrxCuO4 samples without oxygen vacancies th
were able to observe the corresponding pair of EPR sign
From the temperature dependence of the signal withg'4
they were able to conclude that the interaction between
magnetic centers is ferromagnetic and that the ground s
of this system is a triplet while its excited state is a sing
Note that the presence of a Cu subsystem in the sam
made it much harder to interpret the results. The author
Ref. 19 could therefore not draw any definitive conclusio
regarding the nature of the observed pairs. Nevertheless,
took localization of additional~doped! holes as the mos
probable reason for them.

In our opinion, such EPR signals can be understood
the basis of the model of ‘‘ordered ionic–covale
bonds.’’14,26 In this model it is shown that in BKBO and
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BPBO systems, the insulating state results from charge d
sity waves in the sublattice of oxygen and bismuth ions. F
the sake of illustration, we can describe the same schem
terms of different effective charges in the bismuth-ion su
lattice and different effective charges in the oxygen-ion s
lattice. This corresponds to the emergence of ionic–cova
Bi–O bonds with different degree of covalency. In oth
words, ionic–covalent Bi–O20.5 bonds with a higher fraction
of covalency exist in the sample, along with the usu
Bi–O22 bonds. A justification of the magnitudes of the e
fective charges of the Bi and O ions is given in Ref. 26. T
ordering of such ionic–covalent bonds (Bi–O20.5) is super-
structural, and leads to the formation of a dielectric gap. D
to overlap of the wave functions and the ordering of the
bonds, a filled valence band without localized magnetic m
ments is formed.

Above we spoke of ideal, i.e., defect-free ordering of t
Bi–O20.5 ionic–covalent bonds. This is diagrammed in F
3a for a single Bi–O plane. In this case, as can be seen f
the figure, the superstructural ordering of the Bi–O20.5

bonds leads to a doubling of the lattice period. The ene
gapS in the vicinity of the point (p/a)(1/2,1/2,/12) of the
Brillouin zone is shown in Fig. 3b~here a is the distance
between bismuth ions!. In real samples, breaches arise in t
ideal ordering of the Bi–O20.5 ionic–covalent bonds. One
such breach is shown in Fig. 3c, where this breach, that i
say, ordering defect is encircled by a dashed line for clar
It creates an acceptor impurity level in the band gap, deno
by the arrow in Fig. 3d.

This defect, which results from a breach in the orderi
of the O20.5 ions, has a localized magnetic moment. Fo
sufficient concentration of such impurity centers, their ma
netic moment can be detected by EPR. When a bound pa
such impurity centers forms, a singlet ground-state level
a triplet impurity excited level arise in the band gap in t
vicinity of the neighboring bismuth ions. Such a bound p
of impurity centers is depicted in Fig. 3e and, for clarity,
also encircled by a dashed line. The energy spectrum
crystal with such defects is shown in Fig. 3f. The single a
triplet levels in the figure are represented by a correspond
pair of arrows.

Doping and the emergence of free carriers at the top
the valence band has a definite effect on the intensity of
EPR lines due to screening. However, the fact that EPR
nals have been observed in the metallic phase of BKBO
BPBO suggests that their metallic state is indeed a state
degenerate semiconductor. This conclusion is consistent
optical studies.27–30 The conductivity and superconductivit
in such a degenerate semiconductor are due to free car
arising upon doping.

As is well known,13 states at the top of the valence ba
are derived mainly from 2p oxygen states. The contributio
of the bismuth states amounts to 3–5% and decreases
potassium doping~BKBO! or lead doping~BPBO!. The con-
tribution of potassium and lead to these states is essent
zero. Therefore, the state of the oxygen ‘‘defect’’ levels
the band gapS near the top of the valence band depen
weakly on the potassium or lead concentration. When B
replaced by Pb~the replacement can be complete!, Bi–O20.5
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FIG. 3. Diagram of local violations of ideal ordering o
the ionic–covalent bonds, also showing ‘‘impurity’
levels in the band gap in the vicinity of the wave vect
k5p/a (1/2,1/2,1/2); .—Bi ions; d—O22 ions;
. d—ionic–covalent bond (Bi–O20.5), Ba, K, and
Pb ions not shown; a—diagram of ideal ordering of th
ionic-covalent bonds for one Bi–O plane
b—dispersionE(k) of the valence band and the con
duction band with band gapS; c—defect in the order-
ing of the ionic–covalent bonds~encircled by the
dashed line!; d—‘‘impurity’’ level in the band gap with
a local magnetic moment~represented by the arrow!;
e—bound pair of defects in the ordering of the ionic
covalent bonds for neighboring Bi ions~encircled by
the dashed line!; f—singlet (↑↓) and triplet (↑↑) levels
in the band gap.
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bonds are supplanted by corresponding ionic/cova
Pb–O20.5 bonds. This is the reason for the weak depende
of the EPR signals on the lead doping level.

The strong dependence of the EPR signals on the p
ence of oxygen vacancies is related to the fact that these
donor vacancies.13,17,18Compensation of acceptor levels th
arises, which leads to disappearance of the EPR signals

Reference 20 reported the observation of EPR sign
with g1'2.1 andg2'4.2 in some specimens of the BKBO
system. The authors of Ref. 20 were able to observe s
signals only in insulating samples withx50.13 and x
50.25, whereas no EPR signals were observed in the pa
compound BaBiO3 or in superconducting samples withx
50.40 andx50.50. They therefore concluded that localiz
hole pairs, being an EPR signal source, result exclusiv
from potassium doping. Since we were able to consiste
observe EPR signals in undoped BaBiO3 , this conclusion
must be characterized as erroneous. The lack of EPR sig
in some samples in Ref. 20 may be linked to ‘‘aging effect
~the authors themselves noted this effect in their work!.

We now consider the temperature dependence of the
served EPR signal withg2'4.2 in more detail. Since the
position, shape, and width of this EPR line did not chan
with temperature over the range investigated, the temp
ture dependence of the intensity of the EPR signalI p can be
analyzed using the formula21

I p5
C

T1Q
expS 2

Jp

T D , ~1!
nt
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whereJp is the exchange coupling constant inside the pair
localized magnetic moments,Q is the paramagnetic Curie
temperature characterizing the interaction in the system
triplet pairs, andC is a constant. Analysis of the dependen
~1! for the samples investigated showed thatJp>0. For ex-
ample, for BaBiO3 we have Jp50.960.5 K, and for
Ba0.6K0.4BiO3 we obtainJp53.960.5 K. Similar values are
also observed for other compositions. Taking into acco
the smallness ofJp , we can replace formula~1! by the sim-
plified dependence

I p'
C

T1Q
, ~2!

which does not include the activation factor exp(2Jp /T).
The dependenceI p

21(T) is plotted in Fig. 2, where the
solid line corresponds to formula~2!. Least-squares fitting o
the experimental data plotted in Fig. 2 yieldsQ5462 K for
the investigated samples, i.e., the quantityQ.0, which in-
dicates an antiferromagnetic interaction between the tri
localized pairs. It is clear from Fig. 2 that samples of diffe
ing composition have very similar values ofQ.

From the above estimate ofJp.0, it follows21,31 that the
ground state of a localized pair is a singlet, and the exc
state is a triplet, as shown in Fig. 3f for acceptor impur
levels.
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5. CONCLUSION

To sum up, we have shown that the observed EPR
nals are due to oxygen ions and are detected only in h
quality samples. The presence of magnetic moments on
localized pairs probably indicates that aside from
Bi–O22 ionic bonds, bonds of type Bi–O2a ~or Pb–O2a in
BaPbO3) also exist, wherea,2, i.e., ionic–covalent bond
exist between bismuth with oxygen. Their observation
EPR is possible in the case of a breach of ideal ordering
follows from these experiments that besides the familiar
perstructural ordering in the bismuth-ion sublattice, an ad
tional superstructural ordering~or charge density wave!
probably also exists in the oxygen-ion sublattice. The pr
ence of a charge density wave in the oxygen-ion sublat
should affect the band structure of oxide HTSC systems

We thank A. V. Tsikunov for performing the element
analysis of the samples on the LAMMA-1000 system and
V. Verkhovski� for discussion of the results. This work wa
supported by the Scientific Committee on Current Directio
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17411!.

1M. Braden, W. Reichardt, W. Schmidbauer, A. S. Ivanov, and A. Y
Rumiantsev, J. Supercond.8, 595 ~1995!.

2W. Reichardt, L. Pintschovius, N. Pyka, P. Schweiß, A. Erb, P. Bourg
G. Collin, J. Rossat-Mignod, I. Y. Henry, A. S. Ivanov, N. L. Mitrofano
and A. Yu. Rumiantsev, J. Supercond.7, 399 ~1994!.

3H. You, U. Welp, and Y. Fang, Phys. Rev. B43, 3660~1991!.
4N. V. Anshukova, A. I. Golovashkin, L. I. Ivanova, I. B. Krinetskii, K. V
Kraiskaya, L. I. Leonjuk, and A. P. Rusakov, Physica C282–287, 1065
~1997!.

5V. F. Gantmakher, L. A. Klinkova, N. V. Barkovskii, G. E. Tsydyn
zhapov, S. Wiegers, and A. K. Geim, Phys. Rev. B54, 6133~1996!.

6N. V. Anshukova, A. I. Golovashkin, L. I. Ivanova, and A. P. Rusako
Usp. Fiz. Nauk167, 887 ~1997!.

7W. D. Mosley, J. W. Dykes, R. N. Shelton, P. A. Sterne, and R.
Howell, Phys. Rev. Lett.74, 1271~1994!.

8D. M. King, Z.-X. Shen, D. S. Dessau, B. O. Wells, W. E. Spicer, A.
Arko, D. S. Marshall, J. DiCarlo, A. G. Loeser, C. H. Park, E. R. Ratn
J. L. Peng, Z. Y. Li, and R. L. Greene, Phys. Rev. Lett.70, 3159~1993!.

9M. C. Schabel, C.-H. Park, A. Matsuura, Z. X. Shen, D. A. Bonn, Ruix
Liang, and W. N. Hardy, Phys. Rev. B55, 2796~1997!.
g-
h-
he
e

y
It
-

i-

s-
e

.

s

.

s,

.

,

10H. Ding, T. Yokoya, J. C. Campuzano, T. Takahashi, M. Randeria, M.
Norman, T. Mochiku, K. Kadowaki, and J. Giapintzakis, Nature~London!
382, 51 ~1996!.

11J. M. Harris, P. J. White, Z.-X. Shen, H. Ikeda, R. Yoshizaki, H. Eisaki,
Uchida, W. D. Si, J. W. Xiong, Z.-X. Zhao, and D. S. Dessau, Phys. R
Lett. 79, 143 ~1997!.

12Z.-X. Shen, W. E. Spicer, D. M. King, D. S. Dessau, and B. O. We
Science267, 343 ~1995!.

13N. V. Anshukova, A. I. Golovashkin, L. I. Ivanova, O. T. Malyuchkov, A
P. Rusakov, Zh. E´ ksp. Teor. Fiz.108, 2132 ~1995! @JETP 81, 1163
~1995!#.

14N. V. Anshukova, A. I. Golovashkin, L. I. Ivanova, O. T. Maljuchkov, an
A. P. Rusakov, Physica C273, 151 ~1996!.

15A. Yakubovskii, S. Gudenko, A. Rusakov, A. Golovashkin, and
Verkhovskii, Physica C282–287, 1929~1997!.

16Shiyou Pei, J. Jorgensen, B. Dabrowski, D. G. Hinks, D. R. Richards
W. Mitchell, J. M. Newsam, S. K. Sinha, D. Vaknin, and A. J. Jacobs
Phys. Rev. B41, 4126~1990!.

17T. Hashimoto and H. Kawazoe, Solid State Commun.87, 251 ~1993!.
18T. Hashimoto, H. Kawazoe, and H. Shimamura, Physica C223, 131

~1994!.
19H. Thomann, R. A. Klemm, D. C. Johnston, P. J. Tindall, H. Jin, and D

Goshorn, Phys. Rev. B38, 6552~1988!.
20S. K. Misra, S. I. Andronenko, R. R. Andronenko, and L. P. Mezentse

Phys. Rev. B53, 9442~1996!.
21J. E. Wertz and J. R. Bolton,Electron Spin Resonance: Elementa

Theory and Practical Applications, McGraw-Hill, New York ~1972!.
22G. Kh. Panova, M. A. Shikov, M. N. Khlopkin, A. P. Zhernov, N. V

Anshukova, A. I. Golovashkin, L. I. Ivanova, and A. P. Rusakov, Z
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We study the energy spectrum of the impurity states in tunnel-coupled double quantum wells for
Coulomb and short-range donor potentials. We calculate the impurity contribution and the
density of states and detect the transformation of a localized donor state into a resonant state when
the binding energy of the donor in an isolated quantum well is less than the separation of
the energy levels of the double quantum wells. In the opposite case, where the binding energy is
greater than the level separation, there is tunneling repulsion between adjacent impurity
levels, with the degree of degeneracy of the levels changing when there is tunneling mixing of
the ground and excited impurity states from different wells. Resonant states emerge in an
asymmetric double quantum well, while in a symmetric double quantum well the impurity level
at the barrier’s center proves to be localized even against the background of the continuum.
The calculations are based on a general expression for the impurity contribution to the density of
states in terms of a 2-by-2 matrix Green’s function, i.e., only a pair of tunnel-coupled levels
of the double quantum wells is taken into account. For an impurity with a short-range potential, we
derive a matrix generalization of the Koster–Slater solution, while the impurity with a
Coulomb potential is analyzed by using the approximation of a narrow resonance and close
arrangement of the repulsive levels. ©1999 American Institute of Physics.
@S1063-7761~99!01304-9#
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1. INTRODUCTION

The transport and optical properties of double quant
wells change significantly~see Refs. 1–7 and the literatu
cited therein! due to tunneling mixing of the electronic stat
of the left- (l ) and right-hand (r ) quantum wells. The struc
ture of the donor states in double quantum wells can also
significantly altered in comparison to ordinary bulk8 and
two-dimensional9 states. This modification of the dono
states is reflected in qualitative features~see Fig. 1! when the
binding energy is comparable to the level separation in
double quantum wells,DT , whose value is determined b
the height and width of the barrier~the upper band diagram
in Fig. 1 correspond to weak interwell tunneling, while t
lower diagrams demonstrate the tunneling mixing effect!. If
the binding energy of a Coulomb impurity in thel quantum
well is higher than the energy level separationDT in the
absence of tunneling, at certain values ofD the ground-state
level in thel quantum well may coincide with the ground o
excited state in ther quantum well~see the upper band dia
grams in Figs. 1a and 1b!. Due to tunneling mixing, these
levels repel each other near their crossing point~the anti-
crossing effect!, as shown in the lower band diagrams
Figs. 1a and 1b. When the ground level mixes with an
cited degenerate state~Fig. 1b!, the degree of degeneracy o
the emerging state is lower. But if the energy of the elect
of the donor state in thel quantum well shows up against th
background of the continuum of ther quantum well~see
upper diagram in Fig. 1c!, then due to tunneling mixing this
state becomes resonant~see the lower band diagram i
Fig. 1c!.
7381063-7761/99/88(4)/9/$15.00
e

e

-

n

Resonant donor states are studied in this paper for
cases of short-range defects and Coulomb impurities. Th
two types of impurity have different energy spectra ev
when there is only one quantum well: a point defect p
duces a single bound state, while a Coulomb impurity p
duces a series of levels~which leads to the possibility o
changing the degree of degeneracy by level mixing; see
1b!. When the impurity is at the center of the barrier of
symmetric double quantum well, the impurity potentials
the l and r quantum wells coincide, with the result that lon
gitudinal electron localization and the tunneling mixing
size-quantized states prove to be independent. In this ca
localized, i.e., nonresonant, state emerges against the b
ground of the continuum.

The foregoing modification of the impurity energy spe
trum has a powerful effect on electron transport and the
tical properties of a double quantum well at moderate d
ing, but thus far only heavily doped and pure doub
quantum wells have been thoroughly studied.1,5 Tunneling
mixing of the ground and excited donor states in a dou
quantum well was detected by Ranganathanet al.,10 who
used the method of far-infrared radiation magnetotransm
sion ~Dzyubenko and Yablonski�11 also examined the mixing
of the ground and excited magnetoexcitonic states!. These
results were discussed on the basis of variational calculat
of donor binding energy, while the resonant states and
features of the spectrum of excited states we have just
cussed cannot be obtained by the standard variational
proach. We also note that the special features of the excit
energy spectrum are similar to those of a Coulomb impur
Although the ground state of excitons in a double quant
© 1999 American Institute of Physics
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FIG. 1. Band diagram, energies of the subband extre
~solid lines!, and impurity levels~dashed lines! for double
quantum wells in the absence of tunneling coupling~upper
panel! and for tunnel-coupled quantum wells~lower panel!.
a! Repulsion of ground states; b! mixing of the excited and
ground states from ther and l quantum wells; c! transfor-
mation of a localized state into a resonant state.
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well has been thoroughly studied~see Ref. 12 and the litera
ture cited therein!, the appreciable broadening of exciton
lines due to tunneling is discussed only by Foxet al.13 and
Oberli et al.14 The presence of such features in exciton
absorption spectra is corroborated by the numerical calc
tions of Glutschet al.15 Crossing of localized levels wa
studied only for magnetoexcitonic states.16

In this paper we calculate the impurity contribution
the density of states by employing the one-electron Gree
function17 in the 2-by-2 matrix representation, which allow
only for a pair of the lowest tunnel-coupled levels in thel
and r quantum wells. We obtain an exact solution of t
Koster–Slater type for a short-range potential, while
Coulomb potential is analyzed by using the approximatio
of a narrow resonance and close tunnel-coupled levels.

In Sec. 2 we derive an expression for the impurity co
tribution to the density of states. In Secs. 3 and 4 we ap
this formalism to point defects and Coulomb impurities. F
nally, in Sec. 5 we discuss the results and draw conclusi

2. BASIC EQUATIONS

We begin with the formalism describing the impuri
contribution to the density of statesr(E) of the double quan-
tum wells. This contribution can be expressed in terms of
retarded Green’s functionG« in the usual way:

r~E!5 lim
«→E1 i0

Im
2

p E dz(
p

G«~pz,pz!. ~1!

Here we have used thep,z-representation,p is the 2D mo-
mentum of the electron, thez axis is perpendicular to the
plane of the 2D layer, and the normalization area is take
be unity. The Green’s function satisfies the equation

~HDQW2«!G«~pz,p8z8!

2(
p1

V~ up2p1u,z!G«~p1z,p8z8!5dpp8d~z2z8!, ~2!
a-

’s

e
s

-
ly
-
s.

e

to

whereHDQW is the double-quantum-well Hamiltonian in th
absence of impurities. The potential energy of the Coulo
center in~2! is given by

V~p,z!5
2pe2\

kp
expS 2

puz2zDu
\ D , ~3!

in which the dielectric constantk is homogeneous in the
direction perpendicular to the double quantum well; the C
lomb center is at (0,0,zD). For a point defect~i.e., a substi-
tutional impurity!,

V~p,z!5upd~z2zD!,

where the delta function is localized on a scale of the or
of the lattice constanta, and the potentialup is constant for
p,pm and small forp.pm ~here the maximum momentum
pm is of order\/a).

Shallow impurity states, for which the binding energy
small compared to the distance between the levels in
quantum well, can be described by allowing for only t
lowest tunnel-coupled double-quantum-well states. For s
states the Green’s function can be expanded in the orbita
the l andr quantum wells, the latter being denoted byw l(z)
andw r(z):

G«~pz,p8z8!5(
j j 8

w j~z!G«~pj ,p8 j 8!w j 8~z8!. ~4!

The expansion coefficientsG«(pj ,p8 j 8) for a 2-by-2 matrix
Green’s functionĜ«(p,p8), which in such an ‘‘isospin’’ rep-
resentation is determined by the equation

~«p1ĥ2«!Ĝ«~p,p8!

2(
p1

V̂~ up2p1u!Ĝ«~p1 ,p8!5dpp8 , ~5!

where«p5p2/2m is the kinetic energy,ĥ5(D/2)ŝz1Tŝx is
the Hamiltonian matrix describing transverse motion, theŝ i

are the Pauli matrices, andD is the distance between th
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lowest levels in the isolatedl and r quantum wells. The ex-
pressions forD and the tunneling matrix elementT are given
in Ref. 18 for the flat-band model. We assume that the le
separationD and the binding energy of an electron on
donor are small compared to the distance to the higher le
of the double quantum wells. In this case, the tunneli
Hamiltonian approximation accounts exactly for the int
mingling of the pair of lowest states in the double quant
wells, with only the contributions of the higher levels ig
nored. Only the diagonal elements of the impurity-poten
matrix V̂(p) in Eq. ~5! are important~the off-diagonal ele-
ments are small compared toTŝx). These elements are give
by

Vj~p!5
2pe2\

kp E
2dj /2

dj /2

dzw j
2~z!expS 2

puz2zD j u
\ D , ~6!

where thez-coordinate is measured from the center of thej th
quantum well (zj ), zD j5(zD2zj ), anddj is the width of the
j th quantum well. For a point defect localized in thej th
quantum well we useVj (p)5upw j

2(zD), ignoring the expo-
nentially small off-diagonal matrix element
upw l(zD)w r(zD). An expression similar to that forVj (p) can
also be written for a potential generated by a small-sc
inhomogeneity of the heteroboundaries of double quan
wells ~such a potential was described in Ref. 19 in conn
tion with the problem of scattering by nonideal heterobou
aries!. In this case,

Vj~p!5
2p« jjb2

dj
, ~7!

where« j is the level energy in thej th quantum well, andj
andb are the height and longitudinal size of the inhomog
neity.

The density of states~1! in the ‘‘isospin’’ representation
can be transformed to

r~E!5 lim
«→E1 i0

Im
2

p
Tr (

p
Ĝ«~p,p!, ~8!

where Tr denotes the trace, the sum of the diagonal ma
elements. Thus, to describe both localized and resonant
purity states we must solve the matrix integral equation~5!
and do the summation in~8!. Below we carry out these cal
culations analytically for point defects described by the m
trix form of the Koster–Slater equation; for Coulomb dono
we use additional approximations.

3. POINT DEFECTS

By introducing the retarded Green’s function in the a
sence of impurities,ĝ«(p)dpp8 , where

ĝ«~p!5~«p1ĥ2«!21, ~9!

we can write Eq.~5! as

Ĝ«~p,p8!5ĝ«~p!dpp81ĝ«~p!V̂(
p1

8
Ĝ«~p1 ,p8!. ~10!
el

ls
-
-

l

le
m
-
-

-

ix
-

-

-

Here the sum(p1
8 is calculated forup1u,Pm , and the poten-

tial matrix V̂ is determined by the components~7!, which are
p-independent. If we ignore small subbarrier penetrati
then for an impurity localized in thej th well we haveV̂

5Vj P̂j , where P̂l5(11ŝz)/2 and P̂r5(12ŝz)/2 are the
projection operators on the orbitals of thel and r quantum
wells, andVj has been defined in~7!.

To solve Eq.~10!, we do the summation overp and
write the sum as follows:

(
p

8
Ĝ«~p,p8!5F12(

p

8
ĝ«~p!V̂G21

ĝ«~p8!. ~11!

Substituting this into the right-hand side of Eq.~10! yields

Ĝ«~p,p8!5ĝ«~p!H dpp81V̂F12(
p

8
ĝ«~p!V̂G21

ĝ«~p8!J ,

~12!

where the second term describes the perturbation introdu
by the impurity. Inserting~12! into ~8!, we obtain an expres
sion for the impurity contribution to the density of states:

dr imp~E!5 lim
«→E1 i0

Im
2nimp

p
Tr (

p

8
ĝ«~p!V̂

3F12(
p1

8
ĝ«~p1!V̂G21

ĝ«~p!. ~13!

The introduction of the impurity concentrationnimp into ~13!
presupposes that the electronic states at different impur
do not overlap~i.e., the distance between impurities in th
plane of a double quantum well does not exceed the rad
the states localized at the impurities!.

Summation overp1 in Eq. ~13! yields the matrix

l̂~«!5
r2D

2 F V̂I 1~«!1S D

DT
ŝz1

2T

DT
ŝxD V̂I 2~«!G , ~14!

where

I 1~«!5 ln
jm

2

~«1DT/2!~«2DT/2!
,

I 2~«!5 ln
«1DT/2

«2DT/2
. ~15!

Here r2D5m/p\2, jm5pm
2 /2m, andDT5AD214T2 is the

distance between the tunnel-coupled levels~the energies
6DT/2 determine the positions of the extrema of the tunn
coupled subbands!. Using ~14!, we can write

dr imp~E!5 lim
«→E1 i0

Im
2nimp

p
Tr@12l̂~«!#21

dl̂~«!

d«
.

~16!

After calculating the trace, we obtain the final analytic e
pression,
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dr imp~E!52 lim
«→E1 i0

Im
2nimp

p

d

d«
lnF12

r2DVj

4
J~«!G ,

~17!

whereJ(«)5I 1(«)6(D/DT)I 2(«), and the plus and minu
signs refer to impurities localized in thel and r quantum
wells, respectively.

Suppose that the impurity is in thel well. Direct calcu-
lation of ~17! for E,2DT/2 yields dr imp(E)52nimpd(E
2EL), where the energyEL of the localized state can b
found by solving the equation

S 12
D

DT
D lnUE1DT/2

E02D/2U1S 11
D

DT
D lnUE2DT/2

E02D/2U50, ~18!

whereE0 is the energy of a localized state in an isolatel
well. In a symmetric DQW, i.e.,D50, the energyEL is
2AE0

21T2 , and asuDu increases, the energy approaches
edge of the continuum.

But if the solution of Eq.~18! is found for uEu,DT/2,
then due to tunneling mixing of the localized level and t
states of the continuum, a resonant state is formed. Firs
give the simple analytic expressions for weak tunnel c
pling, T/D2!1, assuming that the levelE0 is far from the
band edge, i.e., (T/D)2 ln@(D/21E0)/(D/22E0)#!1. We
denote the solution of Eq.~18! for this case byER . For the
impurity contribution to the density of states nearER ~where
uE2ERu!uER6D/2u) we have

dr imp~E!5
2nimp

p

G

~E2ER!21G2
, ~19!

where the energyG5p(T/D)2(D/22E0) is the level’s half-
width. Equation~19! is valid for a narrow resonance, withG
small compared toER . The results of calculating the impu
rity contributiondr imp(E) to the density of states@using the
general expression~17!# are depicted in Figs. 2 and 3. Figu
2 demonstrates that as the interwell tunnel coupling

FIG. 2. Contribution of a short-range defect to the density of statesD(E)
5dr imp(E)/2nimp for double quantum wells withD52 meV for various
values ofT: T50.5 meV~solid curves!, andT50.25 meV~dashed curves!.
The energyE is measured in meV, andD(E) is measured in in meV21. The
donor level in an isolatedl quantum well~at T50) is fixed atE050 meV
~a! andE050.5 meV~b!.
e

e
-

-

creases, the peak decreases, broadens, and is shifted to
higher energies. For the limit of uncoupled quantum we
(T50), we have a delta-function peak at energyE0. Com-
parison of the values ofdr imp(E) obtained for various values
of E0 shows that the deeper the level, the more effective
transformation into a resonant state~i.e., the level width
proves to be greater, all other parameters being equal!. The
shape of the peak indr imp(E) calculated for various value
of D is depicted in Fig. 3. Clearly, as the level separati
increases, the peak is shifted toward lower energies, with
amplitude varying nonmonotonically. AsD decreases, i.e., a
symmetric double quantum well is realized, the peak
shifted toward the edge of the continuum of the upper s
bands and broadens. IfD/T,(p22)/Ap21 @this inequality
follows from ~17!#, the impurity contribution to the density
of states monotonically increases with energy, i.e., ther
no resonant state.

4. TUNNELING MODIFICATION OF COULOMB STATES

To describe a Coulomb donor, we use the representa
of the diagonal HamiltonianŜ21ĤŜ, where Ŝ5exp(icŝy),
with the anglec determined by tan 2c52T/DT ~such a de-
scription of electrons in a double quantum well was intr
duced in Ref. 18!. The integral equation for the Green
function in such a representation, Ĝ «(p,p8)
5Ŝ21Ĝ«(p,p8)Ŝ, can be written

S «p1
DT

2
ŝz2« D Ĝ «~p,p8!2(

p1

V̂ ~ up2p1u!Ĝ «~p1 ,p8!

5dpp8 . ~20!

Here V̂ (p)5Ŝ21V̂(p)Ŝ, where the diagonal matrixV̂(p) is
defined by its components~6!. At this point in our discourse
it is convenient to introduce an auxiliary Green’s functio
ĝ«(p,p8) satisfying Eq.~20!, which takes into account only
the diagonal part of the matrixV̂ . The matrix ĝ«(p,p8) is
diagonal, and its components are

FIG. 3. Same as in Fig. 2 forT51 meV and various level separations: curv
1, D52 meV; curve 2, D53 meV; curve 3, D54 meV; curve 4, D
55 meV.
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g«
6~p,p8!5(

l

fl
6~p!fl

6~p8!*

El
62«

, ~21!

where the wave functionsfl
6 and the eigenvaluesEl

6 can be
found by solving the equation

S «p6
DT

2
2El

6Dfl
6~p!2(

p1

V6~ up2p1u!fl
6~p1!50,

~22!

2V6~p!5@Vl~p!1Vr~p!#6
D

DT
@Vl~p!2Vr~p!#.

The 6 states correspond to localized donor states relate
the upper (1) or lower (2) subbands of the double quantu
wells without allowance for Coulomb mixing. The off
diagonal elements of the potential matrixV̂ are given by
w(p)ŝx , where

w~p!5
T

DT
@Vl~p!2Vr~p!#. ~23!

Using the diagonal matrixĝ«(p,p8), we rewrite Eq.~20!:

Ĝ «~p,p8!5ĝ«~p,p8!2 (
p1,p2

ĝ«~p,p1!w~ up12p2u!

3ŝxĜ «~p2 ,p8!. ~24!

Eliminating the off-diagonal components ofĜ «(p,p8)
from the system of integral equations~24!, we obtain two
independent integral equations for the diagonal compon
G «

1 and G «
2 , which describe donor states related to t

upper and lower subbands, respectively. We write th
equations for the Green’s functionsG «

6(l,l8) in the
l-representation, which is introduced by the following re
tionship:

G «
6~p,p8!5 (

l,l8
fl

6~p!G «
6~l,l8!fl8

6
~p8!* . ~25!

The system of equations forG «
6(l,l8) has the form

~El
62«!G «

6~l,l8!

5dll81(
l1

W«
7~l,l1!G «

6~l1 ,l8!, ~26!

where the kernelW«
7 is given by

W«
7~l,l8!5 (

p1 ,p18 ,p2 ,p28
fl

6~p1!* w~ up12p18u!

3g«
7~p18 ,p28!w~ up282p2u!fl8

6
~p2!. ~27!

Note that Eqs.~26! and ~27! are exact if one uses the exa
eigenfunctions determined by Eq.~22!.

In the simplest case of a symmetric double quantum w
with an impurity at the barrier’s center, Eq.~6! yields
Vl(p)5Vr(p), so thatw(p)50. As a result, even when th
tunnel coupling of thel and r quantum wells is strong
dr imp(E) can be expressed in terms of(lG «

6(l,l), and
to

ts

e

-

ll

contains independent contributions from the ‘‘plus’’ an
‘‘minus’’ states. In this case only localized states emerge

In an asymmetric double quantum well or when the i
purity is not at the barrier’s center, the off-diagonal eleme
of V̂ (p) are finite and the ‘‘plus’’ states mix with the ‘‘mi-
nus’’ states. In this case, depending on the relationship
tweenDT and the binding energy of the donor, two transfo
mations of the bare ‘‘plus’’ or ‘‘minus’’ donor states ar
possible: transformation of a localized state to a reson
state if the former emerges against the background of
continuum, or discrete-level repulsion near the point of le
crossing. Below we examine the contribution of these mo
fications of the spectrum todr imp(E) at E close to the energy
of the ‘‘plus’’ donor ground state, when only the resona
contributions to the Green’s functiong«

1(p,p8) should be
taken into account. This approximation can be used when
tunnel coupling between the ‘‘plus’’ and ‘‘minus’’ states
weak; according to~23!, such coupling can emerge whe
T/DT is small ~weak tunnel coupling between thel and r
quantum wells!, or when the differenceVl(p)2Vr(p) is
small ~slightly asymmetric double quantum well!. In the lat-
ter case,T/DT may be of order unity, i.e., the results of th
approximation can be used even when the interwell tun
coupling is strong. Allowing only for the contribution of th
ground state to the expansion~21!, for the ‘‘plus’’ state we
have

g«
1~p,p8!5

f0
1~p!f0

1~p8!*

E0
12«

, ~28!

wheref0
1(p) and E0

1 are the eigenfunction and energy
the ground donor state, and the terms in the sum in~21! with
lÞ0 have been discarded. As a result, from Eq.~26! for
G «

1(l,l) it immediately follows that

G «
1~0,0!5@E0

12W«
2~0,0!2«#21. ~29!

The kernelW«
1 in the integral equation~26! for G «

2 is de-
generate and is specified by

W«
1~l,l8!5

E~l!E~l8!*

E0
12«

,

E~l!5(
p,p8

fl
2~p!* w~ up2p8u!f0

1~p8!. ~30!

Using ~3!, we obtain a closed expression forG «
2(l,l8):

G «
2~l,l8!5~El

22«!21F dll81
E~l!E~l8!*

El8
2

2«

3S E0
12«2(

l1

uE~l1!u2

El1

2 2« D 21 G . ~31!

Thus, the donor contribution to the density of states can
expressed in terms of the sum

(
l

@G «
1~l,l!1G «

2~l,l!#,
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and to calculate this sum we require the variational soluti
of ~22! and the integrals in~29!.

4.a. Resonant donor state

Here we examine the case where the donor state en
E0

1 , which can be found from Eq.~22! for the ‘‘plus’’ state,
is greater than2DT/2, i.e., the levelE0

1 emerges against th
background of the continuum formed by ‘‘minus’’ states.
this case (w(p)Þ0), donor ‘‘plus’’ states mix with ‘‘minus’’
states of the subband, with the result that the discrete lev
transformed into a resonant level. If this resonance is
from the edge of the continuum of the ‘‘minus’’ states,
calculating W«

2(0,0) in ~27! we can use the free Green
function

g«
2~p,p8!.dpp8S «p2

DT

2
2« D 21

~32!

~i.e., the Green’s function that ignores Coulomb correction!.
Using W«

2(0,0) from ~27!, we find that

W«
2~0,0!.(

p

F~p!

«p2DT/22«
,

F~p!.U(
p1

w~ up2p1u!f0
1~p1!U2

. ~33!

The impurity contributiondr imp(E) to the density of states
for a narrow resonance is again given by~19!. The shift of
the peak energyER in relation toE0

1 and the peak’s half-
width G are given by

ER2E0
1.P (

p

F~p!

«p2DT/22E0
1

,

G.p (
p

F~p!dS «p2
DT

2
2E0

1D , ~34!

whereP signifies the principal value of the integral.
We first calculateG with ~34! for narrow quantum wells

in which the widthd̄ of a double quantum well is much les
than the Bohr radiusaB . Estimating the characteristic mo
mentump at \/aB , we expand the matrix elements up
first-order terms inpd̄/\, whenw(p) proves to be indepen
dent ofp. If we now use the ground-state wave functions
the two-dimensional Coulomb problem to calculateF(p),
we find that

G5RS d̄

aB

T

DT
D 2

F~zD!, ~35!

whereR5me4/2k2\2 is the effective Rydberg constant (R
.5.8 meV for the parameters of GaAs!. The functionF(zD)
for a double quantum well with flat bands, which is dete
mined by the position of the impurity, is given by

F~zD!52pS dl

d̄
D 2F S 11

2zD

dl
D 2

2
2~d1d̄!

dl
2 S 4

p2D cosS pzD

dl
D 2 G 2

, ~36!
s

gy

is
r

f

-

where the impurity is assumed to be in thel quantum well,
the positionzD is reckoned from the middle of thel well, and
d is the barrier width. If the impurity is inside the barrie
~36! must be replaced byF(zD)52p(8/d̄)2@zD1(dl

2dr)/4#2, but if the impurity is outside the well,F(zD)
58p(11d/d̄)2. In the adopted approximation, the princip
contribution to the level shift is provided by large momen
and we have the estimate

ER2E0
1.

G

p
lnU «m

DT/21E0
1U , ~37!

where«m.(p\/d̄)2/2m is the cutoff energy. Thus, in thin
double quantum wells the shift of the narrow resonance
small.

The results of calculating the dependence of broaden
on the level separationD for the case where the quantum
well width is comparable to the Bohr radius is depicted
Fig. 4 ~the level separationD can be varied by applying a
transverse electric field to the double quantum well!. The
energyE0

1 was calculated by the variational method with
trial function f0

1(r)5A8/pa0
2 exp(22r/a0), wherea0 is the

variational parameter. The calculations were done for
AlGaAs/GaAs structure with quantum-well widths of 10
and 120 Å and a barrier width of 40 Å. For such a structu
in the absence of an external transverse electric field,T/4R
.0.05 andD/4R.0.7 (4R is the binding energy of a two
dimensional Coulomb donor!. Figure 4 shows that the di
mensionless broadeningG/4R monotonically decreases a
the level moves away from the edge of the continuum of
lower subband, which is shown by a vertical dotted line~near
the edge of the continuum the broadening is large and
narrow-resonance approximation becomes invalid!. Further-
more, broadening largely depends on the positionzD of the
impurity: G increases severalfold if the impurity is shifte
away from the outer boundary of the double quantum w

FIG. 4. Broadening of a resonant state as a function of level separatioD
for a 100/40/120-Å~AlGa!As double-quantum-well structure. The distan
from the impurity to the left heteroboundary of the double quantum well
0 Å ~curve1!, 50 Å ~curve2!, 100 Å ~curve3!, and 120 Å~curve4!. Ener-
gies are normalized to the binding energy 4R of the 2D Coulomb center.
The vertical dashed lines indicate the energies at which a resonant st
transformed into a localized state.
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~curve1, zD52dl /2) toward the center of the quantum we
~curve 2, zD50). A further shift of the impurity in the di-
rection of the quantum-well–barrier interface~curve 3,
zD5dl /2) and toward the center of the barrier~curve 4, zD

5(d1dl)/2) leads to a rapid decrease in level broadeni
At zD5(d1dl)/2 this broadening is due to the small diffe
ence in the quantum-well widths, with the result that a n
row peak emerges. This type of broadening is consistent w
the results obtained for a point defect in Sec. 3.

4.b. Anticrossing of localized levels

We next consider a small level separationDT for which
the donor ground stateE0

1 turns out to lie below the bottom
of the lowest subband, i.e.,E0* ,2DT/2. We examine the
features of the energy spectrum that emerge when the l
E0

1 is close to the energy of the excited or ground sta
related to the lower subband. To calculatedr imp(E) near the
crossing of the ground states, in~27! we use the unperturbe
Green’s functiong«

2(p,p8) in the same approximations as
g«

1(p,p8) in ~28!. This substitution yieldsG «
2(0,0) in a form

similar to ~29! with the kernel

W«
1~0,0!.

E2~0!

E0
12«

. ~38!

Using these solutions forG «
6 , we obtain an expression fo

the impurity contribution to the density of states:

dr imp~E!.
2nimp

p
lim

«→E1 i0
Im

E0
21E0

122«

~E0
22«!~E0

12«!2E2~0!

52nimp@d~E22E!1d~E12E!#, ~39!

whereE6 are the energy levels modified due to tunneli
and defined as the poles of the fraction in~39!. The energy
E2 corresponds to the ground state and the energyE1 to the
first excited state of the donor in the double quantum we

E65
E0

11E0
2

2
6A~E0

12E0
2!2

4
1E2~0! , ~40!

whereE0
6 are the eigenvalues determined by Eq.~22!, and

the energyE(0) of level repulsion can be calculated usin
~30!.

Let us study the dependence ofE6 on the level separa
tion D ~see Figs. 5 and 6! for a double quantum well with the
same parameters as in Sec. 4a. In our calculations we us
same variational solutions as in calculatingG. The functions
E6(D) vary significantly, depending on whether the imp
rity is in the interwell barrier or in a quantum well. If th
impurity is inside the barrier, theE6 vs. D curves demon-
strate ordinary ‘‘anticrossing’’~see the pairs of curves4, 48
and3, 38 in Fig. 5, where curves4 and3 correspond to the
E1 level and curves48 and 38 to the E2 level!. Figure 5
shows that theE6 vs. D dependence differs only slightl
from the behavior of the edge of the continuum,6DT/2 ~cf.
curves38 and48 and curve0, which corresponds to the edg
of the spectrum,2DT/2). Similar nonmonotonic behavior o
the binding energy of a donor and exciton was detected
Galbraith and Duggan20 and Bayer and Timofeev.21 Note
.

-
th

el
s

the

y

that the segments of curves1–4 above the edge of the con
tinuum ~curve 0! correspond to the energy of the resona
states.

The E6 vs. D dependence becomes more complica
when the impurity is inside a quantum well or at the ou
heteroboundary~curves2, 28 and1, 18 in Fig. 5!. The solu-
tions E0

6 of Eq. ~22! obtained without accounting for th
repulsion energyE(0) are found to cross twice asD in-
creases, as shown in Fig. 6~the pairs of dashed and dotte
curves in the lower panel!. TheE6 vs. D dependence for an
impurity localized at the center of the quantum well (zD

50) and that for an impurity localized at a distance 3dl /4
from the outer heteroboundary (zD5dl /4) are depicted in
Fig. 6 by solid curves. What is important here is that acco
ing to ~23! and~30! the characteristic repulsion energyE(0)
in ~40! resonantly increases asD→0 ~this dependence is
depicted in the upper panel of Fig. 6!. Thus, for large values
of D, whereE(0) varies monotonically, we have ordinar
anticrossing, while for small values ofD, where the crossing
of the E0

6 takes place simultaneously with a resonant

FIG. 5. Dependence ofE6 defined by~40! on D. For the same positions o
the impurity as in Fig. 4,E1 andE2 are given by the curves1–4 and18–48,
respectively. Curve0 corresponds to the edge of the continuum,2DT/2.

FIG. 6. D-dependence ofE6 for an impurity withzD550 Å ~solid curves2
and28! and withzD575 Å ~solid curves2a and2a8!. The dashed and dotted
curves in the lower panel correspond to energiesE0

6 , and the curves in the
upper panel represent the repulsion energiesE(0).
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crease inE(0), therepulsion of the levelsE6 increases, so
that a singularity of the anticrossing type disappears.

Reasoning along similar lines, we can calculate the
ticrossing of levels in the case where the ground-state en
E0

1 is close to the energyEl
2 of the lowest excited states

Here g«
1(p,p8) is given by ~28! and the excited states ar

described only by thes- andp-contributionstog«
2(p,p8):

g«
2~p,p8!.(

l

f1l
2~p!f1l

2~p8!*

E1l
22«

, ~41!

where l 5s,p; E1p
2 is the energy of the twofold degenera

p-state; andE1s
2 is the energy of the exciteds-state~note that

in the approximation of a narrow quantum wellE1p
2 5E1s

2 ,
i.e., we have a threefold degenerate excited state, as show
Fig. 1b!. Substituting these Green’s functions into~29! and
~31!, we obtain

G «
1~0,0!5FE0

12«2
uE~1s!u2

~E1s
2 2«!

2
2uE~1p!u2

~E1p
2 2«!

G21

, ~42!

G «
2~1l ,1l !5~E1l

22«!211
uE~1l !u2

~E1l
22«!2

G «
1~0,0!.

Note that in this case two characteristic repulsion energ
then emerge,uE(1s)u and uE(1p)u, which are given by Eq.
~30!. Using ~42! and transformingG «

1(0,0)1( lG «
2(1l ,1l ),

we obtain

dr imp~E!.
2nimp

p
lim

«→E1 i0
ImH ~E1p

2 2«!212
d

d«
ln@~E12«!

3~E22«!~E32«!#J
52nimpFd~E1p

2 2E!1 (
j 51,2,3

d~Ej2E!G , ~43!

where theEj are the solutions of the equation

~E1p
2 2E!~E12E!~E22E!22uE~1p!u2~E1s

2 2E!50.
~44!

Here we have introduced the notation

E65
~E0

11E1s
2 !

2
6A~E0

12E1s
2 !2

4
1uE~1s!u2 . ~45!

The value of the parameterE1s
2 lies betweenE1 and E2 ,

i.e., the cubic equation~44! has three roots. Thus, we hav
found that anticrossing appears for both crossings of the
els, while there are no values of the parameters yielding
real and two complex-valued parameters. The study o
more complicated dependence of the solution onD ~similar
to those depicted in Fig. 6 for close-lying ground states! does
not alter these conclusions, although the anticrossing pa
is more complicated. We do not list the results of our cal
lations here, since the observation of anticrossing of the
cited and ground states is fairly complicated in doped dou
quantum wells due to the low splitting energies. This effe
however, might be of interest for low-density excitons.
-
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5. CONCLUSION

In this paper we have discussed the special feature
the impurity contribution to the density of states of doub
quantum wells, features that originate in the tunneling m
ing of states of thel and r quantum wells. We found two
qualitative changes in the impurity energy spectrum:
emergence of resonant states and the repulsion of the le
corresponding to the ground states or the ground and exc
states. Earlier studies of donors dealt with the binding ene
of the donor bound states as functions of the doub
quantum-well parameters, with the energy found by stand
variational calculations.20,22,23Below we discuss the possibil
ity of these features showing up in experiments involving
optical and transport characteristics of the double quan
wells, and indicate the adopted approximations.

Note that the nonoverlapping of resonant states and
anticrossing of localized states discussed in this paper ca
studied in experiments only for double-quantum-well dopi
levels that satisfy the conditionnimp r̄ 2!1 (r̄ is the effective
size of the donor, of the order of several Bohr radii!. Due to
the moderate electron concentrations, the sensitivity of s
millimeter spectral measurements will be low. It wou
therefore be interesting to study the fundamental band
band transitions~by the photoluminescence or photolumine
cence excitation spectra! in asymmetric double quantum
wells. In such structures only the electronic states are tun
coupled, while the upper hole states are localized in o
quantum well, since the separation of the hole extrema
ceedsDT .

Variations in DT ~controlled by a transverse electr
field! can have a dramatic effect on the optical spectra
such structures due to the transformation of localized st
into resonant states or, at a certain value ofDT , to the anti-
crossing effect. As noted in Sec. 1, excitonic peak broad
ing was detected by Foxet al.13 and Oberliet al.,14 but a
detailed study of this effect has yet to be done. To o
knowledge, the study of resonant states in Coulomb don
or structural defects~substitutional impurities or geometri
faults in the heteroboundaries! has also yet to be conducte
in double quantum wells. In such structures with nonid
heteroboundaries, the band-to-band transition edge broa
~this phenomenon was studied in Ref. 19!, with the shape of
the spectrum being highly dependent on the asymmetry
the scattering. For short-range defects, the shape of the
cal spectrum also strongly depends on the defect localiza
in one or the other quantum well, since the hole states
only one quantum well participate in the transitions. T
contribution of a narrow resonant state can also affect
longitudinal conductivity~or other transport coefficients! in
selectively doped double quantum wells containing ad-layer
of doping impurities with a concentration of abo
1011cm22. Under a transverse voltage applied to the sam
the special features become evident when the energy of
resonant state coincides with the Fermi energy.

We now list the principal approximations adopted in t
calculations. In describing impurity states we used the re
nant tunneling approximation19 and allowed for tunneling
mixing of only the lowest pair of electronic levels in th
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quantum wells, while all higher levels of thel andr quantum
wells were ignored. The approximations of a parabolic
ergy spectrum and a homogeneous dielectric constant
common in structures of type I based on~GaAl!As or
~GaIn!As; for such structures the models of Coulomb a
short-range potentials used in this paper also hold. The o
center approximation~i.e., the overlap of wave functions a
different centers is ignored! makes it possible to simplify
calculations significantly if we writedr imp(E) as a sum of
separate impurity concentrations. The results are applic
only for small nimp r̄ 2 ~see above!. Here the states close t
the edge of the continuum are ignored and the resonance
assumed narrow, so that the halfwidthG @see~19!# is small
compared to the energy gap from the position of the re
nance to the edge of the continuum. In solving the integ
equation~24! we used the approximation in which tunnelin
modification of the spectrum~broadening of the resonanc
peak or the shift of levels due to mixing! is small compared
to the characteristic energies in the absence of tunne
~binding energies of the impurities in separate quantum w
and level separation!. These assumptions do not affect t
qualitative picture of the donor states in double quant
wells.

Thus, we have studied the specific features of the im
rity contribution to the density of states in double quantu
wells for short-range defects and Coulomb donors. We h
also discussed the feasibility of experimentally measur
the various effects, and consistency criteria for the resu
We have noted that similar effects occur for excitonic sta
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New method for detection of exciton Bose condensation using stimulated two-photon
emission
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An investigation is reported of stimulated two-photon emission by Bose-condensed excitons
accompanied by a coherent two-exciton recombination, i.e., by simultaneous recombination of two
excitons with opposite momenta leaving unchanged the occupation numbers of exciton
states with momentapÞ0. Raman light scattering~RLS! accompanied by a similar two-exciton
recombination~or production of two excitons! is also analyzed. The processes under
consideration can occur only if a system contains Bose condensate, so their detection can be
used as a new method to reveal Bose condensation of excitons. The recoil momentum, which
corresponds to a change in the momentum of the electromagnetic field in the processes, is
transferred to phonons or impurities. If the recoil momentum is transmitted to optical phonons with
frequencyv0

s , whose occupation numbers are negligible, and the incident light frequency
satisfiesv,2V2 , whereV25V2v0

s is the difference frequency andV is the light frequency
corresponding to the recombination of an exciton with zero momentum, stimulated two-
photon emission and RLS with coherent two-exciton recombination give rise to a line at 2V2

2v and an anti-Stokes component atv12V2 , respectively. Forv.2V2 the RLS
spectrum contains Stokes and anti-Stokes components at frequenciesv62V2 , whereas stimulated
two-photon emission is impossible. Formulas for the cross sections at finite temperatures are
obtained for the processes under consideration. Our estimates indicate that a spectral line at 2V2

2v, corresponding to the stimulated two-photon emission accompanied by coherent optical
phonon-assisted two-exciton recombination can be experimentally detected in Cu2O. © 1999
American Institute of Physics.@S1063-7761~99!01404-3#
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1. INTRODUCTION

The most interesting collective effects in systems of
citons are the anticipated exciton Bose condensation and
perfluidity ~see Refs. 1–7 and references therein!. Recently a
number of publications reported on the detection of Bo
condensation and superfluidity of excitons in Cu2O based on
observations of changes in exciton luminescence spect8,9

and ballistic transport of excitons,9–11 which have been dis
cussed in the literature.12–14Observations of condensation o
indirect excitons in coupled quantum wells under stro
magnetic fields have also been reported~see Ref. 15, a the
oretical discussion in Refs. 16–18, and references there!.
In this connection, the detailed investigation of coherent
citon properties, whose detection could be used to rev
exciton Bose condensation, seems to be important.

If a system of excitons is in a Bose condensed state,
mean values of the annihilation~creation! operator of the
exciton with zero momentum in the ground state are non
nishing:

^N21uQ0uN&5^N11uQ0
1uN&5AN0. ~1!

Here uN& is the ground state of the exciton system with t
average number of excitonsN, Q0 is the annihilation opera
tor of an exciton with zero momentum, andN0 is the number
of excitons in the condensate.
7471063-7761/99/88(4)/14/$15.00
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Equation~1! clearly shows that, as a result of the recom
bination ~production! of an exciton with zero momentum,
system of Bose-condensed excitons goes over to the gro
state, which differs from the initial one in the average nu
ber of excitons with momentump50. The recombination of
excitons with zero momentum is responsible for a peak~the
so-called condensate peak! in the exciton luminescence spe
trum at frequencyV5@E0(N)2E0(N21)#/\, whereE0(N)
is the energy of the ground state of the exciton system.

If the exciton–exciton interaction is nonvanishing, the
in addition to the mean values defined by Eq.~1!, products of
two annihilation~creation! operators of excitons with oppo
site momenta averaged over the ground state of the B
condensed exciton system~the so-called anomalous ave
ages! are also nonvanishing:

^N22uQ2pQpuN&Þ0, ^N12uQ2p
1 Qp

1uN&Þ0. ~2!

In this paper we consider the unusual optical proper
inherent in Bose-condensed state of interacting excitons
to the nonvanishing anomalous averages~2!. It will be
shown that coherent recombination or production, i.e., sim
taneous annihilation or creation of two excitons with opp
site momenta, corresponding to the anomalous average~2!
is possible due to interaction with the electromagnetic fie
In such processes, the occupation numbers of excitons
pÞ0 are unchanged, and the final state of the excitons
© 1999 American Institute of Physics
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748 JETP 88 (4), April 1999 Yu. E. Lozovik and A. V. Pushnov
fers from the initial one only in the average number of ex
tons with zero momentum. In particular, after the tw
exciton recombination, the average number of conden
excitons is reduced by two.

Coherent two-exciton recombination can contribute,
example, to the stimulated two-photon emission or to Ram
light scattering~RLS! by Bose-condensed excitons. RLS c
also be accompanied by coherent production of two excito
In these processes, the momentum of the exciton–ph
system is not conserved: the recoil momentum, equal to
change in the momentum of the electromagnetic field
transferred to phonons or impurities.19,20 In this paper we
consider the processes in which the recoil momentum
transferred to two optical phonons. The prospects for s
processes are probably best in the exciton system in C2O
crystal, which is one of most interesting crystals in view
the observation of exciton Bose condensation. In fact,
radiative recombination accompanied by the transmissio
the recoil momentum to one optical phonon is typical
excitons in Cu2O.7 Using the energy and momentum cons
vation laws, one can prove that, in a defect-free crystal,
herent recombination of two excitons is possible only if t
recoil momentum is transferred to two phonons.

At low temperatures, the occupation numbers of opti
phonons are small, so it is most probable that the recoil m
mentum is transferred to two phonons produced in the p
cess. If the phonon dispersion is negligible and the incid
light frequency satisfiesv,2V2 , a line in the spectrum o
the stimulated two-phonon emission at 2V22v and an anti-
Stokes component in the RLS spectrum atv12V2 should
appear. HereV25V2v0

s andv0
s is the optical phonon fre-

quency. Both these lines correspond to coherent two-exc
recombination: the energy of the initial state of the system
higher than the energy of its final state by 2\V, whereV is
the frequency corresponding to the recombination of an
citon with zero momentum. Ifv.2V2 holds, the RLS spec
trum should contain the anti-Stokes component atv
12V2 , which corresponds to coherent two-exciton reco
bination, and the Stokes component atv22V2 due to co-
herent production of two excitons. Stimulated emission
two photons is impossible in this case. The lines at frequ
cies uv62V2u can appear only if the excitons are in th
Bose-condensed state, and after a transition to the no
state these lines should disappear.

The paper is organized as follows. In Sec. 2 we cons
stimulated two-photon emission with coherent two-excit
recombination accompanied by the transmission of the re
momentum to phonons. The diagram technique is use
obtain the cross sections of two-photon processes involv
coherent two-exciton recombination~or production! at finite
temperatures. This approach allows one to express the ap
priate elements of theS-matrix in a natural manner in term
of anomalous Green’s functions of Bose-condensed excit
The cross section of stimulated two-photon emission w
coherent phonon-assisted two-exciton recombination is
tained, and its temperature dependence is studied. This
pendence can be nonmonotonic under certain conditi
Namely, in a certain temperature range belowTc the cross
section of stimulated two-photon emission can increase w
-
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the growth of temperature and can become even higher
it is at T50. The causes of this unusual temperature dep
dence are investigated.

Section 3 is dedicated to RLS accompanied by cohe
processes of two-exciton recombination or production.
Sec. 4 the possibility of experimental observation of the lin
at frequenciesuv62V2u corresponding to stimulated two
photon emission and RLS is analyzed. Our numerical e
mates for excitons in Cu2O indicate that a spectral line a
2V22v corresponding to the stimulated optical phono
assisted two-exciton recombination can be detected and
can be used to reveal exciton Bose condensation.

2. STIMULATED TWO-PHOTON EMISSION ACCOMPANIED
BY COHERENT TWO-EXCITON RECOMBINATION

The effective Hamiltonian describing phonon-assis
radiative recombination~production! of excitons can be ex-
pressed as follows~see Ref. 20 and Appendix A!:

ĤL5(
pq

@Lpq
. e2 iVtQp~ t !cq

1~ t !bp2q
1 ~ t !

1Lpq
, e2 iVtQp~ t !cq

1~ t !bq2p~ t !

1L8pq
. e2 iVtQp~ t !cq~ t !bp1q

1 ~ t !

1L8pq
, e2 iVtQp~ t !cq~ t !b2p2q~ t !1H.c.#, ~3!

where

Lpq
.(,)5 iA2pvqe* •fpq

.(,) ,

L8pq
.(,)52 iA2pvqe•f8pq

.(,) ,

V is the frequency corresponding to the recombination of
exciton with zero momentum. The Hamiltonian~3! is written
in the Heisenberg representation. HereQp(t)5Qp

3exp@2ie(p)t# andbp(t)5bpexp(2ivp
st) are the annihilation

operators of an exciton and a phonon with momentump,
respectively, andcq(t)5cqexp(2ivqt) is the annihilation op-
erator of a photon with momentumq (vq and e are the
photon frequency and its polarization unit vector!. The exci-
ton energy is measured with respect to the bottom of
exciton band:e(0)50. The effective matrix elementsfpq

.(,)

and f8pq
.(,) are responsible for the recombination of an ex

ton with momentump, which includes, in addition to the
emission~absorption! of a photon with momentumq, the
simultaneous emission or absorption of a phonon.1! ~see Ref.
20 and Appendix A!.

By expanding the evolution operator

Ŝ~ t !5Tt expF2 i E
2`

t

ĤL~ t8!dt8G
in powers ofĤL and retaining terms up to second order, w
obtain an expression for the elements of theS-matrix corre-
sponding to phonon-assisted two-photon processes:

Sn8n5
~2 i !2

2! E E
2`

`

^n8uTtĤL~ t8!ĤL~ t9!un&dt8dt9, ~4!

wheren andn8 label the initial and final states of the syste
composed of excitons and phonons1 electromagnetic field.
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Let us consider the two-photon emission by excitons
the Bose-condensed state due to coherent two-exciton
combination, i.e., a transition of the exciton system fro
state un&exc5un,N&exc to the state um&exc5un,N22&exc,
which differs from the initial state in the average number
excitons with momentump50. In this process, the change
the electromagnetic field momentum isk81k, wherek and
k8 are the momenta of emitted photons. The recoil mom
tum dk52(k81k8) is entirely transferred to phonons, sinc
the momentum of the exciton system is zero in both
initial and final states.

For the element of theS-matrix corresponding to coher
ent phonon-assisted two-exciton recombination, we have

~Sp!mn52
1

2E E
2`

`

dt8dt9exp@2 iV~ t81t9!#

3$@Lpk
. L2pk8

. ^muTtQp~ t8!Q2p~ t9!un&exc

3^ f uTtbp2k
1 ~ t8!b2p2k8

1
~ t9!u i &phon

1Lq2p,k
. Lp2q,k8

. ^muTtQq2p~ t8!Qp2q~ t9!un&exc

3^ f uTtb2p2k8
1

~ t8!bp2k
1 ~ t9!u i &phon#

3^ f uTtck
1~ t8!ck8

1
~ t9!u i &phot

1@L2pk8
. Lpk

. ^muTtQ2p~ t8!Qp~ t9!un&exc

3^ f uTtb2p2k8
1

~ t8!bp2k
1 ~ t9!u i &phon

1Lp2q,k8
. Lq2p,k

. ^muTtQp2q~ t8!Qq2p~ t9!un&exc

3^ f uTtbp2k
1 ~ t8!b2p2k8

1
~ t9!u i &phon#

3^ f uTtck8
1

~ t8!ck
1~ t9!u i &phot%, ~5!

where q5k2k8. Here u i &phot5u0&phot and u f &phot

5u1k,1k8&phot are the initial and final states of the electroma
netic field, respectively. Assuming that the phonons are
tical and the lattice temperatureTlat , which is, generally
speaking, different from the exciton temperatureT, is suffi-
ciently small (Tlat!v0

s , wherev0
s is the characteristic en

ergy of optical phonons!, we take u i &phon5u0&phon and u f &
5u1p2k,12p2k8&phon.

By averaging over the Gibbs distribution for the excit
system, we obtain the element of theS-matrix responsible for
the two-photon emission that transforms the system from
state of thermodynamic equilibriumu i &exc5(nexp@(F
2En(N)1mN)/T#un,N&exc to the stateu f &exc5Q0

2u i &/N0:

~Sp! f i5(
n

exp@~F2En~N!1mN!/T#~Sp!mn . ~6!

Expressing theS-matrix element~6! in terms of the anoma
lous Green’s function of the excitons, we obtain
n
re-

f

-

e

-
-

ts

~Sp! f i52
1

2 E E
2`

`

dt8dt9exp@2 iV~ t81t9!#

3$@Lpk
. L2pk8

.
~n0~T!dp1 iĜ2p~ t82t9!!

3^ f uTtbp2k
1 ~ t8!b2p2k8

1
~ t9!u i &phon

1Lq2p,k
. Lp2q,k8

.
~n0~T!dp2q1 iĜp2q~ t82t9!!

3^ f uTtb2p2k8
1

~ t8!bp2k
1 ~ t9!u i &phon#

3^ f uTtck
1~ t8!ck8

1
~ t9!u i &phot1L2pk8

. Lpk
. ~n0~T!dp

1 iĜp~ t82t9!!^ f uTtb2p2k8
1

~ t8!bp2k
1 ~ t9!u i &phon

1Lp2q,k8
. Lq2p,k

. ~n0~T!dp2q1 iĜq2p~ t82t9!!

3^ f uTtbp2k
1 ~ t8!b2p2k8

1
~ t9!u i &phon̂ f uTtck8

1
~ t8!

3ck
1~ t9!u i &phot%, ~7!

where dp51 at p50 and dp50 for pÞ0. Here Ĝp(t8
2t9) is the causal Green’s function of Bose-condensed
citons at temperatureT:

Ĝp~ t82t9!52 i ~12dp!(
n

exp@~F2En~N!1mN!/T#

3^n,N22uTtQ2p~ t8!Qp~ t9!un,N&exc, ~8!

and the functionn0(T) is the density of excitons in the con
densate at this temperature.

The resulting element~7! of theS-matrix is expressed by
the sum of diagrams shown in Fig. 1. The lines with opp
sitely directed arrows denote the causal anomalous Gree
function of excitons in the Bose-condensed state forT.0 @if
the momenta next to this line vanish, it corresponds to
function n0(T)#. The wavy lines correspond to photon cre
ation operators, and the dashed lines indicate phonon
ation operators. The vertices on these diagrams correspon

FIG. 1. Diagrams corresponding to two-photon emission accompanied
coherent phonon-assisted two-exciton recombination~the notation is ex-
plained in the text!.
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matrix elementsLpk
. , wherep andk are the momenta of the

exciton and photon lines originating at the vertex.2!

Integration overt82t9 and t9 yields

~Sp! f i52p iTk8k~p!@~A221!d~p2q/2!11#

3d~v81v1vp2k
s 1v2p2k8

s
22V!, ~9!

where

Tk8k~p!5 i $Lpk
. L2pk8

.
@2pn0~T!dpd~v1vp2k

s 2V!

1 iĜp~v1vp2k
s 2V!#

1Lq2p,k
. Lp2q,k8

.
@2pn0~T!dp2qd~v1v2p2k8

s

2V!1 iĜp2q~v1v2p2k8
s

2V!#% ~10!

is the matrix element of the two-photon emission due
coherent phonon-assisted two-exciton recombination, wh
is similar to the scattering amplitude in the collisio
problem.22 In deriving this equation, we have taken into a
count the fact that the anomalous Green’s function is an e
function of frequency and does not depend on the mom
tum direction. The sum in the brackets in Eq.~9! takes into
account the fact that the momenta of emitted phonons
equal atp5q/2.

Let us limit our discussion to stimulated phonon-assis
two-photon emission with negligible phonon dispersi
(vq

s5v0
s). It follows from Eq. ~9! that stimulated two-

photon emission of this kind gives rise to a line at frequen
2V22v, where V25V2v0

s and v is the incident light
frequency.3!

The differential cross section of stimulated two-phot
emission corresponding to coherent phonon-assisted
exciton recombination is given by

dsL5
2p

c F1

2 (
pÞq/2

uTk8k~p!u2

12uTk8k~q/2!u2G~2V22v!2

~2pc!3
do8, ~11!

where

Tk8k~p!5 i $Lpk
. L2pk8

.
@2pn0~T!dpd~v2V2!

1 iĜp~v2V2!#1Lq2p,k
. Lp2q,k8

.
@2pn0~T!

3dp2qd~v2V2!1 iĜp2q~v2V2!#%. ~12!

The factor 1/2 in front of the sum overp in Eq. ~11! is
introduced because the sum over all possiblep includes the
emission of two phonons with momentap2k and 2p2k8
twice: Tk8k(p)5Tk8k(2p1q).

It is clear that forvÞV2 the terms proportional to
n0(T) do not contribute to the cross section~11!. In this case,
it is proportional to the anomalous Green’s functions, wh
are determined, as is well known, not only by the presenc
Bose condensate, but also by the interparticle interact
Thus, stimulated two-photon emission corresponding to
o
h

en
n-

re

d

y

o-

h
of
n.
-

herent phonon-assisted two-exciton recombination atv
ÞV2 can take place only in a nonideal gas of Bos
condensed excitons.

Assuming that the conditionvÞV2 holds, we express
cross section~11! as follows:

dsL5
v~2V22v!3

c4 F1

2 (
pÞq/2

u~sp!nme8n* em* u2

12u~sq/2!nme8n* em* u2Gdo8, ~13!

where

~sp!nm5Ĝp~v2V2!~ f 2pk8
.

!n~ f pk
. !m1Ĝp2q~v2V2!

3~ f 2pk8
.

!n~ f pk
. !m ~14!

is the tensor of the two-photon emission corresponding
coherent phonon-assisted two-exciton recombination.

The causal Green’s functionĜp(v) is related to the ad-
vanced and retarded Green’s functions by the follow
formula:23

Ĝp~v!5
1

2 S 11coth
v

2TD Ĝp
R~v!

1
1

2 S 12coth
v

2TD Ĝp
A~v!. ~15!

By using Eq.~15! we arrive on the following

~sp!nm5
1

2 H F S 11coth
Dv

2T D Ĝp
R~Dv!

1S 12coth
Dv

2T D Ĝp
A~Dv!G~ f 2pk8

.
!n~ f pk

. !m

1F S 11coth
Dv

2T D Ĝp2q
R ~Dv!

1S 12coth
Dv

2T D Ĝp2q
A ~Dv!G

3~ f p2q,k8
.

!n~ f q2p,k
. !mJ , ~16!

whereDv5v2V2 .
Using this expression, we calculate the sum overp in

Eq. ~13! for the cross section of stimulated two-photon em
sion:

(
pÞq/2

u~sp!nme8n* em* u2

5
1

2 (
pÞq/2

H 2F S 11coth2
Dv

2T D uĜp
R~Dv!u2

1S 12coth2
Dv

2T DRe@Ĝp
R~Dv!#2G u~e8*•f2pk8

.
!

3~e*•fpk
. !u21F S 11coth

Dv

2T D Ĝp
R~Dv!1S 1
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2coth
Dv

2T D Ĝp2q
R* ~Dv!GF S 11coth

Dv

2T D Ĝp2q
R* ~Dv!

1S 12coth
Dv

2T D Ĝp2q
R ~Dv!G~e8*•f2pk8

.
!~e*•fpk

. !

3~e8•fp2q,k8
.* !~e•fq2p,k

.* !J . ~17!

In deriving this formula, we have taken into account t
relation between the advanced and retarded Gre
ul

a-
lu
se

ox

ci

lou
’s

functions on the real axis ofv: Gp
A(v)5Gp

R* (v).
Further calculation of stimulated two-photon emissi

cross section~13! requires an expression for the retard
anomalous Green’s function of excitons at a fin
temperature. It can be obtained by analytica
continuing the anomalous Green’s function in t
Matsubara representation to the upper half-pla
of v.

The anomalous Green’s function of a Bose system in
Matsubara representation is given by the followi
expression:24
Ĝp~vs!52
~12dp!Svsp

02

~ ivs2e0~p!1m2Svsp
11 !~ ivs1e0~p!2m1S2vs ,2p

11 !1Svsp
20 Svsp

02
, ~18!
t
o-

en-

ec-
wherevs52psT and s is integer. Heree0(p)5p2/2m and
m is the system chemical potential defined by the form
m5@Svsp

11 2Svsp
02 #uvs5p50.

For T;Tc , whereTc is the Bose condensation temper
ture of an ideal Bose gas, the self-energy parts of a di
Bose system with interparticle interaction can be expres
as follows:24

Svsp
11 5

8p

m
na, Svsp

20 5Svsp
02 5

4p

m
n0~T!a, ~19!

wheren is the total density of particles,a is the amplitude for
their scattering by one another, andn0(T) is the total density
of particles in the Bose condensate, which can be appr
mately calculated by the formulan0(T)5n@12(T/Tc)

3/2#.
Thus, the anomalous Green’s function for a dilute ex

ton gas can be expressed as

Ĝp~vs!5~12dp!
z~T!

vs
21ep

2
, ~20!

where

ep5Ajp
22z2~T!, jp5

p2

2m
1z~T!,

z~T!5m~0!F12S T

Tc
D 3/2G , m~0!5

4pna

m
,

m is the exciton mass. The parameterm(0) is the chemical
potential of the excitons atT50.

Analytical continuation ofĜp(vs) to the upper half-
plane yields an expression for the retarded anoma
Green’s function:

Ĝp
R~v!52~12dp!

z~T!

~v2ep1 iGp/2!~v1ep1 iGp/2!
.

~21!

HereGp5tp
21 andtp is the lifetime of a quasiparticle with

momentump in the exciton system.
a

te
d
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-
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By substituting Eq.~21! in ~17!, one can easily find tha
the main contribution to the cross section of stimulated tw
photon emission~13! at uDvu@Gp is due to the terms in
which ep;uDvu. Therefore, matrix elementsf2pk8

. and fpk
.

can be replaced by their values corresponding to the mom
tum pL that satisfies the conditione(pL)5Dv and carried
out of the integrand. Moreover, if the conditionpL@q is
fulfilled, one can setq50 in the sum overp in Eq. ~17!.
Thus, we have

(
p

u~sp!nme8n* em* u252F S 11coth2
Dv

2T D(
p

uĜp
R~Dv!u2

1S 12coth2
Dv

2T D(
p

Re@Ĝp
R~Dv!#2G

3u f n~vL8 ! f m~vL!e8n* em* u2, ~22!

where

f~vL!5
1

4p E f.~pL ,k!dopL
,

f~vL8 !5
1

4p E f.~pL ,k8!dopL

are the matrix elements averaged over the directions of v
tor pL .

Replacing the summation in Eq.~22! by the integration
over p, we obtain

(
p

uĜp
R~Dv!u25E

0

` d3p

~2p!3

z2~T!

u~Dv1 iGp/2!22ep
2u2

. ~23!

This ~23! integral diverges asGp→0. Representing it as a
sum of two integrals each of which converges atGp→0 and
replacing the integration overp by the integration overt
5jp /z(T) yields
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(
p

uĜp
R~Dv!u25

A2m3/z~T!

2p2~b1
2 2b2

2 !

3F E
1

` dtAt21

t22b1
2

2E
1

` dtAt21

t22b2
2 G ,

~24!

where

b6
2 5~aL6 igL!211, aL5

uDvu
z~T!

,

gL5
GL

2z~T!
, GL5GpL

.

Thus, in calculating the integrals on the right-hand side
the resulting equation, one can setb6

2 5b26 id. As a result,
we obtain

(
p

uĜp
R~Dv!u25

A2m3z~T!~AaL
21121!

4paLGLAaL
211

. ~25!

The second sum overp in Eq. ~22! converges even a
Gp→0. Therefore, ifuDvu@Gp holds we can setGp501 in
this sum. In this case, we have

Re(
p

@Ĝp
R~Dv!#252

A2m3/z~T!

16p

3
AAaL

21121~AaL
21112!

aLA~aL
211!3

.

~26!

It is clear that for uDvu@Gp the following relation takes
place:

U(
p

Re@Gp
R~Dv!#2U!(

p
uGp

R~Dv!u2.

Thus,

(
p

u~sp!nme8n* em* u25
A2m3z~T!~AaL

21121!

2paLGLAaL
211

3S 11coth2
Dv

2T
D

3u f n~vL8 ! f m~vL!e8m* en* u2. ~27!

By substituting this expression in the formula for the diffe
ential cross section~13!, we obtain

dsL5
v~2V22v!3

4pc4

A2m3z~T!~AaL
21121!

aLGLAaL
211

3S 11coth2
Dv

2T
D u f n~vL8 ! f m~vL!e8n* em* u2do8.

~28!
f

If the exciton–phonon system is isotropic and the in
dent light is monochromatic and linearly polarized, one h
uem* f m(vL)u25f2(vL)/3. Summing over the polarizations o
photonv8 and integrating over the directions of its mome
tum ~note that in the case of stimulated two-photon emiss
the photonv is identical to the incident one!, we obtain the
total cross section of stimulated two-photon emission co
sponding to the coherent phonon-assisted two-exciton
combination:

sL~v,T!5
v~2V22v!3

c4

A8m3z~T!~AaL
21121!

9aLGLAaL
211

3S 11coth2
Dv

2T
D f2~vL!f2~vL8 !. ~29!

Note that, if the conditionsDv!V2 , m(0)!V, and
tL5const are fulfilled, then at a given ratio between t
exciton chemical potentialm(0) at zero temperature an
twice the temperature of their Bose condensation,g
5m(0)/2Tc the parametersL(Dv,T)/sL(0,0) is uniquely
determined by two quantities,x5Dv/2Tc andy5T/Tc :

sL~Dv,T!

sL~0,0!
5

z2AAx21z22z

uxuA2g~x21z2!
S 11coth2

x

y
D , ~30!

wherez5g(12y3/2).
The dependence of the cross section~29! on frequency

~strictly speaking, on the difference between the incid
light frequencyv andV2) is shown in Fig. 2a for different
temperatures of the exciton subsystem. This cross sectio
a function of temperature at different fixed values of t
differenceDv5v2V2 is shown in Fig. 2b. All the curves
in Fig. 2 correspond tog50.3, and it is assumed thattL

5const. It is clear that foruDvu!Tc and T,Tc there is a
temperature range where the cross section~29! of stimulated
two-photon emission is a nonmonotonic function of tempe
ture: sL increases with the growth of temperature and c
even become larger than it is atT50.

The reason for this unusual temperature dependenc
the following. The cross section~29! of stimulated two-
photon emission is determined by two quantities that dep
on the temperature differently, namely, throughz(T), which
is proportional to the number of excitons in the condensa
and through the occupation numbers of quasiparticle lev
of the exciton system with the quasiparticle energye(pL)
5uDvu. Specifically, the density of the condensate a
hencez(T) decrease as the temperature increases. This
turn, reduces the cross section~29!. On the other hand, using
Bogoliubov’su–v transforms, one can easily show that c
herent two-exciton recombination, which is a second-or
process with respect to the Hamiltonian~3!, proceeds via
intermediate states of the exciton system containing one
ticle more~less! than the state of thermodynamic equilibriu
~see also Refs. 19 and 20!. The cross section of stimulate
two-photon emission corresponding to coherent two-exci
recombination is proportional to



.
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FIG. 2. Cross section of stimulated two-photon emission accompanied by coherent optical phonon-assisted two-exciton recombination:~a! as a function of the
differenceDv5v2V2 between the incident light frequencyv andV2 at various temperaturesT of the exciton system:~1! T/Tc50.01; ~2! 0.10; ~3! 0.60;
~4! 0.90;~5! 0.99;~b! as a function of the exciton system temperatureT at variousDv: ~1! uDvu/2Tc50.2; ~2! 0.3; ~3! 0.9. The curves were plotted using Eq
~30!. For all curvesm(0)/2Tc50.3, andtL is assumed to be constant.
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11!21npL

2 5
1

2 S 11coth2
Dv

2T D ,

wherenpL
5@exp(epL

/T)21#21 is the occupation number o
the quasiparticle state with energye(pL)5uDvu in the exci-
ton system. As the temperature increases,np also rises,
which increases the cross section~29!. If this tendency domi-
nates, the cross section of stimulated two-photon emis
corresponding to coherent two-exciton recombination sho
increase with the temperature. In fact, the tendency to
crease the cross section should dominate sooner or lat
T→Tc , since it must vanish atT5Tc .

Note that the temperature dependence of the cross
tion ~29! of the stimulated two-photon emission accomp
nied by coherent two-exciton recombination has been ca
lated in the approximation~19!, which is correct only in a
narrow temperature interval about the Bose condensa
temperatureTc , which is assumed to equal the Bose cond
sation temperature in an ideal Bose gas. Although this
proximation allows one to reproduce formally our result20

for T50, in the intermediate temperature range the curve
the cross sectionsL(Dv,T) versus temperature should b
different from that plotted in Fig. 2. Nonetheless, the conc
sion about the nonmonotonic temperature dependence o
cross section of stimulated two-photon emission is valid.
example, atDv/2Tc50.2 we havesL(Dv,T).sL(Dv,0)
even forTc2T!Tc ~Fig. 2b!, where the approximation~19!
is correct.

3. RAMAN LIGHT SCATTERING

Coherent two-exciton recombination can accompany
only in the stimulated two-photon emission but also the R
man light scattering~RLS!. Abrikosov and Falkovsky25 ana-
lyzed RLS in a superconductor, whose analogue in a se
conductor was RLS by a dense electron–hole plasma
coupling between electrons and holes~a phase transition in
this system was studied by Keldysh and Kopaev;26 see also
n
ld
e-
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c-
-
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n
-
p-

f

-
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t
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the review by Kopaev27 and references therein!. But we are
discussing the case of a low density of electrons and h
~exciton gas!. Moreover, it is essential for the case of RL
under consideration that the electron–hole system not b
equilibrium, because this is the situation when coherent tw
exciton recombination~production! can cause the exciton
system to undergo a transition to a state with a lower~higher!
energy. In the case of such RLS with the transfer of
recoil momentum to the two optical phonons energy cons
vation is described by the formula

v12V25v8. ~31!

The case considered here corresponds to the appearan
an anti-Stokes component at frequencyv8 defined by this
formula.

In addition, an RLS process with coherent two-excit
production is also possible, and energy conservation in
case is described by the equation4!

v22V25v8. ~32!

This formula determines the frequencyv8 of the Stokes
component corresponding to this Raman scattering. It is c
that RLS with coherent phonon-assisted two-exciton prod
tion is possible only forv.2V2 . Stimulated two-photon
emission corresponding to the coherent phonon-assisted
exciton recombination is impossible in this case.

The analysis of RLS accompanied by coherent tw
exciton recombination~or production! is similar to that of
stimulated two-photon emission with coherent two-excit
recombination. Since the formulas for the cross section
RLS with coherent two-exciton recombination or producti
are lengthy, here we only indicate how these formulas can
derived from Eq.~29! using appropriate substitutions.

1. The cross section of RLS accompanied by coher
phonon-assisted two-exciton recombination is obtained
replacing some variables in Eq.~29!:
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f~vL!→f8~ṽL!, f~vL8 !→f~ṽL8 !, v→2v,

Dv→v1V2 , aL→ãL , GL→G̃L .

Here ãL5(V21v)/z(T), G̃L is the reciprocal lifetime of a
quasiparticle with energye( p̃L)5V21v in the exciton sys-
tem,

f8~ṽL!5
1

4p E f8.~ p̃L ,k!dop̃L
,

f~ṽL8 !5
1

4p E f.~ p̃L ,k8!dop̃L
.

2. The cross section of RLS due to coherent phon
assisted two-exciton production (v.2V2) is derived from
Eq. ~29! by substituting

f~vL!→f8~vL!, 2V22v→v22V2 ,

where

f8~vL!5
1

4p E f8.~pL ,k!dopL
.

4. POSSIBILITY OF EXPERIMENTAL DETECTION OF
TWO-PHOTON PROCESSES ACCOMPANIED BY COHERENT
TWO-EXCITON RECOMBINATION

Let us analyze the possibility of experimentally dete
ing stimulated two-photon emission and RLS accompan
by coherent phonon-assisted two-exciton recombinat
First we consider stimulated two-photon emission.

The light intensityI L(v8) at frequencyv852V22v
resulting from stimulated two-photon emission with trans
of the recoil momentum to the optical phonons is given
the expression

I L~v8!5
v8

v
sL~v!I ~v!, ~33!

wheresL(v) is the cross section of this process@Eq. ~29!#
and I (v) is the intensity~in W/cm2) of incident light of
frequencyv.

The intensity~33! can be expressed as a sum of tw
terms:

I L~v8!5DI L~v8!1 Ĩ L~v8!, ~34!

where Ĩ L(v8) is the intensity of the two-photon emissio
resulting from two consecutive processes: the spontane
emission at frequencyv852V22v and the subsequen
stimulated emission at frequencyv, each of which satisfies
the energy conservation law.

If the incident light frequency satisfiesv.V2 , then
v8,V2 holds. In this case, the spontaneous emission
frequencyv852V22v,V2 is due to exciton recombina
tion with production of a Bogoliubov quasiparticle with mo
mentumpL that satisfies the conditione(pL)5Dv ~see Ap-
pendix B,Dv52Dv8). The spontaneous recombination
excitons produces in the exciton systemI s

L(v8)/v8 quasipar-
ticles with energye(pL)5Dv per unit time, whereI s

L(v8) is
the luminescence intensity~57! ~see Appendix B and Ref
-

-
d
n.

r
y

us

at

28!. These quasiparticles disappear in a time of order oftL.
The disappearance of some of these quasiparticles is ac
panied by the stimulated recombination of excitons and
induced emission of light at frequencyv. Thus, for v

.V2 the intensityĨ L(v8) is given by the relation

Ĩ L~v8!5
tL

t r
L

I s
L~v8!, ~35!

where t r
L is the lifetime of the quasiparticle with energ

e(pL) with respect to its recombination accompanied
stimulated emission at frequencyv, provided that the exci-
ton system contains one quasiparticle with momentumpL

more than it does in the state of thermodynamic equilibriu
The timet r

L can be easily calculated using Fermi’s ‘‘golde
rule’’:

1

t r
L

5
~2p!2

3c
f2~vL!upL

2 ~npL
11!I ~v!,

upL

2 5
1

2
SAaL

211

aL
11D , npL

5
1

eDv/T21
, ~36!

whereupL
is Bogoliubov’s coefficient andnpL

is the distri-
bution function of quasiparticles with energye(pL)5Dv at
temperatureT.

If the incident light frequency satisfiesv,V2 and
hencev8.V2 , the situation is similar to that discusse
above. In this case, the spontaneous emission at frequ
v8 is due to the recombination of an exciton accompanied
the disappearance of one Bogoliubov quasiparticle with
ergy e(pL)52Dv in the exciton system. Forv8.V2 , the
number of quasiparticles of energye(pL)52Dv which dis-
appear per unit time as a result of spontaneous recombina
of excitons isI s

L(v8)/v8. In a time of order oftL, the miss-
ing quasiparticles are replaced by new ones, some of wh
are accompanied by stimulated emission at frequencyv.
Thus, forv,V2 we have

Ĩ L~v8!5
tL

tc
L

I s
L~v8!, ~37!

where tc
L is the lifetime of an exciton with momentumpL

with respect to stimulated recombination, which results
both stimulated emission at frequencyv and production of a
quasiparticle of energye(pL)52Dv, provided that the ex-
citon system contains one quasiparticle with momentumpL

less than it does in the state of thermodynamic equilibriu
Using Fermi’s ‘‘golden rule,’’ we obtain the following ex
pression fortc

L :

1

tc
L

5
~2p!2

3c
f2~vL!vpL

2 npL
I ~v!,

vpL

2 5
1

2
SAaL

211

aL
21D . ~38!

Using Eqs.~35!–~38! and~57! from Appendix B, we obtain
the intensityĨ L(v8) in the general case:
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Ĩ L~2V22v!5
2V22v

v
s̃L~v!I ~v!,

s̃L~v!5tL
v~2V22v!3

c4

A2m3z~T!~AaL
21121!

18aLAaL
211

3f2~vL!f2~vL8 !Fsign~Dv!1coth
uDvu

2T
G2

.

~39!

The spectral line at frequencyv852V22v due to the
stimulated two-photon emission accompanied by cohe
phonon-assisted two-exciton recombination will be sup
posed on the luminescence spectrum of Bose-condense
citons. It clearly follows from Eqs.~35! and~37! that Ĩ L(v8)
determines a fraction of the spontaneous emission inten
I s

L(v8). Thus, the total intensity of the emission at frequen
v8 can be expressed as follows:

I tot
L ~v8!5DI L~v8!1I s

L~v8!, ~40!

whereI s
L(v8) is the luminescence intensity at frequencyv8

in the absence of incident light of frequencyv, DI L(v8) is
the observed light intensity at frequencyv8 due to stimu-
lated two-photon emission with coherent two-exciton reco
bination. By substituting the cross section~29! in Eq. ~33!
and using Eqs.~34! and ~39!, we obtain the observed ligh
intensityDI L(v8):

DI L~2V22v!5
2V22v

v
DsL~v!I ~v!,

DsL~v!5tL
v~2V22v!3

c4

A8m3z~T!~AaL
21121!

9aLAaL
211

3f2~vL!f2~vL8 !F11coth2
Dv

2T
2

1

4

3S sign~Dv!1coth
uDvu

2T
D 2G . ~41!

One can easily prove that 1/2<DsL(v)/sL(v)<1. In par-
ticular, at T50 we haveDsL(v)5sL(v) at v,V2 and
DsL(v)5sL(v)/2 at v.V2 .

Using Eq.~29!, we can estimate the cross sectionsL of
stimulated two-photon emission. In CGS units this expr
sion has the form

sL~v,T!5tLV
v~2V22v!3

9c4\4

A8m3z~T!~AaL
21121!

aLAaL
211

3S 11coth2
Dv

2T
D f2~vL!f2~vL8 !, ~42!

whereV is the volume of excitons interacting with incide
light andaL5\uDvu/z(T).

We shall consider as an example a system of Bo
condensed excitons in Cu2O at zero temperature. The excito
effective mass in this crystal ism52.7me , the characteristic
nt
r-
ex-

ity
y

-

-

e-

exciton radius isa57 Å, and the photon energy correspon
ing to the recombination of an exciton with zero momentu
is \V.2 eV. The optical recombination of an exciton
Cu2O is typically assisted by production of an optical ph
non of energy\v0

s.10 meV with a negligible dispersion.
Let us estimate the exciton chemical potential atT50

by the formula

m~0!5
4p\2

m
na,

wheren is the exciton density. Assuming thatn51019 cm23

~this density was achieved in some experiments,9! we obtain
m(0).2.5 meV. An ideal gas of excitons withn51019

cm23 should transform to the Bose-condensed state atTc

;50 K, for whichm(0)/2Tc.0.3.
In the experiment9 excitons were produced by powerfu

nanosecond laser pulses at a wavelengthl.500 nm focused
into the spot of diameterd.30 mm on the sample surface
The volume of the exciton system interacting with the in
dent light stimulating the two-photon emission can be e
mated asV5d2l , wherel .1 mm is the penetration depth o
radiation with wavelength 500 nm.

As v→V2 (aL→0), the cross sectionsL increases. We
write \(V22v)5m(0). In this case

f~vL!.f~vL8 !.F, F5
1

4p E F.~pL ,k!dopL
,

where F is the matrix element of the radiative phono
assisted recombination of an isolated exciton.20 This matrix
element can be estimated by the formula

1

texc
5

4V2
3

3c3\
F2, ~43!

where texc is the lifetime of an isolated exciton due to i
spontaneous recombination with the emission of a photon
energy\V2 and an optical phonon with energy\v0

s . The
lifetime of paraexcitons in Cu2O is texc;100ms ~Ref. 7!.

The relaxation timetL in the system of Bose-condense
excitons is a subject of further investigation. Even for ze
temperature, it can be considerably shorter than the radia
lifetime of excitonstexc because a quasiparticle can disa
pear, for example, due to the emission of one or sev
acoustic phonons. Assuming that the timetL is within the
interval 10211–1025 s ~the lower bound is defined by th
conditionGL51021e(pL), the upper bound is 1021texc), we
obtain an estimate for the cross section of stimulated tw
photon emission by Bose-condensed paraexcitons in Cu2O at
T50: sL510216–10210 cm2.

The radiative lifetime of orthoexcitons in Cu2O is texc

;300 ns. Assuming the relaxation timetL in a system of
orthoexcitons in the Bose-condensed state to be wi
10211–1029 s ~in this case the upper bound is determined
the time of transition between the orthoexciton and para
citon states! yields sL510211–1029 cm2 at T50. Thus,
stimulated two-photon emission accompanied by cohe
two-exciton recombination can be experimentally detected
Cu2O.
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The cross section of RLS with coherent two-exciton
combination accompanied by the production of two opti
phonons is determined by the squared product of two ma
elements

f8~ṽL!5
1

4p E f8.~ p̃L ,k!dop̃L
,

f~ṽL8 !5
1

4p E f.~ p̃L ,k8!dop̃L
,

where p̃L is determined by the conditione( p̃L)5v1V2

~see Sec. 3!. The band gap in Cu2O is wide (V2;102v0
s),

so e( p̃L)@v0
s . Using the approach suggested in Append

A, one can prove that in this casef(ṽL8) and f8(ṽL) are
negligible in comparison with the matrix elementsf(vL) and
f(vL8) in Eq. ~42! at uV22vu;m(0). Moreover, the cross
section of the RLS under consideration is proportional to
lifetime of a quasiparticle with energye( p̃L)5v1V2 ,
which is much shorter than the relaxation timetL in the cross
section ~42! for uV22vu;m(0). Thus, unlike stimulated
two-photon emission, one can hardly detect RLS accom
nied by coherent two-exciton recombination in Cu2O. The
situation is similar in the case of RLS with coherent tw
exciton production.

5. CONCLUSIONS

In this paper, we have demonstrated that coherent t
exciton recombination, i.e., the simultaneous recombina
of two excitons with opposite momenta, which correspon
to the existence of nondiagonal long-range order in the s
tem expressed by nonvanishing anomalous averages o
form ^N22uQ2pQpuN&, is possible in a Bose-condensed e
citon system interacting with the electromagnetic field. Sim
larly, coherent two-exciton production corresponding
anomalous averages like^N22uQ2p

1 Qp
1uN& is also possible.

In these processes, the exciton occupation numbers are
changed, and the final state of the exciton system dif
from the initial one only in the average number of excito
with zero momentum. Coherent two-exciton recombinat
may also cause Raman light scattering by excitons in Bo
condensed state~RLS can also be accompanied by coher
two-exciton production!. The recoil momentum correspond
ing to the change in the momentum of electromagnetic fi
is transferred to phonons or impurities. Both the stimula
two-photon emission and RLS with coherent two-exciton
combination~production! can occur only in the presence o
Bose condensate in a system of interacting excitons, so
observation of these effects can be used as a strong ex
mental evidence for the existence of Bose condensatio
exciton systems.

Using diagram methods, we have developed a techn
for calculating the cross sections of stimulated two-pho
emission and RLS accompanied by coherent two-exciton
combination~or production! at T.0. In this approach, the
elements of the scattering matrix corresponding to the p
cesses in question are expressed in a natural manner in t
of Green’s functions of Bose-condensed excitons@see Eqs.
~9!, ~10!, and also~49!#.
-
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If the incident light frequency satisfiesv,2V2 with
V25V2v0

s (V is the frequency of light due to the recom
bination of an exciton with zero momentum andv0

s is the
optical phonon frequency!, stimulated two-photon emissio
and RLS accompanied by coherent phonon-assisted
exciton recombination give rise to a spectral line at f
quency 2V22v and the anti-Stokes component atv
12V2 , respectively. Forv.2V2 the RLS spectrum con
tains both the anti-Stokes and Stokes components at freq
cies v62V2 . The anti-Stokes line corresponds due to c
herent two-exciton recombination, whereas the Sto
component is due to coherent phonon-assisted two-exc
production. In this case, stimulated two-photon emission
impossible.

Using the approximation~19!, we have derived expres
sions for the cross sections of the processes under cons
ation at finite temperatures. In the limituv2V2u!Tc (Tc is
the temperature of Bose condensation!, the cross section o
stimulated two-photon emission is a nonmonotonic funct
of temperature. It increases in a certain temperature ra
belowTc and can even be larger than it is atT50. The cause
of this nonmonotonic behavior is that the cross section of
stimulated two-photon emission is determined not only
the density of excitons in the condensate, which decrease
the temperature increases and vanishes atT5Tc , but also by
the occupation numbers of quasiparticles with energiesuv
2V2u in the exciton system, which increases as the te
perature grows.

Our estimates indicate that foruv2V2u;m(0), where
m(0) is the exciton chemical potential measured with resp
to the exciton band bottom, a spectral line at 2V22v due to
the stimulated two-photon emission accompanied by coh
ent optical phonon-assisted two-exciton recombination
be experimentally observed in Cu2O.

The work was supported by grants from INTAS, Russi
Fund for Fundamental Research, and Physics of Solid-S
Nanostructures program.

APPENDIX

Effective matrix elements of exciton recombination
The objective of this Appendix is to prove that the tw

photon emission and RLS accompanied by coherent t
exciton recombination can be analyzed from first principl
without using the effective Hamiltonian~3!. Taking as an
example two-photon emission, we will determine the con
tions under which the analysis based on the effective Ham
tonian ~3! is correct. In addition, we will show that the e
fective matrix elements of exciton recombination used in t
paper do not depend on temperature and are equal to t
calculated previously forT50 ~Ref. 20!.

The Hamiltonian describing the interaction between e
citons, phonons, and electromagnetic field can be written

V̂~ t !5Ŵ~ t !1D̂~ t !,

Ŵ~ t !5(
pq

@WqpQq
1~ t !Qp~ t !bq2p~ t !

1Wpq* Qq
1~ t !Qp~ t !bp2q

1 ~ t !#,
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D̂~ t !5(
q

@Dqe2 iVtQq~ t !cq
1~ t !

1Dq8e
2 iVtQ2q~ t !cq~ t !1H.c.#, ~44!

where the HamiltonianŴ(t) describes the scattering of ex
citons by phonons,D̂(t) is responsible for the interactio
between excitons and electromagnetic field,Dq

5 iA2pvqe*•dq , Dq852 iA2pvqe•dq .
It is clear that the two-photon emission accompanied

coherent phonon-assisted two-exciton recombination
fourth-order in the HamiltonianV̂(t). For the element of the
S-matrix of the two-photon emission due to coherent tw
exciton recombination and production of two optic
phonons with momentap2k and2p2k8 averaged with the
Gibbs distribution, we have

~Sp! f i5
~2 i !4

4! E
2`

`

. . . E ^ f uTt@Ŵ~ t1!Ŵ~ t2!D̂~ t3!D̂~ t4!

1Ŵ~ t1!D̂~ t2!Ŵ~ t3!D̂~ t4!

1D̂~ t1!Ŵ~ t2!Ŵ~ t3!D̂~ t4!
y
is

-

1Ŵ~ t1!D̂~ t2!D̂~ t3!Ŵ~ t4!

1D̂~ t1!Ŵ~ t2!D̂~ t3!Ŵ~ t4!

1D̂~ t1!D̂~ t2!Ŵ~ t3!Ŵ~ t4!#u i &dt1 . . . dt4 . ~45!

Here ^ f u . . . u i &5(nexp@(F2En(N)1mN)/T#^mu . . . un&,
where un&5un,N&excu i &phonu i &phot and um&5un,N
22&excu f &phonu f &phot, and the other notation is given i
Sec. 2.

By changing the time variables in each summand of E
~45! we can transform it to

~Sp! f i5
1

4E2`

`

. . . E ^ f uTtŴ~ t1!Ŵ~ t2!

3D̂~ t3!D̂~ t4!u i &dt1 . . . dt4 , ~46!

where
^ f uTtŴ~ t1!Ŵ~ t2!D̂~ t3!D̂~ t4!u i &

5DkDk8exp@2 iV~ t31t4!# (
p1p2

Wp1 ,p11p1k8Wp2 ,p22p1k

3$@^TtQp11p1k8
1

~ t1!Qp1
~ t1!Qp22p1k

1 ~ t2!Qp2
~ t2!Qk~ t3!Qk8~ t4!&3^ f uTtb2p2k8

1
~ t1!bp2k

1 ~ t2!u i &phon

1^TtQp22p1k
1 ~ t1!Qp2

~ t1!Qp11p1k8
1

~ t2!Qp1
~ t2!Qk~ t3!Qk8~ t4!&^ f uTtbp2k

1 ~ t1!b2p2k8
1

~ t2!u i &phon#

3^ f uTtck
1~ t3!ck8

1
~ t4!u i &phot1@^TtQp11p1k8

1
~ t1!Qp1

~ t1!Qp22p1k
1 ~ t2!Qp2

~ t2!Qk8~ t3!Qk~ t4!&

3^ f uTtb2p2k8
1

~ t1!bp2k
1 ~ t2!u i &phon1^TtQp22p1k

1 ~ t1!Qp2
~ t1!Qp11p1k8

1
~ t2!Qp1

~ t2!Qk8~ t3!Qk~ t4!&

3^ f uTtbp2k
1 ~ t1!b2p2k8

1
~ t2!u i &phon#^ f uTtck8

1
~ t3!ck

1~ t4!u i &phot%. ~47!

Here ^ . . . &5(nexp@(F2En(N)1mN)/T#^n,N22u . . . un,N&exc.
In the most interesting casekÞk8, we have

(
p1p2

Wp1 ,p11p1k8
* Wp2 ,p22p1k*

^TtQp11p1k8
1

~ t1!Qp1
~ t1!Qp22p1k

1 ~ t2!Qp2
~ t2!Qk~ t3!

3Qk8~ t4!&5(
p1

Wp1p1
* @W2k8k

* ^TtQp1

1 ~ t1!Qp1
~ t1!&^TtQk

1~ t2!Qk~ t3!&^TtQ2k8~ t2!Qk8~ t4!&1W2kk8
* ^TtQp1

1 ~ t1!Qp1
~ t1!&

3^TtQk8
1

~ t2!Qk8~ t4!&^TtQ2k~ t2!Qk~ t3!&#d~p1k8!1(
p2

Wp2p2
* @W2k8k

* ^TtQ2k
1 ~ t1!Qk~ t3!&^TtQ2k8~ t1!Qk8~ t4!&

3^TtQp2
~ t2!Qp2

1 ~ t2!&1W2kk8
* ^TtQk8

1
~ t1!Qk8~ t4!&^TtQ2k~ t1!Qk~ t3!&^TtQp2

1 ~ t2!Qp2
~ t2!&#d~p2k!

1W2k,p2q* W2k8,q2p
* ^TtQp2q

1 ~ t1!Qq2p
1 ~ t2!&^TtQ2k~ t1!Qk~ t3!&^TtQ2k8~ t2!Qk8~ t4!&

1W2k8p
* W2k,2p* ^TtQp

1~ t1!Q2p
1 ~ t2!&^TtQ2k8~ t1!Qk8~ t4!&^TtQ2k~ t2!Qk~ t3!&1Wq2p,k* Wp2q,k8

* ^TtQk
1~ t1!Qk~ t3!&
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3^TtQq2p~ t1!Qp2q~ t2!&^TtQk8
1

~ t2!Qk8~ t4!&1W2pk8
* Wpk* ^TtQk8

1
~ t1!Qk8~ t4!&^TtQ2p~ t1!Qp~ t2!&^TtQk

1~ t2!Qk~ t3!&

1W2k,p2q* Wp2q,k8
* ^TtQp2q

1 ~ t1!Qp2q~ t2!&^TtQ2k~ t1!Qk~ t3!&^TtQk8
1

~ t2!Qk8~ t4!&1W2k8p
* Wpk* ^TtQp

1~ t1!Qp~ t2!&

3^TtQ2k8~ t1!Qk8~ t4!&^TtQk
1~ t2!Qk~ t3!&1Wq2p,k* W2k8,q2p

* ^TtQk
1~ t1!Qk~ t3!&^TtQq2p~ t1!Qq2p

1 ~ t2!&

3^TtQ2k8~ t2!Qk8~ t4!&1W2pk8
* W2k,2p* ^TtQk8

1
~ t1!Qk8~ t4!&^TtQ2p~ t1!Q2p

1 ~ t2!&^TtQ2k~ t2!Qk~ t3!&. ~48!
um

f

t
to

he
an

a-

e

for

he

nc-
Similar expressions can be derived from the rest of the s
mands in Eq.~47!.

By substituting Eq.~48! in ~46! and performing integra-
tion over time variables, we obtain forp1k8Þ0 andp2k
Þ0 ~the phonons are assumed to be optical!

~Sp! f i52p iTk8k~p!@~A221!d~p2q/2!11#

3d~v81v22V2!,

Tk8k~p!5DkDk8@Wq2p,k* Wp2q,k8
* Gk~v2V!Gk8

3~V22v2v0
s!G̃p2q~v2V2!

1W2k,p2q* W2k8,q2p
* G̃2k~v2V!G̃k8

3~v2V21v0
s!G̃q2p

1 ~v2V2!

1Wq2p,k* W2k8,q2p
* Gk~v2V!G̃k8

3~v2V21v0
s!Gq2p~v2V2!

1W2k,p2q* Wp2q,k8
* G̃2k~v2V!Gk8~V22v

2v0
s!Gp2q~V22v!1W2pk8

* Wpk* Gk8~V2

2v2v0
s!Gk~v2V!G̃2p~v2V2!

1W2k8p
* W2k,2p* G̃2k~v2V!G̃k8~v2V2

1v0
s!G̃p

1~v2V2!1W2k8p
* Wpk* Gk~v

2V!G̃k8~v2V21v0
s!Gp~v2V2!

1W2pk8
* W2k,2p* G̃2k~v2V!Gk8~V22v

2v0
s!G2p~V22v!#, ~49!

whereG̃p(v), G̃p
1(v), andGp(v) are Fourier transforms o

the anomalous and normal Green’s functions of excitons
the Bose-condensed state, which are defined as follows:

Gp~ t2t8!52 i ^TtQp~ t !Qp
1~ t8!&,

G̃p
(1)~ t2t8!52 i ^TtQ2p

(1)~ t !Qp
(1)~ t8!&. ~50!

Thus, we have derived the expression for the elemen
the S-matrix responsible for the two-photon emission due
coherent recombination directly from the Hamiltonian of t
interaction between excitons and electromagnetic field
the Hamiltonian of the exciton–phonon interaction~44!. El-
ements of theS-matrix corresponding to the RLS accomp
nied by coherent two-exciton recombination~or production!
can be derived similarly.
-

in

of

d

In the general case, Eq.~49! cannot be reduced to th
corresponding expression~12! derived from the effective
Hamiltonian ~3!. Below we will determine the conditions
under which this is possible and derive an expression
Lpq

. .
By analyzing stimulated two-photon emission under t

condition uv2V2u!v0
s , we obtain

Tk8k~p!5DkDk8@Wq2p,k* Wp2q,k8
* Gk~2v0

s!Gk8

3~2v0
s!G̃p2q~v2V2!

1W2k,p2q* W2k8,q2p
* G̃2k

3~2v0
s!G̃k8~v0

s!G̃q2p
1 ~v2V2!

1Wq2p,k* W2k8,q2p
* Gk~2v0

s!G̃k8~v0
s!Gq2p~v

2V2!1W2k,p2q* Wp2q,k8
* G̃2k~2v0

s!Gk8

3~2v0
s!Gp2q~V22v!1W2pk8

* Wpk* Gk8

3~2v0
s!Gk~2v0

s!G̃2p~v2V2!

1W2k8p
* W2k,2p* G̃2k~2v0

s!G̃k8~v0
s!G̃p

1~v

2V2!1W2k8p
* Wpk* Gk~2v0

s!G̃k8~v0
s!Gp~v

2V2!1W2pk8
* W2k,2p* G̃2k~2v0

s!Gk8

3~2v0
s!G2p~V22v!#. ~51!

Under the conditions of approximation~19!, we have for
the retarded Green’s functions

Gp
R~v!522p in0~T!dpd~v!1Gp8

R~v!,

G8p
R~v!5~12dp!

v1jp

~v2ep1 iGp/2!~v1ep1 iGp/2!
,

~52!

from which an expression forGp(v) can be obtained. The
anomalous Green’s functionG̃p(v), which is defined by Eq.
~50!, is related to the Green’s functionĜp(v) @see definition
~8!, and Eqs. ~15! and ~21!# by the formula Ĝp(v)
522p in0(T)dpd(v)1Ĝp(v).

By comparingthe normal and anomalous Green’s fu
tions at v5v0

s , we obtain G̃k(v0
s)/Gk(v0

s)!1 for v0
s

@jk . In this case the element~51! of the scattering matrix is
determined by the expression
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Tk8k~p!5DkDk8@Wq2p,k* Wp2q,k8
* Gk~2v0

s!Gk8

3~2v0
s!G̃p2q~v2V2!1W2pk8

* Wpk* Gk8

3~2v0
s!Gk~2v0

s!G̃2p~v2V2!#, ~53!

whereGk8(v0
s).Gk(v0

s).1/v0
s .

The comparison between the latter expression and
~12! in Sec. 2 yieldsLpq

. for the effective Hamiltonian of
exciton recombination:

Lpq
. 52 i

DqWpq*

v0
s

. ~54!

The expressions for the other matrix elements of the exc
recombination in the effective Hamiltonian~3! can be de-
rived similarly.

Thus, the two-photon emission accompanied by cohe
two-exciton recombination can be analyzed with the aid
the effective Hamiltonian~3! with Lpq

. determined by Eq.
~54! if the incident light satisfies the conditionsuv2V2u
!v0

s andjk!v0
s . In this case, the matrix element~54! does

not depend on temperature andf(vL) is identical to the ef-
fective matrix elementF responsible for the phonon-assist
recombination of an isolated exciton.20

APPENDIX B

Luminescence intensity of Bose-condensed excitons

The luminescence of Bose-condensed excitons for
quencyv8,V2 is due to the optical phonon-assisted ex
ton recombination accompanied by the production of a B
goliubov quasiparticle with energye(pL8)5V22v8 in the
exciton system. The matrix element of this recombination

L5Lp
L8k

. vpLAnp
L8
11, vp

L8
2

5
AaL8

2112aL8

2aL8
,

np
L8
5FexpS uDv8u

T D21G21

, ~55!

whereDv85v82V2 andaL85uDv8u/z(T).
Using the Fermi ‘‘golden rule,’’ we obtain the optica

phonon-assisted luminescence intensityI s
L(v8) of Bose-

condensed excitons at frequenciesv8,V2 :

I s
L~v8!5

v84A2m3z~T!~AaL8
21121!f2~vL8 !

6p2c3AaL8
211~AaL8

2111aL8 !

3F11coth
uDv8u

2T
G . ~56!

The luminescence of Bose-condensed excitons for a
quencyv8.V2 is due to the optical phonon-assisted ex
ton recombination accompanied by the disappearance
quasiparticle with energye(pL8)5v82V2 . The matrix ele-
ment of this recombination is derived from Eq.~55! by sub-
stituting vp

L8Anp
L8
11→A11vp

L8
2 Anp

L8
. The luminescence

intensity at frequencyv8.V2 is derived from Eq.~56! by
substituting aL8→2aL8 and coth(uDv8u/2T)11
q.

n

nt
f

-
-
-

s

e-
-

a

→coth(uDv8u/2T)21. Thus, the expression that determin
the luminescence spectrum of Bose-condensed excitons
arbitrary frequencyv8ÞV2 has the form

I s
L~v8!5

v84A2m3z~T!~Aa l8
21121!f2~vL8 !

6p2c3AaL8
211@AaL8

2112sign~Dv8!aL8#

3Fsign~2Dv8!1coth
uDv8u

2T
G . ~57!

a!E-mail: lozovik@isan.troitsk.ru
1!In the general case, the radiative recombination of an exciton can resu

emission~absorption! of an arbitrary number of phonons. When using t
Hamiltonian~3!, we limit our analysis for simplicity to the case of excito
recombination with emission~absorption! of one phonon.

2!Calculations involving the two-photon emission and RLS under discuss
could be performed using Keldysh’s elegant diagram technique~see, e.g.,
Ref. 21, which is devoted to a problem that requires a similar techniq!.
In our opinion, however, our approach used in this specific case is m
transparent.

3!In the general case, the number of phonons involved in the process ca
arbitrary. Moreover, the recoil momentum~the whole or a fraction of it!
can be transferred to impurities. Thus, stimulated two-photon emission
result in the appearance of the spectral lines at frequencies 2(V2nv0

s)
2v, wheren is an arbitrary integer.

4!In the general case, RLS, like the two-photon emission, can involve
arbitrary number of phonons. Moreover, the recoil momentum can
transferred~entirely or partially! to impurities. Thus, RLS accompanied b
coherent two-exciton production or recombination can give rise to a
Stokes and Stokes components at frequenciesv1(2V2nv0

s)5v8 and
v2(2V2nv0

s)5v8, respectively, wheren is an arbitrary integer~see
also Ref. 20!.
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Dynamics of domain walls with drifting Bloch lines in single crystals of yttrium iron
garnet
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Induction and magnetic methods are used to study the effect of drifting Bloch lines on the wall
velocity in a single crystal sample of yttrium iron garnet cut in the form of a long prism
with only one 180-degree domain wall. A sharp increase in the velocity and in resonance bending
vibrations of the wall are observed when Bloch line drift is initiated. The character of the
wall motion is investigated under these conditions. An analysis of the experimental data shows
that the effective reduction in the influence of drifting Bloch lines on the characteristics
of the wall motion may be related to a magnetic aftereffect phenomenon. ©1999 American
Institute of Physics.@S1063-7761~99!01504-8#
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1. INTRODUCTION

It is well known that in the overwhelming majority o
ferromagnetic crystals, the Bloch~Néel! lines that develop
under static1 and dynamic2 conditions under the influence o
the magnetostatic stray fields that exist at the sample surf
are an obligatory structural element of the domain wa
They separate regions with opposite directions of the spi
the domain wall, and are therefore characterized by a vort
spin distribution3 and distinctive properties that change t
character of the motion of a monopolar domain wall sign
cantly. In particular, Bloch lines greatly reduce the mobilit4

and amplitude of the bending eigenmodes5 of a monopolar
wall, and also increase its effective mass.6

Direct experimental studies of the behavior of Blo
lines in moving domain walls in single crystal yttrium iro
garnet7 have made it possible to study the motion of Blo
lines affected by gyrotropic forces, to determine their d
namic characteristics~mobility and the longitudinal and
transverse components of the effective mass!, and their be-
havior as a function of the amplitude of the exciting field.
has been shown that only in a relatively weak variable m
netic field that excites wall vibrations do the Bloch lin
oscillate near their equilibrium positions. When the field e
ceeds a critical value (Hcr), the entire system of Bloch line
in a wall drifts along it at a velocity of several meters p
second.8 The character of the motion of the wall itse
changes when Bloch line drift sets in. In particular, the fr
damped oscillations of the wall initiated by magnetic fie
pulses and by the oscillations of the lines themselves
replaced by aperiodic damping.7

Line drift in yttrium iron garnet is accompanied by in
tense creation and annihilation of lines, and therefore
would seem that it should affect the velocity of a doma
wall in the same way as observed during dynamic trans
mations of the domain wall structure in highly anisotrop
garnet films2 in which Bloch lines are created, move, an
vanish. The first, recent studies of bending vibrations
7611063-7761/99/88(4)/5/$15.00
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walls with drifting Bloch lines in yttrium iron garnet show
however, that when Bloch line drift is excited, the effect
the lines on the velocity of a vibrating wall is sharp
reduced.9 Here we describe the results of a comprehens
study of this unusual behavior in domain walls with driftin
Bloch lines.

2. EXPERIMENTAL TECHNIQUE

These studies were conducted on a single crystal sam
of yttrium iron garnet cut in the form of a 3.230.730.03
mm3 rectangular prism. It contained a single 180° doma
wall that separated domains magnetized along the^111& di-
rections in the~112! plane of the wafer. In the initial state th
wall contained vertical Bloch lines. As necessary, a mono
lar state of the wall was created using a sinusoidal field (Hx)
parallel to the magnetization in the domains, and which i
tiated drift of the Bloch lines in the presence of an addition
constant field (Hz) perpendicular to the plane of the wafer8

The magnetic field was produced by Helmholtz coils with
radius of 6 mm.

The motion of the domain wall was recorded by a sm
compensated coil wound directly on the sample. The ind
tion signal from this coil was fed to an SK4-59 spectru
analyzer~to record the spectra of the vibrations!, an S8-9
storage oscilloscope~to record single pulses!, or a V3-39
millivoltmeter ~to record the amplitude of the oscillations
the wall velocity!. Motion of the Bloch lines along the wal
was studied by a magnetooptical method using a polariz
microscope equipped with a photomultiplier.8 The signals
were recorded and processed, and control of the meas
ment instruments was coordinated and synchronized b
personal computer.

3. EXPERIMENTAL RESULTS

Figure 1 shows flexural vibration spectra of the 18
domain wall for various amplitudes (Hx0) of the driving
sinusoidal fieldHx . In a weak exciting field, the spectrum o
© 1999 American Institute of Physics
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the flexural oscillations of the wall is essentially invisible
the frequency dependence of the induction signal, whic
proportional to the amplitude of the velocity oscillations
the wall (V05vy052pny0, wheren is the frequency of the
field andy0 is the amplitude of the wall vibrations! ~curve1!.
As Hx0 approaches the critical valueHcr , isolated peaks
show up in theV0(n) curves ~curve 2!, which reflect the
excitation of flexural vibrations in the wall with wave vecto
perpendicular to the domain magnetizations. These pe
could disappear and reappear at the same or different r
nance frequencies in successive measurements~curve 3!.
When the field reachesHcr , distinct and stable peaks sho
up in theV0(n) curves at low frequencies~curve4!, suggest-
ing the excitation of flexural oscillations in the demagnetiz
wall. High-frequency resonance peaks have not yet form
in curve 4; these are stabilized asHx0 is increased further
~curve5!. In addition, a comparison of curves4 and5 shows
that asHx0 is increased, the resulting resonances shift
lower frequencies.

Figure 2a shows a magnetooptical image of a 180°
main wall in the polarization microscope with slightly un
crossed polarizers. The white and black sections of the w
are characterized by opposite directions of the spin turn,
are separated by vertical Bloch lines. Figures 2b–2d sh
single oscilloscope traces of the time variation in the int
sity of the light, measured with a photomultiplier, in the loc
part of the crystal indicated by a square in Fig. 2a. Th
were recorded in the intervals between successive incre
in Hx0 at a frequency of 1.8 MHz, corresponding to one
the resonance peaks in Fig. 1. At low field amplitudes
oscilloscope traces only contained a noise signal~Fig. 2b!.
The oscillations of the lines along the oscillating wall pr
duced by gyrotropic forces7 do not show up in the single
scope traces. As the field amplitude approached critica
first single narrow peaks associated with the excitation
solitary nonlinear waves in the domain wall appeared t
were similar to those observed in monopolar walls.8 The os-

FIG. 1. The induction signal (V0), proportional to the amplitude of the
oscillations in the displacement velocity of a demagnetized 180° dom
wall, as a function of the frequencyn of the sinusoidal fieldHx for various
field amplitudes:Hx0512 mOe~1!, 22.5 ~2,3!, 30 ~4!, and 45~5!.
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cilloscope traces of Fig. 2c records the passage of sev
subdomains through the photometrically observed segm
The number of subdomains was different in successive m
surements. Unstable peaks showed up in theV0(n) curve at
this field level, which initiates unstable drift of the Bloc
lines. They emerged only at the onset of line drift, and
those frequencies where that drift occurred. Stable drift
Bloch lines was observed only in the trace of Fig. 2d, wh
was recorded at a field amplitude for which flexural oscil
tions of the wall showed up clearly in theV0(n) curve~Fig.
1, curve5!. Further increases inHx0 were accompanied by a
reduction in the average period of the magnetooptical sig
~Fig. 2e! owing to the increased drift velocity of the Bloc
lines.

Thus, a comparison of the data in Figs. 1 and 2 sho
that when Bloch line drift is excited, there is a large increa
in the displacement velocity and amplitude of flexural osc
lations of the domain wall.

Figure 3 shows the amplitudeV0 of the oscillations in
the velocity of the wall as a function of the amplitudeHx0 of
the exciting field measured at a resonant frequency
1.8 MHz. The behavior of the Bloch lines in the wall ob
served during the time this curve was recorded correspo
to the traces of Fig. 2. The relationship between the w
displacement velocity and the behavior of the Bloch lines
the wall shows up more clearly in this curve. Just when l
drift is excited, there is a sharp rise in the displacement
locity of the wall. Furthermore, this curve manifests ‘‘hy
teresis’’ in the discontinuity in the wall velocity as the fie
amplitude is raised or lowered. Figure 3 also shows fr
ments of single magnetooptical oscilloscope traces recor
before and after the velocity jump during forward and r
verse scans. These show that the velocity jumps took p
during forward or reverse scans ofV0(Hx0), when the drift
of the Bloch lines either set in or ended, respectively, and

in

FIG. 2. Magnetooptic imaging of a 180° domain wall in a polarizati
microscope with an isolated cross section for a photometric measureme~a!
and single oscilloscope traces~b–e! characterizing the variation in the in
tensity of the light transmitted through the photometric cross section w
exciting field amplitudesHx0515 mOe~b!, 28 ~c!, 45 ~d!, and 75~e!. The
frequency of the field isn51.8 MHz. The change in the intensity of the ligh
is determined by the movement along the wall of ‘‘dark’’ and ‘‘light’
subdomains and of nonlinear perturbation s in the spin system in th
subdomains.
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can be seen in Fig. 3, when the field amplitude is reduc
line drift is observed in the wall at substantially lower fiel
than when the fieldHx0 is increased.

A comparison ofV0(Hx0) curves measured with risin
field amplitude at the resonant frequencies~Fig. 4, curves1
and2! shows that the critical fieldHcr at which the velocity
jump occurs lies in the range 27–32 mOe and changes
in successive measurements. When these curves were p
with decreasingHx0, this range extended to lower field
~22 mOe! as a result of the hysteresis . At arbitrary freque
cies~Fig. 4, curves3–5!, the displacement velocity of a wa
does not increase so rapidly. This is because during for
oscillations of a wall, stable drift of Bloch lines is initiate
more gradually asHx0 increases: it first occurs in isolate
segments of the wall, and then over the entire wall. In
experiment, a tendency was observed for this transition
the field to widen as the frequency decreased. The fact
when the wall oscillates resonantly, stable line drift occ

FIG. 3. AmplitudeV0 of the velocity of wall oscillations as a function of th
amplitudeHx0 of an exciting field atn51.8 MHz, and fragments of single
sweep oscilloscope traces of the magnetooptical signal similar to t
shown in Fig. 2.

FIG. 4. V0(Hx0) curves for resonant~1,2! and arbitrary~3–5! frequencies of
the exciting fieldHx : n5 1.8 MHz ~1!, 3 ~2!, 1 ~3!, 2.3 ~4!, and 3.8~5!.
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over a narrower range ofHx0 probably suggests that lin
drift depends directly on the dynamical state of the wall, b
not on the magnitude ofHx0.

The single-sweep oscilloscope traces of Fig. 5 reflect
amplitude~or velocity V0) of wall vibrations in near-critical
fields at a frequency of 1 MHz. They show that in a we
field, the amplitudey0 of wall vibrations does not vary in
time ~Fig. 5a!. As the field amplitude approaches the critic
value, the oscilloscope traces contain a time interval
which the wall vibrates with a higher amplitude~cf. Figs. 5b
and 5c!; they increase in Fig. 5c. Intervals with wall vibra
tions of even greater amplitude are visible in Fig. 5d, wh
increase asHx0 rises further, and finally the wall undergoes
transition to high-velocity motion~Fig. 5e!. At the resonant
frequencies this transition from ‘‘slow’’ to ‘‘fast’’ wall
movement takes place over a narrower range ofHx0. Thus,
these data show that at field amplitudes close toHcr , wall
motion is manifestly nonstationary, owing to unstable Blo
line drift processes. Wall motion stabilizes somewhat
higherHx0, but it is still not harmonic. The latter may to
large extent be due to the nonuniform character of the Bl
line drift.

Curves1 and2 in Fig. 6 represent the measuredV0(Hx0)
curves for a wall in an initially monopolar state at a nonres
nant frequency of 0.8 MHz for the exciting fieldHx . They
were recorded in the presence of additional constant field
Hz546 and 40 Oe, respectively, perpendicular to the pla
of the wafer, which maintained the monopolar state of
wall. These curves are qualitatively consistent with simi
curves from Ref. 10, but they do differ slightly, since the
were measured at differentn and Hz . A comparison of
curves1 and2, in particular, reveals how the auxiliary fiel
Hz affects theV0(Hx0) curve. Clearly, asHz decreases, the
knee inV0(Hx0), which characterizes the onset of nonline
excitations in the wall,8 moves to lower amplitudes of th
exciting field.

Curve 3 in Fig. 6 was recorded for walls containin

se

FIG. 5. Single-sweep oscilloscope traces of the induction signal, pro
tional to the amplitude of the oscillations in the displacement velocity of
wall, which represent the wall oscillations in real time atn51 MHz for field
amplitudesHx0515 mOe~a!, 27 ~b,c!, 28.5 ~d!, 30 ~e!.
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Bloch lines.V0(Hx0) for a demagnetized wall clearly fall
below curves1 and2, and it has essentially no sharp rise
V0 owing to the excitation of line drift, since it was recorde
at a low, nonresonant frequency ofHx . If the crystal is
placed in an additional low fieldHz516 Oe , thenV0(Hx0)
for the demagnetized wall takes the form of curve4 in Fig. 6.
Direct observations of the behavior of the Bloch lines a
measurements of single magnetooptical oscilloscope tr
similar to those presented above showed that the sudden
in the wall velocity in curve4 nearHx0520 mOe was cause
by excitation of Bloch lines in the wall, which in the pre
ence of the fieldHz led to formation of a monopolar state i
the wall. Curve4 therefore coincided with curves1 and 2.
However, when the amplitude of the exciting field is i
creased further, a nonmonotonic reduction inV0 is observed
in curve4 owing to the excitation of nonlinear perturbation
in the wall that disrupt the monopolar state, and ultimat
lead to the appearance of drifting lines in the wall. The w
velocity therefore decreases to a minimum, after which
rises slightly.

It is typical that in this range ofHx0, curve 4, which
characterizes the velocity of a wall with drifting lines, is n
coincident with curve3. This is because the flexural vibra
tions of a demagnetized wall~curve 3! are weaker than the
vibrations of a ‘‘magnetized’’ wall~curve4!.11 As the field
Hz increased, a monopolar state developed in the wall fo
weaker fieldHx and was maintained over a wider range of
amplitude, so that the drop inV0 took place at a highe
exciting field ~curve 5!. We note that similar behavior o
vibrating walls has also been observed when an additio
constant field (Hy) is applied perpendicular to the plane
the wall. It enhanced the drift of Bloch lines12, and therefore
stimulated the formation of a monopolar state in the w
over a certain range ofHx0 that depends onHy .

Figure 7 shows single oscilloscope traces represen
oscillations of the wall over time under the conditions f
curve4 of Fig. 6 in the neighborhood of the fieldHx where

FIG. 6. V0(Hx0) at 0.8 MHz for domain walls in monopolar~1,2! and de-
magnetized~3–5! initial states in the presence of an additional fieldHz

546 Oe~1!, 40 ~2!, 20 ~5!, 16 ~4!, and 0~3!.
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V0 drops. These show a gradual transition from ‘‘fast’’
‘‘slow’’ wall motion, in complete agreement with curve4
~Fig. 6!. In addition, these traces reveal the nonstation
nature of the wall motion associated with the unstable ex
tation of nonlinear processes in a monopolar wall, wh
leads to the formation of drifting Bloch lines in this wall.

4. DISCUSSION

The data presented here show that the excitation
Bloch line drift leads to a rise in the velocity of a doma
wall containing Bloch lines, with the greatest enhancem
in the wall velocity being observed at resonant frequenc
This sort of behavior of the domain wall is most likely re
lated to a magnetic aftereffect.13 In our case, this phenom
enon is determined by the interaction of Bloch lines a
domain walls with point defects of the crystal lattice, who
state depends on the direction of the spins in them. Acco
ing to the theory of this phenomenon, when either dom
walls13 or Bloch lines14 interact with point defects they cre
ate a potential surface for themselves, and the greater
amplitude of their vibrations and their velocity, the lower th
height of the relief. When they drift, the Bloch lines, first o
all, cannot create a potential surface for their motion, so th
influence on the motion of the domain wall should be wea
ened. In addition, every displacement of a Bloch line alon
domain wall reverses the sense of spin precession in the w
and thereby reduces the relief produced by the spins in
wall itself.

This has been partially confirmed in Ref. 9, where it
shown that wall flexural vibrations are enhanced when
additional magnetic field that induces low-frequency oscil
tions of Bloch lines along the wall is applied to a crystal.

FIG. 7. Single-sweep oscilloscope traces of the induction signal repres
ing wall oscillations in real time under the conditions of curve4 of Fig. 6 in
the region whereV0 is falling: Hx0539 mOe~a!, 42 ~b!, 43.5~c!, 48 ~d!, and
67.5 ~e!; Hz516 Oe,n50.8 MHz.
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Another important argument in favor of this explanati
is the observed hysteresis in the wall velocity jump~see Fig.
3!, which is analogous to the hysteresis inV0(Hx0) measured
at a monopolar wall in yttrium iron garnet. The latter h
been explained in terms of a magnetic aftereffect.10 In our
case, when the field amplitude increases, Bloch line drif
initiated in a high field~compared to the optimum!, since the
Bloch lines must overcome the potential relief that they p
duce at a lowerHx0. When Hx0 is reduced, drifting Bloch
lines inhibit the formation of potential relief near the Bloc
lines, so that drift of the lines is cut off in a lower field tha
the field that initiated their drift. Thus, in a backward scan
the V0(Hx0) curve, Bloch line drift occurs at much lowe
fields than in a forward scan~see the oscilloscope traces
Fig. 3!.

In conclusion, we also note that Bloch line drift is e
cited in yttrium iron garnet in very weak exciting fields.Hcr

is considerably weaker than the Walker fieldHW52pMa
'60 mOe~wherea is a dimensionless parameter charact
izing the viscosity andM is the saturation magnetization!,
which characterizes the onset of a dynamic transformatio
the wall structure associated with precession of the spin
the wall, and thereby leads to time-dependent motion of
wall.15 Thus, the present experiments show that tim
dependent motion of the domain walls occurs in fields w
below HW .

Also noteworthy is the experimentally observed feasib
ity of deliberately altering the velocity of a vibrating wa
~see Fig. 6!, and thereby the high-frequency permeability
yttrium iron garnet, which may be useful in certain applic
tions.
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Nd2CuO4: Chirality and its effect on optical and acoustic properties
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It is shown that two possible magnetic structures in the exchange doublet of the exchange-
noncollinear antiferromagnetic material Nd2CuO4 that are distinguished by their chirality have
certain differences in their optical and acoustic properties. These differences make it
possible to identify these structures experimentally. ©1999 American Institute of Physics.
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Among the cuprates, which were the basis for the d
covery of widely studied HTSC compounds,1 one of the
most interesting is Nd2CuO4. Indeed, it displays noncol
linear, rectangular-crosswise magnetic exchange struc
with a number of magnetic and other properties associa
with ferromagnetism. AtT<TN.246 K the crystal chemica
symmetry of this cuprate is described by theD4h

14

(P42 /mnm) group, and the magnetic Cu21 ions occupy a
fourfold 4f position. Figure 1a shows the projection of th
crystallographic unit cell on the~001! plane, with the cell
being chosen in two ways. It is denoted by dashed line
accordance with Ref. 2, and solid lines in accordance w
Refs. 3 and 4 when the coordinate axis is shifted along thx
axis by21/2. The copper ions are shown, while the neod
mium magnetic moments, which are ordered only at liq
helium temperatures, are not discussed further. The posit
of several elements of symmetry are also indicated. T
magnetic cell coincides with the crystal chemical cell. Tw
different magnetic exchange structures~I and II! are shown
to the right in Fig. 1b. They have the same exchange ene
~the ‘‘exchange doublet’’!, and correspond to two differen
orientations of the states (o1 ando2), whose energies diffe
only as a result of relativistic~magnetically anisotropic! in-
teractions.

That these magnetic exchange structures in the magn
doublet are different is also indicated by the fact that, in
pendent of their orientational states, they have different m
netic symmetries.3 In fact, for example, the42 symmetry axis
is retained for structure I of the magnetic group, while it
converted into the ‘‘dashed’’428[42•18 axis~where 18 is the
time reversal operator! for structure II.

To describe the magnetic exchange structure and p
erties of Nd2CuO4, it is convenient introduce the ferromag
netism and antiferromagnetism basis vectorsM and Ln (n
5a,b,c) instead of the four sublattice magnetizationsM n

(n51,2,3,4):

M5M11M21M31M4 , ~1!

La5M11M22M32M4 , ~2!

Lb5M12M21M32M4 , ~3!

and
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L c5M12M22M31M4 . ~4!

It is important for the following discussion to know how
these vectors transform under the symmetry operations o
D4h

14 group. Because the chemical and magnetic unit c
coincide, translations can be regarded as the symmetry i
tity element and we may consider only rotations and refl
tions corresponding to the generators of this group. For
latter it is convenient to take the42iz helical symmetry axis,
the 2xyi@110# diagonal binary axis, and the center of sym
metry 1̄ lying at the points of intersection of42 with the
planesz50 andz51/2, where the copper ions are locate
as well as at other points separated from these by half
lattice period in any direction. Above all, it is necessary
find those permutations of the ion numbers that prod
these symmetry elements, and then easily construct Tab
which lists additional transformations of the vectors~1!–~4!
owing to these permutations.

For purposes of precision, it is desirable to elabor
upon the significance of this table. It shows what additio
actions on the vectorsLa , Lb , andL c produce the element
1̄, 42 , and2xy as elements of the space group as a resul
permutations of the atoms beyond the action of the po
group. It is evident from the table that this permutation c
lead to permutation of the indicesa, b, andc, as well as an
additional change in sign of several components of the v
torsLn ~the permutations have no effect onM !. In determin-
ing the resulting transformation of the components of th
vectors, it is necessary, of course, to include both the ‘‘po
effect’’ of the symmetry elements~rotations and reflections!
and their additional permutational effect, which is illustrat
schematically in the table. As an example:42Lby5Lax ~in-
stead of4Ly52Lx for the point permutation of4!.

It follows from Table I that the vectorL c in ~4! only
transforms into itself and therefore forms a one-dimensio
vector representation corresponding to a collinear magn
exchange structure withM1↑↑M4↑↓M2↑↑M3 . Matters are
different with La andLb , which transform into one anothe
~for the operations42 and 2xy), to form a two-dimensional
vector representation. These correspond to the noncollin
magnetic exchange structures illustrated in Fig. 1~b!.

To distinguish between structures I and II in the e
change doublet, the so-called chirality vector is introduce5
© 1999 American Institute of Physics
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FIG. 1. Projection of the unit cell of Nd2CuO4 ~group

D4h
14[P42 /mnm). a! Two choices: with center 1¯ ~dashed

lines! or with center 42 ~smooth lines!. The 4f sites occu-
pied by Cu21 ions are shown, along with the locations o

the symmetry elements: inversion 1,̄ fourth-order helical
axis 42 , and binary axes 2xy and 2xȳ . b! Possible magnetic
structures for chiralityQz511 ~I! and Q521 ~II ! and
different orientational stateso1 and o2 , which differ by a
p/2 rotation about the 42 axis.
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Q5~2M0!22~@M1M2#1@M2M3#1@M3M4#1@M4M1# !

5~1/2!~2M0!22@LaLb#, ~5!

whereM n
25M0

2 . With this condition~equal magnitudes!, it
is easy to find thatQx5Qy50 for the magnetic exchang
structures I and II shown in the figure, withQz511 for
structure I andQz521 for structure II. This holds for both
orientational stateso1 and o2 . Therefore, the magnetic ex
change states I and II differ in the sign of their chirality, a
in the following we refer to them as theQ(11) and Q
(21) structures.

It is then easy to show, with the aid of the above table
permutation transformations, that the projectionQz is an in-
variant of theD4h

14 group, i.e., of the transformations 1,̄ 42 ,
and2xy . Since this table only includes the permutation p
duced by these symmetry elements, in accordance with
above remarks their ‘‘point effect’’ must be taken into a
count separately. Here, for example, the sign change in
~5! associated with the permutation ofa and b for 2xy is
cancelled by a sign change caused by this element for
z-projection of the vectorQ. In other words,

1̄Qz5Qz , 42Qz5Qz , 2xyQz5Qz . ~6!

Proceeding to the optical properties, we write out t
invariant expressions for those components of the dielec
permittivity tensor« i j that depend onQz , which are needed
to discuss wave vectorskiz:6

«xx5«'1aQz1g1La
21g2Lb

2,
~7!

«yy5«'1aQz1g1Lb
21g2La

2,

and

«xy5«yx* 5 ibQzHz . ~8!

TABLE I. Additional transformations of the vectors~1!–~4!.

M La Lb L c

1̄ M 2La 2Lb L c

42 M Lb 2La 2L c

2xy M Lb La L c
f

-
he

q.

he

e
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Here«xx and«yy include exchange terms7 proportional toLa
2

and Lb
2 , besides a term withQz . But for the equilibrium

magnetic exchange structures shown in the figure,La
25Lb

2

(58M0
2 in the equal magnitude model!, so that these terms

yield the same renormalization of the constant«' . Retaining
the previous notation for the renormalization constant,
stead of Eq.~7! we can write

«xx5«yy5«'1aQz[«Q . ~9!

Note that all three constants in Eqs.~8! and~9! («' , a, and
b) generally depend on the frequencyv. Furthermore,b
vanishes asv→0.

In «xy it might be possible to include a symmetric e
change term const•LaLb .7 However, for the structures
shown in the figure~and by virtue of the equal magnitud
condition!, for which

L c5LaLb50, ~10!

this term goes to zero. This also applies to the relativis
termsLaxLbx1LayLby52LazLbz , which are isotropic in the
xy plane.1!

Maxwell’s equations for the wave fields withkiz must
therefore include the tensor« i j defined by Eqs.~8! and ~9!.
The results are circularly polarized waves with refractive
dices

n1,2
2 5«Q6u«xyu ~11!

and amplitude ratios~polarizations!

S Ex

Ey
D

1

5S Ey

Ex
D

2

5
«xy

u«xyu
5 iQz

b

ubu
. ~12!

For Hz50,

n1
25n2

25«'1aQz[nQ
2 , ~13!

while there is a degeneracy in the polarization, i.e., the ph
velocity vQ5c/nQ is the same for both modes and does n
depend on the direction ofE in the xy plane. But it does
depend on the sign ofQz . For the two domains with differ-
ent chirality (Qz511 or 21), the velocities are different
with
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v615
c

A«'

S 17
a

2«'
D . ~14!

WhenHzÞ0, according to Eqs.~11! and ~12! a field of
this sort leads to the Faraday effect, whose sign also dep
on the sign ofQz . According to Eq.~12!, when the sign of
Qz changes, a right circularly polarized wave becomes
circularly polarized, andvice versa. Here the Faraday rota
tion anglec for a linearly polarized wave~per unit length!
will be given by

c56
vubHzu
2cnQ

, ~15!

where the sign is the same as that of the productbQzHz .
It is scarcely necessary~being so obvious! to explain

how this all changes if we include in«xy ~8!, and therefore
on the right-hand side of Eq.~12!, a diamagnetic term pro
portional simply toHz ~and thus independent ofQz). We
have assumed above that this is small compared to the
ferromagnetic~chiral! contribution.

Thus far we have been dealing with ‘‘domain chirality,
having in mind thatQ(11) andQ(21) domains can coex
ist, as they have the same exchange energies~the exchange
doublet!. In this case, the effects considered above mi
make it possible to observe a chiral domain structure of
type.

In fact, however, it has been found experimentally~see
Scanthakumaret al.8 and references therein! and explained
theoretically by Blinkinet al.3 and Vitebskiiet al.4 that the
exchange degeneracy in theQ(11) andQ(21) doublet is
removed by a magnetic anisotropy, so that these struct
develop over different temperature ranges. As the temp
ture decreases following the transition into the antiferrom
netic region at a temperature ofTN15246 K, the magnetic
copper ions form theQ(11) magnetic exchange structu
Io1 in the figure. This is referred to as phase I in Ref. 8 a
phaset2 in Refs. 3 and 4. Then atTN2575 K there is a
sudden transition to aQ(21) magnetic exchange structu
~structure IIo1 in the figure!, which is referred to as phase
in Ref. 8 or phaset8 in Refs. 3 and 4.

As can be seen from the figure, the transition betwe
the Q(11) and Q(21) phases can proceed, for examp
through a simultaneous reversal of the magnetic momen
and 3~i.e., in thez51/2 layer! while moments 1 and 4 ar
unchanged~i.e., in thez50 layer!. As a result, there is a
phase transition from a phase with chiralityQ5(11) to one
with Q5(21) ~or vice versa!. This is probably a first-orde
phase transition, since a change in chirality through a c
tinuous in-phase rotation of the magnetic moments is imp
sible: theQ(11) andQ(21) phases are topologically dis
tinct. Finally, at T5TN3530 K there is a reverse phas
transitionQ(21)→Q(11). Subsequently, at liquid helium
temperatures, where the magnetic Nd ions already pla
significant role, the magnetic structure of the copper io
becomes collinear~and forT51.5 K the magnetic moment
of the Nd ions become ordered!.

It might be hoped that the phase transitions descri
above, with aQ(11)↔Q(21) change in chirality, would
ds
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show up as a change in the optical properties determined
Eqs. ~11!–~15!. For Hz50 the velocity of light should
change at the phase transition point, and forHzÞ0 the sign
of the Faraday rotation angle should change as well.

Analogous acoustic effects associated with chira
probably also exist. In any case, this is of importance
chiral antiferromagnetic materials, which are not optica
transparent.

Let us again consider an elastic wave withkiz. With Eq.
~6! and the table it is easy to show that the invariant expr
sions for the elastic moduliCi jkl that determine this sound
can be written in the form

Cxzxz5Cyzyz5C441aQz[CQ , ~16!

and

Cxzyz52Cyzxz5 ibQzHz . ~17!

Here exchange~isotropic! terms of the typeLa
2 and Lb

2 are
introduced throughC44, as for«xx and«yy @cf. Eq. ~7!#.

The solutions of the dynamic equations for elastic s
tems, allowing for Eqs.~16! and~17!, are circularly polarized
transverse waves whose wave numbers and polarization
given by

k1,2.
v

vQ
S 17

ubHzu
2C44

D , vQ5~CQ /r!1/2, ~18!

and

S ux

uy
D

1

5S uy

ux
D

2

5 iQz

b

ubu
. ~19!

In the absence of a field (Hz50), the normal modes are
degenerate with respect to the wave numbers and pola
tions, so that their speedv15v2[vQ and is independent o
the direction of the elastic displacementsu in the xy plane.
But this velocity depends on the chiralityQz , since it is
different for theQ(11) andQ(21) phases.

When HzÞ0, this degeneracy is removed, so that ev
for the same chiralityQz the velocitiesv1,25v/k1,2 are dif-
ferent according to Eq.~13!. In addition, according to Eq
~19!, the sign of the acoustic Faraday rotation depends on
sign ofQz , which changes during aQ(11)↔Q(21) phase
transition.

In conclusion, we briefly recall the possible origin of th
energy difference between theQ(11) andQ(21) phases.
According to Eq.~6!, the point is that the thermodynami
potential contains a term of the form

const•Qz , ~20!

which, in particular, can also produce this energy differen
As it is isotropic in thexy plane@according to Eq.~20!#, this
term is highly reminiscent of antisymmetric Dzyaloshinski�–
Moriya exchange, and like the latter, is probably a semire
tivistic semi-exchange term. The term~20! of the thermody-
namic potential is contained implicitly in the equations
Refs. 3 and 4. It can be obtained from the magnetic ani
ropy energy if terms isotropic in thexy basis plane are sepa
rated out.
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As noted above, this discussion of certain features of
optical and acoustic properties of Nd2CuO4 is based on the
results of Refs. 3 and 4, which provide a fairly convinci
~from symmetry considerations! description of the Io1 and
IIo1 magnetic structures~see Fig. 1! and the phase transition
between them observed in neutron diffraction measu
ments.8 However, there are a great many other experime
devoted to magnetic structure and phase transitions
Nd2CuO4, including some that appeared later. These do
always agree with one another or with Ref. 8. The discuss
seems to have been summarized in an article9 that actually
confirms the results of Ref. 8, and therefore the existenc
type I and II structures with differing chiral structures a
phase transitions between them.~To avoid possible confu-
sion in comparing our Fig. 1 with the corresponding figur
in Ref. 9, note that the latter correspond to a crystal struc
that exists at temperatures above the structural trans
point, Tc'300 K.)

These remarks again confirm the appropriateness o
troducing chirality, which makes it possible to identify chir
magnetic structures by means of optical and acoustic m
surements.

We note, finally, that the above effects of chirality on t
properties of Nd2CuO4 should also show up in other cuprat
of the form R2CuO4 ~in particular, when R denotes Pr o
e

-
ts
in
t
n

of

s
re
n

n-

a-

Sm!, which have analogous noncollinear magnetic excha
structure.9
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Based on the idea of a strong interaction within the same unit cell, the possible existence of a
ferromagnetic instability in a system with jumps from transition element cations to non-
transition element anions and vice versa is established. A phase diagram is constructed for the
ferromagnetic ordering as a function of the degree of filling,np andnd , of the p6- and
d10-shells of non-transition and transition elements, respectively. ©1999 American Institute of
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1. STATEMENT OF THE PROBLEM AND GENERAL
EQUATIONS

In this paper we study the electronic properties of
simplest metallic binary compounds with a CsCl-type str
ture ~see Fig. 1 below!.

The magnetic properties are studied in terms of a ge
alized Hubbard model in which the isolated atom states
termined by Hund’s rule are used as a zeroth approximat

The interaction energy of the electrons within a giv
atom ~the so-called Hubbard energy! is assumed to be th
largest energy parameter and is assumed to be infinite f
the start.

In the metallic phase, the long range part of the Coulo
and exchange interactions are substantially screened, so
in the following we only include the interaction betwee
nearest neighbors owing to overlap of their wave functio

Ĥ5(
r ,r8

Va,k~r ,r 8!$êa,s
1 ~r ! p̂k,s~r 8!1H.c.%

1(
r ,s

~ee2sH !êa,s
1 ~r !êa,s~r !

1(
r ,s

~ep2sH ! p̂k,s
1 ~r ! p̂k,s~r !. ~1!

Here the indicesa take two values corresponding to the tw
degenerate states,)(x22y2) and 3z22r 2, of the
eg-electrons of a transition cation, and the indicesk take
three values corresponding to the three degenerate st
a5px , b5py , and c5pz , of the p-electrons of a non-
transition anion.

The energy differencer 5ep2ee is assumed to be a
given parameter, while the sum of the one-particle energ
can be expressed in terms of the chemical poten
m52(ep2ee)/2.

After transforming to a Fourier representation, the ov
lap integral matrixV̂a,k(q) is easily calculated for a given
crystal structure.1
7701063-7761/99/88(4)/10/$15.00
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For a given location of the lowest states of the atom
multiplets, the collectivization of the transitions between t
N- and (N11)-states is determined by the poles of the on
particle Green function. To calculate it, we write the expa
sion of the creation and annihilation operators for all possi
transitions between states of the lowest multiplets:

êa,s
1 ~r !5(

b
gb~a,s!X̂r

b , p̂k,s~r !5(
v

gv~k,s!Ŷr
v.

~2!

Here b and v are the numbers of the one-particlee- or
p-transitions andgb and gv are the so-called genealogic
coefficients, which we find for each specific type of tran
tion.

In the end, it is necessary to calculate the average oc
pation number of each component of the multiplet as a fu
tion of the magnitude of the applied magnetic fieldH.

In the following we use the zero-loop approximation
Hubbard I approximation,2 in which each self-energy part o
the one-particle Green function is replaced by the so-ca
end factorf b or f v , which equals the sum of the occupatio
numbers of the initial and final states responsible for a giv
transitionb or v.

In this approximation3 the complete Green function
Dv(q) is the product of the virtual Green functionGv

a,v(q)
and the end factorf v . The virtual Green function itself sat
isfies a Dyson-type equation:

Dv
a,v~q!5Gv

a,v~q! f ~v!, Ĝv
21~q!5~Ĝv

~0!!212Ŵ. ~3!

The elements of the matrixŴ are determined from the coef
ficients in the expansion~2! for the creation and annihilation
operators after they are substituted in the Hamiltonian~1!:

Wb,v~q!5 f ~b!(
a,k

gb~a!(
k

Va,k~q!gv~k!. ~4!

All possible N11-particle occupation numbers correspon
ing to the transitiona(Nk ,(N11)s) at a specified tempera
© 1999 American Institute of Physics
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ture T and chemical potential are calculated from the dia
nal matrix elements of the one-particle Green function w
the aid of the following general formula:

n~N11!~s!5T(
v,q

exp~ ivd!Dv
a,2a~q!. ~5!

Hered is a positive infinitesimal quantity,v5(2n11)pT,
and the symbol2a labels the transition that is the inverse
a.

The right-hand side of Eq.~5! can be found using Eqs
~3! and ~4! in terms of the end factors that appear in t
matrix elements for the Green function and its inverse.

The average occupation numbers can be expresse
terms of the end factors, so that in the approximation u
here it is possible to obtain a closed system of equations
the variations in all the end factors as a function of the
plied magnetic field.

Ultimately, it is possible to obtain an equation for th
magnetic permeability as a function of temperature and
average number ofne- andnp-electrons belonging to a singl
unit cell.

The ferromagnetic instability is defined by an infini
spin magnetic susceptibility.

The method proposed here explains the ferromagne
of compounds of type FeAl, with a Curie temperatu
Tc5623 K andn* '1mB , and MnSi with a Curie tempera
ture Tc534 K andn* '0.4mB . Assuming that thet2g-shell
of the transition element and the 3s-shell of the non-
transition element are completely filled, then the total nu
ber ne1np532ns , where ns is the average number o
4s-electrons of the transition element, which we take to
an arbitrary parameter.

For this reason, in the following we examine the sim
taneous filling of theeg- and 3p-shells in detail for all inte-
ger ranges ofnp andne .

The matrix of the transition integrals between near
ions is proportional to the overlap integr
(16/A3)t(111)x,x22y2, which is assumed equal to unity be
low. The remaining matrix elements are calculated accord
to the fcc unit cell structure shown in Fig. 1:

FIG. 1. CsCl-type cubic lattice.
-

in
d

or
-

e

m

-

e

-

t

g

V̂a,k~q!5
A3~x22y2!

3z22r 2

3

px

SA3nx
2ny

1nz
1

2nx
2ny

1nz
1

py

2A3nx
1ny

2nz
1

2nx
1ny

2nz
1

pz

0
2nx

1ny
1nz

2D
~6!

where the matrix elements depend on the quasimom
qx,y,z through the functionsvk

6516exp(iqk).

2. CALCULATING THE PHASE DIAGRAM

Low concentrations, np,e,1. In the limiting case of in-
finite Hubbard energy, the creation and annihilation ope
tors can be conveniently expressed in terms ofX̂, the transi-
tion operators between vacantu0& and one-particleus,l&
states:

êrs,h5X̂r
~0us,h! , êrs,h

1 5X̂r
~s,hu0! ;

p̂rs,n5Ŷr
~0us,n! , p̂rs,n

1 5Ŷr
~s,nu0! . ~7!

After this expansion is substituted in the initial Hamiltonia
~1! we obtain an explicit expression for the inverse Gre
function:

Ĝv
21~q!5

eb ps

ea S ~ iv2ee!da,b 2 f aVa,k~q!

2 f pVk,b~q! ~ iv2ep!dk,s
Dpk

. ~8!

Here theep,e are the energies of the one-particlep- and
e-states,f p,e are the end factors given by the sum of t
occupation numbers of the initial and final states,Va,s(q) is
the energy matrix~6! for the transition, andVk,b(q) is the
Hermitian conjugate matrix.

To find the average occupation numbersnp,e
(s) we use the

simplest approximation,2 in which the excitation energy is
determined by the average self-energy part, which can
expressed in terms of the so-called end factors, which, in
case, equal the sum of the average number of vacant
one-particle states,

f p,k
~s!5n01nI ,k

~s! , f e,a
~s!5n01nI ,a

~s! . ~9!

Given that these are independent of the numberk of the
one-particle state anda, we obtain the following equations
of state:

ne
~s!5(

a
nI ,a

~s!52 f e
~s! (

pl56
ap

~2l!nF~jp
~s,l!!, ~10!

np
~s!5(

k
nI ,k

~s!5 f p
~s!FnF~ep!12 (

pl56
ap

~l!nF~jp
~s,l!!G .

~108!

Here nF(e) is the Fermi distribution and the two doubl
degenerate branches of the spectrum are

jp
~s,6 !56AS r

2D 2

1 f p
~s! f e

~s!tp
22sH2m,
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ap
~6 !5

1

2 F16
t

jp
~s,1 !2jp

~s,2 !G , ~11!

where

tp
25sx

2cy
2cz

21sy
2cz

2cx
21sz

2cx
2cy

2, sk
254 sin2~pk/2!,

ck
254 cos2~pk/2!.

The equations of state~10! can be expressed in terms
integrals of the single variabletp

2, so it makes sense to intro
duce the density of states function

r~e!5 (
px ,py ,pz

d~e2tp
2!,

which can be used to write all the sums over the moment
Given the cubic symmetry, the end factors~9! can be

expressed in terms of the average occupation numbers o
one-particle states,

np,e
~s!5(

s51

3,2

ns
~s! .

Since

n01(
s,s

ns
~s!51,

we obtain

f p
~s!512np

~2s!2
2

3
np

~s! , f d
~s!512ne

~2s!2
1

2
ne

~s! .

~12!

From this we find the variation in the end factors in terms
the variation in the average occupation numbers, which
determined by the variation in the external magnetic field

dnp,e
~s!52dnp,e

2~s! , d f p
~s!5

1

3
dnp

~s! , f e
~s!5

1

2
dne

~s! .

~13!

These formulas, along with the equations of state~10! for a
given magnetic field, can be used to write an equation
just the variation in the end factors:

d f e
~s!5@Ke1Le#d f e

~s!1
f e

f p
Ldd f p2 f eResdH,

d f p
~s!5@Kp1Lp#d f p

~s!1
f p

f e
Lpd f e2 f pRpsdH. ~14!

This yields the magnetic susceptibility

x5
dne

s

dH
1

dnp
s

dH
52

d f e
s

dH
13

d f p
s

dH
. ~15!

We obtain the possibility of a ferromagnetic instability as t
condition for a singularity in the magnetic susceptibility:

detS 12~Ke1Le!, 2 f eLe / f p

2 f pLp / f e , 12~Kp1Lp!
D 50. ~16!

Here we have introduced the functions
.

the

f
re

r

Ke5 (
p,l56

ap
~2l!nF~jp

~l!!5
ne

423ne
,

jp
~6 !56A~r /2!21 f ef ptp

22m, ~17!

and

Kp5
1

3 FnF~ep!12 (
p,l56

ap
~l!nF~jp

~l!!G5
np

625np
. ~18!

These functions all depend only onf pf etp
2, which is invariant

under the cubic symmetry transformation@defined in Eq.
~5!#.

The coefficientsLp,e in the equation that determine th
limits for ferromagnetic ordering are defined in terms of t
derivatives of the right-hand side of the equations of stat

Lp,e5b
]Kp,e

]b
, where b5gp

2ge
2f pf et

2. ~19!

In this case the coefficientsgp,e
2 51 and

f e5
423ne

4
, f p5

625np

6
. ~20!

In this range, the electronic states are resonant between
vacant and one-particle states. Thus, for a small numbe
excitations, no ferromagnetic state develops,3 but the system
has elevated magnetic susceptibility.

Concentrations np,1, 1,ne,2. Let us examine the
situation in whicheg-electrons resonate between one- a
two-particle states, while, as before, the number
p-electrons is less than one (np,1).

The one-particle statesê1,s
1 u0& andê2,s

1 u0& have spin 1/2.
The lowest energy two-particle states3A2 have spinS51:

ê1,s
1 ê2,s

1 u0& ~Sz5s!,

ê1,↑
1 ê2,↓

1 1ê1,↓
1 ê2,↑

1

&
u0& ~Sz50!. ~21!

The higher energy1E and1A1 states are neglected.
For a finite external magnetic field, the variation in th

end factors depends on the variation in both the one-par
(nI) and two-particle (nII) occupation numbers. Given th
symmetry of the system under interchange of thee253z2

2r 2 ande15)(x22y2) states, we find the variation in th
end factors to be

f 1
~s!5nII

~s!1nI
~s! , d f 1

~s!5dnII
~s!1dnI

~s! ,

f 2
~s!5nII

~0!1nI
~2s! , d f 2

~s!5dnI
~2s!52dnI

~s! . ~22!

Therefore, in contrast to the previous ‘‘one-particle’’ cas
here it is necessary to have two independent equations
the variations in the one- and two-particlee-states.

In order to obtain these equations, we multiply the re
part of the expansion of the annihilation operator,

êrs5g1X̂r
~0,sus,s!1g2X̂r

~0,2sus,2s! , ~23!

whereg151 andg251/&, by an arbitrary linear combina
tion of the conjugateX-operators,

Ŷr5b1X̂r
~s,su0,s!1b2X̂r

~s,2su0,2s! .
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Averaging the individualT-products over the states wit
given temperature and chemical potential, we find an eq
tion relating the two particle occupation numbersnII , the
Fourier components of the virtual one-particle Green fu
tion Ĝv(p), and the end factorsf k(s), wherek51,2, and
f p(s).

We now calculate theT-products in terms of the zer
loop Hubbard I approximation:

2^T̂~ êr ,s~t!,Ŷr~t10!!&

5~g1g1!^X~Sz5suSz5s!&1~g2g2!^X~Sz50uSz50!&

5~g1g1!nII
~s!1~g2g2!nII

~0!5T (
v,p;a,b

gaGv
~a,b!

3~p!gb f b exp~ ivd!. ~24!

Hered501 is a small positive correction and thef s are the
end factors~22!.

The matrix elements of the one-particle Green funct
can be expressed in terms of the inverse matrix, where
each row and column corresponding to thee-states has twice
the number of components. The corresponding matrix
ments are given by the genealogical coefficientsga in the
expansion~28!. Thus, for the selected operatorê1s , the first
two rows of the inverse Green function can be written

Ĝv
21~p!5

~~0,s!→~s,s!!;
~~0,2s!→~s,2s!!;

b51 b52 s53,4

a51 S iv2ee 0 2 f 1g1rs
p

0 iv2ee 2 f 2g2rs
p

2np
kg1 2np

kg2 tk,s

D .a52

k53,4... ~25!

Hereg151, g251/&, and the end factors are given by E
~22!.

Using the explicit form of the inverse matrix elements,
is possible to calculate the sums on the right-hand side of
~25!. Noting that the energies of the transitions accompa
ing the creation of the samee1-state are the same, we obta

(
a51,2

gaGv
a,b~p!5gb~ iv2ee!

dettk,s

detG21 , ~26!

Taking the sum on both sides of this equation over
momenta and frequencies, we find a result proportiona
the genealogical coefficientsgb :

T(
v,p

(
a51,2

gaGv
a,b~p!5gbKe~H !.

As a result, we have an equation for arbitraryga :

g1g1nII
~Sz5s!

1g2g2nII
~Sz50!

5Ke~H ! (
b51,2

gbgb f b . ~27!

By varying the magnetic field in Eq.~27!, we obtain two
equations.

When
a-

-

n
w

e-

q.
-

e
to

(
1<a<2

gaga50

we find an equation that is independent of the applied ex
nal field,

dnII
~s!~12Ke!22KednI

~s!5d f 1
~s!~12Ke!

1d f 2
~s!~11Ke!50. ~28!

Here the electron density lies within the interval 1,ne,2
and the coefficients are calculated for a vanishing exte
magnetic field:

Ke5 (
p,l56

ap
~2l!nF~jp

~l!!52
ne21

21ne
,

jp
~6 !56AS r

2D 2

1ge
2f ef ptp

22m, ~29!

and

f e5
21ne

12
, f p5

625np

6
, ge

25g1
21g2

25
3

2
. ~30!

Whenga5ga we obtain an equation for the susceptibilitie

dnII
~s!5d f 2

~s!1d f 1
~s!5@Ke1Le# (

a51,2
ga

2d f a
~s!

1ge
2 f e

f p
Led f p2ge

2f eResdH, ~31!

where the coefficientLe is given by the general equation

Le5b
]

]b
Ke5 (

p,l56
tp
2 d

dtp
2 @nF~jp

~l!!ap
~2l!#,

Re5 (
p,k56

ap
~2k!nF8 ~jp

~k!!,

ap
~6 !5

1

2 F16
r

Ar 214ge
2f ef ptp

2G . ~32!

An equation for the variation in the one-particlep-states can
be found from the equation for the occupation numbersnp in
a way fully analogous to Eq.~10!:

np
~s!5 f p

~s!FnF~ep!12 (
pk56

ap
~k!nF~jp

~s,k!!G . ~33!

We find the relationship between the variation in the oc
pation numbers and that of the end factorsf p

(s) using the
general relation~14!:

d f p
~s!5Lp

f p

ge
2f e

(
a51,2

ga
2d f a

~s!1@Kp1Lp#d f p

2 f pRpsdH. ~34!

The coefficientsKp and Lp are calculated using Eqs.~18!
and ~19! with the excitation energyjp

6 given by Eq.~29!.
Therefore, a system of three equations~28!, ~31!, and

~34! determines the change in the three end factors, wh
determine the changes in all three occupation numbers.
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The solubility of the corresponding homogeneous s
tem of equations determines whether ferromagnetic insta
ity will develop. As a result, the condition for a phase tra
sition into the ferromagnetic state has the following sim
form:

~12Kp!@Ke~12Ke!2Le~1/31Ke!#2LpKe~12Ke!50.
~35!

Here

Ke54
~ne21!

21ne
, Kp5

np

625np
,

ne5
2Ke14

42Ke
, np5

6Kp

115Kp
. ~36!

This equation establishes a relationship between the
ergiesep and ee . Eliminating them using the equations o
state ~12! and ~17! in zero field, we obtain the magneti
phase diagram in the variablesne andnp ~see Fig. 2!.

Concentrations ne,1, 1,np,2. We now examine the
situation in which the statespx5a, py5b, andpz5c reso-
nate among one- and two-particle states, while the numbe
d-electrons in theeg-shell remains below unity (ne,1).

The one-particle statesâs
1u0&, b̂s

1u0&, and ĉs
1u0& have

spin 1/2. The lowest energy two-particle states3A2 have spin
S51:

âs
1b̂s

1u0& ~Sz5s!,
â↑

1b̂↓
11â↓

1b̂↑
1

&
u0& ~Sz50!.

~37!

We find the six remaining two-particle states via the cyc
permutationa→b→c→a. The higher-energy states1E and
1A1 are neglected.

For a finite external magnetic field, the variations in t
end factors depend on the variations in both the one (nI) and
two-particle (nII) occupation numbers. Given the symmet
of the system under permutation of thea-, b-, andc-states,
we find the variations in the end factors to be

FIG. 2. Magnetic phase diagram atT50. Ferromagnetic regions are shade
Straight lines correspond to the equations of electrical neutrality, with
upper for MnSi and the lower for FeAl.
-
il-
-

n-

of

f 1
~s!5nII

~s!1nI
~s! , d f 1

~s!5dnII
~s!1dnI

~s! ,

f 2
~s!5nII

~0!1nI
~ ŝ ! , d f 2

~s!5dnI
~ ŝ !52dnI

~s! , ~38!

which are actually the same as those in the two- and o
particled-states.

From this we conclude at once that the general Eqs.~28!,
which are independent of the magnetic field variation,
unchanged:

dnII
s~12Kp!22KpdnI

~s!5d f 1
~s!~12Kp!

1d f 2
~s!~11Kp!50. ~39!

The equation for the susceptibility, expressed in terms of
variations in the end factors, contains twice the number
terms on the left and right. Thus, the final equation conta
an extra factor of 1/2 multiplying the variationd f e of the
one-particlee-states:

dnII
~s!5d f 2

~s!1d f 1
~s!5@Kp1Lp# (

k51,2
gk

2d f k
~s!

1gp
2 f p

2 f e
Lpd f e2gp

2 f pRpsdH. ~40!

The difference shows up only when calculating the nu
ber of identical transitions, which is twice as great. The s
of the squares of the genealogical coefficients is a
doubled:gp

253.
By analogy with Eq.~14! we find an equation for the

variation in f e with a coefficient that is twice as large for th
variationsd f 1,2:

d f e
~s!5@Ke1Le#d f e

~s!12
f e

gp
2 f p

Ld (
k51,2

gk
2d f k

~s!

2 f eResdH. ~41!

Here all the coefficients are determined forH50 using the
same formulas, but with different equations forKp andKe .
We have

Kp52
np21

42np
, Ke5

ne

~423ne!
,

np52
~2Kp11!

~21Kp!
, ne5

4Ke

~113Ke!
. ~42!

The condition for a ferromagnetic instability has the sa
form ~35!, but with transposed indices,p↔e:

~12Ke!@Kp~12Kp!2Lp~1/31Kp!#2LeKp~12Kp!50

for ne,1, 1,np,2. ~43!

The common property of Eqs.~36! and ~43!, which distin-
guishes them from Eq.~16!, is the factorKe and, therefore,
Kp , which reflects the possible onset of ferromagnetism
a small number of excitations whenne21!1 or np21!1.

Concentrations1,np,2, 1,ne,2. We now obtain the
equations appropriate to the range 1,np,e,2 by generaliz-
ing the results of the preceding two sections. Equations~28!,
~38!, and~39! remain unchanged.

e
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We find two other equations for the two-particle occ
pation numbersnp,e

s by analogy with Eqs.~31! and ~40!:

dnII, e
~s!5d f 2,e

~s!1d f 1,e
~s!5@Ke1Le# (

a51,2
ga

2d f a,e
~s!

12ge
2 f e

gp
2 f p

Le (
k51,2

gk
2d f k,p

s 2ge
2f eResdH, ~44!

and

dnII, p
~s!5d f 2,p

~s!1d f 1,p
~s!5@Kp1Lp# (

k51,2
gk

2d f k,p
~s!

1gp
2 f p

2ge
2f e

Lp (
a51,2

dga51,2
2 f a,d

s 2gp
2 f pRpsdH.

~45!

Here gp
253, ge

253/2, Ke54(ne21)/(21ne), and Kp

52(np21)/(42np).
The equation for the ferromagnetic instability bounda

is symmetric under the interchangep↔e:

KpKe~12Kp!~12Ke!5LpKe~12Ke!~1/31Kp!

1LeKp~12Kp!~1/31Ke!.

~46!

Here

Kp52
np21

42np
, Ke54

~ne21!

21ne
,

np52
~2Kp11!

~21Kp!
, ne52

Ke12

42Ke
. ~47!

For positiveLp,e'1 and a small number of perturbation
np,e21!1, the left-hand side of Eq.~46! is small compared
to the right, which reflects the possible onset of ferrom
netism.

Concentrations ne,1, 2,np,3. We now examine the
most complicated case, in which thep-electrons resonate be
tween two- and three-particle states. We assume that 2,np

,3, while the occupation numbersne are less than unity.
The lowest three-particle state hasS53/2 and a fourfold

degeneracy with respect to the projection of the spin:

âs
1b̂s

1ĉs
1u0&, Sz53s/2,

~48!
1

)
~ âs̄

1b̂s
1ĉs

1u0&1âs
1b̂s̄

1ĉs
1u0&1âs

1b̂s
1ĉs̄

1u0&),

Sz5
s

2
.

The three lowest triplet states with spin 1 are construc
from three different pairwise products of creation operat
@see the definition~21!#.

The expansion inX-operators of the transition betwee
the lowest energy two- and three-particle states is determ
by the three genealogical coefficients (ârs5 p̂x):
-

d
s

ed

ârs5X̂r
~0,s,su3s/2!1A2

3
X̂r

~A~yz,xz!us/2!1
1

)
X̂r

~0,s̄,s̄us̄/2! .

~49!

We obtain the expansion of the two other annihilation ope
tors b̂5 p̂y and ĉ5 p̂z from Eq. ~49! by cyclic permutation.

In the absence of a field, all the average occupation nu
bers and end factors can be expressed in terms ofnp , the
average number of electrons per cell. Given the order of
degeneracy, we have

3nII14nIII 51, 18nII112nIII 5np , f p5
5np26

36
.

~50!

Summing over the spin index, we obtain the equation
state

np5214 f pKp ,

Kp5
1

3 H nF~ep!1 (
p,l56

ap
lnF~jp

~l!!J ,

jp
~6 !56AS r

2D 2

12 f pf etp
22m. ~51!

To find the equation of state forHÞ0, we write the occupa-
tion number of the three-particle states in terms of the o
particle Green function at the same points.

The equations for the variations in the three-particle
cupation numbersdnIII

(3s/2) and dnIII
(s/2)52dnIII

(2s/2) can be
obtained from the general equation for the averageT-product
of the annihilation operator~49! and a linear combination o
the three conjugate operators with arbitrary coefficientsg:

g1g1nIII
~3s/2!1g2g2nIII

~s/2!1g3g3nIII
~2s/2!

5T (
1<k,n<3

(
v,p,k

gkGv
k,n~p!gnf n exp~ ivd!. ~52!

The matrix elements of the one-particle Green function c
be expressed in terms of the inverse matrix, where now e
row and column, reflecting thep-states, has three times a
many components. The corresponding matrix elements
determined by the genealogical coefficientsgk in the expan-
sion ~49!. Thus, for the selected operatorâ5 p̂xs , the three
first rows of the inverse Green function can be written

Ĝv
21~p!5

S 1

2
s→

3

2
s D ;

S 2
1

2
s→

1

2
s D ;

S 2
3

2
s→2

1

2
s D ;
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s51 s52 s53 s54,5,...

k51 S iv2ep 0 0 2 f 1g1rs
p

0 iv2ep 0 2 f 2g2rs
p

0 0 iv2ep 2 f 3g3rs
p

2np
kg1 2np

kg2 2np
kg3 tk,s

D .
k52

k53

k54,5....

~53!

Hereg151, g25A2/3, andg35A1/3, while the end factors
are determined by the sum of the occupation numbers for
two and three-particle states:

f 1
s5nIII

~3s/2!1nII
s , f 2

s5nIII
~s/2!1nII

0,

f 1
s5nIII

~2s/2!1nII
2s .

Using the explicit form of the elements of the inverse matr
it is possible to calculate the sums on the right-hand side
Eq. ~53!. Since the energies of the transitions accompany
the creation of the samepx-state are the same, i.e.,e15e2

5e35ep , we have

(
k51

3

gkGv
k,s~p!5gs~ iv2ep!2

dettn,m

detG21 . ~54!

Summing over momentum and frequency on both si
of this equation, we obtain a result proportional to the gen
logical coefficientsgs :

T(
v,p

(
k51

3

gkGv
k,s~p!5gsKp~H !.

As a result we have an equation for arbitrarygk :

g1g1nIII
~3s/2!1g2g2nIII

~s/2!1g3g3nIII
~2s/2!

5Kp~H ! (
s51,2,3

gsgsf s . ~55!

If we assume that the vectorg is orthogonal to the vecto
g, i.e.,

(
1<k<3

gkgk50,

then it is possible to obtain two equations that do not dep
explicitly on the magnetic field variation.

We find the first equation for the conditiong1g1

5g3g3 , g2g2522g1g1 :

dnIII
~3/2!53dnIII

~1/2! . ~56!

If, on the other hand, we setg250 andg3g352g1g1 , then
we have the second equation:

~12Kp!~dnIII
~3/2!1dnIII

~1/2!!22KpdnII50. ~57!

The variations in the end factors can be expressed in term
the variations in the occupation number:
e

,
of
g

s
a-

d

of

d f 15dnIII
~3/2!1dnII , d f 25dnIII

~1/2! ,

d f 35dnIII
~21/2!2dnII . ~58!

Using the additional conditiondnIII
(21/2)52dnIII

(1/2) , we find
the inverse relations:

dnIII
~3/2!5d f 11d f 21d f 3 , dnIII

~1/2!5d f 2 ;

dnII52d f 22d f 3 . ~59!

The variation of the virtual Green functiondKp(H) contains
three types of terms:

g1
2dnIII

~3s/2!1g2
2dnIII

~s/2!1g3
2dnIII

~2s/2!

5@Kp1Lp# (
k51,2,3

gk
2d f k

~s!1g2
f e

f p
Led f e2g2f pRpsdH,

~60!

where the coefficientsLp,e are determined by the gener
formula ~8!

Rp5
1

3 FnF8 ~ep!12 (
p,l56

ap
~l!nF8 ~jp

~l!!G ,

ap
~6 !5

1

2 F16
r

Ar 214g2f ef ptp
2G . ~61!

Thus, we obtain the same equations as Eqs.~15!–~17!, but
with different definitions of the parameters:

g252, g1
251, g2

25
2

3
, g3

25
1

3
, Kp59

np22

5np26
.

~62!

The equation for the variation inne is analogous in form to
Eqs.~22! and ~23!:

dnd
~s!52d f e

~s!5Le

f e

g2f p
(

k51,2,3
gk

2d f k
~s!1@Ke1Le#d f e

2 f dRdsdH. ~63!

All coefficients are calculated for zero magnetic field:

Ke5
ne

423ne
, Re5 (

p,l56
ap

~l!nF8 ~jp
~l!!. ~64!

Thus, we have a system of four equations from wh
we can find the condition for the onset of ferromagnetism
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detS 12g1
2~Kp1Lp! 4/32g2

2~Kp1Lp! 12g3
2~Kp1Lp! 2g2f pLp / f e

21 12 21 0

12Kp 2 11Kp 0

2g1
2f eLe /g2f p 2g2

2f eLp /g2f p 2g3
2f e /g2f p 12Ke2Le

D 50. ~65!
:

to
re
in
p
d

e
it

t:

nd

o-
e

ons
e

or-
te

e in

ag-

d-
ns-

o-

the
Calculating the determinant yields the following condition

~12Ke!@Kp~12Kp!2Lp~2/31Kp!#2LeKp~12Kp!50

for ne,1, 1,np,2. ~66!

Here

Kp59
~np22!

5np26
, Ke5

ne

423ne
,

np56
32Kp

925Kp
, ne54

Ke

113Ke
. ~648!

A comparison of Eqs.~66! and ~43! shows that upon going
from a resonance between one- and two-particle states
resonance between two- and three-particle states, the
simply an increase in the intensity of the effective scatter
amplitude, since in the latter case the dimensionless am
tudeLp is multiplied by 2/3, twice the value of 1/3 obtaine
in the former case.

Concentrations 1,ne,2, 2,np,3. The matching
equations~41!, when written for the variations in the thre
particle p-states, acquire an additional term associated w
the possible variation in the one- and two-particlee-states:

g1
2dnIII

~3s/2!1g2
2dnIII

~s/2!1g3
2dnIII

~2s/2!

5@Kp1Lp# (
k51,2,3

gk
2d f k

~s!1gp
2 f p

ge
2f e

Ld

3 (
a51,2

dga,e
2 f a,e

s 2gp
2 f pRpsdH. ~67!

Equations~37! and ~38! for the coupling between the
variations in the three and two-particlep-states are un-
changed.

The equation of the type~31! for the variation in the
two-particled-states acquires three new terms on the righ

dnII
~s!5d f 2,e

~s!1d f 1,e
~s!5@Ke1Le# (

a51,2
ga

2d f a,e
~s!

1ge
2 f e

gp
2 f p

Le (
k51,2,3

d f k,p
s 2ge

2f eResdH. ~68!

Equation ~28!, which relates the variations in the one-a
two-particlep-states, is unchanged.

We obtain the condition a condition that is fully anal
gous to Eq.~46!, but with a doubling of the coefficient of th
dimensionless amplitudeLp :

KpKe~12Kp!~12Ke!

5LpKe~12Ke!~2/31Kp!1LeKp~12Kp!~1/31Kd!,

~69!
a
is

g
li-

h

with

Kp59
~np22!

~5np26!
, Ke54

~12ne!

~21ne!
,

np56
32Kp

925Kp
, ne52

Ke12

42Ke
. ~70!

Concentrations 2,ne,4, 0,np,3, and 0,ne,4,
3,np,6. For the transition into the region 2,ne,4, 0
,np,2 we can use the equation from the preceding secti
with a particle-hole symmetry transformation for th
eg-electrons:ne→(42ne), Ke→(12Ke), Le→2Le .

The first two transformations correspond to a transf
mation from particles to holes for the fourfold degenera
eg-shell. The last transformation corresponds to a chang
the sign of thee-e scattering amplitude upon going from
particles to holes, which leads to a major change in the m
netic phase diagram.

The remaining part of the phase diagram for 0,ne,4,
3,np,6 can be obtained from the formulas of the prece
ing sections using the general particle-hole symmetry tra
formationsnd→42nd andnp→62np .

3. POWER-LAW DENSITY OF STATES MODEL

Let us calculate the integrals~17! and ~18! for a model
with a density of statesr(e)5(2/3)Aeu(e)u(12e). In the
case of a filled lower subband, for which the chemical p
tential changes in the negative region from2ur /2uA11s to
2ur /2u, wheres512ge

2gp
2 f ef pt2/r 2, for T50 we have

Kp5
1

3 H 12z3/22
3 sign~r !

2
W~s,z!J ,

Ke5
1

2 H 12z3/21
3 sign~r !

2
W~s,z!J . ~71!

Henceforth we make use of the function

W~s,z!5
A11s2Az~11sz!

s

2
1

sAs
lnS As1A11s

Azs1A11sz
D . ~72!

Instead of a negative chemical potentialm here we have in-
troduced the notation2m5A11sz.

For this power-law dependence of the density states,
functionsLp,e are given in terms ofKp,e by

Lp5
1

2
2

sign~r !

2A11s
2

3

2
Kp , Le5

3

4
1

3 sign~r !

4A11s
2

3

2
Ke .

~73!
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TABLE I.

Ranges f p Kp gp
2 S@np# R@np#11 Gp SS

0,np,1 (625np)/6 np /(625np) 1 0 6 0 t2g

1,np,2 (42np)/18 2(np21)/(42np) 3 1/2 9 1/3 t2g
2

2,np,3 (5np26)/36 9(np22)/(5np26) 2 1 4 2/3 t2g
3

3,np,4 (2425np)/36 4(np23)/(2425np) 2 3/2 9 25/3 t2g
4

4,np,5 (np22)/18 3(np24)/(np22) 3 1 6 24/3 t2g
5

5,np,6 (5np224)/6 6(np25)/(5np224) 1 1/2 1 21 t2g
6

Ranges f e Ke ge
2 S@ne# R@ne#11 Ge SS

0,ne,1 (423ne)/4 ne /(423ne) 1 1/2 4 0 eg

1,ne,2 (21ne)/12 4(ne21)/(21ne) 3/2 1/2 3 1/3 eg
2

2,ne,3 (62ne)/12 3(ne22)/(62ne) 3/2 1 4 24/3 eg
3

3,ne,4 (3ne28)/4 4(ne23)/(3ne28) 1 1/2 4 21 eg
4
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Heres.0 and the parameterz varies from zero to one. The
amplitudesLp,e remain positive for alls andz.

In a filled upper subband, for which the chemical pote
tial varies over the positive range fromur /2u to ur /2uA11s,
we have

Kp5
1

3 H 21z3/22
3 sign~r !

2
W~s,z!J ,

Ke5
1

2 H 11z3/21
3 sign~r !

2
W~s,z!J . ~74!

and

Lp512
sign~r !

2A11s
2

3

2
Kp ,

Le5
3

4
1

3 sign~r !

4A11s
2

3

2
Ke . ~75!

Here also, the parameterz varies from zero to one, but th
dimensionless amplitudeLp,e remains negative.

Hence, we conclude that within the range of occupat
numbers 0,np,2 and 0,ne,2, ferromagnetic regions ca
exist only for negative values of the chemical potential~see
Fig. 2!.

4. GENERAL RESULTS AND CONCLUSIONS

All of our results can be summarized by a single eq
tion with constant coefficients, each of which has a cert
meaning within a square domain of the variablesnp,d :

Kp~12Kp!Ke~12Ke!

5Le~Ge1Ke!Kp~12Kp!1LpKe~12Ke!~Gp1Kp!.

~76!

All coefficients are defined in Table I.
The results in the table show that changing the sign

thee-e scattering amplitude within the range 2,ne,4 for a
fixed sign of the p-p scattering amplitude in the rang
0,np,3 causes them largely to cancel. As a result,
-

n

-
n

f

e

right-hand side of Eq.~76! becomes smaller, while the lef
remains unchanged, since it is invariant under particle-h
transformations forp- ande-electrons individually.

For this reason, hybridization of states from the low
Hubbard subbandsnp,3 with states from the upper half o
the e-subband 2,ne does not lead to ferromagnetism~see
Fig. 2!.

The figure shows that for the chosen initial density
states, ferromagnetic instability does not occur at lownp,e

,1 either. With a negative chemical potential, the ent
system is spread out over a large number of vacant~nonmag-
netic! states and a small number of one-particle states w
spin 1/2. Thus, in this region a gaseous paramagnetic s
does exist, analogous to that in the classical Hubbard mod2

In the other regions where, for example,ne.1, the sys-
tem is a mixture of magnetic states. The existence of a fi
negative scattering amplitude for excitations with the sa
sign of the projection of the spin~or a positive amplitude for
scattering of excitations with opposite spins! leads to ferro-
magnetic instability even when the number of excited sta
is small. A similar result has been obtained elsewhere.6

This sort of situation arises during hybridization and
multaneous filling of the lower Hubbardp- ande-subbands.

If, on the other hand, the upper subband for thee-states
and the lower subband for thep-states are filled simulta
neously, then the physical situation becomes more com
cated.

Calculations show that when the lower half of a hybri
ized subband~negative chemical potential! is filled, we see a
negativee–e scattering amplitude and a positivep–p scat-
tering amplitude for excitations with opposite spins. Wh
the upper half of the hybridized subband is filled~positive
chemical potential!, the situation is the opposite: we see
positivee–e scattering amplitude and a negativep–p scat-
tering amplitude for excitations with opposite spins.

The mutual influence of these interactions is what de
mines the possible onset of ferromagnetism. The calculat
done in this paper indicate that the amplitudes largely can
for arbitrary concentrationsnp and ne of the states~see the
right half of Fig. 2!.
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For comparison with experiments on the ferromagne
fcc compounds FeAl and MnSi, we note that in this ca
because of electrical neutrality, the total number of electr
in unfilled shells in nine:nd1np1ns59. Herend is the total
number ofd-electrons per cell, which differs from ourne by
6, the total number of electrons in the filledt2g-cell.

In fact, ns is a fit parameter. According to ban
calculations,5 it is 0.84 and 0.82, respectively, for iron an
manganese.

Substituting these numbers into the condition for elec
cal neutrality, we find

ne1np52.16 for FeAl, ne1np52.18 for MnSi.
~77!

In the figure these lines essentially overlap, with t
electrical neutrality line for FeAl lying slightly below that fo
MnSi. Both of these lines cross the two shaded regions
ferromagnetic ordering obtained in our model.

Suppose that the average charge of the anions is low
Al np'1 and for Si np'2. Then ne'1 for FeAl, while
ne!1 for MnSi. Therefore, we obtain qualitative agreeme
with experiment: the magnetic moment in MnSi is small a
the saturation moment in the ferromagnetic material FeA
large ~'1!.7

Note that the proposed mechanism for the onset of
ferromagnetic instability allows for the possibility of inte
section of the phase transformation boundary and the ele
cal neutrality line. This situation corresponds to the pheno
enological theory of Kittel,8 according to which the exchang
c
,
s

-

of

or

t

s

e

ri-
-

interaction constant changes sign at some critical volume
the unit cell.9

There is yet another possibility, in which the electric
neutrality line intersects the line corresponding to integ
values ofnk5@nk#, as happens in our case. It can be show
however, that the region (nk2@nk#)<utu/U, within which a
transition to localized moments takes place, abuts this l
The assumption in this paper of infinite Hubbard energyU
makes it impossible to examine this region, and physi
phenomena within this narrow range, (nk2@nk#)!utu/U,
warrant special treatment.

This work was supported by the Russian Fund for Fu
damental Research~Grant No. 98-02-17388!.

* !E-mail: zaitsev@mbslab.kiae.ru; zam@niitp.mainet.msk.su

1J. C. Slater and G. F. Koster, Phys. Rev.94, 1498~1954!.
2J. Hubbard, Proc. Roy. Soc. A276, 238 ~1963!.
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The superdiffusion equation with a fractional LaplacianDa/2 in N-dimensional space describes
the asymptotic (t→`) behavior of a generalized Poisson process with the range
~discontinuity! distribution density;uxu2a21. The solutions of this equation belong to a class of
spherically symmetric stable distributions. The main properties of these solutions are given
together with their representations in the form of integrals and series and the results of numerical
calculations. It is shown that allowance for the finite velocity of free particle motion fora
.1 merely amounts to a reduction in the diffusion coefficient with the form of the distribution
remaining stable. Fora,1 the situation changes radically: the expansion velocity of the
diffusion packet exceeds the velocity of free particle motion and the superdiffusion equation
becomes physically meaningless. ©1999 American Institute of Physics.
@S1063-7761~99!01804-1#
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1. INTRODUCTION

In view of the increasing interest being shown in anom
lous diffusion processes,1,2 there has recently been intensiv
discussion of the possibility of generalizing the diffusio
equation

]r~r ,t !

]t
5DDr~r ,t !, r~r ,t !5d~r ! ~1!

by replacing the ordinary differentiation operators with co
responding fractional-order operators. From the phys
point of view, the substitution]/]t→(]/]t)b, b,1 is
caused by the influences of traps distributed in a medium
which the random timet of particle residence is characte
ized by the probability density

q~ t !}t2b21, t→`

with an infinite mean, and the introduction of the fraction
LaplacianDa/2 is associated with an anomalously broad d
tribution of particle ranges

p~r !}r 2a21, r→`.

This first regime is called subdiffusion~the diffusion packet
spreads more slowly with time than in cases of ordinary d
fusion! and the second is called superdiffusion~where the
packet spreads more rapidly!.3–6 We shall confine our analy
sis to the second anomalous diffusion regime, having no
that an equation with a fractional-order Laplacian (a51/3)
was first proposed by Monin7 ~see also Ref. 8! in a descrip-
tion of diffusion in a turbulent medium.

Compte9 proposed a generalization of Eq.~1! to the case
of superdiffusion in the form

]r

]t
5D¹ar~r ,t !
7801063-7761/99/88(4)/8/$15.00
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together with

F̂¹ar5kar̂~k,t !, ~2!

where

F̂ f [ f̂ k5E eik•r f ~r ! dk

indicates the Fourier transform of the functionf (r ) and the
exponenta is extended to the entire interval~0,2!. However,
we note that fora→2 formula ~2! does not yield the result

F̂¹2r52k2r̂,

valid for normal diffusion and fora51 the operator¹1 ,
differs from the vector operator¹ which makes it difficult to
interpret the fractional differentiation operator as the fra
tional exponent of the differential operator.

These problems are easily surmounted by determin
the Riesz fractional derivative by a standard method,
terms of the Laplacian, as in Ref. 10, which incidentally
also quoted by Compte.9 The superdiffusion equation the
has the form

]r

]t
52D~2D!a/2r~r ,t !, ~3!

where the operator (2D)a/2 is given by

~2D!a/2r5F̂21ukuaF̂r. ~4!

The definition~4! remains valid for arbitrary dimension
N of the space, whose vectors will be denoted byx andk and
for which the scalar productk1x11 . . . 1kNxN will be de-
noted bykx, so that the Fourier transform of the functio
f (x), xPRN is written as
© 1999 American Institute of Physics
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F̂f [ f̂ ~k!5E eikxf ~x! dx.

The fractional Laplacian is expressed explicitly in the fo
of the hypersingular integral

~2D!a/2f 5
1

dN,n~a!
E

RN

~Dy
nf !~x!

uyuN1a
dy,

where

~Dy
nf !~x!5 (

m50

n

~21!mS n

mD f ~x2my!

are noncentrosymmetric differences,n is any integer greate
thana, and the normalization factordN,n(a) is given by

dN,n~a!5E
RN

~12expix1!nuxu2N2a dx.

The Riesz theory of differentiation is expounded in detail
Ref. 10, which is a unique encyclopedia of fractional ana
sis.

In the present paper we discuss the physical meanin
Eq. ~3!, its solutions, and range of validity. Bearing in min
the independent importance of one-dimensional and t
dimensional diffusion problems, we shall consid
N-dimensional diffusion.

2. LÉVY PROCESS

Superdiffusion can easily be described formally in ter
of a generalization of the Wiener process. For this purpos
is sufficient to write the Kolmogorov–Chapman equation
a steady-state Markovian process with independent in
ments

r~x,t !5E r~x8,t8!r~x2x8,t2t8! dx8, ~5!

x,x8PRN, t,t8PR1
1 , 0,t8,t, r~x,0!5d~x!,

and analyze the class of its self-similar solutions

r (a)~x,t !5~Dt !2N/ag~a!~x~Dt !21/a!, D.0, a.0. ~6!

A Fourier transformation converts Eqs.~5! and ~6! to the
form

r̂ (a)~k,t !5 r̂ (a)~k,t8!r̂ (a)~k,t2t8!,

r̂ (a)~k,t !5ĝ(a)~k~Dt !1/a!, kPRN.

Introducing the notation (Dt)1/a5l, (Dt8)1/a5l1, and
(D(t2t8))1/a5l2, we can see thatĝ(a)(k) satisfies

ln ĝ(a)~lk!5 ln ĝ(a)~l1k!1 ln ĝ(a)~l2k! ~7!

for

la5l1
a1l2

a . ~8!

For spherically symmetric distributions,ĝ(a)(k) only de-
pends onuku and then the solution of Eq.~7! is ~see Ref. 11!

ĝ(a)~k!5e2ukua, 0,a<2, ~9!

and in consequence
-

of

-
r

s
it

r
e-

r̂ (a)~k,t !5e2Dukuat ~10!

The constrainta<2 is imposed because fora.2 the func-
tion ~9! loses the properties of a characteristic function, i
its inverse Fourier transform ceases to be a probability d
sity ~it becomes indefinite!.

The Fourier transform~10! satisfies the differential equa
tion

]r̂ (a)

]t
52Dukuar̂ (a),

which, in accordance with anN-dimensional analog of for-
mula ~4!, as a result of an inverse transformation, yields
equation for the probability density

]r (a)

]t
52D~2D!a/2r (a)~x,t !, r~x,t !5d~x!, ~11!

which generalizes Eq.~3! to theN-dimensional case. In the
one-dimensional case, the operator (2D)a/2 becomes a Mar-
chaux derivative.10 Following Montroll and West,12 we shall
call this process a Le´vy process. Fora52 it is converted
into a Wiener process.

In accordance with Eqs.~7!–~10!, the solutions of the
superdiffusion equation~11! belong to a class of strictly
stableN-dimensional distributions13,14 or, more accurately,
form a subset of spherically symmetric distributions in th
class which include the multidimensional Gaussian distri
tion (a52). The most important characteristic of stable no
Gaussian distributions is that the absolute moments

^uxum&>E g(a)~x!uxum dx

are infinite form>a. Infinite dispersion implies that a dif
ferent measure must be used for the width characteristi
the diffusion packet, for which it is convenient to take th
radiusRp(t) of a sphere containing the fixed probabilityp

E
uxu,Rp(t)

r~a!~x,t ! dx5p.

Substituting Eq.~6! and changing the variable of integratio
we obtain

E
uxu,Rp~ t !~Dt !21/a

g~a!~x! dx5p.

which implies that

Rp~ t !}t1/a, t→`.

For a52 we have a normal rate of expansion of a diffusi
packet, whereas fora,2 its width increases more rapidl
than in the normal case.

3. SPHERICALLY SYMMETRIC STABLE DISTRIBUTIONS

One-dimensional stable laws were analyzed in detai
Refs. 13 and 15. We shall discuss in greater detail so
properties of theN-dimensional stable densities

gN
(a)~x!5~2p!2NE exp$2 ikx2ukua% dk, ~12!
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in terms of which the solutions of the superdiffusion equ
tions are expressed inN-dimensional space. For the firs
three dimensions, allowing for the spherical symmetry of
characteristic functions, formula~12! has the following form:

g1
(a)~x!5p21E

0

`

e2sa
cos~suxu! ds,

g2
(a)~x!5~2p!21E

0

`

e2sa
J0~suxu!s ds,

g3
(a)~x!5~2p2uxu!21E

0

`

e2sa
sin~suxu!s ds.

For arbitrary dimensions13 we have

gN
(a)~x!5~2p!2N/2E

0

`

e2sa
JN/221~suxu!

3~suxu!12N/2sN21 ds. ~13!

The functionsf N(r ) which determine the dependence of t
spherically symmetric densities on the vector magnitudr
5uxu

f N~ uxu!5gN
(a)~x!

are related by the differential equation

d fN /dr522pr f N12~r !. ~14!

In addition to the integral representation~13!, represen-
tations of the stable densities in the form of two series
also useful for computational and analytical purposes:

gN
(a)~x!5

1

p
~ uxuAp!2N

3 (
n51

`

~21!n21
G~~na1N!/2!G~na/211!

G~n11!

3sin~anp/2!~ uxu/2!2na,

gN
(a)~x!5

2

a
~2Ap!2N

3 (
n50

`

~21!n
G~~2/a!n1N/a!

G~n1N/2!G~n11! S uxu
2 D 2n

.

The first series converges foraP(0,1) and is asymptotic for
aP(1,2), while the second converges in the rangea
P@1,2# and is asymptotic foraP(0,1).

Another integral representation for odd dimensions c
be obtained from the symmetric one-dimensional den
written in the form13

g1
(a)~x!5

a

pua21u
uxu1/(a21)E

0

p/2

Ua~w!

3exp$2uxua/(a21)Ua~w!% dw, ~15!

where

Ua~w!5S sin~aw!

cosw D a/~a21! cos~~a21!w!

cosw
, aÞ1,
-

e

e

n
y

is a series form of formula~14!. Unlike formula ~13!, this
representation does not contain oscillating functions in
integrand and is thus more convenient for numerical cal
lations ~for a51 such a formula is not required, since th
densities are expressed in an elementary form given belo!.

The densitiesgN
(a)(x) are only expressed in terms of e

ementary or special functions in exceptional cases:

gN
(2)~x!5~4p!2N/2e2x2/4

— Gauss law~with a dispersion of 2!,

gN
(1)~x!5G~~N11!/2!@p~11x2!#2(N11)/2

— Cauchy law

gN
(2/3)~x!5

A3

6pN/2

G~N/211/3!G~N/212/3!

G~5/6!G~7/6!

3uxu2Ne2/(27x2)W2N/2,1/6~4/~27x2!!,

where

Wn,m~z!5
zne2z/2

G~m2n11/2!

3E
0

`

e2t~11t/z!m1n11/2tm2n21/2dt

is a Whittaker function. The densitygN
(1/2)(x) for odd dimen-

sionsN52n11 may be expressed in the form

gN
(1/2)~x!5

1

4p S 2
1

p D (N21)/2E
0

`

tN21LN~ tuxu!sint dt,

where

LN~As!5
dn

dsn
~As11/4!23/2, s.0.

For instance, we have

p1
(1/2)~x!5

1

4p E
0

`

~ tuxu11/4!23/2sint dt,

p3
(1/2)~x!5

3

16p2
uxu21E

0

`

~ tuxu11/4!23/2t sint dt,

and so on. We note however, that the formulas given ab
for gN

(1/2) contain an alternating-sign function in the integra
and consequently have no particular advantages over the
mulas of the inverse Fourier transformation~12! and ~13!.

We shall discuss another distribution which describe
random electric or gravitational field intensity created by
Poisson ensemble of point sources~Holtsmark distribution!:

g3
(3/2)~x!5

1

2p2uxu3
E

0

`

exp$2~z/uxu!3/2%z sinz dz

5
3

2p2 E0

p/2

@3uxu3U3/2
2 ~w!22U3/2~w!#

3exp$2uxu3U3/2~w!% dw,
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E
uxu.r

g3
(3/2)~x! dx5

2

p E
0

p/2

~113U3/2~w!r 3!e2U3/2~w!r 3
dw.

The distribution of peculiar velocities of galaxies in the un
verse is associated with this distribution which can then
used to estimate the most important cosmological param
viz., the average density of matter.16

Values of the densitiesg3
(a)(x) and their graphical rep

resentation can be found in Refs. 17 and 18.

4. TRANSPORT EQUATIONS

It was noted in Sec. 2 that the width of a diffusion pack
described by a Le´vy process increases ast1/a. For a,1 it
increases more rapidly than in the ballistic regime~i.e., free
motion of particles with a bounded maximum velocity!. This
clearly nonphysical result is attributable to the self-similar
of the Lévy process, in which the concept of the velocity
free particle motion has no place. This situation is not c
fined toa,1, but the effect is observed more clearly in th
limit. For a.1 as far as the limiting valuea52, the self-
similarity effect is manifested in the way a distributio
r(x,t) at a time arbitrarily close to the initial one~when the
particle was located at the origin! is nonzero throughout al
space~this ‘‘defect’’ was noted by Einstein in the theory o
normal diffusion!.

This defect can be eliminated by converting from t
Wiener model to the random walk model of a particle with
finite velocity of free motionv.

We shall consider the following model. At zero timet
50 the particle is located at the originx50 and resides there
for a random timet0, after which it is displaced by a random
vectorj1 at velocityv and again resides in a rest state fo
random timet1, and the process then repeats. All rando
variablest0 , t1 , j1 , t2 , j2 , . . . are mutually independen
and the timest i have the same exponential probability de
sity

q~ t !5me2mt, m.0.

The N-dimensional vectorsj i are also distributed similarly.
Instead of a single particle, it is convenient to conside

set of independent trajectories and talk of the densityr(x,t)
as the particle number density.

Hence in this particular case the particle densityr(x,t)
consists of two componentsr0(x,t) andrv(x,t), which refer
to particles in the rest state and in motion, respectively:

r~x,t !5r0~x,t !1rv~x,t !. ~16!

Over the timedt the density of particles in traps changes
the amount

dr0~x,t !5r0~x,t1dt!2r0~x,t !,

which consists of two components. The first, negative, co
ponent is attributed to particles leaving the traps

@dr0~x,t !#252mr0~x,t !dt,

while the second, positive, component describes the entr
of moving particles into traps:
e
er,

t

-

-

a

-

ce

@dr0~x,t !#15E dx8p~x8!mr0~x2x8,t2ux8u/v ! dt.

As a result we obtain the following equation forr0(x,t):

]r0

]t
52mr01mE dx8p~x8!r0S x2x8,t2

ux8u
v D . ~17!

Having noted thatp(x)dx is the probability that a par-
ticle leaving the origin will undergo the first collision in th
volume elementdx5dSduxu, we denote byP(x)dS the
probability that the particle intersects the elementary areadS
of a sphere of radiusuxu without interacting over the pathuxu.
The contribution to the densityrv of this particle is
(1/v)P(x)d(t2uxu/v). Replacingx by x8 and applying this
result to all particles leaving the traps and reaching the
cinity of the pointx at time t, we obtain

rv~x,t !5
1

v E dx8E dt8P~x8!dS t82
ux8u
v Dmr0~x2x8,t2t8!

5
1

v E dx8P~x8!mr0~x2x8,t2t8!. ~18!

In three-dimensional space with an exponential ran
distribution the system of equations~17! and ~18! describes
the nonsteady-state transport of neutrons allowing for a de
and, apart from a few details~the absence of absorption an
scattering processes, and constant velocity!, adequately de-
scribes Eqs.~1.13! and ~1.14! from Ref. 19. Form→0 this
system yields the time-dependent single-velocity transp
equation with isotropic scattering widely used in neutr
physics.19,20 In view of this we shall describe Eqs.~18! and
~19! as transport equations.

In the limit v5`, only one term is retained in the sum
~16!:

r~x,t !5r0~x,t !,

which satisfies the Kolmogorov equation

]r

]t
52mr1mE dx8p~x8!r~x2x8,t !, ~19!

describing a generalized Poisson process.21

Returning to a probabilistic interpretation of these equ
tions, we shall consider a common initial condition for the

r~x,0!5r0~x,0!5d~x!.

5. RELATION BETWEEN SOLUTIONS OF THE
KOLMOGOROV EQUATION AND THE SUPERDIFFUSION
EQUATION

We shall transform the Kolmogorov equation~19! to
give an equation for the characteristic functionr̂(k,t) of the
distributionr(x,t):

]r̂

]t
52m@12 p̂~k!#r̂~k,t !, r̂~k,0!51, ~20!

wherep̂(k) is the Fourier component of the probability de
sity of the transitionp(x). The solution of Eq.~20! has the
form
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r̂~k,t !5exp$2@12 p̂~k!#mt%, ~21!

and its asymptotic behavior fort→` is determined by the
behavior ofp̂(k) for small uku.

If the second moment of the distributionp(x) is

E p~x!x2 dx5j2,`, ~22!

then

12 p̂~k!;~j2/2!k2, uku→0,

and the characteristic function~21! for large t has the form

r̂~k,t !;r̂as~k,t !5exp$2~mtj2/2!k2%. ~23!

Since

]r̂as~k,t !

]t
52

mj2

2
k2r̂as~k,t !,

the density corresponding to this asymptotic form satis
the ordinary diffusion equation

]ras

]t
5DDras~x,t !

with the diffusion coefficient

D5mj2/2

and the initial condition

ras~x,0!5d~x!.

We have focused on this generally trivial fact in order
emphasize that the asymptotic form of the solution of E
~19! subject to the condition~22! is an exact solution of the
ordinary diffusion equation. When condition~22! is not sat-
isfied but the following condition is,

E
uxu.R

p~x! dx;AR2a, R→`, ~24!

the asymptotic form of the solution of Eq.~19! is the same as
the exact solution of the superdiffusion equation, which
easily confirmed bearing in mind that

12 p̂~k!;A8ukua, k→0,

and deriving instead of Eq.~23!

r̂~k,t !;r̂as~k,t !5exp$2mtA8ukua%, t→`.

In accordance with Eqs.~6! and ~10!, we have

ras~k,t !5r (a)~x,t !5~Dt !2N/ag(a)~x~Dt !21/a!, ~25!

where

D5mA8.

In other words, the superdiffusion equation~11! describes
the asymptotic behavior of the distribution density of a p
ticle wandering at infinite velocity in a medium containin
traps for which the residence timet has an exponential dis
tribution and the range~jump! distribution density has a
power tail of the formr 2a21.
s

.

s

-

The result~25! can also be obtained more simply on th
basis of the properties of stable laws. In the same way t
provided that the second moment~22! is finite, the normal-
ized sum

Sn5~Bn!21/2(
i 51

n

j i , B5j2

of n independent random vectorsj i for n→` has an
N-dimensional Gaussian distribution~central limit theorem!,
if condition ~24! is satisfied the normalized sum

Sn5~Bn!21/a (
i 51

n

j i , B5B~a,A!, ~26!

for largen is described by a stable distribution with the e
ponenta ~generalized limit theorem!. The distribution of the
number of terms over timet is given by the Poisson law with
the averagen̄5mt and the relative fluctuations (mt)21/2. In
view of this, formt→` in formula ~26!, n may be replaced
by mt. Bearing in mind that as a result of this substitutio
S i 51

n j i yields the random vectorj(t) of the particle position
at time t, we obtain

j~ t !5~Dt !1/az, D5Bm, ~27!

wherez is a random vector with a symmetric stable dens
g(a)(x), from which formula~25! follows.

6. EFFECT OF FINITE VELOCITY

In order to allow for the influence of the finite velocit
of free motion of a wandering particle on the asympto
form of the distributionr(x,t), we need to return to Eqs
~17! and ~18! and make an analysis similar to that made
Sec. 5 for the Kolmogorov equation. We performed such
analysis, but because of the involved nature of the ma
ematical calculations we shall confine ourselves here to
elementary derivation which yields the same result as a m
rigorous analysis.

For a finite velocityv the vector sum

Sn5~Bn!21/a (
i 51

n

j i ,

corresponds to the random time

u5(
i 51

n S t i1
uj i u
v D .

In the casea.1 the mathematical expectationuj i u is
finite, and forn→`, since the numbers are large, we c
assume

u't5n~1/m1a/v !, a5uj i u. ~28!

Then by findingn

n5~11ma/v !21mt

and introducing the notation

tv5~11ma/v !21t,

we arrive at the same result as in Sec. 5, except thatv
appears instead oft:
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r̂as~x,t !5~Dtv!2N/ag(a)~x~Dtv!21/a!, a.1. ~29!

Physically, this result is quite understandable: the prese
of a finite velocity of free motion slows the expansion of
diffusion packet compared with the casev5`. Replacingt
by the shorter timetv immediately allows for this slowing~in
the asymptotic sense!.

Since the diffusion coefficient and the time appear a
product in the asymptotic density, the result~29! may be
rewritten in a different form:

ras~x,t !5~Dvt !2N/ag(a)~x~Dvt !21/a!, a.1,

where

Dv5~11ma/v !21D.

This allows us to write a fractional differential equation f
the asymptotic density of a particle diffusing with a fini
velocity of free motion:

]ras

]t
52Dv~2D!a/2ras~x,t !.

Thus, allowance for a finite velocity merely alters~reduces!
the diffusion coefficient in the equation with a fractional L
placian, which preserves the form of the asymptotic distri
tion described by a spherically symmetric stable law. Ho
ever, this conclusion only holds fora.1, which was used
for the substitution~28!. Fora,1 the situation is completely
different: in cases of finite velocity the asymptotic distrib
tion cannot be reduced to a solution withv5` by any linear
transformation.

This last factor is easily understood through the follo
ing reasoning. It was noted in Sec. 2 that the width~‘‘ra-
dius’’! of a diffusion packet increases with time proportio
ately ast1/a. The presence of a finite velocity causes t
distribution density to vanish outside a sphere of rad
ce

a

-
-

-

s

R5vt. Hence fora.1 the influence of the last~kinematic!
constraint becomes weaker with time because the packe
dius increases more slowly thanR5vt. However, fora,1
the distribution given by the diffusion equation~11! spreads
more rapidly thanR5vt and the kinematic constraint be
comes a dominant factor in the formation of the asympto
distribution. Being compressed by a sphere of radiusR5vt,
this distribution is completely different to the stable distrib
tion. This probably means that Eq.~12! with a Laplacian of
degreea/2, wherea,1, cannot generally be applied to de
scribe real diffusion processes.

The results of a Monte Carlo simulation of the on
dimensional random walk of a particle compared with t
solutions of the superdiffusion equation plotted in Figs. 1
confirm the conclusions reached above: it can be seen

FIG. 1. The distributionr(x,t) in cases of one-dimensional superdiffusio
for a53/2, m51. The histograms give the results of Monte Carlo simu
tions (104 trajectories,v510), which give the solution of the transpo
equations~17! and~18!. The solid curves give the solutions of the hyperd
fusion equation~11! usingDv instead ofD.
on
t

FIG. 2. Effect of finite velocity (a53/2, m51, and t5103.
The histogram gives the results of a Monte Carlo simulati
(23105 trajectories,v55) of the solution of the transpor
equation; the dashed curve gives the solution of Eq.~11! with
the diffusion coefficientD (v5`), the solid curve gives the
solution with the coefficientDv .
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FIG. 3. The distribution r(x,t) for one-
dimensional superdiffusion fora51/2 andm51.
The histograms give the results of the Mon
Carlo simulation (104 trajectories,v510), the
solid curves give the solution of Eq.~11!.
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for a53/2 replacingD by Dv ensures asymptotic agreeme
between the solutions of the superdiffusion and transp
equations, whereas fora51/2 the solutions of these equa
tions are completely different.

7. CONCLUSIONS

1. The superdiffusion equation~11! describes the
asymptotic behavior of a generalized Poisson process
instantaneous~discontinuous! increments whose absolut
value is distributed with the densityp(r )}r 2a21, 0,a
,2.

2. The solutions of Eq.~11! belong to a class of spher
cally symmetric stable distributionsg(a)(x) whose properties
have been described.

3. For aP@1,2# the superdiffusion equation describ
the asymptotic behavior of the distribution of a wanderi
particle having the finite velocityv of free motion~provided
that D is replaced byDv5(11ma/v)21D, wherea is the
mean range and 1/m is the average residence time in th
trap!.

4. For a,1 a superdiffusion packet spreads more ra
idly in space than a packet of freely moving particles, a
the solutions of the superdiffusion and transport equati
have completely different asymptotic forms.
rt

th

-
d
s

This last observation may be a sufficient basis for co
cluding that the superdiffusion equation cannot be used
describe real physical processes for characteristic expon
a,1.

a!E-mail: uchaikin@themp.univ.simbirsk.su
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Emission of radiation from a long Josephson junction in a thin film
A. S. Malishevski ,* ) V. P. Silin, and S. A. Uryupin

P. N. Lebedev Physics Institute, Russian Academy of Sciences, 117924 Moscow, Russia
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Space–time nonlocal electrodynamic equations are derived for nonlinear vortex states of a
Josephson junction in a film of thickness much smaller than the London penetration depth. The
spectrum and damping of generalized Swihart waves propagating in such a junction are
analyzed. The radiation damping constant associated with the possible emission of electromagnetic
radiation is determined in the range of Swihart wave phase velocities exceeding the speed
of light. The emission of radiation from nonlinear states having dimensions greater than the
distance traversed by light in vacuum during the characteristic time of variation of the
phase difference is investigated. It is shown that the flux density of radiation emitted by such
states is localized in a plane orthogonal to the axis of the tunnel junction and depends
weakly on the angle of observation in this plane. ©1999 American Institute of Physics.
@S1063-7761~99!01904-6#
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1. INTRODUCTION

The radiative properties of Josephson junctions has
tracted the attention of specialists for many years~see, e.g.,
Refs. 1–3!. Many theoretical and experimental papers~see
the survey in Barone and Paterno,3 Sec. 11.4! have been
devoted to the investigation of microwave radiation fro
Josephson junctions having dimensions much smaller
the wavelength of the radiation itself. Another avenue
research is directed toward the properties of long Joseph
junctions, along which it is possible for both Swihart wav
and solitons to propagate. Long junctions afford the possi
ity of studying such phenomena as the interaction of a S
hart wave with a surface electromagnetic wave4 and the
emission of electromagnetic waves by moving vortices.5–9

Another property of long junctions is the possibility o
the emission of Swihart waves and the existence of nonlin
vortex states. A quantitative description of the emission
radiation from a waveguide sandwich has been describ10

on the basis of a systematic analysis of electromagnetic fi
in superconducting electrodes and vacuum. According
Ref. 10, the emission of electromagnetic waves leads to
ther damping of the Swihart waves, whose phase veloc
are higher than the speed of light. The emission phenome
is most conspicuous when the thickness of the sandw
electrodes is smaller than the London penetration depth,
the electromagnetic field easily penetrates from the Jos
son junction into vacuum.

The emission of electromagnetic waves can be expe
to be even simpler for a Josephson junction in a thin fi
whose thicknessD is much smaller than the London depthl.
Another feature of Josephson thin-film electrodynamics
the large penetration depth of the field into the film
le5l2/D@l ~Ref. 11!, which makes it critical to utilize the
nonlocal coupling of the magnetic field with the phase d
ference of the wave functions on opposite sides of a tun
junction.12
7881063-7761/99/88(4)/12/$15.00
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Bearing these special features in mind, in Sec. 2 we
rive an equation for the phase difference, taking into acco
both the spatially nonlocal coupling effect and the possibi
of emitting electromagnetic waves. We obtain
new space–time nonlocal integrodifferential equation
the phase difference, which goes over to the stand
equation12–14when time dispersion is disregarded. Using th
type of nonlocal equation for the phase difference, in Sec
we find a dispersion law for generalized Swihart waves. W
show that in the range of phase velocities lower than
speed of light the dispersion law differs from the previous
established law14 when interaction between a surface elect
magnetic wave and a Swihart wave is significant.

The difference is even more pronounced in the limit
superluminous phase velocity, when not only is the real p
of the Swihart wave frequency renormalized, but additio
damping is also induced by the emission of waves. The
diative damping constant is determined, and it is shown t
in a low-conductivity tunnel junction it can exceed the dam
ing constant associated with Ohmic losses.

In Sec. 4 we determine the directivity pattern of the r
diation emitted by the Swihart wave. If the ratiov5v/ckz of
the Swihart phase velocity to the speed of light is close
unity, 0,v221!1, waves are emitted along the tunn
junction. But in the limitv@1 the radiation fluxS is mainly
concentrated in a plane orthogonal to the axis of the junct

We find the explicit dependence of the flux density
the angle of observation in this same plane.

Section 5 is devoted to the emission of large-scale n
linear distributions of the phase difference with characteris
dimensions much smaller than the distances traversed
light in vacuum during the characteristic time of variation
the phase difference. Such distributions are described in
first approximation by the same functions as the nonlin
oscillations of a mathematical pendulum. We show that
radiation flux emitted by large-scale nonlinear structures
concentrated mainly in a plane orthogonal to the axis of
© 1999 American Institute of Physics
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tunnel junction and is constant over a wide range of angle
observation in this plane. The spectral composition of
radiation depends on which solution of the mathemat
pendulum problem describes the nonlinear state. The s
trum of the radiation contains odd harmonics of the fun
mental for the solution corresponding to finite-amplitude
cillations, and it contains even harmonics for the solut
corresponding to a rotating pendulum. If the nonlinear st
is described by a solution of the 2p-kink type, a continuous
spectrum of frequencies lower than or of the same orde
the Josephson frequency is radiated.

2. BASIC EQUATIONS

We consider a Josephson junction in a superconduc
thin film symmetrical about the planey50. We assume tha
the thickness of the filmD along they axis is much smaller
than the London penetration depthl. We also assume tha
the tunneling of Cooper pairs takes place through a non
perconducting layer of thickness 2d oriented symmetrically
about the axisx5y50. To characterize the electrodynami
of this junction, we use the equations for the vector poten
A(r ,t) and the scalar potentialV(r ,t) in the form

div A~r ,t !50, ~2.1!

¹2A~r ,t !2
1

c2

]2

]t2 A~r ,t !2
1

c

]

]t
gradV~r ,t !

52
4p

c
d~y!D j ~r i ,t !, ~2.2!

¹2V~r ,t !50, ~2.3!

where c is the speed of light,d(y) is the delta function,
j (r i ,t) is the current density in the film,r i5(x,0,z),

j ~r i ,t !52
c

4pl2 F f0

2p
gradF~r i ,t !1A~y50,r i ,t !G ,

~2.4!

f05p\c/ueu is the quantum of magnetic flux,\ is Planck’s
constant,e is the electron charge,

F~r i ,t !5h~2x!F1~r i ,t !1h~x!F2~r i ,t !, ~2.5!

h(x)51 (x.0) andh(x)50 (x,0) denotes the Heavisid
unit step function, andF1(r i ,t) andF2(r i ,t) are the phases
of the wave functions of Cooper pairs on opposite sides
the tunnel junction. The displacement current, which is sm
in comparison with the superconducting current in the fil
is omitted in Eq.~2.4!. Moreover, Eq.~2.5! disregards the
finite thickness of the tunnel junction, and the expression
the superconducting current density in the film@see Eqs.
~2.2! and ~2.4!# is written in the form of the delta function
d(y). Equations~2.2!, ~2.4!, and~2.5! are therefore suitable
for describing electromagnetic structures having spa
scales that exceed both the width of the tunnel junctiond
and the thickness of the filmD.

Owing to the gauge invariance of the theory, the sca
potentialV(y50,r i ,t) in the superconducting film is relate
to the phase of the wave function by the equation~see, e.g.,
Ref. 15!
of
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V~y50,r i ,t !5
f0

2pc

]

]t
F~r i ,t !. ~2.6!

Equations~2.1!–~2.6! can be used to relate the electroma
netic potential to the phase difference at the junction:

w~z,t !5F1~0,z, t !2F2~0,z, t !. ~2.7!

It is evident from the symmetry of the problem and Eq
~2.1!–~2.4! that the potentialsAx(r ,t), Az(r ,t), and V(r ,t)
are even, andAy(r ,t) is an odd function of the argumenty. It
is therefore sufficient to find a solution of Eqs.~2.1!–~2.4!
for y>0 and to use the boundary conditions

]

]y
Ai~y,r i ,t !uy5105

1

2le
F f0

2p

]

]r i
F~r i ,t !

1Ai~y50,r i ,t !G , ~2.8!

Ay~y50,r i ,t !50, ~2.9!

where the vectorAi has only the componentsAx and Az .
Equation~2.8! follows from Eq.~2.2! when the continuity of
the potentialsAi(r ,t) andV(r ,t) at y50 and the oddness o
the derivatives]Ai /]y is taken into account. Condition~2.9!
follows from the continuity and oddness of the functionAy

and implies that the current does not have a componenj y

given by~2.4! normal to the surface of the film. We write th
solution of Eqs.~2.1!–~2.4! in the domainy>0, subject to
the boundary conditions~2.8! and ~2.9!, in the form ~see
Appendix A!

H A~r ,t !

V~r ,t !J 5
f0

~2p!4 E
2`

`

dvE dkE
2`

`

dt8

3E
2`

`

dz8w~z8,t8!exp@ iv~ t82t !

1 ik•r i2 ikzz8#
1

G H g

gvJ . ~2.10!

In Eq. ~2.10! we have introduced the functions

gx5
kx

2

k
exp~2ky!2

G12lekx
2

112lec
exp~2cy!, ~2.11!

gy5 ikx@exp~2ky!2exp~2cy!#, ~2.12!

gz5
kxkz

k Fexp~2ky!2
2lek

112lec
exp~2cy!G , ~2.13!

gv5
v

c

kx

k
exp~2ky!, ~2.14!

andG andc are given by the expressions

G5c22lev
2/c2, ~2.15!

c5Ak22v2/c2 h~c2k22v2!

2 iAv2/c22k2 h~v22c2k2!sgnv. ~2.16!
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Augmented with the notation~2.11!–~2.16!, Eq.~2.10! estab-
lishes coupling, nonlocal in time and space, between
electromagnetic potentials and the phase difference of
wave functionsw(z,t). The integrand in~2.10! has a singu-
larity at G50, where

v2

c2k2 5
1

8le
2k2 ~A1116le

2k2 21!<1. ~2.17!

Equation ~2.17! describes the dispersion law of a surfa
electromagnetic wave for which the components of the v
tor potentialAx andAz are even, andAy is an odd function of
the variabley. The singularity atG50 is correctly bypassed
if the energy losses of the surface electromagnetic wav
the superconducting film are taken into account.

The above solution of Eqs.~2.1!–~2.6! with the bound-
ary conditions~2.8! and ~2.9! enables us to relate the vect
and scalar potentials in vacuum and in the superconduc
film to the phase jump between superconductors separ
by a contact, whose physical properties have not yet b
taken into account. The solution~2.10!–~2.17! is obtained
from Eqs.~2.1!–~2.4!, ~2.6!, which are applicable outside th
contact, but this solution, in turn, gives the form of the so
tion only as a result of the presence of the phase jump
transition across the contact@see Eqs.~2.5!–~2.7!#.

This problem has to be solved in order to obtain an eq
tion for the phase differencew at the film-separating transi
tion layer, which corresponds to the phase jump of the
perconductor wave functions. Such an equation can
derived by the approach of Refs. 12 and 13, according
which Eqs. ~2.10!–~2.17! are used to calculate th
x-component of the supercurrent density at the contact@cf.
~2.4!#

j x~x50,z, t !52
c

4pl2 F f0

2p

]

]x
F~r i ,t !ux50

1Ax~x50, y50, z, t !G
in terms of the phase difference at the contact. Here, acc
ing to Eqs.~2.6! and ~2.10!, we have

j x~x50,z,t !5
c

4pl2

f0

~2p!4 E
2`

`

dvE dkE
2`

`

dt8E
2`

`

dz8

3w~z8,t8!exp@ ikz~z2z8!2 iv~ t2t8!#

3
1

G

G12lekx
2

112lec
.

On the other hand, according to Refs. 12 and 13,
supercurrent through the Josephson contact is equal to
sum1–3 of the Josephson current

j c sinw~z,t !, ~2.18!

the conduction current

sEx~x50, y50, z, t !5
\s

4ueud
]

]t
w~z,t ! ~2.19!

and the displacement current
e
he

-

in

g
ed
en

-
in

a-

-
e

to

d-

e
he

«

4p

]

]t
Ex~x50,y50,z,t !5

\«

16pueud
]2

]t2 w~z,t ! ~2.20!

where j c is the critical Josephson current density, ands and
« are the conductivity and dielectric permittivity of the tun
nel junction, respectively.

Thus, the sum of the currents~2.18!–~2.20! must be set
equal to thex-component of the current~2.4! at x50, so that

sinw~z,t !1
b

v j
2

]

]t
w~z,t !1

1

v j
2

]2

]t2 w~z,t !5
j x~x50,z,t !

j c
,

~2.21!

whereb54ps/«, andv j54p(dc jc /«f0)2 is the Joseph-
son frequency. Using the explicit expression forj x(x
50,z,t), we arrive at an integrodifferential equation for th
phase difference:

sinw~z,t !1
b

v j
2

]

]t
w~z,t !1

1

v j
2

]2

]t2 w~z,t !

524lleE
2`

`

dz8E
2`

`

dt8w~z8,t8!Q~z2z8,t2t8!,

~2.22!

where l 5l j
2/l, l j5(cf0 /l j c)

1/2/4p is the Josephson
wavelength, and the kernelQ(z,t) of the space–time nonlo
cal coupling has the form

Q~z,t !5E
2`

` dv

2p E
2`

` dkz

2p
exp~ ikzz2 ivt !Q~kz ,v!,

~2.23!

Q~kz ,v!5
dkx

2p

1

k2 F ckz
2

112cle
2

v2kx
2

cc222lev
2G

[Q8~kz ,v!1 iQ9~kz ,v!. ~2.24!

Of course, there is an alternative approach~see, e.g.,
Ref. 1! utilizing the Maxwell equation at the contact

curlH5
4p

c
j1

«

c

]E

]t
,

where the magnetic field determined by the potentials~2.10!
is used for the left-hand side of this equation. It can be c
firmed that the equation obtained for the phase differenc
this case is the same as the one obtained by our appro
which is taken from Refs. 12 and 13 and is based on
condition of continuity of the current.

Using the functionc ~2.16!, we can write the imaginary
part of the Fourier component of the kernelQ9(kz ,v) in the
form

Q9~kz ,v!5H 1

a211 FaAa2v21v22c2kz
2

1
c2kz

2

Aa2v21v22a2c2kz
2G2uvuJ v

2c2

3h~v22c2kz
2!, ~2.25!

where
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a[2leuvu/c. ~2.26!

The expression for the real part of the Fourier componen
the kernelQ8(kz ,v) is more cumbersome~see Appendix B!,
but it has comparatively simple asymptotic representation
important limiting cases. In particular, foruvu!cukzu and
a!1 we obtain the following from Eqs.~B1! and ~B6!:

Q8~kz ,v!5
kz

2

p
Q~2leukzu!2

v2

pc2 ln
1

dukzu
, ~2.27!

where the functionQ(x) has the form14

Q~x!5
2

Ax221
arctan

Ax221

11x
. ~2.28!

In the low-frequency limit, when the second term in E
~2.27! can be disregarded, the Fourier component of the k
nel Q(kz ,v) ~2.24!, ~2.27! goes over to the well-known re
sult of Ref. 14. In the general case, in contrast with Ref.
Q(kz ,v) depends on the frequency. Frequency dispers
sets in as a result of the sequential description of the elec
magnetic potentials in vacuum and can be exploited, in p
ticular, to investigate the influence of the vacuum field on
dispersion properties of a Josephson junction. Frequency
persion is especially conspicuous in the limituvu@cukzu.

In this limit, but for a!1, we obtain the following from
Eqs.~B1! and ~B7!:

Q8~kz ,v!5
kz

2

p
ln

c

leuvu
2

v2

pc2 ln
c

duvu
. ~2.29!

We note that Eqs.~2.27! and ~2.29! are well matched for
uvu;cukzu. This means that fora!1 Eqs.~2.27! and~2.29!
are sufficient for describing the whole range of the param
uv/ckzu.

In closing this section, we emphasize that Eq.~2.22!
takes into account Ohmic losses of the current flowing acr
the Josephson junction in accordance with Eq.~2.19!. This
property is consistent with the model of Refs. 16 and 17 a
its elaboration in Ref. 18. The equation does not take i
account Ohmic losses in superconductors due to the pres
of normal electrons, whose inclusion in Ref. 19 makes
possible to broaden the nonlocal description of dissipatio
Josephson junctions with a high critical current density. O
disregard for he contribution of normal electrons in sup
conductors is admissible, first, at sufficiently low tempe
tures, when the fraction of normal electrons is small, a
second, when the states in question are found to have s
ciently long wavelengths, as is true in the problems of wa
emission from a Josephson junction discussed below.

3. SWIHART WAVES

We use the temporally and spatially nonlocal equatio
~2.22!–~2.24! to analyze waves traveling along the junctio
and having the form

w~z,t !5
1

2
w0 exp~ ikzz2 ivt !1c.c, kz.0, ~3.1!
f

in

.
r-

,
n
o-
r-
e
is-

er

ss

d
o
ce

it
in
r
-
-
,

ffi-
e

s

whereuw0u!1. Replacing sinw by the argumentw, we then
obtain a dispersion relation describing the relationship
tween the frequencyv and the component of the wave ve
tor kz :

v21 ibv2v j
254

d

«D
c2@Q8~kz ,v!1 iQ9~kz ,v!#.

~3.2!

We now examine the consequences of Eq.~3.2! in the most
interesting case, when

uvu!c/2le5cD/2l2. ~3.3!

If the typical values of the London depth arel;1025 cm
and the thickness of the superconducting filmD;3
31027 cm, inequality ~3.3! is satisfied for uvu!5
31013s21. Besides this condition, as usual, the followin
inequality is also assumed to hold:

uvu!D/\ ~3.4!

(D is the width of the superconducting gap!, which gives
uvu!1.431013s21 for D;100 K.

We first discuss the consequences of Eq.~3.2! in the
limit of Swihart wave phase velocities much lower than t
speed of light,

uv/kzu!c. ~3.5!

In this limit we haveQ9(kz ,v)50 @Eq. ~2.25!#, and the real
part of the Fourier component of the kernelQ8(kz ,v) is
described by Eqs.~2.27! and ~2.28!. Substituting Eq.~2.27!
into ~3.2! and assuming thatv[v82 ig.v8, which is valid
for smallb, we obtain a relation between the real part of t
frequencyv8 and the component of the wave vectorkz :

v825v j
2

11
4

p
kz

2lleQ~2lekz!

L~kz!
, ~3.6!

where the functionL(kz) exhibits a logarithmically weak
dependence onkz :

L~kz![11
4

p

d

«D
lnS 1

dkz
D . ~3.7!

The dispersion law ~3.6! differs from the standard
version14,20 by the functionL(kz) in the denominator; its
presence can be interpreted as a consequence of the influ
of the surface electromagnetic wave~2.17! on the Swihart
wave. For typical Josephson junctions in a thin film 2d and
D are of the same order and«;2, so that 4d/p«D;0.3. On
the other hand, the characteristic scales of variation of
phase difference along they axis are of the order ofle , i.e.,
ln(1/dkz); ln(le/d);7. We ultimately obtainL;3. The sur-
face electromagnetic wave also influences the damping
the Swihart wave due to Ohmic energy losses in the tun
junction. Invoking the dispersion law~3.6!, from ~3.2! we
obtain the following inequality for the corresponding dam
ing constantg:

g5b/2L~kz!,b/2. ~3.8!
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We now analyze Eq.~3.2! in the opposite limit from
~3.5!, when the phase velocity of the Swihart wave is mu
greater than that of light:

uv/kzu@c. ~3.9!

Bearing relations~2.25! and ~2.29! in mind and assuming
that v8@g, we then obtain an equation for the relation b
tweenv8 andkz :

v825v j
21

4

p

d

«D
c2H kz

2 ln
c

lev8
2

v82

c2 ln
c

dv8J . ~3.10!

Inasmuch as the frequencyv8 is close to the Josephson fre
quency in the range of relativistic phase velocities, we obt
the following from Eq.~3.10! to logarithmic accuracy:

v825v j
2

11
4

p
kz

2lle ln
c

lev j

L~v j /c!
,. ~3.11!

We note that forv8;ckz , by virtue of condition~3.3!, the
dispersion law~3.11! goes over to the law~3.6!, which holds
for low Swihart wave phase velocities.

We calculate the small damping constant by means
Eq. ~2.25!, which under the conditions of inequality~3.3! and

v22c2kz
2@a2v2 ~3.12!

has the form

Q9~kz ,v!5
1

2 S kz
22

v2

c2 D sgnv. ~3.13!

Then for g!v8 the following can be obtained from Eq
~3.2!:

g5

b

2
1

d

«Dv8
~v822c2kz

2!

L~v8/c!
, ~3.14!

where the frequencyv8 is described by Eq.~3.11!.
If the opposite condition holds instead of~3.12!, i.e., if

a2v2@v22c2kz
2>0, ~3.15!

then the imaginary partQ9(kz ,v) ~2.25! is half the value
given by Eq. ~3.13!. This means that for phase velocitie
close to the speed of light the term withoutb in ~3.14! must
be reduced by one half.

According to Eq.~3.14!, for Swihart waves with phase
velocities above the speed of light the damping constant c
tains two additive contributions. The first contribution tog is
proportional tob, exists forv8,ckz , and is attributable to
Ohmic energy losses in the tunnel junction. The second c
tribution to g contains the factorv822c2kz

2 , exists only for
high phase velocities, and describing the damping of Swih
waves due to energy losses in the emission of electrom
netic waves into vacuum. In the long-wavelength ran
wherekz!v j /c, the second contribution is the main term
the conductivity of the tunnel junction is sufficiently low,

s,
d

2pD
v j , ~3.16!
h

-

in

f

n-

n-

rt
g-
,

which is equivalent to the inequalityb,(2d/«D)v j . If we
set 2d;D and«;10, the conditionb,0.1v j must be sat-
isfied. We note that Eq.~3.14! has been obtained in the lim
g!v8. Comparing relations~3.11! and ~3.14!, for v8@ckz

andb!2v8d/«D we infer thatg!v8 holds if

d!«DL~v8/c!.«DL~v j /c!. ~3.17!

Consequently, this behavior of the spectrum of Swih
waves occurs in films having thicknesses in the inter
l@D@d/«L(v j /c).

4. EMISSION FROM LINEAR WAVES

Here we discuss the characteristics of radiation from
long Josephson junction when a linear phase-difference w
of the form ~3.1! propagates along it. We assume that t
phase velocity of the wave is much greater than the spee
light, v/kz.c. According to Eqs.~2.10!–~2.16!, the only
Fourier components of the potential that are emitted
those for which

kx
2,v2/c22kz

2 , ~4.1!

and the functionc ~2.16! is purely imaginary. The contribu
tion of the scalar potential~2.14! can now be disregarded
because it does not produce any radiative energy losses
is negligible far from the film. Invoking Eqs.~2.10!–~2.16!,
we can then find the components of the vector potentia
vacuum:

Ax~r ,t !52
f0w0

2p2 E
0

k

dkx cos~xkx!$@Z21kx
2

3~12a22Z1!#cosa22leAk22kx
2

3@Z21kx
2~12a2!#sina%~Z1Z2!21, ~4.2!

Ay~r ,t !52
f0w0

2p2 E
0

k

dkxkx sin~xkx!

3H a
v

c
cosa1Ak22kx

2 sinaJ Z2
21 , ~4.3!

Az~r ,t !52
f0w0

p2 lekzE
0

k

dkxkx

3sin~xkx!H 2leFZ21
v2

c2 ~12a2!G
3sina2~12a2!Ak22kx

2 cosaJ ~Z1Z2!21, ~4.4!

where the following notation has been introduced:

k2[v2/c22kx
2 ,

a[Ak22kx
2 y1kzz2vt, ~4.5!

Z1[114le
2~k22kx

2!, Z2[k22kx
21a2v2/c2. ~4.6!

Equations~4.2!–~4.4! can be used to find the contribution t
the electromagnetic field componentsE andH from the ra-
diation of waves into vacuum:
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E52
1

c

]A

]t
, H5curlA. ~4.7!

In the equation forE ~4.7!, as in the derivation of Eqs.~4.2!–
~4.4!, the term representing the contribution of the sca
potential,2gradV, has been omitted. Using the radiatio
descriptive parts of the fieldsE andH, we can find the elec-
tromagnetic radiation flux density averaged over the per
of the field:

S5
v

2p E
0

2p/v

dt
1

4p FcurlA
]A

]t G . ~4.8!

Substituting Eqs.~4.2!–~4.4! into ~4.8! and evaluating the
integrals with respect to the variablekx by a procedure simi-
lar to that described in Appendix C, we find

Sx5S0R cosj, ~4.9!

Sy5S0R sinj, ~4.10!

Sz5
S0R

Av221
, ~4.11!

wherej[arctan(y/x) varies in the interval from 0 to 2p. In
Eq. ~4.9! S0 characterizes the order of magnitude of the fl
at the distancer'5Ax21y2 from the Josephson junction:

S0[S f0w0v

8p2c D 2 v

r'

, ~4.12!

the functionR depends on the anglej and the ratio of the
Swihart wave phase velocity to the speed of lig
v5v/ckz :

R[F11
a221

v21a2~v221!sin2 j G F11
a2v2

~v221!sin2 j G21

.

~4.13!

From Eqs.~4.9!–~4.11! we obtain an equation for the ratio o
the component of the flux density along the Josephson ju
tion, Sz , to the flux density in the plane normal to the axis
the tunnel junction,S'[ASx

21Sy
2 5S0R:

Sz

S'

5
1

Av221
. ~4.14!

According to Eq.~4.14!, Sz@S' for 1@v221.0, and elec-
tromagnetic energy is emitted in the direction of propagat
of the Swihart wave. On the other hand, forv@1, when the
phase velocity is much greater than the speed of lig
S'@Sz , and the radiation is localized mainly in a plane o
thogonal to the axis of the tunnel junction. From Eqs.~4.9!–
~4.11! we can obtain expressions for the total flux density
the radiation at an anglej relative to the plane of the film:

S5ASz
21S'

2 5S0R
v

Av221
. ~4.15!

Bearing in mind the smallness of the parametera, from Eqs.
~4.13! and ~4.15! we have

S

S0
5

v2211a2

vAv221
F11

a2v2

~v221!sin2 j G21

. ~4.16!
r

d

,

c-
f

n

t,

f

It is evident from this result that for 1>usinju.av/Av221
the energy flux densityS is essentially independent of th
anglej. But for usinju!av/Av221

S

S0
.

Av221

v
~v2211a2!

sin2 j

a2v2 ~4.17!

varies as a function of sin2j.
These functional relations are illustrated in Fig. 1, whi

shows the dependence of the functionS/S0 on the anglej.
The curves have been plotted on the assumption
a52leuvu/c50.1. The graphs ofS/S0 are given for six val-
ues of the parameterv2. It is evident in Fig. 1 how the
angular range in which the radiation flux density is const
broadens as the phase velocity increases. The dependen
S/S0 on the ratio ofv/kz to the speed of lightc is shown in
Fig. 2. The curves in this figure correspond to five differe
angles of observationj. According to Fig. 2, the smalle
usinju, the smaller is the radiation flux density. The flux de
sity S/S0 tends monotonically to zero asv/ckz approaches
unity.

Equations ~4.9!–~4.11! can also be used to find th
damping constant of waves traveling along the Joseph
junction due to radiative energy losses. In fact, the ene
losses per unit length of the tunnel junction are given by
integral

r'E
0

2p

djn•S5r'S0E
0

2p

djR52
4pc2

v2 r'S0Q9~kz ,v!,

~4.18!

FIG. 1. Radiation flux density in a half-space over a film as a function of
angle of observationj for various values of the parameter:~1! (v/ckz)

2

5100; ~2! 40; ~3! 2; ~4! 1.5; ~5! 1.1; ~6! 1.01.

FIG. 2. Dependence of the functionS/S0 on v/ckz for various angles of
observation:~1! 90°; ~2! 45°; ~3! 10°; ~4! 5°; ~6! 2°.
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wheren is the unit vector normal to the cylindrical surface
radius r'5Ax21y2, and the imaginary partQ9(kz ,v) is
described by Eq.~2.25!.

On the other hand, the radiative energy losses can
written in the form 2g rW, whereg r is the radiative damping
constant, andW is the period-average energy per unit leng
of the Josephson junction. To calculateW for waves with a
phase velocity greater than the speed of light and under
condition

d

«D
ln

c

dv j
!1, ~4.19!

when the difference of the wave frequencyv from the
Josephson frequencyv j can be ignored, it is sufficient to
take into account the energy of the electric field in the ju
tion and the energy of the Josephson current. We then h

W5
v

2p E
0

2p/v

dt
\ j c

2ueu
DF 1

2v j
2 S ]

]t
w D 2

112coswG.
«D

d
S0

pr'

v
. ~4.20!

Setting 2g rW equal to the radiative energy losses~4.18!, we
obtain

g r52
2d

«D

c2

v
Q9~kz ,v!, ~4.21!

which is consistent with Eqs.~3.13! and ~3.14!.

5. EMISSION OF LARGE-SCALE NONLINEAR STATES

In this section we discuss the emission of waves i
vacuum from nonlinear states when the amplitude of
phase difference of the wave functions is not small in co
parison with unity. We assume that the variation of the ph
difference has a long characteristic time:

T[U ]

]t
ln w~z,t !U21

@
2le

c
. ~5.1!

We assume that the space scale of variation of the ph
differenceL is much greater than the distance traversed
the electromagnetic wave in vacuum during the character
time of variation of the phase difference:

L[U ]

]z
ln w~z,t !U@cT. ~5.2!

Inequalities~5.1! and ~5.2! are compatible if the inhomoge
neity scaleL is much greater than twice the effective pe
etration depth of the field into the film,L@2le . We refer to
states with space scalesL that satisfy inequality~5.2! as
large-scale states. In addition to conditions~5.1! and ~5.2!,
we assume that

d

«D
ln

cT

d
!1. ~5.3!

Inequality ~5.3! permits the influence of a surface electr
magnetic wave on a large-scale nonlinear state to be igno
be

he

-
ve

o
e
-
e

se
y
ic

d.

Under the conditions defined by inequalities~5.1!–~5.3!, tak-
ing Eqs.~2.24!, ~2.25!, and~2.29! into account, we can write
Eq. ~2.22! in the form

sinw~z,t !1
b

v j
2

]

]t
w~z,t !1

1

v j
2

]2

]t2 w~z,t !

52
2

p
lel

]2

]z2 E
2`

`

dt8 sgn~ t82t !

3FC1 lnS c

le
ut82tu D G ]

]t8
w~z,t8!

2
2

p
lel

]

]t E2`

`

Á
dt8

t2t8

]

]t8
w~z,t8!. ~5.4!

whereC50.577 is the Euler constant. Unlike Eq.~2.22!, Eq.
~5.4! does not contain spatially nonlocal coupling. When t
characteristic time of variation of the phase difference is
termined by the reciprocal Josephson frequency, the a
ment of the logarithm on the right-hand side of~5.4! can be
approximately replaced byc/lev j . Equation~5.4! now as-
sumes the form

v j
2 sinw~z,t !1b

]

]t
w~z,t !1

]2

]t2 w~z,t !

5
4

p

d

«D
c2lnS c

lev j
D ]2

]z2 w~z,t !

1
2

p

d

«D

]

]t E2`

`

Á
dt8

t82t

]

]t8
w~z,t8! ~5.5!

We note that comparatively small terms occur on the rig
hand sides of Eqs.~5.4! and ~5.5! by virtue of the stated
assumptions~5.2! and ~5.3!. However, these terms gover
both the radiative energy losses and the slow spatial varia
of the phase difference. In particular, these terms charac
ize the dispersion and radiation damping of Swihart wa
~see Sec. III!. We now use Eq.~5.4! @or ~5.5!# to analyze the
emission of waves by large-scale distributions of the ph
difference. Taking inequalities~5.2! and ~5.3! into account,
we disregard the influence of the small terms on the rig
hand side of~5.4! in the first approximation.

We also assume that the dissipation associated w
Ohmic losses is small:b!v j . Under these conditions Eq
~5.4! reduces to the mathematical pendulum equation

v j
2 sinw~z,t !1

]2

]t2 w~z,t !50, ~5.6!

whose solutions are well known~see, e.g., Refs. 3 and 21!.
The radiative energy losses by nonlinear states describe
the solutions of Eq.~5.6! have been investigated in a brie
communication.21 We emphasize that even though the d
rivative of the phase difference with respect to the coordin
for such states is equal to zero, the electromagnetic field
the surface of the superconducting film is not equal to ze
The presence of this field induces a radiation flux that tra
ports energy away from the junction into vacuum~see Ap-
pendix D!. We now discuss the specific characteristics of
emission of waves by large-scale nonlinear states in gre
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detail. Since the distribution of the phase difference of su
states is independent of the coordinate in the first appr
mation, the Fourier componentw(kz ,v) is proportional to
the delta functiond(kz). Invoking Eqs.~2.10!–~2.16!, disre-
garding the contribution of the scalar potential, and retain
only the emitted Fourier components of the potentials,
find

Ax~r ,t !52
f0

4p3 E
2`

`

dvE
2`

`

dt8 exp@ iv~ t82t !#w~ t8!

3E
0

uvu/c
dkx cos~xkx!exp@2yc~v,kx!#

3
c~v,kx!

c~v,kx!2av/c
, ~5.7!

Ay~r ,t !52
f0

4p3 E
2`

`

dvE
2`

`

dt8

3exp@ iv~ t82t !#w~ t8!E
0

uvu/c
dkxkx sin~xkx!

3exp@2yc~v,kx!#
1

c~v,kx!2av/c
, ~5.8!

wherew(t) is the solution of Eq.~5.6!,

w~v,kx!52 iAv2/c22kx
2 sgnv. ~5.9!

In this approximation we haveAz(r ,t)50.
We first discuss the emission of waves for the nonlin

state described by the solutions of Eq.~5.6! corresponding to
finite-amplitude oscillations of the phase difference, whe

wv~ t !52 arcsin@k sn~v j t,k!#, ~5.10!

wherek is the modulus of the elliptic sine sn. We expand t
derivative of the functionwv into a Fourier series:

d

dt
wv~ t !58Vv (

n50

`
qn11/2

11q2n11 cos@~2n11!Vvt#, ~5.11!

where the frequencyVv and the parameterq depend on the
modulusk:

Vv5
pv j

2K~k!
, ~5.12!

q5expF2
p

K~k!
K~A12k2 !G , ~5.13!

and K(k) is a complete elliptic integral of the first kind
Now, using the expressions for the components of the ve
potential ~5.7! and ~5.8! and the expansion~5.11!, we can
find the radiation flux density averaged over the per
2p/Vv @cf. ~4.8!#:

S5~ex cosj1ey sinj! (
n50

`
Sv,n sin2 j

sin2 j1@2le~2n11!Vv /c#2 ,

~5.14!

where we have introduced the notation
h
i-

g
e

r

or

d

Sv,n5
f0

2Vv
3

p4c2r'

q2n11

~11q2n11!2 ~2n11!. ~5.15!

According to Eqs.~5.11! and~5.14!, radiation is emitted
in odd harmonics of the fundamentalVv ~5.12!, which is
smaller than the Josephson frequency. Fork!1 the fre-
quencyVv is close tov j , and the radiative energy losses a
governed mainly by emission from the fundamentaln50. As
k increases, the radiation spectrum becomes more abun
in higher harmonics, and the interval between the harmon
decreases. Whenk is close to unity,Vv tends logarithmically
to zero:

Vv.
p

2
v j S ln

4

A12k2 D 21

. ~5.16!

with the emission of a broad spectrum of closely spac
frequencies (2n11)Vv . We note, in accordance with th
conditions ~5.1! and ~5.2! underlying the validity of the
theory, that the emitted frequencies must lie in the interv

2pc/L!~2n11!Vv!pc/le . ~5.17!

Equation~5.14! can be used to express the directionality
the emission of harmonics. According to Eq.~5.14!, the ra-
diation flux from large-scale nonlinear states is localized i
plane orthogonal to the axis of the Josephson junction an
directed along the radius vectorr' . Since the paramete
2le(2n11)Vv /c, by virtue of the right inequality~5.17!, is
much smaller than unity over a wide range of angles, wh

usinju.2~2n11!leVv /c, ~5.18!

the absolute value of the flux density at the frequency (n
11)Vv does not depend on the angle of observation an
equal toSv,n . Outside the interval~5.18!, as when the angles
of observation are tight against the plane of the film, t
intensity of emission of the harmonics decays asusinju de-
creases, in proportion to sin2j. Integrating the fluxS ~5.14!
over the surface of a cylinder of radiusr' and taking into
account the smallness of the parameter 2(2n11)leVv /c,
we obtain Eq.~11! in Ref. 21 for the energy flux from uni
length of the tunnel junction.

Next we consider the emission of radiation from t
nonlinear state described by the solution of the rotating p
dulum equation~5.6!, when

w r~ t !52 amS v j

k
t,kD52V r t14(

n51

`
qn

n~11q2n!
sin@2nV r t#,

~5.19!

where am denotes the Jacobi amplitude, and

V r5
p

2kK~k!
v j . ~5.20!

In this case the radiation flux density averaged over the
riod 2p/V r has the form

S5~ex cosj1ey sinj! (
n51

`
Sr ,n sin2 j

sin2 j1~4nleV r /c!2 ,

~5.21!
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Sr ,n5
f0

2V r
3

p4c2r'

2nq2n

~11q2n!2 . ~5.22!

Equations~5.21! and ~5.22! describe the radiation flux a
even frequencies 2nV r . If k is close to unity, the frequenc
V r ~5.20! is much lower than the Josephson frequency, a
the radiation spectrum contains many even harmonics of
fundamental. The frequencyV r becomes lower ask in-
creases. Ifk!1, we haveV r.v j /k@v j . The intensity of
the radiation at higher harmonics is significantly reduc
sinceq!1. The radiation pattern of the even harmonics
the same as for odd harmonics. The radiation flux is loc
ized in a plane orthogonal to the axis of the tunnel juncti
If usinju.4nleVr /c, the flux density at the frequency 2nV r

does not depend on the angle of observation and is equ
Sr ,n ~5.22!. Another solution of Eq.~5.6! is the 2p kink

w~ t !54 arctan~ev j t!2p. ~5.23!

The radiation pattern from the 2p kink has the same feature
as for nonlinear periodic solutions. Now a continuous sp
trum of frequencies lower than, or of the same order as
Josephson frequency is emitted. At high frequencies
spectral density of the radiation is exponentially small.21

6. CONCLUSION

To summarize the foregoing discussion, the space–t
nonlocal electrodynamics describing transient states in a
sephson contact in a superconducting thin film has ena
us to obtain comparatively simple and transparent equat
that provide a picture of electromagnetic radiation penet
ing from the surface of the film into vacuum. This possibili
has been afforded both by the formulation of a nonlin
integrodifferential equation describing the distribution of t
phase difference in the junction and by the systematic
scription of the electromagnetic field in vacuum.

However, the above treatment ignores dissipation as
ciated with thermal fluctuations. We are grateful to the
viewer who called our attention to Ref. 22, in which th
authors have investigated the influence of voltage fluct
tions at the contact on the width of the emission line from
Josephson point contact to which a constant voltageV0 is
applied. An equation for the width of the emission line at t
frequency 2eV0 /\ can be deduced from Ref. 22:

G5S 4pc

f0
D 2 2pd

b«Scon
Tcon, ~6.1!

where Tcon is the temperature, andScon is the area of the
point contact. Equation~6.1! is valid when

G!b, ~6.2!

and the external circuit has a high resistance.
It is useful to ascertain the conditions under which t

influence of fluctuations can be disregarded. According
Eq. ~2.22!, the contribution of radiation to the linewidth i
determined additively by the termb; hence, our analysis is
appropriate when inequality~6.2! is satisfied.

It should be noted here, in accordance with Ref.
p. 114, and Ref. 2, p. 72, that the most significant conditi
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in practical applications of point contacts correspond to
satisfaction of inequality~6.2!. Indeed, assuming, for ex
ample, that we haveT54.2 K, b.531010s21, and 2d/«
.331028 cm, we see that condition~6.2! is satisfied for
point contacts having an area greater than;10mm2. In ap-
plication to our case of a contact in a film,Scon5DL f , where
L f is the width of the film, condition~6.2! is satisfied when
the width of the film is not too small. For example, adopti
the same tunnel junction parameters as above, along
D;331027 cm, we find that inequality~6.2! is satisfied for
L f.3 mm. Consequently, it is clearly admissible to negle
the influence of fluctuation dissipation in comparison w
ordinary Ohmic dissipation.

Finally, it must be emphasized that our emission of
diation associated with Swihart waves is possible at frequ
cies comparable with the Josephson frequencyv j . When
condition~6.2! is satisfied in this case, emission can be e
cient under the condition

v j@b. ~6.3!

Condition ~6.3! is satisfied for the typical parametersv j

;1012s21 andb;531010s21 ~see, e.g., Ref. 23!.
However, for a film of sufficiently small width, such tha

condition~6.2! is violated, fluctuations can in fact dictate th
emission linewidth. In this limit, according to Ref. 22, th
emission linewidth is given by the expression

G5
8ueu
\
A pd

«Scon
Tcon. ~6.4!

It is clear that the emission is adequately efficient if

8ueu
\
A pd

«Scon
Tcon!v j .

This inequality, like inequality~6.2!, imposes restrictions on
the width of the film. For the Josephson junction paramet
adopted above, it is satisfied ifL f@10mm.

The latter result indicates that our above discussion
the conditions for inequality~6.2! to hold is of methodologi-
cal significance only, which, of course, is important in u
derstanding the validity of the model used in our article.

In summary, our investigation has established laws g
erning the emission of electromagnetic radiation from
surface of a film containing a Josephson junction.

This work has been performed as part of Project 96-
17303 of the Russian Fund for Fundamental Research
support from the Scientific Council on High-Temperatu
Superconductors~Project ‘‘AD’’ 95008! and state suppor
for leading scientific schools~Project 96-15-96750!.

APPENDIX A:

To construct a solution of Eqs.~2.1!–~2.4!, we go over
to Fourier transforms in the variablesr i and t:

F~y,k,v![E
2`

`

dtE dr i exp~ ivt2 ik•r i!F~y,r i ,t !,

~A1!

wherek5(kx,0,kz). We can then obtain a system of equ
tions for the Fourier components of the potentials:
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d

dy
Ay~y,k,v!1 ik•Ai~y,k,v!50, ~A2!

d2

dy2 A~y,k,v!2S k22
v2

c2 DA~y,k,v!

1 i
v

c S ik1ey

d

dy DV~y,k,v!50, y.0, ~A3!

d2

dy2 V~y,k,v!2k2V~y,k,v!50. ~A4!

Here the boundary conditions~2.8! and~2.9! for the compo-
nents of the vector potential have the form

d

dy
Ax~y,k,v!uy5105

1

2le
H f0

2p
@w~kz ,v!1 ikxF~k,v!#

1Ax~y50,k,v!J , ~A5!

d

dy
Az~y,k,v!uy5105

1

2le
H f0

2p
ikzF~k,v!

1Az~y50,k,v!J ~A6!

Ay~y50,k,v!50, ~A7!

whereex andey are unit vectors along thex andy axes, and
the Fourier components of the phase and the phase differ
are described by the relations

F~k,v!5E
2`

0

dxF1~x,kz ,v!exp~2 ikxx!

1E
2`

`

dxF2~x,kz ,v!exp~2 ikxx!, ~A8!

w~kz ,v!5F1~0,kz ,v!2F2~0,kz ,v!. ~A9!

It is evident from Eq.~2.6!, in turn, that the Fourier compo
nent of the scalar potential on the surface of the film is
lated toF(k,v) by the equation

V~y50,k,v!52 iv
f0

2pc
F~k,v!. ~A10!

Taking relations~A2! and ~A10! into account, we can write
the solution of the differential equations~A3! and~A4! in the
regiony>0 in the form

Ax~y,k,v!5ax exp~2cy!1
c

v
kxV~y,k,v!, ~A11!

Ay~y,k,v!5
ik•a

c
exp~2cy!1 i

c

v
kV~y,k,v!, ~A12!

Az5~y,k,v!5az exp~2cy!1
c

v
kzV~y,k,v!, ~A13!

V~y,k,v!52 iv
f0

2pc
F~k,v!exp~2kc!, ~A14!
ce

-

where the functionc is described by Eq.~2.16!. The sign of
the imaginary part of the functionc is chosen so that for
v2.c2k2 the vector potentialA describes the emission o
electromagnetic waves into vacuum. We also assume tha
scalar potential~and forv2,c2k2 the vector potential! tends
to zero far from the film. Substituting the solutions~A11!–
~A14! into the boundary conditions~A5!–~A7!, we find

ax5
f0

2p

w~kz ,v!

112lec
S 11

2le

G
kx

2D , ~A15!

az52
f0

2p

w~kz ,v!

112lec

2le

G
kxkz , ~A16!

F~k,v!5 iw~kz ,v!kx /kG, ~A17!

where G is defined by Eq.~2.15!. Equations~A11!–~A17!
express the coupling of the electromagnetic potentials w
the phase difference at the tunnel junction@see Eqs.~2.10!–
~2.13!#.

APPENDIX B:

In general the real part of the Fourier component of
kernelQ8(kz ,v) is equal to the sum of four integralsI n (n
51,2,3,4):

Q8~kz ,v!5I 11I 21I 31I 4 , ~B1!

which have the form

I 15
1

p E
kh(k2)

`

dkx

kz
2

k2

Ak22v2/c2

112leAk22v2/c2
, ~B2!

I 25
v2

pc2 E
kh(k2)

1/2d

dkx

kx
2

k2

1

2lev
2/c22Ak22v2/c2

, ~B3!

I 35
2

p
lekz

2h~k2!E
0

k dkx

k2

v2/c22k2

114le
2~v2/c22k2!

, ~B4!

I 45
2

p
le

v4

c2 h~k2!E
0

k

dkx

kx
2

k2

1

v2/c22k214le
4v4/c2 ,

~B5!

wherek2[v2/c22kz
2 . Having assumed in the initial equa

tions that the scale of the field variation is large in compa
son with the thickness of the tunnel junction 2d, we can
eliminate the logarithmic divergence in Eq.~B3! by setting
the upper limit of integration equal to 1/2d. The integrals can
be evaluated in quadratures, but the results are fairly
volved. We confine the analysis to limiting values of th
integrals, which are needed to set forth the basic mate
underlying the discussion of conditions whereby the para
eter 2leuvu/c is smaller than unity. The integralsI n have a
particularly simple form in the limituvu!cukzu, when

I 1.
kz

2

p
Q~2leukzu!, I 2.2

v2

pc2 ln
1

dukzu
, I 35I 450,

~B6!

where the functionQ(x) is described by Eq.~2.28!. In the
opposite, high-frequency limituvu@cukzu we can obtain the
following relations from Eqs.~B2!–~B5!:



c

i-

c

e-

-
he

te

e

of
o
d

ials
e

-
m
s

ting

798 JETP 88 (4), April 1999 Malishevski  et al.
I 1.
kz

2

p
ln

c

leuvu
, I 2.2

v2

pc2 ln
c

duvu
,

I 3.
2

p
leukzu

v2

c2 arctanA v2

c2kz
2 21,

I 4.
2

p
le

uvu3

c3 ln
c

leuvu
2I 3 . ~B7!

Equations~B6! and ~B7! are sufficiently accurate for basi
calculations.

APPENDIX C:

To compute integrals of the form

I 5E
0

k

dk f~k!exp@ iF ~k!#, ~C1!

where the functionF(k) is described by the expression

F~k!5xk1yAk22k2, ~C2!

we use the steepest descent method. Ify/x5tanj.0, the
function F(k) has a maximum at

km5k cosj. ~C3!

The following expansion is valid in the vicinity of the max
mum:

F~k!5kr'2
r'

2k sin2 j
~k2k cosj!21 . . . , ~C4!

wherer'5Ax21y2 is the distance from the Josephson jun
tion to the observation point. Under the conditions

tan~j/2!@A2/kr', tanj!Akr'/2, ~C5!

which hold at sufficiently large distances, the limits of int
gration in Eq.~C1! can be set equal to6`. Assuming then
that the functionf (k) varies only slightly in the narrow in-
terval

k cosj2A2k

r'

sinj<k<k cosj1A2k

r'

sinj, ~C6!

from Eqs.~C1! and ~C4! we obtain

I'Apk

r'

f ~k cosj!sinj exp~ ikr'!~12 i !. ~C7!

For tanj,0 the functionF(k) reaches a maximum with re
spect tok at the boundaries of the domain of integration. T
main contribution to the integralI in this case is from the
edge of the domain of integration, and the value of the in
gral itself decreases}1/r' . Corrections of this order are
insignificant in regard to the radiation field at large distanc

APPENDIX D:

We now show how radiation flows from the surface
the superconductor into vacuum in the case of homogene
large-scale states. Assuming that the phase difference
-

-

s.

us
e-

pends only on time, from the expressions for the potent
~2.10!–~2.14! we can obtain the field on the surface of th
film at uxu>d:

H~x,y510, t !52
f0

~2p!3c2

]

]t E dvdkxdt8eiv(t82t)

3cos~xkx!
dw~ t8!

dt8

1

c22lev
2/c2 ez , ~D1!

Ex~x,y50,t !5
f0

~2p!3c E dvdt8dkxe
iv(t82t)

3cos~xkx!
dw~ t8!

dt8

1

G

G12lekx
2

112lec
, ~D2!

Ey~x,y510, t !52
f0

~2p!3c E dvdt8dkxe
iv(t82t)

3sin~xkx!
dw~ t8!

dt8

kx

c22lev
2/c2 , ~D3!

where the functionc is given by Eq.~2.16!, in which it is
now required to setkz50. The magnetic field at the bound
ary of the tunnel junction with vacuum is determined fro
Eq. ~D1! at x50, and the electric field in the junction i
determined from the Josephson equation

E~x,y50, t !5
f0

4pcd

dw~ t !

dt
ex . ~D4!

For the nonlinear states~5.10! and ~5.19!, when the time
derivative of the phase difference has the form

dw~ t !

dt
5 (

n50

`

an cosVnt,

where Vn5(2n11)Vv for the solution ~5.10!, and Vn

52nV r for the solution~5.19!, from Eqs. ~D1!–~D3! we
obtain equations for the field outside the nonsuperconduc
layer:

H~x,y510, t !5
f0

~2pc!2 (
n50

`

anVnE dkx

3cos~xkx!ImF eiVnt

cn22leVn
2/c2 Gez , ~D5!

Ex~x,y50,t !5
f0

~2p!2c (
n50

`

anE dkx

3cos~xkx!ReFeiVnt

Gn

Gn12lekx
2

112lecn
G , ~D6!

Ey~x,y510, t !52
f0

~2p!2c (
n50

`

anE dkx

3sin~xkx!kx ReF eiVnt

cn22leVn
2/c2 G , ~D7!

where
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cn[Akx
22Vn

2/c2 h~c2kx
22Vn

2!

1 iAVn
2/c22kx

2 h~Vn
22c2kx

2!,

Gn[cn22leVn
2/c2.

As before@see Eq.~3.3!#, we assume that the electromagne
wavelength in vacuum is greater than the effective Lond
penetration depth of the magnetic field in the film,

2leVn /c!1. ~D8!

Then, ignoring small corrections containing the parame
~D8!, from Eqs.~D5!–~D7! we can obtain an equation for th
flux density on the surface of the film away from the tunn
junction, averaged over the fundamental period:

S5
r'

x (
n50

`

Snex , ~D9!

whereSn is given by Eq.~5.15! or ~5.22!. According to Eq.
~D9!, the flux density tends to zero in the limituxu→`. This
means that in the limit~D8! the radiative energy losses from
the surface of the superconductor are negligible. On the o
hand, under conditions~D8!, taking ~D4! and ~D5! into ac-
count, we can write the energy flux density from the tun
junction at the junction–vacuum interface in the form~for
y510)

S5
pr'

2d (
n50

`

Sney ,

Under condition~D8! the total energy lost by the junctio
from unit length along thez axis per unit time is

4duSu52pr' (
n50

`

Sn .

The integration of Eq.~5.14! or ~5.21! over all anglesj @see
Eq. ~4.18!# produces the same result.
n
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Magnetic response of a two-dimensional degenerate electron gas in nanostructures
with cylindrical symmetry

V. A. Ge ler, V. A. Margulis, and A. V. Shorokhov

N. P. Ogarev Mordovan State University, 430000 Saransk
~Submitted 15 August 1998!
Zh. Éksp. Teor. Fiz.115, 1450–1462~April 1999!

An investigation is made of the magnetic response of nanostructures with cylindrical symmetry
located in a longitudinal magnetic field. Analytic expressions are obtained for the magnetic
moment of the nanostructures, cylinders and bracelets. It is shown that the magnetic moment
describes Aharonov–Bohm oscillations. The profile of the oscillations and the position of
the oscillation maxima are studied. In the limitT→0 the curves of the magnetic response as a
function of the magnetic field flux contain ‘‘beak’’-shaped kinks, and the positions of the
points at which these kinks occur are determined. The temperature dependence of the magnetic
response is studied and the influence of the spin–magnetic interaction on the magnetic
response of the nanostructures is examined. It is shown that this interaction destroys the periodicity
of the magnetic response with respect to flux and gives rise to a monotonic term in the
response. ©1999 American Institute of Physics.@S1063-7761~99!02004-1#
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1. INTRODUCTION

Over the last few years, the equilibrium and transp
properties of electrons in mesoscopic samples have bee
focus of intensive experimental and theoretical studies.1 This
is because modern technologies can be used to fabricate
fect nanostructures of various geometries~quantum wells
and dots, channels, wires, and rings in heterostructur!.
Each of these nanostructures has its own unique phys
properties. Interesting equilibrium effects occur when a m
netic field is applied to a sample.8–11

Note that studies of the magnetic response in vari
quasi-one-dimensional and quasi-two-dimensional syst
can give important information on the parameters of the e
tron energy spectrum and the lateral confinement poten
in these structures.1–10 Moreover, a magnetic field applied t
the nanostructure can provide additional scope for study
its parameters. This is because a magnetic field can crea
enhance the existing lateral confinement in the nanostruc
and can also produce hybrid coupling between motion pa
lel and perpendicular to the field when the field is directed
an angle to the symmetry axis of the system.4,7

The equilibrium properties of an electron gas in nan
structures are mainly determined by the electron ene
spectrum, which is itself determined by the geometry of
system. In addition to the nanostructures described ab
which are fabricated in a planar two-dimensional elect
system, investigations of nanosystems in curved layers h
also started recently.11–18 Special procedures~such as lift-
off! have recently allowed us to investigate a curved laye
electron gas experimentally.17 The geometry of a cylinder is
the closest to the experimental situation17 and in particular,
the geometry of a carbon nanotube is close to that of a
inder. The magnetic response of a nanotube atT50 was
investigated numerically by Ajiki and Ando.19 The effective-
mass approximation was used to find the electron spect
8001063-7761/99/88(4)/7/$15.00
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for the case where the magnetic fieldB is parallel to the tube
axis. Lin and Shung2 investigated the magnetic response o
nanotube for the same field orientation using the stro
coupling approximation but allowing for spin–magnetic i
teraction. The latter gives rise to a crescent-shaped singu
ity ~cusp! on the curve giving the magnetizationM as a
function of the magnetic field fluxF near integer values o
the quantum fluxF05e/ch. In Ref. 2 it was noted that the
results for the strong-coupling model are similar to tho
obtained in the effective-ma ss approximation.19

Ovchinnikov et al.18 reported a detailed theoretica
analysis of the average magnetic response of various m
scopic systems, including a bracelet~a cylinder with height
of order the Fermi wavelength!. The magnetic field was di-
rected normal to the side surface of the cylinder. For
averaging, these authors assumed that the chemical pote
has a random correction which is distributed uniformly in
interval on the order of the interlevel spacing. As a result
this averaging, both the de Haas–van Alphen oscillations
the dimensional fluctuations are smeared out. Conseque
for T@\vc Ovchinnicov et al.18 obtained expressions fo
the magnetic susceptibility of these mesoscopic syste
which are an analog of the Landau formula for the diam
netic susceptibility.

In view of this reasoning, it is quite important to deriv
analytic expressions for the magnetic moment in nonpla
two-dimensional nanosystems and to study Aharonov–Bo
oscillations of the magnetic response, as well as determin
the temperature dependence of the profile of these osc
tions. The main purpose of the present study is to obt
convenient formulas for analytic and numerical investig
tions, which describe the oscillations of the magnetic
sponse of a two-dimensional degenerate electron gas fo
into a cylinder~quantum cylinder!, including a cylinder with
a short generatrix whose lengthL is of the order of the Ferm
© 1999 American Institute of Physics
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wavelength of an electronlF ~quantum bracelet!. The topical
case of a magnetic field directed along the symmetry axi
the system is studied~a static homogeneous fieldB and a
field generated by an infinitely thin Aharonov–Bohm so
noid are both considered!. An analysis is made of the influ
ence of the electron spin on the profile of the oscillati
curve. As will be shown subsequently, the nontrivial curv
ture of these two-dimensional systems leads to an interes
new effect: in the limitT→0 beak-shaped kinks appear o
the oscillation curve. The nature of these kinks is similar
that responsible for the kinks on the curve of the undam
current in a quantum magnetic ring.3

Finally, we note that the magnetic response is inve
gated using both a Gibbs canonical distribution~constant
number of electrons! and a large Gibbs canonical distributio
~constant chemical potential of the gas:m(B)5const). For
most situations the results obtained using these distribut
differ very little. This is because the oscillating compone
of m(B) for a constant number of electrons is very smal20

For a degenerate electron gas, however, it is more conven
to use the large canonical distribution for the calculatio
Thus, we shall subsequently adopt this approach, i.e.,
shall assume thatm5const. In addition, we shall exclusivel
consider a noninteracting electron gas.

2. MAGNETIC RESPONSE OF A QUANTUM CYLINDER

In the effective-mass approximation the HamiltonianH
of the single-electron spin-zero states for the vector poten
A, taken in the formA5(By/2,2Bx/2,0), is written in cy-
lindrical coordinates as

H52«
d2

dw2
2

i\vc

2

d

dw
1

m* vc
2

8
r21

p2

2m*
, ~1!

wherevc5eB/m* c is the cyclotron frequency,w is the po-
lar angle,m* is the effective electron mass,p is the momen-
tum in the direction of the cylinder axis, and«5\2/2m* r2 is
the dimensional confinement energy.

The spectrum of the Hamiltonian has the form

«mp5«S m1
F

F0
D 2

1
p2

2m*
. ~2!

Here the magnetic quantum numberm has the valuesm
50, 61, 62, . . . , andF5pr2B is the flux of the fieldB
through the cross section of the cylinder. Using the stand
expression for the thermodynamic potentialV ~Ref. 21!, we
obtain in our case

V52
TL

2p\ (
m52`

` E
2`

`

dplnF11expS m2«mp

T D G , ~3!

whereL is the cylinder length. From expression~3! we find
the magnetic moment using the formulaM52(]V/]B)m/T

and then

2
M

mB
5

Lm0

p\m*
(

m52`

` E
0

` ~m1F/F0! dp

11exp@~«mp2m!/T#
, ~4!
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wherem0 is the free electron mass andmB is the Bohr mag-
neton.

For the following analysis it is convenient to expand t
magnetic moment of the cylinder as a Fourier series usin
Poisson summation formula. After some simple but fai
lengthy transformations, we obtain

2
M

mB
5 (

n51

`

Cn~T!sinS 2pn
F

F0
D , ~5!

where the Fourier coefficientsCn(T) have the form

Cn~T!5
Lm0

p3\m*
E

0

`

dz zsin~nz!

3E
0

`

dpH 11expF 1

T S «z2

4p2
1

p2

2m*
2m D G J 21

.

~6!

We introduce the new variablesx5zA«/2p, y
5p/A2m* , and convert in Eq.~6! to polar coordinates (r ,c)
in the xy plane. ForCn(T) we then obtain

Cn~T!5
4LA2m* m0

\m* «p
E

0

`

dr r 2F11expS r 22m

T D G21

3E
0

p/2

sinS 2pnr cosc

A«
D cosc dc. ~7!

Using an integral representation for the Bessel funct
J1 ~Ref. 22!,

E
0

p/2

sinS 2pnr cosc

A«
D cosc dc5

p

2
J1S 2pnr

A«
D , ~8!

we obtain

Cn~T!5
2LA2m* «m0

\m*
E

0

` x2J1~2pnx!dx

11exp@~«x22m!/T#
. ~9!

It is deduced from Eqs.~9! and~5! that the magnetic momen
of the quantum cylinder is an oscillating function of the flu
with a period equal to a flux quantum.

For a quantitative analysis of the nature of the oscil
tions we consider the caseT50. Then

Cn~0!5
2LA2m* «m0

\m*
E

0

Am/«
x2J1~2pnx!dx. ~10!

Using the formula22

E
0

1

xn11Jn~ax! dx5a21Jn11~a!, ~11!

we obtain

Cn~0!5
LmA2m* m0

p\m* A«

J2~2pnAm/«!

n
. ~12!

In real situations we havem@«. Using the asymptotic
form of the Bessel functionJ2(x) for large values of the
argument22 we obtain the following estimate from Eq.~12!
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Cn~0!5
LmA2m* m0

p2\m* A«

1

n F S A«

p2nAm
D 1/2

3cosS 2pnAm

«
2

5p

4 D 1oS A«

2pnAm
D G . ~13!

Equation~13! then yields an estimate forM (T50)

M ~T50!

mB
5

A2Lm0

p\Am*
S m3

« D 1/4

(
n51

`
1

n3/2

3sinS 2pn
F

F0
D cosS 2pnAm

«
2

p

4 D . ~14!

Formula~14! yields an important statement for the followin
analysis: because of the periodicity of the functions appe
ing in the Fourier series the magnetic moment depends
on the fractional component ofF/F0 andAm/« in Eq. ~14!.
We shall denote these byj and h, respectively (0<h, j
,1). Then we have

M ~T50!

mB
5

A2Lm0

p2\Am*
S m3

« D 1/4

(
n51

`
1

n3/2

3sin~2pnj!cosS 2pnh2
p

4 D . ~15!

Expression~15! indicates that it is sufficient to study th
oscillations of the moment in the region 0<j,1, 0<h,1
since, asF/F0 varies further, the pattern is repeated for ea
separate segment of variation. The sum of the series in
~15! may be expressed in terms of generalizedz-functions,
using the Hurwitz formula23

(
n51

`
1

n3/2H sin~2pnx!

cos~2pnx!

52p@z~21/2,x!6z~21/2,12x!#, ~16!

where 0,x<1.
We first note the symmetry properties of the graph

M (F/F0). Expression~15! indicates thatM (j,h)52M (1
2j,h) holds for any 0<h,1. Thus, the graph is antisym
metric relative to the axis passing through the pointj51/2
perpendicular to the ordinate. In addition we haveM (j
11/2,h21/2)5M (j,h). Consequently the case 1/2<h,1
is reduced toh,1/2 by shifting the graph ofM (F/F0)
along the abscissa by half a flux quantum. On account of
symmetry, we shall only consider the regionj,h<1/2, i.e.,
half the period of the functionM (F/F0). We immediately
note that for integer values ofAm/« this half period has only
one extremum ~maximum or minimum depending o
whetherh,1/2 or h.1/2). For h,1/2 formulas~15! and
~16! give

M ~j,h!

4pAmB
5z~21/2,j1h!2z~21/2,12j1h!, j>h,

~17a!
r-
ly

h
q.

f

is

M ~j,h!

4pAmB
5z~21/2,j1h!2z~21/2,h2j!, h.j,

~17b!

whereLm0/2p2\Am* (m3/«)1/4[A.
Expression~17! indicates that the critical point of the

graph of M (j) on the interval 0,j,1/2 is at j5h. We
shall analyze the behavior of the graph near this point us
the shift formula for the generalizedz-function23

z~s,x!5z~s,11x!1x2s. ~18!

Expression~17b! is then written as

M ~j,h!

4pAmB
5z~21/2,j1h!2z~21/2,12j1h!

2Ah2j, h.j. ~19!

The functionsz(21/2,x) are continuous, as is deduced fro
Eqs. ~15! and ~16! since the corresponding Fourier seri
converge uniformly. However, a comparison of Eqs.~17a!
and ~19! shows that at the pointh5j the graph ofM (j,h)
has a kink caused by the presence of the third term in
mula ~19!. Moreover, this term may give an additional ze
of the functionM (j,h) in the range 0,j,1/2. In this case,
two extrema~a maximum and a minimum! are observed a
half the period of the function.

Figure 1 shows graphs plotted using formula~15!. These
graphs are consistent with the analytic results presen
above on the behavior of the magnetic moment.

For TÞ0 the kinks on the graphs are smoothed, but
general oscillation pattern is still retained~Fig. 2!.

3. MAGNETIC RESPONSE OF A QUANTUM BRACELET

We shall consider a cylinder with a short generatrix, i.
a quantum bracelet. When the cylinder length is compara
with the Fermi wavelength of an electron, we must take in
account the quantization of the particle motion along thz
axis. We shall take the model of an infinitely deep poten
well as a model of the confinement potential along this ax
The electron spectrum for this case is then written in
form

Enm5«m1«n, m50,61,62, . . . , n51,2,. . . ,
~20!

where«m5a(2pm12pF/F0) and «n5b(2pn)2. The di-
mensional confinement energies area5\2/8m* p2r2 andb
5\2/8m* L2. The bracelet length isL and its radiusr.

Using the thermodynamic potential of the electron gas
the bracelet,

V52T(
n,m

lnF11expS m2Enm

T D G , ~21!

we obtain the following expression for the magnetic r
sponse of the bracelet

2
M

mB
5

m0

m*
(

m52`

`

(
n51

`
m1F/F0

11exp@~Enm2m!/T#
. ~22!

Expression~22! can be conveniently rewritten as
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FIG. 1. Magnetic response of a quantum cylin
der as a function of the magnetic field flux. Th
curve numberN corresponds toh50,N, where
N has valuesN50, 1, . . . , 9~for exampleh
50, 0, 1, . . . .
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2
M

mB
5

1

2

m0

m*
(

m,n52`

`
m1F/F0

11exp@~Enm2m!/T#

2
1

2

m0

m*
(

m52`

`
m1F/F0

11exp@~E0m2m!/T#
. ~23!

The second sum in expression~23! is half the magnetic mo-
ment of the quantum ringM ring /mB .

Cheunget al.3 studied an undamped currentJ in an iso-
lated quantum ring. This current was calculated using
free energyF, i.e., assuming that the number of particles
constant. The value ofJ is proportional to the magnetic mo
ment of the ring. Since the expression forM ring appears in
the formula for the magnetic moment of the bracelet~which
is assumed to be the constant component of a large sys
for instance, the bracelet is located in the quasi-o
dimensional layer of a heterostructure!, we give the expres-
sion for M ring for completeness.

Assuming that the chemical potentialm is constant, we
obtain the following expression for the expansion ofM ring as
a Fourier series

2
M ring

mB
5 (

n51

`

CnsinS 2pn
F

F0
D , ~24!

FIG. 2. Temperature smoothing of the magnetic response curve of a q
tum cylinder. The fine line corresponds toT50 and the heavy line corre
sponds toT510 K, h50.6, r53.5831026, andL54.3731024.
e

m,
-

where the Fourier coefficients are given by

Cn~T!5
4m0

m*
E

0

` x sin~2pnx!dx

11exp@~«x22m!/T#
. ~25!

In the low-temperature limit (T→0) Eq. ~25! gives

Cn~0!5
m0

m*
F 1

p2n2
sinS 2pnAm

« D
2Am

«

2

pn
cosS 2pnAm

« D G . ~26!

The series~24! may be summed using Eq.~26!. Denot-
ing the integer part ofAm/« by N, we obtain forj1h,1

2
M ring

mB
5

m0

m*
H ~2N11!j, j<h,

2N~j21/2!, h,j,
~27!

and forj1h>1

2
M ring

mB
5

m0

m*
H ~2N12!~j21/2!, j<h,

~2N11!~j21!, h,j.
~28!

Expressions~27! and ~28! indicate that the magnetic re
sponse of the ring describes sawtooth oscillations atT50.
The amplitude of these oscillations is proportional toAm/«
and except for the caseh51/2, two sawtooth maxima o
different height are obtained per period. The width of one
these isu122hu and the other is 12u122hu.

A one-dimensional quantum ring is a limiting case
two-dimensional structures, i.e., a cylinder or a bracelet.

We now write expression~23! in the form

2
M

mB
5

M ring

mB

1
1

4 S m0

m*
D (

m,n52`

`
2p~m1F/F0!

11exp@~Enm2m!/T#
. ~29!

n-
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We then expand the magnetic moment of the bracelet
Fourier series, for which we again use the Poisson form

(
n52`

`

w~2pn1t !5
1

2p (
l 52`

`

eilt E
2`

`

w~x!e2 i lx dx.

~30!

After some fairly lengthy but simple transformations we o
tain

2
M

mB
5

M ring

mB
1 (

k51

`

Ck~T!sin~2pkj!, ~31!

where the Fourier coefficients are

Ck~T!52
1

2p3

m0

m*
(

l 52`

` E
0

`

dx cos~ lx !

3E
0

` y sin~ky!dy

11exp@~bx21ay22m!/T#
. ~32!

Introducing the polar coordinates using the formulasx
5(r /b)cosw and y5(r /a)sinw, we then obtain from Eq
~32!

Ck~T!52
1

4p2

m0

m*

k

Aba3 (
l 52`

`
1

Ak2/a1 l 2/b

3E
0

` r 2J1~rAk2/a1 l 2/b! dr

11exp@~r 22m!/T#
. ~33!

We shall next analyze theT50 case. The integral in Eq
~33! is easily calculated atT50:

E
0

Am
r 2J1S rAk2

a
1

l 2

b D dr

5
m

Ak2/a1 l 2/b
J2SAmS k2

a
1

l 2

b D D . ~34!

Using the asymptotic form of the Bessel functions for lar
arguments (m/a,m/b@1), we obtain

Ck~0!5
1

4p2

m0

m*
A2

pS m3

b2 D 1/4H 1

a1/4

1

k3/2
cosSAm

«
k

2
p

4 D 1
2k

a5/4 (
l 51

`
cos@Am~k2/a1 l 2/b!2p/4#

~k2/a1 l 2/b!5/4 J .

~35!

Substituting Eq.~35! into Eq.~31! we then obtain the follow-
ing formula for the magnetic response of the bracelet

2
M ~T50!

mB
5

M ring~T50!

2mB
1

M cyl~T50!

2mB

1
4

~2p!5/2

m0

m*
S m3

a6b2D 1/4

(
k51

`

ksinS 2pk
F

F0
D

3(
l 51

`
cos@Am~k2/a1 l 2/b!2p/4#

~k2/a1 l 2/b!5/4
, ~36!
a

-

whereM cyl is the magnetic response of a cylinder~19! ob-
tained in Sec. 2.

Plots of formulas~31! and ~33! are shown in Fig. 2. It
can be seen thatM (T) goes to zero at points whereF/F0 is
a half-integer~as for a cylinder and a quantum ring!. Hence
M (T) is a periodic function of the magnetic field flux with
period equal to the flux quantum.

4. TEMPERATURE DEPENDENCE OF THE MAGNETIC
RESPONSE

We shall now consider the temperature corrections to
magnetic response, confining our analysis to the case
highly degenerate gas in the limitm/T@1. In this case, the
integral in the expression for the magnetic response o
cylinder ~9! and a bracelet~33! may be estimated. We firs
expressP(T), which satisfies

P~T!5E
0

` x2J1~ax!dx

11exp@~x22m!/T#
,

in the form

P~T!5
1

2 E
0

`

w~x!S 2
] f

]xD dx, ~37!

where

w~x!.2xJ2~aAx!/a, f ~x!511exp@~x2m!/T#21.

Now P(T) can easily be estimated using the formula24

E
0

`

w~x!S 2
] f

]xD dx.w~m!1
p2T2

6
w9~m!. ~38!

Equation~38! gives the estimate

P~T!.P~0!1
ap2T2

12
J0~aAm!. ~39!

Using Eq.~39! we can find the Fourier coefficientsCn(T) of
the magnetic response of a cylinder

Cn~T!.Cn~0!1
p3LT2A2m* «m0

3\m* «2
J0S 2pnAm

« D .

~40!

The magnetic moment is then given by

M cyl~T!

mB
.

M cyl~T50!

mB
1

p3LT2A2m* «m0

3\m* «2

3 (
n51

`

sinS 2pn
F

F0
D J0S 2pnAm

« D . ~41!

The Fourier coefficients for a bracelet have the form

Cn~T!.Cn~0!1
1

48p2

m0

m*

p2T2n

Aa3b

3 (
l 52`

`

J0SAmS k2

a
1

l 2

b D D , ~42!

and its magnetic moment is written as
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Mbrac~T!

mB
5

Mbrac~T50!

mB
1

1

48

m0

m*

T2

Aa3b

3 (
k51

`

ksinS 2pk
F

F0
D (

l 52`

`

J0SAmS k2

a
1

l 2

b D D .

~43!

The temperature corrections to formulas~41! and ~43!
smooth the kinks on the curves giving the magnetic mom
of a cylinder and a bracelet as a function of the magn
field flux ~Figs. 2 and 3!.

5. DISCUSSION OF RESULTS

As is well known, the magnetic moment of a degener
electron gas in a quantizing magnetic field describes osc
tions as the magnetic field varies~de Haas–van Alphen ef
fect!. The physical principle of this effect is well-known: th
density of electronic states changes abruptly whenever
levels of the electron energy spectrum intersect the leve
the chemical potentialm of the gas as the magnetic fie
varies. Moreover, the amplitude of the oscillation maxim
and their position on the curveM (B) also depend onm.

Note that the set of possible projections of the quasic
sical electron trajectories on the plane perpendicular to
magnetic field is determined by the Fermi energy forT→0
and each energy level has its own projection of this traj
tory. The energy levels and consequently the trajectories
pend on the value ofB and vary asB varies. However, this

FIG. 3. Magnetic response of a quantum bracelet as a function of the m
netic field flux atT51 K, m51.6310212 erg: a —r5231026 cm, L52
31026 cm; b — r5731026 cm, L5831027 cm, c —r54.731027 cm,
L54.6131026 cm.
nt
ic

e
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variation can only take place in such a way that the magn
field flux across the area occupied by the projection of
trajectory changes by an whole number of flux quantaF0.

With some modifications, the pattern of the de Haas–v
Alphen effect described above is also observed for vari
low-dimension systems.3–8 However, the results obtained i
Secs. 2–4 suggest that in nanostructures exhibiting cylin
cal symmetry~quantum ring, bracelet, quantum cylinder!,
the situation is completely different and although, as befo
the amplitudes of the oscillation maxima on the curveM (B)
will depend on the chemical potential, the positions of the
maxima are determined by the relationships betweenj and
h. Moreover, the period of the oscillations does not depe
on m and is equal to the flux quantum~Aharonov–Bohm
oscillations!. This can be attributed to the purely geomet
fact that for any electron energy the projection of its qua
classical trajectory on the plane perpendicular to the m
netic field is fixed and coincides with the circumference
the cylinder base.

In all the nanostructures considered in the present st
the Fourier coefficients do not depend on the magnetic fi
which distinguishes nanostructures with cylindrical symm
try from ordinary three-dimensional samples21 or nanostruc-
tures possessing no such symmetry.4–8 We further note that
in all cases, the curve of the magnetic response as a func
of the field flux F has kinks. Exceptions for a cylinder ar
the casesh50 and alsoh51/2 when no kinks are observed
The singularities of the curve for a bracelet incorporate
the singularities of a cylinder and a quantum ring, as is
duced from Eq.~36!.

It is interesting to note that the incorporation of a
Aharonov–Bohm fluxFAB ~a magnetic field flux created b
a thin, ideally infinitely long solenoid positioned along th
symmetry axis of the nanostructure! preserves the oscillation
pattern for all the cases studied. This flux merely cause
general shift of the magnetic response curveM (F) by FAB .
This behavior of the magnetic response occurs because
Fourier coefficients do not depend on the magnetic field.

We also note that for all the nanostructures conside
the magnetic response has no monotonic component.

These results neglect the electron spin. As a resul
allowing for the spin, the term (1/2)sgmBB is added to the
electron spectrum, wheres561 and g is the electron
g-factor. Calculations similar to those made in Secs. 2
yield for a quantum ring

M ring5 (
s561

~Ms
mon1Ms

osc!.

The monotonic component of the ring responseMs
mon has the

form

2
Ms

mon

mB
5

sg

2 E
2`

` H 1

1expF«@x21sg~m* /m0!~F/F0!#2m

T G J 21

dx,

~44!

and the oscillating component of the response is describe

g-
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2
Ms

osc

mB
5 (

k51

`

akssinF2pk
F1FAB

F0
G , ~45!

where the Fourier coefficients are

aksS T,
F

F0
D

5
4m0

m*
E

0

` ~x1m* gs/2m0!sin~2pkx! dx

11exp$~«@x21sg~m* /m0!~F/F0!#2m!/T%
.

~46!

Equations~44!–~46! indicate that in the general cas
where there is an Aharonov–Bohm flux, allowance for t
spin causes the following changes in the pattern of the eff
the magnetic response has a monotonic component tha
pends nonlinearly on the fluxF and does not depend on th
Aharonov–Bohm fluxFAB , and the Fourier coefficientsaks

become nonlinearly dependent on the fluxF but also do not
depend onFAB . Thus, as in the case where the spin is n
glected, the fluxFAB only shifts the oscillation pattern. It is
important to note that allowance for the spin–magnetic
teraction destroys the periodicity of the magnetic respons
the ring because the coefficientsaks depend on the fluxF
and the monotonic component of the response depend
the flux.

Similar changes in the oscillation pattern occur in a c
inder and consequently in a bracelet. The magnetic resp
of a cylinder allowing for spin–magnetic interaction is give
by

M5(
s

~Ms
(1)1Ms

(2)!,

where

Ms
(1)

mB
5

Lm0

pm* \
(

m52`

` E
0

` @m1~F1FAB!/F0# dp

11exp@~«mp1gsmBB/22m!/T#
,

~47!

Ms
(2)

mB
5

Lgs

2p\ (
m52`

` E
0

` dp

11exp@~«mp1gsmBB/22m!/T#
.

~48!

A comparison of Eqs.~4! and~47! shows that this term only
gives an oscillating component of the magnetic respo
with Fourier coefficients which depend on the flux. Calcu
tions similar to those made in Sec. 2 show thatMs

(2) contrib-
utes to the monotonic and to the oscillating components
the response, where the monotonic component depends
linearly on the fluxF.

To sum up, we can affirm that in all the nanostructu
studied allowance for the spin–magnetic interaction destr
the periodicity of the magnetic response as a function of
flux because the Fourier coefficients depend on the fielB
and a monotonic component appears in the response.

Since in real structures we findm0 /m* @1, the spin–
magnetic interaction will be important in nanostructures
which the carrier has a largeg-factor. To conclude, we note
that for a bracelet the graphs depend strongly on the rati
r to L ~Fig. 3!. The cylindrical nanostructures consider
e
t:
e-
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-
of

on

-
se

e
-

f
on-

s
s
e

r

of

above generally exhibit oscillations of the magnetic respo
as a function of the flux. These are Aharonov–Bohm os
lations, i.e., they are periodic with respect to the magne
field flux if the electron spin is neglected. We also note th
for carbon nanotubes which do not possess complete cy
drical symmetry, flux periodicity also occurs.2,19 In view of
this observation, the cylinder model analyzed in Sec. 2
clearly a reasonable approximation to describe the magn
response of carbon nanotubes neglecting spin. If the elec
spin is taken into account, the cylinder model does not giv
crescent-shaped singularity on theM (F) curves, in contrast
to the results obtained in Ref. 2.
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The behavior of a solvated electron in an electrolyte is investigated. The formalism of the theory
is based on variational estimation of path integrals. It reduces the problem to the investigation
of the self-consistent mean field produced by the ions and the electron. Mayer cluster expansions
make it possible to take account of the short-range interactions and to find expressions for
the effective potential of the electron and the electron–ion and electron–neutral atom correlation
functions as a function of the macro- and microscopic parameters of electrolytes. In the
limit of high ion densities the behavior of the electron is determined solely by the Coulomb
interaction, which results in the formation of a polaron state. This state of the electron is virtually
independent of the thermodynamic parameters of the electrolyte. In the opposite limit of
low ion densities the electron forms a cavity state. The presence of ions results in additional
localization of the electron and is manifested experimentally as a shift of the absorption
band in the direction of high energies. The estimated shift for a hydrated electron agrees with the
experimental data. ©1999 American Institute of Physics.@S1063-7761~99!02104-6#
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1. INTRODUCTION

Solvated electrons—excess electron in liquid or gase
media that do not form chemical bonds—are objects of b
intense theoretical investigations and numerical simula
~see the reviews Refs. 1–5!. Such a mixed quantum–
classical system is convenient for demonstrating the po
bilities of various numerical methods~quantum molecular
dynamics, path integrals, various combined schemes!. In the
last few years there have appeared a large numbe
works6–13 ~see also the reviews Refs. 14 and 15! where the
solvated-electron problem is studied on the basis of a st
tical theory.

Experimental methods have now been developed an
great deal of experimental data on the behavior of a solva
electron in various media have been accumulated.16–21 The
behavior of an electron in liquid electrolytes stands out
pecially among the diverse experimental facts. In liquid el
trolytes two kinds of interactions compete: the long-ran
Coulomb attraction and the short-range repulsion betw
the electron and the particles of the liquid. This competit
causes a solvated electron in an electrolyte to dep
strongly on the ion density and is fundamentally different
strong and weak electrolytes.

The present paper is devoted to the statistical theory
solvated electron in an electrolyte. The formalism of th
theory, based on the method of path integrals, makes it
sible to reduce the problem to the investigation of the s
consistent mean field produced by the electron, after wh
the statistical approaches developed in the theory of liqu
can be applied. Variational estimations of the path integ
makes it possible to determine the physics of the behavio
the electron at the microscopic level and to obtain ‘‘alm
analytically’’ how the structural
8071063-7761/99/88(4)/8/$15.00
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and energy characteristics of a solvated electron dep
on the macro- and microscopic parameters of the liquid~den-
sity, temperature, pressure, size and charge of molecules
so on!.

The formalism of the method is presented in Sec. 2.
this method the problem is reduced to the investigation of
partition function of the grand canonical ensemble of t
system. This partition function is given in terms of a pa
integral over the electric field induced by the charges in
liquid. In Sec. 3 this integral is evaluated in the mean-fie
approximation, which makes it possible to find the effecti
potential for a solvated electron and the electron–ion a
electron–neutral atom binary functions as a function of
state of the electrolyte. Two limiting cases—low and hi
ion densities in the electrolyte—are studied in Secs. 4 an
respectively. Various approximations for the binary corre
tion functions, such as the random-phase approximation,
hyperchain approximation, or the Percus–Yevick appro
mation, make it possible to find the behavior of the electr
in these two limiting cases and to establish a relation
tween the state of the electron and the thermodynamic
rameters of the electrolyte. Section 6 is devoted to a disc
sion of the results obtained. A derivation of the express
for the partition function of the grand canonical ensemble
terms of a path integral over the electric field is presented
the Appendix.

2. FORMALISM OF THE METHOD

Let us consider a solvated electron in a classical liqu
The atoms of the liquid with which this electron interac
create a complicated potential field for the electron. The
tailed analysis of this field is an extremely difficult problem
However, the existence of a large parameterÑ—the number
© 1999 American Institute of Physics
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808 JETP 88 (4), April 1999 G. N. Chuev
of interacting atoms of the liquid—makes it possible to a
sume this potential field to be random, to perform se
averaging of this field, and to find the behavior of the s
vated electron as a function of the average parameters o
liquid. In this statistical approach the problem reduces
calculating the partition function of the grand canonical e
semble. For a solvated electron in a classical liquid the p
tition function J of the grand canonical ensemble can
expressed in terms of a configurational integral, which
pends on the configuration of the classical partic
R1 ,R2 , . . .5R$N%, and a path integral over the electron c
ordinatesr ~t!:

J5 (
N>0

`
zN

N!
QN11 , z5S 2pM

b D 23/2

exp~bm!V,

QN115E D@r ~t!#E dR$N% expH 2BUss

2E
0

b

dtF1

2
r2~t!1(

i

N

u~r ~t!2Ri !G J . ~1!

HereUss(R
$N%) is the interaction potential between the pa

ticles of the liquid,u(r2Ri) is the pair interaction potentia
between an electron and a particle of the liquid, andRi are
the coordinates of thei -th classical particle. In the relatio
presentedkBT51/b is the temperature~we employ the sys-
tem of units with\51, m51, ande51!, V is the volume of
the system, andm andM are the chemical potential and th
mass of the particles.

The problem of determining the state of a solvated el
tron reduces to calculating the integral~1!. The dimension of
this integral is very large. Therefore the main problem of
theoretical analysis is to decrease this dimension in a rea
able manner while preserving all interesting physical prop
ties of the system under study.

We shall assume that the liquid in which the electron
solvated is an electrolyte with densityr. This electrolyte
contains both particles with charge61, whose relative num-
ber is c, and neutral atoms, whose density and coordina
are (12c)r and r i0 , respectively. The interaction potenti
Uss includes a short-range repulsive partUr of the hard-
sphere-potential type and a long-range Coulomb interac
u6q56uq561/uRiq2Rjqu for charged particles with the
coordinatesRiq and Rjq and charges61. To simplify the
calculations we assume the permittivity of the solvent to
«051. The influence of a permittivity«0Þ1 can be taken
into account by renormalizing the charge asq2→q2«0

21.
In the present paper we shall confine our attention

only two types of electron–atom interactions: a short-ran
repulsive potentialu0 between the electron and a neutral p
ticle and a Coulomb interactionue6 between the electron
and a charged particle:

u0~r<d!5V0.0, u0~r .d!50,

ue6~r2Riq!56ur2Riqu21. ~2!

We shall characterize the state of the solvated elec
by a wave functionf~r !. For simple estimates we shall em
ploy a Gaussian wave function
-
-
-
he
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-
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-
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e

o
e
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f~r !5~2a/p!3/2exp@2a2r 2#. ~3!

We note that for a solvated electronda!1 because of the
short range of the interaction.

Note that we haveÑ215ra23!1, since the solvated
electron interacts with a large number of particles of t
liquid. In the opposite case the state of the electron m
be calculated not by statistical but by quantum-chemi
methods.

The first step in decreasing the dimension of the integ
~1! is to switch from a path integral over the electron coo
dinatesr ~t! to averaging over the electron distribution. Th
result is

QN115E dR$N% expH 2bUss~R$N%!2bTe

2b(
i

cN

Ue6~Riq!2b (
i

~12c!N

U0~Ri0!J , ~4!

whereTe is the kinetic energy of the electron andUe6 and
U0 are defined as

Ue6~Riq!56E f2~r !ur2Riqu21dr ,

U0~Ri0!5E f2~r !u0~ ur2Ri0u!dr.4pV0f2~Ri0!d3/3,

~5!

and the choice of sign inUe6 depends on the ion charge
The last two terms in Eq.~4! can be regarded as the long
range part (Ue5(Ue12Ue2)/2) and the short-range pa
(U0) of an external field acting on the electrolyte. Thus, t
problem reduces to finding the partition function for an ele
trolyte in an external fieldUe1U0 .

To calculateJ we perform a transformation~see Appen-
dix! and express the partition function of the grand canon
ensemble in terms of a path integral over the electric fieldC:

J5J0E D@C#exp@2bV$C,f%#, ~6!

V5Te1
1

2
~C2Ue!* uq

21
* ~C2Ue!2b21dN~C,U0!,

~7!

dN~C,U0!5cr* f q1
c2r2

2!
f q* hs* f q1~12c!r* f s

1
~12c!2r2

2!
f s* hs* f s

1
2c~12c!r2

2!
f q* hs* f s . ~8!

In these relationsJ0 is a normalization constant,V is the
thermodynamic potential,uq

2152D(r ) is the inverse of the
operatoruq(r ), and the symbol* denotes a convolution

y* x[E x~r1!y~r2r1!dr1 .



r-

-
th

i

i
tro
in

th
d

na
q

on

ifi

ea

th

ll
ld

-

on

ta-
y-

e
sity

n

of
e of

lly.

-
tate
he

ima-

809JETP 88 (4), April 1999 G. N. Chuev
In the relation~8! hs(r ) is the complete density–density co
relation function for a hard-sphere liquid, andf q and f s are
Mayer functions

f q5
1

2
@exp~ebC!1exp~2ebC!22#,

f s5exp~2bU0!21. ~9!

In the relation~7! the quantitydN is the change in the dis
tribution of the particles as a result of the presence of
external field. The second term in Eq.~7! can be rewritten as

~C2Ue!* uq
21

* ~C2Ue!

5E ~¹C!2dr1E f2~r1!f2~r !

ur2r1u
dr11dr

1E C~r !f2~r !dr . ~10!

In this form the physical meaning of these contributions
quite clear. The first term in Eq.~10! corresponds to the
internal energy of the electric field produced by all charges
the electrolyte. The second term is the energy of the elec
in the field produced by the electron itself. The last term
the energy of the excess charge with densityf2(r ) in the
field C~r !.

At first glance it appears that we have complicated
problem, having written the partition function of the gran
canonical ensemble in the form of an infinite-dimensio
path integral. However, in contrast to the path integral in E
~1!, the integral~6! specifies the dependence of the partiti
function on the classical electric fieldC. This field is essen-
tially a collective variable. To calculate the expression~6! we
can employ estimates of multidimensional integrals, spec
cally, the method of steepest descent.

3. THE MEAN-FIELD APPROXIMATION

The excess electron induces in the electrolyte a m

electric fieldC̃, whose Fourier components are related to

external field Ue via the permittivity «, i.e., C̃(k)
5e21(k)Ue(k). Since Eq.~5! implies Ue}a, the argument
of the exponential in Eq.~6! contains the parameterba,
which in our case is large,ba@1. For this reason we sha
estimate~6! by the method of steepest descent, which yie

the mean fieldC̃ so that

]V

]CU
C5C̃

50. ~11!

Then we obtain from Eqs.~7! and ~8! a nonlinear Poisson–
Boltzmann differential equation

uq
21

* ~C̃2Ue!5
cr

2
~exp@2bC̃#2exp@bC̃#!

3~11crhs* f q1~12c!rhs* f s!.

~12!

We shall find the binary correlation functionsge1(r ),
ge2(r ), andge0(r ), which describe the probability of find
ing a corresponding ion or neutral atom at a distancer from
the center of localization of the electron:
e

s

n
n

e

l
.

-

n

e

s

ge6~r !52
] ln QN11

]bUe6
5exp~6bC̃!

3~11rhs* f q1~12c!rhs* f s!,

ge052
] ln QN11

]bU0
5exp~2bU0!

3@11~12c!rhs* f s1crhs* f q#. ~13!

The relation~12! can be rewritten as

C̃5Ue2rq* uq , ~14!

where we have introduced the charge densityrq(r )
5crgeq(r )/25cr(ge1(r )2ge2(r ))/2. The equation~14!

determines the mean fieldC̃(r ) in terms of the external field
Ue , which depends on the electron density distributi
f2(r ) and the correlation functionsge1(r ) and ge2(r ),

which are related to the mean fieldC̃(r ) by the relation~13!.
The integral equation~14! is the analog of the Ornstein–
Zernike relation. To solve it, additional closure of Eq.~13! is
required. Various modifications of this closure exist in s
tistical physics: the Percus–Yevick approximation, the h
perchain approximation, and so on.

The condition for a minimum of the variation of th
thermodynamic potential as a function of the electron den

]V

]f
50 ~15!

yields a nonlinear Schro¨dinger equation for the electro
wave functionf(r )

F2
1

2
D1Veff~r ,$f%!1EGf~r !50, ~16!

whereE is the electron energy andVeff(r,$f%) is the effective
potential for the electron,

Veff~r ,$f%!52rq* uq1~12c!rge0* u0 . ~17!

The relations~13!–~14! and~16!–~17! form a closed system
of equations for finding the electron wave functionf~r ! as a
function of the thermodynamic and structural parameters
the electrolyte: density, temperature, charge density, siz
the atoms, structure factor, and so on.

The general case can be investigated only numerica
We shall investigate two limiting cases: weak (c!1) and
strong (c.1) electrolytes.

4. STRONG ELECTROLYTE

In this case we havec.1, and the effect of the un
charged particles of the liquid can be neglected. This s
corresponds to melts of the salts KCl, NaCl, and so on. T
subsequent investigation depends on the type of approx
tion for closure of Eq.~13!.

4.1 Random-phase approximation

In this case the linear approximation

ge6.~11rhs!~16bC̃!, ~18!
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is used instead of Eq.~13!. This yields the solution for the

Fourier componentC̃(k)

C̃~k!5
4pf2~k!

k21kD
2 @11rhs~k!#

,

rq~k!5
@11rhs~k!#f2~k!kD

2

k21kD
2 @11rhs~k!#

, ~19!

wheref2(k) is a Fourier component of the electron wa
function andkD5(4prb)1/2 is the reciprocal of the Debye
radius. For the simplest estimates the approximation
1rhs(k).cos(sk), wheres is the size of the particles of th
liquid, can be used. We also note that in most liquids
characteristic radius of a solvated electron isa21;s
;3 Å, while at temperaturesT;300– 1500 K andrs3

;0.9 we have skD52302150@1, i.e., the strong-
electrolyte approximation corresponds to the stro
screening approximation, for which

C̃~k→0!.4pf2~0!kD
22, rq~k→0!.f2~0!.

Correspondingly, forr→0 we obtain

ge6~r !.16f2~r !r21,

Veff~r !.2E f2~r1!ur2r1u21dr1 .

The behavior of the mean fieldC̃(r ) depends on the ratio o
the size of the particles of the liquid and the solvated el
tron. For the casesa!1

C̃~r !.4pf2~r !kD
22.

For the more realistic situation wheresa.1, C̃(r ) can be
estimated according to the theory of residues as

C̃~r !}sin~pr /2s!~kD
2 s2r !211...,

i.e., the field is an oscillating function with period;s21.
Using the Gaussian approximation~3! for the wave func-

tion f(r ), from the relation~15! we obtain a condition fora:

3aa05p21/2, ~20!

wherea0 is the Bohr radius, which givesa.0.355 Å21 and
Te5(3/2)a250.106 a.u. It can be shown that in this limit th
kinetic energyTe , potential energyPe , and total energyE
of the electron satisfy the virial relation,

uTu:uEu:uPeu51:3:4. ~21!

Using the relations presented above, we calculated
indicated energy characteristics (Te ,Pe ,E) for a solvated
electron in KCl melt atT51000 K ~see Table I!. We note
that the variational estimate ofE differs by only 2% from the
estimate E520.324 a.u. obtained by solving the Schr¨-
dinger equation numerically.22 To estimate the absorptio
band maximumEmax5E12E we employed the data of Re
22, according to which for the Schro¨dinger equation~16!
with the potential

Veff~r !.2E f2~r !ur2r1u21dr1
1

e

-

-

e

the energy of the excited state isE1520.187 a.u. Table I
also gives the characteristics of an electron obtained by
culating the integrals over the fields23 numerically and in the
RISM ~reference interaction site model!–polaron model.7

The absorption maximum was also estimated in Ref. 24
analytic continuation for the generalized susceptibility us
the results of the RISM–polaron model and data obtain
from a direct calculation of the path integrals.23 Table I also
gives an estimate obtained for the absorption maximum
solving the time-dependent Schro¨dinger equation
numerically.25 As one can see from the table, our theo
agrees very well with the numerical-simulation data bo
with respect to energy and the potential maximum. Howev
the experimental value of the absorption maximum26 is
somewhat lower than the values obtained from the the
and the simulation. We note that the calculatio
presented7,23 employed a potentialue1(r ) that is different
from Eq. ~2!, specifically,

ue1~r ,Rc!5Rc
21, ue1~r>Rc!5r 21.

The virial relation ~21! for the energies has been ob
served in a direct calculation of the path integrals for
excess electron in KCl melt.23 Relations~21! were satisfied
to better than the computational error in the quantities the
selves. The numerical deviations from the valueTe

.(3/2)a250.106 a.u. lie within the same limits and are r
lated to the deviations of the electron–ion interactionue1 as
r→0 from the Coulomb law.

4.2 Hyperchain approximation

In this approximation Eq.~13! is modified to the form

ge6.exp@6bC̃#.exp@6b~Ue2rhss* f2* ce!#. ~22!

This relation follows from Eq.~14! if the approximation

rq.rhss* f2,

is used, where

rhss~k!52@11rhs~k!#kD
2 /~k21kD

2 @11rhs~k!# !

is the total correlation function of the electrolyte. Then

rq* uq.rhss* f2* ce ,

wherece is the direct electron–ion correlation function.

TABLE I. Kinectic Te , potentialPe , and totalE energies of a solvated
electron in KCl melt, together with the absorption band maximumEmax.

Te , a.u. Pe , a.u. E, a.u. Emax, a.u.

Theory
Random-phase
approximation

0.106 20.424 20.318 0.131

RISM-polaron7 0.120 20.450 20.330 0.16124

Simulation23 0.0960.026 20.4160.064 20.314 0.125,24

0.13225

Experiment26 0.098
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To determineC̃(r ), in this case, Eqs.~14! and~22! must
be solved numerically. This requires a separate investiga
Here we shall consider the casehs[0. Then we find from
Eq. ~22!

ge6.exp@6w2~r !r21#. ~23!

Other nonlinear corrections can be taken into account in
limit. Since Ñ21<1 holds, we obtain from Eq.~13!

ge6.expF6H w2~r !r212
1

3!
w6~r !r231...J G . ~24!

The relations~23! and ~24! only change the behavior o
the correlation functionsge6(r→0). They do not affect the
energy characteristics and the virial relation~21! or the av-
erage radius of the electron distribution.

We note one other important aspect. A quantitative m
sure expressing whether repulsion or attraction effects do
nate is the changeDN in the average number of molecule
bound on the electron as compared with a uniform liquid

DN5E @cr~ge11ge222!1~12c!r~ge021!#dr .

~25!

For the hyperchain approximation in the case of a stro
electrolyteDN.0 holds, i.e., the attractive forces dominate
Then the state of the electron is similar to a polaron stat27

except that instead of a phonon ‘‘coat’’ the electron is bou
with ions forming a cluster.

The short-range repulsion between particles of the
uid, just like the short-range interaction between ions and
electron, which is not studied in the present paper, will
fluence the behavior of a solvated electron, but this influe
will be small for the energy characteristics because of
short range of the interaction. The effect of the nonpo
particles or particles with a dipolar charge will also be we
if their density is low.

In summary, the behavior of a solvated electron in
strong electrolyte is universal and is determined by the C
lomb interaction. Its characteristic size isa21

5(3Ap)21a0.3 Å, and the energy characteristics satis
the virial relation~21! and are virtually independent of th
temperature, density, and other parameters of the liquid.

5. WEAK ELECTROLYTE

In this case the interaction of the electron with u
charged particles plays the main role. In the limitc→0 we
obtain from Eq.~7!

V5Te2r* f s2
1

2!
f s* r2hs* f s . ~26!

Using the estimate~5! for u0 , we find the condition for the
radius of the solvated electron

3a.
4pC0r

ba4 , ~27!

where C0;1 is a numerical parameter. At room temper
tures andrs3.0.9 we haveakD

21@1 for c@1, i.e., the
weak-electrolyte approximation corresponds to weak scre
n.

is
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g
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e
-
e
e
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-

n-

ing. In this caseDN,0 holds, i.e., the repulsive forces pre
dominate and the electron forms a cavity with characteri
radiusa21.

The correlation functionsgeq andge0 are found from the
conditions

geq.~exp~bC̃!2exp~2bC̃!!@11rhs* f s#,

ge0.exp~2bU0!@11rhs* f s#,

C̃~r !.Ue1....min~a,r 21!. ~28!

The estimate of the behavior of the solvated elect
depends on the type of closure chosen. For the random-p
approximation, where the approximation~18! can be used,
we obtain

C̃~k!5
4pf2~k!

k21k r
2 ,

k r
254prb~11hs~k! f s~k!!.4prb@11hs~0! f s~0!#,

~29!

geq~r→0!.
2b

r
exp@2k r r #,

Veff~r !.
4p

3
V0rd3ge0~r !. ~30!

The corrections associated with the presence of char
particles will modify the radius of the solvated electro
which will be found from the relation

3a0a5
4pC0r

ba4 1
ck r

2

2Apa2
2

4pC0cr

ba4 . ~31!

It is easy to see that the last term is small compared with
second term, and their ratio is;(ba)22!1 for ordinary
temperatures. Thus, the introduction of charged particles
creases the radius of a solvated electron, i.e., it result
additional localization and increases the kinetic energy of
electron. This should be observed experimentally as a s
of the absorption band in the short-wavelength direction.

In the hyperchain approximationge6.exp(6bUe),
which givesge1(r→0).d(r ), i.e., localization of the elec-
tron in a positive field and appearance of a chemical bo
occur. This result is a consequence of neglecting the sh
range interaction forces between the electron and the i
The existence of even a weak repulsive potential will ca
smearing of the electronic density. Strictly speaking,
problem of an electron–ion complex should be stud
quantum-chemically.

On the whole, the calculation of the absorption spectr
of an excess electron in a weak electrolyte requires tak
into account in detail the contributions of short-range forc
Debye screening, electronic polarization, dipole interactio
and so on. In the numerical simulation of a hydrat
electron28 a correlation was noted between the energyEmax

of the absorption maximum and the hydration radiusr h of
the electron. We approximate this correlation asEmax}rh

21 .
Taking account of this fact and the relation~31! we find that
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the relative shiftDEmax of the absorption maximum depend
on ratio of the Debye radius and the hydration radius of
electron

DEmax

Emax
5

2

9Ap
ckD

2 r h
25

8Ap

9e0
cbrr h

2. ~32!

Here we took account of the fact that

r h
25E r 2f2~r !dr53/4a2

and the permittivity of the solvent ise0Þ1. Using for water
the experimental valueEmax51.72 eV and the hydration ra
dius r h52.0560.1 Å obtained by numerical simulation,28

we find that at room temperature

DEmax

c
5~4.960.5!31022 eV/M.

Figure 1 shows the experimental values~symbols! for the
shift of the absorption maximum of a hydrated electron
aqueous solutions of LiCl, MgCl2, and LiClO4 as a function
of the solution concentration29 for c<2.1 M. Fitting these
data by a linear relation we obtain

DEmax

c
5~4.661.7!31022 eV/M

~in the figure this dependence is shown by the solid lin!,
which is in very good agreement with the theoretical e
mate~dashed line!. Therefore at low ion densities the relativ
shift of the absorption maximum for a hydrated electron
determined completely by the Debye screening in acc
dance with Eq.~32!. At higher concentrations we hav
akD

21;1 and additional terms in Eq.~31! must be taken into
account. In experiments at concentrationsc>2.1 M ~Ref. 29!
this gives rise to a nonmonotonic dependenceDEmax(c), as-
sociated with structural rearrangements~a polar liquid is a
concentrated electrolyte! around the electron.

6. DISCUSSION

Using a statistical approach we studied the behavior
solvated electron in an electrolyte. In the case of a str

FIG. 1. Experimental data on the shift of the absorption maximum o
hydrated electron in aqueous solutions of LiCl~,!, MgCl2 ~s!, and LiClO4

~n! as functions of the solution concentration.29 The solid line corresponds
to a linear fit of the data and the dashed line is the theoretical estimate
e

-

s
r-

a
g

electrolyte, in the limit of high ion densities, this behavior
determined only by the Coulomb interaction, which caus
clustering of positive ions on the electron and the format
of a polaron localized state. This state of the electron is
tually independent of temperature, ion density, and other
rameters of the liquid. The variational estimates made of
electron energy at the absorption band maximum agree
with the data from numerical simulation of a solvated ele
tron in KCl melt,23 but there is a discrepancy between the
data and experiment. Moreover, experimentally, the abso
tion band maximum is observed to vary in the series
alkaline-halide solutions: It decreases from 2.2 eV~LiCl ! to
1.07 eV~CsCl!.26 This fact can hardly be explained using th
simple model considered here. In our view, the discrepa
is due primarily to the approximation used to calculate
effects associated with the electronic polarization of the m
dium and to deviation of the electron–ion interaction pote
tial from a Coulomb potential.

In the opposite limit of low electron concentrations
cavity state is formed, where the characteristic size of
cavity is determined by the parametera}r1/5b21/5. This be-
havior is typical for an electron in disordered systems with
short-range potential.30 The introduction of a small numbe
of charged particles causes additional electron localiza
and should be manifested experimentally as a shift of
absorption band in the direction of high energies. This s
of the absorption band was investigated theoretically in R
31 and 32, and it has been observed experimentally
water33 with increasing ion concentration. Our estimate
the relative shift of the absorption maximum for a hydrat
electron agrees well quantitatively with these experimen
data.

The mathematical basis of the method developed is c
version of the partition function of the grand canonical e
semble into a path integral over the electric field induced
the charges and the electrolyte. Such a transformation
probably first performed in Ref. 34. It was used in Ref. 35
find the thermodynamic and structural parameters of a c
sical system in a long-range field. The Mayer cluster exp
sion method makes it possible to include a short-range in
action in the analysis and to obtain relations for the effect
potential and the free energy of the solvated electron and
electron–ion and electron–neutral atom binary functio
The formalism for separating the short- and long-range in
actions in the transformation performed has been inve
gated in detail in Ref. 36 by a diagrammatic technique.

In Sec. 2 we switched immediately to a description
the electron in terms of the electron density distribution fun
tion, after which we performed the indicated transformatio
Strictly speaking, we should have proceeded the other w
around: performing the transformation first and then estim
ing the path integral over the electron coordinates. If we h
limited ourselves only to the quadratic term in the field, i.
if we had employed the random functions approximatio
then the path integral over the field could have been ca
lated analytically and the chemical potential of the electr
could have been found explicitly. This method served as
basis for the RISM-polaron theory.6 This theory has been
used to calculate the behavior of a solvated electron in K

a
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melt.7 The latter means that on averaging we actually c
sider only the diagonal elements of the density ma
%(r ,r )}f2(r ) and neglect the off-diagonal elements. F
this reason, the order of the transformations is of no sign
cance. If the short-range attraction predominates (u0,0), it
is important to take into account the off-diagonal disorde

In our view, the proposed statistical method is a pow
ful tool for calculating at the microscopic level the structu
and thermodynamic parameters of a solvated quantum
ticle in a classical liquid. It makes it possible to find th
behavior of the quantum particle self-consistently as a fu
tion of the molecular structure and the thermodynamic s
of the medium.

APPENDIX

Transformation of the partition function of the grand
canonical ensemble

To simplify the calculations we shall assume that t
masses and chemical potentials of the atoms and ions
identical. We introduce the generalize d charge densityrq(r )
and the neutral-atom densityr0(r ):

rq~r !5(
i

cN

d~r 2Riq!, r0~r !5 (
i

~12c!N

d~r 2Ri0!.

~A1!

Then the partition functionJ of the grand canonical en
semble can be represented as

J5 (
N.0

zN

N! E dR$N% expF2b~Te1Ue!* rq

1rq*
uq

2 * rq1U0* r01UsG . ~A2!

In this relation

dR$N%[dRiq
$cN%dRi0

$~12c!N% ,

and the short-range potentialUs depends on both the con
figuration Ri0

$cN% of the ions and the configurationRi0
$(12c)N%

of the neutral particles. For the potentialA(r ) belonging to
the class of functionsL2 , we can perform a Fourier trans
form for the exponential of a quadratic form:37

expF1

2
rq* A* rqG5H E D@C#

3expF2
1

2
C* A21* C G J 21E D@C#

3expF2
1

2
C* A21* C1rq* C G . ~A3!

The Coulomb potentialuq(r ) belongs to this class o
functions, and for it the inverse operatoruq

21(r )[2D(r )
exists. Then we obtain from Eq.~A2!

J5J0E D@C#expF2bTe2
1

2
b~C2Ue!* uq

21
*

3~C2Ue!G I ~C,U0!,
-
x
r
-

-
l
r-

-
te

re

I ~C,U0!5 (
N@0

zN

N!
dR$N% expF2(

i

cN

6bC~Riq!

2 (
i

~12c!N

bU0~Ri0!2bUsG . ~A4!

The latter relation becomes

I 5 (
N.0

E dR$N%
zN

N! )k

cN

exp@6bCkq#

3 )
m

~12c!N

exp@2bUm0#exp@2bUs#. ~A5!

We now introduce then-particle correlation functions o
the electrolyterq

(n)(r 1 , . . . ,r n) which characterize the prob
ability of finding ions at the pointsr 1 , . . . ,r n for a liquid
consisting of hard spheres:38

rq
~n!~r 1 ,...,r n!} (

N.0

zN2n

~N2n!! E exp@2bUs#dR$N2n%.

~A6!

Similarly we can find the correlation function
r0

(n)(r 1 , . . . ,r n) for the neutral atoms, and so on. Using t
Mayer cluster expansions the relation~A5! can be put into
the form

I 511 f q* rq
~1!1 f s* r0

~1!1
1

2!
f q* rq

~2!
* f q

1
1

2!
f s* r0

~2!
* f s1

2

2!
f s* r0q

~2!
* f q1...

1
1

n!
f q* rq

~n!
* f q ...* f q1... . ~A7!

We take account of the fact that

rq
~1!5cr, r0

~1!5~12c!r,

rq
~2!~r !5c2r2@11hs~r !#,

r0
~2!~r !5~12c!2r2@11hs~r !#,

r0q
~2!~r !5~12c!cr2@11hs~r !#,

where hs(r ) is the total distribution function for a hard
sphere liquid. The relation~A7! can be written in the expo
nential form

I 5expFcp* f q1~12c!r* f s

1
c2r2

2!
f q* hs* f q1

~12c!2r2

2!
f s* hs* f s

1
2~12c!r2

2!
f s* hs* f q1a~hs

~3! ,...!G . ~A8!

In this relation the terma(hs
(3) , . . . ) includes convolutions

of third- and higher-order irreducible correlation functio
for a hard-sphere liquid. Neglecting these irreducible cor
lations, we obtain Eq.~7!.

This work was supported in part by the Russian Fund
Fundamental Research~Grant No. 98-01-01154!.
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Influence of spin–orbit interaction of two-dimensional electrons on the magnetization
of nanotubes
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Calculations are made of the magnetization of a nanotube in a longitudinal magnetic field. It is
shown that the spin–orbit interaction of two-dimensional electrons located at the surface
of the nanotube causes a qualitative change in the magnetization. Depending on the parameters
of the system, either diamagnetism or paramagnetism can occur and the dynamic
susceptibility is characterized by anomalous dispersion at low frequencies. ©1999 American
Institute of Physics.@S1063-7761~99!02204-0#
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1. INTRODUCTION

A two-dimensional electron gas at the surface of a c
cular cylinder is encountered in various experimental s
narios. For instance, the Aharanov–Bohm effect1 under con-
ditions of weak localization2 is associated with such a ga
The magnetic properties of a thin-walled metal cylinder~in
particular, superconducting! were investigated by Kulik3

back in 1970. On the mesoscopic level particular ment
should be made of carbon nanotubes in which tw
dimensional conductivity can also occur. Most recen
Prinz et al.4 developed an original method of ‘‘folding’
strained GaAs/InAs layers to form cylinders and rolls with
radius of curvature of order a few tens or hundreds of a
strom.

In the present paper we investigate the magnetic pro
ties of nanotubes in a field parallel to the axis of the cylind
It is found that the spin–orbit interaction of 2D electrons at
the surface of the cylinder is responsible for the qualitat
behavior of the magnetization in static and variable exter
magnetic fields, even at very low frequencies. This last fac
is important for experiments which use a modulation meth
to measure the magnetic susceptibility. The physical rea
for these characteristics is associated with the crossing~or
quasicrossing! of single-electron terms as a function of th
magnetic flux.

2. MAGNETIC MOMENT OF A NANOTUBE IN A STATIC
FIELD

We shall allow for the spin–orbit interaction using th
Rashba model.5 The corresponding Hamiltonian for a plan
2D system is written as

V̂so5a@ŝ ,p̂#n, ~1!

where ŝ i and p̂ are the Pauli matrices and the tw
dimensional momentum operator, respectively,n is the nor-
mal to the surface, anda is the effective spin–orbit interac
tion constant. The constanta does not go to zero for an
oriented surface on which two directionsn are nonequiva-
lent. It follows from Eq.~1! that in this system~electron gas
8151063-7761/99/88(4)/4/$15.00
-
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n
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e
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at the surface of a circular cylinder in a magnetic field
rected along the cylinder axis! the Hamiltonian has the form
~we assume that the cylinder radiusR is much greater than
the lattice constant and we use cylindrical coordinates w
the z axis directed along the axis of the cylinder!

Ĥ05
p̂z

21~ p̂w1F/R!2

2m
1a@ŝz~ p̂w!1F/R!2Ŝ p̂z)],

~2!

Ŝ5F 0 ie2 iw

2 ieiw 0 G . ~3!

Here pz is the longitudinal momentum operato
p̂w52 i (1/R)]/]w, F is the magnetic flux across the cro
section of the cylinder in units of the flux quantu
F052p\c/e, ande is the absolute electron charge; we sh
take\ equal to unity.

The Schro¨dinger equation with the Hamiltonian~2! can
be solved exactly. The energy spectrum is given by

Ej ,m~k!5BFk21l j
21

122L

4
1mD j G , ~4!

whereD j5Al j
2(L21)21k2L2, B51/2mR2, k5pzR, j is

the projection of the total momentum on the cylinder a
~half-integer!, l j5 j 1F, L52maR, andm561 is a quan-
tum number which labels the two branches of the spin-s
dispersion law of each subbandj. The normalized wave
functions have the form (L is the cylinder length!

C (w)5
exp~ ipzz!

AL
S exp$ i ~ j 21/2!w% c (1)

exp$ i ~ j 11/2!w% c (2)D , ~5!

where

c j 1
~1!

5c j 2
~2!

5 iA jCj /Lk, c j 2
~1!

5c j 1
(2)

5Aj ,

Aj5uLku/A4pD jCj , Cj5D j1l j~L21!, ~6!

The spectrum and wave functions for the caseF50 were
obtained previously by Magarillet al.6
© 1999 American Institute of Physics
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The magnetic moment is proportional to the equilibriu
current~persistent current!, which is defined~per unit length
of the cylinder! by

J52
e

L
Tr$V̂f ~Ĥ0!%, ~7!

where

V̂52BS 2
]

i ]w
1F D1

a

R
ŝz ~8!

is the angular velocity operator, andf (Ĥ0) is the equilibrium
density matrix (f («) is the Fermi function!. Using Eqs.~5!
and ~6!, we can easily find the diagonal matrix elements
the operatorV̂ required to calculate the current using formu
~7!, whereupon we have

J52
eB

2pR (
j ,m

E dkF21m
~L21!2

D j
Gl j f ~Ej ,m~k!!.

~9!

Quite clearly the current depends periodically on the fl
with a period of one. It can also be seen that the current g
to zero for all integer and half-integer values ofF. In fact,
since the current is an odd function ofF, J should go to zero
for F50 ~and thus for all integer values ofF). Then, re-
placingj with 2( j 11) in the sum~9!, we can see thatJ also
goes to zero for half-integer values ofF. The level crossing
noted above also occurs for half-integer values ofF for k
50: at this point the energies of the two spin-split branch
of the spectrum are the same~see Fig. 1!.

We shall consider the situation of a given tw
dimensional electron concentrationNs . We shall calculate
the current at zero temperature for which we need to exp
the Fermi energyEF in formula ~8! in terms ofNs and F,
using

Ns5
1

4p2R2 (
j ,m

E dku~EF2Ej ,m~k!!, ~10!

FIG. 1. Energy versus longitudinal momentum near half-integer value of
flux: F50.4995,L50.046~GaAs forR5100 Å!. Curve a:j 521/2, curve
b: j 521/2, m511. The gap disappears atF51/2.
f
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where u(x) is the Heaviside step function. The limits o
integration with respect tok in formulas ~9! and ~10! are
determined by the form of the dispersion curvesEj ,m(k)
which may either have a minimum fork50 or a maximum
at this point and two side minima. This last situation aris
for m521 branches whereL2/2.u(L21)l j u. Although
the integrals in formulas~9! and~10! are expressible in term
of elementary functions, the resulting formulas are extrem
cumbersome. Therefore we shall give the results~see Fig. 2!
of the numerical calculations of the equilibrium current as
function of the magnetic flux for the case when forF50
only the j 561/2, m521 states are occupied, which re
quires that the condition ns,4(L21u12Lu) (ns

52Ns(pR)2 be satisfied.
If the spin–orbit coupling is neglected, the linear susce

tibility, defined asJ/F, is 22peNs /mR, which corresponds
to diamagnetism. We draw attention to the change in the s
of the linear susceptibility forF'0 caused by the spin–orb
interaction~dia–para transition!. We confirmed that this tran
sition occurs if the constantL is greater than some positiv
L1 or smaller than some negativeL2 which depend on the
concentration. The curvesL1(ns) andL2(ns) are plotted in
Fig. 3. The mechanism responsible for this transition
comes clear from an analysis of the partial contributions
the various terms. In the absence of spin–orbit coupling
in the presence of a weak magnetic flux, the lower level
the system is the twofold spin-degeneratem50 state, where
m is the azimuthal moment. In the presence of the spin–o
interaction this level is split~for finite F) into j 521/2, m
521 andj 51/2, m521 terms, with the lowest term bein
j 521/2 ~for F.0). The contributions of these subleve
correspond to diamagnetism (j 51/2) and paramagnetism
( j 521/2) and the populations differ slightly~in the pres-

e

FIG. 2. Behavior of the equilibrium current for weak magnetic fluxes:J0

5eB/pR, Ns52.33109 cm22, and the other parameters are the same a
Fig. 1.



t.
y

th
a
v

r
in

o
f
e

ec-
ag-
ux
ble
in

and

g-

817JETP 88 (4), April 1999 L. I. Magarill and A. V. Chaplik
ence of a weak flux!. In addition, electrons with the samek
but different j make different contributions to the curren
For L5L6 the contributions to the susceptibility made b
states with differentj 561/2 cancel out.

As the flux increases, the population of the (j 51/2,
m521) level tends to zero, whereas the contribution of
( j 521/2,m521) level to the current decreases and
some valueFc changes sign. This is indicated by the beha
ior of the function in the integrand in Eq.~9!. This behavior
also explains whyJ(F) goes to zero again in Fig. 2. Fo
F.Fc the dependenceJ(F) is almost the same as that
the absence of the spin–orbit interaction.

In addition, nearF51/2 the curveJ(F) has kinks
which are attributed to an abrupt change in the limits
integration with respect tok ~a transition from the case o
two lateral minima inE21/2,21(k) to one central one; se
Fig. 4!.

FIG. 3. Curves ofL6(ns) defining regions of diamagnetism and parama
netism in the linear susceptibility.

FIG. 4. Current versusF nearF51/2.
e
t
-

f

3. DISPERSION OF THE MAGNETIC SUSCEPTIBILITY
OF A NANOTUBE

In this section we shall examine the response of el
trons situated at the surface of a cylinder to a varying m
netic flux. We shall assume that in addition to a constant fl
F passing through the cylinder, there is also a small varia
flux f(t). We are interested in the response of the system
the linear approximation with respect tof(t). The Hamil-
tonian of the system has an additional termF̂(t):

Ĥ5Ĥ01F̂~ t !, ~11!

where F̂(t)5f(t)V̂. For the dynamic susceptibility
x(v) ( J̃v5x(v)fv , where J̃v and fv are the Fourier
components of the variable components of the current
the magnetic flux! we can easily obtain the Kubo formula

x~v!5
ie

L E
2`

`

dt exp$~d2 iv!t%Tr$V̂ exp~ iĤ 0t !

3@V̂, f̂ #exp~2 iĤ 0t !%2
2e

L
Tr~ f̂ !. ~12!

We shall calculate the trace in formula~12! using the wave
function basis~5! and ~6!. For off-diagonal~with respect to
m) matrix elements of the velocity operatorV̂ we have

Vj ,k,m; j ,k,m̄5B~12L!
imLk

D j
~13!

(m̄52m). As a result forx(v) we find

FIG. 5. Real~solid curve! and imaginary~dashed curve! parts of the dy-
namic susceptibility as a function ofdF (dF5F21/2), v/B51024,
v/n55.
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x~v!5
ieB2L2~12L!2

2pR

3(
j ,m

E dk
k2

D j
2

1

n1 i ~Ej ,m̄~k!2Ej ,m~k!2v!

2
e

pR (
j ,m

E dk f~~Ej ,m~k!!. ~14!

Here we have replaced the infinitely smalld from formula
~12! with the phenomenological relaxation frequencyn.

Figure 5 gives results of numerical calculations of t
real and imaginary parts of the susceptibility near the po
F51/2. Quite clearly anomalies of the magnetic suscepti
ity should be observed in this range as a result of level cro
ing at low frequenciesv ~however, the usual condition fo
the appearance of frequency dispersionv@n should clearly
be satisfied!. The range of near-zeroF is of no interest for
this particular case of low frequenciesv!B. It should be
stressed that dispersion of the magnetic susceptibility o
exists in the presence of the spin–orbit interaction, since
L50, x(v) is reduced to a constant, as can be seen from
~12!.

To conclude, allowance for spin–orbit coupling signi
cantly alters the magnetic properties of a nanotube in a
gitudinal magnetic field: in weak fields diamagnetic behav
t
l-
s-

ly
r

q.

n-
r

is replaced by paramagnetic but nearF51/2 kinks appear on
the curveJ(F) at zero temperature. Crossing of levels
F51/2 gives rise to anomalies in the behavior of the d
namic susceptibility at very low frequenciesv!B.
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Thermally activated conductivity and current–voltage characteristic of dielectric phase
in granular metals
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Models of thermally activated linear and high-field nonlinear conductivity of a dielectric phase in
granular metals~nanocomposites!, i.e., aggregates of small metallic grains in a dielectric
matrix, have been suggested. Given a sufficiently large spread of grain sizes, the temperature
dependence of the nanocomposite conductivity should be described by a universal
‘‘power-1/2’’ law: G}exp@2(T0 /T)1/2#. An analytical expression forT0 has been obtained. It is
found that there are two regimes of nonlinear conductivity in a high electric field, namely,
a low-field regime, when both the number and mobility of carriers change with the field strength,
and a high-field regime, when only the mobility of carriers is variable. Analytical expressions
for the nonlinear conductance in both regimes have been obtained. ©1999 American Institute of
Physics.@S1063-7761~99!02304-5#
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1. INTRODUCTION

Granular metals~metal–insulator nanocomposites! are
structures composed of small~with sizesa51 –100 nm! me-
tallic particles embedded in dielectric matrices. They hav
number of unique properties controlled by the volume fr
tion x of the conducting phase.1–3 There is a certain critica
point xc such that forx.xc the material has metallic prop
erties, whereas forx,xc it behaves like an insulator, i.e., it
conductivity is thermally activated. From both physical a
practical viewpoints, the most interesting properties of su
materials are features of the metal–insulator transition ax
5xc and various effects in nanocomposites in the dielec
phase (x,xc).

This paper considers features of two such effects
have been extensively discussed in the literature, namely
thermally activated hopping conductivity and strongly no
linear current–voltage characteristics of dielectric nanoco
posites. Although the character and magnitude of these
fects are essentially controlled by material structures, t
are inherent in almost all nanocomposites.

It is a well established fact that the conductivity mech
nism in such systems is associated with tunneling of cha
carriers between grains, and in this context it is similar to
hopping impurity conductivity in doped semiconductor4

Moreover, since the distances between grains vary ov
wide range, it is natural to expect that their conductiv
should be described byG(T)}exp@2(T0 /T)1/4#, the well-
known Mott formula for the variable-range hoppin
conductivity.4 Numerous experiments performed on nan
composites of various compositions have revealed that
conductivityG(T) of such systems is described by the u
versal ‘‘power-1/2’’ law,G(T)}exp@2(T0 /T)1/2#, whereT0

is a temperature parameter which strongly depends onx and
tends to zero asx→xc . Attempts were therefore made t
modify the Mott model by postulating some selection ru
for allowed hops~for example, introducing a relation be
8191063-7761/99/88(4)/7/$15.00
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tween the hopping length and effective grain sizes5 in nano-
composites composed of grains with different sizes! with a
view to deriving the power-1/2 law from a modified mode
All these selection rules, however, seem rather far-fetc
and have raised serious doubts.2

The power-1/2 law has been known in the theory
hopping conductivity in semiconductors for a long time. It
usually interpreted in terms of the Coulomb gap in the d
sity of states of electrons localized at impurities, when
density of states goes to zero near the Fermi levelEF follow-
ing the lawg(E)}(E2EF)

2. This issue has been discuss
in numerous publications investigating, on the one hand,
nature of the Coulomb gap in the electron density of state
nanocomposite granules,6 and on the other hand, the effect o
such a gap on the temperature dependence of conductivi2,3

It is clear that, even if the gap scenario were realized
would apply only to the range of low temperatures, whe
the gap is not smeared by thermally generated excitations~in
reality, below T,~1–10 K!. At higher temperatures the Cou
lomb gap cannot play an important role, and the problem
the thermally activated conductivity in granular metals
mained unresolved. This paper is dedicated to this prob
and shows that the power-1/2 law does not need any a
cially introduced selection rules for tunneling transitions b
tween grains, but is a direct consequence of the large sp
of grain sizes typical of real nanocomposites. Moreover,
suggested simple model allows us to interpret the nonlin
conductivity of such materials in high electric fields.

2. THERMALLY ACTIVATED HOPPING CONDUCTIVITY:
POWER-1/2 LAW

At zero temperature (T50) and in the absence of a
external electric field (E50), all metallic grains in the di-
electric phase of a nanocomposite are neutral, since the e
trostatic energyW of any configuration of charged grains
positive.1! At finite temperatures, however, a thermodynam
© 1999 American Institute of Physics
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equilibrium of a different sort is established owing to tunn
ing transitions of electrons between grains, so that a frac
of grains acquire positive electric charge~and an equal frac-
tion of grains are charged negatively!. As a result, conditions
are created for tunneling conductivity due to tunneling tra
sitions ~hops! from charged metallic grains to neutral pa
ticles. Since the number of charged grains increases
temperature, a rise in the conductivity should be also
pected. Thus, the conductivity of dielectric nanocompos
is related to the thermal activation of carriers, and the pr
lem is reduced to calculation of the temperature depende
of this conductivity.

If the fraction of charged grains is small, the changewab

in the system energy caused by an electronic transition
tween two initially neutral grains is a function of the sizesa
andb of these grains and separationl ab between them:

wab5e2/2C~a,b,l ab!,

where

1

C
5

Ca12Cab1Cb

CaCb2Cab
2

,

Ca.0 andCb.0 are the capacitance coefficients of graina
andb, andCab,0 is their electrostatic induction factor.7 In
the limit l ab@a,b

Ca'«
a

2 S 11
ab

l ab
2 D '«a/2 ,

Cb'«
b

2 S 11
ab

l ab
2 D '«b/2 , 2Cab'«

ab

l ab
!Ca ,Cb ,

where« is the dielectric constant of the material. Thus, t
electrostatic energy satisfies

wab'
e2

2« S 1

a
1

1

bD
and in the limita!b it is described by a simple formula

wab'~e2/«a!.

However, the latter relation applies only under the co
dition that the host material containing the metallic grains
insulating and does not screen their electrostatic fields
reality, the system in question is conducting owing to t
tunneling transitions of electrons or holes from charged
neutral grains and can be characterized by a finite scree
lengthL. Hence

wab'
e2

« S 1

a
2

1

L D .

The mean thickness of the tunneling barrier for such tra
tions depends on the mean grain size and goes to zero w
the latter reaches the so-called percolation radiusLc , at
which the grains would form an infinite cluster4 and which is
related to the volume fractionx of metallic grains by the
simple formula (Lc /a)35xc /x. If the percolation cluster
-
n

-

th
-
s
-
ce

e-

-
s
In
e
o
ng

i-
en

contains mostly grains of one sizea ~see below!, it is natural
to setL5Lc ~Ref. 8! and express the electrostatic energy
the formula

wa'
e2

«a F12S x

xc
D 1/3G . ~1!

If all grains were of the same sizea, the concentration of
charged grains with both charge signs~their charges being
6e) would be N65N exp(2wa /kT), where N
5x/(4pa3/3) is the number of grains per unit volume.~For
N6!N such a system is similar to a weakly compensa
system of donors and acceptors in a semiconductor at
temperature.4 The role of charged donors and acceptors
the system in question is played by negatively and positiv
charged grains.! In this case, the resistance of the materia

R}
1

N6
expS 2^l &

l D}expS wa

kT
1

2^l &
l D}expS wa

kTD . ~2!

Here ^l & is the mean separation between grains,l
;\/(mW)1/2 is the electron wavelength in the insulator, a
W is the tunneling barrier height~which is close to half the
dielectric band gap!.

The resulting temperature dependencer(T) is markedly
different from the power-1/2 law because the assumption
an equal size for all grains is unrealistic. In fact, with t
technique used in fabrication of nanocomposites the size
metallic grains vary over a fairly wide range. Charge trans
between grains of different sizes~from a charged grain of
sizea to a neutral grain of sizeb) requires a certain amoun
of energy:

wab'
e2

« S 1

b
2

1

aD F12S x

xc
D 1/3G ,

which can be offset by absorbing a phonon~on the other
hand, a transition from a small grain to a larger one m
generate a phonon!. Given the wide spread of grain sizes,
is natural to expect a large spread of activation energieswab

of different hops.
This model is very similar to the percolation model

variable-range hopping conductivity in the theory of sem
conductors, one of whose tenets is the large spread of e
gies of the states participating in electronic transitions.4 Ac-
cording to this model, there is an optimal~temperature-
dependent! hopping lengthl ab between grainsa and b,
which is determined by the interplay between the tunnel
probability proportional to exp(22l ab /l) and the probabil-
ity of thermal activation over the barrierwab , which is pro-
portional to exp(2wab/kT).

If the distribution functionf (a) of grain sizes is known
~for example, the exponential distribution functionf (a)
5(1/a0)exp(2a/a0) is quite common9!, the concentration of
charged grains with sizes close toa is

Na} f ~a!expF2
w~a!

kT G . ~3!

Then the fraction of the system resistance due to char
grains with size a is2! Rab}(1/Na)rab , where rab

}exp@2l ab /l1wab /kT#. Thus,
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Rab}expF2l ab

l
2 ln f ~a!1

wa1wab

kT G
}expF2l ab

l
2 ln f ~a!1

wb

kTG . ~4!

The hopping lengthl ab equals the separation betwee
grains a and b. For f 8(a),0 the optimal hops are thos
between grains with close sizes~in this specific casea). In
fact, hops to more widespread smaller grains (b,a) would
require a higher activation energy,w(b).w(a), and hops to
less common grains of larger sizes,b.a, would be consid-
erably longer. Both would give rise to a higher resistivi
Hence we setb5a in Eq. ~4!. Then l ab5a(T)@ f (a)#21/3,
wherea is independent ofa. Thus,

Rab}expFa~T!@ f ~a!#21/32 ln f ~a!1
b

aTG , ~5!

whereb5(e2/«k)@12(x/xc)
1/3#.

The resistance of a separate current path connecting
opposite faces of a sample is determined by the produc
the resistivityrab corresponding to one hop times the num
ber of such hops along this path, which is inversely prop
tional to the hopping lengthl ab . The total sample resistanc
R is inversely proportional to the number of current pat
which is, in turn, inversely proportional tol ab . Thus, the
total resistance satisfiesR}Rab and is controlled by hops
between optimal grains, whose size is calculated by minim
ing the argument of the exponential function in Eq.~5!
through variation ofa. If the spread of actual grain sizes
small, the functions@ f (a)#21/3 and lnf(a) can be approxi-
mated by linear expressions around the optimal sizeaopt @un-
less the distribution functionf (a) has a peculiar shape#:

@ f ~a!#21/3'const1ga, ln f ~a!'const2g8a,

where

g52
1

3
@ f ~aopt!#

24/3f 8~aopt!, g852
f 8~aopt!

f ~aopt!
.

Then

R~a!}expS ãa1
b

aTD , ~6!

whereã5ga1g8.
Let f 8(aopt),0 and the temperature dependence ofã be

so weak that it could be neglected~this assumption will be
justified below!. Then ã.0 and minimization of the expo
nent in Eq.~5! by varying a yields the optimal grain size
aopt}T21/2, i.e.,

R}expF S T0

T D 1/2G , ~7!

whereT0 is the temperature parameter that controls the s
tem resistance. This is the power-1/2 law, which is of
mentioned in publications dedicated to nanocomposite p
erties.

Note that Eq.~7! was derived using linear approxima
tions of functions@ f (a)#21/3 and lnf(a). In cases when thes
o
of

r-

,

-

s-
n
p-

approximations cannot be applied, the temperature dep
dence of the resistance should be different. For example
systems with uniform distributions of grain sizes@ f (a)
5const foramin,a,amax#, f 8(a)50, and optimal hops are
those between the smallest grains. In this case we havr
}exp(w/kT), wherew5e2/«amax@12(x/xc)

1/3#.
Thus, we have shown that the power-1/2 law applies

thermally activated conductivity of nanocomposites und
the following conditions:

~1! ã(T) is a weak function of temperature;
~2! the relative spread of relevant grain sizes is not

large;
~3! the distribution function of grain sizes is such th

f 8(aopt),0, i.e., the number of grains is a dropping functio
of their size.

Whereas the latter condition is usually satisfied un
real fabrication conditions, the applicability of the form
two must be tested. With this end in view and in order
estimate the parameterT0 of the suggested model, let u
clarify the meaning ofã in Eq. ~6!.

As follows from the derivation of Eq.~5!, this parameter
is related to the concentration of grains with the optimal s
aopt. It is clear that such grains are those whose sizes be
to a certain intervalaopt2Da,a,aopt1Da, and the width
of this interval is determined by the condition that grai
with sizes outside this interval make a small contribution
the conductivity. Let us transform Eq.~6! to r}exp@j(a)#,
wherej(a)5ãa11/at, t5T/b, and ~in a rough approxi-
mation! ã is independent of temperature. The minimal res
tivity ~which controls the total sample conductivity! is due to
the grains with sizea5aopt5(1/ãt)1/2 and is r(aopt)
}expjopt, wherejopt5j(aopt)52(ã/t)1/2. Note that, as in
all percolation models~specifically, in the hopping conduc
tivity model4!, jopt@1. Since the resistivity is an exponenti
function of j, we assume that the optimal grains are tho
whosej is within unity from the optimal valuejopt. The
function j(a) can be approximated near the optimal sizea
5aopt as

j~a!'jopt1~1/taopt
3 !~a2aopt!

2.

By setting j(a)2j(aopt)51, we obtain (Da)22aopt
3 t

52aopt
2 /jopt. This implies (Da/aopt)

252/jopt!1, i.e., the
relative spread of optimal grain sizes is really small.

Further, for definiteness let us analyze a system with
exponential distribution function of grain sizes:f (a)
5(1/a0)exp(2a/a0), Ref. 9. Let the total number of grains o
all sizes per unit volume beN. Obviously,3!

N5
x

E ~4p/3!a3f ~a!da

5
x

8pa0
3

.

Then the density of efficient grains with sizes within th
range defined above is

Nopt5N f~a!•2Da52N~aopt
3 t!1/2

1

a0
exp~2 aopt/a0!.

The average separation between them is
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l ab'
1

4Nopt
1/3

'l 0 expS aopt

3a0
D ,

where

l 05
1

3 S a0

N D 1/3

~taopt
3 !21/6}T1/12.

In what follows we will neglect the weak temperature depe
dence ofl 0 and foraopt<a0 take l ab'const1 l̃ ab , where
~in the linear approximation! l̃ ab5(l 0/3a0)aopt. In this ap-
proximation lnf(a)'const2aopt/a0. In the derivivation of
the optimal grain size from Eq.~6!, only the temperature
dependent terms 2l̃ ab /l and aopt/a0 are important, whose
sum (2l 0/3l11)(aopt/a0) is included in the definition ofã
given above.

Under the conditions of tunneling conductivity,4! l 0 /l
@1 holds, soã'2l 0/3la0. Using the expression foraopt

derived in the rough approximation@i.e., neglecting the tem
perature dependence ofã(T)#, we obtain in the next approxi
mation

ã'~lN1/3!24/3t1/9/2a0
8/9}T1/9,

i.e., although this parameter is a function of temperature,
dependence is very weak and cannot notably change
power-1/2 law. At the same time, the explicit expression
ã yields both the optimal grain sizeaopt and the temperature
parameterT0 in Eq. ~7!. To this end, it suffices to insert th
more accurate expression forã in the approximate expres
sions aopt5(1/ãt)1/2 and jopt5(2ã/t)1/2. As a result, the
power-1/2 law is slightly modified and takes the form

r}expF S T0

T D 4/9G , ~8!

where

kT0'S e2

«a0
D S a0

l D 3/2

c~x!, c~x!5x21/2F12S x

xc
D 1/3G .

~9!

Thus, the optimal grain size is

aopt5a0S x

4p D 1/2S l

a0
D S T0

T D 5/9

, ~10!

i.e., it grows with decreasing temperature and drops as
temperature rises. This defines natural bounds for the ap
cability of the model: it is valid as long asamin,aopt

,amax, i.e., in the temperature range

Tmin,T,Tmax,

TS min
maxD5~4p!9/10

e2

k«a0
F a0

aS max
minD G

3/2

3F l

aS max
minD G

3/10

x27/5F12S x

xc
D 1/3G . ~11!

For typical valuesl52•1028 cm, a051027 cm, «55, and
xc50.5, we find that, for example, atx/xc50.3, the model
~hence the power-1/2 law! is valid in a wide temperature
-

is
he
r

he
li-

range 6 K,T,500 K. But this range narrows and shifts
lower temperatures asx→xc . This means that at higher tem
peraturesaopt5amax holds everywhere. It is natural to expe
a transition to the conductivity behavior typical of nanoco
posites with grains of equal sizes andG}exp(2T0 /T). Such
a change in behavior was observed in experiments w
Al–Ge granular films10 as x varied over the interval5! 0.3
,x,0.45.

By applying the same technique to systems with ot
distribution functions, one can obtain similar results.

In comparing the results deriving from Eq.~9! to experi-
mental data, one should keep in mind two complicatio
The first is the poor accuracy of the metal fractionx in a
nanocomposite measured in experiments, which is impor
for x close toxc . The second is the correlation between t
average grain sizea0 and the volume fraction of a meta
determined by technological conditions. In reality,a0 in-
creases withx ~so, in Ni–SiO2 systems5 we havea0515, 25,
and 40 Å atx50.08, 0.24, and 0.44, respectively!. For this
reason, one can expect good agreement between experi
tal data and calculations only in the overall shape of
temperature dependence of conductivity~the power-1/2 law!.
As concerns the absolute value ofT0 and its dependence o
the metal content,T0(x), the theory could be deemed su
cessful if it predictedT0 correctly within one order of mag
nitude and the overall shape of theT0(x) curve. As for the
temperature dependence of the resistivity, it was shown
dozens of experiments performed with different nanoco
posite systems in a wide temperature range~from room to
liquid-helium temperatures! that it follows the law r(T)
}exp@(T0 /T)1/2# ~see, for example, the reviews1,2!. Figure 1
plots experimental data by different authors for the funct
T0(x) in nanocomposites manufactured from different ma
rials ~the large spread of experimental data is caused by
complications mentioned above!. This graph also shows a
theoretical curve ofT0(x) calculated by Eq.~9! with the

FIG. 1. Temperature parameterT0(x) as a function of metal content fo
nanocomposites fabricated from different materials. Experimental data w
taken from the literature as follows:~1! W–Al2O3 ~Ref. 2!; ~2! Fe–SiO2

~Ref. 11!; ~3! Ni–SiO2 ~Ref. 12!; ~4! Ni–SiO2 ~Ref. 5!. The solid curve
plots calculations by Eq.~9! with parameters given in the text. Average siz
of metallic grains are given.
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following parameters:l5231028 cm, a051027 cm, «55,
and xc50.5. The agreement between the experimental d
and calculations is satisfactory.

It was noted above that the temperature dependenc
the optimal grain size is approximately described by
simple formulaaopt}T21/2. Its dependence on the metal fra
tion, aopt(x), is also easily understandable. The mean se
ration between grains decreases with increasingx, and small
grains ~characterized by high activation energies! also con-
tribute to the conductivity. This should yield a smalleraopt.
Calculations plotted in Fig. 2 indicate that the optimal gra
size is smaller than their average size in a wide region ox
and T. For nanocomposites withx/xc>0.9 this condition
(aopt<a0) is satisfied over the range down to the liqui
helium temperature.

To conclude this section, note that the power-1/2 l
was derived by Shenget al.5 under the assumption that the
is a structural relation between the grain sizea and separa-
tion l between them:l /a5const. Adkins,2 however, cor-
rectly noted that the assumption had not been supporte
structural analysis data. It follows from our analysis that
power-1/2 law should be valid under a less restrictive con
tion ]l /]a5const neara5aopt ~the conditionl /a5const is
a very special case of our condition!. Note also that some o
the sophisticated methods used by different authors to jus
the power-1/2 law can be boiled down~although it is not
obvious sometimes! to linearizing the actual portion of func
tion @ f (a)#21/3. For example, Sheng3 linearized the distribu-
tion functionf(wi j ) of the activation energy in the region o
low energies~in fact, he setf(wi j )}wi j for wi j ,w0), then a
numerical calculation led to the power-1/2 law. This resu
however, was valid only in the temperature rangekT<w0. It
is not surprising because~given wi j }1/a) the postulated
function f(wi j ) corresponded to the distribution function
grain sizesf (a)5f@wi j (a)#(dwi j /da)21}1/a3, which im-
plies f 21/3(a)}a, the condition mentioned above~moreover,
it is the functionf (a)}1/a3 that satisfies the conditionl /a
5const discussed above!. Nonetheless, the coincidence b

FIG. 2. Optimal size of metallic grains in a nanocomposite that make
major contribution to the conductivity. The calculations were perform
using Eq.~10! with parameters given in the text.
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tween these numerical calculations of the temperature de
dence of the conductivity and the result of our analysis p
vides evidence in favor of the suggested approach.

3. CURRENT–VOLTAGE CHARACTERISTIC

According to the model described in the previous s
tion, the conductivity in the weak-field limit is connecte
with tunneling transitions of charges~electrons or holes! be-
tween charged and neutral grains of a quite definite~optimal!
size a5aopt, which is considerably larger than the size
the smallest close-set grains. Although the probability of tu
neling between the latter is higher than between m
wuidely spaced grains of the optimal size, the number
charges on small grains is limited by their high ionizati
energy, so their contribution to the conductivity is small.
sufficiently high electric fields, transitions between lar
charged grains and smaller neutral grains, whose probab
is low in weak electric fields, become possible, so the c
ductivity is effected via more probable transitions involvin
closely set small grains. Both the number of carriers~owing
to the change in the optimal sizeaE of donor grains! and
their mobility ~owing to the change in the optimal sizebE of
conducting grains! vary with the electric field.

In accordance with this reasoning, let us assume tha
electric field of strengthE offsets the activation energywab

of the transition from a grain of sizea to a grain of sizeb
,a, i.e.,

eEl ab5wab5
e2

« F12S x

xc
D 1/3G S 1

b
2

1

aD . ~12!

We ignore the fact that such transitions can be driven
thermal activation, i.e., absorption of phonons. This can
done if the temperature is moderate,kT!wab ~qualitative
estimates of the effect of finite temperature will be giv
below!.

Then we can setwab50 in Eq. ~4! and assume that th
conductivity in these conditions is due to tunneling~through
a distance;l bb) between grains of sizeb. Therefore the
first term of the exponent in Eq.~4! equals 2l bb /l, whereas
the term related to the number of carriers is still determin
by ionization energywa of grains with sizea, but now
should be expressed with due account of Eq.~12! relatinga
andb:

wa

kT
5S 1

bt
2

l abE

Qt D , Q5
e

« F12S x

xc
D 1/3G .

Since we havea.b, we can equate the average separat
l ab between grainsa and b to the smaller distancel bb .
Finally, as previously, we can neglect the term proportio
to ln f(a). As a result, the exponentj takes the form

j5aEb1
1

tb
, aE5ãS 12

lE

2Qt D , ~13!

i.e., it is similar to the case of linear conductivity discuss
in the previous section@Eq. ~6!#.

e
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As is usual, the resistanceR}exp(j) is determined by
the minimal value ofj, which is equal in this case tojE

52jopt(12lE/2Qt)1/2. Thus the total conductance of th
sampleG51/R is given by6!

G~E!}exp@22jopt~A12lE/2Qt21!#. ~14!

The optimal grain sizesa and b increase with the electric
field strength:

bE5~aEt!21/25aoptS 12
lE

2Qt D 21/2

,

aE5
bE

12El bbbE /Q

5aoptF S 12
lE

2Qt D 1/2

2
aoptl bbE

Q G21

, ~15!

but in all fieldsbE,aE .
This analysis is, naturally, valid untilaE,amax. In

higher electric fields, the size of donor grains is fixed ataE

5amax, and the size of conducting grains decreases:bE

5amax/(11amaxl bbE/Q). Further increase in the electri
field strength does not affect the number of carriers supp
by grains of the maximal size, but their mobility increas
owing to hops to smaller grains separated by smaller
tances. In this case we havejE5ãbE , and the conductanc
is

G~E!}expF2
E0

E1~ ãamax!
21E0

G , ~16!

where E05ãQ/l bb}@12(x/xc)
1/3#. Since (ãamax)

21

;@(amax/aopt)jopt#
21!1, it follows from Eq.~16! that even

in fields E!E0

G~E!}expS 2
E0

E D , ~17!

which is formally equivalent to the result obtained by She
et al.5 for a specific distribution functionf (a) and under
different assumptions.

The characteristic field strengthE0 can be estimated by
the relation

E0;
e

«a0
2 F12S x

xc
D 1/3G ,

which yields E0;106 V/cm for a0;331027 cm, x;0.2,
and xc;0.5. This estimate is in agreement with the expe
mental data5 measured forT;1 K: E05(3.5, 1.0, 0.23)
•106 V/cm for systems withx50.08, 0.24, and 0.44, respe
tively. After settingxc50.5, we find that, in accordance wit
the expression forE0 given above, the proportion amon
these fields should be 2.3:1:0.19, which is fairly close to the
experimental data.

As for the low-field regime of nonlinear conductivity,
should be noted that this model predicts qualitative diff
ences between curves of conductance versus electric
measured in the two regimes mentioned above: the curv
G(E) should have a positive curvature (G9(E).0) in the
d
s
s-

g

-

-
ld
of

low-field regime and negative (G9(E),0) in the high-field
regime. This can be used as a criterion for distinguish
between the two regimes. The fact thatG(E) curves of the
first type were recorded neither in fieldsE;105–106 V/cm
~Ref. 5! nor for E;103–104 V/cm ~Ref. 13! indicates that
the boundary between these two regimes is in the rang
fields E,103 V/cm. Preliminary results7! of detailed studies
in these and lower fields are in agreement with the pres
model.14

In conclusion, let us briefly discuss the effect of fini
temperature on our results. In this case, transitionsa→b are
driven not only by electric field, but also by phonons
energy;kT, which is equivalent, according to Eq.~12!, to
the replacementE→E2ET , whereET5kT/el aa . Then we
have instead of Eq.~14!

G~E!

G~0!

}H 1, E<ET ,

exp@22jopt~A12l~E2ET!/2Qt21!#, E.ET
,

~18!

which means that there is a region of linear conductivity
low electric fields with the upper boundaryET}T.

At higher temperatures we haveaopt}T21/2→amin , and
an electric field is no longer necessary for driving curre
through small grains. This does not mean, however, tha
has no effect on the conductivity. In this case, we sho
reconsider the nonlinearity mechanism suggested earli5,
namely, the effect of electric field on the tunneling probab
ity between grains.

Thus, on the basis of this simple model it is possible
offer a qualitative interpretation of various features of th
mally activated conductivity of granular metals, including
nonlinearity in high electric fields.

The author is indebted to B. A. Aronzon and V. V
Ryl’kov for helpful discussions and information about e
perimental results prior to publication. The work was su
ported by the Russian Fund for Fundamental Resea
~Grants 96-02-18429-a and 98-02-17412-a! and by the joint
program of Center National de Recherche Scientifique
France and Russian Fund for Fundamental Research~Grant
98-02-22037!.

* !E-mail: meilikhov@imp.kiae.ru
1!Here we neglect the fact that a fraction of grains in the ground stateT

50) are charged in the presence of the Coulomb gap.6

2!Hereafter we assume that only hops between nearest neighbors are im
tant. Although the hopping length varies with the temperature~in accor-
dance with the change in the optimal grain size!, these are always hop
between nearest neighbors. This is a fundamental departure from the
picture of the variable-range hopping conductivity and is related to
purely geometrical consideration that forx.xc/10 grains of optimal sizes
are shielded by their nearest~or second nearest! neighbors from their far-
ther neighbors. This makes impossible tunneling transitions between
ther neighbors, which would otherwise require a smaller energy.

3!In the calculation ofN the integration should be performed over the inte
val amin,a,amax, where amin and amax are the maximal and minima
grain size, respectively. Ifamax>3a0 andamin<a0, the result differs from
that given in the text by only several percent.

4!This means, in particular, that the term proportional to lnf(a) in Eqs.~4!
and ~5! can be neglected.
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5!At higher x a transition to a nonactivated conductivityG(T) took place.
The most probable cause of this change is a more complicated structu
the metallic component forx approachingxc . In this case the simple
model of isolated ball-shaped particles of different sizes no longer app

6!No complications occur when the radicand in Eq.~14! goes to zero~see
below!.

7!The experiments were performed on samples withx'xc in fieldsE5102–
103 V/cm. The conductance remained constant in the region of low elec
fields, whose width increased with temperature, and then changed b
order of magnitude.
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Application of renormalization group techniques to transport in the presence of
nonlinear sources and sinks
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The paper considers the problem of spreading of a localized distribution due to diffusion in the
presence of nonlinear sources and sinks modeling annihilation and creation of material in
chemical reactions. The evolution of the parameters characterizing the problem, namely, the
amplitude and radius of the distribution, has been investigated under the assumption that
the distribution is self-similar. These parameters have been calculated using the renormalization-
group method with renormalization of the diffusion coefficient and the total amount of
material. As a result, it is possible to classify various regimes of the asymptotic behavior of the
system at long times according to the sign of nonlinear interaction constant and the spatial
dimensionality. In particular, the conditions under which the regime of asymptotic freedom and
the peaking regime are realized have been found. The renormalization group method not
only allows us to calculate the exponents of functions with power-law behavior, but also to track
the transition to the asymptotic regime and calculate numerical coefficients. ©1999
American Institute of Physics.@S1063-7761~99!02404-X#
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1. INTRODUCTION

The problem of transport in the presence of nonlin
sources and sinks has long been long been at the forefro
research because this phenomenon has implications for p
ics, chemistry, engineering, biology, ecology, and other s
ences. The theoretical description of these phenomen
based on a quasilinear parabolic equation of the form

F ]

]t
2D0D GC~r ,t !1lC112d~r ,t !50. ~1.1!

In particular, Eq. ~1.1! occurs in modeling processes
chemical kinetics, coagulation of aerosol particles, filter
in porous media, heat transfer with due account of losses
heating due to radiation, etc. To be more specific, in w
follows we will relate our analysis to chemical kinetics,1 so
the quantityC(r ,t) will be called the concentration of a sub
stance,D0 the molecular diffusion coefficient,n5112d the
order of the chemical reaction, andl the reaction rate con
stant. The casel.0 corresponds to annihilation of a su
stance in the course of the reaction, andl,0 to creation.
Studyies of the long-time asymptotics of the solution rev
that there is a critical spatial dimensiondc51/d for absorp-
tion reactions above which diffusion processes should be
important, the solution as a function of time depends on
order of the chemical reaction asC(r ,t)}(lt)21/2d and ap-
pears to be independent of the initial substance concentra
in agreement with the results of the mean-field approxim
tion.

However, for dimensions below the critical value a sp
cific nonlinear regime is observed and the concentration
cays asymptotically with time asC(r ,t)}t2d/2, which im-
plies that spatial fluctuations dominate in the concentrat
A convenient technique for investigating fluctuations in
8261063-7761/99/88(4)/7/$15.00
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system with an infinite number of essential degrees of fr
dom is an application of quantum field theory methods. A
cording to the Martin–Siggia–Rose formalism of ‘‘fiel
doubling,’’2 a classical system described by Eq.~1.1! is
equivalent to a certain quantum system in the sense that
have identical characteristic functionals~functional Fourier
transforms of the probability density identified with the co
centration! expressed in the form of path integrals for tw
fields presented by creation and annihilation operators
particles involved in a reaction.3

The technique of renormalized perturbation theory b
rowed from the quantum field theory was employed in inv
tigating equation system~1.1! by Doi.4 Peliti3 showed that
for binary reactions (n52, d51/2) one can sum up the pe
turbation series, calculate exact renormalizations of
propagator and vertex, and determine the exponent in
power function of time, which appears to be valid for a
orders of perturbation theory. The idea of using the ren
malization group~RG! method in summing the infinite per
turbation series was suggested and exploited by Ohtsuki.5 He
investigated the problem of the evolution of a given init
distribution for d,dc and, under the assumption that th
asymptotic form is independent of the initial distributio
obtained damping with exponent2d/2. Like Peliti,3

Ohtsuki5 analyzed only the renormalization of reaction rat
~vertices!, and no renormalization of field amplitudes wa
needed. The application of the RG technique allowed th
to determine not only the exponents but also the numer
coefficients of the power functions, and describe the tran
tion to the asymptotic regime as well. Lee6 generalized this
analysis to the case of a reaction of arbitrary order~unlike
the case of binary reactions analyzed previously!, and in ad-
dition, he calculated numerical amplitude coefficients.
© 1999 American Institute of Physics
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This paper suggests a slightly different method based
the RG technique for investigating the asymptotic distrib
tion function, which allows one to perform an analytic co
tinuation with respect to the order of the chemical reaction
well as the spatial dimension. This is rather difficult in t
field approach, since the reaction order governs the topol
cal structure of the Feynman diagrams. Moreover, if
quantum field theory formalism is not used when the L
grangian structures for creation and annihilation reactions
different, these processes are described similarly in our
proach, and the only difference is in the sign of the react
constantl.

2. PROBLEM STATEMENT AND CONSTRUCTION
OF A RENORMALIZED PERTURBATION THEORY

The goal of the present work is to investigate asymp
ics of solutions of the Cauchy problem for a localized init
distribution function. The solution is assumed to be se
similar, i.e., the functional form of the solution does n
change in the process of evolution, and only the characte
tic scales of the problem, namely, the amplitude and width
the distribution, depend on time. In the case of spheric
symmetrical initial conditions, the self-similarity proper
implies

C~r ,t !5C~ t !F~r 2/ l 2~ t !!, ~2.1!

and one can describe the evolution of the distribution
terms of the functionsC(t) andl 2(t). @It is worth noting that
previous studies7,8 of this problem were limited to the case o
l 2(t)54D0t.# The author previously9 suggested using th
RG method in order to calculate these functions and a
lyzed the specific case of an absorption reaction in a lo
dimensional space. In the present paper this approach is
eralized to the case of a space of arbitrary dimension
arbitrary sign ofl, which allows one to investigate, using th
same technique, processes involving reactions with mate
generation and so-called blow-up regimes, which commo
occur in such reactions.8

In what follows, we will use the total amount of materi
q(t) and time-dependent diffusion coefficientD̃ defined by
the formulal 2(t)54D̃(t)t instead of the functionsC(t) and
l 2(t). These two parameters can be expressed in term
C(t) and l 2(t) and allow us to write the solution in the form

C~r ,t !5
q~ t !

@4D̃~ t !t#d/2b1

FS r 2

4D̃~ t !t
D , b15E dx F~x2!,

~2.2!

where

E dr C~r ,t !5q~ t !,

E dr r 2C~r ,t !54q~ t !D̃~ t !t S b1

b2
D ,

b25E dx x2F~x2!. ~2.3!
n
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The numerical analysis of the solution10 indicates that, for a
large set of different initial distributions and at least in t
case of an absorption reaction (l.0), an asymptotic
solution is well described by the Gaussian formF(x2)
5exp$2x2%. In this case we haveb15pd/2 andb2 /b15d/2.

Let us take the initial distribution in the form

C~r ,0!5Q0d~r !. ~2.4!

However, in some cases, using a generalized function~dis-
tribution! as an initial condition can yield an incorrect resu
since the functiondn(r ) is ill-defined, and then one shoul
use a regularized distribution of the form

C~r ,0!5C0 exp~2r 2/ l 0
2!, ~2.48!

which can be treated as resulting from linear evolution of
distribution ~2.4! defined att52t0, so thatt05 l 0

2/4D0 and
Q05(p l 0

2)d/2C0.
The use the RG method in its quantum-field version

based on the arbotrariness of a partition of the full Ham
tonian of a system into unperturbed and perturbed parts w
a renormalized perturbation scheme is developed~renormal-
ization invariance!, and this arbitrariness is used to improv
the perturbation theory by summing an infinite subset of
total perturbation series.11 Although our version of the theory
does not contain a Hamiltonian, and the perturbation the
is developed by iterating an integral equation equivalen
Eqs. ~1.1! and ~2.4!, the selection of the initial distribution
provides a degree of freedom which corresponds to
renormalization invariance in the quantum field theory.

Following the RG method, we renormalize the diffusio
coefficient in Eq.~1.1! by replacingD0→D5Z1

21D0 and
adding a compensating term to the right-hand side:

F ]

]t
2DD GC~r ,t !1lC112d~r ,t !5~Z121!DDC~r ,t !.

~2.5!

Using the Green’s function method, let us go over from
differential to an integral equation, incorporating the initi
condition ~2.4! in the explicit form

C~r ,t !5Q0G~r ,t !2E
0

t

dt8E dr 8G~r2r 8,t2t8!

3@lC112d~r 8,t8!2~Z121!DDC~r 8,t8!# ~2.6!

@note that the Green’s function in Eq.~2.6! incorporates the
renormalized diffusion coefficientD rather then its bare
valueD0#.

Let us renormalize the initial condition by substitutin
Q0→Q5Z2

21Q0 and adding a second compensating term
the right-hand side:

C~r ,t !5QG~r ,t !2E
0

t

dt8E dr 8G~r2r 8,t2t8!

3@lC112d~r 8,t8!2~Z121!DDC~r 8,t8!#

1~Z221!QG~r ,t !. ~2.7!
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After sequential iterations of Eq.~2.7! with the first term in
the right-hand side used as a zero-order approximation,
obtain the solution in the form of a perturbation series
powers of the nonlinearity parameterl.

In the first approximation of the perturbation theory, t
calculation yields9

C(1)~r ,t !5QFG~r ,t !2
lQ2d

Ddd A E
0

t dt8

~ t8!12e G

3S r ,t2
2d

112d
t8D1~Z221!G~r ,t !

1~Z121!DtDG~r ,t !G ,
e512dd, A5

1

~112d!d/2

1

~4p!12e . ~2.8!

In getting Eq.~2.8!, we have used the so-called sem
group property of the Green’s function of the diffusion equ
tion, namely,

E dr 8G~r2r 8,t2t8!G~r 8,t82t0!

5G~r ,t2t0! ~ t.t8.t0!, ~2.9!

and it is easy to show that

G112d~r ,t !5
A

~Dt !dd GS r ,
t

112d D . ~2.10!

Equation~2.8! clearly shows that, at least ate,0, the
main contribution to the integral overt8 comes from the
region of smallt8, which allows us to omitt8 in the argu-
ment of the Green’s function in the integrand. As a result,
see that in the lowest order of the perturbation theory ine
the spatial distribution of the concentration is described
the Green’s function of the linear problem. This confirms o
assumption~2.1! about the self-similar form of the distribu
tion function, because the same arguments are valid
higher order terms of the perturbation theory constructed
iteration. Note also that in the case of smalld, in accordance
with Eq. ~2.8!, one can also omitt8 in the argument of the
Green’s function and obtain the spatial distribution typical
the linear problem.

Up to this point, we stress that the renormalization co
stantsZ1 andZ2 have been arbitrary. We will specify thes
constants with the normalization condition, which says t
the amount of material and the effective diffusion coefficie
at time t5t coincide with the renormalized values

q~t!5Q, D̃~t!5D. ~2.11!

The use of Eqs.~2.3!, ~2.8!, and ~2.11! yields in the
lowest approximation of the perturbation theory the follo
ing renormalization constant for the total amount of mater

Z2~t!511
lQ2d

Ddd AE
0

t dt8

~ t8!12e 511gAB~1,e!, ~2.12!

where g5(lQ2d/Ddd)te, B(j,h) is the beta-function~the
Euler integral of the first kind!. The beta-function is included
e

-

e

y
r

or
y

f

-

t
t

l:

in Eq. ~2.12! because the integral diverges at negativee, but
it can be extrapolated to the regione,0 using well-known
recurrence relations. This approach corresponds to
method of dimensional regularization in quantum fie
theory.12,13

Similarly we determine the renormalization constant
the diffusion coefficient:

Z1~t!512
lQ2d

Ddd A
2d

112d

1

t E
0

t dt8

~ t8!2e

5122gAaB~1,e!, a5
d

112d

B~1,11e!

B~1,e!
.

~2.13!

3. RENORMALIZATION INVARIANCE AND
RENORMALIZATION GROUP METHOD

Let us express the unknown functionsq(t) and D̃(t) in
terms of dimensionless functions of dimensionless para
eters:

q~ t !5Q f2~ t/t,g!, D̃~ t !5D f 1~ t/t,g!, ~3.1!

which should obey the relationsf 1(1,g)51 and f 2(1,g)51
according to the normalization condition~2.11!. The renor-
malization invariance requirement means that calculation
q(t) and D̃(t) should not depend on the set of numeric
parameters determined by a specific selection of normal
tion point t, i.e., under the RG transformationst→t1 , Q
→Q1, andD→D1 the following relation should hold:

Q f2S t

t
,gD5Q1f 2S t

t1 ,
g1D , D f 1S t

t
,gD5D1f 1S t

t1
,g1D ,

g15
lQ1

2d

D1
dd t1

e . ~3.2!

From the normalization conditions it follows that

Q15Q f2S t1

t
,gD , D15D f 1S t1

t
,gD ,

which yields functional RG equations

f i S t

t
,gD5 f i S t1

t
,gD f i S t

t1
,g1D ~ i 51,2!. ~3.3!

To solve Eq.~3.3!, let us introduce a new dimensionles
function

l q2d~ t !te

D̃dd~ t !
[g f2

2dS t

t
,gD S t

t D e

f 1
ddS t

t
,gD5g̃S t

t
,gD . ~3.4!

This function is an actual time-dependent expansion par
eter of the perturbation theory invariant under the RG tra
formation. It satisfies the functional RG equation

g̃~x,g!5g̃~x/a,g̃~a,g!!, g̃~1,g!5g ~3.5!

and the differential RG equation following from it:

H 2x
]

]x
1b~g!

]

]gJ g̃~x,g!50,
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b~g!5
]g̃~x,g!

]x
U

x51

. ~3.6!

In reality, Eq.~3.6! can be treated as an equation only
the case of a given RG functionb(g), which is determined
by the behavior of functiong̃(x,g) near the normalization
point x51. The RG method is based on the suggestion
b(g) should be calculated by the renormalized perturbat
theory. If b is calculated by the perturbation theory, subs
tuted in Eq.~3.6!, and this equation is solved, this procedu
corresponds to summation of the perturbation series o
infinite subsequence of it.11

Using Eqs.~2.12! and~2.13!, one can evaluate the func
tions f i(x,g) in the lowest order of perturbation theory:

f 1~x,g!5D̃~ t !/D5Z1~t!/Z1~ t !

'112gAaB~1,e!~xe21!,

f 2~x,g!5q~ t !/Q5Z2~t!/Z2~ t !'12gAB~1,e!~xe21!.
~3.7!

After finding b(g) from Eq. ~3.7! and solving Eq.~3.6!
by the method of characteristics,11 we get

g̃~x,g!5
gxe

11~g/g* !~xe21!
,

f i~x,g!5$11~g/g* !~xe21!%z i,

z15a/d~11ad!, z2521/2d~11ad!,

g* 5e/2dA~11ad!. ~3.8!

The remaining step is to express the solution in terms
initial ~nonrenormalized! parameters of the problem b
eliminating t, D, and Q. To this end, let us consider th
general form of the RG function. Depending on the sign oe,
three situations illustrated by Fig. 1 can occur. The asym
totics is determined by positions of stationary~fixed! points
gi determined by the conditionb(gi)50. The requirement
that the fixed point should be stable ast→` is equivalent to
the condition@]b(g)/]g#g5gi

,0, and the stability condition
for a fixed point ast→0 is @]b(g)/]g#g5gi

.0. Figure 1
shows that in the lowest approximation of perturbati
theory there are two fixed points: one is trivial,g50, which
corresponds to the absence of nonlinear interacti
~asymptotic freedom!, and the other is nontrivial,g5g*
Þ0, whose position is determined by the sign ofe. In the
marginal casee50 the stable and unstable fixed points a
merged.

FIG. 1. Possible forms ofb(g).
at
n
-

n

f

-
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From the conditionq(t)>0, D̃(t)>0 it follows that the
sign of g is determined by the sign ofl only. Hence it
follows that in the case of an absorption reaction (l.0) and
e.0 (d,dc) a specific stable nonlinear regime develops
t→` and it evolves from the initial condition of asymptot
freedom ast→0. For e,0 (d.dc), an asymptotically free
regime may occur ast→`, but it evolves from ‘‘unphysi-
cal’’ boundary conditions defined att→0 and corresponding
to g,0.

For l,0 ~the case when a substance is produced! and
e.0, a regime stable ast→` corresponds to the unphysica
value g̃→g* .0, so the regiont→` should be excluded
from the analysis. But fore,0 the regime of asymptotic
freedom in the limitt→` evolves from an initial state that i
stable fort→0 and corresponding tog,0.

The condition of asymptotic freedom means an abse
of renormalization of the diffusion coefficient and a consta
amount of material. These requirements can be treate
boundary conditions that allow one to eliminatet in Eq.
~3.8! and expressQ andD in terms of the initial parameters
In accordance with the above arguments, this procedur
carried out in a different manner depending on the signs ol
ande.

4. DIFFERENT REGIMES OF SYSTEM BEHAVIOR

~a! An absorption reaction at space dimension below
critical value, l.0, e.0 ~binary reactions in a one
dimensional space!. Using the condition of asymptotic free
dom, q(0)5Q0 , D̃(0)5D0, we get from Eqs.~3.4! and
~3.8!

g5g0@11~g0 /g* !#21, g05lQ0
2dte/D0

dd , ~4.1!

which yields after substitution in Eq.~3.1!

D̃~ t !5D0F11
lQ0

2d

D0
dd

1

g*
teG z1

5D0F11
1

g* S t

TD eG z1

,

q~ t !5Q0F11
lQ0

2d

D0
dd

1

g*
teG z2

5Q0F11
1

g* S t

TD eG z2

,

~4.2!

T2e5
lQ0

2d

D0
dd .

From Eq.~4.2! we obtain expressions for the amplitud
C(t) and radiusl (t) of the diffusion spot:

C~ t !5
q~ t !

@4pD̃~ t !t#d/2

5
Q0

@4pD0t#d/2 F11
1

g* S t

TD eG21/2d

,

l ~ t !5A4D̃~ t !t5A4D0 F11
1

g* S t

TD eG z1/2

t1/2. ~4.3!

At large t Eqs.~4.3! transforms to

C~ t !→
1

~4p!d/2 S lt

g* D 21/2d

5c~lt !21/(n21),

l ~ t !→A4D0~g* !2z2/2t1/2~ t/T!ez1/2. ~4.4!
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In accordance with Eq.~4.4!, the asymptotic form of the
amplitude proves to be independent of the initial distribut
parameterQ0 and corresponds to self-similar solutions d
cussed in earlier publications.7 However, the evolution of the
diffusion spot radiusl (t) depends on the selection of initia
conditions~parameterQ0), i.e., a regime of incomplete self
similar condition is realized~self-similarity of the second
kind!,14 whenl (t)}t1/21a. The incomplete self-similarity ex
ponenta is determined only by the reaction order and spa
dimensionality:

a5
12dd

2d

a

11ad
.

The corresponding curves are plotted in Fig. 2a.
~b! Absorption reaction in a space of dimension abo

the critical value,e,0, l.0. The asymptotic freedom re
gime realized ast→` corresponds to the conditionsD̃(`)
5D0 and q(`)5const. However, in the limitt→0, it is
found thatg̃→g* ,0, which corresponds to unphysical in
tial conditions since, according to Eq.~3.3!, the relationg̃
>0 should hold. The reason is that the initial condition

FIG. 2. Typical curves ofg̃(x,g), q(t), andD̃(t) for variouse andl @see
text, cases~a! to ~e!#.
l

e

defined by the generalized functiond(r ): the functiondn(r )
appearing in Eq.~1.1! is ill-defined. In order to get circum-
vent this difficulty, one should take an initial condition wit

a finite distribution radius@Eq. ~2.48!# l 05A4D̃(t0)t0 andt0

in the region of positiveg̃. Thus, the initial conditions are
given by the relations

Q05q~ t0!, l 05 l ~ t0!. ~4.5!

Having selected the normalization point att5t0 and taken
into accountD̃(t0)5D, we obtain

q~ t !5Q0F11
lQ0

2d

Ddd

1

~2g* !
~ t0

e2te!G z2

,

D̃~ t !5DF11
lQ0

2d

Ddd

1

~2g* !
~ t0

e2te!G z1

. ~4.6!

From conditionD̃(`)5D0 we derive an equation ex
pressingt0 in terms of the initial conditions,C05C(t0) and
l 0, and the parametersl andD0 of the problem:

4D0t05 l 0
2F11

~4p!dd

~2g* !
C0

2dlt0G z1

. ~4.7!

For the amplitude and radius of the distribution given by E
~2.1!, we find

C~ t !5C0S t

t0
D 2d/2H 11

~4p!dd

~2g* !
C0

2dlt0

3F12S t

t0
D eG J 21/2d

,

l ~ t !5 l 0S t

t0
D 1/2H 11

~4p!dd

~2g* !
C0

2dlt0F12S t

t0
D eG J z1/2

,

~4.8!

and for the asymptotic amount of material

q~`!5Q0~4D0t0 / l 0
2!21/2a. ~4.9!

Typical curves for g̃(x), q(t), and D̃(t) are shown in
Fig. 2b.

~c! The marginal case of the critical dimension,e50
~takes place in binary reactions in a two-dimensional spa!.
An important point is that ate50 we havez150, in accor-
dance with Eq.~2.13!, and the diffusion coefficient is no
renormalized. Then, using the formula forg* from Eq.~3.8!,
we obtain

q~ t !5Q0$112dAgln~ t/t!%21/2d, D̃~ t !5D0 . ~4.10!

By setting the initial conditions at the renormalizatio
point t5 l 0

2/4D0 and measuring time from this point we ob
tain

q~ t !5Q0F11
1

p~d12!

lQ0
1/2d

D0
ln

l ~ t !

l 0
G2d/2

,

l ~ t !5Al 0
214D0t. ~4.11!

From Eq.~4.11! it follows that in the case of an absorptio
reaction (l.0) the amount of material in the long-time lim
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slowly decays as a power of a logarithm and the asympt
form is independent of the initial quantityQ0. However, in
the case of the production reaction (l,0) the amount of
material increases and tends to infinity during a certain fin
time interval depending on the problem parametersl, D0 ,
Q0, and l 0.

~d! A creation reaction at a dimension below the critic
value, e.0, l,0 ~a binary reaction in a one-dimension
space!. After eliminating the renormalized parameter wi
the help of the condition of asymptotic freedom fort→0, we
obtain formulas of the form@Eq. ~4.2!#

D̃~ t !5D0F12
~2l!Q0

2d

D0
dd

1

g*
teG z1

,

q~ t !5Q0F12
~2l!Q0

2d

D0
dd

1

g*
teG z2

. ~4.12!

With due account of the conditionsz1.0 andz2,0, we find
that q(t) grows with time and has a singularity att1

5@(2l)Q0
2d/g* D0

dd#21/e ~Fig. 2d!. It also follows from Eq.
~4.12! that at first an initially localized distribution of a finit
amount of material spreads in accordance with the lin
theory, but then the distribution narrows as the amoun
material increases further, and a collapse takes place
finite time t1, which corresponds to the peaking regime.8 An
investigation of the behavior of the system near the singu
ity point probably requires that the functionsf i(x,g) be cal-
culated in higher orders of the perturbation theory, but
present analysis probably allows one to describe the beha
and evolution rates of parameters in the peaking regime
least in its earlier stages.

~e! A reaction producing material at a dimension abo
the critical value,e,0, l,0. It follows from the general
equations~3.8! with due account of conditionsz1,0 and
z2,0 that the solutions of RG equations forq(t) and D̃(t)
tend to zero ast→0, which means that the Cauchy proble
with the initial d-function distribution is ill-posed. Therefore
one should proceed as in case~b!, when the initial time was
chosen att5t0 and the normalization conditions were dete
mined at this point. Analysis of the solutions indicates tha
this case two different regimes are possible, correspondin
the situations illustrated by the solid (g/g* ,1) and dashed
(g/g* .1) curves in Fig. 2e. It is clear that forg/g* .1 the
regionx.x1 is unphysical sinceg̃.0 at l,0.

In accordance with the normalization conditions, E
~4.5! and the condition of asymptotic freedomD̃(`)5D0

must be treated as boundary conditions and used in exp
ing integration constantsQ, D, andt5t0 of RG equations, in
terms of the initial parameters that determine the to
amount of materialQ0 and distribution widthl 0, or the initial
amplitude C05Q0 /pd/2l 0

d and l 0. The condition of
asymptotic freedom can be used only atg/g* ,1 since the
region of asymptotic behavior is unphysical atg/g* .1 and
the problem is ill-posed.

By eliminating the intermediate parametersg, Q, andD
we obtain equations of the form~4.6! and ~4.7!, and the
ic

e
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existence condition for the solutiont0 is g/g* ,1. If the
initial conditions are chosen so thatg5g* , the solutions
have the form

g̃~x,g!5g* , q~ t !5Q0S t

t0
D ez2

, l ~ t !5 l 0S t

t0
D ez111/2

,

C~ t !5F112d

2d

dd21

11adG21/2d

~2lt !21/2d[c~2lt !21/2d.

~4.13!

Thus, the amplitude in the degenerate case under cons
ation is independent of the initial conditions, whereas
amount of materialq(t) and diffusion spot diameterl (t)
contain functions of time that correspond to the incompl
self-similarity condition. It follows from the last line in Eq
~4.13! that t0 can be derived from the initial amplitudeC0

and, after substituting in the expression forq(t) andl (t), one
can calculate the numerical coefficients in the functions
time.

5. DISCUSSION

The paper suggests a new version of the RG techni
applied to chemical reactions controlled by diffusion. Unli
the traditional RG technique, which renormalizes the char
teristic parameters of a system such as masses and charg
field theory or similar parameters in other problems, in t
paper the initial conditions, namely, the amplitude and rad
of the distribution function, have been renormalized. In t
connection, the renormalization invariance manifests itsel
the explicit form as a system behavior independence of gi
initial ~boundary! conditions, which is dubbed the functiona
self-similarity.15 Although in most cases the functional se
similarity leads to trivial results in the sense that RG diffe
ential equations prove to be identical to initial equations,
the example discussed in the paper the RG technique yi
nontrivial solutions. Previously the functional self-similari
property was used in solving the problem of nonlinear dif
sion when asymptotic solutions of equations of a special t
were investigated.16,17

The method used in this work has yielded results that
sometimes different from previously known solutions.
particular, in the case of an absorption reaction,
asymptotic amplitude decays according to a power law w
exponent21/(n21) @Eq. ~4.4!# for spatial dimensions be
low the critical value, whereas, according to the conventio
viewpoint, this law should apply only to dimensions abo
the critical value.3–5 The reason for this disagreement is th
earlier workers operated assumed the mean-field approx
tion, according to which field inhomogeneities due to flu
tuations are small and the dominant role is played by non
ear damping processes. But in this paper we have analy
the evolution of an initially localized distribution instead o
fluctuations in a spatially homogeneous distribution, wh
the distribution does not spread with time and the distrib
tion amplitude follows the same law as the total amount
material.

The existence of self-similar solutions of the form~4.4!
for the amplitude was proven on the basis of differe
arguments7 when self-similar asymptotic forms of solution
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of a quasilinear parabolic equation independent of ini
conditions ~‘‘eigenfunctions’’! were found. On these as
sumptions, the amplitude decay exponent followed from
dimensions of physical quantities@21/(n21)#, and it was
proven that a distribution decaying faster than a power
as time tends to infinity can exist only if the spatial dime
sion is below the critical value@case~a!#. On the contrary, if
the dimension is higher than the critical one and the non
earity degree is high, the amplitude decays rapidly on
initial stage, and as a result, the nonlinear term is unimp
tant and the system evolves in the regime of asymptotic f
dom with diffusive spreading in accordance with the line
theory and conservation of the total amount of material
turns out that the regime of asymptotic freedom can
evolve from any initial distribution, but only under certa
limitations on the amplitude and width. This limitation
defined by the domain of real solutions of Eq.~4.7! for pa-
rametert0. Logarithmic functions of time arise in the RG
method in a natural way at the critical dimension.5 This re-
sult was discovered previously using different techniqu
~see the review7!.

Using the RG technique, we have also described i
natural manner peaking regimes in the case of a reac
generating material at dimensions below the critical o
which were discovered and described previously in ana
ing thermal processes by means of numerical and semi
lytical methods.8 Application of the RG method to the prob
lem under discussion allows one to estimate converge
rates and times of distribution collapse as functions of pr
lem parameters.

As concerns the problems of absorption reactions,
case ~a! the traditional e-expansion yields results of th
physical dimension analysis, provided that the asympt
form is independent of initial conditions~universal!. How-
ever, our analysis indicates that only the amplitude is
scribed by a universal function. Nonetheless, the universa
is incomplete, because an asymptotic growth of the distri
tion width corresponds to the presence of anomalous dim
sion, and the additional dimensional parameter due to in
l
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conditions does not disappear in the long-time limit. The R
method has not yet been applied to problems with mate
generation.

The analysis of solutions of RG equations not on
makes it possible to get the exponents of power function
the asymptotic long-time limit, it also allows us to track th
transition to the asymptotic regime and calculate the num
cal coefficients.6,9
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9É. V. Teodorovich, Prikl. Mat. Mekh.62, 443 ~1998!.
10V. M. Entov ~private communication!.
11N. N. Bogolyubov and D. V. Shirkov,Introduction to the Theory of Quan-

tized Fields, 3rd ed., Wiley, New York~1980! @Russian original, Nauka,
Moscow ~1984!#.

12P. Ramond,Field Theory, Benjamin/Cummings, Reading~USA! ~1981!.
13J. Collins,Renormalization, Cambridge University Press~1984!.
14G. I. Barenblatt,Scaling, Self-Similarity, and Intermediate Asymptot,

Cambridge University Press, Cambridge~1996! @Russian original,
Gidrometeoizdat, Leningrad~1978!#.

15D. V. Shirkov, Dokl. Akad. Nauk SSSR263, 64 ~1982! @Sov. Phys. Dokl.
27, 197 ~1982!#.

16N. Goldenfeld, O. Martin, Y. Oono, and Fong Liu, Phys. Rev. Lett.64,
1361 ~1990!.

17I. S. Ginzburg, V. M. Entov, and E´ . V. Teodorovich, Prikl. Mat. Mekh.52,
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Dynamic topological solitons in a two-dimensional ferromagnet
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It is shown that stable, skyrmion-type, dynamic solitons can be constructed for a wide class of two-
dimensional models of anisotropic ferromagnets. These solitons are stabilized as a result of
the conservation of various integrals of motion: thez projection of the total spinSz or the orbital
angular momentumLz of the magnetization field. A class of two-parameter solitons with
quite complicated~almost periodic! magnetization-field dynamics exists for a purely uniaxial
model ~in the sense of both spin and spatial rotations! with maximum symmetry. Stable
solitons with periodic magnetization dynamics exist for ferromagnets with lower symmetry~only
Sz or Lz or the total angular momentumJz5Lz1Sz is conserved!. © 1999 American
Institute of Physics.@S1063-7761~99!02504-4#
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1. INTRODUCTION

Nonlinear excitations—topological magnetic solito
~see Ref. 1!—play an important role in the physics of low
dimensional magnets2,3 Specifically, it is well known that
magnetic vortices contribute to the physical properties
two-dimensional magnets with continuous degeneracy of
ground state~Refs. 4–6; see also Refs. 2 and 3!. Vortex
solutions are impossible in two-dimensional magnets w
discrete degeneracy of the ground state, i.e., in magnets
easy-axis anisotropy~or orthorhombic magnets!. For these
magnets it is important to take into account stable~quite
long-lived!, localized, two-dimensional solitons.2,3 Accord-
ing to experiments,7,8 they determine the relaxation of mag
netic excitations and can give rise to peaks in the respo
functions.9 Such topological~nontrivial homotopy groupp2)
statistical solitons have been constructed by Belavin
Polyakov for two-dimensional isotropic magnets.10 They are
characterized by nontrivial topological properties relative
the mapping of thexy plane of a two-dimensional magne
onto the sphereS2: m251, wherem is the normalized mag
netization of the ferromagnet~see Refs. 1–3. In recent yea
interest in such states has increased even more in conne
with their application for describing the Hall quantu
effect.11

The basic problem arising in the soliton physics of tw
dimensional magnets is related to the stability of the loc
ized solitons. According to the Hobart–Derrick theorem12

for models of nonlinear fields whose energy depends on
components of the field and is quadratic in the gradients
the field components~see Eq.~1! below! stable, static, non-
one-dimensional solitons with finite energy and finite rad
do not exist~the solitons are unstable against collapse!. Spe-
cifically, this is true for a uniaxial two-dimensional ferro
magnet characterized by an energy of the form

W5
1

2 E d2x$A~“•m!21K~mx
21my

2!%, ~1!

whereA is the exchange interaction constant,K is the anisot-
8331063-7761/99/88(4)/11/$15.00
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ropy constant, and thez axis is chosen along the easy ma
netization axis of the ferromagnet. Exact Belavin–Polyak
solutions10 for the model~1! exist only in the isotropic state
(K50). We note that the model~1! with anisotropy (K
Þ0) is fundamentally different from the isotropic case (K
50). In the isotropic model the problem is scale-invariant
is described by a self-duality equation and is exactly in
grable in the static case.10

Its simplest solution describes a soliton with topologic
chargen. In angular variables for the magnetization vect
@mz5cosu, mx1 imy5sinu exp(iw)] it has the form10

tan
u

2
5S R

r D n

, w5nx1w0 , ~2!

wherer andx are polar coordinates in the plane of the ma
net, andR andw0 are arbitrary constants. The energy of su
a soliton in the exchange approximation is given by the f
mula

En
(0)5E0unu, E054pA. ~3!

The fact that the energy is independent ofR is a result of the
scale invariance of the model~1! with K50. When anisot-
ropy @specifically, of the type in Eq.~1!# and the Zeeman
energy wH;(12cosu)H in an external fieldH5Hez are
taken into account, the expression for the soliton energy
quires a term proportional toR2. The energy has no mini
mum for anyRÞ0. This signifies the absence of static so
ton solutions. Sometimes this fact is referred to as
instability of the soliton against collapse.

However, stable, stationary, dynamic solitons can ex
for a number of models~see Refs. 1, 2, and 12!. Their exis-
tence is due ultimately to the presence of an integral of m
tion whose value does not vanish in the static limit.1–3,12

Specifically, for the uniaxial ferromagnet~1! the existence of
such solitons could be due to the conservation of thez pro-
jection Sz of the total spin1–3 or the z projectionLz of the
orbital angular momentum of the magnetization field.13,14

SinceLz is negative in a soliton withn.0 ~see Refs. 1 and
© 1999 American Institute of Physics



m
r

n
l

f

liz
he

e

f

ll

se

s
i-

u-
f
n

cal
-
ce
for
m-
he

e
-
l of
ts

-

der

ns
re

834 JETP 88 (4), April 1999 A. A. Zhmudski  and B. A. Ivanov
2!, it is convenient to use the quantityL52Lz . In units of
the Planck constant\ ~below we take\51) the quantities
S5Sz and L can be expressed by the formulas~see Refs.
1–3!

L52Lz5
s

a2 E d2x~12cosu!@r•¹w#z ,

S5
s

a2 E d2x~12cosu!, ~4!

wheres is the atomic spin anda is the lattice constant.
Another natural integral of motion—the momentu

P—can stabilize three-dimensional solitons with nonze
Hopf index,15 two-dimensional topological solitons i
antiferromagnets,16 and nontopological two-dimensiona
skyrmion–antiskyrmion pair solitons in an isotropic17 and
easy-plane ferromagnet. However, the conservation oP
does not stabilize two-dimensional topological solitons in
ferromagnet. For this reason, we shall consider the stabi
tion of solitons only as a result of the conservation of t
angular momentum~4!.

We shall consider the model~1! with the maximum ad-
missable symmetry~bothL andSare conserved! as well as a
model with a lower symmetry, for example, a model d
scribed by an energy of the form

W5E d2xH 1

2
Aik¹ im•¹km1Wa~mx ,my!J . ~18!

Here the form of the exchange constants tensorAik and of
the anisotropy energyWa are determined by the symmetry o
the magnet. Depending on the form ofAik andWa eitherS~if
Wa5Wa(u)) or L ~if Aik}d ik) can be conserved. We sha
also discuss a model withLÞ const andSÞ const but where
the z projectionJ5Lz1Sz5S2L of the total angular mo-
mentum is conserved. Analysis showed that for all ca
enumerated above with at least one integral of motionL, S,
or J stable dynamical solitons do exist, and for the highe
symmetry model~1! solitons with almost periodic magnet
zation dynamics exist.

2. FORM OF THE DYNAMICAL SOLITON SOLUTIONS FOR
VARIOUS MODELS OF FERROMAGNETS

Solitons are determined by localized (u→0, ¹u→0 as
ur u→`) solutions of the Landau–Lifshitz equation. In ang
lar variables for the magnetization vector it has the form o
system of two time-dependent partial differenti al equatio
for the functionsu5u(x,y,t), w5w(x,y,t). For the model
~18!

Aik@¹ i¹ku2sinu cosu~¹ iw!~¹kw!#2
]Wa

]u

52
M0

g
sinu

]w

]t
,

Aik¹ i~sin2u¹kw!2
]Wa

]w
5

M0

g
sinu

]u

]t
, ~5!
o

a
a-

-

s

t-

a
s

whereg52umBu/\, mB is the Bohr magneton, andM0 is the
saturation magnetization. For the model~1! we haveWa

5K sin2 u, which does not depend onw (Aik}d ik).
We shall now discuss the possible form of the dynami

stationary solutions of Eqs.~5!. The character of the magne
tization distribution in such a soliton and its time dependen
can be indicated without solving the dynamical equations
the magnetization, but rather proceeding only from the sy
metry of the problem; see Fig. 1. First, we note that t
symmetry group of the energy~1! includes rotations of the
spins around thez axis and, independently, a rotation of th
coordinate axesx andy. The existence of a continuous sym
metry results in the appearance of a corresponding integra
motion. Specifically, the possibility of spin rotations exis
for all magnets withWa5Wa(u). This symmetry implies
conservation ofS. If Wa5Wa(u), Eqs.~5! do not containw
and precession solitons can exist. The latter have the form1–3

u5u~x,y!, w5vpt1c~x,y!. ~6!

Hereu(x,y) andw(x,y) satisfy equations with no time de
rivatives, as a result of which a soliton of the form~6! is
dynamic but stationary. The invariance of the problem un

FIG. 1. Magnetization distribution~shown schematically! at the timest
50, t5T/8, t5T/4 (T52p/v) for solitons in various models: a — preces-
sion solitons,S5const,LÞ const; b — rotation solitons in the model with
L5 const,SÞconst; c — oscillation solitons in the model withJ5Lz1Sz

5 const;LÞconst,SÞconst. The arrows show the magnetization directio
on the lineu5p/2, the symbol1 denotes the center of the soliton whe
u5p.



ol
ic

fo
a

b

o

m

t

or
de
t

-
n

d

t

in
ot

y
rg

tio
n

nd
an-
-
e-
this

-
li-
n

e

on
, we
of
ith
tric

s
f a

ial

z-
bil-
by
eal
d
nd

835JETP 88 (4), April 1999 A. A. Zhmudski  and B. A. Ivanov
a rotation of the coordinate axes withAik5Ad ik in Eqs.~18!
and ~5! implies conservation of thez projection L of the
orbital angular momentum and can give rise to rotation s
tons ~Fig. 1b!.13,14 Such a soliton corresponds to a dynam
but stationary solution in the rotating coordinate system

x̃5x cosv r t2y sinv r t, ỹ5x sinv r t1y cosv r t ~7!

of the Landau–Lifshitz equation, of the form

u5u~ x̃,ỹ!, w5c~ x̃,ỹ!. ~8!

Only one-parameter solitons of the form~6! or ~8! have
been discussed previously. However, it is obvious that
the model~1! with the maximum admissable symmetry
two-parameter solution of the form

u5u~ x̃,ỹ!, w5vpt1c~ x̃,ỹ!, ~9!

where vp and v r are two independent parameters, can
considered. In this case fornv rÞmvp , wheren andm are
integers, the magnetization is an almost periodic function
time.

It is easy to see that with the substitutions~6!–~9! the
nonstationary Landau–Lifshitz equation with a definite sy
metry of the energy can become stationary~in the rotating
coordinate systemx̃, ỹ). Defining the polar coordinatesr̃

5Ax̃21 ỹ2, x̃5tan21( ỹ/ x̃) and taking account of the fac
thatdx̃/dt5v r , the right-hand sides of Eqs.~5! can be eas-
ily written as

]w

]t
5vp1v r

]w

]x̃
,

]u

]t
5v r

]u

]x̃
. ~10!

Analysis of Eqs. ~8!–~10! makes it possible to explain
clearly the possibility of using any particular substitution f
various models of ferromagnets. Specifically, in the mo
~1! the energy density of the ferromagnet is independen
the angular variablew ~see Eq.~16! below! and the coordi-
natex̃ ~sinceAik}d ik). It is obvious that in this case a sub
stitution of the general form~9! yields a stationary equatio
for the functionsu( x̃,ỹ) andw( x̃,ỹ). If the invariance of the
system under spin rotations is destroyed, i.e., the energy
pends explicitly onw (L5const butSÞconst!, then only
rotation solitons~8! with vp50 are possible. For a magne
with LÞconst butS5const ~for example,Wa5W(u) but
AxxÞAyy) the energy depends explicitly onx. In this case
only precession solitons~6! with v r50 are admissable.

If the model is such that only simultaneous rotation
spin and coordinate space is possible, then only the t
angular momentumJ5S2L is conserved. Solitons in a
physically nontrivial model of a magnet, whereSÞconst and
LÞ const butJ5S2L5const, were studied in Ref. 18 b
direct numerical simulation. In polar coordinates the ene
of such a magnet contains terms that depend onw2x. It is
obvious that in this case it is natural to use the substitu
~10! with vp5v r , which yields a soliton of the type show
in Fig. 1c. For this case the quantityw2x is not explicitly
time-dependent in a rotating coordinate system.

It is important to note that for the model~1! there always
exists a simple centrosymmetric solutionu5u0(r ) and w
i-

r

e

f

-

l
of

e-

al

y

n

5nx1w0, wheren561, 62, . . . is the topological charge
and w05const. In this case the expressions~6! and ~8! are
actually identical, Eq.~10!, which containsdW/dw, becomes
an identity, and the functionu0(r ) is determined by an ordi-
nary differential equation~see Refs. 1–3!

d2u0

dx2
1

1

x

du0

dx
2S 11

n2

x2D sinu0 cosu0

5~Vp1V r !sinu0 , ~11!

where x5r /D, Vp5vp /v0 , V r5v r /v0 , D5AA/K and
v052gK/M0 are, respectively, the characteristic length a
frequency of the natural ferromagnetic resonance in an
isotropy fieldHa52K/M0, andM0 is the saturation magne
tization. For a centrosymmetric soliton the difference b
tween precession and rotation solitons vanishes. For
soliton with n51 we haveS5L andJ50,1–3 and only the
sum of the frequenciesvp andv r enters in Eq.~11!.

If the anisotropy~last term on the left-hand side! is sup-
pressed in this equation andVp,r50, then the self-duality
equationdu0 /dx52(n/x)sinu0 is easily obtained. The so
lution of the latter equation gives a Belavin–Polyakov so
ton ~2! ~in what follows we shall consider only the solito
with n51, which has the lowest energy!. Taking account of
anisotropy effects, Eq.~11! can be easily integrated by th
shooting method.

In summary, the structure of a centrosymmetric solit
can be easily investigated; see Refs. 1 and 2. However
shall show that solitons without central symmetry are
greatest interest. Only such solitons exist for magnets w
anisotropy in the basal plane. Moreover, such nonsymme
solitons are realized even for the most symmetric model~1!.

It is much more difficult to investigate soliton solution
which do not possess central symmetry. The structure o
soliton is determined by the two nonlinear partial different
equations~5!, taking account of Eqs.~9!, for the functions
u(r ,x) andc(r ,x). There is no general method for analy
ing the localized solutions of such equations and their sta
ity. Soliton solutions can be constructed numerically
molecular-dynamics methods, but this requires a great d
of computer time.18 Direct variational methods have turne
out to be very effective for analyzing soliton structure a
stability.14

3. METHOD OF ANALYSIS AND SOLITON STABILITY
CONDITION

The equations foru(r ,x) andw(r ,x) can be obtained by
requiring that the auxiliary functionalL$u,w%5W2v rL
2vpS be an extremum, whereW is the energy of the ferro-
magnet. We start from the expression

L$u,w%5E d2xH 1

2
A@~¹u!21sin2 u~¹w!2#

1
1

2
K sin2 u1DW~u,w! 2

M0

g
~12cosu!

3@vp1v r~]w/]x!#J . ~12!
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Here the first two terms are the energy~1! in angular vari-
ables and the last term specifies the dynamic part. The t
DW(u,w) is a correction to the energy of a ferromagnet th
lowers the dynamical symmetry of the magnet and descr
the breakdown of a certain integral of motion.

We note that when the expressions~6!, ~9!, or ~10! are
taken into account, the functionalL becomes identical to the
Lagrangian of a ferromagnet. Therefore the solutions of
form ~6!–~9! to the Landau–Lifshitz equation are also extr
mals of the functionalL. On the other hand, it follows from
Eq. ~12! that a soliton corresponds to a conditional extrem
of the energy for fixedL andS. The quantitiesv r andvp are
Lagrange multipliers.

Therefore the analysis of the structure of a soliton
duces to searching for the extremals of the functio
L$u,w%. For simplicity we shall assume thatL depends not
on the continuous functionsu(r ,x) andw(r ,x) but rather on
a large but finite number of discrete parametersai , i 51,
2, . . . ,n. This simplication is not essential. Actually, w
shall seek the extremum ofL on a class of trial functions
that depend on an arbitrary number of parametersa1 , a2 ,
. . . ,an , but for the general analysis performed in t
present section the origin of the parametersai is not impor-
tant. Specifically, such a situation arises when analyzing
crete models on a large but finite lattice. Moreover, fo
system of finite size theai can be treated as coefficients
the expansion of the solutions in terms of a complete se
functions. Since far from a soliton the solutions decay ex
nentially, the parametersai with large i are unimportant.

If the state of the magnet is described byn parameters
ai , thenL5L(a1 ,a2 , . . . ,an ,vp ,v r) and the condition of
an extremum has the form of a system ofn algebraic equa-
tions ]L/]ai50. Once the the solutionai

(0) is found, the
integrals of motionE, S, andL characterizing a soliton with
fixed v r and vp can be calculated. Eliminating the param
etersv r and vp , it is possible to construct the functionE
5E(L,S). It is easy to show that the relations

]E~L,S!

]L
5v r and

]E~L,S!

]S
5vp ~13!

hold.
We note that the problem here is to search for an ex

mum, but not necessarily a minimum. Of course, a sta
soliton should correspond to a minimum of the energy
fixed values of the integrals of motionL andS. However, in
our method of Lagrange multipliers the auxiliary function
~Lagrangian! L may not have a minimum. Indeed, we sh
verify below that dynamical solitons in ferromagnets~both
stable and unstable! correspond to a saddle point of the fun
tional L. Thus, the question of the stability of solitons
very nontrivial. Fortunately, it can be analyzed in a gene
form, and the stability condition can be expressed in term
the integral characteristics of solitons.

We employ Lyapunov’s direct method~see Ref. 19! to
analyze the stability. In this method a soliton is stable if th
exists a Lyapunov functionalL$u,w% such that 1! the func-
tional is positive-definite near the soliton solution and 2! its
time derivative, found taking account of the equations
rm
t
es

e
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-
l
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-

-
le
r

l

l
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e
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motion, is negative or zero. We take the Lyapunov functio
in the form of a combination of integrals of motion

L5L1
1

2
B1~L2L0!2

1B2~S2S0!~L2L0!1
1

2
B3~S2S0!2. ~14!

whereL0 andS0 are the values ofL andS for the soliton and
B1 , B2 , andB3 are constants. Then the condition 2! holds in
the formdL/dt50. The Lyapunov functionalL in the form
of a bilinear combination of integrals of motion has be
chosen previously for analyzing the stability of nontopolo
cal magnetic solitons19 and one-parameter rotation soliton
in orthorhombic ferromagnets.14 It was found that ifL,0
holds somehwere, then the soliton is unstable. We h
shown that this condition of instability also holds in th
present case~the Chetaev functional describing instability
chosen in the same form as in Ref. 19!. Therefore solitons
are stable forL.0, and violation of this condition implies
that they are unstable.

To analyze the stability condition~i! we shall investigate
L for small deviations of the parametersai from ai

(0) . Intro-
ducinga i5ai2ai

(0) we write the value of the functional in
the quadratic approximation ina i as

L5
1

2 (
i ,k

L ika iak1
1

2
B1S (

i
L ia i D 2

1B2S (
i

L ia i D S (
i

Sia i D 1
1

2
B3S (

i
Sia i D 2

,

~15!

where L ik5]2L/]ai]ak , Li5]L/]ai , and Si5]S/]ai .
We reduce the matrixL ik to the diagonal formL ik5 diag
(l1 , . . . ,ln). The eigenvalues« i of the quadratic formL
are given by the determinant of the system of linear eq
tions for a i :

~« i2l i !a i1S (
j

L ja j D ~B1Li1B2Si !

1~B2Li1B3Si !S (
j

Sja j D 50. ~16!

Premultiplying these equations byLi /(l i2« i) and Si /(l i

2« i) and summing overi, we can write the equation for« i

in the form of the condition for solvability of a system of tw
linear equations for (( jL ja j ) and (( jSja j ). In what follows
we shall need to consider large valuesBi@1.19,20 To lowest
order in 1/B this condition can be represented in the form

F~«!5S (
i

Si
2

~« i2l! D S (i

L i
2

~« i2l! D
2S (

i

L iSi

~« i2l! D 2

50. ~17!

The form of the functionF(«) is virtually identical to that in
the case of a single integral of motion,14,19,20 specifically,
F(«)→10 as«→2`, and for values of« close tol i ~the
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l i are eigenvalues of the matrixL ik) F(«) possesses pole
of the formF.A/(«2l i), A.0. Therefore the eigenvalue
of L(« i) lie betweenl i andl i 11. Hence if the matrixL ik

possesses two or more negative eigenvalues, one of the
ues satisfies«,0 and the first condition of the Lyapuno
theorem does not hold. In this case it is possible to const
the Chetaev functional14 which means that the soliton is un
stable. However, if only one eigenvaluel i is negative, then
the stability is determined by the sign ofF(0): for F(0)
.0 one value satisfiese,0, while for F(0),0 all values
satisfy« are positive and the soliton is stable~see Fig. 1 of
Ref. 14!. We note that if alll i>0, then alle.0 and the
soliton is stable~but in our case it turned out that at least o
eigenvalue satisfiedl i,0; see below!.

The quantity

F~0!5S (
i

L i
2

l i
D S (

i

Si
2

l i
D 2S (

i

L iSi

l i
D 2

can be written in terms of the derivatives]L/]v r and
]S/]vp . Indeed, differentiating the relation]L/]ai50 with
respect tovp andv r one easily finds

]F

]va
5( S ]F

]ai
D S ]ai

]va
D ,

whereF5S or L anda5r , p. Then the sums inF(0) can be
easily expressed in terms of]L/]va and ]S/]va , and the
stability condition becomes

]~L,S!

]~vp ,v r !
5

]L

]v r

]S

]vp
2

]S

]v r

]L

]vp
,0. ~18!

We note that general relations of the same structure as
~18! arise in the problem of the stability of a moving solito
in a uniaxial antiferromagnet20 ~the integrals of motion areS
andP, ]L/]v r→]Pi /]v i , andv is the velocity of the soli-
ton! as well as for two-parameter optical solitons.21 Appar-
ently, the relation~18! is of the same general character as
well-known condition of stability ]S/]v,0 for one-
parameter solitons; see Refs. 12, 14, and 19. We note
after simple algebraic transformations the condition]S/]v
,0 is obtained from Eq.~18! in the case of one-paramete
centrosymmetric solutions, whereS→L.

Therefore time-periodic~or almost periodic for the
model ~1! of highest symmetry! soliton solutions are stabl
provided that one eigenvalue satisfiesl i,0 and the condi-
tion ~18! holds ~as well as in the case wherel i.0, but this
case does not occur for the solitons considered in the pre
paper!. Stability outside the class of periodic solutions r
quires a special analysis, which falls outside the scope of
present paper, especially since in the works known to us
dynamic solitons the authors confine their attention to
case of periodic solutions; see Refs. 1–3, 12, and 21.

4. CHOICE OF A TRIAL FUNCTION

The choice of a trial function is the decisive factor in a
variational calculation. For the soliton problem a good de
sion would be to replace the energy~1! by its discrete ana-
log, consideringN classical spins occupying sites of a qu
al-

ct

q.

e

at

nt
-
e
n
e

i-

large lattice, and to choose the anglesuk andwk for the spin
sk , k51, . . . ,N, as the trial parameters. This approach
moving nontopological solitons was implemented in Ref.
with N52493249. However, calculations with a large num
ber of parametersn52N require quite powerful computers
and in addition there arises an uncontrollable effect due
the discreteness. Specifically, the conservation ofL certainly
breaks down for discrete models~see below!.

In the present model additional complexities arise b
cause the desired extremum ofL is not a minimum. Ordi-
narily, the standard minization programs seek an abso
minimum, so that they are inapplicable in the present ca
Therefore to search for an extremum it is necessary to s
~as a rule, by iteration methods! a system ofn52N nonlin-
ear transcendental equations]L/]ai50.

On the other hand, as we showed above, the conditio
stability of a topological soliton can be written in terms of i
global characteristics—the character of the dependenc
the integrals of motion on the parametersv r andvp . Thus,
there is hope that even quite simple trial functions will gi
good results provided that the trial function chosen admit
sufficiently wide class of disturbances that can be ‘‘dang
ous’’ from the standpoint of soliton stability. These are, fi
and foremost, the change in the dimensions of a soliton
the elliptic deformation of its shape and the distribution
the magnetization vector in thexy plane for fixedu(r ,x).

For specific calculations we chose a trial function of t
form

tan
u

2
5

R

r
expS 2

r

bD ~11C1cos 2x!,

w5x1C2 sin 2x1w0 , ~19!

which depends on five trial parametersR, b, C1 , C2 , andw0

and gives a good approximation of the structure of
soliton.22 Indeed, the functionu(r ) ~19! gives a description
of the Belavin–Polyakov limit, adequate forR!D, and also
exponential decay ofu(r ) for r .D, whereD5AA/K is a
characteristic length~see Refs. 1–3!. Therefore the function
~19! describes well the form of the functionu(r ); see below.
The angular dependences agree with those obtained an
cally in the limiting casesR@D and R!D or small asym-
metry of the soliton,C1,2!1.22 The parameterC1 controls
the anisotropy of the functionu(r ,x), i.e., elliptic distortions
of soliton shape, andC2 controls the anisotropy of the angu
lar dependencew(x).

As noted above, the soliton stability criterion~18! is
written in terms of the integral characteristics of the solito
Therefore there is hope that analysis of this criterion us
more accurate functions than Eq.~19! would produce only a
small ~to the extent that the deviations ofE(L) or E(S) from
their true values are small! displacement of the points o
instability found using Eq.~19! and will not change the pic-
ture of the bifurcations of the solutions.

The system of equations]L/]ai50 was solved by
Newton’s iteration method. The initial values of the para
etersai were set manually. The two-dimensional integra
were calculated by a subroutine based on the recursive a
rithm of the QUADREC subroutine.23 Using the values
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found for ai
(0) we calculated the values ofE, L, andS and

constructed the functionsE(L,S) or E(S), E(L), andE(J)
~see below!. The eigenvaluesl i of the matrix L ik

5]2L/]ai]ak were calculated at the same time. It turn
out that at least one eigenvaluel i is less than zero, i..e.
soliton always corresponds to a saddle point ofL. To ana-
lyze stability in the case of two-parameter solitons the qu
tity ](L,S)/](v r ,vp) was also calculated.

5. ANALYSIS OF PERIODIC SOLITONS IN MODELS WITH
ONE INTEGRAL OF MOTION

A specific investigation of solitons was performed bo
for the model~1! with the maximum possible symmetry an
for less symmetric models which take account of additio
terms that lower the symmetry of the problem@i.e., they
destroy certain integrals of motion~4!#. It is convenient to
begin the description of the results with the cases of l
symmetric models where only the orbital angular moment
L or the total spinS or the total angular momentumJ5S
2L is conserved. Two-parameter solitons for the model~1!
of highest symmetry will be examined in the next section

5.1. L5const, SÞconst. Let conservation ofS break
down because of the presence of magnetic anisotropy in
basal plane. For a specific analysis we choose an orthorh
bic anisotropy of the form

DW15
1

2
«Kmy

25
1

2
«Ksin2 u sin2w. ~20!

In this caseL remains an integral of motion and rotatio
solitons of the form~8! are possible.

Taking account of the additional term~20!, the lowest
magnon frequency isv0A11«. This value of the frequency
is the maximum possible value in a soliton, i.e., rotati
solitons exist only forv r,v0A11«. In the present subsec
tion we shall drop the indexr when describing rotation soli
tons.

A calculation showed that solitons exist for all valu
0,v,v0A11« ~see Fig. 2!. When the condition
v0A11«2v r!v0 is satisfied for any values of«, the ra-
dius of the soliton is small,R!D, andL is much less than
the characteristic quantityN0 (N0@1 for D@a),

FIG. 2. v(L) for a rotation soliton. The squares correspond to«50.5 and
the circles to«51025.
-

l

s

he
m-

N052ps~D/a!2. ~21!

As v→v0A11«, this energy approaches the valueE0

54pA, equal to the energy of a Belavin–Polyakov solito
The values of the asymmetry parametersC1 and C2 for L
!N0 remained small even for«;1 (C1 andC2,1022 for
«50.5 andv.0.8v0 , which corresponds toL<0.03N0).

As the frequency decreases, the values ofE and L in-
crease, i.e.,dv/dL,0; see Fig. 2. For a ferromagnet wit
«Þ0 the parametersC1 andC2 likewise increase. For smal
« these parameters depend nonlinearly on«, i.e., for some
value ofv/v0 ~or L/N0) the asymmetry of the soliton grow
rapidly ~see Fig. 3!. Here and below we describe the asym
metry of the distribution of the magnetizationm in a soliton
using the two parametersd(1) and d(2) , which correspond
to the maximum and minimum sizes of the region whe
u0>p/2. The relation of these parameters with the para
eters of the trial function~19! for u5u(r ,x) is given by

d65R~16C1!exp~2d6 /b!.

For small« («.1024– 1025) there arises an interestin
effect that is helpful for understanding the properties o
soliton in the isotropic model~1!. Specifically, for«!1 and
all v<v0 almost centrosymmetric solitons withC1 , C2

!1 are easily found. These solutions satisfyL(v)5uLzu
.S(v). Then the functionE(S) is identical, to within quan-
tities of order«, to the function obtained previously by inte
grating the equation foru0.1–3 This demonstrates the ad
equacy of the method and the trial function~19!.

It turned out that the solution need not be single-valu
The program found a particular solution as a function of
choice of the initial valuesai . Specifically, for small« ~just
as for«50) andv<0.418v0, together with centrosymmet
ric solitons, asymmetric solutions with strongly differe
d(1) and d(2) were also found. We note that for a solito
with « not small the differenced(1)2d(2) depended con-
tinuously on v, whereas for small« the transition to an
asymmetric soliton looks like a bifurcation~see Fig. 3!.

It is important that for asymmetric solutions the value
uL(v)u increased with decreasingv much more rapidly than
S(v). Therefore the functionsE(S) andS(L) differed fun-
damentally. If solitons with a fixed value ofSare considered,

FIG. 3. d(1) andd(2) versus frequency for a rotation soliton in a ferroma
net with «50.5 ~circles! and«51025 ~squares!.
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then the centrosymmetric solitons have the lowest ene
However, ifL is fixed, then the asymmetric solitons have t
lowest energy.

For all solitons considered, the derivativedL/dv,0,
which is necessary for the solitons to be stable. The sec
condition—only one eigenvalue of the matrixL ik can be
negative—was satisfied only for a soliton whose energy
minimum for fixed L. Specifically, for «50 and a cen-
trosymmetric soliton in a ferromagnet the second eigenva
l2 is positive only forv>0.418v0. For v<0.418v0, when
an asymmetric solution appears, the sign ofl2 changes and
the centrosymmetric soliton becomes unstable. Then fo
asymmetric soliton only one eigenvalue is negative, and s
a soliton is stable in its entire region of existence. Theref
the symmetry of rotation solitons can be lower than the sy
metry of the model. This effect was discussed in the b
communication14 in terms of spontaneous breaking of th
symmetry of a centrosymmetric soliton under elliptic defo
mations and formation of a stable asymmetric soliton.

5.2. LÞ const, S5 const. This case corresponds to
ferromagnet in which there is no magnetic anisotropy in
basal plane (Wa5Wa(u) and does not depend onw), but
symmetry under spatial rotations is absent. Specifically,
situation always arises when switching from lattice mod
to continuum models. For example, for a square latti
which is often used in numerical simulation, the noncons
vation ofL is due to invariants of the form (]2m/]x]y)2. For
an orthorhombic ferromagnet nonconservation ofL could
arise if the difference of the exchange interaction along thx
andy axes is taken into account. Then terms of the form

~Axx2Ayy!~]m/]x!2

5~Axx2Ayy!H F S ]u

]r D 2

1sin2 uS ]w

]r D 2Gcos2 x

1
1

r 2 F S ]u

]x D 2

1sin2 uS ]w

]x D 2Gsin2xJ ~22!

appear in the energy. The addition of a term with a simp
structure

DJ sin2 u sin2x ~23!

to the energy of the magnet also gives the same effect.
the energy~1!, taking account of the correction~22!, the
problem can be solved exactly by introducing the new va
ablesx85x/AAxx andy85y/AAyy. Then, in the polar coor-
dinates introduced for the Cartesian coordinatesx8, y8 (r 8
5Ax821y82, x85tan21(y8/x8)) a solution of the problem
is u5u(r 8) andw5nx81vt. It is obvious that this solution
is asymmetric in the initial physical coordinatesx andy, the
asymmetry being due strictly to the value of the parame
(Axx2Ayy)/(Axx1Ayy). Therefore, in contrast to the case
a rotation soliton considered above, the soliton asymm
parameter d(1)2d(2) increases continuously with (Axx

2Ayy)/Axx and spontaneous symmetry breaking does
arise. Our numerical analysis showed that the same situa
also obtains for a model with a correction of the form~23!.
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For a square-lattice magnet the corresponding term
stroying the conservation ofL contains an additional sma
parameter (a/D)2. Since the effect of discreteness on solit
structure is small even forD.1.5a,24 in real weakly isotro-
pic magnets with a square lattice the effects due to nonc
servation of the orbital angular momentum withS5const
should be weak.

5.3. LÞconst, SÞconst, J5const. This case must b
viewed as the most physical in relation to continuum the
ries. However, its advantages for real models of tw
dimensional magnets are not obvious. One of the physic
interesting interactions possessing such symmetry is
long-range part of the magnetic dipole interaction, whi
does not reduce to renormalization of the magnetic ani
ropy. Another example is the magnetoelastic interacti
which is described by terms of the formlmimk(]ui /]xk),
where]ui /]xk is the distortion tensor.

Dynamic solitons with topological chargen52, taking
account of an additional term of the formd(“•m)2, model-
ing the long-range part of the magnetic-dipole interaction
the interaction energy~1!, have been studied numerically i
Ref. 18.

To analyze the effects of such a breaking of symme
we chose a correction to the energy~1! of the form

d sin2u sin2~w2x!. ~24!

A term proportional to sin2(w2x) arises when (“•m)2 is
written in polar coordinates. This choice admits a dire
comparison of effects due to an interaction of the form~24!
with the previously considered interactions of the form~20!
and~23!. We shall discuss the results of an analysis of th
models in greater detail.

First of all, it is obvious that solitons in the model~1!,
taking account of the correction~24!, correspond to solutions
of the form~9! with v r5uvpu5v. The superposition of two
types of dynamics~precessional and rotational! with v r

5uvpu can be described as a rotation of a ‘‘rigid’’ solito
~see Fig. 1c! and as an oscillation of its form. Motion of thi
type ~rotation of a ‘‘rigid’’ soliton pair! has been observed i
numerical experiments.18

It is clear from analysis of Fig. 1c that in contrast
rotation solitons (v rÞ0, vp50) or precession solitons (v r

50, vpÞ0), global dynamics~of the magnetization preces
sion type! is absent in this case at a given point of the ma
net. In other words, at a given point the magnetization
dergoes only small oscillations around a definite aver
direction without a complete turn even foru.p/2. For this
reason, such solitons can be appropriately called oscilla
solitons.

The difference of the properties of oscillation solito
and the rotational and precession solitons considered ab
is most clearly shown by analyzing the limiting case of
centrosymmetric soliton. For an oscillation soliton withvp

5uv r u, there is no dynamics at all in this case and the so
tion degenerates into a static solution, while the centrosy
metric rotation and precession solitons are dynamic. It
obvious that solitons in the modelJ[Sz1Lz5S2L5const
and L, SÞconst cannot be centrosymmetric and are alw
characterized by a finite shape asymmetry.
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Numerical analysis showed that in the present mo
there arises a new property that is absent for precessiona
rotation solitons, specifically, the frequency of the solit
v5uvpu5v r can be much higher than the lowest magn
frequencyvg (vg>v0); see Fig. 4a. Frequenciesv@vg

correspond to very small solitons,d(1) , d(2)!D, and en-
ergy close toE0. The dependence of their energy onuJu ~see
Fig. 4b! is similar to the corresponding dependenceE(L) for
rotation solitons.14

As noted above, small-radius solitons in the models~1!
and ~24! correspond to very high frequenciesv@v0, which
lie in the continous magnonspectrum. Hered(1) andd(2) do
not differ very strongly. However, in contrast to rotation so
tons the ratiod(1) /d(2) does not decrease below 1.175, ev
for v.75v0; see Fig. 5.

A soliton with v@vg and d(1);d(2) corresponds to
small shape oscillations with small amplitude but quite h
frequency. It is obvious that the existence of a soliton w
v.vg is due to the fact, noted above, that the magnetiza
dynamics in an oscillation soliton is not global. In principl
such oscillations should give rise to magnon radiation in
continuous spectrum, which is responsible for relaxation
the soliton. However, direct computer simulation of the m
tion of vortex pairs in an easy-axis ferromagnet6 with a gap-
less magnon dispersion law (vg50) has demonstrated tha
relaxation of solitons due to magnon emission is slow. S
relaxation effects should be small in our model also, wh

FIG. 4. v(J) ~a! andE(J) ~b! for an oscillation soliton withd50.5.
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magnons have a finite gapvg but v.vg . Such relaxation
effects were also negligibly small in the study of solito
dynamics in an easy-plane ferromagnet with an amplitu
that is not small.18

As the soliton frequency decreases to values belowv0,
the energy of thesoliton grows to values of the order of s
eral E0. The difference of the quantitiesd(1) andd(2) also
increases~see Fig. 5!, i.e., for v<v0 a soliton in the model
~1! and~24! is an excited state with a quite high energy a
sharply asymmetric magnetization distribution, far from ce
trosymmetric. Forv,0.3v0 the value of the parameterC2

rises abovep/2 and, by virtue of Eq.~19!, the functionw(x)
becomes nonmonotonic. In this case the second valuel
changes sign and the soliton becomes unstable.

In summary, solitons in ferromagnetic models wi
L5 const or J5const demonstrate two different types
behavior. Rotation solitons (L5const! can be almost cen
trosymmetric and they can also be characterized by sh
asymmetry that is not small. They always correspond to s
magnetization dynamics~the frequencyv r lies below the
gap in the magnon spectrum!.

Oscillation solitons in a ferromagnet withLÞconst and
SÞconst butJ5const with the same values of the energy a
more asymmetric than rotation solitons. They can be cha
terized by quite rapid variations of the magnetizationv
@v0, which in this case can be clearly represented as sm
shape oscillations of the soliton. Such solitons can also e
as low-frequency solitons (v<v0), in which case they are
very asymmetric and have a quite high energy.

The differences of the ‘‘oscillational’’ (uvpu5v r) dy-
namics from precessional or rotational dynamics appear
two-parameter solitons in the model~1! with the maximum
possible symmetry, for whichL5const andS5const.

6. TWO-PARAMETER SOLITONS IN A MODEL WITH TWO
INTEGRALS OF MOTION

As noted above, for the model~1! solitons with a com-
plicated, generally speaking, almost periodic magnetiza
dynamics are possible. For them, the variation of the mag
tization in a stationary coordinate system is characterized
two independent frequenciesv r andvp .

FIG. 5. Maximum size of the region of an oscillation solitond(1) , where
u>p/2, and the ratiod(1) /d(2) versus the frequency of magnetization o
cillations in the soliton.
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The model ~1! admits centrosymmetric solitons fo
which only the sum of frequenciesDv5vp1v r is mean-
ingful; see Eq.~11!. In the general case, however, a soliton
not centrosymmetric. We shall consider the properties
solitons with the frequenciesv r and vp varying so that
Dv5vp1v r5 const. Analysis of such one-parameter fam
lies of solutions clearly demonstrates that the properties
solitons solitons change when the frequenciesv r and vp

change.
We note first that soliton solutions exist only forDv

,v0. This is understandable, sinceDv determines the glo-
bal dynamics of the magnetization in a soliton, i.e.,Dv plays
the same role asvp for a precession soliton orv r for a
rotation soliton. For small valuesDv!v0 there exist soliton
solutions with large sizes (d(1) , d(2)@D), and forDv close
to v0 only centrosymmetric solitons are observed.

Just as for oscillation solitons, the frequenciesv r and
uvpu can be quite high~we observed solutions withv̄5(v r

2vp)/2 up to 100v0). For large values ofv̄ ~but Dv
,v0) the properties of a soliton are virtually independent
Dv and the same as for an oscillation soliton withv r

5uvpu@v0: the energy of the soliton is close toE0, the size
of the soliton is small, anduLzu5L.S!N0. In this range the
values ofd(1) and d(2) are close. This is understandab
from the analysis in the preceding section: forv̄@Dv the
quantityv̄ plays the same role as the frequencyv for oscil-
lation solitons, and it describes small rapid oscillations of
shape of the soliton. But for two-parameter solitons th
oscillations are superposed on a slow spin precession
the frequencyDv.

Decreasing the frequenciesv r and uvpu so thatDv re-
mains constant, we observe an increase in the energy o
soliton and the values ofL and S; see Fig. 6. At the same
time, the soliton becomes more asymmetric~for Dv
50.1v0 the maximum value satisfiesd(1) /d(2).2.05 for
v r50.7v0 , vp520.6v0). However the ratiod(1) /d(2)

grows more slowly than the size of the soliton; see Fig. 7
the regionuvpu, v r,v0 the characteristic values ofd(1) and
d(2) vary by one order of magnitude.

When the value ofv̄ becomes equal toDv, the asym-

FIG. 6. Energy of a soliton versus the values of the integrals of motionL,S
~in units of N0) for a soliton withDv50.1v0. The filled circles represen
E(S), and the open circles represent two branches of the functionE(L).
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metry of the soliton starts to decrease rapidly, and its aver
size increases. This fact has a quite obvious explanation
this region the term related toS in the dynamical part of the
LagrangianL starts to dominate, and the soliton behaves
a precession soliton in the model withS5 const andLÞ
const. Forv r!uvpu.Dv the central symmetry of the soli
ton is restored abruptly~see Fig. 7!. For vp*Dv only cen-
trosymmetric solitons are observed. It is obvious that
magnetization dynamics in them does not depend onvp and
v r , and their parameters and structure depend only on
value ofDv.

Over the entire range of variation of the parametersvp

and v r the solitons described above~both asymmetric and
centrosymmetric, arising for smallv r) are stable in accor-
dance with the criteria obtained above. Specifically, for all
them only one eigenvalue satisfiesl i,0 and
](L,S)/](v r ,vp),0. Besides these soliton states, ce
trosymmetric solitons are also present in the region of e
tence of the asymmetric solitons. However they are unsta
~for them two eigenvalues of the matrixL ik are negative!.
Therefore, here the situation is the same as for rotation s
tons with «!1: if an asymmetric soliton exists, then it i
stable. For the model~1! this can be described as spontan
ous breaking of the symmetry of the soliton.

As vp increases further, asymmetric solitons reappe
This soliton branch corresponds to large values of the par
etersC1 , C2>1. They havel1 , l2,0, and they are un-
stable. It is interesting to note that for these unstable solit
the functionE(S) is the same as for stable solitons, so th
these two branches coincide in the plot ofE5E(S); see Fig.
6. The main qualitative difference between these t
branches, which are separated by a region where stable
trosymmetric solitons exist, consists in the ratio ofL andS.
Stable solitons haveuLzu.S, while for unstable solitonsS
.uLzu ~see Fig. 8!. We note that for stable rotation solitons
was always found thatuLzu is greater than the average valu
of S). The difference between the branches of stable
unstable asymmetric solitons is not seen in the funct
d6(v) ~see inset in Fig. 7!, but it is clearly manifested in the
functionE(L). Two branches of this curve with a characte
istic bifurcation point at E510.003E0 and uLu5S
599.815N0 are clearly seen in the functionE(L) ~see Fig.

FIG. 7. Anisotropy parametersd(1) andd(2) of a soliton forDv50.1v0.



o

s

iv
tiv

-
n
tr

in
tr

a

by

-
th

ha

n

e
h

s in
ys-

e of

e-

et
re

y

ys-

i-
pre-

of
to
in

ar

ted
try
py
xist

pe

n
m-
-
(
s,

for
del
e

ns
dy-
nal

ist
-
-
gh

em

a
l
in
w

pid

842 JETP 88 (4), April 1999 A. A. Zhmudski  and B. A. Ivanov
6!. This point corresponds to a centrosymmetric solit
whose structure depends only onvp1v r . At this point the
energyE of the soliton and thez projection of the spinSare
maximum for a given value ofDv.

The soliton properties described above were discus
for a particular one-parameter family of solitons withDv
50.1v0. Our analysis showed, however, that the qualitat
behavior remains the same for other not very large posi
values ofDv. Specifically, forDv<0.5v0 a transition oc-
curs from asymmetric to centrosymmetric solitons asvp de-
creases toDv. For all Dv.0 there exists a maximum pos
sible E(Dv) that corresponds to a centrosymmetric solito
Obviously, this value equals the energy of a centrosymme
precession soliton with frequencyv5Dv. For suchDv
there also exist frequencies for whichuLu,S and the corre-
sponding solitons are unstable.

The situation changes for sufficiently largeDv (Dv
.v0) and negativeDv. ForDv close tov0 we were able to
find only centrosymmetric solutions. Since the correspond
solutions are stable, it can be concluded that asymme
solitons are absent in this case. Actually, in this range ofDv
the solutions are one -parameter solutions and to each v
of Dv there corresponds only one value ofS, uLzu5S and
energyE. In the (L,S) plane these solitons are described
points on the straight lineL5S that lie in the region with
small L, S,N0.

Solutions withDv5v r1vp,0 are never centrosym
metric, since centrosymmetric precession solitons in
model ~1! exist only for 0,v,v0; see Refs. 1–3. ForDv
,0 the shape asymmetry of the soliton is always larger t
for solitons with the same energyE andDv.0. In the (L,S)
plane solitons with fixedDv,0 correspond to an ope
curve lying above the lineL5S ~see Fig. 8! and nowhere
intersecting it.

7. CONCLUSIONS

We shall discuss the general mechanisms responsibl
two-dimensional topological solitons, the properties of t

FIG. 8. L versusS for solitons with different values ofD5Dv/v0. The
curve1 corresponds toD50.1, 2 — D50.01, and3 — D520.1.
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solitons, and the possible manifestations of these soliton
the properties of various quasi-two-dimensional ordered s
tems.

Stable stationary topological 2D solitons exist for a wide
class of models. The necessary condition is the existenc
at least one angular momentum integral of motion (L, S, or
J). In models with one integral of motion a soliton corr
sponds to periodic magnetization dynamics.

In the most highly symmetric model of a ferromagn
where bothL andSare conserved two-parameter solitons a
possible, the parameters being the precession frequencvp

and the rotation frequencyv r of the soliton. In these solitons
the magnetization dynamics in a stationary coordinate s
tem such thatqvpÞpv r (p andq are integers! is described
by an almost periodic function of time.

Solitons in models with one integral of motion can man
fest quite diverse properties. The shape asymmetry of
cession solitons in models withS5const is dictated by the
intensity of the interaction that destroys the conservation
L. In an almost isotropic model such solitons are close
centrosymmetric. For them, just as for rotation solitons
models with L5const andSÞconst only a low-frequency
magnetization dynamics is characteristic,vp , v r,vg ,
where vg is the lowest magnon frequency in the line
theory.

The shape asymmetry for rotation solitons is not rela
to the intensity of the interactions that destroy the symme
of the model. However, for a very small magnetic anisotro
in the basal plane close to centrosymmetric solitons do e
and they are stable for energiesE.2.3E0. Even for a very
small anisotropy in the basal plane, solitons with sha
asymmetry that is not small are stable.

Oscillation solitons in models where thez projection of
the total angular momentumJ is conserved~provided that
LÞconst andSÞconst! differ from precessional and rotatio
solitons primarily through having the magnetization dyna
ics that can be high-frequency (v.v0). The shape asymme
try of these solitons is large for the low-frequency casev
,v0), but it is not very small even at high frequencie
wherev@v0 and J!N0.

The same high-frequency dynamics also appears
two-parameter solitons in the most highly symmetric mo
with L5const andS5const. We note that this circumstanc
could be important for analyzing the contribution of solito
regarded as nonlinear thermal excitations to the thermo
namics and the response function of quasi-two-dimensio
uniaxial magnets. At low temperatures (T<J;A) mostly
small solitons withd(1).d(2)!D and E.E0 are excited.
For this reason, solitons with rapid oscillations should ex
in a soliton gas, and these solitons~in contrast to those stud
ied previously in Refs. 8 and 9! should make a specific con
tribution to the response function of the ferromagnet throu
high-frequency peaks. A detailed analysis of this probl
falls outside the scope of the present paper.

Analysis of the most highly symmetric model with
purely isotropic basal plane~with respect to both the spatia
and spin rotations! showed that the two-parameter solitons
this model can be asymmetric. As a rule, solitons with lo
energy,E.E0, are characterized by the presence of ra
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oscillations. Therefore, in this physically interesting mod
solitons withR!D and E.E0 can possess an asymmetr
shape and can be characterized by rapid magnetization o
lations. Solitons with a higher energy (E greater than severa
E0) are characterized by slow magnetization dynamics,vp ,
v r.v0. They can be either asymmetric or centrosymmet
depending on the values ofv r , vp .

Two integrals of motion,Lz and S, exist in the model
~1!. When two independent integrals of motionL andSexist,
the question arises as to which values of these integrals
admissable for a soliton, i.e., for what values ofL andSdoes
a stable soliton exist? The answer to this question can
obtained by analyzing the curves corresponding
Dv5 const in the (L,S) plane; see Fig. 8.

In this plane the straight lineL5S corresponds to cen
trosymmetric solitons. It corresponds to allDv close tov0

~in the limit Dv→v0 L andSare small andE.E0) as well
as the points corresponding to stable centrosymmetric s
tons for small 0,Dv!v0 (L,S@N0 , E@E0).

In the region 0,L,S solitons are unstable, and we d
not discuss them; see the discussion at the end of the pre
ing section. The regions whereL.S correspond to stable
solitons, obtained for both smallDv.0 and negativeDv.

These curves either intersect the lineL5S, crossing into
the regionL,S and forming a characteristic lobe~for Dv
.0), or they recede to infinity, remaining above the strai
line L5S. A characteristic feature of all these curvesDv
5const is that forL,S>N0 and small values ofDv the
curves lie much higher, i.e., the ratioL/S with fixed S in-
creases with decreasingDv. Therefore it can be asserted th
for such values ofL andS the half-planeL.S is covered by
the corresponding curves and a soliton with a fixed valuL
.S>N0 can be constructed with an appropriate choice
Dv and one of the frequenciesvp and v r . The region of
small L,S!N0, where curves with different values ofDv
pass close to one another for bothDv.0 andDv,0, is an
exception. Hence it follows that solitons withL@S but L,S
!N0 probably do not exist. This is understandable, cons
ering that small values ofL andScorrespond to small soliton
radii, R!D; in this case the soliton shape anisotropy can
be large, andL.S.
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