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Spectral investigations of surface ordering in ultrathin molecular films
V. K. Dolganov,* ) V. M. Zhilin, and K. P. Meletov

Institute of Solid-State Physics, Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region,
Russia
~Submitted 30 November 1998!
Zh. Éksp. Teor. Fiz.115, 1833–1842~May 1999!

Surface molecular ordering in ultrathin molecular films is investigated. The optical transmission
spectra of molecular films ranging in thickness from 2 to 13 smectic layers~6.7–43 nm!
in the region of the electronic absorption bands in the smecticA phase of cyanobiphenyl CB9
are measured. The thickness and temperature dependences of the permittivity are
determined. It is found that the orientational ordering of the molecules depends on the film
thickness. The penetration depth of the surface molecular orientational order does not exceed two
smectic layers~,7 nm!. © 1999 American Institute of Physics.@S1063-7761~99!02205-2#
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1. INTRODUCTION

A great deal of attention has been devoted in the last
years in both pure and applied investigations to the stud
surface molecular layers. The difference of the interaction
molecules with the environment on the surface and in
interior can change the structure of the layer, change
collective and molecular dynamics, shift the phase transi
temperatures, and induce new phases on the surface.
pending on the relative magnitude of various types of int
atomic and intermolecular interactions, surface layers
melt at higher or lower temperatures compared with the
terior of the sample. For example, investigations of the str
tures of SmA and SmO1,2 have shown that cooling the iso
tropic phase produces layered smectic order on the surfa
a temperature several degrees above the phase transition
perature in the interior. As the sample is cooled furth
layer-by-layer phase transitions eventually cause the sme
phase to fill the entire sample.

Free-standing molecular films are convenient objects
investigating near-surface and dimensional effects in orga
materials.3,4 The two flat surfaces of these films are bound
by air, and the films themselves can be prepared with var
~rigorously determined! numbers of molecular layers. Imme
diately after preparation a film can contain defects~disloca-
tions, thickness nonuniformity, and so on!. However, be-
cause of the comparatively high mobility of the molecule
the quality of the surface and of the film itself can be su
stantially improved by holding the film for several hours ne
the temperature of the transition to the isotropic or nem
phase. This makes it possible to obtain films (;1 cm2) that
are uniform over their thickness and contain a definite nu
ber of smectic layers. The surface of such a film is a sin
continuous smectic plane. This advantageously distinguis
the surface of a free-standing organic film from inorga
structures, where as a rule it is difficult to prepare perf
surfaces of adequate size. For this reason, molecular fi
aside from their intrinsic interest, can also serve as mo
objects for investigating surfaces, two-dimensional str
tures, and phase transitions in finite-size samples. It has
shown that in molecular films, phase transitions accom
1001063-7761/99/88(5)/5/$15.00
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nied by a change in the structure of near-surface sme
layers5–9 and transitions to a crystalline phase4,10,11occur at
temperatures 10–30 °C above transitions occurring in the
terior of the sample. Thin molecular films also melt at
higher temperature than bulk samples.12

Theoretical calculations have shown13–20 that the influ-
ence of a surface on translational and orientational molec
ordering must be taken into account in a description of
structure and dynamics of thin films. At the same time, up
now there have been no direct experimental observation
the differences in orientational order of molecules on a s
face and in the interior, and in consequence no direct ob
vations of a dependence of the orientational ordering on fi
thickness. In the present work such investigations were p
formed using optical methods. The optical transmiss
spectra were measured in the region of the electronic abs
tion bands for films with various thickness. A smecticA
structure~Fig. 1!, in which the ‘‘director’’ n ~the direction of
the predominant orientation of the long axes of the m
ecules! is perpendicular to the plane of the layers and
film surface, was investigated. The measurements were
formed in the UV region of the spectrum, where inten
absorption bands of the molecules forming liquid-crys
structures are found. This made it possible to observe
electronic absorption in ultrathin samples~thickness down to
;7 nm! and to determine from the experimental spectra
imaginary part of the permittivitye2(v) for films with vari-
ous thicknesses. The quantity

E5E e2~v!dv,

where the integral extends over an electronic transition
proportional to the squared projection of the dipole mom
of the electronic transition on the direction of polarization
the light. The permittivity along the principal directions~par-
allel and perpendicular to the ‘‘director’’! depends on the
orientational order. This makes it possible to characterize
orientational ordering of a structure on the basis of the re
tive value of the permittivity.
5 © 1999 American Institute of Physics
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2. EXPERIMENTAL RESULTS AND ANALYSIS

The measurements of the transmission spectra were
formed on films of 4-cyano-4-n-alkylbiphenyl CB9~nine is
the number of carbon atoms in a chain!. This substance
forms a smectic-A phase with the smectic-A – nematic–
isotropic-liquid phase transition temperatures 48 °C a
49.5 °C, respectively, in the interior of the sample. The fil
were placed in a 5-mm opening of a thin metal plate. Lay
by-layer thinning by heating a thick film above the tempe
ture of the phase transition to the isotropic liquid in the
terior was used to obtain thin films with the required numb
of molecular layers.12,21,22 The transmission spectra we
measured with the light polarized perpendicular to the ‘‘
rector.’’ The spectraT(v)5I (v)/I 0(v) presented in this pa
per are the spectraI (v), normalized to the lamp spectrum
I 0(v), of the light transmitted through a film. To take a
count of the reflection of light from the quartz windows
the heat-bath vessel, the spectrumI 0(v) was measured in the
same geometry asI (v) without the film. To determine the
film thickness~the number of smectic layers!, the optical
reflection was measured in the transmission region.
spectral dependence of reflection under normal incidence
‘‘backward’’ reflection is given by23

I r~v!

I 0~v!
5

~n221!2sin2~2pnNdv!

4n21~n221!2sin2~2pnNdv!
, ~1!

whereN is the number of smectic layers in the film,d is the
interplanar distance ('3.3 nm in the smectic-A phase of
CB9!, n is the index of refraction, andv51/l. In thin films
(N<6), the reflected intensity is proportional to the squa
film thickness:

I r~v!/I 0~v!'N2d2p2~n221!2v2. ~2!

In this case the number of smectic layers was determi
according to the relative reflection intensities for films w
various thicknesses.

Figure 2 shows the results of the measurements of
transmission spectra of films with thicknessN52, 3, 4, 5, 6,
and 8 smectic layers. The spectra consist of two electro
bands Fa (va'3.53104 cm21) and Fb (vb'4.63104

cm21). In cyanobiphenyls, the electronic transition dipo
moment for the low-frequency bandFa is parallel to the long
axis of the molecule. The transmission spectrum of a fi
with N513 layers for two temperatures 37.6 °C and 47 °C
shown in the top half of Fig. 3. The intensity of the spectru

FIG. 1. Smectic-A film. The ‘‘director’’ n is perpendicular to the surface;u
is the disorientation angle of the long axes of the molecules relative to
‘‘director.’’
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in the frequency range displayed in Figs. 2 and 3 is de
mined by electronic absorption and interference effects in
reflection of light by the film surface. Even in the transm
sion range the transmission spectrum exhibits a strong s
tral dependenceT(v)5@12I r(v)/I 0(v)# @see the expres
sion ~1!#. This dependence is even more complicated in
vicinity of the absorption bands, since the absorption coe
cient, the refractive index, and the change in phase of
light wave for transmission through a film depend onv.
Interference effects make a large contribution to the inten
and frequency-dependence of the spectrum. Thus, the de
tion of T(v) from 1 in the low-frequency part of the spect
is completely due to interference. On account of interfere
effects, the intensity of the light transmitted through a film
the absorption region does not follow the Lambert–Beer la
and the spectra must be analyzed taking account of en
dissipation in the film and interference.

The transmission spectrum and the response of the fil21

to a light wave are described by the permittivitye(v), which
depends on the orientational ordering of the molecules in
film. Even though the expressions relating the transmiss
spectrum of the absorbing film withe(v) were derived com-
paratively long ago and are presented in the classic mo
graphs~see, for example, Refs. 24 and 25!, thus far the op-
tical spectra of the ultrathin films have not been analyz
using these expressions because of the lack of experime
data.

e

FIG. 2. Transmission spectra of films with thicknessN52, 3, 4, 5, 6, and 8
smectic layers at temperatureT547.7 °C.

FIG. 3. Transmission spectra of a film with thicknessN513 smectic layers
at temperaturesT537.6 °C and 47 °C~top half of the figure!. The bottom
half of the figure shows the imaginary part of the permittivity, obtain
using Gaussian~dashed curves! and arbitrary~solid curves! forms for the
spectral curvese2(v).
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For an absorbing medium the light transmission coefficientT(v) of a film is given by the expression24,25

T~v!5
16~n21k2!exp~24pdkv!

@~n11!21k2#2@122r exp~24pdkv!cos@2~b12pdnv!#1r2exp~28pdkv!#
, ~3!
i

bi

of

sin

gt

th
p

ul
b
e
io

zia
th
-
se
r
i-
be
g

th
e
pe

be
ons
ore
e

e

s–

al.
-

us-
e
ith

ord-

s-

r

d
rves

d

ase
ed
of
e

en-
n
gi-
r-

of
where

r5
~n21!21k2

~n11!21k2
~4!

is the light reflection coefficient of the surface of a sem
infinite medium, and

b5tan21
2k

n2211k2
~5!

is the phase delay due to energy dissipation in the absor
film. It is well known that the absorption coefficientk(v)
and the refractive indexn(v) can be expressed in terms
the real and imaginary parts of the permittivitye(v)
5e1(v)1 i e2(v):

n5
1

A2
@~e1

21e2
2!1/21e1#1/2, ~6!

k5
1

A2
@~e1

21e2
2!1/22e1#1/2. ~7!

Dipole electronic excitations bands are often described u
for the permittivity the simple ‘‘classical dispersion’’ form

e~v!5e02
f /2v

v2v02 ig
, ~8!

where f is a parameter characterizing the oscillator stren
of the electronic transition,v0 is the resonance frequency,g
is a decay constant, ande0 is the permittivity due to all other
electronic states. This representation ofe(v) greatly simpli-
fies the calculations, since the imaginary and real parts
e(v) are given by analytic expressions that depend on
same parameters. We have attempted to describe the ex
mental transmission spectra~Figs. 2 and 3! using the permit-
tivity for both transitions in the form~8!. The quantitiese0 ,
f, v0 , andg served as adjustable parameters in the calc
tion of the transmission spectra. However, we were not a
to obtain a satisfactory description of the experimental sp
tra. In the region of the absorption bands the transmiss
spectrum decreases much more rapidly than Lorent
curves. This is due to the fact that, strictly speaking,
expression ~8! is applicable for an isolated electronic
excitation band. Intrinsic absorption bands in the conden
state are, as a rule, a superposition of a large numbe
vibronic transitions with participation of intramolecular v
brations. Individual vibronic transitions are broadened
cause of structural disordering and temperature, formin
wide structureless band. The absorption bandsFa andFb are
a superposition of such vibronic transitions. In this case
permittivity e(v) in the form~8! can be used to describe th
spectrum when the structureless contour formed by a su
-
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position of vibronic transitions accidently happens to
close to a Lorentzian curve. For this reason, the calculati
of the transmission spectrum were performed with a m
general form ofe(v) for each band. In this case, first, th
form of only the imaginary parte2(v) of the permittivity
was given ande1(v) was calculated on the basis of th
analytic properties of the functione(v). The imaginary and
real parts of the permittivity are related by the Kramer
Kronig relation. This makes it possible to determinee1(v)
from the given functione2(v) as24

e1~v!5e01
2

p EÁ xe2~x!

x22v2
dx, ~9!

where we take the Cauchy principal value of the integr
The spectral dependencee1(v) was calculated by numeri
cally integrating of Eq.~9! for two transitionsFa and Fb .
Much better agreement with experiment was obtained by
ing Gaussians fore2(v). On the basis of this analysis, th
calculation of the optical transmission spectra of films w
various thicknesses and the determination ofe2(v) from the
experimental spectrum were performed in two steps acc
ing to the following scheme.

First, e2(v) was approximated by a sum of two Gaus
ians:

e2~v!5( Hi expF2 ln 2S v2v i

ci
D 2G . ~10!

The initial values of the adjustable parametersHa,b , ca,b ,
andva,b were fixed, and the spectral dependencee1(v) was
determined from the Kramers–Kronig relation~9! by nu-
merical integration. The permittivitye0 served as anothe
adjustable parameter. The functionse2(v) and e1(v) ob-
tained in this manner were used to calculaten(v)andk(v)
@Eqs. ~6! and ~7!# as well as the transmission spectrum~9!.
The optimal values of the parameters of the Gaussians ane0

were obtained by a least-squares fit of the computed cu
~3! to the experimental spectra~Figs. 2 and 3!. In Fig. 4 the
experimental spectra~dots! are compared with the compute
spectra~dashed curves! for films with N53 andN58. The
total intensity of the transmission spectrum and the decre
in intensity with increasing film thickness can be describ
satisfactorily in the absorption and transmission regions
the film. However, the differences in the position of th
peaks and in the shape of the low-frequency bandFa cannot
be eliminated by using Gaussians to describee2(v).

In the second step of the calculations, the spectral dep
dencee2(v) for the bandFa was not approximated by a
analytic expression. To work with arbitrary curves the ima
nary part of the permittivity was given by cubic spline inte
polation over a set of discrete valuese2(v i) (1< i<15).
This number of points was sufficient to describe the form
e2(v). The real part of the permittivitye1(v) was calculated
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from the Kramers–Kronig relation~9!. In the second step o
the calculations the ordinatese2(v i) served as adjustabl
parameters. Next,T(v) @the expression~3!# was fit to the
experimental spectrum using the same scheme as in the
step of the calculations. The spectra obtained are present
Fig. 4 ~solid lines!. It follows from this figure that this
method makes it is possible to obtain in the region of theFa

band a computed spectrum that is essentially identical to
experimental spectrum. Figures 5 and 6 displayE
5*e2(v)dv andEd5d*e2(v)dv as a function ofN. Figure
7 shows the temperature variation ofE5*e2(v)dv for a
film with 13 smectic layers. The figure also shows for co
parison the results obtained in the first computational s
wheree2(v i)was described by a Gaussian. One can see f
Fig. 3 that the spectral dependencee2(v i) obtained in the
second computational step is appreciably different from
Gaussian. However, the integrated intensities do not di
much~Fig. 7! and they show the same temperature variati

3. DISCUSSION

A characteristic feature of the behavior ofE
5*e2(v)dv as a function of film thickness is that in ultra
thin films E decreases~the fact that the straight line draw
throughEd in Fig. 6 does not pass through zero is due to t
effect!. As already mentioned,E5*e2(v)dv characterizes
the orientational ordering of the molecules. Since the dip
moment of an optical transition for theFa band is parallel to
the long axis of a molecule, lower values ofE correspond to
lower values of the angleū of disorientation of the molecule

FIG. 5. Total intensityE5*e2(v)dv versus film thicknessN.

FIG. 4. Comparison of the experimental spectra~dots! with the computed
spectra for films withN53 and N58 smectic layers. Dashed curves —
calculation withe2(v) given by a Gaussian. Solid lines — calculaton wi
an arbitrary form ofe2(v).
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relative to the ‘‘director’’ n ~Fig. 1! and therefore a highe
degree of orientational ordering. As temperature decreaseE
decreases~Fig. 7, N513), i.e., the orientational order of th
molecules in the film increases. The temperature behavio
the orientational order in a film is similar to the change in t
ordering in bulk samples in the smectic and nema
phases.26,27 The fact that the molecules in a film becom
ordered on cooling can also be seen qualitatively by comp
ing the transmission spectra directly~Fig. 3!. The decrease in
the intensity of theFa band on cooling is due to the increas
in orientational order.

The quantityP25(1/2)(3̂ cos2u&21), called the degree
of orientational ordering,26 can be used to characterize th
orientational order of molecules in bulk samples. In our ca
~the electronic transition dipole moment is parallel to t
long axis of the molecules! the dependence ofP2 on E has
the simple form

P25~123E/Ei!, ~11!

whereEi5*e2
i (v)dv ande2

i (v) is the permittivity in a di-
rection parallel to the ‘‘director’’n in a completely ordered
structure, i.e., withP251. In thick films P2 should corre-
spond to its value in the interior. ForP2 of the order of 0.65
in films with N>8, the relative variation of the orientationa
orderingP2 in ultrathin films (N52,3) can be estimated us
ing Eq. ~11! and the values ofE for N52, 3 andN>8. The
degree of orientational ordering obtained in this manne
P2'0.72 (N52) and P2'0.69 (N53). The sharp depen

FIG. 6. Ed5d*e2(v)dv versus film thicknessN.

FIG. 7. E5*e2(v)dv versus temperature for a film withN513 smectic
layers (s) and the values ofE5*e2(v)dv obtained at the first step of the
calculations wheree2(v) was given by a Gaussian (3).
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denceE(N) for N<4 ~Fig. 5! shows that the effect of the
surface is limited to a thin near-surface layer of the order
one or two smectic planes.

A number of models have been proposed to describe
layer and orientational order of molecules near a surfa
Rosenblatt and Ronis13,14were the first to use a lattice mod
to study the effect of a surface on the structure of and ph
transitions in films. The material parameters of the b
samples were used in the numerical calculations. A fun
mentally important result of these works is that the ord
parameter near a surface is different from its value in
interior, and the thickness-averaged orientational order
rameter in thin films is larger than in the interior. Surfa
ordering is often interpreted in terms of the wetting of t
interface between media by various phases.16–18 It has been
shown that near the phase transition temperature in the
rior this process can occur by continuous and layer-by-la
increase in the number of smectic layers near the surface17,18

In the mean-field model~the analog of the McMillan
theory28 for bulk samples! the influence of the surface wa
also taken into account by introducing an effective orient
field acting on a molecule at the surface

Ws~u!52
Ws

2
~3cos2~u!21!.

The absolute value ofP2 on the surface depends on the ra
Ws /W0, whereW0 is the intermolecular interaction constan
The large arbitrariness in the choice of these quantities
cludes a quantitative comparison of the experimental
computed values ofP2 at a surface. More important is th
theoretical dependence ofP2 on the distance from the sur
face. The change inP2 from its value at the surface to it
value in the interior occurs mainly at the transition from t
first ~surface! to the second molecular layer,20 in agreement
with our data.

The change of the collective and molecular dynamics
the surface makes a large contribution to the ordering of
molecules. The amplitude of the fluctuations of the sme
layers in the interior of a film is;0.45 nm. Surface tensio
suppresses collective~long-wavelength! fluctuations, de-
creasing their amplitude by 0.1–0.2 nm relative to the a
plitude of the fluctuations in the interior of the film.19 Precise
measurements of the surface tension have been performe
thin films.29 According to these data the surface tension d
not depend on the film thickness, right down to two molec
lar layers, i.e., the mechanism responsible for surface ten
is localized in a layer near the surface.29 According to the
calculations in Ref. 19 the amplitude of the surface fluct
tions depends weakly on the film thickness. The bulk of
change in the amplitude of the fluctuations occurs at
surface over one or two molecular layers. Our results on
effect of a surface on orientational ordering agree with t
model.

In summary, a spectral method for investigating surfa
orientational ordering was proposed in this paper. The fi
measurements of the transmission spectra of thin, f
standing, molecular films in the region of electronic abso
tion bands were performed.1! The degree of orientational or
der in ultrathin films (N52,3) is greater than in thick films
f
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Our results on the thickness dependence of the transmis
spectra and permittivity show that the effect of a surface
the orientational structure is localized in one or two smec
layers near the surface.

This work was supported by the Russian Fund for Fu
damental Research~Project 98-02-16639! and the State Sci-
entific and Technical Program ‘‘Statistical Physics.’’

* !E-mail: dolganov@issp.ac.ru
1!The electronic spectra of molecules forming liquid crystals are inve

gated, as a rule, in solutions. The intrinsic absorption spectrum in
liquid-crystal state is difficult to measure by the conventional method,
when the substance is in a cell, because of the virtually complete abs
tion even in thin samples;1mm. Free-standing films make it possible t
perform such measurements and can be used to investigate intrinsic
tronic and vibronic absorption.
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Coulomb screening of impurity charge and anomalous tunneling transparency
L. A. Manakova* )

Kurchatov Institute, 123182 Moscow, Russia
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This paper analyzes the effect of the screened Coulomb interaction between metallic electrons in
the sidewalls, on the one hand, and a localized electron in an impurity level, on the other,
on the tunneling in doped quantum structures with an intrinsic two-dimensional continuum. We
show that Mahan’s non-Fermi-liquid singularity at the Fermi level is unstable against
additional scattering due to tunneling. As a result, the current–voltage characteristic changes
radically when the Fermi level in the sidewalls is approached by the edge of the two-dimensional
band. Specifically, the peak due to the non-Fermi-liquid singularity with a section of
negative differential resistance is replaced with a step-like or a two-step feature, which corresponds
to a single or split Fermi-liquid resonance near the edge of the 2D band involved in the
tunneling process. ©1999 American Institute of Physics.@S1063-7761~99!02305-7#
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1. INTRODUCTION

Among the physical realizations of the non-Fermi-liqu
behavior, the models that have been studied most extens
by both theoretical and experimental methods are gene
ized versions of Anderson’s impurity model, along with t
multichannel Kondo model, both spin and orbital, and
particular, the two-channel Kondo model, a prototype of
non-Fermi-liquid impurity models~see the review, for ex-
ample, in Ref. 1!.

Tunneling experiments open up an opportunity for dir
detection of non-Fermi-liquid effects in such systems us
features of current–voltage characteristics.2 For this reason,
studies of tunneling spectra of impurity systems with no
Fermi-liquid ground states are of fundamental importan
Detecting a crossover from a non-Fermi-liquid to Ferm
liquid state is probably feasible, since the non-Fermi-liqu
state is unstable against all perturbations that lift degene
in orbital or spin degrees of freedom.

In particular, two mechanisms of instability in the no
Fermi-liquid state have been described by the two-chan
orbital ~quadrupole! Kondo model. The first is instability
against distortions of the impurity center which lower
symmetry~Jahn–Teller effect or pseudo-effect!3 and lift the
orbital degeneracy of an impurity level, and accordingly
turn the system to the Fermi-liquid behavior at low tempe
tures.

The second mechanism4 is responsible for instability of
the non-Fermi-liquid state due to the anisotropy of scatter
channels~recall that the scattering channel indices in t
two-channel orbital Kondo model correspond to two proje
tions of the electron spin!. The channel anisotropy arise
under an external magnetic field, and the correspond
crossover from the non-Fermi-liquid to Fermi-liquid sta
has been detected experimentally.2

It was shown previously5,6 that a new instability mecha
nism of the non-Fermi-liquid state occurs in tunneling stru
tures. Tunneling mechanisms in doped quantum struct
1011063-7761/99/88(5)/9/$15.00
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with an intrinsic two-dimensional continuum were analyze
A new physical realization of the two-channel Kondo mod
was described, and a crossover from a non-Fermi-liquid
Fermi-liquid state due to a variation in either the separat
between the Fermi level and two-dimensional band edge
the impurity level depth was detected.

The physical reason for the crossover is the existenc
Fermi-liquid resonances near the two-dimensional ba
edge. The resonances are generated in the process of tu
ing due to the scattering of electrons of the defect layer of
quantum structure by non-Fermi-liquid excitations from t
Fermi level in the sidewalls. In this case, the impurity level
the lowest and does not resonate with the Fermi level in
sidewalls.

Thus, it has been proven5,6 that the non-Fermi-liquid
state is unstable against impurity scattering~both resonant
and potential! engendered by tunneling in the situation und
discussion.

The contribution of the edge resonances to the tunne
current is considerably larger than the current in the n
Fermi-liquid state. For this reason, the described instab
of the non-Fermi-liquid state sidewalls to an anomalous
crease in the tunneling transparency and current.

The key role of the two-dimensional continuum in th
tunneling in doped quantum structures was first dem
strated in Refs. 7 and 8.

One example of a system with non-Fermi-liquid excit
tions at the Fermi level9,10 that has been well known for a
long time is a system with Coulomb interaction between
localized electron trapped at a nondegenerate impurity le
and conduction electrons in the sidewalls. Matveev a
Larkin11 considered the Coulomb interaction between a
calized electron in an impurity level and metallic electrons
the sidewalls in the context of tunneling via a resonant le
under a barrier. In this case, when the dominant role
played by Mahan’s resonance at the Fermi level,12 the
current–voltage characteristic is a power law, and it conta
a section of negative differential resistivity.
0 © 1999 American Institute of Physics
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The present paper considers the effect of a scree
Coulomb interaction between metallic electrons in sidew
and a localized electron in an impurity level on the tunnel
in doped quantum structures with an intrinsic tw
dimensional continuum.

It turns out that the tunneling mechanisms in quant
structures with an intrinsic two-dimensional continuum a
radically different from those taking place in systems w
both tunneling via a resonant level under a barrier11 and a
non-Fermi-liquid state due to the two-channel orbital Kon
scattering.5,6 An experimentally important result is that th
current–voltage characteristic radically changes when
Fermi level in the sidewalls approaches the two-dimensio
band edge: the peak with the section of negative differen
resistivity due to Mahan’s non-Fermi-liquid feature at t
Fermi level is replaced by a step-like or a two-step featu
which are due to the contribution of Fermi-liquid edge res
nances to the tunneling current.

2. STATEMENT OF THE PROBLEM

1. Consider a quantum structure with a band-edge pro
similar to that of a double-barrier quantum well~DBQW!,
such as GaAlAs/GaAs/GaAlAs layered structures, where
interior GaAs layer is a quantum well with an intrinsic tw
dimensional continuum of spatially quantized band state

A transition-metal impurity generates a deep level with
binding energyEd within the band gap of the DBQW inne
layer. This layer also has a continuum of two-dimensio
states with dispersion«k'

. We are considering the situatio
when the Fermi level in the sidewalls is close to the cond
tion band edge in the inner layer. The system Hamilton
has the form

H5H001Ht1H int , ~1!

where H005H00
n 1H00

d 1H00
c is the Hamiltonian of the de

coupled sidewalls and quantum well.
The tunneling Hamiltonian for the system under cons

eration can be written in the form

Ht5Htd1Htc5(
kns

~Tkd
n akns

1 ds1H.c.!

1(
kns

(
k'8

~Tkk
'8

n
akns

1 ck
'8 s1H.c.!. ~2!

Operatorsakns describe electron states in the left-hand~L!
and right-hand~R! sidewalls of the tunneling junction. Op
eratorsds andck'

correspond to wave functions of hybrid
ized localized,cd(r ), and band,C(k' ,r ), states.13

The tunneling matrix elements in Eq.~2! are given by

Tkd
n 5B~k'!Td

n~kl !, Tk,k
'8

n
5~T0

n~kl !dk'k
'8

1Tkc
n B~k'8 !!,

Tkc
n 5Tc

n~kl !B~k'!. ~3!

Here B(k')5Vk'd /(Ed2ek'
), Vk'd is the matrix element

of hybridization in the quantum well. In Eq.~3! k5k' ,kl ,
and the longitudinal and transverse motions of electron
the sidewalls are assumed to be decoupled:«k5«k'

1«kl
. As
ed
s

e
al
al

,
-

le

e

l

-
n

-

in

a result, the impurity contribution toTk,k
'8

n
is separable,

which enables us to obtain an exact solution of the tunne
problem.

The ‘‘bare’’ tunneling between the sidewalls and qua
tum well, described by the term containingT0

n(kl) in Tk,k
'8

n

controls the restructuring of the electronic spectrum near
band edge in the quantum well. This is the region wh
evanescent edge states are formed,7 whose density of state
for «2«c,g0!Wc is

rc~«!5
r0c

p F tan21
«2«c

g0
2tan21

«2Wc

g0
G . ~4!

Herer0c is the constant density of states in the unperturb
2D band,g0;(nuT0

n(«c)
2r0n , wherer0n;Wa is the corre-

sponding tunneling width, andWa is the width of the con-
duction band in the sidewalls.

Thus, in the energy range of interest, we have in
tunneling HamiltonianHtc only the impurity term propor-
tional to Tc

n(kl) in Eq. ~3!, but the 2D-continuum density o
states is expressed by Eq.~4!.

The tunneling HamiltonianHt can be transformed to a
‘‘single-band’’ form, which is more convenient for analysi
This is done using a linear transform

aks5ukakLs1vkakRs , bks5ukakRs2vkakLs ,

uk5
Tkd

L

@~Tkd
L !21~Tkd

R !2#1/2, uk
21vk

251. ~5!

It can be verified immediately that in the new representat
only quasiparticles of one sort represented by operatorsaks

are hybridized in both localized and continuum states.
The transformed tunneling HamiltonianHt

(a) can be de-
rived from Ht in Eq. ~2! through the transformations

akns
1 →aks , Tkd

n →Tkd
a 5@~Tkd

L !21~Tkd
R !2#1/2,

Tkk
'8

n →Tkk
'8

a
5Tkk

'8
L

uk1Tkk
'8

R vk .

Here the dispersion relations in the sidewalls are assume
be identical:«k

L5«k
R5«ka . Since the tunneling Hamiltonian

acts only on statesaks , the interaction Hamiltonian is de
fined in their basis.

2. The singularities in the energy range of interest n
the edge of the 2D band are caused by the termHtc from the
tunneling Hamiltonian and the HamiltonianH int of interac-
tion between the electrons in the sidewalls and impu
states within the quantum well. Using the formalism dev
oped earlier,5–7 it is convenient to diagonalize Hamiltonia
~1! in two stages. In the first stage, we diagonalize
HamiltonianH05H001H int and obtain multiparticle excita
tions at the Fermi level in the sidewalls. Then we take in
account the additional scattering of quasi-two-dimensio
electrons in the quantum well by these excitations due to
tunneling HamiltonianHt .

In this study,H int is the Hamiltonian of screened Cou
lomb interaction due to polarization of conduction electro
in the sidewalls caused by recharging of impurity states
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the process of tunneling. By expressingH int in terms of par-
tial statesakms , which are introduced ford-wave impurity
states by the relationship

aks5(
m

akmsKdm~Vk!,

whereKdm(Vk) are cubic harmonics as functions of the so
angleVk andm is the row number of the irreducible repre
sentation of the point group, we obtain

Hee5 (
kk8s

(
m

Vm~kk8!akms
1 ak8msd1d. ~6!

As was shown previously,8 the interactionHee is generated
by two tunneling mechanisms, namely,Tkd

a and T0
a(kl) be-

tween the sidewalls and the 2D continuum. The sec
mechanism is a manifestation of the ‘‘Bloch tail’’ of th
impurity state wave function. Specifically, the recharging
Bloch states near the 2D band edge generates charge flu
tions at the deep level, hence the interaction described by
~6!.

This is the basic interaction~6! in the so-called non-
Kondo regime, in the absence of the exchange scattering
thed-level, such a situation is plausible when both the orb
and spin degeneracy of the level are lifted by the combi
action of crystal fields, Jahn–Teller distortions, and Hun
rule.

It is known9,11 that solving a problem with the Coulom
interaction requires a description of two processes of dif
ent physical character, which lead to an infrared diverge
in the Green’s function and tunneling characteristics. T
first process is electron scattering by the potential

(
kk8s

(
m

Vm~kk8!akms
1 ak8ms ,

acting over a finite time interval. This scattering always lea
to a divergence in the Green’s functionGkk8(«) of conduc-
tion electrons, which corresponds to Mahan’s resonanc
the Fermi level.12 The second process is related to the ‘‘o
thogonality catastrophe:’’ even a weak potential due
charge fluctuations at the impurity level modifies the mu
particle electron wave function so that it becomes alm
orthogonal to the initial wave function. This process, whi
also effectively broadens the impurity level, spreads M
an’s resonance in the conduction electron spectrum.9

Below we will use the electron density of states in t
sidewalls,

ram~«!52
1

p
Im (

k
Gkk~«![2

1

p
Im G~«!, «.0,

whereG(«) is a sum over the momenta of delocalized ele
trons scattered by a potential that is turned on abruptly~at
t50!. This function was calculated by Nozie`res and de
Dominicis:9

G~«!5 ir0a exp~ ipam!G~am!S «F

« D am

, am5
2dm

p
, ~7!

hence the density of states is
d

f
ua-
q.

At
l
d
s

r-
e
e

s

at

o
-
t

-

-

ram~«!5Amr0aS «F

« D am

, Am5~1/p!sin~pam!G~am!. ~8!

Herer0a;«F
21 is the density of states at the Fermi level f

noninteracting electrons,G(a) is the gamma function, and
dm is the phase shift in the scattering channelm.

Here we also recall that foram→0, the last factor in Eqs
~7! and ~8! should be written in a more accurate form
namely

@~«F /«!am21#,

so that the density of states is given by

ram~«!;r0aam ln
«F

«
,

and the singularities at the Fermi level vanish in self-ene
functions~see below!, and accordingly inT0(z).

The Green’s functionGd(z) of the localized state also
has a well-known form9 determined by the modification o
the Fermi sea caused by the impurity potential:

Gd~z!;
1

~«F!ad~z2Ēd!12ad

,

ad52(
m

S dm

p D 2

, ad!
gd

u«du
!1, ~9!

Ēd5Ed1Sd~Ēd![«d1 igd ,

Sd~Ēd!'(
m

uTkFdm
a u2r0aS «F

Ēd2«c
D am

. ~10!

In the case of a deep level discussed in this paper,
following conditions are satisfied:u«du[«c2«d;«F , gd

!u«du.
The elementary excitations at the Fermi level describ

by the Green’s function~7! are boson-like electron–hol
pairs.10

3. GENERAL EXPRESSION FOR THE SCATTERING MATRIX
AND ITS FEATURES

1. We now discuss additional scattering of quasi-tw
dimensional electrons in the defect layer by electron–h
pairs at the Fermi level in the sidewalls due to the tunnel
HamiltonianHtc .

The scattering matrixT s
cc(k' ,k'8 ;z) for an electron in-

side the quantum well can be derived5–7 from the Green’s
function

Gs
cc~k' ,k'8 ;z!5dk' ,k

'8
G0k'

~z!1G0k'
~z!

3T s
cc~k' ,k'8 ;z!G0k

'8
~z!, ~11!

which yields

T s
cc~k' ,k'8 ;z!5

T0~z!

12T0~z!Jc~z!
B~k'!B* ~k'8 !, ~12!

T0~z!5uSdc~z!u2Gds~z!1Scc~z!. ~13!
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Equation~11! uses the notationG0k'
(z)5@z2 «̃k'#21, and

«̃k' is the spectrum corresponding to the density of sta
described by Eq.~4!.

It follows from the definition~12! of the scattering ma-
trix that T0(z) acts as an effective scattering potential for 2
electrons. The first term ofT0(z) is responsible for the reso
nant scattering involving virtual transitions between the
continuum and impurity states in the quantum well via el
tron states in the sidewalls. The second term inT0(z) de-
scribes potential scattering of quasi-2D electrons with am
tudeScc(z).

The functionsScc(z) and Sdc(z) can be conveniently
expressed in the form of a spectral representation of the
duction electron Green’s function:5,6

Scc~z!5(
kms

uTkcm
a u2f ~«ka!

~z2«c!2~«ka2«c!

5(
m

uTkFcm
a u2E

2`

0

d«
ram~«!

~z2«c!2«
. ~14!

Here the energy is measured with respect to«F→«c , and
f («) is the Fermi distribution function.

It also follows from Eq.~14! that in an interacting sys
tem the functionsScc(z) andSdc(z) are Hilbert transforms
of the multiparticle density of states; for this reason, th
have features at the Fermi level corresponding to Maha
peaks in the density of states. By substituting Eq.~8! in ~14!,
we obtain

Scc~z!5(
m

uTkFcm
a u2Amr0aS «F

z2«c
D am

, Am;1. ~15!

The form of the expression forSdc(z) is similar to Eq.~15!
in the energy range of interest, butuTkFcm

a u2 is replaced by

TkFcm
a TkFdm

a* .

The integralJc(z) is the Hilbert transform of the quas
two-dimensional density of statesrc(«) defined by Eq.~4!.
In the regionuz2«cu/g0!1, this integral is logarithmically
divergent:

Jc~z!5
1

2
r̃0c Ln

g0

z2«c
, r̃0c5r0c~«c!uB~«c!u2. ~16!

This logarithmic divergence in the self-energy part
Jc(z) generates one-particle resonances in the same en
range where the multiparticle resonance responsible for
peak in the effective scattering potentialT0(z) occurs. For
this reason, poles of the scattering matrix are determined
the self-consistent equation

12T0~z!Jc~z!50. ~17!

In the absence of the interaction,T0(z) is a function slower
than Jc(z), so one-particle resonances near the edge of
2D band obtained previously7 are fully dependent on the
logarithmic divergence inJc(z), and they are therefore ex
ponentially narrow.

2. Consider solutions of Eq.~17! in the presence of Cou
lomb interaction. By substituting expressions~9! and~15! in
that for T0(z) and considering for simplicity only one sca
s

-

i-

n-

y
’s

f
rgy
he

by

e

tering channelm0 where the phase shift is maximal, w
transform Eq.~17! for poles of the scattering matrixT cc to

12Fgdm0S «F

z2«c
D am0

1gdm0

2 r0aS «F

uz2«cu
D 2am0

3S «F

z2Ēd
D 12adGJc~z!50, ~18!

wheregdm0
[uTkFdm0

a u2r0aAm0
;gd;g0uBu2.

It is clear that Mahan’s resonance and the orthogona
catastrophe contribute to different quantities that con
T0(z). The resonance in the Green’s function of conduct
electrons determines the density of states in spectral di
butions of self-energy functionsScc(z) and Sdc(z). The
channel related to the orthogonality catastrophe determ
the Green’s functionGd(z) of the impurity state. We are
interested in solutionszr5« r1 ig r of Eq. ~18! that corre-
spond to resonances near the 2D band edge for the
impurity level, so that

uzr2«cu!uĒd2«cu;«F .

Under this condition, the major contribution to the effecti
scattering potentialT0(z) is due to the resonant componen
i.e., the second term in the brackets in Eq.~18!, and the
contribution of the power-law factor withGd(z) is of the
order of unity. This means that the resonant scattering
electrons in the quantum well is fully determined by Ma
an’s peak at the Fermi level in the sidewalls.

The shape of the edge resonance is determined by
competition between features in the Hilbert transfor
Sdc(z) andJc(z) of the multiparticle and single-particle den
sities of states. The shape of these functions is determine
the interaction amplitude. If the interaction is weak andam0

is sufficiently small, the changes in the functionSdc(z) are
much smaller than inJc(z) in the energy range of interest. I
this case, an exponentially narrow resonance determ
largely by the logarithmic divergence ofJc(z) is feasible.7

Using Eq.~18!, one can easily prove that the condition f
this resonance is

Ldc
0 ,am0

!Ldc
0 ln

1

Ldc
0 , Ldc

0 [gd
2r0ar0cuBu2!1, ~19!

and hereafter it is assumed thatr0a ,r0c;1/«F . The first
inequality in~19! is the condition that the density of states
a power-law function of energy.

For a.ac[Ldc
0 ln(1/Ldc

0 ) ~hereafter we use the nota
tion am0

[a! the solution of Eq.~18! is determined by the
multiparticle singularity inSdc(z) @or in other words, by the
singularity in the effective potentialT0(z)#, and the positions
and widths of resonances are accordingly power-law fu
tions of the tunneling structure parameters. The solutions
Eq. ~18! in the energy range of interest can be written in t
form

« r 65«c6g r cosw, g r 65g r sinw, ~20!
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g r'«0~Ldc!
1/2a, «0;«F , Ldc'

1

2a
Ldc

0 ln
1

Ldc
0 '

ac

2a
,

~21!

w'
12ad

2a

gd

u«du
ln

1

Ldc
0 . ~22!

The edge resonance is split into two components that
symmetric about the edge of the 2D band atw,p/4, when
g r 6,u« r 62«cu. This condition defines the case of suf
ciently strong scattering:

a.2ac1 , ac1[
1

p
~12ad!

gd

u«du
ln

1

Ldc
0 @ac . ~23!

Over a limited range of tunneling parameters, whenp/4
,w<p/2, or in other words for

ac1,a<2ac1 , ~24!

Eq. ~18! has a solution in the form of a single resonance
width g r at the edge of the 2D band.

Thus, over a significant range of tunneling paramete
the resonant scattering of quasi-two-dimensional electron
the quantum well by the excitations from the Fermi level
the sidewalls, which are responsible for Mahan’s resona
gives rise to a split resonance in electronic Green’s functio
For all admissible values of tunneling parameters,

u« r2«cu, g r!g0 . ~25!

Depending on the Fermi level position with respect
the 2D band edge in the quantum well, solutions of the s
consistent equation for poles of the scattering operator h
the following forms. At u«F2«cu,gd ~in our notation,gd

has the sense of Mahan’s resonance width! the peak at the
Fermi level is due to a power-law or exponential edge re
nance. Atu«F2«cu.gd there is only a Mahan-like feature a
the Fermi level, whose contribution to the tunneling curre
in the absence of a two-dimensional continuum was inve
gated by Matveev and Larkin.11

3. Along with the scattering operatorT s
cc(k'k'

Hz), the
parameters whose behavior is determined by non-Fe
liquid singularities in the density of states in the sidewa
are tunneling widths. They determine the tunneling transp
ency in the band channel atu«F2«cu.gd .

In the case of tunneling via the 2D continuum with
one-dimensional spectrum near the Fermi level, the tun
ing widths have the form

Gn
c~p' ;«k

n!5(
q

^aqnuHtcucp'
&^cp'

uHtcuaqn&

5(
k

uTkp'

n u2d~«2«k
n!. ~26!

By expressingakL,R in Eq. ~26! in terms ofak , bk with the
help of Eq.~5!, we obtain a relation that will prove useful:

GL,R
c 5Ga

c
GL,R

c0

GL
c01GR

c0 , ~27!

whereGL,R
c0 are tunneling widths in the absence of intera

tion,
re

f

s,
in

e,
s.

f-
ve

-

t
i-

i-

r-

l-

-

(
n

G0n~«F!5(
n

uT0
n~«F!u2rn~«F!;g0 ,

and the arguments of all functions are the same as in
previous equation.

It is clear that the tunneling widthsGa
c(p' ;«) in Eqs.

~26! and ~27! can be written in the form

Ga
c~p' ;«F!5

1

p
uB~p'!u2 Im Scc~z2«c!, Rez5«F . ~28!

In the absence of edge resonances, we have for the
neling widths

Gc
a~«F!5G0c

a ~«F /G0c
a !a/(11a), G0c

a ;gd . ~29!

This expression~29! is different from a more familiar
one,11,14 in that the exponenta does not contain componen
ad associated with the orthogonality catastrophe. The rea
is that the tunneling widths are determined in the band ch
nel, but not for a localized impurity level.

In the presence of edge resonances, tunneling widths
cut off atg r , and in accordance with Eq.~28!, take the form

Gc
a~«F!'Am0

g0S «F

g r
D a

uB~«F!u4;g0S 2a

ac
D 1/2

uB~«F!u4. ~30!

Note that ‘‘exponential’’ quasi-single-particle resonances
ist at a,ac , whereas ‘‘power-law’’ multiparticle reso-
nances described by Eqs.~20!–~24! occur in the region

a

ac
@ S «F

g0
D uB~«F!u24. ~31!

Thus, Eq.~30! clearly shows how the character of the tu
neling, along with that of edge resonances, changes with
interaction amplitude. Let us fix for definiteness the impur
level depth atuB(«F)u;1.

Recall that g0 is an energy scale characterizing th
change inrc(«) within which Jc(z) has a logarithmic diver-
gence~16!. For this reason, in the absence of interactio
exponentially narrow edge resonances are formed in the
cess of scattering of evanescent states, whose densit
states isrc(«) defined by Eq.~4!, by electrons in the side
walls.

A similar situation occurs ata,ac , when the condition
Gc

a!g0 holds. This means that, in the case of weak scat
ing, resonances at the 2D band edge are still due to the s
tering of quasi-two-dimensional states from the region n
the band edge with a width much smaller thang0 . As a
result, the domain of exponentially narrow quasi-one-parti
resonances persists.

In the case of ‘‘strong’’ scattering ata@ac , the condi-
tion Gc

a@g0 is satisfied. This means that, in this case, n
only the states from the energy band much narrower thang0

participate in the scattering, but also the states from
‘‘tails’’ of function rc(«). As a result, the character of edg
resonances is radically different from that in the case of o
particle resonances.

The character of tunneling also changes with the im
rity level depth~at a fixed interaction amplitude!. From Eq.
~30! the following relations can be directly derived:
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Gc
a@g0 for 1@uBu@

g0

«F
F ln~«F /g0uBu3!

a G1/2

, ~32!

Gc
a!g0 for uBu!

g0

«F
F ln~«F /g0uBu3!

a G1/2

. ~33!

It follows from the above expressions thatGc
a(zr)

!uT0(zr)u. This condition means that the characteristic tu
neling times in the interacting system,t t

int;(Gc
a)21(zr), are

much longer than the characteristic scattering timestsc
int

;uT0(zr)u21, so the electron lifetime within the quantum
well is sufficient to form resonances due to the scatter
defined by the HamiltonianHt .

In this case, the formation of edge resonances is larg
controlled by the resonant scattering with amplitu
uSdcu2Gd(z). Recall that, as was shown for the singl
channel Kondo scattering,8 i.e., in the case of Fermi-liquid
excitations at the Fermi level, edge resonances are d
mined by the potential scattering.

One can see that, as in the case of the two-chan
Kondo scattering,5,6 in the problem under discussion, the a
ditional scattering of electrons from the region near the
band edge by electron–hole pairs at the Fermi level du
the tunnelingHt

a generates a Fermi-liquid resonance at
2D band edge in the quantum well. This resonance has
Fermi-liquid nature, since it corresponds to a simple pole
electron Green’s functions.

Without the tunnelingHtc , there is only a power-law
feature in the density of states~8! in the sidewalls and in the
tunneling width owing to Mahan’s non-Fermi-liquid res
nance at the Fermi level.

Thus, a crossover from the Fermi-liquid regime of tu
neling to the non-Fermi-liquid tunneling is possible when t
separation between the Fermi level and 2D band edge in
quantum well varies. The conditions of this transition a
identical to those for the existence of a solution to Eq.~17!.
In the case of Coulomb interaction, these conditions are
stringent than in the problem with the two-channel Kon
scattering. Indeed, solutions of Eq.~18! exist throughout the
region of the exponenta where the density of states is
power-law function of energy@see Eqs.~8! and~19!#, and at
all admissible positions of the deep level we haveuBu<1.

In the case of the two-channel Kondo scattering,5,6 edge
resonances exist only at interaction amplitudes in the col
tive pseudospin channel above a certain critical value. Mo
over, the condition determining the impurity level position
more restrictive, namely,uBu!g0 /«F .

4. TUNNELING TRANSPARENCY AND CURRENT–VOLTAGE
CHARACTERISTICS

1. The tunneling transparency and current are de
mined by the expressions

s~«F!52e2E dEd~E2«F! (
k' ,k'8

W~k' ,k'8 ;E!,

J52peE dE@ f L~E!2 f R~E!# (
k' ,k'8

W~k' ,k'8 ;E!, ~34!
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«FL2«FR5eV, whereV is the potential difference betwee
the sidewalls.

The probability of elastic tunneling can be expressed
terms of the scattering matrix:

W~k,«k
L ;k8,«k8

R!52puT ~k,«k
L ;k8,«k8

R!u2d~«k
L2«k8

R!,
~35!

where T 5HtGHt and G5(z2Ĥ)21 is the Green’s func-
tion, and theT -matrix describes tunneling of multiparticl
excitations from the Fermi level via both band and localiz
impurity states of the quantum well with due account of
elastic scattering processes in the well, which determine
form of the Green’s functionG. Assuming that the major
contribution to the tunneling amplitude is due to the mat
element containing the Green’s function̂cpuGucp8&
[Gcc(k' ,k'8 ;«k

L), we obtain an expression for the tunnelin
amplitude in the band channel:

T ~k,«k
L ;k8,«k8

R!5 (
pp8s

^akLsuHtucps&^cpsuGucp8s&

3^cp8suHtuak8Rs&

5ukvk8 (
pp8s

^aksuHtucps&^cpsuGucp8s&

3^cp8suHtuak8s&. ~36!

By substituting Eqs.~11! and~36! in the formula for the
tunneling probability, we find that the tunneling transparen
contains the non-Fermi-liquid and resonant contributio
s(«F)5sc(«F)1s r(«F). The non-Fermi-liquid contribution
s0(m) is fully determined by the tunneling width, i.e., non
Fermi-liquid singularities in the density of states in the sid
walls:

sc~«F!5
e2

4p
Gc

a~«F!rc~«F! ~37!

~the tunneling widthsG0L,0R
c in the absence of interaction ar

assumed to be equal!. The tunneling widthsGc
a(«F) are de-

termined by Eq.~29!. The non-Fermi-liquid contribution to
the transparency atu«F2«cu.gd dominates.

At u«F2«cu,gd , the prime contribution to the transpa
ency is due to the resonances, so the character of tunneli
Fermi-liquid.

The contribution of the edge resonances to the trans
ency is determined by the second term in the Green’s fu
tion Gs

cc(k' ,k'8 ;z) in Eq. ~11! and is given~at equal tunnel-
ing widths in the absence of interaction,G0L5G0R! by

s r
m~«F!5

e2

4p
Fm

Ga
c2~zr !

~«F2«m!21gm
2 @~«m2«c!

21gm
2 #I 2~zr !,

~38!

whereFm is a function of parameters, which is of the ord
of unity m5r 6 for a split resonance andm5r for an unsplit
resonance,
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I ~zr !5(
k'

uB~k'!u4uG0k'
~«F!u2

5
1

p
r̃0cuB~«c!u2H u«F2«cu21 for g0@u«F2«cu@g r 6,

p/2g r for g0@g r@u«F2«cu

~39!

for the split and unsplit resonance, respectively, and Rzr

5«F .
2. By substituting the expressions for the tunneling (Gc

a)
and resonant (g r) widths, we obtain the maximal contribu
tion of a single edge resonance to the transparency a« r

5«F :

s r
max~«F!5F1r

e2

4p S Ga
c

g r
D 2

[
e2

4p
S~«F!, ~40!

whereS(«F) is the enhancement factor given by the expr
sion

S~«F!5F1r S «F

g r
D 2aS g0

g r
D 2

uBu8;
2a

ac
S g0

g r
D 2

@1, ~41!

where F1r;1 and uBu;1. Provided that condition~19! is
satisfied, the widthsg r are exponential functions of the tun
neling parameters,7 otherwise they are determined by Eq
~20!–~22!. In either case,

s r
max~«F!@sc

max~«F!.

In the case of a split resonance, the enhancement fa
is larger than the value given by Eq.~41! by a factor
(sinw)21 @w is defined by Eq.~20!#.

In the absence of interaction, the contribution of exp
nentially narrow one-particle resonances at the 2D band e
yields the enhancement factor7

S0~«F!;~g0 /g r
(0)!2, ~42!

whereg r
(0) is the width of the one-particle resonance, whi

is an exponential function of the tunneling parameters.
Interestingly enough, this enhancement factor in

transparency is the greatest of those repor
previously.5,11,15

Equations~29!, ~40!, and ~41! determine the transpar
ency enhancement due to tunneling of electron–hole p
from the Fermi level via the two-dimensional continuum.
is clear that in all cases discussed above, the enhance
factor

S0~«F!@S~«F!@1. ~43!

The transparency enhancement factor due to the multipar
tunneling is much smaller than that due to one-particle t
neling because the multiparticle resonances described a
are wider than one-particle resonances, and this effec
more significant than the effect of the increase in the tunn
ing widths.

An important point is that, in a quantum structure with
two-dimensional continuum in its quantum well, the anom
lous transparency enhancement factorS(«F)@1 is caused, in
-

.

tor

-
ge

e
d
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ent

le
-
ve
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l-

-

addition to the small width of edge resonances, by their pr
imity to the 2D band edge, which yields the additional fac
I 2(zr).

Equations~29!, ~40!, and ~41! determine the transpar
ency enhancement in an elementary~microscopic! tunneling
event. The total contribution of impurities to the quantu
well transparency is known to bes im5cims r , wherecim is
the impurity concentration. As follows from the above e
pression,s im@s0 for the reasonable values of the impuri
concentration.

3. The foregoing tunneling mechanisms in a quantu
structure with an intrinsic two-dimensional continuum di
tate the changes in the current–voltage characteristic as
structure parameters are varied. Consider as examples
situations.

First, let us determine changes in tunneling spectra w
increasing interaction amplitude, i.e., exponenta. Let us fix
the Fermi level in the sidewalls in the position when
separation from the 2D band edge is smaller than Maha
resonance widthgd . In this case, as was shown above, the
are edge resonances determined by solving Eq.~18!.

As follows from Eq. ~19!, at small a,ac , the main
contribution to the transparency is due to the exponenti
narrow quasi-one-particle edge resonance.

When a@ac @Eq. ~23!#, the transparency enhanceme
factor is determined by the wider but split edge resona
described by Eq.~20!, whose characteristics are power-la
functions of the tunneling parameters. Thus, a crosso
from the regime of tunneling with the ‘‘exponentially high
quasiparticle transparency with an enhancement factor of
order ofS0(«F) in Eq. ~42! to the regime with a lower trans
parency with the enhancement factor approximately de
mined by Eq.~41! should occur as the interaction amplitud
increases. But in this case the transparency will most pr
ably have two peaks@compare Eqs.~21! and ~25!# that are
symmetric about the 2D band edge.

According to Eq.~34!, which yields the current, the reso
nant contribution to the transparency generates a broad
‘‘step’’ in the current–voltage characteristic aseV→eVth

5«F2«m<gd :

J52pgmsm
maxS tan21

e~V2Vth
m!

gm
1tan21

eVth
m

gm
D . ~44!

This change in the transparency corresponds to a modi
tion of theJ(V) curve: the step of height proportional to

Jr
max~«F!;e2g0H g0 /g r

(0) for a,ac ,

~2a/ac!~g0 /g r ! for ac,a<2ac1

~Fig. 1! is replaced by a two-step feature symmetrical ab
the 2D band edge~Fig. 2b!. The heights of the steps abov
and below the 2D band edge equalg0(2a/ac)(g0 /g r 6) and
2g0(2a/ac)(g0 /g r 6), respectively, the separation betwe
them is « r 12« r 2 @Eq. ~20!#, and their widths are propor
tional to g r 6.

The crossover is most sensitive to changes in the hei
~or widths! of the barriers in DBQW heterostructures.
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point of fact, the matrix elements of interaction in Eq.~6! are
proportional tog0

2 and are exponential functions of the ba
rier parameters.

Thus, by varying the barrier parameters at a fixed po
tion of the Fermi level, as described above, we obtain
crossover between the two Fermi-liquid tunneling regim
with different J(V) curves, whose overall shapes are sho
in Figs. 1 and 2b.

The second situation to be discussed is the change in
J(V) curve as the separation between the Fermi level in
sidewalls and 2D band edge varies. In this case, we fix
impurity level at the position determined by the conditi
B'1.

In this situation, the tunneling transparency andJ(V)
curve are determined by Mahan’s resonance at the Fe
level as long asu«F2«cu.gd . The transparency in this cas
is given by Eqs.~37! and ~29!. When the Fermi level and
band edge are so close thatu«F2«cu,gd , the transparency
and J(V) curve are determined by Fermi-liquid edge res
nances, and the transparency is given by Eqs.~40! and~41!,
which contain the specific ‘‘Fermi-liquid’’ factor (g0 /g r)

2

~compare with the expression forS0!.
Mahan’s feature at the Fermi level corresponds to a p

on aJ(V) curve atV→Vth with a section of negative differ
ential resistivity~Fig. 2a!. The current at the peakJc

max, to
order of magnitude, is

Jc
max;e2Gc

a ,

whereGc
a is given by Eq.~29!. At all admissible values of the

parameters, the height of Mahan’s peak on aJ(V) curve is
much smaller than the heights of steps in the resonant
neling current:Jr

max@Jc
max. Thus, the crossover from the non

Fermi-liquid and Fermi-liquid tunneling regimes correspon
to a transformation of a peak with a section of negative
sistivity to either a step atV→Vth or a two-step feature sym

FIG. 1. J(V) in the case of weak scattering:a,ac ~at fixed positions of the
Fermi level, u«F2«cu,gd , and of the impurity level!. The dashed line
represents the non-Fermi-liquid current.
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metric aboutV→Vth . The transition leads to anomalou
growth in the tunneling current, and it occurs at all intera
tion amplitudes.

Note also that atV.Vth there is a slow logarithmic
growth in J(V) owing to the intrinsic conductivity of the
structure with a two-dimensional continuum, which is pr
portional tog0rc(«).

5. CONCLUDING REMARKS

1. The results of the reported study indicate that t
mechanisms of tunneling in a quantum structure with an
trinsic two-dimensional continuum of electron states a
radically different from those of tunneling via a resona
level under the barrier.11 Let us discuss two essential diffe
ences.

First, there is a strong resonant tunneling in the c
when the Fermi level in the sidewalls is not resonant with
localized impurity level lying deep within the band gap
the doped layer.

Second, the edge resonances associated with new tu
ing channels are Fermi-liquid resonances, because they
described by simple poles in electron Green’s functions@Eqs.
~11! and ~12!#, instead of branch points, as in the case
Mahan’s singularity at the Fermi level@Eq. ~7!#. For this
reason, the existence conditions for edge resonances
those of instability of the non-Fermi-liquid state against t
interband impurity scattering, which takes place in the p
cess of tunneling and is described by the termHtc in Hamil-
tonian ~2!.

We can also summarize the physical differences betw
instability conditions for the non-Fermi-liquid state in th
problem with the Coulomb interaction studied in this pap
and in the problem with the two-channel Kondo scattering5,6

As noted above, the stability condition common to the
two cases is the existence of the potential,Htc , and resonant,
Htd , scattering due to tunneling. Nonetheless, the suffici
conditions for the existence of edge Fermi-liquid resonanc
hence the instability of the non-Fermi-liquid state, are det
mined by ‘‘intrinsic’’ properties of the latter and differ con
siderably in the cases of the Coulomb interaction and tw
channel Kondo scattering.

In the two-channel problem5,6 the existence of edge reso
nances and instability are possible only when the non-Fer
liquid peak at the Fermi level is widened sufficiently b
screening in the pseudospin channel. In other words, in
bility can occur only as a result of the orthogonality cata
trophe for collective fermion variables describing excitatio
in the two-channel problem.
i
a

e
d

FIG. 2. J(V) at different separations between the Ferm
level in the sidewalls and the edge of the 2D band:!
u«F2«cu.gd ; b! u«F2«cu,gd , a@ac . The position
of the impurity level is fixed. For comparison, th
dashed line shows the Fermi-liquid contribution plotte
in Fig. 1a.
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In the Coulomb problem with tunneling in the ban
channel and a deep impurity level, the orthogonality cat
trophe has little effect on the existence of edge resonan
@Eq. ~18!#. They exist owing to Mahan’s peak at the Ferm
level, i.e., sufficiently strong electron scattering by the p
tential due to recharging of impurities in the process of tu
neling.

In conclusion, we emphasize that the existence con
tions for the non-Fermi-liquid state in the case of the Co
lomb interaction are significantly weaker than in the case
two-channel Condo scattering.6 For this reason, it should b
easier to detect this transition experimentally in systems w
the Coulomb interaction.
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mov, who read this paper in manuscript form and offer
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sian Fund for Fundamental Research~Projects 98-02-16729
and 98-02-16730! and the INTAS–RFBR fund~Grant No.
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Jahn–Teller effect on Sm 31 ions in SmB 6
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Electron spin resonance on samarium ions with stabilized valence Sm31 is investigated in the
fluctuating-valence semiconductor SmB6, both pure and doped with the rare-earth ions
Eu21, Er31, and Gd31. The dynamic and static Jahn–Teller effects have been observed for the
first time on rare-earth ions. The relation between the Jahn–Teller effect in a fluctuating-
valence semiconductor and the excitonic nature of the ground state of such a semiconductor is
discussed. ©1999 American Institute of Physics.@S1063-7761~99!02405-1#
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1. INTRODUCTION

Samarium hexaboride SmB6 is a classical object in the
physics of fluctuating-valence materials.1 The average va-
lence of the samarium ions in SmB6 is 12.6, but the valence
actually fluctuates with frequency 101321014 Hz between the
states Sm21 and Sm31. The crystal structure of SmB6 is
similar to that of CsCl. It consists of two interpenetratin
simple cubic lattices consisting of samarium atoms and
ron octahedra~Fig. 1!.

Materials with fluctuating valence are of great intere
because this state is spatially homogeneous and at low
peratures it exhibits features of a coherent state, i.e., a m
roscopically quantum state. Electron spin resonance~ESR!
investigation of SmB6 has been very effective. In Ref. 2
was shown that the ground state of SmB6 exhibits character-
istics of an excitonic insulator. In Ref. 3 the unusual config
ration 4f 75d1 of the gadolinium ion was observed. This co
figuration arises because an additional electron is local
on gadolinium.

It is well known that the Jahn–Teller effect is ordinari
not observed on rare-earth ions, if it is investigated by
ESR method. According to the conventional point of vie
the strong spin-orbit coupling typical of rare-earth ions s
bilizes the high-symmetry state and prevents the appear
of the Jahn–Teller effect.4 At the same time, a dynami
Jahn–Teller effect has recently been observed on Er31 and
Gd31 ions in SmB6.3,5,6 In the present paper we report th
observation of the static and dynamic Jahn–Teller effects
Sm31 ions in SmB6. The preliminary results of this work
have been reported at the LT-21 conference7 and partially
published in Ref. 8.

2. EXPERIMENTAL RESULTS

The ESR investigations were performed on samari
hexaboride single crystals, both pure and doped with ra
earth ions, namely, europium Eu21 ~with concentrationc
.0.01–0.04 at. %!, gadolinium Gd31 (c.0.05 at. %!, and
erbium Er31 (c.0.05 at. %!.
1011063-7761/99/88(5)/7/$15.00
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Samarium purified by fractional sublimination was us
to prepare the samples. Spectral analysis showed tha
total impurity content of rare-earth elements in samarium
less than 1024 at. %. The crystals were grown by the flu
solution method and consisted of 23130.1 mm3 plates and
330.230.2 mm3 needles.

The measurements were performed on a Varian
diospectrometer at 9.3 MHz in the temperature range 1.6–
K. Electron spin resonance spectra from the rare-earth d
ant were observed on all samarium hexaboride samples.
ESR spectrum on the Eu21 ions is described by a spin
Hamiltonian with cubic symmetry and is similar to that give
in Refs. 9 and 10. The ESR spectra on the trivalent ions E31

and Gd31 had the same overall features as those observe
Refs. 3 and 5, where they were described by a dyna
Jahn–Teller effect. A weak, narrow~line width DH'5 Oe!
signal with g'2 is also seen in all samples, possibly fro
disordered boron with a dangling bond. Signals from defe
as described in Refs. 11 and 12, were not observed in an
our single crystals.

In all samples, rare-earth-doped and pure, ESR sig
with g factor characteristic for Sm31 ions were observed in
high fields 8–16 kOe. Then;101321014 Hz ~much higher
than the frequency of the ESR spectrometer, 1010 Hz! fluc-
tuations of the samarium ions between the Sm31 and Sm21

states make it impossible to observe directly the ESR sig
on these ions. However, it was established a long time
that impurities and defects in SmB6 stabilize the valence o
some samarium ions in the paramagnetic state Sm31.13

Therefore doping of SmB6 with rare-earth impurities stabi
lized 0.04–0.1 at. % of the samarium ions in the Sm31 state.
In pure SmB6 vacancies and defects probably play a sta
lizing role.

The typical ESR spectrum for the Sm31 ion in pure and
Eu21-doped SmB6 samples atu545° (u is the angle be-
tween the magnetic field and the@100# axis in the ~100!
plane! is displayed in Fig. 2. Only the ESR lines that are n
marked by arrows in Fig. 2 are observed for samples do
9 © 1999 American Institute of Physics
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with the trivalent ions Er31 and Gd31. Depending on the
angle u, three to five ESR lines were observed simul
neously. Figure 3 shows the positions of the resonance l
versus angle at 1.6 K for all experimental samples.

The experimental data can be described theoreticall
terms of two types of spectra: one corresponding to a cu
center~quartet! and the other to an anisotropic doublet~cubic
symmetry is preserved by the presence of three types of
doublets with symmetry axes along thex, y, andz axes; the
doubletsG6x , G6y , andG6z are shown in Fig. 3 by the line
E, F, andG). The parameters of these spectra were found
be P50.465 andQ520.1 for the quartet andg i 50.42
60.02 andg'50.7960.02 for the doublet. Note that th
observed values ofP andQ are close to the theoretical value
for the spin-5/2 Sm31 ion, Pth50.525 andQth50.144, i.e.,
the renormalization of these parameters that is ordinarily
tributed to the closeness of the 7/2 level to the 5/2 grou
state is not too large. For the quartet with effective spin
the theory predicts four possible transitions. Atu50° these
are23/2→3/2 ~the lineB in Fig. 3!, 1/2→3/2 and23/2→
21/2 ~the lineC), 21/2→3/2 and23/2→1/2 ~the lineD),
and21/2→1/2 ~the lineA). However, only two transitions
are observed experimentally:23/2→3/2 ~the line B) and
21/2→1/2 ~the lineA) in the angle rangeu530260°. The
maximum field of the spectrometer was 16 kOe, so that
transition21/2→1/2 is not seen at other angles and the tr

FIG. 1. Crystal structure of samarium hexaboride SmB6.

FIG. 2. Examples of traces of ESR signals on Sm31 ions in SmB6 at two
temperatures,T53.8 K ~curve1! andT51.6 K ~curve2!. The arrows mark
lines belonging to the quartetG8; all other lines correspond to the double
G6.
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sition 21/2→3/2 ~the line D) is also experimentally inac
cessible. The transition 1/2→3/2 ~the lineC) is not observed
at u50° andu590° because the intensity is too low an
noise is present atH;12 kOe; at all other angles it is com
pletely or partially forbidden. It is evident from Fig. 3 tha
the proposed theoretical values of the parameters provid
good description of the angular dependence of the posit
of the five observed ESR lines. The values of theg factors
were identical for all samples, irrespective of whether or n
the sample was doped, and they did not depend on the
lence of the dopant.

The intensities of the strongest lines of the doublets a
quartets were estimated by double integration. Since
method for estimating the line intensities is relatively cru
and the intensity itself is low in many cases because of
low values of theg factors, the error in the signal amplitud
is much higher than the error in the line positions, i.e., thg
factors. Nonetheless it can be asserted that the ratios o
line intensities also agree with experiment~Fig. 4!.

Subsequent analysis of the results showed that the d
blet state is not an independent center, but rather origin
from splitting of the quartetG8 by the axial~tetragonal! field.
In this case, as is well known,14 the quartetG8 splits into two
doublets, theg factors of these doublets being related to t
parametersP andQ of the quartet. For one of these states w
obtain g i 512Q520.2 and g'5(1/2)u3P2Qu50.747,
which is very close to the experimentally observedg factors
~an ESR experiment gives the absolute value of theg factor!.
~We note that in Ref. 15 it was indicated that partial ren

FIG. 3. Angular dependence of the positions of resonance lines of the S31

ion with the magnetic field rotating in the~100! plane atT51.6 K. The
experimental positions of the lines are shown by filled squares for p
SmB6, filled circles for Eu21-doped SmB6, triangles and open circles fo
Gd31 and Er31-doped SmB6. The linesA, B, C, andD show the theoreti-
cally computed positions of the lines of the quartetG8; the linesE, F, andG
show the theoretically computed positions of the lines for the doubletsG6x ,
G6y , andG6z .
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malization of theg factor occurs for such splitting,g i being
renormalized more strongly thang' .)

Investigation of the temperature dependence of the
tensities of the resonance lines for pure and Eu21-doped
SmB6 samples~only the strongest lines are used! reveals a
relative decrease in the number of doublets and a rela
increase in the number of quartets~the corresponding dat
are shown in Fig. 5!. Thus, in these samples some ions are
a field with tetragonal symmetry, described by the doub
G6x , G6y , andG6z , and the rest of the ions are in a field wi
cubic symmetry~the quartetG8!. As temperature increase
the number of centers described by the quartetG8 increases
and the number of tetragonal centers decreases. In S6

containing the trivalent ions Er31 and Gd31 the Sm31 ions
are located only in a tetragonal field.

FIG. 4. Angular dependence of the intensity of ESR resonance line
Sm31 ions with the magnetic field rotating in the~100! plane atT51.6 K.
The intensities of the experimentally observed ESR signals are denote
follows: filled squares for pure SmB6, filled and open circles for
Eu21-doped SmB6 for, respectively, the quartetG8 ~the linesA andB) and
the doubletG6 ~the linesE and F), and triangles for Gd31-doped SmB6.
Solid linesA, B, C, andD — theoretically computed intensities of ESR line
for the quartetG8, dashed linesE andF — theoretically computed intensi
ties of the ESR lines for the doubletG6.

FIG. 5. Temperature dependence of the ESR signal intensity
Eu21-doped SmB6 ~curve 1! and for pure SmB6 ~curve 2!. The intensity
ratios are normalized to the theoretical value of the ratio of the transi
probabilities, so that the segments on the ordinate directly give the rat
the static ratesN4 /N2.
-
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3. DISCUSSION

The formal description of the experimental results
based on the coexistence of a center with cubic symmetryG8

and centers with tetragonal symmetry~doubletG6), obtained
from the splitting of a cubic center by a tetragonal field. T
ground state is tetragonally distorted. This description, ho
ever, does not answer the question of the mechanism th
some cases gives rise to the splitting of the states while
others it makes it possible to observe an unsplit quartet a

The splitting of the quartet state by a tetragonal fie
could be caused by breaking of local symmetry~for example,
by the presence of an impurity or a defect near an ion w
stabilized valence! as well as by the Jahn–Teller effect. W
shall consider both possibilities.

1. The average valence of the fluctuating samarium i
is 12.6. In accordance with the charge-compensat
principle,13 there are 2.6/0.456.5~i.e., 6–7! Sm31 ions per
vacancy in the samarium sublattice. Europium~Eu21) dop-
ing of the SmB6 crystal gives 0.6/0.451.5 ~1–2! Sm31 ions
per Eu ion. Similarly, introducing the trivalent ions Er31 and
Gd31 should shift some fluctuating-valence ions into t
Sm21 state. In reality, introducing trivalent ions also resu
in the production of lattice defects, so that erbium or gad
linium introduced into the sample increases rather than
creases the intensity of the ESR signal on the Sm31 ions.
The Sm31 ions ~6–7 centers! compensating the vacanc
charge can occupy positions both close to and far away f
the vacancy. However, if the Sm31 ions are located next to a
vacancy, only some of the possible configurations will po
sess tetragonal symmetry; all other configurations of
Sm31 ions in neighboring sites will have a lower symmetr
The absence of centers with low symmetry in the experim
shows that the Sm31 ions are not clustered near vacanci
whose charge they compensate.

On the other hand, the ESR of Eu21,9,10 Er31,5 and
Gd31 ions10 exhibits exceptionally symmetric characteri
tics, indicating cubic symmetry of the environment arou
an ion, i.e., the Sm31 ions compensating these charges a
also located far from them.

Hence it follows that Sm31 ions, as a rule, are locate
far from defects and impurities, i.e., in the symmetric en
ronment of Sm31 ions with fluctuating valence~with average
valence12.6), and the observation of the ground state
Sm31 in a tetragonal field can be explained by the Jah
Teller effect.

2. As temperature increases from 1.6 to 4.2 K, the re
tive number of quartetsG8 increases and correspondingly th
number of doublet states of Sm31 ions decreases. This resu
is completely natural for the Jahn–Teller effect and does
have a simple explanation in the case of local breaking
symmetry. In the latter case a temperature increase sh
result only in the observation of one more doublet state. N
that the experimental data can also be explained by assum
that the tetragonal field which splits the state of a quarte
due to the presence of a defect near an Sm31 ion, and ther-
mal excitation can transfer an Sm31 ion into a symmetric
environment. However, this explanation contradicts the ar
ments showned above, according to which it is unlikely th
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an Sm31 ion will be located next to a defect and, moreov
it makes it impossible to interpret the ESR of trivalent ions
SmB6 from a unified standpoint.

3. If the tetragonal splitting of the state of a trivale
rare-earth ion in the cubic lattice of SmB6 had been due to
defects, then such splitting should have been observed in
isomorphic compounds with integral valence LaB6, BaB6,
YbB6, and CaB6, which also contain defects, vacancies, a
impurities. However, in contrast to SmB6, the standard ESR
signal for a rare-earth ion in a cubic field is observed in th
crystals.5

4. In a recently published work on a Raman scatter
investigation of SmB6,16 splitting of the state of an Sm31 ion
was observed and attributed to the dynamic Jahn–Telle
fect.

The theory of the Jahn–Teller effect on Er31 ions in
samarium hexaboride can be used to describe the experi
tal results.5,6 This theory is not significantly different from
the theory of the interaction of anE state with lattice vibra-
tions transforming according to the representationeg , de-
scribed in the book by Abragam and Bleaney.14

In the SmB6 lattice the Sm31 ion is in an octahedra
environment of fluctuating Sm ions@the boron atoms form a
rigid framework, tied together by homopolar bonds, and
not participate in the Jahn–Teller effect~Fig. 1!# ~see, how-
ever, Refs. 11 and 12 concerning the influence of defect
the boron sublattice on the ESR of samarium ions in vari
charge states!. The vibrations of an octahedron which tran
form according to theG3 representation are well known an
are described in, for example, Ref. 17. The contribution
the interaction with these vibrations to the Hamiltonian
the quartetG8 can be constructed by the method of invaria
and has the form

Ĥ5A~Q2Ŝ21Q3Ŝ3!1B@~Q3
22Q2

2!Ŝ322Q2Q3Ŝ2#,
~1!

where

Ŝ25U1 0 0 0

0 21 0 0

0 0 21 0

0 0 0 1

U , Ŝ35U0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

U . ~2!
,
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The part of the Hamiltonian that is linear in the vibration
coordinatesQ2 and Q3 can be diagonalized by a unitar
transformation

Û5U 0 cosF /2 0 2sinF/2

sinF/2 0 2cosF/2 0

0 sinF/2 0 cosF/2

2cosF/2 0 2sinF/2 0

U .

~3!

Then, introducing as usual the polar coordinatesr andF

Q25r sinF, Q35r cosF, ~4!

we obtain the energies of an ion in the elastic field of t
lattice vibrations:

EL5
1

2
v0

2r26Ar. ~5!

The energy surfaces in the spaceEL , r, andF will have the
familiar sombrero form. The terms;r2, r3 containing an
anisotropic contribution to the interaction energy of an i
with lattice vibrations~the factors sinF and cosF) will give
rise to energy minima in the (r,F) configuration space tha
in ordinary space correspond to deformations of octahedr
Sm ions along one of the principal cubic axes. Thus, a
tragonal field6Ar develops which splits the quartetG8 into
two doublets; the total cubic symmetry of the problem
preserved because the doublets are equally likely to be o
pied in a tetragonal field directed along thex, y, andz axes.
This is the static Jahn–Teller effect.

The degeneracy of ion states corresponding to differ
energy minima in configuration space is lifted by tunneli
transitions between these states: if tunneling transitions
sufficiently effective, then the six-fold degenerate vibron
state splits into a vibronic quartetG8 ~generally speaking,
with renormalized parameters different from the initial p
rameters! and a vibronic doubletG6 ~dynamic Jahn–Teller
effect!.

If the tunneling splittingD is large~compared with the
temperature! and the ground state is a quartet, then t
Hamiltonian of the vibronic quartet can be written in th
form
H5U2D2XHz1
YZ

4
Hz 0 2

X

2
H22

YZ

8
H2

A3 YZ

8
H1

0 2D2XHz2
YZ

4
Hz

A3 YZ

8
H1 2

X

2
H21

YZ

8
H2

2
X

2
H12

YZ

8
H1

A3 YZ

8
H2 2D1

X

2
Hz2

YZ

4
Hz 0

A3 YZ

8
H2 2

X

2
H11

YZ

8
H1 0 2D1

X

2
Hz1

YZ

4
Hz

U , ~6!
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whereX5P2Q, Y5P1Q, Z5c114c2, and the constants
c1 andc2 describe the matrix elements

c15^a0ucosFua0&, c25^a0ucosFua1& ~7!

between the statesua0& and ua1& corresponding to differen
minima in the (r,F) space.~Thus, the setc151 and c2

50 corresponds to the static Jahn–Teller effect; the va
c150.7 andc250.08 were obtained for the dynamic Jahn
Teller effect on Er31 ions.5! If the splittingD is large and the
quartet–doublet interaction can be neglected, then on
combination of the numbersc1 and c2, specifically,c5(c1

14c2), appears in the theory, and the Hamiltonian itself c
be represented in the standard form for a quartet by introd
ing the parameters

P̄5
1

2
~P2Q!1

1

4
~P1Q!c,

Q̄52
1

2
~P2Q!1

1

4
~P1Q!c. ~8!

~We note that a vibronic doublet is isotropic: its Zeem
splitting does not depend on the direction of the magn
field H with respect to the crystal axes.!

Comparing with experiment shows that in order for t
parameters of a vibronic quartet to describe the experim
they must be the same as the parameters of the initial qu
~in the absence of a Jahn–Teller effect!, i.e., c52.

Thus, the idea of the appearance of a Jahn–Teller ef
in SmB6 makes it possible to describe the experimental
sults satisfactorily. Assuming that the transition of doubl
into quartets is associated with a transition from the static
the dynamic Jahn–Teller effect, we shall estimate the sp
ting EJT of the quartet and doublet states using the form
for the intensity ratio of the corresponding ESR lines:

I 4

I 2
5

N4w4t4 exp~2EJT /kT!

N2w2t2
, ~9!

whereN2 and N4 are the static weights of the doublet an
quartet states,w2 andw4 are transition probabilities, andt2

and t4 are the spin-relaxation times determining the li
width. For a rough estimate we can sett2't4 and the ratio
w4 /w2 can be taken from the theory. Then we obtainEJT

'2.8 K andN4 /N2'3.5 for the pure sample andEJT'1.8
K andN4 /N2'8.5 for a europium-doped sample~see data in
Fig. 5!. To within the accuracy with which we can estima
in practice the desired quantities for large resonance l
widths and low signal amplitudes, they are close for the t
samples, which once again confirms that the Jahn–Telle
fect is responsible for the observed phenomena: for the
where local symmetry is broken, there should not be a
special correlation between the results obtained for th
quantities. The results obtained are somewhat more accu
than the data presented in our brief report in Ref. 8. T
energyEJT characterizes in order of magnitude the barr
separating the vibronic states responsible for the defor
tions of the octahedral environment of an Sm31 ion along
different cubic axes.

The ratio of the static weights of the quartet and doub
states should be three according to the theory, since t
s
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distorted states correspond to one symmetric state. Ta
account of the large width of the resonance lines, the sm
amplitude of the signals, and the rough approximation m
in finding the characteristics of the Jahn–Teller effect, it c
be concluded that our estimate is close to the theory.

Thus, the observation of only one type of center, wh
at low temperatures is in a doublet state and at high temp
tures passes into a quartet state, in the ESR spectrum pr
that, for the first time for rare-earth ions, both the static a
dynamic Jahn–Teller effects were observed on Sm31 centers
in the compound SmB6.

Although now there is no doubt that a dynamic Jah
Teller effect can be observed on trivalent rare-earth ions
an SmB6 lattice, the interpretation of this effect is different i
different models: Sturm, Elschner, and Hoeck5 consider the
standard mechanism involving lattice vibrations, where
Weber, Sigmund, and Wagner18 have proposed a new ‘‘elec
tronic’’ mechanism. In Ref. 18 the interaction of an Er31 ion
with the electronic excitations of neighboring Sm ion
caused by fluctuations of the valence on these ions, is c
sidered. Specifically~for the ions of an octahedron surroun
ing an Er31 ion!, collective wavefunctions withG1(x0) and
G3(x1 andx2) symmetries, describing these excitations, a
introduced.

However, the static Jahn–Teller effect observed for
Sm31 ion cannot be obtained directly from the Hamiltonia
of Ref. 18. The reasons for this are, apparently, that We
Sigmund, and Wagner studied electronic excitations of
system, i.e., fermions, which unlike excitons cannot be
duced to the influence of a classical field~they are created
and vanish in pairs, as a result of which the Hamiltonian
Ref. 18 is bilinear in the operators creating and annihilat
electronic excitations!. Nevertheless, for certain approxima
tions the Weber–Sigmund–Wagner Hamiltonian can be
into a form similar to the Hamiltonian of the standard Jah
Teller effect problem. If the electronic degrees of freedo
are considered to be fast and averaging over them is
formed in the spirit of the adiabatic approximation, replaci
the creation and annihilation operators by occupation nu
bers t ik , then dipole momentsP25t222t11 and P15t12

1t21 of the electronic clouds can be introduced, as is done
the theory of two-level systems. Such dipole moments can
treated as classical fields acting on an ion in an octahe
environment. Correspondingly, the termŜ2P21Ŝ3P3, simi-
lar to the interaction of an ion with lattice vibrations withG3

symmetry, can be distinguished in the Hamiltonian of R
18. Evidently, just as for lattice vibrations, such an intera
tion will give rise to a static Jahn–Teller effect, and terms
a higher order inP2 andP3 ~which are not written out in the
Weber–Sigmund–Wagner Hamiltonian! will have to be in-
troduced in order to localize ions at the energy minima
(r,F) space. In such an approach the appearance of a
namic Jahn–Teller effect in the model of Ref. 18 is due
breakdown of the conditions of adiabaticity.

Averaging over the fast~electronic! degrees of freedom
therefore actually makes the influence of lattice vibrations
an ion indistinguishable from the influence of vibrations
electronic clouds associated with fluctuations of the vale
of Sm31 ions. As shown in Ref. 19, the electron–phon
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interaction plays an important role in the fluctuating-valen
theory, and fast transitions of an ion from a13 state into a
12 state strongly influence lattice stiffness and thus the
quency of lattice vibrations. For this reason the Jahn–Te
effect in SmB6 probably arises as a result of the total effe
of both factors. We note~as even Weber, Sigmund, an
Wagner have emphasized! that in LaB6, CeB6, and YbB6,
where the valence of the rare-earth ions is stable, the Ja
Teller effect is not observed, but unlike Weber, Sigmun
and Wagner we assume that this does not preclude the
dinary’’ mechanism of the Jahn–Teller effect in SmB6 but
rather indicates that the two mechanisms are closely rela
Actually, the electronic states of an Sm31 ion interact not
with pure phonon modes but rather with lattice vibratio
renormalized by the coupling with valence fluctuations~see,
for example, Ref. 19; experimentally mixed modes were
served in Refs. 20 and 21!. For such mixed modes th
method of invariants can be used to construct the interac
Hamiltonian, as is done in Refs. 5 and 6, but the dispers
law for these modes and the interaction constants will
different from the case of an interaction with purely vibr
tional modes.

In Ref. 16, where Raman scattering in SmB6 was inves-
tigated, bound electronic states with energies in the band
of this semiconductor were observed. Analysis of these
sults showed that on account of the magnetoelastic inte
tion of the ground-state quartetG8 with a quasilocal vibra-
tional modet2g the dynamic Jahn–Teller effect on Sm31

ions is a possible explanation of the origin of this series
bound states. This explanation agrees with our results, w
are interpreted above in the representation of static and
namic Jahn–Teller effects on Sm31 ions. In our case, how
ever, we took account of the interaction of aG8 quartet with
the vibrational modeeg . It should be noted that the symme
try properties of the quartet state allow for the state to in
act with both modes, and our results could also be explai
by taking account of the modet2g instead ofeg . However,
we chose a simpler model, which satisfactorily describes
results and was used successfully to describe ESR on E31

ions.
In summary, the ESR of trivalent ions~Er31, Gd31,

Sm31) in SmB6 can be described from a unified standpo
by considering the Jahn–Teller effect. There is an interes
qualitative difference between the behavior of the Jah
Teller effect of these trivalent ions. While only a dynam
Jahn–Teller effect is observed for the Er31 and Gd31 ions,
both the dynamic and the static Jahn–Teller effects can
observed for Sm31 ions in SmB6. This can be described
phenomenologically by a change in the constantA in Eq. ~5!.
On a microscopic level this could be due to stabilization
the static Jahn–Teller effect by chaotic lattice deformatio
~see Ref. 14! in the case of the Sm31 ion.

Although the average valence of the fluctuating Sm
in SmB6 is 12.6, i.e., closer to the valence of Er31 and
Gd31 ions than to the divalent Eu21 ion, it is the embedding
of erbium ions~and the appearance of Sm31 ions! that dis-
rupts the state of the lattice more than the larger Eu21 ions.
However, the average radius of an ion with a fluctuat
valence is apparently not a simple arithmetic mean of
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radii of Sm21 and Sm31 ions. As shown in the excitonic
model of a semiconductor with fluctuating valence,22 a nor-
mal Sm ion maintains an electron in the nearest coordina
sphere, even when the electron escapes from thef shell, i.e.,
when the samarium ion formally has a13 valence. Actually,
we are dealing with a small-radius exciton. The radius of
exciton should be appreciably greater than that of a free
with valence13 and can be close to the radius of an i
with valence12. This explanation helps to explain the te
dency of ions with valence13 to break the local lattice
symmetry ~the Jahn–Teller effect!, while the Eu21 ion
makes it possible for the cubic symmetry of the environm
~i.e., the unperturbed state! to remain. Apparently, it is the
stronger deformation of the crystal lattice by trivalent ions
SmB6 that stabilizes the static Jahn–Teller effect and is
sponsible for the observation of only tetragonally split sta
of the Sm31 ion in SmB6 doped with Er31 and Gd31.

In summary, our experimental results taken together
dicate that the magnetic moments of the Sm31 ions in SmB6

interact with mixed electron–phonon vibrational modes a
attests to an exciton–polaron nature of the ground state
semiconductor with fluctuating valence.

4. CONCLUSIONS

Electron spin resonance on samarium ions with sta
lized valence Sm31 was investigated in the semiconduct
SmB6 with fluctuating valence. The measurements were p
formed on single crystals of both pure SmB6 and SmB6
doped with rare-earth ions with different valence: Eu21,
Er31, and Gd31. The parameters of the spin Hamiltonia
were obtained and the splittingEJT between the quartet an
doublet states in SmB6 was estimated. It was established th
all observed facts taken together can be explained by
existence of the dynamic and static Jahn–Teller effects
this compound. In addition, as far as we know, this is the fi
observation of a static Jahn–Teller effect on rare-earth io
It was shown that the observation of the Jahn–Teller eff
in a fluctuating-valence compound could be due to
excitonic–polaron nature of the ground state of such a se
conductor.
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Yu. E. Lozovik* ) and A. V. Filinov†)

Institute of Spectroscopy, Russian Academy of Sciences, 142092 Troitsk, Moscow Region, Russia
~Submitted 6 November 1998!
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The transmission of wave packets through barriers by tunneling is studied in detail by the
method of quantum molecular dynamics. The distribution of the arrival times of a tunneling packet
in front of and behind a barrier and the momentum distribution function of the packet are
calculated. The average position and average momentum of the packet and their spread are
investigated. It is found that below the barrier a part of the packet is reflected, and a
Gaussian barrier increases the average momentum of the transmitted packet and its spread in
momentum space. ©1999 American Institute of Physics.@S1063-7761~99!02505-6#
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1. INTRODUCTION

The study of tunneling in nanostructures has acquired
important role in the last few years in connection with a
vances in nanoelectronics. The problem of tunneling of w
packets through a potential barrier arises in many cases
example, in the study of the action of femtosecond lig
pulses on coupled wells. This problem is also important
cause of possible applications of scanning tunneling mic
scopes irradiated with femtosecond pulses for studies
nanostructures with high spatial and temporal resolut
simultaneously.1 Other interesting questions are the tunn
ing time in the ionization of a hydrogen atom by ultrash
laser pulses and the time for tunneling induced by the ac
of a laser pulse on low-lying nuclear energy levels. In t
present paper we investigate the no less interesting que
of the tunneling time in nanostructures. The tunneling time
of practical interest in this case because it permits the
sponse time of semiconductor components to be estima
In this connection we shall study the following problem: L
a laser pulse produce a wave packet of an excited elec
near a tunneling barrier. The question is: When will the tu
neling portion of the packet appear behind the barrier?
arrival of the wave packet can be detected by studying lo
variations of the optical properties using ultrashort pro
pulses.

It is interesting that a number of effects which are abs
in the time-independent case are observed when a pa
passes through a tunneling barrier. The tunneling time o
packet is determined in general not by the reciprocal of
probability of time-independent tunneling, but rather is
lated to complicated processes—the change in the shape
behavior of the packet inside the barrier. Moreover,
transmission time through a barrier is not a unique funct
of the measured quantities, i.e., the type of experiment.

The investigation of the question of the residence time
a tunneling particle below a barrier started long ago,2–4 and
many theoretical and experimental methods for measu
the tunneling time have been proposed. For example, t
exist approaches where the peak of the packet or the ave
position ~the centroid! is chosen as the observed quant
1021063-7761/99/88(5)/10/$15.00
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while the reflection or transmission time is determined
their evolution. However, it has been shown in Refs. 5 an
and subsequent works that a wave-packet peak incident
potential barrier is not transformed into the peak of the tra
mitted wave. In Ref. 7 a case is examined where the hig
energy components reached the barrier before the other c
ponents because of dispersion of the wave packet
momentum space. Since the tunneling probability increa
with energy, these components made the main contribu
to the transmitted part of the packet. The initial paramet
could be chosen so that the transmitted part of the packet
the barrier long before the arrival of the main peak, chosen
the observed quantity. This example demonstrates the br
down of the causality principle, which is the basis of th
method, and therefore limits the applicability of the metho
Moreover, it is difficult to conceive of an experiment
method for measuring the arrival time of a packet accord
to its peak or centroid.

There also exists a class of approaches that employ
ensemble of dynamical trajectories to find the tunneling tim
These dynamical trajectories arise as a necessary appa
of the description in the Feynman and Bohm interpretatio
of quantum mechanics. When Feynman trajectories w
used,8 the transmission time through a barrier was found a
path integral over all possible trajectories that start from
prescribed point to the left of the barrier and arrive at
certain time at a point located to the right of the barrier. T
integrated function in the path integral contained the prod
of a classical residence time of a trajectory inside the bar
and a weight factor exp$iS(x(t8))/\#, whereS(x(t8)) is the
action related to the trajectoryx(t8) under consideration. The
computed times possess real and imaginary parts becau
the multiplication by a complex weighting factor, and th
question of how these times should be associated with
physically observable quantities, which are always re
arose. To explain the complex times, which arise in ot
methods also~for example, in the method of physical clock
~see below!!, Sokolovski and Connor9 examined so-called
direct and indirect measurements. In indirect measureme
such as the method considered here, the quantities ca
complex.
6 © 1999 American Institute of Physics
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Approaches employing physical clocks have found w
application. Physical clocks are various additional degree
freedom in the system that allow the residence time o
particle to be determined in a given region. Three types
clocks have been investigated in theoretical works. Baz’
Rybachenko10,11 used spin precession in a weak unifor
magnetic field inside a barrier. At first spin precession in
single plane was considered. Then Buttiker and Landau12

extended the analysis to three dimensions. Over the tun
ing time a spin acquires a component in the direction
motion and parallel to the magnetic field. It is obvious th
the intensities of the detected components with spin polar
tion in these two directions will be proportional to the re
dence time of the particle in the region with the magne
field, i.e., in the region of the barrier. It was found that for
square barrier the tunneling times found in this manner
identical to the real and imaginary parts of the complex t
neling time introduced via Feynman path integrals.8 The ex-
tension of this method to the case of an arbitrary poten
barrier was made in Ref. 13. Buttiker and Landauer14 con-
sidered as physical clocks an oscillating barrier in which
amplitude of the oscillations of the temporal component w
much smaller than the barrier height. At low frequenc
particles see an effective static barrier, since the transmis
time through the barrier is much shorter than the period
the oscillations of the temporal component of the barrier.
the frequency increases, the delayed particles or wave-pa
components see a slightly modified potential barrier. Fina
for some frequencies one or several periods of the osc
tions influence the tunneling particles. The frequency
which a substantial difference from the adiabatic case co
sponding to a time-independent barrier appears will be de
mined by the reciprocal of the interaction time with the b
rier or the transmission time through the barrier. Martin a
Landauer15 chose as physical clocks the oscillating amp
tude of the incident wave. For this, a wave function cons
ing of a superposition of two plane waves with differe
energies was chosen to the left of the barrier. It is obvio
that in this case the wave function to the right of the barr
will also be a superposition of the tunneled parts of the pl
waves, which, however, possess a different transmission
plitude, since the amplitude depends on the energy.
transmitted wave function will reproduce the incident wa
function if the amplitudes of the tunneled plane waves dif
very little; this corresponds to the adiabatic case. The ene
difference between the initial plane waves for which t
wave function behind the barrier does not produce the in
dent wave function makes it possible to find the transmiss
time through a potential barrier. The main advantage of
method is that it applies to all types of potentials, but
employs two values of the energy, so that it is not clear
which energy the tunneling time obtained should be ascrib

Do all clocks give the same measurement result?
course not. However, in many cases these results are id
cal or close to one another.13,16–18The main advantage of th
approaches using physical clocks is that they try to find
tunneling time in terms of possible measurements in phys
expeirments.

The search for time operators and the study of th
e
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properties is no less popular.19–24 As first noted by Pauli,25

the main difficulty is that a measurable hermitian time o
erator for a system Hamiltonian with a bounded spectr
does not exist. Various attempts have been made to cons
operators that would describe the necessary propertie
physical times. In order that the constructed operator sat
the correspondence principle, relations from classical m
chanics were taken as the basis for the operator construc
However, it is well known that the construction of an oper
tor expression corresponding to a classical quantity is
unique, and its relation to the measurement process requ
additional analysis.

In the present work the tunneling time was calculated
the difference of the average arrival and residence times
wave packet~see Sec. 3! before and after the barrier. Th
method of quantum molecular dynamics was used to ca
late these times and to investigate the dynamics of a tun
ing wave packet.26–28

As is well known, molecular dynamics investigates t
properties of classical systems in phase space. Therefore
likewise natural to extend this method to quantum system
phase space. The evolution of a system in phase space c
described, for example, in the Wigner formalism of quantu
mechanics by the Wigner–Liouville equation. To solve t
Wigner–Liouville equation written in integral form it is con
venient to rewrite the equation in the form of an iterati
series. Each term of this series can be treated as the weig
contribution of a trajectory consisting of segments of clas
cal trajectories separated by finite disturbances of the
mentum. In what follows we shall call such a trajectory
quantum trajectory. The statistical ensemble of quantum
jectories makes it possible to calculate the sum of all term
the series. The Monte Carlo method is used to take acco
of only the trajectories making the main contribution. In t
classical limit the quantum trajectories pass into classical
jectories, and the method of generalized molecular dynam
becomes identical to ordinary molecular dynamics. The p
ciples of the method are presented in Sec. 2. The express
for calculating the distributions of the arrival and residen
times of a wave packet are presented in Sec. 3 on the bas
the Wigner formalism of quantum mechanics. The simu
tion results are discussed in Sec. 4. The one-dimensi
case is considered in this paper, but the method emplo
makes it possible to perform similar calculations for mul
dimensional and multiparticle systems, where it has seri
advantages from the standpoint of computer time over,
example, the solution of the time-dependent Schro¨dinger
equation.

2. COMPUTATIONAL METHOD

To calculate the quantum-mechanical average of a qu
tity A for a time-dependent stateuc& in the Wigner formula-
tion of quantum mechanics it is necessary to calculate
integral in phase space29

A~ t !5^cuÂ~ t !uc&5E E dqdpA~q,p!W~q,p,t !, ~1!
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where, by definition, the Weyl symbolA(q,p) is introduced
for the operatorÂ and W(q,p,t) is the Wigner function,
which is the Fourier transform of the off-diagonal densi
matrix element:

A~q,p!5E dj expS ipj

\ D K q1
j

2
uÂuq2

j

2 L , ~2!

W~q,p,t !5
1

2p\ E dj expS 2
ipj

\ D
3c* S q2

j

2
,t DcS q1

j

2
,t D . ~3!

Differentiating the distribution function with respect to tim
substituting it for the time derivative of the functionc on the
right-hand side of the Schro¨dinger equation, and integratin
by parts, we obtain the Wigner–Liouville integrodifferenti
equation30

]W

]t
1

p

m

]W

]q
1F~q!

]W

]p
5E

2`

`

dsW~p2s,q,t !v~s,q!.

~4!

In this equation

v~s,q!5
2

p\2 E dq8V~q2q8!

3sinS 2sq8

\ D1F~q!
dd~s!

ds
~5!

takes account of the nonlocal contribution of the potent
andF(q)52]V(q)/]q is a classical force. In the classic
limit, \→0, Eq.~4! becomes the classical Liouville equatio

]W

]t
1

p

m

]W

]q
52F~q!

]W

]p
. ~6!

Equation ~4! can be written in integral form. For thi
purpose one introduces the dynamical trajector

$q̄t(t;p,q,t),p̄t(t;p,q,t)%, tP@0,t#, starting from the point
(p,q) at timet5t:

dp̄/dt5F~ p̄~t!!, p̄t~ t;p,q,t !5p,
~7!

dq̄/dt5q̄~t!/m, q̄t~ t;p,q,t !5q.

An integral equation is obtained by substituting the rig
hand sides of these equations into the Wigner–Liouv
equation, whose left-hand side becomes a total differen
and integrating over time

W~p,q,t !5W0~ p̄0 ,q̄0!1E
0

t

dtE
2`

`

dsW

3~ p̄t2s,q̄t ,t!v~s,q̄t!. ~8!

HereW0( p̄0 ,q̄0)5W(p,q,0) is the Wigner distribution func-
tion at zero time. The solution of Eq.~8! can be represente
as an iterative series. For this we introduce the notationW̃t1

for the distribution function, which evolves classically in th
l,

s

-
e
l,

interval@0,t1#, and the integral operatorKt i

t i 11 describing the

evolution between the timest i andt i 11. Now Eq.~8! can be
represented in the form

Wt5W̃t1Kt
t Wt, ~9!

where W̃t5W0( p̄0 ,q̄0). The corresponding iterative serie
solving this equation can be written as

Wt5W̃t1Kt1

t W̃t11Kt2

t Kt1

t2W̃t11Kt3

t Kt2

t3Kt1

t2W̃t11 . . .

~10!

Now, to calculate the quantum-mechanical average~1! it is
necessary to calculate a linear functional of the Wigner d
tribution function

A~ t !5E E dqdpA~q,p!W~q,p,t !

5~AuW̃t!1~AuKt1

t W̃t1!1~AuKt2

t Kt1

t2W̃t1!

1~AuKt3

t Kt2

t3Kt1

t2W̃t1!1 . . . ~11!

Here the brackets ( . . .u . . . ) for the functionsA5A(p,q)
and W̃t or Kt i

t Kt i 21

t i . . . Kt1

t2W̃t1 indicate averaging over the

entire phase space$p,q%.
The first term on the right-hand side of Eq.~10! gives the

classically evolving initial distributionW0( p̄0 ,q̄0), i.e., the
evolution of the distribution function without quantum co
rections. However, even this first term of the iterative ser
describes not classical but rather quantum effects and
contain arbitrary powers of the Planck constant, since
quantum initial state of the system is taken as the initial d
for Eq. ~10!. The rest of the terms in the iterative seri
describe quantum corrections to evolution. Each term of
iterative series~10! is a multiple integral. This multiple inte-
gral can be replaced by an integral sum, and each term o
integral sum can be represented as a contribution of tra
tories of a definite topological type. These trajectories con
of segments of classical trajectories—solutions of Eqs.~7!—
separated from one another by random perturbations of
momentum.

All terms of the iterative series can be calculated in a
cordance with the theory of Monte Carlo methods for solvi
linear integral equations. For this, a Monte Carlo sche
generating a large sample of the terms making the main c
tribution to the series~10! has been derived. This sample al
decreases the computer time required to calculate the re
the integrals appearing in each term of the iterative ser
Let us consider the second term of the series~10!. This term
can be rewritten as

Kt1

t W̃t15E
0

1

dt1E ds1v~s1 ,q̄1!W0~ p̄0
1 ,q̄0

1!

5E
0

1

dt1@B~ q̄2!~11Q~ q̄2!!#u~12t2!r ~t2!

3E ds1P~s1 ,q̄1
2!C~ q̄1

2!r ~t1!
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$s~s1 ,q̄1
2!tQ̃~ q̄1

2!u~t22t1!/C~ q̄1
2!r ~t1!%W0~ p̄0

1 ,q̄0
1!,

where the substitution of variablest→tt(tP@0,1#) was
made for all terms of the iterative series~10!. The quantity
r (t1) is the probability of choosing a random timet1 andu
is the step function.

Once the second term of the series~10! is written in the
form ~12!, it can be given the following probabilistic inter
pretation. We shall employ the time-reversibility of the equ
tions of classical dynamics~7! and start the construction of
trajectory at timet50. At time t1 for a trajectory represent
ing an arbitrary term in the iterative series a perturbation
the momentum of the trajectory by an amounts1 can occur
with probability C(q̄1

2), and the probability of rejecting a
momentum perturbation isB(q̄2) (C(q̄1

2)1B(q̄2)51) . The
probabilityB for rejecting momentum jumps was introduce
to make the algorithm more flexible, so that, depending
the degree of quantization of the system, a transition fr
quantum to classical trajectories would occur automatica

Since we are considering a trajectory representing
second term in the iterative series, a perturbation of the
mentum at the timet1 was accepted. Now it is necessary
choose in the time interval@t1,1# a random valuet2, which
is the time of the next attempt to perturb the momentu
After a perturbation of the momentum by an amounts we
must continue the generation of the trajectory up to the t
t2 in accordance with Hamilton’s equations. At this time
attempt to perturb the momentum for the second term of
iterative series must be rejected, and we continue the gen
tion of the trajectory up to the timet51. The rejected at-
tempt at disturbing the momentum must be taken into
count by multiplying the weighting function of the trajecto
by a compensating factor, which stands in the braces on
right-hand side of the expression~12!. The product of the
Weyl symbol of the operator under consideration and
weighting function at different points along the trajecto
gives the time dependence of the computed quantities. A
aging over a large ensemble of trajectories of this type gi
the contribution of the second term of the iterative series

Similar expressions but with a large number of interm
diate times on classical trajectories when a perturbation
the momentum occurs can also be written for the other te
in the series~10!. The number of the term in the iterativ
series~10! described by the given trajectory determines
number of momentum perturbations along the trajectory.

The final expression used to calculate the linear fu
tional ~11! is

A~ t !5M $a~A;Ti !%

5(
p,q

~npnq!(
i 50

`

(
j 50

i

(
t j

(
sj

a~A;Ti !P~Ti !,

~13!
a~A;Ti !5A~p,q!W0~ p̄0

1 ,q̄0
1!V~Ti !,

where the functionsP andV are, respectively, the probabi
ity of generating a quantum trajectoryTi and the weighting
function of this trajectory.
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3. MEASURED QUANTITIES

The study of the evolution of a wave packet can be tak
as the starting point for studying the temporal aspects
tunneling. The probability of observing a wave packet
particle at an arbitrary pointX is determined by the square
absolute valueuc(X,t)u2 of the wave function. In a time-
dependent problem this probability depends on the time
determines the characteristic times of the wave-packet
namics. If an ideal detector~i.e., measurement by the dete
tor does not disturb the wave function!, responding to the
presence of particles, is used in the experiment, then
average residence time measured by the detector at the
X is

t̃ X5

E
0

`

dt tuc~X,t !u2

E
0

`

dtuc~X,t !u2

. ~14!

A description of these times can be found in Refs. 31–
The distribution of residence times at the pointX is

P̃~ tX!5
uc~X,t !u2

E
0

`

dtuc~X,t !u2

. ~15!

To find the squared wave functionuc(X,t)u2 it is sufficient to
calculate a quantum-mechanical average of an operator

^c~ t !ud~ q̂2X!uc~ t !&5E dqd~q2X!uc~q,t !u2

5uc~X,t !u2.

In the language of the Wigner formalism this is equivalent
calculating the integral

^c~ t !ud~ q̂2X!uc~ t !&5E E dqdpd~q2X!W~q,p,t !

5E dp W~X,p,t !. ~16!

If the point X is chosen to the right of the barrier, then th
integral makes it possible to calculate the squared wave fu
tion which has tunneled through the barrier. The distribut
of the residence times can be rewritten, in accordance w
Eq. ~16!, as

PX~ t !5
uc~X,t !u2

E
0

`

dtuc~X,t !u2

5

E dpW~X,p,t !

E
0

`
dt E dpW~X,p,t ! . ~17!

To determine the average time when the wave packet pa
through a detector at the pointX it is necessary to calculat
the integral
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^t~X!&5E
0

`

dt tPX~ t !, ~18!

and the average transmission time of a packet from the p
Xi to the pointXf will be

^tT~Xi ,Xf !&5^t~Xf !&2^t~Xi !&. ~19!

If the pointsXi andXf are chosen on different sides of th
potential barrier, then the expression~19! can be used to
estimate the tunneling time.

The chief drawback of the definition~17! is that, as a
rule, detectors responding to a flux density and not a pr
ability density are used in physical experiments. Therefor
different quantity must be considered in order to comp
theory and experiment. For this, the distribution of arriv
times of a wave packet at a prescribed point in terms of
probability flux density was introduced:34

PX~ t !5
^c~ t !uĴ~X!uc~ t !&

E
0

`

dt^c~ t !uĴ~X!uc~ t !&

, ~20!

where

Ĵ~X!5
1

2
@ p̂d~ q̂2X!1d~ q̂2X! p̂#. ~21!

Of course, the definition~20! is not a real distribution func-
tion from probability theory, since this function can assum
negative values at some points. Nonetheless, the defin
~20! will be a distribution function if there is no reverse flu
through the pointX or the flux is negligibly small. For this
the pointX is chosen sufficiently far from the barrier. Mea
suring the distribution of the arrival times of a packet in fro
of and beyond the barrier, the transmission time throug
region much larger than the region of the potential bar
can be calculated. This time is analogous to the asympt
phase times35 and in addition to the tunneling time and th
packet–barrier interaction time it also contains the transm
sion time through the region where the potential barrier
zero. These two times cannot be resolved. Despite cont
ing discussions, this tunneling-time problem has still n
been finally solved.19–24,36,37

Another problem concerns the physical implementat
of an experiment in which simultaneous detection of a pac
in front of and beyond a barrier would not substantially
duce the wave function. For this reason, ordinarily, a diff
ent quantity—the time delay—is measured
experiments.38–42 A time delay arises because of the pre
ence of a barrier and is defined as the difference of the
erage arrival times of the tunneling and free packets:

Dtarrival~X!5^tX& tun2^tX& free. ~22!

The definition~20! for calculating the average arrival time
gives a reasonable estimate of the time delays measured
experiment.

The distribution of arrival times~20! can be rewritten in
the Wigner formulation of quantum mechanics as
nt
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PX~ t !5

E E dqdpJX~q,p!W~q,p,t !

E
0

`

dtE E dqdpJX~q,p!W~q,p,t !

, ~23!

where the Weyl symbol of the current operatorĴ(X) is

JX~q,p!5
\

2
sinS 2p~X2q!

\ D ]

]q
d~q2X!. ~24!

Substituting into Eq.~20! the expression~24! and calculating
the integral over the variableq by parts we obtain the ex
pression

PX~ t !5

E dppW~X,p,t !

E
0

`
dtE dppW~X,p,t ! . ~25!

Comparing the expressions~17! and ~25!, it is easy to see
that they differ by the fact that the momentump appears in
the numerator and denominator in Eq.~25!. This momentum
appeared in the last expression because the probability
density is measured there.

4. SIMULATION RESULTS

We shall examine a series of experiments on the tun
ing of an electron with the wave function

c~x,0!5
1

~2psx!
1/4

expF2S x2x0

2sx
D 2

1 ik0xG ~26!

through a Gaussian potential barrier

V~x!5V0 expF2
~x2d!2

s2 G .

The Wigner distribution function~3! corresponding to the
initial wave function of the electron can be written as

W~p,q,0!52 expF2
~q2x0!2

2s2 GexpF2
2s2~p2\k0!2

\2 G .

~27!

The centerx05^c(x,0)ux̂uc(x,0)& of the wave packet at zero
time was chosen far enough from the left-hand boundary
the barrier so that the probability density beyond the bar
would be negligibly small compared with the transmissi
probability uTu2 through the barrier. Tunneling occurre
through a wide (s52.5 nm, typical of AlxGa12xAs struc-
tures! and narrow (s50.5 nm! Gaussian barriers of heigh
V050.3 eV centered atd50. The electron kinetic energy
wasE05\2k0

2/2m5V0/250.15 eV. We employ a system o
units with \5m5V051. Distances were measured in un
of the reduced de Broglie wavelengthl51/k0. In this system
the parameters of the wave packet and barrier areE050.5,
Dk50.04 (0.125), sx51/2Dk512.5 ~4!, x05292.5
(243), s55 (2.5 nm), ands51 (0.5 nm!.
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FIG. 1. Probability density ~a!
uc ref(x,t)u2 of the reflected wave packe
and ~b! uc tr(x,t)u2 of the tunneled wave
packet at successive timest i51442239
fs ~curves1–5! with Dk50.125 and bar-
rier thickness s51 ~0.5 nm!; ~c, d!
uc tr(x,t)u2 at time t5187 fs, Dk
50.125 with barrier thicknesss51 ~0.5
nm! ~c! and s55 ~2.5 nm! ~d!: curve
1 — calculation using classical trajecto
ries, curve2 — calculation using quan-
tum trajectories.
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4.1. Evolution of the wave packet

The interaction of a wave packet (\Dk50.125) with a
narrow potential barrier@s51 (0.5 nm!# is shown in Figs.
1a and 1b. These figures show the probability den
uc(x,t)u2 ~curves1–5! of reflected~Fig. 1a! and tunneled
~Fig. 1b! wave packets at successive timest51142239 fs.
The probability density was calculated using Eq.~16!, i.e., in
terms of the Wigner distribution function. This integral w
calculated along quantum and classical trajectories. In
calculation over classical trajectories only the high-ene
components of a packet could pass classically above the
rier. This calculation corresponds to the curve1 in Fig. 1c,
and the evolution of the Wigner function can be describ
only by the first term of the series~10!. In the formalism of
quantum trajectories the passage of the components
packet beyond the barrier is associated with random pe
bations of the momentum, i.e., with a virtual change in e
ergy. The results of this calculation correspond to the curv2
in Fig. 1c. Now the quantum corrections introduced by
terms in the series~10! are taken into account in the evolu
tion of the Wigner function.

Of course, the calculation over quantum trajectories a
takes account of the high-energy components that pass a
the barrier, since they describe the contribution of the fi
term in the series~10!. However, comparing the curves1 and
2 in Fig. 1c shows that their role is negligible for a narro
barrier and most of the packet passes above the barrie
account of the virtual change in energy, described as ran
perturbations of the momentum of the quantum trajector
y

e
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A study of tunneling through a wide barrier leads to t
opposite conclusion. The curves1 and2 in Fig. 1d are almost
coincident. This means that most of the packet has pas
above the barrier, and the contribution of all terms in t
series~10!, except for the first term, is negligibly small. T
avoid such a situation and to restore the importance of qu
tum effects, it is necessary to decrease the uncertainty o
momentum of the initial wave packet. In what follows a
calculations for a wide barrier are presented for moment
uncertainty\Dk50.04.

4.2. Average position, average momentum, and their
spreads

Figure 2a shows the evolution of the average posit

^c(t)uX̂uc(t)& of the wave packet for calculation accordin
to classical~curve1! and quantum~curve2! trajectories. In
these two methods for calculating the average positionX̄ no
differences are observed before interaction with the bar
~curves1 and2 are coincident!. This result can be explaine
as follows. In the method under discussion the quantu
mechanical properties appear at two points: in the proper
of the initial state of a wave packet and in the evolution
the packet. Since the same initial data were chosen for
quantum and classical trajectories, the fact thatX̄ is the same
must be explained by the evolution of the wave packet. S
cifically, while the packet moves freely in front of the ba
rier, it is correctly described by classical trajectories also.
this case the first term in the series~10! suffices to describe
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FIG. 2. Average positionX̄ ~a!, average mo-

mentumP̄ ~b!, position spread̂(X2X̄)2& ~c!

and momentum spread̂(P2 P̄)2& ~d!: 1 —
calculation using classical trajectories;2 —
calculation using quantum trajectories.
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the evolution of the Wigner function. This result can also
obtained analytically, estimating the right-hand side of
Wigner–Liouville equation~4!. For the initial Wigner func-
tion ~27! and Gaussian barrier which we have chosen i
easy to show that the integral on the right-hand side of
~4! decays exponentially as a function of distance from
barrier. In this case Eq.~4! becomes the classical Liouvill
equation, whose characteristics are ordinary classical tra
tories.

A difference in the behavior of the curves1 and 2 ap-
pears after the packet interacts with a barrier. Now the c
sical trajectories are no longer characteristics and do not
scribe the evolution of the wave packet correctly. In Figs.
and 2b the average position and momentum of the calc
tion over quantum trajectories~curve2! are greater than fo
classical trajectories~curve 1!. This is due to the following
circumstances. In the first place, since most of the packe
reflected, as one can see from Fig. 2b the average mome
changes sign after being scattering by the barrier. In the
ond place, the classical trajectories~curve 1! do not take
account of tunneling; they only take account of the negligi
above-barrier transmission, arising because of the un
tainty in the momentum of a Gaussian wave packet. At
same time it is obvious that the tunneling part of the pac
has positive momentum and moves in the opposite direc
relative to the reflected part. Therefore its contribution toX̄

and P̄ has a different sign. This is the explanation of t
difference between the curves1 and2.

In addition, the motion of the tunneling and reflect
e
e

s
q.
e

c-

s-
e-
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is
um
c-

e
r-
e
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packets on different sides of the barrier also explains
more rapid increase of the position spread in the quan
calculation~curve2, Fig. 2c! as compared with the classica
calculation~curve1!, which takes only the spreading of th
wave packet into account. The behavior of the packet wi
on scattering by a barrier is shown in greater detail in
upper left-hand part of Fig. 2c.

The interaction of a packet with the barrier also giv
rise to interesting behavior of the momentum spread in F
2d. The constant values~curve 1! on the initial and final
sections show the momentum spread in the incident and
flected wave packets, i.e., before and after interaction w
the barrier. The observed peak is due to the change in
sign of the momentum of the packet and to the fact t
different components reach the barrier and are reflected f
it at different times. The increase in the momentum spre
~curve2! on the final section is explained by the appearan
of a tunneling packet with positive momentum in the qua
tum computational method, while the total average mom
tum is negative.

4.3. Distribution of arrival and residence times: momentum
distribution function

The results of the calculation of the unnormalized dis
bution of residence times~17! at different points in front of
the barrier, inside the barrier, and beyond barrier are p
sented in Figs. 3a and 3b~curves1–5!. Figures 4a and 4b
show the analogous results for the unnormalized distribu
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FIG. 3. Probability density or unnormal
ized distributions of the residence time
~17!: a — uc(xi ,t)u2 at the point
x1525s ~curve 1!; b — uc(xi ,t)u2 at
the point x2520.67s ~curve 2!, at x4

50.67s ~curve 4!, and x555s ~curve
5!; center of the barrier located atx3

50, barrier thicknesss55 ~2.5 nm!.
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~20! of the arrival times. The curves1 in Figs. 3a and 4a
show the behavior of the probability density and flux, cor
sponding to the fact that the incident and reflected w
packets pass through the detector at different times. Cur2
in Fig. 4a shows the behavior of the flux measured a
certain point to the left of barrier center. The tunneling a
high-energy components present in the initial packet rea
ing the point classically pass through this point. An intere
ing result is obtained for the probability flux density in Fi
4b ~curves3–5!. The flux measured at barrier center~curve
-
e

a
d
h-
t-

3! is much lower than the flux on the right-hand boundary
the barrier~curve4! and far to the right of the barrier~curve
5!. This means that the tunneling components of the w
packet which move in oppposite directions interfere ins
the barrier. Some of these components pass comple
through the barrier, while others are reflected inside the b
rier and do not reach its right-hand boundary. Interference
the reflected and transmitted components yields the obse
decrease in the flux amplitude at the barrier center~curve3!
and at the right-hand boundary~compare curves4 and 5!.
l

FIG. 4. Probability flux density or un-
normalized distributions of the arriva
times ~20!: a — J(xi ,t) at the points
x1525s ~curve 1! and point
x2520.67s ~curve 2!; b — J(xi ,t) at
x350 ~curve 3!, x450.67s ~curve 4!,
andx555s ~curve5!; center of the bar-
rier located atx350, barrier thickness
s55 ~2.5 nm!.
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FIG. 5. Momentum distribution in a packet a
t50 ~curve1! and in a packet transmitted throug
a potential barrier~curve2!: a — Dk50.125, bar-
rier thicknesss51 ~0.5 nm!, t5218 fs; b —
Dk50.04, barrier thicknesss55 ~2.5 nm!,
t5385 fs.
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Interestingly, the investigation of tunneling using classi
trajectories in complex time also shows a similar effect.37 It
is found that transmission through a barrier occurs as a se
of attempts, many of which are unsuccessful because o
flections in different regions below the barrier.

Comparing the distributions of the residence and arri
times in Figs. 3b and 4b shows that they are almost ident
The computed average residence and arrival times~18! are
also identical~the difference is less than 1 fs!. As we have
already stated, the distribution of the arrival times~20! is not
a true distribution function and, as one can see from Fig
~curve2!, it is not suitable for calculating the average arriv
time of a packet in front of the barrier. This makes it impo
sible to calculate the tunneling time as the difference~19! of
the average arrival times of the packet in front of and beyo
the barrier. Nonetheless, the expression~19! can be used to
estimate the tunneling time if the average residence time~14!
is used instead of the average arrival time in front of
barrier. Then the tunneling time through the potential bar
is tT(20.67s,10.67s)512 fs, i.e., it is almost equal to th
transmission time of a free packet through a similar reg
tT

class(20.67s,10.67s)513.4 fs.
The time delays were measured at the pointsx4

50.67s (1.6 nm! andx555s ~12 nm! and were found to be
Dtarrival(x4)58 fs and Dtarrival(x5)<0.5 fs. If these mea-
surements are performed even farther to the right of the
rier, thenDtarrival(x) becomes negative. Thus an interesti
behavior is discerned: Even though the tunneling wa
packet is delayed by the barrier (Dtarrival(x4)58 fs! and
passes through the barrier approximately in the same tim
a free packet, it appears earlier at a definite distance to
right of the barrier. This effect can be explained by the f
that the transmission probability through a Gaussian bar
increases with energy, so that packet components wit
larger momentum have a higher probability of ending
l

ies
e-

l
l.

a
l
-

d

e
r

n

r-

e
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beyond the barrier. These components move more rap
than a free packet and eventually overtake a free pac
Then the time delays can only be negative. This confirms
momentum distribution function

^c~ t !ud~ p̂2p!uc~ t !&

^c~ t !uc~ t !&
, ~28!

calculated for narrow~Fig. 5a! and wide~Fig. 5b! barriers,
respectively, at timest5218 and 385 fs. At these characte
istic times the distribution function no longer changes, sin
the interaction with the barrier has ceased. It is clear fr
Fig. 5 that the average momentum of the tunneled w
packet~curve2! is greater than the average momentum of
wave packet initially~curve 1!. The peak observed in th
momentum distribution function~curve2 in Fig. 5a! is due to
the packet components that had a large momentum
passed above the barrier. It is evident that tunneling thro
a narrow potential barrier increases the spread in the di
bution function, while tunneling through a wide barrier su
stantially shifts the center of the distribution in the directi
of large momenta~curve2 in Fig. 5b!.

5. CONCLUSIONS

The quantum generalization of classical molecular d
namics was used to solve the Wigner–Liouville integ
equation in the Wigner formulation of quantum mechani
The method discussed for solving this equation does not
quire a large increase of computer time and makes it poss
to avoid the computational difficulties that arise when so
ing the time-dependent Schro¨dinger equation.

This approach was used to solve the time-depend
problem of tunneling of a finite wave packet, i.e., a proble
in which it is important to take account of exponential
small quantum effects. The evolution of a wave packet,
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behavior of the average and the spreads in the position
momentum together with the distributions of the residen
and arrival times for the wave packet at different positions
an ideal detector were analyzed. The following results w
obtained: 1! The tunneling time through a potential barrier
of approximately the same order of magnitude as the tra
mission time of a free wave packet over a similar distance!
the tunneling wave packet is delayed by the potential barr
so that after the barrier the time delay should be positive!
measurement of negative time delays is possible only at
ficiently large distances from the barrier and is associa
with a shift of the momentum distribution function; 4! a
Gaussian barrier transmits predominantly the high-ene
components of a packet, interaction with the barrier shifts
center of the momentum distribution function so that t
average momentum of the transmitted packet is larger t
the initial average momentum of the entire packet; 5! tunnel-
ing through a narrow potential barrier increases the sprea
the momenta of the tunneled components, while tunne
through a wide barrier appreciably increases the average
mentum; and 6! the computational results for the probabili
flux density showed that the tunneling wave packet does
pass completely through the barrier; instead, a portion of
packet is reflected and does not reach the barrier bound
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Kinetics of indirect photoluminescence in GaAs/Al xGa12xAs double quantum wells in a
random potential with a large amplitude
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The kinetics of indirect photoluminescence of GaAs/AlxGa12xAs double quantum wells,
characterized by a random potential with a large amplitude~the linewidth of the indirect
photoluminescence is comparable to the binding energy of an indirect exciton! in
magnetic fieldsB<12 T at low temperaturesT>1.3 K is investigated. It is found that the indirect-
recombination time increases with the magnetic field and decreases with increasing
temperature. It is shown that the kinetics of indirect photoluminescence corresponds to single-
exciton recombination in the presence of a random potential in the plane of the double
quantum wells. The variation of the nonradiative recombination time is discussed in terms of the
variation of the transport of indirect excitons to nonradiative recombination centers, and the
variation of the radiative recombination time is discussed in terms of the variation of the population
of optically active excitonic states and the localization radius of indirect excitons. The
photoluminescence kinetics of indirect excitons, which is observed in the studied
GaAs/AlxGa12xAs double quantum wells for which the random potential has a large amplitude,
is qualitatively different from the photoluminescence kinetics of indirect excitons in AlAs/
GaAs wells and GaAs/AlxGa12xAs double quantum wells with a random potential having a small
amplitude. The temporal evolution of the photoluminescence spectra in the direct and
indirect regimes is studied. It is shown that the evolution of the photoluminescence spectra
corresponds to excitonic recombination in a random potential. ©1999 American Institute of
Physics.@S1063-7761~99!02605-0#
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1. INTRODUCTION

The neutral system consisting of spatially separated t
dimensional layers of electrons and holes in double quan
wells has been widely studied in recent years.1–12 This sys-
tem is of interest primarily because of the possibility of co
structing structures with the required architecture and a
rate of indirect~interwell! recombination. Since the effectiv
carrier temperature is determined by the ratio of the rel
ation and recombination times, the low indirec
recombination rate makes it possible to obtain a neu
electron–hole system of a high density with a low effect
temperature. A number of theoretical treatments have sh
that in a system of spatially separated layers of electrons
holes in double quantum wells at low temperatures collec
states can be observed, including a condensate of ind
excitons similar to the Bose–Einstein condens
bosons.13–20An interesting particular case is a system of sp
tially separated layers of electrons and holes in a strong m
netic field perpendicular to the plane of the well. A numb
of theoretical studies have shown that the critical conditio
for condensation of excitons are improved in a strong m
netic field as a result of complete quantization of the ene
spectrum of electrons and holes15,16 and as a result of the
1031063-7761/99/88(5)/9/$15.00
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lifting of spin degeneracy. Theory predicts that when t
distance between the electron and hole layers is sm
d& l B ( l B5A\c/eB is the magnetic length!, the ground state
of the system is determined by the electron–hole interac
and is an exciton condensate, while for large distanc
d* l B , the ground state is determined by electron–elect
and hole–hole interaction and is an incompressible Fe
liquid or Wigner crystal of electrons and holes.18,19

An inevitable property of semiconductor quantum we
and double quantum wells is the existence of a random
tential produced in the plane of a well by irregularities of t
interfaces, composition fluctuations, defects, and impurit
A random potential qualitatively affects the properties of t
system. Specifically, a strong random potential destroys p
sible collective states~see Ref. 12 and citations there!. No
theory of a system of spatially separated electron and h
layers in the presence of a random potential is yet availa
We shall parametrize the magnitude of the potential by
ratio of the binding energy of an indirect exciton to the wid
of the indirect luminescence line, determined by the am
tude of the random potential,EI /DPL . In terms of the pa-
rametersd, l B , EI , and DPL ~in a zero magnetic field the
analog ofl B is the Bohr radius of an indirect exciton!, four
6 © 1999 American Institute of Physics
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classes of spatially separated electron–hole system
double quantum wells can be distinguished. Class B1 c
sists of double quantum wells with a small effective distan
between the layers and a weak disorder (d& l B , EI@DPL).
According to theoretical studies,13–20 for this class of double
quantum wells the ground state of the system at low te
peratures should be an excitonic condensate, and the cr
conditions for condensation of excitons are improved in
strong magnetic field.15,16 Class B2 consists of double qua
tum wells with a small distance between the layers a
strong disorder (d& l B , EI&DPL). Class A1 consists o
double quantum wells with a large distance between the
ers and weak disorder (d* l B , EI@DPL). According to
theory,18,19for this class of double quantum wells the grou
state of the system at low temperatures should be an inc
pressible Fermi liquid or a Wigner crystal of electrons a
holes. Class A2 consists of double quantum wells with
large distance between the layers and strong disorded
* l B , EI&DPL). This classification must be supplement
by the carrier density and the temperature, which determ
the phase boundaries. Interclass transitions between
classes are probably, continuous. Thus a transition betw
the classes B1 and A1 and a transition between the cla
B2 and A2 can be accomplished by increasing the magn
field, while a transition between the classes B1 and B2
between the classes A1 and A2 can be followed by study
double quantum wells with various degrees of disorder.

At experimental investigation ofG –Xz AlAs/GaAs
double quantum wells, characterized by a small distance
tween the electron and hole layers,d'3 –4 nm, EI;10
meV, andDPL from 3 to 6 meV, which therefore belong t
the classes B1 and B2, implying condensation of indir
excitons in strong magnetic fields at low temperatures h
been observed: an anomalous increase of the diffusion c
ficient and radiative recombination rate of excitons, int
preted as the appearance of superfluidity of excitons
superradiance of an excitonic condensate,12 and anomalously
large fluctuations of the total intensity of the photolumine
cence of excitons, interpreted as critical fluctuations nea
phase transition, which are associated with instability of c
densate domains.8 As the disorder in the experimental AlAs
GaAs wells increased, these anomalies became weake
disappeared, which corresponded to a transition from c
B1 to class B2.12

The kinetics of photoluminescence in double quant
wells belonging to the class A1 has been investigated
zero magnetic field. Specifically, double quantum we
GaAs/AlxGa12xAs with d'12 nm, EI;5 meV, andDPL

51.3 meV have been investigated.21 A sharp increase o
intensity and narrowing of the photoluminescence line
indirect excitons were found after the pulsed laser excita
was switched off at low temperatures and high exciton d
sities. The effect was described by a rapid increase in
population of optically active excitonic 2D states.21

In the present work we investigate the optical propert
of a system consisting of spatially separated layers of e
trons and holes in class A2 wells. Specifically, we investig
GaAs/AlxGa12xAs double quantum wells withd;11 nm
andEI;DPL;6 meV. The experimental data are compar
in
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with the analogous dependences for class B1, B2, and
double quantum wells.

2. SAMPLE AND EXPERIMENTAL PROCEDURE

In gate voltage tunablen1 – i –n1 heterostructure with a
single GaAs/AlxGa12xAs double quantum well, which wa
adjusted by varying the gate voltage, was grown
molecular-beam epitaxy on ann1-GaAs substrate. Thei
layer consists of two, 5 nm wide, GaAs quantum wells se
rated by a 5.5 nm thick Al0.35Ga0.65As barrier and surrounded
by 55 nm thick Al0.35Ga0.65As barriers. The band diagram o
the i layer of the structure in the indirect regime is shown
Fig. 1. The 1100 nm thickn1 layers on the substrate side an
the 110 nm thick layer on the surface side were doped w
Si to a densityNSi5531017cm23. To improve the electrical
contact,d doping withNSi51013 cm22 was performed at 10
nm from the surface. As a result of the high doping dens
then1 layers are of a metallic character, and the gate volt
Vg applied between the substrate and the surface decreas
the i layer. The front gate consisted of a frame around a m
with a 2003200 mm2 window.

The sample was placed in a helium cryostat with a
perconducting solenoid. Excitation and detection were p
formed through a 200mm in diameter optical light guide
placed 300mm from the mesa surface. The carriers we
excited by a pulse semiconductor laser (\v51.85 eV!. The
laser pulse was approximately square with;50 ns duration
and ;1 ns edges. The temporal resolution of the detect
system was 0.5 ns. A double grating monochromator, a p
tomultiplier, and a time-correlated photon counting syst
with time resolution were used to detect the signal.

3. PHOTOLUMINESCENCE KINETICS IN THE INDIRECT
REGIME

The indirect regime in then1 – i –n1 structure of the
GaAs/AlxGa12xAs double quantum wells occurs for finit
values ofVg . TheVg dependence of the photoluminescen
spectra and kinetics are shown in Figs. 1a and 1c. ForVg

&0.3 V the energy of the photoluminescence line is ess
tially independent ofVg , and the decay of this line is char
acterized by a short lifetime. Therefore the ground state
the system forVg&0.3 V is a direct exciton. ForVg*0.4 V,
increasingVg produces an approximately linear energy sh
of the principal photoluminescence line and increases
decay time of the line. Therefore forVg*0.4 V electrons and
holes in the ground state of the system occupy differ
quantum wells; this corresponds to an indirect regime. T
magnitude of the shift of the indirect photoluminescence l
is determined by the electrostatic energyeFd, wheree is the
electron charge andF is the electric field in thez direction. A
transition from the direct regime into the indirect regim
occurs in a nonzero electric fieldFD2I . This corresponds to
excitonic recombination with direct and indirect exciton e
ergiesED5Eg2ED andE I5Eg2EI2eFd, whereEg is the
energy gap, including the electron and hole quantization
ergy in the double quantum well,ED andEI are the binding
energies of the direct and indirect excitons. ForF5FD2I the
energy difference between the single-particle direct and



e
,
e

il-
he
i-
-

1038 JETP 88 (5), May 1999 Butov et al.
FIG. 1. Time-integrated photoluminescenc
spectrum~a, b! and photoluminescence kinetics
measured at the maximum of the principal lin
~c, d!, as a function of the gate voltage~a, c! and
magnetic field~b, d! at T51.3 K andWex510
W/cm2. The dashed line corresponds to the tra
ing edge of the 50 ns laser excitation pulse. T
spectra and kinetics are shifted along the ord
nate for clarity. The direct and indirect photolu
minescence lines are labeled byD andI, respec-
tively. The band diagram of the
GaAs/AlxGa12xAs double quantum well is
shown in the inset.
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direct pair states is equal to the difference between the b
ing energies of the direct and indirect excitons:eFD2Id
5ED2EI ~see Refs. 7 and 9 and the references cited the!.

The width of the indirect-exciton line is determined b
the random potential in the plane of the double quant
well. Several types of disorder, making the main contribut
to the inhomogeneous broadening of the indirect photolu
nescence line, can be distinguished: a! interfacial fluctua-
tions; b! electric-field fluctuations in thez direction; c!
charged impurities~other types of disorder, such as comp
sition fluctuations, neutral impurities, and defects also ex
but their contribution to disorder is, as a rule, smaller!. Fluc-
tuations of the electric field in thez direction give rise to
in-phase fluctuations of the potential for an electron and fo
hole, so that they can be treated as fluctuations of the po
tial for the indirect exciton center of mass. Charged impu
ties give rise to antiphase fluctuations of the potential for
electron and for a hole. Strong fluctuations due to char
impurities can result in breakup of the exciton and indep
dent localization of an electron and a hole in a local mi
mum of the random potential.11 Interfacial fluctuations give
rise to in-phase fluctuations of the potential for an elect
and a hole in single quantum wells; for an indirect excit
~electron–hole pair! in GaAs/AlxGa12xAs wells interfacial
fluctuations produce independent fluctuations of the poten
for an electron and a hole. Fluctuations of the electric field
thez direction are determined primarily by fluctuations of t
extent of the section where gate voltage drops. To red
such fluctuations to a minimm then1 layers should posses
good conductivity, and thei layer should be a good insulato
Then the region where gate voltage drops is clea
determined—it is thei layer.

Since fluctuations of the electric field in thez direction
are specific to indirect excitons in double quantum we
their relative contribution to the inhomogeneous broaden
d-
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of the indirect photoluminescence line can be estimated
comparing the widths of the direct and indirect photolum
nescence lines. In the GaAs/AlxGa12xAs double quantum
well studied the indirect photoluminescence line~6.5 meV
for Vg50.8 V! is even narrower than that of the direct ph
toluminescence line~14.7 meV in the direct regime with
Vg50 and 9.4 meV in the indirect regime withVg50.8 V!,
indicating that fluctuations of the electric field make a ne
ligibly small contribution to the broadening of the line. Th
quantum wells in the experimental structure are narrow
nm corresponds to 18 monolayers. In narrow wells interfa
fluctuations make the main contribution to inhomogeneo
broadening of the line. Thus, in the experimental dou
quantum well a fluctuation of the well width by one mon
layer with an infinite terrace produces a changedm ;5 meV
in the electron energy and;2 meV in the hole energy. The
finiteness of the terraces results in quantization of the e
tron and hole energies in the plane. This produces state
the entire energy interval from 0 todm . The observed width
of the indirect photoluminescence line corresponds todm

~Fig. 1a!. This confirms that interfacial fluctuations make th
dominant contribution to the broadening of the line. The
fore the large magnitude of the random potential in the
perimental GaAs/AlxGa12xAs double quantum wells is du
primarily to the small width of the quantum wells. The sha
of the photoluminescence line reflects the energy distribu
of excitons over local energy minima in the random pote
tial. The direct-photoluminescence line is probably broa
ened in part because the widths of the two quantum wells
different and the direct photoluminescence line includes t
spectrally unresolved lines from the two quantum wells.

In the experimental structure in the indirect regime bo
radiative and nonradiative recombination contribute to
recombination of indirect excitons. The observed decreas
the recombination rate with delay time~see, for example,
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1039JETP 88 (5), May 1999 Butov et al.
Fig. 1! is characteristic for both radiative and nonradiati
recombination of indirect excitons. The radiative recombin
tion rate of an exciton is proportional to the population of t
optically active 2D excitonic states~with quasimomenta
k<k05E /\c, wherec is the velocity of light in the medium!
and it increases with the extent of the wave function of
exciton center of mass in the plane, called the coherent
of the exciton ~the radiative recombination rate saturat
when the coherent length of the reciprocal of the wavelen
of the emitted light is reached!.22–26As a result of the spread
of the localization radius in a random potential, the radiat
recombination time of excitons is nonuniform over the pla
of the double quantum well. As a result, the radiative reco
bination rate decreases with increasing delay time, since
excitons with a large localization radius that are the first
recombine in the photoluminescence decay process.

Moreover, as the delay time increases, electrons
holes independently localized in the local minima of the ra
dom potential and having, as a result of the spatial separa
in the plane~in addition to separation in thez direction for
indirect electron–hole pairs!, a low radiative-recombination
rate make an increasingly larger contribution to the inten
of photoluminescence. Since the independently locali
electrons and holes with the smallest separation in the p
are the first to recombine in the process of photolumin
cence decay, the radiative recombination rate of indep
dently localized electrons and holes also decreases with
creasing delay time.11 In narrow double quantum wells
characterized by a low diffusion coefficient of indirect exc
tons, nonradiative recombination is determined by exci
transport toward nonradiative recombination centers.12,27–29

The decrease of the nonradiative recombination rate with
delay time is due to the monotonic decrease of the exc
diffusion coefficient. As a result, more and more localiz
excitons, which have not had enough time to reach the c
ters of nonradiative recombination and to recombine, p
dominate in the spectrum.

The magnetic-field and temperature dependences of
indirect-photoluminescence spectra and kinetics are
played in Figs. 1b, 1d and 2. The temperature dependenc
the indirect-photoluminescence spectra and kinetics in str
magnetic fields,B<12 T, is qualitatively the same as th
analogous dependence forB50. The corresponding initia
decay time of photoluminescence,t, and the integrated in
tensity of indirect photoluminescence,I PL , are shown in Fig.
3. The timet increases with magnetic field~Figs. 1d and 3a!
and decreases with increasing temperature~Fig. 2b, 3b, and
3c!.

The observed photoluminescence kinetics
GaAs/AlxGa12xAs double quantum wells is qualitatively dif
ferent from the kinetics in the B1-, B2-, and A1-class dou
quantum wells investigated: in contrast to GaAs/AlxGa12xAs
double quantum wells with weak disorder~A1 class!,21 in the
experimental GaAs/AlxGa12xAs double quantum wells a
sharp increase in the intensity of photoluminescence after
laser excitation pulse ceases is not observed; in contra
AlAs/GaAs double quantum wells~B1 class!,8,12 in the ex-
perimental GaAs/AlxGa12xAs wells a sharp decrease oft in
strong magnetic fields is not observed. The intensity of p
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toluminescence does not exhibit a sharp increase in the s
ied double quantum well with a large random potential af
the laser excitation pulse ceases because the large pote
smears the boundary between the optically active~with k
<k0) and passive (k.k0) excitonic states30, so that the pos-
sible sharp increase in the population of optically act
states does not result in a higher photoluminescence in
sity. The absence of a sharp decrease oft in strong magnetic
fields, which is observed in AlAs/GaAs double quantu
wells ~B1 class! and indicates the appearance of superfluid
of excitons,12 indicates the absence of collective effects
the studied double quantum wells with a large random
tential and a low binding energy of the indirect exciton~A2
class!, as expected~see Sec. 1!.

The observed monotonic increase of the lifetime with t
magnetic field is characteristic for radiative and nonradiat
single-exciton recombination in a random potential. T
change in the radiative lifetime of excitons with increasi
magnetic field is determined by the ratio of the increase
the oscillator strength of the exciton as a result of a decre
in the exciton radius31 and the decrease in the oscillat

FIG. 2. Time-integrated photoluminescence spectrum~a! and indirect pho-
toluminescence kinetics, measured at the maximum of the indirect line~b!,
as a function of temperature withVg50.8 V, Wex510 W/cm2, andB50.
The spectra and kinetics are shifted along the ordinate for clarity.
dashed line corresponds to the trailing edge of the 50 ns laser excita
pulse. The direct and indirect photoluminescence lines are labeled byD and
I, respectively.
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FIG. 3. Measured indirect-recombination timest
(j) and the integrated intensity of indirect pho
toluminescence together with the deduced rad
tive and nonradiative indirect recombination time
t r (s) andtnr (n) versus the magnetic field with
Vg50.8 V andWex510 W/cm2.
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strength of an exciton as a result of a decrease in the lo
ization radius of the exciton22–26 in a magnetic field as a
result of an increase in the mass of the magnetoexciton.31,32

The increase in the nonradiative lifetime of an exciton~de-
termined by transport toward nonradiative recombinat
centers! with the magnetic field is due to a decrease in
diffusion coefficient caused by an increase in the magneto
citon mass.33 A decrease of the diffusion coefficient wit
increasing magnetic field has also been observed for ind
excitons in AlAs/GaAs double quantum wells in weak ma
netic fields12 and for direct excitons in single
GaAs/AlxGa12xAs double quantum wells.34 We note that a
monotonic increase of the radiative and nonradiative l
times with increasing magnetic field is also characteristic
independently localized electrons and holes and is due
decrease of the carrier localization radius.

The method described in Ref. 12 was used to distingu
the radiative and nonradiative lifetimes. The radiative li
time t r can be directly extracted from the measured to
lifetime t and the time-integrated photoluminescence int
sity I PL . For single-exponential decay of photoluminescen
t r5(G/I PL)t, whereG is the generation rate of electron
hole pairs in double quantum wells~weak nonexponentiality
introduces negligible quantitative corrections12!. The quan-
tity G is unknown; to estimate it the quantum yield wi
parameters corresponding to maximumI PL was taken to be
1. Then G5I max and t r5(I max/I PL)t, where I max is the
maximum integrated photoluminescence intensity obser
in the experimental double quantum well withVg50.3 V
~Fig. 1a!. The formulat215t r

211tnr
21 was used to find the

nonradiative lifetimetnr using the measured value oft and
the calculated value oft r . The values oft r andtnr found in
this manner are shown in Fig. 3.

Note that the parameter dependence oft r found by the
method indicated above is correct ifG does not depend on
the given parameter. This condition was satisfied for
AlAs/GaAs double quantum wells studied in Ref. 12. Ho
ever, it is not satisfied in the present investigations
GaAs/AlxGa12xAs double quantum wells. The photon e
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ergy for photoexcitation is only 100 meV lower than th
energy of the Al0.35Ga0.65As barrier, so that as a result of th
Franz–Keldysh effect and the tails of the density of state
Al xGa12xAs, the absorption in the barrier layers was su
stantial. The collection of carriers generated in the bar
layers to double quantum wells made an appreciable co
bution to G, comparable to the generation in GaAs laye
Thus the increase in the total photoluminescence inten
with a small applied gate voltage~Fig. 1! is due to an in-
crease inG as a result of the drift of carriers generated in t
barrier layers~this effect is absent for photoexcitation wit
photon energy much less than the gap width in the bar
layers!. The drift of carriers generated in the barrier layers
double quantum wells can depend on the magnetic field
temperature. For this reasonG is not independent of the pa
rameters, and the method described above for finding
dependence oft r on the magnetic field and temperature fro
the measured values oft and I PL is not entirely correct for
the present experiment. Moreover, an error in estimating
quantum yield for parameters corresponding to maxim
I PL will enter in the absolute value oft r andtnr as well as in
the magnetic-field and temperature dependences oftnr .
Nonetheless the method employed makes it possible to
low the qualitative variations oft r andtnr as a function of
magnetic field and temperature.

It is evident in Fig. 3 thatt r is virtually independent of
the magnetic field andtnr increases monotonically with th
field. This corresponds to the single-exciton behavior
scribed above. As temperature increases,t r increases andtnr

decreases~Fig. 3; the opposing behavior oft r andtnr could
cause a weak nonmonotonicity of the temperature variati
of t, and the possible increase oft at low temperatures falls
within the experimental error, Figs. 2 and 3!. The decrease in
tnr with increasing temperature is characteristic for bo
single-exciton recombination and recombination of indep
dently localized electrons and holes and is due to the
crease in the diffusion of excitons~electrons and holes! to-
ward nonradiative recombination centers as a result of t
thermal activation from local minima of the random pote
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1041JETP 88 (5), May 1999 Butov et al.
tial. The increase int r with temperature is characteristic fo
excitonic recombination because the population of optica
active excitonic states decreases~for a Boltzmann distribu-
tion of excitons the fraction of optically active excitons wi
k<k0 is 12exp(2E0 /kT), where E05\2k0

2/2m;1 K; for
T@E0 the Boltzmann distribution leads to a linear increa
of the radiative lifetime of excitons with increasin
temperature!.22–26However, the observed increase oft r with
temperature contradicts the model of recombination of in
pendently localized electrons and holes, on the basis
which an increase in temperature should enhance the o
lapping of the electron and hole wave functions due to th
delocalization. Hence it follows that the random potential
the double quantum well under study is not strong enoug
break up excitons, and the fraction of independently loc
ized electrons and holes is low. Note that the magnetic-fi
and temperature dependences oft r and tnr in the studied
GaAs/AlxGa12xAs double quantum well correspond qualit
tively to the analogous dependences for AlAs/GaAs we
~B1 class! in weak magnetic fields.12 In both cases thes
dependences correspond to single-exciton recombination

The photoluminescence spectra and kinetics of indir
excitons are virtually independent of the exciton dens
fixed by the laser excitation densityWex ~Fig. 4!. For Wex

510 W/cm2 the density of indirect excitons with lifetime
t5100 ns is estimated to be several times 1010 cm22. As
Wex increases, a shift of the indirect exciton line in the d
rection of high energies is observed. This behavior co
sponds to the theoretically predicted increase of the ene
of indirect excitons with increasing density18,20 and is ex-
plained by the repulsive dipole–dipole interaction betwe
indirect excitons for low exciton densities and by the ene
shift for high electron–hole densities due to the electric fi
between the separated electron and hole layers. Moreo
since the degeneracy of the zero-dimensional excitonic s
in a local minimum of the random potential is finite~neglect-
ing the exciton-exciton interaction, the degeneracy
;S/aB

2 , whereS is the area of the local minimum andaB is
the Bohr radius of an indirect exciton!, an increase of the
exciton density results in an increase of the average exc
energy. This effect should also contribute to the obser
increase in the indirect-exciton energy with density.

A small decrease of the recombination time of indire
excitons is observed with increasingWex ~Fig. 4b!. This be-
havior is characteristic for single-exciton recombination in
random potential: the exciton localization radius increa
with exciton density ~since at low density excitons ar
strongly localized in deep local minima of the potentia!.
This decreases both the radiative-recombination time
excitations22–26 and the nonradiative-recombination time
excitons due to transport toward nonradiative-recombina
centers.

4. EVOLUTION OF PHOTOLUMINESCENCE SPECTRA IN
DIRECT AND INDIRECT REGIMES

In this section we examine the temporal revolution of t
photoluminescence spectra. This is the evolution of the
ergy distribution of excitons~electron–hole pairs! with
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weight proportional to the radiative-recombination probab
ity. The dependence of the photoluminescence spectra on
time delay is shown in Fig. 5a and 5b, respectively, for t
direct and indirect regimes. After the laser excitation pu
ends, both the direct-photoluminescence line in the dir
regime and the indirect-photoluminescence line in the in
rect regime shift monotonically in the direction of low ene
gies as the time delay increases~Fig. 5!. Similar behavior is
also observed in strong magnetic fields. The shift of the p
toluminescence line with increasing time delay is typic
both for excitonic recombination and for recombination
independently localized electron–hole pairs as well as
radiative and nonradiative recombinations. In the first pla
as the delay increases, the average energy of photoex
excitons ~electron–hole pairs! in a random potential de
creases as a result of the energy relaxation of the carr
excitons ~electrons and holes! migrate in the plane of the
double quantum well in search for lower-energy loc
minima of the potential with the emission of acous

FIG. 4. Time-integrated photoluminescence spectrum normalized to th
ser excitation density~a! and indirect-photoluminescence kinetics measur
at the maximum of the indirect line~b! as a function of the laser excitation
density withVg50.8 V, T51.3 K, andB50 and 12 T. The spectra an
kinetics are shifted along the ordinate for clarity. The dashed line co
sponds to the trailing edge of the 50 ns laser excitation pulse. The direc
indirect photoluminescence lines are labeled byD and I, respectively.



in

n-

als
d

re
es
re

s a
ics
e
the
e.
es

1042 JETP 88 (5), May 1999 Butov et al.
FIG. 5. Direct-photoluminescence spectrum
the direct regime withVg50 ~a! and the
indirect-photoluminescence spectrum in the i
direct regime withVg50.8 V ~b! versus the de-
lay time,T51.3 K, B50, andWex510 W/cm2.
The spectra were measured in the time interv
shown in panels c and d. The time-integrate
spectra are shown in the top. All spectra a
scaled to roughly the same intensity. The curv
of photoluminescence kinetics versus energy a
shown for the same parameters~c, d!; the ener-
gies of the detected signal are shown in panel
and b by dashed lines. The spectra and kinet
are shifted along the ordinate for clarity. Th
dashed line in panels c and d corresponds to
trailing edge of the 50 ns laser excitation puls
The direct and indirect photoluminescence lin
are labeled byD and I, respectively.
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phonons. This mechanism of energy relaxation of exciton
a random potential was theoretically examined in Ref.
and has been observed for indirect excitons in a double q
tum well.10,36 In the second place, as the delay time
creases, the average energy of the excitons~electron–hole
pairs! in a random potential decreases because the hig
energy excitons ~independently localized electrons an
holes! have higher radiative and nonradiative recombinat
rates. As the energy of the excitons in a random poten
increases, their localization radius increases,37 which results
in a higher radiative recombination rate22–26and higher non-
radiative recombination rate, due to transport of excitons
ward nonradiative-recombination centers. For independe
localized electron–hole pairs, the higher-energy pairs a
have a higher recombination rate because of their large
calization radius and the corresponding larger overlap
tween the electron and hole in the plane.11

Another aspect of the dependence of the photolumin
cence spectra on the time delay is the energy dependen
the photoluminescence kinetics, shown in Figs. 5c and
As energy decreases, the photoluminescence decay bec
slower and slower, which corresponds to the time dep
dence of the spectra~Fig. 5a and 5b! and was discusse
above.

As a result of the inhomogeneous broadening of the
rect and indirect photoluminescence lines, for the appropr
gate voltages a mixed regime in which the direct and indir
photoluminescence energies overlap can be obtained. Su
regime of energy resonance between direct and indirect
citons was considered in Ref. 38 in a study of the photo
minescence of zero-dimensional excitonic states in the lo
minima of the random potential~natural quantum dots!. In
our double quantum well the mixed regime appears forVg

;0.220.5 V; this is evident from theVg dependence of the
photoluminescence spectra~Fig. 1!. In the studied double
quantum well, characterized by a larger width of the dire
in
5
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photoluminescence line than the width of the indirect line
specific energy dependence of the photoluminescence k
ics is observed in the mixed regime~Fig. 6!. This depen-
dence is different from the monotonic decrease of the rec
bination rate with decreasing energy, as is observed in
direct and indirect regimes. Specifically, in the mixed regim
the recombination rate on the initial times of photolumine
cence decay depends nonmonotonically on the ene
reaching a minimum at energies corresponding to indir
photoluminescence~kinetics 4–6 in Fig. 6b!. The high re-
combination rate of direct photoluminescence at energies
low the indirect-photoluminescence energy~8, 9 in Fig. 6b!
indicates that the electron–hole distance in the plane is
than the distance in thez direction. Since the latter distanc
is ;11 nm, the electron–hole distance in the plane is l
than the radius of a direct exciton ('10 nm) and especially
an indirect exciton, which has a larger radius as a resul
the lower binding energy ('20 nm).7 A small electron–hole
distance in the plane indicates that excitonic recombina
predominates over recombination of independently locali
electrons and holes.

5. CONCLUSIONS

We have investigated the kinetics of indirect photolum
nescence in GaAs/AlxGa12xAs double quantum wells char
acterized by a random potential with a large amplitude~the
width of the photoluminescence line is comparable to
binding energy of an indirect exciton! and a large distance
between the electron and hole layers (d;11 nm, which is
greater than the magnetic length forB*5.5 T! in magnetic
fields B<12 T at low temperaturesT>1.3 K. It was found
that the indirect recombination timet increases with the
magnetic field and decreases with temperature. Analysi
the variation oft and the total intensity of photolumines
cence gave the radiative and nonradiative indirect recom
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nation times,t r andtnr . It was found thattnr increases with
the magnetic field and decreases with increasing tempera
while t r is essentially independent of the magnetic field a
increases with temperature. It was shown that the kinetic
indirect photoluminescence corresponds to the single-exc
recombination in the presence of a random potential in
plane of the double quantum well. The variation of the no
radiative recombination time was discussed in terms of
variation of the transport of indirect excitons toward non
diative recombination centers, and the variation of the rad
tive recombination times was discussed in terms of the va
tion of the population of optically active excitonic states a
the localization radius of indirect excitons. The photolum
nescence kinetics of indirect excitons, which was observe
the studied GaAs/AlxGa12xAs double quantum wells with a
random potential having a large amplitude, is qualitativ
different from the photoluminescence kinetics of indirect e
citons in AlAs/GaAs and GaAs/AlxGa12xAs double quan-
tum wells when the amplitude of the random potential
small.

The temporal evolution of the photoluminescence sp
tra in the direct and indirect regimes was examined. It w
found that after the laser excitation pulse ceases both
direct photoluminescence line in the direct regime and

FIG. 6. Energy dependence of the photoluminescence kinetics in the m
regime corresponding to overlapping of the direct and indirect photolu
nescence lines (Vg50.4 V! at T51.3 K, B50, andWex510 W/cm2 ~b!.
The energies of the detected signal are shown in panel a, which show
time-integrated spectrum. The spectra are shifted along the ordinate for
ity. The dashed line in panel b corresponds to the trailing edge of the 5
laser excitation pulse.
re,
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indirect photoluminescence line in the indirect regime sh
monotonically in the direct of lower energies as the de
time increases. It was shown that the evolution of the pho
luminescence spectra corresponds to excitonic recombina
in a random potential and is determined by the energy re
ation of excitons and by the energy dependence of the
combination rate.
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Yu. E. Lozovik, Zh. Éksp. Teor. Fiz.80, 1488 ~1981! @Sov. Phys. JETP
53, 763 ~1981!#.

16Y. Kuramoto and C. Horie, Solid State Commun.25, 713 ~1978!.
17T. Fukuzawa, S. S. Kano, T. K. Gustafson, and T. Ogawa, Surf. Sci.228,

482 ~1990!.
18D. Yoshioka and A. H. MacDonald, J. Phys. Soc. Jpn.59, 4211~1990!.
19X. M. Chen and J. J. Quinn, Phys. Rev. Lett.67, 8895~1991!.
20X. Zhu, P. B. Littlewood, M. S. Hybersten, and T. M. Rice, Phys. Re

Lett. 74, 1633~1995!.
21L. V. Butov, A. Imamoglu, A. V. Minstev, K. L. Campman, and S. C

Gossard, Phys. Rev. B59, 1625~1999!.
22J. Feldman, G. Peter, E. O. Go¨bel, P. Dawson, K. Moore, C. Foxon, an

R. J. Elliot, Phys. Rev. Lett.59, 2337~1987!.
23E. Hanamura, Phys. Rev. B38, 1228~1988!.
24L. C. Andreani, F. Tassone, and F. Bassani, Solid State Commun.77, 641

~1991!.
25B. Deveaud, F. Clerot, N. Roy, K. Satzke, B. Sermage, and D. S. Kat

Phys. Rev. Lett.67, 2355~1991!.
26D. S. Citrin, Phys. Rev. B47, 3832~1993!.

ed
i-

the
ar-
ns



B

nd

. B

1044 JETP 88 (5), May 1999 Butov et al.
27F. Minami, K. Hirata, K. Era, T. Yao, and Y. Matsumoto, Phys. Rev.
36, 2875~1987!.

28M. Maaref, F. F. Charfi, D. Scalbert, C. Benoir a la Guillaume, a
R. Planet, Phys. Status Solidi B170, 637 ~1992!.

29G. D. Gilliland, A. Antonelli, D. J. Wolford, K. K. Bajaj, J. Klem, and
J. A. Bradley, Phys. Rev. Lett.71, 3717~1993!.

30W. Zhao, P. Stenius, and A. Imamoglu, Phys. Rev. B56, 5306~1997!.
31I. V. Lerner and Yu. E. Lozovik, Zh. E´ ksp. Teor. Fiz.78, 1167 ~1980!

@Sov. Phys. JETP51, 588 ~1980!#.
32Yu. E. Lozovik and A. M. Ruvinski�, Zh. Éksp. Teor. Fiz.112, 1791
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Inhomogeneous strains in semiconducting nanostructures
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We have developed a numerical technique for calculating inhomogeneous strains in stressed
semiconducting nanostructures, such as quantum wires and dots manufactured by nanolithography
from stressed InGaAs/GaAs quantum wells. The technique is based on solving a linear
problem of elasticity theory by the Green’s function method and presumes a lack of defects and
dislocations in nanostructure heterojunctions. Spatial distributions of strain tensor
components and shifts of electron and hole potentials in a nanostructure due to the strain have
been calculated. ©1999 American Institute of Physics.@S1063-7761~99!02705-5#
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1. INTRODUCTION

In open nanostructures, such as quantum wires and
which are manufactured using nanolithography on the s
faces of samples containing InGaAs/GaAs quantum well
small depths, stressed InGaAs layers give rise to large in
mogeneous strains determined by shapes of lithographic
defined nanostructures. Partial elastic relaxation of stres
layers has considerable effect on spectra and wave func
of electrons and holes, and this offers fresh opportunities
band-gap engineering and control over wave functions
carriers.1–3 The present paper reports a technique develo
for calculating inhomogeneous strain fields in stressed na
structures, and calculations of strain distributions and res
ing shifts of electron and hole levels in InGaAs/GaAs qua
tum wires and cylindrical quantum dots.

2. THEORETICAL MODEL

In what follows, we will assume that the system und
consideration is dislocation-free, and the equations of e
ticity theory apply at nanometer scales. We suggest an
tremely efficient approach to strain calculations based
Green’s functions of elasticity theory.4 This method explic-
itly takes into account the piecewise-constant form of ela
parameters of semiconducting nanostructures, which usu
consist of homogeneous, epitaxially connected pieces
variety of semiconductors. We will prove that the strain te
sor can be expressed in regions of constant elastic param
as a functional of the forces at the boundaries of these
gions, which allows one to reduce the problem of elastic
theory to an integral equation at the interfaces between
various fragments of a nanostructure.

We model elastic properties of fragments in the appro
mation of an isotropic elastic medium, whose Green’s fu
tions can be expressed in explicit form.4 Luckily, the anisot-
ropy of semiconductors in III-V nanostructures, for examp
InGaAs/GaAs, is fairly low. In particular, the difference b
tween elastic moduliC12 andC44 in both GaAs and InGaAs
is small:
1041063-7761/99/88(5)/5/$15.00
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C122C44

C12
'0.057!1.

In the approximation of an isotropic medium, the ela
ticity problem is fully characterized by two elastic constan
namely, Young’s modulusE and the Poisson coefficients.
In fact, we only require ratios of Young’s moduli.

The source of stress in a nanostructure is the differe
between the lattice constants of GaAs and InGaAs. In
calculations we use the following low-temperature formu
for the lattice constants~measured in nanometers!:5

aGaAs~T~K!!50.56532516.8631026 T,

aInAs~T~K!!50.6058314.5231026 T,

and linear interpolation for InGaAs.
For example, in an unbounded two-dimension

In0.1Ga0.9As quantum well on a GaAs substrate, the diffe
ence between the lattice constants leads to the following
mogeneous uniaxial strain in the InGaAs well layer, pr
vided that the epitaxial interfaces are matched at the ato
level:

uxx
(0)5uyy

(0)5
aGaAs2aInGaAs

aInGaAs
[2d,

uzz
(0)52

2s

12s
uxx

(0)5
2s

12s
d,

uxy
(0)5uyz

(0)5uzx
(0)50. ~1!

The GaAs barrier layers are unstrained. For finite fragm
sizes, compression is partially relaxed in InGaAs, and
strain becomes inhomogeneous and encompasses GaA
gions.

Consider the simplest case of dislocation-free match
between two fragments of a semiconducting nanostruc
V1 andV2 along some surfaceS12. If the equilibrium lattice
constantsa1 anda2 of the two fragments are different, bot
are strained owing to their mutual interaction on the int
5 © 1999 American Institute of Physics
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face. We denote the surface force on the first fragment du
the second byg12[g. By Newton’s third law,g1252g21

[2g.
In the general case, strains also lead to displacem

and rotations of fragments as a whole. A fragment’s arbitr
displacement~due to strains! much smaller than its size ca
be expressed as

u~P!5u0~P!1tcm1V3~r P2r cm!1ud~P!, ~2!

whereu0(P) is the initial equilibrium displacement of cell
in the unstrained fragment,tcm andV are the shift and rota
tion angle of the fragment as a whole,r cm is the center-of-
mass coordinate of the fragment,ud(P) is the purely defor-
mation displacement, which is a functional of the surfa
forcesg:

ui
d~P!5E

S
Ui j

g ~P,P8!gj~P8!dSP8 . ~3!

In this paper, we show how to calculateUi j
g (P,P8), the ker-

nel of the functional that relates strain displacements i
homogeneous fragment to the forces applied to its surfacS.

The condition of the defect-free matching between
fragments at each point of surfaceS12 can be written

u(1)~P!5u(2)~P!, ~4!

where

u(1)~P![u0
(1)~P!1tcm

(1)1V(1)3~r P2r cm
(1)!

1E
S
Ug(1)~P,P8!g~P8!dSP8 ,

u(2)~P![u0
(2)~P!1tcm

(2)1V(2)3~r P2r cm
(2)!

2E
S
Ug(2)~P,P8!g~P8!dSP8 .

Note that the different signs in front of the integrals are d
to the definitiong12[g andg2152g12[2g.

For a time-independent stress constant, the total sur
force and torque on each fragment should be zero:

E
S
gi~P8!dSP850, E

S
« i j gr j~P8!gg~P8!dSP850. ~5!

In numerical calculations, it is convenient to replace integr
with sums over small surface elements.

Without a loss of generality, one can single out one fra
ment, for example the first, and settcm

(0)50 and V(1)50.
Suppose that the surfaceS12 is broken up intoNS elements;
then Eqs.~4! and ~5! yield 3NS16 equations for the force
g(P8) ~3NS unknown quantities!, tcm

(2) , andV(2) ~another six
unknowns!. Solving these equations, one can determine
surface forcesg(P8), and given these quantities an
Ui j

g(n)(P,P8), n51, 2, for arbitrary fragment pointsP and
P8 on the surfaceS12, one can calculate the displacement
an arbitrary point inside the fragment.

We now describe the technique for constructing the k
nel Ui j

g (P,P8). We fill the space outside the fragment und
consideration with the same material and apply the for
f(P8) to points P8 on the surfaceS in this homogeneous
to

ts
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e

e
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e
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r
s

elastic medium. The displacements caused by these fo
can be calculated using the known expressions for
Green’s functions for an unbounded, homogeneous ela
medium:4

ui~P!5E
S
Ai j ~P,P8! f j~P8!dSP8 ,

Ai j ~P,P8![Ai j ~R5r P2r P8!

5
1

8pE

11s

12s

~324s!d i j R
21RiRj

R3 , ~6!

where E is Young’s modulus ands is the Poisson coeffi-
cient. The strain tensor

ui j ~r !5
1

2 S ]ui

]r j
1

]uj

]r i
D

and the stress tensor

s i j 5
E

11s S ui j 1
s

122s
ull d i j D ,

are obviously also known functionals off(P8).
The forces acting at pointsP8 on a fragment~defined by

surfaceS! of an unbounded elastic medium equal, by defi
tion,

gi
( in)~P8!5s i j ~P!nj~P8!, P→P8, ~7!

wherenj (P8) are the components of the unit normal to t
surfaceS at pointP8, andP is an interior point of the frag-
ment. Just likeui j and s i j , the distribution of forcesg(in)

also becomes a known functional off(P8):

gi
( in)~P8!5E

S
Bi j ~P8,P9! f j~P9!dSP9 . ~8!

We emphasize that the forcesg( in)(P8) are different
from f(P8), which can easily be verified by considering th
special case in which the applied forcesf are nonvanishing
only at certain points on the surfaceS. Nonetheless, the
strains generated by these forces, and henceg( in), are gener-
ally nonvanishing over the entire surface.

Since the elastic interaction is short-range, the strain
the interior of an unbounded elastic medium due to for
f(P8) is obviously the same as that in a free body of t
same shape and elastic properties acted upon by forcesg( in).

Thus, the problem of the strain in a free body acted up
by surface forcesg(P8) can be solved in two stages. Firs
we calculate the distribution of forcesf(P8) that satisfies the
equation

E
S
Bi j ~P8,P9! f j~P9!dSP95gi~P8!, ~9!

then, given Eq.~6!, we calculate the strain in the interior o
the elastic medium, which is identical to the desired strain
the free body.

Since we are interested in time-independent strains,
distributions of forcesf and g should yield vanishing tota
forces and torques. Therefore, in addition to Eq.~5!, a simi-
lar condition forf should be satisfied:
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FIG. 1. Cross sections of InGaAs/GaAs wires
width Lx545 nm with strain fields calculated fo
four different combinations of the thicknesses of th
cap barrier layer,Lcap, quantum well layer,Lz , and
the etch depth in the substrate barrier layer,Lb . The
quantitiesLcap, Lz , andLb equal, respectively,~a!
10, 5, and 0 nm;~b! 10, 5, and 35 nm;~c! 0, 5, and
0 nm; ~d! 0, 5, and 35 nm. In order to visualize th
calculated strain tensor components, the verti
displacements are multiplied by a factor of 200.
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n a
E
S
f i~P8!dSP850, E

S
« i jk~r j~P8!2r j

cm! f k~P8!dSP850.

~10!

Equations~5! and ~10! can be treated as scalar produc
of vectors in the configuration space of surface force dis
butions:

~g–F( i )!50, ~g–M ( i )!50, i 51, 2, 3, ~11!

where the vectorsF( i ) and M ( i ) have the component
F j

( i )(P8)5d i j , Mk
( i )(P8)5« i jk(r j (P8)2r j

cm), and the scalar
product of vectorsa andb is defined by

~a–b!5E
S
ak~P8!bk~P8!dSP8 . ~12!

These conditions indicate that out of the entire config
ration space of surface force distributions, only the subsp
orthogonal to the hyperplaneFM defined by the vectorsF( i )

and M ( i ), i 51, 2, 3, is interesting from the standpoint
physics.

Note that for an arbitrary distribution off, even if the
total forces and torques are zero, the resulting distributi
of g should be orthogonal to the hyperplaneFM, since these
are by definition the forces on an immobile fragment. T
means that operatorBi j (P8,P9) in Eq. ~8! transforms the
entire configuration space to the orthogonal complemen
the hyperplaneFM; hence, it is degenerate. Therefore, t
matrix Bi j (P8,P9) cannot be directly inverted.

This difficulty, however, can easily be eliminated ifB in
Eq. ~8! is replaced with an operator equivalent over the s
space of vanishing total forces and torques:

B05PFM1~12PFM !B~12PFM !, ~13!

where PFM is the projection operator onto the hyperpla
FM. The operatorB0 is nondegenerate. When integratio
over the surface is replaced with summation overNS small
areas,B0 becomes a nondegenerateNS3NS matrix, which
can be inverted using standard techniques. The matrix
tained by this method yields a solution of Eq.~8! in the form
f5B0

21g. Substituting this expression forf into u5Af in Eq.
~6!, we obtain the desired relationship between the str
field u in an elastic body and the forcesg on its surface:

u5Af5AB0
21g. ~14!

A comparison of this expression and Eq.~3! yields the final
expression forUi j

g (P,P8):
i-

-
ce

s

s

of

-

b-

in

Ui j
g ~P,P8!5 (

k,P9
Aik~P,P9!~B0

21!k j~P9,P8!. ~15!

At the beginning of this section, we discussed the cas
two fragments abutting one another. This approach can
ily be generalized to an arbitrary structure composed ofNr

fragments joined atNs interfaces.

3. RESULTS FOR InGaAs/GaAs STRUCTURES; DISCUSSION

We now demonstrate the opportunities offered by
suggested technique by calculating strain fields in spec
semiconducting structures, namely quantum wires and cy
drical quantum dots. The cross sections of these struct
are shown in Fig. 1. The strain tensor components in qu
tum wires are independent of axial location, and in cylind
cal quantum dots they are independent of the azimu
angle. Under these conditions, the formulas derived in
previous section can be simplified. The resulting integ
equations become one-dimensional in this case and can
ily be solved using numerical techniques.

Figure 1 illustrates our calculations for cross sections
quantum wires based on In0.1Ga0.9As/GaAs heterostructure
with quantum wells near their surfaces. In order to visual
the calculated strain fields, the vertical displacements sho
in the graph are magnified by a factor of 200. The values
elastic parameters used in our calculations~the Poisson co-
efficient s and the relative change in Young’s modulusE!
are given in Table I. We have analyzed structures with va
ous combinations of the upper cap GaAs layer thickn
Lcap, InGaAs quantum well thicknessLz , and the depthsLb

of etched grooves in GaAs under the quantum well, give
common lateral size of the wire ofLx545 nm. The diagrams

TABLE I. Material parameters of GaAs and In0.1Ga0.9As at low tempera-
tures used in calculations.

GaAs In0.1Ga0.9As

s 0.31 0.31
E, arb. units 1 0.95
a, nm 0.56534 0.56939
2d3103 0 7.11295
ac , eV 27.2 27.0
av , eV 1.2 1.2
dv , eV 1.9 1.8
bv , eV 4.5 4.4
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FIG. 2. Changes in the band gap width
the centers of the quantum well layers i
strained In0.1Ga0.9As/GaAs heterostructure
~a! quantum wires and~b! quantum dots,
plotted as functions of lateral sizes o
nanostructures calculated for four differ
ent configurations shown in Fig. 1
~squares correspond to the configuratio
in Fig. 1a, black squares to Fig. 1b, tri
angles to Fig. 1c, and black triangles t
Fig. 1d!.
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clearly show that the strain relaxation in the InGaAs lay
peaks near the vertical walls defining the wires. Moreover
small thicknesses of the cap barrier layer, the quantum w
layer as a whole is bent~Figs. 1c and 1d!. One can see tha
the GaAs cap layer leads to additional compression of
InGaAs quantum-well layer. As will be shown below, th
can lead to extremely abrupt changes in band paramete
structures under discussion. The solutions for quantum
are similar to those for quantum wires, the only differen
being larger relaxation amplitudes in InGaAs quantum d
than in the wires. This is to be expected, due to the gre
relative surface exposure of the quantum dots.

The shift of the semiconductor band gap,

Dg5Dc2Dv , ~16!

can be expressed in terms of the strain tensor compon
The shifts of the conduction band bottom and valence b
top are determined by the formulas

Dc5ace, ~17!

Dv5ave1Abv
2

2
e1

21dv
2e2

2, ~18!

respectively, where

e5Tr ui j ,

e1
25~uxx2uyy!

21~uyy2uzz!
21~uzz2uxx!

2,

e2
25uxy

2 1uyz
2 1uzx

2 .
s
t
ll

e

of
ts

e
s
er

ts.
d

The deformation potential constantsac , av , bv , and dv
~Ref. 5! are listed in Table 1.

Figure 2 plots calculations of renormalization of th
band gap widthDg at theG-point in the middle of the quan
tum well InGaAs layer versus nanostructure lateral s
~quantum wire widthLx and cylindrical dot diameterD, re-
spectively!. For each quantum object, the renormalization
the band gap width is given for the four nanostructure cr
sections shown in Fig. 1.

The valueDg50 in Fig. 2 corresponds to complete ela
tic relaxation in an InGaAs layer, whereas the value

Dg
(0)5~ac2av!Tr u(0)2ubv~uxx

(0)2uzz
(0)!u ~19!

@see also Eq.~2!#, which equals approximately 40 meV i
In0.1Ga0.9As/GaAs structures atT52 K and is shown in Fig.
2 as a dashed horizontal line, corresponds to the t
uniaxial strain in a stressed In0.1Ga0.9As quantum well on an
unbounded GaAs substrate. The closer the calculated ch
in the gap width to zero, the greater the elastic relaxation
the InGaAs layer; on the contrary, the closer the change i
Dg

(0) , the greater the elastic stress in the InGaAs layer.
Of special note is the difference between the curves

structures with and without a cap GaAs layer on top of
InGaAs quantum well~squares and triangles in Fig. 2, re
spectively!. This difference is considerably greater atLx ,
D,100 nm and increases to 15–20 meV. This is due
greater elastic relaxation in structures without the GaAs
layer owing to the larger bend, which can be seen in Fig
As expected, the amplitudes of the gap width variations
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the quantum dots are much greater than in the quan
wires.

A comparison of our calculations and data derived fro
measurements of photoluminescence spectra of quan
wires and dots fabricated lithographically from InGaA
GaAs heterostructures6 indicates that the red shift of the ex
citonic luminescence spectrum with lateral sizes decrea
to Lx , D'100 nm can be attributed to the partial elas
relaxation of the quantum well layer. In structures w
smaller lateral sizes, the red shift related with the strain
be high, but is offset by a large blue shift due to the s
quantization of carriers. Note that a correct quantu
mechanical description of the system should take into
count nonuniform variations in the positions of band edg
due to the relaxation of elastic strains in semiconduct
nanostructures, as well as the large difference between
dielectric constants of semiconductors and vacuum.
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Emission of charged particles by a charged black hole
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The probability of charged particle production by the electric field of a charged black hole
strongly depends on the particle energy. This probability is found in the nonrelativistic and
ultrarelativistic limits. The range of values for the mass and charge of a black hole in
which the mechanism of emission discussed here dominates over the Hawking mechanism is
indicated. © 1999 American Institute of Physics.@S1063-7761~99!00105-5#
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1. The problem of particle production by the electr
field of a black hole has been repeatedly discussed.1–6 The
probability of this process was estimated in these treatm
using, in one way or another, earlier results7–9 for the case of
an electric field constant over all space. This approximat
would seem to be quite natural in relation to sufficien
large black holes, for which the gravitational radius sign
cantly exceeds the Compton wavelength of the particlel
51/m. ~In the present paper we employ a system of units
which \51 andc51; Newton’s gravitational constantk is
written explicitly.! However, as we will shortly see, gene
ally the constant-field approximation is inadequate he
since it does not reflect several essential features of the p
lem.

It is convenient to begin the discussion with the proble
of particle production by a constant electric field. Here and
what follows we will limit ourselves to the case of electro
and positron production, primarily because the emiss
probability is maximized for these lightest charged particl
Moreover, the concept of the Dirac sea makes it possibl
the case of fermions to do without second quantization, t
making our reasoning transparent.

To calculate the principal exponential dependence of
effect, it is sufficient to limit ourselves to a simple approa
originating in Ref. 7~see also the textbook in Ref. 10!. In the
potential2eEz of a constant electric fieldE, the ordinary
Dirac gap~Fig. 1a! tilts ~see Fig. 1b!. As a result, a particle
that had a negative energy in the absence of the field can
tunnel through the gap~see the dashed line in Fig. 1b! and go
to infinity as an ordinary particle. The hole created in th
way is nothing but an antiparticle. Elementary calculatio
lead to the well-known result for the particle productio
probability:

W;expH 2
pm2

eE J . ~1!

This simple derivation clearly explains important pro
erties of the phenomenon. First, the action inside the ba
does not change when the dashed line in Fig. 1b is shifted
or down, and it is for this reason that Eq.~1! is independent
of the energy of the particles produced. Moreover, for
external field to be considered constant, it must vary o
8451063-7761/99/88(5)/5/$15.00
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slightly along the path inside the barrier. However, the len
of this path is not directly related to the Compton wavelen
of the particle. In particular, for an arbitrarily weak field th
path inside the barrier becomes arbitrarily long.

Thus, one can expect that the constant-field approxim
tion generally cannot be used in the problem of particle p
duction by a charged black hole and that the probability
particle production in this problem is strongly energ
dependent. The explicit form of this dependence is fou
below. In this paper we will limit ourselves to the case of
nonrotating black hole.

2. We start the solution of the problem by calculatin
the action inside the barrier. The metric of a charged bla
hole is well known:

ds25 f dt22 f 21dr22r 2~du21sin2 u df2!, ~2!

where

f 512
2kM

r
1

kQ2

r 2
, ~3!

with M andQ the mass and charge of the black hole, resp
tively. The equation for the particle 4-momentum in the
coordinates is

f 21S e2
eQ

r D 2

2 f p22
l 2

r 2
5m2, ~4!

wheree and p are the energy and radial momentum of t
particle, respectively. We assume that the particle chargee is
of the same sign as the black-hole chargeQ, attributing the
charge2e to an antiparticle.

Clearly, the action inside the barrier is minimized wh
the orbital angular momentuml is zero. It is evident there-
fore ~and this will be demonstrated in the next section e
plicitly ! that as a result of summation overl the s state de-
termines the exponential factor in the total probability of t
process. Thus, for the time being we limit ourselves to
case of purely radial motion. The equation for the Dirac g
at l 50 is

e6~r !5
eQ

r
6mAf . ~5!
© 1999 American Institute of Physics
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FIG. 1.
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Figure 2 depicts the curve representing this dependence
is well known,11 at the horizon of a black hole, i.e., atr
5r 15kM1Ak2M22kQ2, the gap vanishes. Then, asr in-
creases, the lower boundary of the gape2(r ) decreases
monotonically, tending asymptotically to2m. The upper
branche1(r ) at first generally increases, and then decrea
tending asymptotically tom.

Figure 2 shows that the particles of the Dirac sea wh
coordinater exceeds the gravitational radiusr 1 and whose
energye lies betweenm ande2(r ) tunnel through the gap to
infinity. In other words, a black hole loses its charge a
result of this effect by emitting particles with the same si
of the chargee as that ofQ. Clearly, the phenomenon take
place only if

eQ

r 1
.m. ~6!

For an extreme black hole, withQ25kM2, the Dirac
gap looks somewhat different~see Fig. 3!: as Q2 tends to
kM2, the position of the maximum of the curvee1(r ) tends
to r 1 , and the value of the maximum tends toeQ/r 1 . It is
obvious, however, that qualitatively the situation is the sam
Thus, although an extreme black hole has a zero Hawk
temperature and, correspondingly, gives off no thermal
diation, it still produces charged particles due to the effec
question.

In the general caseQ2<kM2 the doubled action inside
the barrier in the exponent for the particle production pro
ability is

2S52E
r 1

r 2
dr up~r ,e!u

52E
r 1

r 2 dr r

r 222kMr1kQ2

3A2p0
212~eeQ2km2M !r 2~e22km2!Q2 , ~7!

FIG. 2.
As

s,

e
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wherep05Ae22m2 is the momentum of the emitted partic
at infinity, and the turning pointsr 1,2 are, as usual, the root
of the quadratic polynomial under the radical; here we
interested in the energy intervalm<e<eQ/r 1 . Of course,
the integral can be found explicitly, although this requir
doing tedious calculations. The result, however, is simple

2S52p
m2

~e1p0!p0
@eQ2~e2p0!kM#. ~8!

Of course, in contrast to the exponent in Eq.~1!, this expres-
sion is strongly energy-dependent.

Note that the action inside the barrier does not van
even at the energy limitem5eQ/r 1 . Figure 2 clearly shows
that this is the case for a non-extreme black hole. For
extreme black hole this is not as obvious. However, due
the singularity ofup(r ,e)u, the action inside the barrier i
finite ate5em5eQ/r 1 for an extreme black hole as well. I
this case the exponential factor in the probability is

expS 2p
Ak m

e
kmMD . ~9!

Due to the extreme smallness of the ratio

Ak m

e
;10221, ~10!

the exponent here is large only for a very heavy black ho
with a massM exceeding that of the Sun by more than fi
orders of magnitude. And since the total probability, in
grated over energy, is dominated by the energy regioe
;em , the semiclassical approach is applicable in the cas
extreme black holes only for these very heavy objects. N
finally, that for particles emitted by an extreme black ho
the typical values ofe/m are very large:

e

m
;

em

m
5

eQ

kmM
5

e

Ak m
;1021.

FIG. 3.
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In other words, in all cases an extreme black hole em
mainly ultrarelativistic particles.

Let us now go back to non-extreme holes. In the non
ativistic limit, when we haveeQ/r 1→m and, correspond-
ingly, the particle velocityv tends to zero, the exponentia
factor is of course very small:

expS 2
2pkmM

v D . ~11!

Therefore, we will consider mainly the opposite~ul-
trarelativistic! limit, where the exponential factor is

expS 2p
m2

e2
eQD . ~12!

Here too the energy rangee;em;eQ/kM plays an impor-
tant role, so that the ultrarelativistic limit corresponds to t
condition

eQ@kmM. ~13!

But then the semiclassical result~12! is applicable~i.e., the
action inside the barrier is large! only if

kmM@1. ~14!

Note that this last condition means that the gravitational
dius of the black hole (r 1;kM) is much larger than the
electron Compton wavelength 1/m. In other words, the resul
~12! refers to macroscopic black holes. Combining~13! with
~14!, we arrive at one more condition for the applicability
formula ~12!:

eQ@1. ~15!

We will study this relationship later.
Note that Gibbons4 calculated the action inside the ba

rier under the assumptions used in deriving~12!. However,
the result presented in Ref. 4, 2S5pm2r 1

2 /eQ, is totally
energy-independent~and corresponds to Eq.~1!, which refers
to the case of a constant electric field!. There is no explana
tion of how such a result can be obtained for the integra
question in the general caseeÞem .

3. The obtained exponential yields the probability of
particle that approaches the turning pointr 1 ~see Figs. 2 and
3! from the left passing through the potential barrier.
should be recalled that generally the position of a turn
point depends not only on the particle energye but also on
its orbital angular momentuml. The total number of particles
with given e and l approaching a spherical surface of radi
r 1 per unit time is equal to the product of the area of t
surface

S54pr 1
2~e,l ! ~16!

by the particle current density

j r~e,l !5
r

Ag00

dr

dt
~17!

~see, e.g., §90 in Ref. 12!. As usual, the particle velocity is

v r5
dr

dt
5

]e

]p
~18!
ts

l-

e

-

n

t
g

~note that we have again omitted the subscriptr on the radial
momentum!. To obtain an explicit expression for the partic
densityr, we will use the semiclassical approximation~the
conditions of its applicability for the regionr 1<r<r 1 will
be discussed later!. Note that the phase-space volume e
ment

2
dpx dpy dpz dxdydz

~2p!3
~19!

is a scalar.~Here the factor 2 is due, as usual, to the tw
possible orientations of the electron spin.! On the other hand,
the number of particles in the elementary celldx dy dz is
~see §90 in Ref. 12!

rAg dx dydz, ~20!

whereg is the determinant of the space metric tensor. Sin
all the states of the Dirac sea are occupied, by compa
Eqs.~19! and ~20! we find that

r

Ag00

5
2

Ag00g
(

dpx dpy dpz

~2p!3

5
2

A2g
(

dpx dpy dpz

~2p!3

must be plugged into Eq.~17! for the current density@the
summation here and below is done with fixede andl; see Eq.
~17!#. In our case the determinantg of the four-dimensional
metric tensor does not differ from the flat metric tensor,
that the radial current density of the Dirac-sea particles i

j r~e,l !52(
d3p

~2p!3

]e

]p
. ~21!

The summation on the right hand side actually reduces
multiplication by 2l 11 of the possible projections of th
orbital angular momentuml on thez axis and to integration
over the azimuthal angle of the vectorl, which yields 2p. If
we now allow for the identity

]e

]pr
dpr5de,

we arrive at

j r~e,l !52
2p~2l 11!

~2p!3r 1
2~e,l !

. ~22!

Finally, the pre-exponential factor in the probability, whic
is differential in energy and orbital angular momentum, is

2~2l 11!

p
. ~23!

Accordingly, the number of particles emitted per unit time

dN

dt
5

2

pE de(
l

~2l 11!exp@22S~e,l !#. ~24!

In the most interesting~ultrarelativistic! case,dN/dt can
be calculated explicitly. Consider the expression for the m
mentum in the region inside the barrier forlÞ0:
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up~e,l ,r !u5 f 21AS m21
l 2

r 2D f 2S e2
eQ

r D 2

. ~25!

The main contribution to the integral over energies in f
mula ~24! is provided by the regione→em . In this region
the functionsf (r ) ande2eQ/r entering into expression~25!
are small and vary rapidly. In the quantity

m2~r ,l !5m21
l 2

r 2
, ~26!

we can replacer by the average value, which lies betwe
the turning pointsr 1 and r 2 . Obviously, in the limite→em

under discussion, the nearest turning point coincides with
horizon radius,r 15r 1 . In this limit the expression for the
farthest turning point is

r 25r 1F11
2m2

em
2 2m2

Ak2M22kQ2

r 1
G . ~27!

If for the sake of making an estimate we assumer;r 1 in
~26!, we can easily show that the correction to 1 in the squ
brackets is limited by the ratiol 2/(eQ)2. If we now assume
that this ratio is small~below we will see that this assump
tion is self-consistent!, we conclude thatr 2'r 1 , so thatm2

can be considered independent ofr, i.e., m2(r ,l )5m2

1 l 2/r 1
2 . As a result we obtain

2S~e,l !'peQS m2

e2
1

l 2

r 1
2 e2D . ~28!

Now we can easily find that

dN

dt
5mS eQ

pmr1
D 3

expS 2
pm2r 1

2

eQ D . ~29!

Note that the range of orbital angular momenta contribut
to the total probability~29! is effectively limited by the con-
dition l 2<eQ. SinceeQ@1 holds, this condition makes i
possible to pass from summation with respect tol in ~24! to
integration. On the other hand, this condition justifies
approximationm2(r ,l )5m21 l 2/r 1

2 .
However, up to now we have not considered one m

condition necessary for the derivation of formula~29!, the
applicability of the semiclassical approximation to the left
the barrier, forr 1<r<r 1 . This condition has the usual form

d

dr

1

p~r !
,1. ~30!

In other words, the minimum size of the initial wave pack
must not exceed the distance from the horizon to the turn
point. Using the estimate

p~r !;
r 1~eQ2er 1!

~r 2r 1!~r 2r 2!

for the momentum in the most important region, we c
easily verify that for an extreme black hole the conditi
~30! is valid becauseeQ@1. In the non-extreme case, fo
r 12r 2;r 1 , the situation is different: the condition~30!
reduces to
-

e

re

g

e

e

f

t
g

n

e,
eQ21

r 1
;

eQ

r 1
. ~31!

Thus, for a non-extreme black hole in the most importa
region e→em , the condition for the applicability of the
semiclassical approximation fails to hold. Nevertheless,
semiclassical result~24! remains valid qualitatively to within
a factor of order unity in the coefficient.

We conclude this section with a few words about t
emission of particles by light charged black holes, for whi
kmM,1 holds, i.e., for which the gravitational radius
smaller than the Compton wavelength of the electron. In t
case the first part of inequality~31!,

e,
eQ21

r 1
,

which guarantees the localization of the initial wave pac
in the strong-field region, means in particular that

eQ5Za.1 ~32!

~here we have introducedZ5Q/e). It is well-known ~see,
e.g., Refs. 13 and 14! that the vacuum near a point charg
with Za.1 is unstable, so that such an object loses
charge by emitting charged particles. It is quite natural t
for a black hole whose gravitational radius is smaller th
the electron Compton wavelength the condition for emiss
of a charge is the same as in pure quantum electrodynam
~Note that the unity in all these conditions should not
taken literally: even in quantum electrodynamics, where
instability condition for the vacuum of spin-1/2 particles
Za.1 ~for a point nucleus!, for a finite nucleus it
becomes13,14 Za.1.24. On the other hand, for the vacuu
of scalar particles in the field of a point nucleus the instab
ity condition is Za.1/2 ~see, e.g., Refs. 15 and 16!. As
noted earlier, for a light black hole (kmM,1 the condition
eQ.1 gives rise to a small action inside the barrier and
the inapplicability of the semiclassical approximatio
adopted in the present paper. The problem of emission
particles by a charged black hole withkmM,1 has been
studied numerically by Page.17

4. The exponential factor

expS 2
pm2r 1

2

eQ D
in our formula ~29! coincides with the expression arisin
from Eq. ~1!, which refers to the case of a constant elect
field E, if we replace this field by its valueQ/r 1

2 at the black
hole horizon. As mentioned earlier, an approach based on
formulas for a constant electric field was used in Refs. 1
Thus, our result for the main~exponential! dependence of the
probability integrated over energy coincides with the cor
sponding result of these papers. Moreover, our final form
~29! agrees with the corresponding result of Ref. 6 to with
a common factor 1/2.~This difference is of no interest by
itself: as noted earlier, for a non-extreme black hole
semiclassical approximation cannot guarantee an exact v
for the common numerical factor.!

Nevertheless, we believe that the analysis of the p
nomenon performed in the present paper, which dem
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strates the essential difference between this phenomenon
particle production by a constant external field, is use
First, the analysis shows that the probability of particle p
duction by a charged black hole has a nontrivial energy sp
trum. Moreover, real particles are produced by a char
black hole not in the entire space: for a given energye par-
ticles are emitted by a spherical surface of radiusr 2(e), a
surface that is close to the horizon at maximum ene
eQ/r 1. ~For instance, it follows that the derivation of th
result of Ref. 6 for dN/dt has no physical meaning:
amounts to substitutingE5Q/r 2 into the well-known
Schwinger formula,9 obtained for a constant field, and the
integrating over the entire space outside the horizon.!

We will now compare the intensityI of particle emission
due to the mechanism discussed in this paper with the Ha
ing intensityI H . Introducing an additional weighte into the
integrand of formula~24!, we obtain

I 5pm2S eQ

pmr1
D 4

expS 2
pm2r 1

2

eQ D . ~33!

The simplest way to estimate the Hawking intensity it is
use dimensional arguments: we divide the Hawking temp
ture TH51/4pr 1 by the typical classical time of the prob
lem, r 1 ~recall that we use a system of units in whichc
51). Thus,

I H;
1

4pr 1
2

. ~34!

A more accurate result forI H differs from this estimate by a
small numerical factor.231022, but for qualitative esti-
mates this difference can be neglected. The intensities~33!
and ~34! become equal at

eQ;
p

6

~mr1!2

ln mr1
;

p

6

~kmM!2

ln kmM
. ~35!

We believe that the conditioneQ;1/(4p) for the equality
of these intensities, which was obtained by Novikov a
Starobinski�6 from a comparison ofem5eQ/r 1 and TH

51/(4pr 1) , is not justified.
In conclusion, consider the change of the horizon surf

of a black hole~and hence of the hole’s entropy! due to this
nonthermal emission. To this end it is convenient to int
duce, following Ref. 18, the so-called irreducible massM0 of
a black hole:

2M05M1AM21Q2 ~36!

~here and below we assume thatk51). It is convenient to
write this relationship as

M5M01
Q2

4M0
. ~37!

Obviously, r 152M0 , so that the horizon surface and th
black-hole entropy are proportional toM0

2.
When a charged particle is emitted, the charge of

black hole changes byDQ52e and its mass, byDM
52eQ/r 11j, wherej is the deviation of the particle en
ergy from its maximum value. Using Eq.~37!, we can easily
see that as a result of particle emission the irreducible m
nd
l.
-
c-
d

y

k-

a-

d

e

-

e

ss

M0 and hence the horizon surface and entropy of a n
extreme black hole do not change, provided that the part
energy is at its maximumeQ/r 1 . In other words, such a
process, which is the most probable one, is adiabatic. Fj
.0, the irreducible mass, the horizon surface, and the
tropy increase.

As usual, an extreme black hole, withM5Q52M0 , is a
special case. Here at the maximum energy of the emi
particle,em5e, we haveDM5DQ52e, so that the black
hole remains extreme after particle emission. In this case
haveDM05e/2, so that the irreducible mass and the horiz
surface decrease. In the more general caseDM52e1j, the
irreducible mass changes as follows:

DM052
e2j

2
1AS M02

e

2
1

j

4D j . ~38!

Clearly, for a heavy extreme black hole, even for a sm
deviationj of the emitted energy from the maximum valu
the square root dominates in this expression, so that the
rizon surface increases.
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We study the neutralization of negative hydrogen ions in collisions with multicharged fast ions
~including relativistic ions! by using an approach that allows a simple expression for the
neutralization cross section to be derived over a range of collision parameters where the standard
Born approximation breaks down. ©1999 American Institute of Physics.
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1. INTRODUCTION

Atomic collisions involving negative ions that result in
change in the charge composition of the colliding partic
have been thoroughly studied in the past several dec
~see, e.g., Refs. 1 and 2 and the literature cited therein!. The
study of such collisions may lead to important practical a
plications ~e.g., the production of beams of fast neut
particles3!. A theoretical investigation of the neutralization
H2 ions in collisions with fast particles that carry a relative
small charge, i.e., in the limitZ!v ~hereZ is the charge of
the particle, andv is the collision velocity; in this paper we
use, if not stated otherwise, the atomic system of units!, can
be carried out either in the Born approximation~see, e.g.,
Ref. 4! or by using the impact-parameter method, when
all impact parameters the probability of electron transitio
is calculated to first order in the interaction between the e
tron and the field of the fast particle. For collisions wi
heavy fast particles the two approaches yield equivalent
sults for the cross sections~see, e.g., Ref. 5!, and for the sake
of brevity we call these approaches the standard Born
proximation. Calculations in this approximation yield
simple expression for the neutralization cross section:6

s205183.7
Z2

v2
ln 5.44v. ~1!

In this paper we examine the neutralization of negative
drogen ions in collisions with multicharged fast ions,

H21AZ1→H21AZ11e2, ~2!

in the collision parameter rangeZ*v@v0 ~here v0 is the
characteristic velocity of the loosely bound electron in H2),
where the standard Born approximation cannot be used
such values of charges and velocities the process of elec
capture by the multicharged ion has a very low probabi
~see, e.g., Refs. 7 and 8!. Hence the reaction~2! almost fully
determines the total cross section of neutralization for2

ions in such collisions. Experimentally, the cross sections
neutralization for H2 ions were studied by Melchertet al.2 in
8501063-7761/99/88(5)/7/$15.00
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collisions with the multicharged ions NeZ1 (Z<4), ArZ1

and XeZ1 (Z<8) at center-of-mass collision energiesEc.m.

&200 keV, while Tawaraet al.9 have started an experimen
tal investigation of the neutralization of H2 ions by multi-
charged fast ions at much higher collision energies, on
order of several MeV/amu. The problem of neutralization
H2 ions in collisions with multicharged fast ions was inve
tigated theoretically in Refs. 1,2,8–10, where the followi
theoretical approaches were used to calculate the neutra
tion cross section:~1! the method of classical Monte Carl
paths,1 ~2! the method developed in Ref. 11 as a generali
tion of the Keldysh theory12 for the photoionization in a
strong field and applied by Melchertet al.2 to the problem of
neutralization of H2 ions, ~3! the two-state model,10 and~4!
the close-coupling method.8

In the present paper we study the problem of neutrali
tion of H2 ions in collisions with multicharged fast ion
~including relativistic ions! by using an approach that, i
contrast to the methods just mentioned, makes it possibl
solve the problem of finding the cross sections analytica
with results applicable over a broad range of values of
parameters of the problem,v&Z and v0!v,c ~here c
5137 is the speed of light; the limits of this approach a
specified below!.

2. GENERAL FORMULAS

In accordance with the description of H2 ions in the
model of a split shell (1s,1s8), we assume that one of th
two electrons is on an almost hydrogenlike 1s-orbital, while
the other, loosely bound, electron occupied a diffuse orb
with radius.4. The large difference in the binding energi
of the electrons in H2 ~0.5 and 0.0275, respectively! makes
it possible to examine the problem of neutralization of t
negative hydrogen ion by the one-electron approach,
which it is assumed that the outer, loosely bound, act
electron moves in the effective field of the ‘‘frozen’’ cor
~the proton plus the tightly bound inner electron!. Following
one of the methods of selecting the effective one-elect
© 1999 American Institute of Physics
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wave function of the bound state of the negative ion and
valences-electron~see, e.g., Ref. 13!, we can write the wave
function in the form

c0~r !5N
exp$2kr %2exp$2br %

r
, ~3!

wherer is the distance between the active electron and
nucleus of the H2 ion, N5Akb(k1b)/2p(b2k)2 is the
normalization factor, andk50.235 is determined from the
known value of the affinity energy:k2/250.0275. For the
value of parameterb we takeb50.913, which was defined
by Sidis et al.14 so as to correctly describe the value of t
singlet scattering length of an electron~in the s-wave! scat-
tered by a hydrogen atom at energies lower than the
excitation threshold of the hydrogen atom. The wave fu
tion ~3! behaves properly at large distances,

c0~kr @1!.GA k

2p

exp$2kr %

r
, ~4!

with G51.51,1) and remains finite asr→0. Below we use
the wave function~3! and the corresponding functions of th
continuum spectrum~assuming, as usual, that the scatter
phase shift of the electron scattered by the hydrogen ato
low energies is finite only for thes-wave! to describe the
eigenstates of the discrete and continuous spectrum of
H2 ion.

Now we discuss the collision. We assume that prior
the collision the negative hydrogen ion was at the origin a
the multicharged ion was moving along a classical strai
path S(t)5b1vt, whereb is the impact-parameter vecto
Recent calculations by Linet al.8 have shown that even fo
moderate values ofZ the cross section of neutralization fo
H2 ions in collisions with multicharged fast ions depen
only on the total charge of the ions and not on the inter
structure of the ions. Hence in what follows we assume t
a multicharged fast ion is a point charge.

To date the experimental results with respect to neut
ization of H2 ions by multicharged fast ions have been o
tained in studies of collisions where the velocities are mu
smaller than the speed of light, so that relativistic effects
be neglected. However, to obtain a more general solution
will not use the conditionv!c in deriving an expression fo
the neutralization cross section. Accordingly, the field o
multicharged point ion moving, in general, with a relativis
speed, is described by the scalar and vector potentials~see,
e.g., Ref. 16!

w5
Z

R
, A5

v

c
w,

R5A~z2vt !21~12v2/c2!~r2b!2 , ~5!

where (x,y,z)5(r,z)5r are the coordinates of the activ
electron, thez axis is directed along the velocity of the mu
ticharged ion, andr–v50. As is known~see, e.g., Ref. 2!,
collisions with impact parametersb.r 0 ~wherer 0'k21 is
the characteristic size of the H2 ion! provide the principal
contribution to the cross section of neutralization for H2 ions
in collisions with multicharged fast~but nonrelativistic! ions.
Below we show that for collisions withb.r 0 the electron
e
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velocity in the course of the entire process remains m
smaller than the speed of light. Hence in calculating the tr
sitions of the active electron in collisions with multicharge
ions with b.r 0 we can use the Schro¨dinger equation

i
]C

]t
5@H01W~ t !#C, b.r 0 , ~6!

whereH0 is the effective one-electron Hamiltonian for th
free hydrogen ion, andW(t) describes the interaction of th
nonrelativistic electron and the field of the relativistic pa
ticle:

W~ t !5
1

2c
~p–A1A–p!1

A2

2c2
2w, ~7!

with p the electron momentum operator. Since the nega
hydrogen ion is a nonrelativistic system, we can expect
magnetic field generated by the multicharged ions to aff
only slightly the probability of electron detachment from H2

in collisions with b.r 0 . By examining the expression fo
the classical Lorentz force acting on an electron in the e
tric and magnetic fields generated by the multicharged io

F5E1
1

c
vel3H,

with vel the electron velocity, we can make an estimate of
relative importance of these fields. For the fields genera
by relativistic particles we can generally assume thatH
.E. However, sincevel /c!1, for the ratio of the magnetic
component of the Lorentz force to the electric component
havevel /v/c2!1. Then, when examining collisions withb
.r 0 , we can ignore the magnetic field of the multicharg
ions for all values of the velocities in the collisions. Hen
the interaction~7! can be expressed to the first approximati
in terms of only the electric field. To this end we use t
gauge transformation

A1~r ,t !5A~r ,t !1gradx~r ,t !,

w1~r ,t !5w~r ,t !2
1

c

]

]t
x~r ,t !,

C1~r ,t !5exp@2 ix~r ,t !# C~r ,t !, ~8!

where x is the gauge function. Using the Go¨ppert-Mayer
gauge function17

x~r ,t !52r–A~0,t !, ~9!

and Eqs.~6!–~9!, expanding the scalar and vector potential
powers of the electron position up to first-order terms inc
sive, and keeping only the principal term in the expression
the interaction in the new Schro¨dinger equation, we find tha

i
]C1

]t
5@H01W1~ t !#C1 , b.r 0 , ~10!

whereW1(r ,t)5r–E(0,t), and

E~0,t !5E52gradw~0,t !2
1

c

]A~0,t !

]t
5

ZR1

R0
3g2

, b.r 0 ,
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R15~2b,vt !, R05Av2t21S b

g D 2

, g5
1

A12~v/c!2
.

~11!

HereE is the electric field calculated in the dipole approx
mation. The interactionW1 can be interpreted as acting ov
a finite time interval. Indeed, we have

E
2`

`

W1~ t ! dt5W1~ t50!T, ~12!

where T5T(b)52b/gv has the meaning of the effectiv
collision time ~see, e.g., Ref. 18!. Depending on the magni
tude of the impact parameter, this time may be either sho
or longer than the characteristic time of revolution,t
'r 0 /v0 , of the active electron in the bound state of a fr
H2 ion. Using the wave function~3!, we can estimate the
characteristic velocityv0 of the electron in the bound state o
the H2 ion atv0.Abk.Ak , i.e.,t'k23/2. Following Ref.
19, we divide the entire rangeb.r 0 of the impact paramete
into two subranges:~1! r 0,b!gvt, and ~2! b@Z/vk.
These subranges overlap ifZ/k!gv2t holds, and below we
assume this condition to be true.

When the effective collision time is short compared
the characteristic internal time of the atomic system, in c
culating the transitions of the atomic system we can use
sudden approximation; see, e.g., Refs. 20 and 21. In
impact-parameter ranger 0,b!gv2t, where T(b)!t, to
calculate the neutralization probability we use the zero
order sudden approximation, within which the neutralizat
probability w20(b) can be written

w20~b!.w20
s ~b!5E dk U^ku expF2 i E

2`

`

W1~ t ! dtG uc0&U2

,

~13!

whereuk& is a state of the continuous spectrum of the eff
tive one-electron HamiltonianH0 for H2. Allowing for the
fact that *2`

` W1(t) dt5q–r , where q52Zb/vb2 has the
meaning of the average momentum transferred by the fiel
the multicharged ion to the active electron, we can write~13!
as follows:

w20
s ~b!5E dk u^kuexp$2 iq•r %uc0&u2. ~14!

The value ofq is negligible compared tomec5137, which
justifies our assumption about the essentially nonrelativi
electron velocities in collisions withb.r 0 . The spatial shift
of the electron over the collision time,j, a shift that can be
estimated atj(b);q(b)T(b);Z/gv2!r 0 , is small com-
pared to the characteristic size of the H2 ion. The conditions
T(b)!t and j(b)!r 0 justify the use of the zeroth-orde
sudden approximation when investigating the problem
question in the impact-parameter ranger 0,b!gvt.

In our case, when calculating the probability~14!, it is
convenient to use the completeness condition for the st
uc0& and$uk&% of the negative ion:

uc0&^c0u1E dk uk&^ku5I .
er

l-
e
e
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As a result,

w20
s ~b~q!!512

16p2N4

q2 S arctan
q

2k
1arctan

q

2b

22 arctan
q

k1b D 2

. ~15!

For the contribution to the neutralization cross sections20

of collisions with impact parametersb1<b<b2 ~whereb2

!gvt, andb1 is defined below! we have

Ds20~b1<b<b2!52pE
b1

b2
db bw20

s ~b!

58p
Z2

v2 Eq2

q1 dq

q3
p~q!, ~16!

wherep(q)5w20
s (b(q)), andq1,252Z/vb1,2.

Collisions with small impact parameters,b&r 0 , are
characterized~provided thatv&Z) by large energy transfer
to the active electron in comparison to the electron bind
energy in H2. The average energy transferred to the elect
in a collision with an impact parameterb can be estimated a
e tr(b).2Z2/b2v2 for b*r 0 ~see, e.g., Ref. 18!. This means
that the energy is high even atb.r 0 (e tr.2Z2k2/v2

@k2/2) and, correspondingly, becomes even higher fob
&r 0 . Such a large energy transfer to the active electron
sults in electron detachment from the negative ion with
probability w20

s (b).1. What is important is that the cond
tion b.r 0 plays an important role in deriving Eq.~14! ~since
we use the dipole expansion for the interaction of the el
tron and the field of the multicharged ion! and, correspond-
ingly, the use of this expression in calculating the neutrali
tion probability is justified only ifb.r 0 . Calculations show,
however, that forv&Z Eq. ~14! yields reasonable value
~close to unity! of the detachment probability also in th
impact-parameter rangeb&r 0(w20

s (b)&1). Hence below
we use Eq.~14! to estimate the electron detachment pro
ability in the range of small impact parameters,b&k21.

Our calculations show that the contribution~16! to the
neutralization cross section is almost independent ofq1 for
q1*1. Hence below we simply putq15` (b150):

Ds20~0<b<b2!58p
Z2

v2 Eq2

` dq

q3 p~q!. ~17!

The integral in~17! can be evaluated in the following way
We write

E
q2

` dq

q3
p~q!5E

q0

` dq

q3
p~q!1E

q2

q0 dq

q3
p~q!, ~18!

whereq0!k. Equation~15! suggests thatp(q)56.055q2 for
q!k. Moreover,q2!k for Z/vk!b2!gvt. Hence we can
write

E
q2

` dq

q3
p~q!5E

q0

` dq

q3
p~q!16.055 ln

q0b2v
2Z

, ~19!
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whereZ/vk!b2!gvt. For small values ofq0 , the integral
on the right-hand side of Eq.~19! depends onq0 as ln(1/q0).
Indeed, numerical calculations with different~but small! val-
ues ofq0 show that this integral can written

E
q0

` dq

q3
p~q!56.055 ln

C

q0
, ~20!

where C50.46 is almost independent ofq0 . Thus, using
Eqs.~17!–~20!, we arrive at an expression for the contrib
tion to the detachment cross section of collisions with imp
parameters from the range 0<b0<b2 , with Z/vk!b2

!gvt:

Ds20~0<b<b2!5152.2
Z2

v2
ln

0.46vb2

2Z
. ~21!

For large impact parameters,b*gvt, we cannot use the
sudden approximation. However, in collisions with large i
pact parameters one can expect that the field of the m
charged ion~notwithstanding the large ion charge! is only a
small perturbation even for a loosely bound active electron
H2. Calculations show that in collisions withb@Z/vk the
electron detachment probability is low compared to un
Indeed, forZ/vk!b!gvt we can also use Eq.~14!, which
yields

w20~b!.E dk u^kuq–r uc0&u2.1.34
Z2

v2k2b2
!1. ~22!

Hence to calculate the electron detachment probability
collisions with b@Z/vk we can use perturbation theory
the interactionW1(t). In first-order perturbation theory, th
expression for the electron detachment probability is~see the
Appendix!

w20~b!.w20
p ~b!5

4Z2

g4v4 E0

`

dkk2vk1
2 yk1

2 FK0
2S vk1b

gv D
1g2K1

2S vk1b

gv D G , b@
Z

vk
, ~23!

wherevk15(k21k2)/2 are the electron transition freque
cies,yk1

2 (zk1
2 5xk1

2 5yk1
2 5r k1

2 /3) are the averaged squares
the components of the~one-electron! dipole matrix elements
for H2, and K0 and K1 are the modified Bessel function
The contribution to the neutralization cross section of co
sions with impact parametersb from the rangeb3<b,` has
a simple form if the pointb3 is selected so thatZ/vk!b3

!gvt:

Ds20~b3<b,`!52pE
b3

`

db bw20
p

5152.2
Z2

v2 F ln
1.123vg

veffb3
2

v2

2c2G , ~24!

where
t

-
ti-

in

.

r

-

veff5exp

E
0

`

dk k2yk1
2 ln vk1

E
0

`

dk k2yk1
2

50.081.

Using ~21! and ~24! and puttingb25b3 ~which is pos-
sible, since the two impact-parameter ranges in ques
overlap!, we arrive at a simple formula for the total cros
section of neutralization for H2 ions in collisions with mul-
ticharged fast ions:

s205152.2
Z2

v2 F ln
3.2v2g

Z
2

v2

2c2G . ~25!

The contribution of the impact-parameter rangeb&r 0 does
not exceedpr 0

2 ~in order of magnitude!. As Eq.~25! implies,
s20@pr 0

2 for Z*v. This means that our initial assumptio
about the relative contribution of the impact-parameter ra
b.r 0 to the cross section was correct.

We now discuss the limits of our approach. First, to u
the sudden approximation we must ascertain thatv@v0

.Ak holds. Second, the conditionZ*v is needed to mini-
mize the error introduced by using Eq.~14! in calculations in
the impact-parameter rangeb&r 0 . Third, an important re-
quirement is that the two impact-parameter ranges in qu
tion overlap, which is the case ifZ/kv!gvt.gvk23/2.
Hence Eq.~25! can be used to calculate the cross section
a parameter range defined by the conditionsz&Z!gv2/Ak
and v@v0.Ak. In the relativistic case the applicabilit
range reduces toZ;v;c. For nonrelativistic collisions,
when (v/c)2!1, the nonrelativistic limit of Eq.~25!, 2)

s205152.2
Z2

v2
ln

3.2v2

Z
, ~26!

can be used to calculate cross sections if both conditionv
&Z!v2/Ak andv@v0.Ak, are met. A remark is in order
Since the active electron in H2 has~on the atomic scale! a
very low binding energy and a low orbital velocity, eve
collisions with particles withZ;1 andv;1 can be consid-
ered collisions with ‘‘multicharged’’ fast ions, and the value
of the cross sections of neutralization for H2 ions can be
estimated by Eq.~26!.

3. DISCUSSION

In Fig. 1 we compare the results of calculations do
using Eq.~26! and the experimental data on the cross s
tions of neutralization for H2 ions in collisions with ions of
Ne (Z<4), of Ar (Z<8), and of Xe (Z<8) at a center-of-
mass energyEc.m. of the colliding particles equal to 200 keV
~Ref. 2!. If we take into account the assertion of Melche
et al.2 that, within experimental error, the values of the cro
sections depend only on the total charge of the ion and
on the details of the ion internal structure, we can conclu
that there is good agreement between our results and
experimental data. Figure 1 also depicts the results of ca
lations in the standard Born approximation@Eq. ~1!# and of
calculations that use the analytical Presnyakov–Uskov
proximation~Eq. ~9! of Ref. 2!. For these values of the col
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lision parameters, Eq.~26! and the Presnyakov–Uskov fo
mula yield very similar results~similar to each other and
with respect to the experimental data! for all Z51–8, while
for large values ofZ the standard Born approximation yield
overvalued results.

Note that for other values of the parametersZ and v
lying within the applicability range of our approach, the ca
culation of cross sections by Eq.~26! also yields results tha
are in good agreement both with the experimental data2 and
with the results of other calculations.2,8,10

Tawaraet al.9 have started an experimental investigati
of ion neutralization at high collision energiesE ~of order of
several MeV/amu). At the 9th International Conference
the Physics of Highly Charged Ions, Tawaraet al.9 reported
on their~preliminary! experimental results for the cross se
tion of neutralization for H2 ions by Ar181 ions at E
52 MeV/amu. The value of the cross section they obtain
was s20

expt53.8310214cm2. For such collision parameter
Eq. ~26! yields a value of 4.55310214cm2 for the cross
section, the Presnyakov–Uskov formula yields 4
310214cm2, and Eq.~1! yields 8310214cm2. The substan-
tial overvaluation of the cross sections for largeZ stemming
from the use of Eq.~1! is the result of the nonunitarity of th
standard Born approximation. In this approximation the n
tralization probability is proportional toZ2 and for collisions
involving multicharged ions with small impact paramete
may exceed unity. The approach used in the present pap
free from this drawback, since it uses the sudden approxi
tion ~which is unitary! in calculations of the neutralizatio
probability with moderate values ofb. Interestingly, the
Presnyakov–Uskov formula and Eq.~26!, derived by very
different approaches, yield extremely close values of cr
sections whenv2/Z.1. For instance, when the parameterx
5v2/Z varies within the range 1,x,100, for the ratio of
the cross section~26! to the Presnyakov–Uskov cross se

FIG. 1. Cross sections of neutralization for H2 ions at a~center-of-mass!
collision energyEc.m.5200 keV. The experimental data are taken from R
2: h, NeZ1 (Z51–4); s, ArZ1 (Z51–8); and, XeZ1 (Z51–8). The
solid, dashed, and dotted curves represent the results of calculations b
~26!, by the Presnyakov–Uskov formula, and by Eq.~1!, respectively.
n

d

-

r is
a-

s

tion, f 5s20 /sPr–Us, we have 0.9, f (x),0.96.
As noted earlier, our approach can also be used to

scribe the neutralization of H2 ions in relativistic collisions
with ions whose charge is excessively large. As an exam
Fig. 2 depicts the results of calculations of the cross sec
of neutralization for the H2 ion in relativistic collisions with
U921. The relativistic effects, which influence the depe
dence of the neutralization cross section on the kinetic
ergy of the multicharged ions, can be divided into two typ
~a! the effect related to an increase in the velocity of t
multicharged ions with the ion kinetic energy that is slow
than predicted by nonrelativistic mechanics, and~b! the ef-
fect related to the ‘‘flattening’’ of the electric field a relativ
istic particle experiences in the direction of its motion~see,
e.g., Ref. 16!. Figure 2 suggests that effect~a! becomes ap-
preciable atEkin;100 MeV/amu, while effect~b! begins to
manifest itself atEkin;1 GeV/amu. While the cross sectio
specified by Eq.~26! tends to a finite limit in the range o
ultrarelativistic collisions~provided that we use the relativis
tic relationship between velocity and energy!, the relativistic
Eq. ~25! describes in this range an increase in cross sect
The physical meaning of this increase is simple. In the
trarelativistic limit, an increase in energy has almost no
fect of the collision velocity, butg increases and hence th
flattening of the electric field generated by the relativis
particle becomes more pronounced. This reduces the e
tive collision time T(b) and extends the impact-paramet
rangeb&gvt where the collisions are sudden for the ele
tron and where the detachment probability decreases,b
increases, much more slowly@by a power law; see Eq.~22!#
than it does in the rangeb*gvt, where the external pertur
bation is adiabatically slow for the electron and where
detachment probability decreases exponentially with incre
ing b. As a result, the flattening of the electric field gives ri
to a cross section that diverges with increasingg as lng ~see,
e.g., Ref. 23 and the literature cited therein!.

.

Eq.

FIG. 2. Cross section of neutralization for H2 ions in relativistic collisions
with U921 ions as a function of the kinetic energy~per atomic mass unit! of
the multicharged incoming ion. The solid curve represents the result
calculations by Eq.~25!, while the dashed and dotted curves represent
results of calculations by Eq.~26! that use the relativistic and nonrelativisti
relationship between the velocity and kinetic energy of the multicharged
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4. CONCLUSION

We have examined the process of neutralization of ne
tive hydrogen ions in collisions with multicharged fast ion
In this approach, the H2 ion is described in the one-electro
approximation, while the expression for the wave function
the active electron is selected in a form that guarantees
rect asymptotic behavior of this function forr @k21 and
finite results forr &k21. Collisions with multicharged fas
ions are described by dividing the entire impact-parame
range into two overlapping subranges. To describe neu
ization in collisions withb!gvt, when the effective colli-
sion time T(b);b/gv is short, we have used the zerot
order sudden approximation. This approximation is unit
and within v0!v&Z yields meaningful results for the de
tachment probability even for collisions withb&r 0 , i.e., in
the impact-parameter range wherew20(b).1. To describe
collisions withb@Z/vk, i.e., in the impact-parameter rang
where the interaction of an electron with a multicharged
is already weak and the electron detachment probabilit
low, we have used first-order perturbation theory in the fi
of the multicharged ion. The resulting expression for t
neutralization cross section can be used in a wide rang
the parametersZ of v of the problem discussed above.

APPENDIX

In first-order perturbation theory, the electron transiti
amplitude has the form

a~k!52 i E
2`

`

dt exp~ ivk1t ! ^kuW1uc0&, ~27!

wherevk15(k21k2)/2 is the transition frequency. Integra
tion with respect to time in~27! yields

a~k!5
2iZ

g2v
H K0S vk1b

gv D K ^kuexp
ivk1z

v
uc0&

1
gvk1

v
K1S vk1b

gv D ^kuyuc0&J
5

2iZvk1

g2v2 H gK1S vk1b

gv D ^kuyuc0&

1 iK 0S vk1b

gb
^kuzuc0& D J , ~28!

where they axis is directed along the impact-parameter v
tor, andK0 andK1 are the modified Hankel functions. Usin
the standard expansion in spherical functions for the w
function of the continuous spectrum~see, e.g., Ref. 4!,

uk&5(
l 50

`

(
m52 l

l

i l exp~2 id l ! Rkl~r !Ylm* S r

r DYlmS k

kD ,

~29!

from ~28! we find that
a-
.

f
r-

r
l-

y

n
is
d
e
of

-

e

ua~k!u25
4Z2vk1

2

v4g4
r k1

2 FK0
2S vk1b

gv D cos2 u

1g2K1
2S vk1b

gv D sin2 u sin2 w G , ~30!

where u (0<u<p) is the angle betweenk and v, w (0
<w,2p) is the angle betweenb and the projection of the
electron momentumk in the final state on the impact
parameter plane, and

r k15A4pE
0

`

dr r 3Rk1~r !c0~r !.

From Eq.~30! we finally arrive at an expression for th
detachment probability:

w20~b!5w20
p ~b!5E dk ua~k!u2

5
4Z2

3g4v4 E0

`

dk k2vk1
2 r k1

2 FK0
2S vk1b

gv D
1g2K1

2S vk1b

gv D G . ~31!

1!The valueG51.51 is very close toGPek51.56, obtained from calculations
with a multiparameter two-electron wave function.15.

2!Interestingly, atZ51 Eq.~26! coincides, with an insignificant discrepanc
in the numerical factors in front of the logarithm and under the logarit
sign, with the formula for the cross section of neutralization of H2 ions by
electron impact obtained by Smirnov and Chibisov22 under the assumption
that the incoming electron moves along a classical path.
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Self- and cross-phase modulation accompanying third-harmonic generation in a hollow
waveguide

A. M. Zheltikov,* ) N. I. Koroteev,†) and A. N. Naumov
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The influence of self- and cross-phase modulation on third-harmonic generation in a hollow
waveguide is investigated. Analytic solutions of the coupled equations for the slowly varying
amplitudes of the pump pulse and the third harmonic in a gas-filled hollow waveguide are
obtained with consideration of self- and cross-phase modulation and first-order dispersion effects.
The possibility of controlling the nonlinear phase trajectory of the third harmonic by cross-
phase modulation is demonstrated. ©1999 American Institute of Physics.
@S1063-7761~99!00305-4#
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1. INTRODUCTION

The coherent generation of optical harmonics in a fi
of short high-power laser pulses has been actively inve
gated for a fairly long time~see, for example, Refs. 1–16!.
Despite the impressive results achieved in the area of ge
ating high-order harmonics and obtaining coherent sh
wavelength radiation—with a wavelength shorter than
nm ~Ref. 17!—in an inert-gas jet, this experimental a
proach, which is based on the use of focused laser be
does not permit the achievement of high frequen
conversion efficiencies even for low-order harmonics~in
contrast to low-order harmonic generation in a la
plasma18–26!. The way to solve the problem of increasing t
nonlinear-optical interaction length in the gas medium w
pointed out by Mileset al.,27 who demonstrated the possibi
ity of significantly ~by three orders of magnitude! increasing
the efficiency of the nonlinear-optical interaction in a hollo
dielectric waveguide for a four-photon process coherent a
Stokes scattering process back in 1977. Nisoliet al.28 dem-
onstrated that the use of a hollow optical waveguide perm
effective broadening of the spectrum of an ultrashort la
pulse due to self-phase modulation. In particular, it w
shown that pulses with a duration of 20 fs propagating i
hollow optical waveguide filled with an inert gas experien
broadening of the spectrum as a consequence of self-p
modulation, which is sufficient for subsequent compress
of the pulse to a duration of 4.5 fs.

Since the optical breakdown threshold for a gas filling
waveguide significantly exceeds the characteristic value
the breakdown threshold for ordinary optical fibers, the
proach developed in Refs. 27 and 28 is especially promis
for the generation of high-power ultrashort laser pulses c
ering several light-field periods. Since hollow-wavegui
technology permits the use of high-power laser pulses,
approach also seems very promising for optical freque
conversion using parametric mixing of light waves and h
monic generation. When femtosecond pulses are used
frequency-conversion efficiency in such processes is
stricted because of phase mismatching and group delay.
8571063-7761/99/88(5)/11/$15.00
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first experiments on third-harmonic generation in hollo
waveguides filled with inert gases using pulses with a du
tion of 20 fs from a Ti:sapphire laser was reported in Ref.
However, no quantitative data regarding the parameter
the third-harmonic beam were presented in Ref. 29. The
periments in Ref. 30 showed that the use of hollo
waveguide technology permits the achievement of h
laser-radiation frequency-conversion efficiencies for thi
harmonic generation~0.2%! and parametric four-wave mix
ing ~13%!. Durfeeet al.30 also experimentally demonstrate
that the phase mismatch accompanying a nonlinear-op
interaction due to the dispersion of the gas can be comp
sated by phase mismatch of the waveguide modes. The
ciency of the nonlinear-optical interaction then increases
nificantly.

The results of the experiments in Ref. 30 stimulated
tensive research on nonlinear-optical frequency-convers
processes in hollow waveguides.31–33 In particular, it was
shown that compensation of the phase mismatch in hol
waveguides permits a 100–1000-fold increase in
frequency-conversion efficiency for harmonic generation
to the 45th order in comparison to the frequency-convers
efficiencies achieved in experiments with gas jets.5–10

Thus, the result of the experiments in Ref. 30 provi
evidence that phase matching and temporal overlap of
fundamental and third-harmonic pulses can be ensured f
fairly long interaction length in the gas filling a hollow op
tical waveguide. Since the fundamental pulse effectively
teracts with the third-harmonic pulse and, at the same ti
according to Ref. 28, experiences fairly strong self-ph
modulation, it can be presumed that the third harmo
should also be phase-modulated owing to cross-ph
modulation.34–39 In particular, the influence of cross-phas
modulation can lead to the significant broadening detecte
Ref. 30 of the spectrum of the UV signal appearing as
result of parametric four-wave mixing in a hollow optic
waveguide. Similar phenomena associated with self-
cross-phase modulation were observed in experiments
© 1999 American Institute of Physics
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third-harmonic generation in a field of ultrashort laser pul
in connection with the optical breakdown of air40,41 under
conditions such that the temporal self-interaction of the li
pulses was accompanied by self-defocusing of the fun
mental light due to the induced plasma-electron density p
file. According to the results of the theoretical analysis p
formed by Tempea and Brabec,42 the self-phase modulatio
due to plasma nonlinearity under ionization conditions in
hollow waveguide permits the production of pulses with l
ear chirp, which can be effectively compensated using a
persion delay line.

This paper shows that cross-phase modulation can b
important factor, which has a significant influence on t
efficiency of frequency conversion upon the generation
optical harmonics in gas-filled hollow waveguides and, at
same time, permits control of the nonlinear~with respect to
the intensity of the laser radiation! phase trajectory of the
harmonic pulse. In Sec. 2 we obtain analytic solutions of
coupled equations for the slowly varying amplitudes of t
pump pulse and the third harmonic in hollow waveguid
with consideration of self- and cross-phase modulation
the first-order dispersion effects in a medium with a non
ertial Kerr nonlinearity. Unlike the plane-wave approxim
tion, the equations obtained permit allowance for the infl
ence of the waveguide through the propagation constants
group velocities of the pump and third-harmonic pulses, a
nonlinear coefficients written with consideration of the tran
verse pump and third-harmonic fields for the correspond
waveguide modes. Section 3 describes a method for perfo
ing numerical calculations of the parameters of the pump
third-harmonic pulses in an argon-filled hollow waveguid
Section 4 discusses the results of the numerical calculat
for a regime in which the effects of the group delay of t
pump and third-harmonic pulses are insignificant, as wel
for the case where the difference between the group vel
ties of the pump and third-harmonic pulses has a signific
influence on the efficiency and properties of the process
third-harmonic generation in a hollow waveguide. The m
results of this investigation are briefly summarized in t
Conclusion.

2. BASIC RELATIONS FOR THIRD-HARMONIC GENERATION
IN A HOLLOW WAVEGUIDE WITH CONSIDERATION OF
SELF- AND CROSS-PHASE MODULATION

Let us consider the process of third-harmonic genera
in a hollow optical waveguide filled with a gas medium ha
ing third-order nonlinearity. In analyzing this phenomen
we shall use the approximation of slowly varying amp
tudes, presuming that the duration of the light pulses is la
in comparison to the period of the light field~see, for ex-
ample, Ref. 43!. Readily interpreted analytical expressio
describing third-harmonic generation in a hollow wavegu
with allowance for the effects of self- and cross-modulat
can be obtained, in analogy to Refs. 44 and 45, in the c
where we can confine ourselves to consideration of the fi
order dispersion effects.
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2.1. Solutions of the equations for third-harmonic
generation in a hollow waveguide within the approximation
of slowly varying amplitudes

Let us represent the fundamental~pump! and third-
harmonic pulses propagating along thez axis in a hollow
waveguide filled by a gas with a noninertial Kerr nonlinea
ity in the following form

Ep5
1

2
f p

n8n~r!ep
n8nAn8n~ t,z!exp@2 i ~vt2Kp

n8nz!#1c.c., ~1!

Eh5
1

2
f h

m8m~r!eh
m8mBm8m~ t,z!exp@2 i ~3vt2Kh

m8mz!#1c.c.,

~2!

wherev is the central frequency of the fundamental ligh
the subscriptsp andh refer to the pump and third-harmoni

pulses, respectively;f p
n8n(r) and f h

m8m(r) are the transverse
distributions of the fields of the fundamental light and t
third harmonic in the hollow waveguide corresponding to t
eigenmodes of the hollow waveguide with the indicesn8 and

n and with m8 and m, respectively;Kp
n8n and Kh

m8m are the
propagation constants of the pump and third-harmonic pu
corresponding to the same eigenmodes of the hol
waveguide;46 An8n(t,z) is the slowly varying amplitude of
the fundamental pulse~it is assumed that a definite wave
guide mode is excited at the frequency of the fundame
light!; Bm8m(t,z) is the slowly varying amplitude of the
third-harmonic pulse~the indices corresponding to the tran
verse mode of the pump wave have been omitted for s

plicity!; andep
n8n andeh

m8m are the unit vectors of the polar
izations of the fundamental and third-harmonic puls
respectively.

When the inequalities

v la

c
@1, ~3!

U Kl
m8mc

v ln1~v l !
21U!1, ~4!

hold, wherel 5p, h, andn1(v l) is the refractive index of the
gas in the hollow waveguide for radiation with the frequen
v l , we can use approximate analytic solutions for the tra
verse distribution of the field and the propagation consta
of the electromagnetic field in the hollow waveguide.46 In
particular, for the TEM1m modes of a hollow waveguide w
have

f l
1m~r![ f l

m~r!5J0S ul
mr

a D . ~5!

Here J0(x) is the zeroth-order Bessel function,ul
m is the

eigenvalue of the TEM1m mode,a is the internal radius of
the hollow waveguide, and

Kl
1m[Kl

m'
v ln1~v l !

c F12S ul
mc

av ln1~v l !
D 2

3S 1

2
1

Im~m~v l !!

av l
cD G , ~6!
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where

m~v l !5
«2~v l !1n1

2~v l !

2n1
2~v l !~«2~v l !2n1

2~v l !!1/2

for TEM modes and«2(v l) is the dielectric constant of th
waveguide walls at the frequencyv l .

Using a procedure similar to the one described in R
47, we obtain equations for the slowly varying amplitudes
the pump@An(z,t)[A1n(z,t)# and third-harmonic@Bm(z,t)
[B1m(z,t)# pulses:

S ]

]t
1

1

np
n

]

]zD An5 i g̃1
nAnuAnu2, ~7!

S ]

]t
1

1

nh
m

]

]zD Bm5 i b̃mn~An!3

3exp~2 iDkmnz!12i g̃2
mnBmuAnu.

~8!

Here np
n and nh

m are the group velocities of the pump an
third-harmonic pulses, and

Dkmn5Kh
m23Kp

n'Dk01Dkw
mn ~9!

is the phase mismatch taking into account the wavegu
dispersion. In this equation

Dk05
vh

c
@n1~vh!2n1~vp!#,

Dkw
mn5

c

2vp
F3S up

n

a D 2

2
1

3 S uh
m

a D 2G
are the components of the phase mismatch due to the dis
sion of the gas and the waveguide, respectively~the total
phase mismatch can be represented as a sum of two co
nents if the inequalityn1(v l)21!1 holds!. The nonlinear
coefficientsg̃1

m , g̃2
mn , andb̃mn can be expressed in terms

the nonlinear-optical cubic susceptibilities with the cor
sponding frequency arguments:

g̃1
n5

3pv2

2Kp
nc2

ep
n* x̂ (3)~v;v,2v,v!ep

nep
n* ep

n

3

E E @ f p
n~r!#4r dr du

E E @ f p
n~r!#2r dr du

, ~10!

g̃2
mn5

27pv2

2Kh
mc2

eh
m* x̂ (3)~3v;3v,2v,v!eh

mep
n* ep

n

3

E E @ f h
m~r!#2@ f p

n~r!#2r dr du

E E @ f h
m~r!#2r dr du

, ~11!
f.
f

e

er-

po-

-

b̃mn5
9pv2

2Kh
mc2

eh* x̂ (3)~3v;v,v,v!epepep

3

E E f h
m~r!@ f p

n~r!#3r dr du

E E @ f h
m~r!#2r dr du

. ~12!

Equations~7! and ~8! are similar to the equations de
scribing third-harmonic generation in a gas medium with
lowance for self- and cross-phase modulation in the pla
wave approximation~see, for example, Ref. 47!. The
nonlinear term on the right-hand side of Eq.~7! describes
self-phase modulation. The first term on the right-hand s
of Eq. ~8! describes the nonlinear polarization of the thir
order medium, which is responsible for third-harmonic ge
eration and the cross-phase modulation of the third harmo
due to the self-phase modulation of the fundamental pu
~XPM1!. The second term on the right-hand side of th
equation corresponds to the cross-phase modulation du
the modulation of the refractive index at the frequency of
third harmonic by the fundamental pulse~XPM2!.

We assumed in writing Eq.~8! that the third-harmonic
pulse has a fairly low intensity and that the self-phase mo
lation of this pulse can be neglected. However, unlike
plane-wave approximation, Eqs.~7! and~8! take into account
the influence of the waveguide through the propagation c
stants~6!, the group velocities of the pump radiation and t
third harmonic, and the nonlinear coefficients~10!–~12!,
which were written with allowance for the transverse dist
butions of the pump and third-harmonic fields for the cor
sponding waveguide modes. In particular, the mismatch
the wave vectors, which appears in Eq.~8! and specifies the
efficiency of third-harmonic generation, depends not only
the dispersion of the gas, but also on the dispersion of
waveguide modes. As was noted in Ref. 30, this circu
stance allows the phase-matching conditions for a partic
pair of transverse modes of the pump radiation and the t
harmonic to be improved.

Equations similar to~7! and ~8! were analyzed in detai
for the case of second-harmonic generation in fib
waveguides in Ref. 48 and for the combined propagation
optical pulses of different frequency in a waveguide in Re
49–51. In particular, Hoet al.48 obtained an analytic solution
for the process of second-harmonic generation with con
eration of cross-phase modulation.

Solving the system of equations~7! and~8! after Ref. 45,
we obtain the following expressions for the amplitudes of
fundamental and third-harmonic pulses:

An~hp
n ,z!5A0

n~hp
n!exp@ i g̃1

nuA0
n~hp

n!u2z#, ~13!

Bm~hh
m ,z!5 i b̃mn expF2i g̃2

mnE
0

z

uA0
n~hh

m1zmnz8!u2 dz8G
3E

0

z

dz8 ~A0
n~hh

m1zmnz8!!3expF2 iDkmnz8

13i g̃1
muA0

n~hh
m1zmnz8!u2z8



a
ssure

tively;
respec-
ee gas,
tion,

860 JETP 88 (5), May 1999 Zheltikov et al.
TABLE I. Characteristic spatial scales for the generation of the TEM1n modes of the third harmonic in an
argon-filled hollow waveguide with a diameter equal to 80mm and in the free gas for pump radiation with
wavelength equal to 0.78mm, a pulse duration equal to 25 fs, and a power equal to 2 GW at an argon pre
equal to 0.5 atm.

n l d , m l d0, m l w
1n , cm l w0

1n , cm l ph
1n , cm l ph0

1n , cm l xpm1, cm l spm, cm

1 16.2 15.9 27 22 0.25 0.39 4 12
2 17.6 15.9 24 22 0.31 0.39 4 12
3 20.8 15.9 20 22 0.55 0.39 4 12

aNote. Here l d and l d0 are the dispersive spreading lengths in the waveguide and in the free gas, respec
l w
1n and l w0

1n are the characteristic spatial scales of group delay in the waveguide and in the free gas,
tively; l ph

1n andl ph0
1n are the characteristic spatial scales of phase mismatch in the waveguide and in the fr

respectively; andl xpm1 and l spm are the characteristic spatial scales of XPM1 and self-phase modula
respectively.
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mnE

0

z8
uA0

n~hh
m1zmnz9!u2 dz9G , ~14!

whereh l
m5(t2z/n l

m)/t is the time in the coordinate fram
traveling with one of the pulses (l 5p,h), normalized to the
duration t of the pulse of incident radiation, andzmn

5(1/nh
m21/np

n)/t. Because we confined our treatment
first-order dispersion theory, the main pulse~13! propagates
in the medium with no change in the shape of the envelo
i.e.,An(hp

n ,z)5A0
n(hp

n) @A0
n(hp

n) is the shape of the envelop
at the entrance to the medium#. The nonlinear phase trajec
tory of the fundamental pulse due to self-phase modula
can be written

Fspm5g̃1
nuA0

n~hp
n!u2z. ~15!

Like Eqs. ~7! and ~8!, the solutions for the pump an
third-harmonic pulses are formally similar to the expressio
obtained in the plane-wave approximation,45 but, unlike the
equations presented in Ref. 45, they take into account
dispersion of the waveguide and the transverse intensity
tributions of the pump and third-harmonic pulses.

2.2. Estimation of the characteristic spatial scales

As can be seen from Eq.~14!, the significant restrictions
on the efficiency of harmonic generation in the presence
ultrashort laser pulses are associated with the phase
match and group delay of the fundamental and thi
harmonic pulses due to the dispersion of the phase and g
velocities inherent in a nonlinear medium. As can be s
from Eqs.~6!–~9!, in the case of third-harmonic generatio
in a hollow waveguide, it is possible to partially compens
the mismatch of the phase and group velocities of the pu
and third-harmonic pulses associated with the dispersio
the phase and group velocities in the gas by utilizing
dispersion of the waveguide modes. The characteristic
tial scales of the phase mismatch and group delay of
pulses with respect to time in a waveguide are specified
the following manner:

l ph
mn5

1

Dkmn
, l w

mn5~zmn!215
t

u~1/nh
m21/np

n!u
.

Table I presents estimates of the characteristic spatial sc
of the phase mismatch and group delay in a waveguide
e,

n

s

e
is-

of
is-
-
up
n

e
p

of
e
a-
e

in

les
nd

in a free gas for fundamental pulses of a Ti:sapphire la
having a duration of 25 fs and the third harmonic in
argon-filled hollow waveguide at a pressure of 0.5 atm. T
values presented were obtained using the data on the dis
sion of inert gases from Ref. 52. The table also prese
estimates for the dispersive spreading length of the pu
pulse in the hollow waveguide and the free gas and the c
acteristic spatial scales of self-phase modulation (l spm) and
XPM1 (l xpm1' l spm/3).

As can be seen from the estimates presented, the c
acteristic scales of the nonlinear-optical interactions for
conditions considered are significantly smaller than the d
persive spreading length of the pump pulse and the gro
delay length of the pump radiation and the third harmon
At the same time, in the general case the phase-mismatc
effects have a significant influence on the frequen
conversion efficiency. Phase mismatch can be partially co
pensated only in a narrow range of pressures for individ
pairs of spatial modes of the fundamental light and the th
harmonic~the TEM11 mode of the fundamental light and th
TEM13 mode of the third harmonic in the case under cons
eration; see also Secs. 4.1 and 4.2!.

2.3. Case of combined propagation of the pump and third-
harmonic pulses

Taking into account that under the conditions specifi
abovel spm,l xpm1! l w

mn ~see Table I!, we shall illustrate some
important features of cross-phase modulation by examin
the initial stage of third-harmonic generation forz! l w

mn ,
where the group delay of the fundamental and thi
harmonic pulses can be neglected. In other words, we s
examine the case of combined propagation of the pump
third-harmonic pulses. In this approximation we havehp

n

5hh
m5h, and Eq.~14! reduces to

Bm~h,z!5 i b̃mnA0
3 expH izF S g̃2

mn1
3

2
g̃1

nD uA0
n~h!u2

2
Dkmn

2 G J sin~jmnz!

jmn
, ~16!

where
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jmn5
~3g̃1

n22g̃2
mn!uA0

n~h!u22Dkmn

2
. ~17!

As can be seen from Eqs.~13!, ~14!, and~16!, self- and
cross-phase modulation give rise to an additional phase
between the fundamental and third-harmonic pulses, wh
depends on the pump intensity and can partially compen
the intensity-independent phase mismatch2Dkz for a cer-
tain part of the pump pulse. The characteristic length of
synchronous interaction between the fundamental and th
harmonic pulses is given byLin51/jmn. Thus, when the con
dition

Dkmn5~3g̃1
n22g̃2

mn!uA0
n~h!u2 ~18!

is satisfied~i.e., when the nonlinear medium, fundamen
frequency, and pump intensity are appropriately select!,
the combined action of the XPM1 and XPM2 effects c
partially or completely compensate the intensity-independ
phase mismatch for third-harmonic generation in a cer
part of the pump pulse. In particular, if the condition~18!
holds near the maximum of the pump pulse, the efficiency
third-harmonic generation is higher in this region than on
leading and tailing edges of the pump pulse, where the ph
mismatch remains. Shortening of the third-harmonic pu
can also occur. This phenomenon is illustrated by the res
of the numerical calculations presented in Sec. 4.1.

As can be seen from Eq.~14!, the phase trajectory an
variation of the frequency of the third harmonic depend
the amplitude of the fundamental pulse. Thus, the spect
of the third harmonic at the exit from the nonlinear mediu
can be controlled and the conditions for subsequent p
compression can be optimized by varying the amplitude
the fundamental pulse. Physically, such cross-phase co
of the chirp of optical harmonics is possible because
harmonics are generated in the pump field, which exp
ences self-phase modulation, and the phase of the third
monic is modulated by the correction to the refractive ind
of the medium induced by the fundamental pulse.

To conclude this section we present an estimate for
efficiency of third-harmonic generation in a hollow wav
guide when the group delay of the fundamental pulse and
third harmonic can be neglected for the experimental par
eters realized in Ref. 30. If we use the estimate for the th
order nonlinear-optical susceptibility per krypton atom giv
in Ref. 47,x (3)(3v;v,v,v)'3.2310237 esu, assuming tha
the phase mismatches for the TEM11 mode of the fundamen
tal light and the TEM13 mode of the third harmonic are com
pletely compensated, and setting the gas pressure equ
p561 Torr, the energy of the fundamental light injected in
the waveguide equal to 145mJ, the internal diameter of th
hollow waveguide equal to 153mm, and the length of the
waveguide equal to 30 cm, then we find that the intensity
the third harmonic estimated from Eq.~16! for these condi-
tions is roughly 531018 erg/cm2

•s. For the TEM13 mode of
the third harmonic with an effective area of 1.431025 cm2

this energy corresponds to an efficiency of the conversio
the energy of the fundamental light into the third harmo
ift
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on the 0.1% level, which is consistent in order of magnitu
with the results of experimental measurements~0.2%! ob-
tained in Ref. 30.

3. NUMERICAL SIMULATION

We studied the process of third-harmonic generation i
gas-filled hollow optical waveguide, treating the effects
self- and cross-phase modulation,via numerical calculati
using Eqs.~13!, ~14!, and~16!. It was assumed that the pum
pulse has an envelope of Gaussian shape,

A0
1~hp!5A0~hp!5expS 2

hp
2

2 D , ~19!

wherehp[hp
1 , and a transverse intensity distribution whic

corresponds to the TEM11 mode of the hollow waveguide
and can be described by Eq.~5!. Third-harmonic generation
with a transverse intensity distribution corresponding to
lowest TEM11, TEM12, and TEM13 modes of a hollow
waveguide with the eigenvaluesul

m'2.4, 5.5, and 8.7, re-
spectively, was considered. As will be shown below, t
bulk of the energy of the third harmonic generated in t
case considered is contained in the three lowest modes
that the effects associated with the generation of hig
modes can be neglected.

The calculations were performed for an argon-filled h
low waveguide with dielectric walls. The internal radiusa
was set equal to 80mm, and the wavelength of the pum
radiation was 780 nm. The waveguide length was set eq
to L540 cm. The power attenuation constants estimated
cording to Ref. 46 for a pump pulse of wavelength 780 n
and the third harmonic for the modes considered are
than 731023 cm21, permitting neglect of the absorptio
effects in the hollow waveguide for the wavelengths cons
ered.

The coefficientg1
n , which is responsible for self-phas

modulation of the pump pulse, was calculated using the
perimental data for argon in Ref. 52. Far from the resonan
of the third-order nonlinear-optical susceptibilities appear
in ~10!–~12!, g2

mn can be set equal tog1
n to within a multi-

plier specified by the mode structure of the pump radiat
and the third harmonic in the waveguide:

g2
mn5g1

n
E E ~ f p~r!!2~ f h~r!!2r dr du

E E ~ f p~r!!4r dr du

. ~20!

In estimating the minimum pulse duration to which th
phase-modulated third-harmonic pulse can be compress
was assumed that chirp compensation is described by53

Bm~Lc ,h!5
1

A22p iGmLc
E

2`

`

Bm~h8,L !

3expS 2
i

2GmLc

~h82h!2D dh8, ~21!

whereLc is the interaction length with a dispersive mediu
which provides for chirp compensation, and



th

re

ica
ni
e

io
an
-
in
a
en
se
,
ic

ss
ird
th

p
p
th
io

i
ic
he
pa

he

th
lo

in
ird-

lse
ssure
hes
the

en-
is

ions
pe

be-
-
s of

ails
in
n

of

-

des

ow
or a

e-

862 JETP 88 (5), May 1999 Zheltikov et al.
Gm5
1

t2 S ]2Kh
m

]v82 D
v853v

is a parameter which characterizes the dispersion of
group velocity in that medium.

The second-order dispersionGm and the interaction
length Lc were chosen so as to ensure maximum comp
sion of the phase-modulated third-harmonic pulse.

4. CALCULATION RESULTS AND DISCUSSION

In this section we discuss the results of the numer
calculations performed for the process of third-harmo
generation in an argon-filled hollow optical waveguide und
the conditions specified above. Depending on the relat
ship between the group-delay length of the fundamental
third-harmonic pulsesl w

mn and the length of the hollow opti
cal waveguideL, third-harmonic generation can take place
a regime in which the effects associated with group delay
insignificant or in a regime in which the difference betwe
the group velocities of the pump and third-harmonic pul
has a significant influence on the efficiency of the process
well as on the duration and spectrum of the third harmon
Let us evaluate the conditions under which the effects a
ciated with group delay of the pump radiation and the th
harmonic in a hollow waveguide can be neglected. When
argon pressure isp50.5 atm, the group-delay lengthl w

mn of
the pulses of the fundamental light with wavelength 0.78mm
and of the third harmonic becomes of order the lengthL
540 cm of the waveguide under consideration for a pum
pulse durationt;50 fs. Thus, the group delay of the pum
and third-harmonic pulses does not significantly affect
process of third-harmonic generation under these condit
for pump-pulse durations exceeding 50 fs.

The case of weak group delay is of special interest
connection with ensuring highly efficient third-harmon
generation. We begin our treatment with this case and t
move on to explore the influence of group delay on the
rameters of the third-harmonic pulse.

4.1. Cross-phase modulation during third-harmonic
generation in the absence of group delay

Let the total energy of the third-harmonic pulse at t
waveguide exit be

Wh5(
m

Wh
m ,

where

Wh
m5E Ph

m~h! dh

is the energy of the third-harmonic pulse in the TEM1m

eigenmode of the waveguide and

Ph
m~h!5uBm~h,L !u2E E u f h

m~r!u2r dw dr

is the power of the third-harmonic pulse corresponding to
TEM1m eigenmode of the waveguide. Figure 1 presents p
of the total energy of the third-harmonic pulseWh at the exit
e
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from a hollow waveguide as a function of argon pressure
the absence of spatial separation of the pump and th
harmonic pulses, which were calculated from Eq.~16! for
various values of the peak pump powerPp0. The pressure
dependence of the total energy of the third-harmonic pu
oscillates because the phase mismatch varies as the pre
is increased. The energy of the third-harmonic pulse reac
a constant level because at sufficiently high pressures
increase in the nonlinear susceptibility responsible for g
eration of the third harmonic in proportion to the pressure
compensated by worsening of the phase-matching condit
@Dkmn}p, so that at sufficiently high pressures the envelo
of the function sin(j mnL)/j mn falls off as (jmn)21}1/p#. The
oscillation amplitude decreases with increasing pressure,
cause, as follows from Eq.~17!, an increase in pressure in
creases in the difference in phase mismatch for the proces
third-harmonic generation at the maximum and on the t
of the pump pulse. As a result, the integration over time
the expression forWh gives less pronounced oscillations tha
in the case of low pressures.

As can be seen from Fig. 2, a large part of the energy
the third harmonic belongs to the lowest TEM11 mode of the
hollow waveguide. The TEM12 mode also contains signifi
cant energy. The energy belonging to the TEM13 mode is
comparable to the energy contained in the two lower mo
only in a narrow range of argon pressures (p;0.14 atm!,

FIG. 1. Total energy of the third-harmonic pulse at the exit from a holl
waveguideWh versus argon pressure in the absence of group delay f
waveguide lengthL540 cm and various peak pump powers: 4~1!, 2 ~2!, 1
~3!, and 0.5 GW~4!.

FIG. 2. Energy of the third-harmonic pulse at the exit from a hollow wav
guideWh

m versus argon pressure for the TEM11 ~1!, TEM12 ~2!, TEM13 ~3!,
and TEM14 ~4! modes in the absence of group delay forL540 cm and
Pp054 GW.
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where the phase-matching conditions are satisfied for
TEM13 mode. As can be seen from Fig. 2, the energy of
higher modes is negligibly small compared to the energy
the first three modes in the pressure range considered.

Figure 3 presents the envelopes of the power~1! and the
cubed power~2! of the pump pulse, as well as the envelop
of the power of the lowest mode of the third-harmonic pu
at the exit from the hollow waveguide~3! and after compen-
sation of the linear chirp~4!, calculated from Eqs.~16! and
~21! for p50.536 atm and a peak pump powerPp052 GW.
Figure 4 shows the absolute value of the spectrum

Sh~V!5U 1

2pE B1~h,L !exp~ iVh! dhU
of the third-harmonic pulse for the TEM11 mode~1! and of
the pump pulse~2! at the waveguide exit, as well as th
absolute value of the spectrum of the pump pulse at
waveguide entrance~3! for p50.536 atm andPp052 GW.
The argon pressure was chosen so as to satisfy the cond
for a local phase-matching optimum for the TEM11 mode of
the third harmonic@j115(N10.5)p, whereN is an integer#
at a fairly high pressure. As can be seen from Fig. 2, un
these conditions a large part of the energy of the third h
monic is contained in the TEM11 mode. The results presente
in Figs. 3 and 4 provide evidence that the third-harmo
pulse is phase-modulated due to cross-phase modulatio

FIG. 3. Time dependence of the energy of the normalized pump-p
powerPp ~1! andPp

3 ~2! and the normalized power of the TEM11 mode of
the third-harmonic pulse at the exit from a hollow waveguidePh

1 ~3! and the
normalized power after compensation of the linear chirpPhC

1 ~4! in the
traveling coordinate frameh for p50.536 atm andPp052 GW.

FIG. 4. Absolute value of the spectrum of the amplitude of the TEM11 mode
of the third-harmonic pulseSh5u(1/2p)*B1(h,L)exp(iVh) dhu ~1! and the
pump pulse at the exit from the waveguideSp5u(1/2p)*A1(h,L)
3exp(iVh) dhu ~2! and at the entrance to the waveguideSp0

5u(1/2p)*A1(h,0)exp(iVh) dhu ~3! for p50.536 atm andPp052 GW.
e
e
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fects and that its spectrum is broadened significantly eve
comparison to the pump pulse, which experiences the in
ence of self-phase modulation. For this reason, the th
harmonic pulse can be effectively compressed by comp
sating the linear chirp.

Figure 5, which shows the power envelopes of the thi
harmonic pulse corresponding to the TEM11 waveguide
mode at the waveguide exit~Fig. 5a! and after compensation
of the linear chirp~Fig. 5b!, as well as a plot ofj11(h) ~Fig.
5c!, illustrates the sharpening of the third-harmonic pu
due to the intensity-dependent correction to the phase m
match@see Eqs.~16! and~17!# when the gas pressure and th
pump power are selected to achieve the best phase-matc
conditions near the maximum of the pump pulse. It can
seen from a comparison of curves1 in Figs. 5a and 5c tha
the third-harmonic signal corresponding to the TEM11 wave-
guide mode vanishes at the waveguide exit for values oh
such thatj115Np, whereN is an integer.

As can be seen from Figs. 5a and 5b, the chirp of

e

FIG. 5. Time dependence of the power of the TEM11 mode of the third-
harmonic pulse at the exit from the waveguidePh

1 ~a! and after compensa-
tion of the linear chirpPhC

1 ~b! and ofjL/p ~c! in the traveling coordinate
frame h for Pp054 GW and p50.549 atm ~1!, Pp052 GW and p
50.536 atm~2!, Pp051 GW andp50.545 atm~3!, andPp050.5 GW and
p50.549 atm~4!.
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third-harmonic pulse~Fig. 5a! and its spectral width~Fig. 6!
increase with increasing pump power, making it possible
obtain fairly short pulses at the output of the compress
Note, however, that increasing the pump power can dis
the pulseform of the third harmonic.

Thus, the results of these calculations show that
phase cross-modulation accompanying third-harmonic g
eration makes it possible to control the chirp of the th
harmonic by varying the amplitude of the pump pulse a
the parameters~pressure and dispersion! of the gas filling the
hollow waveguide and thereby permitting the formation
pulses of tripled frequency and regulated duration.

4.2. Cross-phase modulation during third-harmonic
generation with group delay of the pump and third-harmonic
pulses

When dispersive spreading of the pulses can be
glected~the dispersion lengthl d for the parameters presente
above significantly exceeds the length of the hollow opti
waveguide!, but the difference between the group velociti
at the frequencies of the pump radiation and the third h
monic must be taken into account, third-harmonic genera
in a hollow waveguide can be analyzed with allowance
the effects of self- and cross-phase modulation using
~14!. Figure 7, showing how the total energy of the thir
harmonic pulseWh at the exit from the hollow waveguid

FIG. 6. Absolute value of the spectrum of the amplitude of the TEM11 mode
of the third-harmonic pulse at the exit from the waveguideSh for Pp054
GW andp50.549 atm~1!, Pp052 GW andp50.536 atm~2!, Pp051 GW
andp50.545 atm~3!, andPp050.5 GW andp50.549 atm~4!.

FIG. 7. Normalized total energy of the third-harmonic pulse at the exit fr
a hollow waveguide versus argon pressure for two values of the pump-p
duration 2t525 fs ~1! and 200 fs~2! and with neglect of the group delay o
the pump pulse and the third harmonic~3! for L540 cm andPp054 GW.
o
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varies with argon pressure, was obtained from Eq.~14! with
allowance for the group delay of the pump and thir
harmonic pulses for various values of the pump-pulse du
tion and a peak pump powerPp054 GW. In analogy to the
case of small group delay of the pump and third-harmo
pulses considered in Sec. 4.1, the total energy of the th
harmonic pulse oscillates as a function of gas pressure du
the variation of the phase mismatch with increasing press
As in the case of small group delay, the energy of the thi
harmonic pulse reaches a constant energy because at
ciently high pressures the increase in the nonlinear susc
bility responsible for third-harmonic generation
compensated by the worsening of the phase-matching co
tions.

The dependence of the energy contained in the tra
verse TEM11 ~1!, TEM12 ~2!, and TEM13 ~3! modes of the
third-harmonic pulse at the exit from the hollow wavegui
on argon pressure calculated with consideration of the sp
separation of the pump and third-harmonic pulses from
~14! for L540 cm,Pp054 GW, andt525 fs is presented in
Fig. 8. In analogy to the case of small group delay, a la
part of the energy of the third harmonic belongs to the low
TEM11 mode of the hollow waveguide, a smaller part of t
energy is contained in the TEM12 mode, and the energy o
the TEM13 mode is comparable to the energy contained
the two lowest modes only in a narrow range of argon pr
sures (p;0.14 atm!, where the phase-matching condition
for the TEM13 mode are satisfied.

As can be seen from the envelopes of the power of
pump pulse and the power of the lowest mode of the th
harmonic pulse at the waveguide exit in Fig. 9a, the gro
delay of the pump and third-harmonic pulses at first cau
an increase in the duration of the third-harmonic pulse~curve
2 in Fig. 9a, the pump and third-harmonic pulses spatia
separate by a distancehh[hh

150.8 over the length of the
waveguide! and then~as the pump pulse duration furthe
decreases! the third harmonic splits into two pulses~curve1
in Fig. 9a, and the pump and third-harmonic pulses sepa
by a distancehh53 over the length of the waveguide!. The
right-hand pulse in Fig. 9a forms as a result of thir
harmonic generation over a distance of order the cohere
length l ph

1151/Dk11 near the entrance endplate of the wav
guide, while the left-hand pulse corresponds to thi

lse

FIG. 8. Energy of the third-harmonic pulse for the TEM11 ~1!, TEM12 ~2!,
and TEM13 ~3! waveguide modes at the exit from a hollow wavegui
versus argon pressure forL540 cm,Pp054 GW, and 2t525 fs.
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FIG. 9. Time dependence of the power of th
lowest mode of the third-harmonic pulse at th
exit from the waveguidePh[Ph

1 ~a! and after
compensation of the linear chirp~b! in the trav-
eling coordinate framehh for p50.52 atm,
Pp054 GW, and durations of the pump puls
2t525 fs ~1!, 100 fs~2!, and 800 fs~3!, as well
as with neglect of the effects of group delay~4!.
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the
harmonic generation in the analogous region near the
endplate. The power of the third-harmonic pulse generate
the central part of the waveguide is negligibly small co
pared to the third-harmonic signal formed near the wa
guide endplates. This phenomenon can easily be expla
using Eq.~14!. In fact, assuming thatl w!L, letting the upper
integration limit in ~14! tend to infinity, and noting that a
low pump powers the second and third terms in the argum
of the exponential function are small compared to the fi
we find that the power of the third-harmonic signal is spe
fied by the Fourier transform of the pump-pulse amplitude
the Dk representation:

Bm~hh
m ,z!' i

b̃m

zmn E0

z/zmn

dh9 ~A0
n~hh1h9!!3

3expF2 i
Dkmn

zmn
h9G . ~22!

Physically, the low efficiency of third-harmonic gener
tion in the central portion of the waveguide is associa
with the significant phase mismatch between the pump ra
tion and the third harmonic (Dk11/z11;100 for pulses of 25
fs duration at an argon pressure of 0.5 atm!.

It is noteworthy that the third-harmonic pulse appear
near the exit endplate of the waveguide is phase-modul
far more strongly and, accordingly, can be compressed w
a far higher efficiency~Fig. 9b! than the third-harmonic
pulse formed near the entrance endplate of the wavegu
This is because under conditions for which the pump a
third-harmonic pulses separate by a fairly large distance o
the length of the waveguide~as occurs in Fig. 10!, the XPM2
effect in the noninertial Kerr medium has a fairly weak i
fluence on the phase of the third harmonic. As a conseque
of self-phase modulation, the pump pulse is phase-modul
far more strongly near the exit endplate of the wavegu
xit
in
-
-
ed

nt
t,
-
n

d
a-

ed
th

e.
d
er

ce
ed
e

than near the entrance endplate. For this reason, the t
harmonic pulse formed at the exit endplate of the wavegu
is characterized by significant phase modulation and can
effectively compressed by chirp compensation~Figs. 9b and
10b!. The corresponding spectra of the pump pulse and
third harmonic are shown in Fig. 11. As in the case of sm
group delay of the pump and third-harmonic pulses, an
crease in the pump power broadens the spectrum of the
harmonic~Fig. 12!.

Thus, the picture of the nonlinear-optical interaction
short laser pulses in a gas-filled hollow waveguide is cons
erably more complicated with a significant group delay
the pump and third-harmonic pulses than in the absenc
group delay of the pulses. However, under these conditio
too, the cross-phase modulation makes it possible to con
the parameters of the third-harmonic pulses~Figs. 10 and 12!
and permits the formation of ultrashort pulses of radiation
the ultraviolet range.

5. CONCLUSION

An analysis of the solutions obtained for coupled equ
tions describing the slowly varying amplitudes of the pum
pulse and third harmonic with allowance for self- and cro
phase modulation and first-order dispersion effects
shown that self- and cross-phase modulation can be im
tant factors, which have a significant influence on the e
ciency of frequency conversion in third-harmonic generat
in hollow waveguides. Unlike the plane-wave approxim
tion, these equations include the influence of the wavegu
through the propagation constants, the group velocities of
pump radiation and the third harmonic, and the nonlin
coefficients written with consideration of the transverse d
tributions of the pump and third-harmonic fields for the co
responding waveguide modes. It has been shown the p
trajectory of the third harmonic can partially compensate
f

p

FIG. 10. Time dependence of the power o
the TEM11 mode of the third-harmonic pulse
at the exit from the waveguidePh[Ph

1 ~a!
and after compensation of the linear chir
PhC ~b! in the traveling coordinate framehh

for Pp052 GW andp50.506 atm~1!, Pp0

51 GW and p50.514 atm ~2!, and Pp0

50.5 GW andp50.518 atm~3! with 2t
525 fs.
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constant phase mismatch between the third-harmonic p
and the fundamental pulse as a result of cross-phase m
lation in a certain part of the pulse. The influence of pha
mismatch on the efficiency of third-harmonic generation c
be minimized by selecting media with favorable dispers
properties of the refractive index and fiber modes, as wel
the frequency dependences of the corresponding nonlin
optical susceptibilities.

This study has shown that the chirp of optical harmon
at the exit from a nonlinear medium can be controlled
varying the amplitude of the pump pulse. The physi
mechanism for controlling the spectrum and phase of opt
harmonics is associated with the fact that the harmonics
generated under the conditions of self-phase modulatio
the fundamental pulse and the phase of the third-harm
pulse is modulated by a correction to the refractive index
the medium induced by the fundamental pulse. Such
method of controlling phase modulation seems promising
obtaining ultrashort pulses in the vacuum-ultraviolet a
x-ray ranges by high-order harmonic generation and p
metric wave mixing in hollow optical waveguides and a las
plasma.

This research was carried out with support from the R
sian Fund for Fundamental Research~Project No. 97-02-
17351! and the U.S. Civilian Research and Developm
Foundation for the Independent States of the Former So
Union ~CRDF! ~Award No. RP1-255!.

FIG. 11. Absolute value of the spectrum of the amplitude of the TEM11

mode of the third-harmonic pulseSh ~1!, of the pump pulse at the exit from
the waveguideSp ~2!, and of the pump pulse at the entrance to the wa
guideSp0 ~3! for p50.506 atm,Pp052 GW, and 2t550 fs.

FIG. 12. Absolute value of the spectrum of the amplitude of the TEM11

mode of the third-harmonic pulse at the exit from the waveguide fort
525 fs,Pp052 GW, andp50.506 atm~1!, Pp051 GW andp50.514 atm
~2!, andPp050.5 GW andp50.518 atm~3!.
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This paper is a theoretical analysis of time-dependent nutation and echo signals in the effective
field of multipulse trains in NQR. The results of experimental investigations of the same
aspects were reported in earlier papers. The various features of dipole–dipole interactions in three-
level quadrupole spin systems are discussed. It is shown that, in contrast to NMR, the
dipole Hamiltonian in the interaction representation determined by the quadrupole Hamiltonian
contains only three diagonal components of the dipole–dipole interaction tensor. On the
other hand, the strong inhomogeneous broadening characteristic of NQR hinders exact
measurement of these components by ordinary methods. The theoretical analysis suggests
that the decay of the echo-signal envelope in the effective field of multipulse trains is determined
solely by the dipole relaxation time, which serves as justification of a new experimental
method used in measuring the characteristics of the dipole–dipole interaction tensor in spin
systems with an inhomogeneously broadened spectrum. ©1999 American Institute of
Physics.@S1063-7761~99!00405-9#
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1. INTRODUCTION

Multipulse trains were introduced into the realm
nuclear magnetic resonance studies by J. Waugh
collaborators1,2 in order to average dipole–dipole intera
tions, which made it possible to observe chemical shifts
solids. In NQR, the use of multipulse trains was also initia
introduced for practical reasons, since such trains mad
possible to dramatically increase the number of events
unit time, which is especially important in the search f
weak NQR signals~especially NQR in14N!. However, the
successful use in NQR of multipulse trains in studies
polycrystalline samples, where the principal axes of the t
sor of the electric-field gradient are oriented at random
relation to the vector of the radio-frequency~rf! field so that
there can be no 90° and 180° pulses in the strict sense o
word, required reviewing several aspects of the theoret
explanation of multipulse regimes. The strict requirem
~obligatory in NMR! that the mean dipole–dipole interactio
Hamiltonian be zero, which is impossible to meet in NQ
for polycrystalline samples, was replaced by a less string
requirement that the initial density matrix commute with t
mean Hamiltonian, provided that the initial density mat
contains the transverse magnetization operator.3

Because of the practical problems mentioned above,
heightened interest of researchers in multipulse spin-lock
in NQR caused the part of the initial density matrix that do
not commute with the mean Hamiltonian~is orthogonal to it!
to be neglected. It is obvious, however, that the evolution
that term may be of interest from the practical viewpoint
well as from the theoretical. Previous papers4–6 reported the
results of experimental studies of transient NQR signals
14N in the effective field of multipulse trains, i.e., signals th
appear immediately after the spin system has been subje
8681063-7761/99/88(5)/7/$15.00
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to a multipulse train or the structure or parameters of
train have changed. In these papers several new result
listed: echo in the effective field~echo on the echo-signa
envelope! that arises after the phase in the multipulse tr
has been inverted or an additional pulse has been app
and a time-dependent nutation signal in the effective fi
that has a pronounced oscillatory nature and coincides
shape with the NMR induction signal in a solid~the ordinary
induction signal in NQR has no oscillations and resemble
Gaussian curve!.

In Ref. 6 it was noted that the experimental results co
be interpreted as stemming from time-dependent nutatio
the effective field of multipulse trains under conditions
stroboscopic observation, which means that the informa
is gathered once per cycle or ‘‘supercycle’’ of the train.
the same paper it was assumed that one application of
method could be the study of dipole–dipole interactions i
system with an inhomogeneously broadened spectr
which is characteristic of NQR.

Goldman7 calls such a situation ‘‘dirty’’ and advise
avoiding it. However, much research8,9 has gone into the
problem of a spin temperature setting in systems with la
inhomogeneous broadening~primarily in EPR!. Moreover,
inhomogeneous broadening was taken into account unco
tionally in research devoted to calculations of spin echo
EPR~see Refs. 10 and 11!. The spin-packet approximation12

proved to be fairly effective in such calculations. Howev
all these approaches did not involve transient proces
which precede the setting in of quasistationary states in m
tipulse regimes.

The decay time of echo signals in the effective fie
equals several ordinary echo~Hahn echo! decay times in the
same samples.6 This may occur because of partial averagi
of the dipole–dipole interactions by a multipulse train
© 1999 American Institute of Physics
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because of the effect of large inhomogeneous broadenin
the decay time of Hahn echo. Hence before we analyze t
sient process in the effective field of multipulse trains
must examine the features of dipole–dipole interactions
NQR and their effect on formation of ordinary~Hahn! echo.

2. DIPOLE–DIPOLE INTERACTIONS IN A THREE-LEVEL
QUADRUPOLE SPIN SYSTEM

The quadrupole Hamiltonian13

HQ8 5A@3I z
22I 21 h~ I x

22I y
2!/2# ~1!

for I 51 ~NQR of 14N, which corresponds to the experimen
described in Refs. 3–5! can be represented in terms
single-transition operators:14

HQ8 5vpqSz
pq1~vqr2v rp!~Sz

qr2Sz
rp!. ~2!

HereA is the nuclear quadrupole coupling constant;h is the
asymmetry parameter of the tensor of the electric-field g
dient; I x , I y , and I z are the spin-operator projections;vpq

5Ep2Eq , vqr5Eq2Er , andv rp5Er2Ep are the transi-
tion frequencies, withEp , Eq , andEr the energy levels; and
I is replaced withS in the notation for single-transition op
erators used in Ref. 14 so as to emphasize the differe
between these operators and true spin operators.

The first feature of NQR we would like to stress a
allow for in our analysis is the large inhomogeneous bro
ening of lines due to the presence of impurities, imperf
tions in the lattice, etc. Ordinarily, the inhomogeneous wid
of NQR lines for14N, denoted by 1/T2* , is about 1 kHz in
molecular crystals and large compared to the dipole wi
1/T2 ~of order 100 Hz!. At the same time, the width of th
spectrum of rf pulses, 1/tp , is within 10 kHz, i.e.,T2.T2*
.tp . Bearing all this in mind, we can write the Hamiltonia
of pairwise interacting spins as a sum of two-spin Hamil
nians:

H85vpq1Sz1
pq121vpq211Sz2

pq1HD8

5vpq~Sz1
pq12111Sz2

pq!1d~Sz1
pq12211Sz2

pq!1HD8 . ~3!

The second term on the right-hand side commutes with
the operators of thepq subspace and does not take part in
evolution process if the rf pulse is applied in this transitio
so that it can dropped. Here11 and12 are the identity matri-
ces for the first and second spins,vpq5(vpq11vpq2)/2 is
the median quadrupole frequency of these spins for thepq
transition,d5(vpq12vpq2)/2 is the ‘‘difference’’ of these
frequencies, andHD8 is the dipole–dipole interaction Hamil
tonian.

The dipole Hamiltonian in the interaction representat
determined by the quadrupole Hamiltonian can be expres
in terms of single-transition operators:15

HD52Vpq~Sx
pqSx

pq1Sy
pqSy

pq!2Vpq~Sx
qrSx

qr1Sy
qrSy

qr

1Sx
rpSx

rp1Sy
rpSy

rp!1~Vqr2V rp!~Sx
qrSx

qr1Sy
qrSy

qr

2Sx
rpSx

rp2Sy
rpSy

rp!, ~4!

whereVpq , Vqr , andV rp are the diagonal components
the dipole–dipole interaction tensor~note that the sum o
in
n-

n
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ce
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-

h

h
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these components is zero!. Here and below we drop the num
bering of the spin operators and use the definition by po
tion, i.e., the operator of the first spin is in the first positi
and that of the second spin, in the second. While the ini
dipole Hamiltonian has the same form in NQR and NM
the ‘‘truncated’’ dipole Hamiltonian in NQR differs signifi
cantly from the similar Hamiltonian in NMR. First, the trun
cated dipole Hamiltonian in NQR has noA-term of the ‘‘di-
pole alphabet’’ because theZ-component of the nuclear spi
is not diagonal in the representation where the quadrup
Hamiltonian is diagonal. Second, the three remaining te
describe flip–flop processes, and each term corresponds
exchange of photons of the three allowed transition frequ
cies. The first term of the truncated dipole Hamiltonian~4!
describes flip–flop processes at a transition frequency e
to the frequency of the external rf field, while the second a
third terms represent the sum and difference of similar te
for the other two processes. All commute with each oth
the first transforms as a tensor of rank 2, i.e., is rotated b
rf pulse through a double angle, the third as a tensor of r
1, and the second as a scalar. Thus, in NQR the dipole
ervoir splits into two constants of motion. This fact was fir
noted in Refs. 15 and 17. As a result, NQR provides
possibility of measuring the asymmetry parameter of
dipole–dipole interaction tensor in experiments, although
the laboratory reference frame the dipole–dipole interact
tensor is axisymmetric,2 in the same way as the tensor
interest in the truncated dipole Hamiltonian in NMR is ax
symmetric.

In the interaction representation we can write the qu
rupole Hamiltonian as follows:

HQ5D~Sz
pq111Sz

pq!1d~Sz
pq121Sz

pq!, ~5!

where D5vpq2v0 is the deviation of the median spin
interaction frequency from the frequency of the rf fiel
which is usually assumed to be the median frequency of
resonance line. The first term on the right-hand side of
~5! commutes with all the terms inHD and with the second
term in HQ . Thus, it is the ‘‘quadrupole reservoir,’’ corre
sponding to the Zeeman reservoir in NMR. The second te
in ~5! does not commute with the truncated dipole Ham
tonian, and hence no purely dipole reservoir can be spec
in NQR. The difference of quadrupole frequencies of t
interacting spins bring us close to such a reservoir.

Another approach to the transition to the interaction re
resentation involving the total quadrupole Hamiltonian
two spins is possible. In this case, the interaction represe
tion lacks ‘‘quadrupole’’ terms but the dipole Hamiltonia
becomes time dependent:

HD52Vpq@~Sx
pqSx

pq1Sy
pqSy

pq!cos2dpqt1~Sx
pqSy

pq2Sy
pqSx

pq!

3sin 2dpqt#12Vqr@~Sx
qrSx

qr1Sy
qrSy

qr! cos 2dqrt

1~Sx
qrSy

qr2Sy
qrSx

qr! sin 2dqrt#12V rp@~Sx
rpSx

rp

1Sy
rpSy

rp! cos 2d rpt1~Sx
rpSy

rp2Sy
rpSx

rp! sin 2d rpt#,

~6!
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wheredpq , dqr , andd rp are the differences of the quadru
pole frequencies of the interacting spins in thepq-, qr-, and
rp-transitions.

It is now convenient to base our reasoning on examin
the evolution of an isolated pair of spins~the two-spin
model!. This model makes it possible to solve the quant
Liouville equation exactly, which can produce useful info
mation about the effect of inhomogeneous broadening of
dipole–dipole interaction and can be generalized to a mu
spin system by various approximation schemes.

To obtain a solution we must introduce the initial dens
matrix. In the high-temperature approximation, the equil
rium density matrix is determined by the Boltzmann dist
bution. When a 90° pulse is applied along thex axis, the
initial density matrix is transformed~if we drop the first term
and a constant factor! into

r15vpq1Sy
pq11vpq21Sy

pq

5vpq~Sy
pq111Sy

pq!1d~Sy
pq121Sy

pq!

.vpq~Sy
pq111Sy

pq!, ~7!

sincevpq@d.
Further evolution due to the internal interaction Ham

tonian is determined by the quantum Liouville equation.
formal solution,

r25exp~2 iHt ! r1exp~ iHt !,

can be reduced to nonoperator form by successive diffe
tiation and calculation of the resulting commutators.3,15,16In
this process of such calculations the initial density ma
splits into two parts:

r15r1pq1r1r ,

r1pq5vpq~Sy
pq1pq11pqSy

pq!, ~8!

r1r5vpq~Sy
pq1r11rSy

pq!,

where1pq52Se
pq is the identity matrix in thepq subspace,

and1r5121pq. Accordingly, the spin space splits into tw
subspaces, for each of which we can put together a se
spin operators that commute with the operators of the o
subspace.18 The matrixrpq commutes with the second an
third terms of the dipole Hamiltonian~4!, while r r commutes
with the first and second terms. Formally, the first subsp
is entirely analogous to spin-1

2 NMR, although the physica
meaning of the operators in these two cases do not coinc
The operators of the second subspace describe two-ph
transitions through a third level and have no direct analog
NMR.12 The spin evolution in this subspace requires a se
rate investigation. The experiments described in Refs. 4
used 180° multipulse trains that averaged the internal in
actions in this subspace,1–3 which requires using other train
to study this subspace in experiments and makes it pos
to discard the second part of the density matrix. We will a
drop the first term of the quadrupole Hamiltonian in~5!,
which commutes with the other terms of the total Ham
tonian. The effect of this term will be determined in the la
stage, although it is obvious from the start that it manife
itself in the divergence of the isochromatic curves as
g
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detuning frequency increases. For the remaining terms in
Hamiltonian and the part of the density matrix referring
the first spin,r15vpqSy

pq1, the solution of the quantum
Liouville equation for thepq-subspacehas the form

r2;vpq1@SySe cosvet1~2SxSecd1SzSxcV! sin vet#,
~9!

where ve5(Vpq
2 1d2)1/2 is the effective precession fre

quency, andcd5d/ve and cV5Vpq /ve are the direction
cosines of the rotation axis. Here and below we place
upper indices on the operators and assume, if not stated
erwise, that the operators belong to thepq-subspace.

Applying a second 180° pulse to the spin system lead
formation of spin echo. The density matrix describing t
evolution of the observableSySe after the second pulse ha
been applied can be written

r35vpq1SySe$2@cd
2 cosve~ t2t!1cV

2 cosve~ t1t!#

3cosD~ t2t!1cd sin ve~ t2t! sin D~ t2t!%.

~10!

Thus, at d50, which corresponds to the spin-pack
approximation,11 formula ~10! yield an echo signal with a
decay timeT251/Vpq . At Vpq50 the initial transverse
magnetization is fully restored, but in the general case th
is partial refocusing of the isochromatic curves, which
determined by the ratio of the direction cosines, and the e
signal decays with a decay time depending on bothVpq and
d. Hence, measuring the spin–spin relaxation time in s
tems with an inhomogeneously broadened spectrum by
usual methods~the Hahn two-pulse train method! may lead
to incorrect results. For the other part of the density mat
r2r , the explicit form of the solution of the quantum Liou
ville equation is more complicated and describes two ro
tions with frequencies

ve1,2

5
1

A2
Ad21

Vqr
2 1V rp

2

2
6Ad41d2~Vqr

2 1V rp
2 !1Vqr

2 V rp
2 .

~11!

Obviously, the difference of these two frequencies is de
mined by the asymmetry of the dipole–dipole interacti
tensor. AtVqr

2 5V rp
2 one frequency vanishes and the oth

becomes equal to the frequencyve in ~9!.

3. TIME-DEPENDENT NUTATION IN THE EFFECTIVE FIELD

The experiments described in Refs. 4–6 used a mu
pulse train with alternating phases,

wy~t12cx22t12c2x2t1!n , ~12!

wherewy is the angle of the rotation of the nuclear magn
tization vector initiated by a priming pulse directed along t
y axis of a rotating reference frame,cx (c2x) is the angle of
the rotation initiated by a pulse from the train applied alo
thex (2x) axis,t1 (2t1) is the pulse spacing, andn is the
number of cycles.

In the first approximation~in which the pulses are ap
proximated by delta functions! we can use the ordinary



u
o
b
es
uc
o
e
s
n

he
,
4–
m
m

n
a

us
io
ac

rm

is

of
ld

g

s,
-

:

ial

ons
in a
er

v-

s-
the
rse

the

and

on

871JETP 88 (5), May 1999 D. Ya. Osokin
method of calculating mean Hamiltonians.1–3 Since the ex-
periments used a 180°-pulse train, the inhomogeneo
broadening Hamiltonian is averaged to zero, and the dip
Hamiltonian, which a tensor of rank 2 and is transformed
a double angle by the pulses, remains unchanged. As a r
the time-dependent nutation in the effective field is an ind
tion signal whose decay is determined by the dipole–dip
interaction Hamiltonian. However, this approximation d
scribes neither the dependence of the period of oscillation
the time-dependent nutation on pulse length and spacing
the formation of echo signals in the effective field after t
phase of rf pulses in the train has been inverted. Thus
describing the experimental results discussed in Refs.
one must not neglect the inhomogeneous-broadening Ha
tonian during the action of the pulses. In this case the co
mon method used in calculating the mean Hamiltonian1 is
inapplicable, since the pulse propagators do not represe
unitary transformation. Hence in what follows we will use
transition to the interaction representation in each spin@see
Eq. ~6!#. In this representation there is no inhomogeneo
broadening Hamiltonian, and the dipole–dipole interact
Hamiltonian and the Hamiltonian representing the inter
tion with the rf field become time-dependent.

For a 180°-pulse train we may leave only the first te
in the expression for the dipole Hamiltonian~6!. The Hamil-
tonian representing the interaction with the rf field in th
case can be written

H15v1~Sx1 cosD1t11Sx cosD2t2Sy1 sin D1t

21Sy sin D2t !, ~13!

whereD15vpq12v0 , D25vpq22v0, v0 is the frequency
of the rf field, andv1 is amplitude of the Hamiltonian.

The cycle (tc) averages of the dipole Hamiltonian and
the Hamiltonian representing the interaction with the rf fie
are given by the formulas

H̃D
(0)5

2V sindtc

dtc
@~SySy1SxSx! cosdtc

1~SxSy2SySx! sindtc#

5
2V sindtc

dtc
exp$ i ~SzSeD11SeSzD2!tc% ~SySy1SxSx!

3exp$2 i ~SeSzD21SzSeD1!tc%, ~14!

H̃1
(0)5

4v1tp

tc
@sin D1t ~SySe cos 2D1t1SxSe sin 2D1t!

1sin D2t ~SeSy cos 2D2t1SeSx sin 2D2t!#

5
4v1tp

tc
exp$ i ~SzSeD11SeSzD2!tc% ~SySe sin D1t

1SeSysin D2t!exp$2 i ~SzSeD11SeSzD2!tc%, ~15!

If we pass to a new reference frame defined by the propa
tor

P5exp$2 i ~SzSeD11SeSzD2!tc%,

we obtain
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H̃D5
2V sindtc

dtc
~SxSx1SySy!5V1~SxSx1SySy!,

H̃15
4v1tp

tc
~SySe sin D1t1SeSy sin D2t!

5v1a~SySe1SeSy!1v1b~SySe2SeSy!, ~16!

wheret5tc/4.
The total Hamiltonian consists of two commuting term

SySe1SeSy and SySe2SeSy , each of which does not com
mute with the third term,SxSx1SySy . If we perform another
transformation with the propagator

P15exp$ i ~SzSx1SxSz!a%exp$ i ~SzSx2SxSz!b%,

where

sin a5
2v1a

ve1
, ve152Av1a

2 1
V1

2

4
,

sin b5
2v1b

ve2
, ve252Av1b

2 1
V1

2

4
,

the Hamiltonian~16! becomes a sum of commuting terms

H52@V1SySy1SxSx~ve11ve2!1SzSz~ve22ve1!#. ~17!

Thus, to obtain a solution, we must transform the init
density matrix via the propagatorsP andP1, find the solution
of the quantum Liouville equation with the Hamiltonian~17!,
and perform the inverse transformation. All these operati
are extremely involved and cannot be described in detail
journal article~it is best to do all calculations on a comput
using a package with computer algebra capabilities!.

A. Pulse train „12… without a priming pulse

The initial density matrix~the Boltzmann matrix density
in the high-temperature approximation! for the first spin is
proportional to vpq1SzSe and for the second spin, to
vpq2SeSz . The contribution of the first spin to the obser
ableSxSe is

r1;SxSe@~sin a1sin b!sin~ve11ve2!te1~sin a

2sin b!sin~ve12ve2!te#cosV1tecos
D1tc

2
. ~18!

The contribution of the second spin is

r2;SxSe sin V1te cos
D2tc

2
sin ve1te sin ve2te sin~a1b!,

~19!

where te5ntc is the effective discrete time. These expre
sions imply that there is exchange of coherence between
spins. The contribution of the second spin to the transve
magnetization of the first spin is zero ifV50. The experi-
mental curve for time-dependent nutation obtained by
pulse train~12! without a priming pulse6 is depicted in Fig.
1. The curve represents damped sinusoidal oscillations
qualitatively agrees with the expressions~18! and ~19!. The
damping is determined by the dipole–dipole interacti
Hamiltonian~the factor cosV1te) and the mixing of oscilla-
tions with combinations of the frequenciesve1 andve2.
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B. Pulse train „12… with a 90 ° priming pulse

After a 90° pulse has acted on the system, the ini
density matrix becomes proportional toSxSe andSeSx for the
first and second spins, respectively. The first spin creates
observed coherence

r1;SxSeH cosV1te @cosve1te cosve2te1sin ve1te

3sin ve2te cos~a1b!#cos2
D1tc

2
1~cos2a cosve1te

1cos2b cosve2te! sin2
D1tc

2 J . ~20!

The contribution of the second spin is

r2;SxSeH sin V1te~2sin ve1te cosve2te cosa1cos

3ve1te sin ve2te cosb!cos
D1tc

2
cos

D2tc

2

1~2cos2a cosve1te1cos2b cosve2te2sin2a

1sin2b! sin
D1tc

2
sin

D2tc

2 J . ~21!

The experimental curve6 for this case is depicted in Fig.
and, according to the above expressions, represents da
cosinusoidal oscillations.

FIG. 1. Envelope of an echo signal in a multipulse train with alternat
phases@see~12!# for the casew50, c5p, t50.3 ms, andtp550ms.

FIG. 2. Envelope of an echo signal in a multipulse train with alternat
phases withw5p/2, c5p, t50.5 ms, andtp550ms. Signal sampling was
done once per cycle.
l

he

ped

4. ECHO IN THE EFFECTIVE FIELD

Echo signals in the effective field are formed by t
multipulse train4–6

wy2~t12cx22t12c2x2t1!n

2~t12c2x22t12cx2t1!N . ~22!

Hence analysis requires that we examine all coherences
occur ~during the timete5ntc) due the mean Hamiltonian
~14! and ~15! and the reverse evolution of these coheren
after the phase of the rf field has been inverted in the tra
For this part of the train the mean Hamiltonian~15! changes
sign. The priming pulsewy excites a transverse magnetiz
tion SxSe . Then, due to the action of the sum of Hamilt
nians ~14! and ~15!, this magnetization transforms into th
orthogonal cophased coherenceSySe , the two antiphased co
herencesSxSz and SySz , and the two-photon coherence
SxSy andSySx . After the phase has been inverted, addition
contributions to the observed coherenceSxSe are provided
by the antiphased coherenceSxSz and the orthogona
cophased coherenceSySe . According to~14! and~15!, in the
first stage there are rotations with combinations of the th
frequenciesV1 , ve1, andve2. After phase inversion is com
pleted, there is convergence of coherence at one freque
and divergence at another. The observed coherenceSxSe and
the antiphased coherenceSxSz are produced by terns tha
diverge at the frequencyV1 and converge at the frequencie
ve12ve2 andve11ve2, respectively:

r~SxSe!;cos2
D1tc

2
cos2

a1b

2
sin a sin b

3cosV1~ te1te!cos~ve12ve2!~ te2te!, ~23!

r~SxSz!;sin2
D1tc

2
cos2

a1b

2
sin a sin b

3cosV1~ te1te! cos~ve11ve2!~ te2te!. ~24!

This signal decays with an effective spin–spin relaxat
time T2e51/V1. The orthogonal cophased coherence p
vides a contribution which is totally convergent at the fr
quenciesve1 and ve2. Thus, in the given experiment, th
echo-signal decay time is independent of inhomogene
broadening, which makes it possible to recommend t
method for measuring dipole–dipole interaction times in s
tems with an inhomogeneously broadened spectrum. The
cay of the echo-signal envelope obtained via the pulse t
~22! is depicted in Fig. 4 of Ref. 6. The decay time amoun
to 20ms, whileT2 in the same sample measured by the Ha
two-pulse method is 7 ms.

Another approach to analyzing echo signals in the eff
tive field amounts to calculating the mean Hamiltonian fo
‘‘supercycle’’ consisting of two cycles with inverse phase
With such a train,

wy2~t2cx22t2c2x2t!n2@~t2c2x22t

2cx2t!2n2~t2cx22t2c2x2t!2n#N , ~25!

multiple echo signals in the effective field have be
obtained.5,6 The mean Hamiltonian calculated in this wa
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describes the echo-signal envelope in such a train. The
pole Hamiltonian~14! in this case remains unchanged, wh
the Hamiltonian~15! representing the interaction with the
field becomes

H̃1
(0)5

4v1tp

tc
Fsin2~D1tc/4!

cosD1t S SxSecos
D1tc

2
1SySe sin

D1tc

2 D
1

sin2~D2tc/2!

cosD2t S SeSx cos
D2tc

2
1SeSy sin

D2tc

2 D G
5

4v1tp

tc
exp$ i ~SzSeD11SeSzD2!tc%

3S SxSe

sin2~D1tc/4!

cosD1t
1SeSx

sin2~D2tc/4!

cosD2t D
3exp$2 i ~SzSeD11SeSzD2!tc%, ~26!

where tc now denotes the duration of the entire ‘‘supe
cycle.’’ This Hamiltonian describes time-dependent nutat
in the effective field of the multipulse train~22!, provided
that signal strobing is done once per ‘‘supercycle,’’ and
sembles the Hamiltonian~15!, differing only in the coeffi-
cients of the operators and the operators proper, in whichSy

is replaced bySx .
Accordingly, the solution of the quantum Liouville equ

tion is close to~21!:

r;SzSe$cosV1te @cosve1te cosve2te1sin ve1te

3sin ve2tecos~a1b!#1cos2a cosve1te

1cos2b cosve2te1sin2a1sin2b%sin D1t. ~27!

These patterns are reflected in the experimental curve in
3 ~see Ref. 6!, whose envelope decays according to a doub
exponential law. The fast exponential is probably determin
by the timeT2e and the slow exponential by the formation
multispin coherence.

The contribution of the second spin exhibits the sa
features, but here expressions of the type cosv(te2te) are
replaced by sinv(te2te). This probably explains the ‘‘pair-
ing’’ of echo signals depicted in Fig. 3.

FIG. 3. Multiple echo signals in the effective field obtained via train~25! at
t50.3, tp550ms, andn53. The grid denotes the points of phase inversio
i-
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To go over to the many-body problem, we must avera
the above expressions for the density matrix over the dip
and quadrupole frequencies with appropriate distribut
functions. Of course, in this case the solution does not
come ‘‘many-body.’’ However, the approximations use
here are no rougher than those employed in widely acce
methods that use second-moment calculations or an itera
procedure~if the latter is limited to two iterations!.7 In both
cases one is forced to calculate a double commutator, w
corresponds to decoupling the equations before three-
coherence is excited.16

A detailed review of the methods used in describi
time-dependent nutation in EPR in solids, which large inh
mogeneous broadening must be taken into account, ca
found in Ref. 19. Here preference is given to a phenome
logical description that the Bloch equation instead of t
Liouville equation. In the spin-packet approximation, tim
dependent nutation represents damped oscillations~with a
decay timeT2) with a frequency equal to the amplitude o
the rf field,v1:

M y~ t !5Mz~0!sin v1t expH 2
t

T2
J ,

provided that the initial magnetization is directed along thz
axis. This approach can also be used to interpret tim
dependent nutation in the effective field of multipulse train
since the mean Hamiltonians~14!, ~15!, and ~26! formally
~i.e., in the constituent operators! are similar to the Hamil-
tonian describing time-dependent nutation in a steady-sta
field in EPR. For the sake of comparison, it is also usefu
consider the signals of time-dependent nutation and ech
the effective field of the single-phase multipulse train

wx2~t2cx2t!n . ~28!

The mean Hamiltonian for this train can be written

H̃1
(0)5

2v1

tc
Fsin D1tp

D1
~SxSecosD1t1SySe sin D1t!

2
sin D2tp

D2
~SeSx cosD2t1SeSx sin D2t!G

.
2v1tp

tc
exp$ i ~SzSeD11SeSzD2!tc% ~SxSe

1SeSx!exp$2 i ~SzSeD11SeSzD2!tc%. ~29!

The experimental curves representing time-dependent n
tion and echo signals that arise after the phase has bee
verted are depicted in Figs. 1 and 2 of Ref. 4. The oscillat
frequency in this case (2v1tp /tc) is at its maximum, is lower
for the train ~12! with alternating phases
(4v1tp sin(D1,2t)/tc) ~Fig. 2!, and is still lower for the su-
percycle of the train ~22!(4v1tpsin2(D1,2tc/4)/tc cos
D1,2t) ~Fig. 3!; oscillations are essentially unobservable
the last case.

All the experiments referred to in this paper were carr
out using single-crystal samples of sodium nitrite NaN2

.
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~NQR in 14N! at 77 K and the1↔0 transition. A more
thorough description of the experimental methods can
found in Refs. 4–6.

5. CONCLUSION

The theoretical investigation of echo signals and tim
dependent nutation in the effective field of multipulse tra
obtained in experiments and described in the previous pa
cited in Refs. 4–6 has shown that the proposed method
be used to find in experiments the true spin–spin relaxa
time for spin systems with an inhomogeneously broade
spectrum. The results of the experiments imply that the
cay times of the envelopes of echo signals and of the ti
dependent nutation in the effective field are several tim
longer than the decay time of the envelope of ordinary-e
signals measured by the Hahn two-pulse method. The re
is that in systems with an inhomogeneously broadened s
trum the dipole reservoir ceases to be a constant of mot
its place being taken by the sum of the dipole Hamilton
and the Hamiltonian describing the splitting of the levels
the interacting spins. One consequence of this is that
decay time of the transverse magnetization, measured by
Hahn method, is determined by the values of the two Ham
tonians. A multipulse train separates these Hamiltonia
shifting the inhomogeneous broadening to the subspac
the external rf field. As a result, we can select a represe
tion in which the dipole Hamiltonian~scaled, to be exact!
becomes a constant of motion.

Thus, the oscillations of time-dependent nutation are
termined by the mean Hamiltonian of the rf field~with al-
lowance for inhomogeneous broadening!, and the damping
of these oscillations is determined by the dipole–dipole
teraction Hamiltonian. Phase inversion of the rf field leads
echo formation, and the isochromatic curves that gene
the oscillations are refocused.

Quantitative comparison of the results of the present
vestigation and the experimental data asks for a sepa
study after the time-dependent nutation in the effective fi
in the other subspace has been analyzed. This requires
aging over dipole and quadrupole frequencies. The exp
mentally observed time-dependent nutation in a 180°-pu
e
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train and a zero priming pulse is of the greatest intere
Probably, these signals are due to mutual correlation of
pole and quadrupole frequencies over the bulk of the sam
If this is the case, then the proposed method can serve
useful instrument for studying the inner structure~homoge-
neity! of crystals.
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Synchronizing a chaotic laser by injecting a chaotic signal with a frequency offset
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It has been theoretically proven that a chaotic laser driven by an injected signal derived from a
similar chaotic master oscillator working at a slight frequency offset operates in a new
mode of synchronization. There is a certain relationship between average laser fields, which has
been approximately calculated in an explicit form, and instantaneous fields form an
attractor about the point defined by these average values, with a relatively small spread in the
phase trajectories around it. It has been shown that such a configuration can be used in
transmitting confidential information. ©1999 American Institute of Physics.
@S1063-7761~99!00505-3#
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1. INTRODUCTION

From the standpoint of oscillation dynamics, a laser i
nonlinear dynamic system that operates, depending on
conditions, in various modes, including regimes of dynam
chaos, which have been studied extensively in recent ti
Since lasers are used in communication systems, the iss
transmission of confidential information through common
accessible channels has been brought up.1,2 The underlying
idea is utilization of chaotic generation regimes for codi
transmitted information. The development of this idea
quired meticulous research into operating regimes of cha
lasers and feasibility of their synchronization by coupli
radiation from one laser to another.

The issue of synchronization of oscillating systems da
from several centuries ago. However, since the synchron
tion effects in chaotic nonlinear oscillators are various a
sundry, the theory of these effects is far from complete
has become clear by this time that the concept of ‘‘synch
nization of coupled nonlinear systems’’ is still in the proce
of development, because a lot of new synchronization mo
are being discovered. The simplest form is synchroniza
of identical systems when they are coupled using an ap
priate technique. In this case, the state vectorsx1 andx2 of
these systems in the phase space approach one anoth
closely as one pleases as the time tends to infinity. One
ample taken from the laser physics is the synchronization
optically coupled lasers: the experiment was reported in R
3, and the theoretical aspects in Ref. 4.

The concept of generalized synchronization has a
been introduced. It refers to the situation when certain fu
tional asymptotic relations are established between the s
vectors of two lasers. For example, two chaotic lasers wit
symmetric coupling and an upper limit imposed on the f
quency offset between their cavities are locked in suc
manner that the field amplitudes are identical, whereas
phase difference takes a certain value depending on the
set and coupling constant.4

Weaker forms of synchronization, namely, the so-cal
‘‘phase synchronization’’6 and delayed synchronization7
8751063-7761/99/88(5)/7/$15.00
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have been discovered in dynamic systems described
Rössler’s equations.5 The‘‘phase’’ in Ref. 6 is the phase of
point on the trajectory of Ro¨ssler’s attractor, which corre
sponds to the rotation on average, if the origin is chos
appropriately. In the case of the delayed synchronization,
following asymptotic relation between state vectors appli
x2(t)5x1(t1t0), wheret0 is the delay between the evolu
tion of the ‘‘slave’’ system with respect to the master~here
the case of unidirectional coupling is considered!. As in the
case of the transition to turbulence in hydrodynamics, wh
proceeds via sequential changes of oscillation modes, it tu
out that at certain system parameters of two coupled cha
lasers, essentially perfect synchronization is fully disrup
from time to time, and then restored.8

The brief review of papers on the synchronization
chaotic systems given above indicates that the effects in s
generators are many and varied, and this variety can ham
the development of practicable optical communication lin
for transmission of confidential information based on chao
lasers. Nonetheless, successful attempts1,2 to test in experi-
ment a system of optical communication based on synch
nization of a chaotic laser~receiver! by injecting into the
latter the radiation from a master oscillator have dem
strated the feasibility of this scheme. The technique
coding/decoding information using a random sequence o
ser pulses is based on a nontrivial effect: it turns out1 that a
slave laser fed with an optical signal carrying coded inf
mation restores the initial signal and eliminates modulati
By comparing the input beam carrying information with th
output signal, one can retrieve the coded information. I
obvious that the effect of information losses in the recei
with conservation of the carrier chaotic signal does not ta
place under all conditions. There are limitations on the d
sity of coded information and degree of identity between
two lasers. The admissible bandwidth for information tran
mission was calculated numerically9 in the case of two iden-
tical lasers. The crucial parameter of two nonidentical las
is the difference between effective lengths of their opti
cavities if it is not a multiple of the light wavelength. Th
frequency offset between the cavities raises the issue of
© 1999 American Institute of Physics
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chronization of two chaotic lasers and erasure of informat
in the output beam of the slave laser.

This paper addresses the synchronization of chaotic
sers at a finite frequency offset between them and the po
bility of decoding information transmitted by such a syste

2. MATHEMATICAL MODEL

The model considers the chaotic operation of lasers
ing to a periodic modulation of the rate of pumping to t
upper level with periodTp . WhenTp is close to the period
of relaxation oscillations10 in a laser under constant pumpin
at a level equal to the amplitude of the periodic pumping,
laser generates a random sequence of pulses. A diagra
the studied laser system is given in Fig. 1.

The differential equations describing the system sho
in Fig. 1 are given below in the simplest possible form:

tġ15g0~ t !2g1~11uE1u2!,

tġ25g0~ t !2g2~11uE2u2!,

Ė15
1

2
~g12gth1 iD!E1 ,

Ė25
1

2
~g22gth2 iD!E21M ~E12E2!. ~1!

The kinetic properties of the gaing1,2 in the medium are
described in the simplest approximation of a fixed pump
g0(t) and a single effective relaxation timet of the popula-
tion inversion. The field amplitudesE1 andE2 are complex
parameters, and the squares of their absolute values are
malized to the saturation intensityI s . The time is expressed
in dimensionless form, and the natural selection of the ti
unit is the inherent time characteristic of the laser, nam
the photon round-trip time in the cavity, 2L/c. The effective
dimensionless time of the medium relaxationt@1.

The two chaotic lasers are coupled by injecting a fr
tion of the first laser’s output into the second. The coupl
efficiency is determined by the coupling factorM , which
takes account of the propagation and coupling losses~the
parameterM is assumed to be a real value!. The difference
between characteristic laser frequencies is determined by
cavity offsetD5Dv•2L/c, whereDv is the difference be-
tween the eigenfrequencies, andL is the cavity length of the
master oscillator. For identical laser cavitiesD50. In order
to obtain identical fields in the two lasers at zero offset,
set the threshold gaingth of the slave laser to equal that o

FIG. 1. Diagram of the laser system:~MO! master oscillator;~SL! slave
laser;g0(t) is the pumping power.
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the master oscillator when they are optically coupled, so
dynamic equations for the two laser are identical atE1

5E2 .
Replacing the complex fieldsE15E1 exp(iw1t) and E2

5E2 exp(iw2t) with the amplitudes and phasesw5w12w2 ,
we rewrite Eq.~1! in the form more convenient for furthe
analysis:

tġ15g02g1~11E1
2!,

tġ25g02g2~11E2
2!,

Ė15
1

2
~g12gth!E1 ,

Ė25
1

2
~g22gth!E21M ~E1 cosw2E2!,

ẇ5D2M ~E1 /E2!sinw. ~2!

In the numerical calculations described below, the
mensionless parameters of the cavities and media were
lected after a preliminary analysis of the bifurcation diagra
of a laser under periodic pumping,11 so that the master oscil
lator should operate in the regime of ‘‘maximal chaos
which corresponds to the maximum positive Lyapunov e
ponent~Lyapunov dimensionalityL'1.5!. The system pa-
rameters weregth /g050.5, M50.1, andgth50.5, whereg0

is the pumping intensity averaged over time.

3. CHARACTERIZATION OF THE SYNCHRONIZATION MODE

Based on previous studies of synchronization of t
coupled chaotic lasers with a certain frequency offset
tween their cavities,4 one might expect a generalized sy
chronization at small offset parameters in the scheme un
discussion~Fig. 1!. It follows, however, from numerical cal
culations that even at a small frequency offset between
cavities, there is no asymptotically exact relation betwe
fields E1 andE2 . Figure 2 shows a phase diagram with t
field amplitudeE1 plotted as the abscissa, whereas the or
nate represents two parameters, namely, ReE2 and ImE2 .
One can see that the set of phase points for each parame
concentrated near a straight line, but remains, nonethe
chaotically spread about it.1! Strictly speaking, this behavio
might simply be treated as a lack of synchronization betw

FIG. 2. Phase portrait of the real and imaginary components of fieldE2 at
D5M .
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the two lasers. It is noteworthy, however, that the spread
phase points about the average straight lines is fairly sm

Thus, there is no generalized synchronization in its id
sense, but the correlation between the two fields is fa
strong. This effect is also illustrated by Fig. 3, which sho
the chaotic dynamics of the field amplitudeE1 generated by
the master oscillator, the ratio between field amplitud
uE1 /E2u, and the phase difference at frequency offsetD
5M . It is also noteworthy that althoughuE1 /E2u andw are
random functions of time, the amplitude of their deviatio
from the mean is small~no greater than 5%!. At lower D the
rms amplitude of deviation from nonvanishing means
smaller. Therefore, the resulting process can be describe
a generalized synchronization ‘‘on average’’with fluctuatio
whose amplitude increases with the ratioD/M . This descrip-
tion is inconsistent with all suggested scenarios of synch
nization between chaotic oscillators that have been know
date. Our calculations indicate that the suggested mod
synchronization is realized in the region of parameters
tending toD/M51.5, and calculations corresponding to t
latter condition are plotted in Fig. 4. It clearly shows th
deviations from the mean values are up to tens of percen
higherD/M ~see Fig. 5 forD/M51.6! even the synchroni-
zation on average is destroyed, and spreads of paramete
higher than their mean values.

Based on considerations of physical dimensionality, i
natural to suppose that, in the case of the generalized
chronization, a proportionality relation between the fie
should exist:

E15E2 f eiw0, ~3!

where f andw0 are real constants. In the case of undamp
small fluctuations, one can calculate the constants minim
ing the functional

s25S E
0

t

uE1u2dtD 21E
0

t

uE12 f mexp~ iwm!E2u2dt, ~4!

FIG. 3. The amplitude of the master oscillator output, ratio between fi
amplitudes generated by the two lasers, and their phase difference as
tions of time;D5M .
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where t is a sufficiently long time interval. By minimizing
this functional, one can derive the following expressions
optimal f m and wm in terms of E1 and E2 , which can be
calculated as functions of time numerically:

f m5S E E2
2 dtD 21

3AS E E1E2 cosw dtD 2

1S E E1E2 sinw dtD 2

, ~5!

wm5argS E E1E2 exp~ iw!dtD . ~6!

The parametersf m and wm calculated by Eqs.~5! and ~6!
using the fields derived from Eq.~2! are plotted in Fig. 6 and
7, respectively, as functions of the frequency offset divid
by the coupling constantM . Note that in the case of the rea
generalized synchronization, the minimum of functional~4!
tends to zero as 1/t, whereas in our calculations it remain
nonzero ast→`.

In the case of small spreads of calculations about
straight lines, as in Fig. 2, there is good reason to supp

d
nc-
FIG. 4. The same as in Fig. 3, but atD51.5M .

FIG. 5. The same as in Figs. 3 and 4, but atD51.6M .
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that directly calculated time averages of the ratiof between
field amplitudes and phase differencesw should be close to
the optimal valuesf m and wm . This is supported by direc
calculations. These parameters are very close to their opt
values over the intervalD/M<1.5 ~Figs. 6 and 7!. When
D/M is more than the critical valueD/M51.5, the curves
diverge, which is accounted for by the disruption of synch
nization even in the sense of average. Figure 5 shows th
D/M51.6 the phase difference between fieldsE1 and E2

grows indefinitely~note that the phase in this graph is d
fined modulo 2p!. Thus, in the synchronization mode und
discussion, the average difference between field frequen
is zero, whereas beyond the synchronization interval the
quencies of fieldsE1 andE2 on average are different.

The proximity between constants defined in differe
manners, which is demonstrated by Figs. 6 and 7, indic
that the deviations of fields from their mean values are sm
at each moment of time whenD/M ranges up to the critica
value. The spread of points in the strange attractor for
ratios between the field amplitudes is shown in Fig. 8, wh
plots the phase diagram of the complex ratio between
fields at D/M51. The emergence of the strange attrac
allows us to speak of the synchronization mode under c
sideration as ‘‘strange.’’ The spread of points in the pha
diagram can be characterized by the parameters2, which
has the sense of a variance. The curve ofs as a function of
D/M is plotted in Fig. 9.

FIG. 6. Parameterf m and time averagef̄ as functions of the normalized
frequency offset.

FIG. 7. Optimal phase differencewm and time averagedw̄ as functions of
the normalized frequency offset.
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The small amplitude of fluctuations justifies the applic
tion of perturbation theory to integrate Eq.~2! in explicit
form.

Under the conditions of the ‘‘strange’’ synchronizatio
discussed in this paper, the derivatives on the left-hand s
of Eq. ~2! averaged over a large time interval are ze
whereas the variations of all parameters, including the ph
differencew, are finite. By averaging the first and third line
of Eq. ~2! over time, one can easily find thatg15gth and
E1

25g0/gth21, where an overbar denote time averaging
variables. After introducing a new variableF5E1 /E2 in-
stead ofE2 , we obtain a differential equation

Ḟ5MF~12F cosw!2
1

2
~g22g1!F. ~7!

By averaging this equation divided byF over time, we
obtain

g25gth12M ~12F cosw!. ~8!

Another relationship can be derived by averaging
difference between the kinetic equations for gainsg1 andg2 :

g21g2E2
25g11g1E1

25g0. ~9!

Let us replace, using a rough approximation, the aver
of the product of two variables,g2 andE2

2, with the product
of the averages:g2E2

2'g2•E2
2. Given that the spread of th

points in the attractor shown in Fig. 8 is small, let us use

FIG. 8. Phase diagram of the relative spread of states plotted on the com
plane about the state of generalized synchronization with parametersf m and
wm for D5M .

FIG. 9. Functions(D/M ), wheres2 is the dispersion. The solid curve is a
interpolation through the points.
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approximate relationshipE2
25E1

2/ f m
2 . Using Eq.~5! and the

expressions forE1
2 given above, we derive another expre

sion for g2 from Eq. ~9!:

g25
g0f m

2

f m
2 211g0/gth

. ~10!

The average valueF cosw in Eq. ~7! can be transformed atF
close to unity and smallw, by neglecting small component
of higher orders, toF cosw'F̄2w2/2, and the data plotted in
Fig. 6 indicate thatF̄' f m . The combination of Eqs.~8! and
~10! and the approximate expression forF cosw yield

f m
2

11~gth /g0!~ f m
2 21!

511
2M

gth
~12 f m1w2!. ~11!

Usually M!gth . Hence, with due account of the smallne
of the expression in the parentheses on the right of Eq.~11!,
we find that f m

2 is close to unity. If we definef m511k,
from Eq. ~11! follows

k5
w2/2

11~gth /M !~12gth /g0!
. ~12!

For the constants used in numerical calculations~g0/gth

52 andM50.1, gth50.5!, we havek'w2/7. Averaging the
last line in Eq.~2! and replacing the average of the produ
with the product of the averages, we obtain

D/M5F sinw'~11k!w̄~12w̄2/6!'w̄~11aw̄2!, ~13!

where the numerical factora for the parameters of our ca
culations is small. Thus, the average phase differencew̄
.D/M , and the average ratio between the field amplitu
F̄.11(D/M )2/6. Comparison to numerical calculations r
veals extremely good agreement between the approxim
formulas and accurate calculations over an unexpect
broad range,D/M<1.

Figure 8 shows that the solution is attracted to a cer
compact set of parameters near the average values of
and phase differences. The small dimension of this set is
key factor for separating a signal from its chaotic carrier. T
dispersions(D/M ) defined by Eq.~4! is plotted in Fig. 9. It
is small over the interval extending toD/M51.5, and be-
yond this value the ‘‘strange’’ synchronization is disrupte
Note that the dynamic chaos discussed here is equivale
noise in an optical communication line.

4. INFORMATION DECODING

Let us consider the problem of retrieving an encod
signal in the system of two coupled chaotic lasers. A sig
f k(t) is impressed on the output radiation by means of mo
lation at a modulation amplitude much smaller than the
diation intensity~within 10%!. It turns out that such externa
perturbations do not destroy the effect of ‘‘strange’’ synch
nization. In order to incorporate the signal into equation s
tem ~1!, it suffices to modify the last line:

Ė25
1

2
~g22gth2 iD!E21M @E1~11 f k~ t !!2E2#. ~14!
-
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The signal in our calculations is a random function
time, f k(t), which takes three values:60.1, which corre-
spond to one bit of information, and zero, which denotes
absence of the signal. The width of a step with a given va
f k comprises four to six random pulses~see the upper trace
in Figs. 10–12, which show the function 11 f k!. To avoid
abrupt perturbations of the system by jumps in the sig
intensity whenf k switches to another value, the signal w
smoothed above a certain amplitude. As a result, the func
11 f k has the shape of smooth pulses synchronized w
those of fieldE1 ~compare the upper and lower traces
Figs. 10–12!.

It was shown previously9 that the signal bandwidth
should be several times less than the frequency of relaxa
oscillations, so the time interval between state changes o
function f k is fairly long. The ten-percent amplitude modu
lation is too small for visual detection of the signal again
the background of random laser pulses~see the third curves
in Figs. 10–12!. On the other hand, this modulation amp
tude is higher than the dispersion characterizing the dyna
spread of the field amplitudes about the state of general
synchronization~Fig. 9!. Therefore, one can retrieve the si
nal Ẽ15E1(11 f k) by calculating the difference between th
fields with due account of the complex optimal approxim
tion factor,Ẽ12 f m exp(iwm)E2 .

The middle traces in Figs. 10 and 11 show numeri
calculations of the retrieved signal for the cases ofD50 and
D5M , respectively. It is clear that the accuracy of the sig
transmission deteriorates as the frequency offset increa
Note that only changes in the amplitude ratio were p
cessed.

In the case of a nonzero frequency offset, the phase
ference between the fields can be used as a set of auxi
data. The results of this processing are shown in Fig. 12
D5M . The data processing procedure taking into acco
both the amplitude ratio and phase difference yield the sig
with a higher accuracy. The accuracy of the signal proce

FIG. 10. The original message signal~upper curve!, retrieved signal~middle
curve!, and signal carrying information at the slave laser input~lower
curve!. The ratio between the amplitudes was processed,D50.
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ing can be also improved by taking into account repeati
distortions of the signal in the first pulses after steps in t
modulation function~see the first and second traces in Fig
10 and 11!. In the general case, techniques for separation
a signal from noise12 can be used to retrieve the signal wit
higher accuracy.

It is natural that the signal restoration efficiency is grea
est when the frequency offset is zero. Nonetheless, the e
ciency of restoration of the retrieved random signal carryin
the message@Ẽ1 /( f mE2)21# is less than 100% even in this
case, coming in at about 2/3 of the original level. At th
frequency offsetD5M ~Fig. 11! the restored signal is no
greater than half the original signal, if the averaging is pe
formed within the laser pulse. Note that the feasibility o
retrieving information depends not on the signal amplitud
but on the possibility of identifying pulses carrying bits o
information. The waveforms of retrieved signals are indent
considerably, which makes identification of bit pulses mo

FIG. 11. The same as in Fig. 10, but at the frequency offsetD5M .

FIG. 12. The same as in Fig. 11, but the signal was retrieved by process
the difference between field phases.
g
e
.
f
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difficult. Note that the phase response to an input signa
zero in the absence of a frequency offset and increases
the offset parameter, whereas the amplitude response
modulated input signal drops~compare Figs. 10 and 11!.

Let us conclude this section with a remark on the cod
using phase modulation of the injection field. Numerical c
culations indicate that in this case the slave laser is sync
nized with the injected modulated radiation, instead of
input signal. Using Eq.~14!, we derive from Eq.~1!

ẇ5D2MF sin~w1h!,

Ḟ5MF@12F cos~w1h!#2
1

2
~g22g1!F, ~15!

whereh is the phase of functionf k . Using the change of
variablesw̃5w1h, we obtain the equations in their origina
form. Therefore, we expect that in a time of order (MF)21,
a state with a new phase is established. Thus, one ca
retrieve encoded information in the case of phase mod
tion.

5. CONCLUSIONS

The study of synchronization between two chaotic las
through unidirectional injection of a signal from the mas
oscillator has demonstrated that a new mode of synchron
tion can be implemented in the presence of frequency of
between laser cavity lengths, and this synchronization m
can be dubbed ‘strange.’ The output of the slave lase
almost synchronized with the injected signal, since their
tensities and phases are related in a definite way, but w
small errors that vary randomly with time. The relations b
tween the average field parameters have been obtained i
reported work both numerically and analytically. The chao
deviations of field parameters from those prescribed by
terministic equations play the role of noise when the d
scribed system of chaotic lasers is used for transmitting c
fidential information. At a sufficiently high amplitude o
modulation of laser pulses by a signal carrying a messa
the encoded signal can be retrieved by comparing the in
sity of the beam carrying the information with the output
the slave laser.

This work was supported by the Russian Fund for Fu
damental Research~Grant No. 98-02-17096 and 96-02
19203!.
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1!The average straight lines for the two parameters are different, and

difference between their slopes depends on the frequency offset. AD
→0, the slope of ReE2 tends to 45°, whereas that of ImE2 tends to zero.
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A theory of two-photon light generation involving inversionless two-level atoms
V. N. Gorbachev* ) and A. I. Trubilko†)

St. Petersburg Institute of the Moscow State University of Publishing, 190000 St. Petersburg, Russia
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We propose a theory that makes it possible to examine both laser and micromaser two-photon
light generation. The theory is based on the Lamb–Scully model, in which two-level
atoms have initial coherence. Such an initial state allows for light generation involving atoms
without inversion or even atoms with negative population inversion in the transition.
We analyze the conditions needed for the emergence of squeezed states of the light field. We
also show that the photon statistics in lasing is always classical but that there appears a
state of the field squeezed in the phase with maximum photodetection shot-noise suppression.
For a micromaser we find a regime where sub-Poisson light with a shot-noise suppression
level of 60% is realized in an inversionless transition. In another regime, a squeezed state that
produces 75% suppression of noise can be generated. ©1999 American Institute of
Physics.@S1063-7761~99!00605-8#
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1. INTRODUCTION

Lately there has been an upsurge of interest in studie
the interaction of light and atomic systems witho
inversion.1 The common approach is to develop three-le
cavity models of atoms with and without relaxation and w
different types of multimode interaction. Of interest are t
study of properties of generation of light fields as a lig
source of a new type, the detection of the selective dynam
of the system, dynamic chaos, and multistable regimes2 and
the possibility of extracting~from spectroscopic measure
ments of probe radiation! information about coherent inter
actions in the system and about mode competition.3

Ordinarily, models of laser and micromaser light gene
tion based on the Lamb–Scully theory examine incoher
pumping, which excites a two-level atom to the upper
lower active level.4 In general, however, a mixed state
atomic coherence may emerge. For a maser or microm
this may due, for example, to a spread in velocities in
atomic beam interacting with pulses of the pump field. He
due to the Doppler shift of the signal transition frequency
is impossible to push all the atoms into the upper state
that some of them end up in the lasing area in a mixed st
The fact that the atoms in an atomic beam have differ
kinetic energies was investigated by Anet al.,5 who numeri-
cally analyzed the equation for the density matrix of the fi
with allowance for averaging over the velocities. Howev
by controlling the pump pulse we can create mixed state
the atom. Here the properties of the generated system p
to be different. Such lasing and masing under conditions
one-photon interaction of two-level atoms was analyzed
Lu and Bergou.6 Scully et al.7 demonstrated the possibilit
of squeezed field states forming in light generation involv
cascade transitions, provided that there is atomic cohere
between the upper and lower state of a three-level sys
and Lu8 did the same forL- andV-type transitions.

The aim of our investigation is to analyze optical sy
8821063-7761/99/88(5)/7/$15.00
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tems where pumping creates atomic coherence involving
active levels. We examine the effect of the atomic cohere
in the steady-state generation regimes of two-photon tra
tions, on the linewidth, and on the formation of photon s
tistics. Following resonant two-photon interaction betwe
the coherence pump pulse and the active atoms, which
modeled by the two-level system, the atoms are injected
an optical cavity. The presence of atomic coherence gi
rise to a steady-state lasing regime when there is nega
population inversion on the active levels and when the po
lations of these levels are equal. Due to phase locking,
signal lineshape becomes monochromatic.

The two factors, the presence of initial coherence in
atomic beam and the nonlinearity of the two-photon tran
tion, allows phase-squeezed laser light to form with ma
mum noise suppression in photodetection. The photon st
tics of the laser field always remains classical. For a tw
photon micromaser, the field in the ordinary case posse
quantum features, which manifest themselves in the pho
statistics, with shot-noise suppression not exceeding 3
~see Ref. 9!. We establish the conditions needed for strong
noise suppression in an inversionless transition. A pha
squeezed field state can also be formed in such a transi

Ordinarily, the Lamb–Scully model is used to derive
kinetic equation for the density matrix of the field, which
the starting point in analyzing the photon statistics. This is
operator equation, which is written either in operator form
in the diagonal representation. In this paper we develo
formalism that makes it possible to immediately write t
Fokker–Planck equation for the Glauber quasiprobability
a two-photon laser and micromaser. The method by wh
this equation is derived for the Lamb–Scully model is d
scribed in Sec. 2. In Sec. 3 we calculate the coefficients
this equation with allowance for an arbitrary state of t
active atoms injected into the cavity. The model used
pumping the atomic beam is discussed in Sec. 4. In Sec. 5
discuss lasing~in particular, involving an inversionless tran
© 1999 American Institute of Physics
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sition!. The laser linewidth and the properties of the micr
maser are elaborated on in Secs. 6 and 7.

2. THE FOKKER–PLANCK EQUATION FOR THE
LAMB–SCULLY MODEL

We use the standard Lamb–Scully theory to examine
two-photon interaction of two-level atoms with a seconda
signal transition that are injected with a rater into a high-Q
cavity. The starting equation is that for the density matrixF.
This equation describes the interaction of a single atom a
field:

]F

]t
5@V,F#1RF, ~1!

V5g~Abaa
†22a2Aab!, ~2!

where Aab5ua&^bu is a single-atom operator that transfe
the atom from the lower active levelb to the upper levela,
andg is the coupling constant reflecting the interaction w
a cavity mode, whose creation and annihilation operators
denoted bya† anda, respectively. The exit of the field from
the cavity and the departure of the atom from the act
levels are described by the relaxation operatorR. The equa-
tions are written for the case of exact resonance. Since
atom enters the cavity at timet50 in a given stateFA(0),
we have

F~0!5FA~0!r~0!, ~3!

wherer5TrAF is the density matrix of the field.
To write the kinetic equation for the density matrixr,

we introduce the usual assumption that the field va
slowly. According to this approximation, in the time interv
T during which the atom interacts with the field and the at
passes through the cavity, we haver(T)'r(0), with
Fmn(T)50 for m,n5a,b. The change of the density matri
of the field brought on by this single atom,dr5r(T)
2r(0), can befound by solving Eq.~1! with allowance for
~3!:

F~T!2FA~0!r~0!5E
0

T

~@V,F#1RF! dt. ~4!

Now we introduce the change of the density matrix of t
field due to the contribution ofrT atoms,Dr5rT dr. Then
the kinetic equation can be written

Dr

T
5r TrA E

0

T

@V,F# dt1RFr, ~5!

where the left-hand side is a large-scale time derivative,
the operatorRF describes the exit of the field from the ca
ity.

A remark concerning the adopted approach is in orde
the atom–field interaction timeT is short compared to char
acteristic atomic relaxation times, the method can be use
describe a maser or micromaser, in which case atomic re
ation should be dropped from the starting equations~1! and
~4!. Usually the incoherent model is sufficient for a descr
tion of pumping, which requires knowing the initial sta
FA(0) of the atom, i.e., it is assumed that the atom injec
-
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into the cavity is on its upper or lower active level. Here w
allow for the general case where pumping produces
atomic coherencêauAFA(0)ub&. A convenient way to do
this is to employ the approach developed in Ref. 10. T
makes it possible to immediately write the initial Fokker
Planck equation for the Glauber quasiprobabilityP(a), by-
passing the extremely involved derivation of an opera
equation for the density matrixr, which is actually only an
intermediate stage.

For the single-atom density matrixF we introduce the
quasiprobabilityF as follows:

F5E Fua&^au d2a. ~6!

This quasiprobability is an operator function of the atom
variables. Averaging it over the atoms yields the Glaub
quasiprobability TrAF5P(a). From Eq.~1! we arrive at an
equation forF:

]F

]t
5@V0 ,F#1]~dF!1RF, ~7!

where

V05gAbaa* 22gAaba
2,

]~dX!52Fg
]

]a
2a* 2ub&^auX1g

]

]a*
2a2Xua&^buG

1Fg
]2

]a2
ub&^auX1g

]2

]a* 2
Xua&^buG . ~8!

Here the first term in square brackets is due to the noise
the atomic system, while the second term in square brac
is due to the diagonal representation of the field employe
this paper. For F we use the representationF(t)
5P(0)w(t)1P(t), wherew is the single-atom density ma
trix: TrAw51. Since the field develops slowly, we can a
sume thatP(0)'P(T). The functionP ~here it is not a
correlation matrix! has the properties

P~0!50, TrAPÞ0, TrFPÞ0, TrAFP50,

where the subscriptsA and F denote the variables of th
atomic and field systems over which averaging is done. N
we denote the averaging over atoms by TrA5^•••&. Equa-
tion ~7! yields equations forP, w, andP:

]P

]t
P5^]~dw!&P~0!1^]~dP!&1RF8 P, ~9!

]

]t
w5@V0 ,w#1RA8w, ~10!

]

]t
P 5@V0 ,P#1]~dw!P~0!1]~dP!1~RA81RF8 !P,

~11!

where](dX) has been defined in~8!, andRF8 andRA8 are the
relaxation operators in the representation~6!.

The change of the field brought on by a single atom c
be found from~9!:
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dP5E
0

T

~^]~dw!&P~0!1^]~dP!&! dt, ~12!

where the relaxation term has been discarded. To obta
Fokker–Planck equation for the quasiprobabilityP, the solu-
tion for P must contain derivatives with respect toa of
order not higher than the first. This can easily be done
solving Eq.~11!, say, by the iteration method. As a resu
instead of Eq.~5! we arrive at an equation forP,

DP

T
5r E

0

T

~^]~dw!&P~0!1^]~dp!&! dt, ~13!

where the functionsw and p can be found by solving the
problem

]

]t
w 5@V0 ,w#1RA8w,

]

]t
p 5@V0 ,p#1]^~dw!&P~0!1RA8p.

Herew(0)5w0 is determined by the initial state of the ato
injected into the cavity, andp(0)50. This problem for the
functions w and p immediately yields a Fokker–Planc
equation for the Glauber quasiprobability.

3. THE STARTING EQUATIONS

The equations forw and p have the same structure
They can be represented in matrix form:

] t f mn5@V0 , f #mn1~RA8 f !mn1Gmn , ~14!

where

G52gS ]

]a
2a* ub&^auw1

]

]a*
2awua&^bu D P~0!.

This implies that f 5w, where w(0)5w0, if G50 and f
5p, where p(0)50, if GÞ0. Allowing for the fact that
P(0)'P(T), we write the kinetic equation~5! in the form

] tP52rg
]

]a
2aF E

0

T

wab~ t ! dt1E
0

T

pab~ t ! dtGP1c.c.

~15!

To write Eq. ~15!, we must find the solutions of the bas
system~14!, which describes the evolution of the atoms
the fixed-field approximation over the time intervalT. The
nature of this evolution strongly depends on the ratio oT
and the atom relaxation timeg21. Two cases are usuall
distinguished. ForTg@1, when the atom reaches a stea
state, the atom ‘‘leaves’’ the active levels and lasing is s
to be achieved. ForTg!1, when atomic relaxation can b
neglected,g can be set to zero and maser or microma
oscillation is said to be achieved. In this case, after a timT
has elapsed, the atom leaves the cavity, which is equiva
to the atom departing from the active levels

For a micromaser it is convenient to solve Eq.~14!,
where we must putRA850, by applying, say, the Laplac
transformation:f (s)5*0

`exp(2st) f(t) dt. Then

s fmn~s!2 f mn~0!5@V0 , f ~s!#mn1Gmn , ~16!
a

y

d

r

nt

and the coefficients of the kinetic equation can be found
solving Eq.~16!:

E
0

T

f ~ t ! dt5E ds
exp~sT!21

s
f ~s!. ~17!

For a laser we can use a simple relaxation model, w
equal relaxation constants, and neglect decay in the si
transition:

~RA8 f !mn52g f mn . ~18!

Then for the coefficients of the kinetic equation we have

E
0

T

f ~ t ! dt5 f ~s!, ~19!

where f (s) is the solution of~16! at s5g.
Now we examine the case whereTg has an arbitrary

value. Then

E
0

T

f ~ t ! dt5E ds
exp~sT!21

s
f ~s1g!, ~20!

where f (s) is still a solution of Eq.~16!, and by replacings
with s1g we allow for relaxation in the form~18!. As a
result, the Fokker–Planck equation for the Glauber q
siprobability becomes

] tP5~]a2a* L11]aa
2 L21]aa*

2 2a* L3!P1c.c., ~21!

where the coefficients are specified by the relationships

L1~s!52rgH wab
0

s

1ga2
s~waa

0 2wbb
0 !22g~a* 2wab

0 1c.c.!

s~s214g2uau4!
J 1

1

2
Ca,

L2~s!52rg22a*

3H 4g2a3uau2waa~s!12sguau2awab~s!

s~s214g2uau4!
J

2H 2L11
1

2
CaJ ,

L3~s!52rg22aH 2
waa~s!

s

1
2g2uau4waa~s!1sga2wba~s!

s~s214g2uau4!
J .

Herewmn(s) is the solution of the system~16! with the initial
datawmn

0 , andC is the cavity width, which characterizes th
rate at which the field leaves the cavity. In the terms
L2(s) we have, as usual, specified the contributions due
noise of the atomic system~the first terms in braces! and to
theP-representation for the field~the second term in braces!.
For lasing, in accordance with~19!, we must puts5g, and
for describing a micromaser, with allowance for~17!, we
must put
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FIG. 1. ~a! Optical scheme, and~b! active-level diagram.
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L~s!→E ds
exp~sT!21

s
L~s!.

Note that whenwab
0 50 holds we have the well-known equa

tions of the micromaser and laser theories.9,11

4. THE PUMPING MODEL

The populations of the active levels,waa
0 and wbb

0 , and
the coherencewab

0 are determined by the mechanism
pumping and generally are not independent quantities. S
pose that the initial atoms or the atomic beam also inter
in a two-photon manner with a classical pump field, who
Rabi frequency is

V52gua0u2.

Suppose that the population of the lower active leve
Nb . We assume~only to simplify matters! thatNb'1. If the
interaction timet is much shorter thang21, the state of the
atoms is determined by the density matrix:

wab
0 52

1

2
exp$2i arga0%sinVt, ~22!

waa
0 2wbb

0 52cosVt, ~23!

waa
0 5

1

2
~12cosVt! , ~24!

wherea0 is the pump field amplitude. These solutions a
well known.

Depending on the size ofVt, or ‘‘pulse area,’’ the fol-
lowing states of the atom are possible:

1. In the regionp/2,Vt<p the inversion is positive.
At Vt5p the atom is on the upper level, and the cohere
wab

0 is zero.
2. In the region 0,Vt<p/2 the inversion is negative

and the transition is inversionless. AtVt5p/2 the popula-
tions of both levels are the same and equal to 1/2, and
coherence is at its maximum:uwab

0 u51/2.

5. LASING IN A MEDIUM WITHOUT INVERSION: PHOTON
STATISTICS

In the optical scheme depicted in Fig. 1a the class
pump field produces populationswaa

0 andwbb
0 on the active

levels and the coherence

wab
0 5w̃ab

0 exp$2iw0%, ~25!
p-
ts
e

s

e

he

l

which have been defined in Eqs.~22!–~24!. The atoms are
injected into a high-Q cavity where they interact with the
cavity mode whose frequency is half the frequency of
signal transition. The rates at which the atoms leave the
tive levels are the same and equal tog, as shown in Fig. 1b.
Here we examine the caseTg@1, which corresponds to las
ing, as described by Eq.~21!.

If in Eq. ~21! we keep only first-order derivatives wit
respect toa, we find the solutionP(a,t)5d(a2z(t)) of
Eq. ~21!. Herez is the complex-valued amplitude of the fie
in the cavity~with uzu25n the average number of photon!
and satisfies the semiclassical problem

] tn52An2
waa

0 2wbb
0

11bn2
1

4An

Ab

w̃ab
0 cosc

~11bn2!
2Cn, ~26!

] tc524
A

Ab
w̃ab

0 sinc, ~27!

whereA5(2g2/g)(r /g) is the linear gain,r /g is the number
of atoms in the cavity,bn2 is the dimensionless intensity
b54(g/g)2 is the saturation parameter,c52(arg
z2arga0) is the phase difference of the laser field and c
herence,w̃ab

0 is defined according to~25!, andC is the cavity
width, which characterizes the rate at which the field lea
the cavity.

The presence of initial coherence is responsible for t
features of lasing. First, an additional term appears in
equation forn. Second, the phases of the laser field and
the initial coherence become locked. The latter results i
situation in which a phase difference sets in the steady-s
regime, and for this difference

sinc050. ~28!

Here the value ofc0 is determined by the initial coherence

w̃ab
0 cosc0.0. ~29!

This condition follows from the requirement that the stead
state regime be stable. Combining~29! with ~22!, we get

w̃ab
0 cosc05

1

2
usinVtu.

Then the steady-state number of photons in the cavit
given by the expression
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2An

11bn2 S 2cosVt1
usinVtu

Ab n
D 5C. ~30!

At Vt5p, Eq. ~30! yields the ordinary~for a two-photon
laser! condition for steady-state lasing, where the necess
threshold condition for the gain is

A.C
11bn2

2n
. ~31!

At Vt5p/2 lasing is stable and the condition~31! is not
needed. ForVt,p/2 the inversion at the signal transition
negative. The steady-state regime emerges if

usinVtu

Ab n
.cosVt. ~32!

Note that for an inversionless laser the conditions for las
are significantly less stringent than in the case of an ordin
laser, whose stable lasing regimes are depicted by dot
Fig. 2.

To determine the photon statistics, we employ the c
dition of small fluctuations for the number of photons in t
cavity:

uau25n1e, e!n, ~33!

wheren has been defined in Eq.~30!. Under the conditions
~33!, we have an equation for the quasiprobabilityR(e,t)
5*P(a,t) d(arga), ~which describes photon-number flu
tuations in the steady-state regime!:

] tR5~Ge]ee1Dee]e
2!R, ~34!

where the coefficients are

Ge5G0

2Ab nusinVtu~bn221!212cosVt

usinVtu/Ab n2cosVt
,

Dee5D0S usinVtu

Ab n
2cosVt D 21S 2

11bn2

51bn2

1
usinVtu

Ab n

123bn2

51bn2
2cosVt

32bn2

51bn2D .

FIG. 2. Graphical solution of Eq.~26! in the steady-state case for a two
photon inversionless laser~the solid curve!; the case of an ordinary two
photon laser is depicted by the dashed curve. The dash–dot straigh
represents the loss level. The heavy dots represent stable lasing regim
ry

g
ry
in

-

Here

G05C
bn221

bn211
, D05G0nj, j5

51bn2

2~bn221!
.

The quantitiesG0 andD0 and the Mandel parameterj cor-
respond to the case of an ordinary two-photon laser,
which we must putVt5p.

The diffusion coefficientDee in the Fokker–Planck
equation forR always proves to be positive~for an ordinary
laser and in conditions of lasing without inversion!, and the
photon statistics is classical; more than that, it is alwa
super-Poisson.

6. THE SPECTRAL CONTOUR OF TWO-PHOTON LASER
RADIATION; PHASE-SQUEEZED LIGHT

The spectral contour of a lasing line is determined by
Fourier transform of the correlation functionG(t)
5^a†(0)a(t)&:

G~V!5E
2`

1`

exp~ iVt! G~t! dt. ~35!

To find G(V), we use the small-fluctuation condition, a
suming that the fluctuationsm of the field phase are small:

w5wst1m, m!1, wst5~1/2!~c01w0!, ~36!

wherec0 andw0 have been defined in~29! and ~25!. Then
the expression forG(t) can be written in the form

G~t!5nF11
1

4n2
^e~0!e~t!& 1^m~0!m~t!&G

3exp~2 ivt!, ~37!

wheren is the steady-state number of photons in the cav
given by ~30!, and^e(0)e(t)& is the correlation function of
the photon-number fluctuations, which can be by found
solving Eq.~34!. The phase-fluctuation correlation functio
^m(0)m(t)& can be found by solving an equation that fo
lows from ~21! under small-fluctuation conditions:

] tY5~Gm]mm1Dmm]m
2 !Y,

Y~m,t !5E P~a,t !d~ uau2!, ~38!

where

Gm5
2AusinVtu

Ab
5

CusinVtu~11bn2!

usinVtu2Ab n cosVt
, ~39!

Dmm5
Gm

8n H 2
113bn212b2n4

~11bn2!2
1

Ab n

usinVtu

3S 22
cosVt

11bn2D J . ~40!

In contrast to an ordinary laser, here the lasing phase h
steady-state distribution forGmÞ0. This is a consequence o
phase locking, which gives rise to a spectral line consist

ine
s.
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of a monochromatic component and two Lorentzians at
lasing frequency due to amplitude and phase fluctuation

G~V!5nF d~V2v!1
Dee

2n2Ge

Ge
2

~V2v!21Ge
2

1
2Dmm

Gm

Gm
2

~V2v!21Gm
2 G . ~41!

We introduce the parameter

h54n
Dmm

Gm
, ~42!

whose negative value indicates that the phase quadratu
the field is squeezed. The field in such a squeezed state
exhibit a dip below the shot-noise level in the low-frequen
region of the noise spectrum in heterodyne reception:

i 2~V!511QE
2`

1`

exp~ iVt!^m~0!m~t!& dt, ~43!

where normalization has been chosen so that the shot-n
level is unity, andQ is the quantum efficiency of heterodyn
reception.

The observable quantity is the relative reduction in
noise, which in terms of the introduced notation can be w
ten

d5 i 2~0!2152Q
C

Gm
h. ~44!

For an inversionless two-photon laser, as well as fo
laser with negative population inversion, the limit of th
T

l

to

o

e

of
ay

ise

e
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a

phase-squeezed state of the lasing field is realized at
intensitiesAb n!1, with h→21/2 and the noise in the re
gion of V'0 completely suppressed (d→21).

7. AN INVERSIONLESS TWO-PHOTON MICROMASER

In the case of an inversionless two-photon micromas
Tg!1. The semiclassical masing equation has the form

] tn52r ~waa
0 2wbb

0 !sin2I 12r w̃ab
0 cosc sinI cosI 2Cn,

~45!

] tc524rgTw̃ab
0 sinc, ~46!

where now the dimensionless intensity is defined asI
5gnT, with n5uzu2. As in the case of a laser, in the stead
state regime the phases of the maser field and of the in
coherence become locked, which leads to condition~29!. As
a result, the average number of photons in the cavity can
found from the condition

2r ~waa
0 2wbb

0 !sin2I 1r uw̃ab
0 usinI cosI 5Cn. ~47!

To establish the photon statistics by employing t
small-fluctuation approximation, we write Eq.~34! for the
distribution functionR, where the coefficients are given b
the formulas

Ge5
G0

usinVtu22 cosVt tanI H cosVt
2~2I 2tanI !

122I cotI

1usinVtuS 11
I ~ tanI 1cotI !

122 I cotI D J , ~48!
Dee5
2D0

114I cotI

3H 2 tanI 1cosVt ~ tanI 24I !1~1/2!usinVtu~124I cotI 14I tanI !

usinVtu22 cosVt tanI J . ~49!
r
the

he

v-
Here the quantities

G05C@122I cotI #, ~50!

D05
Cn

2
@114I cotI # ~51!

correspond to the case of an ordinary two-photon maser.
masing regimes specified by~47! are stable ifGe.0.

Using ~48! and ~49!, we define the intracavity Mande
parameterj:

j5
Dee

Gen
. ~52!

The value ofj determines the difference between the pho
statistics and Poisson statistics:^n2&2^n&25n(11j). For
j,0 the state of the light is nonclassical with sub-Poiss
statistics. In measurements of the photocurrent spectrum
he

n

n
or

the noise spectrumi 2(V) nearV'0, the Mandel paramete
determines the level of the surplus noise in relation to
shot-noise component:

i 2~0!511d, d52qj
C

G
. ~53!

Here q is the quantum efficiency of the detector, and t
level of shot noise is assumed to be unity.

At Vt5p, when active atoms are injected into the ca
ity only at the upper active level, combining~53! with ~50!
and ~51! yields the well-known result9

d5q
112y

~12y!2
, y52I cotI . ~54!



t

m

,
o

n

d

se
b

r

n

oi

t
s
ti
ia

ion
the
and

zed
tis-
to

acter-
tion
mi-
ght
the
to
is

on
e of
field

tec-

.

d

k.

888 JETP 88 (5), May 1999 A. N. Gorbachev and A. I. Trubilko
The valuey522 is optimal for the formation of a dip in the
photocurrent noise spectrum. Hered52q/3, which corre-
sponds to a reduction of noise in the low-frequency region
33% of the shot-noise level.

Numerical analysis of~53! with ~48! and~49! taken into
account shows that the optimal minimum value ofd is real-
ized in the case of the initial atomic state of the active ato
of the maser without inversion atVt5p/2, i.e., when
atomic coherence is at its maximum. Under this condition
set of almost periodic states in which the minimum value
the parameterd is approximately20.6q can be realized.
This depends on the value of the parametern and hence on
the parameters of the maser system: the solution of Eq.~47!
and the simultaneous requirement thatGe be positive. Even a
slight variation inn ‘‘destroys’’ the photon statistics, and i
this sense the conditions for masing are stringent.

The evolution of the linearized phase@in conditions of
small fluctuations; see~36!# of the maser field is determine
by Eq. ~38! in which the coefficientsGm and Dmm , with
allowance for the steady-state regime~47!, have the form

Gm52rgTusinVtu

5
2CIusinVtu

sinI cosI ~ usinVtu22 cosVt!tanI
, ~55!

Dmm5
Gm

4n F211
I

usinVtu
2

cosVt

usinVtu
sin2I

2I

1
sinI cosI

4I G . ~56!

The maximum manifestation of the effect of pha
squeezing for a two-photon micromaser field can also
observed in an inversionless atomic medium,Vt5p/2. The
level of noise suppression~44! in heterodyne reception nea
V'0 is given in this case by the formula

d5Q
C

G0m
H C

G0m
1

G0m

2C
sin 2I 22J , ~57!

whereQ is the quantum efficiency of heterodyne receptio
and

C

G0m
5

sinI cosI

2I
.

Only with a generated maser field of low intensity,I !1, do
we have maximum suppression in the photodetection n
spectrum in the low-frequency regiond→23/4Q. Note that
these conditions are stable: bothGm of ~55! and Ge of ~48!
are positive.

8. CONCLUSION

We have used the Lamb-Scully model to construc
theory that makes it possible to simultaneously study la
and micromaser light generation, a model that uses ac
atoms that initially were in a mixed state. Such an init
o

s

a
f

e

,

se

a
er
ve
l

state allows generating light using atoms without populat
inversion and even a negative population inversion in
transition. Due to locking of the phase of the coherence
the phase of the generated field, the laser~maser! line is
monochromatic.

We have analyzed the conditions under which squee
states of light appear. We have found that the photon sta
tics in lasing is always classical but that it is also possible
generate phase-squeezed states of the field, states char
ized by complete suppression of heterodyne photodetec
noise. We have also found that the photon statistics of
cromaser light may prove to be nonclassical and that li
can be generated by an inversionless transition, with
level of photodetection-noise suppression amounting
about 60% of the relatively standard quantum limit, which
higher than in conditions of ordinary two-photon generati
of light by atoms in the excited upper state. The same typ
transition can be used to generate a phase-squeezed
with a level of noise suppression in heterodyne photode
tion amounting to 75% of the shot-noise level.
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Polarization-interference effects in the bremsstrahlung of quasiclassical electrons
on ions with a core
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The polarization dependence of the stimulated bremsstrahlung and inverse bremsstrahlung
~SBIB! of quasiclassical electrons on highly charged ions with a core is calculated in the
approximation of a specified Coulomb current. Emission frequencies close to an
eigenfrequency of the ion core are considered. The contributions of the static and polarization
channels are taken into account in the amplitude of the process. When the nondipole
nature of the interaction between the incident particle and a resonant transition in the ion core is
taken into account, interference between these channels causes the spectral-amplitude
characteristics of the process to assume a specific dependence on the anglea between the
electric field intensity vector of the electromagnetic wave and the initial velocity vector of the
incident particle. This dependence, which persists after integration of the cross section
over the scattering angle of the incident particle, causes interference effects, viz., asymmetry of
the line shape and dips in the dependence of the SBIB cross section on electric field
intensity, to appear fora5p/2 and significantly reduces them fora50. © 1999 American
Institute of Physics.@S1063-7761~99!00705-2#
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1. INTRODUCTION

Investigations of the influence of the polarization of t
electron shell of a target on collisional radiative proces
have been carried out in recent years.1–6 Along with brems-
strahlung on atoms and clusters,2,6 stimulated bremsstrahlun
~including the multiphoton effect! on highly charged ions1,4,5

and recombination on ions3 were examined.
The dynamic polarization of the electron core of a tar

opens up a new polarization channel for the radiative proc
along with the traditionally considered static channel.7 As a
result, the cross section is a sum of three terms, viz., st
polarization, and interference terms.

The static channel is associated with the emission o
photon by the incident particle as a result of its accelera
in the static potential of the target. The polarization chan
can be interpreted as scattering of the self-field of the in
dent particle~virtual photon! into a real photon on the elec
tron shell of the target. It occurs even when the accelera
of the incident particle is negelected. This process is sim
to the scattering of radiation on an atom~an ion with an
electron core!, but, unlike the latter, always~except in some
exotic cases! has a static ‘‘addition,’’ which facilitates inter
channel interference. The interference term becomes e
cially significant for the target ion,1 producing several inter
esting features in the spectral-amplitude characteristics o
bremsstrahlung: asymmetry of the shape of the spectral
and dips on it~for a near-resonant process!, as well as a
minimum in the spectral dependence of the recombina
rate.1,4,5 In fact, in the case of a target in the form of a neut
atom the regions of existence of the static and polariza
channels differ sharply with respect to the incident parti
scattering angle:7 the polarization channel dominates f
8891063-7761/99/88(5)/6/$15.00
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small angles, and the static channel dominates for la
angles. Thus, the interference term contributes little to
total bremsstrahlung cross section on a neutral atom for
incident particle scattering angles, although for the angu
differential cross section this interference~at certain frequen-
cies! can cause the total spectral bremsstrahlung cross
tion to vanish for some incident particle scattering angles8

We note here that the stripping of an atom in bremsstr
lung as a consequence of consideration of the polariza
channel, which was first discovered in Ref. 9, is not an
terference effect, but describes the addition to the range
incident particle scattering angle that are important for
static and polarization channels.

The situation for bremsstrahlung~and recombination! on
ions with an electron core is qualitatively different. In th
case the ranges of significant incident particle scatter
angles for the two channels overlap, making the interfere
term in the total bremsstrahlung cross section important
all incident particle scattering angles. The role of this int
ference for the near-resonant stimulated bremsstrahlun
quasiclassical electrons on highly charged ions was inve
gated in Refs. 1, 4, and 5, and its role for recombination w
examined in Ref. 10.

Stimulated bremsstrahlung in a laser field naturally a
takes place along two channels, a static channel and a p
ization channel. In the latter case the process can be
scribed as stimulated scattering of the self-field of the in
dent particle into a laser mode.

We shall consider the situation in which the presence
a laser field weakly influences the motion of the incide
particle, i.e, the approximation in which the current can
viewed as given~see the basis for it in Ref. 1!, so that first-
© 1999 American Institute of Physics
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890 JETP 88 (5), May 1999 V. A. Astapenko
order perturbation theory with respect to the interaction
tween the incident particle and the laser radiation can be u
to calculate the amplitude of the static channel. At the sa
time, since a laser frequency close to one of the eigen
quencies of the ion core is being considered, the interac
of the laser radiation with a near-resonant transition in
core can be strong. It can be taken into account within
rotating-wave approximation~for further details, see Ref. 1!.

For our further discussion it is important to stress th
the treatment in Refs. 1, 4, 5, and 10 was performed in
dipole approximation with respect to the interaction of t
incident particle with the target. This approximation was ju
tified for bremsstrahlung that is near-resonant to elect
transitions in the ion core withDn50,1, since in the spirit of
the rotational approximation11 in the Kramers limit (v
@vCoul5v3/Zi , wherev is the velocity of the incident par
ticle, Zi is the charge of the ion, and atomic units are us
everywhere! the radius of the portion of the incident partic
trajectory responsible for emission of the specific~near-
resonant! frequencies under consideration exceeds the ra
of the outer shell of the ion, which corresponds to the up
level of the resonant transition in the ion~for further details,
see below!.

However, a more detailed treatment~not based on the
rotational approximation! showed that the influence of th
nondipole nature of the incident-particle–target interact
on the total cross section of the process for all incident p
ticle scattering angles is very significant: it smears out
dips on the amplitude-frequency characteristics of the stim
lated bremsstrahlung and eliminates the asymmetry of
spectral line shape forDn50 and, in addition, significantly
reduces the bremsstrahlung cross section forDn51 over the
entire near-resonant portion of the spectrum.12

The nondipole effects in stimulated bremsstrahlung a
inverse bremsstrahlung~SBIB! were investigated in Ref. 12
for the case of an isotropic~with respect to the initial veloci-
ties! distribution of the incident particles, where the depe
dence of the process on the polarization of the external
diation vanishes.

The purpose of the present work is to take into acco
just this dependence. Therefore, below we calculate
SBIB cross section without averaging over the direction
the initial incident particle velocity for various angles b
tween the initial velocity vector of the incident particle an
the electric field intensity vector of the linearly polarize
laser radiation.

2. BASIC FORMULAS

In Ref. 1 we justified the specified-current approxim
tion for calculating the bremsstrahlung cross section
highly charged ions with a core for arbitrary values of t
Born parameterh5Zi /v. For sufficiently slow incident par-
ticles, which satisfy the relationh>1, good results are pro
vided by the so-called semiclassical approximation, in wh
the classical theory of bremsstrahlung is used together
several quantum restrictions.13,14 Here we shall also employ
the semiclassical approximation to calculate the polariza
channel of SBIB in the part concerning the incident partic
-
ed
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we shall, of course, use a systematic quantum-mechan
approach12 to calculate the characteristics of the bound co
electrons.

Within this picture the spectral amplitude of the SBI
for the incident particle scattering angleq @or the eccentric-
ity of the orbit«51/sin(q/2)# is the sum of two terms, one o
which is proportional to the time Fourier transform of th
dipole moment of the scattered incident particle@Dst(v,«)
— the static channel#, while the other is proportional to the
Fourier transform of the dipole moment induced by the in
dent particle in the ion core@Dpol(v,«) — the polarization
channel#.

Next, let us consider SBIB at a frequencyv of the ex-
ternal radiation that is close to the eigenfrequencyv0 of a
transition in the electronic ion core of the form (ni ,s)
→(n,p), assuming that the frequency mismatchD5v2v0

exceeds the linewidth of the transition, so that the real ex
tation of the ion core can be neglected.

The corresponding formulas have the form

ds tot~v,«,w!5
1

4

Zi
2

v4
uE0Dtot~v,«!u2«d« dw, ~1!

Dtot~v,«!5Dst~v,«!1Dpol~v,«!, ~2!

D j
pol~v,«!5

1

6p

^ni ,l 50uuduun,l 51&
V E

2`

`

dt eivt
Rj~ t,«!

R~ t,«!

3^n,l 51uua1~r core,R~ t,«!!uuni ,l 50&, ~3!

a1~r ,R!5u~R2r !
r

R2
1u~r 2R!

R

r 2
.

HereRj (t,«) is the j th projection of the radius vector of th
incident particle for a given orbital eccentricity as a functi
of time; u(x) is a Heaviside step function;V5(D2

1V0
2)1/2 is the generalized Rabi frequency;V05d0E0 is the

resonant Rabi frequency;d0 is the dipole moment matrix
element of the resonant transition; andE0 is the amplitude of
the electric field in the external radiation.

The expression~3! was obtained in first-order perturba
tion theory with respect to the interaction of an incident p
ticle with an electronic transition in an ion core1 near-
resonant laser field system. Its systematic derivation wit
the dressed-state model was given in Ref. 12. This appro
permits allowance for the influence of the near-resonant la
field on the radiative transition in the ion core within th
rotating-wave approximation and, consequently, to obt
the dependence of the SBIB cross section on the electric
intensity in the external radiation.

We note that consideration of the influence of the la
field on the near-resonant transition formally reduces to
placement of the frequency mismatch from resonanceD
5v2v0) by the generalized Rabi frequency (V) in formula
~3!. The expression for the total cross section for all incide
particle scattering angles has the form
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ds tot~v,a!5
p

2

Zi
2

v4
E0

2E
1

`

@~ uDx
tot~v,«!u2! f x~a,«!

1~ uDy
tot~v,«!u2! f y~a,«!#«21 d«,

~4!

f x~a,«!5cos2a1
«221

2
sin2a,

f y~a,«!5~«221!cos2 a1
1

2
sin2 a.

In these equationsx andy are the axes of the focal coordina
system assigned by the initial and final incident particle
locity vectors,14 anda is the angle between the initial inc
dent particle velocity vector and the electric field intens
vector of the external radiation. The derivation of~4! from
~1! involved integration over the azimuthal scattering an
w.

Formulas~1!–~4! are the basic equations for our inve
tigation of the polarization-interference effects in the SB
of quasiclassical electrons on ions with a core.

3. INFLUENCE OF THE NONDIPOLE BEHAVIOR OF THE
PROJECTILE-TARGET INTERACTION ON THE RADIATING
DIPOLE MOMENT

Polarization-interference effects stem from the non
pole nature of the interaction between the incident part
and the near-resonant transition in the ion core. In the dip
approximation the interference term in the bremsstrahl
cross section does not depend on the polarization of the
ternal radiation.1,4,5 Thus, the difference between th
incident-particle–ion-core interaction potential and the
pole analog~the incident-particle–point-ion interaction po
tential! is essential for the appearance of this dependenc

Figure 1 shows how the ratio of the exact interacti
potential to the dipole potential varies with the parame
x5ZR ~whereR is the distance between the incident partic
and the nucleus! for an incident particle interacting with th
2s22p transition in a hydrogenic ion.

A calculation in the model-potential approximation r
veals that a similar dependence holds for transitions of
outer electron in a lithium-like ion.

FIG. 1. Deviation of the interaction potential of an incident particle with t
2s22p transition of a bound electron in a hydrogenic ion from its dipo
approximation (Z is the charge of the ion nucleus!.
-

e

-
e
le
g
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-
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e

It follows from Fig. 1 that a deviation from thedipol
appproximation in the interaction of the incident partic
with the near-resonant transition appears atx0'12 ~for Dn
50), while the value ofx corresponding to the radius of th
2p state of a hydrogenic ion is of order 4. Thus, nondipo
behavior begins to show up at distances between the inci
particle and the nucleus as small as three times the cha
teristic radius of the upper resonant state. As we know~see,
for example, Ref. 15!, in the Kramers limit the portion of the
incident particle trajectory responsible for the emission o
photon of frequencyv is located at a distance of the order
Rv(Zi)'(Zi /v2)1/3 ~for a Coulomb field! from the center of
the field ~this estimate corresponds to the rotation
approximation11,15!. In the case of lithium-like ions, the
eigenfrequency of the 2s22p transition can be approxi
mated by the expressionv2s22p(Z)50.0707Z20.120 a.u.
(Z is the charge of the ion nucleus!. The expressions pre
sented can be used to estimate the nondipolarity parame

xnd~xv!5
V2s22p~xv!

V2s22p
dip ~xv!

@herexv(Zi)5ZiRv(Zi)# as a function of the charge of th
lithium-like ion Zi for a near-resonant 2s22p transition.
Simple calculations give

xnd~1, 2, 3, 4, 5!50.25, 0.8, 0.96, 0.99 forDn50.

Thus, this estimate, which is based on the use of
rotational approximation, shows that for transitions with
change in the principal quantum number in lithium-like io
the nondipolarity parameter is close to unity for fairly larg
ion charges (Zi>4). A similar estimate for a transition with
Dn51 shows that the corresponding nondipolarity para
eterxv(Zi) is significantly smaller than unity for allZi .

It should, however, be borne in mind that the rotation
approximation corresponds to the replacement of summa
of the contributions of different incident particle trajectori
over the impact parameter by emission at a certain effec
distanceRv(Zi). It is not cleara priori that such a replace
ment is correct for taking into account the interference of
static and polarization channels occurring for each fixed
pact parameter, especially in the region of destructive in
ference of these channels, where the total cross sectio
small. As was mentioned above, the calculations perform
in Ref. 12 in the approximation of a specified incident pa
ticle Coulomb current show that the rotational approximat
is, generally speaking, inadequate for describing fine in
ference effects in the region of the spectral-amplitude d
but remains approximately correct in the region of the co
structive interference of the static and polarization chann
for transitions with no change in the principal quantum nu
ber. Therefore, for a correct description of this interferen
over the entire range of values of the parameters we m
start out from the general unsimplified formula~4!.

Bearing in mind the calculation of SBIB for lithium-like
ions, we shall henceforth use the Coulomb approximation
the incident particle current, in which the incident partic
trajectory is assigned by the familiar classical expression14

for the motion of a charged particle in an attractive Coulom
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892 JETP 88 (5), May 1999 V. A. Astapenko
field with an effective charge equal toZeff5Zi11/2. A cal-
culation of the dependence of the focal components of
induced dipole momentDx,y(«) of the ion core on the ec
centricity of the incident particle orbit shows that for tran
tions of bound electrons of the ion without a change in
principal quantum number they projection of the dipole mo-
ment is close to its dipole analog, while thex projection of
the dipole moment for eccentricities fairly close to unity d
fers strongly from the value calculated in the dipole appro
mation. In particular it vanishes and changes sign n
«51 for a certain eccentricity of the incident particle orb

The difference just indicated underlies the depende
studied herein of the polarization-induced effects in SBIB
the angle between the initial incident particle velocity vec
and the electric field intensity vector of the electromagne
wave.

Physically, these features in the behavior ofDx(«) and
Dy(«) stem from the different effects of penetration of t
incident particle into the ion core on the projections of t
Fourier transform of the induced dipole moment in the fo
coordinate system. Penetration into the ion core has a st
ger effect on thex component of the dipole moment than o
the y component, since thex component of the radius vecto
of the incident particle changes sign during its motion fro
the point of closest approach to the center of the field
infinity, while they component has a single sign on the po
tion of the trajectory under consideration.

4. DISCUSSION OF RESULTS

The results of the calculations of the SBIB cross sect
within the approach under consideration are presented
Figs. 2–4 and for spontaneous bremsstrahlung in Fig. 5.
calculations were performed for the 2s22p and 2s23p
transitions in the lithium-like N41 ion. The functions of the
model-potential method were employed as the wave fu
tions of the valence electron.

The total SBIB cross sections for all incident partic
scattering angles are presented in all the figures.

FIG. 2. Spectral dependence (D5v2v0) of the SBIB cross section of a
quasiclassical electron on an N41 ion normalized to the static values for tw
values ofa (a50 — curve 1, a5p/2 — curve 2! between the initial
velocity vector of the incident particle (v50.6 a.u.! and the electric field
intensity vector of the external radiation (E051023 a.u.! for a frequency of
the external field near the eigenfrequency of a near-resonant transition i
ion core without alteration of the principal quantum number (2s22p).
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Figure 2 shows the spectral dependence of the S
cross section normalized to the static value near the eig
frequency of the transition with no change in the princip
quantum number in the ion core for two values ofa ~the
angle between the initial velocity vector of the incident pa
ticle and the electric field intensity vector of the extern
radiation! for an initial incident particle velocityv50.6 a.u.
It follows from this figure that the interference effects a
displayed most vividly fora5p/2, while they are reduced
significantly for a50. This difference is greatest in the re
gion where the static and polarization channels experie
destructive interference (v,v0), where the calculations in
the dipole approximation with respect to the interaction
the incident particle with the core4 exhibit a deep minimum,
which is caused by mutual compensation of the polarizat
and static terms in the amplitude of the process. In the reg
of constructive interference (v.v0) the difference in the

the

FIG. 3. Dependence of the SBIB cross section normalized to the static v
on the electric field intensity of the external radiation for two values ofa
(a50 — curve1, a5p/2 — curve2!, a negative detuning from resonanc
(v2v0)/v0520.3% near the eigenfrequency of the 2s22p transition in
the N41 ion, and an incident particle velocityv50.6 a.u.

FIG. 4. Dependence of the SBIB cross section averaged over the anga
@for an angular distribution of the formDp(a)5cospa/(p11) with a distri-
bution axis perpendicular to the polarization of the external radiation# on the
electric field strength of the external radiation for two values of the ang
distribution parameter (p52 — curve1, p512 — curve2!, scattering of
electrons withv50.6 a.u. on N41 ions, and detuning of the frequency of th
external field from the eigenfrequency of the 2s22p transition in the ion
core equal to (v2v0)/v0520.3%.
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spectral dependence of the cross sections for the two va
of a is small.

The polarization features in the spectral SBIB cross s
tion under consideration are attributed to the difference
cussed in the preceding section between the effects of
nondipole nature of the interaction of the incident parti
with the near-resonant transition on the focal component
the radiating dipole moment induced in the ion core: a str
ger effect on itsx component and a weaker influence~for the
transition withDn50) on they component. In the case o
a50 the main contribution to the radiation~for sufficiently
small incident particle velocities! is made byDx due to the
form of the functionf x,y(a,«) @Eq. ~5!#. In fact, fora50 we
have f x51 and f y(0,«)5«221, and if it is now taken into
account that for sufficiently small values of the incident p
ticle velocity ~in the Kramers limit15! the main contribution
to the total cross section of the process for all eccentrici
of the incident particle orbit is made by«'1 ~close colli-
sions!, it follows from the preceding relations thatf x(0,«)
@ f y(0,«). Similar arguments show that the reverse inequ
ity f x(p/2,«)! f y(p/2,«) holds fora5p/2 and that, accord-
ingly, the main contribution to the process is made by thy
component of the radiating dipole moment.

Thus, the anglea controls the relative contribution o
the various focal components of the radiating dipole m
ment. If the main contribution to the radiation is made
Dx , the strong influence of the nondipole nature of the
teraction of the incident particle with the ion core causes
mutual compensation of the amplitudes of the static and
larization channels~where they destructively interfere
v,v0! to occur only for fairly large eccentricities of th
incident particle orbit. This compensation no longer occ
for fairly small eccentricities. Moreover, at a certain value
«0 the function Dx(«) changes sign, and the interferen
between the static and polarization channels takes on a
structive character. As a result, the interference dip in
total SBIB cross section for all eccentricities of the incide
particle orbit is smeared out, as is clearly seen in Fig. 2.

On the high-frequency wing of the spectral line
v.v0 the situation is reversed: the stronger manifestation

FIG. 5. Polarization of the spontaneous bremsstrahlungz52s(a50)
2s(a5p/2)/s(a50)1s(a5p/2) as a function of the relative frequenc
mismatch from the eigenfrequency of the 2s22p transition in the N41 ion
with ~curve1! and without~curve2! consideration of the polarization chan
nel (Zeff54.5, v50.9 a.u.!, zmin50.77, zmax51.88.
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the interference of the channels leads to a larger value of
SBIB cross section fora5p/2 than fora50. However, in
this case the relative role of the interference term is sm
since the total cross section of the process is large. T
circumstance is associated with the closeness of the no
polarity parameterxnd to unity for Dn50 andZi>2 men-
tioned in the preceding section.

On the low-frequency wing of the spectral line, whe
the total cross section is small, on the other hand, the rol
the interference is very significant, and the dependence o
SBIB cross section on the polarization of the external rad
tion under consideration is most pronounced.

A similar spectral dependence was also obtained for
transition in which the principal quantum number chang
2s23p. In this situation the difference between the cro
sections in the region of destructive interference is not
great as for the transition withDn50. This is attributed to
the greater influence of the nondipole behavior on the m
nitude of they component of the dipole moment induced
the ion core due to the larger radius of the 3p state compared
to the 2p state.

Figures 3 and 4 present the amplitude dependence o
total SBIB cross section for all incident particle scatteri
angles on the electric field intensity in the external radiati
for which polarization-induced interference effects of the
teraction between the static and polarization channels
exist.

Figure 3 presents the amplitude dependence of the r
of the total~including the polarization term in the amplitude!
SBIB cross section to its static analog for two values of
anglea (a50 — curve1, a5p/2 — curve2! in the region
of destructive interference between the channels (v,v0).
As is seen from the figure, in the former case the interfere
effects are very weak: they are manifested by the fact tha
the electric field intensity is increased, the cross section
the process tends to a value somewhat smaller than the s
value as a consequence of destructive interference, whic
strongly suppressed by the nondipole behavior of the in
action of the incident particle with the ion core. There
direct evidence of a strong interference effect fora5p/2:
the amplitude dependence of the SBIB cross section ha
broad dip caused by the mutual compensation of the s
and polarization terms in the cross section of the proce
which is characteristic of treatments within the dipole a
proximation with respect to the interaction of the incide
particle with the ion core.1,4 The reason for preservation o
the dipole features in the amplitude dependence is the s
as in the spectral dependence: fora5p/2 the main contri-
bution to the radiation is made by they component of the
induced dipole moment, which is weakly subject to the
fluence of the nondipole nature for transitions without
change in the principal quantum number.

Figure 4 presents plots of the amplitude dependence
the total SBIB cross section averaged over an angular di
bution of the incident particles of the form

Dp~a!5cosp a/~p11!

for two values of the angular distribution parameter (p52
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and p512) and an angle between the distribution axis a
the electric field intensity vector of the electromagnetic wa
equal top/2. The form of the angular distribution of th
electrons chosen is characteristic of the ablation of a so
state target under the action of high-power laser radiat
and the anglea5p/2 corresponds to normal incidence of th
radiation onto the surface of the solid.

It can be seen from the figure that the interference ef
is displayed most strongly for the more pointed angular d
tribution (p512), as would be expected, since the me
value ofa is closer top/2 in this case.

Figure 5 presents the spectral dependence of the p
ization of the spontaneous near-resonant bremsstrahlung
culated with~solid curve! and without~dashed curve! con-
sideration of the polarization channel. The low-frequen
wing of the line exhibits a strong upward deviation of t
polarization of the radiation parallel to the initial veloci
vector of the incident particle from the perpendicular va
@s(a50)/s(a5p/2)532# due to the interference-induce
suppression of the perpendicular polarization, which is l
subject to the effect of the nondipole behavior of the int
action of the incident particle with the ion core. This upwa
deviation is an order of magnitude greater than the co
sponding value obtained without consideration of the po
ization term in the bremsstrahlung amplitude.

As can be seen from Fig. 5, the maximum value of
polarization of the spontaneous near-resonant bremss
lung (zmax51.88) corresponds to the relative mismat
D/v0522%, which is significantly greater than the Doppl
width of the transition.

5. CONCLUSION

The polarization effects in the near-resonant SBIB
quasiclassical electrons on ions with a core due to the n
dipole character of the interaction of the incident parti
with a radiative transition in the ion upon formation of
polarization channel for the process have been analy
within the specified-current approximation.

It has been shown that consideration of this nondip
behavior is essential for a correct description of the SB
cross section in the region of destructive interference of
static and polarization channels, where the cross sectio
relatively small.

It is significant that a dependence of the spectr
amplitude characteristics of SBIB on such parameters of
process as the polarization of the external radiation, the
d
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solute value of the velocity, and the angular distribution
the incident particles, which is not observed in the dipo
treatment, appears in the more exact approach descr
here. In particular, a dependence of the interference dip
the total SBIB cross section~with consideration of the polar
ization channel! on the angle between the initial velocit
vector of the incident particle and the electric field vector
the external radiation has been discovered. This depend
is observed for both the spectral and amplitude SBIB cr
section and is most strongly manifested for near-reson
transitions in the ion core withDn50.

In the case of spontaneous bremsstrahlung this effec
observed in the spectral dependence of the polarization o
radiation, which differs fundamentally from the static analo

The SBIB features discovered can be significant for a
lyzing the possibility of utilizing this phenomenon in th
context of the general problem of generating sho
wavelength radiation.
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Zh. Éksp. Teor. Fiz.115, 1630–1641~May 1999!

The problem of the amplification of high harmonics generated during the above-threshold
ionization of atoms in a high-power laser wave field is examined for the first time. An estimate
of the gain coefficient as a function of the parameters of the atom beam and the pump
wave is given. ©1999 American Institute of Physics.@S1063-7761~99!00805-7#
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1. INTRODUCTION

The generation of high harmonics provides a source
coherent radiation in the hard-ultraviolet range. The sign
cant progress made in the area of creating high-power~with
a peak intensity in a pulseI 51013–1018W cm22) ultrashort
pulses (t5600 fs–1 ps! has permitted advances into th
range of harmonic wavelengthsls510–100 nm.1–4

In the last few years some new experimental results h
been obtained in studies of the detailed properties of pu
of high harmonics. In particular, data on the angular dis
bution of the radiation,5–7 its spectral profile4 and temporal
picture,8 and the conditions for phase synchronism betwe
the high-harmonic wave and the pump wave have been
tained. High-resolution cross-correlation experiments h
led to a conclusion regarding the possible temporal dura
of the generation of high harmonics.9,10

Advancements in laser technology have made it poss
to attain a large number of high-harmonic photons durin
pulse (Ns'106–1010) at comparatively high gas densitie
~with a pressure in the beamP510–100 Torr!. These
achievements raised the question of the possibility of obs
ing the amplification of high harmonics as they pass throu
the interaction region of the pump wave and the atom be

This paper examines the problem of the amplification
high harmonics generated in the above-threshold ioniza
of atoms in a high-power laser wave field for the first tim
An estimate of the gain coefficient as a function of the p
rameters of the atom beam and the pump wave is given

2. STATEMENT OF PROBLEM. BASIC EQUATIONS

We consider the amplification of a pulse of a high h
monic, where a weak probe wave of intensityI 2 with a fre-
quencyV'sv (s is the number of the harmonic, andv is
the frequency of the pump wave! is sent into the interaction
region of the atom beam with the strong pump wave in
direction of that wave.

We assume that the specified-field approximation, un
which the increment of the number of high-harmonic ph
tons over the length of the interaction region is less than
8951063-7761/99/88(5)/7/$15.00
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number of photons in the amplified wave~the condition that
the gain coefficient of the probe wave over the interact
length of the beam with the probe wave be small!, holds.

The amplification effect is determined by the compe
tion between the forward and reverse processes~with the
emission and absorption of high-harmonic photons, resp
tively!. The plots in Fig. 1 describe the processes tak
place when both waves are simultaneously present in
interaction volume. Figure 1a corresponds to the proc
with the absorption ofs quanta of the laser wave by an atom
a transition of an electron into a virtual stateCp in the con-
tinuous spectrum@the familiar Volkov solution in a strong
wave field~the Keldysh–Faisal–Reiss model11!#, and subse-
quent stimulated recombination to the ground state of
atom with the emission of oneV photon. Figure 1b corre-
sponds to the reverse process with the absorption of aV
photon. The initial (C i) and final (C f e,a) functions of the
electron–ion system belong to the ground state of the at
but the functionsC f e andC f a differ in the energy and mo-
mentum of the atom after it interacts with the electroma
netic fields.

The gain coefficient of the probe wave is determined
the total probability of the process:

G}Dw5we2wa , ~1!

wherewe,a are, respectively the probabilities of the stim
lated emission and absorption of anV photon by the system
of atoms in the interaction volume.

Let us focus our attention on one special feature of
problem under consideration. Since the atom is in the gro
state before and after the interaction with the waves,
matrix elements for processes a and b~see Fig. 1! written
without allowance for the motion of the center of mass of t
electron–ion system are equal, and, accordingly,Dw50. A
nonzero result can appear in~1! only in a basis set of wave
functions that include the combined motion of the electr
and the ion. In this case we must take into account the re
effect, which appears when this system emits or abso
quanta of a field. When the problem under consideration
© 1999 American Institute of Physics
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FIG. 1. The vertex in the form of a triangle with a wavy line corresponds to the interaction of an electron with the pump wave field, which leads
multiphoton ionization of the atom from the ground state to a virtual state in the continuous spectrum; the vertex depicted by a wavy line with a fil
describes the interaction of the photoelectron in the continuum with the probe wave field, which leads to recombination to the ground state of the
the emission of a photon of a high harmonic of frequencyV ~case a!; the double line with an arrow depicts the state of the photoelectron in the contin
spectrum appearing in the strong wave field~the Keldysh method!. Case b corresponds to the reverse process, and the meanings of the notation are th
as in case a.
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so formulated, it becomes similar to the familiar problem
the stimulated Compton emission of an electron~see, for
example, Ref. 12!. We note a formal feature shared by the
problems. Since processes in specified wave fields are
sidered in them, the final result for the gain coefficientG
must be averaged over the distribution functions of both
atom beam and the probe wave~this question is discussed i
greater detail in Sec. 3!.

Let us consider the question of the basis set of w
functions used to calculate the composite matrix element
the diagrams in Fig. 1. Because the parameter assoc
with recoil of the atom is small, the amplification of a hig
harmonic can be appreciable only if the condition of pha
synchronism of the emitters in the propagation direction
the waves is satisfied in the medium of atoms.13 The phase of
the atoms is determined by the phase of the coherent p
wave, and the calculation of the gain coefficient with allo
ance for phase synchronism requires consideration of
motion of the center of mass of the electron–ion system
assignment of the absolute coordinate of the electron in
laboratory reference frame.

The adiabatic approximation, within which the electr
and the residual ion are treated as fast and slow subsys
respectively, is assumed to hold. This approximation ma
it possible to separate the spatial variables of the parti
~the terms in the Schro¨dinger equation that are discarded
the separation procedure are small, being;me«p /ME,
whereM andme are the masses of the ion and the electr
respectively,«p is the energy of a photoelectron with th
momentump, andE is the kinetic energy of the atom!.

The psi function of the initial state of the system wi
consideration of the combined motion of the ion and
electron is written in the form (\5c51)

C i5exp@2 i ~Et2P•R!#exp~2 iE0t !c0~r ! ~2!

and describes the free motion of an atom with the ene
E5P2/2M and the momentumP in the ground statec0(r )
with the energyE0. HereR is the radius vector of the atom
~ion!, r is the relative radius vector of the electron, and t
normalization plane-wave volume is set equal to unity.
accordance with the Keldysh model14 it is assumed that the
ground state of the atom is weakly perturbed by the la
wave field.

The wave function of the final state can be written in
similar manner:
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C f e,a5exp@2 i ~Ee,at2Pe,a•R!#exp~2 iE0t !c0~r !, ~3!

where Ee , Pe and Ea , Pa are the energy and momentu
values which the atom acquires as a result of the emis
(e) and absorption (a) of a photon with the wave vectorK
and the frequencyV.

The intermediate stateCp in the figure corresponds to
the ion and electron in the continuous spectrum and is w
ten as follows:

Cp5exp@2 i ~E8t2P8•R!#

3exp@2 i ~ «̃pt2p̃•~R01R1r !!#

3exp~ ia1 cosw1!exp~2 ia2 sin 2w2!. ~4!

In ~4! E8 andP8 are the energy and momentum of the ion
the intermediate state;«̃p5«p1Up is the energy of the pho
toelectron with consideration of the ponderomotive ene
Up5(eE0|0)2/4me (E0 is the amplitude value of the electri
field intensity in the pump wave, and|051/v); p̃5p
1(Up /v)k is the momentum of the photoelectron;R01R
1r is the absolute radius vector of the electron (R0 is the
fixed radius vector of the ion without consideration of
motion!; the dimensionless parameters

a15
eE0•p

mev
2

, a25
~eE0|0!2

8mev
5

Up

2v
~5!

are determined by the strength of the interaction of the e
tron with the laser wave field; andw15vt2k(R01R1r ) is
the phase of the wave at the timet at the site of the electron

We use the expression

V̂15eA1~ t !•p̂/me1@eA1~ t !#2/2me ; ~6!

to define the interaction operator of the electron with t
pump wave field. The vector potential of the wave is a
signed by the classical expressionA1(t)5A01sinw1, where
A01 is the amplitude of the vector potential. The pump wa
field is used within the Keldysh method.14

The probe wave field is treated in first-order perturbat
theory. The perturbation operator associated with this w
has the form

V̂25eA2~ t !•p̂/me1e2A1~ t !•A2~ t !/me , ~7!
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whereA2(t)5A02sin@Vt2K•(R01R1r )# is the vector po-
tential of the probe wave, andK andV are wave vector and
frequency.

The probability amplitude of the transition of an electr
from the ground state of thej th atom to the continuous spec
trum with the absorption of several quanta of the pump w
followed by stimulated recombination to the ground st
with the emission of a high-harmonicK ,V photon by the
time t ~Fig. 1a! is given by the expression

Ae
j ~ t !5~2 i !2E dP8

~2p!3 E dp

~2p!3

3E
2`

t

dt1E
2`

t1
dt2 ^C f e

j* uV2
(1)~ t1!uCp

j &

3^Cp
j* uV1~ t2!uC i

j&, ~8!

whereP8 andp are, respectively, the momenta of the ion a
the photoelectron in the virtual intermediate state, and
V2

(1) terms, which are responsible for emission, have b
left in the operatorV2(t) ~7!. The analogous probability am
plitude of the reverse processAa

j (t) ~Fig. 1b! is a trivial
problem.

The total probability amplitude of the stimulated em
sion ~absorption! of a K ,V photon by the entire system o
atoms in the interaction volume of the beam with the wa
appears as a result of summation of the amplitudes~8! over
all the numbersj of the atoms in that volume and is distin
guished from~8! by the multiplier15

(
j

exp@ i ~sk2K !#•R0 j . ~9!

The sum ~9! can easily be calculated in the continuou
medium approximation and gives rise to a diffractive mu
plier in the expressions for the probabilities of th
processes:15

U(
j

exp@ i ~sk2K !#•R0 jU2

5S p

6 D 2

~Vintna!2
sin2@~V2nvsv!l /2#

@~V2nvsv!l /2#2
, ~10!

whereVint5pr0
2l is the interaction volume of the atom bea

with the waves;r0 is the radius of the focus of the pum
wave at its center;l is the longitudinal dimension of the
interaction region in the direction of the wave~as a rule, in
experiments on harmonic generation we havel 5d, whered
is the diameter of the beam of atoms sent in the direc
transverse to the waves!; nv512vp

2/2v2 is the refractive
index of the ionized medium for the pump wave~herevp

5A4pnee
2/me is the plasma frequency!; andna is the con-

centration of atoms in the beam.
From ~8! with consideration of the diffractive multiplie

~10! we obtain the following expression for the transitio
probability of the system of atoms to the partial final sta
per unit time:
e
e

e
n

s

-

n

we,a
(s) 5

duAe,au2

dt
58pa2

|0
4

s2

I 1I 2

Ry3 S p

6 D 2

~Vintna!2
sin2 u

u2

3U(
n

Es,nU2

d@Ee,a2E6~V2sv!#. ~11!

In ~11! I 1 and I 2 are the intensities of the pump wav
and the probe wave, respectively;u5(V2nvsv) l /2; Es,n is
an expression which appears when the integrals in the c
posite matrix element of the amplitude~8! are evaluated@its
form is not shown in this paper, since the final result
expressed in terms of the probability of spontaneous em
sion, which contains this expression~see below!#; the sum-
mation indexn runs through the sequence of numbers of
photoelectron peaks in the above-threshold ionization sp
trum of the atoms;a5e2/\c; Ry5mee

4/2\2 is the Rydberg
constant; the plus and minus signs in the argument of thd
function, which assigns the energy conservation law for
processes under consideration, refer, respectively, to
stimulated emission (e) and absorption (a) of a photon of
frequencyV'sv; E is the initial kinetic energy of the atom
andEe,a is the kinetic energy of the atom in the final state,
which it passes as a result of its interaction with the wa
with the emission~absorption! of a high-harmonic photon.

We note that the values ofEe,a in the stimulated pro-
cesses are determined from the momentum conservation
Pe,a2P6(K2sk)50 and equal

Ee,a5E7
P•~K2sk!

M
1

~K2sk!2

2M
~12!

~the minus and plus signs correspond to emission and
sorption processes!.

The probabilities of the simulated processes~11! can be
related fairly simply to the probabilitywsp

(s) of the spontane-
ous emission of a photon of frequencyV'sv. This relation
has the form

we,a
(s) 54r0

2l0I 2

sin2 u/u2

sin2 u0 /u0
2

1

s
wsp

(s)d

3@Ee,a2E6~V2sv!#, ~13!

whereu05sv(12nv) l /2 is the argument of the diffractive
multiplier u for the exact equalityV5sv.

The delta functions in~13!, which assign the energy con
servation law for the transition of the system to a partial fin
state, should be replaced in the ensuing calculations by i
gration over the distributions in the interacting objects.

3. GAIN COEFFICIENT

The dimensionless gain coefficient per transit of a pro
wave of frequencyV'sv is given by

G(s)5
^w(s)&V

pr0
2I 2

, ~14!

where ^Dw(s)&5^we
(s)2wa

(s)& is the total probability of the
stimulated processes averaged over the distributions.
substitution of~13! into ~14! leads to the result
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G(s)5
8wsp

(s)

I 2~sin2u0 /u0
2!

J, ~15!

whereJ denotes the integral

J5E E sin2u

u2
$d@Ee2E1~V2sv!#

2d@Ea2E2~V2sv!#% f ~P! dP
dI2

dV

dI1

dv
dV dv,

~16!

f (P) is the distribution function of the initial atom beam
normalized to unity, and the functionsdI1 /dv anddI2 /dV
describe the spectral distributions in the pump wave~probe
wave! normalized to the total intensityI 1 ~and I 2, respec-
tively!, whose widths are related to the pulse durations.

The integration procedure in~16! is described in Appen-
dix 1. The final result forG(s) and the character of the inte
grations in~16! depend on the formulation of the problem
When an answer is needed in the form of the gain coeffic
in a mode, i.e., at a specified frequency of the probe wav
is sufficient to confine ourselves to integration over the d
tribution of the initial atom beam in~16!. In this case, in
accordance with Eq.~1.8! from Appendix 1 for the gain co-
efficient in a mode, we obtain

G(s)~V!58wsp
(s) sin2 u/u2

sin2 u0
2/u0

2 S 2
16ApM̃2

DP

V2sv

uV2nvsvu D
3expF2M̃2S V2sv

V2nvsv D 2G . ~17!

As follows from ~17!, the gain coefficient vanishes whe
V5sv holds exactly and is positive for waves with freque
cies V,sv. An increase in the frequency mismatc
uV2svu is accompanied by a sharp decrease in the co
cient G(s)(V) in view of the large value ofM̃ .

A situation in which averaging over the spectral dist
bution in the probe wave is also required in the integraJ
should be considered more characteristic of the condition
experiments on high-harmonic generation. In this case
final result forJ has the form@Eq. ~1.12! in Appendix 1#

J52
16Ap sv~12nv!

DVM

sin2 u0

u0
2

I 2 expF2S V02sv

DV D 2G
3Fu0 cotu01

~V02sv!sv~12nv!

~DV!2 G . ~18!

It follows from ~15! and~18! that a positive value of the gai
coefficient can be obtained in two limiting cases. If the de
sity of the atoms in the beam is small, so thatu0,1 holds
~we recall thatu0 depends on the extent of ionization and t
concentration of atoms in the medium!, amplification of the
probe wave can be achieved only when the frequencyV0,
which corresponds to the maximum of its spectral distrib
tion, is smaller thansv. The other limiting case is realize
for dense beams, in whichu0 lies in the range 1,u0,p.
Then the spontaneous emission of thesth harmonic (V0
nt
it
-

fi-

of
e

-

-

5sv), which can be induced ahead of time under conditio
similar to the conditions of the amplification process, c
serve as the source of the probe wave. This radiation m
then be directed into the region where the second beam
teracts with the pump wave and be synchronized with
arrival of the pulse of this wave~a two-beam experimen
scheme!.

In the ensuing calculations we shall confine ourselves
this case and omit all the multipliers containing the diffe
enceV02sv in ~18!. The parametersnv andu0 depend how
much of the medium is ionized and, therefore, on the lo
characteristics of the field intensity in the focus of the pum
wave. Therefore, after substituting~18! into ~15!, we must
average the expression obtained over the coordinater, which
is transverse to the focal axis, to derive the final formula
the gain coefficient:

^G(s)&52
~16!2sv

ApDVM

Jr

r0
2

wsp
(s) , ~19!

where

Jr5E
0

r0
@12nv~r!#u0~r!cotu0~r!r dr. ~20!

The details of the calculations of the integral~20! are
described in Appendix 2. Using the result~2.3! obtained
therein, we present the expression for the averaged gain
efficient ~in ordinary units!

^G(s)&52
~16!2\cNs

Ap lMc2DVts

S r̃0

r0
D 2 E

0

u0m
x cotx dx, ~21!

whereNs is the number of photons of thesth harmonic emit-
ted during a pump-wave pulse, which can be estimated fr
the relationNs'wsp

(s)ts ; ts is the duration of the probe-wav
pulse;r̃0 is the characteristic constant of the Gaussian dis
bution of the electron density in the focus; andu0m is the
value of the argument on the focal axis~see Appendix 2!.

At fairly large values ofu0;1 ~when u0<p) we can
use the expansion16

E x cotx dx5 (
k50

`

~21!k
22kB2k

~2k11!!
x2k11, ~22!

whereB2k is Bernoulli’s number.

4. ESTIMATES; ANALYSIS OF RESULTS

Let us estimate the gain coefficient for the case in wh
a Ti:sapphire laser~with a wavelengthl'800 nm! serves as
the source of the pump waves. Let us also assume tha
probe wave is the spontaneous radiation appearing at
frequency of a high harmonic when the pump wave intera
with the atom beam. It is further assumed that this radiat
crosses the second atom beam simultaneously with
pump-wave pulse~a two-beam experiment!.

Let us consider the conditions needed for amplificat
of the probe wave. We first note that in the case of an at
beam with a comparatively low density (u0,1), where
cotu0'1/u0, the gain coefficient has a negative value@see
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~18!#, which corresponds to absorption of the probe wave
the interaction volume. However, the situation changes w
u0 is increased. In particular, whenu0 approachesp, the
integral ~21!, which specifies the value of the averaged g
coefficient, is represented in the form of the series~22!. For
example, foru053 the integral~21! is equal to22.6, i.e.,
the gain coefficient is positive. Substituting this value in
~21! and assuming that photoionization saturation is achie
over the high-power laser wave field in essentially the en
volume of the focus (r̃0'r0), we obtain the estimate
^G(s)&'16% forNs5107. This number of spontaneous ph
tons is observed in the plateau region in the case of a b
of Xe atoms for harmonics with the numberss540–60~the
corresponding frequencies areV560–90 eV).

In conclusion, we note that the spectral composition
the probe wave can differ from the spectrum of the hig
harmonic spontaneous emission. In this caseV0 can differ
from sv. Then the value of the gain coefficient depends
the magnitude and sign of the detuningDV5V02sv and
can be positive even whenu0,1.

We thank M. V. Fedorov for discussing the statement
the problem, as well as P. Agostini for discussing the po
bility of experimental verification of the results obtained.

APPENDIX 1:

Let us discuss the evaluation of the integral~16!. The
order of integration in it depends on the relative sharpnes
the distribution functions of the quantities over which t
integration is performed. The real conditions of an expe
ment on the generation of high harmonics in atom bea
satisfy the inequalitiesDP/P!DV/V!Dv/v, whereDP is
determined by the temperature of the atoms in the accom
nying reference frame, andDV;1/ts andDv;1/tp are the
widths of the spectral distributions of the waves, which a
related to the duration of the corresponding pulses.

We useI to denote the following integral

I 5E $d@Ee2E1~V2sv!#

2d@Ea2E2~V2sv!#% f ~P! dP. ~1.1!

The momentum distribution function of the beam atoms
assigned by the model dependence normalized to unity

f ~P!5
4

Ap~DP!3
expF2

~P2P0!2

~DP!2 G , ~1.2!

whereP0 is the momentum of the atom beam as a whole a
DP is the width of the momentum distribution.

The integration over the momenta of the atoms in~1.1!
is preceded by a series of transformations. Using~12! we
represent thed function in the form

d6FP~K2sk!

M
2~V2sv!7

~K2sk!2

2M G , ~1.3!

where the minus sign in the argument of the function ref
to the emission of aK ,V photon and the plus sign refers
the absorption process.
n
n

n

d
e

m

f
-

n

f
i-

of

i-
s

a-

e

s

d

s

If we assume that the momentumP0 is directed perpen-
dicularly to the vectorsK andk, it is convenient to go over
to the relative momentum of the atomsa5P2P0 in all the
expressions. We note that sending a beam at an arbit
angleq to the propagation direction of the waves gives r
to insignificant corrections;P0i /M in the expression forJ
(P0i5P0cosq is the component ofP0 alongK andk!.

Using the known properties ofd functions, we can rep-
resent the expressions~1.3! in the form

d6FP~K2sk!

M
2~V2sv!7

~K2sk!2

2M G
5

M

uV2nvsvuucosuu
d~a2a6!, ~1.4!

where

a65
M

cosu

V2sv

uV2nvsvu F16
~V2nvsv!2

2M ~V2sv!G ~1.5!

are the values of the initial relative momentum of an ato
participating in the emission (a1) or absorption (a2) of a
K ,V photon, andu is the angle between the vectora and the
wave vectors of the waves.

When the frequency of the probe wave coincides w
sv (V5sv), the pulses~1.5! are identical and equal

a15a25
uV2nvsvu

2ucosuu
.

In this case only atoms traveling in the propagation direct
of the waves, i.e., withuuu,p/2, participate in the emission
of a high-harmonic photon. On the other hand, only ato
traveling in the direction opposite to the waves, withuuu
.p/2, participate in absorption processes. Because of
symmetry of the directions of the momentaa of the atoms in
the beam relative to the vectorsK and k and the equality
a15a2 in the case ofV5sv, the gain coefficient of the
probe wave vanishes at this frequency.

In the general caseVÞsv the momentum difference

a12a25
uV2nvsvu

cosu
~1.6!

is related to the recoil experienced by the atom upon
interaction with the waves and determines the value of
gain coefficient.

Integration over the modulus of the momentuma in ~1.1!
leads, with consideration of~1.4! and~1.5!, to the following
result:

I 5
16ApM2

~DP!3

V2sv

uV2nvsvu H E0

p sinu du

ucosuucos2 u

3expF2
M̃2

cos2 u
S V2sv

V2nvsv D 2G
2M̃2S V2sv

V2nvsv D 2E
0

p sinu du

ucosuucos4 u
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3expF2
M̃2

cos2 u
S V2sv

V2nvsv D 2G J , ~1.7!

where the value of the dimensionless parameter
M̃[M /DP.

The integrals in~1.7! are reduced by the replacement
a variablex5cosu to known integrals,16 and, as a result
from ~1.7! we obtain

I 52
16ApM̃2

DP

V2sv

uV2nvsvu
expF2M̃2S V2sv

V2nvsv D 2G .
~1.8!

The substitution of~1.8! into the definition ofJ ~16! yields
the result

J52
16M̃2I 2

DPDV E
2`

` sin2 u

u2
expF2S V2V0

DV D 2G
3

V2sv

uV2nvsvu
expF2M̃2S V2sv

V2nvsv D 2G dV. ~1.9!

Equation ~1.9! was obtained using a simple model depe
dence for the spectral distribution of the probe wave:

dI2

dV
5

I 2

ApDV
expF2S V2V0

DV D 2G ,
which is normalized to the total intensityI 2. By virtue of the
inequality DV/V!Dv/v there is no need for subseque
integration over the frequencyv.

The sharpest function ofV in the integrand in~1.9! is
exp$2M̃2@(V2sv)/(V2nvsv)#2%, and the contributions to the
value ofJ are a result of integration in a small vicinity of th
point V5sv ~an estimate of the characteristic width of th
integration rangedV is given below!.

To calculate~1.9! we perform the replacement of a var
ablex5(V2sv)/(V2nvsv). As a result,~1.9! yields

J52
16M2I 2sv~12nv!

~DP!3DV
Jx , ~1.10!

where

Jx5E
2`

` sin2 u~x!

u2~x!

x

~12x!2
expF2S V~x!2V0

DV D 2G
3exp~2M̃2x2! dx, ~1.11!

whereu(x)5u0 /(12x) ~we recall thatu0 is the argument of
the diffractive multiplier for the exact equalityV5sv).

As follows from~15! and Eqs.~1.10! and~1.11!, Jx must
be negative to obtain a positive value ofG. For this reason, it
is important to take into account the diffractive multipli
sin2u(x)/u2(x) and the distribution function exp$2@(V
2V0)/DV#2% in the lower orders with respect tox.

The effective integration range in~1.11! is determined
by the width of the function exp(2M̃2x2) and amounts to
dx;1/M̃5DP/M . The frequency interval dV;sv(1
is

-

2nv)dx, which is significantly smaller than the distance b
tween the pointsv and the special pointnvsv on the V
axis.

The result of the subsequent calculations depends on
value of u0, the sharpness of the function exp$2@(V(x)
2V0)/DV#2%, and the possible detuninguV2svu.

In the general case, where the conditionV0Þsv holds,
as a result of expansion of all the multipliers in front
exp(2M̃2x2) in series in the small parameterx followed by
integration we obtain

J52
16Ap sv~12nv!I 2

DVM

sin2 u0

u0
2

expF2S V02sv

DV D 2G
3Fu0 cotu01

~V02sv!sv~12nv!

~DV!2 G . ~1.12!

The result is valid if the following condition holds:

uV02svusv~12nv!

M̃ ~DV!2
!1.

APPENDIX 2:

Let us describe the dependence of the intensity of
pump wave on the transverse coordinater by the simple
Gaussian law

I 1~r!5I 01exp@2r2/r0
2#,

where I 01 is the intensity of the wave on the focal axis.
accordance with this dependence we specify the elec
density in the interaction volume by the expression

ne~r!5n0eexp@2~r2/ r̃0
2!#

~in view of the nonlinear dependence of the ionization pro
ability of an atom on the intensity of the ionizing wav
r̃0<r0). It follows from the definition of the argument of th
diffraction multiplier u0 that 12nv52u0(r)/sv l . This
makes it possible to represent the value ofu0 in the form of
the dependence

u0~r!5u0mexp@2~r/ r̃0!2#,

whereu0m is the value of the argument on the focal axis. T
substitution of this dependence into the integralJp ~20!
brings it into the form

Jr5
u0m

2 r̃0
2

sv l
Jt , ~2.1!

where

Jt5E
0

(r0 / r̃0)2

e22tcot~u0me2t! dt. ~2.2!

Finally, the substitutionx5u0me2t reduces~2.2! to the
familiar integral16

Jt'
1

u0m
2 E

0

u0m
x cotx dx. ~2.3!
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The lower integration limitu0mexp@2(r0 /r̃0)
2# is set equal to

zero, since exp@2(r0 /r̃0)
2#,1, and the contributions to th

value of the integral come mainly from the vicinity of th
upper limit.

* !E-mail: zaretsky@imp.kiae.ru
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Lorentz ionization emerges due to the motion of atoms or ions in a strong magnetic field. We
use the semiclassical approximation to calculate the probabilitywL of Lorentz ionization.
We also find the stabilization factorS, which takes into account the reduction by the magnetic
field of the probability of ionization decay of the bounds state. We estimate the
probabilitieswL in magnetic-cumulation experiments and in astrophysics. We also qualitatively
examine the dynamics of the magnetic cumulation process with allowance for the
conductivity of the shell. Finally, we discuss a paradox related to the use of the quasistationary
solution at the shell expansion stage. ©1999 American Institute of Physics.
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The semiclassical theory of ionization of atoms and io
by constant electric and magnetic fields has been develo
in Refs. 1 and 2. The special case of calculating the pr
ability wL of Lorentz ionization~i.e., ionization of atoms and
ions as a result of their motion in a constant or quasistat
ary magnetic field! is studied in the present paper.1! We list
the estimates ofwL made through magnetic cumulation e
periments~compression of an axial magnetic field by an e
plosion!, in which record-breaking values of the magne
field strength were obtained in laboratory conditions,4–6 and
from astrophysical data~magnetic white dwarfs!. We also
give a qualitative description of the dynamics of the ma
netic cumulation process.

Throughout the paper we use the atomic system of un
\5e5me51 (Ea55.143109 V cm21, Ha5137Ea52.35
3109 G, andme4/\354.1331016s21 are the atomic units
of the electric and magnetic field strengths and of the pr
ability wL) and the same notation as in Refs. 2 and 3.

1. THEORY OF LORENTZ IONIZATION

If an atom or ion enters a region of space where ther
a constant magnetic fieldH, the electric fieldE0 that ap-
pears as a result of the Lorentz transformation in the re
ence frameK0 in which the atom or ion is at rest caus
ionization, which has become known as Lorentz ionizati
HereE0'H0,

E0

H
5AG221 sin w5Aa,

H0

H
5AG2sin2w1cos2w5A11a, ~1!

with G51/A12v2/c2 the Lorentz factor,v the velocity of
the atom,w the angle betweenv andH, and
9021063-7761/99/88(5)/11/$15.00
s
ed
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r-

.

r[
E0

H0
5A a

11a
, a5~G221!sin2w. ~2!

The semiclassical theory of Lorentz ionization follow
directly from the results obtained in Refs. 1 and 2. The
rameter g5vc /v t introduced in those papers (vc

5eH0 /mec is the cyclotron frequency andv t5E /k is the
tunneling frequency!, which determines the nature of subba
rier electron motion, is given by the expression

gL5
kH0

cE0
5

k

v'

A12~12G22!cos2w, ~3!

wherev'5vsinw is the transverse~with respect to the field
H) component of the atom’s velocity~herev is expressed
in atomic units,va5e2/\), k5A2Ei in terms of the ioniza-
tion potentialEi of the atom~or ion!, andc5a215137.

For nonrelativistic particles we haver!1, andgL may
take any values:

r5
v'

c
, gL5

k

v'

, E05
v'

c S 11
v2

2c2D H. ~4!

On the other hand, for ultrarelativistic particles (G@1) we
have

r55 12
1

2G2sin2w
, w@G21,

w

AG221w2
, 0,w!1.

~5!

Hence crossed fields are generated in the reference frameK0,
i.e., the fieldsE0 and H0 are mutually perpendicular an
equal in magnitude~except for particles entering the regio
within a narrow cone,w&G21, around the direction of the
magnetic field!. HereE0 may be several times greater tha
the initial magnetic fieldH, and
© 1999 American Institute of Physics
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gL5
k

137F11
1

2G2sin2w
G!1.

In particular, ifv'H, then

E05AG221 H, H05GH,

r5A12G22, gL5
k

v
5

k

137

1

A12G22
. ~6!

The probability wL of Lorentz ionization of the atomics
level is ~in the lab frame!

wL5G21k2322hCk
2e122hP~gL!@Q~gL!#h

3expH 2
2

3e
g~gL!J . ~7!

Here

e5 E 0/k3Ea 5Gk21v'h, h5 H 0/k2Ha ; ~78!

TABLE I.

g t0 g(g) P(g) Q(g) f (g)

0.5 0.5071 1.0084 0.9583 1.058 2.81~23!
0.8 0.8296 1.0219 0.8934 1.160 1.17~22!
0.9 0.9425 1.0280 0.8651 1.209 1.68~22!
1.0 1.0590 1.0348 0.8337 1.268 2.32~22!
1.1 1.1795 1.0425 0.7990 1.339 3.12~22!
1.2 1.3046 1.0511 0.7614 1.422 4.09~22!
1.3 1.4349 1.0606 0.7208 1.523 5.25~22!
1.4 1.5711 1.0710 0.6776 1.643 6.63~22!
1.5 1.7137 1.0825 0.6319 1.787 8.25~22!
1.6 1.8636 1.0950 0.5843 1.962 0.101
1.7 2.0214 1.1087 0.5351 2.174 0.123
1.8 2.1878 1.1234 0.4850 2.432 0.148
1.9 2.3635 1.1393 0.4346 2.750 0.176
2.0 2.5490 1.1564 0.3847 3.143 0.209
2.1 2.7450 1.1748 0.3362 3.630 0.245
2.2 2.9517 1.1943 0.2899 4.239 0.285
2.3 3.1694 1.2150 0.2465 5.001 0.330
2.4 3.3983 1.2368 0.2067 5.959 0.379
2.5 3.3683 1.2597 0.1709 7.168 0.433
2.6 3.3894 1.2837 0.1394 8.699 0.492
2.7 4.1515 1.3087 0.1121 1.064~1! 0.556
2.8 4.4244 1.3346 8.905~22! 1.311~1! 0.625
2.9 4.7078 1.3613 6.981~22! 1.625~1! 0.699
3.0 5.0018 1.3888 5.406~22! 2.027~1! 0.778
3.1 5.3061 1.4170 4.136~22! 2.540~1! 0.862
3.2 5.6207 1.4458 3.127~22! 3.199~1! 0.951
3.3 5.9454 1.4752 2.338~22! 4.044~1! 1.045
3.4 6.2802 1.5051 1.728~22! 5.131~1! 1.145
3.5 6.6251 1.5355 1.263~22! 6.532~1! 1.250
3.6 6.9801 1.5664 9.126~23! 8.340~1! 1.359
3.8 7.7200 1.6292 4.613~23! 1.370~2! 1.594
4.0 8.5000 1.6934 2.233~23! 2.273~2! 1.849
4.5 1.0625~1! 1.8583 3.019~24! 8.318~2! 2.575
5.0 1.300~1! 2.0280 3.135~25! 3.156~3! 3.427
6 1.850~1! 2.3767 1.546~27! 4.899~4! 5.507
7 2.500~1! 2.7332 2.722~210! 8.159~5! 8.088
8 3.250~1! 3.0945 1.725~213! 1.426~7! 1.117~1!
9 4.100~1! 3.4588 3.954~217! 2.584~8! 1.475~1!

10 5.050~1! 3.8254 3.292~221! 4.813~9! 1.884~1!
15 1.130~2! 5.6751 3.560~248! 1.398~16! 4.675~1!

Note: In all tablesx(y) stands forx310y.
e and h are the ‘‘reduced’’ values of the fields in the re
frameK0 of the atom,h5Z/k is the Sommerfeld paramete
for the discrete spectrum~or the effective quantum numbe
n* ), Z is the charge of the atomic core,Ck is the asymptotic
coefficient ~at infinity! of the wave function of the free
atom,2! andP(g), Q(g), andg(g) are functions introduced
in Ref. 2 and referring to the angleu5p/2 between the fields
~see Table I!. Note that the factorG21 in ~7! allows for the
effect of relativistic retardation as one goes from the r
frameK0 to the lab frameK.

It is convenient to write the probability of Lorentz ion
ization in the separable form

wL5G21Sw~E0!, ~8!

wherew(E0) is the probability of ionization by the electri
field E0 alone, say, in the semiclassical approximation,

wcl~E0!5k222huCku2e122h exp$2 2/3e%. ~9!

The other quantity in~8! that need defining,S, is the ‘‘stabi-
lization factor,’’ which determines the suppression of the d
cay of a bound state initiated by the magnetic field:

S5P~gL!@Q~gL!#h expH 2
1

h
f ~gL!J . ~10!

Here

f ~g!5
2

3
g@g~g!21#

5H 1

45
g3S 11

11

252
g21••• D , g!1,

1

4
g2S 12

8

3g
1••• D , g@1,

~11!

P~g!@Q~g!#h

5H 12
1

6 S 12
4

3
h Dg21•••, g!1,

c0c1
hg122hexpH 2S 1

2
g22phg D J , g@1,

~12!

where c0 and c1 are numerical factors:c051.716 andc1

50.0106.
The Coulomb factorQ(gL) substantially increases th

probability of Lorentz ionization ifgL*1 andh.0. On the
whole, however, the pre-exponential factor in~7! decreases
rapidly with increasinggL @see Eq.~12!#. We also note that
although the functionsP(g) andQ(g) change more rapidly
thang(g) and f (g), the probabilitywL is most sensitive to
variations in g and f, since these functions enter into th
exponents in~7! and ~10! with large coefficients~2/3e and
1/h, respectively!.
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TABLE II. Stabilization factorS for the hydrogen atom~ground statek51!.

v
H 0.8 0.9 1.0 1.1 1.2 1.5 2.0 5 10

1 1.6~233! 2.2~224! 2.3~218! 3.1~214! 1.5~27! 1.38~23! 0.659 0.950
2 2.2~224! 4.2~217! 1.5~212! 1.5~29! 1.8~27! 3.9~24! 3.74~22! 0.813 0.975
5 3.7~210! 2.9~27! 1.9~25! 2.1~24! 2.05~23! 4.37~22! 0.271 0.922 0.990

10 2.0~25! 5.60~24! 4.53~23! 1.80~22! 4.62~22! 0.212 0.524 0.961 0.995
15 7.6~24! 6.96~23! 2.79~22! 6.96~22! 0.130 0.358 0.653 0.975 0.99
25 1.39~22! 5.22~22! 0.119 0.206 0.299 0.546 0.779 0.986 0.99
50 0.123 0.236 0.355 0.464 0.558 0.748 0.889 0.994 0.

100 0.367 0.503 0.613 0.697 0.762 0.876 0.949 0.998 10
350 0.799 0.863 0.905 0.933 0.952 0.981 0.995 1.000 10

Note: The magnetic field strength is measured in megagauss, and the atomic velocityv is measured in atomic
units va5e2/\52.193108 cm s21. The fact that a cell is empty means thatS,10240.
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For slow particles the stabilization factor is expone
tially small:

S'expH 2
1

4h S k

v'
D 2J , v!k, ~108!

with gL@1. This factor, however, rapidly increases wi
atomic velocity and approaches unity forv@0.3kh21/3, or
gL!3.5h1/3:

S511
2

9 S h2
3

4DgL
22

1

45h
gL

31•••, gL5
k

v'

. ~1088!

Note that for negative ions~h50! the stabilization factor
is always smaller than unity:

S~g!5H 12
1

6
g22

1

45h
g32

1

3240
g42•••, g→0,

c0g expH 2
1

h S 1

4
g22

2

3
g1

1

2D J , g→`.

~13!

For neutral atoms and positive ions it can also be larger t
unity, but this happens only within the range of paramet
where the reduced fielde is of order unity, in view of which
the semiclassical approximation breaks down.

Numerical calculations yield the curves forS shown in
Fig. 3 of Ref. 3. This figure shows thatS!1 for weak mag-
netic fields and forgL*1. The effect of the Coulomb inter
action onSbecomes appreciable ifgL.1.5, and allowing for
this interaction increases the numerical value ofwL .

Static magnetic fields generated in laboratory conditio
do not exceed one megagauss.8 The method of magnetic cu
mulation~i.e., explosive compression of a magnetic field s
rounded by a well-conducting shell!, proposed by Sakharo
in 1951, made it possible to reach record-breaking val
-

n
s

s

-

s

H525 MG in the USSR~Refs. 4–6! andH515 MG in the
USA ~Ref. 8!. Progress in this field of research could lead
field strengths of 33107–108 G ~Ref. 9!. Other possibilities
of generating ultrastrong magnetic fields are also discus
e.g., the compression of a metallic shell by the pressure
light from a high-power laser.10

Bearing all these aspects in mind, we calculated the
bilization factorS for the hydrogen atom. Table II shows th
in the region of values ofH and v considered here the
exponential suppression~108! of the ionization probability is
rapidly superseded by~109!, where the effect of the magneti
field can be neglected. For fast particles~i.e., forv*10k and
the more so forG@1) S'1, i.e., atomic-level ionization
proceeds at the same rate as in the case of an electric fielE0

acting alone in the rest frame of the atom. This distinguis
Lorentz ionization withG@1 from the well-known problem
of pair production in vacuum, whose probability for cross
fields vanishes identically.11,12 Physically, the reason for this
difference is obvious: in the case of ionization of an ato
there is a special reference frameK0, whereas the vacuum i
Lorentz-invariant and one can always select a refere
frame in which the field strengthsE andH are as small as
desired~in this case, obviously, pairs are not produced!.

The results of calculations for the H2 ion ~the electron
affinity energyEi50.7542 eV, andk50.2355! are listed in
Table III. As for other negative ions with a small bindin
energy,3! the dependence ofwL on H and v is similar the
one previously studied, but the region whereS'1 begins at
much smaller values ofH andv.

2. NUMERICAL ESTIMATES

For H is less than one megagauss, the atom is actu
stable, since the electric fieldE0 is too weak (E0,0.01 if
3
7
8

TABLE III. Stabilization factorS for a negative atomic hydrogen ion~k50.236!.

v
H 0.15 0.2 0.3 0.4 0.6 0.8 1.0 2.0

0.01 2 2 2 4.3~227! 1.8~28! 5.5~24! 2.15~22! 0.619
0.1 2 7.1~223! 4.3~27! 2.19~23! 0.164 0.466 0.675 0.951
1.0 2 4.81~23! 0.209 0.514 0.815 0.914 0.954 0.99

10 9.4~211! 0.463 0.775 0.887 0.957 0.978 0.987 0.99
25 7.2~25! 0.628 0.846 0.919 0.967 0.983 0.989 0.99
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TABLE IV. Lorentz ionization probability for hydrogen atoms.

H525 MG H5350 MG
v E0 S wL v E0 S wL

0.5 5.32~23! 3.69~29! 4.1~244! 0.167 2.48~22! 6.6~219! 7.6~212!
1.0 1.06~22! 0.119 1.03~29! 0.20 2.98~22! 1.01~211! 8.05~23!
1.25 1.33~22! 0.345 6.41~24! 0.22 3.28~22! 7.79~29! 50.4
1.67 1.77~22! 0.645 2.40 0.25 3.72~22! 2.06~26! 1.06~5!
2.0 2.13~22! 0.779 1.55~5! 0.3 4.47~22! 6.73~24! 5.22~8!
2.5 2.66~22! 0.882 5.56~7! 0.4 5.96~22! 6.70~22! 1.33~12!
3.33 3.55~22! 0.950 2.14~10! 0.5 7.45~22! 0.298 3.54~13!
5.0 5.32~22! 0.984 6.24~12! 1.0 0.149 0.905 2.19~15!

10 0.107 0.998 7.73~14!

Note: The values ofv andE0 are measured in atomic units, while the value of the ionization probabilitywL is
measured in s21.
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G,25). If the atom velocity is very low, Lorentz ionizatio
can be observed in the regionH*10 MG. For instance, a
H525 MG (h50.0106), we obtain the values ofwL listed
in Table IV; the values of the atomic velocityv ~the case
where v'H) and the electric fieldE0 acting in the rest
frame of the atom are also listed Table IV. In the range
velocities in question, the situation of the atom changes fr
almost total stability to ionization in a time interval o
roughly the atomic time.

The stabilization factorS is especially large whengL

.1. For the values ofE0 ~and, accordingly, of the probabil
ity wL) not to be too large,k must be much less than unity
thenv5k/gL!1 holds, i.e., we are dealing with the nonre
ativistic case. Anomalously small values ofk are attained for
Rydberg atomic states~e.g., in the hydrogen atomk51/n for
states with the principal quantum numbern! and in solid
state physics~for Wannier–Mott excitons14 in semiconduc-
tors!. For instance, since in the germanium crystal the eff
tive electron mass ism* '0.2me and the dielectric constan
is «'16, we havek5m* /«me'1/80, with the result that
the characteristic field strengths at which ionization is ess
tially instantaneous~e;1! are of orderk3Ea;10 kV cm21.
Such fields can easily be generated in experiments.

Ultrastrong magnetic fields can also be encountered
astrophysics. In this connection we should mention magn
white dwarf stars, which are being actively investigated
present.15–18 The fields at the surface of such an object a
huge ~see, e.g., the table on p. 35 in Ref. 18, which li
about 50 such objects with fields ranging from 2 MG
roughly 1000 MG!. For instance, the magnetic field in th
star Grw170°08247 corresponds to a magnetic dipole a
varies from the maximum valueHm5350 MG at the poles
of the star to 0.5Hm at the equator17 ~according to Ref. 18,
in this caseHm'240 MG). What makes white dwarfs s
special ~compared, say, to neutron stars, where magn
fields are much stronger! is that it is possible to study thei
optical spectra.16,17 This allows us to study the effect ofE

and H on the atomic levels, primarily for the atoms of h
drogen and helium. Lorentz ionization of atoms may ta
place when such a star passes through a cloud of ne
hydrogen. The data listed in Table IV suggest that the pr
ability of Lorentz ionization of hydrogen atoms in a fie
H5350 MG (h50.149) becomes appreciable for stellar v
f
m

-

n-

in
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locities v*400 km s21, with wL depending very strongly on
v.

However, even if the stellar velocity with respect to th
cloud of interstellar gas is relatively low, Lorentz ionizatio
of the atoms of this gas still takes place because4! the atoms
fall to the surface of the star with a velocityv5A2GM/R
~since the gas density is low, we can neglect the collisio
between the atoms!. Assuming that a white dwarf has a ma
M;M (5231033g and a radiusR;104 km, we get v
.(4 – 5)3103 km s21. SinceH(r )}Hm(r /R)23 holds out-
side the star, Lorentz ionization of hydrogen atoms ta
place at distances of the order of severalR.

A remark concerning the calculations of the values ofwL

listed in Table IV is in order. Being asymptotically exact
the limit of a weak field (E→0), the semiclassical formula
~7! ceases to be valid relatively soon. The complex-valu
energiesE(E)5Er2 iG/2 of the Stark resonances in the h
drogen atom have been calculated by many researchers
e.g., Refs. 19–27~the ionization probability isw(E)
[G(E) if the level width G is small!. They used various
numerical methods, including summation of diverge
perturbation-theory series26–30 by the use of Borel–Pade´20

and Pade´–Hermite21 approximants. We write the probabilit
of ionization of thes level as follows:

w~E !5q~E !wcl~E !, ~14!

where wcl is given by formula~9!, and w is the result of
numerical calculations. Figure 1 depicts the functionq(E)

FIG. 1. The functionq0(E)5w/wcl for the ground state of the hydroge
atom. The dashed curves2, 3, and 4 correspond to allowance in~148! of
terms up toE 2, andE 3, andE 4 inclusive.
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for the ground state of the hydrogen (q5q0); here we have
used the results of Refs. 18–23. In the case at hand,31,25–29

wcl~E !5 4E21 expH 2
2

3E
J , q0~E !5 (

k50

`

ckE k, ~148!

where c051, c152107/12, c257363/288, c352158.75
60.07, c45469.061.0, c5510 2506150, . . . ~this expan-
sion can be used forE,0.1; see the dashed curves in Fig. 1!.
Note that the semiclassical asymptotic value of probabil
wcl(E), overestimates5! the exact value of the ionizatio
probability; for E;0.2E a;109 V cm the numerical values
of w are five to six times smaller thanwcl .

Within the range of velocitiesv where the probability
wL increases dramatically, the correction factorq0(E) is im-
portant and was taken into account in calculating the val
of wL listed in Table IV. Note that formula~10! for the
stabilization factorShas a wider range of applicability, up t
H;0.1. This follows from a comparison of our results wi
those of numerical calculations done by Johnsonet al.32 for
the case of parallelE andH fields and with the results o
recent calculations done by Va�nberg and Gani33 for the case
of crossed fields.

3. IONIZATION IN THE PROCESS OF MAGNETIC
CUMULATION

Up to this point it was assumed that the magnetic fi
does not vary in time. Now we turn to the case of a varia
field H(t) generated by magnetic cumulation.

Below we follow the ideas of Sakharov.5,6 The metallic
cylinder squeezing the magnetic field~the inner radius of the
cylinder is R(t), the thickness of the shell isd!R, and its
conductivity iss! in the first approximation can be assum
an ideal conductor. Then

H~ t !5H0~R0/R!2, W~ t !5W0~R0/R!2, ~15!

where W5H 2R2/8 is the magnetic-field energy~per unit
length of cylinder!. In terms of the dimensionless variable
j5R/R0 andt5v0t/R0, the energy conservation law yield

j̇2511
1

K S 12
1

j2D , j~0!52 j̇~0!51, ~16!

whereK5Mv0
2/2W058pr0v0

2d0 /H 0
2R0 is the ratio of the

shell kinetic energy to the magnetic energy within the sh
at the initial momentt50 ~real values ofK are much larger
than unity!, r0 is the density of the shell material, and the d
stands for a derivative with respect tot. The solution of Eq.
~16! is

j (0)~ t !5Ajm
2 1

K11

K
~t2tm!2,

H (0)~ t !5HmH 11
~ t2tm!2

~Dt !2 J 21

, ~17!

where Hm /H05Wm /W05K11, the quantitiesjm5(K
11)21/2 and tm5K/(K11) refer to the momemt of maxi
mum magnetic field, 2Dt5@AK/(K11)#T0 is the time dur-
ing which the field is close to its maximum value, andT0
,

s

d
e

ll

t

52R0 /v0 is the characteristic of the entire process (Dt/T0

'K21/2!1). On the other hand, the electron tunneling tim
is Tt;k2/2E0;(ke)21310217c'(vh)21310215s21!Dt,
with the result that the total Lorentz ionization probabili
can be calculated in the adiabatic approximation:6!

wt5E
0

`

wL~H~ t !! dt5mwL~Hm!Dt, ~18!

m5A phm

f ~gL!
5k21AHm

Ha
H 11.9gL

23/2, gL!1,

3.5gL
21 , gL@1.

~188!

Here we have assumed that the particle stays in the re
with the magnetic field for a time*Dt. This is true for ions,
for which the Larmor radius is usually smaller than the mi
mum shell radiusRm[R(tm)5K21/2R0. A magnetic field
does not bend the path of neutral atoms, and so for at
m5Lv0 /Rmv, wherev0 is the initial shell velocity,v is the
atomic velocity, andL is the length of the path of the atom i
the magnetic field (L;Rm /sinw). In this casem;1023!1,
with the result that the probability of the atoms being ioniz
~in conditions of an explosion! is suppressed as compared
the probability for negative ions. Using these formulas,
can easily calculatewt if we know the parameters of th
magnetic cumulation process.

Note that the quantity

mDt5k21A p

f ~gL!

H0

Ha

R0

v0
~1888!

in ~18! is expressed in terms of the parametersR0 , v0, and
H0, which refer to the initial moment (t50).

In the next approximation we must include the ohm
losses due to the finite conductivity of the shell material. W
have

d

dt H 1

2
M S dR

dt D
2

1
1

8
H 2R2J 52J52

1

2
cREH, ~19!

whereJ is the electromagnetic energy flux through a wall
radiusR(t) in the wall rest frame. The Maxwell equation
for the quasistationary field in a highly conductin
medium,34

]H

]t
5DDH, E5

c

4ps
curlH, D5

c2

4ps
, ~20!

has the solution~cf. Ref. 5!

H~x,t !5H0 expS 2
x

d
1E

0

t

l~ t8! dt8D ,

~21!

E5A l

4ps
H,

wherex5r 2R(t), d5c/A4psl is the skin depth, and

l5
1

H

dH

dt
'2

2

R

dR

dt
524T0

21 j̇

j
. ~22!

This solution is valid ifḋ/d!Ḣ/H, or
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TABLE V. Results of numerical calculations.

K5100 K51000 K5104

a b jm tm b jm tm b jm tm

0 0 0.100 0.990 0 0.0316 0.999 0 0.0100 1.0
0.05 0.158 0.114 0.971 0.281 0.0392 0.990 0.5 0.0138 0.

0.115 0.968 0.0400 0.988 0.0144 0.99
0.1 0.316 0.126 0.960 0.562 0.0445 0.986 1.0 0.0162 0.

0.129 0.953 0.0469 0.982 0.0178 0.99
0.15 0.474 0.135 0.951 0.844 0.0490 0.983 1.5 0.0181 0.

0.141 0.941 0.0531 0.977 0.0207 0.99
0.2 0.632 0.144 0.945 1.125 0.0528 0.980 2.0 0.0198 0.

0.153 0.931 0.0587 0.973 0.0234 0.98
0.3 0.947 0.158 0.933 1.687 0.0593 0.976 3.0 0.0225 0.

0.173 0.913 0.0688 0.965 0.0282 0.98

Note: Here jm and tm refer to the stopping point, andb5K1/4a is the inelasticity parameter. For givena
.0 and K the first and second rows correspond to planar and cylindrical geometries~Eqs. ~24! and ~31!,
respectively!.
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1

2 U d

dt

1

l~ t !U5 1

2U12
HḦ

Ḣ2 U!1, ~23!

which is similar to the condition of applicability of the WKB
method in quantum mechanics. We also note that the
proximation ~21! is physically meaningful only in the cas
l(t).0 ~compression of the shell! and cannot be used whe
the shell expands~the reason is explained in Sec. 5!.

Equations~20!–~22! yield

J5
1

2
lH 2Rd5

4cW0

~psT0!1/2R0

~2 j̇ !1/2j27/2,

whereW05H 0
2R0

2/8, so that we finally arrive at the equatio

j̈5
1

Kj3 S 11
2a

A2jj̇
D , 0,t,tm , ~24!

with the same initial conditions as in Eq.~16!. Heretm is the

stopping point, wherej̇(tm)50, anda is the dimensionless
loss coefficient:5

a5
c

A2psR0v0

'
40

AsR0v0

~25!

~in this expression the conductivitys is measured in
V21

•cm21, R0 in centimeters, andv0 in kilometers per sec-
ond!.

As a guide we provide some numerical values. ForR0

51 cm, v051 km s21, and K5100 ~or 103) we have
a50.05 ~0.016! for s563105 V21

•cm21 ~which corre-
sponds to the conductivity of copper at room temperature13!,
while for s543104 V21

•cm21 (T51500 °C) we have
a50.2 ~0.063!. In the latter case copper is already in a liqu
state (Tm51085 °C). ForR053 cm, v0510 km s21, andK
51000 we havea50.01 and 0.037 for the above values
s, which impliesa!1. The results gained from solving Eq
~24! are listed in Table V; several specific features of the
solutions and the limits of this equation are discussed in
Appendix.
p-

e
e

In deriving Eqs.~16! and~24! we assumed that the mag
netic flux F5pR2H inside the conducting shell is con
served. Let us now estimate the flux losses in the proces
cumulation. The solenoidal electric field generated in
shell is

E52
1

2pcR

]F

]t
5A l

4ps
H,

from which it follows that

dF

dt
52

c

R
A l

ps
F52

4a

T0
A2

j̇

j3
R2H.

Passing to dimensionless timet52t/T0, we obtain

Ḣ

H
522S j̇

j
1aA2

j̇

j3 D , ~26!

whereḢ5dH/dt, etc. This equation can be used if the to
flux variation is small. Bearing this in mind, we arrive at th
following estimate~when the shell is at maximum compre
sion!:

Hm

H0
5jm

22expH 22aE
0

tmA2
j̇

j3
dtJ

'~K11!H 112aE
0

tmS 11
2

Kj2DA2
j̇

j3
dtJ 21

.

~27!

The ratiorm5jm /jm
(0)5AK11 jm indicates how much the

minimum radius of the shell changes due to losses. In Se
we show thatrm depends not onK or a separately but on the
parameterb5K1/4a. This statement is confirmed by numer
cal calculations~Fig. 2!. For a given value ofK, the values of
the loss coefficient~increasing in the order ofb in Fig. 2! are
a50.05, 0.1, 0.2, and 0.3~the last value is true only atK
510 and 100!.

Allowing for losses in the cumulation process chang
the value oftm . However, for the values ofK anda being
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discussed this change is at most a few percent~see Table V!
and rapidly decreases with increasingK. The drop in the
maximum attainable magnetic fieldH m

(0)5(K11)H0 ~the
ideal case: no losses! is shown in Fig. 3, where curveA
corresponds to the case in which the magnetic flux is c
served (F(t)'const andHm}jm

22), while curvesB1, B2,
andB3 have been calculated by~27!, i.e., correspond to case
in which the decrease inF(t) is taken into account, forK
5100, 103, and 108, respectively. The last value ofK corre-
sponds to the use of a low-yield underground atomic exp
sion to compress the shell rather than conventional ex
sives~see p. 85 in Ref. 6!. WhenK changes by a factor o
106, the curves in Fig. 3 change only slightly, which co
firms the assumption that the parameter of the problem
b5K1/4a.

Thus, atK;1000 anda;0.05, the magnetic flux de
creases by factor of 1.5–2 and the peak magnetic field
creases by a factor of 2–3 in comparison to the ideal c
~a50!. This estimate agrees with the brief remarks made
Ref. 5.

FIG. 2. The ratiojm /jm
(0) as a function ofb5K1/4a; the points correspond

to the results of numerical calculations by~24! at K510 ~s!, 100~d!, 1000
~1!, and 10 000~n!. For a given value ofK these points correspond to th
following values of the loss coefficienta ~increasing in the order ofb!: 0.05,
0.10, 0.20, and 0.30. The curvesA andB correspond to planar and cylindri
cal geometries, respectively.

FIG. 3. Magnetic-field losses in the cumulation process;b5Hm /H m
(0) .

CurveA corresponds to the case in which the magnetic fluxF is conserved,
while curvesB1, B2, andB3 correspond to cases in which the decrease inF
is taken into account.
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4. EFFECT OF THE GEOMETRY

Thus far we have neglected the curvature of the shell
simply multiplied the results obtain for the flat~one-
dimensional! problem by 2pR. However, real experiment
correspond to cylindrical geometry rather than to planar, a
this changes the formulas somewhat.

Assuming thatH}exp$lt% with l positive, we arrive at
the following solution of Eqs.~20!:

Hz5H~R!
K0~r /d!

K0~R/d!
, Ew5A l

4ps
H~R!

K1~r /d!

K0~R/d!
,

~28!

wherer>R, Kn(z) are modified Bessel functions of the se
ond kind, d5c/A4psl, and the other components ofH

and E vanish. The electromagnetic energy fluxJ flowing
into the shell and the Joule heat liberated per unit time ins
the shell,Q, are

J52pR
c

4p
EwHzur 5R5J0f 1~z!,

Q5E
R

`

sE w
232pr dr 5

1

2
J0f 2~z!, ~29!

wherez5R/d,

f 1~z!5
K1~z!

K0~z!
, f 2~z!5zH K2~z!

K0~z!
2FK1~z!

K0~z!G
2J , ~298!

andJ0 corresponds to the case of planar geometry:

J05
1

2
lH 0

2Rd5
1

2
cA l

ps
H 0

2R.

The asymptotic expansion

Km~z!

Kn~z!
511

m22n2

2z
1

~m22n2!~m22n222!

8z2
1•••

yields7!

f 1~z!511
1

2z
1•••, f 2~z!511

1

z
1•••, z→`. ~30!

Allowing for the correction}1/z5d/R in the expression for
J, we obtain the equation of shell motion in the form

j̈5
1

Kj3 S 11
a

A2 j̇j
D 2

, ~31!

which differs from~24! only in thea2 order. It would seem
that we can neglect this difference. We will show, howev
that the characteristic parameter of the problem isb
5K1/4a, which may be of order unity~see Table V!.

Multiplying both sides of Eq.~31! by j̇, integrating from
zero to the stopping pointtm , and allowing for the boundary
condition, we arrive at the relationship

jm
225S R0

Rm
D 2

5K1122E
0

tm
~a212aA2 j̇j !j24 dt. ~32!

Combining this with~A6! and ~A7!, we see thatjm5(K
11)21/2(11c1b1c2b21•••). The coefficientsc1 , c2, etc.,
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TABLE VI. Parameters of the magnetic cumulation process.

A
v f (gL) m a50.05 0.1 0.2

0.5 0.209 0.400 0.852 0.887 0.995
0.667 8.25~22! 0.636 0.922 0.977 1.114
0.833 4.09~22! 0.904 0.973 1.046 1.208
1.0 2.32~22! 1.20 1.012 1.101 1.283
1.250 1.17~22! 1.69 1.057 1.164 1.373
1.667 4.88~23! 2.62 1.11 1.24 1.48
2.0 1.81~23! 3.45 1.14 1.28 1.54
2.5 1.43~23! 4.83 1.17 1.33 1.61
5.0 1.79~24! 13.67 1.22 1.42 1.75

Note: The values of the factorA ~Eq. ~33!! are listed forK51000 andHm525 MG ~k51 andgL51/v).
,
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can easily be calculated by~A7!. What is more important
however, is that the ratiorm5jm /jm

(0) , which determines the
effect of the inelasticity of the process, seems to vary withb.
This assumption is confirmed by the results of numeri
calculations—see Fig. 2, in which the curvesA andB refer to
the cases of planar and cylindrical geometries~Eqs.~24! and
~31!, respectively!. Comparison of curvesA andB shows that
although the effect of the geometrical factor on the magn
cumulation process is significant, it does not change the
sults dramatically.

Now we can go back to the question of the probability
ionization of atoms in explosions~with allowance for losses!.
For a50 we have formula~18! for the total probabilitywt .
In the approximation in whichF(t)5const, which has al-
ready been used in deriving Eq.~31!, we have H(t)
5Hm(j/jm)22. Using the definition~10! and the adiabatic
approximation, we arrive at~18! with an additional factorA
in the pre-exponential factor:

A5
2~K11!

mAK
E

0

tm
expH 2

p

m2 F S j~t!

jm
D 2

21G J dt, ~33!

wherem has been defined in~188!, andj(t) is the solution of
Eq. ~31!. At a50 we have (j (0)/jm)2511K21(K11)2(t
2tm)2 andA[1. If a is positive, the integral in~33! can be
evaluated numerically. This calculation~for K5103; see
Table V! shows that the factorA increases with the velocity
v of the atom and can reach values ranging from 1.5 to
i.e., if we allow for losses the probabilityw increases some
what ~on the other hand, ifv is less than 23108 cm s21 the
factor A is usually smaller than unity; for more details s
Table VI!.

The data of Tables III and V suggest thatwt

5AwLmDt>1 holds forv*43108 cm s21. This means that
in the present case the ionization of hydrogen atoms is
most total.

Here is a numerical example. TakingH525 MG, K
5103, a50.1, andDt5K21/2R0 /v051027 s, we obtain es-
timates for the total Lorentz ionization of hydrogen atoms
the magnetic cumulation process,wt5AmDtwL(Hm): wt

5831027, 9.831023, 0.067, 0.37, 0.64, and 1.00 atv
55/3, 1.9, 2.0, 2.1, 2.2, and 2.5, respectively. We see thawt

exhibits threshold behavior as a function of the atomic
locity v. On the other hand, at a fixed value ofHm the
dependence ofwt on the loss coefficienta is very weak.
l

ic
e-

f

,

l-

-

5. CONDITIONS OF APPLICABILITY OF THE
SEMICLASSICAL SOLUTION

As noted earlier, for negativel ~i.e., when the shell ex-
pands!, the approximation~21! has no physical meaning
since according to~21! as we move deeper into the metal th
field H(x,t) does not decrease but oscillates asx→`. Here
d becomes imaginary, and the calculation ofQ yields an
infinite result.

To resolve this paradox, we examine the time-depend
problem for the equation of heat conduction~diffusion!
along the semiaxisx.0:

ut5Duxx , u~x,t0!50, u~0,t !5 f ~ t ! for t.t0 , ~34!

whose solution8!

u~x,t !5
x

A4pD
E

t0

t

f ~ t8!expH 2
x2

4D~ t2t8!
J dt8

~ t2t8!3/2
~35!

determines the effect of a variable temperature~or magnetic
field!, f (t), specified at the boundary of the medium,x50.
For f (t)5elt and l.0 in ~36! we can pass to the limitt0

→2` ~adiabatic switch-on of field!. Allowing for the values
of the integral36

E
0

`

expH 2S a

t
1bt D J t23/2dt5Ap

a
exp~22Aab!

(a,b.0), we find that

u~x,t !5exp~lt2 x/d!, r5 x/d , d5AD/l, ~36!

which agrees perfectly with~21! at l5const. But if l is
negative, we cannot putt052` in ~36!, and the formal
solution

u~x,t !5exp~lt ! cosr, r5xAulu/D, ~37!

corresponds to nonphysical initial (t50) and boundary (x
→`) conditions and cannot describe the magnetic fi
when the shell is expanding.

Here are the results obtained by solving the bounda
value problem~34! numerically. Figures 4a and 4b, whic
correspond tol.0 andl,0 ~the initial time ist050), de-
pict the function

a~x,t !5 u~x,t !/u~0,t ! , ~38!
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FIG. 4. Thermal wave profile forl.0 ~a! and
l,0 ~b!; the numbers next to the curves indica
the values ofulut. The dashed curve correspond
to the stable regime~37!.
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which determines the profile of the thermal wave in the m
dium. Figure 4a shows that whenl is positive, the therma
wave travels from the boundaryx50 into the shell~as t
increases!, where the distribution ~36! holds ~for x
&A4Dl t). It can be shown that

a~x,t !512a1r1
1

2
r21•••, r→0. ~39!

For small times the coefficienta15a1(t) increases irrespec
tive of the sign ofl:

a15~pulut !21/2~11lt1••• !, ulut!1, ~40!

with the result that the functiona(x,t) decreases with in-
creasingr much faster than~36!. In the limit lt@1 we have

a1511O~exp$2lt% ~lt !23/2!, l.0, ~408!

and a(x,t) is exponentially close to exp$2r%. Thus, the
semiclassical solution~26!, ~36! is an asymptotic solution
which obtains in the limitlt@1 andx,x* 5A4Dl t.

If l is negative,a1 vanishes atlt520.854 and then
changes sign:

a1~ t !'2exp~ ulut !/2Apulut , t→` ~4088!

~see Fig. 4b!. Actually, the profile functiona(x,t) loses all
physical meaning in this case: the fieldu(x,t) inside the
conducting medium is determined not by the boundary va
of f (t) bit by the valuesf (t8) at the preceding moments,
,t8&ulu21. Whenx!x* and ulut@1, we find that

u~x,t !'
j

Ap ulut
exp$2j2%, j5

x

A4Dt
~41!

~the maximum ofu is at j5j05221/2, or x5x05A2Dt
!x* ). With the passage of time the distribution spreads
proportion toAt ~which is common in diffusion!, and the
Joule heat released~per unit time! in the process,Q, de-
creases in proportion tot23/2.

Similar results can be obtained for

f ~ t !5
1

11t2
, t5

t2tm

Dt
, ~42!

which corresponds to the variation of the magnetic fi
H(0,t) in the cumulation process~without allowance for
losses!. In this case the profile function~38! is
-

e

n

a5
2

Ap
E

0

` exp$2y2%

11Ay221By24
dy,

~43!

A52
2r2t

11t2
, B5

r4

11t2
,

where, in particular,a(0,t)[1. Near the inner surface of th
shell, i.e., whenr5x/A4DDt→0, for a(x,t) we have an
expansion of the form~39! in which

a15Fp2 ~A11t21t!G1/2S 12
2t

A11t2D , ~44!

with

a1~t!55
1.5A2 p/t, t→2`,

Ap/2~12 3
2t1••• !, t→0,

0, t5321/250.577,

2Apt, t→1`.

~448!

Thus, there is a marked difference between the cas
an increasing magnetic field at the boundary and the cas
a decreasing magnetic field at the boundary: in the first c
the calculation of the magnetic field inside the conduct
shell and the ohmic losses can be done in the quasistatio
approximation~21!, while in the second case we must fin
the exact solution of the magnetic-field diffusion equatio
The equation of motion of the shell becomes much m
complicated in the latter case, but there is really no need
use this approach if we are interested solely in the maxim
attainable magnetic fieldHm and not in the shell expansio
stage.

6. CONCLUSION

The following remarks are in order.
~1! We have found that the probability of Lorentz ion

ization of neutral atoms reaches a substantial value when
magnetic field strength is of order of tens of megagauss if
atomic velocity isv;108 cm s21. HerewL changes rapidly
within a narrow range of the parametersH andv ~which is
characteristic of tunneling processes; see, e.g., Ref. 37!. For
negative ions~such as H2 and Li2, wherek!1), the thresh-
old values ofH andv are much smaller. Note that values
the magnetic field strength for which almost total stability
the atom is replaced by ionization in atomic times are
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countered in outer space and can be generated in labor
conditions ~magnetic cumulation and excitons in semico
ductors!.

~2! We have assumed all along that the current densj
and the electric fieldE are related locally,j 5sE , with a
static value of the conductivitys. This is also true in the cas
of a variable field if34

v!S s,
1

t D , d@ l , ~45!

wherel andt and the mean free path and time of conduct
electrons. For a pulsed field~42!, the Fourier spectrum is cu
off at frequenciesv;1/Dt;K1/2v0 /R0;10722108 s21.
Since for metals we haves;1017s21, 1/t5ne2/ms, and l
5vFt ~herevF;108 cm s21 is the velocity corresponding to
the Fermi boundary!, we obtain the estimates 1/t
;101321014s21, l;102621025 cm, and d;cADt/4ps
;0.05 cm. We see that the conditions~45! are met by a large
margin.

~3! In Eqs.~24! and~31! it is assumed thatj̇(t) is nega-
tive, which means these equations can be used only for
compression stage. Calculations of the losses at the ex
sion stage can probably not be done in the quasistatio
approximation.

~4! The energy fluxJ in ~19! consists of two parts:J
5Q1JH , whereQ is the Joule heat released~per unit time!
in the process andJH is the rate of variation of the energy o
the magnetic field contained in the conducting shell:

Q52pRE
0

`

sE 2~x! dx5
1

4
lH 2Rd,

JH52pR
d

dt S 1

16p
H 2d D . ~46!

Interestingly, in the quasistationary approximation,d'const,
Q5JH5J/2 irrespective of the value ofs and the time con-
stantl. With allowance for the curvature of the shell,

Q

J
5

z

2 H K2~z!

K1~z!
2

K1~z!

K0~z!J 5
1

2
1

d

4R
2

11

64S d

RD 2

1•••. ~47!

Thus, the relationJ52Q is a specific feature of planar ge
ometry.

Since the electric field rapidly decays as it gets dee
into the shell, the total magnetic fluxF tot is conserved. How-
ever, the approximationF tot5(pR212pRd)H breaks
down whend;R, and to calculate the variation of the flu
F(t)5pR2H during the entire cumulation process requir
the more precise expression~29!, in which it is not assumed
that d!R.

The authors are grateful to S. I. Blinnikov, A. S. Che
nov, V. S. Ishmennik, and P. V. Sasorov for interesting d
cussions, to V. P. Kra�nov for discussions concerning th
results of the work, and to V. L. Morgunov, S. G. Pozdny
kov, A. V. Sergeev for the help provided in doing the n
merical calculations. This work was made possible by
grant from the Russian Fund for Fundamental Resea
~Grant No. 98-02-17007!.
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APPENDIX

We discuss the properties of the solutions of Eqs.~24!
and~31! and the procedure by which certain integrals can
evaluated.

~a! From Eq.~24! it immediately follows that

j~t!5H 12t1
c2

2K
t21•••, t→0,

jm1a~tm2t!5/31b~tm2t!21•••, t→tm ,
~A1!

wheretm is the stopping point, at whichj̇(tm)50. Here

c25112a, a5a1a2/3K22/3jm
27/3, b5b1K21jm

23 ,
~A2!

where a1535/3352151.248, andb153/8 if a is positive
and b151/2 if a vanishes. Thus, the solutionj(t) has a
weak singularity at pointt5tm , with a/b;a2/3!1. The
discontinuity of the coefficientb1 at a50 is due to the non-
linearity of Eq. ~24! and suggests that the dependence
j(t) on the parametera is significant even whena!1.

Interestingly, Eqs.~24! and ~31! ‘‘limit’’ themselves at
the stopping point: the solutionj(t) is not continued to the
region wheret.tm holds, since this would yield comple
values of the radiusR(t). Note that the skin depth satisfie

d}(2 j̇)21/2→` as t→tm , and the conditiond!d is not
met. Here we come to a region where the ene
dissipation34 varies asQ;l2→0 ~and notQ;l1/2, as ear-
lier!, which, however, has an effect on the behavior ofj(t)
only for values oft that are very close totm . Indeed, the
conditionsd!R andd&d imply that, respectively,

2 j̇j@
1

4
a2 and 2

j̇

j3
*

1

4
a2S R0

d0
D 2

, ~A3!

whereR andd are the radius of the conducting shell and t
shell thickness, anda is the loss coefficient~25!. In deriving
these inequalities we used the relationships

d5
c

A4psl
5

1

2
aR0A2

j

j̇
,

d

R
5

a

2

1

2 j̇j
, d5

d0

j

~A4!

(Rd5R0d0, i.e., the shell material is assumed incompre
ible!. Plugging into ~A3! in the zeroth approximation the
expressionj2(t)5K211(tm2t)2, we find that these con
ditions area violated~for K@1) only near the stopping point
The condition for the applicability of Eq.~24! has the form

tm2t@maxH 1

4
a2,

a2

4K2 S R0

d0
D 2J . ~A5!

If we now takes5531017s21, which is the conductivity of
copper, and assumed0 /R0;0.1, K;1022103, and
a50.0520.1, we find tm2t@102421023. Since tm'1
@for K@1; see Eq.~17!#, the equation of motion~24! can be
used in almost all stages of shell compression.

If we replace~24! with ~31!, the coefficientc2 in Eq.
~A1! changes very little,c25(11a)2. We illustrate the pa-
rameter variations at the stopping point by a typical examp
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at K5103 and a50.1 Eq. ~24! yields jm50.0445 andtm

50.986, while Eq.~31! yields jm50.0469 andtm50.982.
~b! Consider the integral

Jmn5E
0

tm
j2m~2 j̇ !n dt, m.1, n.21. ~A6!

Since a!1 holds, in ~A6! we substitutej(t)'j (0)(t)
5Ajm

2 1(t2tm)2, wherejm'K21/2 andtm'1. In this ap-

proximation we havej̇j52Aj22jm
2 . Replacing integration

with respect tot in ~A6! by integration with respect toj, we
find that ~for K@1)

Jmn5cmnK (m21)/2, cmn5

GS m21

2 DGS n11

2 D
2GS m1n

2 D ~A7!

~however, forK5103 anda*0.1 this asymptotic expressio
is not very exact!. The value ofJmn decreases with increas
ing loss coefficienta, which is due to the correspondin
increase ofjm . For instance, atK51000 numerical calcula
tions yieldJ3/2,1/258.87, 7.96, 7.32, and 6.45 ata50.05, 0.1,
0.15, and 0.25, respectively~for the case of cylindrical ge
ometry!.

* !E-mail: karnak@theor.mephi.msk.su
1!Some of the results discussed in this paper have been announced in R
2!The values ofCk are known from numerical calculations by the Hartree

Fock method and from experiments. An estimate of the values ofCk for
neutral atoms can be made if one uses a simple analytic formula7 that
follows from an effective range expansion. Note that we haveZ51 when
a ~neutral! atom is ionized, andZ5h50 when a negative ion is ionized

3!For example, Ca2 (Ei50.0184 eV andk50.037), Fe2 (Ei50.151 eV and
k50.105), and Sr2 (Ei50.11 eV andk50.090).13

4!We are thankful to S. I. Blinnikov who pointed out this fact to us.
5!The same is true of excited states,n>2.
6!This expression is valid as long aswt!1. In the opposite case it must b

replaced by 12exp$2wt%. See also formula~33!.
7!This approximation has a good accuracy up toz;1. For instance, from

tables of Bessel functions we find thatf 1(1)51.4296, f 1(3)51.1560, and
f 1(10)51.0489, which differ from~30! by 4.9%, 0.9%, and 0.1%, respec
tively.

8!See, e.g., Ref. 35. The Duhamel integral~35! can be transformed into an
expression more convenient for numerical calculations.
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The sudden approximation in energy is used to derive analytic formulas that describe the
anomalous light-induced drift~LID ! of linear molecules absorbing radiation in the rovibrational
transitionnJi –mJf ~n andm are the ground and excited vibrational states, andJa is the
rotational quantum number in the vibrational statea5m,n). It is shown that for all linear
molecules with moderate valuesB&1 cm21 of the rotational constant, anomalous LID
can always by observed under the proper experimental conditions; temperatureT, rotational
quantum numberJi , and type of transition~P or R!. The parameterg5B@Ji(Ji11)2Jf(Jf

11)#nn/2kBT(nm2nn) is used to derive a condition for observing anomalous LID:g;1
(kB is the Boltzmann constant andna is the transport rate of collisions of molecules in the
vibrational statea and buffer particles at moderate molecular velocitiesv! v̄b , where

v̄b is the most probable velocity of the buffer particles!. For nm.nn anomalous LID can be
observed only inP-transitions, while fornm,nn it can be observed only inR-transitions. It is
shown that anomalous LID is possible for all ratiosb5Mb /M of the masses of the buffer
particles (Mb) and of the resonant particles~M! and any absorption-line broadening~Doppler or
homogeneous!. The optimum conditions for observing anomalous LID are realized when
the absorption line is Doppler-broadened in an atmosphere of medium-weight~b;1! and heavy
~b@1! buffer particles. In this case, anomalous LID can be observed in the same transition
within a broad temperature intervalDT;T. If the buffer particles are light~b!1! or if the
broadening of the absorption line is homogeneous, anomalous LID in the same transition
can be observed only within a narrow temperature rangeDT!T. © 1999 American Institute of
Physics.@S1063-7761~99!01005-7#
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1. INTRODUCTION

Light-induced drift ~LID !, predicted by Gel’mukhanov
and Shalagin1 and observed for the first time in experimen
by Antsyginet al.,2 is being actively investigated both theo
retically and experimentally~see, e.g., the article in Ref. 3
the monograph in Ref. 4, the reviews in Refs. 5–8, and
literature cited therein!. The effect consists in the formatio
of a macroscopic flux of absorbing particles that interact w
a traveling light wave and collide with buffer gas particle
The LID effect is due to velocity-selective excitation of th
particles absorbing the light~the Doppler effect! and to a
change in the values of the transport characteristics of
absorbing particles. The magnitude of the LID effect is p
portional to the relative difference of the transport collisi
rates of the collision of resonant particles in the ground a
excited states and buffer particles.

Until fairly recently, all data on LID experiments coul
be described satisfactorily by a LID theory in which th
transport collision rates were velocity independent.4–10 This
theory yielded a dispersion-curve-like~the frequency deriva-
tive of the absorption lineshape! frequency dependence o
the drift velocityuL(V) with one zero where the detuningV
of the radiation frequency vanishes~see curves5 in Fig. 1
below!. In 1992, while studying LID in C2H4 molecules with
Kr acting as a buffer gas, van der Meeret al.11 detected an
9131063-7761/99/88(5)/8/$15.00
e

h
.

e
-

d

unexpectedly large deviation of the frequency dependenc
the drift velocity uL(V) from a dispersionlike curve: an
anomalous spectral profile of LID velocity with three zer
instead of the one zero predicted by the then existing the
Today we have a vast body of data, both experimental11,13–18

and theoretical,12,14,18–24gathered in anomalous-LID studie
It has been found that anomalous LID is entirely due to
dependence of transport collision rates on the velocityv of
the resonant particles, and the anomaly can arise only if
differenceDn(v) of the transport collision rates on the com
bining ~i.e., affected by the radiation! levels changes its sign
as a function ofv.

In view of such specific requirements for the behavior
Dn(v) for anomalous LID to exist, the following questio
arises: is the anomalous LID observed in some molecule
exotic feature of the behavior of the potential represent
the interaction of molecules in combining states and bu
particles, or is there a pattern in the manifestation of anom
lous LID that has yet to be discovered? The theoretical
lution of this problem would be of interest not only to th
physics of the LID phenomenon but also to the physics
intermolecular interactions.

The present paper discusses the problem of anoma
LID for the case of linear molecules in the energy sudd
approximation, which is effective when applied to molecu
© 1999 American Institute of Physics
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FIG. 1. Dimensionless drift velocityu(x) as a
function of the dimensionless frequency detu

ing x5V/kv̄ of the radiation, atj512 in the
cases:~a! b510, y50.01, andg51.7 ~curve1!,
1.3 ~curve 2!, 0.65 ~curve 3!, 0.4 ~curve 4!, 0
~curve 5!, 20.5 ~curve 6!; ~b! b51, y50.01,
and g52.5 ~curve 1!, 1.5 ~curve 2!, 1.1 ~curve
3!, 0.95 ~curve 4!, 0 ~curve 5!; 20.5 ~6! ~c!
b50.1, y50.01, and g51.5 ~curve 1!, 1.41
~curve 2!, 1.34 ~curve 3!, 1.31 ~curve 4!, 0
~curve 5!; and ~d! b51, y510, and g51.29
~curve 1!, 1.288 ~curve 2!, 1.286 ~curve 3!,
1.283~curve4!, 0 ~curve5!.
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with moderate rotational constants. It was found that un
properly selected experimental conditions anomalous L
can always be observed.

2. GENERAL RELATIONSHIPS

We consider the LID effect in the field of a travelin
monochromatic light wave. The interaction between the li
and the molecules in the buffer gas is described by the
lowing transport equations:

d

dt
rm~Jm ,v!5Sm~Jm ,v!1NP~v!dJmJf

,

~1!
d

dt
rn~Jn ,v!5Sn~Jn ,v!2NP~v!dJnJi

.

Herera(Ja ,v) is the population distribution over velocityv
and the rotational levelsJa for the absorbing molecules i
the vibrational statea (a5n is the ground vibrational state
a5m is a vibrational excited state, andJa denotes the set o
rotational quantum numbers characterizing the rotatio
state!, Sa(Ja ,v) is the collision integral reflecting the colli
sions of buffer particles and molecules in the vibration
statea and the rotational stateJa , and N5Nm1Nn is the
concentration of the absorbing molecules, with

Na5(
Ja

E ra~Ja ,v!dv.

The probability P(v) ~per unit time! for a molecule with
fixed velocityv to absorb light is given by the formula

NP~v!5
BI

p
Y~v!@rn~Ji ,v!2rm~Jf ,v!#, ~2!

where
r

t
l-

al

l

Y~v!5
G~v !

G2~v !1~V2k–v!2
,

B5
l2A

4\v

2Jf11

2Ji11
, V5v2vmn , ~3!

I is the light intensity;l, v, andk are the wavelength, fre
quency, and wave vector of the light, which we assume to
in resonance with the rovibrational transitionnJi –mJf ; vmn

is the frequency of thenJi –mJf transition;A is the probabil-
ity of spontaneous emission of light in thenJi –mJf transi-
tion; andG(v) is the homogeneous halfwidth of the absor
tion line on thenJi –mJf transition. In Eqs.~1! we have
neglected radiative relaxation, since it affects rovibratio
transitions only at very low pressures.

For the diagonal collision integral we will use th
velocity-isotropic model of ‘‘arrival’’:

Sa~Ja ,v!52na~v,Ja!ra~Ja ,v!1Sa
(2)~Ja ,v !, ~4!

where the arrival termSa
(2)(Ja ,v) is a function of the abso-

lute value of velocity,v5uvu, andna(v,Ja) has the dimen-
sions and meaning of collision rate. The collisional mod
~4! allows for the dependence of the collision rate on velo
ity and at the same time makes it possible to obtain an a
lytic solution of the problem.

We will now establish the dependence of the collisi
rate na(v,Ja) in Eq. ~4! on the velocity and the rotationa
quantum number. To this end we will examine the intern
friction force Fa due to collisions of molecules in a vibra
tional statea and particles of the buffer gas. On the on
hand, this force is given by the well-known expression
terms of the collision integral,

Fa5M(
Ja

E vSa~Ja ,v!dv, ~5!
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which with allowance for~4! becomes

Fa52M(
Ja

E vra~Ja ,v!na~v,Ja!dv, ~6!

whereM is the mass of a molecule. Comparing this expr
sion with the general expression for the friction force
terms of the transport collision rate~see Refs. 4 and 25!, we
conclude thatna(v,Ja) in ~4! has the meaning of a transpo
collision rate, and its dependence on the characteristics o
elementary scattering act is given by the formula~see Refs. 4
and 25!

na~v,Ja!5
q

v3E0

`

u2expS 2
u21v2

v̄b
2 D F~uv !sa

tr~u,Ja!du,

~7!

where

F~uv !5
2uv

v̄b
2

cosh
2uv

v̄b
2

2 sinh
2uv

v̄b
2

, ~8!

q5
m

M

Nbv̄b

Ap
, m5

MMb

M1Mb
, v̄b5A2kBT

Mb
.

Here Nb and Mb are the buffer particle concentration an
mass,kB is the Boltzmann constant,T is the temperature, an
u is the relative velocity of the colliding particles befo
collision. The quantitysa

tr(u,Ja) has the meaning of the
transport scattering cross section of molecules on the r
tional levelJa in the vibrational statea and is given by the
expression

sa
tr~u,Ja!5(

Ja1

E S 12
u1JaJa1

u
cosu D

3sa~u,u,f;Ja→Ja1!dV,

sa~u,u,f;Ja→Ja1!5
u1JaJa1

u
u f a~u,u,f;Ja→Ja1!u2,

u1JaJa1
5Au22

2D«a~Ja1Ja!

m
, dV5sinu du df.

~9!

Heresa(u,u,f;Ja→Ja1) is the differential scattering cros
section in the channelJa→Ja1, f a(u,u,f;Ja→Ja1) is the
amplitude for scattering through anglesu andf in the chan-
nel Ja→Ja1, where u and f are the polar and azimutha
scattering angles;D«a(Ja1Ja)5«a(Ja1)2«a(Ja) is the
change in rotational energy of the molecules due to inela
transitionsJa→Ja1 in the vibrational statea, «a(Ja) is the
rotational energy of stateJa of vibrational level a, and
uJaJa1

is the value of the relative velocity of the collidin
particles after collision. In deriving formula~7! we assumed
that the buffer particles are structureless and their velo
distribution is Maxwellian.

In the particular case of elastic collisions@here we must
formally set D«a(Ja1Ja) to zero in ~9!#, formula ~7! be-
comes the well-known formula for the transport collisio
rate in elastic scattering.4
-

an

a-

ic

ty

The LID velocity of molecules is given by the formula

uL[
jm1 jn

N
, ja5(

Ja

E vra~Ja ,v!dv, ~10!

where ja is the partial flux of molecules in the vibrationa
state a. In steady-state and spatially homogeneous con
tions, Eqs.~1!, ~4!, and~10! yield an expression for the LID
velocity:

uL5E t i f ~v !vP~v!dv, t i f ~v !5
nn~v,Ji !2nm~v,Jf !

nn~v,Ji !nm~v,Jf !
.

~11!

As noted in the introduction, anomalous LID can occ
only if the difference of transport collision rates,Dn(v)
[nm(v,Jf)2nn(v,Ji) on the combining levels~or equiva-
lently, the factort i f (v)) changes its sign as a function ofv.
Here molecules with both positive and negativet i f (v) con-
tribute to the drift velocityuL , which may cause the fre
quency dependence of the LID velocityuL(V) to differ
greatly from a dispersion-curve-like dependence, includ
the occurrence of additional zeros at certain values ofV.

3. THE ENERGY SUDDEN APPROXIMATION

Let us study how the transport collision ratena(v,Ja) of
the molecules depend on their velocityv and rotational state
Ja . For subsequent analysis it is convenient to transform
integral forna(v,Ja) in ~7! and represent it as a sum of tw
terms,

na~v,Ja!5na
t ~v,Ja!1na

c ~v,Ja!, ~12!

where

na
t ~v,Ja!5

q

v3E0

`

u2 expS 2
u21v2

v̄b
2 D

3F~uv !sa
t ~u,Ja!du, ~13!

na
c ~v,Ja!5

q

v3 (
Ja1

E
0

`

u2 expS 2
u21v2

v̄b
2 D F~uv !

3F12
u1JaJa1

u
Gsa

c ~u;Ja→Ja1!du. ~14!

Here we have introduced the notation

sa
t ~u,Ja!5E ~12cosu!S (

Ja1

sa~u,u,f;Ja→Ja1! DdV,

~15!

sa
c ~u;Ja→Ja1!5E cosu sa~u,u,f;Ja→Ja1!dV.

For subsequent calculations we use the well-known f
mula that relates the differential cross sections of R
transitions in linear molecules when they collide wi
atoms,26–29 which is derived in the energy sudden appro
mation commonly used in the theory of inelastic molecu
collisions:
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sa~u,u,f;Ja→Ja1!5F11
2«a~Ja!

mu2 G ~2Ja111!

3 (
L5uJa2Ja1u

L5Ja1Ja1 S Ja Ja1 L

0 0 0D
2

sa

3S u1
2«a~Ja!

mu
,u,f;0→L D . ~16!

where( a b c
0 0 0) is the Wigner 3j -symbol.30 This formula

is valid if the atom–molecule collision timetcol is less than
the molecular rotation periodt rot ~see Ref. 31!:

tcol

t rot
!1. ~17!

For diatomic molecules this condition~17! becomes32,33

A mD«

MrkBT
!1, ~18!

wherem is the reduced mass of the colliding particles,Mr is
the reduced mass of the atoms comprising the diatomic m
ecule, andD«5uD«a(Ja1Ja)u.

Khare28 derived formula~16! in the energy sudden ap
proximation, i.e., by replacing the rotational energy opera
of the molecule with a constant. This energy sudden appr
mation neglects the dependence of the cross section on
energy in the outgoing channel. The factor
12«a(Ja)/mu2 in ~16! appears by virtue of detaile
balance.28,32The sudden approximation is effective when t
change in the rotational energy is small compared to the t
energy.

Taking into account the orthogonality relation30

(
Ja1

~2Ja111!S Ja Ja1 L

0 0 0D
2

51, ~19!

and combining~15! with ~16!, we obtain

sa
t ~u,Ja!5F11

2«a~Ja!

mu2 G s0a
t S u1

2«a~Ja!

mu D , ~20!

where

s0a
t S u1

2«a~Ja!

mu D5E ~12cosu!F(
L

sa

3S u1
2«a~Ja!

mu
,u,f;0→L D GdV.

~21!

Since in the sudden approximation it is assumed that the
only a small change in rotational energy, Eq.~20! is valid if
«a(Ja)!mu2. To first order in the small parameter

«a~Ja!

kBT
!1, ~22!

Eqs.~13! and ~20! yield
l-

r
i-

the

al

is

na
t ~v,Ja!5n0a

vib~v !1
«a~Ja!

kBT
n1a

vib~v !, ~23!

where

n0a
vib~v !5

q

v3E0

`

u2 expS 2
u21v2

v̄b
2 D F~uv !s0a

t ~u!du, ~24!

n1a
vib~v !5

qū2

v3 E0

`

expS 2
u21v2

v̄b
2 D F~uv !Fs0a

t ~u!

1u
ds0a

t ~u!

du Gdu, ū5A2kBT

m
, ~25!

s0a
t ~u!5E ~12cosu!S (

L
sa~u,u,f;0→L ! DdV. ~26!

The quantitiesn0a
vib(v) and n1a

vib(v) in ~23! have the dimen-
sions of collision rate and depend only on the velocityv and
the vibrational statea. The entire dependence ofna

t (v,Ja)
on the rotational stateJa is in the factor«a(Ja)/kBT. The
quantity s0a

t (u) in ~26! is the total~i.e., the elastic and in-
elastic! transport scattering cross section of a molecule
vibrational levela and in rotational stateJa50.

We now simplify Eq.~14! for na
c (v,Ja). Since the main

contribution to the integral in~14! is provided by velocities
u;ū, in view of condition~22! the termu1JaJa1

@defined in
~9!# in the integrand can be expanded in powers of the sm
quantity D«a(Ja1Ja)/mu2 ~velocities u→0 contributes es-
sentially nothing to the integral!. To first order in the small
parameter

uD«a~Ja1Ja!u
kBT

!1, ~27!

Eq. ~14! yields

na
c ~vJa!5

q

mv2 (
Ja1

D«a~Ja1Ja!E
0

`

expS 2
u21v2

v̄b
2 D

3F~uv !sa
c ~u;Ja→Ja1!du. ~28!

If in the linear approximation we allow for the correctio
term«a(Ja) in ~16!, substituting~16! in ~28! gives excessive
numerical precision. Hence in~28! we must substitute~16!
with «a(Ja)50. We also allow for the fact that for linea
molecules the energy of the rotational levelJa is

«a~Ja!5BaJa~Ja11!, ~29!

whereBa is the rotational constant for vibrational levela.
Next, employing the fact that34,35

(
Ja1

Ja1~Ja111!~2Ja111!S Ja Ja1 L

0 0 0D
2

5Ja~Ja11!1L~L11! ~30!

and, taking~19! into account, from~28! we obtain
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na
c ~v,Ja!5na

c ~v ![
q

mv3 (
L

«a~L !E
0

`

expS 2
u21v2

v̄b
2 D

3F~uv !sa
c ~u;0→L !du. ~31!

It is clear from ~31! that in the linear approximation
na

c (v,Ja) is independent of the initial rotational state of th
molecule,Ja .

Thus, if the conditions~18!, ~22!, and ~27! are met for
the molecules, then to the first approximation the transp
collision ratena(v,Ja) in ~11! is

na~v,Ja!5na
vib~v !1

«a~Ja!

kBT
n1a

vib~v !,

na
vib~v ![v0a

vib~v !1na
c ~v !, ~32!

wherena
vib(v) andn1a

vib(v) depend only on the velocityv and
vibrational statea. The dependence of the transport ra
na(v,Ja) on the initial rotational stateJa is due only to the
factor «a(Ja)/kBT, whose value can be assumed known.

4. THE LIGHT-INDUCED DRIFT VELOCITY

If we allow for ~32!, the factort i f (v) in the expression
~11! for the LID velocity can be written

t i f ~v !5
nn

vib~v !2nm
vib~v !

nn
vib~v !nm

vib~v !

1
«n~Ji !n1n

vib~v !2«m~Jf !n1m
vib~v !

kBTnn
vib~v !nm

vib~v !
. ~33!

Here, in view of condition~22!, we have neglected the term
«a(Ja)n1a

vib(v)/kBT in the denominator, which has no effe
on the possible change of sign oft i f (v) and, therefore, doe
not influence the description of anomalous LID by formu
~11!. In ~33! we can also neglect the difference between
values of the rotational energy«m(J) and «n(J) with the
same value ofJ in different vibrational states, since it is a
most a few percent,36 and allowing for it results in excessiv
accuracy. Since experiments have shown that the rela
difference of the transport collision rates of molecules in
ground and excited vibrational states,unm

vib(v)
2nn

vib(v)u/nn
vib(v), is usually&1% ~see Refs. 8,10 and 13

16!, in ~33! we also neglect the difference betweenn1m
vib(v)

andn1n
vib because it is expected to be of the same order. In

denominator of ~33! we neglect the difference betwee
nm

vib(v) andnn
vib(v) as well, since, in view of what we hav

just said, allowing for it results in excessive accuracy. A
result, from~33! we obtain

t i f ~v !5tvib~v !1t rot~v !, ~34!

where

tvib~v !5
nn

vib~v !2nm
vib~v !

@nn
vib~v !#2

,

t rot~v !5
«~Ji !2«~Jf !

kBT

n1n
vib~v !

@nn
vib~v !#2

. ~35!
rt

e

ve
e

e

a

Here«(J)5BJ(J11), with B the rotational constant. Thus
the factor t i f (v) is a sum of two independent terms, th
vibrational termtvib(v), which depends only on the vibra
tional numbersm and n, and the rotational termt rot(v),
which depends only on the rotational numbersJi andJf .

The behavior of the vibrational termtvib(v) is due to the
nature of the colliding particles and cannot be controlled
the experimenter. As for the rotational termt rot(v), thanks to
the factor @«(Ji)2«(Jf)#/kBT, the sign and value of this
term can easily be controlled by the experimenter by sel
ing the proper temperatureT, the rotational quantum numbe
Ji , and type of transition~P or R!. In P-transitionst rot(v) is
positive and in R-transitions, negative. For instance,
P(Ji)- and R(Ji21)-transitions~i.e., in Ji→Jf5Ji21 and
Ji21→Jf5Ji transitions, respectively! t rot(v) has the same
absolute value but opposite signs:

@t rot~v !#P(Ji )
52@t rot~v !#R(Ji21)5

2BJi

kBT

n1n
vib~v !

@nn
vib~v !#2

. ~36!

The value oft rot(v) is proportional to the ratioJi /T and can
easily be controlled by the experimenter.

Equations~11! and~34! yield an important conclusion: if
nn

vib(v)Þnm
vib(v), the experimenter can always obser

anomalous LID by selecting the proper experimental con
tions ~temperatureT, rotational numberJi , and type of tran-
sition!. Indeed, as noted earlier, anomalous LID is possi
when the sign oft i f (v) changes. Ifnn

vib(v)5nm
vib(v), the

factor t i f (v) is equal tot rot(v) and its sign does not chang
~is independent ofv), so that no anomalous LID can b
observed. But ifnn

vib(v)Þnm
vib(v), the possibility of changing

the sign and value of the rotational termt rot(v) at will en-
sures a controlled choice of the behavior of the factort i f (v)
needed for observing anomalous LID. From general phys
considerations it follows that the collision rates in differe
vibrational states are usually different,nn

vib(v)Þnm
vib(v). This

conclusion is also confirmed by LID experiments involvin
molecules.8,10,13–16Hence by selecting the proper experime
tal conditions we can always observe anomalous LID of l
ear molecules.

Note that a relationship similar to~34! exists for the
relative transport collision ratesDn/n on combining~i.e.,
affected by radiation! levels:

Dn

n
[

nm~v,Jf !2nn~v,Ji !

nn~v,Ji !
5S Dn

n D
vib

1S Dn

n D
rot

, ~37!

where

S Dn

n D
vib

5tvib~v !nn
vib~v !, S Dn

n D
rot

5t rot~v !nn
vib~v !. ~38!

The representation~37! of the quantity factorDn/n ~mea-
sured in LID experiments! as a sum of independent vibra
tional and rotational terms was suggested earlier on qua
tive grounds by Chapovskyet al.13 and has been used t
process the data of LID experiments.13,15,16,37

We also note that, according to~36!, the sum of the LID
velocities forP(Ji)- andR(Ji21)-transitions does not con
tain a rotational component,
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~uL!P(Ji )
1~uL!R(Ji21)52E tvib~v !vP~v!dv, ~39!

while the difference of LID velocities does not contain
vibrational component,

~uL!P(Ji )
2~uL!R(Ji21)52E @t rot~v !#P(Ji )

vP~v!dv. ~40!

To do specific calculations, we will limit ourselves to th
case of low-intensity radiation:

I !
8p2\c~G1kv̄ !

wnil
3

, ~41!

where G is the characteristic~average! value of G(v), v̄
5A2kBT/M is the most probable velocity of the absorb
particles, andwni is the relative population of the levelnJi in
the absence of radiation. If condition~41! is met, in ~2! we
can neglect the excited-level population (rm(Jf ,v)50), and
the velocity distribution of the populations in the groun
state can be assumed to be close to Maxwellian (rn(Ji ,v)
5wniNW(v), whereW(v) is the Maxwell distribution!. Here
from ~2! we find that

P~v!5
BIwni

p
Y~v!W~v!. ~42!

Substituting~42! in ~11! and integrating over the direction
of v, we arrive at

uL[
k

k
uL , uL5

2BIwni

kp3/2 E
0

`

tt i f ~ t ! f ~ t !exp$2t2%dt, ~43!

where

f ~ t !5xc~ t !1
y

2
ln

y21~ t2x!2

y21~ t1x!2
,

c~ t !5arctan
t1x

y
1arctan

t2x

y
, ~44!

y5
G~v !

kv̄
, x5

V

kv̄
, t5

v

v̄
,

and the factort i f (t)[t i f (t v̄)[t i f (v) has been defined in
~34! and ~35!.

5. ANALYSIS OF RESULTS

To calculate the LID velocity by formula~43!, we must
know the dependence oft i f (t) on the dimensionless velocit
t. The collision rates in the expressions~34! and ~35! for
t i f (t) can be calculated by assuming that the total trans
scattering cross section of a molecule,s0a

t , depends on the
relative velocityu in ~26! according to a power law:

s0a
t ~u!5sa~ v̄b!S u

v̄b
D 24/ja

, a5m,n. ~45!

When the scattering is elastic, this dependence of the c
section on the relative velocity corresponds to the power-
interaction potentialU}r 2ja ~Ref. 38!. Since under the con
rt

ss
w

ditions specified by~27! inelastic rotational transitions hav
a small effect on the path of the colliding particles, the to
transport scattering cross section~45! also approximately
corresponds the potentialU}r 2ja.

Inserting~45! into ~24! and ~25! yields

n0a
vib~ t !5naF~aa21; 5

2;2bt2!, ~46!

n1a
vib~ t !5n1aF~aa ; 5

2;2bt2!, ~47!

where

na5n0a
vib~0!5

4

3Ap

m

M
Nbv̄bsa~ v̄b!GS 32

2

ja
D ,

n1a5n1a
vib~0!5

ja24

2~ja21!
~11b!na ,

aa5
2

ja
1

1

2
, b[

Mb

M
~ja.1!, ~48!

F(a;b;x) is Kummer’s confluent hypergeometric functio
and G(x) is the gamma function. The quantityn0a

vib ~t! de-
creases monotonically with increasingt for ja,4 and in-
creases monotonically witht for ja.4. At ja54, n0a

vib ~t! is
constant and independent of velocity. The quantityn1a

vib(t)
monotonically decreases for all values ofja .

To simplify matters, we will examine the case of equ
parametersjm5jn[j in the power-law potentials describin
the interaction of molecules in the ground and excited vib
tional states and buffer particles. This is equivalent to ass
ing that the collision rates~46! and ~47! are similar:

n0m
vib~ t !

v0n
vib~ t !

5const,
n1m

vib~ t !

n1n
vib~ t !

5const ~49!

(nmÞnn andn1mÞn1n). Moreover, in view of the condition
~22!, we can neglectna

c (v) in Eq. ~32! for na
vib , and in cal-

culating t i f (t) in Eq. ~43! for the LID velocity we can as-
sume na

vib(v)'n0a
vib(v). Here it is convenient to write the

expression for the LID velocityuL , obtained by~43!, in the
form

uL5u0u~x!, ~50!

where we have introduced the parameteru0 with dimensions
of velocity,

u05
nn2nm

nnnm

2BIwni

kp3/2
, ~51!

and the dimensionless velocityu(x) as a function of the
dimensionless frequency detuningx of the radiation,

u~x!5E
0

`

tt~ t ! f ~ t ! exp$2t2%dt. ~52!

Here

t~ t !5
12gK~b,t !

F~a21; 5
2;2bt2!

, g5
«~Ji !2«~Jf !

2kBT

nn

nm2nn
,

~53!
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K~b,t !5
~11b!~j24!

j21

F~a; 5
2;2bt2!

F~a21; 5
2;2bt2!

, a5
2

j
1

1

2
.

For jÞ4 the functionK(b,t) is finite and decreases mono
tonically with increasing velocityt. In LID experiments, the
sign and value of the parameterg in ~53! can be specified a
will by selecting the type of transition~P or R!, the value of
the initial rotational numberJi , and the temperatureT. For
positiveg, the factort(t) can change its sign with increasin
t, so that anomalous LID can be observed only ifg is posi-
tive. From this condition it follows that fornm.nn anoma-
lous LID can be observed only inP-transitions, while for
nm,nn it can be observed only inR-transitions.

Under the same conditions@jm5jn and na
vib(v)

'n0a
vib(v)#, the relative difference of the transport collisio

rates~37! is given by the formula

Dn

n
5

nm2nn

nn
@12gK~b,t !#. ~54!

Figures 1 and 2 illustrate the results of numerical cal
lations by formulas~52!–~54!.

Figures 1a–1c depict the dependence of LID velocity
the frequency detuning of the radiation for different ratiosb
of the masses of resonant and buffer particles in the cas
Doppler broadening of the absorption line of molecu
(y50.01!1) and for equal values of the parameterj in the
power-law interaction potentials. Curves2, 3, and4 in these
figures correspond to anomalous LID, with curves2 and 4
marking the approximate limits of plots of anomalous L
and curve3 corresponding to maximum manifestation
anomalous LID~near detuningsx.0 or x,0 the amplitudes
of the minimum and maximum of the drift velocityu(x) are
approximately the same!. Anomalous LID is possible for al
ratios b of the masses of resonant and buffer particles.
heavy buffer particles~b@1!, the interval of values ofg at
which anomalous LID is observed isDg'1 ~curves2 and4
in Fig. 1a!. For medium-weight buffer particles~b;1!, Dg
'0.6 ~curves2 and 4 in Fig. 1b!. Finally, for light buffer
particles ~b!1; see Fig. 1c!, Dg'b!1. When anomalous

FIG. 2. Relative difference of transport collision rates,Dn/n, of molecules
on combining~i.e., affected by radiation! levels as a function of the dimen

sionless velocityt5v/ v̄ of molecules atb51, j512, and different values of
the parameterg: curve1, g52.5; curve2, g51.5; curve3, g51.1; curve4,
g50.95; curve5, g50; and curve6, g520.5.
-

n

of
s

r

LID is at its maximum~curves3 in Figs. 1a–1c!, the maxi-
mum ~or minimum! value of the drift velocityu(x) is almost
completely independent of the parameterb for b*1 and de-
creases in proportion tob in the case of light buffer particles
~b!1!.

Anomalous LID can also be observed when the bro
ening of the absorption line of the molecules is homogene
(y@1; see Fig. 1d!. Figure 1d shows that aty510 the inter-
val of values ofg at which anomalous LID is observed
very narrow,Dg'0.005.

Numerical analysis shows~partially the results of such
analysis are shown in Fig. 1! that anomalous LID can be
observed only forg;1.

The foregoing implies that in Doppler broadening of
absorption line in the case of heavy or medium-weight buf
particles, anomalous LID in the same transition~at fixed val-
ues of the rotational numbersJi and Jf) can be observed
over a broad temperature interval

DT;T
Dg

g
;T, ~55!

while for light buffer particles anomalous LID can be o
served only in a narrow temperature interval

DT;T
Dg

g
;bT!T. ~56!

When the absorption-line broadening is homogeneous,
temperature intervalDT is also extremely narrow. For in
stance, aty510 we haveDT;TDg/g;0.005T.

Figure 2 shows how the relative differenceDn/n in the
transport collision rates depends on the velocity of the m
ecules for the same values of the parametersj, b, andg as in
Fig. 1b. Figures 2 and 1b show that atb51 anomalous LID
~curves2, 3, and4 in Fig. 1b! can be observed only if the
difference of the transport collision rates,Dn(v), on com-
bining levels changes its sign as a function ofv near the
most probable velocityv̄ of the resonant particles.

The values of the parameterj in the power-law interac-
tion potential that are much greater than unity are usu
most suitable for describing realistic interaction potentia
The results of numerical calculations depicted in Figs. 1 a
2 we obtained atj512. Numerical analysis shows that th
conclusions of the present section are valid for any ot
value of j that is much larger than unity, i.e., are weak
sensitive to the details of the interaction potential.

We present an example in which our results will be us
to make estimates. Suppose we have a linear molecule w
rotational constantB50.5 cm21 and suppose that (nm

2nn)/nn51022 ~this parameter can be measured in LID e
periments!. What transition is involved in anomalous LID a
room temperature? Since we havenm.nn , anomalous LID
can be observed only inP(Ji)-transitions ~i.e., in Ji→Jf

5Ji21 transitions!. Then formula~53! for the parameterg
yields «(Ji)2«(Jf)52BJi , and henceg5100BJi /kBT. If
we allow for the condition for observing anomalous LID
g;1, we get Ji;kBT/100B. At T5300 K and B
50.5 cm21 we obtainJi;4, i.e., anomalous LID is observe
in the P(4)-transition.
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6. CONCLUSION

On the basis of the well-known factorization relationsh
for the cross sections ofRT-transitions for linear molecule
in collisions with atoms~a relationship valid within the en
ergy sudden approximation!, we have derived formulas tha
describe anomalous LID of linear molecules. It should
expected that at room temperature these formulas are v
for linear molecules with moderate values of the rotatio
constantB&1 cm21 and for moderate values of the initia
rotational numberJi , since the energy sudden approximati
assumes that the variations in rotational energy are s
compared to the kinetic energy of relative motion of t
colliding particles.

The theory that has been developed in this paper is ba
on the relationship~16! for factorization of cross section
and can be verified in LID experiments involving molecul
with small values of the rotational constant. LID experime
are much less involved that experiments with molecu
beams, and verifying the accuracy and establishing the lim
of formula ~16! in LID experiments would be of interes
from the standpoint of the physics of intermolecular inter
tions.

To date, of all linear molecules only the HF molecu
has been studied in LID experiments.15,16 For this molecule,
the condition~18! for the applicability of the energy sudde
approximation is not met due to the large value of the ro
tion constant,B'21 cm21, so that the formulas derived i
the present paper cannot be used to quantitatively desc
anomalous LID of HF molecules. Nevertheless, by their
periments, van Duijnet al.15,16have confirmed the predictio
of the given theory that fornm.nn anomalous LID can be
observed only inP-transitions; according to Ref. 16, (nm

2nn)/nn51022 for the HF–Ar mixture, and anomalous LID
~with u(x) close in shape to curves3 in Figs. 1a–1c! was
observed by van Duijnet al.15,16 in the P(4)-transition.

If we use the data of Ref. 16@(nm2nn)/nn51022 for
the HF molecule in an argon atmosphere at room temp
ture# to calculate the parameterg by ~53! for the HF mol-
ecule in theP(4)-transition, we getg'40. But according to
the theory,g must be of order unity for anomalous LID t
occur. Formally this means that for the HF molecule t
dependence of the parameterg on Ji is 40 times weaker than
that given by formula~53!. This result can be explained b
the fact that collisional rotational transitions, which dete
mine the Ji-dependence ofg, arise solely because of th
anisotropy~nonsphericity! of the intermolecular interaction
potential. When the condition~17! is not met, the angle
through which the molecule rotates during the collision tim
tcol is not small and the interaction potential is effective
averaged over the angle. As a result, the effective anisotr
of the interaction potential decreases, which in the case o
HF molecule ensures aJi-dependence ofg that is weaker
than the one that follows from~53!.
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Ultrahigh-spatial-resolution photoelectron projection microscopy using femtosecond
lasers
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Ultrahigh spatial resolution of two-photon photoelectron images~as high as 3 nm, which is the
best value that has been achieved to date in photoelectron microscopy with spatial
resolution! is obtained when silicon nanotips are irradiated by the second harmonic of a pulsed
femtosecond Ti : sapphire laser. In addition, the absolute value of the two-photon external
photoeffect coefficient is measured. ©1999 American Institute of Physics.
@S1063-7761~99!01105-1#
-
o

on
-

g
le
re
o
er
o
c

ing
na
e

ap
m

t a
n
to
o
u

an
s

dd
e
le
s.
o
he
m

to
but
e of

it

va-

of
f
c
ce

r.
ith
s a
Be-
for

has
es
ys-
ed
nm

tial

n-
s of

nd

nts
ex-
ve-

ig.
ra-

r

1. INTRODUCTION

In the first experiments,1,2 which were performed com
paratively recently, an improvement in the possibilities
laser photoionization projection microscopy was dem
strated: a spatial resolution of.30 nm was achieved by ir
radiating the tips of needles~with a radius of curvaturer c

.0.521 mm) of single-crystal LiF containing F2 color cen-
ters with continuous radiation from an argon laser, and sin
F2 color centers were detected as light spots in the photoe
tron image of the needle tip. Further progress in this a
should be associated both with increasing the spatial res
tion of the method and with the use of more powerful las
for achieving the external photoeffect, since the intensity
continuous sources is clearly insufficient for obtaining effe
tive photoemission from most samples.

An analysis of the characteristics of presently exist
lasers revealed that the ideal source for observing reso
and nonresonant two-photon photoelectron images is a f
tosecond laser with a high~in the megahertz or higher range!
pulse repetition rate, particularly, the femtosecond Ti : s
phire laser, which has recently drawn wide notice. The fe
tosecond pulses generated by such a laser, even withou
plification, have a mean power of 3–10 mW in the seco
harmonic at a wavelength of 410 nm, which corresponds
photon energyhn53.02 eV. Such powers and energies
single pulses are low enough to avoid the problems enco
tered in strong electric fields, such as optical destruction
melting of the samples. At the same time, the parameter
our laser, viz., a pulse durationt540 fs, a pulse repetition
rate f 582 MHz, spot diameters equal to 0.01– 0.1 mm2, and
a corresponding power, provide an intensityI 510623
3107 W/cm2, which is fully sufficient for obtaining bright
photoelectron images of a broad range of samples. In a
tion, the use of femtosecond lasers can make it possibl
perform experiments on the visualization of single molecu
implanted in a matrix, as was previously discussed in Ref
and 4, since such an approach makes it possible to overc
the difficulties associated with the fairly fast transfer of t
excitation energy of a molecule to the surrounding mediu
9211063-7761/99/88(5)/5/$15.00
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The potential possibility of using femtosecond lasers
achieve ultrahigh temporal resolution is also noteworthy,
a discussion of this subject would be far beyond the scop
this paper.

As for the spatial resolution of projection microscopy,
is determined by the mean kinetic energyE0 of the trans-
verse motion of the electron emitted and the radius of cur
ture r c of the microtip~see below!. The value ofE0 can be
determined as half of the difference between the energy
one photon of laser radiation~or many photons in the case o
a multiphoton photoeffect! and the external photoelectri
work function of the sample being examined. This differen
usually has a value of.1 eV and cannot be much lowe
Thus, it can be presumed that investigating microtips w
significantly smaller radii of curvature can be regarded a
systematic approach to improving the spatial resolution.
low we shall present several estimates, which show that
r c520 nm the spatial resolution can reach values of.3 nm.
Such values are far better than the spatial resolution that
been achieved with ‘‘classical’’ photoelectron microscop
@here we are referring to a microscope equipped with a s
tem of electrostatic or magnetic lenses for forming magnifi
photoelectron images; their spatial resolution is about 40
~Ref. 5!# and approaches the theoretical limit of the spa
resolution of a photoelectron microscope.6

In this paper we report the first experimental impleme
tation of this approach. We obtained photoelectron image
ultrasharp silicon nanotips (r c520 nm) by irradiating them
with the output of a femtosecond Ti : sapphire laser a
achieved a spatial resolution of.3 nm. The possibility of
using this microscope to perform quantitative measureme
of the two-photon external photoeffect for the samples
amined was also analyzed, and its quantum yield at a wa
length of 410 nm for silicon was determined.

2. LASER PHOTOELECTRON MICROSCOPE

A photoelectron projection microscope is shown in F
1. The sample investigated is a sharpened needle with a
dius of curvaturer c , which is tightly held in a special holde
© 1999 American Institute of Physics
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FIG. 1. Diagram of a laser photoelectron microscope equipped w
a femtosecond Ti : sapphire laser:1 — gas admission system;2 —
liquid-nitrogen cooling system;3 — vacuum chamber;4 — elec-
trode; 5 — nanotip examined;6 — microchannel plates and phos
phorescent screen;7 — power supply;8 – chamber with a CCD
matrix; 9 — pumping system;10 — femtosecond Ti : sapphire laser
11 — argon laser;12 — KDP crystal;13 — focusing lens;14 —
Argus-50 data-processing system.
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at a distanceL510 cm from a detector consisting of a m
crochannel plate and a phosphorescent screen~Hamamatsu
Photonics K. K., Japan!. A voltageU0 in the range 0–4 kV
is applied to the sample~the entrance to the microchann
plate is grounded!, and if this voltage is sufficiently high
effective field ~tunneling! emission of electrons from th
needle tip takes place. The radial electric field around the
directs the electrons emitted to the detector, forming a m
nified image of the needle on the screen. The magnifica
K5L/gr c , where g is a numerical factor, which appea
because of the deviation of the geometry of the system f
a simple spherical capacitor and is equal to 1.5–2~see any
monograph on field electron–ion microscopy, for examp
Refs. 7 and 8!. When the photoelectron image of the need
tip, which does not appear upon field emission, is inve
gated, the potential of the needle is reduced to a leve
which the tunneling emission of electrons from the tip
equal to zero, and electrons are emitted exclusively as a
sult of the external photoeffect in the needle material cau
by the second-harmonic output of the Ti : sapphire laser~the
parameters of the laser were indicated in the Introductio!.
As in the case of field emission, the electric field around
tip directs the photoelectrons to the detector, forming a p
toelectron image rather than a field image of the tip with
same magnification.

A more detailed description of a laser photoelectron p
jection microscope can be found in Ref. 1.

The motion of the photoelectrons emitted in the rad
electric field of a projection microscope can easily be cal
lated with consideration of the angular momentum conse
tion law:7,8

pu5mr2u5const5mrcv0 ,

where m is the mass of the electron,v05A2E0 /m is the
initial transverse velocity of the electron,E0 is the initial
energy of the electron, andu is the angle betweenr and the
symmetry axis of the system~Fig. 2!. Omitting several
ip
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simple steps, we can write the following expression for t
diameter of the spot formed in the detector as the image
the emitting point source:

d52Lu54gr cAE0 /eU0. ~1!

The same formula can be used to estimate the spatial r
lution of the microscope. In this case it must be understo
that the mean, rather than the maximum, energy is be use
the calculation. ForE050.75 eV, i.e., half of the difference
between the energy of two photons of the laser radiat
(2hn56.04 eV) and the work function of silicon@4.5 eV
~Ref. 9!#, r 520 nm, andU051 kV, formula ~1! gives d
'3 nm.

We note that this value is close to the theoretical lim
for the resolution of a projection microscope determined
the Heisenberg uncertainty principle.7,8 In fact, according to
~1!, an electron emitted from an area of diameterd0 on the
tip surface will have a transverse velocityv0;h/2md0 and
will create an image in the form of a circle of diamet
gr cAh/med0

2U0 in the detector. The total diameter of th
emitting region will thus equal

d5A~Kd0!212gh2/med0
2U0 . ~2!

FIG. 2. Illustration of the motion of particles in the microscope~not to
scale! and its spatial resolving power.
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After minimization of this diameter as a function ofd0 ,
we obtain the following estimate of the best achievable s
tial resolution:

dlim52~gh2/med0
2U0!1/4. ~3!

Our experimental parameters implydlim'1 nm, i.e., the fun-
damental resolution limit is, in fact, of the same order as
estimate of the spatial resolution~3! for the microscope.

3. EXPERIMENT WITH SILICON TIPS: PHOTOELECTRON
IMAGES AND ANALYSIS

Highly conductive single-crystal silicon microtips we
grown on a~111! surface of a silicon rod measuring 131
3100 mm3 in the Institute of Crystallography of the Russia
Academy of Sciences~Moscow!. The growth surface was
polished and etched in an HF-HNO3 solution. Its dimensions
after preparation for growth were about 0.530.5 mm2. The
microtips grown were first sharpened by wet etching, a

FIG. 3. Emission images of ultrasharp silicon nanotips with a radius
curvature equal to 20 nm: a — laser photoelectron image,U tip51.0 kV, I
.33106 W/cm2, b — field-emission image,U tip51.5 kV.
-

e

d

then they were subjected to repeated temperature-indu
oxidation followed by removal of the oxide by HF. The tip
with a height of 100mm thus prepared had a radius of cu
vature less than 25 nm~the sharpness of the needles w
verified using a high-resolution electron microscope, and
some cases the tips were so sharp that even single si
atoms could be seen on the apex of the needle10!. The growth
techniques and the sharpening procedures are describe
greater detail in Ref. 10.

The laser photoelectron image of an ultrasharp silicon
is shown in Fig. 3a. The tip potentialU tip was insufficient for
field emission from a nanotip, and thus the photocurr
scarcely depended on the tip potential and exhibited a q
dratic dependence on the laser intensity~Fig. 4!. No photo-
current was observed with irradiation by pulses of the fi
harmonic of the femtosecond Ti : sapphire laser~the wave-
length was 820 nm, and the photon energy was 1.56 eV! up
to an intensity of order 109 W/cm2.

These experimental observations unequivocally indic
that the photoelectron images of the needles are produce
the two-photon photoemission of silicon subjected to fem
second laser pulses with a photon energy of 3.02 eV, ra
than, for example, by the laser-induced field emission of s
con, since in the latter case the dependence of the photo
rent on the tip potential would be much sharper than a q
dratic dependence~such data were presented in, for examp
Ref. 11!. This conclusion is fully consistent with the know
data on the work function of siliconW54.5 eV ~Ref. 9!, as
well as with the previous studies of the linear and nonlin
external photoeffect in silicon~see, for example, Refs. 1
and 13 and the references cited therein!.

The image of the silicon tip itself obtained as a result
field emission at a higher tip potential without laser irrad
tion is shown in Fig. 3b. Neither image exhibits a well d
veloped structure, and this is characteristic of all the silic
tips examined. We attribute this absence of a clear struc
to the amorphous character of the tip surface. Moreover
comparison to the case of a well developed surface cry
structure, the local variations in the work function are mu
smaller, and the field electron~field ion! images are not so
clearly structured.7,8 Such an assumption is consistent wi

f

FIG. 4. Photoelectric currentNph ~integrated over the entire image! as a
function of the intensityI of the second harmonic of the Ti : sapphire las
irradiating the silicon tip.
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the absence of high-quality~high-resolution! images of these
ultrasharp silicon needles in the field ion microscope~many
attempts were made to observe them!. Thorough thermal an-
nealing and a procedure of field evaporation in an ultrah
vacuum are needed to obtain silicon tips with a clearly
pressed crystal structure.8,14

At the same time, we observed a distinct difference
tween the laser photoelectron image and the image obta
using field emission for one of the silicon tips examined~Fig.
3!. The photoelectron image contains a bright spot, which
not observed in the field-emission image. Taking into
count the magnification of the microscope in this case,
can conclude that the diameter of the object observed is
than 3 nm. We assume that this spot is caused by the p
ence of a strongly absorbing defect~or several such defects!
near the surface of the silicon tip~the photoelectron escap
depth for silicon has been estimated12 as 1.2 nm!. We are
referring to impurities which can be photoionized by a on
or multiphoton mechanism under the action of radiation w
a wavelength of 410 nm more efficiently than pure impuri
free silicon. The photoionization of such impurities can le
to a local~near an impurity! significant increase in the pho
tocurrent from a silicon tip and thus to the appearance o
additional bright spot on the photoelectron images. The p
sibility of observing single light-absorbing centers using
ser photoelectron projection microscopy has already b
demonstrated for LiF:F2 crystals, where single defects in th
LiF lattice were observed on the photoelectron images of
as bright spots having diameters specified by the spatia
solving power of the microscope.1,2

Utilizing the possibilities of our recording system
~Argus-50!, we also measured the local dependence of
photocurrent on the irradiation intensity for the bright pho
induced spot in Fig. 3a. A quadratic dependence ofNph(I )
was observed, and a similar dependence was observed fo
total current~Fig. 4!.

Various impurities on a tip surface can be manifested
the field-emission image in the form of bright spots, whi
are associated with the resonant tunneling of electr
through unoccupied impurity energy levels~see, for ex-
ample, Refs. 15 and 16 and the references cited therein!. This
did not occur in our case, most probably because the im
rity ~defect! was located somewhere in deeper layers of
tip, rather than directly on the surface. In this case suc
center is invisible to field emission, but is visible to the e
ternal photoelectric effect.

Many different types of impurities and defects a
known for silicon~see, for example, Refs. 17 and 18 and t
references cited therein!, but at present we do not have su
ficient information to link the bright spot observed to a sp
cific type of defect.

4. DETERMINATION OF THE ABSOLUTE VALUE OF THE
EXTERNAL TWO-PHOTON PHOTOEFFECT COEFFICIENT

In this section we would like to focus attention on th
fact that the method under consideration also makes it p
sible to determine the absolute value of the two-pho
photoeffect coefficientb2 for the materials studied. We de
h
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fine b2 as the ratio of the photoelectron flux associated w
two-photon photoemissionNph

pulsed @photoelectrons/cm2•s] to
the pulsed light fluxP @photons/cm2

•s]: Nph
pulsed5b2P2. In

fact, the areaS of the region from which the photoelectron
are collected is specified by the geometry of the microsc
~the distance between the tip and the detectorL510 cm, and
the working region of the microchannel plane has a diame
a532 mm) and can easily be calculated:

S5~jp/4!~garc /L !2.0.3r c
2 .

This relation clearly reflects the fact that the diameter of t
region is equal to the diametera of the working region of the
microchannel plate divided byK. The coefficientj is close to
unity and takes into account that the tip surface is he
spherical, rather than flat~a simple calculation based on e
ementary geometry givesj.1.03 for our experimental con
ditions, so that it can be neglected!, and the spatial variations
of K can be neglected.7,8 Although the dimensions of the
emitting region are small, they are usually much greater t
the typical values of the photoelectron escape depthl esc for
the materials studied@the latter usually lies between 0.1–1
nm ~Ref. 6!; for example, for siliconl esc51.2 nm~Ref. 12!#.
For this reason, our calculations can be compared with
results obtained by classical experimental methods base
the irradiation of flat surfaces by a focused laser beam~see,
for example, Refs. 13,19, and 20 and the references c
therein!.

The intensity of the laser radiationI can also easily be
measured to a high accuracy, since strong focusing is
employed in the experiments described. In a photoelectr
counting mode with a microchannel plate having 100% e
ciency ~a coefficient smaller than unity can be introduc
where necessary! the total number of photoelectrons per se
ond can easily be measured:

Nph5b2P2S ft5b2I 0
2S/~hn!2f t. ~4!

For simplicity, here we introduced the mean intensity of t
laser radiationI 0 @W/cm2], which can be measured directl
by experimental means:P5I 0 /hn f t. Thus, whenNph is
measured, we can easily calculateb2 . For our experimental
conditions

b25Nph~hn!2f t/I 0
2S57.65310243Nph/I 0

2S. ~5!

Using formula ~5! we determined the external two-photo
photoeffect coefficient for silicon under the action of lig
with a wavelength of 410 nm~after averaging!: b251.5
310232 cm2 s. This value corresponds to the well-know
value of the analogous coefficient for a wavelength of 3
nm: b252.5310232 cm2 s ~Ref. 13!.

Our measured value ofb2 lies in the same range as th
other known values of the two-photon photoeffect coefficie
for semiconductors and insulators.13,19,20 This means that
bright photoelectron images can also be recorded for th
materials using a femtosecond Ti : sapphire laser and th
photoelectron microscope equipped with such a laser can
come a universal tool suitable for studying virtually an
metal, semiconductor, or insulator. Our approach has an
ditional advantage over the other classical methods for m
suring the external photoeffect, since we measure not o
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the averaged value ofb2 , but also its local values~with a
spatial resolution as high as 3 nm!. Note that we have ne
glected the reflected light from the surface studied and
variation of the angle of the light sphere in the calculation
b2 , but such neglect is typical of all the methods used
measure the external two-photon photoeffect coefficient.

5. CONCLUSIONS

Thus, the data presented convincingly demonstrate
broad possibilities discovered in using femtosecond las
with a megahertz pulse repetition rate in laser photoelec
projection microscopy: this makes it possible not only
obtain images with ultrahigh spatial resolution for an exte
sive list of samples, but also to perform exact quantitat
measurements of the external photoeffect. In addition,
best spatial resolution of a photoelectron microscope to d
~3 nm! has been achieved, which is close to the theoret
limit.

Such investigations will undoubtedly be useful for an
lyzing nanostructures in materials and for measuring the
cal values of the work function, defect densities, etc. W
believe that two-photon femtosecond laser projection
croscopy can also be used for the direct detection of biom
ecules in specially prepared matrices~such as paraffins o
their analogs!, as was briefly mentioned in the Introductio
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Microwave generation using a superluminal source
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The power produced by existing sources of microwave radiation falls off with decreasing
wavelength. To solve this problem a new concept is proposed for generating microwave radiation,
based on the use of a superluminal source formed when electrons are emitted into vacuum
from a medium and the emission front propagates along the surface with a speed greater than that
of light. Such generators are shown to have a number of completely unique properties: they
radiate extremely short pulses~as short as picoseconds!; their power exceeds that of existing
sources by orders of magnitude; and unlike existing sources, it increases as the wavelength
is reduced. ©1999 American Institute of Physics.@S1063-7761~99!01205-6#
ve
e

st
th
a

e
in
th
th
t

gh
s

tl
r,
a
f

di

n

i
di
tte
th
ty

ons
that
ies
ust

ves
ting
n be
ith
is
as

in a
ac-

e
lly

ia-
by
pi-

inal
e in-

t of
uilt

er-
tical
tic
n-

l if

a

1. INTRODUCTION

The dropoff in power with decreasing wavelength~pulse
duration! is an inherent aspect of existing microwa
technology.1–4 To be sure, the power output from microwav
generators is ever-increasing,

but so is the level of difficulty of the problems that mu
be overcome in order to achieve the desired result. In
meantime, the wavelength dependence of the power rem
unchanged.

To solve this problem we propose a new design conc
for microwave generation, based on a type of superlum
source, namely, one created by electron emission from
interface between vacuum and a material medium when
emission front propagates along the surface faster than
speed of light,c ~Refs. 5 and 6!. In this case the vacuum
propagation conditions combine beneficially with the hi
current densities emitted by the solid surface, and there i
problem of extracting the radiation.

Any superluminal source produces a coherent tigh
collimated beam.5–8 In addition to everything else, howeve
a superluminal source resulting from emission can also h
a very short pulse lengthT0, since in this case the duration o
the radiation pulse is determined by the densityne of the
emitted electrons:7,9,10

T0;
2p

vpe
;

1024

Ane

, vpe5A4pe2ne

me
. ~1!

Hereme is the electron mass andvpe is the electron plasma
frequency

The electron density increases as a function of the ra
tion intensity and can be greater than or of order 1012cm23.
Consequently the microwave pulse length can be less tha
of order 10210s.

The amplitude of the radiated electromagnetic field
proportional to the first or second time derivative of the
pole moment surface density. But as is well known, the la
depends only on the energy of the electrons driven out of
surface,P0}«. It is therefore unsurprising that the intensi
9261063-7761/99/88(5)/10/$15.00
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and total energy of the output radiation increase as functi
of the energy of the emitted electrons. Calculations show
in order to obtain electromagnetic radiation with energ
and intensities that are interesting, the emitted electrons m
have energies of at least tens of keV. If we restrict oursel
to sources of electromagnetic radiation suitable for crea
electron emission such as optical lasers, this problem ca
solved by combining the process of electron production w
the formation of a radiating dipole layer. The laser light
used only to drive off electrons with as small an energy
possible; the electrons making up the radiating layer atta
final energy of hundreds or thousands of keV from the
celeration they undergo in the external electric field.

It follows that an element of a device radiating in th
microwave range typically has the form shown schematica
in Fig. 1.

Using a superluminal source of electromagnetic rad
tion makes it possible to raise the radiation power output
orders of magnitude and shorten the pulse length to the
cosecond range. The power output from a superlum
source rises as the wavelength decreases and can b
creased by simply scaling up the device.11–13 A full-scale
device with a large radiated energy can be constructed ou
small ‘‘elementary’’ sources in the same way a house is b
out of bricks.

The purpose of the present work is to study the prop
ties of such an elementary source, develop the theore
groundwork, and outline a program for building a systema
theoretical and computational foundation for the new co
cept and its hardware implementation.

2. SIMPLE SUPERLUMINAL SOURCES

Generally speaking, sources are called superlumina
they travel faster than the phase velocity of light,

v.vph5c/n,

where n is the index of refraction in the medium. It is
© 1999 American Institute of Physics
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FIG. 1. Elementary microwave source.
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familiar fact that such sources can exist in media w
n.1. It is much less well known that they can also exist
a vacuum.8

Below we will consider two very simple superlumin
sources for which solutions exist in closed form. Such so
tions help in understanding the nature of the problem and
implications of various approximations.

Throughout what follows we assumeTvpe.1, whereT
is the pulse length of the ionizing radiation.

2.1. Superluminal source in free space

The simplest superluminal source is a current pu
propagating faster than light along a conducting surfa
Such a current pulse arises, e.g., when an ionizing p
wave illuminates a conducting planar surface~Fig. 2!.6,7,9

The spatial current distribution of the emitted electrons c
ates an antenna near the surface excited in phase so th
radiated electromagnetic wave propagates in the direc
corresponding to specular reflection of the ionizing radiati

We identify thex-y plane with an infinite planar surfac
along which a superluminal current pulse

j z5 j z~z,t2x/v !, v.c,

is propagating, composed of electrons emitted from the
face. The Maxwell equations for the nonzero component
the electromagnetic field take the form
-
e

e
e.
e

-
the
n
.

r-
of

1

c

]Ex

]t
52

]Hy

]z
,

1

c

]Ez

]t
52

4p

c
j z2

]Hy

]x
, ~2!

1

c

]Hy

]t
5

]Ex

]x
2

]Ex

]z
,

together with the boundary conditions

Ex5Ez5Hyu t2x/v5050, Exuz5050, ~3!

We specify that in the limitz→` the wave is outgoing.
Since the currentj z ~which is the only thing responsible

for the presence of a field! and the boundary conditions de
pend onx andt only through the combinationt2x/v, all the
other quantities have the same dependence onx and t. This
enables us to reduce the dimensionality of Eqs.~2! by going
from the independent variablest, x, andz to t5t2x/v andz.
In terms of these variable we obtain the following equati
for Ex :

]2Ex

]z2
2

1

c2 S 12
c2

v2D ]2Ex

]t2
5

4p

v
] j z

]z
. ~4!

As may easily be verified by substitution, the solution
Eqs.~3! and ~4! can be written in the form
y a
FIG. 2. Schematic of electromagnetic pulse generation b
superluminal current source.
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Ex~t,z!5
2p

v H E
0

z

dz1 j zS t2
z2z1

c
A12

c2

v2
, z1D

1E
0

`

dz1 j zS t2
z1z1

c
A12

c2

v2
, z1D

2E
z

`

dz1 j zS t1
z2z1

c
A12

c2

v2
,z1D J . ~5!

If the current source is localized in some intervalDz,
then forz.Dz

Ex~t,z!5
2p

v H E
0

`

dz1 j zS t2
z2z1

c
A12

c2

v2
, z1D

1E
0

`

dz1 j zS t2
z1z1

c
A12

c2

v2
, z1D J . ~6!

If in addition we have

Dz

c
A12

c2

v2
,Tp , ~7!

whereTp is the time scale on which the current varies, th

Ex~t,z!.
4p

v E
0

`

dz1 j zS t2
z

c
A12

c2

v2
, z1D . ~8!

It is obvious thatDz; v̄Tp , wherev̄ is the average velocity
of the emitted electrons. Since we havev,c, the inequality
~7! always holds.

The integral

2eE
0

`

dz1z1ne~ t,z1!

is nothing other than the surface density of the dipole m
ment. Then

Ṗ[
dP

dt
52eE

0

`

dz1z1

]ne

]t
52E

0

`

dz1z1

] j z

]z1

5E
0

`

dz1 j z~ t,z1!. ~9!

Hence returning to~8! we have

Ex~t,z!.
4p

v
ṖS t2

z

c
A12

c2

v2 D
5 ṖS t2

x

v
2

z

c
A12

c2

v2 D . ~10!

Correspondingly,

Hy5
4p

Av22c2
ṖS t2

x

v
2

z

c
A12

c2

v2 D . ~11!

Thus, the radiated electromagnetic wave propagate
the direction corresponding to specular reflection of the in
dent radiation~Fig. 2!:
n

-

in
i-

cosa5
c

v
, a5

p

2
2c, a5u. ~12!

The solution given above shows that at sufficiently lar
distances (z.Dz) the radiation field depends only on th
surface density of the dipole moment, or rather, on its fi
derivative with respect to time. To find this quantity it
necessary to solve the problem of the formation of the e
tron boundary layer which arises in the course of elect
emission from the surface. It turns out that at sufficien
large anglesu the radiated fieldEw drops out of the problem

It is quite clear that the radiated fieldEw can be ne-
glected when it is small compared with the space-cha
field Es-c,

Ew,Es-c.

In order of magnitude,

Ew;
«

| tanu
, Es-c;

«

lD
.

Here we have written«5mev̄
2/2 for the average energy o

the emitted electrons and set|5cTp and l5 v̄Tp . Physi-
cally, 2p| is the characteristic wavelength of the radiati
andlD is the electron Debye radius. Consequently, if

cosu,
1

A11 v̄2/c2
,

it follows that the radiation field can be disregarded in t
calculation of the surface density of the dipole moment.

But this is by no means the only simplification. In th
vast majority of cases of practical interest we can rest
ourselves to solving a one-dimensional problem in the v
ablesz andt when we calculate the electron dipole layer.

Thus, analysis of the above exact solution allows us
draw the following conclusions:

1. Only the surface distribution of the first time deriv
tive of the dipole moment surface density is needed in or
to calculate the radiative properties of a superluminal sou
and the calculation may be done using an electrodyna
code with prescribed sources.

2. The time dependence of the formation of the elect
boundary layer can be studied via a one-dimensional
proach.

3. For sufficiently largeu the radiation field can be ne
glected and only one of the three Maxwell equations need
solved in order to get the polarization fieldEz .

As already noted, the emitted electrons all radiate coh
ently. Consequently, at sufficiently large distancesR ~i.e., in
the far field! the illuminated surface will radiate in the direc
tion of propagation of the electromagnetic pulse like a po
dipole with moment equal to the sum of the dipole mome
due to the individual electrons. It follows immediately tha

Ew;Hw;
P̈S

c2R
;

PS

c2Tp
2R

. ~13!
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FIG. 3. Schematic of microwave generator based
superluminal source in a waveguide.
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Here P̈;P/Tp
2 is the second time derivative of the dipo

moment surface density,P5«/2pe, S is the surface area
ande is the electron charge.

From~13! it is easy to estimate the radiated powerQ and
energyU:

Q;231012~g21!2
S

|2
W, ~14!

U;70~g21!2
S

|
J, ~15!

where 2p|5cT0 , g511«/mec
2, me is the electron mass

@S#5m2, and @|#5cm. For S50.1 m2, |50.1 cm, andg
2150.7, Eqs. ~14! and ~15! yields Q;1013W and U
;350 J.

2.2. Superluminal source in a waveguide

Another interesting and simple example of a superlu
nal source is an electron current pulse propagating supe
minally along one of the surfaces of a planar waveguid13

~Fig. 3!.
As is well known, the amplitude of the radiation fie

adjacent to the radiating surface is proportional to the fi
derivative with respect to time of the dipole moment surfa
density~cf. Eqs. 10 and 11!. For example, in the case of
slab superluminal source we have

Hw5
4p

c

Ṗ

tana
, Ewz5

4p

c

cos2 a

sina
Ṗ. ~16!

If the dipole moment surface density oscillates at so
frequencyv0 equal to an integral multiple of an eigenfre
quency of the waveguide,

v05
pc

a sina
k, k51,2, . . . , ~17!

then conditions obtain under which the radiated field can
enhanced by a large factor. It is readily seen that the ach
able amplification lengthL is determined in principle by the
durationTos of the dipole moment oscillations:
i-
lu-

t
e

e

e
v-

L5cTos

cosa

sin2 a
. ~18!

The conditions under which space charge~and hence the
dipole moment! builds up undergo a change, however, sin
the field of the electromagnetic wave grows during the a
plification process. Relation~18! is therefore valid, strictly
speaking, only when the field of the electromagnetic wave
smaller than the field of the space charge.

When thez-component of the electric fieldEwz of the
wave becomes of order the space-charge fieldEs-c,

Ewz;Es-c;4penelD>
2«

elD
, ~19!

its influence on the formation of the dipole layer can
longer be disregarded.

Deceleration of the emitted electrons in the wave fie
both reduces the dipole moment surface density and
creases the oscillation frequency, and so violates condi
~17!. The linear stage of the amplification process is sup
seded by the nonlinear stage.

All these estimates are made within the restrictions
the linear approach. Moreover, it should be noted that o
the caseEwz.Ewx ~cosa;1! is being treated. This mean
that it is possible to disregard the presence of
x-component of the wave field and thus avoid unnecess
complications.

The conditionEwz<Es-c yields a bound on the growth
length:

L

l
<

4

sina

g

Ag221
, l52p|. ~20!

At the output end of a waveguide of lengthL the wave field
is amplified by a factorN, where

N5
L tana

2a
. ~21!

Accordingly, the energy flux density is amplified by
factor N2:
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Jx5
4p

c

cos3a

sin2a
Ṗ2N2. ~22!

The energy flux per unit length of the transverse cross s
tion of the waveguide grows by the same factor:

E dzJx;
2p

c

cos3a

sin2a
Ṗ2N2a. ~23!

Using these results we can show that if radiation is in
dent with powerQ and energyU per unit length of the trans
verse cross section, then

Q;
p

4
sina cosa

me
2c5

e2

~g21!2

l S L

l D 2

;23109
~g21!2

l S L

l D 2

W cm21, ~24!

U;
p

6
sina cosa

me
2c4

e2
~g21!2S L

l D 2

;4.831022~g21!2S L

l D 3

J cm21.

For l50.1 cm, g2150.25, and L/l510 we have Q
;1011W cm21 andU;3 J cm21.

One can check these estimates by looking at an ana
cal solution of the problem. Suppose a current pulse w
current densityj z5 j z(t), t5t2x/v, is propagating in thex
direction along an interior surface (z50; cf. Fig. 3! of a
planar metal waveguide of widtha. The electromagnetic
wave will be described by Eqs.~2! with the following initial
and boundary conditions:

Ex5Ez5Hyut5050, Exuz505Exuz5a50. ~25!

This problem has an analytical solution, which can
written in the dipole approximation in the form

Hy~z,t!→z.ld

4p

Av22c2 (
n50

` S ṖS t2
2na1z

c
sina D

1 ṖS t2
2~n11!a2z

c
sina D D , ~26!

Ez~z,t!→z.ld
2

c

v
Hy .

From these expressions it follows that the electrom
netic wave will be amplified if the oscillation frequency o
the dipole moment surface density is close to a wavegu
eigenfrequency given by~17!. If relations~17! and~20! hold
for the lengthL of the waveguide, then on exiting from th
waveguide the electromagnetic wave will have the followi
properties:

Hy'NH0 ,

H05
4p

c tana S ṖS t2
z

c
sina D1 ṖS t2

2a2z

c
sina D D ,

Ex'NE0 ,
c-

-

ti-
h

e

-

e

E05
4p

c
sinaS ṖS t2

z

c
sina D2 ṖS t2

2a2z

c
sina D D ,

~27!

Jx5
c

4p
HyEz'J0N2, J05

c

4p
H0

2 sina.

Here N5@(L/2a)tana#, where@ # signifies that the integra
part of the enclosed number is taken. Expressions~27! are in
complete agreement with the estimates made earlier.

Thus, superluminal sources of radiation open new,
tally unique prospects for generating high-power mic
waves. The estimates~14!, ~15!, and~24! show that superlu-
minal sources can generate short high-power pulses
microwaves. The power and energy of these pulses grow
the characteristic wavelength falls off.

2.3. Estimate of the properties of a radiating element

A radiating element~see Fig. 1! consists of a diode with
a cathode made from a photemissive material and an
mesh anode. The electrons expelled by the incident light
accelerated by the electric field between the electrodes. A
passing through the mesh they form a radiating dipole la
in the space above the mesh. Generally speaking, the a
eration process alters the space–time distribution of the
rent density, so the time dependence of the current at
anode and at the cathode can differ in functional form. If t
gap between the electrodes is much smaller than the siz
the electrodes themselves, then when a superluminal p
develops on the cathode the pulse of accelerated electro
the anode will also be superluminal. Hence a synchronou
radiating dipole layer forms above the mesh too. A dio
with charge distributed in this manner is also a superlumi
source of electromagnetic radiation and therefore will sh
all the properties of such sources. By varying the parame
of the radiating element~diode! and choosing different light
sources and power inputs to the diode we can obtain a b
range of devices producing electromagnetic pulses in the
crowave range.

Let us consider a planar diode with a gapLd between
electrodes charged to a potentialw0, where ew0 /mc25g
21. The discharge of the diode is intiated by a planar flux
radiation obliquely incident on the cathode through the m
anode with intensity

q5qtt. ~28!

Photons of the incident radiation expel electrons fro
the surface of the cathode, forming a pulse with current d
sity

j e5 j tt, j t5
eY

«k
qt , ~29!

where«k is the energy of a photon of the incident radiatio
andY @electrons per photon# is the yield.

Let Dt be the time taken by an electron to traverse
interelectrode gap,

Dt5
Ld

c
Ag11

g21
. ~30!
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It is clear that if this time satisfies

UdDt

dt U!1, ~31!

then the current density is conserved and the current den
at the anode must equal that at the cathode. In this case
current density in the space above the mesh is also give
Eq. ~29!, and we can estimate the characteristic timeTp for
the formation of the dipole layer, which is obviously relat
to the electron plasma frequency by

vpeTp51, ~32!

and the characteristic wavelength of the broadband elec
magnetic pulse radiated by the layer,|5cTp . From ~32! it
follows that

Tp
225

4pe2ne

meg
5

4pe2 j tTp

mecAg221
~33!

and hence

|5S mec
4

4pe

Ag221

j t
D 1/3

. ~34!

In the diode discharge process the potential across
electrodes varies, and the time of flight across the gap va
in consequence. If we takeg to be time-dependent accordin
to g5ew/mec

211, wherew5ELd andE is the electric field
in in the gap, then from~30! it follows that

dDt

dt
52

Ld

c

1

~g21!Ag221

dg

dt
.

Since

dE

dt
524p j e ,

we finally obtain

j e!
1

4p

mec
3

e

g21

Ld
2

Ag221 , ~35!

and hence

j e!
1

4p

mec
4

e|

g21

Ld
2

Ag221 . ~36!

After substituting for| we get from~36!

j e!
1

4p

mec
4

e|

~g21!2

Ld
2

Ag11 . ~37!

In what follows we will not consider the caseg@1, since
presumably the higher the accelerating voltage the gre
the difficulties in producing and maintaining this potenti
anda fortiori in building a workable design for the radiatin
element as a whole.

If we assume that the value ofj t is one-eighth of the
upper limit imposed by the inequality~37!, then the radiation
produced in this case will have a characteristic waveleng
ity
the
by

o-

he
es

ter
,

|.
2Ld

Ag21
. ~38!

Since the wavelength scales as|} j t
21/3, letting the current

density j t assume its maximum value reduces| by a factor
of 2:

| lim5
Ld

Ag21
. ~39!

We can estimate the electromagnetic field this radia
produces in the wave zone~the far field! by making use of
the retarded potential. The easiest part is finding the m
netic field:

H5
1

c2R
E dv r3

] j

]t
, H;

SP̈

c2R
. ~40!

Here

P̈5
mec

2

2peTp
2 ~g21!

is the second derivative with respect to time of the dip
moment surface density,S is the surface area of the radiato
andR is the distance from the radiator to the point of obs
vation.

By using ~40! we can obviously get the same values
before for the properties of the radiation, e.g., intensity of
microwaves:

J5
c

4p
H2;1.831011

S2

R2

~g21!2

|4
W cm22; ~41!

energy density:

V5JTp;5.9
S2

R2

~g21!2

|3
J cm22; ~42!

divergence~diffraction limit!:

qR5
2|

D
, ~43!

whereD is the length scale of the radiator.
Figure 4 displays a plot of the angular dependence of

FIG. 4. Angular distribution of electromagnetic radiation from a square s
radiator.
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radiated power relative to the direction of specular reflect
of the laser light for a square slab radiator with a dipo
moment whose second time derivative has the functio
form

P̈~t!5
d

dt
@t2exp~2t!#, ~44!

which is typical for a current with a linear time dependen
From the plot it is clear that essentially all the energy
concentrated within a cone with opening angle 3qR .

The energy stored in the gap between the electrode
approximately equal to

Wa'116
~g21!2

Ld
SJ. ~45!

In the formulas given above the units are@R#5m, @S#5m2

and @L#5@|#5cm.
The requirement on the intensity of the light source c

be found by substituting the expression for the current d
sity in Eqs.~28! and ~29!:

q~ t5Tp!5
1

16p

mec
3

e2

«k

Y

g21

Ld
2

Ag221 , ~46!

from which it follows that

q'3.43102
«k

Y

g21

Ld
2

Ag221 W cm22. ~47!

When j t assumes its limiting value given by Eq.~37!, q
increases by a factor of 4:

qlim'4q. ~48!

If we take g51.5, L50.1 cm, andS50.02 m2, then
these formulas show that microwave radiation is genera
with wavelength|'0.28 cm, divergenceqR;431022 rad,
total energy output'1.3 J, and total power 1.431011W. The
energy stored in the gap between the electrodes is 5.8 J
light intensity is;23105 W cm22 («k'2 eV) and the yield
is Y'0.2.

FIG. 5. Current density as a function of distance from the emission sur
at various times.
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3. RESULTS OF NUMERICAL MODELING

It is evident that the problems that must be solved
connection with radiation from superluminal sources ma
up of radiating elements constructed as shown in Fig. 1
be broken down into three categories:

1. Problems related to the study of the electromagn
radiation produced by the superluminal source. In th
problems the properties of the electron layer near the sur
~above the mesh! are assumed to be given. These proble
are purely electrodynamic, with sources prescribed.

2. Problems related to the properties of the electron la
near the surface~above the mesh!.

3. ‘‘Systems’’ problems, i.e., problems in which the r
diation processes are considered together with the deve
ment of the electron spatial and energy distributions.

For the vast majority of problems a two-dimension
code suffices. Hence the set of programs developed for
studying superluminal sources numerically includes one-
two- dimensional codes, both purely electrodynamic co
that only solve Maxwell’s equations and unified codes t
solve Maxwell equations for the electromagnetic fields
gether with the Vlasov equation for the electrons,

Numerical solutions were obtained for the followin
cases:

a! An infinite plane, using a one-dimensional code
solve the combined Maxwell–Vlasov system of equatio
~Figs. 5–7!.

b! An infinite conducting strip of widthD550 cm, using
a three-dimensional electrodynamic code with specifi
sources, and using a two-dimensional code for the Maxw
equations and a particle description for the electrons~Fig. 8!.

The current of the emitted electrons was specified
cording to

j z~ t !}hS t2
x

c
cosa D , a5

p

4
, ~49!

whereh is the Heaviside unit step function.
The results of these calculations demonstrate that a

rected electromagnetic field is produced and confirm the

ce

FIG. 6. Current density at various distances from the emission surface
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oretical estimates. The possibility of amplifying the electr
magnetic field in a waveguide is related to the existence
stable oscillations of the dipole moment surface density.

The time dependence of the dipole moment surface d
sity is determined by the time dependence of the pulse
emission current and the energy spectrum of the emi
electrons. In the numerical calculations a square-wave sh
was asssumed for the emission current pulse:

j z~ t !5const for 0,t,T@vpe
21 . ~50!

Two forms of the electron spectrum were considered
a! a monoenergetic spectrum with«5 «̄ and electrons

emitted normal to the surface;
b! electrons distributed uniformly in energy withi

«<2«̄ and vanishing for«.2«̄, with the electrons again
emitted normal to the surface.

Results of the calculations are shown in Figs. 9 and
The simulations show that stable oscillations of the

pole moment surface density develop only in the case
monoenergetic electrons.14 In particular, such an electro
spectrum is found when emission electrons with a small

FIG. 7. Magnetic field strength versus time forz/lD517. The filled circles
are taken from the one-dimensional numerical model and the solid cur
the analytical solution.
-
f

n-
of
d
pe

.
-
f

i-

tial energy traverse the accelerating gap at constant poten
The oscillations in the electron flow observed in the case
a monenergetic electron spectrum are analogous to the
known oscillations of a virtual cathode.15 Thus, the electro-
magnetic field is amplified when conditions are satisfied
the formation of a virtual cathode.

The behavior of the electromagnetic field generated i
waveguide by a superluminal current pulse was studied

a! using a two-dimensional electrodynamic code for
current density distributed with a prescribed space–time
pendence; the width of the waveguide wasa.4 cm; the su-
perluminal current pulse propagated in thex direction along
the surfacez50 with velocityA2 c; and the electron curren
density was nonzero only within a thin layer of depth 0.1| at
the surface of the waveguide. The resulting time depende
of the current is shown in Fig. 9; the time dependence of
magnetic field at a distance from the beginning of the wa
guide is that shown in Fig. 11.

is

FIG. 9. First time derivative of the dipole moment of an electron cloud
a monoenergetic emission electron spectrum.
ro-
ity
FIG. 8. Contours of constant magnetic field strength p
duced by an electron current pulse propagating with veloc
v[vx5A2 c.
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b! using a two-dimensional particle-in-cell~PIC! code
which solved the coupled Vlasov–Maxwell system of equ
tions; the spectrum of the emitted electrons was prescribe
z50: electrons with energy«5500 keV were emitted by the
surface over an extended period of timeT and the emission
front propagated along the surface with velocityA2 c. Figure
12 shows the intensity of the electromagnetic wave as a fu
tion of the distance traveled by the wave.

The results of the numerical calculations agree with
theoretical estimates.

In the radiating element shown in Fig. 1 the energy
the electrons comprising the current pulse propagating w
superluminal velocity along the surface of the cathode
creases as a result of acceleration in an external field. Du
the acceleration process, however, the time dependenc
the pulseform can change, so that the current pulse at
anode may differ from that at the cathode.

From the theoretical discussion it follows that for curre
densities below a maximum value—which of course is
termined by the length of the accelerating gap and the po

FIG. 10. First time derivative of the dipole moment of an electron cloud
a broad emission electron energy spectrum.

FIG. 11. Time dependence of magnetic field at a fixed point in the wa
guide.
-
at

c-

e

f
th
-

ng
of

he

t
-
n-

tial across it—the current density is a conserved quant
and the time dependence of the current pulse is therefore
altered. That is, the current density of the electrons dislod
from the surface of the anode will have the same time
pendence as at the cathode, and if a superluminal cur
pulse propagates along the cathode then one will also pr
gate along the anode.

Calculations were performed for a two-dimensional p
nar diode. The length of the diode was 10 cm, the intere
trode gap was 0.1 cm, and the applied potential was 100
Electrons were injected perpendicular to the surface of
cathode:

j z~ t,x,z50!5hS t2
x

v D j 0S t2
x

v D ,

j 052.7531033t electron cm22 s21, v5A2 c. ~51!

The results of the calculations are shown in Figs. 13 a
14. According to the previous section, we should fi
|'0.39 cm,Tp'1.3310211s, andṖ;431012@cgs#. In the

r

-

FIG. 12. Strength of the electromagnetic wave as a function of dista
traveled along the waveguide.

FIG. 13. Time dependence of the electron current above the anode su
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calculation the current density within the gap reached a va
of 3.53103 A cm22, which is only a factor of 2 less than th
maximum value. The value ofṖ estimated using the formu
las of the preceding section is about 1.4 times larger than
obtained in the calculation. For| andTp the calculated and
estimated values are practically the same. The current p
travels along the surface of the anode at a velocityA2 c.
Note that the upper limit for the current density across
diode is about 7.43103 A cm22, and j 0(t5Tp)'5
3103 A cm22.

Thus, the validity of the estimates is confirmed, and th
are found to hold for current densities close to the limiti
value.

4. CONCLUSION

Wideband generators of microwave radiation based o
superluminal emission source enjoy a number of absolu
unique properties. In principle such devices may find ext
sive practical applications under suitable circumstances
cause of these advantages:

1. The radiation is produced in extremely short puls
down to picosecond time scales.

FIG. 14. Time dependence of the first time derivative of the dipole mom
above the anode surface.
e

at

lse

e

y

a
ly
-
e-

,

2. The shape of the radiating surface ensures highly
rectional radiation and beam formation.

3. The generator is compact and relatively light
weight.

4. In terms of power they surpass existing devices
orders of magnitude, and unlike other designs the power
creases as the wavelength decreases.

The physics of such generators is extremely simple. T
elementary concepts of classical electrodynamics suffice
a basic understanding and for obtaining estimates. A rigor
theory can be based on the Vlasov–Maxwell equations.

The theory presented here permits us both to predict
parameters of the radiation produced by an arbitrary emit
surface and to obtain specifications for the components
generator, namely, the source of the ionizing radiation,
accelerating gap, and the power supply.
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Zh. Éksp. Teor. Fiz.115, 1708–1720~May 1999!

Highly nonlinear buoyant convection is investigated analytically under conditions typically
encountered in the liquid cores of planets in the solar system. As a result of the supercritical
behavior~enormous Rayleigh number! and ultrafast rotation~small Ekman number!
typical of such flows, diffusion and viscosity act only in layers that are asymptotically thin in
comparison with the radius of the core. These boundary layers control the buoyancy, the
large-scale velocity, and the magnetic field observed at the planetary surface. The interchange of
the internal layers determines the small-scale~unobservable! fields and the prevailing
symmetry of the large-scale magnetic fields. It is proved for the first time that axisymmetric
azimuthal flows dominate at large scales, while convection cells elongated parallel to the axis of
rotation dominate at small scales. A system of equations is derived which is optimum for
describing magnetoconvection of planetary cores on both large and small scales. It yields estimates
in superb agreement with expensive numerical and experimental models of supercritical
convection associated with rapid rotation. Such models will be capable of solving the MHD
dynamo problem only when their algorithms are made consistent with the asymptotic limits
presented here. ©1999 American Institute of Physics.@S1063-7761~99!01305-0#
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1. INTRODUCTION AND FORMULATION OF THE PROBLEM

The problem of the magnetohydrodynamic~MHD! dy-
namo of the earth and the other planets of the solar sys
was identified by Einstein as one of the five fundamen
problems of physics, but an approach in principle to find
a solution has begun to appear only recently. For this rea
until now the dynamics of the most active part of the plan
its liquid core, has not been understood, although the c
may be responsible for the evolution of all planetary inte
ors. The large-scale magnetic field is the sole evidence a
planetary surface for activity of the liquid core. Its evolutio
can be traced from times comparable with the age of
planet ~paleomagnetic investigations! down to the presen
age~space investigations!. The magnetic fields are a uniqu
means of thoroughly evaluating the properties, dynam
and structure of the deep-lying cores of the earth and o
planets, since these regions are inaccessible to direct pro

The simplest fully self-consistent system for describi
an MHD dynamo in the Boussinesq approximation includ
the Navier–Stokes equation for a divergence-free velocitV
~in the coordinate frame rotating about thez axis with the
angular velocityV of the mantle!, the Maxwell equation for
the divergence-free magnetic fieldB, and the equation for
the diffusion of the light constituent which describes the
celerationA due to Archimedes’ Principle:

Ar /L5~2V31D/Dt2n¹2!V2~¹3B!3B/m0r1¹P,
~1!

S D

Dt
2

1

m0s
¹2DB5~B•¹!V, S D

Dt
2k¹2DA5b

Vr

r 2 .
9361063-7761/99/88(5)/8/$15.00
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HereD/Dt[]/]t1V•¹ andP is the total pressure. For th
liquid core of the Earth, with an outer radius ofL53.5
3106 m, density ofr5104 kg/m3, and conductivitys54
3105 S m21, we haveV57.331026 s21, specific kinetic
energy of convectionb greater than or of order 102 J kg21,
and thermal diffusivity k and viscosity n less than
1025 m2 s21. At the boundary the velocity satisfies slip co
ditions, the magnetic field is continuous, and the conditio
specifying the buoyancy fieldA, the basic source of the mag
netoconvection, are applied.

The thickness of the viscous~Ekman! and that of the
diffusive ~Archimedean! boundary layers are directly propo
tional to the small quantititesd and«:

d2[
n

VL2 !1,
1

«3 5R[
b

kV
@1,

where b[H gG/4pkrw,

gaQ/4pkrcp .
~2!

HereQ is the thermal power andG is the gravitational power
of the source of the convection, which is located at the in
boundary of the liquid core;g is the acceleration due to grav
ity at the outer boundary of the mantle, anda andcp are the
thermodynamic parameters of the liquid in the core. T
purely gravitational source of convection is more effecti
than the thermal.1 Accordingly, the specific gravitational en
ergy w is considerably smaller than the specific thermal e
ergy cp /a in the liquid cores of planets. The power of th
thermal source can be substantially greater than that of
gravitational source in giant planets,2 however, so both ef-
fects must be retained in~2!.
© 1999 American Institute of Physics
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Direct numerical simulations of Eqs.~1! are extraordi-
narily difficult because of the strong convection of the phy
cal fields A, V, and B in the boundary and shear layer
whose dimensionless thickness is set byd<1027 and
«<1024 from ~2!. Recently, by dint of enormous expend
tures of computer time, direct calculations have been car
out in which these quantities had values of 1022 ~Refs. 2–8!.
For the first time the behavior of the magnetic field has
gun to resemble that of the geomagnetic field, now that th
dimensionless quantities are small numbers. But simulat
of the geodynamo via this approach using realistic value
the small parameters will not be feasible in the foreseea
future.

More promising is the asymptotic approach, in whi
these parameters are formally assumed to be vanishi
small, which makes it possible to resolve the structure of
boundary layers with high accuracy.

The self-consistent model of the geodynamo is sup
critical, since from Eq.~2! its Rayleigh numberR exceeds
the critical valueRc'd22/3 for the onset of convection by
many orders of magnitude. Supoercritical behavior is ch
acteristic for dynamo systems, since magnetic fields can o
be generated when the strength of the sources exceeds
threshold value. The main goal of the present work is to fi
an asymptotic form of Eqs.~1! in the supercritical limit,
when the sources responsible for generating all the phys
fields can formally be taken to be infinite. The strengths
the sources responsible for generating the velocity fieldV
and the buoyancyA are characterized by huge numbers: t
inverse Ekman number 1/E5d22<1014 and the Rayleigh
numberR5«23<1012. The accuracy of the supercritical ap
proximation is determined byE and 1/R, which appear as
small coefficients multiplying the LaplacianD in Eqs. ~9!
below, which optimize~1!. Thus, the supercritical approx
mation for the system~1! describing planetary cores shou
be extremely good, since its accuracy is;max(E,1/R)
<10212, which is far more accurate than the familiar dire
models run for realistic lengths of time.2–8

Supercritical convection of the form described by~1!
and~2! has been modeled in laboratories2 and in space;3 the
critical Rayleigh numberRc was exceeded by one to tw
orders of magnitude, but these models have not been ab
reproduce planetary hydrodynamics. Subsequent expen
numerical experiments4 revealed that highly nonlinear (R
@102Rc) supercritical convection differs in principle from
supercritical. The methods known prior to the present w
required colossal amounts of computer time in order to sim
late rapidly rotating planetary cores withR@103Rc'106 and
d2!1026. The most impressive model is that of Glatzma
and Roberts,5 which until now was the only model of supe
critical MHD convection, since the approaches develop
before now entailed amazing expense. Glatzmaier
Roberts5 used 2000 hours of time on a Cray C-90 in order
reachd251.731026 and R59.13106, but were neverthe-
less unable to reproduce even the order of magnitude of
geomagnetic field and its symmetry. In subsequent wo6

Glatzmaier and Roberts, at the cost of even longer runn
times, managed to get their model to generate magn
fields approximately equal to the actual geomagnetic field
-
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varying the parameters of the system. The question of h
these parameters determine the magnitude and structu
the magnetic, velocity, and buoyancy fields, however,
mains unanswered.

In the present workA* , V* , andB* , the scale values
of the buoyancy, velocity, and magnetic field, respective
are expressed analytically in terms of the basic paramete
the system. We have also made estimates of the charac
tic large-scale, small-scale, boundary-layer, and inter
magnetoconvection structures analytically. This supplie
simple explanation for the failure of Ref. 5 and the succes
Ref. 6, and also points out an approach in principle to c
rectly reproducing the magnetic fields of the planets wh
arise as a result of supercritical turbulence for typically
gantic quantitiesR>1012 and extraordinarily small quantitie
d2<10214. Obviously, both direct numerical simulation an
experiment are necessarily totally unable to attain such
treme values. Here we propose an asymptotic approach
must be included in the numerical model if it is to satisfa
torily solve the problem of supercritical magnetoturbulen
for ultrafast rotation.

For all planets under consideration we are entitled
adopt the boundary conditions of impenetrability, continuo
magnetic field, and constancy of the buoyancy and its flu

Vr50, B5B15Bc , A~r 51!50, ]A~r 5cL!/]r 50,
~3!

which are imposed on the system~1! at the interface between
the ~possibly incompletely! solid inner core, labeled ‘‘c,’’ at
r 5cL and at the mantle–core boundary~labeled ‘‘1’’!
r 5L. The boundary conditions~3! are satisfied by the no
slip conditionV5Vc at the boundary with the solid core~if
there is one!. In terrestrial planets a similar no-slip conditio
V5V1 holds at the outer boundary as well. In the giant pla
ets Uranus and Neptune the latter~and possibly the former!
is partly or wholly replaced by free-surface conditions.

The solid core rotates with velocity

Vc5~0,Vcu ,Vcw!,

and the magnetic field inside it~for r<cL) satisfies the
equation

m0scDBc /Dt5¹2Bc

with boundary conditions

Bc5B~r 5cL!.

The core–mantle boundary rotates with velocity

V1~r 5L !5~0,V1u ,V1w!,

and the magnetic field in the conducting part of the man
~for L<r<(11d1)L) is given by the equation

]B1 /]t5¹3~V13B2¹3B1 /m0s1!

with boundary conditions

B5B1~r 5L !.

In the upper~poorly conducting! part of the mantle the
field becomes irrotational,B152¹U, and is derivable from
a potential satisfying the Laplace equation¹2U50 for
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r>(11d1)L. It is this magnetic field that is observed wit
spacecraft and on the planetary surface and serves a
main source of information about the dynamics of the liqu
core, which is inaccessible to observation.

Ordinary differential equations describing the time d
pendence of the mantle and the solid-core dynamics c
plete the formulation of the problem. The essential part
the description of the dynamics of the solid core is the b
ance between the viscous and electromagnetic forces, w
effects not treated here~singular layers, the gravitational
precessional effect, etc.! can make an equally large contribu
tion to the mantle dynamics. To lowest order the mass
mantle does not move in our coordinate system, which
tates at angular velocityV, while the considerably lighte
solid core rotates with angular velocity;V* /L<1023V.

2. BOUNDARY LAYERS AND TURBULENCE

The balance between the Archimedean and Cori
forces gives a relation between the buoyancy and the ve
ity:

A* 5VV* ,

which follows from the first equation of the set~1! in the
center of a layer. The variables appearing in~1! change
abruptly as a function of radius at the boundaries, an
small radial componentVr arises there due to the solid-wa
condition. Using the dominance of the radial derivativ
]/]r;1/l * and takingVr'( l * /r )V* in the Archimedean
boundary layerl * !L we therefore obtain

]A

]t
1V–¹A2k

]2A

]r 2 2b
Vr

r 2 50, l * 5r S VkL

br D 1/3

. ~4!

Here l * is the thickness of the Archimedean layer at t
outer boundaryr 5L ~where l * 5LR21/3) or at the inner
boundaryr 5cL. Comparing the second term in~4! with the
last one, we find typical magnitudes for the buoyancy a
velocity:

A* 5VV* .b
l *
r 2 , V* 5

k1/3b2/3

V2/3L
5R2/3

k

L
. ~5!

Using the parameters of Glatzmaier and Roberts,5 we find
from ~4! a thicknessl * 517 km and from~5! a velocityV*
50.4 cm s21 and typical temperatureT* 5331023 K (T*
5A* /ga, A* 5331027 m s22), in splendid agreemen
with the results of Ref. 5. Four modifications of Ref.
treated in Ref. 6 also give excellent agreement with
asymptotic estimates. The results shown in Eqs.~4! and ~5!
are in good agreement with unmagnetized hydrodynam
modeling done in the laboratory,2 in space,3, and
numerically.4 Our results~4! and~5! even agree satisfactoril
with treatments7,8 in which only weakly supercritical param
eters were used, which confirms the high accuracy and
ability of this asymptotic approach.

Thus, the scale value of the velocity depends weakly
the magnetic fields, which nevertheless have a strong in
ence on the nature of the MHD flow. Consequently, the
sence of an intrinsic magnetic field in a planet such as Ve
the

-
-

f
l-
ile

e
-

is
c-

a

s

d

r

s

li-

n
u-
-
s

is not surprising, since even strong flows in the core can
satisfy the kinematic conditions for generation.9

In the first two equations of the system~1! the terms
;D/Dt are negligible andVr5O(d* /L) holds inside hy-
dromagnetic boundary layers of thicknessd* !L, where the
MHD equations~1! simplify to

2iV cos~u!V 2n
]2V

]r 2
5

Br

m0r

]B

]r
,

21

m0s

]B

]r
5BrV 1C .

~6!

Here the complex velocityV 5Vw2 iVu and magnetic field
B5Bw2 iBu vary strongly, while the integration constantC

and radial magnetic fieldBr experience essentially no chang
across the boundary layer,](C , Br)/]r .0. The constants of
integrationV 0 , V c , B0 in the general solution of Eqs.~6!
also do not vary at the inner boundary whereDr 5r 2cL
;dL!L:

B5B02m0sBrF E
r 5cL

r 5r

V dr1C Dr G ,
~7!

V 5V 01V c expF2S 2i
V

n
cosu1

Br
2s

nr D 1/2

Dr G
1

2sBrC

2irV cosu1sBr
2

.

The solution at the outer boundary looks similar, with diffe
ent constants of integration andDr 5L2r;dL!L.

By using~6! and~7! to impose force balance and appl
ing the boundary conditions~3! we find the thicknessd* of
the boundary layer, the characteristic magnetic field, and
ratio M2B

*
2 /rm0V

*
2 of the magnetic energy to the kineti

energy:

d*
L

5H d

d/S
,

B*
AVr/s

5H AS

S
,

M2B
*
2

rm0V
*
2 5M2

d

e H 1,

S,
~8!

where

S[R2/3qd 5m0sV* L d 5
m0sn1/2k1/3b2/3

V7/6L
5H <1,

>1.
.

Here e[V* /LV!1 is the very small Rossby numbe
q[km0s,1 is the small Roberts number, and we haveM
>2 because the peak magnetic field is shifted away from
boundary~where magnetic flux generation is strongest! by
severald* ~Refs. 9 and 10!.

The radial component of the magnetic fieldBr is gener-
ated in the main volume, outside the region of peak fl
generation at the edges of the layer where the compon
Bw , Bu 'MB* are produced, which are perpendicular to t
radius r. Accordingly, the typical magnitudeBr'B* ob-
served at the boundary of the core is usually much less t
the ~unobserved! fields in the interior,MB* . Consequently,
from ~8! we find using the results of Ref. 11 thatS<1 holds
for the magnetic fields of Earth, Jupiter, Saturn, Uranus,
Neptune, while for the other planets and satellites we h
S,1.
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The parameters of Ref. 5 yieldS56.1, so smaller val-
ues are reasonable in~8!. Hence we find the exceedingl
large value MB* >23102 G and energy ratio
M2B

*
2 /rm0V

*
2 >23103. This result is in excellent agree

ment with Ref. 5. We therefore conclude that this model c
reproduce the geomagnetic field, but only forS<1. Glatz-
maier and Roberts5 were able to reproduce the geomagne
field satisfactorily in their subsequent work6 by varying the
thermal flux at the mantle–core boundary, which is equi
lent to requiring thatS decrease whenb does. However, as
can be seen from Eq.~8!, S can also be decreased by su
stantially reducingn andk, which in Refs. 5 and 6 are con
siderably larger than quantities typical of the Earth’s core

If we measure distances in units ofL, velocity in V*
5R2/3k/L, time inL/V* , buoyancy inA* 5VV* , and mag-
netic field in B* 5Am0rVV* Ld, Eqs. ~1! go over to the
optimum system, in which all variables are of order unity~cf.
Fig. 1!:

~eD/Dt12ez32d2¹2!V1¹P2d~¹3B!3B5Ar ,

DB

Dt
2

d

S
¹2B5~B•¹!V, «

DA

Dt
2«3¹2A5

Vr

r 2 , ~9!

where

«[R21/3! Rc
21/3'~d22/3!21/3!1021, S@d.

Here the dimensionless measure of the diffusion,«3, is small
for supercritical convection, the smallness ofd2 corresponds
to ultrafast rotation, and the condition onS derived from~8!
is necessary for exciting a magnetic field.

Since all variables in~9! are of order unity, we can
readily estimate the turbulent diffusion that results from a
eraging~indicated by writing a bar above the symbol! the
nonlinear termV•¹A:

V•¹A'V•¹E ~V•¹A!dt'E ~V^V!dt¹2Ā'¹2Ā.

Similarly, we estimate the turbulent viscosity by takin
into account the extreme smallness ofe!1023 in the MHD
equations~9!:

FIG. 1. The coordinate system rotates about the unit vectorez which defines
the typical rotation of the central spherec. The outer sphere1 is almost
motionless. Shown are the hydromagnetic boundary layers:
Archimedean («5R21/3), the Ekman (d) and the Hartmann (d/S) layers.
n

-

-

~¹3B!3B'S ¹3E ¹3~V3B!dtD3B'¹3~¹3V!.

Comparing the averaged nonlinear terms with the lin
terms in the averaged Eq.~9!, for S'1 we find the turbulent
quantities~marked with a bar!

d̄2'd, «̄'A3 «5R21/9, q̄5 «̄2/ d̄. ~10!

In the Earth’s core the Rayleigh number is large enoughR̄

5( «̄)23'106, and the Ekman number is small enough,d̄2

'1026, for the above results to be used in the bound
layers. The corresponding value of the average scale velo

V̄* .1023 m s21 from ~5! is in excellent agreement with th
results of the most recent seismographic studies of
Earth’s core.12 The average of the typical value of the ma

netic field obtained from~8!, B̄* .1 mT510 G, also agrees
well with the results of extended observations of the m
netic field at the core–mantle boundary.13 Our theory also
does a good job reproducing the magnetic fields of the p
ets ~for specifics see the Conclusion!.

The details of the dynamics are determined by the av
aged system derived below from~9!, the solution of which
can be compared directly with the observed fields of
planets. Equations~9! comprise a fourteenth-order system
since they satisfy fourteen boundary conditions. By virtue
the smallness ofd̄.1022–1024 and «̄.1021–1023, the or-
der is reduced to four in the main part of the layer, where
equations are easily solved analytically. The original orde
recovered in the boundary layers: there the analytical s
tion ~7! holds forV andB and the simplified equation~4! for
A.

Thus, the difficult problem of solving the three
dimensional set~1! of seven equations is replaced by th
simple one of solving a single almost two-dimensional eq
tion ~4!. Our theory also allows turbulent solutions of~9! to
be obtained directly ford!1023 and«!1022. An additional
difficulty in studying supercritical magnetoturbulence d
rectly is that of resolving the structure of the hydromagne
layers, described in Ref. 14.

3. FIELDS ON LARGE AND SMALL SCALES

The large-scale fields vary over distances considera
greater than the thickness of the boundary and internal~see
Sec. 4! layers. Thus, in Ref. 5 the dimensionless thickness
these layers is of orderd51.331023 and«5531023. Even
the most powerful existing computers are not capable of
solving the structure of such thin layers, and so Glatzma
and Roberts5,6 used hyperviscosity to avoid having to resol
small scales, as is typically done in all present-day numer
simulations.6–8 This hyperviscosity is in outstanding agre
ment with our estimate~10! for the magnitude of the turbu
lent coefficients. For values of the parameters taken fr
Ref. 5 we find from~10! d̄'d1/251/28 and«̄'«1/351/6, in
agreement with the thickness of the boundary layers in Fi
of Ref. 5. However, the estimate~10!, like the use of hyper-
viscosity, is a crude and rather artificial approximation. T
required correction to the turbulent coefficients or the m

e
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940 JETP 88 (5), May 1999 S. V. Starchenko
nitude of the hyperviscosity should be based on the influe
of small-scale effects on large-scale effects and vice ve
described below.

To be specific, let us consider the magnetostrophic
proximatione50 and the caseS<1, which is typically valid
for planetary cores. Substituting for the variablesV, B, P, A
the quantitiesV1v, B1b, P1p, andA1a and performing
averages over large scales~denoted by a bar over the sym
bol! we obtain a system of equations for the large-scale fie
V, B, P, andA:

Ar52ez3V2d2¹2V1¹P1d~B3~¹3B!1L!,

]B

]t
2

d

S
¹2B5¹3~V3B1E !,

Vr

r 2 5«
]A

]t
1«~V•¹A1A!2«3¹2A, ~11!

L5b3~¹3b!, E5v3b, A5v•¹a.

Here the influence of the small scales on the large one
taken into account through the averaged~turbulent! Lorentz
force L, electromotive forceE , and buoyant forceA. It
should be noted that of these three, only the electromo
forceE5(a1b¹3)B has received special attention in pr
vious work.8–10

Neglecting the small quantitiesd and dL, we find V
from the incompressibility condition¹•V50 and the angu-
lar momentum equation:

Vr5
z

r
Vz2

1

2r

]P

]w
, Vu52

z

2rs

]P

]w
2

s

r
Vz ,

Vw5
1

2

]P

]s
2

s

2
A. ~12!

Here

P5Ez

Azdz, 2Vz5Ez

~]A/]w!dz,

and the lower limits of integration include unspecified fun
tions of (t,s,w), which are needed in order to satisfy th
boundary conditions.

Neglecting « and «A we find Vr50, which implies
axisymmetry,](A,P)/]w50, in accordance with~12!. Thus,
the large-scale velocity is axisymmetric, has only an a
muthal componentV5V(t,r ,u)êw , and is uniquely deter-
mined by the buoyancyA. The axisymmetric velocityV, the
buoyancyA, and in the general case the nonaxisymme
magnetic fieldB obey a simple set of large-scale equation

V5Ez ]A

]s

zdz

2
2

s

2
A,

]A

]t
52A,

]B

]t
5¹3~V3B1E !. ~13!

Clearly, the dynamics of the large-scale fields is significan
affected by the small-scale fieldsv, b, p, anda, which obey
a set of equations that follows from~9! and ~11!:
e
a,

p-

s

is

e

-

i-

c
:

y

ar52ez3v2d2¹2v1¹p1d@b3¹3B

1B3¹3b1~b3¹3b2L!#,

]b

]t
2

d

S
¹2b5¹3@V3b1v3B1~v3b2E !#, ~14!

v r

r 2 5«
]a

]t
1«@V¹a1v¹A1~v¹a2A!#2«3¹2a.

The complete set of equations~13! and~14! is closed by the
boundary conditions~3! and the conditions that follow di-
rectly from ~3! if we replaceV, B, P, and A by V1v,
B1b, P1p, andA1a. Additionally, the small-scale fields
must satisfy solid-wall boundary conditions~see next Sec-
tion!, and the small-scale fields in the boundary layer sho
fall off sharply away from the boundary.

In the linearized layer the small-scale Ekman–Hartma
boundary field at a solid wall is completely given in terms
the large-scale and interior small-scale fields:

vw2 ivu5V 1~V 1,c2V !expS 6A2icosu1SBr
2 Dr

d D ,

bw2 ibu5B1,c6SBr~V 1,c2V !

3
12exp~6A2i cosu1SBr

2Dr /d!

A2i cosu1SBr
2

, ~15!

$v,b%r52
1

rs E
Dr 50

r F]~sinu$v,b%u!

]u
1

]$v,b%w

]w G r dr .

Here we have writtenV 5V1vw2 ivu at the upper
boundary of the layer, wherevw,u is the ~exclusively! inter-
nal field; the complex velocity at the other boundary
V 1,c[Vw1,c2 iVu1,c ; the upper sign (1) and Dr 5r 21
apply to the boundary at the mantle, which rotates at velo
V1; the lower sign (2) andDr 5r 2c apply to the boundary
at the inner core, which rotates with velocityVc @see the
expressions forV1 and Vc following Eq. ~3!#. The radial
velocity v r and the magnetic fieldbr were obtained by inte-
grating the divergence-free condition.

The small-scale buoyancya in the Archimedean bound
ary layer is found from the equation

v r

«r 2 1
]2a

]x2 2
]a

]t
5

v r

«

]a

]x
1

vu

r

]~A1a!

]u

1
V1vw

s

]a

]w
2A, ~16!

where we have used the same values ofv r vu , andvw as in
Eq. ~15!, and the ‘‘stretched’’ variable isx5(r 21)/« at r
51 andx5(r 2c)/« at r 5c.

The system of equations~13! corresponding to large
scale effects, the boundary solution~15!, and Eq.~16! to-
gether with the equations given below for the internal sm
scale fields completely determine the solution of t
problem. In obtaining it we use only the boundary conditio
~3! without the solid-wall condition, since the the oth
boundary conditions are already taken into account in~15!.



e
s

t
he
e

ce
lt,

e

g

c-

n

et

o
i-

o

ion

al
ted

hat

e

by

sh
ned
us

941JETP 88 (5), May 1999 S. V. Starchenko
4. INTERNAL AXIAL CONVECTION

In treating the internal small-scale fields we will assum
that the convection cells are elongated parallel to the axi
rotation and

]s;s* !]w;w* !]z;1.

Here the asterisks denote characteristic magnitudes for
internal convection relative to the directions in which t
cylindrical variables (z,s,w) increase. We also assume th
following scaling, which comes from condition~14! for the
vanishing of the divergence:

V;1>vz;v* @vw;w* v* @vs;s* v* .

And finally, we neglect the magnetic terms in the first for
equation~14!. Later, when we have derived our final resu
we will show that these initial assumptions are justified.

Neglecting the corresponding terms of~14!, far from the
boundaries we find

vzcosu

«r 2 1«2
]2a

]s2 5
V

s

]a

]w
1

]~a2A!

]t
, za52d2

]2vz

]s2 .

~17!

Setting the magnitudes of the terms of~17! equal, we find the
relations

v* /«5«2a* /s
*
2 5a* /w* , a* 5d2v* /s

*
2 ,

which yield the characteristic axial velocityv* ;vz and
buoyancya* ;a, as well as the scaling with respect to th
cylindrical radiuss* and azimuthal anglew* :

x[v* /a* 5«3/2/d, s* 5«3/4d1/2, w* 5d/«1/2. ~18!

Balancing terms similarly in the equation for the electroma
netic induction

2~d/S!]2bz /]s2.Bs]vz /]s

yields b* 5Sv* s* /d for typical Bs of order unity.
In the Ekman–Hartmann boundary layers~15! we have

]z;d, and far from the equator (sÞc,1) balancing the
buoyancy equation

«2]2a/]z2.vz]a/]z

yields «2/d5v* . Finally, we find estimates of the chara
teristic internal velocityv* , magnetic fieldb* , and electro-
motive forcea* 5v* b* , and the fundamental restriction o
the initial choice of parameters:

v* 5«2/d, b* 5S«11/4/d3/2,

a* 5S«19/4/d5/2, S«3/2!d. ~19!

This estimate, together with~18!, is used in the Conclusion
to describe the magnetohydrodynamic interiors of plan
Our original assumptions are valid if«2<d and S«3/2!d
hold, as they do in most planetary interiors. The second c
dition usually overlaps the first; it is therefore the main lim
tation on the use of turbulent@Eq. ~10!# or hyperviscosity
values«̄ andd̄ instead of the smaller« andd. In the work of
Glatzmaier and Roberts5 one of the conditions in~19! is not
met, so the failure of their results to reflect the symmetry
of

he

-

s.

n-

f

the geomagnetic field imposed by the internal convect
should come as no surprise~see Conclusion!.

We will describe the spatial structure of an individu
convection cell, which far from the boundaries is elonga
parallel to the axis of of rotationz ~see Fig. 2!. In the cross
sectionz5const this cell is bounded by the curveX(s,w)
5const, which is adjacent to neighboring curves, somew
as in a honeycomb. From~18!, the variable which is
‘‘stretched’’ along the cell isx5X(s,w)/s* . We complete
our local coordinate system by introducingy5y(s,w),
which encircles the cell and is orthogonal tox andz.

We use the fact that the componentsbx and vx are of
orders* [«3/4d1/2, which follows from the vanishing of the
divergence, and satisfy](vx ,bx)/]x.0. Using the smallness
of p, b, andvx in thez andy components of the force law, w
find from ~14! and ~17!

2
1

x

]2vz

]x2 5r cosua, 2
1

x

]2vy

]x2 5yrra,

2
]2a

]x2 5
vz cosu1yrvy

x r 2 ,

$vz ,vy%52xr $cosu,yr%@C~ekx2cos~kx!!

1Dsin~kx!#, ~20!

a5k2@C~ekx1cos~kx!!2D sin~kx!#.

FIG. 2. Structure of convection cells in thew5const cross section. Cells
with current flowing clockwise and counterclockwise are represented
solid and broken traces, respectively. The localx coordinate is transverse to
the cell and the localy coordinate is along the circumference. The dot-da
curve indicates the generating tangent cylinder. A transition zone alig
with the cylinder ~not shown! and the inner sphere separate the vario
convection zones.
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Herex<0, uxu;1, yr[êy•êr ; C andD(t,z,y) are free func-
tions that are determined in the boundary layers; a
k5@xr (yr

21cos2u)#1/4 is a root of the characteristic equatio
The boundary condition is the condition of intermittenc
vz , vy50 at x50.

The radius of the cell is determined by the distance

X05x0s* 5
p

k
s* 5

ps*
@xr ~yr

21cos2 u!#1/4

between zeros of the sine function in~20!. Hence in the
w5const cross section through the cells we have

N0.
1

2X0
.

1

10~«d2!3/8
,

which is typically large. Thus, we haveN0.102 for the val-
ues «.1022 and d.1023 of Ref. 5. With so many cells
their stucture can not possibly be resolved numerically. T
is why Glatzmaier and Roberts5 used hyperviscosity, which
increases the value ofd and e by an order of magnitude a
small scales. Consequently there were only seven c
which agrees perfectly with Fig. 3 of Ref. 5.

5. CONCLUSION

Let us compare our results with the observed plane
magnetic fields11 in order to check our theory and describ
convection in planetary cores. We direct our attention prim
rily at the magnitudes of the intrinsic magnetic fields
Earth, Saturn, Uranus, and Neptune, which are very c
even though their interior structures are fundamenta
different.2,15–17This happens because the flows in the co
of these planets are highly turbulent, since only then can
basic parametersS̄<1, d̄'Ad'1023, «̄'A3 «'1022 be
close to one another; they differ little even when the mole
lar constituents vary greatly. The stronger field of Jupite
explained by noting that its liquid metal core is relative
much larger than in the others.17 Consequently, the observe
field of Jupiter differs little from the field~8! at the core–
mantle boundary.

The symmetry of the observed large-scale field res
from the relationship between the internal small-scale tur
lence and large-scale azimuthal flow, which from Eqs.~8!
and ~19! ~cf. Refs. 8, 9, and 15! are characterized respe
tively by the following Reynolds numbers:

Ra. «̄19/4RV / d̄5/2~'10! and RV.S̄/ d̄~'103!. ~21!

If the rough estimates given in parentheses are satisfied,
Ra

2 is a factor of ten smaller thanRV for these planets. Unde
this condition axisymmetric field strengths exceed nona
symmetric ones by almost an order of magnitude. This
seen on Earth and Jupiter from the small angle~about ten
degrees! between the angle of rotation and the axis of t
magnetic dipole. The somewhat smaller size of Saturn’s c
d
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compared with that of Jupiter makesd̄ almost one and a hal
times larger~according to Eq.~2! in Ref. 17!. Consequently,
other factors being equal,RV in Saturn’s core exceedsRa

2 by
almost two orders of magnitude. This marked superiority
the axisymmetric dynamo mechanism over the asymme
mechanism is responsible for the very small observed in
nation of Saturn’s magnetic dipole.

The cores of Uranus and Neptune should be somew

less active than that of Jupiter. This raises the value of«̄ and
therefore, from~2!, Ra

2 in Eq. ~21! becomes comparable wit
RV . As a result the asymmetric and axisymmetric fields
comparable, which is reflected in an angle of inclination
the magnetic dipole of nearly 50 degrees for both planet15

One should expect even less activity in the cores of M

cury and Mars,17 where from Eq.~8! S̄!1. As a result, the
dynamo numberRaRV is small; probably it is barely bigge
than the critical value for generating large-scale magn
fields in the planetary core. This means that only very sm
irregular large-scale fields appear.

The activity of the core of Venus is of order 1/«3 and its
effective viscosity is of orderd2, according to~2!. This is
two orders of magnitude higher than in Earth’s core; t
reason is that Venus rotates 243 times slower. This h
activity and high viscosity, according to~19! and~21! almost
totally suppress internal small-scale turbulence. As a res
the dynamo number in the core of Venus is far less than
critical value, and no large-scale field is generated the
Thus, raising the activity of a planet can lower its observ
field. This is easy to see if one compares the fields of Ura
and Neptune and their activities.

We have shown that our theory is able to relate the
served magnetic fields of the planets to well known prop
ties of their structure and dynamics. The more detailed
havior of the field is determined by the optimum set
equations~9!, which simplifies to~13!–~17! if we distinguish
between large- and small-scale fields. Numerical solution
these sets of equations together with~10! and~19! will be far
cheaper and more realistic than using the widely accep
direct approaches employing hyperviscosity.

In conclusion we summarize our main results.
1! The typical magnitudes of quantities determining t

nature and principal structures of supercritical MHD conve
tion associated with ultrafast rotation have been estima
for the first time.

2! For the first time an approach has been developed
in principle permits a solution of the planetary MHD dynam
problem and the associated problem of supercritical conv
tion.

3! A simple set of equations has been derived wh
describes in detail buoyant magnetoconvection in plane
interiors on both large and small scales. For the first tim
has been shown that axisymmetric azimuthal flows domin
at large scales.

This work was performed with financial support fro
the Russian Fund for Fundamental Research~Grant Nos.
970564402 and 960564048!.
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Zh. Éksp. Teor. Fiz.115, 1721–1726~May 1999!

This paper discusses a theory for a new effect, the migration of solid dispersed particles initiated
by a nonuniform temperature field. The reason for the motion is the inhomogeneity of the
properties of a thin protective layer around a particle. The example of ionic dispersion shows that
the sign of the coefficient of thermodiffusion depends on the magnitude of the electrostatic
potential at the particle surface and the thickness of the Debye layer and that the coefficientis larger
than the values known for molecular systems by a factor of 100 to 10000. In contrast to
molecular systems, in disperse systems thermodiffusion should play a much more important role.
© 1999 American Institute of Physics.@S1063-7761~99!01405-5#
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The phenomenon of separation of substances in a bi
mixture initiated by a nonuniform temperature field has b
known for more than a hundred years and is called therm
iffusion, or the Soret effect.1 Thermal diffusion is observed
in an enormous number of molecular systems, such as m
tures of gases, liquids, and saline solutions. The Soret c
ficient S, which is a parameter characterizing the separa
of the substances in the mixture~see below!, is very small for
these systems, which makes the use of thermodiffusion
applications highly problematical.2 The Soret effect in dis-
perse systems, such as colloidal solutions and suspens
has significantly more possibilities for practical application
Such an effect was detected in experiments recently c
ducted by Blumset al.3 and Lengletet al.,4 who observed
strong migration of solid colloidal particles in a nonunifor
temperature field. The Soret effect of such thermodiffus
exceeds the record-breaking values ofS for molecular sys-
tems by a factor of 100 to 1000. However, the nature of t
phenomenon is unknown. In the present paper a theor
this novel phenomenon is studied.

The main difference between disperse and molec
systems is that the solid particles in disperse systems
about 100 Å in size~for colloids!, which is much larger than
the molecules of a liquid solvent. This simplifies the theor
ical investigation of the problem, since the liquid can
regarded as a continuous medium. Note also that it is c
mon to divide disperse systems into two large categor
ionic and surfactant, which differ in stability against partic
coagulation.5 The first category is characterized by electr
static stabilization, which is achieved by imparting an ele
tric charge to the particles. The second category incorpor
disperse systems whose particles are covered by an a
tional layer of surface-active substances. In the present p
we will limit ourselves to ionic systems.

Suppose that a positively charged spherical particle
radiusR is in an electrolyte solution. For simplicity we as
sume the electrolyte to be symmetric. Let the cation a
anion charges bee and2e, respectively and the cation an
anion concentration far from the particle ben. At a constant
9441063-7761/99/88(5)/3/$15.00
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temperatureT0 , the ions obey a Boltzmann distributio
about the seed:

n1
0 5n exp~2C0!, n2

0 5n exp~C0! , ~1!

whereC05ew0 /kT0 , with w0 the potential of the electro
static field andk the Boltzmann constant. The dimensionle
potentialC0 satisfies Poisson’s equation

DC05sinhC0/D2 , ~2!

whereD5(«kT0/8pne2)1/2 is the Debye length, with« the
dielectric constant of the liquid. The potential at the partic
surface,z5C0(R), is assumed to be a parameter of t
problem.

Note that the label ‘‘0’’ in Eqs.~1! and~2! designates a
state in thermodynamic equilibrium, where the temperat
of the system is constant. In this case the electric fieldE0

52gradw0 around the seed is spherically symmetric, so t
the net force acting on the particle is zero. Similarly, t
electric bulk force on the electrolyte is balanced by the pr
sure gradient in the liquid.

Let us now create a nonuniform temperature field in
liquid, with A the given temperature gradient far from th
particle. The characteristic time of propagation of therm
perturbations,tT;R2/x, with x the thermal diffusivity of
the liquid, is much shorter than the time of rotational Brow
ian diffusion of the seed,tB;hR3/kT0 , whereh is the vis-
cosity of the liquid.6 Indeed, using the data for an aqueo
solution, h;1 cP andx'0.0015 cm2s21, we find tT /tB

;1023. Hence we may assume that the temperature dis
butionT(r ) near the particle is time-independent. Its form
well known:6

T~r !5T01T15T01@12k~R/r !3#A–r , ~3!

wherek5(k12k2)/(k11k2), with k1 and k2 the thermal
conductivity coefficients of the particle and electrolyte, r
spectively.

In a nonuniform temperature field, the ion concentratio
n1(r ) andn2(r ) and potentialw(r ) are no longer equal to
the equilibrium valuesn1

0 , n2
0 , and w0 . As a result, the
© 1999 American Institute of Physics
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electric potentials at the opposite sides of the particle do
balance each other and the particle begins to move.

To determine the seed velocityU, we must first find the
ion distributionsn1(r ) and n2(r ) in the temperature field
We do this using the example of cations. The diffusion fl
of cations in an electrostatic field is

j152D1S gradn11
n1e gradw

kT D , ~4!

whereD1 is the cation diffusion coefficient. The distributio
n1(r ) can be found by solving the equation of steady-st
diffusion in the approximation of small Pe´clet numbers with
the additional condition that the particle surface
impermeable:6

div j150, j 1n50. ~5!

The anion concentration was calculated by using formu
similar to ~4! and ~5! with j1 replaced byj2 , D1 by D2 ,
ande by 2e.

The next stage in simplifying the equations of ion diff
sion is the linearization of these equations in the small val
of the temperature gradient,AR/T0!1. Here, however, we
will not perform the necessary calculations, since they
rather cumbersome. One result of such linearization is th
is unnecessary to solve the separate problem of finding
electric fieldw(r ) around the charged seed in a nonunifo
temperature field: forw(r ) we can take the resultw0(r ) from
the isothermal problem~2!.

We will now investigate the hydrodynamic part of th
problem. Suppose that the frame of reference is tied to
body of the seed, so that the particle in this frame is at r
The liquid velocityv far from the seed determines the d
sired value of the particle velocityU with respect to the
laboratory reference frame according to the obvious relat
shipU52v(r→`). In the approximation of small Reynold
numbers the time-independent velocity fieldv(r ), in turn,
satisfies the Stokes equation6

hDv2gradp1f50, divv50, ~6!

wherep andh are the pressure in the liquid and the viscos
of the liquid. The bulk forcef of electrical origin is given by
the formula7

f52e~n12n2!gradw2
~gradw!2

8p

]«

]T
gradT. ~7!

Clearly, the value of the bulk force is determined by tw
terms: the Coulomb term, related to the presence of
charges~ions! in the liquid, and the dielectrophoretic term
reflecting the temperature dependence of the dielectric c
stant« of the liquid. Since]«/]T is negative, the dielectro
phoretic term forces the liquid to move along the temperat
gradientA @basically, gradT is directed alongA; see Eq.
~3!#. This is equivalent to the particle moving in the oppos
direction, i.e., into colder layers of the liquid. In contrast
the second term, the projection of the Coulomb term on
direction ofA has no definite sign, i.e., it can be either po
tive or negative. As a result the particle can migrate either
or down the temperature gradient~see below!.
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Equation~7! must be linearized in the value of the tem
perature gradient@just as we linearized the diffusion equatio
~6!#. However, to preserve clarity we will not clutter up th
problem with details.

Equations~6! with the additional conditions of adhesio
at the particle surface (v(r 5R)50) and of balance of the
electric and viscous forces (F50) acting on the particle
form, together with Eqs.~2! and ~4!, constitute a complete
set of equations for finding the migration velocity of a di
persed particle.

Generally speaking, the solution of this system of eq
tions depends on four dimensionless parameters: the po
tial z at the particle surface, the ratiol5D/R of the Debye
length to the particle radius,k @see the commentary to Eq
~3!#, and a5d ln «/d lnT, the logarithmic derivative of the
dielectric constant with respect to temperature. We write
velocity of particle motion in the temperature field asU
5AnkD2u/h, specifying the dimensionless migration velo
ity u explicitly. For an infinitely thin double layer (l→0),
the value ofu can be found analytically:

u52
2

3
~12k!Fz228~31a!ln cosh

z

4G . ~8!

For arbitrary values ofl only a numerical solution of the
system of equations is possible. Hence we will fix the valu
of the parametersk50.75 anda521.5. Both values corre-
spond to the experiment conducted by Lengletet al.4 and are
characteristic of aqueous disperse systems, for which
thermal conductivity coefficient of the dispersed phase
ceeds that of the solvent by a factor of 10.

Figure 1 depicts the results of numerical calculations
the dimensionless particle velocity as a function ofz, the
surface potential, for several values ofl ~the respective val-
ues are placed at the curves!. For an infinitely thin double
layer @see the lower curve in Fig. 1 and Eq.~8!#, the particle
migration velocity is always directed opposite the tempe
ture gradient. At finite values ofl this is the case only for
small values of electric potential. Asz increases, all the
curves withlÞ0 first pass through a minimum and then,
z5z0 , through zero. The latter means that the direction
particle motion reverses.

FIG. 1. Particle migration velocity in units ofAnkD2/h as a function of the
electric potential at the particle surface for several values ofl.
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Figure 2 depicts the ‘‘neutral’’ curvez05z0(l) corre-
sponding to the disappearance of thermodiffusion. The
son the seed ceases to move on this curve becomes cle
we analyze Fig. 3, which depicts the streamlines and
lines of constant anion concentration near the particle.
dielectrophoretic bulk force@see Eq.~7!# forms the flow
chiefly along the temperature gradientA and forces the see
to move in the opposite direction~againstA!. However, the
Coulomb force opposes this motion, so that near the ‘‘ho
pole of the seed an excess of negatively charged ions fo
For the values ofl andz depicted in Fig. 3, the tendencie
are balanced. Ifz,z0 holds, the first tendency is predom
nant, i.e., the particle migrates into the low-temperature
gion; if z.z0 holds, the Coulomb term is predominant a
the seed moves into the hot layers of the liquid~see Fig. 2!.

Since the velocity of thermodiffusion is known, we ca
calculate the Soret dispersion coefficientS. Following Refs.
1 and 2, we define this coefficient by the equation

gradF1SF~12F!A50, ~9!

where gradF is the time-independent gradient of the bu
concentration of the disperse particles, a gradient thatde
ops in a temperature field with a gradientA. Now, setting

FIG. 2. ‘‘Phase’’ diagram of thermodiffusion in terms of dimensionle
surface potential and Debye length.

FIG. 3. Stream functions~solid curves! in units of AnkD2R2/h and con-
tours of constant excess in the concentration of oppositely diffusing
~dashed curves! in units of AnR/T0 in the absence of particle migratio
(l50.1 andz056.82).
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equal to zero the sum of the thermodiffusion flux of the se
jT5npU ~herenp is the particle concentration! and the ordi-
nary diffusion flux jd52(kT0/6phRH)gradnp ~hereRH is
the hydrodynamic radius of the particle!, we arrive at an
expression for the Soret coefficient:

S52
3

4

RH

L

u

~12F!T0
, ~10!

whereL5e2/«kT0 is a characteristic length, interpreted
the distance at which the energy of ion interaction is equa
the thermal energy. For aqueous electrolytes,L'7 Å.

Equation~10! and Fig. 1 suggest that the Soret coef
cient may be either positive or negative, depending on
magnitudes of the electrostatic surface potentialz and the
dimensionless Debye radiusl. Let us estimateS using the
experimental data of Lengletet al.,4 who studied thermodif-
fusion in an aqueous colloidal solution. If we substitute t
experimental valuesRH5200 Å, T05323 K, F50.06,
l50.1 ~Ref. 4!, and z58.5 in ~10!, we getS520.5 K21.
This value is in good agreement with the results of Ref
and exceeds the coefficient of thermodiffusion of molecu
systems2 by a factor of 100. The Soret coefficient of suspe
sions, whose particles are roughly a hundred times lar
than colloidal particles, must amount@in accordance with Eq.
~10!# to S;100 K21. Such large values of the Soret coef
cients of colloids and suspensions make practical appl
tions of thermodiffusion as a source of enrichment of d
perse systems highly promising.
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Giant magnetoacoustic effect in KMnF 3 due to nuclear spin waves
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An explanation is proposed for the gigantic magnetoacoustic effect that we observed in KMnF3

in previous work$Kh. G. Bogdanova, V. A. Golenishchev-Kutuzov, M. I. Kurkinet al.,
Zh. Éksp. Teor. Fiz.112, 1830 ~1997! @JETP85, 1001 ~1997!#%. The effect entails a tenfold
amplitude reduction of an acoustic pulse in a magnetic field that varies over the range
0–8 kOe. It is shown that this effect is due to the interference of two nuclear magnetoelastic
waves propagating in the sample under magnetoacoustic resonance conditions, if this resonance
occurs in the region of strong spatial dispersion of nuclear spin waves. The effect is said to
be gigantic because it exceeds in magnitude the magnetoacoustic effects observed previously in
magnetically ordered materials even though it is due to nuclear magnetism, which is 105

times weaker than electronic magnetism. We observe a concomitant anomalous dependence of
the dispersion of the velocity of sound on the external magnetic field. ©1999 American
Institute of Physics.@S1063-7761~99!01505-X#
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1. INTRODUCTION

Magnetoacoustic effects are ordinarily understood to
fer to the dependence of the acoustic parameters~amplitude
u, frequencyv, propagation velocityV, and polarization of
an acoustic wave! on the magnetic fieldH . Most investiga-
tions are concerned with the effect of the field on the veloc
and polarization~rotation of the polarization plane and ellip
ticity! of sound.1,2 This effect is ordinarily small even in
magnetically ordered materials. The variations reach 10
only in exceptional cases.3 The change produced in the am
plitude u of an acoustic wave by a fieldH is even less ap-
preciable, because the magnetoelastic interactions are s
compared with phonon anharmonicity, which is the princip
determinant of acoustic damping in solids. Ordinarily, t
behavior ofu(H) is studied using acoustic excitation of ES
and NMR in paramagnets.4

Hence it is understandable how unexpected it was fo
to observe a dependenceu(H) corresponding to a tenfold
decrease in the amplitudeu of an acoustic pulse in KMnF3
single crystals.5 When it became clear that such a stro
magnetoacoustic effect is due to nuclear magnetism, whic
105 times weaker than electronic magnetism, we could
resist the temptation to call this effect gigantic. In our pre
ous work5 it was shown that the observed effect agrees w
with the crystalline and magnetic symmetry conditions of
compound KMnF3, so it cannot be due to random facto
~contamination, measurement errors, or other factors!. In ad-
dition, the effect was observed in the acoustic freque
9471063-7761/99/88(5)/7/$15.00
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range 630–670 MHz, which falls in the frequency band
nuclear spin waves in KMnF3.6,7 Since this banddvn lies
below the AFMR frequencies, the observed depende
u(H) is due to nuclear and not electronic magnetism.

It remained to determine how a weak magnetoelastic
teraction such as the coupling of elastic deformations to
brations of the magnetic moments of nuclei can lead to s
large effects in magnetoacoustics. The work reported h
attempts to resolve this issue.

2. NATURE OF THE ATTENUATION OF ACOUSTIC
TRANSMITTANCE IN KMnF 3

The character of the observed dependenceu(H) in the
form of minima~see Figs. 3 and 4 in Ref. 5! suggests that the
observed effectis due to a magnetoelastic resonance
acoustic vibrations with the vibrations of nuclear spin
However, it cannot be related to nuclear magnetic relaxat
since its rate is much lower than the decay rate of sound
to phonon anharmonicity. In this case the contribution
phonon damping to nuclear magnetic relaxation can be la
but not vice versa.

The decisive factor in the search for nondissipat
mechanisms of attenuation of the amplitudeu of an acoustic
pulse passing through a KMnF3 sample was that we were no
able to observe a dependenceu(H) in another weak ferro-
magnet FeBO3. It was well known that the character of th
vibrations of nuclear spins in KMnF3 is substantially differ-
ent from that in FeBO3. In KMnF3 at liquid helium tempera-
© 1999 American Institute of Physics



ic
o-

r-

948 JETP 88 (5), May 1999 Bogdanova et al.
FIG. 1. Spectra of nuclear magnetoelast
waves near nuclear magnetoacoustic res
nance: a! no dispersion in the nuclear spin
wave spectrum; b! nuclear magnetoacoustic
resonance falls in the region of strong dispe
sion in the nuclear spin wave spectrum.
le
t

tly
it

st
an

e

re
t

a
-

u

th

u
us

le
on
a
b

n
c

ves

sys-

e
e-

stic

-

-

pos-

he
st
ndi-
w-
es a
s of
tures there is reasonably strong interaction between nuc
spins at different sites of the crystal lattice; this gives rise
the formation of nuclear spin waves,8 analogous to electronic
spin waves in magnetically ordered materials. Significan
in KMnF3 there are two branches of nuclear spin waves w
frequenciesvn1(q,H) andvn2(q,H) that depend differently
on H. The effect of this is that the nuclear magnetoacou
resonance conditions, i.e., equality of the frequencies
wave numbers of the acoustic waves@V(q)# and nuclear
spin waves@vn(q)#,

V~q!5vn1~q,H1!, V~q!5vn2~q,H2!, ~1!

are satisfied at different values of the fieldH. The values of
H1 andH2 correspond to two minima observed in the curv
u(H) ~see Figs. 3 and 4 in Ref. 5!.

According to Ref. 7, the frequenciesvn1(q,H) and
vn2(q,H) in KMnF3 lie in a frequency rangedvn of ap-
proximately 100 MHz. The dependence ofvn1 andvn2 on q
~spatial dispersion! is therefore strong in all processes whe
nuclear spin waves participate, including nuclear magne
acoustic resonance.

Estimates obtained for the rangedvn in FeBO3 using the
well-known formulas of Ref. 8 yield a value 105 times
smaller than in KMnF3, i.e., about 1 kHz. This is due to
major differences between the magnetic moments and n
ral abundances of57Fe and55Mn, and between the frequen
cies vn for FeBO3 and KMnF3. For such smalldvn in
FeBO3 ~1 kHz is much less than the width of the NMR line!,
spatial dispersion in the nuclear spin wave spectrum sho
not lead to any observable effects.

The existence of nuclear spin waves is the reason for
strong dependenceu(H) in KMnF3. This can be seen in
Figs. 1a and 1b, which show the dispersion curves for aco
tic and nuclear spin waves near a nuclear magnetoaco
resonance in FeBO3 ~Fig. 1a!, wherevn(q) does not depend
on q, and for KMnF3, where the branchesV(q) andvn(q)
cross in the region of strong spatial dispersion of the nuc
spin waves~Fig. 1b!. The dashed lines show the dispersi
curves for magnetoelastic waves containing elastic and m
netic components. It is evident in this figure that in the a
sence of nuclear spin waves~Fig. 1a! only one magneto-
acoustic wave, possessing a wave vectorq1, propagates in
the sample at the given frequencyV0. However, if the mag-
netoacoustic resonance falls in the region of stro
q-dependence ofvn ~Fig. 1b!, then two magnetoelasti
ar
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,
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waves with the same frequencyV0 and different wave vec-
tors q1 andq2 can propagate in the sample. As these wa
propagate through the sample, a phase differencedw will
accumulate between their acoustic componentsu1 and u2.
This phase difference can be described in the coordinate
tem y i q1 i q2 by the expression

dw~y!5~q12q2!y. ~2!

The existence ofdw has a strong effect on the amplitud
u0 of an acoustic pulse propagating into a nonmagnetic m
dium (LiNbO3) through the surfacey5L ~Fig. 2!. The
point here is thatu depends not only on the amplitudesu1

andu2 but also on the phase differencedw(L) with which
they approach the surfacey5L. If u1 and u2 are in
antiphase, i.e.,

dw~L!5~q12q2!L52~n11!p, ~3!

~wheren are integers!, then the amplitudeu will be deter-
mined by the differenceuuu5uu12u2u, so that foru15u2 the
surface y5L becomes opaque to such magnetoela
waves.

As will be shown below,u15u2 at exact nuclear mag
netoacoustic resonance, i.e., a strong decrease inu compared
with the amplitudeu0 of the incident acoustic wave is pos
sible only when~1! and ~3! hold simultaneously. Although
such a coincidence is a random event, it is nonetheless
sible because the quantities in Eqs.~1! and~3! depend on the
magnitudeH and orientation of the magnetic field and on t
frequencyV0 of the incident acoustic pulse. Variation of ju
these three parameters makes it possible for the two co
tions to be satisfied simultaneously to high precision. Ho
ever, the search for the required parameter values requir
large number of measurements. For example, the curve
the function

K~H !5u~H !/u0 , ~4!

FIG. 2. Transmission of an acoustic pulse through the KMnF3 sample under
nuclear magnetoacoustic resonance conditions.
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949JETP 88 (5), May 1999 Bogdanova et al.
shown in Ref. 5, corresponding to a tenfold decrease inu(H)
@at the minimum ofK(H)], amount to only several percen
of the total number of curves measured. In what follows
derive equations that make it possible to obtain quantita
estimates of the parameters of the curvesK(H).

3. EQUATIONS FOR MAGNETOELASTIC WAVES NEAR A
NUCLEAR MAGNETOACOUSTIC RESONANCE ON
NUCLEAR SPIN WAVES

In this section we present numerical results for the m
nitude of the indirect interaction of elastic waves wi
nuclear spin waves via vibrations of the electronic magn
momentsM (r j ) and the vibrational amplitudes of magnet
elastic waves. To describe the elastic waves we employed
standard equation of elasticity theory9

r
]2ua

]t2
5

]sab

]r b
, ~5!

where ua (a5x,y,z) are the components of the displac
ment of points of the elastic medium,r is the density of the
medium,t is the time,r a are spatial coordinates, andsab is
the stress tensor, which is a variational derivative

sab52dF/dUab ~6!

of the free energyF with respect to the deformationsUab

5]ua /]r b . For a magnetically ordered elastic medium w
a hyperfine interaction, the expression forF can be written in
the form8,10

F5FE1FM1FME1FHF , ~7!

where FE is the elastic deformation energy, which dete
mines the velocity of the acoustic waves,FM is the energy
responsible for the properties of the ordered magnetic
mentsM (r j ) ~it includes the exchange interaction, the ma
netic anisotropy, the Dzyaloshinski� interaction responsible
for weak ferromagnetism, and interaction with the magne
field H!, FME is the magnetoelastic interaction energy of t
vectorsM (r j ) with the elastic deformationsUab , andFHF is
the hyperfine interaction energy of the nuclear and electro
magnetic momentsm(r j ) andM (r j ), respectively.

For longitudinally polarized elastic waves with wav
vectorq i y ~Fig. 3!, the expression forFME , taking account
of the crystal symmetry and magnetic structure11,12 of
KMnF3, can be written in the form5

FME52E dr$B1Ly
2~r !1B2@Lx

2~r !1Lz
2~r !#

1B3@Mx~r !Lz~r !1Mz~r !Lx~r !#%Uyy~r !, ~8!

whereUyy5]uy(r )/]y is the only nonvanishing componen
of the deformation tensor for the elastic waves under con
eration;

L5M12M2 , M5M11M2 ~9!

are antiferromagnetism and ferromagnetism vectors fo
two-sublattice antiferromagnet;M1 andM2 are the magneti-
zations of the sublattices; and,B1 , B2 , andB3 are the mag-
e
e
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ic

he
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a

netoelastic interaction constants. We note that in Eq.~8! only
the first two terms of the expansion in powers ofM are
retained.

Since in KMnF3 the vectorL ~Fig. 3! lies in thexz plane
~the ~001! plane!, it is sufficient to retain in Eq.~8! only the
terms containingB3, since

d

dy
~Lx

21Lz
2!5

d

dy
L250

~up to terms quadratic inM!. In this approximation Eq.~5!
can bewritten

@v22V2~q!#uy~q,v!

5 iqr21B3@Mx~q,v!Lz~q,v!1Mz~q,v!Lx~q,v!#,

~10!

where

uy~q,v!5E dyE dt exp~ ivt1 iqy!uy~y,t ! ~11!

is the Fourier transform of the elastic displacementsu(y,t)
~the quantitiesMx,z(q,v) and Lx,z(q,v) are defined simi-
larly!, andV(q)5Vq andV are the frequency and velocit
of longitudinal elastic waves.

The relation~10! can be further simplified by expandin
the expressions forMx and Lx in terms of small vibrations
due to their interaction with the elastic displacementsuy(y,t)
and vibrations of the nuclear magnetizationsm1,2(y,t) of the
sublattices. To do so, it is necessary to transform fromL and
M ~9! to the sublattice magnetizationsM1 and M2, writing
them in coordinate systems (x1 ,y1 ,z1) and (x2 ,y2 ,z2) as-
sociated with the equilibrium orientations of the sublattic
M10 and M20 (z1 i M10, z2 i M20). Then, to a first approxi-
mation it is sufficient to take account of only the compone
Mxj

andM yj
, wherej is the sublattice index (j 51,2). As a

result, Eq.~10! becomes

FIG. 3. Orientation of the wave vectorq of the incident elastic wave, the
magnetic fieldH, the sublattice magnetizationsM1 andM2, and the antifer-
romagnetismL and ferromagnetismM vectors relative to the axes of th
KMnF3 crystal.
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@v22V2~q!#uy~q,v!

5 iqr21B3M0 sin 2w$cosc@M y1
~q,v!2M y2

~q,v!#

22 sin c@Mx1
~q,v!1Mx2

~q,v!#%, ~12!

where

Ma j
~q,v!5E dyE dt exp~ ivt1 iqy!Ma j

~y,t !, ~13!

a5x,y; M0 is the equilibrium value ofM ~9!; c is the polar
angle of the fieldH ~Fig. 3!; andw is the azimuthal angle o
the vectorL in thexzplane. The quantityw can be found by
solving the fairly complicated trigonometric equation~10!; it
depends on the intensity of the fieldH and its orientation
relative to the crystal axes. In the present paper we do
analyze these dependences, since they are immaterial
description of the gigantic decrease in the acoustic trans
tance in KMnF3.

The componentsMxj
andM yj

in Eq. ~12! were found by
minimizing the magnetic part of Eq.~7! in the linear approxi-
mation inFME ~8!, with

FHF52E dr A(
j 51

2

M j~r !mj~r !. ~14!

The componentsMa j
(q,v) ~13!, uy(q,v) ~11!, and

ma j
~q,v!5E dyE dt exp~ ivt1 iqy!ma j

~y,t ! ~15!

satisfy the relations

Mx1
~q,v!5Mx2

~q,v!

5x1~q,H !$A@mx1
~q,v!1mx2

~q,v!#22B3M0

3sin 2w sin cuy~q,v!%, ~16!

M y1
~q,v!52M y2

~q,v!

5x2~q,H !$A@my1
~q,v!1my2

~q,v!#1B3M0

3sin 2w coscuy~q,v!%, ~17!

wherex1(q,H) andx2(q,H) are the components of the su
lattice susceptibilities, which depend on the same quant
asw.5 Just as forw, these dependences were not analyzed
the present work. Nonetheless we singled out theq and H
dependences, since for what follows it is important that s
dependences exist.

The componentsma j
were found from the Bloch

equations10

]mj /]t5gnmj3H j , ~18!

whereH j5dFHF /dmj are the effective fields acting onm1

and m2 due toM1 and M2. In the linear approximation in
ma j

these equations are

]mxj
/]t5gnAM0myj

2gnAm0M yj
,

]myj
/]t52gnAM0mxj

1gnAm0Mxj
, ~19!
ot
a

it-
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h

whereM0 andm0 are the equilibrium values ofM j andmj

and gn is the nuclear gyromagnetic ratio. Substituting~16!
and ~17! into Eqs.~12! and ~19! yields the system of equa
tions

@v22V2~q,H !#uy~q,v!2 ir21qa2~q,H !l ~q,v!

2 ir21qa1~q,H !m~q,v!50, ~20!

@v22vn1
2 ~q,H !#m~q,v!12iqgnm0a1~q,H !uy~q,v!50,

~21!

@v22vn2
2 ~q,H !# l ~q,v!12iqgnm0a2~q,H !uy~q,v!50,

~22!

l ~q,v!5my1
~q,v!2my2

~q,v!,

m~q,v!5mx1
~q,v!1mx2

~q,v!, ~23!

where

V~q,H !5q$V1r21B3
2M0

2 sin22w@x2~q,H ! cos2w

14x1~q,H ! sin2c#%1/2 ~24!

is the frequency of the longitudinal acoustic wave with
lowance for the magnetoelastic interactionFME ~8!, and

vn1~q,H !5gn$AM0@AM022A2m0x1~q,H !#%1/2, ~25!

vn2~q,H !5gn$AM0@AM022A2m0x2~q,H !#%1/2 ~26!

are the frequencies of the two branches of the nuclear
wave. The second terms in Eqs.~25! and ~26! describe the
so-called dynamic shift of the NMR frequency. On accou
of the factorsx1 andx2 they depend on the magnetic fieldH.
This makes it possible to tune to the nuclear magnetoacou
resonance frequency~1! by varying the field intensityH. The
parameters

a1~q,H !52AB3M0x1~q,H ! sin 2w sin c, ~27!

a2~q,H !5AB3M0x2~q,H ! sin 2w cosc ~28!

determine the magnitude of the indirect interaction of t
longitudinal elastic waves with the first and second branc
of the nuclear spin wave.

4. DISCUSSION

Some properties of the functionK(H) ~4! can be ob-
tained even without solving Eqs.~20!–~22!.

1! The nuclear magnetoacoustic resonance condition~1!
can be satisfied by varyingH while holding the frequency
V0 of the incident acoustic pulse constant. This is possi
because of the strong field dependence of the frequen
vn1(q,H) ~25! andvn2(q,H) ~26!, which were investigated
experimentally in Ref. 6.

2! As follows from Eq. ~28!, for c590° the magneto-
elastic interaction of sound with the second branch of
nuclear spin wave, which is described by the variablel (q,v)
~23!, vanishes. The satisfaction of this requirement was s
cially checked in Ref. 5~see Figs. 3 and 4 in Ref. 5!.

3! According to Eqs.~27! and ~28! the magnetoelastic
coupling uy(q,v) with both branches of the nuclear sp
wave should vanish at sin 2w50. Since the anglew depends
on the azimuthal angleF of the fieldH, the curvesu(F)/u0
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should contain points whereu(F)/u051. This conclusion
also agrees with the experimental data of Ref. 5~see Figs. 5
and 6 in Ref. 5!.

4! The magnitude of the indirect interaction of the elas
oscillationsuy(q,v) with the nuclear spin wave, just like th
dynamic shifts of the NMR frequencies~25! and ~26!, is
proportional tom0 andx1,2(q,H). This means that the mag
netoelastic effects due to nuclear spins should decreas
gether with the dynamic shift. The absence of apprecia
magneto acoustic effects in FeBO3, where the width of the
band of nuclear spin waves~which coincides with the mag
nitude of the dynamic frequency shift4! is 105 times smaller
than in KMnF3, agrees with this result.

To analyze the other properties ofK(H) ~4! it is neces-
sary to know the explicit form of the solutions of Eqs.~20!–
~22!. These will be obtained for the case in which the fr
quencies of the nuclear spin wavevn1(q,H) ~25! and
vn2(q,H) ~26! differ substantially in magnitude~nondegen-
erate case!. Then the condition for nuclear magnetoacous
resonance~1! with each branch of the nuclear spin wave w
be satisfied for different values ofH, so that Eqs.~20!–~22!
can be solved, setting

vn1
2 ~q,H !5V0

2~q,H !, l ~q,v!50 ~29!

in the case of nuclear magnetoacoustic resonance with
first branch of the nuclear spin wave, and

vn2
2 ~q,H !5V0

2~q,H !, m~q,v!50 ~30!

for resonance with the second branch.
The characteristic equation for the system~20!–~22! de-

termines the wave vectorsq1 andq2 for the two branches o
magnetoelastic waves in each of the indicated variants~29!
and ~30! of nuclear magnetoacoustic resonance. The co
sponding equations with the conditions~29! are

@V0
22V2~q,H !#@V0

22vn1
2 ~q,H !#2q2a1

2~q,H !

3~2r21gnm0!50, ~31!

@V0
22V2~q,H !#@V0

22vn2
2 ~q,H !#2q2a2

2~q,H !

3~2r21gnm0!50. ~32!

Each of these equations possesses two roots:q1 andq2. The
analysis of these roots falls outside the scope of the pre
work, since we did not investigate the properties of the
rametersa1,2(q,H) ~27!, ~28!. Only one property of these
roots will be important below:

Dq/q05uq12q2u/q0!1, ~33!

whereq0 is the value ofq satisfying the conditions~29! or
~30!. The inequality~33! follows from the requirement tha
the second terms in Eqs.~31! and ~32! be small compared
with V2(q,H).

Using q1 and q2, the expression for the elastic comp
nent of the magnetoelastic waves in the sample can be w
ten

uy~y,v!5u1~v! exp~ iq1y!1u2~v! exp~ iq2y!, ~34!

where the coefficientsu1 and u2 must be found from the
boundary conditions for Eqs.~5! and ~19!. For our experi-
to-
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ments these conditions must be prescribed in a form co
sponding to a Cauchy problem for the sample surfacey50
on which the acoustic pulse is incident. Strictly speaking,
initial conditions must also be taken into account. But for t
sake of simplicity, we decided to neglect transient proces
and to work with the Fourier transforms with respect to tim
t. For the latter, the boundary conditions aty50 are

m~0,v!5 l ~0,v!50,

u1~v!1u2~v!5uy~0,v!exp~ iw0!, ~35!

where m(0,v) and l (0,v) are the values ofm(y,v) and
l (y,v) at y50,

uy~0,v!5E dt eivtuy~0,t ! ~36!

is the Fourier transform of the incident pulse, from which t
reflected pulse is subtracted, andw0 is the initial phase of the
wave that has entered the sample. The center freque
u(0,v) of the spectrum equals the frequencyV0 of the
acoustic generator, and the widthdv of this spectrum is
determined by the pulse durationt

dv52p/t. ~37!

Under nuclear magnetoacoustic resonance conditions~29! or
~30! we obtain from Eqs.~20!–~22! and ~35!

u1~v!5u2~v!5
1

2
uy~0,v!exp~ iw0!. ~38!

Substituting the expression~38! into Eq. ~34! we obtain for
uy(y,v) at the second end surface of the sample (y5L)

uy~L,v!5uy~0,v!exp~ iw0!@exp~ iq1L!1exp~ iq2L!#/2.
~39!

The detected acoustic signal is determined by the func
uy(L,t) , which is related touy(L,v) ~once again with the
exception of the reflected wave! by an inverse Fourier trans
form

uy~L,t !5
1

2pE dv e2 ivtuy~L,v!. ~40!

The result of the integration in Eq.~40! depends on how
strong the frequency dispersion of the magnetoelastic w
velocities

V1~v!5v/q1~v!, V2~v!5v/q2~v! ~41!

is within the frequency spectrumdv ~37! of the incident
pulse. If thev dependence ofV1 and V2 can be neglected
then Eq.~40! can be written

uy~L,t !5
1

2
$uy@0,~ t2L/V1!#1uy@0,~ t2L/V2!#%, ~42!

where u(0,t) is the amplitude of the elastic displacemen
excited at the sample surfacey50 by the incident pulse@see
Eq. ~36!#, and

t15L/V1 , t25L/V2 ~43!

are the propagation times of the first and second magn
elastic waves through the sample.
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It follows from Eq.~42! that the incident pulse excites i
the sample two magnetoelastic pulses with equal amplitu
and with the same shape as the incident pulse. This fact
already used above~see Sec. 2!. However, such an equalit
occurs only under conditions of nuclear magnetoacou
resonance~29! and~30! @see also Eq.~1!#, where the relation
~38! is satisfied. As the distance from resonance increa
the two magnetoelastic waves in question become less
less alike, so that they even have different names: elastic
and spin-like waves. This inequivalence is manifested, s
cifically, in the fact that the amplitude of the elastic-lik
wave excited by the incident acoustic pulse is greater t
that of the spin-like wave, and this difference increases w
distance from resonance.

We do not present here the corresponding express
for uy(L,v) for two reasons. In the first place, they a
much more complicated than Eq.~42!. In the second place
they can be used only if the explicit form of the functio
x1(q,H) andx2(q,H) is known@see Eqs.~16! and~17!#. We
have yet to do such an analysis, but for the time being
confined ourselves to analyzing only Eq.~42! for two cases:
ut12t2u!t and ut12t2u.t.

a! In the case

ut12t2u!t ~44!

the pulses of the magnetoelastic waves excited by the i
dent acoustic pulse emerge at the sample surface (y5L)
virtually simultaneously, so that the difference between
velocities V1 and V2 will be manifested only in the phas
difference between these oscillations. In this approximat
Eq. ~42! can be written in the form

uy~L,t !5uy@0,~ t2L/V0!#cos~DqL/2!, ~45!

whereDq5q12q2 andV05v/q05(V11V2)/2 is the aver-
age propagation velocity of magnetoelastic waves. It follo
from Eq. ~45! that at timet05L/V0 after the exciting pulse
reaches the opposite surface of the sample (y5L), an
acoustic pulse with the same shapeuy(0,t) as the incident
pulse but with a different amplitude because of the fac
cos(DqL/2) is formed. This factor describes the influence
the interference effects that were discussed in Sec. 2@its
argumentDqL is identical to the expression for the pha
differencedw(L) ~3!#.

Of course, Eq.~45! cannot be used to describe the e
perimental dependences of the ratioK(H)5u(H)/u0 which
are presented in Ref. 5. This is because it is valid only at
magnetoelastic resonance frequency~1!. Since its position
depends onH, Eq. ~45! can describe only one point on th
curve K(H). But this point can fall in the region wher
DqL'p and therefore cos(DqL/2)'0. Thus Eq.~45! dem-
onstrates the possibility of achieving a large magnetoacou
effect by the interference mechanism.

b! The case

ut12t2u.t ~46!

is interesting primarily because under this condition the m
netoacoustic pulses excited at they50 surface of the sample
separate completely when they emerge at the surfacey5L.
After such separation they no longer interfere with one
es
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other, and therefore they can be studied separately. To as
the possibility of satisfying the inequality~46! under our
experimental conditions we used Eqs.~41! and ~43! and the
parameterst'1026 s, V'105 cm/s, andL'10 mm. This
made it possible to write the inequality~46! as

Dq/q0.0.1, ~47!

whereq0 is determined just as in Eq.~33!. Comparing Eqs.
~47! and ~33! shows that the inequality~47! is consistent
with Eq. ~33! over a narrow range ofDq. Moreover, the
values ofDq satisfying the inequality~47! must be large
enough that thev dependence ofV1 and V2 ~41! starts to
come into play. As is well known, such a dependence le
to distortions of the pulse shape and size. We assume
these effects made it impossible for us to consistently
serve the splitting of the acoustic pulse transmitted throu
the KMnF3 sample in the experiments discussed in the n
section.

5. MEASUREMENTS OF THE VELOCITY OF
MAGNETOELASTIC WAVES NEAR A NUCLEAR
MAGNETOACOUSTIC RESONANCE

Single-crystal KMnF3 samples in the form of 43437
mm3 parallelepipeds were used in the experiments. The c
tal structure and the geometry of the experiment are
scribed in Ref. 5.

The time intervalt between the radio pulse of the tran
mitter and the first ultrasonic pulse transmitted through
compound resonator13 was measured to determine the spe
of soundV. The single-passage time of an ultrasonic pu
through the sample was determined astsample5t22t trans and

FIG. 4. Oscillograms characterizing the transmission dynamics of an u
sonic pulse through a sample as a function ofH.
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V5L/tsample, wheret trans is the transmission time of a puls
through piezoelectric transducers of the same length.

The measurement error in the speed of sound did
exceed 20%, and depended on parameters such as the
ness of the bonding layer between the sample and the pi
electric transducer, the matching of their acoustic imp
ances, and the pulse duration and shape.

Figure 4 displays a collection of oscillograms demo
strating the evolution of the amplitude and velocity of t
transmitted acoustic pulse as a function of the magnetic fi
H. The numbers of the oscillograms are given on the left s
and the field strength corresponding to each oscillogram
given on the right side. Time is plotted horizontally.

The oscillogram1 corresponds to the first acoustic pul
transmitted through the sample with transmission ti
tsample, velocity V, and amplitudeu0 at H50. The large
decrease in the amplitude of this pulse becomes apprec
in fields H>3000 Oe~oscillograms2–9!. At H'5200 Oe
~oscillograms10, 11! the amplitude drops to the noise leve
In fields H>5200 Oe~oscillograms12–22! the reverse pro-
cess of restoration of the pulse amplitude is observed.

The change in the transmission time of the sig
through the sample, which is associated with the chang
the speed of soundV, is clearly seen in the oscillogram
Thus, an increase of the speed of sound is observed in

FIG. 5. VelocitiesV1 ~1! andV2 ~2! versusH ~V is the speed of sound with
no magnetic field!.
ot
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oscillograms2–11 and a decrease is observed in the oscil
grams11–13.

The oscillograms14–22 show the restoration of the
transmission time. The dependenceV(H) is displayed in Fig.
5. The broadening of the transmitted acoustic pulse~oscillo-
grams2–22! and the change in the pulse shape attest t
substantial frequency dispersion of the speed of sound wi
the frequency spectrum of the pulse. If this dispersion w
weaker, so that the transmitted pulse had an appreciable
plitude at magnetoelastic resonance, it might have been
sible to observe the splitting of the acoustic pulse, as m
tioned in the preceding section.
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The results of an experimental investigation of the temperature dependences of the magnetic
susceptibility and resistivity in the shape-memory ferromagnetic alloys Ni21xMn12xGa
(x50 –0.20) are reported. AT–x phase diagram is constructed on the basis of these data. It is
shown that partial substitution of Ni for Mn causes the temperatures of the structural
~martensitic! TM and magneticTC ~Curie point! phase transitions to converge. In the region
whereTC5TM the transition temperature increases linearly with magnetic field in the range from
0 to 10 kOe. The kinetics of a magnetic-field-induced martensitic phase transition is
investigated, and the velocities of the martensite–austenite interphase boundary during direct and
reverse transitions are measured. A theoretical model is proposed and theT–x phase
diagram is calculated. It is shown that there exist concentration ranges where the magnetic and
martensitic transitions merge into a first-order phase transition. The theoretical results are
in qualitative agreement with experiment. ©1999 American Institute of Physics.
@S1063-7761~99!01605-4#
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1. INTRODUCTION

It is well known that some metal alloys undergo reve
ible, crystallographic, thermoelastic, martensitic transform
tions which are accompanied by a shape-memory effect. T
effect is ordinarily manifested as follows: a deformed sam
in the low-temperature martensitic phase returns to its in
shape after the stress is removed and the sample is he
The restoration of the initial shape is attributed to a reve
ible transformation of the deformed martensitic phase t
high-temperature austenitic phase. These alloys can
trained by repeated deformation and heat cycling. In t
manner, a bilateral shape-memory effect can be obtained
this case the sample will spontaneously acquire a defi
prescribed shape, wherein the austenite transforms to ma
site and the reverse transformation returns the sample t
original shape.1

In most cases shape-memory alloys are nonmagn
and the methods for influencing their shape and size are
ited to stresses and temperature. However, in Mn-bea
Heusler alloys an indirect exchange interaction between
magnetic moments of the atoms produces ferromagnet
Among such alloys there is one compound, Ni2MnGa, that
undergoes a martensitic-type structural transformation to
ferromagnetic phase.2–6 The combination of magnetic orde
ing and shape memory makes this alloy promising in
search for the possibility of controlling the shape of a sam
9541063-7761/99/88(5)/9/$15.00
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not only by varying the temperature and pressure but also
varying the external magnetic field. For applications it is a
helpful that the martensitic transition and the ferromagne
properties appear in this alloy near room temperature.

For the stoichiometric composition of the allo
Ni2MnGa the ferromagnetic transition temperature,TC

5376 K, and the structural transition temperatu
TM5202 K, differ strongly. The temperaturesTC and TM

can be changed by purposefully changing the compositio
this compound. To realize this possibility some Mn atom
must be replaced by Ni atoms. Then the distance between
Mn atoms in the alloy will increase, and therefore the e
change integral and magnetic transition temperatureTC will
decrease. On the other hand, an increase in the electron
sity accompanying the substitution of Ni atoms for some M
atoms will be accompanied by an increase in the volu
bounded by the Fermi surface and by an increase in
structural transition temperature. Thus in the allo
Ni21xMn12xGa, TM can be increased andTC decreased by-
partial substitution of Ni for Mn until these temperatures a
the same.

One objective of the present work is to investigate e
perimentally the anomalies of the electrical conductivity a
magnetic susceptibility of the alloys Ni21xMn12xGa with x
50 –0.20 near the martensitic and magnetic phase tra
tions, whose temperatures converge asx increases, and to
study in greater detail the properties of the alloy with co
© 1999 American Institute of Physics
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cident phase transition points, specifically, the influence o
magnetic field on the structural transition point. Another o
jective is to construct a theoretical model that describes
phase transformations, taking account of the interaction
the magnetic and elastic subsystems, to calculate theT–x
phase diagram, and to assess the influence of a magnetic
and pressure on the martensitic phase transition tempera

2. EXPERIMENT

2.1. Samples and procedure

The polycrystalline samples of the alloy
Ni21xMn12xGa investigated in the present work were p
pared by arc melting in an Ar atmosphere on a cold hea
More than twenty ingots of these alloys with concentratio
x50 –0.20 were obtained. The samples on which meas
ments of the resistivityr and the low-field magnetic suscep
tibility x were performed were cut from ingots by th
electric-spark method. The resistivity was measured by
four-point scheme, and the magnetic susceptibility was
vestigated by the induction method. These procedures m
sure the sample-averaged values of the transition parame
The measurement accuracy is determined by the inhom
neity of the polycrystalline sample.

Optical measurements were performed for local inve
gation of the martensitic domain structure and to determ
the temperature of the structural phase transition with a
resolution over the sample. To this end, chips approxima
53532 mm3 in size were polished at room temperature a
then subjected to heat cycling. In an experiment a sam
clamped to a substrate in a two-loop heat bath with trans
ent windows was placed between the poles of an electrom
net and observed under a microscope with oblique illumi
tion. The mechanical stresses produced by a structural p
transition form a relief on the surface. The directions
which the variation of the relief of individual microsection
of the sample surface yield the greatest optical contrast
result of a martensitic transition can be found by adjust
the angle of incidence of the illumination. The formation a
motion of a martensite–austenite boundary as well as
formation of martensitic~structural! domain walls can be ob
served under a microscope. The evolution of the motion
the walls was recorded with a video camera. A typical p
tern on the surface of a sample in the austenitic state is
played in the photomicrograph in Fig. 1a. In Fig. 1b the sa
section is shown in the martensitic state. The boundarie
microcrystals and martensitic domains in the form of pla
or stripes differently oriented in different microcrystals a
clearly seen. The observations were performed in 0–10
fields, and the variations of the sample temperature w
monitored with an accuracy of about 0.03 K.

As a result of the inhomogeneity of a polycrystallin
sample, the processes leading to the formation of marten
domains in each microcrystal proceed at their own individ
temperature~a microcrystal is about 0.3 mm in size and t
variance of the transition temperatures is approximately 1!.
Appreciable qualitative differences in the processes lead
to the formation of martensitic domains in different micro
rystals are also observed. Specifically, the velocity of
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walls and the temperature range where the phase bounda
mobile are different. Typical data characterizing the tempe
ture variance of the direct and reverse structural transition
different microcrystals in the same sample are displayed
Fig. 2. In this figure the arbitrary numberN of a microcrystal
in the field of view of the microscope is plotted along th
ordinate in order of increasing transition onset temperatu
It is evident from this plot that indifferent micro
crystals not only the transition onset point but also the te
perature range where the phase transition boundary pa
through the entire microcrystal are somewhat different in d
ferent microcrystals, as is the width of the temperature h

FIG. 1. Photomicrograph of the surface of a Ni2.19Mn0.81Ga crystal in the
austenitic~a! and martensitic~b! states.
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teresis loop. The magnetic field dependence of the ph
transition parameters and of the characteristic features o
motion of the interphase boundaries was also studied loc
in individual sections of the sample.

2.2. Temperature and concentration dependences of the
magnetic and electric properties

The experimental temperature dependences of the r
tivity r(T) and the low-field magnetic susceptibilityx(T)
obtained for some alloys are presented in Fig. 3. A kink w
observed in the curvesr(T) at the point of a magnetic phas
transition, and a jump occurred at the point of a structu
phase transition. The increase in the slope of the curver(T)
at the transition from the paramagnetic to the ferromagn
state can be attributed to a decrease in the scatterin
charge carriers by magnetic fluctuations. The jump in
curvesr(T) is due to the critical structural fluctuations in th
region of formation of a martensitic phase. In the curv
x(T), as temperature decreases, the signal increases abr
at the point of a magnetic phase transition and it decrea
just as abruptly at the point of a structural phase transit
This decrease is due to an increase in the magnetic an
ropy of Ni21xMn12xGa in the tetragonal phase. Near a stru
tural phase transitionr(T) and x(T) exhibit temperature
hysteresis~which increases withx!. The phase transition is

FIG. 2. Variance of the temperatures of the direct (TAM) and reverse (TMA)
martensitic transitions for the sample Ni2.19Mn0.81Ga.
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characterized by the pointsTAM and TMA of the direct
~austenite–martensite! and reverse~martensite–austenite!
transitions (TAM,TMA), respectively. For simplicity, the
curves obtained during cooling are displayed in Fig. 3.
the composition changed~nickel content increased at the e
pense of manganese!, the magnetic and structural phase tra
sition temperatures converged, and the values ofTM andTC

were essentially identical forx50.18–0.20. Figure 4 show
TM(x) andTC(x) constructed from the current experiment
data.

2.3. Martensitic domain structure and the effect of a
magnetic field on the transition point

We investigated experimentally the effect of a magne
field on the formation of structural defects accompanying
martensitic transition in polycrystalline samples with nons
ichiometric composition Ni2.19Mn0.81Ga. The martensitic
transition temperature in a sample with this composition
close to the Curie point (TC'338 K, TAM'337 K, TMA

FIG. 4. Concentration dependences of the structural phase transition
peratureTM and the magnetic phase transition temperatureTC of the system
of alloys Ni21xMn12xGa ~experiment!.
ity
FIG. 3. Temperature dependences of the resistiv
~a! and magnetic susceptibility~b! of the alloys
Ni21xMn12xGa with x50 ~1!, 0.05 ~2!, 0.10 ~3!,
0.13~4!, 0.16~5!, and 0.19~6!. The arrows mark the
phase transition points.
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'342 K!. The transition in temperature therefore occu
from the paramagnetic austenitic phase to the ferromagn
martensitic phase and vice versa.

In the experimentTAM andTMA are observed to increas
in a magnetic field. They increase linearly with the field w
a slope of about 0.1560.02 K/kOe in 2–10 kOe fields, while
slower growth is observed in fields below 2 kOe~Fig. 5!.
Data are presented for one of the crystallites. Since the
crease in the transition temperature does not exceed 1
even a 10 kOe field and remains of the same order of m
nitude as the nonuniformity of the transition temperatu
over the volume of the sample, it becomes understand
why the shift of the structural transition point in a magne
field cannot be observed by other methods.

In Ref. 7 the shift of the martensitic transition temper
ture of a stoichiometric single-crystal Ni2MnGa sample in a
magnetic field was investigated by the dilatometric meth
In this case the authors observedTAM andTMA to decrease
with increasing field. This result might be due to the fact th
in contrast to our experiments, the structural transition occ
from a ferromagnetic austenitic phase to a ferromagn
martensitic phase.

We also studied the effect of a magnetic field on t
kinetics of a martensitic transition, and we demonstrated
the motion of a phase boundary can be controlled by a m
netic field. Turning on a magnetic field in a certain tempe
ture range, which depends on the magnitude of the fi
~somewhat aboveTAM), during cooling of the sample give
rise to motion of the phase boundary with formation of m
tensite. Turning off the field in a certain temperature ran
~somewhat aboveTMA) with the sample temperature increa
ing gives rise to motion of the phase boundary in the op
site direction with formation of austenite.

The velocity of the phase interface with decreasing te
perature~austenite–martensite transition! is higher than with
increasing temperature~martensite–austenite transition!.
Typical velocities are 1022 and 5•1023 cm/s, respectively. It
was also noted that there was a delay of about 1 s betw
the field being turned on or off and the phase boundary
ginning to move.

FIG. 5. Temperatures of the directTAM and reverseTMA martensitic tran-
sitions versus the external magnetic field for one section of the sam
Ni2.19Mn0.81Ga.
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3. THEORY

3.1. Phase diagram of a cubic ferromagnet

We employ Landau’s phenomenological model of pha
transitions to analyze the phase diagram of the ferromag
Ni21xMn12xGa. We consider a cubic ferromagnet with th
point symmetry groupOh and a magnetic phase transitio
which is accompanied by the onset of spontaneous mag
zationM , and a characteristic ferroelastic phase transition
a tetragonal phase withD4h symmetry, with the onset o
spontaneous deformations.8–11 In this case the order param
eters describing the structural transformations are com
nents of the macroscopic deformation tensoreik . We de-
scribe the magnetic phase transitions by components of
macroscopic magnetizationM . Then the expression for th
thermodynamic potential of the ferromagnet can be writte

F5
1

2
~c1112c12!e1

21
1

2
a~e2

21e3
2!1

1

2
c44~e4

21e5
21e6

2!

1
1

2
be3~e3

223e2
2!1

1

4
c~e2

21e3
2!21

1

A3
B1e1m2

1B2F 1

A2
e2~m1

222
2!1

1

A6
e3~3m3

22m2!G
1B3~e4m1m21e5m2m31e6m3m1!1

1

2
a1~m1

2

1m2
21m3

2!1
1

4
d1~m1

21m2
21m3

2!21K1~m1
2m2

2

1m2
2m3

21m3
2m1

2!2nTe1 . ~1!

Here theei are linear combinations of the components of t
deformation tensoreik :

e15
1

A3
~exx1eyy1ezz!, e25

1

A2
~exx2eyy!,

e35
1

A6
~2ezz2exx2eyy!,

e45exy , es5eyz , e65ezx ,

a, b, andc are linear combinations of the components of t
elastic moduli of second, third, and fourth orders, resp
tively, and are given by

a5c112c12, b5
1

6A6
~c1112c1121c123!,

c5
1

48
~c11111c111223c112228c1123!,

m5M /M0 , M0 is the saturation magnetization far from th
Curie point,a1 andd1 are exchange constants,B1 andB2,3

are, respectively, the exchange and relativistic magnetos
tion constants,K1 is the first cubic anisotropy constant, an
n is the thermal expansion coefficient.
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As the point of the structural phase transition from t
cubic to the tetragonal phase with a two-component or
parameter (e2 ,e3) is approached, the elastic modulusa
5c112c12 approaches zero. In the expression for the f
energy, only the terms that are responsible for this transi
are retained in the terms containing the third and fourth po
ers of the components of the deformation tensor. The th
order terms present in the thermodynamic potential give
to a first-order structural transition.

The expression~1! describes the case in which the ma
netic and martensitic phase transition temperatures are c
to one another, as well as the situation in which these t
peratures differ substantially. In the first case, near the m
tensitic transition temperature the magnetic moment va
strongly with temperature, both in direction and magnitu
In the situationTC.TM , the structural phase transition
accompanied primarily by a change in the direction of
magnetization.

Minimizing the thermodynamic potential with respect
the components ofthe deformation tensore1 , e4 , e5 , ande6,
which are not responsible for the structural phase transit
the expression~1! becomes

F5F01
1

2
a~e2

21e3
2!1

1

3
be3~e3

223e2
2!1

1

4
c~e2

21e3
2!2

1B2F 1

A2
e2~m1

22m2
2!1

1

A6
e3~3m3

22m2!G
1

1

2
a~m1

21m2
21m3

2!1
1

4
d~m1

21m2
21m3

2!2

1K~m1
2m2

21m2
2m3

21m3
2m1

2!, ~2!

where

a5a11
nB1T

A3 ~c1112c12!
, d5d12

B1
2

6~c1112c12!
,

K5K12
B3

2

2c44

are the magnetostriction-renormalized exchange const
and the first cubic-anisotropy constant.

To find all possible structural and magnetic phases,
potential~2! must be minimized with respect to the variabl
e2 , e3 , m1 , m2 , andm3. As a result, we find the following
states of the ferromagnet under study and their stability c
ditions, choosing for definitenessb.0, c.0, and K,0
~which corresponds to magnetization orientation in the@111#
direction in the cubic phase; this state occurs in the stoic
metric alloy Ni2MnGa!.

1. Cubic paramagnetic phase

m15m25m350, e25e350,

stable fora>0 anda>0.
2. Tetragonal paramagnetic phase

m15m25m350, e250, e352
b1Ab224ac

2c
,

r

e
n
-
-
e

se
-

r-
s
.

e

n,

nts

e

n-

-

stable for

a>
2Bb

A6 c
, a<

b2

4c
, a>

b2

4c
2S aA6c

4B
2

b

2Ac
D 2

~for simplicity we drop the subscript onB2).
3. Cubic ferromagnetic phase

e25e350, m15m25m35
m

A3
, m252

a

d24q/3
,

stable fora<0 anda>B2/q, whereq5uKu.
4. Tetragonal canted ferromagnetic phase

m1
25m2

252
1

3

a

d24q/3
1

Be3

A6 q
,

m3
252

1

3

a

d24q/3
2

2Be3

A6 q
,

e250, e352
b1Ab224c~a2B2/q!

2c
,

stable for

a<
b2

4c
1

B2

q
,

a>
b2

4c
1

B2

q
2SA2

3

q

B

aAc

d24q/3
1

b

2Ac
D 2

,

a<2
A6 bB

4cq S d2
4q

3 D .

5. Tetragonal collinear ferromagnetic phase

m15m250, m3
252

1

d S a1
4Be3

A6
D ,

e250, ae31be3
21ce3

31A2

3
Bm250,

stable in the region bounded by the curves

a5
b2

4c
1

B2

q
2SA2

3

qaAc

B~d24q/3!
1

b

2Ac
D 2

, a<0

and

a5
b2

4c
2S aA6c

4B
2

b

2Ac
D 2

, a>0

and the upper part of the discriminant curve of the cu
equation determining the deformatione3 in this phase~see
Eq. ~5! below!.

In the cubic ferromagnetic phase 3, the magnetizat
M i @111#. In the canted ferromagnetic tetragonal phase
the magnetizationM changes direction from the@111# to the
@001# axis as the temperature changes. Finally,M i @001# in
the tetragonal collinear phase 5.

It follows from symmetry considerations that besid
these states, other tetragonal phases with the same en
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and domain of stability as those indicated above can a
occur in a ferromagnet. States withM i @100# andM i @010#
are energy-equivalent to phase 5. Canted states, which
similar to phase 4, and in which the magnetization chan
direction from the@111# to the @100# and @010# axes, and in
which the deformations are given by

e352
b1Ab224c~a2B2/q!

2c
, e2

253e3
2 , ~3!

can arise in the same manner. The existence of sev
phases with the same energies and stability regions lead
the existence of structural and magnetic domains in fe
magnets. We note that from the standpoint of a tetrago
distortion of the lattice, phase 5 is identical in terms of sy
metry to phase 4, and therefore transitions between th
phases are isostructural.

The lines of phase transitions between possible states
determined by energy equality between the phases. The
pressions for the phase transition lines are presented in
Appendix. The phase diagram of a ferromagnetic in thea –a
plane is shown schematically in Fig. 6. The following pha
transitions are possible from the paramagnetic cubic phas
along the lineAB — a first-order structural phase transitio
to a tetragonal paramagnetic phase 2; along the lineCE — a
second-order isostructural transition to the cubic ferrom
netic phase 3 withM i @111#; and, along the lineEA —
first-order magnetic and structural transitions to the tetra
nal ferromagnetic phase 5. Aside from the transition 1
indicated above, a second-order isostructural magnetic t
sition to the tetragonal ferromagnetic phase 5~the lineAD)
can occur from the tetragonal paramagnetic phase 2. F
order structural and orientational transitions to tetrago
phases 4~the line H8H) and 5~the line HE) are also pos-
sible from the cubic ferromagnetic phase 3. A second-or
isostructural orientational phase transition to phase 5~the
line HK) occurs from phase 4.

In summary, the domain of absolute stability of phas
lies in Fig. 6 in the first quadrant above the lineCEAB. For

FIG. 6. Theoretical phase diagram of a cubic ferromagnet in the coordin
of the structural~a! and magnetic (a) order parameters~schematically!: 1 —
cubic paramagnetic phase; 2 — tetragonal paramagnetic phase; 3 — cubic
ferromagnetic phase; 4 and 5 — isostructural tetragonal ferromagnet
phases. Solid lines — phase transition lines, dashed lines — ph
instability lines.
o

re
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re
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e
1:

-

-
2
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st-
l

er

1

phase 2 this region is bounded by the lineBAD, and for
phase 3 it is bounded by the lineH8HEC. Phase 4 is abso
lutely stable in the regionH8HK, and phase 5 is stable in th
regionKHEAD. The lines of instability in Fig. 6 are dashed
the linesCO andOO8 for phase 1,M 8M andMD for phase
2, F8F and FC for phase 3,G8GHK for phase 4, and
KLL8PD for phase 5. The coordinates of the characteris
points of this phase diagram are presented in the Appen

In phase 5, the thermodynamic potential can have on
two minima as a function of the deformation. In the latt
case there can exist two phases, differing with respect to
magnitude of the spontaneous deformation but identical w
respect to the magnetic and crystallographic symmetries~the
region of a double-well potential!. The cubic equation

ce3
31be3

21ãe32A2

3

a

d
B50, ~4!

which determines the deformatione3 in phase 5, possesse
three real roots, and its discriminant is negative. Hereã5a
24B2/2d. Stability analysis of the solutions shows that on
two of them correspond to an energy minimum. The d
criminant curve of the cubic equation~4! can be expressed a

a5
A6 db3

27Bc2 F12
9cã

2b2
6S 12

3cã

b2 D 3/2G . ~5!

The region of the double-well potential lies in Fig. 6 insid
the contourQ8SQLL8PD, the linesQ8SQ andLL8P being
the discriminant curves~5!.

The lines of isostructural phase transitions between
metastable tetragonal phases 5 (RE) and between the stabl
tetragonal phases 5 (ER8), with differing magnitudes of
spontaneous deformation, are determined by the expres

a5
4

3

B2

d
1

2

9

b2

c
2A6 B

a

d

c

b
. ~6!

We note that isostructural transitions in phase 5 are
lated to the ‘‘magnetic pressure’’Bm2 due to the magneto
elastic interaction.

When the diagram is traversed along the lineZZ, first a
second-order magnetic transition of the order–disorder t
occurs from the paramagnetic cubic phase to the ferrom
netic cubic phase. This transition is followed by a first-ord
orientational martensitic transition from a cubic ferromagn
with M along a body diagonal of the cube to a tetrago
ferromagnet with magnetization in a~110!-type plane.

When the phase diagram is traversed along the
Z8Z8, a cubic ferromagnetic phase with magnetization alo
a body diagonal of the cube arises in an ordering-type tr
sition on the lineCE. At the pointW of the martensitic tran-
sition on the lineHE, the cubic ferromagnetic phase tran
forms to a tetragonal martensitic phase withM along the
@001# axis. Next, as temperature decreases, a transition f
the tetragonal collinear phase to a canted tetragonal ma
sitic phase withM in a ~110! type plane occurs on the lin
HK.

In the case of the thermodynamic pathZ9Z9, first-order
magnetic and structural phase transitions occur simu

es

e-
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neously on the lineEA from the cubic paramagnetic phase
the tetragonal ferromagnetic phase withM along the@001#
axis.

Finally, when the diagram is traversed along the li
Z-Z-, first a martensitic transition from the cubic parama
netic phase to the tetragonal martensitic paramagnetic p
occurs on the straight lineAB, and then a second-order iso
structural martensitic transition of the order–disorder ty
from phase 2 to phase 5 occurs on the lineAD.

We note that all indicated sequences of phase transit
should lead to the behavior typical of the various magne
characteristics of a ferromagnet. In particular, the indica
temperature phase transitions should be accompanied by
responding kinks. It is this behavior of the susceptibility
stoichiometric samples that was observed in Refs. 2–5
transitions to an ordered state and martensitic transitions

It follows from the phase diagram that transitions b
tween cubic paramagnetic and ferromagnetic phases~the line
CE! and tetragonal paramagnetic and ferromagnetic ph
~the line AD! are second-order phase transitions. This i
typical situation for phase transitions in magnets at the C
point. The transition from the cubic~austenite! paramagnetic
phase to the tetragonal~martensite! ferromagnetic phase is
first-order phase transition~the line EA!. This effect is en-
tirely due to the interaction of structural and magnetic or
parameters. For similar values ofTM andTC , the first-order
phase transition should be accompanied by a latent hea
transition and hysteresis in the temperature dependence
various characteristics of the ferromagnet. This has been
served experimentally in nonstoichiometric alloys.3–5

To compare theory and experiment, thea–a diagram we
have constructed can be represented in theT–x plane. To do
so, we expand the coefficientsa and a in T and x near the
temperaturesTM0 and TC0 of the structural and magneti
transitions with stoichiometric composition (x50), truncat-
ing the series at the linear terms,

a~T,x!5a0~T2T12kx! and a~T,x!5a0~T2TC01gx!,
~7!

where

T15TM02
A6 Bc

a0b

a0

d
~TC02TM0!2

2b2

9ca0
2

4B2

3da0
,

and a0 , a0 , k, and g are proportionality coefficients. Th
temperatureT1 was chosen such that in thea –a diagram the
point TM0 ~at x50) corresponding to the martensitic trans
tion lay within the rangeHE ~the pointW!.

The phase transition lines in theT–x plane have the
form

1↔2: T5T11
2b2

9ca0
1kx, ~8!

1↔3: T5TC02gx. ~9!

Analytic expressions for all other transition lines are t
complicated to present here. The coordinates of the cha
teristic points of this diagram are given in the Appendix.

The T–x phase diagram constructed in this manner
shown in Fig. 7. Since many parameters of the problem
-
se

e
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c
d
or-
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-
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a
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r

of
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b-

c-

s
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unknown at the present time, a comparison of this theoret
diagram with the experimental diagram in Fig. 4 will only b
qualitative. The diagram presented in Fig. 7 was obtain
with parameter valuesTC05375 K, TM05200 K, a0

5b/TM0 , a05d/TC0 , d;108 erg/cm3, b/c;0.5, b
;1012erg/cm3, B;107 erg/cm3, q;104 erg/cm3, g5295 K,
andk5800 K. The notation in Fig. 7 is the same as in Fig.

3.2. Thermodynamic estimate of the effect of a magnetic
field and pressure on the martensitic phase
transition temperature

The effect of a magnetic field and pressure on the te
perature of a first-order structural transition can be estima
using the Clausius–Clapeyron thermodynamic equation.12

In phase equilibrium the thermodynamic potentialsFM

andFA of martensitic and austenitic phases, which are fu
tions of temperatureT, magnetic fieldH, and pressureP, are
equal:

FM~T,H,P!5FA~T,H,P!. ~10!

The condition~10! determines the phase transition surface
the space (T,H,P). Near a fixed point with coordinatesH0

50, TM , and P0, the phase transition surface can be d
scribed by the equation

S ]FM

]T
2

]FA

]T DDT1S ]FM

]H
2

]FA

]H DDH

1S ]FM

]P
2

]FA

]P DDP50, ~11!

whereDT5T2TM , DP5P2P0,

]FM

]T
2

]FA

]T
5SA2SM5

Q

TM
, ~12!

]FM

]H
2

]FA

]H
5MAVA2M MVM , ~13!

]FM

]P
2

]FA

]P
5VM2VA , ~14!

S is the entropy,Q is the latent heat of the phase transform
tion at temperatureTM , andM andV are the magnetization
and volume of the corresponding phase.

FIG. 7. Phase diagram of a cubic ferromagnet in the coordinates temp
ture T–concentrationx ~calculation!.



th
ta

r-
it
a

he
s
th

or

in

iti
,

ed
er

e

ns

e

en
ge

as
b

tio
fe
se

in

n

-
ea

the

tate

on
a

de-
g

us-
r
d it
ar-
nd

ase
l-
e
nite
ch
in

a

lue

itic

em-

th

to
en-
ran-
e to
lot-
the

is
n-

the

961JETP 88 (5), May 1999 Bozhko et al.
Substituting the expressions~12!–~14! into Eq. ~11!
makes it possible to determine the temperature shift of
martensitic transition induced by a magnetic field at cons
pressure,

DT5~M MVM2MAVA!HTM /Q, ~15!

and the pressure-induced shift ofTM in a constant magnetic
field,

DT5~TM /Q!~VA2VM !DP. ~16!

Equation~15! describes the shift of the martensitic transfo
mation temperature when the martensitic and austen
phases are ferromagnetic. According to the phase diagr
~Figs. 6 and 7!, this situation prevails in Ni21xMn12xGa on
the linesH8H andHE.

When the martensitic transition temperature is hig
than the ferromagnetic-transition temperature, both pha
are paramagnetic at a structural transformation and
change in the transition temperature can be cast in the f

DT5~xMVM2xAVA!H2TM/2Q, ~17!

where x is the magnetic susceptibility. This occurs
Ni21xMn12xGa on the lineAB ~Figs. 6 and 7!.

When a structural transition occurs from the austen
paramagnetic phase to a martensitic ferromagnetic phase
magnetization of the paramagnetic phase can be neglect
comparison with the ferromagnetic phase, and the temp
ture shift has the form

DT5M MVMHTM /Q. ~18!

This situation occurs in Ni21xMn12xGa on the lineEA of the
first-order phase transition~Figs. 6 and 7!. Therefore the
magnetizationM M is nonzero on the phase transition lin
itself.

Equating the change in the temperature of the marte
tic transition in a magnetic field~18! and the change~16! in
TM under external pressure, we obtain the estimated valu
DP for which the same change would have occurred inTM

in a field H:

DP5VMM MH/~VA2VM !. ~19!

4. DISCUSSION

Comparison of Figs. 4 and 7 shows that the experim
tally obtainedT–x phase diagram in the concentration ran
0,x,0.20 agrees qualitatively with the computedT–x dia-
gram. Specifically, the temperature of the magnetic ph
transition from the cubic paramagnetic phase 1 to the cu
ferromagnetic phase 3 decreases linearly with concentra
The temperature of the phase transition from the cubic
romagnetic phase 3 to the tetragonal ferromagnetic pha
increases with concentration.

We conclude above on the basis of a calculation us
the Landau theory of phase transitions that on the lineEA
~Fig. 7!, the martensitic and magnetic phase transitio
merge to a single first-order transition~paramagnetic
austenite–ferromagnetic martensite!. Such a coincident sec
tion of the phase diagram was found experimentally n
concentrationsx50.18–0.20~Fig. 4!. Another indirect con-
e
nt

ic
ms

r
es
e
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c
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of
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e
ic
n.
r-

5

g

s

r

firmation of a first-order magnetic phase transition here is
linear dependence ofDT on H implied by Eq.~18!. Indeed,
when a martensitic transition occurs in a paramagnetic s
of the sample, according to Eq.~17! the shift of the marten-
sitic transition temperature should depend quadratically
the external field. If the martensitic transition occurs in
ferromagnetic state of the sample, a strongly nonlinear
pendenceDT(H) should also be expected in fields rangin
from 1 to 10 kOe, since, as one can see from Eq.~15!, the
slope of the linear dependenceDT(H) is determined by the
difference of the magnetizations of the martensitic and a
tenitic phases. It is known5,7 that the magnetization curve fo
austenite first grows more rapidly than for martensite, an
saturates in fields near 2 kOe. The magnetically harder m
tensite saturates more slowly, only in fields 8–10 kOe, a
the saturation magnetization is higher. Thus, in this c
DT(H) should be nonlinear in fields 1–8 kOe. It also fo
lows from Eq. ~15! that the sign of the effect should b
negative in this case, since the magnetization of auste
increases with field more rapidly than in martensite. Su
behavior probably occurred in the experiments described
Ref. 7.

The shift of the martensitic transition temperature in
magnetic field can be estimated from Eq.~18!. Assuming the
saturation magnetizationMs.300 G,5,7 martensitic transition
temperatureTM .340 K, and latent heat of transitionQ
.5•108 erg/cm3, we obtaindDT/dH.0.2 K/kOe. This esti-
mate agrees satisfactorily with the experimental va
.0.15 K/kOe.

Assuming the relative change in volume at a martens
transformation to be (VM2VA)/VM;1022, we estimate the
pressure giving rise to the same change in the transition t
perature as a saturating magnetic field. Using Eq.~19! we
obtain DP;108 Pa. This estimate agrees qualitatively wi
the experimental data:13 DTM.21.5•1028DP.21.5 K.

The results obtained in this work also make it possible
estimate the compositional inhomogeneity of the experim
tal samples, assuming that the variance of the structural t
sition temperatures over the sample surface is entirely du
compositional inhomogeneity. Comparison of the data p
ted in Figs. 2 and 4 shows that the inhomogeneity of
concentrationx that yields a variance.1 K in the transition
temperatures over the sample is.0.001.

We thank M. Matsumoto for providing the samples. Th
work was partially supported by the Russian Fund for Fu
damental Research~Grant No. 96-02-19755! and ISSEP
~Grant No. 615p!.

APPENDIX

The phase transition lines determined by equating
energies of the phases are

1↔2: a5
2b2

9c
for a>

8

3

bB

A6 c
;

1↔3: a50 for a>B2/q;
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1↔5: 27cdã42~6b2d236cB2!ã32~8b2B2

260A6 bcBdã254c2d2ã2!ã22~54b2cd2ã2

2324c2B2dã2272A6 bcB3ã112A6 b3Bdã!ã

127c3d3ã4236A6 bc2Bd2ã31324c2B4ã2

212b2cB2dã219b4d2ã22128A6 b3B3ã/950;

~3!

and for 0,a,(8/3)bB/A6c

2↔5: a5
b2

4c
2

1

4c S b2A6
ca

2BD 2

for a>
8

3

bB

A6 c
;

3↔4: a5
2b2

9c
1

B2

q
for a,2

3

2 S d2
4q

3 D bB

6cq
;

3↔5: 9cq̃a42~2b2q̃19cB2!ã31~2b2B2

120A6 bcBq̃ã224c2q̃2ã2!ã21~24cq̃2ã2

1108c2B2q̃ã2218A6 bcB3ã24A6 b3Bq̃ã !ã

116c3q̃3ã4116A6 bc2Bq̃2ã3281c2B4ã2

24b2cB2q̃ã224b4q̃2ã2132A6 b3B3ã/950; ~4!

4↔5: a5
b2

4c
1

B2

q
2SA2

3

q

B

aAc

d24q/3
1

b

2Ac
D 2

for a,22S d2
4q

3 D bB

A6 cq
,

where

ã5
a

d
, ã5a2

4B2

3d
, q̃5

dq

d24q/3
.

The coordinates of the characteristic points of this ph
diagram~Fig. 6! are

AS 8

3

bB

A6 c
,
2b2

9c D , M S 2bB

A6 c
,
b2

4cD ,

HS 2
2bB

A6 cq
S d2

4q

3 D ,
2b2

9c
1

B2

q D ,
e

FS 0,
B2

q D , GS 2A3

8S d2
4q

3 D bB

cq
,

b2

4c
1

B2

q D ,

SS 0,
4B2

3d D , ES 0,
2b2

9c
1

4B2

3d D , L8S 0,
b2

4c
1

4B2

3d D .

The characteristic points of theT–x phase diagram~Fig.
7! are

AH XA5
1

k1g FTC02T11
8bB

3A6 ca0

2
2b2

9ca0
G ,

TA5
1

k1g FkS TC01
8bB

3A6 ca0
D 1gS T11

2b2

9ca0
D G ; ~5!

EH XE5
1

k1g FTC02T12
2b2

9ca0
2

4B2

3da0
G ,

TE5
1

k1g FkTC01gS T11
2b2

9ca0
1

4B2

3da0
D G .
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A variety of self-propagating high-temperature synthesis in thin films has been found and
investigated. This modification, called multiple self-propagating high-temperature synthesis, occurs
in the solid phase and is a reversible phase transition. Multiple self-propagating high-
temperature synthesis is similar in many respects to a metal–insulator phase transition. It is
shown that for eutectic systems it is equivalent to a repeated transition through the eutectic
temperature of bulk samples. It is inferred that multiple self-propagating high-temperature
synthesis in bilayer films is governed by phase separation mechanisms that take place during
eutectic solidification and eutectoid decomposition. ©1999 American Institute of
Physics.@S1063-7761~99!01705-9#
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1. INTRODUCTION

Solid-phase reactions in thin films have been an ob
of investigationin the past,1 and this activity continues un
abated~see, for example, Refs. 2–4!. Above all else, they are
studied because thin layers are the foundation of mod
microelectronics. Solid-phase reactions occur at much lo
temperatures in thin films than in bulk samples. The produ
of solid-phase reactions can be not only compounds but
solid solutions of reagents that result from the mixing
layers.1,5,6 Layer mixing has also been observed during
formation of quasicrystals7 and in heterostructures.8 Searches
for optimal heat-treatment temperatures, and times at wh
these reactions occur, are exclusively empirical.

It is believed that the dominant mechanism of sol
phase reactions is diffusion along grain boundaries. Ho
ever, such an analysis neglects the possibility that s
propagating high-temperature synthesis~SHS! is initiated in
thin films. SHS in powders is well known.9,10 The kinetics
and propagation mechanism of an SHS front in bilayer t
films have been described only recently.11,12 These papers
also show that SHS is a modification of solid-phase reacti
in thin films. Previously,13,14SHS had been observed in mu
tilayers, where initiation was accomplished by a point h
source. Samples for investigating SHS in bilayer films co
sist of layers of reagents successively deposited on var
substrates. SHS occurs between the layers of reagents
sample~substrate! temperatureTs becomes equal to the ini
tiation temperatureT0. A nucleus of reaction products form
on the sample, and the SHS front propagates along
sample surface.

Experiments show that SHS comes in two forms in th
films. The first is similar to SHS in powders, where reactio
9631063-7761/99/88(5)/5/$15.00
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produce compounds with relatively high negative formati
enthalpy .9,10 Thus, for the Al/Ni film system an Ni2A3 phase
is observed in the reaction products after passage of the
wave, leaving no trace of Ni or Al.11,12 The second is char
acterized by the emergence of a second front following p
sage of the SHS wave along the sample. This is followed
phase stratification. SHS in Al/Ge films is of the second ty
where the products of the reaction largely contain solid
lutions of aluminum and germanium, and only a negligib
quantity of metastable phases is formed.15 After the first SHS
cycle, the reagents are therefore mixed. Since the orig
reagents form after the first cycle, SHS can be reinitiated
the sample. Thus, SHS was initiated about 300 times i
single Al/Ge sample, and could be initiated further. This ph
nomenon, called multiple SHS, emerges only in type
samples. The motion of the SHS front and phase separa
front can be easy to observe visually. The present paper
scribes the basic characteristics of multiple SHS and
physical interpretation.

2. EXPERIMENTAL PROCEDURE AND EXPERIMENTAL
RESULTS

The procedure for obtaining samples and the method
initiating SHS in bilayer thin films are presented in Refs.
and 12. In the experiments, Al/Ge samples obtained by s
cessive deposition of germanium and aluminum films
glass or mica substrates were investigated. The thicknes
the germanium and aluminum layers ranged from 40
200 nm. The phases formed in the synthesis process w
identified with a DRON-4-07 diffractometer~Cu Ka radia-
tion!. After a sample is heated to the initiation temperatu
T055502600 K in a uniform temperature field, a nucleus
© 1999 American Institute of Physics
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964 JETP 88 (5), May 1999 Myagkov et al.
a new phase randomly forms on the surface of the sam
~Fig. 1a!. The SHS front moves along the surface and refle
the temperature topography of the film. The velocityv f of
the SHS front with initiation temperatureT0 is v f.3
31023 m/s, and increases with temperature approxima
according to the Arrhenius law~Fig. 2!. The SHS front can
be stopped by reducing the film temperature below the
tiation temperatureT0.

A decrease in sample temperature gives rise to a ph
separation front, which starts from the boundary left beh
by the SHS front. The velocityvph of the phase separatio
front increases strongly with decreasing substrate temp
ture Ts , and starts in the ‘‘soft’’ regime~Fig. 2!. The emer-
gence of a phase separation front after passage of an
wave was first noted in Ref. 15. The first SHS front ha
sharp boundary, since there is a difference in reflection fr
the specular surface of the original film and the surface of
reacted sample, which produces diffuse scattering.
boundary of the subsequent SHS fronts is more diffuse,
it becomes much less appreciable after repeated SHS. V

FIG. 1. a! Photograph of an SHS front and DBM clusters in the react
products of the sample Al~100 nm!/Ge~100 nm!. b! Microstructure of a bi-
layer Al~100 nm!/Ge~100 nm! film sample containing DBM clusters.

FIG. 2. SHS front velocityv f(Ts) and the phase separation front veloci
vph(Ts) as a function of substrate temperatureTs .
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observations show that SHS fronts resulting from repea
initiation always start at the same point and mimic the m
phological features of the motion of the first SHS front. T
phase composition of Al/Ge films does not depend on
numbern of SHS cycles~Fig. 3a!, but on the thickness ratio
of the reagent layers and the velocity of the phase separa
front. For vph.131023 m/s and variousn, largely solid
solutions of aluminum and germanium are produced; o
negligible amounts of metastable phases exist~Fig. 3a!.
However, for n51 and vph.131021 m/s, the metastable
phases stabilize: an Al5Ge3 phase emerges for Al~100 nm!/
Ge~100! films ~Fig. 3b!, and an AlGe phase forms in
Al ~100 nm!/Ge~120 nm! samples.15

Investigations show that the temperatureTph at which a
phase separation front emerges is the same as the initia
temperatureT0, which is 100–150 K below the eutecti
temperatureTE . In bulk sample, the phases separate a
eutectic solidification. It is to be expected that the initiati
temperatureT0 in Al/Ge films corresponds to the temper
ture TE for a bulk Al–Ge alloy. Since the rate of heat re
moval from thin films is higher than for bulk samples,T0

should be less thanTE . The initiation temperatureT0 does
not depend on the thickness ratio of the reagent layers,
as the eutectic temperatureTE does not depend on the com
position of the alloy.

All this suggests that type-II SHS should emerge in
layer film systems for which the equilibrium phase diagra
is of the eutectic type. This was checked for the Pb–Sn s
tem, which has a simple phase diagram of the eutectic t
with eutectic temperatureTE 5456 K. SHS in a Pb/Sn bi-
layer film can be repeatedly initiated atT054402450 K.
Stronger evidence can be gleaned from the initiation of m
tiple SHS in uniform films obtained by deposition o
PbxSn12x, AlxGe12x alloys (0.4,x,0.7). In this case the
initiation temperatures does not depend onx, and are the
same as the corresponding temperatures for Pb/Sn and A
bilayer films. Since the phase separation temperatureTph

5T0 in thin films is different from the eutectic temperatu
TE , the melting temperature of the film was expected to
the same as eitherT0 or TE .

FIG. 3. Diffraction patterns of Al~100 nm!/Ge~120 nm! thin film samples: a!
n51, vph5131023 m/s; n5300, vph5131023 m/s; b! n51, vph51
31021 m/s.
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965JETP 88 (5), May 1999 Myagkov et al.
Figure 4 shows the resistivityr(Ts) of an Al~100 nm!/
Ge~100 nm! film sample as a function of substrate tempe
ture Ts . It follows from the dependencer(Ts) that the
Al ~100 nm!/Ge~100 nm! sample does not undergo any pha
transformations above the temperatureT0. This result was
checked directly. The Al~100 nm!/Ge~100 nm! sample was
obtained by deposition on a cleavage surface of NaCl,
was then transferred to a glass substrate. Microscopic
visual observations clearly confirm a lack of melting up
Ts5850 K .T0. This is surprising, since phase separation
bulk samples results from eutectic solidification. Neverth
less, multiple SHS in thin films occurs in the solid phase, a
is similar to a repeated transition through the eutectic te
perature in bulk samples.

The existence of phase separation is also confirmed
resistivity measurements on a film sample as a function
substrate temperatureTs and the number of SHS cycles. Fig
ure 5 shows the resistivityr of an Al~100 nm!/Ge~100 nm!
film as a function of temperatureTs for three SHS cycles
After initiation of SHS at Ts.T0, the resistivity of the
sample increases. AtTs,T0 the resistivity of the sample
returns to its original value. The fact that the resistivity of t
sample is the same before and after SHS, and that it is
same as the resistivity of the aluminum layer, confirm t
aluminum forms a percolation cluster in the film after pha
separation. Repeated initiation of SHS increases the in
resistivity somewhat; this might be due to oxidation of t
sample by residual oxygen. Multiple SHS is also observed
Al/Si (T0.700 K!, Al/S (T0.750 K!, Al/Zn (T0.770 K!,
Au/Ge (T0.600 K!, and Al/Ti (T0.770 K! film systems.

FIG. 4. Resistivityr of an Al~100 nm!/Ge~100 nm! bilayer film as a func-
tion of substrate temperatureTs .

FIG. 5. Resistivityr of an Al~100 nm!/Ge~100 nm! film sample as a func-
tion of substrate temperatureTs near the initiation temperatureT0 for three
SHS cycles. Arrows show the direction of variation of the resistivity.
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3. DISCUSSION

The fact that the initiation temperatureT0 is the same as
the temperatureTph at which the phase separation fro
emerges provides a basis for considering the SHS front
the phase separation front to be a single pha
transformation wave. Since during multiple SHS the resis
ity changes reversibly and SHS occurs in the solid pha
type-II SHS is a reversible structural phase transition res
bling a metal–insulator phase transition. The microstruct
of these samples is very diverse, but it consists primarily
clusters with a dense branching morphology~DBM
clusters15!. The microstructure of Al–Ge films was studied
connection with the emergence of fractal formations16 as
well as DBM clusters17 within them. The intense interest i
DBM clusters with fractal dimensiondf52 is due to the fact
that they emerge in many physicochemical and biologi
systems. In Al–Ge films, DBM clusters comprise a nucle
of polycrystalline germanium, possessing dendritic structu
with single-crystal aluminum disposed among the branc
of the dendrite.

The phase separation mechanism in Al–Ge films lead
to the formation of DBM clusters was studied in Ref. 17. It
believed that DBM clusters form from an amorphous pha
This agrees with Ref. 18, where it is shown that in Al–G
films with various concentrations there exists an amorph
phase that transforms into stable aluminum and german
phases via intermediate metastable phases. The micros
ture formed in Al/Ge films depends on the numbern of SHS
cycles and the velocityvph of the phase separation fron
After the first SHS front has passed and as the phase s
ration front moves along the surface of the sample, circu
nuclei emerge ahead of the front and subsequently me
with the phase separation front. Microscopic investigatio
show that these nuclei are DBM clusters~see Fig. 1b!, which
can range in diameter from 10mm to several millimeters
~Fig. 1a!. DBM clusters of such sizes are observed duri
annealing in Bi/Al/Mn/SiO multilayers.19 At low front ve-
locities (vph.131023 m/s!, laminar microstructure forms
perpendicular to the phase separation front. This struc
resembles the cellular structure that emerges during dire
crystallization.20

Investigations of sample surfaces on the substrate
show that SHS proceeds over the entire thickness of the fi
even when the layer thickness is.1.5mm. A total thickness
of 3–4mm is probably the maximum for SHS in bilayer thi
films. Subsequent SHS cycles do not alter the original
crostructure; this confirms that multiple SHS proceeds in
solid phase.

With long-term initiation of SHS (n.300), the branches
of DBM clusters break up and the microstructure of the fi
becomes uniform. If rapid mass transfer between layers
the first SHS cycle proceeds perpendicular to the film s
face, then both SHS and phase separation occur in su
quent cycles along the surface on an interphase boun
between the branches of DBM clusters, which contain g
manium, and the single-crystalline aluminum between the
During long-term initiation of SHS, therefore, DBM cluste
break down and phase stratification becomes more subt
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FIG. 6. Degreeh of transformation~a! and SHS
initiation temperatureT0 ~b! of an Al~100 nm! /
Fe2O3~200 nm! film sample as a function of
numbern of SHS cycles.
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Assuming that diffusion between layers precedes t
depth equal to the thickness of the reagent layer,d52
31026 m, and its velocity equals the velocity of the pha
separation frontvph50.231021 m/s, we can estimate th
diffusion coefficient during SHS in thin layers to beD
.dvph50.431027 m2/s. This is 9–10 orders of magnitud
greater than the diffusion coefficient along grain boundarie1

and 1–2 orders of magnitude greater than the diffusion
efficient in the liquid phase. The actual value of the diffusi
coefficient during SHS can be even higher, so that SHS
thin films must be attributed to explosive chemical reactio

Explosive chemical reactions in solids resulting from
multaneous uniaxial deformation and shear deformation
described in Refs. 21 and 22. The estimated diffusion co
ficient in such reactions is 1010–1015 times the value ordi-
narily observed in the solid phase. The proposed mechan
involves the avalanche-like emergence of structural def
at the instant elastic stresses relax. Such a solid is in a sp
state that is neither solid, liquid, nor gaseous. At that inst
the solid becomes permeable, and there is enough time
explosive reactions to occur.21,22An explosive reaction in the
solid phase occurs between Al and Fe2O3.22 The metallic–
thermal reaction between Al and Fe2O3 has been studied in
some depth; its initiation temperature isT05140021500 K,
and the front temperature is approximately 2300 K.

In the present work, SHS was studied in Al/Fe2O3 bi-
layer films,which are type-II and have an initiation tempe
ture T057502770 K. The bulk abundance of iron in th
sample produced after the reaction and the degreeh of trans-
formation were determined by the torque method.6,7 Figure
6a shows the degreeh of transformation as a function of th
numbern of SHS cycles. It is clear from the functionh(n)
that the Fe abundance in the sample increases untiln55, due
to preignition. Forn.5 the degree of transformation is in
dependent ofn. This confirms that multiple SHS is not gov
erned by the exothermal nature of the reaction between
and Fe2O3.

The initiation temperatureT0 does not depend on th
numbern of SHS cycles~Fig. 6b!. Such dependencesT0(n)
are observed in all bilayer film systems in which multip
SHS was obtained. It follows, then, thatT0 in Al/Fe2O3 films
is analogous to the eutectic temperature of bulk Al–Fe2O3

samples. For eutectic solidification and eutectoid decom
sition, phase separation often entails the formation of pla
like structures, where the plate thicknesses can reach se
microns. Multilayers~including bilayer films! are artificial
analogs of such platelike microstructures. The kinetics
mechanism of multiple SHS in thin films should therefore
the same as in the case of the formation and decompos
of plate-like structures during transitions near the eute
a

,
o-

in
.

-
re
f-

m
ts
ial
t,

for

-

Al

o-
e-
ral

d

on
ic

temperature or the temperature of eutectoid decompositio
bulk samples.

The following mechanism of multiple SHS in thin film
can be inferred from the experimental data presented ab
Solid-phase amorphization of the samples occurs after
first SHS front has passed. BelowT05Tph , the amorphous
phase decomposes, depending on the velocity of the p
separation front and the thickness ratio. For eutectic syste
there is a correspondence between the phase equilibrium
gram of the reaction products of bulk samples and the ch
acteristics of SHS. The eutectic temperatureTE and the per-
centage abundance of reaction products determine
initiation temperatureT0 and thickness ratio, respectively
while the liquid eutectic corresponds to the amorpho
phase. Forn.2, SHS does not encompass the entire sam
proceeding instead only at phase boundaries to a thickne
3–4mm. Large stresses are produced at the interph
boundary ahead of the SHS and phase separation fronts,
ducing zones of structural defects. Diffusion is greatly fac
tated in these zones, and conditions for explosive react
set in.21,22 Metastable phases might play a significant role
the initiation of multiple SHS, since their formation enthalp
can be high.

4. CONCLUSIONS

In conclusion, we note that solid-phase reactions in t
films that are in fact SHS reactions occur only at temperat
T0. Rapid mass transfer and diffusion mixing at the atom
level occur only when SHS and phase separation fronts p
After the passage of a phase separation front, diffusion in
film sample once again becomes negligible. This sugg
that layer mixing, often observed in multilayer~bilayer! films
subject to heat treatments and thermal influences,1,5–8,20oc-
curs after type-II SHS in these samples. Multiple SHS is
reversible structural phase transition, similar to a met
insulator phase transition, and can be used in microelect
ics devices.

Multiple SHS corresponds to a transition through t
eutectic temperature in bulk samples. At present the mec
nisms of SHS and solid-phase reactions in thin films are
completely understood. However, the multiple-SHS pheno
enon clearly indicates that these mechanisms are relate
phase separation mechanisms observed during eutectic
lidification and eutectoid decomposition. It is perhaps s
prising, considering the many recent studies of solid-ph
reactions by various methods, that SHS and multiple SHS
thin films went unnoticed, even though these pheonom
can be observed at atmospheric pressure~no vacuum is re-
quired!, using straightforward experimental techniques.



r

.

tt.

d.

967JETP 88 (5), May 1999 Myagkov et al.
* !E-mail: kim@iph.krasnoyarsk.su

1Thin Films: Interdiffusion and Reactions, J. M. Poate, K. Tu, and J. Meie
~eds.!, Wiley, New York ~1978!.

2L. A. Clavenger, B. Arcot, W. Ziegleret al., J. Appl. Phys.83, 9099
~1998!.

3J. S. Huang, S. S. Huang, K. N. Tuet al., J. Appl. Phys.82, 644 ~1997!.
4L. Balzac, V. Freury, F. Duclos, and V. Van Herpen, Phys. Rev. E54, 599
~1996!.

5A. F. Jankovski, L. R. Schrawyer, and M. A. Wall, J. Appl. Phys.68, 5162
~1990!.

6H.-J. Voorma, E. Louis, N. B. Koster, and F. Biykerk, J. Appl. Phys.83,
4700 ~1998!.

7D. A. Lilienfeld, M. Nastasi, N. N. Johnsonet al., Phys. Rev. Lett.55,
1587 ~1985!; J. A. Knapp and D. M. Follstadt, Phys. Rev. Lett.55, 1591
~1985!.

8D. G. Deppe and N. Holonyak, Jr., J. Appl. Phys.64, R93 ~1988!.
9A. G. Merzhanov, inPhysical Chemistry, Kolotyrkin ~ed.!, Khimiya, Mos-
cow ~1983!, p. 6.

10Z. A. Munir and U. Anselmi-Tamburini, Mater. Sci. Rep.3, 277 ~1989!.
11V. G. Myagkov and L. E. Bykova, Dokl. Ross. Akad. Nauk354, 777

~1997!.
12V. G. Myagkov, V. S. Zhigalov, L. E. Bykova, and V. K. Mal’tsev, Zh
Tekh. Fiz.68~10!, 58 ~1998! @Tech. Phys.43, 1189~1998!#.

13T. S. Dyer, Z. A. Munir, and V. Ruth, Scr. Metall. Mater.30, 1281~1994!.
14E. Ma, C. V. Thompson, L. A. Clavenger, and K. N. Tu, Appl. Phys. Le

57, 1262~1990!.
15V. G. Myagkov and L. E. Bykova, JETP Lett.67, 334 ~1998!.
16J. G. Hou and Z. Q. Wu, Phys. Rev. B42, 3271 ~1990!; B. Q. Li, B.

Zheng, and Z. Q. Wu, Phys. Rev. B47, 3638~1993!.
17E. Ben Yakov, G. Deutscher, P. Gareket al., Phys. Rev. Lett.57, 1903

~1986!; S. Alexander, R. Bruisma, R. Hilferet al., Phys. Rev. Lett.60,
1514 ~1988!; G. Deutscher and Y. Lereah, Phys. Rev. Lett.60, 1510
~1988!; Y. Lereah, G. Deutscher, and E. Grunbaum, Phys. Rev. A44,
8316 ~1991!; Y. Lereah, I. Zarudi, E. Grunbaumet al., Phys. Rev. E49,
649 ~1994!.

18U. Koster, Acta Metall.20, 1361~1972!.
19J. S. Langer, Rev. Mod. Phys.52, 1 ~1980!.
20C. H. Shang, Phys. Rev. B53, 13759~1996!.
21N. S. Enikolopyan, A. A. Mkhitaryan, and A. S. Karagezyan, Dokl. Aka

Nauk SSSR294, 912 ~1987!.
22N. S. Enikolopyan, Zh. Fiz. Khim.63, 2289~1989!.

Translated by M. E. Alferieff



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS VOLUME 88, NUMBER 5 MAY 1999
Models of the pseudogap state of two-dimensional systems
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We analyze several almost exactly solvable models of the electronic spectrum of two-
dimensional systems with well-developed short-range-order dielectric~e.g., antiferromagnetic! or
superconducting fluctuations that give rise to an anisotropic pseudogap state in certain
segments of the Fermi surface. We develop a recurrence procedure for calculating the one-
electron Green’s function that is equivalent to summing all Feynman diagrams. The procedure is
based on an approximate ansatz for higher order terms in the perturbation series. We do
detailed calculations of the spectral densities and the one-electron density of states. Finally, we
analyze the limits of the adopted approximations and some important points concerning
the substantiation of these approximations. ©1999 American Institute of Physics.
@S1063-7761~99!01805-3#
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1. INTRODUCTION

In recent years there has been an upsurge of intere
observations of the pseudogap in the spectrum of elemen
excitations of high-Tc superconductors in the range of cu
rent carrier concentrations below the optimum.1,2 The corre-
sponding anomalies were observed in a number of exp
ments, such as measurements of optical conductivity, NM
inelastic neutron scattering, and angle-resolved photoe
sion ~ARPES; see the review cited in Ref. 1!. Probably the
most striking evidence that such an unusual state exists
obtained in ARPES experiments,3,4 which demonstrated the
presence of essentially anisotropic changes in the curr
carrier spectral density within a broad temperature rang
the normal~nonsuperconducting! phase of these systems~see
the review in Ref. 2!. A remarkable feature observed in the
experiments was the presence of a maximum of the co
sponding anomalies close to the point (p,0) in the Brillouin
zone, while no such anomalies were observed in the di
tion of the zone diagonal@the point (p,p)], which actually
means that near the point (p,0) the Fermi surface is de
stroyed, while the Fermi-liquid behavior in the direction
the zone diagonal is retained. In this sense it is usually s
that the pseudogap symmetry is of thed-wave type, which
coincides with the symmetry of the superconducting ene
gap in these compounds.1,2 At the same time, the very fac
that these anomalies exist at temperatures much higher
the superconducting transition temperature and at nono
mal carrier concentrations could point to a different nature
these anomalies, not related directly to Cooper pairing.

There are many theoretical papers in which the auth
attempt to explain the observed anomalies. Two main a
of such research can be identified. One is based on the
that Cooper pairs form at temperatures higher than the su
conducting transition temperature.1,5–7 In the other it is as-
sumed that pseudogap phenomena are due primarily to
ferromagnetic~AFM! short-range-order fluctuations.8–12

Some time ago one of the authors of the present pa
9681063-7761/99/88(5)/12/$15.00
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~M.V.S.! proposed an exactly solvable model of pseudog
formation in a one-dimensional system due to we
developed short-range-order charge density wave~CDW! or
spin density wave~SDW! fluctuations ~see Refs. 13–17!.
Recently this model has attracted the attention of researc
in connection with attempts to explain the pseudogap stat
high-Tc cuprates.11,12,18–20In particular, Schmalianet al.11,12

made an important generalization of this model to the cas
a two-dimensional system of electrons that is in the rand
field of well-developed spin fluctuations~short-range-order
AFM fluctuations!. In the model of hot spots on the Ferm
surface developed in Refs. 11 and 12, the researchers
tained, via the formal scheme developed in Refs. 15–17
detailed description of pseudogap anomalies at high temp
tures ~the weak-pseudogap region!. Tchernyshyov19 and
Ren20 used a simplified variant of the model developed
Refs. 13 and 14, which corresponds to the limit of very lar
correlation lengths of short-range-order fluctuations, to
scribe the pseudogap state determined by well-develo
fluctuations of superconducting~SC! short range order. In a
recent paper,21 this simplified model was used to analyze t
Ginzburg–Landau expansion~for different types of Cooper
pairing! in a system with strong CDW~SDW, AFM! fluctua-
tions using the model of hot patches on the Fermi surf
proposed in the paper. At the same time, Tchernyshyo22

reviewed in detail the model developed in Refs. 13–17 a
found an error in the earlier papers15–17in the analysis of the
case of finite correlation lengths of short-range-order fluct
tions. In Ref. 12 it was suggested that this error is insign
cant, especially in analyzing the two-dimensional hot-s
model, which is of the main interest to the physics of high-Tc

systems.
The aim of the present paper is to analyze a numbe

important aspects of the almost exactly solvable mod
mainly in the two-dimensional case. To this end we consi
both the case of short-range-order CDW~SDW, AFM! fluc-
tuations in the hot-spot model11,12and the possibility of using
the model within the framework of fluctuation Coop
© 1999 American Institute of Physics
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969JETP 88 (5), May 1999 É. Z. Kuchinski  and M. V. Sadovski 
pairing7,19,20 ~SC short-range-order fluctuations!, in particu-
lar, in the most interesting case ofd-wave pairing. In addi-
tion to a general analysis of the reliability of the form
scheme used in Refs. 11–17, we do detailed calculation
the spectral density and the one-electron density of state
the hot-spot model11,12 and in the scenario of fluctuatio
Cooper pairing.

2. THE HOT-SPOT MODEL

2.1. Description of model and an ‘‘almost exact’’ solution
for the Green’s function

The model of a nearly ferromagnetic Fermi liquid23,24 is
based on the picture of well-developed fluctuations of AF
short-rang-order fluctuations within a wide region of t
phase diagram of high-Tc systems. This model introduces th
effective interaction of electrons and spin fluctuations tha
described by the dynamic spin susceptibilityxq(v), which is
determined mainly from the fit to the data of NM
experiments:24

Veff~v,q!5g2xq~v!'
g2j2

11j2~q2Q!22 iv/vsf

, ~1!

whereg is the coupling constant,j is the correlation length
of the spin fluctuations,Q5(p/a,p/a) is the vector of an-
tiferromagnetic ordering in the insulator phase,vsf is the
characteristic frequency of spin fluctuations, anda is the lat-
tice constant~of a square lattice!.

Since the dynamic spin susceptibilityxq(v) has peaks a
wave vectors that are in the vicinity of (p/a,p/a), two types
of quasiparticle arise in the system: ‘‘hot’’ quasiparticl
with momenta in the vicinity of hot spots on the Fermi su
face, and ‘‘cold’’ quasiparticles with momenta in the parts
the Fermi surface surrounding the diagonals of the Brillo
zone,upxu5upyu ~see Refs. 11 and 12!. Such terminology is
related to the fact that quasiparticles from the vicinity of h
spots are strongly scattered through a vector of orderQ by
spin fluctuations~1!, while for particles with momenta fa
from hot spots this interaction is relatively weak.

In what follows we consider the case of high tempe
tures, pT@vsf , which corresponds to the ‘‘wea
pseudogap’’ region in the phase diagram.11,12 In this case
spin dynamics in irrelevant and we can limit ourselves to
static approximation:

Veff~q!5D̃2
j2

11j2~q2Q!2
, ~2!

where D̃ is an effective parameter with the dimensions
energy, which in the model of AFM fluctuations can b
written12

D̃25g2T (
mq

xq~ ivm!5 g2^Si
2&/3 , ~3!

with Si the spin at a lattice site~Cu ions in the CuO2 plane
for high-Tc cuprates!. Below we considerD̃ ~as well asj) a
phenomenological parameter that determines the effec
width of the pseudogap.
of
for

s

f
n

t
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Calculations can be simplified significantly if we repla
~2! with a model interaction of the form~cf. a similar model
in Ref. 8!

Veff~q!5D2
2j21

j221~qx2Qx!
2

2j21

j221~qy2Qy!2
, ~4!

whereD25D̃2/4. Actually, Eq.~4! is quite similar to~2! and
differs quantitatively very little in the most important regio
uq2Qu,j21.

Consider the first-order correction inVeff to the electron
self-energy, represented by the diagram in Fig. 1a:

S~«n ,p!5(
q

Veff ~q!
1

i«n2jp1q
. ~5!

The main contribution to the sum overq is provided by the
region close toQ5(p/a,p/a). Then, writing

jp1q5jp1Q1k'jp1Q1vp1Q–k, ~6!

where vp1Q
a 5]jp1Q /]pa , and integrating overk, we

obtain1!

S~«n ,p!5
D2

i«n2jp1Q1~ uvp1Q
x u1uvp1Q

y u!k sign«n

,

~7!

with k5j21.
The spectrum of bare~free! quasiparticles can be take

from Refs. 11 and 12:

jp522t~cospxa1cospya!24t8 cospxa cospya, ~8!

where t is the nearest-neighbor-hopping integral,t8 is the
next-nearest-neighbor-hopping integral for a square latt
andm is the chemical potential. When real high-Tc systems
were analyzed in Refs. 11 and 12, it was assumed, e.g.
YBa2Cu3O61d , that t50.25 eV andt8520.45t, andm was
fixed by hole concentration. Below we show that the analy
of the situation for different relationships betweent and t8
produces interesting results.

FIG. 1. First- and second-order self-energy diagrams for an electron in
acting with short-range-order fluctuations.
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We now turn to second-order corrections to self-ener
which are depicted in Figs. 1b and 1c. Using~4! we obtain

S~b!5D4 E dk1

p2 E dk2

p2

k

k21k1x
2

k

k21k1y
2

k

k21k2x
2

3
k

k21k2y
2

1

i«n2jp1Q2vp1Q
x k1x2vp1Q

y k1y

3
1

i«n2jp2vp
x~k1x1k2x!2vp

y~k1y1k2y!

3
1

i«n2jp1Q2vp1Q
x k1x2vp1Q

y k1y

, ~9!

S~c!5D4E dk1

p2 E dk2

p2

k

k21k1x
2

k

k21k1y
2

k

k21k2x
2

3
k

k21k2y
2

1

i«n2jp1Q2vp1Q
x k1x2vp1Q

y k1y

3
1

i«n2jp2vp
x~k1x1k2x!2vp

y~k1y1k2y!

3
1

i«n2jp1Q2vp1Q
x k2x2vp1Q

y k2y

, ~10!

where we have employed the spectrum~8!, from which, in
particular, it follows thatjp12Q5jp and vp12Q5vp at Q
5(p/a,p/a). If vp

x andvp1Q
y are of the same sign, the inte

grals in~9! and~10! are determined solely by the poles of th
Lorentzians determining the interaction with short-rang
order fluctuations. Doing an elementary contour integrati
we get2!

S~b!5S~c!

5D4
1

@ i«n2jp1Q1 i ~ uvp1Q
x u1uvp1Q

y u!k#2

3
1

i«n2jp1 i2~ uvp
xu1uvp

yu!k
. ~11!

Here and below we assume, for the sake of definiteness,
«n is positive. Clearly, when the velocity projections are
the same sign, we can use this approach to calculate
contributions of any higher-order diagrams. Accordingly, t
contribution of anNth-order diagram to the self-energy pa
in the interaction~4! is

S (N)~«n ,p!5D2N )
j 51

2N21
1

i«n2j j1 in jv jk
, ~12!

wherej j5jp1Q and v j5uvp1Q
x u1uvp1Q

y u for odd j, and j j

5jp andv j5uvp
xu1uvp

yu for evenj. Herenj is the number of
interaction lines surrounding thej th Green’s function in a
given diagram.

In this case any diagram with crossing interaction lin
is equal to a diagram of the same order with noncross
,

-
,

at
f
he

s
g

interaction lines. Hence actually we may consider only d
grams with noncrossing interaction lines, taking into acco
the diagrams with crossing lines by introducing addition
combinatorial factors into the interaction vertices. Th
method was first introduced~in another problem! by
Elyutin25 and was used in Refs. 15–17 for a one-dimens
model of the pseudogap state.

As a result we arrive at the following expression for t
one-electron Green’s function in the form of a recurren
relation~the continued fraction representation; see Refs. 1
17!:

G21~«n ,jp!5G0
21~«n ,jp!2S1~«n ,jp!, ~13!

Sk~«n ,jp!5D2
v~k!

i«n2jk1 ikvkk2Sk11~«n ,jp!
, ~14!

wherejk5jp1Q andvk5uvp1Q
x u1uvp1Q

y u for odd k, andjk

5jp andvk5uvp
xu1uvp

yu for evenk. The combinatorial factor

v~k!5k ~15!

corresponds to our case of commensurate fluctuations
Q5(p/a,p/a) ~see Ref. 15!. Clearly, one can easily analyz
the vase of incommensurate fluctuations, whereQ is not
locked to the period of the reciprocal lattice. In this ca
diagrams with interaction lines surrounding an odd num
of vertices are significantly smaller than diagrams with int
action lines surrounding an even number of vertices. He
only the latter diagrams should be taken into account.13–17

As a result, the recurrence relation~14! is retained, but the
combinations of the diagrams and hence the combinato
factor change:15

v~k!5H k11

2
for k odd,

k

2
for k even.

~16!

In Refs. 11 and 12, the spin structure of the interaction in
‘‘almost antiferromagnetic’’ Fermi-liquid model~the spin-
fermion model of Ref. 12! was taken into account. This lead
to more complicated combinations in the commensurate c
with Q5(p/a,p/a). More precisely, spin-conserving sca
tering yields formally commensurate combinations, wh
spin-flip scattering is described by diagrams of the inco
mensurate type~a ‘‘charged’’ random field, to use the term
nology of Ref. 12!. As result, the recurrence relation for th
Green’s function is still of the form~14!, but the combinato-
rial factor v(k) is now11,12

v~k!5H k12

3
for k odd,

k

3
for k even.

~17!

As noted earlier, the solution~14! can be obtained only
if the signs of the velocity projectionsvp1Q

x (vp1Q
y ) and

vp
x(vp

y) are the same. Below we analyze the situation wh
this is really the case. When the signs are different, the in
grals of the form~9! and~10!, corresponding to higher-orde
corrections, cannot be calculated in such a simple form
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above because contributions from the poles of the elec
Green’s functions become important. Here instead of sim
expressions of the form~11! we have much more compli
cated expressions and~even more importantly! the very fact
that broad classes of diagrams with crossing and noncros
interaction lines are equal is not true any more@the reader
will recall that it was this fact that made it possible to cla
sify higher-order contributions and to obtain the ‘‘exac
solution~14!#. This problem is important only for the case
finite correlation lengthsj5k21 of fluctuations, while in the
limit j→` (k→0) the exact solution for the Green’s fun
tion is independent of the velocitiesvp and vp1Q and can
easily be obtained in analytic form by the methods develo
in Refs. 13 and 14~see also Ref. 12!. In the one-dimensiona
model considered in Refs. 13–17, the signs of the co
sponding velocity projections are always different~they cor-
respond to electrons travelling ‘‘right’’ and ‘‘left’’!. This fact
was stressed in a recent paper by Tchernyshyov.22 In the
Appendix we analyze these difficulties in detail for the on
dimensional case and show that the ansatz of the form~12!
used in Refs. 15–17 for the contributions of higher-ord
diagrams and the solution~14! yield a very good approxima
tion even when the velocity projections have opposite sig
Obviously, this solution is exact in the limitsj→` (k
→0) andj→0 (k→`) and provides a fairly good~quanti-
tative! description in the region of finite correlation length

2.2. Analysis of the spectrum

For the energy spectrum~8! we can easily specify the
conditions~the relationships betweent, t8, and m) for the
solution~14! to be exact. First, let us define the region of t
parameterst, t8, and m where there are hot spots on th
Fermi surface, i.e., the conditions for the existence of po
connected by the vectorQ5(p/a,p/a). If p5(px ,py)
specifies the position of a hot spot on the Fermi surface,
point p1q5(px1p/a, py1p/a) must also belong to the
Fermi surface, so that for the spectrum~8! we have

22t~cospxa1cospya!24t8 cospxa cospya2m50,

~18!

2t~cospxa1cospya!24t8cospxa cospya2m50.

This yields the conditions needed for hot spots to exist:

cospya52cospxa, cos2 pxa5 m/4t8 . ~19!

Thus, hot spots on the Fermi surface exist if

0< m/4t8 <1. ~20!

We now define the region of the parameterst, t8, and m
where the solution~14! is exact by requiring that the prod
uctsvp

xvp1Q
x andvp

yvp1Q
y be positive. We have

vp
x5

]jp

]px
52ta sinpxa14t8a sinpxa cospya,
n
le

ng

-

d

-

-

r

s.

ts

e

vp
y5

]jp

]py
52ta sinpya14t8a sinpya cospxa,

vp
xvp1Q

x 516t82a2 sin2 pxaFcos2 pya2S t

2t8
D 2G ,

vp
yvp1Q

y 516t82a2 sin2 pyaFcos2pxa2S t

2t8
D 2G . ~21!

Clearly, for the Fermi surface to have points where the p
jections of velocities have the same sign,ut8/tu must be
greater than 1/2. Here we are chiefly interested in the reg
surrounding the hot spots, where on account of~19! we have

vp
xvp1Q

x 5vp
yvp1Q

y 54t2a2S 12
m

4t8
D S mt8

t2
21D . ~22!

Thus, the projections of velocities at hot spots have the sa
sign if

mt8/t2.1. ~23!

Obviously, the same condition ensures thatvpvp1Q is posi-
tive ~this is needed for the solution~14! to be valid in the
model described in Refs. 11 and 12!.

Figure 2 depicts the region of parameters where
spots exist~the hatched area!, or 0<m/4t8<1, and the re-
gion where such spots exist and the velocity projections h
the same sign (mt8.1). Figure 3 depicts, for different val
ues of the chemical potentialm ~band filling!, the Fermi sur-
faces specified by the spectrum~8! for which these condi-
tions are either met or not met.

2.3. Spectral density and density of states

Let us examine the spectral density

A~E,p!52
1

p
Im GR~E,p!, ~24!

FIG. 2. The region of parameters where hot spots exist~hatched! and the
region where such spots exist and the velocity projections have the s
sign ~doubly hatched!.
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FIG. 3. Fermi surfaces defined by th
spectrum~8! for different values of the
chemical potentialm ~band filling! and the
parametert8/t. ~a! The case wheret8/t
520.6 andm/t has the following values:
curve 1, 22.2; curve2, 21.8; curve3,
21.666; curve4, 21.63; curve5, 21.6;
curve 6, 0; and curve7, 2; the solution
~14! is exact in the vicinity of hot spots
~the velocity projections are of the sam
sign! for m/t,21.666 . . . , and hotspots
exist if m/t is negative.~b! The case where
t8/t520.4 ~which is characteristic of
high-Tc cuprates! andm/t has the follow-
ing values: curve1, 22.2; curve2, 22;
curve3, 21.6; curve4, 21.3; curve5, 0;
curve6, 2; and curve7, 4; hot spots exist
if 21.6,m/t,0.
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whereGR(E,p) is the retarded Green’s function obtained
ordinary analytic continuous of~13! into the real energy axis
E. Figure 4 depicts the energy dependence ofA(E,p) ob-
tained from~13! and ~14! for different variants of the com
binatorial factors~15! and~16!. Since the energy dependen
of the spectral density in the case of the combinations~17!
for the spin-fermion model is qualitatively~and even quan-
titatively! very close to that obtained in the incommensur
case, Eq.~16!, we have not displayed it in Fig. 4a so as
save space. Fort8/t520.6 and m/t521.8,t/t851.666,
the projections of the velocities at the hot spots have
same sign and the solution~14! defines the Green’s functio
exactly. We see that in the incommensurate case~16! ~Fig.
4a! as well as for the combinations~17! of the spin-fermion
model, the spectral density at a hot spot clearly exhibits n
Fermi-liquid behavior~for large values of the correlatio
length j of the fluctuations!. In the case of commensura
combinations, Eq.~15! ~Fig. 4b!, it is precisely at a hot spo
that the spectral density has a single peak and, in this se
is similar to the spectral density of an ordinary Fermi liqu
even whenj is large. However, even in the vicinity of a ho
spot the spectral density acquires two non-Fermi-liq
peaks~the ‘‘shadow’’ band! for large values ofj ~see the
inset in Fig. 4b!.
e

e

n-

se,

d

Far from hot spots, the velocity projections have, in ge
eral, opposite signs, even if condition~23! is met. Accord-
ingly, the recurrence relation~14! for the Green’s function is
not exact. At the same time, asj increases, the region with
the hot spot in the momentum space narrows and the a
racy of our approximation grows. However, from a discu
sion in the Appendix it becomes clear that our ansatz~12!
and the solution~14! only slightly overestimate the role o
the finiteness of the correlation lengthj. There we also pro-
pose a slightly different variant of the solution, Eq.~A11!,
which somewhat underestimates this role. The insets in
4 depict the energy dependence of the spectral density
from a hot spot for different combinations,~15! and ~16!.

Figure 5 depicts the energy dependence of the spe
density for the combinations~15! and~16! at a hot spot with
t8/t520.4, which, according to Schmalianet al.,11,12 corre-
sponds to the YBa2Cu3O61d system. The spectral density i
the case of the combinations~17! of the spin-fermion model
is very close to that obtained in the incommensurate c
~16!. For such a value oft/t8, even at hot spots the velocit
projections have opposite signs. However, the spectral d
sity ~in the incommensurate case! obtained from the solution
with ‘‘alternating’’ k, Eq. ~A11! ~the dashed curve in Fig
5a! is seen to be very close to that obtained from~14!. This
al

ds

he
-

FIG. 4. Energy dependence of the spectr
density at a hot spot (pxa/p50.1666 and
pya/p50.8333) for different diagram com-
binations at t8/t520.6 and m/t521.8,
when the solution~14! is exact:~a! the in-
commensurate case, and~b! the commensu-
rate case. The correlation length correspon
to the following values ofka: curve1, 0.01;
curve2, 0.1; and curve3, 0.5; D50.1t. The
insets depict the energy dependence of t
spectral density for the corresponding dia
gram combinations atka50.01: curve1, at
the hot spot pxa/p50.1666 and pya/p
50.8333; curve2, near the hot spotpxa/p
50.1663 andpya/p50.8155; and curve3,
far from the hot spot pxa/p50.0 and
pya/p50.333.
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FIG. 5. Energy dependence of the spectr
density at a hot spot (pxa/p50.142 and
pya/p50.857) for different diagram combi-
nations at t8/t520.4 and m/t521.3,
which approximately corresponds to high-Tc

cuprates:~a! the incommensurate case@the
dashed curve represents the spectral den
for the incommensurate case obtained
~A11!#, and~b! the commensurate case. Th
correlation length corresponds to the follow
ing values ofka: curve1, 0.01; curve2, 0.1;
and curve3, 0.5; D50.1t. The insets depict
the energy dependence of the spectral de
sity for the corresponding diagram combina
tions atka50.01: curve1, at the hot spot
pxa/p50.142 andpya/p50.857; curve2,
near the hot spotpxa/p50.145 andpya/p
50.843; and curve3, far from the hot spot
pxa/p5pya/p50.375.
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suggests that the ansatz~12! and solution~14! quantitatively
are close to an exact solution. We stress once more tha
solution~14! is exact in the limitsj→` andj→0, while for
finite j it provides a good interpolation between the tw
limits.

Now consider the one-electron density of states,

N~E!5(
p

A~E,p!52
1

p (
p

Im GR~E,p!, ~25!

determined by the integral of the spectral densityA(E,p)
over the entire Brillouin zone. Earlier we have seen that
though for some topologies of the initial Fermi surface~band
fillings! we can guarantee that near hot spots the signs o
velocity projections are the same, far from hot spots the si
are usually different, and the solution~14! based on the an
satz ~12! is only an approximation. Correspondingly, usin
the solution~14! to calculate the density of states also yiel
an approximation, according to~25!. Figure 6 depicts the
densities of states obtained from~13!, ~15!, and ~25! with
allowance for the spectrum~8!, for different diagram combi-
nations, Eqs.~15!, ~16!, and~17!, at t8/t520.4 ~Fig. 6a! and
t8/t520.6 ~Fig. 6b!. We see that att8/t520.4 the density
of states vs. energy curves acquire a dip~pseudogap!. This
decrease in the density of states is weakly dependent on
he

l-

he
s

the

correlation lengthj ~see the inset in Fig. 6a!. If the band
filling is such that the Fermi levelm lands in this energy
interval, there are hot spots on the Fermi surface. Att8/t5
20.6, the region where the hot spots exist is rather wide,
nevertheless the pseudogap in the density of states is e
tially unobservable. What can be seen is a smearing of
Van Hove singularity, a singularity that exists when there
no scattering by fluctuations.

3. MODEL OF ‘‘SUPERCONDUCTING’’ FLUCTUATIONS

3.1. Description of model and the solution for the Green’s
function

As noted earlier, pseudogap phenomena can probabl
explained by employing the idea of fluctuation Cooper pa
ing at temperatures above the superconducting trans
temperatureTc ~see Refs. 1, 5–7!. Consider the simplest pos
sible model approach to this problem. Figure 7a depicts
self-energy diagram of first order in the fluctuation propag
tor of Cooper pairs forT.Tc . Bearing in mind that we wish
to consider both ordinarys-wave pairing andd-wave pairing,
which is a characteristic feature of high-Tc systems, we in-
troduce the pairing interaction of the simplest~separable!
form
r

te
,

-

e
ity

by

gy
s

FIG. 6. One-electron density of states fo
different diagram combinations:~a! the case
where t8/t520.4 andm/t521.3, and~b!
the case wheret8/t520.6 andm/t521.8.
Curves1 correspond to the incommensura
case, curves2 to the commensurate case
curves 3 to the combinations of the spin
fermion model, and curves4 to the case
where there is no AFM fluctuations. Th
dotted curves represent the spectral dens
for the incommensurate case obtained
~A11!, D/t51, and the correlation length
corresponds toka50.1. The insets depict
the one-electron densities of states ener
for the corresponding diagram combination
at ka50.1 ~curves1! andka50.01 ~curves
2!.
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FIG. 7. Self-energy diagrams in the model of SC fluctuation
~a! the first-order diagram with an ‘‘explanation’’ of the mean
ing of the wave line, the fluctuation operator of Cooper pa
~the dashed lines correspond to pairing interaction!, and~b! the
second-order diagram.
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V~p,p8!52Ve~f!e~f8!, ~26!

where f is the polar angle specifying the direction of th
electron momentump in the plane, and fore(f) we use the
model dependence adopted in Refs. 26 and 27:

e~f!5H 1 for s2wave pairing,

A2 cos 2f for d2wave pairing.
~27!

As usual, the coupling constantV is assumed finite for elec
trons within an energy layer near the Fermi surface. Then
self-energy part corresponding to Fig. 7a takes the form

S~«n ,p!5(
mp

Veff~ ivm ,q!G~ ivm2 i«n ,2p1q!, ~28!

where the effective interaction with SC fluctuations is giv
by the expression

Veff~ ivm ,q!

52
Ve2~f!

12VT(
np

G0~ i«n ,p!G0~ ivm2 i«n , 2p1q!e2~f!

.

~29!

Below we assume that the SC fluctuations are static, so
in ~33! we can limit ourselves to the term withvm50. Here
the static approximation is valid forpT@vSC58(T
2Tc)/p, which is formally similar to the conditionpT
@vsf used in the hot-spot model. The closer the system i
the superconducting transition point, the better the condi
is met. Then the effective interaction can be written

Veff~q!'2
D̃2e2~f!

j22~T!1q2
, ~30!

where

j~T!5
j0

A~T2Tc!/Tc

, j0' 0.18vF/Tc , ~31!

with j0 the ordinary coherence length of the superconduc
and D̃251/N(EF)j0

2 ~hereN(EF) is the density of states a
the Fermi levelEF). Of course, within the elementary BC
model considered here,

D̃'2p2Tc

Tc

EF
;D0

D0

EF
!D0

~where D0 is the energy gap of the superconductor atT
50), and so the obvious problem of explaining the scale
e

at

to
n

r,

f

the anomalies observed in the experiments arises. Howe
below we again assume thatj and D̃ are phenomenologica
parameters of the theory, bearing in mind that in high-Tc

systems these parameters should be found from experim
rather than from a simple BCS-type theory, which does
apply to this case anyway.

Reasoning in the same way as we did in passing from~2!
to ~4!, instead of~30! we introduce the model interaction

Veff~q!52D2e2~f!
2j21

j221qx
2

2j21

j221qy
2

, ~32!

whereD25D̃2/4. Quantitatively this is very close to Eq.~30!
and simplifies calculations significantly by making it po
sible to classify the contributions of higher-order diagram
In this case the first-order contribution of the diagram in F
7a has the form

S (1)~«n ,p!5
D2e2~f!

i«n1jp1 i ~ uvxu1uvyu!k sign«n
, ~33!

wherevx5vF cosf, vy5vF sinf, andk5j21. The contri-
bution of the second-order diagram in Fig. 7b is

S (2)~«n ,p!5~D2e2~f!!2

3E dq1x

p

k

k21q1x
2 E dq1y

p

k

k21q1y
2

3E dq1x

p

k

k21q2x
2 E dq1y

p

k

k21q2y
2

3
1

~ i«n1jp2v1–q1!2

1

i«n2jp2v2–q12v2–q2
,

~34!

where v152v25vF . We can easily see that in the give
problem we have essentially the same rules of the diagr
matic technique as in the hot-spot model with combinatio
corresponding to the incommensurate case. This become
pecially obvious if we study the topology of the interactio
line ~the fluctuation propagator of Cooper pairs! in the dia-
gram of Fig. 7a: we see that in higher orders the only d
grams that exist are those in which the interaction line s
rounds an even number of vertices. Equation~34! is similar
to ~9!, but the signs of the velocity projections in the denom
nators of the Green’s functions are always different,v1

52v2. Hence contributions to the integrals over momentu
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FIG. 8. ~a! Energy dependence of the spe
tral densityA(E,p) for the case ofd-wave
fluctuation pairing at different values of the
polar anglef, which defines the direction of
electron momentum in the plane: curve1,
f50; and curve2, f5p/6. The correlation
length corresponds tovFk/D50.5 ~solid
curves!. ~b! Energy dependence of the prod
uct f (E)A(E,p) ( f (E) is the Fermi func-
tion!: curve 1, f50; curve 2, f5p/6;
curve3, f5p/4.83. The temperature~in the
Fermi function! is T50.1D, and vFk/D
50.5.
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transfer in higher-order diagrams are provided not only
the poles of Lorentzians but also by the poles of the Gree
functions. Nevertheless~bearing in mind the discussion i
the Appendix! we can estimate the contribution of highe
order diagrams by using the ansatz~12!, i.e., we calculate all
the integrals in, say,~34! as if the velocity projections were
of the same sign, and then in the answer we putv152v2

5vF . We again arrive at a recurrence relation for t
Green’s function of the form~14!:

Sk~«n ,jp!

5
D2e2~f!v~k!

i«n2~21!kjp1 ikvFk~ ucosfu1usinfu!2Sk11~«n ,jp!
,

~35!

wherev(k) has been defined in~16!. Of course, Eq.~35! is
an approximation, but it gives the exact result in the lim
k→0 (j→`) andk→` (j→0) and provides a fairly good
~quantitative! interpolation between these two limits for fi
nite correlation lengths.

3.2. Spectral density and density of states

Figure 8a depicts the energy dependence of the spe
densityA(E,p) @Eq. ~24!# of the one-particle Green’s func
y
’s

ral

tion calculated by~35! for different values of the polar angl
f determining the direction of electron momentum in t
plane~here we assume thatupu5pF) for the case ofd-wave
fluctuation pairing. Clearly, in the vicinity of the poin
(p/a,0) of the Brillouin zone, the spectral density exhib
non-Fermi-liquid~pseudogap! behavior. As the vectorp ro-
tates in the direction of the zone diagonal, the double-p
structure disappears and the spectral density becomes a
cal Fermi-liquid spectral density with a single peak, and
closer the value off is to p/4 the narrower the peak. Th
spectral density undergoes a similar transformation as
correlation lengthj becomes smaller.

Figure 8b depicts the evolution off (E)A(E,p) ~here
f (E) is the Fermi distribution!, which is actually the param
eter measured in ARPES experiments.2 Note that the curves
in Fig. 8b closely resemble the curves obtained in Refs.
and 12 in the hot-spot model. The picture of destruction
the Fermi surface suggested by these calculations is
similar to the one that follows from the experimental da
obtained by Normanet al.28 for Bi2Sr2CaCu2O81d .

In the case ofs-wave fluctuation pairing, the pseudoga
appears isotropically on the entire Fermi surface, and
spectral density is of the non-Fermi-liquid type everywhe
for large fluctuation lengthsj of SC fluctuations.
e

-

t-
FIG. 9. One-electron density of states in th
model of SC fluctuations:~a! in the case of
s-wavepairing, and~b! in the case ofd-wave
pairing. The curves are built for the follow
ing values of the parametervFk/D, which
determines the correlation lengths of shor
range-order fluctuations: 0.1~curve 1!, 0.5
~curve2!, 1.0 ~curve3!, and 2.0~curve4!.



he

a-
e

h
ua
sp

o
wo
a
o

na

ch
m

ai
ro

t

nt

e

th
tu

ta
ri
s

th

ar
th
re

st
th
or
-

s

ry
in

t of

y
so-

the
ctu-

s.
leg
n
lly

arch
l
gh-
stry

atz
a-
e-

e
y
mo-

e

f
eft,
ur

e.,

-

ep-

is
co-

r.
ath
the
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In Fig. 9 we present the results of calculations of t
one-electron density of states using~35! for the case of
s-wave pairing~Fig. 9a! and in the case ofd-wave pairing
~Fig. 9b! for different correlation lengths of the SC fluctu
tions. We see that ford-wave pairing the pseudogap in th
density of states is not so pronounced as fors-wave pairing,
even for large correlation lengths of the fluctuations. At t
same, Fig. 9 clearly shows that in the model of SC fluct
tions the pseudogap is more pronounced than the hot-
model discussed earlier.

4. CONCLUSION

We have examined almost exactly solvable models
the pseudogap state of the electronic spectrum of t
dimensional systems. These models are based on altern
scenarios of the origin of these anomalies: the picture
‘‘dielectric’’ ~AFM, SDW, CDW! fluctuations, which gives
rise to the hot-spot model, and the picture of fluctuatio
formation of Cooper pairs aboveTc ~SC fluctuations!. The
term ‘‘almost exactly solvable’’ means that in this approa
it is possible to sum the entire series of Feynman diagra
for the one-electron Green’s function~and actually also for
the two-electron Green’s function16,17!, using for the higher-
order diagrams the approximate ansatz~12!. As shown in the
Appendix and also by the numerical examples in the m
body of the text, the ansatz guarantees a rather good app
mation ~speaking quantitatively! to the exact solution in the
region of finite correlation lengthsj of short-range-order
fluctuations, while in the limitsj→` andj→0 our solution
is exact.

Our calculations of spectral densities have shown tha
both scenarios we can obtain a rather appealing picture~from
the standpoint of possible comparison with the experime
data in high-Tc cuprates! of destruction of the Fermi-liquid
state in specific~hot! parts of the Fermi surface, with th
Fermi-liquid state retained in the remaining~cold! part of the
Fermi surface. Such non-Fermi-liquid behavior is due to
strong scattering of electrons by short-range-order fluc
tions, and the larger the correlation lengthj the more pro-
nounced the behavior. At the same time, there are cer
differences between these two scenarios, which can, in p
ciple, be utilized in the analysis of the situation in real sy
tems. In particular, in the hot-spot model~AFM fluctuations!,
the pseudogap in the density of states is relatively small~see
Fig. 6!. In the model of SC fluctuations the pseudogap in
density of states is much more visible~see Fig. 9!. At the
same time, the model of dielectric AFM fluctuations appe
to be more attractive even from a simple consideration of
phase diagram of a high-Tc system: pseudogap anomalies a
observed in the underdoped region, and the closer the sy
is to a dielectric AFM state the more pronounced are
anomalies. It is in this region that we can expect the sh
range-order dielectric~AFM! fluctuations to play a more im
portant role, the correlation lengthj to increase, etc. It is
rather difficult to understand why in this region of the pha
diagram the fluctuational formation of Cooper pairs~SC
fluctuations! may become more important. On the contra
it would seem that such formation should manifest itself
e
-
ot

f
-
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n
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e
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the region close to optimal doping~corresponding to the
maximum superconducting transition temperature!. More-
over, an obvious problem inherent in this scenario is tha
explaining the characteristic scales of the anomalies~in tem-
perature and in energy!. The problem cannot be resolved b
using simple approaches based on the BCS theory—the
lution requires new microscopic approaches.5,7 The models
considered in the present paper are useful in analyzing
pseudogap formation in both scenarios, since they are a
ally based on a fairly general~semiphenomenological! form
of the correlation function of short-range-order fluctuation

The authors would like to express their gratitude to O
Tchernyshyov for supplying the preliminary information o
his analysis of the one-dimensional model. This was partia
supported by the Russian Fund for Fundamental Rese
~Project 96-02-16065! and Project No. IX.1 of the Statistica
Physics State Program and Project No. 96-051 of the Hi
Tc Superconductors State Program of the Russian Mini
of Science.

APPENDIX: ANALYSIS OF THE ONE-DIMENSIONAL MODEL

Let us examine in greater detail the use of the ans
~12! in estimating the contributions of higher-order di
grams. We limit ourselves to the analysis of the on
dimensional model,15–17since in one dimension the problem
is most serious.22 We are interested in the vicinity of th
Fermi points1pF and 2pF , with electrons scattered b
Gaussian short-range-order fluctuations scattering by a
mentumQ;622pF , shifting them from one end of the
Fermi line to the other with an accuracy of orderj215k
~Refs. 13–17!. We examine the electronic spectrum in th
linearized approximation,jp6pF

562vFp, and assume, for
the sake of brevity, thatvF51. Here the system consists o
two types of electron: those electrons that move to the l
and those that move to the right. It is convenient to do o
analysis in a representation22 in which the equation of mo-
tion for the electrons in the given model takes the form18,22

S i 1̂
]

]t
2 i ŝ3

]

]xD Ĉ~ t,x!5S 0 D~x!

D* ~x! 0 D Ĉ~ t,x!.

~A1!

We limit ourselves to incommensurate fluctuations, i.

D* (x)ÞD(x). The spinorĈ5(c2

c1) describes ‘‘right’’ and

‘‘left’’ electrons. The fluctuationsD(x) are assumed Gauss
ian with ^D(x)&50 and ^D* (x)D(x8)&5uDu2exp(2kux
2x8u). The free propagator in the frequency–coordinate r
resentation is

G0~«x!5 iu~«s3x!sign~«!exp~ i«s3x!, ~A2!

with s3511 for right particles ands3521 for left par-
ticles. A particle traversing a path of lengthl produces a
phase factorei« l . When calculating specific diagrams, it
convenient to change the integration variables from the
ordinatesxk of interaction vertices to the lengthsl k of paths
traversed by particles from one scattering act to anothe22

Here it is important to account for the fact that these p
lengths are not independent, since for a given diagram
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977JETP 88 (5), May 1999 É. Z. Kuchinski  and M. V. Sadovski 
total particle displacementx2x8 is always fixed. The rules
of the diagrammatic technique for calculatingG(«,x2x8)
that result are as follows:22

1. A solid line of length l k yields a factor
2 ieil k(«2(21)kp).

2. A wavy ~interaction! line connecting verticesm andn
gives a factor

uDu2exp~2kuxm2xnu!5uDu2expS 2kU (
k5m

n21

~21!kl kU D .

3. Integration over alll k is done from 0 tò .
4. Integration overp is done with a weighting facto

eip(x2x8)/2p.
In calculating G(«,p) the last rule can simply be

dropped. These rules show that allowing for the finitenes
the correlation lengthj5k21 leads in each diagram to
damping of the corresponding transition amplitude with
displacement of the particle. Taking this effect into acco
exactly constitutes a complicated problem, but lower and
per bounds on this effect can be found. On the one hand
have the obvious inequality

expS 2kU (
k5m

n21

~21!kl kU D .expS 2k (
k5m

n21

l kD . ~A3!

By using the right-hand side of~A3! as the interaction line
we overestimate the transition amplitude damping~i.e., ef-
fectively overestimatek). We can easily see that the use
this approximation in calculating the Green’s function in t
momentum representation amounts to addingik to the de-
nominator in each Green’s function surrounded by the in
action line and yields an expression for any higher-order c
rection of the form~12! ~cf. Ref. 22!. For instance, the
following expression corresponds to the diagram in Fig.
~we assume that«.0 andd501):

DG~«,p!5D4
1

«2p1 id S 1

«1p1 ik

3
1

«2p12ik

1

«1p1 ik D 1

«2p1 id
, ~A4!

which is similar to~9! and ~11!. On the other hand, we ca
employ the inequality

expS 2kU (
k5m

n21

~21!kl kU D ,expS 2k (
k5m

n21

~21!k2ml kD .

~A5!

By using the right-hand side of~A5! for the interaction line
we underestimate the transition amplitude damping~i.e., ef-
fectively underestimatek). It may seem that this choice o
the expression for the interaction line can even increase
transition amplitude over its value atk50, but this is not so.
Since we are considering the incommensurate case, w
the interaction line surrounds only an even number of ve
ces~i.e., an odd number ofl k), the choice of a specific sign
in the exponent after the absolute-value sign has been
moved is determined by what number ofl k is greater, the
odd or the even. This leads to a situation in which the eff
of

e
t
-
e

r-
r-

b

he

re
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e-
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tive transition amplitude of any higher-order diagram c
only decrease. For the diagram in Fig. 1b in the coordin
representation the contribution of the interaction lines is

e2k l 2e2ku l 12 l 22 l 3u→e2k l 2e2k~ l 12 l 21 l 3!5e2k~ l 11 l 3!.
~A6!

In the momentum representation this yields

DG~«,p!5D4
1

«2p1 id S 1

«1p1 ik

1

«2p1 id

1

«1p1 ik D
3

1

«2p1 id
, ~A7!

An analysis of any higher-order diagram shows that in t
case the contributions of allN-order diagrams are equal an
in the momentum representation have the form~the
alternating-k ansatz!

GN~«,p!5uDu2N
1

~«2p1 id!N11

1

~«1p1 ik!N
. ~A8!

Then the entire series can easily be summed, much like
case withk50 ~Refs. 13 and 14!, and for the Green’s func-
tion we obtain

GR~«,p!5 (
N50

`

N! GN~«,p!

5E
0

`

dz e2z
«1p1 ik

~«2p1 id!~«1p1 ik!2zuDu2
.

~A9!

This expression can easily be used to calculate the co
sponding spectral density or the one-particle density
states:

N~«!

N~EF!
5

vFk

p E
2`

`

djpE
0

`

dz

3e2z
zuDu2

~«22jp
22zuDu2!21~vFk!2~«2jp!2

,

~A10!

where we have restoredvF . In Fig. 10 we compare the den
sities of states for different values ofk ~or correlation length!
that we calculated by the alternating-k ansatz and a recur
rence relation of the form~12! in the one-dimensiona
model.15–17 We see that the results are quantitatively clo
for almost all values ofk. Since, as noted earlier, our ma
ansatz~12! and~A4! somewhat overestimates the role of t
finiteness ofk, while the alternating-kansatz~A7! underes-
timates it, we can easily see that the exact value of the d
sity of states differs little from the these two approximati
to the contributions of higher-order diagrams. The situat
with the spectral densities is similar. Actually this means t
the results for the main physical quantities determined by
one-electron Green’s function are not strongly dependen
the way in which a finitek enters the expressions for highe
order diagrams. What is important is that we must take i
account~at least approximately! all perturbation-theory dia-
grams with allowance for their different combinations. Th
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should not come as a big surprise, since the main effec
pseudogap formation is due primarily to backward scatter
by a vectorQ;2pF , which is accounted for exactly in th
limit j→0, while the effect of a finitek reduces to an addi
tional weak modulation of the random field, which leads
damping of the field’s correlator and smearing of t
pseudogap.

Naturally, the alternating-k ansatz can also be written i
the form of a recurrence relation of the form~14! for two-
dimensional models, which were discussed in the main b
of the text. For instance, if the hot-spot model we have

Sk~«n ,jp!5D2
v~k!

i«n2jk1 iakvkk2Sk11~«n ,jp!
,

~A11!

where ak51 for odd k, and ak50 for evenk. The other
notation is explained in the main body of the text. The d
on the density of states obtained via~A11! are depicted in
Fig. 6 and corroborate our conclusions. For the model of
fluctuations an expression similar to~A11! can also easily be
written.

Note that the alternating-k ansatz is formal and is use
here only to show that this more or less arbitrary approxim
tion ~which underestimates the role of the finiteness ofk in
higher-order diagrams! leads to results that are quantitative
very close to those obtained by the building-up-k ansatz~12!
and~A4! ~which generally overestimates this role!. The latter
approximation was used in Refs. 15–18 and in the main
of the present paper and has a much deeper meaning
noted earlier, this approximation is exact in the vicinity
hot spots for values of the parameters of the bare spectrut,
t8, and m ~topologies of the Fermi surface!, that guarantee
equal signs for the velocity projections at the hot spots c
nected by the vectorQ. Reasoning along similar lines, in th
one-dimensional model we can obtain an expression of
form ~12! or ~A4! for the higher-order contributions if we
consider a model for the correlator of short-range-order fl

FIG. 10. One-electron density of states in the one-dimensional mode
different values of the parametervFk/D: 0.1 ~curve 1!, 0.8 ~curve 2!, and
1.2 ~curve3!. The solid curves represent the results of calculations by
mulas of the form~12! and ~14! ~Ref. 15!, and the dashed curves represe
the results of calculations by~A10!.
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tuations with its maximum at an arbitrary scattering vectorQ
much shorter thanpF . In this case, for large correlatio
lengthsj, the electrons are scattered by fluctuations, stay
always on one branch~right or left! of the spectrum. Here
expressions if the form~A4! remain exact. After this is done
in the final expressions for the contributions of higher-ord
diagrams we perform a continuation to the regionQ;2pF of
interest to us, since the only dependence onQ is already
present via the bare electron spectrum. A similar result
be achieved by varying the chemical potentialm ~band fill-
ing!.

* !E-mail: kuchinsk@ief.uran.ru
†!E-mail: sadovski@ief.uran.ru
1!A model similar in meaning to the one used here but differing somew

from ~4! was employed by Schmalianet al.:11,12

Veff~k!5D2
2j21

j221ki
2

2j21

j221k'
2

,

whereki and k' are the projections of the vectork parallel and perpen-
dicular tovp1Q , so that a result similar to~7! is obtained:

S~«n ,p!5
D2

i«2jp1Q1 i uvp1Quk sign«n
.

2!In the model of Veff employed by Schmalianet al.11,12 for the case
vp–vp1Q.0 the following expression can be derived in a similar way:

S~b!5S~c!5D4
1

@ i«n2jp1Q1 i uvp1Quk#2

3
1

i«n2jp1Q1 i2uvpu~ ucosfu1usinfu!k
,

wheref is the angle betweenvp andvp1Q .
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Instability in a system of interacting quasi-two-dimensional excitons in a type II superlattice of a
finite thickness due to attraction between oppositely-directed excitonic dipoles in neighboring
layers has been discovered. A stable system is that of indirect quasi-two-dimensional biexcitons
formed by indirect excitons with dipole moments oriented in opposite directions. The
radius and binding energy of indirect biexcitons has been calculated. A collective spectrum of a
system of such biexcitons with a weak quadrupole interaction between them has been
studied. Feasibility of Bose condensation, the densityns(T) of the superfluid component, and a
phase transition to the superfliud state in a low-density system of indirect biexcitons have
been analyzed. ©1999 American Institute of Physics.@S1063-7761~99!01905-8#
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1. INTRODUCTION

Intense interest in electron–hole systems in coup
quantum wells1–5 has been stimulated by prediction of exc
ton superfluidity in such systems, which can be manifes
by the existence of undamped electric currents in e
well.6,7 A number of other effects have been studied for su
systems, namely, quasi-Josephson effects,8 crystallization of
indirect excitons,9 and a number of effects in high magnet
fields.10–13

Of special interest are also collective properties of ex
tons in superlattices and layered structures.14–16 The main
subject of the reported investigation is superfluidity in a lo
density electron–hole system in a superlattice. There are
eral plausible physical realizations of the model with sp
tially separated electrons (e) and holes (h) in superlattices.
The holes can be in thermodynamic equilibrium in type
superlattices. In addition, spatially separated electrons
holes can be generated by laser pumping in superlattice
the form of periodic structures of coupled quantum wells~for
example, based on AlAs/GaAs structures1! if the size-
quantized level of carriers of a single type in one well
below the quantization level of the same carriers in anot
well ~for carriers of the other type the relative positions
their levels is reversed!. If the overlap between the wav
functions of spatially separated electrons and holes
coupled quantum wells is sufficiently small, the recombin
tion time can be much longer than the relaxation timet r . At
low densities, indirect excitons~composed of spatially sepa
rated electrons and holes! exist at times when direct exciton
have already recombined.15 Then indirect excitons can com
to quasi-equilibrium in a time shorter than the recombinat
time of indirect excitons, and photogenerated electrons
holes are characterized by different chemical qua
potentials. In this case, various quasi-equilibrium phases
9801063-7761/99/88(5)/7/$15.00
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turn up in a system of indirect excitons in superlattices, j
as in coupled quantum wells.6,7 If we have a structure of
alternating electron and hole quantum wells~in the configu-
ration described above!, the excitons in one pair of wells
have equal dipole moments, whereas the dipole moment
excitons in the couple including the neighboring well a
oriented in the opposite direction~Fig. 1!. It turns out that
this property results in a notable difference between
electron–hole system in a superlattice and in coupled qu
tum wells ~which even in three-layere-h-e or h-e-h sys-
tems!.

This paper considers a type II superlattice of a fin
thickness. Instability of the system of indirect excitons w
the dipole–dipole interaction at large separations betw
them has been discovered in such a structure, which
caused by the long-range attraction between excitons w
oppositely-directed dipole moments. We will discuss qua
two-dimensional indirect biexcitons formed by two indire
excitons with oppositely-directed dipole moments. The
dius and binding energy of such biexcitons have been ca
lated. In contrast to the case of indirect excitons, there
repulsive quadrupole interaction between these biexciton
large distances. As a result, a system of indirect biexciton
stable.

In the ladder approximation,17,18 we will calculate a col-
lective spectrum of two-dimensional indirect biexcito
formed by indirect excitons with opposite dipole momen
due to the quadrupole interaction between biexcitons. T
densityns(T) of the superfluid component of interacting in
direct two-dimensional biexcitons has been calculated at
temperaturesT. The temperature of the Kosterlitz–Thoule
phase transition to the superfluid state19 has been calculated
Probable coexistence of phases of direct and indirect e
tons will be discussed in the Conclusion.
© 1999 American Institute of Physics
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2. INSTABILITY OF A SYSTEM OF INDIRECT EXCITONS

Let us consider a low-density system of weakly intera
ing indirect two-dimensional excitons~their electrons and
holes being located in neighboring layers! in a type II super-
lattice of a finite thicknessL. Suppose thatnexc

21/2.L, where
nexc is the surface density of excitons. Let us prove that
this case, unlike in the case of a two-layered system~coupled
quantum wells!, the excitonic system is unstable. At lo
densities of indirect excitonsna2!1 and low temperatures
the system is a quasi-two-dimensional Bose gas of indi
excitons14 with dipole momentsd (d;eD) perpendicular to
the quantum well plane and increasing with the separatioD
between neighboring quantum wells~aexc(D) is the exciton
radius in the well plane:aexc'a* /4, a* 5\2e/mexce

2 for
D!a* and aexc'(a* )1/4D3/4 for D@a* , the spectrum of
the lowest excitonic levels being identical to that of a tw
dimensional oscillator in the latter case,e is the permittivity
of the material,mexc5memh /(me1mh)!. In contrast to the
case of conventional excitons, the dipole–dipole energ
U2 and U1 of excitons with opposite and the same dire
tions of dipole moments, respectively, contribute to the
ergy of low-density spatially indirect excitons. The intera
tion between two dipoles has the energy

U152U25U5
e2D2

eR3 ,

where R is the distance between the dipoles in the w
plane. We assume thatD/R!1, which is the case in low-
density systems. In what follows, we consider the case w
the numberk of quantum wells in the superlattice is limited
so thatk!R0 /D51/DApnexc, which applies to the case o
fairly large k but very low exciton densities~R0 is the mean
distance between neighboring excitons in the quantum w
plane!. Here we have the inequalityr /R!1, wherer is the
distance between dipoles in the direction normal to the w
plane.

The difference between excitons and point-like boso
relates to exchange effects.7,20 For excitons with spatially
separatede andh, these effects are suppressed at large se
rationsD between quantum wells, whennexcaexc

2 (D)!1, ow-
ing to the negligible overlap between wave functions of t

FIG. 1. Indirect two-dimensional biexcitons formed by indirect excito
with oppositely-directed dipole moments from neighboring pairs of quan
wells.
-

n

ct
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ll
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excitons, if the potential barrier due to the direct dipole
dipole repulsion between two indirect excitons with the sa
directions of dipole moments and the repulsion between
indirect excitons with oppositely-directed dipole moments
distances of order ofD is taken into account. The sma
tunneling parameter due to the barrier is given by the exp
sion

expF2
1

\ E
a~D !

r 0 A2M @U~r !2m#drG ,
whereM5me1mh , m is the chemical potential of the sys
tem, andr 0 is the classical turning point for repulsion at a
energy equal tom. The potential energy of interaction be
tween two indirect excitons with the same directions of
pole moments at large distances is

U~r !5
e2D2

er 3 ,

and for two indirect excitons with oppositely-directed dipo
moments it has the form~Fig. 2!

U~r !5
e2

er
2

2e2

eAr 21D2
1

e2

eAr 214D2
. ~1!

At large D, the small tunneling parameter due to th
barrier for two indirect excitons with dipole moments in th
same direction is

expF2
2eD

\
A M

aexc~D !
G;expF2

&D

aexc~D !G
;expF2S D

2r exc
D 1/4G

~r exc5a* /4 is the radius of the plane two-dimensional ex
ton!. At large D, the small tunneling parameter for two in
direct excitons with oppositely-directed dipole moments
exp(20.33AD/r exc).

Let us show that at a small overlap between excito
wave functions, the exchange contribution to the chem
potential is small. For simplicity~only in this specific case!
we consider the Hamiltonian of a two-layered electron–h
system:

FIG. 2. Potential energyU(r ) of interaction~in units of indirect exciton
binding energyEexc5e2/eD! between indirect excitons with oppositely
directed dipole moments from neighboring pairs of quantum wells a
function of distancer between the indirect excitons~in units of D!.
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Ĥ5 (
p50,i

` S p2

2me
2meDapi

1api1S p2

2mh
2mhDbpi

1bpi

1
1

2 (
pp8k

(
iÞ j

V~k!~api
1ap8 j

1 ap81k, jap2k,i

1bpi
1bp8 j

1 bp81k, jbp2k,i !

22(
i , j

Ṽ~k!api
1bp8 j

1 bp81k, jap2k,i , ~2!

where the subscriptsi and j label the excitons composed o
the corresponding electrons and holes;api

1 and bpi
1 are the

creation operators of the electron and hole included in
exciton with numberi ; me5mh5m are the electron and hol
effective masses;V(k)52pe2/ek is the Coulomb interac-
tion within one layer;Ṽ(k)5(2pe2/ek)exp(2kD) is the in-
teraction between an electron and a hole in different lay
me and mh are the chemical potentials determined by t
normalization condition~the densities ofe and h are as-
sumed to be equal,Ne5Nh!:

(
p,i

^api
1api&5(

p,i
^bpi

1bpi&5
1

2
N,

where N5Ne1Nh is the total number of particles in th
system;n5N/S is the two-dimensional density of particle
in the system, andS is the total area. In order to calculate th
exchange energy due to coupling between electrons
holes, let us apply Bogolyubov’s canonical transform d
scribed by unitary operatorŜ to the electron and hole
operators:20

Ŝ5expF(
p,i

fpi~api
1b2pi

1 2b2piapi!G , ~3!

ŜapiŜ
15upapi1vpb2pi

1 , ~4!

ŜbpiŜ
15upbpi1vpa2pi

1 , ~5!

where

up5cosfp , vp5sinfp , up
21vp

251. ~6!

Using anticommutation relations for fermion operato
we derive in the standard manner the transformed Ha
tonian

Ĥ5Ĥ01Ĥ81U, ~7!

whereU is a numerical functional ofu andv, andĤ0 and
Ĥ8 are Hamiltonians that are quadratic and quartic in
transformed operators, respectively.

Functionvp obeys the normalization conditions

(
p

vp
25n/2, ~8!

which derives from the relations

(
p,i

^Ŝapi
1apiŜ

1&5(
p,i

^Ŝbpi
1bpiŜ

1&52(
p

vp
25n,
e

s;

nd
-

,
il-

e

wheren is the dimensionless surface density of charge c
riers naexc

2 ; aexc5(8r exc)
1/4D3/4 is the indirect exciton

radius.14

In order to calculate the exchange energy, let us ana
some components of HamiltonianH0 :

Hex5 (
p,iÞ j F ~«p2m!upvp2up

2(
p8

Ṽp2p8up8vp8G
3~api

1b2pi
1 1b2piapi!2S 2(

p8
Vp2p8vp8

2 upvp

1vp
2(

p8
Ṽp2p8up8vp8D ~api

1b2p j
1 1b2p japi!, ~9!

where «p5p2/2mexc. For calculating the average in th
ground state, let us use the relationship

^api
1b2p j

1 &1^b2p japi&;T i j ~^api
1b2pi

1 &1^b2piapi&!,
~10!

whereT i j 5T ;exp@2&D/a(D)#;exp@2(D/2r exc)
1/4# is the

tunneling matrix element for electrons and holes of differe
excitons through the potential barrier of the dipole–dipo
repulsion, which is determined by the exponentially sm
overlap between their wave functions. Let us use the con
tion that coefficientkp of the average pair combinations o
operatorŝ api

1b2pi
1 &1^b2piapi& ~which yield singular contri-

butions to the energy! should equal zero in HamiltonianH0

in Eq. ~7! transformed to take into account thee-h coupling.
From conditionkp50 follows

S «p2m22(
p8

T i j Vp2p8vp8
2 D upvp2~up

22T i j vp
2!

3(
p8

Ṽp2p8up8vp850. ~11!

In a low-density system,up is of order of unity, whereas
vp is small in terms of a dimensionless parameter. In
approximation of the lowest order invp , i.e., with terms of
order up toAn, Eq. ~11! reduces to

~«p2m0!vp2E Ṽp2p8vp8

d2p8

~2p!2 50. ~12!

In combination with the normalization condition~8!, Eq.
~12! yields

vp5Anc0~p!, m052e0 , ~13!

wheree0 and c0(p) are the binding energy and wavefun
tion of the ground state of an isolated exciton with spatia
separated electron and hole. The wave functionc0 and en-
ergy e0 of indirect excitons were previously calculated f
various separationsD between layers.14 The correction of the
next order invp to Eq. ~11! describes exchange effects. Th
correction to the exciton chemical potentialmexc can be de-
rived from Eq. ~11! using the conventional perturbatio
theory by substitutingvp in the zero-order approximation
from Eq.~13! in terms of ordern3/2, which are omitted in Eq.
~12! and proportional to small parameterT , and treating
them as a perturbation. As a result, we obtain a correctio
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the chemical potentialmexc in the region of small exciton
densitiesn and small separationsD between layers:

mexc;T naexc
2 e0 . ~14!

Thus, the exchange energy in a system with spatial se
ration of carriers is reduced in comparison with a one-la
electron–hole system. This is caused by the small tunne
exponentT due to penetration through a barrier due to t
dipole–dipole interaction. Therefore, one can neglect
change effects associated with the nonboson statistical p
erties of indirect excitons.

In analyzing the stability of the ground state of a weak
nonideal Bose gas of indirect excitons in a superlattice, le
employ the Bogolyubov approximation. The total Ham
tonianĤ tot of a low-density system of layered excitons is t
Hamiltonian for a tenuous gas of two-dimensional indire
excitons with parallel and oppositely-directed dipole m
ments:

Ĥ tot5Ĥ01Ĥ int . ~15!

Here Ĥ0 is the Hamiltonian of a system of noninteractin
excitons:

Ĥ05(
p

«0~p!~ap
1ap1bp

1bp1a2p
1 a2p1b2p

1 b2p!,

~16!

where «0(p)5p2/2M is the spectrum of an isolated two
dimensional indirect exciton in a superlattice;ap

1 , bp
1 , ap ,

andbp are the creation and annihilation operators of excito
with different orientations of their dipole moments;Ĥ int is
the Hamiltonian of interaction between excitons:

Ĥ int5
U

2V (
p11p25p31p4

~ap4

1 ap3

1 ap2
ap1

1bp4

1 bp3

1 bp2
bp1

2ap4

1 ap3

1 bp2
bp1

2bp4

1 bp3

1 ap2
ap1

2ap4

1 bp3

1 ap2
bp1

!,

~17!

whereV is the system volume.
We now consider the caseT50. Assuming that mos

particles are in the condensate@(N2N0)/N0!1, whereN
andN0 are the total number of particles and the number
particles in the condensate#, we take into account, as usua
only the interactions among condensate particles and
tween the excited particles and condensate, thus negle
interactions among excited particles. Then the total Ham
tonian has the form

Ĥ tot5
1

2 (
pÞ0

@«0~p!~ap
1ap1bp

1bp1a2p
1 a2p1b2p

1 b2p!

2Unexc~ap
1b2p

1 1apb2p1a2p
1 bp

11a2pbp1ap
1bp

1a2p
1 b2p1apbp

11a2pb2p
1 !#, ~18!

wherenexc5N/V is the exciton density. All terms due to th
first and second summands in Hamiltonian~17!, which de-
scribe the mutual repulsion of indirect excitons with para
dipole moments, are cancelled by the rest of the terms
Hamiltonian~17!, which represent the attraction between
a-
r
g

-
p-

s

t
-

s

f

e-
ing
l-

l
in
-

direct excitons with oppositely-directed dipole moments.
a result, we have only the terms describing attraction~terms
responsible for attraction in Eq.~17! are more numerous tha
those describing repulsion because attraction can be
scribed using a greater number of combination of creat
and annihilation operators!. Let us diagonalize Hamiltonian
Ĥ tot , which is quadratic in these operators, using a unit
transform of the Bogolyubov type17:

ap5
1

A12Ap
22Bp

2 ~ap1Apa2p
1 1Bpb2p

1 !,

~19!

bp5
1

A12Ap
22Bp

2 ~bp1Apb2p
1 1Bpa2p

1 !,

where coefficientsAp andBp , obtained by equating the co
efficients of the off-diagonal terms of the Hamiltonian
zero, are

Ap5Bp5
1

Un
@2«0~p!1A~«0~p!!22~nU!2#. ~20!

As a result, we obtain the diagonalized Hamiltonian:

Ĥ tot5 (
pÞ0

«~p!~ap
1ap1bp

1bp1a2p
1 a2p1b2p

1 b2p!,

~21!

where«(p) is the spectrum of modified quasiparticles:

«~p!5A«0
2~p!2~nU!2. ~22!

At small momentap,A2MnU, the excitation spectrum is
purely imaginary because of interaction between exciton
large distances. Therefore, the low-density system of wea
interacting indirect excitons in a superlattice is unstable.

3. RADIUS AND BINDING ENERGY OF AN INDIRECT
BIEXCITON

Consider the ground state of the system to be a tenu
weakly nonideal gas of two-dimensional indirect biexcito
formed by excitons with oppositely-directed dipole m
ments. If electron and hole quantum wells alternate, indir
biexcitons are constructed from indirect excitons w
oppositely-directed dipole moments in adjacent well pa
~Fig. 1!. With the appropriate mutual alignment of dipole
they attract at long distances between them and repel at s
distances, and their interaction potentialU(r ) has the form
described by Eq.~1!, wherer is the distance between parall
dipoles of indirect excitons in the quantum well plane~Fig.
2!. Here the separationD between coupled quantum wells
assumed to be greater than the indirect exciton radiusaexc

~Ref. 14!: D@aexc;(a* )1/4D3/4. Whenr .1.11D, the indi-
rect excitons attract, whereas atr ,1.11D they repel. Not-
withstanding the fact that, unlike the case of atoms and m
ecules, electron and hole masses are comparable,
adiabatic approximation applies to the problem of biexcito
The small parameter in this case is not the ratio between
electron and hole masses, but the numerically small r
between the biexciton and exciton binding energies.21 In
terms of spatial scales, the small parameter is the ratio
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tween the exciton and biexciton radii in the quantum w
plane. Curiously enough, in the biexciton problem, these
rameters are small even ifme5mh . Moreover, they are even
smaller than similar small parameters for atoms a
molecules.21 Their smallness will be confirmed by calcula
tions of parameters of the indirect biexciton. The Sch¨-
dinger equation for internal motion of indirect excitons in
indirect biexciton in the center-of-mass frame has the for

2
\2

M

1

r

]

]r S r
]c~r !

]r D1U~r !c~r !5Ec~r !, ~23!

wherec(r ) and E are the wave function and energy of in
ternal motion in the indirect biexciton. The potential ener
minimum is at distancer 5r 0'1.67D between the indirec
excitons~Fig. 2!. For largeD we expand potential energ
U(r ) in powers of (r 2r 0)/D!1 and retain terms up to th
second order:

U~r !520.04
e2

eD
10.44

e2

eD3 ~r 2r 0!2. ~24!

Thus, the biexciton levels at largeD correspond to those
of a two-dimensional harmonic oscillator with frequencyv
5A0.88e2/MeD3 and an equilibrium point atr 5r 0 . The
spectrum of low-lying levels is, therefore, equidistant:

En520.04
e2

eD
12&E0S r *

D D 3/2

~n11!, ~25!

where

E05
Me84

\2e
, r * 5

\2e

2Me82 , e8250.88e2.

In the ground state the energyE0 and the characteristic
‘‘spread’’ abiex of the biexciton in the quantum well plan
~near the biexciton mean radiusr 0! are

E0520.04
e2

eD
12&E0S r *

D D 3/2

, ~26!

abiex5A2 \

Mv
5~8r * !1/4D3/451.03aexc. ~27!

It follows from the equations given above that the ad
batic condition holds, since the ratio between the exciton
biexciton binding energies isEbiex/Eexc50.04!1. The ratio
between the exciton and biexciton radii isaexc/r 0

50.67(8r exc)
1/4D21/4!1 for D@aexc.

The mean dipole moment of this biexciton is zero. It
clear, however, that its quadrupole moment is nonzero
equal toQ53eD2 ~the quadrupole major axis is perpendic
lar to the quantum well plane!. Therefore, indirect biexcitons
interact at large distances as similarly aligned quadrupole
accordance with the formulaU(R)59e2D4/R5.

4. COLLECTIVE PROPERTIES AND SUPERFLUIDITY OF
INDIRECT BIEXCITONS

At large separations between indirect biexcitons,R
@D, there is a weak quadrupole repulsion described by
formula U(R)59e2D4/R5. Inequality R0@D applies to
low-density systems provided thatn!1/pD2. The exchange
l
a-

d

-
d

d

in

e

effects due to the nonboson statistical properties of indir
biexcitons are reduced by the small overlap between w
functions of two biexcitons if we take into account the p
tential barrier due to the long-range quadrupole repuls
~see the similar reasoning for the case of dipole exciton!.
The small tunneling parameter associated with this barrie

expF2
1

\ E
r 0

R8A2MbiexS 9e2D4

R5 2m DdRG ,

wherem is the chemical potential of the system~see below!;
R8 is the classical turning point for the quadrupole intera
tion, and is determined by the conditionU(R8)5m. At large
D this parameter has the form exp(20.93AD/r exc). Hence,
exchange effects for indirect biexcitons can be neglected
D@r exc.

In order to take into account the biexciton–biexcito
scattering, one can use results of the two-dimensional B
gas theory.18 The chemical potentialm of two-dimensional
bosons, with repulsion described by the formulaU(R)
5AR2k/M and the interparticle interaction taken into a
count by summing ladder diagrams,17 is given by~hereafter
\51!18

m5
4pn

M
ln21

1

8pnA2/(k22) . ~28!

In the case of biexcitons repelling like quadrupoles, the
lations A59e2D4Mbiex and k55 apply, and the chemica
potential of this system is

m5
4pnbiex

Mbiex
ln21

1

8p~9e2D4Mbiex!
2/3nbiex

, ~29!

wherenbiex5n/2 is the biexciton density andMbiex52M is
the biexciton mass.

At small momenta the collective spectrum of biexcito
is acoustic:«(p)5cs p, wherecs5Am/Mbiex is the speed of
sound andm is determined by Eq.~29!. This spectrum satis-
fies the Landau superfluidity criterion. The local dens
ns(T) of the superfluid component for a two-dimension
Bose gas with an acoustic spectrum is given by

ns5nbiex2
3z~3!

2p

T3

cs
4Mbiex

, ~30!

where the second term on the right-hand side is the temp
ture dependent normal component density due to nonin
acting excitations with the spectrum«(p)5Am/Mbiexp ~cf.
Ref. 7!. The estimate of the local superfluid component de
sity by Eq.~30! applies to low temperatures and low den
ties of excitations, which are assumed to be noninteract
whereas the renormalization ofns due to a contribution from
vortices at temperatures below the Kosterlitz–Thouless tr
sition is deemed negligible.

Superfluidity emerges in a two-dimensional system
temperatures below the Kosterlitz–Thouless transitionTc

~Ref. 19!:

Tc5
pns

2Mbiex
, ~31!
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where bound vortices dissociate. Substituting the estim
for the superfluid component densityns from Eq. ~30! into
Eq. ~31!, we obtain an equation forTc , which then yields

Tc5F S 11A 16

~6•0.45!3p4 S MbiexTc
0

nbiex
D 3

11D 1/3

1S 12A 16

~6•0.45!3p4 S MbiexTc
0

nbiex
D 3

11 D 1/3G Tc
0

~4p!1/3.

~32!

HereTc
0 is an auxiliary parameter equal to the temperature

which the superfluid component density vanishes in
mean-field approximation,ns(Tc

0)50:

Tc
05F2pnbiexcs

4Mbiex

3z~3!
G1/3

5F 32

3z~3!
ln22

1

8pnbiexMbiex
2 D4G1/3pnbiex

Mbiex
. ~33!

Equation ~33! can be used as a rough estimate of
characteristic crossover temperature, at which the local
perfluid component density becomes nonzero over dista
smaller than the mean separation between vortices. The
superfluid component density can show up in local opti
properties or local transport properties of the system.7 In a
low-density two-dimensional system and in the ladder
proximation ~when ln21@8p(9e2D4Mbiex)

2/3nbiex#@1!, the
Kosterlitz–Thouless temperature derived from Eqs.~32! and
~33! is

Tc5~2p!21/3Tc
0. ~34!

As follows from Eq.~30!, the normal component density a
the maximum temperature of superfluidity~Kosterlitz–
Thouless temperature! is given by

nn~Tc!5
3z~3!

2p

Tc
3

cs
4Mbiex

. ~35!

Substituting Eq.~32! into ~35!, we obtain

nn~Tc!5
nbiex

4p H F11A 16

~6•0.45!3p4 S MbiexTc
0

nbiex
D 3

11G1/3

1F12A 16

~6•0.45!3p4 S MbiexTc
0

nbiex
D 3

11G1/3J 3

.

~36!

In the ladder approximation, we have for a low-density tw
dimensional system

nn~Tc!

nbiex
5

1

2p
. ~37!

Note that Eqs.~34! and ~37! apply to any tenuous two
dimensional Bose gas. The dimensionless quan
nn(Tc)/nbiex can be treated as a small parameter. Con
quently, the approximation of an ideal Bose gas of acou
excitations can be used in calculatingns andTc .
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5. CONCLUSION

Spatially indirect excitons can transform to direct ex
tons via two processes: tunneling of electrons and holes
tween quantum wells and interaction between indirect ex
tons. The second effect was detected in experiments15 and
should be negligible at low densities. Interaction betwe
direct excitons in different wells can lead to their transfo
mation to indirect excitons. This process is also very slow
a low-density excitonic system. Transformations of dire
excitons to indirect should fix the phase of the superfl
order parameter. This process should lead to various qu
Josephson effects in an excitonic system in a superlattice~cf.
Ref. 8!. At sufficiently low temperatures, superfluid phas
of direct and indirect excitons can coexist. In this case,
difference between phases of order parameter of direct
indirect excitons can be ascertained. As a result, a gap sh
open in oscillation spectra of the phase difference, which
proportional to the matrix element of the direct exciton tran
formation into the indirect exciton. In addition, variou
soliton-like excitations should be generated in a system.
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Nonadiabatic effects in the phonon spectra of superconductors
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The nonadiabatic corrections to the self-energy partSs(q,v) of the phonon Green’s function are
studied for various values of the phonon vectorsq resulting from electron–phonon
interactions. It is shown that the long-range electron–electron Coulomb interaction has no direct
influence on these effects, aside from a possible renormalization of the corresponding
constants. The electronic response functions andSs(q,v) are calculated for arbitrary vectorsq
and energyv in the BCS approximation. The results obtained forq50 agree with
previously obtained results. It is shown that for large wave numbersq, vertex corrections are
negligible andSs(q,v) possesses a logarithmic singularity atv52D, whereD is the
superconducting gap. It is also shown that in systems with nesting,Ss(Q,v) ~whereQ is the
nesting vector! possesses a square-root singularity atv52D, i.e., exactly of the same
type as atq50. The results are used to explain the recently published experimental data on
phonon anomalies, observed in nickel borocarbides in the superconducting state, at largeq. It is
shown, specifically, that in these systems nesting must be taken into account in order to
account for the emergence of a narrow additional line in the phonon spectral functionS(q,v)
'2p21Im Ds(q,v), whereDs(q,v) is the phonon Green’s function, at temperaturesT
,Tc . © 1999 American Institute of Physics.@S1063-7761~99!02005-3#
i

n
n
th

to
ca

ca
ie

n
.
er
n

pe

ue
st
ta
on

o-

ting

e
a

tion
n

non

r’s
d

de-
per-
riti-
e
ers

n–

ob-
the
1. INTRODUCTION

The phonon spectra of metals are ordinarily calculated
the adiabatic approximation,1 i.e., the restructuring of the
electronic subsystem in response to a shift of the ions
assumed to be instantaneous. Formally, this means that i
calculation of the lattice dynamics all electron response fu
tions drawn into this process are taken into account in
static approximation. The corrections due to the dynam
characteristics of the electronic system~i.e., the frequency
dependence of the electron response functions! are ordinarily
small ~of orderAm/M , wherem is the electron mass andM
is the ion mass!. Engelsberg and Schrieffer were the first
note2 that nonadiabatic effects may not be small for opti
phonons with small wave numbersqvF,v0 , wherevF is
the Fermi velocity of the electrons andv0 is the correspond-
ing phonon frequency. In this case nonadiabatic effects
lead to a large renormalization of the phonon frequenc
~not proportional toAm/M ), strong dispersion of phono
frequencies for smallq, and finite damping of such phonons3

This phenomenon has been observed in the Raman scatt
of light by certain metals.4,5 This problem has recently bee
investigated in detail in Ref. 6.

Nonadiabatic effects can be even stronger in the su
conducting state for phonon frequenciesv'2D, whereD is
the superconducting gap. The change in the phonon freq
cies and dampings at a transition to the superconducting
has been observed7 in the standard superconducting me
Nb. The theory of nonadiabatic effects for acoustic phon
9871063-7761/99/88(5)/10/$15.00
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in superconductors has been developed by Schuster8 in the
BCS approximation. In this work it was shown that the ph
non frequencies and phonon linewidths~i.e., damping times!
change at the transition of the metal to a superconduc
state. Specifically, for phonon frequenciesvph.2D the pho-
non frequency itself increases~becomes harder! and the line-
width increases. For frequenciesvph,2D nonadiabatic ef-
fects decrease~soften! the phonon frequencies and th
linewidths. Moreover, it was predicted in this work that
new, narrow line can appear in the phonon spectral func
at frequenciesv'2D. However, such lines have not bee
observed for acoustic phonons.7

Subsequently, the corresponding behavior of the pho
spectral function was observed in NbSe2 for low-frequency
(q'0) optical phonons withv'2D.9 A theoretical interpre-
tation of this phenomenon, quite close to Schuste
interpretation,8 was given in Ref. 10. In fact, in Refs. 8 an
10 the standard Fro¨hlich Hamiltonian, in which there is no
direct Coulomb interelectron interaction, was used to
scribe nonadiabatic effects in the phonon spectra of su
conductors. On this basis the results in Ref. 10 were c
cized by Littlewood and Varma.11 They asserted that th
long-range Coulomb interaction leads at small wave numb
to complete screening of all contributions of the electro
phonon interaction~including nonadiabatic contributions! to
the phonon frequencies. To explain the experimentally
served phenomena they invoked the specific nature of
low-frequency optical mode in NbSe2 , treating it as an am-
plitude mode of the charge-density wave in this system.
© 1999 American Institute of Physics
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Note, however, that there is nothing special about t
optical mode, associated with the structural transition to
incommensurate phase. Its only distinctive feature is tha
frequency is much lower than the frequencies of all ot
optical phonons in this metal, and is comparable in mag
tude to 2D. This mode has another property that can g
rise to the observed phenomena, but we discuss it be
Moreover, we show that in the absence of low-frequen
collective excitations of the electron charge and spin de
ties, the long-range Coulomb interaction does not introd
any substantial modifications in nonadiabatic effects.

A large number of investigations of phonons in hig
temperature superconductors have been conducted in th
few years.12 Shifts of the phonon frequencies and a change
the linewidths at a transition to the superconducting s
have been observed. No new lines in the phonon spe
functions have been observed. The theory of nonadiab
effects in the superconducting state of metals with a str
electron–phonon interaction has been proposed by Ze
and Zwicknagl.13 This theory made it possible to explain
substantial part of the experimental data on the shift of
phonon frequencies and the change in the linewidths. H
ever, some data that do not fit the theory developed in R
13 show changes in the phonons in the superconduc
state.14–16

Very interesting observations of phonon spectra have
cently been performed using inelastic neutron scattering.17–19

The new superconducting compounds LnNi2B2C, where Ln
is either Lu or Y, were studied. The behavior of the lo
energy acoustic and optical vibrational branches in the di
tion (j,0,0) with j'0.55, i.e., close to the center of th
Brillouin zone, were studied. The frequencies of bo
branches decreased with temperature; this in itself is atyp
of ordinary metals. The phonon spectrum radically chan
below the superconducting transition temperatureTc . A nar-
row peak appeared at energies'4 meV, which is somewha
less than 2D, and a wide peak corresponding to the ene
of the phonons studied also appeared.

There exist at least two published theoretical works
tempting to explain the observed facts. One20 employs the
conventional BCS approach for a three-dimensional qu
isotropic system. In fact, the numerical results are very cl
to those obtained by Schuster8 and, as follows from
Schuster’s work itself, for an appropriate choice of syst
parameters they can explain the changes in the phonon s
trum at temperaturesT,Tc . However, the correspondin
model cannot describe the behavior of phonon spectr
temperaturesT .Tc . Moreover, the choice of the paramete
in this model that are necessary to describe the situatio
temperaturesT,Tc is in our opinion clearly unrealistic. In
Ref. 21 it was suggested that the electron spectrum of
experimental compounds contains a certain fraction of n
ing with momentaQ5(0.55,0,0). This conjecture is als
confirmed by a detailed first-principles calculation22 of the
electronic polarization of the electronic band structure
these compounds. However, the analytic expressions in
21 for the changes in the phonon spectra in the super
ducting state differ substantially from those that can actu
be obtained for systems with nesting. The changes in
s
n
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frequencies of the phonon modes and linewidths forqÞ0
have also been calculated elsewhere.23,24 Thus far, however,
the role and magnitude of the nonadiabatic effects in sup
conducting metals are still not completely understood, e
in the simple BCS model. We discuss these problems
detail in the present paper.

2. DERIVATION OF THE GENERAL RELATIONS IN THE BCS
MODEL

We begin our analysis of nonadiabatic effects with t
simple system described by the Fro¨hlich Hamiltonian

H5Hee1Hph1H int , ~1!

whereHee is the Hamiltonian of the superconducting ele
trons, Hph is the Hamiltonian of the starting phonons, an
H int describes the electron–phonon interaction

H int5 (
k,q,s,s

gs~k,q!ak,s
1 ak1q,s~bq,s1b2q,s!. ~2!

Hereaq,s andbq,s are, respectively, the electron and phon
operators, ands characterizes the vibrational branches. T
single-particle phonon Green’s function can be represen
in the form

Ds
21~q,v!5

v22v0
2~q,s!

v0
2~q,s!

2Ss~q,v!, ~3!

HereSs(q,v) is the self-energy part of the phonon Green
function and v0(q,s) is the starting frequency of the
phonons. In the Matsubara representation the func
Ss(q,v) satisfies the integral equation13

Ss~q,ivn!5T(
k,m

gs~k,q!Tr t3G~k1q,ivm1 ivn!

3Gs~k1q,k,ivm1 ivn ,ivm!G~k,ivm!,

~4!

where the matrix vertex functionsGs satisfy the Bethe–
Salpeter equation

Gs~k1q,k,ivm1 ivn ,ivm!

5gs~k,q!t32T (
k8,m8

t3G~k8,ivm8!Gs~k81q,k8,

3 ivm81 ivn ,ivm8!G~k81q,ivm81 ivn!t3V~k8,k!,

~5!

whereV(k,k8) is the electron–electron interaction leading
superconductivity. In the Fro¨hlich model, generally speak
ing, there is no need to introduce any special electro
electron interaction leading to superconductivity, since thi
simply the electron–phonon interaction itself.

In this case, the functionV(k,k8) can be expressed in
terms of the phonon Green’s function, and it depends
only on the momentak andk8 but also the energyivm . For
superconductors with weak coupling, it is well known th
the Eliashberg theory25 for systems with an electron–phono
interaction reduces to the BCS model. At present we con
ourselves to this approximation. The effect of stro
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electron–phonon coupling will be examined later. We rep
sent the electronic Green’s function in the BCS model as

G~k,ivn!5
ivnt01Dkt11ekt3

~ ivn!21ek
21Dk

2
. ~6!

Hereek is the spectrum of single-particle excitations andDk
is the superconducting gap, described by the BCS equa

t2Dk52T(
k8,n

t3G~k8,ivn!t2Dk8t3V~k8,k!. ~7!

To simplify the solution of the resulting equations w
represent the electron–electron interactionV(k,k8) in the
factorized form

V~k8,k!52(
s,L

gsL
2 u~vc2ueku!u~vc2uek8u!CL* ~k8!CL~k!.

~8!

Herevc is the cutoff energy, equal in order of magnitude
the characteristic phonon frequencies, andCL(k) is a com-
c-

ce

s

-

n

plete set of orthogonal functions. The latter can be chos
for example, to be Fermi-surface harmonics.26 Their specific
form is of no consequence for our purposes.

We seek a solution of the Bethe–Salpeter equation~5! in
the form

Gs5Gs
(2)t21Gs

(3)t3 , ~9!

Gs
(2,3)~k8,k!5(

L
Gs,L

(2,3)CL* ~k8!CL~k!. ~10!

All other functions in Eqs.~3! and~4! can also be expande
in the harmonicsCL(k). Here we confine ourselves to iso
tropic s pairing. This means that the energy gapDk will
possess only the harmonic withL50

Dk5CL50~k!DL50 . ~11!

After long but simple calculations, which we do not prese
here, we obtain for the analytically continued vertex fun
tions
GsL
(2)~q,v!5gsL~q!

igL
2I 2

L~q,v!

@11gL
2I 3

L~q,v!#@12gL
2I 1

L~q,v!#1@gL
2I 2

L~q,v!#2
, ~12!

GsL
(3)~q,v!5gsL~q!H 12

gL
2I 3

L~q,v!2gL
4@ I 1

L~q,v!I 3
L~q,v!2~ I 2

L~q,v!!2#

@11gL
2I 3

L~q,v!#@12gL
2I 1

L~q,v!#1@gL
2I 2

L~q,v!#2J , ~13!
n

ex
a

ing
ated
on.
m-
ot

n

where

gL
25(

s
gsL

2 ~14!

and the functionsI j
L(q,v) can be represented using the fun

tions I a,b,g
L (q,v):

I a,b,g
L ~q,v!5

1

4 (
k

uCL~k!u2u~vc2ueku!tanh
Ek

2T H Ma,b,g
1

3S 1

Ek1q2Ek1v1 id
1

1

Ek1q2Ek2v2 id D
1Ma,b,g

2 S 1

Ek1q1Ek1v1 id

1
1

Ek1q1Ek2v2 id D J . ~15!

Here Ma,b,g
1 and Ma,b,g

2 are the corresponding coheren
factors

Ma,b,g
6 5a6

bD21gek1qek

Ek1qEk
, ~16!

andEk is the energy of the superconducting quasiparticle

Ek5Aek
21D2. ~17!
The functionsI j 51,2,3
L (q,v) are determined by the functio

I a,b,g
L (q,v) with the following values ofa, b, andg:

a51, b521, g521, j 51,

a50, b5v/D, g50, j 52, ~18!

a51, b521, g51, j 53.

The form of the resulting expressions for the vert
functions is very similar to that obtained in Refs. 27–29 in
calculation of the dielectric response of superconduct
electrons. There is only one substantial difference, associ
with the matrix elements of the electron–electron interacti
In our analysis the long-range Coulomb interaction is co
pletely absent. As we will show, this interaction does n
directly affect the phenomenon which we are studying.

We now write an expression for theLth harmonic of the
phonon self-energy part,

SsL~q,v!

522gsL
2 Ĩ 3

L~q,v!22gsL
2

3
I 3

L~q,v!@12gL
2I 1

L~q,v!#1gL
2~ I 2

L~q,v!!2

@11gL
2I 3

L~q,v!#@12gL
2I 1

L~q,v!#1@gL
2I 2

L~q,v!#2
.

~19!

The function Ĩ 3
L(q,v) is determined by the same equatio

~15! but with u(ueku2vc) instead ofu(vc2ueku). This func-
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tion describes in the Fro¨hlich model the contribution of the
part of the electron–phonon interaction due to regions
from the Fermi surface to the phonon self-energy. As a
sult, the functionI 3

L(q,v) is completely independent of th
superconductivity parameters, and to calculate itD can be set
to zero.

The equations obtained above completely describe
situation in systems withs pairing for any wave vectorsq
and frequenciesv. They are suitable for quasi-isotropic sy
tems and systems with nesting. We consider the caseq50
andT50 first. Then the functionsI j

L(q,v) have the form

I 1
L~0,v!5

1

g0
2

1S v

2D D 2 N~0!I ~v!

2
, ~20!

I 2
L~0,v!52

v

2D

N~0!I ~v!

2
, ~21!

I 3
L~0,v!5

N~0!I ~v!

2
, ~22!

Ĩ 3
L50. ~23!

HereN(0) is the density of states at the Fermi surface

I ~v!5
1

2E2eF

eF
dek

D2

Ek@Ek
22~v/2!22 id#

. ~24!

Using expressions~20!–~23!, it is easy to verify that

Ss,0~q50,v!50. ~25!

This equality is a consequence of a Ward identity, wh
exists in the Fro¨hlich model, just as in any system with
gradient-invariant Hamiltonian.27 It appears only when ver
tex corrections are rigorously taken into account. The st
ing value of the phonon self-energy part neglecting ver
corrections~i.e., for Gs5gs) does not satisfy the identity
~25!. As shown in Refs. 11–13, the long-range Coulom
interaction is directly related to the componentL50 of the
self-energy partSsL(q,v) and causes the latter to vanish
q50. In systems with a gradient-invariant Hamiltonian th
quantity, as we have verified, is zero in itself. For this reas
phonons withq50, which have a representation withL50
~or, from the standpoint of the theory of crystal groups
unitary representation with the complete symmetry of
point group!, do not interact with the electrons in either th
normal or superconducting states and do not manifest
nonadiabatic effects. In contrast to the assertions mad
Refs. 11 and 13 this result is in no way related to the lo
range Coulomb interaction. Of course, just as for the die
tric response,27–29 the Coulomb interaction can renormaliz
the corresponding polarization operators and the const
characterizing them, such as, for example,N(0). But this
does not at all alter the physics of nonadiabatic effects
long as there are no low-energy collective excitations of
electron charge or spin densities.

We now consider theLÞ0 component of the phono
self-energy partSsL(v), which has the form

SsL~v!522lsL

I ~v!/2

12lLbL~v/2D!I ~v!/2
, ~26!
r
-

e

h
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x

,

e
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wherelL is the coupling constant in theLth harmonic

lL5gL
2N~0! ~27!

and

bLS v

2D D5S v

2D D 2 l0

l02lL
21. ~28!

The functionI (v) can easily be calculated and is given b

I ~v!5
1

2E2`

` dx

A11x2@11x22~v/2D!22 id#

5
4D/v

A12~v/2D!2
arcsin

v

2D
, v,2D,

22•2D/v

A~v/2D!221
S arcsinhAS v

2D D 2

212
ip

2 D , v.2D.

~29!

The expression~26! for SsL(v) demonstrates the possib
existence, well-known in the theory of dielectric response26

of a pole in the polarization operator of superconduct
electrons in theLÞ0 channel if

12lL

I ~vb!

2
bLS vb

2D D50. ~30!

This expression yields the energyvb of collective oscilla-
tions,

vb'2D2DlL
2S lL

l D 2

. ~31!

As Maki and Tsuneto showed long ago,30 impurity scat-
tering of electrons can substantially modify the expressi
obtained above for the electronic response functions. Spe
cally, this can cause the pole in the polarization operator
therefore the collective electronic excitations to vanish. T
problem was recently discussed in detail in Ref. 31 as par
a study of the Raman scattering spectra of superconduc
This work confirmed the results in Ref. 30 and showed t
vertex corrections can be neglected for strongly disorde
systems. These results can easily be extended to our ca
nonadiabatic effects in the phonon spectra of supercond
ors. For optical phonons withq50, this was done in Ref. 32
where isotropics pairing and anisotropicd pairing were con-
sidered. Specifically, it was shown that in the weak-coupl
approximation, vertex corrections do not significantly al
the phonon spectral functions compared with those ca
lated in their absence, even for systems without impuritie

To conclude this section we examine the functi
S(q,v) for momentaqÞ0 satisfying

kF.q.
v

vF
,
2D

vF
, ~32!

wherevF is the Fermi velocity of the electrons andkF is the
Fermi momentum. It is easy to show that the functio
I j 51,2,3(q,v) in this case reduce to the expressions

Ĩ 3~q,v!'N~0!, ~33!
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I 1~q,v!'I 3~q,v!, ~34!

I 2~q,v!'2
v

2D
I 3~q,v!. ~35!

It follows from Eqs.~33!–~35! and ~19! that vertex correc-
tions for large phonon momentaq do not lead to a pole in the
vertex functions, and they can be neglected in the we
coupling approximation under study. The self-energy par
the phonon Green’s function in this case is given by

Ss~q,v!522gs
2N~0!22gs

2I 3~q,v!, ~36!

where

I 3~q,v!'
pvN~0!

2qvF
ln

2D

u2D2vu
1 i

pvN~0!

2qvF
u~v22D!,

~37!

which is identical to the result obtained in Refs. 8 and
Formally, the experimentally observed16–18 change in the
phonon spectral density can be explained, as shown in
20, using these formulas. In fact, however, Eqs.~36! and
~37!, as we have already noted in the introduction and as
show below, cannot serve to explain these data.

3. SYSTEMS WITH NESTING

Theoretical calculations of the electronic polarizabil
of the compound LuNi2B2C show the existence of so-calle
nesting in the electron spectrum for sufficiently large s
tions of the Fermi surface. Nesting is usually understood
mean that

ek'2ek1Q ~38!

for single-electron energies in some finite phase volume n
the Fermi surface. The vectorQ for which Eq.~38! holds is
the nesting vector. As is well known,33 for ideal nesting@i.e.,
exact satisfaction of Eq.~38!# the static electron polarizabil
ity P(q,0) diverges atq5Q. In turn, this can lead to wave
of spin density and/or structural transitions. Magnetic str
ture with an incommensurate period characterized by
vector Q5(0.55,0,0) is indeed observed in a number
nickel borocarbide compounds, for example, EuNi2B2C and
HoNi2B2C.34 In LuNi2B2C and YNi2B2C, no magnetic
structure is observed, but as mentioned in the introduc
substantially softening of the acoustic and optical modes
curs for wave vectorsq close to the nesting vectorQ. Both
phonon lines are broadened in this case. In the supercond
ing state, i.e., atT,Tc , the phonon spectral function dis
cussed in the introduction changes abruptly. These circ
stances together show that nesting could play an impor
role in the modification of the phonon lines in the normal a
superconducting states.

Proceeding now to the self-energy part of the phon
Green’s function for systems with nesting, we first write
expression in zeroth order, i.e., neglecting vertex functio
Using the nesting condition~38! and the equations fo
Ss(q,v) obtained in the preceding section, it is easy to o
tain for q5Q
k-
f

.

ef.

e

-
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ar

-
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n
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ct-
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n

s.

-

S0~Q,v!52
g2~Q!

2 (
k

tanhS Ek

2TD S 1

2Ek1v1 id

1
1

2Ek2v2 id D . ~39!

For the normal state, i.e.,D50, the well-known expression33

for S0(Q,v) follows from Eq.~39!:

S0~Q,v!522g2~Q!N~0!S ln
eF

max$v,T%
1 i

p

4
tanh

v

4TD .

~40!

The equation~40! shows that as temperature decreases,
phonon frequencies atq5Q soften and the phonon lines ar
broadened as a result of an increase in the imaginary pa
S0(Q,v). This behavior of the phonon lines of the functio
agrees quite reasonably with that observed
borocarbides.17,19 Of course, a direct comparison of exper
mental data with the theoretical results in the zeroth appro
mation is hardly reasonable. It is obvious that in calculat
the functionS0(Q,v), even for the normal state, vertex co
rections as well as the changes induced in the single-par
electron Green’s functions by the electron–phonon and
electron–electron Coulomb interactions must be taken
account self-consistently.

The corresponding analysis of the electronic suscepti
ity for metallic systems with nesting has been carried ou
Ref. 35 on the basis of a semiphenomenological self-con
tent method taking account of only the electron–elect
Coulomb interaction. We do not consider this problem he
since our main concern here is to clarify the specific nat
of the change induced in the phonon spectra by a transi
to the superconducting state.

The expression~39! for S0(Q,v) at T50 can be cast in
the form

S0~Q,v!52g2~Q!N~0!E
2eF

eF dek

Ek
2g2~Q!N~0!

3S v

2D D 2E
2eF

eF dek

Ek

D2

Ek
22~v/2!2

. ~41!

The first term in this equation

22g2~Q!N~0!ln~eF /D!, ~42!

is quite well known33,36 and describes the elimination of th
singularity of the static response functions in systems w
nesting when the system passes to a superconducting s
In particular, this terminates the softening of the phon
modes in the adiabatic approximation and leads to the
sence of structural transformations at temperaturesT,Tc .
The second term describes the singular behavior of the fu
tion S0(Q,v) at energiesv'2D, and is due to a transition
to the superconducting state. Comparing Eq.~41! and the
expression~24! for the functionI (v), we see thatS(Q,v) at
v'2D has exactly the same singularity as atq50, i.e.,
'@12(v/2D)2#21/2. This result, just like the actual expres
sion for the functionS0(Q,v), completely contradict the
recently published expression in Ref. 21. A logarithmic s
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gularity of S0(Q,v) at v'2D was obtained incorrectly
there. In reality, as shown above, this occurs in a qu
isotropic system at large momentaqvF@D.

Using the expressions~15!–~18! for the function
I j 51,2,3(Q,v) it is easy to show that

I 1~Q,v!5N~0!I ~v!, ~43!

I 2~Q,v!52~v/2D!N~0!I ~v!, ~44!

I 3~Q,v!51/l1~v/2D!2N~0!I ~v!, ~45!

Ĩ 3~Q,v!5N~0!ln~eF /vc!. ~46!

Accordingly,Ss(Q,v) at T50 can be written in the form

Ss~Q,v!522lQ ln
eF

D
22lQ

I ~v!/221/l

22lI ~v!/2@22~v/2D!2#
.

~47!

Here lQ5g2(Q)N(0) and l is the total electron–phono
coupling constant determined by the condition

15l ln~2vc /D!. ~48!

It is evident from the expression~46! that Ss(Q,v) pos-
sesses a pole corresponding to collective excitations th
determined by the second term in Eq.~47!:

22
lI ~vp!

2 F22S vp

2D D 2G50. ~49!

Hence it follows that

~vp!25~2D!2F12S l

2D 2G . ~50!

The corresponding residuer is

r 5lQlD2. ~51!

Using the expressions obtained forSs(Q,v) and Eq.~3!, the
expression forDs

21(Q,v) can be rewritten as

Ds
21~Q,v!5

v22ṽ0
2~Q,s!

v0
2~Q,s!

2S̃s~Q,v!, ~52!

whereS̃s(Q,v) is the second term in Eq.~47!. Notation was
also introduced for the phonon frequencies renormalized
result of the first term in Eq.~47!:

ṽ0
2~Q,s!5v0

2~Q,s!S 122lQ ln
eF

D D . ~53!

Using the equations~49!–~51! obtained above, the expres
sion ~52! can be rewritten as

Ds
21~Q,v!5

v22ṽ0
2~Q,s!

v0
2~Q,s!

2
r

v22vp
2

. ~54!

It is easy to show that the equation

Ds
21~Q,v!50 ~55!

possesses two solutions for anyṽ0(Q,s).2D. One solution
corresponds to a phonon with energy
i-

is

a

vph
2 'v0

21
rv0

2~Q,s!

ṽ0
2~Q,s!2vp

2
.~2D!2. ~56!

The other solution exists forv,2D and describes the exis
tence of an additional mode, mentioned several times in
paper, with energy

vb
2'vp

22
rv0

2~Q,s!

ṽ0
2~Q,s!2vp

2
,~2D!2. ~57!

The spectral density of this mode can also easily be ca
lated:

Ss~Q,v!52
2

pv0
2 ImDs~Q,v!

5
rv0

2~Q,s!

@ṽ0
2~Q,s!2vp

2#21rv0
2~Q,s!

d~v2vb!

pvb
.

~58!

Although two solutions of Eq.~55! exist for any phonon
energyv'ṽ0(q,s), the intensity of the additional mode i
found to be very low forṽ0(q,s)@2D. The intensities of the
additional mode and of the phonon are found to be com
rable only for phonon energiesṽ0(q,s)*2D.

Formally, our solutions for the energyvp of collective
excitations and the energyvb of the additional mode and its
intensity are very close to those obtained in Ref. 21. Ho
ever, there are substantial qualitative differences. First
foremost, this is due to the fact that the energyvp of the
collective modes differs from both 2D and the residuer,
which were obtained in Ref. 21, by an exponentially sm
quantity

2D2vp

2D
'e2eF /lD,

whereeF is the Fermi energy. An exponentially small diffe
ence of the same type,

2D2vb

2D
'e2qvF /lD,

between the energyvb of the additional mode and 2D also
arises in a quasi-isotropic system, as follows from Eqs.~36!
and ~37!. It is evident from the expressions~50!, ~51!, and
~57! that no exponential smallness inD/eF andD/qvF exists
for systems with nesting. This makes it much easier for
additional mode to appear in such systems. From the exp
mental data of Ref. 18, which show thatvb ranges from 4 to
6 meV, and especially from the wave-number dependenc
the energy of the additional mode, it clearly follows that t
difference between this energy and 2D does not have any
special exponential smallness. We do not give here a deta
discussion of the experimental data using the express
obtained above, since it is unlikely that ideal nesting exists
real physical systems. Instead, we present below the re
of numerical calculations of ImDs(q,v) performed using a
model where nesting can vary from ideal to complete
sence.
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To this end we employed a two-dimensional model o
square lattice of strongly coupled electrons with overlap
tween nearest neighbors. The electron spectrum of su
system can be written in the form

ek522t~coskx1cosky!2m, ~59!

wherem is the chemical potential of the system, charact
izing the degree of filling of the band, andt is the overlap
integral. For a half-filled band (m50), the Fermi surface is
square, i.e., it corresponds to a system with ideal nesting
sparsely filled Fermi surface is nearly circular, i.e., it is
standard quasi-isotropic system. By varying the degree
filling of the band it is possible to investigate the entire tra
sitional region from ideal nesting to an isotropic system. T
model was used in Ref. 24 to calculate the self-energy p
of the phonon Green’s functions in superconductors in
zeroth approximation, i.e., neglecting vertex correctio
However, the photon Green’s functions themselves and
quantitiesSs(q,v) were not calculated in this work.

We calculated the functionSs(q,v) numerically in a
model with isotropic pairing, taking account of vertex co
rections completely. To this end, the functionsI a,b,g(q,v)
were calculated for various values of the filling of the ban
i.e., the values ofm, and for wave vectorsq equal and close
to the nesting vector. For ideal nesting the choice of nes
vector is unique, and is governed by the geometry of
Fermi surface. In our model withm50, the nesting vector
Q0 is directed along the diagonals of the square Brillou
zone, and equals in magnitude half the corresponding re
rocal lattice vector. By changing the filling of the band t
‘‘nesting’’ vector Q can be determined, for example, accor
ing to the position of the maximum of the static respon
function in the normal state, i.e., the functione0(q,0).

In our simple case the ‘‘nesting’’ vector can also
found from the following considerations. In a geomet
sense, the vectorQ connects congruent sections of the Fer
surface. For a simply-connected Fermi surface, as in
case, these are ‘‘almost flat’’ sections whose relative
rangement is determined by the lattice symmetry, so tha
can be inferred that the ‘‘nesting surface,’’ i.e., the ‘‘su
face’’ of local minima of the static electron response fun
tion, is formed by the tips of the vectors 2kF and the vectors
q, which are equivalent to them, obtained by symme
transformations of a square lattice from the vectors 2kF ~Fig.
1!. The vectorsQ are determined by the position of the si
gular ‘‘lines’’ on the ‘‘nesting surface,’’ which are ‘‘lines’’
of self-intersection of this ‘‘surface’’~and, naturally, ‘‘lines’’
of its intersection with the boundaries of the Brillouin zon
and for this reason one of the coordinates of the nes
vectors is exactly6p/a).

Figure 1 shows the corresponding construction form
520.8t ~henceforthm is considered to be a dimensionle
quantity in units of the overlap integralt). The nesting lines
are identical to the numerical results obtained by Marsiglio24

The ‘‘nesting’’ vectors corresponding the maxima of t
static electron response function are also shown. Thus, a
filling varies, the maximum corresponding to the nesti
vector Q0 at m50 splits into four equivalent maxima. Th
parameterm520.8, which for clarity we chose to constru
-
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Fig. 1, is quite far from the ideal nesting parameter, so
nesting effect is quite weak here. Below, we examine m
suitable examples for band filling factors corresponding
1.11 electrons percenter (m50.2) and 0.89 electrons pe
center (m520.2).

Figure 2 shows the behavior of the spectral function
phonon modes 1 and 2 at four different temperatures. It w
assumed that the initial frequencies of these modes,v0

(1)(q)
andv0

(2)(q) are degenerate, i.e.,v0
(1)(q,s)5v0

(2)(q,s). The
electron–phonon coupling constants of these modes w
chosen to bel150.1 andl250.085, respectively, so tha
l1.l2 . The total coupling constantl50.372 was found
from the condition ~48!, so that D'3 meV for vc

'30 meV. This choice ofD and vc approximately corre-
sponds to the values observed in borocarbides. The re
shown in Fig. 2 were obtained in a calculation withm
50.2, i.e., for a more than half-filled band. The same res
are obtained fromm520.2.

It is evident from Fig. 2 that atT.Tc the phonon fre-
quencies soften with decreasing temperature and the pho
lines broaden, as also happens for an ideal nesting. At
glance it may appear that intensity is transferred from
peak with high energyv (2)(q) to the peak withv (1)(q). Of
course, in our approach there can be no transfer of inten
from one peak to another, since mode interaction is
glected. In reality, the amplitude of the spectral density
creases for all modes whose energy decreases with tem
ture. This can easily be verified by writing the functio
Ss(q,v) in the form

Ss~q,v!'
d~v2ṽ~q,s!!

ṽ~q,s!
. ~60!

Of course, such an increase inSs(q,v) has no effect on the
sum rule for the Green’s functionDs(q,v), which expresses
the conservation of the total number of phonon states,

E
2`

`

dv v Ss~q,v!51. ~61!

This example demonstrates that to interpret the experime
data of Ref. 19 care must be taken in determining the par

FIG. 1. Nesting vectors and lines for a square lattice (m520.8) at the
coordinatesp/a. The ‘‘surface’’ 2kF ~solid curve! and equivalent surfaces
~dashed curves!.
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FIG. 2. Intensities of phonon modes 1 and 2 as
function of frequencyv, expressed in kelvins, for
T5500 K ~a!, T5120 K ~b!, T5Tc ~c! and T
50 ~solid curve!, T5Tc ~dashed curve! ~d!.
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eters of the model of coupled modes and the intensity tra
fer, arising in the model, from one mode to another at te
peraturesT.Tc . Figure 2d shows the phonon spectr
density atT!Tc . The existence of a narrow additional pe
is clearly seen in this figure, and it is also evident, as co
pared with Fig. 2c, that there exists an additional transfe
intensity from mode 1 to the additional mode.

We have studied variations in the energy and intensity
the additional mode as a function of the deviation of t
phonon wave vector from the ‘‘nesting’’ vector. Figure
shows the numerical results obtained with the vectorsq5Q
6dq, which vary in absolute magnitude over the range
2j[12uqu/uQu'60.15 on the ‘‘nesting’’ lines, i.e., on the
lines of local maxima of the static electron response fu
tion, and in the directionQ. The j dependences of the en
ergy and intensity of the additional mode which have be
presented above agree to some extent with the experim
data of Ref. 19, despite the existence of obvious discrep
cies. Thus, the experimental data demonstrate only the e
tence of a large anisotropy with respect to an increase
s-
-

l

-
f

f
e

-

n
tal
n-
is-
or

decrease of the vectorq. It is clear from Fig. 1 that as the
filling of the band approaches 50%, the equivalent nest
vectors converge, which produces a large nesting phase
ume and increases the probability of observing the additio
mode in practice. Depending on the degree of filling, t
peaks associated with the wave vectorsQ and Q1 are due
either to direct phonon scattering or Umklapp process
Thus, when less than half the band is filled (m,0), the peak
at the wave vectorQ1 is due to direct scattering and the pe
at a larger vectorQ is due an Umklapp process. This is eas
verified from Fig. 1, whence it is obvious that the differen
of the vectors2Q2 and Q is precisely a reciprocal lattice
vector directed along the diagonal of the Brillouin zone. T
opposite situation occurs for a more than half-filled ba
(m.0). Generally speaking, this can lead to a large diff
ence of the matrix elements of the electron–phonon inte
tion which are responsible for the corresponding proces
Specifically, the matrix element of the electron–phonon
teraction for the direct scattering process can be very sm
n

FIG. 3. Variation of the energy~a! and intensity
~b! of the additional phonon mode as a functio
of the deviation of the phonon wave vectorq
from the nesting vectorQ on the nesting line
~solid curve! and in the direction of the vectorQ
~dashed curves!; j5uqu/uQu.
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for a transverse phonon. In our calculations we neglec
this, since otherwise it would be necessary to perform dir
microscopic calculations of the corresponding matrix e
ments, which falls outside the scope of the present work

The last problem that we wish to discuss here briefly
the temperature dependence of the characteristics of the
ditional mode. In the BCS model studied earlier, the te
perature dependences of the energy and intensity of
mode are governed by theT-dependence of 2D. The experi-
mental data17–19show an obvious deviation from this beha
ior. Thus the energy of the additional mode is essentia
temperature-independent, and its intensity decreases wit
creasing temperature much more rapidly than 2D(T). As we
show below, this can be explained completely naturally
the basis of the tight-binding theory based on the Eliashb
equations.37

Just the fact, for example, that the intensity of the ad
tional mode decreases abruptly as the temperature
proachesTc can easily be understood even without any n
merical calculations. Indeed, as is well known for the ca
q50,30 impurities sharply reduce the intensity of collectiv
s
sit
se
m
l

d
ct
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ad-
-
is

y
in-

n
rg

i-
p-
-
e

excitations in superconductors. This happens because
electrons acquire a finite lifetime 1/g imp (g imp is the relax-
ation rate of electrons on impurities!, which results both in a
decrease in the amplitude of the response functions near
gularities and a change~weakening! in the type of singulari-
ties from square-root to logarithmic forD/g imp.1. The dy-
namic electron–phonon interaction also results in electr
acquiring a finite lifetime, even in the superconducting sta
which also depends on energy and temperature, and in
elimination of singularities in the response functions and
the electronic density of states.38 The electron relaxation
time ~the reciprocal of the lifetime! increases rapidly as tem
perature approachesTc , and this results in a sharp decrea
in the intensity of the additional mode.

We calculated these effects numerically for the ide
nesting model (m50) in the zeroth approximation, i.e., ne
glecting vertex corrections. Similar calculations for syste
without nesting withq50 were performed in Ref. 13 at
temperature close to zero. Omitting the lengthy but sim
calculations, the expression for the phonon self-energy
S0s(Q,v) can be written in the form
S0s~Q,v!

2lsN~0!
5E

0

v

dv8 tanh
v8

2T H 211n~v2v8!n~v8!1a~v2v8!a~v8!

«~v2v8!1«~v8!12ig imp

2
212n~v2v8!n* ~v8!2a~v2v8!a* ~v8!

«~v2v8!2«* ~v8!12ig imp
J 2E

0

`

dv8S tanh
v1v8

2T
2tanh

v8

2TD
3H 212n~v1v8!n~v8!1a~v1v8!a~v8!

«~v1v8!1«~v8!12ig imp

2
211n~v1v8!n* ~v8!2a~v1v8!a* ~v8!

«~v1v8!2«* ~v8!12ig imp
J

12ReH E
0

vc
dv8 tanh

v1v8

2T

212n~v1v8!n~v8!1a~v1v8!a~v8!

«~v1v8!1«~v8!12ig imp
J 2 ln

eF

vc
. ~62!
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Here

n~v!5
v

Av22D2~v!
, a~v!5

D~v!

Av22D2~v!
, ~63!

«~v!5Z~v!Av22D2~v!, ~64!

and the functionsD(v) and Z(v) are determined by the
Eliashberg equations. The main quantity determining the
lution of the Eliashberg equations is the spectral den
a2(v)F(v) of the electron–phonon interaction. We cho
this function in accordance with the function obtained fro
tunneling experiments.39 We normalized it so that the tota
coupling constant

l52E
0

` dv

v
a2~v!F~v! ~65!

was approximately 0.7. This value ofl makes it possible to
obtain Tc and D in good agreement with experiment.~The
o-
y

renormalized coupling constantl/(11l)'0.4 also agrees
well with the coupling constant that we used in the BC
calculations above.!

Our numerical results for the energy and intensity of t
additional mode are displayed in Fig. 4. It is evident fro
Fig. 4a that the energy of the mode is essentially independ
of T over a sizable temperature range. Even in the tig
binding theory, the energy of the mode naturally starts
decrease rapidly asT→Tc , but as follows from Fig. 4b, this
decrease occurs mainly in the temperature range where
intensity of this mode is low and where the mode is in fa
unobservable.

4. CONCLUSIONS

In summary, our analytic and numerical calculatio
demonstrate that the experimentally observed behavior of
phonon spectral density in superconducting nickel boroc
bides can be reasonably explained qualitatively on the b
of a model that takes account of the existence of a siza
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FIG. 4. Variation of the energy~a! and intensity~b! of the
additional phonon mode in the superconducting state a
function of temperature. The dashed curve shows the fu
tion 2D(T).
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‘‘nesting’’ fraction in the electronic spectrum of these com
pounds. This model makes it possible to explain simu
neously the change in the phonon spectrum~its softening! in
the normal state and the emergence and properties of
additional mode in the superconducting state. A quantita
comparison of the numerical results with experimental d
would be premature at the moment. This would require m
detailed experimental data, along with numerical calculati
of the electronic response functions that take account of
specific crystalline and electronic structure of borocarb
compounds.
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25G. M. Éliashberg, Zh. E´ ksp. Teor. Fiz.38, 966 ~1960! @Sov. Phys. JETP

11, 696 ~1960!#.
26P. B. Allen, Phys. Rev. B13, 1416~1976!.
27J. Schrieffer,Theory of Superconductivity, Benjamin, New York~1964!.
28R. E. Prange, Phys. Rev.129, 2495~1963!.
29V. G. Vaks, V. M. Galitski�, and A. I. Larkin, Zh. Éksp. Teor. Fiz.41,
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Thermal stabilization of anomalies in inhomogeneous conducting structures
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We study the thermal mechanism of suppression of the anomalies in the nonlinear characteristics
of inhomogeneous media. A generalized expression for the effective nonlinear conductivity
is derived that allows for heat transfer from hot regions. We study the nature of the divergences
in two- and three-dimensional inhomogeneous structures as depending on the local
parameters and the microgeometry of the system. Finally, we show that in the critical region the
effective nonlinear conductivity may be much higher than the conductivity of the
components. ©1999 American Institute of Physics.@S1063-7761~99!02105-8#
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1. INTRODUCTION

The nonlinear electrical properties of randomly inhom
geneous and periodic structures may differ substantially fr
the properties of the components. This difference occurs
cause the effective characteristics are depend not only on
properties of the microcomponents but also on the local
tribution of fields and currents in the medium. Lately it h
been discovered that the effective nonlinear characteris
may be anomalously sensitive to the microstructure
substances.1 Earlier this was demonstrated in a series of e
periments. For instance, Dubsonet al.2 measured the third
harmonic amplitudeV3v on metal films near the metal–
insulator transition. They found that the critical exponents
the concentration dependence ofV3v are not universal—they
depend on the method of film preparation, i.e., on the mic
structure of the substance. A sharp increase in the streng
the linear effects and the nonuniversal behavior of these
fects near the percolation threshold were demonstrate
Refs. 3–5.

The occurrence of anomalies is related to the heating
the electron gas in local regions, in which the current per
lates through narrow bridges formed by a poorly conduct
material. It is these regions where there is concentration
current and field that provide the main contribution to t
effective nonlinear characteristics, such as the nonlinear c
ductivity, the third-harmonic amplitude, and the coefficie
of 1/f noise.2,3,6,7 Obviously, local temperature distributio
and conditions of heat exchange can strongly influence
nonlinear response of the medium.

In the present paper we study the effect of heat tran
~thermal conduction and heat exchange! on the nonlinear
properties of periodic structures. As an example of a tw
dimensional structure we study a periodic ‘‘checkerboar
lattice. In the three-dimensional case, we study the pack
of alternating cubes in which the neighborhoods of contac
adjacent cubes are approximated by two highly conduc
cones. We generalize the results of Refs. 8–11 by allow
for heat transfer from ‘‘hot’’ regions. We also find the co
ditions under which the nonlinear response is determined
small singular regions and reveal the role of the therm
9971063-7761/99/88(5)/8/$15.00
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mechanism of stabilization of anomalies of the medium.

2. STRUCTURE MODEL AND BASIC EQUATIONS

The geometry of the two-dimensional structure is d
picted in Fig. 1a. The hatched sections correspond to an e
trical conductivitys1 and a thermal conductivityk1 ~metal!,
while the light sections correspond tos2 andk2 ~insulator!.
In three-dimensional media, the regions of greatest singu
ity are those where pyramidal or conical regions touch e
other. We discuss the singularity by using an exactly so
able model whose geometry is depicted in Fig. 1b, with
internal regions of the cones having an electrical conduc
ity s1 and a thermal conductivityk1 ~metal! and the external
regions, an electrical conductivitys2 and a thermal conduc
tivity k2 ~insulator!. We assume that the structure in Fig. 1
is only a fragment of a three-dimensional lattice. We den
the characteristic size of the unit cell byL0 in both two- and
three-dimensional cases.

The electric current in the structures is described by
formula

j5s~T!e, ~1!

wheres is temperature-dependent. In the absence of hea
at T5T0 (T0 is the equilibrium temperature of the medium!,
s(T0) is a periodic function, with valuess1 ands2 in adja-
cent regions. The current and field obey the equations

div j50, curl e50 ~2!

and the following conditions at the boundaries of the regio
with different conductivity:

~ j–n!15~ j–n!2 , ~e–t!15~e–t!2 , ~3!

wheren andt are vectors normal and tangential to the inte
face separating the two media.

We can determine the effective characteristics of an
homogeneous medium from the expression for the volum
averaged energy dissipation:

^ j–e&5seE
21xeE

41•••, ~4!
© 1999 American Institute of Physics
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FIG. 1. Geometry of the structure considered in th
paper: ~a! a portion of a two-dimensional two-
component structure, and~b! example of contact of two
conical sections in a three-dimensional medium.
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which is written in the form of an expansion in powers of t
mean fieldE5^e&. The angle brackets stand for averagi
over the volume~or surface area! of the system. Below we
limit ourselves to cubic nonlinearities. The expansion~4! is
valid if the nonlinear corrections are small in a certain sen
For this to be the case,se must be much larger thanxeE

2,
and this can be achieved by reducing the mean field in
sample. This limitation means that we are in the we
nonlinearity regime, and an increase in the effective non
ear conductivity means that the linear region narrows. W
there is a local relationship between current and fieldj
5se1xe2e, we can use~4! to show~basing our reason on
Tellegen’s theorem12! that the effective nonlinear conductiv
ity xe is determined by the fourth-order correlator of the fie
in a linear medium:

xeE
45^xe4& ~5!

~justification for this can be found in Refs. 13 and 14!. Equa-
tion ~5! suggests that the effective conductivity is determin
by the regions that provide the main contribution to the
tegral *xe4 dr . As shown in Refs. 8–15, the solutions
Eqs.~1!–~3! in the linear case have singularities near mic
constrictions, which enhances the release of Joule heat. S
the functionj–e is spatially inhomogeneous, large tempe
ture gradients develop near the singularities. Here we m
allow for heat exchange and an inhomogeneous tempera
distribution in the system. To calculate the effective nonl
ear conductivity we must in turn generalize Eq.~5!, which
earlier was obtained for a local temperature–field relati
ship. The nonlocal relationship between current and field
dramatically change the nature of the singularities.

We can describe the steady-state temperature distr
tion in the medium by the equation

2gradk–gradT52a~T2T0!1 j–e, ~6!

wherek is the thermal conductivity coefficient, which take
on valuesk1 andk2 in the different components, anda is the
heat-exchange coefficient, which can differ from sector
sector.

In determining the temperature in a two-dimension
medium we additionally allow for heat exchange betwe
film and substrate. To do this we use a model according
which the heat flux into the substrate is proportional to
temperature difference between film and substrate. It is
e.

e
-
-
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d
-

-
ce

-
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-

-
n

u-
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n
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e
s-

sumed that the temperature of the massive substrate is
stant and equal toT0. Within these assumptions, the equati
for the temperature formally has the appearance of~6!, where
a is the total heat-exchange coefficient.

At the boundary of the sectors,T satisfies the equation

T15T2 , ~kn–gradT!15~kn–gradT!2 . ~7!

For a given temperature dependence ofs(T), Eqs. ~1!–~7!
determine the distribution of the electric field and tempe
ture in an inhomogeneous medium.

The nonlinear field terms in the expression for the c
rent arise because of the temperature dependence ofs~T!,
which according to~6! is determined by the electric field. W
limit ourselves to the case of cubic nonlinearity. In th
adopted approximation we can put

s~T!5s~T0!1b dT, ~8!

whereb5]s(T0)/]T, anddT5T2T0. The solution of Eq.
~6! can be written

dT~r !5E G~r ,r 8!e2~r 8!s~r 8!k21~r 8! dr 8, ~9!

whereG(r ,r 8) is the Green’s function of the heat equatio
~6!. Using~8! and~9!, we can write the left-hand side of Eq
~4! in the form

^~s~T0!1b dT!e2&5seE
21

1

VE b~r !e2~r !G~r ,r 8!

3e2~r 8!s~r 8!k21~r 8! dr dr 8, ~10!

where V is the volume~or surface area! occupied by the
system. Comparing Eqs.~10! and ~4! and using Tellegen’s
theorem, we arrive at a generalized relationship for the
fective nonlinear conductivity in the form

xe5
1

E4V
E b~r !e2~r !G~r ,r 8!e2~r 8!

3s~r 8!k21~r 8! dr dr 8, ~11!

where, as in~5!, the right-hand side contains the electric fie
in a linear medium. Equation~9! implies that if we allow for
thermal conduction, the relationship between tempera
and electric field becomes nonlocal. Obviously, the nonloc
ity reduces the contribution of singular regions to the effe



a
n

s

. 3

a
e
in
th

an
on
on

t
t
-
th

nd
es
h
n
ac
p
e
e
o

a
1

on
at
d
as
ne

re

ice,
in-

as-

ld
-

ich
s
the

ers.
in

er-

s,
he

e

:

in

.
is

999JETP 88 (5), May 1999 A. M. Satanin and V. V. Skuzovatkin
tive nonlinear conductivity. However, the effect of therm
conduction can be suppressed by intense heat excha
when the term2gradk–gradT in Eq. ~6! is small compared
to the term that allows for heat exchange. In this ca
G(r ,r 8) behaves asd(r2r 8) and Eq.~11! becomes Eq.~5!.
The limiting cases are discussed in greater detail in Sec

3. THERMAL STABILIZATION OF ANOMALIES

Equations~2! and ~3! show that microconstrictions in
inhomogeneous medium cause focusing of the electric-fi
and current lines.8–11 A consequence of this is an increase
heat release near singular regions. We can easily show
the asymptotic behavior of the temperature distribution c
not strongly depend on the discontinuities in the thermal c
ductivity and heat-exchange coefficients. This is dem
strated by solving Eq.~6! exactly in Appendix B. Since we
are interested in the nature of the divergences and in
mechanism of stabilization of anomalies, we assume that
thermal conductivity coefficientk, and the heat-exchange co
efficient a in each region are the same, and calculate
effective nonlinear conductivityxe in the first order in the
nonlinearity.

Equation~6! shows that when thermal conduction a
heat transfer are taken into account, the problem acquir
new spatial scale,L5Ak/a , which is assumed to be muc
smaller than the unit cell sizeL0. Here we are interested i
the nature of cutoff of the anomalies in the effective char
teristics. We demonstrate that if the system has a small
rameterL!L0, then in the critical region we can find th
main contribution to the effective nonlinear conductivity, d
termined only by small singular regions near the microinh
mogeneities of the medium.

3.1. Nonlinear conductivity of a film

The electric field and current in the linear case for
checkerboard lattice has been calculated in Refs. 15 and
Here it is convenient to write the starting system of equati
~1!–~3! in a complex-valued representation. To simply m
ters, we limit ourselves to the vase where the external fielE
is directed along a diagonal of the squares. If this is the c
the square of the electric field in adjacent cells is determi
by the relationships

ue1~z!u25
AE2

s1
K4guX~z!u2,

ue2~z!u25
AE2

s2
K4guX~ iz* !u2. ~12!

Here

X~z!5F cn~Kz/L0 ,k!

sn~Kz/L0 ,k! dn~Kz/L0 ,k!G
2g

, z5x1 iy , ~13!

is the complete elliptic integral with modulusk ~for a square,
k51/A251.8541), where sn~•!, cn~•!, and dn~•! are Jacobi
elliptic functions, andL0 is the length of a side of the squa
cell. The parameterg is linked toh by the relationship
l
ge,

e

.

ld

at
-
-
-

he
he

e

a

-
a-

-
-

6.
s
-

e,
d

tanpg5
12h

2Ah
, 0<g<

1

2
. ~14!

The constantA is defined as follows:

A5
~11h!s1

2I 2~g!K4g
, ~15!

I ~g!5
p3/2

2K cospg FGS 3

4
1

g

2DGS 3

4
2

g

2D G21

,

whereG~•! is the gamma function. Equations~12! show that
the electric field has singularities at the corners of the latt
where the field is concentrated. As noted earlier, we are
terested in the contribution of singular regions, and we
sume that the thermal lengthL is small compared to the
lattice constantL0. In this case the expression for the fie
simplifies. Expanding~12! in power series in the small pa
rametersr /L0, we obtain

ei
2~r ,q!5

AE2

s i
S L0

r D 4gS 12
2

5
gS Kr

L0
D 4

cos 4q D , ~16!

where r and q are polar coordinates, andi 51, 2. We can
easily show that the quadratic correlator of the field, wh
determines the effective linear conductivity, converges ar
→0 despite the fact that the field diverges. However,
local expression for the effective nonlinear conductivity@Eq.
~5!# diverges for certain values of the system paramet
This property is an indication of an anomalous increase
the nonlinear conductivity. Note that the nature of the div
gence is determined by the parameterg, which according to
~14! depends on the ratio of linear conductivitie
h5s2 /s1. If we neglect nonlocal effects and calculate t
nonlinear conductivity by the local expression~5! with the
expansion~16!, xe will diverge for g>1/4, or h<hc5(A2
21)2 ~see Refs. 8–11!.

How does heat transfer affect this conductivity? If w
substitute~16! in the right-hand side of Eq.~6!, we arrive at
an equation for the temperature in the first approximation

S 2D1
1

L2D dT5
AE2

aL2 S L0

r D 4g

, ~17!

whereL5Ak/a is the thermal length. It is assumed that
the event of heat exchangeL!L0 holds. The Green’s func-
tion of Eq. ~17! is well known:

G~r2r 8!5
1

2p
K0S ur2r 8u

L D , ~18!

whereK0(x) is the zeroth-order modified Hankel function
In integrating in~9! with respect to the angular variable it
convenient to use the expansion

K0S ur2r 8u
L D5I 0S r

L DK0S r 8

L D
12(

n51

`

cos~nq!I nS r

L DKnS r 8

L D ~19!



d
-

r

To

q

ha

a

i-

e

ar

a
f

-

rge

n

n

nd

cell

10.
w

1000 JETP 88 (5), May 1999 A. M. Satanin and V. V. Skuzovatkin
for r ,r 8, where I n(x) and Kn(x) are modified Bessel an
modified Hankel functions~for r .r 8 the respective expan
sion can be obtained from~19! by interchangingr andr 8 on
the right-hand side!. Integrating with respect to the angula
variable, we arrive at an expression for the temperature:

dT~r !5
AE2

a

L0
4g

L2 FK0S r

L D E
0

r

I 0S t

L D t124g dt

1I 0S r

L D E
r

L0
K0S t

L D t124g dtG . ~20!

Consider the asymptotic behavior of this solution.
find the expression fordT at small distances, wherer !L,
we write the second integral on the right-hand side of E
~20! in the form

E
r

L0
K0S t

L D t124g dt5E
0

L0
K0S t

L D t124g dt

2E
0

r

K0S t

L D t124g dt. ~21!

Then in the first integral we can letL0 go to infinity ~bearing
in mind the properties of Bessel functions and the fact t
L0 /L@1), while in the remaining integrals in~20! we use
the asymptotic expansion of Bessel functions for small v
ues of the argument,

I 0~x!;1, K0~x!;2 ln x.

As a result

dT~r !5
AE2

a S L0

L D 4gFG2~122g!

24g

2
1

4~122g!2 S r

L D 2(122g)G . ~22!

We see thatdT(r ) diverges only in the limith→0, i.e., g
→1/2.

At distancesr @L the temperature distribution is due pr
marily to heat exchange. In this region the temperature
proportional to the release of Joule heat:T}(s/a)e2. This
result can be obtained from~20! by using the asymptotic
expansion of Bessel functions forr @L:

KnS r

L D;ApL

2r
expS 2

r

L D ,

I nS r

L D;A L

2pr
exp

r

L
. ~23!

Equation~20! reduces to

dT~r !'
AE2

a S L0

r D 4g

. ~24!

We see that the temperature rapidly tends toT0, which jus-
tifies the use of the asymptotic expansion for the field wh
calculating the correlator at distancesL0@r @L.
.

t

l-

is

n

We now examine the behavior of the effective nonline
conductivity. Using the solution~20!, we can write~11! as
follows:

xe5
pA2L0

8g22

aL2 S b1

s1
1

b2

s2
D

3F E
0

L0
dr r 124gS K0S r

L D E
0

r

I 0S t

L D t124g dt

1I 0S r

L D E
r

L0
K0S t

L D t124g dtD G . ~25!

Next we represent the effective nonlinear conductivity by
sum of two terms,xe

, andxe
. , reflecting the contributions o

the regionsr ,L andr .L, respectively, toxe . We estimate
the contribution of the regionr ,L. The expression in paren
theses in~25! is calculated for smallr in the same way we
calculated~20!, and integration with respect tor in ~25! in
the interval 0<r<L yields

xe
,;

A2

16a~122g! S b1

s1
1

b2

s2
D S L

L0
D 2(124g)

3F2324gG2~122g!2
1

~122g!2G . ~26!

To estimate the contribution of the regionr .L, we substi-
tute the asymptotic expansion of Bessel functions for la
values of the argument@Eqs.~23!#. Integrating overr in ~25!
in the limit L<r<L0 , the result is

xe
.;

A2

a S b1

s1
1

b2

s2
D 1

2~124g! F12S L

L0
D 2(124g)G . ~27!

Note that~27! can be derived directly from~11!, since in
integrating in ~11! over the regionr @L the argumentur
2r 8u of the Green’s function~18! always remains larger tha
L and hence the functionK0(ur2r 8u/L) behaves as
2pL2d(r2r 8). If in ~11! we replace the Green’s functio
with 2L2d(r2r 8) and integrate overr .L, we again arrive
at ~27!.

How does the effective nonlinear conductivity depe
on heat exchange, i.e., on the parameterL? To answer this
question, we begin with the case where the ratio of the
linear conductivities,h, is greater thanhc , or wheng,1/4. If
the thermal length tends to zero, the contribution of~26! to
the linear conductivity vanishes and~27! becomes

xe
.;

A2

a S b1

s1
1

b2

s2
D 1

2~124g!
. ~28!

This coincides with the result obtained in Refs. 9 and
Formula~28! implies that in this case we have a power-la
divergence of the effective nonlinear conductivity ash→hc

~g→1/4!.
We now assume that the thermal length is fixed andh

→hc . Clearly, ash→hc , the function~27! behave as

xe
.;

A2

a S b1

s1
1

b2

s2
D ln

L0

L
. ~29!

For h,hc
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xe
.;

A2

a S b1

s1
1

b2

s2
D 1

2~4g21! S L0

L D 2(4g21)

~30!

is anomalously large, sinceL0@L.
If LÞ0 holds, Eq.~26! implies that the contribution o

the regionr ,L to the effective nonlinear conductivity di
verges as a power function only ash→0.

Thus, in calculating the nonlinear conductivity we ha
used the terms of greatest singularity in the expansion~16!.
Let us estimate the contribution of the other~discarded!
terms. We denote the correction toxe due to the second term
in ~16! by dxe , with dxe5dxe

,1dxe
. . For r !L0 the cor-

rection to the square of the electric field is small in parame
r /L0. When we calculatedxe

, , integration is over the region
r ,L, and in this casedxe

, is small in the parameterL/L0.
The expression fordxe

. can be found in the same way as w
found ~27!:

dxe
.;

9pg2K8A2

25a S b1

s1
1

b2

s2
D 12~L/L0!2(524g)

524g

;
9pg2K8A2

25a~524g! S b1

s1
1

b2

s2
D . ~31!

Equations~27! and ~31! imply that the behavior of the
effective nonlinear conductivity in the critical region is d
termined byg. Here we must distinguish two cases:g,1/4
and g.1/4. Wheng,1/4 (h.hc), we have the inequality
xe

,!xe
. , andxe;A2b1 /s1a. The correctiondxe turns out

to be of orderxe . This means that when Eq.~11! is used to
calculatexe , in the general case we must integrate over
entire surface of the unit cell and use the exact expres
~12! for the electric field. In the critical region, howeve
whereg,1/4 butg→1/4 or g.1/4, we have, respectively,

xe;
A2b2

s2a
ln

L0

L
, xe;

A2b2

s2a S L0

L D 2(4g21

,

where to simplify matters we assume that the second c
ponent provides the main contribution to the nonlinear c
ductivity. Here the domain of integrationr;L provides the
main contribution toxe

. . Thus, in the critical region, the
corrections to the nonlinear conductivity that result if w
allow for the next terms in the expansion of the squares
the field prove to be small.

3.2. Nonlinear conductivity of a three-dimensional medium

For the three-dimensional case we limit ourselves to
analysis of a medium with conical singular regions~see Fig.
1b!. The electric field near the point of contact of the vertic
of two cones is calculated in Appendix A. The square of
electric field strength, which determines dissipation ins
and outside the cones, is given by the formula

e2~r ,q!5
AE2

s~q! S L0

r D 4g

s~q!,

s~q!5~ f 8~q!!21l2f 2~q!, ~32!

wheres(q) is equal tos1 in the regionq,q0 and tos2 in
the regionq0,q,p/2, E is the amplitude of the externa
electric field,A is a constant depending on the parameters
r

e
on

-
-

f

e

s
e
e

f

the structure, and the functionf (q) and its derivativef 8(q)
describe the angular dependence of the solution~see Appen-
dix A!, andl5122g.

We begin by calculating the contribution to the co
relator ^xe4& due to the singularities of the current in th
conical region without allowing for thermal conduction
Plugging the above solution for the field into Eq.~5!, we
obtain

^xe4&5
const

L0
3 E

0

L0
drr 2r 4(l21)E

0

p

dq sin q x~q!s2~q!.

~33!

We see that the integral diverges atlc51/4, or gc53/8.
Knowing lc , we can use~45! to find hc as a function ofq0.
To make the picture complete, we note that a numerical
lution of Eq. ~45! yields hc50.094 andq0c555.50 for the
maximum values of the critical parameters.

Now we allow for thermal conduction. The Green
function of Eq.~6! is

G~ ur2r 8u!5
exp~2ur2r 8u/L !

ur2r 8u
.

In calculatingT by formula ~9! we use an expansion for th
Green’s function:

exp~2ur2r 8u/L !

ur2r 8u
5

1

Arr 8
(
n50

`

~2n11!

3Pn~cosq!I n11/2~r /L !Kn11/2~r 8/L !

~34!

for r ,r 8 @when r .r 8, we must interchanger and r 8 in
~34!#. Plugging ~34! and ~32! into ~9! and integrating with
respect to the angular variable yields

dT~r ,q!5
AE2

aL2

L0
4g

Ar
(
n50

`

Pn~cosq!Qn

3FKn11/2S r

L D E
0

r

I n11/2S t

L D t3/224g dt

1I n11/2S r

L D E
r

L0
Kn11/2S t

L D t3/224g dtG , ~35!

where I n11/2(x) and Kn11/2(x) are modified Bessel and
modified Hankel functions, and

Qn5
2n11

2 E
0

p

dq sin q Pn~cosq!s~q!.

What is the asymptotic behavior of this solution?
small distance,r !L, dT can be calculated in the same wa
we calculated~22!:

dT~r ,q!5
AE2

a S L0

L D 4gS r

L D 224g

F~r ,q!, ~36!

where
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F~r ,q!5 (
n50

`

Pn~cosq!Qn@n~n11!2~324g!~224g!#21

1
G~~324g!/2!G~122g!

G~3/2!
22(122g)Q0

1cosq Q1

G~222g!G~~124g!/2!

G~5/2!

322(122g) S r

2L D 1•••.

At large distancesr @L we use the asymptotic expansion
Bessel functions in~35! and obtain

dT~r ,q!;
AE0

2

a
s~q!S L0

r D 4g

. ~37!

This expression~37! corresponds to the local limit, since fo
r @L the Green’s function behaves approximately
4pL2d(r2r 8), which can easily be shown to be true if w
use~34! together with~23!. As in the two-dimensional case
in this region the relationship between the nonlinear curr
and the electric field becomes local~because of heat trans
fer!.

Let us estimate the value of the effective nonlinear c
ductivity. As in the case of a film, we writexe as a sum of
contributions due to the regionsr ,L and r .L. The main
contribution toxe

, due to the regionr ,L can be calculated
by inserting the asymptotic expressions for the tempera
@Eq. ~36!# and the electric field@Eq. ~32!# in the left-hand
side of Eq.~10! and integrating over the volume within th
specified region. In the three-dimensional case, the squa
the electric field and the temperature depend in a com
cated manner on the angular variable, which makes it imp
sible to calculate the integral with respect toq in the expres-
sion for xe exactly. However, the anomalous increase in
effective conductivity is determined by the dependence
the electric field and the temperature onr. Hence to calculate
xe approximately we only need to evaluate the integral w
respect tor, since the angular integral yields a nonsingu
factor of order unity. The result is

xe
,;

b2A2Q0

s2a~528g! S L

L0
D 328g

. ~38!

Using Eq.~45! from Appendix A, we can easily show tha
the denominator in~38! cannot vanish when the cone param
eters meet the following conditions: 0,h,1 and 0,q0

,p/2. The contribution of the regionr .L can be found by
substituting~37! and ~32! into ~10! and integrating within
L,r ,L0:

xe
.;

b2A2Q0

s2a~328g! F12S L

L0
D 328gG . ~39!

We see that whenL is zero,xe diverges at a finite value o
the parameterhc , which is specified by the conditiongc

53/8. If the thermal length is fixed, there is logarithmic cu
off of the divergence in~39!. Thus, as in the case of a film
heat transfer cuts off the divergence.
s
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4. DISCUSSION

As shown in Refs. 8–11, when there is a local relatio
ship between current and field, the effective nonlinear c
ductivity of two-component periodic lattices is anomalous
high near the percolation threshold. At the threshold the c
ductivity diverges at a finite value of the linear-conductivi
ratio h5s2 /s1.

In the present paper we have studied the thermal me
nism of divergence cutoff and have shown that allowing
heat transfer from the hot regions may remove the singul
ties in the effective nonlinear characteristics at finite valu
of the parameterh. Note that the geometric cutoff effect wer
discussed in Ref. 17.

Our results show that the values ofhc determined in
Refs. 8–11 for two-dimensional media and the similar qu
tity hc for a three-dimensional medium~discussed in the
present paper! largely determine the behavior of the effectiv
conductivityxe if we also allow for heat transfer. Allowanc
for thermal conduction and heat transfer gives rise to a n
characteristic scale, the thermal lengthL, which acts as the
cutoff parameters for the singularities. At the same time,
the nonlinear regime, the parameterL determines the spatia
size of the critical region that is the source of anomalo
increase in the effective nonlinear conductivityxe . At a
fixed value ofL, ash→hc , the effective nonlinear conduc
tivity xe exceeds the characteristic nonlinear conductivity
the components,x0:

xe;x0 ln ~L0/L ! ,

whereL0 is the lattice constant. In the critical regionh,hc

the parameter of increase of the effective nonlinear cond
tivity becomes large,L0 /L@1. For instance, in the two
dimensional case withg,1/4, according to~26! and~27!, the
effective nonlinear conductivity is finite, but its value e
ceeds the nonlinear conductivity of the components:

xe;x0~L0/L !2(4g21).

A similar property appears in the three-dimensional case
g,3/8 @see Eqs.~38! and~39!#; in the case of conical singu
larities,

xe;x0~L0/L !8g23.

As mentioned earlier, the physical mechanism of the eff
tive increase of the nonlinearity is related to the focusing
field and current lines by microconstrictions~‘‘micro-
bridges’’! in the nonlinear medium. Thus, the effective no
linear conductivity in the critical region~near the metal–
insulator transition! is not only determined by the values o
the nonlinear conductivities of the components of the m
dium but also strongly depends on the distribution of fie
in the medium. This property must be accounted for in d
signing artificial nonlinear media.
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APPENDIX A: ELECTRIC FIELD NEAR CONICAL
SINGULARITIES

Let us find the electric field near the point of contact
the vertices of two cones. We seek the solution of Eqs.~2! in
the form

j52s gradw, ~40!

where it is convenient to write the potential as

w5EL0S L0

r D 4g

f ~q!,

and the functionf (q) can be found by solving the equatio

1

sin q

]

]q
sin q

]

]q
f 1l~l11! f 50. ~41!

For q,q0 we seek the solution of Eq.~41! in the form

f 15aPl~cosq!, ~42!

wherePl(x) is the Legendre function of the first kind, whil
for q0,q,p/2 we seek the solution in the form

f 25bF1

2
~12cospl! Pl~cosq!1

sin pl

p
Ql~cosq!G ,

~43!

whereQl(x) is the Legendre function of the second kind
The functionsf 1 and f 2 on the surface of a cone obe

the boundary conditions

f ~q0!15 f ~q0!2 , f 8~q0!15h f8~q0!2 , ~44!

where f 85] f /]q. Note that the solution forq.p/2 can be
obtained from~42! and~43! via continuation, as an odd func
tion, in the angle~in view of the boundary conditions in th
external field!. Plugging~42! and~43! into the boundary con-
ditions ~44!, we can easily see that there is a general solu
if

hPl~x!F1

2
~12cospl! Pl11~x!

1
sin pl

p
Ql11~x!2xFl~x!G

5Fl~x!@Pl11~x!2xPl~x!#, ~45!

where

x5cosq0 , Fl~x!5
1

2
~12cospl! Pl~x!1

sin pl

p
Ql~x!.

Equation~45! makes it possible to find the dependence of
parameterl on h andq0.
-

f

n

e

APPENDIX B: TEMPERATURE DISTRIBUTION IN A
INHOMOGENEOUS LATTICE

Let us give the solution of Eq.~6! with the boundary
conditions~7! for the case where the thermal conductivi
and heat exchange coefficients take different values in a
cent sectors:k1 and a1, and k2 and a2. We assume tha
a1 /k15a2 /k2 ~this is true for metals!. As in the main body
of the text, we introduce the lengthL5Ak1 /a1 . The equa-
tion for dT is similar to Eq.~17!, but now the parametera on
the right-hand side of Eq.~17! depends on the angular var
ableq. To solve Eq.~17! with the boundary conditions~7!,
here it is convenient to representdT by a sum of two terms:
dT5dTa1dTb , wheredTa is the temperature distribution
due to release of Joule heat inside the sectors, anddTb is the
temperature distribution due to the appearance of h
sources at the boundary of the media with different therm
conductivity coefficients. The Green’s function of Eq.~17! in
homogeneous space is known@see Eq.~18!#, so that

dTa5
L0

4g

2p E K0S ur2r 8u
L D AE2

a~q8!L2
~r 8!24gr 8 dr8 dq8, ~46!

dTb52
1

2p (
j 51

4 E K0S r

L
,q;

r 8

L
,q j D r~r 8!r 8 dr8, ~47!

where r(r ) is the number density of heat sources at t
boundariesq15p/4, q253p/4, q355p/4, andq457p/4.
In writing ~47! we have allowed for the symmetry of reflec
tion with respect to thex and y axes for the functiondT.
Using the properties of Bessel functions, we can employ
~47! to obtain the value of the derivative]dTb /]q at, say,
the boundaryq5p/4:

]dTb~r ,p/41d!

]q
5

1

2
r~r !r 2 sgnd, ~48!

whered→0. As expected, at the boundaries the normal
rivative of the functiondTb has a discontinuity, whiledTa ,
dTb , and]dTa /]q are continuous. The heat-source numb
densityr(r ) can be found from the boundary conditions~7!.
If we write these conditions fordTa anddTb and use~48!,
we obtain

r~r !52
a12a2

a11a2

1

r 2

]dTa~r ,p/4!

]q
. ~49!

Plugging this into~47!, we arrive at an expression for th
heat-source number density:

r~r !52
AE2L0

4g

pL2

~a12a2!2

a1a2~a11a2!

1

r 2 E0

L0 t dt

t4g

3FK0S r 1t

L D2K0S ur 2tu
L D G . ~50!

Thus, formulas~46!, ~47!, and~50! constitute the exact solu
tion of Eq. ~17! with the boundary conditions~7!. Equation
~46! can be simplified if we use the addition theorem f
Bessel functions and integrate with respect to the ang
variable in~46!:
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dTa5
1

2L2 AE2L0
4g S 1

a1
1

1

a2
D FK0S r

L D E
0

r t dt

t4g
I 0S t

L D
1I 0S r

L D E
r

` t dt

t4g
K0S t

L D G1
1

pL2 AE2L0
4g S 1

a1
2

1

a2
D

3 (
n51

`
sin~2n~p/42q!!1sin~2n~p/41q!!

n

3FK2nS r

L D E
0

r t dt

t4g
I 2nS t

L D1I 2nS r

L D E
r

` t dt

t4g
K2nS t

L D G .

~51!

Consider the asymptotic behavior of the solution.
small distancesr !L, the main contribution to the integral
in ~51! @and in similar expansions~47! and~50!# is provided
by the region wherer is small. Hence, when calculating th
integrals with Bessel functions, we can use the approxim
relationships

I n~x!; ~1/n! !xn , Kn~x!; ~~n21!!/2 ! ~2/x!n,

K0~x!;2 ln x.

Integrating and then summing in~51! @and in the correspond
ing representations~47! and ~50!#, we get

dT(k)~r ,q!5
AE0

2

2 S 1

a1
1

1

a2
DG2~122g!

24g S L0

L D 4g

2S r

L D 224gS L0

L D 4gS AE0
2

~224g!2ak

1Ck cos~~224g!~qk2q!!D , ~52!

wherek51 corresponds to the region2p/4,q,p/4, k52
corresponds to the regionp/4,q,3p/4, q150, q25p/2,
and

C15AE0
2 a12a2

a1~a11a2!

1

~224g!2 sin ~pg!
,

C252 ~a1/a2! C1 .

The solution in the other sectors can easily be obtained
employing the symmetry of the problem. At distancer @L,
the term2DdT in Eq. ~17! is negligible, so that
t

te

y

dT~r ,q!5
AE2

a~q! S L0

r D 4g

. ~53!

Note that, strictly speaking, we cannot use Eq.~53! over
distances of orderL near the boundaries. Due to therm
conduction, the temperature in this region smoothly chan
from (AE2L2/k1)(L0 /r )4g to (AE2L2/k2)(L0 /r )4g. How-
ever, analysis of the asymptotic expressions~52! and ~53!
shows that the difference in the values ofa and in the values
of k in adjacent sectors does not change the dependenc
dT on the coordinater. Analysis also shows that th
asymptotic behavior ofdT depends only on the nature of th
divergence of the field and the relationship between h
transfer and thermal conduction. These arguments justify
use of the same values ofa andk in the qualitative analysis
done in the main body of the text.
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