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Abstract—The time dependence of the total signal from a group of closely spaced acoustic or electromagnetic
transmitters radiating the same (up to an amplitude factor) signals is considered. If the duration of the partial
signal is sufficiently long, the time dependence of the signal from the set of transmitters turns out to be close to
that of the signal from a single transmitter up to a delay time. This delay does not necessarily coincide with the
time it takes for an optical (or acoustic) signal to pass from the transmitters to the observation point. At different
points of the space, this delay time may exceed, or be shorter than, the light (sound) delay time and also may
be positive or negative. This follows from the backward or forward extrapolation of the time dependence of the
signal when variously delayed and attenuated copies of the same signal that are produced by different transmit-
ters are added up (i.e., interfere). One result of such an extrapolation, which arises upon transmitting a signal
with its leading or trailing edge cut off, is the reconstruction of its time dependence, i.e., the detection of the
nontransmitted part of the signal. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

It is known that the solution of the problem of exci-
tation of electromagnetic or acoustic waves by given
sources in a homogeneous medium reduces to the solu-
tion of the inhomogeneous scalar wave equation with
an appropriate right-hand side [1–3]. In particular, for
the scalar potential φ(x, y, z, t) of a time-dependent
point charge de(t) located at the origin (R = 0), we have
the equation [1]

(1)

whose solution (the delayed potential) is well known:

(2)

Similar relations hold for any component of the vec-
tor potential of an electromagnetic field, for Hertzian
electric and magnetic vectors, for the pressure and den-
sity of a medium in a sound wave, etc. The physical
meaning of the delayed potentials is straightforward:
the time dependence of the potential at given point
φ(r, t) of the space copies the time behavior of source
de(t) with delay R/c corresponding to the time it takes
for the signal to propagate from the source to the obser-
vation point. In electrodynamics, an isolated point elec-
tric charge cannot vary in time (otherwise, the charge
conservation law would be violated). Nevertheless, the
field produced by an arbitrary system of moving
charges can be represented as a superposition of
delayed potentials of type (2) [1].

A solution to Eq. (1) with an arbitrary right-hand
side can be written as a superposition (i.e., as a finite,
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discrete, or integral sum) of delayed potentials (2). In
particular, the total potential of n point sources dei(t) =
qiφ0(t) (i = 1, 2, …, n) that have the same time behavior
φo(t) and differ from each other only by amplitude qi

and location (at points ri) has the form

(3)

where Ri = |r – ri| is the distance between an ith source
and the observation point r.

Consider total field (3) of a set of closely spaced
charges located near the origin. If T is the characteristic
duration of the signal, the proximity condition for the
transmitters (time-variable charges) can be written in
the form ∆tij ! T, where ∆tij ≡ |ri – rj|/c (i, j = 1, 2, …,
n) are the “intrinsic” delays of the system.1 It is clear
that, with this condition being fulfilled, the time depen-
dence of the total field of the set of transmitters differs,
to a first approximation, from the general time behavior
φ0(t) of individual transmitters only by some delay time
τ that is dependent on the location of the observation
point r. It would be reasonable to expect that this delay
time falls into the interval of the delays of the signals
from individual transmitters, ∆ti = Ri/c (i = 1, 2, …, n);
i.e., 0 <  ≤ τ ≤ . In particular,

under the condition ri ! r (i = 1, 2, …, n), when these

1 In this paper, we restrict our consideration to non-quasi-mono-
chromatic (real) signals. The delay time of the complex envelope
of a superposition of quasi-monochromatic signals is studied
in [4].
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2 BUKHMAN
delays are almost equal to each other (∆ti = Ri/c ≈ r/c)
and long compared with the intrinsic delays ∆tij, one
may suppose that time dependence φ0(t – r/c), which
regards the delay of a signal propagating from a group
of closely spaced sources to the observation point, will
be asymptotically exact. However, the analysis given
below demonstrates that this supposition turns out to be
erroneous in many cases; i.e., the delay time of the total
signal may differ from (either exceed or be less than)
“optical” (or, in acoustics, “sound”) delay time r/c by a
value that is considerably higher than any “intrinsic”
delay time ∆tij.

1. GENERAL RELATIONS

First, we introduce (for now, formally) effective
delay time τ of the total signal from a set of transmit-
ters. Let fi = qi/Ri be the field amplitude and ∆τi = ∆ti –
τ be the extra delay (an increment to the effective delay
time) of the signal from an ith transmitter at a certain
point in the space. Expanding the terms on the right of
(3) into the Taylor series in parameter ∆τi, one can eas-
ily transform (3) to

(4)

where

(5)

It is seen that (4) is the expansion of function φ(r, t)
in powers of small parameters ∆τi/T (i = 1, …, n). The
zeroth-order term of this expansion has the form fφ0(t –
τ) and differs from initial time dependence φ0(t) of the
signal only in amplitude factor f and as yet uncertain
delay time τ. The other terms in expansion (4) describe
the τ-dependent deviation of the total signal from the
approximation fφ0(t – τ). The linear (in parameters
∆τi/T) part of this deviation vanishes if the parameter

(6)

is taken as the delay time of the total signal.
In this case, β1 = 0 and the error of approximation

fφ0(t – τ) is of the second order of smallness in ∆τi/T
rather than of the first order as in the case of arbitrary τ.
Thus, in the general case, the approximation error

(7)

is on the order of (∆τi/T)2 (i = 1, 2, …, n) in view of (5)
and (6). In other words, as the signal duration increases,
the approximation error infinitely decreases compared
both with the signal itself (the order is one) and with the
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deviation of delayed signal φ0(t – τ) from undelayed
one φ0(t) (the order is ∆τi/T). This comes as no surprise,
since it is easy to check that, in view of (5) and (6), the
right-hand side of (3) can be viewed as a linear interpo-
lation formula for the right-hand side of (7); i.e., in this
case, the interference of several variously delayed cop-
ies of the same signal results in a “nonanthropogenic”
interpolation of the time dependence of the signal. One
can also verify that the result obtained corresponds (in
terms of frequency) to the group delay approximation
(the first order of the classical dispersion theory [2, 5,
6]) and, therefore, has all the merits and disadvantages
of this approximation.

It is essential that, according to formula (6), the
delay time τ of the total signal may be positive, nega-
tive, or equal to zero, depending on the amplitude ratio
and the arrangement of point transmitters. The last-
listed case is rather specific and is hereafter called
“degenerate.”

Thus, at least in the linear approximation, total sig-
nal (3) differs from the initial one only in amplitude fac-
tor (5) and delay time (6).

It is easily seen that the accuracy of approximation
(7) can be improved. Provided that the conditions β2 =
β3 = … = βr = 0 (r ≥ 2) hold, approximation (7) has an
error of order (∆τi/T)r + 1 (i.e., instead of the moving lin-
ear interpolation (or extrapolation) of the signal, the
right-hand side of (3) accomplishes moving interpola-
tion (or extrapolation) of order r). In terms of fre-
quency, this situation means that the leading (up to
order r, inclusive) corrections of the classical disper-
sion theory [2, 6] vanish. Let us analyze the time delay
at various points of the space.

2. A GROUP OF POINT SOURCES 
IN AN ABSORPTION-FREE MEDIUM 

(NONDEGENERATE CASE)

Let us turn back to the simplest case, which we have
started with, namely, a set of point transmitters in a
nonabsorbing medium. Here, instead of (5) and (6), we
have

(8)

In this section, we consider the case of the nonzero
total charge of the system, when the delay time of the
total signal is other than zero (see (8)) and different at
various points of the space (τ ≠ 0, which is the nonde-
generate case in terms of the previous section). Note at
once that this case cannot take place in electrodynam-
ics, since electromagnetic radiation is always “at least”
of the dipole nature. Therefore, we use the acoustic ter-
minology [3] and treat qi as the volume velocities of
sound sources and c as the sound velocity in a given
medium.

f qi/Ri( ), τ
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n
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ON THE DELAY TIME OF THE TOTAL SIGNAL 3
We will examine the simplest case of two point
sources q1 and q2 (Fig. 1). Figure 1 (which corresponds
to the volume velocities q1 = 1 and q2 = –2 of point
acoustic transmitters that are d = 1 apart) shows the
coordinate system (Oxyz) used below, as well as the
delay time of the total signal (τ, the thick line) and the
delays of the partial signals coming from the first and
second transmitters (the thin line) at various points of
the abscissa. Here, instead of (8), we have

(9)

It is easy to check that, if the volume velocities are
of the same sign (q1q2 > 0), the delay time of the total
signal at any point of the space has a value intermediate
between the delays of the signals from the first and sec-
ond transmitters, ∆t1, 2 = R1, 2/c. Of greater interest is the
case where the volume velocities are of opposite signs
(q1q2 < 0). Then, depending on the magnitude and sign
of the delay of the total signal, the whole space is sub-
divided into three domains by two surfaces, namely, by
the “sphere of infinite delay times” (on which τ = ∞),
which is centered at point xc = [d(1 + δ2)]/[2(1 – δ2)]
(δ ≡ –q1/q2, 0 < δ < 1) and has radius R = (dδ)/(1 – δ2),
and the “plane of equal delay times” x = 0, on which
∆t1 = ∆t2 = τ. The former intersects the abscissa at
points x1 = (d/2)(1 – δ)/(1 + δ) and x2 = (d/2)(1 + δ)/(1 –
δ) (Fig. 1). A transmitter that is smaller in magnitude
(in our case, q1) is inside this sphere, while the greater one
(q2) is outside. Straight lines x = x1, 2 are vertical asymp-
totes to the plot of function τ(x, 0, 0) depicted in Fig. 1.

Inside the sphere of infinite delay times, the delay
time is negative (τ < 0, and, at any point inside this
sphere, the total signal detected attains a maximum ear-
lier than transmitted signal φ(t)). The rest of the space
is subdivided into two parts by plane x = 0. In half-
space x < 0, the delay time is positive, while smaller
than the delays of the signals coming from transmitters 1
and 2 (i.e., in this “domain of advance,” 0 < τ < ∆t1, 2).
In half-space x > 0, conversely, the delay time is greater
than the delays of the signals from transmitters 1 and 2
(i.e., in this “domain of lag,” τ > ∆t1, 2).

When the observation point approaches the sphere
of infinite delay times from the inside, the delay time of
the total signal tends to –∞; otherwise, it tends to +∞.

When the observation point is infinitely far away
from the set of transmitters (r  ∞), it follows from
(9) that τ  (r/c) + (d/2c)((1 + δ)/(1 – δ))cos(θ),
where θ is the angle between the abscissa and the direc-
tion towards the observation point. One can easily ver-
ify that such a delay corresponds to the signal emitted
from the point x0 = –(d/2)(1 + δ)/(1 – δ) = –x2 that is
located to the left of point q2. This point, together with
corresponding asymptotes to curves τ(x, 0, 0), is shown
in Fig. 1 (the dashed lines). It is clear that the point x0
of the “imaginary source” is nothing else than the “cen-
ter of mass” of the set of two transmitters q1 and q2 (x0 =
(d/2)q1/(q1 + q2) + (–d/2)q2/(q1 + q2)). Since one of

f  = qi/R1 q2/R2, τ+ q1 q2+( )/ cf( ).=
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these “masses” is negative (in our case, q2), the center
of mass is located outside of this system.

Thus, far away from the set of transmitters (r 
∞), both the time dependence and the directional pat-
tern of the total signal approximately coincide, in the
nondegenerate case, with those of the imaginary point
source located outside the set of transmitters. If δ 
1 (i.e., when approaching the degenerate case), the dis-
tance between the set of transmitters and this “imagi-
nary” transmitter may be as larger as desired than the
size of the transmitting system (|x0|/d  ∞). This
means that passive location of an “almost dipole” set of
transmitters may lead to incorrect conclusions about its
position; moreover, the distance between the true and
apparent positions of the system may greatly exceed the
size of the system itself.2 The same is also valid for

2 Here, we are dealing both with “instrumental” methods of locat-
ing a sound source and with “aural” location (which is based on
the subconscious analysis of the time shift between the signals
arriving at the right and left ears, the so-called binaural effect).
This means that, given two spatially separated sound sources, it is
basically possible (of course, at the expense of a more or less sig-
nificant loss in power) to produce the effect that the sound comes
from any other point that is located sufficiently far away from the
real sound sources. With the superposition principle (i.e., the pos-
sibility of simultaneously transmitting several “pairs” of signals
from two real transmitters with different positions of the
“dummy” source) taken into consideration, this implies that, basi-
cally, two spatially separated sound sources will suffice to create
an as complicated as desired system of dummy transmitters
including those distant from the two real transmitters. It is also
interesting that one may force the imaginary source to move even
if the real sources remain motionless by varying the amplitude
and phase relations between the signals from the real sound
sources.
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τ, ∆t1, ∆t2

Fig. 1. Geometry of the problem. The space is partitioned
into the domain of negative delay times (the interior of the
sphere, which contains transmitter q1), the domain of
advance (the left half-space), and the domain of lag (the
right half-space except for inner and boundary points of the
sphere of negative delay times). The delay time is plotted
against the position of the observation point, which is
located on the abscissa. The thick line shows the delay time
τ(x) of the total signal; the thin solid lines, the delay times
of the signals from individual point transmitters (∆t1 for q1
and ∆t2 for q2); and the dashed lines, the delay time of the
signal from imaginary point transmitter x0.



4 BUKHMAN
active detection when a system irradiated by an external
source consists of essentially dissimilar subsystems
like the “tandem” of absolutely hard and absolutely soft
spheres.

Figure 2 shows the time dependence of the field gen-
erated by the pair of transmitters (see Fig. 1) in a
medium where the signal propagation velocity is c = 1
at representative points of the domain of negative
delays (x = 1, y = z = 0), the domain of advance (x =
−30, y = z = 0), and the domain of lag (x = 30, y = z =
0). The initial signal was taken to be φ0(t) =
sin(1/T)/(t/T) with duration T = 2. The abscissa is time
t. Along the vertical axis, the time dependence of the
field produced by both point sources (φ0(t – ∆t1, 2), the
dotted line), the time dependence of the total signal

1

0

–20 0 20 t

x = 1
x = –30

x = 30

φ0(t – ∆t1), φ0(t – ∆t2), φ0(t – τ), φ(t)/f

Fig. 2. Time dependences of the signals at various points on
the abscissa (x = –30, 1 and +30). The time dependences of
the total signal are shown by the thick solid line (numerical
calculation) and thin solid lines (approximation (7)). The
time behavior of separate sources is shown by the dotted
lines.

0

1

φ0(t – ∆t1), φ0(t – ∆t2), φ0(t – τ), φ(t)/f

–200 –100 0 100 t

x = 1.4 x = 1.6

Fig. 3. Time dependences of the signals near the sphere of
infinite delay times (x = 1.4 and 1.6). The notation is the
same as in Fig. 2.
according to approximate formula (7) (φ0(t – τ), the thin
line), and the exact time dependence of the total signal
resulting from interference between the fields of the
point sources (φ(t)/f = (f1φ0(t – ∆t1) + f2φ0(t – ∆t2))/f, the
thick line) are plotted. One can see that, indeed, total
signal φ(t) may either advance or lag behind signals
φ1, 2(t), which constitute the total signal on addition.
Also, the delay time of the total signal may be negative
(for instance, when x = 1), positive and shorter than
sound delay time x/c (for instance, when x = –30), or
positive and longer than sound delay time x/c (for
instance, when x = 30). It is little wonder, because, in
this case, we observe not the violation of the causality
principle but merely the nonanthropogenic (i.e., natu-
rally occurring) forward of backward extrapolation of
the signal time dependence. This extrapolation occurs
(see above) as a result of interference, which can be
treated as the summation of several variously delayed
and attenuated copies of the same signal (note that, in
essence, the anthropogenic, or intentional, extrapola-
tion of the signal time dependence also reduces to such
a summation [7]).

It is obvious that, when the signal is longer than the
difference between the true delays ∆t1, 2 of the interfer-
ing signals and than the effective delay time τ of the
total signal, the accuracy of approximate formula (7) is
rather high. As the signal becomes shorter, the accuracy
of formula (7) significantly degrades. This seems to be
quite reasonable, since, in this case, only two copies of
the same signal are added up (interfere); in other words,
we are dealing with linear extrapolation, which is
reasonably accurate only when the duration of the
extrapolation interval is much shorter than the signal
duration [7].

The above remark is also related to the unlimited
growth of the time of lag (or advance), when the obser-
vation point approaches the sphere of infinite delay
time. Indeed, a lag (or advance) may be as large as
desired (even as compared with the difference between
the delays of the signals coming from point sources
q1, 2). In this case, however, the shape of the signal
remains virtually undistorted for as long as the lag or
advance is smaller than the signal duration. In other
words, in the case of two-beam interference, the abso-
lute lag (or advance) may be as large as desired but the
relative time of lag or advance (i.e., the ratio between
the lag or advance and the signal duration) must remain
small [4].

This remark is illustrated by Fig. 3, which shows the
time dependence of a long (T = 20) signal near the
sphere of infinite delay time (x = 1.4 and 1.6). One can
see that, when the delay time increases tenfold, the dis-
tortion of the time dependence of the total signal
remains the same as in Fig. 2 if the signal duration is
also increased tenfold. From Fig. 3, it also follows that
the intrinsic delay time (i.e., the time it takes for the sig-
nal to propagate from one source to the other) may be
significantly smaller than the delay (or advance) of the
TECHNICAL PHYSICS      Vol. 50      No. 1      2005



ON THE DELAY TIME OF THE TOTAL SIGNAL 5
total signal. In Fig. 3, in contrast to Fig. 2, the time
dependences of the signals from sources q1 and q2
merge together; yet, the time dependence of the total
signal exhibits a delay (or advance).3

Thus, the applicability of the effective delay time
approximation depends on the characteristic duration
of a signal being considered, while the effective delay
time itself depends only on the geometry of a transmit-
ting system and the position of the observation point.
The present situation is quite similar to the case of
applying the group velocity approximation.4 The group
velocity of a signal is determined only by the properties
of the medium, while the applicability conditions for
the group velocity approximation substantially depend
on its duration and shape.

3. DIPOLE TRANSMITTER 
IN A NONABSORBING MEDIUM 

(DEGENERATE CASE)

Let us see how the diagram depicted in Fig. 1 will
change when the amplitudes of the point sources are
equal to each other (δ  1–0), i.e., in the case of a
dipole transmitter. It is easy to see that the sphere of
negative delays then expands and encloses the whole
half-space x > 0 (xc  +∞, R  +∞, x1  +0,
x2  +∞). In this half-space, the delay time remains
negative but infinitely decreases in magnitude (τ 
−0). The signal delay time in the domain of advance
(x < 0) remains positive, though infinitely decreasing
(τ  +0).

As a result, in the case q1 + q2 = 0 (δ = 1), we come
to the following “degenerate” situation: in the whole
space, the delay time of the total signal is the same and
equal to zero. The domain of applicability of the delay
time approximation is now specified by the conditions
|∆t1, 2 – τ| ! T or, in other terms, r ! cT. This means that
we are studying the time dependence of the total field
in the near-field zone of a set of point transmitters. The
application of the effective delay time approximation in
the far-field zone (for r @ cT) is merely an attempt to
apply the linear extrapolation formula to ultralong
(compared with the signal duration) time periods.
Eventually, the linear extrapolation formula is trun-
cated to the derivative, yielding the well-known [1]
result: the field far away from a dipole transmitter is
proportional to the time derivative of the dipole
moment of the system.

It is not only in the dipole case that the effective
delay time equals zero in the whole space. This is also
valid for an arbitrary set of transmitters with a zero total

3 The signals from two different point sources q1, 2 merged
together not only at the same observation point but also at differ-
ent observation points (x = 1.4 and 1.6).

4 It has already been noted that the above consideration can be
viewed as the group delay approximation for a signal with a zero
carrier frequency (i.e., for a non-quasi-monochromatic signal)
applied to the transmission from a group of point sources.
TECHNICAL PHYSICS      Vol. 50      No. 1      2005
charge (  = 0) (see [8]). Note that such a
“degenerate” case is the only possible one in electrody-
namics.

Indeed, the total charge of the transmitting system is
preserved ( ei(t) = ( )φ0(t) = const),
which, for φ0(t) ≠ const, is possible only when

 = 0. Of course, a closed system of electro-
magnetic transmitters may have an uncompensated
static charge; however, this charge produces a static
field with a delay time equal to zero by definition. That
is why we adhere to the electrodynamics terms in this
section and consider c as the velocity of light. In acous-
tics, the degenerate case  = 0 is also possible,
though it is a particular one (dipole or multipole trans-
mitter). The fact is that the total volume velocity [3] of
a set of acoustic transmitters is not necessarily equal to
zero: along with dipole and multipole transmitters,
there exist acoustic monopole transmitters like a pulsat-
ing sphere.

Thus, we can state that, in a homogeneous transmis-
sion medium, the delay time of an electromagnetic sig-
nal in the near-field zone of an arbitrary set of electric
charges, as well as the delay time of an acoustic signal
from an arbitrary acoustic system without a monopole
moment, is equal to zero.5 The fact that the delay time
is the same at any point of the near-field zone and pre-
cisely equals zero is, in a sense, an accident: in three-
dimensional space, the field of a spherical wave geo-
metrically decays according to the law (1/r). In an
absorbing medium (see Sect. 5), this “degeneration” is
removed.

Let us corroborate our speculations by calculation.
By way of example, we will consider the field of an
electric or acoustic dipole (q1 = –q2 = q; Fig. 1) in a
homogeneous medium without dispersion and absorp-
tion.

Figure 4 shows the time dependence of the field of a
dipole with point transmitters separated by a distance
d = 0.01 in a medium where the wave velocity is c = 1
at points x = 10 and 20 on the abscissa (the correspond-
ing lines are labeled by circles and squares, respec-
tively). The signal has the form φ0(t) = sin(t/T)/(t/T) and
duration T = 10. The notation is the same as in Figs. 2
and 3. Unlike the fields of single point transmitters, the
total field “ignores” the time delay due to the finiteness
of the signal propagation rate: for as long as the delay
is much shorter than the signal duration, the near field
almost coincides with the “undelayed” signal. It should
be emphasized that the delay ignored by the total signal
goes beyond the calculation accuracy and may signifi-

5 The propagation velocity of the maximum (or any other frag-
ment) of a signal turns out to be infinite (exceeds the velocity of
light). Below, we demonstrate that this circumstance by no means
contradicts the causality principle or the concept that the velocity
of light in a vacuum is an ultimate (see also [4, 6, 8–11]).

qii 1=
n∑

d
i 1=
n∑ qii 1=

n∑
qii 1=

n∑

qii 1=
n∑
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cantly exceed the time it takes for the signal to propa-
gate between transmitters q1 and q2 (or, which is the
same, may exceed the difference between the delays of
the signals from individual sources.6 For instance, in
the case x = 10, the delay time of the signal from the
closest monopole, which is ignored by the total signal,
is equal to 9.995 (not that small when compared with
the duration of the signal, T = 10, and in any case larger
than the intrinsic delay time of the dipole, 0.01).

4. MULTIPOLE TRANSMITTER
IN A NONABSORBING MEDIUM

We have already mentioned that the signal can be
extrapolated with a higher-than-linear accuracy. In the
degenerate case, τ = 0 and extrapolation of order r can

be applied (see Sect. 1) if ∆  = 0; k = 1, …, r
(see (5)). This condition can be recast as

(10)

If the positions of the point transmitters and obser-
vation point (i.e., parameters Ri and r) are fixed, condi-
tions (10) can be considered as a system of r linear
homogeneous algebraic equations in n variables qi. It
can be easily demonstrated that this system has nontriv-
ial (nonzero) solutions for any values of parameters Ri

if and only if n ≥ r + 1. This means that we can achieve
any preassigned accuracy of extrapolation of order r
(r ≤ n – 1) for any preassigned arrangement of n trans-
mitters and the position of the observation point by
properly choosing the ratio of transmitter amplitudes qi.
In particular, two transmitters (n = 2) provide for the

6 Here, “individual” signals from two point sources (the dotted
lines) merge together as in Fig. 3.

f ii 1=
n∑ ti

k

qiRi
k 1–

i 1=

n

∑ 0; k 1 … r., ,= =

Φ0(t – ∆t1), Φ0(t – τ), Φ(t)/f

0

1

–50 0 50 t

Fig. 4. Time dependence of the dipole signal at various
points on the abscissa (for x = 10, the lines are labeled by
circles; for x = 20, the lines and labeled by squares). The
notation is the same as in Fig. 3.
linear accuracy of extrapolation r = 1; three (n = 3), the
quadratic accuracy (r = 2); four, cubic (r = 3); etc.

For a given extrapolation accuracy of order r, at least
r + 1 transmitters are required. In this case, system (10)
has a unique solution (up to simultaneous scaling of all
r + 1 charges) in the form

(11)

where i = 1, 2, …, r; p = 1, 2, …, r, and the value of
charge qr + 1 is arbitrary.

Certainly, we assume that Ri ≠ Rj for i ≠ j. Otherwise,
transmitters qi and qj must be considered as a single
transmitter for a given observation point, because the
fields produced by them have the same time depen-
dence at this point.

In the presence of extra (for a given accuracy of
extrapolation of order r) transmitters (the total number
of transmitters is r + k, k > 1), the fundamental set of
solutions to system (10) contains k linearly independent
solutions and the general solution to system (10) has the
form

(12)

where i = 1, 2, …, r; p = 1, 2, …, r; and the values of
qr + l (l = 1, 2, …, k) are arbitrary.

Generally speaking, the validity of conditions (11)
or (12) at some point of the space does not imply that
these conditions hold in the whole space or, at least, on
a certain set of points (on a line or a surface) in the
space. Sometimes, however, this takes place. For
instance, if r = 1 (the linear accuracy), relationship (12)
simplifies to the single condition q1 = –  (l =
1, 2, …, k), which holds simultaneously at all points of
the space for a system with a zero total charge (as noted
above).

Another important particular case is that of aligned
transmitters. It is easy to check that conditions (10) are
fulfilled at any observation point that lies on the line of
transmitters if the set of transmitters has no multipole
moments [1] of orders l = 0, 1, …, r – 1:

(13)

qp

Rr 1+ Ri–( )
i p≠
∏

Rp Ri–( )
i p≠

 

∑
------------------------------------qr 1+ ,=

qp

Rr l+ Ri–( )
i p≠
∏

Rp Ri–( )
i p≠

 

∑
-----------------------------------

 
 
 
 
 
 
 

qr l+ ,
l 1=

k

∑–=

q1 l+l 1=
k∑

Qm
l( ) qiRi

l 4π
2l 1+
--------------Ylm θi φi,( )

i 1=

n

∑ 0;= =

m 0 1 … l.±, ,±,=
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For m ≠ 0, conditions (13) hold by themselves for
any linear set of transmitters; for m = 0, they coincide
with (10). It is now clear that conditions (10) are (or are
not) met simultaneously throughout the “line of trans-
mitters.”

Thus, an arbitrary linear system comprising any
number of transmitters that has zero multipole
moments of orders l = 0, 1, …, r – 1 provides the
absence of a signal delay along its axis up to order r.
This means that any linear quadrupole (i.e., a linear set
of charges having a zero total charge and zero dipole
moment) provides second-order accuracy along its
axis; any linear octupole (i.e., a linear set of charges
having a zero total charge and zero dipole and quadru-
pole moments), the third-order accuracy; etc.

To implement such systems with a finite number of
transmitters in practice, one may use relationships (11).
In the case of equispaced (no matter how small or large
the spacing) point transmitters, relations (11) immedi-
ately imply

(14)

In particular, if n = 3 (quadrupole), we have q1 = q3 =
1 and q2 = –2; if n = 4 (octupole), q1 = –1, q2 = 3,
q3 = −3, and q4 = 1; etc. Figure 5 shows the results of
calculations for a quadrupole at points x = 10 (circles)
and x = 20 (squares). In this case, the accuracy of for-
mula (7) is seen to be noticeably higher than for a
dipole transmitter, with distances from the set of trans-
mitters being the same as in Fig. 4. This is because such
a configuration of transmitters accomplishes the qua-
dratic (rather than linear) extrapolation of the time
dependence of the initial signal along its axis. In Fig. 6,
the results of similar calculations for an octupole (the
notation is the same as in Fig. 5) are presented. Here,
the extrapolation along the octupole axis is cubic,
which improves the accuracy of the results: the analyt-
ical (thin) line is shaded by the numerical line x = 10,
and the line x = 20 almost coincides with the line x = 10.

Thus, sets of transmitters that provide any preas-
signed accuracy of extrapolation of the signal time
dependence at least on one-dimensional manifolds
(curves) do exist and can be implemented, for example,
using (14). At the same time, the question as to whether
or not arrangements of transmitters that provide an
accuracy of order higher than one on higher dimension
manifolds (on surfaces or in the entire space) exist
remains open.

5. DIPOLE TRANSMITTER IN AN ABSORBING 
MEDIUM

It has already been noted that degeneracy (i.e., the
independence of the signal delay time from the position
of the observation point) for a multipole transmitter can
be removed not only by “disbalancing” the dipole (i.e.,
by introducing a nonzero monopole moment) in a trans-
parent medium but also by taking into account the

qp 1–( )n p– Cn 1–
p 1– qn; p 1 2 … n 1.–, , ,= =
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absorption of the medium. Consider an absorbing
medium with absorption coefficient λ. Then, instead of
(13), we have

(15)

In the case of a dipole (n = 2, q1 = –q2 = q), this
gives, instead of (9),

(16)

One can easily check that the delay time of the total
signal, τ, is now different at various points of the space.

φ r t,( ) qi/Ri( )φ0 t Ri/c–( ) λ Ri–( ).exp
i 1=

n

∑=

f q R1
1– λ R1–( )exp R2

1– λ R2–( )exp+( ),=

τ
λ R1–( )exp λ R2–( )exp–

c λ R1–( )exp /R1 λ R2–( )exp /R2–( )
-------------------------------------------------------------------------------------.=

Φ0(t – ∆t1), Φ0(t – τ), Φ(t)/f

0

1

–50 0 50 t

Fig. 5. Time dependence of the quadrupole signal at various
points on the abscissa (for x = 10, the lines are labeled by
circles; for x = 20, by squares). The notation is the same as
in Fig. 3.

Φ0(t – ∆t1), Φ0(t – τ), Φ(t)/f

0

1

–50 0 50 t

Fig. 6. Time dependence of the octupole signal at various
points on the abscissa (for x = 10, the lines are labeled by
circles; for x = 20, by squares). The notation is the same as
in Fig. 3.
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At any point, it is positive but smaller than the optical
delay time of the signal from the point transmitter near-
est to the observation point.7 This result is quite natural.
Indeed, a signal arriving at any observation point from
a more distant source is attenuated more strongly.
Therefore, any observation point is closer to a “more
intense” (as perceived by the point) source and falls
into the domain of advance (in terms of Sect. 2).

In the most interesting case λd ! 1 (when the atten-
uation “inside the dipole” is low,8 relationship (16) far
from the dipole (r @ d) can be recast in the form

(17)

In the range λr ! 1, relationship (17) gives τ ≈ 0,
which appears quite natural, because the absorption in
this range is negligible and we actually come back to
the degenerate case and a zero delay time. In the range
λr @ 1, relationship (17) implies that τ = (r/c) – 1/λc.
That is, the delay time is shorter than the optical time
by the fixed quantity 1/(λc), which is much smaller than
the optical delay time of a signal propagating from the
dipole to the observation point but larger than the intrin-
sic delay time of the dipole (d/c). It is interesting that
the latter delay is independent (contrary to the nonde-
generate case considered in Sect. 2) of azimuth θ.
Hence, an imaginary point source (the same for differ-
ent observation points) does not arise in this case and,
at different points of the space, the signal delay time
corresponds to transmission from different sources,
which are always closer to the observation point than
real sources of the signal.

It should also be noted that, when the condition T @
1/λc holds, the (large) distance to the set of transmitters
does not restrict the applicability of the delay time
approximation. This can be interpreted as the absence
of the “wave zone” for sufficiently long signals in an
absorbing medium. It is for long signals (T @ 1/λc) that
the wave zone (in the normal sense) arises, the delay
time approximation is applicable at infinitely long dis-
tances from signal sources, and the field at any point of
the space is specified by the dipole (or multipole)
moment of the transmitting system and not by its time
derivative.

7 Since electromagnetic waves are normally somewhat absorbed in
a medium, we arrive at a conclusion that, at first glance, seems
paradoxical. Namely, the maximum of an electromagnetic signal
in a dispersionless absorbing medium “normally” propagates
with a faster-than-light, rather than slower–than-light, velocity. In
particular, this means (see below) that, when an electromagnetic
signal with a steep leading or trailing edge (i.e., cut off at the
front or at the rear) propagates, its tail is “reconstructed” through
a “loss” in its “nose.”

8 In the opposite limiting case λd @ 1, any observation point
(except in the immediate vicinity of the equator, x ≈ 0) receives
the signal from a single point source, namely, from the source
that is closer to it. Accordingly, the signal delay time is almost
equal to the optical delay.

τ r/c( ) λr( )/ λr 1+( ).=
6. CAUSALITY PRINCIPLE AND NEGATIVE 
(OR ZERO) DELAY TIME

Now let us discuss the relation between the causality
principle and the fact of immediate (in the near-field
zone of a multipole transmitter; Sects. 3, 4), advanced
(in the domain of negative delays, Sect, 1), or faster-
than-light (in the domain of advance (Sect.1) and in an
absorbing medium (Sect. 5)) arrival of the maximum
(or any other fragment) of the signal. It has already
been noted that these effects, being quite real and not
contradicting the causality principle and the concept
that the velocity of light in a vacuum is a physical limit,
are due to the interference-related extrapolation of the
signal time dependence.9

Nevertheless, it is the causality principle that is
responsible for the reconstruction of the tail of a signal
whose transmission was abruptly interrupted (see also
[8, 9, 11]). In our case, the reconstruction of the non-
transmitted tail of a signal is possible (and even inevi-
table) in the near-field zone of a dipole (or multipole)
transmitter, in the domain of negative delays and in the
domain of advance of a nondipole set of transmitters, as
well as for a dipole (or multipole) transmitter in an
absorbing medium.

Moreover, the opposite effect can be observed,
which can be referred to as the effect of nose recon-
struction by analogy with the previous one (such an
effect for frequency-modulated signals was mentioned
in [11]). In our case, the reconstruction of the nontrans-
mitted nose of a signal occurs in the domain of lag of a
nondipole set of transmitters.

As an example, Fig. 7 shows the calculation results
for the propagation of the signal presented in Fig. 3,
which was cut off at both ends: it abruptly arises at t =
–60 and disappears at t = 0. Here, panel (a) demon-
strates the time dependence of the signal at point x = 1.4
(the domain of negative delay times); panel (b), at point
x = 1.6 (the domain of lag; the delay time exceeds the
acoustic delay time of the signal).

From Figs. 3 and 7, it follows that, in both cases, the
total signal appears and disappears (the thick line) syn-
chronously with interfering signals from individual
point transmitters (the dashed line). This means that
violation of the causality principle is out of the ques-
tion. Whatever the time dependence of the signal
detected, it is present at some point of the space only
when its constituent delayed potentials are present at
this point. The spikes of the total signal at the extremity
of the time interval where it exists (see Fig. 7) are asso-
ciated with the fact that the leading and trailing edges
of the total signal (of duration d/c, where d is the dis-
tance between the point sources) consist of a signal
from just one point source, so that signals from two

9 In our opinion, this natural (interference-related) forward extrap-
olation of the signal time dependence underlies the nonanthropo-
genic prediction of this dependence and is responsible for the
results predicted, such as a faster-than-light (or negative) group
velocity of the signal in some types of dispersive media [6, 8–11].
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sources are not partially compensated (this compensa-
tion is responsible for the backward (Fig. 7b) or for-
ward (Fig. 7a) extrapolation of the time dependence of
the total signal).

Yet, the smooth time dependence of the total signal,
which exists only together with both delayed potentials
(for the chosen values of the parameters, the delay of
these potentials is negligible) shifts forward (Fig. 7a) or
back (Fig. 7b). The future or past of the signal is recon-
structed on the basis of information about the signals
from the point sources that is available at a given point
of the space and a given instant of time. As a result,
what is actually detected is not the signal that was actu-
ally transmitted but its reconstructed past or future.

For example, in the case of a negative delay time
(Fig. 7a), the detected signal (the thick line), unlike the
transmitted one (the dashed line), starts from a nonzero
value and has a smooth maximum, which is absent in
the transmitted signal but which would appear later if
the transmitted signal were smooth and exhibited no
events like trailing edge cutoff. Therefore, this effect
can be referred to as the reconstruction of the tail of a
signal. It was shown [8, 9] that this effect arises when a
signal propagates with a faster-than-light or negative
group velocity in a strongly dispersive medium and is
an inevitable consequence of the causality principle. If
the signal transmitted is cut at both ends, the recon-
struction of the time dependence of the signal tail
causes a loss of information about its nose, i.e., about
the time dependence of the initial part of the signal. Of
course, this does not happen if the front of the signal
transmitted remains intact.

When the delay time of the total signal exceeds the
sound time (Fig. 7b), the signal detected (the thick
line), unlike the transmitted one (the dashed line), starts
from a nonzero value and is bipolar in amplitude or has
a deep minimum of the intensity. The signal detected
had none of these features but would have exhibited
them (earlier) if its transmission had not started with the
initial abrupt jump, i.e., if a smooth signal without
events like leading or trailing edge cutoff were trans-
mitted. That is why this effect is natural to be called the
reconstruction of the signal nose. This effect may arise
when a signal propagates with a slower-than-light (or
subsonic) group velocity in a strongly dispersive
medium and, unlike the effect of regeneration of the
tail, may be avoided. The fact is that, in a real dispersive
medium, the reconstructed nose of the signal is
imposed on the response of the medium to the jump of
the amplitude of the signal with the truncated leading
edge. Therefore, the reconstructed nose can be distin-
guished only if the background is feeble.10 In our case,
good discernability of the truncated nose of the signal
is associated just with the steep decay of the response

10The situation with tail reconstruction is much simpler. The
response of the medium exists in this case, too, but (since the cau-
sality principle works) it follows the reconstruction of the tail and
so cannot distort it.
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of the medium, which abruptly (within the time d/c
after its occurrence) disappears instead of fading out as
in a real dispersive medium. If the signal transmitted is
cut at both ends, the reconstruction of the time depen-
dence of the signal nose is accompanied by a loss of
information about its tail. Of course, this does not hap-
pen if the trailing edge of the signal transmitted remains
intact.

In practice, when signal transmission is strictly lim-
ited in time, the effects of nose reconstruction and tail
reconstruction may lead to a situation where basically
different signals are detected at different points of the
space; moreover, the signals detected may even differ
from that transmitted.

The effects considered reflect the well-known fact
that, in any medium, there are two velocities of signal
propagation, which radically differ in meaning and
magnitude. These are the vacuum velocity of light,
which is the velocity of signal discontinuities [1] and,
hence, the rate of data transfer [1, 5, 6], and the group
velocity, which is typical of the smooth envelope of a
signal and may exceed, or be lower than, the vacuum
velocity of light and even negative [4, 6, 8–11]. We
emphasize that the vacuum velocity of light is the rate
of data transfer (generally speaking, the propagation
rate of any signal as a data carrier) in any medium and
it is the vacuum velocity of light that obeys all the fun-
damental restrictions that follow from the causality
principle and, in particular, from the restricted relativity
theory (and are sometimes incorrectly imposed on the
group velocity, which may be neither lower than the
velocity of light nor positive).

In essence, we can treat the same phenomenon (the
same curve) in two ways that do not contradict each
other. In the first case (considering the group velocity as
the “basic” one), we may suppose that the time depen-
dence of a signal is approximately the same at various

Φ0(t – ∆t1), Φ0(t – ∆t2), Φ0(t – τ), Φ(t)/f

1

0

–100 1000 –100 1000
t

(a) (b)

Fig. 7. Time dependence of the dipole signal with the cut
leading and trailing edges at various points on the abscissa.
x = (a) 10 and (b) 20. The notation is the same as in Fig. 3.
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points of the space but the signal may propagate with a
slower-than-light velocity, the velocity of light, or a
faster-than-light velocity. Its velocity may be even neg-
ative. If the time dependence of a signal is discontinu-
ous, the signal is distorted in a specific way (its tail is
reconstructed through a loss of information about its
nose or vice versa) because of the difference between
the propagation rate of the discontinuities and the group
velocity.

In the second case (considering the vacuum velocity
of light as basic), we assume that the velocity of a signal
equals the vacuum velocity of light but the time depen-
dence of the signal is distorted due to the difference
between the group velocity and the vacuum velocity of
light. Namely, the time dependence of the signal shifts
in the interval between its sharp leading and trailing
edges. Both approaches are equally justified, and the
choice is a matter of convenience. For a (smooth) signal
unlimited in time, the first approach seems preferable,
while the second one is more convenient when a signal
has abrupt leading and trailing edges.

CONCLUSIONS

(1) In the general case, the delay time of a signal
from a compact array of transmitters does not coincide
with the optical or acoustic delay time of the signal and
may significantly exceed, or be much shorter than, the
latter. In particular, the delay time of the total signal
may be negative. In this case, the maximum of the sig-
nal arrives at the observation point before it is transmit-
ted by any transmitter in the array.

(2) Such behavior of the signal is consistent both
with the concept that the vacuum velocity of light is a
fundamental physical limit (when the signal delay time
is shorter than the optical one) and with the causality
principle (when the signal delay time is negative). The
forward or backward shift of the time dependence of
the total signal is caused by the forward or backward
extrapolation of the signal time dependence. Such an
extrapolation is a natural result of interference between
several copies of the same signal. A by-product of the
extrapolation is the reconstruction of the “cut” leading
or trailing edge of a signal for which transmission was
abruptly started or terminated.
(3) The same mechanism (interference-induced for-
ward or backward extrapolation) gives rise to a faster-
than-light or negative group velocity, i.e., underlies the
nonanthropogenic prediction of a high-frequency sig-
nal in some dispersive media [8–11]. Therefore, physi-
cally, a faster-than-light or negative group velocity
arises from the forward extrapolation of the time
dependence of the signal detected. This extrapolation is
naturally brought about as a result of interference
between several copies of the same signal that are vari-
ously delayed and attenuated by the medium.

(4) In addition to the case when a high-frequency
signal is transmitted in a dispersive medium, a similar
extrapolation (with similar consequences) may also
occur when a high-frequency or low-frequency multi-
beam signal propagates in a nondispersive (inhomoge-
neous) medium.
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Abstract—Acoustooptic Raman–Nath diffraction by a standing acoustic wave in a paratellurite crystal is inves-
tigated. An acoustic line is made in the form of a polished cube and serves as a high-Q acoustic resonator. A
slow shear wave is excited by a single piezoelectric transducer. Multiple lossless sound reflections lead to two-
coordinate light diffusion. When the acoustic intensity introduced into the crystal is about 2 W/cm2 at a sound
frequency of 7 MHz, there appears a diffraction pattern in the form of a homogeneous light spot with a solid
angle of about 0.5 sr. An explanation for the features of the acoustooptic interaction is given. It is shown that
this type of diffraction is helpful in designing acoustooptic two-coordinate diffusers of light beams. © 2005 Ple-
iades Publishing, Inc.
The overwhelming majority of acoustooptic (AO)
devices are based on Bragg acoustooptic diffraction,
which has a single diffraction order. At the same time,
the Raman–Nath regime, characterized by several dif-
fraction orders, is being little used [1]. This study inves-
tigates the feasibility of using Raman–Nath diffraction
in acoustooptic diffusers of light.

In experiments, an optical radiation was diffracted
by a slow shear acoustic wave traveling in a paratellu-
rite (TeO2) single crystal that was placed in an AO cell.
Among the rich variety of AO materials, this crystal has
enjoyed the widest application, since it is characterized
by a uniquely high AO figure of merit combined with
good optical and acoustic properties and high process-
ability. The efficiency of AO diffraction in this crystal is
such that, for an interaction length on the order of a cen-
timeter and an acoustic power of several tens of milli-
watts, the index of phase modulation of light may reach
2π (in other words, the efficiency approaches 100%).
The experimental setup is schematically shown in
Fig. 1. A light beam from single-mode semiconductor
laser 1 (the wavelength is 0.65 µm, the beam aperture is
0.7 mm) passes through AO modulator 2 with piezo-
electric transducer 3. The light field distribution behind
the modulator is viewed at the focal plane of lens 4 on
screen 5. In the experiments, we used a TeO2 single
crystal in the form of a cube measuring 12 × 12 × 12
mm. The faces of the crystal were optically finished,
and their misalignment with respect to the [110],

[ ], and [001] directions was within 5". The piezo-
electric transducer 7 × 7 mm in size was in acoustic

contact with the ( ) face. Thus, the slow shear wave
with a frequency of about 7 MHz was initially excited

110

110
1063-7842/05/5001- $26.00 0104
along the [ ] direction and the displacement vector
was parallel to the [110] direction. In all the experi-
ments, the light was propagated along the [001] axis. As
was mentioned above, the faces of the TeO2 crystal
were parallel to each other with a high degree of accu-
racy, so that it might function as an high-Q acoustic res-
onator. The mode spacing of the resonator was ∆f =
v /2L, where v  is the sound velocity (0.617 × 106 mm/s)
and L is the spacing between the faces (12 mm). In our
case, ∆f ≈ 26 kHz. The quality factor of such an acous-
tic resonator was Q ≈ 20. Thus, the diffraction intensity
was maximal at resonant frequencies that were multi-
ples of ∆f.

Figure 2 demonstrates the diffraction pattern
observed on the screen under the resonance condition
for three different powers of the signal applied to the
piezoelectric transducer: (a) 0.1, (b) 0.5, and (c) 0.8 W.
It is seen that the pattern is two-coordinate in all cases,
i.e., has diffraction orders both in the plane parallel to
the direction of propagation of the initially excited
acoustic wave and in the orthogonal plane. The angular

110

[110
–

]

1
2

3
4 5

[001]
[110]

Fig. 1. Schematic of the experimental setup.
© 2005 Pleiades Publishing, Inc.
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distance between the diffraction orders (in either plane)
is ∆α = 0.42°. As the acoustic wave power rises, the
number of diffraction maxima increases and the max-
ima broaden, becoming diffuse. The most interesting
and unexpected situation arises when the power reaches
1.5 W (the associated photograph is not presented) and
the diffraction pattern transforms into a homogeneous
light spot (having no visible internal structure) with a
solid angle of about 0.5 sr. In this case, the sound inten-
sity applied to the crystal was about 2 W/cm2 and the
intensity of the standing wave in the crystal (along the

[ ] and [110] axes) was evaluated as 20–30 W/cm2.

The pattern observed can be treated in terms of the
following estimates. For low powers of the acoustical
wave (Figs. 2a, 2b), the pattern in orthogonal diffrac-
tion planes is similar to a Raman–Nath diffraction pat-
tern. In fact, for the given light and sound wavelengths
and the dimensions of the piezoelectric transducer, we
find that the dimensionless Klein–Cook parameter
equals Q = 1.6, which allows us to identify this diffrac-
tion regime with Raman–Nath diffraction [1]. The
appearance of the two-coordinate diffraction pattern is
associated with the following features of the slow
acoustic mode propagation in a TeO2 crystal. The first
one is a small value of the acoustic absorption coeffi-
cient at the given frequency (about 0.01 dB/cm) [2].
Consequently, the acoustic wave undergoes many loss-
less reflections. The second feature is considerable
acoustic anisotropy [3], which causes the energy flux to
diverge, with angle of divergence ∆θ significantly
exceeding the initial diffraction divergence (∆θ =
50λ/d, where λ is the sound wavelength and d is the
aperture of the transducer along the [110] direction). In
our experimental conditions, ∆θ ≈ 34°. Thus, acoustic
waves propagating normally to the initial direction
appear even after several reflections. Note that only the

[ ] and [110] directions are “resonant” and the
sound intensity along them increases by the value of the
acoustic Q factor: there appear two stable high-inten-
sity orthogonal standing modes. The third reason is the
fact that the acoustic and acoustooptic properties of the
crystal in these two orthogonal crystallographic direc-
tions are identical. The diffraction orders diffuse,
because each of them multiply interacts with a set of
sound wavevectors that have different velocities.

Let us discuss the practical importance of the AO
diffraction regime observed. In practice, optical engi-
neers use diffusers that have either dull or holographic
plates [4]. These plates broaden the directional diagram
of light and remove the structure of the light sources’
image. They are widely used in projectors when the
image of a filament must be transformed into a homo-
geneous light spot. Such an approach is also applied to
eliminate speckles in the output radiation of fiber
waveguides. It is clear that each such plate is fabricated
with a certain angle of the scattering indicatrix.

110

110
TECHNICAL PHYSICS      Vol. 50      No. 1      2005
Figure 3 demonstrates how a Raman–Nath AO dif-
fuser can be used to eliminate the structure in the image
of the projector lamp filament. Schematically, the pro-
jector consists of incandescent lamp 1, collimator 2, AO
Raman–Nath modulator 3 (identical to that shown in

(b)

(a)

(c)

Fig. 2. Diffraction field arising when the AO modulator is
illuminated by the laser.

1 2 3 4 5

Fig. 3. Schematic of the projector.
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(a)

(b)

(c)

Fig. 4. Image of the filament.
Fig. 1), objective lens 4, and screen 5. Figure 4 shows
the image of the filament for various powers of the sig-
nal applied to the piezoelectric transducer: (a) the sig-
nal is not applied, (b) the signal power equals 0.3 W,
and (c) the signal power equals 1.5 W. It is well seen
that the diffusion of the image is proportional to the
increase in the sound power.

Thus, the AO diffraction regime investigated in this
work may form the basis for designing light diffusers
that radically differ from the conventional ones in that
the former demonstrate the possibility of controlling
the angle of scattering. This may be helpful in optimiz-
ing different types of images. In addition, there appears
a possibility of rapidly controlling the scattering indic-
atrix. The rate of control depends on the sound velocity,
the crystal size, and acoustic Q-factor. The time τ it
takes for the stationary diffraction field to form (or
decay) once the excitation signal has been applied can
be estimated as τ ≈ (L/v)Q. Under our experimental
conditions, it was about 0.4 ms. It should also be noted
that holographic diffusers exhibit light losses (from 10
to 15%) and impose limitations on the permissible
intensity of incident light. In the above application, the
AO modulator is evidently totally free of optical losses
and the radiation resistance of TeO2 crystals is very
high.
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Abstract—Mechanisms of static deformation of a freely suspended ferroelectric smectic (C*) film in an exter-
nal transverse electric field are analyzed. An equation for the shape of the film that includes the interaction of
the applied field with the polarization vector and surface charges is derived in terms of the variational approach.
The effect of deformation is shown to be of threshold character, which agrees with the experimental data.
© 2005 Pleiades Publishing, Inc.
Liquid crystals, being intermediates between isotro-
pic viscous liquids and crystalline solids, possess a
number of intriguing properties [1, 2]. Of special inter-
est are smectic liquid crystals. They feature not only
orientation order but also an ordered arrangement of the
centers of mass of molecules, which form a layered
structure. Depending on the preferred orientation of
molecules, which is specified by unit director vector n,
smectic liquid crystals can be subdivided into smectics
A, where the director is aligned with normal N to the
planes of a layer, and smectics C, where vector n makes
angle θ with the normal to the layer. If director n in
smectic C rotates in going from layer to layer with angle θ
remaining unchanged, we deal with smectic C* [3].

Smectics may form macroscopic stable films con-
taining from two layers to several hundred layers [3–5].
These films may be both freely suspended in a rigid
frame and fixed on a substrate. The physical properties
of thin-film (especially suspended) smectics are of par-
ticular interest, since they offer a unique possibility of
studying a two-dimensional system (which is virtually
impossible otherwise) and also are finding wide appli-
cation, primarily in data displays.

External fields noticeably influence the equilibrium
and dynamic properties of thin films. Ferroelectric
smectics C* [2, 6, 7], which have a constant dipole
moment and are extremely sensitive to applied fields,
are of special interest. The behavior of freely suspended
ferroelectric smectic films in an electric field is being
extensively studied both theoretically and experimen-
tally [8–12]. It has been found that a variable electric
field of different configuration leads to an electrome-
chanical effect, i.e., causes the films to vibrate. The nat-
ural vibration spectra of the films and the vibration
amplitude as a function of the applied field, film size,
1063-7842/05/5001- $26.00 0107
and environmental conditions have been studied exper-
imentally.

Theoretical analysis of these effects raises a number
of issues, which have not been discussed in detail. First
of all, we mean the excitation of transverse vibration in
the film when it is placed in an electric field that is
applied along its surface. The problem is that, when
interacting with the spontaneous polarization vector,
the field affects only the orientation of the director. To
date, deformation of the film under the action of an
external electric field has not been adequately
explained on the quantitative basis. In an attempt to
explain this effect qualitatively, Jakli [8] related the
reorientation of the director in an external filed to vis-
cous stresses, which arise in so-called induced back-
ward flows.

It was found [11] that a transverse electric field
causes the film to arch but the shape of the film is other
than spherical. This effect is akin to the Freedericksz
effect [1, 2] and is of threshold character: the film starts
deforming only if the electric field strength exceeds a
critical value.

In this work, we analyze mechanisms of static
deformation of the film subjected to an external electric
field that is applied transversely to the film. It will be
shown that reasons for the variable curvature of the film
deformed can be found and the threshold field can be
calculated in terms of a fairly general approach.

Consider a freely suspended thin film of ferroelec-
tric smectic C* placed in a uniform electric field that is
applied normally to the surface of the film. Free energy
F of deformation consists of the (i) Frank energy due to
the nonuniform orientation of the director; (ii) elastic
energy due to the deformation of the film; and
(iii) energy of interaction of the applied electric film
with the spontaneous polarization vector and surface
© 2005 Pleiades Publishing, Inc.
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charges, which appear on the film in the presence of
surrounding space charges. Eventually, we get [2, 3, 5]

(1)

(∆ is the Laplacian). Here, it is assumed that thickness
L of the film is so small that its internal structure can be
ignored and the rotation of the director from layer to
layer can be disregarded. In formula (1),

(2)

Here, Kii (i = 1, 2, 3) are the Frank moduli; c is the unit
vector aligned with the projection of the director onto
the plane of the film (the so-called c director [3]); u is
the displacement of the film along the z axis, which runs
normally to the surface of the undeformed film (to

F r⊥
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Fig. 1. (a) Mutual arrangement of electric field strength vec-
tor E, displacement u, and coordinate system. (b) The pro-
file of the ferroelectric smectic (C*) film in the uniform
external electric field [11].
plane xy); Ke = LK, where K is the flex modulus of the
film; α is the surface tension coefficient; P0 = P0N × c
is the dipole moment per unit surface of the film (P0 is
its absolute value); E is the applied electric field
strength; and σ is the surface charge density on the film.
Vector P0 is related to polarization vector P as P0 = LP.

If an external electric field is absent, the free energy
of deformation in a flat film with the uniformly oriented
director vanishes (takes a minimal value). In the pres-
ence of the field, the shape of the film and the distribu-
tion of the director orientation will change if these
changes reduce the energy of deformation.

Consider a film fixed on a circular diaphragm of
radius R. Owing to the axial symmetry of the problem,
one can conclude that the value of |P0 ⋅ E| is maximal if
the projection of vector P0 onto plane xy is aligned with
the radius of the diaphragm, which is occupied by the
film. In this case, the c director is oriented along the tan-
gents to coaxial circles centered on the z axis and a dis-
clination, the core radius a of which is comparable to
the size of a molecule, arises at the center of the film
[3, 13].

Further analysis is more convenient to perform in
the cylindrical coordinate system. For the free energy
of deformation, we have

(3)

Here, it is taken into account that, at low deformations
of the film and, accordingly, at small angles ϕ (see
Fig. 1a), the following relationships hold:

Considering that, in thin films, Ke ~ 10–(10–11)erg, α ≈
30 erg/cm2, and the characteristic length over which the
shape of the film changes noticeable is R ~ 0.1 cm, we
can neglect the term (1/2)Ke(∆⊥ u)2 in formula (3), since
it is much smaller than α(du/dr)2. In addition, we
neglect the contribution of the disclination core to the
free energy, since it is proportional to a2 and, hence, is
much smaller than the contribution due to orientation
elasticity [3, 13].

To find the shape of the film in an external field, we
minimize free energy of deformation (3), taking into
account that the film is fixed along the circumference of
the diaphragm. Eventually, we arrive at the Euler–
Lagrange equation

(4)
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with the boundary conditions

(5)

Integrating Eq. (4) yields

(6)

Figure 1b shows the deformed film profile obtained
in [11]. At the edges of the film, its profile is nearly lin-
ear and the radius of curvature decreases toward the
center. This profile is described well by expression (6).

Substituting (6) into (3), we find the free energy of
the film deformed. Since the condition a ! R is met, we
have

(7)

Formula (7) implies the existence of a threshold
(critical) external field above which the free energy of
deformation becomes negative and the deformed state
of the film becomes energetically more favorable than
its planar state. For the critical value of the field, we
obtain

(8)

From this formula, it follows that, if the interaction
of an external field both with surface charges and with
the polarization vector is essential, the dependence of
the critical field on thickness L and linear size R of the
film is a complicated function. In the limiting case of a
neutral system (σ = 0), we have

(9)

In the other limiting case, when the effect of surface
charges prevails,

(10)
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It is worth noting that the dependences of the critical
field on the film geometry are very different in these
limiting cases.

In experiments with ferroelectric films placed in the
corona field [11], the critical field was found to vary
nearly as the square root of the film thickness. This is
consistent with formula (10) and also with the conclu-
sions drawn by the authors of [11], who argued that the
deformation of the film in that experiment results from
the interaction of the external field with surface
charges.
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Abstract—The effect of the “stir” of a structure (small deviations from strict periodicity) on effective conduc-
tivity is considered. For determinate and random deviations, concentration and field dependences of the effec-
tive conductivity are found. Numerical experiments with determinate deviations are carried out for the cases of
linear (with respect to the field) inclusions embedded in both a linear and nonlinear matrix. The numerical
results are compared with the effective conductivity calculated analytically. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

We consider a two-phase composite with conductiv-
ities σ1 of the first (well-conducting) phase and σ2 of
the second (poorly conducting) one. It is well known
[1] that, when the concentration of the well-conducting
phase increases, approaching percolation threshold pc,
the effective conductivity σe of the composite increases
sharply. This increase is due to a continuous path (a so-
called infinite cluster) that occurs in the well-conduct-
ing phase and closes the contacts.

In the vicinity of the percolation threshold, i.e.,
when the concentration of the well-conducting phase is
close to pc, the effective conductivity is an analogue to
the order parameter in the theory of phase transitions of
the second kind [1]. Similarly to the order parameter, σe

universally depends on the closeness to the transition
point τ = (p – pc)/pc (i.e., is described by a scaling func-
tion) and its behavior is specified by few critical indi-
ces. Universality means that σe is independent of the
realization of a random structure if the sample is suffi-
ciently large. In particular, one may randomly shift
each of the well-conducting inclusions in a poorly con-
ducting matrix without changing σe. Figuratively, the
system is stable against stir.

In a three-dimensional system, percolation usually
occurs at pc ≈ 0.2, i.e., when the well-conducting phase
is still small. Sometimes, there is a need for composites
with a concentration of the well-conducting phase
much higher than pc, so-called highly filled composites
[2]. In this case, the concentration of the well-conduct-
ing phase may approach a maximal value, since the
inclusions of the well-conducting phase are closely
packed. One can distinguish between two radically dif-
ferent kinds of packing: a purely random packing and a
1063-7842/05/5001- $26.00 0011
packing with a periodical (or almost periodical)
arrangement of the inclusions. The effective conductiv-
ity of randomly arranged inclusions is described well
by a modification of the self-consistent field approxi-
mation introduced in [3] (see also [4]; a number of dif-
ferent approximations is also given in [5]), the effective
medium approximation (EMA). Except in the neigh-
borhood of the percolation threshold, where the meth-
ods of the percolation theory should be used, the EMA
adequately fits a vast amount of experimental data [6].
However, this approximation takes no account of the
arrangement of the inclusions and their interplay. As is
known [5], the EMA reduces the problem of effective
conductivity or, more specifically, the problem of cur-
rent distribution in a medium with inclusions to the
problem of current distribution in a resistance grating.
For a high concentration of inclusions, i.e., when they
are closely spaced and their interplay cannot be
neglected, the EMA may introduce a significant error.

Let us consider the two-dimensional problem, i.e.,
circular inclusions arranged strictly periodically
(Fig. 1). In real composites, this periodicity is violated.
We are interested in the effect a small deviation of the
structure from periodicity has on the effective conduc-
tivity. In Sec. 1.1, we consider a small deviation (stir) of
the structure under determinate displacements of peri-
odically arranged two-dimensional inclusions in the
linear statement. In Sec. 1.2, the calculation results for
the simplest displacements are compared with their the-
oretical description and the domain of applicability of
our model is determined. In Sec. 2, random displace-
ments are considered. In Sec. 3, the nonlinear problem
(linear inclusions in a nonlinear matrix) is solved and
the results are compared with direct calculations.
© 2005 Pleiades Publishing, Inc.
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1. DISPLACEMENTS 
IN THE CASE OF A LINEAR 

(WITH RESPECT TO THE FIELD) MATRIX

1.1. Determinate displacements. For a strictly
periodical arrangement of two-dimensional circular
inclusions (circular cylinders), the solution of the effec-
tive conductivity problem is presented in [7]. For brev-
ity, the well-conducting phase with conductivity σ1 will
be referred to as the black phase and the poorly con-
ducting phase with conductivity σ2 as the white phase.
Let the structure consist of a black matrix with white
circular inclusions. In the case of strict periodicity, the
effective conductivity of such a structure σWB (sub-

z
z

z
z

R

σ1

σ2

2a

Fig. 1. Initial strictly periodical arrangement of the inclu-
sions. Poorly conducting inclusions (σ2) in a well-conduct-
ing matrix (σ1, gray color) are shown white. The arrows
labeled by z indicate the direction of the simplest displace-
ment in the numerical simulation.

2a1

2a2

2a3

Fig. 2. Determinate disorder. Three types of displacements
and, respectively, three types of effective values ai are
shown.
script WB stands for “white in black”) has the form [7]

(1)

where R is the radius of the inclusions, 2a is the size of
a cell (Fig. 1),

and K(1/ ) = 1.85407 is the complete elliptic integral

of the first kind with modulus 1/ .
Formula (1) is valid for 0 ≤ R ≤ 0.95a. It also implies

that σ2 = 0. Note that the strictly periodical structure
under consideration is equivalent to a grating of con-
ductances g where

(2)

Let us see what happens if strict periodicity is bro-
ken. Consider the first situation where strict periodicity
is violated by introducing a “determinate” disorder;
namely, we shift each of the inclusions of the white
phase along the diagonal of a square cell by z in any
direction (see Fig. 2) or keep it in place. If, in doing so,
two inclusions move away from each other, the spacing
between them increases and, accordingly, so does the
“effective value” of a:

(3)

If two inclusions come closer to each other, the
spacing between them decreases:

(4)

In the third case, one inclusion is shifted, while the
other is left in place:

(5)

Let us restrict our analysis to the cases described
above. Then, there are three types of the “effective
value” ai (see (3)–(5)) in our system, which determine
σWB. Such a system is equivalent to a grating that con-
sists of three types of conductances: g1, g2, and g3. A
possible distribution of the conductances over the grat-
ing is shown in Fig. 3, which clarifies the way each of
the inclusions has been shifted. Note that this arrange-
ment of the inclusions is (i) periodical (with a period of
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five grating cells) and (ii) isotropic. One can see in
Fig. 3 that the concentrations of the conductances are
p1 = 0.2 and p2 = p3 = 0.4. In the EMA, the effective
conductivity σWB(p, z) of the grating that consists of
conductances g1, g2, and g3 is given by

(6)

Since the inclusions are impermeable, the displace-
ment z of the center of a circular inclusion from the cen-
ter of a cell is bounded by the value zmax:

(7)

Figure 4 plots the dependences of ln(σWB(τ, z)) ver-
sus ln(τ) for various z. We are reminded that τ = (p –
pc)/pc, where pc is the percolation threshold. In the case
considered, pc = 1 – τ/4. It is evident that R(τ) =

2a . One can see from Fig. 4 that
displacement z does not change the slope of the curves,
i.e., does not change the critical index. For

(8)

formula (1) is not valid. Therefore, zmax must be subject

to the condition zmax = (a – R/0.95), which is stron-
ger than condition (7). Here, for example, the approxi-
mate solution

(9)

may be used [8].

Expression (9) is written for the case R  a, when
the total resistance of the system is a sum of the resis-
tances of narrow gaps between the inclusions. Here, the
white phase is assumed to be nonconductive. The accu-
racy of expression (9) can be verified by directly com-
paring it with numerical calculations (see Fig. 5). As
follows from Fig. 5, for concentrations p ≤ 0.25, for-
mula (1) fails, while formula (9) becomes valid. Then,
instead of (2), we have

(10)

An expression for effective conductivity σWB(p, z) in
the case of well-conducting inclusions embedded in a
poorly conducting matrix can be found in the same way
(here, subscript BW stands for “black in white”). For-
mula (2) is then replaced by

(11)
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and, instead of (10), we write [8]

(12)

If the inclusions are shifted in the same way as in the
WB case considered above, the effective conductivity
problem reduces to a grating problem with the same
values of ai (see (3)–(5)) but with other concentrations
(p1 = p3 = 0.4 and p2 = 0.2).

g a( )
πσ2

2
a R–

R
------------

--------------------.=

Fig. 3. Determinate displacements. Well-conducting inclu-
sions (see (3)) and poorly conducting inclusions (see (4))
are colored black and white, respectively. The intermediate
case (see (5)) is shown in gray. The dashed square is the
period of this grating.

2.8

–1.0

ln(σWB(τ))

ln(τ)

3.0

0–0.5
2.6

3.2

3.4

3.6

Fig. 4. ln(σWB(τ, z)) vs. ln(τ) for different displacements z
(the WB case). The dotted line, z = 0 (the no-shift case); the
continuous line, z = 0.02; and the dashed line, z = 0.05.
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1.2. Comparison with the numerical experiment.
To determine the domain of applicability of our grating
model of resistances, which is stated by expressions
(3)–(5) and (10)–(12), consider the simplest displace-
ments. Let each of the inclusions in a 4a × 4a square be
shifted by z toward its center (Fig. 1). One the one hand,
such displacements can be exactly calculated in the
framework of our model of resistances; on the other
hand, they can be easily found by direct computation.

Here, we have conductances of only two types given
by (3) and (4), where p1 = p2 = 0.5. In the WB case, our
“black-and-white” grating with conductances g1

(white) and g2 (black) is equivalent to a “gray” grating

5

σ(p)

p

10

0.280.260.240.220.20
0

15

σ1 = 100

σ2 = 0

Fig. 5. Finding the domain of applicability of expressions (1)
and (9) for the concentration dependence of the effective
conductivity near percolation threshold pc. The continuous
curve, calculation by (1) (see also [7]); the dashed line, cal-
culation by (9) (see also [8]); and the filled circles, the result
of numerical calculation.

ln(σWB(τ))

ln(τ)
0.40.20–0.4–0.6–0.8–1.0–1.2 –0.2

2.6

2.8

3.0

3.2

3.4

3.6

Fig. 6. Random displacements with uniformly distributed
displacement amounts (the WB case). The dotted curve is
calculated by (16), and the continuous curve corresponds to
z = 0 (the no-shift case).
with conductance

(13)

because here g1 and g2 are connected in parallel. Pro-
ceeding with the BW case in the same way, we get,
instead of (13),

(14)

since g1 and g2 are now connected in series. Figure 8
suggests that the theoretical results are more consistent
with the numerical calculations for the BW case (for
details of numerical calculations, see the Appendix).

2. RANDOM DISPLACEMENTS IN THE CASE 
OF A LINEAR (WITH RESPECT TO THE FIELD) 

MATRIX

Now let us turn to the case when each of the inclu-
sions is displaced randomly. For definiteness, consider
the WB case. We suppose that, for such displacements,
a equiprobably takes values from a certain interval
amin ≤ a ≤ amax. In the case of white inclusions in a black
matrix, the EMA applied to the model of resistances
being used (the resistance of the system is concentrated
in the gaps) yields

(15)

Here, S(g)dg = f(a)da and, according to the assumption
that spacings a between the closest inclusions are uni-
formly distributed, f(a) = 1/(amax – amin) for amin ≤ a ≤
amax and f(a) = 0 outside this interval.

It is obvious that amin = R/0.95, amax = 2a – R/0.95,
and gmax(min) is related to amax(min) in accordance with (2).
Then, Eq. (15) can be recast as

(16)

Figure 6 shows the results of calculations by for-
mula (16). In this case, too, the critical index varies
insignificantly compared with the no-shift case.

Now let us turn to the case 0.95 < R ≤ a, where an
analytical solution can be obtained. In view of (10),
instead of (16), we have

(17)

where amin = R, amax = 2a – R, and gmax(min) is related to
amax(min) by (9). Equation (17) yields the following non-

g̃WB
1
2
--- g1 g2+( ),=

g̃BW 2
g1g2

g1 g2+
----------------,=

σWB g–
σWB g+
-------------------S g( ) gd

gmin

gmax

∫ 0.=

σWB g a( )–
σWB g a( )+
--------------------------- ad

amax amin–
------------------------

amin

amax

∫ 0.=

σWB g–
σWB g+
-------------------g gd

gmin

gmax

∫ 0,=
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linear equation for σWB:

(18)

Solving Eq. (18), we obtain a dependence of σWB on
gmax and gmin. If it is assumed that, at any random stir of
the structure (i.e., at any displacement of the inclu-
sions), the inclusions stay within their cells (i.e., the
displacements are small), the value of gmax is given by

(19)

Note that, for gmin = 0, i.e., in the case where some
of the inclusions come into contact (a = amin = R) and
cut off the current, Eq. (18) simplifies so that its solu-
tion can be written in analytic form:

(20)

where constant C = 0.616 is the solution to the nonlin-
ear equation

(21)

In the case gmin ≠ 0, Eq. (18) cannot be solved ana-
lytically. One can immediately see from (20) that, for p
close to pc, we have σWB ~ (p – pc)1/2, which is also true
for the no-shift case [7]. Note that all the systems con-
sidered above differ fundamentally in behavior from
Swiss Cheese systems [9, 10]. In the latter, the resis-
tance is also gained in “bottlenecks” between the inclu-
sions but the inclusions are arranged chaotically. In par-
ticular, the system may contain inclusion-free domains
of a size larger (or much larger) than two periods.

3. DISPLACEMENTS IN THE CASE 
OF A NONLINEAR (WITH RESPECT 

TO THE FIELD) MATRIX

Now let us turn to the case of a nonlinear matrix
with conductivity σ1(E) that contains circular inclu-
sions with conductivity σ2. Similarly to the linear case,
we consider the two-dimensional problem. There are
different types of nonlinearity, namely, strong nonlin-
earity, weak nonlinearity, etc. (see, for instance,
[11−13]). In the absence of hysteresis, the problem of
finding the effective conductivity is completely equiva-
lent to the problem of determining the effective perme-
ability, with the permeability of the ferromagnetic
phase nontrivially and nonlinearly depending on the
magnetic field. Since magnetic composites are widely
used in practice and their properties are being inten-
sively studied (see, for instance, [2]), it is interesting to

2 gmax gmin–( )σWB
1
2
--- gmax

2 gmin
2–( )–

– 2σWB
2 σWB gmax+

σWB gmin+
--------------------------ln 0.=

gmax

2σ1

π
--------- a R–

R
------------.=

σWB Cgmax C
2σ1

π
--------- a R–

R
------------,= =

C 1 C
C 1+

C
-------------ln– 

  1
4
---.=
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consider the case of linear (with respect to the local
field) inclusions embedded in a ferromagnetic matrix
that features a negligibly small hysteresis loop. Follow-
ing our notation, we denote magnetic field strength H
by E and relative permeability µ by σ (µ does not con-
tain the permeability of vacuum µ0). The standard
dependence of the permeability (for example, the per-
meability of steel) on H is demonstrated in Fig. 7. In our
notation, it can be written as

(22)

The permeability of the inclusions is σ2 = 1. In such
magnetic composites [14–17], complicated nonlinear
dependences of the response of the whole sample to the
applied magnetic field, as well as sharp concentration
dependences of the effective coefficients that are
related to their percolation behavior, are observed. We
will outline approximate methods of finding the effec-
tive conductivity for a strictly periodical problem hav-
ing a nonlinearity of type (22), since an exact solution
to such a problem in the general case is absent.

First, consider the method of local linearization (LL
method) [18, 19], which allows one to find an approxi-
mate analytical expression for the effective kinetic
coefficients. According to this method, we have in our
case

(23)

σ1 E( ) 1 1.5 106 5 10 4– E×( )tanh
E

---------------------------------------×+=

– 2.5 105 3 10 3– E×( )tanh
E

---------------------------------------.×

σeff E( )
σ1 E( ) σe E( ) σ2–( ) σ2 σe E( ) σd1 E( )–( )–

σd1 E( ) σ2–
---------------------------------------------------------------------------------------------,=

100

0

σeff(E)

E 

500

10 0008000600040002000

400

300

200

R = 0.4 m

Fig. 7. Field dependences of the nonlinear-phase conductiv-
ity and effective conductivity. The dash-and-dot line, the
nonlinear phase; the continuous curve, the effective conduc-
tivity calculated by the LL method [18, 19]; the dashed line,
the effective conductivity calculated by the method pre-
sented in [20, 21]; and filled circles, the effective conductiv-
ity obtained by the direct numerical calculation.
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where σd1(E) = d(σ1(E)E)/dE is the differential conduc-
tivity and σe(E) is a solution to a (geometrically) similar
linear problem in which the real conductivities of the
phases are replaced by differential ones [18, 19].

The case considered above is based on the exact
solution to the linear problem [7]. From (1), we get

(24)

where, in accordance with the approximate LL method,
we have, similarly to the linear case (see also [7]),

Here, as above, R is the radius of an inclusion and 2a is
the size of a cell (Fig. 1).

Another approximate method was developed in
[20, 21]. Although this method does not provide a result
in analytical form (it implies the solution of a set of
nonlinear equations, which, in the general case, can be
solved only numerically), it gives a more accurate
approximation in some cases [18, 19]. The basic
assumption of this method is that the local field inside
the inclusions is independent of the coordinates (this is
valid only for ellipsoidal inclusions when the interac-
tion between them can be neglected) and, accordingly,
that the conductivity of the nonlinear phase, σ1 =
σ1(E(r)) (r is the radius vector), can be replaced by the
coordinate-independent constant

(25)

where averaging is over the whole volume of the non-

linear phase, 〈…〉  = (1/V1) dV.

Also, this method admits substitution, which, in our
notation, has the form

(26)

In other words, a two-phase medium with coeffi-
cients σ1(E(r)) and σ2 = 1 (the second phase is linear) is

replaced by a two-phase medium with σ1( ) and
σ2, i.e., a medium in which local σ1 is independent of
local field E = E(r). For a given applied field 〈E〉 , the
entire first phase has the same value σ1 =  specified
by 〈E2〉1.

Thus, on the one hand, to determine σeff of a two-
phase medium with phases  and σ2, any solution to
the similar linear problem can be used, for instance, the

σe R E,( ) σd1 E( )
α R E,( ) πR2δ E( )

4a2
---------------------–

α R E,( ) πR2δ E( )
4a2

---------------------+

-----------------------------------------------,=

δ E( ) σd1 E( ) σ2–( )/ σd1 E( ) σ2+( ),=

α 1
1
3
--- η R4( )2δ E( )2–

1
63
------ η R4( )4δ E( )2–=

–
5
9
--- δ E( )2 4

5 11× 132×
-----------------------------+ 

  η R4( )6δ E( )2 ….–

σ̃1 σ1 E( )〈 〉 1,=

…∫

σ̃1 σ1 E( )〈 〉 1 σ1 E2〈 〉 1( ).=

E2〈 〉 1

σ̃1

σ̃1
EMA [3, 4, 15, 16, 19] or expression (1). On the other
hand, to determine 〈E2〉1, one may use the equality
〈 jE〉  = 〈 j 〉〈 E〉  (see, e.g., [22]), which implies that
σeff〈E〉  = pσ1〈E2〉1 + (1 – p)σ2〈E2〉2, where 〈…〉1, 2 means
averaging over the first or second phase, respectively,
and p is the concentration of the first phase. Eventually,
we have

(27)

Substituting (1) where  is used instead of σ1 into
(27), we obtain a nonlinear equation for 〈E2〉1. Deter-
mining 〈E2〉1 and substituting it into (1), we find σeff as
a function of applied field 〈E〉 , concentration, and
parameters of the nonlinearity function.

In Fig. 7, the field dependences obtained by the
methods described above are given together with the
results of direct numerical calculations. One can see
that both methods give satisfactory results up to the
field at which σeff(E) reaches a maximum. At higher
fields, both methods describe the behavior of σeff(E)
only qualitatively. In this case, the method presented in
[20–22] is less accurate than the LL method (and,
moreover, requires a much more computer time than
the latter). Therefore, we will use the LL method to esti-
mate the effective conductivity in the presence of dis-
placements.

Consider the displacements mentioned in Sect. 1.2.
Since the inequality σ1(E) @ σ2 holds almost through-
out the field range, we are dealing with poorly conduct-
ing inclusions in a well-conducting matrix (the WB
case) and the linear model is described by formula (13).
Finally, we have

(28)

where, according to (13),
σe(E, z) = 0.5(σe1(E, z) + σe2(E, z)),

(29)

(30)
ηi(z) = (1.85407/ai(z))4/20, and, in accordance with (3)
and (4),

a1(z) = a + z/  and a2(z) = a – z/ .
In all these formulas, i = 1, 2.

E2〈 〉 1
E〈 〉 2

p
-----------

∂σeff

∂σ̃1

-----------.=

σ̃1

σeff E z,( )

=  
σ1 E( ) σe E z,( ) σ2–( ) σ2 σe E z,( ) σd1 E( )–( )–

σd1 E( ) σ2–
-------------------------------------------------------------------------------------------------------------,

σei E z,( ) σd1 E( )
α i E z,( ) πR2δ E( )

4ai z( )2
---------------------–

α i E z,( ) πR2δ E( )
4ai z( )2

---------------------+

-----------------------------------------------,=

α i E z,( ) 1 0.333 η i z( )R4( )2
0.016 η i z( )R4( )4

+(–=

+ 2.4 10 4– η i z( )R4 )6
( )δ E( )2 0.556 η i z( )R4( )6δ E( )4,–×

2 2
TECHNICAL PHYSICS      Vol. 50      No. 1      2005



EFFECT OF DISORDER ON THE CONDUCTIVITY 17
Fig. 8. Determination of the working interval of concentrations for poorly conducting inclusions in a well-conducting matrix (the
WB case) and well-conducting inclusions in a poorly conducting matrix (the BW case) by comparing the calculations by formulas (13)
and (14) with the direct numerical calculation. The continuous curve corresponds to the analytical calculation (formulas (13) and
(14)), and the filled circles correspond to the numerical calculation.
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CONCLUSIONS

In the linear case, the weak disorder considered in
this work does not violate the scaling dependence of the
effective conductivity on the closeness to percolation
threshold τ (Figs. 4, 6; expression (20)). It should also
be noted that, for random displacements and ultimate
concentrations of inclusions (see (20)), the critical
index is exactly equal to 1 / 2, which agrees well with
the no-shift case [7].

The nonlinear case is considered for only one type
of nonlinearity, namely, for that typical of the perme-
ability of a ferromagnet. The direct numerical experi-
ment demonstrates that the approximate methods ade-
quately describe the field and concentration depen-
dences up to the field at which σeff(E) attains a
maximum (Fig. 7).

APPENDIX

The computational simulation was performed with
the use of the OPERA-2D commercial software pack-
age (Vector Fields Co. [23]). This package employs the
finite element method for the direct solution of the two-
dimensional Maxwell equations. A graphical prepro-
cessor allows one to represent two-dimensional objects
in the form of polygons with edges of a given curvature
and assign them the properties of relevant materials. An
TECHNICAL PHYSICS      Vol. 50      No. 1      2005
automated grid generator partitions these polygons into
elementary subdomains (finite elements). Within each
of the finite elements, a solution is sought in the form of
simple functions, e.g., polynomials. From symmetry
considerations, it suffices to solve the Maxwell equa-
tions within a single elementary block. Such an ele-
mentary block is a 2a × 2a-square with a circular
domain inside. The square and the circular domain con-
sist of various materials, for instance, a nonlinear mate-
rial and air. An applied field was specified by setting
constant values of electric potential ϕ (such that ∆ϕ =
Eapp2a) on the opposite sides of the elementary block.
These sides are equipotential surfaces, where the tan-
gential component of the electric field vanishes. On two
opposite sides of the block (that are parallel to the
applied field), the normal component of the electric
field was set equal to zero. The problem was solved by
automatically refining the grid partitioning. The solu-
tion was assumed to be convergent if the difference
between two successive solution steps was less than
0.1%. The processor time for a standard PC was varied
from 1 min for random linear materials to 3 h for non-
linear models near the percolation threshold.

The results of numerical calculations are given in
Fig. 8. The approximation considered (the “gray” grat-
ing) is adequate for black phase concentrations in the
range 0.2916 < p < 0.4970. This can be easily
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explained: for p < 0.2916, formula (2) fails, while, for
p > 0.497, the interaction between the inclusions, which
is neglected in the above approximation, should be
taken into account. For the BW case, black phase con-
centrations for which the model of a “gray” grating is
valid fall into the range from 0.385 to 0.709 (see Fig. 8).
Note that this range is wider than for the WB case.
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Abstract—The dependence of work function ∆φ on degree of coverage Θ for the Ge(100) and Ge(111) surfaces
determined in terms of simple models that include the dipole–dipole interaction of hydrogen adatoms. It is
found that experimental dependence ∆φ(Θ) for the Ge(111) surface can be explained by taking into account an
increase in the adsorption bond length with Θ. The charge of the adatoms as a function of Θ is calculated, and
the variation of the surface conductivity of the substrate is estimated. © 2005 Pleiades Publishing, Inc.
Although the modern theory of adsorption had been
evolved from consideration of the model problem of
hydrogen adsorption on metals [1], further efforts were
concentrated largely on metal–metal and metal–semi-
conductor systems [2–4]. Gas adsorption has received
much less attention. Such a situation is readily
explained by the fact that an early problem of emission
electronics was to minimize the work function of the
system and simultaneously to heat the system to high
temperatures. Metallic (or metal oxide) coatings, which
reduce work function φ by 1–3 eV, served this purpose
as well as possible. Gas adsorption decreases φ by only
tenths of an electron volt. However, even such a minor
decrease may considerably affect the surface conduc-
tivity of semiconductor substrates. It is this effect that
resistive-type semiconductor gas sensors rely upon [5].

In this work, we consider simple models of atomic
hydrogen adsorption on Ge(100) and Ge(111) surfaces,
which was experimentally investigated in [6]. The mea-
surements [6] showed that, in the H/Ge(100) system,
the work function grows, the dependence ∆φ(Θ) (Θ =
N/NML, where N and NML are the particle concentrations
in an adlayer and monolayer, respectively) reaching a
maximum at Θ ≈ 0.1. In the H/Ge(111) system, the
value of ∆φ(Θ) is negative at Θ ≤ 0.15 (reaching a min-
imum at Θ ≈ 0.05) and positive at Θ > 0.15. According
to the generally accepted concepts [2, 3], when hydro-
gen is adsorbed on the (100) surface, substrate electrons
pass into adatoms. In the case of the (111) surface,
adsorbed hydrogen donates electrons to the substrate at
low coverages (Θ ≤ 0.15) and picks up electrons at Θ >
0.15. The change of sign of adatoms is inconsistent
with the Anderson–Newns conventional model of
adsorption [1, 7]. A model of adsorption for the Na/Cs
system, where the change of sign of adatoms was also
observed [9], was suggested in [8]. In this model,
adsorption bond length a is assumed to depend on the
coverage:

(1)a a0 1 αΘ+( ),=
1063-7842/05/5001- $26.00 0110
where a0 is the adsorption bond length at zero coverage
and α is a dimensionless coefficient.

The extension of the adsorption bond is associated
with the depolarization of adatoms as the coverage
grows: positive charge Z of an adatom decreases, shell
occupation number n = 1 – Z of the adatom rises, and
shell radius a changes from a value close to ionic radius
ri to a value close to atomic radius ra. This model will
be used as the basis in the description of hydrogen
atoms on Ge(111) [6].

According to the standard model of adsorption
[7, 10], charge Z of an adatom is given by

(2)

where

ξ is the constant of dipole–dipole repulsion between
adatoms, Ω is the energy of the adatom quasi-level rel-
ative to the Fermi level of the substrate, A ≈ 10 is a
dimensionless coefficient that weakly depends on the
adatom lattice configuration, Γ is the half-width of the
isolated adatom quasi-level, I is the energy of ioniza-
tion of an adatom, φ is the work function of germanium,
and ∆ is the Coulomb shift of the adatom quasi-level
(this shift arises when the electron of an adatom inter-
acts with electrons of the substrate).

Adsorption-related change ∆φ in the work function
is given by

(3)

where

Let  be the coverage meeting the condition

∆φ( ) = 0; that is,  = 0.15 for hydrogen adsorption
on the (111) surface of germanium. We introduce vari-

Z Θ( ) 2
π
--- Ω ξΘ3/2Z Θ( )–

Γ
------------------------------------,arctan=

ξ 2e2a2NML
3/2 A, Ω φ I– ∆, ∆+ e2/4a,= = =

∆φ Θ( ) ΦΘZ ,–=

Φ 4πe2NMLa.=

Θ
Θ Θ
© 2005 Pleiades Publishing, Inc.
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able x = Θ/  and put  = ξ ,  = Φ , and  =

α  = Ω/(I – φ). Then, with regard to (1), we get,
instead of (2) and (3),

(4)

Here, subscript 0 indicates that the related energy
parameter is calculated for a = a0. If the charge is small,
the first of expressions (4) can be recast as

(5)

To calculate the adsorption of hydrogen on Ge(111),
we took the following values of the parameters: a0 =

1.7 Å, NML = 5.55 × 10–14 cm–2,  = 0.15, ξ0 =
10.89 eV, Φ0 = 17.08 eV, Ω0 = 0.04 eV, Γ = 0.1 eV, and
α = 0.43. The results of calculation of ∆φ(Θ) and Z(Θ)
are shown in Figs. 1 and 2, respectively. Note that the
scale in Fig. 2 shades the fine structure of the depen-
dence Z(Θ): namely, charge Z first vanishes at ; then
takes a negative value, growing in magnitude up to Θ =
0.3 (Z(0.3) ≈ –0.006); and finally declines to Z ≈ –0.003
for a monolayer coating.

In the H/Ge(100) system, the dependence ∆φ( )
does not change sign, remaining positive at any Θ.
Therefore, we can put α = 0 in this case and carry out
the calculation by formula (2) for NML = 6.25 ×
10−14 cm–2, ξ = 10.89 eV, Φ = 19.23 eV, Ω = –0.053 eV,
and Γ = 0.1 eV.

Θ ξ Θ3/2 Φ Θ α
Θ

Z  = 
2
π
---

Ω0 1 x–( )/ 1 α x+( ) x3/2ξ0Z 1 α x+( )2–
Γ

---------------------------------------------------------------------------------------- ,arctan

∆φ Φ0x 1 α x+( )Z .–=

Z
2Ω0 1 x–( )

1 α x+( ) πΓ 2x3/2ξ0 1 α x+( )2+[ ]
--------------------------------------------------------------------------------.≈

Θ

Θ

Θ

–0.1
0 0.2

∆φ, eV

Θ

0.2

1.00.80.60.4

0.1

0 Ge(111)

Ge(100)

Fig. 1. Change ∆φ in the work function of the germanium
surfaces vs. coverage Θ by hydrogen atoms.
TECHNICAL PHYSICS      Vol. 50      No. 1      2005
Comparison of the experimental and analytical val-
ues of the work function shows their good agreement
for low coverages (Θ = 0.2–0.3 or less). At the same
time, they diverge significantly when the coverage is
high (close to a monolayer). The latter fact is not sur-
prising, since the starting model [7, 10] is constructed
just for small coverages. At high coverages, one must
take into account not only dipole–dipole interaction but
also exchange effects [3]. This can be done, for exam-
ple, by considering the smearing of the quasi-level
[11, 12]. However, we omit the case of high coverages,
since the electronic state of an adlayer changes most
considerably when the coverage is low.

–0.4
0 0.2

Z

Θ

0.4

1.00.80.60.4

0.2

0

Ge(111)

Ge(100)–0.2

Fig. 2. Charge Z of a hydrogen adatom on the germanium
surfaces vs. coverage Θ.
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Θ
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Ge(111)

Ge(100)

–4

Fig. 3. Θ dependence of the product |Z(Θ)|Θ, which varies
in proportion to change ∆σ in the surface conductivity.
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Since hydrogen adsorbed on Ge(111) donates elec-
trons to the substrate at Θ ≤ 0.15 and accepts them at
higher coverages, surface conductivity σ first increases
relative to the conductivity of the uncovered surface
and then drops. Figure 3 shows the Θ dependence of
product |Z(Θ)|Θ, which varies in proportion to change
∆σ in the surface conductivity. Qualitatively, the calcu-
lation results fit the experimental data well [6].

It should be noted in conclusion that reasons for
such different behavior of the hydrogen-coated
Ge(100) and Ge(111) surface are still not clearly under-
stood [6]. It is speculated that the hydrogen causes the
2 × 8-to-1 × 1 surface reconstruction in the first case,
while it removes the asymmetry of surface Ge–Ge
dimers in the other. Our results obtained in terms of the
simple models also suggest that the configuration of
Ge(111) is much more sensitive to hydrogen adsorption
than that of Ge(100).

REFERENCES

1. D. M. Newns, Phys. Rev. 178, 1123 (1969).
2. L. A. Bol’shov, A. P. Napartovich, A. G. Naumovets, and
A. G. Fedorus, Usp. Fiz. Nauk 122, 125 (1977) [Sov.
Phys. Usp. 20, 432 (1977)].

3. O. M. Braun and V. K. Medvedev, Usp. Fiz. Nauk 157,
631 (1989) [Sov. Phys. Usp. 32, 328 (1989)].

4. L. A. Bol’shov and M. S. Veshchunov, Poverkhnost: Fiz.
Khim. Mekh., No. 7, 5 (1989).

5. I. A. Myasnikov, V. Ya. Sukharev, L. Yu. Kupriyanov, and
S. A. Zav’yalov, Semiconductor Sensors for Physico-
chemical Research (Nauka, Moscow, 1991) [in Rus-
sian].

6. L. Surnev and M. Tikhov, Surf. Sci. 138, 40 (1984).
7. J. P. Muscat and D. M. Newns, J. Phys. C 7, 2630 (1974).
8. S. Y. Davydov, Appl. Surf. Sci. 140, 52 (1999).
9. F. Xu, G. Manico, F. Ascione, et al., Phys. Rev. B 54,

10401 (1996).
10. S. Yu. Davydov, Fiz. Tverd. Tela (Leningrad) 19, 3376

(1977) [Sov. Phys. Solid State 19, 1971 (1977)].
11. S. Yu. Davydov and I. V. Noskov, Pis’ma Zh. Tekh. Fiz.

27 (20), 1 (2001) [Tech. Phys. Lett. 27, 844 (2001)].
12. S. Yu. Davydov and I. V. Noskov, Zh. Tekh. Fiz. 72 (11),

137 (2002) [Tech. Phys. 47, 1481 (2002)].

Translated by V. Isaakyan
TECHNICAL PHYSICS      Vol. 50      No. 1      2005



  

Technical Physics, Vol. 50, No. 1, 2005, pp. 113–116. Translated from Zhurnal Tekhnichesko

 

œ

 

 Fiziki, Vol. 75, No. 1, 2005, pp. 115–118.
Original Russian Text Copyright © 2005 by Shuaibov, Chuchman.

                                    

SHORT
COMMUNICATIONS

       
Spectroscopic Diagnostics of the Laser Erosion Plasma 
of an AgGaS2 Polycrystalline Target

A. K. Shuaibov and M. P. Chuchman
Uzhhorod National University, vul. Pidgirna 46, Uzhhorod, 88000 Ukraine

e-mail: ishev@univ.uzhgorod.ua
Received October 28, 2003; in final form, March 19, 2004

Abstract—Results are presented from experimental studies of the radiation emitted from a plasma produced
in vacuum after irradiating a polycrystalline target by 1.06-µm laser radiation with an intensity of (3–5) ×
108 W/cm2. Plasma radiation from regions located at distances of 1 and 7 mm from the target is analyzed. It is
shown that the main contribution to the plasma radiation in the 220–600 nm spectral range is made by transi-
tions from the excited states of single-charged Ag+ and S+ ions. The atomic component of plasma radiation is
represented by intense spectral lines corresponding to transitions from the Rydberg states of Ag and Ga atoms,
whereas no resonance lines of these atoms are observed. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Polycrystalline batch mixture of the AgGaS2 com-
pound is a promising material for the pulsed deposition
of thin films used in solar batteries, optical filters, and
nonlinear IR–visible light converters. The specific fea-
tures of the laser processing of materials and pulsed
laser deposition, as well as the influence of the matrix
effect on the results of laser spectroscopy, stimulate
interest in studying the laser erosion of multicompo-
nent compounds and the expansion of the plasma pro-
duced [1–3]. Such a plasma can be studied using laser
mass-spectrometry [4] and also emission spectroscopy
[5], which is most efficient at small distances from the
target.

In this paper, we present results from studying the
radiation emitted from a laser erosion plasma produced
by irradiating a massive AgGaS2 polycrystalline target.
Plasma radiation from regions located at distances of 1
and 7 mm from the target is analyzed. The irradiation
conditions were close to those used to sputter materials
when depositing thin films. The optical characteristics
of silver and gallium laser plasmas were earlier studied
in experiments with one-component Ag [6] and Ga
[7, 8] targets. The diagnostic technique, apparatus, and
experimental conditions were similar to those used pre-
viously by us in [6–8].

RESULTS AND DISCUSSION

Figure 1 shows emission spectra of an AgGaS2 laser
plasma from two different regions located at distances
of r = 1 and 7 mm from the target. The identified spec-
tral lines and the relative line intensities (with allow-
ance for the spectral sensitivity kλ of the measurement
system) are presented in Tables 1 and 2. The emission
spectrum of the multicomponent AgGaS2 plasma is not
1063-7842/05/5001- $26.00 ©0113
a superposition of the most intense spectral lines of the
individual crystal constituents. Control experiments
with a Ga target showed that the most intense spectral
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Fig. 1. Emission spectra of an AgGaS2 laser plasma from
two different regions located at distances of (a) 1 and
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Table 1.  Relative intensities of the spectral lines emitted from
an AgGaS2 laser erosion plasma at a distance of r = 1 mm
from the target

λ, nm Atom, ion Eup, eV I/kλ

321.6 Ag I 10.82 0.08

350.8 Ag I 7.2 1.24

376.2 S II 29.89 1.72

475.5 S II 27.8 0.10

535.4 Ga I 5.39 3.94

542.9 S II 26.26 0.29

552.6 S II 26.34 0.81

510.3 S II 26.5 0.20

386.1 S II 29.74 0.08

385.1 S II 29.72 0.08

389.2 S II – 0.07

397.1 S II 29.72 0.10

405.9 S II 29.72 0.11

418.7 S II 30.76 0.07

Table 2.  Relative intensities of the spectral lines emitted from
an AgGaS2 laser erosion plasma at a distance of r = 7 mm
from the target

λ, nm Atom, ion Eup, eV I/kλ

237.1 Ga I 5.32 0.22

256.4 Ag II 23.11 0.10

259.6 Ag II 23.14 0.08

269.1 Ga I 4.71 0.41

275.7 Ag II 23.14 0.78

281.6 Ag II 23.14 0.06

290.2 Ag II 22.58 1.68

321.6 Ag I 10.82 0.13

350.8 Ag I 7.2 1.72

376.2 S II 29.89 0.74

475.5 S II 27.8 0.06

535.4 Ga I 5.39 2.24

542.9 S II 26.26 0.19

552.6 S II 26.34 0.43
lines were the Ga I 403.3-, 294.4-, 417.3-, and
287.5-nm lines, whose total contribution to the emis-
sion intensity was about 90%. For silver plasma, the
most intense spectral lines were the Ag I 328.1- and
338.3-nm resonance lines (39 and 26% of the total
intensity, respectively). For sulfur targets, no laser
plume was formed and only surface emission was
observed. The emission spectrum of the multicompo-
nent laser plasma did not contain the characteristic lines
of the individual target constituents (the lines corre-
sponding to transitions from the low energy states of Ag
and Ga atoms). The emitting component of the laser
plasma was mainly represented by SII and Ag II ions
and by the Rydberg states of Ag I and Ga I. The emis-
sion spectrum recorded at a distance of 1 mm from the
target contained a significant number of weak (at a level
close to the detection limit of the apparatus) sulfur
lines. In the spectral range of 370–380 nm, a series of
intense unresolved spectral lines of sulfur ions was
observed. At a distance of 7 mm from the target, the
emission spectrum became a pure line spectrum. Weak
sulfur lines disappeared, while the intensities of the
remaining sulfur lines decreased. The intensities of gal-
lium lines also decreased, whereas the intensities of
atomic silver lines increased with distance from the tar-
get.

Taking into account the structure of the emission
spectrum and the relationship between the ionization
energies of the individual AgGaS2 constituents, Ei(S) >
Ei(Ag) > Ei(Ga), we may assert that the excitation of
ions is not directly associated with the excitation and
ionization of free atoms. The structure of the spectrum
may be governed by chemical reactions in the laser
plume and specific mechanisms for molecular dissoci-
ation.

To interpret the results obtained, let us compara-
tively analyze the properties of the target material and
the specific features of laser erosion.

Chemical bonds in an AgGaS2 molecule are deter-
mined by the sp3 hybridization of the constituent atoms.
The valence electrons are uniformly distributed among
the constituents of an AgGaS2 molecule, thus forming
S2+, Ga1–, and Ag3– ions. This circumstance accounts
for the high atomization energy. The absorption coeffi-
cient at a wavelength of 1.064 µm ranges from 0.001 to
0.009 cm–1. The AgGaS2 compound is characterized by
the low density of free charge carriers, the width of the
forbidden zone of Eg = 2.51–2.75 eV, and the presence
of p-type energy levels (0.11 and 0.72 eV) in the forbid-
den zone [9]. The energy structure of the target material
is strongly deformed because of the use of a batch mix-
ture.

When hν < Eg, the absorption coefficient is low and
the bulk of energy required for laser erosion is depos-
ited via inverse bremsstrahlung. The necessary amount
of free electrons is produced via the multiphoton ion-
ization of negative ions in the target. The absorbed radi-
ation energy is transferred from electrons to molecules,
thus heating the target material, rearranging chemical
bonds, producing radicals, and delivering energy to the
molecules that is sufficient for their escape from the tar-
get [10]. The photodestruction of the target is accompa-
nied by the escape of electrons from the interaction
region both inward the target and into vacuum; this, in
turn, intensifies the surface erosion caused by the Cou-
lomb interaction between ions, as well as between ions
TECHNICAL PHYSICS      Vol. 50      No. 1      2005
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and the electrons emitted into vacuum [11]. The spe-
cific properties of the target material stimulate photo-
heating and hamper the propagation of a thermal wave,
whose velocity is anyway low (on the order of the speed
of sound).

Our experimental results show the presence of gal-
lium atoms in Rydberg states and the absence of gal-
lium ions in the laser plume. Hence, we may suggest
that the energy that has been deposited in the target via
photoionization is spent on the escape of neutral mole-
cules from the solid. This process is accompanied by
the production of a large amount of sulfur ions since, in
spite of the electron capture from silver atoms (which
are easily ionized when within the solid structure), the
electron density is not high enough to complete the
electron shells of sulfur atoms. The above consider-
ations point to the volume character of erosion, which
proceeds through a direct solid–plasma phase transi-
tion.

The increase in the emission intensity of Ag atoms
as the plasma plume expands can be explained by the
intensification of thermal processes, which, taking into
account the low dissociation energy of the silver-con-
taining radicals, the high probability of the rearrange-
ment of chemical bonds in ionized molecules and radi-
cals, the high chemical activity of sulfur ions and ion-
ized radicals, and the low chemical activity of gallium,
provoke the production of silver ions and atoms. The
contribution from dissociative recombination can be
ignored because of the high atomization energy and the
escape of electrons from the plasma. Most likely, disso-
ciative recombination governs the composition of radi-
cals.

In contrast to Ga atoms, the formation of the Ryd-
berg states of sulfur ions and silver atoms is probably
related to the absorption of laser radiation by all the
valence electrons and even by the atomic core elec-
trons, which do not take part in the formation of the
molecular chemical bonds. The nonradiative relaxation
of these states can also be one of the reasons for the
destruction of the chemical structure of the target mate-
rial. On the other hand, the low electron temperature
and the collisionless character of plasma expansion
(which are confirmed by the absence of low excited
states) stimulate the recombination processes and the
radiative decay of the highly excited states of atoms and
single-charged ions. To gain a better insight into the
above processes, it is necessary to perform additional
mass-spectrometric studies of the plasma composition
and to more accurately estimate the plasma parameters.

The most intense spectral lines from the laser ero-
sion plasma are the Ag I 350.8-nm, Ga I 535.4-nm,
Ag II 275.7-nm, Ag II 290.2-nm, S II 376.2-nm, and
S II 552.6-nm lines. At r = 7 mm, the bottlenecks of the
recombination flow correspond to the 5.39-eV (Ga) and
10.82-eV (Ag) atomic levels and the 23.14-eV (Ag+)
and 29.89-eV (S+) ionic levels. At r = 1 mm, the bottle-
necks of the recombination flow for the atomic compo-
TECHNICAL PHYSICS      Vol. 50      No. 1      2005
nent are the same, while for the ion component, the bot-
tleneck corresponds to the 30.76-eV level.

Figure 2 shows the waveforms of the line emission
intensities from the expanding plasma. The spectral
line intensities of argon and sulfur ions and argon and
gallium atoms were recorded at a distance of 1 mm
from the target. The emission intensities of the ion lines
follow the shape of the laser pulse, whereas the line
intensities corresponding to the radiative decay of the
shifted excited states of silver and gallium continue to
increase until the end of the laser pulse. Then (up to t =
60–70 ns), the spectral line intensities decrease (except
for the Ag I line, which shows a specific behavior).
From 70 to 150 ns, the emission intensity of sulfur ions
decreases more slowly, whereas the emission intensity
of the Ag II 290.2-nm spectral line shows a weakly pro-
nounced maximum. After t = 150 ns, the emission
intensity of sulfur ions sharply decreases (the higher the
excitation energy, the faster the decrease). The spectral
line intensities of silver ions continue to increase up to
t = 260 ns and then begin to decrease. For low ion
energy states, the second maximum of the emission
intensity is much higher than the first one. The wave-
form of the intensity of the Ga I 535.4-nm spectral line
resembles that of the Ag II spectral lines. The intensity
of the Ag I 350.8-nm spectral line gradually decreases
up to t = 260 ns and then decays at a faster rate.

The excited states are produced in two stages. In
view of the rapid expansion of the laser erosion plasma
[12], these stages may be related to the dynamics of the
plasma formation and expansion. In the first stage, pho-
tochemical erosion is dominant. The long tail in the
waveform of the S II emission and the intermediate
maximum in the waveform of the Ag II emission indi-
cate that the erosion is stimulated by the radiation from
the plasma itself. The second maximum in the wave-

0 100 200 300 400 0 100 200 300 400
t, ns

275.7 nm Ag II

350.8 nm Ag I

535.4 nm Ga I

290.2 nm Ag II

376.2 nm S II

552.6 nm S II

I,
 a

.u
.

Fig. 2. Waveforms of the intensities of the most intense
spectral lines emitted from an AgGaS2 laser erosion plasma
at a distance of 1 mm from the target.
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form of the emission intensity shows that the erosion is
significantly affected by thermal processes, which
intensify the production of the low excited states of
Ag II. In spite of the volume character of laser absorp-
tion, the two stages of plasma production can be caused
by the increase in the absorption ability of the upper
layer of the target material during its heating and by the
explosive character of its expansion.

The recombination time estimated by the decay rate
of the emission intensity from the highly excited sulfur
and silver ions within the time interval of 30–70 ns
amounts to 19 and 21 ns, respectively.

CONCLUSIONS
The emitting component of the laser plasma is

mainly represented by S II and Ag II ions and by the
Rydberg states of Ag I and Ga I ions. The emission
spectrum contains no atomic resonance lines. The most
intense spectral lines are Ag I 350.8-nm, S II 376.2-nm,
S II 552.6-nm, Ga I 535.4-nm, Ag II 275.7-nm, and
Ag II 290.2-nm lines.

The specific features of the production of the excited
states are related to the direct decomposition of the ion-
ized AgGaS2 molecules in the course of the direct
solid–plasma phase transition induced by photochemi-
cal processes.

The bottlenecks of the recombination production of
highly excited states of sulfur ions correspond to the
30.76-eV (for r = 1 mm) and 29.89-eV (for r = 7 mm)
levels. For the atomic plasma component, the bottle-
neck corresponds to the shifted atomic levels of Ga and
Ag and is independent of r. The recombination times of
the S2+ and Ag2+ ions at a distance of 1 mm from the tar-
get are 19 and 21 ns, respectively.
The results obtained are of interest for optimizing
the laser deposition of thin AgGaS2 films and the laser
spectral analysis of multicomponent compounds.

REFERENCES
1. Hai-Xing Wang and Xi Chen, J. Phys. D 36, 628 (2003).
2. M. Karas, M. Gluckmann, and J. Schafer, J. Mass Spec-

trom. 35, 1 (2000).
3. E. Millon, O. Albert, J. C. Loulergue, et al., J. Appl.

Phys. 88, 6937 (2000).
4. I. E. Kacher, I. I. Opachko, and M. Yu. Rigan, Ukr. Fiz.

Zh. 34, 1728 (1989).
5. A. K. Shuaibov, L. L. Shimon, and M. P. Chuchman, Zh.

Tekh. Fiz. 71 (5), 85 (2001) [Tech. Phys. 46, 590
(2001)].

6. A. K. Shuaibov, Pis’ma Zh. Tekh. Fiz. 27 (19), 1 (2001)
[Tech. Phys. Lett. 27, 801 (2001)].

7. A. K. Shuaibov, L. L. Shimon, A. J. Dashchenko, and
M. P. Chuchman, Uzhgorod Univ. Sci. Herald, Ser. Fiz.
8 (Part 2), 348 (2000).

8. A. K. Shuaibov, L. L. Shimon, A. I. Dashchenko, et al.,
Fiz. Plazmy 27, 85 (2001) [Plasma Phys. Rep. 27, 82
(2001)].

9. Properties of Inorganic Compounds: A Handbook
(Khimiya, Leningrad, 1983).

10. N. B. Delone, Interaction of Laser Radiation with Mate-
rials (Nauka, Moscow, 1989) [in Russian].

11. S. S. Harilal, C. V. Bindhu, M. S. Tillack, et al., J. Phys.
D 35, 2935 (2002).

12. O. K. Shuaibov, M. P. Chuchman, and L. L. Shimon, Zh.
Tekh. Fiz. 73 (4), 77 (2003) [Tech. Phys. 48, 455
(2003)].

Translated by N. Ustinovskiœ
TECHNICAL PHYSICS      Vol. 50      No. 1      2005



  

Technical Physics, Vol. 50, No. 1, 2005, pp. 117–120. Translated from Zhurnal Tekhnichesko

 

œ

 

 Fiziki, Vol. 75, No. 1, 2005, pp. 119–122.
Original Russian Text Copyright © 2005 by Éminov.

                                                                 

SHORT
COMMUNICATIONS
Synthesis of Currents on a Disk Using a Directional Diagram
S. I. Éminov

Ya. Mudryœ State University, Nizhni Novgorod, 173003 Russia
e-mail: theorphy@novsu.ac.ru

Received April 27, 2004

Abstract—The problem of synthesis of currents using a realizable or unrealizable directional diagram is
solved. In the former case, the problem is solved analytically: the current is sought as a series in basis, with each
of the basis functions satisfying the Meixner condition on an edge. If the diagram is unrealizable, the current is
found from a solution to an integral equation with a small parameter. The solution to the integral equation also
satisfies the Meixner condition on an edge. © 2005 Pleiades Publishing, Inc.
1. PROBLEM DEFINITION

Being fundamental, the problem of current synthe-
sis has been considered by many authors. In [1, 2], the
author suggested analytical methods for finding a cur-
rent from a realizable directional diagram.

It was also suggested [3] that currents be found from
an arbitrary directional diagram by solving an integral
equation with a small parameter. Such a solution, how-
ever, may not satisfy the Meixner condition on an edge.

In this work, the author finds surface currents that
satisfy the Meixner condition, using new approaches
[4–6] and a set of functions including the Meixner con-
dition on an edge [7].

2. BASIC INTEGRAL EQUATIONS
OF SYNTHESIS

A relation between surface currents j(jr, jϕ) and
directional diagram F(Fθ, Fϕ) is described by a set of
two integral equations [6]:

(1)

(2)

Here, tθ, tϕ, and tR are the unit vectors in the spherical
coordinate system; tϕ' and tr' are the unit vectors in the
polar coordinate system on the surface of a circle; r' is
the distance between the origin and an observation
point on surface S; and γ is the angle between the direc-
tions to the observation point and source point (the
directions issue from the origin).

Equations (1) and (2) constitute a set of coupled
integral equations in two variables. For simplicity, we
will consider the case where the currents and diagram
are ϕ-independent. Then, the set is split into two inde-
pendent equations. After straightforward mathematical

jr tθ tr'⋅( ) jϕ tθ tϕ'⋅( )+[ ] ikr' γcos( )exp sd

S

∫∫ Fθ,=

jr tϕ tr'⋅( ) jϕ tϕ tϕ'⋅( )+[ ] ikr' γcos( )exp sd

S

∫∫ Fϕ .=
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transformations, the equation for radial currents will
take the form

(3)

and that for azimuth currents,

(4)

Here, k is the wavenumber and J1 is the Bessel function.

3. THE ESSENCE OF THE SYNTHESIS 
PROBLEM

A solution to Eq. (3) is bound to give currents satis-
fying the Meixner condition,

and a solution to Eq. (4) must go to infinity by the law

On the other hand, integral equations (3) and (4)
have the same structure, but the coefficients multiply-
ing the integral are different.

Making the change sinθ = x and carrying out
straightforward transformations, we combine both
equations to get

(5)

where J1 is the Bessel function.
Equation (5) does not bear information on current

and is insufficient for the current with desired behavior

2πi θ jr r'( )J1 kr' θsin( )r' r'd

0

a

∫cos Fθ θ( ),=

2πi θsin jϕ r'( )J1 kr' θsin( )r' r'd

0

a

∫ Fϕ θ( ).=

jr r( ) a2 r2– , r a,≈

jϕ r( ) 1

a2 r2–
-------------------, r a.≈

j t( )J1 axt( )t td

0

1

∫ F x( ),=
 2005 Pleiades Publishing, Inc.
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on an edge be found. Additional information is there-
fore needed in order to solve the synthesis problem.
Such information may be the specification of a func-
tional space which the currents belong to. The current
space, in its turn, can be determined by solving the
analysis problem, i.e., via finding the currents induced
by the primary field.

An integral or integro-differential equation of the
analysis problem contain full information on the behav-
ior of the current on an edge.

Finally, it should be noted that the current space is
completely defined by the surface geometry and polar-
ization. Therefore, the problem of antenna synthesis is
essentially reduced to the problem of current space con-
struction.

4. CURRENT SPACES AND BASES

A current space is constructed using the operator of
the analysis problem or, more strictly, its principal pos-
itive part. For the radial currents, this operator has the
form

(6)

for the azimuth currents,

(7)

Operators A and L are positive. As spaces, we take
the energy spaces of these operators, HA and HL. The
scalar product and norm, e.g., in HA, are given by the
formulas

(8)

where (…) means the scalar product in L2[0, 1].
In [7], sets of functions ϕn(t) and ψn(t), n = 1, 2, …,

were suggested for which the Hankel transforms are
given by

(9)

(10)

respectively.
On an edge, the former behave in the same way as

the radial currents and the latter, as the azimuth cur-
rents. In other words, functions ϕn(t) and ψn(t) satisfy
the Meixner condition on an edge. Moreover, these

A jr J1 axτ( )τx2 jr t( )J1 axt( )t td x;d

0

1

∫
0

+∞

∫=

L jϕ J1 axτ( )τ jϕ t( )J1 axt( )t td x.d

0

1

∫
0

+∞

∫=

u v,[ ] Au v,( ), u[ ] 2 Au u,( ),= =

ϕ̃n x( ) ϕn t( )J1 axt( )t td

0

1

∫ 4n 1+

J
2n

1
2
---+

ax( )

x
3
2
---

------------------------,= =

ψ̃n x( ) = ψn t( )J1 axt( )t td

0

1

∫ 4n 1+

J
2n

1
2
---–

ax( )

x
1
2
---

------------------------,=
functions turn out to be orthogonal to each other;
namely,

(11)

The integral in (11) is a tabulated integral [8]. Also,
the following relationship holds:

Thus, the set of functions {ϕn  forms an
orthonormalized basis of space HA and the set of func-

tions {ψn  is a basis of space HL.

5. CURRENT SYNTHESIS FROM A REALIZABLE 
DIAGRAM AND CRITERION 

OF REALIZABILITY

Let us return to the synthesis equation

(12)

If operator K (the left of (12)) maps space HA into
space L2[0, 1], it turns out to be completely continuous
and, hence, noninvertible. If, however, this operator
maps HA into some space on a ray (i.e., 0 ≤ x < +∞), it
becomes invertible. Let us introduce Gilbert space
H1(0, +∞) through the scalar product

(13)

and assume that the right of (12), F(x), is an element of
this space. Now we will find the diagrams meeting the
basis functions ϕn of the currents. From (9), we have

(14)

The diagrams found are orthogonal to each other.
Operator K as an operator mapping space HA into space
H1(0, +∞) is isomorphic; in such mapping, the norm
remains unchanged. Therefore, the map of HA (mapped
with operator ImK) will be a closed set for such map-
ping. In this set, inverse operator K–1 is defined and
bounded.

Aϕm ϕn,( ) 4m 1+( ) 4n 1+( )=

×
J

2m
1
2
---+

ax( )J
2n

1
2
---+

ax( )

x
-------------------------------------------------- xd

0

+∞

∫  = δmn = 
1, m n=

0, m n.≠



Lψm ψn,( ) δmn.=

}n 1+
+∞

}n 1+
+∞

Kj j t( )J1 axt( )t td

0

1

∫ F x( ), 0 x 1.≤ ≤= =

u v,( )1 u x( )v x( )x2 xd

0

+∞

∫=

ϕ̃n x( ) Kϕn 4n 1+

J
2n

1
2
---+

ax( )

x
3
2
---

------------------------.= =
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An arbitrary function F from a class of diagrams is
now expanded in orthonormalized basis (x),

(15)

Directional diagrams are realizable if they, first,
belong to space H1(0, +∞) and, second, meet the close-
ness equation

(16)

From expansion (15), we can immediately write the
expansion for the current

(17)

The azimuth currents are synthesized in the same
way. Here, operator K maps space HL into space H0(0,
+∞), which is defined by the scalar product

(18)

The maps of basis currents ψn (mapped with opera-
tor K) form a closed set of realizable diagrams. It
should be noted that, expanding a given realizable dia-
gram in H0(0, +∞),

(19)

we find the currents

(20)

realizing the given directional diagram.

6. CURRENT SYNTHESIS FROM AN ARBITRARY 
(NOT NECESSARILY REALIZABLE) DIAGRAM

If a diagram is unrealizable, it is necessary to find
the currents that realize an approximate one and have
the least norm. In [5, 6, 8], this problem was solved
using equations with a small parameter. For the radial
currents, the related equation has the form

(21)

where

ϕ̃n

F x( ) Cnϕ̃n x( ), Cn

n 1=

+∞

∑ F ϕ̃n,( )1.= =

F 1
2 Cn

2.
n 1=

+∞

∑=

j t( ) Cnϕn t( ).
n 1=

+∞

∑=

u v,( )0 u x( )v x( ) x.d

0

+∞

∫=

F x( ) Cnψ̃n x( ), Cn

n 1=

+∞

∑ F ψ̃n,( )0,= =

j t( ) Cnψn t( ),
n 1=

+∞

∑=

Aj K*Kj+ K*F,=

K*F F x( )J1 axτ( )τ x,d

0

1

∫=
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For the azimuth currents, the equation with a small
parameter appears as

(22)

Equations (21) and (22) only differ in their positive
operators, which does not influence the structure of the
equations. We will briefly discuss the theory of these
equations, e.g., Eq. (21) and a method of approximate
solution (for Eq. (22), the reasoning is the same).

Operator A is positive; therefore, it has a reciprocal,
A–1. Multiplying both sides of (21) by A–1 yields

(23)

The operators on the left act in space HA. The kernel
of operator K*K is smooth and infinitely often differen-
tiable. With this in mind, one can easily check that
operator A–1K*K is a completely continuous operator in
HA. Consequently, integral equation (23) is a Fredholm
equation of the second kind.

Thus, Eq. (21) is equivalent to a Fredholm equation
of the second kind. In addition, the left of (23) is a pos-
itive operator, since

Therefore, Eq. (23) has a unique solution. To find it,
we expand the current in basis,

(24)

substitute (24) into (23), and multiply both sides by
ϕm(t) in space HA (m runs from 1 to N). Eventually, we
arrive at the set of linear algebraic equations

(25)

where

Solving set (25) yields the coefficients of expansion
of the current in basis. Knowing these coefficients, one
can find the norm of the current and a directional dia-

K*Kj J1 axτ( )τ j t( )J1 axt( )t td x.d

0

1

∫
0

1
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m 1=

N

∑+ ln, 1 n N ,≤ ≤=

Kmn 4n 1+( ) 4m 1+( )
J

2n
1
2
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ax( )J
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1
2
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ax( )

x3
-------------------------------------------------- x,d
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ln 4n 1+( ) F x( )
J
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1
2
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ax( )

x
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gram of the currents. If necessary, the basis functions
can be found using the Hankel transformation.
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Abstract—The modulation instability of finite-amplitude uniform plane waves oscillating with a Josephson
frequency and experiencing a nonlinear frequency shift in a finite-thickness slab is studied in terms of the non-
local electrodynamics of Josephson junction. A dispersion relation for the growth rate of small amplitude per-
turbation is derived. The domains of modulation instability for these waves are found. Modulation instability
of the waves is shown to arise when the wavevectors of long-wave amplitude perturbations fall into the finite
range 0 < Q < QB(A, D, L). In the range Q ≥ QB(A, D, L), the waves are stable. © 2005 Pleiades Publishing, Inc.
Modulation instability of waves in different nonlin-
ear systems and media continues to be a subject of
extensive research [1, 2]. It is known that a nonlinear
wave may be contracted in both the transverse and lon-
gitudinal direction relative to the direction of its propa-
gation. Light self-focusing predicted by Askar’yan [5]
and instability such as wave partitioning into packets
with subsequent self-contraction of the packets (Light-
hill modulation instability [6]) are examples.

Modulation instability of electromagnetic waves in
distributed Josephson junctions is related to the insta-
bility of solutions to the sine-Gordon equation. Being
of undeniable fundamental interest, the phenomenon of
modulation instability also offers a number of applica-
tions. Specifically, it may be applied for generation of
chains of ultrashort optical pulses with a high repetition
rate and development of new-generation logic.

In many cases, modulation instability is considered
in terms of the nonlocal modifications of the sine-Gor-
don equation [7–18]. Since the problem geometries in
the works cited are different, the equations of Joseph-
son electrodynamics differ in the kernel of the differen-
tial operator that is responsible for the effect of spatially
nonlocal coupling. However, in all of those works, the
spatial nonlocality of the equations for the phase differ-
ence between the wave functions at the boundaries of
the contact arises from the nonlocal coupling of the
magnetic field at the interface and inside the supercon-
ductor. Such a reason for spatial nonlocality is common
in the electrodynamics of Josephson junctions.

Modulation instability in terms of the spatially non-
local electrodynamics of a Josephson junction between
massive (thick) superconductors with d @ λ (where d is
the thickness of the superconductor and λ is the London
penetration depth) was first considered in [7]. It was
shown that the buildup of small amplitude and phase
perturbations manifests the development of the modu-
1063-7842/05/5001- $26.00 0121
lation instability of a constant (finite)-amplitude elec-
tromagnetic wave with a nonlinear frequency shift and
linear mode dispersion. The stabilizing effect of spatial
nonlocality on modulation instability was revealed.
Abdullaev [19] studied the modulation instability of a
plane nonlinear finite-amplitude wave oscillating with
a Josephson frequency in the case of a Josephson junc-
tion between thick (d @ λ) superconductors. The mod-
ulation instability arose as a result of small amplitude
perturbation buildup and led to the partitioning of the
wave into packets. The modulation instability of disper-
sive electromagnetic waves propagating in a Josephson
junction between thick superconductors (d @ λ) was
discussed in [20]. A dispersion relation for the growth
rate of small amplitude perturbations was derived, and
the stabilizing effect of spatial nonlocality on the mod-
ulation instability at long wavelengths was revealed. It
was demonstrated that there exists a possibility of con-
trolling the domain of modulation instability using dis-
persion parameter k or ω(k), where k (ω(k)) is the
wavevector (frequency) of the carrier wave in the linear
approximation.

The other extreme case (a Josephson junction
between thin, d ! λ, two-dimensional or three-dimen-
sional nonmagnetic or magnetic superconducting
films) was studied in [21–23], where the modulation
instability of finite-amplitude Josephson oscillations
with a nonlinear frequency shift was caused by small
amplitude perturbation buildup. The author [24] also
considered the modulation instability of dispersive
electromagnetic waves propagating in a Josephson
junction between thin (d ! λ) superconducting films.
For these waves, the stabilizing effect of spatial nonlo-
cality on the modulation instability in the long-wave-
length range was revealed. It was also demonstrated
that there exists a possibility of controlling the domain
of modulation instability using dispersion parameter k
© 2005 Pleiades Publishing, Inc.
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or ω(k), where k (ω(k)) is the wavevector (frequency) of
the carrier wave in the linear approximation.

In view of the aforesaid, it seems topical to investi-
gate the modulation instability of nonlinear electro-
magnetic excitations propagating in a Josephson junc-
tion in a finite-thickness slab for arbitrary ratio d/λ.
Such a situation has not yet been analyzed.

A nonlinear system that may exhibit modulation
instability is a Josephson junction in a finite-thickness
superconducting slab with arbitrary ratio d/λ. In this
case, the variation of phase difference ϕ(x, t) between
the wave functions at the boundaries of the contact is
described by the nonlinear integro-differential sine-Gor-
don equation with spatial nonlocality (provided that dis-
sipation and the Meissner currents are neglected) [17]

(1)

where ωJ and λJ are the Josephson frequency and pene-
tration depth, respectively, and kernel K(x) has the form

(2)

Here, K0(|x|/λ) and J0(kx) are the zeroth-order Mac-
donald and Bessel functions, respectively, and κ =
(λ−2 + k2)1/2. In (2), the first term pertains to the case of
contact between two thick superconductors (d @ λ) and
is the kernel of the integral term that was first obtained
in [7] and then used in [8]. In the case of contact
between two thin (d ! λ) films, K(x) (i.e., the sum of
the terms on the right of (2)) is the kernel of the integral
term that was first studied in [9–11] and then rigorously
derived in [12]. It is given by

where λeff = λ2/2d is the Pearl penetration depth.

In the linear approximation sinϕ(x, t) ≈ ϕ(x, t), a
solution to Eq. (1) has the form of uniform Josephson
oscillation of infinitely small amplitude a0:

(3)

The nonlinearity of Eq. (1) results from the fact that
the Josephson current through the contact harmonically
depends on the phase difference between the wave
functions at the contact’s boundaries.

Assuming that sinϕ(x, t) ≈ ϕ(x, t) – ϕ(x, t)3/3! in
Eq. (1), we will consider the evolution of small- (finite-)
amplitude nonlinear waves of breather type oscillating

ϕ x t,( )sin
1

ωJ
2

------∂2ϕ x t,( )
∂t2

---------------------+

=  
λ J

2

πλ
------ ∂

∂x
------ K x x'–( )∂ϕ x' t,( )

∂x'
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∞–

∞

∫

K x( ) K0
x
λ
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  1

dλ2
--------

kJ0 kx( )d

κ3 κ k κd( )coth+[ ]
----------------------------------------------.

0
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∫+=

K x( )
λ eff

π
------- k

1
1 2kλ eff+
-----------------------J0 kx( ),d

0

∞

∫=

ϕ0 t( ) a0 iωJt±( ).exp=
with Josephson frequency ωJ in the contact. Let us rep-
resent the phase difference as

(4)

We leave the lowest order of nonlinearity at funda-
mental frequency ωJ in Eq. (1) and assume that ampli-
tude u(x, t) is a function slowly varying in time, when
the inequality |∂2u(x, t)/∂t2| ! 2ωJ|∂u(x, t)/∂t| holds.
Then, substituting field (4) into Eq. (1), we obtain a
nonlinear nonlocal “Schrödinger equation” for ampli-
tude u(x, t):

(5)

This equation has an exact solution in the form of a
uniform plane nonlinear wave of amplitude A,

(6)

Let us investigate the stability of this solution. The
disintegration of wave (6) can be judged from the
development of its small perturbations. We assume that
a perturbation of small amplitude ψ(x, t) occurs ran-
domly, so that

(7)

For the small perturbation ψ(x, t), Eq. (5) gives the
linear equation

(8)

Representing ψ(x, t) in complex form, ψ(x, t) =
v (x, t) + iw(x, t), we arrive at a set of equations for its
real and imaginary parts:

(9)
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For amplitude perturbations of type

(10)

(arbitrary perturbations can be represented as a super-
position of such perturbations), set of equations (9)

yields the dispersion relation  = ( ) in the form

(11)

where I( ) is given by

(12)

and  = λQ,  = Ω/ωJ, L = /2λ2, and D = d/λ are
dimensionless quantities.

In view of expression (12) for the perturbation
growth rate, dispersion relation (11) always has a posi-

tive solution Im ( ) > 0 in the wavevector range 0 <

 < . In this range, small amplitude perturbations
(10) grow in time, giving rise to the modulation insta-
bility of the uniform plane nonlinear electromagnetic

wave given by (6). In the range  ≥ , Im ( ) ≡ 0

and this wave is stable. Extreme wavevector  is
found from the equation

(13)

The maximal value of the perturbation growth rate,
which equals

(14)

is reached at wavevector , which is a root of the
equation

(15)

As the modulation instability develops, the uniform
plane nonlinear wave oscillating with Josephson fre-
quency ωJ disintegrates into a chain of pulses (small-
amplitude breathers), the pulse repetition rate of which
depends on the modulation period L0 of the initial

wave: L0 = 2π/Q, where 0 < Q < QB = /λ. Since
phase perturbations are not considered in this paper,
self-contraction of the wave packets is not observed.
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The figure shows the domains of modulation insta-
bility of the uniform plane nonlinear electromagnetic
wave given by (6) for fixed amplitude A and parameter
L and three values of D. It is seen that the domain of
modulation instability shrinks as parameter D
decreases.

Thus, it has been shown in this paper that the mod-
ulation instability of the uniform plane nonlinear elec-
tromagnetic wave given by (6) develops when long-
wavelength amplitude perturbations fall into the
wavevector range 0 < Q < QB. For amplitude perturba-
tions in the range Q ≥ QB, this wave is stable.

In experiments, the modulation instability at arbi-
trary ratio d/λ can be observed in long Josephson junc-
tions between finite-thickness superconductors when
small- (finite-) amplitude waves oscillating with a
Josephson frequency are excited in them.
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Abstract—One-sided approximate impedance-type boundary conditions for a thin chiral layer placed on a per-
fectly conducting plane are derived. With these conditions, the problem of incidence of a plane electromagnetic
wave on a chiral structure is solved. Approximate formulas for the coefficients of reflection of the fundamental
and depolarized components are derived for the case of the perpendicular polarization of the electromagnetic
wave (the electric field strength is normal to the plane of incidence). A comparison with an exact solution to the
problem of diffraction by this chiral structure is made. © 2005 Pleiades Publishing, Inc.
Interest in interaction between electromagnetic
waves and artificial composites that exhibit a spatial
dispersion in the microwave range had sharply quick-
ened by the end of the 20th century. Chiral media,
which are simulated by arranging thin mirror-asymmet-
ric conducting elements in a homogeneous magnetodi-
electric (or ferrite in a more general case), appear very
promising in applications (such as low-reflection coat-
ings in aircraft, as well as polarization- and frequency-
selective filters in the microwave range).

In designing and simulating chiral media intended
for the microwave range, conducting right- and left-
handed wire helices are used most frequently. A chiral
medium exhibits a considerable spatial dispersion if
distance d between neighboring elements is compara-
ble to the length λ of a microwave (d ~ λ) and the size
l of the helices is much smaller than the wavelength
(l ! λ) (Fig. 1). In electrodynamics, such elements are
called electromagnetic particles. A chiral medium is an
artificial material consisting of electromagnetic parti-
cles of a mirror-asymmetric form (chiral elements) that
are embedded in a homogeneous isotropic insulator.

Note that any chiral element may be viewed as a set
of elementary electric and magnetic dipoles. For exam-
ple, the rectilinear parts of the helices are scattering
electric dipoles and the turns of the helices are magnetic
dipoles. Accordingly, when an electromagnetic wave is
incident on a conducting chiral element, the electric
field of the wave will produce both an electric and a
magnetic dipole moment. On the other hand, the mag-
netic field of the incident wave also induces both a mag-
netic and an electric dipole moment. Because of this,
the material equations for a chiral medium relate the
electric and magnetic induction vectors simultaneously
1063-7842/05/5001- $26.00 0125
to the electric and magnetic field strengths. Therefore,
the properties of a chiral medium are described using
three material parameters: permittivity ε; permeability
µ; and parameter of chirality ξ, which serves as a mea-
sure of the interplay between polarization and magneti-
zation processes in the medium.

l

d

1

y

x

z II

I

L1L2
S2

S1h
ε1, µ1

1

0

εc, µc, ξc∆l2

∆l1

(a)

(b)

2

Fig. 1. On the derivation of one-sided approximate bound-
ary conditions for a thin chiral layer covering a perfectly
conducting plane. (a) Model of the chiral medium: (1) con-
ducting helix; (b) geometry of the problem: (I) chiral layer
and (II) perfect conductor.
© 2005 Pleiades Publishing, Inc.
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Natural waves in a chiral medium are clockwise and
counterclockwise polarized waves, which have differ-
ent phase velocities. Therefore, linearly polarized elec-
tromagnetic waves cannot travel in a chiral medium.
When they strike a chiral layer, the effect of depolariza-
tion occurs; that is, if the incident wave is, e.g., perpen-
dicularly polarized, the reflected wave contains field
components corresponding to orthogonal (parallel)
polarization.

Reflection of electromagnetic waves from chiral
layers was rigorously described in [1–3]. Tret’yakov
[4] suggested an approximate approach to describing
the reflecting properties of a chiral layer that is based on
approximate boundary conditions (ABCs). Earlier,
ABCs were derived for anisotropic films [5] and thin
insulating layers with nonlinearity [6, 7]. However, the
ABCs obtained in [4] do not allow for depolarization.
Below, we derive other one-sided ABCs of the imped-
ance type, which include the depolarization of a wave
incident on a thin chiral layer covering a perfectly con-
ducting plane.

ONE-SIDED APPROXIMATE BOUNDARY 
CONDITIONS

Let us derive ABCs of the impedance type for a thin
chiral layer covering a perfectly conducting plane. The
geometry of the problem is shown in Fig. 1, where a
thin chiral layer of thickness h covers a perfectly con-
ducting plane.

A chiral medium is described by the material equa-
tions [1, 2]

(1)

where εc and µc are the relative permittivity and relative
permeability of the chiral medium, respectively; ξc is
the parameter of chirality; and E, D, B, and H are the
complex amplitudes of the respective electromagnetic
field vectors. At ξc = 0, material equations (1) describe
a homogeneous insulating medium. Note that Eqs. (1)
are written in the Gaussian system of units.

To find ABCs, we will use the set of Maxwell equa-
tions in integral form:

(2)

where S is an arbitrary surface bounded by closed con-
tour L, dl = t0dl, t0 is the unit vector tangent to element
dl of contour L, dS = n0dS, n0 is the unit normal vector
to element dS of surface S, k0 = ω/c, ω is the electro-
magnetic wave frequency, and c is the speed of light.

D εcE iξcH,–=

B µcH iξcE,+=

E dl⋅
L

∫° ik0 B S,d⋅
S

∫–=

H dl⋅
L

∫° ik0 D S,d⋅
S

∫=
Applying (2) to small contours L1 and L2 shown in
Fig. 1 yields the following approximate relationships:

(3)

where superscripts 1 and 2 mean that the field is taken
on the surfaces of isotropic regions 1 and 2 and compo-
nents E and H without superscripts are defined at some
points of surfaces S1 and S2 bounded by contours L1 and
L2, respectively.

When writing expressions (3), we used the theorem
of mean. Namely, the integrals on the right of (2) were
determined as follows: we assumed that the surface
integral of a function defined on a certain planar figure
equals the surface area of this figure times the integrand
taken at some intermediate values of independent vari-
ables. For example,

where ∆l1h is the surface area of the rectangle in plane
z = 0 that is bounded by contour L1 and x = {ξ1, ξ2, ξ3 =
0}, with ξ1 and ξ2 being some intermediate values of
variables x and y (Fig. 1) inside contour L1.

When calculating the integrals along contours L1
and L2 on the left of (2), we used, along with the theo-
rem of mean, the boundary conditions for radial (tan-
gential) components Eτ and Hτ on these contours at y =
0 and y = h:

(4)

Vectors Eτ and Hτ in the chiral layer can be deter-
mined by means of the Lagrange linear interpolation
using two points [7], namely, the values of the electro-
magnetic field components on its surface, i.e., at y = 0
and y = h. Hereafter, we assume that, in (3), the field in
the chiral layer is the field at its center (at y = h/2).
Lagrange interpolation in this case appears as

(5)

It is apparent that expressions (5) apply only if the

chiral layer is thin (k0h  ! 1).
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In view of the approximations of fields (5) and of
material equations (1) in the limit ∆l1  0 and
∆l2  0, expressions (3) can be recast as

(6)

The next step of deriving the ABCs is the elimina-
tion of normal-to-surface components Ey and Hy from
(6) using the differential relations

(7)

where  = εcµc – , which follow from the Maxwell
equations and material equations (1) for a chiral
medium.

With (7), it is easy to write the following boundary
conditions of the impedance type (with the proviso that
the field remains constant along the Oz axis, ∂/∂z = 0):

(8)

Relationships (8) will be called the one-sided ABCs
(OSABCs) for a thin chiral layer placed on a perfectly
conducting plane.

When deriving OSABCs (8), we left only the terms

of the first order of smallness in parameter k0h . It
should be noted that our method makes it possible to
obtain OSABCs of higher order of smallness in this
parameter. Analysis shows, however, that there is little
point in using second-order OSABCs for thin

(k0h  ! 1) chiral layers.

Unlike the boundary conditions derived in [4],
OSABCs (8) relate all the four tangential components
of an electromagnetic field. In free space with a chiral
layer, the E- and H-waves cannot therefore be indepen-
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dent. In addition, the OSABCs obtained in [4] are free
of terms proportional to ξc, unlike formula (8).

REFLECTION OF A PLANE 
ELECTROMAGNETIC WAVE FROM A THIN 

CHIRAL LAYER PLACED ON A PERFECTLY 
CONDUCTING PLANE

With OSABCs (8), one can easily solve the problem
of incidence of a plane electromagnetic wave on the
structure shown in Fig. 1. Let us assume that the wave
has perpendicular polarization (the electric field is nor-
mal to the plane of incidence) and strikes the chiral
layer at an angle θ (θ is the angle between the direction
of the wave and the normal to the plane of the layer). In
this case, the coefficients of reflection of the fundamen-
tal component, Rhh, and depolarized component, Rhe,
are expressed as follows:

0.98

0.96

0.94

0.92

0.90
0 0.05 0.10 0.15 0.20 0.25 k0h

|Rhh|

|Rhe|

1 × 10–2

5 × 10–3

0 0.1 0.2 0.3 0.4 k0h

(a)

(b)

Fig. 2. (a) |Rhh| and (b) |Rhe| vs. normalized thickness k0h of
the chiral layer for the case of a plane perpendicularly polar-
ized electromagnetic wave incident on the layer. The contin-
uous curves, calculation by formulas (9); dashed curves,
rigorous electrodynamic calculation [3].
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(9)
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It is noteworthy here that, if the OSABCs from [4]
are used, the depolarized wave does not reflect; that is,
Rhe = 0.

Figure 2 plots the absolute values of |Rhh| (the reflec-
tion coefficient for the fundamental mode) and |Rhe| (the
reflection coefficient for the depolarized mode) against
normalized thickness k0h of the chiral layer for the case
when a plane perpendicularly polarized electromag-
netic wave strikes the chiral layer at angle θ = π/4. The
following parameters of the chiral layer were taken in
the calculations: εc = 3.5–0.3i, µc = 2.2–0.3i, and ξc =
0.3. The continuous lines were obtained by formula (9);
the dashed lines, by the rigorous electrodynamic calcu-
lation [3]. As follows from Fig. 2a, the OSABCs are
applicable to sufficiently thin chiral layers: k0h & 0.25.
For thicker layers, the values of |Rhh| calculated by
approximate formulas (9) exceed those obtained by the
rigorous electrodynamic calculation.

In Fig. 2b (the reflection coefficient for the depolar-
ized component), good agreement between the rigorous
[3] and approximate (formulas (9)) calculations is
observed for k0h & 0.5. It is also seen that the reflection
coefficient for the depolarized wave grows as normal-
ized thickness k0h of the chiral layer increases.

CONCLUSIONS
The OSABCs derived in this work may be useful in

simulating various reflecting structures that involve
thin chiral layers, as well as in designing new-genera-
tion waveguides with chiral inclusions that are intended
for operation at microwaves and extremely high-fre-
quency waves. Our method of deriving OSABCs also
makes it possible to obtain double-sided ABCs for a
thin chiral layer located at the interface between mag-
netodielectric (or ferrite) media with different physical
properties.

REFERENCES
1. I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, et al., Elec-

tromagnetic Waves in Chiral and Bi-Isotropic Media
(Artech House, London, 1994).

2. B. Z. Katsenelenbaum, E. N. Korshunova, A. N. Sivov,
et al., Usp. Fiz. Nauk 167, 1201 (1997) [Phys. Usp. 40,
1149 (1997)].

3. V. A. Neganov and O. V. Osipov, Izv. Vyssh. Uchebn.
Zaved. Radiofiz. 42, 870 (1999).

4. S. A. Tret’yakov, Radiotekh. Élektron. (Moscow) 39,
184 (1994).

5. E. P. Kurushin and E. I. Nefedov, Electrodynamics of
Anisotropic Waveguide Structures (Nauka, Moscow,
1983) [in Russian].

6. V. A. Neganov, E. I. Nefedov, and G. P. Yarovoœ, Strip–
Slot Lines for Superhigh and Extremely High Frequen-
cies (Nauka, Moscow, 1996) [in Russian].

7. Handbook of Mathematical Functions, Ed. by M. Abra-
mowitz and I. A. Stegun (Dover, New York, 1971;
Nauka, Moscow, 1979).

Translated by V. Isaakyan
TECHNICAL PHYSICS      Vol. 50      No. 1      2005



  

Technical Physics, Vol. 50, No. 1, 2005, pp. 129–131. Translated from Zhurnal Tekhnichesko

 

œ

 

 Fiziki, Vol. 75, No. 1, 2005, pp. 131–133.
Original Russian Text Copyright © 2005 by A. Kamzin, S. Kamzin, Wei, Yang.

                                                                                                                                         

SHORT
COMMUNICATIONS
Effect of Synthesis Conditions on the Properties 
of Fe–Al–N Thin Films

A. S. Kamzin*, S. A. Kamzin*, F. Wei**, and Z. Yang**
* Ioffe Physicotechnical Institute, Russian Academy of Sciences, 

ul. Politekhnicheskaya 26, St. Petersburg, 194021 Russia
e-mail: kamzin@pop.ioffe.rssi.ru

** Research Institute of Magnetic Materials, Lanzhou University, Lanzhou, 730000 China
Received April 28, 2004

Abstract—The magnetic properties, microstructure, and morphology of Fe–Al–N films that are deposited by
reactive rf sputtering and synthesized in situ, ex situ (deposition followed by annealing), and by thermal crys-
tallization of amorphous films are studied. The FeAlN films synthesized ex situ offer the highest soft-magnetic
properties. The films produced by thermal crystallization offer the highest thermal stability. © 2005 Pleiades
Publishing, Inc.
Increasing the data recording density in magnetic
carriers requires materials with a high coercive force.
High-quality recording on such carriers at 5000–
7000 Oe is provided if the field strength in the gap of
the recording head is equal to, or higher than, 2.0 T [1].
Under these conditions, saturation induction Bs in the
core of the head must be no less than ~20 kG [2]. Nano-
structured FeXN (X = Ta, Hf, Nb, Zr, or Si) films satisfy
these requirements (see, e.g., [3] and Refs. therein).
Viala et al. [4] found that FeAlN films had high soft-
magnetic properties. In this work, we study the effect of
synthesis conditions on the properties of FeAlN films,
which were (i) deposited on cooled substrates and then
annealed (ex situ synthesis), (ii) synthesized during
deposition (in situ synthesis), and (iii) deposited and
then annealed in the amorphous state.

The films were deposited on glass substrates by rf
magnetron sputtering. The target was an all-iron plate
partially covered by aluminum foil. The Al content in
the films deposited was controlled by varying the sur-
face area covered by the Al foil. Nitrogen atoms modify
the α-Fe crystal lattice, making the FeXN films magnet-
ically soft. The efficiency of this process, however,
depends on the probability of nitrogen atoms chemi-
cally interacting with dopant X [4]. The third element,
Al, readily interacts with nitrogen [5]. The Al content in
the films was 2.5% and was strictly controlled in order
to prevent the formation of nonmagnetic Al–N fractions
[6]. The nitrogen concentration in the films was con-
trolled by varying the nitrogen partial pressure in the
Ar + N2 gas mixture introduced into the sputtering
chamber. The films were deposited under the following
conditions: the pressure in the chamber was 5 ×
10−7 Torr; the pressure of the Ar + N2 mixture during
sputtering, 2 × 10–3 Torr; the nitrogen partial pressure,
1063-7842/05/5001- $26.00 0129
0–8%; the sputtering power density, 2.3 W/cm2; and the
film deposition rate, 20–30 nm/min.

Synthesis ex situ. The study of the magnetic prop-
erties of the FeAlN compounds deposited on the cooled
substrates at various partial pressures P(N2) shows that
the films synthesized at P(N2) = 3% offer the best soft-
magnetic properties. As follows from X-ray diffraction
analysis, the FeAlN films deposited at this pressure are
anocrystalline. At P(N2) < 3%, X-ray diffraction pat-
terns contain the well-resolved intense (110) line of the
α-Fe phase. As P(N2) increases to 5%, this line
becomes less intense and broadens. For the films depos-
ited at P(N2) ≥ 5%, this line of the α-Fe phase diffuses
and then disappears, which indicates that these com-
pounds are amorphous. The number of N atoms incor-
porated into α-Fe is likely to grow, and the films pass
into the amorphous state.

During the ex situ synthesis, high residual stresses,
giving rise to magnetoelastic anisotropy, which
adversely affects the soft-magnetic properties of the
films, were relieved by annealing in a vacuum furnace
at a pressure of 5 × 10–5 Torr. Figure 1a shows the
dependences of the saturation induction Bs and coercive
force Hc of the FeAlN films on annealing temperature
Tann. The value of Bs is seen to be virtually independent
of Tann, whereas Hc increases weakly upon annealing at
Tann < 350°C and appreciably at Tann = 360°C. The vari-
ation of Hc with annealing temperature agrees with the
X-ray diffraction data. Annealing at Tann < 350°C has an
insignificant effect on the X-ray diffraction patterns,
while, at Tann > 350°C, the (110) line of the α-Fe phase
becomes higher and narrower, indicating an increase in
the degree of crystallinity of α-Fe grains. The annealing
at Tann > 350°C also causes α-Fe grains to grow, as dem-
onstrated by atomic force microscopy (AFM) data. As
© 2005 Pleiades Publishing, Inc.
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follows from these data, the size of α-Fe grains is
almost the same (10–20 nm) in the as-deposited films
and those annealed at 200°C. This size is smaller than
the length of ferromagnetic exchange interaction
between the grains [2]. In AFM images, grain bound-
aries in the films annealed at 200°C are more distinct
than in the as-deposited films. This finding can be
explained by the enhanced crystallization of α-Fe
grains at relatively low annealing temperature (200°C).
This process also contributes, along with residual stress
relieving, to the improvement of the soft-magnetic
properties of the FeAlN films. Annealing at 400°C
facilitates the crystallization of grains with a size much
larger than the length of exchange interactions, as a
result of which the soft-magnetic properties of these
films degrade.
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Fig. 1. (a) Dependences of Bs and Hc of the FeAlN films on
annealing temperature Tann: (1, 2) annealing of amorphous
compounds and (3, 5) deposition on cooled substrates.
(b) (4, 6) Bs and Hc of the FeAlN films vs. the substrate tem-
perature Ts.
Figure 2 shows the Mössbauer spectrum of the
FeAlN films annealed at 350°C that was obtained by
recording backscattered conversion and Auger elec-
trons. The spectrum consists of a Zeeman sextuplet
with a linewidth of 0.430 ± 0.03 mm/s, an effective
magnetic field of 326 ± 1 kOe on the iron atom nuclei,
and a zero quadrupole split. The areas under the lines in
the Zeeman sextuple are in the ratio 3 : 4 : 1 : 1 : 4 : 3,
indicating that the magnetic moments of iron atoms in
the film are normal to the wavevector of gamma radia-
tion, which runs normally to the film surface. Thus, the
magnetic moments of iron ions lie in the film plane. In
the range of the “zero” Doppler velocity of the Möss-
bauer source, the spectrum contains weak lines, which
indicate the presence of a certain amount of paramag-
netic iron. The parabolic background suggests that a
small fraction of the amorphous phase is present in the
films.

Synthesis in situ. Figure 1b plots Bs and Hc versus
the substrate temperature Ts for the films synthesized in
situ. The films deposited at Ts = 120°C have the highest
values of Bs. This is explained by a low fraction of the
γ-Fe4N phase, which decreases Bs, as follows from the
X-ray diffraction data. The coercive force Hc of the
films deposited at low Ts is higher than in those depos-
ited at Ts = 120°C. This fact may be assigned to worse
conditions for crystallization of α-Fe grains at Ts <
120°C and the presence of high residual stresses. At Ts
rises to 120°C, the degree of crystallinity of α-Fe grains
increases and the residual stresses are relieved. Taken
together, these factors lead to a decrease in Hc. Accord-
ing to the X-ray diffraction data, high Ts facilitate the
growth of the γ-Fe4N phase, specifically, on the faces of
α-Fe grains; correspondingly, exchange ferromagnetic
coupling between α-Fe grains weakens. The films syn-
thesized at Ts = 150°C have the lowest value of Hc. The
X-ray diffraction data show that the films deposited at

1086420–2–4–6–8–10
V, mm/s

J

Fig. 2. Mössbauer spectrum of the FeAlN film annealed at
350°C that was taken by recording backscattered conver-
sion and Auger electrons.
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Ts = 120°C consist mainly of α-Fe grains with a mean
size smaller than 15 nm, whereas those deposited at the
other substrate temperatures consist of the α-Fe and
γ-Fe4N phases. The films synthesized at Ts = 150°C
consist of nanocrystalline α-Fe and a small amount of
γ-Fe4N. In the films deposited at Ts > 150°C, the frac-
tion of the γ-Fe4N phase increases. These findings con-
firm the assumption [7] that a small amount of the γ-
Fe4N phase present in FeAlN films raises their soft-
magnetic properties.

Synthesis by annealing of amorphous com-
pounds. Amorphous FeAlN films were deposited
under the conditions described above with the differ-
ence that the substrate was rotated at a constant velocity
during sputtering. The axis of rotation was offset from the
center of the round target, making the deposition intermit-
tent. The X-ray diffraction patterns of the films thus depos-
ited had no lines associated with the crystalline struc-
ture, thereby indicating that the films are amorphous.
Then, they were annealed in a vacuum furnace.

The dependences of the saturation induction Bs and
coercive force Hc of the films on annealing temperature
Tann are shown in Fig. 1a. When the annealing tempera-
ture increases, coercive force Hc decreases sharply and
reaches a minimum in the range 300 < Tann < 350°C,
whereas Bs remains virtually unchanged. The decrease
in Hc can be explained by the formation of nanocrystal-
line α-Fe particles, ferromagnetic exchange interaction
between which substantially suppresses local crystal-
line magnetic anisotropy. A further increase in Tann does
not change the values of Bs and Hc. The X-ray diffrac-
tion patterns of the heat-treated films contain the (110)
line of the α-Fe phase. Its intensity remains almost con-
stant with increasing Tann, which indicates that neither
the size of α-Fe grains nor the fraction of α-Fe changes
in these films. However, the annealing does not result in
complete crystallization of the films; therefore, they
consist of the nanocrystalline α-Fe and amorphous
phases, as demonstrated by the Mössbauer spectros-
copy data. The crystallization of α-Fe grains starts at
low Tann and is completed at 300–350°C. One may
assume that atoms in the amorphous film are randomly
distributed and those atoms that have similar properties
combine first. Therefore, α-Fe nanoparticles crystallize
in the first place from the amorphous matrix at low
annealing temperatures. Then, Al–N compounds form
around the α-Fe grains, suppressing their further
growth.

The table summarizes the magnetic and structural
characteristics of the films synthesized by the three
methods. It is seen that the films produced ex situ have
the highest saturation induction and the lowest coercive
force. These films consist mainly of α-Fe nanocrystals
with a mean size smaller than the length of ferromag-
netic exchange interaction between them. As a result,
local effective crystalline magnetic anisotropy in the
films is low and their soft-magnetic properties are
TECHNICAL PHYSICS      Vol. 50      No. 1      2005
improved. The lattice expansion in these films
approaches a critical value of 0.28%, which is further
evidence for their good soft-magnetic properties [8].

In the FeAlN films synthesized in situ, the saturation
induction is lower than in those produced ex situ, pos-
sibly because of the formation of the γ-Fe4N phase
(where the saturation induction is lower than in α-Fe).
The precipitation of γ-Fe4N on α-Fe grains decreases
the ferromagnetic exchange interaction between them,
and the coercive force of these films is higher than in
the films synthesized ex situ, although the grains in the
former are smaller. In addition, the expansion of the α-
Fe lattice is far from the related critical value.

Thus, our experiments show that, among the FeAlN
films synthesized by different methods, those synthe-
sized ex situ offer the highest soft-magnetic properties.
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Structural and magnetic characteristics of the FeAlN films
synthesized in this work

Ex situ In situ
Crystallization 

from amor-
phous state

Phase composition α-Fe α-Fe
+ γ-Fe4N

α-Fe + amor-
phous matrix

Grain size D, nm 10–15 9–12

Lattice expansion,
%

0.19–0.37 From 0.23 
to 0.14

Bs, T 1.8 1.58 1.65

Hc, Oe 1.2 1.8 2.5
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Abstract—A change in the dynamics of 180° domain walls on the surface of a soft amorphous ferromagnet in
methyl alcohol atmosphere is established by means of a magnetooptic method. A reversible decrease in the
relaxation frequency of the domain walls near the surface in the presence of methyl alcohol admolecules is
observed. This effect is related to the magnetic defects resulting from methyl alcohol adsorption on the ferro-
magnet surface, which proceeds through hydrogen bonding. Based on earlier data for the influence of the
reversible adsorption of water molecules on the domain wall dynamics in ferromagnets, it is concluded that
reversible adsorption through the mechanism of hydrogen bond formation considerably affects the domain wall
dynamics in soft ferromagnets. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Previously, we established that the room-tempera-
ture reversible adsorption of water molecules on the
surface of a soft amorphous ferromagnet leads to an
increase in the effective drag factor of the domain walls
near the surface [1]. As a result of water adsorption, the
amplitude of domain wall oscillations at the surface
abruptly drops as the magnetization reversal frequency
exceeds 10 kHz, while the oscillation amplitude inside
the material remains nearly constant. This observation
is quite unexpected, since eddy currents in ferromag-
netic metals are bound to cause the inverse effect
according to the theory developed in a number of works
(see, e.g., [2]). Indeed, since the density of the eddy
currents induced by the wall motion near the surface is
lower than in the bulk, their drag effect in the bulk is
expected to be stronger than at the surface. The unex-
pectedness of this phenomenon lies in the fact that
weak (and reversible at room temperature) water
adsorption, which touches upon only a few surface lay-
ers of a ferromagnet, affects the domain wall dynamics
more severely than the eddy currents penetrating
incomparably deeper into the sample. It is known that
the adsorption of water molecules on real surfaces pro-
ceeds through the formation of hydrogen bonds [3] and
is an intermediate between physical and chemical
adsorption in bond strength. A strong influence of
adsorption associated with hydrogen bonding on the
domain wall dynamics could be confirmed by observ-
ing the same effect with other molecules that are
1063-7842/05/5001- $26.00 0132
adsorbed by the same mechanism, e.g., molecules of
alcohols [4]. In this study, we investigate the influence
of the methyl alcohol reversible adsorption on the
domain wall dynamics in an amorphous ferromagnet.
Molecules of methyl alcohol and water are close in size
but form hydrogen bonds in different amounts.

EXPERIMENTAL

Amorphous ferromagnetic iron-based alloy sheets
of composition Fe76.5Cu1Nb3Si13.5B6 used as samples
were subjected to special thermal treatment in order to
improve the homogeneity and magnetic softness [5].
The sheets were 25–30 µm thick, 0.55 mm wide, and
from 15 to 20 mm long.

The surface properties of the domain wall were
studied with the help of a magnetooptic micromagne-
tometer configured with a vacuum cell into which test
samples were placed and with a gas-supply system that
delivers various gases to the cell [1]. The adsorbate
pressure in the cell could be varied from the atmo-
spheric value to 10–3 Pa. We detected the equatorial
magnetooptic Kerr effect, which arose when the mag-
netization of a 1 µm2-area of the sample changed under
illumination. The slit of an photoelectric multiplier
scanned the sample perpendicularly to its longer side.
Magnetization reversal was induced by an external
magnetic field applied parallel to the longer side of the
© 2005 Pleiades Publishing, Inc.
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sample. The field amplitude was 300 A/m, and the fre-
quency was varied from 30 Hz to 20 kHz.

We studied the frequency dependences of the wall
oscillation amplitude ∆ on the amorphous ferromagnet
surface. Dependence ∆( f ) was characterized by relax-
ation frequency fr, which was determined for ∆( f = fr) =
0.7∆0, where ∆0 is the value of ∆ at f  0.

The experiment was carried out on the real surface,
i.e., after the sample had been exposed to air. Once the
cell with the sample has been evacuated, the surface of
the sample exhibits a thin oxide film covered by
hydroxyl groups, as well as by water molecules coordi-
nation-bonded to the surface. The evacuation was fol-
lowed by inflow of methyl alcohol vapors.

In the bulk of the structure, the domain wall oscilla-
tions were studied by the induction method. For this
purpose, a measuring coil was wound on the sample.
The signal from the coil is proportional to the magneti-
zation of the sample, which, in turn, is proportional to
the displacement of the wall in the bulk.

RESULTS AND DISCUSSION

The magnetooptic study of the domain wall dynam-
ics in the amorphous sheets indicates that the methyl
alcohol adsorption decreases the domain wall relax-
ation frequency at the surface, whereas the wall oscilla-
tion amplitude in the bulk remains constant throughout
the frequency range considered. The relaxation fre-
quency at the surface in a vacuum was found to be
13.5 kHz. The presence of the methyl alcohol vapor at
a pressure of 10 kPa diminishes the relaxation fre-
quency to 2.6 kHz, i.e., more than fivefold (see figure).
After repeat evacuation, the relaxation frequency takes
its initial value, which gives evidence for the reversibil-
ity of the effect.

The results obtained are in qualitative agreement
with the data reported in [1, 6]. In those studies, water
adsorption on the surface of iron whiskers and iron-
based amorphous sheets led to a reversible decrease in
the relaxation frequency at the surface. This decrease
was attributed to surface magnetic defects arising when
the water molecule adsorption proceeds via hydrogen
bonding. The qualitative agreement between the results
cited and our data suggests that water and methyl alco-
hol, when adsorbed on the surface, have a similar effect
on the magnetic properties of ferromagnets.

In detail, the mechanism underlying the influence of
the methyl alcohol reversible adsorption on the domain
wall dynamics appears as follows. Upon evacuation,
the water molecules adsorbed by the hydrogen-bonding
mechanism and partially those coordination-bonded to
the surface are desorbed. This follows from the change
in the charge state of the oxide surface after evacuation
[7]. Note that neither the adsorption nor the desorption
of the molecules that produce hydrogen and van der
Waals bonds change the charge state of the surface
oxide. When entering into the measuring cell, methyl
TECHNICAL PHYSICS      Vol. 50      No. 1      2005
alcohol is first adsorbed on the centers that are left by
the coordination-bonded water molecules and then gen-
erates hydrogen bonds to the surface. Thus, methanol
molecules substitute for both some of the coordination-
bonded and weakly sorbed water molecules. The
reversible change in the relaxation frequency is
explained by the adsorption/desorption of these weakly
sorbed molecules of methanol. In contrast to an admol-
ecule of water, which can, without branching of the
molecular chains, attach two molecules adsorbed by the
hydrogen-bonding mechanism, a molecule of methyl
alcohol can attach only one molecule adsorbed via this
mechanism [4]. When adsorbed, methyl alcohol and
water produce a similar effect on the domain wall
dynamics, but the decrease in the relaxation frequency
is more appreciable in the former case. The latter cir-
cumstance contradicts the assumption that the rate of
magnetic defect generation increases with bunching of
weakly sorbed molecules and, therefore, seems surpris-
ing. Such a behavior calls for additional experimental
investigation.

Note in conclusion that the results of this study, in
combination with the earlier data on water adsorption,
show that the domain wall dynamics in soft ferromag-
nets is appreciably affected by the reversible adsorption
of gases with the formation of hydrogen bonds.
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Abstract—It is shown theoretically and experimentally that the photon flux energy in a dielectric waveguide
depends on the mode composition of the field and the ratio between the numbers of photons with left- and right-
handed helicity. © 2005 Pleiades Publishing, Inc.
The vortex properties of an electromagnetic field
that propagates in both free space and a medium have
recently attracted considerable attention [1–8]. This
interest is stimulated by advances in the technology of
capture and transport of insulating microparticles by a
vortex electromagnetic field, in designing optical-vor-
tex-based transducers of physical quantities, and in
nanotechnologies using single vortices and vortex lat-
tices [6]. Of special interest in this field is transport of
a vortex electromagnetic field in dielectric waveguides,
specifically, in optical fibers [2–5, 7, 8].

For electromagnetic vortices, energy circulation,
i.e., the precession of the Poynting vector about the lon-
gitudinal axis of the waveguide, is typical [4, 5, 7]. In
this case, as obviously follows from electrodynamic
considerations, the angular momentum of a dielectric
waveguide–electromagnetic field system is distributed
among the waveguide and vortex field, the distribution
being dependent on the field excitation conditions and
waveguide parameters. In this situation, the field gives
up a part of its energy to the waveguide. In terms of
quantum theory, an electromagnetic vortex is formed
by photons that possess some net angular momentum
about the longitudinal axis. In other words, the photon
flux energy in a dielectric waveguide is bound to
depend on the ratio between the numbers of photons
with left- and right-handed helicity, as well as on the
mode composition of the field. This work is aimed at
theoretically (in terms of quantum optics) and experi-
mentally studying the relationship between the energy,
polarization, and mode composition of an electromag-
netic field transmitted through the waveguide; i.e., we
study the vortex properties of radiation in a dielectric
waveguide, specifically, in a low-mode graded-index
optical waveguide.

Consider a monochromatic field propagating in a
circular dielectric waveguide in the linear regime. For a
quiescent (stationary) insulating medium without free
charges and currents, one can use the Hamilton gage of
potentials: Φ = 0 [9, p. 16; 10, p. 76]. The field equation
1063-7842/05/5001- $26.00 0135
then appears as [8]

(1)

where ε = ε(r) is the radial-coordinate-dependent per-
mittivity of the waveguide. Since the problem is axi-
symmetric, a solution to Eq. (1) will be sought in the
form A = F(r)exp[i(ωt – βz + klϕ)], where k = ±1 and
l = 0, 1, 2, … . As boundary conditions, we take the
continuity of the tangential components of the electric
field, Eϕ, z = –∂Aϕ, z/c∂t, and magnetic field, Bϕ, z = (∇  ×
A)ϕ, z, on the lateral surface of the waveguide (of radius
r0). Functions F are polynomials depending on the pro-
file of ε, and propagation constants βl of waveguide
modes satisfy a characteristic equation following from
the boundary conditions at r = r0.

Let us expand the field inside the waveguide in
clockwise and counterclockwise polarized modes
(k = ±1):

(2)

where amplitudes ajlk(t) vary as exp(–iωt) (j = r, ϕ, z)
and V is the volume occupied by the field. To make use
of the quantum theory, we transform the variables so
that the field equation can be written in the form of the
Hamilton equations by introducing the generalized
coordinates and momenta [11, p. 20]:

(3)

In coordinates (3), vector potential (2) takes the
form

(4)

where φlk = βlz – klϕ.

∇ 2A
ε
c2
----∂2A

∂t2
---------– ∇ ∇ A( ),=

A
πc

V
---------- l jF j R( ) a jlκ t( ) i βlz klϕ–( )[ ]exp{

j l k, ,
∑=

+ a jlk* t( ) i βlz klϕ–( )–[ ]exp } ,

Q jlk
1
2
--- a jlk a jlk*+( ), P jlk

ω
2i
----- a jlk a jlk*–( ).= =

A
4πc

V
------------- l jF jl A jlk φlkcos ω 1– P jlk φlksin–( ),

j l k, ,
∑=
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Next, we will find the Hamiltonian of the system,
using an expression for the energy of a monochromatic
electromagnetic field in an insulating nonmagnetic
medium:

(5)

Substituting the expressions for the electric field,
E = –∂A/c∂t, and magnetic field, B = ∇  × A, into (5), we
integrate this expression over a finite volume that is a
cylinder of radius r0 and length Λ, which equals the dis-
tance between the nearest field minima). Now, we
replace canonic variables Pjlk and Qjlk by operators

obeying the law of commutation [ , ] = –i"δjj',
transform the expression for the energy into Hamilto-

nian  ~ , and introduce the annihilation and birth
operators

(6)

obeying the law of commutation [ag, ] = δgg'.

Then, the Hamiltonian takes the form

(7)

where

The energy of the system is expressed through num-

ẼL
1

8π
------ V εE2 B2+( ).d
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∫ r/r0.= =
bers Njlk of photons in the field mode:

(8)

If the number of photons with tight-handed helicity
(k = 1) equals the number of photons with left-handed
helicity (k = –1) in a linearly polarized mode, the terms
multiplied by coefficient q4 in (8) disappear upon sum-
mation over k. Otherwise, when the field is a superpo-
sition of circularly polarized modes with l ≠ 0, the terms
with q4 do not cancel each other and field energy (8)
depends on the ratio between numbers Nϕlk and Nzlk of
photons with left- and right-handed helicity in a rele-
vant mode. This effect may be treated as the depen-
dence of the energy of the system on the “spin–orbit
interaction” of the electromagnetic field in the
waveguide, provided that, in the case of mode superpo-
sition, the field orbital moment (characterized by sub-
script l of the mode) is other than zero and the spin of
the photons characterizes the polarization of the mode
[1, 5].

A classical interpretation of this effect can be given
if a mode with subscript l > 0 is assigned a ray (normal
to the wave front at a given point) that propagates along
a left- or right-handed helix when reflecting from the
walls of the waveguide. If the sense of polarization of
the circularly polarized mode coincides with the sense
of the helical trajectory of the ray, the energy of the field
grows and vice versa. In other words, the asymmetry
that is observed in the polarization dependence of the
radiation energy transmitted through the cylindrical
system arises upon exciting the waveguide.

Alternatively, this effect can be explained in classi-
cal terms either by invoking the idea of stable and
unstable optical vortices generated in the waveguide,
which transfer different angular momenta, or by con-
sidering the evolution of the angular momentum of
radiation as a result of waveguide mode interference
[2, 3, 5].

The ratio of the energies of the system for linearly

and circularly polarized modes (  and , respec-
tively),

depends on the numbers of photons in the mode com-
ponents (here, the number of photons in the linearly

ẼL "ω q jl N jlk
1
2
---+ 

 
j 1 2 3, ,=

∑
k 1±=

∑
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ẼLl ẼCl
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2
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  q jl N jlk
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 
j 1 2 3, ,=

∑
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j 1 2 3, ,=

∑=
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1–
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polarized mode equals the number of photons in the cir-

cularly polarized mode: Njl+ + Njl– = Njl; i.e., /  is
greater or smaller than unity according to the sense of
the related circularly polarized mode (k = ±1).

Straightforward analysis makes it possible to reveal
a relationship between the angular momentum and
energy of the field in an insulating medium. For a circu-
larly polarized mode propagating along the z axis, the
angular momentum of the photon flux is Lz = NC",

where NC = /"ω is the number of photons. On the
other hand, the work per unit time that is done on a clas-
sical electron in a given atom by the electromagnetic
wave field is given by

where v  = ωr is the rotation velocity of the electron and
r is the wave-field-induced displacement of the electron
relative to the center of rotation. The rotational moment
of the electron, M = –[r × (eE)], equals the time deriv-

ative of the angular momentum:  = M. Comparing

the equations for the work and angular momentum, we
arrive at a relationship between the longitudinal com-
ponent of the angular momentum and the energy of the

circularly polarized wave:  =  or dLz =

. The linearly polarized wave propagating along

the z axis does not transfer the angular momentum: the
average angular momentum of this wave is zero, since
it results from interference between the clockwise and
counterclockwise polarized modes that have the same
number of photons.

To verify this effect in practice, we performed a sim-
ple experiment (see Fig. 1). Linearly polarized radia-
tion from laser L (λ = 0.632 µm) was incident on a quar-
ter-wave crystal plate. With the plate oriented appropri-
ately, the radiation took either circular or linear
polarization. Microscope objective MO excited either
the fundamental mode (l = 0) or higher modes (l = 1, 2,
…) in low-mode graded-index optical fiber F (Fig. 2).
The mode composition of the radiation was determined
through the field distribution behind the λ/4 plate and at
the exit end face of the fiber with a CCD camera and a
monitor. The radiation transmitted through the fiber
was directed to photodiode PD, which was connected
to digital voltmeter V. The readings of the voltmeter for
both polarizations were processed by methods of the
theory of errors.

For the fundamental mode (l = 0), the ratio of the
voltmeter readings for the linear and circular polariza-
tion of the radiation was equal to unity within an exper-

imental error ( /  = 1.027 ± 0.067), while for a
combination of higher modes (l = 1, 2, …), this ratio

ẼLl ẼCl

ẼC

dẼC

dt
---------- e E v⋅( ),–=

dL
dt
-------

dLz

dt
-------- 1

ω
----

dẼC

dt
----------

1
ω
----dẼC

ẼL0 ẼC0
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was higher than unity ( /  = 0.893 ± 0.053 with a
relative error of 6.5% and a confidence interval of 95%).
In the latter case, the modes with k = 1 were excited.

Let us analyze the effect of nonlinear processes on
the propagation of the radiation along the dielectric
waveguide with regard to the nonlinear response of an
insulating medium (fused quartz) which the optical
fiber is made of. In this case, the equations for the field
and energy must contain nonlinear terms [8]:

(9)

(10)

where α3 = 4πχ3 is the dielectric susceptibility of the
medium that is a cubic function of the field [12].

Assuming that the linear response of the medium is
weak, i.e., affects the mode structure insignificantly, we

represent the Hamiltonian in the form  =  + ,

where  has the form of (7) and

(11)
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k 1±=

∑
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× a jlka jlka j'lk
+ a j'lk

+ a jlk
+ a jlk

+ a j'lka j'lk+(
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∑
j

∑

+ a jlka jlk
+ a j'lka j'lk

+ a jlk
+ a j'lka jlk

+ a jlk+

λ/4 VMO F PDL

Fig. 1. Experimental scheme. L, He–Ne laser (λ =
0.632 µm). λ/4, crystal plate; MO, microscope objective;
F, optical fiber; PD, photodiode; and V digital voltmeter.

Fig. 2. Fundamental mode (on the left) and a superposition
of higher modes (on the right) in the graded-index fiber. The
radiation from the fiber cladding is seen around the spot of
the fundamental mode.
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Here,  = α3 R( )2. In the nonlinear case,

the energy of the system is  =  + , where linear

term  is given by (8) and nonlinear term  is
found from (11) in the form

(12)

From (12), it follows that the nonlinear contribution
to the energy of the field does not depend on photon
helicity k (in the given approximation).

Thus, the energy of an electromagnetic field propa-
gating in a circular dielectric waveguide depends on the
ratio between the numbers of photons with left- and
right-handed helicity, i.e., on the mode composition
and mode polarization. If the waveguide is excited by a
circularly polarized radiation, the energy of the field in
the waveguide may be both higher and lower than this
energy in the case of excitation by a linearly polarized
radiation. In the latter case, the circularly polarized
field gives up the angular momentum to the waveguide.
Weak nonlinear effects in the waveguide do not intro-
duce the polarization dependence of the radiation
energy. Based on the energy effect considered in this
work, waveguide sensors of physical quantities can be
designed.
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Abstract—Change ∆φ(Θ) in work function versus surface coverage Θ for the Si(100) surface is determined in
terms of a model that includes not only the dipole–dipole interaction of hydrogen adatoms but also an elonga-
tion of the adsorption length with increasing Θ. The charge of the adatoms as a function of Θ is calculated, and
the variation of the surface conductivity of the substrate is estimated. © 2005 Pleiades Publishing, Inc.
Until recently, theoretical investigation of gas
adsorption has received little attention. In [1], models
of atomic hydrogen adsorption on germanium were
suggested. It turned out that the experimental data for
hydrogen adsorption on Ge(111) [2] can be described
adequately if the Anderson–Newns standard model
[3, 4] assumes the dependence of adsorption bond
length a on degree of coverage Θ = N/NML (where N and
NML are the particle concentrations in an adlayer and
monolayer, respectively):

(1)

where a0 is the adsorption bond length at zero coverage
and α is a dimensionless coefficient.

In the H/Ge(111) system, the value of ∆φ(Θ) is neg-
ative at small Θ (charge Z of an adatom is positive),
vanishes at Θ = 0.15, and then becomes positive (the
adatom takes a negative charge) and grows. In going
from Z > 0 to Z = 0, shell occupation number n = 1 – Z
of the adatom rises and shell radius a increases from a
value close to ionic radius ri to a value close to atomic
radius ra. Below, we will analyze the experimental data
for the H/Ge(100) system [5].

For hydrogen adsorption on Si(100), the depen-
dence ∆φ(Θ) is in a sense inverse to this dependence for
Ge(100): the work function of the system does not
change up to  ≈ 0.1 (that is, ∆φ(Θ) = 0) and then, at

Θ > , function ∆φ(Θ) becomes negative.1 Generally
speaking, it is unclear why the work function of the
H/Ge(100) system remains constant in the coverage
interval (0, 0.1). Conversely, the work function of
adsorption systems (such as metal-on-metal [4], metal-
on-semiconductor [6], and gas-on-semiconductor [2, 7]
systems) usually varies most significantly in this range,
according to observations. Moreover, it was shown [5]
that, when a submonolayer germanium film is applied

1 When analyzing the data in [5], we assume that an exposure of
10L corresponds to θ = 0.1. It is also assumed for simplicity that
the coverage is a linear function of exposure.

a a0 1 αΘ+( ),=

Θ
Θ

1063-7842/05/5001- $26.00 0139
on the silicon substrate (i.e., in the H/Ge/Si(100) sys-
tem), there appears a range of coverages (0, Θ*) where
∆φ(Θ) is positive and reaches a maximum at Θ ≈ 0.05.
As the adatom concentration grows, Θ* increases. This
allows us to expect a positive correction to the work
function in the coverage interval (0, 0.1) for the uncov-
ered Si(100) surface too. Subsequently, we will proceed
from this assumption.

As was shown in [1], charge Z of an adatom and
change ∆φ in the work function can be calculated with
regard to dipole–dipole interaction in an adsorbed layer
as follows:

(2)

Z  = 
2
π
---

Ω0 1 x–( )/ 1 α x+( ) x3/2ξ0Z 1 α x+( )2–
Γ

---------------------------------------------------------------------------------------- ,arctan

∆φ Φ0x 1 α x+( )Z ,–=

0.2

0.1

0

–0.1

–0.2

–0.3
0 0.1 0.2 0.3 0.4 0.5

Θ

∆φ, eV

Fig. 1. Change ∆φ in the work function of the silicon surface
vs. coverage Θ by hydrogen atoms.
© 2005 Pleiades Publishing, Inc.
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where

(3)

Here, Ω0 is the energy of the adatom quasi-level relative
to the Fermi level of the substrate, ξ0 is the constant of
dipole–dipole repulsion between adatoms, A ~ 10 is a
dimensionless coefficient that weakly depends on the
adatom lattice configuration, Γ is the half-width of the
isolated adatom quasi-level, I is the energy of ioniza-
tion of the adatom, φ is the work function of silicon, and
∆0 is the Coulomb shift of the adatom quasi-level (this
shift arises when the electron of an adatom interacts
with electrons of the substrate).

To calculate the adsorption, we took the following
values of the parameters: a0 = 1.5 Å, NML = 6.78 ×
10−14 cm–2,  = 0.1, ξ0 = 11.44 eV, Φ0 = 18.4 eV, Ω0 =
–0.1 eV, Γ = 0.1 eV, ∆0 = 2.4 eV, and α = –0.1. Note that
here α < 0; that is, the adsorption bond shortens and the
adatom quasi-level shifts upward, passing from its ini-
tial position under the Fermi level (Ω0 ≡ Ω(Θ = 0) < 0)
to a position above the Fermi level (Ω(Θ) = Ω0 –
∆0[αΘ/(1 + αΘ)]).

The analytical dependence ∆φ(Θ) is given in Fig. 1.
Good agreement with the experimental data is observed
for coverages between 0.1 and 0.3. A slight discrepancy
at Θ > 0.3 is related to the neglect of exchange pro-
cesses, which cause adatom depolarization [4]. Figure 2

z
Θ
Θ
----, ξ0 ξ0Θ

3/2
, Φ0 Φ0Θ,= = =

α αΘ
Ω0

I φ–
-----------, ξ0 2e2a0

2NML
3/2 A,= = =

Ω0 φ I– ∆0, ∆0+
e2

4a0
--------, α

Ω0

I φ–
-----------.= = =

Θ

0.2

0

–0.2

–0.4

–0.6
0 0.1 0.2 0.3 0.4 0.5

Θ

Z

Fig. 2. Charge Z of a hydrogen adatom on the silicon surface
vs. coverage Θ.
shows the variation of charge Z with Θ. Note that the
scale in Fig. 2 shades the fine structure of the depen-
dence Z(Θ): namely, charge Z first vanishes at ; then
takes a positive value, growing in magnitude up to Θ =
0.4 (Z(0.4) ≈ 0.029); and finally declines slowly.

Since hydrogen accepts the electrons of the sub-
strate at Θ ≤ 0.1 and donates them at higher coverages,
surface conductivity σ first declines relative to the con-
ductivity of the uncovered surface and then exceeds it.
Figure 3 shows the Θ dependence of product µ ≡
|Z(Θ)|Θ, which varies in proportion to relative change
∆σ/σ0 in the surface conductivity, where σ0 is the con-
ductivity of the uncovered Si(100) surface.

Thus, the simple model adopted in this work, which
was initially proposed for sodium atom adsorption on
cesium [8], can also be applied to hydrogen adsorption
on germanium and silicon.
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Fig. 3. Θ dependence of product µ ≡ |Z(Θ)|Θ, which varies
in proportion to relative change ∆σ/σ0 in the surface con-
ductivity.
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Abstract—The problem of capillary oscillations of the equilibrium spherical shape of a charged viscous
incompressible liquid drop is solved in an approximation linear in amplitude of the initial deformation that is
represented by a finite sum of axisymmetric modes. In this approximation, the shape of the drop as a function
of time, as well as the velocity and pressure fields of the liquid in it, may be represented by infinite series in
roots of the dispersion relation and by finite sums in numbers of the initially excited modes. In the cases of low,
moderate, and high viscosity, the infinite series in roots of the dispersion relation can be asymptotically cor-
rectly replaced by a finite number of terms to find compact analytical expressions that are convenient for further
analysis. These expressions can be used for finding higher order approximations in amplitude of the initial
deformation. © 2005 Pleiades Publishing, Inc.
(1) Capillary oscillation and stability of a charged
incompressible liquid drop are of both scientific and
applied interest [1–3]. Therefore, this problem was
repeatedly solved in the linear and nonlinear state-
ments. However, up to now the analytical calculations
of nonlinear oscillations of a charged drop have been
made only in the ideal liquid approximation [4–9], and
nonlinear analysis of viscous drops has been performed
only by numerical methods [10, 11]. The attempt [12]
to asymptotically calculate nonlinear oscillations of an
arbitrary-viscosity drop [12] resulted in very awkward
expressions at the final stage, which are hardly amena-
ble to conventional methods of mathematical analysis.
It seems, however, that the difficulties faced in [12] may
be avoided in the limits of extremely high and negligi-
ble viscosity. In this work, we solve the problem of time
evolution of the shape of a charged viscous liquid drop
that is deformed at the zero time in an approximation
linear in oscillation amplitude and find asymptotic
solutions in the limits of high and low viscosity. In the
previous studies of linear oscillations of a charged vis-
cous liquid drop, which were carried out in terms of the
linear theory, the basic result was the derivation of the
dispersion relation, based on which one can judge the
oscillation modes and stability of the drop [1, 13, 14].
Initial conditions were not included in the statement of
the problem. As applied to the time evolution of the
shape of an oscillating drop, these studies were reduced
to deriving asymptotic expressions for the damping
decrements. In this work, we suggest a qualitatively dif-
ferent approach to linear analysis of the oscillations of
a viscous liquid drop. Our approach is, in essence, the
1063-7842/05/5001- $26.00 0019
linear stage of solving the problem of nonlinear oscilla-
tions of a viscous drop.

(2) Let a spherical drop of a perfectly conducting
incompressible viscous liquid with density ρ, kinematic
viscosity ν, and surface tension coefficient σ bear elec-
tric charge Q. The radius of the drop is r0. Denote the
liquid velocity field in the drop as U(r, ϑ , t); the pres-
sure field as P(r, ϑ , t); and the electric field potentials in
the vicinity of the drop and on its surface as φ(r, ϑ , t)
and φS(t), respectively. In spherical coordinate system
(r, ϑ , ϕ), an equation for the surface of the drop, which
executes axisymmetric oscillations at any time instant t,
can be written in the form

(1)

with the initial condition

(2)

Here, ε is a small parameter characterizing the initial
perturbation amplitude, Pm(µ) is the Legendre polyno-
mial of the mth order, Ω is the set of indices of initially
excited modes, and hm are constants taking into account
the partial contributions of an mth mode to the initial

shape of the drop (  = O(1)).

Mathematically, the problem of oscillations of a
charged conducting incompressible viscous liquid drop
whose shape is defined by (1) and (2) is stated as

F r ϑ t, ,( ) r r0– ξ ϑ t,( ),–=

t 0: ξ ε hmPm µ( ), µ ϑ .cos≡
m Ω∈
∑= =

hmm Ω∈∑
© 2005 Pleiades Publishing, Inc.
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[13, 14]

Here, symbol ∂t means a partial derivative with respect
to variable t; n and t are the unit vectors normal and
tangent to the surface of the drop, respectively;

are the pressures of surface tension forces and forces
due to the electric field of the self-charge of the drop;
and ∆ is the Laplacian.

(3) Since the set of equations written above is non-
linear, we expand all the desired quantities in small
parameter ε to find its solution by the direct expansion
method [15]:

(i) Substituting these expansions into the basic set of
equations and equating the coefficients multiplying the
zeroth power of the small parameter to each other, we

∂tU U —⋅( )U+
1
ρ
---grad p– ν∆U; divU+ 0;= =

∆φ 0;=

t 0: U 0;= =

r 0: U ∞;<

r +∞: —φ 0;

r r0 ξ ϑ t,( ): φ+ φS t( ); ∂tF U —⋅( )F+ 0;= = =

t n —⋅( )U n t —⋅( )U⋅+⋅ 0;=

– p 2ρνn+ n —⋅( )U pQ– pσ+⋅ 0;=

n
S

∫ —φdS⋅ 4πQ;–=

S r ϑ ϕ r r0 ξ ; 0 ϑ π; 0 ϕ 2π≤ ≤ ≤ ≤+=, ,{ } ;=

r2 ϑsin rd ϑd ϕd

V

∫ 4π
3

------r0
3;=

V r ϑ ϕ 0 r≤ r0 ξ ; 0 ϑ π; 0 ϕ 2π≤ ≤ ≤ ≤+≤, ,{ } ;=

rr2 ϑsin rd ϑd ϕd

V

∫ 0.=

pQ
1

8π
------ —φ( )2, pσ σ — n⋅( )= =

ξ ϑ t,( ) εξ 1( ) ϑ t,( ) O ε2( );+=

U r ϑ t, ,( )  =

εUr
1( ) r ϑ t, ,( )er εUϑ

1( ) r ϑ t, ,( )eϑ O ε2( );+ +

p r ϑ t, ,( ) p 0( ) r ϑ t, ,( ) εp 1( ) r ϑ t, ,( ) O ε2( );+ +=

φ r ϑ t, ,( ) φ 0( ) r t,( ) εφ 1( ) r ϑ t, ,( ) O ε2( );+ +=

φS t( ) φS
0( ) t( ) εφS

1( ) t( ) O ε2( ).+ +=
obtain a set of equations of the zeroth order of small-
ness:

Solving it, we find

(3)

(ii) Separating out the terms involving the small
parameter in the first power and taking into account the
vector identity [16]

we arrive at the first-order problem

(4)

∆φ 0( ) 0;=

r +∞: —φ 0( )
0;

r r0: r0
2∂rφ

0( ) ϑcos( )d

1–

1
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0( ) t( );= = =

– p 0( ) pQ
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0( )+ 0.=

φ 0( ) Q
r
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0( ) Q
r0
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8πr0
4

-----------+
2σ
r0
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∆U grad divU( ) curl curlU( ),–=

∂tUr
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ρ
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---∂rϑ Uϑ

1( ) ϑ( )cot
r
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1( )–

1

r2
----∂ϑ Uϑ

1( )–
ϑ( )cot

r2
----------------Uϑ

1( )– 
 ;

∂tUϑ
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1
ρ
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r
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r
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1( ) 1
r
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∂rUr
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r
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r
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where ∆Ω is the angular part of the Laplacian.

(4) Now we apply the Laplace transformation to
set (4), that is, turn from the functions to their Laplace
transforms [17]:

and expand the Laplace images in an infinite set of Leg-
endre polynomials:

(5)

As a result, set (4) takes the form

(6)

(7)

(8)

(9)

(10)

(11)

F S( ) f t( ) St–( )exp t; fd
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(13)

(14)

(15)

(16)

(17)

where δn0 is the Kronecker symbol.

We start to solve set (6)–(17) from the solution of
Eqs. (13), which, subject to the orthogonality condi-

tions for the Legendre polynomials, yield (S) =

(S) = 0. With these conditions and zeroth-order
solutions (3), it is easy to find a solution to set of equa-
tions (14)–(17) in the form

(18)

To find the liquid velocity and pressure fields in the

drop, we express (r, S) appearing in continuity
equation (8) as

(19)

and (r, S) from Eq. (7) as

(20)
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With expressions (19) and (20) substituted into (6),
(6) takes the form [18]

(21)

A solution to Eq. (21) that satisfies boundedness
condition (9) has the form
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where An(S) and Bn(S) are arbitrary constants and jn is
the nth-order modified spherical Bessel function of the
first kind.

Substituting (22) into (19) and (20), we find (r,

S) and (r, S):
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(24)

Now we substitute (3), (18), and (22)–(24) into
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which dependences An(S), Bn(S), and (S) can be
found:
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we find functions (S), An(S), and Bn(S) from
set (25). Substituting them into expressions (22)–(24)
yields

(26)

It is seen that expressions (26) have singular points

whose positions are defined by the condition Dn( ) = 0.

The equation Dn( ) = 0 is the dispersion relation of
the problem, which has an infinite number of solutions.

In each of these solutions, function (1/Dn( )) has a
first-order pole. In addition, each of expressions (26)
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tends to zero at S  ∞. Then, we can replace the inte-
gral taken along straight line ReS = γ in the inverse
Laplace transformation

by the circulation integral taken along a contour enclos-
ing the whole left-hand part of the complex plane and
then apply the residue theorem to this integral. Eventu-
ally, the inversion formula takes the form

(27)

Substituting (26) into (5) and using inversion for-
mula (27) along with the initial conditions, we find
expressions for the deviation of the shape of the drop
from the equilibrium sphere and for the velocity and
pressure fields of the liquid flow in the drop:

(28)

where
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(29)

Note that, in expressions (29), which define coeffi-

cients (t), (r, t), (r, t), and (r, t) of
expansions (28), summation is over the infinite set of

the roots of the equation Dn( ) = 0.

(5) Let us consider the case when the viscosity of the
liquid is so low that the argument of the modified spher-
ical Bessel function becomes sufficiently large for the
asymptotic expansion [19]

(30)

be valid.

In the expressions for aξ( ), a( ), b( ), and

Dn( ), we leave the first two terms in series (30):

pn
1( ) r t,( ) ρr0 a Sn

k( )( )Sn
k( ) r

r0
---- 

  n Sn
k( )t( )exp

n
------------------------;

k 1=

+∞

∑–=

aξ Sn
k( )( ) Sn

k( ) 2 n 1–( ) 2n 1+( ) ν
r0

2
----+

=

+ 2 n 1–( )2 n 1+( ) ν
r0

2
---- 1

χ
2
---

jn χ( )
jn 1+ χ( )
------------------– 

 
1–


 1

∂SDn Sn
k( )( )

-------------------------;

a Sn
k( )( ) 2 n2 1–( )

r0
2Sn

k( )

ν
------------+ 

  1
2χ
------

jn χ( )
jn 1+ χ( )
------------------ 1– 

 =

× 1
χ
2
---

jn χ( )
jn 1+ χ( )
------------------– 

 
1– ωn

2

∂SDn Sn
k( )( )

-------------------------;

b Sn
k( )( ) 2 n2 1–( ) 1

2
χ
---

jn 1+ χ( )
jn χ( )

------------------– 
 

1– ωn
2ν

r0Sn
k( )∂SDn Sn

k( )( )
--------------------------------------;=

∂SDn Sn
k( )( ) 2Sn

k( ) 2 n 1–( ) 2n 1+( ) ν
r0

2
----+=

+ n 1–( )2 n 1+( ) ν
r0

2
---- 2

2n 1+( )χ
2

------------------------
jn χ( )

jn 1+ χ( )
------------------+



+
χ2

2
----- 1

jn χ( )
jn 1+ χ( )
------------------ 

 
2

– 
 


 1

χ
2
---

jn χ( )
jn 1+ χ( )
------------------– 

 
2–

.

ξn
1( ) Urn

1( ) Uϑ n
1( ) pn

1( )

Sn
k( )

jn χ( ) χ( )exp
2χ

----------------- 1
n n 1+( )

2χ
--------------------–

=

+
n n2 1–( ) n 2+( )

8χ2
--------------------------------------- O

1

χ3
----- 

 

 ; χ ∞+

Sn
k( ) Sn

k( ) Sn
k( )

Sn
k( )

aξ Sn
k( )( ) Sn

k( ) 2 n 1–( ) 2n 1+( ) ν
r0

2
---- O ν3/2( )+ + 

 =

× 1

∂SDn Sn
k( )( )

-------------------------;



24 ZHAROV, GRIGOR’EV
(31)

As follows from (31), the dispersion relation

Dn( ) = 0 in the low viscosity approximation has

only two complex conjugate roots  = –δn + iωn and

 = –δn – iωn, where δn = (n – 1)(2n + 1)ν/ . There-
fore, the infinite sums in expressions (29) can be

replaced by the sum of two values  =  and  =

. Coefficients (29) then simplify to
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In the above expressions, the ratios of the spherical
cylindrical functions are left instead of being replaced
according to (30). This is because the arguments of the
spherical cylindrical functions in the numerators of (32)
are small at the center of the drop (r  0), so that
asymptotic expansion (30) fails.

Note that, when the viscosity tends to zero, expres-
sions (32) transform into the well-known expressions
for an ideal liquid:

(6) Consider now a moderate-viscosity liquid such
that argument χ in the expansion [19]
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of the modified spherical cylindrical function is suffi-
ciently small for each subsequent term of the series in
the parentheses to be smaller than the preceding one
and the condition Reχ2 < 0 to be fulfilled. The latter
condition means that the series becomes alternating-
sign and only a few of its initial terms may be left. At
the same time, the viscosity is assumed to be such that
the periodical oscillations of the drop persist.

Leaving the first two terms in (33), we find expres-
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for Dn( ) in the form
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(34)

From expression (34), it readily follows that the dis-

persion relation Dn( ) = 0 in the case of a moderate-
viscosity liquid has only two complex conjugate roots,
as for a low-viscosity liquid:

(35)

Therefore, in expressions (29), we will have, instead

of the infinite sum, the sum of two values  =  and

 = . Taking into account this and expansions (33)
and (34), it is easy to derive asymptotic expressions for
the deviation of the surface shape of the drop from the
equilibrium sphere and for the liquid velocity and pres-
sure fields in the drop:
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Fig. 1. Ratio between the second, , and first, , roots

of the dispersion relation Dn( ) = 0 as a function of

dimensionless liquid viscosity ν in the high-viscosity range,
where the periodic motions in the liquid disappear at W = 1
and n = 2.
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n = 2, and different k. The numbers by the curves mean root
number k. The solid line depicts the exact solution; the dot-
ted line, low-viscosity approximation; and the dashed line,
moderate-viscosity approximation.
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(36)

(7) Finally, consider a high-viscosity liquid (such

that ν2/( ) @ βn), where the periodic flows of the
liquid disappear and the drop can execute only aperi-
odic motions. Using expansion (33), as in the previous

case, one can find that two roots  and  of the dis-
persion relation are given by

and obey the inequality | | @ | | in a wide viscosity
range (Fig. 1). When constructing an asymptotic solu-

tion in such a situation, one may leave only root ,
which decreases with increasing viscosity. In this case,
expressions (36) take the form
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Fig. 3. Real components Re( ) of the roots of the disper-

sion relation Dn( ) = 0 vs. dimensionless liquid viscosity

ν for W = 1, n = 2, and different k. The numbers by the
curves coincide with root number k.
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Fig. 4. Dimensionless coefficient  as a function of

dimensionless time t at W = 1 and n = 2. The solid line, exact
solution; dotted line, low-viscosity approximation; and
dashed line, moderate-viscosity approximation. ν = (a) 0.01,
(b) 0.1, and (c) 0.4. When coinciding with the solid one, the
dotted or dashed line becomes indistinguishable.
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Dimensionless roots  of the dispersion relation  and coefficients , , and  calculated
for n = 2, W = 1, and different dimensionless viscosity ν

k

ν = 0.01

1 –0.04721 + 2.44660i 0.50072 – 0.00936i 0.03201 + 1.22244i –0.03274 + 0.00305i

2 –0.04721 – 2.44660i 0.50072 + 0.00936i 0.03201 – 1.22244i –0.03274 – 0.00305i

3 –0.28228 –0.00061 0.01319 –0.01301

4 –0.78440 –0.00039 0.00350 –0.00319

5 –1.47743 –0.00024 0.00164 –0.00129

6 –2.36657 –0.00012 0.00083 –0.00055

7 –3.45262 –0.00005 0.00041 –0.00024

8 –4.73585 –0.00002 0.00020 –0.00011

9 –6.21638 0.00010 –0.00005

10 –7.89426 0.00005 –0.00003

11 –9.76952 0.00003 –0.00001

12 –11.84215 0.00002

ν = 0.1

1 –0.39951 + 2.36952i 0.50799 – 0.07524i 0.36731 + 1.12760i –0.39198 + 0.10615i

2 –0.39951 – 2.36952i 0.50799 + 0.07524i 0.36731 – 1.12760i –0.39198 – 0.10615i

3 –2.91160 –0.01548 0.09730 –0.05222

4 –7.87661 –0.00045 0.00671 –0.00317

5 –14.78764 –0.00003 0.00099 –0.00048

6 –23.67140 0.00023 –0.00011

7 –34.52866 0.00007 –0.00004

8 –47.35961 0.00003 –0.00001

9 –62.16433 0.00001

ν = 1

1 –0.90254 1.16747 8.81096 –9.86465

2 –6.21851 –0.16697 –0.43380 1.47210

3 –29.93916 –0.00050 0.02192 –0.00703

4 –78.80501 0.00078 –0.00035

5 –147.88167 0.00010 –0.00005

6 –236.71521 0.00002 –0.00001

Sn
k( ) Dn Sn

k( )( ) 0= aξ Sn
k( )( ) a Sn

k( )( ) b Sn
k( )( )

Sn
k( ) aξ Sn

k( )( ) a Sn
k( )( ) b Sn

k( )( )
Note that expressions (37) are in good agreement
with exact solution (29) only at those time instants

when the inequality | |t @ 1 is valid. For small times,

when the value of | |t is comparable to unity, the solu-

tions for velocity field components ( (r, t), and

(r, t)) differ drastically from their true values and

(37) is inapplicable.

Sn
–

Sn
–

Urn
1( )

Uϑ n
1( )
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(8) To perform numerical analysis of the solution to
the problem of capillary oscillations of a charged axi-
symmetric viscous drop, we turn to dimensionless vari-
ables for convenience, putting ρ = σ = r0 = 1. Then, all
the physical quantities involved in the problem will be
expressed in terms of their characteristic scales.

Namely, quantities r0, ρ, , , ,

σ/r0, and  will serve as the scales of length, den-
sity, frequency, pressure, and kinematic viscosity.

ρr0
3/σ σ/ρr0

3 σ/ρr0

δr0/ρ
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We assume that the radius of drops varies from r0 =
10–4 to 10–1 cm. The surface tension coefficient and the
density of liquids equal, on average, σ = 50 dyn/cm and
ρ = 1 g/cm3. For these values of the physical parame-
ters, the characteristic scales are as follows: time, 5 ×
10–7–10–3 s; frequency, 2 × 102–107 s–1; liquid velocity,
20–700 cm/s; liquid pressure, 5 × 102–5 × 105 dyn/cm;
and viscosity, 7 × 10–2–2 cm2/s.

In terms of the dimensionless variables, the physical
quantities of the problem will depend on parameter W =
Q2/(4π), which characterizes the stability of the drop
against its self-charge [1]; dimensionless kinematic vis-
cosity ν of the liquid; small parameter ε; set Ω of the
indices of initially excited modes; and constants hn (n ∈
Ω), which take into account the contribution of an nth
mode to the formation of the initial shape of the drop.

The numerical analysis of the exact dispersion rela-

tion Dn( ) = 0 (see (26)) carried out in terms of the
dimensionless variables indicates that this equation has
the infinite number of roots. For low and moderate vis-
cosity ν at W < 4, there are two complex conjugate roots

 and  with a negative real part. Their imaginary

part Im( ) = –Im( ) defines the oscillation fre-
quency of the drop (see expression (29)); their real part

Re( ) = Re( ), the damping decrement. The rest

of the roots, , of the equation Dn( ) = 0 (k ≥ 3)
are negative real numbers and specify the damping dec-
rements.

As the viscosity grows, the real parts of the roots

 and  increase in magnitude, while the imagi-
nary parts decrease until the aperiodic motion is totally

suppressed at ν ≈ 0.65 (Fig. 2). At ν > 0.65, roots 

and  become negative real numbers. One of them
asymptotically decreases in magnitude, tending to the
abscise axis with increasing ν (Fig. 2), and the other
grows in absolute value, asymptotically tending to lin-
early grow with increasing viscosity (Figs. 2, 3). Roots

 with higher superscripts k diminish rapidly by the
linear law as the viscosity increases (Fig. 2).

Figure 2b allows for discrimination between the
cases of low, moderate, and high viscosity. At ν > 0.1,
the difference between the exact solution of the disper-
sion relation and the solution obtained in the moderate-
viscosity approximation is very small (on the order of
the linewidth). At ν < 0.05, the oscillation frequency of
the viscous drop is approximated well by the low-vis-
cosity approximation, while the moderate-viscosity
approximation gives a conservative value of the fre-
quency in the limit ν  0. The high-viscosity approx-
imation is naturally adequate at ν > 0.65, where the
periodic solutions disappear.

Sn
k( )

Sn
1( ) Sn

2( )

Sn
2( ) Sn

1( )

Sn
1( ) Sn

2( )

Sn
k( ) Sn

k( )

Sn
1( ) Sn

2( )

Sn
1( )

Sn
2( )

Sn
k( )
Numerical calculations (see the table) show that, as
number k of the root of the dispersion relation

Dn( ) = 0 increases, coefficients aξ( ), a( ),

and b( ), which are responsible for the shape of an
oscillating drop, as well as for the velocity and pressure
field in it (see (28), (29)), rapidly tend to zero, the rate
of decrease depending on the viscosity.

It should also be noted that, according to (29), coef-

ficients aξ( ), a( ), and b( ) exponentially
decrease with time, the damping decrements (which are

equal to Re( )) increasing rapidly with k (see the
table). Therefore, the high-k terms of series (29) tend to
zero very rapidly with time, so that the terms corre-
sponding to the first two roots of the equation

Dn( ) = 0, i.e., those with the smallest damping
increments, become of decisive significance. Eventu-
ally, we observe good agreement between exact expres-
sions (28) and the asymptotic approximations for the
low-viscosity (expression (32)) and moderate-viscosity
(expression (36)) cases (Fig. 4).

The moderate-viscosity approximation, which leads
to well-solvable inhomogeneous problems in the sec-
ond and third order of smallness in initial deformation
amplitude, seems to be the most appropriate for further
nonlinear analysis.

CONCLUSIONS

We considered the time evolution of capillary oscil-
lations of a charged viscous incompressible conducting
liquid drop in the first order of smallness in initial
deformation amplitude. The analysis showed that infi-
nite summation over the roots of the dispersion relation
in the expressions for the shape of the drop and for the
velocity and pressure fields in it may be replaced by the
sum of the first two terms. The analytical solutions thus
obtained are compact enough that finding of higher
order solutions becomes topical. In other words, one
can tackle the yet unsolved problem of nonlinear oscil-
lations of a charged viscous liquid drop.
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Abstract—A theory of the interaction of short laser pulses with plasmas is constructed based on the previously
developed kinetic theory of a tenuous plasma. The generation of fast electrons by a relativistically strong fem-
tosecond laser pulse in a plasma with a nearly critical density is investigated. The results obtained agree with
the results from particle-in-cell simulations and with the experimental data. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

State-of-the-art tera- and petawatt lasers [1] have
made it possible to produce radiation pulses with inten-
sities of 1018–1021 W/cm2. In the interaction of such an
intense laser pulse with a gaseous or a solid-state target,
the target material is transformed into a plasma (the
plasma can also be created by a lower power prepulse).
Laser-produced plasmas are subject to parametric
instabilities [2–6], which lead to the excitation of
plasma waves. Under the action of the laser field, the
plasma parameters oscillate. As in a mechanical oscil-
latory system, such oscillations can give rise to a para-
metric resonance, due to which the self-field of the
oscillations increases with time. The turbulent field of
the plasma waves accelerates electrons by a mechanism
analogous to the Fermi acceleration mechanism [7]. At
such high laser intensities, the electrons can also be effi-
ciently accelerated by ponderomotive forces [8].

A substantial portion of the laser pulse energy (30–
50%) is converted into the energy of the fast electron
beam. This is confirmed by particle-in-cell (PIC) simu-
lations [9, 10] and experimental data [11]. Intense
beams of fast electrons are planned to be used for the
rapid ignition of fusion targets [12] and also as a source
of gamma photons generated by the electron
bremsstrahlung [13].

A theory of the interaction of short laser pulses with
plasmas will be formulated in the next section on the
basis of the previously developed kinetic theory of a
tenuous plasma [14]. In what follows, the correlations
occurring in the plasma will be ignored, i.e., the plasma
kinetics will be treated in the collisionless approxima-
tion.
1063-7842/05/5001- $26.00 ©0030
FORMULATION OF THE THEORY 
OF THE INTERACTION OF SHORT LASER 

PULSES WITH PLASMAS

In the present study, it is proposed to describe the
behavior of the plasma distribution function on short
time scales (less than the plasma relaxation time) by the
propagator obtained in my earlier paper [14]. The
plasma kinetics on sufficiently long time scales was
investigated by repeatedly applying the propagator. For
a classical (nondegenerate) plasma consisting of the
particles of two species, a and b, the propagator for the
density matrix ρa(r, r', t) in the self-consistent field
approximation has the form

(1)
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Here, va and ra are the velocity of a particle of species
a and its position vector, Uaa and Uab are the particle
interaction energies, Ri is the position vector of the
scattering center, A is the vector potential of the exter-
nal field acting on a particle, and na and Za are the mean
density of the particles of species a and their charge.

Propagator (1) describes the plasma dynamics on
time scales shorter than the relaxation time of the dis-
tribution function.

In analyzing the plasma kinetics, it is convenient to
pass over to the difference variable ∆r = R – R' (where
r = (R + R')/2) and accordingly to the density matrix
ρ(r + ∆r/2, r – ∆r/2). In terms of this variable, the den-
sity matrix is related to the distribution function by the
relationship

(2)

where V is the plasma volume.
In the problem under investigation, the quantum

effects are unimportant; consequently, the action of the
particle,

(see Eq. (1)), can be expanded in powers of the small
difference ∆r(t). Since the contribution of the zero-
order term in the expansion is zero, the expansion is
equivalent to taking the nonrelativistic limit. The action
can be described by a nonrelativistic expression; in this
case, however, the relationship between the velocity
and the momentum remains relativistic, just as it is in
the standard kinetic theory (in the self-consistent field
approximation) [15]. In this approximation, the propa-
gator for the particles of species a in a classical (nonde-
generate) plasma has the form
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where the action S0 for a particle in a linearly polarized
laser field (typical of high-power lasers) is given by the
following expression, in which the field nonuniformity
is taken into account parametrically:

(4)

Here, A = A0(r⊥ , ϕ/ω)sinϕ is the vector potential of the
laser field, r⊥  ⊥  k; ϕ1, 2 = ωt1, 2 – kr1, 2; ∆ϕ1, 2 = –k∆r/2;
ω is the laser field frequency; k is the wave vector; and
∆Sp is the contribution to the action that comes from the
ponderomotive forces associated with the nonunifor-
mity of the laser field amplitude A0.

The ponderomotive forces are accounted for in
terms of perturbation theory. This approach is valid on
sufficiently small time scales on which the displace-
ment of the particle is small in comparison to the char-
acteristic spatial scale of the laser field amplitude A0:

(5)

Here, ∆ra is the trajectory of a particle in a uniform
laser field, the boundary conditions being ∆ra(t1) = ∆r1
and ∆ra(t2) = ∆r2. The contribution to the action that
comes from the interaction between particles, ∆Sst, is
also calculated in terms of perturbation theory and is
given by the formulas

(6)
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(7)

where Zb, pb, vb, and nb are the charge, momentum,
velocity, and mean density of the plasma particles of
species b, respectively. The collisional volume was cal-
culated using the following expression for the potential
energy of the interaction between particles [14]:

(8)

where account is taken of both the scalar and the vector
potentials of the field that a particle of species b (mov-
ing at constant velocity) exerts on a test particle of spe-
cies a.

In deriving formulas (6) and (7), we took into
account the fact that the laser frequency is low in com-
parison to the characteristic (Weisskopf) rate at which

the collisional volume  varies. In the case under
consideration, this rate is equal to the ratio of the char-
acteristic velocity to the largest of the two characteristic
scale lengths—the Landau length and the de Broglie
wavelength. It should be noted that the imaginary part
of the collisional volume describes the shift of the
momentum distribution function of particles of species
a and is determined by the vector potentials of the fields
of perturbing particles. The real part of the collisional
volume describes the broadening of the momentum dis-
tribution function of particles of species a and is deter-
mined by the scalar potentials of the fields of perturbing
particles.

The evolution of prescribed initial distribution func-
tions of the plasma particles can be analyzed by repeat-
edly applying propagators (3)–(7). The statistically
averaged plasma fields and scattered electromagnetic
fields can be determined from the distribution functions
of the plasma particles [15]. The Fourier components of
the intensities of the longitudinal and transverse electric
fields have the form
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2

c2
--------------------------------+

-------------------------------------------------------------------------------------,

Vba
st

E||E||( )ω k,

4πe2na

k2
----------------- 2πδ ω kv–( ) f 2Z p( ) pd∫

a

∑
ε|| ω k,( ) 2

-----------------------------------------------------------------------------------,=
(9)

The longitudinal and transverse dielectric functions
of the plasma are given by the expressions

(10)

It is also necessary to calculate the mean charges of
the particles (ions). In the case of a short (femtosecond)
laser pulse, the charge of an ion at a given point is gov-
erned by the laser electric field [16], provided that the
laser field at this point is increasing. When the laser
field at this point is decreasing, the ion charge does not
change. This model of the ion charge kinetics results
from the over-barrier nature of the ionization of ions by
the laser field and from the short time of the interaction
of a femtosecond laser pulse with a target. In the gen-
eral case in which the ionization is not of the over-bar-
rier nature, the mean ion charges are determined from
the charge kinetic equations.

The laser field amplitude E(t) and the ion charge Z
are related by the Bethe formula (in atomic units) [17]

(11)

where IZ – 1 is the ionization energy of an ion with the
charge Z–1.

When the plasma electric field differs substantially
from the laser field in vacuum, the electric field
amplitude in formula (11) should be replaced with the
plasma field amplitude calculated from Fourier compo-
nents (9).

For over-barrier ionization by a linearly polarized
laser field, Krainov [18] obtained the following esti-
mate for the electron velocity distribution function:

(12)

where Ai(x) is the Airy function and γ = ω /E is
the Keldysh parameter (in atomic units).

In the case of tunneling and multiphoton ionization
by a relativistic laser field, the expressions for the elec-
tron velocity distribution function were obtained by
Hafizi et al. [19].
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GENERATION OF HOT ELECTRONS 
BY A RELATIVISTIC FEMTOSECOND LASER 

PULSE

In the field of the laser pulse, the electron executes
oscillatory motion. For Iλ2 ≥ 1018 W/cm2 µm2 (where
λ is the laser wavelength), the electron oscillatory
velocity is close to the speed of light. Here, we are con-
sidering a linearly polarized laser pulse with the
envelop

(13)

where the z axis is directed along the wave vector of the
laser pulse and the x axis is directed along the polariza-
tion axis. The electron density distribution has the form

(14)

where ncr = πmec2/e2λ2 is the critical density above
which a nonrelativistic electromagnetic wave cannot
propagate in the plasma.

This density distribution is established as a result of
the ablation of a solid-state target by a laser prepulse. In
this case, the plasma is heated to a temperature of about
1 keV.

In formulas (6) and (7), it is convenient to switch to
a purely coordinate representation of the quantities in
accordance with relationships (2). All the integrals in
formulas (6) and (7) were calculated by the multidi-
mensional stationary-phase method [20]. These inte-
grals belong the type of integral of a rapidly oscillating
function because we are dealing with a classical (non-
degenerate) plasma.

First, we performed calculations for a hydrogen
plasma. The laser pulse parameters and the degree to
which the plasma is inhomogeneous were chosen to be
the same as those in [21], specifically, τ = 150 fs, σ =
6λ, and L = 30λ (the laser wavelength being λ = 1 µm).
The length of the computation region was somewhat
smaller: zmax = 40λ. The calculations were performed
for the maximum laser intensities of I0 = 1018, 1019, and
1020 W/cm2. The electron distribution functions over
the z component of the momentum are shown in
Figs. 1–3. It is in this direction that the electrons are
predominantly accelerated. The calculated results agree
with those obtained by Pukhov et al. [21]. In fact, for a
laser intensity of I0 = 1018 W/cm2, fast electrons are
heated to a temperature of about Th ~ 0.8 MeV; for an
intensity of I0 = 1019 W/cm2, electrons in the energy
range below 12.5 MeV are heated to about Th ≈
4.5 MeV (in the energy range below 50 MeV, the mean
electron temperature is about Th ≈ 8 MeV); and, for an
intensity of I0 = 1020 W/cm2, electrons in the energy
range above 25 MeV are heated to about Th ≈ 15 MeV.
In [21], the temperatures of fast electrons in these three
cases lie in the ranges 0.5–1.2, 3–8, and 9–16 MeV,

A0x A0 t z/c–( )2/τ2–( )exp=

× x2 y2+( )/σ2–( ),exp

nc z( ) ncr z/L( ), 0 z zmax,< <exp=
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Fig. 1. Electron distribution function over the z component
of the momentum for I0 = 1018 W/cm2.
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Fig. 2. The same as in Fig. 1, but for I0 = 1019 W/cm2.
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Fig. 3. The same as in Fig. 1, but for I0 = 1020 W/cm2.
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respectively. In Figs. 2 and 3, we can clearly see the
presence of electrons accelerated in the opposite direc-
tion. This occurs because of the onset of the Weibel
instability of the anisotropic momentum distribution of
the plasma electrons [22]. In addition, thermal elec-
trons are heated to temperatures of about 10 keV due to
anomalous conductivity.

In order to gain a better insight into the electron
heating mechanism, let us consider how the electron
distribution over the z component of the momentum
changes on shorter time scales on which a steady-state
distribution has not yet been established. Figure 4
shows the electron distribution function at four subse-
quent times for a laser intensity of I0 = 1019 W/cm2. We
can see that the distribution function exhibits irregular

f(pz)

pz/mec

0.13534

100500–50–100

0.04979

0.01832

0.00674

0.00248

9.11882E–4
1

2
3

4

Fig. 4. Electron distribution function over the z component
of the momentum for I0 = 1019 W/cm2 at four subsequent
times: (1) 45, (2) 46, (3) 47, and (4) 48T (where T is the laser
field period, the initial time being t0 = 50T).

f(pz)

pz/mec
250500–50–250

0.04979

–150 150

0.01832

0.00674

0.00248

9.11882E–4

3.35463E–4

1.2341E–4

Fig. 5. Electron distribution function over the z component
of the momentum in a plasma with multicharged gold ions
for I0 = 1020 W/cm2 (solid curve) and I0 = 3 × 1020 W/cm2

(dashed curve).
temporal behavior, which is associated with the turbu-
lent pulsations of the plasma electric field. Hence, the
electrons are predominantly accelerated by these pulsa-
tions through a mechanism analogous to the Fermi
acceleration mechanism [7]. It can be concluded that
the electron acceleration is not dominated by the mech-
anism associated with the mechanical resonance
between the electron oscillations in the laser field and
the betatron oscillations in quasi-steady magnetic and
electric fields [21].

It can be seen from Figs. 2–4 that the momentum
distribution of hot electrons is two-temperature in char-
acter. This can be explained by the combined action of
the ponderomotive force and the turbulent plasma field:
the ponderomotive force accelerates the tail electrons
that have already been accelerated by the plasma field.

We also performed calculations for a plasma with
multicharged gold ions and for two maximum laser
intensities, I0 = 1020 and 3 × 1020 W/cm2. According to
Bethe formula (11), such intense laser fields are capa-
ble of ionizing gold atoms to ions with charge numbers
of up to Zi = 50. This charge is approximately equal to
the equilibrium charge at characteristic temperatures of
300–500 eV and at the critical plasma density. The val-
ues of the parameters in formulas (13) and (14) were
chosen to be as follows: τ = 150 fs, σ = 9λ, L = 20λ (the
laser wavelength being λ = 1 µm), and zmax = 60λ. The
calculated results are illustrated in Fig. 5. In the energy
range from 10 to 25 MeV, the electrons are heated to a
temperature of about Th ≈ 10 MeV; this temperature
agrees with the estimate Th ~ 4 ± 1 MeV, which was
obtained experimentally in [11]. As in the case of a
hydrogen plasma, the electrons are accelerated by tur-
bulent pulsations of the plasma electric field. Thermal
electrons are heated to temperatures of about 10 keV
due to anomalous plasma conductivity. All the above
calculations were performed on a personal computer.

CONCLUSIONS

An analytic expression for the propagator describ-
ing the evolution of a classical Coulomb plasma in the
field of a short laser pulse on time scales less than the
relaxation time has been derived and used to investigate
the generation of fast electrons by a relativistically
strong femtosecond laser pulse in a plasma with a
nearly critical density. This approach makes it possible
to simulate the three-dimensional dynamics of a plasma
with actual ions on a personal computer.

The momentum distributions of hot electrons that
have been obtained in this study agree with the results
from PIC simulations and with the experimental data.
The main mechanism for electron heating is associated
with plasma turbulence. The momentum distribution of
hot electrons is two-temperature in character; this can
be explained by the combined action of the ponderomo-
tive force and the turbulent plasma field. The fast elec-
TECHNICAL PHYSICS      Vol. 50      No. 1      2005
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trons produced in the plasma are heated to temperatures
of about 10 keV due to anomalous conductivity.
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Abstract—Two equilibrium configurations of a line vortex in a three-dimensional ordered Josephson medium
are considered: (i) the vortex core is at the center of a cell and (ii) the vortex core is on a contact. Infinite systems
of equations describing these configurations are derived. In going to a finite system, the currents far away from
the center are neglected. A new technique for solving the finite system of equations is suggested. It does not
require smallness of phase discontinuities at all vortex cells and, therefore, can be applied for any values of pin-
ning parameter I down to zero. The structures and energies of both equilibrium states for isolated line vortices
are calculated for any I from the range considered. For I > 0.3, a vortex can be thought of as fitting a square of
5 × 5 cells. For lower I, the vortex energy can be expressed as a sum of the energies of the small discrete core
and the quasi-continuous outside. The core energy is comparable to the energy of the outside and is a major
contributor to the vortex energy when I is not too small. For any I, the energy of the vortex centered on the
contact is higher than the energy of the configuration centered at the center of the cell. © 2005 Pleiades Pub-
lishing, Inc.
INTRODUCTION

One very important problem in the physics of high-
temperature superconductors (HTSCs) is analysis of
the structure, motion, and pinning of the vortices aris-
ing in a sample exposed to a magnetic filed. The behav-
ior of vortices has been the subject of extensive investi-
gation [1–7]. One-dimensional vortices in a long
Josephson contact were analyzed in [3, 4]. However, in
the works cited, the vortex was assumed to arise in the
space with the continuous phase distribution, while its
pinning was caused by interaction with discrete pinning
centers. Actually, the Josephson medium is a cellular
structure and, taken alone, causes pinning, which
depends on the energy necessary for the vortex center
to be displaced from one cell to another.

The vortex behavior in a linear chain of SQUIDs
was analyzed in [5]. However, in that work, the two-
dimensional case is considered: the magnetic field of a
separate loop is taken into account only in the magnetic
flux penetrating this loop. In the three-dimensional
case, a vortex is represented by a set of coaxial “sole-
noids”; therefore, the magnetic flux through a loop is
produced not only by the loop itself but also by other,
including distant, current-carrying parts. In this case, as
the critical current of the contact decreases, the vortex
size grows. In other words, the number of loops con-
tributing to the magnetic flux through the central cell of
the vortex increases, which compensates for the
decreased contribution to the magnetic flux from each
of the loops. The author derived [6, 7] a set of equations
of fluxoid quantization in the cells for a three-dimen-
sional ordered Josephson medium and, based on these
1063-7842/05/5001- $26.00 0036
equations, studied the structure of possible screening,
laminar, and vortical current states in detail.

In [8], the equilibrium configurations of a laminar
(planar) vortex in a three-dimensional ordered Joseph-
son medium were calculated and the dependences of
the pinning energy of a planar vortex, as well as of its
magnetic and Josephson energies, on the critical cur-
rent of a Josephson contact were constructed. The aim
of this paper is to perform a similar study for the case
of a line vortex in a three-dimensional Josephson
medium. This problem is of great practical interest,
since most HTSCs feature just such vorticity. Also, the
author suggests a new technique for analysis of the line
vortex structure. This technique, unlike that used in [6],
does not require smallness of phase discontinuities at
central cells of a vortex, allowing one to extend the
applicability of the model to the range of low pinning
parameters.

ANALYSIS OF THE STRUCTURE AND ENERGY 
OF A LINE VORTEX

Let us consider a model representing a cubic lattice
with a period a that consists of superconducting wires
of diameter δ. Every link of the lattice contains a small
Josephson contact, all the contacts having the same
value of critical current Jc. The current distribution is
assumed to be planar; i.e., the currents are identically
distributed in all parallel planes that run perpendicu-
larly to the vortex axis and are spaced a apart. Such a
simple model allows us to judge the structure of the
vortices, as well as their pinning and dynamics. The
© 2005 Pleiades Publishing, Inc.
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predictions of this model are qualitatively valid for
more complicated configurations.

Let us consider the possibility of an isolated self-
sustaining line vortex existing far away from the sam-
ple boundary in the absence of an external magnetic
field. As follows from symmetry considerations, the
equilibrium configurations of such a vortex are as fol-
lows: (i) the vortex core is at the center of a cell, (ii) the
vortex core is on one of the contacts, and (iii) the vortex
core is at an intersection between the wires. However,
detailed analysis shows that the last-listed case has no
solution.

Among the two remaining equilibrium configura-
tions, the one with a lower energy is stable. The stabil-
ity of the higher energy state calls for further investiga-
tion. This issue was considered at length in [9], where
the stability of the equilibrium states of a planar vortex
in a three-dimensional Josephson medium was touched
upon. It was shown that the higher energy state is not
necessarily unstable. Correct stability analysis has to be
based on studying the quadratic form that describes the
current configuration energy. For low values of the pin-
ing parameter, the higher energy state of the planar vor-
tex turns out to be quasi-stable.

Since the stability of line vortices also needs further
investigations, the author, contrary to [6], will not use
the inadequate terms stable and unstable as applied to a
line vortex. The two main vortex configurations will be
designated by superscripts a and b instead of s (stable)
and u (unstable).

Consider both equilibrium configurations of a line
vortex in greater detail.

The vortex core is at the center of a cell (configu-
ration a). The cross section of a part of such a vortex
by the plane perpendicular to the vortex axis is shown
in Fig. 1. The vortex is axisymmetric and has four
planes of symmetry (the vertical, horizontal, and two
diagonal planes passing through the center of the lower
left-hand cell in Fig. 1). On this basis, the entire cross
section of the vortex can be constructed. In each of the
cells, the condition of fluxoid quantization is fulfilled:

(1)

where  is the sum of phase discontinuities at
the Josephson elements in an mth cell, Φm is the total
magnetic flux through the mth cell, Φ0 is a fluxoid
quantum (fluxon), and Km is an integer equal to one for
the central cell (with current i0) of the vortex and zero
for other cells.

Josephson currents Jk = Jcsinϕk decrease with dis-
tance from the vortex core, with the rate of decrease ris-
ing as critical current Jc increases. We shall consider
only configurations such that ϕk ! 1; i.e., sinϕk ≈ ϕk for
all ϕk except for the highest values of the phase discon-
tinuity, ϕ0, and ϕ1 in the cells nearest to the center

2πΦm/Φ0 ϕk
m( )

k

∑+ 2πKm,=

ϕk
m( )

k∑
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(Fig. 1). The validity of this assumption will be corrob-
orated by the results obtained (the technique suggested
in this paper allows for, unlike the one used in [6], any
values of ϕ0 and ϕ1 and, thereby, makes it possible to
extend the domain of its applicability). In this case, it is
convenient to deal with loop currents in the cells instead
of writing the conditions of current balance at the sites.
Let loop current im = Jcψm flow in each cell m (m ≠ 0),
where ψm is the “loop” phase discontinuity. Then, phase
discontinuities ϕk (except for ϕ0 and ϕ1) at the contacts
are defined as the differences between the correspond-
ing “loop” values (Fig. 1). The magnetic flux through
an mth cell can be written in the form [6]

(2a)

(2b)

where b is the coefficient of field nonuniformity [6] due
to the discrete current distribution along the vortex axis,

 is the algebraic sum of the contacts currents in

the mth cell, and S is the surface area of the cell.

Φm µ0S/a im b Jk
m( )

k

∑+
 
 
 

m 0≠( ),=

Φm m 0= µ0S/a i0 i1 4bi0+ +( ) m 0=( ),=

Jk
m( )

k∑

i14

i13i9

i12

i11

i10

i8

i6

i3

i7

i5

i2

i4

i1i0

i1

ϕ0

ϕ0

ϕ0 ϕ0

ψ14

ψ14

ψ13

ψ12

ψ11

ψ10

ψ13–ψ14

ψ12–ψ13

ψ11–ψ12

ψ10–ψ11

ψ10–ψ11

ψ
13 –ψ

14
ψ

9 –ψ
13

ψ
8 –ψ

12
ψ

6 –ψ
11

ψ
3 –ψ

10

ψ9–ψ13

ψ8–ψ9

ψ6–ψ8

ψ3–ψ6

ψ3–ψ6

ψ
2 –ψ

3
ψ

5 –ψ
6

ψ
7 –ψ

8
ψ

8 –ψ
9

ψ7–ψ8

ψ5–ψ7

ψ2–ψ5

ψ2–ψ5

ψ
5 –ψ

7
ψ

4 –ψ
5

ϕ1

ψ4–ψ5

ψ1–ψ4
ψ

1 –ψ
4

ψ1–ψ4

Fig. 1. Distribution of the currents and phase discontinuities
over the contacts for vortex configuration a in the plane per-
pendicular to its axis. im and ψm are, respectively, the loop
current in an mth loop and the corresponding loop phase
discontinuity. Phase discontinuity ψm is shown above each
of the contacts. Discontinuities ϕ0 and ϕ1 are not regarded
as small. The cell with i0 has one fluxon of flux Φ0; the other
cells contain no fluxons.
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For a wire of thickness δ ! a, parameter b is given
by

For simplicity, we shall consider the case Ib ! 1,
where I is the pinning parameter given by Eq. (4). We
note that such a consideration is also valid for a struc-
ture formed by superconducting filaments glued
together along their length, so that the glued surfaces of
the filaments may be viewed as long Josephson con-
tacts in this case. The cross section of the structure has
to have the form of a square lattice, but the cells may
not be square; the filaments may have, in particular, a
circular cross section.

Substituting Eq. (2) into Eq. (1) and assuming that
i0 = Jcsinϕ0 and that loop currents im = Jcψm for m ≠ 0
and 1, we arrive (for Ib ! 1) at a set of equations of
fluxoid quantization (m is the number of a cell, Fig. 1):

(3)

b
1

2π
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a
------sinh 
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Fig. 2. Distribution of the phase discontinuities in vortex
configuration a at I = 10–4. The upper figures correspond to
the calculations the 7 × 7 square; the lower ones, for the
5 × 5 square.
where

(4)

The last equation in (3) is obtained under the addi-
tional condition Jcsinϕ1 = i1 – i2 imposed on the current
at the contact with ϕ1 (ϕ1 is not regarded small).

For such a configuration, the Josephson, , and

magnetic, , energies per unit vortex length are given
by

(5)

(6)

Here, Ec = Φ0Jc/2π is the energy of a Josephson contact,

/2µ0 is the magnetic energy density in an mth cell,

Vm is the relevant volume, and E0 = /4πµ0a2 is the
normalizing factor.

In (5) (subscript k), summation is over the Joseph-
son contacts; in (6) (subscript m), over the cells with
regard to vortex symmetry (which leads to a factor of
four for the cells lying in the central column and central
row and to a factor of eight for the other cells).

It can be shown that set (3) may be obtained from
the extremum conditions for the vortex total energy (the
sums in (5) and (6)). In other words, a solution to sys-
tem (3) corresponds to the maximal, minimal, or saddle
value of the energy.

One may pass from infinite system (3) to a finite one
by neglecting the currents distant from the center
(Fig. 1). The size of the square necessary for calcula-
tions must be such that the phase discontinuities at the
contacts close to the center vary insignificantly as the
size of the square increases.

The set of equations was solved by expressing all ψm

through ϕ0 and ϕ1 appearing in the linear equations of
set (3) and substituting them into the first and last equa-
tions of (3). As a result, we obtain the set of two nonlin-
ear equations

(7a)

(7b)

where A, B, C, and D are the polynomials in I.
Curves (7a) and (7b) have one point of intersection.

The values ϕ0 and ϕ1 corresponding to this intersection
are determined by a numerical method. Knowing ϕ0
and ϕ1, we can determine all ψm.
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2

2µ0
--------Vm

m

∑ I2

2
----E0 ϕ0sin ϕ1 ψ2+sin+( )2∫= =

+ 4 ϕ1sin ψ2+( )2 4 8( ) ψm
2

m 0≠ 1,
∑+ .

Bm
2

Φ0
2

ϕ1 2π I ϕ0sin– A I( )ϕ0–( )/B I( ),=

ϕ0 ϕ1sin C I( )ϕ1–( )/D I( ),=
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The analytic distribution of the phase discontinuity
over the contacts is shown in Fig. 2 for I = 10–4. In the
calculation, we used 5 × 5 (7 equations) and 7 × 7
(11 equations) squares; i.e., we took two and three rows
of cells on each of the sides away from the central cell.
In going from the smaller square (lower figures) to the
larger (upper figures), the values of ϕk at the contacts
near the center change insignificantly. The transition
from 7 × 7 to 9 × 9 would cause even less change. This
leads us to conclude that a 7 × 7 square would suffice to
calculate the vortex core structure no matter how
small I.

The results obtained show that, unlike planar vorti-
ces, whose width tends to infinity with decreasing I [8],
a line vortex has a core several cells in size for any I.
Phase discontinuities and, hence, contact currents in the
core of a line vortex are much higher than in the rest
part of the vortex. Figuratively, a planar vortex
“smears” with decreasing I, while a line vortex always
has a rigid “pimple” several cells in size. It should be
emphasized that the case at hand is the vortex structure:
the currents decrease with decreasing Jc if it is Jc that is
responsible for a decrease in I. If I decreases with a
decrease in lattice spacing a, the vortex core diameter
decreases but the currents remain unchanged and the
vortex energy even increases according to Eq. (5).

It is noteworthy that all the currents in the cells
occupying the major diagonals are the same: ψ1 – ψ4 =
ψ4 – ψ5, ψ5 – ψ7 = ψ7 – ψ8, etc.

The I dependences of the phase discontinuity that
were calculated for several maximal-current contacts
nearest to the vortex core (Fig. 1) are shown in Fig. 3.
As is seen from Figs. 2 and 3, the condition under

0.5

0 2

ψ, ϕ

I

1.0

π/2

4 6 8 10 12 14 16 18 20

ϕ0

ψ1
ψ1–ψ4
ψ4–ψ5

ψ2–ψ3

Fig. 3. Results of calculation of the phase discontinuity for
several contacts nearest to the center that have the maximal
currents (configuration a). The solid lines, the exact solu-
tions to set (3); the symbols, ϕ0 and ϕ1 calculated by asymp-
totic formulas (8).
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which the calculations are valid (sink ≈ ϕk for k ≠ 0 and
1) is met for any I down to I = 0.

As to the vortex energy, calculations by Eqs. (5) and
(6) are correct only for values of I such that the vortex
entirely fits the square considered. The typical vortex

size is a/ . Therefore, for the 7 × 7 square, Eqs. (5)
and (6) are applicable for I > 0.25, as follows from the
fact that, for these values of I, the energy changes insig-
nificantly in going from the 5 × 5 to 7 × 7 square. How-
ever, the mere fact of the minor change in the energy is
not a sufficient condition that the energy calculations
are valid. As the square size increases, an extra outer
“ring” of cells starts contributing to the total energy,
and the smallness of this addition does not mean that
the total contribution from such rings extending to
infinity will be small too. At low I, the outside of the
vortex will be the basic contributor to the vortex energy.

Figure 4 plots the Josephson, , and magnetic, ,
energies versus I for I > 0.25.

For high values of I(@2π), it follows from set (3)
that ϕ0, ϕ1 ! 1. Then, Eqs. (3), (5), and (6) yield

(8)

(9)

Figures 3 and 4 also present the asymptotic values of

, , and  that follow from (8) and (9).

At small I, our approach does not allow for direct
calculations of the vortex energy, since an appreciable
part of the energy is outside of the square. Let us sup-
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a EH

a

ϕ̃0
a 2π
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-----------; ϕ̃1
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a ẼJ

a
ẼH
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Fig. 4. Josephson and magnetic energies as a function of I
in configurations a and b. The crosses, the calculation of

; the dots,  and  found from asymptotic formulas

(9) and (27).
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pose that the coordinate dependence of ϕ is quasi-con-
tinuous in the outside. Magnetic field H is there given
by [7]

(10)

In the range a ! r ! a/ , the solution to Eq. (10)
has the form [10]

(11)

If the contribution from the core is neglected, the
total energy of such a vortex is given by [10]

(12)

Equation (12) determines the energy of the vortex
without considering its core. The addition due to the
core is also of interest. In the case of Abrikosov vortices
in a continuos medium, taking into account the core
energy leads to the expression [10]

(13)

In the case of a discrete medium, which is consid-
ered in this paper, calculations of the vortex core energy
may be performed using the above technique. Let us
assume that the continuous approach is valid at r > 4a,
i.e., beyond the 7 × 7 square. Then, instead of (12), the
energy of the outside is given by

(14)

calculated by Eq. (14) in units of IE0, as well as the
magnetic (in I 2E0), Josephson, and total energies of the
7 × 7 square (Eqs. (5), (6)). These data suggest that,
unlike Abrikosov vortices in a continuous medium, in
which case the core energy may be neglected at small I,
in the core energy in a discrete medium is comparable
to the energy of the outer part and even becomes a
major contributor to the vortex energy if I is not too
small.

It is worth noting that, at small I, the Josephson
energy of the vortex core, which is proportional to I, is
much higher than the magnetic energy, which varies
as I2.

H
a2

I
-----curlcurlH+ Aδ r( ).=

I

H
Φ0I

2πµ0a2
------------------ a

r I
---------, curlHln

Φ0I

2πµ0a2
------------------1

r
---.= =

E E0
π
2
--- I

1
I
---.ln=

E E0
π
2
--- I

1
I
---ln 0.1+ 

  .=

E E0
π
2
--- I

1
16I
--------.ln=

Table 1

I 10–4 10–3 10–2 0.1

EJ/E0I from (5) 8.63 8.60 8.37 6.75

EH/E0I2 from (6) 13.56 13.50 12.8 8.32

(EJ + EH)/E0I 8.63 8.60 8.50 7.58

E/E0I from (14) 10.1 6.5 2.9 –
The expression for the total vortex energy with
regard to the core can approximately be written in the
form

(15)

If it is assumed that the continuous approach is also
valid at distances closer to the center, we come to a for-
mula similar to Eq. (15) where the constant in the
parentheses equals 2.70 for a 5 × 5 square, 2.68 for a
3 × 3 square, and 2.55 for a 1 × 1 square. The proximity
of the constant values confirms the validity of the
approach suggested.

Equation (15) applies at small I, i.e., until the total
energy in Table 1 remains almost constant. This condi-
tion fails starting from I = 0.1. Thus, Eq. (15) is a cor-
rect estimator of the vortex energy at very small I, while
Eqs. (5) and (6) are valid for I > 0.25. For intermediate
I, the vortex energy in a continuous medium can be
found from the (more exact than (12)) expression [10]

(16)

where K0 is the zero-order Bessel function of imaginary
argument (Hankel function).

It is assumed in Eq. (16) that the continuous
approach is valid for r > 4a. Then, the total vortex
energy with regard to the core can be approximated as

(17)

where ε = EΣ/πIE0 and EΣ is the sum of the energies cal-
culated by (5) and (6).

For I = 0.25, we have ε = 2.1 and K0(2) ≈ 0.1; for I =
0.1, ε = 2.4 and K0(1.265) ≈ 0.3. The fact that the first
term in the parentheses in Eq. (17) is much smaller than
the second one and can be neglected quantitatively con-
firms the above assumption that the vortex fits a 7 × 7
square at I > 0.25. This result can be extended, with a
certain error, to smaller (but not too small) values of I.

The vortex center is at the contact (configura-
tion b). Such a vortex has two planes of symmetry (the
lower horizontal plane and the vertical plane in the mid-
dle of the left-hand column in Fig. 5). All the vortex
cross sections can be constructed on this basis. It fol-
lows from symmetry consideration that the phase dis-
continuity is equal to π at the central contact and to zero
at all other contacts in the same row (Fig. 5). Calcula-
tions will show that the phase discontinuities at all the
contacts, except for ϕ1, ϕ2, ϕ3, and ϕ4, may be regarded
small (sinϕk ≈ ϕk) for any I. As in the previous section,
we introduce loop currents im = Jcψm at m ≠ 0. This
allows us to automatically satisfy the conditions of cur-
rent balance at all the sites except for the upper right-
hand site of the cell with m = 0. At this site, the balance
condition has the form

(18)

E E0I
π
2
--- 1

16I
--------ln 8.63+ 

  E0
π
2
--- I

1
I
---ln 2.77+ 

  .= =

E E0πIK0 4 I( ),=

E E0Iπ K0 4 I( ) ε+( ),=

ψ3 ϕ1– ϕ1 ϕ2sin–sin+ 0.=
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At b = 0, we get a set of equations of fluxoid quan-
tization in the cells (m is the number of a cell in Fig. 5)
that is similar to (3):

(19)

These equations should be complemented by the
conditions Jcsinϕ3 = i10 – i11 and Jcsinϕ4 = i1 – i2 for the
currents in the contact with ϕ3 and ϕ4 (these values are
not regarded as small):

(20)

(21)

The transition from this infinite set of equations to a
finite one is accomplished in the same way as above,
i.e., by neglecting the currents distant from the center.

Unlike set (3), set (18)–(21) cannot be reduced to a
set of two nonlinear equations, which can be solved
numerically. Therefore, here we apply the method of
successive approximations. To this end, we represent

ϕ3, ϕ4, and their sine functions in the form ϕ3 =  +

δ3, ϕ4 =  + δ4, sinϕ3 = sin  + cos δ3, and sinϕ4 =

sin  + cos δ4. The values of  and  are
assumed to be known (and equal to zero at the first iter-
ation), while δ3 and δ4 are new variables (instead of ϕ3
and ϕ4) in respect to which the system is linear.

Now, let us express all ψm, as well as δ3 and δ4,
through ϕ1 and ϕ2 using the linear equations of the sys-
tem (these are Eq. (20), Eq. (21), and all of Eqs. (19)
minus the first one). Substituting them into the first
equation of set (19) and into Eq. (18), we arrive at the
following set of nonlinear equations:

(22)

(23)

where E, D, F, G, H, and M are fractional rational func-
tions of I.

The values of ϕ2 and ϕ1 corresponding to the only
point of intersection between curves (22) and (23) can
be calculated numerically. Knowing ϕ2 and ϕ1, we then
find δ3, δ4, and all ψm. For the next iteration, we take

new values of  and  (that result by adding the
obtained values of δ3 and δ4 to their previous values)
and solve the set again. The iteration procedure con-
verges, i.e., every next iteration step gives δ3 and δ4 sev-
eral orders of magnitude smaller than their previous
values. In this way, the initial set of equations can be
solved with any accuracy in several steps only.

I ϕ2sin π 2ϕ2– ϕ1– Iψ1 m 0=( ),–=

I 1+( )ψ1 ψ4– ϕ4 ϕ2–+ 0 m 1=( ),=

I 2+( )ψ10 2ψ4– ϕ3 ϕ1–+ 0 m 10=( ),=

I 4+( )ψ4 ψ1– ψ5– ψ10– ψ12– 0 m 4=( ), etc.=

ϕ3sin ψ10 ψ11,–=

ϕ4sin ψ1 ψ2.–=
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0

ϕ4
4 ϕ3

0 ϕ3
0

ϕ4
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0 ϕ3
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0

ϕ2 π I ϕ1sin– E I( )ϕ1– D I( )–[ ] /F I( ),=

ϕ1 π I ϕ2sin– G I( )ϕ1– H I( )–[ ] /M I( ),=

ϕ3
0 ϕ4

0
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Figure 6 demonstrates the phase discontinuity dis-
tributions over the vortex contacts that were calculated
for I = 10–4. In the calculations, a 6 × 5 rectangle
(12 equations) was used; i.e., we took two cells on each
of the sides of two central cells. The I dependences of
the phase discontinuities that were constructed for sev-
eral (nearest to the vortex core) contacts with the max-
imal currents (Fig. 5) are shown in Fig. 7. It is seen
from Fig. 6 and 7 that the calculations are valid
(sinϕk ≈ ϕk at k ≠ 1, 2, 3, 4) any I down to I = 0.
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Fig. 5. Distribution of the currents and phase discontinuities
over the contacts for configuration b. Discontinuities ϕ1,
ϕ2, ϕ3, and ϕ4 are not regarded as small. The cell with m =
0 has one fluxon of Φ0; the other cells contain no fluxons.
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configuration b at I = 10–4.



42 ZELIKMAN
Reasoning similar to that behind the calculation of
the vortex energy in configuration a can be applied to
find the vortex energy in configuration b. The difference
lies in that, in the latter case, we employ the 6 × 5 rect-
angle (or a square of 5 × 5 cells in the symmetric case).
Therefore, the following energy estimators give the
vortex total energy (with the energy of its outside
neglected) at I > 0.3:

(24)

(25)

To confirm the validity of (24) and (25), we will
make use of an analogue to Eq. (17), substituting

K0(4 ) for K0(3 ), since the vortex outside corre-
sponds to r > 3a:

(26)

Here, ε = EΣ/πIE0, EΣ is the sum of the energies calcu-
lated by (24) and (25) for the configuration depicted in
Fig. 5 where the upper row of cells is lacking (in such a

EJ
b E0I 2 1 ϕkcos–( )
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∑+ ,=
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I I
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Fig. 7. Phase discontinuities calculated for several contacts
with the maximal currents for configuration b. The dots
show ϕ1 and ϕ2 calculated by asymptotic formulas (27).

Table 2

I 10–4 10–3 10–2 0.1

EJ/E0I from (24) 8.14 8.12 8.06 6.85

EH/E0I2 from (25) 8.48 8.45 7.98 6.01

(EJ + EH)/E0I (6 × 5) 8.14 8.13 8.06 7.45

(EJ + EH)/E0I (5 × 5) 7.90 7.89 7.76 6.72
way, we obtain a 5 × 5 square). For I = 0.25, we have ε
= 2.15 and K0(1.5) ≈ 0.2; for I = 0.3, ε = 2.08 and
K0(1.65) ≈ 0.13.

The I dependences of  and  that were calcu-
lated by (24) and (25) for I > 0.3 are shown in Fig. 4.
The asymptotic values of the phase discontinuities in
the central cell and of the energies for configuration b
at I @ 2π are given by

(27)

Figures 4 and 7 also show the values calculated
by (27).

Table 2 lists the magnetic energy in units of I2E0
(formula (25)), Josephson energy in units of IE0
(Eq. (24)), total energy of the 6 × 5 rectangle, and total
energy of the 5 × 5 square (the upper row of cells is
omitted).

For small values of I, the vortex total energy with
regard to the core can be approximated as

(28)

Thus, the core energy and, hence, the vortex total
energy in configuration b are somewhat higher then
those in configuration a. The same relationship is also
true for higher values of I. However, based on this fact
alone, one cannot conclude that configuration b is
unstable and is certain to change to configuration a. It
was already noted that the configuration with the least
possible energy is always stable, while the stability of
the higher energy configuration calls for further inves-
tigation. This issue was discussed in terms of stability
analysis as applied to planar vortices [9].

Knowing the vortex energy E, one can find the crit-
ical value of external magnetic field Hc1 at which vorti-
ces arise. The Gibbs thermodynamic potential of a vol-
ume unit of the sample placed in external magnetic field
He is equal to

(29)

where N is the number of vortices per 1 m2 (i.e., B =
Φ/S = NΦ0) and

(30)

For He < Hc1, potential G grows with B; i.e., G is
minimal at B = 0 (the complete Meissner effect). For
He > Hc1, G decreases with increasing B; i.e., the forma-
tion of such vortices becomes energetically favorable.
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CONCLUSIONS
Two equilibrium configurations of a line vortex in a

three-dimensional ordered Josephson medium were
considered: (i) the vortex core is at the center of a cell
and (ii) the vortex core is at one of the contacts. Infinite
sets of equations describing these configurations are
derived. In going to a finite system, the currents far
away from the center are neglected. The size of the
square necessary for the calculations must be such that
the phase discontinuities at the contacts close to the
center vary insignificantly as the size of the square
increases.

A new technique for solving the finite set of equa-
tions is suggested. Contrary to the one used earlier [6],
this technique does not require the smallness of phase
discontinuities at all vortex cells and, therefore, can be
applied for any values of pinning parameter I down to
zero. One of the configurations has two large phase dis-
continuities, and the other has four; therefore, a special
iteration procedure was applied.

The structures and energies of both equilibrium con-
figurations for isolated line vortices were calculated for
any I from the range considered. Unlike planar vortices,
whose width tends to infinity with decreasing I, a line
vortex has a core several cells in size at any values of I.
In the core of a line vortex, the phase discontinuities
and, hence, the contact currents are much higher than in
its rest part. For I > 0.3, a vortex can be viewed as fitting
a square of 5 × 5 cells. For lower I, the vortex energy
can be expressed as a sum of the energies of the geo-
metrically small discrete core and the quasi-continuous
outside. However, unlike Abrikosov vortices in a con-
TECHNICAL PHYSICS      Vol. 50      No. 1      2005
tinuous medium, where the core energy may be
neglected at small I, the core energy in a discrete
medium is comparable to the energy of the outside and
even becomes a major contributor to the vortex energy
when I is not too small.

For any I, the energy of the vortex centered at the
contact is higher than that of the vortex centered at the
center of the cell.
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Abstract—Electroluminescence from thin-film electroluminescent devices is found to be quenched after IR
irradiation of the devices in the interval between exciting voltage pulses. The IR irradiation decreases the emis-
sion intensity in the spectral range 530–540 nm, while increasing it between 640 and 690 nm. These effects are

explained by IR-induced charge exchange between the deep centers due to  and  sulfur vacancies, an
increase in the concentration of the latter vacancies, and the redistribution of the channels of impact excitation

of Mn2+ and  centers in favor of  centers. The cross section and rate of impact excitation of  centers,

the photoexcitation cross section for  centers, the IR radiation absorption coefficient, the internal quantum

efficiency of electroluminescence, and the probability of radiative relaxation of Mn2+ centers, as well as the
electron multiplication factor in the phosphor layer, are evaluated. © 2005 Pleiades Publishing, Inc.
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The currently available data on the effect of infrared
(IR) irradiation on the electroluminescence properties
of powdered zinc sulfide phosphors exhibiting recom-
bination electroluminescence suggest the presence of
an absorption band in the IR range [1]. This stems from
the fact that pulsed IR irradiation of the samples causes
a decrease in the emission wave amplitude in a part of
this range, i.e., quenches the electroluminescence.

In thin-film electroluminescence devices (TFELDs)
exhibiting in-center luminescence, pulsed IR irradia-
tion applied between exciting voltage pulses raises the
amplitude of a current pulse passing through the phos-
phor layer during the action of these voltage pulses
[2, 3]. Earlier [4], we showed that IR irradiation under
these conditions quenches electroluminescence in
TFELDs and changes the intensity of certain bands in
their emission spectrum. Also, it was found that elec-
troluminescence spectra taken of ac ZnS : Mn TFELDs
in the continuous excitation mode cannot be related to
the kinetics of current passage through the phosphor
layer and to the variation of the instantaneous bright-
ness, because such spectra typically show the average
TFELD brightness [5].

The aim of this work is to study the electrolumines-
cence spectra, as well as the electrical and optical per-
formance, of TFELDs subjected to pulsed IR irradia-
tion between exciting voltage pulses. The spectra were
recorded in different parts of the brightness wave that
correspond to different excitation levels under the con-
ditions when adjacent brightness waves did not overlap
and the interval between exciting voltage pulses was
1063-7842/05/5001- $26.00 0044
long enough for the space charge in the phosphor layer
to be neutralized.

To elucidate the effect of IR irradiation on the elec-
troluminescent spectra in various parts of the brightness
wave, we experimented with a TFELD based on the
layered MISIM structure. Here, M refers to the 0.2-µm-
thick bottom transparent SnO2 electrode deposited on a
glass substrate and to the 0.15-µm-thick top nontrans-
parent aluminum electrode with a diameter of 1.5 mm;
S, to the 0.48-µm-thick ZnS : Mn (0.5 wt% of Mn)
phosphor layer; and I, to the ZrO2:Y2O3 (13 wt% of
Y2O3) insulating layers. The phosphor layer was
applied by vacuum evaporation in the quasi-closed vol-
ume on the substrate heated to 250°C and then annealed
at 250°C for 1 h. The nontransparent electrode was also
applied by vacuum deposition, while the insulating lay-
ers were deposited by electron-beam evaporation. The
resistivity of the insulating layers was ~1013 Ω cm, and
the ac breakdown field (the frequency was varied
between 10 Hz and 1 kHz) was (3.2–3.6) × 106 V/cm.
The leakage current in these layers was two to three
orders of magnitude lower than the current passing
through the phosphor layer at the maximal operating
voltage of the TFELD.

The experimental study of brightness waves in the
TFELD, i.e., recording the dependence of instanta-
neous brightness Iλ on time t at given wavelength λ, was
performed under conditions when the TFELD was
excited by alternating-sign triangular voltage pulses
V(t). The excitation mode was either continuous (the
voltage frequency was 20 Hz) or pulsed (a two-period
train of pulses with a repetition rate of 20 Hz). In the
© 2005 Pleiades Publishing, Inc.
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first half-period, either the positive or negative voltage
half-wave was applied to the top electrode (the +Al and
–Al modes, respectively). Interval Ts between the trains
was 1, 50, or 100 s. Current Ie(t) through the TFELD
was measured by using a 10-kΩ resistor connected in
series with the TFELD. The voltage drop across the
resistor was no more than 0.5% of V(t). To increase the
recording sensitivity, the TFELD emission correspond-
ing to the first brightness wave was first transmitted
through an MUM-2 monochromator (with a wave-
length inaccuracy of 0.5 nm, linear dispersion of
4.8 nm/mm, and slit width of 3 mm) and then measured
by means of an FÉU-79 photoelectron multiplier. The
measurements were performed in the wavelength range
from 400 to 750 nm with a 5-nm step. Exciting voltage
V(t), current Ie(t) through the TFELD, total brightness
wave L(t), and brightness waves Lλ(t) at certain wave-
length λ were recorded with an S9-16 dual-trace stor-
age oscilloscope interfaced with a PC. Such a configu-
ration provides the measurement and storage of 2048
points for a given discretization period and 256 levels
of amplitude digitization in either channel. Mathemati-
cal processing of the results and graphing were carried
out using the Maple V Release 4 Version 4.00b and
GRAPHER Version 1.06 2-D Graphing System appli-
cation packages. The experimental dependences were
approximated using the TableCurve2D v2.03 program.
The time dependence Fp(t) of the mean field strength in
the phosphor layer, as well as the dependences of cur-
rent Ip(t) and charge Qp(t) passing through the phosphor
layer in the luminescence mode, was taken by the
method reported in [6, 7]. The capacitance of the insu-
lating layers, Ci = 730 pF, and that of the phosphor
layer, Cp = 275 pF, were measured by an E7-14 immit-
tance meter with regard to the sizes of the TFELD. The
average luminescent brightness of the TFELD was
determined using an YaRM-3 luminance meter.

As in [3], difference ∆Qp(t) between the charges
transferred through the phosphor layer with and with-
out IR irradiation was determined via difference ∆Ip(t)
in the corresponding currents:

(1)

The TFELD was IR-excited from the side of the
substrate (in both the continuous and pulsed mode) by
using two AL107B light-emitting diodes with an emis-
sion band maximum at wavelength of λm = 950 nm,
FWHM ∆λ0 = 25 nm, total power P ≈ 12 mW, and total
photon flux density Φ ≈ 3 × 1015 mm–2 s–1. The param-
eters listed above were obtained by statistically averag-
ing over five series of emission spectrum measure-
ments.

The average brightness at certain wavelengths λ, as
well as in portions I, II, III, and IV of the brightness
wave (the portions were selected as described in [5];

∆Q t( ) ∆Ip t( ) t.d

0

t

∫=
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namely, portion I corresponds to the initial fast increase
of current Ip(t) through the phosphor layer; in portions
II and III, Ip(t) increases slowly; and in portion IV, cur-
rent Ip(t) and the brightness decay once the pulses of
exciting voltage V(t) have reached a maximum (Fig. 1))
were determined from the Talbot’s law for an intermit-
tent radiation source:

(2)

where t1 and t2 are the time extremities for portions I, II,
III, and IV of the brightness wave (Figs. 1a, 1b).

The dependences Ln(λ) (n = I, II, III, and IV) specify
the emission spectrum in each of the portions. The total
(net) emission spectrum, which is the sum of partial
spectra Ln(λ), was determined by the formula

(3)

The instantaneous value of internal quantum effi-
ciency ηint(t) was found as the ratio of L(t) to Ip(t) [8].

The basic results of the study are as follows. In the
continuous mode of TFELD excitation, no influence of
the IR irradiation on current Ip(t), brightness waves L(t)
and Lλ(t), or the emission spectrum was detected within
the experimental error. In the pulse excitation mode, the
above dependences remained unchanged during the
action of exciting voltage pulses.

However, in the interval between the pulses, we
observed, as in [3], an increase in currents Ie(t) and Ip(t)
(∆Ie(t) and ∆Ip(t), respectively; Figs. 1a, 1b, and 1d) and
increase ∆Qp(t) in charge Qp(t) (Fig. 1e). Also, we
found the variations of (i) brightness waves Lλ(t)
(Figs. 1a and 1b), (ii) total brightness wave ∆L(t)
(Fig. 1d), (iii) internal quantum yield ηint(t) (Fig. 1f),
(iv) the emission spectra in portions I–IV of the bright-
ness wave, and (v) the total emission spectrum taken
during the first half-period of the exciting voltage pulse
following the interval in both (±Al) modes (Figs. 2, 3).
In addition, we noticed the decrease in brightness wave
amplitudes Lλ(t), in particular, near the basic maximum
of emission from Mn2+ centers at λm = 585 nm (Figs. 1a
and 1b) and in total brightness wave amplitude L(t) –
∆L(t) in Fig. 1d. The decrease in L(t), Lλ(t), and ηint(t)
was the most pronounced in portions I and II of the
brightness wave, i.e., where the irradiation-induced
increases in the current and charge (∆Ip(t) and ∆Qp(t))
passing through the phosphor layer are the highest
(Figs. 1d–1f), as well as where the time dependence of
field strength Fp(t) starts deviating (portion I) and devi-
ates significantly (portion II) from a straight line
(Fig. 1c). Other observations are as follows. The inten-
sity of the basic electroluminescence peak (≈585 nm) in
portions I–III and of the total spectrum taken in the –Al
mode (Figs. 2a–2c, and 2e), as well as the spectra in

Ln
1

t1 t2–
------------- Lλ t( ) t,d

t1

t2

∫=

L λ( ) Ln λ( ).
n

∑=
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Fig. 1. (1) U(t), (2, 3) Ie(t), (4–7) Lλ(t) at λ = 585 nm, (8–11) Fp(t), (12, 13) ∆Ip, (14, 15) ∆L(t), (16, 17) ∆Qp(t), and (18, 19) ηint(t);
(2, 4, 6, 8, 10, 19) without IR irradiation and (3, 5, 9, 11, 18) with IR irradiation in the interval between exciting voltage pulses.
(a) (8, 9, 13, 15, 17) +Al mode and (b, f) (10, 12, 14, 16) –Al mode. Ts = 100 s.
portions I–IV and the total spectrum that were taken in
the +Al mode (Figs. 3a–3e), decreased by a factor of
1.1–2.6. In particular, the maximum of the total spec-
trum decreased ≈1.5 and ≈2.1 times in the –Al and +Al
modes, respectively, and the basic emission peak in
portion IV increased by a factor of ≈1.7 in the –Al
regime (Fig. 2d) with the simultaneous growth of inter-
nal quantum yield ηint(t) (Fig. 1f). Finally, we note
(i) the attenuation of the emission intensity in the range
530–540 nm and the enhancement of the intensity in the
partial spectra (portions I and IV of the brightness
wave) and in the total spectrum between 640 and
TECHNICAL PHYSICS      Vol. 50      No. 1      2005
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Fig. 2. Electroluminescence spectra recorded (1) without and (2) with the IR irradiation in the –Al mode: (a) portion I, (b) portion II,
(c) portion III, and (d) portion IV of the brightness wave; (e) total electroluminescence spectra and (f) total electroluminescence
spectra normalized to their maxima. Ts = 100 s.
690 nm in the –Al regime (Figs. 2a and 2d); (ii) the
attenuation of the emission intensity in the range 530–
540 nm for partial spectrum I in the +Al regime
(Fig. 3a); (iii) the attenuation of the peak intensity at
≈495 nm in partial spectra I–IV and in the total spec-
trum in the –Al mode (Figs. 2a–2f); and (iv) the shift of
the long-wave side of the electroluminescence spectra
TECHNICAL PHYSICS      Vol. 50      No. 1      2005
toward shorter wavelengths: the total spectrum experi-
ences a moderate shift in the –Al mode (Fig. 2f), while
the total spectrum and partial spectra I and IV shift
more appreciably in the +Al mode (Figs. 3a, 3d, and 3f).

All the changes become more pronounced as the
interval between exciting voltage pulses (during which
the IR irradiation is accomplished) expands.
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Fig. 3. Electroluminescence spectra recorded (1) without and (2) with the IR irradiation in the +Al mode: (a–f) the same as in Fig. 2.
The above results can be explained as follows.
When TFELD is in the active mode and the applied
voltage exceeds a threshold value, the electrons tunnel-
emitted from the surface states near the cathodic side of
the insulator–phosphor interface (Fig. 4) are ballisti-
cally accelerated, causing impact ionization of shallow
donor levels (Mn2+-related luminescent centers, which
substitute for zinc ions at the sites of the ZnS lattice,
and deep centers due to zinc vacancies  and sulfur

vacancies ) with the formation of the positive space
charge in the anode region of the phosphor layer. In
the cathode region, free electrons are trapped by deep

centers  and , which lie ≈1.3 and ≤1.9 eV above
the valence band top, respectively, and create the nega-
tive space charge, thereby neutralizing the positive

VZn
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+

VS
2+ VS

+
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Fig. 4. Processes triggering electroluminescence in the ZnS : Mn-based TFELD: (a–c) The first half-period, T/2, and (d–f) the sec-
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space charge produced earlier (Fig. 4a–4c, 4e, 4f). The
neutralization takes place in the interval between two
sequential operating cycles of the TFELD, the degree
of neutralization increasing with interval duration
[2, 3]. The irradiation by IR photons of appropriate
energy in the interval generates additional sulfur vacan-

cies , since the electrons being released from the
valence band under the action of the IR radiation are

trapped by  centers. As a result, the positive space
charge, field strength in the cathode region, and tunnel-

VS
+

VS
2+
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emission current (portion I) (Fig. 1d) decrease in the
next operating cycle (Fig. 4e). As applied voltage V(t)
and, hence, field strength Fp(t) rise, currents Ie(t) and
Ip(t) (portions I and II) start exceeding their values in
the absence of the irradiation (Figs. 1a, 1b, and 1d)
because of the ionization of the extra sulfur vacancies

 in the phosphor layer. Differences ∆Ip(t) and ∆Qp(t)
in both (±Al) modes reflect the nonuniform distribution
of structural defects in the phosphor layer [2, 3].
According to [5, 9–11], the electroluminescence spec-
trum of the TFELD is related to in-center emission

VS
+
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from Mn2+ and consists of the bands with maxima at
λm = 557, 578, 600, 616, and 635–637 nm. These max-
ima are due to the different positions of Mn2+ ions in the
real ZnS lattice and, possibly, to the formation of the α-
MnS phase (λm = 635 nm [10, 11]). The spectrum may
also contain a band with a maximum at λm = 606–610
nm, which is related to the complexes formed by Mn2+

ions and sulfur vacancies VS [12–14].

The emission observed in the interval 530–540 nm
in the absence of the IR irradiation (Figs. 2 and 3) may
be attributed to the recombination arising when free
electrons are trapped by deep centers that are doubly

ionized sulfur vacancies  lying 1.3 eV above the
valence band top [5, 12, 15]. The fact that this emission
is more intense in the –Al mode is explained by techno-
logical reasons. As was noted, a part of the ZnS : Mn
layer that is adjacent to the upper electrode is sulfur-
depleted. As a result, under equilibrium conditions, the
concentration of sulfur vacancies in this region exceeds
that in the lower part of the ZnS layer [2, 3]. The decay
of this emission in portion I of the brightness wave and
in the total spectrum in the –Al mode (Fig. 2a, 2e, and
2f) after the irradiation is explained by a decrease in the

concentration of  centers and an increase in the

concentration of  centers when the electrons being
released from the valence band are trapped by the
former. Because of this, the recombination emission
band at 640–690 nm observed in portion I in the –Al
regime (Figs. 2a and 2d) becomes more intense. This
band is produced by electron transitions from the con-
duction band (or from shallow donor levels, such as

 centers lying 0.10–0.12 eV below the conduction

band bottom [2, 3, 12]) to the  level lying ≥1.9 eV
below the conduction band bottom.

The emission band with a maximum at λm = 490–
495 nm (Figs. 2, 3a, 3d–3f) is probably caused by the
recombination emission from donor–acceptor pairs

related to sulfur vacancies . The quenching of this
luminescent band after the IR irradiation, which is
observed in all the spectra taken in the –Al regime, and
its appearance in the spectra in portions I and IV that
were taken in the +Al mode may be related to the non-
uniform distribution of structural defects across the
phosphor layer (specifically, to the enrichment of the
upper part of this layer by sulfur vacancies, as discussed
earlier). Upon the irradiation, the concentration of sul-

fur vacancies  and, hence, the donor–acceptor pairs
drops.

The attenuation of these emission bands is much
less pronounced in the spectra taken in portions II and
III of the brightness wave (Figs. 2 and 3), because here
the intensity of the in-center emission from Mn2+ ions
significantly grows.

VS
2+

VS
2+

VS
+

Zni
0

VS
+

VS
2+

VS
2+
The decrease in the basic emission band peak after
the IR irradiation, which is observed in portion IV of
the brightness wave in the –Al mode (Figs. 2d–2f), and
in internal quantum yield ηint(t) in the same portion
(Fig. 1f) may be caused by the resonance absorption of
the radiation at λm = 530 nm by Mn2+ ions [16] in the

vicinity of sulfur vacancies  in the upper part of the
phosphor layer, where field strength Fp(t) decreases
(Fig. 1c) and the impact ionization of Mn2+ centers
ceases. This weakens the emission band at ≈530 nm in
portion IV and also in the total spectrum (Figs. 2d–2f).

The shift of the long-wave side of the electrolumi-
nescence spectra toward shorter waves (Figs. 2f, 3a, 3d,
3f) is probably due to a decrease in the concentration of
the complexes formed by Mn2+ ions and sulfur vacan-
cies (which are responsible for the band with λm = 606–
610 nm [12–14]). This decrease reflects the change in
the charge state of the sulfur vacancies, as described
before. This shift is more apparent in the +Al mode,
because the concentration of sulfur vacancies and Mn2+

centers near the top Al electrode is higher in this case

[2, 3]. It can thus be concluded that Mn2+ ions and 
sulfur vacancies do form these complex centers, since

the IR irradiation diminishes the concentration of 
centers.

The fact that the IR irradiation does not influence the
electroluminescence spectra recorded in the continuous
excitation mode and during the action of exciting volt-
age pulses in the pulsed mode is explained by the small
thickness of the phosphor layer and by the short interval
between the voltage pulses (<10 ms). Because of this,

the concentration of additional deep centers 
remains insignificant for the IR photon flux density
used in the experiments [3].

The IR quenching of the basic electroluminescence
peak is probably related to the redistribution of the
channels via which the impact excitation of Mn2+ lumi-
nescence centers and deep centers related to the sulfur,

, and zinc, , vacancies takes place [4]. This sup-
position is supported by the decay of brightness wave
Lλ(t) at λ = 585 nm (Figs. 1a and 1b) and of total bright-
ness wave ∆L(t) (Fig. 1d), which is accompanied by the
simultaneous increase in current ∆Ip(t) and charge
∆Qp(t) (Figs. 1d and 1e), as well as by the decrease in
internal quantum yield ηint(t) (Fig. 1f). If the charge in
portions I–III increases by ∆Qp = (1.5–2.1) × 10–9 C
(Fig. 1e) and the depth of the positive space charge
layer and the surface area of the THELD are taken to be
d = 0.2 µm and Se = 2 mm2, respectively, the concentra-

tion of  centers (and, hence, the equilibrium concen-

tration of  centers) increases by ∆  = (2.3–3.2) ×
1016 cm–3, which is in agreement with the early results
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[3]. Since the equilibrium concentration of  vacan-

cies is estimated as  = (3–4) × 1016 cm–3 [3], the IR
irradiation may “skew” the distribution of impact ion-

izations of  and Mn2+ centers by a factor of 1.5–2.1
(depending on whether the +Al or –Al mode is used) in

favor of  centers. This statement holds even if one

ignores the fact that the ionization potential of  cen-
ters (≈1.9 eV) is lower than that of the Mn2+ centers
(2.4–2.5 eV) (accordingly, the effective thickness of the

phosphor layer where the ionization of  centers
occurs increases as compared with Mn2+ centers) and

that the impact excitation cross section of  centers is
larger than that of Mn+ centers.

Let us consider the relationship between the concen-

trations of  and Mn2+ centers in greater detail. Under
the assumption that the TFELD radiation is monochro-
matic and omnidirectional during half-period T/2 of
voltage V(t), the number of Mn2+ centers that are
excited by impact ionization and relax via emission of
photons can be expressed as [6]

(4)

where A = (πSe)/(hνfλ), hν is the photon energy, fλ is the
luminous efficiency, Le is the average brightness of
TFELD emission during half-period T/2 of exciting
voltage V(t), and K0 is the coefficient of emission
extraction from the TFELD.

For hν = 2.12 eV (λm = 585 nm), fλ = 510 lm/W, K0 =
0.2, T = 0.05 s, Se = 2 mm2 (the measurements were car-
ried out without IR irradiation in the continuous excita-
tion mode at a frequency of 20 Hz), and Le = 5 cd/m2,
we obtain  = 2.7 × 1010. This value corresponds to
the concentration of luminescent centers N* = (3.4–
4.5) × 1016 cm–3 when the effective thickness of the
phosphor layer, where the impact excitation of Mn2+

centers occurs, is equal to dpe = 0.3–0.4 µm. This con-
centration is even smaller than the total equilibrium

concentration of  and  centers, (6.2–7.7) ×
1016 cm–3 [3], the impact ionization of which generates
the positive space charge. This concentration of deep
ionized centers responsible for the formation of the
positive space charge agrees completely with the values
determined previously, such as 1016–1017 cm–3 [17] and
(4.8–9.0) × 1016 cm–3 [18], as well as with the equilib-

rium concentration of  and  centers in ZnS [15].
Thus, the irradiation-induced increase in the concentra-

tion of  centers by ∆  = (2.3–3.2) × 1016 cm–3
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does have a noticeable effect on the distribution of the
channels of impact excitation of the luminescent cen-
ters and the centers associated with intrinsic structural
defects.

Charge Qp transferred through the phosphor layer
during the half-period of exciting voltage V(t) was
determined by the technique described in [3] and was
found to be ~2.7 × 10–8 C. This value is consistent with
the number of charge carriers (electrons, since their
mobility in ZnS is 28 times the mobility of holes [3]),
np = 17 × 1010. On the one hand, this indicates that the
concentration of free electrons is sufficient for the
impact ionization of Mn2+ luminescence centers and
centers due to zinc and sulfur vacancies to occur. On the
other hand, under the above assumption that the
TFELD radiation is monochromatic and omnidirec-
tional during the half-period of voltage V(t), the internal
quantum yield of the TFELD can be determined as fol-
lows [19]:

(5)

For the values for  and np given before, formula
(5) yields ηint = 0.16. This testifies that only each sixth
electron passing through the phosphor layer is capable
of exciting Mn2+ centers that emit when relaxing. The
rest of the total number np of electrons participates in
the impact excitation of Mn2+ centers that feature non-
radiative relaxation and of the deep centers, mostly sul-

fur, , and zinc, , vacancies. The fact is supported
by the data reported in [20], where the distribution of
hot electrons in ZnS was found to decrease abruptly at
energies of 2.64–2.82 eV (the ionization energy for

 is 2.6–2.8 eV [3]).

Now we will estimate total number  of excited
Mn2+ centers and probability Pr of their radiative relax-
ation:

(6)

Internal quantum yield ηint is related to Pr and num-
ber N1 of Mn2+ centers ionized by one electron having
passed through the phosphor layer as

(7)

where

(8)

σ is the impact excitation cross section for Mn2+ centers
(σ = 2 × 10–16 cm2 [21]) and N is their concentration in
the phosphor layer (at a doping level of 0.5 wt%, N =
2 × 1020 cm–3 [17]).

ηunt

N r*

np
-------.=

N r*

VS
+ VZn

2–

VZn
2–

NΣ*

NΣ*
N r*

Pr
-------.=

η int N1Pr,=

N1 dpeσN ,=
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Taking ηint = 0.16, dpe = 0.3–0.4 µm, N* = 2.7 × 1010,
we find from (6)–(8) that  = (20–27) × 1010. This
value exceeds the number of electrons passing through
the phosphor layer (np = 17 × 1010), indicating that
expression (8) is inapplicable, since the value of N1 is
limited by number np0 of electrons emitted from the sur-
face states at the cathodic side of the insulator–phos-
phor interface during the half-period of voltage V(t) and

by number NV of deep centers  and . Then,

assuming that all  and  centers are excited by
impact ionization, as follows from the dependences
∆Ip(t) and ∆Qp(t) (Figs. 1d and 1e), we can conclude
that total number  of Mn2+ centers excited obeys the
inequality

(9)

In view of the above values of np and N*, the total

number of  and  centers corresponding to their
equilibrium concentration in the phosphor layer ((6.2–
7.7) × 1016 cm–3 [3]), and the value of NV = (4.8–6.4) ×
1010, we find that  ≤ (10.6–12.2) × 1010. In this case,
(6) yields Pr ≥ 0.22–0.25, which is close to the estimate
Pr = 0.4 [21]. It should be noted that the values of ,

, and ηint can be increased 2.0–2.5 times by merely
using exciting voltage V(t) with a higher rate of rise
[22], since, in this case, currents Ie(t) and Ip(t) (and,
hence, np0) will grow [7, 22]. Another way of increasing
these values several times is to shrink the nonemitting
cathode region of the phosphor layer and to increase
dpe. Thickness dpe is made larger in advanced TFELDs
prepared by atomic layer epitaxy [21], where  is
higher for the same concentration N of Mn2+ centers in
the phosphor layer.

If it is taken into account that the impact excitation
of Mn2+ centers does not generate extra free carriers,
factor M of electron multiplication in the ZnS layer may
be expressed as follows:

(10)

Since number m of ionization events per electron
leaving the high field region is

(11)

the total number of ionization events causing electron
multiplication will be mnp. On the other hand, if we
assume that basically electron multiplication is the

result of ionization of all deep centers  and , the

NΣ*

VS
+ VZn

2–

VS
+ VZn

2–

NΣ*

NΣ* np NV .–≤

VS
+ VZn
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NΣ*

NΣ*

N r*

NΣ*

M
np

np0
-------.=

m 1
1
M
-----,–=

VS
+ VZn

2–
total number of which is NV , the values of m and M are
then given by

(12)

For the above values of NV and np, we have m =
0.28–0.38 and M = 1.4–1.6. This value of M agrees well
with M = 1.4–1.8 obtained in [23] for “thin” TFELDs
(dp = 230 nm), which are produced by atomic layer epi-
taxy and have the smallest thickness of the nonemitting
near-cathode region (about 20 nm [21]), where free
electrons are accelerated to the ionization energy of
Mn2+ centers, as compared to TFELDs obtained by
other techniques (up to 200 nm [21]). The values of M
found by Shin et al. [23] (M = 1.4–1.8) are somewhat
smaller than those obtained by the same authors for
thicker TFELD samples (M = 2.1–4.0) and than M
obtained in [24] (M = 3.9).

Having found M, we can now evaluate the number
of electrons tunnel-injected through a barrier at the
cathodic side of the insulator–phosphor interface dur-
ing the half-period of exciting voltage V(t):

(13)

With regard to the surface area of the TFELD, Se =
2 mm2, we find the surface density of states responsible
for electron tunneling, (5.3–6.0) × 1012 cm–2. This value
is in good agreement with the available data [21].

Using m and dpe found above (dpe = 0.3–0.4 µm) and
assuming that the field in the region of ionization is uni-
form, we estimate the rate α of impact ionization as

(14)

From these data, one can determine the cross section

 of impact excitation of  centers. Assuming that

all  centers are ionized during the half-period of
exciting voltage V(t) and taking into account that, at

 < np0, the number of  centers excited by an elec-

tron passing through the phosphor layer is , we esti-

mate  by (8) as follows:

(15)

At dpe = 0.3–0.4 µm,  ≤ 1,  = (3–4) ×
1016 cm–3, we find that  ≤ (0.6–1.1) × 10–12 cm2,
which is typical of centers of attraction [25] and is
much larger than the cross section of impact excitation
of neutral Mn2+ centers (≈2 × 10–16 cm2).
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The parameters estimated above allow us to evaluate
the cross section σφ of absorption of an IR photon by a

 center (i.e., the cross section of hole photogenera-

tion from  centers in the valence band). According
to [25],

(16)

where αφ is the coefficient of absorption of IR radiation

and ∆  is the concentration of photogenerated 
centers.

Assuming that the reflection of the IR radiation from
and the absorption of the radiation in the other layers
and substrate of the TFELD structure are negligible and
also assuming that the radiation is absorbed in the phos-

phor layer (by  centers) by the exponential law, we
can write αφ in the form

(17)

where d is the thickness of the positive space charge
layer, nφ0 = ΦSeTS is the number of IR photons incident

on the TFELD surface, and nφd = ΦTSSe – Sed is the
number of IR photons having passed through the phos-
phor layer without absorption.

Substituting d = 0.2 µm, Φ = 3 × 1015 mm–2 s–1, T =

100 s, and ∆  = (2.3–3.2) × 1016 cm–3 into (16) and

(17), we get αφ = (7.5–10.5) × 10–4 cm–1 and σφ = 3.3 ×
10–20 cm2.

Thus, we can conclude that the quenching of elec-
troluminescence in ZnS : Mn-based TFELDs is
observed when the channels of impact excitation of

deep  centers in the energy gap of ZnS : Mn become
more efficient than those of impact ionization of Mn2+

luminescent centers. The concentration of  centers
rises when the device is exposed to the IR radiation in
the interval between exciting voltage pulses. The
change in the electroluminescence spectra substantiates
the mechanism explaining the effect of IR irradiation
on TFELD characteristics and validates the energy lev-

els of sulfur vacancies  and  (which were found
to be 1.3 eV above the valence band top and 1.9 eV
below the conduction band bottom, respectively). The
emission band with a peak at 490–495 nm probably
results from radiative recombination of donor–acceptor

pairs related to sulfur vacancies . We experimen-
tally evaluated a number of the parameters of the deep
centers associated with intrinsic defects in the phosphor
layer. These are the cross section of impact excitation of
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 centers,  ≤ (0.6–1.1) × 10–12 cm2; the rate of
impact ionization of these centers, α = (0.7–1.3) ×
104 cm–1; the cross section of photoexcitation of 
centers, σφ ≈ 3.3 × 10–20 cm2; and the coefficient of
absorption of IR radiation, αφ ≈ (7.5–10.5) × 10–4 cm–1.
Also, we estimated the internal quantum yield of elec-
troluminescence, ηint ~ 0.16; the probability of radiative
relaxation of excited Mn2+ centers, Pr ≥ (0.22–0.25);
and the multiplication factor of electrons in the phos-
phor layer, M = 1.4–1.6. The data obtained indicate,
among other things, that the efficiency of electrolumi-
nescence from ZnS : Mn-based TFELDs, which is
caused by impact excitation of Mn2+ luminescent cen-
ters, depends on the internal quantum yield and may be
appreciably limited by the competing process of impact
excitation of the deep centers due to intrinsic defects
(that is, sulfur and zinc vacancies) in the phosphor layer
structure.
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Abstract—The polarization properties of thick anisotropic holographic gratings are studied theoretically and
experimentally. The dependences of the diffraction efficiency, ellipticity, and polarization orientation of the dif-
fraction beam on the azimuth angle of polarization of an incident Bragg beam are derived. The experimental
data are shown to agree well with the analytical calculations. It is found that the diffraction characteristics can
be controlled in a wide range of incident polarization. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

The photopolymers that polymerize in the near-IR
range are attracting much attention as promising media
for high-density memory devices [1–9]. Unlike photo-
graphic films, photoresistors, gelatins, etc., photopoly-
mers allow real-time observation of structure record-
ing. Of special interest are the composites called poly-
mer-dispersed liquid crystals (PDLCs) [10–13]. These
media offer the mechanical properties of polymers and,
at the same time, are anisotropic as liquid crystals
(LCs). The anisotropy of LC molecules embedded in
polymers makes it possible to control the properties of
recorded structures with static electric fields, tempera-
ture variation, mechanical strains, etc., which change
the orientation of LC molecules [13, 14]. Light diffrac-
tion by a volume phase grating based on multilayer or
holographic materials has been carefully studied [15].
In particular, holographic polymer systems have been
the subject of extensive investigation over a period of
several decades [16–18], since they are candidates for
various optical applications, such as optical recording
[19], detection of acoustic waves [20], planar screens
and screens of desired curvature [10, 21], tunable color
filters for remote control [22], fiber-optic switchers
[11], and lenses with controllable focal length [12].
These materials can also be used in designing optical
computers, etc. Thus, diffraction gratings recorded on
PDLCs are of both scientific and applied interest [13].
In the case of PDLCs, a hologram is recorded via poly-
merization (which is initiated in exposed regions) and
molecular diffusion, as a result of which the refractive
index is periodically modulated. These media offer
post-exposure control of the diffraction efficiency and
make it possible to fabricate electrically or optically
controlled holographic multipliers, storage elements,
and lenses with dynamically varying focal length.

To prepare holographic PDLCs, a homogeneous
mixture of light-sensitive LC monomers is illuminated
1063-7842/05/5001- $26.00 0055
by the interference pattern of two coherent waves. As
the material polymerizes, the concentration of the
monomers in the exposed regions decreases. When it
reaches a dynamically equilibrium value, monomer
molecules start diffusing from unexposed to exposed
regions, displacing LC molecules from the latter. The
LC molecules should be selected such that they mix up
with the initial monomer solution but do not mix up
with the polymer or with the partially polymerized
solution, as a result of which phase separation between
the LCs and monomer/polymer occurs. Eventually, a
polymer matrix with periodic density modulation
occurs where LC molecules are dispersed as 3D
domains (drops) (the drops appear primarily in the
unexposed regions) [14]. In a number of special cases,
clearly separated submicrometer 2D areas of the poly-
mer and LC are formed [7]. Since the orientation of LC
molecules is extremely sensitive to hydrodynamic and
diffusion fluxes, the LC director will be aligned largely
with the wavevector of the final lattice. As was noted
above, the LC concentration in the unexposed regions
exceeds that in the exposed regions. Therefore, the LC
and polymer are the major contributors to the effective
refractive index in the unexposed and exposed regions,
respectively. The efficiency of refractive index modula-
tion, as well as the diffraction efficiency of PDLC grat-
ings, is strongly dependent on the concentration [23]
and shape of the LC drops, LC orientation within the
drops, temperature, etc. Since PDLC materials are
highly anisotropic, an understanding of the effect of
LCs on the angular [24–26] and polarization depen-
dences of the resulting systems is of great importance.
The temperature behavior of PDLCs has also been
given much attention. For example, the diffraction effi-
ciency of PDLCs as a function of temperature at an LC
concentration of 28% was studied in [23] and the tem-
perature dependences of the diffracted and transmitted
intensities for two polarizations of the incident beam
were considered in [27]. The polarization properties,
© 2005 Pleiades Publishing, Inc.
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however, are less well studied [27]: only the diffracted
and transmitted intensities as functions of the angle
between the linear polarization vector and the plane of
incidence at 27°C were experimentally examined.

The aim of this work is to experimentally and theo-
retically study the polarization properties of PDLC
gratings. Specifically, we will consider how the diffrac-
tion efficiency and the polarization of the diffracted
wave depend on the azimuth angle of the linear polar-
ization of the wave incident at the Bragg angle. Because
of the presence of anisotropic LC molecules, the dif-
fraction properties become strongly dependent on the
azimuth angle. This offers possibilities of controlling
the diffracted wave parameters.

In Section 1, we describe the computerized experi-
mental setup used to study the materials which the
PDLCs were made of. In Section 2, we report experi-
mental data for the polarization properties and give
detailed analysis of the results. Emphasis will be placed
on the dependence of the diffraction efficiency on the
azimuth angle of the incident beam polarization, as
well as on the dependences of the ellipticity of the dif-

He–Ne

SM1

λ /4 P1

P2

PM

SM2
CAMAC PC

G

Fig. 1. Schematic of the computerized experimental setup.

X

Z

Y

θi

θi

θd

Fig. 2. Schematic of the diffraction grating and the distribu-
tion of the liquid crystal.
fracted wave and the orientation of its polarization
ellipse on the same azimuth angle. In Section 3, we give
a theoretical description of the system under study. The
analytical dependence of the diffraction efficiency on
the azimuth angle of polarization is derived in Section 3.1,
and the state of polarization of the diffracted wave as a
function of the azimuth angle of the linear polarization
vector of the incident wave is studied in Section 3.2. In
Section 4, we discuss the experimental and theoretical
results and draw relevant conclusions.

1. EXPERIMENTAL SETUP

The setup used in the experiments is schematically
shown in Fig. 1. A beam from a He–Ne laser with a
wavelength of 628 nm that is initially linearly polarized
at an angle of 45° relative to the plane of incidence
(plane XY in Fig. 2) passes through a λ/4-plate, becom-
ing circularly polarized. Then, the beam passes through
polarizer P1, which is mounted on PC-controlled
(CAMAC interface) step motor SM1. The minimal
angle by which step motor SM1 can rotate polarizer P1
is 0.77°. Using this computerized system, one can pre-
set a linear polarization of the incident beam. Next, the
light strikes holographic grating G at the Bragg angle
(θB = 18.3°). The grating (Fig. 2) generates two, dif-
fracted and transmitted, waves, which run symmetri-
cally about the Y axis (both at the Bragg angle). The dif-
fracted wave passes through polarizer P2, which is
mounted on PC-controlled step motor SM2 and rotates
with the same step as P1. Then, the diffracted wave
arrives at photomultiplier PM, which is connected to an
analog-to-digital converter (ADC) via the CAMAC
interface. Polarizer P2 rotates from 0° to 90° in 4°
increments (except for the first step, which is 2°). In the
first experiment, polarizer P2 is removed and photo-
multiplier PM records the diffracted beam intensity at
each polarization of the incident beam. In the second
experiment, P2 rotates by 360° with a minimal step and
the ADC converts the readings of PM at each polariza-
tion of the incident beam, recovering the state of polar-
ization of the diffracted beam. If, for example, the
dependence of the intensity striking the photomultiplier
on the angle of polarizer P2 has the form of an eight, the
polarization is linear and the angle of polarization
equals the slope of the eight. Thus, for each angle of
incidence, we obtain the angle of polarization of the
emergent (diffracted) beam. If the diffracted beam is
elliptically polarized, this angle is the angle between
the major semiaxis of the ellipse and the plane of inci-
dence.

2. EXPERIMENTAL DATA

Figure 3 shows the experimental dependence (data
points) of diffracted efficiency η on azimuth angle of
polarization α of the incident beam. The efficiency va-
ries smoothly from ηp = 0.45 (the azimuth angle of
polarization is α = 0) to ηs = 0.14 (the azimuth angle of
TECHNICAL PHYSICS      Vol. 50      No. 1      2005
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polarization is α = 90°). It is seen from this figure that
the efficiency changes more or less sharply when α lies
in the interval 50°–60°.

Figure 4 demonstrates the experimental dependence
(data points) of angle of orientation of polarization
ellipse β on azimuth angle of polarization of the inci-
dence beam α. The orientation of the polarization
ellipse of the diffracted wave increases slowly from 0 to
5° as the azimuth angle of the incident wave varies from
0 to 50°. When α reaches 50°–60°, β sharply grows to
85° and then increases slowly to 90° when α varies
from 60° to 90°.

Figure 5 plots the experimental dependence (data
points) of ellipticity µ on azimuth angle of polarization
of the incidence beam α. The ellipticity of polarization
of the diffracted beam grows nearly linearly from 0 to
0.96 when α increases from 0° to roughly 55° and then
drops (also nearly linearly) to 0.

Thus, in the interval α = 0°–55°, the orientation of
the ellipse remains nearly independent of the orienta-
tion of linear polarization (being closer to p polariza-
tion): only ellipticity µ increases. At α = 55°, the polar-
ization of the diffracted wave is nearly circular. In the
interval α = 50°–60°, the somewhat oblate circle of
polarization sharply changes the orientation (roughly
by 80°). For α = 60°–90°, the ellipticity starts decreas-
ing but the orientation remains almost unchanged
(being closer to s polarization).

3. THEORETICAL CONSIDERATION
3.1. Diffraction Efficiency Versus Polarization

Consider a thick anisotropic holographic direct
transmission grating that is recorded on a PDLC. The
thickness and period of the grating are d and Λ, respec-
tively. Let the Y axis be directed along the normal to the
grating surface and the X axis be aligned with the vector
of the grating (Fig. 2). Light strikes the PDLC at angle
θi (outside the grating), the plane XY being the plane of
incidence. It is assumed that the incident light with
wavelength λ0 in free space and wavevector k0 (the
absolute value of the wavevector is k0 = 2π/λ0) is mono-
chromatic and linearly polarized. Let the electric field
of the incident light wave be E0. According to the
approximation of slowly varying amplitudes in the the-
ory of coupled waves [28–30], the outgoing (diffracted)
wave is given by

(1)
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Here, χip, dp and χis, ds are the coupling coefficients for
the incident and diffracted waves:

(3)

(4)

χ ip dp,
k0Ap

4gip dp, nip dp, ϕ ip dp,cos
---------------------------------------------------   for the p wave,=

χ is ds,
k0As

4gis ds, nis ds, ϕ is ds,cos
------------------------------------------------  for the  s wave.=

1.0

0.8

0.6

0.4

0.2

0 908070605040302010
α

η

Fig. 3. Diffraction efficiency η vs. azimuth angle α of inci-
dent linear polarization (d = 26.4 µm, Λ = 1.0 µm, λ =
628 nm, εpol = 2.2535, ε⊥ = 2.3, ε|| = 2.9474, and c = 0.35).
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Fig. 4. Orientation β of diffracted bean polarization vs.
angle α of incident linear polarization. The parameters are
the same as in Fig. 3.
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Fig. 5. Ellipticity µ of polarization of the diffracted beam
vs. angle α of incident linear polarization. The parameters
are the same as in Fig. 3.
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In (3) and (4), Ap and As describe the modulation of
the p and s waves:

(5)

(6)

 = (  – εpol)(c – a),

where  are the normal and parallel components of
the permittivity of the LC; εpol is the permittivity of the
polymer; c is the volume concentration of the LC; a is
the part of the LC concentration that is not modulated;
and gip, dp and gis, ds are the cosines of the angles
between the wavevectors and Poynting vectors:

(7)

(8)

In (3) and (4), nip, dp and nis, ds are the mean refractive
indices for the incident and diffracted beams, respec-
tively:

(9)

(10)

Hereafter, θip, dp and θis, ds are the angles of incidence
and diffraction inward to the sample for the p and s
components, respectively; ϕip, dp and ϕis, ds are the
angles between the normal to the surface (the Y axis)
and Poynting vector for the incident and diffracted
beams, respectively:

(11)

(12)

In (1) and (2),

(13)

is the parameter that characterizes the depth of modula-
tion and

(14)

is the detuning parameter that characterizes the offset
from the Bragg condition. According to Kogelnik [28],

(15)

Ap ε⊥
1 ϕ ip ϕdpsinsin ε||

1 ϕ ip ϕdpcoscos–=

   for the p wave,

As ε⊥
1   for the  s wave,=

ε⊥ ||,
1 ε⊥ ||,

LC

ε⊥ ||,
LC

gip dp,
ε||

0 θip dp,( )sin
2 ε⊥

0 θip dp,( )cos
2

+

ε||
0( )2 θip dp,( )sin

2 ε⊥
0( )2 θip dp,( )cos

2
+

------------------------------------------------------------------------------------------=

   for the p wave,

gis ds, 1  for the  s wave.=

nip dp,
2 ε⊥

0 ε||
0

ε||
0 θip dp,( )cos

2 ε||
0 θip dp,( )sin

2
+

------------------------------------------------------------------------=

   for the p wave,

nis ds,
2 ε⊥

0   for the  s wave.=

ϕ ip dp, θip dp, gip dp,( )   for the p wave,arccos+=

ϕ is ds, θis ds,   for the  s wave.=

νp s, d χ ip is, χdp ds,=

ξp s,
dgdp ds, ∆p s,

4k0ndp ds, ϕdp ds,cos
--------------------------------------------=

∆p s,
kdp ds,

2 kip is,
2–

2kip is,
-----------------------------=
is the phase detuning from the Bragg condition. In (15),
kip, is = k0nip, is and kdp, ds = k0ndp, ds are the wavenumbers
of the transmitted and diffracted waves for the s and p
components, respectively. Next, in (1) and (2), E0ip =
E0cosα and E0is = E0sinα are the magnitudes of the s
and p components of the incident beam, respectively,
where α is the azimuth angle of the linear polarization
of the incident beam. The diffraction efficiency is given
by [29]

(16)

In view of (1) and (2), expression (16) can be recast
in the more convenient form

(17)

Since the s and p components in a diffraction grating
propagate without interacting with each other, the dif-
fraction efficiency for any polarization of the incident
beam can be expressed via the s and p components as
follows:

(18)

where fs = nisgiscos(ϕis)/ndsgdscos(ϕds), fp = nipgip ×
cos(ϕip)/ndpgdpcos(ϕdp), f = cos(θi)/cos(θd), and θi and θd
are the angles of the transmitted and diffracted waves
outside the grating. For Bragg incidence, we have θi =
θd = θB.

Figure 3 shows the analytical dependence (continu-
ous curve) of the diffraction efficiency on the azimuth
angle of polarization of the incident beam in the case of
Bragg incidence (∆ = 0). It is obvious that the diffrac-
tion efficiency for α = 0 (p-polarized wave) is greater
than at α = 90° (s-polarized wave). It is seen that, in
general, the theoretical curve fits well the data points
but runs above the points. This is because absorption by
the grating is neglected. Furthermore, the modulation
of the refractive index is assumed to be sinusoidal,
which also is an approximation. As a result, the experi-
mental efficiency is somewhat lower than the theoreti-
cal value.

2.3. Variation of the State of Polarization

Let us consider the variation of the state of polariza-
tion in a thick anisotropic holographic grating. We
assume that an incident wave is linearly polarized at
azimuth angle α. Our aim is to elucidate how the state
of polarization (namely, the polarization orientation
and ellipticity) of the diffracted wave depends on angle
α. In other words, our aim is to calculate the magni-
tudes of the s and p components of the diffracted wave
at y = d and also the phase difference between these
components because of the anisotropy of the grating. If

ηp s,
Edp ds, d( )Edp ds,* d( )ndp ds, gdp ds, ϕdp ds,cos

Eip is, 0( )Eip is,* 0( )nip is, gip is, ϕ ip is,cos
---------------------------------------------------------------------------------------------.=

ηp s,
ξp s,

2 νp s,
2+sin

2

1 ξp s,
2 /νp s,

2+
-------------------------------------.=

η
η s f s αsin

2 ηp f p αcos
2

+
f

---------------------------------------------------------,=
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we decompose the linearly polarized wave with ampli-
tude E0 into the p and s components, the electric field
amplitudes of the diffracted and incident waves at y = 0
are E0ip = E0cosα and E0id = 0 for the p wave and E0is =
E0sinα and E0ds = 0 for the s wave. Hence, the p and s
components of the outgoing (diffracted) wave can be
described by formulas (1) and (2), respectively. For
Bragg incidence, ∆ = 0 or ξ = 0; therefore, the p and s
components of the diffracted wave can be written as

(19)

If α = 0, we have the p component alone (the s com-
ponent is absent); if α = 90°, the p component disap-
pears and we have only the s component. The total field
of the diffracted light can be represented as

(20)

or

(21)

where eds and edp are the unit vectors in the directions of
Eds and Edp, respectively, and

(22)

are the diffraction wave amplitudes for the s and p com-
ponents, respectively. In (20) and (21), rds and rdp are
the optical paths the s and p waves travel.

The phase difference between the s and p compo-
nents of the diffracted wave has the form

(23)

It follows from Fig. 6 that δ can be calculated as fol-
lows. Since

we have

Eventually,

(24)

Edp iE0 νp α ,cossin–=

Eds iE0 νs α .sinsin–=

Ed d( ) Eds i k0rds ωt–( )( )exp=
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2
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 
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Rds E0 νs α ,sinsin=
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rds AC ndsAF, rdp+ ndpCF,= =

AC d θdstan θdptan–( ) θi,sin=
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d
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From (22) and (23), we can find the angle of ellipti-
cal polarization (i.e., the angle between the major semi-
axis of the ellipse and the plane of incidence) for the
diffracted beam [31]:

(25)

We define the ellipticity as the minor-to-major semi-
axis ratio: µ = Rmin/Rmax. Clearly, ellipticity µ and angle
of orientation β depend on the azimuth angle of polar-
ization α of the incidence beam. Figure 4 shows the
analytical α dependence on β (continuous curve) for
grating parameters d = 26.4 µm, Λ = 1.0 µm, λ =
628 nm, εpol = 2.2535, ε⊥  = 2.3, ε|| = 2.9474, and c =
0.35. The analytical curve fits well the data points. In
Fig. 5, µ is plotted against α for the same values of the
parameters.

4. CONCLUSIONS

In this work, we theoretically and experimentally
studied the diffraction efficiency and state of polariza-
tion of the diffracted wave versus the azimuth angle of
polarization of linearly polarized light that is incident at
the Bragg angle on a thick anisotropic hologram. The
detailed description of the setup used in the experi-
ments is given. It turned out that one can control the dif-
fraction efficiency of the anisotropic hologram within
certain limits by varying the incident polarization. The
orientation of the diffracted beam ellipse is found to be
closer to 0° or 90° in most cases. A sharp change in the
orientation from 0° to 90° is observed in a narrow range
of the azimuth angle of incident polarization. In normal
uniaxial crystals, a sharp change in the orientation of
the ellipse takes place at 45°, with the ellipticity being
maximal at this angle. In thick anisotropic diffraction
gratings, this change somewhat lags (the angle of sud-
den change is roughly 55°), since the diffraction effi-
ciency for the p-polarized wave is higher than for the s-
polarized wave in these materials (as follows from
Fig. 3). As a result, the orientation is closer to p polar-
ization. Hence, for the amplitudes of the diffracted p

β 1
2
---

2RdsRdp

Rdp
2 Rds

2–
--------------------- δcos 

 arctan .=

A

B
C

D

G
Y

F

d

s
pθi θds

θdp

Fig. 6. On the calculation of the optical path difference for
the s and p waves in the diffraction grating.
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and s waves be the same, the angle of incident polariza-
tion must exceed 45°. Also, under this condition, the
sharp change in the state of polarization will be
observed at 45°. In thick anisotropic diffraction grat-
ings, the ellipticity reaches a maximum near 55° for the
same reason.
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Abstract—A new method of taking Raman and two-photon-excited luminescence spectra in an ultradispersed
medium is proposed. In this method, optical fibers serve to introduce an exciting radiation into and extract the
secondary radiation from an ultradispersed medium placed in a cavity-type metallic cell. The spectra are
initiated with a pulsed–periodic light source (copper vapor laser) and are recorded using a gating system.
The contrast of the secondary radiation spectra is high with respect to the exciting radiation, allowing for
molecular analysis of ultradispersed media by means of a single small-size monochromator. © 2005 Pleiades
Publishing, Inc.
INTRODUCTION

Ultradispersed media are being widely used in the
production of pharmaceutical preparations, chemicals,
food, perfumes, etc. Molecular analysis of the constitu-
ents and structure of such media is therefore of great
importance. A promising approach in this field is the
analysis of relevant Raman spectra and their nonlinear
analogues using advanced lasers as exciting radiation
sources.

Note that, for many materials, the effective cross
section of spontaneous Raman scattering (RS) is
extremely low (~10–28 cm2). Therefore, for Raman
spectra to be reliably detected, the power density of the
exciting radiation must be relatively high. Still higher
intensities of the light sources are needed for the analy-
sis of the nonlinear analogues of spontaneous RS:
hyper-Raman scattering (HRS) and two-photon-
excited luminescence (TPEL) [1–5].

Pulsed–periodic metal vapor lasers (in particular, a
copper vapor laser) proved to be effective light sources
when used in experiments on detecting spontaneous RS
and its nonlinear analogues [5].

The Raman spectra of condensed media are rou-
tinely detected by focusing laser radiation inside the
medium. At a high radiation intensity, this leads to a
number of adverse effects that alter the initial parame-
ters of the medium, such as photodestruction, local
heating, and photoinduced phase transformations.

In this work, we propose a new method of exciting
Raman optical processes in ultradispersed media. In
this method, a silica fiber applies an exciting radiation
to a scattering medium placed inside a cavity-type
metallic cell and other fibers extract the secondary radi-
ation from the cell.
1063-7842/05/5001- $26.00 0061
EXPERIMENTAL

Figure 1 demonstrates the schematic of the experi-
mental setup. It consists of copper vapor laser 1 gener-
ating short pulses (20 ns) with a repletion rate of 16 kHz
in the visible range (λ = 510.6 and 578.2 nm). A color
filter selects one of the laser lines (λ = 510.6 nm) with
a mean power of 0.5 W. Optical fiber 2 applies the laser
radiation to cell 3 with the sample. The design of the
cells used is shown in Fig. 2.

Figure 2a demonstrates the cell used in the transmis-
sion experiments. The exciting radiation is introduced
into the conic cavity that is cut out in an aluminum cyl-
inder. Silica fiber 2, applying the exciting radiation,

1
22'

3

45

7

68
9

13

11 12 10

14

Fig. 1. Schematic of the experimental setup for studying
secondary radiation from the interior of condensed media
excited with a pulsed–periodic laser. (1) Laser, (2) and
(2') optical fibers, (3) cell with sample, (4) lens, (5) color fil-
ter, (6) monochromator, (7) monochromator-controlling
unit, (8) PMT, (9) power supply of PMT, (10) gate pulse
shaper, (11) amplifier, (12) delay line, (13) computer, and
(14) optical fiber.
© 2005 Pleiades Publishing, Inc.
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ends up at point A near the vertex of the cone. The sam-
ple, an ultradispersed polycrystalline medium, is placed
into the conic cavity. Owing to multiple scattering
events in the cavity, the intensity of the Raman optical
processes turns out to be much higher than in the no-
cavity scheme. The metal (aluminum) surface with a
high thermal conductivity provides effective heat
removal from the area where the exciting radiation is
the most intense. At point B, the secondary radiation
enters fiber 2', which guides it to the entrance slit of
MSD-2 monochromator 6 through collecting lens 4
(Fig. 1).

Figure 2b shows the cell used in the reflection exper-
iments. In this case, a metallic plug is placed near point
A (the vertex of the cone). The laser radiation is deliv-
ered using fiber 2 coaxial with the cell. The secondary
radiation is extracted from the cell with off-axis fibers
2'. PS-11 or OS-11 absorption color filters 5 (Fig. 1) are

B

B

A

A

22'

2'

2'

2

(a)

(b)

Fig. 2. Design of the (a) transmission and (b) reflection cells
with cone-shaped cavities. (2, 2') Optical fibers delivering
the laser radiation to the cell and extracting the secondary
radiation from the cell, respectively.
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I, arb. units
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 1
0–3

510.6 nm
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Fig. 3. TPEL spectra of (1) POPOP, (2) PPO, and (3) stil-
bene taken in the reflection mode in the cell coupled with
the fiber. The PMT voltage is 1600 V.
placed in front of the entrance slit of the monochroma-
tor for exciting light rejection. After passing through
the exit slit of the monochromator, the signal is detected
using FÉU-106 photoelectric multiplier tube (PMT) 8.
Power supply 9 of the PMT generates a stabilized volt-
age (U = 2 kV) needed for the amplification of electric
pulses due to Raman and luminescence photons arriv-
ing at the photocathode of the PMT. The signal from the
PMT is amplified further by amplifier 11. The amplifier
is time-gated using gate pulse shaper 10 and delay line
12. A reference light pulse is applied to pulse shaper 10
through optical fiber 14, and the pulse shaper generates
a 20-ns-wide gating pulse, which can be delayed rela-
tive to the exciting (laser) pulse by 0–100 ns with delay
line 12. This gating pulse is used to activate the ampli-
fier. Control unit 7 accomplishes discrete spectral scan-
ning with a given step and accumulation time at each
point. Computer 13 obtains digital data on the second-
ary radiation spectrum and controls the step motor of
the MSD-2 monochromator, which turns the diffraction
grating of the monochromator at regular intervals.

The detection system with gating enables one to
detect secondary radiation signals with a high (up to
10−15 W) sensitivity. Using the delay line with time gat-
ing makes it possible to analyze the spectra of “fast”
and “slow” processes in the time interval 0–100 ns.

We experimented with the following ultradispersed
organic substances: (i) C24H16O2 (POPOP),
(ii) (C6H5CH)2 (stilbene), and (iii) C15H11NO (PPO).

The experiments were performed at room tempera-
ture.

RESULTS
Figure 3 shows the TPEL spectra of POPOP, PPO,

and stilbene (curves 1–3, respectively) that were taken
in the reflection mode. In this case, the PS-11 color fil-
ter placed in front of the entrance slit of the monochro-
mator suppresses the exciting radiation with a wave-
length of 510.6 nm and transmits the near-UV and blue
radiation. It is seen that the TPEL spectrum of POPOP
represents a relatively narrow band in the visible range
(430–500 nm) with λmax = 460 nm. The TPEL spectrum
of PPO is shifted toward shorter wavelengths (380–
480 nm) and peaks at λmax = 425 nm. The TPEL spec-
trum of stilbene exhibits two peaks (λ = 385 and
415 nm) and occupies the spectral range 370–480 nm
(Fig. 3).

Figure 4a demonstrates the Raman spectra of PPO
and stilbene (curves 1 and 2, respectively) taken in the
reflection mode. Here, the OS-11 color filter was placed
in front of the entrance slit of the monochromator. The
Raman spectrum of PPO exhibits several peaks, the
most intense one being at 1553 cm–1. The Raman spec-
trum of stilbene also contains several peaks, the most
intense one being at 1593 cm–1.

Figure 4b shows the Raman spectrum of POPOP
taken in the reflection mode (curve 1) with the OS-11
TECHNICAL PHYSICS      Vol. 50      No. 1      2005
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Comparative characteristics of the Raman and TPEL spectra for the aromatic compounds

Substance ν, cm–1 KS λ, nm KL Structural formula

POPOP 1550 0.38 460 0.09

PPO 1553 0.31 425 0.16

Stilbene 1593 0.28 415 0.08

Note: KS = IS/I0 is the effective primary radiation-to-RS conversion coefficient; KL = IL/I0 is the effective primary radiation-to-TPEL con-
version coefficient; and I0, IS, and IL are the maxima of the primary radiation, RS, and TPEL intensities.

O

N

O

N

O

N

CH CH
color filter placed before the entrance slit of the mono-
chromator. The Raman spectrum of stilbene (curve 2) is
shown for comparison. Among the substances under
study, POPOP exhibits the highest Raman signal (see
table).

Figure 5 compares the Raman spectra of POPOP
that were taken in the transmission mode with delays of
0.25 and 50 ns. In this case, the filters in front of the
entrance slit of the monochromator were absent, since
the intensity of the exciting radiation exceeds the
Raman signal intensity only slightly. The intensity of
the continuous background decreases abruptly with

20 000

10 000

0

20 000

10 000

0
0 1000 2000

ν, cm–1

1
2

2
1

(a)

(b)

I, arb. units

Fig. 4. (a) Raman spectra of (1) PPO and (2) stilbene mea-
sured in the reflection mode. (b) Raman spectra of (1) POPOP
and (2) stilbene taken in the reflection mode (the latter is shown
for comparison). The PMT voltage is 1600 V.
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increasing delay time, whereas the Raman spectrum is
observed even at long delays (50 ns).

A number of the characteristics of the Raman and
TPEL spectra are listed in the table.

DISCUSSION

In the case of two-photon absorption of light coming
from a single source, the exponential law of intensity
decay, I(x) = I0exp(–k1x), is changed to the hyperbolic
dependence [6]

where βI0 = k2 is the two-photon absorption coefficient,
β is the two-photon absorption constant (whose dimen-
sion in the SI system is m/W).

In this work, the diameter of the fibers was 100 µm
and the power of laser pulses, on the order of 104 W.
Thus, the radiation intensity at the fiber exit was I0 =
108 W/cm2. For such an intensity and β = 5 ×
10−11 m/W (this value is typical of molecular media
[7]), we have k2 = 50 m–1 = 0.5 cm–1. Hence, for the

Ix I0/ 1 k2x+( ),=

20 000

10 000

0
0 1000

ν, cm–1
2000

I, arb. units

1

2

3

Fig. 5. Raman spectra of POPOP taken in the transmission
mode for delay times of (1) 0, (2) 25, and (3) 50 ns. The
PMT voltage is 1600 V.
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given excitation parameters, an intense TPEL signal
may be expected to arise in a cell ≈1 cm long.

The TPEL spectra observed can be viewed as a
result of the two-photon excitation of electronic states
followed by the transition of a molecule to the vibra-
tional sublevels of the ground (S0) state. The short-wave
edge of these spectra corresponds to the π*–π elec-
tronic transition in a benzene ring. The long-wave edge
of the TPEL spectrum may be assigned to the vibra-
tional sublevels of the molecular ground state.

CONCLUSIONS

We developed a method of fiber-optic excitation of
Raman processes in condensed media and took Raman
and TPEL spectra from aromatic substances (PPO,
POPOP, and stilbene). Laser heating of the samples is
insignificant, which allows for multiple nondestructive
measurements. The secondary radiation from the sam-
ples is sufficiently high owing to a cavity-type metallic
cell used in the experiments. In particular, the effective
exciting radiation-to-RS conversion coefficients, KS,
were found to be 0.38, 0.31, and 0.28 for POPOP, PPO,
and stilbene, respectively. The effective exciting radia-
tion-to-TPEL conversion coefficients, KL, were 0.09,
0.16, and 0.08 for POPOP, PPO, and stilbene, respec-
tively.

Thus, our method makes it possible to nondestruc-
tively detect secondary radiation signals from the inte-
rior of ultradispersed media with a high contrast with
respect to the primary (exciting) radiation.
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Abstract—Holographic single-component diffuse screens based on on-axis transmission holograms are stud-
ied theoretically and experimentally. The configurations of extra holographically reconstructed images of the
diffuse screen (conjugate image, halo, and zeroth-order spot) are analyzed. A so-called centered hologram is
suggested in which the conjugate image of the diffuse screen spatially coincides with the main image, thereby
eliminating distortions inserted by the conjugate image. Also, hologram recording using a Mach–Zender inter-
ferometer is suggested and implemented. Such an approach makes it possible to eliminate the shadow of an
object on the hologram. It is noted that, in recording a planar diffuse screen, the presence of the halo does not
distort the image of an object projected through the screen: only the light intensity is partially lost. Analysis of
the images projected shows that the luminance of the zeroth-order spot, while relatively low, should be dimin-
ished in one way or another. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

The on-axis hologram suggested by Gabor in 1948
[1, 2] is historically the very first type of hologram.
Essentially, this hologram is a variety of thin hologram,
which is known to reconstruct not only the main image
but also extra images of an object. Unlike the case of
the off-axis hologram [3], where all these images are
spatially separated, here the additional images are
superimposed on the main one, causing its considerable
distortion. At the same time, the on-axis hologram
offers a number of significant advantages. Specifically,
it is well compatible with optical systems, most of
which are axisymmetric. In the case considered, where
an on-axis hologram is used to project the image
through a screen, the axial projection scheme does not
introduce distortions of the image projected that arise
when projecting beams are inclined to the screen. One
of the few ways of creating an on-axis holographic
screen is based on using an on-axis hologram.

RECORDING AND RECONSTRUCTION 
OF AN ON-AXIS HOLOGRAM

The scheme for recording and reconstructing an on-
axis hologram is shown in Fig. 1. The radiation from
reference source R illuminates object O, which scatters
this radiation and forms objective wave WO. Reference
wave WR is formed by the radiation from source R,
which falls on a photographic plate, bypassing the
object. After development, photographic plate Ph,
which records the interference pattern, becomes holo-
gram H.
1063-7842/05/5001- $26.00 0065
At the stage of reconstruction, hologram H is
exposed to wave WR from reference source R. Interfer-
ing with this wave, the hologram generates four waves

, , , and WHL. Wave  is an extension of
wave WO, which is scattered by object O. Perceiving
this wave, the observer sees the three-dimensional
image of object O. Wave  is an extension of wave
WR, which is emitted by reference (illuminating) source

R. Wave  is the so-called conjugate image of object
O*. Gabor showed that the position of the conjugate
image can be found by merely reflecting object O in
reference wave WR as in a mirror [2]. Wave WHL forms
halo HL of the light scattered.

WO' WR' WO* WO'

WR'

WO*

R

HL

O

WR

WO WHL

W 'R
W 'O W*

O O*

h

α 2α

Ph, H

Fig. 1. Scheme for recording and reconstruction of an on-
axis hologram. R, point reference source; O, object; WO,
wave scattered by object; WR, wave from reference source
R; Ph, photographic plate (or hologram H after develop-
ment); , object wave reconstructed; , reference

wave reconstructed; , wave conjugate to object wave

WO; O*, conjugate image of object O; and h, observer’s eye.

WO' WR'

WO*
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Figure 1 clearly demonstrates the major disadvan-
tage of the on-axis hologram: when viewed from point
h, the reconstructed image of object O appears consid-
erably distorted, since this image is superimposed on
the point image of source R, conjugate image O* of the
object, and halo HL.

THEORY OF THE THIN (INCLUDING ON-AXIS) 
HOLOGRAM [1]

The electric fields of the object and reference waves
(EO and ER, respectively) can be written as

(1)

(2)

In (2), it is taken into account that amplitude AR of
the reference wave is coordinate-independent. Total
electric field Et acting on the photographic plate is the
sum of EO and ER:

(3)

The distribution of intensity Jt corresponding to
field Et can be found by multiplying Et by its conjugate
value:

(4)

Let us assume that, at the stage of development,
photographic plate Ph is subjected to chemical treat-
ment such that its amplitude transmission coefficient τH

is proportional to the intensity of the radiation incident
on the plate. In this case, we may write

(5)

where T is the intensity transmission coefficient.

Relationship (5) implies that the development is
positive; that is, the most exposed areas of photo-
graphic plate Ph become the most transparent areas of
the hologram developed.

Substituting Jt from (5) into (4) yields distribution
τH(r) of the amplitude transmission coefficient over the
surface of the hologram:

(6)

Now we turn to the discussion of the reconstruction
process. Assume that the hologram is illuminated by
wave ER emitted from reference source R (see expres-
sion (2)). The value of electric field EH is found by mul-

EO AO r( ) iϕO r( ),exp=

ER AR iϕR r( ).exp=

Et r( ) AO r( ) iϕO r( ) AR r( ) iϕR r( ).exp+exp=

J t r( ) = EtEt* = AO
2 r( ) AO r( )AR i ϕR r( ) ϕO r( )–[ ]exp+

+ AO r( )AR i ϕO r( ) ϕR r( )–[ ]exp AR
2 .+

τH T J t,∼ ∼

τH r( ) = AO
2 r( ) AO r( )AR i ϕR r( ) ϕO r( )–[ ]exp+

+ AO r( )AR i ϕO r( ) ϕR r( )–[ ]exp AR
2 .+
tiplying τH (see expression (6)) by ER:

(7)

Since amplitude AR of the reference wave is a con-
stant value, it is easy to check that the third term in
expression (7) describes wave EO, which is recon-
structed by the hologram (see expression (1)) and forms
the reconstructed image of object O (Fig. 1).

The fourth term in (7) describes a wave that is iden-
tical to reference wave ER (expression (2)). This wave
forms the image of point source R (Fig. 1).

The third term in expression (7) corresponds to con-
jugate image O* of the object. As was noted above, the
position of this image can be defined by reflecting
object O in reference wave WR as in a mirror. The minus
sign before phase ϕ of this term means that conjugate
image O* is pseudoscopic.

The first term in (7) describes halo HL of the radia-
tion from the reference source. The halo was scattered
by the structure arising as a result of interference
between light rays coming from different points of
object O in the course of hologram recording. If the
angular size of the object is α, the halo-producing radi-
ation propagates within angle α (Fig. 1).

EXPERIMENT ON RECORDING A SCREEN 
BUILT AROUND AN ON-AXIS HOLOGRAM

Figure 2 shows the scheme used to record an on-axis
holographic screen based on an on-axis transmission
hologram. Unlike the early Gabor’s scheme, the refer-
ence wave bypasses the object. Thus, the shadow of the
object is absent on the hologram. The scheme uses a
Mach–Zender interferometer, which generates two
(object and reference) coaxial beams incident on the
hologram.

A laser beam passing through microscopic objective
MO and pinhole PH is focused into a point. A wave
originating at this point is split by beam splitter BS1 into
the object and reference components (branches). Lens
L1 mounted in the path of the object branch forms a
plane wave, which is directed toward diffuser D
(clouded glass) by means of mirror M1. Beam splitter
BS2 transmits the radiation scattered by the diffuser to a
photographic plate to record hologram H. The spherical
wave in the reference branch is directed to lens L2 by
means of mirror M2 and, having passed through beam
splitter BS2 and the photographic plate with hologram
H, converges into point R*.

As a radiation source, we used a He–Ne laser (λ =
628 nm) of output 30 mW. The holograms were
recorded on PFG-03M domestic high-resolution photo-
graphic plates made by the Slavich plant. The plates

EH r( ) AO
2 r( )AR iϕR r( )exp=

+ AO r( )AR
2 i 2ϕR r( ) ϕO r( )–[ ]exp

+ AO r( )AR
2 iϕO r( ) AR

3 iϕR.exp+exp
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exposed were developed in a GP-3 developer, which is
recommended by the plate maker.

The image projection scheme using an on-axis holo-
graphic screen thus recorded is shown in Fig. 3. Here,
lens L, which projects image I onto screen H is centered
at point R*, into which the spherical reference wave
converged in hologram recording. According to the
recording scheme depicted in Fig. 2, the hologram illu-
minated in this way reconstructs the image of diffuser
D, which serves as visibility zone VZ, through which
image I projected onto the screen can be observed.
Along with diffuser D, hologram H reconstructs the
imaginary conjugate image D* of the screen and an
imaginary image of halo HL.

During recording the on-axis hologram, no special
efforts to suppress the halo, conjugate image, and
zeroth-order spot were made. In spite of this, the image
projected onto the holographic screen was virtually dis-
tortionless, except for the image of the hologram-
reconstructing point source at the center of the screen.
This image is somewhat diffuse, since point source R*
is at a relatively long distance from screen H, while the
system recording the image on the screen is focused on
the screen’s plane.

Rays  and lHL reconstructed by the on-axis holo-
gram, which forms conjugate image D* of the diffuser
and the image of halo HL, are virtually equivalent to the
rays that form the image of diffuser D and thereby do
not introduce distortions into the image projected on
screen H. The adverse effect of the rays of halo HL and
conjugate image D* lies in the fact that most of them
pass outside visibility zone VZ (scattered light),
decreasing the energy efficiency of the projector. The
zeroth-order spot falls into the field of view of the
observer as a bright spot and should be eliminated in
one way or another.

ON-AXIS HOLOGRAPHIC SCREEN BASED 
ON A THIN CENTERED HOLOGRAM

The bright zeroth-order spot, which appears in the
field of view of the one who observers the scene pro-
jected onto the screen, is the only considerable disad-
vantage of a thin hologram. It is also important that,
when the observer looks through visibility zone VZ,
conjugate image D* of the diffuser serves as a window
that makes image I of the scene brighter, causing the
nonuniform illumination of the field of view. Unfortu-
nately, the conjugate image, unlike the halo and zeroth-
order spot, cannot be eliminated by phase modulation
of the on-axis hologram structure.

The only way of suppressing the effect of the conju-
gate image consists in shifting its position in such a way
that it does not influence the intensity distribution in
field of view h of the observer (Fig. 1). The position of
the conjugate image can be determined using the
Gabor’s rule, which follows from the second term in
(7). Analyzing the positions of conjugate image D* of

lD*
TECHNICAL PHYSICS      Vol. 50      No. 1      2005
Fig. 2. Scheme for recording a screen based on an on-axis
transmission hologram. MO, microscopic objective; PH,
pinhole; BS1 and BS2, beam splitters; L1 and L2, lenses; M1
and M2, mirrors; D, diffuser (clouded mirror); H, hologram;
S, diaphragm; and R*, point of convergence of the reference
wave.

JT L R* HL
D*

J H

D, VZ

α2α

lHL
–

lD
–

lD
*–

R
D

Z

R

HWRWD

Fig. 3. Scheme for image projection with an on-axis holo-
graphic screen. lHL, lD, and  are the rays forming the

image of halo HL, diffuser D, and conjugate image D* of
the diffuser; VZ, visibility zone; R*, point of convergence of
the spherical reference wave during recording of the holo-
gram; J, image of transparency JT projected onto screen H
using lens L placed at point R*.

lD*

Fig. 4. Scheme for recording a centered on-axial hologram.
D, diffuser (object); R, reference source whose image is
transferred to the center of the diffuser by means of semi-
transparent mirror Z; and WD and WR, object and reference
waves the interference pattern of which is recorded as holo-
gram H.

M2

L2
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the diffuser with this rule, one can easily arrive at the
conclusion that the position of conjugate image D*
coincides with that of main image D only if reference
source R is placed at the center of diffuser D during
recording the hologram (Fig. 4). In this case, wave WD,
which is scattered by diffuser D, mixes up with spheri-
cal reference wave WR from source R, which is trans-
ferred to the center of the object by semitransparent
mirror Z. The pattern of interference between waves WD

and WR is recorded on hologram H. From Fig. 4, it fol-
lows that, in reconstructing such a hologram, conjugate
image D* of the object is bound to coincide with object
D, since the latter is at the center of spherical wave WR.
In its turn, in constructing conjugate image D*, this
wave is perceived as a mirror behind which object D
must be imaged. This type of hologram, where the ref-
erence source is placed at the center of the object, will
be called a centered hologram.

I

P

D WRI

2Phs

Phs

Ls

LP'

2Phs

LP

Phs

H I E

h

D' D*

VZ

}

Fig. 5. Scheme for projecting image I using a projector
based on a centered hologram; LP is the lens of projector P,
which projects image I on hologram H of the diffuser; D' is
the reconstructed image of the diffuser, which arises during
reconstruction of the hologram; D* is the conjugate image
of the diffuser; WRI is the reconstructing wave, whose inten-
sity is modulated by the image; H is the hologram of the dif-
fuser (screen); I is the image projected onto screen H; Ls is
the lens projecting the reconstructed image onto the
observer’s eye h;  is the projector lens image; HL is halo;

VZ is the visibility zone, through which the observer sees
image I (this image appears to be placed at infinity, since it
is situated distance Phs from lens Ls, where Phs is its focal
length).

LP'

(a) (b)

Fig. 6. (a) Light distribution over visibility zone VZ and
(b) image I projected onto screen H.
The scheme for object projection through a screen
based on a centered hologram is shown in Fig. 5. Lens
LP of projector P projects image I of the scene onto such
a screen H. The projection is accomplished by means of
spherical wave WRI, whose intensity is modulated by
the image being projected. Screen H reconstructs the
image of diffuser D' and also its conjugate D*. It should
be noted that, if the zeroth order is not eliminated, the
screen forms image  of the projector lens. Observer
h sees the image on screen H through images D' and D*
of the diffuser, which are formed by holographic screen H.

Since published data on centered on-axis holograms
are lacking, we performed a tentative experiment on
recording images with such a method. The experimen-
tal scheme was the same as that used in recording a cen-
tered hologram (Fig. 4) and in projecting an image
through centered-hologram-based screen H (Fig. 5).
The hologram was recorded using a He–Ne laser on
PFG-03M photographic plates (in this case, their reso-
lution may be much lower).

In this experiment, a centered hologram was
recorded and reconstructed following the procedure
mentioned above. The intensity distribution over visi-
bility zone VZ is shown in Fig. 6a. A circular region
filled with light that is reconstructed by holographic
diffuser H is seen. At the center of this region, the
zeroth-order spot is observed. The conjugate image of
the diffuser or any other extra images are absent, as they
must be if the principle of operation of such holograms
is taken into consideration.

Figure 6b shows an image that is projected onto
screen H and observed through visibility zone VZ. It is
seen that the nonuniform illumination of the visibility
zone does not influence the illumination uniformity of
the image projected.

Thus, starting from a thin Gabor on-axis hologram,
we devised a new type of holograms that partially
exclude image distortions typical of a simple on-axis
hologram. Specifically, an on-axis screen based on a
centered hologram is suggested. It makes it possible to
eliminate distortions due to conjugate images arising
during reconstruction of thin holograms.
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Abstract—The domain of excitation of self-oscillations is experimentally studied in a system consisting of an
erbium fiber laser and a microcavity. The dependences of the self-oscillation frequency on the parameters of the
system are found. The features of the self-oscillations are analyzed for the case where the laser radiation simul-
taneously interacts with several microcavities. © 2005 Pleiades Publishing, Inc.
Modern microelectronic technologies allow design-
ers to create optical elements based on micromechanic
resonance structures (MRSs), which exhibit unique
properties making it possible to effectively control the
parameters of optical radiation [1]. Using these opti-
cally excited microstructures as the optical elements
(e.g., mirrors) of the fiber laser (FL) cavity, one may
substantially influence the lasing dynamics. In this
case, the laser may interact with the MRS (microcavity)
using an optically tunable Fabry–Perot interferometer
or a microcavity-based autocollimator. This effect is
related largely to passive Q switching in the FL cavity,
as well as to the Doppler shift of the frequency of the
radiation reflected from the microcavity mirrors. The
variation of the FL radiation intensity strongly depends
on the ratio between the natural frequencies f of elastic
(acoustic) oscillations of the microcavity and the fre-
quency frel of relaxation oscillations of the laser. The
self-modulation mode arising under the resonance con-
dition (frel ≅  f) or multiple resonance conditions (frel ≅
f/N, N = 2, 3, …) is of great applied interest. This mode
opens the way for designing a variety of self-oscillation
fiber-optic measuring systems [2]. The domain of exci-
tation of resonance self-modulation in the parameter
space of the FL–microcavity system is of a complicated
structure. It consists of the ranges where the regular and
stable self-oscillations of the laser share a common fre-
quency F ≈ f with those of the microcavity and the
ranges where the oscillations are nearly chaotic. In this
work, we experimentally study the ranges of resonance
self-modulation excitation and the variation of the las-
ing modes. In addition, we are interested in the varia-
tion of the self-oscillations parameters in separate
ranges of the domain of excitation, which should be
taken into account in order to optimize the characteris-
tics of measuring devices based on the systems under
consideration. We also demonstrate the intriguing non-
linear properties of the systems comprising an FL and
1063-7842/05/5001- $26.00 0069
microcavities where two or more microcavities interact
with the laser radiation.

In experiments, we employed erbium FLs (radiation
wavelength λ ≅ 1540 nm) with the linear configuration
of the optical cavity (Fig. 1). Silicon microcavities of
various types served as laser cavity mirrors. In such
microcavities, the frequencies and acoustic Q factors of
the elastic oscillation fundamental modes in air were
f = 20–400 kHz and Q = 50–200, respectively. The
active medium represents a section (AB) of an L ≈ 3 m-
long optical fiber doped by Er3+ and Yb3+ (sensitizer)
ions. It was pumped using a semiconductor laser with a
pumping radiation wavelength λp = 980 nm. By varying
the injection current I of the pumping laser, we set the
mean output Wav of the FL and relative pump power r =
P/Pthr (Pthr is the threshold pump power) in the ranges
Wav = 0–30 mW and r = 0–4. In this case, the laser
relaxation frequency frel ranged from 0 to 170 kHz.

W

M

1

2

C

2
CBA

PJ

Er3+–Yb3+ ϕ

Fig. 1. Schematic of a fiber-optic laser with a microcavity
mirror: (1) polarization controller and (2) MRS.
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The FL–MRS system under consideration has a
wide set of parameters characterizing (i) the active
medium and cavity of the laser; (ii) thermooptical and
thermoelastic properties of the MRS, the resonance fre-
quencies, Q factors, and the arrangement of the micro-
cavities; and (iii) the linear and angular coordinates
characterizing the position of the laser beam relative to
the microcavity. In this work, we restrict our consider-
ation to the analysis of the systems where an FL is opti-
cally coupled with a microcavity via an autocollimator
offering a high stability against destabilizing factors
[2]. Given the characteristics of the microcavity and the
FL optical cavity, the behavior of these systems
depends mainly on parameters r and ϕ (ϕ is the angle
between the axis of the collimated beam and the normal
to the microcavity surface). Figure 2 demonstrates the
projections of the sections of the ranges where reso-
nance self-modulation excitation takes place onto plane
(r, ϕ). The projections are seen to consist of several
regions corresponding to characteristic manifestations
of the nonlinear dynamics. At low pump levels, we
observe stable self-oscillations with the fundamental
period T = 1/f (region T), which are excited in the soft
mode (M). Outside this region, where resonance self-

1.6

1.5

1.4

1.3

–2 0 2 4
ϕ ×10–3, rad

r
(a)

C

14T + C

2T + C

1

1
1

T

T + C
1

T(M)

–4 –2 0 2 4

0.4

0.2

R (b)

ϕ ×10–3, rad

Fig. 2. (a) Domain of excitation of self-oscillation and
(b) the directional pattern of the collimator (1 marks the
range of hard excitation).
modulation is excited in the hard mode, we observe
regions where the period is sequentially doubled (2T
and 4T) and which eventually pass into the region of
chaotic motion (C). The chaotic motion shows up as a
significant noise in the laser spectrum. Note that the
discrete lines observed against the noise background
correspond to the fundamental frequency of unstable
cycles, as well to their higher harmonics and subhar-
monics. The observed sequence of the oscillation
modes lets us assume that the regular self-modulation
of the laser loses stability in accordance with the
Feigenbaum scenario [3].

In the region of synchronous self-oscillations (T),
the self-modulation frequency is, in essence, the natural
frequency of a coupled system of oscillators (which are
the microcavity and FL). In this case, the FL can be
viewed as a model of an intrinsically nonlinear oscilla-
tor characterized by a spectrum of relaxation oscilla-
tions. Using the rate equations for an FL [4], as well as
the equation for a linear oscillator describing an MRS,
and assuming that coupling between the oscillators is
weak and the microcavity oscillation amplitude, as well
as the laser intensity, is low, one can show that the self-
modulation frequency F can be found as a real root of
the equation

(1)

Here, frel, Q, and γ depend, in particular, on parameters
r and ϕ and Qrel is the quality factor of an oscillator sim-
ulating the FL relaxation oscillations.

In Eq. (1), it is assumed that Q and Qrel @ 1 and the
coefficient characterizing the coupling of oscillators

satisfies the condition γ/f 2  ! 1. Under the reso-
nance condition (frel ≈ f ), it follows from Eq. (1) that
F ≈ f.

Figure 3 demonstrates experimental curves F(r, ϕ,
f ) for region T. For the given parameters of the micro-
cavity, the relative variation of the self-modulation fre-
quency ∆F/f = [F – f ]/f is no greater than 10–4, while
reaching the value ∆F/f ≤ 5 × 10–3 near the boundaries
of this region.

Note that, when parameters r and ϕ remain
unchanged, the dependence F(f) is virtually linear. In
this case, the nonlinearity coefficient δ = |∆F/ f – 1| is
normally no greater than 0.1% if the relative variation
of the microcavity frequency |∆f/ f | ≤ 5 × 10–2. This sug-
gests that such a self-oscillation mode is very promis-
ing for precision frequency-output fiber-optic sensors.
In the absence of external actions on the FL–MRS sys-

tem, the relative rms fluctuations (〈∆ 〉 )1/2/f of the
self-modulation frequency substantially depend on the
MRS quality factor, decreasing with increasing quality
factor. For the microcavities used in this work (Q = 50–

F4 F2 f 2 f rel
2 f f rel/QQrel+ +( ) f 2 f rel

2 γ+ +– 0.=

f rel
2

Ffl
2
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200), the relative fluctuations equaled

It is known [5] that, under normal conditions, the
quality factor of the microcavities depends primarily on
the scattering of the oscillation energy. In air, the scat-
tering factor is much higher than in a vacuum. At a pres-
sure of no greater than 10–2 Pa, the quality factor of sil-
icon microcavities ranges from 5 × 103 to 1 × 105. In
this case, the relative fluctuations of the self-oscillation
frequency of the systems under consideration are esti-
mated as not exceeding 5 × 10–7.

As follows from Eq. (1), the self-oscillation fre-
quency is a function of the parameters describing, in
particular, the relaxation oscillations of a fiber laser,
which, in turn, depend mainly on the properties of the
active medium and optical cavity of the laser. Since the
frequency is a physical quantity that can be measured
with a very high precision, the dependence mentioned
above may be used for precisely measuring the param-

∆Ffl〈 〉 1/2( )/ f 5 10 6– –5 10 5– .××=
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Fig. 3. Self-oscillation frequency vs. (a) the pump level and
(b) the tilt angle of the microcavity.
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eters of the active medium and FL optical cavity. This
is confirmed by Fig. 4, which plots the experimentally
found frequencies of the self-oscillations and FL relax-
ation oscillations against the radiation polarization
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Fig. 5. (a) Oscillograms of the FL radiation intensity and
(b) the Fourier spectrum of the laser radiation intensity near
the difference frequency of microcavities.
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inside the cavity. The state of polarization was changed
with a fiber-optic polarization controller, which was
placed in the FL cavity and varied the angle Ψ between
the axes of two fiber loops serving as quarter-wave
plates. The polarization dependences of the self-oscil-
lation, F(Ψ), and relaxation oscillation, frel(Ψ), spectra
were obtained at pump levels significantly higher
(curve a) and lower (curve b) than the excitation thresh-
old of the self-oscillations (the threshold injection cur-
rent is Ithr = 350 mA). The data presented show that
there exists a distinct correlation between the two func-
tions, the relative errors involved in the polarization-

dependent frequency drift being δ1 = /(Fmax –

Fmin) ≈ 0.1 and δ2 = /( frel.max – frel.min) ≈ 0.3.
These polarization effects are apparently related to
anisotropy of the active medium, since the difference
between the Fresnel reflection coefficients of the micro-
cavities is insignificant (no greater than 3 × 10–4% for
the given tilt angles of the mirrors, |ϕ| ≤ 0.3°).

The experiments with mirrors based on planar mul-
tielement structures (Fig. 1b), when a number of micro-
cavities fit the cross section of the laser beam, are of
great interest for development of multichannel measur-
ing systems. In this case, the laser radiation simulta-
neously interacts with two or more microcavities. If the
microcavities are optically excited with the same effi-
ciencies, their frequencies are close to each other (f1 ≈
f2), and they resonantly interact with the laser (frel ≈
f1, 2), one can establish the self-modulation mode of las-
ing. Under such conditions, the simultaneous self-exci-
tation of at least two microcavities occurs. Figure 5
demonstrates the oscillograms and Fourier spectrum of

∆F2〈 〉 fl
1/2

∆ f rel.max
2〈 〉 fl

1/2
the FL radiation intensity in the low-frequency range
(the difference frequencies of the MRS) for the lasing
regime under consideration (f1 ≈ 57 kHz, f2 ≈ 60 kHz).
The modulation spectrum of the laser intensity exhibits
frequencies F1, 2 ≈ f1, 2, along with difference frequency
∆F = f1 – f2 (and its harmonics), which is due to the non-
linear properties of the FL–MRS1,2 system. This effect
opens up possibilities for designing microcavity fiber-
optic difference-scheme sensors, which are highly
resistant to factors adversely affecting the measuring
system.
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Abstract—To increase the speed and selectivity of tandem mass-spectrometric analysis, a tandem of two time-
of-flight analyzers that operate in a radically new “nested time” mode is proposed. Such an approach makes it
possible to perform parallel analysis of the fragment spectra for all parent ions within a single separation cycle
using the first (“slow”) analyzer. The method suggested can be implemented with a new “slow” time-of-flight
analyzer, which combines lateral confinement of a low-energy ion beam in periodic lenses and multiple reflec-
tion of the ions from planar gridless mirrors. Also, the new approach opens the way to considerably extending
the effective length of the ion trajectory, while retaining the possibility of operating in the entire mass range and
providing high-order time-of-flight ion focusing in energy. As follows from the analytical data and the experi-
mental data obtained on a prototype of the analyzer, the instrument offers a high transmission (no less than
6 mm × 1.5° in either direction transverse to the beam), good resolving power (more than 5000), and wide (six
orders of magnitude) dynamic range. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Up to the early 1980s, tandem mass spectrometry
was represented by expensive and bulky instruments
[1, 2], which consisted of two sector magnetic mass
spectrometers. The first instrument separates out the
ion component to be analyzed, the ions are passed
through a fragmentation cell, and the fragments are
analyzed in the second spectrometer. Such instruments
are usually used for structural analysis of volatiles or
for improving the isotopic sensitivity of isotope analy-
sis. Advances in the methods of mass spectrometry and
soft ionization (such as electrospray ionization [3–7]
and MALDI [8–10]) highlighted the potential of tan-
dem mass spectrometry as a powerful analytical tool.
The unique properties of tandem instruments, specifi-
cally, a high specificity and selectivity in analysis of
multicomponent compounds, became obvious [11].
Over the last decade, tandem instruments have been
considerably refined. Tandems, such as a combination
of quadrupole and time-of-flight (TOF) spectrometers,
linear ion traps, a combination of an ion trap with a
Fourier spectrometer, and tandem TOF spectrometers
have appeared. In these tandems, the selectivity may be
as high as 10–14 mol and the rate of fragment analysis
reaches one spectrum per second. The new potentiali-
ties of tandem analysis have found wide application,
e.g., in biotechnology, where multicomponent com-
pounds are analyzed in a wide range of component con-
centrations.

In spite of the variety of tandem instruments cur-
rently available, they suffer from a common disadvan-
tage: only one type of parent ions is analyzed at a given
1063-7842/05/5001- $26.00 0073
time instant. All other parent ions are removed from the
primary parent beam and are lost. Ion-by-ion analysis
extends the time of the experiment; moreover, the sen-
sitivity of the analysis drops when multicomponent
mixtures are studied. One of us suggested [12, 13]
devices of a new type that make it possible to perform
tandem analysis for many parent ions simultaneously
(in parallel) and cut the time of analysis by two orders
of magnitude. The key unit in these instruments is a
“slow” TOF mass analyzer, which separates out parent
ions. The design of such an analyzer was presented in
[14], and pioneering experiments carried out on its pro-
totype were reported in [15]. In Part I of this work, we
generalize the results obtained to date on designing a
TOF analyzer of the new type as a component of a par-
allel tandem TOF mass spectrometer. Part II is devoted
to the feasibility of using the analyzer suggested in
high-resolution instruments.

PARALLEL ANALYSIS IN A TIME-OF-FLIGHT 
TANDEM

To improve the sensitivity and speed of tandem
mass analysis, we suggest a mass spectrometer of a new
type the operation of which is illustrated in Fig. 1. The
device consists of two TOF mass analyzers TOF1 and
TOF2, which are separated by a fragmentation cell.
Here, parent ions are slowly (within several millisec-
onds) separated in the first analyzer with subsequent
rapid fragmentation and rapid (about 10 µs) mass anal-
ysis of the fragments in the second analyzer. This estab-
lishes a basically new (nested-time) operating mode
© 2005 Pleiades Publishing, Inc.
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Fig. 1. Operating principle of the TOF tandem in the nested time analysis mode.

system,
and, accordingly, opens the possibility for parallel anal-
ysis. Such an approach allows for parallel analysis of
fragment spectra for all parent ions in one separation
cycle carried out in the first analyzer.

To clarify the principle of operation of the tandem
instrument, consider its version with the parameters
shown in panel A (Fig. 1). Panel B shows a recording
cycle where the ions are injected from the ion source at
10-ms intervals. Parent ions are separated in the first
TOF analyzer, and a train of ion packets, which are sep-
arated according to the masses of the parent ions, enters
into the fragmentation cell. The parent ions are partially
fragmented in the cell, and the fragments, which
quickly pass through the cell, reach the second TOF
analyzer virtually simultaneously with their parent
ions, remaining within a given packet (plot C). Each
new family of ions (parents with their daughter ions) is
injected into the second (high-energy) TOF analyzer to
form mass spectra for each of the parent ions at its exit
(panels D and E).

The time of analysis at either stage is of primary
importance. The instrument is intended for problems of
pharmacology and proteomics, where multicomponent
mixtures of medium-weight (300–3000 u) molecules
(e.g., drugs or peptides) are analyzed. Thus, to separate
isotopes in TOF2, it is necessary that the resolution be
3000–5000 or higher. Since the peaks in TOF mass
spectrometers are several nanoseconds wide, the time
of flight in TOF2 must be no less than 10 µs. Hence,
parallel analysis can be accomplished if the difference
in times of arrival at TOF2 for isotopic groups from dif-
ferent parents is close to this value. At the same time, to
separate these groups at the first stage of the tandem, it
is sufficient that the resolving power of TOF1 be on the
order of 300–500. Hence, the separation times in the
two stages must differ by three orders of magnitude;
that is, the separation time in the first analyzer must be
of no less than 10 ms, which is the case in the example
considered.

A possible design of the tandem is presented in
Fig. 2. As a pulsed ion source, one may take that based
on matrix-assisted laser desorption/ionization
(MALDI). In this case, problems associated with the
long-term stability of ions excited may arise. It is pref-
erable to use soft ionization sources, such as those
based on electrospray ionization (ESI) or atmospheric-
TECHNICAL PHYSICS      Vol. 50      No. 1      2005
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pressure chemical ionization (APCI). These sources, as
well as any other continuous ion sources (e.g., photo-
ionization sources), may be converted to pulsed sources
by means of a gas-filled rf accumulator, e.g., a linear
quadrupole trap. In this case, the quality of the pulsed
beam is affected primarily by the space charge in the
accumulator. For a time period of 10 ms between the
pulses, an ESI source with a valid ion current of 20 pA
delivers about 1 million ions to the trap. For a typical
ion packet comprising 106 ions of mass 1000 u that are
accelerated to 50 eV when injected from the accumula-
tor, the parameters of the beam are as follows: the
energy spread is less than 10 eV; time spread, less than
3 µs; and spatial phase volume, less than 2 mm × 1°.

For the efficient operation of the tandem with the ion
packets mentioned above, TOF1 must provide a time of
flight of 10 ms and a mass resolution of 500–1000. For
an ion energy of 50 eV and an ion mass of 1000 u, such
a duration is provided only if the ion trajectory is about
30 m. With today’s TOF instruments, the necessary
parameters are unachievable. In reflectrons, the flight
length does not exceed several meters. In the case of
multiple reflections, the mass range shrinks catastroph-
ically and the geometric losses of the ion beam increase
considerably. Moreover, TOF instruments operate at
ion energies of several kiloelectron volts in order to
avoid ion and resolution losses when the relative energy
spread is sufficiently high. Thus, a new-generation ana-
lyzer should be developed to slowly (for a time of
10 ms) separate parent ions.

Ion fragmentation in a parallel tandem is assumed to
take place in a surface-induced dissociation (SID) cell
with accelerated ion transmission, which makes it pos-
sible to decrease the time broadening of ion packets to
less than 10 µs. Under these conditions, information on
the separation time in the first analyzer is kept. Fast col-
lision relaxation (within several microseconds) is pos-
sible only if the gas pressure in the cell is high (P = 0.2–
1.0 Torr). In this case, one can decrease length L of the
cell to 5–10 mm, thereby accelerating the ion transmis-
sion. Although the cell is short, the product PL >
0.1 Torr cm remains sufficient for cooling the ions
[16, 17]. The transport of the ions through the cell can
be accelerated still further by applying a longitudinal
electrostatic field. For a drift velocity of 500 m/s, the
transport time of the ions is below 20 µs and the time
spread is expected to be lower than 10 µs. Alternatively,
the time broadening can be reduced by introducing a
traveling wave of the longitudinal field. Such a more
sophisticated solution loosens the requirements
imposed on the length of and the pressure in the frag-
mentation cell.

Finally, the mass analysis of the fragments may be
carried out in the fast TOF mass analyzer with orthog-
onal ion injection. For a typical length of the ion trajec-
tory of 0.3 m and an energy of 5 keV, the time of flight
will equal the desired 10 µs. With such fast analysis, the
resolution of the analyzer is expected to be from 2000
TECHNICAL PHYSICS      Vol. 50      No. 1      2005
to 3000. If a higher resolution is required, its operation
must be slowed down. This can be achieved either by
extending the period of the pulses from the source or by
decreasing the resolution at the first stage (i.e., at the
stage of parent separation).

From the above consideration of a TOF tandem
operating in the nested time mode, it follows that its
components, except for TOF1, are merely slight modi-
fications of well-known and reliably operating mass-
spectrometric units. Thus, the major problem in imple-
menting the tandem is the development of a TOF ana-
lyzer with a separation time of about 10 ms. A slow
multireflection TOF analyzer operating in the entire
mass range is the central issue of this article.

ION–OPTICAL SCHEME
OF A MULTIREFLECTION ANALYZER

A long transport time of ions in the analyzer means
an increase in the transport length. With the overall
dimensions of the instrument kept at a reasonable level,
the problem can be solved by increasing the number of
reflections of the ion beam from electrostatic mirrors.
In currently available multireflection and multiturn
TOF mass analyzers with cyclic ion beam motion [18,
19], an increase in the number of turns inevitably
shrinks the mass range being analyzed. The entire mass
range is retained in an analyzer where the ion beam fol-
lows an open zigzag trajectory [20]. We employed zig-
zag motion in a slow analyzer that is based on two grid-
less parallel 2D ion mirrors that face each other and are
extended in drift direction Z (Fig. 3). In this analyzer,
ions describe a zigzag trajectory, reflecting from the
mirrors and slowly shifting perpendicularly to the mir-
rors (in the drift direction). The axial zigzag trajectory
of the ion beam lies in symmetry plane XZ of the mir-
rors. The design of our analyzer radically differs from
the instrument suggested in [20] in that the mirrors and
lenses of the former produce field distributions that

Ion
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Ion
accumulator

Electrostatic
TOF1

SID
cell

TOF2
with ortho

acceleration

Fig. 2. Design of the TOF tandem suggested.
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allow us to combine high-order time focusing of ions in
energy and spatial spread with reliable beam confine-
ment after multiple reflections. The stable motion of the
beam is due to its passage through periodic electrostatic
field structures [21, 22].

In a simplified version of the analyzer, the primary
time focus, which is produced by the ion source, and an
ion detector are placed in the middle between the mir-
rors, i.e., in plane YZ (Fig. 3). The mirrors make the ion
motion from one intersection with this plane to another
isochronous, i.e., independent of the ion energy and
spatial coordinates in plane XY. Also, the ion motion in
this plane must be stable.

Let us consider the projection of the ion path in the
drift space between the mirrors onto plane XY. We fix
the mass of an ion and expand coordinate y of this pro-
jection, slope b = dy/dx = , and time of flight t in
y0, b0 (y0 and b0 are the initial values), and parameter
δ = (K – K0)/K0 (where K and K0 are the energy of the
given ion and the mean ion energy in the beam, respec-
tively):

(1)

βtan

y x( ) = y y( )y0 y b( )b0 y yδ( )y0δ y bδ( )b0δ …,+ + + +

b x( ) = b y( )y0 b b( )b0 b yδ( )y0δ b bδ( )b0δ …,+ + + +

t x( ) t0 t δ( )δ t yy( )y0
2 t yb( )y0b0+ + +=

Detector

Z

X

Ion
source

Time focus plane

X

Y

Gridless planar
mirrors

Fig. 3. Basic diagram of the planar multireflection TOF ana-
lyzer suggested in this work.
Here, t0 is the time of flight of a mean-energy ion and
coefficients (t|y), (t|b), (t|yδ), and (t|bδ) vanish, since the
system is symmetric about plane XZ.

Note that the motion of an ion from plane YZ to the
same plane after single reflection from the mirror is
essentially the passage of the ion through a mirror-sym-
metric ion–optical cell. In such cells, the ion trajecto-
ries are stable [23] if –1 < (y|y) < 1 at the exit from the
cell. The stability is the highest in the middle of this
range, i.e., at

(2)

Condition (2) means that a trajectory issuing from
plane YZ parallel to the X axis returns (in a linear
approximation) to this plane at y = 0 (parallel-to-point
focusing). Simultaneously, point-to-parallel focusing
takes place owing to the symmetry of the system:

(3)

It is known [23] that the expansion coefficients for
function t(x) in expansion (1) are related to the coeffi-
cients for functions y(x) and b(x) via the so-called sym-
plecticity conditions. These conditions, along with the
conditions of symmetry about planes XZ and YZ, and
Eqs. (2) and (3) yield a number of relationships for the
expansion coefficients in (1) as applied to our ion–opti-
cal system.

(1) Once an ion has passed two cells of the systems
(i.e., after two sequential reflections from the mirrors),
the condition (t|yb) = 0 is met simultaneously with the
condition (y|y) = 0.

(2) If the conditions (y|y) = 0 and (t|yy) = 0 are met
after an ion has passed one cell, the condition (t|bb) = 0
is also satisfied.

(3) If the condition (t|bb) = 0 is satisfied after an ion
has passed one cell, the conditions (y|yδ) = (b|bδ) = 0
are also satisfied. That is, in the second-order approxi-
mation, conditions (2) and (3) of spatial focusing are
not violated for ions with other-than-mean energies.

Thus, if parallel-to point focusing (2) takes place in
one of the cells and one finds a field configuration in the
mirror such that condition

(4)

is fulfilled after an ion has traveled this cell, it follows
from the above relationships that the time of flight of
any ion becomes independent (in the second-order
approximation) of initial coordinates y0 and b0 once the
ion has twice reflected from and returned back to plane
YZ. In addition, the spatial motion of the ions becomes
more stable in this situation because of the absence of
spatial chromatic aberrations (i.e., because the focal
length of each of the cells does not depend on the
energy in the second-order approximation).

+ t bb( )b0
2 t δδ( )δ2 t δδδ( )δ3 ….+ + +

y y( ) 0.=

b b( ) 0.=

t yy( ) 0,=
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All the results listed above are valid provided that
only two conditions (2) and (4) are fulfilled. However,
for the analyzer to be efficient as a TOF system, it is
also necessary that the time it takes for an ion to pass
each of the cells be energy-independent in an aberration
order as high as possible. For example, the fact that the
ion motion is isochronous in energy in the third order
means that three conditions are met:

(5)

Using numerical experiments aimed at optimizing
the 2D gridless mirrors, we managed to find four-elec-
trode configurations of the mirrors for which all the
conditions listed are met. Here, the fulfillment of the
five conditions set by (2), (4), and (5) is provided by
appropriately selecting the electrode potentials of the
mirror and mirror spacing.

An example of the axial distribution of the electro-
static potential in the mirror optimized and of paraxial
ion trajectories in it are presented in Fig. 4. The axial
distribution is provided by the electrodes, which,
except for the extreme right (reflecting) electrode, con-
sist of parallel conducting equiwide plates. The reflect-
ing electrode is half as wide and is equipped with a
closing plate (cap), which connects a pair of its parallel
plates. The extension of the mirror field is limited by
the space between two parallel grounded screens,
where the field decays. The screens are made with the
same gap as the other electrodes of the mirror. The elec-
trode adjacent to the screen is under an accelerating
potential that forms a negative lens. Due to this lens,
condition (2) of first-order spatial focusing is fulfilled.
The rest of the electrodes of the mirror produce a non-
uniform field structure that decelerates the ions, with
the electrostatic field strength dropping along the ion
trajectory as an ion moves toward the turning point.
Such a field structure provides third-order time focus-
ing in the energy spread in the beam.

The negative lens of the mirror can provide first-
order spatial focusing (2) when operating in different
modes. As follows from the numerical experiments, the
optimal operating mode of the mirror is that when an
ion starting from plane YZ toward the mirror in the
direction parallel to the X axis meets this axis near the
turning point of the beam inside the mirror and then
returns to this axis after crossing plane YZ (Fig. 4). It is
in this mode that condition (4) can be satisfied by the
numerical optimization of the electrostatic field distri-
bution and, hence, that the time of flight through the
cell becomes independent of a spatial spread of the ions
in a packet in the second-order approximation.

High-order time focusing in energy and reliable
confinement of the beam in the analyzer allow one to
attain high parameters at low ion energies. Reliable
confinement of the ion beam in the focusing mirrors
makes it possible to increase the ion path length and
thus improve the resolution of the analyzer.

t δ( ) 0, t δδ( ) 0, t δδδ( ) 0.= = =
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A feasible design of the analyzer is depicted in
Fig. 5. The modifications that differentiate this design
from that shown in Fig. 3 are as follows.

(1) Weak 2D lenses, which focus the beam in plane
XZ, are placed between the mirrors in order to consid-
erably increase the number of reflections of the ion
beam without overlaps at different turns in the drift
direction. These lenses distort the time characteristics
of the analyzer only slightly.

(2) The analyzer is configured with an extra exit
deflector, which returns the ions that have traveled the
total length of the mirrors to the analyzer and cause
them to move in the opposite direction (Fig. 5). This
deflector does not limit the mass range of the analyzer
and does not introduce significant distortions into the
time characteristics of the analyzer when the ion path is
long.

(3) To inject ions from the ion source into the ana-
lyzer and direct ions separated in time of flight into the
collision cell, the positions of the primary time focus
and collision cell are shifted relative to plane YZ. This
shift introduces minor distortions into the time charac-
teristics of the analyzer, since the total ion path length
changes insignificantly.

The operation of the analyzer in the low ion energy
mode was evaluated with the SIMION 7.0 program
[24]. To this end, we numerically studied the model of
the analyzer where the spacing between the turning
points in the opposite mirrors was taken to be equal to
220 mm along the X axis and the total length of the mir-
rors in the Z direction, 1.2 m. The ion beam entered into
the intermirror space at an angle of 3° to the X axis, and
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tentials in a single cell (four-electrode gridless mirror) and
the electrostatic field potential distribution along the mirror
axis (U0 is the accelerating potential responsible for the
kinetic energy of the ions).
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the number of reflections from the mirrors at the mid-
point of the path (i.e., from the source to the exit deflec-
tor) equaled 78. For a mean ion energy of 50 eV and an
ion mass of 1000 u, the time of flight through the ana-
lyzer was 11.4 ms. The analyzer provided 100% rated
transmission of an ion beam with a relative energy
spread of 20%, initial diameter of 2 mm, and initial
angular divergence of 1°. For these ion beam parame-
ters, the peak-base mass resolution of the instrument
(i.e., the resolution at the zero initial time spread in the
beam) was found to be 500. At the peak half-maximum,
the resolution was 4000.

The ion beam was also stable against external per-
turbations introduced into the field structure. For exam-

Set Exit deflector

From ion
source

Entrance
deflector

To collision
cell

Fig. 5. Design of the analyzer with focusing lenses in the
drift space and an exit deflector.

of lenses
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Fig. 6. Arrangement of basic components in the prototype
of the analyzer.
ple, the readings of the analyzer subjected to a magnetic
field (each of its components along the coordinates was
10 G) were almost the same as without the field. The
transmission losses in this case were estimated as 20%.
Similar results were observed when one of the mirrors
was turned by 0.1° in plane XZ, where the ion beam
moved along a zigzag trajectory. It should be empha-
sized that such stability is provided by the periodic
focusing of the beam using the mirrors (in plane XY)
and lenses (in plane XZ).

EXPERIMENTAL SETUP

The performance of the TOF analyzer was studied
on its prototype, in which the mirror spacing was larger
than that mentioned in the previous section but the
number of reflections of the beam from the mirrors was
reduced. The arrangement of the basic components of
the prototype is shown in Fig. 6.

The prototype consists of two identical parallel pla-
nar ion mirrors and a set of lenses that are placed on the
symmetry axis between the mirrors. Each of the mirror
electrodes is made of nine 1-mm-thick stainless steel
sheets that run normally to plane XZ. The sheets have
228 × 32-mm windows cut by spark cutting, through
which the ion beam propagates; are separated by
2-mm-high precision insulating washers; and are tied
up by insulating rods. The total nonparallelism of the
mirror assembly, as well as the tolerance on the mirror
spacing, does not exceed 10 µm at a 600-mm distance
between the “caps” of the reflecting electrodes.

The set of electrostatic lenses comprises five identi-
cal 2D lenses spaced 30 mm apart. Ten identical
10-mm-wide insulated plates, which serve as the focus-
ing electrodes of the lenses, are mounted on the inner
surfaces of the sections of the lens unit. All the focusing
electrodes are supplied independently; therefore, any of
the lenses can be used as a deflector.

When studying the performance of the analyzer, we
used a specially designed compact low-energy cesium
gun as a source of a test ion beam (for details, see [25]).
This gun provides an ion beam emittance that is close
to the analyzer’s acceptance. A pulsed ion beam is gen-
erated by applying a modulating voltage to the control
electrode of the gun. In the pulsed mode, the energy
spread in the outgoing beam varies from 4% for an ion
energy of 100 eV to 20% for an energy of 10 eV. Three
detectors (VÉU6 secondary electron multipliers)
arranged as shown in Fig. 6 are used in the prototype.
Detector D1 is mounted immediately after the window
in the reflecting electrode of the mirror and detects the
gun-generated beam with the mirror switched off.
Detector D2 receives the ion beam that has passed the
analyzer in one direction. To this end, only a focusing
voltage is applied to the electrodes of the fifth lens.
Detector D3 is the basic detecting unit, which detects
the ion beam that has passed the analyzer there and
TECHNICAL PHYSICS      Vol. 50      No. 1      2005
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back with the deflecting voltage on the fifth lens chosen
appropriately.

The system uses a pulse amplifier with a bandwidth
of no less than 100 MHz and a gain of 103. The noise
amplitude at the output of the amplifier is 5–10 mV or
lower, and the duration of the pulsed response of the
system to a single ion is 40–50 ns. The pulse parameters
were recorded and measured with an averaging oscillo-
scope or with an AR-100 ADC [26], which has a time
resolution of 1–10 ns and a vertical scale of 8 bit.

The chamber of the analyzer was evacuated to a
pressure of 3 × 10–7 Torr with a turbomolecular pump
of capacity 250 l/s and a mechanical pump. All joints of
the vacuum chamber were sealed with Viton gaskets. A
sorption trap was placed into the evacuating manifold.

ADJUSTMENT OF THE ANALYZER

The adjustment of ion beam transport through the
analyzer and the estimation of the analyzer perfor-
mance were performed in the continuous operating
mode of the ion source at an ion beam energy of 100 eV.
The adjustment quality was monitored with detectors
D1–D3. Detector D2 was adjusted to a maximal ion
current by applying low (no higher than 1 V) deflecting
potentials to the electrodes of the lenses. The values of
the ions measured by D2 and D3 (both detectors oper-
ated as collectors) led us to conclude that five extra
reflections on the return path of the beam do not cause
a noticeable decrease in the beam intensity.

When the cesium gun operated in the pulse modula-
tion mode at an ion energy of 100 eV, a Cs+ ion peak
with a time of flight of 500 µs was observed on the
screen of the oscilloscope, which agrees well with the
results of numerical simulation.

In the early experiments with the analyzer, less
intense peaks, along with the Cs+ peak, were also
present on the oscillogram. They were spaced at regular
time intervals and their amplitudes heavily depended
on the lens voltage. The 3D simulation of the analyzer
revealed that such an effect may result from a combina-
tion of three reasons: (i) a high angular divergence of
the beam in the horizontal plane, which may be due to
the elastic reflection of the ions from the lens elec-
trodes; (ii) a high angular divergence of the beam in the
vertical plane and the distortion of the beam near the
mirrors; and (iii) insufficient focusing (the degree of
focusing is lower than the rated one) of the beam, which
is observed when the lens field structure is not strictly
two-dimensional because of a finite height of the
lenses.

We managed to virtually completely suppress this
effect, making a series of refinements. First, a 3-mm-
high mask was placed at the site where the beam enters
into the mirror; second, masks with a 20 × 60-mm win-
dow that prevent the beam from striking the lens ele-
ments were placed before the lenses; and, third, the lens
field structure was made closer to two-dimensional by
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modifying the configuration of the focusing electrodes
of the lenses.

These refinements, combined with a proper selec-
tion of the lens electrode and cesium gun potentials and
widening of the amplifier bandwidth, allowed us to find
the operating conditions of the analyzer under which
only the well-focused cesium peak with a 130-ns
FWHM was observed on the screen of the oscilloscope.
For a time of flight of 500 µs, this value corresponds to
a mass resolution of 2000. The peak width depends
largely on the beam modulation efficiency in the ion
source and is limited from below by a relatively low
intensity of the low-energy beam.

Since the analyzer was designed for operation on a
time scale realizable only at low ion energies, it was
important to check the capabilities of its ion mirrors to pro-
vide extremely high time focusing in energy. Figure 7
shows the energy dependence of the time of flight of
cesium ions that was simulated with the SIMION pro-
gram and the same (experimental) dependence taken on
the prototype at ion energies of 100 ± 20 eV. When tak-
ing the experimental dependence, we kept the mirror
electrode potential constant and close to the rated val-
ues and controlled the ion energy by varying the volt-
ages applied to the ionizer and gun modulator. The
curves demonstrate the range of TOF focusing in
energy, and the shape of the experimental curve allows
us to argue that third-order TOF focusing in energy is
achievable.

Of no less importance is testing the analyzer perfor-
mance at ion energies below 100 eV. It turned out that
the analyzer is efficient in the ion energy range from
100 to 10 eV. The cesium gun was adjusted to such
energies by varying the signal on detector D1 with the
mirrors switched off. For each ion energy, the mirror
electrode potentials were taken such that the cesium ion
peak was the highest when its width was minimal. The
discrepancy between the optimal values of the elec-
trode potentials found experimentally and the rated
ones was within 2%.

As the ion energy was decreased, the signal intensity
tended to decline. This may be because the divergence
of the gun-generated ion beam increases and the beam
is partially lost on the diaphragms and masks of the

Experiment
Simulation
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Transit time, µs

500
499
498
497
496
495

70 80 90 100 110 120
Energy, eV

Fig. 7. Analytical and experimental dependences of the
transit time on the ion energy.
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analyzer. To check this assumption, we performed a
series of measurements of the ion current on detector
D3 with the current on detector D1 fixed. It was found
that the signal amplitude on both detectors vary in a
similar way according to the quality and features of gun
adjustment in the given series of measurements.
Namely, at low energies, the amplitude drops in inverse
proportion to the energy, as might be expected in view
of the increasing beam divergence.

PERFORMANCE OF THE ANALYZER

After the adjustment, the parameters of the analyzer
were the following: the energy losses were no higher
than 10% at ion energies from 100 to 40 eV, 20% for
20 eV, and about 40% for 10 eV; and the mass resolu-
tion was 3000–5000. As the energy declines from 100
to 20 eV, the time of flight increases and, hence, the rel-
ative influence of the ion beam duration drops. Accord-
ingly, the resolution of the instrument rises. At energies
below 20 eV, additional factors adversely affecting the
resolution may appear. These are interference on the
electrodes and the effect of the electrode surface’s
imperfect condition.

The capabilities of the analyzer in recording ion
spectra were examined with an AR-100 ADC [26]. We
recorded the trace amounts of alkali metal ions that
were contained in cesium aluminate. Prior to estimating
the yield of these ions, we carried out preliminary mea-
surements with an MX7302 quadrupole mass spec-
trometer. Potassium and rubidium ions were detected in
amounts of 1–10 ppm relative to cesium ions. Sodium
ions were not revealed.

To extend the dynamic range, the spectra were
recorded, while by the ADC, in the counting mode. The
multiplication factor of the VÉU-6 multiplier was
selected in such a way that the response to a single ion
had an amplitude of 10–20 mV for the noise amplitude
ranging from 2 to 5 mV. The counting threshold was set
at 5 mV in order to cut off analog noise and exclude the
jitter of the last digit in the ADC. The ADC scale (a total
of 500 mV, 2 mV per bit) was selected so as to avoid
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16 000 000

12 000 000

8 000 000

4 000 000
2 000 000

20 40 60 80 100 120 140
M/Z

38.9625

40.9379

84.9135

86.9153

132.9051
×50000

Fig. 8. Mass spectrum of the ions emitted by the cesium
gun. The intensities for M/Z < 100 are increased 50 000
times.
ADC saturation by the most intense cesium peak
(100 ions per shot at a maximal signal amplitude of less
than 30 ions, i.e., less than 500 mV). In spite of the
counting mode of operation, the cesium peak intensity
equaled several tens of millions of counts per minute at
a pulse repetition rate of 1 kHz, so that the spectrum
gained good statistics and a wide dynamic range. An
example of such a mass spectrum taken at an ion energy
of 10 eV is given in Fig. 8.

The results obtained demonstrate that the scattered-
ion-induced background in the mass spectra may be
extremely low, indicating that our efforts to suppress
this background were effective. The peak intensity of
scattered ions, which are associated with spurious
reflections in the channel of the analyzer, was
depressed to a level below 10–5 of the cesium ion inten-
sity. In each of the spectra, 39K+, 41K+, 85Rb+, and 87Rb+

isotope ions were reliably detected. The ratio between
the peak intensities of these elements and the peak
intensity of cesium was nearly the same as the ratio
between their amounts (10–5–10–6). For example, the
41K+ ion peak intensity is only 3 × 10–6 of the cesium
ion peak intensity. At such low intensities of trace
amounts, the mass of any ion can be determined with an
accuracy of higher than 0.0001 u provided that one of
the components is used as an internal standard; e.g., the
masses of 39K+, 41K+, and 87Rb+ can be determined by
calibration against the Cs+ and 85Rb+ peaks. The afore-
said is equally related to all mass spectra recorded
throughout the range 100–10 eV.

The frequency stability of the power supply at low
frequencies is of great importance for a multireflection
analyzer. For an ion energy of 100 eV, the ion velocity
is 12 mm/µs; the time of motion in the field of one
25-mm-long electrode, 2 µs (500 kHz); the turn time
(i.e., the time taken for two reflections from the mir-
rors), 100 µs (10 kHz); and the total transit time, 500 µs
(2 kHz). Therefore, low-frequency (<2 kHz) interfer-
ence is bound to change the electrode potentials. As
was expected, the peaks are shifted to the greatest
extent (about 1 µs/V) when the potential of the reflect-
ing electrode of the mirror is varied. The amplitude rip-
ple in our power supplies was lower than 10 mV;
accordingly, the shift of the peaks was usually smaller
than 10 ns. High-frequency (>1 MHz) voltage oscilla-
tions alter the peak position insignificantly. In the range
1 kHz–1 MHz, resonant frequencies may occur, which
affect the ion motion most considerably and, as a con-
sequence, noticeably degrade the resolution of the ana-
lyzer. Tests where a variable voltage of controllable
amplitude and frequency was imposed on the voltage
applied to the electrodes of the mirror showed that the
resolution of the instrument may degrade catastrophi-
cally at some frequencies (close to 60 and 200 kHz in
our experiments) when the variable voltage amplitude
is about 100 mV.
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CONCLUSIONS

We suggest a concept of tandem mass-spectrometric
analysis that is based on parallel recording of fragments
of all parent ions by using TOF analyzers as both stages
of the tandem. In terms of this concept, the parents are
separated by a slow TOF analyzer, through which ions
of mass about 1000 u are transported within 10 ms. For
such a tandem, a unique planar reflecting TOF analyzer
is designed and its prototype is built. At low ion ener-
gies (on the order of 100 eV), this analyzer operates in
the entire mass range. It is shown that the ion motion is
stable and the ion current losses after five turns of the
beam in the analyzer are low. The performance of the
prototype is close to that predicted with an analytical
model as regards adjustment regimes and stability
against potential variations. Specifically, third-order
TOF focusing in energy is demonstrated. The accep-
tance of the instrument is estimated as 6 mm × 1.5°. It
is also shown that the analyzer goes on reliably operat-
ing when the ion energy decreases to 10 eV. Even for
such (extremely low for mass-spectrometric studies)
energies, the mass spectra with a resolution of 5000 can
be recorded. A further decrease in the ion energy is lim-
ited by the magnetic fields of the turbomolecular pump
and pressure sensor, as well as by voltage ripples (about
10 mV) on the electrodes. The ripples may be attributed
to resonant frequencies in the range 10–100 kHz, which
make the ion motion unstable. One more feature of the
multireflection TOF analyzer is an extremely low signal
of scattered ions, allowing one to record mass spectra
with a dynamic range of 106.
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Abstract—The feasibility of the high-resolution operating mode in a planar multireflection time-of-flight ana-
lyzer that is suggested in Part I of this work is demonstrated. Time-of-flight aberrations, which limit the reso-
lution, are estimated. A resolution as high as 200 000 at a time of flight of 70 ms is achieved in experiments. It
is shown that the maximal resolution is limited by the duration of the ion packet generated by the source. The
resolution can be improved by closing the ion beam trajectory with the formation of repeating cycles. The num-
ber of the cycles depends on the beam intensity losses due to scattering by the residual gas. It seem likely that
the resolution can be improved further by using a higher vacuum, refining the ion source, and applying more
stable power supplies. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

In Part I of this work [1], we studied a multireflec-
tion time-of-flight (TOF) mass analyzer where ions
describe a zigzag trajectory sequentially reflecting from
two 2D electrostatic mirrors. This analyzer is aimed at
extending the time of flight of the ions in order to ana-
lyze parent ions in a tandem mass spectrometer that
provides parallel recording of fragment spectra [2, 3]
and still operates with the entire mass range at a mod-
erate resolution. However, a large time of flight requires
that the analyzer operate at low ion energies (no higher
than 100 eV). To solve this problem, specially designed
high-quality gridless ion mirrors were suggested [4],
which provide third-order TOF focusing in energy and
second-order TOF focusing in lateral spatial spread of
the beam ions. The reliable confinement of the ion
beam in the plane of zigzag motion is provided by beam
focusing in a periodic set of 2D lenses placed between
the mirrors. In the perpendicular plane, the ions are
confined with the help of focusing mirrors.

Owing to the high-order TOF focusing of the ion
beam, time aberrations in the analyzer are low. In the
experiments with the prototype of the analyzer, no
beam intensity losses were noticed after the beam had
reflected from the mirrors ten times [5]. It is therefore
natural to expect that a further extension of the ion path
will considerably improve the resolution compared
with that achieved in [1], specifically, in view of the fact
that multireflection and multiturn TOF mass analyzers
developed by other teams of researchers have demon-
strated a resolution on the order of several tens of thou-
sands [6] or even several hundreds of thousands [7].
The aim of this work is to demonstrate the feasibility of
the high-resolution mode in a planar multireflection
TOF analyzer.
1063-7842/05/5001- $26.000082
ESTIMATION OF TIME-OF-FLIGHT 
ABERRATIONS IN THE ANALYZER

Let the length of the zigzag trajectory of the ions in
the analyzer depicted in Figs. 3 and 5 in [1] be so large
that the initial segment of the trajectory from the ion
source to midplane YZ of the analyzer (i.e., to initial
entering into the lens unit in Fig. 5 in [1]) and the final
segment of the trajectory between the midplane and
detector are minor contributors to TOF aberrations. We
also assume that, for each length the ions travel when
passing through one “cell” of the analyzer (i.e., the
length from the midplane and back to it after one reflec-
tion from the mirror), the parallel-to-point focusing
conditions (y|y) = 0 and (ζ|ζ) = 0 are met for the coeffi-
cients

of expansion in initial values y0 and ζ0. Here, δ = (K –
K0)/K0, K is the ion energy, and K0 is the mean ion
energy in the beam. Coordinate ζ = z – z0 is measured
from axial trajectory z0(x) of the beam.

The passage of two cells by an ion will be called a
“turn” of the ion. Then, with regard for the mirror sym-
metry of the cells and parallel-to-point focusing, the ion
trajectory will change sign (in a linear approximation)
of its coordinates y and ζ, as well as of the related
slopes (a = dζ/dx =  and b = dy/dx = ), after
each turn with their absolute values remaining
unchanged.

y x( ) = y y( )y0 y b( )b0 y yδ( )y0δ y bδ( )b0δ …,+ + + +

ζ x( ) = ζ ζ( )ζ0 ζ a( )a0 ζ ζδ( )ζ0δ ζ aδ( )a0δ …+ + + +

αtan βtan
 © 2005 Pleiades Publishing, Inc.



        

MULTIREFLECTION PLANAR TIME-OF-FLIGHT MASS ANALYZER. II 83

                                                                         
After two turns, the trajectory transforms into itself
in a linear approximation. Accordingly, after N turns of
an ion, its total time aberration will equal N one-turn
time aberrations.

As was shown in [1], the planar multireflection ana-
lyzer offers third-order TOF focusing in energy and
second-order TOF focusing in spread in the Y direction;
that is, the conditions

are fulfilled for the coefficients of expansion of the TOF
for an ion with a fixed mass:

where t0 is the TOF of a mean-energy ion.
Furthermore, at small drift angles ε = dz0(x)/dx, i.e.,

at a small inclination of the beam axial trajectory to the
X axis in the intermirror space, the following conditions
are met:

(these coefficients would be exactly equal to zero in the
case of symmetry at ε = 0, that is, if the beam would
execute a reciprocating motion along the optical axis
parallel to the X axis).

Thus, the basic contributors to TOF aberrations in
the analyzer are (i) second-order geometric aberrations
(t|ζζ) and (t|aa) due to the 2D lenses, which focus the
beam in plane XZ; (ii) third-order chromatic aberrations
(t|yyδ) and (t|ybδ) due to the mirrors and (t|aaδ), (t|ζζδ)
due to the 2D lenses (coefficients (t|ybδ) and (t|ζaδ)
vanish after each turn owing to the mirror symmetry of
the cells; and (iii) fourth-order chromatic aberration
(t|δδδδ). It is these aberrations growing proportionally
to the number of turns that specify the ultimate resolu-
tion of the instrument.

To estimate the aberration-related limit of the reso-
lution of the analyzer prototype (for details, see [1]), we
calculated the aberration coefficients mentioned above.
Their values are listed in Table 1. Table 2 gives the aber-
ration-related resolution limits (calculated under the
assumption that the pulse width at the exit to the ana-
lyzer is negligible) at the peak half-maximum for sev-
eral typical initial values of the beam parameters.

From Table 2, it follows that second-order TOF
angular aberration (t|aa) is the basic ion–optical factor
that governs the aberration-related limit of the resolu-
tion. With the angular divergence of the beam in plane
XZ not exceeding 0.5° and the beam being initially sev-

t δ( ) t δδ( ) t δδδ( ) 0,= = =

t y( ) = t b( ) = t yδ( ) = t bδ( )
=  t yy( ) = t yb( ) = t yy( ) = 0

t x( ) = t0 t y( )y0 t b( )b0 t ζ( )ζ0 t b( )b0 t δ( )δ+ + + + +

+ t yy( )y0
2 t yb( )y0b0 t bb( )b0

2 t yδ( )y0δ+ + +

+ t bδ( )b0δ t δδ( )δ2 t δδδ( )δ3 …,+ + +

t ζ( ) 0, t a( ) 0, t ζa( ) 0,≈ ≈ ≈

t ζδ( ) 0, t aδ( ) 0≈ ≈
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eral millimeters across, one may expect the resolution
to be as high as several hundreds of thousands even if
the energy spread in the beam is appreciable.

It should be noted that, in reference to the lateral
spatial spread of the ions, the TOF aberration coeffi-
cients listed above are several times smaller than those
reported in [7] for a multiturn analyzer that demon-
strated a resolution of 350 000. In addition, the planar
analyzer considered offers much better energy focusing
compared with that described in [7]. This fact lets us
conclude that a planar analyzer resolution as high as
several hundreds of thousand is quite feasible.

EXPERIMENTAL RESULTS

In experiments aimed at studying the high-resolu-
tion mode, we used the same prototype as in Part I of
this work [1]. A cesium gun [8] generating an ion beam
of energy 100 eV served as a test source. The energy
spread in the ion beam, which resulted largely from the
pulse modulation, was within 3–4%. The exit slit of the
ion source was 1 mm wide, and the angular divergence
of the beam in the analyzer, which was limited by the
windows in the masks before the lens unit, was esti-
mated as somewhat exceeding 1°. For such parameters
of the output beam, the calculated aberration-limited

Table 1.  Values of the basic nonzero TOF aberration coeffi-
cients for one turn of ions with a rated energy of 100 eV and
a mass of 1000 u (the transit time equals 278 µs)

(t |aa) (t |ζζ) (t |bbδ) (t |yyδ) (t |aaδ) (t |ζζδ) (t |δδδδ)

331 0.00088 3333 0.05 –300 –0.0017 4479

Note: The times are given in microseconds; linear dimensions, in
millimeters; angles, in values of their tangents; and energies,
in fractions of the rated value.

Table 2.  Aberration-limited maximal mass resolution Rm at
the peak half-maximum for typical spreads of the initial ion
parameters in the beam

2∆y = 2∆ζ, mm 2∆a = 2∆b, deg 2∆δ, % Rm

1 0.5 1 1 300 000

1 1 1 300 000

2 0.5 1 600 000

2 1 1 150 000

1 0.5 5 500 000

1 1 5 60 000

2 0.5 5 300 000

2 1 5 40 000

1 0.5 10 300 000

1 1 10 30 000

2 0.5 10 200 000

2 1 10 20 000
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resolution of the analyzer at the peak half-maximum is
roughly equal to 150 000. The basic limiter here is sec-
ond-order angular aberration (t|aa) in the lenses.

With such an ion source, the minimal duration of the
ion pulse (>100 ns) at the primary time focus cannot
provide the one-pass length that provides a high resolu-
tion. To remedy the situation, the ion trajectories in the
analyzer were closed to form repeating cycles by
changing over the operating mode of lens 1 in the lens
unit [1, Fig. 6]. The closing was accomplished in two
ways (Fig. 1).

(a)

Lens–deflector 5

(b)

Switchable lens 1

Switchable lens 1

Fig. 1. Ion trajectory closing conditions in the analyzer:
(a) zigzag motion of the ions and (b) reciprocating motion
of the ions.
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Fig. 2. Typical time signal recorded at long transit times.
(1) In the first case, the ions were injected into the
analyzer when lens 1 first operated in the normal
(focusing) mode and then (after the ions have passed
through it) the potentials of its electrodes were
switched to the deflecting mode. As a result, the ion
beam turned around in lens–deflector 5 and returned to
lens 1, which directed it again to the analyzer (Fig. 1a).
After the beam had executed a number of zigzag cycles
between lenses 1 and 5, the former was switched back
to the pure focusing mode and the ion beam left the ana-
lyzer for the detector.

(2) In the other case, lens 1 initially served as a
deflector, so that the mirror-reflected beam arriving at
the lens was directed normally to the mirrors (Fig. 1b).
Once the beam has passed lens 1, its electrode poten-
tials were switched to the focusing mode without
deflecting the beam. In other words, the beam executed
reciprocating motion in the analyzer, traveling along
the same rectilinear optical axis passing through lens 1.
After a number of cycles (turns), lens 1 was switched
again to the initial (deflecting) mode and the beam left
the analyzer for the detector.

When the ion trajectories cycle, the effective mass
range narrows in proportion to the number of cycles,
since the detector cannot discriminate between the ions
that executed N and N + 1 cycles. This restriction, along
with the lean spectral composition of the ions emitted
by the gun, made simultaneous recording of several
ionic components at long transit times impossible.
Therefore, the resolution of the analyzer under the
closed trajectory conditions was estimated relative to
the Cs peak width in the detector. For this width not to
be influenced by self-bunching [9] due to the space
charge of the beam, the recording procedure was car-
ried out at small amounts of ions (down to single ions)
in a pulse. In this case, the peaks were recorded with the
AR-100 ADC in the accumulation mode [10]. A typical
signal waveform is shown in Fig. 2. Here, the sharpness
of the peak (the absence of extended tails) and the low
noise level at very large transit times are noteworthy.

Figure 3 plots the FWHM of the peak, its amplitude,
and the mass resolution of the analyzer against the tran-
sit time of the ions under the second cycling conditions.
The time a single 100-eV Cs+ ion takes to make a com-
plete turn (two reflections from the mirrors) is about
100 µs; that is, the ions in the analyzer made 700 turns,
traveling a distance of 700 m (1 m per turn). The adjust-
ment of the analyzer was kept unchanged for any transit
time (which was controlled by the time lens 1 was
switched from the deflecting to focusing mode and vice
versa). Since the adjustment was optimized for long
transit times, the time signal somewhat broadens and its
amplitude slightly decreases at short transit times, as
follows from Figs. 3a and 3c.

Surprisingly, an ultimate resolving power of about
200 000, which was invariably demonstrated by the
analyzer in a series of measurements, exceeded the the-
oretical predictions mentioned above. Moreover, the
TECHNICAL PHYSICS      Vol. 50      No. 1      2005
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increase in the pulse duration and the linear growth of
the resolution with increasing transit time up to its max-
imal value (Figs. 3a, 3b) clearly indicate that the aber-
ration-limited value of the resolution was not reached.
The maximal resolution was apparently limited by fac-
tors other than aberration, of which the following two
seem to be basic.

The first is the instability of the power supplies that
feed the electrodes of the ion source, mirrors, and
lenses. The signals that are sequentially recorded at
large transit times and correspond to moderate amounts
of accumulated responses to the arrival of single ions
exhibit high-frequency oscillations of the positions of
their maxima. Since these oscillations correlate with
the time instant the signals are recorded, they may be
related to the variation of the transit time with the elec-
trode potential, primarily, with the potential of the
reflecting electrode of the mirrors. The amplitude of the
oscillations is comparable to the duration of the signals,
causing broadening of the time peaks.

The second reason lies in the fact that the amplitude
of the signal decreases with increasing transit time,
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Fig. 3. (a) FWHM of the signal detected, (b) resolving
power at the half-maximum of the peak, and (c) signal rela-
tive amplitude vs. the transit time.
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which limits the measuring capabilities of the system.
In the analyzer, some of the ions (namely, those the
energies and coordinates of which diverge significantly
from the mean values) may be lost at the masks of the
lenses and mirrors. Such an assumption finds an indi-
rect confirmation in that the maximal experimental res-
olution of the analyzer exceeds the aberration-limited
maximum predicted.

Ion scattering by a residual gas also results in ion
losses. To estimate this contribution, we carried out the
measurements at different pressures with the adjust-
ment of the analyzer kept unchanged. It was found that
the resolution does not change when the pressure in the
chamber varies by one order of magnitude from 4 ×
10−6 to 3 × 10–7 Torr. However, the transmission of the
instrument heavily depended on the pressure, as fol-
lows from Fig. 4a. One may therefore expect that the
transit time will increase (accordingly, the resolution
will be improved) in a higher vacuum. The ion beam
intensity as a function of the transit time is plotted in
Fig. 4b. As is seen from this figure, the loss of 100-eV
ions is described well by the exponential law ln(I/I0) =
–Lnσ, where I is the intensity of the ion beam after it
has traveled distance L, I0 is the beam intensity at the
entrance to the analyzer, n is the volume concentration
of gas molecules, and σ is the scattering cross section.
The curve in Fig. 4b is drawn for cesium ion scattering
by nitrogen molecules (σ = 25 Å2).
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Fig. 4. (a) Signal relative amplitude at the detector vs. the
transit time for different pressures in the analyzer and (b) the
logarithm of the relative intensity vs. the product of the transit
length and residual gas concentration in the chamber.
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Note that the measurements performed under the
first cycling (closing) conditions showed a lower (about
110 000) maximal resolution. This finding is supposed
to be associated with a periodic deflection of the ion
beam in the first and last (fifth) lenses of the lens unit,
which adversely affects the performance of the instru-
ment. First, such a deflection causes a spatial dispersion
of the ions in energy and, thereby, expands the spatial
phase volume of the beam (hence, deteriorates the
transmission of the analyzer). Second, the deflection
introduces extra TOF aberrations, specifically, the first-
order dependence of the transit time on angle of incli-
nation α and spatial coordinate ζ of the ions.

CONCLUSIONS

In Part II of this work, we showed theoretically and
experimentally that the planar multireflection TOF ana-
lyzer described in Part I is promising for reaching a
very high mass resolution (on the order of several hun-
dreds of thousands) at a sufficiently high acceptance.
This statement is based on the fact that the analyzer is
equipped with specially designed high-quality gridless
ion mirrors, allowing the ions to stably make several
hundreds of turns. It may be expected that use of a
larger number of lenses in order to extend the length of
the unclosed cycle of the ion motion will make it possi-
ble to set the high-resolution mode without (or with
minor) restrictions on the mass range.
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Abstract—The feasibility of the frequency spectrum of Vavilov–Cherenkov radiation being controlled in a
wakefield dielectric-filled accelerating structure via an outer ferroelectric layer is studied. The spectrum and
amplitude of the field excited in the structure versus the permittivity of the ferroelectric are found. Dielectric
losses in the ferroelectric are estimated. It is shown that these losses impose limitations on the ferroelectric layer
thickness and the range within which the frequency spectrum of the waveguide can be controlled. The structure
under consideration is optimized for the AWA wakefield accelerator. The multilayer construction of the
waveguide, in combination with specially shaped ferroelectric-permittivity-controlling electrodes, allows
designers to tune the spectrum of the waveguide and suppress electron-bunch-deflecting waveguide modes.
Thereby, there appears the possibility of controlling the transverse stability of the beam. © 2005 Pleiades Pub-
lishing, Inc.
INTRODUCTION

Wakefield acceleration of charged particles (a
method where wake fields downstream of electron
bunches passing through a dielectric waveguide are
used) is nowadays the subject of extensive theoretical
and experimental investigation [1–4].

Wakefield acceleration implies energy transfer from
a high-current electron bunch to a high-energy low-
charged one. In an accelerating structure, the former
generates an electromagnetic field with a longitudinal
component amplitude as high as 100 MV/m. This com-
ponent is used to accelerate a subsequent low-current
bunch [1].

In this work, we consider an accelerating structure
[1–4] that represents a circular metallic dielectric-filled
bunch-directing waveguide the inner evacuated channel
of which has a radius Rc. The outer side of the dielectric
wall with a radius Rw is metallized (Fig. 1). The basic
requirement for the waveguide structure of a wakefield
accelerator is electromagnetic loss minimization in the
waveguide material. To this end, ceramic materials with
a high figure of merit (Q = 105 at a frequency of
10 GHz) and the dielectric loss tangent  not
exceeding 10–4 are employed. The permittivity ε1 of the
waveguide material depends on the structure and
ranges widely from 4 to 36 [3, 4].

The fulfillment of the phase relationships (the low-
current bunch must be kept within the accelerating
phase of the wave) imposes strict tolerances on the
waveguide parameters and bunch position. If ultrarela-
tivistic bunches are accelerated, the increase in the
beam energy does not violate the wave–bunch phase
relationships. However, the problem of compensating
for frequency shifts due to a discrepancy between the

δtan
1063-7842/05/5001- $26.00 ©0087
actual and rated parameters of the structure, as well as
to a mismatch between the waveguide sections of the
accelerator, still persists. Varying the permittivity of the
waveguiding system, one can control the wave–bunch
phase relationships and provide the most favorable
energy conditions for acceleration. In [5], a method of
controlling the frequency spectrum of the waveguide in
a wakefield dielectric-filled accelerator was suggested.
In this method, the frequency spectrum is tuned with a
ferroelectric film applied on the outer side of the dielec-
tric waveguide.

In this work, we perform computer simulation of a
two-layer waveguide (Fig. 2), the frequency spectrum
of which can be tuned as described above. Unlike the
conventional dielectric-filled accelerating structures
[1–4], the system suggested incorporates an additional
ceramic (ferroelectric) layer placed between a linear
dielectric of radius Rd and a metallic wall of radius Rw
[6, 7]. The spectrum of this waveguide can be tuned by
varying the permittivity ε2 of the ferroelectric. Permit-
tivity ε2 changes when the ferroelectric is subjected to
an external electric field. In other words, the spectrum
of the wake field can be influenced in real time (i.e.,
during the experiment).

λ rf

Rc
Rw

ε

Fig. 1. Single-layer dielectric waveguide.
 2005 Pleiades Publishing, Inc.
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WAKE (VAVILOV–CHERENKOV) FIELD
IN A DIELECTRIC WAVEGUIDE 

WITH A FERROELECTRIC LAYER

An expression for the field produced by a point elec-
tron bunch in a single-layer waveguide was derived in
[8–10]. To derive this expression for a multilayer
waveguide, we will use the Maxwell equations and
related boundary conditions in the waveguide:

(1)

(2)

(3)

(4)

(5)

(6)

Here, E and H are the electric and magnetic field
strengths, respectively; D and B are the electric and
magnetic inductions; c is the speed of light in a vacuum;
and e, n, and V are the charge, density, and velocity of
electrons, respectively.

Let a point electron bunch with charge q move with
velocity V = βc along the cylindrical waveguide at dis-
tance r0 from its axis. Then, the electron density will
have the form

The components of the electric and magnetic fields
can be expressed through longitudinal components Ez

and Hz. For Ez and Hz, the Maxwell equations appear as

(7)

(8)

∇ E× 1
c
---∂B

∂t
-------,–=
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Fig. 2. Dielectric waveguide with a ferroelectric layer.
Let us expand all the quantities entering into
Eqs. (1)–(8) in a series in mode number ν (hereafter,
subscript ν will be omitted for simplicity) and apply the
Fourier transformation in the cylindrical coordinate
system (r, θ, z) to Ez:

Then, we have

where Jν is the Bessel function of order ν and ζ = z – Vt.

Equation (7) can be recast as

(9)

where

A partial solution to (9) can be found in the form

Then, integration over ρ yields

where γ = (1 – β2)–1/2 and Iν and Kν are the modified
Bessel function and the Macdonald function of order ν,
respectively.
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We will consider the case r ≥ r0. The general solu-
tion to (9) has the form

(10)

(11)

where

The complete solution inside the waveguide can be
written as a sum of the general and partial solutions:

where

Let us apply the boundary conditions of continuity
of the tangential electric and magnetic field compo-
nents Eθν, Hθν, Ezν, and Hzν at the vacuum–dielectric
and dielectric–ferroelectric interfaces. Expressing Eθν
and Hθν through Ezν and Hzν, we arrive at

(12)

(13)

The radial component of the electric field can be
written in the form

Eventually, we obtain a set of eight equations for
coefficients A, B, E, F, C1, D1, C2, and D2. In view of
(12) and (13), this set can be reduced to a set of four
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equations for C1, D1, C2, and D2:

(14)
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Coefficients A and B in (10) and (11) are expressed
as follows:

where

Determinants Det1, Det2, Det3, and Det4 are found
from determinant Disp by replacing the corresponding
column by the column of free terms in Eq. (14). The
dispersion relation of waves in the waveguide can be
written in the form

(15)
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Fig. 3. Normalized radial and longitudinal electric field
components vs. radial coordinate in the three-layer dielec-
tric waveguide.
The Vavilov–Cherenkov field in an evacuated chan-
nel is given by

(16)

(17)

Here, ζ = z – ct is a distance back of a bunch,

The field of a Gaussian bunch can be determined by
taking the integral of convolution of point charge field
(16) with the charge distribution in the bunch. Assum-
ing that the charge in the bunch is normally distributed,
we find

(18)

where σb is the length of the bunch.
The amplitude–frequency characteristic of the field

depends on the bunch length in such a way that an
extension of a bunch suppresses high-frequency modes.
For example, if a 0.4-cm-long bunch propagates in a
waveguide with Rc = 0.5 cm and Rd = 0.7 cm, the net
field strength is roughly equal to the strength of the low-
est frequency (i.e., first, or E01) mode.

Figure 3 plots Ez and Er against radial coordinate r.
As follows from this figure, the accelerating field in the
evacuated channel is uniform along the radial coordi-
nate. Outside the channel, the field drops and vanishes
at the metallic wall; i.e., longitudinal field Ez in the fer-
roelectric is almost ten times lower than in the evacu-
ated channel. The radial component Er of the electric
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field experiences jumps at the interfaces according to
the boundary conditions. In the ferroelectric, it is negli-
gibly small.

THE EFFECT OF THE FERROELECTRIC
ON THE WAKE FIELD

As a ferroelectric film, one can take a film of MgO-
doped barium titanate–strontium titanate solid solution
(Ba0.6Sr0.4)TiO3 at a working temperature of 300 K.
When the dopant concentration is 1%, such a composi-
tion makes it possible to vary permittivity ε2 at a fre-
quency of 10 GHz from 800 (for  ≈ 2 × 10–3) to

1820 (for  ≈ 6 × 10–3). The same variation of the
permittivity is observed when the control electrostatic
field ranges from 4 × 106 V/m to zero [11]. The increase
in the control electrostatic field to 107 V/m causes per-
mittivity ε2 to decrease to 365. It is noteworthy that
these results are valid for thin-film devices (1- to 5-µm-
thick), while the ferroelectric we are dealing with may
be as thick as 100 µm (in contrast to a 1-µm-thick film,
see [11]). “Thick” ferroelectric films and a bulk ferro-
electric as control elements were used, e.g., in [12–15],
where a possible rise in the loss tangent in the bulk
material (compared with the thin film) due to its inho-
mogeneity was noted. In a recent work [16], the loss
tangent in bulk MgO-doped BaSrTiO3 was reported to
be 5 × 10–3 at 10 GHz. We are planning to employ
MgO-doped BaSrTiO3 filled with an inert nonferro-
electric, a standard linear high-Q ceramic material, in
order to shrink the range of the permittivity from 800–
1800 to 180–320 [7]. Such a decrease in the permittiv-
ity of the ferroelectric would allow us not only to
decrease the loss tangent in the material but also to
reduce energy losses in the metallic wall (sheath) adja-
cent to the ferroelectric. In the dependences of the
energy losses that follow, the value of  is taken to
be equal to 5 × 10–3 throughout the range of ε2.

Note that the loss tangent in ferroelectrics (  ≈
5 × 10–3) is 1–1.5 orders of magnitude higher than in
materials used as a dielectric (  ~ 10–4).

Figure 4 plots the fundamental frequency of the
wake field of the bunch versus permittivity ε2 in a three-
layer dielectric waveguide with an inner radius Rc =
0.5 cm and ferroelectric film thickness h = Rw – Rd =
0.015 cm for three values of the permittivity of the
waveguide material (ε1 = 5, 7, and 9). The radius of the
dielectric, Rd, was taken such that the field frequency in
the middle of the ferroelectric permittivity (ε2) range be
equal to 11.42 GHz, which is the working frequency of
the experiment to be carried out. It follows from Fig. 4
that, for ε1 = 5, we can vary the frequency within ±14%
of the wake field center frequency f = 11.42 GHz. As
the permittivity of the dielectric increases, the tuning
range of the frequency narrows. If the ferroelectric-to-

δ2tan

δ2tan

δ2tan

δ2tan

δ1tan
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dielectric thickness ratio is increased, the frequency
tuning range may be substantially expanded; in this
case, however, electric losses in the system grow and
the performance of the accelerator degrades.

LOSSES IN THE WAVEGUIDE

Electric losses are convenient to consider when per-
mittivity is represented as a sum of the real,  = ε' – jε'',
and imaginary, ε'' = σ/ω, parts, where σ is the conduc-
tivity of a material and ω is the circular frequency.
Dielectric loss tangent is then written in the form

(19)

Total losses wt in the waveguide include dielectric
losses in the dielectric and ferroelectric, wd, and mag-
netic losses wm due to a finite conductivity of the metal-
lic sheath: wt = wd + wm.

The dielectric losses in the waveguide are found by
integration of the specific losses over the dielectric and

ferroelectric volume: wd = σd  · dV.

The conductivity of the dielectric, σd, is found from
(19):

Then, we have

(20)

To find the dielectric losses in the dielectric and fer-
roelectric, we substitute the components of field E that
are given by expression (18) for the wake field down-
stream of a charged relativistic bunch into (20) and
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E
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∫tan ĖdV .⋅+⋅tan=

1

2
3

12.0

11.5

11.0

10.5
180 200 220 240 260 280 300 320

ε2

f, GHz

Fig. 4. Wake field frequency vs. permittivity ε2 of the ferro-
electric. (1) ε1 = 5 and Rd = 0.72 cm, (2) ε1 = 7 and Rd =
0.713 cm, and (3) ε1 = 9 and Rd = 0.703 cm.
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obtain

where l is the length of the waveguide.
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Fig. 5. (a) Relative energy losses vs. outer radius of the
waveguide: ε2 = (1) 320, (2) 250, and (3) 180. (b) Relative
energy losses vs. permittivity ε2 of the ferroelectric: (1) total
losses, (2) magnetic losses, (3) ferroelectric losses, and
(4) dielectric losses. Rc = 0.5 cm, Rd = 0.7 cm, and Rw =
0.715 cm.

d
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Fig. 6. Geometry of the microstrip electrodes for the ferro-
electric- and ceramic-filled tunable accelerating structure.
d = 60 µm. (a) General view and (b) a fragment.
The losses in the conductor (metallic sheath) are
found as the real part of the complex Poynting vector
flux piercing the total surface area of the conductor
from the inside and depend on the tangential compo-
nent Hτ of the magnetic field at the boundary of the con-
ductor:

Skin depth ∆ depends on the electromagnetic field
circular frequency ω and conductivity σm of the metal,

Figure 5a plots the ratio of the total energy losses
(wt) to the energy stored in the waveguide (w) against
its outer radius Rw for ε1 = 9.4. The relative energy
losses are seen to grow with the ferroelectric layer
thickness. Note also that the ferroelectric layer not only
dissipates a major part of the energy but also increases
the losses in the metallic sheath. Thus, the ferroelectric
and the metallic sheath are major contributors to the
total energy losses and their combined contribution
increases drastically with increasing permittivity of the
ferroelectric (Fig. 5b). Eventually, this fact limits the
thickness of the ferroelectric film and makes frequency
tuning of a wakefield waveguide less effective.

GEOMETRY OF THE FERROELECTRIC-
PERMITTIVITY-CONTROLLING ELECTRODES

Figure 6a shows an electric-field-controlled dielec-
tric accelerating structure with a ferroelectric layer.

When applied to the electrodes made on the outer
side of the ferroelectric layer, a dc field (of strength
10 V/µm for the material used) alters the permittivity of
the ferroelectric and, thereby, tunes the fundamental
frequency of the structure. The electrodes will suppos-
edly be made by advanced electrode technology,
including lithography and precision etching. It is being
widely used in production of thin-film ferroelectric tun-
able phase shifters and filters [11–13]. It is hoped that,
using this technology, we will be able to make the elec-
trode configuration such that it (i) supports the modes
necessary for effective acceleration (mode E0N for the
structure considered); (ii) provides a maximal strength
(to 10 V/µm for the ferroelectric material used) of the
dc (control) field penetrating into the ferroelectric in
order to extend the range of controllability and, at the
same time, keeps the control field uniform; and (iii)
minimizes insertion losses.

Figure 6b shows the particular dimensions of the
microelectrode system designed for an accelerating
waveguide operating at 10–13 GHz. For a 180- to 220-
µm-thick ferroelectric film intended for controlling a
ceramic waveguide with a center frequency of 11 GHz,
the optimal relationship is h = 3d according to our cal-
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culation, where h is the thickness of the film and d is
width of the strip. The electrode spacing must also be
roughly equal to d. For the frequency range 10–
13 GHz, the appropriate value of this parameter ranges
from 50 and 60 µm. A dc voltage of 0.5–1.0 kV is
applied across the spacing to generate a control field on
the order of 10 V/µm.

MODE-SELECTION CONTROLLABLE 
WAKEFIELD ACCELERATING STRUCTURE

The transverse fields excited in wakefield
waveguides are no lower than longitudinal ones. These
fields, causing the beam to deviate from the waveguide
axis and directing some of the particles on the walls of the
structure, are responsible for charge losses in the bunch
and may initiate the breakdown of the dielectric [17].

Figure 7 demonstrates the design of a multilayer fer-
roelectric- and ceramic-loaded tunable accelerating
waveguide to be used in further experiments. It consists
of a high-Q ceramic layer covering the evacuated chan-
nel of inner radius Rc and outer radius Rd, a thin ferro-
electric layer of radius Rf with longitudinal insulated
microstrip electrodes on its top, and an absorbing (fer-
rite) layer covered by a metallic wall of radius Rw.

The longitudinal arrangement of the control micro-
electrodes is aimed at supporting only the longitudinal
accelerating electric modes of the microwave wake
field. Then, the microstrips applied on the ferroelectric
may be used not only as electrodes generating the dc
control voltage but also as a system suppressing trans-
verse (deflecting) modes [18].

When designing the layout described above, we
used the Chojnacki filtering method [19]. According to
this method, the transverse modes of a waveguide can
be suppressed by making the outer sheath of the
waveguide longitudinally anisotropic instead of using
continuous isotropic metallization. The idea of sup-
pressing transverse modes in a waveguide by making
the conductivity of its sheath purely longitudinal with
the help of longitudinal insulated conductors was first
suggested in [19], and computer simulation and exper-
imental implementation of this concept were performed
in [20].

Hybrid modes in dielectric waveguides persist when
both the axial and azimuth surface electric current in
the sheath are supported. If the outer conductors carry
the axial current alone (as in Fig. 6a), the deflecting
modes could be absorbed outside the waveguide space
bounded by the longitudinal electrodes, decaying as
surface waves in a microwave absorber placed around
the structure. It is thus expected that, owing to the spe-
cific geometry of the microstrip electrodes, the
waveguide will support only mode E0N with the longi-
tudinal electric field component, which is just neces-
sary for effective acceleration.

To elucidate the influence of the ferrite layer on the
field structure, let us write expressions for Ez and Hz for
TECHNICAL PHYSICS      Vol. 50      No. 1      2005
each of the parts of the waveguide:

(21)

(22)

where

µ3 = µr3 – jµi3 is the complex permeability of the ferrite
(µr3 and jµi3 are the real and imaginary parts, respec-
tively), and ε3 is the permittivity of the ferrite.

Using the continuity conditions for the tangential
components of the electric and magnetic fields at the
interfaces, as well as the fact of vanishing of the longi-
tudinal component of the electric field because of the
conducting electrodes present at the ferroelectric–fer-
rite interface, we obtain from expressions (12), (13),
(21), and (22) a dispersion relation and the fields for the
multilayer structure considered.

The numerical simulation and experimental imple-
mentation showed [20] that the axially conducting
boundary does not influence the accelerating fields,
while the transverse fields exponentially decay over
several periods (Fig. 8).
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Fig. 7. Tunable accelerating waveguide where transverse
deflecting modes are suppressed.
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Figure 9 plots the radial field of the first transverse
mode in the waveguide versus distance z back of a
0.4-cm-long bunch that carries a charge Q = 100 nC and
is offset from the waveguide axis by r0 = 0.001 cm for
three ferrite thicknesses Dfer (for the ferrite parameters,
see [19]). As the thickness of the ferrite layer grows, so
does the energy absorption in it (the deflecting mode
amplitude inside the waveguide exponentially decays).
Moreover, the deflecting mode amplitude declines in
the evacuated channel of the waveguide as well. This
effect is related to the field penetration outside the
waveguide space bounded by the longitudinal elec-
trodes. When the accelerating electron bunches and
those being accelerated are z = 25–27 cm apart (this dis-
tance roughly equals 10λ, where λ is the wavelength at
the fundamental frequency of the waveguide,
11.41 GHz), the radial field of the first mode is reduced
by a factor of 100 or more and becomes comparable to,
or lower than, the deflecting force associated with the
zeroth mode. The latter, according to our calculation,
does not exceed 100 V/m in the geometry under discus-

0.1

0

–0.1

–0.2
0 5 10 15 20 25 30

z, cm

Fr/Q, MV/m

1 2

Fig. 8. Decay of the radial deflecting field with distance
back of a bunch: (1) bunch charge distribution and (2) radial
component of the wake field. Rc = 0.5 cm, Rd = 0.58 cm,
Rf = 0.582 cm, Rw = 0.6 cm, ε1 = 16, and ε2 = 200. The fer-
rite parameters are µ3i = 3, µ3r = 3, and ε3 = 20.

10

8

6

4

2

0 5 10 15 20 25 30 35 40

1

2
3

z, cm

Fr/Q, MV/m

Fig. 9. Amplitude of the radial deflecting field in the
waveguide vs. distance z back of a bunch for the ferrite
thickness Dfer = (1) 0.002, (2) 0.004, and (3) 0.05 cm.
sion and is negligibly small compared with the radial
force of the first mode in the absence of the extra ferrite
layer in a standard waveguide.

Thus, when combined with the additional absorbing
sheath, the longitudinal electrode system used to con-
trol the permittivity of the ferroelectric provides sup-
pression of transverse deflecting modes, while retain-
ing the possibility of controlling the waveguide fre-
quency spectrum.

It should be noted that the ferrite properties consid-
erably depend on the permanent magnetic field strength
in the accelerator (focusing systems, etc.). However,
deflecting field suppression will allow designers to
completely or partially get rid of the conventional
beam-focusing magnetic system and, thereby, greatly
simplify the construction of an accelerating waveguide.

CONCLUSIONS

We demonstrated that the frequency spectrum of the
wake field generated by an electron bunch in an accel-
erating structure can be controlled by varying the per-
mittivity of a thin ferroelectric layer applied on the
dielectric (ceramic) waveguide. The ferroelectric per-
mittivity is varied by varying the amplitude of the elec-
tric field applied to microelectrodes made on the outer
surface of the control layer.

A decrease in the ferroelectric permittivity increases
the wake field frequency and amplitude in the acceler-
ating structure. At the same time, energy losses impose
restrictions on the ferroelectric thickness and render
frequency tuning in a wakefield waveguide less effec-
tive. The ferroelectric thickness is selected starting
from desired frequency tuning range and wake field fre-
quency.

The specially shaped ferroelectric-permittivity-con-
trolling electrodes, combined with an extra absorbing
sheath, allow for not only frequency tuning but also
suppression of deflecting modes in the waveguide to
provide the lateral stability of the beam.

The technology of multilayer tunable waveguides
that is proposed in this paper can be extended to high-
power high-frequency accelerating systems, such as
tunable microwave switches and pulse compressors
[21]. Moreover, a novel field of research arises: nonlin-
ear effects in the multilayer systems [22], where the
high-frequency wake field generated by an electron
bunch in a dielectric-loaded waveguide interacts with
the ferroelectric layer, thereby accomplishing control
over the system. In this case, various nonlinear effects
like shock waves, self-focusing, and many others may
be worth studying.

It should be noted that the possibility of rapid tuning
of the waveguide frequency (and, hence, the phase
velocity of the accelerating wave) is a great advantage
of ceramic-loaded waveguides over standard evacuated
ones. The former can be widely used in systems where
strict wave–beam synchronization is required.
TECHNICAL PHYSICS      Vol. 50      No. 1      2005
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Abstract—Experimental data for separation of neodymium isotopes by atomic vapor selective laser photoion-
ization are analyzed. Atom scattering in the working volume and the Doppler shift of the atom absorption line
are shown to be the basic deselecting processes in the experimental cell studied. A data processing technique
that allows one to determine the effect of either deselecting process on the product enrichment and yield is sug-
gested. The experimental dependence of the target isotope concentration in photoions present in the separating
chamber on the angular divergence (collimation) of the atomic vapor flow along the laser beam is found.
A method for determining the vapor flow optimal angular collimation is developed. © 2005 Pleiades Publish-
ing, Inc.
INTRODUCTION

In this work, we analyze the experimental data [1−5]
for separation of neodymium isotopes by the atomic
vapor laser isotope separation (AVLIS) method. In this
method, the flow of atoms evaporated passes through a
laser-irradiated space where the selective photoioniza-
tion of a target isotope takes place. The ions thus pro-
duced are extracted from the vapor flow and are
directed to the collector by means of an electric field.
The remaining (neutral) atoms of the flow are trapped
by the waste collector. The experiments on neodymium
isotope separation were aimed at tackling the question
of whether this method is promising for the preparation
of a product containing up to 70% of the 150Nd isotope.
This product in amounts of several tens of kilograms is
needed for fundamental research on double β decay
[6, 7]. The natural occurrence of 150Nd is 5.6%. Since
this element does not produce volatile compounds, its
isotopes cannot be separated by the conventional cen-
trifugal method.

EXPERIMENTAL SETUP AND METHOD

Figure 1 shows the setup used for research and pilot
experiments on recovery. Neodymium is evaporated
from a 30-cm-long crucible heated to 1700–1900 K [1].
The design of the evaporator allows for the mounting of
a collimator to limit the angular divergence of the vapor
flow in the direction of the laser beam. In the experi-
ments, the collimation half-width of the flow was var-
ied from 15° to 60°.

The laser system consists of copper vapor lasers and
tunable dye lasers. The former generate a pulsed radia-
1063-7842/05/5001- $26.00 ©0096
tion (yellow and green components) of total output
300 W. The pulse duration is 30 ns; the pulse repetition
rate, 10 kHz [8]. This radiation is used to pump three
chains of the dye lasers (according to the number of
photoionization steps). The radiation from the dye
lasers (a total output of 100 W) is directed to the sepa-
rating chamber [2]. The multipass optics installed in the
chamber allows the laser beam to pass over the neody-
mium evaporator up to 20 times, thereby increasing the
volume of the vapor irradiated. The photoionization
scheme used in the experiments is depicted in Fig. 1.
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Fig. 1. Schematic of the setup for research and pilot exper-
iments on neodymium isotope recovery. CVL, copper vapor
lasers; DL, dye lasers; S, splitter; MPS, multipass system;
SC, separating chamber; E, evaporator; C, collimator;
PC, product collector; WC, waste collector; CC, control
chamber; AB, atomic beam; QMS, quadrupole mass spec-
trometer; SEM, secondary electron multiplier; and MSR,
mass spectrum recorder.
 2005 Pleiades Publishing, Inc.
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Table 1

Isotopic composition, % I/D C = 150 C = 148 C = 146 D = 145 C = 144 C = 143 C = 142

Natural 5.6 5.7 17.2 8.3 23.8 12.2 27.2

Measured in mass spectrometer 91.6 4.59 2.6 0.03 0.9 0.03 0.06

Measured on collector 34.3 11.2 12.9 5.4 14.2 7.0 15.3

Mixing of composition in mass
spectrometer with natural com-
position in proportion I/D

1 48.6 5.1 9.9 4.2 12.3 6.1 13.6

0.8 43.8 5.2 10.7 4.6 13.6 6.8 15.1

0.7 41.0 5.2 11.2 4.9 14.4 7.2 16.0

0.6 37.9 5.3 11.7 5.2 15.2 7.6 17.0

0.5 34.3 5.2 12.3 5.5 16.2 8.1 18.2
A waste collector is placed immediately above the
working volume.

A minor part (≈1%) of the radiation is directed to a
control chamber, where it interacts with a thin neody-
mium atom beam (the Doppler broadening of the line is
∆νD ≈ 100 MHz). The interaction takes place directly in
the ion source of a quadrupole mass spectrometer. The
fraction of the power directed into the control chamber
and the volume of the space of interaction are taken
such that the laser radiation intensities in the separating
chamber and the control mass spectrometer equal each
other. The composition of the photoions is monitored
throughout the experiment at a rate of one mass spec-
trum per minute.

The time of recovery was, as a rule, 1 h. When the
experiment was over, the product obtained on the pho-
toion collector and the neodymium in the waste collec-
tor were washed away. The isotopic composition and
amount of neodymium in the samples were determined
in an independent laboratory. In this way, the external
parameters of the process were found: product flux P,
concentration Cp of the target isotope in the product,
waste flux W, and concentration Cw of the target isotope
in the waste. Feed flow F was found by the formula

(1)

DESELECTING PROCESSES
When recovery is carried out by the AVLIS method,

an increase in the output enhances the effect of dese-
lecting processes, such as atom scattering in the work-
ing space and resonant charge exchange. When work-
ing with neodymium vapor flows, which are highly
divergent, one should take into account that the Doppler
broadening of the spectral line becomes comparable to
the isotopic shift. Because of the action of the deselect-
ing processes, the target isotope concentration in the
product turns out to be lower than the concentration
measured in the control mass spectrometer.

Table 1 summarizes the results of experiments with
multimode lasers for which the lasing linewidth is
≈1 GHz [9]. The first row lists the natural occurrence of
neodymium isotopes; the second, the mass spectrum

F P W .+=
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obtained in the control mass spectrometer and averaged
over the time of recovery; and the third, the isotopic
composition in the sample washed away from the pho-
toion collector. It is seen that the concentration of the
150Nd target isotope is much lower than the concentra-
tion in the mass spectrometer. This may be explained by
the arrival of a neutral atom flux with the natural com-
position at the collector.

Let us try to obtain the desired composition of the
product on the collector by adding the natural composi-
tion to the composition determined in the control mass
spectrometer under the assumption that the isotopic
concentration of photoions in the separator equals the
concentration of photoions in the mass spectrometer.
The concentration of an ith isotope on the collector is
given by

(2)

where Cphotoi is the concentration of an ith isotope in
photoions in the separator, Cmsi is the concentration of
the ith isotope in the mass spectrometer, and I/D is the
ratio between the selective flux (I) of photoions and the
flux of neutral atoms (D) with the natural composition.

The results of such addition are given in lower rows
of Table 1. One can conclude that the isotopic compo-
sition observed on the collector cannot be obtained by
merely adding the natural composition to that deter-
mined in the mass spectrometer. Consequently, the ini-
tial isotopic composition of photoions in the separator
differs from that in the mass spectrometer. The adding
procedure is inefficient because of a high concentration
of the 148Nd isotope on the collector. This isotope is
next to the 150Nd target isotope in the spectrum. It may
be therefore supposed that the composition of photo-
ions in the separator changes because of the Doppler
effect. Indeed, the laser beam in the mass spectrometer
interacts with the atomic (vapor) flow, which has an
angular divergence of 4°. This corresponds to a Doppler
half-width of the absorption line of ≈100 MHz. On the
other hand, the vapor flow in the separator has a maxi-
mal angular divergence along the laser beam, ≈120°
(a Doppler width of ≈1 GHz). Thus, in the experiment

Cpi

ICphotoi DCfi+
I D+

----------------------------------
I/D( )Cmsi Cfi+

I/D 1+
-------------------------------------,= =
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Table 2

Isotopic composition, % I/D C = 150 C = 148 C = 146 D = 145 C = 144 C = 143 C = 142

Natural 5.6 5.7 17.2 8.3 23.8 12.2 27.2

Measured in mass spectrometer 75.45 15.01 4.9 1.17 2.1 0.49 0.9

Measured on collector 23.8 7.3 13.7 6.5 18.4 9.4 20.9

Mixing of composition in mass spectrometer 
with natural composition in proportion I/D

0.353 23.8 8.1 14.0 6.4 18.1 9.1 20.3
considered, the Doppler width of the vapor flow in the
separator turns out to be roughly equal to the spectral
width of the laser radiation and to the isotopic shift
between the 150Nd and 148Nd isotopes in the first transi-
tion.

To check the above supposition, we mounted a col-
limator in the path of the atomic flow, which limited its
maximal angular divergence to 30°. The results of such
an experiment are presented in Table 2, from which it
follows that the desired composition on the collector
can be obtained by mixing the two compositions. This
suggests that the isotopic compositions in the mass
spectrometer and separator are roughly the same in the
given experiment. Since the experiments with different
angles of collimation of the vapor flow were carried out
at comparable atomic concentrations and under the
same conditions, we can conclude that the decrease in
the target isotope concentration in photoions compared
with the concentration measured in the mass spectrom-
eter results from the overlap of the absorption lines of
different isotopes due to the Doppler effect.

DATA PROCESSING TECHNIQUE

To clarify the effect of the deselecting processes, it
is important to determine ratio I/D, where I is the
enriched component and D is the component with the
natural composition. Knowing this ratio, one can find
the isotopic composition of photoions in the separator,
the coefficient of extraction of the target isotope by
means of photoionization, and the atom scattering coef-
ficient in the working space. Unfortunately, ratio I/D
cannot be found only with the external parameters of
the separating cell. However, this important quantity
can be determined by comparing the concentrations of
even isotopes in the product and in the mass spectrom-
eter.

Our procedure of determining I/D consists in the
following. The concentration of an ith isotope in the
mass spectrometer is given by

(3)

where ηmsi is the ionization efficiency for the ith isotope
in the mass spectrometer.

Cmsi

Cfiηmsi

Cfiηmsi

i

 

∑
------------------------,=
Similarly, the concentration of an ith isotope in the
photoions that are present in the separator is expressed
as

(4)

where ηi is the ionization efficiency for the ith isotope
in the separator.

Ratio αi = Cphotoi/Cmsi, where Cphotoi is the concentra-
tion of the ith isotope at the stage of photoionization in
the separator and Cmsi is the concentration of the same
isotope that is measured in the mass spectrometer, is
numerically equal to the ratio of the related photoion-
ization efficiencies for this isotope times a factor that is
the same for all the isotopes:

(5)

The isotopic composition of photoions in the sepa-
rator differs from that measured in the mass spectrom-
eter because of the Doppler effect, which is a spectrally
dependent deselecting effect. In other words, the
smaller isotopic shift ∆ν150 – i between a given isotope
and the target isotope, which the laser wavelength are
tuned to, the greater the change in the ionization effi-
ciency. Since the inequalities

(6)

are valid for the used transitions in neodymium, the ine-
qualities

(7)

or

(8)

must hold.

With Eq. (2), concentration Cphotoi can be expressed
via concentration Cpi of an ith isotope in the product
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and ratio I/D, which is the same for all the isotopes:

(9)

where Cfi is the natural concentration of the ith isotope.
Ratio I/D, in turn, can be found by using the follow-

ing procedure (note that the accuracy of determining
I/D is the highest when the concentrations of the 144Nd
and 142Nd isotopes are used). Substituting (9) into (8)
yields an inequality for I/D:

(10)

Inequality (10) implies, on the one hand, that the
photoionization efficiency for the 142Nd isotope cannot
be less than zero. On the other hand, this inequality
implies that the difference between the photoionization
efficiencies for the 142Nd isotope in the separator and in
the mass spectrometer cannot exceed this difference for
the 144Nd isotope. In most of the experiments, inequal-
ity (10) determines ratio I/D accurate to several percent.
Knowing I/D, one can find the rest of the internal
parameters of the separating cell, namely, (i) experi-
ment-averaged concentration Cphoto of the target prod-
uct at the photoionization stage (by formula (9)),
(ii) enriched component I, (iii) component D with the
natural composition, and (iv) coefficient of extraction
Kextr of the target product by means of photoionization
(i.e., the fraction of the target product gathered on the
collector by means of selective photoionization):

(11)

(12)

(13)

The application of such an approach to experimental
data is exemplified in Table 3. This table lists the natu-
ral isotopic composition of neodymium, the experi-
ment-averaged isotopic composition measured in the
mass spectrometer, and the isotopic composition of the
sample, as well as the analytical compositions of pho-
toions in the separator for each of the samples. Samp-
les 75–79 were obtained in one experiment and taken
from different sites on the collector. It is seen that the
analytical isotopic compositions of photoions are virtu-
ally the same for all the samples, which confirms the
validity of the method. The lowest row lists the analyt-
ical isotopic composition of photoions that is averaged
over samples. It should be noted that, in this example,
the error of measuring the 142Nd and 144Nd isotope con-
centrations is a major contributor to the total inaccuracy
of determining the isotope concentrations. The target
product concentration in the waste, which was calcu-

Cphotoi

I/D 1+( )Cpi Cfi–
I/D( )

-------------------------------------------,=

Cf142

Cp142
------------ 1– I/D

Cms144Cf142 Cms142Cf144–
Cms144Cp142 Cms142Cp144–
------------------------------------------------------------ 1.–≤ ≤

I  = 
P I/D⋅
1 I/D+
------------------,
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P

1 I/D+
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ICphoto

FCf
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lated using the value of Kextr obtained, served as a refer-
ence value (this calculated value was in good agree-
ment with that measured in the waste collector).

The validity of inequality (7) is confirmed by the
calculations of selective photoionization that were per-
formed in [10, 11]. In the works cited, the solution of
the equations for the atomic density matrix, which
describes the behavior of an atomic ensemble in high
monochromatic fields with regard for the Doppler
broadening of the transitions, was considered. Formu-
las for calculating the photoionization probability of
nontarget isotopes as a function of the isotopic shift,
laser radiation intensity, and width of the Doppler-
broadened line were suggested.

Direct measurement of the isotopic composition of
photoions in the separator is difficult, since the effective
operation of the mass spectrometer under the condi-
tions of an intense metal vapor flow must be provided.
Because of this, the technique suggested in this work
seems to be a convenient means for finding the internal
parameters of the separating cell.

ANALYSIS OF EXPERIMENTAL DATA

Experiments show that the flow of the component D
with the natural composition toward the collector
depends on feed flow F and can be represented as

(14)

Experiments also show that proportionality (scatter-
ing) coefficient Ksc depends on the feed flow. Figure 2
demonstrates the experimental values of Ksc (symbols)
that were obtained by directly measuring the amount of
Nd arrived at the collector after evaporation without
photoionization and using formula (13). For compari-
son, Fig. 2 also shows the analytical dependence of the
Nd atom scattering coefficient in the working space on
feed flow F. The calculation was carried out as follows.
The working space was partitioned into elements. For
each of the elements, the atom concentration and its

D KscF.=

2.0
Ksc, %

1.6

1.2

0.8

0.4

0 20
F, g/h

15105

C
E

0.2

0.6

1.0

1.4

1.8

Fig. 2. Scattering coefficient Ksc vs. feed flow F. E, experi-
ment; C, calculation.
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Table 3

150 148 146 145 144 143 142

Isotopic composition, % 5.6 5.7 17.2 8.3 23.8 12.2 27.2

Composition measured
in mass spectrometer, %

91.58 4.59 2.61 0.27 0.86 0.03 0.08

Isotopic com-
position in 
sample 75, %

Measured Cp 34.1 ± 0.2 11.1 ± 0.2 12.9 ± 0.2 5.4 ± 0.2 14.2 ± 0.2 7.0 ± 0.2 15.3 ± 0.2

Calculated composi-
tion of photoions, Cphoto 
I/D = 0.78 ± 0.03

70 ± 2 18 ± 1 7.4 ± 0.2 1.7 ± 0.2 2.4 ± 0.5 0.4 ± 0.3 0.1 ± 0.1

Isotopic com-
position in 
sample 76, %

Measured Cp 56.3 ± 0.2 16.3 ± 0.2 9.3 ± 0.2 3.0 ± 0.2 6.4 ± 0.2 2.9 ± 0.2 5.8 ± 0.2

Calculated composi-
tion of photoions, Cphoto 
I/D = 3.7 ± 0.2

71 ± 2 19 ± 1 7.1 ± 0.2 1.5 ± 0.2 1.3 ± 0.5 0.3 ± 0.1 0.1 ± 0.1

Isotopic com-
position in 
sample 77, %

Measured Cp 35.3 ± 0.2 10.9 ± 0.2 12.5 ± 0.2 5.2 ± 0.2 13.9 ± 0.2 7.0 ± 0.2 15.2 ± 0.2

Calculated composi-
tion of photoions, Cphoto 
I/D = 0.79 ± 0.03

73 ± 2 18 ± 1 7.0 ± 0.2 1.3 ± 0.2 1.4 ± 0.5 0.4 ± 0.3 0.1 ± 0.1

Isotopic com-
position in 
sample 78, %

Measured Cp 16.5 ± 0.2 7.7 ± 0.2 15.4 ± 0.2 7.2 ± 0.2 20.1 ± 0.2 10.3 ± 0.2 22.8 ± 0.2

Calculated composi-
tion of photoions, Cphoto 
I/D = 0.19 ± 0.01

73 ± 4 18 ± 1 6.0 ± 0.5 1.5 ± 0.3 1.0 ± 1.0 0.5 ± 0.5 0.1 ± 0.1

Isotopic com-
position in 
sample 79, %

Measured Cp 9.6 ± 0.2 6.4 ± 0.2 16.6 ± 0.2 7.9 ± 0.2 22.5 ± 0.2 11.5 ± 0.2 25.6 ± 0.2

Calculated composi-
tion of photoions, Cphoto 
I/D = 0.065 ± 0.005

71 ± 9 17 ± 2 7.3 ± 2 1.7 ± 1.0 2 ± 2 1 ± 1 0.1 ± 0.1

Calculated composition of photoions 
averaged over all samples, %

71.8 18.0 6.8 1.5 1.4 0.4 0.1
related collision frequency were determined. Then, the
probability that the atoms scattered will fall on the col-
lector was found. Only single collisions were taken into
account. Comparison between the experimental and
analytical data shows that the atomic scattering in the
working space is the basic source of the natural-con-
centration component. The effect of resonant charge
exchange on the product concentration is insignificant
compared with the effect of atomic scattering, as fol-
lows from our calculation using the charge exchange
cross section from [12]. Thus, atomic scattering in the
working space and the Doppler effect are the main
deselecting processes in the separating cell considered
in this work.

Figure 2 shows that scattering coefficient Ksc is a
nearly linear function of the feed flow in the geometry
of our experiments. The same result can also be
obtained in terms of the elementary kinetic theory. In
fact, the number of collisions experienced by an atom
per unit time is nσV (1/s), where n is the atomic concen-
tration in the working space (1/cm3), σ is the atomic
scattering cross section (cm2), and V is the mean ther-
mal velocity of the atoms (cm/s). Considering that the
number of atoms per unit volume is n, we get the total
number of collisions in a unit volume per unit time: ν =
m2σV (1/cm3 s). Then, assuming that the fraction of the
scattered atoms that arrive at the collector is kg, we can
find the scattered atom flux (vapor flow) toward the col-
lector:

(15)

where S is the cross-sectional area of the vapor flow
(cm2), h is the height of the region from which the scat-
tered atoms come (cm), and m is the mass coefficient
equal to 9 × 10–19 (g s)/h for neodymium.

The flux of the scattered atom toward the collector
can be expressed through feed flow F that enters into
the separating cell (F = nVSm (g/h)):

(16)

(17)

where Ksc is the atomic scattering coefficient on the col-
lector.

From (17), it follows that the scattering coefficient
depends on the atomic concentration and can be
expressed as

(18)

where

(19)

D kgνShm kgn2σVShm, g/h,= =

D kgnσhF KscF,= =

Ksc kgnσh,=

Ksc = θF,

θ = kgσh/ VS 9 10 19–×⋅( ), h/g.
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Factor θ depends only on the properties of an evap-
orating material and the experimental cell geometry.
Consideration of atomic scattering in simple terms
gives the linear dependence of the scattering coefficient
on the feed flow, which is confirmed for the geometry
and atomic concentration range that were adopted in
our experiments. The value of θ measured for our cell
with a 30-cm-long evaporator turned out to be
θ = 10−3 h/g. Substituting this value into (19) yields
kg = 0.25.

Consider how the Doppler effect influences the
selectivity and efficiency of photoionization of the tar-
get isotope. Figure 3 demonstrates the results of exper-
iments with vapor flows that had different angular
divergences q along the direction of the laser beam.
Different divergences were provided by mounting col-
limating grids with different pitches in the flow. The
data points in Fig. 3 were obtained by processing the
results of the recovery experiments with formulas (9)
and (13). In these experiments, single-mode dye lasers
were employed. A single-mode laser with a linewidth
of ≈130 MHz makes it possible to considerably raise
the target isotope concentration in the photoions com-
pared with a multimode laser [3, 4]. The results
obtained demonstrate how much the selectivity and
efficiency of photoionization of the target isotope (in
Fig. 3, the latter parameter is represented through the
coefficient of extraction of the target isotope) decrease
with increasing angular divergence of the vapor flow in
the direction of laser radiation for the specific parame-
ters of the radiation that were used in the experiments.
The decrease in the ionization efficiency with increas-
ing angle of collimation is associated with an increase
in the number of target isotope atoms in the wings of
the Doppler-broadened line. For these atoms, the pho-
toionization probability is much lower than for the
atoms at the center of the line.

OPTIMIZATION OF THE VAPOR FLOW 
PARAMETERS

Consider now how the results obtained may be used
in optimizing the vapor flow parameters. With allow-
ance for atomic scattering in the working volume, the
target isotope concentration can be represented as [5]

(20)

If the concentration of 150Nd in the product is Cp,
yield  is given by

(21)

Our aim is to derive an expression for the output of
the cell when the target isotope (product) concentration
desired equals 0.7. If the product concentration exceeds
0.7, it may be decreased to the desired value by mixing
with the natural composition. Eventually, the yield of

Cp

KextrCf KscCf+
KextrCf/Cphoto Ksc+
---------------------------------------------.=

PCp

PCp
KextrCf/Cphoto Ksc+( )F.=
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the product with 150Nd concentration C150 = 0.7 appears
as

(22)

Substituting Cp and  from (20) and (21), respec-
tively, into (22) gives

(23)

The values of feed flow F in (23) are limited by the
inequality Cp ≥ 0.7. Assuming that Cp = 0.7 in formula
(20), we can express Ksc as

(24)

Expressing scattering coefficient Ksc through the
feed flow from (18), we impose a restriction on the feed
flow that corresponds to the inequality Cp ≥ 0.7:

(25)
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Fig. 3. Results of experiments with vapor flows that have
different angular divergences along the laser beam. q is the
collimation half-angle. The curves are constructed accord-
ing to experimental data from [5].
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Substituting the value of F0.7 into (23), we arrive at

(26)

Thus, for our experimental cell, the maximal scat-
tering-limited yield of the product with a desired con-
centration is given by expression (26). For Cp = 0.7, the
yield depends on the coefficient of target isotope
extraction by means of photoionization and is inversely
proportional to θ, which characterizes atomic scattering
and the geometric perfection of the separating cell.
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1
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---
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------------------ 
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2Cphoto Cf–
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------------------------Kextr

2 Cphoto 0.7–
Cphoto

--------------------------.≤
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Fig. 4. Calculated output P of the 30-cm-long cell vs. colli-
mation half-angle q for Cp = 70%.

18
F, g/h

16

14

12

10

0 30
q, deg

4010

8

6

4

2

20 50 60 70

Fig. 5. Feed flow F vs. collimation half-angle q for a 30 ×
2 × 2-cm collimator.
The other physical factor influencing the yield of the
product with a desired concentration in the separating
cell is the Doppler shift of the atom absorption line. It
can be shown that there exists an optimal collimation of
the vapor flow that provides a maximal yield of the
product with a desired enrichment. If, for example, the
dependences of Kextr and Cphoto on collimation angle q
are described by the continuous curves in Fig. 3, then,
substituting the functions Kextr(q) and Cphoto(q) into
(26), we get the dependence of the yield on the collima-

tion along the direction of the laser radiation, (q)
(Fig. 4, curve 1). Expression (26) is a balance between
the fluxes of photoions and scattered atoms, which
ensures the achievement of desired concentration C150 =
0.7; hence, this expression reflects a limitation on the
yield that is imposed by scattering (the first of the dese-
lecting phenomena). As the collimation angle
decreases, the yield calculated by (26) monotonically
grows. Expression (26) disregards the fact that feed
flow F that can pass through the collimating grid with-
out collisions decreases with decreasing collimation
angle. To take this fact into account, we calculated the
dependence F(q) (Fig. 5). Function F(q) gives an esti-
mate of the maximal atomic flow that can pass through
the given collimator so that atomic collisions have an
insignificant effect on the collimation quality (the frac-
tion of noncollimated atoms resulting from collisions in
the collimator and evaporated from its surface does not
exceed 10%). Substituting known functions F(q),
Kextr(q), and Cphoto(q) into formula (23), we obtain a col-

limator-related limitation on the yield, (q) (Fig. 4,
curve 2). Thus, given functions F(q), Kextr(q), Cphoto(q),

P0.7
dep

P0.7
col

120

100

80

60

40

20

0

P, mg/h

Cp = 70%

Cp = 80%

Cp = 75%

105 15 20 25 30 35 40
q, deg

Fig. 6. Calculated dependence of output P of the 30-cm-
long cell on collimation half-angle q for different 150Nd iso-
tope concentrations in the product.
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and θ, the output of the setup is

(27)

Function P0.7(q) specified by (27) is shown in Fig. 4
by the continuous curve. In experiments, the yield of
the product with a 150Nd concentration of 65% was
25 mg/h for a length of the evaporator along the laser
beam of 30 cm and a beam collimator half-angle of 30°
[5]. This value is in good agreement with the calcula-
tion (Fig. 4). The calculation shows that the yield versus
collimation angle dependence for Cp = 70% has a peak
at a collimation half-angle of ≈10°. Figure 6 plots the
analytical dependences of the yield on the collimation
half-angle for different target isotope concentrations in
the product. As the concentration grows, the yield drops
and the optimal collimation shifts toward smaller angu-
lar divergences.

CONCLUSIONS

Thus, from a series of experiments with vapor flows
in which the flows have different angular divergences
along the direction of the laser beam with the laser radi-
ation parameters fixed, one can determine an optimal
collimation that provides the maximal (for given laser
radiation parameters) yield of a product with a desired
target isotope concentration. In conducting these exper-
iments with different flow divergences, there is no need
for preparing the product with a desired concentration.
Moreover, the feed flows may also differ. It is only
essential that the laser radiation parameters (wave-
length, spectral width, and intensity), as well as the
configuration of the irradiation zone and the geometry
of the multipass optic, remain unchanged.

Using this technique and measuring the external
parameters of the separator (feed flows, the amount of
the product and waste, and the product and waste con-
centrations), we managed to find the internal parame-
ters (Cphoto, Kextr, and Ksc) and, thereby, separate the
influence of laser photoionization, scattering, and Dop-
pler effect on the yield of the product and selectivity of
the process. This makes it possible to further refine the
setup and reliably predict its separating power.

P0.7 min P0.7
col P0.7

dep,( ).=
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